]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/i960/i960.h
59719776bce36f67731bb14e27185d0f67d3a2ff
[thirdparty/gcc.git] / gcc / config / i960 / i960.h
1 /* Definitions of target machine for GNU compiler, for Intel 80960
2 Copyright (C) 1992, 1993, 1995, 1996, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Steven McGeady, Intel Corp.
5 Additional Work by Glenn Colon-Bonet, Jonathan Shapiro, Andy Wilson
6 Converted to GCC 2.0 by Jim Wilson and Michael Tiemann, Cygnus Support.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Note that some other tm.h files may include this one and then override
26 many of the definitions that relate to assembler syntax. */
27
28 /* Target CPU builtins. */
29 #define TARGET_CPU_CPP_BUILTINS() \
30 do \
31 { \
32 builtin_define_std ("i960"); \
33 builtin_define_std ("I960"); \
34 builtin_define_std ("i80960"); \
35 builtin_define_std ("I80960"); \
36 builtin_assert ("cpu=i960"); \
37 builtin_assert ("machine=i960"); \
38 } \
39 while (0)
40
41 #define MULTILIB_DEFAULTS { "mnumerics" }
42
43 /* Name to predefine in the preprocessor for processor variations.
44 -mic* options make characters signed by default. */
45 #define CPP_SPEC "%{mic*:-D__i960 -fsigned-char\
46 %{mka:-D__i960KA}%{mkb:-D__i960KB}\
47 %{mja:-D__i960JA}%{mjd:-D__i960JD}%{mjf:-D__i960JF}\
48 %{mrp:-D__i960RP}\
49 %{msa:-D__i960SA}%{msb:-D__i960SB}\
50 %{mmc:-D__i960MC}\
51 %{mca:-D__i960CA}%{mcc:-D__i960CC}\
52 %{mcf:-D__i960CF}}\
53 %{msoft-float:-D_SOFT_FLOAT}\
54 %{mka:-D__i960KA__ -D__i960_KA__}\
55 %{mkb:-D__i960KB__ -D__i960_KB__}\
56 %{msa:-D__i960SA__ -D__i960_SA__}\
57 %{msb:-D__i960SB__ -D__i960_SB__}\
58 %{mmc:-D__i960MC__ -D__i960_MC__}\
59 %{mca:-D__i960CA__ -D__i960_CA__}\
60 %{mcc:-D__i960CC__ -D__i960_CC__}\
61 %{mcf:-D__i960CF__ -D__i960_CF__}\
62 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:\
63 %{!mcc:%{!mcf:-D__i960_KB -D__i960KB__ %{mic*:-D__i960KB}}}}}}}}}\
64 %{mlong-double-64:-D__LONG_DOUBLE_64__}"
65
66 /* Specs for the compiler, to handle processor variations.
67 If the user gives an explicit -gstabs or -gcoff option, then do not
68 try to add an implicit one, as this will fail.
69 -mic* options make characters signed by default. */
70 #define CC1_SPEC \
71 "%{mic*:-fsigned-char}\
72 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-mka}}}}}}}}}}}}\
73 %{!gs*:%{!gc*:%{mbout:%{g*:-gstabs}}\
74 %{mcoff:%{g*:-gcoff}}\
75 %{!mbout:%{!mcoff:%{g*:-gstabs}}}}}"
76
77 /* Specs for the assembler, to handle processor variations.
78 For compatibility with Intel's gnu960 tool chain, pass -A options to
79 the assembler. */
80 #define ASM_SPEC \
81 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
82 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
83 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
84 %{!mka:%{!mkb:%{!msa:%{!msb:%{!mmc:%{!mca:%{!mcc:%{!mcf:%{!mja:%{!mjd:%{!mjf:%{!mrp:-AKB}}}}}}}}}}}}\
85 %{mlink-relax:-linkrelax}"
86
87 /* Specs for the linker, to handle processor variations.
88 For compatibility with Intel's gnu960 tool chain, pass -F and -A options
89 to the linker. */
90 #define LINK_SPEC \
91 "%{mka:-AKA}%{mkb:-AKB}%{msa:-ASA}%{msb:-ASB}\
92 %{mmc:-AMC}%{mca:-ACA}%{mcc:-ACC}%{mcf:-ACF}\
93 %{mja:-AJX}%{mjd:-AJX}%{mjf:-AJX}%{mrp:-AJX}\
94 %{mbout:-Fbout}%{mcoff:-Fcoff}\
95 %{mlink-relax:-relax}"
96
97 /* Specs for the libraries to link with, to handle processor variations.
98 Compatible with Intel's gnu960 tool chain. */
99 #define LIB_SPEC "%{!nostdlib:-lcg %{p:-lprof}%{pg:-lgprof}\
100 %{mka:-lfpg}%{msa:-lfpg}%{mca:-lfpg}%{mcf:-lfpg} -lgnu}"
101
102 /* Defining the macro shows we can debug even without a frame pointer.
103 Actually, we can debug without FP. But defining the macro results in
104 that -O means FP elimination. Addressing through sp requires
105 negative offset and more one word addressing in the most cases
106 (offsets except for 0-4095 require one more word). Therefore we've
107 not defined the macro. */
108 /*#define CAN_DEBUG_WITHOUT_FP*/
109
110 /* Do leaf procedure and tail call optimizations for -O2 and higher. */
111 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
112 { \
113 if ((LEVEL) >= 2) \
114 { \
115 target_flags |= TARGET_FLAG_LEAFPROC; \
116 target_flags |= TARGET_FLAG_TAILCALL; \
117 } \
118 }
119
120 /* Print subsidiary information on the compiler version in use. */
121 #define TARGET_VERSION fprintf (stderr," (intel 80960)");
122
123 /* Generate DBX debugging information. */
124 #define DBX_DEBUGGING_INFO 1
125
126 /* Generate SDB style debugging information. */
127 #define SDB_DEBUGGING_INFO 1
128 #define EXTENDED_SDB_BASIC_TYPES
129
130 /* Generate DBX_DEBUGGING_INFO by default. */
131 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
132
133 /* Redefine this to print in hex. No value adjustment is necessary
134 anymore. */
135 #define PUT_SDB_TYPE(A) \
136 fprintf (asm_out_file, "\t.type\t0x%x;", A)
137
138 /* Handle pragmas for compatibility with Intel's compilers. */
139
140 extern int i960_maxbitalignment;
141 extern int i960_last_maxbitalignment;
142
143 #define REGISTER_TARGET_PRAGMAS() do { \
144 c_register_pragma (0, "align", i960_pr_align); \
145 c_register_pragma (0, "noalign", i960_pr_noalign); \
146 } while (0)
147
148 /* Run-time compilation parameters selecting different hardware subsets. */
149
150 /* 960 architecture with floating-point. */
151 #define TARGET_FLAG_NUMERICS 0x01
152 #define TARGET_NUMERICS (target_flags & TARGET_FLAG_NUMERICS)
153
154 /* 960 architecture with memory management. */
155 /* ??? Not used currently. */
156 #define TARGET_FLAG_PROTECTED 0x02
157 #define TARGET_PROTECTED (target_flags & TARGET_FLAG_PROTECTED)
158
159 /* The following three are mainly used to provide a little sanity checking
160 against the -mARCH flags given. The Jx series, for the purposes of
161 gcc, is a Kx with a data cache. */
162
163 /* Nonzero if we should generate code for the KA and similar processors.
164 No FPU, no microcode instructions. */
165 #define TARGET_FLAG_K_SERIES 0x04
166 #define TARGET_K_SERIES (target_flags & TARGET_FLAG_K_SERIES)
167
168 /* Nonzero if we should generate code for the MC processor.
169 Not really different from KB for our purposes. */
170 #define TARGET_FLAG_MC 0x08
171 #define TARGET_MC (target_flags & TARGET_FLAG_MC)
172
173 /* Nonzero if we should generate code for the CA processor.
174 Enables different optimization strategies. */
175 #define TARGET_FLAG_C_SERIES 0x10
176 #define TARGET_C_SERIES (target_flags & TARGET_FLAG_C_SERIES)
177
178 /* Nonzero if we should generate leaf-procedures when we find them.
179 You may not want to do this because leaf-proc entries are
180 slower when not entered via BAL - this would be true when
181 a linker not supporting the optimization is used. */
182 #define TARGET_FLAG_LEAFPROC 0x20
183 #define TARGET_LEAFPROC (target_flags & TARGET_FLAG_LEAFPROC)
184
185 /* Nonzero if we should perform tail-call optimizations when we find them.
186 You may not want to do this because the detection of cases where
187 this is not valid is not totally complete. */
188 #define TARGET_FLAG_TAILCALL 0x40
189 #define TARGET_TAILCALL (target_flags & TARGET_FLAG_TAILCALL)
190
191 /* Nonzero if use of a complex addressing mode is a win on this implementation.
192 Complex addressing modes are probably not worthwhile on the K-series,
193 but they definitely are on the C-series. */
194 #define TARGET_FLAG_COMPLEX_ADDR 0x80
195 #define TARGET_COMPLEX_ADDR (target_flags & TARGET_FLAG_COMPLEX_ADDR)
196
197 /* Align code to 8 byte boundaries for faster fetching. */
198 #define TARGET_FLAG_CODE_ALIGN 0x100
199 #define TARGET_CODE_ALIGN (target_flags & TARGET_FLAG_CODE_ALIGN)
200
201 /* Append branch prediction suffixes to branch opcodes. */
202 /* ??? Not used currently. */
203 #define TARGET_FLAG_BRANCH_PREDICT 0x200
204 #define TARGET_BRANCH_PREDICT (target_flags & TARGET_FLAG_BRANCH_PREDICT)
205
206 /* Forces prototype and return promotions. */
207 /* ??? This does not work. */
208 #define TARGET_FLAG_CLEAN_LINKAGE 0x400
209 #define TARGET_CLEAN_LINKAGE (target_flags & TARGET_FLAG_CLEAN_LINKAGE)
210
211 /* For compatibility with iC960 v3.0. */
212 #define TARGET_FLAG_IC_COMPAT3_0 0x800
213 #define TARGET_IC_COMPAT3_0 (target_flags & TARGET_FLAG_IC_COMPAT3_0)
214
215 /* For compatibility with iC960 v2.0. */
216 #define TARGET_FLAG_IC_COMPAT2_0 0x1000
217 #define TARGET_IC_COMPAT2_0 (target_flags & TARGET_FLAG_IC_COMPAT2_0)
218
219 /* If no unaligned accesses are to be permitted. */
220 #define TARGET_FLAG_STRICT_ALIGN 0x2000
221 #define TARGET_STRICT_ALIGN (target_flags & TARGET_FLAG_STRICT_ALIGN)
222
223 /* For compatibility with iC960 assembler. */
224 #define TARGET_FLAG_ASM_COMPAT 0x4000
225 #define TARGET_ASM_COMPAT (target_flags & TARGET_FLAG_ASM_COMPAT)
226
227 /* For compatibility with the gcc960 v1.2 compiler. Use the old structure
228 alignment rules. Also, turns on STRICT_ALIGNMENT. */
229 #define TARGET_FLAG_OLD_ALIGN 0x8000
230 #define TARGET_OLD_ALIGN (target_flags & TARGET_FLAG_OLD_ALIGN)
231
232 /* Nonzero if long doubles are to be 64 bits. Useful for soft-float targets
233 if 80 bit long double support is missing. */
234 #define TARGET_FLAG_LONG_DOUBLE_64 0x10000
235 #define TARGET_LONG_DOUBLE_64 (target_flags & TARGET_FLAG_LONG_DOUBLE_64)
236
237 extern int target_flags;
238
239 /* Macro to define tables used to set the flags.
240 This is a list in braces of pairs in braces,
241 each pair being { "NAME", VALUE }
242 where VALUE is the bits to set or minus the bits to clear.
243 An empty string NAME is used to identify the default VALUE. */
244
245 /* ??? Not all ten of these architecture variations actually exist, but I
246 am not sure which are real and which aren't. */
247
248 #define TARGET_SWITCHES \
249 { {"sa", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
250 N_("Generate SA code")}, \
251 {"sb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
252 TARGET_FLAG_COMPLEX_ADDR), \
253 N_("Generate SB code")}, \
254 /* {"sc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
255 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
256 N_("Generate SC code")}, */ \
257 {"ka", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
258 N_("Generate KA code")}, \
259 {"kb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
260 TARGET_FLAG_COMPLEX_ADDR), \
261 N_("Generate KB code")}, \
262 /* {"kc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
263 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
264 N_("Generate KC code")}, */ \
265 {"ja", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
266 N_("Generate JA code")}, \
267 {"jd", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
268 N_("Generate JD code")}, \
269 {"jf", (TARGET_FLAG_NUMERICS|TARGET_FLAG_K_SERIES| \
270 TARGET_FLAG_COMPLEX_ADDR), \
271 N_("Generate JF code")}, \
272 {"rp", (TARGET_FLAG_K_SERIES|TARGET_FLAG_COMPLEX_ADDR), \
273 N_("generate RP code")}, \
274 {"mc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
275 TARGET_FLAG_MC|TARGET_FLAG_COMPLEX_ADDR), \
276 N_("Generate MC code")}, \
277 {"ca", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
278 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
279 N_("Generate CA code")}, \
280 /* {"cb", (TARGET_FLAG_NUMERICS|TARGET_FLAG_C_SERIES| \
281 TARGET_FLAG_BRANCH_PREDICT|TARGET_FLAG_CODE_ALIGN),\
282 N_("Generate CB code")}, \
283 {"cc", (TARGET_FLAG_NUMERICS|TARGET_FLAG_PROTECTED| \
284 TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT|\
285 TARGET_FLAG_CODE_ALIGN), \
286 N_("Generate CC code")}, */ \
287 {"cf", (TARGET_FLAG_C_SERIES|TARGET_FLAG_BRANCH_PREDICT| \
288 TARGET_FLAG_CODE_ALIGN|TARGET_FLAG_COMPLEX_ADDR),\
289 N_("Generate CF code")}, \
290 {"numerics", (TARGET_FLAG_NUMERICS), \
291 N_("Use hardware floating point instructions")}, \
292 {"soft-float", -(TARGET_FLAG_NUMERICS), \
293 N_("Use software floating point")}, \
294 {"leaf-procedures", TARGET_FLAG_LEAFPROC, \
295 N_("Use alternate leaf function entries")}, \
296 {"no-leaf-procedures", -(TARGET_FLAG_LEAFPROC), \
297 N_("Do not use alternate leaf function entries")}, \
298 {"tail-call", TARGET_FLAG_TAILCALL, \
299 N_("Perform tail call optimization")}, \
300 {"no-tail-call", -(TARGET_FLAG_TAILCALL), \
301 N_("Do not perform tail call optimization")}, \
302 {"complex-addr", TARGET_FLAG_COMPLEX_ADDR, \
303 N_("Use complex addressing modes")}, \
304 {"no-complex-addr", -(TARGET_FLAG_COMPLEX_ADDR), \
305 N_("Do not use complex addressing modes")}, \
306 {"code-align", TARGET_FLAG_CODE_ALIGN, \
307 N_("Align code to 8 byte boundary")}, \
308 {"no-code-align", -(TARGET_FLAG_CODE_ALIGN), \
309 N_("Do not align code to 8 byte boundary")}, \
310 /* {"clean-linkage", (TARGET_FLAG_CLEAN_LINKAGE), \
311 N_("Force use of prototypes")}, \
312 {"no-clean-linkage", -(TARGET_FLAG_CLEAN_LINKAGE), \
313 N_("Do not force use of prototypes")}, */ \
314 {"ic-compat", TARGET_FLAG_IC_COMPAT2_0, \
315 N_("Enable compatibility with iC960 v2.0")}, \
316 {"ic2.0-compat", TARGET_FLAG_IC_COMPAT2_0, \
317 N_("Enable compatibility with iC960 v2.0")}, \
318 {"ic3.0-compat", TARGET_FLAG_IC_COMPAT3_0, \
319 N_("Enable compatibility with iC960 v3.0")}, \
320 {"asm-compat", TARGET_FLAG_ASM_COMPAT, \
321 N_("Enable compatibility with ic960 assembler")}, \
322 {"intel-asm", TARGET_FLAG_ASM_COMPAT, \
323 N_("Enable compatibility with ic960 assembler")}, \
324 {"strict-align", TARGET_FLAG_STRICT_ALIGN, \
325 N_("Do not permit unaligned accesses")}, \
326 {"no-strict-align", -(TARGET_FLAG_STRICT_ALIGN), \
327 N_("Permit unaligned accesses")}, \
328 {"old-align", (TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
329 N_("Layout types like Intel's v1.3 gcc")}, \
330 {"no-old-align", -(TARGET_FLAG_OLD_ALIGN|TARGET_FLAG_STRICT_ALIGN), \
331 N_("Do not layout types like Intel's v1.3 gcc")}, \
332 {"long-double-64", TARGET_FLAG_LONG_DOUBLE_64, \
333 N_("Use 64 bit long doubles")}, \
334 {"link-relax", 0, \
335 N_("Enable linker relaxation")}, \
336 {"no-link-relax", 0, \
337 N_("Do not enable linker relaxation")}, \
338 SUBTARGET_SWITCHES \
339 { "", TARGET_DEFAULT, \
340 NULL}}
341
342 /* This are meant to be redefined in the host dependent files */
343 #define SUBTARGET_SWITCHES
344
345 /* Override conflicting target switch options.
346 Doesn't actually detect if more than one -mARCH option is given, but
347 does handle the case of two blatantly conflicting -mARCH options. */
348 #define OVERRIDE_OPTIONS i960_initialize ()
349
350 /* Don't enable anything by default. The user is expected to supply a -mARCH
351 option. If none is given, then -mka is added by CC1_SPEC. */
352 #define TARGET_DEFAULT 0
353 \f
354 /* Target machine storage layout. */
355
356 /* Define this if most significant bit is lowest numbered
357 in instructions that operate on numbered bit-fields. */
358 #define BITS_BIG_ENDIAN 0
359
360 /* Define this if most significant byte of a word is the lowest numbered.
361 The i960 case be either big endian or little endian. We only support
362 little endian, which is the most common. */
363 #define BYTES_BIG_ENDIAN 0
364
365 /* Define this if most significant word of a multiword number is lowest
366 numbered. */
367 #define WORDS_BIG_ENDIAN 0
368
369 /* Bitfields cannot cross word boundaries. */
370 #define BITFIELD_NBYTES_LIMITED 1
371
372 /* Width of a word, in units (bytes). */
373 #define UNITS_PER_WORD 4
374
375 /* Width in bits of a long double. */
376 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_64 ? 64 : 128)
377 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
378
379 /* Define this to set long double type size to use in libgcc2.c, which can
380 not depend on target_flags. */
381 #if defined(__LONG_DOUBLE_64__)
382 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
383 #else
384 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
385 #endif
386
387 /* Allocation boundary (in *bits*) for storing pointers in memory. */
388 #define POINTER_BOUNDARY 32
389
390 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
391 #define PARM_BOUNDARY 32
392
393 /* Boundary (in *bits*) on which stack pointer should be aligned. */
394 #define STACK_BOUNDARY 128
395
396 /* Allocation boundary (in *bits*) for the code of a function. */
397 #define FUNCTION_BOUNDARY 128
398
399 /* Alignment of field after `int : 0' in a structure. */
400 #define EMPTY_FIELD_BOUNDARY 32
401
402 /* This makes zero-length anonymous fields lay the next field
403 at a word boundary. It also makes the whole struct have
404 at least word alignment if there are any bitfields at all. */
405 #define PCC_BITFIELD_TYPE_MATTERS 1
406
407 /* Every structure's size must be a multiple of this. */
408 #define STRUCTURE_SIZE_BOUNDARY 8
409
410 /* No data type wants to be aligned rounder than this.
411 Extended precision floats gets 4-word alignment. */
412 #define BIGGEST_ALIGNMENT 128
413
414 /* Define this if move instructions will actually fail to work
415 when given unaligned data.
416 80960 will work even with unaligned data, but it is slow. */
417 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
418
419 /* Specify alignment for string literals (which might be higher than the
420 base type's minimal alignment requirement. This allows strings to be
421 aligned on word boundaries, and optimizes calls to the str* and mem*
422 library functions. */
423 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
424 (TREE_CODE (EXP) == STRING_CST \
425 && i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) > (int)(ALIGN) \
426 ? i960_object_bytes_bitalign (int_size_in_bytes (TREE_TYPE (EXP))) \
427 : (int)(ALIGN))
428
429 /* Macros to determine size of aggregates (structures and unions
430 in C). Normally, these may be defined to simply return the maximum
431 alignment and simple rounded-up size, but on some machines (like
432 the i960), the total size of a structure is based on a non-trivial
433 rounding method. */
434
435 #define ROUND_TYPE_ALIGN(TYPE, COMPUTED, SPECIFIED) \
436 i960_round_align (MAX ((COMPUTED), (SPECIFIED)), TYPE)
437 \f
438 /* Standard register usage. */
439
440 /* Number of actual hardware registers.
441 The hardware registers are assigned numbers for the compiler
442 from 0 to just below FIRST_PSEUDO_REGISTER.
443 All registers that the compiler knows about must be given numbers,
444 even those that are not normally considered general registers.
445
446 Registers 0-15 are the global registers (g0-g15).
447 Registers 16-31 are the local registers (r0-r15).
448 Register 32-35 are the fp registers (fp0-fp3).
449 Register 36 is the condition code register.
450 Register 37 is unused. */
451
452 #define FIRST_PSEUDO_REGISTER 38
453
454 /* 1 for registers that have pervasive standard uses and are not available
455 for the register allocator. On 80960, this includes the frame pointer
456 (g15), the previous FP (r0), the stack pointer (r1), the return
457 instruction pointer (r2), and the argument pointer (g14). */
458 #define FIXED_REGISTERS \
459 {0, 0, 0, 0, 0, 0, 0, 0, \
460 0, 0, 0, 0, 0, 0, 1, 1, \
461 1, 1, 1, 0, 0, 0, 0, 0, \
462 0, 0, 0, 0, 0, 0, 0, 0, \
463 0, 0, 0, 0, 1, 1}
464
465 /* 1 for registers not available across function calls.
466 These must include the FIXED_REGISTERS and also any
467 registers that can be used without being saved.
468 The latter must include the registers where values are returned
469 and the register where structure-value addresses are passed.
470 Aside from that, you can include as many other registers as you like. */
471
472 /* On the 80960, note that:
473 g0..g3 are used for return values,
474 g0..g7 may always be used for parameters,
475 g8..g11 may be used for parameters, but are preserved if they aren't,
476 g12 is the static chain if needed, otherwise is preserved
477 g13 is the struct return ptr if used, or temp, but may be trashed,
478 g14 is the leaf return ptr or the arg block ptr otherwise zero,
479 must be reset to zero before returning if it was used,
480 g15 is the frame pointer,
481 r0 is the previous FP,
482 r1 is the stack pointer,
483 r2 is the return instruction pointer,
484 r3-r15 are always available,
485 r3 is clobbered by calls in functions that use the arg pointer
486 r4-r11 may be clobbered by the mcount call when profiling
487 r4-r15 if otherwise unused may be used for preserving global registers
488 fp0..fp3 are never available. */
489 #define CALL_USED_REGISTERS \
490 {1, 1, 1, 1, 1, 1, 1, 1, \
491 0, 0, 0, 0, 0, 1, 1, 1, \
492 1, 1, 1, 0, 0, 0, 0, 0, \
493 0, 0, 0, 0, 0, 0, 0, 0, \
494 1, 1, 1, 1, 1, 1}
495
496 /* If no fp unit, make all of the fp registers fixed so that they can't
497 be used. */
498 #define CONDITIONAL_REGISTER_USAGE \
499 if (! TARGET_NUMERICS) { \
500 fixed_regs[32] = fixed_regs[33] = fixed_regs[34] = fixed_regs[35] = 1;\
501 } \
502
503 /* Return number of consecutive hard regs needed starting at reg REGNO
504 to hold something of mode MODE.
505 This is ordinarily the length in words of a value of mode MODE
506 but can be less for certain modes in special long registers.
507
508 On 80960, ordinary registers hold 32 bits worth, but can be ganged
509 together to hold double or extended precision floating point numbers,
510 and the floating point registers hold any size floating point number */
511 #define HARD_REGNO_NREGS(REGNO, MODE) \
512 ((REGNO) < 32 \
513 ? (((MODE) == VOIDmode) \
514 ? 1 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)) \
515 : ((REGNO) < FIRST_PSEUDO_REGISTER) ? 1 : 0)
516
517 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
518 On 80960, the cpu registers can hold any mode but the float registers
519 can only hold SFmode, DFmode, or TFmode. */
520 #define HARD_REGNO_MODE_OK(REGNO, MODE) hard_regno_mode_ok ((REGNO), (MODE))
521
522 /* Value is 1 if it is a good idea to tie two pseudo registers
523 when one has mode MODE1 and one has mode MODE2.
524 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
525 for any hard reg, then this must be 0 for correct output. */
526
527 #define MODES_TIEABLE_P(MODE1, MODE2) \
528 ((MODE1) == (MODE2) || GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
529
530 /* Specify the registers used for certain standard purposes.
531 The values of these macros are register numbers. */
532
533 /* 80960 pc isn't overloaded on a register that the compiler knows about. */
534 /* #define PC_REGNUM */
535
536 /* Register to use for pushing function arguments. */
537 #define STACK_POINTER_REGNUM 17
538
539 /* Actual top-of-stack address is same as
540 the contents of the stack pointer register. */
541 #define STACK_POINTER_OFFSET (-current_function_outgoing_args_size)
542
543 /* Base register for access to local variables of the function. */
544 #define FRAME_POINTER_REGNUM 15
545
546 /* Value should be nonzero if functions must have frame pointers.
547 Zero means the frame pointer need not be set up (and parms
548 may be accessed via the stack pointer) in functions that seem suitable.
549 This is computed in `reload', in reload1.c. */
550 /* ??? It isn't clear to me why this is here. Perhaps because of a bug (since
551 fixed) in the definition of INITIAL_FRAME_POINTER_OFFSET which would have
552 caused this to fail. */
553 /* ??? Must check current_function_has_nonlocal_goto, otherwise frame pointer
554 elimination messes up nonlocal goto sequences. I think this works for other
555 targets because they use indirect jumps for the return which disables fp
556 elimination. */
557 #define FRAME_POINTER_REQUIRED \
558 (! leaf_function_p () || current_function_has_nonlocal_goto)
559
560 /* Definitions for register eliminations.
561
562 This is an array of structures. Each structure initializes one pair
563 of eliminable registers. The "from" register number is given first,
564 followed by "to". Eliminations of the same "from" register are listed
565 in order of preference.. */
566
567 #define ELIMINABLE_REGS {{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
568
569 /* Given FROM and TO register numbers, say whether this elimination is allowed.
570 Frame pointer elimination is automatically handled. */
571 #define CAN_ELIMINATE(FROM, TO) 1
572
573 /* Define the offset between two registers, one to be eliminated, and
574 the other its replacement, at the start of a routine.
575
576 Since the stack grows upward on the i960, this must be a negative number.
577 This includes the 64 byte hardware register save area and the size of
578 the frame. */
579
580 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
581 do { (OFFSET) = - (64 + compute_frame_size (get_frame_size ())); } while (0)
582
583 /* Base register for access to arguments of the function. */
584 #define ARG_POINTER_REGNUM 14
585
586 /* Register in which static-chain is passed to a function.
587 On i960, we use g12. We can't use any local register, because we need
588 a register that can be set before a call or before a jump. */
589 #define STATIC_CHAIN_REGNUM 12
590
591 /* Functions which return large structures get the address
592 to place the wanted value at in g13. */
593
594 #define STRUCT_VALUE_REGNUM 13
595
596 /* The order in which to allocate registers. */
597
598 #define REG_ALLOC_ORDER \
599 { 4, 5, 6, 7, 0, 1, 2, 3, 13, /* g4, g5, g6, g7, g0, g1, g2, g3, g13 */ \
600 20, 21, 22, 23, 24, 25, 26, 27,/* r4, r5, r6, r7, r8, r9, r10, r11 */ \
601 28, 29, 30, 31, 19, 8, 9, 10, /* r12, r13, r14, r15, r3, g8, g9, g10 */ \
602 11, 12, /* g11, g12 */ \
603 32, 33, 34, 35, /* fp0, fp1, fp2, fp3 */ \
604 /* We can't actually allocate these. */ \
605 16, 17, 18, 14, 15, 36, 37} /* r0, r1, r2, g14, g15, cc */
606 \f
607 /* Define the classes of registers for register constraints in the
608 machine description. Also define ranges of constants.
609
610 One of the classes must always be named ALL_REGS and include all hard regs.
611 If there is more than one class, another class must be named NO_REGS
612 and contain no registers.
613
614 The name GENERAL_REGS must be the name of a class (or an alias for
615 another name such as ALL_REGS). This is the class of registers
616 that is allowed by "g" or "r" in a register constraint.
617 Also, registers outside this class are allocated only when
618 instructions express preferences for them.
619
620 The classes must be numbered in nondecreasing order; that is,
621 a larger-numbered class must never be contained completely
622 in a smaller-numbered class.
623
624 For any two classes, it is very desirable that there be another
625 class that represents their union. */
626
627 /* The 80960 has four kinds of registers, global, local, floating point,
628 and condition code. The cc register is never allocated, so no class
629 needs to be defined for it. */
630
631 enum reg_class { NO_REGS, GLOBAL_REGS, LOCAL_REGS, LOCAL_OR_GLOBAL_REGS,
632 FP_REGS, ALL_REGS, LIM_REG_CLASSES };
633
634 /* 'r' includes floating point registers if TARGET_NUMERICS. 'd' never
635 does. */
636 #define GENERAL_REGS ((TARGET_NUMERICS) ? ALL_REGS : LOCAL_OR_GLOBAL_REGS)
637
638 #define N_REG_CLASSES (int) LIM_REG_CLASSES
639
640 /* Give names of register classes as strings for dump file. */
641
642 #define REG_CLASS_NAMES \
643 { "NO_REGS", "GLOBAL_REGS", "LOCAL_REGS", "LOCAL_OR_GLOBAL_REGS", \
644 "FP_REGS", "ALL_REGS" }
645
646 /* Define which registers fit in which classes.
647 This is an initializer for a vector of HARD_REG_SET
648 of length N_REG_CLASSES. */
649
650 #define REG_CLASS_CONTENTS \
651 { {0, 0}, {0x0ffff, 0}, {0xffff0000, 0}, {-1,0}, {0, -1}, {-1,-1}}
652
653 /* The same information, inverted:
654 Return the class number of the smallest class containing
655 reg number REGNO. This could be a conditional expression
656 or could index an array. */
657
658 #define REGNO_REG_CLASS(REGNO) \
659 ((REGNO) < 16 ? GLOBAL_REGS \
660 : (REGNO) < 32 ? LOCAL_REGS \
661 : (REGNO) < 36 ? FP_REGS \
662 : NO_REGS)
663
664 /* The class value for index registers, and the one for base regs.
665 There is currently no difference between base and index registers on the
666 i960, but this distinction may one day be useful. */
667 #define INDEX_REG_CLASS LOCAL_OR_GLOBAL_REGS
668 #define BASE_REG_CLASS LOCAL_OR_GLOBAL_REGS
669
670 /* Get reg_class from a letter such as appears in the machine description.
671 'f' is a floating point register (fp0..fp3)
672 'l' is a local register (r0-r15)
673 'b' is a global register (g0-g15)
674 'd' is any local or global register
675 'r' or 'g' are pre-defined to the class GENERAL_REGS. */
676 /* 'l' and 'b' are probably never used. Note that 'd' and 'r' are *not*
677 the same thing, since 'r' may include the fp registers. */
678 #define REG_CLASS_FROM_LETTER(C) \
679 (((C) == 'f') && (TARGET_NUMERICS) ? FP_REGS : ((C) == 'l' ? LOCAL_REGS : \
680 (C) == 'b' ? GLOBAL_REGS : ((C) == 'd' ? LOCAL_OR_GLOBAL_REGS : NO_REGS)))
681
682 /* The letters I, J, K, L and M in a register constraint string
683 can be used to stand for particular ranges of immediate operands.
684 This macro defines what the ranges are.
685 C is the letter, and VALUE is a constant value.
686 Return 1 if VALUE is in the range specified by C.
687
688 For 80960:
689 'I' is used for literal values 0..31
690 'J' means literal 0
691 'K' means 0..-31. */
692
693 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
694 ((C) == 'I' ? (((unsigned) (VALUE)) <= 31) \
695 : (C) == 'J' ? ((VALUE) == 0) \
696 : (C) == 'K' ? ((VALUE) >= -31 && (VALUE) <= 0) \
697 : (C) == 'M' ? ((VALUE) >= -32 && (VALUE) <= 0) \
698 : 0)
699
700 /* Similar, but for floating constants, and defining letters G and H.
701 Here VALUE is the CONST_DOUBLE rtx itself.
702 For the 80960, G is 0.0 and H is 1.0. */
703
704 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
705 ((TARGET_NUMERICS) && \
706 (((C) == 'G' && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
707 || ((C) == 'H' && ((VALUE) == CONST1_RTX (GET_MODE (VALUE))))))
708
709 /* Given an rtx X being reloaded into a reg required to be
710 in class CLASS, return the class of reg to actually use.
711 In general this is just CLASS; but on some machines
712 in some cases it is preferable to use a more restrictive class. */
713
714 /* On 960, can't load constant into floating-point reg except
715 0.0 or 1.0.
716
717 Any hard reg is ok as a src operand of a reload insn. */
718
719 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
720 (GET_CODE (X) == REG && REGNO (X) < FIRST_PSEUDO_REGISTER \
721 ? (CLASS) \
722 : ((CLASS) == FP_REGS && CONSTANT_P (X) \
723 && (X) != CONST0_RTX (DFmode) && (X) != CONST1_RTX (DFmode)\
724 && (X) != CONST0_RTX (SFmode) && (X) != CONST1_RTX (SFmode)\
725 ? NO_REGS \
726 : (CLASS) == ALL_REGS ? LOCAL_OR_GLOBAL_REGS : (CLASS)))
727
728 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
729 secondary_reload_class (CLASS, MODE, IN)
730
731 /* Return the maximum number of consecutive registers
732 needed to represent mode MODE in a register of class CLASS. */
733 /* On 80960, this is the size of MODE in words,
734 except in the FP regs, where a single reg is always enough. */
735 #define CLASS_MAX_NREGS(CLASS, MODE) \
736 ((CLASS) == FP_REGS ? 1 : HARD_REGNO_NREGS (0, (MODE)))
737 \f
738 /* Stack layout; function entry, exit and calling. */
739
740 /* Define this if pushing a word on the stack
741 makes the stack pointer a smaller address. */
742 /* #define STACK_GROWS_DOWNWARD */
743
744 /* Define this if the nominal address of the stack frame
745 is at the high-address end of the local variables;
746 that is, each additional local variable allocated
747 goes at a more negative offset in the frame. */
748 /* #define FRAME_GROWS_DOWNWARD */
749
750 /* Offset within stack frame to start allocating local variables at.
751 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
752 first local allocated. Otherwise, it is the offset to the BEGINNING
753 of the first local allocated.
754
755 The i960 has a 64 byte register save area, plus possibly some extra
756 bytes allocated for varargs functions. */
757 #define STARTING_FRAME_OFFSET 64
758
759 /* If we generate an insn to push BYTES bytes,
760 this says how many the stack pointer really advances by.
761 On 80960, don't define this because there are no push insns. */
762 /* #define PUSH_ROUNDING(BYTES) BYTES */
763
764 /* Offset of first parameter from the argument pointer register value. */
765 #define FIRST_PARM_OFFSET(FNDECL) 0
766
767 /* When a parameter is passed in a register, no stack space is
768 allocated for it. However, when args are passed in the
769 stack, space is allocated for every register parameter. */
770 #define MAYBE_REG_PARM_STACK_SPACE 48
771 #define FINAL_REG_PARM_STACK_SPACE(CONST_SIZE, VAR_SIZE) \
772 i960_final_reg_parm_stack_space (CONST_SIZE, VAR_SIZE);
773 #define REG_PARM_STACK_SPACE(DECL) i960_reg_parm_stack_space (DECL)
774 #define OUTGOING_REG_PARM_STACK_SPACE
775
776 /* Keep the stack pointer constant throughout the function. */
777 #define ACCUMULATE_OUTGOING_ARGS 1
778
779 /* Value is 1 if returning from a function call automatically
780 pops the arguments described by the number-of-args field in the call.
781 FUNDECL is the declaration node of the function (as a tree),
782 FUNTYPE is the data type of the function (as a tree),
783 or for a library call it is an identifier node for the subroutine name. */
784
785 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
786
787 /* Define how to find the value returned by a library function
788 assuming the value has mode MODE. */
789
790 #define LIBCALL_VALUE(MODE) gen_rtx_REG ((MODE), 0)
791
792 /* 1 if N is a possible register number for a function value
793 as seen by the caller.
794 On 80960, returns are in g0..g3 */
795
796 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
797
798 /* 1 if N is a possible register number for function argument passing.
799 On 80960, parameters are passed in g0..g11 */
800
801 #define FUNCTION_ARG_REGNO_P(N) ((N) < 12)
802
803 /* Perform any needed actions needed for a function that is receiving a
804 variable number of arguments.
805
806 CUM is as above.
807
808 MODE and TYPE are the mode and type of the current parameter.
809
810 PRETEND_SIZE is a variable that should be set to the amount of stack
811 that must be pushed by the prolog to pretend that our caller pushed
812 it.
813
814 Normally, this macro will push all remaining incoming registers on the
815 stack and set PRETEND_SIZE to the length of the registers pushed. */
816
817 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
818 i960_setup_incoming_varargs(&CUM,MODE,TYPE,&PRETEND_SIZE,NO_RTL)
819
820 /* Define the `__builtin_va_list' type for the ABI. */
821 #define BUILD_VA_LIST_TYPE(VALIST) \
822 (VALIST) = i960_build_va_list ()
823
824 /* Implement `va_start' for varargs and stdarg. */
825 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
826 i960_va_start (valist, nextarg)
827
828 /* Implement `va_arg'. */
829 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
830 i960_va_arg (valist, type)
831 \f
832 /* Define a data type for recording info about an argument list
833 during the scan of that argument list. This data type should
834 hold all necessary information about the function itself
835 and about the args processed so far, enough to enable macros
836 such as FUNCTION_ARG to determine where the next arg should go.
837
838 On 80960, this is two integers, which count the number of register
839 parameters and the number of stack parameters seen so far. */
840
841 struct cum_args { int ca_nregparms; int ca_nstackparms; };
842
843 #define CUMULATIVE_ARGS struct cum_args
844
845 /* Define the number of registers that can hold parameters.
846 This macro is used only in macro definitions below and/or i960.c. */
847 #define NPARM_REGS 12
848
849 /* Define how to round to the next parameter boundary.
850 This macro is used only in macro definitions below and/or i960.c. */
851 #define ROUND_PARM(X, MULTIPLE_OF) \
852 ((((X) + (MULTIPLE_OF) - 1) / (MULTIPLE_OF)) * MULTIPLE_OF)
853
854 /* Initialize a variable CUM of type CUMULATIVE_ARGS
855 for a call to a function whose data type is FNTYPE.
856 For a library call, FNTYPE is 0.
857
858 On 80960, the offset always starts at 0; the first parm reg is g0. */
859
860 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
861 ((CUM).ca_nregparms = 0, (CUM).ca_nstackparms = 0)
862
863 /* Update the data in CUM to advance over an argument
864 of mode MODE and data type TYPE.
865 CUM should be advanced to align with the data type accessed and
866 also the size of that data type in # of regs.
867 (TYPE is null for libcalls where that information may not be available.) */
868
869 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
870 i960_function_arg_advance(&CUM, MODE, TYPE, NAMED)
871
872 /* Indicate the alignment boundary for an argument of the specified mode and
873 type. */
874 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
875 (((TYPE) != 0) \
876 ? ((TYPE_ALIGN (TYPE) <= PARM_BOUNDARY) \
877 ? PARM_BOUNDARY \
878 : TYPE_ALIGN (TYPE)) \
879 : ((GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY) \
880 ? PARM_BOUNDARY \
881 : GET_MODE_ALIGNMENT (MODE)))
882
883 /* Determine where to put an argument to a function.
884 Value is zero to push the argument on the stack,
885 or a hard register in which to store the argument.
886
887 MODE is the argument's machine mode.
888 TYPE is the data type of the argument (as a tree).
889 This is null for libcalls where that information may
890 not be available.
891 CUM is a variable of type CUMULATIVE_ARGS which gives info about
892 the preceding args and about the function being called.
893 NAMED is nonzero if this argument is a named parameter
894 (otherwise it is an extra parameter matching an ellipsis). */
895
896 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
897 i960_function_arg(&CUM, MODE, TYPE, NAMED)
898
899 /* Define how to find the value returned by a function.
900 VALTYPE is the data type of the value (as a tree).
901 If the precise function being called is known, FUNC is its FUNCTION_DECL;
902 otherwise, FUNC is 0. */
903
904 #define FUNCTION_VALUE(TYPE, FUNC) \
905 gen_rtx_REG (TYPE_MODE (TYPE), 0)
906
907 /* Force aggregates and objects larger than 16 bytes to be returned in memory,
908 since we only have 4 registers available for return values. */
909
910 #define RETURN_IN_MEMORY(TYPE) \
911 (TYPE_MODE (TYPE) == BLKmode || int_size_in_bytes (TYPE) > 16)
912
913 /* Don't default to pcc-struct-return, because we have already specified
914 exactly how to return structures in the RETURN_IN_MEMORY macro. */
915 #define DEFAULT_PCC_STRUCT_RETURN 0
916
917 /* For an arg passed partly in registers and partly in memory,
918 this is the number of registers used.
919 This never happens on 80960. */
920
921 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) 0
922 \f
923 /* Output the label for a function definition.
924 This handles leaf functions and a few other things for the i960. */
925
926 #define ASM_DECLARE_FUNCTION_NAME(FILE, NAME, DECL) \
927 i960_function_name_declare (FILE, NAME, DECL)
928
929 /* Output assembler code to FILE to increment profiler label # LABELNO
930 for profiling a function entry. */
931
932 #define FUNCTION_PROFILER(FILE, LABELNO) \
933 output_function_profiler ((FILE), (LABELNO));
934
935 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
936 the stack pointer does not matter. The value is tested only in
937 functions that have frame pointers.
938 No definition is equivalent to always zero. */
939
940 #define EXIT_IGNORE_STACK 1
941 \f
942 /* Addressing modes, and classification of registers for them. */
943
944 /* Macros to check register numbers against specific register classes. */
945
946 /* These assume that REGNO is a hard or pseudo reg number.
947 They give nonzero only if REGNO is a hard reg of the suitable class
948 or a pseudo reg currently allocated to a suitable hard reg.
949 Since they use reg_renumber, they are safe only once reg_renumber
950 has been allocated, which happens in local-alloc.c. */
951
952 #define REGNO_OK_FOR_INDEX_P(REGNO) \
953 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
954 #define REGNO_OK_FOR_BASE_P(REGNO) \
955 ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32)
956 #define REGNO_OK_FOR_FP_P(REGNO) \
957 ((REGNO) < 36 || (unsigned) reg_renumber[REGNO] < 36)
958
959 /* Now macros that check whether X is a register and also,
960 strictly, whether it is in a specified class.
961
962 These macros are specific to the 960, and may be used only
963 in code for printing assembler insns and in conditions for
964 define_optimization. */
965
966 /* 1 if X is an fp register. */
967
968 #define FP_REG_P(X) (REGNO (X) >= 32 && REGNO (X) < 36)
969
970 /* Maximum number of registers that can appear in a valid memory address. */
971 #define MAX_REGS_PER_ADDRESS 2
972
973 #define CONSTANT_ADDRESS_P(X) \
974 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
975 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
976 || GET_CODE (X) == HIGH)
977
978 /* LEGITIMATE_CONSTANT_P is nonzero if the constant value X
979 is a legitimate general operand.
980 It is given that X satisfies CONSTANT_P.
981
982 Anything but a CONST_DOUBLE can be made to work, excepting 0.0 and 1.0.
983
984 ??? This probably should be defined to 1. */
985
986 #define LEGITIMATE_CONSTANT_P(X) \
987 ((GET_CODE (X) != CONST_DOUBLE) || fp_literal ((X), GET_MODE (X)))
988
989 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
990 and check its validity for a certain class.
991 We have two alternate definitions for each of them.
992 The usual definition accepts all pseudo regs; the other rejects
993 them unless they have been allocated suitable hard regs.
994 The symbol REG_OK_STRICT causes the latter definition to be used.
995
996 Most source files want to accept pseudo regs in the hope that
997 they will get allocated to the class that the insn wants them to be in.
998 Source files for reload pass need to be strict.
999 After reload, it makes no difference, since pseudo regs have
1000 been eliminated by then. */
1001
1002 #ifndef REG_OK_STRICT
1003
1004 /* Nonzero if X is a hard reg that can be used as an index
1005 or if it is a pseudo reg. */
1006 #define REG_OK_FOR_INDEX_P(X) \
1007 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1008 /* Nonzero if X is a hard reg that can be used as a base reg
1009 or if it is a pseudo reg. */
1010 #define REG_OK_FOR_BASE_P(X) \
1011 (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER)
1012
1013 #define REG_OK_FOR_INDEX_P_STRICT(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1014 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1015
1016 #else
1017
1018 /* Nonzero if X is a hard reg that can be used as an index. */
1019 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1020 /* Nonzero if X is a hard reg that can be used as a base reg. */
1021 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1022
1023 #endif
1024 \f
1025 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1026 that is a valid memory address for an instruction.
1027 The MODE argument is the machine mode for the MEM expression
1028 that wants to use this address.
1029
1030 On 80960, legitimate addresses are:
1031 base ld (g0),r0
1032 disp (12 or 32 bit) ld foo,r0
1033 base + index ld (g0)[g1*1],r0
1034 base + displ ld 0xf00(g0),r0
1035 base + index*scale + displ ld 0xf00(g0)[g1*4],r0
1036 index*scale + base ld (g0)[g1*4],r0
1037 index*scale + displ ld 0xf00[g1*4],r0
1038 index*scale ld [g1*4],r0
1039 index + base + displ ld 0xf00(g0)[g1*1],r0
1040
1041 In each case, scale can be 1, 2, 4, 8, or 16. */
1042
1043 /* Returns 1 if the scale factor of an index term is valid. */
1044 #define SCALE_TERM_P(X) \
1045 (GET_CODE (X) == CONST_INT \
1046 && (INTVAL (X) == 1 || INTVAL (X) == 2 || INTVAL (X) == 4 \
1047 || INTVAL(X) == 8 || INTVAL (X) == 16))
1048
1049
1050 #ifdef REG_OK_STRICT
1051 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1052 { if (legitimate_address_p (MODE, X, 1)) goto ADDR; }
1053 #else
1054 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1055 { if (legitimate_address_p (MODE, X, 0)) goto ADDR; }
1056 #endif
1057 \f
1058 /* Try machine-dependent ways of modifying an illegitimate address
1059 to be legitimate. If we find one, return the new, valid address.
1060 This macro is used in only one place: `memory_address' in explow.c.
1061
1062 OLDX is the address as it was before break_out_memory_refs was called.
1063 In some cases it is useful to look at this to decide what needs to be done.
1064
1065 MODE and WIN are passed so that this macro can use
1066 GO_IF_LEGITIMATE_ADDRESS.
1067
1068 It is always safe for this macro to do nothing. It exists to recognize
1069 opportunities to optimize the output. */
1070
1071 /* On 80960, convert non-canonical addresses to canonical form. */
1072
1073 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1074 { rtx orig_x = (X); \
1075 (X) = legitimize_address (X, OLDX, MODE); \
1076 if ((X) != orig_x && memory_address_p (MODE, X)) \
1077 goto WIN; }
1078
1079 /* Go to LABEL if ADDR (a legitimate address expression)
1080 has an effect that depends on the machine mode it is used for.
1081 On the 960 this is never true. */
1082
1083 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
1084 \f
1085 /* Specify the machine mode that this machine uses
1086 for the index in the tablejump instruction. */
1087 #define CASE_VECTOR_MODE SImode
1088
1089 /* Define as C expression which evaluates to nonzero if the tablejump
1090 instruction expects the table to contain offsets from the address of the
1091 table.
1092 Do not define this if the table should contain absolute addresses. */
1093 /* #define CASE_VECTOR_PC_RELATIVE 1 */
1094
1095 /* Define this as 1 if `char' should by default be signed; else as 0. */
1096 #define DEFAULT_SIGNED_CHAR 0
1097
1098 /* Max number of bytes we can move from memory to memory
1099 in one reasonably fast instruction. */
1100 #define MOVE_MAX 16
1101
1102 /* Define if operations between registers always perform the operation
1103 on the full register even if a narrower mode is specified. */
1104 #define WORD_REGISTER_OPERATIONS
1105
1106 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1107 will either zero-extend or sign-extend. The value of this macro should
1108 be the code that says which one of the two operations is implicitly
1109 done, NIL if none. */
1110 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1111
1112 /* Nonzero if access to memory by bytes is no faster than for words.
1113 Value changed to 1 after reports of poor bit-field code with g++.
1114 Indications are that code is usually as good, sometimes better. */
1115
1116 #define SLOW_BYTE_ACCESS 1
1117
1118 /* Define this to be nonzero if shift instructions ignore all but the low-order
1119 few bits. */
1120 #define SHIFT_COUNT_TRUNCATED 0
1121
1122 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1123 is done just by pretending it is already truncated. */
1124 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1125
1126 /* Specify the machine mode that pointers have.
1127 After generation of rtl, the compiler makes no further distinction
1128 between pointers and any other objects of this machine mode. */
1129 #define Pmode SImode
1130
1131 /* Specify the widest mode that BLKmode objects can be promoted to */
1132 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TImode)
1133 \f
1134 /* These global variables are used to pass information between
1135 cc setter and cc user at insn emit time. */
1136
1137 extern struct rtx_def *i960_compare_op0, *i960_compare_op1;
1138
1139 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1140 return the mode to be used for the comparison. For floating-point, CCFPmode
1141 should be used. CC_NOOVmode should be used when the first operand is a
1142 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1143 needed. */
1144 #define SELECT_CC_MODE(OP,X,Y) select_cc_mode (OP, X)
1145
1146 /* A function address in a call instruction is a byte address
1147 (for indexing purposes) so give the MEM rtx a byte's mode. */
1148 #define FUNCTION_MODE SImode
1149
1150 /* Define this if addresses of constant functions
1151 shouldn't be put through pseudo regs where they can be cse'd.
1152 Desirable on machines where ordinary constants are expensive
1153 but a CALL with constant address is cheap. */
1154 #define NO_FUNCTION_CSE
1155
1156 /* Use memcpy, etc. instead of bcopy. */
1157
1158 #ifndef WIND_RIVER
1159 #define TARGET_MEM_FUNCTIONS 1
1160 #endif
1161 \f
1162 /* Control the assembler format that we output. */
1163
1164 /* Output at beginning of assembler file. */
1165
1166 #define ASM_FILE_START(file)
1167
1168 /* Output to assembler file text saying following lines
1169 may contain character constants, extra white space, comments, etc. */
1170
1171 #define ASM_APP_ON ""
1172
1173 /* Output to assembler file text saying following lines
1174 no longer contain unusual constructs. */
1175
1176 #define ASM_APP_OFF ""
1177
1178 /* Output before read-only data. */
1179
1180 #define TEXT_SECTION_ASM_OP "\t.text"
1181
1182 /* Output before writable data. */
1183
1184 #define DATA_SECTION_ASM_OP "\t.data"
1185
1186 /* How to refer to registers in assembler output.
1187 This sequence is indexed by compiler's hard-register-number (see above). */
1188
1189 #define REGISTER_NAMES { \
1190 "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7", \
1191 "g8", "g9", "g10", "g11", "g12", "g13", "g14", "fp", \
1192 "pfp","sp", "rip", "r3", "r4", "r5", "r6", "r7", \
1193 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
1194 "fp0","fp1","fp2", "fp3", "cc", "fake" }
1195
1196 /* How to renumber registers for dbx and gdb.
1197 In the 960 encoding, g0..g15 are registers 16..31. */
1198
1199 #define DBX_REGISTER_NUMBER(REGNO) \
1200 (((REGNO) < 16) ? (REGNO) + 16 \
1201 : (((REGNO) > 31) ? (REGNO) : (REGNO) - 16))
1202
1203 /* Don't emit dbx records longer than this. This is an arbitrary value. */
1204 #define DBX_CONTIN_LENGTH 1500
1205
1206 /* This is how to output a note to DBX telling it the line number
1207 to which the following sequence of instructions corresponds. */
1208
1209 #define ASM_OUTPUT_SOURCE_LINE(FILE, LINE) \
1210 { if (write_symbols == SDB_DEBUG) { \
1211 fprintf ((FILE), "\t.ln %d\n", \
1212 (sdb_begin_function_line \
1213 ? (LINE) - sdb_begin_function_line : 1)); \
1214 } else if (write_symbols == DBX_DEBUG) { \
1215 fprintf((FILE),"\t.stabd 68,0,%d\n",(LINE)); \
1216 } }
1217
1218 /* Globalizing directive for a label. */
1219 #define GLOBAL_ASM_OP "\t.globl "
1220
1221 /* The prefix to add to user-visible assembler symbols. */
1222
1223 #define USER_LABEL_PREFIX "_"
1224
1225 /* This is how to store into the string LABEL
1226 the symbol_ref name of an internal numbered label where
1227 PREFIX is the class of label and NUM is the number within the class.
1228 This is suitable for output with `assemble_name'. */
1229
1230 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1231 sprintf (LABEL, "*%s%lu", PREFIX, (unsigned long)(NUM))
1232
1233 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1234 fprintf (FILE, "\tst\t%s,(sp)\n\taddo\t4,sp,sp\n", reg_names[REGNO])
1235
1236 /* This is how to output an insn to pop a register from the stack.
1237 It need not be very fast code. */
1238
1239 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1240 fprintf (FILE, "\tsubo\t4,sp,sp\n\tld\t(sp),%s\n", reg_names[REGNO])
1241
1242 /* This is how to output an element of a case-vector that is absolute. */
1243
1244 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1245 fprintf (FILE, "\t.word L%d\n", VALUE)
1246
1247 /* This is how to output an element of a case-vector that is relative. */
1248
1249 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1250 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1251
1252 /* This is how to output an assembler line that says to advance the
1253 location counter to a multiple of 2**LOG bytes. */
1254
1255 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1256 fprintf (FILE, "\t.align %d\n", (LOG))
1257
1258 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1259 fprintf (FILE, "\t.space %d\n", (int)(SIZE))
1260
1261 /* This says how to output an assembler line
1262 to define a global common symbol. */
1263
1264 /* For common objects, output unpadded size... gld960 & lnk960 both
1265 have code to align each common object at link time. Also, if size
1266 is 0, treat this as a declaration, not a definition - i.e.,
1267 do nothing at all. */
1268
1269 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1270 { if ((SIZE) != 0) \
1271 { \
1272 fputs (".globl ", (FILE)), \
1273 assemble_name ((FILE), (NAME)), \
1274 fputs ("\n.comm ", (FILE)), \
1275 assemble_name ((FILE), (NAME)), \
1276 fprintf ((FILE), ",%d\n", (int)(SIZE)); \
1277 } \
1278 }
1279
1280 /* This says how to output an assembler line to define a local common symbol.
1281 Output unpadded size, with request to linker to align as requested.
1282 0 size should not be possible here. */
1283
1284 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
1285 ( fputs (".bss\t", (FILE)), \
1286 assemble_name ((FILE), (NAME)), \
1287 fprintf ((FILE), ",%d,%d\n", (int)(SIZE), \
1288 (floor_log2 ((ALIGN) / BITS_PER_UNIT))))
1289
1290 /* A C statement (sans semicolon) to output to the stdio stream
1291 FILE the assembler definition of uninitialized global DECL named
1292 NAME whose size is SIZE bytes and alignment is ALIGN bytes.
1293 Try to use asm_output_aligned_bss to implement this macro. */
1294
1295 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
1296 do { \
1297 ASM_OUTPUT_ALIGNED_LOCAL (FILE, NAME, SIZE, ALIGN); \
1298 } while (0)
1299
1300 /* Output text for an #ident directive. */
1301 #define ASM_OUTPUT_IDENT(FILE, STR) fprintf(FILE, "\t# %s\n", STR);
1302
1303 /* Align code to 8 byte boundary if TARGET_CODE_ALIGN is true. */
1304
1305 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_CODE_ALIGN ? 3 : 0)
1306
1307 \f
1308 /* Print operand X (an rtx) in assembler syntax to file FILE.
1309 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1310 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1311
1312 #define PRINT_OPERAND(FILE, X, CODE) \
1313 i960_print_operand (FILE, X, CODE);
1314
1315 /* Print a memory address as an operand to reference that memory location. */
1316
1317 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1318 i960_print_operand_addr (FILE, ADDR)
1319
1320 /* Determine which codes are valid without a following integer. These must
1321 not be alphabetic (the characters are chosen so that
1322 PRINT_OPERAND_PUNCT_VALID_P translates into a simple range change when
1323 using ASCII). */
1324
1325 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '+')
1326 \f
1327 /* Output assembler code for a block containing the constant parts
1328 of a trampoline, leaving space for the variable parts. */
1329
1330 /* On the i960, the trampoline contains three instructions:
1331 ldconst _function, r4
1332 ldconst static addr, g12
1333 jump (r4) */
1334
1335 #define TRAMPOLINE_TEMPLATE(FILE) \
1336 { \
1337 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8C203000)); \
1338 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1339 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x8CE03000)); \
1340 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x00000000)); \
1341 assemble_aligned_integer (UNITS_PER_WORD, GEN_INT (0x84212000)); \
1342 }
1343
1344 /* Length in units of the trampoline for entering a nested function. */
1345
1346 #define TRAMPOLINE_SIZE 20
1347
1348 /* Emit RTL insns to initialize the variable parts of a trampoline.
1349 FNADDR is an RTX for the address of the function's pure code.
1350 CXT is an RTX for the static chain value for the function. */
1351
1352 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1353 { \
1354 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), FNADDR); \
1355 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 12)), CXT); \
1356 }
1357
1358 /* Generate RTL to flush the register windows so as to make arbitrary frames
1359 available. */
1360 #define SETUP_FRAME_ADDRESSES() \
1361 emit_insn (gen_flush_register_windows ())
1362
1363 #define BUILTIN_SETJMP_FRAME_VALUE hard_frame_pointer_rtx
1364
1365 #if 0
1366 /* Promote char and short arguments to ints, when want compatibility with
1367 the iC960 compilers. */
1368
1369 /* ??? In order for this to work, all users would need to be changed
1370 to test the value of the macro at run time. */
1371 #define PROMOTE_PROTOTYPES TARGET_CLEAN_LINKAGE
1372 /* ??? This does not exist. */
1373 #define PROMOTE_RETURN TARGET_CLEAN_LINKAGE
1374 #endif
1375
1376 /* Instruction type definitions. Used to alternate instructions types for
1377 better performance on the C series chips. */
1378
1379 enum insn_types { I_TYPE_REG, I_TYPE_MEM, I_TYPE_CTRL };
1380
1381 /* Holds the insn type of the last insn output to the assembly file. */
1382
1383 extern enum insn_types i960_last_insn_type;
1384
1385 /* Parse opcodes, and set the insn last insn type based on them. */
1386
1387 #define ASM_OUTPUT_OPCODE(FILE, INSN) i960_scan_opcode (INSN)
1388
1389 /* Table listing what rtl codes each predicate in i960.c will accept. */
1390
1391 #define PREDICATE_CODES \
1392 {"fpmove_src_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
1393 LABEL_REF, SUBREG, REG, MEM}}, \
1394 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1395 {"logic_operand", {SUBREG, REG, CONST_INT}}, \
1396 {"fp_arith_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1397 {"signed_arith_operand", {SUBREG, REG, CONST_INT}}, \
1398 {"literal", {CONST_INT}}, \
1399 {"fp_literal_one", {CONST_DOUBLE}}, \
1400 {"fp_literal_double", {CONST_DOUBLE}}, \
1401 {"fp_literal", {CONST_DOUBLE}}, \
1402 {"signed_literal", {CONST_INT}}, \
1403 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1404 {"eq_or_neq", {EQ, NE}}, \
1405 {"arith32_operand", {SUBREG, REG, LABEL_REF, SYMBOL_REF, CONST_INT, \
1406 CONST_DOUBLE, CONST}}, \
1407 {"power2_operand", {CONST_INT}}, \
1408 {"cmplpower2_operand", {CONST_INT}},
1409
1410 /* Defined in reload.c, and used in insn-recog.c. */
1411
1412 extern int rtx_equal_function_value_matters;