]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/m68k/m68k.c
08c7292a42cac43cca471ef6cd4cbb0ea3afbfad
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "stringpool.h"
27 #include "attribs.h"
28 #include "rtl.h"
29 #include "df.h"
30 #include "alias.h"
31 #include "fold-const.h"
32 #include "calls.h"
33 #include "stor-layout.h"
34 #include "varasm.h"
35 #include "regs.h"
36 #include "insn-config.h"
37 #include "conditions.h"
38 #include "output.h"
39 #include "insn-attr.h"
40 #include "recog.h"
41 #include "diagnostic-core.h"
42 #include "flags.h"
43 #include "expmed.h"
44 #include "dojump.h"
45 #include "explow.h"
46 #include "memmodel.h"
47 #include "emit-rtl.h"
48 #include "stmt.h"
49 #include "expr.h"
50 #include "reload.h"
51 #include "tm_p.h"
52 #include "target.h"
53 #include "debug.h"
54 #include "cfgrtl.h"
55 #include "cfganal.h"
56 #include "lcm.h"
57 #include "cfgbuild.h"
58 #include "cfgcleanup.h"
59 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
60 #include "sched-int.h"
61 #include "insn-codes.h"
62 #include "opts.h"
63 #include "optabs.h"
64 #include "builtins.h"
65 #include "rtl-iter.h"
66
67 /* This file should be included last. */
68 #include "target-def.h"
69
70 enum reg_class regno_reg_class[] =
71 {
72 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
73 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
74 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
75 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
76 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
77 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
78 ADDR_REGS
79 };
80
81
82 /* The minimum number of integer registers that we want to save with the
83 movem instruction. Using two movel instructions instead of a single
84 moveml is about 15% faster for the 68020 and 68030 at no expense in
85 code size. */
86 #define MIN_MOVEM_REGS 3
87
88 /* The minimum number of floating point registers that we want to save
89 with the fmovem instruction. */
90 #define MIN_FMOVEM_REGS 1
91
92 /* Structure describing stack frame layout. */
93 struct m68k_frame
94 {
95 /* Stack pointer to frame pointer offset. */
96 HOST_WIDE_INT offset;
97
98 /* Offset of FPU registers. */
99 HOST_WIDE_INT foffset;
100
101 /* Frame size in bytes (rounded up). */
102 HOST_WIDE_INT size;
103
104 /* Data and address register. */
105 int reg_no;
106 unsigned int reg_mask;
107
108 /* FPU registers. */
109 int fpu_no;
110 unsigned int fpu_mask;
111
112 /* Offsets relative to ARG_POINTER. */
113 HOST_WIDE_INT frame_pointer_offset;
114 HOST_WIDE_INT stack_pointer_offset;
115
116 /* Function which the above information refers to. */
117 int funcdef_no;
118 };
119
120 /* Current frame information calculated by m68k_compute_frame_layout(). */
121 static struct m68k_frame current_frame;
122
123 /* Structure describing an m68k address.
124
125 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
126 with null fields evaluating to 0. Here:
127
128 - BASE satisfies m68k_legitimate_base_reg_p
129 - INDEX satisfies m68k_legitimate_index_reg_p
130 - OFFSET satisfies m68k_legitimate_constant_address_p
131
132 INDEX is either HImode or SImode. The other fields are SImode.
133
134 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
135 the address is (BASE)+. */
136 struct m68k_address {
137 enum rtx_code code;
138 rtx base;
139 rtx index;
140 rtx offset;
141 int scale;
142 };
143
144 static int m68k_sched_adjust_cost (rtx_insn *, int, rtx_insn *, int,
145 unsigned int);
146 static int m68k_sched_issue_rate (void);
147 static int m68k_sched_variable_issue (FILE *, int, rtx_insn *, int);
148 static void m68k_sched_md_init_global (FILE *, int, int);
149 static void m68k_sched_md_finish_global (FILE *, int);
150 static void m68k_sched_md_init (FILE *, int, int);
151 static void m68k_sched_dfa_pre_advance_cycle (void);
152 static void m68k_sched_dfa_post_advance_cycle (void);
153 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
154
155 static bool m68k_can_eliminate (const int, const int);
156 static void m68k_conditional_register_usage (void);
157 static bool m68k_legitimate_address_p (machine_mode, rtx, bool);
158 static void m68k_option_override (void);
159 static void m68k_override_options_after_change (void);
160 static rtx find_addr_reg (rtx);
161 static const char *singlemove_string (rtx *);
162 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
163 HOST_WIDE_INT, tree);
164 static rtx m68k_struct_value_rtx (tree, int);
165 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
166 tree args, int flags,
167 bool *no_add_attrs);
168 static void m68k_compute_frame_layout (void);
169 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
170 static bool m68k_ok_for_sibcall_p (tree, tree);
171 static bool m68k_tls_symbol_p (rtx);
172 static rtx m68k_legitimize_address (rtx, rtx, machine_mode);
173 static bool m68k_rtx_costs (rtx, machine_mode, int, int, int *, bool);
174 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
175 static bool m68k_return_in_memory (const_tree, const_tree);
176 #endif
177 static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
178 static void m68k_trampoline_init (rtx, tree, rtx);
179 static int m68k_return_pops_args (tree, tree, int);
180 static rtx m68k_delegitimize_address (rtx);
181 static void m68k_function_arg_advance (cumulative_args_t, machine_mode,
182 const_tree, bool);
183 static rtx m68k_function_arg (cumulative_args_t, machine_mode,
184 const_tree, bool);
185 static bool m68k_cannot_force_const_mem (machine_mode mode, rtx x);
186 static bool m68k_output_addr_const_extra (FILE *, rtx);
187 static void m68k_init_sync_libfuncs (void) ATTRIBUTE_UNUSED;
188 static enum flt_eval_method
189 m68k_excess_precision (enum excess_precision_type);
190 \f
191 /* Initialize the GCC target structure. */
192
193 #if INT_OP_GROUP == INT_OP_DOT_WORD
194 #undef TARGET_ASM_ALIGNED_HI_OP
195 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
196 #endif
197
198 #if INT_OP_GROUP == INT_OP_NO_DOT
199 #undef TARGET_ASM_BYTE_OP
200 #define TARGET_ASM_BYTE_OP "\tbyte\t"
201 #undef TARGET_ASM_ALIGNED_HI_OP
202 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
203 #undef TARGET_ASM_ALIGNED_SI_OP
204 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
205 #endif
206
207 #if INT_OP_GROUP == INT_OP_DC
208 #undef TARGET_ASM_BYTE_OP
209 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
210 #undef TARGET_ASM_ALIGNED_HI_OP
211 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
212 #undef TARGET_ASM_ALIGNED_SI_OP
213 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
214 #endif
215
216 #undef TARGET_ASM_UNALIGNED_HI_OP
217 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
218 #undef TARGET_ASM_UNALIGNED_SI_OP
219 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
220
221 #undef TARGET_ASM_OUTPUT_MI_THUNK
222 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
223 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
224 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
225
226 #undef TARGET_ASM_FILE_START_APP_OFF
227 #define TARGET_ASM_FILE_START_APP_OFF true
228
229 #undef TARGET_LEGITIMIZE_ADDRESS
230 #define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
231
232 #undef TARGET_SCHED_ADJUST_COST
233 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
234
235 #undef TARGET_SCHED_ISSUE_RATE
236 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
237
238 #undef TARGET_SCHED_VARIABLE_ISSUE
239 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
240
241 #undef TARGET_SCHED_INIT_GLOBAL
242 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
243
244 #undef TARGET_SCHED_FINISH_GLOBAL
245 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
246
247 #undef TARGET_SCHED_INIT
248 #define TARGET_SCHED_INIT m68k_sched_md_init
249
250 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
251 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
252
253 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
254 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
255
256 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
257 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
258 m68k_sched_first_cycle_multipass_dfa_lookahead
259
260 #undef TARGET_OPTION_OVERRIDE
261 #define TARGET_OPTION_OVERRIDE m68k_option_override
262
263 #undef TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE
264 #define TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE m68k_override_options_after_change
265
266 #undef TARGET_RTX_COSTS
267 #define TARGET_RTX_COSTS m68k_rtx_costs
268
269 #undef TARGET_ATTRIBUTE_TABLE
270 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
271
272 #undef TARGET_PROMOTE_PROTOTYPES
273 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
274
275 #undef TARGET_STRUCT_VALUE_RTX
276 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
277
278 #undef TARGET_CANNOT_FORCE_CONST_MEM
279 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
280
281 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
282 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
283
284 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
285 #undef TARGET_RETURN_IN_MEMORY
286 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
287 #endif
288
289 #ifdef HAVE_AS_TLS
290 #undef TARGET_HAVE_TLS
291 #define TARGET_HAVE_TLS (true)
292
293 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
294 #define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
295 #endif
296
297 #undef TARGET_LRA_P
298 #define TARGET_LRA_P hook_bool_void_false
299
300 #undef TARGET_LEGITIMATE_ADDRESS_P
301 #define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
302
303 #undef TARGET_CAN_ELIMINATE
304 #define TARGET_CAN_ELIMINATE m68k_can_eliminate
305
306 #undef TARGET_CONDITIONAL_REGISTER_USAGE
307 #define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
308
309 #undef TARGET_TRAMPOLINE_INIT
310 #define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
311
312 #undef TARGET_RETURN_POPS_ARGS
313 #define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
314
315 #undef TARGET_DELEGITIMIZE_ADDRESS
316 #define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
317
318 #undef TARGET_FUNCTION_ARG
319 #define TARGET_FUNCTION_ARG m68k_function_arg
320
321 #undef TARGET_FUNCTION_ARG_ADVANCE
322 #define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
323
324 #undef TARGET_LEGITIMATE_CONSTANT_P
325 #define TARGET_LEGITIMATE_CONSTANT_P m68k_legitimate_constant_p
326
327 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
328 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA m68k_output_addr_const_extra
329
330 #undef TARGET_C_EXCESS_PRECISION
331 #define TARGET_C_EXCESS_PRECISION m68k_excess_precision
332
333 /* The value stored by TAS. */
334 #undef TARGET_ATOMIC_TEST_AND_SET_TRUEVAL
335 #define TARGET_ATOMIC_TEST_AND_SET_TRUEVAL 128
336
337 static const struct attribute_spec m68k_attribute_table[] =
338 {
339 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
340 affects_type_identity } */
341 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute,
342 false },
343 { "interrupt_handler", 0, 0, true, false, false,
344 m68k_handle_fndecl_attribute, false },
345 { "interrupt_thread", 0, 0, true, false, false,
346 m68k_handle_fndecl_attribute, false },
347 { NULL, 0, 0, false, false, false, NULL, false }
348 };
349
350 struct gcc_target targetm = TARGET_INITIALIZER;
351 \f
352 /* Base flags for 68k ISAs. */
353 #define FL_FOR_isa_00 FL_ISA_68000
354 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
355 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
356 generated 68881 code for 68020 and 68030 targets unless explicitly told
357 not to. */
358 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
359 | FL_BITFIELD | FL_68881 | FL_CAS)
360 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
361 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
362
363 /* Base flags for ColdFire ISAs. */
364 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
365 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
366 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
367 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
368 /* ISA_C is not upwardly compatible with ISA_B. */
369 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
370
371 enum m68k_isa
372 {
373 /* Traditional 68000 instruction sets. */
374 isa_00,
375 isa_10,
376 isa_20,
377 isa_40,
378 isa_cpu32,
379 /* ColdFire instruction set variants. */
380 isa_a,
381 isa_aplus,
382 isa_b,
383 isa_c,
384 isa_max
385 };
386
387 /* Information about one of the -march, -mcpu or -mtune arguments. */
388 struct m68k_target_selection
389 {
390 /* The argument being described. */
391 const char *name;
392
393 /* For -mcpu, this is the device selected by the option.
394 For -mtune and -march, it is a representative device
395 for the microarchitecture or ISA respectively. */
396 enum target_device device;
397
398 /* The M68K_DEVICE fields associated with DEVICE. See the comment
399 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
400 const char *family;
401 enum uarch_type microarch;
402 enum m68k_isa isa;
403 unsigned long flags;
404 };
405
406 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
407 static const struct m68k_target_selection all_devices[] =
408 {
409 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
410 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
411 #include "m68k-devices.def"
412 #undef M68K_DEVICE
413 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
414 };
415
416 /* A list of all ISAs, mapping each one to a representative device.
417 Used for -march selection. */
418 static const struct m68k_target_selection all_isas[] =
419 {
420 #define M68K_ISA(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
421 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
422 #include "m68k-isas.def"
423 #undef M68K_ISA
424 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
425 };
426
427 /* A list of all microarchitectures, mapping each one to a representative
428 device. Used for -mtune selection. */
429 static const struct m68k_target_selection all_microarchs[] =
430 {
431 #define M68K_MICROARCH(NAME,DEVICE,MICROARCH,ISA,FLAGS) \
432 { NAME, DEVICE, NULL, u##MICROARCH, ISA, FLAGS },
433 #include "m68k-microarchs.def"
434 #undef M68K_MICROARCH
435 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
436 };
437 \f
438 /* The entries associated with the -mcpu, -march and -mtune settings,
439 or null for options that have not been used. */
440 const struct m68k_target_selection *m68k_cpu_entry;
441 const struct m68k_target_selection *m68k_arch_entry;
442 const struct m68k_target_selection *m68k_tune_entry;
443
444 /* Which CPU we are generating code for. */
445 enum target_device m68k_cpu;
446
447 /* Which microarchitecture to tune for. */
448 enum uarch_type m68k_tune;
449
450 /* Which FPU to use. */
451 enum fpu_type m68k_fpu;
452
453 /* The set of FL_* flags that apply to the target processor. */
454 unsigned int m68k_cpu_flags;
455
456 /* The set of FL_* flags that apply to the processor to be tuned for. */
457 unsigned int m68k_tune_flags;
458
459 /* Asm templates for calling or jumping to an arbitrary symbolic address,
460 or NULL if such calls or jumps are not supported. The address is held
461 in operand 0. */
462 const char *m68k_symbolic_call;
463 const char *m68k_symbolic_jump;
464
465 /* Enum variable that corresponds to m68k_symbolic_call values. */
466 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
467
468 \f
469 /* Implement TARGET_OPTION_OVERRIDE. */
470
471 static void
472 m68k_option_override (void)
473 {
474 const struct m68k_target_selection *entry;
475 unsigned long target_mask;
476
477 if (global_options_set.x_m68k_arch_option)
478 m68k_arch_entry = &all_isas[m68k_arch_option];
479
480 if (global_options_set.x_m68k_cpu_option)
481 m68k_cpu_entry = &all_devices[(int) m68k_cpu_option];
482
483 if (global_options_set.x_m68k_tune_option)
484 m68k_tune_entry = &all_microarchs[(int) m68k_tune_option];
485
486 /* User can choose:
487
488 -mcpu=
489 -march=
490 -mtune=
491
492 -march=ARCH should generate code that runs any processor
493 implementing architecture ARCH. -mcpu=CPU should override -march
494 and should generate code that runs on processor CPU, making free
495 use of any instructions that CPU understands. -mtune=UARCH applies
496 on top of -mcpu or -march and optimizes the code for UARCH. It does
497 not change the target architecture. */
498 if (m68k_cpu_entry)
499 {
500 /* Complain if the -march setting is for a different microarchitecture,
501 or includes flags that the -mcpu setting doesn't. */
502 if (m68k_arch_entry
503 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
504 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
505 warning (0, "-mcpu=%s conflicts with -march=%s",
506 m68k_cpu_entry->name, m68k_arch_entry->name);
507
508 entry = m68k_cpu_entry;
509 }
510 else
511 entry = m68k_arch_entry;
512
513 if (!entry)
514 entry = all_devices + TARGET_CPU_DEFAULT;
515
516 m68k_cpu_flags = entry->flags;
517
518 /* Use the architecture setting to derive default values for
519 certain flags. */
520 target_mask = 0;
521
522 /* ColdFire is lenient about alignment. */
523 if (!TARGET_COLDFIRE)
524 target_mask |= MASK_STRICT_ALIGNMENT;
525
526 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
527 target_mask |= MASK_BITFIELD;
528 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
529 target_mask |= MASK_CF_HWDIV;
530 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
531 target_mask |= MASK_HARD_FLOAT;
532 target_flags |= target_mask & ~target_flags_explicit;
533
534 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
535 m68k_cpu = entry->device;
536 if (m68k_tune_entry)
537 {
538 m68k_tune = m68k_tune_entry->microarch;
539 m68k_tune_flags = m68k_tune_entry->flags;
540 }
541 #ifdef M68K_DEFAULT_TUNE
542 else if (!m68k_cpu_entry && !m68k_arch_entry)
543 {
544 enum target_device dev;
545 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
546 m68k_tune_flags = all_devices[dev].flags;
547 }
548 #endif
549 else
550 {
551 m68k_tune = entry->microarch;
552 m68k_tune_flags = entry->flags;
553 }
554
555 /* Set the type of FPU. */
556 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
557 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
558 : FPUTYPE_68881);
559
560 /* Sanity check to ensure that msep-data and mid-sahred-library are not
561 * both specified together. Doing so simply doesn't make sense.
562 */
563 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
564 error ("cannot specify both -msep-data and -mid-shared-library");
565
566 /* If we're generating code for a separate A5 relative data segment,
567 * we've got to enable -fPIC as well. This might be relaxable to
568 * -fpic but it hasn't been tested properly.
569 */
570 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
571 flag_pic = 2;
572
573 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
574 error if the target does not support them. */
575 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
576 error ("-mpcrel -fPIC is not currently supported on selected cpu");
577
578 /* ??? A historic way of turning on pic, or is this intended to
579 be an embedded thing that doesn't have the same name binding
580 significance that it does on hosted ELF systems? */
581 if (TARGET_PCREL && flag_pic == 0)
582 flag_pic = 1;
583
584 if (!flag_pic)
585 {
586 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
587
588 m68k_symbolic_jump = "jra %a0";
589 }
590 else if (TARGET_ID_SHARED_LIBRARY)
591 /* All addresses must be loaded from the GOT. */
592 ;
593 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
594 {
595 if (TARGET_PCREL)
596 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
597 else
598 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
599
600 if (TARGET_ISAC)
601 /* No unconditional long branch */;
602 else if (TARGET_PCREL)
603 m68k_symbolic_jump = "bra%.l %c0";
604 else
605 m68k_symbolic_jump = "bra%.l %p0";
606 /* Turn off function cse if we are doing PIC. We always want
607 function call to be done as `bsr foo@PLTPC'. */
608 /* ??? It's traditional to do this for -mpcrel too, but it isn't
609 clear how intentional that is. */
610 flag_no_function_cse = 1;
611 }
612
613 switch (m68k_symbolic_call_var)
614 {
615 case M68K_SYMBOLIC_CALL_JSR:
616 m68k_symbolic_call = "jsr %a0";
617 break;
618
619 case M68K_SYMBOLIC_CALL_BSR_C:
620 m68k_symbolic_call = "bsr%.l %c0";
621 break;
622
623 case M68K_SYMBOLIC_CALL_BSR_P:
624 m68k_symbolic_call = "bsr%.l %p0";
625 break;
626
627 case M68K_SYMBOLIC_CALL_NONE:
628 gcc_assert (m68k_symbolic_call == NULL);
629 break;
630
631 default:
632 gcc_unreachable ();
633 }
634
635 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
636 if (align_labels > 2)
637 {
638 warning (0, "-falign-labels=%d is not supported", align_labels);
639 align_labels = 0;
640 }
641 if (align_loops > 2)
642 {
643 warning (0, "-falign-loops=%d is not supported", align_loops);
644 align_loops = 0;
645 }
646 #endif
647
648 if ((opt_fstack_limit_symbol_arg != NULL || opt_fstack_limit_register_no >= 0)
649 && !TARGET_68020)
650 {
651 warning (0, "-fstack-limit- options are not supported on this cpu");
652 opt_fstack_limit_symbol_arg = NULL;
653 opt_fstack_limit_register_no = -1;
654 }
655
656 SUBTARGET_OVERRIDE_OPTIONS;
657
658 /* Setup scheduling options. */
659 if (TUNE_CFV1)
660 m68k_sched_cpu = CPU_CFV1;
661 else if (TUNE_CFV2)
662 m68k_sched_cpu = CPU_CFV2;
663 else if (TUNE_CFV3)
664 m68k_sched_cpu = CPU_CFV3;
665 else if (TUNE_CFV4)
666 m68k_sched_cpu = CPU_CFV4;
667 else
668 {
669 m68k_sched_cpu = CPU_UNKNOWN;
670 flag_schedule_insns = 0;
671 flag_schedule_insns_after_reload = 0;
672 flag_modulo_sched = 0;
673 flag_live_range_shrinkage = 0;
674 }
675
676 if (m68k_sched_cpu != CPU_UNKNOWN)
677 {
678 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
679 m68k_sched_mac = MAC_CF_EMAC;
680 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
681 m68k_sched_mac = MAC_CF_MAC;
682 else
683 m68k_sched_mac = MAC_NO;
684 }
685 }
686
687 /* Implement TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE. */
688
689 static void
690 m68k_override_options_after_change (void)
691 {
692 if (m68k_sched_cpu == CPU_UNKNOWN)
693 {
694 flag_schedule_insns = 0;
695 flag_schedule_insns_after_reload = 0;
696 flag_modulo_sched = 0;
697 flag_live_range_shrinkage = 0;
698 }
699 }
700
701 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
702 given argument and NAME is the argument passed to -mcpu. Return NULL
703 if -mcpu was not passed. */
704
705 const char *
706 m68k_cpp_cpu_ident (const char *prefix)
707 {
708 if (!m68k_cpu_entry)
709 return NULL;
710 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
711 }
712
713 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
714 given argument and NAME is the name of the representative device for
715 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
716
717 const char *
718 m68k_cpp_cpu_family (const char *prefix)
719 {
720 if (!m68k_cpu_entry)
721 return NULL;
722 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
723 }
724 \f
725 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
726 "interrupt_handler" attribute and interrupt_thread if FUNC has an
727 "interrupt_thread" attribute. Otherwise, return
728 m68k_fk_normal_function. */
729
730 enum m68k_function_kind
731 m68k_get_function_kind (tree func)
732 {
733 tree a;
734
735 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
736
737 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
738 if (a != NULL_TREE)
739 return m68k_fk_interrupt_handler;
740
741 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
742 if (a != NULL_TREE)
743 return m68k_fk_interrupt_handler;
744
745 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
746 if (a != NULL_TREE)
747 return m68k_fk_interrupt_thread;
748
749 return m68k_fk_normal_function;
750 }
751
752 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
753 struct attribute_spec.handler. */
754 static tree
755 m68k_handle_fndecl_attribute (tree *node, tree name,
756 tree args ATTRIBUTE_UNUSED,
757 int flags ATTRIBUTE_UNUSED,
758 bool *no_add_attrs)
759 {
760 if (TREE_CODE (*node) != FUNCTION_DECL)
761 {
762 warning (OPT_Wattributes, "%qE attribute only applies to functions",
763 name);
764 *no_add_attrs = true;
765 }
766
767 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
768 {
769 error ("multiple interrupt attributes not allowed");
770 *no_add_attrs = true;
771 }
772
773 if (!TARGET_FIDOA
774 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
775 {
776 error ("interrupt_thread is available only on fido");
777 *no_add_attrs = true;
778 }
779
780 return NULL_TREE;
781 }
782
783 static void
784 m68k_compute_frame_layout (void)
785 {
786 int regno, saved;
787 unsigned int mask;
788 enum m68k_function_kind func_kind =
789 m68k_get_function_kind (current_function_decl);
790 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
791 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
792
793 /* Only compute the frame once per function.
794 Don't cache information until reload has been completed. */
795 if (current_frame.funcdef_no == current_function_funcdef_no
796 && reload_completed)
797 return;
798
799 current_frame.size = (get_frame_size () + 3) & -4;
800
801 mask = saved = 0;
802
803 /* Interrupt thread does not need to save any register. */
804 if (!interrupt_thread)
805 for (regno = 0; regno < 16; regno++)
806 if (m68k_save_reg (regno, interrupt_handler))
807 {
808 mask |= 1 << (regno - D0_REG);
809 saved++;
810 }
811 current_frame.offset = saved * 4;
812 current_frame.reg_no = saved;
813 current_frame.reg_mask = mask;
814
815 current_frame.foffset = 0;
816 mask = saved = 0;
817 if (TARGET_HARD_FLOAT)
818 {
819 /* Interrupt thread does not need to save any register. */
820 if (!interrupt_thread)
821 for (regno = 16; regno < 24; regno++)
822 if (m68k_save_reg (regno, interrupt_handler))
823 {
824 mask |= 1 << (regno - FP0_REG);
825 saved++;
826 }
827 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
828 current_frame.offset += current_frame.foffset;
829 }
830 current_frame.fpu_no = saved;
831 current_frame.fpu_mask = mask;
832
833 /* Remember what function this frame refers to. */
834 current_frame.funcdef_no = current_function_funcdef_no;
835 }
836
837 /* Worker function for TARGET_CAN_ELIMINATE. */
838
839 bool
840 m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
841 {
842 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
843 }
844
845 HOST_WIDE_INT
846 m68k_initial_elimination_offset (int from, int to)
847 {
848 int argptr_offset;
849 /* The arg pointer points 8 bytes before the start of the arguments,
850 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
851 frame pointer in most frames. */
852 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
853 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
854 return argptr_offset;
855
856 m68k_compute_frame_layout ();
857
858 gcc_assert (to == STACK_POINTER_REGNUM);
859 switch (from)
860 {
861 case ARG_POINTER_REGNUM:
862 return current_frame.offset + current_frame.size - argptr_offset;
863 case FRAME_POINTER_REGNUM:
864 return current_frame.offset + current_frame.size;
865 default:
866 gcc_unreachable ();
867 }
868 }
869
870 /* Refer to the array `regs_ever_live' to determine which registers
871 to save; `regs_ever_live[I]' is nonzero if register number I
872 is ever used in the function. This function is responsible for
873 knowing which registers should not be saved even if used.
874 Return true if we need to save REGNO. */
875
876 static bool
877 m68k_save_reg (unsigned int regno, bool interrupt_handler)
878 {
879 if (flag_pic && regno == PIC_REG)
880 {
881 if (crtl->saves_all_registers)
882 return true;
883 if (crtl->uses_pic_offset_table)
884 return true;
885 /* Reload may introduce constant pool references into a function
886 that thitherto didn't need a PIC register. Note that the test
887 above will not catch that case because we will only set
888 crtl->uses_pic_offset_table when emitting
889 the address reloads. */
890 if (crtl->uses_const_pool)
891 return true;
892 }
893
894 if (crtl->calls_eh_return)
895 {
896 unsigned int i;
897 for (i = 0; ; i++)
898 {
899 unsigned int test = EH_RETURN_DATA_REGNO (i);
900 if (test == INVALID_REGNUM)
901 break;
902 if (test == regno)
903 return true;
904 }
905 }
906
907 /* Fixed regs we never touch. */
908 if (fixed_regs[regno])
909 return false;
910
911 /* The frame pointer (if it is such) is handled specially. */
912 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
913 return false;
914
915 /* Interrupt handlers must also save call_used_regs
916 if they are live or when calling nested functions. */
917 if (interrupt_handler)
918 {
919 if (df_regs_ever_live_p (regno))
920 return true;
921
922 if (!crtl->is_leaf && call_used_regs[regno])
923 return true;
924 }
925
926 /* Never need to save registers that aren't touched. */
927 if (!df_regs_ever_live_p (regno))
928 return false;
929
930 /* Otherwise save everything that isn't call-clobbered. */
931 return !call_used_regs[regno];
932 }
933
934 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
935 the lowest memory address. COUNT is the number of registers to be
936 moved, with register REGNO + I being moved if bit I of MASK is set.
937 STORE_P specifies the direction of the move and ADJUST_STACK_P says
938 whether or not this is pre-decrement (if STORE_P) or post-increment
939 (if !STORE_P) operation. */
940
941 static rtx_insn *
942 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
943 unsigned int count, unsigned int regno,
944 unsigned int mask, bool store_p, bool adjust_stack_p)
945 {
946 int i;
947 rtx body, addr, src, operands[2];
948 machine_mode mode;
949
950 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
951 mode = reg_raw_mode[regno];
952 i = 0;
953
954 if (adjust_stack_p)
955 {
956 src = plus_constant (Pmode, base,
957 (count
958 * GET_MODE_SIZE (mode)
959 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
960 XVECEXP (body, 0, i++) = gen_rtx_SET (base, src);
961 }
962
963 for (; mask != 0; mask >>= 1, regno++)
964 if (mask & 1)
965 {
966 addr = plus_constant (Pmode, base, offset);
967 operands[!store_p] = gen_frame_mem (mode, addr);
968 operands[store_p] = gen_rtx_REG (mode, regno);
969 XVECEXP (body, 0, i++)
970 = gen_rtx_SET (operands[0], operands[1]);
971 offset += GET_MODE_SIZE (mode);
972 }
973 gcc_assert (i == XVECLEN (body, 0));
974
975 return emit_insn (body);
976 }
977
978 /* Make INSN a frame-related instruction. */
979
980 static void
981 m68k_set_frame_related (rtx_insn *insn)
982 {
983 rtx body;
984 int i;
985
986 RTX_FRAME_RELATED_P (insn) = 1;
987 body = PATTERN (insn);
988 if (GET_CODE (body) == PARALLEL)
989 for (i = 0; i < XVECLEN (body, 0); i++)
990 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
991 }
992
993 /* Emit RTL for the "prologue" define_expand. */
994
995 void
996 m68k_expand_prologue (void)
997 {
998 HOST_WIDE_INT fsize_with_regs;
999 rtx limit, src, dest;
1000
1001 m68k_compute_frame_layout ();
1002
1003 if (flag_stack_usage_info)
1004 current_function_static_stack_size
1005 = current_frame.size + current_frame.offset;
1006
1007 /* If the stack limit is a symbol, we can check it here,
1008 before actually allocating the space. */
1009 if (crtl->limit_stack
1010 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
1011 {
1012 limit = plus_constant (Pmode, stack_limit_rtx, current_frame.size + 4);
1013 if (!m68k_legitimate_constant_p (Pmode, limit))
1014 {
1015 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
1016 limit = gen_rtx_REG (Pmode, D0_REG);
1017 }
1018 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
1019 stack_pointer_rtx, limit),
1020 stack_pointer_rtx, limit,
1021 const1_rtx));
1022 }
1023
1024 fsize_with_regs = current_frame.size;
1025 if (TARGET_COLDFIRE)
1026 {
1027 /* ColdFire's move multiple instructions do not allow pre-decrement
1028 addressing. Add the size of movem saves to the initial stack
1029 allocation instead. */
1030 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1031 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1032 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1033 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1034 }
1035
1036 if (frame_pointer_needed)
1037 {
1038 if (fsize_with_regs == 0 && TUNE_68040)
1039 {
1040 /* On the 68040, two separate moves are faster than link.w 0. */
1041 dest = gen_frame_mem (Pmode,
1042 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1043 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1044 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1045 stack_pointer_rtx));
1046 }
1047 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1048 m68k_set_frame_related
1049 (emit_insn (gen_link (frame_pointer_rtx,
1050 GEN_INT (-4 - fsize_with_regs))));
1051 else
1052 {
1053 m68k_set_frame_related
1054 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1055 m68k_set_frame_related
1056 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1057 stack_pointer_rtx,
1058 GEN_INT (-fsize_with_regs))));
1059 }
1060
1061 /* If the frame pointer is needed, emit a special barrier that
1062 will prevent the scheduler from moving stores to the frame
1063 before the stack adjustment. */
1064 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1065 }
1066 else if (fsize_with_regs != 0)
1067 m68k_set_frame_related
1068 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1069 stack_pointer_rtx,
1070 GEN_INT (-fsize_with_regs))));
1071
1072 if (current_frame.fpu_mask)
1073 {
1074 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1075 if (TARGET_68881)
1076 m68k_set_frame_related
1077 (m68k_emit_movem (stack_pointer_rtx,
1078 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1079 current_frame.fpu_no, FP0_REG,
1080 current_frame.fpu_mask, true, true));
1081 else
1082 {
1083 int offset;
1084
1085 /* If we're using moveml to save the integer registers,
1086 the stack pointer will point to the bottom of the moveml
1087 save area. Find the stack offset of the first FP register. */
1088 if (current_frame.reg_no < MIN_MOVEM_REGS)
1089 offset = 0;
1090 else
1091 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1092 m68k_set_frame_related
1093 (m68k_emit_movem (stack_pointer_rtx, offset,
1094 current_frame.fpu_no, FP0_REG,
1095 current_frame.fpu_mask, true, false));
1096 }
1097 }
1098
1099 /* If the stack limit is not a symbol, check it here.
1100 This has the disadvantage that it may be too late... */
1101 if (crtl->limit_stack)
1102 {
1103 if (REG_P (stack_limit_rtx))
1104 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1105 stack_limit_rtx),
1106 stack_pointer_rtx, stack_limit_rtx,
1107 const1_rtx));
1108
1109 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1110 warning (0, "stack limit expression is not supported");
1111 }
1112
1113 if (current_frame.reg_no < MIN_MOVEM_REGS)
1114 {
1115 /* Store each register separately in the same order moveml does. */
1116 int i;
1117
1118 for (i = 16; i-- > 0; )
1119 if (current_frame.reg_mask & (1 << i))
1120 {
1121 src = gen_rtx_REG (SImode, D0_REG + i);
1122 dest = gen_frame_mem (SImode,
1123 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1124 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1125 }
1126 }
1127 else
1128 {
1129 if (TARGET_COLDFIRE)
1130 /* The required register save space has already been allocated.
1131 The first register should be stored at (%sp). */
1132 m68k_set_frame_related
1133 (m68k_emit_movem (stack_pointer_rtx, 0,
1134 current_frame.reg_no, D0_REG,
1135 current_frame.reg_mask, true, false));
1136 else
1137 m68k_set_frame_related
1138 (m68k_emit_movem (stack_pointer_rtx,
1139 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1140 current_frame.reg_no, D0_REG,
1141 current_frame.reg_mask, true, true));
1142 }
1143
1144 if (!TARGET_SEP_DATA
1145 && crtl->uses_pic_offset_table)
1146 emit_insn (gen_load_got (pic_offset_table_rtx));
1147 }
1148 \f
1149 /* Return true if a simple (return) instruction is sufficient for this
1150 instruction (i.e. if no epilogue is needed). */
1151
1152 bool
1153 m68k_use_return_insn (void)
1154 {
1155 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1156 return false;
1157
1158 m68k_compute_frame_layout ();
1159 return current_frame.offset == 0;
1160 }
1161
1162 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1163 SIBCALL_P says which.
1164
1165 The function epilogue should not depend on the current stack pointer!
1166 It should use the frame pointer only, if there is a frame pointer.
1167 This is mandatory because of alloca; we also take advantage of it to
1168 omit stack adjustments before returning. */
1169
1170 void
1171 m68k_expand_epilogue (bool sibcall_p)
1172 {
1173 HOST_WIDE_INT fsize, fsize_with_regs;
1174 bool big, restore_from_sp;
1175
1176 m68k_compute_frame_layout ();
1177
1178 fsize = current_frame.size;
1179 big = false;
1180 restore_from_sp = false;
1181
1182 /* FIXME : crtl->is_leaf below is too strong.
1183 What we really need to know there is if there could be pending
1184 stack adjustment needed at that point. */
1185 restore_from_sp = (!frame_pointer_needed
1186 || (!cfun->calls_alloca && crtl->is_leaf));
1187
1188 /* fsize_with_regs is the size we need to adjust the sp when
1189 popping the frame. */
1190 fsize_with_regs = fsize;
1191 if (TARGET_COLDFIRE && restore_from_sp)
1192 {
1193 /* ColdFire's move multiple instructions do not allow post-increment
1194 addressing. Add the size of movem loads to the final deallocation
1195 instead. */
1196 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1197 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1198 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1199 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1200 }
1201
1202 if (current_frame.offset + fsize >= 0x8000
1203 && !restore_from_sp
1204 && (current_frame.reg_mask || current_frame.fpu_mask))
1205 {
1206 if (TARGET_COLDFIRE
1207 && (current_frame.reg_no >= MIN_MOVEM_REGS
1208 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1209 {
1210 /* ColdFire's move multiple instructions do not support the
1211 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1212 stack-based restore. */
1213 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1214 GEN_INT (-(current_frame.offset + fsize)));
1215 emit_insn (gen_blockage ());
1216 emit_insn (gen_addsi3 (stack_pointer_rtx,
1217 gen_rtx_REG (Pmode, A1_REG),
1218 frame_pointer_rtx));
1219 restore_from_sp = true;
1220 }
1221 else
1222 {
1223 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1224 fsize = 0;
1225 big = true;
1226 }
1227 }
1228
1229 if (current_frame.reg_no < MIN_MOVEM_REGS)
1230 {
1231 /* Restore each register separately in the same order moveml does. */
1232 int i;
1233 HOST_WIDE_INT offset;
1234
1235 offset = current_frame.offset + fsize;
1236 for (i = 0; i < 16; i++)
1237 if (current_frame.reg_mask & (1 << i))
1238 {
1239 rtx addr;
1240
1241 if (big)
1242 {
1243 /* Generate the address -OFFSET(%fp,%a1.l). */
1244 addr = gen_rtx_REG (Pmode, A1_REG);
1245 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1246 addr = plus_constant (Pmode, addr, -offset);
1247 }
1248 else if (restore_from_sp)
1249 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1250 else
1251 addr = plus_constant (Pmode, frame_pointer_rtx, -offset);
1252 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1253 gen_frame_mem (SImode, addr));
1254 offset -= GET_MODE_SIZE (SImode);
1255 }
1256 }
1257 else if (current_frame.reg_mask)
1258 {
1259 if (big)
1260 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1261 gen_rtx_REG (Pmode, A1_REG),
1262 frame_pointer_rtx),
1263 -(current_frame.offset + fsize),
1264 current_frame.reg_no, D0_REG,
1265 current_frame.reg_mask, false, false);
1266 else if (restore_from_sp)
1267 m68k_emit_movem (stack_pointer_rtx, 0,
1268 current_frame.reg_no, D0_REG,
1269 current_frame.reg_mask, false,
1270 !TARGET_COLDFIRE);
1271 else
1272 m68k_emit_movem (frame_pointer_rtx,
1273 -(current_frame.offset + fsize),
1274 current_frame.reg_no, D0_REG,
1275 current_frame.reg_mask, false, false);
1276 }
1277
1278 if (current_frame.fpu_no > 0)
1279 {
1280 if (big)
1281 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1282 gen_rtx_REG (Pmode, A1_REG),
1283 frame_pointer_rtx),
1284 -(current_frame.foffset + fsize),
1285 current_frame.fpu_no, FP0_REG,
1286 current_frame.fpu_mask, false, false);
1287 else if (restore_from_sp)
1288 {
1289 if (TARGET_COLDFIRE)
1290 {
1291 int offset;
1292
1293 /* If we used moveml to restore the integer registers, the
1294 stack pointer will still point to the bottom of the moveml
1295 save area. Find the stack offset of the first FP
1296 register. */
1297 if (current_frame.reg_no < MIN_MOVEM_REGS)
1298 offset = 0;
1299 else
1300 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1301 m68k_emit_movem (stack_pointer_rtx, offset,
1302 current_frame.fpu_no, FP0_REG,
1303 current_frame.fpu_mask, false, false);
1304 }
1305 else
1306 m68k_emit_movem (stack_pointer_rtx, 0,
1307 current_frame.fpu_no, FP0_REG,
1308 current_frame.fpu_mask, false, true);
1309 }
1310 else
1311 m68k_emit_movem (frame_pointer_rtx,
1312 -(current_frame.foffset + fsize),
1313 current_frame.fpu_no, FP0_REG,
1314 current_frame.fpu_mask, false, false);
1315 }
1316
1317 emit_insn (gen_blockage ());
1318 if (frame_pointer_needed)
1319 emit_insn (gen_unlink (frame_pointer_rtx));
1320 else if (fsize_with_regs)
1321 emit_insn (gen_addsi3 (stack_pointer_rtx,
1322 stack_pointer_rtx,
1323 GEN_INT (fsize_with_regs)));
1324
1325 if (crtl->calls_eh_return)
1326 emit_insn (gen_addsi3 (stack_pointer_rtx,
1327 stack_pointer_rtx,
1328 EH_RETURN_STACKADJ_RTX));
1329
1330 if (!sibcall_p)
1331 emit_jump_insn (ret_rtx);
1332 }
1333 \f
1334 /* Return true if X is a valid comparison operator for the dbcc
1335 instruction.
1336
1337 Note it rejects floating point comparison operators.
1338 (In the future we could use Fdbcc).
1339
1340 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1341
1342 int
1343 valid_dbcc_comparison_p_2 (rtx x, machine_mode mode ATTRIBUTE_UNUSED)
1344 {
1345 switch (GET_CODE (x))
1346 {
1347 case EQ: case NE: case GTU: case LTU:
1348 case GEU: case LEU:
1349 return 1;
1350
1351 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1352 conservative */
1353 case GT: case LT: case GE: case LE:
1354 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1355 default:
1356 return 0;
1357 }
1358 }
1359
1360 /* Return nonzero if flags are currently in the 68881 flag register. */
1361 int
1362 flags_in_68881 (void)
1363 {
1364 /* We could add support for these in the future */
1365 return cc_status.flags & CC_IN_68881;
1366 }
1367
1368 /* Return true if PARALLEL contains register REGNO. */
1369 static bool
1370 m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1371 {
1372 int i;
1373
1374 if (REG_P (parallel) && REGNO (parallel) == regno)
1375 return true;
1376
1377 if (GET_CODE (parallel) != PARALLEL)
1378 return false;
1379
1380 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1381 {
1382 const_rtx x;
1383
1384 x = XEXP (XVECEXP (parallel, 0, i), 0);
1385 if (REG_P (x) && REGNO (x) == regno)
1386 return true;
1387 }
1388
1389 return false;
1390 }
1391
1392 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1393
1394 static bool
1395 m68k_ok_for_sibcall_p (tree decl, tree exp)
1396 {
1397 enum m68k_function_kind kind;
1398
1399 /* We cannot use sibcalls for nested functions because we use the
1400 static chain register for indirect calls. */
1401 if (CALL_EXPR_STATIC_CHAIN (exp))
1402 return false;
1403
1404 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1405 {
1406 /* Check that the return value locations are the same. For
1407 example that we aren't returning a value from the sibling in
1408 a D0 register but then need to transfer it to a A0 register. */
1409 rtx cfun_value;
1410 rtx call_value;
1411
1412 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1413 cfun->decl);
1414 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1415
1416 /* Check that the values are equal or that the result the callee
1417 function returns is superset of what the current function returns. */
1418 if (!(rtx_equal_p (cfun_value, call_value)
1419 || (REG_P (cfun_value)
1420 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1421 return false;
1422 }
1423
1424 kind = m68k_get_function_kind (current_function_decl);
1425 if (kind == m68k_fk_normal_function)
1426 /* We can always sibcall from a normal function, because it's
1427 undefined if it is calling an interrupt function. */
1428 return true;
1429
1430 /* Otherwise we can only sibcall if the function kind is known to be
1431 the same. */
1432 if (decl && m68k_get_function_kind (decl) == kind)
1433 return true;
1434
1435 return false;
1436 }
1437
1438 /* On the m68k all args are always pushed. */
1439
1440 static rtx
1441 m68k_function_arg (cumulative_args_t cum ATTRIBUTE_UNUSED,
1442 machine_mode mode ATTRIBUTE_UNUSED,
1443 const_tree type ATTRIBUTE_UNUSED,
1444 bool named ATTRIBUTE_UNUSED)
1445 {
1446 return NULL_RTX;
1447 }
1448
1449 static void
1450 m68k_function_arg_advance (cumulative_args_t cum_v, machine_mode mode,
1451 const_tree type, bool named ATTRIBUTE_UNUSED)
1452 {
1453 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1454
1455 *cum += (mode != BLKmode
1456 ? (GET_MODE_SIZE (mode) + 3) & ~3
1457 : (int_size_in_bytes (type) + 3) & ~3);
1458 }
1459
1460 /* Convert X to a legitimate function call memory reference and return the
1461 result. */
1462
1463 rtx
1464 m68k_legitimize_call_address (rtx x)
1465 {
1466 gcc_assert (MEM_P (x));
1467 if (call_operand (XEXP (x, 0), VOIDmode))
1468 return x;
1469 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1470 }
1471
1472 /* Likewise for sibling calls. */
1473
1474 rtx
1475 m68k_legitimize_sibcall_address (rtx x)
1476 {
1477 gcc_assert (MEM_P (x));
1478 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1479 return x;
1480
1481 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1482 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1483 }
1484
1485 /* Convert X to a legitimate address and return it if successful. Otherwise
1486 return X.
1487
1488 For the 68000, we handle X+REG by loading X into a register R and
1489 using R+REG. R will go in an address reg and indexing will be used.
1490 However, if REG is a broken-out memory address or multiplication,
1491 nothing needs to be done because REG can certainly go in an address reg. */
1492
1493 static rtx
1494 m68k_legitimize_address (rtx x, rtx oldx, machine_mode mode)
1495 {
1496 if (m68k_tls_symbol_p (x))
1497 return m68k_legitimize_tls_address (x);
1498
1499 if (GET_CODE (x) == PLUS)
1500 {
1501 int ch = (x) != (oldx);
1502 int copied = 0;
1503
1504 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1505
1506 if (GET_CODE (XEXP (x, 0)) == MULT)
1507 {
1508 COPY_ONCE (x);
1509 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1510 }
1511 if (GET_CODE (XEXP (x, 1)) == MULT)
1512 {
1513 COPY_ONCE (x);
1514 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1515 }
1516 if (ch)
1517 {
1518 if (GET_CODE (XEXP (x, 1)) == REG
1519 && GET_CODE (XEXP (x, 0)) == REG)
1520 {
1521 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1522 {
1523 COPY_ONCE (x);
1524 x = force_operand (x, 0);
1525 }
1526 return x;
1527 }
1528 if (memory_address_p (mode, x))
1529 return x;
1530 }
1531 if (GET_CODE (XEXP (x, 0)) == REG
1532 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1533 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1534 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1535 {
1536 rtx temp = gen_reg_rtx (Pmode);
1537 rtx val = force_operand (XEXP (x, 1), 0);
1538 emit_move_insn (temp, val);
1539 COPY_ONCE (x);
1540 XEXP (x, 1) = temp;
1541 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1542 && GET_CODE (XEXP (x, 0)) == REG)
1543 x = force_operand (x, 0);
1544 }
1545 else if (GET_CODE (XEXP (x, 1)) == REG
1546 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1547 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1548 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1549 {
1550 rtx temp = gen_reg_rtx (Pmode);
1551 rtx val = force_operand (XEXP (x, 0), 0);
1552 emit_move_insn (temp, val);
1553 COPY_ONCE (x);
1554 XEXP (x, 0) = temp;
1555 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1556 && GET_CODE (XEXP (x, 1)) == REG)
1557 x = force_operand (x, 0);
1558 }
1559 }
1560
1561 return x;
1562 }
1563
1564
1565 /* Output a dbCC; jCC sequence. Note we do not handle the
1566 floating point version of this sequence (Fdbcc). We also
1567 do not handle alternative conditions when CC_NO_OVERFLOW is
1568 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1569 kick those out before we get here. */
1570
1571 void
1572 output_dbcc_and_branch (rtx *operands)
1573 {
1574 switch (GET_CODE (operands[3]))
1575 {
1576 case EQ:
1577 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1578 break;
1579
1580 case NE:
1581 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1582 break;
1583
1584 case GT:
1585 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1586 break;
1587
1588 case GTU:
1589 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1590 break;
1591
1592 case LT:
1593 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1594 break;
1595
1596 case LTU:
1597 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1598 break;
1599
1600 case GE:
1601 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1602 break;
1603
1604 case GEU:
1605 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1606 break;
1607
1608 case LE:
1609 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1610 break;
1611
1612 case LEU:
1613 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1614 break;
1615
1616 default:
1617 gcc_unreachable ();
1618 }
1619
1620 /* If the decrement is to be done in SImode, then we have
1621 to compensate for the fact that dbcc decrements in HImode. */
1622 switch (GET_MODE (operands[0]))
1623 {
1624 case E_SImode:
1625 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1626 break;
1627
1628 case E_HImode:
1629 break;
1630
1631 default:
1632 gcc_unreachable ();
1633 }
1634 }
1635
1636 const char *
1637 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1638 {
1639 rtx loperands[7];
1640 enum rtx_code op_code = GET_CODE (op);
1641
1642 /* This does not produce a useful cc. */
1643 CC_STATUS_INIT;
1644
1645 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1646 below. Swap the operands and change the op if these requirements
1647 are not fulfilled. */
1648 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1649 {
1650 rtx tmp = operand1;
1651
1652 operand1 = operand2;
1653 operand2 = tmp;
1654 op_code = swap_condition (op_code);
1655 }
1656 loperands[0] = operand1;
1657 if (GET_CODE (operand1) == REG)
1658 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1659 else
1660 loperands[1] = adjust_address (operand1, SImode, 4);
1661 if (operand2 != const0_rtx)
1662 {
1663 loperands[2] = operand2;
1664 if (GET_CODE (operand2) == REG)
1665 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1666 else
1667 loperands[3] = adjust_address (operand2, SImode, 4);
1668 }
1669 loperands[4] = gen_label_rtx ();
1670 if (operand2 != const0_rtx)
1671 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1672 else
1673 {
1674 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1675 output_asm_insn ("tst%.l %0", loperands);
1676 else
1677 output_asm_insn ("cmp%.w #0,%0", loperands);
1678
1679 output_asm_insn ("jne %l4", loperands);
1680
1681 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1682 output_asm_insn ("tst%.l %1", loperands);
1683 else
1684 output_asm_insn ("cmp%.w #0,%1", loperands);
1685 }
1686
1687 loperands[5] = dest;
1688
1689 switch (op_code)
1690 {
1691 case EQ:
1692 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1693 CODE_LABEL_NUMBER (loperands[4]));
1694 output_asm_insn ("seq %5", loperands);
1695 break;
1696
1697 case NE:
1698 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1699 CODE_LABEL_NUMBER (loperands[4]));
1700 output_asm_insn ("sne %5", loperands);
1701 break;
1702
1703 case GT:
1704 loperands[6] = gen_label_rtx ();
1705 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1706 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1707 CODE_LABEL_NUMBER (loperands[4]));
1708 output_asm_insn ("sgt %5", loperands);
1709 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1710 CODE_LABEL_NUMBER (loperands[6]));
1711 break;
1712
1713 case GTU:
1714 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1715 CODE_LABEL_NUMBER (loperands[4]));
1716 output_asm_insn ("shi %5", loperands);
1717 break;
1718
1719 case LT:
1720 loperands[6] = gen_label_rtx ();
1721 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1722 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1723 CODE_LABEL_NUMBER (loperands[4]));
1724 output_asm_insn ("slt %5", loperands);
1725 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1726 CODE_LABEL_NUMBER (loperands[6]));
1727 break;
1728
1729 case LTU:
1730 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1731 CODE_LABEL_NUMBER (loperands[4]));
1732 output_asm_insn ("scs %5", loperands);
1733 break;
1734
1735 case GE:
1736 loperands[6] = gen_label_rtx ();
1737 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1738 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1739 CODE_LABEL_NUMBER (loperands[4]));
1740 output_asm_insn ("sge %5", loperands);
1741 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1742 CODE_LABEL_NUMBER (loperands[6]));
1743 break;
1744
1745 case GEU:
1746 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1747 CODE_LABEL_NUMBER (loperands[4]));
1748 output_asm_insn ("scc %5", loperands);
1749 break;
1750
1751 case LE:
1752 loperands[6] = gen_label_rtx ();
1753 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1754 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1755 CODE_LABEL_NUMBER (loperands[4]));
1756 output_asm_insn ("sle %5", loperands);
1757 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1758 CODE_LABEL_NUMBER (loperands[6]));
1759 break;
1760
1761 case LEU:
1762 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1763 CODE_LABEL_NUMBER (loperands[4]));
1764 output_asm_insn ("sls %5", loperands);
1765 break;
1766
1767 default:
1768 gcc_unreachable ();
1769 }
1770 return "";
1771 }
1772
1773 const char *
1774 output_btst (rtx *operands, rtx countop, rtx dataop, rtx_insn *insn, int signpos)
1775 {
1776 operands[0] = countop;
1777 operands[1] = dataop;
1778
1779 if (GET_CODE (countop) == CONST_INT)
1780 {
1781 register int count = INTVAL (countop);
1782 /* If COUNT is bigger than size of storage unit in use,
1783 advance to the containing unit of same size. */
1784 if (count > signpos)
1785 {
1786 int offset = (count & ~signpos) / 8;
1787 count = count & signpos;
1788 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1789 }
1790 if (count == signpos)
1791 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1792 else
1793 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1794
1795 /* These three statements used to use next_insns_test_no...
1796 but it appears that this should do the same job. */
1797 if (count == 31
1798 && next_insn_tests_no_inequality (insn))
1799 return "tst%.l %1";
1800 if (count == 15
1801 && next_insn_tests_no_inequality (insn))
1802 return "tst%.w %1";
1803 if (count == 7
1804 && next_insn_tests_no_inequality (insn))
1805 return "tst%.b %1";
1806 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1807 On some m68k variants unfortunately that's slower than btst.
1808 On 68000 and higher, that should also work for all HImode operands. */
1809 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1810 {
1811 if (count == 3 && DATA_REG_P (operands[1])
1812 && next_insn_tests_no_inequality (insn))
1813 {
1814 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1815 return "move%.w %1,%%ccr";
1816 }
1817 if (count == 2 && DATA_REG_P (operands[1])
1818 && next_insn_tests_no_inequality (insn))
1819 {
1820 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1821 return "move%.w %1,%%ccr";
1822 }
1823 /* count == 1 followed by bvc/bvs and
1824 count == 0 followed by bcc/bcs are also possible, but need
1825 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1826 }
1827
1828 cc_status.flags = CC_NOT_NEGATIVE;
1829 }
1830 return "btst %0,%1";
1831 }
1832 \f
1833 /* Return true if X is a legitimate base register. STRICT_P says
1834 whether we need strict checking. */
1835
1836 bool
1837 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1838 {
1839 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1840 if (!strict_p && GET_CODE (x) == SUBREG)
1841 x = SUBREG_REG (x);
1842
1843 return (REG_P (x)
1844 && (strict_p
1845 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1846 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1847 }
1848
1849 /* Return true if X is a legitimate index register. STRICT_P says
1850 whether we need strict checking. */
1851
1852 bool
1853 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1854 {
1855 if (!strict_p && GET_CODE (x) == SUBREG)
1856 x = SUBREG_REG (x);
1857
1858 return (REG_P (x)
1859 && (strict_p
1860 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1861 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1862 }
1863
1864 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1865 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1866 ADDRESS if so. STRICT_P says whether we need strict checking. */
1867
1868 static bool
1869 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1870 {
1871 int scale;
1872
1873 /* Check for a scale factor. */
1874 scale = 1;
1875 if ((TARGET_68020 || TARGET_COLDFIRE)
1876 && GET_CODE (x) == MULT
1877 && GET_CODE (XEXP (x, 1)) == CONST_INT
1878 && (INTVAL (XEXP (x, 1)) == 2
1879 || INTVAL (XEXP (x, 1)) == 4
1880 || (INTVAL (XEXP (x, 1)) == 8
1881 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1882 {
1883 scale = INTVAL (XEXP (x, 1));
1884 x = XEXP (x, 0);
1885 }
1886
1887 /* Check for a word extension. */
1888 if (!TARGET_COLDFIRE
1889 && GET_CODE (x) == SIGN_EXTEND
1890 && GET_MODE (XEXP (x, 0)) == HImode)
1891 x = XEXP (x, 0);
1892
1893 if (m68k_legitimate_index_reg_p (x, strict_p))
1894 {
1895 address->scale = scale;
1896 address->index = x;
1897 return true;
1898 }
1899
1900 return false;
1901 }
1902
1903 /* Return true if X is an illegitimate symbolic constant. */
1904
1905 bool
1906 m68k_illegitimate_symbolic_constant_p (rtx x)
1907 {
1908 rtx base, offset;
1909
1910 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1911 {
1912 split_const (x, &base, &offset);
1913 if (GET_CODE (base) == SYMBOL_REF
1914 && !offset_within_block_p (base, INTVAL (offset)))
1915 return true;
1916 }
1917 return m68k_tls_reference_p (x, false);
1918 }
1919
1920 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1921
1922 static bool
1923 m68k_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1924 {
1925 return m68k_illegitimate_symbolic_constant_p (x);
1926 }
1927
1928 /* Return true if X is a legitimate constant address that can reach
1929 bytes in the range [X, X + REACH). STRICT_P says whether we need
1930 strict checking. */
1931
1932 static bool
1933 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1934 {
1935 rtx base, offset;
1936
1937 if (!CONSTANT_ADDRESS_P (x))
1938 return false;
1939
1940 if (flag_pic
1941 && !(strict_p && TARGET_PCREL)
1942 && symbolic_operand (x, VOIDmode))
1943 return false;
1944
1945 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1946 {
1947 split_const (x, &base, &offset);
1948 if (GET_CODE (base) == SYMBOL_REF
1949 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1950 return false;
1951 }
1952
1953 return !m68k_tls_reference_p (x, false);
1954 }
1955
1956 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1957 labels will become jump tables. */
1958
1959 static bool
1960 m68k_jump_table_ref_p (rtx x)
1961 {
1962 if (GET_CODE (x) != LABEL_REF)
1963 return false;
1964
1965 rtx_insn *insn = as_a <rtx_insn *> (XEXP (x, 0));
1966 if (!NEXT_INSN (insn) && !PREV_INSN (insn))
1967 return true;
1968
1969 insn = next_nonnote_insn (insn);
1970 return insn && JUMP_TABLE_DATA_P (insn);
1971 }
1972
1973 /* Return true if X is a legitimate address for values of mode MODE.
1974 STRICT_P says whether strict checking is needed. If the address
1975 is valid, describe its components in *ADDRESS. */
1976
1977 static bool
1978 m68k_decompose_address (machine_mode mode, rtx x,
1979 bool strict_p, struct m68k_address *address)
1980 {
1981 unsigned int reach;
1982
1983 memset (address, 0, sizeof (*address));
1984
1985 if (mode == BLKmode)
1986 reach = 1;
1987 else
1988 reach = GET_MODE_SIZE (mode);
1989
1990 /* Check for (An) (mode 2). */
1991 if (m68k_legitimate_base_reg_p (x, strict_p))
1992 {
1993 address->base = x;
1994 return true;
1995 }
1996
1997 /* Check for -(An) and (An)+ (modes 3 and 4). */
1998 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
1999 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2000 {
2001 address->code = GET_CODE (x);
2002 address->base = XEXP (x, 0);
2003 return true;
2004 }
2005
2006 /* Check for (d16,An) (mode 5). */
2007 if (GET_CODE (x) == PLUS
2008 && GET_CODE (XEXP (x, 1)) == CONST_INT
2009 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
2010 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2011 {
2012 address->base = XEXP (x, 0);
2013 address->offset = XEXP (x, 1);
2014 return true;
2015 }
2016
2017 /* Check for GOT loads. These are (bd,An,Xn) addresses if
2018 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
2019 addresses. */
2020 if (GET_CODE (x) == PLUS
2021 && XEXP (x, 0) == pic_offset_table_rtx)
2022 {
2023 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
2024 they are invalid in this context. */
2025 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
2026 {
2027 address->base = XEXP (x, 0);
2028 address->offset = XEXP (x, 1);
2029 return true;
2030 }
2031 }
2032
2033 /* The ColdFire FPU only accepts addressing modes 2-5. */
2034 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
2035 return false;
2036
2037 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
2038 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
2039 All these modes are variations of mode 7. */
2040 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
2041 {
2042 address->offset = x;
2043 return true;
2044 }
2045
2046 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
2047 tablejumps.
2048
2049 ??? do_tablejump creates these addresses before placing the target
2050 label, so we have to assume that unplaced labels are jump table
2051 references. It seems unlikely that we would ever generate indexed
2052 accesses to unplaced labels in other cases. */
2053 if (GET_CODE (x) == PLUS
2054 && m68k_jump_table_ref_p (XEXP (x, 1))
2055 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2056 {
2057 address->offset = XEXP (x, 1);
2058 return true;
2059 }
2060
2061 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2062 (bd,An,Xn.SIZE*SCALE) addresses. */
2063
2064 if (TARGET_68020)
2065 {
2066 /* Check for a nonzero base displacement. */
2067 if (GET_CODE (x) == PLUS
2068 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2069 {
2070 address->offset = XEXP (x, 1);
2071 x = XEXP (x, 0);
2072 }
2073
2074 /* Check for a suppressed index register. */
2075 if (m68k_legitimate_base_reg_p (x, strict_p))
2076 {
2077 address->base = x;
2078 return true;
2079 }
2080
2081 /* Check for a suppressed base register. Do not allow this case
2082 for non-symbolic offsets as it effectively gives gcc freedom
2083 to treat data registers as base registers, which can generate
2084 worse code. */
2085 if (address->offset
2086 && symbolic_operand (address->offset, VOIDmode)
2087 && m68k_decompose_index (x, strict_p, address))
2088 return true;
2089 }
2090 else
2091 {
2092 /* Check for a nonzero base displacement. */
2093 if (GET_CODE (x) == PLUS
2094 && GET_CODE (XEXP (x, 1)) == CONST_INT
2095 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2096 {
2097 address->offset = XEXP (x, 1);
2098 x = XEXP (x, 0);
2099 }
2100 }
2101
2102 /* We now expect the sum of a base and an index. */
2103 if (GET_CODE (x) == PLUS)
2104 {
2105 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2106 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2107 {
2108 address->base = XEXP (x, 0);
2109 return true;
2110 }
2111
2112 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2113 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2114 {
2115 address->base = XEXP (x, 1);
2116 return true;
2117 }
2118 }
2119 return false;
2120 }
2121
2122 /* Return true if X is a legitimate address for values of mode MODE.
2123 STRICT_P says whether strict checking is needed. */
2124
2125 bool
2126 m68k_legitimate_address_p (machine_mode mode, rtx x, bool strict_p)
2127 {
2128 struct m68k_address address;
2129
2130 return m68k_decompose_address (mode, x, strict_p, &address);
2131 }
2132
2133 /* Return true if X is a memory, describing its address in ADDRESS if so.
2134 Apply strict checking if called during or after reload. */
2135
2136 static bool
2137 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2138 {
2139 return (MEM_P (x)
2140 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2141 reload_in_progress || reload_completed,
2142 address));
2143 }
2144
2145 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
2146
2147 bool
2148 m68k_legitimate_constant_p (machine_mode mode, rtx x)
2149 {
2150 return mode != XFmode && !m68k_illegitimate_symbolic_constant_p (x);
2151 }
2152
2153 /* Return true if X matches the 'Q' constraint. It must be a memory
2154 with a base address and no constant offset or index. */
2155
2156 bool
2157 m68k_matches_q_p (rtx x)
2158 {
2159 struct m68k_address address;
2160
2161 return (m68k_legitimate_mem_p (x, &address)
2162 && address.code == UNKNOWN
2163 && address.base
2164 && !address.offset
2165 && !address.index);
2166 }
2167
2168 /* Return true if X matches the 'U' constraint. It must be a base address
2169 with a constant offset and no index. */
2170
2171 bool
2172 m68k_matches_u_p (rtx x)
2173 {
2174 struct m68k_address address;
2175
2176 return (m68k_legitimate_mem_p (x, &address)
2177 && address.code == UNKNOWN
2178 && address.base
2179 && address.offset
2180 && !address.index);
2181 }
2182
2183 /* Return GOT pointer. */
2184
2185 static rtx
2186 m68k_get_gp (void)
2187 {
2188 if (pic_offset_table_rtx == NULL_RTX)
2189 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2190
2191 crtl->uses_pic_offset_table = 1;
2192
2193 return pic_offset_table_rtx;
2194 }
2195
2196 /* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2197 wrappers. */
2198 enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2199 RELOC_TLSIE, RELOC_TLSLE };
2200
2201 #define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2202
2203 /* Wrap symbol X into unspec representing relocation RELOC.
2204 BASE_REG - register that should be added to the result.
2205 TEMP_REG - if non-null, temporary register. */
2206
2207 static rtx
2208 m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2209 {
2210 bool use_x_p;
2211
2212 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2213
2214 if (TARGET_COLDFIRE && use_x_p)
2215 /* When compiling with -mx{got, tls} switch the code will look like this:
2216
2217 move.l <X>@<RELOC>,<TEMP_REG>
2218 add.l <BASE_REG>,<TEMP_REG> */
2219 {
2220 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2221 to put @RELOC after reference. */
2222 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2223 UNSPEC_RELOC32);
2224 x = gen_rtx_CONST (Pmode, x);
2225
2226 if (temp_reg == NULL)
2227 {
2228 gcc_assert (can_create_pseudo_p ());
2229 temp_reg = gen_reg_rtx (Pmode);
2230 }
2231
2232 emit_move_insn (temp_reg, x);
2233 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2234 x = temp_reg;
2235 }
2236 else
2237 {
2238 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2239 UNSPEC_RELOC16);
2240 x = gen_rtx_CONST (Pmode, x);
2241
2242 x = gen_rtx_PLUS (Pmode, base_reg, x);
2243 }
2244
2245 return x;
2246 }
2247
2248 /* Helper for m68k_unwrap_symbol.
2249 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2250 sets *RELOC_PTR to relocation type for the symbol. */
2251
2252 static rtx
2253 m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2254 enum m68k_reloc *reloc_ptr)
2255 {
2256 if (GET_CODE (orig) == CONST)
2257 {
2258 rtx x;
2259 enum m68k_reloc dummy;
2260
2261 x = XEXP (orig, 0);
2262
2263 if (reloc_ptr == NULL)
2264 reloc_ptr = &dummy;
2265
2266 /* Handle an addend. */
2267 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2268 && CONST_INT_P (XEXP (x, 1)))
2269 x = XEXP (x, 0);
2270
2271 if (GET_CODE (x) == UNSPEC)
2272 {
2273 switch (XINT (x, 1))
2274 {
2275 case UNSPEC_RELOC16:
2276 orig = XVECEXP (x, 0, 0);
2277 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2278 break;
2279
2280 case UNSPEC_RELOC32:
2281 if (unwrap_reloc32_p)
2282 {
2283 orig = XVECEXP (x, 0, 0);
2284 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2285 }
2286 break;
2287
2288 default:
2289 break;
2290 }
2291 }
2292 }
2293
2294 return orig;
2295 }
2296
2297 /* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2298 UNSPEC_RELOC32 wrappers. */
2299
2300 rtx
2301 m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2302 {
2303 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2304 }
2305
2306 /* Prescan insn before outputing assembler for it. */
2307
2308 void
2309 m68k_final_prescan_insn (rtx_insn *insn ATTRIBUTE_UNUSED,
2310 rtx *operands, int n_operands)
2311 {
2312 int i;
2313
2314 /* Combine and, possibly, other optimizations may do good job
2315 converting
2316 (const (unspec [(symbol)]))
2317 into
2318 (const (plus (unspec [(symbol)])
2319 (const_int N))).
2320 The problem with this is emitting @TLS or @GOT decorations.
2321 The decoration is emitted when processing (unspec), so the
2322 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2323
2324 It seems that the easiest solution to this is to convert such
2325 operands to
2326 (const (unspec [(plus (symbol)
2327 (const_int N))])).
2328 Note, that the top level of operand remains intact, so we don't have
2329 to patch up anything outside of the operand. */
2330
2331 subrtx_var_iterator::array_type array;
2332 for (i = 0; i < n_operands; ++i)
2333 {
2334 rtx op;
2335
2336 op = operands[i];
2337
2338 FOR_EACH_SUBRTX_VAR (iter, array, op, ALL)
2339 {
2340 rtx x = *iter;
2341 if (m68k_unwrap_symbol (x, true) != x)
2342 {
2343 rtx plus;
2344
2345 gcc_assert (GET_CODE (x) == CONST);
2346 plus = XEXP (x, 0);
2347
2348 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2349 {
2350 rtx unspec;
2351 rtx addend;
2352
2353 unspec = XEXP (plus, 0);
2354 gcc_assert (GET_CODE (unspec) == UNSPEC);
2355 addend = XEXP (plus, 1);
2356 gcc_assert (CONST_INT_P (addend));
2357
2358 /* We now have all the pieces, rearrange them. */
2359
2360 /* Move symbol to plus. */
2361 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2362
2363 /* Move plus inside unspec. */
2364 XVECEXP (unspec, 0, 0) = plus;
2365
2366 /* Move unspec to top level of const. */
2367 XEXP (x, 0) = unspec;
2368 }
2369 iter.skip_subrtxes ();
2370 }
2371 }
2372 }
2373 }
2374
2375 /* Move X to a register and add REG_EQUAL note pointing to ORIG.
2376 If REG is non-null, use it; generate new pseudo otherwise. */
2377
2378 static rtx
2379 m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2380 {
2381 rtx_insn *insn;
2382
2383 if (reg == NULL_RTX)
2384 {
2385 gcc_assert (can_create_pseudo_p ());
2386 reg = gen_reg_rtx (Pmode);
2387 }
2388
2389 insn = emit_move_insn (reg, x);
2390 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2391 by loop. */
2392 set_unique_reg_note (insn, REG_EQUAL, orig);
2393
2394 return reg;
2395 }
2396
2397 /* Does the same as m68k_wrap_symbol, but returns a memory reference to
2398 GOT slot. */
2399
2400 static rtx
2401 m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2402 {
2403 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2404
2405 x = gen_rtx_MEM (Pmode, x);
2406 MEM_READONLY_P (x) = 1;
2407
2408 return x;
2409 }
2410
2411 /* Legitimize PIC addresses. If the address is already
2412 position-independent, we return ORIG. Newly generated
2413 position-independent addresses go to REG. If we need more
2414 than one register, we lose.
2415
2416 An address is legitimized by making an indirect reference
2417 through the Global Offset Table with the name of the symbol
2418 used as an offset.
2419
2420 The assembler and linker are responsible for placing the
2421 address of the symbol in the GOT. The function prologue
2422 is responsible for initializing a5 to the starting address
2423 of the GOT.
2424
2425 The assembler is also responsible for translating a symbol name
2426 into a constant displacement from the start of the GOT.
2427
2428 A quick example may make things a little clearer:
2429
2430 When not generating PIC code to store the value 12345 into _foo
2431 we would generate the following code:
2432
2433 movel #12345, _foo
2434
2435 When generating PIC two transformations are made. First, the compiler
2436 loads the address of foo into a register. So the first transformation makes:
2437
2438 lea _foo, a0
2439 movel #12345, a0@
2440
2441 The code in movsi will intercept the lea instruction and call this
2442 routine which will transform the instructions into:
2443
2444 movel a5@(_foo:w), a0
2445 movel #12345, a0@
2446
2447
2448 That (in a nutshell) is how *all* symbol and label references are
2449 handled. */
2450
2451 rtx
2452 legitimize_pic_address (rtx orig, machine_mode mode ATTRIBUTE_UNUSED,
2453 rtx reg)
2454 {
2455 rtx pic_ref = orig;
2456
2457 /* First handle a simple SYMBOL_REF or LABEL_REF */
2458 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2459 {
2460 gcc_assert (reg);
2461
2462 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2463 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
2464 }
2465 else if (GET_CODE (orig) == CONST)
2466 {
2467 rtx base;
2468
2469 /* Make sure this has not already been legitimized. */
2470 if (m68k_unwrap_symbol (orig, true) != orig)
2471 return orig;
2472
2473 gcc_assert (reg);
2474
2475 /* legitimize both operands of the PLUS */
2476 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2477
2478 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2479 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2480 base == reg ? 0 : reg);
2481
2482 if (GET_CODE (orig) == CONST_INT)
2483 pic_ref = plus_constant (Pmode, base, INTVAL (orig));
2484 else
2485 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2486 }
2487
2488 return pic_ref;
2489 }
2490
2491 /* The __tls_get_addr symbol. */
2492 static GTY(()) rtx m68k_tls_get_addr;
2493
2494 /* Return SYMBOL_REF for __tls_get_addr. */
2495
2496 static rtx
2497 m68k_get_tls_get_addr (void)
2498 {
2499 if (m68k_tls_get_addr == NULL_RTX)
2500 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2501
2502 return m68k_tls_get_addr;
2503 }
2504
2505 /* Return libcall result in A0 instead of usual D0. */
2506 static bool m68k_libcall_value_in_a0_p = false;
2507
2508 /* Emit instruction sequence that calls __tls_get_addr. X is
2509 the TLS symbol we are referencing and RELOC is the symbol type to use
2510 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2511 emitted. A pseudo register with result of __tls_get_addr call is
2512 returned. */
2513
2514 static rtx
2515 m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2516 {
2517 rtx a0;
2518 rtx_insn *insns;
2519 rtx dest;
2520
2521 /* Emit the call sequence. */
2522 start_sequence ();
2523
2524 /* FIXME: Unfortunately, emit_library_call_value does not
2525 consider (plus (%a5) (const (unspec))) to be a good enough
2526 operand for push, so it forces it into a register. The bad
2527 thing about this is that combiner, due to copy propagation and other
2528 optimizations, sometimes can not later fix this. As a consequence,
2529 additional register may be allocated resulting in a spill.
2530 For reference, see args processing loops in
2531 calls.c:emit_library_call_value_1.
2532 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2533 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2534
2535 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2536 is the simpliest way of generating a call. The difference between
2537 __tls_get_addr() and libcall is that the result is returned in D0
2538 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2539 which temporarily switches returning the result to A0. */
2540
2541 m68k_libcall_value_in_a0_p = true;
2542 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2543 Pmode, x, Pmode);
2544 m68k_libcall_value_in_a0_p = false;
2545
2546 insns = get_insns ();
2547 end_sequence ();
2548
2549 gcc_assert (can_create_pseudo_p ());
2550 dest = gen_reg_rtx (Pmode);
2551 emit_libcall_block (insns, dest, a0, eqv);
2552
2553 return dest;
2554 }
2555
2556 /* The __tls_get_addr symbol. */
2557 static GTY(()) rtx m68k_read_tp;
2558
2559 /* Return SYMBOL_REF for __m68k_read_tp. */
2560
2561 static rtx
2562 m68k_get_m68k_read_tp (void)
2563 {
2564 if (m68k_read_tp == NULL_RTX)
2565 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2566
2567 return m68k_read_tp;
2568 }
2569
2570 /* Emit instruction sequence that calls __m68k_read_tp.
2571 A pseudo register with result of __m68k_read_tp call is returned. */
2572
2573 static rtx
2574 m68k_call_m68k_read_tp (void)
2575 {
2576 rtx a0;
2577 rtx eqv;
2578 rtx_insn *insns;
2579 rtx dest;
2580
2581 start_sequence ();
2582
2583 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2584 is the simpliest way of generating a call. The difference between
2585 __m68k_read_tp() and libcall is that the result is returned in D0
2586 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2587 which temporarily switches returning the result to A0. */
2588
2589 /* Emit the call sequence. */
2590 m68k_libcall_value_in_a0_p = true;
2591 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2592 Pmode);
2593 m68k_libcall_value_in_a0_p = false;
2594 insns = get_insns ();
2595 end_sequence ();
2596
2597 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2598 share the m68k_read_tp result with other IE/LE model accesses. */
2599 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2600
2601 gcc_assert (can_create_pseudo_p ());
2602 dest = gen_reg_rtx (Pmode);
2603 emit_libcall_block (insns, dest, a0, eqv);
2604
2605 return dest;
2606 }
2607
2608 /* Return a legitimized address for accessing TLS SYMBOL_REF X.
2609 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2610 ColdFire. */
2611
2612 rtx
2613 m68k_legitimize_tls_address (rtx orig)
2614 {
2615 switch (SYMBOL_REF_TLS_MODEL (orig))
2616 {
2617 case TLS_MODEL_GLOBAL_DYNAMIC:
2618 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2619 break;
2620
2621 case TLS_MODEL_LOCAL_DYNAMIC:
2622 {
2623 rtx eqv;
2624 rtx a0;
2625 rtx x;
2626
2627 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2628 share the LDM result with other LD model accesses. */
2629 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2630 UNSPEC_RELOC32);
2631
2632 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2633
2634 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2635
2636 if (can_create_pseudo_p ())
2637 x = m68k_move_to_reg (x, orig, NULL_RTX);
2638
2639 orig = x;
2640 break;
2641 }
2642
2643 case TLS_MODEL_INITIAL_EXEC:
2644 {
2645 rtx a0;
2646 rtx x;
2647
2648 a0 = m68k_call_m68k_read_tp ();
2649
2650 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2651 x = gen_rtx_PLUS (Pmode, x, a0);
2652
2653 if (can_create_pseudo_p ())
2654 x = m68k_move_to_reg (x, orig, NULL_RTX);
2655
2656 orig = x;
2657 break;
2658 }
2659
2660 case TLS_MODEL_LOCAL_EXEC:
2661 {
2662 rtx a0;
2663 rtx x;
2664
2665 a0 = m68k_call_m68k_read_tp ();
2666
2667 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2668
2669 if (can_create_pseudo_p ())
2670 x = m68k_move_to_reg (x, orig, NULL_RTX);
2671
2672 orig = x;
2673 break;
2674 }
2675
2676 default:
2677 gcc_unreachable ();
2678 }
2679
2680 return orig;
2681 }
2682
2683 /* Return true if X is a TLS symbol. */
2684
2685 static bool
2686 m68k_tls_symbol_p (rtx x)
2687 {
2688 if (!TARGET_HAVE_TLS)
2689 return false;
2690
2691 if (GET_CODE (x) != SYMBOL_REF)
2692 return false;
2693
2694 return SYMBOL_REF_TLS_MODEL (x) != 0;
2695 }
2696
2697 /* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2698 though illegitimate one.
2699 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2700
2701 bool
2702 m68k_tls_reference_p (rtx x, bool legitimate_p)
2703 {
2704 if (!TARGET_HAVE_TLS)
2705 return false;
2706
2707 if (!legitimate_p)
2708 {
2709 subrtx_var_iterator::array_type array;
2710 FOR_EACH_SUBRTX_VAR (iter, array, x, ALL)
2711 {
2712 rtx x = *iter;
2713
2714 /* Note: this is not the same as m68k_tls_symbol_p. */
2715 if (GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0)
2716 return true;
2717
2718 /* Don't recurse into legitimate TLS references. */
2719 if (m68k_tls_reference_p (x, true))
2720 iter.skip_subrtxes ();
2721 }
2722 return false;
2723 }
2724 else
2725 {
2726 enum m68k_reloc reloc = RELOC_GOT;
2727
2728 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2729 && TLS_RELOC_P (reloc));
2730 }
2731 }
2732
2733 \f
2734
2735 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2736
2737 /* Return the type of move that should be used for integer I. */
2738
2739 M68K_CONST_METHOD
2740 m68k_const_method (HOST_WIDE_INT i)
2741 {
2742 unsigned u;
2743
2744 if (USE_MOVQ (i))
2745 return MOVQ;
2746
2747 /* The ColdFire doesn't have byte or word operations. */
2748 /* FIXME: This may not be useful for the m68060 either. */
2749 if (!TARGET_COLDFIRE)
2750 {
2751 /* if -256 < N < 256 but N is not in range for a moveq
2752 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2753 if (USE_MOVQ (i ^ 0xff))
2754 return NOTB;
2755 /* Likewise, try with not.w */
2756 if (USE_MOVQ (i ^ 0xffff))
2757 return NOTW;
2758 /* This is the only value where neg.w is useful */
2759 if (i == -65408)
2760 return NEGW;
2761 }
2762
2763 /* Try also with swap. */
2764 u = i;
2765 if (USE_MOVQ ((u >> 16) | (u << 16)))
2766 return SWAP;
2767
2768 if (TARGET_ISAB)
2769 {
2770 /* Try using MVZ/MVS with an immediate value to load constants. */
2771 if (i >= 0 && i <= 65535)
2772 return MVZ;
2773 if (i >= -32768 && i <= 32767)
2774 return MVS;
2775 }
2776
2777 /* Otherwise, use move.l */
2778 return MOVL;
2779 }
2780
2781 /* Return the cost of moving constant I into a data register. */
2782
2783 static int
2784 const_int_cost (HOST_WIDE_INT i)
2785 {
2786 switch (m68k_const_method (i))
2787 {
2788 case MOVQ:
2789 /* Constants between -128 and 127 are cheap due to moveq. */
2790 return 0;
2791 case MVZ:
2792 case MVS:
2793 case NOTB:
2794 case NOTW:
2795 case NEGW:
2796 case SWAP:
2797 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2798 return 1;
2799 case MOVL:
2800 return 2;
2801 default:
2802 gcc_unreachable ();
2803 }
2804 }
2805
2806 static bool
2807 m68k_rtx_costs (rtx x, machine_mode mode, int outer_code,
2808 int opno ATTRIBUTE_UNUSED,
2809 int *total, bool speed ATTRIBUTE_UNUSED)
2810 {
2811 int code = GET_CODE (x);
2812
2813 switch (code)
2814 {
2815 case CONST_INT:
2816 /* Constant zero is super cheap due to clr instruction. */
2817 if (x == const0_rtx)
2818 *total = 0;
2819 else
2820 *total = const_int_cost (INTVAL (x));
2821 return true;
2822
2823 case CONST:
2824 case LABEL_REF:
2825 case SYMBOL_REF:
2826 *total = 3;
2827 return true;
2828
2829 case CONST_DOUBLE:
2830 /* Make 0.0 cheaper than other floating constants to
2831 encourage creating tstsf and tstdf insns. */
2832 if (outer_code == COMPARE
2833 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2834 *total = 4;
2835 else
2836 *total = 5;
2837 return true;
2838
2839 /* These are vaguely right for a 68020. */
2840 /* The costs for long multiply have been adjusted to work properly
2841 in synth_mult on the 68020, relative to an average of the time
2842 for add and the time for shift, taking away a little more because
2843 sometimes move insns are needed. */
2844 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2845 terms. */
2846 #define MULL_COST \
2847 (TUNE_68060 ? 2 \
2848 : TUNE_68040 ? 5 \
2849 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2850 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2851 : TUNE_CFV2 ? 8 \
2852 : TARGET_COLDFIRE ? 3 : 13)
2853
2854 #define MULW_COST \
2855 (TUNE_68060 ? 2 \
2856 : TUNE_68040 ? 3 \
2857 : TUNE_68000_10 ? 5 \
2858 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2859 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2860 : TUNE_CFV2 ? 8 \
2861 : TARGET_COLDFIRE ? 2 : 8)
2862
2863 #define DIVW_COST \
2864 (TARGET_CF_HWDIV ? 11 \
2865 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2866
2867 case PLUS:
2868 /* An lea costs about three times as much as a simple add. */
2869 if (mode == SImode
2870 && GET_CODE (XEXP (x, 1)) == REG
2871 && GET_CODE (XEXP (x, 0)) == MULT
2872 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2873 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2874 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2875 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2876 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2877 {
2878 /* lea an@(dx:l:i),am */
2879 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2880 return true;
2881 }
2882 return false;
2883
2884 case ASHIFT:
2885 case ASHIFTRT:
2886 case LSHIFTRT:
2887 if (TUNE_68060)
2888 {
2889 *total = COSTS_N_INSNS(1);
2890 return true;
2891 }
2892 if (TUNE_68000_10)
2893 {
2894 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2895 {
2896 if (INTVAL (XEXP (x, 1)) < 16)
2897 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2898 else
2899 /* We're using clrw + swap for these cases. */
2900 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2901 }
2902 else
2903 *total = COSTS_N_INSNS (10); /* Worst case. */
2904 return true;
2905 }
2906 /* A shift by a big integer takes an extra instruction. */
2907 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2908 && (INTVAL (XEXP (x, 1)) == 16))
2909 {
2910 *total = COSTS_N_INSNS (2); /* clrw;swap */
2911 return true;
2912 }
2913 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2914 && !(INTVAL (XEXP (x, 1)) > 0
2915 && INTVAL (XEXP (x, 1)) <= 8))
2916 {
2917 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2918 return true;
2919 }
2920 return false;
2921
2922 case MULT:
2923 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2924 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2925 && mode == SImode)
2926 *total = COSTS_N_INSNS (MULW_COST);
2927 else if (mode == QImode || mode == HImode)
2928 *total = COSTS_N_INSNS (MULW_COST);
2929 else
2930 *total = COSTS_N_INSNS (MULL_COST);
2931 return true;
2932
2933 case DIV:
2934 case UDIV:
2935 case MOD:
2936 case UMOD:
2937 if (mode == QImode || mode == HImode)
2938 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2939 else if (TARGET_CF_HWDIV)
2940 *total = COSTS_N_INSNS (18);
2941 else
2942 *total = COSTS_N_INSNS (43); /* div.l */
2943 return true;
2944
2945 case ZERO_EXTRACT:
2946 if (outer_code == COMPARE)
2947 *total = 0;
2948 return false;
2949
2950 default:
2951 return false;
2952 }
2953 }
2954
2955 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2956 OPERANDS[0]. */
2957
2958 static const char *
2959 output_move_const_into_data_reg (rtx *operands)
2960 {
2961 HOST_WIDE_INT i;
2962
2963 i = INTVAL (operands[1]);
2964 switch (m68k_const_method (i))
2965 {
2966 case MVZ:
2967 return "mvzw %1,%0";
2968 case MVS:
2969 return "mvsw %1,%0";
2970 case MOVQ:
2971 return "moveq %1,%0";
2972 case NOTB:
2973 CC_STATUS_INIT;
2974 operands[1] = GEN_INT (i ^ 0xff);
2975 return "moveq %1,%0\n\tnot%.b %0";
2976 case NOTW:
2977 CC_STATUS_INIT;
2978 operands[1] = GEN_INT (i ^ 0xffff);
2979 return "moveq %1,%0\n\tnot%.w %0";
2980 case NEGW:
2981 CC_STATUS_INIT;
2982 return "moveq #-128,%0\n\tneg%.w %0";
2983 case SWAP:
2984 {
2985 unsigned u = i;
2986
2987 operands[1] = GEN_INT ((u << 16) | (u >> 16));
2988 return "moveq %1,%0\n\tswap %0";
2989 }
2990 case MOVL:
2991 return "move%.l %1,%0";
2992 default:
2993 gcc_unreachable ();
2994 }
2995 }
2996
2997 /* Return true if I can be handled by ISA B's mov3q instruction. */
2998
2999 bool
3000 valid_mov3q_const (HOST_WIDE_INT i)
3001 {
3002 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
3003 }
3004
3005 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
3006 I is the value of OPERANDS[1]. */
3007
3008 static const char *
3009 output_move_simode_const (rtx *operands)
3010 {
3011 rtx dest;
3012 HOST_WIDE_INT src;
3013
3014 dest = operands[0];
3015 src = INTVAL (operands[1]);
3016 if (src == 0
3017 && (DATA_REG_P (dest) || MEM_P (dest))
3018 /* clr insns on 68000 read before writing. */
3019 && ((TARGET_68010 || TARGET_COLDFIRE)
3020 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
3021 return "clr%.l %0";
3022 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
3023 return "mov3q%.l %1,%0";
3024 else if (src == 0 && ADDRESS_REG_P (dest))
3025 return "sub%.l %0,%0";
3026 else if (DATA_REG_P (dest))
3027 return output_move_const_into_data_reg (operands);
3028 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
3029 {
3030 if (valid_mov3q_const (src))
3031 return "mov3q%.l %1,%0";
3032 return "move%.w %1,%0";
3033 }
3034 else if (MEM_P (dest)
3035 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
3036 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
3037 && IN_RANGE (src, -0x8000, 0x7fff))
3038 {
3039 if (valid_mov3q_const (src))
3040 return "mov3q%.l %1,%-";
3041 return "pea %a1";
3042 }
3043 return "move%.l %1,%0";
3044 }
3045
3046 const char *
3047 output_move_simode (rtx *operands)
3048 {
3049 if (GET_CODE (operands[1]) == CONST_INT)
3050 return output_move_simode_const (operands);
3051 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3052 || GET_CODE (operands[1]) == CONST)
3053 && push_operand (operands[0], SImode))
3054 return "pea %a1";
3055 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3056 || GET_CODE (operands[1]) == CONST)
3057 && ADDRESS_REG_P (operands[0]))
3058 return "lea %a1,%0";
3059 return "move%.l %1,%0";
3060 }
3061
3062 const char *
3063 output_move_himode (rtx *operands)
3064 {
3065 if (GET_CODE (operands[1]) == CONST_INT)
3066 {
3067 if (operands[1] == const0_rtx
3068 && (DATA_REG_P (operands[0])
3069 || GET_CODE (operands[0]) == MEM)
3070 /* clr insns on 68000 read before writing. */
3071 && ((TARGET_68010 || TARGET_COLDFIRE)
3072 || !(GET_CODE (operands[0]) == MEM
3073 && MEM_VOLATILE_P (operands[0]))))
3074 return "clr%.w %0";
3075 else if (operands[1] == const0_rtx
3076 && ADDRESS_REG_P (operands[0]))
3077 return "sub%.l %0,%0";
3078 else if (DATA_REG_P (operands[0])
3079 && INTVAL (operands[1]) < 128
3080 && INTVAL (operands[1]) >= -128)
3081 return "moveq %1,%0";
3082 else if (INTVAL (operands[1]) < 0x8000
3083 && INTVAL (operands[1]) >= -0x8000)
3084 return "move%.w %1,%0";
3085 }
3086 else if (CONSTANT_P (operands[1]))
3087 return "move%.l %1,%0";
3088 return "move%.w %1,%0";
3089 }
3090
3091 const char *
3092 output_move_qimode (rtx *operands)
3093 {
3094 /* 68k family always modifies the stack pointer by at least 2, even for
3095 byte pushes. The 5200 (ColdFire) does not do this. */
3096
3097 /* This case is generated by pushqi1 pattern now. */
3098 gcc_assert (!(GET_CODE (operands[0]) == MEM
3099 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3100 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3101 && ! ADDRESS_REG_P (operands[1])
3102 && ! TARGET_COLDFIRE));
3103
3104 /* clr and st insns on 68000 read before writing. */
3105 if (!ADDRESS_REG_P (operands[0])
3106 && ((TARGET_68010 || TARGET_COLDFIRE)
3107 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3108 {
3109 if (operands[1] == const0_rtx)
3110 return "clr%.b %0";
3111 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
3112 && GET_CODE (operands[1]) == CONST_INT
3113 && (INTVAL (operands[1]) & 255) == 255)
3114 {
3115 CC_STATUS_INIT;
3116 return "st %0";
3117 }
3118 }
3119 if (GET_CODE (operands[1]) == CONST_INT
3120 && DATA_REG_P (operands[0])
3121 && INTVAL (operands[1]) < 128
3122 && INTVAL (operands[1]) >= -128)
3123 return "moveq %1,%0";
3124 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3125 return "sub%.l %0,%0";
3126 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3127 return "move%.l %1,%0";
3128 /* 68k family (including the 5200 ColdFire) does not support byte moves to
3129 from address registers. */
3130 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
3131 return "move%.w %1,%0";
3132 return "move%.b %1,%0";
3133 }
3134
3135 const char *
3136 output_move_stricthi (rtx *operands)
3137 {
3138 if (operands[1] == const0_rtx
3139 /* clr insns on 68000 read before writing. */
3140 && ((TARGET_68010 || TARGET_COLDFIRE)
3141 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3142 return "clr%.w %0";
3143 return "move%.w %1,%0";
3144 }
3145
3146 const char *
3147 output_move_strictqi (rtx *operands)
3148 {
3149 if (operands[1] == const0_rtx
3150 /* clr insns on 68000 read before writing. */
3151 && ((TARGET_68010 || TARGET_COLDFIRE)
3152 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3153 return "clr%.b %0";
3154 return "move%.b %1,%0";
3155 }
3156
3157 /* Return the best assembler insn template
3158 for moving operands[1] into operands[0] as a fullword. */
3159
3160 static const char *
3161 singlemove_string (rtx *operands)
3162 {
3163 if (GET_CODE (operands[1]) == CONST_INT)
3164 return output_move_simode_const (operands);
3165 return "move%.l %1,%0";
3166 }
3167
3168
3169 /* Output assembler or rtl code to perform a doubleword move insn
3170 with operands OPERANDS.
3171 Pointers to 3 helper functions should be specified:
3172 HANDLE_REG_ADJUST to adjust a register by a small value,
3173 HANDLE_COMPADR to compute an address and
3174 HANDLE_MOVSI to move 4 bytes. */
3175
3176 static void
3177 handle_move_double (rtx operands[2],
3178 void (*handle_reg_adjust) (rtx, int),
3179 void (*handle_compadr) (rtx [2]),
3180 void (*handle_movsi) (rtx [2]))
3181 {
3182 enum
3183 {
3184 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3185 } optype0, optype1;
3186 rtx latehalf[2];
3187 rtx middlehalf[2];
3188 rtx xops[2];
3189 rtx addreg0 = 0, addreg1 = 0;
3190 int dest_overlapped_low = 0;
3191 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
3192
3193 middlehalf[0] = 0;
3194 middlehalf[1] = 0;
3195
3196 /* First classify both operands. */
3197
3198 if (REG_P (operands[0]))
3199 optype0 = REGOP;
3200 else if (offsettable_memref_p (operands[0]))
3201 optype0 = OFFSOP;
3202 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3203 optype0 = POPOP;
3204 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3205 optype0 = PUSHOP;
3206 else if (GET_CODE (operands[0]) == MEM)
3207 optype0 = MEMOP;
3208 else
3209 optype0 = RNDOP;
3210
3211 if (REG_P (operands[1]))
3212 optype1 = REGOP;
3213 else if (CONSTANT_P (operands[1]))
3214 optype1 = CNSTOP;
3215 else if (offsettable_memref_p (operands[1]))
3216 optype1 = OFFSOP;
3217 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3218 optype1 = POPOP;
3219 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3220 optype1 = PUSHOP;
3221 else if (GET_CODE (operands[1]) == MEM)
3222 optype1 = MEMOP;
3223 else
3224 optype1 = RNDOP;
3225
3226 /* Check for the cases that the operand constraints are not supposed
3227 to allow to happen. Generating code for these cases is
3228 painful. */
3229 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
3230
3231 /* If one operand is decrementing and one is incrementing
3232 decrement the former register explicitly
3233 and change that operand into ordinary indexing. */
3234
3235 if (optype0 == PUSHOP && optype1 == POPOP)
3236 {
3237 operands[0] = XEXP (XEXP (operands[0], 0), 0);
3238
3239 handle_reg_adjust (operands[0], -size);
3240
3241 if (GET_MODE (operands[1]) == XFmode)
3242 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
3243 else if (GET_MODE (operands[0]) == DFmode)
3244 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
3245 else
3246 operands[0] = gen_rtx_MEM (DImode, operands[0]);
3247 optype0 = OFFSOP;
3248 }
3249 if (optype0 == POPOP && optype1 == PUSHOP)
3250 {
3251 operands[1] = XEXP (XEXP (operands[1], 0), 0);
3252
3253 handle_reg_adjust (operands[1], -size);
3254
3255 if (GET_MODE (operands[1]) == XFmode)
3256 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
3257 else if (GET_MODE (operands[1]) == DFmode)
3258 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
3259 else
3260 operands[1] = gen_rtx_MEM (DImode, operands[1]);
3261 optype1 = OFFSOP;
3262 }
3263
3264 /* If an operand is an unoffsettable memory ref, find a register
3265 we can increment temporarily to make it refer to the second word. */
3266
3267 if (optype0 == MEMOP)
3268 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3269
3270 if (optype1 == MEMOP)
3271 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3272
3273 /* Ok, we can do one word at a time.
3274 Normally we do the low-numbered word first,
3275 but if either operand is autodecrementing then we
3276 do the high-numbered word first.
3277
3278 In either case, set up in LATEHALF the operands to use
3279 for the high-numbered word and in some cases alter the
3280 operands in OPERANDS to be suitable for the low-numbered word. */
3281
3282 if (size == 12)
3283 {
3284 if (optype0 == REGOP)
3285 {
3286 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3287 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3288 }
3289 else if (optype0 == OFFSOP)
3290 {
3291 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3292 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3293 }
3294 else
3295 {
3296 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3297 latehalf[0] = adjust_address (operands[0], SImode, 0);
3298 }
3299
3300 if (optype1 == REGOP)
3301 {
3302 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3303 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3304 }
3305 else if (optype1 == OFFSOP)
3306 {
3307 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3308 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3309 }
3310 else if (optype1 == CNSTOP)
3311 {
3312 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3313 {
3314 long l[3];
3315
3316 REAL_VALUE_TO_TARGET_LONG_DOUBLE
3317 (*CONST_DOUBLE_REAL_VALUE (operands[1]), l);
3318 operands[1] = GEN_INT (l[0]);
3319 middlehalf[1] = GEN_INT (l[1]);
3320 latehalf[1] = GEN_INT (l[2]);
3321 }
3322 else
3323 {
3324 /* No non-CONST_DOUBLE constant should ever appear
3325 here. */
3326 gcc_assert (!CONSTANT_P (operands[1]));
3327 }
3328 }
3329 else
3330 {
3331 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3332 latehalf[1] = adjust_address (operands[1], SImode, 0);
3333 }
3334 }
3335 else
3336 /* size is not 12: */
3337 {
3338 if (optype0 == REGOP)
3339 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3340 else if (optype0 == OFFSOP)
3341 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3342 else
3343 latehalf[0] = adjust_address (operands[0], SImode, 0);
3344
3345 if (optype1 == REGOP)
3346 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3347 else if (optype1 == OFFSOP)
3348 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3349 else if (optype1 == CNSTOP)
3350 split_double (operands[1], &operands[1], &latehalf[1]);
3351 else
3352 latehalf[1] = adjust_address (operands[1], SImode, 0);
3353 }
3354
3355 /* If insn is effectively movd N(REG),-(REG) then we will do the high
3356 word first. We should use the adjusted operand 1 (which is N+4(REG))
3357 for the low word as well, to compensate for the first decrement of
3358 REG. */
3359 if (optype0 == PUSHOP
3360 && reg_overlap_mentioned_p (XEXP (XEXP (operands[0], 0), 0), operands[1]))
3361 operands[1] = middlehalf[1] = latehalf[1];
3362
3363 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3364 if the upper part of reg N does not appear in the MEM, arrange to
3365 emit the move late-half first. Otherwise, compute the MEM address
3366 into the upper part of N and use that as a pointer to the memory
3367 operand. */
3368 if (optype0 == REGOP
3369 && (optype1 == OFFSOP || optype1 == MEMOP))
3370 {
3371 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3372
3373 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3374 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3375 {
3376 /* If both halves of dest are used in the src memory address,
3377 compute the address into latehalf of dest.
3378 Note that this can't happen if the dest is two data regs. */
3379 compadr:
3380 xops[0] = latehalf[0];
3381 xops[1] = XEXP (operands[1], 0);
3382
3383 handle_compadr (xops);
3384 if (GET_MODE (operands[1]) == XFmode)
3385 {
3386 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
3387 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3388 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3389 }
3390 else
3391 {
3392 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
3393 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3394 }
3395 }
3396 else if (size == 12
3397 && reg_overlap_mentioned_p (middlehalf[0],
3398 XEXP (operands[1], 0)))
3399 {
3400 /* Check for two regs used by both source and dest.
3401 Note that this can't happen if the dest is all data regs.
3402 It can happen if the dest is d6, d7, a0.
3403 But in that case, latehalf is an addr reg, so
3404 the code at compadr does ok. */
3405
3406 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3407 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3408 goto compadr;
3409
3410 /* JRV says this can't happen: */
3411 gcc_assert (!addreg0 && !addreg1);
3412
3413 /* Only the middle reg conflicts; simply put it last. */
3414 handle_movsi (operands);
3415 handle_movsi (latehalf);
3416 handle_movsi (middlehalf);
3417
3418 return;
3419 }
3420 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
3421 /* If the low half of dest is mentioned in the source memory
3422 address, the arrange to emit the move late half first. */
3423 dest_overlapped_low = 1;
3424 }
3425
3426 /* If one or both operands autodecrementing,
3427 do the two words, high-numbered first. */
3428
3429 /* Likewise, the first move would clobber the source of the second one,
3430 do them in the other order. This happens only for registers;
3431 such overlap can't happen in memory unless the user explicitly
3432 sets it up, and that is an undefined circumstance. */
3433
3434 if (optype0 == PUSHOP || optype1 == PUSHOP
3435 || (optype0 == REGOP && optype1 == REGOP
3436 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
3437 || REGNO (operands[0]) == REGNO (latehalf[1])))
3438 || dest_overlapped_low)
3439 {
3440 /* Make any unoffsettable addresses point at high-numbered word. */
3441 if (addreg0)
3442 handle_reg_adjust (addreg0, size - 4);
3443 if (addreg1)
3444 handle_reg_adjust (addreg1, size - 4);
3445
3446 /* Do that word. */
3447 handle_movsi (latehalf);
3448
3449 /* Undo the adds we just did. */
3450 if (addreg0)
3451 handle_reg_adjust (addreg0, -4);
3452 if (addreg1)
3453 handle_reg_adjust (addreg1, -4);
3454
3455 if (size == 12)
3456 {
3457 handle_movsi (middlehalf);
3458
3459 if (addreg0)
3460 handle_reg_adjust (addreg0, -4);
3461 if (addreg1)
3462 handle_reg_adjust (addreg1, -4);
3463 }
3464
3465 /* Do low-numbered word. */
3466
3467 handle_movsi (operands);
3468 return;
3469 }
3470
3471 /* Normal case: do the two words, low-numbered first. */
3472
3473 m68k_final_prescan_insn (NULL, operands, 2);
3474 handle_movsi (operands);
3475
3476 /* Do the middle one of the three words for long double */
3477 if (size == 12)
3478 {
3479 if (addreg0)
3480 handle_reg_adjust (addreg0, 4);
3481 if (addreg1)
3482 handle_reg_adjust (addreg1, 4);
3483
3484 m68k_final_prescan_insn (NULL, middlehalf, 2);
3485 handle_movsi (middlehalf);
3486 }
3487
3488 /* Make any unoffsettable addresses point at high-numbered word. */
3489 if (addreg0)
3490 handle_reg_adjust (addreg0, 4);
3491 if (addreg1)
3492 handle_reg_adjust (addreg1, 4);
3493
3494 /* Do that word. */
3495 m68k_final_prescan_insn (NULL, latehalf, 2);
3496 handle_movsi (latehalf);
3497
3498 /* Undo the adds we just did. */
3499 if (addreg0)
3500 handle_reg_adjust (addreg0, -(size - 4));
3501 if (addreg1)
3502 handle_reg_adjust (addreg1, -(size - 4));
3503
3504 return;
3505 }
3506
3507 /* Output assembler code to adjust REG by N. */
3508 static void
3509 output_reg_adjust (rtx reg, int n)
3510 {
3511 const char *s;
3512
3513 gcc_assert (GET_MODE (reg) == SImode
3514 && -12 <= n && n != 0 && n <= 12);
3515
3516 switch (n)
3517 {
3518 case 12:
3519 s = "add%.l #12,%0";
3520 break;
3521
3522 case 8:
3523 s = "addq%.l #8,%0";
3524 break;
3525
3526 case 4:
3527 s = "addq%.l #4,%0";
3528 break;
3529
3530 case -12:
3531 s = "sub%.l #12,%0";
3532 break;
3533
3534 case -8:
3535 s = "subq%.l #8,%0";
3536 break;
3537
3538 case -4:
3539 s = "subq%.l #4,%0";
3540 break;
3541
3542 default:
3543 gcc_unreachable ();
3544 s = NULL;
3545 }
3546
3547 output_asm_insn (s, &reg);
3548 }
3549
3550 /* Emit rtl code to adjust REG by N. */
3551 static void
3552 emit_reg_adjust (rtx reg1, int n)
3553 {
3554 rtx reg2;
3555
3556 gcc_assert (GET_MODE (reg1) == SImode
3557 && -12 <= n && n != 0 && n <= 12);
3558
3559 reg1 = copy_rtx (reg1);
3560 reg2 = copy_rtx (reg1);
3561
3562 if (n < 0)
3563 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3564 else if (n > 0)
3565 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3566 else
3567 gcc_unreachable ();
3568 }
3569
3570 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3571 static void
3572 output_compadr (rtx operands[2])
3573 {
3574 output_asm_insn ("lea %a1,%0", operands);
3575 }
3576
3577 /* Output the best assembler insn for moving operands[1] into operands[0]
3578 as a fullword. */
3579 static void
3580 output_movsi (rtx operands[2])
3581 {
3582 output_asm_insn (singlemove_string (operands), operands);
3583 }
3584
3585 /* Copy OP and change its mode to MODE. */
3586 static rtx
3587 copy_operand (rtx op, machine_mode mode)
3588 {
3589 /* ??? This looks really ugly. There must be a better way
3590 to change a mode on the operand. */
3591 if (GET_MODE (op) != VOIDmode)
3592 {
3593 if (REG_P (op))
3594 op = gen_rtx_REG (mode, REGNO (op));
3595 else
3596 {
3597 op = copy_rtx (op);
3598 PUT_MODE (op, mode);
3599 }
3600 }
3601
3602 return op;
3603 }
3604
3605 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3606 static void
3607 emit_movsi (rtx operands[2])
3608 {
3609 operands[0] = copy_operand (operands[0], SImode);
3610 operands[1] = copy_operand (operands[1], SImode);
3611
3612 emit_insn (gen_movsi (operands[0], operands[1]));
3613 }
3614
3615 /* Output assembler code to perform a doubleword move insn
3616 with operands OPERANDS. */
3617 const char *
3618 output_move_double (rtx *operands)
3619 {
3620 handle_move_double (operands,
3621 output_reg_adjust, output_compadr, output_movsi);
3622
3623 return "";
3624 }
3625
3626 /* Output rtl code to perform a doubleword move insn
3627 with operands OPERANDS. */
3628 void
3629 m68k_emit_move_double (rtx operands[2])
3630 {
3631 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3632 }
3633
3634 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3635 new rtx with the correct mode. */
3636
3637 static rtx
3638 force_mode (machine_mode mode, rtx orig)
3639 {
3640 if (mode == GET_MODE (orig))
3641 return orig;
3642
3643 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3644 abort ();
3645
3646 return gen_rtx_REG (mode, REGNO (orig));
3647 }
3648
3649 static int
3650 fp_reg_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
3651 {
3652 return reg_renumber && FP_REG_P (op);
3653 }
3654
3655 /* Emit insns to move operands[1] into operands[0].
3656
3657 Return 1 if we have written out everything that needs to be done to
3658 do the move. Otherwise, return 0 and the caller will emit the move
3659 normally.
3660
3661 Note SCRATCH_REG may not be in the proper mode depending on how it
3662 will be used. This routine is responsible for creating a new copy
3663 of SCRATCH_REG in the proper mode. */
3664
3665 int
3666 emit_move_sequence (rtx *operands, machine_mode mode, rtx scratch_reg)
3667 {
3668 register rtx operand0 = operands[0];
3669 register rtx operand1 = operands[1];
3670 register rtx tem;
3671
3672 if (scratch_reg
3673 && reload_in_progress && GET_CODE (operand0) == REG
3674 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3675 operand0 = reg_equiv_mem (REGNO (operand0));
3676 else if (scratch_reg
3677 && reload_in_progress && GET_CODE (operand0) == SUBREG
3678 && GET_CODE (SUBREG_REG (operand0)) == REG
3679 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3680 {
3681 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3682 the code which tracks sets/uses for delete_output_reload. */
3683 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3684 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
3685 SUBREG_BYTE (operand0));
3686 operand0 = alter_subreg (&temp, true);
3687 }
3688
3689 if (scratch_reg
3690 && reload_in_progress && GET_CODE (operand1) == REG
3691 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3692 operand1 = reg_equiv_mem (REGNO (operand1));
3693 else if (scratch_reg
3694 && reload_in_progress && GET_CODE (operand1) == SUBREG
3695 && GET_CODE (SUBREG_REG (operand1)) == REG
3696 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3697 {
3698 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3699 the code which tracks sets/uses for delete_output_reload. */
3700 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3701 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
3702 SUBREG_BYTE (operand1));
3703 operand1 = alter_subreg (&temp, true);
3704 }
3705
3706 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3707 && ((tem = find_replacement (&XEXP (operand0, 0)))
3708 != XEXP (operand0, 0)))
3709 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3710 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3711 && ((tem = find_replacement (&XEXP (operand1, 0)))
3712 != XEXP (operand1, 0)))
3713 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3714
3715 /* Handle secondary reloads for loads/stores of FP registers where
3716 the address is symbolic by using the scratch register */
3717 if (fp_reg_operand (operand0, mode)
3718 && ((GET_CODE (operand1) == MEM
3719 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3720 || ((GET_CODE (operand1) == SUBREG
3721 && GET_CODE (XEXP (operand1, 0)) == MEM
3722 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3723 && scratch_reg)
3724 {
3725 if (GET_CODE (operand1) == SUBREG)
3726 operand1 = XEXP (operand1, 0);
3727
3728 /* SCRATCH_REG will hold an address. We want
3729 it in SImode regardless of what mode it was originally given
3730 to us. */
3731 scratch_reg = force_mode (SImode, scratch_reg);
3732
3733 /* D might not fit in 14 bits either; for such cases load D into
3734 scratch reg. */
3735 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3736 {
3737 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3738 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3739 Pmode,
3740 XEXP (XEXP (operand1, 0), 0),
3741 scratch_reg));
3742 }
3743 else
3744 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3745 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
3746 return 1;
3747 }
3748 else if (fp_reg_operand (operand1, mode)
3749 && ((GET_CODE (operand0) == MEM
3750 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3751 || ((GET_CODE (operand0) == SUBREG)
3752 && GET_CODE (XEXP (operand0, 0)) == MEM
3753 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3754 && scratch_reg)
3755 {
3756 if (GET_CODE (operand0) == SUBREG)
3757 operand0 = XEXP (operand0, 0);
3758
3759 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3760 it in SIMODE regardless of what mode it was originally given
3761 to us. */
3762 scratch_reg = force_mode (SImode, scratch_reg);
3763
3764 /* D might not fit in 14 bits either; for such cases load D into
3765 scratch reg. */
3766 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3767 {
3768 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3769 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3770 0)),
3771 Pmode,
3772 XEXP (XEXP (operand0, 0),
3773 0),
3774 scratch_reg));
3775 }
3776 else
3777 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3778 emit_insn (gen_rtx_SET (gen_rtx_MEM (mode, scratch_reg), operand1));
3779 return 1;
3780 }
3781 /* Handle secondary reloads for loads of FP registers from constant
3782 expressions by forcing the constant into memory.
3783
3784 use scratch_reg to hold the address of the memory location.
3785
3786 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3787 NO_REGS when presented with a const_int and an register class
3788 containing only FP registers. Doing so unfortunately creates
3789 more problems than it solves. Fix this for 2.5. */
3790 else if (fp_reg_operand (operand0, mode)
3791 && CONSTANT_P (operand1)
3792 && scratch_reg)
3793 {
3794 rtx xoperands[2];
3795
3796 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3797 it in SIMODE regardless of what mode it was originally given
3798 to us. */
3799 scratch_reg = force_mode (SImode, scratch_reg);
3800
3801 /* Force the constant into memory and put the address of the
3802 memory location into scratch_reg. */
3803 xoperands[0] = scratch_reg;
3804 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3805 emit_insn (gen_rtx_SET (scratch_reg, xoperands[1]));
3806
3807 /* Now load the destination register. */
3808 emit_insn (gen_rtx_SET (operand0, gen_rtx_MEM (mode, scratch_reg)));
3809 return 1;
3810 }
3811
3812 /* Now have insn-emit do whatever it normally does. */
3813 return 0;
3814 }
3815
3816 /* Split one or more DImode RTL references into pairs of SImode
3817 references. The RTL can be REG, offsettable MEM, integer constant, or
3818 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3819 split and "num" is its length. lo_half and hi_half are output arrays
3820 that parallel "operands". */
3821
3822 void
3823 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3824 {
3825 while (num--)
3826 {
3827 rtx op = operands[num];
3828
3829 /* simplify_subreg refuses to split volatile memory addresses,
3830 but we still have to handle it. */
3831 if (GET_CODE (op) == MEM)
3832 {
3833 lo_half[num] = adjust_address (op, SImode, 4);
3834 hi_half[num] = adjust_address (op, SImode, 0);
3835 }
3836 else
3837 {
3838 lo_half[num] = simplify_gen_subreg (SImode, op,
3839 GET_MODE (op) == VOIDmode
3840 ? DImode : GET_MODE (op), 4);
3841 hi_half[num] = simplify_gen_subreg (SImode, op,
3842 GET_MODE (op) == VOIDmode
3843 ? DImode : GET_MODE (op), 0);
3844 }
3845 }
3846 }
3847
3848 /* Split X into a base and a constant offset, storing them in *BASE
3849 and *OFFSET respectively. */
3850
3851 static void
3852 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3853 {
3854 *offset = 0;
3855 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3856 {
3857 *offset += INTVAL (XEXP (x, 1));
3858 x = XEXP (x, 0);
3859 }
3860 *base = x;
3861 }
3862
3863 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3864 instruction. STORE_P says whether the move is a load or store.
3865
3866 If the instruction uses post-increment or pre-decrement addressing,
3867 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3868 adjustment. This adjustment will be made by the first element of
3869 PARALLEL, with the loads or stores starting at element 1. If the
3870 instruction does not use post-increment or pre-decrement addressing,
3871 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3872 start at element 0. */
3873
3874 bool
3875 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3876 HOST_WIDE_INT automod_offset, bool store_p)
3877 {
3878 rtx base, mem_base, set, mem, reg, last_reg;
3879 HOST_WIDE_INT offset, mem_offset;
3880 int i, first, len;
3881 enum reg_class rclass;
3882
3883 len = XVECLEN (pattern, 0);
3884 first = (automod_base != NULL);
3885
3886 if (automod_base)
3887 {
3888 /* Stores must be pre-decrement and loads must be post-increment. */
3889 if (store_p != (automod_offset < 0))
3890 return false;
3891
3892 /* Work out the base and offset for lowest memory location. */
3893 base = automod_base;
3894 offset = (automod_offset < 0 ? automod_offset : 0);
3895 }
3896 else
3897 {
3898 /* Allow any valid base and offset in the first access. */
3899 base = NULL;
3900 offset = 0;
3901 }
3902
3903 last_reg = NULL;
3904 rclass = NO_REGS;
3905 for (i = first; i < len; i++)
3906 {
3907 /* We need a plain SET. */
3908 set = XVECEXP (pattern, 0, i);
3909 if (GET_CODE (set) != SET)
3910 return false;
3911
3912 /* Check that we have a memory location... */
3913 mem = XEXP (set, !store_p);
3914 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3915 return false;
3916
3917 /* ...with the right address. */
3918 if (base == NULL)
3919 {
3920 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3921 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3922 There are no mode restrictions for 680x0 besides the
3923 automodification rules enforced above. */
3924 if (TARGET_COLDFIRE
3925 && !m68k_legitimate_base_reg_p (base, reload_completed))
3926 return false;
3927 }
3928 else
3929 {
3930 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3931 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3932 return false;
3933 }
3934
3935 /* Check that we have a register of the required mode and class. */
3936 reg = XEXP (set, store_p);
3937 if (!REG_P (reg)
3938 || !HARD_REGISTER_P (reg)
3939 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3940 return false;
3941
3942 if (last_reg)
3943 {
3944 /* The register must belong to RCLASS and have a higher number
3945 than the register in the previous SET. */
3946 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3947 || REGNO (last_reg) >= REGNO (reg))
3948 return false;
3949 }
3950 else
3951 {
3952 /* Work out which register class we need. */
3953 if (INT_REGNO_P (REGNO (reg)))
3954 rclass = GENERAL_REGS;
3955 else if (FP_REGNO_P (REGNO (reg)))
3956 rclass = FP_REGS;
3957 else
3958 return false;
3959 }
3960
3961 last_reg = reg;
3962 offset += GET_MODE_SIZE (GET_MODE (reg));
3963 }
3964
3965 /* If we have an automodification, check whether the final offset is OK. */
3966 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3967 return false;
3968
3969 /* Reject unprofitable cases. */
3970 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3971 return false;
3972
3973 return true;
3974 }
3975
3976 /* Return the assembly code template for a movem or fmovem instruction
3977 whose pattern is given by PATTERN. Store the template's operands
3978 in OPERANDS.
3979
3980 If the instruction uses post-increment or pre-decrement addressing,
3981 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
3982 is true if this is a store instruction. */
3983
3984 const char *
3985 m68k_output_movem (rtx *operands, rtx pattern,
3986 HOST_WIDE_INT automod_offset, bool store_p)
3987 {
3988 unsigned int mask;
3989 int i, first;
3990
3991 gcc_assert (GET_CODE (pattern) == PARALLEL);
3992 mask = 0;
3993 first = (automod_offset != 0);
3994 for (i = first; i < XVECLEN (pattern, 0); i++)
3995 {
3996 /* When using movem with pre-decrement addressing, register X + D0_REG
3997 is controlled by bit 15 - X. For all other addressing modes,
3998 register X + D0_REG is controlled by bit X. Confusingly, the
3999 register mask for fmovem is in the opposite order to that for
4000 movem. */
4001 unsigned int regno;
4002
4003 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
4004 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
4005 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
4006 if (automod_offset < 0)
4007 {
4008 if (FP_REGNO_P (regno))
4009 mask |= 1 << (regno - FP0_REG);
4010 else
4011 mask |= 1 << (15 - (regno - D0_REG));
4012 }
4013 else
4014 {
4015 if (FP_REGNO_P (regno))
4016 mask |= 1 << (7 - (regno - FP0_REG));
4017 else
4018 mask |= 1 << (regno - D0_REG);
4019 }
4020 }
4021 CC_STATUS_INIT;
4022
4023 if (automod_offset == 0)
4024 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
4025 else if (automod_offset < 0)
4026 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4027 else
4028 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4029 operands[1] = GEN_INT (mask);
4030 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
4031 {
4032 if (store_p)
4033 return "fmovem %1,%a0";
4034 else
4035 return "fmovem %a0,%1";
4036 }
4037 else
4038 {
4039 if (store_p)
4040 return "movem%.l %1,%a0";
4041 else
4042 return "movem%.l %a0,%1";
4043 }
4044 }
4045
4046 /* Return a REG that occurs in ADDR with coefficient 1.
4047 ADDR can be effectively incremented by incrementing REG. */
4048
4049 static rtx
4050 find_addr_reg (rtx addr)
4051 {
4052 while (GET_CODE (addr) == PLUS)
4053 {
4054 if (GET_CODE (XEXP (addr, 0)) == REG)
4055 addr = XEXP (addr, 0);
4056 else if (GET_CODE (XEXP (addr, 1)) == REG)
4057 addr = XEXP (addr, 1);
4058 else if (CONSTANT_P (XEXP (addr, 0)))
4059 addr = XEXP (addr, 1);
4060 else if (CONSTANT_P (XEXP (addr, 1)))
4061 addr = XEXP (addr, 0);
4062 else
4063 gcc_unreachable ();
4064 }
4065 gcc_assert (GET_CODE (addr) == REG);
4066 return addr;
4067 }
4068
4069 /* Output assembler code to perform a 32-bit 3-operand add. */
4070
4071 const char *
4072 output_addsi3 (rtx *operands)
4073 {
4074 if (! operands_match_p (operands[0], operands[1]))
4075 {
4076 if (!ADDRESS_REG_P (operands[1]))
4077 {
4078 rtx tmp = operands[1];
4079
4080 operands[1] = operands[2];
4081 operands[2] = tmp;
4082 }
4083
4084 /* These insns can result from reloads to access
4085 stack slots over 64k from the frame pointer. */
4086 if (GET_CODE (operands[2]) == CONST_INT
4087 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
4088 return "move%.l %2,%0\n\tadd%.l %1,%0";
4089 if (GET_CODE (operands[2]) == REG)
4090 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4091 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
4092 }
4093 if (GET_CODE (operands[2]) == CONST_INT)
4094 {
4095 if (INTVAL (operands[2]) > 0
4096 && INTVAL (operands[2]) <= 8)
4097 return "addq%.l %2,%0";
4098 if (INTVAL (operands[2]) < 0
4099 && INTVAL (operands[2]) >= -8)
4100 {
4101 operands[2] = GEN_INT (- INTVAL (operands[2]));
4102 return "subq%.l %2,%0";
4103 }
4104 /* On the CPU32 it is faster to use two addql instructions to
4105 add a small integer (8 < N <= 16) to a register.
4106 Likewise for subql. */
4107 if (TUNE_CPU32 && REG_P (operands[0]))
4108 {
4109 if (INTVAL (operands[2]) > 8
4110 && INTVAL (operands[2]) <= 16)
4111 {
4112 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
4113 return "addq%.l #8,%0\n\taddq%.l %2,%0";
4114 }
4115 if (INTVAL (operands[2]) < -8
4116 && INTVAL (operands[2]) >= -16)
4117 {
4118 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
4119 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
4120 }
4121 }
4122 if (ADDRESS_REG_P (operands[0])
4123 && INTVAL (operands[2]) >= -0x8000
4124 && INTVAL (operands[2]) < 0x8000)
4125 {
4126 if (TUNE_68040)
4127 return "add%.w %2,%0";
4128 else
4129 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
4130 }
4131 }
4132 return "add%.l %2,%0";
4133 }
4134 \f
4135 /* Store in cc_status the expressions that the condition codes will
4136 describe after execution of an instruction whose pattern is EXP.
4137 Do not alter them if the instruction would not alter the cc's. */
4138
4139 /* On the 68000, all the insns to store in an address register fail to
4140 set the cc's. However, in some cases these instructions can make it
4141 possibly invalid to use the saved cc's. In those cases we clear out
4142 some or all of the saved cc's so they won't be used. */
4143
4144 void
4145 notice_update_cc (rtx exp, rtx insn)
4146 {
4147 if (GET_CODE (exp) == SET)
4148 {
4149 if (GET_CODE (SET_SRC (exp)) == CALL)
4150 CC_STATUS_INIT;
4151 else if (ADDRESS_REG_P (SET_DEST (exp)))
4152 {
4153 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
4154 cc_status.value1 = 0;
4155 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
4156 cc_status.value2 = 0;
4157 }
4158 /* fmoves to memory or data registers do not set the condition
4159 codes. Normal moves _do_ set the condition codes, but not in
4160 a way that is appropriate for comparison with 0, because -0.0
4161 would be treated as a negative nonzero number. Note that it
4162 isn't appropriate to conditionalize this restriction on
4163 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4164 we care about the difference between -0.0 and +0.0. */
4165 else if (!FP_REG_P (SET_DEST (exp))
4166 && SET_DEST (exp) != cc0_rtx
4167 && (FP_REG_P (SET_SRC (exp))
4168 || GET_CODE (SET_SRC (exp)) == FIX
4169 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
4170 CC_STATUS_INIT;
4171 /* A pair of move insns doesn't produce a useful overall cc. */
4172 else if (!FP_REG_P (SET_DEST (exp))
4173 && !FP_REG_P (SET_SRC (exp))
4174 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4175 && (GET_CODE (SET_SRC (exp)) == REG
4176 || GET_CODE (SET_SRC (exp)) == MEM
4177 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
4178 CC_STATUS_INIT;
4179 else if (SET_DEST (exp) != pc_rtx)
4180 {
4181 cc_status.flags = 0;
4182 cc_status.value1 = SET_DEST (exp);
4183 cc_status.value2 = SET_SRC (exp);
4184 }
4185 }
4186 else if (GET_CODE (exp) == PARALLEL
4187 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4188 {
4189 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4190 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4191
4192 if (ADDRESS_REG_P (dest))
4193 CC_STATUS_INIT;
4194 else if (dest != pc_rtx)
4195 {
4196 cc_status.flags = 0;
4197 cc_status.value1 = dest;
4198 cc_status.value2 = src;
4199 }
4200 }
4201 else
4202 CC_STATUS_INIT;
4203 if (cc_status.value2 != 0
4204 && ADDRESS_REG_P (cc_status.value2)
4205 && GET_MODE (cc_status.value2) == QImode)
4206 CC_STATUS_INIT;
4207 if (cc_status.value2 != 0)
4208 switch (GET_CODE (cc_status.value2))
4209 {
4210 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
4211 case ROTATE: case ROTATERT:
4212 /* These instructions always clear the overflow bit, and set
4213 the carry to the bit shifted out. */
4214 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
4215 break;
4216
4217 case PLUS: case MINUS: case MULT:
4218 case DIV: case UDIV: case MOD: case UMOD: case NEG:
4219 if (GET_MODE (cc_status.value2) != VOIDmode)
4220 cc_status.flags |= CC_NO_OVERFLOW;
4221 break;
4222 case ZERO_EXTEND:
4223 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4224 ends with a move insn moving r2 in r2's mode.
4225 Thus, the cc's are set for r2.
4226 This can set N bit spuriously. */
4227 cc_status.flags |= CC_NOT_NEGATIVE;
4228
4229 default:
4230 break;
4231 }
4232 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4233 && cc_status.value2
4234 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4235 cc_status.value2 = 0;
4236 /* Check for PRE_DEC in dest modifying a register used in src. */
4237 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM
4238 && GET_CODE (XEXP (cc_status.value1, 0)) == PRE_DEC
4239 && cc_status.value2
4240 && reg_overlap_mentioned_p (XEXP (XEXP (cc_status.value1, 0), 0),
4241 cc_status.value2))
4242 cc_status.value2 = 0;
4243 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
4244 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
4245 cc_status.flags = CC_IN_68881;
4246 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4247 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4248 {
4249 cc_status.flags = CC_IN_68881;
4250 if (!FP_REG_P (XEXP (cc_status.value2, 0))
4251 && FP_REG_P (XEXP (cc_status.value2, 1)))
4252 cc_status.flags |= CC_REVERSED;
4253 }
4254 }
4255 \f
4256 const char *
4257 output_move_const_double (rtx *operands)
4258 {
4259 int code = standard_68881_constant_p (operands[1]);
4260
4261 if (code != 0)
4262 {
4263 static char buf[40];
4264
4265 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4266 return buf;
4267 }
4268 return "fmove%.d %1,%0";
4269 }
4270
4271 const char *
4272 output_move_const_single (rtx *operands)
4273 {
4274 int code = standard_68881_constant_p (operands[1]);
4275
4276 if (code != 0)
4277 {
4278 static char buf[40];
4279
4280 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4281 return buf;
4282 }
4283 return "fmove%.s %f1,%0";
4284 }
4285
4286 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4287 from the "fmovecr" instruction.
4288 The value, anded with 0xff, gives the code to use in fmovecr
4289 to get the desired constant. */
4290
4291 /* This code has been fixed for cross-compilation. */
4292
4293 static int inited_68881_table = 0;
4294
4295 static const char *const strings_68881[7] = {
4296 "0.0",
4297 "1.0",
4298 "10.0",
4299 "100.0",
4300 "10000.0",
4301 "1e8",
4302 "1e16"
4303 };
4304
4305 static const int codes_68881[7] = {
4306 0x0f,
4307 0x32,
4308 0x33,
4309 0x34,
4310 0x35,
4311 0x36,
4312 0x37
4313 };
4314
4315 REAL_VALUE_TYPE values_68881[7];
4316
4317 /* Set up values_68881 array by converting the decimal values
4318 strings_68881 to binary. */
4319
4320 void
4321 init_68881_table (void)
4322 {
4323 int i;
4324 REAL_VALUE_TYPE r;
4325 machine_mode mode;
4326
4327 mode = SFmode;
4328 for (i = 0; i < 7; i++)
4329 {
4330 if (i == 6)
4331 mode = DFmode;
4332 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4333 values_68881[i] = r;
4334 }
4335 inited_68881_table = 1;
4336 }
4337
4338 int
4339 standard_68881_constant_p (rtx x)
4340 {
4341 const REAL_VALUE_TYPE *r;
4342 int i;
4343
4344 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
4345 used at all on those chips. */
4346 if (TUNE_68040_60)
4347 return 0;
4348
4349 if (! inited_68881_table)
4350 init_68881_table ();
4351
4352 r = CONST_DOUBLE_REAL_VALUE (x);
4353
4354 /* Use real_identical instead of real_equal so that -0.0 is rejected. */
4355 for (i = 0; i < 6; i++)
4356 {
4357 if (real_identical (r, &values_68881[i]))
4358 return (codes_68881[i]);
4359 }
4360
4361 if (GET_MODE (x) == SFmode)
4362 return 0;
4363
4364 if (real_equal (r, &values_68881[6]))
4365 return (codes_68881[6]);
4366
4367 /* larger powers of ten in the constants ram are not used
4368 because they are not equal to a `double' C constant. */
4369 return 0;
4370 }
4371
4372 /* If X is a floating-point constant, return the logarithm of X base 2,
4373 or 0 if X is not a power of 2. */
4374
4375 int
4376 floating_exact_log2 (rtx x)
4377 {
4378 const REAL_VALUE_TYPE *r;
4379 REAL_VALUE_TYPE r1;
4380 int exp;
4381
4382 r = CONST_DOUBLE_REAL_VALUE (x);
4383
4384 if (real_less (r, &dconst1))
4385 return 0;
4386
4387 exp = real_exponent (r);
4388 real_2expN (&r1, exp, DFmode);
4389 if (real_equal (&r1, r))
4390 return exp;
4391
4392 return 0;
4393 }
4394 \f
4395 /* A C compound statement to output to stdio stream STREAM the
4396 assembler syntax for an instruction operand X. X is an RTL
4397 expression.
4398
4399 CODE is a value that can be used to specify one of several ways
4400 of printing the operand. It is used when identical operands
4401 must be printed differently depending on the context. CODE
4402 comes from the `%' specification that was used to request
4403 printing of the operand. If the specification was just `%DIGIT'
4404 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4405 is the ASCII code for LTR.
4406
4407 If X is a register, this macro should print the register's name.
4408 The names can be found in an array `reg_names' whose type is
4409 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4410
4411 When the machine description has a specification `%PUNCT' (a `%'
4412 followed by a punctuation character), this macro is called with
4413 a null pointer for X and the punctuation character for CODE.
4414
4415 The m68k specific codes are:
4416
4417 '.' for dot needed in Motorola-style opcode names.
4418 '-' for an operand pushing on the stack:
4419 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4420 '+' for an operand pushing on the stack:
4421 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4422 '@' for a reference to the top word on the stack:
4423 sp@, (sp) or (%sp) depending on the style of syntax.
4424 '#' for an immediate operand prefix (# in MIT and Motorola syntax
4425 but & in SGS syntax).
4426 '!' for the cc register (used in an `and to cc' insn).
4427 '$' for the letter `s' in an op code, but only on the 68040.
4428 '&' for the letter `d' in an op code, but only on the 68040.
4429 '/' for register prefix needed by longlong.h.
4430 '?' for m68k_library_id_string
4431
4432 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4433 'd' to force memory addressing to be absolute, not relative.
4434 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
4435 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4436 or print pair of registers as rx:ry.
4437 'p' print an address with @PLTPC attached, but only if the operand
4438 is not locally-bound. */
4439
4440 void
4441 print_operand (FILE *file, rtx op, int letter)
4442 {
4443 if (letter == '.')
4444 {
4445 if (MOTOROLA)
4446 fprintf (file, ".");
4447 }
4448 else if (letter == '#')
4449 asm_fprintf (file, "%I");
4450 else if (letter == '-')
4451 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
4452 else if (letter == '+')
4453 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
4454 else if (letter == '@')
4455 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
4456 else if (letter == '!')
4457 asm_fprintf (file, "%Rfpcr");
4458 else if (letter == '$')
4459 {
4460 if (TARGET_68040)
4461 fprintf (file, "s");
4462 }
4463 else if (letter == '&')
4464 {
4465 if (TARGET_68040)
4466 fprintf (file, "d");
4467 }
4468 else if (letter == '/')
4469 asm_fprintf (file, "%R");
4470 else if (letter == '?')
4471 asm_fprintf (file, m68k_library_id_string);
4472 else if (letter == 'p')
4473 {
4474 output_addr_const (file, op);
4475 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4476 fprintf (file, "@PLTPC");
4477 }
4478 else if (GET_CODE (op) == REG)
4479 {
4480 if (letter == 'R')
4481 /* Print out the second register name of a register pair.
4482 I.e., R (6) => 7. */
4483 fputs (M68K_REGNAME(REGNO (op) + 1), file);
4484 else
4485 fputs (M68K_REGNAME(REGNO (op)), file);
4486 }
4487 else if (GET_CODE (op) == MEM)
4488 {
4489 output_address (GET_MODE (op), XEXP (op, 0));
4490 if (letter == 'd' && ! TARGET_68020
4491 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4492 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4493 && INTVAL (XEXP (op, 0)) < 0x8000
4494 && INTVAL (XEXP (op, 0)) >= -0x8000))
4495 fprintf (file, MOTOROLA ? ".l" : ":l");
4496 }
4497 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4498 {
4499 long l;
4500 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4501 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
4502 }
4503 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4504 {
4505 long l[3];
4506 REAL_VALUE_TO_TARGET_LONG_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4507 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4508 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
4509 }
4510 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
4511 {
4512 long l[2];
4513 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (op), l);
4514 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
4515 }
4516 else
4517 {
4518 /* Use `print_operand_address' instead of `output_addr_const'
4519 to ensure that we print relevant PIC stuff. */
4520 asm_fprintf (file, "%I");
4521 if (TARGET_PCREL
4522 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4523 print_operand_address (file, op);
4524 else
4525 output_addr_const (file, op);
4526 }
4527 }
4528
4529 /* Return string for TLS relocation RELOC. */
4530
4531 static const char *
4532 m68k_get_reloc_decoration (enum m68k_reloc reloc)
4533 {
4534 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4535 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4536
4537 switch (reloc)
4538 {
4539 case RELOC_GOT:
4540 if (MOTOROLA)
4541 {
4542 if (flag_pic == 1 && TARGET_68020)
4543 return "@GOT.w";
4544 else
4545 return "@GOT";
4546 }
4547 else
4548 {
4549 if (TARGET_68020)
4550 {
4551 switch (flag_pic)
4552 {
4553 case 1:
4554 return ":w";
4555 case 2:
4556 return ":l";
4557 default:
4558 return "";
4559 }
4560 }
4561 }
4562 gcc_unreachable ();
4563
4564 case RELOC_TLSGD:
4565 return "@TLSGD";
4566
4567 case RELOC_TLSLDM:
4568 return "@TLSLDM";
4569
4570 case RELOC_TLSLDO:
4571 return "@TLSLDO";
4572
4573 case RELOC_TLSIE:
4574 return "@TLSIE";
4575
4576 case RELOC_TLSLE:
4577 return "@TLSLE";
4578
4579 default:
4580 gcc_unreachable ();
4581 }
4582 }
4583
4584 /* m68k implementation of TARGET_OUTPUT_ADDR_CONST_EXTRA. */
4585
4586 static bool
4587 m68k_output_addr_const_extra (FILE *file, rtx x)
4588 {
4589 if (GET_CODE (x) == UNSPEC)
4590 {
4591 switch (XINT (x, 1))
4592 {
4593 case UNSPEC_RELOC16:
4594 case UNSPEC_RELOC32:
4595 output_addr_const (file, XVECEXP (x, 0, 0));
4596 fputs (m68k_get_reloc_decoration
4597 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
4598 return true;
4599
4600 default:
4601 break;
4602 }
4603 }
4604
4605 return false;
4606 }
4607
4608 /* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4609
4610 static void
4611 m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4612 {
4613 gcc_assert (size == 4);
4614 fputs ("\t.long\t", file);
4615 output_addr_const (file, x);
4616 fputs ("@TLSLDO+0x8000", file);
4617 }
4618
4619 /* In the name of slightly smaller debug output, and to cater to
4620 general assembler lossage, recognize various UNSPEC sequences
4621 and turn them back into a direct symbol reference. */
4622
4623 static rtx
4624 m68k_delegitimize_address (rtx orig_x)
4625 {
4626 rtx x;
4627 struct m68k_address addr;
4628 rtx unspec;
4629
4630 orig_x = delegitimize_mem_from_attrs (orig_x);
4631 x = orig_x;
4632 if (MEM_P (x))
4633 x = XEXP (x, 0);
4634
4635 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
4636 return orig_x;
4637
4638 if (!m68k_decompose_address (GET_MODE (x), x, false, &addr)
4639 || addr.offset == NULL_RTX
4640 || GET_CODE (addr.offset) != CONST)
4641 return orig_x;
4642
4643 unspec = XEXP (addr.offset, 0);
4644 if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
4645 unspec = XEXP (unspec, 0);
4646 if (GET_CODE (unspec) != UNSPEC
4647 || (XINT (unspec, 1) != UNSPEC_RELOC16
4648 && XINT (unspec, 1) != UNSPEC_RELOC32))
4649 return orig_x;
4650 x = XVECEXP (unspec, 0, 0);
4651 gcc_assert (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF);
4652 if (unspec != XEXP (addr.offset, 0))
4653 x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.offset, 0), 1));
4654 if (addr.index)
4655 {
4656 rtx idx = addr.index;
4657 if (addr.scale != 1)
4658 idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
4659 x = gen_rtx_PLUS (Pmode, idx, x);
4660 }
4661 if (addr.base)
4662 x = gen_rtx_PLUS (Pmode, addr.base, x);
4663 if (MEM_P (orig_x))
4664 x = replace_equiv_address_nv (orig_x, x);
4665 return x;
4666 }
4667
4668 \f
4669 /* A C compound statement to output to stdio stream STREAM the
4670 assembler syntax for an instruction operand that is a memory
4671 reference whose address is ADDR. ADDR is an RTL expression.
4672
4673 Note that this contains a kludge that knows that the only reason
4674 we have an address (plus (label_ref...) (reg...)) when not generating
4675 PIC code is in the insn before a tablejump, and we know that m68k.md
4676 generates a label LInnn: on such an insn.
4677
4678 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4679 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4680
4681 This routine is responsible for distinguishing between -fpic and -fPIC
4682 style relocations in an address. When generating -fpic code the
4683 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4684 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
4685
4686 void
4687 print_operand_address (FILE *file, rtx addr)
4688 {
4689 struct m68k_address address;
4690
4691 if (!m68k_decompose_address (QImode, addr, true, &address))
4692 gcc_unreachable ();
4693
4694 if (address.code == PRE_DEC)
4695 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4696 M68K_REGNAME (REGNO (address.base)));
4697 else if (address.code == POST_INC)
4698 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4699 M68K_REGNAME (REGNO (address.base)));
4700 else if (!address.base && !address.index)
4701 {
4702 /* A constant address. */
4703 gcc_assert (address.offset == addr);
4704 if (GET_CODE (addr) == CONST_INT)
4705 {
4706 /* (xxx).w or (xxx).l. */
4707 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4708 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
4709 else
4710 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
4711 }
4712 else if (TARGET_PCREL)
4713 {
4714 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4715 fputc ('(', file);
4716 output_addr_const (file, addr);
4717 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
4718 }
4719 else
4720 {
4721 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4722 name ends in `.<letter>', as the last 2 characters can be
4723 mistaken as a size suffix. Put the name in parentheses. */
4724 if (GET_CODE (addr) == SYMBOL_REF
4725 && strlen (XSTR (addr, 0)) > 2
4726 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
4727 {
4728 putc ('(', file);
4729 output_addr_const (file, addr);
4730 putc (')', file);
4731 }
4732 else
4733 output_addr_const (file, addr);
4734 }
4735 }
4736 else
4737 {
4738 int labelno;
4739
4740 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
4741 label being accessed, otherwise it is -1. */
4742 labelno = (address.offset
4743 && !address.base
4744 && GET_CODE (address.offset) == LABEL_REF
4745 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4746 : -1);
4747 if (MOTOROLA)
4748 {
4749 /* Print the "offset(base" component. */
4750 if (labelno >= 0)
4751 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
4752 else
4753 {
4754 if (address.offset)
4755 output_addr_const (file, address.offset);
4756
4757 putc ('(', file);
4758 if (address.base)
4759 fputs (M68K_REGNAME (REGNO (address.base)), file);
4760 }
4761 /* Print the ",index" component, if any. */
4762 if (address.index)
4763 {
4764 if (address.base)
4765 putc (',', file);
4766 fprintf (file, "%s.%c",
4767 M68K_REGNAME (REGNO (address.index)),
4768 GET_MODE (address.index) == HImode ? 'w' : 'l');
4769 if (address.scale != 1)
4770 fprintf (file, "*%d", address.scale);
4771 }
4772 putc (')', file);
4773 }
4774 else /* !MOTOROLA */
4775 {
4776 if (!address.offset && !address.index)
4777 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
4778 else
4779 {
4780 /* Print the "base@(offset" component. */
4781 if (labelno >= 0)
4782 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
4783 else
4784 {
4785 if (address.base)
4786 fputs (M68K_REGNAME (REGNO (address.base)), file);
4787 fprintf (file, "@(");
4788 if (address.offset)
4789 output_addr_const (file, address.offset);
4790 }
4791 /* Print the ",index" component, if any. */
4792 if (address.index)
4793 {
4794 fprintf (file, ",%s:%c",
4795 M68K_REGNAME (REGNO (address.index)),
4796 GET_MODE (address.index) == HImode ? 'w' : 'l');
4797 if (address.scale != 1)
4798 fprintf (file, ":%d", address.scale);
4799 }
4800 putc (')', file);
4801 }
4802 }
4803 }
4804 }
4805 \f
4806 /* Check for cases where a clr insns can be omitted from code using
4807 strict_low_part sets. For example, the second clrl here is not needed:
4808 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4809
4810 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4811 insn we are checking for redundancy. TARGET is the register set by the
4812 clear insn. */
4813
4814 bool
4815 strict_low_part_peephole_ok (machine_mode mode, rtx_insn *first_insn,
4816 rtx target)
4817 {
4818 rtx_insn *p = first_insn;
4819
4820 while ((p = PREV_INSN (p)))
4821 {
4822 if (NOTE_INSN_BASIC_BLOCK_P (p))
4823 return false;
4824
4825 if (NOTE_P (p))
4826 continue;
4827
4828 /* If it isn't an insn, then give up. */
4829 if (!INSN_P (p))
4830 return false;
4831
4832 if (reg_set_p (target, p))
4833 {
4834 rtx set = single_set (p);
4835 rtx dest;
4836
4837 /* If it isn't an easy to recognize insn, then give up. */
4838 if (! set)
4839 return false;
4840
4841 dest = SET_DEST (set);
4842
4843 /* If this sets the entire target register to zero, then our
4844 first_insn is redundant. */
4845 if (rtx_equal_p (dest, target)
4846 && SET_SRC (set) == const0_rtx)
4847 return true;
4848 else if (GET_CODE (dest) == STRICT_LOW_PART
4849 && GET_CODE (XEXP (dest, 0)) == REG
4850 && REGNO (XEXP (dest, 0)) == REGNO (target)
4851 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4852 <= GET_MODE_SIZE (mode)))
4853 /* This is a strict low part set which modifies less than
4854 we are using, so it is safe. */
4855 ;
4856 else
4857 return false;
4858 }
4859 }
4860
4861 return false;
4862 }
4863
4864 /* Operand predicates for implementing asymmetric pc-relative addressing
4865 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4866 when used as a source operand, but not as a destination operand.
4867
4868 We model this by restricting the meaning of the basic predicates
4869 (general_operand, memory_operand, etc) to forbid the use of this
4870 addressing mode, and then define the following predicates that permit
4871 this addressing mode. These predicates can then be used for the
4872 source operands of the appropriate instructions.
4873
4874 n.b. While it is theoretically possible to change all machine patterns
4875 to use this addressing more where permitted by the architecture,
4876 it has only been implemented for "common" cases: SImode, HImode, and
4877 QImode operands, and only for the principle operations that would
4878 require this addressing mode: data movement and simple integer operations.
4879
4880 In parallel with these new predicates, two new constraint letters
4881 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4882 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4883 In the pcrel case 's' is only valid in combination with 'a' registers.
4884 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4885 of how these constraints are used.
4886
4887 The use of these predicates is strictly optional, though patterns that
4888 don't will cause an extra reload register to be allocated where one
4889 was not necessary:
4890
4891 lea (abc:w,%pc),%a0 ; need to reload address
4892 moveq &1,%d1 ; since write to pc-relative space
4893 movel %d1,%a0@ ; is not allowed
4894 ...
4895 lea (abc:w,%pc),%a1 ; no need to reload address here
4896 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4897
4898 For more info, consult tiemann@cygnus.com.
4899
4900
4901 All of the ugliness with predicates and constraints is due to the
4902 simple fact that the m68k does not allow a pc-relative addressing
4903 mode as a destination. gcc does not distinguish between source and
4904 destination addresses. Hence, if we claim that pc-relative address
4905 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
4906 end up with invalid code. To get around this problem, we left
4907 pc-relative modes as invalid addresses, and then added special
4908 predicates and constraints to accept them.
4909
4910 A cleaner way to handle this is to modify gcc to distinguish
4911 between source and destination addresses. We can then say that
4912 pc-relative is a valid source address but not a valid destination
4913 address, and hopefully avoid a lot of the predicate and constraint
4914 hackery. Unfortunately, this would be a pretty big change. It would
4915 be a useful change for a number of ports, but there aren't any current
4916 plans to undertake this.
4917
4918 ***************************************************************************/
4919
4920
4921 const char *
4922 output_andsi3 (rtx *operands)
4923 {
4924 int logval;
4925 if (GET_CODE (operands[2]) == CONST_INT
4926 && (INTVAL (operands[2]) | 0xffff) == -1
4927 && (DATA_REG_P (operands[0])
4928 || offsettable_memref_p (operands[0]))
4929 && !TARGET_COLDFIRE)
4930 {
4931 if (GET_CODE (operands[0]) != REG)
4932 operands[0] = adjust_address (operands[0], HImode, 2);
4933 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4934 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4935 CC_STATUS_INIT;
4936 if (operands[2] == const0_rtx)
4937 return "clr%.w %0";
4938 return "and%.w %2,%0";
4939 }
4940 if (GET_CODE (operands[2]) == CONST_INT
4941 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
4942 && (DATA_REG_P (operands[0])
4943 || offsettable_memref_p (operands[0])))
4944 {
4945 if (DATA_REG_P (operands[0]))
4946 operands[1] = GEN_INT (logval);
4947 else
4948 {
4949 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4950 operands[1] = GEN_INT (logval % 8);
4951 }
4952 /* This does not set condition codes in a standard way. */
4953 CC_STATUS_INIT;
4954 return "bclr %1,%0";
4955 }
4956 return "and%.l %2,%0";
4957 }
4958
4959 const char *
4960 output_iorsi3 (rtx *operands)
4961 {
4962 register int logval;
4963 if (GET_CODE (operands[2]) == CONST_INT
4964 && INTVAL (operands[2]) >> 16 == 0
4965 && (DATA_REG_P (operands[0])
4966 || offsettable_memref_p (operands[0]))
4967 && !TARGET_COLDFIRE)
4968 {
4969 if (GET_CODE (operands[0]) != REG)
4970 operands[0] = adjust_address (operands[0], HImode, 2);
4971 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4972 CC_STATUS_INIT;
4973 if (INTVAL (operands[2]) == 0xffff)
4974 return "mov%.w %2,%0";
4975 return "or%.w %2,%0";
4976 }
4977 if (GET_CODE (operands[2]) == CONST_INT
4978 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
4979 && (DATA_REG_P (operands[0])
4980 || offsettable_memref_p (operands[0])))
4981 {
4982 if (DATA_REG_P (operands[0]))
4983 operands[1] = GEN_INT (logval);
4984 else
4985 {
4986 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4987 operands[1] = GEN_INT (logval % 8);
4988 }
4989 CC_STATUS_INIT;
4990 return "bset %1,%0";
4991 }
4992 return "or%.l %2,%0";
4993 }
4994
4995 const char *
4996 output_xorsi3 (rtx *operands)
4997 {
4998 register int logval;
4999 if (GET_CODE (operands[2]) == CONST_INT
5000 && INTVAL (operands[2]) >> 16 == 0
5001 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
5002 && !TARGET_COLDFIRE)
5003 {
5004 if (! DATA_REG_P (operands[0]))
5005 operands[0] = adjust_address (operands[0], HImode, 2);
5006 /* Do not delete a following tstl %0 insn; that would be incorrect. */
5007 CC_STATUS_INIT;
5008 if (INTVAL (operands[2]) == 0xffff)
5009 return "not%.w %0";
5010 return "eor%.w %2,%0";
5011 }
5012 if (GET_CODE (operands[2]) == CONST_INT
5013 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
5014 && (DATA_REG_P (operands[0])
5015 || offsettable_memref_p (operands[0])))
5016 {
5017 if (DATA_REG_P (operands[0]))
5018 operands[1] = GEN_INT (logval);
5019 else
5020 {
5021 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
5022 operands[1] = GEN_INT (logval % 8);
5023 }
5024 CC_STATUS_INIT;
5025 return "bchg %1,%0";
5026 }
5027 return "eor%.l %2,%0";
5028 }
5029
5030 /* Return the instruction that should be used for a call to address X,
5031 which is known to be in operand 0. */
5032
5033 const char *
5034 output_call (rtx x)
5035 {
5036 if (symbolic_operand (x, VOIDmode))
5037 return m68k_symbolic_call;
5038 else
5039 return "jsr %a0";
5040 }
5041
5042 /* Likewise sibling calls. */
5043
5044 const char *
5045 output_sibcall (rtx x)
5046 {
5047 if (symbolic_operand (x, VOIDmode))
5048 return m68k_symbolic_jump;
5049 else
5050 return "jmp %a0";
5051 }
5052
5053 static void
5054 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
5055 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
5056 tree function)
5057 {
5058 rtx this_slot, offset, addr, mem, tmp;
5059 rtx_insn *insn;
5060
5061 /* Avoid clobbering the struct value reg by using the
5062 static chain reg as a temporary. */
5063 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5064
5065 /* Pretend to be a post-reload pass while generating rtl. */
5066 reload_completed = 1;
5067
5068 /* The "this" pointer is stored at 4(%sp). */
5069 this_slot = gen_rtx_MEM (Pmode, plus_constant (Pmode,
5070 stack_pointer_rtx, 4));
5071
5072 /* Add DELTA to THIS. */
5073 if (delta != 0)
5074 {
5075 /* Make the offset a legitimate operand for memory addition. */
5076 offset = GEN_INT (delta);
5077 if ((delta < -8 || delta > 8)
5078 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5079 {
5080 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5081 offset = gen_rtx_REG (Pmode, D0_REG);
5082 }
5083 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5084 copy_rtx (this_slot), offset));
5085 }
5086
5087 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5088 if (vcall_offset != 0)
5089 {
5090 /* Set the static chain register to *THIS. */
5091 emit_move_insn (tmp, this_slot);
5092 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
5093
5094 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
5095 addr = plus_constant (Pmode, tmp, vcall_offset);
5096 if (!m68k_legitimate_address_p (Pmode, addr, true))
5097 {
5098 emit_insn (gen_rtx_SET (tmp, addr));
5099 addr = tmp;
5100 }
5101
5102 /* Load the offset into %d0 and add it to THIS. */
5103 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5104 gen_rtx_MEM (Pmode, addr));
5105 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5106 copy_rtx (this_slot),
5107 gen_rtx_REG (Pmode, D0_REG)));
5108 }
5109
5110 /* Jump to the target function. Use a sibcall if direct jumps are
5111 allowed, otherwise load the address into a register first. */
5112 mem = DECL_RTL (function);
5113 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5114 {
5115 gcc_assert (flag_pic);
5116
5117 if (!TARGET_SEP_DATA)
5118 {
5119 /* Use the static chain register as a temporary (call-clobbered)
5120 GOT pointer for this function. We can use the static chain
5121 register because it isn't live on entry to the thunk. */
5122 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
5123 emit_insn (gen_load_got (pic_offset_table_rtx));
5124 }
5125 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5126 mem = replace_equiv_address (mem, tmp);
5127 }
5128 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5129 SIBLING_CALL_P (insn) = 1;
5130
5131 /* Run just enough of rest_of_compilation. */
5132 insn = get_insns ();
5133 split_all_insns_noflow ();
5134 final_start_function (insn, file, 1);
5135 final (insn, file, 1);
5136 final_end_function ();
5137
5138 /* Clean up the vars set above. */
5139 reload_completed = 0;
5140
5141 /* Restore the original PIC register. */
5142 if (flag_pic)
5143 SET_REGNO (pic_offset_table_rtx, PIC_REG);
5144 }
5145
5146 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
5147
5148 static rtx
5149 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5150 int incoming ATTRIBUTE_UNUSED)
5151 {
5152 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5153 }
5154
5155 /* Return nonzero if register old_reg can be renamed to register new_reg. */
5156 int
5157 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5158 unsigned int new_reg)
5159 {
5160
5161 /* Interrupt functions can only use registers that have already been
5162 saved by the prologue, even if they would normally be
5163 call-clobbered. */
5164
5165 if ((m68k_get_function_kind (current_function_decl)
5166 == m68k_fk_interrupt_handler)
5167 && !df_regs_ever_live_p (new_reg))
5168 return 0;
5169
5170 return 1;
5171 }
5172
5173 /* Value is true if hard register REGNO can hold a value of machine-mode
5174 MODE. On the 68000, we let the cpu registers can hold any mode, but
5175 restrict the 68881 registers to floating-point modes. */
5176
5177 bool
5178 m68k_regno_mode_ok (int regno, machine_mode mode)
5179 {
5180 if (DATA_REGNO_P (regno))
5181 {
5182 /* Data Registers, can hold aggregate if fits in. */
5183 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5184 return true;
5185 }
5186 else if (ADDRESS_REGNO_P (regno))
5187 {
5188 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5189 return true;
5190 }
5191 else if (FP_REGNO_P (regno))
5192 {
5193 /* FPU registers, hold float or complex float of long double or
5194 smaller. */
5195 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5196 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5197 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
5198 return true;
5199 }
5200 return false;
5201 }
5202
5203 /* Implement SECONDARY_RELOAD_CLASS. */
5204
5205 enum reg_class
5206 m68k_secondary_reload_class (enum reg_class rclass,
5207 machine_mode mode, rtx x)
5208 {
5209 int regno;
5210
5211 regno = true_regnum (x);
5212
5213 /* If one operand of a movqi is an address register, the other
5214 operand must be a general register or constant. Other types
5215 of operand must be reloaded through a data register. */
5216 if (GET_MODE_SIZE (mode) == 1
5217 && reg_classes_intersect_p (rclass, ADDR_REGS)
5218 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5219 return DATA_REGS;
5220
5221 /* PC-relative addresses must be loaded into an address register first. */
5222 if (TARGET_PCREL
5223 && !reg_class_subset_p (rclass, ADDR_REGS)
5224 && symbolic_operand (x, VOIDmode))
5225 return ADDR_REGS;
5226
5227 return NO_REGS;
5228 }
5229
5230 /* Implement PREFERRED_RELOAD_CLASS. */
5231
5232 enum reg_class
5233 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5234 {
5235 enum reg_class secondary_class;
5236
5237 /* If RCLASS might need a secondary reload, try restricting it to
5238 a class that doesn't. */
5239 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5240 if (secondary_class != NO_REGS
5241 && reg_class_subset_p (secondary_class, rclass))
5242 return secondary_class;
5243
5244 /* Prefer to use moveq for in-range constants. */
5245 if (GET_CODE (x) == CONST_INT
5246 && reg_class_subset_p (DATA_REGS, rclass)
5247 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5248 return DATA_REGS;
5249
5250 /* ??? Do we really need this now? */
5251 if (GET_CODE (x) == CONST_DOUBLE
5252 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5253 {
5254 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5255 return FP_REGS;
5256
5257 return NO_REGS;
5258 }
5259
5260 return rclass;
5261 }
5262
5263 /* Return floating point values in a 68881 register. This makes 68881 code
5264 a little bit faster. It also makes -msoft-float code incompatible with
5265 hard-float code, so people have to be careful not to mix the two.
5266 For ColdFire it was decided the ABI incompatibility is undesirable.
5267 If there is need for a hard-float ABI it is probably worth doing it
5268 properly and also passing function arguments in FP registers. */
5269 rtx
5270 m68k_libcall_value (machine_mode mode)
5271 {
5272 switch (mode) {
5273 case E_SFmode:
5274 case E_DFmode:
5275 case E_XFmode:
5276 if (TARGET_68881)
5277 return gen_rtx_REG (mode, FP0_REG);
5278 break;
5279 default:
5280 break;
5281 }
5282
5283 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
5284 }
5285
5286 /* Location in which function value is returned.
5287 NOTE: Due to differences in ABIs, don't call this function directly,
5288 use FUNCTION_VALUE instead. */
5289 rtx
5290 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
5291 {
5292 machine_mode mode;
5293
5294 mode = TYPE_MODE (valtype);
5295 switch (mode) {
5296 case E_SFmode:
5297 case E_DFmode:
5298 case E_XFmode:
5299 if (TARGET_68881)
5300 return gen_rtx_REG (mode, FP0_REG);
5301 break;
5302 default:
5303 break;
5304 }
5305
5306 /* If the function returns a pointer, push that into %a0. */
5307 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5308 /* For compatibility with the large body of existing code which
5309 does not always properly declare external functions returning
5310 pointer types, the m68k/SVR4 convention is to copy the value
5311 returned for pointer functions from a0 to d0 in the function
5312 epilogue, so that callers that have neglected to properly
5313 declare the callee can still find the correct return value in
5314 d0. */
5315 return gen_rtx_PARALLEL
5316 (mode,
5317 gen_rtvec (2,
5318 gen_rtx_EXPR_LIST (VOIDmode,
5319 gen_rtx_REG (mode, A0_REG),
5320 const0_rtx),
5321 gen_rtx_EXPR_LIST (VOIDmode,
5322 gen_rtx_REG (mode, D0_REG),
5323 const0_rtx)));
5324 else if (POINTER_TYPE_P (valtype))
5325 return gen_rtx_REG (mode, A0_REG);
5326 else
5327 return gen_rtx_REG (mode, D0_REG);
5328 }
5329
5330 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5331 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5332 static bool
5333 m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5334 {
5335 machine_mode mode = TYPE_MODE (type);
5336
5337 if (mode == BLKmode)
5338 return true;
5339
5340 /* If TYPE's known alignment is less than the alignment of MODE that
5341 would contain the structure, then return in memory. We need to
5342 do so to maintain the compatibility between code compiled with
5343 -mstrict-align and that compiled with -mno-strict-align. */
5344 if (AGGREGATE_TYPE_P (type)
5345 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5346 return true;
5347
5348 return false;
5349 }
5350 #endif
5351
5352 /* CPU to schedule the program for. */
5353 enum attr_cpu m68k_sched_cpu;
5354
5355 /* MAC to schedule the program for. */
5356 enum attr_mac m68k_sched_mac;
5357
5358 /* Operand type. */
5359 enum attr_op_type
5360 {
5361 /* No operand. */
5362 OP_TYPE_NONE,
5363
5364 /* Integer register. */
5365 OP_TYPE_RN,
5366
5367 /* FP register. */
5368 OP_TYPE_FPN,
5369
5370 /* Implicit mem reference (e.g. stack). */
5371 OP_TYPE_MEM1,
5372
5373 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5374 OP_TYPE_MEM234,
5375
5376 /* Memory with offset but without indexing. EA mode 5. */
5377 OP_TYPE_MEM5,
5378
5379 /* Memory with indexing. EA mode 6. */
5380 OP_TYPE_MEM6,
5381
5382 /* Memory referenced by absolute address. EA mode 7. */
5383 OP_TYPE_MEM7,
5384
5385 /* Immediate operand that doesn't require extension word. */
5386 OP_TYPE_IMM_Q,
5387
5388 /* Immediate 16 bit operand. */
5389 OP_TYPE_IMM_W,
5390
5391 /* Immediate 32 bit operand. */
5392 OP_TYPE_IMM_L
5393 };
5394
5395 /* Return type of memory ADDR_RTX refers to. */
5396 static enum attr_op_type
5397 sched_address_type (machine_mode mode, rtx addr_rtx)
5398 {
5399 struct m68k_address address;
5400
5401 if (symbolic_operand (addr_rtx, VOIDmode))
5402 return OP_TYPE_MEM7;
5403
5404 if (!m68k_decompose_address (mode, addr_rtx,
5405 reload_completed, &address))
5406 {
5407 gcc_assert (!reload_completed);
5408 /* Reload will likely fix the address to be in the register. */
5409 return OP_TYPE_MEM234;
5410 }
5411
5412 if (address.scale != 0)
5413 return OP_TYPE_MEM6;
5414
5415 if (address.base != NULL_RTX)
5416 {
5417 if (address.offset == NULL_RTX)
5418 return OP_TYPE_MEM234;
5419
5420 return OP_TYPE_MEM5;
5421 }
5422
5423 gcc_assert (address.offset != NULL_RTX);
5424
5425 return OP_TYPE_MEM7;
5426 }
5427
5428 /* Return X or Y (depending on OPX_P) operand of INSN. */
5429 static rtx
5430 sched_get_operand (rtx_insn *insn, bool opx_p)
5431 {
5432 int i;
5433
5434 if (recog_memoized (insn) < 0)
5435 gcc_unreachable ();
5436
5437 extract_constrain_insn_cached (insn);
5438
5439 if (opx_p)
5440 i = get_attr_opx (insn);
5441 else
5442 i = get_attr_opy (insn);
5443
5444 if (i >= recog_data.n_operands)
5445 return NULL;
5446
5447 return recog_data.operand[i];
5448 }
5449
5450 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5451 If ADDRESS_P is true, return type of memory location operand refers to. */
5452 static enum attr_op_type
5453 sched_attr_op_type (rtx_insn *insn, bool opx_p, bool address_p)
5454 {
5455 rtx op;
5456
5457 op = sched_get_operand (insn, opx_p);
5458
5459 if (op == NULL)
5460 {
5461 gcc_assert (!reload_completed);
5462 return OP_TYPE_RN;
5463 }
5464
5465 if (address_p)
5466 return sched_address_type (QImode, op);
5467
5468 if (memory_operand (op, VOIDmode))
5469 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5470
5471 if (register_operand (op, VOIDmode))
5472 {
5473 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5474 || (reload_completed && FP_REG_P (op)))
5475 return OP_TYPE_FPN;
5476
5477 return OP_TYPE_RN;
5478 }
5479
5480 if (GET_CODE (op) == CONST_INT)
5481 {
5482 int ival;
5483
5484 ival = INTVAL (op);
5485
5486 /* Check for quick constants. */
5487 switch (get_attr_type (insn))
5488 {
5489 case TYPE_ALUQ_L:
5490 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5491 return OP_TYPE_IMM_Q;
5492
5493 gcc_assert (!reload_completed);
5494 break;
5495
5496 case TYPE_MOVEQ_L:
5497 if (USE_MOVQ (ival))
5498 return OP_TYPE_IMM_Q;
5499
5500 gcc_assert (!reload_completed);
5501 break;
5502
5503 case TYPE_MOV3Q_L:
5504 if (valid_mov3q_const (ival))
5505 return OP_TYPE_IMM_Q;
5506
5507 gcc_assert (!reload_completed);
5508 break;
5509
5510 default:
5511 break;
5512 }
5513
5514 if (IN_RANGE (ival, -0x8000, 0x7fff))
5515 return OP_TYPE_IMM_W;
5516
5517 return OP_TYPE_IMM_L;
5518 }
5519
5520 if (GET_CODE (op) == CONST_DOUBLE)
5521 {
5522 switch (GET_MODE (op))
5523 {
5524 case E_SFmode:
5525 return OP_TYPE_IMM_W;
5526
5527 case E_VOIDmode:
5528 case E_DFmode:
5529 return OP_TYPE_IMM_L;
5530
5531 default:
5532 gcc_unreachable ();
5533 }
5534 }
5535
5536 if (GET_CODE (op) == CONST
5537 || symbolic_operand (op, VOIDmode)
5538 || LABEL_P (op))
5539 {
5540 switch (GET_MODE (op))
5541 {
5542 case E_QImode:
5543 return OP_TYPE_IMM_Q;
5544
5545 case E_HImode:
5546 return OP_TYPE_IMM_W;
5547
5548 case E_SImode:
5549 return OP_TYPE_IMM_L;
5550
5551 default:
5552 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5553 /* Just a guess. */
5554 return OP_TYPE_IMM_W;
5555
5556 return OP_TYPE_IMM_L;
5557 }
5558 }
5559
5560 gcc_assert (!reload_completed);
5561
5562 if (FLOAT_MODE_P (GET_MODE (op)))
5563 return OP_TYPE_FPN;
5564
5565 return OP_TYPE_RN;
5566 }
5567
5568 /* Implement opx_type attribute.
5569 Return type of INSN's operand X.
5570 If ADDRESS_P is true, return type of memory location operand refers to. */
5571 enum attr_opx_type
5572 m68k_sched_attr_opx_type (rtx_insn *insn, int address_p)
5573 {
5574 switch (sched_attr_op_type (insn, true, address_p != 0))
5575 {
5576 case OP_TYPE_RN:
5577 return OPX_TYPE_RN;
5578
5579 case OP_TYPE_FPN:
5580 return OPX_TYPE_FPN;
5581
5582 case OP_TYPE_MEM1:
5583 return OPX_TYPE_MEM1;
5584
5585 case OP_TYPE_MEM234:
5586 return OPX_TYPE_MEM234;
5587
5588 case OP_TYPE_MEM5:
5589 return OPX_TYPE_MEM5;
5590
5591 case OP_TYPE_MEM6:
5592 return OPX_TYPE_MEM6;
5593
5594 case OP_TYPE_MEM7:
5595 return OPX_TYPE_MEM7;
5596
5597 case OP_TYPE_IMM_Q:
5598 return OPX_TYPE_IMM_Q;
5599
5600 case OP_TYPE_IMM_W:
5601 return OPX_TYPE_IMM_W;
5602
5603 case OP_TYPE_IMM_L:
5604 return OPX_TYPE_IMM_L;
5605
5606 default:
5607 gcc_unreachable ();
5608 }
5609 }
5610
5611 /* Implement opy_type attribute.
5612 Return type of INSN's operand Y.
5613 If ADDRESS_P is true, return type of memory location operand refers to. */
5614 enum attr_opy_type
5615 m68k_sched_attr_opy_type (rtx_insn *insn, int address_p)
5616 {
5617 switch (sched_attr_op_type (insn, false, address_p != 0))
5618 {
5619 case OP_TYPE_RN:
5620 return OPY_TYPE_RN;
5621
5622 case OP_TYPE_FPN:
5623 return OPY_TYPE_FPN;
5624
5625 case OP_TYPE_MEM1:
5626 return OPY_TYPE_MEM1;
5627
5628 case OP_TYPE_MEM234:
5629 return OPY_TYPE_MEM234;
5630
5631 case OP_TYPE_MEM5:
5632 return OPY_TYPE_MEM5;
5633
5634 case OP_TYPE_MEM6:
5635 return OPY_TYPE_MEM6;
5636
5637 case OP_TYPE_MEM7:
5638 return OPY_TYPE_MEM7;
5639
5640 case OP_TYPE_IMM_Q:
5641 return OPY_TYPE_IMM_Q;
5642
5643 case OP_TYPE_IMM_W:
5644 return OPY_TYPE_IMM_W;
5645
5646 case OP_TYPE_IMM_L:
5647 return OPY_TYPE_IMM_L;
5648
5649 default:
5650 gcc_unreachable ();
5651 }
5652 }
5653
5654 /* Return size of INSN as int. */
5655 static int
5656 sched_get_attr_size_int (rtx_insn *insn)
5657 {
5658 int size;
5659
5660 switch (get_attr_type (insn))
5661 {
5662 case TYPE_IGNORE:
5663 /* There should be no references to m68k_sched_attr_size for 'ignore'
5664 instructions. */
5665 gcc_unreachable ();
5666 return 0;
5667
5668 case TYPE_MUL_L:
5669 size = 2;
5670 break;
5671
5672 default:
5673 size = 1;
5674 break;
5675 }
5676
5677 switch (get_attr_opx_type (insn))
5678 {
5679 case OPX_TYPE_NONE:
5680 case OPX_TYPE_RN:
5681 case OPX_TYPE_FPN:
5682 case OPX_TYPE_MEM1:
5683 case OPX_TYPE_MEM234:
5684 case OPY_TYPE_IMM_Q:
5685 break;
5686
5687 case OPX_TYPE_MEM5:
5688 case OPX_TYPE_MEM6:
5689 /* Here we assume that most absolute references are short. */
5690 case OPX_TYPE_MEM7:
5691 case OPY_TYPE_IMM_W:
5692 ++size;
5693 break;
5694
5695 case OPY_TYPE_IMM_L:
5696 size += 2;
5697 break;
5698
5699 default:
5700 gcc_unreachable ();
5701 }
5702
5703 switch (get_attr_opy_type (insn))
5704 {
5705 case OPY_TYPE_NONE:
5706 case OPY_TYPE_RN:
5707 case OPY_TYPE_FPN:
5708 case OPY_TYPE_MEM1:
5709 case OPY_TYPE_MEM234:
5710 case OPY_TYPE_IMM_Q:
5711 break;
5712
5713 case OPY_TYPE_MEM5:
5714 case OPY_TYPE_MEM6:
5715 /* Here we assume that most absolute references are short. */
5716 case OPY_TYPE_MEM7:
5717 case OPY_TYPE_IMM_W:
5718 ++size;
5719 break;
5720
5721 case OPY_TYPE_IMM_L:
5722 size += 2;
5723 break;
5724
5725 default:
5726 gcc_unreachable ();
5727 }
5728
5729 if (size > 3)
5730 {
5731 gcc_assert (!reload_completed);
5732
5733 size = 3;
5734 }
5735
5736 return size;
5737 }
5738
5739 /* Return size of INSN as attribute enum value. */
5740 enum attr_size
5741 m68k_sched_attr_size (rtx_insn *insn)
5742 {
5743 switch (sched_get_attr_size_int (insn))
5744 {
5745 case 1:
5746 return SIZE_1;
5747
5748 case 2:
5749 return SIZE_2;
5750
5751 case 3:
5752 return SIZE_3;
5753
5754 default:
5755 gcc_unreachable ();
5756 }
5757 }
5758
5759 /* Return operand X or Y (depending on OPX_P) of INSN,
5760 if it is a MEM, or NULL overwise. */
5761 static enum attr_op_type
5762 sched_get_opxy_mem_type (rtx_insn *insn, bool opx_p)
5763 {
5764 if (opx_p)
5765 {
5766 switch (get_attr_opx_type (insn))
5767 {
5768 case OPX_TYPE_NONE:
5769 case OPX_TYPE_RN:
5770 case OPX_TYPE_FPN:
5771 case OPX_TYPE_IMM_Q:
5772 case OPX_TYPE_IMM_W:
5773 case OPX_TYPE_IMM_L:
5774 return OP_TYPE_RN;
5775
5776 case OPX_TYPE_MEM1:
5777 case OPX_TYPE_MEM234:
5778 case OPX_TYPE_MEM5:
5779 case OPX_TYPE_MEM7:
5780 return OP_TYPE_MEM1;
5781
5782 case OPX_TYPE_MEM6:
5783 return OP_TYPE_MEM6;
5784
5785 default:
5786 gcc_unreachable ();
5787 }
5788 }
5789 else
5790 {
5791 switch (get_attr_opy_type (insn))
5792 {
5793 case OPY_TYPE_NONE:
5794 case OPY_TYPE_RN:
5795 case OPY_TYPE_FPN:
5796 case OPY_TYPE_IMM_Q:
5797 case OPY_TYPE_IMM_W:
5798 case OPY_TYPE_IMM_L:
5799 return OP_TYPE_RN;
5800
5801 case OPY_TYPE_MEM1:
5802 case OPY_TYPE_MEM234:
5803 case OPY_TYPE_MEM5:
5804 case OPY_TYPE_MEM7:
5805 return OP_TYPE_MEM1;
5806
5807 case OPY_TYPE_MEM6:
5808 return OP_TYPE_MEM6;
5809
5810 default:
5811 gcc_unreachable ();
5812 }
5813 }
5814 }
5815
5816 /* Implement op_mem attribute. */
5817 enum attr_op_mem
5818 m68k_sched_attr_op_mem (rtx_insn *insn)
5819 {
5820 enum attr_op_type opx;
5821 enum attr_op_type opy;
5822
5823 opx = sched_get_opxy_mem_type (insn, true);
5824 opy = sched_get_opxy_mem_type (insn, false);
5825
5826 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5827 return OP_MEM_00;
5828
5829 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5830 {
5831 switch (get_attr_opx_access (insn))
5832 {
5833 case OPX_ACCESS_R:
5834 return OP_MEM_10;
5835
5836 case OPX_ACCESS_W:
5837 return OP_MEM_01;
5838
5839 case OPX_ACCESS_RW:
5840 return OP_MEM_11;
5841
5842 default:
5843 gcc_unreachable ();
5844 }
5845 }
5846
5847 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5848 {
5849 switch (get_attr_opx_access (insn))
5850 {
5851 case OPX_ACCESS_R:
5852 return OP_MEM_I0;
5853
5854 case OPX_ACCESS_W:
5855 return OP_MEM_0I;
5856
5857 case OPX_ACCESS_RW:
5858 return OP_MEM_I1;
5859
5860 default:
5861 gcc_unreachable ();
5862 }
5863 }
5864
5865 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5866 return OP_MEM_10;
5867
5868 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5869 {
5870 switch (get_attr_opx_access (insn))
5871 {
5872 case OPX_ACCESS_W:
5873 return OP_MEM_11;
5874
5875 default:
5876 gcc_assert (!reload_completed);
5877 return OP_MEM_11;
5878 }
5879 }
5880
5881 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5882 {
5883 switch (get_attr_opx_access (insn))
5884 {
5885 case OPX_ACCESS_W:
5886 return OP_MEM_1I;
5887
5888 default:
5889 gcc_assert (!reload_completed);
5890 return OP_MEM_1I;
5891 }
5892 }
5893
5894 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5895 return OP_MEM_I0;
5896
5897 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5898 {
5899 switch (get_attr_opx_access (insn))
5900 {
5901 case OPX_ACCESS_W:
5902 return OP_MEM_I1;
5903
5904 default:
5905 gcc_assert (!reload_completed);
5906 return OP_MEM_I1;
5907 }
5908 }
5909
5910 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5911 gcc_assert (!reload_completed);
5912 return OP_MEM_I1;
5913 }
5914
5915 /* Data for ColdFire V4 index bypass.
5916 Producer modifies register that is used as index in consumer with
5917 specified scale. */
5918 static struct
5919 {
5920 /* Producer instruction. */
5921 rtx pro;
5922
5923 /* Consumer instruction. */
5924 rtx con;
5925
5926 /* Scale of indexed memory access within consumer.
5927 Or zero if bypass should not be effective at the moment. */
5928 int scale;
5929 } sched_cfv4_bypass_data;
5930
5931 /* An empty state that is used in m68k_sched_adjust_cost. */
5932 static state_t sched_adjust_cost_state;
5933
5934 /* Implement adjust_cost scheduler hook.
5935 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5936 static int
5937 m68k_sched_adjust_cost (rtx_insn *insn, int, rtx_insn *def_insn, int cost,
5938 unsigned int)
5939 {
5940 int delay;
5941
5942 if (recog_memoized (def_insn) < 0
5943 || recog_memoized (insn) < 0)
5944 return cost;
5945
5946 if (sched_cfv4_bypass_data.scale == 1)
5947 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5948 {
5949 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5950 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5951 that the data in sched_cfv4_bypass_data is up to date. */
5952 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5953 && sched_cfv4_bypass_data.con == insn);
5954
5955 if (cost < 3)
5956 cost = 3;
5957
5958 sched_cfv4_bypass_data.pro = NULL;
5959 sched_cfv4_bypass_data.con = NULL;
5960 sched_cfv4_bypass_data.scale = 0;
5961 }
5962 else
5963 gcc_assert (sched_cfv4_bypass_data.pro == NULL
5964 && sched_cfv4_bypass_data.con == NULL
5965 && sched_cfv4_bypass_data.scale == 0);
5966
5967 /* Don't try to issue INSN earlier than DFA permits.
5968 This is especially useful for instructions that write to memory,
5969 as their true dependence (default) latency is better to be set to 0
5970 to workaround alias analysis limitations.
5971 This is, in fact, a machine independent tweak, so, probably,
5972 it should be moved to haifa-sched.c: insn_cost (). */
5973 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
5974 if (delay > cost)
5975 cost = delay;
5976
5977 return cost;
5978 }
5979
5980 /* Return maximal number of insns that can be scheduled on a single cycle. */
5981 static int
5982 m68k_sched_issue_rate (void)
5983 {
5984 switch (m68k_sched_cpu)
5985 {
5986 case CPU_CFV1:
5987 case CPU_CFV2:
5988 case CPU_CFV3:
5989 return 1;
5990
5991 case CPU_CFV4:
5992 return 2;
5993
5994 default:
5995 gcc_unreachable ();
5996 return 0;
5997 }
5998 }
5999
6000 /* Maximal length of instruction for current CPU.
6001 E.g. it is 3 for any ColdFire core. */
6002 static int max_insn_size;
6003
6004 /* Data to model instruction buffer of CPU. */
6005 struct _sched_ib
6006 {
6007 /* True if instruction buffer model is modeled for current CPU. */
6008 bool enabled_p;
6009
6010 /* Size of the instruction buffer in words. */
6011 int size;
6012
6013 /* Number of filled words in the instruction buffer. */
6014 int filled;
6015
6016 /* Additional information about instruction buffer for CPUs that have
6017 a buffer of instruction records, rather then a plain buffer
6018 of instruction words. */
6019 struct _sched_ib_records
6020 {
6021 /* Size of buffer in records. */
6022 int n_insns;
6023
6024 /* Array to hold data on adjustments made to the size of the buffer. */
6025 int *adjust;
6026
6027 /* Index of the above array. */
6028 int adjust_index;
6029 } records;
6030
6031 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6032 rtx insn;
6033 };
6034
6035 static struct _sched_ib sched_ib;
6036
6037 /* ID of memory unit. */
6038 static int sched_mem_unit_code;
6039
6040 /* Implementation of the targetm.sched.variable_issue () hook.
6041 It is called after INSN was issued. It returns the number of insns
6042 that can possibly get scheduled on the current cycle.
6043 It is used here to determine the effect of INSN on the instruction
6044 buffer. */
6045 static int
6046 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6047 int sched_verbose ATTRIBUTE_UNUSED,
6048 rtx_insn *insn, int can_issue_more)
6049 {
6050 int insn_size;
6051
6052 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
6053 {
6054 switch (m68k_sched_cpu)
6055 {
6056 case CPU_CFV1:
6057 case CPU_CFV2:
6058 insn_size = sched_get_attr_size_int (insn);
6059 break;
6060
6061 case CPU_CFV3:
6062 insn_size = sched_get_attr_size_int (insn);
6063
6064 /* ColdFire V3 and V4 cores have instruction buffers that can
6065 accumulate up to 8 instructions regardless of instructions'
6066 sizes. So we should take care not to "prefetch" 24 one-word
6067 or 12 two-words instructions.
6068 To model this behavior we temporarily decrease size of the
6069 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6070 {
6071 int adjust;
6072
6073 adjust = max_insn_size - insn_size;
6074 sched_ib.size -= adjust;
6075
6076 if (sched_ib.filled > sched_ib.size)
6077 sched_ib.filled = sched_ib.size;
6078
6079 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6080 }
6081
6082 ++sched_ib.records.adjust_index;
6083 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6084 sched_ib.records.adjust_index = 0;
6085
6086 /* Undo adjustment we did 7 instructions ago. */
6087 sched_ib.size
6088 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6089
6090 break;
6091
6092 case CPU_CFV4:
6093 gcc_assert (!sched_ib.enabled_p);
6094 insn_size = 0;
6095 break;
6096
6097 default:
6098 gcc_unreachable ();
6099 }
6100
6101 if (insn_size > sched_ib.filled)
6102 /* Scheduling for register pressure does not always take DFA into
6103 account. Workaround instruction buffer not being filled enough. */
6104 {
6105 gcc_assert (sched_pressure == SCHED_PRESSURE_WEIGHTED);
6106 insn_size = sched_ib.filled;
6107 }
6108
6109 --can_issue_more;
6110 }
6111 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6112 || asm_noperands (PATTERN (insn)) >= 0)
6113 insn_size = sched_ib.filled;
6114 else
6115 insn_size = 0;
6116
6117 sched_ib.filled -= insn_size;
6118
6119 return can_issue_more;
6120 }
6121
6122 /* Return how many instructions should scheduler lookahead to choose the
6123 best one. */
6124 static int
6125 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
6126 {
6127 return m68k_sched_issue_rate () - 1;
6128 }
6129
6130 /* Implementation of targetm.sched.init_global () hook.
6131 It is invoked once per scheduling pass and is used here
6132 to initialize scheduler constants. */
6133 static void
6134 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6135 int sched_verbose ATTRIBUTE_UNUSED,
6136 int n_insns ATTRIBUTE_UNUSED)
6137 {
6138 /* Check that all instructions have DFA reservations and
6139 that all instructions can be issued from a clean state. */
6140 if (flag_checking)
6141 {
6142 rtx_insn *insn;
6143 state_t state;
6144
6145 state = alloca (state_size ());
6146
6147 for (insn = get_insns (); insn != NULL; insn = NEXT_INSN (insn))
6148 {
6149 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6150 {
6151 gcc_assert (insn_has_dfa_reservation_p (insn));
6152
6153 state_reset (state);
6154 if (state_transition (state, insn) >= 0)
6155 gcc_unreachable ();
6156 }
6157 }
6158 }
6159
6160 /* Setup target cpu. */
6161
6162 /* ColdFire V4 has a set of features to keep its instruction buffer full
6163 (e.g., a separate memory bus for instructions) and, hence, we do not model
6164 buffer for this CPU. */
6165 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6166
6167 switch (m68k_sched_cpu)
6168 {
6169 case CPU_CFV4:
6170 sched_ib.filled = 0;
6171
6172 /* FALLTHRU */
6173
6174 case CPU_CFV1:
6175 case CPU_CFV2:
6176 max_insn_size = 3;
6177 sched_ib.records.n_insns = 0;
6178 sched_ib.records.adjust = NULL;
6179 break;
6180
6181 case CPU_CFV3:
6182 max_insn_size = 3;
6183 sched_ib.records.n_insns = 8;
6184 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
6185 break;
6186
6187 default:
6188 gcc_unreachable ();
6189 }
6190
6191 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6192
6193 sched_adjust_cost_state = xmalloc (state_size ());
6194 state_reset (sched_adjust_cost_state);
6195
6196 start_sequence ();
6197 emit_insn (gen_ib ());
6198 sched_ib.insn = get_insns ();
6199 end_sequence ();
6200 }
6201
6202 /* Scheduling pass is now finished. Free/reset static variables. */
6203 static void
6204 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6205 int verbose ATTRIBUTE_UNUSED)
6206 {
6207 sched_ib.insn = NULL;
6208
6209 free (sched_adjust_cost_state);
6210 sched_adjust_cost_state = NULL;
6211
6212 sched_mem_unit_code = 0;
6213
6214 free (sched_ib.records.adjust);
6215 sched_ib.records.adjust = NULL;
6216 sched_ib.records.n_insns = 0;
6217 max_insn_size = 0;
6218 }
6219
6220 /* Implementation of targetm.sched.init () hook.
6221 It is invoked each time scheduler starts on the new block (basic block or
6222 extended basic block). */
6223 static void
6224 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6225 int sched_verbose ATTRIBUTE_UNUSED,
6226 int n_insns ATTRIBUTE_UNUSED)
6227 {
6228 switch (m68k_sched_cpu)
6229 {
6230 case CPU_CFV1:
6231 case CPU_CFV2:
6232 sched_ib.size = 6;
6233 break;
6234
6235 case CPU_CFV3:
6236 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6237
6238 memset (sched_ib.records.adjust, 0,
6239 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6240 sched_ib.records.adjust_index = 0;
6241 break;
6242
6243 case CPU_CFV4:
6244 gcc_assert (!sched_ib.enabled_p);
6245 sched_ib.size = 0;
6246 break;
6247
6248 default:
6249 gcc_unreachable ();
6250 }
6251
6252 if (sched_ib.enabled_p)
6253 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6254 the first cycle. Workaround that. */
6255 sched_ib.filled = -2;
6256 }
6257
6258 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6259 It is invoked just before current cycle finishes and is used here
6260 to track if instruction buffer got its two words this cycle. */
6261 static void
6262 m68k_sched_dfa_pre_advance_cycle (void)
6263 {
6264 if (!sched_ib.enabled_p)
6265 return;
6266
6267 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6268 {
6269 sched_ib.filled += 2;
6270
6271 if (sched_ib.filled > sched_ib.size)
6272 sched_ib.filled = sched_ib.size;
6273 }
6274 }
6275
6276 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6277 It is invoked just after new cycle begins and is used here
6278 to setup number of filled words in the instruction buffer so that
6279 instructions which won't have all their words prefetched would be
6280 stalled for a cycle. */
6281 static void
6282 m68k_sched_dfa_post_advance_cycle (void)
6283 {
6284 int i;
6285
6286 if (!sched_ib.enabled_p)
6287 return;
6288
6289 /* Setup number of prefetched instruction words in the instruction
6290 buffer. */
6291 i = max_insn_size - sched_ib.filled;
6292
6293 while (--i >= 0)
6294 {
6295 if (state_transition (curr_state, sched_ib.insn) >= 0)
6296 /* Pick up scheduler state. */
6297 ++sched_ib.filled;
6298 }
6299 }
6300
6301 /* Return X or Y (depending on OPX_P) operand of INSN,
6302 if it is an integer register, or NULL overwise. */
6303 static rtx
6304 sched_get_reg_operand (rtx_insn *insn, bool opx_p)
6305 {
6306 rtx op = NULL;
6307
6308 if (opx_p)
6309 {
6310 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6311 {
6312 op = sched_get_operand (insn, true);
6313 gcc_assert (op != NULL);
6314
6315 if (!reload_completed && !REG_P (op))
6316 return NULL;
6317 }
6318 }
6319 else
6320 {
6321 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6322 {
6323 op = sched_get_operand (insn, false);
6324 gcc_assert (op != NULL);
6325
6326 if (!reload_completed && !REG_P (op))
6327 return NULL;
6328 }
6329 }
6330
6331 return op;
6332 }
6333
6334 /* Return true, if X or Y (depending on OPX_P) operand of INSN
6335 is a MEM. */
6336 static bool
6337 sched_mem_operand_p (rtx_insn *insn, bool opx_p)
6338 {
6339 switch (sched_get_opxy_mem_type (insn, opx_p))
6340 {
6341 case OP_TYPE_MEM1:
6342 case OP_TYPE_MEM6:
6343 return true;
6344
6345 default:
6346 return false;
6347 }
6348 }
6349
6350 /* Return X or Y (depending on OPX_P) operand of INSN,
6351 if it is a MEM, or NULL overwise. */
6352 static rtx
6353 sched_get_mem_operand (rtx_insn *insn, bool must_read_p, bool must_write_p)
6354 {
6355 bool opx_p;
6356 bool opy_p;
6357
6358 opx_p = false;
6359 opy_p = false;
6360
6361 if (must_read_p)
6362 {
6363 opx_p = true;
6364 opy_p = true;
6365 }
6366
6367 if (must_write_p)
6368 {
6369 opx_p = true;
6370 opy_p = false;
6371 }
6372
6373 if (opy_p && sched_mem_operand_p (insn, false))
6374 return sched_get_operand (insn, false);
6375
6376 if (opx_p && sched_mem_operand_p (insn, true))
6377 return sched_get_operand (insn, true);
6378
6379 gcc_unreachable ();
6380 return NULL;
6381 }
6382
6383 /* Return non-zero if PRO modifies register used as part of
6384 address in CON. */
6385 int
6386 m68k_sched_address_bypass_p (rtx_insn *pro, rtx_insn *con)
6387 {
6388 rtx pro_x;
6389 rtx con_mem_read;
6390
6391 pro_x = sched_get_reg_operand (pro, true);
6392 if (pro_x == NULL)
6393 return 0;
6394
6395 con_mem_read = sched_get_mem_operand (con, true, false);
6396 gcc_assert (con_mem_read != NULL);
6397
6398 if (reg_mentioned_p (pro_x, con_mem_read))
6399 return 1;
6400
6401 return 0;
6402 }
6403
6404 /* Helper function for m68k_sched_indexed_address_bypass_p.
6405 if PRO modifies register used as index in CON,
6406 return scale of indexed memory access in CON. Return zero overwise. */
6407 static int
6408 sched_get_indexed_address_scale (rtx_insn *pro, rtx_insn *con)
6409 {
6410 rtx reg;
6411 rtx mem;
6412 struct m68k_address address;
6413
6414 reg = sched_get_reg_operand (pro, true);
6415 if (reg == NULL)
6416 return 0;
6417
6418 mem = sched_get_mem_operand (con, true, false);
6419 gcc_assert (mem != NULL && MEM_P (mem));
6420
6421 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6422 &address))
6423 gcc_unreachable ();
6424
6425 if (REGNO (reg) == REGNO (address.index))
6426 {
6427 gcc_assert (address.scale != 0);
6428 return address.scale;
6429 }
6430
6431 return 0;
6432 }
6433
6434 /* Return non-zero if PRO modifies register used
6435 as index with scale 2 or 4 in CON. */
6436 int
6437 m68k_sched_indexed_address_bypass_p (rtx_insn *pro, rtx_insn *con)
6438 {
6439 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6440 && sched_cfv4_bypass_data.con == NULL
6441 && sched_cfv4_bypass_data.scale == 0);
6442
6443 switch (sched_get_indexed_address_scale (pro, con))
6444 {
6445 case 1:
6446 /* We can't have a variable latency bypass, so
6447 remember to adjust the insn cost in adjust_cost hook. */
6448 sched_cfv4_bypass_data.pro = pro;
6449 sched_cfv4_bypass_data.con = con;
6450 sched_cfv4_bypass_data.scale = 1;
6451 return 0;
6452
6453 case 2:
6454 case 4:
6455 return 1;
6456
6457 default:
6458 return 0;
6459 }
6460 }
6461
6462 /* We generate a two-instructions program at M_TRAMP :
6463 movea.l &CHAIN_VALUE,%a0
6464 jmp FNADDR
6465 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6466
6467 static void
6468 m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6469 {
6470 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6471 rtx mem;
6472
6473 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6474
6475 mem = adjust_address (m_tramp, HImode, 0);
6476 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6477 mem = adjust_address (m_tramp, SImode, 2);
6478 emit_move_insn (mem, chain_value);
6479
6480 mem = adjust_address (m_tramp, HImode, 6);
6481 emit_move_insn (mem, GEN_INT(0x4EF9));
6482 mem = adjust_address (m_tramp, SImode, 8);
6483 emit_move_insn (mem, fnaddr);
6484
6485 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6486 }
6487
6488 /* On the 68000, the RTS insn cannot pop anything.
6489 On the 68010, the RTD insn may be used to pop them if the number
6490 of args is fixed, but if the number is variable then the caller
6491 must pop them all. RTD can't be used for library calls now
6492 because the library is compiled with the Unix compiler.
6493 Use of RTD is a selectable option, since it is incompatible with
6494 standard Unix calling sequences. If the option is not selected,
6495 the caller must always pop the args. */
6496
6497 static int
6498 m68k_return_pops_args (tree fundecl, tree funtype, int size)
6499 {
6500 return ((TARGET_RTD
6501 && (!fundecl
6502 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
6503 && (!stdarg_p (funtype)))
6504 ? size : 0);
6505 }
6506
6507 /* Make sure everything's fine if we *don't* have a given processor.
6508 This assumes that putting a register in fixed_regs will keep the
6509 compiler's mitts completely off it. We don't bother to zero it out
6510 of register classes. */
6511
6512 static void
6513 m68k_conditional_register_usage (void)
6514 {
6515 int i;
6516 HARD_REG_SET x;
6517 if (!TARGET_HARD_FLOAT)
6518 {
6519 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);
6520 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6521 if (TEST_HARD_REG_BIT (x, i))
6522 fixed_regs[i] = call_used_regs[i] = 1;
6523 }
6524 if (flag_pic)
6525 fixed_regs[PIC_REG] = call_used_regs[PIC_REG] = 1;
6526 }
6527
6528 static void
6529 m68k_init_sync_libfuncs (void)
6530 {
6531 init_sync_libfuncs (UNITS_PER_WORD);
6532 }
6533
6534 /* Implements EPILOGUE_USES. All registers are live on exit from an
6535 interrupt routine. */
6536 bool
6537 m68k_epilogue_uses (int regno ATTRIBUTE_UNUSED)
6538 {
6539 return (reload_completed
6540 && (m68k_get_function_kind (current_function_decl)
6541 == m68k_fk_interrupt_handler));
6542 }
6543
6544
6545 /* Implement TARGET_C_EXCESS_PRECISION.
6546
6547 Set the value of FLT_EVAL_METHOD in float.h. When using 68040 fp
6548 instructions, we get proper intermediate rounding, otherwise we
6549 get extended precision results. */
6550
6551 static enum flt_eval_method
6552 m68k_excess_precision (enum excess_precision_type type)
6553 {
6554 switch (type)
6555 {
6556 case EXCESS_PRECISION_TYPE_FAST:
6557 /* The fastest type to promote to will always be the native type,
6558 whether that occurs with implicit excess precision or
6559 otherwise. */
6560 return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
6561 case EXCESS_PRECISION_TYPE_STANDARD:
6562 case EXCESS_PRECISION_TYPE_IMPLICIT:
6563 /* Otherwise, the excess precision we want when we are
6564 in a standards compliant mode, and the implicit precision we
6565 provide can be identical. */
6566 if (TARGET_68040 || ! TARGET_68881)
6567 return FLT_EVAL_METHOD_PROMOTE_TO_FLOAT;
6568
6569 return FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE;
6570 default:
6571 gcc_unreachable ();
6572 }
6573 return FLT_EVAL_METHOD_UNPREDICTABLE;
6574 }
6575
6576 #include "gt-m68k.h"