]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/m68k/m68k.c
7553183d541662225340bffe961dd3e8f350be9a
[thirdparty/gcc.git] / gcc / config / m68k / m68k.c
1 /* Subroutines for insn-output.c for Motorola 68000 family.
2 Copyright (C) 1987, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "output.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "diagnostic-core.h"
37 #include "expr.h"
38 #include "reload.h"
39 #include "tm_p.h"
40 #include "target.h"
41 #include "target-def.h"
42 #include "debug.h"
43 #include "flags.h"
44 #include "df.h"
45 /* ??? Need to add a dependency between m68k.o and sched-int.h. */
46 #include "sched-int.h"
47 #include "insn-codes.h"
48 #include "ggc.h"
49 #include "opts.h"
50
51 enum reg_class regno_reg_class[] =
52 {
53 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
54 DATA_REGS, DATA_REGS, DATA_REGS, DATA_REGS,
55 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
56 ADDR_REGS, ADDR_REGS, ADDR_REGS, ADDR_REGS,
57 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
58 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
59 ADDR_REGS
60 };
61
62
63 /* The minimum number of integer registers that we want to save with the
64 movem instruction. Using two movel instructions instead of a single
65 moveml is about 15% faster for the 68020 and 68030 at no expense in
66 code size. */
67 #define MIN_MOVEM_REGS 3
68
69 /* The minimum number of floating point registers that we want to save
70 with the fmovem instruction. */
71 #define MIN_FMOVEM_REGS 1
72
73 /* Structure describing stack frame layout. */
74 struct m68k_frame
75 {
76 /* Stack pointer to frame pointer offset. */
77 HOST_WIDE_INT offset;
78
79 /* Offset of FPU registers. */
80 HOST_WIDE_INT foffset;
81
82 /* Frame size in bytes (rounded up). */
83 HOST_WIDE_INT size;
84
85 /* Data and address register. */
86 int reg_no;
87 unsigned int reg_mask;
88
89 /* FPU registers. */
90 int fpu_no;
91 unsigned int fpu_mask;
92
93 /* Offsets relative to ARG_POINTER. */
94 HOST_WIDE_INT frame_pointer_offset;
95 HOST_WIDE_INT stack_pointer_offset;
96
97 /* Function which the above information refers to. */
98 int funcdef_no;
99 };
100
101 /* Current frame information calculated by m68k_compute_frame_layout(). */
102 static struct m68k_frame current_frame;
103
104 /* Structure describing an m68k address.
105
106 If CODE is UNKNOWN, the address is BASE + INDEX * SCALE + OFFSET,
107 with null fields evaluating to 0. Here:
108
109 - BASE satisfies m68k_legitimate_base_reg_p
110 - INDEX satisfies m68k_legitimate_index_reg_p
111 - OFFSET satisfies m68k_legitimate_constant_address_p
112
113 INDEX is either HImode or SImode. The other fields are SImode.
114
115 If CODE is PRE_DEC, the address is -(BASE). If CODE is POST_INC,
116 the address is (BASE)+. */
117 struct m68k_address {
118 enum rtx_code code;
119 rtx base;
120 rtx index;
121 rtx offset;
122 int scale;
123 };
124
125 static int m68k_sched_adjust_cost (rtx, rtx, rtx, int);
126 static int m68k_sched_issue_rate (void);
127 static int m68k_sched_variable_issue (FILE *, int, rtx, int);
128 static void m68k_sched_md_init_global (FILE *, int, int);
129 static void m68k_sched_md_finish_global (FILE *, int);
130 static void m68k_sched_md_init (FILE *, int, int);
131 static void m68k_sched_dfa_pre_advance_cycle (void);
132 static void m68k_sched_dfa_post_advance_cycle (void);
133 static int m68k_sched_first_cycle_multipass_dfa_lookahead (void);
134
135 static bool m68k_can_eliminate (const int, const int);
136 static void m68k_conditional_register_usage (void);
137 static bool m68k_legitimate_address_p (enum machine_mode, rtx, bool);
138 static bool m68k_handle_option (struct gcc_options *, struct gcc_options *,
139 const struct cl_decoded_option *, location_t);
140 static void m68k_option_override (void);
141 static rtx find_addr_reg (rtx);
142 static const char *singlemove_string (rtx *);
143 static void m68k_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
144 HOST_WIDE_INT, tree);
145 static rtx m68k_struct_value_rtx (tree, int);
146 static tree m68k_handle_fndecl_attribute (tree *node, tree name,
147 tree args, int flags,
148 bool *no_add_attrs);
149 static void m68k_compute_frame_layout (void);
150 static bool m68k_save_reg (unsigned int regno, bool interrupt_handler);
151 static bool m68k_ok_for_sibcall_p (tree, tree);
152 static bool m68k_tls_symbol_p (rtx);
153 static rtx m68k_legitimize_address (rtx, rtx, enum machine_mode);
154 static bool m68k_rtx_costs (rtx, int, int, int *, bool);
155 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
156 static bool m68k_return_in_memory (const_tree, const_tree);
157 #endif
158 static void m68k_output_dwarf_dtprel (FILE *, int, rtx) ATTRIBUTE_UNUSED;
159 static void m68k_trampoline_init (rtx, tree, rtx);
160 static int m68k_return_pops_args (tree, tree, int);
161 static rtx m68k_delegitimize_address (rtx);
162 static void m68k_function_arg_advance (CUMULATIVE_ARGS *, enum machine_mode,
163 const_tree, bool);
164 static rtx m68k_function_arg (CUMULATIVE_ARGS *, enum machine_mode,
165 const_tree, bool);
166 static bool m68k_cannot_force_const_mem (enum machine_mode mode, rtx x);
167 \f
168
169 /* Specify the identification number of the library being built */
170 const char *m68k_library_id_string = "_current_shared_library_a5_offset_";
171 \f
172 /* Initialize the GCC target structure. */
173
174 #if INT_OP_GROUP == INT_OP_DOT_WORD
175 #undef TARGET_ASM_ALIGNED_HI_OP
176 #define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
177 #endif
178
179 #if INT_OP_GROUP == INT_OP_NO_DOT
180 #undef TARGET_ASM_BYTE_OP
181 #define TARGET_ASM_BYTE_OP "\tbyte\t"
182 #undef TARGET_ASM_ALIGNED_HI_OP
183 #define TARGET_ASM_ALIGNED_HI_OP "\tshort\t"
184 #undef TARGET_ASM_ALIGNED_SI_OP
185 #define TARGET_ASM_ALIGNED_SI_OP "\tlong\t"
186 #endif
187
188 #if INT_OP_GROUP == INT_OP_DC
189 #undef TARGET_ASM_BYTE_OP
190 #define TARGET_ASM_BYTE_OP "\tdc.b\t"
191 #undef TARGET_ASM_ALIGNED_HI_OP
192 #define TARGET_ASM_ALIGNED_HI_OP "\tdc.w\t"
193 #undef TARGET_ASM_ALIGNED_SI_OP
194 #define TARGET_ASM_ALIGNED_SI_OP "\tdc.l\t"
195 #endif
196
197 #undef TARGET_ASM_UNALIGNED_HI_OP
198 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
199 #undef TARGET_ASM_UNALIGNED_SI_OP
200 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
201
202 #undef TARGET_ASM_OUTPUT_MI_THUNK
203 #define TARGET_ASM_OUTPUT_MI_THUNK m68k_output_mi_thunk
204 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
205 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK hook_bool_const_tree_hwi_hwi_const_tree_true
206
207 #undef TARGET_ASM_FILE_START_APP_OFF
208 #define TARGET_ASM_FILE_START_APP_OFF true
209
210 #undef TARGET_LEGITIMIZE_ADDRESS
211 #define TARGET_LEGITIMIZE_ADDRESS m68k_legitimize_address
212
213 #undef TARGET_SCHED_ADJUST_COST
214 #define TARGET_SCHED_ADJUST_COST m68k_sched_adjust_cost
215
216 #undef TARGET_SCHED_ISSUE_RATE
217 #define TARGET_SCHED_ISSUE_RATE m68k_sched_issue_rate
218
219 #undef TARGET_SCHED_VARIABLE_ISSUE
220 #define TARGET_SCHED_VARIABLE_ISSUE m68k_sched_variable_issue
221
222 #undef TARGET_SCHED_INIT_GLOBAL
223 #define TARGET_SCHED_INIT_GLOBAL m68k_sched_md_init_global
224
225 #undef TARGET_SCHED_FINISH_GLOBAL
226 #define TARGET_SCHED_FINISH_GLOBAL m68k_sched_md_finish_global
227
228 #undef TARGET_SCHED_INIT
229 #define TARGET_SCHED_INIT m68k_sched_md_init
230
231 #undef TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE
232 #define TARGET_SCHED_DFA_PRE_ADVANCE_CYCLE m68k_sched_dfa_pre_advance_cycle
233
234 #undef TARGET_SCHED_DFA_POST_ADVANCE_CYCLE
235 #define TARGET_SCHED_DFA_POST_ADVANCE_CYCLE m68k_sched_dfa_post_advance_cycle
236
237 #undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
238 #define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD \
239 m68k_sched_first_cycle_multipass_dfa_lookahead
240
241 #undef TARGET_HANDLE_OPTION
242 #define TARGET_HANDLE_OPTION m68k_handle_option
243
244 #undef TARGET_OPTION_OVERRIDE
245 #define TARGET_OPTION_OVERRIDE m68k_option_override
246
247 #undef TARGET_RTX_COSTS
248 #define TARGET_RTX_COSTS m68k_rtx_costs
249
250 #undef TARGET_ATTRIBUTE_TABLE
251 #define TARGET_ATTRIBUTE_TABLE m68k_attribute_table
252
253 #undef TARGET_PROMOTE_PROTOTYPES
254 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
255
256 #undef TARGET_STRUCT_VALUE_RTX
257 #define TARGET_STRUCT_VALUE_RTX m68k_struct_value_rtx
258
259 #undef TARGET_CANNOT_FORCE_CONST_MEM
260 #define TARGET_CANNOT_FORCE_CONST_MEM m68k_cannot_force_const_mem
261
262 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
263 #define TARGET_FUNCTION_OK_FOR_SIBCALL m68k_ok_for_sibcall_p
264
265 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
266 #undef TARGET_RETURN_IN_MEMORY
267 #define TARGET_RETURN_IN_MEMORY m68k_return_in_memory
268 #endif
269
270 #ifdef HAVE_AS_TLS
271 #undef TARGET_HAVE_TLS
272 #define TARGET_HAVE_TLS (true)
273
274 #undef TARGET_ASM_OUTPUT_DWARF_DTPREL
275 #define TARGET_ASM_OUTPUT_DWARF_DTPREL m68k_output_dwarf_dtprel
276 #endif
277
278 #undef TARGET_LEGITIMATE_ADDRESS_P
279 #define TARGET_LEGITIMATE_ADDRESS_P m68k_legitimate_address_p
280
281 #undef TARGET_CAN_ELIMINATE
282 #define TARGET_CAN_ELIMINATE m68k_can_eliminate
283
284 #undef TARGET_CONDITIONAL_REGISTER_USAGE
285 #define TARGET_CONDITIONAL_REGISTER_USAGE m68k_conditional_register_usage
286
287 #undef TARGET_TRAMPOLINE_INIT
288 #define TARGET_TRAMPOLINE_INIT m68k_trampoline_init
289
290 #undef TARGET_RETURN_POPS_ARGS
291 #define TARGET_RETURN_POPS_ARGS m68k_return_pops_args
292
293 #undef TARGET_DELEGITIMIZE_ADDRESS
294 #define TARGET_DELEGITIMIZE_ADDRESS m68k_delegitimize_address
295
296 #undef TARGET_FUNCTION_ARG
297 #define TARGET_FUNCTION_ARG m68k_function_arg
298
299 #undef TARGET_FUNCTION_ARG_ADVANCE
300 #define TARGET_FUNCTION_ARG_ADVANCE m68k_function_arg_advance
301
302 static const struct attribute_spec m68k_attribute_table[] =
303 {
304 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
305 affects_type_identity } */
306 { "interrupt", 0, 0, true, false, false, m68k_handle_fndecl_attribute,
307 false },
308 { "interrupt_handler", 0, 0, true, false, false,
309 m68k_handle_fndecl_attribute, false },
310 { "interrupt_thread", 0, 0, true, false, false,
311 m68k_handle_fndecl_attribute, false },
312 { NULL, 0, 0, false, false, false, NULL, false }
313 };
314
315 struct gcc_target targetm = TARGET_INITIALIZER;
316 \f
317 /* Base flags for 68k ISAs. */
318 #define FL_FOR_isa_00 FL_ISA_68000
319 #define FL_FOR_isa_10 (FL_FOR_isa_00 | FL_ISA_68010)
320 /* FL_68881 controls the default setting of -m68881. gcc has traditionally
321 generated 68881 code for 68020 and 68030 targets unless explicitly told
322 not to. */
323 #define FL_FOR_isa_20 (FL_FOR_isa_10 | FL_ISA_68020 \
324 | FL_BITFIELD | FL_68881)
325 #define FL_FOR_isa_40 (FL_FOR_isa_20 | FL_ISA_68040)
326 #define FL_FOR_isa_cpu32 (FL_FOR_isa_10 | FL_ISA_68020)
327
328 /* Base flags for ColdFire ISAs. */
329 #define FL_FOR_isa_a (FL_COLDFIRE | FL_ISA_A)
330 #define FL_FOR_isa_aplus (FL_FOR_isa_a | FL_ISA_APLUS | FL_CF_USP)
331 /* Note ISA_B doesn't necessarily include USP (user stack pointer) support. */
332 #define FL_FOR_isa_b (FL_FOR_isa_a | FL_ISA_B | FL_CF_HWDIV)
333 /* ISA_C is not upwardly compatible with ISA_B. */
334 #define FL_FOR_isa_c (FL_FOR_isa_a | FL_ISA_C | FL_CF_USP)
335
336 enum m68k_isa
337 {
338 /* Traditional 68000 instruction sets. */
339 isa_00,
340 isa_10,
341 isa_20,
342 isa_40,
343 isa_cpu32,
344 /* ColdFire instruction set variants. */
345 isa_a,
346 isa_aplus,
347 isa_b,
348 isa_c,
349 isa_max
350 };
351
352 /* Information about one of the -march, -mcpu or -mtune arguments. */
353 struct m68k_target_selection
354 {
355 /* The argument being described. */
356 const char *name;
357
358 /* For -mcpu, this is the device selected by the option.
359 For -mtune and -march, it is a representative device
360 for the microarchitecture or ISA respectively. */
361 enum target_device device;
362
363 /* The M68K_DEVICE fields associated with DEVICE. See the comment
364 in m68k-devices.def for details. FAMILY is only valid for -mcpu. */
365 const char *family;
366 enum uarch_type microarch;
367 enum m68k_isa isa;
368 unsigned long flags;
369 };
370
371 /* A list of all devices in m68k-devices.def. Used for -mcpu selection. */
372 static const struct m68k_target_selection all_devices[] =
373 {
374 #define M68K_DEVICE(NAME,ENUM_VALUE,FAMILY,MULTILIB,MICROARCH,ISA,FLAGS) \
375 { NAME, ENUM_VALUE, FAMILY, u##MICROARCH, ISA, FLAGS | FL_FOR_##ISA },
376 #include "m68k-devices.def"
377 #undef M68K_DEVICE
378 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
379 };
380
381 /* A list of all ISAs, mapping each one to a representative device.
382 Used for -march selection. */
383 static const struct m68k_target_selection all_isas[] =
384 {
385 { "68000", m68000, NULL, u68000, isa_00, FL_FOR_isa_00 },
386 { "68010", m68010, NULL, u68010, isa_10, FL_FOR_isa_10 },
387 { "68020", m68020, NULL, u68020, isa_20, FL_FOR_isa_20 },
388 { "68030", m68030, NULL, u68030, isa_20, FL_FOR_isa_20 },
389 { "68040", m68040, NULL, u68040, isa_40, FL_FOR_isa_40 },
390 { "68060", m68060, NULL, u68060, isa_40, FL_FOR_isa_40 },
391 { "cpu32", cpu32, NULL, ucpu32, isa_20, FL_FOR_isa_cpu32 },
392 { "isaa", mcf5206e, NULL, ucfv2, isa_a, (FL_FOR_isa_a
393 | FL_CF_HWDIV) },
394 { "isaaplus", mcf5271, NULL, ucfv2, isa_aplus, (FL_FOR_isa_aplus
395 | FL_CF_HWDIV) },
396 { "isab", mcf5407, NULL, ucfv4, isa_b, FL_FOR_isa_b },
397 { "isac", unk_device, NULL, ucfv4, isa_c, (FL_FOR_isa_c
398 | FL_CF_HWDIV) },
399 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
400 };
401
402 /* A list of all microarchitectures, mapping each one to a representative
403 device. Used for -mtune selection. */
404 static const struct m68k_target_selection all_microarchs[] =
405 {
406 { "68000", m68000, NULL, u68000, isa_00, FL_FOR_isa_00 },
407 { "68010", m68010, NULL, u68010, isa_10, FL_FOR_isa_10 },
408 { "68020", m68020, NULL, u68020, isa_20, FL_FOR_isa_20 },
409 { "68020-40", m68020, NULL, u68020_40, isa_20, FL_FOR_isa_20 },
410 { "68020-60", m68020, NULL, u68020_60, isa_20, FL_FOR_isa_20 },
411 { "68030", m68030, NULL, u68030, isa_20, FL_FOR_isa_20 },
412 { "68040", m68040, NULL, u68040, isa_40, FL_FOR_isa_40 },
413 { "68060", m68060, NULL, u68060, isa_40, FL_FOR_isa_40 },
414 { "cpu32", cpu32, NULL, ucpu32, isa_20, FL_FOR_isa_cpu32 },
415 { "cfv1", mcf51qe, NULL, ucfv1, isa_c, FL_FOR_isa_c },
416 { "cfv2", mcf5206, NULL, ucfv2, isa_a, FL_FOR_isa_a },
417 { "cfv3", mcf5307, NULL, ucfv3, isa_a, (FL_FOR_isa_a
418 | FL_CF_HWDIV) },
419 { "cfv4", mcf5407, NULL, ucfv4, isa_b, FL_FOR_isa_b },
420 { "cfv4e", mcf547x, NULL, ucfv4e, isa_b, (FL_FOR_isa_b
421 | FL_CF_USP
422 | FL_CF_EMAC
423 | FL_CF_FPU) },
424 { NULL, unk_device, NULL, unk_arch, isa_max, 0 }
425 };
426 \f
427 /* The entries associated with the -mcpu, -march and -mtune settings,
428 or null for options that have not been used. */
429 const struct m68k_target_selection *m68k_cpu_entry;
430 const struct m68k_target_selection *m68k_arch_entry;
431 const struct m68k_target_selection *m68k_tune_entry;
432
433 /* Which CPU we are generating code for. */
434 enum target_device m68k_cpu;
435
436 /* Which microarchitecture to tune for. */
437 enum uarch_type m68k_tune;
438
439 /* Which FPU to use. */
440 enum fpu_type m68k_fpu;
441
442 /* The set of FL_* flags that apply to the target processor. */
443 unsigned int m68k_cpu_flags;
444
445 /* The set of FL_* flags that apply to the processor to be tuned for. */
446 unsigned int m68k_tune_flags;
447
448 /* Asm templates for calling or jumping to an arbitrary symbolic address,
449 or NULL if such calls or jumps are not supported. The address is held
450 in operand 0. */
451 const char *m68k_symbolic_call;
452 const char *m68k_symbolic_jump;
453
454 /* Enum variable that corresponds to m68k_symbolic_call values. */
455 enum M68K_SYMBOLIC_CALL m68k_symbolic_call_var;
456
457 \f
458 /* See whether TABLE has an entry with name NAME. Return true and
459 store the entry in *ENTRY if so, otherwise return false and
460 leave *ENTRY alone. */
461
462 static bool
463 m68k_find_selection (const struct m68k_target_selection **entry,
464 const struct m68k_target_selection *table,
465 const char *name)
466 {
467 size_t i;
468
469 for (i = 0; table[i].name; i++)
470 if (strcmp (table[i].name, name) == 0)
471 {
472 *entry = table + i;
473 return true;
474 }
475 return false;
476 }
477
478 /* Implement TARGET_HANDLE_OPTION. */
479
480 static bool
481 m68k_handle_option (struct gcc_options *opts, struct gcc_options *opts_set,
482 const struct cl_decoded_option *decoded,
483 location_t loc ATTRIBUTE_UNUSED)
484 {
485 size_t code = decoded->opt_index;
486 const char *arg = decoded->arg;
487 int value = decoded->value;
488
489 gcc_assert (opts == &global_options);
490 gcc_assert (opts_set == &global_options_set);
491
492 switch (code)
493 {
494 case OPT_march_:
495 return m68k_find_selection (&m68k_arch_entry, all_isas, arg);
496
497 case OPT_mcpu_:
498 return m68k_find_selection (&m68k_cpu_entry, all_devices, arg);
499
500 case OPT_mtune_:
501 return m68k_find_selection (&m68k_tune_entry, all_microarchs, arg);
502
503 case OPT_m68020_40:
504 return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
505 "68020-40")
506 && m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
507
508 case OPT_m68020_60:
509 return (m68k_find_selection (&m68k_tune_entry, all_microarchs,
510 "68020-60")
511 && m68k_find_selection (&m68k_cpu_entry, all_devices, "68020"));
512
513 case OPT_mshared_library_id_:
514 if (value > MAX_LIBRARY_ID)
515 error ("-mshared-library-id=%s is not between 0 and %d",
516 arg, MAX_LIBRARY_ID);
517 else
518 {
519 char *tmp;
520 asprintf (&tmp, "%d", (value * -4) - 4);
521 m68k_library_id_string = tmp;
522 }
523 return true;
524
525 default:
526 return true;
527 }
528 }
529
530 /* Implement TARGET_OPTION_OVERRIDE. */
531
532 static void
533 m68k_option_override (void)
534 {
535 const struct m68k_target_selection *entry;
536 unsigned long target_mask;
537
538 /* User can choose:
539
540 -mcpu=
541 -march=
542 -mtune=
543
544 -march=ARCH should generate code that runs any processor
545 implementing architecture ARCH. -mcpu=CPU should override -march
546 and should generate code that runs on processor CPU, making free
547 use of any instructions that CPU understands. -mtune=UARCH applies
548 on top of -mcpu or -march and optimizes the code for UARCH. It does
549 not change the target architecture. */
550 if (m68k_cpu_entry)
551 {
552 /* Complain if the -march setting is for a different microarchitecture,
553 or includes flags that the -mcpu setting doesn't. */
554 if (m68k_arch_entry
555 && (m68k_arch_entry->microarch != m68k_cpu_entry->microarch
556 || (m68k_arch_entry->flags & ~m68k_cpu_entry->flags) != 0))
557 warning (0, "-mcpu=%s conflicts with -march=%s",
558 m68k_cpu_entry->name, m68k_arch_entry->name);
559
560 entry = m68k_cpu_entry;
561 }
562 else
563 entry = m68k_arch_entry;
564
565 if (!entry)
566 entry = all_devices + TARGET_CPU_DEFAULT;
567
568 m68k_cpu_flags = entry->flags;
569
570 /* Use the architecture setting to derive default values for
571 certain flags. */
572 target_mask = 0;
573
574 /* ColdFire is lenient about alignment. */
575 if (!TARGET_COLDFIRE)
576 target_mask |= MASK_STRICT_ALIGNMENT;
577
578 if ((m68k_cpu_flags & FL_BITFIELD) != 0)
579 target_mask |= MASK_BITFIELD;
580 if ((m68k_cpu_flags & FL_CF_HWDIV) != 0)
581 target_mask |= MASK_CF_HWDIV;
582 if ((m68k_cpu_flags & (FL_68881 | FL_CF_FPU)) != 0)
583 target_mask |= MASK_HARD_FLOAT;
584 target_flags |= target_mask & ~target_flags_explicit;
585
586 /* Set the directly-usable versions of the -mcpu and -mtune settings. */
587 m68k_cpu = entry->device;
588 if (m68k_tune_entry)
589 {
590 m68k_tune = m68k_tune_entry->microarch;
591 m68k_tune_flags = m68k_tune_entry->flags;
592 }
593 #ifdef M68K_DEFAULT_TUNE
594 else if (!m68k_cpu_entry && !m68k_arch_entry)
595 {
596 enum target_device dev;
597 dev = all_microarchs[M68K_DEFAULT_TUNE].device;
598 m68k_tune_flags = all_devices[dev]->flags;
599 }
600 #endif
601 else
602 {
603 m68k_tune = entry->microarch;
604 m68k_tune_flags = entry->flags;
605 }
606
607 /* Set the type of FPU. */
608 m68k_fpu = (!TARGET_HARD_FLOAT ? FPUTYPE_NONE
609 : (m68k_cpu_flags & FL_COLDFIRE) != 0 ? FPUTYPE_COLDFIRE
610 : FPUTYPE_68881);
611
612 /* Sanity check to ensure that msep-data and mid-sahred-library are not
613 * both specified together. Doing so simply doesn't make sense.
614 */
615 if (TARGET_SEP_DATA && TARGET_ID_SHARED_LIBRARY)
616 error ("cannot specify both -msep-data and -mid-shared-library");
617
618 /* If we're generating code for a separate A5 relative data segment,
619 * we've got to enable -fPIC as well. This might be relaxable to
620 * -fpic but it hasn't been tested properly.
621 */
622 if (TARGET_SEP_DATA || TARGET_ID_SHARED_LIBRARY)
623 flag_pic = 2;
624
625 /* -mpcrel -fPIC uses 32-bit pc-relative displacements. Raise an
626 error if the target does not support them. */
627 if (TARGET_PCREL && !TARGET_68020 && flag_pic == 2)
628 error ("-mpcrel -fPIC is not currently supported on selected cpu");
629
630 /* ??? A historic way of turning on pic, or is this intended to
631 be an embedded thing that doesn't have the same name binding
632 significance that it does on hosted ELF systems? */
633 if (TARGET_PCREL && flag_pic == 0)
634 flag_pic = 1;
635
636 if (!flag_pic)
637 {
638 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_JSR;
639
640 m68k_symbolic_jump = "jra %a0";
641 }
642 else if (TARGET_ID_SHARED_LIBRARY)
643 /* All addresses must be loaded from the GOT. */
644 ;
645 else if (TARGET_68020 || TARGET_ISAB || TARGET_ISAC)
646 {
647 if (TARGET_PCREL)
648 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_C;
649 else
650 m68k_symbolic_call_var = M68K_SYMBOLIC_CALL_BSR_P;
651
652 if (TARGET_ISAC)
653 /* No unconditional long branch */;
654 else if (TARGET_PCREL)
655 m68k_symbolic_jump = "bra%.l %c0";
656 else
657 m68k_symbolic_jump = "bra%.l %p0";
658 /* Turn off function cse if we are doing PIC. We always want
659 function call to be done as `bsr foo@PLTPC'. */
660 /* ??? It's traditional to do this for -mpcrel too, but it isn't
661 clear how intentional that is. */
662 flag_no_function_cse = 1;
663 }
664
665 switch (m68k_symbolic_call_var)
666 {
667 case M68K_SYMBOLIC_CALL_JSR:
668 m68k_symbolic_call = "jsr %a0";
669 break;
670
671 case M68K_SYMBOLIC_CALL_BSR_C:
672 m68k_symbolic_call = "bsr%.l %c0";
673 break;
674
675 case M68K_SYMBOLIC_CALL_BSR_P:
676 m68k_symbolic_call = "bsr%.l %p0";
677 break;
678
679 case M68K_SYMBOLIC_CALL_NONE:
680 gcc_assert (m68k_symbolic_call == NULL);
681 break;
682
683 default:
684 gcc_unreachable ();
685 }
686
687 #ifndef ASM_OUTPUT_ALIGN_WITH_NOP
688 if (align_labels > 2)
689 {
690 warning (0, "-falign-labels=%d is not supported", align_labels);
691 align_labels = 0;
692 }
693 if (align_loops > 2)
694 {
695 warning (0, "-falign-loops=%d is not supported", align_loops);
696 align_loops = 0;
697 }
698 #endif
699
700 SUBTARGET_OVERRIDE_OPTIONS;
701
702 /* Setup scheduling options. */
703 if (TUNE_CFV1)
704 m68k_sched_cpu = CPU_CFV1;
705 else if (TUNE_CFV2)
706 m68k_sched_cpu = CPU_CFV2;
707 else if (TUNE_CFV3)
708 m68k_sched_cpu = CPU_CFV3;
709 else if (TUNE_CFV4)
710 m68k_sched_cpu = CPU_CFV4;
711 else
712 {
713 m68k_sched_cpu = CPU_UNKNOWN;
714 flag_schedule_insns = 0;
715 flag_schedule_insns_after_reload = 0;
716 flag_modulo_sched = 0;
717 }
718
719 if (m68k_sched_cpu != CPU_UNKNOWN)
720 {
721 if ((m68k_cpu_flags & (FL_CF_EMAC | FL_CF_EMAC_B)) != 0)
722 m68k_sched_mac = MAC_CF_EMAC;
723 else if ((m68k_cpu_flags & FL_CF_MAC) != 0)
724 m68k_sched_mac = MAC_CF_MAC;
725 else
726 m68k_sched_mac = MAC_NO;
727 }
728 }
729
730 /* Generate a macro of the form __mPREFIX_cpu_NAME, where PREFIX is the
731 given argument and NAME is the argument passed to -mcpu. Return NULL
732 if -mcpu was not passed. */
733
734 const char *
735 m68k_cpp_cpu_ident (const char *prefix)
736 {
737 if (!m68k_cpu_entry)
738 return NULL;
739 return concat ("__m", prefix, "_cpu_", m68k_cpu_entry->name, NULL);
740 }
741
742 /* Generate a macro of the form __mPREFIX_family_NAME, where PREFIX is the
743 given argument and NAME is the name of the representative device for
744 the -mcpu argument's family. Return NULL if -mcpu was not passed. */
745
746 const char *
747 m68k_cpp_cpu_family (const char *prefix)
748 {
749 if (!m68k_cpu_entry)
750 return NULL;
751 return concat ("__m", prefix, "_family_", m68k_cpu_entry->family, NULL);
752 }
753 \f
754 /* Return m68k_fk_interrupt_handler if FUNC has an "interrupt" or
755 "interrupt_handler" attribute and interrupt_thread if FUNC has an
756 "interrupt_thread" attribute. Otherwise, return
757 m68k_fk_normal_function. */
758
759 enum m68k_function_kind
760 m68k_get_function_kind (tree func)
761 {
762 tree a;
763
764 gcc_assert (TREE_CODE (func) == FUNCTION_DECL);
765
766 a = lookup_attribute ("interrupt", DECL_ATTRIBUTES (func));
767 if (a != NULL_TREE)
768 return m68k_fk_interrupt_handler;
769
770 a = lookup_attribute ("interrupt_handler", DECL_ATTRIBUTES (func));
771 if (a != NULL_TREE)
772 return m68k_fk_interrupt_handler;
773
774 a = lookup_attribute ("interrupt_thread", DECL_ATTRIBUTES (func));
775 if (a != NULL_TREE)
776 return m68k_fk_interrupt_thread;
777
778 return m68k_fk_normal_function;
779 }
780
781 /* Handle an attribute requiring a FUNCTION_DECL; arguments as in
782 struct attribute_spec.handler. */
783 static tree
784 m68k_handle_fndecl_attribute (tree *node, tree name,
785 tree args ATTRIBUTE_UNUSED,
786 int flags ATTRIBUTE_UNUSED,
787 bool *no_add_attrs)
788 {
789 if (TREE_CODE (*node) != FUNCTION_DECL)
790 {
791 warning (OPT_Wattributes, "%qE attribute only applies to functions",
792 name);
793 *no_add_attrs = true;
794 }
795
796 if (m68k_get_function_kind (*node) != m68k_fk_normal_function)
797 {
798 error ("multiple interrupt attributes not allowed");
799 *no_add_attrs = true;
800 }
801
802 if (!TARGET_FIDOA
803 && !strcmp (IDENTIFIER_POINTER (name), "interrupt_thread"))
804 {
805 error ("interrupt_thread is available only on fido");
806 *no_add_attrs = true;
807 }
808
809 return NULL_TREE;
810 }
811
812 static void
813 m68k_compute_frame_layout (void)
814 {
815 int regno, saved;
816 unsigned int mask;
817 enum m68k_function_kind func_kind =
818 m68k_get_function_kind (current_function_decl);
819 bool interrupt_handler = func_kind == m68k_fk_interrupt_handler;
820 bool interrupt_thread = func_kind == m68k_fk_interrupt_thread;
821
822 /* Only compute the frame once per function.
823 Don't cache information until reload has been completed. */
824 if (current_frame.funcdef_no == current_function_funcdef_no
825 && reload_completed)
826 return;
827
828 current_frame.size = (get_frame_size () + 3) & -4;
829
830 mask = saved = 0;
831
832 /* Interrupt thread does not need to save any register. */
833 if (!interrupt_thread)
834 for (regno = 0; regno < 16; regno++)
835 if (m68k_save_reg (regno, interrupt_handler))
836 {
837 mask |= 1 << (regno - D0_REG);
838 saved++;
839 }
840 current_frame.offset = saved * 4;
841 current_frame.reg_no = saved;
842 current_frame.reg_mask = mask;
843
844 current_frame.foffset = 0;
845 mask = saved = 0;
846 if (TARGET_HARD_FLOAT)
847 {
848 /* Interrupt thread does not need to save any register. */
849 if (!interrupt_thread)
850 for (regno = 16; regno < 24; regno++)
851 if (m68k_save_reg (regno, interrupt_handler))
852 {
853 mask |= 1 << (regno - FP0_REG);
854 saved++;
855 }
856 current_frame.foffset = saved * TARGET_FP_REG_SIZE;
857 current_frame.offset += current_frame.foffset;
858 }
859 current_frame.fpu_no = saved;
860 current_frame.fpu_mask = mask;
861
862 /* Remember what function this frame refers to. */
863 current_frame.funcdef_no = current_function_funcdef_no;
864 }
865
866 /* Worker function for TARGET_CAN_ELIMINATE. */
867
868 bool
869 m68k_can_eliminate (const int from ATTRIBUTE_UNUSED, const int to)
870 {
871 return (to == STACK_POINTER_REGNUM ? ! frame_pointer_needed : true);
872 }
873
874 HOST_WIDE_INT
875 m68k_initial_elimination_offset (int from, int to)
876 {
877 int argptr_offset;
878 /* The arg pointer points 8 bytes before the start of the arguments,
879 as defined by FIRST_PARM_OFFSET. This makes it coincident with the
880 frame pointer in most frames. */
881 argptr_offset = frame_pointer_needed ? 0 : UNITS_PER_WORD;
882 if (from == ARG_POINTER_REGNUM && to == FRAME_POINTER_REGNUM)
883 return argptr_offset;
884
885 m68k_compute_frame_layout ();
886
887 gcc_assert (to == STACK_POINTER_REGNUM);
888 switch (from)
889 {
890 case ARG_POINTER_REGNUM:
891 return current_frame.offset + current_frame.size - argptr_offset;
892 case FRAME_POINTER_REGNUM:
893 return current_frame.offset + current_frame.size;
894 default:
895 gcc_unreachable ();
896 }
897 }
898
899 /* Refer to the array `regs_ever_live' to determine which registers
900 to save; `regs_ever_live[I]' is nonzero if register number I
901 is ever used in the function. This function is responsible for
902 knowing which registers should not be saved even if used.
903 Return true if we need to save REGNO. */
904
905 static bool
906 m68k_save_reg (unsigned int regno, bool interrupt_handler)
907 {
908 if (flag_pic && regno == PIC_REG)
909 {
910 if (crtl->saves_all_registers)
911 return true;
912 if (crtl->uses_pic_offset_table)
913 return true;
914 /* Reload may introduce constant pool references into a function
915 that thitherto didn't need a PIC register. Note that the test
916 above will not catch that case because we will only set
917 crtl->uses_pic_offset_table when emitting
918 the address reloads. */
919 if (crtl->uses_const_pool)
920 return true;
921 }
922
923 if (crtl->calls_eh_return)
924 {
925 unsigned int i;
926 for (i = 0; ; i++)
927 {
928 unsigned int test = EH_RETURN_DATA_REGNO (i);
929 if (test == INVALID_REGNUM)
930 break;
931 if (test == regno)
932 return true;
933 }
934 }
935
936 /* Fixed regs we never touch. */
937 if (fixed_regs[regno])
938 return false;
939
940 /* The frame pointer (if it is such) is handled specially. */
941 if (regno == FRAME_POINTER_REGNUM && frame_pointer_needed)
942 return false;
943
944 /* Interrupt handlers must also save call_used_regs
945 if they are live or when calling nested functions. */
946 if (interrupt_handler)
947 {
948 if (df_regs_ever_live_p (regno))
949 return true;
950
951 if (!current_function_is_leaf && call_used_regs[regno])
952 return true;
953 }
954
955 /* Never need to save registers that aren't touched. */
956 if (!df_regs_ever_live_p (regno))
957 return false;
958
959 /* Otherwise save everything that isn't call-clobbered. */
960 return !call_used_regs[regno];
961 }
962
963 /* Emit RTL for a MOVEM or FMOVEM instruction. BASE + OFFSET represents
964 the lowest memory address. COUNT is the number of registers to be
965 moved, with register REGNO + I being moved if bit I of MASK is set.
966 STORE_P specifies the direction of the move and ADJUST_STACK_P says
967 whether or not this is pre-decrement (if STORE_P) or post-increment
968 (if !STORE_P) operation. */
969
970 static rtx
971 m68k_emit_movem (rtx base, HOST_WIDE_INT offset,
972 unsigned int count, unsigned int regno,
973 unsigned int mask, bool store_p, bool adjust_stack_p)
974 {
975 int i;
976 rtx body, addr, src, operands[2];
977 enum machine_mode mode;
978
979 body = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (adjust_stack_p + count));
980 mode = reg_raw_mode[regno];
981 i = 0;
982
983 if (adjust_stack_p)
984 {
985 src = plus_constant (base, (count
986 * GET_MODE_SIZE (mode)
987 * (HOST_WIDE_INT) (store_p ? -1 : 1)));
988 XVECEXP (body, 0, i++) = gen_rtx_SET (VOIDmode, base, src);
989 }
990
991 for (; mask != 0; mask >>= 1, regno++)
992 if (mask & 1)
993 {
994 addr = plus_constant (base, offset);
995 operands[!store_p] = gen_frame_mem (mode, addr);
996 operands[store_p] = gen_rtx_REG (mode, regno);
997 XVECEXP (body, 0, i++)
998 = gen_rtx_SET (VOIDmode, operands[0], operands[1]);
999 offset += GET_MODE_SIZE (mode);
1000 }
1001 gcc_assert (i == XVECLEN (body, 0));
1002
1003 return emit_insn (body);
1004 }
1005
1006 /* Make INSN a frame-related instruction. */
1007
1008 static void
1009 m68k_set_frame_related (rtx insn)
1010 {
1011 rtx body;
1012 int i;
1013
1014 RTX_FRAME_RELATED_P (insn) = 1;
1015 body = PATTERN (insn);
1016 if (GET_CODE (body) == PARALLEL)
1017 for (i = 0; i < XVECLEN (body, 0); i++)
1018 RTX_FRAME_RELATED_P (XVECEXP (body, 0, i)) = 1;
1019 }
1020
1021 /* Emit RTL for the "prologue" define_expand. */
1022
1023 void
1024 m68k_expand_prologue (void)
1025 {
1026 HOST_WIDE_INT fsize_with_regs;
1027 rtx limit, src, dest;
1028
1029 m68k_compute_frame_layout ();
1030
1031 /* If the stack limit is a symbol, we can check it here,
1032 before actually allocating the space. */
1033 if (crtl->limit_stack
1034 && GET_CODE (stack_limit_rtx) == SYMBOL_REF)
1035 {
1036 limit = plus_constant (stack_limit_rtx, current_frame.size + 4);
1037 if (!LEGITIMATE_CONSTANT_P (limit))
1038 {
1039 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), limit);
1040 limit = gen_rtx_REG (Pmode, D0_REG);
1041 }
1042 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode,
1043 stack_pointer_rtx, limit),
1044 stack_pointer_rtx, limit,
1045 const1_rtx));
1046 }
1047
1048 fsize_with_regs = current_frame.size;
1049 if (TARGET_COLDFIRE)
1050 {
1051 /* ColdFire's move multiple instructions do not allow pre-decrement
1052 addressing. Add the size of movem saves to the initial stack
1053 allocation instead. */
1054 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1055 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1056 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1057 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1058 }
1059
1060 if (frame_pointer_needed)
1061 {
1062 if (fsize_with_regs == 0 && TUNE_68040)
1063 {
1064 /* On the 68040, two separate moves are faster than link.w 0. */
1065 dest = gen_frame_mem (Pmode,
1066 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1067 m68k_set_frame_related (emit_move_insn (dest, frame_pointer_rtx));
1068 m68k_set_frame_related (emit_move_insn (frame_pointer_rtx,
1069 stack_pointer_rtx));
1070 }
1071 else if (fsize_with_regs < 0x8000 || TARGET_68020)
1072 m68k_set_frame_related
1073 (emit_insn (gen_link (frame_pointer_rtx,
1074 GEN_INT (-4 - fsize_with_regs))));
1075 else
1076 {
1077 m68k_set_frame_related
1078 (emit_insn (gen_link (frame_pointer_rtx, GEN_INT (-4))));
1079 m68k_set_frame_related
1080 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1081 stack_pointer_rtx,
1082 GEN_INT (-fsize_with_regs))));
1083 }
1084
1085 /* If the frame pointer is needed, emit a special barrier that
1086 will prevent the scheduler from moving stores to the frame
1087 before the stack adjustment. */
1088 emit_insn (gen_stack_tie (stack_pointer_rtx, frame_pointer_rtx));
1089 }
1090 else if (fsize_with_regs != 0)
1091 m68k_set_frame_related
1092 (emit_insn (gen_addsi3 (stack_pointer_rtx,
1093 stack_pointer_rtx,
1094 GEN_INT (-fsize_with_regs))));
1095
1096 if (current_frame.fpu_mask)
1097 {
1098 gcc_assert (current_frame.fpu_no >= MIN_FMOVEM_REGS);
1099 if (TARGET_68881)
1100 m68k_set_frame_related
1101 (m68k_emit_movem (stack_pointer_rtx,
1102 current_frame.fpu_no * -GET_MODE_SIZE (XFmode),
1103 current_frame.fpu_no, FP0_REG,
1104 current_frame.fpu_mask, true, true));
1105 else
1106 {
1107 int offset;
1108
1109 /* If we're using moveml to save the integer registers,
1110 the stack pointer will point to the bottom of the moveml
1111 save area. Find the stack offset of the first FP register. */
1112 if (current_frame.reg_no < MIN_MOVEM_REGS)
1113 offset = 0;
1114 else
1115 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1116 m68k_set_frame_related
1117 (m68k_emit_movem (stack_pointer_rtx, offset,
1118 current_frame.fpu_no, FP0_REG,
1119 current_frame.fpu_mask, true, false));
1120 }
1121 }
1122
1123 /* If the stack limit is not a symbol, check it here.
1124 This has the disadvantage that it may be too late... */
1125 if (crtl->limit_stack)
1126 {
1127 if (REG_P (stack_limit_rtx))
1128 emit_insn (gen_ctrapsi4 (gen_rtx_LTU (VOIDmode, stack_pointer_rtx,
1129 stack_limit_rtx),
1130 stack_pointer_rtx, stack_limit_rtx,
1131 const1_rtx));
1132
1133 else if (GET_CODE (stack_limit_rtx) != SYMBOL_REF)
1134 warning (0, "stack limit expression is not supported");
1135 }
1136
1137 if (current_frame.reg_no < MIN_MOVEM_REGS)
1138 {
1139 /* Store each register separately in the same order moveml does. */
1140 int i;
1141
1142 for (i = 16; i-- > 0; )
1143 if (current_frame.reg_mask & (1 << i))
1144 {
1145 src = gen_rtx_REG (SImode, D0_REG + i);
1146 dest = gen_frame_mem (SImode,
1147 gen_rtx_PRE_DEC (Pmode, stack_pointer_rtx));
1148 m68k_set_frame_related (emit_insn (gen_movsi (dest, src)));
1149 }
1150 }
1151 else
1152 {
1153 if (TARGET_COLDFIRE)
1154 /* The required register save space has already been allocated.
1155 The first register should be stored at (%sp). */
1156 m68k_set_frame_related
1157 (m68k_emit_movem (stack_pointer_rtx, 0,
1158 current_frame.reg_no, D0_REG,
1159 current_frame.reg_mask, true, false));
1160 else
1161 m68k_set_frame_related
1162 (m68k_emit_movem (stack_pointer_rtx,
1163 current_frame.reg_no * -GET_MODE_SIZE (SImode),
1164 current_frame.reg_no, D0_REG,
1165 current_frame.reg_mask, true, true));
1166 }
1167
1168 if (!TARGET_SEP_DATA
1169 && crtl->uses_pic_offset_table)
1170 emit_insn (gen_load_got (pic_offset_table_rtx));
1171 }
1172 \f
1173 /* Return true if a simple (return) instruction is sufficient for this
1174 instruction (i.e. if no epilogue is needed). */
1175
1176 bool
1177 m68k_use_return_insn (void)
1178 {
1179 if (!reload_completed || frame_pointer_needed || get_frame_size () != 0)
1180 return false;
1181
1182 m68k_compute_frame_layout ();
1183 return current_frame.offset == 0;
1184 }
1185
1186 /* Emit RTL for the "epilogue" or "sibcall_epilogue" define_expand;
1187 SIBCALL_P says which.
1188
1189 The function epilogue should not depend on the current stack pointer!
1190 It should use the frame pointer only, if there is a frame pointer.
1191 This is mandatory because of alloca; we also take advantage of it to
1192 omit stack adjustments before returning. */
1193
1194 void
1195 m68k_expand_epilogue (bool sibcall_p)
1196 {
1197 HOST_WIDE_INT fsize, fsize_with_regs;
1198 bool big, restore_from_sp;
1199
1200 m68k_compute_frame_layout ();
1201
1202 fsize = current_frame.size;
1203 big = false;
1204 restore_from_sp = false;
1205
1206 /* FIXME : current_function_is_leaf below is too strong.
1207 What we really need to know there is if there could be pending
1208 stack adjustment needed at that point. */
1209 restore_from_sp = (!frame_pointer_needed
1210 || (!cfun->calls_alloca
1211 && current_function_is_leaf));
1212
1213 /* fsize_with_regs is the size we need to adjust the sp when
1214 popping the frame. */
1215 fsize_with_regs = fsize;
1216 if (TARGET_COLDFIRE && restore_from_sp)
1217 {
1218 /* ColdFire's move multiple instructions do not allow post-increment
1219 addressing. Add the size of movem loads to the final deallocation
1220 instead. */
1221 if (current_frame.reg_no >= MIN_MOVEM_REGS)
1222 fsize_with_regs += current_frame.reg_no * GET_MODE_SIZE (SImode);
1223 if (current_frame.fpu_no >= MIN_FMOVEM_REGS)
1224 fsize_with_regs += current_frame.fpu_no * GET_MODE_SIZE (DFmode);
1225 }
1226
1227 if (current_frame.offset + fsize >= 0x8000
1228 && !restore_from_sp
1229 && (current_frame.reg_mask || current_frame.fpu_mask))
1230 {
1231 if (TARGET_COLDFIRE
1232 && (current_frame.reg_no >= MIN_MOVEM_REGS
1233 || current_frame.fpu_no >= MIN_FMOVEM_REGS))
1234 {
1235 /* ColdFire's move multiple instructions do not support the
1236 (d8,Ax,Xi) addressing mode, so we're as well using a normal
1237 stack-based restore. */
1238 emit_move_insn (gen_rtx_REG (Pmode, A1_REG),
1239 GEN_INT (-(current_frame.offset + fsize)));
1240 emit_insn (gen_addsi3 (stack_pointer_rtx,
1241 gen_rtx_REG (Pmode, A1_REG),
1242 frame_pointer_rtx));
1243 restore_from_sp = true;
1244 }
1245 else
1246 {
1247 emit_move_insn (gen_rtx_REG (Pmode, A1_REG), GEN_INT (-fsize));
1248 fsize = 0;
1249 big = true;
1250 }
1251 }
1252
1253 if (current_frame.reg_no < MIN_MOVEM_REGS)
1254 {
1255 /* Restore each register separately in the same order moveml does. */
1256 int i;
1257 HOST_WIDE_INT offset;
1258
1259 offset = current_frame.offset + fsize;
1260 for (i = 0; i < 16; i++)
1261 if (current_frame.reg_mask & (1 << i))
1262 {
1263 rtx addr;
1264
1265 if (big)
1266 {
1267 /* Generate the address -OFFSET(%fp,%a1.l). */
1268 addr = gen_rtx_REG (Pmode, A1_REG);
1269 addr = gen_rtx_PLUS (Pmode, addr, frame_pointer_rtx);
1270 addr = plus_constant (addr, -offset);
1271 }
1272 else if (restore_from_sp)
1273 addr = gen_rtx_POST_INC (Pmode, stack_pointer_rtx);
1274 else
1275 addr = plus_constant (frame_pointer_rtx, -offset);
1276 emit_move_insn (gen_rtx_REG (SImode, D0_REG + i),
1277 gen_frame_mem (SImode, addr));
1278 offset -= GET_MODE_SIZE (SImode);
1279 }
1280 }
1281 else if (current_frame.reg_mask)
1282 {
1283 if (big)
1284 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1285 gen_rtx_REG (Pmode, A1_REG),
1286 frame_pointer_rtx),
1287 -(current_frame.offset + fsize),
1288 current_frame.reg_no, D0_REG,
1289 current_frame.reg_mask, false, false);
1290 else if (restore_from_sp)
1291 m68k_emit_movem (stack_pointer_rtx, 0,
1292 current_frame.reg_no, D0_REG,
1293 current_frame.reg_mask, false,
1294 !TARGET_COLDFIRE);
1295 else
1296 m68k_emit_movem (frame_pointer_rtx,
1297 -(current_frame.offset + fsize),
1298 current_frame.reg_no, D0_REG,
1299 current_frame.reg_mask, false, false);
1300 }
1301
1302 if (current_frame.fpu_no > 0)
1303 {
1304 if (big)
1305 m68k_emit_movem (gen_rtx_PLUS (Pmode,
1306 gen_rtx_REG (Pmode, A1_REG),
1307 frame_pointer_rtx),
1308 -(current_frame.foffset + fsize),
1309 current_frame.fpu_no, FP0_REG,
1310 current_frame.fpu_mask, false, false);
1311 else if (restore_from_sp)
1312 {
1313 if (TARGET_COLDFIRE)
1314 {
1315 int offset;
1316
1317 /* If we used moveml to restore the integer registers, the
1318 stack pointer will still point to the bottom of the moveml
1319 save area. Find the stack offset of the first FP
1320 register. */
1321 if (current_frame.reg_no < MIN_MOVEM_REGS)
1322 offset = 0;
1323 else
1324 offset = current_frame.reg_no * GET_MODE_SIZE (SImode);
1325 m68k_emit_movem (stack_pointer_rtx, offset,
1326 current_frame.fpu_no, FP0_REG,
1327 current_frame.fpu_mask, false, false);
1328 }
1329 else
1330 m68k_emit_movem (stack_pointer_rtx, 0,
1331 current_frame.fpu_no, FP0_REG,
1332 current_frame.fpu_mask, false, true);
1333 }
1334 else
1335 m68k_emit_movem (frame_pointer_rtx,
1336 -(current_frame.foffset + fsize),
1337 current_frame.fpu_no, FP0_REG,
1338 current_frame.fpu_mask, false, false);
1339 }
1340
1341 if (frame_pointer_needed)
1342 emit_insn (gen_unlink (frame_pointer_rtx));
1343 else if (fsize_with_regs)
1344 emit_insn (gen_addsi3 (stack_pointer_rtx,
1345 stack_pointer_rtx,
1346 GEN_INT (fsize_with_regs)));
1347
1348 if (crtl->calls_eh_return)
1349 emit_insn (gen_addsi3 (stack_pointer_rtx,
1350 stack_pointer_rtx,
1351 EH_RETURN_STACKADJ_RTX));
1352
1353 if (!sibcall_p)
1354 emit_jump_insn (gen_rtx_RETURN (VOIDmode));
1355 }
1356 \f
1357 /* Return true if X is a valid comparison operator for the dbcc
1358 instruction.
1359
1360 Note it rejects floating point comparison operators.
1361 (In the future we could use Fdbcc).
1362
1363 It also rejects some comparisons when CC_NO_OVERFLOW is set. */
1364
1365 int
1366 valid_dbcc_comparison_p_2 (rtx x, enum machine_mode mode ATTRIBUTE_UNUSED)
1367 {
1368 switch (GET_CODE (x))
1369 {
1370 case EQ: case NE: case GTU: case LTU:
1371 case GEU: case LEU:
1372 return 1;
1373
1374 /* Reject some when CC_NO_OVERFLOW is set. This may be over
1375 conservative */
1376 case GT: case LT: case GE: case LE:
1377 return ! (cc_prev_status.flags & CC_NO_OVERFLOW);
1378 default:
1379 return 0;
1380 }
1381 }
1382
1383 /* Return nonzero if flags are currently in the 68881 flag register. */
1384 int
1385 flags_in_68881 (void)
1386 {
1387 /* We could add support for these in the future */
1388 return cc_status.flags & CC_IN_68881;
1389 }
1390
1391 /* Return true if PARALLEL contains register REGNO. */
1392 static bool
1393 m68k_reg_present_p (const_rtx parallel, unsigned int regno)
1394 {
1395 int i;
1396
1397 if (REG_P (parallel) && REGNO (parallel) == regno)
1398 return true;
1399
1400 if (GET_CODE (parallel) != PARALLEL)
1401 return false;
1402
1403 for (i = 0; i < XVECLEN (parallel, 0); ++i)
1404 {
1405 const_rtx x;
1406
1407 x = XEXP (XVECEXP (parallel, 0, i), 0);
1408 if (REG_P (x) && REGNO (x) == regno)
1409 return true;
1410 }
1411
1412 return false;
1413 }
1414
1415 /* Implement TARGET_FUNCTION_OK_FOR_SIBCALL_P. */
1416
1417 static bool
1418 m68k_ok_for_sibcall_p (tree decl, tree exp)
1419 {
1420 enum m68k_function_kind kind;
1421
1422 /* We cannot use sibcalls for nested functions because we use the
1423 static chain register for indirect calls. */
1424 if (CALL_EXPR_STATIC_CHAIN (exp))
1425 return false;
1426
1427 if (!VOID_TYPE_P (TREE_TYPE (DECL_RESULT (cfun->decl))))
1428 {
1429 /* Check that the return value locations are the same. For
1430 example that we aren't returning a value from the sibling in
1431 a D0 register but then need to transfer it to a A0 register. */
1432 rtx cfun_value;
1433 rtx call_value;
1434
1435 cfun_value = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (cfun->decl)),
1436 cfun->decl);
1437 call_value = FUNCTION_VALUE (TREE_TYPE (exp), decl);
1438
1439 /* Check that the values are equal or that the result the callee
1440 function returns is superset of what the current function returns. */
1441 if (!(rtx_equal_p (cfun_value, call_value)
1442 || (REG_P (cfun_value)
1443 && m68k_reg_present_p (call_value, REGNO (cfun_value)))))
1444 return false;
1445 }
1446
1447 kind = m68k_get_function_kind (current_function_decl);
1448 if (kind == m68k_fk_normal_function)
1449 /* We can always sibcall from a normal function, because it's
1450 undefined if it is calling an interrupt function. */
1451 return true;
1452
1453 /* Otherwise we can only sibcall if the function kind is known to be
1454 the same. */
1455 if (decl && m68k_get_function_kind (decl) == kind)
1456 return true;
1457
1458 return false;
1459 }
1460
1461 /* On the m68k all args are always pushed. */
1462
1463 static rtx
1464 m68k_function_arg (CUMULATIVE_ARGS *cum ATTRIBUTE_UNUSED,
1465 enum machine_mode mode ATTRIBUTE_UNUSED,
1466 const_tree type ATTRIBUTE_UNUSED,
1467 bool named ATTRIBUTE_UNUSED)
1468 {
1469 return NULL_RTX;
1470 }
1471
1472 static void
1473 m68k_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
1474 const_tree type, bool named ATTRIBUTE_UNUSED)
1475 {
1476 *cum += (mode != BLKmode
1477 ? (GET_MODE_SIZE (mode) + 3) & ~3
1478 : (int_size_in_bytes (type) + 3) & ~3);
1479 }
1480
1481 /* Convert X to a legitimate function call memory reference and return the
1482 result. */
1483
1484 rtx
1485 m68k_legitimize_call_address (rtx x)
1486 {
1487 gcc_assert (MEM_P (x));
1488 if (call_operand (XEXP (x, 0), VOIDmode))
1489 return x;
1490 return replace_equiv_address (x, force_reg (Pmode, XEXP (x, 0)));
1491 }
1492
1493 /* Likewise for sibling calls. */
1494
1495 rtx
1496 m68k_legitimize_sibcall_address (rtx x)
1497 {
1498 gcc_assert (MEM_P (x));
1499 if (sibcall_operand (XEXP (x, 0), VOIDmode))
1500 return x;
1501
1502 emit_move_insn (gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM), XEXP (x, 0));
1503 return replace_equiv_address (x, gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM));
1504 }
1505
1506 /* Convert X to a legitimate address and return it if successful. Otherwise
1507 return X.
1508
1509 For the 68000, we handle X+REG by loading X into a register R and
1510 using R+REG. R will go in an address reg and indexing will be used.
1511 However, if REG is a broken-out memory address or multiplication,
1512 nothing needs to be done because REG can certainly go in an address reg. */
1513
1514 static rtx
1515 m68k_legitimize_address (rtx x, rtx oldx, enum machine_mode mode)
1516 {
1517 if (m68k_tls_symbol_p (x))
1518 return m68k_legitimize_tls_address (x);
1519
1520 if (GET_CODE (x) == PLUS)
1521 {
1522 int ch = (x) != (oldx);
1523 int copied = 0;
1524
1525 #define COPY_ONCE(Y) if (!copied) { Y = copy_rtx (Y); copied = ch = 1; }
1526
1527 if (GET_CODE (XEXP (x, 0)) == MULT)
1528 {
1529 COPY_ONCE (x);
1530 XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
1531 }
1532 if (GET_CODE (XEXP (x, 1)) == MULT)
1533 {
1534 COPY_ONCE (x);
1535 XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
1536 }
1537 if (ch)
1538 {
1539 if (GET_CODE (XEXP (x, 1)) == REG
1540 && GET_CODE (XEXP (x, 0)) == REG)
1541 {
1542 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
1543 {
1544 COPY_ONCE (x);
1545 x = force_operand (x, 0);
1546 }
1547 return x;
1548 }
1549 if (memory_address_p (mode, x))
1550 return x;
1551 }
1552 if (GET_CODE (XEXP (x, 0)) == REG
1553 || (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
1554 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
1555 && GET_MODE (XEXP (XEXP (x, 0), 0)) == HImode))
1556 {
1557 rtx temp = gen_reg_rtx (Pmode);
1558 rtx val = force_operand (XEXP (x, 1), 0);
1559 emit_move_insn (temp, val);
1560 COPY_ONCE (x);
1561 XEXP (x, 1) = temp;
1562 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1563 && GET_CODE (XEXP (x, 0)) == REG)
1564 x = force_operand (x, 0);
1565 }
1566 else if (GET_CODE (XEXP (x, 1)) == REG
1567 || (GET_CODE (XEXP (x, 1)) == SIGN_EXTEND
1568 && GET_CODE (XEXP (XEXP (x, 1), 0)) == REG
1569 && GET_MODE (XEXP (XEXP (x, 1), 0)) == HImode))
1570 {
1571 rtx temp = gen_reg_rtx (Pmode);
1572 rtx val = force_operand (XEXP (x, 0), 0);
1573 emit_move_insn (temp, val);
1574 COPY_ONCE (x);
1575 XEXP (x, 0) = temp;
1576 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT
1577 && GET_CODE (XEXP (x, 1)) == REG)
1578 x = force_operand (x, 0);
1579 }
1580 }
1581
1582 return x;
1583 }
1584
1585
1586 /* Output a dbCC; jCC sequence. Note we do not handle the
1587 floating point version of this sequence (Fdbcc). We also
1588 do not handle alternative conditions when CC_NO_OVERFLOW is
1589 set. It is assumed that valid_dbcc_comparison_p and flags_in_68881 will
1590 kick those out before we get here. */
1591
1592 void
1593 output_dbcc_and_branch (rtx *operands)
1594 {
1595 switch (GET_CODE (operands[3]))
1596 {
1597 case EQ:
1598 output_asm_insn ("dbeq %0,%l1\n\tjeq %l2", operands);
1599 break;
1600
1601 case NE:
1602 output_asm_insn ("dbne %0,%l1\n\tjne %l2", operands);
1603 break;
1604
1605 case GT:
1606 output_asm_insn ("dbgt %0,%l1\n\tjgt %l2", operands);
1607 break;
1608
1609 case GTU:
1610 output_asm_insn ("dbhi %0,%l1\n\tjhi %l2", operands);
1611 break;
1612
1613 case LT:
1614 output_asm_insn ("dblt %0,%l1\n\tjlt %l2", operands);
1615 break;
1616
1617 case LTU:
1618 output_asm_insn ("dbcs %0,%l1\n\tjcs %l2", operands);
1619 break;
1620
1621 case GE:
1622 output_asm_insn ("dbge %0,%l1\n\tjge %l2", operands);
1623 break;
1624
1625 case GEU:
1626 output_asm_insn ("dbcc %0,%l1\n\tjcc %l2", operands);
1627 break;
1628
1629 case LE:
1630 output_asm_insn ("dble %0,%l1\n\tjle %l2", operands);
1631 break;
1632
1633 case LEU:
1634 output_asm_insn ("dbls %0,%l1\n\tjls %l2", operands);
1635 break;
1636
1637 default:
1638 gcc_unreachable ();
1639 }
1640
1641 /* If the decrement is to be done in SImode, then we have
1642 to compensate for the fact that dbcc decrements in HImode. */
1643 switch (GET_MODE (operands[0]))
1644 {
1645 case SImode:
1646 output_asm_insn ("clr%.w %0\n\tsubq%.l #1,%0\n\tjpl %l1", operands);
1647 break;
1648
1649 case HImode:
1650 break;
1651
1652 default:
1653 gcc_unreachable ();
1654 }
1655 }
1656
1657 const char *
1658 output_scc_di (rtx op, rtx operand1, rtx operand2, rtx dest)
1659 {
1660 rtx loperands[7];
1661 enum rtx_code op_code = GET_CODE (op);
1662
1663 /* This does not produce a useful cc. */
1664 CC_STATUS_INIT;
1665
1666 /* The m68k cmp.l instruction requires operand1 to be a reg as used
1667 below. Swap the operands and change the op if these requirements
1668 are not fulfilled. */
1669 if (GET_CODE (operand2) == REG && GET_CODE (operand1) != REG)
1670 {
1671 rtx tmp = operand1;
1672
1673 operand1 = operand2;
1674 operand2 = tmp;
1675 op_code = swap_condition (op_code);
1676 }
1677 loperands[0] = operand1;
1678 if (GET_CODE (operand1) == REG)
1679 loperands[1] = gen_rtx_REG (SImode, REGNO (operand1) + 1);
1680 else
1681 loperands[1] = adjust_address (operand1, SImode, 4);
1682 if (operand2 != const0_rtx)
1683 {
1684 loperands[2] = operand2;
1685 if (GET_CODE (operand2) == REG)
1686 loperands[3] = gen_rtx_REG (SImode, REGNO (operand2) + 1);
1687 else
1688 loperands[3] = adjust_address (operand2, SImode, 4);
1689 }
1690 loperands[4] = gen_label_rtx ();
1691 if (operand2 != const0_rtx)
1692 output_asm_insn ("cmp%.l %2,%0\n\tjne %l4\n\tcmp%.l %3,%1", loperands);
1693 else
1694 {
1695 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[0]))
1696 output_asm_insn ("tst%.l %0", loperands);
1697 else
1698 output_asm_insn ("cmp%.w #0,%0", loperands);
1699
1700 output_asm_insn ("jne %l4", loperands);
1701
1702 if (TARGET_68020 || TARGET_COLDFIRE || ! ADDRESS_REG_P (loperands[1]))
1703 output_asm_insn ("tst%.l %1", loperands);
1704 else
1705 output_asm_insn ("cmp%.w #0,%1", loperands);
1706 }
1707
1708 loperands[5] = dest;
1709
1710 switch (op_code)
1711 {
1712 case EQ:
1713 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1714 CODE_LABEL_NUMBER (loperands[4]));
1715 output_asm_insn ("seq %5", loperands);
1716 break;
1717
1718 case NE:
1719 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1720 CODE_LABEL_NUMBER (loperands[4]));
1721 output_asm_insn ("sne %5", loperands);
1722 break;
1723
1724 case GT:
1725 loperands[6] = gen_label_rtx ();
1726 output_asm_insn ("shi %5\n\tjra %l6", loperands);
1727 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1728 CODE_LABEL_NUMBER (loperands[4]));
1729 output_asm_insn ("sgt %5", loperands);
1730 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1731 CODE_LABEL_NUMBER (loperands[6]));
1732 break;
1733
1734 case GTU:
1735 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1736 CODE_LABEL_NUMBER (loperands[4]));
1737 output_asm_insn ("shi %5", loperands);
1738 break;
1739
1740 case LT:
1741 loperands[6] = gen_label_rtx ();
1742 output_asm_insn ("scs %5\n\tjra %l6", loperands);
1743 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1744 CODE_LABEL_NUMBER (loperands[4]));
1745 output_asm_insn ("slt %5", loperands);
1746 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1747 CODE_LABEL_NUMBER (loperands[6]));
1748 break;
1749
1750 case LTU:
1751 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1752 CODE_LABEL_NUMBER (loperands[4]));
1753 output_asm_insn ("scs %5", loperands);
1754 break;
1755
1756 case GE:
1757 loperands[6] = gen_label_rtx ();
1758 output_asm_insn ("scc %5\n\tjra %l6", loperands);
1759 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1760 CODE_LABEL_NUMBER (loperands[4]));
1761 output_asm_insn ("sge %5", loperands);
1762 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1763 CODE_LABEL_NUMBER (loperands[6]));
1764 break;
1765
1766 case GEU:
1767 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1768 CODE_LABEL_NUMBER (loperands[4]));
1769 output_asm_insn ("scc %5", loperands);
1770 break;
1771
1772 case LE:
1773 loperands[6] = gen_label_rtx ();
1774 output_asm_insn ("sls %5\n\tjra %l6", loperands);
1775 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1776 CODE_LABEL_NUMBER (loperands[4]));
1777 output_asm_insn ("sle %5", loperands);
1778 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1779 CODE_LABEL_NUMBER (loperands[6]));
1780 break;
1781
1782 case LEU:
1783 (*targetm.asm_out.internal_label) (asm_out_file, "L",
1784 CODE_LABEL_NUMBER (loperands[4]));
1785 output_asm_insn ("sls %5", loperands);
1786 break;
1787
1788 default:
1789 gcc_unreachable ();
1790 }
1791 return "";
1792 }
1793
1794 const char *
1795 output_btst (rtx *operands, rtx countop, rtx dataop, rtx insn, int signpos)
1796 {
1797 operands[0] = countop;
1798 operands[1] = dataop;
1799
1800 if (GET_CODE (countop) == CONST_INT)
1801 {
1802 register int count = INTVAL (countop);
1803 /* If COUNT is bigger than size of storage unit in use,
1804 advance to the containing unit of same size. */
1805 if (count > signpos)
1806 {
1807 int offset = (count & ~signpos) / 8;
1808 count = count & signpos;
1809 operands[1] = dataop = adjust_address (dataop, QImode, offset);
1810 }
1811 if (count == signpos)
1812 cc_status.flags = CC_NOT_POSITIVE | CC_Z_IN_NOT_N;
1813 else
1814 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N;
1815
1816 /* These three statements used to use next_insns_test_no...
1817 but it appears that this should do the same job. */
1818 if (count == 31
1819 && next_insn_tests_no_inequality (insn))
1820 return "tst%.l %1";
1821 if (count == 15
1822 && next_insn_tests_no_inequality (insn))
1823 return "tst%.w %1";
1824 if (count == 7
1825 && next_insn_tests_no_inequality (insn))
1826 return "tst%.b %1";
1827 /* Try to use `movew to ccr' followed by the appropriate branch insn.
1828 On some m68k variants unfortunately that's slower than btst.
1829 On 68000 and higher, that should also work for all HImode operands. */
1830 if (TUNE_CPU32 || TARGET_COLDFIRE || optimize_size)
1831 {
1832 if (count == 3 && DATA_REG_P (operands[1])
1833 && next_insn_tests_no_inequality (insn))
1834 {
1835 cc_status.flags = CC_NOT_NEGATIVE | CC_Z_IN_NOT_N | CC_NO_OVERFLOW;
1836 return "move%.w %1,%%ccr";
1837 }
1838 if (count == 2 && DATA_REG_P (operands[1])
1839 && next_insn_tests_no_inequality (insn))
1840 {
1841 cc_status.flags = CC_NOT_NEGATIVE | CC_INVERTED | CC_NO_OVERFLOW;
1842 return "move%.w %1,%%ccr";
1843 }
1844 /* count == 1 followed by bvc/bvs and
1845 count == 0 followed by bcc/bcs are also possible, but need
1846 m68k-specific CC_Z_IN_NOT_V and CC_Z_IN_NOT_C flags. */
1847 }
1848
1849 cc_status.flags = CC_NOT_NEGATIVE;
1850 }
1851 return "btst %0,%1";
1852 }
1853 \f
1854 /* Return true if X is a legitimate base register. STRICT_P says
1855 whether we need strict checking. */
1856
1857 bool
1858 m68k_legitimate_base_reg_p (rtx x, bool strict_p)
1859 {
1860 /* Allow SUBREG everywhere we allow REG. This results in better code. */
1861 if (!strict_p && GET_CODE (x) == SUBREG)
1862 x = SUBREG_REG (x);
1863
1864 return (REG_P (x)
1865 && (strict_p
1866 ? REGNO_OK_FOR_BASE_P (REGNO (x))
1867 : REGNO_OK_FOR_BASE_NONSTRICT_P (REGNO (x))));
1868 }
1869
1870 /* Return true if X is a legitimate index register. STRICT_P says
1871 whether we need strict checking. */
1872
1873 bool
1874 m68k_legitimate_index_reg_p (rtx x, bool strict_p)
1875 {
1876 if (!strict_p && GET_CODE (x) == SUBREG)
1877 x = SUBREG_REG (x);
1878
1879 return (REG_P (x)
1880 && (strict_p
1881 ? REGNO_OK_FOR_INDEX_P (REGNO (x))
1882 : REGNO_OK_FOR_INDEX_NONSTRICT_P (REGNO (x))));
1883 }
1884
1885 /* Return true if X is a legitimate index expression for a (d8,An,Xn) or
1886 (bd,An,Xn) addressing mode. Fill in the INDEX and SCALE fields of
1887 ADDRESS if so. STRICT_P says whether we need strict checking. */
1888
1889 static bool
1890 m68k_decompose_index (rtx x, bool strict_p, struct m68k_address *address)
1891 {
1892 int scale;
1893
1894 /* Check for a scale factor. */
1895 scale = 1;
1896 if ((TARGET_68020 || TARGET_COLDFIRE)
1897 && GET_CODE (x) == MULT
1898 && GET_CODE (XEXP (x, 1)) == CONST_INT
1899 && (INTVAL (XEXP (x, 1)) == 2
1900 || INTVAL (XEXP (x, 1)) == 4
1901 || (INTVAL (XEXP (x, 1)) == 8
1902 && (TARGET_COLDFIRE_FPU || !TARGET_COLDFIRE))))
1903 {
1904 scale = INTVAL (XEXP (x, 1));
1905 x = XEXP (x, 0);
1906 }
1907
1908 /* Check for a word extension. */
1909 if (!TARGET_COLDFIRE
1910 && GET_CODE (x) == SIGN_EXTEND
1911 && GET_MODE (XEXP (x, 0)) == HImode)
1912 x = XEXP (x, 0);
1913
1914 if (m68k_legitimate_index_reg_p (x, strict_p))
1915 {
1916 address->scale = scale;
1917 address->index = x;
1918 return true;
1919 }
1920
1921 return false;
1922 }
1923
1924 /* Return true if X is an illegitimate symbolic constant. */
1925
1926 bool
1927 m68k_illegitimate_symbolic_constant_p (rtx x)
1928 {
1929 rtx base, offset;
1930
1931 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P)
1932 {
1933 split_const (x, &base, &offset);
1934 if (GET_CODE (base) == SYMBOL_REF
1935 && !offset_within_block_p (base, INTVAL (offset)))
1936 return true;
1937 }
1938 return m68k_tls_reference_p (x, false);
1939 }
1940
1941 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1942
1943 static bool
1944 m68k_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1945 {
1946 return m68k_illegitimate_symbolic_constant_p (x);
1947 }
1948
1949 /* Return true if X is a legitimate constant address that can reach
1950 bytes in the range [X, X + REACH). STRICT_P says whether we need
1951 strict checking. */
1952
1953 static bool
1954 m68k_legitimate_constant_address_p (rtx x, unsigned int reach, bool strict_p)
1955 {
1956 rtx base, offset;
1957
1958 if (!CONSTANT_ADDRESS_P (x))
1959 return false;
1960
1961 if (flag_pic
1962 && !(strict_p && TARGET_PCREL)
1963 && symbolic_operand (x, VOIDmode))
1964 return false;
1965
1966 if (M68K_OFFSETS_MUST_BE_WITHIN_SECTIONS_P && reach > 1)
1967 {
1968 split_const (x, &base, &offset);
1969 if (GET_CODE (base) == SYMBOL_REF
1970 && !offset_within_block_p (base, INTVAL (offset) + reach - 1))
1971 return false;
1972 }
1973
1974 return !m68k_tls_reference_p (x, false);
1975 }
1976
1977 /* Return true if X is a LABEL_REF for a jump table. Assume that unplaced
1978 labels will become jump tables. */
1979
1980 static bool
1981 m68k_jump_table_ref_p (rtx x)
1982 {
1983 if (GET_CODE (x) != LABEL_REF)
1984 return false;
1985
1986 x = XEXP (x, 0);
1987 if (!NEXT_INSN (x) && !PREV_INSN (x))
1988 return true;
1989
1990 x = next_nonnote_insn (x);
1991 return x && JUMP_TABLE_DATA_P (x);
1992 }
1993
1994 /* Return true if X is a legitimate address for values of mode MODE.
1995 STRICT_P says whether strict checking is needed. If the address
1996 is valid, describe its components in *ADDRESS. */
1997
1998 static bool
1999 m68k_decompose_address (enum machine_mode mode, rtx x,
2000 bool strict_p, struct m68k_address *address)
2001 {
2002 unsigned int reach;
2003
2004 memset (address, 0, sizeof (*address));
2005
2006 if (mode == BLKmode)
2007 reach = 1;
2008 else
2009 reach = GET_MODE_SIZE (mode);
2010
2011 /* Check for (An) (mode 2). */
2012 if (m68k_legitimate_base_reg_p (x, strict_p))
2013 {
2014 address->base = x;
2015 return true;
2016 }
2017
2018 /* Check for -(An) and (An)+ (modes 3 and 4). */
2019 if ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_INC)
2020 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2021 {
2022 address->code = GET_CODE (x);
2023 address->base = XEXP (x, 0);
2024 return true;
2025 }
2026
2027 /* Check for (d16,An) (mode 5). */
2028 if (GET_CODE (x) == PLUS
2029 && GET_CODE (XEXP (x, 1)) == CONST_INT
2030 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x8000, 0x8000 - reach)
2031 && m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p))
2032 {
2033 address->base = XEXP (x, 0);
2034 address->offset = XEXP (x, 1);
2035 return true;
2036 }
2037
2038 /* Check for GOT loads. These are (bd,An,Xn) addresses if
2039 TARGET_68020 && flag_pic == 2, otherwise they are (d16,An)
2040 addresses. */
2041 if (GET_CODE (x) == PLUS
2042 && XEXP (x, 0) == pic_offset_table_rtx)
2043 {
2044 /* As we are processing a PLUS, do not unwrap RELOC32 symbols --
2045 they are invalid in this context. */
2046 if (m68k_unwrap_symbol (XEXP (x, 1), false) != XEXP (x, 1))
2047 {
2048 address->base = XEXP (x, 0);
2049 address->offset = XEXP (x, 1);
2050 return true;
2051 }
2052 }
2053
2054 /* The ColdFire FPU only accepts addressing modes 2-5. */
2055 if (TARGET_COLDFIRE_FPU && GET_MODE_CLASS (mode) == MODE_FLOAT)
2056 return false;
2057
2058 /* Check for (xxx).w and (xxx).l. Also, in the TARGET_PCREL case,
2059 check for (d16,PC) or (bd,PC,Xn) with a suppressed index register.
2060 All these modes are variations of mode 7. */
2061 if (m68k_legitimate_constant_address_p (x, reach, strict_p))
2062 {
2063 address->offset = x;
2064 return true;
2065 }
2066
2067 /* Check for (d8,PC,Xn), a mode 7 form. This case is needed for
2068 tablejumps.
2069
2070 ??? do_tablejump creates these addresses before placing the target
2071 label, so we have to assume that unplaced labels are jump table
2072 references. It seems unlikely that we would ever generate indexed
2073 accesses to unplaced labels in other cases. */
2074 if (GET_CODE (x) == PLUS
2075 && m68k_jump_table_ref_p (XEXP (x, 1))
2076 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2077 {
2078 address->offset = XEXP (x, 1);
2079 return true;
2080 }
2081
2082 /* Everything hereafter deals with (d8,An,Xn.SIZE*SCALE) or
2083 (bd,An,Xn.SIZE*SCALE) addresses. */
2084
2085 if (TARGET_68020)
2086 {
2087 /* Check for a nonzero base displacement. */
2088 if (GET_CODE (x) == PLUS
2089 && m68k_legitimate_constant_address_p (XEXP (x, 1), reach, strict_p))
2090 {
2091 address->offset = XEXP (x, 1);
2092 x = XEXP (x, 0);
2093 }
2094
2095 /* Check for a suppressed index register. */
2096 if (m68k_legitimate_base_reg_p (x, strict_p))
2097 {
2098 address->base = x;
2099 return true;
2100 }
2101
2102 /* Check for a suppressed base register. Do not allow this case
2103 for non-symbolic offsets as it effectively gives gcc freedom
2104 to treat data registers as base registers, which can generate
2105 worse code. */
2106 if (address->offset
2107 && symbolic_operand (address->offset, VOIDmode)
2108 && m68k_decompose_index (x, strict_p, address))
2109 return true;
2110 }
2111 else
2112 {
2113 /* Check for a nonzero base displacement. */
2114 if (GET_CODE (x) == PLUS
2115 && GET_CODE (XEXP (x, 1)) == CONST_INT
2116 && IN_RANGE (INTVAL (XEXP (x, 1)), -0x80, 0x80 - reach))
2117 {
2118 address->offset = XEXP (x, 1);
2119 x = XEXP (x, 0);
2120 }
2121 }
2122
2123 /* We now expect the sum of a base and an index. */
2124 if (GET_CODE (x) == PLUS)
2125 {
2126 if (m68k_legitimate_base_reg_p (XEXP (x, 0), strict_p)
2127 && m68k_decompose_index (XEXP (x, 1), strict_p, address))
2128 {
2129 address->base = XEXP (x, 0);
2130 return true;
2131 }
2132
2133 if (m68k_legitimate_base_reg_p (XEXP (x, 1), strict_p)
2134 && m68k_decompose_index (XEXP (x, 0), strict_p, address))
2135 {
2136 address->base = XEXP (x, 1);
2137 return true;
2138 }
2139 }
2140 return false;
2141 }
2142
2143 /* Return true if X is a legitimate address for values of mode MODE.
2144 STRICT_P says whether strict checking is needed. */
2145
2146 bool
2147 m68k_legitimate_address_p (enum machine_mode mode, rtx x, bool strict_p)
2148 {
2149 struct m68k_address address;
2150
2151 return m68k_decompose_address (mode, x, strict_p, &address);
2152 }
2153
2154 /* Return true if X is a memory, describing its address in ADDRESS if so.
2155 Apply strict checking if called during or after reload. */
2156
2157 static bool
2158 m68k_legitimate_mem_p (rtx x, struct m68k_address *address)
2159 {
2160 return (MEM_P (x)
2161 && m68k_decompose_address (GET_MODE (x), XEXP (x, 0),
2162 reload_in_progress || reload_completed,
2163 address));
2164 }
2165
2166 /* Return true if X matches the 'Q' constraint. It must be a memory
2167 with a base address and no constant offset or index. */
2168
2169 bool
2170 m68k_matches_q_p (rtx x)
2171 {
2172 struct m68k_address address;
2173
2174 return (m68k_legitimate_mem_p (x, &address)
2175 && address.code == UNKNOWN
2176 && address.base
2177 && !address.offset
2178 && !address.index);
2179 }
2180
2181 /* Return true if X matches the 'U' constraint. It must be a base address
2182 with a constant offset and no index. */
2183
2184 bool
2185 m68k_matches_u_p (rtx x)
2186 {
2187 struct m68k_address address;
2188
2189 return (m68k_legitimate_mem_p (x, &address)
2190 && address.code == UNKNOWN
2191 && address.base
2192 && address.offset
2193 && !address.index);
2194 }
2195
2196 /* Return GOT pointer. */
2197
2198 static rtx
2199 m68k_get_gp (void)
2200 {
2201 if (pic_offset_table_rtx == NULL_RTX)
2202 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_REG);
2203
2204 crtl->uses_pic_offset_table = 1;
2205
2206 return pic_offset_table_rtx;
2207 }
2208
2209 /* M68K relocations, used to distinguish GOT and TLS relocations in UNSPEC
2210 wrappers. */
2211 enum m68k_reloc { RELOC_GOT, RELOC_TLSGD, RELOC_TLSLDM, RELOC_TLSLDO,
2212 RELOC_TLSIE, RELOC_TLSLE };
2213
2214 #define TLS_RELOC_P(RELOC) ((RELOC) != RELOC_GOT)
2215
2216 /* Wrap symbol X into unspec representing relocation RELOC.
2217 BASE_REG - register that should be added to the result.
2218 TEMP_REG - if non-null, temporary register. */
2219
2220 static rtx
2221 m68k_wrap_symbol (rtx x, enum m68k_reloc reloc, rtx base_reg, rtx temp_reg)
2222 {
2223 bool use_x_p;
2224
2225 use_x_p = (base_reg == pic_offset_table_rtx) ? TARGET_XGOT : TARGET_XTLS;
2226
2227 if (TARGET_COLDFIRE && use_x_p)
2228 /* When compiling with -mx{got, tls} switch the code will look like this:
2229
2230 move.l <X>@<RELOC>,<TEMP_REG>
2231 add.l <BASE_REG>,<TEMP_REG> */
2232 {
2233 /* Wrap X in UNSPEC_??? to tip m68k_output_addr_const_extra
2234 to put @RELOC after reference. */
2235 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2236 UNSPEC_RELOC32);
2237 x = gen_rtx_CONST (Pmode, x);
2238
2239 if (temp_reg == NULL)
2240 {
2241 gcc_assert (can_create_pseudo_p ());
2242 temp_reg = gen_reg_rtx (Pmode);
2243 }
2244
2245 emit_move_insn (temp_reg, x);
2246 emit_insn (gen_addsi3 (temp_reg, temp_reg, base_reg));
2247 x = temp_reg;
2248 }
2249 else
2250 {
2251 x = gen_rtx_UNSPEC (Pmode, gen_rtvec (2, x, GEN_INT (reloc)),
2252 UNSPEC_RELOC16);
2253 x = gen_rtx_CONST (Pmode, x);
2254
2255 x = gen_rtx_PLUS (Pmode, base_reg, x);
2256 }
2257
2258 return x;
2259 }
2260
2261 /* Helper for m68k_unwrap_symbol.
2262 Also, if unwrapping was successful (that is if (ORIG != <return value>)),
2263 sets *RELOC_PTR to relocation type for the symbol. */
2264
2265 static rtx
2266 m68k_unwrap_symbol_1 (rtx orig, bool unwrap_reloc32_p,
2267 enum m68k_reloc *reloc_ptr)
2268 {
2269 if (GET_CODE (orig) == CONST)
2270 {
2271 rtx x;
2272 enum m68k_reloc dummy;
2273
2274 x = XEXP (orig, 0);
2275
2276 if (reloc_ptr == NULL)
2277 reloc_ptr = &dummy;
2278
2279 /* Handle an addend. */
2280 if ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS)
2281 && CONST_INT_P (XEXP (x, 1)))
2282 x = XEXP (x, 0);
2283
2284 if (GET_CODE (x) == UNSPEC)
2285 {
2286 switch (XINT (x, 1))
2287 {
2288 case UNSPEC_RELOC16:
2289 orig = XVECEXP (x, 0, 0);
2290 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2291 break;
2292
2293 case UNSPEC_RELOC32:
2294 if (unwrap_reloc32_p)
2295 {
2296 orig = XVECEXP (x, 0, 0);
2297 *reloc_ptr = (enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1));
2298 }
2299 break;
2300
2301 default:
2302 break;
2303 }
2304 }
2305 }
2306
2307 return orig;
2308 }
2309
2310 /* Unwrap symbol from UNSPEC_RELOC16 and, if unwrap_reloc32_p,
2311 UNSPEC_RELOC32 wrappers. */
2312
2313 rtx
2314 m68k_unwrap_symbol (rtx orig, bool unwrap_reloc32_p)
2315 {
2316 return m68k_unwrap_symbol_1 (orig, unwrap_reloc32_p, NULL);
2317 }
2318
2319 /* Helper for m68k_final_prescan_insn. */
2320
2321 static int
2322 m68k_final_prescan_insn_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2323 {
2324 rtx x = *x_ptr;
2325
2326 if (m68k_unwrap_symbol (x, true) != x)
2327 /* For rationale of the below, see comment in m68k_final_prescan_insn. */
2328 {
2329 rtx plus;
2330
2331 gcc_assert (GET_CODE (x) == CONST);
2332 plus = XEXP (x, 0);
2333
2334 if (GET_CODE (plus) == PLUS || GET_CODE (plus) == MINUS)
2335 {
2336 rtx unspec;
2337 rtx addend;
2338
2339 unspec = XEXP (plus, 0);
2340 gcc_assert (GET_CODE (unspec) == UNSPEC);
2341 addend = XEXP (plus, 1);
2342 gcc_assert (CONST_INT_P (addend));
2343
2344 /* We now have all the pieces, rearrange them. */
2345
2346 /* Move symbol to plus. */
2347 XEXP (plus, 0) = XVECEXP (unspec, 0, 0);
2348
2349 /* Move plus inside unspec. */
2350 XVECEXP (unspec, 0, 0) = plus;
2351
2352 /* Move unspec to top level of const. */
2353 XEXP (x, 0) = unspec;
2354 }
2355
2356 return -1;
2357 }
2358
2359 return 0;
2360 }
2361
2362 /* Prescan insn before outputing assembler for it. */
2363
2364 void
2365 m68k_final_prescan_insn (rtx insn ATTRIBUTE_UNUSED,
2366 rtx *operands, int n_operands)
2367 {
2368 int i;
2369
2370 /* Combine and, possibly, other optimizations may do good job
2371 converting
2372 (const (unspec [(symbol)]))
2373 into
2374 (const (plus (unspec [(symbol)])
2375 (const_int N))).
2376 The problem with this is emitting @TLS or @GOT decorations.
2377 The decoration is emitted when processing (unspec), so the
2378 result would be "#symbol@TLSLE+N" instead of "#symbol+N@TLSLE".
2379
2380 It seems that the easiest solution to this is to convert such
2381 operands to
2382 (const (unspec [(plus (symbol)
2383 (const_int N))])).
2384 Note, that the top level of operand remains intact, so we don't have
2385 to patch up anything outside of the operand. */
2386
2387 for (i = 0; i < n_operands; ++i)
2388 {
2389 rtx op;
2390
2391 op = operands[i];
2392
2393 for_each_rtx (&op, m68k_final_prescan_insn_1, NULL);
2394 }
2395 }
2396
2397 /* Move X to a register and add REG_EQUAL note pointing to ORIG.
2398 If REG is non-null, use it; generate new pseudo otherwise. */
2399
2400 static rtx
2401 m68k_move_to_reg (rtx x, rtx orig, rtx reg)
2402 {
2403 rtx insn;
2404
2405 if (reg == NULL_RTX)
2406 {
2407 gcc_assert (can_create_pseudo_p ());
2408 reg = gen_reg_rtx (Pmode);
2409 }
2410
2411 insn = emit_move_insn (reg, x);
2412 /* Put a REG_EQUAL note on this insn, so that it can be optimized
2413 by loop. */
2414 set_unique_reg_note (insn, REG_EQUAL, orig);
2415
2416 return reg;
2417 }
2418
2419 /* Does the same as m68k_wrap_symbol, but returns a memory reference to
2420 GOT slot. */
2421
2422 static rtx
2423 m68k_wrap_symbol_into_got_ref (rtx x, enum m68k_reloc reloc, rtx temp_reg)
2424 {
2425 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), temp_reg);
2426
2427 x = gen_rtx_MEM (Pmode, x);
2428 MEM_READONLY_P (x) = 1;
2429
2430 return x;
2431 }
2432
2433 /* Legitimize PIC addresses. If the address is already
2434 position-independent, we return ORIG. Newly generated
2435 position-independent addresses go to REG. If we need more
2436 than one register, we lose.
2437
2438 An address is legitimized by making an indirect reference
2439 through the Global Offset Table with the name of the symbol
2440 used as an offset.
2441
2442 The assembler and linker are responsible for placing the
2443 address of the symbol in the GOT. The function prologue
2444 is responsible for initializing a5 to the starting address
2445 of the GOT.
2446
2447 The assembler is also responsible for translating a symbol name
2448 into a constant displacement from the start of the GOT.
2449
2450 A quick example may make things a little clearer:
2451
2452 When not generating PIC code to store the value 12345 into _foo
2453 we would generate the following code:
2454
2455 movel #12345, _foo
2456
2457 When generating PIC two transformations are made. First, the compiler
2458 loads the address of foo into a register. So the first transformation makes:
2459
2460 lea _foo, a0
2461 movel #12345, a0@
2462
2463 The code in movsi will intercept the lea instruction and call this
2464 routine which will transform the instructions into:
2465
2466 movel a5@(_foo:w), a0
2467 movel #12345, a0@
2468
2469
2470 That (in a nutshell) is how *all* symbol and label references are
2471 handled. */
2472
2473 rtx
2474 legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
2475 rtx reg)
2476 {
2477 rtx pic_ref = orig;
2478
2479 /* First handle a simple SYMBOL_REF or LABEL_REF */
2480 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
2481 {
2482 gcc_assert (reg);
2483
2484 pic_ref = m68k_wrap_symbol_into_got_ref (orig, RELOC_GOT, reg);
2485 pic_ref = m68k_move_to_reg (pic_ref, orig, reg);
2486 }
2487 else if (GET_CODE (orig) == CONST)
2488 {
2489 rtx base;
2490
2491 /* Make sure this has not already been legitimized. */
2492 if (m68k_unwrap_symbol (orig, true) != orig)
2493 return orig;
2494
2495 gcc_assert (reg);
2496
2497 /* legitimize both operands of the PLUS */
2498 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
2499
2500 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
2501 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
2502 base == reg ? 0 : reg);
2503
2504 if (GET_CODE (orig) == CONST_INT)
2505 pic_ref = plus_constant (base, INTVAL (orig));
2506 else
2507 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
2508 }
2509
2510 return pic_ref;
2511 }
2512
2513 /* The __tls_get_addr symbol. */
2514 static GTY(()) rtx m68k_tls_get_addr;
2515
2516 /* Return SYMBOL_REF for __tls_get_addr. */
2517
2518 static rtx
2519 m68k_get_tls_get_addr (void)
2520 {
2521 if (m68k_tls_get_addr == NULL_RTX)
2522 m68k_tls_get_addr = init_one_libfunc ("__tls_get_addr");
2523
2524 return m68k_tls_get_addr;
2525 }
2526
2527 /* Return libcall result in A0 instead of usual D0. */
2528 static bool m68k_libcall_value_in_a0_p = false;
2529
2530 /* Emit instruction sequence that calls __tls_get_addr. X is
2531 the TLS symbol we are referencing and RELOC is the symbol type to use
2532 (either TLSGD or TLSLDM). EQV is the REG_EQUAL note for the sequence
2533 emitted. A pseudo register with result of __tls_get_addr call is
2534 returned. */
2535
2536 static rtx
2537 m68k_call_tls_get_addr (rtx x, rtx eqv, enum m68k_reloc reloc)
2538 {
2539 rtx a0;
2540 rtx insns;
2541 rtx dest;
2542
2543 /* Emit the call sequence. */
2544 start_sequence ();
2545
2546 /* FIXME: Unfortunately, emit_library_call_value does not
2547 consider (plus (%a5) (const (unspec))) to be a good enough
2548 operand for push, so it forces it into a register. The bad
2549 thing about this is that combiner, due to copy propagation and other
2550 optimizations, sometimes can not later fix this. As a consequence,
2551 additional register may be allocated resulting in a spill.
2552 For reference, see args processing loops in
2553 calls.c:emit_library_call_value_1.
2554 For testcase, see gcc.target/m68k/tls-{gd, ld}.c */
2555 x = m68k_wrap_symbol (x, reloc, m68k_get_gp (), NULL_RTX);
2556
2557 /* __tls_get_addr() is not a libcall, but emitting a libcall_value
2558 is the simpliest way of generating a call. The difference between
2559 __tls_get_addr() and libcall is that the result is returned in D0
2560 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2561 which temporarily switches returning the result to A0. */
2562
2563 m68k_libcall_value_in_a0_p = true;
2564 a0 = emit_library_call_value (m68k_get_tls_get_addr (), NULL_RTX, LCT_PURE,
2565 Pmode, 1, x, Pmode);
2566 m68k_libcall_value_in_a0_p = false;
2567
2568 insns = get_insns ();
2569 end_sequence ();
2570
2571 gcc_assert (can_create_pseudo_p ());
2572 dest = gen_reg_rtx (Pmode);
2573 emit_libcall_block (insns, dest, a0, eqv);
2574
2575 return dest;
2576 }
2577
2578 /* The __tls_get_addr symbol. */
2579 static GTY(()) rtx m68k_read_tp;
2580
2581 /* Return SYMBOL_REF for __m68k_read_tp. */
2582
2583 static rtx
2584 m68k_get_m68k_read_tp (void)
2585 {
2586 if (m68k_read_tp == NULL_RTX)
2587 m68k_read_tp = init_one_libfunc ("__m68k_read_tp");
2588
2589 return m68k_read_tp;
2590 }
2591
2592 /* Emit instruction sequence that calls __m68k_read_tp.
2593 A pseudo register with result of __m68k_read_tp call is returned. */
2594
2595 static rtx
2596 m68k_call_m68k_read_tp (void)
2597 {
2598 rtx a0;
2599 rtx eqv;
2600 rtx insns;
2601 rtx dest;
2602
2603 start_sequence ();
2604
2605 /* __m68k_read_tp() is not a libcall, but emitting a libcall_value
2606 is the simpliest way of generating a call. The difference between
2607 __m68k_read_tp() and libcall is that the result is returned in D0
2608 instead of A0. To workaround this, we use m68k_libcall_value_in_a0_p
2609 which temporarily switches returning the result to A0. */
2610
2611 /* Emit the call sequence. */
2612 m68k_libcall_value_in_a0_p = true;
2613 a0 = emit_library_call_value (m68k_get_m68k_read_tp (), NULL_RTX, LCT_PURE,
2614 Pmode, 0);
2615 m68k_libcall_value_in_a0_p = false;
2616 insns = get_insns ();
2617 end_sequence ();
2618
2619 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2620 share the m68k_read_tp result with other IE/LE model accesses. */
2621 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const1_rtx), UNSPEC_RELOC32);
2622
2623 gcc_assert (can_create_pseudo_p ());
2624 dest = gen_reg_rtx (Pmode);
2625 emit_libcall_block (insns, dest, a0, eqv);
2626
2627 return dest;
2628 }
2629
2630 /* Return a legitimized address for accessing TLS SYMBOL_REF X.
2631 For explanations on instructions sequences see TLS/NPTL ABI for m68k and
2632 ColdFire. */
2633
2634 rtx
2635 m68k_legitimize_tls_address (rtx orig)
2636 {
2637 switch (SYMBOL_REF_TLS_MODEL (orig))
2638 {
2639 case TLS_MODEL_GLOBAL_DYNAMIC:
2640 orig = m68k_call_tls_get_addr (orig, orig, RELOC_TLSGD);
2641 break;
2642
2643 case TLS_MODEL_LOCAL_DYNAMIC:
2644 {
2645 rtx eqv;
2646 rtx a0;
2647 rtx x;
2648
2649 /* Attach a unique REG_EQUIV, to allow the RTL optimizers to
2650 share the LDM result with other LD model accesses. */
2651 eqv = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
2652 UNSPEC_RELOC32);
2653
2654 a0 = m68k_call_tls_get_addr (orig, eqv, RELOC_TLSLDM);
2655
2656 x = m68k_wrap_symbol (orig, RELOC_TLSLDO, a0, NULL_RTX);
2657
2658 if (can_create_pseudo_p ())
2659 x = m68k_move_to_reg (x, orig, NULL_RTX);
2660
2661 orig = x;
2662 break;
2663 }
2664
2665 case TLS_MODEL_INITIAL_EXEC:
2666 {
2667 rtx a0;
2668 rtx x;
2669
2670 a0 = m68k_call_m68k_read_tp ();
2671
2672 x = m68k_wrap_symbol_into_got_ref (orig, RELOC_TLSIE, NULL_RTX);
2673 x = gen_rtx_PLUS (Pmode, x, a0);
2674
2675 if (can_create_pseudo_p ())
2676 x = m68k_move_to_reg (x, orig, NULL_RTX);
2677
2678 orig = x;
2679 break;
2680 }
2681
2682 case TLS_MODEL_LOCAL_EXEC:
2683 {
2684 rtx a0;
2685 rtx x;
2686
2687 a0 = m68k_call_m68k_read_tp ();
2688
2689 x = m68k_wrap_symbol (orig, RELOC_TLSLE, a0, NULL_RTX);
2690
2691 if (can_create_pseudo_p ())
2692 x = m68k_move_to_reg (x, orig, NULL_RTX);
2693
2694 orig = x;
2695 break;
2696 }
2697
2698 default:
2699 gcc_unreachable ();
2700 }
2701
2702 return orig;
2703 }
2704
2705 /* Return true if X is a TLS symbol. */
2706
2707 static bool
2708 m68k_tls_symbol_p (rtx x)
2709 {
2710 if (!TARGET_HAVE_TLS)
2711 return false;
2712
2713 if (GET_CODE (x) != SYMBOL_REF)
2714 return false;
2715
2716 return SYMBOL_REF_TLS_MODEL (x) != 0;
2717 }
2718
2719 /* Helper for m68k_tls_referenced_p. */
2720
2721 static int
2722 m68k_tls_reference_p_1 (rtx *x_ptr, void *data ATTRIBUTE_UNUSED)
2723 {
2724 /* Note: this is not the same as m68k_tls_symbol_p. */
2725 if (GET_CODE (*x_ptr) == SYMBOL_REF)
2726 return SYMBOL_REF_TLS_MODEL (*x_ptr) != 0 ? 1 : 0;
2727
2728 /* Don't recurse into legitimate TLS references. */
2729 if (m68k_tls_reference_p (*x_ptr, true))
2730 return -1;
2731
2732 return 0;
2733 }
2734
2735 /* If !LEGITIMATE_P, return true if X is a TLS symbol reference,
2736 though illegitimate one.
2737 If LEGITIMATE_P, return true if X is a legitimate TLS symbol reference. */
2738
2739 bool
2740 m68k_tls_reference_p (rtx x, bool legitimate_p)
2741 {
2742 if (!TARGET_HAVE_TLS)
2743 return false;
2744
2745 if (!legitimate_p)
2746 return for_each_rtx (&x, m68k_tls_reference_p_1, NULL) == 1 ? true : false;
2747 else
2748 {
2749 enum m68k_reloc reloc = RELOC_GOT;
2750
2751 return (m68k_unwrap_symbol_1 (x, true, &reloc) != x
2752 && TLS_RELOC_P (reloc));
2753 }
2754 }
2755
2756 \f
2757
2758 #define USE_MOVQ(i) ((unsigned) ((i) + 128) <= 255)
2759
2760 /* Return the type of move that should be used for integer I. */
2761
2762 M68K_CONST_METHOD
2763 m68k_const_method (HOST_WIDE_INT i)
2764 {
2765 unsigned u;
2766
2767 if (USE_MOVQ (i))
2768 return MOVQ;
2769
2770 /* The ColdFire doesn't have byte or word operations. */
2771 /* FIXME: This may not be useful for the m68060 either. */
2772 if (!TARGET_COLDFIRE)
2773 {
2774 /* if -256 < N < 256 but N is not in range for a moveq
2775 N^ff will be, so use moveq #N^ff, dreg; not.b dreg. */
2776 if (USE_MOVQ (i ^ 0xff))
2777 return NOTB;
2778 /* Likewise, try with not.w */
2779 if (USE_MOVQ (i ^ 0xffff))
2780 return NOTW;
2781 /* This is the only value where neg.w is useful */
2782 if (i == -65408)
2783 return NEGW;
2784 }
2785
2786 /* Try also with swap. */
2787 u = i;
2788 if (USE_MOVQ ((u >> 16) | (u << 16)))
2789 return SWAP;
2790
2791 if (TARGET_ISAB)
2792 {
2793 /* Try using MVZ/MVS with an immediate value to load constants. */
2794 if (i >= 0 && i <= 65535)
2795 return MVZ;
2796 if (i >= -32768 && i <= 32767)
2797 return MVS;
2798 }
2799
2800 /* Otherwise, use move.l */
2801 return MOVL;
2802 }
2803
2804 /* Return the cost of moving constant I into a data register. */
2805
2806 static int
2807 const_int_cost (HOST_WIDE_INT i)
2808 {
2809 switch (m68k_const_method (i))
2810 {
2811 case MOVQ:
2812 /* Constants between -128 and 127 are cheap due to moveq. */
2813 return 0;
2814 case MVZ:
2815 case MVS:
2816 case NOTB:
2817 case NOTW:
2818 case NEGW:
2819 case SWAP:
2820 /* Constants easily generated by moveq + not.b/not.w/neg.w/swap. */
2821 return 1;
2822 case MOVL:
2823 return 2;
2824 default:
2825 gcc_unreachable ();
2826 }
2827 }
2828
2829 static bool
2830 m68k_rtx_costs (rtx x, int code, int outer_code, int *total,
2831 bool speed ATTRIBUTE_UNUSED)
2832 {
2833 switch (code)
2834 {
2835 case CONST_INT:
2836 /* Constant zero is super cheap due to clr instruction. */
2837 if (x == const0_rtx)
2838 *total = 0;
2839 else
2840 *total = const_int_cost (INTVAL (x));
2841 return true;
2842
2843 case CONST:
2844 case LABEL_REF:
2845 case SYMBOL_REF:
2846 *total = 3;
2847 return true;
2848
2849 case CONST_DOUBLE:
2850 /* Make 0.0 cheaper than other floating constants to
2851 encourage creating tstsf and tstdf insns. */
2852 if (outer_code == COMPARE
2853 && (x == CONST0_RTX (SFmode) || x == CONST0_RTX (DFmode)))
2854 *total = 4;
2855 else
2856 *total = 5;
2857 return true;
2858
2859 /* These are vaguely right for a 68020. */
2860 /* The costs for long multiply have been adjusted to work properly
2861 in synth_mult on the 68020, relative to an average of the time
2862 for add and the time for shift, taking away a little more because
2863 sometimes move insns are needed. */
2864 /* div?.w is relatively cheaper on 68000 counted in COSTS_N_INSNS
2865 terms. */
2866 #define MULL_COST \
2867 (TUNE_68060 ? 2 \
2868 : TUNE_68040 ? 5 \
2869 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2870 : (TUNE_CFV2 && TUNE_MAC) ? 4 \
2871 : TUNE_CFV2 ? 8 \
2872 : TARGET_COLDFIRE ? 3 : 13)
2873
2874 #define MULW_COST \
2875 (TUNE_68060 ? 2 \
2876 : TUNE_68040 ? 3 \
2877 : TUNE_68000_10 ? 5 \
2878 : (TUNE_CFV2 && TUNE_EMAC) ? 3 \
2879 : (TUNE_CFV2 && TUNE_MAC) ? 2 \
2880 : TUNE_CFV2 ? 8 \
2881 : TARGET_COLDFIRE ? 2 : 8)
2882
2883 #define DIVW_COST \
2884 (TARGET_CF_HWDIV ? 11 \
2885 : TUNE_68000_10 || TARGET_COLDFIRE ? 12 : 27)
2886
2887 case PLUS:
2888 /* An lea costs about three times as much as a simple add. */
2889 if (GET_MODE (x) == SImode
2890 && GET_CODE (XEXP (x, 1)) == REG
2891 && GET_CODE (XEXP (x, 0)) == MULT
2892 && GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
2893 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2894 && (INTVAL (XEXP (XEXP (x, 0), 1)) == 2
2895 || INTVAL (XEXP (XEXP (x, 0), 1)) == 4
2896 || INTVAL (XEXP (XEXP (x, 0), 1)) == 8))
2897 {
2898 /* lea an@(dx:l:i),am */
2899 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 2 : 3);
2900 return true;
2901 }
2902 return false;
2903
2904 case ASHIFT:
2905 case ASHIFTRT:
2906 case LSHIFTRT:
2907 if (TUNE_68060)
2908 {
2909 *total = COSTS_N_INSNS(1);
2910 return true;
2911 }
2912 if (TUNE_68000_10)
2913 {
2914 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
2915 {
2916 if (INTVAL (XEXP (x, 1)) < 16)
2917 *total = COSTS_N_INSNS (2) + INTVAL (XEXP (x, 1)) / 2;
2918 else
2919 /* We're using clrw + swap for these cases. */
2920 *total = COSTS_N_INSNS (4) + (INTVAL (XEXP (x, 1)) - 16) / 2;
2921 }
2922 else
2923 *total = COSTS_N_INSNS (10); /* Worst case. */
2924 return true;
2925 }
2926 /* A shift by a big integer takes an extra instruction. */
2927 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2928 && (INTVAL (XEXP (x, 1)) == 16))
2929 {
2930 *total = COSTS_N_INSNS (2); /* clrw;swap */
2931 return true;
2932 }
2933 if (GET_CODE (XEXP (x, 1)) == CONST_INT
2934 && !(INTVAL (XEXP (x, 1)) > 0
2935 && INTVAL (XEXP (x, 1)) <= 8))
2936 {
2937 *total = COSTS_N_INSNS (TARGET_COLDFIRE ? 1 : 3); /* lsr #i,dn */
2938 return true;
2939 }
2940 return false;
2941
2942 case MULT:
2943 if ((GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
2944 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
2945 && GET_MODE (x) == SImode)
2946 *total = COSTS_N_INSNS (MULW_COST);
2947 else if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2948 *total = COSTS_N_INSNS (MULW_COST);
2949 else
2950 *total = COSTS_N_INSNS (MULL_COST);
2951 return true;
2952
2953 case DIV:
2954 case UDIV:
2955 case MOD:
2956 case UMOD:
2957 if (GET_MODE (x) == QImode || GET_MODE (x) == HImode)
2958 *total = COSTS_N_INSNS (DIVW_COST); /* div.w */
2959 else if (TARGET_CF_HWDIV)
2960 *total = COSTS_N_INSNS (18);
2961 else
2962 *total = COSTS_N_INSNS (43); /* div.l */
2963 return true;
2964
2965 case ZERO_EXTRACT:
2966 if (outer_code == COMPARE)
2967 *total = 0;
2968 return false;
2969
2970 default:
2971 return false;
2972 }
2973 }
2974
2975 /* Return an instruction to move CONST_INT OPERANDS[1] into data register
2976 OPERANDS[0]. */
2977
2978 static const char *
2979 output_move_const_into_data_reg (rtx *operands)
2980 {
2981 HOST_WIDE_INT i;
2982
2983 i = INTVAL (operands[1]);
2984 switch (m68k_const_method (i))
2985 {
2986 case MVZ:
2987 return "mvzw %1,%0";
2988 case MVS:
2989 return "mvsw %1,%0";
2990 case MOVQ:
2991 return "moveq %1,%0";
2992 case NOTB:
2993 CC_STATUS_INIT;
2994 operands[1] = GEN_INT (i ^ 0xff);
2995 return "moveq %1,%0\n\tnot%.b %0";
2996 case NOTW:
2997 CC_STATUS_INIT;
2998 operands[1] = GEN_INT (i ^ 0xffff);
2999 return "moveq %1,%0\n\tnot%.w %0";
3000 case NEGW:
3001 CC_STATUS_INIT;
3002 return "moveq #-128,%0\n\tneg%.w %0";
3003 case SWAP:
3004 {
3005 unsigned u = i;
3006
3007 operands[1] = GEN_INT ((u << 16) | (u >> 16));
3008 return "moveq %1,%0\n\tswap %0";
3009 }
3010 case MOVL:
3011 return "move%.l %1,%0";
3012 default:
3013 gcc_unreachable ();
3014 }
3015 }
3016
3017 /* Return true if I can be handled by ISA B's mov3q instruction. */
3018
3019 bool
3020 valid_mov3q_const (HOST_WIDE_INT i)
3021 {
3022 return TARGET_ISAB && (i == -1 || IN_RANGE (i, 1, 7));
3023 }
3024
3025 /* Return an instruction to move CONST_INT OPERANDS[1] into OPERANDS[0].
3026 I is the value of OPERANDS[1]. */
3027
3028 static const char *
3029 output_move_simode_const (rtx *operands)
3030 {
3031 rtx dest;
3032 HOST_WIDE_INT src;
3033
3034 dest = operands[0];
3035 src = INTVAL (operands[1]);
3036 if (src == 0
3037 && (DATA_REG_P (dest) || MEM_P (dest))
3038 /* clr insns on 68000 read before writing. */
3039 && ((TARGET_68010 || TARGET_COLDFIRE)
3040 || !(MEM_P (dest) && MEM_VOLATILE_P (dest))))
3041 return "clr%.l %0";
3042 else if (GET_MODE (dest) == SImode && valid_mov3q_const (src))
3043 return "mov3q%.l %1,%0";
3044 else if (src == 0 && ADDRESS_REG_P (dest))
3045 return "sub%.l %0,%0";
3046 else if (DATA_REG_P (dest))
3047 return output_move_const_into_data_reg (operands);
3048 else if (ADDRESS_REG_P (dest) && IN_RANGE (src, -0x8000, 0x7fff))
3049 {
3050 if (valid_mov3q_const (src))
3051 return "mov3q%.l %1,%0";
3052 return "move%.w %1,%0";
3053 }
3054 else if (MEM_P (dest)
3055 && GET_CODE (XEXP (dest, 0)) == PRE_DEC
3056 && REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
3057 && IN_RANGE (src, -0x8000, 0x7fff))
3058 {
3059 if (valid_mov3q_const (src))
3060 return "mov3q%.l %1,%-";
3061 return "pea %a1";
3062 }
3063 return "move%.l %1,%0";
3064 }
3065
3066 const char *
3067 output_move_simode (rtx *operands)
3068 {
3069 if (GET_CODE (operands[1]) == CONST_INT)
3070 return output_move_simode_const (operands);
3071 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3072 || GET_CODE (operands[1]) == CONST)
3073 && push_operand (operands[0], SImode))
3074 return "pea %a1";
3075 else if ((GET_CODE (operands[1]) == SYMBOL_REF
3076 || GET_CODE (operands[1]) == CONST)
3077 && ADDRESS_REG_P (operands[0]))
3078 return "lea %a1,%0";
3079 return "move%.l %1,%0";
3080 }
3081
3082 const char *
3083 output_move_himode (rtx *operands)
3084 {
3085 if (GET_CODE (operands[1]) == CONST_INT)
3086 {
3087 if (operands[1] == const0_rtx
3088 && (DATA_REG_P (operands[0])
3089 || GET_CODE (operands[0]) == MEM)
3090 /* clr insns on 68000 read before writing. */
3091 && ((TARGET_68010 || TARGET_COLDFIRE)
3092 || !(GET_CODE (operands[0]) == MEM
3093 && MEM_VOLATILE_P (operands[0]))))
3094 return "clr%.w %0";
3095 else if (operands[1] == const0_rtx
3096 && ADDRESS_REG_P (operands[0]))
3097 return "sub%.l %0,%0";
3098 else if (DATA_REG_P (operands[0])
3099 && INTVAL (operands[1]) < 128
3100 && INTVAL (operands[1]) >= -128)
3101 return "moveq %1,%0";
3102 else if (INTVAL (operands[1]) < 0x8000
3103 && INTVAL (operands[1]) >= -0x8000)
3104 return "move%.w %1,%0";
3105 }
3106 else if (CONSTANT_P (operands[1]))
3107 return "move%.l %1,%0";
3108 return "move%.w %1,%0";
3109 }
3110
3111 const char *
3112 output_move_qimode (rtx *operands)
3113 {
3114 /* 68k family always modifies the stack pointer by at least 2, even for
3115 byte pushes. The 5200 (ColdFire) does not do this. */
3116
3117 /* This case is generated by pushqi1 pattern now. */
3118 gcc_assert (!(GET_CODE (operands[0]) == MEM
3119 && GET_CODE (XEXP (operands[0], 0)) == PRE_DEC
3120 && XEXP (XEXP (operands[0], 0), 0) == stack_pointer_rtx
3121 && ! ADDRESS_REG_P (operands[1])
3122 && ! TARGET_COLDFIRE));
3123
3124 /* clr and st insns on 68000 read before writing. */
3125 if (!ADDRESS_REG_P (operands[0])
3126 && ((TARGET_68010 || TARGET_COLDFIRE)
3127 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3128 {
3129 if (operands[1] == const0_rtx)
3130 return "clr%.b %0";
3131 if ((!TARGET_COLDFIRE || DATA_REG_P (operands[0]))
3132 && GET_CODE (operands[1]) == CONST_INT
3133 && (INTVAL (operands[1]) & 255) == 255)
3134 {
3135 CC_STATUS_INIT;
3136 return "st %0";
3137 }
3138 }
3139 if (GET_CODE (operands[1]) == CONST_INT
3140 && DATA_REG_P (operands[0])
3141 && INTVAL (operands[1]) < 128
3142 && INTVAL (operands[1]) >= -128)
3143 return "moveq %1,%0";
3144 if (operands[1] == const0_rtx && ADDRESS_REG_P (operands[0]))
3145 return "sub%.l %0,%0";
3146 if (GET_CODE (operands[1]) != CONST_INT && CONSTANT_P (operands[1]))
3147 return "move%.l %1,%0";
3148 /* 68k family (including the 5200 ColdFire) does not support byte moves to
3149 from address registers. */
3150 if (ADDRESS_REG_P (operands[0]) || ADDRESS_REG_P (operands[1]))
3151 return "move%.w %1,%0";
3152 return "move%.b %1,%0";
3153 }
3154
3155 const char *
3156 output_move_stricthi (rtx *operands)
3157 {
3158 if (operands[1] == const0_rtx
3159 /* clr insns on 68000 read before writing. */
3160 && ((TARGET_68010 || TARGET_COLDFIRE)
3161 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3162 return "clr%.w %0";
3163 return "move%.w %1,%0";
3164 }
3165
3166 const char *
3167 output_move_strictqi (rtx *operands)
3168 {
3169 if (operands[1] == const0_rtx
3170 /* clr insns on 68000 read before writing. */
3171 && ((TARGET_68010 || TARGET_COLDFIRE)
3172 || !(GET_CODE (operands[0]) == MEM && MEM_VOLATILE_P (operands[0]))))
3173 return "clr%.b %0";
3174 return "move%.b %1,%0";
3175 }
3176
3177 /* Return the best assembler insn template
3178 for moving operands[1] into operands[0] as a fullword. */
3179
3180 static const char *
3181 singlemove_string (rtx *operands)
3182 {
3183 if (GET_CODE (operands[1]) == CONST_INT)
3184 return output_move_simode_const (operands);
3185 return "move%.l %1,%0";
3186 }
3187
3188
3189 /* Output assembler or rtl code to perform a doubleword move insn
3190 with operands OPERANDS.
3191 Pointers to 3 helper functions should be specified:
3192 HANDLE_REG_ADJUST to adjust a register by a small value,
3193 HANDLE_COMPADR to compute an address and
3194 HANDLE_MOVSI to move 4 bytes. */
3195
3196 static void
3197 handle_move_double (rtx operands[2],
3198 void (*handle_reg_adjust) (rtx, int),
3199 void (*handle_compadr) (rtx [2]),
3200 void (*handle_movsi) (rtx [2]))
3201 {
3202 enum
3203 {
3204 REGOP, OFFSOP, MEMOP, PUSHOP, POPOP, CNSTOP, RNDOP
3205 } optype0, optype1;
3206 rtx latehalf[2];
3207 rtx middlehalf[2];
3208 rtx xops[2];
3209 rtx addreg0 = 0, addreg1 = 0;
3210 int dest_overlapped_low = 0;
3211 int size = GET_MODE_SIZE (GET_MODE (operands[0]));
3212
3213 middlehalf[0] = 0;
3214 middlehalf[1] = 0;
3215
3216 /* First classify both operands. */
3217
3218 if (REG_P (operands[0]))
3219 optype0 = REGOP;
3220 else if (offsettable_memref_p (operands[0]))
3221 optype0 = OFFSOP;
3222 else if (GET_CODE (XEXP (operands[0], 0)) == POST_INC)
3223 optype0 = POPOP;
3224 else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
3225 optype0 = PUSHOP;
3226 else if (GET_CODE (operands[0]) == MEM)
3227 optype0 = MEMOP;
3228 else
3229 optype0 = RNDOP;
3230
3231 if (REG_P (operands[1]))
3232 optype1 = REGOP;
3233 else if (CONSTANT_P (operands[1]))
3234 optype1 = CNSTOP;
3235 else if (offsettable_memref_p (operands[1]))
3236 optype1 = OFFSOP;
3237 else if (GET_CODE (XEXP (operands[1], 0)) == POST_INC)
3238 optype1 = POPOP;
3239 else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
3240 optype1 = PUSHOP;
3241 else if (GET_CODE (operands[1]) == MEM)
3242 optype1 = MEMOP;
3243 else
3244 optype1 = RNDOP;
3245
3246 /* Check for the cases that the operand constraints are not supposed
3247 to allow to happen. Generating code for these cases is
3248 painful. */
3249 gcc_assert (optype0 != RNDOP && optype1 != RNDOP);
3250
3251 /* If one operand is decrementing and one is incrementing
3252 decrement the former register explicitly
3253 and change that operand into ordinary indexing. */
3254
3255 if (optype0 == PUSHOP && optype1 == POPOP)
3256 {
3257 operands[0] = XEXP (XEXP (operands[0], 0), 0);
3258
3259 handle_reg_adjust (operands[0], -size);
3260
3261 if (GET_MODE (operands[1]) == XFmode)
3262 operands[0] = gen_rtx_MEM (XFmode, operands[0]);
3263 else if (GET_MODE (operands[0]) == DFmode)
3264 operands[0] = gen_rtx_MEM (DFmode, operands[0]);
3265 else
3266 operands[0] = gen_rtx_MEM (DImode, operands[0]);
3267 optype0 = OFFSOP;
3268 }
3269 if (optype0 == POPOP && optype1 == PUSHOP)
3270 {
3271 operands[1] = XEXP (XEXP (operands[1], 0), 0);
3272
3273 handle_reg_adjust (operands[1], -size);
3274
3275 if (GET_MODE (operands[1]) == XFmode)
3276 operands[1] = gen_rtx_MEM (XFmode, operands[1]);
3277 else if (GET_MODE (operands[1]) == DFmode)
3278 operands[1] = gen_rtx_MEM (DFmode, operands[1]);
3279 else
3280 operands[1] = gen_rtx_MEM (DImode, operands[1]);
3281 optype1 = OFFSOP;
3282 }
3283
3284 /* If an operand is an unoffsettable memory ref, find a register
3285 we can increment temporarily to make it refer to the second word. */
3286
3287 if (optype0 == MEMOP)
3288 addreg0 = find_addr_reg (XEXP (operands[0], 0));
3289
3290 if (optype1 == MEMOP)
3291 addreg1 = find_addr_reg (XEXP (operands[1], 0));
3292
3293 /* Ok, we can do one word at a time.
3294 Normally we do the low-numbered word first,
3295 but if either operand is autodecrementing then we
3296 do the high-numbered word first.
3297
3298 In either case, set up in LATEHALF the operands to use
3299 for the high-numbered word and in some cases alter the
3300 operands in OPERANDS to be suitable for the low-numbered word. */
3301
3302 if (size == 12)
3303 {
3304 if (optype0 == REGOP)
3305 {
3306 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 2);
3307 middlehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3308 }
3309 else if (optype0 == OFFSOP)
3310 {
3311 middlehalf[0] = adjust_address (operands[0], SImode, 4);
3312 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3313 }
3314 else
3315 {
3316 middlehalf[0] = adjust_address (operands[0], SImode, 0);
3317 latehalf[0] = adjust_address (operands[0], SImode, 0);
3318 }
3319
3320 if (optype1 == REGOP)
3321 {
3322 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 2);
3323 middlehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3324 }
3325 else if (optype1 == OFFSOP)
3326 {
3327 middlehalf[1] = adjust_address (operands[1], SImode, 4);
3328 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3329 }
3330 else if (optype1 == CNSTOP)
3331 {
3332 if (GET_CODE (operands[1]) == CONST_DOUBLE)
3333 {
3334 REAL_VALUE_TYPE r;
3335 long l[3];
3336
3337 REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
3338 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
3339 operands[1] = GEN_INT (l[0]);
3340 middlehalf[1] = GEN_INT (l[1]);
3341 latehalf[1] = GEN_INT (l[2]);
3342 }
3343 else
3344 {
3345 /* No non-CONST_DOUBLE constant should ever appear
3346 here. */
3347 gcc_assert (!CONSTANT_P (operands[1]));
3348 }
3349 }
3350 else
3351 {
3352 middlehalf[1] = adjust_address (operands[1], SImode, 0);
3353 latehalf[1] = adjust_address (operands[1], SImode, 0);
3354 }
3355 }
3356 else
3357 /* size is not 12: */
3358 {
3359 if (optype0 == REGOP)
3360 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
3361 else if (optype0 == OFFSOP)
3362 latehalf[0] = adjust_address (operands[0], SImode, size - 4);
3363 else
3364 latehalf[0] = adjust_address (operands[0], SImode, 0);
3365
3366 if (optype1 == REGOP)
3367 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
3368 else if (optype1 == OFFSOP)
3369 latehalf[1] = adjust_address (operands[1], SImode, size - 4);
3370 else if (optype1 == CNSTOP)
3371 split_double (operands[1], &operands[1], &latehalf[1]);
3372 else
3373 latehalf[1] = adjust_address (operands[1], SImode, 0);
3374 }
3375
3376 /* If insn is effectively movd N(sp),-(sp) then we will do the
3377 high word first. We should use the adjusted operand 1 (which is N+4(sp))
3378 for the low word as well, to compensate for the first decrement of sp. */
3379 if (optype0 == PUSHOP
3380 && REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
3381 && reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
3382 operands[1] = middlehalf[1] = latehalf[1];
3383
3384 /* For (set (reg:DI N) (mem:DI ... (reg:SI N) ...)),
3385 if the upper part of reg N does not appear in the MEM, arrange to
3386 emit the move late-half first. Otherwise, compute the MEM address
3387 into the upper part of N and use that as a pointer to the memory
3388 operand. */
3389 if (optype0 == REGOP
3390 && (optype1 == OFFSOP || optype1 == MEMOP))
3391 {
3392 rtx testlow = gen_rtx_REG (SImode, REGNO (operands[0]));
3393
3394 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3395 && reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3396 {
3397 /* If both halves of dest are used in the src memory address,
3398 compute the address into latehalf of dest.
3399 Note that this can't happen if the dest is two data regs. */
3400 compadr:
3401 xops[0] = latehalf[0];
3402 xops[1] = XEXP (operands[1], 0);
3403
3404 handle_compadr (xops);
3405 if (GET_MODE (operands[1]) == XFmode)
3406 {
3407 operands[1] = gen_rtx_MEM (XFmode, latehalf[0]);
3408 middlehalf[1] = adjust_address (operands[1], DImode, size - 8);
3409 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3410 }
3411 else
3412 {
3413 operands[1] = gen_rtx_MEM (DImode, latehalf[0]);
3414 latehalf[1] = adjust_address (operands[1], DImode, size - 4);
3415 }
3416 }
3417 else if (size == 12
3418 && reg_overlap_mentioned_p (middlehalf[0],
3419 XEXP (operands[1], 0)))
3420 {
3421 /* Check for two regs used by both source and dest.
3422 Note that this can't happen if the dest is all data regs.
3423 It can happen if the dest is d6, d7, a0.
3424 But in that case, latehalf is an addr reg, so
3425 the code at compadr does ok. */
3426
3427 if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0))
3428 || reg_overlap_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
3429 goto compadr;
3430
3431 /* JRV says this can't happen: */
3432 gcc_assert (!addreg0 && !addreg1);
3433
3434 /* Only the middle reg conflicts; simply put it last. */
3435 handle_movsi (operands);
3436 handle_movsi (latehalf);
3437 handle_movsi (middlehalf);
3438
3439 return;
3440 }
3441 else if (reg_overlap_mentioned_p (testlow, XEXP (operands[1], 0)))
3442 /* If the low half of dest is mentioned in the source memory
3443 address, the arrange to emit the move late half first. */
3444 dest_overlapped_low = 1;
3445 }
3446
3447 /* If one or both operands autodecrementing,
3448 do the two words, high-numbered first. */
3449
3450 /* Likewise, the first move would clobber the source of the second one,
3451 do them in the other order. This happens only for registers;
3452 such overlap can't happen in memory unless the user explicitly
3453 sets it up, and that is an undefined circumstance. */
3454
3455 if (optype0 == PUSHOP || optype1 == PUSHOP
3456 || (optype0 == REGOP && optype1 == REGOP
3457 && ((middlehalf[1] && REGNO (operands[0]) == REGNO (middlehalf[1]))
3458 || REGNO (operands[0]) == REGNO (latehalf[1])))
3459 || dest_overlapped_low)
3460 {
3461 /* Make any unoffsettable addresses point at high-numbered word. */
3462 if (addreg0)
3463 handle_reg_adjust (addreg0, size - 4);
3464 if (addreg1)
3465 handle_reg_adjust (addreg1, size - 4);
3466
3467 /* Do that word. */
3468 handle_movsi (latehalf);
3469
3470 /* Undo the adds we just did. */
3471 if (addreg0)
3472 handle_reg_adjust (addreg0, -4);
3473 if (addreg1)
3474 handle_reg_adjust (addreg1, -4);
3475
3476 if (size == 12)
3477 {
3478 handle_movsi (middlehalf);
3479
3480 if (addreg0)
3481 handle_reg_adjust (addreg0, -4);
3482 if (addreg1)
3483 handle_reg_adjust (addreg1, -4);
3484 }
3485
3486 /* Do low-numbered word. */
3487
3488 handle_movsi (operands);
3489 return;
3490 }
3491
3492 /* Normal case: do the two words, low-numbered first. */
3493
3494 m68k_final_prescan_insn (NULL, operands, 2);
3495 handle_movsi (operands);
3496
3497 /* Do the middle one of the three words for long double */
3498 if (size == 12)
3499 {
3500 if (addreg0)
3501 handle_reg_adjust (addreg0, 4);
3502 if (addreg1)
3503 handle_reg_adjust (addreg1, 4);
3504
3505 m68k_final_prescan_insn (NULL, middlehalf, 2);
3506 handle_movsi (middlehalf);
3507 }
3508
3509 /* Make any unoffsettable addresses point at high-numbered word. */
3510 if (addreg0)
3511 handle_reg_adjust (addreg0, 4);
3512 if (addreg1)
3513 handle_reg_adjust (addreg1, 4);
3514
3515 /* Do that word. */
3516 m68k_final_prescan_insn (NULL, latehalf, 2);
3517 handle_movsi (latehalf);
3518
3519 /* Undo the adds we just did. */
3520 if (addreg0)
3521 handle_reg_adjust (addreg0, -(size - 4));
3522 if (addreg1)
3523 handle_reg_adjust (addreg1, -(size - 4));
3524
3525 return;
3526 }
3527
3528 /* Output assembler code to adjust REG by N. */
3529 static void
3530 output_reg_adjust (rtx reg, int n)
3531 {
3532 const char *s;
3533
3534 gcc_assert (GET_MODE (reg) == SImode
3535 && -12 <= n && n != 0 && n <= 12);
3536
3537 switch (n)
3538 {
3539 case 12:
3540 s = "add%.l #12,%0";
3541 break;
3542
3543 case 8:
3544 s = "addq%.l #8,%0";
3545 break;
3546
3547 case 4:
3548 s = "addq%.l #4,%0";
3549 break;
3550
3551 case -12:
3552 s = "sub%.l #12,%0";
3553 break;
3554
3555 case -8:
3556 s = "subq%.l #8,%0";
3557 break;
3558
3559 case -4:
3560 s = "subq%.l #4,%0";
3561 break;
3562
3563 default:
3564 gcc_unreachable ();
3565 s = NULL;
3566 }
3567
3568 output_asm_insn (s, &reg);
3569 }
3570
3571 /* Emit rtl code to adjust REG by N. */
3572 static void
3573 emit_reg_adjust (rtx reg1, int n)
3574 {
3575 rtx reg2;
3576
3577 gcc_assert (GET_MODE (reg1) == SImode
3578 && -12 <= n && n != 0 && n <= 12);
3579
3580 reg1 = copy_rtx (reg1);
3581 reg2 = copy_rtx (reg1);
3582
3583 if (n < 0)
3584 emit_insn (gen_subsi3 (reg1, reg2, GEN_INT (-n)));
3585 else if (n > 0)
3586 emit_insn (gen_addsi3 (reg1, reg2, GEN_INT (n)));
3587 else
3588 gcc_unreachable ();
3589 }
3590
3591 /* Output assembler to load address OPERANDS[0] to register OPERANDS[1]. */
3592 static void
3593 output_compadr (rtx operands[2])
3594 {
3595 output_asm_insn ("lea %a1,%0", operands);
3596 }
3597
3598 /* Output the best assembler insn for moving operands[1] into operands[0]
3599 as a fullword. */
3600 static void
3601 output_movsi (rtx operands[2])
3602 {
3603 output_asm_insn (singlemove_string (operands), operands);
3604 }
3605
3606 /* Copy OP and change its mode to MODE. */
3607 static rtx
3608 copy_operand (rtx op, enum machine_mode mode)
3609 {
3610 /* ??? This looks really ugly. There must be a better way
3611 to change a mode on the operand. */
3612 if (GET_MODE (op) != VOIDmode)
3613 {
3614 if (REG_P (op))
3615 op = gen_rtx_REG (mode, REGNO (op));
3616 else
3617 {
3618 op = copy_rtx (op);
3619 PUT_MODE (op, mode);
3620 }
3621 }
3622
3623 return op;
3624 }
3625
3626 /* Emit rtl code for moving operands[1] into operands[0] as a fullword. */
3627 static void
3628 emit_movsi (rtx operands[2])
3629 {
3630 operands[0] = copy_operand (operands[0], SImode);
3631 operands[1] = copy_operand (operands[1], SImode);
3632
3633 emit_insn (gen_movsi (operands[0], operands[1]));
3634 }
3635
3636 /* Output assembler code to perform a doubleword move insn
3637 with operands OPERANDS. */
3638 const char *
3639 output_move_double (rtx *operands)
3640 {
3641 handle_move_double (operands,
3642 output_reg_adjust, output_compadr, output_movsi);
3643
3644 return "";
3645 }
3646
3647 /* Output rtl code to perform a doubleword move insn
3648 with operands OPERANDS. */
3649 void
3650 m68k_emit_move_double (rtx operands[2])
3651 {
3652 handle_move_double (operands, emit_reg_adjust, emit_movsi, emit_movsi);
3653 }
3654
3655 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
3656 new rtx with the correct mode. */
3657
3658 static rtx
3659 force_mode (enum machine_mode mode, rtx orig)
3660 {
3661 if (mode == GET_MODE (orig))
3662 return orig;
3663
3664 if (REGNO (orig) >= FIRST_PSEUDO_REGISTER)
3665 abort ();
3666
3667 return gen_rtx_REG (mode, REGNO (orig));
3668 }
3669
3670 static int
3671 fp_reg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
3672 {
3673 return reg_renumber && FP_REG_P (op);
3674 }
3675
3676 /* Emit insns to move operands[1] into operands[0].
3677
3678 Return 1 if we have written out everything that needs to be done to
3679 do the move. Otherwise, return 0 and the caller will emit the move
3680 normally.
3681
3682 Note SCRATCH_REG may not be in the proper mode depending on how it
3683 will be used. This routine is responsible for creating a new copy
3684 of SCRATCH_REG in the proper mode. */
3685
3686 int
3687 emit_move_sequence (rtx *operands, enum machine_mode mode, rtx scratch_reg)
3688 {
3689 register rtx operand0 = operands[0];
3690 register rtx operand1 = operands[1];
3691 register rtx tem;
3692
3693 if (scratch_reg
3694 && reload_in_progress && GET_CODE (operand0) == REG
3695 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
3696 operand0 = reg_equiv_mem (REGNO (operand0));
3697 else if (scratch_reg
3698 && reload_in_progress && GET_CODE (operand0) == SUBREG
3699 && GET_CODE (SUBREG_REG (operand0)) == REG
3700 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
3701 {
3702 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3703 the code which tracks sets/uses for delete_output_reload. */
3704 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
3705 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
3706 SUBREG_BYTE (operand0));
3707 operand0 = alter_subreg (&temp);
3708 }
3709
3710 if (scratch_reg
3711 && reload_in_progress && GET_CODE (operand1) == REG
3712 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
3713 operand1 = reg_equiv_mem (REGNO (operand1));
3714 else if (scratch_reg
3715 && reload_in_progress && GET_CODE (operand1) == SUBREG
3716 && GET_CODE (SUBREG_REG (operand1)) == REG
3717 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
3718 {
3719 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
3720 the code which tracks sets/uses for delete_output_reload. */
3721 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
3722 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
3723 SUBREG_BYTE (operand1));
3724 operand1 = alter_subreg (&temp);
3725 }
3726
3727 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
3728 && ((tem = find_replacement (&XEXP (operand0, 0)))
3729 != XEXP (operand0, 0)))
3730 operand0 = gen_rtx_MEM (GET_MODE (operand0), tem);
3731 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
3732 && ((tem = find_replacement (&XEXP (operand1, 0)))
3733 != XEXP (operand1, 0)))
3734 operand1 = gen_rtx_MEM (GET_MODE (operand1), tem);
3735
3736 /* Handle secondary reloads for loads/stores of FP registers where
3737 the address is symbolic by using the scratch register */
3738 if (fp_reg_operand (operand0, mode)
3739 && ((GET_CODE (operand1) == MEM
3740 && ! memory_address_p (DFmode, XEXP (operand1, 0)))
3741 || ((GET_CODE (operand1) == SUBREG
3742 && GET_CODE (XEXP (operand1, 0)) == MEM
3743 && !memory_address_p (DFmode, XEXP (XEXP (operand1, 0), 0)))))
3744 && scratch_reg)
3745 {
3746 if (GET_CODE (operand1) == SUBREG)
3747 operand1 = XEXP (operand1, 0);
3748
3749 /* SCRATCH_REG will hold an address. We want
3750 it in SImode regardless of what mode it was originally given
3751 to us. */
3752 scratch_reg = force_mode (SImode, scratch_reg);
3753
3754 /* D might not fit in 14 bits either; for such cases load D into
3755 scratch reg. */
3756 if (!memory_address_p (Pmode, XEXP (operand1, 0)))
3757 {
3758 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
3759 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1, 0)),
3760 Pmode,
3761 XEXP (XEXP (operand1, 0), 0),
3762 scratch_reg));
3763 }
3764 else
3765 emit_move_insn (scratch_reg, XEXP (operand1, 0));
3766 emit_insn (gen_rtx_SET (VOIDmode, operand0,
3767 gen_rtx_MEM (mode, scratch_reg)));
3768 return 1;
3769 }
3770 else if (fp_reg_operand (operand1, mode)
3771 && ((GET_CODE (operand0) == MEM
3772 && ! memory_address_p (DFmode, XEXP (operand0, 0)))
3773 || ((GET_CODE (operand0) == SUBREG)
3774 && GET_CODE (XEXP (operand0, 0)) == MEM
3775 && !memory_address_p (DFmode, XEXP (XEXP (operand0, 0), 0))))
3776 && scratch_reg)
3777 {
3778 if (GET_CODE (operand0) == SUBREG)
3779 operand0 = XEXP (operand0, 0);
3780
3781 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3782 it in SIMODE regardless of what mode it was originally given
3783 to us. */
3784 scratch_reg = force_mode (SImode, scratch_reg);
3785
3786 /* D might not fit in 14 bits either; for such cases load D into
3787 scratch reg. */
3788 if (!memory_address_p (Pmode, XEXP (operand0, 0)))
3789 {
3790 emit_move_insn (scratch_reg, XEXP (XEXP (operand0, 0), 1));
3791 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand0,
3792 0)),
3793 Pmode,
3794 XEXP (XEXP (operand0, 0),
3795 0),
3796 scratch_reg));
3797 }
3798 else
3799 emit_move_insn (scratch_reg, XEXP (operand0, 0));
3800 emit_insn (gen_rtx_SET (VOIDmode, gen_rtx_MEM (mode, scratch_reg),
3801 operand1));
3802 return 1;
3803 }
3804 /* Handle secondary reloads for loads of FP registers from constant
3805 expressions by forcing the constant into memory.
3806
3807 use scratch_reg to hold the address of the memory location.
3808
3809 The proper fix is to change PREFERRED_RELOAD_CLASS to return
3810 NO_REGS when presented with a const_int and an register class
3811 containing only FP registers. Doing so unfortunately creates
3812 more problems than it solves. Fix this for 2.5. */
3813 else if (fp_reg_operand (operand0, mode)
3814 && CONSTANT_P (operand1)
3815 && scratch_reg)
3816 {
3817 rtx xoperands[2];
3818
3819 /* SCRATCH_REG will hold an address and maybe the actual data. We want
3820 it in SIMODE regardless of what mode it was originally given
3821 to us. */
3822 scratch_reg = force_mode (SImode, scratch_reg);
3823
3824 /* Force the constant into memory and put the address of the
3825 memory location into scratch_reg. */
3826 xoperands[0] = scratch_reg;
3827 xoperands[1] = XEXP (force_const_mem (mode, operand1), 0);
3828 emit_insn (gen_rtx_SET (mode, scratch_reg, xoperands[1]));
3829
3830 /* Now load the destination register. */
3831 emit_insn (gen_rtx_SET (mode, operand0,
3832 gen_rtx_MEM (mode, scratch_reg)));
3833 return 1;
3834 }
3835
3836 /* Now have insn-emit do whatever it normally does. */
3837 return 0;
3838 }
3839
3840 /* Split one or more DImode RTL references into pairs of SImode
3841 references. The RTL can be REG, offsettable MEM, integer constant, or
3842 CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
3843 split and "num" is its length. lo_half and hi_half are output arrays
3844 that parallel "operands". */
3845
3846 void
3847 split_di (rtx operands[], int num, rtx lo_half[], rtx hi_half[])
3848 {
3849 while (num--)
3850 {
3851 rtx op = operands[num];
3852
3853 /* simplify_subreg refuses to split volatile memory addresses,
3854 but we still have to handle it. */
3855 if (GET_CODE (op) == MEM)
3856 {
3857 lo_half[num] = adjust_address (op, SImode, 4);
3858 hi_half[num] = adjust_address (op, SImode, 0);
3859 }
3860 else
3861 {
3862 lo_half[num] = simplify_gen_subreg (SImode, op,
3863 GET_MODE (op) == VOIDmode
3864 ? DImode : GET_MODE (op), 4);
3865 hi_half[num] = simplify_gen_subreg (SImode, op,
3866 GET_MODE (op) == VOIDmode
3867 ? DImode : GET_MODE (op), 0);
3868 }
3869 }
3870 }
3871
3872 /* Split X into a base and a constant offset, storing them in *BASE
3873 and *OFFSET respectively. */
3874
3875 static void
3876 m68k_split_offset (rtx x, rtx *base, HOST_WIDE_INT *offset)
3877 {
3878 *offset = 0;
3879 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
3880 {
3881 *offset += INTVAL (XEXP (x, 1));
3882 x = XEXP (x, 0);
3883 }
3884 *base = x;
3885 }
3886
3887 /* Return true if PATTERN is a PARALLEL suitable for a movem or fmovem
3888 instruction. STORE_P says whether the move is a load or store.
3889
3890 If the instruction uses post-increment or pre-decrement addressing,
3891 AUTOMOD_BASE is the base register and AUTOMOD_OFFSET is the total
3892 adjustment. This adjustment will be made by the first element of
3893 PARALLEL, with the loads or stores starting at element 1. If the
3894 instruction does not use post-increment or pre-decrement addressing,
3895 AUTOMOD_BASE is null, AUTOMOD_OFFSET is 0, and the loads or stores
3896 start at element 0. */
3897
3898 bool
3899 m68k_movem_pattern_p (rtx pattern, rtx automod_base,
3900 HOST_WIDE_INT automod_offset, bool store_p)
3901 {
3902 rtx base, mem_base, set, mem, reg, last_reg;
3903 HOST_WIDE_INT offset, mem_offset;
3904 int i, first, len;
3905 enum reg_class rclass;
3906
3907 len = XVECLEN (pattern, 0);
3908 first = (automod_base != NULL);
3909
3910 if (automod_base)
3911 {
3912 /* Stores must be pre-decrement and loads must be post-increment. */
3913 if (store_p != (automod_offset < 0))
3914 return false;
3915
3916 /* Work out the base and offset for lowest memory location. */
3917 base = automod_base;
3918 offset = (automod_offset < 0 ? automod_offset : 0);
3919 }
3920 else
3921 {
3922 /* Allow any valid base and offset in the first access. */
3923 base = NULL;
3924 offset = 0;
3925 }
3926
3927 last_reg = NULL;
3928 rclass = NO_REGS;
3929 for (i = first; i < len; i++)
3930 {
3931 /* We need a plain SET. */
3932 set = XVECEXP (pattern, 0, i);
3933 if (GET_CODE (set) != SET)
3934 return false;
3935
3936 /* Check that we have a memory location... */
3937 mem = XEXP (set, !store_p);
3938 if (!MEM_P (mem) || !memory_operand (mem, VOIDmode))
3939 return false;
3940
3941 /* ...with the right address. */
3942 if (base == NULL)
3943 {
3944 m68k_split_offset (XEXP (mem, 0), &base, &offset);
3945 /* The ColdFire instruction only allows (An) and (d16,An) modes.
3946 There are no mode restrictions for 680x0 besides the
3947 automodification rules enforced above. */
3948 if (TARGET_COLDFIRE
3949 && !m68k_legitimate_base_reg_p (base, reload_completed))
3950 return false;
3951 }
3952 else
3953 {
3954 m68k_split_offset (XEXP (mem, 0), &mem_base, &mem_offset);
3955 if (!rtx_equal_p (base, mem_base) || offset != mem_offset)
3956 return false;
3957 }
3958
3959 /* Check that we have a register of the required mode and class. */
3960 reg = XEXP (set, store_p);
3961 if (!REG_P (reg)
3962 || !HARD_REGISTER_P (reg)
3963 || GET_MODE (reg) != reg_raw_mode[REGNO (reg)])
3964 return false;
3965
3966 if (last_reg)
3967 {
3968 /* The register must belong to RCLASS and have a higher number
3969 than the register in the previous SET. */
3970 if (!TEST_HARD_REG_BIT (reg_class_contents[rclass], REGNO (reg))
3971 || REGNO (last_reg) >= REGNO (reg))
3972 return false;
3973 }
3974 else
3975 {
3976 /* Work out which register class we need. */
3977 if (INT_REGNO_P (REGNO (reg)))
3978 rclass = GENERAL_REGS;
3979 else if (FP_REGNO_P (REGNO (reg)))
3980 rclass = FP_REGS;
3981 else
3982 return false;
3983 }
3984
3985 last_reg = reg;
3986 offset += GET_MODE_SIZE (GET_MODE (reg));
3987 }
3988
3989 /* If we have an automodification, check whether the final offset is OK. */
3990 if (automod_base && offset != (automod_offset < 0 ? 0 : automod_offset))
3991 return false;
3992
3993 /* Reject unprofitable cases. */
3994 if (len < first + (rclass == FP_REGS ? MIN_FMOVEM_REGS : MIN_MOVEM_REGS))
3995 return false;
3996
3997 return true;
3998 }
3999
4000 /* Return the assembly code template for a movem or fmovem instruction
4001 whose pattern is given by PATTERN. Store the template's operands
4002 in OPERANDS.
4003
4004 If the instruction uses post-increment or pre-decrement addressing,
4005 AUTOMOD_OFFSET is the total adjustment, otherwise it is 0. STORE_P
4006 is true if this is a store instruction. */
4007
4008 const char *
4009 m68k_output_movem (rtx *operands, rtx pattern,
4010 HOST_WIDE_INT automod_offset, bool store_p)
4011 {
4012 unsigned int mask;
4013 int i, first;
4014
4015 gcc_assert (GET_CODE (pattern) == PARALLEL);
4016 mask = 0;
4017 first = (automod_offset != 0);
4018 for (i = first; i < XVECLEN (pattern, 0); i++)
4019 {
4020 /* When using movem with pre-decrement addressing, register X + D0_REG
4021 is controlled by bit 15 - X. For all other addressing modes,
4022 register X + D0_REG is controlled by bit X. Confusingly, the
4023 register mask for fmovem is in the opposite order to that for
4024 movem. */
4025 unsigned int regno;
4026
4027 gcc_assert (MEM_P (XEXP (XVECEXP (pattern, 0, i), !store_p)));
4028 gcc_assert (REG_P (XEXP (XVECEXP (pattern, 0, i), store_p)));
4029 regno = REGNO (XEXP (XVECEXP (pattern, 0, i), store_p));
4030 if (automod_offset < 0)
4031 {
4032 if (FP_REGNO_P (regno))
4033 mask |= 1 << (regno - FP0_REG);
4034 else
4035 mask |= 1 << (15 - (regno - D0_REG));
4036 }
4037 else
4038 {
4039 if (FP_REGNO_P (regno))
4040 mask |= 1 << (7 - (regno - FP0_REG));
4041 else
4042 mask |= 1 << (regno - D0_REG);
4043 }
4044 }
4045 CC_STATUS_INIT;
4046
4047 if (automod_offset == 0)
4048 operands[0] = XEXP (XEXP (XVECEXP (pattern, 0, first), !store_p), 0);
4049 else if (automod_offset < 0)
4050 operands[0] = gen_rtx_PRE_DEC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4051 else
4052 operands[0] = gen_rtx_POST_INC (Pmode, SET_DEST (XVECEXP (pattern, 0, 0)));
4053 operands[1] = GEN_INT (mask);
4054 if (FP_REGNO_P (REGNO (XEXP (XVECEXP (pattern, 0, first), store_p))))
4055 {
4056 if (store_p)
4057 return "fmovem %1,%a0";
4058 else
4059 return "fmovem %a0,%1";
4060 }
4061 else
4062 {
4063 if (store_p)
4064 return "movem%.l %1,%a0";
4065 else
4066 return "movem%.l %a0,%1";
4067 }
4068 }
4069
4070 /* Return a REG that occurs in ADDR with coefficient 1.
4071 ADDR can be effectively incremented by incrementing REG. */
4072
4073 static rtx
4074 find_addr_reg (rtx addr)
4075 {
4076 while (GET_CODE (addr) == PLUS)
4077 {
4078 if (GET_CODE (XEXP (addr, 0)) == REG)
4079 addr = XEXP (addr, 0);
4080 else if (GET_CODE (XEXP (addr, 1)) == REG)
4081 addr = XEXP (addr, 1);
4082 else if (CONSTANT_P (XEXP (addr, 0)))
4083 addr = XEXP (addr, 1);
4084 else if (CONSTANT_P (XEXP (addr, 1)))
4085 addr = XEXP (addr, 0);
4086 else
4087 gcc_unreachable ();
4088 }
4089 gcc_assert (GET_CODE (addr) == REG);
4090 return addr;
4091 }
4092
4093 /* Output assembler code to perform a 32-bit 3-operand add. */
4094
4095 const char *
4096 output_addsi3 (rtx *operands)
4097 {
4098 if (! operands_match_p (operands[0], operands[1]))
4099 {
4100 if (!ADDRESS_REG_P (operands[1]))
4101 {
4102 rtx tmp = operands[1];
4103
4104 operands[1] = operands[2];
4105 operands[2] = tmp;
4106 }
4107
4108 /* These insns can result from reloads to access
4109 stack slots over 64k from the frame pointer. */
4110 if (GET_CODE (operands[2]) == CONST_INT
4111 && (INTVAL (operands[2]) < -32768 || INTVAL (operands[2]) > 32767))
4112 return "move%.l %2,%0\n\tadd%.l %1,%0";
4113 if (GET_CODE (operands[2]) == REG)
4114 return MOTOROLA ? "lea (%1,%2.l),%0" : "lea %1@(0,%2:l),%0";
4115 return MOTOROLA ? "lea (%c2,%1),%0" : "lea %1@(%c2),%0";
4116 }
4117 if (GET_CODE (operands[2]) == CONST_INT)
4118 {
4119 if (INTVAL (operands[2]) > 0
4120 && INTVAL (operands[2]) <= 8)
4121 return "addq%.l %2,%0";
4122 if (INTVAL (operands[2]) < 0
4123 && INTVAL (operands[2]) >= -8)
4124 {
4125 operands[2] = GEN_INT (- INTVAL (operands[2]));
4126 return "subq%.l %2,%0";
4127 }
4128 /* On the CPU32 it is faster to use two addql instructions to
4129 add a small integer (8 < N <= 16) to a register.
4130 Likewise for subql. */
4131 if (TUNE_CPU32 && REG_P (operands[0]))
4132 {
4133 if (INTVAL (operands[2]) > 8
4134 && INTVAL (operands[2]) <= 16)
4135 {
4136 operands[2] = GEN_INT (INTVAL (operands[2]) - 8);
4137 return "addq%.l #8,%0\n\taddq%.l %2,%0";
4138 }
4139 if (INTVAL (operands[2]) < -8
4140 && INTVAL (operands[2]) >= -16)
4141 {
4142 operands[2] = GEN_INT (- INTVAL (operands[2]) - 8);
4143 return "subq%.l #8,%0\n\tsubq%.l %2,%0";
4144 }
4145 }
4146 if (ADDRESS_REG_P (operands[0])
4147 && INTVAL (operands[2]) >= -0x8000
4148 && INTVAL (operands[2]) < 0x8000)
4149 {
4150 if (TUNE_68040)
4151 return "add%.w %2,%0";
4152 else
4153 return MOTOROLA ? "lea (%c2,%0),%0" : "lea %0@(%c2),%0";
4154 }
4155 }
4156 return "add%.l %2,%0";
4157 }
4158 \f
4159 /* Store in cc_status the expressions that the condition codes will
4160 describe after execution of an instruction whose pattern is EXP.
4161 Do not alter them if the instruction would not alter the cc's. */
4162
4163 /* On the 68000, all the insns to store in an address register fail to
4164 set the cc's. However, in some cases these instructions can make it
4165 possibly invalid to use the saved cc's. In those cases we clear out
4166 some or all of the saved cc's so they won't be used. */
4167
4168 void
4169 notice_update_cc (rtx exp, rtx insn)
4170 {
4171 if (GET_CODE (exp) == SET)
4172 {
4173 if (GET_CODE (SET_SRC (exp)) == CALL)
4174 CC_STATUS_INIT;
4175 else if (ADDRESS_REG_P (SET_DEST (exp)))
4176 {
4177 if (cc_status.value1 && modified_in_p (cc_status.value1, insn))
4178 cc_status.value1 = 0;
4179 if (cc_status.value2 && modified_in_p (cc_status.value2, insn))
4180 cc_status.value2 = 0;
4181 }
4182 /* fmoves to memory or data registers do not set the condition
4183 codes. Normal moves _do_ set the condition codes, but not in
4184 a way that is appropriate for comparison with 0, because -0.0
4185 would be treated as a negative nonzero number. Note that it
4186 isn't appropriate to conditionalize this restriction on
4187 HONOR_SIGNED_ZEROS because that macro merely indicates whether
4188 we care about the difference between -0.0 and +0.0. */
4189 else if (!FP_REG_P (SET_DEST (exp))
4190 && SET_DEST (exp) != cc0_rtx
4191 && (FP_REG_P (SET_SRC (exp))
4192 || GET_CODE (SET_SRC (exp)) == FIX
4193 || FLOAT_MODE_P (GET_MODE (SET_DEST (exp)))))
4194 CC_STATUS_INIT;
4195 /* A pair of move insns doesn't produce a useful overall cc. */
4196 else if (!FP_REG_P (SET_DEST (exp))
4197 && !FP_REG_P (SET_SRC (exp))
4198 && GET_MODE_SIZE (GET_MODE (SET_SRC (exp))) > 4
4199 && (GET_CODE (SET_SRC (exp)) == REG
4200 || GET_CODE (SET_SRC (exp)) == MEM
4201 || GET_CODE (SET_SRC (exp)) == CONST_DOUBLE))
4202 CC_STATUS_INIT;
4203 else if (SET_DEST (exp) != pc_rtx)
4204 {
4205 cc_status.flags = 0;
4206 cc_status.value1 = SET_DEST (exp);
4207 cc_status.value2 = SET_SRC (exp);
4208 }
4209 }
4210 else if (GET_CODE (exp) == PARALLEL
4211 && GET_CODE (XVECEXP (exp, 0, 0)) == SET)
4212 {
4213 rtx dest = SET_DEST (XVECEXP (exp, 0, 0));
4214 rtx src = SET_SRC (XVECEXP (exp, 0, 0));
4215
4216 if (ADDRESS_REG_P (dest))
4217 CC_STATUS_INIT;
4218 else if (dest != pc_rtx)
4219 {
4220 cc_status.flags = 0;
4221 cc_status.value1 = dest;
4222 cc_status.value2 = src;
4223 }
4224 }
4225 else
4226 CC_STATUS_INIT;
4227 if (cc_status.value2 != 0
4228 && ADDRESS_REG_P (cc_status.value2)
4229 && GET_MODE (cc_status.value2) == QImode)
4230 CC_STATUS_INIT;
4231 if (cc_status.value2 != 0)
4232 switch (GET_CODE (cc_status.value2))
4233 {
4234 case ASHIFT: case ASHIFTRT: case LSHIFTRT:
4235 case ROTATE: case ROTATERT:
4236 /* These instructions always clear the overflow bit, and set
4237 the carry to the bit shifted out. */
4238 cc_status.flags |= CC_OVERFLOW_UNUSABLE | CC_NO_CARRY;
4239 break;
4240
4241 case PLUS: case MINUS: case MULT:
4242 case DIV: case UDIV: case MOD: case UMOD: case NEG:
4243 if (GET_MODE (cc_status.value2) != VOIDmode)
4244 cc_status.flags |= CC_NO_OVERFLOW;
4245 break;
4246 case ZERO_EXTEND:
4247 /* (SET r1 (ZERO_EXTEND r2)) on this machine
4248 ends with a move insn moving r2 in r2's mode.
4249 Thus, the cc's are set for r2.
4250 This can set N bit spuriously. */
4251 cc_status.flags |= CC_NOT_NEGATIVE;
4252
4253 default:
4254 break;
4255 }
4256 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG
4257 && cc_status.value2
4258 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2))
4259 cc_status.value2 = 0;
4260 if (((cc_status.value1 && FP_REG_P (cc_status.value1))
4261 || (cc_status.value2 && FP_REG_P (cc_status.value2))))
4262 cc_status.flags = CC_IN_68881;
4263 if (cc_status.value2 && GET_CODE (cc_status.value2) == COMPARE
4264 && GET_MODE_CLASS (GET_MODE (XEXP (cc_status.value2, 0))) == MODE_FLOAT)
4265 {
4266 cc_status.flags = CC_IN_68881;
4267 if (!FP_REG_P (XEXP (cc_status.value2, 0)))
4268 cc_status.flags |= CC_REVERSED;
4269 }
4270 }
4271 \f
4272 const char *
4273 output_move_const_double (rtx *operands)
4274 {
4275 int code = standard_68881_constant_p (operands[1]);
4276
4277 if (code != 0)
4278 {
4279 static char buf[40];
4280
4281 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4282 return buf;
4283 }
4284 return "fmove%.d %1,%0";
4285 }
4286
4287 const char *
4288 output_move_const_single (rtx *operands)
4289 {
4290 int code = standard_68881_constant_p (operands[1]);
4291
4292 if (code != 0)
4293 {
4294 static char buf[40];
4295
4296 sprintf (buf, "fmovecr #0x%x,%%0", code & 0xff);
4297 return buf;
4298 }
4299 return "fmove%.s %f1,%0";
4300 }
4301
4302 /* Return nonzero if X, a CONST_DOUBLE, has a value that we can get
4303 from the "fmovecr" instruction.
4304 The value, anded with 0xff, gives the code to use in fmovecr
4305 to get the desired constant. */
4306
4307 /* This code has been fixed for cross-compilation. */
4308
4309 static int inited_68881_table = 0;
4310
4311 static const char *const strings_68881[7] = {
4312 "0.0",
4313 "1.0",
4314 "10.0",
4315 "100.0",
4316 "10000.0",
4317 "1e8",
4318 "1e16"
4319 };
4320
4321 static const int codes_68881[7] = {
4322 0x0f,
4323 0x32,
4324 0x33,
4325 0x34,
4326 0x35,
4327 0x36,
4328 0x37
4329 };
4330
4331 REAL_VALUE_TYPE values_68881[7];
4332
4333 /* Set up values_68881 array by converting the decimal values
4334 strings_68881 to binary. */
4335
4336 void
4337 init_68881_table (void)
4338 {
4339 int i;
4340 REAL_VALUE_TYPE r;
4341 enum machine_mode mode;
4342
4343 mode = SFmode;
4344 for (i = 0; i < 7; i++)
4345 {
4346 if (i == 6)
4347 mode = DFmode;
4348 r = REAL_VALUE_ATOF (strings_68881[i], mode);
4349 values_68881[i] = r;
4350 }
4351 inited_68881_table = 1;
4352 }
4353
4354 int
4355 standard_68881_constant_p (rtx x)
4356 {
4357 REAL_VALUE_TYPE r;
4358 int i;
4359
4360 /* fmovecr must be emulated on the 68040 and 68060, so it shouldn't be
4361 used at all on those chips. */
4362 if (TUNE_68040_60)
4363 return 0;
4364
4365 if (! inited_68881_table)
4366 init_68881_table ();
4367
4368 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4369
4370 /* Use REAL_VALUES_IDENTICAL instead of REAL_VALUES_EQUAL so that -0.0
4371 is rejected. */
4372 for (i = 0; i < 6; i++)
4373 {
4374 if (REAL_VALUES_IDENTICAL (r, values_68881[i]))
4375 return (codes_68881[i]);
4376 }
4377
4378 if (GET_MODE (x) == SFmode)
4379 return 0;
4380
4381 if (REAL_VALUES_EQUAL (r, values_68881[6]))
4382 return (codes_68881[6]);
4383
4384 /* larger powers of ten in the constants ram are not used
4385 because they are not equal to a `double' C constant. */
4386 return 0;
4387 }
4388
4389 /* If X is a floating-point constant, return the logarithm of X base 2,
4390 or 0 if X is not a power of 2. */
4391
4392 int
4393 floating_exact_log2 (rtx x)
4394 {
4395 REAL_VALUE_TYPE r, r1;
4396 int exp;
4397
4398 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
4399
4400 if (REAL_VALUES_LESS (r, dconst1))
4401 return 0;
4402
4403 exp = real_exponent (&r);
4404 real_2expN (&r1, exp, DFmode);
4405 if (REAL_VALUES_EQUAL (r1, r))
4406 return exp;
4407
4408 return 0;
4409 }
4410 \f
4411 /* A C compound statement to output to stdio stream STREAM the
4412 assembler syntax for an instruction operand X. X is an RTL
4413 expression.
4414
4415 CODE is a value that can be used to specify one of several ways
4416 of printing the operand. It is used when identical operands
4417 must be printed differently depending on the context. CODE
4418 comes from the `%' specification that was used to request
4419 printing of the operand. If the specification was just `%DIGIT'
4420 then CODE is 0; if the specification was `%LTR DIGIT' then CODE
4421 is the ASCII code for LTR.
4422
4423 If X is a register, this macro should print the register's name.
4424 The names can be found in an array `reg_names' whose type is
4425 `char *[]'. `reg_names' is initialized from `REGISTER_NAMES'.
4426
4427 When the machine description has a specification `%PUNCT' (a `%'
4428 followed by a punctuation character), this macro is called with
4429 a null pointer for X and the punctuation character for CODE.
4430
4431 The m68k specific codes are:
4432
4433 '.' for dot needed in Motorola-style opcode names.
4434 '-' for an operand pushing on the stack:
4435 sp@-, -(sp) or -(%sp) depending on the style of syntax.
4436 '+' for an operand pushing on the stack:
4437 sp@+, (sp)+ or (%sp)+ depending on the style of syntax.
4438 '@' for a reference to the top word on the stack:
4439 sp@, (sp) or (%sp) depending on the style of syntax.
4440 '#' for an immediate operand prefix (# in MIT and Motorola syntax
4441 but & in SGS syntax).
4442 '!' for the cc register (used in an `and to cc' insn).
4443 '$' for the letter `s' in an op code, but only on the 68040.
4444 '&' for the letter `d' in an op code, but only on the 68040.
4445 '/' for register prefix needed by longlong.h.
4446 '?' for m68k_library_id_string
4447
4448 'b' for byte insn (no effect, on the Sun; this is for the ISI).
4449 'd' to force memory addressing to be absolute, not relative.
4450 'f' for float insn (print a CONST_DOUBLE as a float rather than in hex)
4451 'x' for float insn (print a CONST_DOUBLE as a float rather than in hex),
4452 or print pair of registers as rx:ry.
4453 'p' print an address with @PLTPC attached, but only if the operand
4454 is not locally-bound. */
4455
4456 void
4457 print_operand (FILE *file, rtx op, int letter)
4458 {
4459 if (letter == '.')
4460 {
4461 if (MOTOROLA)
4462 fprintf (file, ".");
4463 }
4464 else if (letter == '#')
4465 asm_fprintf (file, "%I");
4466 else if (letter == '-')
4467 asm_fprintf (file, MOTOROLA ? "-(%Rsp)" : "%Rsp@-");
4468 else if (letter == '+')
4469 asm_fprintf (file, MOTOROLA ? "(%Rsp)+" : "%Rsp@+");
4470 else if (letter == '@')
4471 asm_fprintf (file, MOTOROLA ? "(%Rsp)" : "%Rsp@");
4472 else if (letter == '!')
4473 asm_fprintf (file, "%Rfpcr");
4474 else if (letter == '$')
4475 {
4476 if (TARGET_68040)
4477 fprintf (file, "s");
4478 }
4479 else if (letter == '&')
4480 {
4481 if (TARGET_68040)
4482 fprintf (file, "d");
4483 }
4484 else if (letter == '/')
4485 asm_fprintf (file, "%R");
4486 else if (letter == '?')
4487 asm_fprintf (file, m68k_library_id_string);
4488 else if (letter == 'p')
4489 {
4490 output_addr_const (file, op);
4491 if (!(GET_CODE (op) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (op)))
4492 fprintf (file, "@PLTPC");
4493 }
4494 else if (GET_CODE (op) == REG)
4495 {
4496 if (letter == 'R')
4497 /* Print out the second register name of a register pair.
4498 I.e., R (6) => 7. */
4499 fputs (M68K_REGNAME(REGNO (op) + 1), file);
4500 else
4501 fputs (M68K_REGNAME(REGNO (op)), file);
4502 }
4503 else if (GET_CODE (op) == MEM)
4504 {
4505 output_address (XEXP (op, 0));
4506 if (letter == 'd' && ! TARGET_68020
4507 && CONSTANT_ADDRESS_P (XEXP (op, 0))
4508 && !(GET_CODE (XEXP (op, 0)) == CONST_INT
4509 && INTVAL (XEXP (op, 0)) < 0x8000
4510 && INTVAL (XEXP (op, 0)) >= -0x8000))
4511 fprintf (file, MOTOROLA ? ".l" : ":l");
4512 }
4513 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == SFmode)
4514 {
4515 REAL_VALUE_TYPE r;
4516 long l;
4517 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4518 REAL_VALUE_TO_TARGET_SINGLE (r, l);
4519 asm_fprintf (file, "%I0x%lx", l & 0xFFFFFFFF);
4520 }
4521 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == XFmode)
4522 {
4523 REAL_VALUE_TYPE r;
4524 long l[3];
4525 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4526 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
4527 asm_fprintf (file, "%I0x%lx%08lx%08lx", l[0] & 0xFFFFFFFF,
4528 l[1] & 0xFFFFFFFF, l[2] & 0xFFFFFFFF);
4529 }
4530 else if (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == DFmode)
4531 {
4532 REAL_VALUE_TYPE r;
4533 long l[2];
4534 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
4535 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
4536 asm_fprintf (file, "%I0x%lx%08lx", l[0] & 0xFFFFFFFF, l[1] & 0xFFFFFFFF);
4537 }
4538 else
4539 {
4540 /* Use `print_operand_address' instead of `output_addr_const'
4541 to ensure that we print relevant PIC stuff. */
4542 asm_fprintf (file, "%I");
4543 if (TARGET_PCREL
4544 && (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == CONST))
4545 print_operand_address (file, op);
4546 else
4547 output_addr_const (file, op);
4548 }
4549 }
4550
4551 /* Return string for TLS relocation RELOC. */
4552
4553 static const char *
4554 m68k_get_reloc_decoration (enum m68k_reloc reloc)
4555 {
4556 /* To my knowledge, !MOTOROLA assemblers don't support TLS. */
4557 gcc_assert (MOTOROLA || reloc == RELOC_GOT);
4558
4559 switch (reloc)
4560 {
4561 case RELOC_GOT:
4562 if (MOTOROLA)
4563 {
4564 if (flag_pic == 1 && TARGET_68020)
4565 return "@GOT.w";
4566 else
4567 return "@GOT";
4568 }
4569 else
4570 {
4571 if (TARGET_68020)
4572 {
4573 switch (flag_pic)
4574 {
4575 case 1:
4576 return ":w";
4577 case 2:
4578 return ":l";
4579 default:
4580 return "";
4581 }
4582 }
4583 }
4584
4585 case RELOC_TLSGD:
4586 return "@TLSGD";
4587
4588 case RELOC_TLSLDM:
4589 return "@TLSLDM";
4590
4591 case RELOC_TLSLDO:
4592 return "@TLSLDO";
4593
4594 case RELOC_TLSIE:
4595 return "@TLSIE";
4596
4597 case RELOC_TLSLE:
4598 return "@TLSLE";
4599
4600 default:
4601 gcc_unreachable ();
4602 }
4603 }
4604
4605 /* m68k implementation of OUTPUT_ADDR_CONST_EXTRA. */
4606
4607 bool
4608 m68k_output_addr_const_extra (FILE *file, rtx x)
4609 {
4610 if (GET_CODE (x) == UNSPEC)
4611 {
4612 switch (XINT (x, 1))
4613 {
4614 case UNSPEC_RELOC16:
4615 case UNSPEC_RELOC32:
4616 output_addr_const (file, XVECEXP (x, 0, 0));
4617 fputs (m68k_get_reloc_decoration
4618 ((enum m68k_reloc) INTVAL (XVECEXP (x, 0, 1))), file);
4619 return true;
4620
4621 default:
4622 break;
4623 }
4624 }
4625
4626 return false;
4627 }
4628
4629 /* M68K implementation of TARGET_ASM_OUTPUT_DWARF_DTPREL. */
4630
4631 static void
4632 m68k_output_dwarf_dtprel (FILE *file, int size, rtx x)
4633 {
4634 gcc_assert (size == 4);
4635 fputs ("\t.long\t", file);
4636 output_addr_const (file, x);
4637 fputs ("@TLSLDO+0x8000", file);
4638 }
4639
4640 /* In the name of slightly smaller debug output, and to cater to
4641 general assembler lossage, recognize various UNSPEC sequences
4642 and turn them back into a direct symbol reference. */
4643
4644 static rtx
4645 m68k_delegitimize_address (rtx orig_x)
4646 {
4647 rtx x;
4648 struct m68k_address addr;
4649 rtx unspec;
4650
4651 orig_x = delegitimize_mem_from_attrs (orig_x);
4652 x = orig_x;
4653 if (MEM_P (x))
4654 x = XEXP (x, 0);
4655
4656 if (GET_CODE (x) != PLUS || GET_MODE (x) != Pmode)
4657 return orig_x;
4658
4659 if (!m68k_decompose_address (GET_MODE (x), x, false, &addr)
4660 || addr.offset == NULL_RTX
4661 || GET_CODE (addr.offset) != CONST)
4662 return orig_x;
4663
4664 unspec = XEXP (addr.offset, 0);
4665 if (GET_CODE (unspec) == PLUS && CONST_INT_P (XEXP (unspec, 1)))
4666 unspec = XEXP (unspec, 0);
4667 if (GET_CODE (unspec) != UNSPEC
4668 || (XINT (unspec, 1) != UNSPEC_RELOC16
4669 && XINT (unspec, 1) != UNSPEC_RELOC32))
4670 return orig_x;
4671 x = XVECEXP (unspec, 0, 0);
4672 gcc_assert (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF);
4673 if (unspec != XEXP (addr.offset, 0))
4674 x = gen_rtx_PLUS (Pmode, x, XEXP (XEXP (addr.offset, 0), 1));
4675 if (addr.index)
4676 {
4677 rtx idx = addr.index;
4678 if (addr.scale != 1)
4679 idx = gen_rtx_MULT (Pmode, idx, GEN_INT (addr.scale));
4680 x = gen_rtx_PLUS (Pmode, idx, x);
4681 }
4682 if (addr.base)
4683 x = gen_rtx_PLUS (Pmode, addr.base, x);
4684 if (MEM_P (orig_x))
4685 x = replace_equiv_address_nv (orig_x, x);
4686 return x;
4687 }
4688
4689 \f
4690 /* A C compound statement to output to stdio stream STREAM the
4691 assembler syntax for an instruction operand that is a memory
4692 reference whose address is ADDR. ADDR is an RTL expression.
4693
4694 Note that this contains a kludge that knows that the only reason
4695 we have an address (plus (label_ref...) (reg...)) when not generating
4696 PIC code is in the insn before a tablejump, and we know that m68k.md
4697 generates a label LInnn: on such an insn.
4698
4699 It is possible for PIC to generate a (plus (label_ref...) (reg...))
4700 and we handle that just like we would a (plus (symbol_ref...) (reg...)).
4701
4702 This routine is responsible for distinguishing between -fpic and -fPIC
4703 style relocations in an address. When generating -fpic code the
4704 offset is output in word mode (e.g. movel a5@(_foo:w), a0). When generating
4705 -fPIC code the offset is output in long mode (e.g. movel a5@(_foo:l), a0) */
4706
4707 void
4708 print_operand_address (FILE *file, rtx addr)
4709 {
4710 struct m68k_address address;
4711
4712 if (!m68k_decompose_address (QImode, addr, true, &address))
4713 gcc_unreachable ();
4714
4715 if (address.code == PRE_DEC)
4716 fprintf (file, MOTOROLA ? "-(%s)" : "%s@-",
4717 M68K_REGNAME (REGNO (address.base)));
4718 else if (address.code == POST_INC)
4719 fprintf (file, MOTOROLA ? "(%s)+" : "%s@+",
4720 M68K_REGNAME (REGNO (address.base)));
4721 else if (!address.base && !address.index)
4722 {
4723 /* A constant address. */
4724 gcc_assert (address.offset == addr);
4725 if (GET_CODE (addr) == CONST_INT)
4726 {
4727 /* (xxx).w or (xxx).l. */
4728 if (IN_RANGE (INTVAL (addr), -0x8000, 0x7fff))
4729 fprintf (file, MOTOROLA ? "%d.w" : "%d:w", (int) INTVAL (addr));
4730 else
4731 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
4732 }
4733 else if (TARGET_PCREL)
4734 {
4735 /* (d16,PC) or (bd,PC,Xn) (with suppressed index register). */
4736 fputc ('(', file);
4737 output_addr_const (file, addr);
4738 asm_fprintf (file, flag_pic == 1 ? ":w,%Rpc)" : ":l,%Rpc)");
4739 }
4740 else
4741 {
4742 /* (xxx).l. We need a special case for SYMBOL_REF if the symbol
4743 name ends in `.<letter>', as the last 2 characters can be
4744 mistaken as a size suffix. Put the name in parentheses. */
4745 if (GET_CODE (addr) == SYMBOL_REF
4746 && strlen (XSTR (addr, 0)) > 2
4747 && XSTR (addr, 0)[strlen (XSTR (addr, 0)) - 2] == '.')
4748 {
4749 putc ('(', file);
4750 output_addr_const (file, addr);
4751 putc (')', file);
4752 }
4753 else
4754 output_addr_const (file, addr);
4755 }
4756 }
4757 else
4758 {
4759 int labelno;
4760
4761 /* If ADDR is a (d8,pc,Xn) address, this is the number of the
4762 label being accessed, otherwise it is -1. */
4763 labelno = (address.offset
4764 && !address.base
4765 && GET_CODE (address.offset) == LABEL_REF
4766 ? CODE_LABEL_NUMBER (XEXP (address.offset, 0))
4767 : -1);
4768 if (MOTOROLA)
4769 {
4770 /* Print the "offset(base" component. */
4771 if (labelno >= 0)
4772 asm_fprintf (file, "%LL%d(%Rpc,", labelno);
4773 else
4774 {
4775 if (address.offset)
4776 output_addr_const (file, address.offset);
4777
4778 putc ('(', file);
4779 if (address.base)
4780 fputs (M68K_REGNAME (REGNO (address.base)), file);
4781 }
4782 /* Print the ",index" component, if any. */
4783 if (address.index)
4784 {
4785 if (address.base)
4786 putc (',', file);
4787 fprintf (file, "%s.%c",
4788 M68K_REGNAME (REGNO (address.index)),
4789 GET_MODE (address.index) == HImode ? 'w' : 'l');
4790 if (address.scale != 1)
4791 fprintf (file, "*%d", address.scale);
4792 }
4793 putc (')', file);
4794 }
4795 else /* !MOTOROLA */
4796 {
4797 if (!address.offset && !address.index)
4798 fprintf (file, "%s@", M68K_REGNAME (REGNO (address.base)));
4799 else
4800 {
4801 /* Print the "base@(offset" component. */
4802 if (labelno >= 0)
4803 asm_fprintf (file, "%Rpc@(%LL%d", labelno);
4804 else
4805 {
4806 if (address.base)
4807 fputs (M68K_REGNAME (REGNO (address.base)), file);
4808 fprintf (file, "@(");
4809 if (address.offset)
4810 output_addr_const (file, address.offset);
4811 }
4812 /* Print the ",index" component, if any. */
4813 if (address.index)
4814 {
4815 fprintf (file, ",%s:%c",
4816 M68K_REGNAME (REGNO (address.index)),
4817 GET_MODE (address.index) == HImode ? 'w' : 'l');
4818 if (address.scale != 1)
4819 fprintf (file, ":%d", address.scale);
4820 }
4821 putc (')', file);
4822 }
4823 }
4824 }
4825 }
4826 \f
4827 /* Check for cases where a clr insns can be omitted from code using
4828 strict_low_part sets. For example, the second clrl here is not needed:
4829 clrl d0; movw a0@+,d0; use d0; clrl d0; movw a0@+; use d0; ...
4830
4831 MODE is the mode of this STRICT_LOW_PART set. FIRST_INSN is the clear
4832 insn we are checking for redundancy. TARGET is the register set by the
4833 clear insn. */
4834
4835 bool
4836 strict_low_part_peephole_ok (enum machine_mode mode, rtx first_insn,
4837 rtx target)
4838 {
4839 rtx p = first_insn;
4840
4841 while ((p = PREV_INSN (p)))
4842 {
4843 if (NOTE_INSN_BASIC_BLOCK_P (p))
4844 return false;
4845
4846 if (NOTE_P (p))
4847 continue;
4848
4849 /* If it isn't an insn, then give up. */
4850 if (!INSN_P (p))
4851 return false;
4852
4853 if (reg_set_p (target, p))
4854 {
4855 rtx set = single_set (p);
4856 rtx dest;
4857
4858 /* If it isn't an easy to recognize insn, then give up. */
4859 if (! set)
4860 return false;
4861
4862 dest = SET_DEST (set);
4863
4864 /* If this sets the entire target register to zero, then our
4865 first_insn is redundant. */
4866 if (rtx_equal_p (dest, target)
4867 && SET_SRC (set) == const0_rtx)
4868 return true;
4869 else if (GET_CODE (dest) == STRICT_LOW_PART
4870 && GET_CODE (XEXP (dest, 0)) == REG
4871 && REGNO (XEXP (dest, 0)) == REGNO (target)
4872 && (GET_MODE_SIZE (GET_MODE (XEXP (dest, 0)))
4873 <= GET_MODE_SIZE (mode)))
4874 /* This is a strict low part set which modifies less than
4875 we are using, so it is safe. */
4876 ;
4877 else
4878 return false;
4879 }
4880 }
4881
4882 return false;
4883 }
4884
4885 /* Operand predicates for implementing asymmetric pc-relative addressing
4886 on m68k. The m68k supports pc-relative addressing (mode 7, register 2)
4887 when used as a source operand, but not as a destination operand.
4888
4889 We model this by restricting the meaning of the basic predicates
4890 (general_operand, memory_operand, etc) to forbid the use of this
4891 addressing mode, and then define the following predicates that permit
4892 this addressing mode. These predicates can then be used for the
4893 source operands of the appropriate instructions.
4894
4895 n.b. While it is theoretically possible to change all machine patterns
4896 to use this addressing more where permitted by the architecture,
4897 it has only been implemented for "common" cases: SImode, HImode, and
4898 QImode operands, and only for the principle operations that would
4899 require this addressing mode: data movement and simple integer operations.
4900
4901 In parallel with these new predicates, two new constraint letters
4902 were defined: 'S' and 'T'. 'S' is the -mpcrel analog of 'm'.
4903 'T' replaces 's' in the non-pcrel case. It is a no-op in the pcrel case.
4904 In the pcrel case 's' is only valid in combination with 'a' registers.
4905 See addsi3, subsi3, cmpsi, and movsi patterns for a better understanding
4906 of how these constraints are used.
4907
4908 The use of these predicates is strictly optional, though patterns that
4909 don't will cause an extra reload register to be allocated where one
4910 was not necessary:
4911
4912 lea (abc:w,%pc),%a0 ; need to reload address
4913 moveq &1,%d1 ; since write to pc-relative space
4914 movel %d1,%a0@ ; is not allowed
4915 ...
4916 lea (abc:w,%pc),%a1 ; no need to reload address here
4917 movel %a1@,%d0 ; since "movel (abc:w,%pc),%d0" is ok
4918
4919 For more info, consult tiemann@cygnus.com.
4920
4921
4922 All of the ugliness with predicates and constraints is due to the
4923 simple fact that the m68k does not allow a pc-relative addressing
4924 mode as a destination. gcc does not distinguish between source and
4925 destination addresses. Hence, if we claim that pc-relative address
4926 modes are valid, e.g. TARGET_LEGITIMATE_ADDRESS_P accepts them, then we
4927 end up with invalid code. To get around this problem, we left
4928 pc-relative modes as invalid addresses, and then added special
4929 predicates and constraints to accept them.
4930
4931 A cleaner way to handle this is to modify gcc to distinguish
4932 between source and destination addresses. We can then say that
4933 pc-relative is a valid source address but not a valid destination
4934 address, and hopefully avoid a lot of the predicate and constraint
4935 hackery. Unfortunately, this would be a pretty big change. It would
4936 be a useful change for a number of ports, but there aren't any current
4937 plans to undertake this.
4938
4939 ***************************************************************************/
4940
4941
4942 const char *
4943 output_andsi3 (rtx *operands)
4944 {
4945 int logval;
4946 if (GET_CODE (operands[2]) == CONST_INT
4947 && (INTVAL (operands[2]) | 0xffff) == -1
4948 && (DATA_REG_P (operands[0])
4949 || offsettable_memref_p (operands[0]))
4950 && !TARGET_COLDFIRE)
4951 {
4952 if (GET_CODE (operands[0]) != REG)
4953 operands[0] = adjust_address (operands[0], HImode, 2);
4954 operands[2] = GEN_INT (INTVAL (operands[2]) & 0xffff);
4955 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4956 CC_STATUS_INIT;
4957 if (operands[2] == const0_rtx)
4958 return "clr%.w %0";
4959 return "and%.w %2,%0";
4960 }
4961 if (GET_CODE (operands[2]) == CONST_INT
4962 && (logval = exact_log2 (~ INTVAL (operands[2]) & 0xffffffff)) >= 0
4963 && (DATA_REG_P (operands[0])
4964 || offsettable_memref_p (operands[0])))
4965 {
4966 if (DATA_REG_P (operands[0]))
4967 operands[1] = GEN_INT (logval);
4968 else
4969 {
4970 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
4971 operands[1] = GEN_INT (logval % 8);
4972 }
4973 /* This does not set condition codes in a standard way. */
4974 CC_STATUS_INIT;
4975 return "bclr %1,%0";
4976 }
4977 return "and%.l %2,%0";
4978 }
4979
4980 const char *
4981 output_iorsi3 (rtx *operands)
4982 {
4983 register int logval;
4984 if (GET_CODE (operands[2]) == CONST_INT
4985 && INTVAL (operands[2]) >> 16 == 0
4986 && (DATA_REG_P (operands[0])
4987 || offsettable_memref_p (operands[0]))
4988 && !TARGET_COLDFIRE)
4989 {
4990 if (GET_CODE (operands[0]) != REG)
4991 operands[0] = adjust_address (operands[0], HImode, 2);
4992 /* Do not delete a following tstl %0 insn; that would be incorrect. */
4993 CC_STATUS_INIT;
4994 if (INTVAL (operands[2]) == 0xffff)
4995 return "mov%.w %2,%0";
4996 return "or%.w %2,%0";
4997 }
4998 if (GET_CODE (operands[2]) == CONST_INT
4999 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
5000 && (DATA_REG_P (operands[0])
5001 || offsettable_memref_p (operands[0])))
5002 {
5003 if (DATA_REG_P (operands[0]))
5004 operands[1] = GEN_INT (logval);
5005 else
5006 {
5007 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
5008 operands[1] = GEN_INT (logval % 8);
5009 }
5010 CC_STATUS_INIT;
5011 return "bset %1,%0";
5012 }
5013 return "or%.l %2,%0";
5014 }
5015
5016 const char *
5017 output_xorsi3 (rtx *operands)
5018 {
5019 register int logval;
5020 if (GET_CODE (operands[2]) == CONST_INT
5021 && INTVAL (operands[2]) >> 16 == 0
5022 && (offsettable_memref_p (operands[0]) || DATA_REG_P (operands[0]))
5023 && !TARGET_COLDFIRE)
5024 {
5025 if (! DATA_REG_P (operands[0]))
5026 operands[0] = adjust_address (operands[0], HImode, 2);
5027 /* Do not delete a following tstl %0 insn; that would be incorrect. */
5028 CC_STATUS_INIT;
5029 if (INTVAL (operands[2]) == 0xffff)
5030 return "not%.w %0";
5031 return "eor%.w %2,%0";
5032 }
5033 if (GET_CODE (operands[2]) == CONST_INT
5034 && (logval = exact_log2 (INTVAL (operands[2]) & 0xffffffff)) >= 0
5035 && (DATA_REG_P (operands[0])
5036 || offsettable_memref_p (operands[0])))
5037 {
5038 if (DATA_REG_P (operands[0]))
5039 operands[1] = GEN_INT (logval);
5040 else
5041 {
5042 operands[0] = adjust_address (operands[0], SImode, 3 - (logval / 8));
5043 operands[1] = GEN_INT (logval % 8);
5044 }
5045 CC_STATUS_INIT;
5046 return "bchg %1,%0";
5047 }
5048 return "eor%.l %2,%0";
5049 }
5050
5051 /* Return the instruction that should be used for a call to address X,
5052 which is known to be in operand 0. */
5053
5054 const char *
5055 output_call (rtx x)
5056 {
5057 if (symbolic_operand (x, VOIDmode))
5058 return m68k_symbolic_call;
5059 else
5060 return "jsr %a0";
5061 }
5062
5063 /* Likewise sibling calls. */
5064
5065 const char *
5066 output_sibcall (rtx x)
5067 {
5068 if (symbolic_operand (x, VOIDmode))
5069 return m68k_symbolic_jump;
5070 else
5071 return "jmp %a0";
5072 }
5073
5074 static void
5075 m68k_output_mi_thunk (FILE *file, tree thunk ATTRIBUTE_UNUSED,
5076 HOST_WIDE_INT delta, HOST_WIDE_INT vcall_offset,
5077 tree function)
5078 {
5079 rtx this_slot, offset, addr, mem, insn, tmp;
5080
5081 /* Avoid clobbering the struct value reg by using the
5082 static chain reg as a temporary. */
5083 tmp = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5084
5085 /* Pretend to be a post-reload pass while generating rtl. */
5086 reload_completed = 1;
5087
5088 /* The "this" pointer is stored at 4(%sp). */
5089 this_slot = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, 4));
5090
5091 /* Add DELTA to THIS. */
5092 if (delta != 0)
5093 {
5094 /* Make the offset a legitimate operand for memory addition. */
5095 offset = GEN_INT (delta);
5096 if ((delta < -8 || delta > 8)
5097 && (TARGET_COLDFIRE || USE_MOVQ (delta)))
5098 {
5099 emit_move_insn (gen_rtx_REG (Pmode, D0_REG), offset);
5100 offset = gen_rtx_REG (Pmode, D0_REG);
5101 }
5102 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5103 copy_rtx (this_slot), offset));
5104 }
5105
5106 /* If needed, add *(*THIS + VCALL_OFFSET) to THIS. */
5107 if (vcall_offset != 0)
5108 {
5109 /* Set the static chain register to *THIS. */
5110 emit_move_insn (tmp, this_slot);
5111 emit_move_insn (tmp, gen_rtx_MEM (Pmode, tmp));
5112
5113 /* Set ADDR to a legitimate address for *THIS + VCALL_OFFSET. */
5114 addr = plus_constant (tmp, vcall_offset);
5115 if (!m68k_legitimate_address_p (Pmode, addr, true))
5116 {
5117 emit_insn (gen_rtx_SET (VOIDmode, tmp, addr));
5118 addr = tmp;
5119 }
5120
5121 /* Load the offset into %d0 and add it to THIS. */
5122 emit_move_insn (gen_rtx_REG (Pmode, D0_REG),
5123 gen_rtx_MEM (Pmode, addr));
5124 emit_insn (gen_add3_insn (copy_rtx (this_slot),
5125 copy_rtx (this_slot),
5126 gen_rtx_REG (Pmode, D0_REG)));
5127 }
5128
5129 /* Jump to the target function. Use a sibcall if direct jumps are
5130 allowed, otherwise load the address into a register first. */
5131 mem = DECL_RTL (function);
5132 if (!sibcall_operand (XEXP (mem, 0), VOIDmode))
5133 {
5134 gcc_assert (flag_pic);
5135
5136 if (!TARGET_SEP_DATA)
5137 {
5138 /* Use the static chain register as a temporary (call-clobbered)
5139 GOT pointer for this function. We can use the static chain
5140 register because it isn't live on entry to the thunk. */
5141 SET_REGNO (pic_offset_table_rtx, STATIC_CHAIN_REGNUM);
5142 emit_insn (gen_load_got (pic_offset_table_rtx));
5143 }
5144 legitimize_pic_address (XEXP (mem, 0), Pmode, tmp);
5145 mem = replace_equiv_address (mem, tmp);
5146 }
5147 insn = emit_call_insn (gen_sibcall (mem, const0_rtx));
5148 SIBLING_CALL_P (insn) = 1;
5149
5150 /* Run just enough of rest_of_compilation. */
5151 insn = get_insns ();
5152 split_all_insns_noflow ();
5153 final_start_function (insn, file, 1);
5154 final (insn, file, 1);
5155 final_end_function ();
5156
5157 /* Clean up the vars set above. */
5158 reload_completed = 0;
5159
5160 /* Restore the original PIC register. */
5161 if (flag_pic)
5162 SET_REGNO (pic_offset_table_rtx, PIC_REG);
5163 }
5164
5165 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
5166
5167 static rtx
5168 m68k_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
5169 int incoming ATTRIBUTE_UNUSED)
5170 {
5171 return gen_rtx_REG (Pmode, M68K_STRUCT_VALUE_REGNUM);
5172 }
5173
5174 /* Return nonzero if register old_reg can be renamed to register new_reg. */
5175 int
5176 m68k_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
5177 unsigned int new_reg)
5178 {
5179
5180 /* Interrupt functions can only use registers that have already been
5181 saved by the prologue, even if they would normally be
5182 call-clobbered. */
5183
5184 if ((m68k_get_function_kind (current_function_decl)
5185 == m68k_fk_interrupt_handler)
5186 && !df_regs_ever_live_p (new_reg))
5187 return 0;
5188
5189 return 1;
5190 }
5191
5192 /* Value is true if hard register REGNO can hold a value of machine-mode
5193 MODE. On the 68000, we let the cpu registers can hold any mode, but
5194 restrict the 68881 registers to floating-point modes. */
5195
5196 bool
5197 m68k_regno_mode_ok (int regno, enum machine_mode mode)
5198 {
5199 if (DATA_REGNO_P (regno))
5200 {
5201 /* Data Registers, can hold aggregate if fits in. */
5202 if (regno + GET_MODE_SIZE (mode) / 4 <= 8)
5203 return true;
5204 }
5205 else if (ADDRESS_REGNO_P (regno))
5206 {
5207 if (regno + GET_MODE_SIZE (mode) / 4 <= 16)
5208 return true;
5209 }
5210 else if (FP_REGNO_P (regno))
5211 {
5212 /* FPU registers, hold float or complex float of long double or
5213 smaller. */
5214 if ((GET_MODE_CLASS (mode) == MODE_FLOAT
5215 || GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
5216 && GET_MODE_UNIT_SIZE (mode) <= TARGET_FP_REG_SIZE)
5217 return true;
5218 }
5219 return false;
5220 }
5221
5222 /* Implement SECONDARY_RELOAD_CLASS. */
5223
5224 enum reg_class
5225 m68k_secondary_reload_class (enum reg_class rclass,
5226 enum machine_mode mode, rtx x)
5227 {
5228 int regno;
5229
5230 regno = true_regnum (x);
5231
5232 /* If one operand of a movqi is an address register, the other
5233 operand must be a general register or constant. Other types
5234 of operand must be reloaded through a data register. */
5235 if (GET_MODE_SIZE (mode) == 1
5236 && reg_classes_intersect_p (rclass, ADDR_REGS)
5237 && !(INT_REGNO_P (regno) || CONSTANT_P (x)))
5238 return DATA_REGS;
5239
5240 /* PC-relative addresses must be loaded into an address register first. */
5241 if (TARGET_PCREL
5242 && !reg_class_subset_p (rclass, ADDR_REGS)
5243 && symbolic_operand (x, VOIDmode))
5244 return ADDR_REGS;
5245
5246 return NO_REGS;
5247 }
5248
5249 /* Implement PREFERRED_RELOAD_CLASS. */
5250
5251 enum reg_class
5252 m68k_preferred_reload_class (rtx x, enum reg_class rclass)
5253 {
5254 enum reg_class secondary_class;
5255
5256 /* If RCLASS might need a secondary reload, try restricting it to
5257 a class that doesn't. */
5258 secondary_class = m68k_secondary_reload_class (rclass, GET_MODE (x), x);
5259 if (secondary_class != NO_REGS
5260 && reg_class_subset_p (secondary_class, rclass))
5261 return secondary_class;
5262
5263 /* Prefer to use moveq for in-range constants. */
5264 if (GET_CODE (x) == CONST_INT
5265 && reg_class_subset_p (DATA_REGS, rclass)
5266 && IN_RANGE (INTVAL (x), -0x80, 0x7f))
5267 return DATA_REGS;
5268
5269 /* ??? Do we really need this now? */
5270 if (GET_CODE (x) == CONST_DOUBLE
5271 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
5272 {
5273 if (TARGET_HARD_FLOAT && reg_class_subset_p (FP_REGS, rclass))
5274 return FP_REGS;
5275
5276 return NO_REGS;
5277 }
5278
5279 return rclass;
5280 }
5281
5282 /* Return floating point values in a 68881 register. This makes 68881 code
5283 a little bit faster. It also makes -msoft-float code incompatible with
5284 hard-float code, so people have to be careful not to mix the two.
5285 For ColdFire it was decided the ABI incompatibility is undesirable.
5286 If there is need for a hard-float ABI it is probably worth doing it
5287 properly and also passing function arguments in FP registers. */
5288 rtx
5289 m68k_libcall_value (enum machine_mode mode)
5290 {
5291 switch (mode) {
5292 case SFmode:
5293 case DFmode:
5294 case XFmode:
5295 if (TARGET_68881)
5296 return gen_rtx_REG (mode, FP0_REG);
5297 break;
5298 default:
5299 break;
5300 }
5301
5302 return gen_rtx_REG (mode, m68k_libcall_value_in_a0_p ? A0_REG : D0_REG);
5303 }
5304
5305 /* Location in which function value is returned.
5306 NOTE: Due to differences in ABIs, don't call this function directly,
5307 use FUNCTION_VALUE instead. */
5308 rtx
5309 m68k_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED)
5310 {
5311 enum machine_mode mode;
5312
5313 mode = TYPE_MODE (valtype);
5314 switch (mode) {
5315 case SFmode:
5316 case DFmode:
5317 case XFmode:
5318 if (TARGET_68881)
5319 return gen_rtx_REG (mode, FP0_REG);
5320 break;
5321 default:
5322 break;
5323 }
5324
5325 /* If the function returns a pointer, push that into %a0. */
5326 if (func && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (func))))
5327 /* For compatibility with the large body of existing code which
5328 does not always properly declare external functions returning
5329 pointer types, the m68k/SVR4 convention is to copy the value
5330 returned for pointer functions from a0 to d0 in the function
5331 epilogue, so that callers that have neglected to properly
5332 declare the callee can still find the correct return value in
5333 d0. */
5334 return gen_rtx_PARALLEL
5335 (mode,
5336 gen_rtvec (2,
5337 gen_rtx_EXPR_LIST (VOIDmode,
5338 gen_rtx_REG (mode, A0_REG),
5339 const0_rtx),
5340 gen_rtx_EXPR_LIST (VOIDmode,
5341 gen_rtx_REG (mode, D0_REG),
5342 const0_rtx)));
5343 else if (POINTER_TYPE_P (valtype))
5344 return gen_rtx_REG (mode, A0_REG);
5345 else
5346 return gen_rtx_REG (mode, D0_REG);
5347 }
5348
5349 /* Worker function for TARGET_RETURN_IN_MEMORY. */
5350 #if M68K_HONOR_TARGET_STRICT_ALIGNMENT
5351 static bool
5352 m68k_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
5353 {
5354 enum machine_mode mode = TYPE_MODE (type);
5355
5356 if (mode == BLKmode)
5357 return true;
5358
5359 /* If TYPE's known alignment is less than the alignment of MODE that
5360 would contain the structure, then return in memory. We need to
5361 do so to maintain the compatibility between code compiled with
5362 -mstrict-align and that compiled with -mno-strict-align. */
5363 if (AGGREGATE_TYPE_P (type)
5364 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (mode))
5365 return true;
5366
5367 return false;
5368 }
5369 #endif
5370
5371 /* CPU to schedule the program for. */
5372 enum attr_cpu m68k_sched_cpu;
5373
5374 /* MAC to schedule the program for. */
5375 enum attr_mac m68k_sched_mac;
5376
5377 /* Operand type. */
5378 enum attr_op_type
5379 {
5380 /* No operand. */
5381 OP_TYPE_NONE,
5382
5383 /* Integer register. */
5384 OP_TYPE_RN,
5385
5386 /* FP register. */
5387 OP_TYPE_FPN,
5388
5389 /* Implicit mem reference (e.g. stack). */
5390 OP_TYPE_MEM1,
5391
5392 /* Memory without offset or indexing. EA modes 2, 3 and 4. */
5393 OP_TYPE_MEM234,
5394
5395 /* Memory with offset but without indexing. EA mode 5. */
5396 OP_TYPE_MEM5,
5397
5398 /* Memory with indexing. EA mode 6. */
5399 OP_TYPE_MEM6,
5400
5401 /* Memory referenced by absolute address. EA mode 7. */
5402 OP_TYPE_MEM7,
5403
5404 /* Immediate operand that doesn't require extension word. */
5405 OP_TYPE_IMM_Q,
5406
5407 /* Immediate 16 bit operand. */
5408 OP_TYPE_IMM_W,
5409
5410 /* Immediate 32 bit operand. */
5411 OP_TYPE_IMM_L
5412 };
5413
5414 /* Return type of memory ADDR_RTX refers to. */
5415 static enum attr_op_type
5416 sched_address_type (enum machine_mode mode, rtx addr_rtx)
5417 {
5418 struct m68k_address address;
5419
5420 if (symbolic_operand (addr_rtx, VOIDmode))
5421 return OP_TYPE_MEM7;
5422
5423 if (!m68k_decompose_address (mode, addr_rtx,
5424 reload_completed, &address))
5425 {
5426 gcc_assert (!reload_completed);
5427 /* Reload will likely fix the address to be in the register. */
5428 return OP_TYPE_MEM234;
5429 }
5430
5431 if (address.scale != 0)
5432 return OP_TYPE_MEM6;
5433
5434 if (address.base != NULL_RTX)
5435 {
5436 if (address.offset == NULL_RTX)
5437 return OP_TYPE_MEM234;
5438
5439 return OP_TYPE_MEM5;
5440 }
5441
5442 gcc_assert (address.offset != NULL_RTX);
5443
5444 return OP_TYPE_MEM7;
5445 }
5446
5447 /* Return X or Y (depending on OPX_P) operand of INSN. */
5448 static rtx
5449 sched_get_operand (rtx insn, bool opx_p)
5450 {
5451 int i;
5452
5453 if (recog_memoized (insn) < 0)
5454 gcc_unreachable ();
5455
5456 extract_constrain_insn_cached (insn);
5457
5458 if (opx_p)
5459 i = get_attr_opx (insn);
5460 else
5461 i = get_attr_opy (insn);
5462
5463 if (i >= recog_data.n_operands)
5464 return NULL;
5465
5466 return recog_data.operand[i];
5467 }
5468
5469 /* Return type of INSN's operand X (if OPX_P) or operand Y (if !OPX_P).
5470 If ADDRESS_P is true, return type of memory location operand refers to. */
5471 static enum attr_op_type
5472 sched_attr_op_type (rtx insn, bool opx_p, bool address_p)
5473 {
5474 rtx op;
5475
5476 op = sched_get_operand (insn, opx_p);
5477
5478 if (op == NULL)
5479 {
5480 gcc_assert (!reload_completed);
5481 return OP_TYPE_RN;
5482 }
5483
5484 if (address_p)
5485 return sched_address_type (QImode, op);
5486
5487 if (memory_operand (op, VOIDmode))
5488 return sched_address_type (GET_MODE (op), XEXP (op, 0));
5489
5490 if (register_operand (op, VOIDmode))
5491 {
5492 if ((!reload_completed && FLOAT_MODE_P (GET_MODE (op)))
5493 || (reload_completed && FP_REG_P (op)))
5494 return OP_TYPE_FPN;
5495
5496 return OP_TYPE_RN;
5497 }
5498
5499 if (GET_CODE (op) == CONST_INT)
5500 {
5501 int ival;
5502
5503 ival = INTVAL (op);
5504
5505 /* Check for quick constants. */
5506 switch (get_attr_type (insn))
5507 {
5508 case TYPE_ALUQ_L:
5509 if (IN_RANGE (ival, 1, 8) || IN_RANGE (ival, -8, -1))
5510 return OP_TYPE_IMM_Q;
5511
5512 gcc_assert (!reload_completed);
5513 break;
5514
5515 case TYPE_MOVEQ_L:
5516 if (USE_MOVQ (ival))
5517 return OP_TYPE_IMM_Q;
5518
5519 gcc_assert (!reload_completed);
5520 break;
5521
5522 case TYPE_MOV3Q_L:
5523 if (valid_mov3q_const (ival))
5524 return OP_TYPE_IMM_Q;
5525
5526 gcc_assert (!reload_completed);
5527 break;
5528
5529 default:
5530 break;
5531 }
5532
5533 if (IN_RANGE (ival, -0x8000, 0x7fff))
5534 return OP_TYPE_IMM_W;
5535
5536 return OP_TYPE_IMM_L;
5537 }
5538
5539 if (GET_CODE (op) == CONST_DOUBLE)
5540 {
5541 switch (GET_MODE (op))
5542 {
5543 case SFmode:
5544 return OP_TYPE_IMM_W;
5545
5546 case VOIDmode:
5547 case DFmode:
5548 return OP_TYPE_IMM_L;
5549
5550 default:
5551 gcc_unreachable ();
5552 }
5553 }
5554
5555 if (GET_CODE (op) == CONST
5556 || symbolic_operand (op, VOIDmode)
5557 || LABEL_P (op))
5558 {
5559 switch (GET_MODE (op))
5560 {
5561 case QImode:
5562 return OP_TYPE_IMM_Q;
5563
5564 case HImode:
5565 return OP_TYPE_IMM_W;
5566
5567 case SImode:
5568 return OP_TYPE_IMM_L;
5569
5570 default:
5571 if (symbolic_operand (m68k_unwrap_symbol (op, false), VOIDmode))
5572 /* Just a guess. */
5573 return OP_TYPE_IMM_W;
5574
5575 return OP_TYPE_IMM_L;
5576 }
5577 }
5578
5579 gcc_assert (!reload_completed);
5580
5581 if (FLOAT_MODE_P (GET_MODE (op)))
5582 return OP_TYPE_FPN;
5583
5584 return OP_TYPE_RN;
5585 }
5586
5587 /* Implement opx_type attribute.
5588 Return type of INSN's operand X.
5589 If ADDRESS_P is true, return type of memory location operand refers to. */
5590 enum attr_opx_type
5591 m68k_sched_attr_opx_type (rtx insn, int address_p)
5592 {
5593 switch (sched_attr_op_type (insn, true, address_p != 0))
5594 {
5595 case OP_TYPE_RN:
5596 return OPX_TYPE_RN;
5597
5598 case OP_TYPE_FPN:
5599 return OPX_TYPE_FPN;
5600
5601 case OP_TYPE_MEM1:
5602 return OPX_TYPE_MEM1;
5603
5604 case OP_TYPE_MEM234:
5605 return OPX_TYPE_MEM234;
5606
5607 case OP_TYPE_MEM5:
5608 return OPX_TYPE_MEM5;
5609
5610 case OP_TYPE_MEM6:
5611 return OPX_TYPE_MEM6;
5612
5613 case OP_TYPE_MEM7:
5614 return OPX_TYPE_MEM7;
5615
5616 case OP_TYPE_IMM_Q:
5617 return OPX_TYPE_IMM_Q;
5618
5619 case OP_TYPE_IMM_W:
5620 return OPX_TYPE_IMM_W;
5621
5622 case OP_TYPE_IMM_L:
5623 return OPX_TYPE_IMM_L;
5624
5625 default:
5626 gcc_unreachable ();
5627 }
5628 }
5629
5630 /* Implement opy_type attribute.
5631 Return type of INSN's operand Y.
5632 If ADDRESS_P is true, return type of memory location operand refers to. */
5633 enum attr_opy_type
5634 m68k_sched_attr_opy_type (rtx insn, int address_p)
5635 {
5636 switch (sched_attr_op_type (insn, false, address_p != 0))
5637 {
5638 case OP_TYPE_RN:
5639 return OPY_TYPE_RN;
5640
5641 case OP_TYPE_FPN:
5642 return OPY_TYPE_FPN;
5643
5644 case OP_TYPE_MEM1:
5645 return OPY_TYPE_MEM1;
5646
5647 case OP_TYPE_MEM234:
5648 return OPY_TYPE_MEM234;
5649
5650 case OP_TYPE_MEM5:
5651 return OPY_TYPE_MEM5;
5652
5653 case OP_TYPE_MEM6:
5654 return OPY_TYPE_MEM6;
5655
5656 case OP_TYPE_MEM7:
5657 return OPY_TYPE_MEM7;
5658
5659 case OP_TYPE_IMM_Q:
5660 return OPY_TYPE_IMM_Q;
5661
5662 case OP_TYPE_IMM_W:
5663 return OPY_TYPE_IMM_W;
5664
5665 case OP_TYPE_IMM_L:
5666 return OPY_TYPE_IMM_L;
5667
5668 default:
5669 gcc_unreachable ();
5670 }
5671 }
5672
5673 /* Return size of INSN as int. */
5674 static int
5675 sched_get_attr_size_int (rtx insn)
5676 {
5677 int size;
5678
5679 switch (get_attr_type (insn))
5680 {
5681 case TYPE_IGNORE:
5682 /* There should be no references to m68k_sched_attr_size for 'ignore'
5683 instructions. */
5684 gcc_unreachable ();
5685 return 0;
5686
5687 case TYPE_MUL_L:
5688 size = 2;
5689 break;
5690
5691 default:
5692 size = 1;
5693 break;
5694 }
5695
5696 switch (get_attr_opx_type (insn))
5697 {
5698 case OPX_TYPE_NONE:
5699 case OPX_TYPE_RN:
5700 case OPX_TYPE_FPN:
5701 case OPX_TYPE_MEM1:
5702 case OPX_TYPE_MEM234:
5703 case OPY_TYPE_IMM_Q:
5704 break;
5705
5706 case OPX_TYPE_MEM5:
5707 case OPX_TYPE_MEM6:
5708 /* Here we assume that most absolute references are short. */
5709 case OPX_TYPE_MEM7:
5710 case OPY_TYPE_IMM_W:
5711 ++size;
5712 break;
5713
5714 case OPY_TYPE_IMM_L:
5715 size += 2;
5716 break;
5717
5718 default:
5719 gcc_unreachable ();
5720 }
5721
5722 switch (get_attr_opy_type (insn))
5723 {
5724 case OPY_TYPE_NONE:
5725 case OPY_TYPE_RN:
5726 case OPY_TYPE_FPN:
5727 case OPY_TYPE_MEM1:
5728 case OPY_TYPE_MEM234:
5729 case OPY_TYPE_IMM_Q:
5730 break;
5731
5732 case OPY_TYPE_MEM5:
5733 case OPY_TYPE_MEM6:
5734 /* Here we assume that most absolute references are short. */
5735 case OPY_TYPE_MEM7:
5736 case OPY_TYPE_IMM_W:
5737 ++size;
5738 break;
5739
5740 case OPY_TYPE_IMM_L:
5741 size += 2;
5742 break;
5743
5744 default:
5745 gcc_unreachable ();
5746 }
5747
5748 if (size > 3)
5749 {
5750 gcc_assert (!reload_completed);
5751
5752 size = 3;
5753 }
5754
5755 return size;
5756 }
5757
5758 /* Return size of INSN as attribute enum value. */
5759 enum attr_size
5760 m68k_sched_attr_size (rtx insn)
5761 {
5762 switch (sched_get_attr_size_int (insn))
5763 {
5764 case 1:
5765 return SIZE_1;
5766
5767 case 2:
5768 return SIZE_2;
5769
5770 case 3:
5771 return SIZE_3;
5772
5773 default:
5774 gcc_unreachable ();
5775 }
5776 }
5777
5778 /* Return operand X or Y (depending on OPX_P) of INSN,
5779 if it is a MEM, or NULL overwise. */
5780 static enum attr_op_type
5781 sched_get_opxy_mem_type (rtx insn, bool opx_p)
5782 {
5783 if (opx_p)
5784 {
5785 switch (get_attr_opx_type (insn))
5786 {
5787 case OPX_TYPE_NONE:
5788 case OPX_TYPE_RN:
5789 case OPX_TYPE_FPN:
5790 case OPX_TYPE_IMM_Q:
5791 case OPX_TYPE_IMM_W:
5792 case OPX_TYPE_IMM_L:
5793 return OP_TYPE_RN;
5794
5795 case OPX_TYPE_MEM1:
5796 case OPX_TYPE_MEM234:
5797 case OPX_TYPE_MEM5:
5798 case OPX_TYPE_MEM7:
5799 return OP_TYPE_MEM1;
5800
5801 case OPX_TYPE_MEM6:
5802 return OP_TYPE_MEM6;
5803
5804 default:
5805 gcc_unreachable ();
5806 }
5807 }
5808 else
5809 {
5810 switch (get_attr_opy_type (insn))
5811 {
5812 case OPY_TYPE_NONE:
5813 case OPY_TYPE_RN:
5814 case OPY_TYPE_FPN:
5815 case OPY_TYPE_IMM_Q:
5816 case OPY_TYPE_IMM_W:
5817 case OPY_TYPE_IMM_L:
5818 return OP_TYPE_RN;
5819
5820 case OPY_TYPE_MEM1:
5821 case OPY_TYPE_MEM234:
5822 case OPY_TYPE_MEM5:
5823 case OPY_TYPE_MEM7:
5824 return OP_TYPE_MEM1;
5825
5826 case OPY_TYPE_MEM6:
5827 return OP_TYPE_MEM6;
5828
5829 default:
5830 gcc_unreachable ();
5831 }
5832 }
5833 }
5834
5835 /* Implement op_mem attribute. */
5836 enum attr_op_mem
5837 m68k_sched_attr_op_mem (rtx insn)
5838 {
5839 enum attr_op_type opx;
5840 enum attr_op_type opy;
5841
5842 opx = sched_get_opxy_mem_type (insn, true);
5843 opy = sched_get_opxy_mem_type (insn, false);
5844
5845 if (opy == OP_TYPE_RN && opx == OP_TYPE_RN)
5846 return OP_MEM_00;
5847
5848 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM1)
5849 {
5850 switch (get_attr_opx_access (insn))
5851 {
5852 case OPX_ACCESS_R:
5853 return OP_MEM_10;
5854
5855 case OPX_ACCESS_W:
5856 return OP_MEM_01;
5857
5858 case OPX_ACCESS_RW:
5859 return OP_MEM_11;
5860
5861 default:
5862 gcc_unreachable ();
5863 }
5864 }
5865
5866 if (opy == OP_TYPE_RN && opx == OP_TYPE_MEM6)
5867 {
5868 switch (get_attr_opx_access (insn))
5869 {
5870 case OPX_ACCESS_R:
5871 return OP_MEM_I0;
5872
5873 case OPX_ACCESS_W:
5874 return OP_MEM_0I;
5875
5876 case OPX_ACCESS_RW:
5877 return OP_MEM_I1;
5878
5879 default:
5880 gcc_unreachable ();
5881 }
5882 }
5883
5884 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_RN)
5885 return OP_MEM_10;
5886
5887 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM1)
5888 {
5889 switch (get_attr_opx_access (insn))
5890 {
5891 case OPX_ACCESS_W:
5892 return OP_MEM_11;
5893
5894 default:
5895 gcc_assert (!reload_completed);
5896 return OP_MEM_11;
5897 }
5898 }
5899
5900 if (opy == OP_TYPE_MEM1 && opx == OP_TYPE_MEM6)
5901 {
5902 switch (get_attr_opx_access (insn))
5903 {
5904 case OPX_ACCESS_W:
5905 return OP_MEM_1I;
5906
5907 default:
5908 gcc_assert (!reload_completed);
5909 return OP_MEM_1I;
5910 }
5911 }
5912
5913 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_RN)
5914 return OP_MEM_I0;
5915
5916 if (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM1)
5917 {
5918 switch (get_attr_opx_access (insn))
5919 {
5920 case OPX_ACCESS_W:
5921 return OP_MEM_I1;
5922
5923 default:
5924 gcc_assert (!reload_completed);
5925 return OP_MEM_I1;
5926 }
5927 }
5928
5929 gcc_assert (opy == OP_TYPE_MEM6 && opx == OP_TYPE_MEM6);
5930 gcc_assert (!reload_completed);
5931 return OP_MEM_I1;
5932 }
5933
5934 /* Jump instructions types. Indexed by INSN_UID.
5935 The same rtl insn can be expanded into different asm instructions
5936 depending on the cc0_status. To properly determine type of jump
5937 instructions we scan instruction stream and map jumps types to this
5938 array. */
5939 static enum attr_type *sched_branch_type;
5940
5941 /* Return the type of the jump insn. */
5942 enum attr_type
5943 m68k_sched_branch_type (rtx insn)
5944 {
5945 enum attr_type type;
5946
5947 type = sched_branch_type[INSN_UID (insn)];
5948
5949 gcc_assert (type != 0);
5950
5951 return type;
5952 }
5953
5954 /* Data for ColdFire V4 index bypass.
5955 Producer modifies register that is used as index in consumer with
5956 specified scale. */
5957 static struct
5958 {
5959 /* Producer instruction. */
5960 rtx pro;
5961
5962 /* Consumer instruction. */
5963 rtx con;
5964
5965 /* Scale of indexed memory access within consumer.
5966 Or zero if bypass should not be effective at the moment. */
5967 int scale;
5968 } sched_cfv4_bypass_data;
5969
5970 /* An empty state that is used in m68k_sched_adjust_cost. */
5971 static state_t sched_adjust_cost_state;
5972
5973 /* Implement adjust_cost scheduler hook.
5974 Return adjusted COST of dependency LINK between DEF_INSN and INSN. */
5975 static int
5976 m68k_sched_adjust_cost (rtx insn, rtx link ATTRIBUTE_UNUSED, rtx def_insn,
5977 int cost)
5978 {
5979 int delay;
5980
5981 if (recog_memoized (def_insn) < 0
5982 || recog_memoized (insn) < 0)
5983 return cost;
5984
5985 if (sched_cfv4_bypass_data.scale == 1)
5986 /* Handle ColdFire V4 bypass for indexed address with 1x scale. */
5987 {
5988 /* haifa-sched.c: insn_cost () calls bypass_p () just before
5989 targetm.sched.adjust_cost (). Hence, we can be relatively sure
5990 that the data in sched_cfv4_bypass_data is up to date. */
5991 gcc_assert (sched_cfv4_bypass_data.pro == def_insn
5992 && sched_cfv4_bypass_data.con == insn);
5993
5994 if (cost < 3)
5995 cost = 3;
5996
5997 sched_cfv4_bypass_data.pro = NULL;
5998 sched_cfv4_bypass_data.con = NULL;
5999 sched_cfv4_bypass_data.scale = 0;
6000 }
6001 else
6002 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6003 && sched_cfv4_bypass_data.con == NULL
6004 && sched_cfv4_bypass_data.scale == 0);
6005
6006 /* Don't try to issue INSN earlier than DFA permits.
6007 This is especially useful for instructions that write to memory,
6008 as their true dependence (default) latency is better to be set to 0
6009 to workaround alias analysis limitations.
6010 This is, in fact, a machine independent tweak, so, probably,
6011 it should be moved to haifa-sched.c: insn_cost (). */
6012 delay = min_insn_conflict_delay (sched_adjust_cost_state, def_insn, insn);
6013 if (delay > cost)
6014 cost = delay;
6015
6016 return cost;
6017 }
6018
6019 /* Return maximal number of insns that can be scheduled on a single cycle. */
6020 static int
6021 m68k_sched_issue_rate (void)
6022 {
6023 switch (m68k_sched_cpu)
6024 {
6025 case CPU_CFV1:
6026 case CPU_CFV2:
6027 case CPU_CFV3:
6028 return 1;
6029
6030 case CPU_CFV4:
6031 return 2;
6032
6033 default:
6034 gcc_unreachable ();
6035 return 0;
6036 }
6037 }
6038
6039 /* Maximal length of instruction for current CPU.
6040 E.g. it is 3 for any ColdFire core. */
6041 static int max_insn_size;
6042
6043 /* Data to model instruction buffer of CPU. */
6044 struct _sched_ib
6045 {
6046 /* True if instruction buffer model is modeled for current CPU. */
6047 bool enabled_p;
6048
6049 /* Size of the instruction buffer in words. */
6050 int size;
6051
6052 /* Number of filled words in the instruction buffer. */
6053 int filled;
6054
6055 /* Additional information about instruction buffer for CPUs that have
6056 a buffer of instruction records, rather then a plain buffer
6057 of instruction words. */
6058 struct _sched_ib_records
6059 {
6060 /* Size of buffer in records. */
6061 int n_insns;
6062
6063 /* Array to hold data on adjustements made to the size of the buffer. */
6064 int *adjust;
6065
6066 /* Index of the above array. */
6067 int adjust_index;
6068 } records;
6069
6070 /* An insn that reserves (marks empty) one word in the instruction buffer. */
6071 rtx insn;
6072 };
6073
6074 static struct _sched_ib sched_ib;
6075
6076 /* ID of memory unit. */
6077 static int sched_mem_unit_code;
6078
6079 /* Implementation of the targetm.sched.variable_issue () hook.
6080 It is called after INSN was issued. It returns the number of insns
6081 that can possibly get scheduled on the current cycle.
6082 It is used here to determine the effect of INSN on the instruction
6083 buffer. */
6084 static int
6085 m68k_sched_variable_issue (FILE *sched_dump ATTRIBUTE_UNUSED,
6086 int sched_verbose ATTRIBUTE_UNUSED,
6087 rtx insn, int can_issue_more)
6088 {
6089 int insn_size;
6090
6091 if (recog_memoized (insn) >= 0 && get_attr_type (insn) != TYPE_IGNORE)
6092 {
6093 switch (m68k_sched_cpu)
6094 {
6095 case CPU_CFV1:
6096 case CPU_CFV2:
6097 insn_size = sched_get_attr_size_int (insn);
6098 break;
6099
6100 case CPU_CFV3:
6101 insn_size = sched_get_attr_size_int (insn);
6102
6103 /* ColdFire V3 and V4 cores have instruction buffers that can
6104 accumulate up to 8 instructions regardless of instructions'
6105 sizes. So we should take care not to "prefetch" 24 one-word
6106 or 12 two-words instructions.
6107 To model this behavior we temporarily decrease size of the
6108 buffer by (max_insn_size - insn_size) for next 7 instructions. */
6109 {
6110 int adjust;
6111
6112 adjust = max_insn_size - insn_size;
6113 sched_ib.size -= adjust;
6114
6115 if (sched_ib.filled > sched_ib.size)
6116 sched_ib.filled = sched_ib.size;
6117
6118 sched_ib.records.adjust[sched_ib.records.adjust_index] = adjust;
6119 }
6120
6121 ++sched_ib.records.adjust_index;
6122 if (sched_ib.records.adjust_index == sched_ib.records.n_insns)
6123 sched_ib.records.adjust_index = 0;
6124
6125 /* Undo adjustement we did 7 instructions ago. */
6126 sched_ib.size
6127 += sched_ib.records.adjust[sched_ib.records.adjust_index];
6128
6129 break;
6130
6131 case CPU_CFV4:
6132 gcc_assert (!sched_ib.enabled_p);
6133 insn_size = 0;
6134 break;
6135
6136 default:
6137 gcc_unreachable ();
6138 }
6139
6140 if (insn_size > sched_ib.filled)
6141 /* Scheduling for register pressure does not always take DFA into
6142 account. Workaround instruction buffer not being filled enough. */
6143 {
6144 gcc_assert (sched_pressure_p);
6145 insn_size = sched_ib.filled;
6146 }
6147
6148 --can_issue_more;
6149 }
6150 else if (GET_CODE (PATTERN (insn)) == ASM_INPUT
6151 || asm_noperands (PATTERN (insn)) >= 0)
6152 insn_size = sched_ib.filled;
6153 else
6154 insn_size = 0;
6155
6156 sched_ib.filled -= insn_size;
6157
6158 return can_issue_more;
6159 }
6160
6161 /* Return how many instructions should scheduler lookahead to choose the
6162 best one. */
6163 static int
6164 m68k_sched_first_cycle_multipass_dfa_lookahead (void)
6165 {
6166 return m68k_sched_issue_rate () - 1;
6167 }
6168
6169 /* Implementation of targetm.sched.init_global () hook.
6170 It is invoked once per scheduling pass and is used here
6171 to initialize scheduler constants. */
6172 static void
6173 m68k_sched_md_init_global (FILE *sched_dump ATTRIBUTE_UNUSED,
6174 int sched_verbose ATTRIBUTE_UNUSED,
6175 int n_insns ATTRIBUTE_UNUSED)
6176 {
6177 /* Init branch types. */
6178 {
6179 rtx insn;
6180
6181 sched_branch_type = XCNEWVEC (enum attr_type, get_max_uid () + 1);
6182
6183 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
6184 {
6185 if (JUMP_P (insn))
6186 /* !!! FIXME: Implement real scan here. */
6187 sched_branch_type[INSN_UID (insn)] = TYPE_BCC;
6188 }
6189 }
6190
6191 #ifdef ENABLE_CHECKING
6192 /* Check that all instructions have DFA reservations and
6193 that all instructions can be issued from a clean state. */
6194 {
6195 rtx insn;
6196 state_t state;
6197
6198 state = alloca (state_size ());
6199
6200 for (insn = get_insns (); insn != NULL_RTX; insn = NEXT_INSN (insn))
6201 {
6202 if (INSN_P (insn) && recog_memoized (insn) >= 0)
6203 {
6204 gcc_assert (insn_has_dfa_reservation_p (insn));
6205
6206 state_reset (state);
6207 if (state_transition (state, insn) >= 0)
6208 gcc_unreachable ();
6209 }
6210 }
6211 }
6212 #endif
6213
6214 /* Setup target cpu. */
6215
6216 /* ColdFire V4 has a set of features to keep its instruction buffer full
6217 (e.g., a separate memory bus for instructions) and, hence, we do not model
6218 buffer for this CPU. */
6219 sched_ib.enabled_p = (m68k_sched_cpu != CPU_CFV4);
6220
6221 switch (m68k_sched_cpu)
6222 {
6223 case CPU_CFV4:
6224 sched_ib.filled = 0;
6225
6226 /* FALLTHRU */
6227
6228 case CPU_CFV1:
6229 case CPU_CFV2:
6230 max_insn_size = 3;
6231 sched_ib.records.n_insns = 0;
6232 sched_ib.records.adjust = NULL;
6233 break;
6234
6235 case CPU_CFV3:
6236 max_insn_size = 3;
6237 sched_ib.records.n_insns = 8;
6238 sched_ib.records.adjust = XNEWVEC (int, sched_ib.records.n_insns);
6239 break;
6240
6241 default:
6242 gcc_unreachable ();
6243 }
6244
6245 sched_mem_unit_code = get_cpu_unit_code ("cf_mem1");
6246
6247 sched_adjust_cost_state = xmalloc (state_size ());
6248 state_reset (sched_adjust_cost_state);
6249
6250 start_sequence ();
6251 emit_insn (gen_ib ());
6252 sched_ib.insn = get_insns ();
6253 end_sequence ();
6254 }
6255
6256 /* Scheduling pass is now finished. Free/reset static variables. */
6257 static void
6258 m68k_sched_md_finish_global (FILE *dump ATTRIBUTE_UNUSED,
6259 int verbose ATTRIBUTE_UNUSED)
6260 {
6261 sched_ib.insn = NULL;
6262
6263 free (sched_adjust_cost_state);
6264 sched_adjust_cost_state = NULL;
6265
6266 sched_mem_unit_code = 0;
6267
6268 free (sched_ib.records.adjust);
6269 sched_ib.records.adjust = NULL;
6270 sched_ib.records.n_insns = 0;
6271 max_insn_size = 0;
6272
6273 free (sched_branch_type);
6274 sched_branch_type = NULL;
6275 }
6276
6277 /* Implementation of targetm.sched.init () hook.
6278 It is invoked each time scheduler starts on the new block (basic block or
6279 extended basic block). */
6280 static void
6281 m68k_sched_md_init (FILE *sched_dump ATTRIBUTE_UNUSED,
6282 int sched_verbose ATTRIBUTE_UNUSED,
6283 int n_insns ATTRIBUTE_UNUSED)
6284 {
6285 switch (m68k_sched_cpu)
6286 {
6287 case CPU_CFV1:
6288 case CPU_CFV2:
6289 sched_ib.size = 6;
6290 break;
6291
6292 case CPU_CFV3:
6293 sched_ib.size = sched_ib.records.n_insns * max_insn_size;
6294
6295 memset (sched_ib.records.adjust, 0,
6296 sched_ib.records.n_insns * sizeof (*sched_ib.records.adjust));
6297 sched_ib.records.adjust_index = 0;
6298 break;
6299
6300 case CPU_CFV4:
6301 gcc_assert (!sched_ib.enabled_p);
6302 sched_ib.size = 0;
6303 break;
6304
6305 default:
6306 gcc_unreachable ();
6307 }
6308
6309 if (sched_ib.enabled_p)
6310 /* haifa-sched.c: schedule_block () calls advance_cycle () just before
6311 the first cycle. Workaround that. */
6312 sched_ib.filled = -2;
6313 }
6314
6315 /* Implementation of targetm.sched.dfa_pre_advance_cycle () hook.
6316 It is invoked just before current cycle finishes and is used here
6317 to track if instruction buffer got its two words this cycle. */
6318 static void
6319 m68k_sched_dfa_pre_advance_cycle (void)
6320 {
6321 if (!sched_ib.enabled_p)
6322 return;
6323
6324 if (!cpu_unit_reservation_p (curr_state, sched_mem_unit_code))
6325 {
6326 sched_ib.filled += 2;
6327
6328 if (sched_ib.filled > sched_ib.size)
6329 sched_ib.filled = sched_ib.size;
6330 }
6331 }
6332
6333 /* Implementation of targetm.sched.dfa_post_advance_cycle () hook.
6334 It is invoked just after new cycle begins and is used here
6335 to setup number of filled words in the instruction buffer so that
6336 instructions which won't have all their words prefetched would be
6337 stalled for a cycle. */
6338 static void
6339 m68k_sched_dfa_post_advance_cycle (void)
6340 {
6341 int i;
6342
6343 if (!sched_ib.enabled_p)
6344 return;
6345
6346 /* Setup number of prefetched instruction words in the instruction
6347 buffer. */
6348 i = max_insn_size - sched_ib.filled;
6349
6350 while (--i >= 0)
6351 {
6352 if (state_transition (curr_state, sched_ib.insn) >= 0)
6353 gcc_unreachable ();
6354 }
6355 }
6356
6357 /* Return X or Y (depending on OPX_P) operand of INSN,
6358 if it is an integer register, or NULL overwise. */
6359 static rtx
6360 sched_get_reg_operand (rtx insn, bool opx_p)
6361 {
6362 rtx op = NULL;
6363
6364 if (opx_p)
6365 {
6366 if (get_attr_opx_type (insn) == OPX_TYPE_RN)
6367 {
6368 op = sched_get_operand (insn, true);
6369 gcc_assert (op != NULL);
6370
6371 if (!reload_completed && !REG_P (op))
6372 return NULL;
6373 }
6374 }
6375 else
6376 {
6377 if (get_attr_opy_type (insn) == OPY_TYPE_RN)
6378 {
6379 op = sched_get_operand (insn, false);
6380 gcc_assert (op != NULL);
6381
6382 if (!reload_completed && !REG_P (op))
6383 return NULL;
6384 }
6385 }
6386
6387 return op;
6388 }
6389
6390 /* Return true, if X or Y (depending on OPX_P) operand of INSN
6391 is a MEM. */
6392 static bool
6393 sched_mem_operand_p (rtx insn, bool opx_p)
6394 {
6395 switch (sched_get_opxy_mem_type (insn, opx_p))
6396 {
6397 case OP_TYPE_MEM1:
6398 case OP_TYPE_MEM6:
6399 return true;
6400
6401 default:
6402 return false;
6403 }
6404 }
6405
6406 /* Return X or Y (depending on OPX_P) operand of INSN,
6407 if it is a MEM, or NULL overwise. */
6408 static rtx
6409 sched_get_mem_operand (rtx insn, bool must_read_p, bool must_write_p)
6410 {
6411 bool opx_p;
6412 bool opy_p;
6413
6414 opx_p = false;
6415 opy_p = false;
6416
6417 if (must_read_p)
6418 {
6419 opx_p = true;
6420 opy_p = true;
6421 }
6422
6423 if (must_write_p)
6424 {
6425 opx_p = true;
6426 opy_p = false;
6427 }
6428
6429 if (opy_p && sched_mem_operand_p (insn, false))
6430 return sched_get_operand (insn, false);
6431
6432 if (opx_p && sched_mem_operand_p (insn, true))
6433 return sched_get_operand (insn, true);
6434
6435 gcc_unreachable ();
6436 return NULL;
6437 }
6438
6439 /* Return non-zero if PRO modifies register used as part of
6440 address in CON. */
6441 int
6442 m68k_sched_address_bypass_p (rtx pro, rtx con)
6443 {
6444 rtx pro_x;
6445 rtx con_mem_read;
6446
6447 pro_x = sched_get_reg_operand (pro, true);
6448 if (pro_x == NULL)
6449 return 0;
6450
6451 con_mem_read = sched_get_mem_operand (con, true, false);
6452 gcc_assert (con_mem_read != NULL);
6453
6454 if (reg_mentioned_p (pro_x, con_mem_read))
6455 return 1;
6456
6457 return 0;
6458 }
6459
6460 /* Helper function for m68k_sched_indexed_address_bypass_p.
6461 if PRO modifies register used as index in CON,
6462 return scale of indexed memory access in CON. Return zero overwise. */
6463 static int
6464 sched_get_indexed_address_scale (rtx pro, rtx con)
6465 {
6466 rtx reg;
6467 rtx mem;
6468 struct m68k_address address;
6469
6470 reg = sched_get_reg_operand (pro, true);
6471 if (reg == NULL)
6472 return 0;
6473
6474 mem = sched_get_mem_operand (con, true, false);
6475 gcc_assert (mem != NULL && MEM_P (mem));
6476
6477 if (!m68k_decompose_address (GET_MODE (mem), XEXP (mem, 0), reload_completed,
6478 &address))
6479 gcc_unreachable ();
6480
6481 if (REGNO (reg) == REGNO (address.index))
6482 {
6483 gcc_assert (address.scale != 0);
6484 return address.scale;
6485 }
6486
6487 return 0;
6488 }
6489
6490 /* Return non-zero if PRO modifies register used
6491 as index with scale 2 or 4 in CON. */
6492 int
6493 m68k_sched_indexed_address_bypass_p (rtx pro, rtx con)
6494 {
6495 gcc_assert (sched_cfv4_bypass_data.pro == NULL
6496 && sched_cfv4_bypass_data.con == NULL
6497 && sched_cfv4_bypass_data.scale == 0);
6498
6499 switch (sched_get_indexed_address_scale (pro, con))
6500 {
6501 case 1:
6502 /* We can't have a variable latency bypass, so
6503 remember to adjust the insn cost in adjust_cost hook. */
6504 sched_cfv4_bypass_data.pro = pro;
6505 sched_cfv4_bypass_data.con = con;
6506 sched_cfv4_bypass_data.scale = 1;
6507 return 0;
6508
6509 case 2:
6510 case 4:
6511 return 1;
6512
6513 default:
6514 return 0;
6515 }
6516 }
6517
6518 /* We generate a two-instructions program at M_TRAMP :
6519 movea.l &CHAIN_VALUE,%a0
6520 jmp FNADDR
6521 where %a0 can be modified by changing STATIC_CHAIN_REGNUM. */
6522
6523 static void
6524 m68k_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
6525 {
6526 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
6527 rtx mem;
6528
6529 gcc_assert (ADDRESS_REGNO_P (STATIC_CHAIN_REGNUM));
6530
6531 mem = adjust_address (m_tramp, HImode, 0);
6532 emit_move_insn (mem, GEN_INT(0x207C + ((STATIC_CHAIN_REGNUM-8) << 9)));
6533 mem = adjust_address (m_tramp, SImode, 2);
6534 emit_move_insn (mem, chain_value);
6535
6536 mem = adjust_address (m_tramp, HImode, 6);
6537 emit_move_insn (mem, GEN_INT(0x4EF9));
6538 mem = adjust_address (m_tramp, SImode, 8);
6539 emit_move_insn (mem, fnaddr);
6540
6541 FINALIZE_TRAMPOLINE (XEXP (m_tramp, 0));
6542 }
6543
6544 /* On the 68000, the RTS insn cannot pop anything.
6545 On the 68010, the RTD insn may be used to pop them if the number
6546 of args is fixed, but if the number is variable then the caller
6547 must pop them all. RTD can't be used for library calls now
6548 because the library is compiled with the Unix compiler.
6549 Use of RTD is a selectable option, since it is incompatible with
6550 standard Unix calling sequences. If the option is not selected,
6551 the caller must always pop the args. */
6552
6553 static int
6554 m68k_return_pops_args (tree fundecl, tree funtype, int size)
6555 {
6556 return ((TARGET_RTD
6557 && (!fundecl
6558 || TREE_CODE (fundecl) != IDENTIFIER_NODE)
6559 && (!stdarg_p (funtype)))
6560 ? size : 0);
6561 }
6562
6563 /* Make sure everything's fine if we *don't* have a given processor.
6564 This assumes that putting a register in fixed_regs will keep the
6565 compiler's mitts completely off it. We don't bother to zero it out
6566 of register classes. */
6567
6568 static void
6569 m68k_conditional_register_usage (void)
6570 {
6571 int i;
6572 HARD_REG_SET x;
6573 if (!TARGET_HARD_FLOAT)
6574 {
6575 COPY_HARD_REG_SET (x, reg_class_contents[(int)FP_REGS]);
6576 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6577 if (TEST_HARD_REG_BIT (x, i))
6578 fixed_regs[i] = call_used_regs[i] = 1;
6579 }
6580 if (flag_pic)
6581 fixed_regs[PIC_REG] = call_used_regs[PIC_REG] = 1;
6582 }
6583
6584 #include "gt-m68k.h"