]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/mn10300/mn10300.h
ed98a665bb84eabaff0ca328ec717e16eece8811
[thirdparty/gcc.git] / gcc / config / mn10300 / mn10300.h
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "svr4.h"
24
25 #undef ASM_SPEC
26 #undef ASM_FINAL_SPEC
27 #undef LIB_SPEC
28 #undef ENDFILE_SPEC
29 #undef LINK_SPEC
30 #undef STARTFILE_SPEC
31
32 /* Names to predefine in the preprocessor for this target machine. */
33
34 #define CPP_PREDEFINES "-D__mn10300__ -D__MN10300__"
35
36 /* Run-time compilation parameters selecting different hardware subsets. */
37
38 extern int target_flags;
39
40 /* Global registers known to hold the value zero. */
41 extern struct rtx_def *zero_dreg;
42 extern struct rtx_def *zero_areg;
43
44 /* Macros used in the machine description to test the flags. */
45
46 /* Macro to define tables used to set the flags.
47 This is a list in braces of pairs in braces,
48 each pair being { "NAME", VALUE }
49 where VALUE is the bits to set or minus the bits to clear.
50 An empty string NAME is used to identify the default VALUE. */
51
52 /* Generate code to work around mul/mulq bugs on the mn10300. */
53 #define TARGET_MULT_BUG (target_flags & 0x1)
54 #define TARGET_SWITCHES \
55 {{ "mult-bug", 0x1}, \
56 { "no-mult-bug", -0x1}, \
57 { "", TARGET_DEFAULT}}
58
59 #ifndef TARGET_DEFAULT
60 #define TARGET_DEFAULT 0x1
61 #endif
62
63 /* Print subsidiary information on the compiler version in use. */
64
65 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
66
67 \f
68 /* Target machine storage layout */
69
70 /* Define this if most significant bit is lowest numbered
71 in instructions that operate on numbered bit-fields.
72 This is not true on the Matsushita MN1003. */
73 #define BITS_BIG_ENDIAN 0
74
75 /* Define this if most significant byte of a word is the lowest numbered. */
76 /* This is not true on the Matsushita MN10300. */
77 #define BYTES_BIG_ENDIAN 0
78
79 /* Define this if most significant word of a multiword number is lowest
80 numbered.
81 This is not true on the Matsushita MN10300. */
82 #define WORDS_BIG_ENDIAN 0
83
84 /* Number of bits in an addressable storage unit */
85 #define BITS_PER_UNIT 8
86
87 /* Width in bits of a "word", which is the contents of a machine register.
88 Note that this is not necessarily the width of data type `int';
89 if using 16-bit ints on a 68000, this would still be 32.
90 But on a machine with 16-bit registers, this would be 16. */
91 #define BITS_PER_WORD 32
92
93 /* Width of a word, in units (bytes). */
94 #define UNITS_PER_WORD 4
95
96 /* Width in bits of a pointer.
97 See also the macro `Pmode' defined below. */
98 #define POINTER_SIZE 32
99
100 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
101 #define PARM_BOUNDARY 32
102
103 /* The stack goes in 32 bit lumps. */
104 #define STACK_BOUNDARY 32
105
106 /* Allocation boundary (in *bits*) for the code of a function.
107 8 is the minimum boundary; it's unclear if bigger alignments
108 would improve performance. */
109 #define FUNCTION_BOUNDARY 8
110
111 /* No data type wants to be aligned rounder than this. */
112 #define BIGGEST_ALIGNMENT 32
113
114 /* Alignment of field after `int : 0' in a structure. */
115 #define EMPTY_FIELD_BOUNDARY 32
116
117 /* Define this if move instructions will actually fail to work
118 when given unaligned data. */
119 #define STRICT_ALIGNMENT 1
120
121 /* Define this as 1 if `char' should by default be signed; else as 0. */
122 #define DEFAULT_SIGNED_CHAR 0
123
124 /* Define results of standard character escape sequences. */
125 #define TARGET_BELL 007
126 #define TARGET_BS 010
127 #define TARGET_TAB 011
128 #define TARGET_NEWLINE 012
129 #define TARGET_VT 013
130 #define TARGET_FF 014
131 #define TARGET_CR 015
132 \f
133 /* Standard register usage. */
134
135 /* Number of actual hardware registers.
136 The hardware registers are assigned numbers for the compiler
137 from 0 to just below FIRST_PSEUDO_REGISTER.
138
139 All registers that the compiler knows about must be given numbers,
140 even those that are not normally considered general registers. */
141
142 #define FIRST_PSEUDO_REGISTER 10
143
144 /* 1 for registers that have pervasive standard uses
145 and are not available for the register allocator. */
146
147 #define FIXED_REGISTERS \
148 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}
149
150 /* 1 for registers not available across function calls.
151 These must include the FIXED_REGISTERS and also any
152 registers that can be used without being saved.
153 The latter must include the registers where values are returned
154 and the register where structure-value addresses are passed.
155 Aside from that, you can include as many other registers as you
156 like. */
157
158 #define CALL_USED_REGISTERS \
159 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1}
160
161 #define REG_ALLOC_ORDER \
162 { 0, 1, 4, 5, 2, 3, 6, 7, 8, 9}
163
164 /* Return number of consecutive hard regs needed starting at reg REGNO
165 to hold something of mode MODE.
166
167 This is ordinarily the length in words of a value of mode MODE
168 but can be less for certain modes in special long registers. */
169
170 #define HARD_REGNO_NREGS(REGNO, MODE) \
171 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
172
173 /* Value is 1 if hard register REGNO can hold a value of machine-mode
174 MODE. */
175
176 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
177 (REGNO_REG_CLASS (REGNO) == DATA_REGS \
178 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
179 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
180
181 /* Value is 1 if it is a good idea to tie two pseudo registers
182 when one has mode MODE1 and one has mode MODE2.
183 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
184 for any hard reg, then this must be 0 for correct output. */
185 #define MODES_TIEABLE_P(MODE1, MODE2) \
186 (MODE1 == MODE2 || GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4)
187
188 /* 4 data, and effectively 3 address registers is small as far as I'm
189 concerned. */
190 #define SMALL_REGISTER_CLASSES 1
191 \f
192 /* Define the classes of registers for register constraints in the
193 machine description. Also define ranges of constants.
194
195 One of the classes must always be named ALL_REGS and include all hard regs.
196 If there is more than one class, another class must be named NO_REGS
197 and contain no registers.
198
199 The name GENERAL_REGS must be the name of a class (or an alias for
200 another name such as ALL_REGS). This is the class of registers
201 that is allowed by "g" or "r" in a register constraint.
202 Also, registers outside this class are allocated only when
203 instructions express preferences for them.
204
205 The classes must be numbered in nondecreasing order; that is,
206 a larger-numbered class must never be contained completely
207 in a smaller-numbered class.
208
209 For any two classes, it is very desirable that there be another
210 class that represents their union. */
211
212 enum reg_class {
213 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS, DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
214 };
215
216 #define N_REG_CLASSES (int) LIM_REG_CLASSES
217
218 /* Give names of register classes as strings for dump file. */
219
220 #define REG_CLASS_NAMES \
221 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
222 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
223 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
224
225 /* Define which registers fit in which classes.
226 This is an initializer for a vector of HARD_REG_SET
227 of length N_REG_CLASSES. */
228
229 #define REG_CLASS_CONTENTS \
230 { 0, /* No regs */ \
231 0x00f, /* DATA_REGS */ \
232 0x1f0, /* ADDRESS_REGS */ \
233 0x200, /* SP_REGS */ \
234 0x1ff, /* DATA_OR_ADDRESS_REGS */\
235 0x1f0, /* SP_OR_ADDRESS_REGS */\
236 0x1ff, /* GENERAL_REGS */ \
237 0x3ff, /* ALL_REGS */ \
238 }
239
240 /* The same information, inverted:
241 Return the class number of the smallest class containing
242 reg number REGNO. This could be a conditional expression
243 or could index an array. */
244
245 #define REGNO_REG_CLASS(REGNO) \
246 ((REGNO) < 4 ? DATA_REGS : \
247 (REGNO) < 9 ? ADDRESS_REGS : \
248 (REGNO) == 9 ? SP_REGS: 0)
249
250 /* The class value for index registers, and the one for base regs. */
251
252 #define INDEX_REG_CLASS DATA_REGS
253 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
254
255 /* Get reg_class from a letter such as appears in the machine description. */
256
257 #define REG_CLASS_FROM_LETTER(C) \
258 ((C) == 'd' ? DATA_REGS : \
259 (C) == 'a' ? ADDRESS_REGS : \
260 (C) == 'x' ? SP_REGS : NO_REGS)
261
262 /* Macros to check register numbers against specific register classes. */
263
264 /* These assume that REGNO is a hard or pseudo reg number.
265 They give nonzero only if REGNO is a hard reg of the suitable class
266 or a pseudo reg currently allocated to a suitable hard reg.
267 Since they use reg_renumber, they are safe only once reg_renumber
268 has been allocated, which happens in local-alloc.c. */
269
270 #define REGNO_OK_FOR_BASE_P(regno) \
271 (((regno) > 3 && regno < FIRST_PSEUDO_REGISTER) \
272 || (reg_renumber[regno] > 3 && reg_renumber[regno] < FIRST_PSEUDO_REGISTER))
273
274 #define REGNO_OK_FOR_INDEX_P(regno) \
275 (((regno) >= 0 && regno < 4) \
276 || (reg_renumber[regno] >= 0 && reg_renumber[regno] < 4))
277
278
279 /* Given an rtx X being reloaded into a reg required to be
280 in class CLASS, return the class of reg to actually use.
281 In general this is just CLASS; but on some machines
282 in some cases it is preferable to use a more restrictive class. */
283
284 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
285 (X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS)
286
287 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
288 (X == stack_pointer_rtx && CLASS != SP_REGS ? ADDRESS_REGS : CLASS)
289
290 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
291 ((MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
292
293 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
294 secondary_reload_class(CLASS,MODE,IN)
295
296 /* Return the maximum number of consecutive registers
297 needed to represent mode MODE in a register of class CLASS. */
298
299 #define CLASS_MAX_NREGS(CLASS, MODE) \
300 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
301
302 /* The letters I, J, K, L, M, N, O, P in a register constraint string
303 can be used to stand for particular ranges of immediate operands.
304 This macro defines what the ranges are.
305 C is the letter, and VALUE is a constant value.
306 Return 1 if VALUE is in the range specified by C. */
307
308 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
309 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
310
311 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
312 #define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
313 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
314 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
315 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
316 #define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
317
318 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
319 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
320 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
321 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
322 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
323 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
324 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
325
326
327 /* Similar, but for floating constants, and defining letters G and H.
328 Here VALUE is the CONST_DOUBLE rtx itself.
329
330 `G' is a floating-point zero. */
331
332 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
333 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
334 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
335
336 \f
337 /* Stack layout; function entry, exit and calling. */
338
339 /* Define this if pushing a word on the stack
340 makes the stack pointer a smaller address. */
341
342 #define STACK_GROWS_DOWNWARD
343
344 /* Define this if the nominal address of the stack frame
345 is at the high-address end of the local variables;
346 that is, each additional local variable allocated
347 goes at a more negative offset in the frame. */
348
349 #define FRAME_GROWS_DOWNWARD
350
351 /* Offset within stack frame to start allocating local variables at.
352 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
353 first local allocated. Otherwise, it is the offset to the BEGINNING
354 of the first local allocated. */
355
356 #define STARTING_FRAME_OFFSET 0
357
358 /* Offset of first parameter from the argument pointer register value. */
359 /* Is equal to the size of the saved fp + pc, even if an fp isn't
360 saved since the value is used before we know. */
361
362 #define FIRST_PARM_OFFSET(FNDECL) 4
363
364 /* Specify the registers used for certain standard purposes.
365 The values of these macros are register numbers. */
366
367 /* Register to use for pushing function arguments. */
368 #define STACK_POINTER_REGNUM 9
369
370 /* Base register for access to local variables of the function. */
371 #define FRAME_POINTER_REGNUM 7
372
373 /* Base register for access to arguments of the function. This
374 is a fake register and will be eliminated into either the frame
375 pointer or stack pointer. */
376 #define ARG_POINTER_REGNUM 8
377
378 /* Register in which static-chain is passed to a function. */
379 #define STATIC_CHAIN_REGNUM 5
380
381 #define ELIMINABLE_REGS \
382 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
383 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
384 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
385
386 #define CAN_ELIMINATE(FROM, TO) 1
387
388 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
389 OFFSET = initial_offset (FROM, TO)
390
391 /* We can debug without frame pointers on the mn10300, so eliminate
392 them whenever possible. */
393 #define FRAME_POINTER_REQUIRED 0
394 #define CAN_DEBUG_WITHOUT_FP
395
396 /* A guess for the MN10300. */
397 #define PROMOTE_PROTOTYPES 1
398
399 /* Value is the number of bytes of arguments automatically
400 popped when returning from a subroutine call.
401 FUNDECL is the declaration node of the function (as a tree),
402 FUNTYPE is the data type of the function (as a tree),
403 or for a library call it is an identifier node for the subroutine name.
404 SIZE is the number of bytes of arguments passed on the stack. */
405
406 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
407
408 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
409 for a register flushback area. */
410 #define REG_PARM_STACK_SPACE(DECL) 8
411 #define OUTGOING_REG_PARM_STACK_SPACE
412 #define ACCUMULATE_OUTGOING_ARGS
413
414 /* So we can allocate space for return pointers once for the function
415 instead of around every call. */
416 #define STACK_POINTER_OFFSET 4
417
418 /* 1 if N is a possible register number for function argument passing.
419 On the MN10300, no registers are used in this way. */
420
421 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
422
423 \f
424 /* Define a data type for recording info about an argument list
425 during the scan of that argument list. This data type should
426 hold all necessary information about the function itself
427 and about the args processed so far, enough to enable macros
428 such as FUNCTION_ARG to determine where the next arg should go.
429
430 On the MN10300, this is a single integer, which is a number of bytes
431 of arguments scanned so far. */
432
433 #define CUMULATIVE_ARGS struct cum_arg
434 struct cum_arg {int nbytes; };
435
436 /* Initialize a variable CUM of type CUMULATIVE_ARGS
437 for a call to a function whose data type is FNTYPE.
438 For a library call, FNTYPE is 0.
439
440 On the MN10300, the offset starts at 0. */
441
442 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
443 ((CUM).nbytes = 0)
444
445 /* Update the data in CUM to advance over an argument
446 of mode MODE and data type TYPE.
447 (TYPE is null for libcalls where that information may not be available.) */
448
449 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
450 ((CUM).nbytes += ((MODE) != BLKmode \
451 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
452 : (int_size_in_bytes (TYPE) + 3) & ~3))
453
454 /* Define where to put the arguments to a function.
455 Value is zero to push the argument on the stack,
456 or a hard register in which to store the argument.
457
458 MODE is the argument's machine mode.
459 TYPE is the data type of the argument (as a tree).
460 This is null for libcalls where that information may
461 not be available.
462 CUM is a variable of type CUMULATIVE_ARGS which gives info about
463 the preceding args and about the function being called.
464 NAMED is nonzero if this argument is a named parameter
465 (otherwise it is an extra parameter matching an ellipsis). */
466
467 /* On the MN10300 all args are pushed. */
468
469 extern struct rtx_def *function_arg ();
470 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
471 function_arg (&CUM, MODE, TYPE, NAMED)
472
473 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
474 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
475
476 \f
477 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
478 ((TYPE) && int_size_in_bytes (TYPE) > 8)
479
480 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
481 ((TYPE) && int_size_in_bytes (TYPE) > 8)
482
483 /* Define how to find the value returned by a function.
484 VALTYPE is the data type of the value (as a tree).
485 If the precise function being called is known, FUNC is its FUNCTION_DECL;
486 otherwise, FUNC is 0. */
487
488 #define FUNCTION_VALUE(VALTYPE, FUNC) \
489 gen_rtx (REG, TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) ? 4 : 0)
490
491 /* Define how to find the value returned by a library function
492 assuming the value has mode MODE. */
493
494 #define LIBCALL_VALUE(MODE) gen_rtx (REG, MODE, 0)
495
496 /* 1 if N is a possible register number for a function value. */
497
498 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0 || (N) == 4)
499
500 /* Return values > 8 bytes in length in memory. */
501 #define DEFAULT_PCC_STRUCT_RETURN 0
502 #define RETURN_IN_MEMORY(TYPE) \
503 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
504
505 /* Register in which address to store a structure value
506 is passed to a function. On the MN10300 it's passed as
507 the first parameter. */
508
509 #define STRUCT_VALUE 0
510
511 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
512 the stack pointer does not matter. The value is tested only in
513 functions that have frame pointers.
514 No definition is equivalent to always zero. */
515
516 #define EXIT_IGNORE_STACK 1
517
518 /* Output assembler code to FILE to increment profiler label # LABELNO
519 for profiling a function entry. */
520
521 #define FUNCTION_PROFILER(FILE, LABELNO) ;
522
523 #define TRAMPOLINE_TEMPLATE(FILE) \
524 do { \
525 fprintf (FILE, "\tadd -4,sp\n"); \
526 fprintf (FILE, "\t.long 0x0004fffa\n"); \
527 fprintf (FILE, "\tmov (0,sp),a0\n"); \
528 fprintf (FILE, "\tadd 4,sp\n"); \
529 fprintf (FILE, "\tmov (13,a0),a1\n"); \
530 fprintf (FILE, "\tmov (17,a0),a0\n"); \
531 fprintf (FILE, "\tjmp (a0)\n"); \
532 fprintf (FILE, "\t.long 0\n"); \
533 fprintf (FILE, "\t.long 0\n"); \
534 } while (0)
535
536 /* Length in units of the trampoline for entering a nested function. */
537
538 #define TRAMPOLINE_SIZE 0x1b
539
540 #define TRAMPOLINE_ALIGNMENT 32
541
542 /* Emit RTL insns to initialize the variable parts of a trampoline.
543 FNADDR is an RTX for the address of the function's pure code.
544 CXT is an RTX for the static chain value for the function. */
545
546 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
547 { \
548 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 0x14)), \
549 (CXT)); \
550 emit_move_insn (gen_rtx (MEM, SImode, plus_constant ((TRAMP), 0x18)), \
551 (FNADDR)); \
552 }
553 /* A C expression whose value is RTL representing the value of the return
554 address for the frame COUNT steps up from the current frame.
555
556 On the mn10300, the return address is not at a constant location
557 due to the frame layout. Luckily, it is at a constant offset from
558 the argument pointer, so we define RETURN_ADDR_RTX to return a
559 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
560 with a reference to the stack/frame pointer + an appropriate offset. */
561
562 #define RETURN_ADDR_RTX(COUNT, FRAME) \
563 ((COUNT == 0) \
564 ? gen_rtx (MEM, Pmode, arg_pointer_rtx) \
565 : (rtx) 0)
566
567 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
568 reference the 2 integer arg registers.
569 Ordinarily they are not call used registers, but they are for
570 _builtin_saveregs, so we must make this explicit. */
571
572 extern struct rtx_def *mn10300_builtin_saveregs ();
573 #define EXPAND_BUILTIN_SAVEREGS(ARGLIST) mn10300_builtin_saveregs (ARGLIST)
574
575 /* Addressing modes, and classification of registers for them. */
576
577 \f
578 /* 1 if X is an rtx for a constant that is a valid address. */
579
580 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
581
582 /* Extra constraints. */
583
584 #define OK_FOR_R(OP) \
585 (GET_CODE (OP) == MEM \
586 && GET_MODE (OP) == QImode \
587 && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
588 || (GET_CODE (XEXP (OP, 0)) == REG \
589 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
590 && XEXP (OP, 0) != stack_pointer_rtx) \
591 || (GET_CODE (XEXP (OP, 0)) == PLUS \
592 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
593 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0)) \
594 && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
595 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
596 && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
597
598 #define EXTRA_CONSTRAINT(OP, C) \
599 ((C) == 'R' ? OK_FOR_R (OP) : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF : 0)
600
601 /* Maximum number of registers that can appear in a valid memory address. */
602
603 #define MAX_REGS_PER_ADDRESS 2
604
605 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
606 and check its validity for a certain class.
607 We have two alternate definitions for each of them.
608 The usual definition accepts all pseudo regs; the other rejects
609 them unless they have been allocated suitable hard regs.
610 The symbol REG_OK_STRICT causes the latter definition to be used.
611
612 Most source files want to accept pseudo regs in the hope that
613 they will get allocated to the class that the insn wants them to be in.
614 Source files for reload pass need to be strict.
615 After reload, it makes no difference, since pseudo regs have
616 been eliminated by then. */
617
618 #ifndef REG_OK_STRICT
619 /* Nonzero if X is a hard reg that can be used as an index
620 or if it is a pseudo reg. */
621 #define REG_OK_FOR_INDEX_P(X) \
622 ((REGNO (X) >= 0 && REGNO(X) <= 3) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
623 /* Nonzero if X is a hard reg that can be used as a base reg
624 or if it is a pseudo reg. */
625 #define REG_OK_FOR_BASE_P(X) \
626 ((REGNO (X) >= 4 && REGNO(X) <= 9) || REGNO (X) >= FIRST_PSEUDO_REGISTER)
627 #else
628 /* Nonzero if X is a hard reg that can be used as an index. */
629 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
630 /* Nonzero if X is a hard reg that can be used as a base reg. */
631 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
632 #endif
633
634 \f
635 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
636 that is a valid memory address for an instruction.
637 The MODE argument is the machine mode for the MEM expression
638 that wants to use this address.
639
640 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
641 except for CONSTANT_ADDRESS_P which is actually
642 machine-independent.
643
644 On the mn10300, the value in the address register must be
645 in the same memory space/segment as the effective address.
646
647 This is problematical for reload since it does not understand
648 that base+index != index+base in a memory reference.
649
650 Note it is still possible to use reg+reg addressing modes,
651 it's just much more difficult. For a discussion of a possible
652 workaround and solution, see the comments in pa.c before the
653 function record_unscaled_index_insn_codes. */
654
655 /* Accept either REG or SUBREG where a register is valid. */
656
657 #define RTX_OK_FOR_BASE_P(X) \
658 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
659 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
660 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
661
662 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
663 { \
664 if (CONSTANT_ADDRESS_P (X)) \
665 goto ADDR; \
666 if (RTX_OK_FOR_BASE_P (X)) \
667 goto ADDR; \
668 if (GET_CODE (X) == PLUS) \
669 { \
670 rtx base = 0, index = 0; \
671 if (REG_P (XEXP (X, 0)) \
672 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
673 base = XEXP (X, 0), index = XEXP (X, 1); \
674 if (REG_P (XEXP (X, 1)) \
675 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
676 base = XEXP (X, 1), index = XEXP (X, 0); \
677 if (base != 0 && index != 0) \
678 { \
679 if (GET_CODE (index) == CONST_INT) \
680 goto ADDR; \
681 } \
682 } \
683 }
684
685 \f
686 /* Try machine-dependent ways of modifying an illegitimate address
687 to be legitimate. If we find one, return the new, valid address.
688 This macro is used in only one place: `memory_address' in explow.c.
689
690 OLDX is the address as it was before break_out_memory_refs was called.
691 In some cases it is useful to look at this to decide what needs to be done.
692
693 MODE and WIN are passed so that this macro can use
694 GO_IF_LEGITIMATE_ADDRESS.
695
696 It is always safe for this macro to do nothing. It exists to recognize
697 opportunities to optimize the output. */
698
699 extern struct rtx_def *legitimize_address ();
700 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
701 { rtx orig_x = (X); \
702 (X) = legitimize_address (X, OLDX, MODE); \
703 if ((X) != orig_x && memory_address_p (MODE, X)) \
704 goto WIN; }
705
706 /* Go to LABEL if ADDR (a legitimate address expression)
707 has an effect that depends on the machine mode it is used for. */
708
709 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
710
711 /* Nonzero if the constant value X is a legitimate general operand.
712 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
713
714 #define LEGITIMATE_CONSTANT_P(X) 1
715
716 \f
717 /* Tell final.c how to eliminate redundant test instructions. */
718
719 /* Here we define machine-dependent flags and fields in cc_status
720 (see `conditions.h'). No extra ones are needed for the vax. */
721
722 /* Store in cc_status the expressions
723 that the condition codes will describe
724 after execution of an instruction whose pattern is EXP.
725 Do not alter them if the instruction would not alter the cc's. */
726
727 #define CC_OVERFLOW_UNUSABLE 0x200
728 #define CC_NO_CARRY CC_NO_OVERFLOW
729 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
730
731 /* Compute the cost of computing a constant rtl expression RTX
732 whose rtx-code is CODE. The body of this macro is a portion
733 of a switch statement. If the code is computed here,
734 return it with a return statement. Otherwise, break from the switch. */
735
736 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
737 case CONST_INT: \
738 /* Zeros are extremely cheap. */ \
739 if (INTVAL (RTX) == 0 && OUTER_CODE == SET) \
740 return 0; \
741 /* If it fits in 8 bits, then it's still relatively cheap. */ \
742 if (INT_8_BITS (INTVAL (RTX))) \
743 return 1; \
744 /* This is the "base" cost, includes constants where either the \
745 upper or lower 16bits are all zeros. */ \
746 if (INT_16_BITS (INTVAL (RTX)) \
747 || (INTVAL (RTX) & 0xffff) == 0 \
748 || (INTVAL (RTX) & 0xffff0000) == 0) \
749 return 2; \
750 return 4; \
751 /* These are more costly than a CONST_INT, but we can relax them, \
752 so they're less costly than a CONST_DOUBLE. */ \
753 case CONST: \
754 case LABEL_REF: \
755 case SYMBOL_REF: \
756 return 6; \
757 /* We don't optimize CONST_DOUBLEs well nor do we relax them well, \
758 so their cost is very high. */ \
759 case CONST_DOUBLE: \
760 return 8;
761
762
763 #define REGISTER_MOVE_COST(CLASS1, CLASS2) (CLASS1 != CLASS2 ? 4 : 2)
764
765 /* A crude cut at RTX_COSTS for the MN10300. */
766
767 /* Provide the costs of a rtl expression. This is in the body of a
768 switch on CODE. */
769 #define RTX_COSTS(RTX,CODE,OUTER_CODE) \
770 case MOD: \
771 case DIV: \
772 return 8; \
773 case MULT: \
774 return 8;
775
776 /* Nonzero if access to memory by bytes or half words is no faster
777 than accessing full words. */
778 #define SLOW_BYTE_ACCESS 1
779
780 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
781 and readonly data size. So we crank up the case threshold value to
782 encourage a series of if/else comparisons to implement many small switch
783 statements. In theory, this value could be increased much more if we
784 were solely optimizing for space, but we keep it "reasonable" to avoid
785 serious code efficiency lossage. */
786 #define CASE_VALUES_THRESHOLD 6
787
788 #define NO_FUNCTION_CSE
789
790 /* According expr.c, a value of around 6 should minimize code size, and
791 for the MN10300 series, that's our primary concern. */
792 #define MOVE_RATIO 6
793
794 #define TEXT_SECTION_ASM_OP "\t.section .text"
795 #define DATA_SECTION_ASM_OP "\t.section .data"
796 #define BSS_SECTION_ASM_OP "\t.section .bss"
797
798 /* Output at beginning/end of assembler file. */
799 #undef ASM_FILE_START
800 #define ASM_FILE_START(FILE) asm_file_start(FILE)
801
802 #define ASM_COMMENT_START "#"
803
804 /* Output to assembler file text saying following lines
805 may contain character constants, extra white space, comments, etc. */
806
807 #define ASM_APP_ON "#APP\n"
808
809 /* Output to assembler file text saying following lines
810 no longer contain unusual constructs. */
811
812 #define ASM_APP_OFF "#NO_APP\n"
813
814 /* This is how to output an assembler line defining a `double' constant.
815 It is .dfloat or .gfloat, depending. */
816
817 #define ASM_OUTPUT_DOUBLE(FILE, VALUE) \
818 do { char dstr[30]; \
819 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
820 fprintf (FILE, "\t.double %s\n", dstr); \
821 } while (0)
822
823
824 /* This is how to output an assembler line defining a `float' constant. */
825 #define ASM_OUTPUT_FLOAT(FILE, VALUE) \
826 do { char dstr[30]; \
827 REAL_VALUE_TO_DECIMAL ((VALUE), "%.20e", dstr); \
828 fprintf (FILE, "\t.float %s\n", dstr); \
829 } while (0)
830
831 /* This is how to output an assembler line defining an `int' constant. */
832
833 #define ASM_OUTPUT_INT(FILE, VALUE) \
834 ( fprintf (FILE, "\t.long "), \
835 output_addr_const (FILE, (VALUE)), \
836 fprintf (FILE, "\n"))
837
838 /* Likewise for `char' and `short' constants. */
839
840 #define ASM_OUTPUT_SHORT(FILE, VALUE) \
841 ( fprintf (FILE, "\t.hword "), \
842 output_addr_const (FILE, (VALUE)), \
843 fprintf (FILE, "\n"))
844
845 #define ASM_OUTPUT_CHAR(FILE, VALUE) \
846 ( fprintf (FILE, "\t.byte "), \
847 output_addr_const (FILE, (VALUE)), \
848 fprintf (FILE, "\n"))
849
850 /* This is how to output an assembler line for a numeric constant byte. */
851 #define ASM_OUTPUT_BYTE(FILE, VALUE) \
852 fprintf (FILE, "\t.byte 0x%x\n", (VALUE))
853
854 /* Define the parentheses used to group arithmetic operations
855 in assembler code. */
856
857 #define ASM_OPEN_PAREN "("
858 #define ASM_CLOSE_PAREN ")"
859
860 /* This says how to output the assembler to define a global
861 uninitialized but not common symbol.
862 Try to use asm_output_bss to implement this macro. */
863
864 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
865 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
866
867 /* This is how to output the definition of a user-level label named NAME,
868 such as the label on a static function or variable NAME. */
869
870 #define ASM_OUTPUT_LABEL(FILE, NAME) \
871 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
872
873 /* This is how to output a command to make the user-level label named NAME
874 defined for reference from other files. */
875
876 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
877 do { fputs ("\t.global ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
878
879 /* This is how to output a reference to a user-level label named NAME.
880 `assemble_name' uses this. */
881
882 #undef ASM_OUTPUT_LABELREF
883 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
884 do { \
885 char* real_name; \
886 STRIP_NAME_ENCODING (real_name, (NAME)); \
887 fprintf (FILE, "_%s", real_name); \
888 } while (0)
889
890 /* Store in OUTPUT a string (made with alloca) containing
891 an assembler-name for a local static variable named NAME.
892 LABELNO is an integer which is different for each call. */
893
894 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
895 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
896 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
897
898 /* This is how we tell the assembler that two symbols have the same value. */
899
900 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
901 do { assemble_name(FILE, NAME1); \
902 fputs(" = ", FILE); \
903 assemble_name(FILE, NAME2); \
904 fputc('\n', FILE); } while (0)
905
906
907 /* How to refer to registers in assembler output.
908 This sequence is indexed by compiler's hard-register-number (see above). */
909
910 #define REGISTER_NAMES \
911 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp" }
912
913 /* Print an instruction operand X on file FILE.
914 look in mn10300.c for details */
915
916 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
917
918 /* Print a memory operand whose address is X, on file FILE.
919 This uses a function in output-vax.c. */
920
921 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
922
923 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
924 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
925
926 /* This is how to output an element of a case-vector that is absolute. */
927
928 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
929 asm_fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
930
931 /* This is how to output an element of a case-vector that is relative. */
932
933 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) \
934 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
935
936 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
937 if ((LOG) != 0) \
938 fprintf (FILE, "\t.align %d\n", (LOG))
939
940 /* We don't have to worry about dbx compatability for the mn10300. */
941 #define DEFAULT_GDB_EXTENSIONS 1
942
943 /* Use stabs debugging info by default. */
944 #undef PREFERRED_DEBUGGING_TYPE
945 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
946
947 #define DBX_REGISTER_NUMBER(REGNO) REGNO
948
949 /* Define to use software floating point emulator for REAL_ARITHMETIC and
950 decimal <-> binary conversion. */
951 #define REAL_ARITHMETIC
952
953 /* Specify the machine mode that this machine uses
954 for the index in the tablejump instruction. */
955 #define CASE_VECTOR_MODE Pmode
956
957 /* Define this if the case instruction drops through after the table
958 when the index is out of range. Don't define it if the case insn
959 jumps to the default label instead. */
960 #define CASE_DROPS_THROUGH
961
962 /* Define if operations between registers always perform the operation
963 on the full register even if a narrower mode is specified. */
964 #define WORD_REGISTER_OPERATIONS
965
966 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
967
968 /* Specify the tree operation to be used to convert reals to integers. */
969 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
970
971 /* This flag, if defined, says the same insns that convert to a signed fixnum
972 also convert validly to an unsigned one. */
973 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
974
975 /* This is the kind of divide that is easiest to do in the general case. */
976 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
977
978 /* Max number of bytes we can move from memory to memory
979 in one reasonably fast instruction. */
980 #define MOVE_MAX 4
981
982 /* Define if shifts truncate the shift count
983 which implies one can omit a sign-extension or zero-extension
984 of a shift count. */
985 #define SHIFT_COUNT_TRUNCATED 1
986
987 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
988 is done just by pretending it is already truncated. */
989 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
990
991 /* Specify the machine mode that pointers have.
992 After generation of rtl, the compiler makes no further distinction
993 between pointers and any other objects of this machine mode. */
994 #define Pmode SImode
995
996 /* A function address in a call instruction
997 is a byte address (for indexing purposes)
998 so give the MEM rtx a byte's mode. */
999 #define FUNCTION_MODE QImode
1000
1001 /* The assembler op to get a word. */
1002
1003 #define FILE_ASM_OP "\t.file\n"
1004
1005 extern void asm_file_start ();
1006 extern int const_costs ();
1007 extern void print_operand ();
1008 extern void print_operand_address ();
1009 extern void expand_prologue ();
1010 extern void expand_epilogue ();
1011 extern void notice_update_cc ();
1012 extern int call_address_operand ();
1013 extern int impossible_plus_operand ();
1014 extern enum reg_class secondary_reload_class ();
1015 extern int initial_offset ();
1016 extern char *output_tst ();
1017 int symbolic_operand ();