]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/pa/pa.h
af19b64d051093abda7a2f64e1e5139986b67811
[thirdparty/gcc.git] / gcc / config / pa / pa.h
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
7
8 This file is part of GNU CC.
9
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 enum cmp_type /* comparison type */
26 {
27 CMP_SI, /* compare integers */
28 CMP_SF, /* compare single precision floats */
29 CMP_DF, /* compare double precision floats */
30 CMP_MAX /* max comparison type */
31 };
32
33 /* For long call handling. */
34 extern unsigned int total_code_bytes;
35
36 /* Which processor to schedule for. */
37
38 enum processor_type
39 {
40 PROCESSOR_700,
41 PROCESSOR_7100,
42 PROCESSOR_7100LC,
43 PROCESSOR_7200,
44 PROCESSOR_7300,
45 PROCESSOR_8000
46 };
47
48 /* For -mschedule= option. */
49 extern const char *pa_cpu_string;
50 extern enum processor_type pa_cpu;
51
52 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
53
54 /* Which architecture to generate code for. */
55
56 enum architecture_type
57 {
58 ARCHITECTURE_10,
59 ARCHITECTURE_11,
60 ARCHITECTURE_20
61 };
62
63 struct rtx_def;
64
65 /* For -march= option. */
66 extern const char *pa_arch_string;
67 extern enum architecture_type pa_arch;
68
69 /* Print subsidiary information on the compiler version in use. */
70
71 #define TARGET_VERSION fputs (" (hppa)", stderr);
72
73 /* Run-time compilation parameters selecting different hardware subsets. */
74
75 extern int target_flags;
76
77 /* compile code for HP-PA 1.1 ("Snake") */
78
79 #define MASK_PA_11 1
80
81 #ifndef TARGET_PA_11
82 #define TARGET_PA_11 (target_flags & MASK_PA_11)
83 #endif
84
85 /* Disable all FP registers (they all become fixed). This may be necessary
86 for compiling kernels which perform lazy context switching of FP regs.
87 Note if you use this option and try to perform floating point operations
88 the compiler will abort! */
89
90 #define MASK_DISABLE_FPREGS 2
91 #define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
92
93 /* Generate code which assumes that all space register are equivalent.
94 Triggers aggressive unscaled index addressing and faster
95 builtin_return_address. */
96 #define MASK_NO_SPACE_REGS 4
97 #define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
98
99 /* Allow unconditional jumps in the delay slots of call instructions. */
100 #define MASK_JUMP_IN_DELAY 8
101 #define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
102
103 /* Disable indexed addressing modes. */
104 #define MASK_DISABLE_INDEXING 32
105 #define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
106
107 /* Emit code which follows the new portable runtime calling conventions
108 HP wants everyone to use for ELF objects. If at all possible you want
109 to avoid this since it's a performance loss for non-prototyped code.
110
111 Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
112 long-call stubs which is quite expensive. */
113 #define MASK_PORTABLE_RUNTIME 64
114 #define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
115
116 /* Emit directives only understood by GAS. This allows parameter
117 relocations to work for static functions. There is no way
118 to make them work the HP assembler at this time. */
119 #define MASK_GAS 128
120 #define TARGET_GAS (target_flags & MASK_GAS)
121
122 /* Emit code for processors which do not have an FPU. */
123 #define MASK_SOFT_FLOAT 256
124 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
125
126 /* Use 3-insn load/store sequences for access to large data segments
127 in shared libraries on hpux10. */
128 #define MASK_LONG_LOAD_STORE 512
129 #define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
130
131 /* Use a faster sequence for indirect calls. This assumes that calls
132 through function pointers will never cross a space boundary, and
133 that the executable is not dynamically linked. Such assumptions
134 are generally safe for building kernels and statically linked
135 executables. Code compiled with this option will fail miserably if
136 the executable is dynamically linked or uses nested functions! */
137 #define MASK_FAST_INDIRECT_CALLS 1024
138 #define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
139
140 /* Generate code with big switch statements to avoid out of range branches
141 occurring within the switch table. */
142 #define MASK_BIG_SWITCH 2048
143 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
144
145
146 /* Generate code for the HPPA 2.0 architecture. TARGET_PA_11 should also be
147 true when this is true. */
148 #define MASK_PA_20 4096
149 #ifndef TARGET_PA_20
150 #define TARGET_PA_20 (target_flags & MASK_PA_20)
151 #endif
152
153 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
154 #ifndef TARGET_64BIT
155 #define TARGET_64BIT 0
156 #endif
157
158 /* Generate code for ELF32 ABI. */
159 #ifndef TARGET_ELF32
160 #define TARGET_ELF32 0
161 #endif
162
163 /* Generate code for SOM 32bit ABI. */
164 #ifndef TARGET_SOM
165 #define TARGET_SOM 0
166 #endif
167
168 /* Macro to define tables used to set the flags.
169 This is a list in braces of pairs in braces,
170 each pair being { "NAME", VALUE }
171 where VALUE is the bits to set or minus the bits to clear.
172 An empty string NAME is used to identify the default VALUE. */
173
174 #define TARGET_SWITCHES \
175 {{"snake", MASK_PA_11, "Generate PA1.1 code"}, \
176 {"nosnake", -(MASK_PA_11 | MASK_PA_20), "Generate PA1.0 code"}, \
177 {"pa-risc-1-0", -(MASK_PA_11 | MASK_PA_20), "Generate PA1.0 code"}, \
178 {"pa-risc-1-1", MASK_PA_11, "Generate PA1.1 code"}, \
179 {"pa-risc-2-0", MASK_PA_20, "Generate PA2.0 code. This option requires binutils 2.10 or later"}, \
180 {"disable-fpregs", MASK_DISABLE_FPREGS, "Disable FP regs"}, \
181 {"no-disable-fpregs", -MASK_DISABLE_FPREGS, "Do not disable FP regs"},\
182 {"no-space-regs", MASK_NO_SPACE_REGS, "Disable space regs"}, \
183 {"space-regs", -MASK_NO_SPACE_REGS, "Do not disable space regs"}, \
184 {"jump-in-delay", MASK_JUMP_IN_DELAY, "Put jumps in call delay slots"},\
185 {"no-jump-in-delay", -MASK_JUMP_IN_DELAY, "Do not put jumps in call delay slots"}, \
186 {"disable-indexing", MASK_DISABLE_INDEXING, "Disable indexed addressing"},\
187 {"no-disable-indexing", -MASK_DISABLE_INDEXING, "Do not disable indexed addressing"},\
188 {"portable-runtime", MASK_PORTABLE_RUNTIME, "Use portable calling conventions"}, \
189 {"no-portable-runtime", -MASK_PORTABLE_RUNTIME, "Do not use portable calling conventions"},\
190 {"gas", MASK_GAS, "Assume code will be assembled by GAS"}, \
191 {"no-gas", -MASK_GAS, "Do not assume code will be assembled by GAS"}, \
192 {"soft-float", MASK_SOFT_FLOAT, "Use software floating point"}, \
193 {"no-soft-float", -MASK_SOFT_FLOAT, "Do not use software floating point"}, \
194 {"long-load-store", MASK_LONG_LOAD_STORE, "Emit long load/store sequences"}, \
195 {"no-long-load-store", -MASK_LONG_LOAD_STORE, "Do not emit long load/store sequences"},\
196 {"fast-indirect-calls", MASK_FAST_INDIRECT_CALLS, "Generate fast indirect calls"},\
197 {"no-fast-indirect-calls", -MASK_FAST_INDIRECT_CALLS, "Do not generate fast indirect calls"},\
198 {"big-switch", MASK_BIG_SWITCH, "Generate code for huge switch statements"}, \
199 {"no-big-switch", -MASK_BIG_SWITCH, "Do not generate code for huge switch statements"}, \
200 {"linker-opt", 0, "Enable linker optimizations"}, \
201 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, NULL}}
202
203 #ifndef TARGET_DEFAULT
204 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY)
205 #endif
206
207 #ifndef TARGET_CPU_DEFAULT
208 #define TARGET_CPU_DEFAULT 0
209 #endif
210
211 #define TARGET_OPTIONS \
212 { \
213 { "schedule=", &pa_cpu_string, "Specify CPU for scheduling purposes" },\
214 { "arch=", &pa_arch_string, "Specify architecture for code generation. Values are 1.0, 1.1, and 2.0. 2.0 requires gas snapshot 19990413 or later." }\
215 }
216
217 /* Specify the dialect of assembler to use. New mnemonics is dialect one
218 and the old mnemonics are dialect zero. */
219 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
220
221 #define OVERRIDE_OPTIONS override_options ()
222
223 /* stabs-in-som is nearly identical to stabs-in-elf. To avoid useless
224 code duplication we simply include this file and override as needed. */
225 #include "dbxelf.h"
226
227 /* We do not have to be compatible with dbx, so we enable gdb extensions
228 by default. */
229 #define DEFAULT_GDB_EXTENSIONS 1
230
231 /* This used to be zero (no max length), but big enums and such can
232 cause huge strings which killed gas.
233
234 We also have to avoid lossage in dbxout.c -- it does not compute the
235 string size accurately, so we are real conservative here. */
236 #undef DBX_CONTIN_LENGTH
237 #define DBX_CONTIN_LENGTH 3000
238
239 /* Only labels should ever begin in column zero. */
240 #define ASM_STABS_OP "\t.stabs\t"
241 #define ASM_STABN_OP "\t.stabn\t"
242
243 /* GDB always assumes the current function's frame begins at the value
244 of the stack pointer upon entry to the current function. Accessing
245 local variables and parameters passed on the stack is done using the
246 base of the frame + an offset provided by GCC.
247
248 For functions which have frame pointers this method works fine;
249 the (frame pointer) == (stack pointer at function entry) and GCC provides
250 an offset relative to the frame pointer.
251
252 This loses for functions without a frame pointer; GCC provides an offset
253 which is relative to the stack pointer after adjusting for the function's
254 frame size. GDB would prefer the offset to be relative to the value of
255 the stack pointer at the function's entry. Yuk! */
256 #define DEBUGGER_AUTO_OFFSET(X) \
257 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
258 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
259
260 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
261 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
262 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
263
264 #define CPP_PA10_SPEC ""
265 #define CPP_PA11_SPEC "-D_PA_RISC1_1 -D__hp9000s700"
266 #define CPP_PA20_SPEC "-D_PA_RISC2_0 -D__hp9000s800"
267 #define CPP_64BIT_SPEC "-D__LP64__ -D__LONG_MAX__=9223372036854775807L"
268
269 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_PA_11) == 0
270 #define CPP_CPU_DEFAULT_SPEC "%(cpp_pa10)"
271 #endif
272
273 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_PA_11) != 0
274 #if ((TARGET_DEFAULT | TARGET_CPU_DEFAULT) & MASK_PA_20) != 0
275 #define CPP_CPU_DEFAULT_SPEC "%(cpp_pa11) %(cpp_pa20)"
276 #else
277 #define CPP_CPU_DEFAULT_SPEC "%(cpp_pa11)"
278 #endif
279 #endif
280
281 #if TARGET_64BIT
282 #define CPP_64BIT_DEFAULT_SPEC "%(cpp_64bit)"
283 #else
284 #define CPP_64BIT_DEFAULT_SPEC ""
285 #endif
286
287 /* This macro defines names of additional specifications to put in the
288 specs that can be used in various specifications like CC1_SPEC. Its
289 definition is an initializer with a subgrouping for each command option.
290
291 Each subgrouping contains a string constant, that defines the
292 specification name, and a string constant that used by the GNU CC driver
293 program.
294
295 Do not define this macro if it does not need to do anything. */
296
297 #ifndef SUBTARGET_EXTRA_SPECS
298 #define SUBTARGET_EXTRA_SPECS
299 #endif
300
301 #define EXTRA_SPECS \
302 { "cpp_pa10", CPP_PA10_SPEC}, \
303 { "cpp_pa11", CPP_PA11_SPEC}, \
304 { "cpp_pa20", CPP_PA20_SPEC}, \
305 { "cpp_64bit", CPP_64BIT_SPEC}, \
306 { "cpp_cpu_default", CPP_CPU_DEFAULT_SPEC }, \
307 { "cpp_64bit_default", CPP_64BIT_DEFAULT_SPEC }, \
308 SUBTARGET_EXTRA_SPECS
309
310 #define CPP_SPEC "\
311 %{mpa-risc-1-0:%(cpp_pa10)} \
312 %{mpa-risc-1-1:%(cpp_pa11)} \
313 %{msnake:%(cpp_pa11)} \
314 %{mpa-risc-2-0:%(cpp_pa20)} \
315 %{!mpa-risc-1-0:%{!mpa-risc-1-1:%{!mpa-risc-2-0:%{!msnake:%(cpp_cpu_default)}}}} \
316 %{m64bit:%(cpp_64bit)} \
317 %{!m64bit:%(cpp_64bit_default)} \
318 %{!ansi: -D_HPUX_SOURCE -D_HIUX_SOURCE -D__STDC_EXT__ -D_INCLUDE_LONGLONG} \
319 %{threads: -D_REENTRANT -D_DCE_THREADS}"
320
321 #define CPLUSPLUS_CPP_SPEC "\
322 -D_HPUX_SOURCE -D_HIUX_SOURCE -D__STDC_EXT__ -D_INCLUDE_LONGLONG \
323 %{mpa-risc-1-0:%(cpp_pa10)} \
324 %{mpa-risc-1-1:%(cpp_pa11)} \
325 %{msnake:%(cpp_pa11)} \
326 %{mpa-risc-2-0:%(cpp_pa20)} \
327 %{!mpa-risc-1-0:%{!mpa-risc-1-1:%{!mpa-risc-2-0:%{!msnake:%(cpp_cpu_default)}}}} \
328 %{m64bit:%(cpp_64bit)} \
329 %{!m64bit:%(cpp_64bit_default)} \
330 %{threads: -D_REENTRANT -D_DCE_THREADS}"
331
332 /* Defines for a K&R CC */
333
334 #define CC1_SPEC "%{pg:} %{p:}"
335
336 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
337
338 /* We don't want -lg. */
339 #ifndef LIB_SPEC
340 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
341 #endif
342
343 /* This macro defines command-line switches that modify the default
344 target name.
345
346 The definition is be an initializer for an array of structures. Each
347 array element has have three elements: the switch name, one of the
348 enumeration codes ADD or DELETE to indicate whether the string should be
349 inserted or deleted, and the string to be inserted or deleted. */
350 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
351
352 /* Make gcc agree with <machine/ansi.h> */
353
354 #define SIZE_TYPE "unsigned int"
355 #define PTRDIFF_TYPE "int"
356 #define WCHAR_TYPE "unsigned int"
357 #define WCHAR_TYPE_SIZE 32
358
359 /* Show we can debug even without a frame pointer. */
360 #define CAN_DEBUG_WITHOUT_FP
361
362 /* Machine dependent reorg pass. */
363 #define MACHINE_DEPENDENT_REORG(X) pa_reorg(X)
364
365 /* Names to predefine in the preprocessor for this target machine. */
366
367 #define CPP_PREDEFINES "-Dhppa -Dhp9000s800 -D__hp9000s800 -Dhp9k8 -Dunix -Dhp9000 -Dhp800 -Dspectrum -DREVARGV -Asystem=unix -Asystem=bsd -Acpu=hppa -Amachine=hppa"
368 \f
369 /* target machine storage layout */
370
371 /* Define this macro if it is advisable to hold scalars in registers
372 in a wider mode than that declared by the program. In such cases,
373 the value is constrained to be within the bounds of the declared
374 type, but kept valid in the wider mode. The signedness of the
375 extension may differ from that of the type. */
376
377 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
378 if (GET_MODE_CLASS (MODE) == MODE_INT \
379 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
380 (MODE) = word_mode;
381
382 /* Define this if most significant bit is lowest numbered
383 in instructions that operate on numbered bit-fields. */
384 #define BITS_BIG_ENDIAN 1
385
386 /* Define this if most significant byte of a word is the lowest numbered. */
387 /* That is true on the HP-PA. */
388 #define BYTES_BIG_ENDIAN 1
389
390 /* Define this if most significant word of a multiword number is lowest
391 numbered. */
392 #define WORDS_BIG_ENDIAN 1
393
394 #define MAX_BITS_PER_WORD 64
395 #define MAX_LONG_TYPE_SIZE 32
396
397 /* Width of a word, in units (bytes). */
398 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
399 #define MIN_UNITS_PER_WORD 4
400
401 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
402 #define PARM_BOUNDARY BITS_PER_WORD
403
404 /* Largest alignment required for any stack parameter, in bits.
405 Don't define this if it is equal to PARM_BOUNDARY */
406 #define MAX_PARM_BOUNDARY 64
407
408 /* Boundary (in *bits*) on which stack pointer is always aligned;
409 certain optimizations in combine depend on this.
410
411 GCC for the PA always rounds its stacks to a 512bit boundary,
412 but that happens late in the compilation process. */
413 #define STACK_BOUNDARY (TARGET_64BIT ? 128 : 64)
414
415 #define PREFERRED_STACK_BOUNDARY 512
416
417 /* Allocation boundary (in *bits*) for the code of a function. */
418 #define FUNCTION_BOUNDARY (TARGET_64BIT ? 64 : 32)
419
420 /* Alignment of field after `int : 0' in a structure. */
421 #define EMPTY_FIELD_BOUNDARY 32
422
423 /* Every structure's size must be a multiple of this. */
424 #define STRUCTURE_SIZE_BOUNDARY 8
425
426 /* A bitfield declared as `int' forces `int' alignment for the struct. */
427 #define PCC_BITFIELD_TYPE_MATTERS 1
428
429 /* No data type wants to be aligned rounder than this. This is set
430 to 128 bits to allow for lock semaphores in the stack frame.*/
431 #define BIGGEST_ALIGNMENT 128
432
433 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
434 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
435 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
436
437 /* Make arrays of chars word-aligned for the same reasons. */
438 #define DATA_ALIGNMENT(TYPE, ALIGN) \
439 (TREE_CODE (TYPE) == ARRAY_TYPE \
440 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
441 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
442
443
444 /* Set this nonzero if move instructions will actually fail to work
445 when given unaligned data. */
446 #define STRICT_ALIGNMENT 1
447
448 /* Generate calls to memcpy, memcmp and memset. */
449 #define TARGET_MEM_FUNCTIONS
450
451 /* Value is 1 if it is a good idea to tie two pseudo registers
452 when one has mode MODE1 and one has mode MODE2.
453 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
454 for any hard reg, then this must be 0 for correct output. */
455 #define MODES_TIEABLE_P(MODE1, MODE2) \
456 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
457
458 /* Specify the registers used for certain standard purposes.
459 The values of these macros are register numbers. */
460
461 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
462 /* #define PC_REGNUM */
463
464 /* Register to use for pushing function arguments. */
465 #define STACK_POINTER_REGNUM 30
466
467 /* Base register for access to local variables of the function. */
468 #define FRAME_POINTER_REGNUM 3
469
470 /* Value should be nonzero if functions must have frame pointers. */
471 #define FRAME_POINTER_REQUIRED \
472 (current_function_calls_alloca)
473
474 /* C statement to store the difference between the frame pointer
475 and the stack pointer values immediately after the function prologue.
476
477 Note, we always pretend that this is a leaf function because if
478 it's not, there's no point in trying to eliminate the
479 frame pointer. If it is a leaf function, we guessed right! */
480 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
481 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
482
483 /* Base register for access to arguments of the function. */
484 #define ARG_POINTER_REGNUM 3
485
486 /* Register in which static-chain is passed to a function. */
487 #define STATIC_CHAIN_REGNUM 29
488
489 /* Register which holds offset table for position-independent
490 data references. */
491
492 #define PIC_OFFSET_TABLE_REGNUM (TARGET_64BIT ? 27 : 19)
493 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
494
495 /* Function to return the rtx used to save the pic offset table register
496 across function calls. */
497 extern struct rtx_def *hppa_pic_save_rtx PARAMS ((void));
498
499 #define DEFAULT_PCC_STRUCT_RETURN 0
500
501 /* SOM ABI says that objects larger than 64 bits are returned in memory.
502 PA64 ABI says that objects larger than 128 bits are returned in memory.
503 Note, int_size_in_bytes can return -1 if the size of the object is
504 variable or larger than the maximum value that can be expressed as
505 a HOST_WIDE_INT. */
506 #define RETURN_IN_MEMORY(TYPE) \
507 ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > (TARGET_64BIT ? 16 : 8))
508
509 /* Register in which address to store a structure value
510 is passed to a function. */
511 #define STRUCT_VALUE_REGNUM 28
512
513 /* Describe how we implement __builtin_eh_return. */
514 /* FIXME: What's a good choice for the EH data registers on TARGET_64BIT? */
515 #define EH_RETURN_DATA_REGNO(N) \
516 (TARGET_64BIT \
517 ? ((N) < 4 ? (N) + 4 : INVALID_REGNUM) \
518 : ((N) < 3 ? (N) + 20 : (N) == 4 ? 31 : INVALID_REGNUM))
519 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
520 #define EH_RETURN_HANDLER_RTX \
521 gen_rtx_MEM (word_mode, \
522 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \
523 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
524
525
526 /* Offset from the argument pointer register value to the top of
527 stack. This is different from FIRST_PARM_OFFSET because of the
528 frame marker. */
529 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
530 \f
531 /* The letters I, J, K, L and M in a register constraint string
532 can be used to stand for particular ranges of immediate operands.
533 This macro defines what the ranges are.
534 C is the letter, and VALUE is a constant value.
535 Return 1 if VALUE is in the range specified by C.
536
537 `I' is used for the 11 bit constants.
538 `J' is used for the 14 bit constants.
539 `K' is used for values that can be moved with a zdepi insn.
540 `L' is used for the 5 bit constants.
541 `M' is used for 0.
542 `N' is used for values with the least significant 11 bits equal to zero
543 and when sign extended from 32 to 64 bits the
544 value does not change.
545 `O' is used for numbers n such that n+1 is a power of 2.
546 */
547
548 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
549 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
550 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
551 : (C) == 'K' ? zdepi_cint_p (VALUE) \
552 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
553 : (C) == 'M' ? (VALUE) == 0 \
554 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
555 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \
556 == (HOST_WIDE_INT) -1 << 31)) \
557 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
558 : (C) == 'P' ? and_mask_p (VALUE) \
559 : 0)
560
561 /* Similar, but for floating or large integer constants, and defining letters
562 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
563
564 For PA, `G' is the floating-point constant zero. `H' is undefined. */
565
566 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
567 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
568 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
569 : 0)
570
571 /* The class value for index registers, and the one for base regs. */
572 #define INDEX_REG_CLASS GENERAL_REGS
573 #define BASE_REG_CLASS GENERAL_REGS
574
575 #define FP_REG_CLASS_P(CLASS) \
576 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
577
578 /* True if register is floating-point. */
579 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
580
581 /* Given an rtx X being reloaded into a reg required to be
582 in class CLASS, return the class of reg to actually use.
583 In general this is just CLASS; but on some machines
584 in some cases it is preferable to use a more restrictive class. */
585 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
586
587 /* Return the register class of a scratch register needed to copy IN into
588 or out of a register in CLASS in MODE. If it can be done directly
589 NO_REGS is returned.
590
591 Avoid doing any work for the common case calls. */
592
593 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
594 ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \
595 && REGNO (IN) < FIRST_PSEUDO_REGISTER) \
596 ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
597
598 /* On the PA it is not possible to directly move data between
599 GENERAL_REGS and FP_REGS. */
600 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
601 (FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2))
602
603 /* Return the stack location to use for secondary memory needed reloads. */
604 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
605 gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
606
607 \f
608 /* Stack layout; function entry, exit and calling. */
609
610 /* Define this if pushing a word on the stack
611 makes the stack pointer a smaller address. */
612 /* #define STACK_GROWS_DOWNWARD */
613
614 /* Believe it or not. */
615 #define ARGS_GROW_DOWNWARD
616
617 /* Define this if the nominal address of the stack frame
618 is at the high-address end of the local variables;
619 that is, each additional local variable allocated
620 goes at a more negative offset in the frame. */
621 /* #define FRAME_GROWS_DOWNWARD */
622
623 /* Offset within stack frame to start allocating local variables at.
624 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
625 first local allocated. Otherwise, it is the offset to the BEGINNING
626 of the first local allocated. */
627 #define STARTING_FRAME_OFFSET 8
628
629 /* If we generate an insn to push BYTES bytes,
630 this says how many the stack pointer really advances by.
631 On the HP-PA, don't define this because there are no push insns. */
632 /* #define PUSH_ROUNDING(BYTES) */
633
634 /* Offset of first parameter from the argument pointer register value.
635 This value will be negated because the arguments grow down.
636 Also note that on STACK_GROWS_UPWARD machines (such as this one)
637 this is the distance from the frame pointer to the end of the first
638 argument, not it's beginning. To get the real offset of the first
639 argument, the size of the argument must be added. */
640
641 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
642
643 /* When a parameter is passed in a register, stack space is still
644 allocated for it. */
645 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
646
647 /* Define this if the above stack space is to be considered part of the
648 space allocated by the caller. */
649 #define OUTGOING_REG_PARM_STACK_SPACE
650
651 /* Keep the stack pointer constant throughout the function.
652 This is both an optimization and a necessity: longjmp
653 doesn't behave itself when the stack pointer moves within
654 the function! */
655 #define ACCUMULATE_OUTGOING_ARGS 1
656
657 /* The weird HPPA calling conventions require a minimum of 48 bytes on
658 the stack: 16 bytes for register saves, and 32 bytes for magic.
659 This is the difference between the logical top of stack and the
660 actual sp. */
661 #define STACK_POINTER_OFFSET \
662 (TARGET_64BIT ? -(current_function_outgoing_args_size + 16): -32)
663
664 #define STACK_DYNAMIC_OFFSET(FNDECL) \
665 (TARGET_64BIT \
666 ? (STACK_POINTER_OFFSET) \
667 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
668
669 /* Value is 1 if returning from a function call automatically
670 pops the arguments described by the number-of-args field in the call.
671 FUNDECL is the declaration node of the function (as a tree),
672 FUNTYPE is the data type of the function (as a tree),
673 or for a library call it is an identifier node for the subroutine name. */
674
675 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
676
677 /* Define how to find the value returned by a function.
678 VALTYPE is the data type of the value (as a tree).
679 If the precise function being called is known, FUNC is its FUNCTION_DECL;
680 otherwise, FUNC is 0. */
681
682 /* On the HP-PA the value is found in register(s) 28(-29), unless
683 the mode is SF or DF. Then the value is returned in fr4 (32, ) */
684
685 /* This must perform the same promotions as PROMOTE_MODE, else
686 PROMOTE_FUNCTION_RETURN will not work correctly. */
687 #define FUNCTION_VALUE(VALTYPE, FUNC) \
688 gen_rtx_REG (((INTEGRAL_TYPE_P (VALTYPE) \
689 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
690 || POINTER_TYPE_P (VALTYPE)) \
691 ? word_mode : TYPE_MODE (VALTYPE), \
692 TREE_CODE (VALTYPE) == REAL_TYPE && !TARGET_SOFT_FLOAT ? 32 : 28)
693
694 /* Define how to find the value returned by a library function
695 assuming the value has mode MODE. */
696
697 #define LIBCALL_VALUE(MODE) \
698 gen_rtx_REG (MODE, \
699 (! TARGET_SOFT_FLOAT \
700 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
701
702 /* 1 if N is a possible register number for a function value
703 as seen by the caller. */
704
705 #define FUNCTION_VALUE_REGNO_P(N) \
706 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
707
708 \f
709 /* Define a data type for recording info about an argument list
710 during the scan of that argument list. This data type should
711 hold all necessary information about the function itself
712 and about the args processed so far, enough to enable macros
713 such as FUNCTION_ARG to determine where the next arg should go.
714
715 On the HP-PA, this is a single integer, which is a number of words
716 of arguments scanned so far (including the invisible argument,
717 if any, which holds the structure-value-address).
718 Thus 4 or more means all following args should go on the stack. */
719
720 struct hppa_args {int words, nargs_prototype, indirect; };
721
722 #define CUMULATIVE_ARGS struct hppa_args
723
724 /* Initialize a variable CUM of type CUMULATIVE_ARGS
725 for a call to a function whose data type is FNTYPE.
726 For a library call, FNTYPE is 0. */
727
728 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
729 (CUM).words = 0, \
730 (CUM).indirect = INDIRECT, \
731 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
732 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
733 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
734 || RETURN_IN_MEMORY (TREE_TYPE (FNTYPE)))) \
735 : 0)
736
737
738
739 /* Similar, but when scanning the definition of a procedure. We always
740 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
741
742 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
743 (CUM).words = 0, \
744 (CUM).indirect = 0, \
745 (CUM).nargs_prototype = 1000
746
747 /* Figure out the size in words of the function argument. */
748
749 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
750 ((((MODE) != BLKmode \
751 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
752 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
753
754 /* Update the data in CUM to advance over an argument
755 of mode MODE and data type TYPE.
756 (TYPE is null for libcalls where that information may not be available.) */
757
758 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
759 { (CUM).nargs_prototype--; \
760 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
761 + (((CUM).words & 01) && (TYPE) != 0 \
762 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
763 }
764
765 /* Determine where to put an argument to a function.
766 Value is zero to push the argument on the stack,
767 or a hard register in which to store the argument.
768
769 MODE is the argument's machine mode.
770 TYPE is the data type of the argument (as a tree).
771 This is null for libcalls where that information may
772 not be available.
773 CUM is a variable of type CUMULATIVE_ARGS which gives info about
774 the preceding args and about the function being called.
775 NAMED is nonzero if this argument is a named parameter
776 (otherwise it is an extra parameter matching an ellipsis).
777
778 On the HP-PA the first four words of args are normally in registers
779 and the rest are pushed. But any arg that won't entirely fit in regs
780 is pushed.
781
782 Arguments passed in registers are either 1 or 2 words long.
783
784 The caller must make a distinction between calls to explicitly named
785 functions and calls through pointers to functions -- the conventions
786 are different! Calls through pointers to functions only use general
787 registers for the first four argument words.
788
789 Of course all this is different for the portable runtime model
790 HP wants everyone to use for ELF. Ugh. Here's a quick description
791 of how it's supposed to work.
792
793 1) callee side remains unchanged. It expects integer args to be
794 in the integer registers, float args in the float registers and
795 unnamed args in integer registers.
796
797 2) caller side now depends on if the function being called has
798 a prototype in scope (rather than if it's being called indirectly).
799
800 2a) If there is a prototype in scope, then arguments are passed
801 according to their type (ints in integer registers, floats in float
802 registers, unnamed args in integer registers.
803
804 2b) If there is no prototype in scope, then floating point arguments
805 are passed in both integer and float registers. egad.
806
807 FYI: The portable parameter passing conventions are almost exactly like
808 the standard parameter passing conventions on the RS6000. That's why
809 you'll see lots of similar code in rs6000.h. */
810
811 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
812
813 /* Do not expect to understand this without reading it several times. I'm
814 tempted to try and simply it, but I worry about breaking something. */
815
816 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
817 function_arg (&CUM, MODE, TYPE, NAMED, 0)
818
819 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
820 function_arg (&CUM, MODE, TYPE, NAMED, 1)
821
822 /* For an arg passed partly in registers and partly in memory,
823 this is the number of registers used.
824 For args passed entirely in registers or entirely in memory, zero. */
825
826 /* For PA32 there are never split arguments. PA64, on the other hand, can
827 pass arguments partially in registers and partially in memory. */
828 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
829 (TARGET_64BIT ? function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED) : 0)
830
831 /* If defined, a C expression that gives the alignment boundary, in
832 bits, of an argument with the specified mode and type. If it is
833 not defined, `PARM_BOUNDARY' is used for all arguments. */
834
835 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
836 (((TYPE) != 0) \
837 ? ((integer_zerop (TYPE_SIZE (TYPE)) \
838 || ! TREE_CONSTANT (TYPE_SIZE (TYPE))) \
839 ? BITS_PER_UNIT \
840 : (((int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) \
841 / UNITS_PER_WORD) * BITS_PER_WORD) \
842 : ((GET_MODE_ALIGNMENT(MODE) <= PARM_BOUNDARY) \
843 ? PARM_BOUNDARY : GET_MODE_ALIGNMENT(MODE)))
844
845 /* Arguments larger than eight bytes are passed by invisible reference */
846
847 /* PA64 does not pass anything by invisible reference. */
848 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
849 (TARGET_64BIT \
850 ? 0 \
851 : (((TYPE) && int_size_in_bytes (TYPE) > 8) \
852 || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
853
854 /* PA64 does not pass anything by invisible reference.
855 This should be undef'ed for 64bit, but we'll see if this works. The
856 problem is that we can't test TARGET_64BIT from the preprocessor. */
857 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
858 (TARGET_64BIT \
859 ? 0 \
860 : (((TYPE) && int_size_in_bytes (TYPE) > 8) \
861 || ((MODE) && GET_MODE_SIZE (MODE) > 8)))
862
863 \f
864 extern struct rtx_def *hppa_compare_op0, *hppa_compare_op1;
865 extern enum cmp_type hppa_branch_type;
866
867 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
868 { const char *target_name = XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0); \
869 static unsigned int current_thunk_number; \
870 char label[16]; \
871 char *lab; \
872 ASM_GENERATE_INTERNAL_LABEL (label, "LTHN", current_thunk_number); \
873 STRIP_NAME_ENCODING (lab, label); \
874 STRIP_NAME_ENCODING (target_name, target_name); \
875 /* FIXME: total_code_bytes is not handled correctly in files with \
876 mi thunks. */ \
877 pa_output_function_prologue (FILE, 0); \
878 if (VAL_14_BITS_P (DELTA)) \
879 { \
880 if (! TARGET_64BIT && ! TARGET_PORTABLE_RUNTIME && flag_pic) \
881 { \
882 fprintf (FILE, "\taddil LT%%%s,%%r19\n", lab); \
883 fprintf (FILE, "\tldw RT%%%s(%%r1),%%r22\n", lab); \
884 fprintf (FILE, "\tldw 0(%%sr0,%%r22),%%r22\n"); \
885 fprintf (FILE, "\tbb,>=,n %%r22,30,.+16\n"); \
886 fprintf (FILE, "\tdepi 0,31,2,%%r22\n"); \
887 fprintf (FILE, "\tldw 4(%%sr0,%%r22),%%r19\n"); \
888 fprintf (FILE, "\tldw 0(%%sr0,%%r22),%%r22\n"); \
889 fprintf (FILE, "\tldsid (%%sr0,%%r22),%%r1\n\tmtsp %%r1,%%sr0\n"); \
890 fprintf (FILE, "\tbe 0(%%sr0,%%r22)\n\tldo "); \
891 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, DELTA); \
892 fprintf (FILE, "(%%r26),%%r26\n"); \
893 } \
894 else \
895 { \
896 fprintf (FILE, "\tb %s\n\tldo ", target_name); \
897 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, DELTA); \
898 fprintf (FILE, "(%%r26),%%r26\n"); \
899 } \
900 } \
901 else \
902 { \
903 if (! TARGET_64BIT && ! TARGET_PORTABLE_RUNTIME && flag_pic) \
904 { \
905 fprintf (FILE, "\taddil L%%"); \
906 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, DELTA); \
907 fprintf (FILE, ",%%r26\n\tldo R%%"); \
908 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, DELTA); \
909 fprintf (FILE, "(%%r1),%%r26\n"); \
910 fprintf (FILE, "\taddil LT%%%s,%%r19\n", lab); \
911 fprintf (FILE, "\tldw RT%%%s(%%r1),%%r22\n", lab); \
912 fprintf (FILE, "\tldw 0(%%sr0,%%r22),%%r22\n"); \
913 fprintf (FILE, "\tbb,>=,n %%r22,30,.+16\n"); \
914 fprintf (FILE, "\tdepi 0,31,2,%%r22\n"); \
915 fprintf (FILE, "\tldw 4(%%sr0,%%r22),%%r19\n"); \
916 fprintf (FILE, "\tldw 0(%%sr0,%%r22),%%r22\n"); \
917 fprintf (FILE, "\tldsid (%%sr0,%%r22),%%r1\n\tmtsp %%r1,%%sr0\n"); \
918 fprintf (FILE, "\tbe,n 0(%%sr0,%%r22)\n"); \
919 } \
920 else \
921 { \
922 fprintf (FILE, "\taddil L%%"); \
923 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, DELTA); \
924 fprintf (FILE, ",%%r26\n\tb %s\n\tldo R%%", target_name); \
925 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, DELTA); \
926 fprintf (FILE, "(%%r1),%%r26\n"); \
927 } \
928 } \
929 fprintf (FILE, "\t.EXIT\n\t.PROCEND\n"); \
930 if (! TARGET_64BIT && ! TARGET_PORTABLE_RUNTIME && flag_pic) \
931 { \
932 data_section (); \
933 fprintf (FILE, "\t.align 4\n"); \
934 ASM_OUTPUT_INTERNAL_LABEL (FILE, "LTHN", current_thunk_number); \
935 fprintf (FILE, "\t.word P%%%s\n", target_name); \
936 function_section (THUNK_FNDECL); \
937 } \
938 current_thunk_number++; \
939 }
940
941 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
942 as assembly via FUNCTION_PROFILER. Just output a local label.
943 We can't use the function label because the GAS SOM target can't
944 handle the difference of a global symbol and a local symbol. */
945
946 #ifndef FUNC_BEGIN_PROLOG_LABEL
947 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
948 #endif
949
950 #define FUNCTION_PROFILER(FILE, LABEL) \
951 ASM_OUTPUT_INTERNAL_LABEL (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
952
953 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
954 void hppa_profile_hook PARAMS ((int label_no));
955
956 /* The profile counter if emitted must come before the prologue. */
957 #define PROFILE_BEFORE_PROLOGUE 1
958
959 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
960 the stack pointer does not matter. The value is tested only in
961 functions that have frame pointers.
962 No definition is equivalent to always zero. */
963
964 extern int may_call_alloca;
965
966 #define EXIT_IGNORE_STACK \
967 (get_frame_size () != 0 \
968 || current_function_calls_alloca || current_function_outgoing_args_size)
969
970 /* Output assembler code for a block containing the constant parts
971 of a trampoline, leaving space for the variable parts.\
972
973 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
974 and then branches to the specified routine.
975
976 This code template is copied from text segment to stack location
977 and then patched with INITIALIZE_TRAMPOLINE to contain
978 valid values, and then entered as a subroutine.
979
980 It is best to keep this as small as possible to avoid having to
981 flush multiple lines in the cache. */
982
983 #define TRAMPOLINE_TEMPLATE(FILE) \
984 { \
985 if (! TARGET_64BIT) \
986 { \
987 fputs ("\tldw 36(%r22),%r21\n", FILE); \
988 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
989 if (ASSEMBLER_DIALECT == 0) \
990 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
991 else \
992 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
993 fputs ("\tldw 4(%r21),%r19\n", FILE); \
994 fputs ("\tldw 0(%r21),%r21\n", FILE); \
995 fputs ("\tldsid (%r21),%r1\n", FILE); \
996 fputs ("\tmtsp %r1,%sr0\n", FILE); \
997 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
998 fputs ("\tldw 40(%r22),%r29\n", FILE); \
999 fputs ("\t.word 0\n", FILE); \
1000 fputs ("\t.word 0\n", FILE); \
1001 fputs ("\t.word 0\n", FILE); \
1002 fputs ("\t.word 0\n", FILE); \
1003 } \
1004 else \
1005 { \
1006 fputs ("\t.dword 0\n", FILE); \
1007 fputs ("\t.dword 0\n", FILE); \
1008 fputs ("\t.dword 0\n", FILE); \
1009 fputs ("\t.dword 0\n", FILE); \
1010 fputs ("\tmfia %r31\n", FILE); \
1011 fputs ("\tldd 24(%r31),%r1\n", FILE); \
1012 fputs ("\tldd 24(%r1),%r27\n", FILE); \
1013 fputs ("\tldd 16(%r1),%r1\n", FILE); \
1014 fputs ("\tbve (%r1)\n", FILE); \
1015 fputs ("\tldd 32(%r31),%r31\n", FILE); \
1016 fputs ("\t.dword 0 ; fptr\n", FILE); \
1017 fputs ("\t.dword 0 ; static link\n", FILE); \
1018 } \
1019 }
1020
1021 /* Length in units of the trampoline for entering a nested function.
1022
1023 Flush the cache entries corresponding to the first and last addresses
1024 of the trampoline. This is necessary as the trampoline may cross two
1025 cache lines.
1026
1027 If the code part of the trampoline ever grows to > 32 bytes, then it
1028 will become necessary to hack on the cacheflush pattern in pa.md. */
1029
1030 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
1031
1032 /* Emit RTL insns to initialize the variable parts of a trampoline.
1033 FNADDR is an RTX for the address of the function's pure code.
1034 CXT is an RTX for the static chain value for the function.
1035
1036 Move the function address to the trampoline template at offset 36.
1037 Move the static chain value to trampoline template at offset 40.
1038 Move the trampoline address to trampoline template at offset 44.
1039 Move r19 to trampoline template at offset 48. The latter two
1040 words create a plabel for the indirect call to the trampoline. */
1041
1042 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1043 { \
1044 if (! TARGET_64BIT) \
1045 { \
1046 rtx start_addr, end_addr; \
1047 \
1048 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
1049 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
1050 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
1051 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
1052 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
1053 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (TRAMP)); \
1054 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
1055 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), \
1056 gen_rtx_REG (Pmode, 19)); \
1057 /* fdc and fic only use registers for the address to flush, \
1058 they do not accept integer displacements. */ \
1059 start_addr = force_reg (Pmode, (TRAMP)); \
1060 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1061 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1062 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
1063 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1064 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
1065 } \
1066 else \
1067 { \
1068 rtx start_addr, end_addr; \
1069 \
1070 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
1071 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (FNADDR)); \
1072 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
1073 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), (CXT)); \
1074 /* Create a fat pointer for the trampoline. */ \
1075 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1076 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1077 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1078 end_addr = gen_rtx_REG (Pmode, 27); \
1079 start_addr = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1080 emit_move_insn (gen_rtx_MEM (Pmode, start_addr), end_addr); \
1081 /* fdc and fic only use registers for the address to flush, \
1082 they do not accept integer displacements. */ \
1083 start_addr = force_reg (Pmode, (TRAMP)); \
1084 end_addr = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1085 emit_insn (gen_dcacheflush (start_addr, end_addr)); \
1086 end_addr = force_reg (Pmode, plus_constant (start_addr, 32)); \
1087 emit_insn (gen_icacheflush (start_addr, end_addr, start_addr, \
1088 gen_reg_rtx (Pmode), gen_reg_rtx (Pmode)));\
1089 } \
1090 }
1091
1092 /* Perform any machine-specific adjustment in the address of the trampoline.
1093 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1094 Adjust the trampoline address to point to the plabel at offset 44. */
1095
1096 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1097 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1098
1099 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
1100 reference the 4 integer arg registers and 4 fp arg registers.
1101 Ordinarily they are not call used registers, but they are for
1102 _builtin_saveregs, so we must make this explicit. */
1103
1104 #define EXPAND_BUILTIN_SAVEREGS() hppa_builtin_saveregs ()
1105
1106 /* Implement `va_start' for varargs and stdarg. */
1107
1108 #define EXPAND_BUILTIN_VA_START(stdarg, valist, nextarg) \
1109 hppa_va_start (stdarg, valist, nextarg)
1110
1111 /* Implement `va_arg'. */
1112
1113 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1114 hppa_va_arg (valist, type)
1115 \f
1116 /* Addressing modes, and classification of registers for them.
1117
1118 Using autoincrement addressing modes on PA8000 class machines is
1119 not profitable. */
1120
1121 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1122 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1123
1124 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1125 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1126
1127 /* Macros to check register numbers against specific register classes. */
1128
1129 /* These assume that REGNO is a hard or pseudo reg number.
1130 They give nonzero only if REGNO is a hard reg of the suitable class
1131 or a pseudo reg currently allocated to a suitable hard reg.
1132 Since they use reg_renumber, they are safe only once reg_renumber
1133 has been allocated, which happens in local-alloc.c. */
1134
1135 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1136 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1137 #define REGNO_OK_FOR_BASE_P(REGNO) \
1138 ((REGNO) && ((REGNO) < 32 || (unsigned) reg_renumber[REGNO] < 32))
1139 #define REGNO_OK_FOR_FP_P(REGNO) \
1140 (FP_REGNO_P (REGNO) || FP_REGNO_P (reg_renumber[REGNO]))
1141
1142 /* Now macros that check whether X is a register and also,
1143 strictly, whether it is in a specified class.
1144
1145 These macros are specific to the HP-PA, and may be used only
1146 in code for printing assembler insns and in conditions for
1147 define_optimization. */
1148
1149 /* 1 if X is an fp register. */
1150
1151 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1152 \f
1153 /* Maximum number of registers that can appear in a valid memory address. */
1154
1155 #define MAX_REGS_PER_ADDRESS 2
1156
1157 /* Recognize any constant value that is a valid address except
1158 for symbolic addresses. We get better CSE by rejecting them
1159 here and allowing hppa_legitimize_address to break them up. We
1160 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1161
1162 #define CONSTANT_ADDRESS_P(X) \
1163 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1164 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1165 || GET_CODE (X) == HIGH) \
1166 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1167
1168 /* Include all constant integers and constant doubles, but not
1169 floating-point, except for floating-point zero.
1170
1171 Reject LABEL_REFs if we're not using gas or the new HP assembler.
1172
1173 ?!? For now also reject CONST_DOUBLES in 64bit mode. This will need
1174 further work. */
1175 #ifndef NEW_HP_ASSEMBLER
1176 #define NEW_HP_ASSEMBLER 0
1177 #endif
1178 #define LEGITIMATE_CONSTANT_P(X) \
1179 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1180 || (X) == CONST0_RTX (GET_MODE (X))) \
1181 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \
1182 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \
1183 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \
1184 && !(HOST_BITS_PER_WIDE_INT <= 32 \
1185 || (INTVAL (X) >= (HOST_WIDE_INT) -32 << 31 \
1186 && INTVAL (X) < (HOST_WIDE_INT) 32 << 31) \
1187 || cint_ok_for_move (INTVAL (X)))) \
1188 && !function_label_operand (X, VOIDmode))
1189
1190 /* Subroutine for EXTRA_CONSTRAINT.
1191
1192 Return 1 iff OP is a pseudo which did not get a hard register and
1193 we are running the reload pass. */
1194
1195 #define IS_RELOADING_PSEUDO_P(OP) \
1196 ((reload_in_progress \
1197 && GET_CODE (OP) == REG \
1198 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1199 && reg_renumber [REGNO (OP)] < 0))
1200
1201 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1202
1203 For the HPPA, `Q' means that this is a memory operand but not a
1204 symbolic memory operand. Note that an unassigned pseudo register
1205 is such a memory operand. Needed because reload will generate
1206 these things in insns and then not re-recognize the insns, causing
1207 constrain_operands to fail.
1208
1209 `R' is used for scaled indexed addresses.
1210
1211 `S' is the constant 31.
1212
1213 `T' is for fp loads and stores. */
1214 #define EXTRA_CONSTRAINT(OP, C) \
1215 ((C) == 'Q' ? \
1216 (IS_RELOADING_PSEUDO_P (OP) \
1217 || (GET_CODE (OP) == MEM \
1218 && (memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1219 || reload_in_progress) \
1220 && ! symbolic_memory_operand (OP, VOIDmode) \
1221 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1222 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1223 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT))))\
1224 : ((C) == 'R' ? \
1225 (GET_CODE (OP) == MEM \
1226 && GET_CODE (XEXP (OP, 0)) == PLUS \
1227 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT \
1228 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT) \
1229 && (move_operand (OP, GET_MODE (OP)) \
1230 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))\
1231 || reload_in_progress)) \
1232 : ((C) == 'T' ? \
1233 (GET_CODE (OP) == MEM \
1234 /* Using DFmode forces only short displacements \
1235 to be recognized as valid in reg+d addresses. \
1236 However, this is not necessary for PA2.0 since\
1237 it has long FP loads/stores. */ \
1238 && memory_address_p ((TARGET_PA_20 \
1239 ? GET_MODE (OP) \
1240 : DFmode), \
1241 XEXP (OP, 0)) \
1242 && GET_CODE (XEXP (OP, 0)) != LO_SUM \
1243 && !(GET_CODE (XEXP (OP, 0)) == PLUS \
1244 && (GET_CODE (XEXP (XEXP (OP, 0), 0)) == MULT\
1245 || GET_CODE (XEXP (XEXP (OP, 0), 1)) == MULT)))\
1246 : ((C) == 'U' ? \
1247 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) \
1248 : ((C) == 'A' ? \
1249 (GET_CODE (OP) == MEM \
1250 && GET_CODE (XEXP (OP, 0)) == LO_SUM \
1251 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
1252 && REG_OK_FOR_BASE_P (XEXP (XEXP (OP, 0), 0)) \
1253 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == UNSPEC \
1254 && GET_MODE (XEXP (OP, 0)) == Pmode) \
1255 : ((C) == 'S' ? \
1256 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) : 0))))))
1257
1258
1259 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1260 and check its validity for a certain class.
1261 We have two alternate definitions for each of them.
1262 The usual definition accepts all pseudo regs; the other rejects
1263 them unless they have been allocated suitable hard regs.
1264 The symbol REG_OK_STRICT causes the latter definition to be used.
1265
1266 Most source files want to accept pseudo regs in the hope that
1267 they will get allocated to the class that the insn wants them to be in.
1268 Source files for reload pass need to be strict.
1269 After reload, it makes no difference, since pseudo regs have
1270 been eliminated by then. */
1271
1272 #ifndef REG_OK_STRICT
1273
1274 /* Nonzero if X is a hard reg that can be used as an index
1275 or if it is a pseudo reg. */
1276 #define REG_OK_FOR_INDEX_P(X) \
1277 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1278 /* Nonzero if X is a hard reg that can be used as a base reg
1279 or if it is a pseudo reg. */
1280 #define REG_OK_FOR_BASE_P(X) \
1281 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1282
1283 #else
1284
1285 /* Nonzero if X is a hard reg that can be used as an index. */
1286 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1287 /* Nonzero if X is a hard reg that can be used as a base reg. */
1288 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1289
1290 #endif
1291 \f
1292 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1293 that is a valid memory address for an instruction.
1294 The MODE argument is the machine mode for the MEM expression
1295 that wants to use this address.
1296
1297 On the HP-PA, the actual legitimate addresses must be
1298 REG+REG, REG+(REG*SCALE) or REG+SMALLINT.
1299 But we can treat a SYMBOL_REF as legitimate if it is part of this
1300 function's constant-pool, because such addresses can actually
1301 be output as REG+SMALLINT.
1302
1303 Note we only allow 5 bit immediates for access to a constant address;
1304 doing so avoids losing for loading/storing a FP register at an address
1305 which will not fit in 5 bits. */
1306
1307 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1308 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1309
1310 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1311 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1312
1313 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1314 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1315
1316 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1317 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1318
1319 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1320 { \
1321 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1322 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1323 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1324 && REG_P (XEXP (X, 0)) \
1325 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1326 goto ADDR; \
1327 else if (GET_CODE (X) == PLUS) \
1328 { \
1329 rtx base = 0, index = 0; \
1330 if (REG_P (XEXP (X, 0)) \
1331 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1332 base = XEXP (X, 0), index = XEXP (X, 1); \
1333 else if (REG_P (XEXP (X, 1)) \
1334 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1335 base = XEXP (X, 1), index = XEXP (X, 0); \
1336 if (base != 0) \
1337 if (GET_CODE (index) == CONST_INT \
1338 && ((INT_14_BITS (index) \
1339 && (TARGET_SOFT_FLOAT \
1340 || (TARGET_PA_20 \
1341 && ((MODE == SFmode \
1342 && (INTVAL (index) % 4) == 0)\
1343 || (MODE == DFmode \
1344 && (INTVAL (index) % 8) == 0)))\
1345 || ((MODE) != SFmode && (MODE) != DFmode))) \
1346 || INT_5_BITS (index))) \
1347 goto ADDR; \
1348 if (! TARGET_SOFT_FLOAT \
1349 && ! TARGET_DISABLE_INDEXING \
1350 && base \
1351 && ((MODE) == SFmode || (MODE) == DFmode) \
1352 && GET_CODE (index) == MULT \
1353 && GET_CODE (XEXP (index, 0)) == REG \
1354 && REG_OK_FOR_BASE_P (XEXP (index, 0)) \
1355 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1356 && INTVAL (XEXP (index, 1)) == ((MODE) == SFmode ? 4 : 8))\
1357 goto ADDR; \
1358 } \
1359 else if (GET_CODE (X) == LO_SUM \
1360 && GET_CODE (XEXP (X, 0)) == REG \
1361 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1362 && CONSTANT_P (XEXP (X, 1)) \
1363 && (TARGET_SOFT_FLOAT \
1364 /* We can allow symbolic LO_SUM addresses\
1365 for PA2.0. */ \
1366 || (TARGET_PA_20 \
1367 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1368 || ((MODE) != SFmode \
1369 && (MODE) != DFmode))) \
1370 goto ADDR; \
1371 else if (GET_CODE (X) == LO_SUM \
1372 && GET_CODE (XEXP (X, 0)) == SUBREG \
1373 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG\
1374 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0)))\
1375 && CONSTANT_P (XEXP (X, 1)) \
1376 && (TARGET_SOFT_FLOAT \
1377 /* We can allow symbolic LO_SUM addresses\
1378 for PA2.0. */ \
1379 || (TARGET_PA_20 \
1380 && GET_CODE (XEXP (X, 1)) != CONST_INT)\
1381 || ((MODE) != SFmode \
1382 && (MODE) != DFmode))) \
1383 goto ADDR; \
1384 else if (GET_CODE (X) == LABEL_REF \
1385 || (GET_CODE (X) == CONST_INT \
1386 && INT_5_BITS (X))) \
1387 goto ADDR; \
1388 /* Needed for -fPIC */ \
1389 else if (GET_CODE (X) == LO_SUM \
1390 && GET_CODE (XEXP (X, 0)) == REG \
1391 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1392 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1393 && (TARGET_SOFT_FLOAT \
1394 || TARGET_PA_20 \
1395 || ((MODE) != SFmode \
1396 && (MODE) != DFmode))) \
1397 goto ADDR; \
1398 }
1399
1400 /* Look for machine dependent ways to make the invalid address AD a
1401 valid address.
1402
1403 For the PA, transform:
1404
1405 memory(X + <large int>)
1406
1407 into:
1408
1409 if (<large int> & mask) >= 16
1410 Y = (<large int> & ~mask) + mask + 1 Round up.
1411 else
1412 Y = (<large int> & ~mask) Round down.
1413 Z = X + Y
1414 memory (Z + (<large int> - Y));
1415
1416 This makes reload inheritance and reload_cse work better since Z
1417 can be reused.
1418
1419 There may be more opportunities to improve code with this hook. */
1420 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1421 do { \
1422 int offset, newoffset, mask; \
1423 rtx new, temp = NULL_RTX; \
1424 \
1425 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1426 ? (TARGET_PA_20 ? 0x3fff : 0x1f) : 0x3fff); \
1427 \
1428 if (optimize \
1429 && GET_CODE (AD) == PLUS) \
1430 temp = simplify_binary_operation (PLUS, Pmode, \
1431 XEXP (AD, 0), XEXP (AD, 1)); \
1432 \
1433 new = temp ? temp : AD; \
1434 \
1435 if (optimize \
1436 && GET_CODE (new) == PLUS \
1437 && GET_CODE (XEXP (new, 0)) == REG \
1438 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
1439 { \
1440 offset = INTVAL (XEXP ((new), 1)); \
1441 \
1442 /* Choose rounding direction. Round up if we are >= halfway. */ \
1443 if ((offset & mask) >= ((mask + 1) / 2)) \
1444 newoffset = (offset & ~mask) + mask + 1; \
1445 else \
1446 newoffset = offset & ~mask; \
1447 \
1448 if (newoffset != 0 \
1449 && VAL_14_BITS_P (newoffset)) \
1450 { \
1451 \
1452 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
1453 GEN_INT (newoffset)); \
1454 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1455 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1456 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1457 (OPNUM), (TYPE)); \
1458 goto WIN; \
1459 } \
1460 } \
1461 } while (0)
1462
1463
1464
1465 \f
1466 /* Try machine-dependent ways of modifying an illegitimate address
1467 to be legitimate. If we find one, return the new, valid address.
1468 This macro is used in only one place: `memory_address' in explow.c.
1469
1470 OLDX is the address as it was before break_out_memory_refs was called.
1471 In some cases it is useful to look at this to decide what needs to be done.
1472
1473 MODE and WIN are passed so that this macro can use
1474 GO_IF_LEGITIMATE_ADDRESS.
1475
1476 It is always safe for this macro to do nothing. It exists to recognize
1477 opportunities to optimize the output. */
1478
1479 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1480 { rtx orig_x = (X); \
1481 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1482 if ((X) != orig_x && memory_address_p (MODE, X)) \
1483 goto WIN; }
1484
1485 /* Go to LABEL if ADDR (a legitimate address expression)
1486 has an effect that depends on the machine mode it is used for. */
1487
1488 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1489 if (GET_CODE (ADDR) == PRE_DEC \
1490 || GET_CODE (ADDR) == POST_DEC \
1491 || GET_CODE (ADDR) == PRE_INC \
1492 || GET_CODE (ADDR) == POST_INC) \
1493 goto LABEL
1494 \f
1495 /* Arghh. The hpux10 linker chokes if we have a reference to symbols
1496 in a readonly data section when the symbol is defined in a shared
1497 library. Since we can't know at compile time if a symbol will be
1498 satisfied by a shared library or main program we put any symbolic
1499 constant into the normal data section. */
1500 #define SELECT_RTX_SECTION(MODE,RTX,ALIGN) \
1501 if (symbolic_operand (RTX, MODE)) \
1502 data_section (); \
1503 else \
1504 readonly_data_section ();
1505
1506 #define TARGET_ASM_SELECT_SECTION pa_select_section
1507
1508 /* Define this macro if references to a symbol must be treated
1509 differently depending on something about the variable or
1510 function named by the symbol (such as what section it is in).
1511
1512 The macro definition, if any, is executed immediately after the
1513 rtl for DECL or other node is created.
1514 The value of the rtl will be a `mem' whose address is a
1515 `symbol_ref'.
1516
1517 The usual thing for this macro to do is to a flag in the
1518 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1519 name string in the `symbol_ref' (if one bit is not enough
1520 information).
1521
1522 On the HP-PA we use this to indicate if a symbol is in text or
1523 data space. Also, function labels need special treatment. */
1524
1525 #define TEXT_SPACE_P(DECL)\
1526 (TREE_CODE (DECL) == FUNCTION_DECL \
1527 || (TREE_CODE (DECL) == VAR_DECL \
1528 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1529 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1530 && !flag_pic) \
1531 || (TREE_CODE_CLASS (TREE_CODE (DECL)) == 'c' \
1532 && !(TREE_CODE (DECL) == STRING_CST && flag_writable_strings)))
1533
1534 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1535
1536 #define ENCODE_SECTION_INFO(DECL, FIRST) \
1537 do \
1538 { if (FIRST && TEXT_SPACE_P (DECL)) \
1539 { rtx _rtl; \
1540 if (TREE_CODE (DECL) == FUNCTION_DECL \
1541 || TREE_CODE (DECL) == VAR_DECL) \
1542 _rtl = DECL_RTL (DECL); \
1543 else \
1544 _rtl = TREE_CST_RTL (DECL); \
1545 SYMBOL_REF_FLAG (XEXP (_rtl, 0)) = 1; \
1546 if (TREE_CODE (DECL) == FUNCTION_DECL) \
1547 hppa_encode_label (XEXP (DECL_RTL (DECL), 0));\
1548 } \
1549 } \
1550 while (0)
1551
1552 /* Store the user-specified part of SYMBOL_NAME in VAR.
1553 This is sort of inverse to ENCODE_SECTION_INFO. */
1554
1555 #define STRIP_NAME_ENCODING(VAR,SYMBOL_NAME) \
1556 (VAR) = ((SYMBOL_NAME) \
1557 + (*(SYMBOL_NAME) == '*' || *(SYMBOL_NAME) == '@'))
1558
1559 /* Specify the machine mode that this machine uses
1560 for the index in the tablejump instruction. */
1561 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? TImode : DImode)
1562
1563 /* Jump tables must be 32 bit aligned, no matter the size of the element. */
1564 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1565
1566 /* Define this as 1 if `char' should by default be signed; else as 0. */
1567 #define DEFAULT_SIGNED_CHAR 1
1568
1569 /* Max number of bytes we can move from memory to memory
1570 in one reasonably fast instruction. */
1571 #define MOVE_MAX 8
1572
1573 /* Higher than the default as we prefer to use simple move insns
1574 (better scheduling and delay slot filling) and because our
1575 built-in block move is really a 2X unrolled loop.
1576
1577 Believe it or not, this has to be big enough to allow for copying all
1578 arguments passed in registers to avoid infinite recursion during argument
1579 setup for a function call. Why? Consider how we copy the stack slots
1580 reserved for parameters when they may be trashed by a call. */
1581 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1582
1583 /* Define if operations between registers always perform the operation
1584 on the full register even if a narrower mode is specified. */
1585 #define WORD_REGISTER_OPERATIONS
1586
1587 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1588 will either zero-extend or sign-extend. The value of this macro should
1589 be the code that says which one of the two operations is implicitly
1590 done, NIL if none. */
1591 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1592
1593 /* Nonzero if access to memory by bytes is slow and undesirable. */
1594 #define SLOW_BYTE_ACCESS 1
1595
1596 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1597 is done just by pretending it is already truncated. */
1598 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1599
1600 /* We assume that the store-condition-codes instructions store 0 for false
1601 and some other value for true. This is the value stored for true. */
1602
1603 #define STORE_FLAG_VALUE 1
1604
1605 /* When a prototype says `char' or `short', really pass an `int'. */
1606 #define PROMOTE_PROTOTYPES 1
1607 #define PROMOTE_FUNCTION_RETURN 1
1608
1609 /* Specify the machine mode that pointers have.
1610 After generation of rtl, the compiler makes no further distinction
1611 between pointers and any other objects of this machine mode. */
1612 #define Pmode word_mode
1613
1614 /* Add any extra modes needed to represent the condition code.
1615
1616 HPPA floating comparisons produce condition codes. */
1617 #define EXTRA_CC_MODES CC(CCFPmode, "CCFP")
1618
1619 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1620 return the mode to be used for the comparison. For floating-point, CCFPmode
1621 should be used. CC_NOOVmode should be used when the first operand is a
1622 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1623 needed. */
1624 #define SELECT_CC_MODE(OP,X,Y) \
1625 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1626
1627 /* A function address in a call instruction
1628 is a byte address (for indexing purposes)
1629 so give the MEM rtx a byte's mode. */
1630 #define FUNCTION_MODE SImode
1631
1632 /* Define this if addresses of constant functions
1633 shouldn't be put through pseudo regs where they can be cse'd.
1634 Desirable on machines where ordinary constants are expensive
1635 but a CALL with constant address is cheap. */
1636 #define NO_FUNCTION_CSE
1637
1638 /* Define this to be nonzero if shift instructions ignore all but the low-order
1639 few bits. */
1640 #define SHIFT_COUNT_TRUNCATED 1
1641
1642 /* Compute the cost of computing a constant rtl expression RTX
1643 whose rtx-code is CODE. The body of this macro is a portion
1644 of a switch statement. If the code is computed here,
1645 return it with a return statement. Otherwise, break from the switch. */
1646
1647 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
1648 case CONST_INT: \
1649 if (INTVAL (RTX) == 0) return 0; \
1650 if (INT_14_BITS (RTX)) return 1; \
1651 case HIGH: \
1652 return 2; \
1653 case CONST: \
1654 case LABEL_REF: \
1655 case SYMBOL_REF: \
1656 return 4; \
1657 case CONST_DOUBLE: \
1658 if ((RTX == CONST0_RTX (DFmode) || RTX == CONST0_RTX (SFmode)) \
1659 && OUTER_CODE != SET) \
1660 return 0; \
1661 else \
1662 return 8;
1663
1664 #define ADDRESS_COST(RTX) \
1665 (GET_CODE (RTX) == REG ? 1 : hppa_address_cost (RTX))
1666
1667 /* Compute extra cost of moving data between one register class
1668 and another.
1669
1670 Make moves from SAR so expensive they should never happen. We used to
1671 have 0xffff here, but that generates overflow in rare cases.
1672
1673 Copies involving a FP register and a non-FP register are relatively
1674 expensive because they must go through memory.
1675
1676 Other copies are reasonably cheap. */
1677 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1678 (CLASS1 == SHIFT_REGS ? 0x100 \
1679 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1680 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1681 : 2)
1682
1683
1684 /* Provide the costs of a rtl expression. This is in the body of a
1685 switch on CODE. The purpose for the cost of MULT is to encourage
1686 `synth_mult' to find a synthetic multiply when reasonable. */
1687
1688 #define RTX_COSTS(X,CODE,OUTER_CODE) \
1689 case MULT: \
1690 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1691 return COSTS_N_INSNS (3); \
1692 return (TARGET_PA_11 && ! TARGET_DISABLE_FPREGS && ! TARGET_SOFT_FLOAT) \
1693 ? COSTS_N_INSNS (8) : COSTS_N_INSNS (20); \
1694 case DIV: \
1695 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1696 return COSTS_N_INSNS (14); \
1697 case UDIV: \
1698 case MOD: \
1699 case UMOD: \
1700 return COSTS_N_INSNS (60); \
1701 case PLUS: /* this includes shNadd insns */ \
1702 case MINUS: \
1703 if (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1704 return COSTS_N_INSNS (3); \
1705 return COSTS_N_INSNS (1); \
1706 case ASHIFT: \
1707 case ASHIFTRT: \
1708 case LSHIFTRT: \
1709 return COSTS_N_INSNS (1);
1710
1711 /* Adjust the cost of branches. */
1712 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1713
1714 /* Handling the special cases is going to get too complicated for a macro,
1715 just call `pa_adjust_insn_length' to do the real work. */
1716 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1717 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1718
1719 /* Millicode insns are actually function calls with some special
1720 constraints on arguments and register usage.
1721
1722 Millicode calls always expect their arguments in the integer argument
1723 registers, and always return their result in %r29 (ret1). They
1724 are expected to clobber their arguments, %r1, %r29, and the return
1725 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1726
1727 This macro tells reorg that the references to arguments and
1728 millicode calls do not appear to happen until after the millicode call.
1729 This allows reorg to put insns which set the argument registers into the
1730 delay slot of the millicode call -- thus they act more like traditional
1731 CALL_INSNs.
1732
1733 Note we can not consider side effects of the insn to be delayed because
1734 the branch and link insn will clobber the return pointer. If we happened
1735 to use the return pointer in the delay slot of the call, then we lose.
1736
1737 get_attr_type will try to recognize the given insn, so make sure to
1738 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1739 in particular. */
1740 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1741
1742 \f
1743 /* Control the assembler format that we output. */
1744
1745 /* Output to assembler file text saying following lines
1746 may contain character constants, extra white space, comments, etc. */
1747
1748 #define ASM_APP_ON ""
1749
1750 /* Output to assembler file text saying following lines
1751 no longer contain unusual constructs. */
1752
1753 #define ASM_APP_OFF ""
1754
1755 /* Output deferred plabels at the end of the file. */
1756
1757 #define ASM_FILE_END(FILE) output_deferred_plabels (FILE)
1758
1759 /* This is how to output the definition of a user-level label named NAME,
1760 such as the label on a static function or variable NAME. */
1761
1762 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1763 do { assemble_name (FILE, NAME); \
1764 fputc ('\n', FILE); } while (0)
1765
1766 /* This is how to output a reference to a user-level label named NAME.
1767 `assemble_name' uses this. */
1768
1769 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1770 fprintf ((FILE), "%s", (NAME) + (FUNCTION_NAME_P (NAME) ? 1 : 0))
1771
1772 /* This is how to output an internal numbered label where
1773 PREFIX is the class of label and NUM is the number within the class. */
1774
1775 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1776 {fprintf (FILE, "%c$%s%04d\n", (PREFIX)[0], (PREFIX) + 1, NUM);}
1777
1778 /* This is how to store into the string LABEL
1779 the symbol_ref name of an internal numbered label where
1780 PREFIX is the class of label and NUM is the number within the class.
1781 This is suitable for output with `assemble_name'. */
1782
1783 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1784 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1785
1786 #define ASM_GLOBALIZE_LABEL(FILE, NAME) \
1787 do { \
1788 /* We only handle DATA objects here, functions are globalized in \
1789 ASM_DECLARE_FUNCTION_NAME. */ \
1790 if (! FUNCTION_NAME_P (NAME)) \
1791 { \
1792 fputs ("\t.EXPORT ", FILE); \
1793 assemble_name (FILE, NAME); \
1794 fputs (",DATA\n", FILE); \
1795 } \
1796 } while (0)
1797
1798 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1799 output_ascii ((FILE), (P), (SIZE))
1800
1801 /* This is how to output an element of a case-vector that is absolute.
1802 Note that this method makes filling these branch delay slots
1803 impossible. */
1804
1805 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1806 if (TARGET_BIG_SWITCH) \
1807 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldil LR'L$%04d,%%r1\n\tbe RR'L$%04d(%%sr4,%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE, VALUE); \
1808 else \
1809 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1810
1811 /* Jump tables are executable code and live in the TEXT section on the PA. */
1812 #define JUMP_TABLES_IN_TEXT_SECTION 1
1813
1814 /* This is how to output an element of a case-vector that is relative.
1815 This must be defined correctly as it is used when generating PIC code.
1816
1817 I believe it safe to use the same definition as ASM_OUTPUT_ADDR_VEC_ELT
1818 on the PA since ASM_OUTPUT_ADDR_VEC_ELT uses pc-relative jump instructions
1819 rather than a table of absolute addresses. */
1820
1821 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1822 if (TARGET_BIG_SWITCH) \
1823 fprintf (FILE, "\tstw %%r1,-16(%%r30)\n\tldw T'L$%04d(%%r19),%%r1\n\tbv %%r0(%%r1)\n\tldw -16(%%r30),%%r1\n", VALUE); \
1824 else \
1825 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1826
1827 /* This is how to output an assembler line
1828 that says to advance the location counter
1829 to a multiple of 2**LOG bytes. */
1830
1831 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1832 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
1833
1834 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1835 fprintf (FILE, "\t.blockz %d\n", (SIZE))
1836
1837 /* This says how to output an assembler line to define a global common symbol
1838 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1839
1840 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGNED) \
1841 { bss_section (); \
1842 assemble_name ((FILE), (NAME)); \
1843 fputs ("\t.comm ", (FILE)); \
1844 fprintf ((FILE), "%d\n", MAX ((SIZE), ((ALIGNED) / BITS_PER_UNIT)));}
1845
1846 /* This says how to output an assembler line to define a local common symbol
1847 with size SIZE (in bytes) and alignment ALIGN (in bits). */
1848
1849 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGNED) \
1850 { bss_section (); \
1851 fprintf ((FILE), "\t.align %d\n", ((ALIGNED) / BITS_PER_UNIT)); \
1852 assemble_name ((FILE), (NAME)); \
1853 fprintf ((FILE), "\n\t.block %d\n", (SIZE));}
1854
1855 /* Store in OUTPUT a string (made with alloca) containing
1856 an assembler-name for a local static variable named NAME.
1857 LABELNO is an integer which is different for each call. */
1858
1859 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1860 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 12), \
1861 sprintf ((OUTPUT), "%s___%d", (NAME), (LABELNO)))
1862
1863 /* All HP assemblers use "!" to separate logical lines. */
1864 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
1865
1866 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
1867 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
1868
1869 /* Print operand X (an rtx) in assembler syntax to file FILE.
1870 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1871 For `%' followed by punctuation, CODE is the punctuation and X is null.
1872
1873 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
1874 and an immediate zero should be represented as `r0'.
1875
1876 Several % codes are defined:
1877 O an operation
1878 C compare conditions
1879 N extract conditions
1880 M modifier to handle preincrement addressing for memory refs.
1881 F modifier to handle preincrement addressing for fp memory refs */
1882
1883 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1884
1885 \f
1886 /* Print a memory address as an operand to reference that memory location. */
1887
1888 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1889 { register rtx addr = ADDR; \
1890 register rtx base; \
1891 int offset; \
1892 switch (GET_CODE (addr)) \
1893 { \
1894 case REG: \
1895 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
1896 break; \
1897 case PLUS: \
1898 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
1899 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
1900 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
1901 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
1902 else \
1903 abort (); \
1904 fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]); \
1905 break; \
1906 case LO_SUM: \
1907 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
1908 fputs ("R'", FILE); \
1909 else if (flag_pic == 0) \
1910 fputs ("RR'", FILE); \
1911 else \
1912 fputs ("RT'", FILE); \
1913 output_global_address (FILE, XEXP (addr, 1), 0); \
1914 fputs ("(", FILE); \
1915 output_operand (XEXP (addr, 0), 0); \
1916 fputs (")", FILE); \
1917 break; \
1918 case CONST_INT: \
1919 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr)); \
1920 fprintf (FILE, "(%%r0)"); \
1921 break; \
1922 default: \
1923 output_addr_const (FILE, addr); \
1924 }}
1925
1926 \f
1927 /* Find the return address associated with the frame given by
1928 FRAMEADDR. */
1929 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
1930 (return_addr_rtx (COUNT, FRAMEADDR))
1931
1932 /* Used to mask out junk bits from the return address, such as
1933 processor state, interrupt status, condition codes and the like. */
1934 #define MASK_RETURN_ADDR \
1935 /* The privilege level is in the two low order bits, mask em out \
1936 of the return address. */ \
1937 (GEN_INT (-4))
1938
1939 /* The number of Pmode words for the setjmp buffer. */
1940 #define JMP_BUF_SIZE 50
1941
1942 /* Only direct calls to static functions are allowed to be sibling (tail)
1943 call optimized.
1944
1945 This restriction is necessary because some linker generated stubs will
1946 store return pointers into rp' in some cases which might clobber a
1947 live value already in rp'.
1948
1949 In a sibcall the current function and the target function share stack
1950 space. Thus if the path to the current function and the path to the
1951 target function save a value in rp', they save the value into the
1952 same stack slot, which has undesirable consequences.
1953
1954 Because of the deferred binding nature of shared libraries any function
1955 with external scope could be in a different load module and thus require
1956 rp' to be saved when calling that function. So sibcall optimizations
1957 can only be safe for static function.
1958
1959 Note that GCC never needs return value relocations, so we don't have to
1960 worry about static calls with return value relocations (which require
1961 saving rp').
1962
1963 It is safe to perform a sibcall optimization when the target function
1964 will never return. */
1965 #define FUNCTION_OK_FOR_SIBCALL(DECL) \
1966 (DECL \
1967 && ! TARGET_PORTABLE_RUNTIME \
1968 && ! TARGET_64BIT \
1969 && ! TREE_PUBLIC (DECL))
1970
1971 #define PREDICATE_CODES \
1972 {"reg_or_0_operand", {SUBREG, REG, CONST_INT}}, \
1973 {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT, \
1974 CONST_DOUBLE, CONST, HIGH, CONSTANT_P_RTX}}, \
1975 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
1976 {"symbolic_memory_operand", {SUBREG, MEM}}, \
1977 {"reg_before_reload_operand", {REG, MEM}}, \
1978 {"reg_or_nonsymb_mem_operand", {SUBREG, REG, MEM}}, \
1979 {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT, \
1980 CONST_DOUBLE}}, \
1981 {"move_operand", {SUBREG, REG, CONSTANT_P_RTX, CONST_INT, MEM}}, \
1982 {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}}, \
1983 {"pic_label_operand", {LABEL_REF, CONST}}, \
1984 {"fp_reg_operand", {REG}}, \
1985 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
1986 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
1987 {"pre_cint_operand", {CONST_INT}}, \
1988 {"post_cint_operand", {CONST_INT}}, \
1989 {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}}, \
1990 {"ireg_or_int5_operand", {CONST_INT, REG}}, \
1991 {"int5_operand", {CONST_INT}}, \
1992 {"uint5_operand", {CONST_INT}}, \
1993 {"int11_operand", {CONST_INT}}, \
1994 {"uint32_operand", {CONST_INT, \
1995 HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}}, \
1996 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \
1997 {"and_operand", {SUBREG, REG, CONST_INT}}, \
1998 {"ior_operand", {CONST_INT}}, \
1999 {"lhs_lshift_cint_operand", {CONST_INT}}, \
2000 {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}}, \
2001 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \
2002 {"pc_or_label_operand", {PC, LABEL_REF}}, \
2003 {"plus_xor_ior_operator", {PLUS, XOR, IOR}}, \
2004 {"shadd_operand", {CONST_INT}}, \
2005 {"basereg_operand", {REG}}, \
2006 {"div_operand", {REG, CONST_INT}}, \
2007 {"ireg_operand", {REG}}, \
2008 {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU, \
2009 GT, GTU, GE}}, \
2010 {"movb_comparison_operator", {EQ, NE, LT, GE}},