]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/rs6000/rs6000.h
102fe1c422ff9f3e3ab843776c724e2c923c1aaf
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2019 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
28
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32
33 /* 128-bit floating point precision values. */
34 #ifndef RS6000_MODES_H
35 #include "config/rs6000/rs6000-modes.h"
36 #endif
37
38 /* Definitions for the object file format. These are set at
39 compile-time. */
40
41 #define OBJECT_XCOFF 1
42 #define OBJECT_ELF 2
43 #define OBJECT_MACHO 4
44
45 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
46 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
47 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
48
49 #ifndef TARGET_AIX
50 #define TARGET_AIX 0
51 #endif
52
53 #ifndef TARGET_AIX_OS
54 #define TARGET_AIX_OS 0
55 #endif
56
57 /* Control whether function entry points use a "dot" symbol when
58 ABI_AIX. */
59 #define DOT_SYMBOLS 1
60
61 /* Default string to use for cpu if not specified. */
62 #ifndef TARGET_CPU_DEFAULT
63 #define TARGET_CPU_DEFAULT ((char *)0)
64 #endif
65
66 /* If configured for PPC405, support PPC405CR Erratum77. */
67 #ifdef CONFIG_PPC405CR
68 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
69 #else
70 #define PPC405_ERRATUM77 0
71 #endif
72
73 #if CHECKING_P
74 #define ASM_OPT_ANY ""
75 #else
76 #define ASM_OPT_ANY " -many"
77 #endif
78
79 /* Common ASM definitions used by ASM_SPEC among the various targets for
80 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
81 provide the default assembler options if the user uses -mcpu=native, so if
82 you make changes here, make them also there. PR63177: Do not pass -mpower8
83 to the assembler if -mpower9-vector was also used. */
84 #define ASM_CPU_SPEC \
85 "%{mcpu=native: %(asm_cpu_native); \
86 mcpu=power9: -mpower9; \
87 mcpu=power8|mcpu=powerpc64le: %{mpower9-vector: -mpower9;: -mpower8}; \
88 mcpu=power7: -mpower7; \
89 mcpu=power6x: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
90 mcpu=power6: -mpower6 %{!mvsx:%{!maltivec:-maltivec}}; \
91 mcpu=power5+: -mpower5; \
92 mcpu=power5: -mpower5; \
93 mcpu=power4: -mpower4; \
94 mcpu=power3: -mppc64; \
95 mcpu=powerpc: -mppc; \
96 mcpu=powerpc64: -mppc64; \
97 mcpu=a2: -ma2; \
98 mcpu=cell: -mcell; \
99 mcpu=rs64: -mppc64; \
100 mcpu=401: -mppc; \
101 mcpu=403: -m403; \
102 mcpu=405: -m405; \
103 mcpu=405fp: -m405; \
104 mcpu=440: -m440; \
105 mcpu=440fp: -m440; \
106 mcpu=464: -m440; \
107 mcpu=464fp: -m440; \
108 mcpu=476: -m476; \
109 mcpu=476fp: -m476; \
110 mcpu=505: -mppc; \
111 mcpu=601: -m601; \
112 mcpu=602: -mppc; \
113 mcpu=603: -mppc; \
114 mcpu=603e: -mppc; \
115 mcpu=ec603e: -mppc; \
116 mcpu=604: -mppc; \
117 mcpu=604e: -mppc; \
118 mcpu=620: -mppc64; \
119 mcpu=630: -mppc64; \
120 mcpu=740: -mppc; \
121 mcpu=750: -mppc; \
122 mcpu=G3: -mppc; \
123 mcpu=7400: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
124 mcpu=7450: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
125 mcpu=G4: -mppc %{!mvsx:%{!maltivec:-maltivec}}; \
126 mcpu=801: -mppc; \
127 mcpu=821: -mppc; \
128 mcpu=823: -mppc; \
129 mcpu=860: -mppc; \
130 mcpu=970: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
131 mcpu=G5: -mpower4 %{!mvsx:%{!maltivec:-maltivec}}; \
132 mcpu=8540: -me500; \
133 mcpu=8548: -me500; \
134 mcpu=e300c2: -me300; \
135 mcpu=e300c3: -me300; \
136 mcpu=e500mc: -me500mc; \
137 mcpu=e500mc64: -me500mc64; \
138 mcpu=e5500: -me5500; \
139 mcpu=e6500: -me6500; \
140 mcpu=titan: -mtitan; \
141 mcpu=future: -mfuture; \
142 !mcpu*: %{mpower9-vector: -mpower9; \
143 mpower8-vector|mcrypto|mdirect-move|mhtm: -mpower8; \
144 mvsx: -mpower7; \
145 mpowerpc64: -mppc64;: %(asm_default)}; \
146 :%eMissing -mcpu option in ASM_CPU_SPEC?\n} \
147 %{mvsx: -mvsx -maltivec; maltivec: -maltivec}" \
148 ASM_OPT_ANY
149
150 #define CPP_DEFAULT_SPEC ""
151
152 #define ASM_DEFAULT_SPEC ""
153
154 /* This macro defines names of additional specifications to put in the specs
155 that can be used in various specifications like CC1_SPEC. Its definition
156 is an initializer with a subgrouping for each command option.
157
158 Each subgrouping contains a string constant, that defines the
159 specification name, and a string constant that used by the GCC driver
160 program.
161
162 Do not define this macro if it does not need to do anything. */
163
164 #define SUBTARGET_EXTRA_SPECS
165
166 #define EXTRA_SPECS \
167 { "cpp_default", CPP_DEFAULT_SPEC }, \
168 { "asm_cpu", ASM_CPU_SPEC }, \
169 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
170 { "asm_default", ASM_DEFAULT_SPEC }, \
171 { "cc1_cpu", CC1_CPU_SPEC }, \
172 SUBTARGET_EXTRA_SPECS
173
174 /* -mcpu=native handling only makes sense with compiler running on
175 an PowerPC chip. If changing this condition, also change
176 the condition in driver-rs6000.c. */
177 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
178 /* In driver-rs6000.c. */
179 extern const char *host_detect_local_cpu (int argc, const char **argv);
180 #define EXTRA_SPEC_FUNCTIONS \
181 { "local_cpu_detect", host_detect_local_cpu },
182 #define HAVE_LOCAL_CPU_DETECT
183 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
184
185 #else
186 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
187 #endif
188
189 #ifndef CC1_CPU_SPEC
190 #ifdef HAVE_LOCAL_CPU_DETECT
191 #define CC1_CPU_SPEC \
192 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
193 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
194 #else
195 #define CC1_CPU_SPEC ""
196 #endif
197 #endif
198
199 /* Architecture type. */
200
201 /* Define TARGET_MFCRF if the target assembler does not support the
202 optional field operand for mfcr. */
203
204 #ifndef HAVE_AS_MFCRF
205 #undef TARGET_MFCRF
206 #define TARGET_MFCRF 0
207 #endif
208
209 /* Define TARGET_TLS_MARKERS if the target assembler does not support
210 arg markers for __tls_get_addr calls. */
211 #ifndef HAVE_AS_TLS_MARKERS
212 #undef TARGET_TLS_MARKERS
213 #define TARGET_TLS_MARKERS 0
214 #else
215 #define TARGET_TLS_MARKERS tls_markers
216 #endif
217
218 #ifndef TARGET_SECURE_PLT
219 #define TARGET_SECURE_PLT 0
220 #endif
221
222 #ifndef TARGET_CMODEL
223 #define TARGET_CMODEL CMODEL_SMALL
224 #endif
225
226 #define TARGET_32BIT (! TARGET_64BIT)
227
228 #ifndef HAVE_AS_TLS
229 #define HAVE_AS_TLS 0
230 #endif
231
232 #ifndef HAVE_AS_PLTSEQ
233 #define HAVE_AS_PLTSEQ 0
234 #endif
235
236 #ifndef TARGET_PLTSEQ
237 #define TARGET_PLTSEQ 0
238 #endif
239
240 #ifndef TARGET_LINK_STACK
241 #define TARGET_LINK_STACK 0
242 #endif
243
244 #ifndef SET_TARGET_LINK_STACK
245 #define SET_TARGET_LINK_STACK(X) do { } while (0)
246 #endif
247
248 #ifndef TARGET_FLOAT128_ENABLE_TYPE
249 #define TARGET_FLOAT128_ENABLE_TYPE 0
250 #endif
251
252 /* Return 1 for a symbol ref for a thread-local storage symbol. */
253 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
254 (SYMBOL_REF_P (RTX) && SYMBOL_REF_TLS_MODEL (RTX) != 0)
255
256 #ifdef IN_LIBGCC2
257 /* For libgcc2 we make sure this is a compile time constant */
258 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
259 #undef TARGET_POWERPC64
260 #define TARGET_POWERPC64 1
261 #else
262 #undef TARGET_POWERPC64
263 #define TARGET_POWERPC64 0
264 #endif
265 #else
266 /* The option machinery will define this. */
267 #endif
268
269 #define TARGET_DEFAULT (MASK_MULTIPLE)
270
271 /* Define generic processor types based upon current deployment. */
272 #define PROCESSOR_COMMON PROCESSOR_PPC601
273 #define PROCESSOR_POWERPC PROCESSOR_PPC604
274 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
275
276 /* Define the default processor. This is overridden by other tm.h files. */
277 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
278 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
279
280 /* Specify the dialect of assembler to use. Only new mnemonics are supported
281 starting with GCC 4.8, i.e. just one dialect, but for backwards
282 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
283 defined. */
284 #define ASSEMBLER_DIALECT 1
285
286 /* Debug support */
287 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
288 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
289 #define MASK_DEBUG_REG 0x04 /* debug register handling */
290 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
291 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
292 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
293 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
294 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
295 | MASK_DEBUG_ARG \
296 | MASK_DEBUG_REG \
297 | MASK_DEBUG_ADDR \
298 | MASK_DEBUG_COST \
299 | MASK_DEBUG_TARGET \
300 | MASK_DEBUG_BUILTIN)
301
302 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
303 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
304 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
305 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
306 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
307 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
308 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
309
310 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
311 long double format that uses a pair of doubles, or IEEE 128-bit floating
312 point. KFmode was added as a way to represent IEEE 128-bit floating point,
313 even if the default for long double is the IBM long double format.
314 Similarly IFmode is the IBM long double format even if the default is IEEE
315 128-bit. Don't allow IFmode if -msoft-float. */
316 #define FLOAT128_IEEE_P(MODE) \
317 ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
318 && ((MODE) == TFmode || (MODE) == TCmode)) \
319 || ((MODE) == KFmode) || ((MODE) == KCmode))
320
321 #define FLOAT128_IBM_P(MODE) \
322 ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
323 && ((MODE) == TFmode || (MODE) == TCmode)) \
324 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
325
326 /* Helper macros to say whether a 128-bit floating point type can go in a
327 single vector register, or whether it needs paired scalar values. */
328 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
329
330 #define FLOAT128_2REG_P(MODE) \
331 (FLOAT128_IBM_P (MODE) \
332 || ((MODE) == TDmode) \
333 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
334
335 /* Return true for floating point that does not use a vector register. */
336 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
337 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
338
339 /* Describe the vector unit used for arithmetic operations. */
340 extern enum rs6000_vector rs6000_vector_unit[];
341
342 #define VECTOR_UNIT_NONE_P(MODE) \
343 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
344
345 #define VECTOR_UNIT_VSX_P(MODE) \
346 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
347
348 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
349 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
350
351 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
352 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
353
354 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
355 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
356 (int)VECTOR_VSX, \
357 (int)VECTOR_P8_VECTOR))
358
359 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
360 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
361 compatible, so allow it as well, rather than changing all of the uses of the
362 macro. */
363 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
364 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
365 (int)VECTOR_ALTIVEC, \
366 (int)VECTOR_P8_VECTOR))
367
368 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
369 same unit as the vector unit we are using, but we may want to migrate to
370 using VSX style loads even for types handled by altivec. */
371 extern enum rs6000_vector rs6000_vector_mem[];
372
373 #define VECTOR_MEM_NONE_P(MODE) \
374 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
375
376 #define VECTOR_MEM_VSX_P(MODE) \
377 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
378
379 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
380 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
381
382 #define VECTOR_MEM_ALTIVEC_P(MODE) \
383 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
384
385 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
386 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
387 (int)VECTOR_VSX, \
388 (int)VECTOR_P8_VECTOR))
389
390 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
391 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
392 (int)VECTOR_ALTIVEC, \
393 (int)VECTOR_P8_VECTOR))
394
395 /* Return the alignment of a given vector type, which is set based on the
396 vector unit use. VSX for instance can load 32 or 64 bit aligned words
397 without problems, while Altivec requires 128-bit aligned vectors. */
398 extern int rs6000_vector_align[];
399
400 #define VECTOR_ALIGN(MODE) \
401 ((rs6000_vector_align[(MODE)] != 0) \
402 ? rs6000_vector_align[(MODE)] \
403 : (int)GET_MODE_BITSIZE ((MODE)))
404
405 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
406 with scalar instructions. */
407 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
408
409 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
410 with the ISA 3.0 MFVSRLD instructions. */
411 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
412
413 /* Alignment options for fields in structures for sub-targets following
414 AIX-like ABI.
415 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
416 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
417
418 Override the macro definitions when compiling libobjc to avoid undefined
419 reference to rs6000_alignment_flags due to library's use of GCC alignment
420 macros which use the macros below. */
421
422 #ifndef IN_TARGET_LIBS
423 #define MASK_ALIGN_POWER 0x00000000
424 #define MASK_ALIGN_NATURAL 0x00000001
425 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
426 #else
427 #define TARGET_ALIGN_NATURAL 0
428 #endif
429
430 /* We use values 126..128 to pick the appropriate long double type (IFmode,
431 KFmode, TFmode). */
432 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
433 #define TARGET_IEEEQUAD rs6000_ieeequad
434 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
435 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
436
437 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
438 Enable 32-bit fcfid's on any of the switches for newer ISA machines. */
439 #define TARGET_FCFID (TARGET_POWERPC64 \
440 || TARGET_PPC_GPOPT /* 970/power4 */ \
441 || TARGET_POPCNTB /* ISA 2.02 */ \
442 || TARGET_CMPB /* ISA 2.05 */ \
443 || TARGET_POPCNTD) /* ISA 2.06 */
444
445 #define TARGET_FCTIDZ TARGET_FCFID
446 #define TARGET_STFIWX TARGET_PPC_GFXOPT
447 #define TARGET_LFIWAX TARGET_CMPB
448 #define TARGET_LFIWZX TARGET_POPCNTD
449 #define TARGET_FCFIDS TARGET_POPCNTD
450 #define TARGET_FCFIDU TARGET_POPCNTD
451 #define TARGET_FCFIDUS TARGET_POPCNTD
452 #define TARGET_FCTIDUZ TARGET_POPCNTD
453 #define TARGET_FCTIWUZ TARGET_POPCNTD
454 #define TARGET_CTZ TARGET_MODULO
455 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
456 #define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
457
458 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
459 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
460 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
461 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
462 && TARGET_POWERPC64)
463 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
464 && TARGET_POWERPC64)
465
466 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
467 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
468 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
469
470 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
471 loads are slow. */
472 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
473
474 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
475 in power7, so conditionalize them on p8 features. TImode syncs need quad
476 memory support. */
477 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
478 || TARGET_QUAD_MEMORY_ATOMIC \
479 || TARGET_DIRECT_MOVE)
480
481 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
482
483 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
484 to allocate the SDmode stack slot to get the value into the proper location
485 in the register. */
486 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
487
488 /* ISA 3.0 has new min/max functions that don't need fast math that are being
489 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
490 answers if the arguments are not in the normal range. */
491 #define TARGET_MINMAX (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
492 && (TARGET_P9_MINMAX || !flag_trapping_math))
493
494 /* In switching from using target_flags to using rs6000_isa_flags, the options
495 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
496 OPTION_MASK_<xxx> back into MASK_<xxx>. */
497 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
498 #define MASK_CMPB OPTION_MASK_CMPB
499 #define MASK_CRYPTO OPTION_MASK_CRYPTO
500 #define MASK_DFP OPTION_MASK_DFP
501 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
502 #define MASK_DLMZB OPTION_MASK_DLMZB
503 #define MASK_EABI OPTION_MASK_EABI
504 #define MASK_FLOAT128_KEYWORD OPTION_MASK_FLOAT128_KEYWORD
505 #define MASK_FLOAT128_HW OPTION_MASK_FLOAT128_HW
506 #define MASK_FPRND OPTION_MASK_FPRND
507 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
508 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
509 #define MASK_HTM OPTION_MASK_HTM
510 #define MASK_ISEL OPTION_MASK_ISEL
511 #define MASK_MFCRF OPTION_MASK_MFCRF
512 #define MASK_MULHW OPTION_MASK_MULHW
513 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
514 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
515 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
516 #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
517 #define MASK_P9_MISC OPTION_MASK_P9_MISC
518 #define MASK_POPCNTB OPTION_MASK_POPCNTB
519 #define MASK_POPCNTD OPTION_MASK_POPCNTD
520 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
521 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
522 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
523 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
524 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
525 #define MASK_UPDATE OPTION_MASK_UPDATE
526 #define MASK_VSX OPTION_MASK_VSX
527 #define MASK_FUTURE OPTION_MASK_FUTURE
528
529 #ifndef IN_LIBGCC2
530 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
531 #endif
532
533 #ifdef TARGET_64BIT
534 #define MASK_64BIT OPTION_MASK_64BIT
535 #endif
536
537 #ifdef TARGET_LITTLE_ENDIAN
538 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
539 #endif
540
541 #ifdef TARGET_REGNAMES
542 #define MASK_REGNAMES OPTION_MASK_REGNAMES
543 #endif
544
545 #ifdef TARGET_PROTOTYPE
546 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
547 #endif
548
549 #ifdef TARGET_MODULO
550 #define RS6000_BTM_MODULO OPTION_MASK_MODULO
551 #endif
552
553
554 /* For power systems, we want to enable Altivec and VSX builtins even if the
555 user did not use -maltivec or -mvsx to allow the builtins to be used inside
556 of #pragma GCC target or the target attribute to change the code level for a
557 given system. */
558
559 #define TARGET_EXTRA_BUILTINS (TARGET_POWERPC64 \
560 || TARGET_PPC_GPOPT /* 970/power4 */ \
561 || TARGET_POPCNTB /* ISA 2.02 */ \
562 || TARGET_CMPB /* ISA 2.05 */ \
563 || TARGET_POPCNTD /* ISA 2.06 */ \
564 || TARGET_ALTIVEC \
565 || TARGET_VSX \
566 || TARGET_HARD_FLOAT)
567
568 /* E500 cores only support plain "sync", not lwsync. */
569 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
570 || rs6000_cpu == PROCESSOR_PPC8548)
571
572
573 /* Which machine supports the various reciprocal estimate instructions. */
574 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
575
576 #define TARGET_FRE (TARGET_HARD_FLOAT \
577 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
578
579 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
580 && TARGET_PPC_GFXOPT)
581
582 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT \
583 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
584
585 /* Macro to say whether we can do optimizations where we need to do parts of
586 the calculation in 64-bit GPRs and then is transfered to the vector
587 registers. */
588 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
589 && TARGET_P8_VECTOR \
590 && TARGET_POWERPC64)
591
592 /* Whether the various reciprocal divide/square root estimate instructions
593 exist, and whether we should automatically generate code for the instruction
594 by default. */
595 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
596 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
597 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
598 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
599
600 extern unsigned char rs6000_recip_bits[];
601
602 #define RS6000_RECIP_HAVE_RE_P(MODE) \
603 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
604
605 #define RS6000_RECIP_AUTO_RE_P(MODE) \
606 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
607
608 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
609 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
610
611 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
612 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
613
614 /* The default CPU for TARGET_OPTION_OVERRIDE. */
615 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
616
617 /* Target pragma. */
618 #define REGISTER_TARGET_PRAGMAS() do { \
619 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
620 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
621 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
622 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
623 } while (0)
624
625 /* Target #defines. */
626 #define TARGET_CPU_CPP_BUILTINS() \
627 rs6000_cpu_cpp_builtins (pfile)
628
629 /* Target CPU versions for D. */
630 #define TARGET_D_CPU_VERSIONS rs6000_d_target_versions
631
632 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
633 we're compiling for. Some configurations may need to override it. */
634 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
635 do \
636 { \
637 if (BYTES_BIG_ENDIAN) \
638 { \
639 builtin_define ("__BIG_ENDIAN__"); \
640 builtin_define ("_BIG_ENDIAN"); \
641 builtin_assert ("machine=bigendian"); \
642 } \
643 else \
644 { \
645 builtin_define ("__LITTLE_ENDIAN__"); \
646 builtin_define ("_LITTLE_ENDIAN"); \
647 builtin_assert ("machine=littleendian"); \
648 } \
649 } \
650 while (0)
651 \f
652 /* Target machine storage layout. */
653
654 /* Define this macro if it is advisable to hold scalars in registers
655 in a wider mode than that declared by the program. In such cases,
656 the value is constrained to be within the bounds of the declared
657 type, but kept valid in the wider mode. The signedness of the
658 extension may differ from that of the type. */
659
660 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
661 if (GET_MODE_CLASS (MODE) == MODE_INT \
662 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
663 (MODE) = TARGET_32BIT ? SImode : DImode;
664
665 /* Define this if most significant bit is lowest numbered
666 in instructions that operate on numbered bit-fields. */
667 /* That is true on RS/6000. */
668 #define BITS_BIG_ENDIAN 1
669
670 /* Define this if most significant byte of a word is the lowest numbered. */
671 /* That is true on RS/6000. */
672 #define BYTES_BIG_ENDIAN 1
673
674 /* Define this if most significant word of a multiword number is lowest
675 numbered.
676
677 For RS/6000 we can decide arbitrarily since there are no machine
678 instructions for them. Might as well be consistent with bits and bytes. */
679 #define WORDS_BIG_ENDIAN 1
680
681 /* This says that for the IBM long double the larger magnitude double
682 comes first. It's really a two element double array, and arrays
683 don't index differently between little- and big-endian. */
684 #define LONG_DOUBLE_LARGE_FIRST 1
685
686 #define MAX_BITS_PER_WORD 64
687
688 /* Width of a word, in units (bytes). */
689 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
690 #ifdef IN_LIBGCC2
691 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
692 #else
693 #define MIN_UNITS_PER_WORD 4
694 #endif
695 #define UNITS_PER_FP_WORD 8
696 #define UNITS_PER_ALTIVEC_WORD 16
697 #define UNITS_PER_VSX_WORD 16
698
699 /* Type used for ptrdiff_t, as a string used in a declaration. */
700 #define PTRDIFF_TYPE "int"
701
702 /* Type used for size_t, as a string used in a declaration. */
703 #define SIZE_TYPE "long unsigned int"
704
705 /* Type used for wchar_t, as a string used in a declaration. */
706 #define WCHAR_TYPE "short unsigned int"
707
708 /* Width of wchar_t in bits. */
709 #define WCHAR_TYPE_SIZE 16
710
711 /* A C expression for the size in bits of the type `short' on the
712 target machine. If you don't define this, the default is half a
713 word. (If this would be less than one storage unit, it is
714 rounded up to one unit.) */
715 #define SHORT_TYPE_SIZE 16
716
717 /* A C expression for the size in bits of the type `int' on the
718 target machine. If you don't define this, the default is one
719 word. */
720 #define INT_TYPE_SIZE 32
721
722 /* A C expression for the size in bits of the type `long' on the
723 target machine. If you don't define this, the default is one
724 word. */
725 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
726
727 /* A C expression for the size in bits of the type `long long' on the
728 target machine. If you don't define this, the default is two
729 words. */
730 #define LONG_LONG_TYPE_SIZE 64
731
732 /* A C expression for the size in bits of the type `float' on the
733 target machine. If you don't define this, the default is one
734 word. */
735 #define FLOAT_TYPE_SIZE 32
736
737 /* A C expression for the size in bits of the type `double' on the
738 target machine. If you don't define this, the default is two
739 words. */
740 #define DOUBLE_TYPE_SIZE 64
741
742 /* A C expression for the size in bits of the type `long double' on the target
743 machine. If you don't define this, the default is two words. */
744 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
745
746 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
747 #define WIDEST_HARDWARE_FP_SIZE 64
748
749 /* Width in bits of a pointer.
750 See also the macro `Pmode' defined below. */
751 extern unsigned rs6000_pointer_size;
752 #define POINTER_SIZE rs6000_pointer_size
753
754 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
755 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
756
757 /* Boundary (in *bits*) on which stack pointer should be aligned. */
758 #define STACK_BOUNDARY \
759 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
760 ? 64 : 128)
761
762 /* Allocation boundary (in *bits*) for the code of a function. */
763 #define FUNCTION_BOUNDARY 32
764
765 /* No data type wants to be aligned rounder than this. */
766 #define BIGGEST_ALIGNMENT 128
767
768 /* Alignment of field after `int : 0' in a structure. */
769 #define EMPTY_FIELD_BOUNDARY 32
770
771 /* Every structure's size must be a multiple of this. */
772 #define STRUCTURE_SIZE_BOUNDARY 8
773
774 /* A bit-field declared as `int' forces `int' alignment for the struct. */
775 #define PCC_BITFIELD_TYPE_MATTERS 1
776
777 enum data_align { align_abi, align_opt, align_both };
778
779 /* A C expression to compute the alignment for a variables in the
780 local store. TYPE is the data type, and ALIGN is the alignment
781 that the object would ordinarily have. */
782 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
783 rs6000_data_alignment (TYPE, ALIGN, align_both)
784
785 /* Make arrays of chars word-aligned for the same reasons. */
786 #define DATA_ALIGNMENT(TYPE, ALIGN) \
787 rs6000_data_alignment (TYPE, ALIGN, align_opt)
788
789 /* Align vectors to 128 bits. */
790 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
791 rs6000_data_alignment (TYPE, ALIGN, align_abi)
792
793 /* Nonzero if move instructions will actually fail to work
794 when given unaligned data. */
795 #define STRICT_ALIGNMENT 0
796 \f
797 /* Standard register usage. */
798
799 /* Number of actual hardware registers.
800 The hardware registers are assigned numbers for the compiler
801 from 0 to just below FIRST_PSEUDO_REGISTER.
802 All registers that the compiler knows about must be given numbers,
803 even those that are not normally considered general registers.
804
805 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
806 a count register, a link register, and 8 condition register fields,
807 which we view here as separate registers. AltiVec adds 32 vector
808 registers and a VRsave register.
809
810 In addition, the difference between the frame and argument pointers is
811 a function of the number of registers saved, so we need to have a
812 register for AP that will later be eliminated in favor of SP or FP.
813 This is a normal register, but it is fixed.
814
815 We also create a pseudo register for float/int conversions, that will
816 really represent the memory location used. It is represented here as
817 a register, in order to work around problems in allocating stack storage
818 in inline functions.
819
820 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
821 pointer, which is eventually eliminated in favor of SP or FP. */
822
823 #define FIRST_PSEUDO_REGISTER 111
824
825 /* Use standard DWARF numbering for DWARF debugging information. */
826 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
827
828 /* Use gcc hard register numbering for eh_frame. */
829 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
830
831 /* Map register numbers held in the call frame info that gcc has
832 collected using DWARF_FRAME_REGNUM to those that should be output in
833 .debug_frame and .eh_frame. */
834 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
835 rs6000_dbx_register_number ((REGNO), (FOR_EH) ? 2 : 1)
836
837 /* 1 for registers that have pervasive standard uses
838 and are not available for the register allocator.
839
840 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
841 as a local register; for all other OS's r2 is the TOC pointer.
842
843 On System V implementations, r13 is fixed and not available for use. */
844
845 #define FIXED_REGISTERS \
846 {/* GPRs */ \
847 0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
848 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
849 /* FPRs */ \
850 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
851 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
852 /* VRs */ \
853 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
854 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
855 /* lr ctr ca ap */ \
856 0, 0, 1, 1, \
857 /* cr0..cr7 */ \
858 0, 0, 0, 0, 0, 0, 0, 0, \
859 /* vrsave vscr sfp */ \
860 1, 1, 1 \
861 }
862
863 /* 1 for registers not available across function calls.
864 These must include the FIXED_REGISTERS and also any
865 registers that can be used without being saved.
866 The latter must include the registers where values are returned
867 and the register where structure-value addresses are passed.
868 Aside from that, you can include as many other registers as you like. */
869
870 #define CALL_USED_REGISTERS \
871 {/* GPRs */ \
872 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
873 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
874 /* FPRs */ \
875 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
876 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
877 /* VRs */ \
878 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
879 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
880 /* lr ctr ca ap */ \
881 1, 1, 1, 1, \
882 /* cr0..cr7 */ \
883 1, 1, 0, 0, 0, 1, 1, 1, \
884 /* vrsave vscr sfp */ \
885 1, 1, 1 \
886 }
887
888 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
889 the entire set of `FIXED_REGISTERS' be included.
890 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
891 This macro is optional. If not specified, it defaults to the value
892 of `CALL_USED_REGISTERS'. */
893
894 #define CALL_REALLY_USED_REGISTERS \
895 {/* GPRs */ \
896 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
897 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
898 /* FPRs */ \
899 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
900 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
901 /* VRs */ \
902 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
903 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
904 /* lr ctr ca ap */ \
905 1, 1, 1, 1, \
906 /* cr0..cr7 */ \
907 1, 1, 0, 0, 0, 1, 1, 1, \
908 /* vrsave vscr sfp */ \
909 0, 0, 0 \
910 }
911
912 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
913
914 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
915 #define FIRST_SAVED_FP_REGNO (14+32)
916 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
917
918 /* List the order in which to allocate registers. Each register must be
919 listed once, even those in FIXED_REGISTERS.
920
921 We allocate in the following order:
922 fp0 (not saved or used for anything)
923 fp13 - fp2 (not saved; incoming fp arg registers)
924 fp1 (not saved; return value)
925 fp31 - fp14 (saved; order given to save least number)
926 cr7, cr5 (not saved or special)
927 cr6 (not saved, but used for vector operations)
928 cr1 (not saved, but used for FP operations)
929 cr0 (not saved, but used for arithmetic operations)
930 cr4, cr3, cr2 (saved)
931 r9 (not saved; best for TImode)
932 r10, r8-r4 (not saved; highest first for less conflict with params)
933 r3 (not saved; return value register)
934 r11 (not saved; later alloc to help shrink-wrap)
935 r0 (not saved; cannot be base reg)
936 r31 - r13 (saved; order given to save least number)
937 r12 (not saved; if used for DImode or DFmode would use r13)
938 ctr (not saved; when we have the choice ctr is better)
939 lr (saved)
940 r1, r2, ap, ca (fixed)
941 v0 - v1 (not saved or used for anything)
942 v13 - v3 (not saved; incoming vector arg registers)
943 v2 (not saved; incoming vector arg reg; return value)
944 v19 - v14 (not saved or used for anything)
945 v31 - v20 (saved; order given to save least number)
946 vrsave, vscr (fixed)
947 sfp (fixed)
948 */
949
950 #if FIXED_R2 == 1
951 #define MAYBE_R2_AVAILABLE
952 #define MAYBE_R2_FIXED 2,
953 #else
954 #define MAYBE_R2_AVAILABLE 2,
955 #define MAYBE_R2_FIXED
956 #endif
957
958 #if FIXED_R13 == 1
959 #define EARLY_R12 12,
960 #define LATE_R12
961 #else
962 #define EARLY_R12
963 #define LATE_R12 12,
964 #endif
965
966 #define REG_ALLOC_ORDER \
967 {32, \
968 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
969 /* not use fr14 which is a saved register. */ \
970 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
971 33, \
972 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
973 50, 49, 48, 47, 46, \
974 100, 107, 105, 106, 101, 104, 103, 102, \
975 MAYBE_R2_AVAILABLE \
976 9, 10, 8, 7, 6, 5, 4, \
977 3, EARLY_R12 11, 0, \
978 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
979 18, 17, 16, 15, 14, 13, LATE_R12 \
980 97, 96, \
981 1, MAYBE_R2_FIXED 99, 98, \
982 /* AltiVec registers. */ \
983 64, 65, \
984 77, 76, 75, 74, 73, 72, 71, 70, 69, 68, 67, \
985 66, \
986 83, 82, 81, 80, 79, 78, \
987 95, 94, 93, 92, 91, 90, 89, 88, 87, 86, 85, 84, \
988 108, 109, \
989 110 \
990 }
991
992 /* True if register is floating-point. */
993 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
994
995 /* True if register is a condition register. */
996 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
997
998 /* True if register is a condition register, but not cr0. */
999 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1000
1001 /* True if register is an integer register. */
1002 #define INT_REGNO_P(N) \
1003 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1004
1005 /* True if register is the CA register. */
1006 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1007
1008 /* True if register is an AltiVec register. */
1009 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1010
1011 /* True if register is a VSX register. */
1012 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1013
1014 /* Alternate name for any vector register supporting floating point, no matter
1015 which instruction set(s) are available. */
1016 #define VFLOAT_REGNO_P(N) \
1017 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1018
1019 /* Alternate name for any vector register supporting integer, no matter which
1020 instruction set(s) are available. */
1021 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1022
1023 /* Alternate name for any vector register supporting logical operations, no
1024 matter which instruction set(s) are available. Allow GPRs as well as the
1025 vector registers. */
1026 #define VLOGICAL_REGNO_P(N) \
1027 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1028 || (TARGET_VSX && FP_REGNO_P (N))) \
1029
1030 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1031 enough space to account for vectors in FP regs. However, TFmode/TDmode
1032 should not use VSX instructions to do a caller save. */
1033 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1034 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1035 ? (MODE) \
1036 : TARGET_VSX \
1037 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1038 && FP_REGNO_P (REGNO) \
1039 ? V2DFmode \
1040 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
1041 ? DFmode \
1042 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
1043 ? DImode \
1044 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1045
1046 #define VSX_VECTOR_MODE(MODE) \
1047 ((MODE) == V4SFmode \
1048 || (MODE) == V2DFmode) \
1049
1050 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1051 really a vector, but we want to treat it as a vector for moves, and
1052 such. */
1053
1054 #define ALTIVEC_VECTOR_MODE(MODE) \
1055 ((MODE) == V16QImode \
1056 || (MODE) == V8HImode \
1057 || (MODE) == V4SFmode \
1058 || (MODE) == V4SImode \
1059 || FLOAT128_VECTOR_P (MODE))
1060
1061 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1062 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1063 || (MODE) == V2DImode || (MODE) == V1TImode)
1064
1065 /* Post-reload, we can't use any new AltiVec registers, as we already
1066 emitted the vrsave mask. */
1067
1068 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1069 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1070
1071 /* Specify the cost of a branch insn; roughly the number of extra insns that
1072 should be added to avoid a branch.
1073
1074 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1075 unscheduled conditional branch. */
1076
1077 #define BRANCH_COST(speed_p, predictable_p) 3
1078
1079 /* Override BRANCH_COST heuristic which empirically produces worse
1080 performance for removing short circuiting from the logical ops. */
1081
1082 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1083
1084 /* Specify the registers used for certain standard purposes.
1085 The values of these macros are register numbers. */
1086
1087 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1088 /* #define PC_REGNUM */
1089
1090 /* Register to use for pushing function arguments. */
1091 #define STACK_POINTER_REGNUM 1
1092
1093 /* Base register for access to local variables of the function. */
1094 #define HARD_FRAME_POINTER_REGNUM 31
1095
1096 /* Base register for access to local variables of the function. */
1097 #define FRAME_POINTER_REGNUM 110
1098
1099 /* Base register for access to arguments of the function. */
1100 #define ARG_POINTER_REGNUM 99
1101
1102 /* Place to put static chain when calling a function that requires it. */
1103 #define STATIC_CHAIN_REGNUM 11
1104
1105 /* Base register for access to thread local storage variables. */
1106 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1107
1108 \f
1109 /* Define the classes of registers for register constraints in the
1110 machine description. Also define ranges of constants.
1111
1112 One of the classes must always be named ALL_REGS and include all hard regs.
1113 If there is more than one class, another class must be named NO_REGS
1114 and contain no registers.
1115
1116 The name GENERAL_REGS must be the name of a class (or an alias for
1117 another name such as ALL_REGS). This is the class of registers
1118 that is allowed by "g" or "r" in a register constraint.
1119 Also, registers outside this class are allocated only when
1120 instructions express preferences for them.
1121
1122 The classes must be numbered in nondecreasing order; that is,
1123 a larger-numbered class must never be contained completely
1124 in a smaller-numbered class.
1125
1126 For any two classes, it is very desirable that there be another
1127 class that represents their union. */
1128
1129 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1130 condition registers, plus three special registers, CTR, and the link
1131 register. AltiVec adds a vector register class. VSX registers overlap the
1132 FPR registers and the Altivec registers.
1133
1134 However, r0 is special in that it cannot be used as a base register.
1135 So make a class for registers valid as base registers.
1136
1137 Also, cr0 is the only condition code register that can be used in
1138 arithmetic insns, so make a separate class for it. */
1139
1140 enum reg_class
1141 {
1142 NO_REGS,
1143 BASE_REGS,
1144 GENERAL_REGS,
1145 FLOAT_REGS,
1146 ALTIVEC_REGS,
1147 VSX_REGS,
1148 VRSAVE_REGS,
1149 VSCR_REGS,
1150 GEN_OR_FLOAT_REGS,
1151 GEN_OR_VSX_REGS,
1152 LINK_REGS,
1153 CTR_REGS,
1154 LINK_OR_CTR_REGS,
1155 SPECIAL_REGS,
1156 SPEC_OR_GEN_REGS,
1157 CR0_REGS,
1158 CR_REGS,
1159 NON_FLOAT_REGS,
1160 CA_REGS,
1161 ALL_REGS,
1162 LIM_REG_CLASSES
1163 };
1164
1165 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1166
1167 /* Give names of register classes as strings for dump file. */
1168
1169 #define REG_CLASS_NAMES \
1170 { \
1171 "NO_REGS", \
1172 "BASE_REGS", \
1173 "GENERAL_REGS", \
1174 "FLOAT_REGS", \
1175 "ALTIVEC_REGS", \
1176 "VSX_REGS", \
1177 "VRSAVE_REGS", \
1178 "VSCR_REGS", \
1179 "GEN_OR_FLOAT_REGS", \
1180 "GEN_OR_VSX_REGS", \
1181 "LINK_REGS", \
1182 "CTR_REGS", \
1183 "LINK_OR_CTR_REGS", \
1184 "SPECIAL_REGS", \
1185 "SPEC_OR_GEN_REGS", \
1186 "CR0_REGS", \
1187 "CR_REGS", \
1188 "NON_FLOAT_REGS", \
1189 "CA_REGS", \
1190 "ALL_REGS" \
1191 }
1192
1193 /* Define which registers fit in which classes.
1194 This is an initializer for a vector of HARD_REG_SET
1195 of length N_REG_CLASSES. */
1196
1197 #define REG_CLASS_CONTENTS \
1198 { \
1199 /* NO_REGS. */ \
1200 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1201 /* BASE_REGS. */ \
1202 { 0xfffffffe, 0x00000000, 0x00000000, 0x00004008 }, \
1203 /* GENERAL_REGS. */ \
1204 { 0xffffffff, 0x00000000, 0x00000000, 0x00004008 }, \
1205 /* FLOAT_REGS. */ \
1206 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
1207 /* ALTIVEC_REGS. */ \
1208 { 0x00000000, 0x00000000, 0xffffffff, 0x00000000 }, \
1209 /* VSX_REGS. */ \
1210 { 0x00000000, 0xffffffff, 0xffffffff, 0x00000000 }, \
1211 /* VRSAVE_REGS. */ \
1212 { 0x00000000, 0x00000000, 0x00000000, 0x00001000 }, \
1213 /* VSCR_REGS. */ \
1214 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
1215 /* GEN_OR_FLOAT_REGS. */ \
1216 { 0xffffffff, 0xffffffff, 0x00000000, 0x00004008 }, \
1217 /* GEN_OR_VSX_REGS. */ \
1218 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00004008 }, \
1219 /* LINK_REGS. */ \
1220 { 0x00000000, 0x00000000, 0x00000000, 0x00000001 }, \
1221 /* CTR_REGS. */ \
1222 { 0x00000000, 0x00000000, 0x00000000, 0x00000002 }, \
1223 /* LINK_OR_CTR_REGS. */ \
1224 { 0x00000000, 0x00000000, 0x00000000, 0x00000003 }, \
1225 /* SPECIAL_REGS. */ \
1226 { 0x00000000, 0x00000000, 0x00000000, 0x00001003 }, \
1227 /* SPEC_OR_GEN_REGS. */ \
1228 { 0xffffffff, 0x00000000, 0x00000000, 0x0000500b }, \
1229 /* CR0_REGS. */ \
1230 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, \
1231 /* CR_REGS. */ \
1232 { 0x00000000, 0x00000000, 0x00000000, 0x00000ff0 }, \
1233 /* NON_FLOAT_REGS. */ \
1234 { 0xffffffff, 0x00000000, 0x00000000, 0x00004ffb }, \
1235 /* CA_REGS. */ \
1236 { 0x00000000, 0x00000000, 0x00000000, 0x00000004 }, \
1237 /* ALL_REGS. */ \
1238 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00007fff } \
1239 }
1240
1241 /* The same information, inverted:
1242 Return the class number of the smallest class containing
1243 reg number REGNO. This could be a conditional expression
1244 or could index an array. */
1245
1246 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1247
1248 #define REGNO_REG_CLASS(REGNO) \
1249 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1250 rs6000_regno_regclass[(REGNO)])
1251
1252 /* Register classes for various constraints that are based on the target
1253 switches. */
1254 enum r6000_reg_class_enum {
1255 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1256 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1257 RS6000_CONSTRAINT_v, /* Altivec registers */
1258 RS6000_CONSTRAINT_wa, /* Any VSX register */
1259 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1260 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1261 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
1262 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1263 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1264 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1265 RS6000_CONSTRAINT_MAX
1266 };
1267
1268 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1269
1270 /* The class value for index registers, and the one for base regs. */
1271 #define INDEX_REG_CLASS GENERAL_REGS
1272 #define BASE_REG_CLASS BASE_REGS
1273
1274 /* Return whether a given register class can hold VSX objects. */
1275 #define VSX_REG_CLASS_P(CLASS) \
1276 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1277
1278 /* Return whether a given register class targets general purpose registers. */
1279 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1280
1281 /* Given an rtx X being reloaded into a reg required to be
1282 in class CLASS, return the class of reg to actually use.
1283 In general this is just CLASS; but on some machines
1284 in some cases it is preferable to use a more restrictive class.
1285
1286 On the RS/6000, we have to return NO_REGS when we want to reload a
1287 floating-point CONST_DOUBLE to force it to be copied to memory.
1288
1289 We also don't want to reload integer values into floating-point
1290 registers if we can at all help it. In fact, this can
1291 cause reload to die, if it tries to generate a reload of CTR
1292 into a FP register and discovers it doesn't have the memory location
1293 required.
1294
1295 ??? Would it be a good idea to have reload do the converse, that is
1296 try to reload floating modes into FP registers if possible?
1297 */
1298
1299 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1300 rs6000_preferred_reload_class_ptr (X, CLASS)
1301
1302 /* Return the register class of a scratch register needed to copy IN into
1303 or out of a register in CLASS in MODE. If it can be done directly,
1304 NO_REGS is returned. */
1305
1306 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1307 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1308
1309 /* Return the maximum number of consecutive registers
1310 needed to represent mode MODE in a register of class CLASS.
1311
1312 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1313 a single reg is enough for two words, unless we have VSX, where the FP
1314 registers can hold 128 bits. */
1315 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1316
1317 /* Stack layout; function entry, exit and calling. */
1318
1319 /* Define this if pushing a word on the stack
1320 makes the stack pointer a smaller address. */
1321 #define STACK_GROWS_DOWNWARD 1
1322
1323 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1324 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1325
1326 /* Define this to nonzero if the nominal address of the stack frame
1327 is at the high-address end of the local variables;
1328 that is, each additional local variable allocated
1329 goes at a more negative offset in the frame.
1330
1331 On the RS/6000, we grow upwards, from the area after the outgoing
1332 arguments. */
1333 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1334 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1335
1336 /* Size of the fixed area on the stack */
1337 #define RS6000_SAVE_AREA \
1338 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1339 << (TARGET_64BIT ? 1 : 0))
1340
1341 /* Stack offset for toc save slot. */
1342 #define RS6000_TOC_SAVE_SLOT \
1343 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1344
1345 /* Align an address */
1346 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1347
1348 /* Offset within stack frame to start allocating local variables at.
1349 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1350 first local allocated. Otherwise, it is the offset to the BEGINNING
1351 of the first local allocated.
1352
1353 On the RS/6000, the frame pointer is the same as the stack pointer,
1354 except for dynamic allocations. So we start after the fixed area and
1355 outgoing parameter area.
1356
1357 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1358 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1359 sizes of the fixed area and the parameter area must be a multiple of
1360 STACK_BOUNDARY. */
1361
1362 #define RS6000_STARTING_FRAME_OFFSET \
1363 (cfun->calls_alloca \
1364 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1365 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1366 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1367 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1368 + RS6000_SAVE_AREA))
1369
1370 /* Offset from the stack pointer register to an item dynamically
1371 allocated on the stack, e.g., by `alloca'.
1372
1373 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1374 length of the outgoing arguments. The default is correct for most
1375 machines. See `function.c' for details.
1376
1377 This value must be a multiple of STACK_BOUNDARY (hard coded in
1378 `emit-rtl.c'). */
1379 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1380 RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \
1381 + STACK_POINTER_OFFSET, \
1382 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1383
1384 /* If we generate an insn to push BYTES bytes,
1385 this says how many the stack pointer really advances by.
1386 On RS/6000, don't define this because there are no push insns. */
1387 /* #define PUSH_ROUNDING(BYTES) */
1388
1389 /* Offset of first parameter from the argument pointer register value.
1390 On the RS/6000, we define the argument pointer to the start of the fixed
1391 area. */
1392 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1393
1394 /* Offset from the argument pointer register value to the top of
1395 stack. This is different from FIRST_PARM_OFFSET because of the
1396 register save area. */
1397 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1398
1399 /* Define this if stack space is still allocated for a parameter passed
1400 in a register. The value is the number of bytes allocated to this
1401 area. */
1402 #define REG_PARM_STACK_SPACE(FNDECL) \
1403 rs6000_reg_parm_stack_space ((FNDECL), false)
1404
1405 /* Define this macro if space guaranteed when compiling a function body
1406 is different to space required when making a call, a situation that
1407 can arise with K&R style function definitions. */
1408 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1409 rs6000_reg_parm_stack_space ((FNDECL), true)
1410
1411 /* Define this if the above stack space is to be considered part of the
1412 space allocated by the caller. */
1413 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1414
1415 /* This is the difference between the logical top of stack and the actual sp.
1416
1417 For the RS/6000, sp points past the fixed area. */
1418 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1419
1420 /* Define this if the maximum size of all the outgoing args is to be
1421 accumulated and pushed during the prologue. The amount can be
1422 found in the variable crtl->outgoing_args_size. */
1423 #define ACCUMULATE_OUTGOING_ARGS 1
1424
1425 /* Define how to find the value returned by a library function
1426 assuming the value has mode MODE. */
1427
1428 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1429
1430 /* DRAFT_V4_STRUCT_RET defaults off. */
1431 #define DRAFT_V4_STRUCT_RET 0
1432
1433 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1434 #define DEFAULT_PCC_STRUCT_RETURN 0
1435
1436 /* Mode of stack savearea.
1437 FUNCTION is VOIDmode because calling convention maintains SP.
1438 BLOCK needs Pmode for SP.
1439 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1440 #define STACK_SAVEAREA_MODE(LEVEL) \
1441 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1442 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1443
1444 /* Minimum and maximum general purpose registers used to hold arguments. */
1445 #define GP_ARG_MIN_REG 3
1446 #define GP_ARG_MAX_REG 10
1447 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1448
1449 /* Minimum and maximum floating point registers used to hold arguments. */
1450 #define FP_ARG_MIN_REG 33
1451 #define FP_ARG_AIX_MAX_REG 45
1452 #define FP_ARG_V4_MAX_REG 40
1453 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1454 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1455 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1456
1457 /* Minimum and maximum AltiVec registers used to hold arguments. */
1458 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1459 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1460 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1461
1462 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1463 #define AGGR_ARG_NUM_REG 8
1464
1465 /* Return registers */
1466 #define GP_ARG_RETURN GP_ARG_MIN_REG
1467 #define FP_ARG_RETURN FP_ARG_MIN_REG
1468 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1469 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1470 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1471 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1472 ? (ALTIVEC_ARG_RETURN \
1473 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1474 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1475
1476 /* Flags for the call/call_value rtl operations set up by function_arg */
1477 #define CALL_NORMAL 0x00000000 /* no special processing */
1478 /* Bits in 0x00000001 are unused. */
1479 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1480 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1481 #define CALL_LONG 0x00000008 /* always call indirect */
1482 #define CALL_LIBCALL 0x00000010 /* libcall */
1483
1484 /* Identify PLT sequence for rs6000_pltseq_template. */
1485 enum rs6000_pltseq_enum {
1486 RS6000_PLTSEQ_TOCSAVE,
1487 RS6000_PLTSEQ_PLT16_HA,
1488 RS6000_PLTSEQ_PLT16_LO,
1489 RS6000_PLTSEQ_MTCTR,
1490 RS6000_PLTSEQ_PLT_PCREL34
1491 };
1492
1493 #define IS_V4_FP_ARGS(OP) \
1494 ((INTVAL (OP) & (CALL_V4_CLEAR_FP_ARGS | CALL_V4_SET_FP_ARGS)) != 0)
1495
1496 /* Whether OP is an UNSPEC used in !TARGET_TLS_MARKER calls. */
1497 #define IS_NOMARK_TLSGETADDR(OP) \
1498 (!TARGET_TLS_MARKERS \
1499 && GET_CODE (OP) == UNSPEC \
1500 && (XINT (OP, 1) == UNSPEC_TLSGD \
1501 || XINT (OP, 1) == UNSPEC_TLSLD))
1502
1503 /* We don't have prologue and epilogue functions to save/restore
1504 everything for most ABIs. */
1505 #define WORLD_SAVE_P(INFO) 0
1506
1507 /* 1 if N is a possible register number for a function value
1508 as seen by the caller.
1509
1510 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1511 #define FUNCTION_VALUE_REGNO_P(N) \
1512 ((N) == GP_ARG_RETURN \
1513 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1514 && TARGET_HARD_FLOAT) \
1515 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1516 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1517
1518 /* 1 if N is a possible register number for function argument passing.
1519 On RS/6000, these are r3-r10 and fp1-fp13.
1520 On AltiVec, v2 - v13 are used for passing vectors. */
1521 #define FUNCTION_ARG_REGNO_P(N) \
1522 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1523 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1524 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1525 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1526 && TARGET_HARD_FLOAT))
1527 \f
1528 /* Define a data type for recording info about an argument list
1529 during the scan of that argument list. This data type should
1530 hold all necessary information about the function itself
1531 and about the args processed so far, enough to enable macros
1532 such as FUNCTION_ARG to determine where the next arg should go.
1533
1534 On the RS/6000, this is a structure. The first element is the number of
1535 total argument words, the second is used to store the next
1536 floating-point register number, and the third says how many more args we
1537 have prototype types for.
1538
1539 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1540 the next available GP register, `fregno' is the next available FP
1541 register, and `words' is the number of words used on the stack.
1542
1543 The varargs/stdarg support requires that this structure's size
1544 be a multiple of sizeof(int). */
1545
1546 typedef struct rs6000_args
1547 {
1548 int words; /* # words used for passing GP registers */
1549 int fregno; /* next available FP register */
1550 int vregno; /* next available AltiVec register */
1551 int nargs_prototype; /* # args left in the current prototype */
1552 int prototype; /* Whether a prototype was defined */
1553 int stdarg; /* Whether function is a stdarg function. */
1554 int call_cookie; /* Do special things for this call */
1555 int sysv_gregno; /* next available GP register */
1556 int intoffset; /* running offset in struct (darwin64) */
1557 int use_stack; /* any part of struct on stack (darwin64) */
1558 int floats_in_gpr; /* count of SFmode floats taking up
1559 GPR space (darwin64) */
1560 int named; /* false for varargs params */
1561 int escapes; /* if function visible outside tu */
1562 int libcall; /* If this is a compiler generated call. */
1563 } CUMULATIVE_ARGS;
1564
1565 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1566 for a call to a function whose data type is FNTYPE.
1567 For a library call, FNTYPE is 0. */
1568
1569 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1570 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1571 N_NAMED_ARGS, FNDECL, VOIDmode)
1572
1573 /* Similar, but when scanning the definition of a procedure. We always
1574 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1575
1576 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1577 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1578 1000, current_function_decl, VOIDmode)
1579
1580 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1581
1582 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1583 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1584 0, NULL_TREE, MODE)
1585
1586 #define PAD_VARARGS_DOWN \
1587 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1588
1589 /* Output assembler code to FILE to increment profiler label # LABELNO
1590 for profiling a function entry. */
1591
1592 #define FUNCTION_PROFILER(FILE, LABELNO) \
1593 output_function_profiler ((FILE), (LABELNO));
1594
1595 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1596 the stack pointer does not matter. No definition is equivalent to
1597 always zero.
1598
1599 On the RS/6000, this is nonzero because we can restore the stack from
1600 its backpointer, which we maintain. */
1601 #define EXIT_IGNORE_STACK 1
1602
1603 /* Define this macro as a C expression that is nonzero for registers
1604 that are used by the epilogue or the return' pattern. The stack
1605 and frame pointer registers are already be assumed to be used as
1606 needed. */
1607
1608 #define EPILOGUE_USES(REGNO) \
1609 ((reload_completed && (REGNO) == LR_REGNO) \
1610 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1611 || (crtl->calls_eh_return \
1612 && TARGET_AIX \
1613 && (REGNO) == 2))
1614
1615 \f
1616 /* Length in units of the trampoline for entering a nested function. */
1617
1618 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1619 \f
1620 /* Definitions for __builtin_return_address and __builtin_frame_address.
1621 __builtin_return_address (0) should give link register (LR_REGNO), enable
1622 this. */
1623 /* This should be uncommented, so that the link register is used, but
1624 currently this would result in unmatched insns and spilling fixed
1625 registers so we'll leave it for another day. When these problems are
1626 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1627 (mrs) */
1628 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1629
1630 /* Number of bytes into the frame return addresses can be found. See
1631 rs6000_stack_info in rs6000.c for more information on how the different
1632 abi's store the return address. */
1633 #define RETURN_ADDRESS_OFFSET \
1634 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1635
1636 /* The current return address is in the link register. The return address
1637 of anything farther back is accessed normally at an offset of 8 from the
1638 frame pointer. */
1639 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1640 (rs6000_return_addr (COUNT, FRAME))
1641
1642 \f
1643 /* Definitions for register eliminations.
1644
1645 We have two registers that can be eliminated on the RS/6000. First, the
1646 frame pointer register can often be eliminated in favor of the stack
1647 pointer register. Secondly, the argument pointer register can always be
1648 eliminated; it is replaced with either the stack or frame pointer.
1649
1650 In addition, we use the elimination mechanism to see if r30 is needed
1651 Initially we assume that it isn't. If it is, we spill it. This is done
1652 by making it an eliminable register. We replace it with itself so that
1653 if it isn't needed, then existing uses won't be modified. */
1654
1655 /* This is an array of structures. Each structure initializes one pair
1656 of eliminable registers. The "from" register number is given first,
1657 followed by "to". Eliminations of the same "from" register are listed
1658 in order of preference. */
1659 #define ELIMINABLE_REGS \
1660 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1661 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1662 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1663 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1664 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1665 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1666
1667 /* Define the offset between two registers, one to be eliminated, and the other
1668 its replacement, at the start of a routine. */
1669 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1670 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1671 \f
1672 /* Addressing modes, and classification of registers for them. */
1673
1674 #define HAVE_PRE_DECREMENT 1
1675 #define HAVE_PRE_INCREMENT 1
1676 #define HAVE_PRE_MODIFY_DISP 1
1677 #define HAVE_PRE_MODIFY_REG 1
1678
1679 /* Macros to check register numbers against specific register classes. */
1680
1681 /* These assume that REGNO is a hard or pseudo reg number.
1682 They give nonzero only if REGNO is a hard reg of the suitable class
1683 or a pseudo reg currently allocated to a suitable hard reg.
1684 Since they use reg_renumber, they are safe only once reg_renumber
1685 has been allocated, which happens in reginfo.c during register
1686 allocation. */
1687
1688 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1689 (HARD_REGISTER_NUM_P (REGNO) \
1690 ? (REGNO) <= 31 \
1691 || (REGNO) == ARG_POINTER_REGNUM \
1692 || (REGNO) == FRAME_POINTER_REGNUM \
1693 : (reg_renumber[REGNO] >= 0 \
1694 && (reg_renumber[REGNO] <= 31 \
1695 || reg_renumber[REGNO] == ARG_POINTER_REGNUM \
1696 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1697
1698 #define REGNO_OK_FOR_BASE_P(REGNO) \
1699 (HARD_REGISTER_NUM_P (REGNO) \
1700 ? ((REGNO) > 0 && (REGNO) <= 31) \
1701 || (REGNO) == ARG_POINTER_REGNUM \
1702 || (REGNO) == FRAME_POINTER_REGNUM \
1703 : (reg_renumber[REGNO] > 0 \
1704 && (reg_renumber[REGNO] <= 31 \
1705 || reg_renumber[REGNO] == ARG_POINTER_REGNUM \
1706 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1707
1708 /* Nonzero if X is a hard reg that can be used as an index
1709 or if it is a pseudo reg in the non-strict case. */
1710 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1711 ((!(STRICT) && !HARD_REGISTER_P (X)) \
1712 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1713
1714 /* Nonzero if X is a hard reg that can be used as a base reg
1715 or if it is a pseudo reg in the non-strict case. */
1716 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1717 ((!(STRICT) && !HARD_REGISTER_P (X)) \
1718 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1719
1720 \f
1721 /* Maximum number of registers that can appear in a valid memory address. */
1722
1723 #define MAX_REGS_PER_ADDRESS 2
1724
1725 /* Recognize any constant value that is a valid address. */
1726
1727 #define CONSTANT_ADDRESS_P(X) \
1728 (GET_CODE (X) == LABEL_REF || SYMBOL_REF_P (X) \
1729 || CONST_INT_P (X) || GET_CODE (X) == CONST \
1730 || GET_CODE (X) == HIGH)
1731
1732 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1733 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1734 && EASY_VECTOR_15((n) >> 1) \
1735 && ((n) & 1) == 0)
1736
1737 #define EASY_VECTOR_MSB(n,mode) \
1738 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
1739 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1740
1741 \f
1742 #define FIND_BASE_TERM rs6000_find_base_term
1743 \f
1744 /* The register number of the register used to address a table of
1745 static data addresses in memory. In some cases this register is
1746 defined by a processor's "application binary interface" (ABI).
1747 When this macro is defined, RTL is generated for this register
1748 once, as with the stack pointer and frame pointer registers. If
1749 this macro is not defined, it is up to the machine-dependent files
1750 to allocate such a register (if necessary). */
1751
1752 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1753 #define PIC_OFFSET_TABLE_REGNUM \
1754 (TARGET_TOC ? TOC_REGISTER \
1755 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1756 : INVALID_REGNUM)
1757
1758 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1759
1760 /* Define this macro if the register defined by
1761 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1762 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1763
1764 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1765
1766 /* A C expression that is nonzero if X is a legitimate immediate
1767 operand on the target machine when generating position independent
1768 code. You can assume that X satisfies `CONSTANT_P', so you need
1769 not check this. You can also assume FLAG_PIC is true, so you need
1770 not check it either. You need not define this macro if all
1771 constants (including `SYMBOL_REF') can be immediate operands when
1772 generating position independent code. */
1773
1774 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1775 \f
1776 /* Specify the machine mode that this machine uses
1777 for the index in the tablejump instruction. */
1778 #define CASE_VECTOR_MODE SImode
1779
1780 /* Define as C expression which evaluates to nonzero if the tablejump
1781 instruction expects the table to contain offsets from the address of the
1782 table.
1783 Do not define this if the table should contain absolute addresses. */
1784 #define CASE_VECTOR_PC_RELATIVE 1
1785
1786 /* Define this as 1 if `char' should by default be signed; else as 0. */
1787 #define DEFAULT_SIGNED_CHAR 0
1788
1789 /* An integer expression for the size in bits of the largest integer machine
1790 mode that should actually be used. */
1791
1792 /* Allow pairs of registers to be used, which is the intent of the default. */
1793 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1794
1795 /* Max number of bytes we can move from memory to memory
1796 in one reasonably fast instruction. */
1797 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1798 #define MAX_MOVE_MAX 8
1799
1800 /* Nonzero if access to memory by bytes is no faster than for words.
1801 Also nonzero if doing byte operations (specifically shifts) in registers
1802 is undesirable. */
1803 #define SLOW_BYTE_ACCESS 1
1804
1805 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1806 will either zero-extend or sign-extend. The value of this macro should
1807 be the code that says which one of the two operations is implicitly
1808 done, UNKNOWN if none. */
1809 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1810
1811 /* Define if loading short immediate values into registers sign extends. */
1812 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1813 \f
1814 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1815 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1816 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1817
1818 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1819 zero. The hardware instructions added in Power9 and the sequences using
1820 popcount return 32 or 64. */
1821 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1822 (TARGET_CTZ || TARGET_POPCNTD \
1823 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
1824 : ((VALUE) = -1, 2))
1825
1826 /* Specify the machine mode that pointers have.
1827 After generation of rtl, the compiler makes no further distinction
1828 between pointers and any other objects of this machine mode. */
1829 extern scalar_int_mode rs6000_pmode;
1830 #define Pmode rs6000_pmode
1831
1832 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1833 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1834
1835 /* Mode of a function address in a call instruction (for indexing purposes).
1836 Doesn't matter on RS/6000. */
1837 #define FUNCTION_MODE SImode
1838
1839 /* Define this if addresses of constant functions
1840 shouldn't be put through pseudo regs where they can be cse'd.
1841 Desirable on machines where ordinary constants are expensive
1842 but a CALL with constant address is cheap. */
1843 #define NO_FUNCTION_CSE 1
1844
1845 /* Define this to be nonzero if shift instructions ignore all but the low-order
1846 few bits.
1847
1848 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1849 have been dropped from the PowerPC architecture. */
1850 #define SHIFT_COUNT_TRUNCATED 0
1851
1852 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1853 should be adjusted to reflect any required changes. This macro is used when
1854 there is some systematic length adjustment required that would be difficult
1855 to express in the length attribute. */
1856
1857 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1858
1859 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1860 COMPARE, return the mode to be used for the comparison. For
1861 floating-point, CCFPmode should be used. CCUNSmode should be used
1862 for unsigned comparisons. CCEQmode should be used when we are
1863 doing an inequality comparison on the result of a
1864 comparison. CCmode should be used in all other cases. */
1865
1866 #define SELECT_CC_MODE(OP,X,Y) \
1867 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1868 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1869 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1870 ? CCEQmode : CCmode))
1871
1872 /* Can the condition code MODE be safely reversed? This is safe in
1873 all cases on this port, because at present it doesn't use the
1874 trapping FP comparisons (fcmpo). */
1875 #define REVERSIBLE_CC_MODE(MODE) 1
1876
1877 /* Given a condition code and a mode, return the inverse condition. */
1878 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1879
1880 \f
1881 /* Target cpu costs. */
1882
1883 struct processor_costs {
1884 const int mulsi; /* cost of SImode multiplication. */
1885 const int mulsi_const; /* cost of SImode multiplication by constant. */
1886 const int mulsi_const9; /* cost of SImode mult by short constant. */
1887 const int muldi; /* cost of DImode multiplication. */
1888 const int divsi; /* cost of SImode division. */
1889 const int divdi; /* cost of DImode division. */
1890 const int fp; /* cost of simple SFmode and DFmode insns. */
1891 const int dmul; /* cost of DFmode multiplication (and fmadd). */
1892 const int sdiv; /* cost of SFmode division (fdivs). */
1893 const int ddiv; /* cost of DFmode division (fdiv). */
1894 const int cache_line_size; /* cache line size in bytes. */
1895 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
1896 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
1897 const int simultaneous_prefetches; /* number of parallel prefetch
1898 operations. */
1899 const int sfdf_convert; /* cost of SF->DF conversion. */
1900 };
1901
1902 extern const struct processor_costs *rs6000_cost;
1903 \f
1904 /* Control the assembler format that we output. */
1905
1906 /* A C string constant describing how to begin a comment in the target
1907 assembler language. The compiler assumes that the comment will end at
1908 the end of the line. */
1909 #define ASM_COMMENT_START " #"
1910
1911 /* Flag to say the TOC is initialized */
1912 extern int toc_initialized;
1913
1914 /* Macro to output a special constant pool entry. Go to WIN if we output
1915 it. Otherwise, it is written the usual way.
1916
1917 On the RS/6000, toc entries are handled this way. */
1918
1919 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1920 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1921 { \
1922 output_toc (FILE, X, LABELNO, MODE); \
1923 goto WIN; \
1924 } \
1925 }
1926
1927 #ifdef HAVE_GAS_WEAK
1928 #define RS6000_WEAK 1
1929 #else
1930 #define RS6000_WEAK 0
1931 #endif
1932
1933 #if RS6000_WEAK
1934 /* Used in lieu of ASM_WEAKEN_LABEL. */
1935 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1936 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1937 #endif
1938
1939 #if HAVE_GAS_WEAKREF
1940 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1941 do \
1942 { \
1943 fputs ("\t.weakref\t", (FILE)); \
1944 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1945 fputs (", ", (FILE)); \
1946 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1947 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1948 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1949 { \
1950 fputs ("\n\t.weakref\t.", (FILE)); \
1951 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1952 fputs (", .", (FILE)); \
1953 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1954 } \
1955 fputc ('\n', (FILE)); \
1956 } while (0)
1957 #endif
1958
1959 /* This implements the `alias' attribute. */
1960 #undef ASM_OUTPUT_DEF_FROM_DECLS
1961 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
1962 do \
1963 { \
1964 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
1965 const char *name = IDENTIFIER_POINTER (TARGET); \
1966 if (TREE_CODE (DECL) == FUNCTION_DECL \
1967 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1968 { \
1969 if (TREE_PUBLIC (DECL)) \
1970 { \
1971 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1972 { \
1973 fputs ("\t.globl\t.", FILE); \
1974 RS6000_OUTPUT_BASENAME (FILE, alias); \
1975 putc ('\n', FILE); \
1976 } \
1977 } \
1978 else if (TARGET_XCOFF) \
1979 { \
1980 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1981 { \
1982 fputs ("\t.lglobl\t.", FILE); \
1983 RS6000_OUTPUT_BASENAME (FILE, alias); \
1984 putc ('\n', FILE); \
1985 fputs ("\t.lglobl\t", FILE); \
1986 RS6000_OUTPUT_BASENAME (FILE, alias); \
1987 putc ('\n', FILE); \
1988 } \
1989 } \
1990 fputs ("\t.set\t.", FILE); \
1991 RS6000_OUTPUT_BASENAME (FILE, alias); \
1992 fputs (",.", FILE); \
1993 RS6000_OUTPUT_BASENAME (FILE, name); \
1994 fputc ('\n', FILE); \
1995 } \
1996 ASM_OUTPUT_DEF (FILE, alias, name); \
1997 } \
1998 while (0)
1999
2000 #define TARGET_ASM_FILE_START rs6000_file_start
2001
2002 /* Output to assembler file text saying following lines
2003 may contain character constants, extra white space, comments, etc. */
2004
2005 #define ASM_APP_ON ""
2006
2007 /* Output to assembler file text saying following lines
2008 no longer contain unusual constructs. */
2009
2010 #define ASM_APP_OFF ""
2011
2012 /* How to refer to registers in assembler output.
2013 This sequence is indexed by compiler's hard-register-number (see above). */
2014
2015 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2016
2017 #define REGISTER_NAMES \
2018 { \
2019 &rs6000_reg_names[ 0][0], /* r0 */ \
2020 &rs6000_reg_names[ 1][0], /* r1 */ \
2021 &rs6000_reg_names[ 2][0], /* r2 */ \
2022 &rs6000_reg_names[ 3][0], /* r3 */ \
2023 &rs6000_reg_names[ 4][0], /* r4 */ \
2024 &rs6000_reg_names[ 5][0], /* r5 */ \
2025 &rs6000_reg_names[ 6][0], /* r6 */ \
2026 &rs6000_reg_names[ 7][0], /* r7 */ \
2027 &rs6000_reg_names[ 8][0], /* r8 */ \
2028 &rs6000_reg_names[ 9][0], /* r9 */ \
2029 &rs6000_reg_names[10][0], /* r10 */ \
2030 &rs6000_reg_names[11][0], /* r11 */ \
2031 &rs6000_reg_names[12][0], /* r12 */ \
2032 &rs6000_reg_names[13][0], /* r13 */ \
2033 &rs6000_reg_names[14][0], /* r14 */ \
2034 &rs6000_reg_names[15][0], /* r15 */ \
2035 &rs6000_reg_names[16][0], /* r16 */ \
2036 &rs6000_reg_names[17][0], /* r17 */ \
2037 &rs6000_reg_names[18][0], /* r18 */ \
2038 &rs6000_reg_names[19][0], /* r19 */ \
2039 &rs6000_reg_names[20][0], /* r20 */ \
2040 &rs6000_reg_names[21][0], /* r21 */ \
2041 &rs6000_reg_names[22][0], /* r22 */ \
2042 &rs6000_reg_names[23][0], /* r23 */ \
2043 &rs6000_reg_names[24][0], /* r24 */ \
2044 &rs6000_reg_names[25][0], /* r25 */ \
2045 &rs6000_reg_names[26][0], /* r26 */ \
2046 &rs6000_reg_names[27][0], /* r27 */ \
2047 &rs6000_reg_names[28][0], /* r28 */ \
2048 &rs6000_reg_names[29][0], /* r29 */ \
2049 &rs6000_reg_names[30][0], /* r30 */ \
2050 &rs6000_reg_names[31][0], /* r31 */ \
2051 \
2052 &rs6000_reg_names[32][0], /* fr0 */ \
2053 &rs6000_reg_names[33][0], /* fr1 */ \
2054 &rs6000_reg_names[34][0], /* fr2 */ \
2055 &rs6000_reg_names[35][0], /* fr3 */ \
2056 &rs6000_reg_names[36][0], /* fr4 */ \
2057 &rs6000_reg_names[37][0], /* fr5 */ \
2058 &rs6000_reg_names[38][0], /* fr6 */ \
2059 &rs6000_reg_names[39][0], /* fr7 */ \
2060 &rs6000_reg_names[40][0], /* fr8 */ \
2061 &rs6000_reg_names[41][0], /* fr9 */ \
2062 &rs6000_reg_names[42][0], /* fr10 */ \
2063 &rs6000_reg_names[43][0], /* fr11 */ \
2064 &rs6000_reg_names[44][0], /* fr12 */ \
2065 &rs6000_reg_names[45][0], /* fr13 */ \
2066 &rs6000_reg_names[46][0], /* fr14 */ \
2067 &rs6000_reg_names[47][0], /* fr15 */ \
2068 &rs6000_reg_names[48][0], /* fr16 */ \
2069 &rs6000_reg_names[49][0], /* fr17 */ \
2070 &rs6000_reg_names[50][0], /* fr18 */ \
2071 &rs6000_reg_names[51][0], /* fr19 */ \
2072 &rs6000_reg_names[52][0], /* fr20 */ \
2073 &rs6000_reg_names[53][0], /* fr21 */ \
2074 &rs6000_reg_names[54][0], /* fr22 */ \
2075 &rs6000_reg_names[55][0], /* fr23 */ \
2076 &rs6000_reg_names[56][0], /* fr24 */ \
2077 &rs6000_reg_names[57][0], /* fr25 */ \
2078 &rs6000_reg_names[58][0], /* fr26 */ \
2079 &rs6000_reg_names[59][0], /* fr27 */ \
2080 &rs6000_reg_names[60][0], /* fr28 */ \
2081 &rs6000_reg_names[61][0], /* fr29 */ \
2082 &rs6000_reg_names[62][0], /* fr30 */ \
2083 &rs6000_reg_names[63][0], /* fr31 */ \
2084 \
2085 &rs6000_reg_names[64][0], /* vr0 */ \
2086 &rs6000_reg_names[65][0], /* vr1 */ \
2087 &rs6000_reg_names[66][0], /* vr2 */ \
2088 &rs6000_reg_names[67][0], /* vr3 */ \
2089 &rs6000_reg_names[68][0], /* vr4 */ \
2090 &rs6000_reg_names[69][0], /* vr5 */ \
2091 &rs6000_reg_names[70][0], /* vr6 */ \
2092 &rs6000_reg_names[71][0], /* vr7 */ \
2093 &rs6000_reg_names[72][0], /* vr8 */ \
2094 &rs6000_reg_names[73][0], /* vr9 */ \
2095 &rs6000_reg_names[74][0], /* vr10 */ \
2096 &rs6000_reg_names[75][0], /* vr11 */ \
2097 &rs6000_reg_names[76][0], /* vr12 */ \
2098 &rs6000_reg_names[77][0], /* vr13 */ \
2099 &rs6000_reg_names[78][0], /* vr14 */ \
2100 &rs6000_reg_names[79][0], /* vr15 */ \
2101 &rs6000_reg_names[80][0], /* vr16 */ \
2102 &rs6000_reg_names[81][0], /* vr17 */ \
2103 &rs6000_reg_names[82][0], /* vr18 */ \
2104 &rs6000_reg_names[83][0], /* vr19 */ \
2105 &rs6000_reg_names[84][0], /* vr20 */ \
2106 &rs6000_reg_names[85][0], /* vr21 */ \
2107 &rs6000_reg_names[86][0], /* vr22 */ \
2108 &rs6000_reg_names[87][0], /* vr23 */ \
2109 &rs6000_reg_names[88][0], /* vr24 */ \
2110 &rs6000_reg_names[89][0], /* vr25 */ \
2111 &rs6000_reg_names[90][0], /* vr26 */ \
2112 &rs6000_reg_names[91][0], /* vr27 */ \
2113 &rs6000_reg_names[92][0], /* vr28 */ \
2114 &rs6000_reg_names[93][0], /* vr29 */ \
2115 &rs6000_reg_names[94][0], /* vr30 */ \
2116 &rs6000_reg_names[95][0], /* vr31 */ \
2117 \
2118 &rs6000_reg_names[96][0], /* lr */ \
2119 &rs6000_reg_names[97][0], /* ctr */ \
2120 &rs6000_reg_names[98][0], /* ca */ \
2121 &rs6000_reg_names[99][0], /* ap */ \
2122 \
2123 &rs6000_reg_names[100][0], /* cr0 */ \
2124 &rs6000_reg_names[101][0], /* cr1 */ \
2125 &rs6000_reg_names[102][0], /* cr2 */ \
2126 &rs6000_reg_names[103][0], /* cr3 */ \
2127 &rs6000_reg_names[104][0], /* cr4 */ \
2128 &rs6000_reg_names[105][0], /* cr5 */ \
2129 &rs6000_reg_names[106][0], /* cr6 */ \
2130 &rs6000_reg_names[107][0], /* cr7 */ \
2131 \
2132 &rs6000_reg_names[108][0], /* vrsave */ \
2133 &rs6000_reg_names[109][0], /* vscr */ \
2134 \
2135 &rs6000_reg_names[110][0] /* sfp */ \
2136 }
2137
2138 /* Table of additional register names to use in user input. */
2139
2140 #define ADDITIONAL_REGISTER_NAMES \
2141 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2142 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2143 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2144 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2145 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2146 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2147 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2148 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2149 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2150 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2151 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2152 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2153 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2154 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2155 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2156 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2157 {"v0", 64}, {"v1", 65}, {"v2", 66}, {"v3", 67}, \
2158 {"v4", 68}, {"v5", 69}, {"v6", 70}, {"v7", 71}, \
2159 {"v8", 72}, {"v9", 73}, {"v10", 74}, {"v11", 75}, \
2160 {"v12", 76}, {"v13", 77}, {"v14", 78}, {"v15", 79}, \
2161 {"v16", 80}, {"v17", 81}, {"v18", 82}, {"v19", 83}, \
2162 {"v20", 84}, {"v21", 85}, {"v22", 86}, {"v23", 87}, \
2163 {"v24", 88}, {"v25", 89}, {"v26", 90}, {"v27", 91}, \
2164 {"v28", 92}, {"v29", 93}, {"v30", 94}, {"v31", 95}, \
2165 {"vrsave", 108}, {"vscr", 109}, \
2166 /* no additional names for: lr, ctr, ap */ \
2167 {"cr0", 100},{"cr1", 101},{"cr2", 102},{"cr3", 103}, \
2168 {"cr4", 104},{"cr5", 105},{"cr6", 106},{"cr7", 107}, \
2169 {"cc", 100},{"sp", 1}, {"toc", 2}, \
2170 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2171 {"xer", 98}, \
2172 /* VSX registers overlaid on top of FR, Altivec registers */ \
2173 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2174 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2175 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2176 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2177 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2178 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2179 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2180 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2181 {"vs32", 64}, {"vs33", 65}, {"vs34", 66}, {"vs35", 67}, \
2182 {"vs36", 68}, {"vs37", 69}, {"vs38", 70}, {"vs39", 71}, \
2183 {"vs40", 72}, {"vs41", 73}, {"vs42", 74}, {"vs43", 75}, \
2184 {"vs44", 76}, {"vs45", 77}, {"vs46", 78}, {"vs47", 79}, \
2185 {"vs48", 80}, {"vs49", 81}, {"vs50", 82}, {"vs51", 83}, \
2186 {"vs52", 84}, {"vs53", 85}, {"vs54", 86}, {"vs55", 87}, \
2187 {"vs56", 88}, {"vs57", 89}, {"vs58", 90}, {"vs59", 91}, \
2188 {"vs60", 92}, {"vs61", 93}, {"vs62", 94}, {"vs63", 95}, \
2189 }
2190
2191 /* This is how to output an element of a case-vector that is relative. */
2192
2193 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2194 do { char buf[100]; \
2195 fputs ("\t.long ", FILE); \
2196 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2197 assemble_name (FILE, buf); \
2198 putc ('-', FILE); \
2199 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2200 assemble_name (FILE, buf); \
2201 putc ('\n', FILE); \
2202 } while (0)
2203
2204 /* This is how to output an assembler line
2205 that says to advance the location counter
2206 to a multiple of 2**LOG bytes. */
2207
2208 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2209 if ((LOG) != 0) \
2210 fprintf (FILE, "\t.align %d\n", (LOG))
2211
2212 /* How to align the given loop. */
2213 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2214
2215 /* Alignment guaranteed by __builtin_malloc. */
2216 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2217 However, specifying the stronger guarantee currently leads to
2218 a regression in SPEC CPU2006 437.leslie3d. The stronger
2219 guarantee should be implemented here once that's fixed. */
2220 #define MALLOC_ABI_ALIGNMENT (64)
2221
2222 /* Pick up the return address upon entry to a procedure. Used for
2223 dwarf2 unwind information. This also enables the table driven
2224 mechanism. */
2225
2226 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2227 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2228
2229 /* Describe how we implement __builtin_eh_return. */
2230 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2231 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2232
2233 /* Print operand X (an rtx) in assembler syntax to file FILE.
2234 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2235 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2236
2237 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2238
2239 /* Define which CODE values are valid. */
2240
2241 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2242
2243 /* Print a memory address as an operand to reference that memory location. */
2244
2245 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2246
2247 /* For switching between functions with different target attributes. */
2248 #define SWITCHABLE_TARGET 1
2249
2250 /* uncomment for disabling the corresponding default options */
2251 /* #define MACHINE_no_sched_interblock */
2252 /* #define MACHINE_no_sched_speculative */
2253 /* #define MACHINE_no_sched_speculative_load */
2254
2255 /* General flags. */
2256 extern int frame_pointer_needed;
2257
2258 /* Classification of the builtin functions as to which switches enable the
2259 builtin, and what attributes it should have. We used to use the target
2260 flags macros, but we've run out of bits, so we now map the options into new
2261 settings used here. */
2262
2263 /* Builtin attributes. */
2264 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2265 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2266 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2267 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2268 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2269 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2270 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2271 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2272
2273 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2274 #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2275 modifies global state. */
2276 #define RS6000_BTC_PURE 0x00000200 /* reads global
2277 state/mem and does
2278 not modify global state. */
2279 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2280 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2281
2282 /* Miscellaneous information. */
2283 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2284 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2285 #define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2286 #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
2287 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2288
2289 /* Convenience macros to document the instruction type. */
2290 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2291 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2292
2293 /* Builtin targets. For now, we reuse the masks for those options that are in
2294 target flags, and pick a random bit for ldbl128, which isn't in
2295 target_flags. */
2296 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2297 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2298 #define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
2299 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2300 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2301 #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
2302 #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
2303 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2304 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2305 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2306 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2307 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2308 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2309 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2310 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2311 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2312 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2313 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2314 #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
2315 #define RS6000_BTM_POWERPC64 MASK_POWERPC64 /* 64-bit registers. */
2316 #define RS6000_BTM_FLOAT128 MASK_FLOAT128_KEYWORD /* IEEE 128-bit float. */
2317 #define RS6000_BTM_FLOAT128_HW MASK_FLOAT128_HW /* IEEE 128-bit float h/w. */
2318
2319 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2320 | RS6000_BTM_VSX \
2321 | RS6000_BTM_P8_VECTOR \
2322 | RS6000_BTM_P9_VECTOR \
2323 | RS6000_BTM_P9_MISC \
2324 | RS6000_BTM_MODULO \
2325 | RS6000_BTM_CRYPTO \
2326 | RS6000_BTM_FRE \
2327 | RS6000_BTM_FRES \
2328 | RS6000_BTM_FRSQRTE \
2329 | RS6000_BTM_FRSQRTES \
2330 | RS6000_BTM_HTM \
2331 | RS6000_BTM_POPCNTD \
2332 | RS6000_BTM_CELL \
2333 | RS6000_BTM_DFP \
2334 | RS6000_BTM_HARD_FLOAT \
2335 | RS6000_BTM_LDBL128 \
2336 | RS6000_BTM_POWERPC64 \
2337 | RS6000_BTM_FLOAT128 \
2338 | RS6000_BTM_FLOAT128_HW)
2339
2340 /* Define builtin enum index. */
2341
2342 #undef RS6000_BUILTIN_0
2343 #undef RS6000_BUILTIN_1
2344 #undef RS6000_BUILTIN_2
2345 #undef RS6000_BUILTIN_3
2346 #undef RS6000_BUILTIN_A
2347 #undef RS6000_BUILTIN_D
2348 #undef RS6000_BUILTIN_H
2349 #undef RS6000_BUILTIN_P
2350 #undef RS6000_BUILTIN_X
2351
2352 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2353 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2354 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2355 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2356 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2357 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2358 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2359 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2360 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2361
2362 enum rs6000_builtins
2363 {
2364 #include "rs6000-builtin.def"
2365
2366 RS6000_BUILTIN_COUNT
2367 };
2368
2369 #undef RS6000_BUILTIN_0
2370 #undef RS6000_BUILTIN_1
2371 #undef RS6000_BUILTIN_2
2372 #undef RS6000_BUILTIN_3
2373 #undef RS6000_BUILTIN_A
2374 #undef RS6000_BUILTIN_D
2375 #undef RS6000_BUILTIN_H
2376 #undef RS6000_BUILTIN_P
2377 #undef RS6000_BUILTIN_X
2378
2379 enum rs6000_builtin_type_index
2380 {
2381 RS6000_BTI_NOT_OPAQUE,
2382 RS6000_BTI_opaque_V4SI,
2383 RS6000_BTI_V16QI, /* __vector signed char */
2384 RS6000_BTI_V1TI,
2385 RS6000_BTI_V2DI,
2386 RS6000_BTI_V2DF,
2387 RS6000_BTI_V4HI,
2388 RS6000_BTI_V4SI,
2389 RS6000_BTI_V4SF,
2390 RS6000_BTI_V8HI,
2391 RS6000_BTI_unsigned_V16QI, /* __vector unsigned char */
2392 RS6000_BTI_unsigned_V1TI,
2393 RS6000_BTI_unsigned_V8HI,
2394 RS6000_BTI_unsigned_V4SI,
2395 RS6000_BTI_unsigned_V2DI,
2396 RS6000_BTI_bool_char, /* __bool char */
2397 RS6000_BTI_bool_short, /* __bool short */
2398 RS6000_BTI_bool_int, /* __bool int */
2399 RS6000_BTI_bool_long_long, /* __bool long long */
2400 RS6000_BTI_pixel, /* __pixel (16 bits arranged as 4
2401 channels of 1, 5, 5, and 5 bits
2402 respectively as packed with the
2403 vpkpx insn. __pixel is only
2404 meaningful as a vector type.
2405 There is no corresponding scalar
2406 __pixel data type.) */
2407 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2408 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2409 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2410 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2411 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2412 RS6000_BTI_long, /* long_integer_type_node */
2413 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2414 RS6000_BTI_long_long, /* long_long_integer_type_node */
2415 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2416 RS6000_BTI_INTQI, /* (signed) intQI_type_node */
2417 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2418 RS6000_BTI_INTHI, /* intHI_type_node */
2419 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2420 RS6000_BTI_INTSI, /* intSI_type_node (signed) */
2421 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2422 RS6000_BTI_INTDI, /* intDI_type_node */
2423 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2424 RS6000_BTI_INTTI, /* intTI_type_node */
2425 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2426 RS6000_BTI_float, /* float_type_node */
2427 RS6000_BTI_double, /* double_type_node */
2428 RS6000_BTI_long_double, /* long_double_type_node */
2429 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2430 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2431 RS6000_BTI_void, /* void_type_node */
2432 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2433 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2434 RS6000_BTI_const_str, /* pointer to const char * */
2435 RS6000_BTI_MAX
2436 };
2437
2438
2439 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2440 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2441 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2442 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2443 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2444 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2445 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2446 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2447 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2448 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2449 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2450 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2451 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2452 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2453 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2454 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2455 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2456 #define bool_long_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2457 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2458 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2459 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2460 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2461 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2462 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2463
2464 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2465 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2466 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2467 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2468 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2469 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2470 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2471 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2472 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2473 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2474 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2475 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2476 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2477 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2478 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2479 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2480 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2481 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2482 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2483 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2484 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2485 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2486 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2487
2488 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2489 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2490
2491 #define TARGET_SUPPORTS_WIDE_INT 1
2492
2493 #if (GCC_VERSION >= 3000)
2494 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2495 #endif
2496
2497 /* Whether a given VALUE is a valid 16- or 34-bit signed offset. EXTRA is the
2498 amount that we can't touch at the high end of the range (typically if the
2499 address is split into smaller addresses, the extra covers the addresses
2500 which might be generated when the insn is split). */
2501 #define SIGNED_16BIT_OFFSET_P(VALUE, EXTRA) \
2502 IN_RANGE (VALUE, \
2503 -(HOST_WIDE_INT_1 << 15), \
2504 (HOST_WIDE_INT_1 << 15) - 1 - (EXTRA))
2505
2506 #define SIGNED_34BIT_OFFSET_P(VALUE, EXTRA) \
2507 IN_RANGE (VALUE, \
2508 -(HOST_WIDE_INT_1 << 33), \
2509 (HOST_WIDE_INT_1 << 33) - 1 - (EXTRA))
2510
2511 /* Flag to mark SYMBOL_REF objects to say they are local addresses and are used
2512 in pc-relative addresses. */
2513 #define SYMBOL_FLAG_PCREL SYMBOL_FLAG_MACH_DEP
2514
2515 #define SYMBOL_REF_PCREL_P(X) \
2516 (SYMBOL_REF_P (X) && SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_PCREL)