]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/rs6000/rs6000.h
232d442864cea25c1092bb1999e2f5687bf4b323
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2018 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
28
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32
33 /* 128-bit floating point precision values. */
34 #ifndef RS6000_MODES_H
35 #include "config/rs6000/rs6000-modes.h"
36 #endif
37
38 /* Definitions for the object file format. These are set at
39 compile-time. */
40
41 #define OBJECT_XCOFF 1
42 #define OBJECT_ELF 2
43 #define OBJECT_PEF 3
44 #define OBJECT_MACHO 4
45
46 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
47 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
48 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
49 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
50
51 #ifndef TARGET_AIX
52 #define TARGET_AIX 0
53 #endif
54
55 #ifndef TARGET_AIX_OS
56 #define TARGET_AIX_OS 0
57 #endif
58
59 /* Control whether function entry points use a "dot" symbol when
60 ABI_AIX. */
61 #define DOT_SYMBOLS 1
62
63 /* Default string to use for cpu if not specified. */
64 #ifndef TARGET_CPU_DEFAULT
65 #define TARGET_CPU_DEFAULT ((char *)0)
66 #endif
67
68 /* If configured for PPC405, support PPC405CR Erratum77. */
69 #ifdef CONFIG_PPC405CR
70 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
71 #else
72 #define PPC405_ERRATUM77 0
73 #endif
74
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
77 #define ASM_CPU_POWER7_SPEC "-mpower7"
78 #define ASM_CPU_POWER8_SPEC "-mpower8"
79 #define ASM_CPU_POWER9_SPEC "-mpower9"
80
81 #ifdef HAVE_AS_DCI
82 #define ASM_CPU_476_SPEC "-m476"
83 #else
84 #define ASM_CPU_476_SPEC "-mpower4"
85 #endif
86
87 /* Common ASM definitions used by ASM_SPEC among the various targets for
88 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
89 provide the default assembler options if the user uses -mcpu=native, so if
90 you make changes here, make them also there. PR63177: Do not pass -mpower8
91 to the assembler if -mpower9-vector was also used. */
92 #define ASM_CPU_SPEC \
93 "%{!mcpu*: \
94 %{mpowerpc64*: -mppc64} \
95 %{!mpowerpc64*: %(asm_default)}} \
96 %{mcpu=native: %(asm_cpu_native)} \
97 %{mcpu=cell: -mcell} \
98 %{mcpu=power3: -mppc64} \
99 %{mcpu=power4: -mpower4} \
100 %{mcpu=power5: %(asm_cpu_power5)} \
101 %{mcpu=power5+: %(asm_cpu_power5)} \
102 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
103 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
104 %{mcpu=power7: %(asm_cpu_power7)} \
105 %{mcpu=power8: %{!mpower9-vector: %(asm_cpu_power8)}} \
106 %{mcpu=power9: %(asm_cpu_power9)} \
107 %{mcpu=a2: -ma2} \
108 %{mcpu=powerpc: -mppc} \
109 %{mcpu=powerpc64le: %(asm_cpu_power8)} \
110 %{mcpu=rs64a: -mppc64} \
111 %{mcpu=401: -mppc} \
112 %{mcpu=403: -m403} \
113 %{mcpu=405: -m405} \
114 %{mcpu=405fp: -m405} \
115 %{mcpu=440: -m440} \
116 %{mcpu=440fp: -m440} \
117 %{mcpu=464: -m440} \
118 %{mcpu=464fp: -m440} \
119 %{mcpu=476: %(asm_cpu_476)} \
120 %{mcpu=476fp: %(asm_cpu_476)} \
121 %{mcpu=505: -mppc} \
122 %{mcpu=601: -m601} \
123 %{mcpu=602: -mppc} \
124 %{mcpu=603: -mppc} \
125 %{mcpu=603e: -mppc} \
126 %{mcpu=ec603e: -mppc} \
127 %{mcpu=604: -mppc} \
128 %{mcpu=604e: -mppc} \
129 %{mcpu=620: -mppc64} \
130 %{mcpu=630: -mppc64} \
131 %{mcpu=740: -mppc} \
132 %{mcpu=750: -mppc} \
133 %{mcpu=G3: -mppc} \
134 %{mcpu=7400: -mppc -maltivec} \
135 %{mcpu=7450: -mppc -maltivec} \
136 %{mcpu=G4: -mppc -maltivec} \
137 %{mcpu=801: -mppc} \
138 %{mcpu=821: -mppc} \
139 %{mcpu=823: -mppc} \
140 %{mcpu=860: -mppc} \
141 %{mcpu=970: -mpower4 -maltivec} \
142 %{mcpu=G5: -mpower4 -maltivec} \
143 %{mcpu=8540: -me500} \
144 %{mcpu=8548: -me500} \
145 %{mcpu=e300c2: -me300} \
146 %{mcpu=e300c3: -me300} \
147 %{mcpu=e500mc: -me500mc} \
148 %{mcpu=e500mc64: -me500mc64} \
149 %{mcpu=e5500: -me5500} \
150 %{mcpu=e6500: -me6500} \
151 %{maltivec: -maltivec} \
152 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
153 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
154 %{mpower9-vector: %{!mcpu*|mcpu=power8: %(asm_cpu_power9)}} \
155 -many"
156
157 #define CPP_DEFAULT_SPEC ""
158
159 #define ASM_DEFAULT_SPEC ""
160
161 /* This macro defines names of additional specifications to put in the specs
162 that can be used in various specifications like CC1_SPEC. Its definition
163 is an initializer with a subgrouping for each command option.
164
165 Each subgrouping contains a string constant, that defines the
166 specification name, and a string constant that used by the GCC driver
167 program.
168
169 Do not define this macro if it does not need to do anything. */
170
171 #define SUBTARGET_EXTRA_SPECS
172
173 #define EXTRA_SPECS \
174 { "cpp_default", CPP_DEFAULT_SPEC }, \
175 { "asm_cpu", ASM_CPU_SPEC }, \
176 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
177 { "asm_default", ASM_DEFAULT_SPEC }, \
178 { "cc1_cpu", CC1_CPU_SPEC }, \
179 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
180 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
181 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
182 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
183 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
184 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
185 SUBTARGET_EXTRA_SPECS
186
187 /* -mcpu=native handling only makes sense with compiler running on
188 an PowerPC chip. If changing this condition, also change
189 the condition in driver-rs6000.c. */
190 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
191 /* In driver-rs6000.c. */
192 extern const char *host_detect_local_cpu (int argc, const char **argv);
193 #define EXTRA_SPEC_FUNCTIONS \
194 { "local_cpu_detect", host_detect_local_cpu },
195 #define HAVE_LOCAL_CPU_DETECT
196 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
197
198 #else
199 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
200 #endif
201
202 #ifndef CC1_CPU_SPEC
203 #ifdef HAVE_LOCAL_CPU_DETECT
204 #define CC1_CPU_SPEC \
205 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
206 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
207 #else
208 #define CC1_CPU_SPEC ""
209 #endif
210 #endif
211
212 /* Architecture type. */
213
214 /* Define TARGET_MFCRF if the target assembler does not support the
215 optional field operand for mfcr. */
216
217 #ifndef HAVE_AS_MFCRF
218 #undef TARGET_MFCRF
219 #define TARGET_MFCRF 0
220 #endif
221
222 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
223 not, generate the lwsync code as an integer constant. */
224 #ifdef HAVE_AS_LWSYNC
225 #define TARGET_LWSYNC_INSTRUCTION 1
226 #else
227 #define TARGET_LWSYNC_INSTRUCTION 0
228 #endif
229
230 /* Define TARGET_TLS_MARKERS if the target assembler does not support
231 arg markers for __tls_get_addr calls. */
232 #ifndef HAVE_AS_TLS_MARKERS
233 #undef TARGET_TLS_MARKERS
234 #define TARGET_TLS_MARKERS 0
235 #else
236 #define TARGET_TLS_MARKERS tls_markers
237 #endif
238
239 #ifndef TARGET_SECURE_PLT
240 #define TARGET_SECURE_PLT 0
241 #endif
242
243 #ifndef TARGET_CMODEL
244 #define TARGET_CMODEL CMODEL_SMALL
245 #endif
246
247 #define TARGET_32BIT (! TARGET_64BIT)
248
249 #ifndef HAVE_AS_TLS
250 #define HAVE_AS_TLS 0
251 #endif
252
253 #ifndef TARGET_LINK_STACK
254 #define TARGET_LINK_STACK 0
255 #endif
256
257 #ifndef SET_TARGET_LINK_STACK
258 #define SET_TARGET_LINK_STACK(X) do { } while (0)
259 #endif
260
261 #ifndef TARGET_FLOAT128_ENABLE_TYPE
262 #define TARGET_FLOAT128_ENABLE_TYPE 0
263 #endif
264
265 /* Return 1 for a symbol ref for a thread-local storage symbol. */
266 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
267 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
268
269 #ifdef IN_LIBGCC2
270 /* For libgcc2 we make sure this is a compile time constant */
271 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
272 #undef TARGET_POWERPC64
273 #define TARGET_POWERPC64 1
274 #else
275 #undef TARGET_POWERPC64
276 #define TARGET_POWERPC64 0
277 #endif
278 #else
279 /* The option machinery will define this. */
280 #endif
281
282 #define TARGET_DEFAULT (MASK_MULTIPLE)
283
284 /* Define generic processor types based upon current deployment. */
285 #define PROCESSOR_COMMON PROCESSOR_PPC601
286 #define PROCESSOR_POWERPC PROCESSOR_PPC604
287 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
288
289 /* Define the default processor. This is overridden by other tm.h files. */
290 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
291 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
292
293 /* Specify the dialect of assembler to use. Only new mnemonics are supported
294 starting with GCC 4.8, i.e. just one dialect, but for backwards
295 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
296 defined. */
297 #define ASSEMBLER_DIALECT 1
298
299 /* Debug support */
300 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
301 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
302 #define MASK_DEBUG_REG 0x04 /* debug register handling */
303 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
304 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
305 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
306 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
307 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
308 | MASK_DEBUG_ARG \
309 | MASK_DEBUG_REG \
310 | MASK_DEBUG_ADDR \
311 | MASK_DEBUG_COST \
312 | MASK_DEBUG_TARGET \
313 | MASK_DEBUG_BUILTIN)
314
315 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
316 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
317 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
318 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
319 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
320 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
321 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
322
323 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
324 long double format that uses a pair of doubles, or IEEE 128-bit floating
325 point. KFmode was added as a way to represent IEEE 128-bit floating point,
326 even if the default for long double is the IBM long double format.
327 Similarly IFmode is the IBM long double format even if the default is IEEE
328 128-bit. Don't allow IFmode if -msoft-float. */
329 #define FLOAT128_IEEE_P(MODE) \
330 ((TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
331 && ((MODE) == TFmode || (MODE) == TCmode)) \
332 || ((MODE) == KFmode) || ((MODE) == KCmode))
333
334 #define FLOAT128_IBM_P(MODE) \
335 ((!TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128 \
336 && ((MODE) == TFmode || (MODE) == TCmode)) \
337 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
338
339 /* Helper macros to say whether a 128-bit floating point type can go in a
340 single vector register, or whether it needs paired scalar values. */
341 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
342
343 #define FLOAT128_2REG_P(MODE) \
344 (FLOAT128_IBM_P (MODE) \
345 || ((MODE) == TDmode) \
346 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
347
348 /* Return true for floating point that does not use a vector register. */
349 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
350 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
351
352 /* Describe the vector unit used for arithmetic operations. */
353 extern enum rs6000_vector rs6000_vector_unit[];
354
355 #define VECTOR_UNIT_NONE_P(MODE) \
356 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
357
358 #define VECTOR_UNIT_VSX_P(MODE) \
359 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
360
361 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
362 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
363
364 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
365 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
366
367 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
368 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
369 (int)VECTOR_VSX, \
370 (int)VECTOR_P8_VECTOR))
371
372 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
373 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
374 compatible, so allow it as well, rather than changing all of the uses of the
375 macro. */
376 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
377 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
378 (int)VECTOR_ALTIVEC, \
379 (int)VECTOR_P8_VECTOR))
380
381 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
382 same unit as the vector unit we are using, but we may want to migrate to
383 using VSX style loads even for types handled by altivec. */
384 extern enum rs6000_vector rs6000_vector_mem[];
385
386 #define VECTOR_MEM_NONE_P(MODE) \
387 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
388
389 #define VECTOR_MEM_VSX_P(MODE) \
390 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
391
392 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
393 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
394
395 #define VECTOR_MEM_ALTIVEC_P(MODE) \
396 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
397
398 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
399 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
400 (int)VECTOR_VSX, \
401 (int)VECTOR_P8_VECTOR))
402
403 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
404 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
405 (int)VECTOR_ALTIVEC, \
406 (int)VECTOR_P8_VECTOR))
407
408 /* Return the alignment of a given vector type, which is set based on the
409 vector unit use. VSX for instance can load 32 or 64 bit aligned words
410 without problems, while Altivec requires 128-bit aligned vectors. */
411 extern int rs6000_vector_align[];
412
413 #define VECTOR_ALIGN(MODE) \
414 ((rs6000_vector_align[(MODE)] != 0) \
415 ? rs6000_vector_align[(MODE)] \
416 : (int)GET_MODE_BITSIZE ((MODE)))
417
418 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
419 with scalar instructions. */
420 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
421
422 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
423 with the ISA 3.0 MFVSRLD instructions. */
424 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
425
426 /* Alignment options for fields in structures for sub-targets following
427 AIX-like ABI.
428 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
429 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
430
431 Override the macro definitions when compiling libobjc to avoid undefined
432 reference to rs6000_alignment_flags due to library's use of GCC alignment
433 macros which use the macros below. */
434
435 #ifndef IN_TARGET_LIBS
436 #define MASK_ALIGN_POWER 0x00000000
437 #define MASK_ALIGN_NATURAL 0x00000001
438 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
439 #else
440 #define TARGET_ALIGN_NATURAL 0
441 #endif
442
443 /* We use values 126..128 to pick the appropriate long double type (IFmode,
444 KFmode, TFmode). */
445 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size > 64)
446 #define TARGET_IEEEQUAD rs6000_ieeequad
447 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
448 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
449
450 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
451 Enable 32-bit fcfid's on any of the switches for newer ISA machines. */
452 #define TARGET_FCFID (TARGET_POWERPC64 \
453 || TARGET_PPC_GPOPT /* 970/power4 */ \
454 || TARGET_POPCNTB /* ISA 2.02 */ \
455 || TARGET_CMPB /* ISA 2.05 */ \
456 || TARGET_POPCNTD) /* ISA 2.06 */
457
458 #define TARGET_FCTIDZ TARGET_FCFID
459 #define TARGET_STFIWX TARGET_PPC_GFXOPT
460 #define TARGET_LFIWAX TARGET_CMPB
461 #define TARGET_LFIWZX TARGET_POPCNTD
462 #define TARGET_FCFIDS TARGET_POPCNTD
463 #define TARGET_FCFIDU TARGET_POPCNTD
464 #define TARGET_FCFIDUS TARGET_POPCNTD
465 #define TARGET_FCTIDUZ TARGET_POPCNTD
466 #define TARGET_FCTIWUZ TARGET_POPCNTD
467 #define TARGET_CTZ TARGET_MODULO
468 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
469 #define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
470
471 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
472 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
473 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
474 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
475 && TARGET_POWERPC64)
476 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
477 && TARGET_POWERPC64)
478
479 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
480 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
481 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
482
483 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
484 loads are slow. */
485 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
486
487 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
488 in power7, so conditionalize them on p8 features. TImode syncs need quad
489 memory support. */
490 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
491 || TARGET_QUAD_MEMORY_ATOMIC \
492 || TARGET_DIRECT_MOVE)
493
494 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
495
496 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
497 to allocate the SDmode stack slot to get the value into the proper location
498 in the register. */
499 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
500
501 /* ISA 3.0 has new min/max functions that don't need fast math that are being
502 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
503 answers if the arguments are not in the normal range. */
504 #define TARGET_MINMAX (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
505 && (TARGET_P9_MINMAX || !flag_trapping_math))
506
507 /* In switching from using target_flags to using rs6000_isa_flags, the options
508 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
509 OPTION_MASK_<xxx> back into MASK_<xxx>. */
510 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
511 #define MASK_CMPB OPTION_MASK_CMPB
512 #define MASK_CRYPTO OPTION_MASK_CRYPTO
513 #define MASK_DFP OPTION_MASK_DFP
514 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
515 #define MASK_DLMZB OPTION_MASK_DLMZB
516 #define MASK_EABI OPTION_MASK_EABI
517 #define MASK_FLOAT128_KEYWORD OPTION_MASK_FLOAT128_KEYWORD
518 #define MASK_FLOAT128_HW OPTION_MASK_FLOAT128_HW
519 #define MASK_FPRND OPTION_MASK_FPRND
520 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
521 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
522 #define MASK_HTM OPTION_MASK_HTM
523 #define MASK_ISEL OPTION_MASK_ISEL
524 #define MASK_MFCRF OPTION_MASK_MFCRF
525 #define MASK_MFPGPR OPTION_MASK_MFPGPR
526 #define MASK_MULHW OPTION_MASK_MULHW
527 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
528 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
529 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
530 #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
531 #define MASK_P9_MISC OPTION_MASK_P9_MISC
532 #define MASK_POPCNTB OPTION_MASK_POPCNTB
533 #define MASK_POPCNTD OPTION_MASK_POPCNTD
534 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
535 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
536 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
537 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
538 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
539 #define MASK_UPDATE OPTION_MASK_UPDATE
540 #define MASK_VSX OPTION_MASK_VSX
541
542 #ifndef IN_LIBGCC2
543 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
544 #endif
545
546 #ifdef TARGET_64BIT
547 #define MASK_64BIT OPTION_MASK_64BIT
548 #endif
549
550 #ifdef TARGET_LITTLE_ENDIAN
551 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
552 #endif
553
554 #ifdef TARGET_REGNAMES
555 #define MASK_REGNAMES OPTION_MASK_REGNAMES
556 #endif
557
558 #ifdef TARGET_PROTOTYPE
559 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
560 #endif
561
562 #ifdef TARGET_MODULO
563 #define RS6000_BTM_MODULO OPTION_MASK_MODULO
564 #endif
565
566
567 /* For power systems, we want to enable Altivec and VSX builtins even if the
568 user did not use -maltivec or -mvsx to allow the builtins to be used inside
569 of #pragma GCC target or the target attribute to change the code level for a
570 given system. */
571
572 #define TARGET_EXTRA_BUILTINS (TARGET_POWERPC64 \
573 || TARGET_PPC_GPOPT /* 970/power4 */ \
574 || TARGET_POPCNTB /* ISA 2.02 */ \
575 || TARGET_CMPB /* ISA 2.05 */ \
576 || TARGET_POPCNTD /* ISA 2.06 */ \
577 || TARGET_ALTIVEC \
578 || TARGET_VSX \
579 || TARGET_HARD_FLOAT)
580
581 /* E500 cores only support plain "sync", not lwsync. */
582 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
583 || rs6000_cpu == PROCESSOR_PPC8548)
584
585
586 /* Which machine supports the various reciprocal estimate instructions. */
587 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT)
588
589 #define TARGET_FRE (TARGET_HARD_FLOAT \
590 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
591
592 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
593 && TARGET_PPC_GFXOPT)
594
595 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT \
596 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
597
598 /* Macro to say whether we can do optimizations where we need to do parts of
599 the calculation in 64-bit GPRs and then is transfered to the vector
600 registers. */
601 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
602 && TARGET_P8_VECTOR \
603 && TARGET_POWERPC64)
604
605 /* Whether the various reciprocal divide/square root estimate instructions
606 exist, and whether we should automatically generate code for the instruction
607 by default. */
608 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
609 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
610 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
611 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
612
613 extern unsigned char rs6000_recip_bits[];
614
615 #define RS6000_RECIP_HAVE_RE_P(MODE) \
616 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
617
618 #define RS6000_RECIP_AUTO_RE_P(MODE) \
619 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
620
621 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
622 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
623
624 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
625 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
626
627 /* The default CPU for TARGET_OPTION_OVERRIDE. */
628 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
629
630 /* Target pragma. */
631 #define REGISTER_TARGET_PRAGMAS() do { \
632 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
633 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
634 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
635 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
636 } while (0)
637
638 /* Target #defines. */
639 #define TARGET_CPU_CPP_BUILTINS() \
640 rs6000_cpu_cpp_builtins (pfile)
641
642 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
643 we're compiling for. Some configurations may need to override it. */
644 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
645 do \
646 { \
647 if (BYTES_BIG_ENDIAN) \
648 { \
649 builtin_define ("__BIG_ENDIAN__"); \
650 builtin_define ("_BIG_ENDIAN"); \
651 builtin_assert ("machine=bigendian"); \
652 } \
653 else \
654 { \
655 builtin_define ("__LITTLE_ENDIAN__"); \
656 builtin_define ("_LITTLE_ENDIAN"); \
657 builtin_assert ("machine=littleendian"); \
658 } \
659 } \
660 while (0)
661 \f
662 /* Target machine storage layout. */
663
664 /* Define this macro if it is advisable to hold scalars in registers
665 in a wider mode than that declared by the program. In such cases,
666 the value is constrained to be within the bounds of the declared
667 type, but kept valid in the wider mode. The signedness of the
668 extension may differ from that of the type. */
669
670 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
671 if (GET_MODE_CLASS (MODE) == MODE_INT \
672 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
673 (MODE) = TARGET_32BIT ? SImode : DImode;
674
675 /* Define this if most significant bit is lowest numbered
676 in instructions that operate on numbered bit-fields. */
677 /* That is true on RS/6000. */
678 #define BITS_BIG_ENDIAN 1
679
680 /* Define this if most significant byte of a word is the lowest numbered. */
681 /* That is true on RS/6000. */
682 #define BYTES_BIG_ENDIAN 1
683
684 /* Define this if most significant word of a multiword number is lowest
685 numbered.
686
687 For RS/6000 we can decide arbitrarily since there are no machine
688 instructions for them. Might as well be consistent with bits and bytes. */
689 #define WORDS_BIG_ENDIAN 1
690
691 /* This says that for the IBM long double the larger magnitude double
692 comes first. It's really a two element double array, and arrays
693 don't index differently between little- and big-endian. */
694 #define LONG_DOUBLE_LARGE_FIRST 1
695
696 #define MAX_BITS_PER_WORD 64
697
698 /* Width of a word, in units (bytes). */
699 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
700 #ifdef IN_LIBGCC2
701 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
702 #else
703 #define MIN_UNITS_PER_WORD 4
704 #endif
705 #define UNITS_PER_FP_WORD 8
706 #define UNITS_PER_ALTIVEC_WORD 16
707 #define UNITS_PER_VSX_WORD 16
708
709 /* Type used for ptrdiff_t, as a string used in a declaration. */
710 #define PTRDIFF_TYPE "int"
711
712 /* Type used for size_t, as a string used in a declaration. */
713 #define SIZE_TYPE "long unsigned int"
714
715 /* Type used for wchar_t, as a string used in a declaration. */
716 #define WCHAR_TYPE "short unsigned int"
717
718 /* Width of wchar_t in bits. */
719 #define WCHAR_TYPE_SIZE 16
720
721 /* A C expression for the size in bits of the type `short' on the
722 target machine. If you don't define this, the default is half a
723 word. (If this would be less than one storage unit, it is
724 rounded up to one unit.) */
725 #define SHORT_TYPE_SIZE 16
726
727 /* A C expression for the size in bits of the type `int' on the
728 target machine. If you don't define this, the default is one
729 word. */
730 #define INT_TYPE_SIZE 32
731
732 /* A C expression for the size in bits of the type `long' on the
733 target machine. If you don't define this, the default is one
734 word. */
735 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
736
737 /* A C expression for the size in bits of the type `long long' on the
738 target machine. If you don't define this, the default is two
739 words. */
740 #define LONG_LONG_TYPE_SIZE 64
741
742 /* A C expression for the size in bits of the type `float' on the
743 target machine. If you don't define this, the default is one
744 word. */
745 #define FLOAT_TYPE_SIZE 32
746
747 /* A C expression for the size in bits of the type `double' on the
748 target machine. If you don't define this, the default is two
749 words. */
750 #define DOUBLE_TYPE_SIZE 64
751
752 /* A C expression for the size in bits of the type `long double' on the target
753 machine. If you don't define this, the default is two words. */
754 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
755
756 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
757 #define WIDEST_HARDWARE_FP_SIZE 64
758
759 /* Width in bits of a pointer.
760 See also the macro `Pmode' defined below. */
761 extern unsigned rs6000_pointer_size;
762 #define POINTER_SIZE rs6000_pointer_size
763
764 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
765 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
766
767 /* Boundary (in *bits*) on which stack pointer should be aligned. */
768 #define STACK_BOUNDARY \
769 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
770 ? 64 : 128)
771
772 /* Allocation boundary (in *bits*) for the code of a function. */
773 #define FUNCTION_BOUNDARY 32
774
775 /* No data type wants to be aligned rounder than this. */
776 #define BIGGEST_ALIGNMENT 128
777
778 /* Alignment of field after `int : 0' in a structure. */
779 #define EMPTY_FIELD_BOUNDARY 32
780
781 /* Every structure's size must be a multiple of this. */
782 #define STRUCTURE_SIZE_BOUNDARY 8
783
784 /* A bit-field declared as `int' forces `int' alignment for the struct. */
785 #define PCC_BITFIELD_TYPE_MATTERS 1
786
787 enum data_align { align_abi, align_opt, align_both };
788
789 /* A C expression to compute the alignment for a variables in the
790 local store. TYPE is the data type, and ALIGN is the alignment
791 that the object would ordinarily have. */
792 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
793 rs6000_data_alignment (TYPE, ALIGN, align_both)
794
795 /* Make arrays of chars word-aligned for the same reasons. */
796 #define DATA_ALIGNMENT(TYPE, ALIGN) \
797 rs6000_data_alignment (TYPE, ALIGN, align_opt)
798
799 /* Align vectors to 128 bits. */
800 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
801 rs6000_data_alignment (TYPE, ALIGN, align_abi)
802
803 /* Nonzero if move instructions will actually fail to work
804 when given unaligned data. */
805 #define STRICT_ALIGNMENT 0
806 \f
807 /* Standard register usage. */
808
809 /* Number of actual hardware registers.
810 The hardware registers are assigned numbers for the compiler
811 from 0 to just below FIRST_PSEUDO_REGISTER.
812 All registers that the compiler knows about must be given numbers,
813 even those that are not normally considered general registers.
814
815 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
816 a count register, a link register, and 8 condition register fields,
817 which we view here as separate registers. AltiVec adds 32 vector
818 registers and a VRsave register.
819
820 In addition, the difference between the frame and argument pointers is
821 a function of the number of registers saved, so we need to have a
822 register for AP that will later be eliminated in favor of SP or FP.
823 This is a normal register, but it is fixed.
824
825 We also create a pseudo register for float/int conversions, that will
826 really represent the memory location used. It is represented here as
827 a register, in order to work around problems in allocating stack storage
828 in inline functions.
829
830 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
831 pointer, which is eventually eliminated in favor of SP or FP.
832
833 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
834
835 #define FIRST_PSEUDO_REGISTER 115
836
837 /* This must be included for pre gcc 3.0 glibc compatibility. */
838 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
839
840 /* The sfp register and 3 HTM registers
841 aren't included in DWARF_FRAME_REGISTERS. */
842 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
843
844 /* Use standard DWARF numbering for DWARF debugging information. */
845 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
846
847 /* Use gcc hard register numbering for eh_frame. */
848 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
849
850 /* Map register numbers held in the call frame info that gcc has
851 collected using DWARF_FRAME_REGNUM to those that should be output in
852 .debug_frame and .eh_frame. */
853 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
854 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
855
856 /* 1 for registers that have pervasive standard uses
857 and are not available for the register allocator.
858
859 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
860 as a local register; for all other OS's r2 is the TOC pointer.
861
862 On System V implementations, r13 is fixed and not available for use. */
863
864 #define FIXED_REGISTERS \
865 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
866 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
867 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
868 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
869 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
870 /* AltiVec registers. */ \
871 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
872 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
873 1, 1 \
874 , 1, 1, 1, 1 \
875 }
876
877 /* 1 for registers not available across function calls.
878 These must include the FIXED_REGISTERS and also any
879 registers that can be used without being saved.
880 The latter must include the registers where values are returned
881 and the register where structure-value addresses are passed.
882 Aside from that, you can include as many other registers as you like. */
883
884 #define CALL_USED_REGISTERS \
885 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
886 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
887 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
888 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
889 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
890 /* AltiVec registers. */ \
891 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
892 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
893 1, 1 \
894 , 1, 1, 1, 1 \
895 }
896
897 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
898 the entire set of `FIXED_REGISTERS' be included.
899 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
900 This macro is optional. If not specified, it defaults to the value
901 of `CALL_USED_REGISTERS'. */
902
903 #define CALL_REALLY_USED_REGISTERS \
904 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
905 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
906 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
907 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
908 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
909 /* AltiVec registers. */ \
910 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
911 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
912 0, 0 \
913 , 0, 0, 0, 0 \
914 }
915
916 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
917
918 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
919 #define FIRST_SAVED_FP_REGNO (14+32)
920 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
921
922 /* List the order in which to allocate registers. Each register must be
923 listed once, even those in FIXED_REGISTERS.
924
925 We allocate in the following order:
926 fp0 (not saved or used for anything)
927 fp13 - fp2 (not saved; incoming fp arg registers)
928 fp1 (not saved; return value)
929 fp31 - fp14 (saved; order given to save least number)
930 cr7, cr5 (not saved or special)
931 cr6 (not saved, but used for vector operations)
932 cr1 (not saved, but used for FP operations)
933 cr0 (not saved, but used for arithmetic operations)
934 cr4, cr3, cr2 (saved)
935 r9 (not saved; best for TImode)
936 r10, r8-r4 (not saved; highest first for less conflict with params)
937 r3 (not saved; return value register)
938 r11 (not saved; later alloc to help shrink-wrap)
939 r0 (not saved; cannot be base reg)
940 r31 - r13 (saved; order given to save least number)
941 r12 (not saved; if used for DImode or DFmode would use r13)
942 ctr (not saved; when we have the choice ctr is better)
943 lr (saved)
944 r1, r2, ap, ca (fixed)
945 v0 - v1 (not saved or used for anything)
946 v13 - v3 (not saved; incoming vector arg registers)
947 v2 (not saved; incoming vector arg reg; return value)
948 v19 - v14 (not saved or used for anything)
949 v31 - v20 (saved; order given to save least number)
950 vrsave, vscr (fixed)
951 sfp (fixed)
952 tfhar (fixed)
953 tfiar (fixed)
954 texasr (fixed)
955 */
956
957 #if FIXED_R2 == 1
958 #define MAYBE_R2_AVAILABLE
959 #define MAYBE_R2_FIXED 2,
960 #else
961 #define MAYBE_R2_AVAILABLE 2,
962 #define MAYBE_R2_FIXED
963 #endif
964
965 #if FIXED_R13 == 1
966 #define EARLY_R12 12,
967 #define LATE_R12
968 #else
969 #define EARLY_R12
970 #define LATE_R12 12,
971 #endif
972
973 #define REG_ALLOC_ORDER \
974 {32, \
975 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
976 /* not use fr14 which is a saved register. */ \
977 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
978 33, \
979 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
980 50, 49, 48, 47, 46, \
981 75, 73, 74, 69, 68, 72, 71, 70, \
982 MAYBE_R2_AVAILABLE \
983 9, 10, 8, 7, 6, 5, 4, \
984 3, EARLY_R12 11, 0, \
985 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
986 18, 17, 16, 15, 14, 13, LATE_R12 \
987 66, 65, \
988 1, MAYBE_R2_FIXED 67, 76, \
989 /* AltiVec registers. */ \
990 77, 78, \
991 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
992 79, \
993 96, 95, 94, 93, 92, 91, \
994 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
995 109, 110, \
996 111, 112, 113, 114 \
997 }
998
999 /* True if register is floating-point. */
1000 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1001
1002 /* True if register is a condition register. */
1003 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1004
1005 /* True if register is a condition register, but not cr0. */
1006 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1007
1008 /* True if register is an integer register. */
1009 #define INT_REGNO_P(N) \
1010 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1011
1012 /* True if register is the CA register. */
1013 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1014
1015 /* True if register is an AltiVec register. */
1016 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1017
1018 /* True if register is a VSX register. */
1019 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1020
1021 /* Alternate name for any vector register supporting floating point, no matter
1022 which instruction set(s) are available. */
1023 #define VFLOAT_REGNO_P(N) \
1024 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1025
1026 /* Alternate name for any vector register supporting integer, no matter which
1027 instruction set(s) are available. */
1028 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1029
1030 /* Alternate name for any vector register supporting logical operations, no
1031 matter which instruction set(s) are available. Allow GPRs as well as the
1032 vector registers. */
1033 #define VLOGICAL_REGNO_P(N) \
1034 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1035 || (TARGET_VSX && FP_REGNO_P (N))) \
1036
1037 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1038 enough space to account for vectors in FP regs. However, TFmode/TDmode
1039 should not use VSX instructions to do a caller save. */
1040 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1041 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1042 ? (MODE) \
1043 : TARGET_VSX \
1044 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1045 && FP_REGNO_P (REGNO) \
1046 ? V2DFmode \
1047 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
1048 ? DFmode \
1049 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
1050 ? DImode \
1051 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1052
1053 #define VSX_VECTOR_MODE(MODE) \
1054 ((MODE) == V4SFmode \
1055 || (MODE) == V2DFmode) \
1056
1057 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1058 really a vector, but we want to treat it as a vector for moves, and
1059 such. */
1060
1061 #define ALTIVEC_VECTOR_MODE(MODE) \
1062 ((MODE) == V16QImode \
1063 || (MODE) == V8HImode \
1064 || (MODE) == V4SFmode \
1065 || (MODE) == V4SImode \
1066 || FLOAT128_VECTOR_P (MODE))
1067
1068 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1069 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1070 || (MODE) == V2DImode || (MODE) == V1TImode)
1071
1072 /* Post-reload, we can't use any new AltiVec registers, as we already
1073 emitted the vrsave mask. */
1074
1075 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1076 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1077
1078 /* Specify the cost of a branch insn; roughly the number of extra insns that
1079 should be added to avoid a branch.
1080
1081 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1082 unscheduled conditional branch. */
1083
1084 #define BRANCH_COST(speed_p, predictable_p) 3
1085
1086 /* Override BRANCH_COST heuristic which empirically produces worse
1087 performance for removing short circuiting from the logical ops. */
1088
1089 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1090
1091 /* Specify the registers used for certain standard purposes.
1092 The values of these macros are register numbers. */
1093
1094 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1095 /* #define PC_REGNUM */
1096
1097 /* Register to use for pushing function arguments. */
1098 #define STACK_POINTER_REGNUM 1
1099
1100 /* Base register for access to local variables of the function. */
1101 #define HARD_FRAME_POINTER_REGNUM 31
1102
1103 /* Base register for access to local variables of the function. */
1104 #define FRAME_POINTER_REGNUM 111
1105
1106 /* Base register for access to arguments of the function. */
1107 #define ARG_POINTER_REGNUM 67
1108
1109 /* Place to put static chain when calling a function that requires it. */
1110 #define STATIC_CHAIN_REGNUM 11
1111
1112 /* Base register for access to thread local storage variables. */
1113 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1114
1115 \f
1116 /* Define the classes of registers for register constraints in the
1117 machine description. Also define ranges of constants.
1118
1119 One of the classes must always be named ALL_REGS and include all hard regs.
1120 If there is more than one class, another class must be named NO_REGS
1121 and contain no registers.
1122
1123 The name GENERAL_REGS must be the name of a class (or an alias for
1124 another name such as ALL_REGS). This is the class of registers
1125 that is allowed by "g" or "r" in a register constraint.
1126 Also, registers outside this class are allocated only when
1127 instructions express preferences for them.
1128
1129 The classes must be numbered in nondecreasing order; that is,
1130 a larger-numbered class must never be contained completely
1131 in a smaller-numbered class.
1132
1133 For any two classes, it is very desirable that there be another
1134 class that represents their union. */
1135
1136 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1137 condition registers, plus three special registers, CTR, and the link
1138 register. AltiVec adds a vector register class. VSX registers overlap the
1139 FPR registers and the Altivec registers.
1140
1141 However, r0 is special in that it cannot be used as a base register.
1142 So make a class for registers valid as base registers.
1143
1144 Also, cr0 is the only condition code register that can be used in
1145 arithmetic insns, so make a separate class for it. */
1146
1147 enum reg_class
1148 {
1149 NO_REGS,
1150 BASE_REGS,
1151 GENERAL_REGS,
1152 FLOAT_REGS,
1153 ALTIVEC_REGS,
1154 VSX_REGS,
1155 VRSAVE_REGS,
1156 VSCR_REGS,
1157 SPR_REGS,
1158 NON_SPECIAL_REGS,
1159 LINK_REGS,
1160 CTR_REGS,
1161 LINK_OR_CTR_REGS,
1162 SPECIAL_REGS,
1163 SPEC_OR_GEN_REGS,
1164 CR0_REGS,
1165 CR_REGS,
1166 NON_FLOAT_REGS,
1167 CA_REGS,
1168 ALL_REGS,
1169 LIM_REG_CLASSES
1170 };
1171
1172 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1173
1174 /* Give names of register classes as strings for dump file. */
1175
1176 #define REG_CLASS_NAMES \
1177 { \
1178 "NO_REGS", \
1179 "BASE_REGS", \
1180 "GENERAL_REGS", \
1181 "FLOAT_REGS", \
1182 "ALTIVEC_REGS", \
1183 "VSX_REGS", \
1184 "VRSAVE_REGS", \
1185 "VSCR_REGS", \
1186 "SPR_REGS", \
1187 "NON_SPECIAL_REGS", \
1188 "LINK_REGS", \
1189 "CTR_REGS", \
1190 "LINK_OR_CTR_REGS", \
1191 "SPECIAL_REGS", \
1192 "SPEC_OR_GEN_REGS", \
1193 "CR0_REGS", \
1194 "CR_REGS", \
1195 "NON_FLOAT_REGS", \
1196 "CA_REGS", \
1197 "ALL_REGS" \
1198 }
1199
1200 /* Define which registers fit in which classes.
1201 This is an initializer for a vector of HARD_REG_SET
1202 of length N_REG_CLASSES. */
1203
1204 #define REG_CLASS_CONTENTS \
1205 { \
1206 /* NO_REGS. */ \
1207 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1208 /* BASE_REGS. */ \
1209 { 0xfffffffe, 0x00000000, 0x00000008, 0x00008000 }, \
1210 /* GENERAL_REGS. */ \
1211 { 0xffffffff, 0x00000000, 0x00000008, 0x00008000 }, \
1212 /* FLOAT_REGS. */ \
1213 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
1214 /* ALTIVEC_REGS. */ \
1215 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, \
1216 /* VSX_REGS. */ \
1217 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, \
1218 /* VRSAVE_REGS. */ \
1219 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
1220 /* VSCR_REGS. */ \
1221 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, \
1222 /* SPR_REGS. */ \
1223 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, \
1224 /* NON_SPECIAL_REGS. */ \
1225 { 0xffffffff, 0xffffffff, 0x00000008, 0x00008000 }, \
1226 /* LINK_REGS. */ \
1227 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, \
1228 /* CTR_REGS. */ \
1229 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, \
1230 /* LINK_OR_CTR_REGS. */ \
1231 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, \
1232 /* SPECIAL_REGS. */ \
1233 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, \
1234 /* SPEC_OR_GEN_REGS. */ \
1235 { 0xffffffff, 0x00000000, 0x0000000e, 0x0000a000 }, \
1236 /* CR0_REGS. */ \
1237 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, \
1238 /* CR_REGS. */ \
1239 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, \
1240 /* NON_FLOAT_REGS. */ \
1241 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00008000 }, \
1242 /* CA_REGS. */ \
1243 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, \
1244 /* ALL_REGS. */ \
1245 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0001ffff } \
1246 }
1247
1248 /* The same information, inverted:
1249 Return the class number of the smallest class containing
1250 reg number REGNO. This could be a conditional expression
1251 or could index an array. */
1252
1253 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1254
1255 #define REGNO_REG_CLASS(REGNO) \
1256 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1257 rs6000_regno_regclass[(REGNO)])
1258
1259 /* Register classes for various constraints that are based on the target
1260 switches. */
1261 enum r6000_reg_class_enum {
1262 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1263 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1264 RS6000_CONSTRAINT_v, /* Altivec registers */
1265 RS6000_CONSTRAINT_wa, /* Any VSX register */
1266 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
1267 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1268 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1269 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1270 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
1271 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1272 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1273 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1274 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
1275 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
1276 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1277 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
1278 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1279 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
1280 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1281 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1282 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
1283 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1284 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1285 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
1286 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1287 RS6000_CONSTRAINT_wy, /* VSX register for SF */
1288 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
1289 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1290 RS6000_CONSTRAINT_wH, /* Altivec register for 32-bit integers. */
1291 RS6000_CONSTRAINT_wI, /* VSX register for 32-bit integers. */
1292 RS6000_CONSTRAINT_wJ, /* VSX register for 8/16-bit integers. */
1293 RS6000_CONSTRAINT_wK, /* Altivec register for 16/32-bit integers. */
1294 RS6000_CONSTRAINT_MAX
1295 };
1296
1297 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1298
1299 /* The class value for index registers, and the one for base regs. */
1300 #define INDEX_REG_CLASS GENERAL_REGS
1301 #define BASE_REG_CLASS BASE_REGS
1302
1303 /* Return whether a given register class can hold VSX objects. */
1304 #define VSX_REG_CLASS_P(CLASS) \
1305 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1306
1307 /* Return whether a given register class targets general purpose registers. */
1308 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1309
1310 /* Given an rtx X being reloaded into a reg required to be
1311 in class CLASS, return the class of reg to actually use.
1312 In general this is just CLASS; but on some machines
1313 in some cases it is preferable to use a more restrictive class.
1314
1315 On the RS/6000, we have to return NO_REGS when we want to reload a
1316 floating-point CONST_DOUBLE to force it to be copied to memory.
1317
1318 We also don't want to reload integer values into floating-point
1319 registers if we can at all help it. In fact, this can
1320 cause reload to die, if it tries to generate a reload of CTR
1321 into a FP register and discovers it doesn't have the memory location
1322 required.
1323
1324 ??? Would it be a good idea to have reload do the converse, that is
1325 try to reload floating modes into FP registers if possible?
1326 */
1327
1328 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1329 rs6000_preferred_reload_class_ptr (X, CLASS)
1330
1331 /* Return the register class of a scratch register needed to copy IN into
1332 or out of a register in CLASS in MODE. If it can be done directly,
1333 NO_REGS is returned. */
1334
1335 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1336 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1337
1338 /* Return the maximum number of consecutive registers
1339 needed to represent mode MODE in a register of class CLASS.
1340
1341 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1342 a single reg is enough for two words, unless we have VSX, where the FP
1343 registers can hold 128 bits. */
1344 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1345
1346 /* Stack layout; function entry, exit and calling. */
1347
1348 /* Define this if pushing a word on the stack
1349 makes the stack pointer a smaller address. */
1350 #define STACK_GROWS_DOWNWARD 1
1351
1352 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1353 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1354
1355 /* Define this to nonzero if the nominal address of the stack frame
1356 is at the high-address end of the local variables;
1357 that is, each additional local variable allocated
1358 goes at a more negative offset in the frame.
1359
1360 On the RS/6000, we grow upwards, from the area after the outgoing
1361 arguments. */
1362 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1363 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1364
1365 /* Size of the fixed area on the stack */
1366 #define RS6000_SAVE_AREA \
1367 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1368 << (TARGET_64BIT ? 1 : 0))
1369
1370 /* Stack offset for toc save slot. */
1371 #define RS6000_TOC_SAVE_SLOT \
1372 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1373
1374 /* Align an address */
1375 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1376
1377 /* Offset within stack frame to start allocating local variables at.
1378 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1379 first local allocated. Otherwise, it is the offset to the BEGINNING
1380 of the first local allocated.
1381
1382 On the RS/6000, the frame pointer is the same as the stack pointer,
1383 except for dynamic allocations. So we start after the fixed area and
1384 outgoing parameter area.
1385
1386 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1387 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1388 sizes of the fixed area and the parameter area must be a multiple of
1389 STACK_BOUNDARY. */
1390
1391 #define RS6000_STARTING_FRAME_OFFSET \
1392 (cfun->calls_alloca \
1393 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1394 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1395 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1396 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1397 + RS6000_SAVE_AREA))
1398
1399 /* Offset from the stack pointer register to an item dynamically
1400 allocated on the stack, e.g., by `alloca'.
1401
1402 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1403 length of the outgoing arguments. The default is correct for most
1404 machines. See `function.c' for details.
1405
1406 This value must be a multiple of STACK_BOUNDARY (hard coded in
1407 `emit-rtl.c'). */
1408 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1409 RS6000_ALIGN (crtl->outgoing_args_size.to_constant () \
1410 + STACK_POINTER_OFFSET, \
1411 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1412
1413 /* If we generate an insn to push BYTES bytes,
1414 this says how many the stack pointer really advances by.
1415 On RS/6000, don't define this because there are no push insns. */
1416 /* #define PUSH_ROUNDING(BYTES) */
1417
1418 /* Offset of first parameter from the argument pointer register value.
1419 On the RS/6000, we define the argument pointer to the start of the fixed
1420 area. */
1421 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1422
1423 /* Offset from the argument pointer register value to the top of
1424 stack. This is different from FIRST_PARM_OFFSET because of the
1425 register save area. */
1426 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1427
1428 /* Define this if stack space is still allocated for a parameter passed
1429 in a register. The value is the number of bytes allocated to this
1430 area. */
1431 #define REG_PARM_STACK_SPACE(FNDECL) \
1432 rs6000_reg_parm_stack_space ((FNDECL), false)
1433
1434 /* Define this macro if space guaranteed when compiling a function body
1435 is different to space required when making a call, a situation that
1436 can arise with K&R style function definitions. */
1437 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1438 rs6000_reg_parm_stack_space ((FNDECL), true)
1439
1440 /* Define this if the above stack space is to be considered part of the
1441 space allocated by the caller. */
1442 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1443
1444 /* This is the difference between the logical top of stack and the actual sp.
1445
1446 For the RS/6000, sp points past the fixed area. */
1447 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1448
1449 /* Define this if the maximum size of all the outgoing args is to be
1450 accumulated and pushed during the prologue. The amount can be
1451 found in the variable crtl->outgoing_args_size. */
1452 #define ACCUMULATE_OUTGOING_ARGS 1
1453
1454 /* Define how to find the value returned by a library function
1455 assuming the value has mode MODE. */
1456
1457 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1458
1459 /* DRAFT_V4_STRUCT_RET defaults off. */
1460 #define DRAFT_V4_STRUCT_RET 0
1461
1462 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1463 #define DEFAULT_PCC_STRUCT_RETURN 0
1464
1465 /* Mode of stack savearea.
1466 FUNCTION is VOIDmode because calling convention maintains SP.
1467 BLOCK needs Pmode for SP.
1468 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1469 #define STACK_SAVEAREA_MODE(LEVEL) \
1470 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1471 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1472
1473 /* Minimum and maximum general purpose registers used to hold arguments. */
1474 #define GP_ARG_MIN_REG 3
1475 #define GP_ARG_MAX_REG 10
1476 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1477
1478 /* Minimum and maximum floating point registers used to hold arguments. */
1479 #define FP_ARG_MIN_REG 33
1480 #define FP_ARG_AIX_MAX_REG 45
1481 #define FP_ARG_V4_MAX_REG 40
1482 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1483 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1484 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1485
1486 /* Minimum and maximum AltiVec registers used to hold arguments. */
1487 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1488 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1489 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1490
1491 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1492 #define AGGR_ARG_NUM_REG 8
1493
1494 /* Return registers */
1495 #define GP_ARG_RETURN GP_ARG_MIN_REG
1496 #define FP_ARG_RETURN FP_ARG_MIN_REG
1497 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1498 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1499 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1500 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1501 ? (ALTIVEC_ARG_RETURN \
1502 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1503 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1504
1505 /* Flags for the call/call_value rtl operations set up by function_arg */
1506 #define CALL_NORMAL 0x00000000 /* no special processing */
1507 /* Bits in 0x00000001 are unused. */
1508 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1509 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1510 #define CALL_LONG 0x00000008 /* always call indirect */
1511 #define CALL_LIBCALL 0x00000010 /* libcall */
1512
1513 /* We don't have prologue and epilogue functions to save/restore
1514 everything for most ABIs. */
1515 #define WORLD_SAVE_P(INFO) 0
1516
1517 /* 1 if N is a possible register number for a function value
1518 as seen by the caller.
1519
1520 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1521 #define FUNCTION_VALUE_REGNO_P(N) \
1522 ((N) == GP_ARG_RETURN \
1523 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1524 && TARGET_HARD_FLOAT) \
1525 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1526 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1527
1528 /* 1 if N is a possible register number for function argument passing.
1529 On RS/6000, these are r3-r10 and fp1-fp13.
1530 On AltiVec, v2 - v13 are used for passing vectors. */
1531 #define FUNCTION_ARG_REGNO_P(N) \
1532 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1533 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1534 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1535 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1536 && TARGET_HARD_FLOAT))
1537 \f
1538 /* Define a data type for recording info about an argument list
1539 during the scan of that argument list. This data type should
1540 hold all necessary information about the function itself
1541 and about the args processed so far, enough to enable macros
1542 such as FUNCTION_ARG to determine where the next arg should go.
1543
1544 On the RS/6000, this is a structure. The first element is the number of
1545 total argument words, the second is used to store the next
1546 floating-point register number, and the third says how many more args we
1547 have prototype types for.
1548
1549 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1550 the next available GP register, `fregno' is the next available FP
1551 register, and `words' is the number of words used on the stack.
1552
1553 The varargs/stdarg support requires that this structure's size
1554 be a multiple of sizeof(int). */
1555
1556 typedef struct rs6000_args
1557 {
1558 int words; /* # words used for passing GP registers */
1559 int fregno; /* next available FP register */
1560 int vregno; /* next available AltiVec register */
1561 int nargs_prototype; /* # args left in the current prototype */
1562 int prototype; /* Whether a prototype was defined */
1563 int stdarg; /* Whether function is a stdarg function. */
1564 int call_cookie; /* Do special things for this call */
1565 int sysv_gregno; /* next available GP register */
1566 int intoffset; /* running offset in struct (darwin64) */
1567 int use_stack; /* any part of struct on stack (darwin64) */
1568 int floats_in_gpr; /* count of SFmode floats taking up
1569 GPR space (darwin64) */
1570 int named; /* false for varargs params */
1571 int escapes; /* if function visible outside tu */
1572 int libcall; /* If this is a compiler generated call. */
1573 } CUMULATIVE_ARGS;
1574
1575 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1576 for a call to a function whose data type is FNTYPE.
1577 For a library call, FNTYPE is 0. */
1578
1579 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1580 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1581 N_NAMED_ARGS, FNDECL, VOIDmode)
1582
1583 /* Similar, but when scanning the definition of a procedure. We always
1584 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1585
1586 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1587 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1588 1000, current_function_decl, VOIDmode)
1589
1590 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1591
1592 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1593 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1594 0, NULL_TREE, MODE)
1595
1596 #define PAD_VARARGS_DOWN \
1597 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1598
1599 /* Output assembler code to FILE to increment profiler label # LABELNO
1600 for profiling a function entry. */
1601
1602 #define FUNCTION_PROFILER(FILE, LABELNO) \
1603 output_function_profiler ((FILE), (LABELNO));
1604
1605 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1606 the stack pointer does not matter. No definition is equivalent to
1607 always zero.
1608
1609 On the RS/6000, this is nonzero because we can restore the stack from
1610 its backpointer, which we maintain. */
1611 #define EXIT_IGNORE_STACK 1
1612
1613 /* Define this macro as a C expression that is nonzero for registers
1614 that are used by the epilogue or the return' pattern. The stack
1615 and frame pointer registers are already be assumed to be used as
1616 needed. */
1617
1618 #define EPILOGUE_USES(REGNO) \
1619 ((reload_completed && (REGNO) == LR_REGNO) \
1620 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1621 || (crtl->calls_eh_return \
1622 && TARGET_AIX \
1623 && (REGNO) == 2))
1624
1625 \f
1626 /* Length in units of the trampoline for entering a nested function. */
1627
1628 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1629 \f
1630 /* Definitions for __builtin_return_address and __builtin_frame_address.
1631 __builtin_return_address (0) should give link register (LR_REGNO), enable
1632 this. */
1633 /* This should be uncommented, so that the link register is used, but
1634 currently this would result in unmatched insns and spilling fixed
1635 registers so we'll leave it for another day. When these problems are
1636 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1637 (mrs) */
1638 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1639
1640 /* Number of bytes into the frame return addresses can be found. See
1641 rs6000_stack_info in rs6000.c for more information on how the different
1642 abi's store the return address. */
1643 #define RETURN_ADDRESS_OFFSET \
1644 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1645
1646 /* The current return address is in link register (65). The return address
1647 of anything farther back is accessed normally at an offset of 8 from the
1648 frame pointer. */
1649 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1650 (rs6000_return_addr (COUNT, FRAME))
1651
1652 \f
1653 /* Definitions for register eliminations.
1654
1655 We have two registers that can be eliminated on the RS/6000. First, the
1656 frame pointer register can often be eliminated in favor of the stack
1657 pointer register. Secondly, the argument pointer register can always be
1658 eliminated; it is replaced with either the stack or frame pointer.
1659
1660 In addition, we use the elimination mechanism to see if r30 is needed
1661 Initially we assume that it isn't. If it is, we spill it. This is done
1662 by making it an eliminable register. We replace it with itself so that
1663 if it isn't needed, then existing uses won't be modified. */
1664
1665 /* This is an array of structures. Each structure initializes one pair
1666 of eliminable registers. The "from" register number is given first,
1667 followed by "to". Eliminations of the same "from" register are listed
1668 in order of preference. */
1669 #define ELIMINABLE_REGS \
1670 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1671 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1672 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1673 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1674 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1675 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1676
1677 /* Define the offset between two registers, one to be eliminated, and the other
1678 its replacement, at the start of a routine. */
1679 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1680 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1681 \f
1682 /* Addressing modes, and classification of registers for them. */
1683
1684 #define HAVE_PRE_DECREMENT 1
1685 #define HAVE_PRE_INCREMENT 1
1686 #define HAVE_PRE_MODIFY_DISP 1
1687 #define HAVE_PRE_MODIFY_REG 1
1688
1689 /* Macros to check register numbers against specific register classes. */
1690
1691 /* These assume that REGNO is a hard or pseudo reg number.
1692 They give nonzero only if REGNO is a hard reg of the suitable class
1693 or a pseudo reg currently allocated to a suitable hard reg.
1694 Since they use reg_renumber, they are safe only once reg_renumber
1695 has been allocated, which happens in reginfo.c during register
1696 allocation. */
1697
1698 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1699 ((REGNO) < FIRST_PSEUDO_REGISTER \
1700 ? (REGNO) <= 31 || (REGNO) == 67 \
1701 || (REGNO) == FRAME_POINTER_REGNUM \
1702 : (reg_renumber[REGNO] >= 0 \
1703 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1704 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1705
1706 #define REGNO_OK_FOR_BASE_P(REGNO) \
1707 ((REGNO) < FIRST_PSEUDO_REGISTER \
1708 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1709 || (REGNO) == FRAME_POINTER_REGNUM \
1710 : (reg_renumber[REGNO] > 0 \
1711 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1712 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1713
1714 /* Nonzero if X is a hard reg that can be used as an index
1715 or if it is a pseudo reg in the non-strict case. */
1716 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1717 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1718 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1719
1720 /* Nonzero if X is a hard reg that can be used as a base reg
1721 or if it is a pseudo reg in the non-strict case. */
1722 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1723 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1724 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1725
1726 \f
1727 /* Maximum number of registers that can appear in a valid memory address. */
1728
1729 #define MAX_REGS_PER_ADDRESS 2
1730
1731 /* Recognize any constant value that is a valid address. */
1732
1733 #define CONSTANT_ADDRESS_P(X) \
1734 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1735 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1736 || GET_CODE (X) == HIGH)
1737
1738 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1739 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1740 && EASY_VECTOR_15((n) >> 1) \
1741 && ((n) & 1) == 0)
1742
1743 #define EASY_VECTOR_MSB(n,mode) \
1744 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
1745 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1746
1747 \f
1748 /* Try a machine-dependent way of reloading an illegitimate address
1749 operand. If we find one, push the reload and jump to WIN. This
1750 macro is used in only one place: `find_reloads_address' in reload.c.
1751
1752 Implemented on rs6000 by rs6000_legitimize_reload_address.
1753 Note that (X) is evaluated twice; this is safe in current usage. */
1754
1755 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1756 do { \
1757 int win; \
1758 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1759 (int)(TYPE), (IND_LEVELS), &win); \
1760 if ( win ) \
1761 goto WIN; \
1762 } while (0)
1763
1764 #define FIND_BASE_TERM rs6000_find_base_term
1765 \f
1766 /* The register number of the register used to address a table of
1767 static data addresses in memory. In some cases this register is
1768 defined by a processor's "application binary interface" (ABI).
1769 When this macro is defined, RTL is generated for this register
1770 once, as with the stack pointer and frame pointer registers. If
1771 this macro is not defined, it is up to the machine-dependent files
1772 to allocate such a register (if necessary). */
1773
1774 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1775 #define PIC_OFFSET_TABLE_REGNUM \
1776 (TARGET_TOC ? TOC_REGISTER \
1777 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1778 : INVALID_REGNUM)
1779
1780 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1781
1782 /* Define this macro if the register defined by
1783 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1784 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1785
1786 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1787
1788 /* A C expression that is nonzero if X is a legitimate immediate
1789 operand on the target machine when generating position independent
1790 code. You can assume that X satisfies `CONSTANT_P', so you need
1791 not check this. You can also assume FLAG_PIC is true, so you need
1792 not check it either. You need not define this macro if all
1793 constants (including `SYMBOL_REF') can be immediate operands when
1794 generating position independent code. */
1795
1796 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1797 \f
1798 /* Specify the machine mode that this machine uses
1799 for the index in the tablejump instruction. */
1800 #define CASE_VECTOR_MODE SImode
1801
1802 /* Define as C expression which evaluates to nonzero if the tablejump
1803 instruction expects the table to contain offsets from the address of the
1804 table.
1805 Do not define this if the table should contain absolute addresses. */
1806 #define CASE_VECTOR_PC_RELATIVE 1
1807
1808 /* Define this as 1 if `char' should by default be signed; else as 0. */
1809 #define DEFAULT_SIGNED_CHAR 0
1810
1811 /* An integer expression for the size in bits of the largest integer machine
1812 mode that should actually be used. */
1813
1814 /* Allow pairs of registers to be used, which is the intent of the default. */
1815 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1816
1817 /* Max number of bytes we can move from memory to memory
1818 in one reasonably fast instruction. */
1819 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1820 #define MAX_MOVE_MAX 8
1821
1822 /* Nonzero if access to memory by bytes is no faster than for words.
1823 Also nonzero if doing byte operations (specifically shifts) in registers
1824 is undesirable. */
1825 #define SLOW_BYTE_ACCESS 1
1826
1827 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1828 will either zero-extend or sign-extend. The value of this macro should
1829 be the code that says which one of the two operations is implicitly
1830 done, UNKNOWN if none. */
1831 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1832
1833 /* Define if loading short immediate values into registers sign extends. */
1834 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1835 \f
1836 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1837 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1838 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1839
1840 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1841 zero. The hardware instructions added in Power9 and the sequences using
1842 popcount return 32 or 64. */
1843 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1844 (TARGET_CTZ || TARGET_POPCNTD \
1845 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
1846 : ((VALUE) = -1, 2))
1847
1848 /* Specify the machine mode that pointers have.
1849 After generation of rtl, the compiler makes no further distinction
1850 between pointers and any other objects of this machine mode. */
1851 extern scalar_int_mode rs6000_pmode;
1852 #define Pmode rs6000_pmode
1853
1854 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1855 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1856
1857 /* Mode of a function address in a call instruction (for indexing purposes).
1858 Doesn't matter on RS/6000. */
1859 #define FUNCTION_MODE SImode
1860
1861 /* Define this if addresses of constant functions
1862 shouldn't be put through pseudo regs where they can be cse'd.
1863 Desirable on machines where ordinary constants are expensive
1864 but a CALL with constant address is cheap. */
1865 #define NO_FUNCTION_CSE 1
1866
1867 /* Define this to be nonzero if shift instructions ignore all but the low-order
1868 few bits.
1869
1870 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1871 have been dropped from the PowerPC architecture. */
1872 #define SHIFT_COUNT_TRUNCATED 0
1873
1874 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1875 should be adjusted to reflect any required changes. This macro is used when
1876 there is some systematic length adjustment required that would be difficult
1877 to express in the length attribute. */
1878
1879 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1880
1881 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1882 COMPARE, return the mode to be used for the comparison. For
1883 floating-point, CCFPmode should be used. CCUNSmode should be used
1884 for unsigned comparisons. CCEQmode should be used when we are
1885 doing an inequality comparison on the result of a
1886 comparison. CCmode should be used in all other cases. */
1887
1888 #define SELECT_CC_MODE(OP,X,Y) \
1889 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1890 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1891 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1892 ? CCEQmode : CCmode))
1893
1894 /* Can the condition code MODE be safely reversed? This is safe in
1895 all cases on this port, because at present it doesn't use the
1896 trapping FP comparisons (fcmpo). */
1897 #define REVERSIBLE_CC_MODE(MODE) 1
1898
1899 /* Given a condition code and a mode, return the inverse condition. */
1900 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1901
1902 \f
1903 /* Target cpu costs. */
1904
1905 struct processor_costs {
1906 const int mulsi; /* cost of SImode multiplication. */
1907 const int mulsi_const; /* cost of SImode multiplication by constant. */
1908 const int mulsi_const9; /* cost of SImode mult by short constant. */
1909 const int muldi; /* cost of DImode multiplication. */
1910 const int divsi; /* cost of SImode division. */
1911 const int divdi; /* cost of DImode division. */
1912 const int fp; /* cost of simple SFmode and DFmode insns. */
1913 const int dmul; /* cost of DFmode multiplication (and fmadd). */
1914 const int sdiv; /* cost of SFmode division (fdivs). */
1915 const int ddiv; /* cost of DFmode division (fdiv). */
1916 const int cache_line_size; /* cache line size in bytes. */
1917 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
1918 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
1919 const int simultaneous_prefetches; /* number of parallel prefetch
1920 operations. */
1921 const int sfdf_convert; /* cost of SF->DF conversion. */
1922 };
1923
1924 extern const struct processor_costs *rs6000_cost;
1925 \f
1926 /* Control the assembler format that we output. */
1927
1928 /* A C string constant describing how to begin a comment in the target
1929 assembler language. The compiler assumes that the comment will end at
1930 the end of the line. */
1931 #define ASM_COMMENT_START " #"
1932
1933 /* Flag to say the TOC is initialized */
1934 extern int toc_initialized;
1935
1936 /* Macro to output a special constant pool entry. Go to WIN if we output
1937 it. Otherwise, it is written the usual way.
1938
1939 On the RS/6000, toc entries are handled this way. */
1940
1941 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1942 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1943 { \
1944 output_toc (FILE, X, LABELNO, MODE); \
1945 goto WIN; \
1946 } \
1947 }
1948
1949 #ifdef HAVE_GAS_WEAK
1950 #define RS6000_WEAK 1
1951 #else
1952 #define RS6000_WEAK 0
1953 #endif
1954
1955 #if RS6000_WEAK
1956 /* Used in lieu of ASM_WEAKEN_LABEL. */
1957 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1958 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
1959 #endif
1960
1961 #if HAVE_GAS_WEAKREF
1962 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
1963 do \
1964 { \
1965 fputs ("\t.weakref\t", (FILE)); \
1966 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1967 fputs (", ", (FILE)); \
1968 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1969 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1970 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1971 { \
1972 fputs ("\n\t.weakref\t.", (FILE)); \
1973 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1974 fputs (", .", (FILE)); \
1975 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
1976 } \
1977 fputc ('\n', (FILE)); \
1978 } while (0)
1979 #endif
1980
1981 /* This implements the `alias' attribute. */
1982 #undef ASM_OUTPUT_DEF_FROM_DECLS
1983 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
1984 do \
1985 { \
1986 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
1987 const char *name = IDENTIFIER_POINTER (TARGET); \
1988 if (TREE_CODE (DECL) == FUNCTION_DECL \
1989 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1990 { \
1991 if (TREE_PUBLIC (DECL)) \
1992 { \
1993 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
1994 { \
1995 fputs ("\t.globl\t.", FILE); \
1996 RS6000_OUTPUT_BASENAME (FILE, alias); \
1997 putc ('\n', FILE); \
1998 } \
1999 } \
2000 else if (TARGET_XCOFF) \
2001 { \
2002 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2003 { \
2004 fputs ("\t.lglobl\t.", FILE); \
2005 RS6000_OUTPUT_BASENAME (FILE, alias); \
2006 putc ('\n', FILE); \
2007 fputs ("\t.lglobl\t", FILE); \
2008 RS6000_OUTPUT_BASENAME (FILE, alias); \
2009 putc ('\n', FILE); \
2010 } \
2011 } \
2012 fputs ("\t.set\t.", FILE); \
2013 RS6000_OUTPUT_BASENAME (FILE, alias); \
2014 fputs (",.", FILE); \
2015 RS6000_OUTPUT_BASENAME (FILE, name); \
2016 fputc ('\n', FILE); \
2017 } \
2018 ASM_OUTPUT_DEF (FILE, alias, name); \
2019 } \
2020 while (0)
2021
2022 #define TARGET_ASM_FILE_START rs6000_file_start
2023
2024 /* Output to assembler file text saying following lines
2025 may contain character constants, extra white space, comments, etc. */
2026
2027 #define ASM_APP_ON ""
2028
2029 /* Output to assembler file text saying following lines
2030 no longer contain unusual constructs. */
2031
2032 #define ASM_APP_OFF ""
2033
2034 /* How to refer to registers in assembler output.
2035 This sequence is indexed by compiler's hard-register-number (see above). */
2036
2037 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2038
2039 #define REGISTER_NAMES \
2040 { \
2041 &rs6000_reg_names[ 0][0], /* r0 */ \
2042 &rs6000_reg_names[ 1][0], /* r1 */ \
2043 &rs6000_reg_names[ 2][0], /* r2 */ \
2044 &rs6000_reg_names[ 3][0], /* r3 */ \
2045 &rs6000_reg_names[ 4][0], /* r4 */ \
2046 &rs6000_reg_names[ 5][0], /* r5 */ \
2047 &rs6000_reg_names[ 6][0], /* r6 */ \
2048 &rs6000_reg_names[ 7][0], /* r7 */ \
2049 &rs6000_reg_names[ 8][0], /* r8 */ \
2050 &rs6000_reg_names[ 9][0], /* r9 */ \
2051 &rs6000_reg_names[10][0], /* r10 */ \
2052 &rs6000_reg_names[11][0], /* r11 */ \
2053 &rs6000_reg_names[12][0], /* r12 */ \
2054 &rs6000_reg_names[13][0], /* r13 */ \
2055 &rs6000_reg_names[14][0], /* r14 */ \
2056 &rs6000_reg_names[15][0], /* r15 */ \
2057 &rs6000_reg_names[16][0], /* r16 */ \
2058 &rs6000_reg_names[17][0], /* r17 */ \
2059 &rs6000_reg_names[18][0], /* r18 */ \
2060 &rs6000_reg_names[19][0], /* r19 */ \
2061 &rs6000_reg_names[20][0], /* r20 */ \
2062 &rs6000_reg_names[21][0], /* r21 */ \
2063 &rs6000_reg_names[22][0], /* r22 */ \
2064 &rs6000_reg_names[23][0], /* r23 */ \
2065 &rs6000_reg_names[24][0], /* r24 */ \
2066 &rs6000_reg_names[25][0], /* r25 */ \
2067 &rs6000_reg_names[26][0], /* r26 */ \
2068 &rs6000_reg_names[27][0], /* r27 */ \
2069 &rs6000_reg_names[28][0], /* r28 */ \
2070 &rs6000_reg_names[29][0], /* r29 */ \
2071 &rs6000_reg_names[30][0], /* r30 */ \
2072 &rs6000_reg_names[31][0], /* r31 */ \
2073 \
2074 &rs6000_reg_names[32][0], /* fr0 */ \
2075 &rs6000_reg_names[33][0], /* fr1 */ \
2076 &rs6000_reg_names[34][0], /* fr2 */ \
2077 &rs6000_reg_names[35][0], /* fr3 */ \
2078 &rs6000_reg_names[36][0], /* fr4 */ \
2079 &rs6000_reg_names[37][0], /* fr5 */ \
2080 &rs6000_reg_names[38][0], /* fr6 */ \
2081 &rs6000_reg_names[39][0], /* fr7 */ \
2082 &rs6000_reg_names[40][0], /* fr8 */ \
2083 &rs6000_reg_names[41][0], /* fr9 */ \
2084 &rs6000_reg_names[42][0], /* fr10 */ \
2085 &rs6000_reg_names[43][0], /* fr11 */ \
2086 &rs6000_reg_names[44][0], /* fr12 */ \
2087 &rs6000_reg_names[45][0], /* fr13 */ \
2088 &rs6000_reg_names[46][0], /* fr14 */ \
2089 &rs6000_reg_names[47][0], /* fr15 */ \
2090 &rs6000_reg_names[48][0], /* fr16 */ \
2091 &rs6000_reg_names[49][0], /* fr17 */ \
2092 &rs6000_reg_names[50][0], /* fr18 */ \
2093 &rs6000_reg_names[51][0], /* fr19 */ \
2094 &rs6000_reg_names[52][0], /* fr20 */ \
2095 &rs6000_reg_names[53][0], /* fr21 */ \
2096 &rs6000_reg_names[54][0], /* fr22 */ \
2097 &rs6000_reg_names[55][0], /* fr23 */ \
2098 &rs6000_reg_names[56][0], /* fr24 */ \
2099 &rs6000_reg_names[57][0], /* fr25 */ \
2100 &rs6000_reg_names[58][0], /* fr26 */ \
2101 &rs6000_reg_names[59][0], /* fr27 */ \
2102 &rs6000_reg_names[60][0], /* fr28 */ \
2103 &rs6000_reg_names[61][0], /* fr29 */ \
2104 &rs6000_reg_names[62][0], /* fr30 */ \
2105 &rs6000_reg_names[63][0], /* fr31 */ \
2106 \
2107 &rs6000_reg_names[64][0], /* was mq */ \
2108 &rs6000_reg_names[65][0], /* lr */ \
2109 &rs6000_reg_names[66][0], /* ctr */ \
2110 &rs6000_reg_names[67][0], /* ap */ \
2111 \
2112 &rs6000_reg_names[68][0], /* cr0 */ \
2113 &rs6000_reg_names[69][0], /* cr1 */ \
2114 &rs6000_reg_names[70][0], /* cr2 */ \
2115 &rs6000_reg_names[71][0], /* cr3 */ \
2116 &rs6000_reg_names[72][0], /* cr4 */ \
2117 &rs6000_reg_names[73][0], /* cr5 */ \
2118 &rs6000_reg_names[74][0], /* cr6 */ \
2119 &rs6000_reg_names[75][0], /* cr7 */ \
2120 \
2121 &rs6000_reg_names[76][0], /* ca */ \
2122 \
2123 &rs6000_reg_names[77][0], /* v0 */ \
2124 &rs6000_reg_names[78][0], /* v1 */ \
2125 &rs6000_reg_names[79][0], /* v2 */ \
2126 &rs6000_reg_names[80][0], /* v3 */ \
2127 &rs6000_reg_names[81][0], /* v4 */ \
2128 &rs6000_reg_names[82][0], /* v5 */ \
2129 &rs6000_reg_names[83][0], /* v6 */ \
2130 &rs6000_reg_names[84][0], /* v7 */ \
2131 &rs6000_reg_names[85][0], /* v8 */ \
2132 &rs6000_reg_names[86][0], /* v9 */ \
2133 &rs6000_reg_names[87][0], /* v10 */ \
2134 &rs6000_reg_names[88][0], /* v11 */ \
2135 &rs6000_reg_names[89][0], /* v12 */ \
2136 &rs6000_reg_names[90][0], /* v13 */ \
2137 &rs6000_reg_names[91][0], /* v14 */ \
2138 &rs6000_reg_names[92][0], /* v15 */ \
2139 &rs6000_reg_names[93][0], /* v16 */ \
2140 &rs6000_reg_names[94][0], /* v17 */ \
2141 &rs6000_reg_names[95][0], /* v18 */ \
2142 &rs6000_reg_names[96][0], /* v19 */ \
2143 &rs6000_reg_names[97][0], /* v20 */ \
2144 &rs6000_reg_names[98][0], /* v21 */ \
2145 &rs6000_reg_names[99][0], /* v22 */ \
2146 &rs6000_reg_names[100][0], /* v23 */ \
2147 &rs6000_reg_names[101][0], /* v24 */ \
2148 &rs6000_reg_names[102][0], /* v25 */ \
2149 &rs6000_reg_names[103][0], /* v26 */ \
2150 &rs6000_reg_names[104][0], /* v27 */ \
2151 &rs6000_reg_names[105][0], /* v28 */ \
2152 &rs6000_reg_names[106][0], /* v29 */ \
2153 &rs6000_reg_names[107][0], /* v30 */ \
2154 &rs6000_reg_names[108][0], /* v31 */ \
2155 &rs6000_reg_names[109][0], /* vrsave */ \
2156 &rs6000_reg_names[110][0], /* vscr */ \
2157 &rs6000_reg_names[111][0], /* sfp */ \
2158 &rs6000_reg_names[112][0], /* tfhar */ \
2159 &rs6000_reg_names[113][0], /* tfiar */ \
2160 &rs6000_reg_names[114][0], /* texasr */ \
2161 }
2162
2163 /* Table of additional register names to use in user input. */
2164
2165 #define ADDITIONAL_REGISTER_NAMES \
2166 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2167 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2168 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2169 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2170 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2171 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2172 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2173 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2174 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2175 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2176 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2177 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2178 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2179 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2180 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2181 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2182 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2183 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2184 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2185 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2186 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2187 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2188 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2189 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2190 {"vrsave", 109}, {"vscr", 110}, \
2191 /* no additional names for: lr, ctr, ap */ \
2192 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2193 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2194 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2195 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2196 {"xer", 76}, \
2197 /* VSX registers overlaid on top of FR, Altivec registers */ \
2198 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2199 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2200 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2201 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2202 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2203 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2204 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2205 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2206 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2207 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2208 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2209 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2210 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2211 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2212 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2213 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2214 /* Transactional Memory Facility (HTM) Registers. */ \
2215 {"tfhar", 112}, {"tfiar", 113}, {"texasr", 114}, \
2216 }
2217
2218 /* This is how to output an element of a case-vector that is relative. */
2219
2220 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2221 do { char buf[100]; \
2222 fputs ("\t.long ", FILE); \
2223 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2224 assemble_name (FILE, buf); \
2225 putc ('-', FILE); \
2226 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2227 assemble_name (FILE, buf); \
2228 putc ('\n', FILE); \
2229 } while (0)
2230
2231 /* This is how to output an assembler line
2232 that says to advance the location counter
2233 to a multiple of 2**LOG bytes. */
2234
2235 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2236 if ((LOG) != 0) \
2237 fprintf (FILE, "\t.align %d\n", (LOG))
2238
2239 /* How to align the given loop. */
2240 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2241
2242 /* Alignment guaranteed by __builtin_malloc. */
2243 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2244 However, specifying the stronger guarantee currently leads to
2245 a regression in SPEC CPU2006 437.leslie3d. The stronger
2246 guarantee should be implemented here once that's fixed. */
2247 #define MALLOC_ABI_ALIGNMENT (64)
2248
2249 /* Pick up the return address upon entry to a procedure. Used for
2250 dwarf2 unwind information. This also enables the table driven
2251 mechanism. */
2252
2253 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2254 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2255
2256 /* Describe how we implement __builtin_eh_return. */
2257 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2258 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2259
2260 /* Print operand X (an rtx) in assembler syntax to file FILE.
2261 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2262 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2263
2264 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2265
2266 /* Define which CODE values are valid. */
2267
2268 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2269
2270 /* Print a memory address as an operand to reference that memory location. */
2271
2272 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2273
2274 /* For switching between functions with different target attributes. */
2275 #define SWITCHABLE_TARGET 1
2276
2277 /* uncomment for disabling the corresponding default options */
2278 /* #define MACHINE_no_sched_interblock */
2279 /* #define MACHINE_no_sched_speculative */
2280 /* #define MACHINE_no_sched_speculative_load */
2281
2282 /* General flags. */
2283 extern int frame_pointer_needed;
2284
2285 /* Classification of the builtin functions as to which switches enable the
2286 builtin, and what attributes it should have. We used to use the target
2287 flags macros, but we've run out of bits, so we now map the options into new
2288 settings used here. */
2289
2290 /* Builtin attributes. */
2291 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2292 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2293 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2294 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2295 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2296 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2297 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2298 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2299
2300 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2301 #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2302 modifies global state. */
2303 #define RS6000_BTC_PURE 0x00000200 /* reads global
2304 state/mem and does
2305 not modify global state. */
2306 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2307 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2308
2309 /* Miscellaneous information. */
2310 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2311 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2312 #define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2313 #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
2314 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2315
2316 /* Convenience macros to document the instruction type. */
2317 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2318 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2319
2320 /* Builtin targets. For now, we reuse the masks for those options that are in
2321 target flags, and pick a random bit for ldbl128, which isn't in
2322 target_flags. */
2323 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2324 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2325 #define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
2326 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2327 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2328 #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
2329 #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
2330 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2331 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2332 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2333 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2334 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2335 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2336 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2337 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2338 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2339 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2340 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2341 #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
2342 #define RS6000_BTM_POWERPC64 MASK_POWERPC64 /* 64-bit registers. */
2343 #define RS6000_BTM_FLOAT128 MASK_FLOAT128_KEYWORD /* IEEE 128-bit float. */
2344 #define RS6000_BTM_FLOAT128_HW MASK_FLOAT128_HW /* IEEE 128-bit float h/w. */
2345
2346 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2347 | RS6000_BTM_VSX \
2348 | RS6000_BTM_P8_VECTOR \
2349 | RS6000_BTM_P9_VECTOR \
2350 | RS6000_BTM_P9_MISC \
2351 | RS6000_BTM_MODULO \
2352 | RS6000_BTM_CRYPTO \
2353 | RS6000_BTM_FRE \
2354 | RS6000_BTM_FRES \
2355 | RS6000_BTM_FRSQRTE \
2356 | RS6000_BTM_FRSQRTES \
2357 | RS6000_BTM_HTM \
2358 | RS6000_BTM_POPCNTD \
2359 | RS6000_BTM_CELL \
2360 | RS6000_BTM_DFP \
2361 | RS6000_BTM_HARD_FLOAT \
2362 | RS6000_BTM_LDBL128 \
2363 | RS6000_BTM_POWERPC64 \
2364 | RS6000_BTM_FLOAT128 \
2365 | RS6000_BTM_FLOAT128_HW)
2366
2367 /* Define builtin enum index. */
2368
2369 #undef RS6000_BUILTIN_0
2370 #undef RS6000_BUILTIN_1
2371 #undef RS6000_BUILTIN_2
2372 #undef RS6000_BUILTIN_3
2373 #undef RS6000_BUILTIN_A
2374 #undef RS6000_BUILTIN_D
2375 #undef RS6000_BUILTIN_H
2376 #undef RS6000_BUILTIN_P
2377 #undef RS6000_BUILTIN_X
2378
2379 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2380 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2381 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2382 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2383 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2384 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2385 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2386 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2387 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2388
2389 enum rs6000_builtins
2390 {
2391 #include "rs6000-builtin.def"
2392
2393 RS6000_BUILTIN_COUNT
2394 };
2395
2396 #undef RS6000_BUILTIN_0
2397 #undef RS6000_BUILTIN_1
2398 #undef RS6000_BUILTIN_2
2399 #undef RS6000_BUILTIN_3
2400 #undef RS6000_BUILTIN_A
2401 #undef RS6000_BUILTIN_D
2402 #undef RS6000_BUILTIN_H
2403 #undef RS6000_BUILTIN_P
2404 #undef RS6000_BUILTIN_X
2405
2406 enum rs6000_builtin_type_index
2407 {
2408 RS6000_BTI_NOT_OPAQUE,
2409 RS6000_BTI_opaque_V4SI,
2410 RS6000_BTI_V16QI, /* __vector signed char */
2411 RS6000_BTI_V1TI,
2412 RS6000_BTI_V2DI,
2413 RS6000_BTI_V2DF,
2414 RS6000_BTI_V4HI,
2415 RS6000_BTI_V4SI,
2416 RS6000_BTI_V4SF,
2417 RS6000_BTI_V8HI,
2418 RS6000_BTI_unsigned_V16QI, /* __vector unsigned char */
2419 RS6000_BTI_unsigned_V1TI,
2420 RS6000_BTI_unsigned_V8HI,
2421 RS6000_BTI_unsigned_V4SI,
2422 RS6000_BTI_unsigned_V2DI,
2423 RS6000_BTI_bool_char, /* __bool char */
2424 RS6000_BTI_bool_short, /* __bool short */
2425 RS6000_BTI_bool_int, /* __bool int */
2426 RS6000_BTI_bool_long_long, /* __bool long long */
2427 RS6000_BTI_pixel, /* __pixel (16 bits arranged as 4
2428 channels of 1, 5, 5, and 5 bits
2429 respectively as packed with the
2430 vpkpx insn. __pixel is only
2431 meaningful as a vector type.
2432 There is no corresponding scalar
2433 __pixel data type.) */
2434 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2435 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2436 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2437 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2438 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2439 RS6000_BTI_long, /* long_integer_type_node */
2440 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2441 RS6000_BTI_long_long, /* long_long_integer_type_node */
2442 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2443 RS6000_BTI_INTQI, /* (signed) intQI_type_node */
2444 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2445 RS6000_BTI_INTHI, /* intHI_type_node */
2446 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2447 RS6000_BTI_INTSI, /* intSI_type_node (signed) */
2448 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2449 RS6000_BTI_INTDI, /* intDI_type_node */
2450 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2451 RS6000_BTI_INTTI, /* intTI_type_node */
2452 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2453 RS6000_BTI_float, /* float_type_node */
2454 RS6000_BTI_double, /* double_type_node */
2455 RS6000_BTI_long_double, /* long_double_type_node */
2456 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2457 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2458 RS6000_BTI_void, /* void_type_node */
2459 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2460 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2461 RS6000_BTI_const_str, /* pointer to const char * */
2462 RS6000_BTI_MAX
2463 };
2464
2465
2466 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2467 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2468 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2469 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2470 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2471 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2472 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2473 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2474 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2475 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2476 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2477 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2478 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2479 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2480 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2481 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2482 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2483 #define bool_long_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long_long])
2484 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2485 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2486 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2487 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2488 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2489 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2490
2491 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2492 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2493 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2494 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2495 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2496 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2497 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2498 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2499 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2500 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2501 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2502 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2503 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2504 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2505 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2506 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2507 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2508 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2509 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2510 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2511 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2512 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2513 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2514
2515 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2516 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2517
2518 #define TARGET_SUPPORTS_WIDE_INT 1
2519
2520 #if (GCC_VERSION >= 3000)
2521 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2522 #endif