]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/rs6000/rs6000.h
584d68004652608da8362ddef0c695366186002f
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
28
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32
33 /* Definitions for the object file format. These are set at
34 compile-time. */
35
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
40
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
45
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
49
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
53
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
57
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
62
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
69
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
73
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
79
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
85
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
91
92 #ifdef HAVE_AS_POWER8
93 #define ASM_CPU_POWER8_SPEC "-mpower8"
94 #else
95 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
96 #endif
97
98 #ifdef HAVE_AS_POWER9
99 #define ASM_CPU_POWER9_SPEC "-mpower9"
100 #else
101 #define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102 #endif
103
104 #ifdef HAVE_AS_DCI
105 #define ASM_CPU_476_SPEC "-m476"
106 #else
107 #define ASM_CPU_476_SPEC "-mpower4"
108 #endif
109
110 /* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
114 #define ASM_CPU_SPEC \
115 "%{!mcpu*: \
116 %{mpowerpc64*: -mppc64} \
117 %{!mpowerpc64*: %(asm_default)}} \
118 %{mcpu=native: %(asm_cpu_native)} \
119 %{mcpu=cell: -mcell} \
120 %{mcpu=power3: -mppc64} \
121 %{mcpu=power4: -mpower4} \
122 %{mcpu=power5: %(asm_cpu_power5)} \
123 %{mcpu=power5+: %(asm_cpu_power5)} \
124 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
126 %{mcpu=power7: %(asm_cpu_power7)} \
127 %{mcpu=power8: %(asm_cpu_power8)} \
128 %{mcpu=power9: %(asm_cpu_power9)} \
129 %{mcpu=a2: -ma2} \
130 %{mcpu=powerpc: -mppc} \
131 %{mcpu=powerpc64le: %(asm_cpu_power8)} \
132 %{mcpu=rs64a: -mppc64} \
133 %{mcpu=401: -mppc} \
134 %{mcpu=403: -m403} \
135 %{mcpu=405: -m405} \
136 %{mcpu=405fp: -m405} \
137 %{mcpu=440: -m440} \
138 %{mcpu=440fp: -m440} \
139 %{mcpu=464: -m440} \
140 %{mcpu=464fp: -m440} \
141 %{mcpu=476: %(asm_cpu_476)} \
142 %{mcpu=476fp: %(asm_cpu_476)} \
143 %{mcpu=505: -mppc} \
144 %{mcpu=601: -m601} \
145 %{mcpu=602: -mppc} \
146 %{mcpu=603: -mppc} \
147 %{mcpu=603e: -mppc} \
148 %{mcpu=ec603e: -mppc} \
149 %{mcpu=604: -mppc} \
150 %{mcpu=604e: -mppc} \
151 %{mcpu=620: -mppc64} \
152 %{mcpu=630: -mppc64} \
153 %{mcpu=740: -mppc} \
154 %{mcpu=750: -mppc} \
155 %{mcpu=G3: -mppc} \
156 %{mcpu=7400: -mppc -maltivec} \
157 %{mcpu=7450: -mppc -maltivec} \
158 %{mcpu=G4: -mppc -maltivec} \
159 %{mcpu=801: -mppc} \
160 %{mcpu=821: -mppc} \
161 %{mcpu=823: -mppc} \
162 %{mcpu=860: -mppc} \
163 %{mcpu=970: -mpower4 -maltivec} \
164 %{mcpu=G5: -mpower4 -maltivec} \
165 %{mcpu=8540: -me500} \
166 %{mcpu=8548: -me500} \
167 %{mcpu=e300c2: -me300} \
168 %{mcpu=e300c3: -me300} \
169 %{mcpu=e500mc: -me500mc} \
170 %{mcpu=e500mc64: -me500mc64} \
171 %{mcpu=e5500: -me5500} \
172 %{mcpu=e6500: -me6500} \
173 %{maltivec: -maltivec} \
174 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
175 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
176 -many"
177
178 #define CPP_DEFAULT_SPEC ""
179
180 #define ASM_DEFAULT_SPEC ""
181
182 /* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
185
186 Each subgrouping contains a string constant, that defines the
187 specification name, and a string constant that used by the GCC driver
188 program.
189
190 Do not define this macro if it does not need to do anything. */
191
192 #define SUBTARGET_EXTRA_SPECS
193
194 #define EXTRA_SPECS \
195 { "cpp_default", CPP_DEFAULT_SPEC }, \
196 { "asm_cpu", ASM_CPU_SPEC }, \
197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
198 { "asm_default", ASM_DEFAULT_SPEC }, \
199 { "cc1_cpu", CC1_CPU_SPEC }, \
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
206 SUBTARGET_EXTRA_SPECS
207
208 /* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212 /* In driver-rs6000.c. */
213 extern const char *host_detect_local_cpu (int argc, const char **argv);
214 #define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216 #define HAVE_LOCAL_CPU_DETECT
217 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
218
219 #else
220 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
221 #endif
222
223 #ifndef CC1_CPU_SPEC
224 #ifdef HAVE_LOCAL_CPU_DETECT
225 #define CC1_CPU_SPEC \
226 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
228 #else
229 #define CC1_CPU_SPEC ""
230 #endif
231 #endif
232
233 /* Architecture type. */
234
235 /* Define TARGET_MFCRF if the target assembler does not support the
236 optional field operand for mfcr. */
237
238 #ifndef HAVE_AS_MFCRF
239 #undef TARGET_MFCRF
240 #define TARGET_MFCRF 0
241 #endif
242
243 /* Define TARGET_POPCNTB if the target assembler does not support the
244 popcount byte instruction. */
245
246 #ifndef HAVE_AS_POPCNTB
247 #undef TARGET_POPCNTB
248 #define TARGET_POPCNTB 0
249 #endif
250
251 /* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
253
254 #ifndef HAVE_AS_FPRND
255 #undef TARGET_FPRND
256 #define TARGET_FPRND 0
257 #endif
258
259 /* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
261
262 #ifndef HAVE_AS_CMPB
263 #undef TARGET_CMPB
264 #define TARGET_CMPB 0
265 #endif
266
267 /* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
269
270 #ifndef HAVE_AS_MFPGPR
271 #undef TARGET_MFPGPR
272 #define TARGET_MFPGPR 0
273 #endif
274
275 /* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277 #ifndef HAVE_AS_DFP
278 #undef TARGET_DFP
279 #define TARGET_DFP 0
280 #endif
281
282 /* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
284
285 #ifndef HAVE_AS_POPCNTD
286 #undef TARGET_POPCNTD
287 #define TARGET_POPCNTD 0
288 #endif
289
290 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
293
294 #ifndef HAVE_AS_POWER8
295 #undef TARGET_DIRECT_MOVE
296 #undef TARGET_CRYPTO
297 #undef TARGET_HTM
298 #undef TARGET_P8_VECTOR
299 #define TARGET_DIRECT_MOVE 0
300 #define TARGET_CRYPTO 0
301 #define TARGET_HTM 0
302 #define TARGET_P8_VECTOR 0
303 #endif
304
305 /* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
309
310 #ifndef HAVE_AS_POWER9
311 #undef TARGET_FLOAT128_HW
312 #undef TARGET_MODULO
313 #undef TARGET_P9_VECTOR
314 #undef TARGET_P9_MINMAX
315 #undef TARGET_P9_DFORM_SCALAR
316 #undef TARGET_P9_DFORM_VECTOR
317 #undef TARGET_P9_MISC
318 #define TARGET_FLOAT128_HW 0
319 #define TARGET_MODULO 0
320 #define TARGET_P9_VECTOR 0
321 #define TARGET_P9_MINMAX 0
322 #define TARGET_P9_DFORM_SCALAR 0
323 #define TARGET_P9_DFORM_VECTOR 0
324 #define TARGET_P9_MISC 0
325 #endif
326
327 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
328 not, generate the lwsync code as an integer constant. */
329 #ifdef HAVE_AS_LWSYNC
330 #define TARGET_LWSYNC_INSTRUCTION 1
331 #else
332 #define TARGET_LWSYNC_INSTRUCTION 0
333 #endif
334
335 /* Define TARGET_TLS_MARKERS if the target assembler does not support
336 arg markers for __tls_get_addr calls. */
337 #ifndef HAVE_AS_TLS_MARKERS
338 #undef TARGET_TLS_MARKERS
339 #define TARGET_TLS_MARKERS 0
340 #else
341 #define TARGET_TLS_MARKERS tls_markers
342 #endif
343
344 #ifndef TARGET_SECURE_PLT
345 #define TARGET_SECURE_PLT 0
346 #endif
347
348 #ifndef TARGET_CMODEL
349 #define TARGET_CMODEL CMODEL_SMALL
350 #endif
351
352 #define TARGET_32BIT (! TARGET_64BIT)
353
354 #ifndef HAVE_AS_TLS
355 #define HAVE_AS_TLS 0
356 #endif
357
358 #ifndef TARGET_LINK_STACK
359 #define TARGET_LINK_STACK 0
360 #endif
361
362 #ifndef SET_TARGET_LINK_STACK
363 #define SET_TARGET_LINK_STACK(X) do { } while (0)
364 #endif
365
366 #ifndef TARGET_FLOAT128_ENABLE_TYPE
367 #define TARGET_FLOAT128_ENABLE_TYPE 0
368 #endif
369
370 /* Return 1 for a symbol ref for a thread-local storage symbol. */
371 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
372 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
373
374 #ifdef IN_LIBGCC2
375 /* For libgcc2 we make sure this is a compile time constant */
376 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
377 #undef TARGET_POWERPC64
378 #define TARGET_POWERPC64 1
379 #else
380 #undef TARGET_POWERPC64
381 #define TARGET_POWERPC64 0
382 #endif
383 #else
384 /* The option machinery will define this. */
385 #endif
386
387 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
388
389 /* FPU operations supported.
390 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
391 also test TARGET_HARD_FLOAT. */
392 #define TARGET_SINGLE_FLOAT 1
393 #define TARGET_DOUBLE_FLOAT 1
394 #define TARGET_SINGLE_FPU 0
395 #define TARGET_SIMPLE_FPU 0
396 #define TARGET_XILINX_FPU 0
397
398 /* Recast the processor type to the cpu attribute. */
399 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
400
401 /* Define generic processor types based upon current deployment. */
402 #define PROCESSOR_COMMON PROCESSOR_PPC601
403 #define PROCESSOR_POWERPC PROCESSOR_PPC604
404 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
405
406 /* Define the default processor. This is overridden by other tm.h files. */
407 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
408 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
409
410 /* Specify the dialect of assembler to use. Only new mnemonics are supported
411 starting with GCC 4.8, i.e. just one dialect, but for backwards
412 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
413 defined. */
414 #define ASSEMBLER_DIALECT 1
415
416 /* Debug support */
417 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
418 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
419 #define MASK_DEBUG_REG 0x04 /* debug register handling */
420 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
421 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
422 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
423 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
424 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
425 | MASK_DEBUG_ARG \
426 | MASK_DEBUG_REG \
427 | MASK_DEBUG_ADDR \
428 | MASK_DEBUG_COST \
429 | MASK_DEBUG_TARGET \
430 | MASK_DEBUG_BUILTIN)
431
432 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
433 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
434 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
435 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
436 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
437 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
438 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
439
440 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
441 long double format that uses a pair of doubles, or IEEE 128-bit floating
442 point. KFmode was added as a way to represent IEEE 128-bit floating point,
443 even if the default for long double is the IBM long double format.
444 Similarly IFmode is the IBM long double format even if the default is IEEE
445 128-bit. Don't allow IFmode if -msoft-float. */
446 #define FLOAT128_IEEE_P(MODE) \
447 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
448 || ((MODE) == KFmode) || ((MODE) == KCmode))
449
450 #define FLOAT128_IBM_P(MODE) \
451 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
452 || (TARGET_HARD_FLOAT && TARGET_FPRS \
453 && ((MODE) == IFmode || (MODE) == ICmode)))
454
455 /* Helper macros to say whether a 128-bit floating point type can go in a
456 single vector register, or whether it needs paired scalar values. */
457 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
458
459 #define FLOAT128_2REG_P(MODE) \
460 (FLOAT128_IBM_P (MODE) \
461 || ((MODE) == TDmode) \
462 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
463
464 /* Return true for floating point that does not use a vector register. */
465 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
466 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
467
468 /* Describe the vector unit used for arithmetic operations. */
469 extern enum rs6000_vector rs6000_vector_unit[];
470
471 #define VECTOR_UNIT_NONE_P(MODE) \
472 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
473
474 #define VECTOR_UNIT_VSX_P(MODE) \
475 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
476
477 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
478 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
479
480 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
481 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
482
483 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
484 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
485 (int)VECTOR_VSX, \
486 (int)VECTOR_P8_VECTOR))
487
488 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
489 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
490 compatible, so allow it as well, rather than changing all of the uses of the
491 macro. */
492 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
493 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
494 (int)VECTOR_ALTIVEC, \
495 (int)VECTOR_P8_VECTOR))
496
497 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
498 same unit as the vector unit we are using, but we may want to migrate to
499 using VSX style loads even for types handled by altivec. */
500 extern enum rs6000_vector rs6000_vector_mem[];
501
502 #define VECTOR_MEM_NONE_P(MODE) \
503 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
504
505 #define VECTOR_MEM_VSX_P(MODE) \
506 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
507
508 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
509 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
510
511 #define VECTOR_MEM_ALTIVEC_P(MODE) \
512 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
513
514 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
515 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
516 (int)VECTOR_VSX, \
517 (int)VECTOR_P8_VECTOR))
518
519 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
520 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
521 (int)VECTOR_ALTIVEC, \
522 (int)VECTOR_P8_VECTOR))
523
524 /* Return the alignment of a given vector type, which is set based on the
525 vector unit use. VSX for instance can load 32 or 64 bit aligned words
526 without problems, while Altivec requires 128-bit aligned vectors. */
527 extern int rs6000_vector_align[];
528
529 #define VECTOR_ALIGN(MODE) \
530 ((rs6000_vector_align[(MODE)] != 0) \
531 ? rs6000_vector_align[(MODE)] \
532 : (int)GET_MODE_BITSIZE ((MODE)))
533
534 /* Determine the element order to use for vector instructions. By
535 default we use big-endian element order when targeting big-endian,
536 and little-endian element order when targeting little-endian. For
537 programs being ported from BE Power to LE Power, it can sometimes
538 be useful to use big-endian element order when targeting little-endian.
539 This is set via -maltivec=be, for example. */
540 #define VECTOR_ELT_ORDER_BIG \
541 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
542
543 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
544 with scalar instructions. */
545 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
546
547 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
548 with the ISA 3.0 MFVSRLD instructions. */
549 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
550
551 /* Alignment options for fields in structures for sub-targets following
552 AIX-like ABI.
553 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
554 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
555
556 Override the macro definitions when compiling libobjc to avoid undefined
557 reference to rs6000_alignment_flags due to library's use of GCC alignment
558 macros which use the macros below. */
559
560 #ifndef IN_TARGET_LIBS
561 #define MASK_ALIGN_POWER 0x00000000
562 #define MASK_ALIGN_NATURAL 0x00000001
563 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
564 #else
565 #define TARGET_ALIGN_NATURAL 0
566 #endif
567
568 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
569 #define TARGET_IEEEQUAD rs6000_ieeequad
570 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
571 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
572
573 #define TARGET_SPE_ABI 0
574 #define TARGET_SPE 0
575 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
576 #define TARGET_FPRS 1
577 #define TARGET_E500_SINGLE 0
578 #define TARGET_E500_DOUBLE 0
579 #define CHECK_E500_OPTIONS do { } while (0)
580
581 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
582 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
583 XILINX. */
584 #define TARGET_FCFID (TARGET_POWERPC64 \
585 || TARGET_PPC_GPOPT /* 970/power4 */ \
586 || TARGET_POPCNTB /* ISA 2.02 */ \
587 || TARGET_CMPB /* ISA 2.05 */ \
588 || TARGET_POPCNTD /* ISA 2.06 */ \
589 || TARGET_XILINX_FPU)
590
591 #define TARGET_FCTIDZ TARGET_FCFID
592 #define TARGET_STFIWX TARGET_PPC_GFXOPT
593 #define TARGET_LFIWAX TARGET_CMPB
594 #define TARGET_LFIWZX TARGET_POPCNTD
595 #define TARGET_FCFIDS TARGET_POPCNTD
596 #define TARGET_FCFIDU TARGET_POPCNTD
597 #define TARGET_FCFIDUS TARGET_POPCNTD
598 #define TARGET_FCTIDUZ TARGET_POPCNTD
599 #define TARGET_FCTIWUZ TARGET_POPCNTD
600 #define TARGET_CTZ TARGET_MODULO
601 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
602 #define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
603
604 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
605 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
606 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
607 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
608 && TARGET_POWERPC64)
609 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
610 && TARGET_UPPER_REGS_DI && TARGET_POWERPC64)
611 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
612 loads are slow. */
613 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
614
615 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
616 in power7, so conditionalize them on p8 features. TImode syncs need quad
617 memory support. */
618 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
619 || TARGET_QUAD_MEMORY_ATOMIC \
620 || TARGET_DIRECT_MOVE)
621
622 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
623
624 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
625 to allocate the SDmode stack slot to get the value into the proper location
626 in the register. */
627 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
628
629 /* ISA 3.0 has new min/max functions that don't need fast math that are being
630 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
631 answers if the arguments are not in the normal range. */
632 #define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
633 && (TARGET_P9_MINMAX || !flag_trapping_math))
634
635 #define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
636 && (TARGET_P9_MINMAX || !flag_trapping_math))
637
638 /* In switching from using target_flags to using rs6000_isa_flags, the options
639 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
640 OPTION_MASK_<xxx> back into MASK_<xxx>. */
641 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
642 #define MASK_CMPB OPTION_MASK_CMPB
643 #define MASK_CRYPTO OPTION_MASK_CRYPTO
644 #define MASK_DFP OPTION_MASK_DFP
645 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
646 #define MASK_DLMZB OPTION_MASK_DLMZB
647 #define MASK_EABI OPTION_MASK_EABI
648 #define MASK_FLOAT128_TYPE OPTION_MASK_FLOAT128_TYPE
649 #define MASK_FPRND OPTION_MASK_FPRND
650 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
651 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
652 #define MASK_HTM OPTION_MASK_HTM
653 #define MASK_ISEL OPTION_MASK_ISEL
654 #define MASK_MFCRF OPTION_MASK_MFCRF
655 #define MASK_MFPGPR OPTION_MASK_MFPGPR
656 #define MASK_MULHW OPTION_MASK_MULHW
657 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
658 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
659 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
660 #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
661 #define MASK_P9_MISC OPTION_MASK_P9_MISC
662 #define MASK_POPCNTB OPTION_MASK_POPCNTB
663 #define MASK_POPCNTD OPTION_MASK_POPCNTD
664 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
665 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
666 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
667 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
668 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
669 #define MASK_STRING OPTION_MASK_STRING
670 #define MASK_UPDATE OPTION_MASK_UPDATE
671 #define MASK_VSX OPTION_MASK_VSX
672 #define MASK_VSX_TIMODE OPTION_MASK_VSX_TIMODE
673
674 #ifndef IN_LIBGCC2
675 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
676 #endif
677
678 #ifdef TARGET_64BIT
679 #define MASK_64BIT OPTION_MASK_64BIT
680 #endif
681
682 #ifdef TARGET_LITTLE_ENDIAN
683 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
684 #endif
685
686 #ifdef TARGET_REGNAMES
687 #define MASK_REGNAMES OPTION_MASK_REGNAMES
688 #endif
689
690 #ifdef TARGET_PROTOTYPE
691 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
692 #endif
693
694 #ifdef TARGET_MODULO
695 #define RS6000_BTM_MODULO OPTION_MASK_MODULO
696 #endif
697
698
699 /* For power systems, we want to enable Altivec and VSX builtins even if the
700 user did not use -maltivec or -mvsx to allow the builtins to be used inside
701 of #pragma GCC target or the target attribute to change the code level for a
702 given system. The SPE and Paired builtins are only enabled if you configure
703 the compiler for those builtins, and those machines don't support altivec or
704 VSX. */
705
706 #define TARGET_EXTRA_BUILTINS (!TARGET_SPE && !TARGET_PAIRED_FLOAT \
707 && ((TARGET_POWERPC64 \
708 || TARGET_PPC_GPOPT /* 970/power4 */ \
709 || TARGET_POPCNTB /* ISA 2.02 */ \
710 || TARGET_CMPB /* ISA 2.05 */ \
711 || TARGET_POPCNTD /* ISA 2.06 */ \
712 || TARGET_ALTIVEC \
713 || TARGET_VSX \
714 || TARGET_HARD_FLOAT)))
715
716 /* E500 cores only support plain "sync", not lwsync. */
717 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
718 || rs6000_cpu == PROCESSOR_PPC8548)
719
720
721 /* Whether SF/DF operations are supported on the E500. */
722 #define TARGET_SF_SPE (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT \
723 && !TARGET_FPRS)
724
725 #define TARGET_DF_SPE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
726 && !TARGET_FPRS && TARGET_E500_DOUBLE)
727
728 /* Whether SF/DF operations are supported by the normal floating point unit
729 (or the vector/scalar unit). */
730 #define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
731 && TARGET_SINGLE_FLOAT)
732
733 #define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_FPRS \
734 && TARGET_DOUBLE_FLOAT)
735
736 /* Whether SF/DF operations are supported by any hardware. */
737 #define TARGET_SF_INSN (TARGET_SF_FPR || TARGET_SF_SPE)
738 #define TARGET_DF_INSN (TARGET_DF_FPR || TARGET_DF_SPE)
739
740 /* Which machine supports the various reciprocal estimate instructions. */
741 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
742 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
743
744 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_FPRS \
745 && TARGET_DOUBLE_FLOAT \
746 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
747
748 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
749 && TARGET_FPRS && TARGET_SINGLE_FLOAT)
750
751 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_FPRS \
752 && TARGET_DOUBLE_FLOAT \
753 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
754
755 /* Conditions to allow TOC fusion for loading/storing integers. */
756 #define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
757 && TARGET_TOC_FUSION \
758 && (TARGET_CMODEL != CMODEL_SMALL) \
759 && TARGET_POWERPC64)
760
761 /* Conditions to allow TOC fusion for loading/storing floating point. */
762 #define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
763 && TARGET_TOC_FUSION \
764 && (TARGET_CMODEL != CMODEL_SMALL) \
765 && TARGET_POWERPC64 \
766 && TARGET_HARD_FLOAT \
767 && TARGET_FPRS \
768 && TARGET_SINGLE_FLOAT \
769 && TARGET_DOUBLE_FLOAT)
770
771 /* Macro to say whether we can do optimizations where we need to do parts of
772 the calculation in 64-bit GPRs and then is transfered to the vector
773 registers. Do not allow -maltivec=be for these optimizations, because it
774 adds to the complexity of the code. */
775 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
776 && TARGET_P8_VECTOR \
777 && TARGET_POWERPC64 \
778 && TARGET_UPPER_REGS_DI \
779 && (rs6000_altivec_element_order != 2))
780
781 /* Whether the various reciprocal divide/square root estimate instructions
782 exist, and whether we should automatically generate code for the instruction
783 by default. */
784 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
785 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
786 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
787 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
788
789 extern unsigned char rs6000_recip_bits[];
790
791 #define RS6000_RECIP_HAVE_RE_P(MODE) \
792 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
793
794 #define RS6000_RECIP_AUTO_RE_P(MODE) \
795 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
796
797 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
798 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
799
800 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
801 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
802
803 /* The default CPU for TARGET_OPTION_OVERRIDE. */
804 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
805
806 /* Target pragma. */
807 #define REGISTER_TARGET_PRAGMAS() do { \
808 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
809 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
810 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
811 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
812 } while (0)
813
814 /* Target #defines. */
815 #define TARGET_CPU_CPP_BUILTINS() \
816 rs6000_cpu_cpp_builtins (pfile)
817
818 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
819 we're compiling for. Some configurations may need to override it. */
820 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
821 do \
822 { \
823 if (BYTES_BIG_ENDIAN) \
824 { \
825 builtin_define ("__BIG_ENDIAN__"); \
826 builtin_define ("_BIG_ENDIAN"); \
827 builtin_assert ("machine=bigendian"); \
828 } \
829 else \
830 { \
831 builtin_define ("__LITTLE_ENDIAN__"); \
832 builtin_define ("_LITTLE_ENDIAN"); \
833 builtin_assert ("machine=littleendian"); \
834 } \
835 } \
836 while (0)
837 \f
838 /* Target machine storage layout. */
839
840 /* Define this macro if it is advisable to hold scalars in registers
841 in a wider mode than that declared by the program. In such cases,
842 the value is constrained to be within the bounds of the declared
843 type, but kept valid in the wider mode. The signedness of the
844 extension may differ from that of the type. */
845
846 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
847 if (GET_MODE_CLASS (MODE) == MODE_INT \
848 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
849 (MODE) = TARGET_32BIT ? SImode : DImode;
850
851 /* Define this if most significant bit is lowest numbered
852 in instructions that operate on numbered bit-fields. */
853 /* That is true on RS/6000. */
854 #define BITS_BIG_ENDIAN 1
855
856 /* Define this if most significant byte of a word is the lowest numbered. */
857 /* That is true on RS/6000. */
858 #define BYTES_BIG_ENDIAN 1
859
860 /* Define this if most significant word of a multiword number is lowest
861 numbered.
862
863 For RS/6000 we can decide arbitrarily since there are no machine
864 instructions for them. Might as well be consistent with bits and bytes. */
865 #define WORDS_BIG_ENDIAN 1
866
867 /* This says that for the IBM long double the larger magnitude double
868 comes first. It's really a two element double array, and arrays
869 don't index differently between little- and big-endian. */
870 #define LONG_DOUBLE_LARGE_FIRST 1
871
872 #define MAX_BITS_PER_WORD 64
873
874 /* Width of a word, in units (bytes). */
875 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
876 #ifdef IN_LIBGCC2
877 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
878 #else
879 #define MIN_UNITS_PER_WORD 4
880 #endif
881 #define UNITS_PER_FP_WORD 8
882 #define UNITS_PER_ALTIVEC_WORD 16
883 #define UNITS_PER_VSX_WORD 16
884 #define UNITS_PER_SPE_WORD 8
885 #define UNITS_PER_PAIRED_WORD 8
886
887 /* Type used for ptrdiff_t, as a string used in a declaration. */
888 #define PTRDIFF_TYPE "int"
889
890 /* Type used for size_t, as a string used in a declaration. */
891 #define SIZE_TYPE "long unsigned int"
892
893 /* Type used for wchar_t, as a string used in a declaration. */
894 #define WCHAR_TYPE "short unsigned int"
895
896 /* Width of wchar_t in bits. */
897 #define WCHAR_TYPE_SIZE 16
898
899 /* A C expression for the size in bits of the type `short' on the
900 target machine. If you don't define this, the default is half a
901 word. (If this would be less than one storage unit, it is
902 rounded up to one unit.) */
903 #define SHORT_TYPE_SIZE 16
904
905 /* A C expression for the size in bits of the type `int' on the
906 target machine. If you don't define this, the default is one
907 word. */
908 #define INT_TYPE_SIZE 32
909
910 /* A C expression for the size in bits of the type `long' on the
911 target machine. If you don't define this, the default is one
912 word. */
913 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
914
915 /* A C expression for the size in bits of the type `long long' on the
916 target machine. If you don't define this, the default is two
917 words. */
918 #define LONG_LONG_TYPE_SIZE 64
919
920 /* A C expression for the size in bits of the type `float' on the
921 target machine. If you don't define this, the default is one
922 word. */
923 #define FLOAT_TYPE_SIZE 32
924
925 /* A C expression for the size in bits of the type `double' on the
926 target machine. If you don't define this, the default is two
927 words. */
928 #define DOUBLE_TYPE_SIZE 64
929
930 /* A C expression for the size in bits of the type `long double' on
931 the target machine. If you don't define this, the default is two
932 words. */
933 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
934
935 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
936 #define WIDEST_HARDWARE_FP_SIZE 64
937
938 /* Width in bits of a pointer.
939 See also the macro `Pmode' defined below. */
940 extern unsigned rs6000_pointer_size;
941 #define POINTER_SIZE rs6000_pointer_size
942
943 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
944 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
945
946 /* Boundary (in *bits*) on which stack pointer should be aligned. */
947 #define STACK_BOUNDARY \
948 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
949 ? 64 : 128)
950
951 /* Allocation boundary (in *bits*) for the code of a function. */
952 #define FUNCTION_BOUNDARY 32
953
954 /* No data type wants to be aligned rounder than this. */
955 #define BIGGEST_ALIGNMENT 128
956
957 /* Alignment of field after `int : 0' in a structure. */
958 #define EMPTY_FIELD_BOUNDARY 32
959
960 /* Every structure's size must be a multiple of this. */
961 #define STRUCTURE_SIZE_BOUNDARY 8
962
963 /* A bit-field declared as `int' forces `int' alignment for the struct. */
964 #define PCC_BITFIELD_TYPE_MATTERS 1
965
966 enum data_align { align_abi, align_opt, align_both };
967
968 /* A C expression to compute the alignment for a variables in the
969 local store. TYPE is the data type, and ALIGN is the alignment
970 that the object would ordinarily have. */
971 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
972 rs6000_data_alignment (TYPE, ALIGN, align_both)
973
974 /* Make strings word-aligned so strcpy from constants will be faster. */
975 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
976 (TREE_CODE (EXP) == STRING_CST \
977 && (STRICT_ALIGNMENT || !optimize_size) \
978 && (ALIGN) < BITS_PER_WORD \
979 ? BITS_PER_WORD \
980 : (ALIGN))
981
982 /* Make arrays of chars word-aligned for the same reasons. */
983 #define DATA_ALIGNMENT(TYPE, ALIGN) \
984 rs6000_data_alignment (TYPE, ALIGN, align_opt)
985
986 /* Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
987 64 bits. */
988 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
989 rs6000_data_alignment (TYPE, ALIGN, align_abi)
990
991 /* Nonzero if move instructions will actually fail to work
992 when given unaligned data. */
993 #define STRICT_ALIGNMENT 0
994
995 /* Define this macro to be the value 1 if unaligned accesses have a cost
996 many times greater than aligned accesses, for example if they are
997 emulated in a trap handler. */
998 /* Altivec vector memory instructions simply ignore the low bits; SPE vector
999 memory instructions trap on unaligned accesses; VSX memory instructions are
1000 aligned to 4 or 8 bytes. */
1001 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
1002 (STRICT_ALIGNMENT \
1003 || (!TARGET_EFFICIENT_UNALIGNED_VSX \
1004 && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) && (ALIGN) < 32) \
1005 || ((VECTOR_MODE_P (MODE) || FLOAT128_VECTOR_P (MODE)) \
1006 && (int) (ALIGN) < VECTOR_ALIGN (MODE)))))
1007
1008 \f
1009 /* Standard register usage. */
1010
1011 /* Number of actual hardware registers.
1012 The hardware registers are assigned numbers for the compiler
1013 from 0 to just below FIRST_PSEUDO_REGISTER.
1014 All registers that the compiler knows about must be given numbers,
1015 even those that are not normally considered general registers.
1016
1017 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
1018 a count register, a link register, and 8 condition register fields,
1019 which we view here as separate registers. AltiVec adds 32 vector
1020 registers and a VRsave register.
1021
1022 In addition, the difference between the frame and argument pointers is
1023 a function of the number of registers saved, so we need to have a
1024 register for AP that will later be eliminated in favor of SP or FP.
1025 This is a normal register, but it is fixed.
1026
1027 We also create a pseudo register for float/int conversions, that will
1028 really represent the memory location used. It is represented here as
1029 a register, in order to work around problems in allocating stack storage
1030 in inline functions.
1031
1032 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
1033 pointer, which is eventually eliminated in favor of SP or FP.
1034
1035 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
1036
1037 #define FIRST_PSEUDO_REGISTER 149
1038
1039 /* This must be included for pre gcc 3.0 glibc compatibility. */
1040 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
1041
1042 /* True if register is an SPE High register. */
1043 #define SPE_HIGH_REGNO_P(N) \
1044 ((N) >= FIRST_SPE_HIGH_REGNO && (N) <= LAST_SPE_HIGH_REGNO)
1045
1046 /* SPE high registers added as hard regs.
1047 The sfp register and 3 HTM registers
1048 aren't included in DWARF_FRAME_REGISTERS. */
1049 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
1050
1051 /* The SPE has an additional 32 synthetic registers, with DWARF debug
1052 info numbering for these registers starting at 1200. While eh_frame
1053 register numbering need not be the same as the debug info numbering,
1054 we choose to number these regs for eh_frame at 1200 too.
1055
1056 We must map them here to avoid huge unwinder tables mostly consisting
1057 of unused space. */
1058 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
1059 ((r) >= 1200 ? ((r) - 1200 + (DWARF_FRAME_REGISTERS - 32)) : (r))
1060
1061 /* Use standard DWARF numbering for DWARF debugging information. */
1062 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
1063
1064 /* Use gcc hard register numbering for eh_frame. */
1065 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
1066
1067 /* Map register numbers held in the call frame info that gcc has
1068 collected using DWARF_FRAME_REGNUM to those that should be output in
1069 .debug_frame and .eh_frame. */
1070 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1071 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
1072
1073 /* 1 for registers that have pervasive standard uses
1074 and are not available for the register allocator.
1075
1076 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1077 as a local register; for all other OS's r2 is the TOC pointer.
1078
1079 On System V implementations, r13 is fixed and not available for use. */
1080
1081 #define FIXED_REGISTERS \
1082 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
1083 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1084 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1085 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1086 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
1087 /* AltiVec registers. */ \
1088 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1089 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1090 1, 1 \
1091 , 1, 1, 1, 1, 1, 1, \
1092 /* SPE High registers. */ \
1093 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1094 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1095 }
1096
1097 /* 1 for registers not available across function calls.
1098 These must include the FIXED_REGISTERS and also any
1099 registers that can be used without being saved.
1100 The latter must include the registers where values are returned
1101 and the register where structure-value addresses are passed.
1102 Aside from that, you can include as many other registers as you like. */
1103
1104 #define CALL_USED_REGISTERS \
1105 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1106 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1107 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1108 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1109 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1110 /* AltiVec registers. */ \
1111 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1112 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1113 1, 1 \
1114 , 1, 1, 1, 1, 1, 1, \
1115 /* SPE High registers. */ \
1116 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
1117 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
1118 }
1119
1120 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1121 the entire set of `FIXED_REGISTERS' be included.
1122 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1123 This macro is optional. If not specified, it defaults to the value
1124 of `CALL_USED_REGISTERS'. */
1125
1126 #define CALL_REALLY_USED_REGISTERS \
1127 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1128 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1129 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1130 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1131 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1132 /* AltiVec registers. */ \
1133 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1134 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1135 0, 0 \
1136 , 0, 0, 0, 0, 0, 0, \
1137 /* SPE High registers. */ \
1138 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1139 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
1140 }
1141
1142 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1143
1144 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1145 #define FIRST_SAVED_FP_REGNO (14+32)
1146 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
1147
1148 /* List the order in which to allocate registers. Each register must be
1149 listed once, even those in FIXED_REGISTERS.
1150
1151 We allocate in the following order:
1152 fp0 (not saved or used for anything)
1153 fp13 - fp2 (not saved; incoming fp arg registers)
1154 fp1 (not saved; return value)
1155 fp31 - fp14 (saved; order given to save least number)
1156 cr7, cr5 (not saved or special)
1157 cr6 (not saved, but used for vector operations)
1158 cr1 (not saved, but used for FP operations)
1159 cr0 (not saved, but used for arithmetic operations)
1160 cr4, cr3, cr2 (saved)
1161 r9 (not saved; best for TImode)
1162 r10, r8-r4 (not saved; highest first for less conflict with params)
1163 r3 (not saved; return value register)
1164 r11 (not saved; later alloc to help shrink-wrap)
1165 r0 (not saved; cannot be base reg)
1166 r31 - r13 (saved; order given to save least number)
1167 r12 (not saved; if used for DImode or DFmode would use r13)
1168 ctr (not saved; when we have the choice ctr is better)
1169 lr (saved)
1170 r1, r2, ap, ca (fixed)
1171 v0 - v1 (not saved or used for anything)
1172 v13 - v3 (not saved; incoming vector arg registers)
1173 v2 (not saved; incoming vector arg reg; return value)
1174 v19 - v14 (not saved or used for anything)
1175 v31 - v20 (saved; order given to save least number)
1176 vrsave, vscr (fixed)
1177 spe_acc, spefscr (fixed)
1178 sfp (fixed)
1179 tfhar (fixed)
1180 tfiar (fixed)
1181 texasr (fixed)
1182 */
1183
1184 #if FIXED_R2 == 1
1185 #define MAYBE_R2_AVAILABLE
1186 #define MAYBE_R2_FIXED 2,
1187 #else
1188 #define MAYBE_R2_AVAILABLE 2,
1189 #define MAYBE_R2_FIXED
1190 #endif
1191
1192 #if FIXED_R13 == 1
1193 #define EARLY_R12 12,
1194 #define LATE_R12
1195 #else
1196 #define EARLY_R12
1197 #define LATE_R12 12,
1198 #endif
1199
1200 #define REG_ALLOC_ORDER \
1201 {32, \
1202 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1203 /* not use fr14 which is a saved register. */ \
1204 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
1205 33, \
1206 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1207 50, 49, 48, 47, 46, \
1208 75, 73, 74, 69, 68, 72, 71, 70, \
1209 MAYBE_R2_AVAILABLE \
1210 9, 10, 8, 7, 6, 5, 4, \
1211 3, EARLY_R12 11, 0, \
1212 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1213 18, 17, 16, 15, 14, 13, LATE_R12 \
1214 66, 65, \
1215 1, MAYBE_R2_FIXED 67, 76, \
1216 /* AltiVec registers. */ \
1217 77, 78, \
1218 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1219 79, \
1220 96, 95, 94, 93, 92, 91, \
1221 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1222 109, 110, \
1223 111, 112, 113, 114, 115, 116, \
1224 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, \
1225 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, \
1226 141, 142, 143, 144, 145, 146, 147, 148 \
1227 }
1228
1229 /* True if register is floating-point. */
1230 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1231
1232 /* True if register is a condition register. */
1233 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1234
1235 /* True if register is a condition register, but not cr0. */
1236 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1237
1238 /* True if register is an integer register. */
1239 #define INT_REGNO_P(N) \
1240 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1241
1242 /* SPE SIMD registers are just the GPRs. */
1243 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
1244
1245 /* PAIRED SIMD registers are just the FPRs. */
1246 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1247
1248 /* True if register is the CA register. */
1249 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1250
1251 /* True if register is an AltiVec register. */
1252 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1253
1254 /* True if register is a VSX register. */
1255 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1256
1257 /* Alternate name for any vector register supporting floating point, no matter
1258 which instruction set(s) are available. */
1259 #define VFLOAT_REGNO_P(N) \
1260 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1261
1262 /* Alternate name for any vector register supporting integer, no matter which
1263 instruction set(s) are available. */
1264 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1265
1266 /* Alternate name for any vector register supporting logical operations, no
1267 matter which instruction set(s) are available. Allow GPRs as well as the
1268 vector registers. */
1269 #define VLOGICAL_REGNO_P(N) \
1270 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1271 || (TARGET_VSX && FP_REGNO_P (N))) \
1272
1273 /* Return number of consecutive hard regs needed starting at reg REGNO
1274 to hold something of mode MODE. */
1275
1276 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1277
1278 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1279 enough space to account for vectors in FP regs. However, TFmode/TDmode
1280 should not use VSX instructions to do a caller save. */
1281 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1282 (TARGET_VSX \
1283 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1284 && FP_REGNO_P (REGNO) \
1285 ? V2DFmode \
1286 : TARGET_E500_DOUBLE && (MODE) == SImode \
1287 ? SImode \
1288 : TARGET_E500_DOUBLE && ((MODE) == VOIDmode || (MODE) == DFmode) \
1289 ? DFmode \
1290 : !TARGET_E500_DOUBLE && FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
1291 ? DFmode \
1292 : !TARGET_E500_DOUBLE && (MODE) == TDmode && FP_REGNO_P (REGNO) \
1293 ? DImode \
1294 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1295
1296 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
1297 (((TARGET_32BIT && TARGET_POWERPC64 \
1298 && (GET_MODE_SIZE (MODE) > 4) \
1299 && INT_REGNO_P (REGNO)) ? 1 : 0) \
1300 || (TARGET_VSX && FP_REGNO_P (REGNO) \
1301 && GET_MODE_SIZE (MODE) > 8 && !FLOAT128_2REG_P (MODE)))
1302
1303 #define VSX_VECTOR_MODE(MODE) \
1304 ((MODE) == V4SFmode \
1305 || (MODE) == V2DFmode) \
1306
1307 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1308 really a vector, but we want to treat it as a vector for moves, and
1309 such. */
1310
1311 #define ALTIVEC_VECTOR_MODE(MODE) \
1312 ((MODE) == V16QImode \
1313 || (MODE) == V8HImode \
1314 || (MODE) == V4SFmode \
1315 || (MODE) == V4SImode \
1316 || FLOAT128_VECTOR_P (MODE))
1317
1318 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1319 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1320 || (MODE) == V2DImode || (MODE) == V1TImode)
1321
1322 #define SPE_VECTOR_MODE(MODE) \
1323 ((MODE) == V4HImode \
1324 || (MODE) == V2SFmode \
1325 || (MODE) == V1DImode \
1326 || (MODE) == V2SImode)
1327
1328 #define PAIRED_VECTOR_MODE(MODE) \
1329 ((MODE) == V2SFmode)
1330
1331 /* Value is TRUE if hard register REGNO can hold a value of
1332 machine-mode MODE. */
1333 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1334 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1335
1336 /* Value is 1 if it is a good idea to tie two pseudo registers
1337 when one has mode MODE1 and one has mode MODE2.
1338 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1339 for any hard reg, then this must be 0 for correct output.
1340
1341 PTImode cannot tie with other modes because PTImode is restricted to even
1342 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
1343 57744).
1344
1345 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
1346 128-bit floating point on VSX systems ties with other vectors. */
1347 #define MODES_TIEABLE_P(MODE1, MODE2) \
1348 ((MODE1) == PTImode \
1349 ? (MODE2) == PTImode \
1350 : (MODE2) == PTImode \
1351 ? 0 \
1352 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1353 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1354 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1355 ? 0 \
1356 : SCALAR_FLOAT_MODE_P (MODE1) \
1357 ? SCALAR_FLOAT_MODE_P (MODE2) \
1358 : SCALAR_FLOAT_MODE_P (MODE2) \
1359 ? 0 \
1360 : GET_MODE_CLASS (MODE1) == MODE_CC \
1361 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1362 : GET_MODE_CLASS (MODE2) == MODE_CC \
1363 ? 0 \
1364 : SPE_VECTOR_MODE (MODE1) \
1365 ? SPE_VECTOR_MODE (MODE2) \
1366 : SPE_VECTOR_MODE (MODE2) \
1367 ? 0 \
1368 : 1)
1369
1370 /* Post-reload, we can't use any new AltiVec registers, as we already
1371 emitted the vrsave mask. */
1372
1373 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1374 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1375
1376 /* Specify the cost of a branch insn; roughly the number of extra insns that
1377 should be added to avoid a branch.
1378
1379 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1380 unscheduled conditional branch. */
1381
1382 #define BRANCH_COST(speed_p, predictable_p) 3
1383
1384 /* Override BRANCH_COST heuristic which empirically produces worse
1385 performance for removing short circuiting from the logical ops. */
1386
1387 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1388
1389 /* A fixed register used at epilogue generation to address SPE registers
1390 with negative offsets. The 64-bit load/store instructions on the SPE
1391 only take positive offsets (and small ones at that), so we need to
1392 reserve a register for consing up negative offsets. */
1393
1394 #define FIXED_SCRATCH 0
1395
1396 /* Specify the registers used for certain standard purposes.
1397 The values of these macros are register numbers. */
1398
1399 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1400 /* #define PC_REGNUM */
1401
1402 /* Register to use for pushing function arguments. */
1403 #define STACK_POINTER_REGNUM 1
1404
1405 /* Base register for access to local variables of the function. */
1406 #define HARD_FRAME_POINTER_REGNUM 31
1407
1408 /* Base register for access to local variables of the function. */
1409 #define FRAME_POINTER_REGNUM 113
1410
1411 /* Base register for access to arguments of the function. */
1412 #define ARG_POINTER_REGNUM 67
1413
1414 /* Place to put static chain when calling a function that requires it. */
1415 #define STATIC_CHAIN_REGNUM 11
1416
1417 /* Base register for access to thread local storage variables. */
1418 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1419
1420 \f
1421 /* Define the classes of registers for register constraints in the
1422 machine description. Also define ranges of constants.
1423
1424 One of the classes must always be named ALL_REGS and include all hard regs.
1425 If there is more than one class, another class must be named NO_REGS
1426 and contain no registers.
1427
1428 The name GENERAL_REGS must be the name of a class (or an alias for
1429 another name such as ALL_REGS). This is the class of registers
1430 that is allowed by "g" or "r" in a register constraint.
1431 Also, registers outside this class are allocated only when
1432 instructions express preferences for them.
1433
1434 The classes must be numbered in nondecreasing order; that is,
1435 a larger-numbered class must never be contained completely
1436 in a smaller-numbered class.
1437
1438 For any two classes, it is very desirable that there be another
1439 class that represents their union. */
1440
1441 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1442 condition registers, plus three special registers, CTR, and the link
1443 register. AltiVec adds a vector register class. VSX registers overlap the
1444 FPR registers and the Altivec registers.
1445
1446 However, r0 is special in that it cannot be used as a base register.
1447 So make a class for registers valid as base registers.
1448
1449 Also, cr0 is the only condition code register that can be used in
1450 arithmetic insns, so make a separate class for it. */
1451
1452 enum reg_class
1453 {
1454 NO_REGS,
1455 BASE_REGS,
1456 GENERAL_REGS,
1457 FLOAT_REGS,
1458 ALTIVEC_REGS,
1459 VSX_REGS,
1460 VRSAVE_REGS,
1461 VSCR_REGS,
1462 SPE_ACC_REGS,
1463 SPEFSCR_REGS,
1464 SPR_REGS,
1465 NON_SPECIAL_REGS,
1466 LINK_REGS,
1467 CTR_REGS,
1468 LINK_OR_CTR_REGS,
1469 SPECIAL_REGS,
1470 SPEC_OR_GEN_REGS,
1471 CR0_REGS,
1472 CR_REGS,
1473 NON_FLOAT_REGS,
1474 CA_REGS,
1475 SPE_HIGH_REGS,
1476 ALL_REGS,
1477 LIM_REG_CLASSES
1478 };
1479
1480 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1481
1482 /* Give names of register classes as strings for dump file. */
1483
1484 #define REG_CLASS_NAMES \
1485 { \
1486 "NO_REGS", \
1487 "BASE_REGS", \
1488 "GENERAL_REGS", \
1489 "FLOAT_REGS", \
1490 "ALTIVEC_REGS", \
1491 "VSX_REGS", \
1492 "VRSAVE_REGS", \
1493 "VSCR_REGS", \
1494 "SPE_ACC_REGS", \
1495 "SPEFSCR_REGS", \
1496 "SPR_REGS", \
1497 "NON_SPECIAL_REGS", \
1498 "LINK_REGS", \
1499 "CTR_REGS", \
1500 "LINK_OR_CTR_REGS", \
1501 "SPECIAL_REGS", \
1502 "SPEC_OR_GEN_REGS", \
1503 "CR0_REGS", \
1504 "CR_REGS", \
1505 "NON_FLOAT_REGS", \
1506 "CA_REGS", \
1507 "SPE_HIGH_REGS", \
1508 "ALL_REGS" \
1509 }
1510
1511 /* Define which registers fit in which classes.
1512 This is an initializer for a vector of HARD_REG_SET
1513 of length N_REG_CLASSES. */
1514
1515 #define REG_CLASS_CONTENTS \
1516 { \
1517 /* NO_REGS. */ \
1518 { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1519 /* BASE_REGS. */ \
1520 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1521 /* GENERAL_REGS. */ \
1522 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000, 0x00000000 }, \
1523 /* FLOAT_REGS. */ \
1524 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000, 0x00000000 }, \
1525 /* ALTIVEC_REGS. */ \
1526 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff, 0x00000000 }, \
1527 /* VSX_REGS. */ \
1528 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff, 0x00000000 }, \
1529 /* VRSAVE_REGS. */ \
1530 { 0x00000000, 0x00000000, 0x00000000, 0x00002000, 0x00000000 }, \
1531 /* VSCR_REGS. */ \
1532 { 0x00000000, 0x00000000, 0x00000000, 0x00004000, 0x00000000 }, \
1533 /* SPE_ACC_REGS. */ \
1534 { 0x00000000, 0x00000000, 0x00000000, 0x00008000, 0x00000000 }, \
1535 /* SPEFSCR_REGS. */ \
1536 { 0x00000000, 0x00000000, 0x00000000, 0x00010000, 0x00000000 }, \
1537 /* SPR_REGS. */ \
1538 { 0x00000000, 0x00000000, 0x00000000, 0x00040000, 0x00000000 }, \
1539 /* NON_SPECIAL_REGS. */ \
1540 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000, 0x00000000 }, \
1541 /* LINK_REGS. */ \
1542 { 0x00000000, 0x00000000, 0x00000002, 0x00000000, 0x00000000 }, \
1543 /* CTR_REGS. */ \
1544 { 0x00000000, 0x00000000, 0x00000004, 0x00000000, 0x00000000 }, \
1545 /* LINK_OR_CTR_REGS. */ \
1546 { 0x00000000, 0x00000000, 0x00000006, 0x00000000, 0x00000000 }, \
1547 /* SPECIAL_REGS. */ \
1548 { 0x00000000, 0x00000000, 0x00000006, 0x00002000, 0x00000000 }, \
1549 /* SPEC_OR_GEN_REGS. */ \
1550 { 0xffffffff, 0x00000000, 0x0000000e, 0x00022000, 0x00000000 }, \
1551 /* CR0_REGS. */ \
1552 { 0x00000000, 0x00000000, 0x00000010, 0x00000000, 0x00000000 }, \
1553 /* CR_REGS. */ \
1554 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000, 0x00000000 }, \
1555 /* NON_FLOAT_REGS. */ \
1556 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00020000, 0x00000000 }, \
1557 /* CA_REGS. */ \
1558 { 0x00000000, 0x00000000, 0x00001000, 0x00000000, 0x00000000 }, \
1559 /* SPE_HIGH_REGS. */ \
1560 { 0x00000000, 0x00000000, 0x00000000, 0xffe00000, 0x001fffff }, \
1561 /* ALL_REGS. */ \
1562 { 0xffffffff, 0xffffffff, 0xfffffffe, 0xffe7ffff, 0x001fffff } \
1563 }
1564
1565 /* The same information, inverted:
1566 Return the class number of the smallest class containing
1567 reg number REGNO. This could be a conditional expression
1568 or could index an array. */
1569
1570 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1571
1572 #define REGNO_REG_CLASS(REGNO) \
1573 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1574 rs6000_regno_regclass[(REGNO)])
1575
1576 /* Register classes for various constraints that are based on the target
1577 switches. */
1578 enum r6000_reg_class_enum {
1579 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1580 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1581 RS6000_CONSTRAINT_v, /* Altivec registers */
1582 RS6000_CONSTRAINT_wa, /* Any VSX register */
1583 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
1584 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1585 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1586 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1587 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
1588 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1589 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1590 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1591 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
1592 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
1593 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1594 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
1595 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1596 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
1597 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1598 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1599 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
1600 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1601 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1602 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
1603 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1604 RS6000_CONSTRAINT_wy, /* VSX register for SF */
1605 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
1606 RS6000_CONSTRAINT_wH, /* Altivec register for 32-bit integers. */
1607 RS6000_CONSTRAINT_wI, /* VSX register for 32-bit integers. */
1608 RS6000_CONSTRAINT_wJ, /* VSX register for 8/16-bit integers. */
1609 RS6000_CONSTRAINT_wK, /* Altivec register for 16/32-bit integers. */
1610 RS6000_CONSTRAINT_MAX
1611 };
1612
1613 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1614
1615 /* The class value for index registers, and the one for base regs. */
1616 #define INDEX_REG_CLASS GENERAL_REGS
1617 #define BASE_REG_CLASS BASE_REGS
1618
1619 /* Return whether a given register class can hold VSX objects. */
1620 #define VSX_REG_CLASS_P(CLASS) \
1621 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1622
1623 /* Return whether a given register class targets general purpose registers. */
1624 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1625
1626 /* Given an rtx X being reloaded into a reg required to be
1627 in class CLASS, return the class of reg to actually use.
1628 In general this is just CLASS; but on some machines
1629 in some cases it is preferable to use a more restrictive class.
1630
1631 On the RS/6000, we have to return NO_REGS when we want to reload a
1632 floating-point CONST_DOUBLE to force it to be copied to memory.
1633
1634 We also don't want to reload integer values into floating-point
1635 registers if we can at all help it. In fact, this can
1636 cause reload to die, if it tries to generate a reload of CTR
1637 into a FP register and discovers it doesn't have the memory location
1638 required.
1639
1640 ??? Would it be a good idea to have reload do the converse, that is
1641 try to reload floating modes into FP registers if possible?
1642 */
1643
1644 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1645 rs6000_preferred_reload_class_ptr (X, CLASS)
1646
1647 /* Return the register class of a scratch register needed to copy IN into
1648 or out of a register in CLASS in MODE. If it can be done directly,
1649 NO_REGS is returned. */
1650
1651 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1652 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1653
1654 /* If we are copying between FP or AltiVec registers and anything
1655 else, we need a memory location. The exception is when we are
1656 targeting ppc64 and the move to/from fpr to gpr instructions
1657 are available.*/
1658
1659 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1660 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1661
1662 /* For cpus that cannot load/store SDmode values from the 64-bit
1663 FP registers without using a full 64-bit load/store, we need
1664 to allocate a full 64-bit stack slot for them. */
1665
1666 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1667 rs6000_secondary_memory_needed_rtx (MODE)
1668
1669 /* Specify the mode to be used for memory when a secondary memory
1670 location is needed. For cpus that cannot load/store SDmode values
1671 from the 64-bit FP registers without using a full 64-bit
1672 load/store, we need a wider mode. */
1673 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1674 rs6000_secondary_memory_needed_mode (MODE)
1675
1676 /* Return the maximum number of consecutive registers
1677 needed to represent mode MODE in a register of class CLASS.
1678
1679 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1680 a single reg is enough for two words, unless we have VSX, where the FP
1681 registers can hold 128 bits. */
1682 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1683
1684 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1685
1686 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1687 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1688
1689 /* Stack layout; function entry, exit and calling. */
1690
1691 /* Define this if pushing a word on the stack
1692 makes the stack pointer a smaller address. */
1693 #define STACK_GROWS_DOWNWARD 1
1694
1695 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1696 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1697
1698 /* Define this to nonzero if the nominal address of the stack frame
1699 is at the high-address end of the local variables;
1700 that is, each additional local variable allocated
1701 goes at a more negative offset in the frame.
1702
1703 On the RS/6000, we grow upwards, from the area after the outgoing
1704 arguments. */
1705 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1706 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1707
1708 /* Size of the fixed area on the stack */
1709 #define RS6000_SAVE_AREA \
1710 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1711 << (TARGET_64BIT ? 1 : 0))
1712
1713 /* Stack offset for toc save slot. */
1714 #define RS6000_TOC_SAVE_SLOT \
1715 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1716
1717 /* Align an address */
1718 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1719
1720 /* Offset within stack frame to start allocating local variables at.
1721 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1722 first local allocated. Otherwise, it is the offset to the BEGINNING
1723 of the first local allocated.
1724
1725 On the RS/6000, the frame pointer is the same as the stack pointer,
1726 except for dynamic allocations. So we start after the fixed area and
1727 outgoing parameter area. */
1728
1729 #define STARTING_FRAME_OFFSET \
1730 (FRAME_GROWS_DOWNWARD \
1731 ? 0 \
1732 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1733 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1734 + RS6000_SAVE_AREA))
1735
1736 /* Offset from the stack pointer register to an item dynamically
1737 allocated on the stack, e.g., by `alloca'.
1738
1739 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1740 length of the outgoing arguments. The default is correct for most
1741 machines. See `function.c' for details. */
1742 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1743 (RS6000_ALIGN (crtl->outgoing_args_size, \
1744 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1745 + (STACK_POINTER_OFFSET))
1746
1747 /* If we generate an insn to push BYTES bytes,
1748 this says how many the stack pointer really advances by.
1749 On RS/6000, don't define this because there are no push insns. */
1750 /* #define PUSH_ROUNDING(BYTES) */
1751
1752 /* Offset of first parameter from the argument pointer register value.
1753 On the RS/6000, we define the argument pointer to the start of the fixed
1754 area. */
1755 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1756
1757 /* Offset from the argument pointer register value to the top of
1758 stack. This is different from FIRST_PARM_OFFSET because of the
1759 register save area. */
1760 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1761
1762 /* Define this if stack space is still allocated for a parameter passed
1763 in a register. The value is the number of bytes allocated to this
1764 area. */
1765 #define REG_PARM_STACK_SPACE(FNDECL) \
1766 rs6000_reg_parm_stack_space ((FNDECL), false)
1767
1768 /* Define this macro if space guaranteed when compiling a function body
1769 is different to space required when making a call, a situation that
1770 can arise with K&R style function definitions. */
1771 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1772 rs6000_reg_parm_stack_space ((FNDECL), true)
1773
1774 /* Define this if the above stack space is to be considered part of the
1775 space allocated by the caller. */
1776 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1777
1778 /* This is the difference between the logical top of stack and the actual sp.
1779
1780 For the RS/6000, sp points past the fixed area. */
1781 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1782
1783 /* Define this if the maximum size of all the outgoing args is to be
1784 accumulated and pushed during the prologue. The amount can be
1785 found in the variable crtl->outgoing_args_size. */
1786 #define ACCUMULATE_OUTGOING_ARGS 1
1787
1788 /* Define how to find the value returned by a library function
1789 assuming the value has mode MODE. */
1790
1791 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1792
1793 /* DRAFT_V4_STRUCT_RET defaults off. */
1794 #define DRAFT_V4_STRUCT_RET 0
1795
1796 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1797 #define DEFAULT_PCC_STRUCT_RETURN 0
1798
1799 /* Mode of stack savearea.
1800 FUNCTION is VOIDmode because calling convention maintains SP.
1801 BLOCK needs Pmode for SP.
1802 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1803 #define STACK_SAVEAREA_MODE(LEVEL) \
1804 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1805 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1806
1807 /* Minimum and maximum general purpose registers used to hold arguments. */
1808 #define GP_ARG_MIN_REG 3
1809 #define GP_ARG_MAX_REG 10
1810 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1811
1812 /* Minimum and maximum floating point registers used to hold arguments. */
1813 #define FP_ARG_MIN_REG 33
1814 #define FP_ARG_AIX_MAX_REG 45
1815 #define FP_ARG_V4_MAX_REG 40
1816 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1817 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1818 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1819
1820 /* Minimum and maximum AltiVec registers used to hold arguments. */
1821 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1822 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1823 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1824
1825 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1826 #define AGGR_ARG_NUM_REG 8
1827
1828 /* Return registers */
1829 #define GP_ARG_RETURN GP_ARG_MIN_REG
1830 #define FP_ARG_RETURN FP_ARG_MIN_REG
1831 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1832 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1833 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1834 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1835 ? (ALTIVEC_ARG_RETURN \
1836 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1837 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1838
1839 /* Flags for the call/call_value rtl operations set up by function_arg */
1840 #define CALL_NORMAL 0x00000000 /* no special processing */
1841 /* Bits in 0x00000001 are unused. */
1842 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1843 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1844 #define CALL_LONG 0x00000008 /* always call indirect */
1845 #define CALL_LIBCALL 0x00000010 /* libcall */
1846
1847 /* We don't have prologue and epilogue functions to save/restore
1848 everything for most ABIs. */
1849 #define WORLD_SAVE_P(INFO) 0
1850
1851 /* 1 if N is a possible register number for a function value
1852 as seen by the caller.
1853
1854 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1855 #define FUNCTION_VALUE_REGNO_P(N) \
1856 ((N) == GP_ARG_RETURN \
1857 || ((N) >= FP_ARG_RETURN && (N) <= FP_ARG_MAX_RETURN \
1858 && TARGET_HARD_FLOAT && TARGET_FPRS) \
1859 || ((N) >= ALTIVEC_ARG_RETURN && (N) <= ALTIVEC_ARG_MAX_RETURN \
1860 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1861
1862 /* 1 if N is a possible register number for function argument passing.
1863 On RS/6000, these are r3-r10 and fp1-fp13.
1864 On AltiVec, v2 - v13 are used for passing vectors. */
1865 #define FUNCTION_ARG_REGNO_P(N) \
1866 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1867 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1868 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1869 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1870 && TARGET_HARD_FLOAT && TARGET_FPRS))
1871 \f
1872 /* Define a data type for recording info about an argument list
1873 during the scan of that argument list. This data type should
1874 hold all necessary information about the function itself
1875 and about the args processed so far, enough to enable macros
1876 such as FUNCTION_ARG to determine where the next arg should go.
1877
1878 On the RS/6000, this is a structure. The first element is the number of
1879 total argument words, the second is used to store the next
1880 floating-point register number, and the third says how many more args we
1881 have prototype types for.
1882
1883 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1884 the next available GP register, `fregno' is the next available FP
1885 register, and `words' is the number of words used on the stack.
1886
1887 The varargs/stdarg support requires that this structure's size
1888 be a multiple of sizeof(int). */
1889
1890 typedef struct rs6000_args
1891 {
1892 int words; /* # words used for passing GP registers */
1893 int fregno; /* next available FP register */
1894 int vregno; /* next available AltiVec register */
1895 int nargs_prototype; /* # args left in the current prototype */
1896 int prototype; /* Whether a prototype was defined */
1897 int stdarg; /* Whether function is a stdarg function. */
1898 int call_cookie; /* Do special things for this call */
1899 int sysv_gregno; /* next available GP register */
1900 int intoffset; /* running offset in struct (darwin64) */
1901 int use_stack; /* any part of struct on stack (darwin64) */
1902 int floats_in_gpr; /* count of SFmode floats taking up
1903 GPR space (darwin64) */
1904 int named; /* false for varargs params */
1905 int escapes; /* if function visible outside tu */
1906 int libcall; /* If this is a compiler generated call. */
1907 } CUMULATIVE_ARGS;
1908
1909 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1910 for a call to a function whose data type is FNTYPE.
1911 For a library call, FNTYPE is 0. */
1912
1913 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1914 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1915 N_NAMED_ARGS, FNDECL, VOIDmode)
1916
1917 /* Similar, but when scanning the definition of a procedure. We always
1918 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1919
1920 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1921 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1922 1000, current_function_decl, VOIDmode)
1923
1924 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1925
1926 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1927 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1928 0, NULL_TREE, MODE)
1929
1930 /* If defined, a C expression which determines whether, and in which
1931 direction, to pad out an argument with extra space. The value
1932 should be of type `enum direction': either `upward' to pad above
1933 the argument, `downward' to pad below, or `none' to inhibit
1934 padding. */
1935
1936 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1937
1938 #define PAD_VARARGS_DOWN \
1939 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1940
1941 /* Output assembler code to FILE to increment profiler label # LABELNO
1942 for profiling a function entry. */
1943
1944 #define FUNCTION_PROFILER(FILE, LABELNO) \
1945 output_function_profiler ((FILE), (LABELNO));
1946
1947 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1948 the stack pointer does not matter. No definition is equivalent to
1949 always zero.
1950
1951 On the RS/6000, this is nonzero because we can restore the stack from
1952 its backpointer, which we maintain. */
1953 #define EXIT_IGNORE_STACK 1
1954
1955 /* Define this macro as a C expression that is nonzero for registers
1956 that are used by the epilogue or the return' pattern. The stack
1957 and frame pointer registers are already be assumed to be used as
1958 needed. */
1959
1960 #define EPILOGUE_USES(REGNO) \
1961 ((reload_completed && (REGNO) == LR_REGNO) \
1962 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1963 || (crtl->calls_eh_return \
1964 && TARGET_AIX \
1965 && (REGNO) == 2))
1966
1967 \f
1968 /* Length in units of the trampoline for entering a nested function. */
1969
1970 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1971 \f
1972 /* Definitions for __builtin_return_address and __builtin_frame_address.
1973 __builtin_return_address (0) should give link register (LR_REGNO), enable
1974 this. */
1975 /* This should be uncommented, so that the link register is used, but
1976 currently this would result in unmatched insns and spilling fixed
1977 registers so we'll leave it for another day. When these problems are
1978 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1979 (mrs) */
1980 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1981
1982 /* Number of bytes into the frame return addresses can be found. See
1983 rs6000_stack_info in rs6000.c for more information on how the different
1984 abi's store the return address. */
1985 #define RETURN_ADDRESS_OFFSET \
1986 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1987
1988 /* The current return address is in link register (65). The return address
1989 of anything farther back is accessed normally at an offset of 8 from the
1990 frame pointer. */
1991 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1992 (rs6000_return_addr (COUNT, FRAME))
1993
1994 \f
1995 /* Definitions for register eliminations.
1996
1997 We have two registers that can be eliminated on the RS/6000. First, the
1998 frame pointer register can often be eliminated in favor of the stack
1999 pointer register. Secondly, the argument pointer register can always be
2000 eliminated; it is replaced with either the stack or frame pointer.
2001
2002 In addition, we use the elimination mechanism to see if r30 is needed
2003 Initially we assume that it isn't. If it is, we spill it. This is done
2004 by making it an eliminable register. We replace it with itself so that
2005 if it isn't needed, then existing uses won't be modified. */
2006
2007 /* This is an array of structures. Each structure initializes one pair
2008 of eliminable registers. The "from" register number is given first,
2009 followed by "to". Eliminations of the same "from" register are listed
2010 in order of preference. */
2011 #define ELIMINABLE_REGS \
2012 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2013 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2014 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
2015 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
2016 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
2017 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
2018
2019 /* Define the offset between two registers, one to be eliminated, and the other
2020 its replacement, at the start of a routine. */
2021 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
2022 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
2023 \f
2024 /* Addressing modes, and classification of registers for them. */
2025
2026 #define HAVE_PRE_DECREMENT 1
2027 #define HAVE_PRE_INCREMENT 1
2028 #define HAVE_PRE_MODIFY_DISP 1
2029 #define HAVE_PRE_MODIFY_REG 1
2030
2031 /* Macros to check register numbers against specific register classes. */
2032
2033 /* These assume that REGNO is a hard or pseudo reg number.
2034 They give nonzero only if REGNO is a hard reg of the suitable class
2035 or a pseudo reg currently allocated to a suitable hard reg.
2036 Since they use reg_renumber, they are safe only once reg_renumber
2037 has been allocated, which happens in reginfo.c during register
2038 allocation. */
2039
2040 #define REGNO_OK_FOR_INDEX_P(REGNO) \
2041 ((REGNO) < FIRST_PSEUDO_REGISTER \
2042 ? (REGNO) <= 31 || (REGNO) == 67 \
2043 || (REGNO) == FRAME_POINTER_REGNUM \
2044 : (reg_renumber[REGNO] >= 0 \
2045 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
2046 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
2047
2048 #define REGNO_OK_FOR_BASE_P(REGNO) \
2049 ((REGNO) < FIRST_PSEUDO_REGISTER \
2050 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
2051 || (REGNO) == FRAME_POINTER_REGNUM \
2052 : (reg_renumber[REGNO] > 0 \
2053 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
2054 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
2055
2056 /* Nonzero if X is a hard reg that can be used as an index
2057 or if it is a pseudo reg in the non-strict case. */
2058 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2059 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2060 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
2061
2062 /* Nonzero if X is a hard reg that can be used as a base reg
2063 or if it is a pseudo reg in the non-strict case. */
2064 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2065 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
2066 || REGNO_OK_FOR_BASE_P (REGNO (X)))
2067
2068 \f
2069 /* Maximum number of registers that can appear in a valid memory address. */
2070
2071 #define MAX_REGS_PER_ADDRESS 2
2072
2073 /* Recognize any constant value that is a valid address. */
2074
2075 #define CONSTANT_ADDRESS_P(X) \
2076 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
2077 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
2078 || GET_CODE (X) == HIGH)
2079
2080 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
2081 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
2082 && EASY_VECTOR_15((n) >> 1) \
2083 && ((n) & 1) == 0)
2084
2085 #define EASY_VECTOR_MSB(n,mode) \
2086 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
2087 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
2088
2089 \f
2090 /* Try a machine-dependent way of reloading an illegitimate address
2091 operand. If we find one, push the reload and jump to WIN. This
2092 macro is used in only one place: `find_reloads_address' in reload.c.
2093
2094 Implemented on rs6000 by rs6000_legitimize_reload_address.
2095 Note that (X) is evaluated twice; this is safe in current usage. */
2096
2097 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2098 do { \
2099 int win; \
2100 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
2101 (int)(TYPE), (IND_LEVELS), &win); \
2102 if ( win ) \
2103 goto WIN; \
2104 } while (0)
2105
2106 #define FIND_BASE_TERM rs6000_find_base_term
2107 \f
2108 /* The register number of the register used to address a table of
2109 static data addresses in memory. In some cases this register is
2110 defined by a processor's "application binary interface" (ABI).
2111 When this macro is defined, RTL is generated for this register
2112 once, as with the stack pointer and frame pointer registers. If
2113 this macro is not defined, it is up to the machine-dependent files
2114 to allocate such a register (if necessary). */
2115
2116 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2117 #define PIC_OFFSET_TABLE_REGNUM \
2118 (TARGET_TOC ? TOC_REGISTER \
2119 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
2120 : INVALID_REGNUM)
2121
2122 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2123
2124 /* Define this macro if the register defined by
2125 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2126 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2127
2128 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2129
2130 /* A C expression that is nonzero if X is a legitimate immediate
2131 operand on the target machine when generating position independent
2132 code. You can assume that X satisfies `CONSTANT_P', so you need
2133 not check this. You can also assume FLAG_PIC is true, so you need
2134 not check it either. You need not define this macro if all
2135 constants (including `SYMBOL_REF') can be immediate operands when
2136 generating position independent code. */
2137
2138 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2139 \f
2140 /* Define this if some processing needs to be done immediately before
2141 emitting code for an insn. */
2142
2143 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
2144 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
2145
2146 /* Specify the machine mode that this machine uses
2147 for the index in the tablejump instruction. */
2148 #define CASE_VECTOR_MODE SImode
2149
2150 /* Define as C expression which evaluates to nonzero if the tablejump
2151 instruction expects the table to contain offsets from the address of the
2152 table.
2153 Do not define this if the table should contain absolute addresses. */
2154 #define CASE_VECTOR_PC_RELATIVE 1
2155
2156 /* Define this as 1 if `char' should by default be signed; else as 0. */
2157 #define DEFAULT_SIGNED_CHAR 0
2158
2159 /* An integer expression for the size in bits of the largest integer machine
2160 mode that should actually be used. */
2161
2162 /* Allow pairs of registers to be used, which is the intent of the default. */
2163 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2164
2165 /* Max number of bytes we can move from memory to memory
2166 in one reasonably fast instruction. */
2167 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2168 #define MAX_MOVE_MAX 8
2169
2170 /* Nonzero if access to memory by bytes is no faster than for words.
2171 Also nonzero if doing byte operations (specifically shifts) in registers
2172 is undesirable. */
2173 #define SLOW_BYTE_ACCESS 1
2174
2175 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2176 will either zero-extend or sign-extend. The value of this macro should
2177 be the code that says which one of the two operations is implicitly
2178 done, UNKNOWN if none. */
2179 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2180
2181 /* Define if loading short immediate values into registers sign extends. */
2182 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
2183 \f
2184 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2185 is done just by pretending it is already truncated. */
2186 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2187
2188 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2189 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2190 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
2191
2192 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
2193 zero. The hardware instructions added in Power9 return 32 or 64. */
2194 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2195 ((!TARGET_CTZ) \
2196 ? ((VALUE) = -1, 1) \
2197 : ((VALUE) = ((MODE) == SImode ? 32 : 64), 1))
2198
2199 /* Specify the machine mode that pointers have.
2200 After generation of rtl, the compiler makes no further distinction
2201 between pointers and any other objects of this machine mode. */
2202 extern unsigned rs6000_pmode;
2203 #define Pmode ((machine_mode)rs6000_pmode)
2204
2205 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2206 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2207
2208 /* Mode of a function address in a call instruction (for indexing purposes).
2209 Doesn't matter on RS/6000. */
2210 #define FUNCTION_MODE SImode
2211
2212 /* Define this if addresses of constant functions
2213 shouldn't be put through pseudo regs where they can be cse'd.
2214 Desirable on machines where ordinary constants are expensive
2215 but a CALL with constant address is cheap. */
2216 #define NO_FUNCTION_CSE 1
2217
2218 /* Define this to be nonzero if shift instructions ignore all but the low-order
2219 few bits.
2220
2221 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2222 have been dropped from the PowerPC architecture. */
2223 #define SHIFT_COUNT_TRUNCATED 0
2224
2225 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2226 should be adjusted to reflect any required changes. This macro is used when
2227 there is some systematic length adjustment required that would be difficult
2228 to express in the length attribute. */
2229
2230 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2231
2232 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2233 COMPARE, return the mode to be used for the comparison. For
2234 floating-point, CCFPmode should be used. CCUNSmode should be used
2235 for unsigned comparisons. CCEQmode should be used when we are
2236 doing an inequality comparison on the result of a
2237 comparison. CCmode should be used in all other cases. */
2238
2239 #define SELECT_CC_MODE(OP,X,Y) \
2240 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2241 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2242 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2243 ? CCEQmode : CCmode))
2244
2245 /* Can the condition code MODE be safely reversed? This is safe in
2246 all cases on this port, because at present it doesn't use the
2247 trapping FP comparisons (fcmpo). */
2248 #define REVERSIBLE_CC_MODE(MODE) 1
2249
2250 /* Given a condition code and a mode, return the inverse condition. */
2251 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2252
2253 \f
2254 /* Control the assembler format that we output. */
2255
2256 /* A C string constant describing how to begin a comment in the target
2257 assembler language. The compiler assumes that the comment will end at
2258 the end of the line. */
2259 #define ASM_COMMENT_START " #"
2260
2261 /* Flag to say the TOC is initialized */
2262 extern int toc_initialized;
2263
2264 /* Macro to output a special constant pool entry. Go to WIN if we output
2265 it. Otherwise, it is written the usual way.
2266
2267 On the RS/6000, toc entries are handled this way. */
2268
2269 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2270 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2271 { \
2272 output_toc (FILE, X, LABELNO, MODE); \
2273 goto WIN; \
2274 } \
2275 }
2276
2277 #ifdef HAVE_GAS_WEAK
2278 #define RS6000_WEAK 1
2279 #else
2280 #define RS6000_WEAK 0
2281 #endif
2282
2283 #if RS6000_WEAK
2284 /* Used in lieu of ASM_WEAKEN_LABEL. */
2285 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2286 do \
2287 { \
2288 fputs ("\t.weak\t", (FILE)); \
2289 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2290 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2291 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2292 { \
2293 if (TARGET_XCOFF) \
2294 fputs ("[DS]", (FILE)); \
2295 fputs ("\n\t.weak\t.", (FILE)); \
2296 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2297 } \
2298 fputc ('\n', (FILE)); \
2299 if (VAL) \
2300 { \
2301 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2302 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2303 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2304 { \
2305 fputs ("\t.set\t.", (FILE)); \
2306 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2307 fputs (",.", (FILE)); \
2308 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2309 fputc ('\n', (FILE)); \
2310 } \
2311 } \
2312 } \
2313 while (0)
2314 #endif
2315
2316 #if HAVE_GAS_WEAKREF
2317 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2318 do \
2319 { \
2320 fputs ("\t.weakref\t", (FILE)); \
2321 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2322 fputs (", ", (FILE)); \
2323 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2324 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2325 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2326 { \
2327 fputs ("\n\t.weakref\t.", (FILE)); \
2328 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2329 fputs (", .", (FILE)); \
2330 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2331 } \
2332 fputc ('\n', (FILE)); \
2333 } while (0)
2334 #endif
2335
2336 /* This implements the `alias' attribute. */
2337 #undef ASM_OUTPUT_DEF_FROM_DECLS
2338 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2339 do \
2340 { \
2341 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2342 const char *name = IDENTIFIER_POINTER (TARGET); \
2343 if (TREE_CODE (DECL) == FUNCTION_DECL \
2344 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2345 { \
2346 if (TREE_PUBLIC (DECL)) \
2347 { \
2348 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2349 { \
2350 fputs ("\t.globl\t.", FILE); \
2351 RS6000_OUTPUT_BASENAME (FILE, alias); \
2352 putc ('\n', FILE); \
2353 } \
2354 } \
2355 else if (TARGET_XCOFF) \
2356 { \
2357 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2358 { \
2359 fputs ("\t.lglobl\t.", FILE); \
2360 RS6000_OUTPUT_BASENAME (FILE, alias); \
2361 putc ('\n', FILE); \
2362 fputs ("\t.lglobl\t", FILE); \
2363 RS6000_OUTPUT_BASENAME (FILE, alias); \
2364 putc ('\n', FILE); \
2365 } \
2366 } \
2367 fputs ("\t.set\t.", FILE); \
2368 RS6000_OUTPUT_BASENAME (FILE, alias); \
2369 fputs (",.", FILE); \
2370 RS6000_OUTPUT_BASENAME (FILE, name); \
2371 fputc ('\n', FILE); \
2372 } \
2373 ASM_OUTPUT_DEF (FILE, alias, name); \
2374 } \
2375 while (0)
2376
2377 #define TARGET_ASM_FILE_START rs6000_file_start
2378
2379 /* Output to assembler file text saying following lines
2380 may contain character constants, extra white space, comments, etc. */
2381
2382 #define ASM_APP_ON ""
2383
2384 /* Output to assembler file text saying following lines
2385 no longer contain unusual constructs. */
2386
2387 #define ASM_APP_OFF ""
2388
2389 /* How to refer to registers in assembler output.
2390 This sequence is indexed by compiler's hard-register-number (see above). */
2391
2392 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2393
2394 #define REGISTER_NAMES \
2395 { \
2396 &rs6000_reg_names[ 0][0], /* r0 */ \
2397 &rs6000_reg_names[ 1][0], /* r1 */ \
2398 &rs6000_reg_names[ 2][0], /* r2 */ \
2399 &rs6000_reg_names[ 3][0], /* r3 */ \
2400 &rs6000_reg_names[ 4][0], /* r4 */ \
2401 &rs6000_reg_names[ 5][0], /* r5 */ \
2402 &rs6000_reg_names[ 6][0], /* r6 */ \
2403 &rs6000_reg_names[ 7][0], /* r7 */ \
2404 &rs6000_reg_names[ 8][0], /* r8 */ \
2405 &rs6000_reg_names[ 9][0], /* r9 */ \
2406 &rs6000_reg_names[10][0], /* r10 */ \
2407 &rs6000_reg_names[11][0], /* r11 */ \
2408 &rs6000_reg_names[12][0], /* r12 */ \
2409 &rs6000_reg_names[13][0], /* r13 */ \
2410 &rs6000_reg_names[14][0], /* r14 */ \
2411 &rs6000_reg_names[15][0], /* r15 */ \
2412 &rs6000_reg_names[16][0], /* r16 */ \
2413 &rs6000_reg_names[17][0], /* r17 */ \
2414 &rs6000_reg_names[18][0], /* r18 */ \
2415 &rs6000_reg_names[19][0], /* r19 */ \
2416 &rs6000_reg_names[20][0], /* r20 */ \
2417 &rs6000_reg_names[21][0], /* r21 */ \
2418 &rs6000_reg_names[22][0], /* r22 */ \
2419 &rs6000_reg_names[23][0], /* r23 */ \
2420 &rs6000_reg_names[24][0], /* r24 */ \
2421 &rs6000_reg_names[25][0], /* r25 */ \
2422 &rs6000_reg_names[26][0], /* r26 */ \
2423 &rs6000_reg_names[27][0], /* r27 */ \
2424 &rs6000_reg_names[28][0], /* r28 */ \
2425 &rs6000_reg_names[29][0], /* r29 */ \
2426 &rs6000_reg_names[30][0], /* r30 */ \
2427 &rs6000_reg_names[31][0], /* r31 */ \
2428 \
2429 &rs6000_reg_names[32][0], /* fr0 */ \
2430 &rs6000_reg_names[33][0], /* fr1 */ \
2431 &rs6000_reg_names[34][0], /* fr2 */ \
2432 &rs6000_reg_names[35][0], /* fr3 */ \
2433 &rs6000_reg_names[36][0], /* fr4 */ \
2434 &rs6000_reg_names[37][0], /* fr5 */ \
2435 &rs6000_reg_names[38][0], /* fr6 */ \
2436 &rs6000_reg_names[39][0], /* fr7 */ \
2437 &rs6000_reg_names[40][0], /* fr8 */ \
2438 &rs6000_reg_names[41][0], /* fr9 */ \
2439 &rs6000_reg_names[42][0], /* fr10 */ \
2440 &rs6000_reg_names[43][0], /* fr11 */ \
2441 &rs6000_reg_names[44][0], /* fr12 */ \
2442 &rs6000_reg_names[45][0], /* fr13 */ \
2443 &rs6000_reg_names[46][0], /* fr14 */ \
2444 &rs6000_reg_names[47][0], /* fr15 */ \
2445 &rs6000_reg_names[48][0], /* fr16 */ \
2446 &rs6000_reg_names[49][0], /* fr17 */ \
2447 &rs6000_reg_names[50][0], /* fr18 */ \
2448 &rs6000_reg_names[51][0], /* fr19 */ \
2449 &rs6000_reg_names[52][0], /* fr20 */ \
2450 &rs6000_reg_names[53][0], /* fr21 */ \
2451 &rs6000_reg_names[54][0], /* fr22 */ \
2452 &rs6000_reg_names[55][0], /* fr23 */ \
2453 &rs6000_reg_names[56][0], /* fr24 */ \
2454 &rs6000_reg_names[57][0], /* fr25 */ \
2455 &rs6000_reg_names[58][0], /* fr26 */ \
2456 &rs6000_reg_names[59][0], /* fr27 */ \
2457 &rs6000_reg_names[60][0], /* fr28 */ \
2458 &rs6000_reg_names[61][0], /* fr29 */ \
2459 &rs6000_reg_names[62][0], /* fr30 */ \
2460 &rs6000_reg_names[63][0], /* fr31 */ \
2461 \
2462 &rs6000_reg_names[64][0], /* was mq */ \
2463 &rs6000_reg_names[65][0], /* lr */ \
2464 &rs6000_reg_names[66][0], /* ctr */ \
2465 &rs6000_reg_names[67][0], /* ap */ \
2466 \
2467 &rs6000_reg_names[68][0], /* cr0 */ \
2468 &rs6000_reg_names[69][0], /* cr1 */ \
2469 &rs6000_reg_names[70][0], /* cr2 */ \
2470 &rs6000_reg_names[71][0], /* cr3 */ \
2471 &rs6000_reg_names[72][0], /* cr4 */ \
2472 &rs6000_reg_names[73][0], /* cr5 */ \
2473 &rs6000_reg_names[74][0], /* cr6 */ \
2474 &rs6000_reg_names[75][0], /* cr7 */ \
2475 \
2476 &rs6000_reg_names[76][0], /* ca */ \
2477 \
2478 &rs6000_reg_names[77][0], /* v0 */ \
2479 &rs6000_reg_names[78][0], /* v1 */ \
2480 &rs6000_reg_names[79][0], /* v2 */ \
2481 &rs6000_reg_names[80][0], /* v3 */ \
2482 &rs6000_reg_names[81][0], /* v4 */ \
2483 &rs6000_reg_names[82][0], /* v5 */ \
2484 &rs6000_reg_names[83][0], /* v6 */ \
2485 &rs6000_reg_names[84][0], /* v7 */ \
2486 &rs6000_reg_names[85][0], /* v8 */ \
2487 &rs6000_reg_names[86][0], /* v9 */ \
2488 &rs6000_reg_names[87][0], /* v10 */ \
2489 &rs6000_reg_names[88][0], /* v11 */ \
2490 &rs6000_reg_names[89][0], /* v12 */ \
2491 &rs6000_reg_names[90][0], /* v13 */ \
2492 &rs6000_reg_names[91][0], /* v14 */ \
2493 &rs6000_reg_names[92][0], /* v15 */ \
2494 &rs6000_reg_names[93][0], /* v16 */ \
2495 &rs6000_reg_names[94][0], /* v17 */ \
2496 &rs6000_reg_names[95][0], /* v18 */ \
2497 &rs6000_reg_names[96][0], /* v19 */ \
2498 &rs6000_reg_names[97][0], /* v20 */ \
2499 &rs6000_reg_names[98][0], /* v21 */ \
2500 &rs6000_reg_names[99][0], /* v22 */ \
2501 &rs6000_reg_names[100][0], /* v23 */ \
2502 &rs6000_reg_names[101][0], /* v24 */ \
2503 &rs6000_reg_names[102][0], /* v25 */ \
2504 &rs6000_reg_names[103][0], /* v26 */ \
2505 &rs6000_reg_names[104][0], /* v27 */ \
2506 &rs6000_reg_names[105][0], /* v28 */ \
2507 &rs6000_reg_names[106][0], /* v29 */ \
2508 &rs6000_reg_names[107][0], /* v30 */ \
2509 &rs6000_reg_names[108][0], /* v31 */ \
2510 &rs6000_reg_names[109][0], /* vrsave */ \
2511 &rs6000_reg_names[110][0], /* vscr */ \
2512 &rs6000_reg_names[111][0], /* spe_acc */ \
2513 &rs6000_reg_names[112][0], /* spefscr */ \
2514 &rs6000_reg_names[113][0], /* sfp */ \
2515 &rs6000_reg_names[114][0], /* tfhar */ \
2516 &rs6000_reg_names[115][0], /* tfiar */ \
2517 &rs6000_reg_names[116][0], /* texasr */ \
2518 \
2519 &rs6000_reg_names[117][0], /* SPE rh0. */ \
2520 &rs6000_reg_names[118][0], /* SPE rh1. */ \
2521 &rs6000_reg_names[119][0], /* SPE rh2. */ \
2522 &rs6000_reg_names[120][0], /* SPE rh3. */ \
2523 &rs6000_reg_names[121][0], /* SPE rh4. */ \
2524 &rs6000_reg_names[122][0], /* SPE rh5. */ \
2525 &rs6000_reg_names[123][0], /* SPE rh6. */ \
2526 &rs6000_reg_names[124][0], /* SPE rh7. */ \
2527 &rs6000_reg_names[125][0], /* SPE rh8. */ \
2528 &rs6000_reg_names[126][0], /* SPE rh9. */ \
2529 &rs6000_reg_names[127][0], /* SPE rh10. */ \
2530 &rs6000_reg_names[128][0], /* SPE rh11. */ \
2531 &rs6000_reg_names[129][0], /* SPE rh12. */ \
2532 &rs6000_reg_names[130][0], /* SPE rh13. */ \
2533 &rs6000_reg_names[131][0], /* SPE rh14. */ \
2534 &rs6000_reg_names[132][0], /* SPE rh15. */ \
2535 &rs6000_reg_names[133][0], /* SPE rh16. */ \
2536 &rs6000_reg_names[134][0], /* SPE rh17. */ \
2537 &rs6000_reg_names[135][0], /* SPE rh18. */ \
2538 &rs6000_reg_names[136][0], /* SPE rh19. */ \
2539 &rs6000_reg_names[137][0], /* SPE rh20. */ \
2540 &rs6000_reg_names[138][0], /* SPE rh21. */ \
2541 &rs6000_reg_names[139][0], /* SPE rh22. */ \
2542 &rs6000_reg_names[140][0], /* SPE rh22. */ \
2543 &rs6000_reg_names[141][0], /* SPE rh24. */ \
2544 &rs6000_reg_names[142][0], /* SPE rh25. */ \
2545 &rs6000_reg_names[143][0], /* SPE rh26. */ \
2546 &rs6000_reg_names[144][0], /* SPE rh27. */ \
2547 &rs6000_reg_names[145][0], /* SPE rh28. */ \
2548 &rs6000_reg_names[146][0], /* SPE rh29. */ \
2549 &rs6000_reg_names[147][0], /* SPE rh30. */ \
2550 &rs6000_reg_names[148][0], /* SPE rh31. */ \
2551 }
2552
2553 /* Table of additional register names to use in user input. */
2554
2555 #define ADDITIONAL_REGISTER_NAMES \
2556 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2557 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2558 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2559 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2560 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2561 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2562 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2563 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2564 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2565 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2566 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2567 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2568 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2569 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2570 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2571 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2572 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2573 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2574 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2575 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2576 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2577 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2578 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2579 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2580 {"vrsave", 109}, {"vscr", 110}, \
2581 {"spe_acc", 111}, {"spefscr", 112}, \
2582 /* no additional names for: lr, ctr, ap */ \
2583 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2584 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2585 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2586 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2587 {"xer", 76}, \
2588 /* VSX registers overlaid on top of FR, Altivec registers */ \
2589 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2590 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2591 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2592 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2593 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2594 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2595 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2596 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2597 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2598 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2599 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2600 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2601 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2602 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2603 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2604 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2605 /* Transactional Memory Facility (HTM) Registers. */ \
2606 {"tfhar", 114}, {"tfiar", 115}, {"texasr", 116}, \
2607 /* SPE high registers. */ \
2608 {"rh0", 117}, {"rh1", 118}, {"rh2", 119}, {"rh3", 120}, \
2609 {"rh4", 121}, {"rh5", 122}, {"rh6", 123}, {"rh7", 124}, \
2610 {"rh8", 125}, {"rh9", 126}, {"rh10", 127}, {"rh11", 128}, \
2611 {"rh12", 129}, {"rh13", 130}, {"rh14", 131}, {"rh15", 132}, \
2612 {"rh16", 133}, {"rh17", 134}, {"rh18", 135}, {"rh19", 136}, \
2613 {"rh20", 137}, {"rh21", 138}, {"rh22", 139}, {"rh23", 140}, \
2614 {"rh24", 141}, {"rh25", 142}, {"rh26", 143}, {"rh27", 144}, \
2615 {"rh28", 145}, {"rh29", 146}, {"rh30", 147}, {"rh31", 148}, \
2616 }
2617
2618 /* This is how to output an element of a case-vector that is relative. */
2619
2620 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2621 do { char buf[100]; \
2622 fputs ("\t.long ", FILE); \
2623 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2624 assemble_name (FILE, buf); \
2625 putc ('-', FILE); \
2626 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2627 assemble_name (FILE, buf); \
2628 putc ('\n', FILE); \
2629 } while (0)
2630
2631 /* This is how to output an assembler line
2632 that says to advance the location counter
2633 to a multiple of 2**LOG bytes. */
2634
2635 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2636 if ((LOG) != 0) \
2637 fprintf (FILE, "\t.align %d\n", (LOG))
2638
2639 /* How to align the given loop. */
2640 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2641
2642 /* Alignment guaranteed by __builtin_malloc. */
2643 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2644 However, specifying the stronger guarantee currently leads to
2645 a regression in SPEC CPU2006 437.leslie3d. The stronger
2646 guarantee should be implemented here once that's fixed. */
2647 #define MALLOC_ABI_ALIGNMENT (64)
2648
2649 /* Pick up the return address upon entry to a procedure. Used for
2650 dwarf2 unwind information. This also enables the table driven
2651 mechanism. */
2652
2653 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2654 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2655
2656 /* Describe how we implement __builtin_eh_return. */
2657 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2658 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2659
2660 /* Print operand X (an rtx) in assembler syntax to file FILE.
2661 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2662 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2663
2664 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2665
2666 /* Define which CODE values are valid. */
2667
2668 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2669
2670 /* Print a memory address as an operand to reference that memory location. */
2671
2672 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2673
2674 /* For switching between functions with different target attributes. */
2675 #define SWITCHABLE_TARGET 1
2676
2677 /* uncomment for disabling the corresponding default options */
2678 /* #define MACHINE_no_sched_interblock */
2679 /* #define MACHINE_no_sched_speculative */
2680 /* #define MACHINE_no_sched_speculative_load */
2681
2682 /* General flags. */
2683 extern int frame_pointer_needed;
2684
2685 /* Classification of the builtin functions as to which switches enable the
2686 builtin, and what attributes it should have. We used to use the target
2687 flags macros, but we've run out of bits, so we now map the options into new
2688 settings used here. */
2689
2690 /* Builtin attributes. */
2691 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2692 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2693 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2694 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2695 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2696 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2697 #define RS6000_BTC_EVSEL 0x00000006 /* SPE EVSEL function. */
2698 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2699 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2700
2701 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2702 #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2703 modifies global state. */
2704 #define RS6000_BTC_PURE 0x00000200 /* reads global
2705 state/mem and does
2706 not modify global state. */
2707 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2708 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2709
2710 /* Miscellaneous information. */
2711 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2712 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2713 #define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2714 #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
2715 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2716
2717 /* Convenience macros to document the instruction type. */
2718 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2719 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2720
2721 /* Builtin targets. For now, we reuse the masks for those options that are in
2722 target flags, and pick three random bits for SPE, paired and ldbl128 which
2723 aren't in target_flags. */
2724 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2725 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2726 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2727 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2728 #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
2729 #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
2730 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2731 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2732 #define RS6000_BTM_SPE MASK_STRING /* E500 */
2733 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2734 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2735 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2736 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2737 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2738 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2739 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2740 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2741 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2742 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2743 #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
2744 #define RS6000_BTM_FLOAT128 MASK_FLOAT128_TYPE /* IEEE 128-bit float. */
2745
2746 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2747 | RS6000_BTM_VSX \
2748 | RS6000_BTM_P8_VECTOR \
2749 | RS6000_BTM_P9_VECTOR \
2750 | RS6000_BTM_P9_MISC \
2751 | RS6000_BTM_MODULO \
2752 | RS6000_BTM_CRYPTO \
2753 | RS6000_BTM_FRE \
2754 | RS6000_BTM_FRES \
2755 | RS6000_BTM_FRSQRTE \
2756 | RS6000_BTM_FRSQRTES \
2757 | RS6000_BTM_HTM \
2758 | RS6000_BTM_POPCNTD \
2759 | RS6000_BTM_CELL \
2760 | RS6000_BTM_DFP \
2761 | RS6000_BTM_HARD_FLOAT \
2762 | RS6000_BTM_LDBL128 \
2763 | RS6000_BTM_FLOAT128)
2764
2765 /* Define builtin enum index. */
2766
2767 #undef RS6000_BUILTIN_0
2768 #undef RS6000_BUILTIN_1
2769 #undef RS6000_BUILTIN_2
2770 #undef RS6000_BUILTIN_3
2771 #undef RS6000_BUILTIN_A
2772 #undef RS6000_BUILTIN_D
2773 #undef RS6000_BUILTIN_E
2774 #undef RS6000_BUILTIN_H
2775 #undef RS6000_BUILTIN_P
2776 #undef RS6000_BUILTIN_Q
2777 #undef RS6000_BUILTIN_S
2778 #undef RS6000_BUILTIN_X
2779
2780 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2781 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2782 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2783 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2784 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2785 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2786 #define RS6000_BUILTIN_E(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2787 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2788 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2789 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2790 #define RS6000_BUILTIN_S(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2791 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2792
2793 enum rs6000_builtins
2794 {
2795 #include "rs6000-builtin.def"
2796
2797 RS6000_BUILTIN_COUNT
2798 };
2799
2800 #undef RS6000_BUILTIN_0
2801 #undef RS6000_BUILTIN_1
2802 #undef RS6000_BUILTIN_2
2803 #undef RS6000_BUILTIN_3
2804 #undef RS6000_BUILTIN_A
2805 #undef RS6000_BUILTIN_D
2806 #undef RS6000_BUILTIN_E
2807 #undef RS6000_BUILTIN_H
2808 #undef RS6000_BUILTIN_P
2809 #undef RS6000_BUILTIN_Q
2810 #undef RS6000_BUILTIN_S
2811 #undef RS6000_BUILTIN_X
2812
2813 enum rs6000_builtin_type_index
2814 {
2815 RS6000_BTI_NOT_OPAQUE,
2816 RS6000_BTI_opaque_V2SI,
2817 RS6000_BTI_opaque_V2SF,
2818 RS6000_BTI_opaque_p_V2SI,
2819 RS6000_BTI_opaque_V4SI,
2820 RS6000_BTI_V16QI,
2821 RS6000_BTI_V1TI,
2822 RS6000_BTI_V2SI,
2823 RS6000_BTI_V2SF,
2824 RS6000_BTI_V2DI,
2825 RS6000_BTI_V2DF,
2826 RS6000_BTI_V4HI,
2827 RS6000_BTI_V4SI,
2828 RS6000_BTI_V4SF,
2829 RS6000_BTI_V8HI,
2830 RS6000_BTI_unsigned_V16QI,
2831 RS6000_BTI_unsigned_V1TI,
2832 RS6000_BTI_unsigned_V8HI,
2833 RS6000_BTI_unsigned_V4SI,
2834 RS6000_BTI_unsigned_V2DI,
2835 RS6000_BTI_bool_char, /* __bool char */
2836 RS6000_BTI_bool_short, /* __bool short */
2837 RS6000_BTI_bool_int, /* __bool int */
2838 RS6000_BTI_bool_long, /* __bool long */
2839 RS6000_BTI_pixel, /* __pixel */
2840 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2841 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2842 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2843 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2844 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2845 RS6000_BTI_long, /* long_integer_type_node */
2846 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2847 RS6000_BTI_long_long, /* long_long_integer_type_node */
2848 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2849 RS6000_BTI_INTQI, /* intQI_type_node */
2850 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2851 RS6000_BTI_INTHI, /* intHI_type_node */
2852 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2853 RS6000_BTI_INTSI, /* intSI_type_node */
2854 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2855 RS6000_BTI_INTDI, /* intDI_type_node */
2856 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2857 RS6000_BTI_INTTI, /* intTI_type_node */
2858 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2859 RS6000_BTI_float, /* float_type_node */
2860 RS6000_BTI_double, /* double_type_node */
2861 RS6000_BTI_long_double, /* long_double_type_node */
2862 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2863 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2864 RS6000_BTI_void, /* void_type_node */
2865 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2866 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2867 RS6000_BTI_const_str, /* pointer to const char * */
2868 RS6000_BTI_MAX
2869 };
2870
2871
2872 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2873 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2874 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2875 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2876 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2877 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2878 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2879 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2880 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2881 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2882 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2883 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2884 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2885 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2886 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2887 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2888 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2889 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2890 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2891 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2892 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2893 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2894 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2895 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2896 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2897 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2898 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2899 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2900 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2901
2902 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2903 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2904 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2905 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2906 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2907 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2908 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2909 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2910 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2911 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2912 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2913 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2914 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2915 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2916 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2917 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2918 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2919 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2920 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2921 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2922 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2923 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2924 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2925
2926 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2927 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2928
2929 #define TARGET_SUPPORTS_WIDE_INT 1
2930
2931 #if (GCC_VERSION >= 3000)
2932 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2933 #endif