]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/rs6000/rs6000.h
6bb65d8afa002435ce956065e2eaa7be02558e76
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
5
6 This file is part of GNU CC.
7
8 GNU CC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GNU CC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU CC; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23
24 /* Note that some other tm.h files include this one and then override
25 many of the definitions. */
26
27 /* Definitions for the object file format. These are set at
28 compile-time. */
29
30 #define OBJECT_XCOFF 1
31 #define OBJECT_ELF 2
32 #define OBJECT_PEF 3
33 #define OBJECT_MACHO 4
34
35 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
36 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
37 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
38 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
39
40 #ifndef TARGET_AIX
41 #define TARGET_AIX 0
42 #endif
43
44 /* Default string to use for cpu if not specified. */
45 #ifndef TARGET_CPU_DEFAULT
46 #define TARGET_CPU_DEFAULT ((char *)0)
47 #endif
48
49 /* Common ASM definitions used by ASM_SPEC among the various targets
50 for handling -mcpu=xxx switches. */
51 #define ASM_CPU_SPEC \
52 "%{!mcpu*: \
53 %{mpower: %{!mpower2: -mpwr}} \
54 %{mpower2: -mpwrx} \
55 %{mpowerpc*: -mppc} \
56 %{mno-power: %{!mpowerpc*: -mcom}} \
57 %{!mno-power: %{!mpower2: %(asm_default)}}} \
58 %{mcpu=common: -mcom} \
59 %{mcpu=power: -mpwr} \
60 %{mcpu=power2: -mpwrx} \
61 %{mcpu=power3: -m604} \
62 %{mcpu=power4: -mpower4} \
63 %{mcpu=powerpc: -mppc} \
64 %{mcpu=rios: -mpwr} \
65 %{mcpu=rios1: -mpwr} \
66 %{mcpu=rios2: -mpwrx} \
67 %{mcpu=rsc: -mpwr} \
68 %{mcpu=rsc1: -mpwr} \
69 %{mcpu=401: -mppc} \
70 %{mcpu=403: -m403} \
71 %{mcpu=405: -m405} \
72 %{mcpu=405f: -m405} \
73 %{mcpu=505: -mppc} \
74 %{mcpu=601: -m601} \
75 %{mcpu=602: -mppc} \
76 %{mcpu=603: -mppc} \
77 %{mcpu=603e: -mppc} \
78 %{mcpu=ec603e: -mppc} \
79 %{mcpu=604: -mppc} \
80 %{mcpu=604e: -mppc} \
81 %{mcpu=620: -mppc} \
82 %{mcpu=630: -m604} \
83 %{mcpu=740: -mppc} \
84 %{mcpu=7400: -mppc} \
85 %{mcpu=7450: -mppc} \
86 %{mcpu=750: -mppc} \
87 %{mcpu=801: -mppc} \
88 %{mcpu=821: -mppc} \
89 %{mcpu=823: -mppc} \
90 %{mcpu=860: -mppc} \
91 %{mcpu=8540: -me500} \
92 %{maltivec: -maltivec}"
93
94 #define CPP_DEFAULT_SPEC ""
95
96 #define ASM_DEFAULT_SPEC ""
97
98 /* This macro defines names of additional specifications to put in the specs
99 that can be used in various specifications like CC1_SPEC. Its definition
100 is an initializer with a subgrouping for each command option.
101
102 Each subgrouping contains a string constant, that defines the
103 specification name, and a string constant that used by the GNU CC driver
104 program.
105
106 Do not define this macro if it does not need to do anything. */
107
108 #define SUBTARGET_EXTRA_SPECS
109
110 #define EXTRA_SPECS \
111 { "cpp_default", CPP_DEFAULT_SPEC }, \
112 { "asm_cpu", ASM_CPU_SPEC }, \
113 { "asm_default", ASM_DEFAULT_SPEC }, \
114 SUBTARGET_EXTRA_SPECS
115
116 /* Architecture type. */
117
118 extern int target_flags;
119
120 /* Use POWER architecture instructions and MQ register. */
121 #define MASK_POWER 0x00000001
122
123 /* Use POWER2 extensions to POWER architecture. */
124 #define MASK_POWER2 0x00000002
125
126 /* Use PowerPC architecture instructions. */
127 #define MASK_POWERPC 0x00000004
128
129 /* Use PowerPC General Purpose group optional instructions, e.g. fsqrt. */
130 #define MASK_PPC_GPOPT 0x00000008
131
132 /* Use PowerPC Graphics group optional instructions, e.g. fsel. */
133 #define MASK_PPC_GFXOPT 0x00000010
134
135 /* Use PowerPC-64 architecture instructions. */
136 #define MASK_POWERPC64 0x00000020
137
138 /* Use revised mnemonic names defined for PowerPC architecture. */
139 #define MASK_NEW_MNEMONICS 0x00000040
140
141 /* Disable placing fp constants in the TOC; can be turned on when the
142 TOC overflows. */
143 #define MASK_NO_FP_IN_TOC 0x00000080
144
145 /* Disable placing symbol+offset constants in the TOC; can be turned on when
146 the TOC overflows. */
147 #define MASK_NO_SUM_IN_TOC 0x00000100
148
149 /* Output only one TOC entry per module. Normally linking fails if
150 there are more than 16K unique variables/constants in an executable. With
151 this option, linking fails only if there are more than 16K modules, or
152 if there are more than 16K unique variables/constant in a single module.
153
154 This is at the cost of having 2 extra loads and one extra store per
155 function, and one less allocable register. */
156 #define MASK_MINIMAL_TOC 0x00000200
157
158 /* Nonzero for the 64bit model: longs and pointers are 64 bits. */
159 #define MASK_64BIT 0x00000400
160
161 /* Disable use of FPRs. */
162 #define MASK_SOFT_FLOAT 0x00000800
163
164 /* Enable load/store multiple, even on PowerPC */
165 #define MASK_MULTIPLE 0x00001000
166
167 /* Use string instructions for block moves */
168 #define MASK_STRING 0x00002000
169
170 /* Disable update form of load/store */
171 #define MASK_NO_UPDATE 0x00004000
172
173 /* Disable fused multiply/add operations */
174 #define MASK_NO_FUSED_MADD 0x00008000
175
176 /* Nonzero if we need to schedule the prolog and epilog. */
177 #define MASK_SCHED_PROLOG 0x00010000
178
179 /* Use AltiVec instructions. */
180 #define MASK_ALTIVEC 0x00020000
181
182 /* Return small structures in memory (as the AIX ABI requires). */
183 #define MASK_AIX_STRUCT_RET 0x00040000
184
185 /* The only remaining free bits are 0x00780000. sysv4.h uses
186 0x00800000 -> 0x40000000, and 0x80000000 is not available
187 because target_flags is signed. */
188
189 #define TARGET_POWER (target_flags & MASK_POWER)
190 #define TARGET_POWER2 (target_flags & MASK_POWER2)
191 #define TARGET_POWERPC (target_flags & MASK_POWERPC)
192 #define TARGET_PPC_GPOPT (target_flags & MASK_PPC_GPOPT)
193 #define TARGET_PPC_GFXOPT (target_flags & MASK_PPC_GFXOPT)
194 #define TARGET_NEW_MNEMONICS (target_flags & MASK_NEW_MNEMONICS)
195 #define TARGET_NO_FP_IN_TOC (target_flags & MASK_NO_FP_IN_TOC)
196 #define TARGET_NO_SUM_IN_TOC (target_flags & MASK_NO_SUM_IN_TOC)
197 #define TARGET_MINIMAL_TOC (target_flags & MASK_MINIMAL_TOC)
198 #define TARGET_64BIT (target_flags & MASK_64BIT)
199 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
200 #define TARGET_MULTIPLE (target_flags & MASK_MULTIPLE)
201 #define TARGET_STRING (target_flags & MASK_STRING)
202 #define TARGET_NO_UPDATE (target_flags & MASK_NO_UPDATE)
203 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
204 #define TARGET_SCHED_PROLOG (target_flags & MASK_SCHED_PROLOG)
205 #define TARGET_ALTIVEC (target_flags & MASK_ALTIVEC)
206 #define TARGET_AIX_STRUCT_RET (target_flags & MASK_AIX_STRUCT_RET)
207
208 #define TARGET_32BIT (! TARGET_64BIT)
209 #define TARGET_HARD_FLOAT (! TARGET_SOFT_FLOAT)
210 #define TARGET_UPDATE (! TARGET_NO_UPDATE)
211 #define TARGET_FUSED_MADD (! TARGET_NO_FUSED_MADD)
212
213 #ifdef IN_LIBGCC2
214 /* For libgcc2 we make sure this is a compile time constant */
215 #if defined (__64BIT__) || defined (__powerpc64__)
216 #define TARGET_POWERPC64 1
217 #else
218 #define TARGET_POWERPC64 0
219 #endif
220 #else
221 #define TARGET_POWERPC64 (target_flags & MASK_POWERPC64)
222 #endif
223
224 #define TARGET_XL_CALL 0
225
226 /* Run-time compilation parameters selecting different hardware subsets.
227
228 Macro to define tables used to set the flags.
229 This is a list in braces of pairs in braces,
230 each pair being { "NAME", VALUE }
231 where VALUE is the bits to set or minus the bits to clear.
232 An empty string NAME is used to identify the default VALUE. */
233
234 #define TARGET_SWITCHES \
235 {{"power", MASK_POWER | MASK_MULTIPLE | MASK_STRING, \
236 N_("Use POWER instruction set")}, \
237 {"power2", (MASK_POWER | MASK_MULTIPLE | MASK_STRING \
238 | MASK_POWER2), \
239 N_("Use POWER2 instruction set")}, \
240 {"no-power2", - MASK_POWER2, \
241 N_("Do not use POWER2 instruction set")}, \
242 {"no-power", - (MASK_POWER | MASK_POWER2 | MASK_MULTIPLE \
243 | MASK_STRING), \
244 N_("Do not use POWER instruction set")}, \
245 {"powerpc", MASK_POWERPC, \
246 N_("Use PowerPC instruction set")}, \
247 {"no-powerpc", - (MASK_POWERPC | MASK_PPC_GPOPT \
248 | MASK_PPC_GFXOPT | MASK_POWERPC64), \
249 N_("Do not use PowerPC instruction set")}, \
250 {"powerpc-gpopt", MASK_POWERPC | MASK_PPC_GPOPT, \
251 N_("Use PowerPC General Purpose group optional instructions")},\
252 {"no-powerpc-gpopt", - MASK_PPC_GPOPT, \
253 N_("Don't use PowerPC General Purpose group optional instructions")},\
254 {"powerpc-gfxopt", MASK_POWERPC | MASK_PPC_GFXOPT, \
255 N_("Use PowerPC Graphics group optional instructions")},\
256 {"no-powerpc-gfxopt", - MASK_PPC_GFXOPT, \
257 N_("Don't use PowerPC Graphics group optional instructions")},\
258 {"powerpc64", MASK_POWERPC64, \
259 N_("Use PowerPC-64 instruction set")}, \
260 {"no-powerpc64", - MASK_POWERPC64, \
261 N_("Don't use PowerPC-64 instruction set")}, \
262 {"altivec", MASK_ALTIVEC , \
263 N_("Use AltiVec instructions")}, \
264 {"no-altivec", - MASK_ALTIVEC , \
265 N_("Don't use AltiVec instructions")}, \
266 {"new-mnemonics", MASK_NEW_MNEMONICS, \
267 N_("Use new mnemonics for PowerPC architecture")},\
268 {"old-mnemonics", -MASK_NEW_MNEMONICS, \
269 N_("Use old mnemonics for PowerPC architecture")},\
270 {"full-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC \
271 | MASK_MINIMAL_TOC), \
272 N_("Put everything in the regular TOC")}, \
273 {"fp-in-toc", - MASK_NO_FP_IN_TOC, \
274 N_("Place floating point constants in TOC")}, \
275 {"no-fp-in-toc", MASK_NO_FP_IN_TOC, \
276 N_("Don't place floating point constants in TOC")},\
277 {"sum-in-toc", - MASK_NO_SUM_IN_TOC, \
278 N_("Place symbol+offset constants in TOC")}, \
279 {"no-sum-in-toc", MASK_NO_SUM_IN_TOC, \
280 N_("Don't place symbol+offset constants in TOC")},\
281 {"minimal-toc", MASK_MINIMAL_TOC, \
282 "Use only one TOC entry per procedure"}, \
283 {"minimal-toc", - (MASK_NO_FP_IN_TOC | MASK_NO_SUM_IN_TOC), \
284 ""}, \
285 {"no-minimal-toc", - MASK_MINIMAL_TOC, \
286 N_("Place variable addresses in the regular TOC")},\
287 {"hard-float", - MASK_SOFT_FLOAT, \
288 N_("Use hardware fp")}, \
289 {"soft-float", MASK_SOFT_FLOAT, \
290 N_("Do not use hardware fp")}, \
291 {"multiple", MASK_MULTIPLE, \
292 N_("Generate load/store multiple instructions")}, \
293 {"no-multiple", - MASK_MULTIPLE, \
294 N_("Do not generate load/store multiple instructions")},\
295 {"string", MASK_STRING, \
296 N_("Generate string instructions for block moves")},\
297 {"no-string", - MASK_STRING, \
298 N_("Do not generate string instructions for block moves")},\
299 {"update", - MASK_NO_UPDATE, \
300 N_("Generate load/store with update instructions")},\
301 {"no-update", MASK_NO_UPDATE, \
302 N_("Do not generate load/store with update instructions")},\
303 {"fused-madd", - MASK_NO_FUSED_MADD, \
304 N_("Generate fused multiply/add instructions")},\
305 {"no-fused-madd", MASK_NO_FUSED_MADD, \
306 N_("Don't generate fused multiply/add instructions")},\
307 {"sched-prolog", MASK_SCHED_PROLOG, \
308 ""}, \
309 {"no-sched-prolog", -MASK_SCHED_PROLOG, \
310 N_("Don't schedule the start and end of the procedure")},\
311 {"sched-epilog", MASK_SCHED_PROLOG, \
312 ""}, \
313 {"no-sched-epilog", -MASK_SCHED_PROLOG, \
314 ""}, \
315 {"aix-struct-return", MASK_AIX_STRUCT_RET, \
316 N_("Return all structures in memory (AIX default)")},\
317 {"svr4-struct-return", - MASK_AIX_STRUCT_RET, \
318 N_("Return small structures in registers (SVR4 default)")},\
319 {"no-aix-struct-return", - MASK_AIX_STRUCT_RET, \
320 ""},\
321 {"no-svr4-struct-return", MASK_AIX_STRUCT_RET, \
322 ""},\
323 SUBTARGET_SWITCHES \
324 {"", TARGET_DEFAULT | MASK_SCHED_PROLOG, \
325 ""}}
326
327 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
328
329 /* This is meant to be redefined in the host dependent files */
330 #define SUBTARGET_SWITCHES
331
332 /* Processor type. Order must match cpu attribute in MD file. */
333 enum processor_type
334 {
335 PROCESSOR_RIOS1,
336 PROCESSOR_RIOS2,
337 PROCESSOR_RS64A,
338 PROCESSOR_MPCCORE,
339 PROCESSOR_PPC403,
340 PROCESSOR_PPC405,
341 PROCESSOR_PPC440,
342 PROCESSOR_PPC601,
343 PROCESSOR_PPC603,
344 PROCESSOR_PPC604,
345 PROCESSOR_PPC604e,
346 PROCESSOR_PPC620,
347 PROCESSOR_PPC630,
348 PROCESSOR_PPC750,
349 PROCESSOR_PPC7400,
350 PROCESSOR_PPC7450,
351 PROCESSOR_PPC8540,
352 PROCESSOR_POWER4
353 };
354
355 extern enum processor_type rs6000_cpu;
356
357 /* Recast the processor type to the cpu attribute. */
358 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
359
360 /* Define generic processor types based upon current deployment. */
361 #define PROCESSOR_COMMON PROCESSOR_PPC601
362 #define PROCESSOR_POWER PROCESSOR_RIOS1
363 #define PROCESSOR_POWERPC PROCESSOR_PPC604
364 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
365
366 /* Define the default processor. This is overridden by other tm.h files. */
367 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
368 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
369
370 /* Specify the dialect of assembler to use. New mnemonics is dialect one
371 and the old mnemonics are dialect zero. */
372 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
373
374 /* This is meant to be overridden in target specific files. */
375 #define SUBTARGET_OPTIONS
376
377 #define TARGET_OPTIONS \
378 { \
379 {"cpu=", &rs6000_select[1].string, \
380 N_("Use features of and schedule code for given CPU") }, \
381 {"tune=", &rs6000_select[2].string, \
382 N_("Schedule code for given CPU") }, \
383 {"debug=", &rs6000_debug_name, N_("Enable debug output") }, \
384 {"traceback=", &rs6000_traceback_name, \
385 N_("Select full, part, or no traceback table") }, \
386 {"abi=", &rs6000_abi_string, N_("Specify ABI to use") }, \
387 {"long-double-", &rs6000_long_double_size_string, \
388 N_("Specify size of long double (64 or 128 bits)") }, \
389 {"isel=", &rs6000_isel_string, \
390 N_("Specify yes/no if isel instructions should be generated") }, \
391 {"spe=", &rs6000_spe_string, \
392 N_("Specify yes/no if SPE SIMD instructions should be generated") },\
393 {"float-gprs=", &rs6000_float_gprs_string, \
394 N_("Specify yes/no if using floating point in the GPRs") }, \
395 {"vrsave=", &rs6000_altivec_vrsave_string, \
396 N_("Specify yes/no if VRSAVE instructions should be generated for AltiVec") }, \
397 {"longcall", &rs6000_longcall_switch, \
398 N_("Avoid all range limits on call instructions") }, \
399 {"no-longcall", &rs6000_longcall_switch, "" }, \
400 SUBTARGET_OPTIONS \
401 }
402
403 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
404 struct rs6000_cpu_select
405 {
406 const char *string;
407 const char *name;
408 int set_tune_p;
409 int set_arch_p;
410 };
411
412 extern struct rs6000_cpu_select rs6000_select[];
413
414 /* Debug support */
415 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
416 extern const char *rs6000_abi_string; /* for -mabi={sysv,darwin,eabi,aix,altivec} */
417 extern int rs6000_debug_stack; /* debug stack applications */
418 extern int rs6000_debug_arg; /* debug argument handling */
419
420 #define TARGET_DEBUG_STACK rs6000_debug_stack
421 #define TARGET_DEBUG_ARG rs6000_debug_arg
422
423 extern const char *rs6000_traceback_name; /* Type of traceback table. */
424
425 /* These are separate from target_flags because we've run out of bits
426 there. */
427 extern const char *rs6000_long_double_size_string;
428 extern int rs6000_long_double_type_size;
429 extern int rs6000_altivec_abi;
430 extern int rs6000_spe_abi;
431 extern int rs6000_isel;
432 extern int rs6000_spe;
433 extern int rs6000_float_gprs;
434 extern const char *rs6000_float_gprs_string;
435 extern const char *rs6000_isel_string;
436 extern const char *rs6000_spe_string;
437 extern const char *rs6000_altivec_vrsave_string;
438 extern int rs6000_altivec_vrsave;
439 extern const char *rs6000_longcall_switch;
440 extern int rs6000_default_long_calls;
441
442 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
443 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
444 #define TARGET_ALTIVEC_VRSAVE rs6000_altivec_vrsave
445
446 #define TARGET_SPE_ABI 0
447 #define TARGET_SPE 0
448 #define TARGET_E500 0
449 #define TARGET_ISEL 0
450 #define TARGET_FPRS 1
451
452 /* Sometimes certain combinations of command options do not make sense
453 on a particular target machine. You can define a macro
454 `OVERRIDE_OPTIONS' to take account of this. This macro, if
455 defined, is executed once just after all the command options have
456 been parsed.
457
458 Don't use this macro to turn on various extra optimizations for
459 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
460
461 On the RS/6000 this is used to define the target cpu type. */
462
463 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
464
465 /* Define this to change the optimizations performed by default. */
466 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
467
468 /* Show we can debug even without a frame pointer. */
469 #define CAN_DEBUG_WITHOUT_FP
470
471 /* Target pragma. */
472 #define REGISTER_TARGET_PRAGMAS() do { \
473 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
474 } while (0)
475
476 /* Target #defines. */
477 #define TARGET_CPU_CPP_BUILTINS() \
478 rs6000_cpu_cpp_builtins (pfile)
479
480 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
481 we're compiling for. Some configurations may need to override it. */
482 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
483 do \
484 { \
485 if (BYTES_BIG_ENDIAN) \
486 { \
487 builtin_define ("__BIG_ENDIAN__"); \
488 builtin_define ("_BIG_ENDIAN"); \
489 builtin_assert ("machine=bigendian"); \
490 } \
491 else \
492 { \
493 builtin_define ("__LITTLE_ENDIAN__"); \
494 builtin_define ("_LITTLE_ENDIAN"); \
495 builtin_assert ("machine=littleendian"); \
496 } \
497 } \
498 while (0)
499 \f
500 /* Target machine storage layout. */
501
502 /* Define this macro if it is advisable to hold scalars in registers
503 in a wider mode than that declared by the program. In such cases,
504 the value is constrained to be within the bounds of the declared
505 type, but kept valid in the wider mode. The signedness of the
506 extension may differ from that of the type. */
507
508 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
509 if (GET_MODE_CLASS (MODE) == MODE_INT \
510 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
511 (MODE) = word_mode;
512
513 /* Define this if function arguments should also be promoted using the above
514 procedure. */
515
516 #define PROMOTE_FUNCTION_ARGS
517
518 /* Likewise, if the function return value is promoted. */
519
520 #define PROMOTE_FUNCTION_RETURN
521
522 /* Define this if most significant bit is lowest numbered
523 in instructions that operate on numbered bit-fields. */
524 /* That is true on RS/6000. */
525 #define BITS_BIG_ENDIAN 1
526
527 /* Define this if most significant byte of a word is the lowest numbered. */
528 /* That is true on RS/6000. */
529 #define BYTES_BIG_ENDIAN 1
530
531 /* Define this if most significant word of a multiword number is lowest
532 numbered.
533
534 For RS/6000 we can decide arbitrarily since there are no machine
535 instructions for them. Might as well be consistent with bits and bytes. */
536 #define WORDS_BIG_ENDIAN 1
537
538 #define MAX_BITS_PER_WORD 64
539
540 /* Width of a word, in units (bytes). */
541 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
542 #ifdef IN_LIBGCC2
543 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
544 #else
545 #define MIN_UNITS_PER_WORD 4
546 #endif
547 #define UNITS_PER_FP_WORD 8
548 #define UNITS_PER_ALTIVEC_WORD 16
549 #define UNITS_PER_SPE_WORD 8
550
551 /* Type used for ptrdiff_t, as a string used in a declaration. */
552 #define PTRDIFF_TYPE "int"
553
554 /* Type used for size_t, as a string used in a declaration. */
555 #define SIZE_TYPE "long unsigned int"
556
557 /* Type used for wchar_t, as a string used in a declaration. */
558 #define WCHAR_TYPE "short unsigned int"
559
560 /* Width of wchar_t in bits. */
561 #define WCHAR_TYPE_SIZE 16
562
563 /* A C expression for the size in bits of the type `short' on the
564 target machine. If you don't define this, the default is half a
565 word. (If this would be less than one storage unit, it is
566 rounded up to one unit.) */
567 #define SHORT_TYPE_SIZE 16
568
569 /* A C expression for the size in bits of the type `int' on the
570 target machine. If you don't define this, the default is one
571 word. */
572 #define INT_TYPE_SIZE 32
573
574 /* A C expression for the size in bits of the type `long' on the
575 target machine. If you don't define this, the default is one
576 word. */
577 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
578 #define MAX_LONG_TYPE_SIZE 64
579
580 /* A C expression for the size in bits of the type `long long' on the
581 target machine. If you don't define this, the default is two
582 words. */
583 #define LONG_LONG_TYPE_SIZE 64
584
585 /* A C expression for the size in bits of the type `float' on the
586 target machine. If you don't define this, the default is one
587 word. */
588 #define FLOAT_TYPE_SIZE 32
589
590 /* A C expression for the size in bits of the type `double' on the
591 target machine. If you don't define this, the default is two
592 words. */
593 #define DOUBLE_TYPE_SIZE 64
594
595 /* A C expression for the size in bits of the type `long double' on
596 the target machine. If you don't define this, the default is two
597 words. */
598 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
599
600 /* Constant which presents upper bound of the above value. */
601 #define MAX_LONG_DOUBLE_TYPE_SIZE 128
602
603 /* Define this to set long double type size to use in libgcc2.c, which can
604 not depend on target_flags. */
605 #ifdef __LONG_DOUBLE_128__
606 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
607 #else
608 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
609 #endif
610
611 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
612 #define WIDEST_HARDWARE_FP_SIZE 64
613
614 /* Width in bits of a pointer.
615 See also the macro `Pmode' defined below. */
616 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
617
618 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
619 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
620
621 /* Boundary (in *bits*) on which stack pointer should be aligned. */
622 #define STACK_BOUNDARY ((TARGET_32BIT && !TARGET_ALTIVEC_ABI) ? 64 : 128)
623
624 /* Allocation boundary (in *bits*) for the code of a function. */
625 #define FUNCTION_BOUNDARY 32
626
627 /* No data type wants to be aligned rounder than this. */
628 #define BIGGEST_ALIGNMENT 128
629
630 /* A C expression to compute the alignment for a variables in the
631 local store. TYPE is the data type, and ALIGN is the alignment
632 that the object would ordinarily have. */
633 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
634 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
635 (TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE) ? 64 : ALIGN)
636
637 /* Alignment of field after `int : 0' in a structure. */
638 #define EMPTY_FIELD_BOUNDARY 32
639
640 /* Every structure's size must be a multiple of this. */
641 #define STRUCTURE_SIZE_BOUNDARY 8
642
643 /* Return 1 if a structure or array containing FIELD should be
644 accessed using `BLKMODE'.
645
646 For the SPE, simd types are V2SI, and gcc can be tempted to put the
647 entire thing in a DI and use subregs to access the internals.
648 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
649 back-end. Because a single GPR can hold a V2SI, but not a DI, the
650 best thing to do is set structs to BLKmode and avoid Severe Tire
651 Damage. */
652 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
653 (TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE)
654
655 /* A bit-field declared as `int' forces `int' alignment for the struct. */
656 #define PCC_BITFIELD_TYPE_MATTERS 1
657
658 /* Make strings word-aligned so strcpy from constants will be faster.
659 Make vector constants quadword aligned. */
660 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
661 (TREE_CODE (EXP) == STRING_CST \
662 && (ALIGN) < BITS_PER_WORD \
663 ? BITS_PER_WORD \
664 : (ALIGN))
665
666 /* Make arrays of chars word-aligned for the same reasons.
667 Align vectors to 128 bits. */
668 #define DATA_ALIGNMENT(TYPE, ALIGN) \
669 (TREE_CODE (TYPE) == VECTOR_TYPE ? (TARGET_SPE_ABI ? 64 : 128) \
670 : TREE_CODE (TYPE) == ARRAY_TYPE \
671 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
672 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
673
674 /* Nonzero if move instructions will actually fail to work
675 when given unaligned data. */
676 #define STRICT_ALIGNMENT 0
677
678 /* Define this macro to be the value 1 if unaligned accesses have a cost
679 many times greater than aligned accesses, for example if they are
680 emulated in a trap handler. */
681 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
682 (STRICT_ALIGNMENT \
683 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
684 || (MODE) == DImode) \
685 && (ALIGN) < 32))
686 \f
687 /* Standard register usage. */
688
689 /* Number of actual hardware registers.
690 The hardware registers are assigned numbers for the compiler
691 from 0 to just below FIRST_PSEUDO_REGISTER.
692 All registers that the compiler knows about must be given numbers,
693 even those that are not normally considered general registers.
694
695 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
696 an MQ register, a count register, a link register, and 8 condition
697 register fields, which we view here as separate registers. AltiVec
698 adds 32 vector registers and a VRsave register.
699
700 In addition, the difference between the frame and argument pointers is
701 a function of the number of registers saved, so we need to have a
702 register for AP that will later be eliminated in favor of SP or FP.
703 This is a normal register, but it is fixed.
704
705 We also create a pseudo register for float/int conversions, that will
706 really represent the memory location used. It is represented here as
707 a register, in order to work around problems in allocating stack storage
708 in inline functions. */
709
710 #define FIRST_PSEUDO_REGISTER 113
711
712 /* This must be included for pre gcc 3.0 glibc compatibility. */
713 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
714
715 /* Add 32 dwarf columns for synthetic SPE registers. The SPE
716 synthetic registers are 113 through 145. */
717 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER + 32)
718
719 /* The SPE has an additional 32 synthetic registers starting at 1200.
720 We must map them here to sane values in the unwinder to avoid a
721 huge hole in the unwind tables.
722
723 FIXME: the AltiVec ABI has AltiVec registers being 1124-1155, and
724 the VRSAVE SPR (SPR256) assigned to register 356. When AltiVec EH
725 is verified to be working, this macro should be changed
726 accordingly. */
727 #define DWARF_REG_TO_UNWIND_COLUMN(r) ((r) > 1200 ? ((r) - 1200 + 113) : (r))
728
729 /* 1 for registers that have pervasive standard uses
730 and are not available for the register allocator.
731
732 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
733 as a local register; for all other OS's r2 is the TOC pointer.
734
735 cr5 is not supposed to be used.
736
737 On System V implementations, r13 is fixed and not available for use. */
738
739 #define FIXED_REGISTERS \
740 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
741 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
742 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
743 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
744 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
745 /* AltiVec registers. */ \
746 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
747 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
748 1, 1 \
749 , 1, 1 \
750 }
751
752 /* 1 for registers not available across function calls.
753 These must include the FIXED_REGISTERS and also any
754 registers that can be used without being saved.
755 The latter must include the registers where values are returned
756 and the register where structure-value addresses are passed.
757 Aside from that, you can include as many other registers as you like. */
758
759 #define CALL_USED_REGISTERS \
760 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
761 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
762 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
763 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
764 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
765 /* AltiVec registers. */ \
766 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
767 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
768 1, 1 \
769 , 1, 1 \
770 }
771
772 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
773 the entire set of `FIXED_REGISTERS' be included.
774 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
775 This macro is optional. If not specified, it defaults to the value
776 of `CALL_USED_REGISTERS'. */
777
778 #define CALL_REALLY_USED_REGISTERS \
779 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
780 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
781 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
782 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
783 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
784 /* AltiVec registers. */ \
785 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
786 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
787 0, 0 \
788 , 0, 0 \
789 }
790
791 #define MQ_REGNO 64
792 #define CR0_REGNO 68
793 #define CR1_REGNO 69
794 #define CR2_REGNO 70
795 #define CR3_REGNO 71
796 #define CR4_REGNO 72
797 #define MAX_CR_REGNO 75
798 #define XER_REGNO 76
799 #define FIRST_ALTIVEC_REGNO 77
800 #define LAST_ALTIVEC_REGNO 108
801 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
802 #define VRSAVE_REGNO 109
803 #define VSCR_REGNO 110
804 #define SPE_ACC_REGNO 111
805 #define SPEFSCR_REGNO 112
806
807 /* List the order in which to allocate registers. Each register must be
808 listed once, even those in FIXED_REGISTERS.
809
810 We allocate in the following order:
811 fp0 (not saved or used for anything)
812 fp13 - fp2 (not saved; incoming fp arg registers)
813 fp1 (not saved; return value)
814 fp31 - fp14 (saved; order given to save least number)
815 cr7, cr6 (not saved or special)
816 cr1 (not saved, but used for FP operations)
817 cr0 (not saved, but used for arithmetic operations)
818 cr4, cr3, cr2 (saved)
819 r0 (not saved; cannot be base reg)
820 r9 (not saved; best for TImode)
821 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
822 r3 (not saved; return value register)
823 r31 - r13 (saved; order given to save least number)
824 r12 (not saved; if used for DImode or DFmode would use r13)
825 mq (not saved; best to use it if we can)
826 ctr (not saved; when we have the choice ctr is better)
827 lr (saved)
828 cr5, r1, r2, ap, xer, vrsave, vscr (fixed)
829 spe_acc, spefscr (fixed)
830
831 AltiVec registers:
832 v0 - v1 (not saved or used for anything)
833 v13 - v3 (not saved; incoming vector arg registers)
834 v2 (not saved; incoming vector arg reg; return value)
835 v19 - v14 (not saved or used for anything)
836 v31 - v20 (saved; order given to save least number)
837 */
838
839 #if FIXED_R2 == 1
840 #define MAYBE_R2_AVAILABLE
841 #define MAYBE_R2_FIXED 2,
842 #else
843 #define MAYBE_R2_AVAILABLE 2,
844 #define MAYBE_R2_FIXED
845 #endif
846
847 #define REG_ALLOC_ORDER \
848 {32, \
849 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
850 33, \
851 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
852 50, 49, 48, 47, 46, \
853 75, 74, 69, 68, 72, 71, 70, \
854 0, MAYBE_R2_AVAILABLE \
855 9, 11, 10, 8, 7, 6, 5, 4, \
856 3, \
857 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
858 18, 17, 16, 15, 14, 13, 12, \
859 64, 66, 65, \
860 73, 1, MAYBE_R2_FIXED 67, 76, \
861 /* AltiVec registers. */ \
862 77, 78, \
863 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
864 79, \
865 96, 95, 94, 93, 92, 91, \
866 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, \
867 97, 109, 110 \
868 , 111, 112 \
869 }
870
871 /* True if register is floating-point. */
872 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
873
874 /* True if register is a condition register. */
875 #define CR_REGNO_P(N) ((N) >= 68 && (N) <= 75)
876
877 /* True if register is a condition register, but not cr0. */
878 #define CR_REGNO_NOT_CR0_P(N) ((N) >= 69 && (N) <= 75)
879
880 /* True if register is an integer register. */
881 #define INT_REGNO_P(N) ((N) <= 31 || (N) == ARG_POINTER_REGNUM)
882
883 /* SPE SIMD registers are just the GPRs. */
884 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
885
886 /* True if register is the XER register. */
887 #define XER_REGNO_P(N) ((N) == XER_REGNO)
888
889 /* True if register is an AltiVec register. */
890 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
891
892 /* Return number of consecutive hard regs needed starting at reg REGNO
893 to hold something of mode MODE.
894 This is ordinarily the length in words of a value of mode MODE
895 but can be less for certain modes in special long registers.
896
897 For the SPE, GPRs are 64 bits but only 32 bits are visible in
898 scalar instructions. The upper 32 bits are only available to the
899 SIMD instructions.
900
901 POWER and PowerPC GPRs hold 32 bits worth;
902 PowerPC64 GPRs and FPRs point register holds 64 bits worth. */
903
904 #define HARD_REGNO_NREGS(REGNO, MODE) \
905 (FP_REGNO_P (REGNO) \
906 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
907 : (SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
908 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_SPE_WORD - 1) / UNITS_PER_SPE_WORD) \
909 : ALTIVEC_REGNO_P (REGNO) \
910 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_ALTIVEC_WORD - 1) / UNITS_PER_ALTIVEC_WORD) \
911 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
912
913 #define ALTIVEC_VECTOR_MODE(MODE) \
914 ((MODE) == V16QImode \
915 || (MODE) == V8HImode \
916 || (MODE) == V4SFmode \
917 || (MODE) == V4SImode)
918
919 #define SPE_VECTOR_MODE(MODE) \
920 ((MODE) == V4HImode \
921 || (MODE) == V2SFmode \
922 || (MODE) == V1DImode \
923 || (MODE) == V2SImode)
924
925 /* Define this macro to be nonzero if the port is prepared to handle
926 insns involving vector mode MODE. At the very least, it must have
927 move patterns for this mode. */
928
929 #define VECTOR_MODE_SUPPORTED_P(MODE) \
930 ((TARGET_SPE && SPE_VECTOR_MODE (MODE)) \
931 || (TARGET_ALTIVEC && ALTIVEC_VECTOR_MODE (MODE)))
932
933 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
934 For POWER and PowerPC, the GPRs can hold any mode, but values bigger
935 than one register cannot go past R31. The float
936 registers only can hold floating modes and DImode, and CR register only
937 can hold CC modes. We cannot put TImode anywhere except general
938 register and it must be able to fit within the register set. */
939
940 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
941 (INT_REGNO_P (REGNO) ? \
942 INT_REGNO_P (REGNO + HARD_REGNO_NREGS (REGNO, MODE) - 1) \
943 : FP_REGNO_P (REGNO) ? \
944 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
945 || (GET_MODE_CLASS (MODE) == MODE_INT \
946 && GET_MODE_SIZE (MODE) == UNITS_PER_FP_WORD)) \
947 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_VECTOR_MODE (MODE) \
948 : SPE_SIMD_REGNO_P (REGNO) && TARGET_SPE && SPE_VECTOR_MODE (MODE) ? 1 \
949 : CR_REGNO_P (REGNO) ? GET_MODE_CLASS (MODE) == MODE_CC \
950 : XER_REGNO_P (REGNO) ? (MODE) == PSImode \
951 : GET_MODE_SIZE (MODE) <= UNITS_PER_WORD)
952
953 /* Value is 1 if it is a good idea to tie two pseudo registers
954 when one has mode MODE1 and one has mode MODE2.
955 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
956 for any hard reg, then this must be 0 for correct output. */
957 #define MODES_TIEABLE_P(MODE1, MODE2) \
958 (GET_MODE_CLASS (MODE1) == MODE_FLOAT \
959 ? GET_MODE_CLASS (MODE2) == MODE_FLOAT \
960 : GET_MODE_CLASS (MODE2) == MODE_FLOAT \
961 ? GET_MODE_CLASS (MODE1) == MODE_FLOAT \
962 : GET_MODE_CLASS (MODE1) == MODE_CC \
963 ? GET_MODE_CLASS (MODE2) == MODE_CC \
964 : GET_MODE_CLASS (MODE2) == MODE_CC \
965 ? GET_MODE_CLASS (MODE1) == MODE_CC \
966 : ALTIVEC_VECTOR_MODE (MODE1) \
967 ? ALTIVEC_VECTOR_MODE (MODE2) \
968 : ALTIVEC_VECTOR_MODE (MODE2) \
969 ? ALTIVEC_VECTOR_MODE (MODE1) \
970 : 1)
971
972 /* Post-reload, we can't use any new AltiVec registers, as we already
973 emitted the vrsave mask. */
974
975 #define HARD_REGNO_RENAME_OK(SRC, DST) \
976 (! ALTIVEC_REGNO_P (DST) || regs_ever_live[DST])
977
978 /* A C expression returning the cost of moving data from a register of class
979 CLASS1 to one of CLASS2. */
980
981 #define REGISTER_MOVE_COST rs6000_register_move_cost
982
983 /* A C expressions returning the cost of moving data of MODE from a register to
984 or from memory. */
985
986 #define MEMORY_MOVE_COST rs6000_memory_move_cost
987
988 /* Specify the cost of a branch insn; roughly the number of extra insns that
989 should be added to avoid a branch.
990
991 Set this to 3 on the RS/6000 since that is roughly the average cost of an
992 unscheduled conditional branch. */
993
994 #define BRANCH_COST 3
995
996
997 /* A fixed register used at prologue and epilogue generation to fix
998 addressing modes. The SPE needs heavy addressing fixes at the last
999 minute, and it's best to save a register for it.
1000
1001 AltiVec also needs fixes, but we've gotten around using r11, which
1002 is actually wrong because when use_backchain_to_restore_sp is true,
1003 we end up clobbering r11.
1004
1005 The AltiVec case needs to be fixed. Dunno if we should break ABI
1006 compatibility and reserve a register for it as well.. */
1007
1008 #define FIXED_SCRATCH (TARGET_SPE ? 14 : 11)
1009
1010 /* Define this macro to change register usage conditional on target flags.
1011 Set MQ register fixed (already call_used) if not POWER architecture
1012 (RIOS1, RIOS2, RSC, and PPC601) so that it will not be allocated.
1013 64-bit AIX reserves GPR13 for thread-private data.
1014 Conditionally disable FPRs. */
1015
1016 #define CONDITIONAL_REGISTER_USAGE \
1017 { \
1018 int i; \
1019 if (! TARGET_POWER) \
1020 fixed_regs[64] = 1; \
1021 if (TARGET_64BIT) \
1022 fixed_regs[13] = call_used_regs[13] \
1023 = call_really_used_regs[13] = 1; \
1024 if (TARGET_SOFT_FLOAT || !TARGET_FPRS) \
1025 for (i = 32; i < 64; i++) \
1026 fixed_regs[i] = call_used_regs[i] \
1027 = call_really_used_regs[i] = 1; \
1028 if (DEFAULT_ABI == ABI_V4 \
1029 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1030 && flag_pic == 2) \
1031 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1032 if (DEFAULT_ABI == ABI_V4 \
1033 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM \
1034 && flag_pic == 1) \
1035 fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1036 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1037 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1038 if (DEFAULT_ABI == ABI_DARWIN \
1039 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM) \
1040 global_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1041 = fixed_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1042 = call_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] \
1043 = call_really_used_regs[RS6000_PIC_OFFSET_TABLE_REGNUM] = 1; \
1044 if (TARGET_ALTIVEC) \
1045 global_regs[VSCR_REGNO] = 1; \
1046 if (TARGET_SPE) \
1047 { \
1048 global_regs[SPEFSCR_REGNO] = 1; \
1049 fixed_regs[FIXED_SCRATCH] \
1050 = call_used_regs[FIXED_SCRATCH] \
1051 = call_really_used_regs[FIXED_SCRATCH] = 1; \
1052 } \
1053 if (! TARGET_ALTIVEC) \
1054 { \
1055 for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i) \
1056 fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \
1057 call_really_used_regs[VRSAVE_REGNO] = 1; \
1058 } \
1059 if (TARGET_ALTIVEC_ABI) \
1060 for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i) \
1061 call_used_regs[i] = call_really_used_regs[i] = 1; \
1062 }
1063
1064 /* Specify the registers used for certain standard purposes.
1065 The values of these macros are register numbers. */
1066
1067 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1068 /* #define PC_REGNUM */
1069
1070 /* Register to use for pushing function arguments. */
1071 #define STACK_POINTER_REGNUM 1
1072
1073 /* Base register for access to local variables of the function. */
1074 #define FRAME_POINTER_REGNUM 31
1075
1076 /* Value should be nonzero if functions must have frame pointers.
1077 Zero means the frame pointer need not be set up (and parms
1078 may be accessed via the stack pointer) in functions that seem suitable.
1079 This is computed in `reload', in reload1.c. */
1080 #define FRAME_POINTER_REQUIRED 0
1081
1082 /* Base register for access to arguments of the function. */
1083 #define ARG_POINTER_REGNUM 67
1084
1085 /* Place to put static chain when calling a function that requires it. */
1086 #define STATIC_CHAIN_REGNUM 11
1087
1088 /* Link register number. */
1089 #define LINK_REGISTER_REGNUM 65
1090
1091 /* Count register number. */
1092 #define COUNT_REGISTER_REGNUM 66
1093
1094 /* Place that structure value return address is placed.
1095
1096 On the RS/6000, it is passed as an extra parameter. */
1097 #define STRUCT_VALUE 0
1098 \f
1099 /* Define the classes of registers for register constraints in the
1100 machine description. Also define ranges of constants.
1101
1102 One of the classes must always be named ALL_REGS and include all hard regs.
1103 If there is more than one class, another class must be named NO_REGS
1104 and contain no registers.
1105
1106 The name GENERAL_REGS must be the name of a class (or an alias for
1107 another name such as ALL_REGS). This is the class of registers
1108 that is allowed by "g" or "r" in a register constraint.
1109 Also, registers outside this class are allocated only when
1110 instructions express preferences for them.
1111
1112 The classes must be numbered in nondecreasing order; that is,
1113 a larger-numbered class must never be contained completely
1114 in a smaller-numbered class.
1115
1116 For any two classes, it is very desirable that there be another
1117 class that represents their union. */
1118
1119 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1120 and condition registers, plus three special registers, MQ, CTR, and the
1121 link register. AltiVec adds a vector register class.
1122
1123 However, r0 is special in that it cannot be used as a base register.
1124 So make a class for registers valid as base registers.
1125
1126 Also, cr0 is the only condition code register that can be used in
1127 arithmetic insns, so make a separate class for it. */
1128
1129 enum reg_class
1130 {
1131 NO_REGS,
1132 BASE_REGS,
1133 GENERAL_REGS,
1134 FLOAT_REGS,
1135 ALTIVEC_REGS,
1136 VRSAVE_REGS,
1137 VSCR_REGS,
1138 SPE_ACC_REGS,
1139 SPEFSCR_REGS,
1140 NON_SPECIAL_REGS,
1141 MQ_REGS,
1142 LINK_REGS,
1143 CTR_REGS,
1144 LINK_OR_CTR_REGS,
1145 SPECIAL_REGS,
1146 SPEC_OR_GEN_REGS,
1147 CR0_REGS,
1148 CR_REGS,
1149 NON_FLOAT_REGS,
1150 XER_REGS,
1151 ALL_REGS,
1152 LIM_REG_CLASSES
1153 };
1154
1155 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1156
1157 /* Give names of register classes as strings for dump file. */
1158
1159 #define REG_CLASS_NAMES \
1160 { \
1161 "NO_REGS", \
1162 "BASE_REGS", \
1163 "GENERAL_REGS", \
1164 "FLOAT_REGS", \
1165 "ALTIVEC_REGS", \
1166 "VRSAVE_REGS", \
1167 "VSCR_REGS", \
1168 "SPE_ACC_REGS", \
1169 "SPEFSCR_REGS", \
1170 "NON_SPECIAL_REGS", \
1171 "MQ_REGS", \
1172 "LINK_REGS", \
1173 "CTR_REGS", \
1174 "LINK_OR_CTR_REGS", \
1175 "SPECIAL_REGS", \
1176 "SPEC_OR_GEN_REGS", \
1177 "CR0_REGS", \
1178 "CR_REGS", \
1179 "NON_FLOAT_REGS", \
1180 "XER_REGS", \
1181 "ALL_REGS" \
1182 }
1183
1184 /* Define which registers fit in which classes.
1185 This is an initializer for a vector of HARD_REG_SET
1186 of length N_REG_CLASSES. */
1187
1188 #define REG_CLASS_CONTENTS \
1189 { \
1190 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1191 { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */ \
1192 { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */ \
1193 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1194 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1195 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1196 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1197 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1198 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1199 { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \
1200 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1201 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1202 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1203 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1204 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1205 { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \
1206 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1207 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1208 { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */ \
1209 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1210 { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff } /* ALL_REGS */ \
1211 }
1212
1213 /* The same information, inverted:
1214 Return the class number of the smallest class containing
1215 reg number REGNO. This could be a conditional expression
1216 or could index an array. */
1217
1218 #define REGNO_REG_CLASS(REGNO) \
1219 ((REGNO) == 0 ? GENERAL_REGS \
1220 : (REGNO) < 32 ? BASE_REGS \
1221 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1222 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1223 : (REGNO) == CR0_REGNO ? CR0_REGS \
1224 : CR_REGNO_P (REGNO) ? CR_REGS \
1225 : (REGNO) == MQ_REGNO ? MQ_REGS \
1226 : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS \
1227 : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS \
1228 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1229 : (REGNO) == XER_REGNO ? XER_REGS \
1230 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1231 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1232 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1233 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1234 : NO_REGS)
1235
1236 /* The class value for index registers, and the one for base regs. */
1237 #define INDEX_REG_CLASS GENERAL_REGS
1238 #define BASE_REG_CLASS BASE_REGS
1239
1240 /* Get reg_class from a letter such as appears in the machine description. */
1241
1242 #define REG_CLASS_FROM_LETTER(C) \
1243 ((C) == 'f' ? FLOAT_REGS \
1244 : (C) == 'b' ? BASE_REGS \
1245 : (C) == 'h' ? SPECIAL_REGS \
1246 : (C) == 'q' ? MQ_REGS \
1247 : (C) == 'c' ? CTR_REGS \
1248 : (C) == 'l' ? LINK_REGS \
1249 : (C) == 'v' ? ALTIVEC_REGS \
1250 : (C) == 'x' ? CR0_REGS \
1251 : (C) == 'y' ? CR_REGS \
1252 : (C) == 'z' ? XER_REGS \
1253 : NO_REGS)
1254
1255 /* The letters I, J, K, L, M, N, and P in a register constraint string
1256 can be used to stand for particular ranges of immediate operands.
1257 This macro defines what the ranges are.
1258 C is the letter, and VALUE is a constant value.
1259 Return 1 if VALUE is in the range specified by C.
1260
1261 `I' is a signed 16-bit constant
1262 `J' is a constant with only the high-order 16 bits nonzero
1263 `K' is a constant with only the low-order 16 bits nonzero
1264 `L' is a signed 16-bit constant shifted left 16 bits
1265 `M' is a constant that is greater than 31
1266 `N' is a positive constant that is an exact power of two
1267 `O' is the constant zero
1268 `P' is a constant whose negation is a signed 16-bit constant */
1269
1270 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1271 ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000 \
1272 : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \
1273 : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0 \
1274 : (C) == 'L' ? (((VALUE) & 0xffff) == 0 \
1275 && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0)) \
1276 : (C) == 'M' ? (VALUE) > 31 \
1277 : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0 \
1278 : (C) == 'O' ? (VALUE) == 0 \
1279 : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \
1280 : 0)
1281
1282 /* Similar, but for floating constants, and defining letters G and H.
1283 Here VALUE is the CONST_DOUBLE rtx itself.
1284
1285 We flag for special constants when we can copy the constant into
1286 a general register in two insns for DF/DI and one insn for SF.
1287
1288 'H' is used for DI/DF constants that take 3 insns. */
1289
1290 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1291 ( (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) \
1292 == ((GET_MODE (VALUE) == SFmode) ? 1 : 2)) \
1293 : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3) \
1294 : 0)
1295
1296 /* Optional extra constraints for this machine.
1297
1298 'Q' means that is a memory operand that is just an offset from a reg.
1299 'R' is for AIX TOC entries.
1300 'S' is a constant that can be placed into a 64-bit mask operand
1301 'T' is a constant that can be placed into a 32-bit mask operand
1302 'U' is for V.4 small data references.
1303 'W' is a vector constant that can be easily generated (no mem refs).
1304 't' is for AND masks that can be performed by two rldic{l,r} insns. */
1305
1306 #define EXTRA_CONSTRAINT(OP, C) \
1307 ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG \
1308 : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP) \
1309 : (C) == 'S' ? mask64_operand (OP, DImode) \
1310 : (C) == 'T' ? mask_operand (OP, SImode) \
1311 : (C) == 'U' ? (DEFAULT_ABI == ABI_V4 \
1312 && small_data_operand (OP, GET_MODE (OP))) \
1313 : (C) == 't' ? (mask64_2_operand (OP, DImode) \
1314 && (fixed_regs[CR0_REGNO] \
1315 || !logical_operand (OP, DImode)) \
1316 && !mask64_operand (OP, DImode)) \
1317 : (C) == 'W' ? (easy_vector_constant (OP, GET_MODE (OP))) \
1318 : 0)
1319
1320 /* Given an rtx X being reloaded into a reg required to be
1321 in class CLASS, return the class of reg to actually use.
1322 In general this is just CLASS; but on some machines
1323 in some cases it is preferable to use a more restrictive class.
1324
1325 On the RS/6000, we have to return NO_REGS when we want to reload a
1326 floating-point CONST_DOUBLE to force it to be copied to memory.
1327
1328 We also don't want to reload integer values into floating-point
1329 registers if we can at all help it. In fact, this can
1330 cause reload to abort, if it tries to generate a reload of CTR
1331 into a FP register and discovers it doesn't have the memory location
1332 required.
1333
1334 ??? Would it be a good idea to have reload do the converse, that is
1335 try to reload floating modes into FP registers if possible?
1336 */
1337
1338 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1339 (((GET_CODE (X) == CONST_DOUBLE \
1340 && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT) \
1341 ? NO_REGS \
1342 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1343 && (CLASS) == NON_SPECIAL_REGS) \
1344 ? GENERAL_REGS \
1345 : (CLASS)))
1346
1347 /* Return the register class of a scratch register needed to copy IN into
1348 or out of a register in CLASS in MODE. If it can be done directly,
1349 NO_REGS is returned. */
1350
1351 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1352 secondary_reload_class (CLASS, MODE, IN)
1353
1354 /* If we are copying between FP or AltiVec registers and anything
1355 else, we need a memory location. */
1356
1357 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1358 ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS \
1359 || (CLASS2) == FLOAT_REGS \
1360 || (CLASS1) == ALTIVEC_REGS \
1361 || (CLASS2) == ALTIVEC_REGS))
1362
1363 /* Return the maximum number of consecutive registers
1364 needed to represent mode MODE in a register of class CLASS.
1365
1366 On RS/6000, this is the size of MODE in words,
1367 except in the FP regs, where a single reg is enough for two words. */
1368 #define CLASS_MAX_NREGS(CLASS, MODE) \
1369 (((CLASS) == FLOAT_REGS) \
1370 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1371 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1372
1373
1374 /* Return a class of registers that cannot change FROM mode to TO mode. */
1375
1376 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1377 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1378 ? reg_classes_intersect_p (FLOAT_REGS, CLASS) \
1379 : (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1 \
1380 ? reg_classes_intersect_p (GENERAL_REGS, CLASS) \
1381 : 0)
1382
1383 /* Stack layout; function entry, exit and calling. */
1384
1385 /* Enumeration to give which calling sequence to use. */
1386 enum rs6000_abi {
1387 ABI_NONE,
1388 ABI_AIX, /* IBM's AIX */
1389 ABI_V4, /* System V.4/eabi */
1390 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1391 };
1392
1393 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1394
1395 /* Structure used to define the rs6000 stack */
1396 typedef struct rs6000_stack {
1397 int first_gp_reg_save; /* first callee saved GP register used */
1398 int first_fp_reg_save; /* first callee saved FP register used */
1399 int first_altivec_reg_save; /* first callee saved AltiVec register used */
1400 int lr_save_p; /* true if the link reg needs to be saved */
1401 int cr_save_p; /* true if the CR reg needs to be saved */
1402 unsigned int vrsave_mask; /* mask of vec registers to save */
1403 int toc_save_p; /* true if the TOC needs to be saved */
1404 int push_p; /* true if we need to allocate stack space */
1405 int calls_p; /* true if the function makes any calls */
1406 enum rs6000_abi abi; /* which ABI to use */
1407 int gp_save_offset; /* offset to save GP regs from initial SP */
1408 int fp_save_offset; /* offset to save FP regs from initial SP */
1409 int altivec_save_offset; /* offset to save AltiVec regs from initial SP */
1410 int lr_save_offset; /* offset to save LR from initial SP */
1411 int cr_save_offset; /* offset to save CR from initial SP */
1412 int vrsave_save_offset; /* offset to save VRSAVE from initial SP */
1413 int spe_gp_save_offset; /* offset to save spe 64-bit gprs */
1414 int toc_save_offset; /* offset to save the TOC pointer */
1415 int varargs_save_offset; /* offset to save the varargs registers */
1416 int ehrd_offset; /* offset to EH return data */
1417 int reg_size; /* register size (4 or 8) */
1418 int varargs_size; /* size to hold V.4 args passed in regs */
1419 int vars_size; /* variable save area size */
1420 int parm_size; /* outgoing parameter size */
1421 int save_size; /* save area size */
1422 int fixed_size; /* fixed size of stack frame */
1423 int gp_size; /* size of saved GP registers */
1424 int fp_size; /* size of saved FP registers */
1425 int altivec_size; /* size of saved AltiVec registers */
1426 int cr_size; /* size to hold CR if not in save_size */
1427 int lr_size; /* size to hold LR if not in save_size */
1428 int vrsave_size; /* size to hold VRSAVE if not in save_size */
1429 int altivec_padding_size; /* size of altivec alignment padding if
1430 not in save_size */
1431 int spe_gp_size; /* size of 64-bit GPR save size for SPE */
1432 int spe_padding_size;
1433 int toc_size; /* size to hold TOC if not in save_size */
1434 int total_size; /* total bytes allocated for stack */
1435 int spe_64bit_regs_used;
1436 } rs6000_stack_t;
1437
1438 /* Define this if pushing a word on the stack
1439 makes the stack pointer a smaller address. */
1440 #define STACK_GROWS_DOWNWARD
1441
1442 /* Define this if the nominal address of the stack frame
1443 is at the high-address end of the local variables;
1444 that is, each additional local variable allocated
1445 goes at a more negative offset in the frame.
1446
1447 On the RS/6000, we grow upwards, from the area after the outgoing
1448 arguments. */
1449 /* #define FRAME_GROWS_DOWNWARD */
1450
1451 /* Size of the outgoing register save area */
1452 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1453 || DEFAULT_ABI == ABI_DARWIN) \
1454 ? (TARGET_64BIT ? 64 : 32) \
1455 : 0)
1456
1457 /* Size of the fixed area on the stack */
1458 #define RS6000_SAVE_AREA \
1459 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1460 << (TARGET_64BIT ? 1 : 0))
1461
1462 /* MEM representing address to save the TOC register */
1463 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1464 plus_constant (stack_pointer_rtx, \
1465 (TARGET_32BIT ? 20 : 40)))
1466
1467 /* Size of the V.4 varargs area if needed */
1468 #define RS6000_VARARGS_AREA 0
1469
1470 /* Align an address */
1471 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1472
1473 /* Size of V.4 varargs area in bytes */
1474 #define RS6000_VARARGS_SIZE \
1475 ((GP_ARG_NUM_REG * (TARGET_32BIT ? 4 : 8)) + (FP_ARG_NUM_REG * 8) + 8)
1476
1477 /* Offset within stack frame to start allocating local variables at.
1478 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1479 first local allocated. Otherwise, it is the offset to the BEGINNING
1480 of the first local allocated.
1481
1482 On the RS/6000, the frame pointer is the same as the stack pointer,
1483 except for dynamic allocations. So we start after the fixed area and
1484 outgoing parameter area. */
1485
1486 #define STARTING_FRAME_OFFSET \
1487 (RS6000_ALIGN (current_function_outgoing_args_size, \
1488 TARGET_ALTIVEC ? 16 : 8) \
1489 + RS6000_VARARGS_AREA \
1490 + RS6000_SAVE_AREA)
1491
1492 /* Offset from the stack pointer register to an item dynamically
1493 allocated on the stack, e.g., by `alloca'.
1494
1495 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1496 length of the outgoing arguments. The default is correct for most
1497 machines. See `function.c' for details. */
1498 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1499 (RS6000_ALIGN (current_function_outgoing_args_size, \
1500 TARGET_ALTIVEC ? 16 : 8) \
1501 + (STACK_POINTER_OFFSET))
1502
1503 /* If we generate an insn to push BYTES bytes,
1504 this says how many the stack pointer really advances by.
1505 On RS/6000, don't define this because there are no push insns. */
1506 /* #define PUSH_ROUNDING(BYTES) */
1507
1508 /* Offset of first parameter from the argument pointer register value.
1509 On the RS/6000, we define the argument pointer to the start of the fixed
1510 area. */
1511 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1512
1513 /* Offset from the argument pointer register value to the top of
1514 stack. This is different from FIRST_PARM_OFFSET because of the
1515 register save area. */
1516 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1517
1518 /* Define this if stack space is still allocated for a parameter passed
1519 in a register. The value is the number of bytes allocated to this
1520 area. */
1521 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1522
1523 /* Define this if the above stack space is to be considered part of the
1524 space allocated by the caller. */
1525 #define OUTGOING_REG_PARM_STACK_SPACE
1526
1527 /* This is the difference between the logical top of stack and the actual sp.
1528
1529 For the RS/6000, sp points past the fixed area. */
1530 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1531
1532 /* Define this if the maximum size of all the outgoing args is to be
1533 accumulated and pushed during the prologue. The amount can be
1534 found in the variable current_function_outgoing_args_size. */
1535 #define ACCUMULATE_OUTGOING_ARGS 1
1536
1537 /* Value is the number of bytes of arguments automatically
1538 popped when returning from a subroutine call.
1539 FUNDECL is the declaration node of the function (as a tree),
1540 FUNTYPE is the data type of the function (as a tree),
1541 or for a library call it is an identifier node for the subroutine name.
1542 SIZE is the number of bytes of arguments passed on the stack. */
1543
1544 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1545
1546 /* Define how to find the value returned by a function.
1547 VALTYPE is the data type of the value (as a tree).
1548 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1549 otherwise, FUNC is 0.
1550
1551 On the SPE, both FPs and vectors are returned in r3.
1552
1553 On RS/6000 an integer value is in r3 and a floating-point value is in
1554 fp1, unless -msoft-float. */
1555
1556 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1557 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
1558 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
1559 || POINTER_TYPE_P (VALTYPE) \
1560 ? word_mode : TYPE_MODE (VALTYPE), \
1561 TREE_CODE (VALTYPE) == VECTOR_TYPE \
1562 && TARGET_ALTIVEC ? ALTIVEC_ARG_RETURN \
1563 : TREE_CODE (VALTYPE) == REAL_TYPE \
1564 && TARGET_SPE_ABI && !TARGET_FPRS \
1565 ? GP_ARG_RETURN \
1566 : TREE_CODE (VALTYPE) == REAL_TYPE \
1567 && TARGET_HARD_FLOAT && TARGET_FPRS \
1568 ? FP_ARG_RETURN : GP_ARG_RETURN)
1569
1570 /* Define how to find the value returned by a library function
1571 assuming the value has mode MODE. */
1572
1573 #define LIBCALL_VALUE(MODE) \
1574 gen_rtx_REG (MODE, ALTIVEC_VECTOR_MODE (MODE) ? ALTIVEC_ARG_RETURN \
1575 : GET_MODE_CLASS (MODE) == MODE_FLOAT \
1576 && TARGET_HARD_FLOAT && TARGET_FPRS \
1577 ? FP_ARG_RETURN : GP_ARG_RETURN)
1578
1579 /* The AIX ABI for the RS/6000 specifies that all structures are
1580 returned in memory. The Darwin ABI does the same. The SVR4 ABI
1581 specifies that structures <= 8 bytes are returned in r3/r4, but a
1582 draft put them in memory, and GCC used to implement the draft
1583 instead of the final standard. Therefore, TARGET_AIX_STRUCT_RET
1584 controls this instead of DEFAULT_ABI; V.4 targets needing backward
1585 compatibility can change DRAFT_V4_STRUCT_RET to override the
1586 default, and -m switches get the final word. See
1587 rs6000_override_options for more details.
1588
1589 The PPC32 SVR4 ABI uses IEEE double extended for long double, if 128-bit
1590 long double support is enabled. These values are returned in memory.
1591
1592 int_size_in_bytes returns -1 for variable size objects, which go in
1593 memory always. The cast to unsigned makes -1 > 8. */
1594
1595 #define RETURN_IN_MEMORY(TYPE) \
1596 ((AGGREGATE_TYPE_P (TYPE) \
1597 && (TARGET_AIX_STRUCT_RET \
1598 || (unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 8)) \
1599 || (DEFAULT_ABI == ABI_V4 && TYPE_MODE (TYPE) == TFmode))
1600
1601 /* DRAFT_V4_STRUCT_RET defaults off. */
1602 #define DRAFT_V4_STRUCT_RET 0
1603
1604 /* Let RETURN_IN_MEMORY control what happens. */
1605 #define DEFAULT_PCC_STRUCT_RETURN 0
1606
1607 /* Mode of stack savearea.
1608 FUNCTION is VOIDmode because calling convention maintains SP.
1609 BLOCK needs Pmode for SP.
1610 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1611 #define STACK_SAVEAREA_MODE(LEVEL) \
1612 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1613 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1614
1615 /* Minimum and maximum general purpose registers used to hold arguments. */
1616 #define GP_ARG_MIN_REG 3
1617 #define GP_ARG_MAX_REG 10
1618 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1619
1620 /* Minimum and maximum floating point registers used to hold arguments. */
1621 #define FP_ARG_MIN_REG 33
1622 #define FP_ARG_AIX_MAX_REG 45
1623 #define FP_ARG_V4_MAX_REG 40
1624 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1625 || DEFAULT_ABI == ABI_DARWIN) \
1626 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1627 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1628
1629 /* Minimum and maximum AltiVec registers used to hold arguments. */
1630 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1631 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1632 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1633
1634 /* Return registers */
1635 #define GP_ARG_RETURN GP_ARG_MIN_REG
1636 #define FP_ARG_RETURN FP_ARG_MIN_REG
1637 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1638
1639 /* Flags for the call/call_value rtl operations set up by function_arg */
1640 #define CALL_NORMAL 0x00000000 /* no special processing */
1641 /* Bits in 0x00000001 are unused. */
1642 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1643 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1644 #define CALL_LONG 0x00000008 /* always call indirect */
1645
1646 /* 1 if N is a possible register number for a function value
1647 as seen by the caller.
1648
1649 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1650 #define FUNCTION_VALUE_REGNO_P(N) \
1651 ((N) == GP_ARG_RETURN \
1652 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT) \
1653 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC))
1654
1655 /* 1 if N is a possible register number for function argument passing.
1656 On RS/6000, these are r3-r10 and fp1-fp13.
1657 On AltiVec, v2 - v13 are used for passing vectors. */
1658 #define FUNCTION_ARG_REGNO_P(N) \
1659 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1660 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1661 && TARGET_ALTIVEC) \
1662 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1663 && TARGET_HARD_FLOAT))
1664 \f
1665 /* A C structure for machine-specific, per-function data.
1666 This is added to the cfun structure. */
1667 typedef struct machine_function GTY(())
1668 {
1669 /* Whether a System V.4 varargs area was created. */
1670 int sysv_varargs_p;
1671 /* Flags if __builtin_return_address (n) with n >= 1 was used. */
1672 int ra_needs_full_frame;
1673 /* Whether the instruction chain has been scanned already. */
1674 int insn_chain_scanned_p;
1675 } machine_function;
1676
1677 /* Define a data type for recording info about an argument list
1678 during the scan of that argument list. This data type should
1679 hold all necessary information about the function itself
1680 and about the args processed so far, enough to enable macros
1681 such as FUNCTION_ARG to determine where the next arg should go.
1682
1683 On the RS/6000, this is a structure. The first element is the number of
1684 total argument words, the second is used to store the next
1685 floating-point register number, and the third says how many more args we
1686 have prototype types for.
1687
1688 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1689 the next available GP register, `fregno' is the next available FP
1690 register, and `words' is the number of words used on the stack.
1691
1692 The varargs/stdarg support requires that this structure's size
1693 be a multiple of sizeof(int). */
1694
1695 typedef struct rs6000_args
1696 {
1697 int words; /* # words used for passing GP registers */
1698 int fregno; /* next available FP register */
1699 int vregno; /* next available AltiVec register */
1700 int nargs_prototype; /* # args left in the current prototype */
1701 int orig_nargs; /* Original value of nargs_prototype */
1702 int prototype; /* Whether a prototype was defined */
1703 int call_cookie; /* Do special things for this call */
1704 int sysv_gregno; /* next available GP register */
1705 } CUMULATIVE_ARGS;
1706
1707 /* Define intermediate macro to compute the size (in registers) of an argument
1708 for the RS/6000. */
1709
1710 #define RS6000_ARG_SIZE(MODE, TYPE) \
1711 ((MODE) != BLKmode \
1712 ? (GET_MODE_SIZE (MODE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD \
1713 : (int_size_in_bytes (TYPE) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1714
1715 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1716 for a call to a function whose data type is FNTYPE.
1717 For a library call, FNTYPE is 0. */
1718
1719 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
1720 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE)
1721
1722 /* Similar, but when scanning the definition of a procedure. We always
1723 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1724
1725 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,LIBNAME) \
1726 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE)
1727
1728 /* Update the data in CUM to advance over an argument
1729 of mode MODE and data type TYPE.
1730 (TYPE is null for libcalls where that information may not be available.) */
1731
1732 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1733 function_arg_advance (&CUM, MODE, TYPE, NAMED)
1734
1735 /* Nonzero if we can use a floating-point register to pass this arg. */
1736 #define USE_FP_FOR_ARG_P(CUM,MODE,TYPE) \
1737 (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1738 && (CUM).fregno <= FP_ARG_MAX_REG \
1739 && TARGET_HARD_FLOAT && TARGET_FPRS)
1740
1741 /* Nonzero if we can use an AltiVec register to pass this arg. */
1742 #define USE_ALTIVEC_FOR_ARG_P(CUM,MODE,TYPE) \
1743 (ALTIVEC_VECTOR_MODE (MODE) \
1744 && (CUM).vregno <= ALTIVEC_ARG_MAX_REG \
1745 && TARGET_ALTIVEC_ABI)
1746
1747 /* Determine where to put an argument to a function.
1748 Value is zero to push the argument on the stack,
1749 or a hard register in which to store the argument.
1750
1751 MODE is the argument's machine mode.
1752 TYPE is the data type of the argument (as a tree).
1753 This is null for libcalls where that information may
1754 not be available.
1755 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1756 the preceding args and about the function being called.
1757 NAMED is nonzero if this argument is a named parameter
1758 (otherwise it is an extra parameter matching an ellipsis).
1759
1760 On RS/6000 the first eight words of non-FP are normally in registers
1761 and the rest are pushed. The first 13 FP args are in registers.
1762
1763 If this is floating-point and no prototype is specified, we use
1764 both an FP and integer register (or possibly FP reg and stack). Library
1765 functions (when TYPE is zero) always have the proper types for args,
1766 so we can pass the FP value just in one register. emit_library_function
1767 doesn't support EXPR_LIST anyway. */
1768
1769 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1770 function_arg (&CUM, MODE, TYPE, NAMED)
1771
1772 /* For an arg passed partly in registers and partly in memory,
1773 this is the number of registers used.
1774 For args passed entirely in registers or entirely in memory, zero. */
1775
1776 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
1777 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
1778
1779 /* A C expression that indicates when an argument must be passed by
1780 reference. If nonzero for an argument, a copy of that argument is
1781 made in memory and a pointer to the argument is passed instead of
1782 the argument itself. The pointer is passed in whatever way is
1783 appropriate for passing a pointer to that type. */
1784
1785 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
1786 function_arg_pass_by_reference(&CUM, MODE, TYPE, NAMED)
1787
1788 /* If defined, a C expression which determines whether, and in which
1789 direction, to pad out an argument with extra space. The value
1790 should be of type `enum direction': either `upward' to pad above
1791 the argument, `downward' to pad below, or `none' to inhibit
1792 padding. */
1793
1794 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1795
1796 /* If defined, a C expression that gives the alignment boundary, in bits,
1797 of an argument with the specified mode and type. If it is not defined,
1798 PARM_BOUNDARY is used for all arguments. */
1799
1800 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1801 function_arg_boundary (MODE, TYPE)
1802
1803 /* Perform any needed actions needed for a function that is receiving a
1804 variable number of arguments.
1805
1806 CUM is as above.
1807
1808 MODE and TYPE are the mode and type of the current parameter.
1809
1810 PRETEND_SIZE is a variable that should be set to the amount of stack
1811 that must be pushed by the prolog to pretend that our caller pushed
1812 it.
1813
1814 Normally, this macro will push all remaining incoming registers on the
1815 stack and set PRETEND_SIZE to the length of the registers pushed. */
1816
1817 #define SETUP_INCOMING_VARARGS(CUM,MODE,TYPE,PRETEND_SIZE,NO_RTL) \
1818 setup_incoming_varargs (&CUM, MODE, TYPE, &PRETEND_SIZE, NO_RTL)
1819
1820 /* Define the `__builtin_va_list' type for the ABI. */
1821 #define BUILD_VA_LIST_TYPE(VALIST) \
1822 (VALIST) = rs6000_build_va_list ()
1823
1824 /* Implement `va_start' for varargs and stdarg. */
1825 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1826 rs6000_va_start (valist, nextarg)
1827
1828 /* Implement `va_arg'. */
1829 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1830 rs6000_va_arg (valist, type)
1831
1832 /* For AIX, the rule is that structures are passed left-aligned in
1833 their stack slot. However, GCC does not presently do this:
1834 structures which are the same size as integer types are passed
1835 right-aligned, as if they were in fact integers. This only
1836 matters for structures of size 1 or 2, or 4 when TARGET_64BIT.
1837 ABI_V4 does not use std_expand_builtin_va_arg. */
1838 #define PAD_VARARGS_DOWN (TYPE_MODE (type) != BLKmode)
1839
1840 /* Define this macro to be a nonzero value if the location where a function
1841 argument is passed depends on whether or not it is a named argument. */
1842 #define STRICT_ARGUMENT_NAMING 1
1843
1844 /* Output assembler code to FILE to increment profiler label # LABELNO
1845 for profiling a function entry. */
1846
1847 #define FUNCTION_PROFILER(FILE, LABELNO) \
1848 output_function_profiler ((FILE), (LABELNO));
1849
1850 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1851 the stack pointer does not matter. No definition is equivalent to
1852 always zero.
1853
1854 On the RS/6000, this is nonzero because we can restore the stack from
1855 its backpointer, which we maintain. */
1856 #define EXIT_IGNORE_STACK 1
1857
1858 /* Define this macro as a C expression that is nonzero for registers
1859 that are used by the epilogue or the return' pattern. The stack
1860 and frame pointer registers are already be assumed to be used as
1861 needed. */
1862
1863 #define EPILOGUE_USES(REGNO) \
1864 ((reload_completed && (REGNO) == LINK_REGISTER_REGNUM) \
1865 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1866 || (current_function_calls_eh_return \
1867 && TARGET_AIX \
1868 && (REGNO) == TOC_REGISTER))
1869
1870 \f
1871 /* TRAMPOLINE_TEMPLATE deleted */
1872
1873 /* Length in units of the trampoline for entering a nested function. */
1874
1875 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1876
1877 /* Emit RTL insns to initialize the variable parts of a trampoline.
1878 FNADDR is an RTX for the address of the function's pure code.
1879 CXT is an RTX for the static chain value for the function. */
1880
1881 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1882 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1883 \f
1884 /* Definitions for __builtin_return_address and __builtin_frame_address.
1885 __builtin_return_address (0) should give link register (65), enable
1886 this. */
1887 /* This should be uncommented, so that the link register is used, but
1888 currently this would result in unmatched insns and spilling fixed
1889 registers so we'll leave it for another day. When these problems are
1890 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1891 (mrs) */
1892 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1893
1894 /* Number of bytes into the frame return addresses can be found. See
1895 rs6000_stack_info in rs6000.c for more information on how the different
1896 abi's store the return address. */
1897 #define RETURN_ADDRESS_OFFSET \
1898 ((DEFAULT_ABI == ABI_AIX \
1899 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1900 (DEFAULT_ABI == ABI_V4) ? 4 : \
1901 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1902
1903 /* The current return address is in link register (65). The return address
1904 of anything farther back is accessed normally at an offset of 8 from the
1905 frame pointer. */
1906 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1907 (rs6000_return_addr (COUNT, FRAME))
1908
1909 \f
1910 /* Definitions for register eliminations.
1911
1912 We have two registers that can be eliminated on the RS/6000. First, the
1913 frame pointer register can often be eliminated in favor of the stack
1914 pointer register. Secondly, the argument pointer register can always be
1915 eliminated; it is replaced with either the stack or frame pointer.
1916
1917 In addition, we use the elimination mechanism to see if r30 is needed
1918 Initially we assume that it isn't. If it is, we spill it. This is done
1919 by making it an eliminable register. We replace it with itself so that
1920 if it isn't needed, then existing uses won't be modified. */
1921
1922 /* This is an array of structures. Each structure initializes one pair
1923 of eliminable registers. The "from" register number is given first,
1924 followed by "to". Eliminations of the same "from" register are listed
1925 in order of preference. */
1926 #define ELIMINABLE_REGS \
1927 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1928 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1929 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1930 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1931
1932 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1933 Frame pointer elimination is automatically handled.
1934
1935 For the RS/6000, if frame pointer elimination is being done, we would like
1936 to convert ap into fp, not sp.
1937
1938 We need r30 if -mminimal-toc was specified, and there are constant pool
1939 references. */
1940
1941 #define CAN_ELIMINATE(FROM, TO) \
1942 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1943 ? ! frame_pointer_needed \
1944 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1945 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1946 : 1)
1947
1948 /* Define the offset between two registers, one to be eliminated, and the other
1949 its replacement, at the start of a routine. */
1950 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1951 { \
1952 rs6000_stack_t *info = rs6000_stack_info (); \
1953 \
1954 if ((FROM) == FRAME_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1955 (OFFSET) = (info->push_p) ? 0 : - info->total_size; \
1956 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == FRAME_POINTER_REGNUM) \
1957 (OFFSET) = info->total_size; \
1958 else if ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM) \
1959 (OFFSET) = (info->push_p) ? info->total_size : 0; \
1960 else if ((FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM) \
1961 (OFFSET) = 0; \
1962 else \
1963 abort (); \
1964 }
1965 \f
1966 /* Addressing modes, and classification of registers for them. */
1967
1968 #define HAVE_PRE_DECREMENT 1
1969 #define HAVE_PRE_INCREMENT 1
1970
1971 /* Macros to check register numbers against specific register classes. */
1972
1973 /* These assume that REGNO is a hard or pseudo reg number.
1974 They give nonzero only if REGNO is a hard reg of the suitable class
1975 or a pseudo reg currently allocated to a suitable hard reg.
1976 Since they use reg_renumber, they are safe only once reg_renumber
1977 has been allocated, which happens in local-alloc.c. */
1978
1979 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1980 ((REGNO) < FIRST_PSEUDO_REGISTER \
1981 ? (REGNO) <= 31 || (REGNO) == 67 \
1982 : (reg_renumber[REGNO] >= 0 \
1983 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1984
1985 #define REGNO_OK_FOR_BASE_P(REGNO) \
1986 ((REGNO) < FIRST_PSEUDO_REGISTER \
1987 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1988 : (reg_renumber[REGNO] > 0 \
1989 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67)))
1990 \f
1991 /* Maximum number of registers that can appear in a valid memory address. */
1992
1993 #define MAX_REGS_PER_ADDRESS 2
1994
1995 /* Recognize any constant value that is a valid address. */
1996
1997 #define CONSTANT_ADDRESS_P(X) \
1998 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1999 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
2000 || GET_CODE (X) == HIGH)
2001
2002 /* Nonzero if the constant value X is a legitimate general operand.
2003 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
2004
2005 On the RS/6000, all integer constants are acceptable, most won't be valid
2006 for particular insns, though. Only easy FP constants are
2007 acceptable. */
2008
2009 #define LEGITIMATE_CONSTANT_P(X) \
2010 (GET_CODE (X) != CONST_DOUBLE || GET_MODE (X) == VOIDmode \
2011 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
2012 || easy_fp_constant (X, GET_MODE (X)))
2013
2014 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
2015 and check its validity for a certain class.
2016 We have two alternate definitions for each of them.
2017 The usual definition accepts all pseudo regs; the other rejects
2018 them unless they have been allocated suitable hard regs.
2019 The symbol REG_OK_STRICT causes the latter definition to be used.
2020
2021 Most source files want to accept pseudo regs in the hope that
2022 they will get allocated to the class that the insn wants them to be in.
2023 Source files for reload pass need to be strict.
2024 After reload, it makes no difference, since pseudo regs have
2025 been eliminated by then. */
2026
2027 #ifdef REG_OK_STRICT
2028 # define REG_OK_STRICT_FLAG 1
2029 #else
2030 # define REG_OK_STRICT_FLAG 0
2031 #endif
2032
2033 /* Nonzero if X is a hard reg that can be used as an index
2034 or if it is a pseudo reg in the non-strict case. */
2035 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
2036 ((! (STRICT) \
2037 && (REGNO (X) <= 31 \
2038 || REGNO (X) == ARG_POINTER_REGNUM \
2039 || REGNO (X) >= FIRST_PSEUDO_REGISTER)) \
2040 || ((STRICT) && REGNO_OK_FOR_INDEX_P (REGNO (X))))
2041
2042 /* Nonzero if X is a hard reg that can be used as a base reg
2043 or if it is a pseudo reg in the non-strict case. */
2044 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
2045 (REGNO (X) > 0 && INT_REG_OK_FOR_INDEX_P (X, (STRICT)))
2046
2047 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
2048 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
2049 \f
2050 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
2051 that is a valid memory address for an instruction.
2052 The MODE argument is the machine mode for the MEM expression
2053 that wants to use this address.
2054
2055 On the RS/6000, there are four valid address: a SYMBOL_REF that
2056 refers to a constant pool entry of an address (or the sum of it
2057 plus a constant), a short (16-bit signed) constant plus a register,
2058 the sum of two registers, or a register indirect, possibly with an
2059 auto-increment. For DFmode and DImode with a constant plus register,
2060 we must ensure that both words are addressable or PowerPC64 with offset
2061 word aligned.
2062
2063 For modes spanning multiple registers (DFmode in 32-bit GPRs,
2064 32-bit DImode, TImode), indexed addressing cannot be used because
2065 adjacent memory cells are accessed by adding word-sized offsets
2066 during assembly output. */
2067
2068 #define CONSTANT_POOL_EXPR_P(X) (constant_pool_expr_p (X))
2069
2070 #define TOC_RELATIVE_EXPR_P(X) (toc_relative_expr_p (X))
2071
2072 /* SPE offset addressing is limited to 5-bits worth of double words. */
2073 #define SPE_CONST_OFFSET_OK(x) (((x) & ~0xf8) == 0)
2074
2075 #define LEGITIMATE_CONSTANT_POOL_ADDRESS_P(X) \
2076 (TARGET_TOC \
2077 && GET_CODE (X) == PLUS \
2078 && GET_CODE (XEXP (X, 0)) == REG \
2079 && (TARGET_MINIMAL_TOC || REGNO (XEXP (X, 0)) == TOC_REGISTER) \
2080 && CONSTANT_POOL_EXPR_P (XEXP (X, 1)))
2081
2082 #define LEGITIMATE_SMALL_DATA_P(MODE, X) \
2083 (DEFAULT_ABI == ABI_V4 \
2084 && !flag_pic && !TARGET_TOC \
2085 && (GET_CODE (X) == SYMBOL_REF || GET_CODE (X) == CONST) \
2086 && small_data_operand (X, MODE))
2087
2088 #define LEGITIMATE_ADDRESS_INTEGER_P(X, OFFSET) \
2089 (GET_CODE (X) == CONST_INT \
2090 && (unsigned HOST_WIDE_INT) (INTVAL (X) + (OFFSET) + 0x8000) < 0x10000)
2091
2092 #define LEGITIMATE_OFFSET_ADDRESS_P(MODE, X, STRICT) \
2093 (GET_CODE (X) == PLUS \
2094 && GET_CODE (XEXP (X, 0)) == REG \
2095 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2096 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 0) \
2097 && (! ALTIVEC_VECTOR_MODE (MODE) \
2098 || (GET_CODE (XEXP (X,1)) == CONST_INT && INTVAL (XEXP (X,1)) == 0)) \
2099 && (! SPE_VECTOR_MODE (MODE) \
2100 || (GET_CODE (XEXP (X, 1)) == CONST_INT \
2101 && SPE_CONST_OFFSET_OK (INTVAL (XEXP (X, 1))))) \
2102 && (((MODE) != DFmode && (MODE) != DImode) \
2103 || (TARGET_32BIT \
2104 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 4) \
2105 : ! (INTVAL (XEXP (X, 1)) & 3))) \
2106 && (((MODE) != TFmode && (MODE) != TImode) \
2107 || (TARGET_32BIT \
2108 ? LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 12) \
2109 : (LEGITIMATE_ADDRESS_INTEGER_P (XEXP (X, 1), 8) \
2110 && ! (INTVAL (XEXP (X, 1)) & 3)))))
2111
2112 #define LEGITIMATE_INDEXED_ADDRESS_P(X, STRICT) \
2113 (GET_CODE (X) == PLUS \
2114 && GET_CODE (XEXP (X, 0)) == REG \
2115 && GET_CODE (XEXP (X, 1)) == REG \
2116 && ((INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2117 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 1), (STRICT))) \
2118 || (INT_REG_OK_FOR_BASE_P (XEXP (X, 1), (STRICT)) \
2119 && INT_REG_OK_FOR_INDEX_P (XEXP (X, 0), (STRICT)))))
2120
2121 #define LEGITIMATE_INDIRECT_ADDRESS_P(X, STRICT) \
2122 (GET_CODE (X) == REG && INT_REG_OK_FOR_BASE_P (X, (STRICT)))
2123
2124 #define LEGITIMATE_LO_SUM_ADDRESS_P(MODE, X, STRICT) \
2125 (TARGET_ELF \
2126 && (DEFAULT_ABI == ABI_AIX || ! flag_pic) \
2127 && ! TARGET_TOC \
2128 && GET_MODE_NUNITS (MODE) == 1 \
2129 && (GET_MODE_BITSIZE (MODE) <= 32 \
2130 || (TARGET_HARD_FLOAT && TARGET_FPRS && (MODE) == DFmode)) \
2131 && GET_CODE (X) == LO_SUM \
2132 && GET_CODE (XEXP (X, 0)) == REG \
2133 && INT_REG_OK_FOR_BASE_P (XEXP (X, 0), (STRICT)) \
2134 && CONSTANT_P (XEXP (X, 1)))
2135
2136 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
2137 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
2138 goto ADDR; \
2139 }
2140 \f
2141 /* Try machine-dependent ways of modifying an illegitimate address
2142 to be legitimate. If we find one, return the new, valid address.
2143 This macro is used in only one place: `memory_address' in explow.c.
2144
2145 OLDX is the address as it was before break_out_memory_refs was called.
2146 In some cases it is useful to look at this to decide what needs to be done.
2147
2148 MODE and WIN are passed so that this macro can use
2149 GO_IF_LEGITIMATE_ADDRESS.
2150
2151 It is always safe for this macro to do nothing. It exists to recognize
2152 opportunities to optimize the output.
2153
2154 On RS/6000, first check for the sum of a register with a constant
2155 integer that is out of range. If so, generate code to add the
2156 constant with the low-order 16 bits masked to the register and force
2157 this result into another register (this can be done with `cau').
2158 Then generate an address of REG+(CONST&0xffff), allowing for the
2159 possibility of bit 16 being a one.
2160
2161 Then check for the sum of a register and something not constant, try to
2162 load the other things into a register and return the sum. */
2163
2164 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
2165 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
2166 if (result != NULL_RTX) \
2167 { \
2168 (X) = result; \
2169 goto WIN; \
2170 } \
2171 }
2172
2173 /* Try a machine-dependent way of reloading an illegitimate address
2174 operand. If we find one, push the reload and jump to WIN. This
2175 macro is used in only one place: `find_reloads_address' in reload.c.
2176
2177 Implemented on rs6000 by rs6000_legitimize_reload_address.
2178 Note that (X) is evaluated twice; this is safe in current usage. */
2179
2180 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2181 do { \
2182 int win; \
2183 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
2184 (int)(TYPE), (IND_LEVELS), &win); \
2185 if ( win ) \
2186 goto WIN; \
2187 } while (0)
2188
2189 /* Go to LABEL if ADDR (a legitimate address expression)
2190 has an effect that depends on the machine mode it is used for.
2191
2192 On the RS/6000 this is true if the address is valid with a zero offset
2193 but not with an offset of four (this means it cannot be used as an
2194 address for DImode or DFmode) or is a pre-increment or decrement. Since
2195 we know it is valid, we just check for an address that is not valid with
2196 an offset of four. */
2197
2198 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
2199 { if (GET_CODE (ADDR) == PLUS \
2200 && LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), 0) \
2201 && ! LEGITIMATE_ADDRESS_INTEGER_P (XEXP (ADDR, 1), \
2202 (TARGET_32BIT ? 4 : 8))) \
2203 goto LABEL; \
2204 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_INC) \
2205 goto LABEL; \
2206 if (TARGET_UPDATE && GET_CODE (ADDR) == PRE_DEC) \
2207 goto LABEL; \
2208 if (GET_CODE (ADDR) == LO_SUM) \
2209 goto LABEL; \
2210 }
2211 \f
2212 /* The register number of the register used to address a table of
2213 static data addresses in memory. In some cases this register is
2214 defined by a processor's "application binary interface" (ABI).
2215 When this macro is defined, RTL is generated for this register
2216 once, as with the stack pointer and frame pointer registers. If
2217 this macro is not defined, it is up to the machine-dependent files
2218 to allocate such a register (if necessary). */
2219
2220 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2221 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
2222
2223 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2224
2225 /* Define this macro if the register defined by
2226 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2227 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2228
2229 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2230
2231 /* By generating position-independent code, when two different
2232 programs (A and B) share a common library (libC.a), the text of
2233 the library can be shared whether or not the library is linked at
2234 the same address for both programs. In some of these
2235 environments, position-independent code requires not only the use
2236 of different addressing modes, but also special code to enable the
2237 use of these addressing modes.
2238
2239 The `FINALIZE_PIC' macro serves as a hook to emit these special
2240 codes once the function is being compiled into assembly code, but
2241 not before. (It is not done before, because in the case of
2242 compiling an inline function, it would lead to multiple PIC
2243 prologues being included in functions which used inline functions
2244 and were compiled to assembly language.) */
2245
2246 /* #define FINALIZE_PIC */
2247
2248 /* A C expression that is nonzero if X is a legitimate immediate
2249 operand on the target machine when generating position independent
2250 code. You can assume that X satisfies `CONSTANT_P', so you need
2251 not check this. You can also assume FLAG_PIC is true, so you need
2252 not check it either. You need not define this macro if all
2253 constants (including `SYMBOL_REF') can be immediate operands when
2254 generating position independent code. */
2255
2256 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2257
2258 /* In rare cases, correct code generation requires extra machine
2259 dependent processing between the second jump optimization pass and
2260 delayed branch scheduling. On those machines, define this macro
2261 as a C statement to act on the code starting at INSN. */
2262
2263 /* #define MACHINE_DEPENDENT_REORG(INSN) */
2264
2265 \f
2266 /* Define this if some processing needs to be done immediately before
2267 emitting code for an insn. */
2268
2269 /* #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) */
2270
2271 /* Specify the machine mode that this machine uses
2272 for the index in the tablejump instruction. */
2273 #define CASE_VECTOR_MODE SImode
2274
2275 /* Define as C expression which evaluates to nonzero if the tablejump
2276 instruction expects the table to contain offsets from the address of the
2277 table.
2278 Do not define this if the table should contain absolute addresses. */
2279 #define CASE_VECTOR_PC_RELATIVE 1
2280
2281 /* Define this as 1 if `char' should by default be signed; else as 0. */
2282 #define DEFAULT_SIGNED_CHAR 0
2283
2284 /* This flag, if defined, says the same insns that convert to a signed fixnum
2285 also convert validly to an unsigned one. */
2286
2287 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
2288
2289 /* Max number of bytes we can move from memory to memory
2290 in one reasonably fast instruction. */
2291 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2292 #define MAX_MOVE_MAX 8
2293
2294 /* Nonzero if access to memory by bytes is no faster than for words.
2295 Also nonzero if doing byte operations (specifically shifts) in registers
2296 is undesirable. */
2297 #define SLOW_BYTE_ACCESS 1
2298
2299 /* Define if operations between registers always perform the operation
2300 on the full register even if a narrower mode is specified. */
2301 #define WORD_REGISTER_OPERATIONS
2302
2303 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2304 will either zero-extend or sign-extend. The value of this macro should
2305 be the code that says which one of the two operations is implicitly
2306 done, NIL if none. */
2307 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2308
2309 /* Define if loading short immediate values into registers sign extends. */
2310 #define SHORT_IMMEDIATES_SIGN_EXTEND
2311 \f
2312 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2313 is done just by pretending it is already truncated. */
2314 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2315
2316 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2317 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2318 ((VALUE) = ((MODE) == SImode ? 32 : 64))
2319
2320 /* The CTZ patterns return -1 for input of zero. */
2321 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1)
2322
2323 /* Specify the machine mode that pointers have.
2324 After generation of rtl, the compiler makes no further distinction
2325 between pointers and any other objects of this machine mode. */
2326 #define Pmode (TARGET_32BIT ? SImode : DImode)
2327
2328 /* Mode of a function address in a call instruction (for indexing purposes).
2329 Doesn't matter on RS/6000. */
2330 #define FUNCTION_MODE SImode
2331
2332 /* Define this if addresses of constant functions
2333 shouldn't be put through pseudo regs where they can be cse'd.
2334 Desirable on machines where ordinary constants are expensive
2335 but a CALL with constant address is cheap. */
2336 #define NO_FUNCTION_CSE
2337
2338 /* Define this to be nonzero if shift instructions ignore all but the low-order
2339 few bits.
2340
2341 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2342 have been dropped from the PowerPC architecture. */
2343
2344 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
2345
2346 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2347 should be adjusted to reflect any required changes. This macro is used when
2348 there is some systematic length adjustment required that would be difficult
2349 to express in the length attribute. */
2350
2351 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2352
2353 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2354 COMPARE, return the mode to be used for the comparison. For
2355 floating-point, CCFPmode should be used. CCUNSmode should be used
2356 for unsigned comparisons. CCEQmode should be used when we are
2357 doing an inequality comparison on the result of a
2358 comparison. CCmode should be used in all other cases. */
2359
2360 #define SELECT_CC_MODE(OP,X,Y) \
2361 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode \
2362 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2363 : (((OP) == EQ || (OP) == NE) && GET_RTX_CLASS (GET_CODE (X)) == '<' \
2364 ? CCEQmode : CCmode))
2365
2366 /* Define the information needed to generate branch and scc insns. This is
2367 stored from the compare operation. Note that we can't use "rtx" here
2368 since it hasn't been defined! */
2369
2370 extern GTY(()) rtx rs6000_compare_op0;
2371 extern GTY(()) rtx rs6000_compare_op1;
2372 extern int rs6000_compare_fp_p;
2373 \f
2374 /* Control the assembler format that we output. */
2375
2376 /* A C string constant describing how to begin a comment in the target
2377 assembler language. The compiler assumes that the comment will end at
2378 the end of the line. */
2379 #define ASM_COMMENT_START " #"
2380
2381 /* Implicit library calls should use memcpy, not bcopy, etc. */
2382
2383 #define TARGET_MEM_FUNCTIONS
2384
2385 /* Flag to say the TOC is initialized */
2386 extern int toc_initialized;
2387
2388 /* Macro to output a special constant pool entry. Go to WIN if we output
2389 it. Otherwise, it is written the usual way.
2390
2391 On the RS/6000, toc entries are handled this way. */
2392
2393 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2394 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2395 { \
2396 output_toc (FILE, X, LABELNO, MODE); \
2397 goto WIN; \
2398 } \
2399 }
2400
2401 #ifdef HAVE_GAS_WEAK
2402 #define RS6000_WEAK 1
2403 #else
2404 #define RS6000_WEAK 0
2405 #endif
2406
2407 #if RS6000_WEAK
2408 /* Used in lieu of ASM_WEAKEN_LABEL. */
2409 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2410 do \
2411 { \
2412 fputs ("\t.weak\t", (FILE)); \
2413 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2414 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2415 && DEFAULT_ABI == ABI_AIX) \
2416 { \
2417 if (TARGET_XCOFF) \
2418 fputs ("[DS]", (FILE)); \
2419 fputs ("\n\t.weak\t.", (FILE)); \
2420 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2421 } \
2422 fputc ('\n', (FILE)); \
2423 if (VAL) \
2424 { \
2425 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2426 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2427 && DEFAULT_ABI == ABI_AIX) \
2428 { \
2429 fputs ("\t.set\t.", (FILE)); \
2430 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2431 fputs (",.", (FILE)); \
2432 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2433 fputc ('\n', (FILE)); \
2434 } \
2435 } \
2436 } \
2437 while (0)
2438 #endif
2439
2440 /* This implements the `alias' attribute. */
2441 #undef ASM_OUTPUT_DEF_FROM_DECLS
2442 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2443 do \
2444 { \
2445 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2446 const char *name = IDENTIFIER_POINTER (TARGET); \
2447 if (TREE_CODE (DECL) == FUNCTION_DECL \
2448 && DEFAULT_ABI == ABI_AIX) \
2449 { \
2450 if (TREE_PUBLIC (DECL)) \
2451 { \
2452 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2453 { \
2454 fputs ("\t.globl\t.", FILE); \
2455 RS6000_OUTPUT_BASENAME (FILE, alias); \
2456 putc ('\n', FILE); \
2457 } \
2458 } \
2459 else if (TARGET_XCOFF) \
2460 { \
2461 fputs ("\t.lglobl\t.", FILE); \
2462 RS6000_OUTPUT_BASENAME (FILE, alias); \
2463 putc ('\n', FILE); \
2464 } \
2465 fputs ("\t.set\t.", FILE); \
2466 RS6000_OUTPUT_BASENAME (FILE, alias); \
2467 fputs (",.", FILE); \
2468 RS6000_OUTPUT_BASENAME (FILE, name); \
2469 fputc ('\n', FILE); \
2470 } \
2471 ASM_OUTPUT_DEF (FILE, alias, name); \
2472 } \
2473 while (0)
2474
2475 /* Output to assembler file text saying following lines
2476 may contain character constants, extra white space, comments, etc. */
2477
2478 #define ASM_APP_ON ""
2479
2480 /* Output to assembler file text saying following lines
2481 no longer contain unusual constructs. */
2482
2483 #define ASM_APP_OFF ""
2484
2485 /* How to refer to registers in assembler output.
2486 This sequence is indexed by compiler's hard-register-number (see above). */
2487
2488 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2489
2490 #define REGISTER_NAMES \
2491 { \
2492 &rs6000_reg_names[ 0][0], /* r0 */ \
2493 &rs6000_reg_names[ 1][0], /* r1 */ \
2494 &rs6000_reg_names[ 2][0], /* r2 */ \
2495 &rs6000_reg_names[ 3][0], /* r3 */ \
2496 &rs6000_reg_names[ 4][0], /* r4 */ \
2497 &rs6000_reg_names[ 5][0], /* r5 */ \
2498 &rs6000_reg_names[ 6][0], /* r6 */ \
2499 &rs6000_reg_names[ 7][0], /* r7 */ \
2500 &rs6000_reg_names[ 8][0], /* r8 */ \
2501 &rs6000_reg_names[ 9][0], /* r9 */ \
2502 &rs6000_reg_names[10][0], /* r10 */ \
2503 &rs6000_reg_names[11][0], /* r11 */ \
2504 &rs6000_reg_names[12][0], /* r12 */ \
2505 &rs6000_reg_names[13][0], /* r13 */ \
2506 &rs6000_reg_names[14][0], /* r14 */ \
2507 &rs6000_reg_names[15][0], /* r15 */ \
2508 &rs6000_reg_names[16][0], /* r16 */ \
2509 &rs6000_reg_names[17][0], /* r17 */ \
2510 &rs6000_reg_names[18][0], /* r18 */ \
2511 &rs6000_reg_names[19][0], /* r19 */ \
2512 &rs6000_reg_names[20][0], /* r20 */ \
2513 &rs6000_reg_names[21][0], /* r21 */ \
2514 &rs6000_reg_names[22][0], /* r22 */ \
2515 &rs6000_reg_names[23][0], /* r23 */ \
2516 &rs6000_reg_names[24][0], /* r24 */ \
2517 &rs6000_reg_names[25][0], /* r25 */ \
2518 &rs6000_reg_names[26][0], /* r26 */ \
2519 &rs6000_reg_names[27][0], /* r27 */ \
2520 &rs6000_reg_names[28][0], /* r28 */ \
2521 &rs6000_reg_names[29][0], /* r29 */ \
2522 &rs6000_reg_names[30][0], /* r30 */ \
2523 &rs6000_reg_names[31][0], /* r31 */ \
2524 \
2525 &rs6000_reg_names[32][0], /* fr0 */ \
2526 &rs6000_reg_names[33][0], /* fr1 */ \
2527 &rs6000_reg_names[34][0], /* fr2 */ \
2528 &rs6000_reg_names[35][0], /* fr3 */ \
2529 &rs6000_reg_names[36][0], /* fr4 */ \
2530 &rs6000_reg_names[37][0], /* fr5 */ \
2531 &rs6000_reg_names[38][0], /* fr6 */ \
2532 &rs6000_reg_names[39][0], /* fr7 */ \
2533 &rs6000_reg_names[40][0], /* fr8 */ \
2534 &rs6000_reg_names[41][0], /* fr9 */ \
2535 &rs6000_reg_names[42][0], /* fr10 */ \
2536 &rs6000_reg_names[43][0], /* fr11 */ \
2537 &rs6000_reg_names[44][0], /* fr12 */ \
2538 &rs6000_reg_names[45][0], /* fr13 */ \
2539 &rs6000_reg_names[46][0], /* fr14 */ \
2540 &rs6000_reg_names[47][0], /* fr15 */ \
2541 &rs6000_reg_names[48][0], /* fr16 */ \
2542 &rs6000_reg_names[49][0], /* fr17 */ \
2543 &rs6000_reg_names[50][0], /* fr18 */ \
2544 &rs6000_reg_names[51][0], /* fr19 */ \
2545 &rs6000_reg_names[52][0], /* fr20 */ \
2546 &rs6000_reg_names[53][0], /* fr21 */ \
2547 &rs6000_reg_names[54][0], /* fr22 */ \
2548 &rs6000_reg_names[55][0], /* fr23 */ \
2549 &rs6000_reg_names[56][0], /* fr24 */ \
2550 &rs6000_reg_names[57][0], /* fr25 */ \
2551 &rs6000_reg_names[58][0], /* fr26 */ \
2552 &rs6000_reg_names[59][0], /* fr27 */ \
2553 &rs6000_reg_names[60][0], /* fr28 */ \
2554 &rs6000_reg_names[61][0], /* fr29 */ \
2555 &rs6000_reg_names[62][0], /* fr30 */ \
2556 &rs6000_reg_names[63][0], /* fr31 */ \
2557 \
2558 &rs6000_reg_names[64][0], /* mq */ \
2559 &rs6000_reg_names[65][0], /* lr */ \
2560 &rs6000_reg_names[66][0], /* ctr */ \
2561 &rs6000_reg_names[67][0], /* ap */ \
2562 \
2563 &rs6000_reg_names[68][0], /* cr0 */ \
2564 &rs6000_reg_names[69][0], /* cr1 */ \
2565 &rs6000_reg_names[70][0], /* cr2 */ \
2566 &rs6000_reg_names[71][0], /* cr3 */ \
2567 &rs6000_reg_names[72][0], /* cr4 */ \
2568 &rs6000_reg_names[73][0], /* cr5 */ \
2569 &rs6000_reg_names[74][0], /* cr6 */ \
2570 &rs6000_reg_names[75][0], /* cr7 */ \
2571 \
2572 &rs6000_reg_names[76][0], /* xer */ \
2573 \
2574 &rs6000_reg_names[77][0], /* v0 */ \
2575 &rs6000_reg_names[78][0], /* v1 */ \
2576 &rs6000_reg_names[79][0], /* v2 */ \
2577 &rs6000_reg_names[80][0], /* v3 */ \
2578 &rs6000_reg_names[81][0], /* v4 */ \
2579 &rs6000_reg_names[82][0], /* v5 */ \
2580 &rs6000_reg_names[83][0], /* v6 */ \
2581 &rs6000_reg_names[84][0], /* v7 */ \
2582 &rs6000_reg_names[85][0], /* v8 */ \
2583 &rs6000_reg_names[86][0], /* v9 */ \
2584 &rs6000_reg_names[87][0], /* v10 */ \
2585 &rs6000_reg_names[88][0], /* v11 */ \
2586 &rs6000_reg_names[89][0], /* v12 */ \
2587 &rs6000_reg_names[90][0], /* v13 */ \
2588 &rs6000_reg_names[91][0], /* v14 */ \
2589 &rs6000_reg_names[92][0], /* v15 */ \
2590 &rs6000_reg_names[93][0], /* v16 */ \
2591 &rs6000_reg_names[94][0], /* v17 */ \
2592 &rs6000_reg_names[95][0], /* v18 */ \
2593 &rs6000_reg_names[96][0], /* v19 */ \
2594 &rs6000_reg_names[97][0], /* v20 */ \
2595 &rs6000_reg_names[98][0], /* v21 */ \
2596 &rs6000_reg_names[99][0], /* v22 */ \
2597 &rs6000_reg_names[100][0], /* v23 */ \
2598 &rs6000_reg_names[101][0], /* v24 */ \
2599 &rs6000_reg_names[102][0], /* v25 */ \
2600 &rs6000_reg_names[103][0], /* v26 */ \
2601 &rs6000_reg_names[104][0], /* v27 */ \
2602 &rs6000_reg_names[105][0], /* v28 */ \
2603 &rs6000_reg_names[106][0], /* v29 */ \
2604 &rs6000_reg_names[107][0], /* v30 */ \
2605 &rs6000_reg_names[108][0], /* v31 */ \
2606 &rs6000_reg_names[109][0], /* vrsave */ \
2607 &rs6000_reg_names[110][0], /* vscr */ \
2608 &rs6000_reg_names[111][0], /* spe_acc */ \
2609 &rs6000_reg_names[112][0], /* spefscr */ \
2610 }
2611
2612 /* print-rtl can't handle the above REGISTER_NAMES, so define the
2613 following for it. Switch to use the alternate names since
2614 they are more mnemonic. */
2615
2616 #define DEBUG_REGISTER_NAMES \
2617 { \
2618 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", \
2619 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
2620 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
2621 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", \
2622 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
2623 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
2624 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", \
2625 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", \
2626 "mq", "lr", "ctr", "ap", \
2627 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", \
2628 "xer", \
2629 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", \
2630 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", \
2631 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", \
2632 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31", \
2633 "vrsave", "vscr", \
2634 "spe_acc", "spefscr" \
2635 }
2636
2637 /* Table of additional register names to use in user input. */
2638
2639 #define ADDITIONAL_REGISTER_NAMES \
2640 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2641 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2642 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2643 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2644 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2645 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2646 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2647 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2648 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2649 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2650 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2651 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2652 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2653 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2654 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2655 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2656 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2657 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2658 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2659 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2660 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2661 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2662 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2663 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2664 {"vrsave", 109}, {"vscr", 110}, \
2665 {"spe_acc", 111}, {"spefscr", 112}, \
2666 /* no additional names for: mq, lr, ctr, ap */ \
2667 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2668 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2669 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2670
2671 /* Text to write out after a CALL that may be replaced by glue code by
2672 the loader. This depends on the AIX version. */
2673 #define RS6000_CALL_GLUE "cror 31,31,31"
2674
2675 /* This is how to output an element of a case-vector that is relative. */
2676
2677 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2678 do { char buf[100]; \
2679 fputs ("\t.long ", FILE); \
2680 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2681 assemble_name (FILE, buf); \
2682 putc ('-', FILE); \
2683 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2684 assemble_name (FILE, buf); \
2685 putc ('\n', FILE); \
2686 } while (0)
2687
2688 /* This is how to output an assembler line
2689 that says to advance the location counter
2690 to a multiple of 2**LOG bytes. */
2691
2692 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2693 if ((LOG) != 0) \
2694 fprintf (FILE, "\t.align %d\n", (LOG))
2695
2696 /* Pick up the return address upon entry to a procedure. Used for
2697 dwarf2 unwind information. This also enables the table driven
2698 mechanism. */
2699
2700 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LINK_REGISTER_REGNUM)
2701 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LINK_REGISTER_REGNUM)
2702
2703 /* Describe how we implement __builtin_eh_return. */
2704 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2705 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2706
2707 /* Print operand X (an rtx) in assembler syntax to file FILE.
2708 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2709 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2710
2711 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2712
2713 /* Define which CODE values are valid. */
2714
2715 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2716 ((CODE) == '.')
2717
2718 /* Print a memory address as an operand to reference that memory location. */
2719
2720 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2721
2722 /* Define the codes that are matched by predicates in rs6000.c. */
2723
2724 #define PREDICATE_CODES \
2725 {"any_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2726 LABEL_REF, SUBREG, REG, MEM, PARALLEL}}, \
2727 {"zero_constant", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF, \
2728 LABEL_REF, SUBREG, REG, MEM}}, \
2729 {"short_cint_operand", {CONST_INT}}, \
2730 {"u_short_cint_operand", {CONST_INT}}, \
2731 {"non_short_cint_operand", {CONST_INT}}, \
2732 {"exact_log2_cint_operand", {CONST_INT}}, \
2733 {"gpc_reg_operand", {SUBREG, REG}}, \
2734 {"cc_reg_operand", {SUBREG, REG}}, \
2735 {"cc_reg_not_cr0_operand", {SUBREG, REG}}, \
2736 {"reg_or_short_operand", {SUBREG, REG, CONST_INT}}, \
2737 {"reg_or_neg_short_operand", {SUBREG, REG, CONST_INT}}, \
2738 {"reg_or_aligned_short_operand", {SUBREG, REG, CONST_INT}}, \
2739 {"reg_or_u_short_operand", {SUBREG, REG, CONST_INT}}, \
2740 {"reg_or_cint_operand", {SUBREG, REG, CONST_INT}}, \
2741 {"reg_or_arith_cint_operand", {SUBREG, REG, CONST_INT}}, \
2742 {"reg_or_add_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2743 {"reg_or_sub_cint64_operand", {SUBREG, REG, CONST_INT}}, \
2744 {"reg_or_logical_cint_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2745 {"got_operand", {SYMBOL_REF, CONST, LABEL_REF}}, \
2746 {"got_no_const_operand", {SYMBOL_REF, LABEL_REF}}, \
2747 {"easy_fp_constant", {CONST_DOUBLE}}, \
2748 {"easy_vector_constant", {CONST_VECTOR}}, \
2749 {"easy_vector_constant_add_self", {CONST_VECTOR}}, \
2750 {"zero_fp_constant", {CONST_DOUBLE}}, \
2751 {"reg_or_mem_operand", {SUBREG, MEM, REG}}, \
2752 {"lwa_operand", {SUBREG, MEM, REG}}, \
2753 {"volatile_mem_operand", {MEM}}, \
2754 {"offsettable_mem_operand", {MEM}}, \
2755 {"mem_or_easy_const_operand", {SUBREG, MEM, CONST_DOUBLE}}, \
2756 {"add_operand", {SUBREG, REG, CONST_INT}}, \
2757 {"non_add_cint_operand", {CONST_INT}}, \
2758 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2759 {"and64_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2760 {"and64_2_operand", {SUBREG, REG, CONST_INT}}, \
2761 {"logical_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2762 {"non_logical_cint_operand", {CONST_INT, CONST_DOUBLE}}, \
2763 {"mask_operand", {CONST_INT}}, \
2764 {"mask_operand_wrap", {CONST_INT}}, \
2765 {"mask64_operand", {CONST_INT}}, \
2766 {"mask64_2_operand", {CONST_INT}}, \
2767 {"count_register_operand", {REG}}, \
2768 {"xer_operand", {REG}}, \
2769 {"symbol_ref_operand", {SYMBOL_REF}}, \
2770 {"call_operand", {SYMBOL_REF, REG}}, \
2771 {"current_file_function_operand", {SYMBOL_REF}}, \
2772 {"input_operand", {SUBREG, MEM, REG, CONST_INT, \
2773 CONST_DOUBLE, SYMBOL_REF}}, \
2774 {"load_multiple_operation", {PARALLEL}}, \
2775 {"store_multiple_operation", {PARALLEL}}, \
2776 {"vrsave_operation", {PARALLEL}}, \
2777 {"branch_comparison_operator", {EQ, NE, LE, LT, GE, \
2778 GT, LEU, LTU, GEU, GTU, \
2779 UNORDERED, ORDERED, \
2780 UNGE, UNLE }}, \
2781 {"branch_positive_comparison_operator", {EQ, LT, GT, LTU, GTU, \
2782 UNORDERED }}, \
2783 {"scc_comparison_operator", {EQ, NE, LE, LT, GE, \
2784 GT, LEU, LTU, GEU, GTU, \
2785 UNORDERED, ORDERED, \
2786 UNGE, UNLE }}, \
2787 {"trap_comparison_operator", {EQ, NE, LE, LT, GE, \
2788 GT, LEU, LTU, GEU, GTU}}, \
2789 {"boolean_operator", {AND, IOR, XOR}}, \
2790 {"boolean_or_operator", {IOR, XOR}}, \
2791 {"altivec_register_operand", {REG}}, \
2792 {"min_max_operator", {SMIN, SMAX, UMIN, UMAX}},
2793
2794 /* uncomment for disabling the corresponding default options */
2795 /* #define MACHINE_no_sched_interblock */
2796 /* #define MACHINE_no_sched_speculative */
2797 /* #define MACHINE_no_sched_speculative_load */
2798
2799 /* General flags. */
2800 extern int flag_pic;
2801 extern int optimize;
2802 extern int flag_expensive_optimizations;
2803 extern int frame_pointer_needed;
2804
2805 enum rs6000_builtins
2806 {
2807 /* AltiVec builtins. */
2808 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2809 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2810 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2811 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2812 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2813 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2814 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2815 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2816 ALTIVEC_BUILTIN_VADDUBM,
2817 ALTIVEC_BUILTIN_VADDUHM,
2818 ALTIVEC_BUILTIN_VADDUWM,
2819 ALTIVEC_BUILTIN_VADDFP,
2820 ALTIVEC_BUILTIN_VADDCUW,
2821 ALTIVEC_BUILTIN_VADDUBS,
2822 ALTIVEC_BUILTIN_VADDSBS,
2823 ALTIVEC_BUILTIN_VADDUHS,
2824 ALTIVEC_BUILTIN_VADDSHS,
2825 ALTIVEC_BUILTIN_VADDUWS,
2826 ALTIVEC_BUILTIN_VADDSWS,
2827 ALTIVEC_BUILTIN_VAND,
2828 ALTIVEC_BUILTIN_VANDC,
2829 ALTIVEC_BUILTIN_VAVGUB,
2830 ALTIVEC_BUILTIN_VAVGSB,
2831 ALTIVEC_BUILTIN_VAVGUH,
2832 ALTIVEC_BUILTIN_VAVGSH,
2833 ALTIVEC_BUILTIN_VAVGUW,
2834 ALTIVEC_BUILTIN_VAVGSW,
2835 ALTIVEC_BUILTIN_VCFUX,
2836 ALTIVEC_BUILTIN_VCFSX,
2837 ALTIVEC_BUILTIN_VCTSXS,
2838 ALTIVEC_BUILTIN_VCTUXS,
2839 ALTIVEC_BUILTIN_VCMPBFP,
2840 ALTIVEC_BUILTIN_VCMPEQUB,
2841 ALTIVEC_BUILTIN_VCMPEQUH,
2842 ALTIVEC_BUILTIN_VCMPEQUW,
2843 ALTIVEC_BUILTIN_VCMPEQFP,
2844 ALTIVEC_BUILTIN_VCMPGEFP,
2845 ALTIVEC_BUILTIN_VCMPGTUB,
2846 ALTIVEC_BUILTIN_VCMPGTSB,
2847 ALTIVEC_BUILTIN_VCMPGTUH,
2848 ALTIVEC_BUILTIN_VCMPGTSH,
2849 ALTIVEC_BUILTIN_VCMPGTUW,
2850 ALTIVEC_BUILTIN_VCMPGTSW,
2851 ALTIVEC_BUILTIN_VCMPGTFP,
2852 ALTIVEC_BUILTIN_VEXPTEFP,
2853 ALTIVEC_BUILTIN_VLOGEFP,
2854 ALTIVEC_BUILTIN_VMADDFP,
2855 ALTIVEC_BUILTIN_VMAXUB,
2856 ALTIVEC_BUILTIN_VMAXSB,
2857 ALTIVEC_BUILTIN_VMAXUH,
2858 ALTIVEC_BUILTIN_VMAXSH,
2859 ALTIVEC_BUILTIN_VMAXUW,
2860 ALTIVEC_BUILTIN_VMAXSW,
2861 ALTIVEC_BUILTIN_VMAXFP,
2862 ALTIVEC_BUILTIN_VMHADDSHS,
2863 ALTIVEC_BUILTIN_VMHRADDSHS,
2864 ALTIVEC_BUILTIN_VMLADDUHM,
2865 ALTIVEC_BUILTIN_VMRGHB,
2866 ALTIVEC_BUILTIN_VMRGHH,
2867 ALTIVEC_BUILTIN_VMRGHW,
2868 ALTIVEC_BUILTIN_VMRGLB,
2869 ALTIVEC_BUILTIN_VMRGLH,
2870 ALTIVEC_BUILTIN_VMRGLW,
2871 ALTIVEC_BUILTIN_VMSUMUBM,
2872 ALTIVEC_BUILTIN_VMSUMMBM,
2873 ALTIVEC_BUILTIN_VMSUMUHM,
2874 ALTIVEC_BUILTIN_VMSUMSHM,
2875 ALTIVEC_BUILTIN_VMSUMUHS,
2876 ALTIVEC_BUILTIN_VMSUMSHS,
2877 ALTIVEC_BUILTIN_VMINUB,
2878 ALTIVEC_BUILTIN_VMINSB,
2879 ALTIVEC_BUILTIN_VMINUH,
2880 ALTIVEC_BUILTIN_VMINSH,
2881 ALTIVEC_BUILTIN_VMINUW,
2882 ALTIVEC_BUILTIN_VMINSW,
2883 ALTIVEC_BUILTIN_VMINFP,
2884 ALTIVEC_BUILTIN_VMULEUB,
2885 ALTIVEC_BUILTIN_VMULESB,
2886 ALTIVEC_BUILTIN_VMULEUH,
2887 ALTIVEC_BUILTIN_VMULESH,
2888 ALTIVEC_BUILTIN_VMULOUB,
2889 ALTIVEC_BUILTIN_VMULOSB,
2890 ALTIVEC_BUILTIN_VMULOUH,
2891 ALTIVEC_BUILTIN_VMULOSH,
2892 ALTIVEC_BUILTIN_VNMSUBFP,
2893 ALTIVEC_BUILTIN_VNOR,
2894 ALTIVEC_BUILTIN_VOR,
2895 ALTIVEC_BUILTIN_VSEL_4SI,
2896 ALTIVEC_BUILTIN_VSEL_4SF,
2897 ALTIVEC_BUILTIN_VSEL_8HI,
2898 ALTIVEC_BUILTIN_VSEL_16QI,
2899 ALTIVEC_BUILTIN_VPERM_4SI,
2900 ALTIVEC_BUILTIN_VPERM_4SF,
2901 ALTIVEC_BUILTIN_VPERM_8HI,
2902 ALTIVEC_BUILTIN_VPERM_16QI,
2903 ALTIVEC_BUILTIN_VPKUHUM,
2904 ALTIVEC_BUILTIN_VPKUWUM,
2905 ALTIVEC_BUILTIN_VPKPX,
2906 ALTIVEC_BUILTIN_VPKUHSS,
2907 ALTIVEC_BUILTIN_VPKSHSS,
2908 ALTIVEC_BUILTIN_VPKUWSS,
2909 ALTIVEC_BUILTIN_VPKSWSS,
2910 ALTIVEC_BUILTIN_VPKUHUS,
2911 ALTIVEC_BUILTIN_VPKSHUS,
2912 ALTIVEC_BUILTIN_VPKUWUS,
2913 ALTIVEC_BUILTIN_VPKSWUS,
2914 ALTIVEC_BUILTIN_VREFP,
2915 ALTIVEC_BUILTIN_VRFIM,
2916 ALTIVEC_BUILTIN_VRFIN,
2917 ALTIVEC_BUILTIN_VRFIP,
2918 ALTIVEC_BUILTIN_VRFIZ,
2919 ALTIVEC_BUILTIN_VRLB,
2920 ALTIVEC_BUILTIN_VRLH,
2921 ALTIVEC_BUILTIN_VRLW,
2922 ALTIVEC_BUILTIN_VRSQRTEFP,
2923 ALTIVEC_BUILTIN_VSLB,
2924 ALTIVEC_BUILTIN_VSLH,
2925 ALTIVEC_BUILTIN_VSLW,
2926 ALTIVEC_BUILTIN_VSL,
2927 ALTIVEC_BUILTIN_VSLO,
2928 ALTIVEC_BUILTIN_VSPLTB,
2929 ALTIVEC_BUILTIN_VSPLTH,
2930 ALTIVEC_BUILTIN_VSPLTW,
2931 ALTIVEC_BUILTIN_VSPLTISB,
2932 ALTIVEC_BUILTIN_VSPLTISH,
2933 ALTIVEC_BUILTIN_VSPLTISW,
2934 ALTIVEC_BUILTIN_VSRB,
2935 ALTIVEC_BUILTIN_VSRH,
2936 ALTIVEC_BUILTIN_VSRW,
2937 ALTIVEC_BUILTIN_VSRAB,
2938 ALTIVEC_BUILTIN_VSRAH,
2939 ALTIVEC_BUILTIN_VSRAW,
2940 ALTIVEC_BUILTIN_VSR,
2941 ALTIVEC_BUILTIN_VSRO,
2942 ALTIVEC_BUILTIN_VSUBUBM,
2943 ALTIVEC_BUILTIN_VSUBUHM,
2944 ALTIVEC_BUILTIN_VSUBUWM,
2945 ALTIVEC_BUILTIN_VSUBFP,
2946 ALTIVEC_BUILTIN_VSUBCUW,
2947 ALTIVEC_BUILTIN_VSUBUBS,
2948 ALTIVEC_BUILTIN_VSUBSBS,
2949 ALTIVEC_BUILTIN_VSUBUHS,
2950 ALTIVEC_BUILTIN_VSUBSHS,
2951 ALTIVEC_BUILTIN_VSUBUWS,
2952 ALTIVEC_BUILTIN_VSUBSWS,
2953 ALTIVEC_BUILTIN_VSUM4UBS,
2954 ALTIVEC_BUILTIN_VSUM4SBS,
2955 ALTIVEC_BUILTIN_VSUM4SHS,
2956 ALTIVEC_BUILTIN_VSUM2SWS,
2957 ALTIVEC_BUILTIN_VSUMSWS,
2958 ALTIVEC_BUILTIN_VXOR,
2959 ALTIVEC_BUILTIN_VSLDOI_16QI,
2960 ALTIVEC_BUILTIN_VSLDOI_8HI,
2961 ALTIVEC_BUILTIN_VSLDOI_4SI,
2962 ALTIVEC_BUILTIN_VSLDOI_4SF,
2963 ALTIVEC_BUILTIN_VUPKHSB,
2964 ALTIVEC_BUILTIN_VUPKHPX,
2965 ALTIVEC_BUILTIN_VUPKHSH,
2966 ALTIVEC_BUILTIN_VUPKLSB,
2967 ALTIVEC_BUILTIN_VUPKLPX,
2968 ALTIVEC_BUILTIN_VUPKLSH,
2969 ALTIVEC_BUILTIN_MTVSCR,
2970 ALTIVEC_BUILTIN_MFVSCR,
2971 ALTIVEC_BUILTIN_DSSALL,
2972 ALTIVEC_BUILTIN_DSS,
2973 ALTIVEC_BUILTIN_LVSL,
2974 ALTIVEC_BUILTIN_LVSR,
2975 ALTIVEC_BUILTIN_DSTT,
2976 ALTIVEC_BUILTIN_DSTST,
2977 ALTIVEC_BUILTIN_DSTSTT,
2978 ALTIVEC_BUILTIN_DST,
2979 ALTIVEC_BUILTIN_LVEBX,
2980 ALTIVEC_BUILTIN_LVEHX,
2981 ALTIVEC_BUILTIN_LVEWX,
2982 ALTIVEC_BUILTIN_LVXL,
2983 ALTIVEC_BUILTIN_LVX,
2984 ALTIVEC_BUILTIN_STVX,
2985 ALTIVEC_BUILTIN_STVEBX,
2986 ALTIVEC_BUILTIN_STVEHX,
2987 ALTIVEC_BUILTIN_STVEWX,
2988 ALTIVEC_BUILTIN_STVXL,
2989 ALTIVEC_BUILTIN_VCMPBFP_P,
2990 ALTIVEC_BUILTIN_VCMPEQFP_P,
2991 ALTIVEC_BUILTIN_VCMPEQUB_P,
2992 ALTIVEC_BUILTIN_VCMPEQUH_P,
2993 ALTIVEC_BUILTIN_VCMPEQUW_P,
2994 ALTIVEC_BUILTIN_VCMPGEFP_P,
2995 ALTIVEC_BUILTIN_VCMPGTFP_P,
2996 ALTIVEC_BUILTIN_VCMPGTSB_P,
2997 ALTIVEC_BUILTIN_VCMPGTSH_P,
2998 ALTIVEC_BUILTIN_VCMPGTSW_P,
2999 ALTIVEC_BUILTIN_VCMPGTUB_P,
3000 ALTIVEC_BUILTIN_VCMPGTUH_P,
3001 ALTIVEC_BUILTIN_VCMPGTUW_P,
3002 ALTIVEC_BUILTIN_ABSS_V4SI,
3003 ALTIVEC_BUILTIN_ABSS_V8HI,
3004 ALTIVEC_BUILTIN_ABSS_V16QI,
3005 ALTIVEC_BUILTIN_ABS_V4SI,
3006 ALTIVEC_BUILTIN_ABS_V4SF,
3007 ALTIVEC_BUILTIN_ABS_V8HI,
3008 ALTIVEC_BUILTIN_ABS_V16QI
3009 /* SPE builtins. */
3010 , SPE_BUILTIN_EVADDW,
3011 SPE_BUILTIN_EVAND,
3012 SPE_BUILTIN_EVANDC,
3013 SPE_BUILTIN_EVDIVWS,
3014 SPE_BUILTIN_EVDIVWU,
3015 SPE_BUILTIN_EVEQV,
3016 SPE_BUILTIN_EVFSADD,
3017 SPE_BUILTIN_EVFSDIV,
3018 SPE_BUILTIN_EVFSMUL,
3019 SPE_BUILTIN_EVFSSUB,
3020 SPE_BUILTIN_EVLDDX,
3021 SPE_BUILTIN_EVLDHX,
3022 SPE_BUILTIN_EVLDWX,
3023 SPE_BUILTIN_EVLHHESPLATX,
3024 SPE_BUILTIN_EVLHHOSSPLATX,
3025 SPE_BUILTIN_EVLHHOUSPLATX,
3026 SPE_BUILTIN_EVLWHEX,
3027 SPE_BUILTIN_EVLWHOSX,
3028 SPE_BUILTIN_EVLWHOUX,
3029 SPE_BUILTIN_EVLWHSPLATX,
3030 SPE_BUILTIN_EVLWWSPLATX,
3031 SPE_BUILTIN_EVMERGEHI,
3032 SPE_BUILTIN_EVMERGEHILO,
3033 SPE_BUILTIN_EVMERGELO,
3034 SPE_BUILTIN_EVMERGELOHI,
3035 SPE_BUILTIN_EVMHEGSMFAA,
3036 SPE_BUILTIN_EVMHEGSMFAN,
3037 SPE_BUILTIN_EVMHEGSMIAA,
3038 SPE_BUILTIN_EVMHEGSMIAN,
3039 SPE_BUILTIN_EVMHEGUMIAA,
3040 SPE_BUILTIN_EVMHEGUMIAN,
3041 SPE_BUILTIN_EVMHESMF,
3042 SPE_BUILTIN_EVMHESMFA,
3043 SPE_BUILTIN_EVMHESMFAAW,
3044 SPE_BUILTIN_EVMHESMFANW,
3045 SPE_BUILTIN_EVMHESMI,
3046 SPE_BUILTIN_EVMHESMIA,
3047 SPE_BUILTIN_EVMHESMIAAW,
3048 SPE_BUILTIN_EVMHESMIANW,
3049 SPE_BUILTIN_EVMHESSF,
3050 SPE_BUILTIN_EVMHESSFA,
3051 SPE_BUILTIN_EVMHESSFAAW,
3052 SPE_BUILTIN_EVMHESSFANW,
3053 SPE_BUILTIN_EVMHESSIAAW,
3054 SPE_BUILTIN_EVMHESSIANW,
3055 SPE_BUILTIN_EVMHEUMI,
3056 SPE_BUILTIN_EVMHEUMIA,
3057 SPE_BUILTIN_EVMHEUMIAAW,
3058 SPE_BUILTIN_EVMHEUMIANW,
3059 SPE_BUILTIN_EVMHEUSIAAW,
3060 SPE_BUILTIN_EVMHEUSIANW,
3061 SPE_BUILTIN_EVMHOGSMFAA,
3062 SPE_BUILTIN_EVMHOGSMFAN,
3063 SPE_BUILTIN_EVMHOGSMIAA,
3064 SPE_BUILTIN_EVMHOGSMIAN,
3065 SPE_BUILTIN_EVMHOGUMIAA,
3066 SPE_BUILTIN_EVMHOGUMIAN,
3067 SPE_BUILTIN_EVMHOSMF,
3068 SPE_BUILTIN_EVMHOSMFA,
3069 SPE_BUILTIN_EVMHOSMFAAW,
3070 SPE_BUILTIN_EVMHOSMFANW,
3071 SPE_BUILTIN_EVMHOSMI,
3072 SPE_BUILTIN_EVMHOSMIA,
3073 SPE_BUILTIN_EVMHOSMIAAW,
3074 SPE_BUILTIN_EVMHOSMIANW,
3075 SPE_BUILTIN_EVMHOSSF,
3076 SPE_BUILTIN_EVMHOSSFA,
3077 SPE_BUILTIN_EVMHOSSFAAW,
3078 SPE_BUILTIN_EVMHOSSFANW,
3079 SPE_BUILTIN_EVMHOSSIAAW,
3080 SPE_BUILTIN_EVMHOSSIANW,
3081 SPE_BUILTIN_EVMHOUMI,
3082 SPE_BUILTIN_EVMHOUMIA,
3083 SPE_BUILTIN_EVMHOUMIAAW,
3084 SPE_BUILTIN_EVMHOUMIANW,
3085 SPE_BUILTIN_EVMHOUSIAAW,
3086 SPE_BUILTIN_EVMHOUSIANW,
3087 SPE_BUILTIN_EVMWHSMF,
3088 SPE_BUILTIN_EVMWHSMFA,
3089 SPE_BUILTIN_EVMWHSMI,
3090 SPE_BUILTIN_EVMWHSMIA,
3091 SPE_BUILTIN_EVMWHSSF,
3092 SPE_BUILTIN_EVMWHSSFA,
3093 SPE_BUILTIN_EVMWHUMI,
3094 SPE_BUILTIN_EVMWHUMIA,
3095 SPE_BUILTIN_EVMWLSMIAAW,
3096 SPE_BUILTIN_EVMWLSMIANW,
3097 SPE_BUILTIN_EVMWLSSIAAW,
3098 SPE_BUILTIN_EVMWLSSIANW,
3099 SPE_BUILTIN_EVMWLUMI,
3100 SPE_BUILTIN_EVMWLUMIA,
3101 SPE_BUILTIN_EVMWLUMIAAW,
3102 SPE_BUILTIN_EVMWLUMIANW,
3103 SPE_BUILTIN_EVMWLUSIAAW,
3104 SPE_BUILTIN_EVMWLUSIANW,
3105 SPE_BUILTIN_EVMWSMF,
3106 SPE_BUILTIN_EVMWSMFA,
3107 SPE_BUILTIN_EVMWSMFAA,
3108 SPE_BUILTIN_EVMWSMFAN,
3109 SPE_BUILTIN_EVMWSMI,
3110 SPE_BUILTIN_EVMWSMIA,
3111 SPE_BUILTIN_EVMWSMIAA,
3112 SPE_BUILTIN_EVMWSMIAN,
3113 SPE_BUILTIN_EVMWHSSFAA,
3114 SPE_BUILTIN_EVMWSSF,
3115 SPE_BUILTIN_EVMWSSFA,
3116 SPE_BUILTIN_EVMWSSFAA,
3117 SPE_BUILTIN_EVMWSSFAN,
3118 SPE_BUILTIN_EVMWUMI,
3119 SPE_BUILTIN_EVMWUMIA,
3120 SPE_BUILTIN_EVMWUMIAA,
3121 SPE_BUILTIN_EVMWUMIAN,
3122 SPE_BUILTIN_EVNAND,
3123 SPE_BUILTIN_EVNOR,
3124 SPE_BUILTIN_EVOR,
3125 SPE_BUILTIN_EVORC,
3126 SPE_BUILTIN_EVRLW,
3127 SPE_BUILTIN_EVSLW,
3128 SPE_BUILTIN_EVSRWS,
3129 SPE_BUILTIN_EVSRWU,
3130 SPE_BUILTIN_EVSTDDX,
3131 SPE_BUILTIN_EVSTDHX,
3132 SPE_BUILTIN_EVSTDWX,
3133 SPE_BUILTIN_EVSTWHEX,
3134 SPE_BUILTIN_EVSTWHOX,
3135 SPE_BUILTIN_EVSTWWEX,
3136 SPE_BUILTIN_EVSTWWOX,
3137 SPE_BUILTIN_EVSUBFW,
3138 SPE_BUILTIN_EVXOR,
3139 SPE_BUILTIN_EVABS,
3140 SPE_BUILTIN_EVADDSMIAAW,
3141 SPE_BUILTIN_EVADDSSIAAW,
3142 SPE_BUILTIN_EVADDUMIAAW,
3143 SPE_BUILTIN_EVADDUSIAAW,
3144 SPE_BUILTIN_EVCNTLSW,
3145 SPE_BUILTIN_EVCNTLZW,
3146 SPE_BUILTIN_EVEXTSB,
3147 SPE_BUILTIN_EVEXTSH,
3148 SPE_BUILTIN_EVFSABS,
3149 SPE_BUILTIN_EVFSCFSF,
3150 SPE_BUILTIN_EVFSCFSI,
3151 SPE_BUILTIN_EVFSCFUF,
3152 SPE_BUILTIN_EVFSCFUI,
3153 SPE_BUILTIN_EVFSCTSF,
3154 SPE_BUILTIN_EVFSCTSI,
3155 SPE_BUILTIN_EVFSCTSIZ,
3156 SPE_BUILTIN_EVFSCTUF,
3157 SPE_BUILTIN_EVFSCTUI,
3158 SPE_BUILTIN_EVFSCTUIZ,
3159 SPE_BUILTIN_EVFSNABS,
3160 SPE_BUILTIN_EVFSNEG,
3161 SPE_BUILTIN_EVMRA,
3162 SPE_BUILTIN_EVNEG,
3163 SPE_BUILTIN_EVRNDW,
3164 SPE_BUILTIN_EVSUBFSMIAAW,
3165 SPE_BUILTIN_EVSUBFSSIAAW,
3166 SPE_BUILTIN_EVSUBFUMIAAW,
3167 SPE_BUILTIN_EVSUBFUSIAAW,
3168 SPE_BUILTIN_EVADDIW,
3169 SPE_BUILTIN_EVLDD,
3170 SPE_BUILTIN_EVLDH,
3171 SPE_BUILTIN_EVLDW,
3172 SPE_BUILTIN_EVLHHESPLAT,
3173 SPE_BUILTIN_EVLHHOSSPLAT,
3174 SPE_BUILTIN_EVLHHOUSPLAT,
3175 SPE_BUILTIN_EVLWHE,
3176 SPE_BUILTIN_EVLWHOS,
3177 SPE_BUILTIN_EVLWHOU,
3178 SPE_BUILTIN_EVLWHSPLAT,
3179 SPE_BUILTIN_EVLWWSPLAT,
3180 SPE_BUILTIN_EVRLWI,
3181 SPE_BUILTIN_EVSLWI,
3182 SPE_BUILTIN_EVSRWIS,
3183 SPE_BUILTIN_EVSRWIU,
3184 SPE_BUILTIN_EVSTDD,
3185 SPE_BUILTIN_EVSTDH,
3186 SPE_BUILTIN_EVSTDW,
3187 SPE_BUILTIN_EVSTWHE,
3188 SPE_BUILTIN_EVSTWHO,
3189 SPE_BUILTIN_EVSTWWE,
3190 SPE_BUILTIN_EVSTWWO,
3191 SPE_BUILTIN_EVSUBIFW,
3192
3193 /* Compares. */
3194 SPE_BUILTIN_EVCMPEQ,
3195 SPE_BUILTIN_EVCMPGTS,
3196 SPE_BUILTIN_EVCMPGTU,
3197 SPE_BUILTIN_EVCMPLTS,
3198 SPE_BUILTIN_EVCMPLTU,
3199 SPE_BUILTIN_EVFSCMPEQ,
3200 SPE_BUILTIN_EVFSCMPGT,
3201 SPE_BUILTIN_EVFSCMPLT,
3202 SPE_BUILTIN_EVFSTSTEQ,
3203 SPE_BUILTIN_EVFSTSTGT,
3204 SPE_BUILTIN_EVFSTSTLT,
3205
3206 /* EVSEL compares. */
3207 SPE_BUILTIN_EVSEL_CMPEQ,
3208 SPE_BUILTIN_EVSEL_CMPGTS,
3209 SPE_BUILTIN_EVSEL_CMPGTU,
3210 SPE_BUILTIN_EVSEL_CMPLTS,
3211 SPE_BUILTIN_EVSEL_CMPLTU,
3212 SPE_BUILTIN_EVSEL_FSCMPEQ,
3213 SPE_BUILTIN_EVSEL_FSCMPGT,
3214 SPE_BUILTIN_EVSEL_FSCMPLT,
3215 SPE_BUILTIN_EVSEL_FSTSTEQ,
3216 SPE_BUILTIN_EVSEL_FSTSTGT,
3217 SPE_BUILTIN_EVSEL_FSTSTLT,
3218
3219 SPE_BUILTIN_EVSPLATFI,
3220 SPE_BUILTIN_EVSPLATI,
3221 SPE_BUILTIN_EVMWHSSMAA,
3222 SPE_BUILTIN_EVMWHSMFAA,
3223 SPE_BUILTIN_EVMWHSMIAA,
3224 SPE_BUILTIN_EVMWHUSIAA,
3225 SPE_BUILTIN_EVMWHUMIAA,
3226 SPE_BUILTIN_EVMWHSSFAN,
3227 SPE_BUILTIN_EVMWHSSIAN,
3228 SPE_BUILTIN_EVMWHSMFAN,
3229 SPE_BUILTIN_EVMWHSMIAN,
3230 SPE_BUILTIN_EVMWHUSIAN,
3231 SPE_BUILTIN_EVMWHUMIAN,
3232 SPE_BUILTIN_EVMWHGSSFAA,
3233 SPE_BUILTIN_EVMWHGSMFAA,
3234 SPE_BUILTIN_EVMWHGSMIAA,
3235 SPE_BUILTIN_EVMWHGUMIAA,
3236 SPE_BUILTIN_EVMWHGSSFAN,
3237 SPE_BUILTIN_EVMWHGSMFAN,
3238 SPE_BUILTIN_EVMWHGSMIAN,
3239 SPE_BUILTIN_EVMWHGUMIAN,
3240 SPE_BUILTIN_MTSPEFSCR,
3241 SPE_BUILTIN_MFSPEFSCR,
3242 SPE_BUILTIN_BRINC
3243 };