]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/rs6000/rs6000.h
9114b35e46f66b31afbf9d06392c479aed130416
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
28
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32
33 /* Definitions for the object file format. These are set at
34 compile-time. */
35
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
40
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
45
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
49
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
53
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
57
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
62
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
69
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
73
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
79
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
85
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
91
92 #ifdef HAVE_AS_POWER8
93 #define ASM_CPU_POWER8_SPEC "-mpower8"
94 #else
95 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
96 #endif
97
98 #ifdef HAVE_AS_POWER9
99 #define ASM_CPU_POWER9_SPEC "-mpower9"
100 #else
101 #define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102 #endif
103
104 #ifdef HAVE_AS_DCI
105 #define ASM_CPU_476_SPEC "-m476"
106 #else
107 #define ASM_CPU_476_SPEC "-mpower4"
108 #endif
109
110 /* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
114 #define ASM_CPU_SPEC \
115 "%{!mcpu*: \
116 %{mpowerpc64*: -mppc64} \
117 %{!mpowerpc64*: %(asm_default)}} \
118 %{mcpu=native: %(asm_cpu_native)} \
119 %{mcpu=cell: -mcell} \
120 %{mcpu=power3: -mppc64} \
121 %{mcpu=power4: -mpower4} \
122 %{mcpu=power5: %(asm_cpu_power5)} \
123 %{mcpu=power5+: %(asm_cpu_power5)} \
124 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
126 %{mcpu=power7: %(asm_cpu_power7)} \
127 %{mcpu=power8: %(asm_cpu_power8)} \
128 %{mcpu=power9: %(asm_cpu_power9)} \
129 %{mcpu=a2: -ma2} \
130 %{mcpu=powerpc: -mppc} \
131 %{mcpu=powerpc64le: %(asm_cpu_power8)} \
132 %{mcpu=rs64a: -mppc64} \
133 %{mcpu=401: -mppc} \
134 %{mcpu=403: -m403} \
135 %{mcpu=405: -m405} \
136 %{mcpu=405fp: -m405} \
137 %{mcpu=440: -m440} \
138 %{mcpu=440fp: -m440} \
139 %{mcpu=464: -m440} \
140 %{mcpu=464fp: -m440} \
141 %{mcpu=476: %(asm_cpu_476)} \
142 %{mcpu=476fp: %(asm_cpu_476)} \
143 %{mcpu=505: -mppc} \
144 %{mcpu=601: -m601} \
145 %{mcpu=602: -mppc} \
146 %{mcpu=603: -mppc} \
147 %{mcpu=603e: -mppc} \
148 %{mcpu=ec603e: -mppc} \
149 %{mcpu=604: -mppc} \
150 %{mcpu=604e: -mppc} \
151 %{mcpu=620: -mppc64} \
152 %{mcpu=630: -mppc64} \
153 %{mcpu=740: -mppc} \
154 %{mcpu=750: -mppc} \
155 %{mcpu=G3: -mppc} \
156 %{mcpu=7400: -mppc -maltivec} \
157 %{mcpu=7450: -mppc -maltivec} \
158 %{mcpu=G4: -mppc -maltivec} \
159 %{mcpu=801: -mppc} \
160 %{mcpu=821: -mppc} \
161 %{mcpu=823: -mppc} \
162 %{mcpu=860: -mppc} \
163 %{mcpu=970: -mpower4 -maltivec} \
164 %{mcpu=G5: -mpower4 -maltivec} \
165 %{mcpu=8540: -me500} \
166 %{mcpu=8548: -me500} \
167 %{mcpu=e300c2: -me300} \
168 %{mcpu=e300c3: -me300} \
169 %{mcpu=e500mc: -me500mc} \
170 %{mcpu=e500mc64: -me500mc64} \
171 %{mcpu=e5500: -me5500} \
172 %{mcpu=e6500: -me6500} \
173 %{maltivec: -maltivec} \
174 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
175 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
176 -many"
177
178 #define CPP_DEFAULT_SPEC ""
179
180 #define ASM_DEFAULT_SPEC ""
181
182 /* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
185
186 Each subgrouping contains a string constant, that defines the
187 specification name, and a string constant that used by the GCC driver
188 program.
189
190 Do not define this macro if it does not need to do anything. */
191
192 #define SUBTARGET_EXTRA_SPECS
193
194 #define EXTRA_SPECS \
195 { "cpp_default", CPP_DEFAULT_SPEC }, \
196 { "asm_cpu", ASM_CPU_SPEC }, \
197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
198 { "asm_default", ASM_DEFAULT_SPEC }, \
199 { "cc1_cpu", CC1_CPU_SPEC }, \
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
206 SUBTARGET_EXTRA_SPECS
207
208 /* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212 /* In driver-rs6000.c. */
213 extern const char *host_detect_local_cpu (int argc, const char **argv);
214 #define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216 #define HAVE_LOCAL_CPU_DETECT
217 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
218
219 #else
220 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
221 #endif
222
223 #ifndef CC1_CPU_SPEC
224 #ifdef HAVE_LOCAL_CPU_DETECT
225 #define CC1_CPU_SPEC \
226 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
228 #else
229 #define CC1_CPU_SPEC ""
230 #endif
231 #endif
232
233 /* Architecture type. */
234
235 /* Define TARGET_MFCRF if the target assembler does not support the
236 optional field operand for mfcr. */
237
238 #ifndef HAVE_AS_MFCRF
239 #undef TARGET_MFCRF
240 #define TARGET_MFCRF 0
241 #endif
242
243 /* Define TARGET_POPCNTB if the target assembler does not support the
244 popcount byte instruction. */
245
246 #ifndef HAVE_AS_POPCNTB
247 #undef TARGET_POPCNTB
248 #define TARGET_POPCNTB 0
249 #endif
250
251 /* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
253
254 #ifndef HAVE_AS_FPRND
255 #undef TARGET_FPRND
256 #define TARGET_FPRND 0
257 #endif
258
259 /* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
261
262 #ifndef HAVE_AS_CMPB
263 #undef TARGET_CMPB
264 #define TARGET_CMPB 0
265 #endif
266
267 /* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
269
270 #ifndef HAVE_AS_MFPGPR
271 #undef TARGET_MFPGPR
272 #define TARGET_MFPGPR 0
273 #endif
274
275 /* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277 #ifndef HAVE_AS_DFP
278 #undef TARGET_DFP
279 #define TARGET_DFP 0
280 #endif
281
282 /* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
284
285 #ifndef HAVE_AS_POPCNTD
286 #undef TARGET_POPCNTD
287 #define TARGET_POPCNTD 0
288 #endif
289
290 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
293
294 #ifndef HAVE_AS_POWER8
295 #undef TARGET_DIRECT_MOVE
296 #undef TARGET_CRYPTO
297 #undef TARGET_HTM
298 #undef TARGET_P8_VECTOR
299 #define TARGET_DIRECT_MOVE 0
300 #define TARGET_CRYPTO 0
301 #define TARGET_HTM 0
302 #define TARGET_P8_VECTOR 0
303 #endif
304
305 /* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
309
310 #ifndef HAVE_AS_POWER9
311 #undef TARGET_FLOAT128_HW
312 #undef TARGET_MODULO
313 #undef TARGET_P9_VECTOR
314 #undef TARGET_P9_MINMAX
315 #undef TARGET_P9_MISC
316 #define TARGET_FLOAT128_HW 0
317 #define TARGET_MODULO 0
318 #define TARGET_P9_VECTOR 0
319 #define TARGET_P9_MINMAX 0
320 #define TARGET_P9_MISC 0
321 #endif
322
323 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
324 not, generate the lwsync code as an integer constant. */
325 #ifdef HAVE_AS_LWSYNC
326 #define TARGET_LWSYNC_INSTRUCTION 1
327 #else
328 #define TARGET_LWSYNC_INSTRUCTION 0
329 #endif
330
331 /* Define TARGET_TLS_MARKERS if the target assembler does not support
332 arg markers for __tls_get_addr calls. */
333 #ifndef HAVE_AS_TLS_MARKERS
334 #undef TARGET_TLS_MARKERS
335 #define TARGET_TLS_MARKERS 0
336 #else
337 #define TARGET_TLS_MARKERS tls_markers
338 #endif
339
340 #ifndef TARGET_SECURE_PLT
341 #define TARGET_SECURE_PLT 0
342 #endif
343
344 #ifndef TARGET_CMODEL
345 #define TARGET_CMODEL CMODEL_SMALL
346 #endif
347
348 #define TARGET_32BIT (! TARGET_64BIT)
349
350 #ifndef HAVE_AS_TLS
351 #define HAVE_AS_TLS 0
352 #endif
353
354 #ifndef TARGET_LINK_STACK
355 #define TARGET_LINK_STACK 0
356 #endif
357
358 #ifndef SET_TARGET_LINK_STACK
359 #define SET_TARGET_LINK_STACK(X) do { } while (0)
360 #endif
361
362 #ifndef TARGET_FLOAT128_ENABLE_TYPE
363 #define TARGET_FLOAT128_ENABLE_TYPE 0
364 #endif
365
366 /* Return 1 for a symbol ref for a thread-local storage symbol. */
367 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
368 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
369
370 #ifdef IN_LIBGCC2
371 /* For libgcc2 we make sure this is a compile time constant */
372 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
373 #undef TARGET_POWERPC64
374 #define TARGET_POWERPC64 1
375 #else
376 #undef TARGET_POWERPC64
377 #define TARGET_POWERPC64 0
378 #endif
379 #else
380 /* The option machinery will define this. */
381 #endif
382
383 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
384
385 /* FPU operations supported.
386 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
387 also test TARGET_HARD_FLOAT. */
388 #define TARGET_SINGLE_FLOAT 1
389 #define TARGET_DOUBLE_FLOAT 1
390 #define TARGET_SINGLE_FPU 0
391 #define TARGET_SIMPLE_FPU 0
392 #define TARGET_XILINX_FPU 0
393
394 /* Recast the processor type to the cpu attribute. */
395 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
396
397 /* Define generic processor types based upon current deployment. */
398 #define PROCESSOR_COMMON PROCESSOR_PPC601
399 #define PROCESSOR_POWERPC PROCESSOR_PPC604
400 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
401
402 /* Define the default processor. This is overridden by other tm.h files. */
403 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
404 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
405
406 /* Specify the dialect of assembler to use. Only new mnemonics are supported
407 starting with GCC 4.8, i.e. just one dialect, but for backwards
408 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
409 defined. */
410 #define ASSEMBLER_DIALECT 1
411
412 /* Debug support */
413 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
414 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
415 #define MASK_DEBUG_REG 0x04 /* debug register handling */
416 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
417 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
418 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
419 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
420 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
421 | MASK_DEBUG_ARG \
422 | MASK_DEBUG_REG \
423 | MASK_DEBUG_ADDR \
424 | MASK_DEBUG_COST \
425 | MASK_DEBUG_TARGET \
426 | MASK_DEBUG_BUILTIN)
427
428 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
429 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
430 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
431 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
432 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
433 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
434 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
435
436 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
437 long double format that uses a pair of doubles, or IEEE 128-bit floating
438 point. KFmode was added as a way to represent IEEE 128-bit floating point,
439 even if the default for long double is the IBM long double format.
440 Similarly IFmode is the IBM long double format even if the default is IEEE
441 128-bit. Don't allow IFmode if -msoft-float. */
442 #define FLOAT128_IEEE_P(MODE) \
443 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
444 || ((MODE) == KFmode) || ((MODE) == KCmode))
445
446 #define FLOAT128_IBM_P(MODE) \
447 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
448 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
449
450 /* Helper macros to say whether a 128-bit floating point type can go in a
451 single vector register, or whether it needs paired scalar values. */
452 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
453
454 #define FLOAT128_2REG_P(MODE) \
455 (FLOAT128_IBM_P (MODE) \
456 || ((MODE) == TDmode) \
457 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
458
459 /* Return true for floating point that does not use a vector register. */
460 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
461 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
462
463 /* Describe the vector unit used for arithmetic operations. */
464 extern enum rs6000_vector rs6000_vector_unit[];
465
466 #define VECTOR_UNIT_NONE_P(MODE) \
467 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
468
469 #define VECTOR_UNIT_VSX_P(MODE) \
470 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
471
472 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
473 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
474
475 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
476 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
477
478 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
479 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
480 (int)VECTOR_VSX, \
481 (int)VECTOR_P8_VECTOR))
482
483 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
484 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
485 compatible, so allow it as well, rather than changing all of the uses of the
486 macro. */
487 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
488 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
489 (int)VECTOR_ALTIVEC, \
490 (int)VECTOR_P8_VECTOR))
491
492 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
493 same unit as the vector unit we are using, but we may want to migrate to
494 using VSX style loads even for types handled by altivec. */
495 extern enum rs6000_vector rs6000_vector_mem[];
496
497 #define VECTOR_MEM_NONE_P(MODE) \
498 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
499
500 #define VECTOR_MEM_VSX_P(MODE) \
501 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
502
503 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
504 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
505
506 #define VECTOR_MEM_ALTIVEC_P(MODE) \
507 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
508
509 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
510 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
511 (int)VECTOR_VSX, \
512 (int)VECTOR_P8_VECTOR))
513
514 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
515 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
516 (int)VECTOR_ALTIVEC, \
517 (int)VECTOR_P8_VECTOR))
518
519 /* Return the alignment of a given vector type, which is set based on the
520 vector unit use. VSX for instance can load 32 or 64 bit aligned words
521 without problems, while Altivec requires 128-bit aligned vectors. */
522 extern int rs6000_vector_align[];
523
524 #define VECTOR_ALIGN(MODE) \
525 ((rs6000_vector_align[(MODE)] != 0) \
526 ? rs6000_vector_align[(MODE)] \
527 : (int)GET_MODE_BITSIZE ((MODE)))
528
529 /* Determine the element order to use for vector instructions. By
530 default we use big-endian element order when targeting big-endian,
531 and little-endian element order when targeting little-endian. For
532 programs being ported from BE Power to LE Power, it can sometimes
533 be useful to use big-endian element order when targeting little-endian.
534 This is set via -maltivec=be, for example. */
535 #define VECTOR_ELT_ORDER_BIG \
536 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
537
538 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
539 with scalar instructions. */
540 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
541
542 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
543 with the ISA 3.0 MFVSRLD instructions. */
544 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
545
546 /* Alignment options for fields in structures for sub-targets following
547 AIX-like ABI.
548 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
549 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
550
551 Override the macro definitions when compiling libobjc to avoid undefined
552 reference to rs6000_alignment_flags due to library's use of GCC alignment
553 macros which use the macros below. */
554
555 #ifndef IN_TARGET_LIBS
556 #define MASK_ALIGN_POWER 0x00000000
557 #define MASK_ALIGN_NATURAL 0x00000001
558 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
559 #else
560 #define TARGET_ALIGN_NATURAL 0
561 #endif
562
563 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
564 #define TARGET_IEEEQUAD rs6000_ieeequad
565 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
566 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
567
568 #define TARGET_ISEL64 (TARGET_ISEL && TARGET_POWERPC64)
569
570 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
571 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
572 XILINX. */
573 #define TARGET_FCFID (TARGET_POWERPC64 \
574 || TARGET_PPC_GPOPT /* 970/power4 */ \
575 || TARGET_POPCNTB /* ISA 2.02 */ \
576 || TARGET_CMPB /* ISA 2.05 */ \
577 || TARGET_POPCNTD /* ISA 2.06 */ \
578 || TARGET_XILINX_FPU)
579
580 #define TARGET_FCTIDZ TARGET_FCFID
581 #define TARGET_STFIWX TARGET_PPC_GFXOPT
582 #define TARGET_LFIWAX TARGET_CMPB
583 #define TARGET_LFIWZX TARGET_POPCNTD
584 #define TARGET_FCFIDS TARGET_POPCNTD
585 #define TARGET_FCFIDU TARGET_POPCNTD
586 #define TARGET_FCFIDUS TARGET_POPCNTD
587 #define TARGET_FCTIDUZ TARGET_POPCNTD
588 #define TARGET_FCTIWUZ TARGET_POPCNTD
589 #define TARGET_CTZ TARGET_MODULO
590 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
591 #define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
592
593 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
594 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
595 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
596 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
597 && TARGET_POWERPC64)
598 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
599 && TARGET_POWERPC64)
600
601 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
602 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
603 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
604
605 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
606 loads are slow. */
607 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
608
609 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
610 in power7, so conditionalize them on p8 features. TImode syncs need quad
611 memory support. */
612 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
613 || TARGET_QUAD_MEMORY_ATOMIC \
614 || TARGET_DIRECT_MOVE)
615
616 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
617
618 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
619 to allocate the SDmode stack slot to get the value into the proper location
620 in the register. */
621 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
622
623 /* ISA 3.0 has new min/max functions that don't need fast math that are being
624 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
625 answers if the arguments are not in the normal range. */
626 #define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
627 && (TARGET_P9_MINMAX || !flag_trapping_math))
628
629 #define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
630 && (TARGET_P9_MINMAX || !flag_trapping_math))
631
632 /* In switching from using target_flags to using rs6000_isa_flags, the options
633 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
634 OPTION_MASK_<xxx> back into MASK_<xxx>. */
635 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
636 #define MASK_CMPB OPTION_MASK_CMPB
637 #define MASK_CRYPTO OPTION_MASK_CRYPTO
638 #define MASK_DFP OPTION_MASK_DFP
639 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
640 #define MASK_DLMZB OPTION_MASK_DLMZB
641 #define MASK_EABI OPTION_MASK_EABI
642 #define MASK_FLOAT128_TYPE OPTION_MASK_FLOAT128_TYPE
643 #define MASK_FPRND OPTION_MASK_FPRND
644 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
645 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
646 #define MASK_HTM OPTION_MASK_HTM
647 #define MASK_ISEL OPTION_MASK_ISEL
648 #define MASK_MFCRF OPTION_MASK_MFCRF
649 #define MASK_MFPGPR OPTION_MASK_MFPGPR
650 #define MASK_MULHW OPTION_MASK_MULHW
651 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
652 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
653 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
654 #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
655 #define MASK_P9_MISC OPTION_MASK_P9_MISC
656 #define MASK_POPCNTB OPTION_MASK_POPCNTB
657 #define MASK_POPCNTD OPTION_MASK_POPCNTD
658 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
659 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
660 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
661 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
662 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
663 #define MASK_STRING OPTION_MASK_STRING
664 #define MASK_UPDATE OPTION_MASK_UPDATE
665 #define MASK_VSX OPTION_MASK_VSX
666
667 #ifndef IN_LIBGCC2
668 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
669 #endif
670
671 #ifdef TARGET_64BIT
672 #define MASK_64BIT OPTION_MASK_64BIT
673 #endif
674
675 #ifdef TARGET_LITTLE_ENDIAN
676 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
677 #endif
678
679 #ifdef TARGET_REGNAMES
680 #define MASK_REGNAMES OPTION_MASK_REGNAMES
681 #endif
682
683 #ifdef TARGET_PROTOTYPE
684 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
685 #endif
686
687 #ifdef TARGET_MODULO
688 #define RS6000_BTM_MODULO OPTION_MASK_MODULO
689 #endif
690
691
692 /* For power systems, we want to enable Altivec and VSX builtins even if the
693 user did not use -maltivec or -mvsx to allow the builtins to be used inside
694 of #pragma GCC target or the target attribute to change the code level for a
695 given system. The Paired builtins are only enabled if you configure the
696 compiler for those builtins, and those machines don't support altivec or
697 VSX. */
698
699 #define TARGET_EXTRA_BUILTINS (!TARGET_PAIRED_FLOAT \
700 && ((TARGET_POWERPC64 \
701 || TARGET_PPC_GPOPT /* 970/power4 */ \
702 || TARGET_POPCNTB /* ISA 2.02 */ \
703 || TARGET_CMPB /* ISA 2.05 */ \
704 || TARGET_POPCNTD /* ISA 2.06 */ \
705 || TARGET_ALTIVEC \
706 || TARGET_VSX \
707 || TARGET_HARD_FLOAT)))
708
709 /* E500 cores only support plain "sync", not lwsync. */
710 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
711 || rs6000_cpu == PROCESSOR_PPC8548)
712
713
714 /* Whether SF/DF operations are supported by the normal floating point unit
715 (or the vector/scalar unit). */
716 #define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT)
717 #define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
718
719 /* Whether SF/DF operations are supported by any hardware. */
720 #define TARGET_SF_INSN TARGET_SF_FPR
721 #define TARGET_DF_INSN TARGET_DF_FPR
722
723 /* Which machine supports the various reciprocal estimate instructions. */
724 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
725 && TARGET_SINGLE_FLOAT)
726
727 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
728 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
729
730 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
731 && TARGET_PPC_GFXOPT && TARGET_SINGLE_FLOAT)
732
733 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
734 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
735
736 /* Conditions to allow TOC fusion for loading/storing integers. */
737 #define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
738 && TARGET_TOC_FUSION \
739 && (TARGET_CMODEL != CMODEL_SMALL) \
740 && TARGET_POWERPC64)
741
742 /* Conditions to allow TOC fusion for loading/storing floating point. */
743 #define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
744 && TARGET_TOC_FUSION \
745 && (TARGET_CMODEL != CMODEL_SMALL) \
746 && TARGET_POWERPC64 \
747 && TARGET_HARD_FLOAT \
748 && TARGET_SINGLE_FLOAT \
749 && TARGET_DOUBLE_FLOAT)
750
751 /* Macro to say whether we can do optimizations where we need to do parts of
752 the calculation in 64-bit GPRs and then is transfered to the vector
753 registers. Do not allow -maltivec=be for these optimizations, because it
754 adds to the complexity of the code. */
755 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
756 && TARGET_P8_VECTOR \
757 && TARGET_POWERPC64 \
758 && (rs6000_altivec_element_order != 2))
759
760 /* Whether the various reciprocal divide/square root estimate instructions
761 exist, and whether we should automatically generate code for the instruction
762 by default. */
763 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
764 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
765 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
766 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
767
768 extern unsigned char rs6000_recip_bits[];
769
770 #define RS6000_RECIP_HAVE_RE_P(MODE) \
771 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
772
773 #define RS6000_RECIP_AUTO_RE_P(MODE) \
774 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
775
776 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
777 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
778
779 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
780 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
781
782 /* The default CPU for TARGET_OPTION_OVERRIDE. */
783 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
784
785 /* Target pragma. */
786 #define REGISTER_TARGET_PRAGMAS() do { \
787 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
788 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
789 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
790 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
791 } while (0)
792
793 /* Target #defines. */
794 #define TARGET_CPU_CPP_BUILTINS() \
795 rs6000_cpu_cpp_builtins (pfile)
796
797 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
798 we're compiling for. Some configurations may need to override it. */
799 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
800 do \
801 { \
802 if (BYTES_BIG_ENDIAN) \
803 { \
804 builtin_define ("__BIG_ENDIAN__"); \
805 builtin_define ("_BIG_ENDIAN"); \
806 builtin_assert ("machine=bigendian"); \
807 } \
808 else \
809 { \
810 builtin_define ("__LITTLE_ENDIAN__"); \
811 builtin_define ("_LITTLE_ENDIAN"); \
812 builtin_assert ("machine=littleendian"); \
813 } \
814 } \
815 while (0)
816 \f
817 /* Target machine storage layout. */
818
819 /* Define this macro if it is advisable to hold scalars in registers
820 in a wider mode than that declared by the program. In such cases,
821 the value is constrained to be within the bounds of the declared
822 type, but kept valid in the wider mode. The signedness of the
823 extension may differ from that of the type. */
824
825 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
826 if (GET_MODE_CLASS (MODE) == MODE_INT \
827 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
828 (MODE) = TARGET_32BIT ? SImode : DImode;
829
830 /* Define this if most significant bit is lowest numbered
831 in instructions that operate on numbered bit-fields. */
832 /* That is true on RS/6000. */
833 #define BITS_BIG_ENDIAN 1
834
835 /* Define this if most significant byte of a word is the lowest numbered. */
836 /* That is true on RS/6000. */
837 #define BYTES_BIG_ENDIAN 1
838
839 /* Define this if most significant word of a multiword number is lowest
840 numbered.
841
842 For RS/6000 we can decide arbitrarily since there are no machine
843 instructions for them. Might as well be consistent with bits and bytes. */
844 #define WORDS_BIG_ENDIAN 1
845
846 /* This says that for the IBM long double the larger magnitude double
847 comes first. It's really a two element double array, and arrays
848 don't index differently between little- and big-endian. */
849 #define LONG_DOUBLE_LARGE_FIRST 1
850
851 #define MAX_BITS_PER_WORD 64
852
853 /* Width of a word, in units (bytes). */
854 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
855 #ifdef IN_LIBGCC2
856 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
857 #else
858 #define MIN_UNITS_PER_WORD 4
859 #endif
860 #define UNITS_PER_FP_WORD 8
861 #define UNITS_PER_ALTIVEC_WORD 16
862 #define UNITS_PER_VSX_WORD 16
863 #define UNITS_PER_PAIRED_WORD 8
864
865 /* Type used for ptrdiff_t, as a string used in a declaration. */
866 #define PTRDIFF_TYPE "int"
867
868 /* Type used for size_t, as a string used in a declaration. */
869 #define SIZE_TYPE "long unsigned int"
870
871 /* Type used for wchar_t, as a string used in a declaration. */
872 #define WCHAR_TYPE "short unsigned int"
873
874 /* Width of wchar_t in bits. */
875 #define WCHAR_TYPE_SIZE 16
876
877 /* A C expression for the size in bits of the type `short' on the
878 target machine. If you don't define this, the default is half a
879 word. (If this would be less than one storage unit, it is
880 rounded up to one unit.) */
881 #define SHORT_TYPE_SIZE 16
882
883 /* A C expression for the size in bits of the type `int' on the
884 target machine. If you don't define this, the default is one
885 word. */
886 #define INT_TYPE_SIZE 32
887
888 /* A C expression for the size in bits of the type `long' on the
889 target machine. If you don't define this, the default is one
890 word. */
891 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
892
893 /* A C expression for the size in bits of the type `long long' on the
894 target machine. If you don't define this, the default is two
895 words. */
896 #define LONG_LONG_TYPE_SIZE 64
897
898 /* A C expression for the size in bits of the type `float' on the
899 target machine. If you don't define this, the default is one
900 word. */
901 #define FLOAT_TYPE_SIZE 32
902
903 /* A C expression for the size in bits of the type `double' on the
904 target machine. If you don't define this, the default is two
905 words. */
906 #define DOUBLE_TYPE_SIZE 64
907
908 /* A C expression for the size in bits of the type `long double' on
909 the target machine. If you don't define this, the default is two
910 words. */
911 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
912
913 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
914 #define WIDEST_HARDWARE_FP_SIZE 64
915
916 /* Width in bits of a pointer.
917 See also the macro `Pmode' defined below. */
918 extern unsigned rs6000_pointer_size;
919 #define POINTER_SIZE rs6000_pointer_size
920
921 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
922 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
923
924 /* Boundary (in *bits*) on which stack pointer should be aligned. */
925 #define STACK_BOUNDARY \
926 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
927 ? 64 : 128)
928
929 /* Allocation boundary (in *bits*) for the code of a function. */
930 #define FUNCTION_BOUNDARY 32
931
932 /* No data type wants to be aligned rounder than this. */
933 #define BIGGEST_ALIGNMENT 128
934
935 /* Alignment of field after `int : 0' in a structure. */
936 #define EMPTY_FIELD_BOUNDARY 32
937
938 /* Every structure's size must be a multiple of this. */
939 #define STRUCTURE_SIZE_BOUNDARY 8
940
941 /* A bit-field declared as `int' forces `int' alignment for the struct. */
942 #define PCC_BITFIELD_TYPE_MATTERS 1
943
944 enum data_align { align_abi, align_opt, align_both };
945
946 /* A C expression to compute the alignment for a variables in the
947 local store. TYPE is the data type, and ALIGN is the alignment
948 that the object would ordinarily have. */
949 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
950 rs6000_data_alignment (TYPE, ALIGN, align_both)
951
952 /* Make strings word-aligned so strcpy from constants will be faster. */
953 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
954 (TREE_CODE (EXP) == STRING_CST \
955 && (STRICT_ALIGNMENT || !optimize_size) \
956 && (ALIGN) < BITS_PER_WORD \
957 ? BITS_PER_WORD \
958 : (ALIGN))
959
960 /* Make arrays of chars word-aligned for the same reasons. */
961 #define DATA_ALIGNMENT(TYPE, ALIGN) \
962 rs6000_data_alignment (TYPE, ALIGN, align_opt)
963
964 /* Align vectors to 128 bits. */
965 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
966 rs6000_data_alignment (TYPE, ALIGN, align_abi)
967
968 /* Nonzero if move instructions will actually fail to work
969 when given unaligned data. */
970 #define STRICT_ALIGNMENT 0
971
972 /* Define this macro to be the value 1 if unaligned accesses have a cost
973 many times greater than aligned accesses, for example if they are
974 emulated in a trap handler. */
975 /* Altivec vector memory instructions simply ignore the low bits; VSX memory
976 instructions are aligned to 4 or 8 bytes. */
977 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
978 (STRICT_ALIGNMENT \
979 || (!TARGET_EFFICIENT_UNALIGNED_VSX \
980 && ((SCALAR_FLOAT_MODE_NOT_VECTOR_P (MODE) && (ALIGN) < 32) \
981 || ((VECTOR_MODE_P (MODE) || FLOAT128_VECTOR_P (MODE)) \
982 && (int) (ALIGN) < VECTOR_ALIGN (MODE)))))
983
984 \f
985 /* Standard register usage. */
986
987 /* Number of actual hardware registers.
988 The hardware registers are assigned numbers for the compiler
989 from 0 to just below FIRST_PSEUDO_REGISTER.
990 All registers that the compiler knows about must be given numbers,
991 even those that are not normally considered general registers.
992
993 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
994 a count register, a link register, and 8 condition register fields,
995 which we view here as separate registers. AltiVec adds 32 vector
996 registers and a VRsave register.
997
998 In addition, the difference between the frame and argument pointers is
999 a function of the number of registers saved, so we need to have a
1000 register for AP that will later be eliminated in favor of SP or FP.
1001 This is a normal register, but it is fixed.
1002
1003 We also create a pseudo register for float/int conversions, that will
1004 really represent the memory location used. It is represented here as
1005 a register, in order to work around problems in allocating stack storage
1006 in inline functions.
1007
1008 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
1009 pointer, which is eventually eliminated in favor of SP or FP.
1010
1011 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
1012
1013 #define FIRST_PSEUDO_REGISTER 115
1014
1015 /* This must be included for pre gcc 3.0 glibc compatibility. */
1016 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
1017
1018 /* The sfp register and 3 HTM registers
1019 aren't included in DWARF_FRAME_REGISTERS. */
1020 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
1021
1022 /* Use standard DWARF numbering for DWARF debugging information. */
1023 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
1024
1025 /* Use gcc hard register numbering for eh_frame. */
1026 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
1027
1028 /* Map register numbers held in the call frame info that gcc has
1029 collected using DWARF_FRAME_REGNUM to those that should be output in
1030 .debug_frame and .eh_frame. */
1031 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1032 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
1033
1034 /* 1 for registers that have pervasive standard uses
1035 and are not available for the register allocator.
1036
1037 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1038 as a local register; for all other OS's r2 is the TOC pointer.
1039
1040 On System V implementations, r13 is fixed and not available for use. */
1041
1042 #define FIXED_REGISTERS \
1043 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
1044 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1045 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1046 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1047 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
1048 /* AltiVec registers. */ \
1049 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1050 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1051 1, 1 \
1052 , 1, 1, 1, 1 \
1053 }
1054
1055 /* 1 for registers not available across function calls.
1056 These must include the FIXED_REGISTERS and also any
1057 registers that can be used without being saved.
1058 The latter must include the registers where values are returned
1059 and the register where structure-value addresses are passed.
1060 Aside from that, you can include as many other registers as you like. */
1061
1062 #define CALL_USED_REGISTERS \
1063 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1064 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1065 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1066 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1067 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1068 /* AltiVec registers. */ \
1069 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1070 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1071 1, 1 \
1072 , 1, 1, 1, 1 \
1073 }
1074
1075 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1076 the entire set of `FIXED_REGISTERS' be included.
1077 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1078 This macro is optional. If not specified, it defaults to the value
1079 of `CALL_USED_REGISTERS'. */
1080
1081 #define CALL_REALLY_USED_REGISTERS \
1082 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1083 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1084 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1085 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1086 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1087 /* AltiVec registers. */ \
1088 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1089 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1090 0, 0 \
1091 , 0, 0, 0, 0 \
1092 }
1093
1094 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1095
1096 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1097 #define FIRST_SAVED_FP_REGNO (14+32)
1098 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
1099
1100 /* List the order in which to allocate registers. Each register must be
1101 listed once, even those in FIXED_REGISTERS.
1102
1103 We allocate in the following order:
1104 fp0 (not saved or used for anything)
1105 fp13 - fp2 (not saved; incoming fp arg registers)
1106 fp1 (not saved; return value)
1107 fp31 - fp14 (saved; order given to save least number)
1108 cr7, cr5 (not saved or special)
1109 cr6 (not saved, but used for vector operations)
1110 cr1 (not saved, but used for FP operations)
1111 cr0 (not saved, but used for arithmetic operations)
1112 cr4, cr3, cr2 (saved)
1113 r9 (not saved; best for TImode)
1114 r10, r8-r4 (not saved; highest first for less conflict with params)
1115 r3 (not saved; return value register)
1116 r11 (not saved; later alloc to help shrink-wrap)
1117 r0 (not saved; cannot be base reg)
1118 r31 - r13 (saved; order given to save least number)
1119 r12 (not saved; if used for DImode or DFmode would use r13)
1120 ctr (not saved; when we have the choice ctr is better)
1121 lr (saved)
1122 r1, r2, ap, ca (fixed)
1123 v0 - v1 (not saved or used for anything)
1124 v13 - v3 (not saved; incoming vector arg registers)
1125 v2 (not saved; incoming vector arg reg; return value)
1126 v19 - v14 (not saved or used for anything)
1127 v31 - v20 (saved; order given to save least number)
1128 vrsave, vscr (fixed)
1129 sfp (fixed)
1130 tfhar (fixed)
1131 tfiar (fixed)
1132 texasr (fixed)
1133 */
1134
1135 #if FIXED_R2 == 1
1136 #define MAYBE_R2_AVAILABLE
1137 #define MAYBE_R2_FIXED 2,
1138 #else
1139 #define MAYBE_R2_AVAILABLE 2,
1140 #define MAYBE_R2_FIXED
1141 #endif
1142
1143 #if FIXED_R13 == 1
1144 #define EARLY_R12 12,
1145 #define LATE_R12
1146 #else
1147 #define EARLY_R12
1148 #define LATE_R12 12,
1149 #endif
1150
1151 #define REG_ALLOC_ORDER \
1152 {32, \
1153 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1154 /* not use fr14 which is a saved register. */ \
1155 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
1156 33, \
1157 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1158 50, 49, 48, 47, 46, \
1159 75, 73, 74, 69, 68, 72, 71, 70, \
1160 MAYBE_R2_AVAILABLE \
1161 9, 10, 8, 7, 6, 5, 4, \
1162 3, EARLY_R12 11, 0, \
1163 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1164 18, 17, 16, 15, 14, 13, LATE_R12 \
1165 66, 65, \
1166 1, MAYBE_R2_FIXED 67, 76, \
1167 /* AltiVec registers. */ \
1168 77, 78, \
1169 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1170 79, \
1171 96, 95, 94, 93, 92, 91, \
1172 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1173 109, 110, \
1174 111, 112, 113, 114 \
1175 }
1176
1177 /* True if register is floating-point. */
1178 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1179
1180 /* True if register is a condition register. */
1181 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1182
1183 /* True if register is a condition register, but not cr0. */
1184 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1185
1186 /* True if register is an integer register. */
1187 #define INT_REGNO_P(N) \
1188 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1189
1190 /* PAIRED SIMD registers are just the FPRs. */
1191 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1192
1193 /* True if register is the CA register. */
1194 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1195
1196 /* True if register is an AltiVec register. */
1197 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1198
1199 /* True if register is a VSX register. */
1200 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1201
1202 /* Alternate name for any vector register supporting floating point, no matter
1203 which instruction set(s) are available. */
1204 #define VFLOAT_REGNO_P(N) \
1205 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1206
1207 /* Alternate name for any vector register supporting integer, no matter which
1208 instruction set(s) are available. */
1209 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1210
1211 /* Alternate name for any vector register supporting logical operations, no
1212 matter which instruction set(s) are available. Allow GPRs as well as the
1213 vector registers. */
1214 #define VLOGICAL_REGNO_P(N) \
1215 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1216 || (TARGET_VSX && FP_REGNO_P (N))) \
1217
1218 /* Return number of consecutive hard regs needed starting at reg REGNO
1219 to hold something of mode MODE. */
1220
1221 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs[(MODE)][(REGNO)]
1222
1223 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1224 enough space to account for vectors in FP regs. However, TFmode/TDmode
1225 should not use VSX instructions to do a caller save. */
1226 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1227 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1228 ? (MODE) \
1229 : TARGET_VSX \
1230 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1231 && FP_REGNO_P (REGNO) \
1232 ? V2DFmode \
1233 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
1234 ? DFmode \
1235 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
1236 ? DImode \
1237 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1238
1239 #define VSX_VECTOR_MODE(MODE) \
1240 ((MODE) == V4SFmode \
1241 || (MODE) == V2DFmode) \
1242
1243 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1244 really a vector, but we want to treat it as a vector for moves, and
1245 such. */
1246
1247 #define ALTIVEC_VECTOR_MODE(MODE) \
1248 ((MODE) == V16QImode \
1249 || (MODE) == V8HImode \
1250 || (MODE) == V4SFmode \
1251 || (MODE) == V4SImode \
1252 || FLOAT128_VECTOR_P (MODE))
1253
1254 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1255 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1256 || (MODE) == V2DImode || (MODE) == V1TImode)
1257
1258 #define PAIRED_VECTOR_MODE(MODE) \
1259 ((MODE) == V2SFmode)
1260
1261 /* Value is TRUE if hard register REGNO can hold a value of
1262 machine-mode MODE. */
1263 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
1264 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
1265
1266 /* Value is 1 if it is a good idea to tie two pseudo registers
1267 when one has mode MODE1 and one has mode MODE2.
1268 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
1269 for any hard reg, then this must be 0 for correct output.
1270
1271 PTImode cannot tie with other modes because PTImode is restricted to even
1272 GPR registers, and TImode can go in any GPR as well as VSX registers (PR
1273 57744).
1274
1275 Altivec/VSX vector tests were moved ahead of scalar float mode, so that IEEE
1276 128-bit floating point on VSX systems ties with other vectors. */
1277 #define MODES_TIEABLE_P(MODE1, MODE2) \
1278 ((MODE1) == PTImode \
1279 ? (MODE2) == PTImode \
1280 : (MODE2) == PTImode \
1281 ? 0 \
1282 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE1) \
1283 ? ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1284 : ALTIVEC_OR_VSX_VECTOR_MODE (MODE2) \
1285 ? 0 \
1286 : SCALAR_FLOAT_MODE_P (MODE1) \
1287 ? SCALAR_FLOAT_MODE_P (MODE2) \
1288 : SCALAR_FLOAT_MODE_P (MODE2) \
1289 ? 0 \
1290 : GET_MODE_CLASS (MODE1) == MODE_CC \
1291 ? GET_MODE_CLASS (MODE2) == MODE_CC \
1292 : GET_MODE_CLASS (MODE2) == MODE_CC \
1293 ? 0 \
1294 : PAIRED_VECTOR_MODE (MODE1) \
1295 ? PAIRED_VECTOR_MODE (MODE2) \
1296 : PAIRED_VECTOR_MODE (MODE2) \
1297 ? 0 \
1298 : 1)
1299
1300 /* Post-reload, we can't use any new AltiVec registers, as we already
1301 emitted the vrsave mask. */
1302
1303 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1304 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1305
1306 /* Specify the cost of a branch insn; roughly the number of extra insns that
1307 should be added to avoid a branch.
1308
1309 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1310 unscheduled conditional branch. */
1311
1312 #define BRANCH_COST(speed_p, predictable_p) 3
1313
1314 /* Override BRANCH_COST heuristic which empirically produces worse
1315 performance for removing short circuiting from the logical ops. */
1316
1317 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1318
1319 /* Specify the registers used for certain standard purposes.
1320 The values of these macros are register numbers. */
1321
1322 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1323 /* #define PC_REGNUM */
1324
1325 /* Register to use for pushing function arguments. */
1326 #define STACK_POINTER_REGNUM 1
1327
1328 /* Base register for access to local variables of the function. */
1329 #define HARD_FRAME_POINTER_REGNUM 31
1330
1331 /* Base register for access to local variables of the function. */
1332 #define FRAME_POINTER_REGNUM 111
1333
1334 /* Base register for access to arguments of the function. */
1335 #define ARG_POINTER_REGNUM 67
1336
1337 /* Place to put static chain when calling a function that requires it. */
1338 #define STATIC_CHAIN_REGNUM 11
1339
1340 /* Base register for access to thread local storage variables. */
1341 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1342
1343 \f
1344 /* Define the classes of registers for register constraints in the
1345 machine description. Also define ranges of constants.
1346
1347 One of the classes must always be named ALL_REGS and include all hard regs.
1348 If there is more than one class, another class must be named NO_REGS
1349 and contain no registers.
1350
1351 The name GENERAL_REGS must be the name of a class (or an alias for
1352 another name such as ALL_REGS). This is the class of registers
1353 that is allowed by "g" or "r" in a register constraint.
1354 Also, registers outside this class are allocated only when
1355 instructions express preferences for them.
1356
1357 The classes must be numbered in nondecreasing order; that is,
1358 a larger-numbered class must never be contained completely
1359 in a smaller-numbered class.
1360
1361 For any two classes, it is very desirable that there be another
1362 class that represents their union. */
1363
1364 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1365 condition registers, plus three special registers, CTR, and the link
1366 register. AltiVec adds a vector register class. VSX registers overlap the
1367 FPR registers and the Altivec registers.
1368
1369 However, r0 is special in that it cannot be used as a base register.
1370 So make a class for registers valid as base registers.
1371
1372 Also, cr0 is the only condition code register that can be used in
1373 arithmetic insns, so make a separate class for it. */
1374
1375 enum reg_class
1376 {
1377 NO_REGS,
1378 BASE_REGS,
1379 GENERAL_REGS,
1380 FLOAT_REGS,
1381 ALTIVEC_REGS,
1382 VSX_REGS,
1383 VRSAVE_REGS,
1384 VSCR_REGS,
1385 SPR_REGS,
1386 NON_SPECIAL_REGS,
1387 LINK_REGS,
1388 CTR_REGS,
1389 LINK_OR_CTR_REGS,
1390 SPECIAL_REGS,
1391 SPEC_OR_GEN_REGS,
1392 CR0_REGS,
1393 CR_REGS,
1394 NON_FLOAT_REGS,
1395 CA_REGS,
1396 ALL_REGS,
1397 LIM_REG_CLASSES
1398 };
1399
1400 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1401
1402 /* Give names of register classes as strings for dump file. */
1403
1404 #define REG_CLASS_NAMES \
1405 { \
1406 "NO_REGS", \
1407 "BASE_REGS", \
1408 "GENERAL_REGS", \
1409 "FLOAT_REGS", \
1410 "ALTIVEC_REGS", \
1411 "VSX_REGS", \
1412 "VRSAVE_REGS", \
1413 "VSCR_REGS", \
1414 "SPR_REGS", \
1415 "NON_SPECIAL_REGS", \
1416 "LINK_REGS", \
1417 "CTR_REGS", \
1418 "LINK_OR_CTR_REGS", \
1419 "SPECIAL_REGS", \
1420 "SPEC_OR_GEN_REGS", \
1421 "CR0_REGS", \
1422 "CR_REGS", \
1423 "NON_FLOAT_REGS", \
1424 "CA_REGS", \
1425 "ALL_REGS" \
1426 }
1427
1428 /* Define which registers fit in which classes.
1429 This is an initializer for a vector of HARD_REG_SET
1430 of length N_REG_CLASSES. */
1431
1432 #define REG_CLASS_CONTENTS \
1433 { \
1434 /* NO_REGS. */ \
1435 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1436 /* BASE_REGS. */ \
1437 { 0xfffffffe, 0x00000000, 0x00000008, 0x00008000 }, \
1438 /* GENERAL_REGS. */ \
1439 { 0xffffffff, 0x00000000, 0x00000008, 0x00008000 }, \
1440 /* FLOAT_REGS. */ \
1441 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
1442 /* ALTIVEC_REGS. */ \
1443 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, \
1444 /* VSX_REGS. */ \
1445 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, \
1446 /* VRSAVE_REGS. */ \
1447 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
1448 /* VSCR_REGS. */ \
1449 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, \
1450 /* SPR_REGS. */ \
1451 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, \
1452 /* NON_SPECIAL_REGS. */ \
1453 { 0xffffffff, 0xffffffff, 0x00000008, 0x00008000 }, \
1454 /* LINK_REGS. */ \
1455 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, \
1456 /* CTR_REGS. */ \
1457 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, \
1458 /* LINK_OR_CTR_REGS. */ \
1459 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, \
1460 /* SPECIAL_REGS. */ \
1461 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, \
1462 /* SPEC_OR_GEN_REGS. */ \
1463 { 0xffffffff, 0x00000000, 0x0000000e, 0x0000a000 }, \
1464 /* CR0_REGS. */ \
1465 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, \
1466 /* CR_REGS. */ \
1467 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, \
1468 /* NON_FLOAT_REGS. */ \
1469 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00008000 }, \
1470 /* CA_REGS. */ \
1471 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, \
1472 /* ALL_REGS. */ \
1473 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0001ffff } \
1474 }
1475
1476 /* The same information, inverted:
1477 Return the class number of the smallest class containing
1478 reg number REGNO. This could be a conditional expression
1479 or could index an array. */
1480
1481 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1482
1483 #define REGNO_REG_CLASS(REGNO) \
1484 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1485 rs6000_regno_regclass[(REGNO)])
1486
1487 /* Register classes for various constraints that are based on the target
1488 switches. */
1489 enum r6000_reg_class_enum {
1490 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1491 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1492 RS6000_CONSTRAINT_v, /* Altivec registers */
1493 RS6000_CONSTRAINT_wa, /* Any VSX register */
1494 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
1495 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1496 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1497 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1498 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
1499 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1500 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1501 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1502 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
1503 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
1504 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1505 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
1506 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1507 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
1508 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1509 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1510 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
1511 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1512 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1513 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
1514 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1515 RS6000_CONSTRAINT_wy, /* VSX register for SF */
1516 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
1517 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1518 RS6000_CONSTRAINT_wH, /* Altivec register for 32-bit integers. */
1519 RS6000_CONSTRAINT_wI, /* VSX register for 32-bit integers. */
1520 RS6000_CONSTRAINT_wJ, /* VSX register for 8/16-bit integers. */
1521 RS6000_CONSTRAINT_wK, /* Altivec register for 16/32-bit integers. */
1522 RS6000_CONSTRAINT_MAX
1523 };
1524
1525 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1526
1527 /* The class value for index registers, and the one for base regs. */
1528 #define INDEX_REG_CLASS GENERAL_REGS
1529 #define BASE_REG_CLASS BASE_REGS
1530
1531 /* Return whether a given register class can hold VSX objects. */
1532 #define VSX_REG_CLASS_P(CLASS) \
1533 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1534
1535 /* Return whether a given register class targets general purpose registers. */
1536 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1537
1538 /* Given an rtx X being reloaded into a reg required to be
1539 in class CLASS, return the class of reg to actually use.
1540 In general this is just CLASS; but on some machines
1541 in some cases it is preferable to use a more restrictive class.
1542
1543 On the RS/6000, we have to return NO_REGS when we want to reload a
1544 floating-point CONST_DOUBLE to force it to be copied to memory.
1545
1546 We also don't want to reload integer values into floating-point
1547 registers if we can at all help it. In fact, this can
1548 cause reload to die, if it tries to generate a reload of CTR
1549 into a FP register and discovers it doesn't have the memory location
1550 required.
1551
1552 ??? Would it be a good idea to have reload do the converse, that is
1553 try to reload floating modes into FP registers if possible?
1554 */
1555
1556 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1557 rs6000_preferred_reload_class_ptr (X, CLASS)
1558
1559 /* Return the register class of a scratch register needed to copy IN into
1560 or out of a register in CLASS in MODE. If it can be done directly,
1561 NO_REGS is returned. */
1562
1563 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1564 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1565
1566 /* If we are copying between FP or AltiVec registers and anything
1567 else, we need a memory location. The exception is when we are
1568 targeting ppc64 and the move to/from fpr to gpr instructions
1569 are available.*/
1570
1571 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1572 rs6000_secondary_memory_needed_ptr (CLASS1, CLASS2, MODE)
1573
1574 /* Specify the mode to be used for memory when a secondary memory
1575 location is needed. For cpus that cannot load/store SDmode values
1576 from the 64-bit FP registers without using a full 64-bit
1577 load/store, we need a wider mode. */
1578 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
1579 rs6000_secondary_memory_needed_mode (MODE)
1580
1581 /* Return the maximum number of consecutive registers
1582 needed to represent mode MODE in a register of class CLASS.
1583
1584 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1585 a single reg is enough for two words, unless we have VSX, where the FP
1586 registers can hold 128 bits. */
1587 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1588
1589 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1590
1591 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1592 rs6000_cannot_change_mode_class_ptr (FROM, TO, CLASS)
1593
1594 /* Stack layout; function entry, exit and calling. */
1595
1596 /* Define this if pushing a word on the stack
1597 makes the stack pointer a smaller address. */
1598 #define STACK_GROWS_DOWNWARD 1
1599
1600 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1601 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1602
1603 /* Define this to nonzero if the nominal address of the stack frame
1604 is at the high-address end of the local variables;
1605 that is, each additional local variable allocated
1606 goes at a more negative offset in the frame.
1607
1608 On the RS/6000, we grow upwards, from the area after the outgoing
1609 arguments. */
1610 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1611 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1612
1613 /* Size of the fixed area on the stack */
1614 #define RS6000_SAVE_AREA \
1615 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1616 << (TARGET_64BIT ? 1 : 0))
1617
1618 /* Stack offset for toc save slot. */
1619 #define RS6000_TOC_SAVE_SLOT \
1620 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1621
1622 /* Align an address */
1623 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1624
1625 /* Offset within stack frame to start allocating local variables at.
1626 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1627 first local allocated. Otherwise, it is the offset to the BEGINNING
1628 of the first local allocated.
1629
1630 On the RS/6000, the frame pointer is the same as the stack pointer,
1631 except for dynamic allocations. So we start after the fixed area and
1632 outgoing parameter area.
1633
1634 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1635 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1636 sizes of the fixed area and the parameter area must be a multiple of
1637 STACK_BOUNDARY. */
1638
1639 #define STARTING_FRAME_OFFSET \
1640 (FRAME_GROWS_DOWNWARD \
1641 ? 0 \
1642 : (cfun->calls_alloca \
1643 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1644 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1645 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1646 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1647 + RS6000_SAVE_AREA)))
1648
1649 /* Offset from the stack pointer register to an item dynamically
1650 allocated on the stack, e.g., by `alloca'.
1651
1652 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1653 length of the outgoing arguments. The default is correct for most
1654 machines. See `function.c' for details.
1655
1656 This value must be a multiple of STACK_BOUNDARY (hard coded in
1657 `emit-rtl.c'). */
1658 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1659 RS6000_ALIGN (crtl->outgoing_args_size + STACK_POINTER_OFFSET, \
1660 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1661
1662 /* If we generate an insn to push BYTES bytes,
1663 this says how many the stack pointer really advances by.
1664 On RS/6000, don't define this because there are no push insns. */
1665 /* #define PUSH_ROUNDING(BYTES) */
1666
1667 /* Offset of first parameter from the argument pointer register value.
1668 On the RS/6000, we define the argument pointer to the start of the fixed
1669 area. */
1670 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1671
1672 /* Offset from the argument pointer register value to the top of
1673 stack. This is different from FIRST_PARM_OFFSET because of the
1674 register save area. */
1675 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1676
1677 /* Define this if stack space is still allocated for a parameter passed
1678 in a register. The value is the number of bytes allocated to this
1679 area. */
1680 #define REG_PARM_STACK_SPACE(FNDECL) \
1681 rs6000_reg_parm_stack_space ((FNDECL), false)
1682
1683 /* Define this macro if space guaranteed when compiling a function body
1684 is different to space required when making a call, a situation that
1685 can arise with K&R style function definitions. */
1686 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1687 rs6000_reg_parm_stack_space ((FNDECL), true)
1688
1689 /* Define this if the above stack space is to be considered part of the
1690 space allocated by the caller. */
1691 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1692
1693 /* This is the difference between the logical top of stack and the actual sp.
1694
1695 For the RS/6000, sp points past the fixed area. */
1696 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1697
1698 /* Define this if the maximum size of all the outgoing args is to be
1699 accumulated and pushed during the prologue. The amount can be
1700 found in the variable crtl->outgoing_args_size. */
1701 #define ACCUMULATE_OUTGOING_ARGS 1
1702
1703 /* Define how to find the value returned by a library function
1704 assuming the value has mode MODE. */
1705
1706 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1707
1708 /* DRAFT_V4_STRUCT_RET defaults off. */
1709 #define DRAFT_V4_STRUCT_RET 0
1710
1711 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1712 #define DEFAULT_PCC_STRUCT_RETURN 0
1713
1714 /* Mode of stack savearea.
1715 FUNCTION is VOIDmode because calling convention maintains SP.
1716 BLOCK needs Pmode for SP.
1717 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1718 #define STACK_SAVEAREA_MODE(LEVEL) \
1719 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1720 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1721
1722 /* Minimum and maximum general purpose registers used to hold arguments. */
1723 #define GP_ARG_MIN_REG 3
1724 #define GP_ARG_MAX_REG 10
1725 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1726
1727 /* Minimum and maximum floating point registers used to hold arguments. */
1728 #define FP_ARG_MIN_REG 33
1729 #define FP_ARG_AIX_MAX_REG 45
1730 #define FP_ARG_V4_MAX_REG 40
1731 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1732 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1733 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1734
1735 /* Minimum and maximum AltiVec registers used to hold arguments. */
1736 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1737 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1738 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1739
1740 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1741 #define AGGR_ARG_NUM_REG 8
1742
1743 /* Return registers */
1744 #define GP_ARG_RETURN GP_ARG_MIN_REG
1745 #define FP_ARG_RETURN FP_ARG_MIN_REG
1746 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1747 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1748 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1749 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1750 ? (ALTIVEC_ARG_RETURN \
1751 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1752 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1753
1754 /* Flags for the call/call_value rtl operations set up by function_arg */
1755 #define CALL_NORMAL 0x00000000 /* no special processing */
1756 /* Bits in 0x00000001 are unused. */
1757 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1758 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1759 #define CALL_LONG 0x00000008 /* always call indirect */
1760 #define CALL_LIBCALL 0x00000010 /* libcall */
1761
1762 /* We don't have prologue and epilogue functions to save/restore
1763 everything for most ABIs. */
1764 #define WORLD_SAVE_P(INFO) 0
1765
1766 /* 1 if N is a possible register number for a function value
1767 as seen by the caller.
1768
1769 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1770 #define FUNCTION_VALUE_REGNO_P(N) \
1771 ((N) == GP_ARG_RETURN \
1772 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1773 && TARGET_HARD_FLOAT) \
1774 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1775 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1776
1777 /* 1 if N is a possible register number for function argument passing.
1778 On RS/6000, these are r3-r10 and fp1-fp13.
1779 On AltiVec, v2 - v13 are used for passing vectors. */
1780 #define FUNCTION_ARG_REGNO_P(N) \
1781 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1782 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1783 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1784 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1785 && TARGET_HARD_FLOAT))
1786 \f
1787 /* Define a data type for recording info about an argument list
1788 during the scan of that argument list. This data type should
1789 hold all necessary information about the function itself
1790 and about the args processed so far, enough to enable macros
1791 such as FUNCTION_ARG to determine where the next arg should go.
1792
1793 On the RS/6000, this is a structure. The first element is the number of
1794 total argument words, the second is used to store the next
1795 floating-point register number, and the third says how many more args we
1796 have prototype types for.
1797
1798 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1799 the next available GP register, `fregno' is the next available FP
1800 register, and `words' is the number of words used on the stack.
1801
1802 The varargs/stdarg support requires that this structure's size
1803 be a multiple of sizeof(int). */
1804
1805 typedef struct rs6000_args
1806 {
1807 int words; /* # words used for passing GP registers */
1808 int fregno; /* next available FP register */
1809 int vregno; /* next available AltiVec register */
1810 int nargs_prototype; /* # args left in the current prototype */
1811 int prototype; /* Whether a prototype was defined */
1812 int stdarg; /* Whether function is a stdarg function. */
1813 int call_cookie; /* Do special things for this call */
1814 int sysv_gregno; /* next available GP register */
1815 int intoffset; /* running offset in struct (darwin64) */
1816 int use_stack; /* any part of struct on stack (darwin64) */
1817 int floats_in_gpr; /* count of SFmode floats taking up
1818 GPR space (darwin64) */
1819 int named; /* false for varargs params */
1820 int escapes; /* if function visible outside tu */
1821 int libcall; /* If this is a compiler generated call. */
1822 } CUMULATIVE_ARGS;
1823
1824 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1825 for a call to a function whose data type is FNTYPE.
1826 For a library call, FNTYPE is 0. */
1827
1828 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1829 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1830 N_NAMED_ARGS, FNDECL, VOIDmode)
1831
1832 /* Similar, but when scanning the definition of a procedure. We always
1833 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1834
1835 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1836 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1837 1000, current_function_decl, VOIDmode)
1838
1839 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1840
1841 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1842 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1843 0, NULL_TREE, MODE)
1844
1845 /* If defined, a C expression which determines whether, and in which
1846 direction, to pad out an argument with extra space. The value
1847 should be of type `enum direction': either `upward' to pad above
1848 the argument, `downward' to pad below, or `none' to inhibit
1849 padding. */
1850
1851 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1852
1853 #define PAD_VARARGS_DOWN \
1854 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1855
1856 /* Output assembler code to FILE to increment profiler label # LABELNO
1857 for profiling a function entry. */
1858
1859 #define FUNCTION_PROFILER(FILE, LABELNO) \
1860 output_function_profiler ((FILE), (LABELNO));
1861
1862 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1863 the stack pointer does not matter. No definition is equivalent to
1864 always zero.
1865
1866 On the RS/6000, this is nonzero because we can restore the stack from
1867 its backpointer, which we maintain. */
1868 #define EXIT_IGNORE_STACK 1
1869
1870 /* Define this macro as a C expression that is nonzero for registers
1871 that are used by the epilogue or the return' pattern. The stack
1872 and frame pointer registers are already be assumed to be used as
1873 needed. */
1874
1875 #define EPILOGUE_USES(REGNO) \
1876 ((reload_completed && (REGNO) == LR_REGNO) \
1877 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1878 || (crtl->calls_eh_return \
1879 && TARGET_AIX \
1880 && (REGNO) == 2))
1881
1882 \f
1883 /* Length in units of the trampoline for entering a nested function. */
1884
1885 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1886 \f
1887 /* Definitions for __builtin_return_address and __builtin_frame_address.
1888 __builtin_return_address (0) should give link register (LR_REGNO), enable
1889 this. */
1890 /* This should be uncommented, so that the link register is used, but
1891 currently this would result in unmatched insns and spilling fixed
1892 registers so we'll leave it for another day. When these problems are
1893 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1894 (mrs) */
1895 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1896
1897 /* Number of bytes into the frame return addresses can be found. See
1898 rs6000_stack_info in rs6000.c for more information on how the different
1899 abi's store the return address. */
1900 #define RETURN_ADDRESS_OFFSET \
1901 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1902
1903 /* The current return address is in link register (65). The return address
1904 of anything farther back is accessed normally at an offset of 8 from the
1905 frame pointer. */
1906 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1907 (rs6000_return_addr (COUNT, FRAME))
1908
1909 \f
1910 /* Definitions for register eliminations.
1911
1912 We have two registers that can be eliminated on the RS/6000. First, the
1913 frame pointer register can often be eliminated in favor of the stack
1914 pointer register. Secondly, the argument pointer register can always be
1915 eliminated; it is replaced with either the stack or frame pointer.
1916
1917 In addition, we use the elimination mechanism to see if r30 is needed
1918 Initially we assume that it isn't. If it is, we spill it. This is done
1919 by making it an eliminable register. We replace it with itself so that
1920 if it isn't needed, then existing uses won't be modified. */
1921
1922 /* This is an array of structures. Each structure initializes one pair
1923 of eliminable registers. The "from" register number is given first,
1924 followed by "to". Eliminations of the same "from" register are listed
1925 in order of preference. */
1926 #define ELIMINABLE_REGS \
1927 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1928 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1929 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1930 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1931 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1932 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1933
1934 /* Define the offset between two registers, one to be eliminated, and the other
1935 its replacement, at the start of a routine. */
1936 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1937 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1938 \f
1939 /* Addressing modes, and classification of registers for them. */
1940
1941 #define HAVE_PRE_DECREMENT 1
1942 #define HAVE_PRE_INCREMENT 1
1943 #define HAVE_PRE_MODIFY_DISP 1
1944 #define HAVE_PRE_MODIFY_REG 1
1945
1946 /* Macros to check register numbers against specific register classes. */
1947
1948 /* These assume that REGNO is a hard or pseudo reg number.
1949 They give nonzero only if REGNO is a hard reg of the suitable class
1950 or a pseudo reg currently allocated to a suitable hard reg.
1951 Since they use reg_renumber, they are safe only once reg_renumber
1952 has been allocated, which happens in reginfo.c during register
1953 allocation. */
1954
1955 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1956 ((REGNO) < FIRST_PSEUDO_REGISTER \
1957 ? (REGNO) <= 31 || (REGNO) == 67 \
1958 || (REGNO) == FRAME_POINTER_REGNUM \
1959 : (reg_renumber[REGNO] >= 0 \
1960 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1961 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1962
1963 #define REGNO_OK_FOR_BASE_P(REGNO) \
1964 ((REGNO) < FIRST_PSEUDO_REGISTER \
1965 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1966 || (REGNO) == FRAME_POINTER_REGNUM \
1967 : (reg_renumber[REGNO] > 0 \
1968 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1969 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1970
1971 /* Nonzero if X is a hard reg that can be used as an index
1972 or if it is a pseudo reg in the non-strict case. */
1973 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1974 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1975 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1976
1977 /* Nonzero if X is a hard reg that can be used as a base reg
1978 or if it is a pseudo reg in the non-strict case. */
1979 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1980 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1981 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1982
1983 \f
1984 /* Maximum number of registers that can appear in a valid memory address. */
1985
1986 #define MAX_REGS_PER_ADDRESS 2
1987
1988 /* Recognize any constant value that is a valid address. */
1989
1990 #define CONSTANT_ADDRESS_P(X) \
1991 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1992 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1993 || GET_CODE (X) == HIGH)
1994
1995 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1996 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1997 && EASY_VECTOR_15((n) >> 1) \
1998 && ((n) & 1) == 0)
1999
2000 #define EASY_VECTOR_MSB(n,mode) \
2001 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
2002 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
2003
2004 \f
2005 /* Try a machine-dependent way of reloading an illegitimate address
2006 operand. If we find one, push the reload and jump to WIN. This
2007 macro is used in only one place: `find_reloads_address' in reload.c.
2008
2009 Implemented on rs6000 by rs6000_legitimize_reload_address.
2010 Note that (X) is evaluated twice; this is safe in current usage. */
2011
2012 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
2013 do { \
2014 int win; \
2015 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
2016 (int)(TYPE), (IND_LEVELS), &win); \
2017 if ( win ) \
2018 goto WIN; \
2019 } while (0)
2020
2021 #define FIND_BASE_TERM rs6000_find_base_term
2022 \f
2023 /* The register number of the register used to address a table of
2024 static data addresses in memory. In some cases this register is
2025 defined by a processor's "application binary interface" (ABI).
2026 When this macro is defined, RTL is generated for this register
2027 once, as with the stack pointer and frame pointer registers. If
2028 this macro is not defined, it is up to the machine-dependent files
2029 to allocate such a register (if necessary). */
2030
2031 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
2032 #define PIC_OFFSET_TABLE_REGNUM \
2033 (TARGET_TOC ? TOC_REGISTER \
2034 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
2035 : INVALID_REGNUM)
2036
2037 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
2038
2039 /* Define this macro if the register defined by
2040 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
2041 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
2042
2043 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
2044
2045 /* A C expression that is nonzero if X is a legitimate immediate
2046 operand on the target machine when generating position independent
2047 code. You can assume that X satisfies `CONSTANT_P', so you need
2048 not check this. You can also assume FLAG_PIC is true, so you need
2049 not check it either. You need not define this macro if all
2050 constants (including `SYMBOL_REF') can be immediate operands when
2051 generating position independent code. */
2052
2053 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
2054 \f
2055 /* Specify the machine mode that this machine uses
2056 for the index in the tablejump instruction. */
2057 #define CASE_VECTOR_MODE SImode
2058
2059 /* Define as C expression which evaluates to nonzero if the tablejump
2060 instruction expects the table to contain offsets from the address of the
2061 table.
2062 Do not define this if the table should contain absolute addresses. */
2063 #define CASE_VECTOR_PC_RELATIVE 1
2064
2065 /* Define this as 1 if `char' should by default be signed; else as 0. */
2066 #define DEFAULT_SIGNED_CHAR 0
2067
2068 /* An integer expression for the size in bits of the largest integer machine
2069 mode that should actually be used. */
2070
2071 /* Allow pairs of registers to be used, which is the intent of the default. */
2072 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
2073
2074 /* Max number of bytes we can move from memory to memory
2075 in one reasonably fast instruction. */
2076 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
2077 #define MAX_MOVE_MAX 8
2078
2079 /* Nonzero if access to memory by bytes is no faster than for words.
2080 Also nonzero if doing byte operations (specifically shifts) in registers
2081 is undesirable. */
2082 #define SLOW_BYTE_ACCESS 1
2083
2084 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
2085 will either zero-extend or sign-extend. The value of this macro should
2086 be the code that says which one of the two operations is implicitly
2087 done, UNKNOWN if none. */
2088 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
2089
2090 /* Define if loading short immediate values into registers sign extends. */
2091 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
2092 \f
2093 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
2094 is done just by pretending it is already truncated. */
2095 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2096
2097 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
2098 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2099 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
2100
2101 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
2102 zero. The hardware instructions added in Power9 and the sequences using
2103 popcount return 32 or 64. */
2104 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2105 (TARGET_CTZ || TARGET_POPCNTD \
2106 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
2107 : ((VALUE) = -1, 2))
2108
2109 /* Specify the machine mode that pointers have.
2110 After generation of rtl, the compiler makes no further distinction
2111 between pointers and any other objects of this machine mode. */
2112 extern scalar_int_mode rs6000_pmode;
2113 #define Pmode rs6000_pmode
2114
2115 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2116 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2117
2118 /* Mode of a function address in a call instruction (for indexing purposes).
2119 Doesn't matter on RS/6000. */
2120 #define FUNCTION_MODE SImode
2121
2122 /* Define this if addresses of constant functions
2123 shouldn't be put through pseudo regs where they can be cse'd.
2124 Desirable on machines where ordinary constants are expensive
2125 but a CALL with constant address is cheap. */
2126 #define NO_FUNCTION_CSE 1
2127
2128 /* Define this to be nonzero if shift instructions ignore all but the low-order
2129 few bits.
2130
2131 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2132 have been dropped from the PowerPC architecture. */
2133 #define SHIFT_COUNT_TRUNCATED 0
2134
2135 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2136 should be adjusted to reflect any required changes. This macro is used when
2137 there is some systematic length adjustment required that would be difficult
2138 to express in the length attribute. */
2139
2140 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2141
2142 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2143 COMPARE, return the mode to be used for the comparison. For
2144 floating-point, CCFPmode should be used. CCUNSmode should be used
2145 for unsigned comparisons. CCEQmode should be used when we are
2146 doing an inequality comparison on the result of a
2147 comparison. CCmode should be used in all other cases. */
2148
2149 #define SELECT_CC_MODE(OP,X,Y) \
2150 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2151 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2152 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2153 ? CCEQmode : CCmode))
2154
2155 /* Can the condition code MODE be safely reversed? This is safe in
2156 all cases on this port, because at present it doesn't use the
2157 trapping FP comparisons (fcmpo). */
2158 #define REVERSIBLE_CC_MODE(MODE) 1
2159
2160 /* Given a condition code and a mode, return the inverse condition. */
2161 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2162
2163 \f
2164 /* Control the assembler format that we output. */
2165
2166 /* A C string constant describing how to begin a comment in the target
2167 assembler language. The compiler assumes that the comment will end at
2168 the end of the line. */
2169 #define ASM_COMMENT_START " #"
2170
2171 /* Flag to say the TOC is initialized */
2172 extern int toc_initialized;
2173
2174 /* Macro to output a special constant pool entry. Go to WIN if we output
2175 it. Otherwise, it is written the usual way.
2176
2177 On the RS/6000, toc entries are handled this way. */
2178
2179 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2180 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2181 { \
2182 output_toc (FILE, X, LABELNO, MODE); \
2183 goto WIN; \
2184 } \
2185 }
2186
2187 #ifdef HAVE_GAS_WEAK
2188 #define RS6000_WEAK 1
2189 #else
2190 #define RS6000_WEAK 0
2191 #endif
2192
2193 #if RS6000_WEAK
2194 /* Used in lieu of ASM_WEAKEN_LABEL. */
2195 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2196 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
2197 #endif
2198
2199 #if HAVE_GAS_WEAKREF
2200 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2201 do \
2202 { \
2203 fputs ("\t.weakref\t", (FILE)); \
2204 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2205 fputs (", ", (FILE)); \
2206 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2207 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2208 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2209 { \
2210 fputs ("\n\t.weakref\t.", (FILE)); \
2211 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2212 fputs (", .", (FILE)); \
2213 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2214 } \
2215 fputc ('\n', (FILE)); \
2216 } while (0)
2217 #endif
2218
2219 /* This implements the `alias' attribute. */
2220 #undef ASM_OUTPUT_DEF_FROM_DECLS
2221 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2222 do \
2223 { \
2224 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2225 const char *name = IDENTIFIER_POINTER (TARGET); \
2226 if (TREE_CODE (DECL) == FUNCTION_DECL \
2227 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2228 { \
2229 if (TREE_PUBLIC (DECL)) \
2230 { \
2231 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2232 { \
2233 fputs ("\t.globl\t.", FILE); \
2234 RS6000_OUTPUT_BASENAME (FILE, alias); \
2235 putc ('\n', FILE); \
2236 } \
2237 } \
2238 else if (TARGET_XCOFF) \
2239 { \
2240 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2241 { \
2242 fputs ("\t.lglobl\t.", FILE); \
2243 RS6000_OUTPUT_BASENAME (FILE, alias); \
2244 putc ('\n', FILE); \
2245 fputs ("\t.lglobl\t", FILE); \
2246 RS6000_OUTPUT_BASENAME (FILE, alias); \
2247 putc ('\n', FILE); \
2248 } \
2249 } \
2250 fputs ("\t.set\t.", FILE); \
2251 RS6000_OUTPUT_BASENAME (FILE, alias); \
2252 fputs (",.", FILE); \
2253 RS6000_OUTPUT_BASENAME (FILE, name); \
2254 fputc ('\n', FILE); \
2255 } \
2256 ASM_OUTPUT_DEF (FILE, alias, name); \
2257 } \
2258 while (0)
2259
2260 #define TARGET_ASM_FILE_START rs6000_file_start
2261
2262 /* Output to assembler file text saying following lines
2263 may contain character constants, extra white space, comments, etc. */
2264
2265 #define ASM_APP_ON ""
2266
2267 /* Output to assembler file text saying following lines
2268 no longer contain unusual constructs. */
2269
2270 #define ASM_APP_OFF ""
2271
2272 /* How to refer to registers in assembler output.
2273 This sequence is indexed by compiler's hard-register-number (see above). */
2274
2275 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2276
2277 #define REGISTER_NAMES \
2278 { \
2279 &rs6000_reg_names[ 0][0], /* r0 */ \
2280 &rs6000_reg_names[ 1][0], /* r1 */ \
2281 &rs6000_reg_names[ 2][0], /* r2 */ \
2282 &rs6000_reg_names[ 3][0], /* r3 */ \
2283 &rs6000_reg_names[ 4][0], /* r4 */ \
2284 &rs6000_reg_names[ 5][0], /* r5 */ \
2285 &rs6000_reg_names[ 6][0], /* r6 */ \
2286 &rs6000_reg_names[ 7][0], /* r7 */ \
2287 &rs6000_reg_names[ 8][0], /* r8 */ \
2288 &rs6000_reg_names[ 9][0], /* r9 */ \
2289 &rs6000_reg_names[10][0], /* r10 */ \
2290 &rs6000_reg_names[11][0], /* r11 */ \
2291 &rs6000_reg_names[12][0], /* r12 */ \
2292 &rs6000_reg_names[13][0], /* r13 */ \
2293 &rs6000_reg_names[14][0], /* r14 */ \
2294 &rs6000_reg_names[15][0], /* r15 */ \
2295 &rs6000_reg_names[16][0], /* r16 */ \
2296 &rs6000_reg_names[17][0], /* r17 */ \
2297 &rs6000_reg_names[18][0], /* r18 */ \
2298 &rs6000_reg_names[19][0], /* r19 */ \
2299 &rs6000_reg_names[20][0], /* r20 */ \
2300 &rs6000_reg_names[21][0], /* r21 */ \
2301 &rs6000_reg_names[22][0], /* r22 */ \
2302 &rs6000_reg_names[23][0], /* r23 */ \
2303 &rs6000_reg_names[24][0], /* r24 */ \
2304 &rs6000_reg_names[25][0], /* r25 */ \
2305 &rs6000_reg_names[26][0], /* r26 */ \
2306 &rs6000_reg_names[27][0], /* r27 */ \
2307 &rs6000_reg_names[28][0], /* r28 */ \
2308 &rs6000_reg_names[29][0], /* r29 */ \
2309 &rs6000_reg_names[30][0], /* r30 */ \
2310 &rs6000_reg_names[31][0], /* r31 */ \
2311 \
2312 &rs6000_reg_names[32][0], /* fr0 */ \
2313 &rs6000_reg_names[33][0], /* fr1 */ \
2314 &rs6000_reg_names[34][0], /* fr2 */ \
2315 &rs6000_reg_names[35][0], /* fr3 */ \
2316 &rs6000_reg_names[36][0], /* fr4 */ \
2317 &rs6000_reg_names[37][0], /* fr5 */ \
2318 &rs6000_reg_names[38][0], /* fr6 */ \
2319 &rs6000_reg_names[39][0], /* fr7 */ \
2320 &rs6000_reg_names[40][0], /* fr8 */ \
2321 &rs6000_reg_names[41][0], /* fr9 */ \
2322 &rs6000_reg_names[42][0], /* fr10 */ \
2323 &rs6000_reg_names[43][0], /* fr11 */ \
2324 &rs6000_reg_names[44][0], /* fr12 */ \
2325 &rs6000_reg_names[45][0], /* fr13 */ \
2326 &rs6000_reg_names[46][0], /* fr14 */ \
2327 &rs6000_reg_names[47][0], /* fr15 */ \
2328 &rs6000_reg_names[48][0], /* fr16 */ \
2329 &rs6000_reg_names[49][0], /* fr17 */ \
2330 &rs6000_reg_names[50][0], /* fr18 */ \
2331 &rs6000_reg_names[51][0], /* fr19 */ \
2332 &rs6000_reg_names[52][0], /* fr20 */ \
2333 &rs6000_reg_names[53][0], /* fr21 */ \
2334 &rs6000_reg_names[54][0], /* fr22 */ \
2335 &rs6000_reg_names[55][0], /* fr23 */ \
2336 &rs6000_reg_names[56][0], /* fr24 */ \
2337 &rs6000_reg_names[57][0], /* fr25 */ \
2338 &rs6000_reg_names[58][0], /* fr26 */ \
2339 &rs6000_reg_names[59][0], /* fr27 */ \
2340 &rs6000_reg_names[60][0], /* fr28 */ \
2341 &rs6000_reg_names[61][0], /* fr29 */ \
2342 &rs6000_reg_names[62][0], /* fr30 */ \
2343 &rs6000_reg_names[63][0], /* fr31 */ \
2344 \
2345 &rs6000_reg_names[64][0], /* was mq */ \
2346 &rs6000_reg_names[65][0], /* lr */ \
2347 &rs6000_reg_names[66][0], /* ctr */ \
2348 &rs6000_reg_names[67][0], /* ap */ \
2349 \
2350 &rs6000_reg_names[68][0], /* cr0 */ \
2351 &rs6000_reg_names[69][0], /* cr1 */ \
2352 &rs6000_reg_names[70][0], /* cr2 */ \
2353 &rs6000_reg_names[71][0], /* cr3 */ \
2354 &rs6000_reg_names[72][0], /* cr4 */ \
2355 &rs6000_reg_names[73][0], /* cr5 */ \
2356 &rs6000_reg_names[74][0], /* cr6 */ \
2357 &rs6000_reg_names[75][0], /* cr7 */ \
2358 \
2359 &rs6000_reg_names[76][0], /* ca */ \
2360 \
2361 &rs6000_reg_names[77][0], /* v0 */ \
2362 &rs6000_reg_names[78][0], /* v1 */ \
2363 &rs6000_reg_names[79][0], /* v2 */ \
2364 &rs6000_reg_names[80][0], /* v3 */ \
2365 &rs6000_reg_names[81][0], /* v4 */ \
2366 &rs6000_reg_names[82][0], /* v5 */ \
2367 &rs6000_reg_names[83][0], /* v6 */ \
2368 &rs6000_reg_names[84][0], /* v7 */ \
2369 &rs6000_reg_names[85][0], /* v8 */ \
2370 &rs6000_reg_names[86][0], /* v9 */ \
2371 &rs6000_reg_names[87][0], /* v10 */ \
2372 &rs6000_reg_names[88][0], /* v11 */ \
2373 &rs6000_reg_names[89][0], /* v12 */ \
2374 &rs6000_reg_names[90][0], /* v13 */ \
2375 &rs6000_reg_names[91][0], /* v14 */ \
2376 &rs6000_reg_names[92][0], /* v15 */ \
2377 &rs6000_reg_names[93][0], /* v16 */ \
2378 &rs6000_reg_names[94][0], /* v17 */ \
2379 &rs6000_reg_names[95][0], /* v18 */ \
2380 &rs6000_reg_names[96][0], /* v19 */ \
2381 &rs6000_reg_names[97][0], /* v20 */ \
2382 &rs6000_reg_names[98][0], /* v21 */ \
2383 &rs6000_reg_names[99][0], /* v22 */ \
2384 &rs6000_reg_names[100][0], /* v23 */ \
2385 &rs6000_reg_names[101][0], /* v24 */ \
2386 &rs6000_reg_names[102][0], /* v25 */ \
2387 &rs6000_reg_names[103][0], /* v26 */ \
2388 &rs6000_reg_names[104][0], /* v27 */ \
2389 &rs6000_reg_names[105][0], /* v28 */ \
2390 &rs6000_reg_names[106][0], /* v29 */ \
2391 &rs6000_reg_names[107][0], /* v30 */ \
2392 &rs6000_reg_names[108][0], /* v31 */ \
2393 &rs6000_reg_names[109][0], /* vrsave */ \
2394 &rs6000_reg_names[110][0], /* vscr */ \
2395 &rs6000_reg_names[111][0], /* sfp */ \
2396 &rs6000_reg_names[112][0], /* tfhar */ \
2397 &rs6000_reg_names[113][0], /* tfiar */ \
2398 &rs6000_reg_names[114][0], /* texasr */ \
2399 }
2400
2401 /* Table of additional register names to use in user input. */
2402
2403 #define ADDITIONAL_REGISTER_NAMES \
2404 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2405 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2406 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2407 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2408 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2409 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2410 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2411 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2412 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2413 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2414 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2415 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2416 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2417 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2418 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2419 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2420 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2421 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2422 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2423 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2424 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2425 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2426 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2427 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2428 {"vrsave", 109}, {"vscr", 110}, \
2429 /* no additional names for: lr, ctr, ap */ \
2430 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2431 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2432 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2433 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2434 {"xer", 76}, \
2435 /* VSX registers overlaid on top of FR, Altivec registers */ \
2436 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2437 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2438 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2439 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2440 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2441 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2442 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2443 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2444 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2445 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2446 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2447 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2448 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2449 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2450 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2451 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2452 /* Transactional Memory Facility (HTM) Registers. */ \
2453 {"tfhar", 112}, {"tfiar", 113}, {"texasr", 114}, \
2454 }
2455
2456 /* This is how to output an element of a case-vector that is relative. */
2457
2458 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2459 do { char buf[100]; \
2460 fputs ("\t.long ", FILE); \
2461 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2462 assemble_name (FILE, buf); \
2463 putc ('-', FILE); \
2464 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2465 assemble_name (FILE, buf); \
2466 putc ('\n', FILE); \
2467 } while (0)
2468
2469 /* This is how to output an assembler line
2470 that says to advance the location counter
2471 to a multiple of 2**LOG bytes. */
2472
2473 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2474 if ((LOG) != 0) \
2475 fprintf (FILE, "\t.align %d\n", (LOG))
2476
2477 /* How to align the given loop. */
2478 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2479
2480 /* Alignment guaranteed by __builtin_malloc. */
2481 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2482 However, specifying the stronger guarantee currently leads to
2483 a regression in SPEC CPU2006 437.leslie3d. The stronger
2484 guarantee should be implemented here once that's fixed. */
2485 #define MALLOC_ABI_ALIGNMENT (64)
2486
2487 /* Pick up the return address upon entry to a procedure. Used for
2488 dwarf2 unwind information. This also enables the table driven
2489 mechanism. */
2490
2491 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2492 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2493
2494 /* Describe how we implement __builtin_eh_return. */
2495 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2496 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2497
2498 /* Print operand X (an rtx) in assembler syntax to file FILE.
2499 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2500 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2501
2502 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2503
2504 /* Define which CODE values are valid. */
2505
2506 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2507
2508 /* Print a memory address as an operand to reference that memory location. */
2509
2510 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2511
2512 /* For switching between functions with different target attributes. */
2513 #define SWITCHABLE_TARGET 1
2514
2515 /* uncomment for disabling the corresponding default options */
2516 /* #define MACHINE_no_sched_interblock */
2517 /* #define MACHINE_no_sched_speculative */
2518 /* #define MACHINE_no_sched_speculative_load */
2519
2520 /* General flags. */
2521 extern int frame_pointer_needed;
2522
2523 /* Classification of the builtin functions as to which switches enable the
2524 builtin, and what attributes it should have. We used to use the target
2525 flags macros, but we've run out of bits, so we now map the options into new
2526 settings used here. */
2527
2528 /* Builtin attributes. */
2529 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2530 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2531 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2532 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2533 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2534 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2535 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2536 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2537
2538 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2539 #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2540 modifies global state. */
2541 #define RS6000_BTC_PURE 0x00000200 /* reads global
2542 state/mem and does
2543 not modify global state. */
2544 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2545 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2546
2547 /* Miscellaneous information. */
2548 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2549 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2550 #define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2551 #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
2552 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2553
2554 /* Convenience macros to document the instruction type. */
2555 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2556 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2557
2558 /* Builtin targets. For now, we reuse the masks for those options that are in
2559 target flags, and pick two random bits for paired and ldbl128, which
2560 aren't in target_flags. */
2561 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2562 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2563 #define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
2564 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2565 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2566 #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
2567 #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
2568 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2569 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2570 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2571 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2572 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2573 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2574 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2575 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2576 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2577 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2578 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2579 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2580 #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
2581 #define RS6000_BTM_FLOAT128 MASK_FLOAT128_TYPE /* IEEE 128-bit float. */
2582
2583 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2584 | RS6000_BTM_VSX \
2585 | RS6000_BTM_P8_VECTOR \
2586 | RS6000_BTM_P9_VECTOR \
2587 | RS6000_BTM_P9_MISC \
2588 | RS6000_BTM_MODULO \
2589 | RS6000_BTM_CRYPTO \
2590 | RS6000_BTM_FRE \
2591 | RS6000_BTM_FRES \
2592 | RS6000_BTM_FRSQRTE \
2593 | RS6000_BTM_FRSQRTES \
2594 | RS6000_BTM_HTM \
2595 | RS6000_BTM_POPCNTD \
2596 | RS6000_BTM_CELL \
2597 | RS6000_BTM_DFP \
2598 | RS6000_BTM_HARD_FLOAT \
2599 | RS6000_BTM_LDBL128 \
2600 | RS6000_BTM_FLOAT128)
2601
2602 /* Define builtin enum index. */
2603
2604 #undef RS6000_BUILTIN_0
2605 #undef RS6000_BUILTIN_1
2606 #undef RS6000_BUILTIN_2
2607 #undef RS6000_BUILTIN_3
2608 #undef RS6000_BUILTIN_A
2609 #undef RS6000_BUILTIN_D
2610 #undef RS6000_BUILTIN_H
2611 #undef RS6000_BUILTIN_P
2612 #undef RS6000_BUILTIN_Q
2613 #undef RS6000_BUILTIN_X
2614
2615 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2616 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2617 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2618 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2619 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2620 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2621 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2622 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2623 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2624 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2625
2626 enum rs6000_builtins
2627 {
2628 #include "rs6000-builtin.def"
2629
2630 RS6000_BUILTIN_COUNT
2631 };
2632
2633 #undef RS6000_BUILTIN_0
2634 #undef RS6000_BUILTIN_1
2635 #undef RS6000_BUILTIN_2
2636 #undef RS6000_BUILTIN_3
2637 #undef RS6000_BUILTIN_A
2638 #undef RS6000_BUILTIN_D
2639 #undef RS6000_BUILTIN_H
2640 #undef RS6000_BUILTIN_P
2641 #undef RS6000_BUILTIN_Q
2642 #undef RS6000_BUILTIN_X
2643
2644 enum rs6000_builtin_type_index
2645 {
2646 RS6000_BTI_NOT_OPAQUE,
2647 RS6000_BTI_opaque_V2SI,
2648 RS6000_BTI_opaque_V2SF,
2649 RS6000_BTI_opaque_p_V2SI,
2650 RS6000_BTI_opaque_V4SI,
2651 RS6000_BTI_V16QI,
2652 RS6000_BTI_V1TI,
2653 RS6000_BTI_V2SI,
2654 RS6000_BTI_V2SF,
2655 RS6000_BTI_V2DI,
2656 RS6000_BTI_V2DF,
2657 RS6000_BTI_V4HI,
2658 RS6000_BTI_V4SI,
2659 RS6000_BTI_V4SF,
2660 RS6000_BTI_V8HI,
2661 RS6000_BTI_unsigned_V16QI,
2662 RS6000_BTI_unsigned_V1TI,
2663 RS6000_BTI_unsigned_V8HI,
2664 RS6000_BTI_unsigned_V4SI,
2665 RS6000_BTI_unsigned_V2DI,
2666 RS6000_BTI_bool_char, /* __bool char */
2667 RS6000_BTI_bool_short, /* __bool short */
2668 RS6000_BTI_bool_int, /* __bool int */
2669 RS6000_BTI_bool_long, /* __bool long */
2670 RS6000_BTI_pixel, /* __pixel */
2671 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2672 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2673 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2674 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2675 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2676 RS6000_BTI_long, /* long_integer_type_node */
2677 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2678 RS6000_BTI_long_long, /* long_long_integer_type_node */
2679 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2680 RS6000_BTI_INTQI, /* intQI_type_node */
2681 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2682 RS6000_BTI_INTHI, /* intHI_type_node */
2683 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2684 RS6000_BTI_INTSI, /* intSI_type_node */
2685 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2686 RS6000_BTI_INTDI, /* intDI_type_node */
2687 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2688 RS6000_BTI_INTTI, /* intTI_type_node */
2689 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2690 RS6000_BTI_float, /* float_type_node */
2691 RS6000_BTI_double, /* double_type_node */
2692 RS6000_BTI_long_double, /* long_double_type_node */
2693 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2694 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2695 RS6000_BTI_void, /* void_type_node */
2696 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2697 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2698 RS6000_BTI_const_str, /* pointer to const char * */
2699 RS6000_BTI_MAX
2700 };
2701
2702
2703 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2704 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2705 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2706 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2707 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2708 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2709 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2710 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2711 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2712 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2713 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2714 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2715 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2716 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2717 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2718 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2719 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2720 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2721 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2722 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2723 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2724 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2725 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2726 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2727 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2728 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2729 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2730 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2731 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2732
2733 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2734 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2735 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2736 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2737 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2738 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2739 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2740 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2741 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2742 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2743 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2744 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2745 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2746 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2747 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2748 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2749 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2750 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2751 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2752 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2753 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2754 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2755 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2756
2757 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2758 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2759
2760 #define TARGET_SUPPORTS_WIDE_INT 1
2761
2762 #if (GCC_VERSION >= 3000)
2763 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2764 #endif