]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/rs6000/rs6000.h
c50060026c5b7b6f5f8cc4534b4c638f85eb4422
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 3, or (at your
12 option) any later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
18
19 Under Section 7 of GPL version 3, you are granted additional
20 permissions described in the GCC Runtime Library Exception, version
21 3.1, as published by the Free Software Foundation.
22
23 You should have received a copy of the GNU General Public License and
24 a copy of the GCC Runtime Library Exception along with this program;
25 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
26 <http://www.gnu.org/licenses/>. */
27
28 /* Note that some other tm.h files include this one and then override
29 many of the definitions. */
30
31 /* Definitions for the object file format. These are set at
32 compile-time. */
33
34 #define OBJECT_XCOFF 1
35 #define OBJECT_ELF 2
36 #define OBJECT_PEF 3
37 #define OBJECT_MACHO 4
38
39 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
40 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
41 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
42 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
43
44 #ifndef TARGET_AIX
45 #define TARGET_AIX 0
46 #endif
47
48 /* Control whether function entry points use a "dot" symbol when
49 ABI_AIX. */
50 #define DOT_SYMBOLS 1
51
52 /* Default string to use for cpu if not specified. */
53 #ifndef TARGET_CPU_DEFAULT
54 #define TARGET_CPU_DEFAULT ((char *)0)
55 #endif
56
57 /* If configured for PPC405, support PPC405CR Erratum77. */
58 #ifdef CONFIG_PPC405CR
59 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
60 #else
61 #define PPC405_ERRATUM77 0
62 #endif
63
64 #ifndef TARGET_PAIRED_FLOAT
65 #define TARGET_PAIRED_FLOAT 0
66 #endif
67
68 #ifdef HAVE_AS_POPCNTB
69 #define ASM_CPU_POWER5_SPEC "-mpower5"
70 #else
71 #define ASM_CPU_POWER5_SPEC "-mpower4"
72 #endif
73
74 #ifdef HAVE_AS_DFP
75 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
76 #else
77 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
78 #endif
79
80 #ifdef HAVE_AS_VSX
81 #define ASM_CPU_POWER7_SPEC "-mpower7"
82 #else
83 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
84 #endif
85
86 /* Common ASM definitions used by ASM_SPEC among the various targets
87 for handling -mcpu=xxx switches. */
88 #define ASM_CPU_SPEC \
89 "%{!mcpu*: \
90 %{mpower: %{!mpower2: -mpwr}} \
91 %{mpower2: -mpwrx} \
92 %{mpowerpc64*: -mppc64} \
93 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
94 %{mno-power: %{!mpowerpc*: -mcom}} \
95 %{!mno-power: %{!mpower*: %(asm_default)}}} \
96 %{mcpu=common: -mcom} \
97 %{mcpu=cell: -mcell} \
98 %{mcpu=power: -mpwr} \
99 %{mcpu=power2: -mpwrx} \
100 %{mcpu=power3: -mppc64} \
101 %{mcpu=power4: -mpower4} \
102 %{mcpu=power5: %(asm_cpu_power5)} \
103 %{mcpu=power5+: %(asm_cpu_power5)} \
104 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
105 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
106 %{mcpu=power7: %(asm_cpu_power7)} \
107 %{mcpu=powerpc: -mppc} \
108 %{mcpu=rios: -mpwr} \
109 %{mcpu=rios1: -mpwr} \
110 %{mcpu=rios2: -mpwrx} \
111 %{mcpu=rsc: -mpwr} \
112 %{mcpu=rsc1: -mpwr} \
113 %{mcpu=rs64a: -mppc64} \
114 %{mcpu=401: -mppc} \
115 %{mcpu=403: -m403} \
116 %{mcpu=405: -m405} \
117 %{mcpu=405fp: -m405} \
118 %{mcpu=440: -m440} \
119 %{mcpu=440fp: -m440} \
120 %{mcpu=464: -m440} \
121 %{mcpu=464fp: -m440} \
122 %{mcpu=505: -mppc} \
123 %{mcpu=601: -m601} \
124 %{mcpu=602: -mppc} \
125 %{mcpu=603: -mppc} \
126 %{mcpu=603e: -mppc} \
127 %{mcpu=ec603e: -mppc} \
128 %{mcpu=604: -mppc} \
129 %{mcpu=604e: -mppc} \
130 %{mcpu=620: -mppc64} \
131 %{mcpu=630: -mppc64} \
132 %{mcpu=740: -mppc} \
133 %{mcpu=750: -mppc} \
134 %{mcpu=G3: -mppc} \
135 %{mcpu=7400: -mppc -maltivec} \
136 %{mcpu=7450: -mppc -maltivec} \
137 %{mcpu=G4: -mppc -maltivec} \
138 %{mcpu=801: -mppc} \
139 %{mcpu=821: -mppc} \
140 %{mcpu=823: -mppc} \
141 %{mcpu=860: -mppc} \
142 %{mcpu=970: -mpower4 -maltivec} \
143 %{mcpu=G5: -mpower4 -maltivec} \
144 %{mcpu=8540: -me500} \
145 %{mcpu=8548: -me500} \
146 %{mcpu=e300c2: -me300} \
147 %{mcpu=e300c3: -me300} \
148 %{mcpu=e500mc: -me500mc} \
149 %{maltivec: -maltivec} \
150 -many"
151
152 #define CPP_DEFAULT_SPEC ""
153
154 #define ASM_DEFAULT_SPEC ""
155
156 /* This macro defines names of additional specifications to put in the specs
157 that can be used in various specifications like CC1_SPEC. Its definition
158 is an initializer with a subgrouping for each command option.
159
160 Each subgrouping contains a string constant, that defines the
161 specification name, and a string constant that used by the GCC driver
162 program.
163
164 Do not define this macro if it does not need to do anything. */
165
166 #define SUBTARGET_EXTRA_SPECS
167
168 #define EXTRA_SPECS \
169 { "cpp_default", CPP_DEFAULT_SPEC }, \
170 { "asm_cpu", ASM_CPU_SPEC }, \
171 { "asm_default", ASM_DEFAULT_SPEC }, \
172 { "cc1_cpu", CC1_CPU_SPEC }, \
173 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
174 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
175 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
176 SUBTARGET_EXTRA_SPECS
177
178 /* -mcpu=native handling only makes sense with compiler running on
179 an PowerPC chip. If changing this condition, also change
180 the condition in driver-rs6000.c. */
181 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
182 /* In driver-rs6000.c. */
183 extern const char *host_detect_local_cpu (int argc, const char **argv);
184 #define EXTRA_SPEC_FUNCTIONS \
185 { "local_cpu_detect", host_detect_local_cpu },
186 #define HAVE_LOCAL_CPU_DETECT
187 #endif
188
189 #ifndef CC1_CPU_SPEC
190 #ifdef HAVE_LOCAL_CPU_DETECT
191 #define CC1_CPU_SPEC \
192 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
193 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
194 #else
195 #define CC1_CPU_SPEC ""
196 #endif
197 #endif
198
199 /* Architecture type. */
200
201 /* Define TARGET_MFCRF if the target assembler does not support the
202 optional field operand for mfcr. */
203
204 #ifndef HAVE_AS_MFCRF
205 #undef TARGET_MFCRF
206 #define TARGET_MFCRF 0
207 #endif
208
209 /* Define TARGET_POPCNTB if the target assembler does not support the
210 popcount byte instruction. */
211
212 #ifndef HAVE_AS_POPCNTB
213 #undef TARGET_POPCNTB
214 #define TARGET_POPCNTB 0
215 #endif
216
217 /* Define TARGET_FPRND if the target assembler does not support the
218 fp rounding instructions. */
219
220 #ifndef HAVE_AS_FPRND
221 #undef TARGET_FPRND
222 #define TARGET_FPRND 0
223 #endif
224
225 /* Define TARGET_CMPB if the target assembler does not support the
226 cmpb instruction. */
227
228 #ifndef HAVE_AS_CMPB
229 #undef TARGET_CMPB
230 #define TARGET_CMPB 0
231 #endif
232
233 /* Define TARGET_MFPGPR if the target assembler does not support the
234 mffpr and mftgpr instructions. */
235
236 #ifndef HAVE_AS_MFPGPR
237 #undef TARGET_MFPGPR
238 #define TARGET_MFPGPR 0
239 #endif
240
241 /* Define TARGET_DFP if the target assembler does not support decimal
242 floating point instructions. */
243 #ifndef HAVE_AS_DFP
244 #undef TARGET_DFP
245 #define TARGET_DFP 0
246 #endif
247
248 /* Define TARGET_TLS_MARKERS if the target assembler does not support
249 arg markers for __tls_get_addr calls. */
250 #ifndef HAVE_AS_TLS_MARKERS
251 #undef TARGET_TLS_MARKERS
252 #define TARGET_TLS_MARKERS 0
253 #else
254 #define TARGET_TLS_MARKERS tls_markers
255 #endif
256
257 #ifndef TARGET_SECURE_PLT
258 #define TARGET_SECURE_PLT 0
259 #endif
260
261 #define TARGET_32BIT (! TARGET_64BIT)
262
263 #ifndef HAVE_AS_TLS
264 #define HAVE_AS_TLS 0
265 #endif
266
267 /* Return 1 for a symbol ref for a thread-local storage symbol. */
268 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
269 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
270
271 #ifdef IN_LIBGCC2
272 /* For libgcc2 we make sure this is a compile time constant */
273 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
274 #undef TARGET_POWERPC64
275 #define TARGET_POWERPC64 1
276 #else
277 #undef TARGET_POWERPC64
278 #define TARGET_POWERPC64 0
279 #endif
280 #else
281 /* The option machinery will define this. */
282 #endif
283
284 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
285
286 /* Processor type. Order must match cpu attribute in MD file. */
287 enum processor_type
288 {
289 PROCESSOR_RIOS1,
290 PROCESSOR_RIOS2,
291 PROCESSOR_RS64A,
292 PROCESSOR_MPCCORE,
293 PROCESSOR_PPC403,
294 PROCESSOR_PPC405,
295 PROCESSOR_PPC440,
296 PROCESSOR_PPC601,
297 PROCESSOR_PPC603,
298 PROCESSOR_PPC604,
299 PROCESSOR_PPC604e,
300 PROCESSOR_PPC620,
301 PROCESSOR_PPC630,
302 PROCESSOR_PPC750,
303 PROCESSOR_PPC7400,
304 PROCESSOR_PPC7450,
305 PROCESSOR_PPC8540,
306 PROCESSOR_PPCE300C2,
307 PROCESSOR_PPCE300C3,
308 PROCESSOR_PPCE500MC,
309 PROCESSOR_POWER4,
310 PROCESSOR_POWER5,
311 PROCESSOR_POWER6,
312 PROCESSOR_CELL
313 };
314
315 /* FPU operations supported.
316 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
317 also test TARGET_HARD_FLOAT. */
318 #define TARGET_SINGLE_FLOAT 1
319 #define TARGET_DOUBLE_FLOAT 1
320 #define TARGET_SINGLE_FPU 0
321 #define TARGET_SIMPLE_FPU 0
322 #define TARGET_XILINX_FPU 0
323
324 extern enum processor_type rs6000_cpu;
325
326 /* Recast the processor type to the cpu attribute. */
327 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
328
329 /* Define generic processor types based upon current deployment. */
330 #define PROCESSOR_COMMON PROCESSOR_PPC601
331 #define PROCESSOR_POWER PROCESSOR_RIOS1
332 #define PROCESSOR_POWERPC PROCESSOR_PPC604
333 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
334
335 /* Define the default processor. This is overridden by other tm.h files. */
336 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
337 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
338
339 /* FP processor type. */
340 enum fpu_type_t
341 {
342 FPU_NONE, /* No FPU */
343 FPU_SF_LITE, /* Limited Single Precision FPU */
344 FPU_DF_LITE, /* Limited Double Precision FPU */
345 FPU_SF_FULL, /* Full Single Precision FPU */
346 FPU_DF_FULL /* Full Double Single Precision FPU */
347 };
348
349 extern enum fpu_type_t fpu_type;
350
351 /* Specify the dialect of assembler to use. New mnemonics is dialect one
352 and the old mnemonics are dialect zero. */
353 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
354
355 /* Types of costly dependences. */
356 enum rs6000_dependence_cost
357 {
358 max_dep_latency = 1000,
359 no_dep_costly,
360 all_deps_costly,
361 true_store_to_load_dep_costly,
362 store_to_load_dep_costly
363 };
364
365 /* Types of nop insertion schemes in sched target hook sched_finish. */
366 enum rs6000_nop_insertion
367 {
368 sched_finish_regroup_exact = 1000,
369 sched_finish_pad_groups,
370 sched_finish_none
371 };
372
373 /* Dispatch group termination caused by an insn. */
374 enum group_termination
375 {
376 current_group,
377 previous_group
378 };
379
380 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
381 struct rs6000_cpu_select
382 {
383 const char *string;
384 const char *name;
385 int set_tune_p;
386 int set_arch_p;
387 };
388
389 extern struct rs6000_cpu_select rs6000_select[];
390
391 /* Debug support */
392 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
393 extern int rs6000_debug_stack; /* debug stack applications */
394 extern int rs6000_debug_arg; /* debug argument handling */
395
396 #define TARGET_DEBUG_STACK rs6000_debug_stack
397 #define TARGET_DEBUG_ARG rs6000_debug_arg
398
399 extern const char *rs6000_traceback_name; /* Type of traceback table. */
400
401 /* These are separate from target_flags because we've run out of bits
402 there. */
403 extern int rs6000_long_double_type_size;
404 extern int rs6000_ieeequad;
405 extern int rs6000_altivec_abi;
406 extern int rs6000_spe_abi;
407 extern int rs6000_spe;
408 extern int rs6000_isel;
409 extern int rs6000_float_gprs;
410 extern int rs6000_alignment_flags;
411 extern const char *rs6000_sched_insert_nops_str;
412 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
413 extern int rs6000_xilinx_fpu;
414
415 /* Alignment options for fields in structures for sub-targets following
416 AIX-like ABI.
417 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
418 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
419
420 Override the macro definitions when compiling libobjc to avoid undefined
421 reference to rs6000_alignment_flags due to library's use of GCC alignment
422 macros which use the macros below. */
423
424 #ifndef IN_TARGET_LIBS
425 #define MASK_ALIGN_POWER 0x00000000
426 #define MASK_ALIGN_NATURAL 0x00000001
427 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
428 #else
429 #define TARGET_ALIGN_NATURAL 0
430 #endif
431
432 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
433 #define TARGET_IEEEQUAD rs6000_ieeequad
434 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
435
436 #define TARGET_SPE_ABI 0
437 #define TARGET_SPE 0
438 #define TARGET_E500 0
439 #define TARGET_ISEL rs6000_isel
440 #define TARGET_FPRS 1
441 #define TARGET_E500_SINGLE 0
442 #define TARGET_E500_DOUBLE 0
443 #define CHECK_E500_OPTIONS do { } while (0)
444
445 /* E500 processors only support plain "sync", not lwsync. */
446 #define TARGET_NO_LWSYNC TARGET_E500
447
448 /* Sometimes certain combinations of command options do not make sense
449 on a particular target machine. You can define a macro
450 `OVERRIDE_OPTIONS' to take account of this. This macro, if
451 defined, is executed once just after all the command options have
452 been parsed.
453
454 Do not use this macro to turn on various extra optimizations for
455 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
456
457 On the RS/6000 this is used to define the target cpu type. */
458
459 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
460
461 /* Define this to change the optimizations performed by default. */
462 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
463
464 /* Show we can debug even without a frame pointer. */
465 #define CAN_DEBUG_WITHOUT_FP
466
467 /* Target pragma. */
468 #define REGISTER_TARGET_PRAGMAS() do { \
469 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
470 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
471 } while (0)
472
473 /* Target #defines. */
474 #define TARGET_CPU_CPP_BUILTINS() \
475 rs6000_cpu_cpp_builtins (pfile)
476
477 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
478 we're compiling for. Some configurations may need to override it. */
479 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
480 do \
481 { \
482 if (BYTES_BIG_ENDIAN) \
483 { \
484 builtin_define ("__BIG_ENDIAN__"); \
485 builtin_define ("_BIG_ENDIAN"); \
486 builtin_assert ("machine=bigendian"); \
487 } \
488 else \
489 { \
490 builtin_define ("__LITTLE_ENDIAN__"); \
491 builtin_define ("_LITTLE_ENDIAN"); \
492 builtin_assert ("machine=littleendian"); \
493 } \
494 } \
495 while (0)
496 \f
497 /* Target machine storage layout. */
498
499 /* Define this macro if it is advisable to hold scalars in registers
500 in a wider mode than that declared by the program. In such cases,
501 the value is constrained to be within the bounds of the declared
502 type, but kept valid in the wider mode. The signedness of the
503 extension may differ from that of the type. */
504
505 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
506 if (GET_MODE_CLASS (MODE) == MODE_INT \
507 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
508 (MODE) = TARGET_32BIT ? SImode : DImode;
509
510 /* Define this if most significant bit is lowest numbered
511 in instructions that operate on numbered bit-fields. */
512 /* That is true on RS/6000. */
513 #define BITS_BIG_ENDIAN 1
514
515 /* Define this if most significant byte of a word is the lowest numbered. */
516 /* That is true on RS/6000. */
517 #define BYTES_BIG_ENDIAN 1
518
519 /* Define this if most significant word of a multiword number is lowest
520 numbered.
521
522 For RS/6000 we can decide arbitrarily since there are no machine
523 instructions for them. Might as well be consistent with bits and bytes. */
524 #define WORDS_BIG_ENDIAN 1
525
526 #define MAX_BITS_PER_WORD 64
527
528 /* Width of a word, in units (bytes). */
529 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
530 #ifdef IN_LIBGCC2
531 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
532 #else
533 #define MIN_UNITS_PER_WORD 4
534 #endif
535 #define UNITS_PER_FP_WORD 8
536 #define UNITS_PER_ALTIVEC_WORD 16
537 #define UNITS_PER_SPE_WORD 8
538 #define UNITS_PER_PAIRED_WORD 8
539
540 /* Type used for ptrdiff_t, as a string used in a declaration. */
541 #define PTRDIFF_TYPE "int"
542
543 /* Type used for size_t, as a string used in a declaration. */
544 #define SIZE_TYPE "long unsigned int"
545
546 /* Type used for wchar_t, as a string used in a declaration. */
547 #define WCHAR_TYPE "short unsigned int"
548
549 /* Width of wchar_t in bits. */
550 #define WCHAR_TYPE_SIZE 16
551
552 /* A C expression for the size in bits of the type `short' on the
553 target machine. If you don't define this, the default is half a
554 word. (If this would be less than one storage unit, it is
555 rounded up to one unit.) */
556 #define SHORT_TYPE_SIZE 16
557
558 /* A C expression for the size in bits of the type `int' on the
559 target machine. If you don't define this, the default is one
560 word. */
561 #define INT_TYPE_SIZE 32
562
563 /* A C expression for the size in bits of the type `long' on the
564 target machine. If you don't define this, the default is one
565 word. */
566 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
567
568 /* A C expression for the size in bits of the type `long long' on the
569 target machine. If you don't define this, the default is two
570 words. */
571 #define LONG_LONG_TYPE_SIZE 64
572
573 /* A C expression for the size in bits of the type `float' on the
574 target machine. If you don't define this, the default is one
575 word. */
576 #define FLOAT_TYPE_SIZE 32
577
578 /* A C expression for the size in bits of the type `double' on the
579 target machine. If you don't define this, the default is two
580 words. */
581 #define DOUBLE_TYPE_SIZE 64
582
583 /* A C expression for the size in bits of the type `long double' on
584 the target machine. If you don't define this, the default is two
585 words. */
586 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
587
588 /* Define this to set long double type size to use in libgcc2.c, which can
589 not depend on target_flags. */
590 #ifdef __LONG_DOUBLE_128__
591 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
592 #else
593 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
594 #endif
595
596 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
597 #define WIDEST_HARDWARE_FP_SIZE 64
598
599 /* Width in bits of a pointer.
600 See also the macro `Pmode' defined below. */
601 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
602
603 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
604 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
605
606 /* Boundary (in *bits*) on which stack pointer should be aligned. */
607 #define STACK_BOUNDARY \
608 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
609
610 /* Allocation boundary (in *bits*) for the code of a function. */
611 #define FUNCTION_BOUNDARY 32
612
613 /* No data type wants to be aligned rounder than this. */
614 #define BIGGEST_ALIGNMENT 128
615
616 /* A C expression to compute the alignment for a variables in the
617 local store. TYPE is the data type, and ALIGN is the alignment
618 that the object would ordinarily have. */
619 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
620 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
621 (TARGET_E500_DOUBLE \
622 && TYPE_MODE (TYPE) == DFmode) ? 64 : \
623 ((TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE \
624 && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) || (TARGET_PAIRED_FLOAT \
625 && TREE_CODE (TYPE) == VECTOR_TYPE \
626 && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) ? 64 : ALIGN)
627
628 /* Alignment of field after `int : 0' in a structure. */
629 #define EMPTY_FIELD_BOUNDARY 32
630
631 /* Every structure's size must be a multiple of this. */
632 #define STRUCTURE_SIZE_BOUNDARY 8
633
634 /* Return 1 if a structure or array containing FIELD should be
635 accessed using `BLKMODE'.
636
637 For the SPE, simd types are V2SI, and gcc can be tempted to put the
638 entire thing in a DI and use subregs to access the internals.
639 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
640 back-end. Because a single GPR can hold a V2SI, but not a DI, the
641 best thing to do is set structs to BLKmode and avoid Severe Tire
642 Damage.
643
644 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
645 fit into 1, whereas DI still needs two. */
646 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
647 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
648 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
649
650 /* A bit-field declared as `int' forces `int' alignment for the struct. */
651 #define PCC_BITFIELD_TYPE_MATTERS 1
652
653 /* Make strings word-aligned so strcpy from constants will be faster.
654 Make vector constants quadword aligned. */
655 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
656 (TREE_CODE (EXP) == STRING_CST \
657 && (STRICT_ALIGNMENT || !optimize_size) \
658 && (ALIGN) < BITS_PER_WORD \
659 ? BITS_PER_WORD \
660 : (ALIGN))
661
662 /* Make arrays of chars word-aligned for the same reasons.
663 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
664 64 bits. */
665 #define DATA_ALIGNMENT(TYPE, ALIGN) \
666 (TREE_CODE (TYPE) == VECTOR_TYPE ? ((TARGET_SPE_ABI \
667 || TARGET_PAIRED_FLOAT) ? 64 : 128) \
668 : (TARGET_E500_DOUBLE \
669 && TYPE_MODE (TYPE) == DFmode) ? 64 \
670 : TREE_CODE (TYPE) == ARRAY_TYPE \
671 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
672 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
673
674 /* Nonzero if move instructions will actually fail to work
675 when given unaligned data. */
676 #define STRICT_ALIGNMENT 0
677
678 /* Define this macro to be the value 1 if unaligned accesses have a cost
679 many times greater than aligned accesses, for example if they are
680 emulated in a trap handler. */
681 /* Altivec vector memory instructions simply ignore the low bits; SPE
682 vector memory instructions trap on unaligned accesses. */
683 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
684 (STRICT_ALIGNMENT \
685 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
686 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode \
687 || (MODE) == DImode) \
688 && (ALIGN) < 32) \
689 || (VECTOR_MODE_P ((MODE)) && (ALIGN) < GET_MODE_BITSIZE ((MODE))))
690 \f
691 /* Standard register usage. */
692
693 /* Number of actual hardware registers.
694 The hardware registers are assigned numbers for the compiler
695 from 0 to just below FIRST_PSEUDO_REGISTER.
696 All registers that the compiler knows about must be given numbers,
697 even those that are not normally considered general registers.
698
699 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
700 an MQ register, a count register, a link register, and 8 condition
701 register fields, which we view here as separate registers. AltiVec
702 adds 32 vector registers and a VRsave register.
703
704 In addition, the difference between the frame and argument pointers is
705 a function of the number of registers saved, so we need to have a
706 register for AP that will later be eliminated in favor of SP or FP.
707 This is a normal register, but it is fixed.
708
709 We also create a pseudo register for float/int conversions, that will
710 really represent the memory location used. It is represented here as
711 a register, in order to work around problems in allocating stack storage
712 in inline functions.
713
714 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
715 pointer, which is eventually eliminated in favor of SP or FP. */
716
717 #define FIRST_PSEUDO_REGISTER 114
718
719 /* This must be included for pre gcc 3.0 glibc compatibility. */
720 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
721
722 /* Add 32 dwarf columns for synthetic SPE registers. */
723 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
724
725 /* The SPE has an additional 32 synthetic registers, with DWARF debug
726 info numbering for these registers starting at 1200. While eh_frame
727 register numbering need not be the same as the debug info numbering,
728 we choose to number these regs for eh_frame at 1200 too. This allows
729 future versions of the rs6000 backend to add hard registers and
730 continue to use the gcc hard register numbering for eh_frame. If the
731 extra SPE registers in eh_frame were numbered starting from the
732 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
733 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
734 avoid invalidating older SPE eh_frame info.
735
736 We must map them here to avoid huge unwinder tables mostly consisting
737 of unused space. */
738 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
739 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
740
741 /* Use standard DWARF numbering for DWARF debugging information. */
742 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
743
744 /* Use gcc hard register numbering for eh_frame. */
745 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
746
747 /* Map register numbers held in the call frame info that gcc has
748 collected using DWARF_FRAME_REGNUM to those that should be output in
749 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
750 for .eh_frame, but use the numbers mandated by the various ABIs for
751 .debug_frame. rs6000_emit_prologue has translated any combination of
752 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
753 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
754 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
755 ((FOR_EH) ? (REGNO) \
756 : (REGNO) == CR2_REGNO ? 64 \
757 : DBX_REGISTER_NUMBER (REGNO))
758
759 /* 1 for registers that have pervasive standard uses
760 and are not available for the register allocator.
761
762 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
763 as a local register; for all other OS's r2 is the TOC pointer.
764
765 cr5 is not supposed to be used.
766
767 On System V implementations, r13 is fixed and not available for use. */
768
769 #define FIXED_REGISTERS \
770 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
771 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
772 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
773 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
774 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
775 /* AltiVec registers. */ \
776 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
777 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
778 1, 1 \
779 , 1, 1, 1 \
780 }
781
782 /* 1 for registers not available across function calls.
783 These must include the FIXED_REGISTERS and also any
784 registers that can be used without being saved.
785 The latter must include the registers where values are returned
786 and the register where structure-value addresses are passed.
787 Aside from that, you can include as many other registers as you like. */
788
789 #define CALL_USED_REGISTERS \
790 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
791 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
792 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
793 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
794 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
795 /* AltiVec registers. */ \
796 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
797 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
798 1, 1 \
799 , 1, 1, 1 \
800 }
801
802 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
803 the entire set of `FIXED_REGISTERS' be included.
804 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
805 This macro is optional. If not specified, it defaults to the value
806 of `CALL_USED_REGISTERS'. */
807
808 #define CALL_REALLY_USED_REGISTERS \
809 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
810 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
811 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
812 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
813 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
814 /* AltiVec registers. */ \
815 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
816 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
817 0, 0 \
818 , 0, 0, 0 \
819 }
820
821 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
822
823 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
824 #define FIRST_SAVED_FP_REGNO (14+32)
825 #define FIRST_SAVED_GP_REGNO 13
826
827 /* List the order in which to allocate registers. Each register must be
828 listed once, even those in FIXED_REGISTERS.
829
830 We allocate in the following order:
831 fp0 (not saved or used for anything)
832 fp13 - fp2 (not saved; incoming fp arg registers)
833 fp1 (not saved; return value)
834 fp31 - fp14 (saved; order given to save least number)
835 cr7, cr6 (not saved or special)
836 cr1 (not saved, but used for FP operations)
837 cr0 (not saved, but used for arithmetic operations)
838 cr4, cr3, cr2 (saved)
839 r0 (not saved; cannot be base reg)
840 r9 (not saved; best for TImode)
841 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
842 r3 (not saved; return value register)
843 r31 - r13 (saved; order given to save least number)
844 r12 (not saved; if used for DImode or DFmode would use r13)
845 mq (not saved; best to use it if we can)
846 ctr (not saved; when we have the choice ctr is better)
847 lr (saved)
848 cr5, r1, r2, ap, xer (fixed)
849 v0 - v1 (not saved or used for anything)
850 v13 - v3 (not saved; incoming vector arg registers)
851 v2 (not saved; incoming vector arg reg; return value)
852 v19 - v14 (not saved or used for anything)
853 v31 - v20 (saved; order given to save least number)
854 vrsave, vscr (fixed)
855 spe_acc, spefscr (fixed)
856 sfp (fixed)
857 */
858
859 #if FIXED_R2 == 1
860 #define MAYBE_R2_AVAILABLE
861 #define MAYBE_R2_FIXED 2,
862 #else
863 #define MAYBE_R2_AVAILABLE 2,
864 #define MAYBE_R2_FIXED
865 #endif
866
867 #define REG_ALLOC_ORDER \
868 {32, \
869 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
870 33, \
871 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
872 50, 49, 48, 47, 46, \
873 75, 74, 69, 68, 72, 71, 70, \
874 0, MAYBE_R2_AVAILABLE \
875 9, 11, 10, 8, 7, 6, 5, 4, \
876 3, \
877 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
878 18, 17, 16, 15, 14, 13, 12, \
879 64, 66, 65, \
880 73, 1, MAYBE_R2_FIXED 67, 76, \
881 /* AltiVec registers. */ \
882 77, 78, \
883 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
884 79, \
885 96, 95, 94, 93, 92, 91, \
886 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
887 109, 110, \
888 111, 112, 113 \
889 }
890
891 /* True if register is floating-point. */
892 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
893
894 /* True if register is a condition register. */
895 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
896
897 /* True if register is a condition register, but not cr0. */
898 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
899
900 /* True if register is an integer register. */
901 #define INT_REGNO_P(N) \
902 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
903
904 /* SPE SIMD registers are just the GPRs. */
905 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
906
907 /* PAIRED SIMD registers are just the FPRs. */
908 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
909
910 /* True if register is the XER register. */
911 #define XER_REGNO_P(N) ((N) == XER_REGNO)
912
913 /* True if register is an AltiVec register. */
914 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
915
916 /* Return number of consecutive hard regs needed starting at reg REGNO
917 to hold something of mode MODE. */
918
919 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
920
921 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
922 ((TARGET_32BIT && TARGET_POWERPC64 \
923 && (GET_MODE_SIZE (MODE) > 4) \
924 && INT_REGNO_P (REGNO)) ? 1 : 0)
925
926 #define ALTIVEC_VECTOR_MODE(MODE) \
927 ((MODE) == V16QImode \
928 || (MODE) == V8HImode \
929 || (MODE) == V4SFmode \
930 || (MODE) == V4SImode)
931
932 #define SPE_VECTOR_MODE(MODE) \
933 ((MODE) == V4HImode \
934 || (MODE) == V2SFmode \
935 || (MODE) == V1DImode \
936 || (MODE) == V2SImode)
937
938 #define PAIRED_VECTOR_MODE(MODE) \
939 ((MODE) == V2SFmode)
940
941 #define UNITS_PER_SIMD_WORD(MODE) \
942 (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \
943 : (TARGET_SPE ? UNITS_PER_SPE_WORD : (TARGET_PAIRED_FLOAT ? \
944 UNITS_PER_PAIRED_WORD : UNITS_PER_WORD)))
945
946 /* Value is TRUE if hard register REGNO can hold a value of
947 machine-mode MODE. */
948 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
949 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
950
951 /* Value is 1 if it is a good idea to tie two pseudo registers
952 when one has mode MODE1 and one has mode MODE2.
953 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
954 for any hard reg, then this must be 0 for correct output. */
955 #define MODES_TIEABLE_P(MODE1, MODE2) \
956 (SCALAR_FLOAT_MODE_P (MODE1) \
957 ? SCALAR_FLOAT_MODE_P (MODE2) \
958 : SCALAR_FLOAT_MODE_P (MODE2) \
959 ? SCALAR_FLOAT_MODE_P (MODE1) \
960 : GET_MODE_CLASS (MODE1) == MODE_CC \
961 ? GET_MODE_CLASS (MODE2) == MODE_CC \
962 : GET_MODE_CLASS (MODE2) == MODE_CC \
963 ? GET_MODE_CLASS (MODE1) == MODE_CC \
964 : SPE_VECTOR_MODE (MODE1) \
965 ? SPE_VECTOR_MODE (MODE2) \
966 : SPE_VECTOR_MODE (MODE2) \
967 ? SPE_VECTOR_MODE (MODE1) \
968 : ALTIVEC_VECTOR_MODE (MODE1) \
969 ? ALTIVEC_VECTOR_MODE (MODE2) \
970 : ALTIVEC_VECTOR_MODE (MODE2) \
971 ? ALTIVEC_VECTOR_MODE (MODE1) \
972 : 1)
973
974 /* Post-reload, we can't use any new AltiVec registers, as we already
975 emitted the vrsave mask. */
976
977 #define HARD_REGNO_RENAME_OK(SRC, DST) \
978 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
979
980 /* A C expression returning the cost of moving data from a register of class
981 CLASS1 to one of CLASS2. */
982
983 #define REGISTER_MOVE_COST rs6000_register_move_cost
984
985 /* A C expressions returning the cost of moving data of MODE from a register to
986 or from memory. */
987
988 #define MEMORY_MOVE_COST rs6000_memory_move_cost
989
990 /* Specify the cost of a branch insn; roughly the number of extra insns that
991 should be added to avoid a branch.
992
993 Set this to 3 on the RS/6000 since that is roughly the average cost of an
994 unscheduled conditional branch. */
995
996 #define BRANCH_COST(speed_p, predictable_p) 3
997
998 /* Override BRANCH_COST heuristic which empirically produces worse
999 performance for removing short circuiting from the logical ops. */
1000
1001 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1002
1003 /* A fixed register used at epilogue generation to address SPE registers
1004 with negative offsets. The 64-bit load/store instructions on the SPE
1005 only take positive offsets (and small ones at that), so we need to
1006 reserve a register for consing up negative offsets. */
1007
1008 #define FIXED_SCRATCH 0
1009
1010 /* Define this macro to change register usage conditional on target
1011 flags. */
1012
1013 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
1014
1015 /* Specify the registers used for certain standard purposes.
1016 The values of these macros are register numbers. */
1017
1018 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1019 /* #define PC_REGNUM */
1020
1021 /* Register to use for pushing function arguments. */
1022 #define STACK_POINTER_REGNUM 1
1023
1024 /* Base register for access to local variables of the function. */
1025 #define HARD_FRAME_POINTER_REGNUM 31
1026
1027 /* Base register for access to local variables of the function. */
1028 #define FRAME_POINTER_REGNUM 113
1029
1030 /* Base register for access to arguments of the function. */
1031 #define ARG_POINTER_REGNUM 67
1032
1033 /* Place to put static chain when calling a function that requires it. */
1034 #define STATIC_CHAIN_REGNUM 11
1035
1036 \f
1037 /* Define the classes of registers for register constraints in the
1038 machine description. Also define ranges of constants.
1039
1040 One of the classes must always be named ALL_REGS and include all hard regs.
1041 If there is more than one class, another class must be named NO_REGS
1042 and contain no registers.
1043
1044 The name GENERAL_REGS must be the name of a class (or an alias for
1045 another name such as ALL_REGS). This is the class of registers
1046 that is allowed by "g" or "r" in a register constraint.
1047 Also, registers outside this class are allocated only when
1048 instructions express preferences for them.
1049
1050 The classes must be numbered in nondecreasing order; that is,
1051 a larger-numbered class must never be contained completely
1052 in a smaller-numbered class.
1053
1054 For any two classes, it is very desirable that there be another
1055 class that represents their union. */
1056
1057 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1058 and condition registers, plus three special registers, MQ, CTR, and the
1059 link register. AltiVec adds a vector register class.
1060
1061 However, r0 is special in that it cannot be used as a base register.
1062 So make a class for registers valid as base registers.
1063
1064 Also, cr0 is the only condition code register that can be used in
1065 arithmetic insns, so make a separate class for it. */
1066
1067 enum reg_class
1068 {
1069 NO_REGS,
1070 BASE_REGS,
1071 GENERAL_REGS,
1072 FLOAT_REGS,
1073 ALTIVEC_REGS,
1074 VRSAVE_REGS,
1075 VSCR_REGS,
1076 SPE_ACC_REGS,
1077 SPEFSCR_REGS,
1078 NON_SPECIAL_REGS,
1079 MQ_REGS,
1080 LINK_REGS,
1081 CTR_REGS,
1082 LINK_OR_CTR_REGS,
1083 SPECIAL_REGS,
1084 SPEC_OR_GEN_REGS,
1085 CR0_REGS,
1086 CR_REGS,
1087 NON_FLOAT_REGS,
1088 XER_REGS,
1089 ALL_REGS,
1090 LIM_REG_CLASSES
1091 };
1092
1093 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1094
1095 /* Give names of register classes as strings for dump file. */
1096
1097 #define REG_CLASS_NAMES \
1098 { \
1099 "NO_REGS", \
1100 "BASE_REGS", \
1101 "GENERAL_REGS", \
1102 "FLOAT_REGS", \
1103 "ALTIVEC_REGS", \
1104 "VRSAVE_REGS", \
1105 "VSCR_REGS", \
1106 "SPE_ACC_REGS", \
1107 "SPEFSCR_REGS", \
1108 "NON_SPECIAL_REGS", \
1109 "MQ_REGS", \
1110 "LINK_REGS", \
1111 "CTR_REGS", \
1112 "LINK_OR_CTR_REGS", \
1113 "SPECIAL_REGS", \
1114 "SPEC_OR_GEN_REGS", \
1115 "CR0_REGS", \
1116 "CR_REGS", \
1117 "NON_FLOAT_REGS", \
1118 "XER_REGS", \
1119 "ALL_REGS" \
1120 }
1121
1122 /* Define which registers fit in which classes.
1123 This is an initializer for a vector of HARD_REG_SET
1124 of length N_REG_CLASSES. */
1125
1126 #define REG_CLASS_CONTENTS \
1127 { \
1128 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1129 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1130 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1131 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1132 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1133 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1134 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1135 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1136 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1137 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1138 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1139 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1140 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1141 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1142 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1143 { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1144 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1145 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1146 { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */ \
1147 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1148 { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \
1149 }
1150
1151 /* The following macro defines cover classes for Integrated Register
1152 Allocator. Cover classes is a set of non-intersected register
1153 classes covering all hard registers used for register allocation
1154 purpose. Any move between two registers of a cover class should be
1155 cheaper than load or store of the registers. The macro value is
1156 array of register classes with LIM_REG_CLASSES used as the end
1157 marker. */
1158
1159 #define IRA_COVER_CLASSES \
1160 { \
1161 GENERAL_REGS, SPECIAL_REGS, FLOAT_REGS, ALTIVEC_REGS, \
1162 /*VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, \
1163 /* MQ_REGS, LINK_REGS, CTR_REGS, */ \
1164 CR_REGS, XER_REGS, LIM_REG_CLASSES \
1165 }
1166
1167 /* The same information, inverted:
1168 Return the class number of the smallest class containing
1169 reg number REGNO. This could be a conditional expression
1170 or could index an array. */
1171
1172 #define REGNO_REG_CLASS(REGNO) \
1173 ((REGNO) == 0 ? GENERAL_REGS \
1174 : (REGNO) < 32 ? BASE_REGS \
1175 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1176 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1177 : (REGNO) == CR0_REGNO ? CR0_REGS \
1178 : CR_REGNO_P (REGNO) ? CR_REGS \
1179 : (REGNO) == MQ_REGNO ? MQ_REGS \
1180 : (REGNO) == LR_REGNO ? LINK_REGS \
1181 : (REGNO) == CTR_REGNO ? CTR_REGS \
1182 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1183 : (REGNO) == XER_REGNO ? XER_REGS \
1184 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1185 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1186 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1187 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1188 : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS \
1189 : NO_REGS)
1190
1191 /* The class value for index registers, and the one for base regs. */
1192 #define INDEX_REG_CLASS GENERAL_REGS
1193 #define BASE_REG_CLASS BASE_REGS
1194
1195 /* Given an rtx X being reloaded into a reg required to be
1196 in class CLASS, return the class of reg to actually use.
1197 In general this is just CLASS; but on some machines
1198 in some cases it is preferable to use a more restrictive class.
1199
1200 On the RS/6000, we have to return NO_REGS when we want to reload a
1201 floating-point CONST_DOUBLE to force it to be copied to memory.
1202
1203 We also don't want to reload integer values into floating-point
1204 registers if we can at all help it. In fact, this can
1205 cause reload to die, if it tries to generate a reload of CTR
1206 into a FP register and discovers it doesn't have the memory location
1207 required.
1208
1209 ??? Would it be a good idea to have reload do the converse, that is
1210 try to reload floating modes into FP registers if possible?
1211 */
1212
1213 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1214 ((CONSTANT_P (X) \
1215 && reg_classes_intersect_p ((CLASS), FLOAT_REGS)) \
1216 ? NO_REGS \
1217 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1218 && (CLASS) == NON_SPECIAL_REGS) \
1219 ? GENERAL_REGS \
1220 : (CLASS))
1221
1222 /* Return the register class of a scratch register needed to copy IN into
1223 or out of a register in CLASS in MODE. If it can be done directly,
1224 NO_REGS is returned. */
1225
1226 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1227 rs6000_secondary_reload_class (CLASS, MODE, IN)
1228
1229 /* If we are copying between FP or AltiVec registers and anything
1230 else, we need a memory location. The exception is when we are
1231 targeting ppc64 and the move to/from fpr to gpr instructions
1232 are available.*/
1233
1234 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1235 ((CLASS1) != (CLASS2) && (((CLASS1) == FLOAT_REGS \
1236 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1237 || ((MODE != DFmode) \
1238 && (MODE != DDmode) \
1239 && (MODE != DImode)))) \
1240 || ((CLASS2) == FLOAT_REGS \
1241 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1242 || ((MODE != DFmode) \
1243 && (MODE != DDmode) \
1244 && (MODE != DImode)))) \
1245 || (CLASS1) == ALTIVEC_REGS \
1246 || (CLASS2) == ALTIVEC_REGS))
1247
1248 /* For cpus that cannot load/store SDmode values from the 64-bit
1249 FP registers without using a full 64-bit load/store, we need
1250 to allocate a full 64-bit stack slot for them. */
1251
1252 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1253 rs6000_secondary_memory_needed_rtx (MODE)
1254
1255 /* Return the maximum number of consecutive registers
1256 needed to represent mode MODE in a register of class CLASS.
1257
1258 On RS/6000, this is the size of MODE in words,
1259 except in the FP regs, where a single reg is enough for two words. */
1260 #define CLASS_MAX_NREGS(CLASS, MODE) \
1261 (((CLASS) == FLOAT_REGS) \
1262 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1263 : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS \
1264 && (MODE) == DFmode) \
1265 ? 1 \
1266 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1267
1268 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1269
1270 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1271 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1272 ? ((GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8 \
1273 || TARGET_IEEEQUAD) \
1274 && reg_classes_intersect_p (FLOAT_REGS, CLASS)) \
1275 : (((TARGET_E500_DOUBLE \
1276 && ((((TO) == DFmode) + ((FROM) == DFmode)) == 1 \
1277 || (((TO) == TFmode) + ((FROM) == TFmode)) == 1 \
1278 || (((TO) == DDmode) + ((FROM) == DDmode)) == 1 \
1279 || (((TO) == TDmode) + ((FROM) == TDmode)) == 1 \
1280 || (((TO) == DImode) + ((FROM) == DImode)) == 1)) \
1281 || (TARGET_SPE \
1282 && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1)) \
1283 && reg_classes_intersect_p (GENERAL_REGS, CLASS)))
1284
1285 /* Stack layout; function entry, exit and calling. */
1286
1287 /* Enumeration to give which calling sequence to use. */
1288 enum rs6000_abi {
1289 ABI_NONE,
1290 ABI_AIX, /* IBM's AIX */
1291 ABI_V4, /* System V.4/eabi */
1292 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1293 };
1294
1295 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1296
1297 /* Define this if pushing a word on the stack
1298 makes the stack pointer a smaller address. */
1299 #define STACK_GROWS_DOWNWARD
1300
1301 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1302 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1303
1304 /* Define this to nonzero if the nominal address of the stack frame
1305 is at the high-address end of the local variables;
1306 that is, each additional local variable allocated
1307 goes at a more negative offset in the frame.
1308
1309 On the RS/6000, we grow upwards, from the area after the outgoing
1310 arguments. */
1311 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1312
1313 /* Size of the outgoing register save area */
1314 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1315 || DEFAULT_ABI == ABI_DARWIN) \
1316 ? (TARGET_64BIT ? 64 : 32) \
1317 : 0)
1318
1319 /* Size of the fixed area on the stack */
1320 #define RS6000_SAVE_AREA \
1321 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1322 << (TARGET_64BIT ? 1 : 0))
1323
1324 /* MEM representing address to save the TOC register */
1325 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1326 plus_constant (stack_pointer_rtx, \
1327 (TARGET_32BIT ? 20 : 40)))
1328
1329 /* Align an address */
1330 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1331
1332 /* Offset within stack frame to start allocating local variables at.
1333 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1334 first local allocated. Otherwise, it is the offset to the BEGINNING
1335 of the first local allocated.
1336
1337 On the RS/6000, the frame pointer is the same as the stack pointer,
1338 except for dynamic allocations. So we start after the fixed area and
1339 outgoing parameter area. */
1340
1341 #define STARTING_FRAME_OFFSET \
1342 (FRAME_GROWS_DOWNWARD \
1343 ? 0 \
1344 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1345 TARGET_ALTIVEC ? 16 : 8) \
1346 + RS6000_SAVE_AREA))
1347
1348 /* Offset from the stack pointer register to an item dynamically
1349 allocated on the stack, e.g., by `alloca'.
1350
1351 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1352 length of the outgoing arguments. The default is correct for most
1353 machines. See `function.c' for details. */
1354 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1355 (RS6000_ALIGN (crtl->outgoing_args_size, \
1356 TARGET_ALTIVEC ? 16 : 8) \
1357 + (STACK_POINTER_OFFSET))
1358
1359 /* If we generate an insn to push BYTES bytes,
1360 this says how many the stack pointer really advances by.
1361 On RS/6000, don't define this because there are no push insns. */
1362 /* #define PUSH_ROUNDING(BYTES) */
1363
1364 /* Offset of first parameter from the argument pointer register value.
1365 On the RS/6000, we define the argument pointer to the start of the fixed
1366 area. */
1367 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1368
1369 /* Offset from the argument pointer register value to the top of
1370 stack. This is different from FIRST_PARM_OFFSET because of the
1371 register save area. */
1372 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1373
1374 /* Define this if stack space is still allocated for a parameter passed
1375 in a register. The value is the number of bytes allocated to this
1376 area. */
1377 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1378
1379 /* Define this if the above stack space is to be considered part of the
1380 space allocated by the caller. */
1381 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1382
1383 /* This is the difference between the logical top of stack and the actual sp.
1384
1385 For the RS/6000, sp points past the fixed area. */
1386 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1387
1388 /* Define this if the maximum size of all the outgoing args is to be
1389 accumulated and pushed during the prologue. The amount can be
1390 found in the variable crtl->outgoing_args_size. */
1391 #define ACCUMULATE_OUTGOING_ARGS 1
1392
1393 /* Value is the number of bytes of arguments automatically
1394 popped when returning from a subroutine call.
1395 FUNDECL is the declaration node of the function (as a tree),
1396 FUNTYPE is the data type of the function (as a tree),
1397 or for a library call it is an identifier node for the subroutine name.
1398 SIZE is the number of bytes of arguments passed on the stack. */
1399
1400 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1401
1402 /* Define how to find the value returned by a function.
1403 VALTYPE is the data type of the value (as a tree).
1404 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1405 otherwise, FUNC is 0. */
1406
1407 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1408
1409 /* Define how to find the value returned by a library function
1410 assuming the value has mode MODE. */
1411
1412 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1413
1414 /* DRAFT_V4_STRUCT_RET defaults off. */
1415 #define DRAFT_V4_STRUCT_RET 0
1416
1417 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1418 #define DEFAULT_PCC_STRUCT_RETURN 0
1419
1420 /* Mode of stack savearea.
1421 FUNCTION is VOIDmode because calling convention maintains SP.
1422 BLOCK needs Pmode for SP.
1423 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1424 #define STACK_SAVEAREA_MODE(LEVEL) \
1425 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1426 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1427
1428 /* Minimum and maximum general purpose registers used to hold arguments. */
1429 #define GP_ARG_MIN_REG 3
1430 #define GP_ARG_MAX_REG 10
1431 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1432
1433 /* Minimum and maximum floating point registers used to hold arguments. */
1434 #define FP_ARG_MIN_REG 33
1435 #define FP_ARG_AIX_MAX_REG 45
1436 #define FP_ARG_V4_MAX_REG 40
1437 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1438 || DEFAULT_ABI == ABI_DARWIN) \
1439 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1440 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1441
1442 /* Minimum and maximum AltiVec registers used to hold arguments. */
1443 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1444 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1445 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1446
1447 /* Return registers */
1448 #define GP_ARG_RETURN GP_ARG_MIN_REG
1449 #define FP_ARG_RETURN FP_ARG_MIN_REG
1450 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1451
1452 /* Flags for the call/call_value rtl operations set up by function_arg */
1453 #define CALL_NORMAL 0x00000000 /* no special processing */
1454 /* Bits in 0x00000001 are unused. */
1455 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1456 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1457 #define CALL_LONG 0x00000008 /* always call indirect */
1458 #define CALL_LIBCALL 0x00000010 /* libcall */
1459
1460 /* We don't have prologue and epilogue functions to save/restore
1461 everything for most ABIs. */
1462 #define WORLD_SAVE_P(INFO) 0
1463
1464 /* 1 if N is a possible register number for a function value
1465 as seen by the caller.
1466
1467 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1468 #define FUNCTION_VALUE_REGNO_P(N) \
1469 ((N) == GP_ARG_RETURN \
1470 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1471 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1472
1473 /* 1 if N is a possible register number for function argument passing.
1474 On RS/6000, these are r3-r10 and fp1-fp13.
1475 On AltiVec, v2 - v13 are used for passing vectors. */
1476 #define FUNCTION_ARG_REGNO_P(N) \
1477 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1478 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1479 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1480 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1481 && TARGET_HARD_FLOAT && TARGET_FPRS))
1482 \f
1483 /* Define a data type for recording info about an argument list
1484 during the scan of that argument list. This data type should
1485 hold all necessary information about the function itself
1486 and about the args processed so far, enough to enable macros
1487 such as FUNCTION_ARG to determine where the next arg should go.
1488
1489 On the RS/6000, this is a structure. The first element is the number of
1490 total argument words, the second is used to store the next
1491 floating-point register number, and the third says how many more args we
1492 have prototype types for.
1493
1494 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1495 the next available GP register, `fregno' is the next available FP
1496 register, and `words' is the number of words used on the stack.
1497
1498 The varargs/stdarg support requires that this structure's size
1499 be a multiple of sizeof(int). */
1500
1501 typedef struct rs6000_args
1502 {
1503 int words; /* # words used for passing GP registers */
1504 int fregno; /* next available FP register */
1505 int vregno; /* next available AltiVec register */
1506 int nargs_prototype; /* # args left in the current prototype */
1507 int prototype; /* Whether a prototype was defined */
1508 int stdarg; /* Whether function is a stdarg function. */
1509 int call_cookie; /* Do special things for this call */
1510 int sysv_gregno; /* next available GP register */
1511 int intoffset; /* running offset in struct (darwin64) */
1512 int use_stack; /* any part of struct on stack (darwin64) */
1513 int named; /* false for varargs params */
1514 } CUMULATIVE_ARGS;
1515
1516 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1517 for a call to a function whose data type is FNTYPE.
1518 For a library call, FNTYPE is 0. */
1519
1520 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1521 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1522
1523 /* Similar, but when scanning the definition of a procedure. We always
1524 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1525
1526 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1527 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1528
1529 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1530
1531 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1532 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1533
1534 /* Update the data in CUM to advance over an argument
1535 of mode MODE and data type TYPE.
1536 (TYPE is null for libcalls where that information may not be available.) */
1537
1538 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1539 function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1540
1541 /* Determine where to put an argument to a function.
1542 Value is zero to push the argument on the stack,
1543 or a hard register in which to store the argument.
1544
1545 MODE is the argument's machine mode.
1546 TYPE is the data type of the argument (as a tree).
1547 This is null for libcalls where that information may
1548 not be available.
1549 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1550 the preceding args and about the function being called.
1551 NAMED is nonzero if this argument is a named parameter
1552 (otherwise it is an extra parameter matching an ellipsis).
1553
1554 On RS/6000 the first eight words of non-FP are normally in registers
1555 and the rest are pushed. The first 13 FP args are in registers.
1556
1557 If this is floating-point and no prototype is specified, we use
1558 both an FP and integer register (or possibly FP reg and stack). Library
1559 functions (when TYPE is zero) always have the proper types for args,
1560 so we can pass the FP value just in one register. emit_library_function
1561 doesn't support EXPR_LIST anyway. */
1562
1563 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1564 function_arg (&CUM, MODE, TYPE, NAMED)
1565
1566 /* If defined, a C expression which determines whether, and in which
1567 direction, to pad out an argument with extra space. The value
1568 should be of type `enum direction': either `upward' to pad above
1569 the argument, `downward' to pad below, or `none' to inhibit
1570 padding. */
1571
1572 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1573
1574 /* If defined, a C expression that gives the alignment boundary, in bits,
1575 of an argument with the specified mode and type. If it is not defined,
1576 PARM_BOUNDARY is used for all arguments. */
1577
1578 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1579 function_arg_boundary (MODE, TYPE)
1580
1581 #define PAD_VARARGS_DOWN \
1582 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1583
1584 /* Output assembler code to FILE to increment profiler label # LABELNO
1585 for profiling a function entry. */
1586
1587 #define FUNCTION_PROFILER(FILE, LABELNO) \
1588 output_function_profiler ((FILE), (LABELNO));
1589
1590 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1591 the stack pointer does not matter. No definition is equivalent to
1592 always zero.
1593
1594 On the RS/6000, this is nonzero because we can restore the stack from
1595 its backpointer, which we maintain. */
1596 #define EXIT_IGNORE_STACK 1
1597
1598 /* Define this macro as a C expression that is nonzero for registers
1599 that are used by the epilogue or the return' pattern. The stack
1600 and frame pointer registers are already be assumed to be used as
1601 needed. */
1602
1603 #define EPILOGUE_USES(REGNO) \
1604 ((reload_completed && (REGNO) == LR_REGNO) \
1605 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1606 || (crtl->calls_eh_return \
1607 && TARGET_AIX \
1608 && (REGNO) == 2))
1609
1610 \f
1611 /* TRAMPOLINE_TEMPLATE deleted */
1612
1613 /* Length in units of the trampoline for entering a nested function. */
1614
1615 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1616
1617 /* Emit RTL insns to initialize the variable parts of a trampoline.
1618 FNADDR is an RTX for the address of the function's pure code.
1619 CXT is an RTX for the static chain value for the function. */
1620
1621 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1622 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1623 \f
1624 /* Definitions for __builtin_return_address and __builtin_frame_address.
1625 __builtin_return_address (0) should give link register (65), enable
1626 this. */
1627 /* This should be uncommented, so that the link register is used, but
1628 currently this would result in unmatched insns and spilling fixed
1629 registers so we'll leave it for another day. When these problems are
1630 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1631 (mrs) */
1632 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1633
1634 /* Number of bytes into the frame return addresses can be found. See
1635 rs6000_stack_info in rs6000.c for more information on how the different
1636 abi's store the return address. */
1637 #define RETURN_ADDRESS_OFFSET \
1638 ((DEFAULT_ABI == ABI_AIX \
1639 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1640 (DEFAULT_ABI == ABI_V4) ? 4 : \
1641 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1642
1643 /* The current return address is in link register (65). The return address
1644 of anything farther back is accessed normally at an offset of 8 from the
1645 frame pointer. */
1646 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1647 (rs6000_return_addr (COUNT, FRAME))
1648
1649 \f
1650 /* Definitions for register eliminations.
1651
1652 We have two registers that can be eliminated on the RS/6000. First, the
1653 frame pointer register can often be eliminated in favor of the stack
1654 pointer register. Secondly, the argument pointer register can always be
1655 eliminated; it is replaced with either the stack or frame pointer.
1656
1657 In addition, we use the elimination mechanism to see if r30 is needed
1658 Initially we assume that it isn't. If it is, we spill it. This is done
1659 by making it an eliminable register. We replace it with itself so that
1660 if it isn't needed, then existing uses won't be modified. */
1661
1662 /* This is an array of structures. Each structure initializes one pair
1663 of eliminable registers. The "from" register number is given first,
1664 followed by "to". Eliminations of the same "from" register are listed
1665 in order of preference. */
1666 #define ELIMINABLE_REGS \
1667 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1668 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1669 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1670 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1671 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1672 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1673
1674 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1675 Frame pointer elimination is automatically handled.
1676
1677 For the RS/6000, if frame pointer elimination is being done, we would like
1678 to convert ap into fp, not sp.
1679
1680 We need r30 if -mminimal-toc was specified, and there are constant pool
1681 references. */
1682
1683 #define CAN_ELIMINATE(FROM, TO) \
1684 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1685 ? ! frame_pointer_needed \
1686 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1687 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1688 : 1)
1689
1690 /* Define the offset between two registers, one to be eliminated, and the other
1691 its replacement, at the start of a routine. */
1692 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1693 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1694 \f
1695 /* Addressing modes, and classification of registers for them. */
1696
1697 #define HAVE_PRE_DECREMENT 1
1698 #define HAVE_PRE_INCREMENT 1
1699 #define HAVE_PRE_MODIFY_DISP 1
1700 #define HAVE_PRE_MODIFY_REG 1
1701
1702 /* Macros to check register numbers against specific register classes. */
1703
1704 /* These assume that REGNO is a hard or pseudo reg number.
1705 They give nonzero only if REGNO is a hard reg of the suitable class
1706 or a pseudo reg currently allocated to a suitable hard reg.
1707 Since they use reg_renumber, they are safe only once reg_renumber
1708 has been allocated, which happens in local-alloc.c. */
1709
1710 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1711 ((REGNO) < FIRST_PSEUDO_REGISTER \
1712 ? (REGNO) <= 31 || (REGNO) == 67 \
1713 || (REGNO) == FRAME_POINTER_REGNUM \
1714 : (reg_renumber[REGNO] >= 0 \
1715 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1716 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1717
1718 #define REGNO_OK_FOR_BASE_P(REGNO) \
1719 ((REGNO) < FIRST_PSEUDO_REGISTER \
1720 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1721 || (REGNO) == FRAME_POINTER_REGNUM \
1722 : (reg_renumber[REGNO] > 0 \
1723 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1724 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1725
1726 /* Nonzero if X is a hard reg that can be used as an index
1727 or if it is a pseudo reg in the non-strict case. */
1728 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1729 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1730 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1731
1732 /* Nonzero if X is a hard reg that can be used as a base reg
1733 or if it is a pseudo reg in the non-strict case. */
1734 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1735 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1736 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1737
1738 \f
1739 /* Maximum number of registers that can appear in a valid memory address. */
1740
1741 #define MAX_REGS_PER_ADDRESS 2
1742
1743 /* Recognize any constant value that is a valid address. */
1744
1745 #define CONSTANT_ADDRESS_P(X) \
1746 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1747 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1748 || GET_CODE (X) == HIGH)
1749
1750 /* Nonzero if the constant value X is a legitimate general operand.
1751 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1752
1753 On the RS/6000, all integer constants are acceptable, most won't be valid
1754 for particular insns, though. Only easy FP constants are
1755 acceptable. */
1756
1757 #define LEGITIMATE_CONSTANT_P(X) \
1758 (((GET_CODE (X) != CONST_DOUBLE \
1759 && GET_CODE (X) != CONST_VECTOR) \
1760 || GET_MODE (X) == VOIDmode \
1761 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1762 || easy_fp_constant (X, GET_MODE (X)) \
1763 || easy_vector_constant (X, GET_MODE (X))) \
1764 && !rs6000_tls_referenced_p (X))
1765
1766 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1767 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1768 && EASY_VECTOR_15((n) >> 1) \
1769 && ((n) & 1) == 0)
1770
1771 \f
1772 /* Try a machine-dependent way of reloading an illegitimate address
1773 operand. If we find one, push the reload and jump to WIN. This
1774 macro is used in only one place: `find_reloads_address' in reload.c.
1775
1776 Implemented on rs6000 by rs6000_legitimize_reload_address.
1777 Note that (X) is evaluated twice; this is safe in current usage. */
1778
1779 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1780 do { \
1781 int win; \
1782 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
1783 (int)(TYPE), (IND_LEVELS), &win); \
1784 if ( win ) \
1785 goto WIN; \
1786 } while (0)
1787
1788 /* Go to LABEL if ADDR (a legitimate address expression)
1789 has an effect that depends on the machine mode it is used for. */
1790
1791 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1792 do { \
1793 if (rs6000_mode_dependent_address (ADDR)) \
1794 goto LABEL; \
1795 } while (0)
1796
1797 #define FIND_BASE_TERM rs6000_find_base_term
1798 \f
1799 /* The register number of the register used to address a table of
1800 static data addresses in memory. In some cases this register is
1801 defined by a processor's "application binary interface" (ABI).
1802 When this macro is defined, RTL is generated for this register
1803 once, as with the stack pointer and frame pointer registers. If
1804 this macro is not defined, it is up to the machine-dependent files
1805 to allocate such a register (if necessary). */
1806
1807 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1808 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1809
1810 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1811
1812 /* Define this macro if the register defined by
1813 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1814 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1815
1816 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1817
1818 /* A C expression that is nonzero if X is a legitimate immediate
1819 operand on the target machine when generating position independent
1820 code. You can assume that X satisfies `CONSTANT_P', so you need
1821 not check this. You can also assume FLAG_PIC is true, so you need
1822 not check it either. You need not define this macro if all
1823 constants (including `SYMBOL_REF') can be immediate operands when
1824 generating position independent code. */
1825
1826 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1827 \f
1828 /* Define this if some processing needs to be done immediately before
1829 emitting code for an insn. */
1830
1831 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1832 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1833
1834 /* Specify the machine mode that this machine uses
1835 for the index in the tablejump instruction. */
1836 #define CASE_VECTOR_MODE SImode
1837
1838 /* Define as C expression which evaluates to nonzero if the tablejump
1839 instruction expects the table to contain offsets from the address of the
1840 table.
1841 Do not define this if the table should contain absolute addresses. */
1842 #define CASE_VECTOR_PC_RELATIVE 1
1843
1844 /* Define this as 1 if `char' should by default be signed; else as 0. */
1845 #define DEFAULT_SIGNED_CHAR 0
1846
1847 /* This flag, if defined, says the same insns that convert to a signed fixnum
1848 also convert validly to an unsigned one. */
1849
1850 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1851
1852 /* An integer expression for the size in bits of the largest integer machine
1853 mode that should actually be used. */
1854
1855 /* Allow pairs of registers to be used, which is the intent of the default. */
1856 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1857
1858 /* Max number of bytes we can move from memory to memory
1859 in one reasonably fast instruction. */
1860 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1861 #define MAX_MOVE_MAX 8
1862
1863 /* Nonzero if access to memory by bytes is no faster than for words.
1864 Also nonzero if doing byte operations (specifically shifts) in registers
1865 is undesirable. */
1866 #define SLOW_BYTE_ACCESS 1
1867
1868 /* Define if operations between registers always perform the operation
1869 on the full register even if a narrower mode is specified. */
1870 #define WORD_REGISTER_OPERATIONS
1871
1872 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1873 will either zero-extend or sign-extend. The value of this macro should
1874 be the code that says which one of the two operations is implicitly
1875 done, UNKNOWN if none. */
1876 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1877
1878 /* Define if loading short immediate values into registers sign extends. */
1879 #define SHORT_IMMEDIATES_SIGN_EXTEND
1880 \f
1881 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1882 is done just by pretending it is already truncated. */
1883 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1884
1885 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1886 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1887 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1888
1889 /* The CTZ patterns return -1 for input of zero. */
1890 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1891
1892 /* Specify the machine mode that pointers have.
1893 After generation of rtl, the compiler makes no further distinction
1894 between pointers and any other objects of this machine mode. */
1895 #define Pmode (TARGET_32BIT ? SImode : DImode)
1896
1897 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1898 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1899
1900 /* Mode of a function address in a call instruction (for indexing purposes).
1901 Doesn't matter on RS/6000. */
1902 #define FUNCTION_MODE SImode
1903
1904 /* Define this if addresses of constant functions
1905 shouldn't be put through pseudo regs where they can be cse'd.
1906 Desirable on machines where ordinary constants are expensive
1907 but a CALL with constant address is cheap. */
1908 #define NO_FUNCTION_CSE
1909
1910 /* Define this to be nonzero if shift instructions ignore all but the low-order
1911 few bits.
1912
1913 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1914 have been dropped from the PowerPC architecture. */
1915
1916 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1917
1918 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
1919 should be adjusted to reflect any required changes. This macro is used when
1920 there is some systematic length adjustment required that would be difficult
1921 to express in the length attribute. */
1922
1923 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
1924
1925 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
1926 COMPARE, return the mode to be used for the comparison. For
1927 floating-point, CCFPmode should be used. CCUNSmode should be used
1928 for unsigned comparisons. CCEQmode should be used when we are
1929 doing an inequality comparison on the result of a
1930 comparison. CCmode should be used in all other cases. */
1931
1932 #define SELECT_CC_MODE(OP,X,Y) \
1933 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
1934 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
1935 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
1936 ? CCEQmode : CCmode))
1937
1938 /* Can the condition code MODE be safely reversed? This is safe in
1939 all cases on this port, because at present it doesn't use the
1940 trapping FP comparisons (fcmpo). */
1941 #define REVERSIBLE_CC_MODE(MODE) 1
1942
1943 /* Given a condition code and a mode, return the inverse condition. */
1944 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
1945
1946 \f
1947 /* Control the assembler format that we output. */
1948
1949 /* A C string constant describing how to begin a comment in the target
1950 assembler language. The compiler assumes that the comment will end at
1951 the end of the line. */
1952 #define ASM_COMMENT_START " #"
1953
1954 /* Flag to say the TOC is initialized */
1955 extern int toc_initialized;
1956
1957 /* Macro to output a special constant pool entry. Go to WIN if we output
1958 it. Otherwise, it is written the usual way.
1959
1960 On the RS/6000, toc entries are handled this way. */
1961
1962 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
1963 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
1964 { \
1965 output_toc (FILE, X, LABELNO, MODE); \
1966 goto WIN; \
1967 } \
1968 }
1969
1970 #ifdef HAVE_GAS_WEAK
1971 #define RS6000_WEAK 1
1972 #else
1973 #define RS6000_WEAK 0
1974 #endif
1975
1976 #if RS6000_WEAK
1977 /* Used in lieu of ASM_WEAKEN_LABEL. */
1978 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
1979 do \
1980 { \
1981 fputs ("\t.weak\t", (FILE)); \
1982 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1983 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1984 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1985 { \
1986 if (TARGET_XCOFF) \
1987 fputs ("[DS]", (FILE)); \
1988 fputs ("\n\t.weak\t.", (FILE)); \
1989 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
1990 } \
1991 fputc ('\n', (FILE)); \
1992 if (VAL) \
1993 { \
1994 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
1995 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
1996 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
1997 { \
1998 fputs ("\t.set\t.", (FILE)); \
1999 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2000 fputs (",.", (FILE)); \
2001 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2002 fputc ('\n', (FILE)); \
2003 } \
2004 } \
2005 } \
2006 while (0)
2007 #endif
2008
2009 #if HAVE_GAS_WEAKREF
2010 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2011 do \
2012 { \
2013 fputs ("\t.weakref\t", (FILE)); \
2014 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2015 fputs (", ", (FILE)); \
2016 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2017 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2018 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2019 { \
2020 fputs ("\n\t.weakref\t.", (FILE)); \
2021 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2022 fputs (", .", (FILE)); \
2023 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2024 } \
2025 fputc ('\n', (FILE)); \
2026 } while (0)
2027 #endif
2028
2029 /* This implements the `alias' attribute. */
2030 #undef ASM_OUTPUT_DEF_FROM_DECLS
2031 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2032 do \
2033 { \
2034 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2035 const char *name = IDENTIFIER_POINTER (TARGET); \
2036 if (TREE_CODE (DECL) == FUNCTION_DECL \
2037 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2038 { \
2039 if (TREE_PUBLIC (DECL)) \
2040 { \
2041 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2042 { \
2043 fputs ("\t.globl\t.", FILE); \
2044 RS6000_OUTPUT_BASENAME (FILE, alias); \
2045 putc ('\n', FILE); \
2046 } \
2047 } \
2048 else if (TARGET_XCOFF) \
2049 { \
2050 fputs ("\t.lglobl\t.", FILE); \
2051 RS6000_OUTPUT_BASENAME (FILE, alias); \
2052 putc ('\n', FILE); \
2053 } \
2054 fputs ("\t.set\t.", FILE); \
2055 RS6000_OUTPUT_BASENAME (FILE, alias); \
2056 fputs (",.", FILE); \
2057 RS6000_OUTPUT_BASENAME (FILE, name); \
2058 fputc ('\n', FILE); \
2059 } \
2060 ASM_OUTPUT_DEF (FILE, alias, name); \
2061 } \
2062 while (0)
2063
2064 #define TARGET_ASM_FILE_START rs6000_file_start
2065
2066 /* Output to assembler file text saying following lines
2067 may contain character constants, extra white space, comments, etc. */
2068
2069 #define ASM_APP_ON ""
2070
2071 /* Output to assembler file text saying following lines
2072 no longer contain unusual constructs. */
2073
2074 #define ASM_APP_OFF ""
2075
2076 /* How to refer to registers in assembler output.
2077 This sequence is indexed by compiler's hard-register-number (see above). */
2078
2079 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2080
2081 #define REGISTER_NAMES \
2082 { \
2083 &rs6000_reg_names[ 0][0], /* r0 */ \
2084 &rs6000_reg_names[ 1][0], /* r1 */ \
2085 &rs6000_reg_names[ 2][0], /* r2 */ \
2086 &rs6000_reg_names[ 3][0], /* r3 */ \
2087 &rs6000_reg_names[ 4][0], /* r4 */ \
2088 &rs6000_reg_names[ 5][0], /* r5 */ \
2089 &rs6000_reg_names[ 6][0], /* r6 */ \
2090 &rs6000_reg_names[ 7][0], /* r7 */ \
2091 &rs6000_reg_names[ 8][0], /* r8 */ \
2092 &rs6000_reg_names[ 9][0], /* r9 */ \
2093 &rs6000_reg_names[10][0], /* r10 */ \
2094 &rs6000_reg_names[11][0], /* r11 */ \
2095 &rs6000_reg_names[12][0], /* r12 */ \
2096 &rs6000_reg_names[13][0], /* r13 */ \
2097 &rs6000_reg_names[14][0], /* r14 */ \
2098 &rs6000_reg_names[15][0], /* r15 */ \
2099 &rs6000_reg_names[16][0], /* r16 */ \
2100 &rs6000_reg_names[17][0], /* r17 */ \
2101 &rs6000_reg_names[18][0], /* r18 */ \
2102 &rs6000_reg_names[19][0], /* r19 */ \
2103 &rs6000_reg_names[20][0], /* r20 */ \
2104 &rs6000_reg_names[21][0], /* r21 */ \
2105 &rs6000_reg_names[22][0], /* r22 */ \
2106 &rs6000_reg_names[23][0], /* r23 */ \
2107 &rs6000_reg_names[24][0], /* r24 */ \
2108 &rs6000_reg_names[25][0], /* r25 */ \
2109 &rs6000_reg_names[26][0], /* r26 */ \
2110 &rs6000_reg_names[27][0], /* r27 */ \
2111 &rs6000_reg_names[28][0], /* r28 */ \
2112 &rs6000_reg_names[29][0], /* r29 */ \
2113 &rs6000_reg_names[30][0], /* r30 */ \
2114 &rs6000_reg_names[31][0], /* r31 */ \
2115 \
2116 &rs6000_reg_names[32][0], /* fr0 */ \
2117 &rs6000_reg_names[33][0], /* fr1 */ \
2118 &rs6000_reg_names[34][0], /* fr2 */ \
2119 &rs6000_reg_names[35][0], /* fr3 */ \
2120 &rs6000_reg_names[36][0], /* fr4 */ \
2121 &rs6000_reg_names[37][0], /* fr5 */ \
2122 &rs6000_reg_names[38][0], /* fr6 */ \
2123 &rs6000_reg_names[39][0], /* fr7 */ \
2124 &rs6000_reg_names[40][0], /* fr8 */ \
2125 &rs6000_reg_names[41][0], /* fr9 */ \
2126 &rs6000_reg_names[42][0], /* fr10 */ \
2127 &rs6000_reg_names[43][0], /* fr11 */ \
2128 &rs6000_reg_names[44][0], /* fr12 */ \
2129 &rs6000_reg_names[45][0], /* fr13 */ \
2130 &rs6000_reg_names[46][0], /* fr14 */ \
2131 &rs6000_reg_names[47][0], /* fr15 */ \
2132 &rs6000_reg_names[48][0], /* fr16 */ \
2133 &rs6000_reg_names[49][0], /* fr17 */ \
2134 &rs6000_reg_names[50][0], /* fr18 */ \
2135 &rs6000_reg_names[51][0], /* fr19 */ \
2136 &rs6000_reg_names[52][0], /* fr20 */ \
2137 &rs6000_reg_names[53][0], /* fr21 */ \
2138 &rs6000_reg_names[54][0], /* fr22 */ \
2139 &rs6000_reg_names[55][0], /* fr23 */ \
2140 &rs6000_reg_names[56][0], /* fr24 */ \
2141 &rs6000_reg_names[57][0], /* fr25 */ \
2142 &rs6000_reg_names[58][0], /* fr26 */ \
2143 &rs6000_reg_names[59][0], /* fr27 */ \
2144 &rs6000_reg_names[60][0], /* fr28 */ \
2145 &rs6000_reg_names[61][0], /* fr29 */ \
2146 &rs6000_reg_names[62][0], /* fr30 */ \
2147 &rs6000_reg_names[63][0], /* fr31 */ \
2148 \
2149 &rs6000_reg_names[64][0], /* mq */ \
2150 &rs6000_reg_names[65][0], /* lr */ \
2151 &rs6000_reg_names[66][0], /* ctr */ \
2152 &rs6000_reg_names[67][0], /* ap */ \
2153 \
2154 &rs6000_reg_names[68][0], /* cr0 */ \
2155 &rs6000_reg_names[69][0], /* cr1 */ \
2156 &rs6000_reg_names[70][0], /* cr2 */ \
2157 &rs6000_reg_names[71][0], /* cr3 */ \
2158 &rs6000_reg_names[72][0], /* cr4 */ \
2159 &rs6000_reg_names[73][0], /* cr5 */ \
2160 &rs6000_reg_names[74][0], /* cr6 */ \
2161 &rs6000_reg_names[75][0], /* cr7 */ \
2162 \
2163 &rs6000_reg_names[76][0], /* xer */ \
2164 \
2165 &rs6000_reg_names[77][0], /* v0 */ \
2166 &rs6000_reg_names[78][0], /* v1 */ \
2167 &rs6000_reg_names[79][0], /* v2 */ \
2168 &rs6000_reg_names[80][0], /* v3 */ \
2169 &rs6000_reg_names[81][0], /* v4 */ \
2170 &rs6000_reg_names[82][0], /* v5 */ \
2171 &rs6000_reg_names[83][0], /* v6 */ \
2172 &rs6000_reg_names[84][0], /* v7 */ \
2173 &rs6000_reg_names[85][0], /* v8 */ \
2174 &rs6000_reg_names[86][0], /* v9 */ \
2175 &rs6000_reg_names[87][0], /* v10 */ \
2176 &rs6000_reg_names[88][0], /* v11 */ \
2177 &rs6000_reg_names[89][0], /* v12 */ \
2178 &rs6000_reg_names[90][0], /* v13 */ \
2179 &rs6000_reg_names[91][0], /* v14 */ \
2180 &rs6000_reg_names[92][0], /* v15 */ \
2181 &rs6000_reg_names[93][0], /* v16 */ \
2182 &rs6000_reg_names[94][0], /* v17 */ \
2183 &rs6000_reg_names[95][0], /* v18 */ \
2184 &rs6000_reg_names[96][0], /* v19 */ \
2185 &rs6000_reg_names[97][0], /* v20 */ \
2186 &rs6000_reg_names[98][0], /* v21 */ \
2187 &rs6000_reg_names[99][0], /* v22 */ \
2188 &rs6000_reg_names[100][0], /* v23 */ \
2189 &rs6000_reg_names[101][0], /* v24 */ \
2190 &rs6000_reg_names[102][0], /* v25 */ \
2191 &rs6000_reg_names[103][0], /* v26 */ \
2192 &rs6000_reg_names[104][0], /* v27 */ \
2193 &rs6000_reg_names[105][0], /* v28 */ \
2194 &rs6000_reg_names[106][0], /* v29 */ \
2195 &rs6000_reg_names[107][0], /* v30 */ \
2196 &rs6000_reg_names[108][0], /* v31 */ \
2197 &rs6000_reg_names[109][0], /* vrsave */ \
2198 &rs6000_reg_names[110][0], /* vscr */ \
2199 &rs6000_reg_names[111][0], /* spe_acc */ \
2200 &rs6000_reg_names[112][0], /* spefscr */ \
2201 &rs6000_reg_names[113][0], /* sfp */ \
2202 }
2203
2204 /* Table of additional register names to use in user input. */
2205
2206 #define ADDITIONAL_REGISTER_NAMES \
2207 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2208 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2209 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2210 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2211 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2212 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2213 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2214 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2215 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2216 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2217 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2218 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2219 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2220 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2221 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2222 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2223 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2224 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2225 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2226 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2227 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2228 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2229 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2230 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2231 {"vrsave", 109}, {"vscr", 110}, \
2232 {"spe_acc", 111}, {"spefscr", 112}, \
2233 /* no additional names for: mq, lr, ctr, ap */ \
2234 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2235 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2236 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2237
2238 /* Text to write out after a CALL that may be replaced by glue code by
2239 the loader. This depends on the AIX version. */
2240 #define RS6000_CALL_GLUE "cror 31,31,31"
2241
2242 /* This is how to output an element of a case-vector that is relative. */
2243
2244 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2245 do { char buf[100]; \
2246 fputs ("\t.long ", FILE); \
2247 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2248 assemble_name (FILE, buf); \
2249 putc ('-', FILE); \
2250 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2251 assemble_name (FILE, buf); \
2252 putc ('\n', FILE); \
2253 } while (0)
2254
2255 /* This is how to output an assembler line
2256 that says to advance the location counter
2257 to a multiple of 2**LOG bytes. */
2258
2259 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2260 if ((LOG) != 0) \
2261 fprintf (FILE, "\t.align %d\n", (LOG))
2262
2263 /* Pick up the return address upon entry to a procedure. Used for
2264 dwarf2 unwind information. This also enables the table driven
2265 mechanism. */
2266
2267 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2268 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2269
2270 /* Describe how we implement __builtin_eh_return. */
2271 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2272 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2273
2274 /* Print operand X (an rtx) in assembler syntax to file FILE.
2275 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2276 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2277
2278 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2279
2280 /* Define which CODE values are valid. */
2281
2282 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2283 ((CODE) == '.' || (CODE) == '&')
2284
2285 /* Print a memory address as an operand to reference that memory location. */
2286
2287 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2288
2289 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
2290 do \
2291 if (!rs6000_output_addr_const_extra (STREAM, X)) \
2292 goto FAIL; \
2293 while (0)
2294
2295 /* uncomment for disabling the corresponding default options */
2296 /* #define MACHINE_no_sched_interblock */
2297 /* #define MACHINE_no_sched_speculative */
2298 /* #define MACHINE_no_sched_speculative_load */
2299
2300 /* General flags. */
2301 extern int flag_pic;
2302 extern int optimize;
2303 extern int flag_expensive_optimizations;
2304 extern int frame_pointer_needed;
2305
2306 enum rs6000_builtins
2307 {
2308 /* AltiVec builtins. */
2309 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2310 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2311 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2312 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2313 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2314 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2315 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2316 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2317 ALTIVEC_BUILTIN_VADDUBM,
2318 ALTIVEC_BUILTIN_VADDUHM,
2319 ALTIVEC_BUILTIN_VADDUWM,
2320 ALTIVEC_BUILTIN_VADDFP,
2321 ALTIVEC_BUILTIN_VADDCUW,
2322 ALTIVEC_BUILTIN_VADDUBS,
2323 ALTIVEC_BUILTIN_VADDSBS,
2324 ALTIVEC_BUILTIN_VADDUHS,
2325 ALTIVEC_BUILTIN_VADDSHS,
2326 ALTIVEC_BUILTIN_VADDUWS,
2327 ALTIVEC_BUILTIN_VADDSWS,
2328 ALTIVEC_BUILTIN_VAND,
2329 ALTIVEC_BUILTIN_VANDC,
2330 ALTIVEC_BUILTIN_VAVGUB,
2331 ALTIVEC_BUILTIN_VAVGSB,
2332 ALTIVEC_BUILTIN_VAVGUH,
2333 ALTIVEC_BUILTIN_VAVGSH,
2334 ALTIVEC_BUILTIN_VAVGUW,
2335 ALTIVEC_BUILTIN_VAVGSW,
2336 ALTIVEC_BUILTIN_VCFUX,
2337 ALTIVEC_BUILTIN_VCFSX,
2338 ALTIVEC_BUILTIN_VCTSXS,
2339 ALTIVEC_BUILTIN_VCTUXS,
2340 ALTIVEC_BUILTIN_VCMPBFP,
2341 ALTIVEC_BUILTIN_VCMPEQUB,
2342 ALTIVEC_BUILTIN_VCMPEQUH,
2343 ALTIVEC_BUILTIN_VCMPEQUW,
2344 ALTIVEC_BUILTIN_VCMPEQFP,
2345 ALTIVEC_BUILTIN_VCMPGEFP,
2346 ALTIVEC_BUILTIN_VCMPGTUB,
2347 ALTIVEC_BUILTIN_VCMPGTSB,
2348 ALTIVEC_BUILTIN_VCMPGTUH,
2349 ALTIVEC_BUILTIN_VCMPGTSH,
2350 ALTIVEC_BUILTIN_VCMPGTUW,
2351 ALTIVEC_BUILTIN_VCMPGTSW,
2352 ALTIVEC_BUILTIN_VCMPGTFP,
2353 ALTIVEC_BUILTIN_VEXPTEFP,
2354 ALTIVEC_BUILTIN_VLOGEFP,
2355 ALTIVEC_BUILTIN_VMADDFP,
2356 ALTIVEC_BUILTIN_VMAXUB,
2357 ALTIVEC_BUILTIN_VMAXSB,
2358 ALTIVEC_BUILTIN_VMAXUH,
2359 ALTIVEC_BUILTIN_VMAXSH,
2360 ALTIVEC_BUILTIN_VMAXUW,
2361 ALTIVEC_BUILTIN_VMAXSW,
2362 ALTIVEC_BUILTIN_VMAXFP,
2363 ALTIVEC_BUILTIN_VMHADDSHS,
2364 ALTIVEC_BUILTIN_VMHRADDSHS,
2365 ALTIVEC_BUILTIN_VMLADDUHM,
2366 ALTIVEC_BUILTIN_VMRGHB,
2367 ALTIVEC_BUILTIN_VMRGHH,
2368 ALTIVEC_BUILTIN_VMRGHW,
2369 ALTIVEC_BUILTIN_VMRGLB,
2370 ALTIVEC_BUILTIN_VMRGLH,
2371 ALTIVEC_BUILTIN_VMRGLW,
2372 ALTIVEC_BUILTIN_VMSUMUBM,
2373 ALTIVEC_BUILTIN_VMSUMMBM,
2374 ALTIVEC_BUILTIN_VMSUMUHM,
2375 ALTIVEC_BUILTIN_VMSUMSHM,
2376 ALTIVEC_BUILTIN_VMSUMUHS,
2377 ALTIVEC_BUILTIN_VMSUMSHS,
2378 ALTIVEC_BUILTIN_VMINUB,
2379 ALTIVEC_BUILTIN_VMINSB,
2380 ALTIVEC_BUILTIN_VMINUH,
2381 ALTIVEC_BUILTIN_VMINSH,
2382 ALTIVEC_BUILTIN_VMINUW,
2383 ALTIVEC_BUILTIN_VMINSW,
2384 ALTIVEC_BUILTIN_VMINFP,
2385 ALTIVEC_BUILTIN_VMULEUB,
2386 ALTIVEC_BUILTIN_VMULESB,
2387 ALTIVEC_BUILTIN_VMULEUH,
2388 ALTIVEC_BUILTIN_VMULESH,
2389 ALTIVEC_BUILTIN_VMULOUB,
2390 ALTIVEC_BUILTIN_VMULOSB,
2391 ALTIVEC_BUILTIN_VMULOUH,
2392 ALTIVEC_BUILTIN_VMULOSH,
2393 ALTIVEC_BUILTIN_VNMSUBFP,
2394 ALTIVEC_BUILTIN_VNOR,
2395 ALTIVEC_BUILTIN_VOR,
2396 ALTIVEC_BUILTIN_VSEL_4SI,
2397 ALTIVEC_BUILTIN_VSEL_4SF,
2398 ALTIVEC_BUILTIN_VSEL_8HI,
2399 ALTIVEC_BUILTIN_VSEL_16QI,
2400 ALTIVEC_BUILTIN_VPERM_4SI,
2401 ALTIVEC_BUILTIN_VPERM_4SF,
2402 ALTIVEC_BUILTIN_VPERM_8HI,
2403 ALTIVEC_BUILTIN_VPERM_16QI,
2404 ALTIVEC_BUILTIN_VPKUHUM,
2405 ALTIVEC_BUILTIN_VPKUWUM,
2406 ALTIVEC_BUILTIN_VPKPX,
2407 ALTIVEC_BUILTIN_VPKUHSS,
2408 ALTIVEC_BUILTIN_VPKSHSS,
2409 ALTIVEC_BUILTIN_VPKUWSS,
2410 ALTIVEC_BUILTIN_VPKSWSS,
2411 ALTIVEC_BUILTIN_VPKUHUS,
2412 ALTIVEC_BUILTIN_VPKSHUS,
2413 ALTIVEC_BUILTIN_VPKUWUS,
2414 ALTIVEC_BUILTIN_VPKSWUS,
2415 ALTIVEC_BUILTIN_VREFP,
2416 ALTIVEC_BUILTIN_VRFIM,
2417 ALTIVEC_BUILTIN_VRFIN,
2418 ALTIVEC_BUILTIN_VRFIP,
2419 ALTIVEC_BUILTIN_VRFIZ,
2420 ALTIVEC_BUILTIN_VRLB,
2421 ALTIVEC_BUILTIN_VRLH,
2422 ALTIVEC_BUILTIN_VRLW,
2423 ALTIVEC_BUILTIN_VRSQRTEFP,
2424 ALTIVEC_BUILTIN_VSLB,
2425 ALTIVEC_BUILTIN_VSLH,
2426 ALTIVEC_BUILTIN_VSLW,
2427 ALTIVEC_BUILTIN_VSL,
2428 ALTIVEC_BUILTIN_VSLO,
2429 ALTIVEC_BUILTIN_VSPLTB,
2430 ALTIVEC_BUILTIN_VSPLTH,
2431 ALTIVEC_BUILTIN_VSPLTW,
2432 ALTIVEC_BUILTIN_VSPLTISB,
2433 ALTIVEC_BUILTIN_VSPLTISH,
2434 ALTIVEC_BUILTIN_VSPLTISW,
2435 ALTIVEC_BUILTIN_VSRB,
2436 ALTIVEC_BUILTIN_VSRH,
2437 ALTIVEC_BUILTIN_VSRW,
2438 ALTIVEC_BUILTIN_VSRAB,
2439 ALTIVEC_BUILTIN_VSRAH,
2440 ALTIVEC_BUILTIN_VSRAW,
2441 ALTIVEC_BUILTIN_VSR,
2442 ALTIVEC_BUILTIN_VSRO,
2443 ALTIVEC_BUILTIN_VSUBUBM,
2444 ALTIVEC_BUILTIN_VSUBUHM,
2445 ALTIVEC_BUILTIN_VSUBUWM,
2446 ALTIVEC_BUILTIN_VSUBFP,
2447 ALTIVEC_BUILTIN_VSUBCUW,
2448 ALTIVEC_BUILTIN_VSUBUBS,
2449 ALTIVEC_BUILTIN_VSUBSBS,
2450 ALTIVEC_BUILTIN_VSUBUHS,
2451 ALTIVEC_BUILTIN_VSUBSHS,
2452 ALTIVEC_BUILTIN_VSUBUWS,
2453 ALTIVEC_BUILTIN_VSUBSWS,
2454 ALTIVEC_BUILTIN_VSUM4UBS,
2455 ALTIVEC_BUILTIN_VSUM4SBS,
2456 ALTIVEC_BUILTIN_VSUM4SHS,
2457 ALTIVEC_BUILTIN_VSUM2SWS,
2458 ALTIVEC_BUILTIN_VSUMSWS,
2459 ALTIVEC_BUILTIN_VXOR,
2460 ALTIVEC_BUILTIN_VSLDOI_16QI,
2461 ALTIVEC_BUILTIN_VSLDOI_8HI,
2462 ALTIVEC_BUILTIN_VSLDOI_4SI,
2463 ALTIVEC_BUILTIN_VSLDOI_4SF,
2464 ALTIVEC_BUILTIN_VUPKHSB,
2465 ALTIVEC_BUILTIN_VUPKHPX,
2466 ALTIVEC_BUILTIN_VUPKHSH,
2467 ALTIVEC_BUILTIN_VUPKLSB,
2468 ALTIVEC_BUILTIN_VUPKLPX,
2469 ALTIVEC_BUILTIN_VUPKLSH,
2470 ALTIVEC_BUILTIN_MTVSCR,
2471 ALTIVEC_BUILTIN_MFVSCR,
2472 ALTIVEC_BUILTIN_DSSALL,
2473 ALTIVEC_BUILTIN_DSS,
2474 ALTIVEC_BUILTIN_LVSL,
2475 ALTIVEC_BUILTIN_LVSR,
2476 ALTIVEC_BUILTIN_DSTT,
2477 ALTIVEC_BUILTIN_DSTST,
2478 ALTIVEC_BUILTIN_DSTSTT,
2479 ALTIVEC_BUILTIN_DST,
2480 ALTIVEC_BUILTIN_LVEBX,
2481 ALTIVEC_BUILTIN_LVEHX,
2482 ALTIVEC_BUILTIN_LVEWX,
2483 ALTIVEC_BUILTIN_LVXL,
2484 ALTIVEC_BUILTIN_LVX,
2485 ALTIVEC_BUILTIN_STVX,
2486 ALTIVEC_BUILTIN_LVLX,
2487 ALTIVEC_BUILTIN_LVLXL,
2488 ALTIVEC_BUILTIN_LVRX,
2489 ALTIVEC_BUILTIN_LVRXL,
2490 ALTIVEC_BUILTIN_STVEBX,
2491 ALTIVEC_BUILTIN_STVEHX,
2492 ALTIVEC_BUILTIN_STVEWX,
2493 ALTIVEC_BUILTIN_STVXL,
2494 ALTIVEC_BUILTIN_STVLX,
2495 ALTIVEC_BUILTIN_STVLXL,
2496 ALTIVEC_BUILTIN_STVRX,
2497 ALTIVEC_BUILTIN_STVRXL,
2498 ALTIVEC_BUILTIN_VCMPBFP_P,
2499 ALTIVEC_BUILTIN_VCMPEQFP_P,
2500 ALTIVEC_BUILTIN_VCMPEQUB_P,
2501 ALTIVEC_BUILTIN_VCMPEQUH_P,
2502 ALTIVEC_BUILTIN_VCMPEQUW_P,
2503 ALTIVEC_BUILTIN_VCMPGEFP_P,
2504 ALTIVEC_BUILTIN_VCMPGTFP_P,
2505 ALTIVEC_BUILTIN_VCMPGTSB_P,
2506 ALTIVEC_BUILTIN_VCMPGTSH_P,
2507 ALTIVEC_BUILTIN_VCMPGTSW_P,
2508 ALTIVEC_BUILTIN_VCMPGTUB_P,
2509 ALTIVEC_BUILTIN_VCMPGTUH_P,
2510 ALTIVEC_BUILTIN_VCMPGTUW_P,
2511 ALTIVEC_BUILTIN_ABSS_V4SI,
2512 ALTIVEC_BUILTIN_ABSS_V8HI,
2513 ALTIVEC_BUILTIN_ABSS_V16QI,
2514 ALTIVEC_BUILTIN_ABS_V4SI,
2515 ALTIVEC_BUILTIN_ABS_V4SF,
2516 ALTIVEC_BUILTIN_ABS_V8HI,
2517 ALTIVEC_BUILTIN_ABS_V16QI,
2518 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2519 ALTIVEC_BUILTIN_MASK_FOR_STORE,
2520 ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2521 ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2522 ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2523 ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2524 ALTIVEC_BUILTIN_VEC_SET_V4SI,
2525 ALTIVEC_BUILTIN_VEC_SET_V8HI,
2526 ALTIVEC_BUILTIN_VEC_SET_V16QI,
2527 ALTIVEC_BUILTIN_VEC_SET_V4SF,
2528 ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2529 ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2530 ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2531 ALTIVEC_BUILTIN_VEC_EXT_V4SF,
2532
2533 /* Altivec overloaded builtins. */
2534 ALTIVEC_BUILTIN_VCMPEQ_P,
2535 ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2536 ALTIVEC_BUILTIN_VCMPGT_P,
2537 ALTIVEC_BUILTIN_VCMPGE_P,
2538 ALTIVEC_BUILTIN_VEC_ABS,
2539 ALTIVEC_BUILTIN_VEC_ABSS,
2540 ALTIVEC_BUILTIN_VEC_ADD,
2541 ALTIVEC_BUILTIN_VEC_ADDC,
2542 ALTIVEC_BUILTIN_VEC_ADDS,
2543 ALTIVEC_BUILTIN_VEC_AND,
2544 ALTIVEC_BUILTIN_VEC_ANDC,
2545 ALTIVEC_BUILTIN_VEC_AVG,
2546 ALTIVEC_BUILTIN_VEC_EXTRACT,
2547 ALTIVEC_BUILTIN_VEC_CEIL,
2548 ALTIVEC_BUILTIN_VEC_CMPB,
2549 ALTIVEC_BUILTIN_VEC_CMPEQ,
2550 ALTIVEC_BUILTIN_VEC_CMPEQUB,
2551 ALTIVEC_BUILTIN_VEC_CMPEQUH,
2552 ALTIVEC_BUILTIN_VEC_CMPEQUW,
2553 ALTIVEC_BUILTIN_VEC_CMPGE,
2554 ALTIVEC_BUILTIN_VEC_CMPGT,
2555 ALTIVEC_BUILTIN_VEC_CMPLE,
2556 ALTIVEC_BUILTIN_VEC_CMPLT,
2557 ALTIVEC_BUILTIN_VEC_CTF,
2558 ALTIVEC_BUILTIN_VEC_CTS,
2559 ALTIVEC_BUILTIN_VEC_CTU,
2560 ALTIVEC_BUILTIN_VEC_DST,
2561 ALTIVEC_BUILTIN_VEC_DSTST,
2562 ALTIVEC_BUILTIN_VEC_DSTSTT,
2563 ALTIVEC_BUILTIN_VEC_DSTT,
2564 ALTIVEC_BUILTIN_VEC_EXPTE,
2565 ALTIVEC_BUILTIN_VEC_FLOOR,
2566 ALTIVEC_BUILTIN_VEC_LD,
2567 ALTIVEC_BUILTIN_VEC_LDE,
2568 ALTIVEC_BUILTIN_VEC_LDL,
2569 ALTIVEC_BUILTIN_VEC_LOGE,
2570 ALTIVEC_BUILTIN_VEC_LVEBX,
2571 ALTIVEC_BUILTIN_VEC_LVEHX,
2572 ALTIVEC_BUILTIN_VEC_LVEWX,
2573 ALTIVEC_BUILTIN_VEC_LVLX,
2574 ALTIVEC_BUILTIN_VEC_LVLXL,
2575 ALTIVEC_BUILTIN_VEC_LVRX,
2576 ALTIVEC_BUILTIN_VEC_LVRXL,
2577 ALTIVEC_BUILTIN_VEC_LVSL,
2578 ALTIVEC_BUILTIN_VEC_LVSR,
2579 ALTIVEC_BUILTIN_VEC_MADD,
2580 ALTIVEC_BUILTIN_VEC_MADDS,
2581 ALTIVEC_BUILTIN_VEC_MAX,
2582 ALTIVEC_BUILTIN_VEC_MERGEH,
2583 ALTIVEC_BUILTIN_VEC_MERGEL,
2584 ALTIVEC_BUILTIN_VEC_MIN,
2585 ALTIVEC_BUILTIN_VEC_MLADD,
2586 ALTIVEC_BUILTIN_VEC_MPERM,
2587 ALTIVEC_BUILTIN_VEC_MRADDS,
2588 ALTIVEC_BUILTIN_VEC_MRGHB,
2589 ALTIVEC_BUILTIN_VEC_MRGHH,
2590 ALTIVEC_BUILTIN_VEC_MRGHW,
2591 ALTIVEC_BUILTIN_VEC_MRGLB,
2592 ALTIVEC_BUILTIN_VEC_MRGLH,
2593 ALTIVEC_BUILTIN_VEC_MRGLW,
2594 ALTIVEC_BUILTIN_VEC_MSUM,
2595 ALTIVEC_BUILTIN_VEC_MSUMS,
2596 ALTIVEC_BUILTIN_VEC_MTVSCR,
2597 ALTIVEC_BUILTIN_VEC_MULE,
2598 ALTIVEC_BUILTIN_VEC_MULO,
2599 ALTIVEC_BUILTIN_VEC_NMSUB,
2600 ALTIVEC_BUILTIN_VEC_NOR,
2601 ALTIVEC_BUILTIN_VEC_OR,
2602 ALTIVEC_BUILTIN_VEC_PACK,
2603 ALTIVEC_BUILTIN_VEC_PACKPX,
2604 ALTIVEC_BUILTIN_VEC_PACKS,
2605 ALTIVEC_BUILTIN_VEC_PACKSU,
2606 ALTIVEC_BUILTIN_VEC_PERM,
2607 ALTIVEC_BUILTIN_VEC_RE,
2608 ALTIVEC_BUILTIN_VEC_RL,
2609 ALTIVEC_BUILTIN_VEC_ROUND,
2610 ALTIVEC_BUILTIN_VEC_RSQRTE,
2611 ALTIVEC_BUILTIN_VEC_SEL,
2612 ALTIVEC_BUILTIN_VEC_SL,
2613 ALTIVEC_BUILTIN_VEC_SLD,
2614 ALTIVEC_BUILTIN_VEC_SLL,
2615 ALTIVEC_BUILTIN_VEC_SLO,
2616 ALTIVEC_BUILTIN_VEC_SPLAT,
2617 ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2618 ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2619 ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2620 ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2621 ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2622 ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2623 ALTIVEC_BUILTIN_VEC_SPLTB,
2624 ALTIVEC_BUILTIN_VEC_SPLTH,
2625 ALTIVEC_BUILTIN_VEC_SPLTW,
2626 ALTIVEC_BUILTIN_VEC_SR,
2627 ALTIVEC_BUILTIN_VEC_SRA,
2628 ALTIVEC_BUILTIN_VEC_SRL,
2629 ALTIVEC_BUILTIN_VEC_SRO,
2630 ALTIVEC_BUILTIN_VEC_ST,
2631 ALTIVEC_BUILTIN_VEC_STE,
2632 ALTIVEC_BUILTIN_VEC_STL,
2633 ALTIVEC_BUILTIN_VEC_STVEBX,
2634 ALTIVEC_BUILTIN_VEC_STVEHX,
2635 ALTIVEC_BUILTIN_VEC_STVEWX,
2636 ALTIVEC_BUILTIN_VEC_STVLX,
2637 ALTIVEC_BUILTIN_VEC_STVLXL,
2638 ALTIVEC_BUILTIN_VEC_STVRX,
2639 ALTIVEC_BUILTIN_VEC_STVRXL,
2640 ALTIVEC_BUILTIN_VEC_SUB,
2641 ALTIVEC_BUILTIN_VEC_SUBC,
2642 ALTIVEC_BUILTIN_VEC_SUBS,
2643 ALTIVEC_BUILTIN_VEC_SUM2S,
2644 ALTIVEC_BUILTIN_VEC_SUM4S,
2645 ALTIVEC_BUILTIN_VEC_SUMS,
2646 ALTIVEC_BUILTIN_VEC_TRUNC,
2647 ALTIVEC_BUILTIN_VEC_UNPACKH,
2648 ALTIVEC_BUILTIN_VEC_UNPACKL,
2649 ALTIVEC_BUILTIN_VEC_VADDFP,
2650 ALTIVEC_BUILTIN_VEC_VADDSBS,
2651 ALTIVEC_BUILTIN_VEC_VADDSHS,
2652 ALTIVEC_BUILTIN_VEC_VADDSWS,
2653 ALTIVEC_BUILTIN_VEC_VADDUBM,
2654 ALTIVEC_BUILTIN_VEC_VADDUBS,
2655 ALTIVEC_BUILTIN_VEC_VADDUHM,
2656 ALTIVEC_BUILTIN_VEC_VADDUHS,
2657 ALTIVEC_BUILTIN_VEC_VADDUWM,
2658 ALTIVEC_BUILTIN_VEC_VADDUWS,
2659 ALTIVEC_BUILTIN_VEC_VAVGSB,
2660 ALTIVEC_BUILTIN_VEC_VAVGSH,
2661 ALTIVEC_BUILTIN_VEC_VAVGSW,
2662 ALTIVEC_BUILTIN_VEC_VAVGUB,
2663 ALTIVEC_BUILTIN_VEC_VAVGUH,
2664 ALTIVEC_BUILTIN_VEC_VAVGUW,
2665 ALTIVEC_BUILTIN_VEC_VCFSX,
2666 ALTIVEC_BUILTIN_VEC_VCFUX,
2667 ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2668 ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2669 ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2670 ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2671 ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2672 ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2673 ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2674 ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2675 ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2676 ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2677 ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2678 ALTIVEC_BUILTIN_VEC_VMAXFP,
2679 ALTIVEC_BUILTIN_VEC_VMAXSB,
2680 ALTIVEC_BUILTIN_VEC_VMAXSH,
2681 ALTIVEC_BUILTIN_VEC_VMAXSW,
2682 ALTIVEC_BUILTIN_VEC_VMAXUB,
2683 ALTIVEC_BUILTIN_VEC_VMAXUH,
2684 ALTIVEC_BUILTIN_VEC_VMAXUW,
2685 ALTIVEC_BUILTIN_VEC_VMINFP,
2686 ALTIVEC_BUILTIN_VEC_VMINSB,
2687 ALTIVEC_BUILTIN_VEC_VMINSH,
2688 ALTIVEC_BUILTIN_VEC_VMINSW,
2689 ALTIVEC_BUILTIN_VEC_VMINUB,
2690 ALTIVEC_BUILTIN_VEC_VMINUH,
2691 ALTIVEC_BUILTIN_VEC_VMINUW,
2692 ALTIVEC_BUILTIN_VEC_VMRGHB,
2693 ALTIVEC_BUILTIN_VEC_VMRGHH,
2694 ALTIVEC_BUILTIN_VEC_VMRGHW,
2695 ALTIVEC_BUILTIN_VEC_VMRGLB,
2696 ALTIVEC_BUILTIN_VEC_VMRGLH,
2697 ALTIVEC_BUILTIN_VEC_VMRGLW,
2698 ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2699 ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2700 ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2701 ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2702 ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2703 ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2704 ALTIVEC_BUILTIN_VEC_VMULESB,
2705 ALTIVEC_BUILTIN_VEC_VMULESH,
2706 ALTIVEC_BUILTIN_VEC_VMULEUB,
2707 ALTIVEC_BUILTIN_VEC_VMULEUH,
2708 ALTIVEC_BUILTIN_VEC_VMULOSB,
2709 ALTIVEC_BUILTIN_VEC_VMULOSH,
2710 ALTIVEC_BUILTIN_VEC_VMULOUB,
2711 ALTIVEC_BUILTIN_VEC_VMULOUH,
2712 ALTIVEC_BUILTIN_VEC_VPKSHSS,
2713 ALTIVEC_BUILTIN_VEC_VPKSHUS,
2714 ALTIVEC_BUILTIN_VEC_VPKSWSS,
2715 ALTIVEC_BUILTIN_VEC_VPKSWUS,
2716 ALTIVEC_BUILTIN_VEC_VPKUHUM,
2717 ALTIVEC_BUILTIN_VEC_VPKUHUS,
2718 ALTIVEC_BUILTIN_VEC_VPKUWUM,
2719 ALTIVEC_BUILTIN_VEC_VPKUWUS,
2720 ALTIVEC_BUILTIN_VEC_VRLB,
2721 ALTIVEC_BUILTIN_VEC_VRLH,
2722 ALTIVEC_BUILTIN_VEC_VRLW,
2723 ALTIVEC_BUILTIN_VEC_VSLB,
2724 ALTIVEC_BUILTIN_VEC_VSLH,
2725 ALTIVEC_BUILTIN_VEC_VSLW,
2726 ALTIVEC_BUILTIN_VEC_VSPLTB,
2727 ALTIVEC_BUILTIN_VEC_VSPLTH,
2728 ALTIVEC_BUILTIN_VEC_VSPLTW,
2729 ALTIVEC_BUILTIN_VEC_VSRAB,
2730 ALTIVEC_BUILTIN_VEC_VSRAH,
2731 ALTIVEC_BUILTIN_VEC_VSRAW,
2732 ALTIVEC_BUILTIN_VEC_VSRB,
2733 ALTIVEC_BUILTIN_VEC_VSRH,
2734 ALTIVEC_BUILTIN_VEC_VSRW,
2735 ALTIVEC_BUILTIN_VEC_VSUBFP,
2736 ALTIVEC_BUILTIN_VEC_VSUBSBS,
2737 ALTIVEC_BUILTIN_VEC_VSUBSHS,
2738 ALTIVEC_BUILTIN_VEC_VSUBSWS,
2739 ALTIVEC_BUILTIN_VEC_VSUBUBM,
2740 ALTIVEC_BUILTIN_VEC_VSUBUBS,
2741 ALTIVEC_BUILTIN_VEC_VSUBUHM,
2742 ALTIVEC_BUILTIN_VEC_VSUBUHS,
2743 ALTIVEC_BUILTIN_VEC_VSUBUWM,
2744 ALTIVEC_BUILTIN_VEC_VSUBUWS,
2745 ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2746 ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2747 ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2748 ALTIVEC_BUILTIN_VEC_VUPKHPX,
2749 ALTIVEC_BUILTIN_VEC_VUPKHSB,
2750 ALTIVEC_BUILTIN_VEC_VUPKHSH,
2751 ALTIVEC_BUILTIN_VEC_VUPKLPX,
2752 ALTIVEC_BUILTIN_VEC_VUPKLSB,
2753 ALTIVEC_BUILTIN_VEC_VUPKLSH,
2754 ALTIVEC_BUILTIN_VEC_XOR,
2755 ALTIVEC_BUILTIN_VEC_STEP,
2756 ALTIVEC_BUILTIN_VEC_PROMOTE,
2757 ALTIVEC_BUILTIN_VEC_INSERT,
2758 ALTIVEC_BUILTIN_VEC_SPLATS,
2759 ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_SPLATS,
2760
2761 /* SPE builtins. */
2762 SPE_BUILTIN_EVADDW,
2763 SPE_BUILTIN_EVAND,
2764 SPE_BUILTIN_EVANDC,
2765 SPE_BUILTIN_EVDIVWS,
2766 SPE_BUILTIN_EVDIVWU,
2767 SPE_BUILTIN_EVEQV,
2768 SPE_BUILTIN_EVFSADD,
2769 SPE_BUILTIN_EVFSDIV,
2770 SPE_BUILTIN_EVFSMUL,
2771 SPE_BUILTIN_EVFSSUB,
2772 SPE_BUILTIN_EVLDDX,
2773 SPE_BUILTIN_EVLDHX,
2774 SPE_BUILTIN_EVLDWX,
2775 SPE_BUILTIN_EVLHHESPLATX,
2776 SPE_BUILTIN_EVLHHOSSPLATX,
2777 SPE_BUILTIN_EVLHHOUSPLATX,
2778 SPE_BUILTIN_EVLWHEX,
2779 SPE_BUILTIN_EVLWHOSX,
2780 SPE_BUILTIN_EVLWHOUX,
2781 SPE_BUILTIN_EVLWHSPLATX,
2782 SPE_BUILTIN_EVLWWSPLATX,
2783 SPE_BUILTIN_EVMERGEHI,
2784 SPE_BUILTIN_EVMERGEHILO,
2785 SPE_BUILTIN_EVMERGELO,
2786 SPE_BUILTIN_EVMERGELOHI,
2787 SPE_BUILTIN_EVMHEGSMFAA,
2788 SPE_BUILTIN_EVMHEGSMFAN,
2789 SPE_BUILTIN_EVMHEGSMIAA,
2790 SPE_BUILTIN_EVMHEGSMIAN,
2791 SPE_BUILTIN_EVMHEGUMIAA,
2792 SPE_BUILTIN_EVMHEGUMIAN,
2793 SPE_BUILTIN_EVMHESMF,
2794 SPE_BUILTIN_EVMHESMFA,
2795 SPE_BUILTIN_EVMHESMFAAW,
2796 SPE_BUILTIN_EVMHESMFANW,
2797 SPE_BUILTIN_EVMHESMI,
2798 SPE_BUILTIN_EVMHESMIA,
2799 SPE_BUILTIN_EVMHESMIAAW,
2800 SPE_BUILTIN_EVMHESMIANW,
2801 SPE_BUILTIN_EVMHESSF,
2802 SPE_BUILTIN_EVMHESSFA,
2803 SPE_BUILTIN_EVMHESSFAAW,
2804 SPE_BUILTIN_EVMHESSFANW,
2805 SPE_BUILTIN_EVMHESSIAAW,
2806 SPE_BUILTIN_EVMHESSIANW,
2807 SPE_BUILTIN_EVMHEUMI,
2808 SPE_BUILTIN_EVMHEUMIA,
2809 SPE_BUILTIN_EVMHEUMIAAW,
2810 SPE_BUILTIN_EVMHEUMIANW,
2811 SPE_BUILTIN_EVMHEUSIAAW,
2812 SPE_BUILTIN_EVMHEUSIANW,
2813 SPE_BUILTIN_EVMHOGSMFAA,
2814 SPE_BUILTIN_EVMHOGSMFAN,
2815 SPE_BUILTIN_EVMHOGSMIAA,
2816 SPE_BUILTIN_EVMHOGSMIAN,
2817 SPE_BUILTIN_EVMHOGUMIAA,
2818 SPE_BUILTIN_EVMHOGUMIAN,
2819 SPE_BUILTIN_EVMHOSMF,
2820 SPE_BUILTIN_EVMHOSMFA,
2821 SPE_BUILTIN_EVMHOSMFAAW,
2822 SPE_BUILTIN_EVMHOSMFANW,
2823 SPE_BUILTIN_EVMHOSMI,
2824 SPE_BUILTIN_EVMHOSMIA,
2825 SPE_BUILTIN_EVMHOSMIAAW,
2826 SPE_BUILTIN_EVMHOSMIANW,
2827 SPE_BUILTIN_EVMHOSSF,
2828 SPE_BUILTIN_EVMHOSSFA,
2829 SPE_BUILTIN_EVMHOSSFAAW,
2830 SPE_BUILTIN_EVMHOSSFANW,
2831 SPE_BUILTIN_EVMHOSSIAAW,
2832 SPE_BUILTIN_EVMHOSSIANW,
2833 SPE_BUILTIN_EVMHOUMI,
2834 SPE_BUILTIN_EVMHOUMIA,
2835 SPE_BUILTIN_EVMHOUMIAAW,
2836 SPE_BUILTIN_EVMHOUMIANW,
2837 SPE_BUILTIN_EVMHOUSIAAW,
2838 SPE_BUILTIN_EVMHOUSIANW,
2839 SPE_BUILTIN_EVMWHSMF,
2840 SPE_BUILTIN_EVMWHSMFA,
2841 SPE_BUILTIN_EVMWHSMI,
2842 SPE_BUILTIN_EVMWHSMIA,
2843 SPE_BUILTIN_EVMWHSSF,
2844 SPE_BUILTIN_EVMWHSSFA,
2845 SPE_BUILTIN_EVMWHUMI,
2846 SPE_BUILTIN_EVMWHUMIA,
2847 SPE_BUILTIN_EVMWLSMIAAW,
2848 SPE_BUILTIN_EVMWLSMIANW,
2849 SPE_BUILTIN_EVMWLSSIAAW,
2850 SPE_BUILTIN_EVMWLSSIANW,
2851 SPE_BUILTIN_EVMWLUMI,
2852 SPE_BUILTIN_EVMWLUMIA,
2853 SPE_BUILTIN_EVMWLUMIAAW,
2854 SPE_BUILTIN_EVMWLUMIANW,
2855 SPE_BUILTIN_EVMWLUSIAAW,
2856 SPE_BUILTIN_EVMWLUSIANW,
2857 SPE_BUILTIN_EVMWSMF,
2858 SPE_BUILTIN_EVMWSMFA,
2859 SPE_BUILTIN_EVMWSMFAA,
2860 SPE_BUILTIN_EVMWSMFAN,
2861 SPE_BUILTIN_EVMWSMI,
2862 SPE_BUILTIN_EVMWSMIA,
2863 SPE_BUILTIN_EVMWSMIAA,
2864 SPE_BUILTIN_EVMWSMIAN,
2865 SPE_BUILTIN_EVMWHSSFAA,
2866 SPE_BUILTIN_EVMWSSF,
2867 SPE_BUILTIN_EVMWSSFA,
2868 SPE_BUILTIN_EVMWSSFAA,
2869 SPE_BUILTIN_EVMWSSFAN,
2870 SPE_BUILTIN_EVMWUMI,
2871 SPE_BUILTIN_EVMWUMIA,
2872 SPE_BUILTIN_EVMWUMIAA,
2873 SPE_BUILTIN_EVMWUMIAN,
2874 SPE_BUILTIN_EVNAND,
2875 SPE_BUILTIN_EVNOR,
2876 SPE_BUILTIN_EVOR,
2877 SPE_BUILTIN_EVORC,
2878 SPE_BUILTIN_EVRLW,
2879 SPE_BUILTIN_EVSLW,
2880 SPE_BUILTIN_EVSRWS,
2881 SPE_BUILTIN_EVSRWU,
2882 SPE_BUILTIN_EVSTDDX,
2883 SPE_BUILTIN_EVSTDHX,
2884 SPE_BUILTIN_EVSTDWX,
2885 SPE_BUILTIN_EVSTWHEX,
2886 SPE_BUILTIN_EVSTWHOX,
2887 SPE_BUILTIN_EVSTWWEX,
2888 SPE_BUILTIN_EVSTWWOX,
2889 SPE_BUILTIN_EVSUBFW,
2890 SPE_BUILTIN_EVXOR,
2891 SPE_BUILTIN_EVABS,
2892 SPE_BUILTIN_EVADDSMIAAW,
2893 SPE_BUILTIN_EVADDSSIAAW,
2894 SPE_BUILTIN_EVADDUMIAAW,
2895 SPE_BUILTIN_EVADDUSIAAW,
2896 SPE_BUILTIN_EVCNTLSW,
2897 SPE_BUILTIN_EVCNTLZW,
2898 SPE_BUILTIN_EVEXTSB,
2899 SPE_BUILTIN_EVEXTSH,
2900 SPE_BUILTIN_EVFSABS,
2901 SPE_BUILTIN_EVFSCFSF,
2902 SPE_BUILTIN_EVFSCFSI,
2903 SPE_BUILTIN_EVFSCFUF,
2904 SPE_BUILTIN_EVFSCFUI,
2905 SPE_BUILTIN_EVFSCTSF,
2906 SPE_BUILTIN_EVFSCTSI,
2907 SPE_BUILTIN_EVFSCTSIZ,
2908 SPE_BUILTIN_EVFSCTUF,
2909 SPE_BUILTIN_EVFSCTUI,
2910 SPE_BUILTIN_EVFSCTUIZ,
2911 SPE_BUILTIN_EVFSNABS,
2912 SPE_BUILTIN_EVFSNEG,
2913 SPE_BUILTIN_EVMRA,
2914 SPE_BUILTIN_EVNEG,
2915 SPE_BUILTIN_EVRNDW,
2916 SPE_BUILTIN_EVSUBFSMIAAW,
2917 SPE_BUILTIN_EVSUBFSSIAAW,
2918 SPE_BUILTIN_EVSUBFUMIAAW,
2919 SPE_BUILTIN_EVSUBFUSIAAW,
2920 SPE_BUILTIN_EVADDIW,
2921 SPE_BUILTIN_EVLDD,
2922 SPE_BUILTIN_EVLDH,
2923 SPE_BUILTIN_EVLDW,
2924 SPE_BUILTIN_EVLHHESPLAT,
2925 SPE_BUILTIN_EVLHHOSSPLAT,
2926 SPE_BUILTIN_EVLHHOUSPLAT,
2927 SPE_BUILTIN_EVLWHE,
2928 SPE_BUILTIN_EVLWHOS,
2929 SPE_BUILTIN_EVLWHOU,
2930 SPE_BUILTIN_EVLWHSPLAT,
2931 SPE_BUILTIN_EVLWWSPLAT,
2932 SPE_BUILTIN_EVRLWI,
2933 SPE_BUILTIN_EVSLWI,
2934 SPE_BUILTIN_EVSRWIS,
2935 SPE_BUILTIN_EVSRWIU,
2936 SPE_BUILTIN_EVSTDD,
2937 SPE_BUILTIN_EVSTDH,
2938 SPE_BUILTIN_EVSTDW,
2939 SPE_BUILTIN_EVSTWHE,
2940 SPE_BUILTIN_EVSTWHO,
2941 SPE_BUILTIN_EVSTWWE,
2942 SPE_BUILTIN_EVSTWWO,
2943 SPE_BUILTIN_EVSUBIFW,
2944
2945 /* Compares. */
2946 SPE_BUILTIN_EVCMPEQ,
2947 SPE_BUILTIN_EVCMPGTS,
2948 SPE_BUILTIN_EVCMPGTU,
2949 SPE_BUILTIN_EVCMPLTS,
2950 SPE_BUILTIN_EVCMPLTU,
2951 SPE_BUILTIN_EVFSCMPEQ,
2952 SPE_BUILTIN_EVFSCMPGT,
2953 SPE_BUILTIN_EVFSCMPLT,
2954 SPE_BUILTIN_EVFSTSTEQ,
2955 SPE_BUILTIN_EVFSTSTGT,
2956 SPE_BUILTIN_EVFSTSTLT,
2957
2958 /* EVSEL compares. */
2959 SPE_BUILTIN_EVSEL_CMPEQ,
2960 SPE_BUILTIN_EVSEL_CMPGTS,
2961 SPE_BUILTIN_EVSEL_CMPGTU,
2962 SPE_BUILTIN_EVSEL_CMPLTS,
2963 SPE_BUILTIN_EVSEL_CMPLTU,
2964 SPE_BUILTIN_EVSEL_FSCMPEQ,
2965 SPE_BUILTIN_EVSEL_FSCMPGT,
2966 SPE_BUILTIN_EVSEL_FSCMPLT,
2967 SPE_BUILTIN_EVSEL_FSTSTEQ,
2968 SPE_BUILTIN_EVSEL_FSTSTGT,
2969 SPE_BUILTIN_EVSEL_FSTSTLT,
2970
2971 SPE_BUILTIN_EVSPLATFI,
2972 SPE_BUILTIN_EVSPLATI,
2973 SPE_BUILTIN_EVMWHSSMAA,
2974 SPE_BUILTIN_EVMWHSMFAA,
2975 SPE_BUILTIN_EVMWHSMIAA,
2976 SPE_BUILTIN_EVMWHUSIAA,
2977 SPE_BUILTIN_EVMWHUMIAA,
2978 SPE_BUILTIN_EVMWHSSFAN,
2979 SPE_BUILTIN_EVMWHSSIAN,
2980 SPE_BUILTIN_EVMWHSMFAN,
2981 SPE_BUILTIN_EVMWHSMIAN,
2982 SPE_BUILTIN_EVMWHUSIAN,
2983 SPE_BUILTIN_EVMWHUMIAN,
2984 SPE_BUILTIN_EVMWHGSSFAA,
2985 SPE_BUILTIN_EVMWHGSMFAA,
2986 SPE_BUILTIN_EVMWHGSMIAA,
2987 SPE_BUILTIN_EVMWHGUMIAA,
2988 SPE_BUILTIN_EVMWHGSSFAN,
2989 SPE_BUILTIN_EVMWHGSMFAN,
2990 SPE_BUILTIN_EVMWHGSMIAN,
2991 SPE_BUILTIN_EVMWHGUMIAN,
2992 SPE_BUILTIN_MTSPEFSCR,
2993 SPE_BUILTIN_MFSPEFSCR,
2994 SPE_BUILTIN_BRINC,
2995
2996 /* PAIRED builtins. */
2997 PAIRED_BUILTIN_DIVV2SF3,
2998 PAIRED_BUILTIN_ABSV2SF2,
2999 PAIRED_BUILTIN_NEGV2SF2,
3000 PAIRED_BUILTIN_SQRTV2SF2,
3001 PAIRED_BUILTIN_ADDV2SF3,
3002 PAIRED_BUILTIN_SUBV2SF3,
3003 PAIRED_BUILTIN_RESV2SF2,
3004 PAIRED_BUILTIN_MULV2SF3,
3005 PAIRED_BUILTIN_MSUB,
3006 PAIRED_BUILTIN_MADD,
3007 PAIRED_BUILTIN_NMSUB,
3008 PAIRED_BUILTIN_NMADD,
3009 PAIRED_BUILTIN_NABSV2SF2,
3010 PAIRED_BUILTIN_SUM0,
3011 PAIRED_BUILTIN_SUM1,
3012 PAIRED_BUILTIN_MULS0,
3013 PAIRED_BUILTIN_MULS1,
3014 PAIRED_BUILTIN_MERGE00,
3015 PAIRED_BUILTIN_MERGE01,
3016 PAIRED_BUILTIN_MERGE10,
3017 PAIRED_BUILTIN_MERGE11,
3018 PAIRED_BUILTIN_MADDS0,
3019 PAIRED_BUILTIN_MADDS1,
3020 PAIRED_BUILTIN_STX,
3021 PAIRED_BUILTIN_LX,
3022 PAIRED_BUILTIN_SELV2SF4,
3023 PAIRED_BUILTIN_CMPU0,
3024 PAIRED_BUILTIN_CMPU1,
3025
3026 RS6000_BUILTIN_RECIP,
3027 RS6000_BUILTIN_RECIPF,
3028 RS6000_BUILTIN_RSQRTF,
3029
3030 RS6000_BUILTIN_COUNT
3031 };
3032
3033 enum rs6000_builtin_type_index
3034 {
3035 RS6000_BTI_NOT_OPAQUE,
3036 RS6000_BTI_opaque_V2SI,
3037 RS6000_BTI_opaque_V2SF,
3038 RS6000_BTI_opaque_p_V2SI,
3039 RS6000_BTI_opaque_V4SI,
3040 RS6000_BTI_V16QI,
3041 RS6000_BTI_V2SI,
3042 RS6000_BTI_V2SF,
3043 RS6000_BTI_V4HI,
3044 RS6000_BTI_V4SI,
3045 RS6000_BTI_V4SF,
3046 RS6000_BTI_V8HI,
3047 RS6000_BTI_unsigned_V16QI,
3048 RS6000_BTI_unsigned_V8HI,
3049 RS6000_BTI_unsigned_V4SI,
3050 RS6000_BTI_bool_char, /* __bool char */
3051 RS6000_BTI_bool_short, /* __bool short */
3052 RS6000_BTI_bool_int, /* __bool int */
3053 RS6000_BTI_pixel, /* __pixel */
3054 RS6000_BTI_bool_V16QI, /* __vector __bool char */
3055 RS6000_BTI_bool_V8HI, /* __vector __bool short */
3056 RS6000_BTI_bool_V4SI, /* __vector __bool int */
3057 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
3058 RS6000_BTI_long, /* long_integer_type_node */
3059 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
3060 RS6000_BTI_INTQI, /* intQI_type_node */
3061 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
3062 RS6000_BTI_INTHI, /* intHI_type_node */
3063 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
3064 RS6000_BTI_INTSI, /* intSI_type_node */
3065 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
3066 RS6000_BTI_float, /* float_type_node */
3067 RS6000_BTI_void, /* void_type_node */
3068 RS6000_BTI_MAX
3069 };
3070
3071
3072 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
3073 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
3074 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
3075 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
3076 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
3077 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
3078 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
3079 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
3080 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
3081 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
3082 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
3083 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
3084 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
3085 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
3086 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
3087 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
3088 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
3089 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
3090 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
3091 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
3092 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
3093 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
3094
3095 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
3096 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
3097 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
3098 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
3099 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
3100 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
3101 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
3102 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
3103 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
3104 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
3105
3106 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
3107 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
3108