]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/rs6000/rs6000.h
fa4e42b0793450d51acf132554235d69359d096c
[thirdparty/gcc.git] / gcc / config / rs6000 / rs6000.h
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992-2017 Free Software Foundation, Inc.
3 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 /* Note that some other tm.h files include this one and then override
27 many of the definitions. */
28
29 #ifndef RS6000_OPTS_H
30 #include "config/rs6000/rs6000-opts.h"
31 #endif
32
33 /* Definitions for the object file format. These are set at
34 compile-time. */
35
36 #define OBJECT_XCOFF 1
37 #define OBJECT_ELF 2
38 #define OBJECT_PEF 3
39 #define OBJECT_MACHO 4
40
41 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
42 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
43 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
44 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
45
46 #ifndef TARGET_AIX
47 #define TARGET_AIX 0
48 #endif
49
50 #ifndef TARGET_AIX_OS
51 #define TARGET_AIX_OS 0
52 #endif
53
54 /* Control whether function entry points use a "dot" symbol when
55 ABI_AIX. */
56 #define DOT_SYMBOLS 1
57
58 /* Default string to use for cpu if not specified. */
59 #ifndef TARGET_CPU_DEFAULT
60 #define TARGET_CPU_DEFAULT ((char *)0)
61 #endif
62
63 /* If configured for PPC405, support PPC405CR Erratum77. */
64 #ifdef CONFIG_PPC405CR
65 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
66 #else
67 #define PPC405_ERRATUM77 0
68 #endif
69
70 #ifndef TARGET_PAIRED_FLOAT
71 #define TARGET_PAIRED_FLOAT 0
72 #endif
73
74 #ifdef HAVE_AS_POPCNTB
75 #define ASM_CPU_POWER5_SPEC "-mpower5"
76 #else
77 #define ASM_CPU_POWER5_SPEC "-mpower4"
78 #endif
79
80 #ifdef HAVE_AS_DFP
81 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
82 #else
83 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
84 #endif
85
86 #ifdef HAVE_AS_POPCNTD
87 #define ASM_CPU_POWER7_SPEC "-mpower7"
88 #else
89 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
90 #endif
91
92 #ifdef HAVE_AS_POWER8
93 #define ASM_CPU_POWER8_SPEC "-mpower8"
94 #else
95 #define ASM_CPU_POWER8_SPEC ASM_CPU_POWER7_SPEC
96 #endif
97
98 #ifdef HAVE_AS_POWER9
99 #define ASM_CPU_POWER9_SPEC "-mpower9"
100 #else
101 #define ASM_CPU_POWER9_SPEC ASM_CPU_POWER8_SPEC
102 #endif
103
104 #ifdef HAVE_AS_DCI
105 #define ASM_CPU_476_SPEC "-m476"
106 #else
107 #define ASM_CPU_476_SPEC "-mpower4"
108 #endif
109
110 /* Common ASM definitions used by ASM_SPEC among the various targets for
111 handling -mcpu=xxx switches. There is a parallel list in driver-rs6000.c to
112 provide the default assembler options if the user uses -mcpu=native, so if
113 you make changes here, make them also there. */
114 #define ASM_CPU_SPEC \
115 "%{!mcpu*: \
116 %{mpowerpc64*: -mppc64} \
117 %{!mpowerpc64*: %(asm_default)}} \
118 %{mcpu=native: %(asm_cpu_native)} \
119 %{mcpu=cell: -mcell} \
120 %{mcpu=power3: -mppc64} \
121 %{mcpu=power4: -mpower4} \
122 %{mcpu=power5: %(asm_cpu_power5)} \
123 %{mcpu=power5+: %(asm_cpu_power5)} \
124 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
125 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
126 %{mcpu=power7: %(asm_cpu_power7)} \
127 %{mcpu=power8: %(asm_cpu_power8)} \
128 %{mcpu=power9: %(asm_cpu_power9)} \
129 %{mcpu=a2: -ma2} \
130 %{mcpu=powerpc: -mppc} \
131 %{mcpu=powerpc64le: %(asm_cpu_power8)} \
132 %{mcpu=rs64a: -mppc64} \
133 %{mcpu=401: -mppc} \
134 %{mcpu=403: -m403} \
135 %{mcpu=405: -m405} \
136 %{mcpu=405fp: -m405} \
137 %{mcpu=440: -m440} \
138 %{mcpu=440fp: -m440} \
139 %{mcpu=464: -m440} \
140 %{mcpu=464fp: -m440} \
141 %{mcpu=476: %(asm_cpu_476)} \
142 %{mcpu=476fp: %(asm_cpu_476)} \
143 %{mcpu=505: -mppc} \
144 %{mcpu=601: -m601} \
145 %{mcpu=602: -mppc} \
146 %{mcpu=603: -mppc} \
147 %{mcpu=603e: -mppc} \
148 %{mcpu=ec603e: -mppc} \
149 %{mcpu=604: -mppc} \
150 %{mcpu=604e: -mppc} \
151 %{mcpu=620: -mppc64} \
152 %{mcpu=630: -mppc64} \
153 %{mcpu=740: -mppc} \
154 %{mcpu=750: -mppc} \
155 %{mcpu=G3: -mppc} \
156 %{mcpu=7400: -mppc -maltivec} \
157 %{mcpu=7450: -mppc -maltivec} \
158 %{mcpu=G4: -mppc -maltivec} \
159 %{mcpu=801: -mppc} \
160 %{mcpu=821: -mppc} \
161 %{mcpu=823: -mppc} \
162 %{mcpu=860: -mppc} \
163 %{mcpu=970: -mpower4 -maltivec} \
164 %{mcpu=G5: -mpower4 -maltivec} \
165 %{mcpu=8540: -me500} \
166 %{mcpu=8548: -me500} \
167 %{mcpu=e300c2: -me300} \
168 %{mcpu=e300c3: -me300} \
169 %{mcpu=e500mc: -me500mc} \
170 %{mcpu=e500mc64: -me500mc64} \
171 %{mcpu=e5500: -me5500} \
172 %{mcpu=e6500: -me6500} \
173 %{maltivec: -maltivec} \
174 %{mvsx: -mvsx %{!maltivec: -maltivec} %{!mcpu*: %(asm_cpu_power7)}} \
175 %{mpower8-vector|mcrypto|mdirect-move|mhtm: %{!mcpu*: %(asm_cpu_power8)}} \
176 -many"
177
178 #define CPP_DEFAULT_SPEC ""
179
180 #define ASM_DEFAULT_SPEC ""
181
182 /* This macro defines names of additional specifications to put in the specs
183 that can be used in various specifications like CC1_SPEC. Its definition
184 is an initializer with a subgrouping for each command option.
185
186 Each subgrouping contains a string constant, that defines the
187 specification name, and a string constant that used by the GCC driver
188 program.
189
190 Do not define this macro if it does not need to do anything. */
191
192 #define SUBTARGET_EXTRA_SPECS
193
194 #define EXTRA_SPECS \
195 { "cpp_default", CPP_DEFAULT_SPEC }, \
196 { "asm_cpu", ASM_CPU_SPEC }, \
197 { "asm_cpu_native", ASM_CPU_NATIVE_SPEC }, \
198 { "asm_default", ASM_DEFAULT_SPEC }, \
199 { "cc1_cpu", CC1_CPU_SPEC }, \
200 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
201 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
202 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
203 { "asm_cpu_power8", ASM_CPU_POWER8_SPEC }, \
204 { "asm_cpu_power9", ASM_CPU_POWER9_SPEC }, \
205 { "asm_cpu_476", ASM_CPU_476_SPEC }, \
206 SUBTARGET_EXTRA_SPECS
207
208 /* -mcpu=native handling only makes sense with compiler running on
209 an PowerPC chip. If changing this condition, also change
210 the condition in driver-rs6000.c. */
211 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
212 /* In driver-rs6000.c. */
213 extern const char *host_detect_local_cpu (int argc, const char **argv);
214 #define EXTRA_SPEC_FUNCTIONS \
215 { "local_cpu_detect", host_detect_local_cpu },
216 #define HAVE_LOCAL_CPU_DETECT
217 #define ASM_CPU_NATIVE_SPEC "%:local_cpu_detect(asm)"
218
219 #else
220 #define ASM_CPU_NATIVE_SPEC "%(asm_default)"
221 #endif
222
223 #ifndef CC1_CPU_SPEC
224 #ifdef HAVE_LOCAL_CPU_DETECT
225 #define CC1_CPU_SPEC \
226 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
227 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
228 #else
229 #define CC1_CPU_SPEC ""
230 #endif
231 #endif
232
233 /* Architecture type. */
234
235 /* Define TARGET_MFCRF if the target assembler does not support the
236 optional field operand for mfcr. */
237
238 #ifndef HAVE_AS_MFCRF
239 #undef TARGET_MFCRF
240 #define TARGET_MFCRF 0
241 #endif
242
243 /* Define TARGET_POPCNTB if the target assembler does not support the
244 popcount byte instruction. */
245
246 #ifndef HAVE_AS_POPCNTB
247 #undef TARGET_POPCNTB
248 #define TARGET_POPCNTB 0
249 #endif
250
251 /* Define TARGET_FPRND if the target assembler does not support the
252 fp rounding instructions. */
253
254 #ifndef HAVE_AS_FPRND
255 #undef TARGET_FPRND
256 #define TARGET_FPRND 0
257 #endif
258
259 /* Define TARGET_CMPB if the target assembler does not support the
260 cmpb instruction. */
261
262 #ifndef HAVE_AS_CMPB
263 #undef TARGET_CMPB
264 #define TARGET_CMPB 0
265 #endif
266
267 /* Define TARGET_MFPGPR if the target assembler does not support the
268 mffpr and mftgpr instructions. */
269
270 #ifndef HAVE_AS_MFPGPR
271 #undef TARGET_MFPGPR
272 #define TARGET_MFPGPR 0
273 #endif
274
275 /* Define TARGET_DFP if the target assembler does not support decimal
276 floating point instructions. */
277 #ifndef HAVE_AS_DFP
278 #undef TARGET_DFP
279 #define TARGET_DFP 0
280 #endif
281
282 /* Define TARGET_POPCNTD if the target assembler does not support the
283 popcount word and double word instructions. */
284
285 #ifndef HAVE_AS_POPCNTD
286 #undef TARGET_POPCNTD
287 #define TARGET_POPCNTD 0
288 #endif
289
290 /* Define the ISA 2.07 flags as 0 if the target assembler does not support the
291 waitasecond instruction. Allow -mpower8-fusion, since it does not add new
292 instructions. */
293
294 #ifndef HAVE_AS_POWER8
295 #undef TARGET_DIRECT_MOVE
296 #undef TARGET_CRYPTO
297 #undef TARGET_HTM
298 #undef TARGET_P8_VECTOR
299 #define TARGET_DIRECT_MOVE 0
300 #define TARGET_CRYPTO 0
301 #define TARGET_HTM 0
302 #define TARGET_P8_VECTOR 0
303 #endif
304
305 /* Define the ISA 3.0 flags as 0 if the target assembler does not support
306 Power9 instructions. Allow -mpower9-fusion, since it does not add new
307 instructions. Allow -misel, since it predates ISA 3.0 and does
308 not require any Power9 features. */
309
310 #ifndef HAVE_AS_POWER9
311 #undef TARGET_FLOAT128_HW
312 #undef TARGET_MODULO
313 #undef TARGET_P9_VECTOR
314 #undef TARGET_P9_MINMAX
315 #undef TARGET_P9_MISC
316 #define TARGET_FLOAT128_HW 0
317 #define TARGET_MODULO 0
318 #define TARGET_P9_VECTOR 0
319 #define TARGET_P9_MINMAX 0
320 #define TARGET_P9_MISC 0
321 #endif
322
323 /* Define TARGET_LWSYNC_INSTRUCTION if the assembler knows about lwsync. If
324 not, generate the lwsync code as an integer constant. */
325 #ifdef HAVE_AS_LWSYNC
326 #define TARGET_LWSYNC_INSTRUCTION 1
327 #else
328 #define TARGET_LWSYNC_INSTRUCTION 0
329 #endif
330
331 /* Define TARGET_TLS_MARKERS if the target assembler does not support
332 arg markers for __tls_get_addr calls. */
333 #ifndef HAVE_AS_TLS_MARKERS
334 #undef TARGET_TLS_MARKERS
335 #define TARGET_TLS_MARKERS 0
336 #else
337 #define TARGET_TLS_MARKERS tls_markers
338 #endif
339
340 #ifndef TARGET_SECURE_PLT
341 #define TARGET_SECURE_PLT 0
342 #endif
343
344 #ifndef TARGET_CMODEL
345 #define TARGET_CMODEL CMODEL_SMALL
346 #endif
347
348 #define TARGET_32BIT (! TARGET_64BIT)
349
350 #ifndef HAVE_AS_TLS
351 #define HAVE_AS_TLS 0
352 #endif
353
354 #ifndef TARGET_LINK_STACK
355 #define TARGET_LINK_STACK 0
356 #endif
357
358 #ifndef SET_TARGET_LINK_STACK
359 #define SET_TARGET_LINK_STACK(X) do { } while (0)
360 #endif
361
362 #ifndef TARGET_FLOAT128_ENABLE_TYPE
363 #define TARGET_FLOAT128_ENABLE_TYPE 0
364 #endif
365
366 /* Return 1 for a symbol ref for a thread-local storage symbol. */
367 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
368 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
369
370 #ifdef IN_LIBGCC2
371 /* For libgcc2 we make sure this is a compile time constant */
372 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
373 #undef TARGET_POWERPC64
374 #define TARGET_POWERPC64 1
375 #else
376 #undef TARGET_POWERPC64
377 #define TARGET_POWERPC64 0
378 #endif
379 #else
380 /* The option machinery will define this. */
381 #endif
382
383 #define TARGET_DEFAULT (MASK_MULTIPLE | MASK_STRING)
384
385 /* FPU operations supported.
386 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
387 also test TARGET_HARD_FLOAT. */
388 #define TARGET_SINGLE_FLOAT 1
389 #define TARGET_DOUBLE_FLOAT 1
390 #define TARGET_SINGLE_FPU 0
391 #define TARGET_SIMPLE_FPU 0
392 #define TARGET_XILINX_FPU 0
393
394 /* Define generic processor types based upon current deployment. */
395 #define PROCESSOR_COMMON PROCESSOR_PPC601
396 #define PROCESSOR_POWERPC PROCESSOR_PPC604
397 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
398
399 /* Define the default processor. This is overridden by other tm.h files. */
400 #define PROCESSOR_DEFAULT PROCESSOR_PPC603
401 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
402
403 /* Specify the dialect of assembler to use. Only new mnemonics are supported
404 starting with GCC 4.8, i.e. just one dialect, but for backwards
405 compatibility with older inline asm ASSEMBLER_DIALECT needs to be
406 defined. */
407 #define ASSEMBLER_DIALECT 1
408
409 /* Debug support */
410 #define MASK_DEBUG_STACK 0x01 /* debug stack applications */
411 #define MASK_DEBUG_ARG 0x02 /* debug argument handling */
412 #define MASK_DEBUG_REG 0x04 /* debug register handling */
413 #define MASK_DEBUG_ADDR 0x08 /* debug memory addressing */
414 #define MASK_DEBUG_COST 0x10 /* debug rtx codes */
415 #define MASK_DEBUG_TARGET 0x20 /* debug target attribute/pragma */
416 #define MASK_DEBUG_BUILTIN 0x40 /* debug builtins */
417 #define MASK_DEBUG_ALL (MASK_DEBUG_STACK \
418 | MASK_DEBUG_ARG \
419 | MASK_DEBUG_REG \
420 | MASK_DEBUG_ADDR \
421 | MASK_DEBUG_COST \
422 | MASK_DEBUG_TARGET \
423 | MASK_DEBUG_BUILTIN)
424
425 #define TARGET_DEBUG_STACK (rs6000_debug & MASK_DEBUG_STACK)
426 #define TARGET_DEBUG_ARG (rs6000_debug & MASK_DEBUG_ARG)
427 #define TARGET_DEBUG_REG (rs6000_debug & MASK_DEBUG_REG)
428 #define TARGET_DEBUG_ADDR (rs6000_debug & MASK_DEBUG_ADDR)
429 #define TARGET_DEBUG_COST (rs6000_debug & MASK_DEBUG_COST)
430 #define TARGET_DEBUG_TARGET (rs6000_debug & MASK_DEBUG_TARGET)
431 #define TARGET_DEBUG_BUILTIN (rs6000_debug & MASK_DEBUG_BUILTIN)
432
433 /* Helper macros for TFmode. Quad floating point (TFmode) can be either IBM
434 long double format that uses a pair of doubles, or IEEE 128-bit floating
435 point. KFmode was added as a way to represent IEEE 128-bit floating point,
436 even if the default for long double is the IBM long double format.
437 Similarly IFmode is the IBM long double format even if the default is IEEE
438 128-bit. Don't allow IFmode if -msoft-float. */
439 #define FLOAT128_IEEE_P(MODE) \
440 ((TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
441 || ((MODE) == KFmode) || ((MODE) == KCmode))
442
443 #define FLOAT128_IBM_P(MODE) \
444 ((!TARGET_IEEEQUAD && ((MODE) == TFmode || (MODE) == TCmode)) \
445 || (TARGET_HARD_FLOAT && ((MODE) == IFmode || (MODE) == ICmode)))
446
447 /* Helper macros to say whether a 128-bit floating point type can go in a
448 single vector register, or whether it needs paired scalar values. */
449 #define FLOAT128_VECTOR_P(MODE) (TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE))
450
451 #define FLOAT128_2REG_P(MODE) \
452 (FLOAT128_IBM_P (MODE) \
453 || ((MODE) == TDmode) \
454 || (!TARGET_FLOAT128_TYPE && FLOAT128_IEEE_P (MODE)))
455
456 /* Return true for floating point that does not use a vector register. */
457 #define SCALAR_FLOAT_MODE_NOT_VECTOR_P(MODE) \
458 (SCALAR_FLOAT_MODE_P (MODE) && !FLOAT128_VECTOR_P (MODE))
459
460 /* Describe the vector unit used for arithmetic operations. */
461 extern enum rs6000_vector rs6000_vector_unit[];
462
463 #define VECTOR_UNIT_NONE_P(MODE) \
464 (rs6000_vector_unit[(MODE)] == VECTOR_NONE)
465
466 #define VECTOR_UNIT_VSX_P(MODE) \
467 (rs6000_vector_unit[(MODE)] == VECTOR_VSX)
468
469 #define VECTOR_UNIT_P8_VECTOR_P(MODE) \
470 (rs6000_vector_unit[(MODE)] == VECTOR_P8_VECTOR)
471
472 #define VECTOR_UNIT_ALTIVEC_P(MODE) \
473 (rs6000_vector_unit[(MODE)] == VECTOR_ALTIVEC)
474
475 #define VECTOR_UNIT_VSX_OR_P8_VECTOR_P(MODE) \
476 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
477 (int)VECTOR_VSX, \
478 (int)VECTOR_P8_VECTOR))
479
480 /* VECTOR_UNIT_ALTIVEC_OR_VSX_P is used in places where we are using either
481 altivec (VMX) or VSX vector instructions. P8 vector support is upwards
482 compatible, so allow it as well, rather than changing all of the uses of the
483 macro. */
484 #define VECTOR_UNIT_ALTIVEC_OR_VSX_P(MODE) \
485 (IN_RANGE ((int)rs6000_vector_unit[(MODE)], \
486 (int)VECTOR_ALTIVEC, \
487 (int)VECTOR_P8_VECTOR))
488
489 /* Describe whether to use VSX loads or Altivec loads. For now, just use the
490 same unit as the vector unit we are using, but we may want to migrate to
491 using VSX style loads even for types handled by altivec. */
492 extern enum rs6000_vector rs6000_vector_mem[];
493
494 #define VECTOR_MEM_NONE_P(MODE) \
495 (rs6000_vector_mem[(MODE)] == VECTOR_NONE)
496
497 #define VECTOR_MEM_VSX_P(MODE) \
498 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
499
500 #define VECTOR_MEM_P8_VECTOR_P(MODE) \
501 (rs6000_vector_mem[(MODE)] == VECTOR_VSX)
502
503 #define VECTOR_MEM_ALTIVEC_P(MODE) \
504 (rs6000_vector_mem[(MODE)] == VECTOR_ALTIVEC)
505
506 #define VECTOR_MEM_VSX_OR_P8_VECTOR_P(MODE) \
507 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
508 (int)VECTOR_VSX, \
509 (int)VECTOR_P8_VECTOR))
510
511 #define VECTOR_MEM_ALTIVEC_OR_VSX_P(MODE) \
512 (IN_RANGE ((int)rs6000_vector_mem[(MODE)], \
513 (int)VECTOR_ALTIVEC, \
514 (int)VECTOR_P8_VECTOR))
515
516 /* Return the alignment of a given vector type, which is set based on the
517 vector unit use. VSX for instance can load 32 or 64 bit aligned words
518 without problems, while Altivec requires 128-bit aligned vectors. */
519 extern int rs6000_vector_align[];
520
521 #define VECTOR_ALIGN(MODE) \
522 ((rs6000_vector_align[(MODE)] != 0) \
523 ? rs6000_vector_align[(MODE)] \
524 : (int)GET_MODE_BITSIZE ((MODE)))
525
526 /* Determine the element order to use for vector instructions. By
527 default we use big-endian element order when targeting big-endian,
528 and little-endian element order when targeting little-endian. For
529 programs being ported from BE Power to LE Power, it can sometimes
530 be useful to use big-endian element order when targeting little-endian.
531 This is set via -maltivec=be, for example. */
532 #define VECTOR_ELT_ORDER_BIG \
533 (BYTES_BIG_ENDIAN || (rs6000_altivec_element_order == 2))
534
535 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
536 with scalar instructions. */
537 #define VECTOR_ELEMENT_SCALAR_64BIT ((BYTES_BIG_ENDIAN) ? 0 : 1)
538
539 /* Element number of the 64-bit value in a 128-bit vector that can be accessed
540 with the ISA 3.0 MFVSRLD instructions. */
541 #define VECTOR_ELEMENT_MFVSRLD_64BIT ((BYTES_BIG_ENDIAN) ? 1 : 0)
542
543 /* Alignment options for fields in structures for sub-targets following
544 AIX-like ABI.
545 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
546 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
547
548 Override the macro definitions when compiling libobjc to avoid undefined
549 reference to rs6000_alignment_flags due to library's use of GCC alignment
550 macros which use the macros below. */
551
552 #ifndef IN_TARGET_LIBS
553 #define MASK_ALIGN_POWER 0x00000000
554 #define MASK_ALIGN_NATURAL 0x00000001
555 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
556 #else
557 #define TARGET_ALIGN_NATURAL 0
558 #endif
559
560 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
561 #define TARGET_IEEEQUAD rs6000_ieeequad
562 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
563 #define TARGET_LDBRX (TARGET_POPCNTD || rs6000_cpu == PROCESSOR_CELL)
564
565 /* ISA 2.01 allowed FCFID to be done in 32-bit, previously it was 64-bit only.
566 Enable 32-bit fcfid's on any of the switches for newer ISA machines or
567 XILINX. */
568 #define TARGET_FCFID (TARGET_POWERPC64 \
569 || TARGET_PPC_GPOPT /* 970/power4 */ \
570 || TARGET_POPCNTB /* ISA 2.02 */ \
571 || TARGET_CMPB /* ISA 2.05 */ \
572 || TARGET_POPCNTD /* ISA 2.06 */ \
573 || TARGET_XILINX_FPU)
574
575 #define TARGET_FCTIDZ TARGET_FCFID
576 #define TARGET_STFIWX TARGET_PPC_GFXOPT
577 #define TARGET_LFIWAX TARGET_CMPB
578 #define TARGET_LFIWZX TARGET_POPCNTD
579 #define TARGET_FCFIDS TARGET_POPCNTD
580 #define TARGET_FCFIDU TARGET_POPCNTD
581 #define TARGET_FCFIDUS TARGET_POPCNTD
582 #define TARGET_FCTIDUZ TARGET_POPCNTD
583 #define TARGET_FCTIWUZ TARGET_POPCNTD
584 #define TARGET_CTZ TARGET_MODULO
585 #define TARGET_EXTSWSLI (TARGET_MODULO && TARGET_POWERPC64)
586 #define TARGET_MADDLD (TARGET_MODULO && TARGET_POWERPC64)
587
588 #define TARGET_XSCVDPSPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
589 #define TARGET_XSCVSPDPN (TARGET_DIRECT_MOVE || TARGET_P8_VECTOR)
590 #define TARGET_VADDUQM (TARGET_P8_VECTOR && TARGET_POWERPC64)
591 #define TARGET_DIRECT_MOVE_128 (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
592 && TARGET_POWERPC64)
593 #define TARGET_VEXTRACTUB (TARGET_P9_VECTOR && TARGET_DIRECT_MOVE \
594 && TARGET_POWERPC64)
595
596 /* Whether we should avoid (SUBREG:SI (REG:SF) and (SUBREG:SF (REG:SI). */
597 #define TARGET_NO_SF_SUBREG TARGET_DIRECT_MOVE_64BIT
598 #define TARGET_ALLOW_SF_SUBREG (!TARGET_DIRECT_MOVE_64BIT)
599
600 /* This wants to be set for p8 and newer. On p7, overlapping unaligned
601 loads are slow. */
602 #define TARGET_EFFICIENT_OVERLAPPING_UNALIGNED TARGET_EFFICIENT_UNALIGNED_VSX
603
604 /* Byte/char syncs were added as phased in for ISA 2.06B, but are not present
605 in power7, so conditionalize them on p8 features. TImode syncs need quad
606 memory support. */
607 #define TARGET_SYNC_HI_QI (TARGET_QUAD_MEMORY \
608 || TARGET_QUAD_MEMORY_ATOMIC \
609 || TARGET_DIRECT_MOVE)
610
611 #define TARGET_SYNC_TI TARGET_QUAD_MEMORY_ATOMIC
612
613 /* Power7 has both 32-bit load and store integer for the FPRs, so we don't need
614 to allocate the SDmode stack slot to get the value into the proper location
615 in the register. */
616 #define TARGET_NO_SDMODE_STACK (TARGET_LFIWZX && TARGET_STFIWX && TARGET_DFP)
617
618 /* ISA 3.0 has new min/max functions that don't need fast math that are being
619 phased in. Min/max using FSEL or XSMAXDP/XSMINDP do not return the correct
620 answers if the arguments are not in the normal range. */
621 #define TARGET_MINMAX_SF (TARGET_SF_FPR && TARGET_PPC_GFXOPT \
622 && (TARGET_P9_MINMAX || !flag_trapping_math))
623
624 #define TARGET_MINMAX_DF (TARGET_DF_FPR && TARGET_PPC_GFXOPT \
625 && (TARGET_P9_MINMAX || !flag_trapping_math))
626
627 /* In switching from using target_flags to using rs6000_isa_flags, the options
628 machinery creates OPTION_MASK_<xxx> instead of MASK_<xxx>. For now map
629 OPTION_MASK_<xxx> back into MASK_<xxx>. */
630 #define MASK_ALTIVEC OPTION_MASK_ALTIVEC
631 #define MASK_CMPB OPTION_MASK_CMPB
632 #define MASK_CRYPTO OPTION_MASK_CRYPTO
633 #define MASK_DFP OPTION_MASK_DFP
634 #define MASK_DIRECT_MOVE OPTION_MASK_DIRECT_MOVE
635 #define MASK_DLMZB OPTION_MASK_DLMZB
636 #define MASK_EABI OPTION_MASK_EABI
637 #define MASK_FLOAT128_KEYWORD OPTION_MASK_FLOAT128_KEYWORD
638 #define MASK_FLOAT128_HW OPTION_MASK_FLOAT128_HW
639 #define MASK_FPRND OPTION_MASK_FPRND
640 #define MASK_P8_FUSION OPTION_MASK_P8_FUSION
641 #define MASK_HARD_FLOAT OPTION_MASK_HARD_FLOAT
642 #define MASK_HTM OPTION_MASK_HTM
643 #define MASK_ISEL OPTION_MASK_ISEL
644 #define MASK_MFCRF OPTION_MASK_MFCRF
645 #define MASK_MFPGPR OPTION_MASK_MFPGPR
646 #define MASK_MULHW OPTION_MASK_MULHW
647 #define MASK_MULTIPLE OPTION_MASK_MULTIPLE
648 #define MASK_NO_UPDATE OPTION_MASK_NO_UPDATE
649 #define MASK_P8_VECTOR OPTION_MASK_P8_VECTOR
650 #define MASK_P9_VECTOR OPTION_MASK_P9_VECTOR
651 #define MASK_P9_MISC OPTION_MASK_P9_MISC
652 #define MASK_POPCNTB OPTION_MASK_POPCNTB
653 #define MASK_POPCNTD OPTION_MASK_POPCNTD
654 #define MASK_PPC_GFXOPT OPTION_MASK_PPC_GFXOPT
655 #define MASK_PPC_GPOPT OPTION_MASK_PPC_GPOPT
656 #define MASK_RECIP_PRECISION OPTION_MASK_RECIP_PRECISION
657 #define MASK_SOFT_FLOAT OPTION_MASK_SOFT_FLOAT
658 #define MASK_STRICT_ALIGN OPTION_MASK_STRICT_ALIGN
659 #define MASK_STRING OPTION_MASK_STRING
660 #define MASK_UPDATE OPTION_MASK_UPDATE
661 #define MASK_VSX OPTION_MASK_VSX
662
663 #ifndef IN_LIBGCC2
664 #define MASK_POWERPC64 OPTION_MASK_POWERPC64
665 #endif
666
667 #ifdef TARGET_64BIT
668 #define MASK_64BIT OPTION_MASK_64BIT
669 #endif
670
671 #ifdef TARGET_LITTLE_ENDIAN
672 #define MASK_LITTLE_ENDIAN OPTION_MASK_LITTLE_ENDIAN
673 #endif
674
675 #ifdef TARGET_REGNAMES
676 #define MASK_REGNAMES OPTION_MASK_REGNAMES
677 #endif
678
679 #ifdef TARGET_PROTOTYPE
680 #define MASK_PROTOTYPE OPTION_MASK_PROTOTYPE
681 #endif
682
683 #ifdef TARGET_MODULO
684 #define RS6000_BTM_MODULO OPTION_MASK_MODULO
685 #endif
686
687
688 /* For power systems, we want to enable Altivec and VSX builtins even if the
689 user did not use -maltivec or -mvsx to allow the builtins to be used inside
690 of #pragma GCC target or the target attribute to change the code level for a
691 given system. The Paired builtins are only enabled if you configure the
692 compiler for those builtins, and those machines don't support altivec or
693 VSX. */
694
695 #define TARGET_EXTRA_BUILTINS (!TARGET_PAIRED_FLOAT \
696 && ((TARGET_POWERPC64 \
697 || TARGET_PPC_GPOPT /* 970/power4 */ \
698 || TARGET_POPCNTB /* ISA 2.02 */ \
699 || TARGET_CMPB /* ISA 2.05 */ \
700 || TARGET_POPCNTD /* ISA 2.06 */ \
701 || TARGET_ALTIVEC \
702 || TARGET_VSX \
703 || TARGET_HARD_FLOAT)))
704
705 /* E500 cores only support plain "sync", not lwsync. */
706 #define TARGET_NO_LWSYNC (rs6000_cpu == PROCESSOR_PPC8540 \
707 || rs6000_cpu == PROCESSOR_PPC8548)
708
709
710 /* Whether SF/DF operations are supported by the normal floating point unit
711 (or the vector/scalar unit). */
712 #define TARGET_SF_FPR (TARGET_HARD_FLOAT && TARGET_SINGLE_FLOAT)
713 #define TARGET_DF_FPR (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT)
714
715 /* Whether SF/DF operations are supported by any hardware. */
716 #define TARGET_SF_INSN TARGET_SF_FPR
717 #define TARGET_DF_INSN TARGET_DF_FPR
718
719 /* Which machine supports the various reciprocal estimate instructions. */
720 #define TARGET_FRES (TARGET_HARD_FLOAT && TARGET_PPC_GFXOPT \
721 && TARGET_SINGLE_FLOAT)
722
723 #define TARGET_FRE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
724 && (TARGET_POPCNTB || VECTOR_UNIT_VSX_P (DFmode)))
725
726 #define TARGET_FRSQRTES (TARGET_HARD_FLOAT && TARGET_POPCNTB \
727 && TARGET_PPC_GFXOPT && TARGET_SINGLE_FLOAT)
728
729 #define TARGET_FRSQRTE (TARGET_HARD_FLOAT && TARGET_DOUBLE_FLOAT \
730 && (TARGET_PPC_GFXOPT || VECTOR_UNIT_VSX_P (DFmode)))
731
732 /* Conditions to allow TOC fusion for loading/storing integers. */
733 #define TARGET_TOC_FUSION_INT (TARGET_P8_FUSION \
734 && TARGET_TOC_FUSION \
735 && (TARGET_CMODEL != CMODEL_SMALL) \
736 && TARGET_POWERPC64)
737
738 /* Conditions to allow TOC fusion for loading/storing floating point. */
739 #define TARGET_TOC_FUSION_FP (TARGET_P9_FUSION \
740 && TARGET_TOC_FUSION \
741 && (TARGET_CMODEL != CMODEL_SMALL) \
742 && TARGET_POWERPC64 \
743 && TARGET_HARD_FLOAT \
744 && TARGET_SINGLE_FLOAT \
745 && TARGET_DOUBLE_FLOAT)
746
747 /* Macro to say whether we can do optimizations where we need to do parts of
748 the calculation in 64-bit GPRs and then is transfered to the vector
749 registers. Do not allow -maltivec=be for these optimizations, because it
750 adds to the complexity of the code. */
751 #define TARGET_DIRECT_MOVE_64BIT (TARGET_DIRECT_MOVE \
752 && TARGET_P8_VECTOR \
753 && TARGET_POWERPC64 \
754 && (rs6000_altivec_element_order != 2))
755
756 /* Whether the various reciprocal divide/square root estimate instructions
757 exist, and whether we should automatically generate code for the instruction
758 by default. */
759 #define RS6000_RECIP_MASK_HAVE_RE 0x1 /* have RE instruction. */
760 #define RS6000_RECIP_MASK_AUTO_RE 0x2 /* generate RE by default. */
761 #define RS6000_RECIP_MASK_HAVE_RSQRTE 0x4 /* have RSQRTE instruction. */
762 #define RS6000_RECIP_MASK_AUTO_RSQRTE 0x8 /* gen. RSQRTE by default. */
763
764 extern unsigned char rs6000_recip_bits[];
765
766 #define RS6000_RECIP_HAVE_RE_P(MODE) \
767 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RE)
768
769 #define RS6000_RECIP_AUTO_RE_P(MODE) \
770 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RE)
771
772 #define RS6000_RECIP_HAVE_RSQRTE_P(MODE) \
773 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_HAVE_RSQRTE)
774
775 #define RS6000_RECIP_AUTO_RSQRTE_P(MODE) \
776 (rs6000_recip_bits[(int)(MODE)] & RS6000_RECIP_MASK_AUTO_RSQRTE)
777
778 /* The default CPU for TARGET_OPTION_OVERRIDE. */
779 #define OPTION_TARGET_CPU_DEFAULT TARGET_CPU_DEFAULT
780
781 /* Target pragma. */
782 #define REGISTER_TARGET_PRAGMAS() do { \
783 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
784 targetm.target_option.pragma_parse = rs6000_pragma_target_parse; \
785 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
786 rs6000_target_modify_macros_ptr = rs6000_target_modify_macros; \
787 } while (0)
788
789 /* Target #defines. */
790 #define TARGET_CPU_CPP_BUILTINS() \
791 rs6000_cpu_cpp_builtins (pfile)
792
793 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
794 we're compiling for. Some configurations may need to override it. */
795 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
796 do \
797 { \
798 if (BYTES_BIG_ENDIAN) \
799 { \
800 builtin_define ("__BIG_ENDIAN__"); \
801 builtin_define ("_BIG_ENDIAN"); \
802 builtin_assert ("machine=bigendian"); \
803 } \
804 else \
805 { \
806 builtin_define ("__LITTLE_ENDIAN__"); \
807 builtin_define ("_LITTLE_ENDIAN"); \
808 builtin_assert ("machine=littleendian"); \
809 } \
810 } \
811 while (0)
812 \f
813 /* Target machine storage layout. */
814
815 /* Define this macro if it is advisable to hold scalars in registers
816 in a wider mode than that declared by the program. In such cases,
817 the value is constrained to be within the bounds of the declared
818 type, but kept valid in the wider mode. The signedness of the
819 extension may differ from that of the type. */
820
821 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
822 if (GET_MODE_CLASS (MODE) == MODE_INT \
823 && GET_MODE_SIZE (MODE) < (TARGET_32BIT ? 4 : 8)) \
824 (MODE) = TARGET_32BIT ? SImode : DImode;
825
826 /* Define this if most significant bit is lowest numbered
827 in instructions that operate on numbered bit-fields. */
828 /* That is true on RS/6000. */
829 #define BITS_BIG_ENDIAN 1
830
831 /* Define this if most significant byte of a word is the lowest numbered. */
832 /* That is true on RS/6000. */
833 #define BYTES_BIG_ENDIAN 1
834
835 /* Define this if most significant word of a multiword number is lowest
836 numbered.
837
838 For RS/6000 we can decide arbitrarily since there are no machine
839 instructions for them. Might as well be consistent with bits and bytes. */
840 #define WORDS_BIG_ENDIAN 1
841
842 /* This says that for the IBM long double the larger magnitude double
843 comes first. It's really a two element double array, and arrays
844 don't index differently between little- and big-endian. */
845 #define LONG_DOUBLE_LARGE_FIRST 1
846
847 #define MAX_BITS_PER_WORD 64
848
849 /* Width of a word, in units (bytes). */
850 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
851 #ifdef IN_LIBGCC2
852 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
853 #else
854 #define MIN_UNITS_PER_WORD 4
855 #endif
856 #define UNITS_PER_FP_WORD 8
857 #define UNITS_PER_ALTIVEC_WORD 16
858 #define UNITS_PER_VSX_WORD 16
859 #define UNITS_PER_PAIRED_WORD 8
860
861 /* Type used for ptrdiff_t, as a string used in a declaration. */
862 #define PTRDIFF_TYPE "int"
863
864 /* Type used for size_t, as a string used in a declaration. */
865 #define SIZE_TYPE "long unsigned int"
866
867 /* Type used for wchar_t, as a string used in a declaration. */
868 #define WCHAR_TYPE "short unsigned int"
869
870 /* Width of wchar_t in bits. */
871 #define WCHAR_TYPE_SIZE 16
872
873 /* A C expression for the size in bits of the type `short' on the
874 target machine. If you don't define this, the default is half a
875 word. (If this would be less than one storage unit, it is
876 rounded up to one unit.) */
877 #define SHORT_TYPE_SIZE 16
878
879 /* A C expression for the size in bits of the type `int' on the
880 target machine. If you don't define this, the default is one
881 word. */
882 #define INT_TYPE_SIZE 32
883
884 /* A C expression for the size in bits of the type `long' on the
885 target machine. If you don't define this, the default is one
886 word. */
887 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
888
889 /* A C expression for the size in bits of the type `long long' on the
890 target machine. If you don't define this, the default is two
891 words. */
892 #define LONG_LONG_TYPE_SIZE 64
893
894 /* A C expression for the size in bits of the type `float' on the
895 target machine. If you don't define this, the default is one
896 word. */
897 #define FLOAT_TYPE_SIZE 32
898
899 /* A C expression for the size in bits of the type `double' on the
900 target machine. If you don't define this, the default is two
901 words. */
902 #define DOUBLE_TYPE_SIZE 64
903
904 /* A C expression for the size in bits of the type `long double' on
905 the target machine. If you don't define this, the default is two
906 words. */
907 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
908
909 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
910 #define WIDEST_HARDWARE_FP_SIZE 64
911
912 /* Width in bits of a pointer.
913 See also the macro `Pmode' defined below. */
914 extern unsigned rs6000_pointer_size;
915 #define POINTER_SIZE rs6000_pointer_size
916
917 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
918 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
919
920 /* Boundary (in *bits*) on which stack pointer should be aligned. */
921 #define STACK_BOUNDARY \
922 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI && !TARGET_VSX) \
923 ? 64 : 128)
924
925 /* Allocation boundary (in *bits*) for the code of a function. */
926 #define FUNCTION_BOUNDARY 32
927
928 /* No data type wants to be aligned rounder than this. */
929 #define BIGGEST_ALIGNMENT 128
930
931 /* Alignment of field after `int : 0' in a structure. */
932 #define EMPTY_FIELD_BOUNDARY 32
933
934 /* Every structure's size must be a multiple of this. */
935 #define STRUCTURE_SIZE_BOUNDARY 8
936
937 /* A bit-field declared as `int' forces `int' alignment for the struct. */
938 #define PCC_BITFIELD_TYPE_MATTERS 1
939
940 enum data_align { align_abi, align_opt, align_both };
941
942 /* A C expression to compute the alignment for a variables in the
943 local store. TYPE is the data type, and ALIGN is the alignment
944 that the object would ordinarily have. */
945 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
946 rs6000_data_alignment (TYPE, ALIGN, align_both)
947
948 /* Make arrays of chars word-aligned for the same reasons. */
949 #define DATA_ALIGNMENT(TYPE, ALIGN) \
950 rs6000_data_alignment (TYPE, ALIGN, align_opt)
951
952 /* Align vectors to 128 bits. */
953 #define DATA_ABI_ALIGNMENT(TYPE, ALIGN) \
954 rs6000_data_alignment (TYPE, ALIGN, align_abi)
955
956 /* Nonzero if move instructions will actually fail to work
957 when given unaligned data. */
958 #define STRICT_ALIGNMENT 0
959 \f
960 /* Standard register usage. */
961
962 /* Number of actual hardware registers.
963 The hardware registers are assigned numbers for the compiler
964 from 0 to just below FIRST_PSEUDO_REGISTER.
965 All registers that the compiler knows about must be given numbers,
966 even those that are not normally considered general registers.
967
968 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
969 a count register, a link register, and 8 condition register fields,
970 which we view here as separate registers. AltiVec adds 32 vector
971 registers and a VRsave register.
972
973 In addition, the difference between the frame and argument pointers is
974 a function of the number of registers saved, so we need to have a
975 register for AP that will later be eliminated in favor of SP or FP.
976 This is a normal register, but it is fixed.
977
978 We also create a pseudo register for float/int conversions, that will
979 really represent the memory location used. It is represented here as
980 a register, in order to work around problems in allocating stack storage
981 in inline functions.
982
983 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
984 pointer, which is eventually eliminated in favor of SP or FP.
985
986 The 3 HTM registers aren't also included in DWARF_FRAME_REGISTERS. */
987
988 #define FIRST_PSEUDO_REGISTER 115
989
990 /* This must be included for pre gcc 3.0 glibc compatibility. */
991 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
992
993 /* The sfp register and 3 HTM registers
994 aren't included in DWARF_FRAME_REGISTERS. */
995 #define DWARF_FRAME_REGISTERS (FIRST_PSEUDO_REGISTER - 4)
996
997 /* Use standard DWARF numbering for DWARF debugging information. */
998 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number ((REGNO), 0)
999
1000 /* Use gcc hard register numbering for eh_frame. */
1001 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
1002
1003 /* Map register numbers held in the call frame info that gcc has
1004 collected using DWARF_FRAME_REGNUM to those that should be output in
1005 .debug_frame and .eh_frame. */
1006 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
1007 rs6000_dbx_register_number ((REGNO), (FOR_EH)? 2 : 1)
1008
1009 /* 1 for registers that have pervasive standard uses
1010 and are not available for the register allocator.
1011
1012 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
1013 as a local register; for all other OS's r2 is the TOC pointer.
1014
1015 On System V implementations, r13 is fixed and not available for use. */
1016
1017 #define FIXED_REGISTERS \
1018 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
1019 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1020 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1021 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1022 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, \
1023 /* AltiVec registers. */ \
1024 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1025 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1026 1, 1 \
1027 , 1, 1, 1, 1 \
1028 }
1029
1030 /* 1 for registers not available across function calls.
1031 These must include the FIXED_REGISTERS and also any
1032 registers that can be used without being saved.
1033 The latter must include the registers where values are returned
1034 and the register where structure-value addresses are passed.
1035 Aside from that, you can include as many other registers as you like. */
1036
1037 #define CALL_USED_REGISTERS \
1038 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1039 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1040 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1041 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1042 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1043 /* AltiVec registers. */ \
1044 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1045 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1046 1, 1 \
1047 , 1, 1, 1, 1 \
1048 }
1049
1050 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
1051 the entire set of `FIXED_REGISTERS' be included.
1052 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
1053 This macro is optional. If not specified, it defaults to the value
1054 of `CALL_USED_REGISTERS'. */
1055
1056 #define CALL_REALLY_USED_REGISTERS \
1057 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
1058 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1059 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
1060 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1061 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
1062 /* AltiVec registers. */ \
1063 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1064 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
1065 0, 0 \
1066 , 0, 0, 0, 0 \
1067 }
1068
1069 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
1070
1071 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
1072 #define FIRST_SAVED_FP_REGNO (14+32)
1073 #define FIRST_SAVED_GP_REGNO (FIXED_R13 ? 14 : 13)
1074
1075 /* List the order in which to allocate registers. Each register must be
1076 listed once, even those in FIXED_REGISTERS.
1077
1078 We allocate in the following order:
1079 fp0 (not saved or used for anything)
1080 fp13 - fp2 (not saved; incoming fp arg registers)
1081 fp1 (not saved; return value)
1082 fp31 - fp14 (saved; order given to save least number)
1083 cr7, cr5 (not saved or special)
1084 cr6 (not saved, but used for vector operations)
1085 cr1 (not saved, but used for FP operations)
1086 cr0 (not saved, but used for arithmetic operations)
1087 cr4, cr3, cr2 (saved)
1088 r9 (not saved; best for TImode)
1089 r10, r8-r4 (not saved; highest first for less conflict with params)
1090 r3 (not saved; return value register)
1091 r11 (not saved; later alloc to help shrink-wrap)
1092 r0 (not saved; cannot be base reg)
1093 r31 - r13 (saved; order given to save least number)
1094 r12 (not saved; if used for DImode or DFmode would use r13)
1095 ctr (not saved; when we have the choice ctr is better)
1096 lr (saved)
1097 r1, r2, ap, ca (fixed)
1098 v0 - v1 (not saved or used for anything)
1099 v13 - v3 (not saved; incoming vector arg registers)
1100 v2 (not saved; incoming vector arg reg; return value)
1101 v19 - v14 (not saved or used for anything)
1102 v31 - v20 (saved; order given to save least number)
1103 vrsave, vscr (fixed)
1104 sfp (fixed)
1105 tfhar (fixed)
1106 tfiar (fixed)
1107 texasr (fixed)
1108 */
1109
1110 #if FIXED_R2 == 1
1111 #define MAYBE_R2_AVAILABLE
1112 #define MAYBE_R2_FIXED 2,
1113 #else
1114 #define MAYBE_R2_AVAILABLE 2,
1115 #define MAYBE_R2_FIXED
1116 #endif
1117
1118 #if FIXED_R13 == 1
1119 #define EARLY_R12 12,
1120 #define LATE_R12
1121 #else
1122 #define EARLY_R12
1123 #define LATE_R12 12,
1124 #endif
1125
1126 #define REG_ALLOC_ORDER \
1127 {32, \
1128 /* move fr13 (ie 45) later, so if we need TFmode, it does */ \
1129 /* not use fr14 which is a saved register. */ \
1130 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 45, \
1131 33, \
1132 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
1133 50, 49, 48, 47, 46, \
1134 75, 73, 74, 69, 68, 72, 71, 70, \
1135 MAYBE_R2_AVAILABLE \
1136 9, 10, 8, 7, 6, 5, 4, \
1137 3, EARLY_R12 11, 0, \
1138 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
1139 18, 17, 16, 15, 14, 13, LATE_R12 \
1140 66, 65, \
1141 1, MAYBE_R2_FIXED 67, 76, \
1142 /* AltiVec registers. */ \
1143 77, 78, \
1144 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
1145 79, \
1146 96, 95, 94, 93, 92, 91, \
1147 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
1148 109, 110, \
1149 111, 112, 113, 114 \
1150 }
1151
1152 /* True if register is floating-point. */
1153 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1154
1155 /* True if register is a condition register. */
1156 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
1157
1158 /* True if register is a condition register, but not cr0. */
1159 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
1160
1161 /* True if register is an integer register. */
1162 #define INT_REGNO_P(N) \
1163 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
1164
1165 /* PAIRED SIMD registers are just the FPRs. */
1166 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
1167
1168 /* True if register is the CA register. */
1169 #define CA_REGNO_P(N) ((N) == CA_REGNO)
1170
1171 /* True if register is an AltiVec register. */
1172 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
1173
1174 /* True if register is a VSX register. */
1175 #define VSX_REGNO_P(N) (FP_REGNO_P (N) || ALTIVEC_REGNO_P (N))
1176
1177 /* Alternate name for any vector register supporting floating point, no matter
1178 which instruction set(s) are available. */
1179 #define VFLOAT_REGNO_P(N) \
1180 (ALTIVEC_REGNO_P (N) || (TARGET_VSX && FP_REGNO_P (N)))
1181
1182 /* Alternate name for any vector register supporting integer, no matter which
1183 instruction set(s) are available. */
1184 #define VINT_REGNO_P(N) ALTIVEC_REGNO_P (N)
1185
1186 /* Alternate name for any vector register supporting logical operations, no
1187 matter which instruction set(s) are available. Allow GPRs as well as the
1188 vector registers. */
1189 #define VLOGICAL_REGNO_P(N) \
1190 (INT_REGNO_P (N) || ALTIVEC_REGNO_P (N) \
1191 || (TARGET_VSX && FP_REGNO_P (N))) \
1192
1193 /* When setting up caller-save slots (MODE == VOIDmode) ensure we allocate
1194 enough space to account for vectors in FP regs. However, TFmode/TDmode
1195 should not use VSX instructions to do a caller save. */
1196 #define HARD_REGNO_CALLER_SAVE_MODE(REGNO, NREGS, MODE) \
1197 ((NREGS) <= rs6000_hard_regno_nregs[MODE][REGNO] \
1198 ? (MODE) \
1199 : TARGET_VSX \
1200 && ((MODE) == VOIDmode || ALTIVEC_OR_VSX_VECTOR_MODE (MODE)) \
1201 && FP_REGNO_P (REGNO) \
1202 ? V2DFmode \
1203 : FLOAT128_IBM_P (MODE) && FP_REGNO_P (REGNO) \
1204 ? DFmode \
1205 : (MODE) == TDmode && FP_REGNO_P (REGNO) \
1206 ? DImode \
1207 : choose_hard_reg_mode ((REGNO), (NREGS), false))
1208
1209 #define VSX_VECTOR_MODE(MODE) \
1210 ((MODE) == V4SFmode \
1211 || (MODE) == V2DFmode) \
1212
1213 /* Note KFmode and possibly TFmode (i.e. IEEE 128-bit floating point) are not
1214 really a vector, but we want to treat it as a vector for moves, and
1215 such. */
1216
1217 #define ALTIVEC_VECTOR_MODE(MODE) \
1218 ((MODE) == V16QImode \
1219 || (MODE) == V8HImode \
1220 || (MODE) == V4SFmode \
1221 || (MODE) == V4SImode \
1222 || FLOAT128_VECTOR_P (MODE))
1223
1224 #define ALTIVEC_OR_VSX_VECTOR_MODE(MODE) \
1225 (ALTIVEC_VECTOR_MODE (MODE) || VSX_VECTOR_MODE (MODE) \
1226 || (MODE) == V2DImode || (MODE) == V1TImode)
1227
1228 #define PAIRED_VECTOR_MODE(MODE) \
1229 ((MODE) == V2SFmode)
1230
1231 /* Post-reload, we can't use any new AltiVec registers, as we already
1232 emitted the vrsave mask. */
1233
1234 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1235 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
1236
1237 /* Specify the cost of a branch insn; roughly the number of extra insns that
1238 should be added to avoid a branch.
1239
1240 Set this to 3 on the RS/6000 since that is roughly the average cost of an
1241 unscheduled conditional branch. */
1242
1243 #define BRANCH_COST(speed_p, predictable_p) 3
1244
1245 /* Override BRANCH_COST heuristic which empirically produces worse
1246 performance for removing short circuiting from the logical ops. */
1247
1248 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1249
1250 /* Specify the registers used for certain standard purposes.
1251 The values of these macros are register numbers. */
1252
1253 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1254 /* #define PC_REGNUM */
1255
1256 /* Register to use for pushing function arguments. */
1257 #define STACK_POINTER_REGNUM 1
1258
1259 /* Base register for access to local variables of the function. */
1260 #define HARD_FRAME_POINTER_REGNUM 31
1261
1262 /* Base register for access to local variables of the function. */
1263 #define FRAME_POINTER_REGNUM 111
1264
1265 /* Base register for access to arguments of the function. */
1266 #define ARG_POINTER_REGNUM 67
1267
1268 /* Place to put static chain when calling a function that requires it. */
1269 #define STATIC_CHAIN_REGNUM 11
1270
1271 /* Base register for access to thread local storage variables. */
1272 #define TLS_REGNUM ((TARGET_64BIT) ? 13 : 2)
1273
1274 \f
1275 /* Define the classes of registers for register constraints in the
1276 machine description. Also define ranges of constants.
1277
1278 One of the classes must always be named ALL_REGS and include all hard regs.
1279 If there is more than one class, another class must be named NO_REGS
1280 and contain no registers.
1281
1282 The name GENERAL_REGS must be the name of a class (or an alias for
1283 another name such as ALL_REGS). This is the class of registers
1284 that is allowed by "g" or "r" in a register constraint.
1285 Also, registers outside this class are allocated only when
1286 instructions express preferences for them.
1287
1288 The classes must be numbered in nondecreasing order; that is,
1289 a larger-numbered class must never be contained completely
1290 in a smaller-numbered class.
1291
1292 For any two classes, it is very desirable that there be another
1293 class that represents their union. */
1294
1295 /* The RS/6000 has three types of registers, fixed-point, floating-point, and
1296 condition registers, plus three special registers, CTR, and the link
1297 register. AltiVec adds a vector register class. VSX registers overlap the
1298 FPR registers and the Altivec registers.
1299
1300 However, r0 is special in that it cannot be used as a base register.
1301 So make a class for registers valid as base registers.
1302
1303 Also, cr0 is the only condition code register that can be used in
1304 arithmetic insns, so make a separate class for it. */
1305
1306 enum reg_class
1307 {
1308 NO_REGS,
1309 BASE_REGS,
1310 GENERAL_REGS,
1311 FLOAT_REGS,
1312 ALTIVEC_REGS,
1313 VSX_REGS,
1314 VRSAVE_REGS,
1315 VSCR_REGS,
1316 SPR_REGS,
1317 NON_SPECIAL_REGS,
1318 LINK_REGS,
1319 CTR_REGS,
1320 LINK_OR_CTR_REGS,
1321 SPECIAL_REGS,
1322 SPEC_OR_GEN_REGS,
1323 CR0_REGS,
1324 CR_REGS,
1325 NON_FLOAT_REGS,
1326 CA_REGS,
1327 ALL_REGS,
1328 LIM_REG_CLASSES
1329 };
1330
1331 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1332
1333 /* Give names of register classes as strings for dump file. */
1334
1335 #define REG_CLASS_NAMES \
1336 { \
1337 "NO_REGS", \
1338 "BASE_REGS", \
1339 "GENERAL_REGS", \
1340 "FLOAT_REGS", \
1341 "ALTIVEC_REGS", \
1342 "VSX_REGS", \
1343 "VRSAVE_REGS", \
1344 "VSCR_REGS", \
1345 "SPR_REGS", \
1346 "NON_SPECIAL_REGS", \
1347 "LINK_REGS", \
1348 "CTR_REGS", \
1349 "LINK_OR_CTR_REGS", \
1350 "SPECIAL_REGS", \
1351 "SPEC_OR_GEN_REGS", \
1352 "CR0_REGS", \
1353 "CR_REGS", \
1354 "NON_FLOAT_REGS", \
1355 "CA_REGS", \
1356 "ALL_REGS" \
1357 }
1358
1359 /* Define which registers fit in which classes.
1360 This is an initializer for a vector of HARD_REG_SET
1361 of length N_REG_CLASSES. */
1362
1363 #define REG_CLASS_CONTENTS \
1364 { \
1365 /* NO_REGS. */ \
1366 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, \
1367 /* BASE_REGS. */ \
1368 { 0xfffffffe, 0x00000000, 0x00000008, 0x00008000 }, \
1369 /* GENERAL_REGS. */ \
1370 { 0xffffffff, 0x00000000, 0x00000008, 0x00008000 }, \
1371 /* FLOAT_REGS. */ \
1372 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, \
1373 /* ALTIVEC_REGS. */ \
1374 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, \
1375 /* VSX_REGS. */ \
1376 { 0x00000000, 0xffffffff, 0xffffe000, 0x00001fff }, \
1377 /* VRSAVE_REGS. */ \
1378 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, \
1379 /* VSCR_REGS. */ \
1380 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, \
1381 /* SPR_REGS. */ \
1382 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, \
1383 /* NON_SPECIAL_REGS. */ \
1384 { 0xffffffff, 0xffffffff, 0x00000008, 0x00008000 }, \
1385 /* LINK_REGS. */ \
1386 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, \
1387 /* CTR_REGS. */ \
1388 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, \
1389 /* LINK_OR_CTR_REGS. */ \
1390 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, \
1391 /* SPECIAL_REGS. */ \
1392 { 0x00000000, 0x00000000, 0x00000006, 0x00002000 }, \
1393 /* SPEC_OR_GEN_REGS. */ \
1394 { 0xffffffff, 0x00000000, 0x0000000e, 0x0000a000 }, \
1395 /* CR0_REGS. */ \
1396 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, \
1397 /* CR_REGS. */ \
1398 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, \
1399 /* NON_FLOAT_REGS. */ \
1400 { 0xffffffff, 0x00000000, 0x00000ffe, 0x00008000 }, \
1401 /* CA_REGS. */ \
1402 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, \
1403 /* ALL_REGS. */ \
1404 { 0xffffffff, 0xffffffff, 0xfffffffe, 0x0001ffff } \
1405 }
1406
1407 /* The same information, inverted:
1408 Return the class number of the smallest class containing
1409 reg number REGNO. This could be a conditional expression
1410 or could index an array. */
1411
1412 extern enum reg_class rs6000_regno_regclass[FIRST_PSEUDO_REGISTER];
1413
1414 #define REGNO_REG_CLASS(REGNO) \
1415 (gcc_checking_assert (IN_RANGE ((REGNO), 0, FIRST_PSEUDO_REGISTER-1)),\
1416 rs6000_regno_regclass[(REGNO)])
1417
1418 /* Register classes for various constraints that are based on the target
1419 switches. */
1420 enum r6000_reg_class_enum {
1421 RS6000_CONSTRAINT_d, /* fpr registers for double values */
1422 RS6000_CONSTRAINT_f, /* fpr registers for single values */
1423 RS6000_CONSTRAINT_v, /* Altivec registers */
1424 RS6000_CONSTRAINT_wa, /* Any VSX register */
1425 RS6000_CONSTRAINT_wb, /* Altivec register if ISA 3.0 vector. */
1426 RS6000_CONSTRAINT_wd, /* VSX register for V2DF */
1427 RS6000_CONSTRAINT_we, /* VSX register if ISA 3.0 vector. */
1428 RS6000_CONSTRAINT_wf, /* VSX register for V4SF */
1429 RS6000_CONSTRAINT_wg, /* FPR register for -mmfpgpr */
1430 RS6000_CONSTRAINT_wh, /* FPR register for direct moves. */
1431 RS6000_CONSTRAINT_wi, /* FPR/VSX register to hold DImode */
1432 RS6000_CONSTRAINT_wj, /* FPR/VSX register for DImode direct moves. */
1433 RS6000_CONSTRAINT_wk, /* FPR/VSX register for DFmode direct moves. */
1434 RS6000_CONSTRAINT_wl, /* FPR register for LFIWAX */
1435 RS6000_CONSTRAINT_wm, /* VSX register for direct move */
1436 RS6000_CONSTRAINT_wo, /* VSX register for power9 vector. */
1437 RS6000_CONSTRAINT_wp, /* VSX reg for IEEE 128-bit fp TFmode. */
1438 RS6000_CONSTRAINT_wq, /* VSX reg for IEEE 128-bit fp KFmode. */
1439 RS6000_CONSTRAINT_wr, /* GPR register if 64-bit */
1440 RS6000_CONSTRAINT_ws, /* VSX register for DF */
1441 RS6000_CONSTRAINT_wt, /* VSX register for TImode */
1442 RS6000_CONSTRAINT_wu, /* Altivec register for float load/stores. */
1443 RS6000_CONSTRAINT_wv, /* Altivec register for double load/stores. */
1444 RS6000_CONSTRAINT_ww, /* FP or VSX register for vsx float ops. */
1445 RS6000_CONSTRAINT_wx, /* FPR register for STFIWX */
1446 RS6000_CONSTRAINT_wy, /* VSX register for SF */
1447 RS6000_CONSTRAINT_wz, /* FPR register for LFIWZX */
1448 RS6000_CONSTRAINT_wA, /* BASE_REGS if 64-bit. */
1449 RS6000_CONSTRAINT_wH, /* Altivec register for 32-bit integers. */
1450 RS6000_CONSTRAINT_wI, /* VSX register for 32-bit integers. */
1451 RS6000_CONSTRAINT_wJ, /* VSX register for 8/16-bit integers. */
1452 RS6000_CONSTRAINT_wK, /* Altivec register for 16/32-bit integers. */
1453 RS6000_CONSTRAINT_MAX
1454 };
1455
1456 extern enum reg_class rs6000_constraints[RS6000_CONSTRAINT_MAX];
1457
1458 /* The class value for index registers, and the one for base regs. */
1459 #define INDEX_REG_CLASS GENERAL_REGS
1460 #define BASE_REG_CLASS BASE_REGS
1461
1462 /* Return whether a given register class can hold VSX objects. */
1463 #define VSX_REG_CLASS_P(CLASS) \
1464 ((CLASS) == VSX_REGS || (CLASS) == FLOAT_REGS || (CLASS) == ALTIVEC_REGS)
1465
1466 /* Return whether a given register class targets general purpose registers. */
1467 #define GPR_REG_CLASS_P(CLASS) ((CLASS) == GENERAL_REGS || (CLASS) == BASE_REGS)
1468
1469 /* Given an rtx X being reloaded into a reg required to be
1470 in class CLASS, return the class of reg to actually use.
1471 In general this is just CLASS; but on some machines
1472 in some cases it is preferable to use a more restrictive class.
1473
1474 On the RS/6000, we have to return NO_REGS when we want to reload a
1475 floating-point CONST_DOUBLE to force it to be copied to memory.
1476
1477 We also don't want to reload integer values into floating-point
1478 registers if we can at all help it. In fact, this can
1479 cause reload to die, if it tries to generate a reload of CTR
1480 into a FP register and discovers it doesn't have the memory location
1481 required.
1482
1483 ??? Would it be a good idea to have reload do the converse, that is
1484 try to reload floating modes into FP registers if possible?
1485 */
1486
1487 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1488 rs6000_preferred_reload_class_ptr (X, CLASS)
1489
1490 /* Return the register class of a scratch register needed to copy IN into
1491 or out of a register in CLASS in MODE. If it can be done directly,
1492 NO_REGS is returned. */
1493
1494 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1495 rs6000_secondary_reload_class_ptr (CLASS, MODE, IN)
1496
1497 /* Return the maximum number of consecutive registers
1498 needed to represent mode MODE in a register of class CLASS.
1499
1500 On RS/6000, this is the size of MODE in words, except in the FP regs, where
1501 a single reg is enough for two words, unless we have VSX, where the FP
1502 registers can hold 128 bits. */
1503 #define CLASS_MAX_NREGS(CLASS, MODE) rs6000_class_max_nregs[(MODE)][(CLASS)]
1504
1505 /* Stack layout; function entry, exit and calling. */
1506
1507 /* Define this if pushing a word on the stack
1508 makes the stack pointer a smaller address. */
1509 #define STACK_GROWS_DOWNWARD 1
1510
1511 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1512 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1513
1514 /* Define this to nonzero if the nominal address of the stack frame
1515 is at the high-address end of the local variables;
1516 that is, each additional local variable allocated
1517 goes at a more negative offset in the frame.
1518
1519 On the RS/6000, we grow upwards, from the area after the outgoing
1520 arguments. */
1521 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0 \
1522 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
1523
1524 /* Size of the fixed area on the stack */
1525 #define RS6000_SAVE_AREA \
1526 ((DEFAULT_ABI == ABI_V4 ? 8 : DEFAULT_ABI == ABI_ELFv2 ? 16 : 24) \
1527 << (TARGET_64BIT ? 1 : 0))
1528
1529 /* Stack offset for toc save slot. */
1530 #define RS6000_TOC_SAVE_SLOT \
1531 ((DEFAULT_ABI == ABI_ELFv2 ? 12 : 20) << (TARGET_64BIT ? 1 : 0))
1532
1533 /* Align an address */
1534 #define RS6000_ALIGN(n,a) ROUND_UP ((n), (a))
1535
1536 /* Offset within stack frame to start allocating local variables at.
1537 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1538 first local allocated. Otherwise, it is the offset to the BEGINNING
1539 of the first local allocated.
1540
1541 On the RS/6000, the frame pointer is the same as the stack pointer,
1542 except for dynamic allocations. So we start after the fixed area and
1543 outgoing parameter area.
1544
1545 If the function uses dynamic stack space (CALLS_ALLOCA is set), that
1546 space needs to be aligned to STACK_BOUNDARY, i.e. the sum of the
1547 sizes of the fixed area and the parameter area must be a multiple of
1548 STACK_BOUNDARY. */
1549
1550 #define RS6000_STARTING_FRAME_OFFSET \
1551 (cfun->calls_alloca \
1552 ? (RS6000_ALIGN (crtl->outgoing_args_size + RS6000_SAVE_AREA, \
1553 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8 )) \
1554 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1555 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8) \
1556 + RS6000_SAVE_AREA))
1557
1558 /* Offset from the stack pointer register to an item dynamically
1559 allocated on the stack, e.g., by `alloca'.
1560
1561 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1562 length of the outgoing arguments. The default is correct for most
1563 machines. See `function.c' for details.
1564
1565 This value must be a multiple of STACK_BOUNDARY (hard coded in
1566 `emit-rtl.c'). */
1567 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1568 RS6000_ALIGN (crtl->outgoing_args_size + STACK_POINTER_OFFSET, \
1569 (TARGET_ALTIVEC || TARGET_VSX) ? 16 : 8)
1570
1571 /* If we generate an insn to push BYTES bytes,
1572 this says how many the stack pointer really advances by.
1573 On RS/6000, don't define this because there are no push insns. */
1574 /* #define PUSH_ROUNDING(BYTES) */
1575
1576 /* Offset of first parameter from the argument pointer register value.
1577 On the RS/6000, we define the argument pointer to the start of the fixed
1578 area. */
1579 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1580
1581 /* Offset from the argument pointer register value to the top of
1582 stack. This is different from FIRST_PARM_OFFSET because of the
1583 register save area. */
1584 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1585
1586 /* Define this if stack space is still allocated for a parameter passed
1587 in a register. The value is the number of bytes allocated to this
1588 area. */
1589 #define REG_PARM_STACK_SPACE(FNDECL) \
1590 rs6000_reg_parm_stack_space ((FNDECL), false)
1591
1592 /* Define this macro if space guaranteed when compiling a function body
1593 is different to space required when making a call, a situation that
1594 can arise with K&R style function definitions. */
1595 #define INCOMING_REG_PARM_STACK_SPACE(FNDECL) \
1596 rs6000_reg_parm_stack_space ((FNDECL), true)
1597
1598 /* Define this if the above stack space is to be considered part of the
1599 space allocated by the caller. */
1600 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1601
1602 /* This is the difference between the logical top of stack and the actual sp.
1603
1604 For the RS/6000, sp points past the fixed area. */
1605 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1606
1607 /* Define this if the maximum size of all the outgoing args is to be
1608 accumulated and pushed during the prologue. The amount can be
1609 found in the variable crtl->outgoing_args_size. */
1610 #define ACCUMULATE_OUTGOING_ARGS 1
1611
1612 /* Define how to find the value returned by a library function
1613 assuming the value has mode MODE. */
1614
1615 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1616
1617 /* DRAFT_V4_STRUCT_RET defaults off. */
1618 #define DRAFT_V4_STRUCT_RET 0
1619
1620 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1621 #define DEFAULT_PCC_STRUCT_RETURN 0
1622
1623 /* Mode of stack savearea.
1624 FUNCTION is VOIDmode because calling convention maintains SP.
1625 BLOCK needs Pmode for SP.
1626 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1627 #define STACK_SAVEAREA_MODE(LEVEL) \
1628 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1629 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : PTImode) : Pmode)
1630
1631 /* Minimum and maximum general purpose registers used to hold arguments. */
1632 #define GP_ARG_MIN_REG 3
1633 #define GP_ARG_MAX_REG 10
1634 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1635
1636 /* Minimum and maximum floating point registers used to hold arguments. */
1637 #define FP_ARG_MIN_REG 33
1638 #define FP_ARG_AIX_MAX_REG 45
1639 #define FP_ARG_V4_MAX_REG 40
1640 #define FP_ARG_MAX_REG (DEFAULT_ABI == ABI_V4 \
1641 ? FP_ARG_V4_MAX_REG : FP_ARG_AIX_MAX_REG)
1642 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1643
1644 /* Minimum and maximum AltiVec registers used to hold arguments. */
1645 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1646 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1647 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1648
1649 /* Maximum number of registers per ELFv2 homogeneous aggregate argument. */
1650 #define AGGR_ARG_NUM_REG 8
1651
1652 /* Return registers */
1653 #define GP_ARG_RETURN GP_ARG_MIN_REG
1654 #define FP_ARG_RETURN FP_ARG_MIN_REG
1655 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1656 #define FP_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 ? FP_ARG_RETURN \
1657 : (FP_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1658 #define ALTIVEC_ARG_MAX_RETURN (DEFAULT_ABI != ABI_ELFv2 \
1659 ? (ALTIVEC_ARG_RETURN \
1660 + (TARGET_FLOAT128_TYPE ? 1 : 0)) \
1661 : (ALTIVEC_ARG_RETURN + AGGR_ARG_NUM_REG - 1))
1662
1663 /* Flags for the call/call_value rtl operations set up by function_arg */
1664 #define CALL_NORMAL 0x00000000 /* no special processing */
1665 /* Bits in 0x00000001 are unused. */
1666 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1667 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1668 #define CALL_LONG 0x00000008 /* always call indirect */
1669 #define CALL_LIBCALL 0x00000010 /* libcall */
1670
1671 /* We don't have prologue and epilogue functions to save/restore
1672 everything for most ABIs. */
1673 #define WORLD_SAVE_P(INFO) 0
1674
1675 /* 1 if N is a possible register number for a function value
1676 as seen by the caller.
1677
1678 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1679 #define FUNCTION_VALUE_REGNO_P(N) \
1680 ((N) == GP_ARG_RETURN \
1681 || (IN_RANGE ((N), FP_ARG_RETURN, FP_ARG_MAX_RETURN) \
1682 && TARGET_HARD_FLOAT) \
1683 || (IN_RANGE ((N), ALTIVEC_ARG_RETURN, ALTIVEC_ARG_MAX_RETURN) \
1684 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1685
1686 /* 1 if N is a possible register number for function argument passing.
1687 On RS/6000, these are r3-r10 and fp1-fp13.
1688 On AltiVec, v2 - v13 are used for passing vectors. */
1689 #define FUNCTION_ARG_REGNO_P(N) \
1690 (IN_RANGE ((N), GP_ARG_MIN_REG, GP_ARG_MAX_REG) \
1691 || (IN_RANGE ((N), ALTIVEC_ARG_MIN_REG, ALTIVEC_ARG_MAX_REG) \
1692 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1693 || (IN_RANGE ((N), FP_ARG_MIN_REG, FP_ARG_MAX_REG) \
1694 && TARGET_HARD_FLOAT))
1695 \f
1696 /* Define a data type for recording info about an argument list
1697 during the scan of that argument list. This data type should
1698 hold all necessary information about the function itself
1699 and about the args processed so far, enough to enable macros
1700 such as FUNCTION_ARG to determine where the next arg should go.
1701
1702 On the RS/6000, this is a structure. The first element is the number of
1703 total argument words, the second is used to store the next
1704 floating-point register number, and the third says how many more args we
1705 have prototype types for.
1706
1707 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1708 the next available GP register, `fregno' is the next available FP
1709 register, and `words' is the number of words used on the stack.
1710
1711 The varargs/stdarg support requires that this structure's size
1712 be a multiple of sizeof(int). */
1713
1714 typedef struct rs6000_args
1715 {
1716 int words; /* # words used for passing GP registers */
1717 int fregno; /* next available FP register */
1718 int vregno; /* next available AltiVec register */
1719 int nargs_prototype; /* # args left in the current prototype */
1720 int prototype; /* Whether a prototype was defined */
1721 int stdarg; /* Whether function is a stdarg function. */
1722 int call_cookie; /* Do special things for this call */
1723 int sysv_gregno; /* next available GP register */
1724 int intoffset; /* running offset in struct (darwin64) */
1725 int use_stack; /* any part of struct on stack (darwin64) */
1726 int floats_in_gpr; /* count of SFmode floats taking up
1727 GPR space (darwin64) */
1728 int named; /* false for varargs params */
1729 int escapes; /* if function visible outside tu */
1730 int libcall; /* If this is a compiler generated call. */
1731 } CUMULATIVE_ARGS;
1732
1733 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1734 for a call to a function whose data type is FNTYPE.
1735 For a library call, FNTYPE is 0. */
1736
1737 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1738 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, \
1739 N_NAMED_ARGS, FNDECL, VOIDmode)
1740
1741 /* Similar, but when scanning the definition of a procedure. We always
1742 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1743
1744 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1745 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, \
1746 1000, current_function_decl, VOIDmode)
1747
1748 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1749
1750 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1751 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, \
1752 0, NULL_TREE, MODE)
1753
1754 #define PAD_VARARGS_DOWN \
1755 (targetm.calls.function_arg_padding (TYPE_MODE (type), type) == PAD_DOWNWARD)
1756
1757 /* Output assembler code to FILE to increment profiler label # LABELNO
1758 for profiling a function entry. */
1759
1760 #define FUNCTION_PROFILER(FILE, LABELNO) \
1761 output_function_profiler ((FILE), (LABELNO));
1762
1763 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1764 the stack pointer does not matter. No definition is equivalent to
1765 always zero.
1766
1767 On the RS/6000, this is nonzero because we can restore the stack from
1768 its backpointer, which we maintain. */
1769 #define EXIT_IGNORE_STACK 1
1770
1771 /* Define this macro as a C expression that is nonzero for registers
1772 that are used by the epilogue or the return' pattern. The stack
1773 and frame pointer registers are already be assumed to be used as
1774 needed. */
1775
1776 #define EPILOGUE_USES(REGNO) \
1777 ((reload_completed && (REGNO) == LR_REGNO) \
1778 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1779 || (crtl->calls_eh_return \
1780 && TARGET_AIX \
1781 && (REGNO) == 2))
1782
1783 \f
1784 /* Length in units of the trampoline for entering a nested function. */
1785
1786 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1787 \f
1788 /* Definitions for __builtin_return_address and __builtin_frame_address.
1789 __builtin_return_address (0) should give link register (LR_REGNO), enable
1790 this. */
1791 /* This should be uncommented, so that the link register is used, but
1792 currently this would result in unmatched insns and spilling fixed
1793 registers so we'll leave it for another day. When these problems are
1794 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1795 (mrs) */
1796 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1797
1798 /* Number of bytes into the frame return addresses can be found. See
1799 rs6000_stack_info in rs6000.c for more information on how the different
1800 abi's store the return address. */
1801 #define RETURN_ADDRESS_OFFSET \
1802 ((DEFAULT_ABI == ABI_V4 ? 4 : 8) << (TARGET_64BIT ? 1 : 0))
1803
1804 /* The current return address is in link register (65). The return address
1805 of anything farther back is accessed normally at an offset of 8 from the
1806 frame pointer. */
1807 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1808 (rs6000_return_addr (COUNT, FRAME))
1809
1810 \f
1811 /* Definitions for register eliminations.
1812
1813 We have two registers that can be eliminated on the RS/6000. First, the
1814 frame pointer register can often be eliminated in favor of the stack
1815 pointer register. Secondly, the argument pointer register can always be
1816 eliminated; it is replaced with either the stack or frame pointer.
1817
1818 In addition, we use the elimination mechanism to see if r30 is needed
1819 Initially we assume that it isn't. If it is, we spill it. This is done
1820 by making it an eliminable register. We replace it with itself so that
1821 if it isn't needed, then existing uses won't be modified. */
1822
1823 /* This is an array of structures. Each structure initializes one pair
1824 of eliminable registers. The "from" register number is given first,
1825 followed by "to". Eliminations of the same "from" register are listed
1826 in order of preference. */
1827 #define ELIMINABLE_REGS \
1828 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1829 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1830 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1831 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1832 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1833 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1834
1835 /* Define the offset between two registers, one to be eliminated, and the other
1836 its replacement, at the start of a routine. */
1837 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1838 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1839 \f
1840 /* Addressing modes, and classification of registers for them. */
1841
1842 #define HAVE_PRE_DECREMENT 1
1843 #define HAVE_PRE_INCREMENT 1
1844 #define HAVE_PRE_MODIFY_DISP 1
1845 #define HAVE_PRE_MODIFY_REG 1
1846
1847 /* Macros to check register numbers against specific register classes. */
1848
1849 /* These assume that REGNO is a hard or pseudo reg number.
1850 They give nonzero only if REGNO is a hard reg of the suitable class
1851 or a pseudo reg currently allocated to a suitable hard reg.
1852 Since they use reg_renumber, they are safe only once reg_renumber
1853 has been allocated, which happens in reginfo.c during register
1854 allocation. */
1855
1856 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1857 ((REGNO) < FIRST_PSEUDO_REGISTER \
1858 ? (REGNO) <= 31 || (REGNO) == 67 \
1859 || (REGNO) == FRAME_POINTER_REGNUM \
1860 : (reg_renumber[REGNO] >= 0 \
1861 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1862 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1863
1864 #define REGNO_OK_FOR_BASE_P(REGNO) \
1865 ((REGNO) < FIRST_PSEUDO_REGISTER \
1866 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1867 || (REGNO) == FRAME_POINTER_REGNUM \
1868 : (reg_renumber[REGNO] > 0 \
1869 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1870 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1871
1872 /* Nonzero if X is a hard reg that can be used as an index
1873 or if it is a pseudo reg in the non-strict case. */
1874 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1875 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1876 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1877
1878 /* Nonzero if X is a hard reg that can be used as a base reg
1879 or if it is a pseudo reg in the non-strict case. */
1880 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1881 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1882 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1883
1884 \f
1885 /* Maximum number of registers that can appear in a valid memory address. */
1886
1887 #define MAX_REGS_PER_ADDRESS 2
1888
1889 /* Recognize any constant value that is a valid address. */
1890
1891 #define CONSTANT_ADDRESS_P(X) \
1892 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1893 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1894 || GET_CODE (X) == HIGH)
1895
1896 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1897 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1898 && EASY_VECTOR_15((n) >> 1) \
1899 && ((n) & 1) == 0)
1900
1901 #define EASY_VECTOR_MSB(n,mode) \
1902 ((((unsigned HOST_WIDE_INT) (n)) & GET_MODE_MASK (mode)) == \
1903 ((((unsigned HOST_WIDE_INT)GET_MODE_MASK (mode)) + 1) >> 1))
1904
1905 \f
1906 /* Try a machine-dependent way of reloading an illegitimate address
1907 operand. If we find one, push the reload and jump to WIN. This
1908 macro is used in only one place: `find_reloads_address' in reload.c.
1909
1910 Implemented on rs6000 by rs6000_legitimize_reload_address.
1911 Note that (X) is evaluated twice; this is safe in current usage. */
1912
1913 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1914 do { \
1915 int win; \
1916 (X) = rs6000_legitimize_reload_address_ptr ((X), (MODE), (OPNUM), \
1917 (int)(TYPE), (IND_LEVELS), &win); \
1918 if ( win ) \
1919 goto WIN; \
1920 } while (0)
1921
1922 #define FIND_BASE_TERM rs6000_find_base_term
1923 \f
1924 /* The register number of the register used to address a table of
1925 static data addresses in memory. In some cases this register is
1926 defined by a processor's "application binary interface" (ABI).
1927 When this macro is defined, RTL is generated for this register
1928 once, as with the stack pointer and frame pointer registers. If
1929 this macro is not defined, it is up to the machine-dependent files
1930 to allocate such a register (if necessary). */
1931
1932 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1933 #define PIC_OFFSET_TABLE_REGNUM \
1934 (TARGET_TOC ? TOC_REGISTER \
1935 : flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM \
1936 : INVALID_REGNUM)
1937
1938 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1939
1940 /* Define this macro if the register defined by
1941 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1942 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1943
1944 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1945
1946 /* A C expression that is nonzero if X is a legitimate immediate
1947 operand on the target machine when generating position independent
1948 code. You can assume that X satisfies `CONSTANT_P', so you need
1949 not check this. You can also assume FLAG_PIC is true, so you need
1950 not check it either. You need not define this macro if all
1951 constants (including `SYMBOL_REF') can be immediate operands when
1952 generating position independent code. */
1953
1954 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1955 \f
1956 /* Specify the machine mode that this machine uses
1957 for the index in the tablejump instruction. */
1958 #define CASE_VECTOR_MODE SImode
1959
1960 /* Define as C expression which evaluates to nonzero if the tablejump
1961 instruction expects the table to contain offsets from the address of the
1962 table.
1963 Do not define this if the table should contain absolute addresses. */
1964 #define CASE_VECTOR_PC_RELATIVE 1
1965
1966 /* Define this as 1 if `char' should by default be signed; else as 0. */
1967 #define DEFAULT_SIGNED_CHAR 0
1968
1969 /* An integer expression for the size in bits of the largest integer machine
1970 mode that should actually be used. */
1971
1972 /* Allow pairs of registers to be used, which is the intent of the default. */
1973 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1974
1975 /* Max number of bytes we can move from memory to memory
1976 in one reasonably fast instruction. */
1977 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1978 #define MAX_MOVE_MAX 8
1979
1980 /* Nonzero if access to memory by bytes is no faster than for words.
1981 Also nonzero if doing byte operations (specifically shifts) in registers
1982 is undesirable. */
1983 #define SLOW_BYTE_ACCESS 1
1984
1985 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1986 will either zero-extend or sign-extend. The value of this macro should
1987 be the code that says which one of the two operations is implicitly
1988 done, UNKNOWN if none. */
1989 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1990
1991 /* Define if loading short immediate values into registers sign extends. */
1992 #define SHORT_IMMEDIATES_SIGN_EXTEND 1
1993 \f
1994 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1995 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1996 ((VALUE) = GET_MODE_BITSIZE (MODE), 2)
1997
1998 /* The CTZ patterns that are implemented in terms of CLZ return -1 for input of
1999 zero. The hardware instructions added in Power9 and the sequences using
2000 popcount return 32 or 64. */
2001 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2002 (TARGET_CTZ || TARGET_POPCNTD \
2003 ? ((VALUE) = GET_MODE_BITSIZE (MODE), 2) \
2004 : ((VALUE) = -1, 2))
2005
2006 /* Specify the machine mode that pointers have.
2007 After generation of rtl, the compiler makes no further distinction
2008 between pointers and any other objects of this machine mode. */
2009 extern scalar_int_mode rs6000_pmode;
2010 #define Pmode rs6000_pmode
2011
2012 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
2013 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
2014
2015 /* Mode of a function address in a call instruction (for indexing purposes).
2016 Doesn't matter on RS/6000. */
2017 #define FUNCTION_MODE SImode
2018
2019 /* Define this if addresses of constant functions
2020 shouldn't be put through pseudo regs where they can be cse'd.
2021 Desirable on machines where ordinary constants are expensive
2022 but a CALL with constant address is cheap. */
2023 #define NO_FUNCTION_CSE 1
2024
2025 /* Define this to be nonzero if shift instructions ignore all but the low-order
2026 few bits.
2027
2028 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
2029 have been dropped from the PowerPC architecture. */
2030 #define SHIFT_COUNT_TRUNCATED 0
2031
2032 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2033 should be adjusted to reflect any required changes. This macro is used when
2034 there is some systematic length adjustment required that would be difficult
2035 to express in the length attribute. */
2036
2037 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2038
2039 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2040 COMPARE, return the mode to be used for the comparison. For
2041 floating-point, CCFPmode should be used. CCUNSmode should be used
2042 for unsigned comparisons. CCEQmode should be used when we are
2043 doing an inequality comparison on the result of a
2044 comparison. CCmode should be used in all other cases. */
2045
2046 #define SELECT_CC_MODE(OP,X,Y) \
2047 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2048 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2049 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2050 ? CCEQmode : CCmode))
2051
2052 /* Can the condition code MODE be safely reversed? This is safe in
2053 all cases on this port, because at present it doesn't use the
2054 trapping FP comparisons (fcmpo). */
2055 #define REVERSIBLE_CC_MODE(MODE) 1
2056
2057 /* Given a condition code and a mode, return the inverse condition. */
2058 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2059
2060 \f
2061 /* Target cpu costs. */
2062
2063 struct processor_costs {
2064 const int mulsi; /* cost of SImode multiplication. */
2065 const int mulsi_const; /* cost of SImode multiplication by constant. */
2066 const int mulsi_const9; /* cost of SImode mult by short constant. */
2067 const int muldi; /* cost of DImode multiplication. */
2068 const int divsi; /* cost of SImode division. */
2069 const int divdi; /* cost of DImode division. */
2070 const int fp; /* cost of simple SFmode and DFmode insns. */
2071 const int dmul; /* cost of DFmode multiplication (and fmadd). */
2072 const int sdiv; /* cost of SFmode division (fdivs). */
2073 const int ddiv; /* cost of DFmode division (fdiv). */
2074 const int cache_line_size; /* cache line size in bytes. */
2075 const int l1_cache_size; /* size of l1 cache, in kilobytes. */
2076 const int l2_cache_size; /* size of l2 cache, in kilobytes. */
2077 const int simultaneous_prefetches; /* number of parallel prefetch
2078 operations. */
2079 const int sfdf_convert; /* cost of SF->DF conversion. */
2080 };
2081
2082 extern const struct processor_costs *rs6000_cost;
2083 \f
2084 /* Control the assembler format that we output. */
2085
2086 /* A C string constant describing how to begin a comment in the target
2087 assembler language. The compiler assumes that the comment will end at
2088 the end of the line. */
2089 #define ASM_COMMENT_START " #"
2090
2091 /* Flag to say the TOC is initialized */
2092 extern int toc_initialized;
2093
2094 /* Macro to output a special constant pool entry. Go to WIN if we output
2095 it. Otherwise, it is written the usual way.
2096
2097 On the RS/6000, toc entries are handled this way. */
2098
2099 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2100 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2101 { \
2102 output_toc (FILE, X, LABELNO, MODE); \
2103 goto WIN; \
2104 } \
2105 }
2106
2107 #ifdef HAVE_GAS_WEAK
2108 #define RS6000_WEAK 1
2109 #else
2110 #define RS6000_WEAK 0
2111 #endif
2112
2113 #if RS6000_WEAK
2114 /* Used in lieu of ASM_WEAKEN_LABEL. */
2115 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2116 rs6000_asm_weaken_decl ((FILE), (DECL), (NAME), (VAL))
2117 #endif
2118
2119 #if HAVE_GAS_WEAKREF
2120 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2121 do \
2122 { \
2123 fputs ("\t.weakref\t", (FILE)); \
2124 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2125 fputs (", ", (FILE)); \
2126 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2127 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2128 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2129 { \
2130 fputs ("\n\t.weakref\t.", (FILE)); \
2131 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2132 fputs (", .", (FILE)); \
2133 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2134 } \
2135 fputc ('\n', (FILE)); \
2136 } while (0)
2137 #endif
2138
2139 /* This implements the `alias' attribute. */
2140 #undef ASM_OUTPUT_DEF_FROM_DECLS
2141 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2142 do \
2143 { \
2144 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2145 const char *name = IDENTIFIER_POINTER (TARGET); \
2146 if (TREE_CODE (DECL) == FUNCTION_DECL \
2147 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2148 { \
2149 if (TREE_PUBLIC (DECL)) \
2150 { \
2151 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2152 { \
2153 fputs ("\t.globl\t.", FILE); \
2154 RS6000_OUTPUT_BASENAME (FILE, alias); \
2155 putc ('\n', FILE); \
2156 } \
2157 } \
2158 else if (TARGET_XCOFF) \
2159 { \
2160 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2161 { \
2162 fputs ("\t.lglobl\t.", FILE); \
2163 RS6000_OUTPUT_BASENAME (FILE, alias); \
2164 putc ('\n', FILE); \
2165 fputs ("\t.lglobl\t", FILE); \
2166 RS6000_OUTPUT_BASENAME (FILE, alias); \
2167 putc ('\n', FILE); \
2168 } \
2169 } \
2170 fputs ("\t.set\t.", FILE); \
2171 RS6000_OUTPUT_BASENAME (FILE, alias); \
2172 fputs (",.", FILE); \
2173 RS6000_OUTPUT_BASENAME (FILE, name); \
2174 fputc ('\n', FILE); \
2175 } \
2176 ASM_OUTPUT_DEF (FILE, alias, name); \
2177 } \
2178 while (0)
2179
2180 #define TARGET_ASM_FILE_START rs6000_file_start
2181
2182 /* Output to assembler file text saying following lines
2183 may contain character constants, extra white space, comments, etc. */
2184
2185 #define ASM_APP_ON ""
2186
2187 /* Output to assembler file text saying following lines
2188 no longer contain unusual constructs. */
2189
2190 #define ASM_APP_OFF ""
2191
2192 /* How to refer to registers in assembler output.
2193 This sequence is indexed by compiler's hard-register-number (see above). */
2194
2195 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2196
2197 #define REGISTER_NAMES \
2198 { \
2199 &rs6000_reg_names[ 0][0], /* r0 */ \
2200 &rs6000_reg_names[ 1][0], /* r1 */ \
2201 &rs6000_reg_names[ 2][0], /* r2 */ \
2202 &rs6000_reg_names[ 3][0], /* r3 */ \
2203 &rs6000_reg_names[ 4][0], /* r4 */ \
2204 &rs6000_reg_names[ 5][0], /* r5 */ \
2205 &rs6000_reg_names[ 6][0], /* r6 */ \
2206 &rs6000_reg_names[ 7][0], /* r7 */ \
2207 &rs6000_reg_names[ 8][0], /* r8 */ \
2208 &rs6000_reg_names[ 9][0], /* r9 */ \
2209 &rs6000_reg_names[10][0], /* r10 */ \
2210 &rs6000_reg_names[11][0], /* r11 */ \
2211 &rs6000_reg_names[12][0], /* r12 */ \
2212 &rs6000_reg_names[13][0], /* r13 */ \
2213 &rs6000_reg_names[14][0], /* r14 */ \
2214 &rs6000_reg_names[15][0], /* r15 */ \
2215 &rs6000_reg_names[16][0], /* r16 */ \
2216 &rs6000_reg_names[17][0], /* r17 */ \
2217 &rs6000_reg_names[18][0], /* r18 */ \
2218 &rs6000_reg_names[19][0], /* r19 */ \
2219 &rs6000_reg_names[20][0], /* r20 */ \
2220 &rs6000_reg_names[21][0], /* r21 */ \
2221 &rs6000_reg_names[22][0], /* r22 */ \
2222 &rs6000_reg_names[23][0], /* r23 */ \
2223 &rs6000_reg_names[24][0], /* r24 */ \
2224 &rs6000_reg_names[25][0], /* r25 */ \
2225 &rs6000_reg_names[26][0], /* r26 */ \
2226 &rs6000_reg_names[27][0], /* r27 */ \
2227 &rs6000_reg_names[28][0], /* r28 */ \
2228 &rs6000_reg_names[29][0], /* r29 */ \
2229 &rs6000_reg_names[30][0], /* r30 */ \
2230 &rs6000_reg_names[31][0], /* r31 */ \
2231 \
2232 &rs6000_reg_names[32][0], /* fr0 */ \
2233 &rs6000_reg_names[33][0], /* fr1 */ \
2234 &rs6000_reg_names[34][0], /* fr2 */ \
2235 &rs6000_reg_names[35][0], /* fr3 */ \
2236 &rs6000_reg_names[36][0], /* fr4 */ \
2237 &rs6000_reg_names[37][0], /* fr5 */ \
2238 &rs6000_reg_names[38][0], /* fr6 */ \
2239 &rs6000_reg_names[39][0], /* fr7 */ \
2240 &rs6000_reg_names[40][0], /* fr8 */ \
2241 &rs6000_reg_names[41][0], /* fr9 */ \
2242 &rs6000_reg_names[42][0], /* fr10 */ \
2243 &rs6000_reg_names[43][0], /* fr11 */ \
2244 &rs6000_reg_names[44][0], /* fr12 */ \
2245 &rs6000_reg_names[45][0], /* fr13 */ \
2246 &rs6000_reg_names[46][0], /* fr14 */ \
2247 &rs6000_reg_names[47][0], /* fr15 */ \
2248 &rs6000_reg_names[48][0], /* fr16 */ \
2249 &rs6000_reg_names[49][0], /* fr17 */ \
2250 &rs6000_reg_names[50][0], /* fr18 */ \
2251 &rs6000_reg_names[51][0], /* fr19 */ \
2252 &rs6000_reg_names[52][0], /* fr20 */ \
2253 &rs6000_reg_names[53][0], /* fr21 */ \
2254 &rs6000_reg_names[54][0], /* fr22 */ \
2255 &rs6000_reg_names[55][0], /* fr23 */ \
2256 &rs6000_reg_names[56][0], /* fr24 */ \
2257 &rs6000_reg_names[57][0], /* fr25 */ \
2258 &rs6000_reg_names[58][0], /* fr26 */ \
2259 &rs6000_reg_names[59][0], /* fr27 */ \
2260 &rs6000_reg_names[60][0], /* fr28 */ \
2261 &rs6000_reg_names[61][0], /* fr29 */ \
2262 &rs6000_reg_names[62][0], /* fr30 */ \
2263 &rs6000_reg_names[63][0], /* fr31 */ \
2264 \
2265 &rs6000_reg_names[64][0], /* was mq */ \
2266 &rs6000_reg_names[65][0], /* lr */ \
2267 &rs6000_reg_names[66][0], /* ctr */ \
2268 &rs6000_reg_names[67][0], /* ap */ \
2269 \
2270 &rs6000_reg_names[68][0], /* cr0 */ \
2271 &rs6000_reg_names[69][0], /* cr1 */ \
2272 &rs6000_reg_names[70][0], /* cr2 */ \
2273 &rs6000_reg_names[71][0], /* cr3 */ \
2274 &rs6000_reg_names[72][0], /* cr4 */ \
2275 &rs6000_reg_names[73][0], /* cr5 */ \
2276 &rs6000_reg_names[74][0], /* cr6 */ \
2277 &rs6000_reg_names[75][0], /* cr7 */ \
2278 \
2279 &rs6000_reg_names[76][0], /* ca */ \
2280 \
2281 &rs6000_reg_names[77][0], /* v0 */ \
2282 &rs6000_reg_names[78][0], /* v1 */ \
2283 &rs6000_reg_names[79][0], /* v2 */ \
2284 &rs6000_reg_names[80][0], /* v3 */ \
2285 &rs6000_reg_names[81][0], /* v4 */ \
2286 &rs6000_reg_names[82][0], /* v5 */ \
2287 &rs6000_reg_names[83][0], /* v6 */ \
2288 &rs6000_reg_names[84][0], /* v7 */ \
2289 &rs6000_reg_names[85][0], /* v8 */ \
2290 &rs6000_reg_names[86][0], /* v9 */ \
2291 &rs6000_reg_names[87][0], /* v10 */ \
2292 &rs6000_reg_names[88][0], /* v11 */ \
2293 &rs6000_reg_names[89][0], /* v12 */ \
2294 &rs6000_reg_names[90][0], /* v13 */ \
2295 &rs6000_reg_names[91][0], /* v14 */ \
2296 &rs6000_reg_names[92][0], /* v15 */ \
2297 &rs6000_reg_names[93][0], /* v16 */ \
2298 &rs6000_reg_names[94][0], /* v17 */ \
2299 &rs6000_reg_names[95][0], /* v18 */ \
2300 &rs6000_reg_names[96][0], /* v19 */ \
2301 &rs6000_reg_names[97][0], /* v20 */ \
2302 &rs6000_reg_names[98][0], /* v21 */ \
2303 &rs6000_reg_names[99][0], /* v22 */ \
2304 &rs6000_reg_names[100][0], /* v23 */ \
2305 &rs6000_reg_names[101][0], /* v24 */ \
2306 &rs6000_reg_names[102][0], /* v25 */ \
2307 &rs6000_reg_names[103][0], /* v26 */ \
2308 &rs6000_reg_names[104][0], /* v27 */ \
2309 &rs6000_reg_names[105][0], /* v28 */ \
2310 &rs6000_reg_names[106][0], /* v29 */ \
2311 &rs6000_reg_names[107][0], /* v30 */ \
2312 &rs6000_reg_names[108][0], /* v31 */ \
2313 &rs6000_reg_names[109][0], /* vrsave */ \
2314 &rs6000_reg_names[110][0], /* vscr */ \
2315 &rs6000_reg_names[111][0], /* sfp */ \
2316 &rs6000_reg_names[112][0], /* tfhar */ \
2317 &rs6000_reg_names[113][0], /* tfiar */ \
2318 &rs6000_reg_names[114][0], /* texasr */ \
2319 }
2320
2321 /* Table of additional register names to use in user input. */
2322
2323 #define ADDITIONAL_REGISTER_NAMES \
2324 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2325 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2326 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2327 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2328 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2329 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2330 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2331 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2332 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2333 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2334 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2335 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2336 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2337 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2338 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2339 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2340 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2341 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2342 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2343 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2344 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2345 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2346 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2347 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2348 {"vrsave", 109}, {"vscr", 110}, \
2349 /* no additional names for: lr, ctr, ap */ \
2350 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2351 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2352 {"cc", 68}, {"sp", 1}, {"toc", 2}, \
2353 /* CA is only part of XER, but we do not model the other parts (yet). */ \
2354 {"xer", 76}, \
2355 /* VSX registers overlaid on top of FR, Altivec registers */ \
2356 {"vs0", 32}, {"vs1", 33}, {"vs2", 34}, {"vs3", 35}, \
2357 {"vs4", 36}, {"vs5", 37}, {"vs6", 38}, {"vs7", 39}, \
2358 {"vs8", 40}, {"vs9", 41}, {"vs10", 42}, {"vs11", 43}, \
2359 {"vs12", 44}, {"vs13", 45}, {"vs14", 46}, {"vs15", 47}, \
2360 {"vs16", 48}, {"vs17", 49}, {"vs18", 50}, {"vs19", 51}, \
2361 {"vs20", 52}, {"vs21", 53}, {"vs22", 54}, {"vs23", 55}, \
2362 {"vs24", 56}, {"vs25", 57}, {"vs26", 58}, {"vs27", 59}, \
2363 {"vs28", 60}, {"vs29", 61}, {"vs30", 62}, {"vs31", 63}, \
2364 {"vs32", 77}, {"vs33", 78}, {"vs34", 79}, {"vs35", 80}, \
2365 {"vs36", 81}, {"vs37", 82}, {"vs38", 83}, {"vs39", 84}, \
2366 {"vs40", 85}, {"vs41", 86}, {"vs42", 87}, {"vs43", 88}, \
2367 {"vs44", 89}, {"vs45", 90}, {"vs46", 91}, {"vs47", 92}, \
2368 {"vs48", 93}, {"vs49", 94}, {"vs50", 95}, {"vs51", 96}, \
2369 {"vs52", 97}, {"vs53", 98}, {"vs54", 99}, {"vs55", 100}, \
2370 {"vs56", 101},{"vs57", 102},{"vs58", 103},{"vs59", 104}, \
2371 {"vs60", 105},{"vs61", 106},{"vs62", 107},{"vs63", 108}, \
2372 /* Transactional Memory Facility (HTM) Registers. */ \
2373 {"tfhar", 112}, {"tfiar", 113}, {"texasr", 114}, \
2374 }
2375
2376 /* This is how to output an element of a case-vector that is relative. */
2377
2378 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2379 do { char buf[100]; \
2380 fputs ("\t.long ", FILE); \
2381 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2382 assemble_name (FILE, buf); \
2383 putc ('-', FILE); \
2384 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2385 assemble_name (FILE, buf); \
2386 putc ('\n', FILE); \
2387 } while (0)
2388
2389 /* This is how to output an assembler line
2390 that says to advance the location counter
2391 to a multiple of 2**LOG bytes. */
2392
2393 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2394 if ((LOG) != 0) \
2395 fprintf (FILE, "\t.align %d\n", (LOG))
2396
2397 /* How to align the given loop. */
2398 #define LOOP_ALIGN(LABEL) rs6000_loop_align(LABEL)
2399
2400 /* Alignment guaranteed by __builtin_malloc. */
2401 /* FIXME: 128-bit alignment is guaranteed by glibc for TARGET_64BIT.
2402 However, specifying the stronger guarantee currently leads to
2403 a regression in SPEC CPU2006 437.leslie3d. The stronger
2404 guarantee should be implemented here once that's fixed. */
2405 #define MALLOC_ABI_ALIGNMENT (64)
2406
2407 /* Pick up the return address upon entry to a procedure. Used for
2408 dwarf2 unwind information. This also enables the table driven
2409 mechanism. */
2410
2411 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2412 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2413
2414 /* Describe how we implement __builtin_eh_return. */
2415 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2416 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2417
2418 /* Print operand X (an rtx) in assembler syntax to file FILE.
2419 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2420 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2421
2422 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2423
2424 /* Define which CODE values are valid. */
2425
2426 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) ((CODE) == '&')
2427
2428 /* Print a memory address as an operand to reference that memory location. */
2429
2430 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2431
2432 /* For switching between functions with different target attributes. */
2433 #define SWITCHABLE_TARGET 1
2434
2435 /* uncomment for disabling the corresponding default options */
2436 /* #define MACHINE_no_sched_interblock */
2437 /* #define MACHINE_no_sched_speculative */
2438 /* #define MACHINE_no_sched_speculative_load */
2439
2440 /* General flags. */
2441 extern int frame_pointer_needed;
2442
2443 /* Classification of the builtin functions as to which switches enable the
2444 builtin, and what attributes it should have. We used to use the target
2445 flags macros, but we've run out of bits, so we now map the options into new
2446 settings used here. */
2447
2448 /* Builtin attributes. */
2449 #define RS6000_BTC_SPECIAL 0x00000000 /* Special function. */
2450 #define RS6000_BTC_UNARY 0x00000001 /* normal unary function. */
2451 #define RS6000_BTC_BINARY 0x00000002 /* normal binary function. */
2452 #define RS6000_BTC_TERNARY 0x00000003 /* normal ternary function. */
2453 #define RS6000_BTC_PREDICATE 0x00000004 /* predicate function. */
2454 #define RS6000_BTC_ABS 0x00000005 /* Altivec/VSX ABS function. */
2455 #define RS6000_BTC_DST 0x00000007 /* Altivec DST function. */
2456 #define RS6000_BTC_TYPE_MASK 0x0000000f /* Mask to isolate types */
2457
2458 #define RS6000_BTC_MISC 0x00000000 /* No special attributes. */
2459 #define RS6000_BTC_CONST 0x00000100 /* Neither uses, nor
2460 modifies global state. */
2461 #define RS6000_BTC_PURE 0x00000200 /* reads global
2462 state/mem and does
2463 not modify global state. */
2464 #define RS6000_BTC_FP 0x00000400 /* depends on rounding mode. */
2465 #define RS6000_BTC_ATTR_MASK 0x00000700 /* Mask of the attributes. */
2466
2467 /* Miscellaneous information. */
2468 #define RS6000_BTC_SPR 0x01000000 /* function references SPRs. */
2469 #define RS6000_BTC_VOID 0x02000000 /* function has no return value. */
2470 #define RS6000_BTC_CR 0x04000000 /* function references a CR. */
2471 #define RS6000_BTC_OVERLOADED 0x08000000 /* function is overloaded. */
2472 #define RS6000_BTC_MISC_MASK 0x1f000000 /* Mask of the misc info. */
2473
2474 /* Convenience macros to document the instruction type. */
2475 #define RS6000_BTC_MEM RS6000_BTC_MISC /* load/store touches mem. */
2476 #define RS6000_BTC_SAT RS6000_BTC_MISC /* saturate sets VSCR. */
2477
2478 /* Builtin targets. For now, we reuse the masks for those options that are in
2479 target flags, and pick two random bits for paired and ldbl128, which
2480 aren't in target_flags. */
2481 #define RS6000_BTM_ALWAYS 0 /* Always enabled. */
2482 #define RS6000_BTM_ALTIVEC MASK_ALTIVEC /* VMX/altivec vectors. */
2483 #define RS6000_BTM_CMPB MASK_CMPB /* ISA 2.05: compare bytes. */
2484 #define RS6000_BTM_VSX MASK_VSX /* VSX (vector/scalar). */
2485 #define RS6000_BTM_P8_VECTOR MASK_P8_VECTOR /* ISA 2.07 vector. */
2486 #define RS6000_BTM_P9_VECTOR MASK_P9_VECTOR /* ISA 3.0 vector. */
2487 #define RS6000_BTM_P9_MISC MASK_P9_MISC /* ISA 3.0 misc. non-vector */
2488 #define RS6000_BTM_CRYPTO MASK_CRYPTO /* crypto funcs. */
2489 #define RS6000_BTM_HTM MASK_HTM /* hardware TM funcs. */
2490 #define RS6000_BTM_PAIRED MASK_MULHW /* 750CL paired insns. */
2491 #define RS6000_BTM_FRE MASK_POPCNTB /* FRE instruction. */
2492 #define RS6000_BTM_FRES MASK_PPC_GFXOPT /* FRES instruction. */
2493 #define RS6000_BTM_FRSQRTE MASK_PPC_GFXOPT /* FRSQRTE instruction. */
2494 #define RS6000_BTM_FRSQRTES MASK_POPCNTB /* FRSQRTES instruction. */
2495 #define RS6000_BTM_POPCNTD MASK_POPCNTD /* Target supports ISA 2.06. */
2496 #define RS6000_BTM_CELL MASK_FPRND /* Target is cell powerpc. */
2497 #define RS6000_BTM_DFP MASK_DFP /* Decimal floating point. */
2498 #define RS6000_BTM_HARD_FLOAT MASK_SOFT_FLOAT /* Hardware floating point. */
2499 #define RS6000_BTM_LDBL128 MASK_MULTIPLE /* 128-bit long double. */
2500 #define RS6000_BTM_64BIT MASK_64BIT /* 64-bit addressing. */
2501 #define RS6000_BTM_FLOAT128 MASK_FLOAT128_KEYWORD /* IEEE 128-bit float. */
2502 #define RS6000_BTM_FLOAT128_HW MASK_FLOAT128_HW /* IEEE 128-bit float h/w. */
2503
2504 #define RS6000_BTM_COMMON (RS6000_BTM_ALTIVEC \
2505 | RS6000_BTM_VSX \
2506 | RS6000_BTM_P8_VECTOR \
2507 | RS6000_BTM_P9_VECTOR \
2508 | RS6000_BTM_P9_MISC \
2509 | RS6000_BTM_MODULO \
2510 | RS6000_BTM_CRYPTO \
2511 | RS6000_BTM_FRE \
2512 | RS6000_BTM_FRES \
2513 | RS6000_BTM_FRSQRTE \
2514 | RS6000_BTM_FRSQRTES \
2515 | RS6000_BTM_HTM \
2516 | RS6000_BTM_POPCNTD \
2517 | RS6000_BTM_CELL \
2518 | RS6000_BTM_DFP \
2519 | RS6000_BTM_HARD_FLOAT \
2520 | RS6000_BTM_LDBL128 \
2521 | RS6000_BTM_FLOAT128 \
2522 | RS6000_BTM_FLOAT128_HW)
2523
2524 /* Define builtin enum index. */
2525
2526 #undef RS6000_BUILTIN_0
2527 #undef RS6000_BUILTIN_1
2528 #undef RS6000_BUILTIN_2
2529 #undef RS6000_BUILTIN_3
2530 #undef RS6000_BUILTIN_A
2531 #undef RS6000_BUILTIN_D
2532 #undef RS6000_BUILTIN_H
2533 #undef RS6000_BUILTIN_P
2534 #undef RS6000_BUILTIN_Q
2535 #undef RS6000_BUILTIN_X
2536
2537 #define RS6000_BUILTIN_0(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2538 #define RS6000_BUILTIN_1(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2539 #define RS6000_BUILTIN_2(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2540 #define RS6000_BUILTIN_3(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2541 #define RS6000_BUILTIN_A(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2542 #define RS6000_BUILTIN_D(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2543 #define RS6000_BUILTIN_H(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2544 #define RS6000_BUILTIN_P(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2545 #define RS6000_BUILTIN_Q(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2546 #define RS6000_BUILTIN_X(ENUM, NAME, MASK, ATTR, ICODE) ENUM,
2547
2548 enum rs6000_builtins
2549 {
2550 #include "rs6000-builtin.def"
2551
2552 RS6000_BUILTIN_COUNT
2553 };
2554
2555 #undef RS6000_BUILTIN_0
2556 #undef RS6000_BUILTIN_1
2557 #undef RS6000_BUILTIN_2
2558 #undef RS6000_BUILTIN_3
2559 #undef RS6000_BUILTIN_A
2560 #undef RS6000_BUILTIN_D
2561 #undef RS6000_BUILTIN_H
2562 #undef RS6000_BUILTIN_P
2563 #undef RS6000_BUILTIN_Q
2564 #undef RS6000_BUILTIN_X
2565
2566 enum rs6000_builtin_type_index
2567 {
2568 RS6000_BTI_NOT_OPAQUE,
2569 RS6000_BTI_opaque_V2SI,
2570 RS6000_BTI_opaque_V2SF,
2571 RS6000_BTI_opaque_p_V2SI,
2572 RS6000_BTI_opaque_V4SI,
2573 RS6000_BTI_V16QI,
2574 RS6000_BTI_V1TI,
2575 RS6000_BTI_V2SI,
2576 RS6000_BTI_V2SF,
2577 RS6000_BTI_V2DI,
2578 RS6000_BTI_V2DF,
2579 RS6000_BTI_V4HI,
2580 RS6000_BTI_V4SI,
2581 RS6000_BTI_V4SF,
2582 RS6000_BTI_V8HI,
2583 RS6000_BTI_unsigned_V16QI,
2584 RS6000_BTI_unsigned_V1TI,
2585 RS6000_BTI_unsigned_V8HI,
2586 RS6000_BTI_unsigned_V4SI,
2587 RS6000_BTI_unsigned_V2DI,
2588 RS6000_BTI_bool_char, /* __bool char */
2589 RS6000_BTI_bool_short, /* __bool short */
2590 RS6000_BTI_bool_int, /* __bool int */
2591 RS6000_BTI_bool_long, /* __bool long */
2592 RS6000_BTI_pixel, /* __pixel */
2593 RS6000_BTI_bool_V16QI, /* __vector __bool char */
2594 RS6000_BTI_bool_V8HI, /* __vector __bool short */
2595 RS6000_BTI_bool_V4SI, /* __vector __bool int */
2596 RS6000_BTI_bool_V2DI, /* __vector __bool long */
2597 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
2598 RS6000_BTI_long, /* long_integer_type_node */
2599 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
2600 RS6000_BTI_long_long, /* long_long_integer_type_node */
2601 RS6000_BTI_unsigned_long_long, /* long_long_unsigned_type_node */
2602 RS6000_BTI_INTQI, /* intQI_type_node */
2603 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
2604 RS6000_BTI_INTHI, /* intHI_type_node */
2605 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
2606 RS6000_BTI_INTSI, /* intSI_type_node */
2607 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
2608 RS6000_BTI_INTDI, /* intDI_type_node */
2609 RS6000_BTI_UINTDI, /* unsigned_intDI_type_node */
2610 RS6000_BTI_INTTI, /* intTI_type_node */
2611 RS6000_BTI_UINTTI, /* unsigned_intTI_type_node */
2612 RS6000_BTI_float, /* float_type_node */
2613 RS6000_BTI_double, /* double_type_node */
2614 RS6000_BTI_long_double, /* long_double_type_node */
2615 RS6000_BTI_dfloat64, /* dfloat64_type_node */
2616 RS6000_BTI_dfloat128, /* dfloat128_type_node */
2617 RS6000_BTI_void, /* void_type_node */
2618 RS6000_BTI_ieee128_float, /* ieee 128-bit floating point */
2619 RS6000_BTI_ibm128_float, /* IBM 128-bit floating point */
2620 RS6000_BTI_const_str, /* pointer to const char * */
2621 RS6000_BTI_MAX
2622 };
2623
2624
2625 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
2626 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
2627 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
2628 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
2629 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
2630 #define V1TI_type_node (rs6000_builtin_types[RS6000_BTI_V1TI])
2631 #define V2DI_type_node (rs6000_builtin_types[RS6000_BTI_V2DI])
2632 #define V2DF_type_node (rs6000_builtin_types[RS6000_BTI_V2DF])
2633 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
2634 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
2635 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
2636 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
2637 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
2638 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
2639 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
2640 #define unsigned_V1TI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V1TI])
2641 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
2642 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
2643 #define unsigned_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V2DI])
2644 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
2645 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
2646 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
2647 #define bool_long_type_node (rs6000_builtin_types[RS6000_BTI_bool_long])
2648 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
2649 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
2650 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
2651 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
2652 #define bool_V2DI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V2DI])
2653 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
2654
2655 #define long_long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_long])
2656 #define long_long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long_long])
2657 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
2658 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
2659 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
2660 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
2661 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
2662 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
2663 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
2664 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
2665 #define intDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTDI])
2666 #define uintDI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTDI])
2667 #define intTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTTI])
2668 #define uintTI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTTI])
2669 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
2670 #define double_type_internal_node (rs6000_builtin_types[RS6000_BTI_double])
2671 #define long_double_type_internal_node (rs6000_builtin_types[RS6000_BTI_long_double])
2672 #define dfloat64_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat64])
2673 #define dfloat128_type_internal_node (rs6000_builtin_types[RS6000_BTI_dfloat128])
2674 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
2675 #define ieee128_float_type_node (rs6000_builtin_types[RS6000_BTI_ieee128_float])
2676 #define ibm128_float_type_node (rs6000_builtin_types[RS6000_BTI_ibm128_float])
2677 #define const_str_type_node (rs6000_builtin_types[RS6000_BTI_const_str])
2678
2679 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
2680 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
2681
2682 #define TARGET_SUPPORTS_WIDE_INT 1
2683
2684 #if (GCC_VERSION >= 3000)
2685 #pragma GCC poison TARGET_FLOAT128 OPTION_MASK_FLOAT128 MASK_FLOAT128
2686 #endif