]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/init.c
fde2314e32658969c55819513b9dc64db9be925d
[thirdparty/gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "cp-tree.h"
29 #include "flags.h"
30 #include "target.h"
31 #include "gimple.h"
32 #include "gimplify.h"
33
34 static bool begin_init_stmts (tree *, tree *);
35 static tree finish_init_stmts (bool, tree, tree);
36 static void construct_virtual_base (tree, tree);
37 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
38 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
39 static void perform_member_init (tree, tree);
40 static tree build_builtin_delete_call (tree);
41 static int member_init_ok_or_else (tree, tree, tree);
42 static void expand_virtual_init (tree, tree);
43 static tree sort_mem_initializers (tree, tree);
44 static tree initializing_context (tree);
45 static void expand_cleanup_for_base (tree, tree);
46 static tree dfs_initialize_vtbl_ptrs (tree, void *);
47 static tree build_field_list (tree, tree, int *);
48 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
49
50 /* We are about to generate some complex initialization code.
51 Conceptually, it is all a single expression. However, we may want
52 to include conditionals, loops, and other such statement-level
53 constructs. Therefore, we build the initialization code inside a
54 statement-expression. This function starts such an expression.
55 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
56 pass them back to finish_init_stmts when the expression is
57 complete. */
58
59 static bool
60 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
61 {
62 bool is_global = !building_stmt_list_p ();
63
64 *stmt_expr_p = begin_stmt_expr ();
65 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
66
67 return is_global;
68 }
69
70 /* Finish out the statement-expression begun by the previous call to
71 begin_init_stmts. Returns the statement-expression itself. */
72
73 static tree
74 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
75 {
76 finish_compound_stmt (compound_stmt);
77
78 stmt_expr = finish_stmt_expr (stmt_expr, true);
79
80 gcc_assert (!building_stmt_list_p () == is_global);
81
82 return stmt_expr;
83 }
84
85 /* Constructors */
86
87 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
88 which we want to initialize the vtable pointer for, DATA is
89 TREE_LIST whose TREE_VALUE is the this ptr expression. */
90
91 static tree
92 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
93 {
94 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
95 return dfs_skip_bases;
96
97 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
98 {
99 tree base_ptr = TREE_VALUE ((tree) data);
100
101 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
102 tf_warning_or_error);
103
104 expand_virtual_init (binfo, base_ptr);
105 }
106
107 return NULL_TREE;
108 }
109
110 /* Initialize all the vtable pointers in the object pointed to by
111 ADDR. */
112
113 void
114 initialize_vtbl_ptrs (tree addr)
115 {
116 tree list;
117 tree type;
118
119 type = TREE_TYPE (TREE_TYPE (addr));
120 list = build_tree_list (type, addr);
121
122 /* Walk through the hierarchy, initializing the vptr in each base
123 class. We do these in pre-order because we can't find the virtual
124 bases for a class until we've initialized the vtbl for that
125 class. */
126 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
127 }
128
129 /* Return an expression for the zero-initialization of an object with
130 type T. This expression will either be a constant (in the case
131 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
132 aggregate), or NULL (in the case that T does not require
133 initialization). In either case, the value can be used as
134 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
135 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
136 is the number of elements in the array. If STATIC_STORAGE_P is
137 TRUE, initializers are only generated for entities for which
138 zero-initialization does not simply mean filling the storage with
139 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
140 subfields with bit positions at or above that bit size shouldn't
141 be added. Note that this only works when the result is assigned
142 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
143 expand_assignment will end up clearing the full size of TYPE. */
144
145 static tree
146 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
147 tree field_size)
148 {
149 tree init = NULL_TREE;
150
151 /* [dcl.init]
152
153 To zero-initialize an object of type T means:
154
155 -- if T is a scalar type, the storage is set to the value of zero
156 converted to T.
157
158 -- if T is a non-union class type, the storage for each nonstatic
159 data member and each base-class subobject is zero-initialized.
160
161 -- if T is a union type, the storage for its first data member is
162 zero-initialized.
163
164 -- if T is an array type, the storage for each element is
165 zero-initialized.
166
167 -- if T is a reference type, no initialization is performed. */
168
169 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
170
171 if (type == error_mark_node)
172 ;
173 else if (static_storage_p && zero_init_p (type))
174 /* In order to save space, we do not explicitly build initializers
175 for items that do not need them. GCC's semantics are that
176 items with static storage duration that are not otherwise
177 initialized are initialized to zero. */
178 ;
179 else if (TYPE_PTR_OR_PTRMEM_P (type))
180 init = convert (type, nullptr_node);
181 else if (SCALAR_TYPE_P (type))
182 init = convert (type, integer_zero_node);
183 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
184 {
185 tree field;
186 vec<constructor_elt, va_gc> *v = NULL;
187
188 /* Iterate over the fields, building initializations. */
189 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
190 {
191 if (TREE_CODE (field) != FIELD_DECL)
192 continue;
193
194 /* Don't add virtual bases for base classes if they are beyond
195 the size of the current field, that means it is present
196 somewhere else in the object. */
197 if (field_size)
198 {
199 tree bitpos = bit_position (field);
200 if (TREE_CODE (bitpos) == INTEGER_CST
201 && !tree_int_cst_lt (bitpos, field_size))
202 continue;
203 }
204
205 /* Note that for class types there will be FIELD_DECLs
206 corresponding to base classes as well. Thus, iterating
207 over TYPE_FIELDs will result in correct initialization of
208 all of the subobjects. */
209 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
210 {
211 tree new_field_size
212 = (DECL_FIELD_IS_BASE (field)
213 && DECL_SIZE (field)
214 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
215 ? DECL_SIZE (field) : NULL_TREE;
216 tree value = build_zero_init_1 (TREE_TYPE (field),
217 /*nelts=*/NULL_TREE,
218 static_storage_p,
219 new_field_size);
220 if (value)
221 CONSTRUCTOR_APPEND_ELT(v, field, value);
222 }
223
224 /* For unions, only the first field is initialized. */
225 if (TREE_CODE (type) == UNION_TYPE)
226 break;
227 }
228
229 /* Build a constructor to contain the initializations. */
230 init = build_constructor (type, v);
231 }
232 else if (TREE_CODE (type) == ARRAY_TYPE)
233 {
234 tree max_index;
235 vec<constructor_elt, va_gc> *v = NULL;
236
237 /* Iterate over the array elements, building initializations. */
238 if (nelts)
239 max_index = fold_build2_loc (input_location,
240 MINUS_EXPR, TREE_TYPE (nelts),
241 nelts, integer_one_node);
242 else
243 max_index = array_type_nelts (type);
244
245 /* If we have an error_mark here, we should just return error mark
246 as we don't know the size of the array yet. */
247 if (max_index == error_mark_node)
248 return error_mark_node;
249 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
250
251 /* A zero-sized array, which is accepted as an extension, will
252 have an upper bound of -1. */
253 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
254 {
255 constructor_elt ce;
256
257 /* If this is a one element array, we just use a regular init. */
258 if (tree_int_cst_equal (size_zero_node, max_index))
259 ce.index = size_zero_node;
260 else
261 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
262 max_index);
263
264 ce.value = build_zero_init_1 (TREE_TYPE (type),
265 /*nelts=*/NULL_TREE,
266 static_storage_p, NULL_TREE);
267 if (ce.value)
268 {
269 vec_alloc (v, 1);
270 v->quick_push (ce);
271 }
272 }
273
274 /* Build a constructor to contain the initializations. */
275 init = build_constructor (type, v);
276 }
277 else if (TREE_CODE (type) == VECTOR_TYPE)
278 init = build_zero_cst (type);
279 else
280 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
281
282 /* In all cases, the initializer is a constant. */
283 if (init)
284 TREE_CONSTANT (init) = 1;
285
286 return init;
287 }
288
289 /* Return an expression for the zero-initialization of an object with
290 type T. This expression will either be a constant (in the case
291 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
292 aggregate), or NULL (in the case that T does not require
293 initialization). In either case, the value can be used as
294 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
295 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
296 is the number of elements in the array. If STATIC_STORAGE_P is
297 TRUE, initializers are only generated for entities for which
298 zero-initialization does not simply mean filling the storage with
299 zero bytes. */
300
301 tree
302 build_zero_init (tree type, tree nelts, bool static_storage_p)
303 {
304 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
305 }
306
307 /* Return a suitable initializer for value-initializing an object of type
308 TYPE, as described in [dcl.init]. */
309
310 tree
311 build_value_init (tree type, tsubst_flags_t complain)
312 {
313 /* [dcl.init]
314
315 To value-initialize an object of type T means:
316
317 - if T is a class type (clause 9) with either no default constructor
318 (12.1) or a default constructor that is user-provided or deleted,
319 then then the object is default-initialized;
320
321 - if T is a (possibly cv-qualified) class type without a user-provided
322 or deleted default constructor, then the object is zero-initialized
323 and the semantic constraints for default-initialization are checked,
324 and if T has a non-trivial default constructor, the object is
325 default-initialized;
326
327 - if T is an array type, then each element is value-initialized;
328
329 - otherwise, the object is zero-initialized.
330
331 A program that calls for default-initialization or
332 value-initialization of an entity of reference type is ill-formed. */
333
334 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
335 gcc_assert (!processing_template_decl
336 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
337
338 if (type_build_ctor_call (type))
339 {
340 tree ctor = build_aggr_init_expr
341 (type,
342 build_special_member_call (NULL_TREE, complete_ctor_identifier,
343 NULL, type, LOOKUP_NORMAL,
344 complain));
345 if (ctor == error_mark_node
346 || type_has_user_provided_default_constructor (type))
347 return ctor;
348 else if (TYPE_HAS_COMPLEX_DFLT (type))
349 {
350 /* This is a class that needs constructing, but doesn't have
351 a user-provided constructor. So we need to zero-initialize
352 the object and then call the implicitly defined ctor.
353 This will be handled in simplify_aggr_init_expr. */
354 AGGR_INIT_ZERO_FIRST (ctor) = 1;
355 return ctor;
356 }
357 }
358
359 /* Discard any access checking during subobject initialization;
360 the checks are implied by the call to the ctor which we have
361 verified is OK (cpp0x/defaulted46.C). */
362 push_deferring_access_checks (dk_deferred);
363 tree r = build_value_init_noctor (type, complain);
364 pop_deferring_access_checks ();
365 return r;
366 }
367
368 /* Like build_value_init, but don't call the constructor for TYPE. Used
369 for base initializers. */
370
371 tree
372 build_value_init_noctor (tree type, tsubst_flags_t complain)
373 {
374 if (!COMPLETE_TYPE_P (type))
375 {
376 if (complain & tf_error)
377 error ("value-initialization of incomplete type %qT", type);
378 return error_mark_node;
379 }
380 /* FIXME the class and array cases should just use digest_init once it is
381 SFINAE-enabled. */
382 if (CLASS_TYPE_P (type))
383 {
384 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type));
385
386 if (TREE_CODE (type) != UNION_TYPE)
387 {
388 tree field;
389 vec<constructor_elt, va_gc> *v = NULL;
390
391 /* Iterate over the fields, building initializations. */
392 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
393 {
394 tree ftype, value;
395
396 if (TREE_CODE (field) != FIELD_DECL)
397 continue;
398
399 ftype = TREE_TYPE (field);
400
401 /* We could skip vfields and fields of types with
402 user-defined constructors, but I think that won't improve
403 performance at all; it should be simpler in general just
404 to zero out the entire object than try to only zero the
405 bits that actually need it. */
406
407 /* Note that for class types there will be FIELD_DECLs
408 corresponding to base classes as well. Thus, iterating
409 over TYPE_FIELDs will result in correct initialization of
410 all of the subobjects. */
411 value = build_value_init (ftype, complain);
412
413 if (value == error_mark_node)
414 return error_mark_node;
415
416 if (value)
417 CONSTRUCTOR_APPEND_ELT(v, field, value);
418 }
419
420 /* Build a constructor to contain the zero- initializations. */
421 return build_constructor (type, v);
422 }
423 }
424 else if (TREE_CODE (type) == ARRAY_TYPE)
425 {
426 vec<constructor_elt, va_gc> *v = NULL;
427
428 /* Iterate over the array elements, building initializations. */
429 tree max_index = array_type_nelts (type);
430
431 /* If we have an error_mark here, we should just return error mark
432 as we don't know the size of the array yet. */
433 if (max_index == error_mark_node)
434 {
435 if (complain & tf_error)
436 error ("cannot value-initialize array of unknown bound %qT",
437 type);
438 return error_mark_node;
439 }
440 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
441
442 /* A zero-sized array, which is accepted as an extension, will
443 have an upper bound of -1. */
444 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
445 {
446 constructor_elt ce;
447
448 /* If this is a one element array, we just use a regular init. */
449 if (tree_int_cst_equal (size_zero_node, max_index))
450 ce.index = size_zero_node;
451 else
452 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
453
454 ce.value = build_value_init (TREE_TYPE (type), complain);
455 if (ce.value)
456 {
457 if (ce.value == error_mark_node)
458 return error_mark_node;
459
460 vec_alloc (v, 1);
461 v->quick_push (ce);
462
463 /* We shouldn't have gotten here for anything that would need
464 non-trivial initialization, and gimplify_init_ctor_preeval
465 would need to be fixed to allow it. */
466 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
467 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
468 }
469 }
470
471 /* Build a constructor to contain the initializations. */
472 return build_constructor (type, v);
473 }
474 else if (TREE_CODE (type) == FUNCTION_TYPE)
475 {
476 if (complain & tf_error)
477 error ("value-initialization of function type %qT", type);
478 return error_mark_node;
479 }
480 else if (TREE_CODE (type) == REFERENCE_TYPE)
481 {
482 if (complain & tf_error)
483 error ("value-initialization of reference type %qT", type);
484 return error_mark_node;
485 }
486
487 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
488 }
489
490 /* Initialize current class with INIT, a TREE_LIST of
491 arguments for a target constructor. If TREE_LIST is void_type_node,
492 an empty initializer list was given. */
493
494 static void
495 perform_target_ctor (tree init)
496 {
497 tree decl = current_class_ref;
498 tree type = current_class_type;
499
500 finish_expr_stmt (build_aggr_init (decl, init,
501 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
502 tf_warning_or_error));
503 if (type_build_dtor_call (type))
504 {
505 tree expr = build_delete (type, decl, sfk_complete_destructor,
506 LOOKUP_NORMAL
507 |LOOKUP_NONVIRTUAL
508 |LOOKUP_DESTRUCTOR,
509 0, tf_warning_or_error);
510 if (expr != error_mark_node
511 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
512 finish_eh_cleanup (expr);
513 }
514 }
515
516 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
517 arguments. If TREE_LIST is void_type_node, an empty initializer
518 list was given; if NULL_TREE no initializer was given. */
519
520 static void
521 perform_member_init (tree member, tree init)
522 {
523 tree decl;
524 tree type = TREE_TYPE (member);
525
526 /* Use the non-static data member initializer if there was no
527 mem-initializer for this field. */
528 if (init == NULL_TREE)
529 {
530 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
531 /* Do deferred instantiation of the NSDMI. */
532 init = (tsubst_copy_and_build
533 (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
534 DECL_TI_ARGS (member),
535 tf_warning_or_error, member, /*function_p=*/false,
536 /*integral_constant_expression_p=*/false));
537 else
538 {
539 init = DECL_INITIAL (member);
540 if (init && TREE_CODE (init) == DEFAULT_ARG)
541 {
542 error ("constructor required before non-static data member "
543 "for %qD has been parsed", member);
544 init = NULL_TREE;
545 }
546 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
547 so the aggregate init code below will see a CONSTRUCTOR. */
548 if (init && TREE_CODE (init) == TARGET_EXPR
549 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
550 init = TARGET_EXPR_INITIAL (init);
551 init = break_out_target_exprs (init);
552 }
553 }
554
555 if (init == error_mark_node)
556 return;
557
558 /* Effective C++ rule 12 requires that all data members be
559 initialized. */
560 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
561 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
562 "%qD should be initialized in the member initialization list",
563 member);
564
565 /* Get an lvalue for the data member. */
566 decl = build_class_member_access_expr (current_class_ref, member,
567 /*access_path=*/NULL_TREE,
568 /*preserve_reference=*/true,
569 tf_warning_or_error);
570 if (decl == error_mark_node)
571 return;
572
573 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
574 && TREE_CHAIN (init) == NULL_TREE)
575 {
576 tree val = TREE_VALUE (init);
577 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
578 && TREE_OPERAND (val, 0) == current_class_ref)
579 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
580 OPT_Winit_self, "%qD is initialized with itself",
581 member);
582 }
583
584 if (init == void_type_node)
585 {
586 /* mem() means value-initialization. */
587 if (TREE_CODE (type) == ARRAY_TYPE)
588 {
589 init = build_vec_init_expr (type, init, tf_warning_or_error);
590 init = build2 (INIT_EXPR, type, decl, init);
591 finish_expr_stmt (init);
592 }
593 else
594 {
595 tree value = build_value_init (type, tf_warning_or_error);
596 if (value == error_mark_node)
597 return;
598 init = build2 (INIT_EXPR, type, decl, value);
599 finish_expr_stmt (init);
600 }
601 }
602 /* Deal with this here, as we will get confused if we try to call the
603 assignment op for an anonymous union. This can happen in a
604 synthesized copy constructor. */
605 else if (ANON_AGGR_TYPE_P (type))
606 {
607 if (init)
608 {
609 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
610 finish_expr_stmt (init);
611 }
612 }
613 else if (init
614 && (TREE_CODE (type) == REFERENCE_TYPE
615 /* Pre-digested NSDMI. */
616 || (((TREE_CODE (init) == CONSTRUCTOR
617 && TREE_TYPE (init) == type)
618 /* { } mem-initializer. */
619 || (TREE_CODE (init) == TREE_LIST
620 && TREE_CODE (TREE_VALUE (init)) == CONSTRUCTOR
621 && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init))))
622 && (CP_AGGREGATE_TYPE_P (type)
623 || is_std_init_list (type)))))
624 {
625 /* With references and list-initialization, we need to deal with
626 extending temporary lifetimes. 12.2p5: "A temporary bound to a
627 reference member in a constructor’s ctor-initializer (12.6.2)
628 persists until the constructor exits." */
629 unsigned i; tree t;
630 vec<tree, va_gc> *cleanups = make_tree_vector ();
631 if (TREE_CODE (init) == TREE_LIST)
632 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
633 tf_warning_or_error);
634 if (TREE_TYPE (init) != type)
635 {
636 if (BRACE_ENCLOSED_INITIALIZER_P (init)
637 && CP_AGGREGATE_TYPE_P (type))
638 init = reshape_init (type, init, tf_warning_or_error);
639 init = digest_init (type, init, tf_warning_or_error);
640 }
641 if (init == error_mark_node)
642 return;
643 /* A FIELD_DECL doesn't really have a suitable lifetime, but
644 make_temporary_var_for_ref_to_temp will treat it as automatic and
645 set_up_extended_ref_temp wants to use the decl in a warning. */
646 init = extend_ref_init_temps (member, init, &cleanups);
647 if (TREE_CODE (type) == ARRAY_TYPE
648 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
649 init = build_vec_init_expr (type, init, tf_warning_or_error);
650 init = build2 (INIT_EXPR, type, decl, init);
651 finish_expr_stmt (init);
652 FOR_EACH_VEC_ELT (*cleanups, i, t)
653 push_cleanup (decl, t, false);
654 release_tree_vector (cleanups);
655 }
656 else if (type_build_ctor_call (type)
657 || (init && CLASS_TYPE_P (strip_array_types (type))))
658 {
659 if (TREE_CODE (type) == ARRAY_TYPE)
660 {
661 if (init)
662 {
663 if (TREE_CHAIN (init))
664 init = error_mark_node;
665 else
666 init = TREE_VALUE (init);
667 if (BRACE_ENCLOSED_INITIALIZER_P (init))
668 init = digest_init (type, init, tf_warning_or_error);
669 }
670 if (init == NULL_TREE
671 || same_type_ignoring_top_level_qualifiers_p (type,
672 TREE_TYPE (init)))
673 {
674 init = build_vec_init_expr (type, init, tf_warning_or_error);
675 init = build2 (INIT_EXPR, type, decl, init);
676 finish_expr_stmt (init);
677 }
678 else
679 error ("invalid initializer for array member %q#D", member);
680 }
681 else
682 {
683 int flags = LOOKUP_NORMAL;
684 if (DECL_DEFAULTED_FN (current_function_decl))
685 flags |= LOOKUP_DEFAULTED;
686 if (CP_TYPE_CONST_P (type)
687 && init == NULL_TREE
688 && default_init_uninitialized_part (type))
689 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
690 vtable; still give this diagnostic. */
691 permerror (DECL_SOURCE_LOCATION (current_function_decl),
692 "uninitialized member %qD with %<const%> type %qT",
693 member, type);
694 finish_expr_stmt (build_aggr_init (decl, init, flags,
695 tf_warning_or_error));
696 }
697 }
698 else
699 {
700 if (init == NULL_TREE)
701 {
702 tree core_type;
703 /* member traversal: note it leaves init NULL */
704 if (TREE_CODE (type) == REFERENCE_TYPE)
705 permerror (DECL_SOURCE_LOCATION (current_function_decl),
706 "uninitialized reference member %qD",
707 member);
708 else if (CP_TYPE_CONST_P (type))
709 permerror (DECL_SOURCE_LOCATION (current_function_decl),
710 "uninitialized member %qD with %<const%> type %qT",
711 member, type);
712
713 core_type = strip_array_types (type);
714
715 if (CLASS_TYPE_P (core_type)
716 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
717 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
718 diagnose_uninitialized_cst_or_ref_member (core_type,
719 /*using_new=*/false,
720 /*complain=*/true);
721 }
722 else if (TREE_CODE (init) == TREE_LIST)
723 /* There was an explicit member initialization. Do some work
724 in that case. */
725 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
726 tf_warning_or_error);
727
728 if (init)
729 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
730 tf_warning_or_error));
731 }
732
733 if (type_build_dtor_call (type))
734 {
735 tree expr;
736
737 expr = build_class_member_access_expr (current_class_ref, member,
738 /*access_path=*/NULL_TREE,
739 /*preserve_reference=*/false,
740 tf_warning_or_error);
741 expr = build_delete (type, expr, sfk_complete_destructor,
742 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
743 tf_warning_or_error);
744
745 if (expr != error_mark_node
746 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
747 finish_eh_cleanup (expr);
748 }
749 }
750
751 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
752 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
753
754 static tree
755 build_field_list (tree t, tree list, int *uses_unions_p)
756 {
757 tree fields;
758
759 /* Note whether or not T is a union. */
760 if (TREE_CODE (t) == UNION_TYPE)
761 *uses_unions_p = 1;
762
763 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
764 {
765 tree fieldtype;
766
767 /* Skip CONST_DECLs for enumeration constants and so forth. */
768 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
769 continue;
770
771 fieldtype = TREE_TYPE (fields);
772 /* Keep track of whether or not any fields are unions. */
773 if (TREE_CODE (fieldtype) == UNION_TYPE)
774 *uses_unions_p = 1;
775
776 /* For an anonymous struct or union, we must recursively
777 consider the fields of the anonymous type. They can be
778 directly initialized from the constructor. */
779 if (ANON_AGGR_TYPE_P (fieldtype))
780 {
781 /* Add this field itself. Synthesized copy constructors
782 initialize the entire aggregate. */
783 list = tree_cons (fields, NULL_TREE, list);
784 /* And now add the fields in the anonymous aggregate. */
785 list = build_field_list (fieldtype, list, uses_unions_p);
786 }
787 /* Add this field. */
788 else if (DECL_NAME (fields))
789 list = tree_cons (fields, NULL_TREE, list);
790 }
791
792 return list;
793 }
794
795 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
796 a FIELD_DECL or BINFO in T that needs initialization. The
797 TREE_VALUE gives the initializer, or list of initializer arguments.
798
799 Return a TREE_LIST containing all of the initializations required
800 for T, in the order in which they should be performed. The output
801 list has the same format as the input. */
802
803 static tree
804 sort_mem_initializers (tree t, tree mem_inits)
805 {
806 tree init;
807 tree base, binfo, base_binfo;
808 tree sorted_inits;
809 tree next_subobject;
810 vec<tree, va_gc> *vbases;
811 int i;
812 int uses_unions_p = 0;
813
814 /* Build up a list of initializations. The TREE_PURPOSE of entry
815 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
816 TREE_VALUE will be the constructor arguments, or NULL if no
817 explicit initialization was provided. */
818 sorted_inits = NULL_TREE;
819
820 /* Process the virtual bases. */
821 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
822 vec_safe_iterate (vbases, i, &base); i++)
823 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
824
825 /* Process the direct bases. */
826 for (binfo = TYPE_BINFO (t), i = 0;
827 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
828 if (!BINFO_VIRTUAL_P (base_binfo))
829 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
830
831 /* Process the non-static data members. */
832 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
833 /* Reverse the entire list of initializations, so that they are in
834 the order that they will actually be performed. */
835 sorted_inits = nreverse (sorted_inits);
836
837 /* If the user presented the initializers in an order different from
838 that in which they will actually occur, we issue a warning. Keep
839 track of the next subobject which can be explicitly initialized
840 without issuing a warning. */
841 next_subobject = sorted_inits;
842
843 /* Go through the explicit initializers, filling in TREE_PURPOSE in
844 the SORTED_INITS. */
845 for (init = mem_inits; init; init = TREE_CHAIN (init))
846 {
847 tree subobject;
848 tree subobject_init;
849
850 subobject = TREE_PURPOSE (init);
851
852 /* If the explicit initializers are in sorted order, then
853 SUBOBJECT will be NEXT_SUBOBJECT, or something following
854 it. */
855 for (subobject_init = next_subobject;
856 subobject_init;
857 subobject_init = TREE_CHAIN (subobject_init))
858 if (TREE_PURPOSE (subobject_init) == subobject)
859 break;
860
861 /* Issue a warning if the explicit initializer order does not
862 match that which will actually occur.
863 ??? Are all these on the correct lines? */
864 if (warn_reorder && !subobject_init)
865 {
866 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
867 warning (OPT_Wreorder, "%q+D will be initialized after",
868 TREE_PURPOSE (next_subobject));
869 else
870 warning (OPT_Wreorder, "base %qT will be initialized after",
871 TREE_PURPOSE (next_subobject));
872 if (TREE_CODE (subobject) == FIELD_DECL)
873 warning (OPT_Wreorder, " %q+#D", subobject);
874 else
875 warning (OPT_Wreorder, " base %qT", subobject);
876 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
877 OPT_Wreorder, " when initialized here");
878 }
879
880 /* Look again, from the beginning of the list. */
881 if (!subobject_init)
882 {
883 subobject_init = sorted_inits;
884 while (TREE_PURPOSE (subobject_init) != subobject)
885 subobject_init = TREE_CHAIN (subobject_init);
886 }
887
888 /* It is invalid to initialize the same subobject more than
889 once. */
890 if (TREE_VALUE (subobject_init))
891 {
892 if (TREE_CODE (subobject) == FIELD_DECL)
893 error_at (DECL_SOURCE_LOCATION (current_function_decl),
894 "multiple initializations given for %qD",
895 subobject);
896 else
897 error_at (DECL_SOURCE_LOCATION (current_function_decl),
898 "multiple initializations given for base %qT",
899 subobject);
900 }
901
902 /* Record the initialization. */
903 TREE_VALUE (subobject_init) = TREE_VALUE (init);
904 next_subobject = subobject_init;
905 }
906
907 /* [class.base.init]
908
909 If a ctor-initializer specifies more than one mem-initializer for
910 multiple members of the same union (including members of
911 anonymous unions), the ctor-initializer is ill-formed.
912
913 Here we also splice out uninitialized union members. */
914 if (uses_unions_p)
915 {
916 tree *last_p = NULL;
917 tree *p;
918 for (p = &sorted_inits; *p; )
919 {
920 tree field;
921 tree ctx;
922
923 init = *p;
924
925 field = TREE_PURPOSE (init);
926
927 /* Skip base classes. */
928 if (TREE_CODE (field) != FIELD_DECL)
929 goto next;
930
931 /* If this is an anonymous union with no explicit initializer,
932 splice it out. */
933 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
934 goto splice;
935
936 /* See if this field is a member of a union, or a member of a
937 structure contained in a union, etc. */
938 for (ctx = DECL_CONTEXT (field);
939 !same_type_p (ctx, t);
940 ctx = TYPE_CONTEXT (ctx))
941 if (TREE_CODE (ctx) == UNION_TYPE
942 || !ANON_AGGR_TYPE_P (ctx))
943 break;
944 /* If this field is not a member of a union, skip it. */
945 if (TREE_CODE (ctx) != UNION_TYPE)
946 goto next;
947
948 /* If this union member has no explicit initializer and no NSDMI,
949 splice it out. */
950 if (TREE_VALUE (init) || DECL_INITIAL (field))
951 /* OK. */;
952 else
953 goto splice;
954
955 /* It's only an error if we have two initializers for the same
956 union type. */
957 if (!last_p)
958 {
959 last_p = p;
960 goto next;
961 }
962
963 /* See if LAST_FIELD and the field initialized by INIT are
964 members of the same union. If so, there's a problem,
965 unless they're actually members of the same structure
966 which is itself a member of a union. For example, given:
967
968 union { struct { int i; int j; }; };
969
970 initializing both `i' and `j' makes sense. */
971 ctx = common_enclosing_class (DECL_CONTEXT (field),
972 DECL_CONTEXT (TREE_PURPOSE (*last_p)));
973
974 if (ctx && TREE_CODE (ctx) == UNION_TYPE)
975 {
976 /* A mem-initializer hides an NSDMI. */
977 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
978 *last_p = TREE_CHAIN (*last_p);
979 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
980 goto splice;
981 else
982 {
983 error_at (DECL_SOURCE_LOCATION (current_function_decl),
984 "initializations for multiple members of %qT",
985 ctx);
986 goto splice;
987 }
988 }
989
990 last_p = p;
991
992 next:
993 p = &TREE_CHAIN (*p);
994 continue;
995 splice:
996 *p = TREE_CHAIN (*p);
997 continue;
998 }
999 }
1000
1001 return sorted_inits;
1002 }
1003
1004 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1005 is a TREE_LIST giving the explicit mem-initializer-list for the
1006 constructor. The TREE_PURPOSE of each entry is a subobject (a
1007 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1008 is a TREE_LIST giving the arguments to the constructor or
1009 void_type_node for an empty list of arguments. */
1010
1011 void
1012 emit_mem_initializers (tree mem_inits)
1013 {
1014 int flags = LOOKUP_NORMAL;
1015
1016 /* We will already have issued an error message about the fact that
1017 the type is incomplete. */
1018 if (!COMPLETE_TYPE_P (current_class_type))
1019 return;
1020
1021 if (mem_inits
1022 && TYPE_P (TREE_PURPOSE (mem_inits))
1023 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1024 {
1025 /* Delegating constructor. */
1026 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1027 perform_target_ctor (TREE_VALUE (mem_inits));
1028 return;
1029 }
1030
1031 if (DECL_DEFAULTED_FN (current_function_decl)
1032 && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1033 flags |= LOOKUP_DEFAULTED;
1034
1035 /* Sort the mem-initializers into the order in which the
1036 initializations should be performed. */
1037 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1038
1039 in_base_initializer = 1;
1040
1041 /* Initialize base classes. */
1042 for (; (mem_inits
1043 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1044 mem_inits = TREE_CHAIN (mem_inits))
1045 {
1046 tree subobject = TREE_PURPOSE (mem_inits);
1047 tree arguments = TREE_VALUE (mem_inits);
1048
1049 /* We already have issued an error message. */
1050 if (arguments == error_mark_node)
1051 continue;
1052
1053 if (arguments == NULL_TREE)
1054 {
1055 /* If these initializations are taking place in a copy constructor,
1056 the base class should probably be explicitly initialized if there
1057 is a user-defined constructor in the base class (other than the
1058 default constructor, which will be called anyway). */
1059 if (extra_warnings
1060 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1061 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1062 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1063 OPT_Wextra, "base class %q#T should be explicitly "
1064 "initialized in the copy constructor",
1065 BINFO_TYPE (subobject));
1066 }
1067
1068 /* Initialize the base. */
1069 if (BINFO_VIRTUAL_P (subobject))
1070 construct_virtual_base (subobject, arguments);
1071 else
1072 {
1073 tree base_addr;
1074
1075 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1076 subobject, 1, tf_warning_or_error);
1077 expand_aggr_init_1 (subobject, NULL_TREE,
1078 cp_build_indirect_ref (base_addr, RO_NULL,
1079 tf_warning_or_error),
1080 arguments,
1081 flags,
1082 tf_warning_or_error);
1083 expand_cleanup_for_base (subobject, NULL_TREE);
1084 }
1085 }
1086 in_base_initializer = 0;
1087
1088 /* Initialize the vptrs. */
1089 initialize_vtbl_ptrs (current_class_ptr);
1090
1091 /* Initialize the data members. */
1092 while (mem_inits)
1093 {
1094 perform_member_init (TREE_PURPOSE (mem_inits),
1095 TREE_VALUE (mem_inits));
1096 mem_inits = TREE_CHAIN (mem_inits);
1097 }
1098 }
1099
1100 /* Returns the address of the vtable (i.e., the value that should be
1101 assigned to the vptr) for BINFO. */
1102
1103 tree
1104 build_vtbl_address (tree binfo)
1105 {
1106 tree binfo_for = binfo;
1107 tree vtbl;
1108
1109 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1110 /* If this is a virtual primary base, then the vtable we want to store
1111 is that for the base this is being used as the primary base of. We
1112 can't simply skip the initialization, because we may be expanding the
1113 inits of a subobject constructor where the virtual base layout
1114 can be different. */
1115 while (BINFO_PRIMARY_P (binfo_for))
1116 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1117
1118 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1119 used. */
1120 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1121 TREE_USED (vtbl) = 1;
1122
1123 /* Now compute the address to use when initializing the vptr. */
1124 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1125 if (VAR_P (vtbl))
1126 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1127
1128 return vtbl;
1129 }
1130
1131 /* This code sets up the virtual function tables appropriate for
1132 the pointer DECL. It is a one-ply initialization.
1133
1134 BINFO is the exact type that DECL is supposed to be. In
1135 multiple inheritance, this might mean "C's A" if C : A, B. */
1136
1137 static void
1138 expand_virtual_init (tree binfo, tree decl)
1139 {
1140 tree vtbl, vtbl_ptr;
1141 tree vtt_index;
1142
1143 /* Compute the initializer for vptr. */
1144 vtbl = build_vtbl_address (binfo);
1145
1146 /* We may get this vptr from a VTT, if this is a subobject
1147 constructor or subobject destructor. */
1148 vtt_index = BINFO_VPTR_INDEX (binfo);
1149 if (vtt_index)
1150 {
1151 tree vtbl2;
1152 tree vtt_parm;
1153
1154 /* Compute the value to use, when there's a VTT. */
1155 vtt_parm = current_vtt_parm;
1156 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1157 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1158 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1159
1160 /* The actual initializer is the VTT value only in the subobject
1161 constructor. In maybe_clone_body we'll substitute NULL for
1162 the vtt_parm in the case of the non-subobject constructor. */
1163 vtbl = build3 (COND_EXPR,
1164 TREE_TYPE (vtbl),
1165 build2 (EQ_EXPR, boolean_type_node,
1166 current_in_charge_parm, integer_zero_node),
1167 vtbl2,
1168 vtbl);
1169 }
1170
1171 /* Compute the location of the vtpr. */
1172 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1173 tf_warning_or_error),
1174 TREE_TYPE (binfo));
1175 gcc_assert (vtbl_ptr != error_mark_node);
1176
1177 /* Assign the vtable to the vptr. */
1178 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1179 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1180 tf_warning_or_error));
1181 }
1182
1183 /* If an exception is thrown in a constructor, those base classes already
1184 constructed must be destroyed. This function creates the cleanup
1185 for BINFO, which has just been constructed. If FLAG is non-NULL,
1186 it is a DECL which is nonzero when this base needs to be
1187 destroyed. */
1188
1189 static void
1190 expand_cleanup_for_base (tree binfo, tree flag)
1191 {
1192 tree expr;
1193
1194 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1195 return;
1196
1197 /* Call the destructor. */
1198 expr = build_special_member_call (current_class_ref,
1199 base_dtor_identifier,
1200 NULL,
1201 binfo,
1202 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1203 tf_warning_or_error);
1204
1205 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1206 return;
1207
1208 if (flag)
1209 expr = fold_build3_loc (input_location,
1210 COND_EXPR, void_type_node,
1211 c_common_truthvalue_conversion (input_location, flag),
1212 expr, integer_zero_node);
1213
1214 finish_eh_cleanup (expr);
1215 }
1216
1217 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1218 constructor. */
1219
1220 static void
1221 construct_virtual_base (tree vbase, tree arguments)
1222 {
1223 tree inner_if_stmt;
1224 tree exp;
1225 tree flag;
1226
1227 /* If there are virtual base classes with destructors, we need to
1228 emit cleanups to destroy them if an exception is thrown during
1229 the construction process. These exception regions (i.e., the
1230 period during which the cleanups must occur) begin from the time
1231 the construction is complete to the end of the function. If we
1232 create a conditional block in which to initialize the
1233 base-classes, then the cleanup region for the virtual base begins
1234 inside a block, and ends outside of that block. This situation
1235 confuses the sjlj exception-handling code. Therefore, we do not
1236 create a single conditional block, but one for each
1237 initialization. (That way the cleanup regions always begin
1238 in the outer block.) We trust the back end to figure out
1239 that the FLAG will not change across initializations, and
1240 avoid doing multiple tests. */
1241 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1242 inner_if_stmt = begin_if_stmt ();
1243 finish_if_stmt_cond (flag, inner_if_stmt);
1244
1245 /* Compute the location of the virtual base. If we're
1246 constructing virtual bases, then we must be the most derived
1247 class. Therefore, we don't have to look up the virtual base;
1248 we already know where it is. */
1249 exp = convert_to_base_statically (current_class_ref, vbase);
1250
1251 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1252 0, tf_warning_or_error);
1253 finish_then_clause (inner_if_stmt);
1254 finish_if_stmt (inner_if_stmt);
1255
1256 expand_cleanup_for_base (vbase, flag);
1257 }
1258
1259 /* Find the context in which this FIELD can be initialized. */
1260
1261 static tree
1262 initializing_context (tree field)
1263 {
1264 tree t = DECL_CONTEXT (field);
1265
1266 /* Anonymous union members can be initialized in the first enclosing
1267 non-anonymous union context. */
1268 while (t && ANON_AGGR_TYPE_P (t))
1269 t = TYPE_CONTEXT (t);
1270 return t;
1271 }
1272
1273 /* Function to give error message if member initialization specification
1274 is erroneous. FIELD is the member we decided to initialize.
1275 TYPE is the type for which the initialization is being performed.
1276 FIELD must be a member of TYPE.
1277
1278 MEMBER_NAME is the name of the member. */
1279
1280 static int
1281 member_init_ok_or_else (tree field, tree type, tree member_name)
1282 {
1283 if (field == error_mark_node)
1284 return 0;
1285 if (!field)
1286 {
1287 error ("class %qT does not have any field named %qD", type,
1288 member_name);
1289 return 0;
1290 }
1291 if (VAR_P (field))
1292 {
1293 error ("%q#D is a static data member; it can only be "
1294 "initialized at its definition",
1295 field);
1296 return 0;
1297 }
1298 if (TREE_CODE (field) != FIELD_DECL)
1299 {
1300 error ("%q#D is not a non-static data member of %qT",
1301 field, type);
1302 return 0;
1303 }
1304 if (initializing_context (field) != type)
1305 {
1306 error ("class %qT does not have any field named %qD", type,
1307 member_name);
1308 return 0;
1309 }
1310
1311 return 1;
1312 }
1313
1314 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1315 is a _TYPE node or TYPE_DECL which names a base for that type.
1316 Check the validity of NAME, and return either the base _TYPE, base
1317 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1318 NULL_TREE and issue a diagnostic.
1319
1320 An old style unnamed direct single base construction is permitted,
1321 where NAME is NULL. */
1322
1323 tree
1324 expand_member_init (tree name)
1325 {
1326 tree basetype;
1327 tree field;
1328
1329 if (!current_class_ref)
1330 return NULL_TREE;
1331
1332 if (!name)
1333 {
1334 /* This is an obsolete unnamed base class initializer. The
1335 parser will already have warned about its use. */
1336 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1337 {
1338 case 0:
1339 error ("unnamed initializer for %qT, which has no base classes",
1340 current_class_type);
1341 return NULL_TREE;
1342 case 1:
1343 basetype = BINFO_TYPE
1344 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1345 break;
1346 default:
1347 error ("unnamed initializer for %qT, which uses multiple inheritance",
1348 current_class_type);
1349 return NULL_TREE;
1350 }
1351 }
1352 else if (TYPE_P (name))
1353 {
1354 basetype = TYPE_MAIN_VARIANT (name);
1355 name = TYPE_NAME (name);
1356 }
1357 else if (TREE_CODE (name) == TYPE_DECL)
1358 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1359 else
1360 basetype = NULL_TREE;
1361
1362 if (basetype)
1363 {
1364 tree class_binfo;
1365 tree direct_binfo;
1366 tree virtual_binfo;
1367 int i;
1368
1369 if (current_template_parms
1370 || same_type_p (basetype, current_class_type))
1371 return basetype;
1372
1373 class_binfo = TYPE_BINFO (current_class_type);
1374 direct_binfo = NULL_TREE;
1375 virtual_binfo = NULL_TREE;
1376
1377 /* Look for a direct base. */
1378 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1379 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1380 break;
1381
1382 /* Look for a virtual base -- unless the direct base is itself
1383 virtual. */
1384 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1385 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1386
1387 /* [class.base.init]
1388
1389 If a mem-initializer-id is ambiguous because it designates
1390 both a direct non-virtual base class and an inherited virtual
1391 base class, the mem-initializer is ill-formed. */
1392 if (direct_binfo && virtual_binfo)
1393 {
1394 error ("%qD is both a direct base and an indirect virtual base",
1395 basetype);
1396 return NULL_TREE;
1397 }
1398
1399 if (!direct_binfo && !virtual_binfo)
1400 {
1401 if (CLASSTYPE_VBASECLASSES (current_class_type))
1402 error ("type %qT is not a direct or virtual base of %qT",
1403 basetype, current_class_type);
1404 else
1405 error ("type %qT is not a direct base of %qT",
1406 basetype, current_class_type);
1407 return NULL_TREE;
1408 }
1409
1410 return direct_binfo ? direct_binfo : virtual_binfo;
1411 }
1412 else
1413 {
1414 if (identifier_p (name))
1415 field = lookup_field (current_class_type, name, 1, false);
1416 else
1417 field = name;
1418
1419 if (member_init_ok_or_else (field, current_class_type, name))
1420 return field;
1421 }
1422
1423 return NULL_TREE;
1424 }
1425
1426 /* This is like `expand_member_init', only it stores one aggregate
1427 value into another.
1428
1429 INIT comes in two flavors: it is either a value which
1430 is to be stored in EXP, or it is a parameter list
1431 to go to a constructor, which will operate on EXP.
1432 If INIT is not a parameter list for a constructor, then set
1433 LOOKUP_ONLYCONVERTING.
1434 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1435 the initializer, if FLAGS is 0, then it is the (init) form.
1436 If `init' is a CONSTRUCTOR, then we emit a warning message,
1437 explaining that such initializations are invalid.
1438
1439 If INIT resolves to a CALL_EXPR which happens to return
1440 something of the type we are looking for, then we know
1441 that we can safely use that call to perform the
1442 initialization.
1443
1444 The virtual function table pointer cannot be set up here, because
1445 we do not really know its type.
1446
1447 This never calls operator=().
1448
1449 When initializing, nothing is CONST.
1450
1451 A default copy constructor may have to be used to perform the
1452 initialization.
1453
1454 A constructor or a conversion operator may have to be used to
1455 perform the initialization, but not both, as it would be ambiguous. */
1456
1457 tree
1458 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1459 {
1460 tree stmt_expr;
1461 tree compound_stmt;
1462 int destroy_temps;
1463 tree type = TREE_TYPE (exp);
1464 int was_const = TREE_READONLY (exp);
1465 int was_volatile = TREE_THIS_VOLATILE (exp);
1466 int is_global;
1467
1468 if (init == error_mark_node)
1469 return error_mark_node;
1470
1471 TREE_READONLY (exp) = 0;
1472 TREE_THIS_VOLATILE (exp) = 0;
1473
1474 if (init && init != void_type_node
1475 && TREE_CODE (init) != TREE_LIST
1476 && !(TREE_CODE (init) == TARGET_EXPR
1477 && TARGET_EXPR_DIRECT_INIT_P (init))
1478 && !(BRACE_ENCLOSED_INITIALIZER_P (init)
1479 && CONSTRUCTOR_IS_DIRECT_INIT (init)))
1480 flags |= LOOKUP_ONLYCONVERTING;
1481
1482 if (TREE_CODE (type) == ARRAY_TYPE)
1483 {
1484 tree itype;
1485
1486 /* An array may not be initialized use the parenthesized
1487 initialization form -- unless the initializer is "()". */
1488 if (init && TREE_CODE (init) == TREE_LIST)
1489 {
1490 if (complain & tf_error)
1491 error ("bad array initializer");
1492 return error_mark_node;
1493 }
1494 /* Must arrange to initialize each element of EXP
1495 from elements of INIT. */
1496 itype = init ? TREE_TYPE (init) : NULL_TREE;
1497 if (cv_qualified_p (type))
1498 TREE_TYPE (exp) = cv_unqualified (type);
1499 if (itype && cv_qualified_p (itype))
1500 TREE_TYPE (init) = cv_unqualified (itype);
1501 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1502 /*explicit_value_init_p=*/false,
1503 itype && same_type_p (TREE_TYPE (init),
1504 TREE_TYPE (exp)),
1505 complain);
1506 TREE_READONLY (exp) = was_const;
1507 TREE_THIS_VOLATILE (exp) = was_volatile;
1508 TREE_TYPE (exp) = type;
1509 if (init)
1510 TREE_TYPE (init) = itype;
1511 return stmt_expr;
1512 }
1513
1514 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1515 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1516 /* Just know that we've seen something for this node. */
1517 TREE_USED (exp) = 1;
1518
1519 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1520 destroy_temps = stmts_are_full_exprs_p ();
1521 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1522 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1523 init, LOOKUP_NORMAL|flags, complain);
1524 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1525 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1526 TREE_READONLY (exp) = was_const;
1527 TREE_THIS_VOLATILE (exp) = was_volatile;
1528
1529 return stmt_expr;
1530 }
1531
1532 static void
1533 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1534 tsubst_flags_t complain)
1535 {
1536 tree type = TREE_TYPE (exp);
1537 tree ctor_name;
1538
1539 /* It fails because there may not be a constructor which takes
1540 its own type as the first (or only parameter), but which does
1541 take other types via a conversion. So, if the thing initializing
1542 the expression is a unit element of type X, first try X(X&),
1543 followed by initialization by X. If neither of these work
1544 out, then look hard. */
1545 tree rval;
1546 vec<tree, va_gc> *parms;
1547
1548 /* If we have direct-initialization from an initializer list, pull
1549 it out of the TREE_LIST so the code below can see it. */
1550 if (init && TREE_CODE (init) == TREE_LIST
1551 && BRACE_ENCLOSED_INITIALIZER_P (TREE_VALUE (init))
1552 && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init)))
1553 {
1554 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1555 && TREE_CHAIN (init) == NULL_TREE);
1556 init = TREE_VALUE (init);
1557 }
1558
1559 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1560 && CP_AGGREGATE_TYPE_P (type))
1561 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1562 happen for direct-initialization, too. */
1563 init = digest_init (type, init, complain);
1564
1565 /* A CONSTRUCTOR of the target's type is a previously digested
1566 initializer, whether that happened just above or in
1567 cp_parser_late_parsing_nsdmi.
1568
1569 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1570 set represents the whole initialization, so we shouldn't build up
1571 another ctor call. */
1572 if (init
1573 && (TREE_CODE (init) == CONSTRUCTOR
1574 || (TREE_CODE (init) == TARGET_EXPR
1575 && (TARGET_EXPR_DIRECT_INIT_P (init)
1576 || TARGET_EXPR_LIST_INIT_P (init))))
1577 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1578 {
1579 /* Early initialization via a TARGET_EXPR only works for
1580 complete objects. */
1581 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1582
1583 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1584 TREE_SIDE_EFFECTS (init) = 1;
1585 finish_expr_stmt (init);
1586 return;
1587 }
1588
1589 if (init && TREE_CODE (init) != TREE_LIST
1590 && (flags & LOOKUP_ONLYCONVERTING))
1591 {
1592 /* Base subobjects should only get direct-initialization. */
1593 gcc_assert (true_exp == exp);
1594
1595 if (flags & DIRECT_BIND)
1596 /* Do nothing. We hit this in two cases: Reference initialization,
1597 where we aren't initializing a real variable, so we don't want
1598 to run a new constructor; and catching an exception, where we
1599 have already built up the constructor call so we could wrap it
1600 in an exception region. */;
1601 else
1602 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1603 flags, complain);
1604
1605 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1606 /* We need to protect the initialization of a catch parm with a
1607 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1608 around the TARGET_EXPR for the copy constructor. See
1609 initialize_handler_parm. */
1610 {
1611 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1612 TREE_OPERAND (init, 0));
1613 TREE_TYPE (init) = void_type_node;
1614 }
1615 else
1616 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1617 TREE_SIDE_EFFECTS (init) = 1;
1618 finish_expr_stmt (init);
1619 return;
1620 }
1621
1622 if (init == NULL_TREE)
1623 parms = NULL;
1624 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1625 {
1626 parms = make_tree_vector ();
1627 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1628 vec_safe_push (parms, TREE_VALUE (init));
1629 }
1630 else
1631 parms = make_tree_vector_single (init);
1632
1633 if (exp == current_class_ref && current_function_decl
1634 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1635 {
1636 /* Delegating constructor. */
1637 tree complete;
1638 tree base;
1639 tree elt; unsigned i;
1640
1641 /* Unshare the arguments for the second call. */
1642 vec<tree, va_gc> *parms2 = make_tree_vector ();
1643 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1644 {
1645 elt = break_out_target_exprs (elt);
1646 vec_safe_push (parms2, elt);
1647 }
1648 complete = build_special_member_call (exp, complete_ctor_identifier,
1649 &parms2, binfo, flags,
1650 complain);
1651 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1652 release_tree_vector (parms2);
1653
1654 base = build_special_member_call (exp, base_ctor_identifier,
1655 &parms, binfo, flags,
1656 complain);
1657 base = fold_build_cleanup_point_expr (void_type_node, base);
1658 rval = build3 (COND_EXPR, void_type_node,
1659 build2 (EQ_EXPR, boolean_type_node,
1660 current_in_charge_parm, integer_zero_node),
1661 base,
1662 complete);
1663 }
1664 else
1665 {
1666 if (true_exp == exp)
1667 ctor_name = complete_ctor_identifier;
1668 else
1669 ctor_name = base_ctor_identifier;
1670 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1671 complain);
1672 }
1673
1674 if (parms != NULL)
1675 release_tree_vector (parms);
1676
1677 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1678 {
1679 tree fn = get_callee_fndecl (rval);
1680 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1681 {
1682 tree e = maybe_constant_init (rval);
1683 if (TREE_CONSTANT (e))
1684 rval = build2 (INIT_EXPR, type, exp, e);
1685 }
1686 }
1687
1688 /* FIXME put back convert_to_void? */
1689 if (TREE_SIDE_EFFECTS (rval))
1690 finish_expr_stmt (rval);
1691 }
1692
1693 /* This function is responsible for initializing EXP with INIT
1694 (if any).
1695
1696 BINFO is the binfo of the type for who we are performing the
1697 initialization. For example, if W is a virtual base class of A and B,
1698 and C : A, B.
1699 If we are initializing B, then W must contain B's W vtable, whereas
1700 were we initializing C, W must contain C's W vtable.
1701
1702 TRUE_EXP is nonzero if it is the true expression being initialized.
1703 In this case, it may be EXP, or may just contain EXP. The reason we
1704 need this is because if EXP is a base element of TRUE_EXP, we
1705 don't necessarily know by looking at EXP where its virtual
1706 baseclass fields should really be pointing. But we do know
1707 from TRUE_EXP. In constructors, we don't know anything about
1708 the value being initialized.
1709
1710 FLAGS is just passed to `build_new_method_call'. See that function
1711 for its description. */
1712
1713 static void
1714 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1715 tsubst_flags_t complain)
1716 {
1717 tree type = TREE_TYPE (exp);
1718
1719 gcc_assert (init != error_mark_node && type != error_mark_node);
1720 gcc_assert (building_stmt_list_p ());
1721
1722 /* Use a function returning the desired type to initialize EXP for us.
1723 If the function is a constructor, and its first argument is
1724 NULL_TREE, know that it was meant for us--just slide exp on
1725 in and expand the constructor. Constructors now come
1726 as TARGET_EXPRs. */
1727
1728 if (init && VAR_P (exp)
1729 && COMPOUND_LITERAL_P (init))
1730 {
1731 vec<tree, va_gc> *cleanups = NULL;
1732 /* If store_init_value returns NULL_TREE, the INIT has been
1733 recorded as the DECL_INITIAL for EXP. That means there's
1734 nothing more we have to do. */
1735 init = store_init_value (exp, init, &cleanups, flags);
1736 if (init)
1737 finish_expr_stmt (init);
1738 gcc_assert (!cleanups);
1739 return;
1740 }
1741
1742 /* If an explicit -- but empty -- initializer list was present,
1743 that's value-initialization. */
1744 if (init == void_type_node)
1745 {
1746 /* If the type has data but no user-provided ctor, we need to zero
1747 out the object. */
1748 if (!type_has_user_provided_constructor (type)
1749 && !is_really_empty_class (type))
1750 {
1751 tree field_size = NULL_TREE;
1752 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1753 /* Don't clobber already initialized virtual bases. */
1754 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1755 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1756 field_size);
1757 init = build2 (INIT_EXPR, type, exp, init);
1758 finish_expr_stmt (init);
1759 }
1760
1761 /* If we don't need to mess with the constructor at all,
1762 then we're done. */
1763 if (! type_build_ctor_call (type))
1764 return;
1765
1766 /* Otherwise fall through and call the constructor. */
1767 init = NULL_TREE;
1768 }
1769
1770 /* We know that expand_default_init can handle everything we want
1771 at this point. */
1772 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1773 }
1774
1775 /* Report an error if TYPE is not a user-defined, class type. If
1776 OR_ELSE is nonzero, give an error message. */
1777
1778 int
1779 is_class_type (tree type, int or_else)
1780 {
1781 if (type == error_mark_node)
1782 return 0;
1783
1784 if (! CLASS_TYPE_P (type))
1785 {
1786 if (or_else)
1787 error ("%qT is not a class type", type);
1788 return 0;
1789 }
1790 return 1;
1791 }
1792
1793 tree
1794 get_type_value (tree name)
1795 {
1796 if (name == error_mark_node)
1797 return NULL_TREE;
1798
1799 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1800 return IDENTIFIER_TYPE_VALUE (name);
1801 else
1802 return NULL_TREE;
1803 }
1804
1805 /* Build a reference to a member of an aggregate. This is not a C++
1806 `&', but really something which can have its address taken, and
1807 then act as a pointer to member, for example TYPE :: FIELD can have
1808 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1809 this expression is the operand of "&".
1810
1811 @@ Prints out lousy diagnostics for operator <typename>
1812 @@ fields.
1813
1814 @@ This function should be rewritten and placed in search.c. */
1815
1816 tree
1817 build_offset_ref (tree type, tree member, bool address_p,
1818 tsubst_flags_t complain)
1819 {
1820 tree decl;
1821 tree basebinfo = NULL_TREE;
1822
1823 /* class templates can come in as TEMPLATE_DECLs here. */
1824 if (TREE_CODE (member) == TEMPLATE_DECL)
1825 return member;
1826
1827 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1828 return build_qualified_name (NULL_TREE, type, member,
1829 /*template_p=*/false);
1830
1831 gcc_assert (TYPE_P (type));
1832 if (! is_class_type (type, 1))
1833 return error_mark_node;
1834
1835 gcc_assert (DECL_P (member) || BASELINK_P (member));
1836 /* Callers should call mark_used before this point. */
1837 gcc_assert (!DECL_P (member) || TREE_USED (member));
1838
1839 type = TYPE_MAIN_VARIANT (type);
1840 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1841 {
1842 if (complain & tf_error)
1843 error ("incomplete type %qT does not have member %qD", type, member);
1844 return error_mark_node;
1845 }
1846
1847 /* Entities other than non-static members need no further
1848 processing. */
1849 if (TREE_CODE (member) == TYPE_DECL)
1850 return member;
1851 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1852 return convert_from_reference (member);
1853
1854 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1855 {
1856 if (complain & tf_error)
1857 error ("invalid pointer to bit-field %qD", member);
1858 return error_mark_node;
1859 }
1860
1861 /* Set up BASEBINFO for member lookup. */
1862 decl = maybe_dummy_object (type, &basebinfo);
1863
1864 /* A lot of this logic is now handled in lookup_member. */
1865 if (BASELINK_P (member))
1866 {
1867 /* Go from the TREE_BASELINK to the member function info. */
1868 tree t = BASELINK_FUNCTIONS (member);
1869
1870 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1871 {
1872 /* Get rid of a potential OVERLOAD around it. */
1873 t = OVL_CURRENT (t);
1874
1875 /* Unique functions are handled easily. */
1876
1877 /* For non-static member of base class, we need a special rule
1878 for access checking [class.protected]:
1879
1880 If the access is to form a pointer to member, the
1881 nested-name-specifier shall name the derived class
1882 (or any class derived from that class). */
1883 if (address_p && DECL_P (t)
1884 && DECL_NONSTATIC_MEMBER_P (t))
1885 perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1886 complain);
1887 else
1888 perform_or_defer_access_check (basebinfo, t, t,
1889 complain);
1890
1891 if (DECL_STATIC_FUNCTION_P (t))
1892 return t;
1893 member = t;
1894 }
1895 else
1896 TREE_TYPE (member) = unknown_type_node;
1897 }
1898 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1899 /* We need additional test besides the one in
1900 check_accessibility_of_qualified_id in case it is
1901 a pointer to non-static member. */
1902 perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1903 complain);
1904
1905 if (!address_p)
1906 {
1907 /* If MEMBER is non-static, then the program has fallen afoul of
1908 [expr.prim]:
1909
1910 An id-expression that denotes a nonstatic data member or
1911 nonstatic member function of a class can only be used:
1912
1913 -- as part of a class member access (_expr.ref_) in which the
1914 object-expression refers to the member's class or a class
1915 derived from that class, or
1916
1917 -- to form a pointer to member (_expr.unary.op_), or
1918
1919 -- in the body of a nonstatic member function of that class or
1920 of a class derived from that class (_class.mfct.nonstatic_), or
1921
1922 -- in a mem-initializer for a constructor for that class or for
1923 a class derived from that class (_class.base.init_). */
1924 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1925 {
1926 /* Build a representation of the qualified name suitable
1927 for use as the operand to "&" -- even though the "&" is
1928 not actually present. */
1929 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1930 /* In Microsoft mode, treat a non-static member function as if
1931 it were a pointer-to-member. */
1932 if (flag_ms_extensions)
1933 {
1934 PTRMEM_OK_P (member) = 1;
1935 return cp_build_addr_expr (member, complain);
1936 }
1937 if (complain & tf_error)
1938 error ("invalid use of non-static member function %qD",
1939 TREE_OPERAND (member, 1));
1940 return error_mark_node;
1941 }
1942 else if (TREE_CODE (member) == FIELD_DECL)
1943 {
1944 if (complain & tf_error)
1945 error ("invalid use of non-static data member %qD", member);
1946 return error_mark_node;
1947 }
1948 return member;
1949 }
1950
1951 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1952 PTRMEM_OK_P (member) = 1;
1953 return member;
1954 }
1955
1956 /* If DECL is a scalar enumeration constant or variable with a
1957 constant initializer, return the initializer (or, its initializers,
1958 recursively); otherwise, return DECL. If INTEGRAL_P, the
1959 initializer is only returned if DECL is an integral
1960 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
1961 return an aggregate constant. */
1962
1963 static tree
1964 constant_value_1 (tree decl, bool integral_p, bool return_aggregate_cst_ok_p)
1965 {
1966 while (TREE_CODE (decl) == CONST_DECL
1967 || (integral_p
1968 ? decl_constant_var_p (decl)
1969 : (VAR_P (decl)
1970 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1971 {
1972 tree init;
1973 /* If DECL is a static data member in a template
1974 specialization, we must instantiate it here. The
1975 initializer for the static data member is not processed
1976 until needed; we need it now. */
1977 mark_used (decl);
1978 mark_rvalue_use (decl);
1979 init = DECL_INITIAL (decl);
1980 if (init == error_mark_node)
1981 {
1982 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1983 /* Treat the error as a constant to avoid cascading errors on
1984 excessively recursive template instantiation (c++/9335). */
1985 return init;
1986 else
1987 return decl;
1988 }
1989 /* Initializers in templates are generally expanded during
1990 instantiation, so before that for const int i(2)
1991 INIT is a TREE_LIST with the actual initializer as
1992 TREE_VALUE. */
1993 if (processing_template_decl
1994 && init
1995 && TREE_CODE (init) == TREE_LIST
1996 && TREE_CHAIN (init) == NULL_TREE)
1997 init = TREE_VALUE (init);
1998 if (!init
1999 || !TREE_TYPE (init)
2000 || !TREE_CONSTANT (init)
2001 || (!integral_p && !return_aggregate_cst_ok_p
2002 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2003 return an aggregate constant (of which string
2004 literals are a special case), as we do not want
2005 to make inadvertent copies of such entities, and
2006 we must be sure that their addresses are the
2007 same everywhere. */
2008 && (TREE_CODE (init) == CONSTRUCTOR
2009 || TREE_CODE (init) == STRING_CST)))
2010 break;
2011 decl = unshare_expr (init);
2012 }
2013 return decl;
2014 }
2015
2016 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
2017 constant of integral or enumeration type, then return that value.
2018 These are those variables permitted in constant expressions by
2019 [5.19/1]. */
2020
2021 tree
2022 integral_constant_value (tree decl)
2023 {
2024 return constant_value_1 (decl, /*integral_p=*/true,
2025 /*return_aggregate_cst_ok_p=*/false);
2026 }
2027
2028 /* A more relaxed version of integral_constant_value, used by the
2029 common C/C++ code. */
2030
2031 tree
2032 decl_constant_value (tree decl)
2033 {
2034 return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2035 /*return_aggregate_cst_ok_p=*/true);
2036 }
2037
2038 /* A version of integral_constant_value used by the C++ front end for
2039 optimization purposes. */
2040
2041 tree
2042 decl_constant_value_safe (tree decl)
2043 {
2044 return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2045 /*return_aggregate_cst_ok_p=*/false);
2046 }
2047 \f
2048 /* Common subroutines of build_new and build_vec_delete. */
2049
2050 /* Call the global __builtin_delete to delete ADDR. */
2051
2052 static tree
2053 build_builtin_delete_call (tree addr)
2054 {
2055 mark_used (global_delete_fndecl);
2056 return build_call_n (global_delete_fndecl, 1, addr);
2057 }
2058 \f
2059 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2060 the type of the object being allocated; otherwise, it's just TYPE.
2061 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2062 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2063 a vector of arguments to be provided as arguments to a placement
2064 new operator. This routine performs no semantic checks; it just
2065 creates and returns a NEW_EXPR. */
2066
2067 static tree
2068 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2069 vec<tree, va_gc> *init, int use_global_new)
2070 {
2071 tree init_list;
2072 tree new_expr;
2073
2074 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2075 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2076 permits us to distinguish the case of a missing initializer "new
2077 int" from an empty initializer "new int()". */
2078 if (init == NULL)
2079 init_list = NULL_TREE;
2080 else if (init->is_empty ())
2081 init_list = void_zero_node;
2082 else
2083 init_list = build_tree_list_vec (init);
2084
2085 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2086 build_tree_list_vec (placement), type, nelts,
2087 init_list);
2088 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2089 TREE_SIDE_EFFECTS (new_expr) = 1;
2090
2091 return new_expr;
2092 }
2093
2094 /* Diagnose uninitialized const members or reference members of type
2095 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2096 new expression without a new-initializer and a declaration. Returns
2097 the error count. */
2098
2099 static int
2100 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2101 bool using_new, bool complain)
2102 {
2103 tree field;
2104 int error_count = 0;
2105
2106 if (type_has_user_provided_constructor (type))
2107 return 0;
2108
2109 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2110 {
2111 tree field_type;
2112
2113 if (TREE_CODE (field) != FIELD_DECL)
2114 continue;
2115
2116 field_type = strip_array_types (TREE_TYPE (field));
2117
2118 if (type_has_user_provided_constructor (field_type))
2119 continue;
2120
2121 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2122 {
2123 ++ error_count;
2124 if (complain)
2125 {
2126 if (DECL_CONTEXT (field) == origin)
2127 {
2128 if (using_new)
2129 error ("uninitialized reference member in %q#T "
2130 "using %<new%> without new-initializer", origin);
2131 else
2132 error ("uninitialized reference member in %q#T", origin);
2133 }
2134 else
2135 {
2136 if (using_new)
2137 error ("uninitialized reference member in base %q#T "
2138 "of %q#T using %<new%> without new-initializer",
2139 DECL_CONTEXT (field), origin);
2140 else
2141 error ("uninitialized reference member in base %q#T "
2142 "of %q#T", DECL_CONTEXT (field), origin);
2143 }
2144 inform (DECL_SOURCE_LOCATION (field),
2145 "%qD should be initialized", field);
2146 }
2147 }
2148
2149 if (CP_TYPE_CONST_P (field_type))
2150 {
2151 ++ error_count;
2152 if (complain)
2153 {
2154 if (DECL_CONTEXT (field) == origin)
2155 {
2156 if (using_new)
2157 error ("uninitialized const member in %q#T "
2158 "using %<new%> without new-initializer", origin);
2159 else
2160 error ("uninitialized const member in %q#T", origin);
2161 }
2162 else
2163 {
2164 if (using_new)
2165 error ("uninitialized const member in base %q#T "
2166 "of %q#T using %<new%> without new-initializer",
2167 DECL_CONTEXT (field), origin);
2168 else
2169 error ("uninitialized const member in base %q#T "
2170 "of %q#T", DECL_CONTEXT (field), origin);
2171 }
2172 inform (DECL_SOURCE_LOCATION (field),
2173 "%qD should be initialized", field);
2174 }
2175 }
2176
2177 if (CLASS_TYPE_P (field_type))
2178 error_count
2179 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2180 using_new, complain);
2181 }
2182 return error_count;
2183 }
2184
2185 int
2186 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2187 {
2188 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2189 }
2190
2191 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2192 overflowed. Pretend it returns sizetype so that it plays nicely in the
2193 COND_EXPR. */
2194
2195 tree
2196 throw_bad_array_new_length (void)
2197 {
2198 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2199 if (!get_global_value_if_present (fn, &fn))
2200 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2201 NULL_TREE));
2202
2203 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2204 }
2205
2206 /* Call __cxa_bad_array_length to indicate that there were too many
2207 initializers. */
2208
2209 tree
2210 throw_bad_array_length (void)
2211 {
2212 tree fn = get_identifier ("__cxa_throw_bad_array_length");
2213 if (!get_global_value_if_present (fn, &fn))
2214 fn = push_throw_library_fn (fn, build_function_type_list (void_type_node,
2215 NULL_TREE));
2216
2217 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2218 }
2219
2220 /* Generate code for a new-expression, including calling the "operator
2221 new" function, initializing the object, and, if an exception occurs
2222 during construction, cleaning up. The arguments are as for
2223 build_raw_new_expr. This may change PLACEMENT and INIT. */
2224
2225 static tree
2226 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2227 vec<tree, va_gc> **init, bool globally_qualified_p,
2228 tsubst_flags_t complain)
2229 {
2230 tree size, rval;
2231 /* True iff this is a call to "operator new[]" instead of just
2232 "operator new". */
2233 bool array_p = false;
2234 /* If ARRAY_P is true, the element type of the array. This is never
2235 an ARRAY_TYPE; for something like "new int[3][4]", the
2236 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2237 TYPE. */
2238 tree elt_type;
2239 /* The type of the new-expression. (This type is always a pointer
2240 type.) */
2241 tree pointer_type;
2242 tree non_const_pointer_type;
2243 tree outer_nelts = NULL_TREE;
2244 /* For arrays, a bounds checks on the NELTS parameter. */
2245 tree outer_nelts_check = NULL_TREE;
2246 bool outer_nelts_from_type = false;
2247 double_int inner_nelts_count = double_int_one;
2248 tree alloc_call, alloc_expr;
2249 /* Size of the inner array elements. */
2250 double_int inner_size;
2251 /* The address returned by the call to "operator new". This node is
2252 a VAR_DECL and is therefore reusable. */
2253 tree alloc_node;
2254 tree alloc_fn;
2255 tree cookie_expr, init_expr;
2256 int nothrow, check_new;
2257 int use_java_new = 0;
2258 /* If non-NULL, the number of extra bytes to allocate at the
2259 beginning of the storage allocated for an array-new expression in
2260 order to store the number of elements. */
2261 tree cookie_size = NULL_TREE;
2262 tree placement_first;
2263 tree placement_expr = NULL_TREE;
2264 /* True if the function we are calling is a placement allocation
2265 function. */
2266 bool placement_allocation_fn_p;
2267 /* True if the storage must be initialized, either by a constructor
2268 or due to an explicit new-initializer. */
2269 bool is_initialized;
2270 /* The address of the thing allocated, not including any cookie. In
2271 particular, if an array cookie is in use, DATA_ADDR is the
2272 address of the first array element. This node is a VAR_DECL, and
2273 is therefore reusable. */
2274 tree data_addr;
2275 tree init_preeval_expr = NULL_TREE;
2276
2277 if (nelts)
2278 {
2279 outer_nelts = nelts;
2280 array_p = true;
2281 }
2282 else if (TREE_CODE (type) == ARRAY_TYPE)
2283 {
2284 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2285 extension for variable N. (This also covers new T where T is
2286 a VLA typedef.) */
2287 array_p = true;
2288 nelts = array_type_nelts_top (type);
2289 outer_nelts = nelts;
2290 type = TREE_TYPE (type);
2291 outer_nelts_from_type = true;
2292 }
2293
2294 /* If our base type is an array, then make sure we know how many elements
2295 it has. */
2296 for (elt_type = type;
2297 TREE_CODE (elt_type) == ARRAY_TYPE;
2298 elt_type = TREE_TYPE (elt_type))
2299 {
2300 tree inner_nelts = array_type_nelts_top (elt_type);
2301 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2302 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2303 {
2304 bool overflow;
2305 double_int result = TREE_INT_CST (inner_nelts_cst)
2306 .mul_with_sign (inner_nelts_count,
2307 false, &overflow);
2308 if (overflow)
2309 {
2310 if (complain & tf_error)
2311 error ("integer overflow in array size");
2312 nelts = error_mark_node;
2313 }
2314 inner_nelts_count = result;
2315 }
2316 else
2317 {
2318 if (complain & tf_error)
2319 {
2320 error_at (EXPR_LOC_OR_HERE (inner_nelts),
2321 "array size in operator new must be constant");
2322 cxx_constant_value(inner_nelts);
2323 }
2324 nelts = error_mark_node;
2325 }
2326 if (nelts != error_mark_node)
2327 nelts = cp_build_binary_op (input_location,
2328 MULT_EXPR, nelts,
2329 inner_nelts_cst,
2330 complain);
2331 }
2332
2333 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2334 {
2335 error ("variably modified type not allowed in operator new");
2336 return error_mark_node;
2337 }
2338
2339 if (nelts == error_mark_node)
2340 return error_mark_node;
2341
2342 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2343 variable. */
2344 if (outer_nelts_from_type
2345 && !TREE_CONSTANT (maybe_constant_value (outer_nelts)))
2346 {
2347 if (complain & tf_warning_or_error)
2348 pedwarn(EXPR_LOC_OR_HERE (outer_nelts), OPT_Wvla,
2349 "ISO C++ does not support variable-length array types");
2350 else
2351 return error_mark_node;
2352 }
2353
2354 if (VOID_TYPE_P (elt_type))
2355 {
2356 if (complain & tf_error)
2357 error ("invalid type %<void%> for new");
2358 return error_mark_node;
2359 }
2360
2361 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2362 return error_mark_node;
2363
2364 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2365
2366 if (*init == NULL && cxx_dialect < cxx11)
2367 {
2368 bool maybe_uninitialized_error = false;
2369 /* A program that calls for default-initialization [...] of an
2370 entity of reference type is ill-formed. */
2371 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2372 maybe_uninitialized_error = true;
2373
2374 /* A new-expression that creates an object of type T initializes
2375 that object as follows:
2376 - If the new-initializer is omitted:
2377 -- If T is a (possibly cv-qualified) non-POD class type
2378 (or array thereof), the object is default-initialized (8.5).
2379 [...]
2380 -- Otherwise, the object created has indeterminate
2381 value. If T is a const-qualified type, or a (possibly
2382 cv-qualified) POD class type (or array thereof)
2383 containing (directly or indirectly) a member of
2384 const-qualified type, the program is ill-formed; */
2385
2386 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2387 maybe_uninitialized_error = true;
2388
2389 if (maybe_uninitialized_error
2390 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2391 /*using_new=*/true,
2392 complain & tf_error))
2393 return error_mark_node;
2394 }
2395
2396 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2397 && default_init_uninitialized_part (elt_type))
2398 {
2399 if (complain & tf_error)
2400 error ("uninitialized const in %<new%> of %q#T", elt_type);
2401 return error_mark_node;
2402 }
2403
2404 size = size_in_bytes (elt_type);
2405 if (array_p)
2406 {
2407 /* Maximum available size in bytes. Half of the address space
2408 minus the cookie size. */
2409 double_int max_size
2410 = double_int_one.llshift (TYPE_PRECISION (sizetype) - 1,
2411 HOST_BITS_PER_DOUBLE_INT);
2412 /* Maximum number of outer elements which can be allocated. */
2413 double_int max_outer_nelts;
2414 tree max_outer_nelts_tree;
2415
2416 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2417 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2418 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2419 gcc_checking_assert (TREE_INT_CST (cookie_size).ult (max_size));
2420 /* Unconditionally subtract the cookie size. This decreases the
2421 maximum object size and is safe even if we choose not to use
2422 a cookie after all. */
2423 max_size -= TREE_INT_CST (cookie_size);
2424 bool overflow;
2425 inner_size = TREE_INT_CST (size)
2426 .mul_with_sign (inner_nelts_count, false, &overflow);
2427 if (overflow || inner_size.ugt (max_size))
2428 {
2429 if (complain & tf_error)
2430 error ("size of array is too large");
2431 return error_mark_node;
2432 }
2433 max_outer_nelts = max_size.udiv (inner_size, TRUNC_DIV_EXPR);
2434 /* Only keep the top-most seven bits, to simplify encoding the
2435 constant in the instruction stream. */
2436 {
2437 unsigned shift = HOST_BITS_PER_DOUBLE_INT - 7
2438 - (max_outer_nelts.high ? clz_hwi (max_outer_nelts.high)
2439 : (HOST_BITS_PER_WIDE_INT + clz_hwi (max_outer_nelts.low)));
2440 max_outer_nelts
2441 = max_outer_nelts.lrshift (shift, HOST_BITS_PER_DOUBLE_INT)
2442 .llshift (shift, HOST_BITS_PER_DOUBLE_INT);
2443 }
2444 max_outer_nelts_tree = double_int_to_tree (sizetype, max_outer_nelts);
2445
2446 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2447 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2448 outer_nelts,
2449 max_outer_nelts_tree);
2450 }
2451
2452 alloc_fn = NULL_TREE;
2453
2454 /* If PLACEMENT is a single simple pointer type not passed by
2455 reference, prepare to capture it in a temporary variable. Do
2456 this now, since PLACEMENT will change in the calls below. */
2457 placement_first = NULL_TREE;
2458 if (vec_safe_length (*placement) == 1
2459 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2460 placement_first = (**placement)[0];
2461
2462 /* Allocate the object. */
2463 if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2464 {
2465 tree class_addr;
2466 tree class_decl;
2467 static const char alloc_name[] = "_Jv_AllocObject";
2468
2469 if (!MAYBE_CLASS_TYPE_P (elt_type))
2470 {
2471 error ("%qT isn%'t a valid Java class type", elt_type);
2472 return error_mark_node;
2473 }
2474
2475 class_decl = build_java_class_ref (elt_type);
2476 if (class_decl == error_mark_node)
2477 return error_mark_node;
2478
2479 use_java_new = 1;
2480 if (!get_global_value_if_present (get_identifier (alloc_name),
2481 &alloc_fn))
2482 {
2483 if (complain & tf_error)
2484 error ("call to Java constructor with %qs undefined", alloc_name);
2485 return error_mark_node;
2486 }
2487 else if (really_overloaded_fn (alloc_fn))
2488 {
2489 if (complain & tf_error)
2490 error ("%qD should never be overloaded", alloc_fn);
2491 return error_mark_node;
2492 }
2493 alloc_fn = OVL_CURRENT (alloc_fn);
2494 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2495 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2496 class_addr, NULL_TREE);
2497 }
2498 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2499 {
2500 error ("Java class %q#T object allocated using placement new", elt_type);
2501 return error_mark_node;
2502 }
2503 else
2504 {
2505 tree fnname;
2506 tree fns;
2507
2508 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2509
2510 if (!globally_qualified_p
2511 && CLASS_TYPE_P (elt_type)
2512 && (array_p
2513 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2514 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2515 {
2516 /* Use a class-specific operator new. */
2517 /* If a cookie is required, add some extra space. */
2518 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2519 size = size_binop (PLUS_EXPR, size, cookie_size);
2520 else
2521 {
2522 cookie_size = NULL_TREE;
2523 /* No size arithmetic necessary, so the size check is
2524 not needed. */
2525 if (outer_nelts_check != NULL && inner_size.is_one ())
2526 outer_nelts_check = NULL_TREE;
2527 }
2528 /* Perform the overflow check. */
2529 tree errval = TYPE_MAX_VALUE (sizetype);
2530 if (cxx_dialect >= cxx11)
2531 errval = throw_bad_array_new_length ();
2532 if (outer_nelts_check != NULL_TREE)
2533 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2534 size, errval);
2535 /* Create the argument list. */
2536 vec_safe_insert (*placement, 0, size);
2537 /* Do name-lookup to find the appropriate operator. */
2538 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2539 if (fns == NULL_TREE)
2540 {
2541 if (complain & tf_error)
2542 error ("no suitable %qD found in class %qT", fnname, elt_type);
2543 return error_mark_node;
2544 }
2545 if (TREE_CODE (fns) == TREE_LIST)
2546 {
2547 if (complain & tf_error)
2548 {
2549 error ("request for member %qD is ambiguous", fnname);
2550 print_candidates (fns);
2551 }
2552 return error_mark_node;
2553 }
2554 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2555 fns, placement,
2556 /*conversion_path=*/NULL_TREE,
2557 LOOKUP_NORMAL,
2558 &alloc_fn,
2559 complain);
2560 }
2561 else
2562 {
2563 /* Use a global operator new. */
2564 /* See if a cookie might be required. */
2565 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2566 {
2567 cookie_size = NULL_TREE;
2568 /* No size arithmetic necessary, so the size check is
2569 not needed. */
2570 if (outer_nelts_check != NULL && inner_size.is_one ())
2571 outer_nelts_check = NULL_TREE;
2572 }
2573
2574 alloc_call = build_operator_new_call (fnname, placement,
2575 &size, &cookie_size,
2576 outer_nelts_check,
2577 &alloc_fn, complain);
2578 }
2579 }
2580
2581 if (alloc_call == error_mark_node)
2582 return error_mark_node;
2583
2584 gcc_assert (alloc_fn != NULL_TREE);
2585
2586 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2587 into a temporary variable. */
2588 if (!processing_template_decl
2589 && placement_first != NULL_TREE
2590 && TREE_CODE (alloc_call) == CALL_EXPR
2591 && call_expr_nargs (alloc_call) == 2
2592 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2593 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
2594 {
2595 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2596
2597 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2598 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2599 {
2600 placement_expr = get_target_expr (placement_first);
2601 CALL_EXPR_ARG (alloc_call, 1)
2602 = convert (TREE_TYPE (placement_arg), placement_expr);
2603 }
2604 }
2605
2606 /* In the simple case, we can stop now. */
2607 pointer_type = build_pointer_type (type);
2608 if (!cookie_size && !is_initialized)
2609 return build_nop (pointer_type, alloc_call);
2610
2611 /* Store the result of the allocation call in a variable so that we can
2612 use it more than once. */
2613 alloc_expr = get_target_expr (alloc_call);
2614 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2615
2616 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2617 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2618 alloc_call = TREE_OPERAND (alloc_call, 1);
2619
2620 /* Now, check to see if this function is actually a placement
2621 allocation function. This can happen even when PLACEMENT is NULL
2622 because we might have something like:
2623
2624 struct S { void* operator new (size_t, int i = 0); };
2625
2626 A call to `new S' will get this allocation function, even though
2627 there is no explicit placement argument. If there is more than
2628 one argument, or there are variable arguments, then this is a
2629 placement allocation function. */
2630 placement_allocation_fn_p
2631 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2632 || varargs_function_p (alloc_fn));
2633
2634 /* Preevaluate the placement args so that we don't reevaluate them for a
2635 placement delete. */
2636 if (placement_allocation_fn_p)
2637 {
2638 tree inits;
2639 stabilize_call (alloc_call, &inits);
2640 if (inits)
2641 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2642 alloc_expr);
2643 }
2644
2645 /* unless an allocation function is declared with an empty excep-
2646 tion-specification (_except.spec_), throw(), it indicates failure to
2647 allocate storage by throwing a bad_alloc exception (clause _except_,
2648 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2649 cation function is declared with an empty exception-specification,
2650 throw(), it returns null to indicate failure to allocate storage and a
2651 non-null pointer otherwise.
2652
2653 So check for a null exception spec on the op new we just called. */
2654
2655 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2656 check_new = (flag_check_new || nothrow) && ! use_java_new;
2657
2658 if (cookie_size)
2659 {
2660 tree cookie;
2661 tree cookie_ptr;
2662 tree size_ptr_type;
2663
2664 /* Adjust so we're pointing to the start of the object. */
2665 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2666
2667 /* Store the number of bytes allocated so that we can know how
2668 many elements to destroy later. We use the last sizeof
2669 (size_t) bytes to store the number of elements. */
2670 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2671 cookie_ptr = fold_build_pointer_plus_loc (input_location,
2672 alloc_node, cookie_ptr);
2673 size_ptr_type = build_pointer_type (sizetype);
2674 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2675 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2676
2677 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2678
2679 if (targetm.cxx.cookie_has_size ())
2680 {
2681 /* Also store the element size. */
2682 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2683 fold_build1_loc (input_location,
2684 NEGATE_EXPR, sizetype,
2685 size_in_bytes (sizetype)));
2686
2687 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2688 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2689 size_in_bytes (elt_type));
2690 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2691 cookie, cookie_expr);
2692 }
2693 }
2694 else
2695 {
2696 cookie_expr = NULL_TREE;
2697 data_addr = alloc_node;
2698 }
2699
2700 /* Now use a pointer to the type we've actually allocated. */
2701
2702 /* But we want to operate on a non-const version to start with,
2703 since we'll be modifying the elements. */
2704 non_const_pointer_type = build_pointer_type
2705 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2706
2707 data_addr = fold_convert (non_const_pointer_type, data_addr);
2708 /* Any further uses of alloc_node will want this type, too. */
2709 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2710
2711 /* Now initialize the allocated object. Note that we preevaluate the
2712 initialization expression, apart from the actual constructor call or
2713 assignment--we do this because we want to delay the allocation as long
2714 as possible in order to minimize the size of the exception region for
2715 placement delete. */
2716 if (is_initialized)
2717 {
2718 bool stable;
2719 bool explicit_value_init_p = false;
2720
2721 if (*init != NULL && (*init)->is_empty ())
2722 {
2723 *init = NULL;
2724 explicit_value_init_p = true;
2725 }
2726
2727 if (processing_template_decl && explicit_value_init_p)
2728 {
2729 /* build_value_init doesn't work in templates, and we don't need
2730 the initializer anyway since we're going to throw it away and
2731 rebuild it at instantiation time, so just build up a single
2732 constructor call to get any appropriate diagnostics. */
2733 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2734 if (type_build_ctor_call (elt_type))
2735 init_expr = build_special_member_call (init_expr,
2736 complete_ctor_identifier,
2737 init, elt_type,
2738 LOOKUP_NORMAL,
2739 complain);
2740 stable = stabilize_init (init_expr, &init_preeval_expr);
2741 }
2742 else if (array_p)
2743 {
2744 tree vecinit = NULL_TREE;
2745 if (vec_safe_length (*init) == 1
2746 && BRACE_ENCLOSED_INITIALIZER_P ((**init)[0])
2747 && CONSTRUCTOR_IS_DIRECT_INIT ((**init)[0]))
2748 {
2749 vecinit = (**init)[0];
2750 if (CONSTRUCTOR_NELTS (vecinit) == 0)
2751 /* List-value-initialization, leave it alone. */;
2752 else
2753 {
2754 tree arraytype, domain;
2755 if (TREE_CONSTANT (nelts))
2756 domain = compute_array_index_type (NULL_TREE, nelts,
2757 complain);
2758 else
2759 /* We'll check the length at runtime. */
2760 domain = NULL_TREE;
2761 arraytype = build_cplus_array_type (type, domain);
2762 vecinit = digest_init (arraytype, vecinit, complain);
2763 }
2764 }
2765 else if (*init)
2766 {
2767 if (complain & tf_error)
2768 permerror (input_location,
2769 "parenthesized initializer in array new");
2770 else
2771 return error_mark_node;
2772 vecinit = build_tree_list_vec (*init);
2773 }
2774 init_expr
2775 = build_vec_init (data_addr,
2776 cp_build_binary_op (input_location,
2777 MINUS_EXPR, outer_nelts,
2778 integer_one_node,
2779 complain),
2780 vecinit,
2781 explicit_value_init_p,
2782 /*from_array=*/0,
2783 complain);
2784
2785 /* An array initialization is stable because the initialization
2786 of each element is a full-expression, so the temporaries don't
2787 leak out. */
2788 stable = true;
2789 }
2790 else
2791 {
2792 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2793
2794 if (type_build_ctor_call (type) && !explicit_value_init_p)
2795 {
2796 init_expr = build_special_member_call (init_expr,
2797 complete_ctor_identifier,
2798 init, elt_type,
2799 LOOKUP_NORMAL,
2800 complain);
2801 }
2802 else if (explicit_value_init_p)
2803 {
2804 /* Something like `new int()'. */
2805 tree val = build_value_init (type, complain);
2806 if (val == error_mark_node)
2807 return error_mark_node;
2808 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2809 }
2810 else
2811 {
2812 tree ie;
2813
2814 /* We are processing something like `new int (10)', which
2815 means allocate an int, and initialize it with 10. */
2816
2817 ie = build_x_compound_expr_from_vec (*init, "new initializer",
2818 complain);
2819 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2820 complain);
2821 }
2822 stable = stabilize_init (init_expr, &init_preeval_expr);
2823 }
2824
2825 if (init_expr == error_mark_node)
2826 return error_mark_node;
2827
2828 /* If any part of the object initialization terminates by throwing an
2829 exception and a suitable deallocation function can be found, the
2830 deallocation function is called to free the memory in which the
2831 object was being constructed, after which the exception continues
2832 to propagate in the context of the new-expression. If no
2833 unambiguous matching deallocation function can be found,
2834 propagating the exception does not cause the object's memory to be
2835 freed. */
2836 if (flag_exceptions && ! use_java_new)
2837 {
2838 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2839 tree cleanup;
2840
2841 /* The Standard is unclear here, but the right thing to do
2842 is to use the same method for finding deallocation
2843 functions that we use for finding allocation functions. */
2844 cleanup = (build_op_delete_call
2845 (dcode,
2846 alloc_node,
2847 size,
2848 globally_qualified_p,
2849 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2850 alloc_fn,
2851 complain));
2852
2853 if (!cleanup)
2854 /* We're done. */;
2855 else if (stable)
2856 /* This is much simpler if we were able to preevaluate all of
2857 the arguments to the constructor call. */
2858 {
2859 /* CLEANUP is compiler-generated, so no diagnostics. */
2860 TREE_NO_WARNING (cleanup) = true;
2861 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2862 init_expr, cleanup);
2863 /* Likewise, this try-catch is compiler-generated. */
2864 TREE_NO_WARNING (init_expr) = true;
2865 }
2866 else
2867 /* Ack! First we allocate the memory. Then we set our sentry
2868 variable to true, and expand a cleanup that deletes the
2869 memory if sentry is true. Then we run the constructor, and
2870 finally clear the sentry.
2871
2872 We need to do this because we allocate the space first, so
2873 if there are any temporaries with cleanups in the
2874 constructor args and we weren't able to preevaluate them, we
2875 need this EH region to extend until end of full-expression
2876 to preserve nesting. */
2877 {
2878 tree end, sentry, begin;
2879
2880 begin = get_target_expr (boolean_true_node);
2881 CLEANUP_EH_ONLY (begin) = 1;
2882
2883 sentry = TARGET_EXPR_SLOT (begin);
2884
2885 /* CLEANUP is compiler-generated, so no diagnostics. */
2886 TREE_NO_WARNING (cleanup) = true;
2887
2888 TARGET_EXPR_CLEANUP (begin)
2889 = build3 (COND_EXPR, void_type_node, sentry,
2890 cleanup, void_zero_node);
2891
2892 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2893 sentry, boolean_false_node);
2894
2895 init_expr
2896 = build2 (COMPOUND_EXPR, void_type_node, begin,
2897 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2898 end));
2899 /* Likewise, this is compiler-generated. */
2900 TREE_NO_WARNING (init_expr) = true;
2901 }
2902 }
2903 }
2904 else
2905 init_expr = NULL_TREE;
2906
2907 /* Now build up the return value in reverse order. */
2908
2909 rval = data_addr;
2910
2911 if (init_expr)
2912 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2913 if (cookie_expr)
2914 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2915
2916 if (rval == data_addr)
2917 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2918 and return the call (which doesn't need to be adjusted). */
2919 rval = TARGET_EXPR_INITIAL (alloc_expr);
2920 else
2921 {
2922 if (check_new)
2923 {
2924 tree ifexp = cp_build_binary_op (input_location,
2925 NE_EXPR, alloc_node,
2926 nullptr_node,
2927 complain);
2928 rval = build_conditional_expr (input_location, ifexp, rval,
2929 alloc_node, complain);
2930 }
2931
2932 /* Perform the allocation before anything else, so that ALLOC_NODE
2933 has been initialized before we start using it. */
2934 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2935 }
2936
2937 if (init_preeval_expr)
2938 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2939
2940 /* A new-expression is never an lvalue. */
2941 gcc_assert (!lvalue_p (rval));
2942
2943 return convert (pointer_type, rval);
2944 }
2945
2946 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2947 is a vector of placement-new arguments (or NULL if none). If NELTS
2948 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2949 is not NULL, then this is an array-new allocation; TYPE is the type
2950 of the elements in the array and NELTS is the number of elements in
2951 the array. *INIT, if non-NULL, is the initializer for the new
2952 object, or an empty vector to indicate an initializer of "()". If
2953 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2954 rather than just "new". This may change PLACEMENT and INIT. */
2955
2956 tree
2957 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
2958 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
2959 {
2960 tree rval;
2961 vec<tree, va_gc> *orig_placement = NULL;
2962 tree orig_nelts = NULL_TREE;
2963 vec<tree, va_gc> *orig_init = NULL;
2964
2965 if (type == error_mark_node)
2966 return error_mark_node;
2967
2968 if (nelts == NULL_TREE && vec_safe_length (*init) == 1
2969 /* Don't do auto deduction where it might affect mangling. */
2970 && (!processing_template_decl || at_function_scope_p ()))
2971 {
2972 tree auto_node = type_uses_auto (type);
2973 if (auto_node)
2974 {
2975 tree d_init = (**init)[0];
2976 d_init = resolve_nondeduced_context (d_init);
2977 type = do_auto_deduction (type, d_init, auto_node);
2978 }
2979 }
2980
2981 if (processing_template_decl)
2982 {
2983 if (dependent_type_p (type)
2984 || any_type_dependent_arguments_p (*placement)
2985 || (nelts && type_dependent_expression_p (nelts))
2986 || (nelts && *init)
2987 || any_type_dependent_arguments_p (*init))
2988 return build_raw_new_expr (*placement, type, nelts, *init,
2989 use_global_new);
2990
2991 orig_placement = make_tree_vector_copy (*placement);
2992 orig_nelts = nelts;
2993 if (*init)
2994 orig_init = make_tree_vector_copy (*init);
2995
2996 make_args_non_dependent (*placement);
2997 if (nelts)
2998 nelts = build_non_dependent_expr (nelts);
2999 make_args_non_dependent (*init);
3000 }
3001
3002 if (nelts)
3003 {
3004 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3005 {
3006 if (complain & tf_error)
3007 permerror (input_location, "size in array new must have integral type");
3008 else
3009 return error_mark_node;
3010 }
3011 nelts = mark_rvalue_use (nelts);
3012 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3013 }
3014
3015 /* ``A reference cannot be created by the new operator. A reference
3016 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3017 returned by new.'' ARM 5.3.3 */
3018 if (TREE_CODE (type) == REFERENCE_TYPE)
3019 {
3020 if (complain & tf_error)
3021 error ("new cannot be applied to a reference type");
3022 else
3023 return error_mark_node;
3024 type = TREE_TYPE (type);
3025 }
3026
3027 if (TREE_CODE (type) == FUNCTION_TYPE)
3028 {
3029 if (complain & tf_error)
3030 error ("new cannot be applied to a function type");
3031 return error_mark_node;
3032 }
3033
3034 /* The type allocated must be complete. If the new-type-id was
3035 "T[N]" then we are just checking that "T" is complete here, but
3036 that is equivalent, since the value of "N" doesn't matter. */
3037 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3038 return error_mark_node;
3039
3040 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3041 if (rval == error_mark_node)
3042 return error_mark_node;
3043
3044 if (processing_template_decl)
3045 {
3046 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3047 orig_init, use_global_new);
3048 release_tree_vector (orig_placement);
3049 release_tree_vector (orig_init);
3050 return ret;
3051 }
3052
3053 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3054 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3055 TREE_NO_WARNING (rval) = 1;
3056
3057 return rval;
3058 }
3059
3060 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
3061
3062 tree
3063 build_java_class_ref (tree type)
3064 {
3065 tree name = NULL_TREE, class_decl;
3066 static tree CL_suffix = NULL_TREE;
3067 if (CL_suffix == NULL_TREE)
3068 CL_suffix = get_identifier("class$");
3069 if (jclass_node == NULL_TREE)
3070 {
3071 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3072 if (jclass_node == NULL_TREE)
3073 {
3074 error ("call to Java constructor, while %<jclass%> undefined");
3075 return error_mark_node;
3076 }
3077 jclass_node = TREE_TYPE (jclass_node);
3078 }
3079
3080 /* Mangle the class$ field. */
3081 {
3082 tree field;
3083 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3084 if (DECL_NAME (field) == CL_suffix)
3085 {
3086 mangle_decl (field);
3087 name = DECL_ASSEMBLER_NAME (field);
3088 break;
3089 }
3090 if (!field)
3091 {
3092 error ("can%'t find %<class$%> in %qT", type);
3093 return error_mark_node;
3094 }
3095 }
3096
3097 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3098 if (class_decl == NULL_TREE)
3099 {
3100 class_decl = build_decl (input_location,
3101 VAR_DECL, name, TREE_TYPE (jclass_node));
3102 TREE_STATIC (class_decl) = 1;
3103 DECL_EXTERNAL (class_decl) = 1;
3104 TREE_PUBLIC (class_decl) = 1;
3105 DECL_ARTIFICIAL (class_decl) = 1;
3106 DECL_IGNORED_P (class_decl) = 1;
3107 pushdecl_top_level (class_decl);
3108 make_decl_rtl (class_decl);
3109 }
3110 return class_decl;
3111 }
3112 \f
3113 static tree
3114 build_vec_delete_1 (tree base, tree maxindex, tree type,
3115 special_function_kind auto_delete_vec,
3116 int use_global_delete, tsubst_flags_t complain)
3117 {
3118 tree virtual_size;
3119 tree ptype = build_pointer_type (type = complete_type (type));
3120 tree size_exp;
3121
3122 /* Temporary variables used by the loop. */
3123 tree tbase, tbase_init;
3124
3125 /* This is the body of the loop that implements the deletion of a
3126 single element, and moves temp variables to next elements. */
3127 tree body;
3128
3129 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3130 tree loop = 0;
3131
3132 /* This is the thing that governs what to do after the loop has run. */
3133 tree deallocate_expr = 0;
3134
3135 /* This is the BIND_EXPR which holds the outermost iterator of the
3136 loop. It is convenient to set this variable up and test it before
3137 executing any other code in the loop.
3138 This is also the containing expression returned by this function. */
3139 tree controller = NULL_TREE;
3140 tree tmp;
3141
3142 /* We should only have 1-D arrays here. */
3143 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3144
3145 if (base == error_mark_node || maxindex == error_mark_node)
3146 return error_mark_node;
3147
3148 if (!COMPLETE_TYPE_P (type))
3149 {
3150 if ((complain & tf_warning)
3151 && warning (OPT_Wdelete_incomplete,
3152 "possible problem detected in invocation of "
3153 "delete [] operator:"))
3154 {
3155 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3156 inform (input_location, "neither the destructor nor the "
3157 "class-specific operator delete [] will be called, "
3158 "even if they are declared when the class is defined");
3159 }
3160 return build_builtin_delete_call (base);
3161 }
3162
3163 size_exp = size_in_bytes (type);
3164
3165 if (! MAYBE_CLASS_TYPE_P (type))
3166 goto no_destructor;
3167 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3168 {
3169 /* Make sure the destructor is callable. */
3170 if (type_build_dtor_call (type))
3171 {
3172 tmp = build_delete (ptype, base, sfk_complete_destructor,
3173 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3174 complain);
3175 if (tmp == error_mark_node)
3176 return error_mark_node;
3177 }
3178 goto no_destructor;
3179 }
3180
3181 /* The below is short by the cookie size. */
3182 virtual_size = size_binop (MULT_EXPR, size_exp,
3183 convert (sizetype, maxindex));
3184
3185 tbase = create_temporary_var (ptype);
3186 tbase_init
3187 = cp_build_modify_expr (tbase, NOP_EXPR,
3188 fold_build_pointer_plus_loc (input_location,
3189 fold_convert (ptype,
3190 base),
3191 virtual_size),
3192 complain);
3193 if (tbase_init == error_mark_node)
3194 return error_mark_node;
3195 controller = build3 (BIND_EXPR, void_type_node, tbase,
3196 NULL_TREE, NULL_TREE);
3197 TREE_SIDE_EFFECTS (controller) = 1;
3198
3199 body = build1 (EXIT_EXPR, void_type_node,
3200 build2 (EQ_EXPR, boolean_type_node, tbase,
3201 fold_convert (ptype, base)));
3202 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3203 tmp = fold_build_pointer_plus (tbase, tmp);
3204 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
3205 if (tmp == error_mark_node)
3206 return error_mark_node;
3207 body = build_compound_expr (input_location, body, tmp);
3208 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3209 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3210 complain);
3211 if (tmp == error_mark_node)
3212 return error_mark_node;
3213 body = build_compound_expr (input_location, body, tmp);
3214
3215 loop = build1 (LOOP_EXPR, void_type_node, body);
3216 loop = build_compound_expr (input_location, tbase_init, loop);
3217
3218 no_destructor:
3219 /* Delete the storage if appropriate. */
3220 if (auto_delete_vec == sfk_deleting_destructor)
3221 {
3222 tree base_tbd;
3223
3224 /* The below is short by the cookie size. */
3225 virtual_size = size_binop (MULT_EXPR, size_exp,
3226 convert (sizetype, maxindex));
3227
3228 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3229 /* no header */
3230 base_tbd = base;
3231 else
3232 {
3233 tree cookie_size;
3234
3235 cookie_size = targetm.cxx.get_cookie_size (type);
3236 base_tbd = cp_build_binary_op (input_location,
3237 MINUS_EXPR,
3238 cp_convert (string_type_node,
3239 base, complain),
3240 cookie_size,
3241 complain);
3242 if (base_tbd == error_mark_node)
3243 return error_mark_node;
3244 base_tbd = cp_convert (ptype, base_tbd, complain);
3245 /* True size with header. */
3246 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3247 }
3248
3249 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3250 base_tbd, virtual_size,
3251 use_global_delete & 1,
3252 /*placement=*/NULL_TREE,
3253 /*alloc_fn=*/NULL_TREE,
3254 complain);
3255 }
3256
3257 body = loop;
3258 if (!deallocate_expr)
3259 ;
3260 else if (!body)
3261 body = deallocate_expr;
3262 else
3263 body = build_compound_expr (input_location, body, deallocate_expr);
3264
3265 if (!body)
3266 body = integer_zero_node;
3267
3268 /* Outermost wrapper: If pointer is null, punt. */
3269 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3270 fold_build2_loc (input_location,
3271 NE_EXPR, boolean_type_node, base,
3272 convert (TREE_TYPE (base),
3273 nullptr_node)),
3274 body, integer_zero_node);
3275 body = build1 (NOP_EXPR, void_type_node, body);
3276
3277 if (controller)
3278 {
3279 TREE_OPERAND (controller, 1) = body;
3280 body = controller;
3281 }
3282
3283 if (TREE_CODE (base) == SAVE_EXPR)
3284 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3285 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3286
3287 return convert_to_void (body, ICV_CAST, complain);
3288 }
3289
3290 /* Create an unnamed variable of the indicated TYPE. */
3291
3292 tree
3293 create_temporary_var (tree type)
3294 {
3295 tree decl;
3296
3297 decl = build_decl (input_location,
3298 VAR_DECL, NULL_TREE, type);
3299 TREE_USED (decl) = 1;
3300 DECL_ARTIFICIAL (decl) = 1;
3301 DECL_IGNORED_P (decl) = 1;
3302 DECL_CONTEXT (decl) = current_function_decl;
3303
3304 return decl;
3305 }
3306
3307 /* Create a new temporary variable of the indicated TYPE, initialized
3308 to INIT.
3309
3310 It is not entered into current_binding_level, because that breaks
3311 things when it comes time to do final cleanups (which take place
3312 "outside" the binding contour of the function). */
3313
3314 tree
3315 get_temp_regvar (tree type, tree init)
3316 {
3317 tree decl;
3318
3319 decl = create_temporary_var (type);
3320 add_decl_expr (decl);
3321
3322 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3323 tf_warning_or_error));
3324
3325 return decl;
3326 }
3327
3328 /* `build_vec_init' returns tree structure that performs
3329 initialization of a vector of aggregate types.
3330
3331 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3332 to the first element, of POINTER_TYPE.
3333 MAXINDEX is the maximum index of the array (one less than the
3334 number of elements). It is only used if BASE is a pointer or
3335 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3336
3337 INIT is the (possibly NULL) initializer.
3338
3339 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3340 elements in the array are value-initialized.
3341
3342 FROM_ARRAY is 0 if we should init everything with INIT
3343 (i.e., every element initialized from INIT).
3344 FROM_ARRAY is 1 if we should index into INIT in parallel
3345 with initialization of DECL.
3346 FROM_ARRAY is 2 if we should index into INIT in parallel,
3347 but use assignment instead of initialization. */
3348
3349 tree
3350 build_vec_init (tree base, tree maxindex, tree init,
3351 bool explicit_value_init_p,
3352 int from_array, tsubst_flags_t complain)
3353 {
3354 tree rval;
3355 tree base2 = NULL_TREE;
3356 tree itype = NULL_TREE;
3357 tree iterator;
3358 /* The type of BASE. */
3359 tree atype = TREE_TYPE (base);
3360 /* The type of an element in the array. */
3361 tree type = TREE_TYPE (atype);
3362 /* The element type reached after removing all outer array
3363 types. */
3364 tree inner_elt_type;
3365 /* The type of a pointer to an element in the array. */
3366 tree ptype;
3367 tree stmt_expr;
3368 tree compound_stmt;
3369 int destroy_temps;
3370 tree try_block = NULL_TREE;
3371 int num_initialized_elts = 0;
3372 bool is_global;
3373 tree const_init = NULL_TREE;
3374 tree obase = base;
3375 bool xvalue = false;
3376 bool errors = false;
3377 tree length_check = NULL_TREE;
3378
3379 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3380 maxindex = array_type_nelts (atype);
3381
3382 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3383 return error_mark_node;
3384
3385 if (explicit_value_init_p)
3386 gcc_assert (!init);
3387
3388 inner_elt_type = strip_array_types (type);
3389
3390 /* Look through the TARGET_EXPR around a compound literal. */
3391 if (init && TREE_CODE (init) == TARGET_EXPR
3392 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3393 && from_array != 2)
3394 init = TARGET_EXPR_INITIAL (init);
3395
3396 /* If we have a braced-init-list, make sure that the array
3397 is big enough for all the initializers. */
3398 if (init && TREE_CODE (init) == CONSTRUCTOR
3399 && CONSTRUCTOR_NELTS (init) > 0
3400 && !TREE_CONSTANT (maxindex))
3401 length_check = fold_build2 (LT_EXPR, boolean_type_node, maxindex,
3402 size_int (CONSTRUCTOR_NELTS (init) - 1));
3403
3404 if (init
3405 && TREE_CODE (atype) == ARRAY_TYPE
3406 && TREE_CONSTANT (maxindex)
3407 && (from_array == 2
3408 ? (!CLASS_TYPE_P (inner_elt_type)
3409 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
3410 : !TYPE_NEEDS_CONSTRUCTING (type))
3411 && ((TREE_CODE (init) == CONSTRUCTOR
3412 /* Don't do this if the CONSTRUCTOR might contain something
3413 that might throw and require us to clean up. */
3414 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3415 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3416 || from_array))
3417 {
3418 /* Do non-default initialization of trivial arrays resulting from
3419 brace-enclosed initializers. In this case, digest_init and
3420 store_constructor will handle the semantics for us. */
3421
3422 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3423 if (length_check)
3424 stmt_expr = build3 (COND_EXPR, atype, length_check,
3425 throw_bad_array_length (),
3426 stmt_expr);
3427 return stmt_expr;
3428 }
3429
3430 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3431 if (TREE_CODE (atype) == ARRAY_TYPE)
3432 {
3433 ptype = build_pointer_type (type);
3434 base = decay_conversion (base, complain);
3435 if (base == error_mark_node)
3436 return error_mark_node;
3437 base = cp_convert (ptype, base, complain);
3438 }
3439 else
3440 ptype = atype;
3441
3442 /* The code we are generating looks like:
3443 ({
3444 T* t1 = (T*) base;
3445 T* rval = t1;
3446 ptrdiff_t iterator = maxindex;
3447 try {
3448 for (; iterator != -1; --iterator) {
3449 ... initialize *t1 ...
3450 ++t1;
3451 }
3452 } catch (...) {
3453 ... destroy elements that were constructed ...
3454 }
3455 rval;
3456 })
3457
3458 We can omit the try and catch blocks if we know that the
3459 initialization will never throw an exception, or if the array
3460 elements do not have destructors. We can omit the loop completely if
3461 the elements of the array do not have constructors.
3462
3463 We actually wrap the entire body of the above in a STMT_EXPR, for
3464 tidiness.
3465
3466 When copying from array to another, when the array elements have
3467 only trivial copy constructors, we should use __builtin_memcpy
3468 rather than generating a loop. That way, we could take advantage
3469 of whatever cleverness the back end has for dealing with copies
3470 of blocks of memory. */
3471
3472 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3473 destroy_temps = stmts_are_full_exprs_p ();
3474 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3475 rval = get_temp_regvar (ptype, base);
3476 base = get_temp_regvar (ptype, rval);
3477 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3478
3479 /* If initializing one array from another, initialize element by
3480 element. We rely upon the below calls to do the argument
3481 checking. Evaluate the initializer before entering the try block. */
3482 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3483 {
3484 if (lvalue_kind (init) & clk_rvalueref)
3485 xvalue = true;
3486 base2 = decay_conversion (init, complain);
3487 if (base2 == error_mark_node)
3488 return error_mark_node;
3489 itype = TREE_TYPE (base2);
3490 base2 = get_temp_regvar (itype, base2);
3491 itype = TREE_TYPE (itype);
3492 }
3493
3494 /* Protect the entire array initialization so that we can destroy
3495 the partially constructed array if an exception is thrown.
3496 But don't do this if we're assigning. */
3497 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3498 && from_array != 2)
3499 {
3500 try_block = begin_try_block ();
3501 }
3502
3503 /* If the initializer is {}, then all elements are initialized from {}.
3504 But for non-classes, that's the same as value-initialization. */
3505 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3506 && CONSTRUCTOR_NELTS (init) == 0)
3507 {
3508 if (CLASS_TYPE_P (type))
3509 /* Leave init alone. */;
3510 else
3511 {
3512 init = NULL_TREE;
3513 explicit_value_init_p = true;
3514 }
3515 }
3516
3517 /* Maybe pull out constant value when from_array? */
3518
3519 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3520 {
3521 /* Do non-default initialization of non-trivial arrays resulting from
3522 brace-enclosed initializers. */
3523 unsigned HOST_WIDE_INT idx;
3524 tree field, elt;
3525 /* Should we try to create a constant initializer? */
3526 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3527 && TREE_CONSTANT (maxindex)
3528 && (literal_type_p (inner_elt_type)
3529 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3530 /* If the constructor already has the array type, it's been through
3531 digest_init, so we shouldn't try to do anything more. */
3532 bool digested = same_type_p (atype, TREE_TYPE (init));
3533 bool saw_non_const = false;
3534 bool saw_const = false;
3535 /* If we're initializing a static array, we want to do static
3536 initialization of any elements with constant initializers even if
3537 some are non-constant. */
3538 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3539 vec<constructor_elt, va_gc> *new_vec;
3540 from_array = 0;
3541
3542 if (length_check)
3543 {
3544 tree throw_call;
3545 if (array_of_runtime_bound_p (atype))
3546 throw_call = throw_bad_array_length ();
3547 else
3548 throw_call = throw_bad_array_new_length ();
3549 length_check = build3 (COND_EXPR, void_type_node, length_check,
3550 throw_call, void_zero_node);
3551 finish_expr_stmt (length_check);
3552 }
3553
3554 if (try_const)
3555 vec_alloc (new_vec, CONSTRUCTOR_NELTS (init));
3556 else
3557 new_vec = NULL;
3558
3559 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3560 {
3561 tree baseref = build1 (INDIRECT_REF, type, base);
3562 tree one_init;
3563
3564 num_initialized_elts++;
3565
3566 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3567 if (digested)
3568 one_init = build2 (INIT_EXPR, type, baseref, elt);
3569 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3570 one_init = build_aggr_init (baseref, elt, 0, complain);
3571 else
3572 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3573 elt, complain);
3574 if (one_init == error_mark_node)
3575 errors = true;
3576 if (try_const)
3577 {
3578 tree e = one_init;
3579 if (TREE_CODE (e) == EXPR_STMT)
3580 e = TREE_OPERAND (e, 0);
3581 if (TREE_CODE (e) == CONVERT_EXPR
3582 && VOID_TYPE_P (TREE_TYPE (e)))
3583 e = TREE_OPERAND (e, 0);
3584 e = maybe_constant_init (e);
3585 if (reduced_constant_expression_p (e))
3586 {
3587 CONSTRUCTOR_APPEND_ELT (new_vec, field, e);
3588 if (do_static_init)
3589 one_init = NULL_TREE;
3590 else
3591 one_init = build2 (INIT_EXPR, type, baseref, e);
3592 saw_const = true;
3593 }
3594 else
3595 {
3596 if (do_static_init)
3597 {
3598 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
3599 true);
3600 if (value)
3601 CONSTRUCTOR_APPEND_ELT (new_vec, field, value);
3602 }
3603 saw_non_const = true;
3604 }
3605 }
3606
3607 if (one_init)
3608 finish_expr_stmt (one_init);
3609 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3610
3611 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3612 if (one_init == error_mark_node)
3613 errors = true;
3614 else
3615 finish_expr_stmt (one_init);
3616
3617 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3618 complain);
3619 if (one_init == error_mark_node)
3620 errors = true;
3621 else
3622 finish_expr_stmt (one_init);
3623 }
3624
3625 if (try_const)
3626 {
3627 if (!saw_non_const)
3628 const_init = build_constructor (atype, new_vec);
3629 else if (do_static_init && saw_const)
3630 DECL_INITIAL (obase) = build_constructor (atype, new_vec);
3631 else
3632 vec_free (new_vec);
3633 }
3634
3635 /* Any elements without explicit initializers get {}. */
3636 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
3637 init = build_constructor (init_list_type_node, NULL);
3638 else
3639 {
3640 init = NULL_TREE;
3641 explicit_value_init_p = true;
3642 }
3643 }
3644 else if (from_array)
3645 {
3646 if (init)
3647 /* OK, we set base2 above. */;
3648 else if (CLASS_TYPE_P (type)
3649 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3650 {
3651 if (complain & tf_error)
3652 error ("initializer ends prematurely");
3653 errors = true;
3654 }
3655 }
3656
3657 /* Now, default-initialize any remaining elements. We don't need to
3658 do that if a) the type does not need constructing, or b) we've
3659 already initialized all the elements.
3660
3661 We do need to keep going if we're copying an array. */
3662
3663 if (from_array
3664 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3665 && ! (host_integerp (maxindex, 0)
3666 && (num_initialized_elts
3667 == tree_low_cst (maxindex, 0) + 1))))
3668 {
3669 /* If the ITERATOR is equal to -1, then we don't have to loop;
3670 we've already initialized all the elements. */
3671 tree for_stmt;
3672 tree elt_init;
3673 tree to;
3674
3675 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3676 finish_for_init_stmt (for_stmt);
3677 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3678 build_int_cst (TREE_TYPE (iterator), -1)),
3679 for_stmt, false);
3680 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3681 complain);
3682 if (elt_init == error_mark_node)
3683 errors = true;
3684 finish_for_expr (elt_init, for_stmt);
3685
3686 to = build1 (INDIRECT_REF, type, base);
3687
3688 if (from_array)
3689 {
3690 tree from;
3691
3692 if (base2)
3693 {
3694 from = build1 (INDIRECT_REF, itype, base2);
3695 if (xvalue)
3696 from = move (from);
3697 }
3698 else
3699 from = NULL_TREE;
3700
3701 if (from_array == 2)
3702 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3703 complain);
3704 else if (type_build_ctor_call (type))
3705 elt_init = build_aggr_init (to, from, 0, complain);
3706 else if (from)
3707 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3708 complain);
3709 else
3710 gcc_unreachable ();
3711 }
3712 else if (TREE_CODE (type) == ARRAY_TYPE)
3713 {
3714 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
3715 sorry
3716 ("cannot initialize multi-dimensional array with initializer");
3717 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3718 0, init,
3719 explicit_value_init_p,
3720 0, complain);
3721 }
3722 else if (explicit_value_init_p)
3723 {
3724 elt_init = build_value_init (type, complain);
3725 if (elt_init != error_mark_node)
3726 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3727 }
3728 else
3729 {
3730 gcc_assert (type_build_ctor_call (type) || init);
3731 if (CLASS_TYPE_P (type))
3732 elt_init = build_aggr_init (to, init, 0, complain);
3733 else
3734 {
3735 if (TREE_CODE (init) == TREE_LIST)
3736 init = build_x_compound_expr_from_list (init, ELK_INIT,
3737 complain);
3738 elt_init = build2 (INIT_EXPR, type, to, init);
3739 }
3740 }
3741
3742 if (elt_init == error_mark_node)
3743 errors = true;
3744
3745 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3746 finish_expr_stmt (elt_init);
3747 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3748
3749 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3750 complain));
3751 if (base2)
3752 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3753 complain));
3754
3755 finish_for_stmt (for_stmt);
3756 }
3757
3758 /* Make sure to cleanup any partially constructed elements. */
3759 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3760 && from_array != 2)
3761 {
3762 tree e;
3763 tree m = cp_build_binary_op (input_location,
3764 MINUS_EXPR, maxindex, iterator,
3765 complain);
3766
3767 /* Flatten multi-dimensional array since build_vec_delete only
3768 expects one-dimensional array. */
3769 if (TREE_CODE (type) == ARRAY_TYPE)
3770 m = cp_build_binary_op (input_location,
3771 MULT_EXPR, m,
3772 /* Avoid mixing signed and unsigned. */
3773 convert (TREE_TYPE (m),
3774 array_type_nelts_total (type)),
3775 complain);
3776
3777 finish_cleanup_try_block (try_block);
3778 e = build_vec_delete_1 (rval, m,
3779 inner_elt_type, sfk_complete_destructor,
3780 /*use_global_delete=*/0, complain);
3781 if (e == error_mark_node)
3782 errors = true;
3783 finish_cleanup (e, try_block);
3784 }
3785
3786 /* The value of the array initialization is the array itself, RVAL
3787 is a pointer to the first element. */
3788 finish_stmt_expr_expr (rval, stmt_expr);
3789
3790 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3791
3792 /* Now make the result have the correct type. */
3793 if (TREE_CODE (atype) == ARRAY_TYPE)
3794 {
3795 atype = build_pointer_type (atype);
3796 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3797 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3798 TREE_NO_WARNING (stmt_expr) = 1;
3799 }
3800
3801 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3802
3803 if (const_init)
3804 return build2 (INIT_EXPR, atype, obase, const_init);
3805 if (errors)
3806 return error_mark_node;
3807 return stmt_expr;
3808 }
3809
3810 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3811 build_delete. */
3812
3813 static tree
3814 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3815 tsubst_flags_t complain)
3816 {
3817 tree name;
3818 tree fn;
3819 switch (dtor_kind)
3820 {
3821 case sfk_complete_destructor:
3822 name = complete_dtor_identifier;
3823 break;
3824
3825 case sfk_base_destructor:
3826 name = base_dtor_identifier;
3827 break;
3828
3829 case sfk_deleting_destructor:
3830 name = deleting_dtor_identifier;
3831 break;
3832
3833 default:
3834 gcc_unreachable ();
3835 }
3836 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3837 return build_new_method_call (exp, fn,
3838 /*args=*/NULL,
3839 /*conversion_path=*/NULL_TREE,
3840 flags,
3841 /*fn_p=*/NULL,
3842 complain);
3843 }
3844
3845 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3846 ADDR is an expression which yields the store to be destroyed.
3847 AUTO_DELETE is the name of the destructor to call, i.e., either
3848 sfk_complete_destructor, sfk_base_destructor, or
3849 sfk_deleting_destructor.
3850
3851 FLAGS is the logical disjunction of zero or more LOOKUP_
3852 flags. See cp-tree.h for more info. */
3853
3854 tree
3855 build_delete (tree otype, tree addr, special_function_kind auto_delete,
3856 int flags, int use_global_delete, tsubst_flags_t complain)
3857 {
3858 tree expr;
3859
3860 if (addr == error_mark_node)
3861 return error_mark_node;
3862
3863 tree type = TYPE_MAIN_VARIANT (otype);
3864
3865 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3866 set to `error_mark_node' before it gets properly cleaned up. */
3867 if (type == error_mark_node)
3868 return error_mark_node;
3869
3870 if (TREE_CODE (type) == POINTER_TYPE)
3871 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3872
3873 if (TREE_CODE (type) == ARRAY_TYPE)
3874 {
3875 if (TYPE_DOMAIN (type) == NULL_TREE)
3876 {
3877 if (complain & tf_error)
3878 error ("unknown array size in delete");
3879 return error_mark_node;
3880 }
3881 return build_vec_delete (addr, array_type_nelts (type),
3882 auto_delete, use_global_delete, complain);
3883 }
3884
3885 if (TYPE_PTR_P (otype))
3886 {
3887 bool complete_p = true;
3888
3889 addr = mark_rvalue_use (addr);
3890
3891 /* We don't want to warn about delete of void*, only other
3892 incomplete types. Deleting other incomplete types
3893 invokes undefined behavior, but it is not ill-formed, so
3894 compile to something that would even do The Right Thing
3895 (TM) should the type have a trivial dtor and no delete
3896 operator. */
3897 if (!VOID_TYPE_P (type))
3898 {
3899 complete_type (type);
3900 if (!COMPLETE_TYPE_P (type))
3901 {
3902 if ((complain & tf_warning)
3903 && warning (OPT_Wdelete_incomplete,
3904 "possible problem detected in invocation of "
3905 "delete operator:"))
3906 {
3907 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3908 inform (input_location,
3909 "neither the destructor nor the class-specific "
3910 "operator delete will be called, even if they are "
3911 "declared when the class is defined");
3912 }
3913 complete_p = false;
3914 }
3915 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
3916 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
3917 && TYPE_POLYMORPHIC_P (type))
3918 {
3919 tree dtor;
3920 dtor = CLASSTYPE_DESTRUCTORS (type);
3921 if (!dtor || !DECL_VINDEX (dtor))
3922 {
3923 if (CLASSTYPE_PURE_VIRTUALS (type))
3924 warning (OPT_Wdelete_non_virtual_dtor,
3925 "deleting object of abstract class type %qT"
3926 " which has non-virtual destructor"
3927 " will cause undefined behaviour", type);
3928 else
3929 warning (OPT_Wdelete_non_virtual_dtor,
3930 "deleting object of polymorphic class type %qT"
3931 " which has non-virtual destructor"
3932 " might cause undefined behaviour", type);
3933 }
3934 }
3935 }
3936 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3937 /* Call the builtin operator delete. */
3938 return build_builtin_delete_call (addr);
3939 if (TREE_SIDE_EFFECTS (addr))
3940 addr = save_expr (addr);
3941
3942 /* Throw away const and volatile on target type of addr. */
3943 addr = convert_force (build_pointer_type (type), addr, 0, complain);
3944 }
3945 else
3946 {
3947 /* Don't check PROTECT here; leave that decision to the
3948 destructor. If the destructor is accessible, call it,
3949 else report error. */
3950 addr = cp_build_addr_expr (addr, complain);
3951 if (addr == error_mark_node)
3952 return error_mark_node;
3953 if (TREE_SIDE_EFFECTS (addr))
3954 addr = save_expr (addr);
3955
3956 addr = convert_force (build_pointer_type (type), addr, 0, complain);
3957 }
3958
3959 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3960 {
3961 /* Make sure the destructor is callable. */
3962 if (type_build_dtor_call (type))
3963 {
3964 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
3965 complain),
3966 sfk_complete_destructor, flags, complain);
3967 if (expr == error_mark_node)
3968 return error_mark_node;
3969 }
3970
3971 if (auto_delete != sfk_deleting_destructor)
3972 return void_zero_node;
3973
3974 return build_op_delete_call (DELETE_EXPR, addr,
3975 cxx_sizeof_nowarn (type),
3976 use_global_delete,
3977 /*placement=*/NULL_TREE,
3978 /*alloc_fn=*/NULL_TREE,
3979 complain);
3980 }
3981 else
3982 {
3983 tree head = NULL_TREE;
3984 tree do_delete = NULL_TREE;
3985 tree ifexp;
3986
3987 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3988 lazily_declare_fn (sfk_destructor, type);
3989
3990 /* For `::delete x', we must not use the deleting destructor
3991 since then we would not be sure to get the global `operator
3992 delete'. */
3993 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3994 {
3995 /* We will use ADDR multiple times so we must save it. */
3996 addr = save_expr (addr);
3997 head = get_target_expr (build_headof (addr));
3998 /* Delete the object. */
3999 do_delete = build_builtin_delete_call (head);
4000 /* Otherwise, treat this like a complete object destructor
4001 call. */
4002 auto_delete = sfk_complete_destructor;
4003 }
4004 /* If the destructor is non-virtual, there is no deleting
4005 variant. Instead, we must explicitly call the appropriate
4006 `operator delete' here. */
4007 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4008 && auto_delete == sfk_deleting_destructor)
4009 {
4010 /* We will use ADDR multiple times so we must save it. */
4011 addr = save_expr (addr);
4012 /* Build the call. */
4013 do_delete = build_op_delete_call (DELETE_EXPR,
4014 addr,
4015 cxx_sizeof_nowarn (type),
4016 /*global_p=*/false,
4017 /*placement=*/NULL_TREE,
4018 /*alloc_fn=*/NULL_TREE,
4019 complain);
4020 /* Call the complete object destructor. */
4021 auto_delete = sfk_complete_destructor;
4022 }
4023 else if (auto_delete == sfk_deleting_destructor
4024 && TYPE_GETS_REG_DELETE (type))
4025 {
4026 /* Make sure we have access to the member op delete, even though
4027 we'll actually be calling it from the destructor. */
4028 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4029 /*global_p=*/false,
4030 /*placement=*/NULL_TREE,
4031 /*alloc_fn=*/NULL_TREE,
4032 complain);
4033 }
4034
4035 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4036 auto_delete, flags, complain);
4037 if (expr == error_mark_node)
4038 return error_mark_node;
4039 if (do_delete)
4040 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
4041
4042 /* We need to calculate this before the dtor changes the vptr. */
4043 if (head)
4044 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4045
4046 if (flags & LOOKUP_DESTRUCTOR)
4047 /* Explicit destructor call; don't check for null pointer. */
4048 ifexp = integer_one_node;
4049 else
4050 {
4051 /* Handle deleting a null pointer. */
4052 ifexp = fold (cp_build_binary_op (input_location,
4053 NE_EXPR, addr, nullptr_node,
4054 complain));
4055 if (ifexp == error_mark_node)
4056 return error_mark_node;
4057 }
4058
4059 if (ifexp != integer_one_node)
4060 expr = build3 (COND_EXPR, void_type_node,
4061 ifexp, expr, void_zero_node);
4062
4063 return expr;
4064 }
4065 }
4066
4067 /* At the beginning of a destructor, push cleanups that will call the
4068 destructors for our base classes and members.
4069
4070 Called from begin_destructor_body. */
4071
4072 void
4073 push_base_cleanups (void)
4074 {
4075 tree binfo, base_binfo;
4076 int i;
4077 tree member;
4078 tree expr;
4079 vec<tree, va_gc> *vbases;
4080
4081 /* Run destructors for all virtual baseclasses. */
4082 if (CLASSTYPE_VBASECLASSES (current_class_type))
4083 {
4084 tree cond = (condition_conversion
4085 (build2 (BIT_AND_EXPR, integer_type_node,
4086 current_in_charge_parm,
4087 integer_two_node)));
4088
4089 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4090 order, which is also the right order for pushing cleanups. */
4091 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4092 vec_safe_iterate (vbases, i, &base_binfo); i++)
4093 {
4094 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4095 {
4096 expr = build_special_member_call (current_class_ref,
4097 base_dtor_identifier,
4098 NULL,
4099 base_binfo,
4100 (LOOKUP_NORMAL
4101 | LOOKUP_NONVIRTUAL),
4102 tf_warning_or_error);
4103 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4104 {
4105 expr = build3 (COND_EXPR, void_type_node, cond,
4106 expr, void_zero_node);
4107 finish_decl_cleanup (NULL_TREE, expr);
4108 }
4109 }
4110 }
4111 }
4112
4113 /* Take care of the remaining baseclasses. */
4114 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4115 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4116 {
4117 if (BINFO_VIRTUAL_P (base_binfo)
4118 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4119 continue;
4120
4121 expr = build_special_member_call (current_class_ref,
4122 base_dtor_identifier,
4123 NULL, base_binfo,
4124 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4125 tf_warning_or_error);
4126 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4127 finish_decl_cleanup (NULL_TREE, expr);
4128 }
4129
4130 /* Don't automatically destroy union members. */
4131 if (TREE_CODE (current_class_type) == UNION_TYPE)
4132 return;
4133
4134 for (member = TYPE_FIELDS (current_class_type); member;
4135 member = DECL_CHAIN (member))
4136 {
4137 tree this_type = TREE_TYPE (member);
4138 if (this_type == error_mark_node
4139 || TREE_CODE (member) != FIELD_DECL
4140 || DECL_ARTIFICIAL (member))
4141 continue;
4142 if (ANON_AGGR_TYPE_P (this_type))
4143 continue;
4144 if (type_build_dtor_call (this_type))
4145 {
4146 tree this_member = (build_class_member_access_expr
4147 (current_class_ref, member,
4148 /*access_path=*/NULL_TREE,
4149 /*preserve_reference=*/false,
4150 tf_warning_or_error));
4151 expr = build_delete (this_type, this_member,
4152 sfk_complete_destructor,
4153 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4154 0, tf_warning_or_error);
4155 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4156 finish_decl_cleanup (NULL_TREE, expr);
4157 }
4158 }
4159 }
4160
4161 /* Build a C++ vector delete expression.
4162 MAXINDEX is the number of elements to be deleted.
4163 ELT_SIZE is the nominal size of each element in the vector.
4164 BASE is the expression that should yield the store to be deleted.
4165 This function expands (or synthesizes) these calls itself.
4166 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4167
4168 This also calls delete for virtual baseclasses of elements of the vector.
4169
4170 Update: MAXINDEX is no longer needed. The size can be extracted from the
4171 start of the vector for pointers, and from the type for arrays. We still
4172 use MAXINDEX for arrays because it happens to already have one of the
4173 values we'd have to extract. (We could use MAXINDEX with pointers to
4174 confirm the size, and trap if the numbers differ; not clear that it'd
4175 be worth bothering.) */
4176
4177 tree
4178 build_vec_delete (tree base, tree maxindex,
4179 special_function_kind auto_delete_vec,
4180 int use_global_delete, tsubst_flags_t complain)
4181 {
4182 tree type;
4183 tree rval;
4184 tree base_init = NULL_TREE;
4185
4186 type = TREE_TYPE (base);
4187
4188 if (TYPE_PTR_P (type))
4189 {
4190 /* Step back one from start of vector, and read dimension. */
4191 tree cookie_addr;
4192 tree size_ptr_type = build_pointer_type (sizetype);
4193
4194 base = mark_rvalue_use (base);
4195 if (TREE_SIDE_EFFECTS (base))
4196 {
4197 base_init = get_target_expr (base);
4198 base = TARGET_EXPR_SLOT (base_init);
4199 }
4200 type = strip_array_types (TREE_TYPE (type));
4201 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4202 sizetype, TYPE_SIZE_UNIT (sizetype));
4203 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4204 cookie_addr);
4205 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4206 }
4207 else if (TREE_CODE (type) == ARRAY_TYPE)
4208 {
4209 /* Get the total number of things in the array, maxindex is a
4210 bad name. */
4211 maxindex = array_type_nelts_total (type);
4212 type = strip_array_types (type);
4213 base = decay_conversion (base, complain);
4214 if (base == error_mark_node)
4215 return error_mark_node;
4216 if (TREE_SIDE_EFFECTS (base))
4217 {
4218 base_init = get_target_expr (base);
4219 base = TARGET_EXPR_SLOT (base_init);
4220 }
4221 }
4222 else
4223 {
4224 if (base != error_mark_node && !(complain & tf_error))
4225 error ("type to vector delete is neither pointer or array type");
4226 return error_mark_node;
4227 }
4228
4229 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4230 use_global_delete, complain);
4231 if (base_init && rval != error_mark_node)
4232 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4233
4234 return rval;
4235 }