]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/init.cc
0a389fb6ecde43f0255110fe9e01f577b5bfaa59
[thirdparty/gcc.git] / gcc / cp / init.cc
1 /* Handle initialization things in -*- C++ -*-
2 Copyright (C) 1987-2025 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "asan.h"
36 #include "stor-layout.h"
37 #include "pointer-query.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static bool expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static bool expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static int member_init_ok_or_else (tree, tree, tree);
45 static void expand_virtual_init (tree, tree);
46 static tree sort_mem_initializers (tree, tree);
47 static tree initializing_context (tree);
48 static void expand_cleanup_for_base (tree, tree);
49 static tree dfs_initialize_vtbl_ptrs (tree, void *);
50 static tree build_field_list (tree, tree, int *);
51 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
52
53 static GTY(()) tree fn;
54
55 /* We are about to generate some complex initialization code.
56 Conceptually, it is all a single expression. However, we may want
57 to include conditionals, loops, and other such statement-level
58 constructs. Therefore, we build the initialization code inside a
59 statement-expression. This function starts such an expression.
60 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
61 pass them back to finish_init_stmts when the expression is
62 complete. */
63
64 static bool
65 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
66 {
67 bool is_global = !building_stmt_list_p ();
68
69 *stmt_expr_p = begin_stmt_expr ();
70 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
71
72 return is_global;
73 }
74
75 /* Finish out the statement-expression begun by the previous call to
76 begin_init_stmts. Returns the statement-expression itself. */
77
78 static tree
79 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
80 {
81 finish_compound_stmt (compound_stmt);
82
83 stmt_expr = finish_stmt_expr (stmt_expr, true);
84
85 gcc_assert (!building_stmt_list_p () == is_global);
86
87 return stmt_expr;
88 }
89
90 /* Constructors */
91
92 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
93 which we want to initialize the vtable pointer for, DATA is
94 TREE_LIST whose TREE_VALUE is the this ptr expression. */
95
96 static tree
97 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
98 {
99 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
100 return dfs_skip_bases;
101
102 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
103 {
104 tree base_ptr = TREE_VALUE ((tree) data);
105
106 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
107 tf_warning_or_error);
108
109 expand_virtual_init (binfo, base_ptr);
110 }
111
112 return NULL_TREE;
113 }
114
115 /* Initialize all the vtable pointers in the object pointed to by
116 ADDR. */
117
118 void
119 initialize_vtbl_ptrs (tree addr)
120 {
121 tree list;
122 tree type;
123
124 type = TREE_TYPE (TREE_TYPE (addr));
125 list = build_tree_list (type, addr);
126
127 /* Walk through the hierarchy, initializing the vptr in each base
128 class. We do these in pre-order because we can't find the virtual
129 bases for a class until we've initialized the vtbl for that
130 class. */
131 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
132 }
133
134 /* Return an expression for the zero-initialization of an object with
135 type T. This expression will either be a constant (in the case
136 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
137 aggregate), or NULL (in the case that T does not require
138 initialization). In either case, the value can be used as
139 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
140 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
141 is the number of elements in the array. If STATIC_STORAGE_P is
142 TRUE, initializers are only generated for entities for which
143 zero-initialization does not simply mean filling the storage with
144 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
145 subfields with bit positions at or above that bit size shouldn't
146 be added. Note that this only works when the result is assigned
147 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
148 expand_assignment will end up clearing the full size of TYPE. */
149
150 static tree
151 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
152 tree field_size)
153 {
154 tree init = NULL_TREE;
155
156 /* [dcl.init]
157
158 To zero-initialize an object of type T means:
159
160 -- if T is a scalar type, the storage is set to the value of zero
161 converted to T.
162
163 -- if T is a non-union class type, the storage for each non-static
164 data member and each base-class subobject is zero-initialized.
165
166 -- if T is a union type, the storage for its first data member is
167 zero-initialized.
168
169 -- if T is an array type, the storage for each element is
170 zero-initialized.
171
172 -- if T is a reference type, no initialization is performed. */
173
174 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
175
176 /* An initializer is unqualified. */
177 type = cv_unqualified (type);
178
179 if (type == error_mark_node)
180 ;
181 else if (static_storage_p && zero_init_p (type))
182 /* In order to save space, we do not explicitly build initializers
183 for items that do not need them. GCC's semantics are that
184 items with static storage duration that are not otherwise
185 initialized are initialized to zero. */
186 ;
187 else if (TYPE_PTR_OR_PTRMEM_P (type))
188 init = fold (convert (type, nullptr_node));
189 else if (NULLPTR_TYPE_P (type))
190 init = build_int_cst (type, 0);
191 else if (SCALAR_TYPE_P (type))
192 init = build_zero_cst (type);
193 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
194 {
195 tree field, next;
196 vec<constructor_elt, va_gc> *v = NULL;
197
198 /* Iterate over the fields, building initializations. */
199 for (field = TYPE_FIELDS (type); field; field = next)
200 {
201 next = DECL_CHAIN (field);
202
203 if (TREE_CODE (field) != FIELD_DECL)
204 continue;
205
206 /* For unions, only the first field is initialized. */
207 if (TREE_CODE (type) == UNION_TYPE)
208 next = NULL_TREE;
209
210 if (TREE_TYPE (field) == error_mark_node)
211 continue;
212
213 /* Don't add virtual bases for base classes if they are beyond
214 the size of the current field, that means it is present
215 somewhere else in the object. */
216 if (field_size)
217 {
218 tree bitpos = bit_position (field);
219 if (TREE_CODE (bitpos) == INTEGER_CST
220 && !tree_int_cst_lt (bitpos, field_size))
221 continue;
222 }
223
224 /* Don't add zero width bitfields. */
225 if (DECL_C_BIT_FIELD (field)
226 && integer_zerop (DECL_SIZE (field)))
227 continue;
228
229 /* Note that for class types there will be FIELD_DECLs
230 corresponding to base classes as well. Thus, iterating
231 over TYPE_FIELDs will result in correct initialization of
232 all of the subobjects. */
233 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
234 {
235 tree new_field_size
236 = (DECL_FIELD_IS_BASE (field)
237 && DECL_SIZE (field)
238 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
239 ? DECL_SIZE (field) : NULL_TREE;
240 tree value = build_zero_init_1 (TREE_TYPE (field),
241 /*nelts=*/NULL_TREE,
242 static_storage_p,
243 new_field_size);
244 if (value)
245 CONSTRUCTOR_APPEND_ELT(v, field, value);
246 }
247 }
248
249 /* Build a constructor to contain the initializations. */
250 init = build_constructor (type, v);
251 CONSTRUCTOR_ZERO_PADDING_BITS (init) = 1;
252 }
253 else if (TREE_CODE (type) == ARRAY_TYPE)
254 {
255 tree max_index;
256 vec<constructor_elt, va_gc> *v = NULL;
257
258 /* Iterate over the array elements, building initializations. */
259 if (nelts)
260 max_index = fold_build2_loc (input_location, MINUS_EXPR,
261 TREE_TYPE (nelts), nelts,
262 build_one_cst (TREE_TYPE (nelts)));
263 /* Treat flexible array members like [0] arrays. */
264 else if (TYPE_DOMAIN (type) == NULL_TREE)
265 return NULL_TREE;
266 else
267 max_index = array_type_nelts_minus_one (type);
268
269 /* If we have an error_mark here, we should just return error mark
270 as we don't know the size of the array yet. */
271 if (max_index == error_mark_node)
272 return error_mark_node;
273 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
274
275 /* A zero-sized array, which is accepted as an extension, will
276 have an upper bound of -1. */
277 if (!integer_minus_onep (max_index))
278 {
279 constructor_elt ce;
280
281 /* If this is a one element array, we just use a regular init. */
282 if (integer_zerop (max_index))
283 ce.index = size_zero_node;
284 else
285 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
286 max_index);
287
288 ce.value = build_zero_init_1 (TREE_TYPE (type), /*nelts=*/NULL_TREE,
289 static_storage_p, NULL_TREE);
290 if (ce.value)
291 {
292 vec_alloc (v, 1);
293 v->quick_push (ce);
294 }
295 }
296
297 /* Build a constructor to contain the initializations. */
298 init = build_constructor (type, v);
299 }
300 else if (VECTOR_TYPE_P (type))
301 init = build_zero_cst (type);
302 else
303 gcc_assert (TYPE_REF_P (type));
304
305 /* In all cases, the initializer is a constant. */
306 if (init)
307 TREE_CONSTANT (init) = 1;
308
309 return init;
310 }
311
312 /* Return an expression for the zero-initialization of an object with
313 type T. This expression will either be a constant (in the case
314 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
315 aggregate), or NULL (in the case that T does not require
316 initialization). In either case, the value can be used as
317 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
318 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
319 is the number of elements in the array. If STATIC_STORAGE_P is
320 TRUE, initializers are only generated for entities for which
321 zero-initialization does not simply mean filling the storage with
322 zero bytes. */
323
324 tree
325 build_zero_init (tree type, tree nelts, bool static_storage_p)
326 {
327 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
328 }
329
330 /* Return a suitable initializer for value-initializing an object of type
331 TYPE, as described in [dcl.init]. */
332
333 tree
334 build_value_init (tree type, tsubst_flags_t complain)
335 {
336 /* [dcl.init]
337
338 To value-initialize an object of type T means:
339
340 - if T is a class type (clause 9) with either no default constructor
341 (12.1) or a default constructor that is user-provided or deleted,
342 then the object is default-initialized;
343
344 - if T is a (possibly cv-qualified) class type without a user-provided
345 or deleted default constructor, then the object is zero-initialized
346 and the semantic constraints for default-initialization are checked,
347 and if T has a non-trivial default constructor, the object is
348 default-initialized;
349
350 - if T is an array type, then each element is value-initialized;
351
352 - otherwise, the object is zero-initialized.
353
354 A program that calls for default-initialization or
355 value-initialization of an entity of reference type is ill-formed. */
356
357 if (CLASS_TYPE_P (type) && type_build_ctor_call (type))
358 {
359 tree ctor
360 = build_special_member_call (NULL_TREE, complete_ctor_identifier,
361 NULL, type, LOOKUP_NORMAL, complain);
362 if (ctor == error_mark_node || TREE_CONSTANT (ctor))
363 return ctor;
364 if (processing_template_decl)
365 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
366 return build_min (CAST_EXPR, type, NULL_TREE);
367 tree fn = NULL_TREE;
368 if (TREE_CODE (ctor) == CALL_EXPR)
369 fn = get_callee_fndecl (ctor);
370 ctor = build_aggr_init_expr (type, ctor);
371 if (fn && user_provided_p (fn))
372 return ctor;
373 else if (TYPE_HAS_COMPLEX_DFLT (type))
374 {
375 /* This is a class that needs constructing, but doesn't have
376 a user-provided constructor. So we need to zero-initialize
377 the object and then call the implicitly defined ctor.
378 This will be handled in simplify_aggr_init_expr. */
379 AGGR_INIT_ZERO_FIRST (ctor) = 1;
380 return ctor;
381 }
382 }
383
384 /* Discard any access checking during subobject initialization;
385 the checks are implied by the call to the ctor which we have
386 verified is OK (cpp0x/defaulted46.C). */
387 push_deferring_access_checks (dk_deferred);
388 tree r = build_value_init_noctor (type, complain);
389 pop_deferring_access_checks ();
390 return r;
391 }
392
393 /* Like build_value_init, but don't call the constructor for TYPE. Used
394 for base initializers. */
395
396 tree
397 build_value_init_noctor (tree type, tsubst_flags_t complain)
398 {
399 if (!COMPLETE_TYPE_P (type))
400 {
401 if (complain & tf_error)
402 error ("value-initialization of incomplete type %qT", type);
403 return error_mark_node;
404 }
405 /* FIXME the class and array cases should just use digest_init once it is
406 SFINAE-enabled. */
407 if (CLASS_TYPE_P (type))
408 {
409 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
410 || errorcount != 0);
411
412 if (TREE_CODE (type) != UNION_TYPE)
413 {
414 tree field;
415 vec<constructor_elt, va_gc> *v = NULL;
416
417 /* Iterate over the fields, building initializations. */
418 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
419 {
420 tree ftype, value;
421
422 if (TREE_CODE (field) != FIELD_DECL)
423 continue;
424
425 ftype = TREE_TYPE (field);
426
427 if (ftype == error_mark_node)
428 continue;
429
430 /* Ignore flexible array members for value initialization. */
431 if (TREE_CODE (ftype) == ARRAY_TYPE
432 && !COMPLETE_TYPE_P (ftype)
433 && !TYPE_DOMAIN (ftype)
434 && COMPLETE_TYPE_P (TREE_TYPE (ftype))
435 && (next_aggregate_field (DECL_CHAIN (field))
436 == NULL_TREE))
437 continue;
438
439 /* Ignore unnamed zero-width bitfields. */
440 if (DECL_UNNAMED_BIT_FIELD (field)
441 && integer_zerop (DECL_SIZE (field)))
442 continue;
443
444 /* We could skip vfields and fields of types with
445 user-defined constructors, but I think that won't improve
446 performance at all; it should be simpler in general just
447 to zero out the entire object than try to only zero the
448 bits that actually need it. */
449
450 /* Note that for class types there will be FIELD_DECLs
451 corresponding to base classes as well. Thus, iterating
452 over TYPE_FIELDs will result in correct initialization of
453 all of the subobjects. */
454 value = build_value_init (ftype, complain);
455 value = maybe_constant_init (value);
456
457 if (value == error_mark_node)
458 return error_mark_node;
459
460 CONSTRUCTOR_APPEND_ELT(v, field, value);
461
462 /* We shouldn't have gotten here for anything that would need
463 non-trivial initialization, and gimplify_init_ctor_preeval
464 would need to be fixed to allow it. */
465 gcc_assert (TREE_CODE (value) != TARGET_EXPR
466 && TREE_CODE (value) != AGGR_INIT_EXPR);
467 }
468
469 /* Build a constructor to contain the zero- initializations. */
470 tree ret = build_constructor (type, v);
471 CONSTRUCTOR_ZERO_PADDING_BITS (ret) = 1;
472 return ret;
473 }
474 }
475 else if (TREE_CODE (type) == ARRAY_TYPE)
476 {
477 vec<constructor_elt, va_gc> *v = NULL;
478
479 /* Iterate over the array elements, building initializations. */
480 tree max_index = array_type_nelts_minus_one (type);
481
482 /* If we have an error_mark here, we should just return error mark
483 as we don't know the size of the array yet. */
484 if (max_index == error_mark_node)
485 {
486 if (complain & tf_error)
487 error ("cannot value-initialize array of unknown bound %qT",
488 type);
489 return error_mark_node;
490 }
491 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
492
493 /* A zero-sized array, which is accepted as an extension, will
494 have an upper bound of -1. */
495 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
496 {
497 constructor_elt ce;
498
499 /* If this is a one element array, we just use a regular init. */
500 if (tree_int_cst_equal (size_zero_node, max_index))
501 ce.index = size_zero_node;
502 else
503 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
504
505 ce.value = build_value_init (TREE_TYPE (type), complain);
506 ce.value = maybe_constant_init (ce.value);
507 if (ce.value == error_mark_node)
508 return error_mark_node;
509
510 vec_alloc (v, 1);
511 v->quick_push (ce);
512
513 /* We shouldn't have gotten here for anything that would need
514 non-trivial initialization, and gimplify_init_ctor_preeval
515 would need to be fixed to allow it. */
516 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
517 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
518 }
519
520 /* Build a constructor to contain the initializations. */
521 return build_constructor (type, v);
522 }
523 else if (TREE_CODE (type) == FUNCTION_TYPE)
524 {
525 if (complain & tf_error)
526 error ("value-initialization of function type %qT", type);
527 return error_mark_node;
528 }
529 else if (TYPE_REF_P (type))
530 {
531 if (complain & tf_error)
532 error ("value-initialization of reference type %qT", type);
533 return error_mark_node;
534 }
535
536 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
537 }
538
539 /* Initialize current class with INIT, a TREE_LIST of arguments for
540 a target constructor. If TREE_LIST is void_type_node, an empty
541 initializer list was given. Return the target constructor. */
542
543 static tree
544 perform_target_ctor (tree init)
545 {
546 tree decl = current_class_ref;
547 tree type = current_class_type;
548
549 init = build_aggr_init (decl, init, LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
550 tf_warning_or_error);
551 finish_expr_stmt (init);
552 if (type_build_dtor_call (type))
553 {
554 tree expr = build_delete (input_location,
555 type, decl, sfk_complete_destructor,
556 LOOKUP_NORMAL
557 |LOOKUP_NONVIRTUAL
558 |LOOKUP_DESTRUCTOR,
559 0, tf_warning_or_error);
560 if (DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
561 {
562 tree base = build_delete (input_location,
563 type, decl, sfk_base_destructor,
564 LOOKUP_NORMAL
565 |LOOKUP_NONVIRTUAL
566 |LOOKUP_DESTRUCTOR,
567 0, tf_warning_or_error);
568 expr = build_if_in_charge (expr, base);
569 }
570 if (expr != error_mark_node
571 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
572 finish_eh_cleanup (expr);
573 }
574 return init;
575 }
576
577 /* Instantiate the default member initializer of MEMBER, if needed.
578 Only get_nsdmi should use the return value of this function. */
579
580 tree
581 maybe_instantiate_nsdmi_init (tree member, tsubst_flags_t complain)
582 {
583 tree init = DECL_INITIAL (member);
584
585 /* tsubst_decl uses void_node to indicate an uninstantiated DMI. */
586 if (init == void_node)
587 {
588 /* Clear any special tsubst flags; the result of NSDMI instantiation
589 should be independent of the substitution context. */
590 complain &= tf_warning_or_error;
591
592 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
593 location_t expr_loc
594 = cp_expr_loc_or_loc (init, DECL_SOURCE_LOCATION (member));
595 if (TREE_CODE (init) == DEFERRED_PARSE)
596 /* Unparsed. */;
597 /* Check recursive instantiation. */
598 else if (DECL_INSTANTIATING_NSDMI_P (member))
599 {
600 if (complain & tf_error)
601 error_at (expr_loc, "recursive instantiation of default member "
602 "initializer for %qD", member);
603 init = error_mark_node;
604 }
605 else
606 {
607 cp_evaluated ev;
608
609 location_t sloc = input_location;
610 input_location = expr_loc;
611
612 DECL_INSTANTIATING_NSDMI_P (member) = 1;
613
614 bool pushed = false;
615 tree ctx = type_context_for_name_lookup (member);
616
617 bool push_to_top = maybe_push_to_top_level (member);
618 if (!currently_open_class (ctx))
619 {
620 push_nested_class (ctx);
621 push_deferring_access_checks (dk_no_deferred);
622 pushed = true;
623 }
624
625 inject_this_parameter (ctx, TYPE_UNQUALIFIED);
626
627 start_lambda_scope (member);
628
629 /* Do deferred instantiation of the NSDMI. */
630 init = tsubst_expr (init, DECL_TI_ARGS (member), complain, member);
631 init = digest_nsdmi_init (member, init, complain);
632
633 finish_lambda_scope ();
634
635 DECL_INSTANTIATING_NSDMI_P (member) = 0;
636
637 if (init != error_mark_node)
638 DECL_INITIAL (member) = init;
639
640 if (pushed)
641 {
642 pop_deferring_access_checks ();
643 pop_nested_class ();
644 }
645 maybe_pop_from_top_level (push_to_top);
646
647 input_location = sloc;
648 }
649 }
650
651 return init;
652 }
653
654 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
655
656 tree
657 get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain)
658 {
659 tree save_ccp = current_class_ptr;
660 tree save_ccr = current_class_ref;
661
662 tree init = maybe_instantiate_nsdmi_init (member, complain);
663
664 if (init && TREE_CODE (init) == DEFERRED_PARSE)
665 {
666 if (complain & tf_error)
667 {
668 auto_diagnostic_group d;
669 error ("default member initializer for %qD required before the end "
670 "of its enclosing class", member);
671 inform (location_of (init), "defined here");
672 DECL_INITIAL (member) = error_mark_node;
673 }
674 init = error_mark_node;
675 }
676
677 if (in_ctor)
678 {
679 current_class_ptr = save_ccp;
680 current_class_ref = save_ccr;
681 }
682 else
683 {
684 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
685 refer to; constexpr evaluation knows what to do with it. */
686 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
687 current_class_ptr = build_address (current_class_ref);
688 }
689
690 /* Clear processing_template_decl for sake of break_out_target_exprs;
691 INIT is always non-templated. */
692 processing_template_decl_sentinel ptds;
693
694 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
695 so the aggregate init code below will see a CONSTRUCTOR. */
696 bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
697 if (simple_target)
698 init = TARGET_EXPR_INITIAL (init);
699 init = break_out_target_exprs (init, /*loc*/true);
700 if (init && TREE_CODE (init) == TARGET_EXPR)
701 /* In a constructor, this expresses the full initialization, prevent
702 perform_member_init from calling another constructor (58162). */
703 TARGET_EXPR_DIRECT_INIT_P (init) = in_ctor;
704 if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
705 /* Now put it back so C++17 copy elision works. */
706 init = get_target_expr (init);
707
708 set_target_expr_eliding (init);
709
710 current_class_ptr = save_ccp;
711 current_class_ref = save_ccr;
712 return init;
713 }
714
715 /* Diagnose the flexible array MEMBER if its INITializer is non-null
716 and return true if so. Otherwise return false. */
717
718 bool
719 maybe_reject_flexarray_init (tree member, tree init)
720 {
721 tree type = TREE_TYPE (member);
722
723 if (!init
724 || TREE_CODE (type) != ARRAY_TYPE
725 || TYPE_DOMAIN (type))
726 return false;
727
728 /* Point at the flexible array member declaration if it's initialized
729 in-class, and at the ctor if it's initialized in a ctor member
730 initializer list. */
731 location_t loc;
732 if (DECL_INITIAL (member) == init
733 || !current_function_decl
734 || DECL_DEFAULTED_FN (current_function_decl))
735 loc = DECL_SOURCE_LOCATION (member);
736 else
737 loc = DECL_SOURCE_LOCATION (current_function_decl);
738
739 error_at (loc, "initializer for flexible array member %q#D", member);
740 return true;
741 }
742
743 /* If INIT's value can come from a call to std::initializer_list<T>::begin,
744 return that function. Otherwise, NULL_TREE. */
745
746 static tree
747 find_list_begin (tree init)
748 {
749 STRIP_NOPS (init);
750 while (TREE_CODE (init) == COMPOUND_EXPR)
751 init = TREE_OPERAND (init, 1);
752 STRIP_NOPS (init);
753 if (TREE_CODE (init) == COND_EXPR)
754 {
755 tree left = TREE_OPERAND (init, 1);
756 if (!left)
757 left = TREE_OPERAND (init, 0);
758 left = find_list_begin (left);
759 if (left)
760 return left;
761 return find_list_begin (TREE_OPERAND (init, 2));
762 }
763 if (TREE_CODE (init) == CALL_EXPR)
764 if (tree fn = get_callee_fndecl (init))
765 if (id_equal (DECL_NAME (fn), "begin")
766 && is_std_init_list (DECL_CONTEXT (fn)))
767 return fn;
768 return NULL_TREE;
769 }
770
771 /* If INIT initializing MEMBER is copying the address of the underlying array
772 of an initializer_list, warn. */
773
774 static void
775 maybe_warn_list_ctor (tree member, tree init)
776 {
777 tree memtype = TREE_TYPE (member);
778 if (!init || !TYPE_PTR_P (memtype)
779 || !is_list_ctor (current_function_decl))
780 return;
781
782 tree parm = FUNCTION_FIRST_USER_PARMTYPE (current_function_decl);
783 parm = TREE_VALUE (parm);
784 tree initlist = non_reference (parm);
785
786 /* Do not warn if the parameter is an lvalue reference to non-const. */
787 if (TYPE_REF_P (parm) && !TYPE_REF_IS_RVALUE (parm)
788 && !CP_TYPE_CONST_P (initlist))
789 return;
790
791 tree targs = CLASSTYPE_TI_ARGS (initlist);
792 tree elttype = TREE_VEC_ELT (targs, 0);
793
794 if (!same_type_ignoring_top_level_qualifiers_p
795 (TREE_TYPE (memtype), elttype))
796 return;
797
798 tree begin = find_list_begin (init);
799 if (!begin)
800 return;
801
802 location_t loc = cp_expr_loc_or_input_loc (init);
803 warning_at (loc, OPT_Winit_list_lifetime,
804 "initializing %qD from %qE does not extend the lifetime "
805 "of the underlying array", member, begin);
806 }
807
808 /* Data structure for find_uninit_fields_r, below. */
809
810 struct find_uninit_data {
811 /* The set tracking the yet-uninitialized members. */
812 hash_set<tree> *uninitialized;
813 /* The data member we are currently initializing. It can be either
814 a type (initializing a base class/delegating constructors), or
815 a COMPONENT_REF. */
816 tree member;
817 };
818
819 /* walk_tree callback that warns about using uninitialized data in
820 a member-initializer-list. */
821
822 static tree
823 find_uninit_fields_r (tree *tp, int *walk_subtrees, void *data)
824 {
825 find_uninit_data *d = static_cast<find_uninit_data *>(data);
826 hash_set<tree> *uninitialized = d->uninitialized;
827 tree init = *tp;
828 const tree_code code = TREE_CODE (init);
829
830 /* No need to look into types or unevaluated operands. */
831 if (TYPE_P (init) || unevaluated_p (code))
832 {
833 *walk_subtrees = false;
834 return NULL_TREE;
835 }
836
837 switch (code)
838 {
839 /* We'd need data flow info to avoid false positives. */
840 case COND_EXPR:
841 case VEC_COND_EXPR:
842 case BIND_EXPR:
843 /* We might see a MODIFY_EXPR in cases like S() : a((b = 42)), c(b) { }
844 where the initializer for 'a' surreptitiously initializes 'b'. Let's
845 not bother with these complicated scenarios in the front end. */
846 case MODIFY_EXPR:
847 /* Don't attempt to handle statement-expressions, either. */
848 case STATEMENT_LIST:
849 uninitialized->empty ();
850 gcc_fallthrough ();
851 /* If we're just taking the address of an object, it doesn't matter
852 whether it's been initialized. */
853 case ADDR_EXPR:
854 *walk_subtrees = false;
855 return NULL_TREE;
856 default:
857 break;
858 }
859
860 /* We'd need data flow info to avoid false positives. */
861 if (truth_value_p (code))
862 goto give_up;
863 /* Attempt to handle a simple a{b}, but no more. */
864 else if (BRACE_ENCLOSED_INITIALIZER_P (init))
865 {
866 if (CONSTRUCTOR_NELTS (init) == 1
867 && !BRACE_ENCLOSED_INITIALIZER_P (CONSTRUCTOR_ELT (init, 0)->value))
868 init = CONSTRUCTOR_ELT (init, 0)->value;
869 else
870 goto give_up;
871 }
872 /* Warn about uninitialized 'this'. */
873 else if (code == CALL_EXPR)
874 {
875 tree fn = get_callee_fndecl (init);
876 if (fn && DECL_IOBJ_MEMBER_FUNCTION_P (fn))
877 {
878 tree op = CALL_EXPR_ARG (init, 0);
879 if (TREE_CODE (op) == ADDR_EXPR)
880 op = TREE_OPERAND (op, 0);
881 temp_override<tree> ovr (d->member, DECL_ARGUMENTS (fn));
882 cp_walk_tree_without_duplicates (&op, find_uninit_fields_r, data);
883 }
884 /* Functions (whether static or nonstatic member) may have side effects
885 and initialize other members; it's not the front end's job to try to
886 figure it out. But don't give up for constructors: we still want to
887 warn when initializing base classes:
888
889 struct D : public B {
890 int x;
891 D() : B(x) {}
892 };
893
894 so carry on to detect that 'x' is used uninitialized. */
895 if (!fn || !DECL_CONSTRUCTOR_P (fn))
896 goto give_up;
897 }
898
899 /* If we find FIELD in the uninitialized set, we warn. */
900 if (code == COMPONENT_REF)
901 {
902 tree field = TREE_OPERAND (init, 1);
903 tree type = TYPE_P (d->member) ? d->member : TREE_TYPE (d->member);
904
905 /* We're initializing a reference member with itself. */
906 if (TYPE_REF_P (type) && cp_tree_equal (d->member, init))
907 warning_at (EXPR_LOCATION (init), OPT_Winit_self,
908 "%qD is initialized with itself", field);
909 else if (cp_tree_equal (TREE_OPERAND (init, 0), current_class_ref)
910 && uninitialized->contains (field))
911 {
912 if (TYPE_REF_P (TREE_TYPE (field)))
913 warning_at (EXPR_LOCATION (init), OPT_Wuninitialized,
914 "reference %qD is not yet bound to a value when used "
915 "here", field);
916 else if ((!INDIRECT_TYPE_P (type) || is_this_parameter (d->member))
917 && !conv_binds_to_reference_parm_p (type, init))
918 warning_at (EXPR_LOCATION (init), OPT_Wuninitialized,
919 "member %qD is used uninitialized", field);
920 *walk_subtrees = false;
921 }
922 }
923
924 return NULL_TREE;
925
926 give_up:
927 *walk_subtrees = false;
928 uninitialized->empty ();
929 return integer_zero_node;
930 }
931
932 /* Wrapper around find_uninit_fields_r above. */
933
934 static void
935 find_uninit_fields (tree *t, hash_set<tree> *uninitialized, tree member)
936 {
937 if (!uninitialized->is_empty ())
938 {
939 find_uninit_data data = { uninitialized, member };
940 cp_walk_tree_without_duplicates (t, find_uninit_fields_r, &data);
941 }
942 }
943
944 /* Return true if it's OK to initialize an array TYPE from INIT. Mere mortals
945 can't copy arrays, but the compiler can do so with a VEC_INIT_EXPR in
946 certain cases. */
947
948 static bool
949 can_init_array_with_p (tree type, tree init)
950 {
951 if (!init)
952 /* Value-init, OK. */
953 return true;
954 if (!same_type_ignoring_top_level_qualifiers_p (type, TREE_TYPE (init)))
955 return false;
956 /* We're called from synthesize_method, and we're processing the
957 mem-initializers of a constructor. */
958 if (DECL_DEFAULTED_FN (current_function_decl))
959 return true;
960 if (TREE_CODE (init) == TARGET_EXPR)
961 {
962 init = TARGET_EXPR_INITIAL (init);
963 /* As an extension, we allow copying from a compound literal. */
964 if (TREE_CODE (init) == CONSTRUCTOR)
965 return CONSTRUCTOR_C99_COMPOUND_LITERAL (init);
966 /* VEC_INIT_EXPR is used for non-constant initialization of trailing
967 elements with no explicit initializers. */
968 else if (TREE_CODE (init) == VEC_INIT_EXPR)
969 return true;
970 }
971
972 permerror (input_location, "array must be initialized "
973 "with a brace-enclosed initializer");
974 return true;
975 }
976
977 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
978 arguments. If TREE_LIST is void_type_node, an empty initializer
979 list was given; if NULL_TREE no initializer was given. UNINITIALIZED
980 is the hash set that tracks uninitialized fields. */
981
982 static void
983 perform_member_init (tree member, tree init, hash_set<tree> &uninitialized)
984 {
985 tree decl;
986 tree type = TREE_TYPE (member);
987
988 /* Use the non-static data member initializer if there was no
989 mem-initializer for this field. */
990 if (init == NULL_TREE)
991 init = get_nsdmi (member, /*ctor*/true, tf_warning_or_error);
992
993 if (init == error_mark_node)
994 return;
995
996 /* Effective C++ rule 12 requires that all data members be
997 initialized. */
998 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
999 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
1000 "%qD should be initialized in the member initialization list",
1001 member);
1002
1003 /* Get an lvalue for the data member. */
1004 decl = build_class_member_access_expr (current_class_ref, member,
1005 /*access_path=*/NULL_TREE,
1006 /*preserve_reference=*/true,
1007 tf_warning_or_error);
1008 if (decl == error_mark_node)
1009 return;
1010
1011 if ((warn_init_self || warn_uninitialized || warn_self_move)
1012 && init
1013 && TREE_CODE (init) == TREE_LIST
1014 && TREE_CHAIN (init) == NULL_TREE)
1015 {
1016 tree val = TREE_VALUE (init);
1017 /* Handle references. */
1018 if (REFERENCE_REF_P (val))
1019 val = TREE_OPERAND (val, 0);
1020 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
1021 && TREE_OPERAND (val, 0) == current_class_ref)
1022 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1023 OPT_Winit_self, "%qD is initialized with itself",
1024 member);
1025 else if (!maybe_warn_self_move (input_location, member,
1026 TREE_VALUE (init)))
1027 find_uninit_fields (&val, &uninitialized, decl);
1028 }
1029
1030 if (array_of_unknown_bound_p (type))
1031 {
1032 maybe_reject_flexarray_init (member, init);
1033 return;
1034 }
1035
1036 if (init && TREE_CODE (init) == TREE_LIST)
1037 {
1038 /* A(): a{e} */
1039 if (DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1040 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
1041 tf_warning_or_error);
1042 /* We are trying to initialize an array from a ()-list. If we
1043 should attempt to do so, conjure up a CONSTRUCTOR. */
1044 else if (TREE_CODE (type) == ARRAY_TYPE
1045 /* P0960 is a C++20 feature. */
1046 && cxx_dialect >= cxx20)
1047 init = do_aggregate_paren_init (init, type);
1048 else if (!CLASS_TYPE_P (type))
1049 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
1050 tf_warning_or_error);
1051 /* If we're initializing a class from a ()-list, leave the TREE_LIST
1052 alone: we might call an appropriate constructor, or (in C++20)
1053 do aggregate-initialization. */
1054 }
1055
1056 /* Assume we are initializing the member. */
1057 bool member_initialized_p = true;
1058
1059 if (init == void_type_node)
1060 {
1061 /* mem() means value-initialization. */
1062 if (TREE_CODE (type) == ARRAY_TYPE)
1063 {
1064 init = build_vec_init_expr (type, init, tf_warning_or_error);
1065 init = cp_build_init_expr (decl, init);
1066 finish_expr_stmt (init);
1067 }
1068 else
1069 {
1070 tree value = build_value_init (type, tf_warning_or_error);
1071 if (value == error_mark_node)
1072 return;
1073 init = cp_build_init_expr (decl, value);
1074 finish_expr_stmt (init);
1075 }
1076 }
1077 /* Deal with this here, as we will get confused if we try to call the
1078 assignment op for an anonymous union. This can happen in a
1079 synthesized copy constructor. */
1080 else if (ANON_AGGR_TYPE_P (type))
1081 {
1082 if (init)
1083 {
1084 init = cp_build_init_expr (decl, TREE_VALUE (init));
1085 finish_expr_stmt (init);
1086 }
1087 }
1088 else if (init
1089 && (TYPE_REF_P (type)
1090 || (TREE_CODE (init) == CONSTRUCTOR
1091 && (CP_AGGREGATE_TYPE_P (type)
1092 || is_std_init_list (type)))))
1093 {
1094 /* With references and list-initialization, we need to deal with
1095 extending temporary lifetimes. 12.2p5: "A temporary bound to a
1096 reference member in a constructor's ctor-initializer (12.6.2)
1097 persists until the constructor exits." */
1098 unsigned i; tree t;
1099 releasing_vec cleanups;
1100 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1101 {
1102 if (BRACE_ENCLOSED_INITIALIZER_P (init)
1103 && CP_AGGREGATE_TYPE_P (type))
1104 init = reshape_init (type, init, tf_warning_or_error);
1105 init = digest_init (type, init, tf_warning_or_error);
1106 }
1107 if (init == error_mark_node)
1108 return;
1109 if (is_empty_field (member)
1110 && !TREE_SIDE_EFFECTS (init))
1111 /* Don't add trivial initialization of an empty base/field, as they
1112 might not be ordered the way the back-end expects. */
1113 return;
1114 /* A FIELD_DECL doesn't really have a suitable lifetime, but
1115 make_temporary_var_for_ref_to_temp will treat it as automatic and
1116 set_up_extended_ref_temp wants to use the decl in a warning. */
1117 init = extend_ref_init_temps (member, init, &cleanups);
1118 if (TREE_CODE (type) == ARRAY_TYPE
1119 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
1120 init = build_vec_init_expr (type, init, tf_warning_or_error);
1121 init = cp_build_init_expr (decl, init);
1122 finish_expr_stmt (init);
1123 FOR_EACH_VEC_ELT (*cleanups, i, t)
1124 push_cleanup (NULL_TREE, t, false);
1125 }
1126 else if (type_build_ctor_call (type)
1127 || (init && CLASS_TYPE_P (strip_array_types (type))))
1128 {
1129 if (TREE_CODE (type) == ARRAY_TYPE)
1130 {
1131 if (can_init_array_with_p (type, init))
1132 {
1133 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
1134 {
1135 /* Initialize the array only if it's not a flexible
1136 array member (i.e., if it has an upper bound). */
1137 init = build_vec_init_expr (type, init, tf_warning_or_error);
1138 init = cp_build_init_expr (decl, init);
1139 finish_expr_stmt (init);
1140 }
1141 }
1142 else
1143 error ("invalid initializer for array member %q#D", member);
1144 }
1145 else
1146 {
1147 int flags = LOOKUP_NORMAL;
1148 if (DECL_DEFAULTED_FN (current_function_decl))
1149 flags |= LOOKUP_DEFAULTED;
1150 if (CP_TYPE_CONST_P (type)
1151 && init == NULL_TREE
1152 && default_init_uninitialized_part (type))
1153 {
1154 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
1155 vtable; still give this diagnostic. */
1156 auto_diagnostic_group d;
1157 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
1158 "uninitialized const member in %q#T", type))
1159 inform (DECL_SOURCE_LOCATION (member),
1160 "%q#D should be initialized", member );
1161 }
1162 finish_expr_stmt (build_aggr_init (decl, init, flags,
1163 tf_warning_or_error));
1164 }
1165 }
1166 else
1167 {
1168 if (init == NULL_TREE)
1169 {
1170 tree core_type;
1171 /* member traversal: note it leaves init NULL */
1172 if (TYPE_REF_P (type))
1173 {
1174 auto_diagnostic_group d;
1175 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
1176 "uninitialized reference member in %q#T", type))
1177 inform (DECL_SOURCE_LOCATION (member),
1178 "%q#D should be initialized", member);
1179 }
1180 else if (CP_TYPE_CONST_P (type))
1181 {
1182 auto_diagnostic_group d;
1183 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
1184 "uninitialized const member in %q#T", type))
1185 inform (DECL_SOURCE_LOCATION (member),
1186 "%q#D should be initialized", member );
1187 }
1188
1189 core_type = strip_array_types (type);
1190
1191 if (CLASS_TYPE_P (core_type)
1192 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
1193 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
1194 diagnose_uninitialized_cst_or_ref_member (core_type,
1195 /*using_new=*/false,
1196 /*complain=*/true);
1197
1198 /* We left the member uninitialized. */
1199 member_initialized_p = false;
1200 }
1201
1202 maybe_warn_list_ctor (member, init);
1203
1204 if (init)
1205 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
1206 INIT_EXPR, init,
1207 tf_warning_or_error));
1208 }
1209
1210 if (member_initialized_p && warn_uninitialized)
1211 /* This member is now initialized, remove it from the uninitialized
1212 set. */
1213 uninitialized.remove (member);
1214
1215 if (type_build_dtor_call (type))
1216 {
1217 tree expr;
1218
1219 expr = build_class_member_access_expr (current_class_ref, member,
1220 /*access_path=*/NULL_TREE,
1221 /*preserve_reference=*/false,
1222 tf_warning_or_error);
1223 expr = build_delete (input_location,
1224 type, expr, sfk_complete_destructor,
1225 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
1226 tf_warning_or_error);
1227
1228 if (expr != error_mark_node
1229 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1230 finish_eh_cleanup (expr);
1231 }
1232 }
1233
1234 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
1235 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
1236
1237 static tree
1238 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
1239 {
1240 tree fields;
1241
1242 /* Note whether or not T is a union. */
1243 if (TREE_CODE (t) == UNION_TYPE)
1244 *uses_unions_or_anon_p = 1;
1245
1246 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
1247 {
1248 tree fieldtype;
1249
1250 /* Skip CONST_DECLs for enumeration constants and so forth. */
1251 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
1252 continue;
1253
1254 fieldtype = TREE_TYPE (fields);
1255
1256 /* For an anonymous struct or union, we must recursively
1257 consider the fields of the anonymous type. They can be
1258 directly initialized from the constructor. */
1259 if (ANON_AGGR_TYPE_P (fieldtype))
1260 {
1261 /* Add this field itself. Synthesized copy constructors
1262 initialize the entire aggregate. */
1263 list = tree_cons (fields, NULL_TREE, list);
1264 /* And now add the fields in the anonymous aggregate. */
1265 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
1266 *uses_unions_or_anon_p = 1;
1267 }
1268 /* Add this field. */
1269 else if (DECL_NAME (fields))
1270 list = tree_cons (fields, NULL_TREE, list);
1271 }
1272
1273 return list;
1274 }
1275
1276 /* Return the innermost aggregate scope for FIELD, whether that is
1277 the enclosing class or an anonymous aggregate within it. */
1278
1279 static tree
1280 innermost_aggr_scope (tree field)
1281 {
1282 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1283 return TREE_TYPE (field);
1284 else
1285 return DECL_CONTEXT (field);
1286 }
1287
1288 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
1289 a FIELD_DECL or BINFO in T that needs initialization. The
1290 TREE_VALUE gives the initializer, or list of initializer arguments.
1291
1292 Return a TREE_LIST containing all of the initializations required
1293 for T, in the order in which they should be performed. The output
1294 list has the same format as the input. */
1295
1296 static tree
1297 sort_mem_initializers (tree t, tree mem_inits)
1298 {
1299 tree init;
1300 tree base, binfo, base_binfo;
1301 tree sorted_inits;
1302 tree next_subobject;
1303 vec<tree, va_gc> *vbases;
1304 int i;
1305 int uses_unions_or_anon_p = 0;
1306
1307 /* Build up a list of initializations. The TREE_PURPOSE of entry
1308 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
1309 TREE_VALUE will be the constructor arguments, or NULL if no
1310 explicit initialization was provided. */
1311 sorted_inits = NULL_TREE;
1312
1313 /* Process the virtual bases. */
1314 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
1315 vec_safe_iterate (vbases, i, &base); i++)
1316 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
1317
1318 /* Process the direct bases. */
1319 for (binfo = TYPE_BINFO (t), i = 0;
1320 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
1321 if (!BINFO_VIRTUAL_P (base_binfo))
1322 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
1323
1324 /* Process the non-static data members. */
1325 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
1326 /* Reverse the entire list of initializations, so that they are in
1327 the order that they will actually be performed. */
1328 sorted_inits = nreverse (sorted_inits);
1329
1330 /* If the user presented the initializers in an order different from
1331 that in which they will actually occur, we issue a warning. Keep
1332 track of the next subobject which can be explicitly initialized
1333 without issuing a warning. */
1334 next_subobject = sorted_inits;
1335
1336 /* Go through the explicit initializers, filling in TREE_PURPOSE in
1337 the SORTED_INITS. */
1338 for (init = mem_inits; init; init = TREE_CHAIN (init))
1339 {
1340 tree subobject;
1341 tree subobject_init;
1342
1343 subobject = TREE_PURPOSE (init);
1344
1345 /* If the explicit initializers are in sorted order, then
1346 SUBOBJECT will be NEXT_SUBOBJECT, or something following
1347 it. */
1348 for (subobject_init = next_subobject;
1349 subobject_init;
1350 subobject_init = TREE_CHAIN (subobject_init))
1351 if (TREE_PURPOSE (subobject_init) == subobject)
1352 break;
1353
1354 /* Issue a warning if the explicit initializer order does not
1355 match that which will actually occur.
1356 ??? Are all these on the correct lines? */
1357 if (warn_reorder && !subobject_init)
1358 {
1359 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
1360 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
1361 OPT_Wreorder, "%qD will be initialized after",
1362 TREE_PURPOSE (next_subobject));
1363 else
1364 warning (OPT_Wreorder, "base %qT will be initialized after",
1365 TREE_PURPOSE (next_subobject));
1366 if (TREE_CODE (subobject) == FIELD_DECL)
1367 warning_at (DECL_SOURCE_LOCATION (subobject),
1368 OPT_Wreorder, " %q#D", subobject);
1369 else
1370 warning (OPT_Wreorder, " base %qT", subobject);
1371 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1372 OPT_Wreorder, " when initialized here");
1373 }
1374
1375 /* Look again, from the beginning of the list. */
1376 if (!subobject_init)
1377 {
1378 subobject_init = sorted_inits;
1379 while (TREE_PURPOSE (subobject_init) != subobject)
1380 subobject_init = TREE_CHAIN (subobject_init);
1381 }
1382
1383 /* It is invalid to initialize the same subobject more than
1384 once. */
1385 if (TREE_VALUE (subobject_init))
1386 {
1387 if (TREE_CODE (subobject) == FIELD_DECL)
1388 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1389 "multiple initializations given for %qD",
1390 subobject);
1391 else
1392 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1393 "multiple initializations given for base %qT",
1394 subobject);
1395 }
1396
1397 /* Record the initialization. */
1398 TREE_VALUE (subobject_init) = TREE_VALUE (init);
1399 /* Carry over the dummy TREE_TYPE node containing the source location. */
1400 TREE_TYPE (subobject_init) = TREE_TYPE (init);
1401 next_subobject = subobject_init;
1402 }
1403
1404 /* [class.base.init]
1405
1406 If a ctor-initializer specifies more than one mem-initializer for
1407 multiple members of the same union (including members of
1408 anonymous unions), the ctor-initializer is ill-formed.
1409
1410 Here we also splice out uninitialized union members. */
1411 if (uses_unions_or_anon_p)
1412 {
1413 tree *last_p = NULL;
1414 tree *p;
1415 for (p = &sorted_inits; *p; )
1416 {
1417 tree field;
1418 tree ctx;
1419
1420 init = *p;
1421
1422 field = TREE_PURPOSE (init);
1423
1424 /* Skip base classes. */
1425 if (TREE_CODE (field) != FIELD_DECL)
1426 goto next;
1427
1428 /* If this is an anonymous aggregate with no explicit initializer,
1429 splice it out. */
1430 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1431 goto splice;
1432
1433 /* See if this field is a member of a union, or a member of a
1434 structure contained in a union, etc. */
1435 ctx = innermost_aggr_scope (field);
1436
1437 /* If this field is not a member of a union, skip it. */
1438 if (TREE_CODE (ctx) != UNION_TYPE
1439 && !ANON_AGGR_TYPE_P (ctx))
1440 goto next;
1441
1442 /* If this union member has no explicit initializer and no NSDMI,
1443 splice it out. */
1444 if (TREE_VALUE (init) || DECL_INITIAL (field))
1445 /* OK. */;
1446 else
1447 goto splice;
1448
1449 /* It's only an error if we have two initializers for the same
1450 union type. */
1451 if (!last_p)
1452 {
1453 last_p = p;
1454 goto next;
1455 }
1456
1457 /* See if LAST_FIELD and the field initialized by INIT are
1458 members of the same union (or the union itself). If so, there's
1459 a problem, unless they're actually members of the same structure
1460 which is itself a member of a union. For example, given:
1461
1462 union { struct { int i; int j; }; };
1463
1464 initializing both `i' and `j' makes sense. */
1465 ctx = common_enclosing_class
1466 (innermost_aggr_scope (field),
1467 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1468
1469 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1470 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1471 {
1472 /* A mem-initializer hides an NSDMI. */
1473 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1474 *last_p = TREE_CHAIN (*last_p);
1475 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1476 goto splice;
1477 else
1478 {
1479 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1480 "initializations for multiple members of %qT",
1481 ctx);
1482 goto splice;
1483 }
1484 }
1485
1486 last_p = p;
1487
1488 next:
1489 p = &TREE_CHAIN (*p);
1490 continue;
1491 splice:
1492 *p = TREE_CHAIN (*p);
1493 }
1494 }
1495
1496 return sorted_inits;
1497 }
1498
1499 /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */
1500
1501 static tree
1502 mark_exp_read_r (tree *tp, int *, void *)
1503 {
1504 tree t = *tp;
1505 if (TREE_CODE (t) == PARM_DECL)
1506 mark_exp_read (t);
1507 return NULL_TREE;
1508 }
1509
1510 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1511 is a TREE_LIST giving the explicit mem-initializer-list for the
1512 constructor. The TREE_PURPOSE of each entry is a subobject (a
1513 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1514 is a TREE_LIST giving the arguments to the constructor or
1515 void_type_node for an empty list of arguments. */
1516
1517 void
1518 emit_mem_initializers (tree mem_inits)
1519 {
1520 int flags = LOOKUP_NORMAL;
1521
1522 /* We will already have issued an error message about the fact that
1523 the type is incomplete. */
1524 if (!COMPLETE_TYPE_P (current_class_type))
1525 return;
1526
1527 /* Keep a set holding fields that are not initialized. */
1528 hash_set<tree> uninitialized;
1529
1530 /* Initially that is all of them. */
1531 if (warn_uninitialized)
1532 for (tree f = next_aggregate_field (TYPE_FIELDS (current_class_type));
1533 f != NULL_TREE;
1534 f = next_aggregate_field (DECL_CHAIN (f)))
1535 if (!DECL_ARTIFICIAL (f)
1536 && !is_really_empty_class (TREE_TYPE (f), /*ignore_vptr*/false))
1537 uninitialized.add (f);
1538
1539 if (mem_inits
1540 && TYPE_P (TREE_PURPOSE (mem_inits))
1541 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1542 {
1543 /* Delegating constructor. */
1544 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1545 tree ctor = perform_target_ctor (TREE_VALUE (mem_inits));
1546 find_uninit_fields (&ctor, &uninitialized, current_class_type);
1547 return;
1548 }
1549
1550 if (DECL_DEFAULTED_FN (current_function_decl)
1551 && ! DECL_INHERITED_CTOR (current_function_decl))
1552 flags |= LOOKUP_DEFAULTED;
1553
1554 /* Sort the mem-initializers into the order in which the
1555 initializations should be performed. */
1556 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1557
1558 in_base_initializer = 1;
1559
1560 /* Initialize base classes. */
1561 for (; (mem_inits
1562 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1563 mem_inits = TREE_CHAIN (mem_inits))
1564 {
1565 tree subobject = TREE_PURPOSE (mem_inits);
1566 tree arguments = TREE_VALUE (mem_inits);
1567
1568 /* We already have issued an error message. */
1569 if (arguments == error_mark_node)
1570 continue;
1571
1572 /* Suppress access control when calling the inherited ctor. */
1573 bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1574 && flag_new_inheriting_ctors
1575 && arguments);
1576 if (inherited_base)
1577 push_deferring_access_checks (dk_deferred);
1578
1579 if (arguments == NULL_TREE)
1580 {
1581 /* If these initializations are taking place in a copy constructor,
1582 the base class should probably be explicitly initialized if there
1583 is a user-defined constructor in the base class (other than the
1584 default constructor, which will be called anyway). */
1585 if (extra_warnings
1586 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1587 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1588 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1589 OPT_Wextra, "base class %q#T should be explicitly "
1590 "initialized in the copy constructor",
1591 BINFO_TYPE (subobject));
1592 }
1593
1594 /* Initialize the base. */
1595 if (!BINFO_VIRTUAL_P (subobject))
1596 {
1597 tree base_addr;
1598
1599 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1600 subobject, 1, tf_warning_or_error);
1601 expand_aggr_init_1 (subobject, NULL_TREE,
1602 cp_build_fold_indirect_ref (base_addr),
1603 arguments,
1604 flags,
1605 tf_warning_or_error);
1606 expand_cleanup_for_base (subobject, NULL_TREE);
1607 if (STATEMENT_LIST_TAIL (cur_stmt_list))
1608 find_uninit_fields (&STATEMENT_LIST_TAIL (cur_stmt_list)->stmt,
1609 &uninitialized, BINFO_TYPE (subobject));
1610 }
1611 else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1612 /* C++14 DR1658 Means we do not have to construct vbases of
1613 abstract classes. */
1614 construct_virtual_base (subobject, arguments);
1615 else
1616 /* When not constructing vbases of abstract classes, at least mark
1617 the arguments expressions as read to avoid
1618 -Wunused-but-set-parameter false positives. */
1619 cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL);
1620
1621 if (inherited_base)
1622 pop_deferring_access_checks ();
1623 }
1624 in_base_initializer = 0;
1625
1626 /* Initialize the vptrs. */
1627 initialize_vtbl_ptrs (current_class_ptr);
1628
1629 /* Initialize the data members. */
1630 while (mem_inits)
1631 {
1632 /* If this initializer was explicitly provided, then the dummy TREE_TYPE
1633 node contains the source location. */
1634 iloc_sentinel ils (EXPR_LOCATION (TREE_TYPE (mem_inits)));
1635
1636 perform_member_init (TREE_PURPOSE (mem_inits),
1637 TREE_VALUE (mem_inits),
1638 uninitialized);
1639
1640 mem_inits = TREE_CHAIN (mem_inits);
1641 }
1642 }
1643
1644 /* Returns the address of the vtable (i.e., the value that should be
1645 assigned to the vptr) for BINFO. */
1646
1647 tree
1648 build_vtbl_address (tree binfo)
1649 {
1650 tree binfo_for = binfo;
1651 tree vtbl;
1652
1653 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1654 /* If this is a virtual primary base, then the vtable we want to store
1655 is that for the base this is being used as the primary base of. We
1656 can't simply skip the initialization, because we may be expanding the
1657 inits of a subobject constructor where the virtual base layout
1658 can be different. */
1659 while (BINFO_PRIMARY_P (binfo_for))
1660 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1661
1662 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1663 used. */
1664 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1665 TREE_USED (vtbl) = true;
1666
1667 /* Now compute the address to use when initializing the vptr. */
1668 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1669 if (VAR_P (vtbl))
1670 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1671
1672 return vtbl;
1673 }
1674
1675 /* This code sets up the virtual function tables appropriate for
1676 the pointer DECL. It is a one-ply initialization.
1677
1678 BINFO is the exact type that DECL is supposed to be. In
1679 multiple inheritance, this might mean "C's A" if C : A, B. */
1680
1681 static void
1682 expand_virtual_init (tree binfo, tree decl)
1683 {
1684 tree vtbl, vtbl_ptr;
1685 tree vtt_index;
1686
1687 /* Compute the initializer for vptr. */
1688 vtbl = build_vtbl_address (binfo);
1689
1690 /* We may get this vptr from a VTT, if this is a subobject
1691 constructor or subobject destructor. */
1692 vtt_index = BINFO_VPTR_INDEX (binfo);
1693 if (vtt_index)
1694 {
1695 tree vtbl2;
1696 tree vtt_parm;
1697
1698 /* Compute the value to use, when there's a VTT. */
1699 vtt_parm = current_vtt_parm;
1700 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1701 vtbl2 = cp_build_fold_indirect_ref (vtbl2);
1702 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1703
1704 /* The actual initializer is the VTT value only in the subobject
1705 constructor. In maybe_clone_body we'll substitute NULL for
1706 the vtt_parm in the case of the non-subobject constructor. */
1707 vtbl = build_if_in_charge (vtbl, vtbl2);
1708 }
1709
1710 /* Compute the location of the vtpr. */
1711 vtbl_ptr = build_vfield_ref (cp_build_fold_indirect_ref (decl),
1712 TREE_TYPE (binfo));
1713 gcc_assert (vtbl_ptr != error_mark_node);
1714
1715 /* Assign the vtable to the vptr. */
1716 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1717 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1718 vtbl, tf_warning_or_error));
1719 }
1720
1721 /* If an exception is thrown in a constructor, those base classes already
1722 constructed must be destroyed. This function creates the cleanup
1723 for BINFO, which has just been constructed. If FLAG is non-NULL,
1724 it is a DECL which is nonzero when this base needs to be
1725 destroyed. */
1726
1727 static void
1728 expand_cleanup_for_base (tree binfo, tree flag)
1729 {
1730 tree expr;
1731
1732 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1733 return;
1734
1735 /* Call the destructor. */
1736 expr = build_special_member_call (current_class_ref,
1737 base_dtor_identifier,
1738 NULL,
1739 binfo,
1740 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1741 tf_warning_or_error);
1742
1743 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1744 return;
1745
1746 if (flag)
1747 expr = fold_build3_loc (input_location,
1748 COND_EXPR, void_type_node,
1749 c_common_truthvalue_conversion (input_location, flag),
1750 expr, integer_zero_node);
1751
1752 finish_eh_cleanup (expr);
1753 }
1754
1755 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1756 constructor. */
1757
1758 static void
1759 construct_virtual_base (tree vbase, tree arguments)
1760 {
1761 tree inner_if_stmt;
1762 tree exp;
1763 tree flag;
1764
1765 /* If there are virtual base classes with destructors, we need to
1766 emit cleanups to destroy them if an exception is thrown during
1767 the construction process. These exception regions (i.e., the
1768 period during which the cleanups must occur) begin from the time
1769 the construction is complete to the end of the function. If we
1770 create a conditional block in which to initialize the
1771 base-classes, then the cleanup region for the virtual base begins
1772 inside a block, and ends outside of that block. This situation
1773 confuses the sjlj exception-handling code. Therefore, we do not
1774 create a single conditional block, but one for each
1775 initialization. (That way the cleanup regions always begin
1776 in the outer block.) We trust the back end to figure out
1777 that the FLAG will not change across initializations, and
1778 avoid doing multiple tests. */
1779 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1780 inner_if_stmt = begin_if_stmt ();
1781 finish_if_stmt_cond (flag, inner_if_stmt);
1782
1783 /* Compute the location of the virtual base. If we're
1784 constructing virtual bases, then we must be the most derived
1785 class. Therefore, we don't have to look up the virtual base;
1786 we already know where it is. */
1787 exp = convert_to_base_statically (current_class_ref, vbase);
1788
1789 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1790 0, tf_warning_or_error);
1791 finish_then_clause (inner_if_stmt);
1792 finish_if_stmt (inner_if_stmt);
1793
1794 expand_cleanup_for_base (vbase, flag);
1795 }
1796
1797 /* Find the context in which this FIELD can be initialized. */
1798
1799 static tree
1800 initializing_context (tree field)
1801 {
1802 tree t = DECL_CONTEXT (field);
1803
1804 /* Anonymous union members can be initialized in the first enclosing
1805 non-anonymous union context. */
1806 while (t && ANON_AGGR_TYPE_P (t))
1807 t = TYPE_CONTEXT (t);
1808 return t;
1809 }
1810
1811 /* Function to give error message if member initialization specification
1812 is erroneous. FIELD is the member we decided to initialize.
1813 TYPE is the type for which the initialization is being performed.
1814 FIELD must be a member of TYPE.
1815
1816 MEMBER_NAME is the name of the member. */
1817
1818 static int
1819 member_init_ok_or_else (tree field, tree type, tree member_name)
1820 {
1821 if (field == error_mark_node)
1822 return 0;
1823 if (!field)
1824 {
1825 error ("class %qT does not have any field named %qD", type,
1826 member_name);
1827 return 0;
1828 }
1829 if (VAR_P (field))
1830 {
1831 error ("%q#D is a static data member; it can only be "
1832 "initialized at its definition",
1833 field);
1834 return 0;
1835 }
1836 if (TREE_CODE (field) != FIELD_DECL)
1837 {
1838 error ("%q#D is not a non-static data member of %qT",
1839 field, type);
1840 return 0;
1841 }
1842 if (initializing_context (field) != type)
1843 {
1844 error ("class %qT does not have any field named %qD", type,
1845 member_name);
1846 return 0;
1847 }
1848
1849 return 1;
1850 }
1851
1852 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1853 is a _TYPE node or TYPE_DECL which names a base for that type.
1854 Check the validity of NAME, and return either the base _TYPE, base
1855 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1856 NULL_TREE and issue a diagnostic.
1857
1858 An old style unnamed direct single base construction is permitted,
1859 where NAME is NULL. */
1860
1861 tree
1862 expand_member_init (tree name)
1863 {
1864 tree basetype;
1865 tree field;
1866
1867 if (!current_class_ref)
1868 return NULL_TREE;
1869
1870 if (!name)
1871 {
1872 /* This is an obsolete unnamed base class initializer. The
1873 parser will already have warned about its use. */
1874 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1875 {
1876 case 0:
1877 error ("unnamed initializer for %qT, which has no base classes",
1878 current_class_type);
1879 return NULL_TREE;
1880 case 1:
1881 basetype = BINFO_TYPE
1882 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1883 break;
1884 default:
1885 error ("unnamed initializer for %qT, which uses multiple inheritance",
1886 current_class_type);
1887 return NULL_TREE;
1888 }
1889 }
1890 else if (TYPE_P (name))
1891 {
1892 basetype = TYPE_MAIN_VARIANT (name);
1893 name = TYPE_NAME (name);
1894 }
1895 else if (TREE_CODE (name) == TYPE_DECL)
1896 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1897 else
1898 basetype = NULL_TREE;
1899
1900 if (basetype)
1901 {
1902 tree class_binfo;
1903 tree direct_binfo;
1904 tree virtual_binfo;
1905 int i;
1906
1907 if (current_template_parms
1908 || same_type_p (basetype, current_class_type))
1909 return basetype;
1910
1911 class_binfo = TYPE_BINFO (current_class_type);
1912 direct_binfo = NULL_TREE;
1913 virtual_binfo = NULL_TREE;
1914
1915 /* Look for a direct base. */
1916 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1917 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1918 break;
1919
1920 /* Look for a virtual base -- unless the direct base is itself
1921 virtual. */
1922 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1923 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1924
1925 /* [class.base.init]
1926
1927 If a mem-initializer-id is ambiguous because it designates
1928 both a direct non-virtual base class and an inherited virtual
1929 base class, the mem-initializer is ill-formed. */
1930 if (direct_binfo && virtual_binfo)
1931 {
1932 error ("%qD is both a direct base and an indirect virtual base",
1933 basetype);
1934 return NULL_TREE;
1935 }
1936
1937 if (!direct_binfo && !virtual_binfo)
1938 {
1939 if (CLASSTYPE_VBASECLASSES (current_class_type))
1940 error ("type %qT is not a direct or virtual base of %qT",
1941 basetype, current_class_type);
1942 else
1943 error ("type %qT is not a direct base of %qT",
1944 basetype, current_class_type);
1945 return NULL_TREE;
1946 }
1947
1948 return direct_binfo ? direct_binfo : virtual_binfo;
1949 }
1950 else
1951 {
1952 if (identifier_p (name))
1953 field = lookup_field (current_class_type, name, 1, false);
1954 else
1955 field = name;
1956
1957 if (member_init_ok_or_else (field, current_class_type, name))
1958 return field;
1959 }
1960
1961 return NULL_TREE;
1962 }
1963
1964 /* This is like `expand_member_init', only it stores one aggregate
1965 value into another.
1966
1967 INIT comes in two flavors: it is either a value which
1968 is to be stored in EXP, or it is a parameter list
1969 to go to a constructor, which will operate on EXP.
1970 If INIT is not a parameter list for a constructor, then set
1971 LOOKUP_ONLYCONVERTING.
1972 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1973 the initializer, if FLAGS is 0, then it is the (init) form.
1974 If `init' is a CONSTRUCTOR, then we emit a warning message,
1975 explaining that such initializations are invalid.
1976
1977 If INIT resolves to a CALL_EXPR which happens to return
1978 something of the type we are looking for, then we know
1979 that we can safely use that call to perform the
1980 initialization.
1981
1982 The virtual function table pointer cannot be set up here, because
1983 we do not really know its type.
1984
1985 This never calls operator=().
1986
1987 When initializing, nothing is CONST.
1988
1989 A default copy constructor may have to be used to perform the
1990 initialization.
1991
1992 A constructor or a conversion operator may have to be used to
1993 perform the initialization, but not both, as it would be ambiguous. */
1994
1995 tree
1996 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1997 {
1998 tree stmt_expr;
1999 tree compound_stmt;
2000 int destroy_temps;
2001 tree type = TREE_TYPE (exp);
2002 int was_const = TREE_READONLY (exp);
2003 int was_volatile = TREE_THIS_VOLATILE (exp);
2004 int is_global;
2005
2006 if (init == error_mark_node)
2007 return error_mark_node;
2008
2009 location_t init_loc = (init
2010 ? cp_expr_loc_or_input_loc (init)
2011 : location_of (exp));
2012
2013 TREE_READONLY (exp) = 0;
2014 TREE_THIS_VOLATILE (exp) = 0;
2015
2016 if (TREE_CODE (type) == ARRAY_TYPE)
2017 {
2018 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
2019 int from_array = 0;
2020
2021 if (DECL_DECOMPOSITION_P (exp))
2022 {
2023 from_array = 1;
2024 init = mark_rvalue_use (init);
2025 if (init
2026 && DECL_P (tree_strip_any_location_wrapper (init))
2027 && !(flags & LOOKUP_ONLYCONVERTING))
2028 {
2029 /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
2030 recognizes it as direct-initialization. */
2031 init = build_constructor_single (init_list_type_node,
2032 NULL_TREE, init);
2033 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
2034 }
2035 }
2036 else
2037 {
2038 /* Must arrange to initialize each element of EXP
2039 from elements of INIT. */
2040 if (cv_qualified_p (type))
2041 TREE_TYPE (exp) = cv_unqualified (type);
2042 if (itype && cv_qualified_p (itype))
2043 TREE_TYPE (init) = cv_unqualified (itype);
2044 from_array = (itype && same_type_p (TREE_TYPE (init),
2045 TREE_TYPE (exp)));
2046
2047 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init)
2048 && (!from_array
2049 || (TREE_CODE (init) != CONSTRUCTOR
2050 /* Can happen, eg, handling the compound-literals
2051 extension (ext/complit12.C). */
2052 && TREE_CODE (init) != TARGET_EXPR)))
2053 {
2054 if (complain & tf_error)
2055 error_at (init_loc, "array must be initialized "
2056 "with a brace-enclosed initializer");
2057 return error_mark_node;
2058 }
2059 }
2060
2061 stmt_expr = build_vec_init (exp, NULL_TREE, init,
2062 /*explicit_value_init_p=*/false,
2063 from_array,
2064 complain);
2065 TREE_READONLY (exp) = was_const;
2066 TREE_THIS_VOLATILE (exp) = was_volatile;
2067 TREE_TYPE (exp) = type;
2068 /* Restore the type of init unless it was used directly. */
2069 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
2070 TREE_TYPE (init) = itype;
2071 return stmt_expr;
2072 }
2073
2074 if (is_copy_initialization (init))
2075 flags |= LOOKUP_ONLYCONVERTING;
2076
2077 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2078 destroy_temps = stmts_are_full_exprs_p ();
2079 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2080 bool ok = expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
2081 init, LOOKUP_NORMAL|flags, complain);
2082 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
2083 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
2084 TREE_READONLY (exp) = was_const;
2085 TREE_THIS_VOLATILE (exp) = was_volatile;
2086 if (!ok)
2087 return error_mark_node;
2088
2089 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
2090 && TREE_SIDE_EFFECTS (stmt_expr)
2091 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
2092 /* Just know that we've seen something for this node. */
2093 TREE_USED (exp) = 1;
2094
2095 return stmt_expr;
2096 }
2097
2098 static bool
2099 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
2100 tsubst_flags_t complain)
2101 {
2102 tree type = TREE_TYPE (exp);
2103
2104 /* It fails because there may not be a constructor which takes
2105 its own type as the first (or only parameter), but which does
2106 take other types via a conversion. So, if the thing initializing
2107 the expression is a unit element of type X, first try X(X&),
2108 followed by initialization by X. If neither of these work
2109 out, then look hard. */
2110 tree rval;
2111 vec<tree, va_gc> *parms;
2112
2113 /* If we have direct-initialization from an initializer list, pull
2114 it out of the TREE_LIST so the code below can see it. */
2115 if (init && TREE_CODE (init) == TREE_LIST
2116 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
2117 {
2118 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
2119 && TREE_CHAIN (init) == NULL_TREE);
2120 init = TREE_VALUE (init);
2121 /* Only call reshape_init if it has not been called earlier
2122 by the callers. */
2123 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
2124 init = reshape_init (type, init, complain);
2125 }
2126
2127 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
2128 && CP_AGGREGATE_TYPE_P (type))
2129 /* A brace-enclosed initializer for an aggregate. In C++0x this can
2130 happen for direct-initialization, too. */
2131 init = digest_init (type, init, complain);
2132
2133 if (init == error_mark_node)
2134 return false;
2135
2136 /* A CONSTRUCTOR of the target's type is a previously digested
2137 initializer, whether that happened just above or in
2138 cp_parser_late_parsing_nsdmi.
2139
2140 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
2141 set represents the whole initialization, so we shouldn't build up
2142 another ctor call. */
2143 if (init
2144 && (TREE_CODE (init) == CONSTRUCTOR
2145 || (TREE_CODE (init) == TARGET_EXPR
2146 && (TARGET_EXPR_DIRECT_INIT_P (init)
2147 || TARGET_EXPR_LIST_INIT_P (init))))
2148 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
2149 {
2150 /* Early initialization via a TARGET_EXPR only works for
2151 complete objects. */
2152 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
2153
2154 init = cp_build_init_expr (exp, init);
2155 TREE_SIDE_EFFECTS (init) = 1;
2156 finish_expr_stmt (init);
2157 return true;
2158 }
2159
2160 if (init && TREE_CODE (init) != TREE_LIST
2161 && (flags & LOOKUP_ONLYCONVERTING)
2162 && !unsafe_return_slot_p (exp))
2163 {
2164 /* Base subobjects should only get direct-initialization. */
2165 gcc_assert (true_exp == exp);
2166
2167 if (flags & DIRECT_BIND)
2168 /* Do nothing. We hit this in two cases: Reference initialization,
2169 where we aren't initializing a real variable, so we don't want
2170 to run a new constructor; and catching an exception, where we
2171 have already built up the constructor call so we could wrap it
2172 in an exception region. */;
2173 else
2174 {
2175 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
2176 flags, complain | tf_no_cleanup);
2177 if (init == error_mark_node)
2178 return false;
2179 }
2180
2181 /* We need to protect the initialization of a catch parm with a
2182 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
2183 around the TARGET_EXPR for the copy constructor. See
2184 initialize_handler_parm. */
2185 tree *p = &init;
2186 while (TREE_CODE (*p) == MUST_NOT_THROW_EXPR
2187 || TREE_CODE (*p) == CLEANUP_POINT_EXPR)
2188 {
2189 /* Avoid voidify_wrapper_expr making a temporary. */
2190 TREE_TYPE (*p) = void_type_node;
2191 p = &TREE_OPERAND (*p, 0);
2192 }
2193 *p = cp_build_init_expr (exp, *p);
2194 finish_expr_stmt (init);
2195 return true;
2196 }
2197
2198 if (init == NULL_TREE)
2199 parms = NULL;
2200 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
2201 {
2202 parms = make_tree_vector ();
2203 for (; init != NULL_TREE; init = TREE_CHAIN (init))
2204 vec_safe_push (parms, TREE_VALUE (init));
2205 }
2206 else
2207 parms = make_tree_vector_single (init);
2208
2209 if (exp == current_class_ref && current_function_decl
2210 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
2211 {
2212 /* Delegating constructor. */
2213 tree complete;
2214 tree base;
2215 tree elt; unsigned i;
2216
2217 /* Unshare the arguments for the second call. */
2218 releasing_vec parms2;
2219 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
2220 {
2221 elt = break_out_target_exprs (elt);
2222 vec_safe_push (parms2, elt);
2223 }
2224 complete = build_special_member_call (exp, complete_ctor_identifier,
2225 &parms2, binfo, flags,
2226 complain);
2227 complete = fold_build_cleanup_point_expr (void_type_node, complete);
2228
2229 base = build_special_member_call (exp, base_ctor_identifier,
2230 &parms, binfo, flags,
2231 complain);
2232 base = fold_build_cleanup_point_expr (void_type_node, base);
2233 if (complete == error_mark_node || base == error_mark_node)
2234 return false;
2235 rval = build_if_in_charge (complete, base);
2236 }
2237 else
2238 {
2239 tree ctor_name = (true_exp == exp
2240 ? complete_ctor_identifier : base_ctor_identifier);
2241
2242 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
2243 complain);
2244 if (rval == error_mark_node)
2245 return false;
2246 }
2247
2248 if (parms != NULL)
2249 release_tree_vector (parms);
2250
2251 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
2252 {
2253 tree fn = get_callee_fndecl (rval);
2254 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
2255 {
2256 tree e = maybe_constant_init (rval, exp);
2257 if (TREE_CONSTANT (e))
2258 rval = cp_build_init_expr (exp, e);
2259 }
2260 }
2261
2262 /* FIXME put back convert_to_void? */
2263 if (TREE_SIDE_EFFECTS (rval))
2264 finish_expr_stmt (rval);
2265
2266 return true;
2267 }
2268
2269 /* This function is responsible for initializing EXP with INIT
2270 (if any). Returns true on success, false on failure.
2271
2272 BINFO is the binfo of the type for who we are performing the
2273 initialization. For example, if W is a virtual base class of A and B,
2274 and C : A, B.
2275 If we are initializing B, then W must contain B's W vtable, whereas
2276 were we initializing C, W must contain C's W vtable.
2277
2278 TRUE_EXP is nonzero if it is the true expression being initialized.
2279 In this case, it may be EXP, or may just contain EXP. The reason we
2280 need this is because if EXP is a base element of TRUE_EXP, we
2281 don't necessarily know by looking at EXP where its virtual
2282 baseclass fields should really be pointing. But we do know
2283 from TRUE_EXP. In constructors, we don't know anything about
2284 the value being initialized.
2285
2286 FLAGS is just passed to `build_new_method_call'. See that function
2287 for its description. */
2288
2289 static bool
2290 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
2291 tsubst_flags_t complain)
2292 {
2293 tree type = TREE_TYPE (exp);
2294
2295 gcc_assert (init != error_mark_node && type != error_mark_node);
2296 gcc_assert (building_stmt_list_p ());
2297
2298 /* Use a function returning the desired type to initialize EXP for us.
2299 If the function is a constructor, and its first argument is
2300 NULL_TREE, know that it was meant for us--just slide exp on
2301 in and expand the constructor. Constructors now come
2302 as TARGET_EXPRs. */
2303
2304 if (init && VAR_P (exp)
2305 && COMPOUND_LITERAL_P (init))
2306 {
2307 vec<tree, va_gc> *cleanups = NULL;
2308 /* If store_init_value returns NULL_TREE, the INIT has been
2309 recorded as the DECL_INITIAL for EXP. That means there's
2310 nothing more we have to do. */
2311 init = store_init_value (exp, init, &cleanups, flags);
2312 if (init)
2313 finish_expr_stmt (init);
2314 gcc_assert (!cleanups);
2315 return true;
2316 }
2317
2318 /* List-initialization from {} becomes value-initialization for non-aggregate
2319 classes with default constructors. Handle this here when we're
2320 initializing a base, so protected access works. */
2321 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
2322 {
2323 tree elt = TREE_VALUE (init);
2324 if (DIRECT_LIST_INIT_P (elt)
2325 && CONSTRUCTOR_ELTS (elt) == 0
2326 && CLASSTYPE_NON_AGGREGATE (type)
2327 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2328 init = void_type_node;
2329 }
2330
2331 /* If an explicit -- but empty -- initializer list was present,
2332 that's value-initialization. */
2333 if (init == void_type_node)
2334 {
2335 /* If the type has data but no user-provided default ctor, we need to zero
2336 out the object. */
2337 if (type_has_non_user_provided_default_constructor (type)
2338 && !is_really_empty_class (type, /*ignore_vptr*/true))
2339 {
2340 tree field_size = NULL_TREE;
2341 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
2342 /* Don't clobber already initialized virtual bases. */
2343 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
2344 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
2345 field_size);
2346 init = cp_build_init_expr (exp, init);
2347 finish_expr_stmt (init);
2348 }
2349
2350 /* If we don't need to mess with the constructor at all,
2351 then we're done. */
2352 if (! type_build_ctor_call (type))
2353 return true;
2354
2355 /* Otherwise fall through and call the constructor. */
2356 init = NULL_TREE;
2357 }
2358
2359 /* We know that expand_default_init can handle everything we want
2360 at this point. */
2361 return expand_default_init (binfo, true_exp, exp, init, flags, complain);
2362 }
2363
2364 /* Report an error if TYPE is not a user-defined, class type. If
2365 OR_ELSE is nonzero, give an error message. */
2366
2367 int
2368 is_class_type (tree type, int or_else)
2369 {
2370 if (type == error_mark_node)
2371 return 0;
2372
2373 if (! CLASS_TYPE_P (type))
2374 {
2375 if (or_else)
2376 error ("%qT is not a class type", type);
2377 return 0;
2378 }
2379 return 1;
2380 }
2381
2382 /* Returns true iff the initializer INIT represents copy-initialization
2383 (and therefore we must set LOOKUP_ONLYCONVERTING when processing it). */
2384
2385 bool
2386 is_copy_initialization (tree init)
2387 {
2388 return (init && init != void_type_node
2389 && TREE_CODE (init) != TREE_LIST
2390 && !(TREE_CODE (init) == TARGET_EXPR
2391 && TARGET_EXPR_DIRECT_INIT_P (init))
2392 && !DIRECT_LIST_INIT_P (init));
2393 }
2394
2395 /* Build a reference to a member of an aggregate. This is not a C++
2396 `&', but really something which can have its address taken, and
2397 then act as a pointer to member, for example TYPE :: FIELD can have
2398 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
2399 this expression is the operand of "&".
2400
2401 @@ Prints out lousy diagnostics for operator <typename>
2402 @@ fields.
2403
2404 @@ This function should be rewritten and placed in search.cc. */
2405
2406 tree
2407 build_offset_ref (tree type, tree member, bool address_p,
2408 tsubst_flags_t complain)
2409 {
2410 tree decl;
2411 tree basebinfo = NULL_TREE;
2412
2413 /* class templates can come in as TEMPLATE_DECLs here. */
2414 if (TREE_CODE (member) == TEMPLATE_DECL)
2415 return member;
2416
2417 if (dependent_scope_p (type) || type_dependent_expression_p (member))
2418 return build_qualified_name (NULL_TREE, type, member,
2419 /*template_p=*/false);
2420
2421 gcc_assert (TYPE_P (type));
2422 if (! is_class_type (type, 1))
2423 return error_mark_node;
2424
2425 gcc_assert (DECL_P (member) || BASELINK_P (member));
2426 /* Callers should call mark_used before this point, except for functions. */
2427 gcc_assert (!DECL_P (member) || TREE_USED (member)
2428 || TREE_CODE (member) == FUNCTION_DECL);
2429
2430 type = TYPE_MAIN_VARIANT (type);
2431 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2432 {
2433 if (complain & tf_error)
2434 error ("incomplete type %qT does not have member %qD", type, member);
2435 return error_mark_node;
2436 }
2437
2438 /* Entities other than non-static members need no further
2439 processing. */
2440 if (TREE_CODE (member) == TYPE_DECL)
2441 return member;
2442 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2443 return convert_from_reference (member);
2444
2445 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2446 {
2447 if (complain & tf_error)
2448 error ("invalid pointer to bit-field %qD", member);
2449 return error_mark_node;
2450 }
2451
2452 /* Set up BASEBINFO for member lookup. */
2453 decl = maybe_dummy_object (type, &basebinfo);
2454
2455 /* A lot of this logic is now handled in lookup_member. */
2456 if (BASELINK_P (member))
2457 {
2458 /* Go from the TREE_BASELINK to the member function info. */
2459 tree t = BASELINK_FUNCTIONS (member);
2460
2461 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2462 {
2463 /* Get rid of a potential OVERLOAD around it. */
2464 t = OVL_FIRST (t);
2465
2466 /* Unique functions are handled easily. */
2467
2468 /* For non-static member of base class, we need a special rule
2469 for access checking [class.protected]:
2470
2471 If the access is to form a pointer to member, the
2472 nested-name-specifier shall name the derived class
2473 (or any class derived from that class). */
2474 bool ok;
2475 if (address_p && DECL_P (t)
2476 && DECL_NONSTATIC_MEMBER_P (t))
2477 ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2478 complain);
2479 else
2480 ok = perform_or_defer_access_check (basebinfo, t, t,
2481 complain);
2482 if (!ok)
2483 return error_mark_node;
2484 if (DECL_STATIC_FUNCTION_P (t))
2485 return member;
2486 member = t;
2487 }
2488 else
2489 TREE_TYPE (member) = unknown_type_node;
2490 }
2491 else if (address_p && TREE_CODE (member) == FIELD_DECL)
2492 {
2493 /* We need additional test besides the one in
2494 check_accessibility_of_qualified_id in case it is
2495 a pointer to non-static member. */
2496 if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2497 complain))
2498 return error_mark_node;
2499 }
2500
2501 if (!address_p)
2502 {
2503 /* If MEMBER is non-static, then the program has fallen afoul of
2504 [expr.prim]:
2505
2506 An id-expression that denotes a non-static data member or
2507 non-static member function of a class can only be used:
2508
2509 -- as part of a class member access (_expr.ref_) in which the
2510 object-expression refers to the member's class or a class
2511 derived from that class, or
2512
2513 -- to form a pointer to member (_expr.unary.op_), or
2514
2515 -- in the body of a non-static member function of that class or
2516 of a class derived from that class (_class.mfct.non-static_), or
2517
2518 -- in a mem-initializer for a constructor for that class or for
2519 a class derived from that class (_class.base.init_). */
2520 if (DECL_OBJECT_MEMBER_FUNCTION_P (member))
2521 {
2522 /* Build a representation of the qualified name suitable
2523 for use as the operand to "&" -- even though the "&" is
2524 not actually present. */
2525 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2526 /* In Microsoft mode, treat a non-static member function as if
2527 it were a pointer-to-member. */
2528 if (flag_ms_extensions)
2529 {
2530 PTRMEM_OK_P (member) = 1;
2531 return cp_build_addr_expr (member, complain);
2532 }
2533 if (complain & tf_error)
2534 error ("invalid use of non-static member function %qD",
2535 TREE_OPERAND (member, 1));
2536 return error_mark_node;
2537 }
2538 else if (TREE_CODE (member) == FIELD_DECL)
2539 {
2540 if (complain & tf_error)
2541 error ("invalid use of non-static data member %qD", member);
2542 return error_mark_node;
2543 }
2544 return member;
2545 }
2546
2547 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2548 PTRMEM_OK_P (member) = 1;
2549 return member;
2550 }
2551
2552 /* If DECL is a scalar enumeration constant or variable with a
2553 constant initializer, return the initializer (or, its initializers,
2554 recursively); otherwise, return DECL. If STRICT_P, the
2555 initializer is only returned if DECL is a
2556 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2557 return an aggregate constant. If UNSHARE_P, return an unshared
2558 copy of the initializer. */
2559
2560 static tree
2561 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p,
2562 bool unshare_p)
2563 {
2564 while (TREE_CODE (decl) == CONST_DECL
2565 || decl_constant_var_p (decl)
2566 || (!strict_p && VAR_P (decl)
2567 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2568 {
2569 tree init;
2570 /* If DECL is a static data member in a template
2571 specialization, we must instantiate it here. The
2572 initializer for the static data member is not processed
2573 until needed; we need it now. */
2574 mark_used (decl, tf_none);
2575 init = DECL_INITIAL (decl);
2576 if (init == error_mark_node)
2577 {
2578 if (TREE_CODE (decl) == CONST_DECL
2579 || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2580 /* Treat the error as a constant to avoid cascading errors on
2581 excessively recursive template instantiation (c++/9335). */
2582 return init;
2583 else
2584 return decl;
2585 }
2586 /* Initializers in templates are generally expanded during
2587 instantiation, so before that for const int i(2)
2588 INIT is a TREE_LIST with the actual initializer as
2589 TREE_VALUE. */
2590 if (processing_template_decl
2591 && init
2592 && TREE_CODE (init) == TREE_LIST
2593 && TREE_CHAIN (init) == NULL_TREE)
2594 init = TREE_VALUE (init);
2595 /* Instantiate a non-dependent initializer for user variables. We
2596 mustn't do this for the temporary for an array compound literal;
2597 trying to instatiate the initializer will keep creating new
2598 temporaries until we crash. Probably it's not useful to do it for
2599 other artificial variables, either. */
2600 if (!DECL_ARTIFICIAL (decl))
2601 init = instantiate_non_dependent_or_null (init);
2602 if (!init
2603 || !TREE_TYPE (init)
2604 || !TREE_CONSTANT (init)
2605 || (!return_aggregate_cst_ok_p
2606 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2607 return an aggregate constant (of which string
2608 literals are a special case), as we do not want
2609 to make inadvertent copies of such entities, and
2610 we must be sure that their addresses are the
2611 same everywhere. */
2612 && (TREE_CODE (init) == CONSTRUCTOR
2613 || TREE_CODE (init) == STRING_CST)))
2614 break;
2615 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2616 initialization, since it doesn't represent the entire value.
2617 Similarly for VECTOR_CSTs created by cp_folding those
2618 CONSTRUCTORs. */
2619 if ((TREE_CODE (init) == CONSTRUCTOR
2620 || TREE_CODE (init) == VECTOR_CST)
2621 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2622 break;
2623 /* If the variable has a dynamic initializer, don't use its
2624 DECL_INITIAL which doesn't reflect the real value. */
2625 if (VAR_P (decl)
2626 && TREE_STATIC (decl)
2627 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
2628 && DECL_NONTRIVIALLY_INITIALIZED_P (decl))
2629 break;
2630 decl = init;
2631 }
2632 return unshare_p ? unshare_expr (decl) : decl;
2633 }
2634
2635 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2636 of integral or enumeration type, or a constexpr variable of scalar type,
2637 then return that value. These are those variables permitted in constant
2638 expressions by [5.19/1]. */
2639
2640 tree
2641 scalar_constant_value (tree decl)
2642 {
2643 return constant_value_1 (decl, /*strict_p=*/true,
2644 /*return_aggregate_cst_ok_p=*/false,
2645 /*unshare_p=*/true);
2646 }
2647
2648 /* Like scalar_constant_value, but can also return aggregate initializers.
2649 If UNSHARE_P, return an unshared copy of the initializer. */
2650
2651 tree
2652 decl_really_constant_value (tree decl, bool unshare_p /*= true*/)
2653 {
2654 return constant_value_1 (decl, /*strict_p=*/true,
2655 /*return_aggregate_cst_ok_p=*/true,
2656 /*unshare_p=*/unshare_p);
2657 }
2658
2659 /* A more relaxed version of decl_really_constant_value, used by the
2660 common C/C++ code. */
2661
2662 tree
2663 decl_constant_value (tree decl, bool unshare_p)
2664 {
2665 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2666 /*return_aggregate_cst_ok_p=*/true,
2667 /*unshare_p=*/unshare_p);
2668 }
2669
2670 tree
2671 decl_constant_value (tree decl)
2672 {
2673 return decl_constant_value (decl, /*unshare_p=*/true);
2674 }
2675 \f
2676 /* Common subroutines of build_new and build_vec_delete. */
2677 \f
2678 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2679 the type of the object being allocated; otherwise, it's just TYPE.
2680 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2681 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2682 a vector of arguments to be provided as arguments to a placement
2683 new operator. This routine performs no semantic checks; it just
2684 creates and returns a NEW_EXPR. */
2685
2686 static tree
2687 build_raw_new_expr (location_t loc, vec<tree, va_gc> *placement, tree type,
2688 tree nelts, vec<tree, va_gc> *init, int use_global_new)
2689 {
2690 tree init_list;
2691 tree new_expr;
2692
2693 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2694 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2695 permits us to distinguish the case of a missing initializer "new
2696 int" from an empty initializer "new int()". */
2697 if (init == NULL)
2698 init_list = NULL_TREE;
2699 else if (init->is_empty ())
2700 init_list = void_node;
2701 else
2702 init_list = build_tree_list_vec (init);
2703
2704 new_expr = build4_loc (loc, NEW_EXPR, build_pointer_type (type),
2705 build_tree_list_vec (placement), type, nelts,
2706 init_list);
2707 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2708 TREE_SIDE_EFFECTS (new_expr) = 1;
2709
2710 return new_expr;
2711 }
2712
2713 /* Diagnose uninitialized const members or reference members of type
2714 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2715 new expression without a new-initializer and a declaration. Returns
2716 the error count. */
2717
2718 static int
2719 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2720 bool using_new, bool complain)
2721 {
2722 tree field;
2723 int error_count = 0;
2724
2725 if (type_has_user_provided_constructor (type))
2726 return 0;
2727
2728 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2729 {
2730 tree field_type;
2731
2732 if (TREE_CODE (field) != FIELD_DECL)
2733 continue;
2734
2735 field_type = strip_array_types (TREE_TYPE (field));
2736
2737 if (type_has_user_provided_constructor (field_type))
2738 continue;
2739
2740 if (TYPE_REF_P (field_type))
2741 {
2742 ++ error_count;
2743 if (complain)
2744 {
2745 auto_diagnostic_group d;
2746 if (DECL_CONTEXT (field) == origin)
2747 {
2748 if (using_new)
2749 error ("uninitialized reference member in %q#T "
2750 "using %<new%> without new-initializer", origin);
2751 else
2752 error ("uninitialized reference member in %q#T", origin);
2753 }
2754 else
2755 {
2756 if (using_new)
2757 error ("uninitialized reference member in base %q#T "
2758 "of %q#T using %<new%> without new-initializer",
2759 DECL_CONTEXT (field), origin);
2760 else
2761 error ("uninitialized reference member in base %q#T "
2762 "of %q#T", DECL_CONTEXT (field), origin);
2763 }
2764 inform (DECL_SOURCE_LOCATION (field),
2765 "%q#D should be initialized", field);
2766 }
2767 }
2768
2769 if (CP_TYPE_CONST_P (field_type))
2770 {
2771 ++ error_count;
2772 if (complain)
2773 {
2774 auto_diagnostic_group d;
2775 if (DECL_CONTEXT (field) == origin)
2776 {
2777 if (using_new)
2778 error ("uninitialized const member in %q#T "
2779 "using %<new%> without new-initializer", origin);
2780 else
2781 error ("uninitialized const member in %q#T", origin);
2782 }
2783 else
2784 {
2785 if (using_new)
2786 error ("uninitialized const member in base %q#T "
2787 "of %q#T using %<new%> without new-initializer",
2788 DECL_CONTEXT (field), origin);
2789 else
2790 error ("uninitialized const member in base %q#T "
2791 "of %q#T", DECL_CONTEXT (field), origin);
2792 }
2793 inform (DECL_SOURCE_LOCATION (field),
2794 "%q#D should be initialized", field);
2795 }
2796 }
2797
2798 if (CLASS_TYPE_P (field_type))
2799 error_count
2800 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2801 using_new, complain);
2802 }
2803 return error_count;
2804 }
2805
2806 int
2807 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2808 {
2809 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2810 }
2811
2812 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2813 overflowed. */
2814
2815 tree
2816 throw_bad_array_new_length (void)
2817 {
2818 if (!fn)
2819 {
2820 tree name = get_identifier ("__cxa_throw_bad_array_new_length");
2821
2822 fn = get_global_binding (name);
2823 if (!fn)
2824 fn = push_throw_library_fn
2825 (name, build_function_type_list (void_type_node, NULL_TREE));
2826 }
2827
2828 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2829 }
2830
2831 /* Attempt to verify that the argument, OPER, of a placement new expression
2832 refers to an object sufficiently large for an object of TYPE or an array
2833 of NELTS of such objects when NELTS is non-null, and issue a warning when
2834 it does not. SIZE specifies the size needed to construct the object or
2835 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2836 greater when the array under construction requires a cookie to store
2837 NELTS. GCC's placement new expression stores the cookie when invoking
2838 a user-defined placement new operator function but not the default one.
2839 Placement new expressions with user-defined placement new operator are
2840 not diagnosed since we don't know how they use the buffer (this could
2841 be a future extension). */
2842 static void
2843 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2844 {
2845 location_t loc = cp_expr_loc_or_input_loc (oper);
2846
2847 STRIP_NOPS (oper);
2848
2849 /* Using a function argument or a (non-array) variable as an argument
2850 to placement new is not checked since it's unknown what it might
2851 point to. */
2852 if (TREE_CODE (oper) == PARM_DECL
2853 || VAR_P (oper)
2854 || TREE_CODE (oper) == COMPONENT_REF)
2855 return;
2856
2857 /* Evaluate any constant expressions. */
2858 size = fold_non_dependent_expr (size);
2859
2860 access_ref ref;
2861 ref.eval = [](tree x){ return fold_non_dependent_expr (x); };
2862 ref.trail1special = warn_placement_new < 2;
2863 tree objsize = compute_objsize (oper, 1, &ref);
2864 if (!objsize)
2865 return;
2866
2867 /* We can only draw conclusions if ref.deref == -1,
2868 i.e. oper is the address of the object. */
2869 if (ref.deref != -1)
2870 return;
2871
2872 offset_int bytes_avail = wi::to_offset (objsize);
2873 offset_int bytes_need;
2874
2875 if (CONSTANT_CLASS_P (size))
2876 bytes_need = wi::to_offset (size);
2877 else if (nelts && CONSTANT_CLASS_P (nelts))
2878 bytes_need = (wi::to_offset (nelts)
2879 * wi::to_offset (TYPE_SIZE_UNIT (type)));
2880 else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2881 bytes_need = wi::to_offset (TYPE_SIZE_UNIT (type));
2882 else
2883 {
2884 /* The type is a VLA. */
2885 return;
2886 }
2887
2888 if (bytes_avail >= bytes_need)
2889 return;
2890
2891 /* True when the size to mention in the warning is exact as opposed
2892 to "at least N". */
2893 const bool exact_size = (ref.offrng[0] == ref.offrng[1]
2894 || ref.sizrng[1] - ref.offrng[0] == 0);
2895
2896 tree opertype = ref.ref ? TREE_TYPE (ref.ref) : TREE_TYPE (oper);
2897 bool warned = false;
2898 if (nelts)
2899 nelts = fold_for_warn (nelts);
2900
2901 auto_diagnostic_group d;
2902 if (nelts)
2903 if (CONSTANT_CLASS_P (nelts))
2904 warned = warning_at (loc, OPT_Wplacement_new_,
2905 (exact_size
2906 ? G_("placement new constructing an object "
2907 "of type %<%T [%wu]%> and size %qwu "
2908 "in a region of type %qT and size %qwi")
2909 : G_("placement new constructing an object "
2910 "of type %<%T [%wu]%> and size %qwu "
2911 "in a region of type %qT and size "
2912 "at most %qwu")),
2913 type, tree_to_uhwi (nelts),
2914 bytes_need.to_uhwi (),
2915 opertype, bytes_avail.to_uhwi ());
2916 else
2917 warned = warning_at (loc, OPT_Wplacement_new_,
2918 (exact_size
2919 ? G_("placement new constructing an array "
2920 "of objects of type %qT and size %qwu "
2921 "in a region of type %qT and size %qwi")
2922 : G_("placement new constructing an array "
2923 "of objects of type %qT and size %qwu "
2924 "in a region of type %qT and size "
2925 "at most %qwu")),
2926 type, bytes_need.to_uhwi (), opertype,
2927 bytes_avail.to_uhwi ());
2928 else
2929 warned = warning_at (loc, OPT_Wplacement_new_,
2930 (exact_size
2931 ? G_("placement new constructing an object "
2932 "of type %qT and size %qwu in a region "
2933 "of type %qT and size %qwi")
2934 : G_("placement new constructing an object "
2935 "of type %qT "
2936 "and size %qwu in a region of type %qT "
2937 "and size at most %qwu")),
2938 type, bytes_need.to_uhwi (), opertype,
2939 bytes_avail.to_uhwi ());
2940
2941 if (!warned || !ref.ref)
2942 return;
2943
2944 if (ref.offrng[0] == 0 || !ref.offset_bounded ())
2945 /* Avoid mentioning the offset when its lower bound is zero
2946 or when it's impossibly large. */
2947 inform (DECL_SOURCE_LOCATION (ref.ref),
2948 "%qD declared here", ref.ref);
2949 else if (ref.offrng[0] == ref.offrng[1])
2950 inform (DECL_SOURCE_LOCATION (ref.ref),
2951 "at offset %wi from %qD declared here",
2952 ref.offrng[0].to_shwi (), ref.ref);
2953 else
2954 inform (DECL_SOURCE_LOCATION (ref.ref),
2955 "at offset [%wi, %wi] from %qD declared here",
2956 ref.offrng[0].to_shwi (), ref.offrng[1].to_shwi (), ref.ref);
2957 }
2958
2959 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */
2960
2961 bool
2962 type_has_new_extended_alignment (tree t)
2963 {
2964 return (aligned_new_threshold
2965 && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2966 }
2967
2968 /* Return the alignment we expect malloc to guarantee. This should just be
2969 MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2970 reason, so don't let the threshold be smaller than max_align_t_align. */
2971
2972 unsigned
2973 malloc_alignment ()
2974 {
2975 return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2976 }
2977
2978 /* Determine whether an allocation function is a namespace-scope
2979 non-replaceable placement new function. See DR 1748. */
2980 bool
2981 std_placement_new_fn_p (tree alloc_fn)
2982 {
2983 if (DECL_NAMESPACE_SCOPE_P (alloc_fn)
2984 && IDENTIFIER_NEW_OP_P (DECL_NAME (alloc_fn))
2985 && !DECL_IS_REPLACEABLE_OPERATOR_NEW_P (alloc_fn))
2986 {
2987 tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
2988 if (first_arg
2989 && (TREE_VALUE (first_arg) == ptr_type_node)
2990 && (TREE_CHAIN (first_arg) == void_list_node))
2991 return true;
2992 }
2993 return false;
2994 }
2995
2996 /* For element type ELT_TYPE, return the appropriate type of the heap object
2997 containing such element(s). COOKIE_SIZE is the size of cookie in bytes.
2998 Return
2999 struct { size_t[COOKIE_SIZE/sizeof(size_t)]; ELT_TYPE[N]; }
3000 where N is nothing (flexible array member) if ITYPE2 is NULL, otherwise
3001 the array has ITYPE2 as its TYPE_DOMAIN. */
3002
3003 tree
3004 build_new_constexpr_heap_type (tree elt_type, tree cookie_size, tree itype2)
3005 {
3006 gcc_assert (tree_fits_uhwi_p (cookie_size));
3007 unsigned HOST_WIDE_INT csz = tree_to_uhwi (cookie_size);
3008 csz /= int_size_in_bytes (sizetype);
3009 tree itype1 = build_index_type (size_int (csz - 1));
3010 tree atype1 = build_cplus_array_type (sizetype, itype1);
3011 tree atype2 = build_cplus_array_type (elt_type, itype2);
3012 tree rtype = cxx_make_type (RECORD_TYPE);
3013 tree fld1 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype1);
3014 tree fld2 = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, atype2);
3015 DECL_FIELD_CONTEXT (fld1) = rtype;
3016 DECL_FIELD_CONTEXT (fld2) = rtype;
3017 DECL_ARTIFICIAL (fld1) = true;
3018 DECL_ARTIFICIAL (fld2) = true;
3019 TYPE_FIELDS (rtype) = fld1;
3020 DECL_CHAIN (fld1) = fld2;
3021 TYPE_ARTIFICIAL (rtype) = true;
3022 layout_type (rtype);
3023
3024 tree decl = build_decl (UNKNOWN_LOCATION, TYPE_DECL, heap_identifier, rtype);
3025 TYPE_NAME (rtype) = decl;
3026 TYPE_STUB_DECL (rtype) = decl;
3027 DECL_CONTEXT (decl) = NULL_TREE;
3028 DECL_ARTIFICIAL (decl) = true;
3029 layout_decl (decl, 0);
3030
3031 return rtype;
3032 }
3033
3034 /* Help the constexpr code to find the right type for the heap variable
3035 by adding a NOP_EXPR around ALLOC_CALL if needed for cookie_size.
3036 Return ALLOC_CALL or ALLOC_CALL cast to a pointer to
3037 struct { size_t[cookie_size/sizeof(size_t)]; elt_type[]; }. */
3038
3039 static tree
3040 maybe_wrap_new_for_constexpr (tree alloc_call, tree elt_type, tree cookie_size)
3041 {
3042 if (cxx_dialect < cxx20)
3043 return alloc_call;
3044
3045 if (current_function_decl != NULL_TREE
3046 && !DECL_DECLARED_CONSTEXPR_P (current_function_decl))
3047 return alloc_call;
3048
3049 tree call_expr = extract_call_expr (alloc_call);
3050 if (call_expr == error_mark_node)
3051 return alloc_call;
3052
3053 tree alloc_call_fndecl = cp_get_callee_fndecl_nofold (call_expr);
3054 if (alloc_call_fndecl == NULL_TREE
3055 || !IDENTIFIER_NEW_OP_P (DECL_NAME (alloc_call_fndecl))
3056 || CP_DECL_CONTEXT (alloc_call_fndecl) != global_namespace)
3057 return alloc_call;
3058
3059 tree rtype = build_new_constexpr_heap_type (elt_type, cookie_size,
3060 NULL_TREE);
3061 return build_nop (build_pointer_type (rtype), alloc_call);
3062 }
3063
3064 /* Generate code for a new-expression, including calling the "operator
3065 new" function, initializing the object, and, if an exception occurs
3066 during construction, cleaning up. The arguments are as for
3067 build_raw_new_expr. This may change PLACEMENT and INIT.
3068 TYPE is the type of the object being constructed, possibly an array
3069 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
3070 be an array of the form U[inner], with the whole expression being
3071 "new U[NELTS][inner]"). */
3072
3073 static tree
3074 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
3075 vec<tree, va_gc> **init, bool globally_qualified_p,
3076 tsubst_flags_t complain)
3077 {
3078 tree size, rval;
3079 /* True iff this is a call to "operator new[]" instead of just
3080 "operator new". */
3081 bool array_p = false;
3082 /* If ARRAY_P is true, the element type of the array. This is never
3083 an ARRAY_TYPE; for something like "new int[3][4]", the
3084 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
3085 TYPE. */
3086 tree elt_type;
3087 /* The type of the new-expression. (This type is always a pointer
3088 type.) */
3089 tree pointer_type;
3090 tree non_const_pointer_type;
3091 /* The most significant array bound in int[OUTER_NELTS][inner]. */
3092 tree outer_nelts = NULL_TREE;
3093 /* For arrays with a non-constant number of elements, a bounds checks
3094 on the NELTS parameter to avoid integer overflow at runtime. */
3095 tree outer_nelts_check = NULL_TREE;
3096 bool outer_nelts_from_type = false;
3097 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
3098 offset_int inner_nelts_count = 1;
3099 tree alloc_call, alloc_expr;
3100 /* Size of the inner array elements (those with constant dimensions). */
3101 offset_int inner_size;
3102 /* The address returned by the call to "operator new". This node is
3103 a VAR_DECL and is therefore reusable. */
3104 tree alloc_node;
3105 tree alloc_fn;
3106 tree cookie_expr, init_expr;
3107 int nothrow, check_new;
3108 /* If non-NULL, the number of extra bytes to allocate at the
3109 beginning of the storage allocated for an array-new expression in
3110 order to store the number of elements. */
3111 tree cookie_size = NULL_TREE;
3112 tree placement_first;
3113 tree placement_expr = NULL_TREE;
3114 /* True if the function we are calling is a placement allocation
3115 function. */
3116 bool placement_allocation_fn_p;
3117 /* True if the storage must be initialized, either by a constructor
3118 or due to an explicit new-initializer. */
3119 bool is_initialized;
3120 /* The address of the thing allocated, not including any cookie. In
3121 particular, if an array cookie is in use, DATA_ADDR is the
3122 address of the first array element. This node is a VAR_DECL, and
3123 is therefore reusable. */
3124 tree data_addr;
3125 tree orig_type = type;
3126
3127 if (nelts)
3128 {
3129 outer_nelts = nelts;
3130 array_p = true;
3131 }
3132 else if (TREE_CODE (type) == ARRAY_TYPE)
3133 {
3134 /* Transforms new (T[N]) to new T[N]. The former is a GNU
3135 extension for variable N. (This also covers new T where T is
3136 a VLA typedef.) */
3137 array_p = true;
3138 nelts = array_type_nelts_top (type);
3139 outer_nelts = nelts;
3140 type = TREE_TYPE (type);
3141 outer_nelts_from_type = true;
3142 }
3143
3144 /* Lots of logic below depends on whether we have a constant number of
3145 elements, so go ahead and fold it now. */
3146 const_tree cst_outer_nelts = fold_non_dependent_expr (outer_nelts, complain);
3147
3148 /* If our base type is an array, then make sure we know how many elements
3149 it has. */
3150 for (elt_type = type;
3151 TREE_CODE (elt_type) == ARRAY_TYPE;
3152 elt_type = TREE_TYPE (elt_type))
3153 {
3154 tree inner_nelts = array_type_nelts_top (elt_type);
3155 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
3156 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
3157 {
3158 wi::overflow_type overflow;
3159 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
3160 inner_nelts_count, SIGNED, &overflow);
3161 if (overflow)
3162 {
3163 if (complain & tf_error)
3164 error ("integer overflow in array size");
3165 nelts = error_mark_node;
3166 }
3167 inner_nelts_count = result;
3168 }
3169 else
3170 {
3171 if (complain & tf_error)
3172 {
3173 error_at (cp_expr_loc_or_input_loc (inner_nelts),
3174 "array size in new-expression must be constant");
3175 cxx_constant_value(inner_nelts);
3176 }
3177 nelts = error_mark_node;
3178 }
3179 if (nelts != error_mark_node)
3180 nelts = cp_build_binary_op (input_location,
3181 MULT_EXPR, nelts,
3182 inner_nelts_cst,
3183 complain);
3184 }
3185
3186 if (!verify_type_context (input_location, TCTX_ALLOCATION, elt_type,
3187 !(complain & tf_error)))
3188 return error_mark_node;
3189
3190 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
3191 {
3192 error ("variably modified type not allowed in new-expression");
3193 return error_mark_node;
3194 }
3195
3196 if (nelts == error_mark_node)
3197 return error_mark_node;
3198
3199 /* Warn if we performed the (T[N]) to T[N] transformation and N is
3200 variable. */
3201 if (outer_nelts_from_type
3202 && !TREE_CONSTANT (cst_outer_nelts))
3203 {
3204 if (complain & tf_warning_or_error)
3205 {
3206 pedwarn (cp_expr_loc_or_input_loc (outer_nelts), OPT_Wvla,
3207 typedef_variant_p (orig_type)
3208 ? G_("non-constant array new length must be specified "
3209 "directly, not by %<typedef%>")
3210 : G_("non-constant array new length must be specified "
3211 "without parentheses around the type-id"));
3212 }
3213 else
3214 return error_mark_node;
3215 }
3216
3217 if (VOID_TYPE_P (elt_type))
3218 {
3219 if (complain & tf_error)
3220 error ("invalid type %<void%> for %<new%>");
3221 return error_mark_node;
3222 }
3223
3224 if (is_std_init_list (elt_type) && !cp_unevaluated_operand)
3225 warning (OPT_Winit_list_lifetime,
3226 "%<new%> of %<initializer_list%> does not "
3227 "extend the lifetime of the underlying array");
3228
3229 if (abstract_virtuals_error (ACU_NEW, elt_type, complain))
3230 return error_mark_node;
3231
3232 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
3233
3234 if (*init == NULL && cxx_dialect < cxx11)
3235 {
3236 bool maybe_uninitialized_error = false;
3237 /* A program that calls for default-initialization [...] of an
3238 entity of reference type is ill-formed. */
3239 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
3240 maybe_uninitialized_error = true;
3241
3242 /* A new-expression that creates an object of type T initializes
3243 that object as follows:
3244 - If the new-initializer is omitted:
3245 -- If T is a (possibly cv-qualified) non-POD class type
3246 (or array thereof), the object is default-initialized (8.5).
3247 [...]
3248 -- Otherwise, the object created has indeterminate
3249 value. If T is a const-qualified type, or a (possibly
3250 cv-qualified) POD class type (or array thereof)
3251 containing (directly or indirectly) a member of
3252 const-qualified type, the program is ill-formed; */
3253
3254 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
3255 maybe_uninitialized_error = true;
3256
3257 if (maybe_uninitialized_error
3258 && diagnose_uninitialized_cst_or_ref_member (elt_type,
3259 /*using_new=*/true,
3260 complain & tf_error))
3261 return error_mark_node;
3262 }
3263
3264 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
3265 && default_init_uninitialized_part (elt_type))
3266 {
3267 if (complain & tf_error)
3268 error ("uninitialized const in %<new%> of %q#T", elt_type);
3269 return error_mark_node;
3270 }
3271
3272 size = size_in_bytes (elt_type);
3273 if (array_p)
3274 {
3275 /* Maximum available size in bytes. Half of the address space
3276 minus the cookie size. */
3277 offset_int max_size
3278 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
3279 /* Maximum number of outer elements which can be allocated. */
3280 offset_int max_outer_nelts;
3281 tree max_outer_nelts_tree;
3282
3283 gcc_assert (TREE_CODE (size) == INTEGER_CST);
3284 cookie_size = targetm.cxx.get_cookie_size (elt_type);
3285 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
3286 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
3287 /* Unconditionally subtract the cookie size. This decreases the
3288 maximum object size and is safe even if we choose not to use
3289 a cookie after all. */
3290 max_size -= wi::to_offset (cookie_size);
3291 wi::overflow_type overflow;
3292 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
3293 &overflow);
3294 if (overflow || wi::gtu_p (inner_size, max_size))
3295 {
3296 if (complain & tf_error)
3297 {
3298 cst_size_error error;
3299 if (overflow)
3300 error = cst_size_overflow;
3301 else
3302 {
3303 error = cst_size_too_big;
3304 size = size_binop (MULT_EXPR, size,
3305 wide_int_to_tree (sizetype,
3306 inner_nelts_count));
3307 size = cp_fully_fold (size);
3308 }
3309 invalid_array_size_error (input_location, error, size,
3310 /*name=*/NULL_TREE);
3311 }
3312 return error_mark_node;
3313 }
3314
3315 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
3316 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
3317
3318 size = build2 (MULT_EXPR, sizetype, size, nelts);
3319
3320 if (TREE_CODE (cst_outer_nelts) == INTEGER_CST)
3321 {
3322 if (tree_int_cst_lt (max_outer_nelts_tree, cst_outer_nelts))
3323 {
3324 /* When the array size is constant, check it at compile time
3325 to make sure it doesn't exceed the implementation-defined
3326 maximum, as required by C++ 14 (in C++ 11 this requirement
3327 isn't explicitly stated but it's enforced anyway -- see
3328 grokdeclarator in cp/decl.cc). */
3329 if (complain & tf_error)
3330 {
3331 size = cp_fully_fold (size);
3332 invalid_array_size_error (input_location, cst_size_too_big,
3333 size, NULL_TREE);
3334 }
3335 return error_mark_node;
3336 }
3337 }
3338 else
3339 {
3340 /* When a runtime check is necessary because the array size
3341 isn't constant, keep only the top-most seven bits (starting
3342 with the most significant non-zero bit) of the maximum size
3343 to compare the array size against, to simplify encoding the
3344 constant maximum size in the instruction stream. */
3345
3346 unsigned shift = (max_outer_nelts.get_precision ()) - 7
3347 - wi::clz (max_outer_nelts);
3348 max_outer_nelts = (max_outer_nelts >> shift) << shift;
3349
3350 outer_nelts_check = build2 (LE_EXPR, boolean_type_node,
3351 outer_nelts,
3352 max_outer_nelts_tree);
3353 }
3354 }
3355
3356 tree align_arg = NULL_TREE;
3357 if (type_has_new_extended_alignment (elt_type))
3358 {
3359 unsigned align = TYPE_ALIGN_UNIT (elt_type);
3360 /* Also consider the alignment of the cookie, if any. */
3361 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3362 align = MAX (align, TYPE_ALIGN_UNIT (size_type_node));
3363 align_arg = build_int_cst (align_type_node, align);
3364 }
3365
3366 alloc_fn = NULL_TREE;
3367
3368 /* If PLACEMENT is a single simple pointer type not passed by
3369 reference, prepare to capture it in a temporary variable. Do
3370 this now, since PLACEMENT will change in the calls below. */
3371 placement_first = NULL_TREE;
3372 if (vec_safe_length (*placement) == 1
3373 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
3374 placement_first = (**placement)[0];
3375
3376 bool member_new_p = false;
3377
3378 /* Allocate the object. */
3379 tree fnname;
3380 tree fns;
3381
3382 fnname = ovl_op_identifier (false, array_p ? VEC_NEW_EXPR : NEW_EXPR);
3383
3384 member_new_p = !globally_qualified_p
3385 && CLASS_TYPE_P (elt_type)
3386 && (array_p
3387 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
3388 : TYPE_HAS_NEW_OPERATOR (elt_type));
3389
3390 bool member_delete_p = (!globally_qualified_p
3391 && CLASS_TYPE_P (elt_type)
3392 && (array_p
3393 ? TYPE_GETS_VEC_DELETE (elt_type)
3394 : TYPE_GETS_REG_DELETE (elt_type)));
3395
3396 if (member_new_p)
3397 {
3398 /* Use a class-specific operator new. */
3399 /* If a cookie is required, add some extra space. */
3400 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3401 size = build2 (PLUS_EXPR, sizetype, size, cookie_size);
3402 else
3403 {
3404 cookie_size = NULL_TREE;
3405 /* No size arithmetic necessary, so the size check is
3406 not needed. */
3407 if (outer_nelts_check != NULL && inner_size == 1)
3408 outer_nelts_check = NULL_TREE;
3409 }
3410 /* Perform the overflow check. */
3411 tree errval = TYPE_MAX_VALUE (sizetype);
3412 if (cxx_dialect >= cxx11 && flag_exceptions)
3413 errval = throw_bad_array_new_length ();
3414 if (outer_nelts_check != NULL_TREE)
3415 size = build3 (COND_EXPR, sizetype, outer_nelts_check, size, errval);
3416 size = fold_to_constant (size);
3417 /* Create the argument list. */
3418 vec_safe_insert (*placement, 0, size);
3419 /* Do name-lookup to find the appropriate operator. */
3420 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2, complain);
3421 if (fns == NULL_TREE)
3422 {
3423 if (complain & tf_error)
3424 error ("no suitable %qD found in class %qT", fnname, elt_type);
3425 return error_mark_node;
3426 }
3427 if (TREE_CODE (fns) == TREE_LIST)
3428 {
3429 if (complain & tf_error)
3430 {
3431 auto_diagnostic_group d;
3432 error ("request for member %qD is ambiguous", fnname);
3433 print_candidates (fns);
3434 }
3435 return error_mark_node;
3436 }
3437 tree dummy = build_dummy_object (elt_type);
3438 alloc_call = NULL_TREE;
3439 if (align_arg)
3440 {
3441 vec<tree, va_gc> *align_args
3442 = vec_copy_and_insert (*placement, align_arg, 1);
3443 alloc_call
3444 = build_new_method_call (dummy, fns, &align_args,
3445 /*conversion_path=*/NULL_TREE,
3446 LOOKUP_NORMAL, &alloc_fn, tf_none);
3447 /* If no matching function is found and the allocated object type
3448 has new-extended alignment, the alignment argument is removed
3449 from the argument list, and overload resolution is performed
3450 again. */
3451 if (alloc_call == error_mark_node)
3452 alloc_call = NULL_TREE;
3453 }
3454 if (!alloc_call)
3455 alloc_call = build_new_method_call (dummy, fns, placement,
3456 /*conversion_path=*/NULL_TREE,
3457 LOOKUP_NORMAL,
3458 &alloc_fn, complain);
3459 }
3460 else
3461 {
3462 /* Use a global operator new. */
3463 /* See if a cookie might be required. */
3464 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3465 {
3466 cookie_size = NULL_TREE;
3467 /* No size arithmetic necessary, so the size check is
3468 not needed. */
3469 if (outer_nelts_check != NULL && inner_size == 1)
3470 outer_nelts_check = NULL_TREE;
3471 }
3472
3473 size = fold_to_constant (size);
3474 /* If size is zero e.g. due to type having zero size, try to
3475 preserve outer_nelts for constant expression evaluation
3476 purposes. */
3477 if (integer_zerop (size) && outer_nelts)
3478 size = build2 (MULT_EXPR, TREE_TYPE (size), size, outer_nelts);
3479
3480 alloc_call = build_operator_new_call (fnname, placement,
3481 &size, &cookie_size,
3482 align_arg, outer_nelts_check,
3483 &alloc_fn, complain);
3484 }
3485
3486 if (alloc_call == error_mark_node)
3487 return error_mark_node;
3488
3489 gcc_assert (alloc_fn != NULL_TREE);
3490
3491 /* Now, check to see if this function is actually a placement
3492 allocation function. This can happen even when PLACEMENT is NULL
3493 because we might have something like:
3494
3495 struct S { void* operator new (size_t, int i = 0); };
3496
3497 A call to `new S' will get this allocation function, even though
3498 there is no explicit placement argument. If there is more than
3499 one argument, or there are variable arguments, then this is a
3500 placement allocation function. */
3501 placement_allocation_fn_p
3502 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3503 || varargs_function_p (alloc_fn));
3504
3505 if (complain & tf_warning_or_error
3506 && warn_aligned_new
3507 && !placement_allocation_fn_p
3508 && TYPE_ALIGN (elt_type) > malloc_alignment ()
3509 && (warn_aligned_new > 1
3510 || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3511 && !aligned_allocation_fn_p (alloc_fn))
3512 {
3513 auto_diagnostic_group d;
3514 if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3515 "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type)))
3516 {
3517 inform (input_location, "uses %qD, which does not have an alignment "
3518 "parameter", alloc_fn);
3519 if (!aligned_new_threshold)
3520 inform (input_location, "use %<-faligned-new%> to enable C++17 "
3521 "over-aligned new support");
3522 }
3523 }
3524
3525 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3526 into a temporary variable. */
3527 if (!processing_template_decl
3528 && TREE_CODE (alloc_call) == CALL_EXPR
3529 && call_expr_nargs (alloc_call) == 2
3530 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3531 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3532 {
3533 tree placement = CALL_EXPR_ARG (alloc_call, 1);
3534
3535 if (placement_first != NULL_TREE
3536 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3537 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3538 {
3539 placement_expr = get_internal_target_expr (placement_first);
3540 CALL_EXPR_ARG (alloc_call, 1)
3541 = fold_convert (TREE_TYPE (placement), placement_expr);
3542 }
3543
3544 if (!member_new_p
3545 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3546 {
3547 /* Attempt to make the warning point at the operator new argument. */
3548 if (placement_first)
3549 placement = placement_first;
3550
3551 warn_placement_new_too_small (orig_type, nelts, size, placement);
3552 }
3553 }
3554
3555 alloc_expr = alloc_call;
3556 if (cookie_size)
3557 alloc_expr = maybe_wrap_new_for_constexpr (alloc_expr, type,
3558 cookie_size);
3559
3560 /* In the simple case, we can stop now. */
3561 pointer_type = build_pointer_type (type);
3562 if (!cookie_size && !is_initialized && !member_delete_p)
3563 return build_nop (pointer_type, alloc_expr);
3564
3565 /* Store the result of the allocation call in a variable so that we can
3566 use it more than once. */
3567 alloc_expr = get_internal_target_expr (alloc_expr);
3568 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3569
3570 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3571 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3572 alloc_call = TREE_OPERAND (alloc_call, 1);
3573
3574 /* Preevaluate the placement args so that we don't reevaluate them for a
3575 placement delete. */
3576 if (placement_allocation_fn_p)
3577 {
3578 tree inits;
3579 stabilize_call (alloc_call, &inits);
3580 if (inits)
3581 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3582 alloc_expr);
3583 }
3584
3585 /* unless an allocation function is declared with an empty excep-
3586 tion-specification (_except.spec_), throw(), it indicates failure to
3587 allocate storage by throwing a bad_alloc exception (clause _except_,
3588 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3589 cation function is declared with an empty exception-specification,
3590 throw(), it returns null to indicate failure to allocate storage and a
3591 non-null pointer otherwise.
3592
3593 So check for a null exception spec on the op new we just called. */
3594
3595 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3596 check_new
3597 = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn));
3598
3599 if (cookie_size)
3600 {
3601 tree cookie;
3602 tree cookie_ptr;
3603 tree size_ptr_type;
3604
3605 /* Adjust so we're pointing to the start of the object. */
3606 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3607
3608 /* Store the number of bytes allocated so that we can know how
3609 many elements to destroy later. We use the last sizeof
3610 (size_t) bytes to store the number of elements. */
3611 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3612 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3613 alloc_node, cookie_ptr);
3614 size_ptr_type = build_pointer_type (sizetype);
3615 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3616 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3617
3618 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3619
3620 if (targetm.cxx.cookie_has_size ())
3621 {
3622 /* Also store the element size. */
3623 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3624 fold_build1_loc (input_location,
3625 NEGATE_EXPR, sizetype,
3626 size_in_bytes (sizetype)));
3627
3628 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3629 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3630 size_in_bytes (elt_type));
3631 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3632 cookie, cookie_expr);
3633 }
3634 }
3635 else
3636 {
3637 cookie_expr = NULL_TREE;
3638 data_addr = alloc_node;
3639 }
3640
3641 /* Now use a pointer to the type we've actually allocated. */
3642
3643 /* But we want to operate on a non-const version to start with,
3644 since we'll be modifying the elements. */
3645 non_const_pointer_type = build_pointer_type
3646 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3647
3648 data_addr = fold_convert (non_const_pointer_type, data_addr);
3649 /* Any further uses of alloc_node will want this type, too. */
3650 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3651
3652 /* Now initialize the allocated object. Note that we preevaluate the
3653 initialization expression, apart from the actual constructor call or
3654 assignment--we do this because we want to delay the allocation as long
3655 as possible in order to minimize the size of the exception region for
3656 placement delete. */
3657 if (is_initialized)
3658 {
3659 bool explicit_value_init_p = false;
3660
3661 if (*init != NULL && (*init)->is_empty ())
3662 {
3663 *init = NULL;
3664 explicit_value_init_p = true;
3665 }
3666
3667 if (processing_template_decl)
3668 {
3669 /* Avoid an ICE when converting to a base in build_simple_base_path.
3670 We'll throw this all away anyway, and build_new will create
3671 a NEW_EXPR. */
3672 tree t = fold_convert (build_pointer_type (elt_type), data_addr);
3673 /* build_value_init doesn't work in templates, and we don't need
3674 the initializer anyway since we're going to throw it away and
3675 rebuild it at instantiation time, so just build up a single
3676 constructor call to get any appropriate diagnostics. */
3677 init_expr = cp_build_fold_indirect_ref (t);
3678 if (type_build_ctor_call (elt_type))
3679 init_expr = build_special_member_call (init_expr,
3680 complete_ctor_identifier,
3681 init, elt_type,
3682 LOOKUP_NORMAL,
3683 complain);
3684 }
3685 else if (array_p)
3686 {
3687 tree vecinit = NULL_TREE;
3688 const size_t len = vec_safe_length (*init);
3689 if (len == 1 && DIRECT_LIST_INIT_P ((**init)[0]))
3690 {
3691 vecinit = (**init)[0];
3692 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3693 /* List-value-initialization, leave it alone. */;
3694 else
3695 {
3696 tree arraytype, domain;
3697 if (TREE_CONSTANT (nelts))
3698 domain = compute_array_index_type (NULL_TREE, nelts,
3699 complain);
3700 else
3701 /* We'll check the length at runtime. */
3702 domain = NULL_TREE;
3703 arraytype = build_cplus_array_type (type, domain);
3704 /* If we have new char[4]{"foo"}, we have to reshape
3705 so that the STRING_CST isn't wrapped in { }. */
3706 vecinit = reshape_init (arraytype, vecinit, complain);
3707 /* The middle end doesn't cope with the location wrapper
3708 around a STRING_CST. */
3709 STRIP_ANY_LOCATION_WRAPPER (vecinit);
3710 vecinit = digest_init (arraytype, vecinit, complain);
3711 }
3712 }
3713 else if (*init)
3714 {
3715 if (complain & tf_error)
3716 error ("parenthesized initializer in array new");
3717 return error_mark_node;
3718 }
3719
3720 /* Collect flags for disabling subobject cleanups once the complete
3721 object is fully constructed. */
3722 vec<tree, va_gc> *flags = make_tree_vector ();
3723
3724 init_expr
3725 = build_vec_init (data_addr,
3726 cp_build_binary_op (input_location,
3727 MINUS_EXPR, outer_nelts,
3728 integer_one_node,
3729 complain),
3730 vecinit,
3731 explicit_value_init_p,
3732 /*from_array=*/0,
3733 complain,
3734 &flags);
3735
3736 for (tree f : flags)
3737 {
3738 tree cl = build_disable_temp_cleanup (f);
3739 cl = convert_to_void (cl, ICV_STATEMENT, complain);
3740 init_expr = build2 (COMPOUND_EXPR, void_type_node,
3741 init_expr, cl);
3742 }
3743 release_tree_vector (flags);
3744 }
3745 else
3746 {
3747 init_expr = cp_build_fold_indirect_ref (data_addr);
3748
3749 if (type_build_ctor_call (type) && !explicit_value_init_p)
3750 {
3751 init_expr = build_special_member_call (init_expr,
3752 complete_ctor_identifier,
3753 init, elt_type,
3754 LOOKUP_NORMAL,
3755 complain|tf_no_cleanup);
3756 }
3757 else if (explicit_value_init_p)
3758 {
3759 /* Something like `new int()'. NO_CLEANUP is needed so
3760 we don't try and build a (possibly ill-formed)
3761 destructor. */
3762 tree val = build_value_init (type, complain | tf_no_cleanup);
3763 if (val == error_mark_node)
3764 return error_mark_node;
3765 init_expr = cp_build_init_expr (init_expr, val);
3766 }
3767 else
3768 {
3769 tree ie;
3770
3771 /* We are processing something like `new int (10)', which
3772 means allocate an int, and initialize it with 10.
3773
3774 In C++20, also handle `new A(1, 2)'. */
3775 if (cxx_dialect >= cxx20
3776 && AGGREGATE_TYPE_P (type)
3777 && (*init)->length () > 1)
3778 {
3779 ie = build_constructor_from_vec (init_list_type_node, *init);
3780 CONSTRUCTOR_IS_DIRECT_INIT (ie) = true;
3781 CONSTRUCTOR_IS_PAREN_INIT (ie) = true;
3782 ie = digest_init (type, ie, complain);
3783 }
3784 else
3785 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3786 complain);
3787 init_expr = cp_build_modify_expr (input_location, init_expr,
3788 INIT_EXPR, ie, complain);
3789 }
3790 /* If the initializer uses C++14 aggregate NSDMI that refer to the
3791 object being initialized, replace them now and don't try to
3792 preevaluate. */
3793 bool had_placeholder = false;
3794 if (!processing_template_decl
3795 && TREE_CODE (init_expr) == INIT_EXPR)
3796 TREE_OPERAND (init_expr, 1)
3797 = replace_placeholders (TREE_OPERAND (init_expr, 1),
3798 TREE_OPERAND (init_expr, 0),
3799 &had_placeholder);
3800 }
3801
3802 if (init_expr == error_mark_node)
3803 return error_mark_node;
3804 }
3805 else
3806 init_expr = NULL_TREE;
3807
3808 /* If any part of the object initialization terminates by throwing an
3809 exception and a suitable deallocation function can be found, the
3810 deallocation function is called to free the memory in which the
3811 object was being constructed, after which the exception continues
3812 to propagate in the context of the new-expression. If no
3813 unambiguous matching deallocation function can be found,
3814 propagating the exception does not cause the object's memory to be
3815 freed. */
3816 if (flag_exceptions && (init_expr || member_delete_p))
3817 {
3818 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3819 tree cleanup;
3820
3821 /* The Standard is unclear here, but the right thing to do
3822 is to use the same method for finding deallocation
3823 functions that we use for finding allocation functions. */
3824 cleanup = (build_op_delete_call
3825 (dcode,
3826 alloc_node,
3827 size,
3828 globally_qualified_p,
3829 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3830 alloc_fn,
3831 complain));
3832
3833 if (cleanup && init_expr && !processing_template_decl)
3834 /* Ack! First we allocate the memory. Then we set our sentry
3835 variable to true, and expand a cleanup that deletes the
3836 memory if sentry is true. Then we run the constructor, and
3837 finally clear the sentry.
3838
3839 We need to do this because we allocate the space first, so
3840 if there are any temporaries with cleanups in the
3841 constructor args, we need this EH region to extend until
3842 end of full-expression to preserve nesting.
3843
3844 We used to try to evaluate the args first to avoid this, but
3845 since C++17 [expr.new] says that "The invocation of the
3846 allocation function is sequenced before the evaluations of
3847 expressions in the new-initializer." */
3848 {
3849 tree end, sentry, begin;
3850
3851 begin = get_internal_target_expr (boolean_true_node);
3852
3853 sentry = TARGET_EXPR_SLOT (begin);
3854
3855 /* CLEANUP is compiler-generated, so no diagnostics. */
3856 suppress_warning (cleanup);
3857
3858 TARGET_EXPR_CLEANUP (begin)
3859 = build3 (COND_EXPR, void_type_node, sentry,
3860 cleanup, void_node);
3861
3862 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3863 sentry, boolean_false_node);
3864
3865 init_expr
3866 = build2 (COMPOUND_EXPR, void_type_node, begin,
3867 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3868 end));
3869 /* Likewise, this is compiler-generated. */
3870 suppress_warning (init_expr);
3871 }
3872 }
3873
3874 /* Now build up the return value in reverse order. */
3875
3876 rval = data_addr;
3877
3878 if (init_expr)
3879 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3880 if (cookie_expr)
3881 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3882
3883 suppress_warning (rval, OPT_Wunused_value);
3884
3885 if (rval == data_addr && TREE_CODE (alloc_expr) == TARGET_EXPR)
3886 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3887 and return the call (which doesn't need to be adjusted). */
3888 rval = TARGET_EXPR_INITIAL (alloc_expr);
3889 else
3890 {
3891 if (check_new)
3892 {
3893 tree ifexp = cp_build_binary_op (input_location,
3894 NE_EXPR, alloc_node,
3895 nullptr_node,
3896 complain);
3897 rval = build_conditional_expr (input_location, ifexp, rval,
3898 alloc_node, complain);
3899 }
3900
3901 /* Perform the allocation before anything else, so that ALLOC_NODE
3902 has been initialized before we start using it. */
3903 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3904 }
3905
3906 /* A new-expression is never an lvalue. */
3907 gcc_assert (!obvalue_p (rval));
3908
3909 return convert (pointer_type, rval);
3910 }
3911
3912 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3913 is a vector of placement-new arguments (or NULL if none). If NELTS
3914 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3915 is not NULL, then this is an array-new allocation; TYPE is the type
3916 of the elements in the array and NELTS is the number of elements in
3917 the array. *INIT, if non-NULL, is the initializer for the new
3918 object, or an empty vector to indicate an initializer of "()". If
3919 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3920 rather than just "new". This may change PLACEMENT and INIT. */
3921
3922 tree
3923 build_new (location_t loc, vec<tree, va_gc> **placement, tree type,
3924 tree nelts, vec<tree, va_gc> **init, int use_global_new,
3925 tsubst_flags_t complain)
3926 {
3927 tree rval;
3928 vec<tree, va_gc> *orig_placement = NULL;
3929 tree orig_nelts = NULL_TREE;
3930 vec<tree, va_gc> *orig_init = NULL;
3931
3932 if (type == error_mark_node)
3933 return error_mark_node;
3934
3935 if (nelts == NULL_TREE
3936 /* Don't do auto deduction where it might affect mangling. */
3937 && (!processing_template_decl || at_function_scope_p ()))
3938 {
3939 tree auto_node = type_uses_auto (type);
3940 if (auto_node)
3941 {
3942 tree d_init = NULL_TREE;
3943 const size_t len = vec_safe_length (*init);
3944 /* E.g. new auto(x) must have exactly one element, or
3945 a {} initializer will have one element. */
3946 if (len == 1)
3947 {
3948 d_init = (**init)[0];
3949 d_init = resolve_nondeduced_context (d_init, complain);
3950 }
3951 /* For the rest, e.g. new A(1, 2, 3), create a list. */
3952 else if (len > 1)
3953 {
3954 unsigned int n;
3955 tree t;
3956 tree *pp = &d_init;
3957 FOR_EACH_VEC_ELT (**init, n, t)
3958 {
3959 t = resolve_nondeduced_context (t, complain);
3960 *pp = build_tree_list (NULL_TREE, t);
3961 pp = &TREE_CHAIN (*pp);
3962 }
3963 }
3964 type = do_auto_deduction (type, d_init, auto_node, complain);
3965 }
3966 }
3967
3968 if (processing_template_decl)
3969 {
3970 if (dependent_type_p (type)
3971 || any_type_dependent_arguments_p (*placement)
3972 || (nelts && type_dependent_expression_p (nelts))
3973 || (nelts && *init)
3974 || any_type_dependent_arguments_p (*init))
3975 return build_raw_new_expr (loc, *placement, type, nelts, *init,
3976 use_global_new);
3977
3978 orig_placement = make_tree_vector_copy (*placement);
3979 orig_nelts = nelts;
3980 if (*init)
3981 {
3982 orig_init = make_tree_vector_copy (*init);
3983 /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3984 digest_init clobber them in place. */
3985 for (unsigned i = 0; i < orig_init->length(); ++i)
3986 {
3987 tree e = (**init)[i];
3988 if (TREE_CODE (e) == CONSTRUCTOR)
3989 (**init)[i] = copy_node (e);
3990 }
3991 }
3992 }
3993
3994 if (nelts)
3995 {
3996 location_t nelts_loc = cp_expr_loc_or_loc (nelts, loc);
3997 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3998 {
3999 if (complain & tf_error)
4000 permerror (nelts_loc,
4001 "size in array new must have integral type");
4002 else
4003 return error_mark_node;
4004 }
4005
4006 /* Try to determine the constant value only for the purposes
4007 of the diagnostic below but continue to use the original
4008 value and handle const folding later. */
4009 const_tree cst_nelts = fold_non_dependent_expr (nelts, complain);
4010
4011 /* The expression in a noptr-new-declarator is erroneous if it's of
4012 non-class type and its value before converting to std::size_t is
4013 less than zero. ... If the expression is a constant expression,
4014 the program is ill-fomed. */
4015 if (TREE_CODE (cst_nelts) == INTEGER_CST
4016 && !valid_array_size_p (nelts_loc, cst_nelts, NULL_TREE,
4017 complain & tf_error))
4018 return error_mark_node;
4019
4020 nelts = mark_rvalue_use (nelts);
4021 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
4022 }
4023
4024 /* ``A reference cannot be created by the new operator. A reference
4025 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
4026 returned by new.'' ARM 5.3.3 */
4027 if (TYPE_REF_P (type))
4028 {
4029 if (complain & tf_error)
4030 error_at (loc, "new cannot be applied to a reference type");
4031 else
4032 return error_mark_node;
4033 type = TREE_TYPE (type);
4034 }
4035
4036 if (TREE_CODE (type) == FUNCTION_TYPE)
4037 {
4038 if (complain & tf_error)
4039 error_at (loc, "new cannot be applied to a function type");
4040 return error_mark_node;
4041 }
4042
4043 /* P1009: Array size deduction in new-expressions. */
4044 const bool array_p = TREE_CODE (type) == ARRAY_TYPE;
4045 if (*init
4046 /* If the array didn't specify its bound, we have to deduce it. */
4047 && ((array_p && !TYPE_DOMAIN (type))
4048 /* For C++20 array with parenthesized-init, we have to process
4049 the parenthesized-list. But don't do it for (), which is
4050 value-initialization, and INIT should stay empty. */
4051 || (cxx_dialect >= cxx20
4052 && (array_p || nelts)
4053 && !(*init)->is_empty ())))
4054 {
4055 /* This means we have 'new T[]()'. */
4056 if ((*init)->is_empty ())
4057 {
4058 tree ctor = build_constructor (init_list_type_node, NULL);
4059 CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true;
4060 vec_safe_push (*init, ctor);
4061 }
4062 tree &elt = (**init)[0];
4063 /* The C++20 'new T[](e_0, ..., e_k)' case allowed by P0960. */
4064 if (!DIRECT_LIST_INIT_P (elt) && cxx_dialect >= cxx20)
4065 {
4066 tree ctor = build_constructor_from_vec (init_list_type_node, *init);
4067 CONSTRUCTOR_IS_DIRECT_INIT (ctor) = true;
4068 CONSTRUCTOR_IS_PAREN_INIT (ctor) = true;
4069 elt = ctor;
4070 /* We've squashed all the vector elements into the first one;
4071 truncate the rest. */
4072 (*init)->truncate (1);
4073 }
4074 /* Otherwise we should have 'new T[]{e_0, ..., e_k}'. */
4075 if (array_p && !TYPE_DOMAIN (type))
4076 {
4077 /* We need to reshape before deducing the bounds to handle code like
4078
4079 struct S { int x, y; };
4080 new S[]{1, 2, 3, 4};
4081
4082 which should deduce S[2]. But don't change ELT itself: we want to
4083 pass a list-initializer to build_new_1, even for STRING_CSTs. */
4084 tree e = elt;
4085 if (BRACE_ENCLOSED_INITIALIZER_P (e))
4086 e = reshape_init (type, e, complain);
4087 cp_complete_array_type (&type, e, /*do_default*/false);
4088 }
4089 }
4090
4091 /* The type allocated must be complete. If the new-type-id was
4092 "T[N]" then we are just checking that "T" is complete here, but
4093 that is equivalent, since the value of "N" doesn't matter. */
4094 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
4095 return error_mark_node;
4096
4097 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
4098 if (rval == error_mark_node)
4099 return error_mark_node;
4100
4101 if (processing_template_decl)
4102 {
4103 tree ret = build_raw_new_expr (loc, orig_placement, type, orig_nelts,
4104 orig_init, use_global_new);
4105 release_tree_vector (orig_placement);
4106 release_tree_vector (orig_init);
4107 return ret;
4108 }
4109
4110 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
4111 rval = build1_loc (loc, NOP_EXPR, TREE_TYPE (rval), rval);
4112 suppress_warning (rval, OPT_Wunused_value);
4113
4114 return rval;
4115 }
4116 \f
4117 static tree
4118 build_vec_delete_1 (location_t loc, tree base, tree maxindex, tree type,
4119 special_function_kind auto_delete_vec,
4120 int use_global_delete, tsubst_flags_t complain,
4121 bool in_cleanup = false)
4122 {
4123 tree virtual_size;
4124 tree ptype = build_pointer_type (type = complete_type (type));
4125 tree size_exp;
4126
4127 /* Temporary variables used by the loop. */
4128 tree tbase, tbase_init;
4129
4130 /* This is the body of the loop that implements the deletion of a
4131 single element, and moves temp variables to next elements. */
4132 tree body;
4133
4134 /* This is the LOOP_EXPR that governs the deletion of the elements. */
4135 tree loop = 0;
4136
4137 /* This is the thing that governs what to do after the loop has run. */
4138 tree deallocate_expr = 0;
4139
4140 /* This is the BIND_EXPR which holds the outermost iterator of the
4141 loop. It is convenient to set this variable up and test it before
4142 executing any other code in the loop.
4143 This is also the containing expression returned by this function. */
4144 tree controller = NULL_TREE;
4145 tree tmp;
4146
4147 /* We should only have 1-D arrays here. */
4148 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
4149
4150 if (base == error_mark_node || maxindex == error_mark_node)
4151 return error_mark_node;
4152
4153 if (!verify_type_context (loc, TCTX_DEALLOCATION, type,
4154 !(complain & tf_error)))
4155 return error_mark_node;
4156
4157 if (!COMPLETE_TYPE_P (type))
4158 {
4159 if (cxx_dialect > cxx23)
4160 {
4161 if (complain & tf_error)
4162 {
4163 auto_diagnostic_group d;
4164 int saved_errorcount = errorcount;
4165 if (permerror_opt (loc, OPT_Wdelete_incomplete,
4166 "operator %<delete []%> used on "
4167 "incomplete type"))
4168 {
4169 cxx_incomplete_type_inform (type);
4170 if (errorcount != saved_errorcount)
4171 return error_mark_node;
4172 }
4173 }
4174 else
4175 return error_mark_node;
4176 }
4177 else if (complain & tf_warning)
4178 {
4179 auto_diagnostic_group d;
4180 if (warning_at (loc, OPT_Wdelete_incomplete,
4181 "possible problem detected in invocation of "
4182 "operator %<delete []%>"))
4183 {
4184 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
4185 inform (loc, "neither the destructor nor the "
4186 "class-specific operator %<delete []%> will be called, "
4187 "even if they are declared when the class is defined");
4188 }
4189 }
4190 /* This size won't actually be used. */
4191 size_exp = size_one_node;
4192 goto no_destructor;
4193 }
4194
4195 size_exp = size_in_bytes (type);
4196
4197 if (! MAYBE_CLASS_TYPE_P (type))
4198 goto no_destructor;
4199 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4200 {
4201 /* Make sure the destructor is callable. */
4202 if (type_build_dtor_call (type))
4203 {
4204 tmp = build_delete (loc, ptype, base, sfk_complete_destructor,
4205 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR|LOOKUP_NONVIRTUAL,
4206 1, complain);
4207 if (tmp == error_mark_node)
4208 return error_mark_node;
4209 }
4210 goto no_destructor;
4211 }
4212
4213 /* The below is short by the cookie size. */
4214 virtual_size = size_binop (MULT_EXPR, size_exp,
4215 fold_convert (sizetype, maxindex));
4216
4217 tbase = create_temporary_var (ptype);
4218 DECL_INITIAL (tbase)
4219 = fold_build_pointer_plus_loc (loc, fold_convert (ptype, base),
4220 virtual_size);
4221 tbase_init = build_stmt (loc, DECL_EXPR, tbase);
4222 controller = build3 (BIND_EXPR, void_type_node, tbase, NULL_TREE, NULL_TREE);
4223 TREE_SIDE_EFFECTS (controller) = 1;
4224 BIND_EXPR_VEC_DTOR (controller) = true;
4225
4226 body = build1 (EXIT_EXPR, void_type_node,
4227 build2 (EQ_EXPR, boolean_type_node, tbase,
4228 fold_convert (ptype, base)));
4229 tmp = fold_build1_loc (loc, NEGATE_EXPR, sizetype, size_exp);
4230 tmp = fold_build_pointer_plus (tbase, tmp);
4231 tmp = cp_build_modify_expr (loc, tbase, NOP_EXPR, tmp, complain);
4232 if (tmp == error_mark_node)
4233 return error_mark_node;
4234 body = build_compound_expr (loc, body, tmp);
4235 /* [expr.delete]/3: "In an array delete expression, if the dynamic type of
4236 the object to be deleted is not similar to its static type, the behavior
4237 is undefined." So we can set LOOKUP_NONVIRTUAL. */
4238 tmp = build_delete (loc, ptype, tbase, sfk_complete_destructor,
4239 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR|LOOKUP_NONVIRTUAL,
4240 1, complain);
4241 if (tmp == error_mark_node)
4242 return error_mark_node;
4243 body = build_compound_expr (loc, body, tmp);
4244
4245 loop = build1 (LOOP_EXPR, void_type_node, body);
4246
4247 /* If one destructor throws, keep trying to clean up the rest, unless we're
4248 already in a build_vec_init cleanup. */
4249 if (flag_exceptions && !in_cleanup && !processing_template_decl
4250 && !expr_noexcept_p (tmp, tf_none))
4251 {
4252 loop = build2 (TRY_CATCH_EXPR, void_type_node, loop,
4253 unshare_expr (loop));
4254 /* Tell honor_protect_cleanup_actions to discard this on the
4255 exceptional path. */
4256 TRY_CATCH_IS_CLEANUP (loop) = true;
4257 }
4258
4259 loop = build_compound_expr (loc, tbase_init, loop);
4260
4261 no_destructor:
4262 /* Delete the storage if appropriate. */
4263 if (auto_delete_vec == sfk_deleting_destructor)
4264 {
4265 tree base_tbd;
4266
4267 /* The below is short by the cookie size. */
4268 virtual_size = size_binop (MULT_EXPR, size_exp,
4269 fold_convert (sizetype, maxindex));
4270
4271 if (! TYPE_VEC_NEW_USES_COOKIE (type))
4272 /* no header */
4273 base_tbd = base;
4274 else
4275 {
4276 tree cookie_size;
4277
4278 cookie_size = targetm.cxx.get_cookie_size (type);
4279 base_tbd = cp_build_binary_op (loc,
4280 MINUS_EXPR,
4281 cp_convert (string_type_node,
4282 base, complain),
4283 cookie_size,
4284 complain);
4285 if (base_tbd == error_mark_node)
4286 return error_mark_node;
4287 base_tbd = cp_convert (ptype, base_tbd, complain);
4288 /* True size with header. */
4289 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
4290 }
4291
4292 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
4293 base_tbd, virtual_size,
4294 use_global_delete & 1,
4295 /*placement=*/NULL_TREE,
4296 /*alloc_fn=*/NULL_TREE,
4297 complain);
4298 }
4299
4300 body = loop;
4301 if (deallocate_expr == error_mark_node)
4302 return error_mark_node;
4303 else if (!deallocate_expr)
4304 ;
4305 else if (!body)
4306 body = deallocate_expr;
4307 else
4308 /* The delete operator must be called, even if a destructor
4309 throws. */
4310 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
4311
4312 if (!body)
4313 body = integer_zero_node;
4314
4315 /* Outermost wrapper: If pointer is null, punt. */
4316 tree cond = build2_loc (loc, NE_EXPR, boolean_type_node, base,
4317 fold_convert (TREE_TYPE (base), nullptr_node));
4318 /* This is a compiler generated comparison, don't emit
4319 e.g. -Wnonnull-compare warning for it. */
4320 suppress_warning (cond, OPT_Wnonnull_compare);
4321 body = build3_loc (loc, COND_EXPR, void_type_node,
4322 cond, body, integer_zero_node);
4323 COND_EXPR_IS_VEC_DELETE (body) = true;
4324 body = build1 (NOP_EXPR, void_type_node, body);
4325
4326 if (controller)
4327 {
4328 TREE_OPERAND (controller, 1) = body;
4329 body = controller;
4330 }
4331
4332 if (TREE_CODE (base) == SAVE_EXPR)
4333 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
4334 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
4335
4336 return convert_to_void (body, ICV_CAST, complain);
4337 }
4338
4339 /* Create an unnamed variable of the indicated TYPE. */
4340
4341 tree
4342 create_temporary_var (tree type)
4343 {
4344 tree decl;
4345
4346 decl = build_decl (input_location,
4347 VAR_DECL, NULL_TREE, type);
4348 TREE_USED (decl) = 1;
4349 DECL_ARTIFICIAL (decl) = 1;
4350 DECL_IGNORED_P (decl) = 1;
4351 DECL_CONTEXT (decl) = current_function_decl;
4352
4353 return decl;
4354 }
4355
4356 /* Create a new temporary variable of the indicated TYPE, initialized
4357 to INIT.
4358
4359 It is not entered into current_binding_level, because that breaks
4360 things when it comes time to do final cleanups (which take place
4361 "outside" the binding contour of the function). */
4362
4363 tree
4364 get_temp_regvar (tree type, tree init)
4365 {
4366 tree decl;
4367
4368 decl = create_temporary_var (type);
4369 add_decl_expr (decl);
4370
4371 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
4372 init, tf_warning_or_error));
4373
4374 return decl;
4375 }
4376
4377 /* Subroutine of build_vec_init. Returns true if assigning to an array of
4378 INNER_ELT_TYPE from INIT is trivial. */
4379
4380 static bool
4381 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
4382 {
4383 tree fromtype = inner_elt_type;
4384 if (lvalue_p (init))
4385 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
4386 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
4387 }
4388
4389 /* Subroutine of build_vec_init: Check that the array has at least N
4390 elements. Other parameters are local variables in build_vec_init. */
4391
4392 void
4393 finish_length_check (tree atype, tree iterator, tree obase, unsigned n)
4394 {
4395 tree nelts = build_int_cst (ptrdiff_type_node, n - 1);
4396 if (TREE_CODE (atype) != ARRAY_TYPE)
4397 {
4398 if (flag_exceptions)
4399 {
4400 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
4401 nelts);
4402 c = build3 (COND_EXPR, void_type_node, c,
4403 throw_bad_array_new_length (), void_node);
4404 finish_expr_stmt (c);
4405 }
4406 /* Don't check an array new when -fno-exceptions. */
4407 }
4408 else if (sanitize_flags_p (SANITIZE_BOUNDS)
4409 && current_function_decl != NULL_TREE)
4410 {
4411 /* Make sure the last element of the initializer is in bounds. */
4412 finish_expr_stmt
4413 (ubsan_instrument_bounds
4414 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
4415 }
4416 }
4417
4418 /* walk_tree callback to collect temporaries in an expression. */
4419
4420 tree
4421 find_temps_r (tree *tp, int *walk_subtrees, void *data)
4422 {
4423 vec<tree*> &temps = *static_cast<auto_vec<tree*> *>(data);
4424 tree t = *tp;
4425 if (TREE_CODE (t) == TARGET_EXPR
4426 && !TARGET_EXPR_ELIDING_P (t))
4427 temps.safe_push (tp);
4428 else if (TYPE_P (t))
4429 *walk_subtrees = 0;
4430
4431 return NULL_TREE;
4432 }
4433
4434 /* walk_tree callback to collect temporaries in an expression that
4435 are allocator arguments to standard library classes. */
4436
4437 static tree
4438 find_allocator_temps_r (tree *tp, int *walk_subtrees, void *data)
4439 {
4440 vec<tree*> &temps = *static_cast<auto_vec<tree*> *>(data);
4441 tree t = *tp;
4442 if (TYPE_P (t))
4443 {
4444 *walk_subtrees = 0;
4445 return NULL_TREE;
4446 }
4447
4448 /* If this is a call to a constructor for a std:: class, look for
4449 a reference-to-allocator argument. */
4450 tree fn = cp_get_callee_fndecl_nofold (t);
4451 if (fn && DECL_CONSTRUCTOR_P (fn)
4452 && decl_in_std_namespace_p (TYPE_NAME (DECL_CONTEXT (fn))))
4453 {
4454 int nargs = call_expr_nargs (t);
4455 for (int i = 1; i < nargs; ++i)
4456 {
4457 tree arg = get_nth_callarg (t, i);
4458 tree atype = TREE_TYPE (arg);
4459 if (TREE_CODE (atype) == REFERENCE_TYPE
4460 && is_std_allocator (TREE_TYPE (atype)))
4461 {
4462 STRIP_NOPS (arg);
4463 if (TREE_CODE (arg) == ADDR_EXPR)
4464 {
4465 tree *ap = &TREE_OPERAND (arg, 0);
4466 if (TREE_CODE (*ap) == TARGET_EXPR)
4467 temps.safe_push (ap);
4468 }
4469 }
4470 }
4471 }
4472
4473 return NULL_TREE;
4474 }
4475
4476 /* If INIT initializes a standard library class, and involves a temporary
4477 std::allocator<T>, use ALLOC_OBJ for all such temporaries.
4478
4479 Note that this can clobber the input to build_vec_init; no unsharing is
4480 done. To make this safe we use the TARGET_EXPR in all places rather than
4481 pulling out the TARGET_EXPR_SLOT.
4482
4483 Used by build_vec_init when initializing an array of e.g. strings to reuse
4484 the same temporary allocator for all of the strings. We can do this because
4485 std::allocator has no data and the standard library doesn't care about the
4486 address of allocator objects.
4487
4488 ??? Add an attribute to allow users to assert the same property for other
4489 classes, i.e. one object of the type is interchangeable with any other? */
4490
4491 static void
4492 combine_allocator_temps (tree &init, tree &alloc_obj)
4493 {
4494 auto_vec<tree*> temps;
4495 cp_walk_tree_without_duplicates (&init, find_allocator_temps_r, &temps);
4496 for (tree *p : temps)
4497 {
4498 if (!alloc_obj)
4499 alloc_obj = *p;
4500 else
4501 *p = alloc_obj;
4502 }
4503 }
4504
4505 /* `build_vec_init' returns tree structure that performs
4506 initialization of a vector of aggregate types.
4507
4508 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
4509 to the first element, of POINTER_TYPE.
4510 MAXINDEX is the maximum index of the array (one less than the
4511 number of elements). It is only used if BASE is a pointer or
4512 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
4513
4514 INIT is the (possibly NULL) initializer.
4515
4516 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
4517 elements in the array are value-initialized.
4518
4519 FROM_ARRAY is 0 if we should init everything with INIT
4520 (i.e., every element initialized from INIT).
4521 FROM_ARRAY is 1 if we should index into INIT in parallel
4522 with initialization of DECL.
4523 FROM_ARRAY is 2 if we should index into INIT in parallel,
4524 but use assignment instead of initialization. */
4525
4526 tree
4527 build_vec_init (tree base, tree maxindex, tree init,
4528 bool explicit_value_init_p,
4529 int from_array,
4530 tsubst_flags_t complain,
4531 vec<tree, va_gc>** cleanup_flags /* = nullptr */)
4532 {
4533 tree rval;
4534 tree base2 = NULL_TREE;
4535 tree itype = NULL_TREE;
4536 tree iterator;
4537 /* The type of BASE. */
4538 tree atype = TREE_TYPE (base);
4539 /* The type of an element in the array. */
4540 tree type = TREE_TYPE (atype);
4541 /* The element type reached after removing all outer array
4542 types. */
4543 tree inner_elt_type;
4544 /* The type of a pointer to an element in the array. */
4545 tree ptype;
4546 tree stmt_expr;
4547 tree compound_stmt;
4548 int destroy_temps;
4549 HOST_WIDE_INT num_initialized_elts = 0;
4550 bool is_global;
4551 tree obase = base;
4552 bool xvalue = false;
4553 bool errors = false;
4554 location_t loc = (init ? cp_expr_loc_or_input_loc (init)
4555 : location_of (base));
4556
4557 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
4558 maxindex = array_type_nelts_minus_one (atype);
4559
4560 if (maxindex == NULL_TREE || maxindex == error_mark_node)
4561 return error_mark_node;
4562
4563 maxindex = maybe_constant_value (maxindex);
4564 if (explicit_value_init_p)
4565 gcc_assert (!init);
4566
4567 inner_elt_type = strip_array_types (type);
4568
4569 /* Look through the TARGET_EXPR around a compound literal. */
4570 if (init && TREE_CODE (init) == TARGET_EXPR
4571 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
4572 && from_array != 2
4573 && (same_type_ignoring_top_level_qualifiers_p
4574 (TREE_TYPE (init), atype)))
4575 init = TARGET_EXPR_INITIAL (init);
4576
4577 if (tree vi = get_vec_init_expr (init))
4578 init = VEC_INIT_EXPR_INIT (vi);
4579
4580 bool direct_init = false;
4581 if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
4582 && CONSTRUCTOR_NELTS (init) == 1)
4583 {
4584 tree elt = CONSTRUCTOR_ELT (init, 0)->value;
4585 if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE
4586 && TREE_CODE (elt) != VEC_INIT_EXPR)
4587 {
4588 direct_init = DIRECT_LIST_INIT_P (init);
4589 init = elt;
4590 }
4591 }
4592
4593 /* from_array doesn't apply to initialization from CONSTRUCTOR. */
4594 if (init && TREE_CODE (init) == CONSTRUCTOR)
4595 from_array = 0;
4596
4597 /* If we have a braced-init-list or string constant, make sure that the array
4598 is big enough for all the initializers. */
4599 bool length_check = (init
4600 && (TREE_CODE (init) == STRING_CST
4601 || (TREE_CODE (init) == CONSTRUCTOR
4602 && CONSTRUCTOR_NELTS (init) > 0))
4603 && !TREE_CONSTANT (maxindex));
4604
4605 if (init
4606 && TREE_CODE (atype) == ARRAY_TYPE
4607 && TREE_CONSTANT (maxindex)
4608 && !vla_type_p (type)
4609 && (from_array == 2
4610 ? vec_copy_assign_is_trivial (inner_elt_type, init)
4611 : !TYPE_NEEDS_CONSTRUCTING (type))
4612 && ((TREE_CODE (init) == CONSTRUCTOR
4613 && (BRACE_ENCLOSED_INITIALIZER_P (init)
4614 || (same_type_ignoring_top_level_qualifiers_p
4615 (atype, TREE_TYPE (init))))
4616 /* Don't do this if the CONSTRUCTOR might contain something
4617 that might throw and require us to clean up. */
4618 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
4619 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
4620 || from_array))
4621 {
4622 /* Do non-default initialization of trivial arrays resulting from
4623 brace-enclosed initializers. In this case, digest_init and
4624 store_constructor will handle the semantics for us. */
4625
4626 if (BRACE_ENCLOSED_INITIALIZER_P (init))
4627 init = digest_init (atype, init, complain);
4628 stmt_expr = cp_build_init_expr (base, init);
4629 return stmt_expr;
4630 }
4631
4632 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
4633 maxindex = fold_simple (maxindex);
4634
4635 if (TREE_CODE (atype) == ARRAY_TYPE)
4636 {
4637 ptype = build_pointer_type (type);
4638 base = decay_conversion (base, complain);
4639 if (base == error_mark_node)
4640 return error_mark_node;
4641 base = cp_convert (ptype, base, complain);
4642 }
4643 else
4644 ptype = atype;
4645
4646 if (integer_all_onesp (maxindex))
4647 {
4648 /* Shortcut zero element case to avoid unneeded constructor synthesis. */
4649 if (init && TREE_SIDE_EFFECTS (init))
4650 base = build2 (COMPOUND_EXPR, ptype, init, base);
4651 return base;
4652 }
4653
4654 /* The code we are generating looks like:
4655 ({
4656 T* t1 = (T*) base;
4657 T* rval = t1;
4658 ptrdiff_t iterator = maxindex;
4659 try {
4660 for (; iterator != -1; --iterator) {
4661 ... initialize *t1 ...
4662 ++t1;
4663 }
4664 } catch (...) {
4665 ... destroy elements that were constructed ...
4666 }
4667 rval;
4668 })
4669
4670 We can omit the try and catch blocks if we know that the
4671 initialization will never throw an exception, or if the array
4672 elements do not have destructors. We can omit the loop completely if
4673 the elements of the array do not have constructors.
4674
4675 We actually wrap the entire body of the above in a STMT_EXPR, for
4676 tidiness.
4677
4678 When copying from array to another, when the array elements have
4679 only trivial copy constructors, we should use __builtin_memcpy
4680 rather than generating a loop. That way, we could take advantage
4681 of whatever cleverness the back end has for dealing with copies
4682 of blocks of memory. */
4683
4684 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
4685 destroy_temps = stmts_are_full_exprs_p ();
4686 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4687 rval = get_temp_regvar (ptype, base);
4688 base = get_temp_regvar (ptype, rval);
4689 tree iterator_targ = get_internal_target_expr (maxindex);
4690 add_stmt (iterator_targ);
4691 iterator = TARGET_EXPR_SLOT (iterator_targ);
4692
4693 /* If initializing one array from another, initialize element by
4694 element. We rely upon the below calls to do the argument
4695 checking. Evaluate the initializer before entering the try block. */
4696 if (from_array)
4697 {
4698 if (lvalue_kind (init) & clk_rvalueref)
4699 xvalue = true;
4700 if (TREE_CODE (init) == TARGET_EXPR)
4701 {
4702 /* Avoid error in decay_conversion. */
4703 base2 = decay_conversion (TARGET_EXPR_SLOT (init), complain);
4704 base2 = cp_build_compound_expr (init, base2, tf_none);
4705 }
4706 else
4707 base2 = decay_conversion (init, complain);
4708 if (base2 == error_mark_node)
4709 return error_mark_node;
4710 itype = TREE_TYPE (base2);
4711 base2 = get_temp_regvar (itype, base2);
4712 itype = TREE_TYPE (itype);
4713 }
4714
4715 /* Protect the entire array initialization so that we can destroy
4716 the partially constructed array if an exception is thrown.
4717 But don't do this if we're assigning. */
4718 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4719 && from_array != 2)
4720 {
4721 tree e;
4722 tree m = cp_build_binary_op (input_location,
4723 MINUS_EXPR, maxindex, iterator,
4724 complain);
4725
4726 /* Flatten multi-dimensional array since build_vec_delete only
4727 expects one-dimensional array. */
4728 if (TREE_CODE (type) == ARRAY_TYPE)
4729 m = cp_build_binary_op (input_location,
4730 MULT_EXPR, m,
4731 /* Avoid mixing signed and unsigned. */
4732 convert (TREE_TYPE (m),
4733 array_type_nelts_total (type)),
4734 complain);
4735
4736 e = build_vec_delete_1 (input_location, rval, m,
4737 inner_elt_type, sfk_complete_destructor,
4738 /*use_global_delete=*/0, complain,
4739 /*in_cleanup*/true);
4740 if (e == error_mark_node)
4741 errors = true;
4742 TARGET_EXPR_CLEANUP (iterator_targ) = e;
4743 CLEANUP_EH_ONLY (iterator_targ) = true;
4744
4745 /* Since we push this cleanup before doing any initialization, cleanups
4746 for any temporaries in the initialization are naturally within our
4747 cleanup region, so we don't want wrap_temporary_cleanups to do
4748 anything for arrays. But if the array is a subobject, we need to
4749 tell split_nonconstant_init or cp_genericize_target_expr how to turn
4750 off this cleanup in favor of the cleanup for the complete object.
4751
4752 ??? For an array temporary such as an initializer_list backing array,
4753 it would avoid redundancy to leave this cleanup active, clear
4754 CLEANUP_EH_ONLY, and not build another cleanup for the temporary
4755 itself. But that breaks when gimplify_target_expr adds a clobber
4756 cleanup that runs before the build_vec_init cleanup. */
4757 if (cleanup_flags)
4758 vec_safe_push (*cleanup_flags,
4759 build_tree_list (rval, build_zero_cst (ptype)));
4760 }
4761
4762 /* Should we try to create a constant initializer? */
4763 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4764 && TREE_CONSTANT (maxindex)
4765 && (init ? TREE_CODE (init) == CONSTRUCTOR
4766 : (type_has_constexpr_default_constructor
4767 (inner_elt_type)
4768 /* Value-initialization of scalars is constexpr. */
4769 || (explicit_value_init_p
4770 && SCALAR_TYPE_P (inner_elt_type))))
4771 && (literal_type_p (inner_elt_type)
4772 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4773 vec<constructor_elt, va_gc> *const_vec = NULL;
4774 bool saw_non_const = false;
4775 /* If we're initializing a static array, we want to do static
4776 initialization of any elements with constant initializers even if
4777 some are non-constant. */
4778 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4779
4780 bool empty_list = false;
4781 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4782 && CONSTRUCTOR_NELTS (init) == 0)
4783 /* Skip over the handling of non-empty init lists. */
4784 empty_list = true;
4785
4786 /* Maybe pull out constant value when from_array? */
4787
4788 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4789 {
4790 /* Do non-default initialization of non-trivial arrays resulting from
4791 brace-enclosed initializers. */
4792 unsigned HOST_WIDE_INT idx;
4793 tree field, elt;
4794 /* If the constructor already has the array type, it's been through
4795 digest_init, so we shouldn't try to do anything more. */
4796 bool digested = (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE
4797 && same_type_p (type, TREE_TYPE (TREE_TYPE (init))));
4798 from_array = 0;
4799
4800 if (length_check)
4801 finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init));
4802
4803 if (try_const)
4804 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4805
4806 tree alloc_obj = NULL_TREE;
4807
4808 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4809 {
4810 tree baseref = build1 (INDIRECT_REF, type, base);
4811 tree one_init;
4812
4813 if (field && TREE_CODE (field) == RANGE_EXPR)
4814 num_initialized_elts += range_expr_nelts (field);
4815 else
4816 num_initialized_elts++;
4817
4818 /* We need to see sub-array TARGET_EXPR before cp_fold_r so we can
4819 handle cleanup flags properly. */
4820 gcc_checking_assert (!target_expr_needs_replace (elt));
4821
4822 if (digested)
4823 one_init = cp_build_init_expr (baseref, elt);
4824 else if (tree vi = get_vec_init_expr (elt))
4825 one_init = expand_vec_init_expr (baseref, vi, complain,
4826 cleanup_flags);
4827 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4828 one_init = build_aggr_init (baseref, elt, 0, complain);
4829 else
4830 one_init = cp_build_modify_expr (input_location, baseref,
4831 NOP_EXPR, elt, complain);
4832 if (one_init == error_mark_node)
4833 errors = true;
4834 if (try_const)
4835 {
4836 if (!field)
4837 field = size_int (idx);
4838 tree e = maybe_constant_init (one_init);
4839 if (reduced_constant_expression_p (e))
4840 {
4841 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4842 if (do_static_init)
4843 one_init = NULL_TREE;
4844 else
4845 one_init = cp_build_init_expr (baseref, e);
4846 }
4847 else
4848 {
4849 if (do_static_init)
4850 {
4851 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4852 true);
4853 if (value)
4854 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4855 }
4856 saw_non_const = true;
4857 }
4858 }
4859
4860 if (one_init)
4861 {
4862 /* Only create one std::allocator temporary. */
4863 combine_allocator_temps (one_init, alloc_obj);
4864 finish_expr_stmt (one_init);
4865 }
4866
4867 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4868 complain);
4869 if (one_init == error_mark_node)
4870 errors = true;
4871 else
4872 finish_expr_stmt (one_init);
4873
4874 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4875 complain);
4876 if (one_init == error_mark_node)
4877 errors = true;
4878 else
4879 finish_expr_stmt (one_init);
4880 }
4881
4882 /* Any elements without explicit initializers get T{}. */
4883 empty_list = true;
4884 }
4885 else if (init && TREE_CODE (init) == STRING_CST)
4886 {
4887 /* Check that the array is at least as long as the string. */
4888 if (length_check)
4889 finish_length_check (atype, iterator, obase,
4890 TREE_STRING_LENGTH (init));
4891 tree length = build_int_cst (ptrdiff_type_node,
4892 TREE_STRING_LENGTH (init));
4893
4894 /* Copy the string to the first part of the array. */
4895 tree alias_set = build_int_cst (build_pointer_type (type), 0);
4896 tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set);
4897 tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init);
4898 finish_expr_stmt (stmt);
4899
4900 /* Adjust the counter and pointer. */
4901 stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain);
4902 stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt);
4903 finish_expr_stmt (stmt);
4904
4905 stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain);
4906 stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt);
4907 finish_expr_stmt (stmt);
4908
4909 /* And set the rest of the array to NUL. */
4910 from_array = 0;
4911 explicit_value_init_p = true;
4912 }
4913 else if (from_array)
4914 {
4915 if (init)
4916 /* OK, we set base2 above. */;
4917 else if (CLASS_TYPE_P (type)
4918 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4919 {
4920 if (complain & tf_error)
4921 error ("initializer ends prematurely");
4922 errors = true;
4923 }
4924 }
4925
4926 /* Now, default-initialize any remaining elements. We don't need to
4927 do that if a) the type does not need constructing, or b) we've
4928 already initialized all the elements.
4929
4930 We do need to keep going if we're copying an array. */
4931
4932 if (try_const && !init
4933 && (cxx_dialect < cxx20
4934 || !default_init_uninitialized_part (inner_elt_type)))
4935 /* With a constexpr default constructor, which we checked for when
4936 setting try_const above, default-initialization is equivalent to
4937 value-initialization, and build_value_init gives us something more
4938 friendly to maybe_constant_init. Except in C++20 and up a constexpr
4939 constructor need not initialize all the members. */
4940 explicit_value_init_p = true;
4941 if (from_array
4942 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4943 && ! (tree_fits_shwi_p (maxindex)
4944 && (num_initialized_elts
4945 == tree_to_shwi (maxindex) + 1))))
4946 {
4947 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4948 we've already initialized all the elements. */
4949 tree for_stmt;
4950 tree elt_init;
4951 tree to;
4952
4953 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4954 finish_init_stmt (for_stmt);
4955 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4956 build_int_cst (TREE_TYPE (iterator), -1)),
4957 for_stmt, false, 0, false);
4958 /* We used to pass this decrement to finish_for_expr; now we add it to
4959 elt_init below so it's part of the same full-expression as the
4960 initialization, and thus happens before any potentially throwing
4961 temporary cleanups. */
4962 tree decr = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4963 complain);
4964
4965
4966 to = build1 (INDIRECT_REF, type, base);
4967
4968 /* If the initializer is {}, then all elements are initialized from T{}.
4969 But for non-classes, that's the same as value-initialization. */
4970 if (empty_list)
4971 {
4972 if (cxx_dialect >= cxx11
4973 && (CLASS_TYPE_P (type)
4974 || TREE_CODE (type) == ARRAY_TYPE))
4975 {
4976 init = build_constructor (init_list_type_node, NULL);
4977 }
4978 else
4979 {
4980 init = NULL_TREE;
4981 explicit_value_init_p = true;
4982 }
4983 }
4984
4985 if (from_array)
4986 {
4987 tree from;
4988
4989 if (base2)
4990 {
4991 from = build1 (INDIRECT_REF, itype, base2);
4992 if (xvalue)
4993 from = move (from);
4994 if (direct_init)
4995 {
4996 /* Wrap the initializer in a CONSTRUCTOR so that
4997 build_vec_init recognizes it as direct-initialization. */
4998 from = build_constructor_single (init_list_type_node,
4999 NULL_TREE, from);
5000 CONSTRUCTOR_IS_DIRECT_INIT (from) = true;
5001 }
5002 }
5003 else
5004 from = NULL_TREE;
5005
5006 if (TREE_CODE (type) == ARRAY_TYPE)
5007 elt_init = build_vec_init (to, NULL_TREE, from, /*val_init*/false,
5008 from_array, complain);
5009 else if (from_array == 2)
5010 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
5011 from, complain);
5012 else if (type_build_ctor_call (type))
5013 elt_init = build_aggr_init (to, from, 0, complain);
5014 else if (from)
5015 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
5016 complain);
5017 else
5018 gcc_unreachable ();
5019 }
5020 else if (TREE_CODE (type) == ARRAY_TYPE)
5021 {
5022 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
5023 {
5024 if ((complain & tf_error))
5025 error_at (loc, "array must be initialized "
5026 "with a brace-enclosed initializer");
5027 elt_init = error_mark_node;
5028 }
5029 else
5030 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
5031 0, init,
5032 explicit_value_init_p,
5033 0, complain);
5034 }
5035 else if (explicit_value_init_p)
5036 {
5037 elt_init = build_value_init (type, complain);
5038 if (elt_init != error_mark_node)
5039 elt_init = cp_build_init_expr (to, elt_init);
5040 }
5041 else
5042 {
5043 gcc_assert (type_build_ctor_call (type) || init);
5044 if (CLASS_TYPE_P (type))
5045 elt_init = build_aggr_init (to, init, 0, complain);
5046 else
5047 {
5048 if (TREE_CODE (init) == TREE_LIST)
5049 init = build_x_compound_expr_from_list (init, ELK_INIT,
5050 complain);
5051 elt_init = (init == error_mark_node
5052 ? error_mark_node
5053 : build2 (INIT_EXPR, type, to, init));
5054 }
5055 }
5056
5057 if (elt_init == error_mark_node)
5058 errors = true;
5059
5060 if (try_const)
5061 {
5062 /* FIXME refs to earlier elts */
5063 tree e = maybe_constant_init (elt_init);
5064 if (reduced_constant_expression_p (e))
5065 {
5066 if (initializer_zerop (e))
5067 /* Don't fill the CONSTRUCTOR with zeros. */
5068 e = NULL_TREE;
5069 if (do_static_init)
5070 elt_init = NULL_TREE;
5071 }
5072 else
5073 {
5074 saw_non_const = true;
5075 if (do_static_init)
5076 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
5077 else
5078 e = NULL_TREE;
5079 }
5080
5081 if (e)
5082 {
5083 HOST_WIDE_INT last = tree_to_shwi (maxindex);
5084 if (num_initialized_elts <= last)
5085 {
5086 tree field = size_int (num_initialized_elts);
5087 if (num_initialized_elts != last)
5088 field = build2 (RANGE_EXPR, sizetype, field,
5089 size_int (last));
5090 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
5091 }
5092 }
5093 }
5094
5095 /* [class.temporary]: "There are three contexts in which temporaries are
5096 destroyed at a different point than the end of the full-
5097 expression. The first context is when a default constructor is called
5098 to initialize an element of an array with no corresponding
5099 initializer. The second context is when a copy constructor is called
5100 to copy an element of an array while the entire array is copied. In
5101 either case, if the constructor has one or more default arguments, the
5102 destruction of every temporary created in a default argument is
5103 sequenced before the construction of the next array element, if any."
5104
5105 So, for this loop, statements are full-expressions. */
5106 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
5107 if (elt_init && !errors)
5108 elt_init = build2 (COMPOUND_EXPR, void_type_node, elt_init, decr);
5109 else
5110 elt_init = decr;
5111 finish_expr_stmt (elt_init);
5112 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
5113
5114 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
5115 complain));
5116 if (base2)
5117 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
5118 complain));
5119
5120 finish_for_stmt (for_stmt);
5121 }
5122
5123 /* The value of the array initialization is the array itself, RVAL
5124 is a pointer to the first element. */
5125 finish_stmt_expr_expr (rval, stmt_expr);
5126
5127 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
5128
5129 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
5130
5131 if (errors)
5132 return error_mark_node;
5133
5134 if (try_const)
5135 {
5136 if (!saw_non_const)
5137 {
5138 /* If we're not generating the loop, we don't need to reset the
5139 iterator. */
5140 if (cleanup_flags
5141 && !vec_safe_is_empty (*cleanup_flags))
5142 {
5143 auto l = (*cleanup_flags)->last ();
5144 gcc_assert (TREE_PURPOSE (l) == iterator);
5145 (*cleanup_flags)->pop ();
5146 }
5147 tree const_init = build_constructor (atype, const_vec);
5148 return build2 (INIT_EXPR, atype, obase, const_init);
5149 }
5150 else if (do_static_init && !vec_safe_is_empty (const_vec))
5151 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
5152 else
5153 vec_free (const_vec);
5154 }
5155
5156 /* Now make the result have the correct type. */
5157 if (TREE_CODE (atype) == ARRAY_TYPE)
5158 {
5159 atype = build_reference_type (atype);
5160 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
5161 stmt_expr = convert_from_reference (stmt_expr);
5162 }
5163
5164 return stmt_expr;
5165 }
5166
5167 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
5168 build_delete. */
5169
5170 static tree
5171 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
5172 tsubst_flags_t complain)
5173 {
5174 tree name;
5175 switch (dtor_kind)
5176 {
5177 case sfk_complete_destructor:
5178 name = complete_dtor_identifier;
5179 break;
5180
5181 case sfk_base_destructor:
5182 name = base_dtor_identifier;
5183 break;
5184
5185 case sfk_deleting_destructor:
5186 name = deleting_dtor_identifier;
5187 break;
5188
5189 default:
5190 gcc_unreachable ();
5191 }
5192
5193 return build_special_member_call (exp, name,
5194 /*args=*/NULL,
5195 /*binfo=*/TREE_TYPE (exp),
5196 flags,
5197 complain);
5198 }
5199
5200 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
5201 ADDR is an expression which yields the store to be destroyed.
5202 AUTO_DELETE is the name of the destructor to call, i.e., either
5203 sfk_complete_destructor, sfk_base_destructor, or
5204 sfk_deleting_destructor.
5205
5206 FLAGS is the logical disjunction of zero or more LOOKUP_
5207 flags. See cp-tree.h for more info. */
5208
5209 tree
5210 build_delete (location_t loc, tree otype, tree addr,
5211 special_function_kind auto_delete,
5212 int flags, int use_global_delete, tsubst_flags_t complain)
5213 {
5214 tree expr;
5215
5216 if (addr == error_mark_node)
5217 return error_mark_node;
5218
5219 tree type = TYPE_MAIN_VARIANT (otype);
5220
5221 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
5222 set to `error_mark_node' before it gets properly cleaned up. */
5223 if (type == error_mark_node)
5224 return error_mark_node;
5225
5226 if (TYPE_PTR_P (type))
5227 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
5228
5229 if (TREE_CODE (type) == ARRAY_TYPE)
5230 {
5231 if (TYPE_DOMAIN (type) == NULL_TREE)
5232 {
5233 if (complain & tf_error)
5234 error_at (loc, "unknown array size in delete");
5235 return error_mark_node;
5236 }
5237 return build_vec_delete (loc, addr, array_type_nelts_minus_one (type),
5238 auto_delete, use_global_delete, complain);
5239 }
5240
5241 bool deleting = (auto_delete == sfk_deleting_destructor);
5242 gcc_assert (deleting == !(flags & LOOKUP_DESTRUCTOR));
5243
5244 if (TYPE_PTR_P (otype))
5245 {
5246 addr = mark_rvalue_use (addr);
5247
5248 /* We don't want to warn about delete of void*, only other
5249 incomplete types. Deleting other incomplete types
5250 invokes undefined behavior, but it is not ill-formed, so
5251 compile to something that would even do The Right Thing
5252 (TM) should the type have a trivial dtor and no delete
5253 operator. */
5254 if (!VOID_TYPE_P (type))
5255 {
5256 complete_type (type);
5257 if (deleting
5258 && !verify_type_context (loc, TCTX_DEALLOCATION, type,
5259 !(complain & tf_error)))
5260 return error_mark_node;
5261
5262 if (!COMPLETE_TYPE_P (type))
5263 {
5264 if (cxx_dialect > cxx23)
5265 {
5266 if (complain & tf_error)
5267 {
5268 auto_diagnostic_group d;
5269 int saved_errorcount = errorcount;
5270 if (permerror_opt (loc, OPT_Wdelete_incomplete,
5271 "operator %<delete%> used on "
5272 "incomplete type"))
5273 {
5274 cxx_incomplete_type_inform (type);
5275 if (errorcount != saved_errorcount)
5276 return error_mark_node;
5277 }
5278 }
5279 else
5280 return error_mark_node;
5281 }
5282 else if (complain & tf_warning)
5283 {
5284 auto_diagnostic_group d;
5285 if (warning_at (loc, OPT_Wdelete_incomplete,
5286 "possible problem detected in invocation of "
5287 "%<operator delete%>"))
5288 {
5289 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
5290 inform (loc,
5291 "neither the destructor nor the class-specific "
5292 "%<operator delete%> will be called, even if "
5293 "they are declared when the class is defined");
5294 }
5295 }
5296 }
5297 else if (deleting && warn_delnonvdtor
5298 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
5299 && TYPE_POLYMORPHIC_P (type))
5300 {
5301 tree dtor = CLASSTYPE_DESTRUCTOR (type);
5302 if (!dtor || !DECL_VINDEX (dtor))
5303 {
5304 if (CLASSTYPE_PURE_VIRTUALS (type))
5305 warning_at (loc, OPT_Wdelete_non_virtual_dtor,
5306 "deleting object of abstract class type %qT"
5307 " which has non-virtual destructor"
5308 " will cause undefined behavior", type);
5309 else
5310 warning_at (loc, OPT_Wdelete_non_virtual_dtor,
5311 "deleting object of polymorphic class type %qT"
5312 " which has non-virtual destructor"
5313 " might cause undefined behavior", type);
5314 }
5315 }
5316 }
5317
5318 /* Throw away const and volatile on target type of addr. */
5319 addr = convert_force (build_pointer_type (type), addr, 0, complain);
5320 }
5321 else
5322 {
5323 /* Don't check PROTECT here; leave that decision to the
5324 destructor. If the destructor is accessible, call it,
5325 else report error. */
5326 addr = cp_build_addr_expr (addr, complain);
5327 if (addr == error_mark_node)
5328 return error_mark_node;
5329
5330 addr = convert_force (build_pointer_type (type), addr, 0, complain);
5331 }
5332
5333 tree addr_expr = NULL_TREE;
5334 if (deleting)
5335 /* We will use ADDR multiple times so we must save it. */
5336 {
5337 addr_expr = get_internal_target_expr (addr);
5338 addr = TARGET_EXPR_SLOT (addr_expr);
5339 }
5340
5341 bool virtual_p = false;
5342 if (type_build_dtor_call (type))
5343 {
5344 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
5345 lazily_declare_fn (sfk_destructor, type);
5346 virtual_p = DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTOR (type));
5347 }
5348
5349 tree head = NULL_TREE;
5350 tree do_delete = NULL_TREE;
5351 bool destroying_delete = false;
5352
5353 if (!deleting)
5354 {
5355 /* Leave do_delete null. */
5356 }
5357 /* For `::delete x', we must not use the deleting destructor
5358 since then we would not be sure to get the global `operator
5359 delete'. */
5360 else if (use_global_delete)
5361 {
5362 head = get_internal_target_expr (build_headof (addr));
5363 /* Delete the object. */
5364 do_delete = build_op_delete_call (DELETE_EXPR,
5365 head,
5366 cxx_sizeof_nowarn (type),
5367 /*global_p=*/true,
5368 /*placement=*/NULL_TREE,
5369 /*alloc_fn=*/NULL_TREE,
5370 complain);
5371 /* Otherwise, treat this like a complete object destructor
5372 call. */
5373 auto_delete = sfk_complete_destructor;
5374 }
5375 /* If the destructor is non-virtual, there is no deleting
5376 variant. Instead, we must explicitly call the appropriate
5377 `operator delete' here. */
5378 else if (!virtual_p)
5379 {
5380 /* Build the call. */
5381 do_delete = build_op_delete_call (DELETE_EXPR,
5382 addr,
5383 cxx_sizeof_nowarn (type),
5384 /*global_p=*/false,
5385 /*placement=*/NULL_TREE,
5386 /*alloc_fn=*/NULL_TREE,
5387 complain);
5388 /* Call the complete object destructor. */
5389 auto_delete = sfk_complete_destructor;
5390 if (do_delete != error_mark_node)
5391 {
5392 tree fn = get_callee_fndecl (do_delete);
5393 destroying_delete = destroying_delete_p (fn);
5394 }
5395 }
5396 else if (TYPE_GETS_REG_DELETE (type))
5397 {
5398 /* Make sure we have access to the member op delete, even though
5399 we'll actually be calling it from the destructor. */
5400 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
5401 /*global_p=*/false,
5402 /*placement=*/NULL_TREE,
5403 /*alloc_fn=*/NULL_TREE,
5404 complain);
5405 }
5406
5407 if (destroying_delete)
5408 /* The operator delete will call the destructor. */
5409 expr = addr;
5410 else if (type_build_dtor_call (type))
5411 expr = build_dtor_call (cp_build_fold_indirect_ref (addr),
5412 auto_delete, flags, complain);
5413 else
5414 expr = build_trivial_dtor_call (addr);
5415 if (expr == error_mark_node)
5416 return error_mark_node;
5417
5418 if (!deleting)
5419 {
5420 protected_set_expr_location (expr, loc);
5421 return expr;
5422 }
5423
5424 if (do_delete == error_mark_node)
5425 return error_mark_node;
5426
5427 if (do_delete && !TREE_SIDE_EFFECTS (expr))
5428 expr = do_delete;
5429 else if (do_delete)
5430 /* The delete operator must be called, regardless of whether
5431 the destructor throws.
5432
5433 [expr.delete]/7 The deallocation function is called
5434 regardless of whether the destructor for the object or some
5435 element of the array throws an exception. */
5436 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
5437
5438 /* We need to calculate this before the dtor changes the vptr. */
5439 if (head)
5440 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
5441
5442 /* Handle deleting a null pointer. */
5443 warning_sentinel s (warn_address);
5444 tree ifexp = cp_build_binary_op (loc, NE_EXPR, addr,
5445 nullptr_node, complain);
5446 ifexp = cp_fully_fold (ifexp);
5447
5448 if (ifexp == error_mark_node)
5449 return error_mark_node;
5450 /* This is a compiler generated comparison, don't emit
5451 e.g. -Wnonnull-compare warning for it. */
5452 else if (TREE_CODE (ifexp) == NE_EXPR)
5453 suppress_warning (ifexp, OPT_Wnonnull_compare);
5454
5455 if (!integer_nonzerop (ifexp))
5456 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
5457
5458 if (addr_expr)
5459 expr = cp_build_compound_expr (addr_expr, expr, tf_none);
5460
5461 protected_set_expr_location (expr, loc);
5462 return expr;
5463 }
5464
5465 /* At the beginning of a destructor, push cleanups that will call the
5466 destructors for our base classes and members.
5467
5468 Called from begin_destructor_body. */
5469
5470 void
5471 push_base_cleanups (void)
5472 {
5473 tree binfo, base_binfo;
5474 int i;
5475 tree member;
5476 tree expr;
5477 vec<tree, va_gc> *vbases;
5478
5479 /* Run destructors for all virtual baseclasses. */
5480 if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
5481 && CLASSTYPE_VBASECLASSES (current_class_type))
5482 {
5483 tree cond = (condition_conversion
5484 (build2 (BIT_AND_EXPR, integer_type_node,
5485 current_in_charge_parm,
5486 integer_two_node)));
5487
5488 /* The CLASSTYPE_VBASECLASSES vector is in initialization
5489 order, which is also the right order for pushing cleanups. */
5490 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
5491 vec_safe_iterate (vbases, i, &base_binfo); i++)
5492 {
5493 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
5494 {
5495 expr = build_special_member_call (current_class_ref,
5496 base_dtor_identifier,
5497 NULL,
5498 base_binfo,
5499 (LOOKUP_NORMAL
5500 | LOOKUP_NONVIRTUAL),
5501 tf_warning_or_error);
5502 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
5503 {
5504 expr = build3 (COND_EXPR, void_type_node, cond,
5505 expr, void_node);
5506 finish_decl_cleanup (NULL_TREE, expr);
5507 }
5508 }
5509 }
5510 }
5511
5512 /* Take care of the remaining baseclasses. */
5513 for (binfo = TYPE_BINFO (current_class_type), i = 0;
5514 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5515 {
5516 if (BINFO_VIRTUAL_P (base_binfo)
5517 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
5518 continue;
5519
5520 expr = build_special_member_call (current_class_ref,
5521 base_dtor_identifier,
5522 NULL, base_binfo,
5523 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
5524 tf_warning_or_error);
5525 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
5526 finish_decl_cleanup (NULL_TREE, expr);
5527 }
5528
5529 /* Don't automatically destroy union members. */
5530 if (TREE_CODE (current_class_type) == UNION_TYPE)
5531 return;
5532
5533 for (member = TYPE_FIELDS (current_class_type); member;
5534 member = DECL_CHAIN (member))
5535 {
5536 tree this_type = TREE_TYPE (member);
5537 if (this_type == error_mark_node
5538 || TREE_CODE (member) != FIELD_DECL
5539 || DECL_ARTIFICIAL (member))
5540 continue;
5541 if (ANON_AGGR_TYPE_P (this_type))
5542 continue;
5543 if (type_build_dtor_call (this_type))
5544 {
5545 tree this_member = (build_class_member_access_expr
5546 (current_class_ref, member,
5547 /*access_path=*/NULL_TREE,
5548 /*preserve_reference=*/false,
5549 tf_warning_or_error));
5550 expr = build_delete (input_location, this_type, this_member,
5551 sfk_complete_destructor,
5552 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
5553 0, tf_warning_or_error);
5554 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
5555 finish_decl_cleanup (NULL_TREE, expr);
5556 }
5557 }
5558 }
5559
5560 /* Build a C++ vector delete expression.
5561 MAXINDEX is the number of elements to be deleted.
5562 ELT_SIZE is the nominal size of each element in the vector.
5563 BASE is the expression that should yield the store to be deleted.
5564 This function expands (or synthesizes) these calls itself.
5565 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
5566
5567 This also calls delete for virtual baseclasses of elements of the vector.
5568
5569 Update: MAXINDEX is no longer needed. The size can be extracted from the
5570 start of the vector for pointers, and from the type for arrays. We still
5571 use MAXINDEX for arrays because it happens to already have one of the
5572 values we'd have to extract. (We could use MAXINDEX with pointers to
5573 confirm the size, and trap if the numbers differ; not clear that it'd
5574 be worth bothering.) */
5575
5576 tree
5577 build_vec_delete (location_t loc, tree base, tree maxindex,
5578 special_function_kind auto_delete_vec,
5579 int use_global_delete, tsubst_flags_t complain)
5580 {
5581 tree type;
5582 tree rval;
5583 tree base_init = NULL_TREE;
5584
5585 type = TREE_TYPE (base);
5586
5587 if (TYPE_PTR_P (type))
5588 {
5589 /* Step back one from start of vector, and read dimension. */
5590 tree cookie_addr;
5591 tree size_ptr_type = build_pointer_type (sizetype);
5592
5593 base = mark_rvalue_use (base);
5594 if (TREE_SIDE_EFFECTS (base))
5595 {
5596 base_init = get_internal_target_expr (base);
5597 base = TARGET_EXPR_SLOT (base_init);
5598 }
5599 type = strip_array_types (TREE_TYPE (type));
5600 cookie_addr = fold_build1_loc (loc, NEGATE_EXPR,
5601 sizetype, TYPE_SIZE_UNIT (sizetype));
5602 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
5603 cookie_addr);
5604 maxindex = cp_build_fold_indirect_ref (cookie_addr);
5605 }
5606 else if (TREE_CODE (type) == ARRAY_TYPE)
5607 {
5608 /* Get the total number of things in the array, maxindex is a
5609 bad name. */
5610 maxindex = array_type_nelts_total (type);
5611 type = strip_array_types (type);
5612 base = decay_conversion (base, complain);
5613 if (base == error_mark_node)
5614 return error_mark_node;
5615 if (TREE_SIDE_EFFECTS (base))
5616 {
5617 base_init = get_internal_target_expr (base);
5618 base = TARGET_EXPR_SLOT (base_init);
5619 }
5620 }
5621 else
5622 {
5623 if (base != error_mark_node && !(complain & tf_error))
5624 error_at (loc,
5625 "type to vector delete is neither pointer or array type");
5626 return error_mark_node;
5627 }
5628
5629 rval = build_vec_delete_1 (loc, base, maxindex, type, auto_delete_vec,
5630 use_global_delete, complain);
5631 if (base_init && rval != error_mark_node)
5632 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
5633
5634 protected_set_expr_location (rval, loc);
5635 return rval;
5636 }
5637
5638 #include "gt-cp-init.h"