]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/parser.c
24cb027d32713e838c74627e9b19efe83ca73ca0
[thirdparty/gcc.git] / gcc / cp / parser.c
1 /* C++ Parser.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004,
3 2005 Free Software Foundation, Inc.
4 Written by Mark Mitchell <mark@codesourcery.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "dyn-string.h"
28 #include "varray.h"
29 #include "cpplib.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "c-pragma.h"
33 #include "decl.h"
34 #include "flags.h"
35 #include "diagnostic.h"
36 #include "toplev.h"
37 #include "output.h"
38 #include "target.h"
39 #include "c-common.h"
40
41 \f
42 /* The lexer. */
43
44 /* The cp_lexer_* routines mediate between the lexer proper (in libcpp
45 and c-lex.c) and the C++ parser. */
46
47 /* A C++ token. */
48
49 typedef struct cp_token GTY (())
50 {
51 /* The kind of token. */
52 ENUM_BITFIELD (cpp_ttype) type : 8;
53 /* If this token is a keyword, this value indicates which keyword.
54 Otherwise, this value is RID_MAX. */
55 ENUM_BITFIELD (rid) keyword : 8;
56 /* Token flags. */
57 unsigned char flags;
58 /* True if this token is from a system header. */
59 BOOL_BITFIELD in_system_header : 1;
60 /* True if this token is from a context where it is implicitly extern "C" */
61 BOOL_BITFIELD implicit_extern_c : 1;
62 /* The value associated with this token, if any. */
63 tree value;
64 /* The location at which this token was found. */
65 location_t location;
66 } cp_token;
67
68 /* We use a stack of token pointer for saving token sets. */
69 typedef struct cp_token *cp_token_position;
70 DEF_VEC_P (cp_token_position);
71 DEF_VEC_ALLOC_P (cp_token_position,heap);
72
73 static const cp_token eof_token =
74 {
75 CPP_EOF, RID_MAX, 0, 0, 0, NULL_TREE,
76 #if USE_MAPPED_LOCATION
77 0
78 #else
79 {0, 0}
80 #endif
81 };
82
83 /* The cp_lexer structure represents the C++ lexer. It is responsible
84 for managing the token stream from the preprocessor and supplying
85 it to the parser. Tokens are never added to the cp_lexer after
86 it is created. */
87
88 typedef struct cp_lexer GTY (())
89 {
90 /* The memory allocated for the buffer. NULL if this lexer does not
91 own the token buffer. */
92 cp_token * GTY ((length ("%h.buffer_length"))) buffer;
93 /* If the lexer owns the buffer, this is the number of tokens in the
94 buffer. */
95 size_t buffer_length;
96
97 /* A pointer just past the last available token. The tokens
98 in this lexer are [buffer, last_token). */
99 cp_token_position GTY ((skip)) last_token;
100
101 /* The next available token. If NEXT_TOKEN is &eof_token, then there are
102 no more available tokens. */
103 cp_token_position GTY ((skip)) next_token;
104
105 /* A stack indicating positions at which cp_lexer_save_tokens was
106 called. The top entry is the most recent position at which we
107 began saving tokens. If the stack is non-empty, we are saving
108 tokens. */
109 VEC(cp_token_position,heap) *GTY ((skip)) saved_tokens;
110
111 /* True if we should output debugging information. */
112 bool debugging_p;
113
114 /* The next lexer in a linked list of lexers. */
115 struct cp_lexer *next;
116 } cp_lexer;
117
118 /* cp_token_cache is a range of tokens. There is no need to represent
119 allocate heap memory for it, since tokens are never removed from the
120 lexer's array. There is also no need for the GC to walk through
121 a cp_token_cache, since everything in here is referenced through
122 a lexer. */
123
124 typedef struct cp_token_cache GTY(())
125 {
126 /* The beginning of the token range. */
127 cp_token * GTY((skip)) first;
128
129 /* Points immediately after the last token in the range. */
130 cp_token * GTY ((skip)) last;
131 } cp_token_cache;
132
133 /* Prototypes. */
134
135 static cp_lexer *cp_lexer_new_main
136 (void);
137 static cp_lexer *cp_lexer_new_from_tokens
138 (cp_token_cache *tokens);
139 static void cp_lexer_destroy
140 (cp_lexer *);
141 static int cp_lexer_saving_tokens
142 (const cp_lexer *);
143 static cp_token_position cp_lexer_token_position
144 (cp_lexer *, bool);
145 static cp_token *cp_lexer_token_at
146 (cp_lexer *, cp_token_position);
147 static void cp_lexer_get_preprocessor_token
148 (cp_lexer *, cp_token *);
149 static inline cp_token *cp_lexer_peek_token
150 (cp_lexer *);
151 static cp_token *cp_lexer_peek_nth_token
152 (cp_lexer *, size_t);
153 static inline bool cp_lexer_next_token_is
154 (cp_lexer *, enum cpp_ttype);
155 static bool cp_lexer_next_token_is_not
156 (cp_lexer *, enum cpp_ttype);
157 static bool cp_lexer_next_token_is_keyword
158 (cp_lexer *, enum rid);
159 static cp_token *cp_lexer_consume_token
160 (cp_lexer *);
161 static void cp_lexer_purge_token
162 (cp_lexer *);
163 static void cp_lexer_purge_tokens_after
164 (cp_lexer *, cp_token_position);
165 static void cp_lexer_handle_pragma
166 (cp_lexer *);
167 static void cp_lexer_save_tokens
168 (cp_lexer *);
169 static void cp_lexer_commit_tokens
170 (cp_lexer *);
171 static void cp_lexer_rollback_tokens
172 (cp_lexer *);
173 #ifdef ENABLE_CHECKING
174 static void cp_lexer_print_token
175 (FILE *, cp_token *);
176 static inline bool cp_lexer_debugging_p
177 (cp_lexer *);
178 static void cp_lexer_start_debugging
179 (cp_lexer *) ATTRIBUTE_UNUSED;
180 static void cp_lexer_stop_debugging
181 (cp_lexer *) ATTRIBUTE_UNUSED;
182 #else
183 /* If we define cp_lexer_debug_stream to NULL it will provoke warnings
184 about passing NULL to functions that require non-NULL arguments
185 (fputs, fprintf). It will never be used, so all we need is a value
186 of the right type that's guaranteed not to be NULL. */
187 #define cp_lexer_debug_stream stdout
188 #define cp_lexer_print_token(str, tok) (void) 0
189 #define cp_lexer_debugging_p(lexer) 0
190 #endif /* ENABLE_CHECKING */
191
192 static cp_token_cache *cp_token_cache_new
193 (cp_token *, cp_token *);
194
195 /* Manifest constants. */
196 #define CP_LEXER_BUFFER_SIZE 10000
197 #define CP_SAVED_TOKEN_STACK 5
198
199 /* A token type for keywords, as opposed to ordinary identifiers. */
200 #define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
201
202 /* A token type for template-ids. If a template-id is processed while
203 parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
204 the value of the CPP_TEMPLATE_ID is whatever was returned by
205 cp_parser_template_id. */
206 #define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
207
208 /* A token type for nested-name-specifiers. If a
209 nested-name-specifier is processed while parsing tentatively, it is
210 replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
211 CPP_NESTED_NAME_SPECIFIER is whatever was returned by
212 cp_parser_nested_name_specifier_opt. */
213 #define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
214
215 /* A token type for tokens that are not tokens at all; these are used
216 to represent slots in the array where there used to be a token
217 that has now been deleted. */
218 #define CPP_PURGED ((enum cpp_ttype) (CPP_NESTED_NAME_SPECIFIER + 1))
219
220 /* The number of token types, including C++-specific ones. */
221 #define N_CP_TTYPES ((int) (CPP_PURGED + 1))
222
223 /* Variables. */
224
225 #ifdef ENABLE_CHECKING
226 /* The stream to which debugging output should be written. */
227 static FILE *cp_lexer_debug_stream;
228 #endif /* ENABLE_CHECKING */
229
230 /* Create a new main C++ lexer, the lexer that gets tokens from the
231 preprocessor. */
232
233 static cp_lexer *
234 cp_lexer_new_main (void)
235 {
236 cp_token first_token;
237 cp_lexer *lexer;
238 cp_token *pos;
239 size_t alloc;
240 size_t space;
241 cp_token *buffer;
242
243 /* It's possible that lexing the first token will load a PCH file,
244 which is a GC collection point. So we have to grab the first
245 token before allocating any memory. Pragmas must not be deferred
246 as -fpch-preprocess can generate a pragma to load the PCH file in
247 the preprocessed output used by -save-temps. */
248 cp_lexer_get_preprocessor_token (NULL, &first_token);
249
250 /* Tell cpplib we want CPP_PRAGMA tokens. */
251 cpp_get_options (parse_in)->defer_pragmas = true;
252
253 /* Tell c_lex not to merge string constants. */
254 c_lex_return_raw_strings = true;
255
256 c_common_no_more_pch ();
257
258 /* Allocate the memory. */
259 lexer = GGC_CNEW (cp_lexer);
260
261 #ifdef ENABLE_CHECKING
262 /* Initially we are not debugging. */
263 lexer->debugging_p = false;
264 #endif /* ENABLE_CHECKING */
265 lexer->saved_tokens = VEC_alloc (cp_token_position, heap,
266 CP_SAVED_TOKEN_STACK);
267
268 /* Create the buffer. */
269 alloc = CP_LEXER_BUFFER_SIZE;
270 buffer = ggc_alloc (alloc * sizeof (cp_token));
271
272 /* Put the first token in the buffer. */
273 space = alloc;
274 pos = buffer;
275 *pos = first_token;
276
277 /* Get the remaining tokens from the preprocessor. */
278 while (pos->type != CPP_EOF)
279 {
280 pos++;
281 if (!--space)
282 {
283 space = alloc;
284 alloc *= 2;
285 buffer = ggc_realloc (buffer, alloc * sizeof (cp_token));
286 pos = buffer + space;
287 }
288 cp_lexer_get_preprocessor_token (lexer, pos);
289 }
290 lexer->buffer = buffer;
291 lexer->buffer_length = alloc - space;
292 lexer->last_token = pos;
293 lexer->next_token = lexer->buffer_length ? buffer : (cp_token *)&eof_token;
294
295 /* Pragma processing (via cpp_handle_deferred_pragma) may result in
296 direct calls to c_lex. Those callers all expect c_lex to do
297 string constant concatenation. */
298 c_lex_return_raw_strings = false;
299
300 gcc_assert (lexer->next_token->type != CPP_PURGED);
301 return lexer;
302 }
303
304 /* Create a new lexer whose token stream is primed with the tokens in
305 CACHE. When these tokens are exhausted, no new tokens will be read. */
306
307 static cp_lexer *
308 cp_lexer_new_from_tokens (cp_token_cache *cache)
309 {
310 cp_token *first = cache->first;
311 cp_token *last = cache->last;
312 cp_lexer *lexer = GGC_CNEW (cp_lexer);
313
314 /* We do not own the buffer. */
315 lexer->buffer = NULL;
316 lexer->buffer_length = 0;
317 lexer->next_token = first == last ? (cp_token *)&eof_token : first;
318 lexer->last_token = last;
319
320 lexer->saved_tokens = VEC_alloc (cp_token_position, heap,
321 CP_SAVED_TOKEN_STACK);
322
323 #ifdef ENABLE_CHECKING
324 /* Initially we are not debugging. */
325 lexer->debugging_p = false;
326 #endif
327
328 gcc_assert (lexer->next_token->type != CPP_PURGED);
329 return lexer;
330 }
331
332 /* Frees all resources associated with LEXER. */
333
334 static void
335 cp_lexer_destroy (cp_lexer *lexer)
336 {
337 if (lexer->buffer)
338 ggc_free (lexer->buffer);
339 VEC_free (cp_token_position, heap, lexer->saved_tokens);
340 ggc_free (lexer);
341 }
342
343 /* Returns nonzero if debugging information should be output. */
344
345 #ifdef ENABLE_CHECKING
346
347 static inline bool
348 cp_lexer_debugging_p (cp_lexer *lexer)
349 {
350 return lexer->debugging_p;
351 }
352
353 #endif /* ENABLE_CHECKING */
354
355 static inline cp_token_position
356 cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
357 {
358 gcc_assert (!previous_p || lexer->next_token != &eof_token);
359
360 return lexer->next_token - previous_p;
361 }
362
363 static inline cp_token *
364 cp_lexer_token_at (cp_lexer *lexer ATTRIBUTE_UNUSED, cp_token_position pos)
365 {
366 return pos;
367 }
368
369 /* nonzero if we are presently saving tokens. */
370
371 static inline int
372 cp_lexer_saving_tokens (const cp_lexer* lexer)
373 {
374 return VEC_length (cp_token_position, lexer->saved_tokens) != 0;
375 }
376
377 /* Store the next token from the preprocessor in *TOKEN. Return true
378 if we reach EOF. */
379
380 static void
381 cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
382 cp_token *token)
383 {
384 static int is_extern_c = 0;
385
386 /* Get a new token from the preprocessor. */
387 token->type
388 = c_lex_with_flags (&token->value, &token->location, &token->flags);
389 token->in_system_header = in_system_header;
390
391 /* On some systems, some header files are surrounded by an
392 implicit extern "C" block. Set a flag in the token if it
393 comes from such a header. */
394 is_extern_c += pending_lang_change;
395 pending_lang_change = 0;
396 token->implicit_extern_c = is_extern_c > 0;
397
398 /* Check to see if this token is a keyword. */
399 if (token->type == CPP_NAME
400 && C_IS_RESERVED_WORD (token->value))
401 {
402 /* Mark this token as a keyword. */
403 token->type = CPP_KEYWORD;
404 /* Record which keyword. */
405 token->keyword = C_RID_CODE (token->value);
406 /* Update the value. Some keywords are mapped to particular
407 entities, rather than simply having the value of the
408 corresponding IDENTIFIER_NODE. For example, `__const' is
409 mapped to `const'. */
410 token->value = ridpointers[token->keyword];
411 }
412 /* Handle Objective-C++ keywords. */
413 else if (token->type == CPP_AT_NAME)
414 {
415 token->type = CPP_KEYWORD;
416 switch (C_RID_CODE (token->value))
417 {
418 /* Map 'class' to '@class', 'private' to '@private', etc. */
419 case RID_CLASS: token->keyword = RID_AT_CLASS; break;
420 case RID_PRIVATE: token->keyword = RID_AT_PRIVATE; break;
421 case RID_PROTECTED: token->keyword = RID_AT_PROTECTED; break;
422 case RID_PUBLIC: token->keyword = RID_AT_PUBLIC; break;
423 case RID_THROW: token->keyword = RID_AT_THROW; break;
424 case RID_TRY: token->keyword = RID_AT_TRY; break;
425 case RID_CATCH: token->keyword = RID_AT_CATCH; break;
426 default: token->keyword = C_RID_CODE (token->value);
427 }
428 }
429 else
430 token->keyword = RID_MAX;
431 }
432
433 /* Update the globals input_location and in_system_header from TOKEN. */
434 static inline void
435 cp_lexer_set_source_position_from_token (cp_token *token)
436 {
437 if (token->type != CPP_EOF)
438 {
439 input_location = token->location;
440 in_system_header = token->in_system_header;
441 }
442 }
443
444 /* Return a pointer to the next token in the token stream, but do not
445 consume it. */
446
447 static inline cp_token *
448 cp_lexer_peek_token (cp_lexer *lexer)
449 {
450 if (cp_lexer_debugging_p (lexer))
451 {
452 fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
453 cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
454 putc ('\n', cp_lexer_debug_stream);
455 }
456 return lexer->next_token;
457 }
458
459 /* Return true if the next token has the indicated TYPE. */
460
461 static inline bool
462 cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
463 {
464 return cp_lexer_peek_token (lexer)->type == type;
465 }
466
467 /* Return true if the next token does not have the indicated TYPE. */
468
469 static inline bool
470 cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
471 {
472 return !cp_lexer_next_token_is (lexer, type);
473 }
474
475 /* Return true if the next token is the indicated KEYWORD. */
476
477 static inline bool
478 cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
479 {
480 cp_token *token;
481
482 /* Peek at the next token. */
483 token = cp_lexer_peek_token (lexer);
484 /* Check to see if it is the indicated keyword. */
485 return token->keyword == keyword;
486 }
487
488 /* Return a pointer to the Nth token in the token stream. If N is 1,
489 then this is precisely equivalent to cp_lexer_peek_token (except
490 that it is not inline). One would like to disallow that case, but
491 there is one case (cp_parser_nth_token_starts_template_id) where
492 the caller passes a variable for N and it might be 1. */
493
494 static cp_token *
495 cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
496 {
497 cp_token *token;
498
499 /* N is 1-based, not zero-based. */
500 gcc_assert (n > 0 && lexer->next_token != &eof_token);
501
502 if (cp_lexer_debugging_p (lexer))
503 fprintf (cp_lexer_debug_stream,
504 "cp_lexer: peeking ahead %ld at token: ", (long)n);
505
506 --n;
507 token = lexer->next_token;
508 while (n != 0)
509 {
510 ++token;
511 if (token == lexer->last_token)
512 {
513 token = (cp_token *)&eof_token;
514 break;
515 }
516
517 if (token->type != CPP_PURGED)
518 --n;
519 }
520
521 if (cp_lexer_debugging_p (lexer))
522 {
523 cp_lexer_print_token (cp_lexer_debug_stream, token);
524 putc ('\n', cp_lexer_debug_stream);
525 }
526
527 return token;
528 }
529
530 /* Return the next token, and advance the lexer's next_token pointer
531 to point to the next non-purged token. */
532
533 static cp_token *
534 cp_lexer_consume_token (cp_lexer* lexer)
535 {
536 cp_token *token = lexer->next_token;
537
538 gcc_assert (token != &eof_token);
539
540 do
541 {
542 lexer->next_token++;
543 if (lexer->next_token == lexer->last_token)
544 {
545 lexer->next_token = (cp_token *)&eof_token;
546 break;
547 }
548
549 }
550 while (lexer->next_token->type == CPP_PURGED);
551
552 cp_lexer_set_source_position_from_token (token);
553
554 /* Provide debugging output. */
555 if (cp_lexer_debugging_p (lexer))
556 {
557 fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
558 cp_lexer_print_token (cp_lexer_debug_stream, token);
559 putc ('\n', cp_lexer_debug_stream);
560 }
561
562 return token;
563 }
564
565 /* Permanently remove the next token from the token stream, and
566 advance the next_token pointer to refer to the next non-purged
567 token. */
568
569 static void
570 cp_lexer_purge_token (cp_lexer *lexer)
571 {
572 cp_token *tok = lexer->next_token;
573
574 gcc_assert (tok != &eof_token);
575 tok->type = CPP_PURGED;
576 tok->location = UNKNOWN_LOCATION;
577 tok->value = NULL_TREE;
578 tok->keyword = RID_MAX;
579
580 do
581 {
582 tok++;
583 if (tok == lexer->last_token)
584 {
585 tok = (cp_token *)&eof_token;
586 break;
587 }
588 }
589 while (tok->type == CPP_PURGED);
590 lexer->next_token = tok;
591 }
592
593 /* Permanently remove all tokens after TOK, up to, but not
594 including, the token that will be returned next by
595 cp_lexer_peek_token. */
596
597 static void
598 cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
599 {
600 cp_token *peek = lexer->next_token;
601
602 if (peek == &eof_token)
603 peek = lexer->last_token;
604
605 gcc_assert (tok < peek);
606
607 for ( tok += 1; tok != peek; tok += 1)
608 {
609 tok->type = CPP_PURGED;
610 tok->location = UNKNOWN_LOCATION;
611 tok->value = NULL_TREE;
612 tok->keyword = RID_MAX;
613 }
614 }
615
616 /* Consume and handle a pragma token. */
617 static void
618 cp_lexer_handle_pragma (cp_lexer *lexer)
619 {
620 cpp_string s;
621 cp_token *token = cp_lexer_consume_token (lexer);
622 gcc_assert (token->type == CPP_PRAGMA);
623 gcc_assert (token->value);
624
625 s.len = TREE_STRING_LENGTH (token->value);
626 s.text = (const unsigned char *) TREE_STRING_POINTER (token->value);
627
628 cpp_handle_deferred_pragma (parse_in, &s);
629
630 /* Clearing token->value here means that we will get an ICE if we
631 try to process this #pragma again (which should be impossible). */
632 token->value = NULL;
633 }
634
635 /* Begin saving tokens. All tokens consumed after this point will be
636 preserved. */
637
638 static void
639 cp_lexer_save_tokens (cp_lexer* lexer)
640 {
641 /* Provide debugging output. */
642 if (cp_lexer_debugging_p (lexer))
643 fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
644
645 VEC_safe_push (cp_token_position, heap,
646 lexer->saved_tokens, lexer->next_token);
647 }
648
649 /* Commit to the portion of the token stream most recently saved. */
650
651 static void
652 cp_lexer_commit_tokens (cp_lexer* lexer)
653 {
654 /* Provide debugging output. */
655 if (cp_lexer_debugging_p (lexer))
656 fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
657
658 VEC_pop (cp_token_position, lexer->saved_tokens);
659 }
660
661 /* Return all tokens saved since the last call to cp_lexer_save_tokens
662 to the token stream. Stop saving tokens. */
663
664 static void
665 cp_lexer_rollback_tokens (cp_lexer* lexer)
666 {
667 /* Provide debugging output. */
668 if (cp_lexer_debugging_p (lexer))
669 fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
670
671 lexer->next_token = VEC_pop (cp_token_position, lexer->saved_tokens);
672 }
673
674 /* Print a representation of the TOKEN on the STREAM. */
675
676 #ifdef ENABLE_CHECKING
677
678 static void
679 cp_lexer_print_token (FILE * stream, cp_token *token)
680 {
681 /* We don't use cpp_type2name here because the parser defines
682 a few tokens of its own. */
683 static const char *const token_names[] = {
684 /* cpplib-defined token types */
685 #define OP(e, s) #e,
686 #define TK(e, s) #e,
687 TTYPE_TABLE
688 #undef OP
689 #undef TK
690 /* C++ parser token types - see "Manifest constants", above. */
691 "KEYWORD",
692 "TEMPLATE_ID",
693 "NESTED_NAME_SPECIFIER",
694 "PURGED"
695 };
696
697 /* If we have a name for the token, print it out. Otherwise, we
698 simply give the numeric code. */
699 gcc_assert (token->type < ARRAY_SIZE(token_names));
700 fputs (token_names[token->type], stream);
701
702 /* For some tokens, print the associated data. */
703 switch (token->type)
704 {
705 case CPP_KEYWORD:
706 /* Some keywords have a value that is not an IDENTIFIER_NODE.
707 For example, `struct' is mapped to an INTEGER_CST. */
708 if (TREE_CODE (token->value) != IDENTIFIER_NODE)
709 break;
710 /* else fall through */
711 case CPP_NAME:
712 fputs (IDENTIFIER_POINTER (token->value), stream);
713 break;
714
715 case CPP_STRING:
716 case CPP_WSTRING:
717 case CPP_PRAGMA:
718 fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->value));
719 break;
720
721 default:
722 break;
723 }
724 }
725
726 /* Start emitting debugging information. */
727
728 static void
729 cp_lexer_start_debugging (cp_lexer* lexer)
730 {
731 lexer->debugging_p = true;
732 }
733
734 /* Stop emitting debugging information. */
735
736 static void
737 cp_lexer_stop_debugging (cp_lexer* lexer)
738 {
739 lexer->debugging_p = false;
740 }
741
742 #endif /* ENABLE_CHECKING */
743
744 /* Create a new cp_token_cache, representing a range of tokens. */
745
746 static cp_token_cache *
747 cp_token_cache_new (cp_token *first, cp_token *last)
748 {
749 cp_token_cache *cache = GGC_NEW (cp_token_cache);
750 cache->first = first;
751 cache->last = last;
752 return cache;
753 }
754
755 \f
756 /* Decl-specifiers. */
757
758 static void clear_decl_specs
759 (cp_decl_specifier_seq *);
760
761 /* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
762
763 static void
764 clear_decl_specs (cp_decl_specifier_seq *decl_specs)
765 {
766 memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
767 }
768
769 /* Declarators. */
770
771 /* Nothing other than the parser should be creating declarators;
772 declarators are a semi-syntactic representation of C++ entities.
773 Other parts of the front end that need to create entities (like
774 VAR_DECLs or FUNCTION_DECLs) should do that directly. */
775
776 static cp_declarator *make_call_declarator
777 (cp_declarator *, cp_parameter_declarator *, cp_cv_quals, tree);
778 static cp_declarator *make_array_declarator
779 (cp_declarator *, tree);
780 static cp_declarator *make_pointer_declarator
781 (cp_cv_quals, cp_declarator *);
782 static cp_declarator *make_reference_declarator
783 (cp_cv_quals, cp_declarator *);
784 static cp_parameter_declarator *make_parameter_declarator
785 (cp_decl_specifier_seq *, cp_declarator *, tree);
786 static cp_declarator *make_ptrmem_declarator
787 (cp_cv_quals, tree, cp_declarator *);
788
789 cp_declarator *cp_error_declarator;
790
791 /* The obstack on which declarators and related data structures are
792 allocated. */
793 static struct obstack declarator_obstack;
794
795 /* Alloc BYTES from the declarator memory pool. */
796
797 static inline void *
798 alloc_declarator (size_t bytes)
799 {
800 return obstack_alloc (&declarator_obstack, bytes);
801 }
802
803 /* Allocate a declarator of the indicated KIND. Clear fields that are
804 common to all declarators. */
805
806 static cp_declarator *
807 make_declarator (cp_declarator_kind kind)
808 {
809 cp_declarator *declarator;
810
811 declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
812 declarator->kind = kind;
813 declarator->attributes = NULL_TREE;
814 declarator->declarator = NULL;
815
816 return declarator;
817 }
818
819 /* Make a declarator for a generalized identifier. If non-NULL, the
820 identifier is QUALIFYING_SCOPE::UNQUALIFIED_NAME; otherwise, it is
821 just UNQUALIFIED_NAME. */
822
823 static cp_declarator *
824 make_id_declarator (tree qualifying_scope, tree unqualified_name)
825 {
826 cp_declarator *declarator;
827
828 /* It is valid to write:
829
830 class C { void f(); };
831 typedef C D;
832 void D::f();
833
834 The standard is not clear about whether `typedef const C D' is
835 legal; as of 2002-09-15 the committee is considering that
836 question. EDG 3.0 allows that syntax. Therefore, we do as
837 well. */
838 if (qualifying_scope && TYPE_P (qualifying_scope))
839 qualifying_scope = TYPE_MAIN_VARIANT (qualifying_scope);
840
841 declarator = make_declarator (cdk_id);
842 declarator->u.id.qualifying_scope = qualifying_scope;
843 declarator->u.id.unqualified_name = unqualified_name;
844 declarator->u.id.sfk = sfk_none;
845
846 return declarator;
847 }
848
849 /* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
850 of modifiers such as const or volatile to apply to the pointer
851 type, represented as identifiers. */
852
853 cp_declarator *
854 make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
855 {
856 cp_declarator *declarator;
857
858 declarator = make_declarator (cdk_pointer);
859 declarator->declarator = target;
860 declarator->u.pointer.qualifiers = cv_qualifiers;
861 declarator->u.pointer.class_type = NULL_TREE;
862
863 return declarator;
864 }
865
866 /* Like make_pointer_declarator -- but for references. */
867
868 cp_declarator *
869 make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
870 {
871 cp_declarator *declarator;
872
873 declarator = make_declarator (cdk_reference);
874 declarator->declarator = target;
875 declarator->u.pointer.qualifiers = cv_qualifiers;
876 declarator->u.pointer.class_type = NULL_TREE;
877
878 return declarator;
879 }
880
881 /* Like make_pointer_declarator -- but for a pointer to a non-static
882 member of CLASS_TYPE. */
883
884 cp_declarator *
885 make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
886 cp_declarator *pointee)
887 {
888 cp_declarator *declarator;
889
890 declarator = make_declarator (cdk_ptrmem);
891 declarator->declarator = pointee;
892 declarator->u.pointer.qualifiers = cv_qualifiers;
893 declarator->u.pointer.class_type = class_type;
894
895 return declarator;
896 }
897
898 /* Make a declarator for the function given by TARGET, with the
899 indicated PARMS. The CV_QUALIFIERS aply to the function, as in
900 "const"-qualified member function. The EXCEPTION_SPECIFICATION
901 indicates what exceptions can be thrown. */
902
903 cp_declarator *
904 make_call_declarator (cp_declarator *target,
905 cp_parameter_declarator *parms,
906 cp_cv_quals cv_qualifiers,
907 tree exception_specification)
908 {
909 cp_declarator *declarator;
910
911 declarator = make_declarator (cdk_function);
912 declarator->declarator = target;
913 declarator->u.function.parameters = parms;
914 declarator->u.function.qualifiers = cv_qualifiers;
915 declarator->u.function.exception_specification = exception_specification;
916
917 return declarator;
918 }
919
920 /* Make a declarator for an array of BOUNDS elements, each of which is
921 defined by ELEMENT. */
922
923 cp_declarator *
924 make_array_declarator (cp_declarator *element, tree bounds)
925 {
926 cp_declarator *declarator;
927
928 declarator = make_declarator (cdk_array);
929 declarator->declarator = element;
930 declarator->u.array.bounds = bounds;
931
932 return declarator;
933 }
934
935 cp_parameter_declarator *no_parameters;
936
937 /* Create a parameter declarator with the indicated DECL_SPECIFIERS,
938 DECLARATOR and DEFAULT_ARGUMENT. */
939
940 cp_parameter_declarator *
941 make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
942 cp_declarator *declarator,
943 tree default_argument)
944 {
945 cp_parameter_declarator *parameter;
946
947 parameter = ((cp_parameter_declarator *)
948 alloc_declarator (sizeof (cp_parameter_declarator)));
949 parameter->next = NULL;
950 if (decl_specifiers)
951 parameter->decl_specifiers = *decl_specifiers;
952 else
953 clear_decl_specs (&parameter->decl_specifiers);
954 parameter->declarator = declarator;
955 parameter->default_argument = default_argument;
956 parameter->ellipsis_p = false;
957
958 return parameter;
959 }
960
961 /* The parser. */
962
963 /* Overview
964 --------
965
966 A cp_parser parses the token stream as specified by the C++
967 grammar. Its job is purely parsing, not semantic analysis. For
968 example, the parser breaks the token stream into declarators,
969 expressions, statements, and other similar syntactic constructs.
970 It does not check that the types of the expressions on either side
971 of an assignment-statement are compatible, or that a function is
972 not declared with a parameter of type `void'.
973
974 The parser invokes routines elsewhere in the compiler to perform
975 semantic analysis and to build up the abstract syntax tree for the
976 code processed.
977
978 The parser (and the template instantiation code, which is, in a
979 way, a close relative of parsing) are the only parts of the
980 compiler that should be calling push_scope and pop_scope, or
981 related functions. The parser (and template instantiation code)
982 keeps track of what scope is presently active; everything else
983 should simply honor that. (The code that generates static
984 initializers may also need to set the scope, in order to check
985 access control correctly when emitting the initializers.)
986
987 Methodology
988 -----------
989
990 The parser is of the standard recursive-descent variety. Upcoming
991 tokens in the token stream are examined in order to determine which
992 production to use when parsing a non-terminal. Some C++ constructs
993 require arbitrary look ahead to disambiguate. For example, it is
994 impossible, in the general case, to tell whether a statement is an
995 expression or declaration without scanning the entire statement.
996 Therefore, the parser is capable of "parsing tentatively." When the
997 parser is not sure what construct comes next, it enters this mode.
998 Then, while we attempt to parse the construct, the parser queues up
999 error messages, rather than issuing them immediately, and saves the
1000 tokens it consumes. If the construct is parsed successfully, the
1001 parser "commits", i.e., it issues any queued error messages and
1002 the tokens that were being preserved are permanently discarded.
1003 If, however, the construct is not parsed successfully, the parser
1004 rolls back its state completely so that it can resume parsing using
1005 a different alternative.
1006
1007 Future Improvements
1008 -------------------
1009
1010 The performance of the parser could probably be improved substantially.
1011 We could often eliminate the need to parse tentatively by looking ahead
1012 a little bit. In some places, this approach might not entirely eliminate
1013 the need to parse tentatively, but it might still speed up the average
1014 case. */
1015
1016 /* Flags that are passed to some parsing functions. These values can
1017 be bitwise-ored together. */
1018
1019 typedef enum cp_parser_flags
1020 {
1021 /* No flags. */
1022 CP_PARSER_FLAGS_NONE = 0x0,
1023 /* The construct is optional. If it is not present, then no error
1024 should be issued. */
1025 CP_PARSER_FLAGS_OPTIONAL = 0x1,
1026 /* When parsing a type-specifier, do not allow user-defined types. */
1027 CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
1028 } cp_parser_flags;
1029
1030 /* The different kinds of declarators we want to parse. */
1031
1032 typedef enum cp_parser_declarator_kind
1033 {
1034 /* We want an abstract declarator. */
1035 CP_PARSER_DECLARATOR_ABSTRACT,
1036 /* We want a named declarator. */
1037 CP_PARSER_DECLARATOR_NAMED,
1038 /* We don't mind, but the name must be an unqualified-id. */
1039 CP_PARSER_DECLARATOR_EITHER
1040 } cp_parser_declarator_kind;
1041
1042 /* The precedence values used to parse binary expressions. The minimum value
1043 of PREC must be 1, because zero is reserved to quickly discriminate
1044 binary operators from other tokens. */
1045
1046 enum cp_parser_prec
1047 {
1048 PREC_NOT_OPERATOR,
1049 PREC_LOGICAL_OR_EXPRESSION,
1050 PREC_LOGICAL_AND_EXPRESSION,
1051 PREC_INCLUSIVE_OR_EXPRESSION,
1052 PREC_EXCLUSIVE_OR_EXPRESSION,
1053 PREC_AND_EXPRESSION,
1054 PREC_EQUALITY_EXPRESSION,
1055 PREC_RELATIONAL_EXPRESSION,
1056 PREC_SHIFT_EXPRESSION,
1057 PREC_ADDITIVE_EXPRESSION,
1058 PREC_MULTIPLICATIVE_EXPRESSION,
1059 PREC_PM_EXPRESSION,
1060 NUM_PREC_VALUES = PREC_PM_EXPRESSION
1061 };
1062
1063 /* A mapping from a token type to a corresponding tree node type, with a
1064 precedence value. */
1065
1066 typedef struct cp_parser_binary_operations_map_node
1067 {
1068 /* The token type. */
1069 enum cpp_ttype token_type;
1070 /* The corresponding tree code. */
1071 enum tree_code tree_type;
1072 /* The precedence of this operator. */
1073 enum cp_parser_prec prec;
1074 } cp_parser_binary_operations_map_node;
1075
1076 /* The status of a tentative parse. */
1077
1078 typedef enum cp_parser_status_kind
1079 {
1080 /* No errors have occurred. */
1081 CP_PARSER_STATUS_KIND_NO_ERROR,
1082 /* An error has occurred. */
1083 CP_PARSER_STATUS_KIND_ERROR,
1084 /* We are committed to this tentative parse, whether or not an error
1085 has occurred. */
1086 CP_PARSER_STATUS_KIND_COMMITTED
1087 } cp_parser_status_kind;
1088
1089 typedef struct cp_parser_expression_stack_entry
1090 {
1091 tree lhs;
1092 enum tree_code tree_type;
1093 int prec;
1094 } cp_parser_expression_stack_entry;
1095
1096 /* The stack for storing partial expressions. We only need NUM_PREC_VALUES
1097 entries because precedence levels on the stack are monotonically
1098 increasing. */
1099 typedef struct cp_parser_expression_stack_entry
1100 cp_parser_expression_stack[NUM_PREC_VALUES];
1101
1102 /* Context that is saved and restored when parsing tentatively. */
1103 typedef struct cp_parser_context GTY (())
1104 {
1105 /* If this is a tentative parsing context, the status of the
1106 tentative parse. */
1107 enum cp_parser_status_kind status;
1108 /* If non-NULL, we have just seen a `x->' or `x.' expression. Names
1109 that are looked up in this context must be looked up both in the
1110 scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
1111 the context of the containing expression. */
1112 tree object_type;
1113
1114 /* The next parsing context in the stack. */
1115 struct cp_parser_context *next;
1116 } cp_parser_context;
1117
1118 /* Prototypes. */
1119
1120 /* Constructors and destructors. */
1121
1122 static cp_parser_context *cp_parser_context_new
1123 (cp_parser_context *);
1124
1125 /* Class variables. */
1126
1127 static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
1128
1129 /* The operator-precedence table used by cp_parser_binary_expression.
1130 Transformed into an associative array (binops_by_token) by
1131 cp_parser_new. */
1132
1133 static const cp_parser_binary_operations_map_node binops[] = {
1134 { CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
1135 { CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
1136
1137 { CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1138 { CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1139 { CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1140
1141 { CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1142 { CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1143
1144 { CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1145 { CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1146
1147 { CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
1148 { CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
1149 { CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
1150 { CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
1151 { CPP_MIN, MIN_EXPR, PREC_RELATIONAL_EXPRESSION },
1152 { CPP_MAX, MAX_EXPR, PREC_RELATIONAL_EXPRESSION },
1153
1154 { CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
1155 { CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
1156
1157 { CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
1158
1159 { CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
1160
1161 { CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
1162
1163 { CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
1164
1165 { CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
1166 };
1167
1168 /* The same as binops, but initialized by cp_parser_new so that
1169 binops_by_token[N].token_type == N. Used in cp_parser_binary_expression
1170 for speed. */
1171 static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
1172
1173 /* Constructors and destructors. */
1174
1175 /* Construct a new context. The context below this one on the stack
1176 is given by NEXT. */
1177
1178 static cp_parser_context *
1179 cp_parser_context_new (cp_parser_context* next)
1180 {
1181 cp_parser_context *context;
1182
1183 /* Allocate the storage. */
1184 if (cp_parser_context_free_list != NULL)
1185 {
1186 /* Pull the first entry from the free list. */
1187 context = cp_parser_context_free_list;
1188 cp_parser_context_free_list = context->next;
1189 memset (context, 0, sizeof (*context));
1190 }
1191 else
1192 context = GGC_CNEW (cp_parser_context);
1193
1194 /* No errors have occurred yet in this context. */
1195 context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
1196 /* If this is not the bottomost context, copy information that we
1197 need from the previous context. */
1198 if (next)
1199 {
1200 /* If, in the NEXT context, we are parsing an `x->' or `x.'
1201 expression, then we are parsing one in this context, too. */
1202 context->object_type = next->object_type;
1203 /* Thread the stack. */
1204 context->next = next;
1205 }
1206
1207 return context;
1208 }
1209
1210 /* The cp_parser structure represents the C++ parser. */
1211
1212 typedef struct cp_parser GTY(())
1213 {
1214 /* The lexer from which we are obtaining tokens. */
1215 cp_lexer *lexer;
1216
1217 /* The scope in which names should be looked up. If NULL_TREE, then
1218 we look up names in the scope that is currently open in the
1219 source program. If non-NULL, this is either a TYPE or
1220 NAMESPACE_DECL for the scope in which we should look.
1221
1222 This value is not cleared automatically after a name is looked
1223 up, so we must be careful to clear it before starting a new look
1224 up sequence. (If it is not cleared, then `X::Y' followed by `Z'
1225 will look up `Z' in the scope of `X', rather than the current
1226 scope.) Unfortunately, it is difficult to tell when name lookup
1227 is complete, because we sometimes peek at a token, look it up,
1228 and then decide not to consume it. */
1229 tree scope;
1230
1231 /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
1232 last lookup took place. OBJECT_SCOPE is used if an expression
1233 like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
1234 respectively. QUALIFYING_SCOPE is used for an expression of the
1235 form "X::Y"; it refers to X. */
1236 tree object_scope;
1237 tree qualifying_scope;
1238
1239 /* A stack of parsing contexts. All but the bottom entry on the
1240 stack will be tentative contexts.
1241
1242 We parse tentatively in order to determine which construct is in
1243 use in some situations. For example, in order to determine
1244 whether a statement is an expression-statement or a
1245 declaration-statement we parse it tentatively as a
1246 declaration-statement. If that fails, we then reparse the same
1247 token stream as an expression-statement. */
1248 cp_parser_context *context;
1249
1250 /* True if we are parsing GNU C++. If this flag is not set, then
1251 GNU extensions are not recognized. */
1252 bool allow_gnu_extensions_p;
1253
1254 /* TRUE if the `>' token should be interpreted as the greater-than
1255 operator. FALSE if it is the end of a template-id or
1256 template-parameter-list. */
1257 bool greater_than_is_operator_p;
1258
1259 /* TRUE if default arguments are allowed within a parameter list
1260 that starts at this point. FALSE if only a gnu extension makes
1261 them permissible. */
1262 bool default_arg_ok_p;
1263
1264 /* TRUE if we are parsing an integral constant-expression. See
1265 [expr.const] for a precise definition. */
1266 bool integral_constant_expression_p;
1267
1268 /* TRUE if we are parsing an integral constant-expression -- but a
1269 non-constant expression should be permitted as well. This flag
1270 is used when parsing an array bound so that GNU variable-length
1271 arrays are tolerated. */
1272 bool allow_non_integral_constant_expression_p;
1273
1274 /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
1275 been seen that makes the expression non-constant. */
1276 bool non_integral_constant_expression_p;
1277
1278 /* TRUE if local variable names and `this' are forbidden in the
1279 current context. */
1280 bool local_variables_forbidden_p;
1281
1282 /* TRUE if the declaration we are parsing is part of a
1283 linkage-specification of the form `extern string-literal
1284 declaration'. */
1285 bool in_unbraced_linkage_specification_p;
1286
1287 /* TRUE if we are presently parsing a declarator, after the
1288 direct-declarator. */
1289 bool in_declarator_p;
1290
1291 /* TRUE if we are presently parsing a template-argument-list. */
1292 bool in_template_argument_list_p;
1293
1294 /* TRUE if we are presently parsing the body of an
1295 iteration-statement. */
1296 bool in_iteration_statement_p;
1297
1298 /* TRUE if we are presently parsing the body of a switch
1299 statement. */
1300 bool in_switch_statement_p;
1301
1302 /* TRUE if we are parsing a type-id in an expression context. In
1303 such a situation, both "type (expr)" and "type (type)" are valid
1304 alternatives. */
1305 bool in_type_id_in_expr_p;
1306
1307 /* TRUE if we are currently in a header file where declarations are
1308 implicitly extern "C". */
1309 bool implicit_extern_c;
1310
1311 /* TRUE if strings in expressions should be translated to the execution
1312 character set. */
1313 bool translate_strings_p;
1314
1315 /* If non-NULL, then we are parsing a construct where new type
1316 definitions are not permitted. The string stored here will be
1317 issued as an error message if a type is defined. */
1318 const char *type_definition_forbidden_message;
1319
1320 /* A list of lists. The outer list is a stack, used for member
1321 functions of local classes. At each level there are two sub-list,
1322 one on TREE_VALUE and one on TREE_PURPOSE. Each of those
1323 sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
1324 TREE_VALUE's. The functions are chained in reverse declaration
1325 order.
1326
1327 The TREE_PURPOSE sublist contains those functions with default
1328 arguments that need post processing, and the TREE_VALUE sublist
1329 contains those functions with definitions that need post
1330 processing.
1331
1332 These lists can only be processed once the outermost class being
1333 defined is complete. */
1334 tree unparsed_functions_queues;
1335
1336 /* The number of classes whose definitions are currently in
1337 progress. */
1338 unsigned num_classes_being_defined;
1339
1340 /* The number of template parameter lists that apply directly to the
1341 current declaration. */
1342 unsigned num_template_parameter_lists;
1343 } cp_parser;
1344
1345 /* The type of a function that parses some kind of expression. */
1346 typedef tree (*cp_parser_expression_fn) (cp_parser *);
1347
1348 /* Prototypes. */
1349
1350 /* Constructors and destructors. */
1351
1352 static cp_parser *cp_parser_new
1353 (void);
1354
1355 /* Routines to parse various constructs.
1356
1357 Those that return `tree' will return the error_mark_node (rather
1358 than NULL_TREE) if a parse error occurs, unless otherwise noted.
1359 Sometimes, they will return an ordinary node if error-recovery was
1360 attempted, even though a parse error occurred. So, to check
1361 whether or not a parse error occurred, you should always use
1362 cp_parser_error_occurred. If the construct is optional (indicated
1363 either by an `_opt' in the name of the function that does the
1364 parsing or via a FLAGS parameter), then NULL_TREE is returned if
1365 the construct is not present. */
1366
1367 /* Lexical conventions [gram.lex] */
1368
1369 static tree cp_parser_identifier
1370 (cp_parser *);
1371 static tree cp_parser_string_literal
1372 (cp_parser *, bool, bool);
1373
1374 /* Basic concepts [gram.basic] */
1375
1376 static bool cp_parser_translation_unit
1377 (cp_parser *);
1378
1379 /* Expressions [gram.expr] */
1380
1381 static tree cp_parser_primary_expression
1382 (cp_parser *, bool, cp_id_kind *, tree *);
1383 static tree cp_parser_id_expression
1384 (cp_parser *, bool, bool, bool *, bool);
1385 static tree cp_parser_unqualified_id
1386 (cp_parser *, bool, bool, bool);
1387 static tree cp_parser_nested_name_specifier_opt
1388 (cp_parser *, bool, bool, bool, bool);
1389 static tree cp_parser_nested_name_specifier
1390 (cp_parser *, bool, bool, bool, bool);
1391 static tree cp_parser_class_or_namespace_name
1392 (cp_parser *, bool, bool, bool, bool, bool);
1393 static tree cp_parser_postfix_expression
1394 (cp_parser *, bool, bool);
1395 static tree cp_parser_postfix_open_square_expression
1396 (cp_parser *, tree, bool);
1397 static tree cp_parser_postfix_dot_deref_expression
1398 (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
1399 static tree cp_parser_parenthesized_expression_list
1400 (cp_parser *, bool, bool, bool *);
1401 static void cp_parser_pseudo_destructor_name
1402 (cp_parser *, tree *, tree *);
1403 static tree cp_parser_unary_expression
1404 (cp_parser *, bool, bool);
1405 static enum tree_code cp_parser_unary_operator
1406 (cp_token *);
1407 static tree cp_parser_new_expression
1408 (cp_parser *);
1409 static tree cp_parser_new_placement
1410 (cp_parser *);
1411 static tree cp_parser_new_type_id
1412 (cp_parser *, tree *);
1413 static cp_declarator *cp_parser_new_declarator_opt
1414 (cp_parser *);
1415 static cp_declarator *cp_parser_direct_new_declarator
1416 (cp_parser *);
1417 static tree cp_parser_new_initializer
1418 (cp_parser *);
1419 static tree cp_parser_delete_expression
1420 (cp_parser *);
1421 static tree cp_parser_cast_expression
1422 (cp_parser *, bool, bool);
1423 static tree cp_parser_binary_expression
1424 (cp_parser *, bool);
1425 static tree cp_parser_question_colon_clause
1426 (cp_parser *, tree);
1427 static tree cp_parser_assignment_expression
1428 (cp_parser *, bool);
1429 static enum tree_code cp_parser_assignment_operator_opt
1430 (cp_parser *);
1431 static tree cp_parser_expression
1432 (cp_parser *, bool);
1433 static tree cp_parser_constant_expression
1434 (cp_parser *, bool, bool *);
1435 static tree cp_parser_builtin_offsetof
1436 (cp_parser *);
1437
1438 /* Statements [gram.stmt.stmt] */
1439
1440 static void cp_parser_statement
1441 (cp_parser *, tree);
1442 static tree cp_parser_labeled_statement
1443 (cp_parser *, tree);
1444 static tree cp_parser_expression_statement
1445 (cp_parser *, tree);
1446 static tree cp_parser_compound_statement
1447 (cp_parser *, tree, bool);
1448 static void cp_parser_statement_seq_opt
1449 (cp_parser *, tree);
1450 static tree cp_parser_selection_statement
1451 (cp_parser *);
1452 static tree cp_parser_condition
1453 (cp_parser *);
1454 static tree cp_parser_iteration_statement
1455 (cp_parser *);
1456 static void cp_parser_for_init_statement
1457 (cp_parser *);
1458 static tree cp_parser_jump_statement
1459 (cp_parser *);
1460 static void cp_parser_declaration_statement
1461 (cp_parser *);
1462
1463 static tree cp_parser_implicitly_scoped_statement
1464 (cp_parser *);
1465 static void cp_parser_already_scoped_statement
1466 (cp_parser *);
1467
1468 /* Declarations [gram.dcl.dcl] */
1469
1470 static void cp_parser_declaration_seq_opt
1471 (cp_parser *);
1472 static void cp_parser_declaration
1473 (cp_parser *);
1474 static void cp_parser_block_declaration
1475 (cp_parser *, bool);
1476 static void cp_parser_simple_declaration
1477 (cp_parser *, bool);
1478 static void cp_parser_decl_specifier_seq
1479 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
1480 static tree cp_parser_storage_class_specifier_opt
1481 (cp_parser *);
1482 static tree cp_parser_function_specifier_opt
1483 (cp_parser *, cp_decl_specifier_seq *);
1484 static tree cp_parser_type_specifier
1485 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
1486 int *, bool *);
1487 static tree cp_parser_simple_type_specifier
1488 (cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
1489 static tree cp_parser_type_name
1490 (cp_parser *);
1491 static tree cp_parser_elaborated_type_specifier
1492 (cp_parser *, bool, bool);
1493 static tree cp_parser_enum_specifier
1494 (cp_parser *);
1495 static void cp_parser_enumerator_list
1496 (cp_parser *, tree);
1497 static void cp_parser_enumerator_definition
1498 (cp_parser *, tree);
1499 static tree cp_parser_namespace_name
1500 (cp_parser *);
1501 static void cp_parser_namespace_definition
1502 (cp_parser *);
1503 static void cp_parser_namespace_body
1504 (cp_parser *);
1505 static tree cp_parser_qualified_namespace_specifier
1506 (cp_parser *);
1507 static void cp_parser_namespace_alias_definition
1508 (cp_parser *);
1509 static void cp_parser_using_declaration
1510 (cp_parser *);
1511 static void cp_parser_using_directive
1512 (cp_parser *);
1513 static void cp_parser_asm_definition
1514 (cp_parser *);
1515 static void cp_parser_linkage_specification
1516 (cp_parser *);
1517
1518 /* Declarators [gram.dcl.decl] */
1519
1520 static tree cp_parser_init_declarator
1521 (cp_parser *, cp_decl_specifier_seq *, bool, bool, int, bool *);
1522 static cp_declarator *cp_parser_declarator
1523 (cp_parser *, cp_parser_declarator_kind, int *, bool *, bool);
1524 static cp_declarator *cp_parser_direct_declarator
1525 (cp_parser *, cp_parser_declarator_kind, int *, bool);
1526 static enum tree_code cp_parser_ptr_operator
1527 (cp_parser *, tree *, cp_cv_quals *);
1528 static cp_cv_quals cp_parser_cv_qualifier_seq_opt
1529 (cp_parser *);
1530 static tree cp_parser_declarator_id
1531 (cp_parser *);
1532 static tree cp_parser_type_id
1533 (cp_parser *);
1534 static void cp_parser_type_specifier_seq
1535 (cp_parser *, bool, cp_decl_specifier_seq *);
1536 static cp_parameter_declarator *cp_parser_parameter_declaration_clause
1537 (cp_parser *);
1538 static cp_parameter_declarator *cp_parser_parameter_declaration_list
1539 (cp_parser *, bool *);
1540 static cp_parameter_declarator *cp_parser_parameter_declaration
1541 (cp_parser *, bool, bool *);
1542 static void cp_parser_function_body
1543 (cp_parser *);
1544 static tree cp_parser_initializer
1545 (cp_parser *, bool *, bool *);
1546 static tree cp_parser_initializer_clause
1547 (cp_parser *, bool *);
1548 static tree cp_parser_initializer_list
1549 (cp_parser *, bool *);
1550
1551 static bool cp_parser_ctor_initializer_opt_and_function_body
1552 (cp_parser *);
1553
1554 /* Classes [gram.class] */
1555
1556 static tree cp_parser_class_name
1557 (cp_parser *, bool, bool, enum tag_types, bool, bool, bool);
1558 static tree cp_parser_class_specifier
1559 (cp_parser *);
1560 static tree cp_parser_class_head
1561 (cp_parser *, bool *, tree *);
1562 static enum tag_types cp_parser_class_key
1563 (cp_parser *);
1564 static void cp_parser_member_specification_opt
1565 (cp_parser *);
1566 static void cp_parser_member_declaration
1567 (cp_parser *);
1568 static tree cp_parser_pure_specifier
1569 (cp_parser *);
1570 static tree cp_parser_constant_initializer
1571 (cp_parser *);
1572
1573 /* Derived classes [gram.class.derived] */
1574
1575 static tree cp_parser_base_clause
1576 (cp_parser *);
1577 static tree cp_parser_base_specifier
1578 (cp_parser *);
1579
1580 /* Special member functions [gram.special] */
1581
1582 static tree cp_parser_conversion_function_id
1583 (cp_parser *);
1584 static tree cp_parser_conversion_type_id
1585 (cp_parser *);
1586 static cp_declarator *cp_parser_conversion_declarator_opt
1587 (cp_parser *);
1588 static bool cp_parser_ctor_initializer_opt
1589 (cp_parser *);
1590 static void cp_parser_mem_initializer_list
1591 (cp_parser *);
1592 static tree cp_parser_mem_initializer
1593 (cp_parser *);
1594 static tree cp_parser_mem_initializer_id
1595 (cp_parser *);
1596
1597 /* Overloading [gram.over] */
1598
1599 static tree cp_parser_operator_function_id
1600 (cp_parser *);
1601 static tree cp_parser_operator
1602 (cp_parser *);
1603
1604 /* Templates [gram.temp] */
1605
1606 static void cp_parser_template_declaration
1607 (cp_parser *, bool);
1608 static tree cp_parser_template_parameter_list
1609 (cp_parser *);
1610 static tree cp_parser_template_parameter
1611 (cp_parser *, bool *);
1612 static tree cp_parser_type_parameter
1613 (cp_parser *);
1614 static tree cp_parser_template_id
1615 (cp_parser *, bool, bool, bool);
1616 static tree cp_parser_template_name
1617 (cp_parser *, bool, bool, bool, bool *);
1618 static tree cp_parser_template_argument_list
1619 (cp_parser *);
1620 static tree cp_parser_template_argument
1621 (cp_parser *);
1622 static void cp_parser_explicit_instantiation
1623 (cp_parser *);
1624 static void cp_parser_explicit_specialization
1625 (cp_parser *);
1626
1627 /* Exception handling [gram.exception] */
1628
1629 static tree cp_parser_try_block
1630 (cp_parser *);
1631 static bool cp_parser_function_try_block
1632 (cp_parser *);
1633 static void cp_parser_handler_seq
1634 (cp_parser *);
1635 static void cp_parser_handler
1636 (cp_parser *);
1637 static tree cp_parser_exception_declaration
1638 (cp_parser *);
1639 static tree cp_parser_throw_expression
1640 (cp_parser *);
1641 static tree cp_parser_exception_specification_opt
1642 (cp_parser *);
1643 static tree cp_parser_type_id_list
1644 (cp_parser *);
1645
1646 /* GNU Extensions */
1647
1648 static tree cp_parser_asm_specification_opt
1649 (cp_parser *);
1650 static tree cp_parser_asm_operand_list
1651 (cp_parser *);
1652 static tree cp_parser_asm_clobber_list
1653 (cp_parser *);
1654 static tree cp_parser_attributes_opt
1655 (cp_parser *);
1656 static tree cp_parser_attribute_list
1657 (cp_parser *);
1658 static bool cp_parser_extension_opt
1659 (cp_parser *, int *);
1660 static void cp_parser_label_declaration
1661 (cp_parser *);
1662
1663 /* Objective-C++ Productions */
1664
1665 static tree cp_parser_objc_message_receiver
1666 (cp_parser *);
1667 static tree cp_parser_objc_message_args
1668 (cp_parser *);
1669 static tree cp_parser_objc_message_expression
1670 (cp_parser *);
1671 static tree cp_parser_objc_encode_expression
1672 (cp_parser *);
1673 static tree cp_parser_objc_defs_expression
1674 (cp_parser *);
1675 static tree cp_parser_objc_protocol_expression
1676 (cp_parser *);
1677 static tree cp_parser_objc_selector_expression
1678 (cp_parser *);
1679 static tree cp_parser_objc_expression
1680 (cp_parser *);
1681 static bool cp_parser_objc_selector_p
1682 (enum cpp_ttype);
1683 static tree cp_parser_objc_selector
1684 (cp_parser *);
1685 static tree cp_parser_objc_protocol_refs_opt
1686 (cp_parser *);
1687 static void cp_parser_objc_declaration
1688 (cp_parser *);
1689 static tree cp_parser_objc_statement
1690 (cp_parser *);
1691
1692 /* Utility Routines */
1693
1694 static tree cp_parser_lookup_name
1695 (cp_parser *, tree, enum tag_types, bool, bool, bool, bool *);
1696 static tree cp_parser_lookup_name_simple
1697 (cp_parser *, tree);
1698 static tree cp_parser_maybe_treat_template_as_class
1699 (tree, bool);
1700 static bool cp_parser_check_declarator_template_parameters
1701 (cp_parser *, cp_declarator *);
1702 static bool cp_parser_check_template_parameters
1703 (cp_parser *, unsigned);
1704 static tree cp_parser_simple_cast_expression
1705 (cp_parser *);
1706 static tree cp_parser_global_scope_opt
1707 (cp_parser *, bool);
1708 static bool cp_parser_constructor_declarator_p
1709 (cp_parser *, bool);
1710 static tree cp_parser_function_definition_from_specifiers_and_declarator
1711 (cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
1712 static tree cp_parser_function_definition_after_declarator
1713 (cp_parser *, bool);
1714 static void cp_parser_template_declaration_after_export
1715 (cp_parser *, bool);
1716 static tree cp_parser_single_declaration
1717 (cp_parser *, bool, bool *);
1718 static tree cp_parser_functional_cast
1719 (cp_parser *, tree);
1720 static tree cp_parser_save_member_function_body
1721 (cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
1722 static tree cp_parser_enclosed_template_argument_list
1723 (cp_parser *);
1724 static void cp_parser_save_default_args
1725 (cp_parser *, tree);
1726 static void cp_parser_late_parsing_for_member
1727 (cp_parser *, tree);
1728 static void cp_parser_late_parsing_default_args
1729 (cp_parser *, tree);
1730 static tree cp_parser_sizeof_operand
1731 (cp_parser *, enum rid);
1732 static bool cp_parser_declares_only_class_p
1733 (cp_parser *);
1734 static void cp_parser_set_storage_class
1735 (cp_decl_specifier_seq *, cp_storage_class);
1736 static void cp_parser_set_decl_spec_type
1737 (cp_decl_specifier_seq *, tree, bool);
1738 static bool cp_parser_friend_p
1739 (const cp_decl_specifier_seq *);
1740 static cp_token *cp_parser_require
1741 (cp_parser *, enum cpp_ttype, const char *);
1742 static cp_token *cp_parser_require_keyword
1743 (cp_parser *, enum rid, const char *);
1744 static bool cp_parser_token_starts_function_definition_p
1745 (cp_token *);
1746 static bool cp_parser_next_token_starts_class_definition_p
1747 (cp_parser *);
1748 static bool cp_parser_next_token_ends_template_argument_p
1749 (cp_parser *);
1750 static bool cp_parser_nth_token_starts_template_argument_list_p
1751 (cp_parser *, size_t);
1752 static enum tag_types cp_parser_token_is_class_key
1753 (cp_token *);
1754 static void cp_parser_check_class_key
1755 (enum tag_types, tree type);
1756 static void cp_parser_check_access_in_redeclaration
1757 (tree type);
1758 static bool cp_parser_optional_template_keyword
1759 (cp_parser *);
1760 static void cp_parser_pre_parsed_nested_name_specifier
1761 (cp_parser *);
1762 static void cp_parser_cache_group
1763 (cp_parser *, enum cpp_ttype, unsigned);
1764 static void cp_parser_parse_tentatively
1765 (cp_parser *);
1766 static void cp_parser_commit_to_tentative_parse
1767 (cp_parser *);
1768 static void cp_parser_abort_tentative_parse
1769 (cp_parser *);
1770 static bool cp_parser_parse_definitely
1771 (cp_parser *);
1772 static inline bool cp_parser_parsing_tentatively
1773 (cp_parser *);
1774 static bool cp_parser_uncommitted_to_tentative_parse_p
1775 (cp_parser *);
1776 static void cp_parser_error
1777 (cp_parser *, const char *);
1778 static void cp_parser_name_lookup_error
1779 (cp_parser *, tree, tree, const char *);
1780 static bool cp_parser_simulate_error
1781 (cp_parser *);
1782 static void cp_parser_check_type_definition
1783 (cp_parser *);
1784 static void cp_parser_check_for_definition_in_return_type
1785 (cp_declarator *, tree);
1786 static void cp_parser_check_for_invalid_template_id
1787 (cp_parser *, tree);
1788 static bool cp_parser_non_integral_constant_expression
1789 (cp_parser *, const char *);
1790 static void cp_parser_diagnose_invalid_type_name
1791 (cp_parser *, tree, tree);
1792 static bool cp_parser_parse_and_diagnose_invalid_type_name
1793 (cp_parser *);
1794 static int cp_parser_skip_to_closing_parenthesis
1795 (cp_parser *, bool, bool, bool);
1796 static void cp_parser_skip_to_end_of_statement
1797 (cp_parser *);
1798 static void cp_parser_consume_semicolon_at_end_of_statement
1799 (cp_parser *);
1800 static void cp_parser_skip_to_end_of_block_or_statement
1801 (cp_parser *);
1802 static void cp_parser_skip_to_closing_brace
1803 (cp_parser *);
1804 static void cp_parser_skip_until_found
1805 (cp_parser *, enum cpp_ttype, const char *);
1806 static bool cp_parser_error_occurred
1807 (cp_parser *);
1808 static bool cp_parser_allow_gnu_extensions_p
1809 (cp_parser *);
1810 static bool cp_parser_is_string_literal
1811 (cp_token *);
1812 static bool cp_parser_is_keyword
1813 (cp_token *, enum rid);
1814 static tree cp_parser_make_typename_type
1815 (cp_parser *, tree, tree);
1816
1817 /* Returns nonzero if we are parsing tentatively. */
1818
1819 static inline bool
1820 cp_parser_parsing_tentatively (cp_parser* parser)
1821 {
1822 return parser->context->next != NULL;
1823 }
1824
1825 /* Returns nonzero if TOKEN is a string literal. */
1826
1827 static bool
1828 cp_parser_is_string_literal (cp_token* token)
1829 {
1830 return (token->type == CPP_STRING || token->type == CPP_WSTRING);
1831 }
1832
1833 /* Returns nonzero if TOKEN is the indicated KEYWORD. */
1834
1835 static bool
1836 cp_parser_is_keyword (cp_token* token, enum rid keyword)
1837 {
1838 return token->keyword == keyword;
1839 }
1840
1841 /* A minimum or maximum operator has been seen. As these are
1842 deprecated, issue a warning. */
1843
1844 static inline void
1845 cp_parser_warn_min_max (void)
1846 {
1847 if (warn_deprecated && !in_system_header)
1848 warning (0, "minimum/maximum operators are deprecated");
1849 }
1850
1851 /* If not parsing tentatively, issue a diagnostic of the form
1852 FILE:LINE: MESSAGE before TOKEN
1853 where TOKEN is the next token in the input stream. MESSAGE
1854 (specified by the caller) is usually of the form "expected
1855 OTHER-TOKEN". */
1856
1857 static void
1858 cp_parser_error (cp_parser* parser, const char* message)
1859 {
1860 if (!cp_parser_simulate_error (parser))
1861 {
1862 cp_token *token = cp_lexer_peek_token (parser->lexer);
1863 /* This diagnostic makes more sense if it is tagged to the line
1864 of the token we just peeked at. */
1865 cp_lexer_set_source_position_from_token (token);
1866 if (token->type == CPP_PRAGMA)
1867 {
1868 error ("%<#pragma%> is not allowed here");
1869 cp_lexer_purge_token (parser->lexer);
1870 return;
1871 }
1872 c_parse_error (message,
1873 /* Because c_parser_error does not understand
1874 CPP_KEYWORD, keywords are treated like
1875 identifiers. */
1876 (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
1877 token->value);
1878 }
1879 }
1880
1881 /* Issue an error about name-lookup failing. NAME is the
1882 IDENTIFIER_NODE DECL is the result of
1883 the lookup (as returned from cp_parser_lookup_name). DESIRED is
1884 the thing that we hoped to find. */
1885
1886 static void
1887 cp_parser_name_lookup_error (cp_parser* parser,
1888 tree name,
1889 tree decl,
1890 const char* desired)
1891 {
1892 /* If name lookup completely failed, tell the user that NAME was not
1893 declared. */
1894 if (decl == error_mark_node)
1895 {
1896 if (parser->scope && parser->scope != global_namespace)
1897 error ("%<%D::%D%> has not been declared",
1898 parser->scope, name);
1899 else if (parser->scope == global_namespace)
1900 error ("%<::%D%> has not been declared", name);
1901 else if (parser->object_scope
1902 && !CLASS_TYPE_P (parser->object_scope))
1903 error ("request for member %qD in non-class type %qT",
1904 name, parser->object_scope);
1905 else if (parser->object_scope)
1906 error ("%<%T::%D%> has not been declared",
1907 parser->object_scope, name);
1908 else
1909 error ("%qD has not been declared", name);
1910 }
1911 else if (parser->scope && parser->scope != global_namespace)
1912 error ("%<%D::%D%> %s", parser->scope, name, desired);
1913 else if (parser->scope == global_namespace)
1914 error ("%<::%D%> %s", name, desired);
1915 else
1916 error ("%qD %s", name, desired);
1917 }
1918
1919 /* If we are parsing tentatively, remember that an error has occurred
1920 during this tentative parse. Returns true if the error was
1921 simulated; false if a message should be issued by the caller. */
1922
1923 static bool
1924 cp_parser_simulate_error (cp_parser* parser)
1925 {
1926 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
1927 {
1928 parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
1929 return true;
1930 }
1931 return false;
1932 }
1933
1934 /* This function is called when a type is defined. If type
1935 definitions are forbidden at this point, an error message is
1936 issued. */
1937
1938 static void
1939 cp_parser_check_type_definition (cp_parser* parser)
1940 {
1941 /* If types are forbidden here, issue a message. */
1942 if (parser->type_definition_forbidden_message)
1943 /* Use `%s' to print the string in case there are any escape
1944 characters in the message. */
1945 error ("%s", parser->type_definition_forbidden_message);
1946 }
1947
1948 /* This function is called when the DECLARATOR is processed. The TYPE
1949 was a type defined in the decl-specifiers. If it is invalid to
1950 define a type in the decl-specifiers for DECLARATOR, an error is
1951 issued. */
1952
1953 static void
1954 cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
1955 tree type)
1956 {
1957 /* [dcl.fct] forbids type definitions in return types.
1958 Unfortunately, it's not easy to know whether or not we are
1959 processing a return type until after the fact. */
1960 while (declarator
1961 && (declarator->kind == cdk_pointer
1962 || declarator->kind == cdk_reference
1963 || declarator->kind == cdk_ptrmem))
1964 declarator = declarator->declarator;
1965 if (declarator
1966 && declarator->kind == cdk_function)
1967 {
1968 error ("new types may not be defined in a return type");
1969 inform ("(perhaps a semicolon is missing after the definition of %qT)",
1970 type);
1971 }
1972 }
1973
1974 /* A type-specifier (TYPE) has been parsed which cannot be followed by
1975 "<" in any valid C++ program. If the next token is indeed "<",
1976 issue a message warning the user about what appears to be an
1977 invalid attempt to form a template-id. */
1978
1979 static void
1980 cp_parser_check_for_invalid_template_id (cp_parser* parser,
1981 tree type)
1982 {
1983 cp_token_position start = 0;
1984
1985 if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
1986 {
1987 if (TYPE_P (type))
1988 error ("%qT is not a template", type);
1989 else if (TREE_CODE (type) == IDENTIFIER_NODE)
1990 error ("%qE is not a template", type);
1991 else
1992 error ("invalid template-id");
1993 /* Remember the location of the invalid "<". */
1994 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
1995 start = cp_lexer_token_position (parser->lexer, true);
1996 /* Consume the "<". */
1997 cp_lexer_consume_token (parser->lexer);
1998 /* Parse the template arguments. */
1999 cp_parser_enclosed_template_argument_list (parser);
2000 /* Permanently remove the invalid template arguments so that
2001 this error message is not issued again. */
2002 if (start)
2003 cp_lexer_purge_tokens_after (parser->lexer, start);
2004 }
2005 }
2006
2007 /* If parsing an integral constant-expression, issue an error message
2008 about the fact that THING appeared and return true. Otherwise,
2009 return false. In either case, set
2010 PARSER->NON_INTEGRAL_CONSTANT_EXPRESSION_P. */
2011
2012 static bool
2013 cp_parser_non_integral_constant_expression (cp_parser *parser,
2014 const char *thing)
2015 {
2016 parser->non_integral_constant_expression_p = true;
2017 if (parser->integral_constant_expression_p)
2018 {
2019 if (!parser->allow_non_integral_constant_expression_p)
2020 {
2021 error ("%s cannot appear in a constant-expression", thing);
2022 return true;
2023 }
2024 }
2025 return false;
2026 }
2027
2028 /* Emit a diagnostic for an invalid type name. SCOPE is the
2029 qualifying scope (or NULL, if none) for ID. This function commits
2030 to the current active tentative parse, if any. (Otherwise, the
2031 problematic construct might be encountered again later, resulting
2032 in duplicate error messages.) */
2033
2034 static void
2035 cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
2036 {
2037 tree decl, old_scope;
2038 /* Try to lookup the identifier. */
2039 old_scope = parser->scope;
2040 parser->scope = scope;
2041 decl = cp_parser_lookup_name_simple (parser, id);
2042 parser->scope = old_scope;
2043 /* If the lookup found a template-name, it means that the user forgot
2044 to specify an argument list. Emit an useful error message. */
2045 if (TREE_CODE (decl) == TEMPLATE_DECL)
2046 error ("invalid use of template-name %qE without an argument list",
2047 decl);
2048 else if (!parser->scope)
2049 {
2050 /* Issue an error message. */
2051 error ("%qE does not name a type", id);
2052 /* If we're in a template class, it's possible that the user was
2053 referring to a type from a base class. For example:
2054
2055 template <typename T> struct A { typedef T X; };
2056 template <typename T> struct B : public A<T> { X x; };
2057
2058 The user should have said "typename A<T>::X". */
2059 if (processing_template_decl && current_class_type
2060 && TYPE_BINFO (current_class_type))
2061 {
2062 tree b;
2063
2064 for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
2065 b;
2066 b = TREE_CHAIN (b))
2067 {
2068 tree base_type = BINFO_TYPE (b);
2069 if (CLASS_TYPE_P (base_type)
2070 && dependent_type_p (base_type))
2071 {
2072 tree field;
2073 /* Go from a particular instantiation of the
2074 template (which will have an empty TYPE_FIELDs),
2075 to the main version. */
2076 base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
2077 for (field = TYPE_FIELDS (base_type);
2078 field;
2079 field = TREE_CHAIN (field))
2080 if (TREE_CODE (field) == TYPE_DECL
2081 && DECL_NAME (field) == id)
2082 {
2083 inform ("(perhaps %<typename %T::%E%> was intended)",
2084 BINFO_TYPE (b), id);
2085 break;
2086 }
2087 if (field)
2088 break;
2089 }
2090 }
2091 }
2092 }
2093 /* Here we diagnose qualified-ids where the scope is actually correct,
2094 but the identifier does not resolve to a valid type name. */
2095 else
2096 {
2097 if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
2098 error ("%qE in namespace %qE does not name a type",
2099 id, parser->scope);
2100 else if (TYPE_P (parser->scope))
2101 error ("%qE in class %qT does not name a type", id, parser->scope);
2102 else
2103 gcc_unreachable ();
2104 }
2105 cp_parser_commit_to_tentative_parse (parser);
2106 }
2107
2108 /* Check for a common situation where a type-name should be present,
2109 but is not, and issue a sensible error message. Returns true if an
2110 invalid type-name was detected.
2111
2112 The situation handled by this function are variable declarations of the
2113 form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
2114 Usually, `ID' should name a type, but if we got here it means that it
2115 does not. We try to emit the best possible error message depending on
2116 how exactly the id-expression looks like.
2117 */
2118
2119 static bool
2120 cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
2121 {
2122 tree id;
2123
2124 cp_parser_parse_tentatively (parser);
2125 id = cp_parser_id_expression (parser,
2126 /*template_keyword_p=*/false,
2127 /*check_dependency_p=*/true,
2128 /*template_p=*/NULL,
2129 /*declarator_p=*/true);
2130 /* After the id-expression, there should be a plain identifier,
2131 otherwise this is not a simple variable declaration. Also, if
2132 the scope is dependent, we cannot do much. */
2133 if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2134 || (parser->scope && TYPE_P (parser->scope)
2135 && dependent_type_p (parser->scope)))
2136 {
2137 cp_parser_abort_tentative_parse (parser);
2138 return false;
2139 }
2140 if (!cp_parser_parse_definitely (parser)
2141 || TREE_CODE (id) != IDENTIFIER_NODE)
2142 return false;
2143
2144 /* Emit a diagnostic for the invalid type. */
2145 cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
2146 /* Skip to the end of the declaration; there's no point in
2147 trying to process it. */
2148 cp_parser_skip_to_end_of_block_or_statement (parser);
2149 return true;
2150 }
2151
2152 /* Consume tokens up to, and including, the next non-nested closing `)'.
2153 Returns 1 iff we found a closing `)'. RECOVERING is true, if we
2154 are doing error recovery. Returns -1 if OR_COMMA is true and we
2155 found an unnested comma. */
2156
2157 static int
2158 cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
2159 bool recovering,
2160 bool or_comma,
2161 bool consume_paren)
2162 {
2163 unsigned paren_depth = 0;
2164 unsigned brace_depth = 0;
2165 int result;
2166
2167 if (recovering && !or_comma
2168 && cp_parser_uncommitted_to_tentative_parse_p (parser))
2169 return 0;
2170
2171 while (true)
2172 {
2173 cp_token *token;
2174
2175 /* If we've run out of tokens, then there is no closing `)'. */
2176 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2177 {
2178 result = 0;
2179 break;
2180 }
2181
2182 token = cp_lexer_peek_token (parser->lexer);
2183
2184 /* This matches the processing in skip_to_end_of_statement. */
2185 if (token->type == CPP_SEMICOLON && !brace_depth)
2186 {
2187 result = 0;
2188 break;
2189 }
2190 if (token->type == CPP_OPEN_BRACE)
2191 ++brace_depth;
2192 if (token->type == CPP_CLOSE_BRACE)
2193 {
2194 if (!brace_depth--)
2195 {
2196 result = 0;
2197 break;
2198 }
2199 }
2200 if (recovering && or_comma && token->type == CPP_COMMA
2201 && !brace_depth && !paren_depth)
2202 {
2203 result = -1;
2204 break;
2205 }
2206
2207 if (!brace_depth)
2208 {
2209 /* If it is an `(', we have entered another level of nesting. */
2210 if (token->type == CPP_OPEN_PAREN)
2211 ++paren_depth;
2212 /* If it is a `)', then we might be done. */
2213 else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
2214 {
2215 if (consume_paren)
2216 cp_lexer_consume_token (parser->lexer);
2217 {
2218 result = 1;
2219 break;
2220 }
2221 }
2222 }
2223
2224 /* Consume the token. */
2225 cp_lexer_consume_token (parser->lexer);
2226 }
2227
2228 return result;
2229 }
2230
2231 /* Consume tokens until we reach the end of the current statement.
2232 Normally, that will be just before consuming a `;'. However, if a
2233 non-nested `}' comes first, then we stop before consuming that. */
2234
2235 static void
2236 cp_parser_skip_to_end_of_statement (cp_parser* parser)
2237 {
2238 unsigned nesting_depth = 0;
2239
2240 while (true)
2241 {
2242 cp_token *token;
2243
2244 /* Peek at the next token. */
2245 token = cp_lexer_peek_token (parser->lexer);
2246 /* If we've run out of tokens, stop. */
2247 if (token->type == CPP_EOF)
2248 break;
2249 /* If the next token is a `;', we have reached the end of the
2250 statement. */
2251 if (token->type == CPP_SEMICOLON && !nesting_depth)
2252 break;
2253 /* If the next token is a non-nested `}', then we have reached
2254 the end of the current block. */
2255 if (token->type == CPP_CLOSE_BRACE)
2256 {
2257 /* If this is a non-nested `}', stop before consuming it.
2258 That way, when confronted with something like:
2259
2260 { 3 + }
2261
2262 we stop before consuming the closing `}', even though we
2263 have not yet reached a `;'. */
2264 if (nesting_depth == 0)
2265 break;
2266 /* If it is the closing `}' for a block that we have
2267 scanned, stop -- but only after consuming the token.
2268 That way given:
2269
2270 void f g () { ... }
2271 typedef int I;
2272
2273 we will stop after the body of the erroneously declared
2274 function, but before consuming the following `typedef'
2275 declaration. */
2276 if (--nesting_depth == 0)
2277 {
2278 cp_lexer_consume_token (parser->lexer);
2279 break;
2280 }
2281 }
2282 /* If it the next token is a `{', then we are entering a new
2283 block. Consume the entire block. */
2284 else if (token->type == CPP_OPEN_BRACE)
2285 ++nesting_depth;
2286 /* Consume the token. */
2287 cp_lexer_consume_token (parser->lexer);
2288 }
2289 }
2290
2291 /* This function is called at the end of a statement or declaration.
2292 If the next token is a semicolon, it is consumed; otherwise, error
2293 recovery is attempted. */
2294
2295 static void
2296 cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
2297 {
2298 /* Look for the trailing `;'. */
2299 if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
2300 {
2301 /* If there is additional (erroneous) input, skip to the end of
2302 the statement. */
2303 cp_parser_skip_to_end_of_statement (parser);
2304 /* If the next token is now a `;', consume it. */
2305 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
2306 cp_lexer_consume_token (parser->lexer);
2307 }
2308 }
2309
2310 /* Skip tokens until we have consumed an entire block, or until we
2311 have consumed a non-nested `;'. */
2312
2313 static void
2314 cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
2315 {
2316 unsigned nesting_depth = 0;
2317
2318 while (true)
2319 {
2320 cp_token *token;
2321
2322 /* Peek at the next token. */
2323 token = cp_lexer_peek_token (parser->lexer);
2324 /* If we've run out of tokens, stop. */
2325 if (token->type == CPP_EOF)
2326 break;
2327 /* If the next token is a `;', we have reached the end of the
2328 statement. */
2329 if (token->type == CPP_SEMICOLON && !nesting_depth)
2330 {
2331 /* Consume the `;'. */
2332 cp_lexer_consume_token (parser->lexer);
2333 break;
2334 }
2335 /* Consume the token. */
2336 token = cp_lexer_consume_token (parser->lexer);
2337 /* If the next token is a non-nested `}', then we have reached
2338 the end of the current block. */
2339 if (token->type == CPP_CLOSE_BRACE
2340 && (nesting_depth == 0 || --nesting_depth == 0))
2341 break;
2342 /* If it the next token is a `{', then we are entering a new
2343 block. Consume the entire block. */
2344 if (token->type == CPP_OPEN_BRACE)
2345 ++nesting_depth;
2346 }
2347 }
2348
2349 /* Skip tokens until a non-nested closing curly brace is the next
2350 token. */
2351
2352 static void
2353 cp_parser_skip_to_closing_brace (cp_parser *parser)
2354 {
2355 unsigned nesting_depth = 0;
2356
2357 while (true)
2358 {
2359 cp_token *token;
2360
2361 /* Peek at the next token. */
2362 token = cp_lexer_peek_token (parser->lexer);
2363 /* If we've run out of tokens, stop. */
2364 if (token->type == CPP_EOF)
2365 break;
2366 /* If the next token is a non-nested `}', then we have reached
2367 the end of the current block. */
2368 if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
2369 break;
2370 /* If it the next token is a `{', then we are entering a new
2371 block. Consume the entire block. */
2372 else if (token->type == CPP_OPEN_BRACE)
2373 ++nesting_depth;
2374 /* Consume the token. */
2375 cp_lexer_consume_token (parser->lexer);
2376 }
2377 }
2378
2379 /* This is a simple wrapper around make_typename_type. When the id is
2380 an unresolved identifier node, we can provide a superior diagnostic
2381 using cp_parser_diagnose_invalid_type_name. */
2382
2383 static tree
2384 cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
2385 {
2386 tree result;
2387 if (TREE_CODE (id) == IDENTIFIER_NODE)
2388 {
2389 result = make_typename_type (scope, id, typename_type,
2390 /*complain=*/0);
2391 if (result == error_mark_node)
2392 cp_parser_diagnose_invalid_type_name (parser, scope, id);
2393 return result;
2394 }
2395 return make_typename_type (scope, id, typename_type, tf_error);
2396 }
2397
2398
2399 /* Create a new C++ parser. */
2400
2401 static cp_parser *
2402 cp_parser_new (void)
2403 {
2404 cp_parser *parser;
2405 cp_lexer *lexer;
2406 unsigned i;
2407
2408 /* cp_lexer_new_main is called before calling ggc_alloc because
2409 cp_lexer_new_main might load a PCH file. */
2410 lexer = cp_lexer_new_main ();
2411
2412 /* Initialize the binops_by_token so that we can get the tree
2413 directly from the token. */
2414 for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
2415 binops_by_token[binops[i].token_type] = binops[i];
2416
2417 parser = GGC_CNEW (cp_parser);
2418 parser->lexer = lexer;
2419 parser->context = cp_parser_context_new (NULL);
2420
2421 /* For now, we always accept GNU extensions. */
2422 parser->allow_gnu_extensions_p = 1;
2423
2424 /* The `>' token is a greater-than operator, not the end of a
2425 template-id. */
2426 parser->greater_than_is_operator_p = true;
2427
2428 parser->default_arg_ok_p = true;
2429
2430 /* We are not parsing a constant-expression. */
2431 parser->integral_constant_expression_p = false;
2432 parser->allow_non_integral_constant_expression_p = false;
2433 parser->non_integral_constant_expression_p = false;
2434
2435 /* Local variable names are not forbidden. */
2436 parser->local_variables_forbidden_p = false;
2437
2438 /* We are not processing an `extern "C"' declaration. */
2439 parser->in_unbraced_linkage_specification_p = false;
2440
2441 /* We are not processing a declarator. */
2442 parser->in_declarator_p = false;
2443
2444 /* We are not processing a template-argument-list. */
2445 parser->in_template_argument_list_p = false;
2446
2447 /* We are not in an iteration statement. */
2448 parser->in_iteration_statement_p = false;
2449
2450 /* We are not in a switch statement. */
2451 parser->in_switch_statement_p = false;
2452
2453 /* We are not parsing a type-id inside an expression. */
2454 parser->in_type_id_in_expr_p = false;
2455
2456 /* Declarations aren't implicitly extern "C". */
2457 parser->implicit_extern_c = false;
2458
2459 /* String literals should be translated to the execution character set. */
2460 parser->translate_strings_p = true;
2461
2462 /* The unparsed function queue is empty. */
2463 parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
2464
2465 /* There are no classes being defined. */
2466 parser->num_classes_being_defined = 0;
2467
2468 /* No template parameters apply. */
2469 parser->num_template_parameter_lists = 0;
2470
2471 return parser;
2472 }
2473
2474 /* Create a cp_lexer structure which will emit the tokens in CACHE
2475 and push it onto the parser's lexer stack. This is used for delayed
2476 parsing of in-class method bodies and default arguments, and should
2477 not be confused with tentative parsing. */
2478 static void
2479 cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
2480 {
2481 cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
2482 lexer->next = parser->lexer;
2483 parser->lexer = lexer;
2484
2485 /* Move the current source position to that of the first token in the
2486 new lexer. */
2487 cp_lexer_set_source_position_from_token (lexer->next_token);
2488 }
2489
2490 /* Pop the top lexer off the parser stack. This is never used for the
2491 "main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */
2492 static void
2493 cp_parser_pop_lexer (cp_parser *parser)
2494 {
2495 cp_lexer *lexer = parser->lexer;
2496 parser->lexer = lexer->next;
2497 cp_lexer_destroy (lexer);
2498
2499 /* Put the current source position back where it was before this
2500 lexer was pushed. */
2501 cp_lexer_set_source_position_from_token (parser->lexer->next_token);
2502 }
2503
2504 /* Lexical conventions [gram.lex] */
2505
2506 /* Parse an identifier. Returns an IDENTIFIER_NODE representing the
2507 identifier. */
2508
2509 static tree
2510 cp_parser_identifier (cp_parser* parser)
2511 {
2512 cp_token *token;
2513
2514 /* Look for the identifier. */
2515 token = cp_parser_require (parser, CPP_NAME, "identifier");
2516 /* Return the value. */
2517 return token ? token->value : error_mark_node;
2518 }
2519
2520 /* Parse a sequence of adjacent string constants. Returns a
2521 TREE_STRING representing the combined, nul-terminated string
2522 constant. If TRANSLATE is true, translate the string to the
2523 execution character set. If WIDE_OK is true, a wide string is
2524 invalid here.
2525
2526 C++98 [lex.string] says that if a narrow string literal token is
2527 adjacent to a wide string literal token, the behavior is undefined.
2528 However, C99 6.4.5p4 says that this results in a wide string literal.
2529 We follow C99 here, for consistency with the C front end.
2530
2531 This code is largely lifted from lex_string() in c-lex.c.
2532
2533 FUTURE: ObjC++ will need to handle @-strings here. */
2534 static tree
2535 cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok)
2536 {
2537 tree value;
2538 bool wide = false;
2539 size_t count;
2540 struct obstack str_ob;
2541 cpp_string str, istr, *strs;
2542 cp_token *tok;
2543
2544 tok = cp_lexer_peek_token (parser->lexer);
2545 if (!cp_parser_is_string_literal (tok))
2546 {
2547 cp_parser_error (parser, "expected string-literal");
2548 return error_mark_node;
2549 }
2550
2551 /* Try to avoid the overhead of creating and destroying an obstack
2552 for the common case of just one string. */
2553 if (!cp_parser_is_string_literal
2554 (cp_lexer_peek_nth_token (parser->lexer, 2)))
2555 {
2556 cp_lexer_consume_token (parser->lexer);
2557
2558 str.text = (const unsigned char *)TREE_STRING_POINTER (tok->value);
2559 str.len = TREE_STRING_LENGTH (tok->value);
2560 count = 1;
2561 if (tok->type == CPP_WSTRING)
2562 wide = true;
2563
2564 strs = &str;
2565 }
2566 else
2567 {
2568 gcc_obstack_init (&str_ob);
2569 count = 0;
2570
2571 do
2572 {
2573 cp_lexer_consume_token (parser->lexer);
2574 count++;
2575 str.text = (unsigned char *)TREE_STRING_POINTER (tok->value);
2576 str.len = TREE_STRING_LENGTH (tok->value);
2577 if (tok->type == CPP_WSTRING)
2578 wide = true;
2579
2580 obstack_grow (&str_ob, &str, sizeof (cpp_string));
2581
2582 tok = cp_lexer_peek_token (parser->lexer);
2583 }
2584 while (cp_parser_is_string_literal (tok));
2585
2586 strs = (cpp_string *) obstack_finish (&str_ob);
2587 }
2588
2589 if (wide && !wide_ok)
2590 {
2591 cp_parser_error (parser, "a wide string is invalid in this context");
2592 wide = false;
2593 }
2594
2595 if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
2596 (parse_in, strs, count, &istr, wide))
2597 {
2598 value = build_string (istr.len, (char *)istr.text);
2599 free ((void *)istr.text);
2600
2601 TREE_TYPE (value) = wide ? wchar_array_type_node : char_array_type_node;
2602 value = fix_string_type (value);
2603 }
2604 else
2605 /* cpp_interpret_string has issued an error. */
2606 value = error_mark_node;
2607
2608 if (count > 1)
2609 obstack_free (&str_ob, 0);
2610
2611 return value;
2612 }
2613
2614
2615 /* Basic concepts [gram.basic] */
2616
2617 /* Parse a translation-unit.
2618
2619 translation-unit:
2620 declaration-seq [opt]
2621
2622 Returns TRUE if all went well. */
2623
2624 static bool
2625 cp_parser_translation_unit (cp_parser* parser)
2626 {
2627 /* The address of the first non-permanent object on the declarator
2628 obstack. */
2629 static void *declarator_obstack_base;
2630
2631 bool success;
2632
2633 /* Create the declarator obstack, if necessary. */
2634 if (!cp_error_declarator)
2635 {
2636 gcc_obstack_init (&declarator_obstack);
2637 /* Create the error declarator. */
2638 cp_error_declarator = make_declarator (cdk_error);
2639 /* Create the empty parameter list. */
2640 no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
2641 /* Remember where the base of the declarator obstack lies. */
2642 declarator_obstack_base = obstack_next_free (&declarator_obstack);
2643 }
2644
2645 while (true)
2646 {
2647 cp_parser_declaration_seq_opt (parser);
2648
2649 /* If there are no tokens left then all went well. */
2650 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2651 {
2652 /* Get rid of the token array; we don't need it any more. */
2653 cp_lexer_destroy (parser->lexer);
2654 parser->lexer = NULL;
2655
2656 /* This file might have been a context that's implicitly extern
2657 "C". If so, pop the lang context. (Only relevant for PCH.) */
2658 if (parser->implicit_extern_c)
2659 {
2660 pop_lang_context ();
2661 parser->implicit_extern_c = false;
2662 }
2663
2664 /* Finish up. */
2665 finish_translation_unit ();
2666
2667 success = true;
2668 break;
2669 }
2670 else
2671 {
2672 cp_parser_error (parser, "expected declaration");
2673 success = false;
2674 break;
2675 }
2676 }
2677
2678 /* Make sure the declarator obstack was fully cleaned up. */
2679 gcc_assert (obstack_next_free (&declarator_obstack)
2680 == declarator_obstack_base);
2681
2682 /* All went well. */
2683 return success;
2684 }
2685
2686 /* Expressions [gram.expr] */
2687
2688 /* Parse a primary-expression.
2689
2690 primary-expression:
2691 literal
2692 this
2693 ( expression )
2694 id-expression
2695
2696 GNU Extensions:
2697
2698 primary-expression:
2699 ( compound-statement )
2700 __builtin_va_arg ( assignment-expression , type-id )
2701
2702 Objective-C++ Extension:
2703
2704 primary-expression:
2705 objc-expression
2706
2707 literal:
2708 __null
2709
2710 CAST_P is true if this primary expression is the target of a cast.
2711
2712 Returns a representation of the expression.
2713
2714 *IDK indicates what kind of id-expression (if any) was present.
2715
2716 *QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
2717 used as the operand of a pointer-to-member. In that case,
2718 *QUALIFYING_CLASS gives the class that is used as the qualifying
2719 class in the pointer-to-member. */
2720
2721 static tree
2722 cp_parser_primary_expression (cp_parser *parser,
2723 bool cast_p,
2724 cp_id_kind *idk,
2725 tree *qualifying_class)
2726 {
2727 cp_token *token;
2728
2729 /* Assume the primary expression is not an id-expression. */
2730 *idk = CP_ID_KIND_NONE;
2731 /* And that it cannot be used as pointer-to-member. */
2732 *qualifying_class = NULL_TREE;
2733
2734 /* Peek at the next token. */
2735 token = cp_lexer_peek_token (parser->lexer);
2736 switch (token->type)
2737 {
2738 /* literal:
2739 integer-literal
2740 character-literal
2741 floating-literal
2742 string-literal
2743 boolean-literal */
2744 case CPP_CHAR:
2745 case CPP_WCHAR:
2746 case CPP_NUMBER:
2747 token = cp_lexer_consume_token (parser->lexer);
2748 /* Floating-point literals are only allowed in an integral
2749 constant expression if they are cast to an integral or
2750 enumeration type. */
2751 if (TREE_CODE (token->value) == REAL_CST
2752 && parser->integral_constant_expression_p
2753 && pedantic)
2754 {
2755 /* CAST_P will be set even in invalid code like "int(2.7 +
2756 ...)". Therefore, we have to check that the next token
2757 is sure to end the cast. */
2758 if (cast_p)
2759 {
2760 cp_token *next_token;
2761
2762 next_token = cp_lexer_peek_token (parser->lexer);
2763 if (/* The comma at the end of an
2764 enumerator-definition. */
2765 next_token->type != CPP_COMMA
2766 /* The curly brace at the end of an enum-specifier. */
2767 && next_token->type != CPP_CLOSE_BRACE
2768 /* The end of a statement. */
2769 && next_token->type != CPP_SEMICOLON
2770 /* The end of the cast-expression. */
2771 && next_token->type != CPP_CLOSE_PAREN
2772 /* The end of an array bound. */
2773 && next_token->type != CPP_CLOSE_SQUARE)
2774 cast_p = false;
2775 }
2776
2777 /* If we are within a cast, then the constraint that the
2778 cast is to an integral or enumeration type will be
2779 checked at that point. If we are not within a cast, then
2780 this code is invalid. */
2781 if (!cast_p)
2782 cp_parser_non_integral_constant_expression
2783 (parser, "floating-point literal");
2784 }
2785 return token->value;
2786
2787 case CPP_STRING:
2788 case CPP_WSTRING:
2789 /* ??? Should wide strings be allowed when parser->translate_strings_p
2790 is false (i.e. in attributes)? If not, we can kill the third
2791 argument to cp_parser_string_literal. */
2792 return cp_parser_string_literal (parser,
2793 parser->translate_strings_p,
2794 true);
2795
2796 case CPP_OPEN_PAREN:
2797 {
2798 tree expr;
2799 bool saved_greater_than_is_operator_p;
2800
2801 /* Consume the `('. */
2802 cp_lexer_consume_token (parser->lexer);
2803 /* Within a parenthesized expression, a `>' token is always
2804 the greater-than operator. */
2805 saved_greater_than_is_operator_p
2806 = parser->greater_than_is_operator_p;
2807 parser->greater_than_is_operator_p = true;
2808 /* If we see `( { ' then we are looking at the beginning of
2809 a GNU statement-expression. */
2810 if (cp_parser_allow_gnu_extensions_p (parser)
2811 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
2812 {
2813 /* Statement-expressions are not allowed by the standard. */
2814 if (pedantic)
2815 pedwarn ("ISO C++ forbids braced-groups within expressions");
2816
2817 /* And they're not allowed outside of a function-body; you
2818 cannot, for example, write:
2819
2820 int i = ({ int j = 3; j + 1; });
2821
2822 at class or namespace scope. */
2823 if (!at_function_scope_p ())
2824 error ("statement-expressions are allowed only inside functions");
2825 /* Start the statement-expression. */
2826 expr = begin_stmt_expr ();
2827 /* Parse the compound-statement. */
2828 cp_parser_compound_statement (parser, expr, false);
2829 /* Finish up. */
2830 expr = finish_stmt_expr (expr, false);
2831 }
2832 else
2833 {
2834 /* Parse the parenthesized expression. */
2835 expr = cp_parser_expression (parser, cast_p);
2836 /* Let the front end know that this expression was
2837 enclosed in parentheses. This matters in case, for
2838 example, the expression is of the form `A::B', since
2839 `&A::B' might be a pointer-to-member, but `&(A::B)' is
2840 not. */
2841 finish_parenthesized_expr (expr);
2842 }
2843 /* The `>' token might be the end of a template-id or
2844 template-parameter-list now. */
2845 parser->greater_than_is_operator_p
2846 = saved_greater_than_is_operator_p;
2847 /* Consume the `)'. */
2848 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
2849 cp_parser_skip_to_end_of_statement (parser);
2850
2851 return expr;
2852 }
2853
2854 case CPP_KEYWORD:
2855 switch (token->keyword)
2856 {
2857 /* These two are the boolean literals. */
2858 case RID_TRUE:
2859 cp_lexer_consume_token (parser->lexer);
2860 return boolean_true_node;
2861 case RID_FALSE:
2862 cp_lexer_consume_token (parser->lexer);
2863 return boolean_false_node;
2864
2865 /* The `__null' literal. */
2866 case RID_NULL:
2867 cp_lexer_consume_token (parser->lexer);
2868 return null_node;
2869
2870 /* Recognize the `this' keyword. */
2871 case RID_THIS:
2872 cp_lexer_consume_token (parser->lexer);
2873 if (parser->local_variables_forbidden_p)
2874 {
2875 error ("%<this%> may not be used in this context");
2876 return error_mark_node;
2877 }
2878 /* Pointers cannot appear in constant-expressions. */
2879 if (cp_parser_non_integral_constant_expression (parser,
2880 "`this'"))
2881 return error_mark_node;
2882 return finish_this_expr ();
2883
2884 /* The `operator' keyword can be the beginning of an
2885 id-expression. */
2886 case RID_OPERATOR:
2887 goto id_expression;
2888
2889 case RID_FUNCTION_NAME:
2890 case RID_PRETTY_FUNCTION_NAME:
2891 case RID_C99_FUNCTION_NAME:
2892 /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
2893 __func__ are the names of variables -- but they are
2894 treated specially. Therefore, they are handled here,
2895 rather than relying on the generic id-expression logic
2896 below. Grammatically, these names are id-expressions.
2897
2898 Consume the token. */
2899 token = cp_lexer_consume_token (parser->lexer);
2900 /* Look up the name. */
2901 return finish_fname (token->value);
2902
2903 case RID_VA_ARG:
2904 {
2905 tree expression;
2906 tree type;
2907
2908 /* The `__builtin_va_arg' construct is used to handle
2909 `va_arg'. Consume the `__builtin_va_arg' token. */
2910 cp_lexer_consume_token (parser->lexer);
2911 /* Look for the opening `('. */
2912 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
2913 /* Now, parse the assignment-expression. */
2914 expression = cp_parser_assignment_expression (parser,
2915 /*cast_p=*/false);
2916 /* Look for the `,'. */
2917 cp_parser_require (parser, CPP_COMMA, "`,'");
2918 /* Parse the type-id. */
2919 type = cp_parser_type_id (parser);
2920 /* Look for the closing `)'. */
2921 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
2922 /* Using `va_arg' in a constant-expression is not
2923 allowed. */
2924 if (cp_parser_non_integral_constant_expression (parser,
2925 "`va_arg'"))
2926 return error_mark_node;
2927 return build_x_va_arg (expression, type);
2928 }
2929
2930 case RID_OFFSETOF:
2931 return cp_parser_builtin_offsetof (parser);
2932
2933 /* Objective-C++ expressions. */
2934 case RID_AT_ENCODE:
2935 case RID_AT_PROTOCOL:
2936 case RID_AT_SELECTOR:
2937 return cp_parser_objc_expression (parser);
2938
2939 default:
2940 cp_parser_error (parser, "expected primary-expression");
2941 return error_mark_node;
2942 }
2943
2944 /* An id-expression can start with either an identifier, a
2945 `::' as the beginning of a qualified-id, or the "operator"
2946 keyword. */
2947 case CPP_NAME:
2948 case CPP_SCOPE:
2949 case CPP_TEMPLATE_ID:
2950 case CPP_NESTED_NAME_SPECIFIER:
2951 {
2952 tree id_expression;
2953 tree decl;
2954 const char *error_msg;
2955
2956 id_expression:
2957 /* Parse the id-expression. */
2958 id_expression
2959 = cp_parser_id_expression (parser,
2960 /*template_keyword_p=*/false,
2961 /*check_dependency_p=*/true,
2962 /*template_p=*/NULL,
2963 /*declarator_p=*/false);
2964 if (id_expression == error_mark_node)
2965 return error_mark_node;
2966 /* If we have a template-id, then no further lookup is
2967 required. If the template-id was for a template-class, we
2968 will sometimes have a TYPE_DECL at this point. */
2969 else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
2970 || TREE_CODE (id_expression) == TYPE_DECL)
2971 decl = id_expression;
2972 /* Look up the name. */
2973 else
2974 {
2975 bool ambiguous_p;
2976
2977 decl = cp_parser_lookup_name (parser, id_expression,
2978 none_type,
2979 /*is_template=*/false,
2980 /*is_namespace=*/false,
2981 /*check_dependency=*/true,
2982 &ambiguous_p);
2983 /* If the lookup was ambiguous, an error will already have
2984 been issued. */
2985 if (ambiguous_p)
2986 return error_mark_node;
2987
2988 /* In Objective-C++, an instance variable (ivar) may be preferred
2989 to whatever cp_parser_lookup_name() found. */
2990 decl = objc_lookup_ivar (decl, id_expression);
2991
2992 /* If name lookup gives us a SCOPE_REF, then the
2993 qualifying scope was dependent. Just propagate the
2994 name. */
2995 if (TREE_CODE (decl) == SCOPE_REF)
2996 {
2997 if (TYPE_P (TREE_OPERAND (decl, 0)))
2998 *qualifying_class = TREE_OPERAND (decl, 0);
2999 return decl;
3000 }
3001 /* Check to see if DECL is a local variable in a context
3002 where that is forbidden. */
3003 if (parser->local_variables_forbidden_p
3004 && local_variable_p (decl))
3005 {
3006 /* It might be that we only found DECL because we are
3007 trying to be generous with pre-ISO scoping rules.
3008 For example, consider:
3009
3010 int i;
3011 void g() {
3012 for (int i = 0; i < 10; ++i) {}
3013 extern void f(int j = i);
3014 }
3015
3016 Here, name look up will originally find the out
3017 of scope `i'. We need to issue a warning message,
3018 but then use the global `i'. */
3019 decl = check_for_out_of_scope_variable (decl);
3020 if (local_variable_p (decl))
3021 {
3022 error ("local variable %qD may not appear in this context",
3023 decl);
3024 return error_mark_node;
3025 }
3026 }
3027 }
3028
3029 decl = finish_id_expression (id_expression, decl, parser->scope,
3030 idk, qualifying_class,
3031 parser->integral_constant_expression_p,
3032 parser->allow_non_integral_constant_expression_p,
3033 &parser->non_integral_constant_expression_p,
3034 &error_msg);
3035 if (error_msg)
3036 cp_parser_error (parser, error_msg);
3037 return decl;
3038 }
3039
3040 /* Anything else is an error. */
3041 default:
3042 /* ...unless we have an Objective-C++ message or string literal, that is. */
3043 if (c_dialect_objc ()
3044 && (token->type == CPP_OPEN_SQUARE || token->type == CPP_OBJC_STRING))
3045 return cp_parser_objc_expression (parser);
3046
3047 cp_parser_error (parser, "expected primary-expression");
3048 return error_mark_node;
3049 }
3050 }
3051
3052 /* Parse an id-expression.
3053
3054 id-expression:
3055 unqualified-id
3056 qualified-id
3057
3058 qualified-id:
3059 :: [opt] nested-name-specifier template [opt] unqualified-id
3060 :: identifier
3061 :: operator-function-id
3062 :: template-id
3063
3064 Return a representation of the unqualified portion of the
3065 identifier. Sets PARSER->SCOPE to the qualifying scope if there is
3066 a `::' or nested-name-specifier.
3067
3068 Often, if the id-expression was a qualified-id, the caller will
3069 want to make a SCOPE_REF to represent the qualified-id. This
3070 function does not do this in order to avoid wastefully creating
3071 SCOPE_REFs when they are not required.
3072
3073 If TEMPLATE_KEYWORD_P is true, then we have just seen the
3074 `template' keyword.
3075
3076 If CHECK_DEPENDENCY_P is false, then names are looked up inside
3077 uninstantiated templates.
3078
3079 If *TEMPLATE_P is non-NULL, it is set to true iff the
3080 `template' keyword is used to explicitly indicate that the entity
3081 named is a template.
3082
3083 If DECLARATOR_P is true, the id-expression is appearing as part of
3084 a declarator, rather than as part of an expression. */
3085
3086 static tree
3087 cp_parser_id_expression (cp_parser *parser,
3088 bool template_keyword_p,
3089 bool check_dependency_p,
3090 bool *template_p,
3091 bool declarator_p)
3092 {
3093 bool global_scope_p;
3094 bool nested_name_specifier_p;
3095
3096 /* Assume the `template' keyword was not used. */
3097 if (template_p)
3098 *template_p = false;
3099
3100 /* Look for the optional `::' operator. */
3101 global_scope_p
3102 = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
3103 != NULL_TREE);
3104 /* Look for the optional nested-name-specifier. */
3105 nested_name_specifier_p
3106 = (cp_parser_nested_name_specifier_opt (parser,
3107 /*typename_keyword_p=*/false,
3108 check_dependency_p,
3109 /*type_p=*/false,
3110 declarator_p)
3111 != NULL_TREE);
3112 /* If there is a nested-name-specifier, then we are looking at
3113 the first qualified-id production. */
3114 if (nested_name_specifier_p)
3115 {
3116 tree saved_scope;
3117 tree saved_object_scope;
3118 tree saved_qualifying_scope;
3119 tree unqualified_id;
3120 bool is_template;
3121
3122 /* See if the next token is the `template' keyword. */
3123 if (!template_p)
3124 template_p = &is_template;
3125 *template_p = cp_parser_optional_template_keyword (parser);
3126 /* Name lookup we do during the processing of the
3127 unqualified-id might obliterate SCOPE. */
3128 saved_scope = parser->scope;
3129 saved_object_scope = parser->object_scope;
3130 saved_qualifying_scope = parser->qualifying_scope;
3131 /* Process the final unqualified-id. */
3132 unqualified_id = cp_parser_unqualified_id (parser, *template_p,
3133 check_dependency_p,
3134 declarator_p);
3135 /* Restore the SAVED_SCOPE for our caller. */
3136 parser->scope = saved_scope;
3137 parser->object_scope = saved_object_scope;
3138 parser->qualifying_scope = saved_qualifying_scope;
3139
3140 return unqualified_id;
3141 }
3142 /* Otherwise, if we are in global scope, then we are looking at one
3143 of the other qualified-id productions. */
3144 else if (global_scope_p)
3145 {
3146 cp_token *token;
3147 tree id;
3148
3149 /* Peek at the next token. */
3150 token = cp_lexer_peek_token (parser->lexer);
3151
3152 /* If it's an identifier, and the next token is not a "<", then
3153 we can avoid the template-id case. This is an optimization
3154 for this common case. */
3155 if (token->type == CPP_NAME
3156 && !cp_parser_nth_token_starts_template_argument_list_p
3157 (parser, 2))
3158 return cp_parser_identifier (parser);
3159
3160 cp_parser_parse_tentatively (parser);
3161 /* Try a template-id. */
3162 id = cp_parser_template_id (parser,
3163 /*template_keyword_p=*/false,
3164 /*check_dependency_p=*/true,
3165 declarator_p);
3166 /* If that worked, we're done. */
3167 if (cp_parser_parse_definitely (parser))
3168 return id;
3169
3170 /* Peek at the next token. (Changes in the token buffer may
3171 have invalidated the pointer obtained above.) */
3172 token = cp_lexer_peek_token (parser->lexer);
3173
3174 switch (token->type)
3175 {
3176 case CPP_NAME:
3177 return cp_parser_identifier (parser);
3178
3179 case CPP_KEYWORD:
3180 if (token->keyword == RID_OPERATOR)
3181 return cp_parser_operator_function_id (parser);
3182 /* Fall through. */
3183
3184 default:
3185 cp_parser_error (parser, "expected id-expression");
3186 return error_mark_node;
3187 }
3188 }
3189 else
3190 return cp_parser_unqualified_id (parser, template_keyword_p,
3191 /*check_dependency_p=*/true,
3192 declarator_p);
3193 }
3194
3195 /* Parse an unqualified-id.
3196
3197 unqualified-id:
3198 identifier
3199 operator-function-id
3200 conversion-function-id
3201 ~ class-name
3202 template-id
3203
3204 If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
3205 keyword, in a construct like `A::template ...'.
3206
3207 Returns a representation of unqualified-id. For the `identifier'
3208 production, an IDENTIFIER_NODE is returned. For the `~ class-name'
3209 production a BIT_NOT_EXPR is returned; the operand of the
3210 BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
3211 other productions, see the documentation accompanying the
3212 corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
3213 names are looked up in uninstantiated templates. If DECLARATOR_P
3214 is true, the unqualified-id is appearing as part of a declarator,
3215 rather than as part of an expression. */
3216
3217 static tree
3218 cp_parser_unqualified_id (cp_parser* parser,
3219 bool template_keyword_p,
3220 bool check_dependency_p,
3221 bool declarator_p)
3222 {
3223 cp_token *token;
3224
3225 /* Peek at the next token. */
3226 token = cp_lexer_peek_token (parser->lexer);
3227
3228 switch (token->type)
3229 {
3230 case CPP_NAME:
3231 {
3232 tree id;
3233
3234 /* We don't know yet whether or not this will be a
3235 template-id. */
3236 cp_parser_parse_tentatively (parser);
3237 /* Try a template-id. */
3238 id = cp_parser_template_id (parser, template_keyword_p,
3239 check_dependency_p,
3240 declarator_p);
3241 /* If it worked, we're done. */
3242 if (cp_parser_parse_definitely (parser))
3243 return id;
3244 /* Otherwise, it's an ordinary identifier. */
3245 return cp_parser_identifier (parser);
3246 }
3247
3248 case CPP_TEMPLATE_ID:
3249 return cp_parser_template_id (parser, template_keyword_p,
3250 check_dependency_p,
3251 declarator_p);
3252
3253 case CPP_COMPL:
3254 {
3255 tree type_decl;
3256 tree qualifying_scope;
3257 tree object_scope;
3258 tree scope;
3259 bool done;
3260
3261 /* Consume the `~' token. */
3262 cp_lexer_consume_token (parser->lexer);
3263 /* Parse the class-name. The standard, as written, seems to
3264 say that:
3265
3266 template <typename T> struct S { ~S (); };
3267 template <typename T> S<T>::~S() {}
3268
3269 is invalid, since `~' must be followed by a class-name, but
3270 `S<T>' is dependent, and so not known to be a class.
3271 That's not right; we need to look in uninstantiated
3272 templates. A further complication arises from:
3273
3274 template <typename T> void f(T t) {
3275 t.T::~T();
3276 }
3277
3278 Here, it is not possible to look up `T' in the scope of `T'
3279 itself. We must look in both the current scope, and the
3280 scope of the containing complete expression.
3281
3282 Yet another issue is:
3283
3284 struct S {
3285 int S;
3286 ~S();
3287 };
3288
3289 S::~S() {}
3290
3291 The standard does not seem to say that the `S' in `~S'
3292 should refer to the type `S' and not the data member
3293 `S::S'. */
3294
3295 /* DR 244 says that we look up the name after the "~" in the
3296 same scope as we looked up the qualifying name. That idea
3297 isn't fully worked out; it's more complicated than that. */
3298 scope = parser->scope;
3299 object_scope = parser->object_scope;
3300 qualifying_scope = parser->qualifying_scope;
3301
3302 /* If the name is of the form "X::~X" it's OK. */
3303 if (scope && TYPE_P (scope)
3304 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3305 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3306 == CPP_OPEN_PAREN)
3307 && (cp_lexer_peek_token (parser->lexer)->value
3308 == TYPE_IDENTIFIER (scope)))
3309 {
3310 cp_lexer_consume_token (parser->lexer);
3311 return build_nt (BIT_NOT_EXPR, scope);
3312 }
3313
3314 /* If there was an explicit qualification (S::~T), first look
3315 in the scope given by the qualification (i.e., S). */
3316 done = false;
3317 type_decl = NULL_TREE;
3318 if (scope)
3319 {
3320 cp_parser_parse_tentatively (parser);
3321 type_decl = cp_parser_class_name (parser,
3322 /*typename_keyword_p=*/false,
3323 /*template_keyword_p=*/false,
3324 none_type,
3325 /*check_dependency=*/false,
3326 /*class_head_p=*/false,
3327 declarator_p);
3328 if (cp_parser_parse_definitely (parser))
3329 done = true;
3330 }
3331 /* In "N::S::~S", look in "N" as well. */
3332 if (!done && scope && qualifying_scope)
3333 {
3334 cp_parser_parse_tentatively (parser);
3335 parser->scope = qualifying_scope;
3336 parser->object_scope = NULL_TREE;
3337 parser->qualifying_scope = NULL_TREE;
3338 type_decl
3339 = cp_parser_class_name (parser,
3340 /*typename_keyword_p=*/false,
3341 /*template_keyword_p=*/false,
3342 none_type,
3343 /*check_dependency=*/false,
3344 /*class_head_p=*/false,
3345 declarator_p);
3346 if (cp_parser_parse_definitely (parser))
3347 done = true;
3348 }
3349 /* In "p->S::~T", look in the scope given by "*p" as well. */
3350 else if (!done && object_scope)
3351 {
3352 cp_parser_parse_tentatively (parser);
3353 parser->scope = object_scope;
3354 parser->object_scope = NULL_TREE;
3355 parser->qualifying_scope = NULL_TREE;
3356 type_decl
3357 = cp_parser_class_name (parser,
3358 /*typename_keyword_p=*/false,
3359 /*template_keyword_p=*/false,
3360 none_type,
3361 /*check_dependency=*/false,
3362 /*class_head_p=*/false,
3363 declarator_p);
3364 if (cp_parser_parse_definitely (parser))
3365 done = true;
3366 }
3367 /* Look in the surrounding context. */
3368 if (!done)
3369 {
3370 parser->scope = NULL_TREE;
3371 parser->object_scope = NULL_TREE;
3372 parser->qualifying_scope = NULL_TREE;
3373 type_decl
3374 = cp_parser_class_name (parser,
3375 /*typename_keyword_p=*/false,
3376 /*template_keyword_p=*/false,
3377 none_type,
3378 /*check_dependency=*/false,
3379 /*class_head_p=*/false,
3380 declarator_p);
3381 }
3382 /* If an error occurred, assume that the name of the
3383 destructor is the same as the name of the qualifying
3384 class. That allows us to keep parsing after running
3385 into ill-formed destructor names. */
3386 if (type_decl == error_mark_node && scope && TYPE_P (scope))
3387 return build_nt (BIT_NOT_EXPR, scope);
3388 else if (type_decl == error_mark_node)
3389 return error_mark_node;
3390
3391 /* [class.dtor]
3392
3393 A typedef-name that names a class shall not be used as the
3394 identifier in the declarator for a destructor declaration. */
3395 if (declarator_p
3396 && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
3397 && !DECL_SELF_REFERENCE_P (type_decl)
3398 && !cp_parser_uncommitted_to_tentative_parse_p (parser))
3399 error ("typedef-name %qD used as destructor declarator",
3400 type_decl);
3401
3402 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3403 }
3404
3405 case CPP_KEYWORD:
3406 if (token->keyword == RID_OPERATOR)
3407 {
3408 tree id;
3409
3410 /* This could be a template-id, so we try that first. */
3411 cp_parser_parse_tentatively (parser);
3412 /* Try a template-id. */
3413 id = cp_parser_template_id (parser, template_keyword_p,
3414 /*check_dependency_p=*/true,
3415 declarator_p);
3416 /* If that worked, we're done. */
3417 if (cp_parser_parse_definitely (parser))
3418 return id;
3419 /* We still don't know whether we're looking at an
3420 operator-function-id or a conversion-function-id. */
3421 cp_parser_parse_tentatively (parser);
3422 /* Try an operator-function-id. */
3423 id = cp_parser_operator_function_id (parser);
3424 /* If that didn't work, try a conversion-function-id. */
3425 if (!cp_parser_parse_definitely (parser))
3426 id = cp_parser_conversion_function_id (parser);
3427
3428 return id;
3429 }
3430 /* Fall through. */
3431
3432 default:
3433 cp_parser_error (parser, "expected unqualified-id");
3434 return error_mark_node;
3435 }
3436 }
3437
3438 /* Parse an (optional) nested-name-specifier.
3439
3440 nested-name-specifier:
3441 class-or-namespace-name :: nested-name-specifier [opt]
3442 class-or-namespace-name :: template nested-name-specifier [opt]
3443
3444 PARSER->SCOPE should be set appropriately before this function is
3445 called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
3446 effect. TYPE_P is TRUE if we non-type bindings should be ignored
3447 in name lookups.
3448
3449 Sets PARSER->SCOPE to the class (TYPE) or namespace
3450 (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
3451 it unchanged if there is no nested-name-specifier. Returns the new
3452 scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
3453
3454 If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
3455 part of a declaration and/or decl-specifier. */
3456
3457 static tree
3458 cp_parser_nested_name_specifier_opt (cp_parser *parser,
3459 bool typename_keyword_p,
3460 bool check_dependency_p,
3461 bool type_p,
3462 bool is_declaration)
3463 {
3464 bool success = false;
3465 tree access_check = NULL_TREE;
3466 cp_token_position start = 0;
3467 cp_token *token;
3468
3469 /* If the next token corresponds to a nested name specifier, there
3470 is no need to reparse it. However, if CHECK_DEPENDENCY_P is
3471 false, it may have been true before, in which case something
3472 like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
3473 of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
3474 CHECK_DEPENDENCY_P is false, we have to fall through into the
3475 main loop. */
3476 if (check_dependency_p
3477 && cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
3478 {
3479 cp_parser_pre_parsed_nested_name_specifier (parser);
3480 return parser->scope;
3481 }
3482
3483 /* Remember where the nested-name-specifier starts. */
3484 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
3485 start = cp_lexer_token_position (parser->lexer, false);
3486
3487 push_deferring_access_checks (dk_deferred);
3488
3489 while (true)
3490 {
3491 tree new_scope;
3492 tree old_scope;
3493 tree saved_qualifying_scope;
3494 bool template_keyword_p;
3495
3496 /* Spot cases that cannot be the beginning of a
3497 nested-name-specifier. */
3498 token = cp_lexer_peek_token (parser->lexer);
3499
3500 /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
3501 the already parsed nested-name-specifier. */
3502 if (token->type == CPP_NESTED_NAME_SPECIFIER)
3503 {
3504 /* Grab the nested-name-specifier and continue the loop. */
3505 cp_parser_pre_parsed_nested_name_specifier (parser);
3506 success = true;
3507 continue;
3508 }
3509
3510 /* Spot cases that cannot be the beginning of a
3511 nested-name-specifier. On the second and subsequent times
3512 through the loop, we look for the `template' keyword. */
3513 if (success && token->keyword == RID_TEMPLATE)
3514 ;
3515 /* A template-id can start a nested-name-specifier. */
3516 else if (token->type == CPP_TEMPLATE_ID)
3517 ;
3518 else
3519 {
3520 /* If the next token is not an identifier, then it is
3521 definitely not a class-or-namespace-name. */
3522 if (token->type != CPP_NAME)
3523 break;
3524 /* If the following token is neither a `<' (to begin a
3525 template-id), nor a `::', then we are not looking at a
3526 nested-name-specifier. */
3527 token = cp_lexer_peek_nth_token (parser->lexer, 2);
3528 if (token->type != CPP_SCOPE
3529 && !cp_parser_nth_token_starts_template_argument_list_p
3530 (parser, 2))
3531 break;
3532 }
3533
3534 /* The nested-name-specifier is optional, so we parse
3535 tentatively. */
3536 cp_parser_parse_tentatively (parser);
3537
3538 /* Look for the optional `template' keyword, if this isn't the
3539 first time through the loop. */
3540 if (success)
3541 template_keyword_p = cp_parser_optional_template_keyword (parser);
3542 else
3543 template_keyword_p = false;
3544
3545 /* Save the old scope since the name lookup we are about to do
3546 might destroy it. */
3547 old_scope = parser->scope;
3548 saved_qualifying_scope = parser->qualifying_scope;
3549 /* In a declarator-id like "X<T>::I::Y<T>" we must be able to
3550 look up names in "X<T>::I" in order to determine that "Y" is
3551 a template. So, if we have a typename at this point, we make
3552 an effort to look through it. */
3553 if (is_declaration
3554 && !typename_keyword_p
3555 && parser->scope
3556 && TREE_CODE (parser->scope) == TYPENAME_TYPE)
3557 parser->scope = resolve_typename_type (parser->scope,
3558 /*only_current_p=*/false);
3559 /* Parse the qualifying entity. */
3560 new_scope
3561 = cp_parser_class_or_namespace_name (parser,
3562 typename_keyword_p,
3563 template_keyword_p,
3564 check_dependency_p,
3565 type_p,
3566 is_declaration);
3567 /* Look for the `::' token. */
3568 cp_parser_require (parser, CPP_SCOPE, "`::'");
3569
3570 /* If we found what we wanted, we keep going; otherwise, we're
3571 done. */
3572 if (!cp_parser_parse_definitely (parser))
3573 {
3574 bool error_p = false;
3575
3576 /* Restore the OLD_SCOPE since it was valid before the
3577 failed attempt at finding the last
3578 class-or-namespace-name. */
3579 parser->scope = old_scope;
3580 parser->qualifying_scope = saved_qualifying_scope;
3581 /* If the next token is an identifier, and the one after
3582 that is a `::', then any valid interpretation would have
3583 found a class-or-namespace-name. */
3584 while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3585 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3586 == CPP_SCOPE)
3587 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
3588 != CPP_COMPL))
3589 {
3590 token = cp_lexer_consume_token (parser->lexer);
3591 if (!error_p)
3592 {
3593 tree decl;
3594
3595 decl = cp_parser_lookup_name_simple (parser, token->value);
3596 if (TREE_CODE (decl) == TEMPLATE_DECL)
3597 error ("%qD used without template parameters", decl);
3598 else
3599 cp_parser_name_lookup_error
3600 (parser, token->value, decl,
3601 "is not a class or namespace");
3602 parser->scope = NULL_TREE;
3603 error_p = true;
3604 /* Treat this as a successful nested-name-specifier
3605 due to:
3606
3607 [basic.lookup.qual]
3608
3609 If the name found is not a class-name (clause
3610 _class_) or namespace-name (_namespace.def_), the
3611 program is ill-formed. */
3612 success = true;
3613 }
3614 cp_lexer_consume_token (parser->lexer);
3615 }
3616 break;
3617 }
3618
3619 /* We've found one valid nested-name-specifier. */
3620 success = true;
3621 /* Make sure we look in the right scope the next time through
3622 the loop. */
3623 parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
3624 ? TREE_TYPE (new_scope)
3625 : new_scope);
3626 /* If it is a class scope, try to complete it; we are about to
3627 be looking up names inside the class. */
3628 if (TYPE_P (parser->scope)
3629 /* Since checking types for dependency can be expensive,
3630 avoid doing it if the type is already complete. */
3631 && !COMPLETE_TYPE_P (parser->scope)
3632 /* Do not try to complete dependent types. */
3633 && !dependent_type_p (parser->scope))
3634 complete_type (parser->scope);
3635 }
3636
3637 /* Retrieve any deferred checks. Do not pop this access checks yet
3638 so the memory will not be reclaimed during token replacing below. */
3639 access_check = get_deferred_access_checks ();
3640
3641 /* If parsing tentatively, replace the sequence of tokens that makes
3642 up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
3643 token. That way, should we re-parse the token stream, we will
3644 not have to repeat the effort required to do the parse, nor will
3645 we issue duplicate error messages. */
3646 if (success && start)
3647 {
3648 cp_token *token = cp_lexer_token_at (parser->lexer, start);
3649
3650 /* Reset the contents of the START token. */
3651 token->type = CPP_NESTED_NAME_SPECIFIER;
3652 token->value = build_tree_list (access_check, parser->scope);
3653 TREE_TYPE (token->value) = parser->qualifying_scope;
3654 token->keyword = RID_MAX;
3655
3656 /* Purge all subsequent tokens. */
3657 cp_lexer_purge_tokens_after (parser->lexer, start);
3658 }
3659
3660 pop_deferring_access_checks ();
3661 return success ? parser->scope : NULL_TREE;
3662 }
3663
3664 /* Parse a nested-name-specifier. See
3665 cp_parser_nested_name_specifier_opt for details. This function
3666 behaves identically, except that it will an issue an error if no
3667 nested-name-specifier is present, and it will return
3668 ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
3669 is present. */
3670
3671 static tree
3672 cp_parser_nested_name_specifier (cp_parser *parser,
3673 bool typename_keyword_p,
3674 bool check_dependency_p,
3675 bool type_p,
3676 bool is_declaration)
3677 {
3678 tree scope;
3679
3680 /* Look for the nested-name-specifier. */
3681 scope = cp_parser_nested_name_specifier_opt (parser,
3682 typename_keyword_p,
3683 check_dependency_p,
3684 type_p,
3685 is_declaration);
3686 /* If it was not present, issue an error message. */
3687 if (!scope)
3688 {
3689 cp_parser_error (parser, "expected nested-name-specifier");
3690 parser->scope = NULL_TREE;
3691 return error_mark_node;
3692 }
3693
3694 return scope;
3695 }
3696
3697 /* Parse a class-or-namespace-name.
3698
3699 class-or-namespace-name:
3700 class-name
3701 namespace-name
3702
3703 TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
3704 TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
3705 CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
3706 TYPE_P is TRUE iff the next name should be taken as a class-name,
3707 even the same name is declared to be another entity in the same
3708 scope.
3709
3710 Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
3711 specified by the class-or-namespace-name. If neither is found the
3712 ERROR_MARK_NODE is returned. */
3713
3714 static tree
3715 cp_parser_class_or_namespace_name (cp_parser *parser,
3716 bool typename_keyword_p,
3717 bool template_keyword_p,
3718 bool check_dependency_p,
3719 bool type_p,
3720 bool is_declaration)
3721 {
3722 tree saved_scope;
3723 tree saved_qualifying_scope;
3724 tree saved_object_scope;
3725 tree scope;
3726 bool only_class_p;
3727
3728 /* Before we try to parse the class-name, we must save away the
3729 current PARSER->SCOPE since cp_parser_class_name will destroy
3730 it. */
3731 saved_scope = parser->scope;
3732 saved_qualifying_scope = parser->qualifying_scope;
3733 saved_object_scope = parser->object_scope;
3734 /* Try for a class-name first. If the SAVED_SCOPE is a type, then
3735 there is no need to look for a namespace-name. */
3736 only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
3737 if (!only_class_p)
3738 cp_parser_parse_tentatively (parser);
3739 scope = cp_parser_class_name (parser,
3740 typename_keyword_p,
3741 template_keyword_p,
3742 type_p ? class_type : none_type,
3743 check_dependency_p,
3744 /*class_head_p=*/false,
3745 is_declaration);
3746 /* If that didn't work, try for a namespace-name. */
3747 if (!only_class_p && !cp_parser_parse_definitely (parser))
3748 {
3749 /* Restore the saved scope. */
3750 parser->scope = saved_scope;
3751 parser->qualifying_scope = saved_qualifying_scope;
3752 parser->object_scope = saved_object_scope;
3753 /* If we are not looking at an identifier followed by the scope
3754 resolution operator, then this is not part of a
3755 nested-name-specifier. (Note that this function is only used
3756 to parse the components of a nested-name-specifier.) */
3757 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
3758 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
3759 return error_mark_node;
3760 scope = cp_parser_namespace_name (parser);
3761 }
3762
3763 return scope;
3764 }
3765
3766 /* Parse a postfix-expression.
3767
3768 postfix-expression:
3769 primary-expression
3770 postfix-expression [ expression ]
3771 postfix-expression ( expression-list [opt] )
3772 simple-type-specifier ( expression-list [opt] )
3773 typename :: [opt] nested-name-specifier identifier
3774 ( expression-list [opt] )
3775 typename :: [opt] nested-name-specifier template [opt] template-id
3776 ( expression-list [opt] )
3777 postfix-expression . template [opt] id-expression
3778 postfix-expression -> template [opt] id-expression
3779 postfix-expression . pseudo-destructor-name
3780 postfix-expression -> pseudo-destructor-name
3781 postfix-expression ++
3782 postfix-expression --
3783 dynamic_cast < type-id > ( expression )
3784 static_cast < type-id > ( expression )
3785 reinterpret_cast < type-id > ( expression )
3786 const_cast < type-id > ( expression )
3787 typeid ( expression )
3788 typeid ( type-id )
3789
3790 GNU Extension:
3791
3792 postfix-expression:
3793 ( type-id ) { initializer-list , [opt] }
3794
3795 This extension is a GNU version of the C99 compound-literal
3796 construct. (The C99 grammar uses `type-name' instead of `type-id',
3797 but they are essentially the same concept.)
3798
3799 If ADDRESS_P is true, the postfix expression is the operand of the
3800 `&' operator. CAST_P is true if this expression is the target of a
3801 cast.
3802
3803 Returns a representation of the expression. */
3804
3805 static tree
3806 cp_parser_postfix_expression (cp_parser *parser, bool address_p, bool cast_p)
3807 {
3808 cp_token *token;
3809 enum rid keyword;
3810 cp_id_kind idk = CP_ID_KIND_NONE;
3811 tree postfix_expression = NULL_TREE;
3812 /* Non-NULL only if the current postfix-expression can be used to
3813 form a pointer-to-member. In that case, QUALIFYING_CLASS is the
3814 class used to qualify the member. */
3815 tree qualifying_class = NULL_TREE;
3816
3817 /* Peek at the next token. */
3818 token = cp_lexer_peek_token (parser->lexer);
3819 /* Some of the productions are determined by keywords. */
3820 keyword = token->keyword;
3821 switch (keyword)
3822 {
3823 case RID_DYNCAST:
3824 case RID_STATCAST:
3825 case RID_REINTCAST:
3826 case RID_CONSTCAST:
3827 {
3828 tree type;
3829 tree expression;
3830 const char *saved_message;
3831
3832 /* All of these can be handled in the same way from the point
3833 of view of parsing. Begin by consuming the token
3834 identifying the cast. */
3835 cp_lexer_consume_token (parser->lexer);
3836
3837 /* New types cannot be defined in the cast. */
3838 saved_message = parser->type_definition_forbidden_message;
3839 parser->type_definition_forbidden_message
3840 = "types may not be defined in casts";
3841
3842 /* Look for the opening `<'. */
3843 cp_parser_require (parser, CPP_LESS, "`<'");
3844 /* Parse the type to which we are casting. */
3845 type = cp_parser_type_id (parser);
3846 /* Look for the closing `>'. */
3847 cp_parser_require (parser, CPP_GREATER, "`>'");
3848 /* Restore the old message. */
3849 parser->type_definition_forbidden_message = saved_message;
3850
3851 /* And the expression which is being cast. */
3852 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3853 expression = cp_parser_expression (parser, /*cast_p=*/true);
3854 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3855
3856 /* Only type conversions to integral or enumeration types
3857 can be used in constant-expressions. */
3858 if (parser->integral_constant_expression_p
3859 && !dependent_type_p (type)
3860 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3861 && (cp_parser_non_integral_constant_expression
3862 (parser,
3863 "a cast to a type other than an integral or "
3864 "enumeration type")))
3865 return error_mark_node;
3866
3867 switch (keyword)
3868 {
3869 case RID_DYNCAST:
3870 postfix_expression
3871 = build_dynamic_cast (type, expression);
3872 break;
3873 case RID_STATCAST:
3874 postfix_expression
3875 = build_static_cast (type, expression);
3876 break;
3877 case RID_REINTCAST:
3878 postfix_expression
3879 = build_reinterpret_cast (type, expression);
3880 break;
3881 case RID_CONSTCAST:
3882 postfix_expression
3883 = build_const_cast (type, expression);
3884 break;
3885 default:
3886 gcc_unreachable ();
3887 }
3888 }
3889 break;
3890
3891 case RID_TYPEID:
3892 {
3893 tree type;
3894 const char *saved_message;
3895 bool saved_in_type_id_in_expr_p;
3896
3897 /* Consume the `typeid' token. */
3898 cp_lexer_consume_token (parser->lexer);
3899 /* Look for the `(' token. */
3900 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3901 /* Types cannot be defined in a `typeid' expression. */
3902 saved_message = parser->type_definition_forbidden_message;
3903 parser->type_definition_forbidden_message
3904 = "types may not be defined in a `typeid\' expression";
3905 /* We can't be sure yet whether we're looking at a type-id or an
3906 expression. */
3907 cp_parser_parse_tentatively (parser);
3908 /* Try a type-id first. */
3909 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3910 parser->in_type_id_in_expr_p = true;
3911 type = cp_parser_type_id (parser);
3912 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3913 /* Look for the `)' token. Otherwise, we can't be sure that
3914 we're not looking at an expression: consider `typeid (int
3915 (3))', for example. */
3916 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3917 /* If all went well, simply lookup the type-id. */
3918 if (cp_parser_parse_definitely (parser))
3919 postfix_expression = get_typeid (type);
3920 /* Otherwise, fall back to the expression variant. */
3921 else
3922 {
3923 tree expression;
3924
3925 /* Look for an expression. */
3926 expression = cp_parser_expression (parser, /*cast_p=*/false);
3927 /* Compute its typeid. */
3928 postfix_expression = build_typeid (expression);
3929 /* Look for the `)' token. */
3930 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3931 }
3932 /* `typeid' may not appear in an integral constant expression. */
3933 if (cp_parser_non_integral_constant_expression(parser,
3934 "`typeid' operator"))
3935 return error_mark_node;
3936 /* Restore the saved message. */
3937 parser->type_definition_forbidden_message = saved_message;
3938 }
3939 break;
3940
3941 case RID_TYPENAME:
3942 {
3943 bool template_p = false;
3944 tree id;
3945 tree type;
3946 tree scope;
3947
3948 /* Consume the `typename' token. */
3949 cp_lexer_consume_token (parser->lexer);
3950 /* Look for the optional `::' operator. */
3951 cp_parser_global_scope_opt (parser,
3952 /*current_scope_valid_p=*/false);
3953 /* Look for the nested-name-specifier. In case of error here,
3954 consume the trailing id to avoid subsequent error messages
3955 for usual cases. */
3956 scope = cp_parser_nested_name_specifier (parser,
3957 /*typename_keyword_p=*/true,
3958 /*check_dependency_p=*/true,
3959 /*type_p=*/true,
3960 /*is_declaration=*/true);
3961
3962 /* Look for the optional `template' keyword. */
3963 template_p = cp_parser_optional_template_keyword (parser);
3964 /* We don't know whether we're looking at a template-id or an
3965 identifier. */
3966 cp_parser_parse_tentatively (parser);
3967 /* Try a template-id. */
3968 id = cp_parser_template_id (parser, template_p,
3969 /*check_dependency_p=*/true,
3970 /*is_declaration=*/true);
3971 /* If that didn't work, try an identifier. */
3972 if (!cp_parser_parse_definitely (parser))
3973 id = cp_parser_identifier (parser);
3974
3975 /* Don't process id if nested name specifier is invalid. */
3976 if (scope == error_mark_node)
3977 return error_mark_node;
3978 /* If we look up a template-id in a non-dependent qualifying
3979 scope, there's no need to create a dependent type. */
3980 else if (TREE_CODE (id) == TYPE_DECL
3981 && !dependent_type_p (parser->scope))
3982 type = TREE_TYPE (id);
3983 /* Create a TYPENAME_TYPE to represent the type to which the
3984 functional cast is being performed. */
3985 else
3986 type = make_typename_type (parser->scope, id,
3987 typename_type,
3988 /*complain=*/1);
3989
3990 postfix_expression = cp_parser_functional_cast (parser, type);
3991 }
3992 break;
3993
3994 default:
3995 {
3996 tree type;
3997
3998 /* If the next thing is a simple-type-specifier, we may be
3999 looking at a functional cast. We could also be looking at
4000 an id-expression. So, we try the functional cast, and if
4001 that doesn't work we fall back to the primary-expression. */
4002 cp_parser_parse_tentatively (parser);
4003 /* Look for the simple-type-specifier. */
4004 type = cp_parser_simple_type_specifier (parser,
4005 /*decl_specs=*/NULL,
4006 CP_PARSER_FLAGS_NONE);
4007 /* Parse the cast itself. */
4008 if (!cp_parser_error_occurred (parser))
4009 postfix_expression
4010 = cp_parser_functional_cast (parser, type);
4011 /* If that worked, we're done. */
4012 if (cp_parser_parse_definitely (parser))
4013 break;
4014
4015 /* If the functional-cast didn't work out, try a
4016 compound-literal. */
4017 if (cp_parser_allow_gnu_extensions_p (parser)
4018 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4019 {
4020 tree initializer_list = NULL_TREE;
4021 bool saved_in_type_id_in_expr_p;
4022
4023 cp_parser_parse_tentatively (parser);
4024 /* Consume the `('. */
4025 cp_lexer_consume_token (parser->lexer);
4026 /* Parse the type. */
4027 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
4028 parser->in_type_id_in_expr_p = true;
4029 type = cp_parser_type_id (parser);
4030 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
4031 /* Look for the `)'. */
4032 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4033 /* Look for the `{'. */
4034 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
4035 /* If things aren't going well, there's no need to
4036 keep going. */
4037 if (!cp_parser_error_occurred (parser))
4038 {
4039 bool non_constant_p;
4040 /* Parse the initializer-list. */
4041 initializer_list
4042 = cp_parser_initializer_list (parser, &non_constant_p);
4043 /* Allow a trailing `,'. */
4044 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
4045 cp_lexer_consume_token (parser->lexer);
4046 /* Look for the final `}'. */
4047 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
4048 }
4049 /* If that worked, we're definitely looking at a
4050 compound-literal expression. */
4051 if (cp_parser_parse_definitely (parser))
4052 {
4053 /* Warn the user that a compound literal is not
4054 allowed in standard C++. */
4055 if (pedantic)
4056 pedwarn ("ISO C++ forbids compound-literals");
4057 /* Form the representation of the compound-literal. */
4058 postfix_expression
4059 = finish_compound_literal (type, initializer_list);
4060 break;
4061 }
4062 }
4063
4064 /* It must be a primary-expression. */
4065 postfix_expression = cp_parser_primary_expression (parser,
4066 cast_p,
4067 &idk,
4068 &qualifying_class);
4069 }
4070 break;
4071 }
4072
4073 /* If we were avoiding committing to the processing of a
4074 qualified-id until we knew whether or not we had a
4075 pointer-to-member, we now know. */
4076 if (qualifying_class)
4077 {
4078 bool done;
4079
4080 /* Peek at the next token. */
4081 token = cp_lexer_peek_token (parser->lexer);
4082 done = (token->type != CPP_OPEN_SQUARE
4083 && token->type != CPP_OPEN_PAREN
4084 && token->type != CPP_DOT
4085 && token->type != CPP_DEREF
4086 && token->type != CPP_PLUS_PLUS
4087 && token->type != CPP_MINUS_MINUS);
4088
4089 postfix_expression = finish_qualified_id_expr (qualifying_class,
4090 postfix_expression,
4091 done,
4092 address_p);
4093 if (done)
4094 return postfix_expression;
4095 }
4096
4097 /* Keep looping until the postfix-expression is complete. */
4098 while (true)
4099 {
4100 if (idk == CP_ID_KIND_UNQUALIFIED
4101 && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
4102 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
4103 /* It is not a Koenig lookup function call. */
4104 postfix_expression
4105 = unqualified_name_lookup_error (postfix_expression);
4106
4107 /* Peek at the next token. */
4108 token = cp_lexer_peek_token (parser->lexer);
4109
4110 switch (token->type)
4111 {
4112 case CPP_OPEN_SQUARE:
4113 postfix_expression
4114 = cp_parser_postfix_open_square_expression (parser,
4115 postfix_expression,
4116 false);
4117 idk = CP_ID_KIND_NONE;
4118 break;
4119
4120 case CPP_OPEN_PAREN:
4121 /* postfix-expression ( expression-list [opt] ) */
4122 {
4123 bool koenig_p;
4124 bool is_builtin_constant_p;
4125 bool saved_integral_constant_expression_p = false;
4126 bool saved_non_integral_constant_expression_p = false;
4127 tree args;
4128
4129 is_builtin_constant_p
4130 = DECL_IS_BUILTIN_CONSTANT_P (postfix_expression);
4131 if (is_builtin_constant_p)
4132 {
4133 /* The whole point of __builtin_constant_p is to allow
4134 non-constant expressions to appear as arguments. */
4135 saved_integral_constant_expression_p
4136 = parser->integral_constant_expression_p;
4137 saved_non_integral_constant_expression_p
4138 = parser->non_integral_constant_expression_p;
4139 parser->integral_constant_expression_p = false;
4140 }
4141 args = (cp_parser_parenthesized_expression_list
4142 (parser, /*is_attribute_list=*/false,
4143 /*cast_p=*/false,
4144 /*non_constant_p=*/NULL));
4145 if (is_builtin_constant_p)
4146 {
4147 parser->integral_constant_expression_p
4148 = saved_integral_constant_expression_p;
4149 parser->non_integral_constant_expression_p
4150 = saved_non_integral_constant_expression_p;
4151 }
4152
4153 if (args == error_mark_node)
4154 {
4155 postfix_expression = error_mark_node;
4156 break;
4157 }
4158
4159 /* Function calls are not permitted in
4160 constant-expressions. */
4161 if (! builtin_valid_in_constant_expr_p (postfix_expression)
4162 && cp_parser_non_integral_constant_expression (parser,
4163 "a function call"))
4164 {
4165 postfix_expression = error_mark_node;
4166 break;
4167 }
4168
4169 koenig_p = false;
4170 if (idk == CP_ID_KIND_UNQUALIFIED)
4171 {
4172 if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
4173 {
4174 if (args)
4175 {
4176 koenig_p = true;
4177 postfix_expression
4178 = perform_koenig_lookup (postfix_expression, args);
4179 }
4180 else
4181 postfix_expression
4182 = unqualified_fn_lookup_error (postfix_expression);
4183 }
4184 /* We do not perform argument-dependent lookup if
4185 normal lookup finds a non-function, in accordance
4186 with the expected resolution of DR 218. */
4187 else if (args && is_overloaded_fn (postfix_expression))
4188 {
4189 tree fn = get_first_fn (postfix_expression);
4190
4191 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
4192 fn = OVL_CURRENT (TREE_OPERAND (fn, 0));
4193
4194 /* Only do argument dependent lookup if regular
4195 lookup does not find a set of member functions.
4196 [basic.lookup.koenig]/2a */
4197 if (!DECL_FUNCTION_MEMBER_P (fn))
4198 {
4199 koenig_p = true;
4200 postfix_expression
4201 = perform_koenig_lookup (postfix_expression, args);
4202 }
4203 }
4204 }
4205
4206 if (TREE_CODE (postfix_expression) == COMPONENT_REF)
4207 {
4208 tree instance = TREE_OPERAND (postfix_expression, 0);
4209 tree fn = TREE_OPERAND (postfix_expression, 1);
4210
4211 if (processing_template_decl
4212 && (type_dependent_expression_p (instance)
4213 || (!BASELINK_P (fn)
4214 && TREE_CODE (fn) != FIELD_DECL)
4215 || type_dependent_expression_p (fn)
4216 || any_type_dependent_arguments_p (args)))
4217 {
4218 postfix_expression
4219 = build_min_nt (CALL_EXPR, postfix_expression,
4220 args, NULL_TREE);
4221 break;
4222 }
4223
4224 if (BASELINK_P (fn))
4225 postfix_expression
4226 = (build_new_method_call
4227 (instance, fn, args, NULL_TREE,
4228 (idk == CP_ID_KIND_QUALIFIED
4229 ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
4230 else
4231 postfix_expression
4232 = finish_call_expr (postfix_expression, args,
4233 /*disallow_virtual=*/false,
4234 /*koenig_p=*/false);
4235 }
4236 else if (TREE_CODE (postfix_expression) == OFFSET_REF
4237 || TREE_CODE (postfix_expression) == MEMBER_REF
4238 || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
4239 postfix_expression = (build_offset_ref_call_from_tree
4240 (postfix_expression, args));
4241 else if (idk == CP_ID_KIND_QUALIFIED)
4242 /* A call to a static class member, or a namespace-scope
4243 function. */
4244 postfix_expression
4245 = finish_call_expr (postfix_expression, args,
4246 /*disallow_virtual=*/true,
4247 koenig_p);
4248 else
4249 /* All other function calls. */
4250 postfix_expression
4251 = finish_call_expr (postfix_expression, args,
4252 /*disallow_virtual=*/false,
4253 koenig_p);
4254
4255 /* The POSTFIX_EXPRESSION is certainly no longer an id. */
4256 idk = CP_ID_KIND_NONE;
4257 }
4258 break;
4259
4260 case CPP_DOT:
4261 case CPP_DEREF:
4262 /* postfix-expression . template [opt] id-expression
4263 postfix-expression . pseudo-destructor-name
4264 postfix-expression -> template [opt] id-expression
4265 postfix-expression -> pseudo-destructor-name */
4266
4267 /* Consume the `.' or `->' operator. */
4268 cp_lexer_consume_token (parser->lexer);
4269
4270 postfix_expression
4271 = cp_parser_postfix_dot_deref_expression (parser, token->type,
4272 postfix_expression,
4273 false, &idk);
4274 break;
4275
4276 case CPP_PLUS_PLUS:
4277 /* postfix-expression ++ */
4278 /* Consume the `++' token. */
4279 cp_lexer_consume_token (parser->lexer);
4280 /* Generate a representation for the complete expression. */
4281 postfix_expression
4282 = finish_increment_expr (postfix_expression,
4283 POSTINCREMENT_EXPR);
4284 /* Increments may not appear in constant-expressions. */
4285 if (cp_parser_non_integral_constant_expression (parser,
4286 "an increment"))
4287 postfix_expression = error_mark_node;
4288 idk = CP_ID_KIND_NONE;
4289 break;
4290
4291 case CPP_MINUS_MINUS:
4292 /* postfix-expression -- */
4293 /* Consume the `--' token. */
4294 cp_lexer_consume_token (parser->lexer);
4295 /* Generate a representation for the complete expression. */
4296 postfix_expression
4297 = finish_increment_expr (postfix_expression,
4298 POSTDECREMENT_EXPR);
4299 /* Decrements may not appear in constant-expressions. */
4300 if (cp_parser_non_integral_constant_expression (parser,
4301 "a decrement"))
4302 postfix_expression = error_mark_node;
4303 idk = CP_ID_KIND_NONE;
4304 break;
4305
4306 default:
4307 return postfix_expression;
4308 }
4309 }
4310
4311 /* We should never get here. */
4312 gcc_unreachable ();
4313 return error_mark_node;
4314 }
4315
4316 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4317 by cp_parser_builtin_offsetof. We're looking for
4318
4319 postfix-expression [ expression ]
4320
4321 FOR_OFFSETOF is set if we're being called in that context, which
4322 changes how we deal with integer constant expressions. */
4323
4324 static tree
4325 cp_parser_postfix_open_square_expression (cp_parser *parser,
4326 tree postfix_expression,
4327 bool for_offsetof)
4328 {
4329 tree index;
4330
4331 /* Consume the `[' token. */
4332 cp_lexer_consume_token (parser->lexer);
4333
4334 /* Parse the index expression. */
4335 /* ??? For offsetof, there is a question of what to allow here. If
4336 offsetof is not being used in an integral constant expression context,
4337 then we *could* get the right answer by computing the value at runtime.
4338 If we are in an integral constant expression context, then we might
4339 could accept any constant expression; hard to say without analysis.
4340 Rather than open the barn door too wide right away, allow only integer
4341 constant expressions here. */
4342 if (for_offsetof)
4343 index = cp_parser_constant_expression (parser, false, NULL);
4344 else
4345 index = cp_parser_expression (parser, /*cast_p=*/false);
4346
4347 /* Look for the closing `]'. */
4348 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4349
4350 /* Build the ARRAY_REF. */
4351 postfix_expression = grok_array_decl (postfix_expression, index);
4352
4353 /* When not doing offsetof, array references are not permitted in
4354 constant-expressions. */
4355 if (!for_offsetof
4356 && (cp_parser_non_integral_constant_expression
4357 (parser, "an array reference")))
4358 postfix_expression = error_mark_node;
4359
4360 return postfix_expression;
4361 }
4362
4363 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4364 by cp_parser_builtin_offsetof. We're looking for
4365
4366 postfix-expression . template [opt] id-expression
4367 postfix-expression . pseudo-destructor-name
4368 postfix-expression -> template [opt] id-expression
4369 postfix-expression -> pseudo-destructor-name
4370
4371 FOR_OFFSETOF is set if we're being called in that context. That sorta
4372 limits what of the above we'll actually accept, but nevermind.
4373 TOKEN_TYPE is the "." or "->" token, which will already have been
4374 removed from the stream. */
4375
4376 static tree
4377 cp_parser_postfix_dot_deref_expression (cp_parser *parser,
4378 enum cpp_ttype token_type,
4379 tree postfix_expression,
4380 bool for_offsetof, cp_id_kind *idk)
4381 {
4382 tree name;
4383 bool dependent_p;
4384 bool template_p;
4385 bool pseudo_destructor_p;
4386 tree scope = NULL_TREE;
4387
4388 /* If this is a `->' operator, dereference the pointer. */
4389 if (token_type == CPP_DEREF)
4390 postfix_expression = build_x_arrow (postfix_expression);
4391 /* Check to see whether or not the expression is type-dependent. */
4392 dependent_p = type_dependent_expression_p (postfix_expression);
4393 /* The identifier following the `->' or `.' is not qualified. */
4394 parser->scope = NULL_TREE;
4395 parser->qualifying_scope = NULL_TREE;
4396 parser->object_scope = NULL_TREE;
4397 *idk = CP_ID_KIND_NONE;
4398 /* Enter the scope corresponding to the type of the object
4399 given by the POSTFIX_EXPRESSION. */
4400 if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
4401 {
4402 scope = TREE_TYPE (postfix_expression);
4403 /* According to the standard, no expression should ever have
4404 reference type. Unfortunately, we do not currently match
4405 the standard in this respect in that our internal representation
4406 of an expression may have reference type even when the standard
4407 says it does not. Therefore, we have to manually obtain the
4408 underlying type here. */
4409 scope = non_reference (scope);
4410 /* The type of the POSTFIX_EXPRESSION must be complete. */
4411 scope = complete_type_or_else (scope, NULL_TREE);
4412 /* Let the name lookup machinery know that we are processing a
4413 class member access expression. */
4414 parser->context->object_type = scope;
4415 /* If something went wrong, we want to be able to discern that case,
4416 as opposed to the case where there was no SCOPE due to the type
4417 of expression being dependent. */
4418 if (!scope)
4419 scope = error_mark_node;
4420 /* If the SCOPE was erroneous, make the various semantic analysis
4421 functions exit quickly -- and without issuing additional error
4422 messages. */
4423 if (scope == error_mark_node)
4424 postfix_expression = error_mark_node;
4425 }
4426
4427 /* Assume this expression is not a pseudo-destructor access. */
4428 pseudo_destructor_p = false;
4429
4430 /* If the SCOPE is a scalar type, then, if this is a valid program,
4431 we must be looking at a pseudo-destructor-name. */
4432 if (scope && SCALAR_TYPE_P (scope))
4433 {
4434 tree s;
4435 tree type;
4436
4437 cp_parser_parse_tentatively (parser);
4438 /* Parse the pseudo-destructor-name. */
4439 s = NULL_TREE;
4440 cp_parser_pseudo_destructor_name (parser, &s, &type);
4441 if (cp_parser_parse_definitely (parser))
4442 {
4443 pseudo_destructor_p = true;
4444 postfix_expression
4445 = finish_pseudo_destructor_expr (postfix_expression,
4446 s, TREE_TYPE (type));
4447 }
4448 }
4449
4450 if (!pseudo_destructor_p)
4451 {
4452 /* If the SCOPE is not a scalar type, we are looking at an
4453 ordinary class member access expression, rather than a
4454 pseudo-destructor-name. */
4455 template_p = cp_parser_optional_template_keyword (parser);
4456 /* Parse the id-expression. */
4457 name = cp_parser_id_expression (parser, template_p,
4458 /*check_dependency_p=*/true,
4459 /*template_p=*/NULL,
4460 /*declarator_p=*/false);
4461 /* In general, build a SCOPE_REF if the member name is qualified.
4462 However, if the name was not dependent and has already been
4463 resolved; there is no need to build the SCOPE_REF. For example;
4464
4465 struct X { void f(); };
4466 template <typename T> void f(T* t) { t->X::f(); }
4467
4468 Even though "t" is dependent, "X::f" is not and has been resolved
4469 to a BASELINK; there is no need to include scope information. */
4470
4471 /* But we do need to remember that there was an explicit scope for
4472 virtual function calls. */
4473 if (parser->scope)
4474 *idk = CP_ID_KIND_QUALIFIED;
4475
4476 /* If the name is a template-id that names a type, we will get a
4477 TYPE_DECL here. That is invalid code. */
4478 if (TREE_CODE (name) == TYPE_DECL)
4479 {
4480 error ("invalid use of %qD", name);
4481 postfix_expression = error_mark_node;
4482 }
4483 else
4484 {
4485 if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
4486 {
4487 name = build_nt (SCOPE_REF, parser->scope, name);
4488 parser->scope = NULL_TREE;
4489 parser->qualifying_scope = NULL_TREE;
4490 parser->object_scope = NULL_TREE;
4491 }
4492 if (scope && name && BASELINK_P (name))
4493 adjust_result_of_qualified_name_lookup
4494 (name, BINFO_TYPE (BASELINK_BINFO (name)), scope);
4495 postfix_expression
4496 = finish_class_member_access_expr (postfix_expression, name);
4497 }
4498 }
4499
4500 /* We no longer need to look up names in the scope of the object on
4501 the left-hand side of the `.' or `->' operator. */
4502 parser->context->object_type = NULL_TREE;
4503
4504 /* Outside of offsetof, these operators may not appear in
4505 constant-expressions. */
4506 if (!for_offsetof
4507 && (cp_parser_non_integral_constant_expression
4508 (parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
4509 postfix_expression = error_mark_node;
4510
4511 return postfix_expression;
4512 }
4513
4514 /* Parse a parenthesized expression-list.
4515
4516 expression-list:
4517 assignment-expression
4518 expression-list, assignment-expression
4519
4520 attribute-list:
4521 expression-list
4522 identifier
4523 identifier, expression-list
4524
4525 CAST_P is true if this expression is the target of a cast.
4526
4527 Returns a TREE_LIST. The TREE_VALUE of each node is a
4528 representation of an assignment-expression. Note that a TREE_LIST
4529 is returned even if there is only a single expression in the list.
4530 error_mark_node is returned if the ( and or ) are
4531 missing. NULL_TREE is returned on no expressions. The parentheses
4532 are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
4533 list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
4534 indicates whether or not all of the expressions in the list were
4535 constant. */
4536
4537 static tree
4538 cp_parser_parenthesized_expression_list (cp_parser* parser,
4539 bool is_attribute_list,
4540 bool cast_p,
4541 bool *non_constant_p)
4542 {
4543 tree expression_list = NULL_TREE;
4544 bool fold_expr_p = is_attribute_list;
4545 tree identifier = NULL_TREE;
4546
4547 /* Assume all the expressions will be constant. */
4548 if (non_constant_p)
4549 *non_constant_p = false;
4550
4551 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
4552 return error_mark_node;
4553
4554 /* Consume expressions until there are no more. */
4555 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
4556 while (true)
4557 {
4558 tree expr;
4559
4560 /* At the beginning of attribute lists, check to see if the
4561 next token is an identifier. */
4562 if (is_attribute_list
4563 && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
4564 {
4565 cp_token *token;
4566
4567 /* Consume the identifier. */
4568 token = cp_lexer_consume_token (parser->lexer);
4569 /* Save the identifier. */
4570 identifier = token->value;
4571 }
4572 else
4573 {
4574 /* Parse the next assignment-expression. */
4575 if (non_constant_p)
4576 {
4577 bool expr_non_constant_p;
4578 expr = (cp_parser_constant_expression
4579 (parser, /*allow_non_constant_p=*/true,
4580 &expr_non_constant_p));
4581 if (expr_non_constant_p)
4582 *non_constant_p = true;
4583 }
4584 else
4585 expr = cp_parser_assignment_expression (parser, cast_p);
4586
4587 if (fold_expr_p)
4588 expr = fold_non_dependent_expr (expr);
4589
4590 /* Add it to the list. We add error_mark_node
4591 expressions to the list, so that we can still tell if
4592 the correct form for a parenthesized expression-list
4593 is found. That gives better errors. */
4594 expression_list = tree_cons (NULL_TREE, expr, expression_list);
4595
4596 if (expr == error_mark_node)
4597 goto skip_comma;
4598 }
4599
4600 /* After the first item, attribute lists look the same as
4601 expression lists. */
4602 is_attribute_list = false;
4603
4604 get_comma:;
4605 /* If the next token isn't a `,', then we are done. */
4606 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
4607 break;
4608
4609 /* Otherwise, consume the `,' and keep going. */
4610 cp_lexer_consume_token (parser->lexer);
4611 }
4612
4613 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
4614 {
4615 int ending;
4616
4617 skip_comma:;
4618 /* We try and resync to an unnested comma, as that will give the
4619 user better diagnostics. */
4620 ending = cp_parser_skip_to_closing_parenthesis (parser,
4621 /*recovering=*/true,
4622 /*or_comma=*/true,
4623 /*consume_paren=*/true);
4624 if (ending < 0)
4625 goto get_comma;
4626 if (!ending)
4627 return error_mark_node;
4628 }
4629
4630 /* We built up the list in reverse order so we must reverse it now. */
4631 expression_list = nreverse (expression_list);
4632 if (identifier)
4633 expression_list = tree_cons (NULL_TREE, identifier, expression_list);
4634
4635 return expression_list;
4636 }
4637
4638 /* Parse a pseudo-destructor-name.
4639
4640 pseudo-destructor-name:
4641 :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
4642 :: [opt] nested-name-specifier template template-id :: ~ type-name
4643 :: [opt] nested-name-specifier [opt] ~ type-name
4644
4645 If either of the first two productions is used, sets *SCOPE to the
4646 TYPE specified before the final `::'. Otherwise, *SCOPE is set to
4647 NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
4648 or ERROR_MARK_NODE if the parse fails. */
4649
4650 static void
4651 cp_parser_pseudo_destructor_name (cp_parser* parser,
4652 tree* scope,
4653 tree* type)
4654 {
4655 bool nested_name_specifier_p;
4656
4657 /* Assume that things will not work out. */
4658 *type = error_mark_node;
4659
4660 /* Look for the optional `::' operator. */
4661 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
4662 /* Look for the optional nested-name-specifier. */
4663 nested_name_specifier_p
4664 = (cp_parser_nested_name_specifier_opt (parser,
4665 /*typename_keyword_p=*/false,
4666 /*check_dependency_p=*/true,
4667 /*type_p=*/false,
4668 /*is_declaration=*/true)
4669 != NULL_TREE);
4670 /* Now, if we saw a nested-name-specifier, we might be doing the
4671 second production. */
4672 if (nested_name_specifier_p
4673 && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
4674 {
4675 /* Consume the `template' keyword. */
4676 cp_lexer_consume_token (parser->lexer);
4677 /* Parse the template-id. */
4678 cp_parser_template_id (parser,
4679 /*template_keyword_p=*/true,
4680 /*check_dependency_p=*/false,
4681 /*is_declaration=*/true);
4682 /* Look for the `::' token. */
4683 cp_parser_require (parser, CPP_SCOPE, "`::'");
4684 }
4685 /* If the next token is not a `~', then there might be some
4686 additional qualification. */
4687 else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
4688 {
4689 /* Look for the type-name. */
4690 *scope = TREE_TYPE (cp_parser_type_name (parser));
4691
4692 if (*scope == error_mark_node)
4693 return;
4694
4695 /* If we don't have ::~, then something has gone wrong. Since
4696 the only caller of this function is looking for something
4697 after `.' or `->' after a scalar type, most likely the
4698 program is trying to get a member of a non-aggregate
4699 type. */
4700 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
4701 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
4702 {
4703 cp_parser_error (parser, "request for member of non-aggregate type");
4704 return;
4705 }
4706
4707 /* Look for the `::' token. */
4708 cp_parser_require (parser, CPP_SCOPE, "`::'");
4709 }
4710 else
4711 *scope = NULL_TREE;
4712
4713 /* Look for the `~'. */
4714 cp_parser_require (parser, CPP_COMPL, "`~'");
4715 /* Look for the type-name again. We are not responsible for
4716 checking that it matches the first type-name. */
4717 *type = cp_parser_type_name (parser);
4718 }
4719
4720 /* Parse a unary-expression.
4721
4722 unary-expression:
4723 postfix-expression
4724 ++ cast-expression
4725 -- cast-expression
4726 unary-operator cast-expression
4727 sizeof unary-expression
4728 sizeof ( type-id )
4729 new-expression
4730 delete-expression
4731
4732 GNU Extensions:
4733
4734 unary-expression:
4735 __extension__ cast-expression
4736 __alignof__ unary-expression
4737 __alignof__ ( type-id )
4738 __real__ cast-expression
4739 __imag__ cast-expression
4740 && identifier
4741
4742 ADDRESS_P is true iff the unary-expression is appearing as the
4743 operand of the `&' operator. CAST_P is true if this expression is
4744 the target of a cast.
4745
4746 Returns a representation of the expression. */
4747
4748 static tree
4749 cp_parser_unary_expression (cp_parser *parser, bool address_p, bool cast_p)
4750 {
4751 cp_token *token;
4752 enum tree_code unary_operator;
4753
4754 /* Peek at the next token. */
4755 token = cp_lexer_peek_token (parser->lexer);
4756 /* Some keywords give away the kind of expression. */
4757 if (token->type == CPP_KEYWORD)
4758 {
4759 enum rid keyword = token->keyword;
4760
4761 switch (keyword)
4762 {
4763 case RID_ALIGNOF:
4764 case RID_SIZEOF:
4765 {
4766 tree operand;
4767 enum tree_code op;
4768
4769 op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
4770 /* Consume the token. */
4771 cp_lexer_consume_token (parser->lexer);
4772 /* Parse the operand. */
4773 operand = cp_parser_sizeof_operand (parser, keyword);
4774
4775 if (TYPE_P (operand))
4776 return cxx_sizeof_or_alignof_type (operand, op, true);
4777 else
4778 return cxx_sizeof_or_alignof_expr (operand, op);
4779 }
4780
4781 case RID_NEW:
4782 return cp_parser_new_expression (parser);
4783
4784 case RID_DELETE:
4785 return cp_parser_delete_expression (parser);
4786
4787 case RID_EXTENSION:
4788 {
4789 /* The saved value of the PEDANTIC flag. */
4790 int saved_pedantic;
4791 tree expr;
4792
4793 /* Save away the PEDANTIC flag. */
4794 cp_parser_extension_opt (parser, &saved_pedantic);
4795 /* Parse the cast-expression. */
4796 expr = cp_parser_simple_cast_expression (parser);
4797 /* Restore the PEDANTIC flag. */
4798 pedantic = saved_pedantic;
4799
4800 return expr;
4801 }
4802
4803 case RID_REALPART:
4804 case RID_IMAGPART:
4805 {
4806 tree expression;
4807
4808 /* Consume the `__real__' or `__imag__' token. */
4809 cp_lexer_consume_token (parser->lexer);
4810 /* Parse the cast-expression. */
4811 expression = cp_parser_simple_cast_expression (parser);
4812 /* Create the complete representation. */
4813 return build_x_unary_op ((keyword == RID_REALPART
4814 ? REALPART_EXPR : IMAGPART_EXPR),
4815 expression);
4816 }
4817 break;
4818
4819 default:
4820 break;
4821 }
4822 }
4823
4824 /* Look for the `:: new' and `:: delete', which also signal the
4825 beginning of a new-expression, or delete-expression,
4826 respectively. If the next token is `::', then it might be one of
4827 these. */
4828 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
4829 {
4830 enum rid keyword;
4831
4832 /* See if the token after the `::' is one of the keywords in
4833 which we're interested. */
4834 keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
4835 /* If it's `new', we have a new-expression. */
4836 if (keyword == RID_NEW)
4837 return cp_parser_new_expression (parser);
4838 /* Similarly, for `delete'. */
4839 else if (keyword == RID_DELETE)
4840 return cp_parser_delete_expression (parser);
4841 }
4842
4843 /* Look for a unary operator. */
4844 unary_operator = cp_parser_unary_operator (token);
4845 /* The `++' and `--' operators can be handled similarly, even though
4846 they are not technically unary-operators in the grammar. */
4847 if (unary_operator == ERROR_MARK)
4848 {
4849 if (token->type == CPP_PLUS_PLUS)
4850 unary_operator = PREINCREMENT_EXPR;
4851 else if (token->type == CPP_MINUS_MINUS)
4852 unary_operator = PREDECREMENT_EXPR;
4853 /* Handle the GNU address-of-label extension. */
4854 else if (cp_parser_allow_gnu_extensions_p (parser)
4855 && token->type == CPP_AND_AND)
4856 {
4857 tree identifier;
4858
4859 /* Consume the '&&' token. */
4860 cp_lexer_consume_token (parser->lexer);
4861 /* Look for the identifier. */
4862 identifier = cp_parser_identifier (parser);
4863 /* Create an expression representing the address. */
4864 return finish_label_address_expr (identifier);
4865 }
4866 }
4867 if (unary_operator != ERROR_MARK)
4868 {
4869 tree cast_expression;
4870 tree expression = error_mark_node;
4871 const char *non_constant_p = NULL;
4872
4873 /* Consume the operator token. */
4874 token = cp_lexer_consume_token (parser->lexer);
4875 /* Parse the cast-expression. */
4876 cast_expression
4877 = cp_parser_cast_expression (parser,
4878 unary_operator == ADDR_EXPR,
4879 /*cast_p=*/false);
4880 /* Now, build an appropriate representation. */
4881 switch (unary_operator)
4882 {
4883 case INDIRECT_REF:
4884 non_constant_p = "`*'";
4885 expression = build_x_indirect_ref (cast_expression, "unary *");
4886 break;
4887
4888 case ADDR_EXPR:
4889 non_constant_p = "`&'";
4890 /* Fall through. */
4891 case BIT_NOT_EXPR:
4892 expression = build_x_unary_op (unary_operator, cast_expression);
4893 break;
4894
4895 case PREINCREMENT_EXPR:
4896 case PREDECREMENT_EXPR:
4897 non_constant_p = (unary_operator == PREINCREMENT_EXPR
4898 ? "`++'" : "`--'");
4899 /* Fall through. */
4900 case UNARY_PLUS_EXPR:
4901 case NEGATE_EXPR:
4902 case TRUTH_NOT_EXPR:
4903 expression = finish_unary_op_expr (unary_operator, cast_expression);
4904 break;
4905
4906 default:
4907 gcc_unreachable ();
4908 }
4909
4910 if (non_constant_p
4911 && cp_parser_non_integral_constant_expression (parser,
4912 non_constant_p))
4913 expression = error_mark_node;
4914
4915 return expression;
4916 }
4917
4918 return cp_parser_postfix_expression (parser, address_p, cast_p);
4919 }
4920
4921 /* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
4922 unary-operator, the corresponding tree code is returned. */
4923
4924 static enum tree_code
4925 cp_parser_unary_operator (cp_token* token)
4926 {
4927 switch (token->type)
4928 {
4929 case CPP_MULT:
4930 return INDIRECT_REF;
4931
4932 case CPP_AND:
4933 return ADDR_EXPR;
4934
4935 case CPP_PLUS:
4936 return UNARY_PLUS_EXPR;
4937
4938 case CPP_MINUS:
4939 return NEGATE_EXPR;
4940
4941 case CPP_NOT:
4942 return TRUTH_NOT_EXPR;
4943
4944 case CPP_COMPL:
4945 return BIT_NOT_EXPR;
4946
4947 default:
4948 return ERROR_MARK;
4949 }
4950 }
4951
4952 /* Parse a new-expression.
4953
4954 new-expression:
4955 :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
4956 :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
4957
4958 Returns a representation of the expression. */
4959
4960 static tree
4961 cp_parser_new_expression (cp_parser* parser)
4962 {
4963 bool global_scope_p;
4964 tree placement;
4965 tree type;
4966 tree initializer;
4967 tree nelts;
4968
4969 /* Look for the optional `::' operator. */
4970 global_scope_p
4971 = (cp_parser_global_scope_opt (parser,
4972 /*current_scope_valid_p=*/false)
4973 != NULL_TREE);
4974 /* Look for the `new' operator. */
4975 cp_parser_require_keyword (parser, RID_NEW, "`new'");
4976 /* There's no easy way to tell a new-placement from the
4977 `( type-id )' construct. */
4978 cp_parser_parse_tentatively (parser);
4979 /* Look for a new-placement. */
4980 placement = cp_parser_new_placement (parser);
4981 /* If that didn't work out, there's no new-placement. */
4982 if (!cp_parser_parse_definitely (parser))
4983 placement = NULL_TREE;
4984
4985 /* If the next token is a `(', then we have a parenthesized
4986 type-id. */
4987 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4988 {
4989 /* Consume the `('. */
4990 cp_lexer_consume_token (parser->lexer);
4991 /* Parse the type-id. */
4992 type = cp_parser_type_id (parser);
4993 /* Look for the closing `)'. */
4994 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4995 /* There should not be a direct-new-declarator in this production,
4996 but GCC used to allowed this, so we check and emit a sensible error
4997 message for this case. */
4998 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4999 {
5000 error ("array bound forbidden after parenthesized type-id");
5001 inform ("try removing the parentheses around the type-id");
5002 cp_parser_direct_new_declarator (parser);
5003 }
5004 nelts = NULL_TREE;
5005 }
5006 /* Otherwise, there must be a new-type-id. */
5007 else
5008 type = cp_parser_new_type_id (parser, &nelts);
5009
5010 /* If the next token is a `(', then we have a new-initializer. */
5011 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5012 initializer = cp_parser_new_initializer (parser);
5013 else
5014 initializer = NULL_TREE;
5015
5016 /* A new-expression may not appear in an integral constant
5017 expression. */
5018 if (cp_parser_non_integral_constant_expression (parser, "`new'"))
5019 return error_mark_node;
5020
5021 /* Create a representation of the new-expression. */
5022 return build_new (placement, type, nelts, initializer, global_scope_p);
5023 }
5024
5025 /* Parse a new-placement.
5026
5027 new-placement:
5028 ( expression-list )
5029
5030 Returns the same representation as for an expression-list. */
5031
5032 static tree
5033 cp_parser_new_placement (cp_parser* parser)
5034 {
5035 tree expression_list;
5036
5037 /* Parse the expression-list. */
5038 expression_list = (cp_parser_parenthesized_expression_list
5039 (parser, false, /*cast_p=*/false,
5040 /*non_constant_p=*/NULL));
5041
5042 return expression_list;
5043 }
5044
5045 /* Parse a new-type-id.
5046
5047 new-type-id:
5048 type-specifier-seq new-declarator [opt]
5049
5050 Returns the TYPE allocated. If the new-type-id indicates an array
5051 type, *NELTS is set to the number of elements in the last array
5052 bound; the TYPE will not include the last array bound. */
5053
5054 static tree
5055 cp_parser_new_type_id (cp_parser* parser, tree *nelts)
5056 {
5057 cp_decl_specifier_seq type_specifier_seq;
5058 cp_declarator *new_declarator;
5059 cp_declarator *declarator;
5060 cp_declarator *outer_declarator;
5061 const char *saved_message;
5062 tree type;
5063
5064 /* The type-specifier sequence must not contain type definitions.
5065 (It cannot contain declarations of new types either, but if they
5066 are not definitions we will catch that because they are not
5067 complete.) */
5068 saved_message = parser->type_definition_forbidden_message;
5069 parser->type_definition_forbidden_message
5070 = "types may not be defined in a new-type-id";
5071 /* Parse the type-specifier-seq. */
5072 cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
5073 &type_specifier_seq);
5074 /* Restore the old message. */
5075 parser->type_definition_forbidden_message = saved_message;
5076 /* Parse the new-declarator. */
5077 new_declarator = cp_parser_new_declarator_opt (parser);
5078
5079 /* Determine the number of elements in the last array dimension, if
5080 any. */
5081 *nelts = NULL_TREE;
5082 /* Skip down to the last array dimension. */
5083 declarator = new_declarator;
5084 outer_declarator = NULL;
5085 while (declarator && (declarator->kind == cdk_pointer
5086 || declarator->kind == cdk_ptrmem))
5087 {
5088 outer_declarator = declarator;
5089 declarator = declarator->declarator;
5090 }
5091 while (declarator
5092 && declarator->kind == cdk_array
5093 && declarator->declarator
5094 && declarator->declarator->kind == cdk_array)
5095 {
5096 outer_declarator = declarator;
5097 declarator = declarator->declarator;
5098 }
5099
5100 if (declarator && declarator->kind == cdk_array)
5101 {
5102 *nelts = declarator->u.array.bounds;
5103 if (*nelts == error_mark_node)
5104 *nelts = integer_one_node;
5105
5106 if (outer_declarator)
5107 outer_declarator->declarator = declarator->declarator;
5108 else
5109 new_declarator = NULL;
5110 }
5111
5112 type = groktypename (&type_specifier_seq, new_declarator);
5113 if (TREE_CODE (type) == ARRAY_TYPE && *nelts == NULL_TREE)
5114 {
5115 *nelts = array_type_nelts_top (type);
5116 type = TREE_TYPE (type);
5117 }
5118 return type;
5119 }
5120
5121 /* Parse an (optional) new-declarator.
5122
5123 new-declarator:
5124 ptr-operator new-declarator [opt]
5125 direct-new-declarator
5126
5127 Returns the declarator. */
5128
5129 static cp_declarator *
5130 cp_parser_new_declarator_opt (cp_parser* parser)
5131 {
5132 enum tree_code code;
5133 tree type;
5134 cp_cv_quals cv_quals;
5135
5136 /* We don't know if there's a ptr-operator next, or not. */
5137 cp_parser_parse_tentatively (parser);
5138 /* Look for a ptr-operator. */
5139 code = cp_parser_ptr_operator (parser, &type, &cv_quals);
5140 /* If that worked, look for more new-declarators. */
5141 if (cp_parser_parse_definitely (parser))
5142 {
5143 cp_declarator *declarator;
5144
5145 /* Parse another optional declarator. */
5146 declarator = cp_parser_new_declarator_opt (parser);
5147
5148 /* Create the representation of the declarator. */
5149 if (type)
5150 declarator = make_ptrmem_declarator (cv_quals, type, declarator);
5151 else if (code == INDIRECT_REF)
5152 declarator = make_pointer_declarator (cv_quals, declarator);
5153 else
5154 declarator = make_reference_declarator (cv_quals, declarator);
5155
5156 return declarator;
5157 }
5158
5159 /* If the next token is a `[', there is a direct-new-declarator. */
5160 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5161 return cp_parser_direct_new_declarator (parser);
5162
5163 return NULL;
5164 }
5165
5166 /* Parse a direct-new-declarator.
5167
5168 direct-new-declarator:
5169 [ expression ]
5170 direct-new-declarator [constant-expression]
5171
5172 */
5173
5174 static cp_declarator *
5175 cp_parser_direct_new_declarator (cp_parser* parser)
5176 {
5177 cp_declarator *declarator = NULL;
5178
5179 while (true)
5180 {
5181 tree expression;
5182
5183 /* Look for the opening `['. */
5184 cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
5185 /* The first expression is not required to be constant. */
5186 if (!declarator)
5187 {
5188 expression = cp_parser_expression (parser, /*cast_p=*/false);
5189 /* The standard requires that the expression have integral
5190 type. DR 74 adds enumeration types. We believe that the
5191 real intent is that these expressions be handled like the
5192 expression in a `switch' condition, which also allows
5193 classes with a single conversion to integral or
5194 enumeration type. */
5195 if (!processing_template_decl)
5196 {
5197 expression
5198 = build_expr_type_conversion (WANT_INT | WANT_ENUM,
5199 expression,
5200 /*complain=*/true);
5201 if (!expression)
5202 {
5203 error ("expression in new-declarator must have integral "
5204 "or enumeration type");
5205 expression = error_mark_node;
5206 }
5207 }
5208 }
5209 /* But all the other expressions must be. */
5210 else
5211 expression
5212 = cp_parser_constant_expression (parser,
5213 /*allow_non_constant=*/false,
5214 NULL);
5215 /* Look for the closing `]'. */
5216 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5217
5218 /* Add this bound to the declarator. */
5219 declarator = make_array_declarator (declarator, expression);
5220
5221 /* If the next token is not a `[', then there are no more
5222 bounds. */
5223 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
5224 break;
5225 }
5226
5227 return declarator;
5228 }
5229
5230 /* Parse a new-initializer.
5231
5232 new-initializer:
5233 ( expression-list [opt] )
5234
5235 Returns a representation of the expression-list. If there is no
5236 expression-list, VOID_ZERO_NODE is returned. */
5237
5238 static tree
5239 cp_parser_new_initializer (cp_parser* parser)
5240 {
5241 tree expression_list;
5242
5243 expression_list = (cp_parser_parenthesized_expression_list
5244 (parser, false, /*cast_p=*/false,
5245 /*non_constant_p=*/NULL));
5246 if (!expression_list)
5247 expression_list = void_zero_node;
5248
5249 return expression_list;
5250 }
5251
5252 /* Parse a delete-expression.
5253
5254 delete-expression:
5255 :: [opt] delete cast-expression
5256 :: [opt] delete [ ] cast-expression
5257
5258 Returns a representation of the expression. */
5259
5260 static tree
5261 cp_parser_delete_expression (cp_parser* parser)
5262 {
5263 bool global_scope_p;
5264 bool array_p;
5265 tree expression;
5266
5267 /* Look for the optional `::' operator. */
5268 global_scope_p
5269 = (cp_parser_global_scope_opt (parser,
5270 /*current_scope_valid_p=*/false)
5271 != NULL_TREE);
5272 /* Look for the `delete' keyword. */
5273 cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
5274 /* See if the array syntax is in use. */
5275 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5276 {
5277 /* Consume the `[' token. */
5278 cp_lexer_consume_token (parser->lexer);
5279 /* Look for the `]' token. */
5280 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5281 /* Remember that this is the `[]' construct. */
5282 array_p = true;
5283 }
5284 else
5285 array_p = false;
5286
5287 /* Parse the cast-expression. */
5288 expression = cp_parser_simple_cast_expression (parser);
5289
5290 /* A delete-expression may not appear in an integral constant
5291 expression. */
5292 if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
5293 return error_mark_node;
5294
5295 return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
5296 }
5297
5298 /* Parse a cast-expression.
5299
5300 cast-expression:
5301 unary-expression
5302 ( type-id ) cast-expression
5303
5304 ADDRESS_P is true iff the unary-expression is appearing as the
5305 operand of the `&' operator. CAST_P is true if this expression is
5306 the target of a cast.
5307
5308 Returns a representation of the expression. */
5309
5310 static tree
5311 cp_parser_cast_expression (cp_parser *parser, bool address_p, bool cast_p)
5312 {
5313 /* If it's a `(', then we might be looking at a cast. */
5314 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5315 {
5316 tree type = NULL_TREE;
5317 tree expr = NULL_TREE;
5318 bool compound_literal_p;
5319 const char *saved_message;
5320
5321 /* There's no way to know yet whether or not this is a cast.
5322 For example, `(int (3))' is a unary-expression, while `(int)
5323 3' is a cast. So, we resort to parsing tentatively. */
5324 cp_parser_parse_tentatively (parser);
5325 /* Types may not be defined in a cast. */
5326 saved_message = parser->type_definition_forbidden_message;
5327 parser->type_definition_forbidden_message
5328 = "types may not be defined in casts";
5329 /* Consume the `('. */
5330 cp_lexer_consume_token (parser->lexer);
5331 /* A very tricky bit is that `(struct S) { 3 }' is a
5332 compound-literal (which we permit in C++ as an extension).
5333 But, that construct is not a cast-expression -- it is a
5334 postfix-expression. (The reason is that `(struct S) { 3 }.i'
5335 is legal; if the compound-literal were a cast-expression,
5336 you'd need an extra set of parentheses.) But, if we parse
5337 the type-id, and it happens to be a class-specifier, then we
5338 will commit to the parse at that point, because we cannot
5339 undo the action that is done when creating a new class. So,
5340 then we cannot back up and do a postfix-expression.
5341
5342 Therefore, we scan ahead to the closing `)', and check to see
5343 if the token after the `)' is a `{'. If so, we are not
5344 looking at a cast-expression.
5345
5346 Save tokens so that we can put them back. */
5347 cp_lexer_save_tokens (parser->lexer);
5348 /* Skip tokens until the next token is a closing parenthesis.
5349 If we find the closing `)', and the next token is a `{', then
5350 we are looking at a compound-literal. */
5351 compound_literal_p
5352 = (cp_parser_skip_to_closing_parenthesis (parser, false, false,
5353 /*consume_paren=*/true)
5354 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
5355 /* Roll back the tokens we skipped. */
5356 cp_lexer_rollback_tokens (parser->lexer);
5357 /* If we were looking at a compound-literal, simulate an error
5358 so that the call to cp_parser_parse_definitely below will
5359 fail. */
5360 if (compound_literal_p)
5361 cp_parser_simulate_error (parser);
5362 else
5363 {
5364 bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
5365 parser->in_type_id_in_expr_p = true;
5366 /* Look for the type-id. */
5367 type = cp_parser_type_id (parser);
5368 /* Look for the closing `)'. */
5369 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5370 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
5371 }
5372
5373 /* Restore the saved message. */
5374 parser->type_definition_forbidden_message = saved_message;
5375
5376 /* If ok so far, parse the dependent expression. We cannot be
5377 sure it is a cast. Consider `(T ())'. It is a parenthesized
5378 ctor of T, but looks like a cast to function returning T
5379 without a dependent expression. */
5380 if (!cp_parser_error_occurred (parser))
5381 expr = cp_parser_cast_expression (parser,
5382 /*address_p=*/false,
5383 /*cast_p=*/true);
5384
5385 if (cp_parser_parse_definitely (parser))
5386 {
5387 /* Warn about old-style casts, if so requested. */
5388 if (warn_old_style_cast
5389 && !in_system_header
5390 && !VOID_TYPE_P (type)
5391 && current_lang_name != lang_name_c)
5392 warning (0, "use of old-style cast");
5393
5394 /* Only type conversions to integral or enumeration types
5395 can be used in constant-expressions. */
5396 if (parser->integral_constant_expression_p
5397 && !dependent_type_p (type)
5398 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5399 && (cp_parser_non_integral_constant_expression
5400 (parser,
5401 "a cast to a type other than an integral or "
5402 "enumeration type")))
5403 return error_mark_node;
5404
5405 /* Perform the cast. */
5406 expr = build_c_cast (type, expr);
5407 return expr;
5408 }
5409 }
5410
5411 /* If we get here, then it's not a cast, so it must be a
5412 unary-expression. */
5413 return cp_parser_unary_expression (parser, address_p, cast_p);
5414 }
5415
5416 /* Parse a binary expression of the general form:
5417
5418 pm-expression:
5419 cast-expression
5420 pm-expression .* cast-expression
5421 pm-expression ->* cast-expression
5422
5423 multiplicative-expression:
5424 pm-expression
5425 multiplicative-expression * pm-expression
5426 multiplicative-expression / pm-expression
5427 multiplicative-expression % pm-expression
5428
5429 additive-expression:
5430 multiplicative-expression
5431 additive-expression + multiplicative-expression
5432 additive-expression - multiplicative-expression
5433
5434 shift-expression:
5435 additive-expression
5436 shift-expression << additive-expression
5437 shift-expression >> additive-expression
5438
5439 relational-expression:
5440 shift-expression
5441 relational-expression < shift-expression
5442 relational-expression > shift-expression
5443 relational-expression <= shift-expression
5444 relational-expression >= shift-expression
5445
5446 GNU Extension:
5447
5448 relational-expression:
5449 relational-expression <? shift-expression
5450 relational-expression >? shift-expression
5451
5452 equality-expression:
5453 relational-expression
5454 equality-expression == relational-expression
5455 equality-expression != relational-expression
5456
5457 and-expression:
5458 equality-expression
5459 and-expression & equality-expression
5460
5461 exclusive-or-expression:
5462 and-expression
5463 exclusive-or-expression ^ and-expression
5464
5465 inclusive-or-expression:
5466 exclusive-or-expression
5467 inclusive-or-expression | exclusive-or-expression
5468
5469 logical-and-expression:
5470 inclusive-or-expression
5471 logical-and-expression && inclusive-or-expression
5472
5473 logical-or-expression:
5474 logical-and-expression
5475 logical-or-expression || logical-and-expression
5476
5477 All these are implemented with a single function like:
5478
5479 binary-expression:
5480 simple-cast-expression
5481 binary-expression <token> binary-expression
5482
5483 CAST_P is true if this expression is the target of a cast.
5484
5485 The binops_by_token map is used to get the tree codes for each <token> type.
5486 binary-expressions are associated according to a precedence table. */
5487
5488 #define TOKEN_PRECEDENCE(token) \
5489 ((token->type == CPP_GREATER && !parser->greater_than_is_operator_p) \
5490 ? PREC_NOT_OPERATOR \
5491 : binops_by_token[token->type].prec)
5492
5493 static tree
5494 cp_parser_binary_expression (cp_parser* parser, bool cast_p)
5495 {
5496 cp_parser_expression_stack stack;
5497 cp_parser_expression_stack_entry *sp = &stack[0];
5498 tree lhs, rhs;
5499 cp_token *token;
5500 enum tree_code tree_type;
5501 enum cp_parser_prec prec = PREC_NOT_OPERATOR, new_prec, lookahead_prec;
5502 bool overloaded_p;
5503
5504 /* Parse the first expression. */
5505 lhs = cp_parser_cast_expression (parser, /*address_p=*/false, cast_p);
5506
5507 for (;;)
5508 {
5509 /* Get an operator token. */
5510 token = cp_lexer_peek_token (parser->lexer);
5511 if (token->type == CPP_MIN || token->type == CPP_MAX)
5512 cp_parser_warn_min_max ();
5513
5514 new_prec = TOKEN_PRECEDENCE (token);
5515
5516 /* Popping an entry off the stack means we completed a subexpression:
5517 - either we found a token which is not an operator (`>' where it is not
5518 an operator, or prec == PREC_NOT_OPERATOR), in which case popping
5519 will happen repeatedly;
5520 - or, we found an operator which has lower priority. This is the case
5521 where the recursive descent *ascends*, as in `3 * 4 + 5' after
5522 parsing `3 * 4'. */
5523 if (new_prec <= prec)
5524 {
5525 if (sp == stack)
5526 break;
5527 else
5528 goto pop;
5529 }
5530
5531 get_rhs:
5532 tree_type = binops_by_token[token->type].tree_type;
5533
5534 /* We used the operator token. */
5535 cp_lexer_consume_token (parser->lexer);
5536
5537 /* Extract another operand. It may be the RHS of this expression
5538 or the LHS of a new, higher priority expression. */
5539 rhs = cp_parser_simple_cast_expression (parser);
5540
5541 /* Get another operator token. Look up its precedence to avoid
5542 building a useless (immediately popped) stack entry for common
5543 cases such as 3 + 4 + 5 or 3 * 4 + 5. */
5544 token = cp_lexer_peek_token (parser->lexer);
5545 lookahead_prec = TOKEN_PRECEDENCE (token);
5546 if (lookahead_prec > new_prec)
5547 {
5548 /* ... and prepare to parse the RHS of the new, higher priority
5549 expression. Since precedence levels on the stack are
5550 monotonically increasing, we do not have to care about
5551 stack overflows. */
5552 sp->prec = prec;
5553 sp->tree_type = tree_type;
5554 sp->lhs = lhs;
5555 sp++;
5556 lhs = rhs;
5557 prec = new_prec;
5558 new_prec = lookahead_prec;
5559 goto get_rhs;
5560
5561 pop:
5562 /* If the stack is not empty, we have parsed into LHS the right side
5563 (`4' in the example above) of an expression we had suspended.
5564 We can use the information on the stack to recover the LHS (`3')
5565 from the stack together with the tree code (`MULT_EXPR'), and
5566 the precedence of the higher level subexpression
5567 (`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token,
5568 which will be used to actually build the additive expression. */
5569 --sp;
5570 prec = sp->prec;
5571 tree_type = sp->tree_type;
5572 rhs = lhs;
5573 lhs = sp->lhs;
5574 }
5575
5576 overloaded_p = false;
5577 lhs = build_x_binary_op (tree_type, lhs, rhs, &overloaded_p);
5578
5579 /* If the binary operator required the use of an overloaded operator,
5580 then this expression cannot be an integral constant-expression.
5581 An overloaded operator can be used even if both operands are
5582 otherwise permissible in an integral constant-expression if at
5583 least one of the operands is of enumeration type. */
5584
5585 if (overloaded_p
5586 && (cp_parser_non_integral_constant_expression
5587 (parser, "calls to overloaded operators")))
5588 return error_mark_node;
5589 }
5590
5591 return lhs;
5592 }
5593
5594
5595 /* Parse the `? expression : assignment-expression' part of a
5596 conditional-expression. The LOGICAL_OR_EXPR is the
5597 logical-or-expression that started the conditional-expression.
5598 Returns a representation of the entire conditional-expression.
5599
5600 This routine is used by cp_parser_assignment_expression.
5601
5602 ? expression : assignment-expression
5603
5604 GNU Extensions:
5605
5606 ? : assignment-expression */
5607
5608 static tree
5609 cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
5610 {
5611 tree expr;
5612 tree assignment_expr;
5613
5614 /* Consume the `?' token. */
5615 cp_lexer_consume_token (parser->lexer);
5616 if (cp_parser_allow_gnu_extensions_p (parser)
5617 && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
5618 /* Implicit true clause. */
5619 expr = NULL_TREE;
5620 else
5621 /* Parse the expression. */
5622 expr = cp_parser_expression (parser, /*cast_p=*/false);
5623
5624 /* The next token should be a `:'. */
5625 cp_parser_require (parser, CPP_COLON, "`:'");
5626 /* Parse the assignment-expression. */
5627 assignment_expr = cp_parser_assignment_expression (parser, /*cast_p=*/false);
5628
5629 /* Build the conditional-expression. */
5630 return build_x_conditional_expr (logical_or_expr,
5631 expr,
5632 assignment_expr);
5633 }
5634
5635 /* Parse an assignment-expression.
5636
5637 assignment-expression:
5638 conditional-expression
5639 logical-or-expression assignment-operator assignment_expression
5640 throw-expression
5641
5642 CAST_P is true if this expression is the target of a cast.
5643
5644 Returns a representation for the expression. */
5645
5646 static tree
5647 cp_parser_assignment_expression (cp_parser* parser, bool cast_p)
5648 {
5649 tree expr;
5650
5651 /* If the next token is the `throw' keyword, then we're looking at
5652 a throw-expression. */
5653 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
5654 expr = cp_parser_throw_expression (parser);
5655 /* Otherwise, it must be that we are looking at a
5656 logical-or-expression. */
5657 else
5658 {
5659 /* Parse the binary expressions (logical-or-expression). */
5660 expr = cp_parser_binary_expression (parser, cast_p);
5661 /* If the next token is a `?' then we're actually looking at a
5662 conditional-expression. */
5663 if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
5664 return cp_parser_question_colon_clause (parser, expr);
5665 else
5666 {
5667 enum tree_code assignment_operator;
5668
5669 /* If it's an assignment-operator, we're using the second
5670 production. */
5671 assignment_operator
5672 = cp_parser_assignment_operator_opt (parser);
5673 if (assignment_operator != ERROR_MARK)
5674 {
5675 tree rhs;
5676
5677 /* Parse the right-hand side of the assignment. */
5678 rhs = cp_parser_assignment_expression (parser, cast_p);
5679 /* An assignment may not appear in a
5680 constant-expression. */
5681 if (cp_parser_non_integral_constant_expression (parser,
5682 "an assignment"))
5683 return error_mark_node;
5684 /* Build the assignment expression. */
5685 expr = build_x_modify_expr (expr,
5686 assignment_operator,
5687 rhs);
5688 }
5689 }
5690 }
5691
5692 return expr;
5693 }
5694
5695 /* Parse an (optional) assignment-operator.
5696
5697 assignment-operator: one of
5698 = *= /= %= += -= >>= <<= &= ^= |=
5699
5700 GNU Extension:
5701
5702 assignment-operator: one of
5703 <?= >?=
5704
5705 If the next token is an assignment operator, the corresponding tree
5706 code is returned, and the token is consumed. For example, for
5707 `+=', PLUS_EXPR is returned. For `=' itself, the code returned is
5708 NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
5709 TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
5710 operator, ERROR_MARK is returned. */
5711
5712 static enum tree_code
5713 cp_parser_assignment_operator_opt (cp_parser* parser)
5714 {
5715 enum tree_code op;
5716 cp_token *token;
5717
5718 /* Peek at the next toen. */
5719 token = cp_lexer_peek_token (parser->lexer);
5720
5721 switch (token->type)
5722 {
5723 case CPP_EQ:
5724 op = NOP_EXPR;
5725 break;
5726
5727 case CPP_MULT_EQ:
5728 op = MULT_EXPR;
5729 break;
5730
5731 case CPP_DIV_EQ:
5732 op = TRUNC_DIV_EXPR;
5733 break;
5734
5735 case CPP_MOD_EQ:
5736 op = TRUNC_MOD_EXPR;
5737 break;
5738
5739 case CPP_PLUS_EQ:
5740 op = PLUS_EXPR;
5741 break;
5742
5743 case CPP_MINUS_EQ:
5744 op = MINUS_EXPR;
5745 break;
5746
5747 case CPP_RSHIFT_EQ:
5748 op = RSHIFT_EXPR;
5749 break;
5750
5751 case CPP_LSHIFT_EQ:
5752 op = LSHIFT_EXPR;
5753 break;
5754
5755 case CPP_AND_EQ:
5756 op = BIT_AND_EXPR;
5757 break;
5758
5759 case CPP_XOR_EQ:
5760 op = BIT_XOR_EXPR;
5761 break;
5762
5763 case CPP_OR_EQ:
5764 op = BIT_IOR_EXPR;
5765 break;
5766
5767 case CPP_MIN_EQ:
5768 op = MIN_EXPR;
5769 cp_parser_warn_min_max ();
5770 break;
5771
5772 case CPP_MAX_EQ:
5773 op = MAX_EXPR;
5774 cp_parser_warn_min_max ();
5775 break;
5776
5777 default:
5778 /* Nothing else is an assignment operator. */
5779 op = ERROR_MARK;
5780 }
5781
5782 /* If it was an assignment operator, consume it. */
5783 if (op != ERROR_MARK)
5784 cp_lexer_consume_token (parser->lexer);
5785
5786 return op;
5787 }
5788
5789 /* Parse an expression.
5790
5791 expression:
5792 assignment-expression
5793 expression , assignment-expression
5794
5795 CAST_P is true if this expression is the target of a cast.
5796
5797 Returns a representation of the expression. */
5798
5799 static tree
5800 cp_parser_expression (cp_parser* parser, bool cast_p)
5801 {
5802 tree expression = NULL_TREE;
5803
5804 while (true)
5805 {
5806 tree assignment_expression;
5807
5808 /* Parse the next assignment-expression. */
5809 assignment_expression
5810 = cp_parser_assignment_expression (parser, cast_p);
5811 /* If this is the first assignment-expression, we can just
5812 save it away. */
5813 if (!expression)
5814 expression = assignment_expression;
5815 else
5816 expression = build_x_compound_expr (expression,
5817 assignment_expression);
5818 /* If the next token is not a comma, then we are done with the
5819 expression. */
5820 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
5821 break;
5822 /* Consume the `,'. */
5823 cp_lexer_consume_token (parser->lexer);
5824 /* A comma operator cannot appear in a constant-expression. */
5825 if (cp_parser_non_integral_constant_expression (parser,
5826 "a comma operator"))
5827 expression = error_mark_node;
5828 }
5829
5830 return expression;
5831 }
5832
5833 /* Parse a constant-expression.
5834
5835 constant-expression:
5836 conditional-expression
5837
5838 If ALLOW_NON_CONSTANT_P a non-constant expression is silently
5839 accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
5840 constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
5841 is false, NON_CONSTANT_P should be NULL. */
5842
5843 static tree
5844 cp_parser_constant_expression (cp_parser* parser,
5845 bool allow_non_constant_p,
5846 bool *non_constant_p)
5847 {
5848 bool saved_integral_constant_expression_p;
5849 bool saved_allow_non_integral_constant_expression_p;
5850 bool saved_non_integral_constant_expression_p;
5851 tree expression;
5852
5853 /* It might seem that we could simply parse the
5854 conditional-expression, and then check to see if it were
5855 TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
5856 one that the compiler can figure out is constant, possibly after
5857 doing some simplifications or optimizations. The standard has a
5858 precise definition of constant-expression, and we must honor
5859 that, even though it is somewhat more restrictive.
5860
5861 For example:
5862
5863 int i[(2, 3)];
5864
5865 is not a legal declaration, because `(2, 3)' is not a
5866 constant-expression. The `,' operator is forbidden in a
5867 constant-expression. However, GCC's constant-folding machinery
5868 will fold this operation to an INTEGER_CST for `3'. */
5869
5870 /* Save the old settings. */
5871 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
5872 saved_allow_non_integral_constant_expression_p
5873 = parser->allow_non_integral_constant_expression_p;
5874 saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
5875 /* We are now parsing a constant-expression. */
5876 parser->integral_constant_expression_p = true;
5877 parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
5878 parser->non_integral_constant_expression_p = false;
5879 /* Although the grammar says "conditional-expression", we parse an
5880 "assignment-expression", which also permits "throw-expression"
5881 and the use of assignment operators. In the case that
5882 ALLOW_NON_CONSTANT_P is false, we get better errors than we would
5883 otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
5884 actually essential that we look for an assignment-expression.
5885 For example, cp_parser_initializer_clauses uses this function to
5886 determine whether a particular assignment-expression is in fact
5887 constant. */
5888 expression = cp_parser_assignment_expression (parser, /*cast_p=*/false);
5889 /* Restore the old settings. */
5890 parser->integral_constant_expression_p
5891 = saved_integral_constant_expression_p;
5892 parser->allow_non_integral_constant_expression_p
5893 = saved_allow_non_integral_constant_expression_p;
5894 if (allow_non_constant_p)
5895 *non_constant_p = parser->non_integral_constant_expression_p;
5896 else if (parser->non_integral_constant_expression_p)
5897 expression = error_mark_node;
5898 parser->non_integral_constant_expression_p
5899 = saved_non_integral_constant_expression_p;
5900
5901 return expression;
5902 }
5903
5904 /* Parse __builtin_offsetof.
5905
5906 offsetof-expression:
5907 "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
5908
5909 offsetof-member-designator:
5910 id-expression
5911 | offsetof-member-designator "." id-expression
5912 | offsetof-member-designator "[" expression "]"
5913 */
5914
5915 static tree
5916 cp_parser_builtin_offsetof (cp_parser *parser)
5917 {
5918 int save_ice_p, save_non_ice_p;
5919 tree type, expr;
5920 cp_id_kind dummy;
5921
5922 /* We're about to accept non-integral-constant things, but will
5923 definitely yield an integral constant expression. Save and
5924 restore these values around our local parsing. */
5925 save_ice_p = parser->integral_constant_expression_p;
5926 save_non_ice_p = parser->non_integral_constant_expression_p;
5927
5928 /* Consume the "__builtin_offsetof" token. */
5929 cp_lexer_consume_token (parser->lexer);
5930 /* Consume the opening `('. */
5931 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
5932 /* Parse the type-id. */
5933 type = cp_parser_type_id (parser);
5934 /* Look for the `,'. */
5935 cp_parser_require (parser, CPP_COMMA, "`,'");
5936
5937 /* Build the (type *)null that begins the traditional offsetof macro. */
5938 expr = build_static_cast (build_pointer_type (type), null_pointer_node);
5939
5940 /* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
5941 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
5942 true, &dummy);
5943 while (true)
5944 {
5945 cp_token *token = cp_lexer_peek_token (parser->lexer);
5946 switch (token->type)
5947 {
5948 case CPP_OPEN_SQUARE:
5949 /* offsetof-member-designator "[" expression "]" */
5950 expr = cp_parser_postfix_open_square_expression (parser, expr, true);
5951 break;
5952
5953 case CPP_DOT:
5954 /* offsetof-member-designator "." identifier */
5955 cp_lexer_consume_token (parser->lexer);
5956 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
5957 true, &dummy);
5958 break;
5959
5960 case CPP_CLOSE_PAREN:
5961 /* Consume the ")" token. */
5962 cp_lexer_consume_token (parser->lexer);
5963 goto success;
5964
5965 default:
5966 /* Error. We know the following require will fail, but
5967 that gives the proper error message. */
5968 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5969 cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
5970 expr = error_mark_node;
5971 goto failure;
5972 }
5973 }
5974
5975 success:
5976 /* If we're processing a template, we can't finish the semantics yet.
5977 Otherwise we can fold the entire expression now. */
5978 if (processing_template_decl)
5979 expr = build1 (OFFSETOF_EXPR, size_type_node, expr);
5980 else
5981 expr = fold_offsetof (expr);
5982
5983 failure:
5984 parser->integral_constant_expression_p = save_ice_p;
5985 parser->non_integral_constant_expression_p = save_non_ice_p;
5986
5987 return expr;
5988 }
5989
5990 /* Statements [gram.stmt.stmt] */
5991
5992 /* Parse a statement.
5993
5994 statement:
5995 labeled-statement
5996 expression-statement
5997 compound-statement
5998 selection-statement
5999 iteration-statement
6000 jump-statement
6001 declaration-statement
6002 try-block */
6003
6004 static void
6005 cp_parser_statement (cp_parser* parser, tree in_statement_expr)
6006 {
6007 tree statement;
6008 cp_token *token;
6009 location_t statement_location;
6010
6011 /* There is no statement yet. */
6012 statement = NULL_TREE;
6013 /* Peek at the next token. */
6014 token = cp_lexer_peek_token (parser->lexer);
6015 /* Remember the location of the first token in the statement. */
6016 statement_location = token->location;
6017 /* If this is a keyword, then that will often determine what kind of
6018 statement we have. */
6019 if (token->type == CPP_KEYWORD)
6020 {
6021 enum rid keyword = token->keyword;
6022
6023 switch (keyword)
6024 {
6025 case RID_CASE:
6026 case RID_DEFAULT:
6027 statement = cp_parser_labeled_statement (parser,
6028 in_statement_expr);
6029 break;
6030
6031 case RID_IF:
6032 case RID_SWITCH:
6033 statement = cp_parser_selection_statement (parser);
6034 break;
6035
6036 case RID_WHILE:
6037 case RID_DO:
6038 case RID_FOR:
6039 statement = cp_parser_iteration_statement (parser);
6040 break;
6041
6042 case RID_BREAK:
6043 case RID_CONTINUE:
6044 case RID_RETURN:
6045 case RID_GOTO:
6046 statement = cp_parser_jump_statement (parser);
6047 break;
6048
6049 /* Objective-C++ exception-handling constructs. */
6050 case RID_AT_TRY:
6051 case RID_AT_CATCH:
6052 case RID_AT_FINALLY:
6053 case RID_AT_SYNCHRONIZED:
6054 case RID_AT_THROW:
6055 statement = cp_parser_objc_statement (parser);
6056 break;
6057
6058 case RID_TRY:
6059 statement = cp_parser_try_block (parser);
6060 break;
6061
6062 default:
6063 /* It might be a keyword like `int' that can start a
6064 declaration-statement. */
6065 break;
6066 }
6067 }
6068 else if (token->type == CPP_NAME)
6069 {
6070 /* If the next token is a `:', then we are looking at a
6071 labeled-statement. */
6072 token = cp_lexer_peek_nth_token (parser->lexer, 2);
6073 if (token->type == CPP_COLON)
6074 statement = cp_parser_labeled_statement (parser, in_statement_expr);
6075 }
6076 /* Anything that starts with a `{' must be a compound-statement. */
6077 else if (token->type == CPP_OPEN_BRACE)
6078 statement = cp_parser_compound_statement (parser, NULL, false);
6079 /* CPP_PRAGMA is a #pragma inside a function body, which constitutes
6080 a statement all its own. */
6081 else if (token->type == CPP_PRAGMA)
6082 {
6083 cp_lexer_handle_pragma (parser->lexer);
6084 return;
6085 }
6086
6087 /* Everything else must be a declaration-statement or an
6088 expression-statement. Try for the declaration-statement
6089 first, unless we are looking at a `;', in which case we know that
6090 we have an expression-statement. */
6091 if (!statement)
6092 {
6093 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6094 {
6095 cp_parser_parse_tentatively (parser);
6096 /* Try to parse the declaration-statement. */
6097 cp_parser_declaration_statement (parser);
6098 /* If that worked, we're done. */
6099 if (cp_parser_parse_definitely (parser))
6100 return;
6101 }
6102 /* Look for an expression-statement instead. */
6103 statement = cp_parser_expression_statement (parser, in_statement_expr);
6104 }
6105
6106 /* Set the line number for the statement. */
6107 if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
6108 SET_EXPR_LOCATION (statement, statement_location);
6109 }
6110
6111 /* Parse a labeled-statement.
6112
6113 labeled-statement:
6114 identifier : statement
6115 case constant-expression : statement
6116 default : statement
6117
6118 GNU Extension:
6119
6120 labeled-statement:
6121 case constant-expression ... constant-expression : statement
6122
6123 Returns the new CASE_LABEL_EXPR, for a `case' or `default' label.
6124 For an ordinary label, returns a LABEL_EXPR. */
6125
6126 static tree
6127 cp_parser_labeled_statement (cp_parser* parser, tree in_statement_expr)
6128 {
6129 cp_token *token;
6130 tree statement = error_mark_node;
6131
6132 /* The next token should be an identifier. */
6133 token = cp_lexer_peek_token (parser->lexer);
6134 if (token->type != CPP_NAME
6135 && token->type != CPP_KEYWORD)
6136 {
6137 cp_parser_error (parser, "expected labeled-statement");
6138 return error_mark_node;
6139 }
6140
6141 switch (token->keyword)
6142 {
6143 case RID_CASE:
6144 {
6145 tree expr, expr_hi;
6146 cp_token *ellipsis;
6147
6148 /* Consume the `case' token. */
6149 cp_lexer_consume_token (parser->lexer);
6150 /* Parse the constant-expression. */
6151 expr = cp_parser_constant_expression (parser,
6152 /*allow_non_constant_p=*/false,
6153 NULL);
6154
6155 ellipsis = cp_lexer_peek_token (parser->lexer);
6156 if (ellipsis->type == CPP_ELLIPSIS)
6157 {
6158 /* Consume the `...' token. */
6159 cp_lexer_consume_token (parser->lexer);
6160 expr_hi =
6161 cp_parser_constant_expression (parser,
6162 /*allow_non_constant_p=*/false,
6163 NULL);
6164 /* We don't need to emit warnings here, as the common code
6165 will do this for us. */
6166 }
6167 else
6168 expr_hi = NULL_TREE;
6169
6170 if (!parser->in_switch_statement_p)
6171 error ("case label %qE not within a switch statement", expr);
6172 else
6173 statement = finish_case_label (expr, expr_hi);
6174 }
6175 break;
6176
6177 case RID_DEFAULT:
6178 /* Consume the `default' token. */
6179 cp_lexer_consume_token (parser->lexer);
6180 if (!parser->in_switch_statement_p)
6181 error ("case label not within a switch statement");
6182 else
6183 statement = finish_case_label (NULL_TREE, NULL_TREE);
6184 break;
6185
6186 default:
6187 /* Anything else must be an ordinary label. */
6188 statement = finish_label_stmt (cp_parser_identifier (parser));
6189 break;
6190 }
6191
6192 /* Require the `:' token. */
6193 cp_parser_require (parser, CPP_COLON, "`:'");
6194 /* Parse the labeled statement. */
6195 cp_parser_statement (parser, in_statement_expr);
6196
6197 /* Return the label, in the case of a `case' or `default' label. */
6198 return statement;
6199 }
6200
6201 /* Parse an expression-statement.
6202
6203 expression-statement:
6204 expression [opt] ;
6205
6206 Returns the new EXPR_STMT -- or NULL_TREE if the expression
6207 statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
6208 indicates whether this expression-statement is part of an
6209 expression statement. */
6210
6211 static tree
6212 cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
6213 {
6214 tree statement = NULL_TREE;
6215
6216 /* If the next token is a ';', then there is no expression
6217 statement. */
6218 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6219 statement = cp_parser_expression (parser, /*cast_p=*/false);
6220
6221 /* Consume the final `;'. */
6222 cp_parser_consume_semicolon_at_end_of_statement (parser);
6223
6224 if (in_statement_expr
6225 && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
6226 /* This is the final expression statement of a statement
6227 expression. */
6228 statement = finish_stmt_expr_expr (statement, in_statement_expr);
6229 else if (statement)
6230 statement = finish_expr_stmt (statement);
6231 else
6232 finish_stmt ();
6233
6234 return statement;
6235 }
6236
6237 /* Parse a compound-statement.
6238
6239 compound-statement:
6240 { statement-seq [opt] }
6241
6242 Returns a tree representing the statement. */
6243
6244 static tree
6245 cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
6246 bool in_try)
6247 {
6248 tree compound_stmt;
6249
6250 /* Consume the `{'. */
6251 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
6252 return error_mark_node;
6253 /* Begin the compound-statement. */
6254 compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
6255 /* Parse an (optional) statement-seq. */
6256 cp_parser_statement_seq_opt (parser, in_statement_expr);
6257 /* Finish the compound-statement. */
6258 finish_compound_stmt (compound_stmt);
6259 /* Consume the `}'. */
6260 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6261
6262 return compound_stmt;
6263 }
6264
6265 /* Parse an (optional) statement-seq.
6266
6267 statement-seq:
6268 statement
6269 statement-seq [opt] statement */
6270
6271 static void
6272 cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
6273 {
6274 /* Scan statements until there aren't any more. */
6275 while (true)
6276 {
6277 /* If we're looking at a `}', then we've run out of statements. */
6278 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
6279 || cp_lexer_next_token_is (parser->lexer, CPP_EOF))
6280 break;
6281
6282 /* Parse the statement. */
6283 cp_parser_statement (parser, in_statement_expr);
6284 }
6285 }
6286
6287 /* Parse a selection-statement.
6288
6289 selection-statement:
6290 if ( condition ) statement
6291 if ( condition ) statement else statement
6292 switch ( condition ) statement
6293
6294 Returns the new IF_STMT or SWITCH_STMT. */
6295
6296 static tree
6297 cp_parser_selection_statement (cp_parser* parser)
6298 {
6299 cp_token *token;
6300 enum rid keyword;
6301
6302 /* Peek at the next token. */
6303 token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
6304
6305 /* See what kind of keyword it is. */
6306 keyword = token->keyword;
6307 switch (keyword)
6308 {
6309 case RID_IF:
6310 case RID_SWITCH:
6311 {
6312 tree statement;
6313 tree condition;
6314
6315 /* Look for the `('. */
6316 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
6317 {
6318 cp_parser_skip_to_end_of_statement (parser);
6319 return error_mark_node;
6320 }
6321
6322 /* Begin the selection-statement. */
6323 if (keyword == RID_IF)
6324 statement = begin_if_stmt ();
6325 else
6326 statement = begin_switch_stmt ();
6327
6328 /* Parse the condition. */
6329 condition = cp_parser_condition (parser);
6330 /* Look for the `)'. */
6331 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
6332 cp_parser_skip_to_closing_parenthesis (parser, true, false,
6333 /*consume_paren=*/true);
6334
6335 if (keyword == RID_IF)
6336 {
6337 /* Add the condition. */
6338 finish_if_stmt_cond (condition, statement);
6339
6340 /* Parse the then-clause. */
6341 cp_parser_implicitly_scoped_statement (parser);
6342 finish_then_clause (statement);
6343
6344 /* If the next token is `else', parse the else-clause. */
6345 if (cp_lexer_next_token_is_keyword (parser->lexer,
6346 RID_ELSE))
6347 {
6348 /* Consume the `else' keyword. */
6349 cp_lexer_consume_token (parser->lexer);
6350 begin_else_clause (statement);
6351 /* Parse the else-clause. */
6352 cp_parser_implicitly_scoped_statement (parser);
6353 finish_else_clause (statement);
6354 }
6355
6356 /* Now we're all done with the if-statement. */
6357 finish_if_stmt (statement);
6358 }
6359 else
6360 {
6361 bool in_switch_statement_p;
6362
6363 /* Add the condition. */
6364 finish_switch_cond (condition, statement);
6365
6366 /* Parse the body of the switch-statement. */
6367 in_switch_statement_p = parser->in_switch_statement_p;
6368 parser->in_switch_statement_p = true;
6369 cp_parser_implicitly_scoped_statement (parser);
6370 parser->in_switch_statement_p = in_switch_statement_p;
6371
6372 /* Now we're all done with the switch-statement. */
6373 finish_switch_stmt (statement);
6374 }
6375
6376 return statement;
6377 }
6378 break;
6379
6380 default:
6381 cp_parser_error (parser, "expected selection-statement");
6382 return error_mark_node;
6383 }
6384 }
6385
6386 /* Parse a condition.
6387
6388 condition:
6389 expression
6390 type-specifier-seq declarator = assignment-expression
6391
6392 GNU Extension:
6393
6394 condition:
6395 type-specifier-seq declarator asm-specification [opt]
6396 attributes [opt] = assignment-expression
6397
6398 Returns the expression that should be tested. */
6399
6400 static tree
6401 cp_parser_condition (cp_parser* parser)
6402 {
6403 cp_decl_specifier_seq type_specifiers;
6404 const char *saved_message;
6405
6406 /* Try the declaration first. */
6407 cp_parser_parse_tentatively (parser);
6408 /* New types are not allowed in the type-specifier-seq for a
6409 condition. */
6410 saved_message = parser->type_definition_forbidden_message;
6411 parser->type_definition_forbidden_message
6412 = "types may not be defined in conditions";
6413 /* Parse the type-specifier-seq. */
6414 cp_parser_type_specifier_seq (parser, /*is_condition==*/true,
6415 &type_specifiers);
6416 /* Restore the saved message. */
6417 parser->type_definition_forbidden_message = saved_message;
6418 /* If all is well, we might be looking at a declaration. */
6419 if (!cp_parser_error_occurred (parser))
6420 {
6421 tree decl;
6422 tree asm_specification;
6423 tree attributes;
6424 cp_declarator *declarator;
6425 tree initializer = NULL_TREE;
6426
6427 /* Parse the declarator. */
6428 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
6429 /*ctor_dtor_or_conv_p=*/NULL,
6430 /*parenthesized_p=*/NULL,
6431 /*member_p=*/false);
6432 /* Parse the attributes. */
6433 attributes = cp_parser_attributes_opt (parser);
6434 /* Parse the asm-specification. */
6435 asm_specification = cp_parser_asm_specification_opt (parser);
6436 /* If the next token is not an `=', then we might still be
6437 looking at an expression. For example:
6438
6439 if (A(a).x)
6440
6441 looks like a decl-specifier-seq and a declarator -- but then
6442 there is no `=', so this is an expression. */
6443 cp_parser_require (parser, CPP_EQ, "`='");
6444 /* If we did see an `=', then we are looking at a declaration
6445 for sure. */
6446 if (cp_parser_parse_definitely (parser))
6447 {
6448 tree pushed_scope;
6449
6450 /* Create the declaration. */
6451 decl = start_decl (declarator, &type_specifiers,
6452 /*initialized_p=*/true,
6453 attributes, /*prefix_attributes=*/NULL_TREE,
6454 &pushed_scope);
6455 /* Parse the assignment-expression. */
6456 initializer = cp_parser_assignment_expression (parser,
6457 /*cast_p=*/false);
6458
6459 /* Process the initializer. */
6460 cp_finish_decl (decl,
6461 initializer,
6462 asm_specification,
6463 LOOKUP_ONLYCONVERTING);
6464
6465 if (pushed_scope)
6466 pop_scope (pushed_scope);
6467
6468 return convert_from_reference (decl);
6469 }
6470 }
6471 /* If we didn't even get past the declarator successfully, we are
6472 definitely not looking at a declaration. */
6473 else
6474 cp_parser_abort_tentative_parse (parser);
6475
6476 /* Otherwise, we are looking at an expression. */
6477 return cp_parser_expression (parser, /*cast_p=*/false);
6478 }
6479
6480 /* Parse an iteration-statement.
6481
6482 iteration-statement:
6483 while ( condition ) statement
6484 do statement while ( expression ) ;
6485 for ( for-init-statement condition [opt] ; expression [opt] )
6486 statement
6487
6488 Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
6489
6490 static tree
6491 cp_parser_iteration_statement (cp_parser* parser)
6492 {
6493 cp_token *token;
6494 enum rid keyword;
6495 tree statement;
6496 bool in_iteration_statement_p;
6497
6498
6499 /* Peek at the next token. */
6500 token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
6501 if (!token)
6502 return error_mark_node;
6503
6504 /* Remember whether or not we are already within an iteration
6505 statement. */
6506 in_iteration_statement_p = parser->in_iteration_statement_p;
6507
6508 /* See what kind of keyword it is. */
6509 keyword = token->keyword;
6510 switch (keyword)
6511 {
6512 case RID_WHILE:
6513 {
6514 tree condition;
6515
6516 /* Begin the while-statement. */
6517 statement = begin_while_stmt ();
6518 /* Look for the `('. */
6519 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6520 /* Parse the condition. */
6521 condition = cp_parser_condition (parser);
6522 finish_while_stmt_cond (condition, statement);
6523 /* Look for the `)'. */
6524 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6525 /* Parse the dependent statement. */
6526 parser->in_iteration_statement_p = true;
6527 cp_parser_already_scoped_statement (parser);
6528 parser->in_iteration_statement_p = in_iteration_statement_p;
6529 /* We're done with the while-statement. */
6530 finish_while_stmt (statement);
6531 }
6532 break;
6533
6534 case RID_DO:
6535 {
6536 tree expression;
6537
6538 /* Begin the do-statement. */
6539 statement = begin_do_stmt ();
6540 /* Parse the body of the do-statement. */
6541 parser->in_iteration_statement_p = true;
6542 cp_parser_implicitly_scoped_statement (parser);
6543 parser->in_iteration_statement_p = in_iteration_statement_p;
6544 finish_do_body (statement);
6545 /* Look for the `while' keyword. */
6546 cp_parser_require_keyword (parser, RID_WHILE, "`while'");
6547 /* Look for the `('. */
6548 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6549 /* Parse the expression. */
6550 expression = cp_parser_expression (parser, /*cast_p=*/false);
6551 /* We're done with the do-statement. */
6552 finish_do_stmt (expression, statement);
6553 /* Look for the `)'. */
6554 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6555 /* Look for the `;'. */
6556 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6557 }
6558 break;
6559
6560 case RID_FOR:
6561 {
6562 tree condition = NULL_TREE;
6563 tree expression = NULL_TREE;
6564
6565 /* Begin the for-statement. */
6566 statement = begin_for_stmt ();
6567 /* Look for the `('. */
6568 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6569 /* Parse the initialization. */
6570 cp_parser_for_init_statement (parser);
6571 finish_for_init_stmt (statement);
6572
6573 /* If there's a condition, process it. */
6574 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6575 condition = cp_parser_condition (parser);
6576 finish_for_cond (condition, statement);
6577 /* Look for the `;'. */
6578 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6579
6580 /* If there's an expression, process it. */
6581 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
6582 expression = cp_parser_expression (parser, /*cast_p=*/false);
6583 finish_for_expr (expression, statement);
6584 /* Look for the `)'. */
6585 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6586
6587 /* Parse the body of the for-statement. */
6588 parser->in_iteration_statement_p = true;
6589 cp_parser_already_scoped_statement (parser);
6590 parser->in_iteration_statement_p = in_iteration_statement_p;
6591
6592 /* We're done with the for-statement. */
6593 finish_for_stmt (statement);
6594 }
6595 break;
6596
6597 default:
6598 cp_parser_error (parser, "expected iteration-statement");
6599 statement = error_mark_node;
6600 break;
6601 }
6602
6603 return statement;
6604 }
6605
6606 /* Parse a for-init-statement.
6607
6608 for-init-statement:
6609 expression-statement
6610 simple-declaration */
6611
6612 static void
6613 cp_parser_for_init_statement (cp_parser* parser)
6614 {
6615 /* If the next token is a `;', then we have an empty
6616 expression-statement. Grammatically, this is also a
6617 simple-declaration, but an invalid one, because it does not
6618 declare anything. Therefore, if we did not handle this case
6619 specially, we would issue an error message about an invalid
6620 declaration. */
6621 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6622 {
6623 /* We're going to speculatively look for a declaration, falling back
6624 to an expression, if necessary. */
6625 cp_parser_parse_tentatively (parser);
6626 /* Parse the declaration. */
6627 cp_parser_simple_declaration (parser,
6628 /*function_definition_allowed_p=*/false);
6629 /* If the tentative parse failed, then we shall need to look for an
6630 expression-statement. */
6631 if (cp_parser_parse_definitely (parser))
6632 return;
6633 }
6634
6635 cp_parser_expression_statement (parser, false);
6636 }
6637
6638 /* Parse a jump-statement.
6639
6640 jump-statement:
6641 break ;
6642 continue ;
6643 return expression [opt] ;
6644 goto identifier ;
6645
6646 GNU extension:
6647
6648 jump-statement:
6649 goto * expression ;
6650
6651 Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
6652
6653 static tree
6654 cp_parser_jump_statement (cp_parser* parser)
6655 {
6656 tree statement = error_mark_node;
6657 cp_token *token;
6658 enum rid keyword;
6659
6660 /* Peek at the next token. */
6661 token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
6662 if (!token)
6663 return error_mark_node;
6664
6665 /* See what kind of keyword it is. */
6666 keyword = token->keyword;
6667 switch (keyword)
6668 {
6669 case RID_BREAK:
6670 if (!parser->in_switch_statement_p
6671 && !parser->in_iteration_statement_p)
6672 {
6673 error ("break statement not within loop or switch");
6674 statement = error_mark_node;
6675 }
6676 else
6677 statement = finish_break_stmt ();
6678 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6679 break;
6680
6681 case RID_CONTINUE:
6682 if (!parser->in_iteration_statement_p)
6683 {
6684 error ("continue statement not within a loop");
6685 statement = error_mark_node;
6686 }
6687 else
6688 statement = finish_continue_stmt ();
6689 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6690 break;
6691
6692 case RID_RETURN:
6693 {
6694 tree expr;
6695
6696 /* If the next token is a `;', then there is no
6697 expression. */
6698 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6699 expr = cp_parser_expression (parser, /*cast_p=*/false);
6700 else
6701 expr = NULL_TREE;
6702 /* Build the return-statement. */
6703 statement = finish_return_stmt (expr);
6704 /* Look for the final `;'. */
6705 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6706 }
6707 break;
6708
6709 case RID_GOTO:
6710 /* Create the goto-statement. */
6711 if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
6712 {
6713 /* Issue a warning about this use of a GNU extension. */
6714 if (pedantic)
6715 pedwarn ("ISO C++ forbids computed gotos");
6716 /* Consume the '*' token. */
6717 cp_lexer_consume_token (parser->lexer);
6718 /* Parse the dependent expression. */
6719 finish_goto_stmt (cp_parser_expression (parser, /*cast_p=*/false));
6720 }
6721 else
6722 finish_goto_stmt (cp_parser_identifier (parser));
6723 /* Look for the final `;'. */
6724 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6725 break;
6726
6727 default:
6728 cp_parser_error (parser, "expected jump-statement");
6729 break;
6730 }
6731
6732 return statement;
6733 }
6734
6735 /* Parse a declaration-statement.
6736
6737 declaration-statement:
6738 block-declaration */
6739
6740 static void
6741 cp_parser_declaration_statement (cp_parser* parser)
6742 {
6743 void *p;
6744
6745 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6746 p = obstack_alloc (&declarator_obstack, 0);
6747
6748 /* Parse the block-declaration. */
6749 cp_parser_block_declaration (parser, /*statement_p=*/true);
6750
6751 /* Free any declarators allocated. */
6752 obstack_free (&declarator_obstack, p);
6753
6754 /* Finish off the statement. */
6755 finish_stmt ();
6756 }
6757
6758 /* Some dependent statements (like `if (cond) statement'), are
6759 implicitly in their own scope. In other words, if the statement is
6760 a single statement (as opposed to a compound-statement), it is
6761 none-the-less treated as if it were enclosed in braces. Any
6762 declarations appearing in the dependent statement are out of scope
6763 after control passes that point. This function parses a statement,
6764 but ensures that is in its own scope, even if it is not a
6765 compound-statement.
6766
6767 Returns the new statement. */
6768
6769 static tree
6770 cp_parser_implicitly_scoped_statement (cp_parser* parser)
6771 {
6772 tree statement;
6773
6774 /* If the token is not a `{', then we must take special action. */
6775 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6776 {
6777 /* Create a compound-statement. */
6778 statement = begin_compound_stmt (0);
6779 /* Parse the dependent-statement. */
6780 cp_parser_statement (parser, false);
6781 /* Finish the dummy compound-statement. */
6782 finish_compound_stmt (statement);
6783 }
6784 /* Otherwise, we simply parse the statement directly. */
6785 else
6786 statement = cp_parser_compound_statement (parser, NULL, false);
6787
6788 /* Return the statement. */
6789 return statement;
6790 }
6791
6792 /* For some dependent statements (like `while (cond) statement'), we
6793 have already created a scope. Therefore, even if the dependent
6794 statement is a compound-statement, we do not want to create another
6795 scope. */
6796
6797 static void
6798 cp_parser_already_scoped_statement (cp_parser* parser)
6799 {
6800 /* If the token is a `{', then we must take special action. */
6801 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6802 cp_parser_statement (parser, false);
6803 else
6804 {
6805 /* Avoid calling cp_parser_compound_statement, so that we
6806 don't create a new scope. Do everything else by hand. */
6807 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
6808 cp_parser_statement_seq_opt (parser, false);
6809 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6810 }
6811 }
6812
6813 /* Declarations [gram.dcl.dcl] */
6814
6815 /* Parse an optional declaration-sequence.
6816
6817 declaration-seq:
6818 declaration
6819 declaration-seq declaration */
6820
6821 static void
6822 cp_parser_declaration_seq_opt (cp_parser* parser)
6823 {
6824 while (true)
6825 {
6826 cp_token *token;
6827
6828 token = cp_lexer_peek_token (parser->lexer);
6829
6830 if (token->type == CPP_CLOSE_BRACE
6831 || token->type == CPP_EOF)
6832 break;
6833
6834 if (token->type == CPP_SEMICOLON)
6835 {
6836 /* A declaration consisting of a single semicolon is
6837 invalid. Allow it unless we're being pedantic. */
6838 cp_lexer_consume_token (parser->lexer);
6839 if (pedantic && !in_system_header)
6840 pedwarn ("extra %<;%>");
6841 continue;
6842 }
6843
6844 /* If we're entering or exiting a region that's implicitly
6845 extern "C", modify the lang context appropriately. */
6846 if (!parser->implicit_extern_c && token->implicit_extern_c)
6847 {
6848 push_lang_context (lang_name_c);
6849 parser->implicit_extern_c = true;
6850 }
6851 else if (parser->implicit_extern_c && !token->implicit_extern_c)
6852 {
6853 pop_lang_context ();
6854 parser->implicit_extern_c = false;
6855 }
6856
6857 if (token->type == CPP_PRAGMA)
6858 {
6859 /* A top-level declaration can consist solely of a #pragma.
6860 A nested declaration cannot, so this is done here and not
6861 in cp_parser_declaration. (A #pragma at block scope is
6862 handled in cp_parser_statement.) */
6863 cp_lexer_handle_pragma (parser->lexer);
6864 continue;
6865 }
6866
6867 /* Parse the declaration itself. */
6868 cp_parser_declaration (parser);
6869 }
6870 }
6871
6872 /* Parse a declaration.
6873
6874 declaration:
6875 block-declaration
6876 function-definition
6877 template-declaration
6878 explicit-instantiation
6879 explicit-specialization
6880 linkage-specification
6881 namespace-definition
6882
6883 GNU extension:
6884
6885 declaration:
6886 __extension__ declaration */
6887
6888 static void
6889 cp_parser_declaration (cp_parser* parser)
6890 {
6891 cp_token token1;
6892 cp_token token2;
6893 int saved_pedantic;
6894 void *p;
6895
6896 /* Check for the `__extension__' keyword. */
6897 if (cp_parser_extension_opt (parser, &saved_pedantic))
6898 {
6899 /* Parse the qualified declaration. */
6900 cp_parser_declaration (parser);
6901 /* Restore the PEDANTIC flag. */
6902 pedantic = saved_pedantic;
6903
6904 return;
6905 }
6906
6907 /* Try to figure out what kind of declaration is present. */
6908 token1 = *cp_lexer_peek_token (parser->lexer);
6909
6910 if (token1.type != CPP_EOF)
6911 token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
6912
6913 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6914 p = obstack_alloc (&declarator_obstack, 0);
6915
6916 /* If the next token is `extern' and the following token is a string
6917 literal, then we have a linkage specification. */
6918 if (token1.keyword == RID_EXTERN
6919 && cp_parser_is_string_literal (&token2))
6920 cp_parser_linkage_specification (parser);
6921 /* If the next token is `template', then we have either a template
6922 declaration, an explicit instantiation, or an explicit
6923 specialization. */
6924 else if (token1.keyword == RID_TEMPLATE)
6925 {
6926 /* `template <>' indicates a template specialization. */
6927 if (token2.type == CPP_LESS
6928 && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
6929 cp_parser_explicit_specialization (parser);
6930 /* `template <' indicates a template declaration. */
6931 else if (token2.type == CPP_LESS)
6932 cp_parser_template_declaration (parser, /*member_p=*/false);
6933 /* Anything else must be an explicit instantiation. */
6934 else
6935 cp_parser_explicit_instantiation (parser);
6936 }
6937 /* If the next token is `export', then we have a template
6938 declaration. */
6939 else if (token1.keyword == RID_EXPORT)
6940 cp_parser_template_declaration (parser, /*member_p=*/false);
6941 /* If the next token is `extern', 'static' or 'inline' and the one
6942 after that is `template', we have a GNU extended explicit
6943 instantiation directive. */
6944 else if (cp_parser_allow_gnu_extensions_p (parser)
6945 && (token1.keyword == RID_EXTERN
6946 || token1.keyword == RID_STATIC
6947 || token1.keyword == RID_INLINE)
6948 && token2.keyword == RID_TEMPLATE)
6949 cp_parser_explicit_instantiation (parser);
6950 /* If the next token is `namespace', check for a named or unnamed
6951 namespace definition. */
6952 else if (token1.keyword == RID_NAMESPACE
6953 && (/* A named namespace definition. */
6954 (token2.type == CPP_NAME
6955 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
6956 == CPP_OPEN_BRACE))
6957 /* An unnamed namespace definition. */
6958 || token2.type == CPP_OPEN_BRACE))
6959 cp_parser_namespace_definition (parser);
6960 /* Objective-C++ declaration/definition. */
6961 else if (c_dialect_objc () && OBJC_IS_AT_KEYWORD (token1.keyword))
6962 cp_parser_objc_declaration (parser);
6963 /* We must have either a block declaration or a function
6964 definition. */
6965 else
6966 /* Try to parse a block-declaration, or a function-definition. */
6967 cp_parser_block_declaration (parser, /*statement_p=*/false);
6968
6969 /* Free any declarators allocated. */
6970 obstack_free (&declarator_obstack, p);
6971 }
6972
6973 /* Parse a block-declaration.
6974
6975 block-declaration:
6976 simple-declaration
6977 asm-definition
6978 namespace-alias-definition
6979 using-declaration
6980 using-directive
6981
6982 GNU Extension:
6983
6984 block-declaration:
6985 __extension__ block-declaration
6986 label-declaration
6987
6988 If STATEMENT_P is TRUE, then this block-declaration is occurring as
6989 part of a declaration-statement. */
6990
6991 static void
6992 cp_parser_block_declaration (cp_parser *parser,
6993 bool statement_p)
6994 {
6995 cp_token *token1;
6996 int saved_pedantic;
6997
6998 /* Check for the `__extension__' keyword. */
6999 if (cp_parser_extension_opt (parser, &saved_pedantic))
7000 {
7001 /* Parse the qualified declaration. */
7002 cp_parser_block_declaration (parser, statement_p);
7003 /* Restore the PEDANTIC flag. */
7004 pedantic = saved_pedantic;
7005
7006 return;
7007 }
7008
7009 /* Peek at the next token to figure out which kind of declaration is
7010 present. */
7011 token1 = cp_lexer_peek_token (parser->lexer);
7012
7013 /* If the next keyword is `asm', we have an asm-definition. */
7014 if (token1->keyword == RID_ASM)
7015 {
7016 if (statement_p)
7017 cp_parser_commit_to_tentative_parse (parser);
7018 cp_parser_asm_definition (parser);
7019 }
7020 /* If the next keyword is `namespace', we have a
7021 namespace-alias-definition. */
7022 else if (token1->keyword == RID_NAMESPACE)
7023 cp_parser_namespace_alias_definition (parser);
7024 /* If the next keyword is `using', we have either a
7025 using-declaration or a using-directive. */
7026 else if (token1->keyword == RID_USING)
7027 {
7028 cp_token *token2;
7029
7030 if (statement_p)
7031 cp_parser_commit_to_tentative_parse (parser);
7032 /* If the token after `using' is `namespace', then we have a
7033 using-directive. */
7034 token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
7035 if (token2->keyword == RID_NAMESPACE)
7036 cp_parser_using_directive (parser);
7037 /* Otherwise, it's a using-declaration. */
7038 else
7039 cp_parser_using_declaration (parser);
7040 }
7041 /* If the next keyword is `__label__' we have a label declaration. */
7042 else if (token1->keyword == RID_LABEL)
7043 {
7044 if (statement_p)
7045 cp_parser_commit_to_tentative_parse (parser);
7046 cp_parser_label_declaration (parser);
7047 }
7048 /* Anything else must be a simple-declaration. */
7049 else
7050 cp_parser_simple_declaration (parser, !statement_p);
7051 }
7052
7053 /* Parse a simple-declaration.
7054
7055 simple-declaration:
7056 decl-specifier-seq [opt] init-declarator-list [opt] ;
7057
7058 init-declarator-list:
7059 init-declarator
7060 init-declarator-list , init-declarator
7061
7062 If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
7063 function-definition as a simple-declaration. */
7064
7065 static void
7066 cp_parser_simple_declaration (cp_parser* parser,
7067 bool function_definition_allowed_p)
7068 {
7069 cp_decl_specifier_seq decl_specifiers;
7070 int declares_class_or_enum;
7071 bool saw_declarator;
7072
7073 /* Defer access checks until we know what is being declared; the
7074 checks for names appearing in the decl-specifier-seq should be
7075 done as if we were in the scope of the thing being declared. */
7076 push_deferring_access_checks (dk_deferred);
7077
7078 /* Parse the decl-specifier-seq. We have to keep track of whether
7079 or not the decl-specifier-seq declares a named class or
7080 enumeration type, since that is the only case in which the
7081 init-declarator-list is allowed to be empty.
7082
7083 [dcl.dcl]
7084
7085 In a simple-declaration, the optional init-declarator-list can be
7086 omitted only when declaring a class or enumeration, that is when
7087 the decl-specifier-seq contains either a class-specifier, an
7088 elaborated-type-specifier, or an enum-specifier. */
7089 cp_parser_decl_specifier_seq (parser,
7090 CP_PARSER_FLAGS_OPTIONAL,
7091 &decl_specifiers,
7092 &declares_class_or_enum);
7093 /* We no longer need to defer access checks. */
7094 stop_deferring_access_checks ();
7095
7096 /* In a block scope, a valid declaration must always have a
7097 decl-specifier-seq. By not trying to parse declarators, we can
7098 resolve the declaration/expression ambiguity more quickly. */
7099 if (!function_definition_allowed_p
7100 && !decl_specifiers.any_specifiers_p)
7101 {
7102 cp_parser_error (parser, "expected declaration");
7103 goto done;
7104 }
7105
7106 /* If the next two tokens are both identifiers, the code is
7107 erroneous. The usual cause of this situation is code like:
7108
7109 T t;
7110
7111 where "T" should name a type -- but does not. */
7112 if (!decl_specifiers.type
7113 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
7114 {
7115 /* If parsing tentatively, we should commit; we really are
7116 looking at a declaration. */
7117 cp_parser_commit_to_tentative_parse (parser);
7118 /* Give up. */
7119 goto done;
7120 }
7121
7122 /* If we have seen at least one decl-specifier, and the next token
7123 is not a parenthesis, then we must be looking at a declaration.
7124 (After "int (" we might be looking at a functional cast.) */
7125 if (decl_specifiers.any_specifiers_p
7126 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
7127 cp_parser_commit_to_tentative_parse (parser);
7128
7129 /* Keep going until we hit the `;' at the end of the simple
7130 declaration. */
7131 saw_declarator = false;
7132 while (cp_lexer_next_token_is_not (parser->lexer,
7133 CPP_SEMICOLON))
7134 {
7135 cp_token *token;
7136 bool function_definition_p;
7137 tree decl;
7138
7139 saw_declarator = true;
7140 /* Parse the init-declarator. */
7141 decl = cp_parser_init_declarator (parser, &decl_specifiers,
7142 function_definition_allowed_p,
7143 /*member_p=*/false,
7144 declares_class_or_enum,
7145 &function_definition_p);
7146 /* If an error occurred while parsing tentatively, exit quickly.
7147 (That usually happens when in the body of a function; each
7148 statement is treated as a declaration-statement until proven
7149 otherwise.) */
7150 if (cp_parser_error_occurred (parser))
7151 goto done;
7152 /* Handle function definitions specially. */
7153 if (function_definition_p)
7154 {
7155 /* If the next token is a `,', then we are probably
7156 processing something like:
7157
7158 void f() {}, *p;
7159
7160 which is erroneous. */
7161 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
7162 error ("mixing declarations and function-definitions is forbidden");
7163 /* Otherwise, we're done with the list of declarators. */
7164 else
7165 {
7166 pop_deferring_access_checks ();
7167 return;
7168 }
7169 }
7170 /* The next token should be either a `,' or a `;'. */
7171 token = cp_lexer_peek_token (parser->lexer);
7172 /* If it's a `,', there are more declarators to come. */
7173 if (token->type == CPP_COMMA)
7174 cp_lexer_consume_token (parser->lexer);
7175 /* If it's a `;', we are done. */
7176 else if (token->type == CPP_SEMICOLON)
7177 break;
7178 /* Anything else is an error. */
7179 else
7180 {
7181 /* If we have already issued an error message we don't need
7182 to issue another one. */
7183 if (decl != error_mark_node
7184 || cp_parser_uncommitted_to_tentative_parse_p (parser))
7185 cp_parser_error (parser, "expected %<,%> or %<;%>");
7186 /* Skip tokens until we reach the end of the statement. */
7187 cp_parser_skip_to_end_of_statement (parser);
7188 /* If the next token is now a `;', consume it. */
7189 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
7190 cp_lexer_consume_token (parser->lexer);
7191 goto done;
7192 }
7193 /* After the first time around, a function-definition is not
7194 allowed -- even if it was OK at first. For example:
7195
7196 int i, f() {}
7197
7198 is not valid. */
7199 function_definition_allowed_p = false;
7200 }
7201
7202 /* Issue an error message if no declarators are present, and the
7203 decl-specifier-seq does not itself declare a class or
7204 enumeration. */
7205 if (!saw_declarator)
7206 {
7207 if (cp_parser_declares_only_class_p (parser))
7208 shadow_tag (&decl_specifiers);
7209 /* Perform any deferred access checks. */
7210 perform_deferred_access_checks ();
7211 }
7212
7213 /* Consume the `;'. */
7214 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
7215
7216 done:
7217 pop_deferring_access_checks ();
7218 }
7219
7220 /* Parse a decl-specifier-seq.
7221
7222 decl-specifier-seq:
7223 decl-specifier-seq [opt] decl-specifier
7224
7225 decl-specifier:
7226 storage-class-specifier
7227 type-specifier
7228 function-specifier
7229 friend
7230 typedef
7231
7232 GNU Extension:
7233
7234 decl-specifier:
7235 attributes
7236
7237 Set *DECL_SPECS to a representation of the decl-specifier-seq.
7238
7239 The parser flags FLAGS is used to control type-specifier parsing.
7240
7241 *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
7242 flags:
7243
7244 1: one of the decl-specifiers is an elaborated-type-specifier
7245 (i.e., a type declaration)
7246 2: one of the decl-specifiers is an enum-specifier or a
7247 class-specifier (i.e., a type definition)
7248
7249 */
7250
7251 static void
7252 cp_parser_decl_specifier_seq (cp_parser* parser,
7253 cp_parser_flags flags,
7254 cp_decl_specifier_seq *decl_specs,
7255 int* declares_class_or_enum)
7256 {
7257 bool constructor_possible_p = !parser->in_declarator_p;
7258
7259 /* Clear DECL_SPECS. */
7260 clear_decl_specs (decl_specs);
7261
7262 /* Assume no class or enumeration type is declared. */
7263 *declares_class_or_enum = 0;
7264
7265 /* Keep reading specifiers until there are no more to read. */
7266 while (true)
7267 {
7268 bool constructor_p;
7269 bool found_decl_spec;
7270 cp_token *token;
7271
7272 /* Peek at the next token. */
7273 token = cp_lexer_peek_token (parser->lexer);
7274 /* Handle attributes. */
7275 if (token->keyword == RID_ATTRIBUTE)
7276 {
7277 /* Parse the attributes. */
7278 decl_specs->attributes
7279 = chainon (decl_specs->attributes,
7280 cp_parser_attributes_opt (parser));
7281 continue;
7282 }
7283 /* Assume we will find a decl-specifier keyword. */
7284 found_decl_spec = true;
7285 /* If the next token is an appropriate keyword, we can simply
7286 add it to the list. */
7287 switch (token->keyword)
7288 {
7289 /* decl-specifier:
7290 friend */
7291 case RID_FRIEND:
7292 if (decl_specs->specs[(int) ds_friend]++)
7293 error ("duplicate %<friend%>");
7294 /* Consume the token. */
7295 cp_lexer_consume_token (parser->lexer);
7296 break;
7297
7298 /* function-specifier:
7299 inline
7300 virtual
7301 explicit */
7302 case RID_INLINE:
7303 case RID_VIRTUAL:
7304 case RID_EXPLICIT:
7305 cp_parser_function_specifier_opt (parser, decl_specs);
7306 break;
7307
7308 /* decl-specifier:
7309 typedef */
7310 case RID_TYPEDEF:
7311 ++decl_specs->specs[(int) ds_typedef];
7312 /* Consume the token. */
7313 cp_lexer_consume_token (parser->lexer);
7314 /* A constructor declarator cannot appear in a typedef. */
7315 constructor_possible_p = false;
7316 /* The "typedef" keyword can only occur in a declaration; we
7317 may as well commit at this point. */
7318 cp_parser_commit_to_tentative_parse (parser);
7319 break;
7320
7321 /* storage-class-specifier:
7322 auto
7323 register
7324 static
7325 extern
7326 mutable
7327
7328 GNU Extension:
7329 thread */
7330 case RID_AUTO:
7331 /* Consume the token. */
7332 cp_lexer_consume_token (parser->lexer);
7333 cp_parser_set_storage_class (decl_specs, sc_auto);
7334 break;
7335 case RID_REGISTER:
7336 /* Consume the token. */
7337 cp_lexer_consume_token (parser->lexer);
7338 cp_parser_set_storage_class (decl_specs, sc_register);
7339 break;
7340 case RID_STATIC:
7341 /* Consume the token. */
7342 cp_lexer_consume_token (parser->lexer);
7343 if (decl_specs->specs[(int) ds_thread])
7344 {
7345 error ("%<__thread%> before %<static%>");
7346 decl_specs->specs[(int) ds_thread] = 0;
7347 }
7348 cp_parser_set_storage_class (decl_specs, sc_static);
7349 break;
7350 case RID_EXTERN:
7351 /* Consume the token. */
7352 cp_lexer_consume_token (parser->lexer);
7353 if (decl_specs->specs[(int) ds_thread])
7354 {
7355 error ("%<__thread%> before %<extern%>");
7356 decl_specs->specs[(int) ds_thread] = 0;
7357 }
7358 cp_parser_set_storage_class (decl_specs, sc_extern);
7359 break;
7360 case RID_MUTABLE:
7361 /* Consume the token. */
7362 cp_lexer_consume_token (parser->lexer);
7363 cp_parser_set_storage_class (decl_specs, sc_mutable);
7364 break;
7365 case RID_THREAD:
7366 /* Consume the token. */
7367 cp_lexer_consume_token (parser->lexer);
7368 ++decl_specs->specs[(int) ds_thread];
7369 break;
7370
7371 default:
7372 /* We did not yet find a decl-specifier yet. */
7373 found_decl_spec = false;
7374 break;
7375 }
7376
7377 /* Constructors are a special case. The `S' in `S()' is not a
7378 decl-specifier; it is the beginning of the declarator. */
7379 constructor_p
7380 = (!found_decl_spec
7381 && constructor_possible_p
7382 && (cp_parser_constructor_declarator_p
7383 (parser, decl_specs->specs[(int) ds_friend] != 0)));
7384
7385 /* If we don't have a DECL_SPEC yet, then we must be looking at
7386 a type-specifier. */
7387 if (!found_decl_spec && !constructor_p)
7388 {
7389 int decl_spec_declares_class_or_enum;
7390 bool is_cv_qualifier;
7391 tree type_spec;
7392
7393 type_spec
7394 = cp_parser_type_specifier (parser, flags,
7395 decl_specs,
7396 /*is_declaration=*/true,
7397 &decl_spec_declares_class_or_enum,
7398 &is_cv_qualifier);
7399
7400 *declares_class_or_enum |= decl_spec_declares_class_or_enum;
7401
7402 /* If this type-specifier referenced a user-defined type
7403 (a typedef, class-name, etc.), then we can't allow any
7404 more such type-specifiers henceforth.
7405
7406 [dcl.spec]
7407
7408 The longest sequence of decl-specifiers that could
7409 possibly be a type name is taken as the
7410 decl-specifier-seq of a declaration. The sequence shall
7411 be self-consistent as described below.
7412
7413 [dcl.type]
7414
7415 As a general rule, at most one type-specifier is allowed
7416 in the complete decl-specifier-seq of a declaration. The
7417 only exceptions are the following:
7418
7419 -- const or volatile can be combined with any other
7420 type-specifier.
7421
7422 -- signed or unsigned can be combined with char, long,
7423 short, or int.
7424
7425 -- ..
7426
7427 Example:
7428
7429 typedef char* Pc;
7430 void g (const int Pc);
7431
7432 Here, Pc is *not* part of the decl-specifier seq; it's
7433 the declarator. Therefore, once we see a type-specifier
7434 (other than a cv-qualifier), we forbid any additional
7435 user-defined types. We *do* still allow things like `int
7436 int' to be considered a decl-specifier-seq, and issue the
7437 error message later. */
7438 if (type_spec && !is_cv_qualifier)
7439 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
7440 /* A constructor declarator cannot follow a type-specifier. */
7441 if (type_spec)
7442 {
7443 constructor_possible_p = false;
7444 found_decl_spec = true;
7445 }
7446 }
7447
7448 /* If we still do not have a DECL_SPEC, then there are no more
7449 decl-specifiers. */
7450 if (!found_decl_spec)
7451 break;
7452
7453 decl_specs->any_specifiers_p = true;
7454 /* After we see one decl-specifier, further decl-specifiers are
7455 always optional. */
7456 flags |= CP_PARSER_FLAGS_OPTIONAL;
7457 }
7458
7459 /* Don't allow a friend specifier with a class definition. */
7460 if (decl_specs->specs[(int) ds_friend] != 0
7461 && (*declares_class_or_enum & 2))
7462 error ("class definition may not be declared a friend");
7463 }
7464
7465 /* Parse an (optional) storage-class-specifier.
7466
7467 storage-class-specifier:
7468 auto
7469 register
7470 static
7471 extern
7472 mutable
7473
7474 GNU Extension:
7475
7476 storage-class-specifier:
7477 thread
7478
7479 Returns an IDENTIFIER_NODE corresponding to the keyword used. */
7480
7481 static tree
7482 cp_parser_storage_class_specifier_opt (cp_parser* parser)
7483 {
7484 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7485 {
7486 case RID_AUTO:
7487 case RID_REGISTER:
7488 case RID_STATIC:
7489 case RID_EXTERN:
7490 case RID_MUTABLE:
7491 case RID_THREAD:
7492 /* Consume the token. */
7493 return cp_lexer_consume_token (parser->lexer)->value;
7494
7495 default:
7496 return NULL_TREE;
7497 }
7498 }
7499
7500 /* Parse an (optional) function-specifier.
7501
7502 function-specifier:
7503 inline
7504 virtual
7505 explicit
7506
7507 Returns an IDENTIFIER_NODE corresponding to the keyword used.
7508 Updates DECL_SPECS, if it is non-NULL. */
7509
7510 static tree
7511 cp_parser_function_specifier_opt (cp_parser* parser,
7512 cp_decl_specifier_seq *decl_specs)
7513 {
7514 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7515 {
7516 case RID_INLINE:
7517 if (decl_specs)
7518 ++decl_specs->specs[(int) ds_inline];
7519 break;
7520
7521 case RID_VIRTUAL:
7522 if (decl_specs)
7523 ++decl_specs->specs[(int) ds_virtual];
7524 break;
7525
7526 case RID_EXPLICIT:
7527 if (decl_specs)
7528 ++decl_specs->specs[(int) ds_explicit];
7529 break;
7530
7531 default:
7532 return NULL_TREE;
7533 }
7534
7535 /* Consume the token. */
7536 return cp_lexer_consume_token (parser->lexer)->value;
7537 }
7538
7539 /* Parse a linkage-specification.
7540
7541 linkage-specification:
7542 extern string-literal { declaration-seq [opt] }
7543 extern string-literal declaration */
7544
7545 static void
7546 cp_parser_linkage_specification (cp_parser* parser)
7547 {
7548 tree linkage;
7549
7550 /* Look for the `extern' keyword. */
7551 cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
7552
7553 /* Look for the string-literal. */
7554 linkage = cp_parser_string_literal (parser, false, false);
7555
7556 /* Transform the literal into an identifier. If the literal is a
7557 wide-character string, or contains embedded NULs, then we can't
7558 handle it as the user wants. */
7559 if (strlen (TREE_STRING_POINTER (linkage))
7560 != (size_t) (TREE_STRING_LENGTH (linkage) - 1))
7561 {
7562 cp_parser_error (parser, "invalid linkage-specification");
7563 /* Assume C++ linkage. */
7564 linkage = lang_name_cplusplus;
7565 }
7566 else
7567 linkage = get_identifier (TREE_STRING_POINTER (linkage));
7568
7569 /* We're now using the new linkage. */
7570 push_lang_context (linkage);
7571
7572 /* If the next token is a `{', then we're using the first
7573 production. */
7574 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7575 {
7576 /* Consume the `{' token. */
7577 cp_lexer_consume_token (parser->lexer);
7578 /* Parse the declarations. */
7579 cp_parser_declaration_seq_opt (parser);
7580 /* Look for the closing `}'. */
7581 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7582 }
7583 /* Otherwise, there's just one declaration. */
7584 else
7585 {
7586 bool saved_in_unbraced_linkage_specification_p;
7587
7588 saved_in_unbraced_linkage_specification_p
7589 = parser->in_unbraced_linkage_specification_p;
7590 parser->in_unbraced_linkage_specification_p = true;
7591 have_extern_spec = true;
7592 cp_parser_declaration (parser);
7593 have_extern_spec = false;
7594 parser->in_unbraced_linkage_specification_p
7595 = saved_in_unbraced_linkage_specification_p;
7596 }
7597
7598 /* We're done with the linkage-specification. */
7599 pop_lang_context ();
7600 }
7601
7602 /* Special member functions [gram.special] */
7603
7604 /* Parse a conversion-function-id.
7605
7606 conversion-function-id:
7607 operator conversion-type-id
7608
7609 Returns an IDENTIFIER_NODE representing the operator. */
7610
7611 static tree
7612 cp_parser_conversion_function_id (cp_parser* parser)
7613 {
7614 tree type;
7615 tree saved_scope;
7616 tree saved_qualifying_scope;
7617 tree saved_object_scope;
7618 tree pushed_scope = NULL_TREE;
7619
7620 /* Look for the `operator' token. */
7621 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7622 return error_mark_node;
7623 /* When we parse the conversion-type-id, the current scope will be
7624 reset. However, we need that information in able to look up the
7625 conversion function later, so we save it here. */
7626 saved_scope = parser->scope;
7627 saved_qualifying_scope = parser->qualifying_scope;
7628 saved_object_scope = parser->object_scope;
7629 /* We must enter the scope of the class so that the names of
7630 entities declared within the class are available in the
7631 conversion-type-id. For example, consider:
7632
7633 struct S {
7634 typedef int I;
7635 operator I();
7636 };
7637
7638 S::operator I() { ... }
7639
7640 In order to see that `I' is a type-name in the definition, we
7641 must be in the scope of `S'. */
7642 if (saved_scope)
7643 pushed_scope = push_scope (saved_scope);
7644 /* Parse the conversion-type-id. */
7645 type = cp_parser_conversion_type_id (parser);
7646 /* Leave the scope of the class, if any. */
7647 if (pushed_scope)
7648 pop_scope (pushed_scope);
7649 /* Restore the saved scope. */
7650 parser->scope = saved_scope;
7651 parser->qualifying_scope = saved_qualifying_scope;
7652 parser->object_scope = saved_object_scope;
7653 /* If the TYPE is invalid, indicate failure. */
7654 if (type == error_mark_node)
7655 return error_mark_node;
7656 return mangle_conv_op_name_for_type (type);
7657 }
7658
7659 /* Parse a conversion-type-id:
7660
7661 conversion-type-id:
7662 type-specifier-seq conversion-declarator [opt]
7663
7664 Returns the TYPE specified. */
7665
7666 static tree
7667 cp_parser_conversion_type_id (cp_parser* parser)
7668 {
7669 tree attributes;
7670 cp_decl_specifier_seq type_specifiers;
7671 cp_declarator *declarator;
7672 tree type_specified;
7673
7674 /* Parse the attributes. */
7675 attributes = cp_parser_attributes_opt (parser);
7676 /* Parse the type-specifiers. */
7677 cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
7678 &type_specifiers);
7679 /* If that didn't work, stop. */
7680 if (type_specifiers.type == error_mark_node)
7681 return error_mark_node;
7682 /* Parse the conversion-declarator. */
7683 declarator = cp_parser_conversion_declarator_opt (parser);
7684
7685 type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME,
7686 /*initialized=*/0, &attributes);
7687 if (attributes)
7688 cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
7689 return type_specified;
7690 }
7691
7692 /* Parse an (optional) conversion-declarator.
7693
7694 conversion-declarator:
7695 ptr-operator conversion-declarator [opt]
7696
7697 */
7698
7699 static cp_declarator *
7700 cp_parser_conversion_declarator_opt (cp_parser* parser)
7701 {
7702 enum tree_code code;
7703 tree class_type;
7704 cp_cv_quals cv_quals;
7705
7706 /* We don't know if there's a ptr-operator next, or not. */
7707 cp_parser_parse_tentatively (parser);
7708 /* Try the ptr-operator. */
7709 code = cp_parser_ptr_operator (parser, &class_type, &cv_quals);
7710 /* If it worked, look for more conversion-declarators. */
7711 if (cp_parser_parse_definitely (parser))
7712 {
7713 cp_declarator *declarator;
7714
7715 /* Parse another optional declarator. */
7716 declarator = cp_parser_conversion_declarator_opt (parser);
7717
7718 /* Create the representation of the declarator. */
7719 if (class_type)
7720 declarator = make_ptrmem_declarator (cv_quals, class_type,
7721 declarator);
7722 else if (code == INDIRECT_REF)
7723 declarator = make_pointer_declarator (cv_quals, declarator);
7724 else
7725 declarator = make_reference_declarator (cv_quals, declarator);
7726
7727 return declarator;
7728 }
7729
7730 return NULL;
7731 }
7732
7733 /* Parse an (optional) ctor-initializer.
7734
7735 ctor-initializer:
7736 : mem-initializer-list
7737
7738 Returns TRUE iff the ctor-initializer was actually present. */
7739
7740 static bool
7741 cp_parser_ctor_initializer_opt (cp_parser* parser)
7742 {
7743 /* If the next token is not a `:', then there is no
7744 ctor-initializer. */
7745 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
7746 {
7747 /* Do default initialization of any bases and members. */
7748 if (DECL_CONSTRUCTOR_P (current_function_decl))
7749 finish_mem_initializers (NULL_TREE);
7750
7751 return false;
7752 }
7753
7754 /* Consume the `:' token. */
7755 cp_lexer_consume_token (parser->lexer);
7756 /* And the mem-initializer-list. */
7757 cp_parser_mem_initializer_list (parser);
7758
7759 return true;
7760 }
7761
7762 /* Parse a mem-initializer-list.
7763
7764 mem-initializer-list:
7765 mem-initializer
7766 mem-initializer , mem-initializer-list */
7767
7768 static void
7769 cp_parser_mem_initializer_list (cp_parser* parser)
7770 {
7771 tree mem_initializer_list = NULL_TREE;
7772
7773 /* Let the semantic analysis code know that we are starting the
7774 mem-initializer-list. */
7775 if (!DECL_CONSTRUCTOR_P (current_function_decl))
7776 error ("only constructors take base initializers");
7777
7778 /* Loop through the list. */
7779 while (true)
7780 {
7781 tree mem_initializer;
7782
7783 /* Parse the mem-initializer. */
7784 mem_initializer = cp_parser_mem_initializer (parser);
7785 /* Add it to the list, unless it was erroneous. */
7786 if (mem_initializer)
7787 {
7788 TREE_CHAIN (mem_initializer) = mem_initializer_list;
7789 mem_initializer_list = mem_initializer;
7790 }
7791 /* If the next token is not a `,', we're done. */
7792 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
7793 break;
7794 /* Consume the `,' token. */
7795 cp_lexer_consume_token (parser->lexer);
7796 }
7797
7798 /* Perform semantic analysis. */
7799 if (DECL_CONSTRUCTOR_P (current_function_decl))
7800 finish_mem_initializers (mem_initializer_list);
7801 }
7802
7803 /* Parse a mem-initializer.
7804
7805 mem-initializer:
7806 mem-initializer-id ( expression-list [opt] )
7807
7808 GNU extension:
7809
7810 mem-initializer:
7811 ( expression-list [opt] )
7812
7813 Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
7814 class) or FIELD_DECL (for a non-static data member) to initialize;
7815 the TREE_VALUE is the expression-list. */
7816
7817 static tree
7818 cp_parser_mem_initializer (cp_parser* parser)
7819 {
7820 tree mem_initializer_id;
7821 tree expression_list;
7822 tree member;
7823
7824 /* Find out what is being initialized. */
7825 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
7826 {
7827 pedwarn ("anachronistic old-style base class initializer");
7828 mem_initializer_id = NULL_TREE;
7829 }
7830 else
7831 mem_initializer_id = cp_parser_mem_initializer_id (parser);
7832 member = expand_member_init (mem_initializer_id);
7833 if (member && !DECL_P (member))
7834 in_base_initializer = 1;
7835
7836 expression_list
7837 = cp_parser_parenthesized_expression_list (parser, false,
7838 /*cast_p=*/false,
7839 /*non_constant_p=*/NULL);
7840 if (!expression_list)
7841 expression_list = void_type_node;
7842
7843 in_base_initializer = 0;
7844
7845 return member ? build_tree_list (member, expression_list) : NULL_TREE;
7846 }
7847
7848 /* Parse a mem-initializer-id.
7849
7850 mem-initializer-id:
7851 :: [opt] nested-name-specifier [opt] class-name
7852 identifier
7853
7854 Returns a TYPE indicating the class to be initializer for the first
7855 production. Returns an IDENTIFIER_NODE indicating the data member
7856 to be initialized for the second production. */
7857
7858 static tree
7859 cp_parser_mem_initializer_id (cp_parser* parser)
7860 {
7861 bool global_scope_p;
7862 bool nested_name_specifier_p;
7863 bool template_p = false;
7864 tree id;
7865
7866 /* `typename' is not allowed in this context ([temp.res]). */
7867 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
7868 {
7869 error ("keyword %<typename%> not allowed in this context (a qualified "
7870 "member initializer is implicitly a type)");
7871 cp_lexer_consume_token (parser->lexer);
7872 }
7873 /* Look for the optional `::' operator. */
7874 global_scope_p
7875 = (cp_parser_global_scope_opt (parser,
7876 /*current_scope_valid_p=*/false)
7877 != NULL_TREE);
7878 /* Look for the optional nested-name-specifier. The simplest way to
7879 implement:
7880
7881 [temp.res]
7882
7883 The keyword `typename' is not permitted in a base-specifier or
7884 mem-initializer; in these contexts a qualified name that
7885 depends on a template-parameter is implicitly assumed to be a
7886 type name.
7887
7888 is to assume that we have seen the `typename' keyword at this
7889 point. */
7890 nested_name_specifier_p
7891 = (cp_parser_nested_name_specifier_opt (parser,
7892 /*typename_keyword_p=*/true,
7893 /*check_dependency_p=*/true,
7894 /*type_p=*/true,
7895 /*is_declaration=*/true)
7896 != NULL_TREE);
7897 if (nested_name_specifier_p)
7898 template_p = cp_parser_optional_template_keyword (parser);
7899 /* If there is a `::' operator or a nested-name-specifier, then we
7900 are definitely looking for a class-name. */
7901 if (global_scope_p || nested_name_specifier_p)
7902 return cp_parser_class_name (parser,
7903 /*typename_keyword_p=*/true,
7904 /*template_keyword_p=*/template_p,
7905 none_type,
7906 /*check_dependency_p=*/true,
7907 /*class_head_p=*/false,
7908 /*is_declaration=*/true);
7909 /* Otherwise, we could also be looking for an ordinary identifier. */
7910 cp_parser_parse_tentatively (parser);
7911 /* Try a class-name. */
7912 id = cp_parser_class_name (parser,
7913 /*typename_keyword_p=*/true,
7914 /*template_keyword_p=*/false,
7915 none_type,
7916 /*check_dependency_p=*/true,
7917 /*class_head_p=*/false,
7918 /*is_declaration=*/true);
7919 /* If we found one, we're done. */
7920 if (cp_parser_parse_definitely (parser))
7921 return id;
7922 /* Otherwise, look for an ordinary identifier. */
7923 return cp_parser_identifier (parser);
7924 }
7925
7926 /* Overloading [gram.over] */
7927
7928 /* Parse an operator-function-id.
7929
7930 operator-function-id:
7931 operator operator
7932
7933 Returns an IDENTIFIER_NODE for the operator which is a
7934 human-readable spelling of the identifier, e.g., `operator +'. */
7935
7936 static tree
7937 cp_parser_operator_function_id (cp_parser* parser)
7938 {
7939 /* Look for the `operator' keyword. */
7940 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7941 return error_mark_node;
7942 /* And then the name of the operator itself. */
7943 return cp_parser_operator (parser);
7944 }
7945
7946 /* Parse an operator.
7947
7948 operator:
7949 new delete new[] delete[] + - * / % ^ & | ~ ! = < >
7950 += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
7951 || ++ -- , ->* -> () []
7952
7953 GNU Extensions:
7954
7955 operator:
7956 <? >? <?= >?=
7957
7958 Returns an IDENTIFIER_NODE for the operator which is a
7959 human-readable spelling of the identifier, e.g., `operator +'. */
7960
7961 static tree
7962 cp_parser_operator (cp_parser* parser)
7963 {
7964 tree id = NULL_TREE;
7965 cp_token *token;
7966
7967 /* Peek at the next token. */
7968 token = cp_lexer_peek_token (parser->lexer);
7969 /* Figure out which operator we have. */
7970 switch (token->type)
7971 {
7972 case CPP_KEYWORD:
7973 {
7974 enum tree_code op;
7975
7976 /* The keyword should be either `new' or `delete'. */
7977 if (token->keyword == RID_NEW)
7978 op = NEW_EXPR;
7979 else if (token->keyword == RID_DELETE)
7980 op = DELETE_EXPR;
7981 else
7982 break;
7983
7984 /* Consume the `new' or `delete' token. */
7985 cp_lexer_consume_token (parser->lexer);
7986
7987 /* Peek at the next token. */
7988 token = cp_lexer_peek_token (parser->lexer);
7989 /* If it's a `[' token then this is the array variant of the
7990 operator. */
7991 if (token->type == CPP_OPEN_SQUARE)
7992 {
7993 /* Consume the `[' token. */
7994 cp_lexer_consume_token (parser->lexer);
7995 /* Look for the `]' token. */
7996 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7997 id = ansi_opname (op == NEW_EXPR
7998 ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
7999 }
8000 /* Otherwise, we have the non-array variant. */
8001 else
8002 id = ansi_opname (op);
8003
8004 return id;
8005 }
8006
8007 case CPP_PLUS:
8008 id = ansi_opname (PLUS_EXPR);
8009 break;
8010
8011 case CPP_MINUS:
8012 id = ansi_opname (MINUS_EXPR);
8013 break;
8014
8015 case CPP_MULT:
8016 id = ansi_opname (MULT_EXPR);
8017 break;
8018
8019 case CPP_DIV:
8020 id = ansi_opname (TRUNC_DIV_EXPR);
8021 break;
8022
8023 case CPP_MOD:
8024 id = ansi_opname (TRUNC_MOD_EXPR);
8025 break;
8026
8027 case CPP_XOR:
8028 id = ansi_opname (BIT_XOR_EXPR);
8029 break;
8030
8031 case CPP_AND:
8032 id = ansi_opname (BIT_AND_EXPR);
8033 break;
8034
8035 case CPP_OR:
8036 id = ansi_opname (BIT_IOR_EXPR);
8037 break;
8038
8039 case CPP_COMPL:
8040 id = ansi_opname (BIT_NOT_EXPR);
8041 break;
8042
8043 case CPP_NOT:
8044 id = ansi_opname (TRUTH_NOT_EXPR);
8045 break;
8046
8047 case CPP_EQ:
8048 id = ansi_assopname (NOP_EXPR);
8049 break;
8050
8051 case CPP_LESS:
8052 id = ansi_opname (LT_EXPR);
8053 break;
8054
8055 case CPP_GREATER:
8056 id = ansi_opname (GT_EXPR);
8057 break;
8058
8059 case CPP_PLUS_EQ:
8060 id = ansi_assopname (PLUS_EXPR);
8061 break;
8062
8063 case CPP_MINUS_EQ:
8064 id = ansi_assopname (MINUS_EXPR);
8065 break;
8066
8067 case CPP_MULT_EQ:
8068 id = ansi_assopname (MULT_EXPR);
8069 break;
8070
8071 case CPP_DIV_EQ:
8072 id = ansi_assopname (TRUNC_DIV_EXPR);
8073 break;
8074
8075 case CPP_MOD_EQ:
8076 id = ansi_assopname (TRUNC_MOD_EXPR);
8077 break;
8078
8079 case CPP_XOR_EQ:
8080 id = ansi_assopname (BIT_XOR_EXPR);
8081 break;
8082
8083 case CPP_AND_EQ:
8084 id = ansi_assopname (BIT_AND_EXPR);
8085 break;
8086
8087 case CPP_OR_EQ:
8088 id = ansi_assopname (BIT_IOR_EXPR);
8089 break;
8090
8091 case CPP_LSHIFT:
8092 id = ansi_opname (LSHIFT_EXPR);
8093 break;
8094
8095 case CPP_RSHIFT:
8096 id = ansi_opname (RSHIFT_EXPR);
8097 break;
8098
8099 case CPP_LSHIFT_EQ:
8100 id = ansi_assopname (LSHIFT_EXPR);
8101 break;
8102
8103 case CPP_RSHIFT_EQ:
8104 id = ansi_assopname (RSHIFT_EXPR);
8105 break;
8106
8107 case CPP_EQ_EQ:
8108 id = ansi_opname (EQ_EXPR);
8109 break;
8110
8111 case CPP_NOT_EQ:
8112 id = ansi_opname (NE_EXPR);
8113 break;
8114
8115 case CPP_LESS_EQ:
8116 id = ansi_opname (LE_EXPR);
8117 break;
8118
8119 case CPP_GREATER_EQ:
8120 id = ansi_opname (GE_EXPR);
8121 break;
8122
8123 case CPP_AND_AND:
8124 id = ansi_opname (TRUTH_ANDIF_EXPR);
8125 break;
8126
8127 case CPP_OR_OR:
8128 id = ansi_opname (TRUTH_ORIF_EXPR);
8129 break;
8130
8131 case CPP_PLUS_PLUS:
8132 id = ansi_opname (POSTINCREMENT_EXPR);
8133 break;
8134
8135 case CPP_MINUS_MINUS:
8136 id = ansi_opname (PREDECREMENT_EXPR);
8137 break;
8138
8139 case CPP_COMMA:
8140 id = ansi_opname (COMPOUND_EXPR);
8141 break;
8142
8143 case CPP_DEREF_STAR:
8144 id = ansi_opname (MEMBER_REF);
8145 break;
8146
8147 case CPP_DEREF:
8148 id = ansi_opname (COMPONENT_REF);
8149 break;
8150
8151 case CPP_OPEN_PAREN:
8152 /* Consume the `('. */
8153 cp_lexer_consume_token (parser->lexer);
8154 /* Look for the matching `)'. */
8155 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
8156 return ansi_opname (CALL_EXPR);
8157
8158 case CPP_OPEN_SQUARE:
8159 /* Consume the `['. */
8160 cp_lexer_consume_token (parser->lexer);
8161 /* Look for the matching `]'. */
8162 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
8163 return ansi_opname (ARRAY_REF);
8164
8165 /* Extensions. */
8166 case CPP_MIN:
8167 id = ansi_opname (MIN_EXPR);
8168 cp_parser_warn_min_max ();
8169 break;
8170
8171 case CPP_MAX:
8172 id = ansi_opname (MAX_EXPR);
8173 cp_parser_warn_min_max ();
8174 break;
8175
8176 case CPP_MIN_EQ:
8177 id = ansi_assopname (MIN_EXPR);
8178 cp_parser_warn_min_max ();
8179 break;
8180
8181 case CPP_MAX_EQ:
8182 id = ansi_assopname (MAX_EXPR);
8183 cp_parser_warn_min_max ();
8184 break;
8185
8186 default:
8187 /* Anything else is an error. */
8188 break;
8189 }
8190
8191 /* If we have selected an identifier, we need to consume the
8192 operator token. */
8193 if (id)
8194 cp_lexer_consume_token (parser->lexer);
8195 /* Otherwise, no valid operator name was present. */
8196 else
8197 {
8198 cp_parser_error (parser, "expected operator");
8199 id = error_mark_node;
8200 }
8201
8202 return id;
8203 }
8204
8205 /* Parse a template-declaration.
8206
8207 template-declaration:
8208 export [opt] template < template-parameter-list > declaration
8209
8210 If MEMBER_P is TRUE, this template-declaration occurs within a
8211 class-specifier.
8212
8213 The grammar rule given by the standard isn't correct. What
8214 is really meant is:
8215
8216 template-declaration:
8217 export [opt] template-parameter-list-seq
8218 decl-specifier-seq [opt] init-declarator [opt] ;
8219 export [opt] template-parameter-list-seq
8220 function-definition
8221
8222 template-parameter-list-seq:
8223 template-parameter-list-seq [opt]
8224 template < template-parameter-list > */
8225
8226 static void
8227 cp_parser_template_declaration (cp_parser* parser, bool member_p)
8228 {
8229 /* Check for `export'. */
8230 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
8231 {
8232 /* Consume the `export' token. */
8233 cp_lexer_consume_token (parser->lexer);
8234 /* Warn that we do not support `export'. */
8235 warning (0, "keyword %<export%> not implemented, and will be ignored");
8236 }
8237
8238 cp_parser_template_declaration_after_export (parser, member_p);
8239 }
8240
8241 /* Parse a template-parameter-list.
8242
8243 template-parameter-list:
8244 template-parameter
8245 template-parameter-list , template-parameter
8246
8247 Returns a TREE_LIST. Each node represents a template parameter.
8248 The nodes are connected via their TREE_CHAINs. */
8249
8250 static tree
8251 cp_parser_template_parameter_list (cp_parser* parser)
8252 {
8253 tree parameter_list = NULL_TREE;
8254
8255 while (true)
8256 {
8257 tree parameter;
8258 cp_token *token;
8259 bool is_non_type;
8260
8261 /* Parse the template-parameter. */
8262 parameter = cp_parser_template_parameter (parser, &is_non_type);
8263 /* Add it to the list. */
8264 if (parameter != error_mark_node)
8265 parameter_list = process_template_parm (parameter_list,
8266 parameter,
8267 is_non_type);
8268 /* Peek at the next token. */
8269 token = cp_lexer_peek_token (parser->lexer);
8270 /* If it's not a `,', we're done. */
8271 if (token->type != CPP_COMMA)
8272 break;
8273 /* Otherwise, consume the `,' token. */
8274 cp_lexer_consume_token (parser->lexer);
8275 }
8276
8277 return parameter_list;
8278 }
8279
8280 /* Parse a template-parameter.
8281
8282 template-parameter:
8283 type-parameter
8284 parameter-declaration
8285
8286 If all goes well, returns a TREE_LIST. The TREE_VALUE represents
8287 the parameter. The TREE_PURPOSE is the default value, if any.
8288 Returns ERROR_MARK_NODE on failure. *IS_NON_TYPE is set to true
8289 iff this parameter is a non-type parameter. */
8290
8291 static tree
8292 cp_parser_template_parameter (cp_parser* parser, bool *is_non_type)
8293 {
8294 cp_token *token;
8295 cp_parameter_declarator *parameter_declarator;
8296 tree parm;
8297
8298 /* Assume it is a type parameter or a template parameter. */
8299 *is_non_type = false;
8300 /* Peek at the next token. */
8301 token = cp_lexer_peek_token (parser->lexer);
8302 /* If it is `class' or `template', we have a type-parameter. */
8303 if (token->keyword == RID_TEMPLATE)
8304 return cp_parser_type_parameter (parser);
8305 /* If it is `class' or `typename' we do not know yet whether it is a
8306 type parameter or a non-type parameter. Consider:
8307
8308 template <typename T, typename T::X X> ...
8309
8310 or:
8311
8312 template <class C, class D*> ...
8313
8314 Here, the first parameter is a type parameter, and the second is
8315 a non-type parameter. We can tell by looking at the token after
8316 the identifier -- if it is a `,', `=', or `>' then we have a type
8317 parameter. */
8318 if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
8319 {
8320 /* Peek at the token after `class' or `typename'. */
8321 token = cp_lexer_peek_nth_token (parser->lexer, 2);
8322 /* If it's an identifier, skip it. */
8323 if (token->type == CPP_NAME)
8324 token = cp_lexer_peek_nth_token (parser->lexer, 3);
8325 /* Now, see if the token looks like the end of a template
8326 parameter. */
8327 if (token->type == CPP_COMMA
8328 || token->type == CPP_EQ
8329 || token->type == CPP_GREATER)
8330 return cp_parser_type_parameter (parser);
8331 }
8332
8333 /* Otherwise, it is a non-type parameter.
8334
8335 [temp.param]
8336
8337 When parsing a default template-argument for a non-type
8338 template-parameter, the first non-nested `>' is taken as the end
8339 of the template parameter-list rather than a greater-than
8340 operator. */
8341 *is_non_type = true;
8342 parameter_declarator
8343 = cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
8344 /*parenthesized_p=*/NULL);
8345 parm = grokdeclarator (parameter_declarator->declarator,
8346 &parameter_declarator->decl_specifiers,
8347 PARM, /*initialized=*/0,
8348 /*attrlist=*/NULL);
8349 if (parm == error_mark_node)
8350 return error_mark_node;
8351 return build_tree_list (parameter_declarator->default_argument, parm);
8352 }
8353
8354 /* Parse a type-parameter.
8355
8356 type-parameter:
8357 class identifier [opt]
8358 class identifier [opt] = type-id
8359 typename identifier [opt]
8360 typename identifier [opt] = type-id
8361 template < template-parameter-list > class identifier [opt]
8362 template < template-parameter-list > class identifier [opt]
8363 = id-expression
8364
8365 Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
8366 TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
8367 the declaration of the parameter. */
8368
8369 static tree
8370 cp_parser_type_parameter (cp_parser* parser)
8371 {
8372 cp_token *token;
8373 tree parameter;
8374
8375 /* Look for a keyword to tell us what kind of parameter this is. */
8376 token = cp_parser_require (parser, CPP_KEYWORD,
8377 "`class', `typename', or `template'");
8378 if (!token)
8379 return error_mark_node;
8380
8381 switch (token->keyword)
8382 {
8383 case RID_CLASS:
8384 case RID_TYPENAME:
8385 {
8386 tree identifier;
8387 tree default_argument;
8388
8389 /* If the next token is an identifier, then it names the
8390 parameter. */
8391 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8392 identifier = cp_parser_identifier (parser);
8393 else
8394 identifier = NULL_TREE;
8395
8396 /* Create the parameter. */
8397 parameter = finish_template_type_parm (class_type_node, identifier);
8398
8399 /* If the next token is an `=', we have a default argument. */
8400 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8401 {
8402 /* Consume the `=' token. */
8403 cp_lexer_consume_token (parser->lexer);
8404 /* Parse the default-argument. */
8405 default_argument = cp_parser_type_id (parser);
8406 }
8407 else
8408 default_argument = NULL_TREE;
8409
8410 /* Create the combined representation of the parameter and the
8411 default argument. */
8412 parameter = build_tree_list (default_argument, parameter);
8413 }
8414 break;
8415
8416 case RID_TEMPLATE:
8417 {
8418 tree parameter_list;
8419 tree identifier;
8420 tree default_argument;
8421
8422 /* Look for the `<'. */
8423 cp_parser_require (parser, CPP_LESS, "`<'");
8424 /* Parse the template-parameter-list. */
8425 begin_template_parm_list ();
8426 parameter_list
8427 = cp_parser_template_parameter_list (parser);
8428 parameter_list = end_template_parm_list (parameter_list);
8429 /* Look for the `>'. */
8430 cp_parser_require (parser, CPP_GREATER, "`>'");
8431 /* Look for the `class' keyword. */
8432 cp_parser_require_keyword (parser, RID_CLASS, "`class'");
8433 /* If the next token is an `=', then there is a
8434 default-argument. If the next token is a `>', we are at
8435 the end of the parameter-list. If the next token is a `,',
8436 then we are at the end of this parameter. */
8437 if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
8438 && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
8439 && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
8440 {
8441 identifier = cp_parser_identifier (parser);
8442 /* Treat invalid names as if the parameter were nameless. */
8443 if (identifier == error_mark_node)
8444 identifier = NULL_TREE;
8445 }
8446 else
8447 identifier = NULL_TREE;
8448
8449 /* Create the template parameter. */
8450 parameter = finish_template_template_parm (class_type_node,
8451 identifier);
8452
8453 /* If the next token is an `=', then there is a
8454 default-argument. */
8455 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8456 {
8457 bool is_template;
8458
8459 /* Consume the `='. */
8460 cp_lexer_consume_token (parser->lexer);
8461 /* Parse the id-expression. */
8462 default_argument
8463 = cp_parser_id_expression (parser,
8464 /*template_keyword_p=*/false,
8465 /*check_dependency_p=*/true,
8466 /*template_p=*/&is_template,
8467 /*declarator_p=*/false);
8468 if (TREE_CODE (default_argument) == TYPE_DECL)
8469 /* If the id-expression was a template-id that refers to
8470 a template-class, we already have the declaration here,
8471 so no further lookup is needed. */
8472 ;
8473 else
8474 /* Look up the name. */
8475 default_argument
8476 = cp_parser_lookup_name (parser, default_argument,
8477 none_type,
8478 /*is_template=*/is_template,
8479 /*is_namespace=*/false,
8480 /*check_dependency=*/true,
8481 /*ambiguous_p=*/NULL);
8482 /* See if the default argument is valid. */
8483 default_argument
8484 = check_template_template_default_arg (default_argument);
8485 }
8486 else
8487 default_argument = NULL_TREE;
8488
8489 /* Create the combined representation of the parameter and the
8490 default argument. */
8491 parameter = build_tree_list (default_argument, parameter);
8492 }
8493 break;
8494
8495 default:
8496 gcc_unreachable ();
8497 break;
8498 }
8499
8500 return parameter;
8501 }
8502
8503 /* Parse a template-id.
8504
8505 template-id:
8506 template-name < template-argument-list [opt] >
8507
8508 If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
8509 `template' keyword. In this case, a TEMPLATE_ID_EXPR will be
8510 returned. Otherwise, if the template-name names a function, or set
8511 of functions, returns a TEMPLATE_ID_EXPR. If the template-name
8512 names a class, returns a TYPE_DECL for the specialization.
8513
8514 If CHECK_DEPENDENCY_P is FALSE, names are looked up in
8515 uninstantiated templates. */
8516
8517 static tree
8518 cp_parser_template_id (cp_parser *parser,
8519 bool template_keyword_p,
8520 bool check_dependency_p,
8521 bool is_declaration)
8522 {
8523 tree template;
8524 tree arguments;
8525 tree template_id;
8526 cp_token_position start_of_id = 0;
8527 tree access_check = NULL_TREE;
8528 cp_token *next_token, *next_token_2;
8529 bool is_identifier;
8530
8531 /* If the next token corresponds to a template-id, there is no need
8532 to reparse it. */
8533 next_token = cp_lexer_peek_token (parser->lexer);
8534 if (next_token->type == CPP_TEMPLATE_ID)
8535 {
8536 tree value;
8537 tree check;
8538
8539 /* Get the stored value. */
8540 value = cp_lexer_consume_token (parser->lexer)->value;
8541 /* Perform any access checks that were deferred. */
8542 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
8543 perform_or_defer_access_check (TREE_PURPOSE (check),
8544 TREE_VALUE (check));
8545 /* Return the stored value. */
8546 return TREE_VALUE (value);
8547 }
8548
8549 /* Avoid performing name lookup if there is no possibility of
8550 finding a template-id. */
8551 if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
8552 || (next_token->type == CPP_NAME
8553 && !cp_parser_nth_token_starts_template_argument_list_p
8554 (parser, 2)))
8555 {
8556 cp_parser_error (parser, "expected template-id");
8557 return error_mark_node;
8558 }
8559
8560 /* Remember where the template-id starts. */
8561 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
8562 start_of_id = cp_lexer_token_position (parser->lexer, false);
8563
8564 push_deferring_access_checks (dk_deferred);
8565
8566 /* Parse the template-name. */
8567 is_identifier = false;
8568 template = cp_parser_template_name (parser, template_keyword_p,
8569 check_dependency_p,
8570 is_declaration,
8571 &is_identifier);
8572 if (template == error_mark_node || is_identifier)
8573 {
8574 pop_deferring_access_checks ();
8575 return template;
8576 }
8577
8578 /* If we find the sequence `[:' after a template-name, it's probably
8579 a digraph-typo for `< ::'. Substitute the tokens and check if we can
8580 parse correctly the argument list. */
8581 next_token = cp_lexer_peek_token (parser->lexer);
8582 next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
8583 if (next_token->type == CPP_OPEN_SQUARE
8584 && next_token->flags & DIGRAPH
8585 && next_token_2->type == CPP_COLON
8586 && !(next_token_2->flags & PREV_WHITE))
8587 {
8588 cp_parser_parse_tentatively (parser);
8589 /* Change `:' into `::'. */
8590 next_token_2->type = CPP_SCOPE;
8591 /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
8592 CPP_LESS. */
8593 cp_lexer_consume_token (parser->lexer);
8594 /* Parse the arguments. */
8595 arguments = cp_parser_enclosed_template_argument_list (parser);
8596 if (!cp_parser_parse_definitely (parser))
8597 {
8598 /* If we couldn't parse an argument list, then we revert our changes
8599 and return simply an error. Maybe this is not a template-id
8600 after all. */
8601 next_token_2->type = CPP_COLON;
8602 cp_parser_error (parser, "expected %<<%>");
8603 pop_deferring_access_checks ();
8604 return error_mark_node;
8605 }
8606 /* Otherwise, emit an error about the invalid digraph, but continue
8607 parsing because we got our argument list. */
8608 pedwarn ("%<<::%> cannot begin a template-argument list");
8609 inform ("%<<:%> is an alternate spelling for %<[%>. Insert whitespace "
8610 "between %<<%> and %<::%>");
8611 if (!flag_permissive)
8612 {
8613 static bool hint;
8614 if (!hint)
8615 {
8616 inform ("(if you use -fpermissive G++ will accept your code)");
8617 hint = true;
8618 }
8619 }
8620 }
8621 else
8622 {
8623 /* Look for the `<' that starts the template-argument-list. */
8624 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
8625 {
8626 pop_deferring_access_checks ();
8627 return error_mark_node;
8628 }
8629 /* Parse the arguments. */
8630 arguments = cp_parser_enclosed_template_argument_list (parser);
8631 }
8632
8633 /* Build a representation of the specialization. */
8634 if (TREE_CODE (template) == IDENTIFIER_NODE)
8635 template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
8636 else if (DECL_CLASS_TEMPLATE_P (template)
8637 || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
8638 template_id
8639 = finish_template_type (template, arguments,
8640 cp_lexer_next_token_is (parser->lexer,
8641 CPP_SCOPE));
8642 else
8643 {
8644 /* If it's not a class-template or a template-template, it should be
8645 a function-template. */
8646 gcc_assert ((DECL_FUNCTION_TEMPLATE_P (template)
8647 || TREE_CODE (template) == OVERLOAD
8648 || BASELINK_P (template)));
8649
8650 template_id = lookup_template_function (template, arguments);
8651 }
8652
8653 /* Retrieve any deferred checks. Do not pop this access checks yet
8654 so the memory will not be reclaimed during token replacing below. */
8655 access_check = get_deferred_access_checks ();
8656
8657 /* If parsing tentatively, replace the sequence of tokens that makes
8658 up the template-id with a CPP_TEMPLATE_ID token. That way,
8659 should we re-parse the token stream, we will not have to repeat
8660 the effort required to do the parse, nor will we issue duplicate
8661 error messages about problems during instantiation of the
8662 template. */
8663 if (start_of_id)
8664 {
8665 cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id);
8666
8667 /* Reset the contents of the START_OF_ID token. */
8668 token->type = CPP_TEMPLATE_ID;
8669 token->value = build_tree_list (access_check, template_id);
8670 token->keyword = RID_MAX;
8671
8672 /* Purge all subsequent tokens. */
8673 cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
8674
8675 /* ??? Can we actually assume that, if template_id ==
8676 error_mark_node, we will have issued a diagnostic to the
8677 user, as opposed to simply marking the tentative parse as
8678 failed? */
8679 if (cp_parser_error_occurred (parser) && template_id != error_mark_node)
8680 error ("parse error in template argument list");
8681 }
8682
8683 pop_deferring_access_checks ();
8684 return template_id;
8685 }
8686
8687 /* Parse a template-name.
8688
8689 template-name:
8690 identifier
8691
8692 The standard should actually say:
8693
8694 template-name:
8695 identifier
8696 operator-function-id
8697
8698 A defect report has been filed about this issue.
8699
8700 A conversion-function-id cannot be a template name because they cannot
8701 be part of a template-id. In fact, looking at this code:
8702
8703 a.operator K<int>()
8704
8705 the conversion-function-id is "operator K<int>", and K<int> is a type-id.
8706 It is impossible to call a templated conversion-function-id with an
8707 explicit argument list, since the only allowed template parameter is
8708 the type to which it is converting.
8709
8710 If TEMPLATE_KEYWORD_P is true, then we have just seen the
8711 `template' keyword, in a construction like:
8712
8713 T::template f<3>()
8714
8715 In that case `f' is taken to be a template-name, even though there
8716 is no way of knowing for sure.
8717
8718 Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
8719 name refers to a set of overloaded functions, at least one of which
8720 is a template, or an IDENTIFIER_NODE with the name of the template,
8721 if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
8722 names are looked up inside uninstantiated templates. */
8723
8724 static tree
8725 cp_parser_template_name (cp_parser* parser,
8726 bool template_keyword_p,
8727 bool check_dependency_p,
8728 bool is_declaration,
8729 bool *is_identifier)
8730 {
8731 tree identifier;
8732 tree decl;
8733 tree fns;
8734
8735 /* If the next token is `operator', then we have either an
8736 operator-function-id or a conversion-function-id. */
8737 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
8738 {
8739 /* We don't know whether we're looking at an
8740 operator-function-id or a conversion-function-id. */
8741 cp_parser_parse_tentatively (parser);
8742 /* Try an operator-function-id. */
8743 identifier = cp_parser_operator_function_id (parser);
8744 /* If that didn't work, try a conversion-function-id. */
8745 if (!cp_parser_parse_definitely (parser))
8746 {
8747 cp_parser_error (parser, "expected template-name");
8748 return error_mark_node;
8749 }
8750 }
8751 /* Look for the identifier. */
8752 else
8753 identifier = cp_parser_identifier (parser);
8754
8755 /* If we didn't find an identifier, we don't have a template-id. */
8756 if (identifier == error_mark_node)
8757 return error_mark_node;
8758
8759 /* If the name immediately followed the `template' keyword, then it
8760 is a template-name. However, if the next token is not `<', then
8761 we do not treat it as a template-name, since it is not being used
8762 as part of a template-id. This enables us to handle constructs
8763 like:
8764
8765 template <typename T> struct S { S(); };
8766 template <typename T> S<T>::S();
8767
8768 correctly. We would treat `S' as a template -- if it were `S<T>'
8769 -- but we do not if there is no `<'. */
8770
8771 if (processing_template_decl
8772 && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
8773 {
8774 /* In a declaration, in a dependent context, we pretend that the
8775 "template" keyword was present in order to improve error
8776 recovery. For example, given:
8777
8778 template <typename T> void f(T::X<int>);
8779
8780 we want to treat "X<int>" as a template-id. */
8781 if (is_declaration
8782 && !template_keyword_p
8783 && parser->scope && TYPE_P (parser->scope)
8784 && check_dependency_p
8785 && dependent_type_p (parser->scope)
8786 /* Do not do this for dtors (or ctors), since they never
8787 need the template keyword before their name. */
8788 && !constructor_name_p (identifier, parser->scope))
8789 {
8790 cp_token_position start = 0;
8791
8792 /* Explain what went wrong. */
8793 error ("non-template %qD used as template", identifier);
8794 inform ("use %<%T::template %D%> to indicate that it is a template",
8795 parser->scope, identifier);
8796 /* If parsing tentatively, find the location of the "<" token. */
8797 if (cp_parser_simulate_error (parser))
8798 start = cp_lexer_token_position (parser->lexer, true);
8799 /* Parse the template arguments so that we can issue error
8800 messages about them. */
8801 cp_lexer_consume_token (parser->lexer);
8802 cp_parser_enclosed_template_argument_list (parser);
8803 /* Skip tokens until we find a good place from which to
8804 continue parsing. */
8805 cp_parser_skip_to_closing_parenthesis (parser,
8806 /*recovering=*/true,
8807 /*or_comma=*/true,
8808 /*consume_paren=*/false);
8809 /* If parsing tentatively, permanently remove the
8810 template argument list. That will prevent duplicate
8811 error messages from being issued about the missing
8812 "template" keyword. */
8813 if (start)
8814 cp_lexer_purge_tokens_after (parser->lexer, start);
8815 if (is_identifier)
8816 *is_identifier = true;
8817 return identifier;
8818 }
8819
8820 /* If the "template" keyword is present, then there is generally
8821 no point in doing name-lookup, so we just return IDENTIFIER.
8822 But, if the qualifying scope is non-dependent then we can
8823 (and must) do name-lookup normally. */
8824 if (template_keyword_p
8825 && (!parser->scope
8826 || (TYPE_P (parser->scope)
8827 && dependent_type_p (parser->scope))))
8828 return identifier;
8829 }
8830
8831 /* Look up the name. */
8832 decl = cp_parser_lookup_name (parser, identifier,
8833 none_type,
8834 /*is_template=*/false,
8835 /*is_namespace=*/false,
8836 check_dependency_p,
8837 /*ambiguous_p=*/NULL);
8838 decl = maybe_get_template_decl_from_type_decl (decl);
8839
8840 /* If DECL is a template, then the name was a template-name. */
8841 if (TREE_CODE (decl) == TEMPLATE_DECL)
8842 ;
8843 else
8844 {
8845 tree fn = NULL_TREE;
8846
8847 /* The standard does not explicitly indicate whether a name that
8848 names a set of overloaded declarations, some of which are
8849 templates, is a template-name. However, such a name should
8850 be a template-name; otherwise, there is no way to form a
8851 template-id for the overloaded templates. */
8852 fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
8853 if (TREE_CODE (fns) == OVERLOAD)
8854 for (fn = fns; fn; fn = OVL_NEXT (fn))
8855 if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
8856 break;
8857
8858 if (!fn)
8859 {
8860 /* The name does not name a template. */
8861 cp_parser_error (parser, "expected template-name");
8862 return error_mark_node;
8863 }
8864 }
8865
8866 /* If DECL is dependent, and refers to a function, then just return
8867 its name; we will look it up again during template instantiation. */
8868 if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
8869 {
8870 tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
8871 if (TYPE_P (scope) && dependent_type_p (scope))
8872 return identifier;
8873 }
8874
8875 return decl;
8876 }
8877
8878 /* Parse a template-argument-list.
8879
8880 template-argument-list:
8881 template-argument
8882 template-argument-list , template-argument
8883
8884 Returns a TREE_VEC containing the arguments. */
8885
8886 static tree
8887 cp_parser_template_argument_list (cp_parser* parser)
8888 {
8889 tree fixed_args[10];
8890 unsigned n_args = 0;
8891 unsigned alloced = 10;
8892 tree *arg_ary = fixed_args;
8893 tree vec;
8894 bool saved_in_template_argument_list_p;
8895
8896 saved_in_template_argument_list_p = parser->in_template_argument_list_p;
8897 parser->in_template_argument_list_p = true;
8898 do
8899 {
8900 tree argument;
8901
8902 if (n_args)
8903 /* Consume the comma. */
8904 cp_lexer_consume_token (parser->lexer);
8905
8906 /* Parse the template-argument. */
8907 argument = cp_parser_template_argument (parser);
8908 if (n_args == alloced)
8909 {
8910 alloced *= 2;
8911
8912 if (arg_ary == fixed_args)
8913 {
8914 arg_ary = xmalloc (sizeof (tree) * alloced);
8915 memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
8916 }
8917 else
8918 arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
8919 }
8920 arg_ary[n_args++] = argument;
8921 }
8922 while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
8923
8924 vec = make_tree_vec (n_args);
8925
8926 while (n_args--)
8927 TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
8928
8929 if (arg_ary != fixed_args)
8930 free (arg_ary);
8931 parser->in_template_argument_list_p = saved_in_template_argument_list_p;
8932 return vec;
8933 }
8934
8935 /* Parse a template-argument.
8936
8937 template-argument:
8938 assignment-expression
8939 type-id
8940 id-expression
8941
8942 The representation is that of an assignment-expression, type-id, or
8943 id-expression -- except that the qualified id-expression is
8944 evaluated, so that the value returned is either a DECL or an
8945 OVERLOAD.
8946
8947 Although the standard says "assignment-expression", it forbids
8948 throw-expressions or assignments in the template argument.
8949 Therefore, we use "conditional-expression" instead. */
8950
8951 static tree
8952 cp_parser_template_argument (cp_parser* parser)
8953 {
8954 tree argument;
8955 bool template_p;
8956 bool address_p;
8957 bool maybe_type_id = false;
8958 cp_token *token;
8959 cp_id_kind idk;
8960 tree qualifying_class;
8961
8962 /* There's really no way to know what we're looking at, so we just
8963 try each alternative in order.
8964
8965 [temp.arg]
8966
8967 In a template-argument, an ambiguity between a type-id and an
8968 expression is resolved to a type-id, regardless of the form of
8969 the corresponding template-parameter.
8970
8971 Therefore, we try a type-id first. */
8972 cp_parser_parse_tentatively (parser);
8973 argument = cp_parser_type_id (parser);
8974 /* If there was no error parsing the type-id but the next token is a '>>',
8975 we probably found a typo for '> >'. But there are type-id which are
8976 also valid expressions. For instance:
8977
8978 struct X { int operator >> (int); };
8979 template <int V> struct Foo {};
8980 Foo<X () >> 5> r;
8981
8982 Here 'X()' is a valid type-id of a function type, but the user just
8983 wanted to write the expression "X() >> 5". Thus, we remember that we
8984 found a valid type-id, but we still try to parse the argument as an
8985 expression to see what happens. */
8986 if (!cp_parser_error_occurred (parser)
8987 && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
8988 {
8989 maybe_type_id = true;
8990 cp_parser_abort_tentative_parse (parser);
8991 }
8992 else
8993 {
8994 /* If the next token isn't a `,' or a `>', then this argument wasn't
8995 really finished. This means that the argument is not a valid
8996 type-id. */
8997 if (!cp_parser_next_token_ends_template_argument_p (parser))
8998 cp_parser_error (parser, "expected template-argument");
8999 /* If that worked, we're done. */
9000 if (cp_parser_parse_definitely (parser))
9001 return argument;
9002 }
9003 /* We're still not sure what the argument will be. */
9004 cp_parser_parse_tentatively (parser);
9005 /* Try a template. */
9006 argument = cp_parser_id_expression (parser,
9007 /*template_keyword_p=*/false,
9008 /*check_dependency_p=*/true,
9009 &template_p,
9010 /*declarator_p=*/false);
9011 /* If the next token isn't a `,' or a `>', then this argument wasn't
9012 really finished. */
9013 if (!cp_parser_next_token_ends_template_argument_p (parser))
9014 cp_parser_error (parser, "expected template-argument");
9015 if (!cp_parser_error_occurred (parser))
9016 {
9017 /* Figure out what is being referred to. If the id-expression
9018 was for a class template specialization, then we will have a
9019 TYPE_DECL at this point. There is no need to do name lookup
9020 at this point in that case. */
9021 if (TREE_CODE (argument) != TYPE_DECL)
9022 argument = cp_parser_lookup_name (parser, argument,
9023 none_type,
9024 /*is_template=*/template_p,
9025 /*is_namespace=*/false,
9026 /*check_dependency=*/true,
9027 /*ambiguous_p=*/NULL);
9028 if (TREE_CODE (argument) != TEMPLATE_DECL
9029 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
9030 cp_parser_error (parser, "expected template-name");
9031 }
9032 if (cp_parser_parse_definitely (parser))
9033 return argument;
9034 /* It must be a non-type argument. There permitted cases are given
9035 in [temp.arg.nontype]:
9036
9037 -- an integral constant-expression of integral or enumeration
9038 type; or
9039
9040 -- the name of a non-type template-parameter; or
9041
9042 -- the name of an object or function with external linkage...
9043
9044 -- the address of an object or function with external linkage...
9045
9046 -- a pointer to member... */
9047 /* Look for a non-type template parameter. */
9048 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9049 {
9050 cp_parser_parse_tentatively (parser);
9051 argument = cp_parser_primary_expression (parser,
9052 /*cast_p=*/false,
9053 &idk,
9054 &qualifying_class);
9055 if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
9056 || !cp_parser_next_token_ends_template_argument_p (parser))
9057 cp_parser_simulate_error (parser);
9058 if (cp_parser_parse_definitely (parser))
9059 return argument;
9060 }
9061
9062 /* If the next token is "&", the argument must be the address of an
9063 object or function with external linkage. */
9064 address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
9065 if (address_p)
9066 cp_lexer_consume_token (parser->lexer);
9067 /* See if we might have an id-expression. */
9068 token = cp_lexer_peek_token (parser->lexer);
9069 if (token->type == CPP_NAME
9070 || token->keyword == RID_OPERATOR
9071 || token->type == CPP_SCOPE
9072 || token->type == CPP_TEMPLATE_ID
9073 || token->type == CPP_NESTED_NAME_SPECIFIER)
9074 {
9075 cp_parser_parse_tentatively (parser);
9076 argument = cp_parser_primary_expression (parser,
9077 /*cast_p=*/false,
9078 &idk,
9079 &qualifying_class);
9080 if (cp_parser_error_occurred (parser)
9081 || !cp_parser_next_token_ends_template_argument_p (parser))
9082 cp_parser_abort_tentative_parse (parser);
9083 else
9084 {
9085 if (TREE_CODE (argument) == INDIRECT_REF)
9086 {
9087 gcc_assert (REFERENCE_REF_P (argument));
9088 argument = TREE_OPERAND (argument, 0);
9089 }
9090
9091 if (qualifying_class)
9092 argument = finish_qualified_id_expr (qualifying_class,
9093 argument,
9094 /*done=*/true,
9095 address_p);
9096 if (TREE_CODE (argument) == VAR_DECL)
9097 {
9098 /* A variable without external linkage might still be a
9099 valid constant-expression, so no error is issued here
9100 if the external-linkage check fails. */
9101 if (!DECL_EXTERNAL_LINKAGE_P (argument))
9102 cp_parser_simulate_error (parser);
9103 }
9104 else if (is_overloaded_fn (argument))
9105 /* All overloaded functions are allowed; if the external
9106 linkage test does not pass, an error will be issued
9107 later. */
9108 ;
9109 else if (address_p
9110 && (TREE_CODE (argument) == OFFSET_REF
9111 || TREE_CODE (argument) == SCOPE_REF))
9112 /* A pointer-to-member. */
9113 ;
9114 else if (TREE_CODE (argument) == TEMPLATE_PARM_INDEX)
9115 ;
9116 else
9117 cp_parser_simulate_error (parser);
9118
9119 if (cp_parser_parse_definitely (parser))
9120 {
9121 if (address_p)
9122 argument = build_x_unary_op (ADDR_EXPR, argument);
9123 return argument;
9124 }
9125 }
9126 }
9127 /* If the argument started with "&", there are no other valid
9128 alternatives at this point. */
9129 if (address_p)
9130 {
9131 cp_parser_error (parser, "invalid non-type template argument");
9132 return error_mark_node;
9133 }
9134
9135 /* If the argument wasn't successfully parsed as a type-id followed
9136 by '>>', the argument can only be a constant expression now.
9137 Otherwise, we try parsing the constant-expression tentatively,
9138 because the argument could really be a type-id. */
9139 if (maybe_type_id)
9140 cp_parser_parse_tentatively (parser);
9141 argument = cp_parser_constant_expression (parser,
9142 /*allow_non_constant_p=*/false,
9143 /*non_constant_p=*/NULL);
9144 argument = fold_non_dependent_expr (argument);
9145 if (!maybe_type_id)
9146 return argument;
9147 if (!cp_parser_next_token_ends_template_argument_p (parser))
9148 cp_parser_error (parser, "expected template-argument");
9149 if (cp_parser_parse_definitely (parser))
9150 return argument;
9151 /* We did our best to parse the argument as a non type-id, but that
9152 was the only alternative that matched (albeit with a '>' after
9153 it). We can assume it's just a typo from the user, and a
9154 diagnostic will then be issued. */
9155 return cp_parser_type_id (parser);
9156 }
9157
9158 /* Parse an explicit-instantiation.
9159
9160 explicit-instantiation:
9161 template declaration
9162
9163 Although the standard says `declaration', what it really means is:
9164
9165 explicit-instantiation:
9166 template decl-specifier-seq [opt] declarator [opt] ;
9167
9168 Things like `template int S<int>::i = 5, int S<double>::j;' are not
9169 supposed to be allowed. A defect report has been filed about this
9170 issue.
9171
9172 GNU Extension:
9173
9174 explicit-instantiation:
9175 storage-class-specifier template
9176 decl-specifier-seq [opt] declarator [opt] ;
9177 function-specifier template
9178 decl-specifier-seq [opt] declarator [opt] ; */
9179
9180 static void
9181 cp_parser_explicit_instantiation (cp_parser* parser)
9182 {
9183 int declares_class_or_enum;
9184 cp_decl_specifier_seq decl_specifiers;
9185 tree extension_specifier = NULL_TREE;
9186
9187 /* Look for an (optional) storage-class-specifier or
9188 function-specifier. */
9189 if (cp_parser_allow_gnu_extensions_p (parser))
9190 {
9191 extension_specifier
9192 = cp_parser_storage_class_specifier_opt (parser);
9193 if (!extension_specifier)
9194 extension_specifier
9195 = cp_parser_function_specifier_opt (parser,
9196 /*decl_specs=*/NULL);
9197 }
9198
9199 /* Look for the `template' keyword. */
9200 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9201 /* Let the front end know that we are processing an explicit
9202 instantiation. */
9203 begin_explicit_instantiation ();
9204 /* [temp.explicit] says that we are supposed to ignore access
9205 control while processing explicit instantiation directives. */
9206 push_deferring_access_checks (dk_no_check);
9207 /* Parse a decl-specifier-seq. */
9208 cp_parser_decl_specifier_seq (parser,
9209 CP_PARSER_FLAGS_OPTIONAL,
9210 &decl_specifiers,
9211 &declares_class_or_enum);
9212 /* If there was exactly one decl-specifier, and it declared a class,
9213 and there's no declarator, then we have an explicit type
9214 instantiation. */
9215 if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
9216 {
9217 tree type;
9218
9219 type = check_tag_decl (&decl_specifiers);
9220 /* Turn access control back on for names used during
9221 template instantiation. */
9222 pop_deferring_access_checks ();
9223 if (type)
9224 do_type_instantiation (type, extension_specifier, /*complain=*/1);
9225 }
9226 else
9227 {
9228 cp_declarator *declarator;
9229 tree decl;
9230
9231 /* Parse the declarator. */
9232 declarator
9233 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
9234 /*ctor_dtor_or_conv_p=*/NULL,
9235 /*parenthesized_p=*/NULL,
9236 /*member_p=*/false);
9237 if (declares_class_or_enum & 2)
9238 cp_parser_check_for_definition_in_return_type (declarator,
9239 decl_specifiers.type);
9240 if (declarator != cp_error_declarator)
9241 {
9242 decl = grokdeclarator (declarator, &decl_specifiers,
9243 NORMAL, 0, NULL);
9244 /* Turn access control back on for names used during
9245 template instantiation. */
9246 pop_deferring_access_checks ();
9247 /* Do the explicit instantiation. */
9248 do_decl_instantiation (decl, extension_specifier);
9249 }
9250 else
9251 {
9252 pop_deferring_access_checks ();
9253 /* Skip the body of the explicit instantiation. */
9254 cp_parser_skip_to_end_of_statement (parser);
9255 }
9256 }
9257 /* We're done with the instantiation. */
9258 end_explicit_instantiation ();
9259
9260 cp_parser_consume_semicolon_at_end_of_statement (parser);
9261 }
9262
9263 /* Parse an explicit-specialization.
9264
9265 explicit-specialization:
9266 template < > declaration
9267
9268 Although the standard says `declaration', what it really means is:
9269
9270 explicit-specialization:
9271 template <> decl-specifier [opt] init-declarator [opt] ;
9272 template <> function-definition
9273 template <> explicit-specialization
9274 template <> template-declaration */
9275
9276 static void
9277 cp_parser_explicit_specialization (cp_parser* parser)
9278 {
9279 /* Look for the `template' keyword. */
9280 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9281 /* Look for the `<'. */
9282 cp_parser_require (parser, CPP_LESS, "`<'");
9283 /* Look for the `>'. */
9284 cp_parser_require (parser, CPP_GREATER, "`>'");
9285 /* We have processed another parameter list. */
9286 ++parser->num_template_parameter_lists;
9287 /* Let the front end know that we are beginning a specialization. */
9288 begin_specialization ();
9289
9290 /* If the next keyword is `template', we need to figure out whether
9291 or not we're looking a template-declaration. */
9292 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
9293 {
9294 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
9295 && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
9296 cp_parser_template_declaration_after_export (parser,
9297 /*member_p=*/false);
9298 else
9299 cp_parser_explicit_specialization (parser);
9300 }
9301 else
9302 /* Parse the dependent declaration. */
9303 cp_parser_single_declaration (parser,
9304 /*member_p=*/false,
9305 /*friend_p=*/NULL);
9306
9307 /* We're done with the specialization. */
9308 end_specialization ();
9309 /* We're done with this parameter list. */
9310 --parser->num_template_parameter_lists;
9311 }
9312
9313 /* Parse a type-specifier.
9314
9315 type-specifier:
9316 simple-type-specifier
9317 class-specifier
9318 enum-specifier
9319 elaborated-type-specifier
9320 cv-qualifier
9321
9322 GNU Extension:
9323
9324 type-specifier:
9325 __complex__
9326
9327 Returns a representation of the type-specifier. For a
9328 class-specifier, enum-specifier, or elaborated-type-specifier, a
9329 TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
9330
9331 The parser flags FLAGS is used to control type-specifier parsing.
9332
9333 If IS_DECLARATION is TRUE, then this type-specifier is appearing
9334 in a decl-specifier-seq.
9335
9336 If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
9337 class-specifier, enum-specifier, or elaborated-type-specifier, then
9338 *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
9339 if a type is declared; 2 if it is defined. Otherwise, it is set to
9340 zero.
9341
9342 If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
9343 cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
9344 is set to FALSE. */
9345
9346 static tree
9347 cp_parser_type_specifier (cp_parser* parser,
9348 cp_parser_flags flags,
9349 cp_decl_specifier_seq *decl_specs,
9350 bool is_declaration,
9351 int* declares_class_or_enum,
9352 bool* is_cv_qualifier)
9353 {
9354 tree type_spec = NULL_TREE;
9355 cp_token *token;
9356 enum rid keyword;
9357 cp_decl_spec ds = ds_last;
9358
9359 /* Assume this type-specifier does not declare a new type. */
9360 if (declares_class_or_enum)
9361 *declares_class_or_enum = 0;
9362 /* And that it does not specify a cv-qualifier. */
9363 if (is_cv_qualifier)
9364 *is_cv_qualifier = false;
9365 /* Peek at the next token. */
9366 token = cp_lexer_peek_token (parser->lexer);
9367
9368 /* If we're looking at a keyword, we can use that to guide the
9369 production we choose. */
9370 keyword = token->keyword;
9371 switch (keyword)
9372 {
9373 case RID_ENUM:
9374 /* 'enum' [identifier] '{' introduces an enum-specifier;
9375 'enum' <anything else> introduces an elaborated-type-specifier. */
9376 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_OPEN_BRACE
9377 || (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME
9378 && cp_lexer_peek_nth_token (parser->lexer, 3)->type
9379 == CPP_OPEN_BRACE))
9380 {
9381 if (parser->num_template_parameter_lists)
9382 {
9383 error ("template declaration of %qs", "enum");
9384 cp_parser_skip_to_end_of_block_or_statement (parser);
9385 type_spec = error_mark_node;
9386 }
9387 else
9388 type_spec = cp_parser_enum_specifier (parser);
9389
9390 if (declares_class_or_enum)
9391 *declares_class_or_enum = 2;
9392 if (decl_specs)
9393 cp_parser_set_decl_spec_type (decl_specs,
9394 type_spec,
9395 /*user_defined_p=*/true);
9396 return type_spec;
9397 }
9398 else
9399 goto elaborated_type_specifier;
9400
9401 /* Any of these indicate either a class-specifier, or an
9402 elaborated-type-specifier. */
9403 case RID_CLASS:
9404 case RID_STRUCT:
9405 case RID_UNION:
9406 /* Parse tentatively so that we can back up if we don't find a
9407 class-specifier. */
9408 cp_parser_parse_tentatively (parser);
9409 /* Look for the class-specifier. */
9410 type_spec = cp_parser_class_specifier (parser);
9411 /* If that worked, we're done. */
9412 if (cp_parser_parse_definitely (parser))
9413 {
9414 if (declares_class_or_enum)
9415 *declares_class_or_enum = 2;
9416 if (decl_specs)
9417 cp_parser_set_decl_spec_type (decl_specs,
9418 type_spec,
9419 /*user_defined_p=*/true);
9420 return type_spec;
9421 }
9422
9423 /* Fall through. */
9424 elaborated_type_specifier:
9425 /* We're declaring (not defining) a class or enum. */
9426 if (declares_class_or_enum)
9427 *declares_class_or_enum = 1;
9428
9429 /* Fall through. */
9430 case RID_TYPENAME:
9431 /* Look for an elaborated-type-specifier. */
9432 type_spec
9433 = (cp_parser_elaborated_type_specifier
9434 (parser,
9435 decl_specs && decl_specs->specs[(int) ds_friend],
9436 is_declaration));
9437 if (decl_specs)
9438 cp_parser_set_decl_spec_type (decl_specs,
9439 type_spec,
9440 /*user_defined_p=*/true);
9441 return type_spec;
9442
9443 case RID_CONST:
9444 ds = ds_const;
9445 if (is_cv_qualifier)
9446 *is_cv_qualifier = true;
9447 break;
9448
9449 case RID_VOLATILE:
9450 ds = ds_volatile;
9451 if (is_cv_qualifier)
9452 *is_cv_qualifier = true;
9453 break;
9454
9455 case RID_RESTRICT:
9456 ds = ds_restrict;
9457 if (is_cv_qualifier)
9458 *is_cv_qualifier = true;
9459 break;
9460
9461 case RID_COMPLEX:
9462 /* The `__complex__' keyword is a GNU extension. */
9463 ds = ds_complex;
9464 break;
9465
9466 default:
9467 break;
9468 }
9469
9470 /* Handle simple keywords. */
9471 if (ds != ds_last)
9472 {
9473 if (decl_specs)
9474 {
9475 ++decl_specs->specs[(int)ds];
9476 decl_specs->any_specifiers_p = true;
9477 }
9478 return cp_lexer_consume_token (parser->lexer)->value;
9479 }
9480
9481 /* If we do not already have a type-specifier, assume we are looking
9482 at a simple-type-specifier. */
9483 type_spec = cp_parser_simple_type_specifier (parser,
9484 decl_specs,
9485 flags);
9486
9487 /* If we didn't find a type-specifier, and a type-specifier was not
9488 optional in this context, issue an error message. */
9489 if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9490 {
9491 cp_parser_error (parser, "expected type specifier");
9492 return error_mark_node;
9493 }
9494
9495 return type_spec;
9496 }
9497
9498 /* Parse a simple-type-specifier.
9499
9500 simple-type-specifier:
9501 :: [opt] nested-name-specifier [opt] type-name
9502 :: [opt] nested-name-specifier template template-id
9503 char
9504 wchar_t
9505 bool
9506 short
9507 int
9508 long
9509 signed
9510 unsigned
9511 float
9512 double
9513 void
9514
9515 GNU Extension:
9516
9517 simple-type-specifier:
9518 __typeof__ unary-expression
9519 __typeof__ ( type-id )
9520
9521 Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is
9522 appropriately updated. */
9523
9524 static tree
9525 cp_parser_simple_type_specifier (cp_parser* parser,
9526 cp_decl_specifier_seq *decl_specs,
9527 cp_parser_flags flags)
9528 {
9529 tree type = NULL_TREE;
9530 cp_token *token;
9531
9532 /* Peek at the next token. */
9533 token = cp_lexer_peek_token (parser->lexer);
9534
9535 /* If we're looking at a keyword, things are easy. */
9536 switch (token->keyword)
9537 {
9538 case RID_CHAR:
9539 if (decl_specs)
9540 decl_specs->explicit_char_p = true;
9541 type = char_type_node;
9542 break;
9543 case RID_WCHAR:
9544 type = wchar_type_node;
9545 break;
9546 case RID_BOOL:
9547 type = boolean_type_node;
9548 break;
9549 case RID_SHORT:
9550 if (decl_specs)
9551 ++decl_specs->specs[(int) ds_short];
9552 type = short_integer_type_node;
9553 break;
9554 case RID_INT:
9555 if (decl_specs)
9556 decl_specs->explicit_int_p = true;
9557 type = integer_type_node;
9558 break;
9559 case RID_LONG:
9560 if (decl_specs)
9561 ++decl_specs->specs[(int) ds_long];
9562 type = long_integer_type_node;
9563 break;
9564 case RID_SIGNED:
9565 if (decl_specs)
9566 ++decl_specs->specs[(int) ds_signed];
9567 type = integer_type_node;
9568 break;
9569 case RID_UNSIGNED:
9570 if (decl_specs)
9571 ++decl_specs->specs[(int) ds_unsigned];
9572 type = unsigned_type_node;
9573 break;
9574 case RID_FLOAT:
9575 type = float_type_node;
9576 break;
9577 case RID_DOUBLE:
9578 type = double_type_node;
9579 break;
9580 case RID_VOID:
9581 type = void_type_node;
9582 break;
9583
9584 case RID_TYPEOF:
9585 /* Consume the `typeof' token. */
9586 cp_lexer_consume_token (parser->lexer);
9587 /* Parse the operand to `typeof'. */
9588 type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
9589 /* If it is not already a TYPE, take its type. */
9590 if (!TYPE_P (type))
9591 type = finish_typeof (type);
9592
9593 if (decl_specs)
9594 cp_parser_set_decl_spec_type (decl_specs, type,
9595 /*user_defined_p=*/true);
9596
9597 return type;
9598
9599 default:
9600 break;
9601 }
9602
9603 /* If the type-specifier was for a built-in type, we're done. */
9604 if (type)
9605 {
9606 tree id;
9607
9608 /* Record the type. */
9609 if (decl_specs
9610 && (token->keyword != RID_SIGNED
9611 && token->keyword != RID_UNSIGNED
9612 && token->keyword != RID_SHORT
9613 && token->keyword != RID_LONG))
9614 cp_parser_set_decl_spec_type (decl_specs,
9615 type,
9616 /*user_defined=*/false);
9617 if (decl_specs)
9618 decl_specs->any_specifiers_p = true;
9619
9620 /* Consume the token. */
9621 id = cp_lexer_consume_token (parser->lexer)->value;
9622
9623 /* There is no valid C++ program where a non-template type is
9624 followed by a "<". That usually indicates that the user thought
9625 that the type was a template. */
9626 cp_parser_check_for_invalid_template_id (parser, type);
9627
9628 return TYPE_NAME (type);
9629 }
9630
9631 /* The type-specifier must be a user-defined type. */
9632 if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
9633 {
9634 bool qualified_p;
9635 bool global_p;
9636
9637 /* Don't gobble tokens or issue error messages if this is an
9638 optional type-specifier. */
9639 if (flags & CP_PARSER_FLAGS_OPTIONAL)
9640 cp_parser_parse_tentatively (parser);
9641
9642 /* Look for the optional `::' operator. */
9643 global_p
9644 = (cp_parser_global_scope_opt (parser,
9645 /*current_scope_valid_p=*/false)
9646 != NULL_TREE);
9647 /* Look for the nested-name specifier. */
9648 qualified_p
9649 = (cp_parser_nested_name_specifier_opt (parser,
9650 /*typename_keyword_p=*/false,
9651 /*check_dependency_p=*/true,
9652 /*type_p=*/false,
9653 /*is_declaration=*/false)
9654 != NULL_TREE);
9655 /* If we have seen a nested-name-specifier, and the next token
9656 is `template', then we are using the template-id production. */
9657 if (parser->scope
9658 && cp_parser_optional_template_keyword (parser))
9659 {
9660 /* Look for the template-id. */
9661 type = cp_parser_template_id (parser,
9662 /*template_keyword_p=*/true,
9663 /*check_dependency_p=*/true,
9664 /*is_declaration=*/false);
9665 /* If the template-id did not name a type, we are out of
9666 luck. */
9667 if (TREE_CODE (type) != TYPE_DECL)
9668 {
9669 cp_parser_error (parser, "expected template-id for type");
9670 type = NULL_TREE;
9671 }
9672 }
9673 /* Otherwise, look for a type-name. */
9674 else
9675 type = cp_parser_type_name (parser);
9676 /* Keep track of all name-lookups performed in class scopes. */
9677 if (type
9678 && !global_p
9679 && !qualified_p
9680 && TREE_CODE (type) == TYPE_DECL
9681 && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
9682 maybe_note_name_used_in_class (DECL_NAME (type), type);
9683 /* If it didn't work out, we don't have a TYPE. */
9684 if ((flags & CP_PARSER_FLAGS_OPTIONAL)
9685 && !cp_parser_parse_definitely (parser))
9686 type = NULL_TREE;
9687 if (type && decl_specs)
9688 cp_parser_set_decl_spec_type (decl_specs, type,
9689 /*user_defined=*/true);
9690 }
9691
9692 /* If we didn't get a type-name, issue an error message. */
9693 if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9694 {
9695 cp_parser_error (parser, "expected type-name");
9696 return error_mark_node;
9697 }
9698
9699 /* There is no valid C++ program where a non-template type is
9700 followed by a "<". That usually indicates that the user thought
9701 that the type was a template. */
9702 if (type && type != error_mark_node)
9703 {
9704 /* As a last-ditch effort, see if TYPE is an Objective-C type.
9705 If it is, then the '<'...'>' enclose protocol names rather than
9706 template arguments, and so everything is fine. */
9707 if (c_dialect_objc ()
9708 && (objc_is_id (type) || objc_is_class_name (type)))
9709 {
9710 tree protos = cp_parser_objc_protocol_refs_opt (parser);
9711 tree qual_type = objc_get_protocol_qualified_type (type, protos);
9712
9713 /* Clobber the "unqualified" type previously entered into
9714 DECL_SPECS with the new, improved protocol-qualified version. */
9715 if (decl_specs)
9716 decl_specs->type = qual_type;
9717
9718 return qual_type;
9719 }
9720
9721 cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
9722 }
9723
9724 return type;
9725 }
9726
9727 /* Parse a type-name.
9728
9729 type-name:
9730 class-name
9731 enum-name
9732 typedef-name
9733
9734 enum-name:
9735 identifier
9736
9737 typedef-name:
9738 identifier
9739
9740 Returns a TYPE_DECL for the type. */
9741
9742 static tree
9743 cp_parser_type_name (cp_parser* parser)
9744 {
9745 tree type_decl;
9746 tree identifier;
9747
9748 /* We can't know yet whether it is a class-name or not. */
9749 cp_parser_parse_tentatively (parser);
9750 /* Try a class-name. */
9751 type_decl = cp_parser_class_name (parser,
9752 /*typename_keyword_p=*/false,
9753 /*template_keyword_p=*/false,
9754 none_type,
9755 /*check_dependency_p=*/true,
9756 /*class_head_p=*/false,
9757 /*is_declaration=*/false);
9758 /* If it's not a class-name, keep looking. */
9759 if (!cp_parser_parse_definitely (parser))
9760 {
9761 /* It must be a typedef-name or an enum-name. */
9762 identifier = cp_parser_identifier (parser);
9763 if (identifier == error_mark_node)
9764 return error_mark_node;
9765
9766 /* Look up the type-name. */
9767 type_decl = cp_parser_lookup_name_simple (parser, identifier);
9768
9769 if (TREE_CODE (type_decl) != TYPE_DECL
9770 && (objc_is_id (identifier) || objc_is_class_name (identifier)))
9771 {
9772 /* See if this is an Objective-C type. */
9773 tree protos = cp_parser_objc_protocol_refs_opt (parser);
9774 tree type = objc_get_protocol_qualified_type (identifier, protos);
9775 if (type)
9776 type_decl = TYPE_NAME (type);
9777 }
9778
9779 /* Issue an error if we did not find a type-name. */
9780 if (TREE_CODE (type_decl) != TYPE_DECL)
9781 {
9782 if (!cp_parser_simulate_error (parser))
9783 cp_parser_name_lookup_error (parser, identifier, type_decl,
9784 "is not a type");
9785 type_decl = error_mark_node;
9786 }
9787 /* Remember that the name was used in the definition of the
9788 current class so that we can check later to see if the
9789 meaning would have been different after the class was
9790 entirely defined. */
9791 else if (type_decl != error_mark_node
9792 && !parser->scope)
9793 maybe_note_name_used_in_class (identifier, type_decl);
9794 }
9795
9796 return type_decl;
9797 }
9798
9799
9800 /* Parse an elaborated-type-specifier. Note that the grammar given
9801 here incorporates the resolution to DR68.
9802
9803 elaborated-type-specifier:
9804 class-key :: [opt] nested-name-specifier [opt] identifier
9805 class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
9806 enum :: [opt] nested-name-specifier [opt] identifier
9807 typename :: [opt] nested-name-specifier identifier
9808 typename :: [opt] nested-name-specifier template [opt]
9809 template-id
9810
9811 GNU extension:
9812
9813 elaborated-type-specifier:
9814 class-key attributes :: [opt] nested-name-specifier [opt] identifier
9815 class-key attributes :: [opt] nested-name-specifier [opt]
9816 template [opt] template-id
9817 enum attributes :: [opt] nested-name-specifier [opt] identifier
9818
9819 If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
9820 declared `friend'. If IS_DECLARATION is TRUE, then this
9821 elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
9822 something is being declared.
9823
9824 Returns the TYPE specified. */
9825
9826 static tree
9827 cp_parser_elaborated_type_specifier (cp_parser* parser,
9828 bool is_friend,
9829 bool is_declaration)
9830 {
9831 enum tag_types tag_type;
9832 tree identifier;
9833 tree type = NULL_TREE;
9834 tree attributes = NULL_TREE;
9835
9836 /* See if we're looking at the `enum' keyword. */
9837 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
9838 {
9839 /* Consume the `enum' token. */
9840 cp_lexer_consume_token (parser->lexer);
9841 /* Remember that it's an enumeration type. */
9842 tag_type = enum_type;
9843 /* Parse the attributes. */
9844 attributes = cp_parser_attributes_opt (parser);
9845 }
9846 /* Or, it might be `typename'. */
9847 else if (cp_lexer_next_token_is_keyword (parser->lexer,
9848 RID_TYPENAME))
9849 {
9850 /* Consume the `typename' token. */
9851 cp_lexer_consume_token (parser->lexer);
9852 /* Remember that it's a `typename' type. */
9853 tag_type = typename_type;
9854 /* The `typename' keyword is only allowed in templates. */
9855 if (!processing_template_decl)
9856 pedwarn ("using %<typename%> outside of template");
9857 }
9858 /* Otherwise it must be a class-key. */
9859 else
9860 {
9861 tag_type = cp_parser_class_key (parser);
9862 if (tag_type == none_type)
9863 return error_mark_node;
9864 /* Parse the attributes. */
9865 attributes = cp_parser_attributes_opt (parser);
9866 }
9867
9868 /* Look for the `::' operator. */
9869 cp_parser_global_scope_opt (parser,
9870 /*current_scope_valid_p=*/false);
9871 /* Look for the nested-name-specifier. */
9872 if (tag_type == typename_type)
9873 {
9874 if (cp_parser_nested_name_specifier (parser,
9875 /*typename_keyword_p=*/true,
9876 /*check_dependency_p=*/true,
9877 /*type_p=*/true,
9878 is_declaration)
9879 == error_mark_node)
9880 return error_mark_node;
9881 }
9882 else
9883 /* Even though `typename' is not present, the proposed resolution
9884 to Core Issue 180 says that in `class A<T>::B', `B' should be
9885 considered a type-name, even if `A<T>' is dependent. */
9886 cp_parser_nested_name_specifier_opt (parser,
9887 /*typename_keyword_p=*/true,
9888 /*check_dependency_p=*/true,
9889 /*type_p=*/true,
9890 is_declaration);
9891 /* For everything but enumeration types, consider a template-id. */
9892 if (tag_type != enum_type)
9893 {
9894 bool template_p = false;
9895 tree decl;
9896
9897 /* Allow the `template' keyword. */
9898 template_p = cp_parser_optional_template_keyword (parser);
9899 /* If we didn't see `template', we don't know if there's a
9900 template-id or not. */
9901 if (!template_p)
9902 cp_parser_parse_tentatively (parser);
9903 /* Parse the template-id. */
9904 decl = cp_parser_template_id (parser, template_p,
9905 /*check_dependency_p=*/true,
9906 is_declaration);
9907 /* If we didn't find a template-id, look for an ordinary
9908 identifier. */
9909 if (!template_p && !cp_parser_parse_definitely (parser))
9910 ;
9911 /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
9912 in effect, then we must assume that, upon instantiation, the
9913 template will correspond to a class. */
9914 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
9915 && tag_type == typename_type)
9916 type = make_typename_type (parser->scope, decl,
9917 typename_type,
9918 /*complain=*/1);
9919 else
9920 type = TREE_TYPE (decl);
9921 }
9922
9923 /* For an enumeration type, consider only a plain identifier. */
9924 if (!type)
9925 {
9926 identifier = cp_parser_identifier (parser);
9927
9928 if (identifier == error_mark_node)
9929 {
9930 parser->scope = NULL_TREE;
9931 return error_mark_node;
9932 }
9933
9934 /* For a `typename', we needn't call xref_tag. */
9935 if (tag_type == typename_type
9936 && TREE_CODE (parser->scope) != NAMESPACE_DECL)
9937 return cp_parser_make_typename_type (parser, parser->scope,
9938 identifier);
9939 /* Look up a qualified name in the usual way. */
9940 if (parser->scope)
9941 {
9942 tree decl;
9943
9944 decl = cp_parser_lookup_name (parser, identifier,
9945 tag_type,
9946 /*is_template=*/false,
9947 /*is_namespace=*/false,
9948 /*check_dependency=*/true,
9949 /*ambiguous_p=*/NULL);
9950
9951 /* If we are parsing friend declaration, DECL may be a
9952 TEMPLATE_DECL tree node here. However, we need to check
9953 whether this TEMPLATE_DECL results in valid code. Consider
9954 the following example:
9955
9956 namespace N {
9957 template <class T> class C {};
9958 }
9959 class X {
9960 template <class T> friend class N::C; // #1, valid code
9961 };
9962 template <class T> class Y {
9963 friend class N::C; // #2, invalid code
9964 };
9965
9966 For both case #1 and #2, we arrive at a TEMPLATE_DECL after
9967 name lookup of `N::C'. We see that friend declaration must
9968 be template for the code to be valid. Note that
9969 processing_template_decl does not work here since it is
9970 always 1 for the above two cases. */
9971
9972 decl = (cp_parser_maybe_treat_template_as_class
9973 (decl, /*tag_name_p=*/is_friend
9974 && parser->num_template_parameter_lists));
9975
9976 if (TREE_CODE (decl) != TYPE_DECL)
9977 {
9978 cp_parser_diagnose_invalid_type_name (parser,
9979 parser->scope,
9980 identifier);
9981 return error_mark_node;
9982 }
9983
9984 if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
9985 check_elaborated_type_specifier
9986 (tag_type, decl,
9987 (parser->num_template_parameter_lists
9988 || DECL_SELF_REFERENCE_P (decl)));
9989
9990 type = TREE_TYPE (decl);
9991 }
9992 else
9993 {
9994 /* An elaborated-type-specifier sometimes introduces a new type and
9995 sometimes names an existing type. Normally, the rule is that it
9996 introduces a new type only if there is not an existing type of
9997 the same name already in scope. For example, given:
9998
9999 struct S {};
10000 void f() { struct S s; }
10001
10002 the `struct S' in the body of `f' is the same `struct S' as in
10003 the global scope; the existing definition is used. However, if
10004 there were no global declaration, this would introduce a new
10005 local class named `S'.
10006
10007 An exception to this rule applies to the following code:
10008
10009 namespace N { struct S; }
10010
10011 Here, the elaborated-type-specifier names a new type
10012 unconditionally; even if there is already an `S' in the
10013 containing scope this declaration names a new type.
10014 This exception only applies if the elaborated-type-specifier
10015 forms the complete declaration:
10016
10017 [class.name]
10018
10019 A declaration consisting solely of `class-key identifier ;' is
10020 either a redeclaration of the name in the current scope or a
10021 forward declaration of the identifier as a class name. It
10022 introduces the name into the current scope.
10023
10024 We are in this situation precisely when the next token is a `;'.
10025
10026 An exception to the exception is that a `friend' declaration does
10027 *not* name a new type; i.e., given:
10028
10029 struct S { friend struct T; };
10030
10031 `T' is not a new type in the scope of `S'.
10032
10033 Also, `new struct S' or `sizeof (struct S)' never results in the
10034 definition of a new type; a new type can only be declared in a
10035 declaration context. */
10036
10037 tag_scope ts;
10038 if (is_friend)
10039 /* Friends have special name lookup rules. */
10040 ts = ts_within_enclosing_non_class;
10041 else if (is_declaration
10042 && cp_lexer_next_token_is (parser->lexer,
10043 CPP_SEMICOLON))
10044 /* This is a `class-key identifier ;' */
10045 ts = ts_current;
10046 else
10047 ts = ts_global;
10048
10049 /* Warn about attributes. They are ignored. */
10050 if (attributes)
10051 warning (OPT_Wattributes,
10052 "type attributes are honored only at type definition");
10053
10054 type = xref_tag (tag_type, identifier, ts,
10055 parser->num_template_parameter_lists);
10056 }
10057 }
10058 if (tag_type != enum_type)
10059 cp_parser_check_class_key (tag_type, type);
10060
10061 /* A "<" cannot follow an elaborated type specifier. If that
10062 happens, the user was probably trying to form a template-id. */
10063 cp_parser_check_for_invalid_template_id (parser, type);
10064
10065 return type;
10066 }
10067
10068 /* Parse an enum-specifier.
10069
10070 enum-specifier:
10071 enum identifier [opt] { enumerator-list [opt] }
10072
10073 GNU Extensions:
10074 enum identifier [opt] { enumerator-list [opt] } attributes
10075
10076 Returns an ENUM_TYPE representing the enumeration. */
10077
10078 static tree
10079 cp_parser_enum_specifier (cp_parser* parser)
10080 {
10081 tree identifier;
10082 tree type;
10083
10084 /* Caller guarantees that the current token is 'enum', an identifier
10085 possibly follows, and the token after that is an opening brace.
10086 If we don't have an identifier, fabricate an anonymous name for
10087 the enumeration being defined. */
10088 cp_lexer_consume_token (parser->lexer);
10089
10090 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
10091 identifier = cp_parser_identifier (parser);
10092 else
10093 identifier = make_anon_name ();
10094
10095 /* Issue an error message if type-definitions are forbidden here. */
10096 cp_parser_check_type_definition (parser);
10097
10098 /* Create the new type. We do this before consuming the opening brace
10099 so the enum will be recorded as being on the line of its tag (or the
10100 'enum' keyword, if there is no tag). */
10101 type = start_enum (identifier);
10102
10103 /* Consume the opening brace. */
10104 cp_lexer_consume_token (parser->lexer);
10105
10106 /* If the next token is not '}', then there are some enumerators. */
10107 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
10108 cp_parser_enumerator_list (parser, type);
10109
10110 /* Consume the final '}'. */
10111 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
10112
10113 /* Look for trailing attributes to apply to this enumeration, and
10114 apply them if appropriate. */
10115 if (cp_parser_allow_gnu_extensions_p (parser))
10116 {
10117 tree trailing_attr = cp_parser_attributes_opt (parser);
10118 cplus_decl_attributes (&type,
10119 trailing_attr,
10120 (int) ATTR_FLAG_TYPE_IN_PLACE);
10121 }
10122
10123 /* Finish up the enumeration. */
10124 finish_enum (type);
10125
10126 return type;
10127 }
10128
10129 /* Parse an enumerator-list. The enumerators all have the indicated
10130 TYPE.
10131
10132 enumerator-list:
10133 enumerator-definition
10134 enumerator-list , enumerator-definition */
10135
10136 static void
10137 cp_parser_enumerator_list (cp_parser* parser, tree type)
10138 {
10139 while (true)
10140 {
10141 /* Parse an enumerator-definition. */
10142 cp_parser_enumerator_definition (parser, type);
10143
10144 /* If the next token is not a ',', we've reached the end of
10145 the list. */
10146 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
10147 break;
10148 /* Otherwise, consume the `,' and keep going. */
10149 cp_lexer_consume_token (parser->lexer);
10150 /* If the next token is a `}', there is a trailing comma. */
10151 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
10152 {
10153 if (pedantic && !in_system_header)
10154 pedwarn ("comma at end of enumerator list");
10155 break;
10156 }
10157 }
10158 }
10159
10160 /* Parse an enumerator-definition. The enumerator has the indicated
10161 TYPE.
10162
10163 enumerator-definition:
10164 enumerator
10165 enumerator = constant-expression
10166
10167 enumerator:
10168 identifier */
10169
10170 static void
10171 cp_parser_enumerator_definition (cp_parser* parser, tree type)
10172 {
10173 tree identifier;
10174 tree value;
10175
10176 /* Look for the identifier. */
10177 identifier = cp_parser_identifier (parser);
10178 if (identifier == error_mark_node)
10179 return;
10180
10181 /* If the next token is an '=', then there is an explicit value. */
10182 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
10183 {
10184 /* Consume the `=' token. */
10185 cp_lexer_consume_token (parser->lexer);
10186 /* Parse the value. */
10187 value = cp_parser_constant_expression (parser,
10188 /*allow_non_constant_p=*/false,
10189 NULL);
10190 }
10191 else
10192 value = NULL_TREE;
10193
10194 /* Create the enumerator. */
10195 build_enumerator (identifier, value, type);
10196 }
10197
10198 /* Parse a namespace-name.
10199
10200 namespace-name:
10201 original-namespace-name
10202 namespace-alias
10203
10204 Returns the NAMESPACE_DECL for the namespace. */
10205
10206 static tree
10207 cp_parser_namespace_name (cp_parser* parser)
10208 {
10209 tree identifier;
10210 tree namespace_decl;
10211
10212 /* Get the name of the namespace. */
10213 identifier = cp_parser_identifier (parser);
10214 if (identifier == error_mark_node)
10215 return error_mark_node;
10216
10217 /* Look up the identifier in the currently active scope. Look only
10218 for namespaces, due to:
10219
10220 [basic.lookup.udir]
10221
10222 When looking up a namespace-name in a using-directive or alias
10223 definition, only namespace names are considered.
10224
10225 And:
10226
10227 [basic.lookup.qual]
10228
10229 During the lookup of a name preceding the :: scope resolution
10230 operator, object, function, and enumerator names are ignored.
10231
10232 (Note that cp_parser_class_or_namespace_name only calls this
10233 function if the token after the name is the scope resolution
10234 operator.) */
10235 namespace_decl = cp_parser_lookup_name (parser, identifier,
10236 none_type,
10237 /*is_template=*/false,
10238 /*is_namespace=*/true,
10239 /*check_dependency=*/true,
10240 /*ambiguous_p=*/NULL);
10241 /* If it's not a namespace, issue an error. */
10242 if (namespace_decl == error_mark_node
10243 || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
10244 {
10245 cp_parser_error (parser, "expected namespace-name");
10246 namespace_decl = error_mark_node;
10247 }
10248
10249 return namespace_decl;
10250 }
10251
10252 /* Parse a namespace-definition.
10253
10254 namespace-definition:
10255 named-namespace-definition
10256 unnamed-namespace-definition
10257
10258 named-namespace-definition:
10259 original-namespace-definition
10260 extension-namespace-definition
10261
10262 original-namespace-definition:
10263 namespace identifier { namespace-body }
10264
10265 extension-namespace-definition:
10266 namespace original-namespace-name { namespace-body }
10267
10268 unnamed-namespace-definition:
10269 namespace { namespace-body } */
10270
10271 static void
10272 cp_parser_namespace_definition (cp_parser* parser)
10273 {
10274 tree identifier;
10275
10276 /* Look for the `namespace' keyword. */
10277 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10278
10279 /* Get the name of the namespace. We do not attempt to distinguish
10280 between an original-namespace-definition and an
10281 extension-namespace-definition at this point. The semantic
10282 analysis routines are responsible for that. */
10283 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
10284 identifier = cp_parser_identifier (parser);
10285 else
10286 identifier = NULL_TREE;
10287
10288 /* Look for the `{' to start the namespace. */
10289 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
10290 /* Start the namespace. */
10291 push_namespace (identifier);
10292 /* Parse the body of the namespace. */
10293 cp_parser_namespace_body (parser);
10294 /* Finish the namespace. */
10295 pop_namespace ();
10296 /* Look for the final `}'. */
10297 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
10298 }
10299
10300 /* Parse a namespace-body.
10301
10302 namespace-body:
10303 declaration-seq [opt] */
10304
10305 static void
10306 cp_parser_namespace_body (cp_parser* parser)
10307 {
10308 cp_parser_declaration_seq_opt (parser);
10309 }
10310
10311 /* Parse a namespace-alias-definition.
10312
10313 namespace-alias-definition:
10314 namespace identifier = qualified-namespace-specifier ; */
10315
10316 static void
10317 cp_parser_namespace_alias_definition (cp_parser* parser)
10318 {
10319 tree identifier;
10320 tree namespace_specifier;
10321
10322 /* Look for the `namespace' keyword. */
10323 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10324 /* Look for the identifier. */
10325 identifier = cp_parser_identifier (parser);
10326 if (identifier == error_mark_node)
10327 return;
10328 /* Look for the `=' token. */
10329 cp_parser_require (parser, CPP_EQ, "`='");
10330 /* Look for the qualified-namespace-specifier. */
10331 namespace_specifier
10332 = cp_parser_qualified_namespace_specifier (parser);
10333 /* Look for the `;' token. */
10334 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10335
10336 /* Register the alias in the symbol table. */
10337 do_namespace_alias (identifier, namespace_specifier);
10338 }
10339
10340 /* Parse a qualified-namespace-specifier.
10341
10342 qualified-namespace-specifier:
10343 :: [opt] nested-name-specifier [opt] namespace-name
10344
10345 Returns a NAMESPACE_DECL corresponding to the specified
10346 namespace. */
10347
10348 static tree
10349 cp_parser_qualified_namespace_specifier (cp_parser* parser)
10350 {
10351 /* Look for the optional `::'. */
10352 cp_parser_global_scope_opt (parser,
10353 /*current_scope_valid_p=*/false);
10354
10355 /* Look for the optional nested-name-specifier. */
10356 cp_parser_nested_name_specifier_opt (parser,
10357 /*typename_keyword_p=*/false,
10358 /*check_dependency_p=*/true,
10359 /*type_p=*/false,
10360 /*is_declaration=*/true);
10361
10362 return cp_parser_namespace_name (parser);
10363 }
10364
10365 /* Parse a using-declaration.
10366
10367 using-declaration:
10368 using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
10369 using :: unqualified-id ; */
10370
10371 static void
10372 cp_parser_using_declaration (cp_parser* parser)
10373 {
10374 cp_token *token;
10375 bool typename_p = false;
10376 bool global_scope_p;
10377 tree decl;
10378 tree identifier;
10379 tree qscope;
10380
10381 /* Look for the `using' keyword. */
10382 cp_parser_require_keyword (parser, RID_USING, "`using'");
10383
10384 /* Peek at the next token. */
10385 token = cp_lexer_peek_token (parser->lexer);
10386 /* See if it's `typename'. */
10387 if (token->keyword == RID_TYPENAME)
10388 {
10389 /* Remember that we've seen it. */
10390 typename_p = true;
10391 /* Consume the `typename' token. */
10392 cp_lexer_consume_token (parser->lexer);
10393 }
10394
10395 /* Look for the optional global scope qualification. */
10396 global_scope_p
10397 = (cp_parser_global_scope_opt (parser,
10398 /*current_scope_valid_p=*/false)
10399 != NULL_TREE);
10400
10401 /* If we saw `typename', or didn't see `::', then there must be a
10402 nested-name-specifier present. */
10403 if (typename_p || !global_scope_p)
10404 qscope = cp_parser_nested_name_specifier (parser, typename_p,
10405 /*check_dependency_p=*/true,
10406 /*type_p=*/false,
10407 /*is_declaration=*/true);
10408 /* Otherwise, we could be in either of the two productions. In that
10409 case, treat the nested-name-specifier as optional. */
10410 else
10411 qscope = cp_parser_nested_name_specifier_opt (parser,
10412 /*typename_keyword_p=*/false,
10413 /*check_dependency_p=*/true,
10414 /*type_p=*/false,
10415 /*is_declaration=*/true);
10416 if (!qscope)
10417 qscope = global_namespace;
10418
10419 /* Parse the unqualified-id. */
10420 identifier = cp_parser_unqualified_id (parser,
10421 /*template_keyword_p=*/false,
10422 /*check_dependency_p=*/true,
10423 /*declarator_p=*/true);
10424
10425 /* The function we call to handle a using-declaration is different
10426 depending on what scope we are in. */
10427 if (identifier == error_mark_node)
10428 ;
10429 else if (TREE_CODE (identifier) != IDENTIFIER_NODE
10430 && TREE_CODE (identifier) != BIT_NOT_EXPR)
10431 /* [namespace.udecl]
10432
10433 A using declaration shall not name a template-id. */
10434 error ("a template-id may not appear in a using-declaration");
10435 else
10436 {
10437 if (at_class_scope_p ())
10438 {
10439 /* Create the USING_DECL. */
10440 decl = do_class_using_decl (parser->scope, identifier);
10441 /* Add it to the list of members in this class. */
10442 finish_member_declaration (decl);
10443 }
10444 else
10445 {
10446 decl = cp_parser_lookup_name_simple (parser, identifier);
10447 if (decl == error_mark_node)
10448 cp_parser_name_lookup_error (parser, identifier, decl, NULL);
10449 else if (!at_namespace_scope_p ())
10450 do_local_using_decl (decl, qscope, identifier);
10451 else
10452 do_toplevel_using_decl (decl, qscope, identifier);
10453 }
10454 }
10455
10456 /* Look for the final `;'. */
10457 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10458 }
10459
10460 /* Parse a using-directive.
10461
10462 using-directive:
10463 using namespace :: [opt] nested-name-specifier [opt]
10464 namespace-name ; */
10465
10466 static void
10467 cp_parser_using_directive (cp_parser* parser)
10468 {
10469 tree namespace_decl;
10470 tree attribs;
10471
10472 /* Look for the `using' keyword. */
10473 cp_parser_require_keyword (parser, RID_USING, "`using'");
10474 /* And the `namespace' keyword. */
10475 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10476 /* Look for the optional `::' operator. */
10477 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
10478 /* And the optional nested-name-specifier. */
10479 cp_parser_nested_name_specifier_opt (parser,
10480 /*typename_keyword_p=*/false,
10481 /*check_dependency_p=*/true,
10482 /*type_p=*/false,
10483 /*is_declaration=*/true);
10484 /* Get the namespace being used. */
10485 namespace_decl = cp_parser_namespace_name (parser);
10486 /* And any specified attributes. */
10487 attribs = cp_parser_attributes_opt (parser);
10488 /* Update the symbol table. */
10489 parse_using_directive (namespace_decl, attribs);
10490 /* Look for the final `;'. */
10491 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10492 }
10493
10494 /* Parse an asm-definition.
10495
10496 asm-definition:
10497 asm ( string-literal ) ;
10498
10499 GNU Extension:
10500
10501 asm-definition:
10502 asm volatile [opt] ( string-literal ) ;
10503 asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
10504 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10505 : asm-operand-list [opt] ) ;
10506 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10507 : asm-operand-list [opt]
10508 : asm-operand-list [opt] ) ; */
10509
10510 static void
10511 cp_parser_asm_definition (cp_parser* parser)
10512 {
10513 tree string;
10514 tree outputs = NULL_TREE;
10515 tree inputs = NULL_TREE;
10516 tree clobbers = NULL_TREE;
10517 tree asm_stmt;
10518 bool volatile_p = false;
10519 bool extended_p = false;
10520
10521 /* Look for the `asm' keyword. */
10522 cp_parser_require_keyword (parser, RID_ASM, "`asm'");
10523 /* See if the next token is `volatile'. */
10524 if (cp_parser_allow_gnu_extensions_p (parser)
10525 && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
10526 {
10527 /* Remember that we saw the `volatile' keyword. */
10528 volatile_p = true;
10529 /* Consume the token. */
10530 cp_lexer_consume_token (parser->lexer);
10531 }
10532 /* Look for the opening `('. */
10533 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
10534 return;
10535 /* Look for the string. */
10536 string = cp_parser_string_literal (parser, false, false);
10537 if (string == error_mark_node)
10538 {
10539 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10540 /*consume_paren=*/true);
10541 return;
10542 }
10543
10544 /* If we're allowing GNU extensions, check for the extended assembly
10545 syntax. Unfortunately, the `:' tokens need not be separated by
10546 a space in C, and so, for compatibility, we tolerate that here
10547 too. Doing that means that we have to treat the `::' operator as
10548 two `:' tokens. */
10549 if (cp_parser_allow_gnu_extensions_p (parser)
10550 && at_function_scope_p ()
10551 && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
10552 || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
10553 {
10554 bool inputs_p = false;
10555 bool clobbers_p = false;
10556
10557 /* The extended syntax was used. */
10558 extended_p = true;
10559
10560 /* Look for outputs. */
10561 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10562 {
10563 /* Consume the `:'. */
10564 cp_lexer_consume_token (parser->lexer);
10565 /* Parse the output-operands. */
10566 if (cp_lexer_next_token_is_not (parser->lexer,
10567 CPP_COLON)
10568 && cp_lexer_next_token_is_not (parser->lexer,
10569 CPP_SCOPE)
10570 && cp_lexer_next_token_is_not (parser->lexer,
10571 CPP_CLOSE_PAREN))
10572 outputs = cp_parser_asm_operand_list (parser);
10573 }
10574 /* If the next token is `::', there are no outputs, and the
10575 next token is the beginning of the inputs. */
10576 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10577 /* The inputs are coming next. */
10578 inputs_p = true;
10579
10580 /* Look for inputs. */
10581 if (inputs_p
10582 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10583 {
10584 /* Consume the `:' or `::'. */
10585 cp_lexer_consume_token (parser->lexer);
10586 /* Parse the output-operands. */
10587 if (cp_lexer_next_token_is_not (parser->lexer,
10588 CPP_COLON)
10589 && cp_lexer_next_token_is_not (parser->lexer,
10590 CPP_CLOSE_PAREN))
10591 inputs = cp_parser_asm_operand_list (parser);
10592 }
10593 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10594 /* The clobbers are coming next. */
10595 clobbers_p = true;
10596
10597 /* Look for clobbers. */
10598 if (clobbers_p
10599 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10600 {
10601 /* Consume the `:' or `::'. */
10602 cp_lexer_consume_token (parser->lexer);
10603 /* Parse the clobbers. */
10604 if (cp_lexer_next_token_is_not (parser->lexer,
10605 CPP_CLOSE_PAREN))
10606 clobbers = cp_parser_asm_clobber_list (parser);
10607 }
10608 }
10609 /* Look for the closing `)'. */
10610 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10611 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10612 /*consume_paren=*/true);
10613 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10614
10615 /* Create the ASM_EXPR. */
10616 if (at_function_scope_p ())
10617 {
10618 asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
10619 inputs, clobbers);
10620 /* If the extended syntax was not used, mark the ASM_EXPR. */
10621 if (!extended_p)
10622 {
10623 tree temp = asm_stmt;
10624 if (TREE_CODE (temp) == CLEANUP_POINT_EXPR)
10625 temp = TREE_OPERAND (temp, 0);
10626
10627 ASM_INPUT_P (temp) = 1;
10628 }
10629 }
10630 else
10631 assemble_asm (string);
10632 }
10633
10634 /* Declarators [gram.dcl.decl] */
10635
10636 /* Parse an init-declarator.
10637
10638 init-declarator:
10639 declarator initializer [opt]
10640
10641 GNU Extension:
10642
10643 init-declarator:
10644 declarator asm-specification [opt] attributes [opt] initializer [opt]
10645
10646 function-definition:
10647 decl-specifier-seq [opt] declarator ctor-initializer [opt]
10648 function-body
10649 decl-specifier-seq [opt] declarator function-try-block
10650
10651 GNU Extension:
10652
10653 function-definition:
10654 __extension__ function-definition
10655
10656 The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
10657 Returns a representation of the entity declared. If MEMBER_P is TRUE,
10658 then this declarator appears in a class scope. The new DECL created
10659 by this declarator is returned.
10660
10661 If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
10662 for a function-definition here as well. If the declarator is a
10663 declarator for a function-definition, *FUNCTION_DEFINITION_P will
10664 be TRUE upon return. By that point, the function-definition will
10665 have been completely parsed.
10666
10667 FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
10668 is FALSE. */
10669
10670 static tree
10671 cp_parser_init_declarator (cp_parser* parser,
10672 cp_decl_specifier_seq *decl_specifiers,
10673 bool function_definition_allowed_p,
10674 bool member_p,
10675 int declares_class_or_enum,
10676 bool* function_definition_p)
10677 {
10678 cp_token *token;
10679 cp_declarator *declarator;
10680 tree prefix_attributes;
10681 tree attributes;
10682 tree asm_specification;
10683 tree initializer;
10684 tree decl = NULL_TREE;
10685 tree scope;
10686 bool is_initialized;
10687 bool is_parenthesized_init;
10688 bool is_non_constant_init;
10689 int ctor_dtor_or_conv_p;
10690 bool friend_p;
10691 tree pushed_scope = NULL;
10692
10693 /* Gather the attributes that were provided with the
10694 decl-specifiers. */
10695 prefix_attributes = decl_specifiers->attributes;
10696
10697 /* Assume that this is not the declarator for a function
10698 definition. */
10699 if (function_definition_p)
10700 *function_definition_p = false;
10701
10702 /* Defer access checks while parsing the declarator; we cannot know
10703 what names are accessible until we know what is being
10704 declared. */
10705 resume_deferring_access_checks ();
10706
10707 /* Parse the declarator. */
10708 declarator
10709 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
10710 &ctor_dtor_or_conv_p,
10711 /*parenthesized_p=*/NULL,
10712 /*member_p=*/false);
10713 /* Gather up the deferred checks. */
10714 stop_deferring_access_checks ();
10715
10716 /* If the DECLARATOR was erroneous, there's no need to go
10717 further. */
10718 if (declarator == cp_error_declarator)
10719 return error_mark_node;
10720
10721 if (declares_class_or_enum & 2)
10722 cp_parser_check_for_definition_in_return_type (declarator,
10723 decl_specifiers->type);
10724
10725 /* Figure out what scope the entity declared by the DECLARATOR is
10726 located in. `grokdeclarator' sometimes changes the scope, so
10727 we compute it now. */
10728 scope = get_scope_of_declarator (declarator);
10729
10730 /* If we're allowing GNU extensions, look for an asm-specification
10731 and attributes. */
10732 if (cp_parser_allow_gnu_extensions_p (parser))
10733 {
10734 /* Look for an asm-specification. */
10735 asm_specification = cp_parser_asm_specification_opt (parser);
10736 /* And attributes. */
10737 attributes = cp_parser_attributes_opt (parser);
10738 }
10739 else
10740 {
10741 asm_specification = NULL_TREE;
10742 attributes = NULL_TREE;
10743 }
10744
10745 /* Peek at the next token. */
10746 token = cp_lexer_peek_token (parser->lexer);
10747 /* Check to see if the token indicates the start of a
10748 function-definition. */
10749 if (cp_parser_token_starts_function_definition_p (token))
10750 {
10751 if (!function_definition_allowed_p)
10752 {
10753 /* If a function-definition should not appear here, issue an
10754 error message. */
10755 cp_parser_error (parser,
10756 "a function-definition is not allowed here");
10757 return error_mark_node;
10758 }
10759 else
10760 {
10761 /* Neither attributes nor an asm-specification are allowed
10762 on a function-definition. */
10763 if (asm_specification)
10764 error ("an asm-specification is not allowed on a function-definition");
10765 if (attributes)
10766 error ("attributes are not allowed on a function-definition");
10767 /* This is a function-definition. */
10768 *function_definition_p = true;
10769
10770 /* Parse the function definition. */
10771 if (member_p)
10772 decl = cp_parser_save_member_function_body (parser,
10773 decl_specifiers,
10774 declarator,
10775 prefix_attributes);
10776 else
10777 decl
10778 = (cp_parser_function_definition_from_specifiers_and_declarator
10779 (parser, decl_specifiers, prefix_attributes, declarator));
10780
10781 return decl;
10782 }
10783 }
10784
10785 /* [dcl.dcl]
10786
10787 Only in function declarations for constructors, destructors, and
10788 type conversions can the decl-specifier-seq be omitted.
10789
10790 We explicitly postpone this check past the point where we handle
10791 function-definitions because we tolerate function-definitions
10792 that are missing their return types in some modes. */
10793 if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
10794 {
10795 cp_parser_error (parser,
10796 "expected constructor, destructor, or type conversion");
10797 return error_mark_node;
10798 }
10799
10800 /* An `=' or an `(' indicates an initializer. */
10801 is_initialized = (token->type == CPP_EQ
10802 || token->type == CPP_OPEN_PAREN);
10803 /* If the init-declarator isn't initialized and isn't followed by a
10804 `,' or `;', it's not a valid init-declarator. */
10805 if (!is_initialized
10806 && token->type != CPP_COMMA
10807 && token->type != CPP_SEMICOLON)
10808 {
10809 cp_parser_error (parser, "expected initializer");
10810 return error_mark_node;
10811 }
10812
10813 /* Because start_decl has side-effects, we should only call it if we
10814 know we're going ahead. By this point, we know that we cannot
10815 possibly be looking at any other construct. */
10816 cp_parser_commit_to_tentative_parse (parser);
10817
10818 /* If the decl specifiers were bad, issue an error now that we're
10819 sure this was intended to be a declarator. Then continue
10820 declaring the variable(s), as int, to try to cut down on further
10821 errors. */
10822 if (decl_specifiers->any_specifiers_p
10823 && decl_specifiers->type == error_mark_node)
10824 {
10825 cp_parser_error (parser, "invalid type in declaration");
10826 decl_specifiers->type = integer_type_node;
10827 }
10828
10829 /* Check to see whether or not this declaration is a friend. */
10830 friend_p = cp_parser_friend_p (decl_specifiers);
10831
10832 /* Check that the number of template-parameter-lists is OK. */
10833 if (!cp_parser_check_declarator_template_parameters (parser, declarator))
10834 return error_mark_node;
10835
10836 /* Enter the newly declared entry in the symbol table. If we're
10837 processing a declaration in a class-specifier, we wait until
10838 after processing the initializer. */
10839 if (!member_p)
10840 {
10841 if (parser->in_unbraced_linkage_specification_p)
10842 {
10843 decl_specifiers->storage_class = sc_extern;
10844 have_extern_spec = false;
10845 }
10846 decl = start_decl (declarator, decl_specifiers,
10847 is_initialized, attributes, prefix_attributes,
10848 &pushed_scope);
10849 }
10850 else if (scope)
10851 /* Enter the SCOPE. That way unqualified names appearing in the
10852 initializer will be looked up in SCOPE. */
10853 pushed_scope = push_scope (scope);
10854
10855 /* Perform deferred access control checks, now that we know in which
10856 SCOPE the declared entity resides. */
10857 if (!member_p && decl)
10858 {
10859 tree saved_current_function_decl = NULL_TREE;
10860
10861 /* If the entity being declared is a function, pretend that we
10862 are in its scope. If it is a `friend', it may have access to
10863 things that would not otherwise be accessible. */
10864 if (TREE_CODE (decl) == FUNCTION_DECL)
10865 {
10866 saved_current_function_decl = current_function_decl;
10867 current_function_decl = decl;
10868 }
10869
10870 /* Perform the access control checks for the declarator and the
10871 the decl-specifiers. */
10872 perform_deferred_access_checks ();
10873
10874 /* Restore the saved value. */
10875 if (TREE_CODE (decl) == FUNCTION_DECL)
10876 current_function_decl = saved_current_function_decl;
10877 }
10878
10879 /* Parse the initializer. */
10880 if (is_initialized)
10881 initializer = cp_parser_initializer (parser,
10882 &is_parenthesized_init,
10883 &is_non_constant_init);
10884 else
10885 {
10886 initializer = NULL_TREE;
10887 is_parenthesized_init = false;
10888 is_non_constant_init = true;
10889 }
10890
10891 /* The old parser allows attributes to appear after a parenthesized
10892 initializer. Mark Mitchell proposed removing this functionality
10893 on the GCC mailing lists on 2002-08-13. This parser accepts the
10894 attributes -- but ignores them. */
10895 if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
10896 if (cp_parser_attributes_opt (parser))
10897 warning (OPT_Wattributes,
10898 "attributes after parenthesized initializer ignored");
10899
10900 /* For an in-class declaration, use `grokfield' to create the
10901 declaration. */
10902 if (member_p)
10903 {
10904 if (pushed_scope)
10905 {
10906 pop_scope (pushed_scope);
10907 pushed_scope = false;
10908 }
10909 decl = grokfield (declarator, decl_specifiers,
10910 initializer, /*asmspec=*/NULL_TREE,
10911 /*attributes=*/NULL_TREE);
10912 if (decl && TREE_CODE (decl) == FUNCTION_DECL)
10913 cp_parser_save_default_args (parser, decl);
10914 }
10915
10916 /* Finish processing the declaration. But, skip friend
10917 declarations. */
10918 if (!friend_p && decl && decl != error_mark_node)
10919 {
10920 cp_finish_decl (decl,
10921 initializer,
10922 asm_specification,
10923 /* If the initializer is in parentheses, then this is
10924 a direct-initialization, which means that an
10925 `explicit' constructor is OK. Otherwise, an
10926 `explicit' constructor cannot be used. */
10927 ((is_parenthesized_init || !is_initialized)
10928 ? 0 : LOOKUP_ONLYCONVERTING));
10929 }
10930 if (!friend_p && pushed_scope)
10931 pop_scope (pushed_scope);
10932
10933 /* Remember whether or not variables were initialized by
10934 constant-expressions. */
10935 if (decl && TREE_CODE (decl) == VAR_DECL
10936 && is_initialized && !is_non_constant_init)
10937 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
10938
10939 return decl;
10940 }
10941
10942 /* Parse a declarator.
10943
10944 declarator:
10945 direct-declarator
10946 ptr-operator declarator
10947
10948 abstract-declarator:
10949 ptr-operator abstract-declarator [opt]
10950 direct-abstract-declarator
10951
10952 GNU Extensions:
10953
10954 declarator:
10955 attributes [opt] direct-declarator
10956 attributes [opt] ptr-operator declarator
10957
10958 abstract-declarator:
10959 attributes [opt] ptr-operator abstract-declarator [opt]
10960 attributes [opt] direct-abstract-declarator
10961
10962 If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
10963 detect constructor, destructor or conversion operators. It is set
10964 to -1 if the declarator is a name, and +1 if it is a
10965 function. Otherwise it is set to zero. Usually you just want to
10966 test for >0, but internally the negative value is used.
10967
10968 (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
10969 a decl-specifier-seq unless it declares a constructor, destructor,
10970 or conversion. It might seem that we could check this condition in
10971 semantic analysis, rather than parsing, but that makes it difficult
10972 to handle something like `f()'. We want to notice that there are
10973 no decl-specifiers, and therefore realize that this is an
10974 expression, not a declaration.)
10975
10976 If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
10977 the declarator is a direct-declarator of the form "(...)".
10978
10979 MEMBER_P is true iff this declarator is a member-declarator. */
10980
10981 static cp_declarator *
10982 cp_parser_declarator (cp_parser* parser,
10983 cp_parser_declarator_kind dcl_kind,
10984 int* ctor_dtor_or_conv_p,
10985 bool* parenthesized_p,
10986 bool member_p)
10987 {
10988 cp_token *token;
10989 cp_declarator *declarator;
10990 enum tree_code code;
10991 cp_cv_quals cv_quals;
10992 tree class_type;
10993 tree attributes = NULL_TREE;
10994
10995 /* Assume this is not a constructor, destructor, or type-conversion
10996 operator. */
10997 if (ctor_dtor_or_conv_p)
10998 *ctor_dtor_or_conv_p = 0;
10999
11000 if (cp_parser_allow_gnu_extensions_p (parser))
11001 attributes = cp_parser_attributes_opt (parser);
11002
11003 /* Peek at the next token. */
11004 token = cp_lexer_peek_token (parser->lexer);
11005
11006 /* Check for the ptr-operator production. */
11007 cp_parser_parse_tentatively (parser);
11008 /* Parse the ptr-operator. */
11009 code = cp_parser_ptr_operator (parser,
11010 &class_type,
11011 &cv_quals);
11012 /* If that worked, then we have a ptr-operator. */
11013 if (cp_parser_parse_definitely (parser))
11014 {
11015 /* If a ptr-operator was found, then this declarator was not
11016 parenthesized. */
11017 if (parenthesized_p)
11018 *parenthesized_p = true;
11019 /* The dependent declarator is optional if we are parsing an
11020 abstract-declarator. */
11021 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
11022 cp_parser_parse_tentatively (parser);
11023
11024 /* Parse the dependent declarator. */
11025 declarator = cp_parser_declarator (parser, dcl_kind,
11026 /*ctor_dtor_or_conv_p=*/NULL,
11027 /*parenthesized_p=*/NULL,
11028 /*member_p=*/false);
11029
11030 /* If we are parsing an abstract-declarator, we must handle the
11031 case where the dependent declarator is absent. */
11032 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
11033 && !cp_parser_parse_definitely (parser))
11034 declarator = NULL;
11035
11036 /* Build the representation of the ptr-operator. */
11037 if (class_type)
11038 declarator = make_ptrmem_declarator (cv_quals,
11039 class_type,
11040 declarator);
11041 else if (code == INDIRECT_REF)
11042 declarator = make_pointer_declarator (cv_quals, declarator);
11043 else
11044 declarator = make_reference_declarator (cv_quals, declarator);
11045 }
11046 /* Everything else is a direct-declarator. */
11047 else
11048 {
11049 if (parenthesized_p)
11050 *parenthesized_p = cp_lexer_next_token_is (parser->lexer,
11051 CPP_OPEN_PAREN);
11052 declarator = cp_parser_direct_declarator (parser, dcl_kind,
11053 ctor_dtor_or_conv_p,
11054 member_p);
11055 }
11056
11057 if (attributes && declarator != cp_error_declarator)
11058 declarator->attributes = attributes;
11059
11060 return declarator;
11061 }
11062
11063 /* Parse a direct-declarator or direct-abstract-declarator.
11064
11065 direct-declarator:
11066 declarator-id
11067 direct-declarator ( parameter-declaration-clause )
11068 cv-qualifier-seq [opt]
11069 exception-specification [opt]
11070 direct-declarator [ constant-expression [opt] ]
11071 ( declarator )
11072
11073 direct-abstract-declarator:
11074 direct-abstract-declarator [opt]
11075 ( parameter-declaration-clause )
11076 cv-qualifier-seq [opt]
11077 exception-specification [opt]
11078 direct-abstract-declarator [opt] [ constant-expression [opt] ]
11079 ( abstract-declarator )
11080
11081 Returns a representation of the declarator. DCL_KIND is
11082 CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
11083 direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
11084 we are parsing a direct-declarator. It is
11085 CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
11086 of ambiguity we prefer an abstract declarator, as per
11087 [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P and MEMBER_P are as for
11088 cp_parser_declarator. */
11089
11090 static cp_declarator *
11091 cp_parser_direct_declarator (cp_parser* parser,
11092 cp_parser_declarator_kind dcl_kind,
11093 int* ctor_dtor_or_conv_p,
11094 bool member_p)
11095 {
11096 cp_token *token;
11097 cp_declarator *declarator = NULL;
11098 tree scope = NULL_TREE;
11099 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11100 bool saved_in_declarator_p = parser->in_declarator_p;
11101 bool first = true;
11102 tree pushed_scope = NULL_TREE;
11103
11104 while (true)
11105 {
11106 /* Peek at the next token. */
11107 token = cp_lexer_peek_token (parser->lexer);
11108 if (token->type == CPP_OPEN_PAREN)
11109 {
11110 /* This is either a parameter-declaration-clause, or a
11111 parenthesized declarator. When we know we are parsing a
11112 named declarator, it must be a parenthesized declarator
11113 if FIRST is true. For instance, `(int)' is a
11114 parameter-declaration-clause, with an omitted
11115 direct-abstract-declarator. But `((*))', is a
11116 parenthesized abstract declarator. Finally, when T is a
11117 template parameter `(T)' is a
11118 parameter-declaration-clause, and not a parenthesized
11119 named declarator.
11120
11121 We first try and parse a parameter-declaration-clause,
11122 and then try a nested declarator (if FIRST is true).
11123
11124 It is not an error for it not to be a
11125 parameter-declaration-clause, even when FIRST is
11126 false. Consider,
11127
11128 int i (int);
11129 int i (3);
11130
11131 The first is the declaration of a function while the
11132 second is a the definition of a variable, including its
11133 initializer.
11134
11135 Having seen only the parenthesis, we cannot know which of
11136 these two alternatives should be selected. Even more
11137 complex are examples like:
11138
11139 int i (int (a));
11140 int i (int (3));
11141
11142 The former is a function-declaration; the latter is a
11143 variable initialization.
11144
11145 Thus again, we try a parameter-declaration-clause, and if
11146 that fails, we back out and return. */
11147
11148 if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
11149 {
11150 cp_parameter_declarator *params;
11151 unsigned saved_num_template_parameter_lists;
11152
11153 /* In a member-declarator, the only valid interpretation
11154 of a parenthesis is the start of a
11155 parameter-declaration-clause. (It is invalid to
11156 initialize a static data member with a parenthesized
11157 initializer; only the "=" form of initialization is
11158 permitted.) */
11159 if (!member_p)
11160 cp_parser_parse_tentatively (parser);
11161
11162 /* Consume the `('. */
11163 cp_lexer_consume_token (parser->lexer);
11164 if (first)
11165 {
11166 /* If this is going to be an abstract declarator, we're
11167 in a declarator and we can't have default args. */
11168 parser->default_arg_ok_p = false;
11169 parser->in_declarator_p = true;
11170 }
11171
11172 /* Inside the function parameter list, surrounding
11173 template-parameter-lists do not apply. */
11174 saved_num_template_parameter_lists
11175 = parser->num_template_parameter_lists;
11176 parser->num_template_parameter_lists = 0;
11177
11178 /* Parse the parameter-declaration-clause. */
11179 params = cp_parser_parameter_declaration_clause (parser);
11180
11181 parser->num_template_parameter_lists
11182 = saved_num_template_parameter_lists;
11183
11184 /* If all went well, parse the cv-qualifier-seq and the
11185 exception-specification. */
11186 if (member_p || cp_parser_parse_definitely (parser))
11187 {
11188 cp_cv_quals cv_quals;
11189 tree exception_specification;
11190
11191 if (ctor_dtor_or_conv_p)
11192 *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
11193 first = false;
11194 /* Consume the `)'. */
11195 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
11196
11197 /* Parse the cv-qualifier-seq. */
11198 cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11199 /* And the exception-specification. */
11200 exception_specification
11201 = cp_parser_exception_specification_opt (parser);
11202
11203 /* Create the function-declarator. */
11204 declarator = make_call_declarator (declarator,
11205 params,
11206 cv_quals,
11207 exception_specification);
11208 /* Any subsequent parameter lists are to do with
11209 return type, so are not those of the declared
11210 function. */
11211 parser->default_arg_ok_p = false;
11212
11213 /* Repeat the main loop. */
11214 continue;
11215 }
11216 }
11217
11218 /* If this is the first, we can try a parenthesized
11219 declarator. */
11220 if (first)
11221 {
11222 bool saved_in_type_id_in_expr_p;
11223
11224 parser->default_arg_ok_p = saved_default_arg_ok_p;
11225 parser->in_declarator_p = saved_in_declarator_p;
11226
11227 /* Consume the `('. */
11228 cp_lexer_consume_token (parser->lexer);
11229 /* Parse the nested declarator. */
11230 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
11231 parser->in_type_id_in_expr_p = true;
11232 declarator
11233 = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
11234 /*parenthesized_p=*/NULL,
11235 member_p);
11236 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
11237 first = false;
11238 /* Expect a `)'. */
11239 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
11240 declarator = cp_error_declarator;
11241 if (declarator == cp_error_declarator)
11242 break;
11243
11244 goto handle_declarator;
11245 }
11246 /* Otherwise, we must be done. */
11247 else
11248 break;
11249 }
11250 else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
11251 && token->type == CPP_OPEN_SQUARE)
11252 {
11253 /* Parse an array-declarator. */
11254 tree bounds;
11255
11256 if (ctor_dtor_or_conv_p)
11257 *ctor_dtor_or_conv_p = 0;
11258
11259 first = false;
11260 parser->default_arg_ok_p = false;
11261 parser->in_declarator_p = true;
11262 /* Consume the `['. */
11263 cp_lexer_consume_token (parser->lexer);
11264 /* Peek at the next token. */
11265 token = cp_lexer_peek_token (parser->lexer);
11266 /* If the next token is `]', then there is no
11267 constant-expression. */
11268 if (token->type != CPP_CLOSE_SQUARE)
11269 {
11270 bool non_constant_p;
11271
11272 bounds
11273 = cp_parser_constant_expression (parser,
11274 /*allow_non_constant=*/true,
11275 &non_constant_p);
11276 if (!non_constant_p)
11277 bounds = fold_non_dependent_expr (bounds);
11278 /* Normally, the array bound must be an integral constant
11279 expression. However, as an extension, we allow VLAs
11280 in function scopes. */
11281 else if (!at_function_scope_p ())
11282 {
11283 error ("array bound is not an integer constant");
11284 bounds = error_mark_node;
11285 }
11286 }
11287 else
11288 bounds = NULL_TREE;
11289 /* Look for the closing `]'. */
11290 if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
11291 {
11292 declarator = cp_error_declarator;
11293 break;
11294 }
11295
11296 declarator = make_array_declarator (declarator, bounds);
11297 }
11298 else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
11299 {
11300 tree qualifying_scope;
11301 tree unqualified_name;
11302
11303 /* Parse a declarator-id */
11304 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11305 cp_parser_parse_tentatively (parser);
11306 unqualified_name = cp_parser_declarator_id (parser);
11307 qualifying_scope = parser->scope;
11308 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11309 {
11310 if (!cp_parser_parse_definitely (parser))
11311 unqualified_name = error_mark_node;
11312 else if (qualifying_scope
11313 || (TREE_CODE (unqualified_name)
11314 != IDENTIFIER_NODE))
11315 {
11316 cp_parser_error (parser, "expected unqualified-id");
11317 unqualified_name = error_mark_node;
11318 }
11319 }
11320
11321 if (unqualified_name == error_mark_node)
11322 {
11323 declarator = cp_error_declarator;
11324 break;
11325 }
11326
11327 if (qualifying_scope && at_namespace_scope_p ()
11328 && TREE_CODE (qualifying_scope) == TYPENAME_TYPE)
11329 {
11330 /* In the declaration of a member of a template class
11331 outside of the class itself, the SCOPE will sometimes
11332 be a TYPENAME_TYPE. For example, given:
11333
11334 template <typename T>
11335 int S<T>::R::i = 3;
11336
11337 the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
11338 this context, we must resolve S<T>::R to an ordinary
11339 type, rather than a typename type.
11340
11341 The reason we normally avoid resolving TYPENAME_TYPEs
11342 is that a specialization of `S' might render
11343 `S<T>::R' not a type. However, if `S' is
11344 specialized, then this `i' will not be used, so there
11345 is no harm in resolving the types here. */
11346 tree type;
11347
11348 /* Resolve the TYPENAME_TYPE. */
11349 type = resolve_typename_type (qualifying_scope,
11350 /*only_current_p=*/false);
11351 /* If that failed, the declarator is invalid. */
11352 if (type == error_mark_node)
11353 error ("%<%T::%D%> is not a type",
11354 TYPE_CONTEXT (qualifying_scope),
11355 TYPE_IDENTIFIER (qualifying_scope));
11356 qualifying_scope = type;
11357 }
11358
11359 declarator = make_id_declarator (qualifying_scope,
11360 unqualified_name);
11361 declarator->id_loc = token->location;
11362 if (unqualified_name)
11363 {
11364 tree class_type;
11365
11366 if (qualifying_scope
11367 && CLASS_TYPE_P (qualifying_scope))
11368 class_type = qualifying_scope;
11369 else
11370 class_type = current_class_type;
11371
11372 if (class_type)
11373 {
11374 if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
11375 declarator->u.id.sfk = sfk_destructor;
11376 else if (IDENTIFIER_TYPENAME_P (unqualified_name))
11377 declarator->u.id.sfk = sfk_conversion;
11378 else if (/* There's no way to declare a constructor
11379 for an anonymous type, even if the type
11380 got a name for linkage purposes. */
11381 !TYPE_WAS_ANONYMOUS (class_type)
11382 && (constructor_name_p (unqualified_name,
11383 class_type)
11384 || (TREE_CODE (unqualified_name) == TYPE_DECL
11385 && (same_type_p
11386 (TREE_TYPE (unqualified_name),
11387 class_type)))))
11388 declarator->u.id.sfk = sfk_constructor;
11389
11390 if (ctor_dtor_or_conv_p && declarator->u.id.sfk != sfk_none)
11391 *ctor_dtor_or_conv_p = -1;
11392 if (qualifying_scope
11393 && TREE_CODE (unqualified_name) == TYPE_DECL
11394 && CLASSTYPE_USE_TEMPLATE (TREE_TYPE (unqualified_name)))
11395 {
11396 error ("invalid use of constructor as a template");
11397 inform ("use %<%T::%D%> instead of %<%T::%T%> to name "
11398 "the constructor in a qualified name",
11399 class_type,
11400 DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
11401 class_type, class_type);
11402 }
11403 }
11404 }
11405
11406 handle_declarator:;
11407 scope = get_scope_of_declarator (declarator);
11408 if (scope)
11409 /* Any names that appear after the declarator-id for a
11410 member are looked up in the containing scope. */
11411 pushed_scope = push_scope (scope);
11412 parser->in_declarator_p = true;
11413 if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
11414 || (declarator && declarator->kind == cdk_id))
11415 /* Default args are only allowed on function
11416 declarations. */
11417 parser->default_arg_ok_p = saved_default_arg_ok_p;
11418 else
11419 parser->default_arg_ok_p = false;
11420
11421 first = false;
11422 }
11423 /* We're done. */
11424 else
11425 break;
11426 }
11427
11428 /* For an abstract declarator, we might wind up with nothing at this
11429 point. That's an error; the declarator is not optional. */
11430 if (!declarator)
11431 cp_parser_error (parser, "expected declarator");
11432
11433 /* If we entered a scope, we must exit it now. */
11434 if (pushed_scope)
11435 pop_scope (pushed_scope);
11436
11437 parser->default_arg_ok_p = saved_default_arg_ok_p;
11438 parser->in_declarator_p = saved_in_declarator_p;
11439
11440 return declarator;
11441 }
11442
11443 /* Parse a ptr-operator.
11444
11445 ptr-operator:
11446 * cv-qualifier-seq [opt]
11447 &
11448 :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
11449
11450 GNU Extension:
11451
11452 ptr-operator:
11453 & cv-qualifier-seq [opt]
11454
11455 Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
11456 Returns ADDR_EXPR if a reference was used. In the case of a
11457 pointer-to-member, *TYPE is filled in with the TYPE containing the
11458 member. *CV_QUALS is filled in with the cv-qualifier-seq, or
11459 TYPE_UNQUALIFIED, if there are no cv-qualifiers. Returns
11460 ERROR_MARK if an error occurred. */
11461
11462 static enum tree_code
11463 cp_parser_ptr_operator (cp_parser* parser,
11464 tree* type,
11465 cp_cv_quals *cv_quals)
11466 {
11467 enum tree_code code = ERROR_MARK;
11468 cp_token *token;
11469
11470 /* Assume that it's not a pointer-to-member. */
11471 *type = NULL_TREE;
11472 /* And that there are no cv-qualifiers. */
11473 *cv_quals = TYPE_UNQUALIFIED;
11474
11475 /* Peek at the next token. */
11476 token = cp_lexer_peek_token (parser->lexer);
11477 /* If it's a `*' or `&' we have a pointer or reference. */
11478 if (token->type == CPP_MULT || token->type == CPP_AND)
11479 {
11480 /* Remember which ptr-operator we were processing. */
11481 code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
11482
11483 /* Consume the `*' or `&'. */
11484 cp_lexer_consume_token (parser->lexer);
11485
11486 /* A `*' can be followed by a cv-qualifier-seq, and so can a
11487 `&', if we are allowing GNU extensions. (The only qualifier
11488 that can legally appear after `&' is `restrict', but that is
11489 enforced during semantic analysis. */
11490 if (code == INDIRECT_REF
11491 || cp_parser_allow_gnu_extensions_p (parser))
11492 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11493 }
11494 else
11495 {
11496 /* Try the pointer-to-member case. */
11497 cp_parser_parse_tentatively (parser);
11498 /* Look for the optional `::' operator. */
11499 cp_parser_global_scope_opt (parser,
11500 /*current_scope_valid_p=*/false);
11501 /* Look for the nested-name specifier. */
11502 cp_parser_nested_name_specifier (parser,
11503 /*typename_keyword_p=*/false,
11504 /*check_dependency_p=*/true,
11505 /*type_p=*/false,
11506 /*is_declaration=*/false);
11507 /* If we found it, and the next token is a `*', then we are
11508 indeed looking at a pointer-to-member operator. */
11509 if (!cp_parser_error_occurred (parser)
11510 && cp_parser_require (parser, CPP_MULT, "`*'"))
11511 {
11512 /* The type of which the member is a member is given by the
11513 current SCOPE. */
11514 *type = parser->scope;
11515 /* The next name will not be qualified. */
11516 parser->scope = NULL_TREE;
11517 parser->qualifying_scope = NULL_TREE;
11518 parser->object_scope = NULL_TREE;
11519 /* Indicate that the `*' operator was used. */
11520 code = INDIRECT_REF;
11521 /* Look for the optional cv-qualifier-seq. */
11522 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11523 }
11524 /* If that didn't work we don't have a ptr-operator. */
11525 if (!cp_parser_parse_definitely (parser))
11526 cp_parser_error (parser, "expected ptr-operator");
11527 }
11528
11529 return code;
11530 }
11531
11532 /* Parse an (optional) cv-qualifier-seq.
11533
11534 cv-qualifier-seq:
11535 cv-qualifier cv-qualifier-seq [opt]
11536
11537 cv-qualifier:
11538 const
11539 volatile
11540
11541 GNU Extension:
11542
11543 cv-qualifier:
11544 __restrict__
11545
11546 Returns a bitmask representing the cv-qualifiers. */
11547
11548 static cp_cv_quals
11549 cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
11550 {
11551 cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
11552
11553 while (true)
11554 {
11555 cp_token *token;
11556 cp_cv_quals cv_qualifier;
11557
11558 /* Peek at the next token. */
11559 token = cp_lexer_peek_token (parser->lexer);
11560 /* See if it's a cv-qualifier. */
11561 switch (token->keyword)
11562 {
11563 case RID_CONST:
11564 cv_qualifier = TYPE_QUAL_CONST;
11565 break;
11566
11567 case RID_VOLATILE:
11568 cv_qualifier = TYPE_QUAL_VOLATILE;
11569 break;
11570
11571 case RID_RESTRICT:
11572 cv_qualifier = TYPE_QUAL_RESTRICT;
11573 break;
11574
11575 default:
11576 cv_qualifier = TYPE_UNQUALIFIED;
11577 break;
11578 }
11579
11580 if (!cv_qualifier)
11581 break;
11582
11583 if (cv_quals & cv_qualifier)
11584 {
11585 error ("duplicate cv-qualifier");
11586 cp_lexer_purge_token (parser->lexer);
11587 }
11588 else
11589 {
11590 cp_lexer_consume_token (parser->lexer);
11591 cv_quals |= cv_qualifier;
11592 }
11593 }
11594
11595 return cv_quals;
11596 }
11597
11598 /* Parse a declarator-id.
11599
11600 declarator-id:
11601 id-expression
11602 :: [opt] nested-name-specifier [opt] type-name
11603
11604 In the `id-expression' case, the value returned is as for
11605 cp_parser_id_expression if the id-expression was an unqualified-id.
11606 If the id-expression was a qualified-id, then a SCOPE_REF is
11607 returned. The first operand is the scope (either a NAMESPACE_DECL
11608 or TREE_TYPE), but the second is still just a representation of an
11609 unqualified-id. */
11610
11611 static tree
11612 cp_parser_declarator_id (cp_parser* parser)
11613 {
11614 /* The expression must be an id-expression. Assume that qualified
11615 names are the names of types so that:
11616
11617 template <class T>
11618 int S<T>::R::i = 3;
11619
11620 will work; we must treat `S<T>::R' as the name of a type.
11621 Similarly, assume that qualified names are templates, where
11622 required, so that:
11623
11624 template <class T>
11625 int S<T>::R<T>::i = 3;
11626
11627 will work, too. */
11628 return cp_parser_id_expression (parser,
11629 /*template_keyword_p=*/false,
11630 /*check_dependency_p=*/false,
11631 /*template_p=*/NULL,
11632 /*declarator_p=*/true);
11633 }
11634
11635 /* Parse a type-id.
11636
11637 type-id:
11638 type-specifier-seq abstract-declarator [opt]
11639
11640 Returns the TYPE specified. */
11641
11642 static tree
11643 cp_parser_type_id (cp_parser* parser)
11644 {
11645 cp_decl_specifier_seq type_specifier_seq;
11646 cp_declarator *abstract_declarator;
11647
11648 /* Parse the type-specifier-seq. */
11649 cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
11650 &type_specifier_seq);
11651 if (type_specifier_seq.type == error_mark_node)
11652 return error_mark_node;
11653
11654 /* There might or might not be an abstract declarator. */
11655 cp_parser_parse_tentatively (parser);
11656 /* Look for the declarator. */
11657 abstract_declarator
11658 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
11659 /*parenthesized_p=*/NULL,
11660 /*member_p=*/false);
11661 /* Check to see if there really was a declarator. */
11662 if (!cp_parser_parse_definitely (parser))
11663 abstract_declarator = NULL;
11664
11665 return groktypename (&type_specifier_seq, abstract_declarator);
11666 }
11667
11668 /* Parse a type-specifier-seq.
11669
11670 type-specifier-seq:
11671 type-specifier type-specifier-seq [opt]
11672
11673 GNU extension:
11674
11675 type-specifier-seq:
11676 attributes type-specifier-seq [opt]
11677
11678 If IS_CONDITION is true, we are at the start of a "condition",
11679 e.g., we've just seen "if (".
11680
11681 Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */
11682
11683 static void
11684 cp_parser_type_specifier_seq (cp_parser* parser,
11685 bool is_condition,
11686 cp_decl_specifier_seq *type_specifier_seq)
11687 {
11688 bool seen_type_specifier = false;
11689 cp_parser_flags flags = CP_PARSER_FLAGS_OPTIONAL;
11690
11691 /* Clear the TYPE_SPECIFIER_SEQ. */
11692 clear_decl_specs (type_specifier_seq);
11693
11694 /* Parse the type-specifiers and attributes. */
11695 while (true)
11696 {
11697 tree type_specifier;
11698 bool is_cv_qualifier;
11699
11700 /* Check for attributes first. */
11701 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
11702 {
11703 type_specifier_seq->attributes =
11704 chainon (type_specifier_seq->attributes,
11705 cp_parser_attributes_opt (parser));
11706 continue;
11707 }
11708
11709 /* Look for the type-specifier. */
11710 type_specifier = cp_parser_type_specifier (parser,
11711 flags,
11712 type_specifier_seq,
11713 /*is_declaration=*/false,
11714 NULL,
11715 &is_cv_qualifier);
11716 if (!type_specifier)
11717 {
11718 /* If the first type-specifier could not be found, this is not a
11719 type-specifier-seq at all. */
11720 if (!seen_type_specifier)
11721 {
11722 cp_parser_error (parser, "expected type-specifier");
11723 type_specifier_seq->type = error_mark_node;
11724 return;
11725 }
11726 /* If subsequent type-specifiers could not be found, the
11727 type-specifier-seq is complete. */
11728 break;
11729 }
11730
11731 seen_type_specifier = true;
11732 /* The standard says that a condition can be:
11733
11734 type-specifier-seq declarator = assignment-expression
11735
11736 However, given:
11737
11738 struct S {};
11739 if (int S = ...)
11740
11741 we should treat the "S" as a declarator, not as a
11742 type-specifier. The standard doesn't say that explicitly for
11743 type-specifier-seq, but it does say that for
11744 decl-specifier-seq in an ordinary declaration. Perhaps it
11745 would be clearer just to allow a decl-specifier-seq here, and
11746 then add a semantic restriction that if any decl-specifiers
11747 that are not type-specifiers appear, the program is invalid. */
11748 if (is_condition && !is_cv_qualifier)
11749 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
11750 }
11751
11752 return;
11753 }
11754
11755 /* Parse a parameter-declaration-clause.
11756
11757 parameter-declaration-clause:
11758 parameter-declaration-list [opt] ... [opt]
11759 parameter-declaration-list , ...
11760
11761 Returns a representation for the parameter declarations. A return
11762 value of NULL indicates a parameter-declaration-clause consisting
11763 only of an ellipsis. */
11764
11765 static cp_parameter_declarator *
11766 cp_parser_parameter_declaration_clause (cp_parser* parser)
11767 {
11768 cp_parameter_declarator *parameters;
11769 cp_token *token;
11770 bool ellipsis_p;
11771 bool is_error;
11772
11773 /* Peek at the next token. */
11774 token = cp_lexer_peek_token (parser->lexer);
11775 /* Check for trivial parameter-declaration-clauses. */
11776 if (token->type == CPP_ELLIPSIS)
11777 {
11778 /* Consume the `...' token. */
11779 cp_lexer_consume_token (parser->lexer);
11780 return NULL;
11781 }
11782 else if (token->type == CPP_CLOSE_PAREN)
11783 /* There are no parameters. */
11784 {
11785 #ifndef NO_IMPLICIT_EXTERN_C
11786 if (in_system_header && current_class_type == NULL
11787 && current_lang_name == lang_name_c)
11788 return NULL;
11789 else
11790 #endif
11791 return no_parameters;
11792 }
11793 /* Check for `(void)', too, which is a special case. */
11794 else if (token->keyword == RID_VOID
11795 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
11796 == CPP_CLOSE_PAREN))
11797 {
11798 /* Consume the `void' token. */
11799 cp_lexer_consume_token (parser->lexer);
11800 /* There are no parameters. */
11801 return no_parameters;
11802 }
11803
11804 /* Parse the parameter-declaration-list. */
11805 parameters = cp_parser_parameter_declaration_list (parser, &is_error);
11806 /* If a parse error occurred while parsing the
11807 parameter-declaration-list, then the entire
11808 parameter-declaration-clause is erroneous. */
11809 if (is_error)
11810 return NULL;
11811
11812 /* Peek at the next token. */
11813 token = cp_lexer_peek_token (parser->lexer);
11814 /* If it's a `,', the clause should terminate with an ellipsis. */
11815 if (token->type == CPP_COMMA)
11816 {
11817 /* Consume the `,'. */
11818 cp_lexer_consume_token (parser->lexer);
11819 /* Expect an ellipsis. */
11820 ellipsis_p
11821 = (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
11822 }
11823 /* It might also be `...' if the optional trailing `,' was
11824 omitted. */
11825 else if (token->type == CPP_ELLIPSIS)
11826 {
11827 /* Consume the `...' token. */
11828 cp_lexer_consume_token (parser->lexer);
11829 /* And remember that we saw it. */
11830 ellipsis_p = true;
11831 }
11832 else
11833 ellipsis_p = false;
11834
11835 /* Finish the parameter list. */
11836 if (parameters && ellipsis_p)
11837 parameters->ellipsis_p = true;
11838
11839 return parameters;
11840 }
11841
11842 /* Parse a parameter-declaration-list.
11843
11844 parameter-declaration-list:
11845 parameter-declaration
11846 parameter-declaration-list , parameter-declaration
11847
11848 Returns a representation of the parameter-declaration-list, as for
11849 cp_parser_parameter_declaration_clause. However, the
11850 `void_list_node' is never appended to the list. Upon return,
11851 *IS_ERROR will be true iff an error occurred. */
11852
11853 static cp_parameter_declarator *
11854 cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
11855 {
11856 cp_parameter_declarator *parameters = NULL;
11857 cp_parameter_declarator **tail = &parameters;
11858
11859 /* Assume all will go well. */
11860 *is_error = false;
11861
11862 /* Look for more parameters. */
11863 while (true)
11864 {
11865 cp_parameter_declarator *parameter;
11866 bool parenthesized_p;
11867 /* Parse the parameter. */
11868 parameter
11869 = cp_parser_parameter_declaration (parser,
11870 /*template_parm_p=*/false,
11871 &parenthesized_p);
11872
11873 /* If a parse error occurred parsing the parameter declaration,
11874 then the entire parameter-declaration-list is erroneous. */
11875 if (!parameter)
11876 {
11877 *is_error = true;
11878 parameters = NULL;
11879 break;
11880 }
11881 /* Add the new parameter to the list. */
11882 *tail = parameter;
11883 tail = &parameter->next;
11884
11885 /* Peek at the next token. */
11886 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
11887 || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS)
11888 /* These are for Objective-C++ */
11889 || cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
11890 || cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
11891 /* The parameter-declaration-list is complete. */
11892 break;
11893 else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11894 {
11895 cp_token *token;
11896
11897 /* Peek at the next token. */
11898 token = cp_lexer_peek_nth_token (parser->lexer, 2);
11899 /* If it's an ellipsis, then the list is complete. */
11900 if (token->type == CPP_ELLIPSIS)
11901 break;
11902 /* Otherwise, there must be more parameters. Consume the
11903 `,'. */
11904 cp_lexer_consume_token (parser->lexer);
11905 /* When parsing something like:
11906
11907 int i(float f, double d)
11908
11909 we can tell after seeing the declaration for "f" that we
11910 are not looking at an initialization of a variable "i",
11911 but rather at the declaration of a function "i".
11912
11913 Due to the fact that the parsing of template arguments
11914 (as specified to a template-id) requires backtracking we
11915 cannot use this technique when inside a template argument
11916 list. */
11917 if (!parser->in_template_argument_list_p
11918 && !parser->in_type_id_in_expr_p
11919 && cp_parser_uncommitted_to_tentative_parse_p (parser)
11920 /* However, a parameter-declaration of the form
11921 "foat(f)" (which is a valid declaration of a
11922 parameter "f") can also be interpreted as an
11923 expression (the conversion of "f" to "float"). */
11924 && !parenthesized_p)
11925 cp_parser_commit_to_tentative_parse (parser);
11926 }
11927 else
11928 {
11929 cp_parser_error (parser, "expected %<,%> or %<...%>");
11930 if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
11931 cp_parser_skip_to_closing_parenthesis (parser,
11932 /*recovering=*/true,
11933 /*or_comma=*/false,
11934 /*consume_paren=*/false);
11935 break;
11936 }
11937 }
11938
11939 return parameters;
11940 }
11941
11942 /* Parse a parameter declaration.
11943
11944 parameter-declaration:
11945 decl-specifier-seq declarator
11946 decl-specifier-seq declarator = assignment-expression
11947 decl-specifier-seq abstract-declarator [opt]
11948 decl-specifier-seq abstract-declarator [opt] = assignment-expression
11949
11950 If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
11951 declares a template parameter. (In that case, a non-nested `>'
11952 token encountered during the parsing of the assignment-expression
11953 is not interpreted as a greater-than operator.)
11954
11955 Returns a representation of the parameter, or NULL if an error
11956 occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
11957 true iff the declarator is of the form "(p)". */
11958
11959 static cp_parameter_declarator *
11960 cp_parser_parameter_declaration (cp_parser *parser,
11961 bool template_parm_p,
11962 bool *parenthesized_p)
11963 {
11964 int declares_class_or_enum;
11965 bool greater_than_is_operator_p;
11966 cp_decl_specifier_seq decl_specifiers;
11967 cp_declarator *declarator;
11968 tree default_argument;
11969 cp_token *token;
11970 const char *saved_message;
11971
11972 /* In a template parameter, `>' is not an operator.
11973
11974 [temp.param]
11975
11976 When parsing a default template-argument for a non-type
11977 template-parameter, the first non-nested `>' is taken as the end
11978 of the template parameter-list rather than a greater-than
11979 operator. */
11980 greater_than_is_operator_p = !template_parm_p;
11981
11982 /* Type definitions may not appear in parameter types. */
11983 saved_message = parser->type_definition_forbidden_message;
11984 parser->type_definition_forbidden_message
11985 = "types may not be defined in parameter types";
11986
11987 /* Parse the declaration-specifiers. */
11988 cp_parser_decl_specifier_seq (parser,
11989 CP_PARSER_FLAGS_NONE,
11990 &decl_specifiers,
11991 &declares_class_or_enum);
11992 /* If an error occurred, there's no reason to attempt to parse the
11993 rest of the declaration. */
11994 if (cp_parser_error_occurred (parser))
11995 {
11996 parser->type_definition_forbidden_message = saved_message;
11997 return NULL;
11998 }
11999
12000 /* Peek at the next token. */
12001 token = cp_lexer_peek_token (parser->lexer);
12002 /* If the next token is a `)', `,', `=', `>', or `...', then there
12003 is no declarator. */
12004 if (token->type == CPP_CLOSE_PAREN
12005 || token->type == CPP_COMMA
12006 || token->type == CPP_EQ
12007 || token->type == CPP_ELLIPSIS
12008 || token->type == CPP_GREATER)
12009 {
12010 declarator = NULL;
12011 if (parenthesized_p)
12012 *parenthesized_p = false;
12013 }
12014 /* Otherwise, there should be a declarator. */
12015 else
12016 {
12017 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
12018 parser->default_arg_ok_p = false;
12019
12020 /* After seeing a decl-specifier-seq, if the next token is not a
12021 "(", there is no possibility that the code is a valid
12022 expression. Therefore, if parsing tentatively, we commit at
12023 this point. */
12024 if (!parser->in_template_argument_list_p
12025 /* In an expression context, having seen:
12026
12027 (int((char ...
12028
12029 we cannot be sure whether we are looking at a
12030 function-type (taking a "char" as a parameter) or a cast
12031 of some object of type "char" to "int". */
12032 && !parser->in_type_id_in_expr_p
12033 && cp_parser_uncommitted_to_tentative_parse_p (parser)
12034 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
12035 cp_parser_commit_to_tentative_parse (parser);
12036 /* Parse the declarator. */
12037 declarator = cp_parser_declarator (parser,
12038 CP_PARSER_DECLARATOR_EITHER,
12039 /*ctor_dtor_or_conv_p=*/NULL,
12040 parenthesized_p,
12041 /*member_p=*/false);
12042 parser->default_arg_ok_p = saved_default_arg_ok_p;
12043 /* After the declarator, allow more attributes. */
12044 decl_specifiers.attributes
12045 = chainon (decl_specifiers.attributes,
12046 cp_parser_attributes_opt (parser));
12047 }
12048
12049 /* The restriction on defining new types applies only to the type
12050 of the parameter, not to the default argument. */
12051 parser->type_definition_forbidden_message = saved_message;
12052
12053 /* If the next token is `=', then process a default argument. */
12054 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
12055 {
12056 bool saved_greater_than_is_operator_p;
12057 /* Consume the `='. */
12058 cp_lexer_consume_token (parser->lexer);
12059
12060 /* If we are defining a class, then the tokens that make up the
12061 default argument must be saved and processed later. */
12062 if (!template_parm_p && at_class_scope_p ()
12063 && TYPE_BEING_DEFINED (current_class_type))
12064 {
12065 unsigned depth = 0;
12066 cp_token *first_token;
12067 cp_token *token;
12068
12069 /* Add tokens until we have processed the entire default
12070 argument. We add the range [first_token, token). */
12071 first_token = cp_lexer_peek_token (parser->lexer);
12072 while (true)
12073 {
12074 bool done = false;
12075
12076 /* Peek at the next token. */
12077 token = cp_lexer_peek_token (parser->lexer);
12078 /* What we do depends on what token we have. */
12079 switch (token->type)
12080 {
12081 /* In valid code, a default argument must be
12082 immediately followed by a `,' `)', or `...'. */
12083 case CPP_COMMA:
12084 case CPP_CLOSE_PAREN:
12085 case CPP_ELLIPSIS:
12086 /* If we run into a non-nested `;', `}', or `]',
12087 then the code is invalid -- but the default
12088 argument is certainly over. */
12089 case CPP_SEMICOLON:
12090 case CPP_CLOSE_BRACE:
12091 case CPP_CLOSE_SQUARE:
12092 if (depth == 0)
12093 done = true;
12094 /* Update DEPTH, if necessary. */
12095 else if (token->type == CPP_CLOSE_PAREN
12096 || token->type == CPP_CLOSE_BRACE
12097 || token->type == CPP_CLOSE_SQUARE)
12098 --depth;
12099 break;
12100
12101 case CPP_OPEN_PAREN:
12102 case CPP_OPEN_SQUARE:
12103 case CPP_OPEN_BRACE:
12104 ++depth;
12105 break;
12106
12107 case CPP_GREATER:
12108 /* If we see a non-nested `>', and `>' is not an
12109 operator, then it marks the end of the default
12110 argument. */
12111 if (!depth && !greater_than_is_operator_p)
12112 done = true;
12113 break;
12114
12115 /* If we run out of tokens, issue an error message. */
12116 case CPP_EOF:
12117 error ("file ends in default argument");
12118 done = true;
12119 break;
12120
12121 case CPP_NAME:
12122 case CPP_SCOPE:
12123 /* In these cases, we should look for template-ids.
12124 For example, if the default argument is
12125 `X<int, double>()', we need to do name lookup to
12126 figure out whether or not `X' is a template; if
12127 so, the `,' does not end the default argument.
12128
12129 That is not yet done. */
12130 break;
12131
12132 default:
12133 break;
12134 }
12135
12136 /* If we've reached the end, stop. */
12137 if (done)
12138 break;
12139
12140 /* Add the token to the token block. */
12141 token = cp_lexer_consume_token (parser->lexer);
12142 }
12143
12144 /* Create a DEFAULT_ARG to represented the unparsed default
12145 argument. */
12146 default_argument = make_node (DEFAULT_ARG);
12147 DEFARG_TOKENS (default_argument)
12148 = cp_token_cache_new (first_token, token);
12149 DEFARG_INSTANTIATIONS (default_argument) = NULL;
12150 }
12151 /* Outside of a class definition, we can just parse the
12152 assignment-expression. */
12153 else
12154 {
12155 bool saved_local_variables_forbidden_p;
12156
12157 /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
12158 set correctly. */
12159 saved_greater_than_is_operator_p
12160 = parser->greater_than_is_operator_p;
12161 parser->greater_than_is_operator_p = greater_than_is_operator_p;
12162 /* Local variable names (and the `this' keyword) may not
12163 appear in a default argument. */
12164 saved_local_variables_forbidden_p
12165 = parser->local_variables_forbidden_p;
12166 parser->local_variables_forbidden_p = true;
12167 /* Parse the assignment-expression. */
12168 default_argument
12169 = cp_parser_assignment_expression (parser, /*cast_p=*/false);
12170 /* Restore saved state. */
12171 parser->greater_than_is_operator_p
12172 = saved_greater_than_is_operator_p;
12173 parser->local_variables_forbidden_p
12174 = saved_local_variables_forbidden_p;
12175 }
12176 if (!parser->default_arg_ok_p)
12177 {
12178 if (!flag_pedantic_errors)
12179 warning (0, "deprecated use of default argument for parameter of non-function");
12180 else
12181 {
12182 error ("default arguments are only permitted for function parameters");
12183 default_argument = NULL_TREE;
12184 }
12185 }
12186 }
12187 else
12188 default_argument = NULL_TREE;
12189
12190 return make_parameter_declarator (&decl_specifiers,
12191 declarator,
12192 default_argument);
12193 }
12194
12195 /* Parse a function-body.
12196
12197 function-body:
12198 compound_statement */
12199
12200 static void
12201 cp_parser_function_body (cp_parser *parser)
12202 {
12203 cp_parser_compound_statement (parser, NULL, false);
12204 }
12205
12206 /* Parse a ctor-initializer-opt followed by a function-body. Return
12207 true if a ctor-initializer was present. */
12208
12209 static bool
12210 cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
12211 {
12212 tree body;
12213 bool ctor_initializer_p;
12214
12215 /* Begin the function body. */
12216 body = begin_function_body ();
12217 /* Parse the optional ctor-initializer. */
12218 ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
12219 /* Parse the function-body. */
12220 cp_parser_function_body (parser);
12221 /* Finish the function body. */
12222 finish_function_body (body);
12223
12224 return ctor_initializer_p;
12225 }
12226
12227 /* Parse an initializer.
12228
12229 initializer:
12230 = initializer-clause
12231 ( expression-list )
12232
12233 Returns a expression representing the initializer. If no
12234 initializer is present, NULL_TREE is returned.
12235
12236 *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
12237 production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
12238 set to FALSE if there is no initializer present. If there is an
12239 initializer, and it is not a constant-expression, *NON_CONSTANT_P
12240 is set to true; otherwise it is set to false. */
12241
12242 static tree
12243 cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
12244 bool* non_constant_p)
12245 {
12246 cp_token *token;
12247 tree init;
12248
12249 /* Peek at the next token. */
12250 token = cp_lexer_peek_token (parser->lexer);
12251
12252 /* Let our caller know whether or not this initializer was
12253 parenthesized. */
12254 *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
12255 /* Assume that the initializer is constant. */
12256 *non_constant_p = false;
12257
12258 if (token->type == CPP_EQ)
12259 {
12260 /* Consume the `='. */
12261 cp_lexer_consume_token (parser->lexer);
12262 /* Parse the initializer-clause. */
12263 init = cp_parser_initializer_clause (parser, non_constant_p);
12264 }
12265 else if (token->type == CPP_OPEN_PAREN)
12266 init = cp_parser_parenthesized_expression_list (parser, false,
12267 /*cast_p=*/false,
12268 non_constant_p);
12269 else
12270 {
12271 /* Anything else is an error. */
12272 cp_parser_error (parser, "expected initializer");
12273 init = error_mark_node;
12274 }
12275
12276 return init;
12277 }
12278
12279 /* Parse an initializer-clause.
12280
12281 initializer-clause:
12282 assignment-expression
12283 { initializer-list , [opt] }
12284 { }
12285
12286 Returns an expression representing the initializer.
12287
12288 If the `assignment-expression' production is used the value
12289 returned is simply a representation for the expression.
12290
12291 Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
12292 the elements of the initializer-list (or NULL_TREE, if the last
12293 production is used). The TREE_TYPE for the CONSTRUCTOR will be
12294 NULL_TREE. There is no way to detect whether or not the optional
12295 trailing `,' was provided. NON_CONSTANT_P is as for
12296 cp_parser_initializer. */
12297
12298 static tree
12299 cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
12300 {
12301 tree initializer;
12302
12303 /* Assume the expression is constant. */
12304 *non_constant_p = false;
12305
12306 /* If it is not a `{', then we are looking at an
12307 assignment-expression. */
12308 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
12309 {
12310 initializer
12311 = cp_parser_constant_expression (parser,
12312 /*allow_non_constant_p=*/true,
12313 non_constant_p);
12314 if (!*non_constant_p)
12315 initializer = fold_non_dependent_expr (initializer);
12316 }
12317 else
12318 {
12319 /* Consume the `{' token. */
12320 cp_lexer_consume_token (parser->lexer);
12321 /* Create a CONSTRUCTOR to represent the braced-initializer. */
12322 initializer = make_node (CONSTRUCTOR);
12323 /* If it's not a `}', then there is a non-trivial initializer. */
12324 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
12325 {
12326 /* Parse the initializer list. */
12327 CONSTRUCTOR_ELTS (initializer)
12328 = cp_parser_initializer_list (parser, non_constant_p);
12329 /* A trailing `,' token is allowed. */
12330 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
12331 cp_lexer_consume_token (parser->lexer);
12332 }
12333 /* Now, there should be a trailing `}'. */
12334 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12335 }
12336
12337 return initializer;
12338 }
12339
12340 /* Parse an initializer-list.
12341
12342 initializer-list:
12343 initializer-clause
12344 initializer-list , initializer-clause
12345
12346 GNU Extension:
12347
12348 initializer-list:
12349 identifier : initializer-clause
12350 initializer-list, identifier : initializer-clause
12351
12352 Returns a TREE_LIST. The TREE_VALUE of each node is an expression
12353 for the initializer. If the TREE_PURPOSE is non-NULL, it is the
12354 IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
12355 as for cp_parser_initializer. */
12356
12357 static tree
12358 cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
12359 {
12360 tree initializers = NULL_TREE;
12361
12362 /* Assume all of the expressions are constant. */
12363 *non_constant_p = false;
12364
12365 /* Parse the rest of the list. */
12366 while (true)
12367 {
12368 cp_token *token;
12369 tree identifier;
12370 tree initializer;
12371 bool clause_non_constant_p;
12372
12373 /* If the next token is an identifier and the following one is a
12374 colon, we are looking at the GNU designated-initializer
12375 syntax. */
12376 if (cp_parser_allow_gnu_extensions_p (parser)
12377 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
12378 && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
12379 {
12380 /* Consume the identifier. */
12381 identifier = cp_lexer_consume_token (parser->lexer)->value;
12382 /* Consume the `:'. */
12383 cp_lexer_consume_token (parser->lexer);
12384 }
12385 else
12386 identifier = NULL_TREE;
12387
12388 /* Parse the initializer. */
12389 initializer = cp_parser_initializer_clause (parser,
12390 &clause_non_constant_p);
12391 /* If any clause is non-constant, so is the entire initializer. */
12392 if (clause_non_constant_p)
12393 *non_constant_p = true;
12394 /* Add it to the list. */
12395 initializers = tree_cons (identifier, initializer, initializers);
12396
12397 /* If the next token is not a comma, we have reached the end of
12398 the list. */
12399 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
12400 break;
12401
12402 /* Peek at the next token. */
12403 token = cp_lexer_peek_nth_token (parser->lexer, 2);
12404 /* If the next token is a `}', then we're still done. An
12405 initializer-clause can have a trailing `,' after the
12406 initializer-list and before the closing `}'. */
12407 if (token->type == CPP_CLOSE_BRACE)
12408 break;
12409
12410 /* Consume the `,' token. */
12411 cp_lexer_consume_token (parser->lexer);
12412 }
12413
12414 /* The initializers were built up in reverse order, so we need to
12415 reverse them now. */
12416 return nreverse (initializers);
12417 }
12418
12419 /* Classes [gram.class] */
12420
12421 /* Parse a class-name.
12422
12423 class-name:
12424 identifier
12425 template-id
12426
12427 TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
12428 to indicate that names looked up in dependent types should be
12429 assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
12430 keyword has been used to indicate that the name that appears next
12431 is a template. TAG_TYPE indicates the explicit tag given before
12432 the type name, if any. If CHECK_DEPENDENCY_P is FALSE, names are
12433 looked up in dependent scopes. If CLASS_HEAD_P is TRUE, this class
12434 is the class being defined in a class-head.
12435
12436 Returns the TYPE_DECL representing the class. */
12437
12438 static tree
12439 cp_parser_class_name (cp_parser *parser,
12440 bool typename_keyword_p,
12441 bool template_keyword_p,
12442 enum tag_types tag_type,
12443 bool check_dependency_p,
12444 bool class_head_p,
12445 bool is_declaration)
12446 {
12447 tree decl;
12448 tree scope;
12449 bool typename_p;
12450 cp_token *token;
12451
12452 /* All class-names start with an identifier. */
12453 token = cp_lexer_peek_token (parser->lexer);
12454 if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
12455 {
12456 cp_parser_error (parser, "expected class-name");
12457 return error_mark_node;
12458 }
12459
12460 /* PARSER->SCOPE can be cleared when parsing the template-arguments
12461 to a template-id, so we save it here. */
12462 scope = parser->scope;
12463 if (scope == error_mark_node)
12464 return error_mark_node;
12465
12466 /* Any name names a type if we're following the `typename' keyword
12467 in a qualified name where the enclosing scope is type-dependent. */
12468 typename_p = (typename_keyword_p && scope && TYPE_P (scope)
12469 && dependent_type_p (scope));
12470 /* Handle the common case (an identifier, but not a template-id)
12471 efficiently. */
12472 if (token->type == CPP_NAME
12473 && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
12474 {
12475 tree identifier;
12476
12477 /* Look for the identifier. */
12478 identifier = cp_parser_identifier (parser);
12479 /* If the next token isn't an identifier, we are certainly not
12480 looking at a class-name. */
12481 if (identifier == error_mark_node)
12482 decl = error_mark_node;
12483 /* If we know this is a type-name, there's no need to look it
12484 up. */
12485 else if (typename_p)
12486 decl = identifier;
12487 else
12488 {
12489 /* If the next token is a `::', then the name must be a type
12490 name.
12491
12492 [basic.lookup.qual]
12493
12494 During the lookup for a name preceding the :: scope
12495 resolution operator, object, function, and enumerator
12496 names are ignored. */
12497 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12498 tag_type = typename_type;
12499 /* Look up the name. */
12500 decl = cp_parser_lookup_name (parser, identifier,
12501 tag_type,
12502 /*is_template=*/false,
12503 /*is_namespace=*/false,
12504 check_dependency_p,
12505 /*ambiguous_p=*/NULL);
12506 }
12507 }
12508 else
12509 {
12510 /* Try a template-id. */
12511 decl = cp_parser_template_id (parser, template_keyword_p,
12512 check_dependency_p,
12513 is_declaration);
12514 if (decl == error_mark_node)
12515 return error_mark_node;
12516 }
12517
12518 decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
12519
12520 /* If this is a typename, create a TYPENAME_TYPE. */
12521 if (typename_p && decl != error_mark_node)
12522 {
12523 decl = make_typename_type (scope, decl, typename_type, /*complain=*/1);
12524 if (decl != error_mark_node)
12525 decl = TYPE_NAME (decl);
12526 }
12527
12528 /* Check to see that it is really the name of a class. */
12529 if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
12530 && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
12531 && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12532 /* Situations like this:
12533
12534 template <typename T> struct A {
12535 typename T::template X<int>::I i;
12536 };
12537
12538 are problematic. Is `T::template X<int>' a class-name? The
12539 standard does not seem to be definitive, but there is no other
12540 valid interpretation of the following `::'. Therefore, those
12541 names are considered class-names. */
12542 decl = TYPE_NAME (make_typename_type (scope, decl, tag_type, tf_error));
12543 else if (decl == error_mark_node
12544 || TREE_CODE (decl) != TYPE_DECL
12545 || TREE_TYPE (decl) == error_mark_node
12546 || !IS_AGGR_TYPE (TREE_TYPE (decl)))
12547 {
12548 cp_parser_error (parser, "expected class-name");
12549 return error_mark_node;
12550 }
12551
12552 return decl;
12553 }
12554
12555 /* Parse a class-specifier.
12556
12557 class-specifier:
12558 class-head { member-specification [opt] }
12559
12560 Returns the TREE_TYPE representing the class. */
12561
12562 static tree
12563 cp_parser_class_specifier (cp_parser* parser)
12564 {
12565 cp_token *token;
12566 tree type;
12567 tree attributes = NULL_TREE;
12568 int has_trailing_semicolon;
12569 bool nested_name_specifier_p;
12570 unsigned saved_num_template_parameter_lists;
12571 tree old_scope = NULL_TREE;
12572 tree scope = NULL_TREE;
12573
12574 push_deferring_access_checks (dk_no_deferred);
12575
12576 /* Parse the class-head. */
12577 type = cp_parser_class_head (parser,
12578 &nested_name_specifier_p,
12579 &attributes);
12580 /* If the class-head was a semantic disaster, skip the entire body
12581 of the class. */
12582 if (!type)
12583 {
12584 cp_parser_skip_to_end_of_block_or_statement (parser);
12585 pop_deferring_access_checks ();
12586 return error_mark_node;
12587 }
12588
12589 /* Look for the `{'. */
12590 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
12591 {
12592 pop_deferring_access_checks ();
12593 return error_mark_node;
12594 }
12595
12596 /* Issue an error message if type-definitions are forbidden here. */
12597 cp_parser_check_type_definition (parser);
12598 /* Remember that we are defining one more class. */
12599 ++parser->num_classes_being_defined;
12600 /* Inside the class, surrounding template-parameter-lists do not
12601 apply. */
12602 saved_num_template_parameter_lists
12603 = parser->num_template_parameter_lists;
12604 parser->num_template_parameter_lists = 0;
12605
12606 /* Start the class. */
12607 if (nested_name_specifier_p)
12608 {
12609 scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type));
12610 old_scope = push_inner_scope (scope);
12611 }
12612 type = begin_class_definition (type);
12613
12614 if (type == error_mark_node)
12615 /* If the type is erroneous, skip the entire body of the class. */
12616 cp_parser_skip_to_closing_brace (parser);
12617 else
12618 /* Parse the member-specification. */
12619 cp_parser_member_specification_opt (parser);
12620
12621 /* Look for the trailing `}'. */
12622 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12623 /* We get better error messages by noticing a common problem: a
12624 missing trailing `;'. */
12625 token = cp_lexer_peek_token (parser->lexer);
12626 has_trailing_semicolon = (token->type == CPP_SEMICOLON);
12627 /* Look for trailing attributes to apply to this class. */
12628 if (cp_parser_allow_gnu_extensions_p (parser))
12629 {
12630 tree sub_attr = cp_parser_attributes_opt (parser);
12631 attributes = chainon (attributes, sub_attr);
12632 }
12633 if (type != error_mark_node)
12634 type = finish_struct (type, attributes);
12635 if (nested_name_specifier_p)
12636 pop_inner_scope (old_scope, scope);
12637 /* If this class is not itself within the scope of another class,
12638 then we need to parse the bodies of all of the queued function
12639 definitions. Note that the queued functions defined in a class
12640 are not always processed immediately following the
12641 class-specifier for that class. Consider:
12642
12643 struct A {
12644 struct B { void f() { sizeof (A); } };
12645 };
12646
12647 If `f' were processed before the processing of `A' were
12648 completed, there would be no way to compute the size of `A'.
12649 Note that the nesting we are interested in here is lexical --
12650 not the semantic nesting given by TYPE_CONTEXT. In particular,
12651 for:
12652
12653 struct A { struct B; };
12654 struct A::B { void f() { } };
12655
12656 there is no need to delay the parsing of `A::B::f'. */
12657 if (--parser->num_classes_being_defined == 0)
12658 {
12659 tree queue_entry;
12660 tree fn;
12661 tree class_type = NULL_TREE;
12662 tree pushed_scope = NULL_TREE;
12663
12664 /* In a first pass, parse default arguments to the functions.
12665 Then, in a second pass, parse the bodies of the functions.
12666 This two-phased approach handles cases like:
12667
12668 struct S {
12669 void f() { g(); }
12670 void g(int i = 3);
12671 };
12672
12673 */
12674 for (TREE_PURPOSE (parser->unparsed_functions_queues)
12675 = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
12676 (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
12677 TREE_PURPOSE (parser->unparsed_functions_queues)
12678 = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
12679 {
12680 fn = TREE_VALUE (queue_entry);
12681 /* If there are default arguments that have not yet been processed,
12682 take care of them now. */
12683 if (class_type != TREE_PURPOSE (queue_entry))
12684 {
12685 if (pushed_scope)
12686 pop_scope (pushed_scope);
12687 class_type = TREE_PURPOSE (queue_entry);
12688 pushed_scope = push_scope (class_type);
12689 }
12690 /* Make sure that any template parameters are in scope. */
12691 maybe_begin_member_template_processing (fn);
12692 /* Parse the default argument expressions. */
12693 cp_parser_late_parsing_default_args (parser, fn);
12694 /* Remove any template parameters from the symbol table. */
12695 maybe_end_member_template_processing ();
12696 }
12697 if (pushed_scope)
12698 pop_scope (pushed_scope);
12699 /* Now parse the body of the functions. */
12700 for (TREE_VALUE (parser->unparsed_functions_queues)
12701 = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
12702 (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
12703 TREE_VALUE (parser->unparsed_functions_queues)
12704 = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
12705 {
12706 /* Figure out which function we need to process. */
12707 fn = TREE_VALUE (queue_entry);
12708
12709 /* A hack to prevent garbage collection. */
12710 function_depth++;
12711
12712 /* Parse the function. */
12713 cp_parser_late_parsing_for_member (parser, fn);
12714 function_depth--;
12715 }
12716 }
12717
12718 /* Put back any saved access checks. */
12719 pop_deferring_access_checks ();
12720
12721 /* Restore the count of active template-parameter-lists. */
12722 parser->num_template_parameter_lists
12723 = saved_num_template_parameter_lists;
12724
12725 return type;
12726 }
12727
12728 /* Parse a class-head.
12729
12730 class-head:
12731 class-key identifier [opt] base-clause [opt]
12732 class-key nested-name-specifier identifier base-clause [opt]
12733 class-key nested-name-specifier [opt] template-id
12734 base-clause [opt]
12735
12736 GNU Extensions:
12737 class-key attributes identifier [opt] base-clause [opt]
12738 class-key attributes nested-name-specifier identifier base-clause [opt]
12739 class-key attributes nested-name-specifier [opt] template-id
12740 base-clause [opt]
12741
12742 Returns the TYPE of the indicated class. Sets
12743 *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
12744 involving a nested-name-specifier was used, and FALSE otherwise.
12745
12746 Returns error_mark_node if this is not a class-head.
12747
12748 Returns NULL_TREE if the class-head is syntactically valid, but
12749 semantically invalid in a way that means we should skip the entire
12750 body of the class. */
12751
12752 static tree
12753 cp_parser_class_head (cp_parser* parser,
12754 bool* nested_name_specifier_p,
12755 tree *attributes_p)
12756 {
12757 tree nested_name_specifier;
12758 enum tag_types class_key;
12759 tree id = NULL_TREE;
12760 tree type = NULL_TREE;
12761 tree attributes;
12762 bool template_id_p = false;
12763 bool qualified_p = false;
12764 bool invalid_nested_name_p = false;
12765 bool invalid_explicit_specialization_p = false;
12766 tree pushed_scope = NULL_TREE;
12767 unsigned num_templates;
12768 tree bases;
12769
12770 /* Assume no nested-name-specifier will be present. */
12771 *nested_name_specifier_p = false;
12772 /* Assume no template parameter lists will be used in defining the
12773 type. */
12774 num_templates = 0;
12775
12776 /* Look for the class-key. */
12777 class_key = cp_parser_class_key (parser);
12778 if (class_key == none_type)
12779 return error_mark_node;
12780
12781 /* Parse the attributes. */
12782 attributes = cp_parser_attributes_opt (parser);
12783
12784 /* If the next token is `::', that is invalid -- but sometimes
12785 people do try to write:
12786
12787 struct ::S {};
12788
12789 Handle this gracefully by accepting the extra qualifier, and then
12790 issuing an error about it later if this really is a
12791 class-head. If it turns out just to be an elaborated type
12792 specifier, remain silent. */
12793 if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
12794 qualified_p = true;
12795
12796 push_deferring_access_checks (dk_no_check);
12797
12798 /* Determine the name of the class. Begin by looking for an
12799 optional nested-name-specifier. */
12800 nested_name_specifier
12801 = cp_parser_nested_name_specifier_opt (parser,
12802 /*typename_keyword_p=*/false,
12803 /*check_dependency_p=*/false,
12804 /*type_p=*/false,
12805 /*is_declaration=*/false);
12806 /* If there was a nested-name-specifier, then there *must* be an
12807 identifier. */
12808 if (nested_name_specifier)
12809 {
12810 /* Although the grammar says `identifier', it really means
12811 `class-name' or `template-name'. You are only allowed to
12812 define a class that has already been declared with this
12813 syntax.
12814
12815 The proposed resolution for Core Issue 180 says that whever
12816 you see `class T::X' you should treat `X' as a type-name.
12817
12818 It is OK to define an inaccessible class; for example:
12819
12820 class A { class B; };
12821 class A::B {};
12822
12823 We do not know if we will see a class-name, or a
12824 template-name. We look for a class-name first, in case the
12825 class-name is a template-id; if we looked for the
12826 template-name first we would stop after the template-name. */
12827 cp_parser_parse_tentatively (parser);
12828 type = cp_parser_class_name (parser,
12829 /*typename_keyword_p=*/false,
12830 /*template_keyword_p=*/false,
12831 class_type,
12832 /*check_dependency_p=*/false,
12833 /*class_head_p=*/true,
12834 /*is_declaration=*/false);
12835 /* If that didn't work, ignore the nested-name-specifier. */
12836 if (!cp_parser_parse_definitely (parser))
12837 {
12838 invalid_nested_name_p = true;
12839 id = cp_parser_identifier (parser);
12840 if (id == error_mark_node)
12841 id = NULL_TREE;
12842 }
12843 /* If we could not find a corresponding TYPE, treat this
12844 declaration like an unqualified declaration. */
12845 if (type == error_mark_node)
12846 nested_name_specifier = NULL_TREE;
12847 /* Otherwise, count the number of templates used in TYPE and its
12848 containing scopes. */
12849 else
12850 {
12851 tree scope;
12852
12853 for (scope = TREE_TYPE (type);
12854 scope && TREE_CODE (scope) != NAMESPACE_DECL;
12855 scope = (TYPE_P (scope)
12856 ? TYPE_CONTEXT (scope)
12857 : DECL_CONTEXT (scope)))
12858 if (TYPE_P (scope)
12859 && CLASS_TYPE_P (scope)
12860 && CLASSTYPE_TEMPLATE_INFO (scope)
12861 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
12862 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
12863 ++num_templates;
12864 }
12865 }
12866 /* Otherwise, the identifier is optional. */
12867 else
12868 {
12869 /* We don't know whether what comes next is a template-id,
12870 an identifier, or nothing at all. */
12871 cp_parser_parse_tentatively (parser);
12872 /* Check for a template-id. */
12873 id = cp_parser_template_id (parser,
12874 /*template_keyword_p=*/false,
12875 /*check_dependency_p=*/true,
12876 /*is_declaration=*/true);
12877 /* If that didn't work, it could still be an identifier. */
12878 if (!cp_parser_parse_definitely (parser))
12879 {
12880 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
12881 id = cp_parser_identifier (parser);
12882 else
12883 id = NULL_TREE;
12884 }
12885 else
12886 {
12887 template_id_p = true;
12888 ++num_templates;
12889 }
12890 }
12891
12892 pop_deferring_access_checks ();
12893
12894 if (id)
12895 cp_parser_check_for_invalid_template_id (parser, id);
12896
12897 /* If it's not a `:' or a `{' then we can't really be looking at a
12898 class-head, since a class-head only appears as part of a
12899 class-specifier. We have to detect this situation before calling
12900 xref_tag, since that has irreversible side-effects. */
12901 if (!cp_parser_next_token_starts_class_definition_p (parser))
12902 {
12903 cp_parser_error (parser, "expected %<{%> or %<:%>");
12904 return error_mark_node;
12905 }
12906
12907 /* At this point, we're going ahead with the class-specifier, even
12908 if some other problem occurs. */
12909 cp_parser_commit_to_tentative_parse (parser);
12910 /* Issue the error about the overly-qualified name now. */
12911 if (qualified_p)
12912 cp_parser_error (parser,
12913 "global qualification of class name is invalid");
12914 else if (invalid_nested_name_p)
12915 cp_parser_error (parser,
12916 "qualified name does not name a class");
12917 else if (nested_name_specifier)
12918 {
12919 tree scope;
12920
12921 /* Reject typedef-names in class heads. */
12922 if (!DECL_IMPLICIT_TYPEDEF_P (type))
12923 {
12924 error ("invalid class name in declaration of %qD", type);
12925 type = NULL_TREE;
12926 goto done;
12927 }
12928
12929 /* Figure out in what scope the declaration is being placed. */
12930 scope = current_scope ();
12931 /* If that scope does not contain the scope in which the
12932 class was originally declared, the program is invalid. */
12933 if (scope && !is_ancestor (scope, nested_name_specifier))
12934 {
12935 error ("declaration of %qD in %qD which does not enclose %qD",
12936 type, scope, nested_name_specifier);
12937 type = NULL_TREE;
12938 goto done;
12939 }
12940 /* [dcl.meaning]
12941
12942 A declarator-id shall not be qualified exception of the
12943 definition of a ... nested class outside of its class
12944 ... [or] a the definition or explicit instantiation of a
12945 class member of a namespace outside of its namespace. */
12946 if (scope == nested_name_specifier)
12947 {
12948 pedwarn ("extra qualification ignored");
12949 nested_name_specifier = NULL_TREE;
12950 num_templates = 0;
12951 }
12952 }
12953 /* An explicit-specialization must be preceded by "template <>". If
12954 it is not, try to recover gracefully. */
12955 if (at_namespace_scope_p ()
12956 && parser->num_template_parameter_lists == 0
12957 && template_id_p)
12958 {
12959 error ("an explicit specialization must be preceded by %<template <>%>");
12960 invalid_explicit_specialization_p = true;
12961 /* Take the same action that would have been taken by
12962 cp_parser_explicit_specialization. */
12963 ++parser->num_template_parameter_lists;
12964 begin_specialization ();
12965 }
12966 /* There must be no "return" statements between this point and the
12967 end of this function; set "type "to the correct return value and
12968 use "goto done;" to return. */
12969 /* Make sure that the right number of template parameters were
12970 present. */
12971 if (!cp_parser_check_template_parameters (parser, num_templates))
12972 {
12973 /* If something went wrong, there is no point in even trying to
12974 process the class-definition. */
12975 type = NULL_TREE;
12976 goto done;
12977 }
12978
12979 /* Look up the type. */
12980 if (template_id_p)
12981 {
12982 type = TREE_TYPE (id);
12983 maybe_process_partial_specialization (type);
12984 if (nested_name_specifier)
12985 pushed_scope = push_scope (nested_name_specifier);
12986 }
12987 else if (nested_name_specifier)
12988 {
12989 tree class_type;
12990
12991 /* Given:
12992
12993 template <typename T> struct S { struct T };
12994 template <typename T> struct S<T>::T { };
12995
12996 we will get a TYPENAME_TYPE when processing the definition of
12997 `S::T'. We need to resolve it to the actual type before we
12998 try to define it. */
12999 if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
13000 {
13001 class_type = resolve_typename_type (TREE_TYPE (type),
13002 /*only_current_p=*/false);
13003 if (class_type != error_mark_node)
13004 type = TYPE_NAME (class_type);
13005 else
13006 {
13007 cp_parser_error (parser, "could not resolve typename type");
13008 type = error_mark_node;
13009 }
13010 }
13011
13012 maybe_process_partial_specialization (TREE_TYPE (type));
13013 class_type = current_class_type;
13014 /* Enter the scope indicated by the nested-name-specifier. */
13015 pushed_scope = push_scope (nested_name_specifier);
13016 /* Get the canonical version of this type. */
13017 type = TYPE_MAIN_DECL (TREE_TYPE (type));
13018 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
13019 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
13020 {
13021 type = push_template_decl (type);
13022 if (type == error_mark_node)
13023 {
13024 type = NULL_TREE;
13025 goto done;
13026 }
13027 }
13028
13029 type = TREE_TYPE (type);
13030 *nested_name_specifier_p = true;
13031 }
13032 else /* The name is not a nested name. */
13033 {
13034 /* If the class was unnamed, create a dummy name. */
13035 if (!id)
13036 id = make_anon_name ();
13037 type = xref_tag (class_key, id, /*tag_scope=*/ts_current,
13038 parser->num_template_parameter_lists);
13039 }
13040
13041 /* Indicate whether this class was declared as a `class' or as a
13042 `struct'. */
13043 if (TREE_CODE (type) == RECORD_TYPE)
13044 CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
13045 cp_parser_check_class_key (class_key, type);
13046
13047 /* If this type was already complete, and we see another definition,
13048 that's an error. */
13049 if (type != error_mark_node && COMPLETE_TYPE_P (type))
13050 {
13051 error ("redefinition of %q#T", type);
13052 cp_error_at ("previous definition of %q#T", type);
13053 type = NULL_TREE;
13054 goto done;
13055 }
13056
13057 /* We will have entered the scope containing the class; the names of
13058 base classes should be looked up in that context. For example:
13059
13060 struct A { struct B {}; struct C; };
13061 struct A::C : B {};
13062
13063 is valid. */
13064 bases = NULL_TREE;
13065
13066 /* Get the list of base-classes, if there is one. */
13067 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
13068 bases = cp_parser_base_clause (parser);
13069
13070 /* Process the base classes. */
13071 xref_basetypes (type, bases);
13072
13073 done:
13074 /* Leave the scope given by the nested-name-specifier. We will
13075 enter the class scope itself while processing the members. */
13076 if (pushed_scope)
13077 pop_scope (pushed_scope);
13078
13079 if (invalid_explicit_specialization_p)
13080 {
13081 end_specialization ();
13082 --parser->num_template_parameter_lists;
13083 }
13084 *attributes_p = attributes;
13085 return type;
13086 }
13087
13088 /* Parse a class-key.
13089
13090 class-key:
13091 class
13092 struct
13093 union
13094
13095 Returns the kind of class-key specified, or none_type to indicate
13096 error. */
13097
13098 static enum tag_types
13099 cp_parser_class_key (cp_parser* parser)
13100 {
13101 cp_token *token;
13102 enum tag_types tag_type;
13103
13104 /* Look for the class-key. */
13105 token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
13106 if (!token)
13107 return none_type;
13108
13109 /* Check to see if the TOKEN is a class-key. */
13110 tag_type = cp_parser_token_is_class_key (token);
13111 if (!tag_type)
13112 cp_parser_error (parser, "expected class-key");
13113 return tag_type;
13114 }
13115
13116 /* Parse an (optional) member-specification.
13117
13118 member-specification:
13119 member-declaration member-specification [opt]
13120 access-specifier : member-specification [opt] */
13121
13122 static void
13123 cp_parser_member_specification_opt (cp_parser* parser)
13124 {
13125 while (true)
13126 {
13127 cp_token *token;
13128 enum rid keyword;
13129
13130 /* Peek at the next token. */
13131 token = cp_lexer_peek_token (parser->lexer);
13132 /* If it's a `}', or EOF then we've seen all the members. */
13133 if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
13134 break;
13135
13136 /* See if this token is a keyword. */
13137 keyword = token->keyword;
13138 switch (keyword)
13139 {
13140 case RID_PUBLIC:
13141 case RID_PROTECTED:
13142 case RID_PRIVATE:
13143 /* Consume the access-specifier. */
13144 cp_lexer_consume_token (parser->lexer);
13145 /* Remember which access-specifier is active. */
13146 current_access_specifier = token->value;
13147 /* Look for the `:'. */
13148 cp_parser_require (parser, CPP_COLON, "`:'");
13149 break;
13150
13151 default:
13152 /* Accept #pragmas at class scope. */
13153 if (token->type == CPP_PRAGMA)
13154 {
13155 cp_lexer_handle_pragma (parser->lexer);
13156 break;
13157 }
13158
13159 /* Otherwise, the next construction must be a
13160 member-declaration. */
13161 cp_parser_member_declaration (parser);
13162 }
13163 }
13164 }
13165
13166 /* Parse a member-declaration.
13167
13168 member-declaration:
13169 decl-specifier-seq [opt] member-declarator-list [opt] ;
13170 function-definition ; [opt]
13171 :: [opt] nested-name-specifier template [opt] unqualified-id ;
13172 using-declaration
13173 template-declaration
13174
13175 member-declarator-list:
13176 member-declarator
13177 member-declarator-list , member-declarator
13178
13179 member-declarator:
13180 declarator pure-specifier [opt]
13181 declarator constant-initializer [opt]
13182 identifier [opt] : constant-expression
13183
13184 GNU Extensions:
13185
13186 member-declaration:
13187 __extension__ member-declaration
13188
13189 member-declarator:
13190 declarator attributes [opt] pure-specifier [opt]
13191 declarator attributes [opt] constant-initializer [opt]
13192 identifier [opt] attributes [opt] : constant-expression */
13193
13194 static void
13195 cp_parser_member_declaration (cp_parser* parser)
13196 {
13197 cp_decl_specifier_seq decl_specifiers;
13198 tree prefix_attributes;
13199 tree decl;
13200 int declares_class_or_enum;
13201 bool friend_p;
13202 cp_token *token;
13203 int saved_pedantic;
13204
13205 /* Check for the `__extension__' keyword. */
13206 if (cp_parser_extension_opt (parser, &saved_pedantic))
13207 {
13208 /* Recurse. */
13209 cp_parser_member_declaration (parser);
13210 /* Restore the old value of the PEDANTIC flag. */
13211 pedantic = saved_pedantic;
13212
13213 return;
13214 }
13215
13216 /* Check for a template-declaration. */
13217 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
13218 {
13219 /* Parse the template-declaration. */
13220 cp_parser_template_declaration (parser, /*member_p=*/true);
13221
13222 return;
13223 }
13224
13225 /* Check for a using-declaration. */
13226 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
13227 {
13228 /* Parse the using-declaration. */
13229 cp_parser_using_declaration (parser);
13230
13231 return;
13232 }
13233
13234 /* Check for @defs. */
13235 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_DEFS))
13236 {
13237 tree ivar, member;
13238 tree ivar_chains = cp_parser_objc_defs_expression (parser);
13239 ivar = ivar_chains;
13240 while (ivar)
13241 {
13242 member = ivar;
13243 ivar = TREE_CHAIN (member);
13244 TREE_CHAIN (member) = NULL_TREE;
13245 finish_member_declaration (member);
13246 }
13247 return;
13248 }
13249
13250 /* Parse the decl-specifier-seq. */
13251 cp_parser_decl_specifier_seq (parser,
13252 CP_PARSER_FLAGS_OPTIONAL,
13253 &decl_specifiers,
13254 &declares_class_or_enum);
13255 prefix_attributes = decl_specifiers.attributes;
13256 decl_specifiers.attributes = NULL_TREE;
13257 /* Check for an invalid type-name. */
13258 if (!decl_specifiers.type
13259 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
13260 return;
13261 /* If there is no declarator, then the decl-specifier-seq should
13262 specify a type. */
13263 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
13264 {
13265 /* If there was no decl-specifier-seq, and the next token is a
13266 `;', then we have something like:
13267
13268 struct S { ; };
13269
13270 [class.mem]
13271
13272 Each member-declaration shall declare at least one member
13273 name of the class. */
13274 if (!decl_specifiers.any_specifiers_p)
13275 {
13276 cp_token *token = cp_lexer_peek_token (parser->lexer);
13277 if (pedantic && !token->in_system_header)
13278 pedwarn ("%Hextra %<;%>", &token->location);
13279 }
13280 else
13281 {
13282 tree type;
13283
13284 /* See if this declaration is a friend. */
13285 friend_p = cp_parser_friend_p (&decl_specifiers);
13286 /* If there were decl-specifiers, check to see if there was
13287 a class-declaration. */
13288 type = check_tag_decl (&decl_specifiers);
13289 /* Nested classes have already been added to the class, but
13290 a `friend' needs to be explicitly registered. */
13291 if (friend_p)
13292 {
13293 /* If the `friend' keyword was present, the friend must
13294 be introduced with a class-key. */
13295 if (!declares_class_or_enum)
13296 error ("a class-key must be used when declaring a friend");
13297 /* In this case:
13298
13299 template <typename T> struct A {
13300 friend struct A<T>::B;
13301 };
13302
13303 A<T>::B will be represented by a TYPENAME_TYPE, and
13304 therefore not recognized by check_tag_decl. */
13305 if (!type
13306 && decl_specifiers.type
13307 && TYPE_P (decl_specifiers.type))
13308 type = decl_specifiers.type;
13309 if (!type || !TYPE_P (type))
13310 error ("friend declaration does not name a class or "
13311 "function");
13312 else
13313 make_friend_class (current_class_type, type,
13314 /*complain=*/true);
13315 }
13316 /* If there is no TYPE, an error message will already have
13317 been issued. */
13318 else if (!type || type == error_mark_node)
13319 ;
13320 /* An anonymous aggregate has to be handled specially; such
13321 a declaration really declares a data member (with a
13322 particular type), as opposed to a nested class. */
13323 else if (ANON_AGGR_TYPE_P (type))
13324 {
13325 /* Remove constructors and such from TYPE, now that we
13326 know it is an anonymous aggregate. */
13327 fixup_anonymous_aggr (type);
13328 /* And make the corresponding data member. */
13329 decl = build_decl (FIELD_DECL, NULL_TREE, type);
13330 /* Add it to the class. */
13331 finish_member_declaration (decl);
13332 }
13333 else
13334 cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
13335 }
13336 }
13337 else
13338 {
13339 /* See if these declarations will be friends. */
13340 friend_p = cp_parser_friend_p (&decl_specifiers);
13341
13342 /* Keep going until we hit the `;' at the end of the
13343 declaration. */
13344 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
13345 {
13346 tree attributes = NULL_TREE;
13347 tree first_attribute;
13348
13349 /* Peek at the next token. */
13350 token = cp_lexer_peek_token (parser->lexer);
13351
13352 /* Check for a bitfield declaration. */
13353 if (token->type == CPP_COLON
13354 || (token->type == CPP_NAME
13355 && cp_lexer_peek_nth_token (parser->lexer, 2)->type
13356 == CPP_COLON))
13357 {
13358 tree identifier;
13359 tree width;
13360
13361 /* Get the name of the bitfield. Note that we cannot just
13362 check TOKEN here because it may have been invalidated by
13363 the call to cp_lexer_peek_nth_token above. */
13364 if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
13365 identifier = cp_parser_identifier (parser);
13366 else
13367 identifier = NULL_TREE;
13368
13369 /* Consume the `:' token. */
13370 cp_lexer_consume_token (parser->lexer);
13371 /* Get the width of the bitfield. */
13372 width
13373 = cp_parser_constant_expression (parser,
13374 /*allow_non_constant=*/false,
13375 NULL);
13376
13377 /* Look for attributes that apply to the bitfield. */
13378 attributes = cp_parser_attributes_opt (parser);
13379 /* Remember which attributes are prefix attributes and
13380 which are not. */
13381 first_attribute = attributes;
13382 /* Combine the attributes. */
13383 attributes = chainon (prefix_attributes, attributes);
13384
13385 /* Create the bitfield declaration. */
13386 decl = grokbitfield (identifier
13387 ? make_id_declarator (NULL_TREE,
13388 identifier)
13389 : NULL,
13390 &decl_specifiers,
13391 width);
13392 /* Apply the attributes. */
13393 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
13394 }
13395 else
13396 {
13397 cp_declarator *declarator;
13398 tree initializer;
13399 tree asm_specification;
13400 int ctor_dtor_or_conv_p;
13401
13402 /* Parse the declarator. */
13403 declarator
13404 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
13405 &ctor_dtor_or_conv_p,
13406 /*parenthesized_p=*/NULL,
13407 /*member_p=*/true);
13408
13409 /* If something went wrong parsing the declarator, make sure
13410 that we at least consume some tokens. */
13411 if (declarator == cp_error_declarator)
13412 {
13413 /* Skip to the end of the statement. */
13414 cp_parser_skip_to_end_of_statement (parser);
13415 /* If the next token is not a semicolon, that is
13416 probably because we just skipped over the body of
13417 a function. So, we consume a semicolon if
13418 present, but do not issue an error message if it
13419 is not present. */
13420 if (cp_lexer_next_token_is (parser->lexer,
13421 CPP_SEMICOLON))
13422 cp_lexer_consume_token (parser->lexer);
13423 return;
13424 }
13425
13426 if (declares_class_or_enum & 2)
13427 cp_parser_check_for_definition_in_return_type
13428 (declarator, decl_specifiers.type);
13429
13430 /* Look for an asm-specification. */
13431 asm_specification = cp_parser_asm_specification_opt (parser);
13432 /* Look for attributes that apply to the declaration. */
13433 attributes = cp_parser_attributes_opt (parser);
13434 /* Remember which attributes are prefix attributes and
13435 which are not. */
13436 first_attribute = attributes;
13437 /* Combine the attributes. */
13438 attributes = chainon (prefix_attributes, attributes);
13439
13440 /* If it's an `=', then we have a constant-initializer or a
13441 pure-specifier. It is not correct to parse the
13442 initializer before registering the member declaration
13443 since the member declaration should be in scope while
13444 its initializer is processed. However, the rest of the
13445 front end does not yet provide an interface that allows
13446 us to handle this correctly. */
13447 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
13448 {
13449 /* In [class.mem]:
13450
13451 A pure-specifier shall be used only in the declaration of
13452 a virtual function.
13453
13454 A member-declarator can contain a constant-initializer
13455 only if it declares a static member of integral or
13456 enumeration type.
13457
13458 Therefore, if the DECLARATOR is for a function, we look
13459 for a pure-specifier; otherwise, we look for a
13460 constant-initializer. When we call `grokfield', it will
13461 perform more stringent semantics checks. */
13462 if (declarator->kind == cdk_function)
13463 initializer = cp_parser_pure_specifier (parser);
13464 else
13465 /* Parse the initializer. */
13466 initializer = cp_parser_constant_initializer (parser);
13467 }
13468 /* Otherwise, there is no initializer. */
13469 else
13470 initializer = NULL_TREE;
13471
13472 /* See if we are probably looking at a function
13473 definition. We are certainly not looking at a
13474 member-declarator. Calling `grokfield' has
13475 side-effects, so we must not do it unless we are sure
13476 that we are looking at a member-declarator. */
13477 if (cp_parser_token_starts_function_definition_p
13478 (cp_lexer_peek_token (parser->lexer)))
13479 {
13480 /* The grammar does not allow a pure-specifier to be
13481 used when a member function is defined. (It is
13482 possible that this fact is an oversight in the
13483 standard, since a pure function may be defined
13484 outside of the class-specifier. */
13485 if (initializer)
13486 error ("pure-specifier on function-definition");
13487 decl = cp_parser_save_member_function_body (parser,
13488 &decl_specifiers,
13489 declarator,
13490 attributes);
13491 /* If the member was not a friend, declare it here. */
13492 if (!friend_p)
13493 finish_member_declaration (decl);
13494 /* Peek at the next token. */
13495 token = cp_lexer_peek_token (parser->lexer);
13496 /* If the next token is a semicolon, consume it. */
13497 if (token->type == CPP_SEMICOLON)
13498 cp_lexer_consume_token (parser->lexer);
13499 return;
13500 }
13501 else
13502 {
13503 /* Create the declaration. */
13504 decl = grokfield (declarator, &decl_specifiers,
13505 initializer, asm_specification,
13506 attributes);
13507 /* Any initialization must have been from a
13508 constant-expression. */
13509 if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
13510 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
13511 }
13512 }
13513
13514 /* Reset PREFIX_ATTRIBUTES. */
13515 while (attributes && TREE_CHAIN (attributes) != first_attribute)
13516 attributes = TREE_CHAIN (attributes);
13517 if (attributes)
13518 TREE_CHAIN (attributes) = NULL_TREE;
13519
13520 /* If there is any qualification still in effect, clear it
13521 now; we will be starting fresh with the next declarator. */
13522 parser->scope = NULL_TREE;
13523 parser->qualifying_scope = NULL_TREE;
13524 parser->object_scope = NULL_TREE;
13525 /* If it's a `,', then there are more declarators. */
13526 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
13527 cp_lexer_consume_token (parser->lexer);
13528 /* If the next token isn't a `;', then we have a parse error. */
13529 else if (cp_lexer_next_token_is_not (parser->lexer,
13530 CPP_SEMICOLON))
13531 {
13532 cp_parser_error (parser, "expected %<;%>");
13533 /* Skip tokens until we find a `;'. */
13534 cp_parser_skip_to_end_of_statement (parser);
13535
13536 break;
13537 }
13538
13539 if (decl)
13540 {
13541 /* Add DECL to the list of members. */
13542 if (!friend_p)
13543 finish_member_declaration (decl);
13544
13545 if (TREE_CODE (decl) == FUNCTION_DECL)
13546 cp_parser_save_default_args (parser, decl);
13547 }
13548 }
13549 }
13550
13551 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
13552 }
13553
13554 /* Parse a pure-specifier.
13555
13556 pure-specifier:
13557 = 0
13558
13559 Returns INTEGER_ZERO_NODE if a pure specifier is found.
13560 Otherwise, ERROR_MARK_NODE is returned. */
13561
13562 static tree
13563 cp_parser_pure_specifier (cp_parser* parser)
13564 {
13565 cp_token *token;
13566
13567 /* Look for the `=' token. */
13568 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13569 return error_mark_node;
13570 /* Look for the `0' token. */
13571 token = cp_lexer_consume_token (parser->lexer);
13572 if (token->type != CPP_NUMBER || !integer_zerop (token->value))
13573 {
13574 cp_parser_error (parser,
13575 "invalid pure specifier (only `= 0' is allowed)");
13576 cp_parser_skip_to_end_of_statement (parser);
13577 return error_mark_node;
13578 }
13579
13580 /* FIXME: Unfortunately, this will accept `0L' and `0x00' as well.
13581 We need to get information from the lexer about how the number
13582 was spelled in order to fix this problem. */
13583 return integer_zero_node;
13584 }
13585
13586 /* Parse a constant-initializer.
13587
13588 constant-initializer:
13589 = constant-expression
13590
13591 Returns a representation of the constant-expression. */
13592
13593 static tree
13594 cp_parser_constant_initializer (cp_parser* parser)
13595 {
13596 /* Look for the `=' token. */
13597 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13598 return error_mark_node;
13599
13600 /* It is invalid to write:
13601
13602 struct S { static const int i = { 7 }; };
13603
13604 */
13605 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
13606 {
13607 cp_parser_error (parser,
13608 "a brace-enclosed initializer is not allowed here");
13609 /* Consume the opening brace. */
13610 cp_lexer_consume_token (parser->lexer);
13611 /* Skip the initializer. */
13612 cp_parser_skip_to_closing_brace (parser);
13613 /* Look for the trailing `}'. */
13614 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
13615
13616 return error_mark_node;
13617 }
13618
13619 return cp_parser_constant_expression (parser,
13620 /*allow_non_constant=*/false,
13621 NULL);
13622 }
13623
13624 /* Derived classes [gram.class.derived] */
13625
13626 /* Parse a base-clause.
13627
13628 base-clause:
13629 : base-specifier-list
13630
13631 base-specifier-list:
13632 base-specifier
13633 base-specifier-list , base-specifier
13634
13635 Returns a TREE_LIST representing the base-classes, in the order in
13636 which they were declared. The representation of each node is as
13637 described by cp_parser_base_specifier.
13638
13639 In the case that no bases are specified, this function will return
13640 NULL_TREE, not ERROR_MARK_NODE. */
13641
13642 static tree
13643 cp_parser_base_clause (cp_parser* parser)
13644 {
13645 tree bases = NULL_TREE;
13646
13647 /* Look for the `:' that begins the list. */
13648 cp_parser_require (parser, CPP_COLON, "`:'");
13649
13650 /* Scan the base-specifier-list. */
13651 while (true)
13652 {
13653 cp_token *token;
13654 tree base;
13655
13656 /* Look for the base-specifier. */
13657 base = cp_parser_base_specifier (parser);
13658 /* Add BASE to the front of the list. */
13659 if (base != error_mark_node)
13660 {
13661 TREE_CHAIN (base) = bases;
13662 bases = base;
13663 }
13664 /* Peek at the next token. */
13665 token = cp_lexer_peek_token (parser->lexer);
13666 /* If it's not a comma, then the list is complete. */
13667 if (token->type != CPP_COMMA)
13668 break;
13669 /* Consume the `,'. */
13670 cp_lexer_consume_token (parser->lexer);
13671 }
13672
13673 /* PARSER->SCOPE may still be non-NULL at this point, if the last
13674 base class had a qualified name. However, the next name that
13675 appears is certainly not qualified. */
13676 parser->scope = NULL_TREE;
13677 parser->qualifying_scope = NULL_TREE;
13678 parser->object_scope = NULL_TREE;
13679
13680 return nreverse (bases);
13681 }
13682
13683 /* Parse a base-specifier.
13684
13685 base-specifier:
13686 :: [opt] nested-name-specifier [opt] class-name
13687 virtual access-specifier [opt] :: [opt] nested-name-specifier
13688 [opt] class-name
13689 access-specifier virtual [opt] :: [opt] nested-name-specifier
13690 [opt] class-name
13691
13692 Returns a TREE_LIST. The TREE_PURPOSE will be one of
13693 ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
13694 indicate the specifiers provided. The TREE_VALUE will be a TYPE
13695 (or the ERROR_MARK_NODE) indicating the type that was specified. */
13696
13697 static tree
13698 cp_parser_base_specifier (cp_parser* parser)
13699 {
13700 cp_token *token;
13701 bool done = false;
13702 bool virtual_p = false;
13703 bool duplicate_virtual_error_issued_p = false;
13704 bool duplicate_access_error_issued_p = false;
13705 bool class_scope_p, template_p;
13706 tree access = access_default_node;
13707 tree type;
13708
13709 /* Process the optional `virtual' and `access-specifier'. */
13710 while (!done)
13711 {
13712 /* Peek at the next token. */
13713 token = cp_lexer_peek_token (parser->lexer);
13714 /* Process `virtual'. */
13715 switch (token->keyword)
13716 {
13717 case RID_VIRTUAL:
13718 /* If `virtual' appears more than once, issue an error. */
13719 if (virtual_p && !duplicate_virtual_error_issued_p)
13720 {
13721 cp_parser_error (parser,
13722 "%<virtual%> specified more than once in base-specified");
13723 duplicate_virtual_error_issued_p = true;
13724 }
13725
13726 virtual_p = true;
13727
13728 /* Consume the `virtual' token. */
13729 cp_lexer_consume_token (parser->lexer);
13730
13731 break;
13732
13733 case RID_PUBLIC:
13734 case RID_PROTECTED:
13735 case RID_PRIVATE:
13736 /* If more than one access specifier appears, issue an
13737 error. */
13738 if (access != access_default_node
13739 && !duplicate_access_error_issued_p)
13740 {
13741 cp_parser_error (parser,
13742 "more than one access specifier in base-specified");
13743 duplicate_access_error_issued_p = true;
13744 }
13745
13746 access = ridpointers[(int) token->keyword];
13747
13748 /* Consume the access-specifier. */
13749 cp_lexer_consume_token (parser->lexer);
13750
13751 break;
13752
13753 default:
13754 done = true;
13755 break;
13756 }
13757 }
13758 /* It is not uncommon to see programs mechanically, erroneously, use
13759 the 'typename' keyword to denote (dependent) qualified types
13760 as base classes. */
13761 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
13762 {
13763 if (!processing_template_decl)
13764 error ("keyword %<typename%> not allowed outside of templates");
13765 else
13766 error ("keyword %<typename%> not allowed in this context "
13767 "(the base class is implicitly a type)");
13768 cp_lexer_consume_token (parser->lexer);
13769 }
13770
13771 /* Look for the optional `::' operator. */
13772 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
13773 /* Look for the nested-name-specifier. The simplest way to
13774 implement:
13775
13776 [temp.res]
13777
13778 The keyword `typename' is not permitted in a base-specifier or
13779 mem-initializer; in these contexts a qualified name that
13780 depends on a template-parameter is implicitly assumed to be a
13781 type name.
13782
13783 is to pretend that we have seen the `typename' keyword at this
13784 point. */
13785 cp_parser_nested_name_specifier_opt (parser,
13786 /*typename_keyword_p=*/true,
13787 /*check_dependency_p=*/true,
13788 typename_type,
13789 /*is_declaration=*/true);
13790 /* If the base class is given by a qualified name, assume that names
13791 we see are type names or templates, as appropriate. */
13792 class_scope_p = (parser->scope && TYPE_P (parser->scope));
13793 template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
13794
13795 /* Finally, look for the class-name. */
13796 type = cp_parser_class_name (parser,
13797 class_scope_p,
13798 template_p,
13799 typename_type,
13800 /*check_dependency_p=*/true,
13801 /*class_head_p=*/false,
13802 /*is_declaration=*/true);
13803
13804 if (type == error_mark_node)
13805 return error_mark_node;
13806
13807 return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
13808 }
13809
13810 /* Exception handling [gram.exception] */
13811
13812 /* Parse an (optional) exception-specification.
13813
13814 exception-specification:
13815 throw ( type-id-list [opt] )
13816
13817 Returns a TREE_LIST representing the exception-specification. The
13818 TREE_VALUE of each node is a type. */
13819
13820 static tree
13821 cp_parser_exception_specification_opt (cp_parser* parser)
13822 {
13823 cp_token *token;
13824 tree type_id_list;
13825
13826 /* Peek at the next token. */
13827 token = cp_lexer_peek_token (parser->lexer);
13828 /* If it's not `throw', then there's no exception-specification. */
13829 if (!cp_parser_is_keyword (token, RID_THROW))
13830 return NULL_TREE;
13831
13832 /* Consume the `throw'. */
13833 cp_lexer_consume_token (parser->lexer);
13834
13835 /* Look for the `('. */
13836 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13837
13838 /* Peek at the next token. */
13839 token = cp_lexer_peek_token (parser->lexer);
13840 /* If it's not a `)', then there is a type-id-list. */
13841 if (token->type != CPP_CLOSE_PAREN)
13842 {
13843 const char *saved_message;
13844
13845 /* Types may not be defined in an exception-specification. */
13846 saved_message = parser->type_definition_forbidden_message;
13847 parser->type_definition_forbidden_message
13848 = "types may not be defined in an exception-specification";
13849 /* Parse the type-id-list. */
13850 type_id_list = cp_parser_type_id_list (parser);
13851 /* Restore the saved message. */
13852 parser->type_definition_forbidden_message = saved_message;
13853 }
13854 else
13855 type_id_list = empty_except_spec;
13856
13857 /* Look for the `)'. */
13858 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13859
13860 return type_id_list;
13861 }
13862
13863 /* Parse an (optional) type-id-list.
13864
13865 type-id-list:
13866 type-id
13867 type-id-list , type-id
13868
13869 Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
13870 in the order that the types were presented. */
13871
13872 static tree
13873 cp_parser_type_id_list (cp_parser* parser)
13874 {
13875 tree types = NULL_TREE;
13876
13877 while (true)
13878 {
13879 cp_token *token;
13880 tree type;
13881
13882 /* Get the next type-id. */
13883 type = cp_parser_type_id (parser);
13884 /* Add it to the list. */
13885 types = add_exception_specifier (types, type, /*complain=*/1);
13886 /* Peek at the next token. */
13887 token = cp_lexer_peek_token (parser->lexer);
13888 /* If it is not a `,', we are done. */
13889 if (token->type != CPP_COMMA)
13890 break;
13891 /* Consume the `,'. */
13892 cp_lexer_consume_token (parser->lexer);
13893 }
13894
13895 return nreverse (types);
13896 }
13897
13898 /* Parse a try-block.
13899
13900 try-block:
13901 try compound-statement handler-seq */
13902
13903 static tree
13904 cp_parser_try_block (cp_parser* parser)
13905 {
13906 tree try_block;
13907
13908 cp_parser_require_keyword (parser, RID_TRY, "`try'");
13909 try_block = begin_try_block ();
13910 cp_parser_compound_statement (parser, NULL, true);
13911 finish_try_block (try_block);
13912 cp_parser_handler_seq (parser);
13913 finish_handler_sequence (try_block);
13914
13915 return try_block;
13916 }
13917
13918 /* Parse a function-try-block.
13919
13920 function-try-block:
13921 try ctor-initializer [opt] function-body handler-seq */
13922
13923 static bool
13924 cp_parser_function_try_block (cp_parser* parser)
13925 {
13926 tree try_block;
13927 bool ctor_initializer_p;
13928
13929 /* Look for the `try' keyword. */
13930 if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
13931 return false;
13932 /* Let the rest of the front-end know where we are. */
13933 try_block = begin_function_try_block ();
13934 /* Parse the function-body. */
13935 ctor_initializer_p
13936 = cp_parser_ctor_initializer_opt_and_function_body (parser);
13937 /* We're done with the `try' part. */
13938 finish_function_try_block (try_block);
13939 /* Parse the handlers. */
13940 cp_parser_handler_seq (parser);
13941 /* We're done with the handlers. */
13942 finish_function_handler_sequence (try_block);
13943
13944 return ctor_initializer_p;
13945 }
13946
13947 /* Parse a handler-seq.
13948
13949 handler-seq:
13950 handler handler-seq [opt] */
13951
13952 static void
13953 cp_parser_handler_seq (cp_parser* parser)
13954 {
13955 while (true)
13956 {
13957 cp_token *token;
13958
13959 /* Parse the handler. */
13960 cp_parser_handler (parser);
13961 /* Peek at the next token. */
13962 token = cp_lexer_peek_token (parser->lexer);
13963 /* If it's not `catch' then there are no more handlers. */
13964 if (!cp_parser_is_keyword (token, RID_CATCH))
13965 break;
13966 }
13967 }
13968
13969 /* Parse a handler.
13970
13971 handler:
13972 catch ( exception-declaration ) compound-statement */
13973
13974 static void
13975 cp_parser_handler (cp_parser* parser)
13976 {
13977 tree handler;
13978 tree declaration;
13979
13980 cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
13981 handler = begin_handler ();
13982 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13983 declaration = cp_parser_exception_declaration (parser);
13984 finish_handler_parms (declaration, handler);
13985 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13986 cp_parser_compound_statement (parser, NULL, false);
13987 finish_handler (handler);
13988 }
13989
13990 /* Parse an exception-declaration.
13991
13992 exception-declaration:
13993 type-specifier-seq declarator
13994 type-specifier-seq abstract-declarator
13995 type-specifier-seq
13996 ...
13997
13998 Returns a VAR_DECL for the declaration, or NULL_TREE if the
13999 ellipsis variant is used. */
14000
14001 static tree
14002 cp_parser_exception_declaration (cp_parser* parser)
14003 {
14004 tree decl;
14005 cp_decl_specifier_seq type_specifiers;
14006 cp_declarator *declarator;
14007 const char *saved_message;
14008
14009 /* If it's an ellipsis, it's easy to handle. */
14010 if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
14011 {
14012 /* Consume the `...' token. */
14013 cp_lexer_consume_token (parser->lexer);
14014 return NULL_TREE;
14015 }
14016
14017 /* Types may not be defined in exception-declarations. */
14018 saved_message = parser->type_definition_forbidden_message;
14019 parser->type_definition_forbidden_message
14020 = "types may not be defined in exception-declarations";
14021
14022 /* Parse the type-specifier-seq. */
14023 cp_parser_type_specifier_seq (parser, /*is_condition=*/false,
14024 &type_specifiers);
14025 /* If it's a `)', then there is no declarator. */
14026 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
14027 declarator = NULL;
14028 else
14029 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
14030 /*ctor_dtor_or_conv_p=*/NULL,
14031 /*parenthesized_p=*/NULL,
14032 /*member_p=*/false);
14033
14034 /* Restore the saved message. */
14035 parser->type_definition_forbidden_message = saved_message;
14036
14037 if (type_specifiers.any_specifiers_p)
14038 {
14039 decl = grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
14040 if (decl == NULL_TREE)
14041 error ("invalid catch parameter");
14042 }
14043 else
14044 decl = NULL_TREE;
14045
14046 return decl;
14047 }
14048
14049 /* Parse a throw-expression.
14050
14051 throw-expression:
14052 throw assignment-expression [opt]
14053
14054 Returns a THROW_EXPR representing the throw-expression. */
14055
14056 static tree
14057 cp_parser_throw_expression (cp_parser* parser)
14058 {
14059 tree expression;
14060 cp_token* token;
14061
14062 cp_parser_require_keyword (parser, RID_THROW, "`throw'");
14063 token = cp_lexer_peek_token (parser->lexer);
14064 /* Figure out whether or not there is an assignment-expression
14065 following the "throw" keyword. */
14066 if (token->type == CPP_COMMA
14067 || token->type == CPP_SEMICOLON
14068 || token->type == CPP_CLOSE_PAREN
14069 || token->type == CPP_CLOSE_SQUARE
14070 || token->type == CPP_CLOSE_BRACE
14071 || token->type == CPP_COLON)
14072 expression = NULL_TREE;
14073 else
14074 expression = cp_parser_assignment_expression (parser,
14075 /*cast_p=*/false);
14076
14077 return build_throw (expression);
14078 }
14079
14080 /* GNU Extensions */
14081
14082 /* Parse an (optional) asm-specification.
14083
14084 asm-specification:
14085 asm ( string-literal )
14086
14087 If the asm-specification is present, returns a STRING_CST
14088 corresponding to the string-literal. Otherwise, returns
14089 NULL_TREE. */
14090
14091 static tree
14092 cp_parser_asm_specification_opt (cp_parser* parser)
14093 {
14094 cp_token *token;
14095 tree asm_specification;
14096
14097 /* Peek at the next token. */
14098 token = cp_lexer_peek_token (parser->lexer);
14099 /* If the next token isn't the `asm' keyword, then there's no
14100 asm-specification. */
14101 if (!cp_parser_is_keyword (token, RID_ASM))
14102 return NULL_TREE;
14103
14104 /* Consume the `asm' token. */
14105 cp_lexer_consume_token (parser->lexer);
14106 /* Look for the `('. */
14107 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14108
14109 /* Look for the string-literal. */
14110 asm_specification = cp_parser_string_literal (parser, false, false);
14111
14112 /* Look for the `)'. */
14113 cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
14114
14115 return asm_specification;
14116 }
14117
14118 /* Parse an asm-operand-list.
14119
14120 asm-operand-list:
14121 asm-operand
14122 asm-operand-list , asm-operand
14123
14124 asm-operand:
14125 string-literal ( expression )
14126 [ string-literal ] string-literal ( expression )
14127
14128 Returns a TREE_LIST representing the operands. The TREE_VALUE of
14129 each node is the expression. The TREE_PURPOSE is itself a
14130 TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
14131 string-literal (or NULL_TREE if not present) and whose TREE_VALUE
14132 is a STRING_CST for the string literal before the parenthesis. */
14133
14134 static tree
14135 cp_parser_asm_operand_list (cp_parser* parser)
14136 {
14137 tree asm_operands = NULL_TREE;
14138
14139 while (true)
14140 {
14141 tree string_literal;
14142 tree expression;
14143 tree name;
14144
14145 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
14146 {
14147 /* Consume the `[' token. */
14148 cp_lexer_consume_token (parser->lexer);
14149 /* Read the operand name. */
14150 name = cp_parser_identifier (parser);
14151 if (name != error_mark_node)
14152 name = build_string (IDENTIFIER_LENGTH (name),
14153 IDENTIFIER_POINTER (name));
14154 /* Look for the closing `]'. */
14155 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
14156 }
14157 else
14158 name = NULL_TREE;
14159 /* Look for the string-literal. */
14160 string_literal = cp_parser_string_literal (parser, false, false);
14161
14162 /* Look for the `('. */
14163 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14164 /* Parse the expression. */
14165 expression = cp_parser_expression (parser, /*cast_p=*/false);
14166 /* Look for the `)'. */
14167 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14168
14169 /* Add this operand to the list. */
14170 asm_operands = tree_cons (build_tree_list (name, string_literal),
14171 expression,
14172 asm_operands);
14173 /* If the next token is not a `,', there are no more
14174 operands. */
14175 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
14176 break;
14177 /* Consume the `,'. */
14178 cp_lexer_consume_token (parser->lexer);
14179 }
14180
14181 return nreverse (asm_operands);
14182 }
14183
14184 /* Parse an asm-clobber-list.
14185
14186 asm-clobber-list:
14187 string-literal
14188 asm-clobber-list , string-literal
14189
14190 Returns a TREE_LIST, indicating the clobbers in the order that they
14191 appeared. The TREE_VALUE of each node is a STRING_CST. */
14192
14193 static tree
14194 cp_parser_asm_clobber_list (cp_parser* parser)
14195 {
14196 tree clobbers = NULL_TREE;
14197
14198 while (true)
14199 {
14200 tree string_literal;
14201
14202 /* Look for the string literal. */
14203 string_literal = cp_parser_string_literal (parser, false, false);
14204 /* Add it to the list. */
14205 clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
14206 /* If the next token is not a `,', then the list is
14207 complete. */
14208 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
14209 break;
14210 /* Consume the `,' token. */
14211 cp_lexer_consume_token (parser->lexer);
14212 }
14213
14214 return clobbers;
14215 }
14216
14217 /* Parse an (optional) series of attributes.
14218
14219 attributes:
14220 attributes attribute
14221
14222 attribute:
14223 __attribute__ (( attribute-list [opt] ))
14224
14225 The return value is as for cp_parser_attribute_list. */
14226
14227 static tree
14228 cp_parser_attributes_opt (cp_parser* parser)
14229 {
14230 tree attributes = NULL_TREE;
14231
14232 while (true)
14233 {
14234 cp_token *token;
14235 tree attribute_list;
14236
14237 /* Peek at the next token. */
14238 token = cp_lexer_peek_token (parser->lexer);
14239 /* If it's not `__attribute__', then we're done. */
14240 if (token->keyword != RID_ATTRIBUTE)
14241 break;
14242
14243 /* Consume the `__attribute__' keyword. */
14244 cp_lexer_consume_token (parser->lexer);
14245 /* Look for the two `(' tokens. */
14246 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14247 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14248
14249 /* Peek at the next token. */
14250 token = cp_lexer_peek_token (parser->lexer);
14251 if (token->type != CPP_CLOSE_PAREN)
14252 /* Parse the attribute-list. */
14253 attribute_list = cp_parser_attribute_list (parser);
14254 else
14255 /* If the next token is a `)', then there is no attribute
14256 list. */
14257 attribute_list = NULL;
14258
14259 /* Look for the two `)' tokens. */
14260 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14261 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14262
14263 /* Add these new attributes to the list. */
14264 attributes = chainon (attributes, attribute_list);
14265 }
14266
14267 return attributes;
14268 }
14269
14270 /* Parse an attribute-list.
14271
14272 attribute-list:
14273 attribute
14274 attribute-list , attribute
14275
14276 attribute:
14277 identifier
14278 identifier ( identifier )
14279 identifier ( identifier , expression-list )
14280 identifier ( expression-list )
14281
14282 Returns a TREE_LIST, or NULL_TREE on error. Each node corresponds
14283 to an attribute. The TREE_PURPOSE of each node is the identifier
14284 indicating which attribute is in use. The TREE_VALUE represents
14285 the arguments, if any. */
14286
14287 static tree
14288 cp_parser_attribute_list (cp_parser* parser)
14289 {
14290 tree attribute_list = NULL_TREE;
14291 bool save_translate_strings_p = parser->translate_strings_p;
14292
14293 parser->translate_strings_p = false;
14294 while (true)
14295 {
14296 cp_token *token;
14297 tree identifier;
14298 tree attribute;
14299
14300 /* Look for the identifier. We also allow keywords here; for
14301 example `__attribute__ ((const))' is legal. */
14302 token = cp_lexer_peek_token (parser->lexer);
14303 if (token->type == CPP_NAME
14304 || token->type == CPP_KEYWORD)
14305 {
14306 /* Consume the token. */
14307 token = cp_lexer_consume_token (parser->lexer);
14308
14309 /* Save away the identifier that indicates which attribute
14310 this is. */
14311 identifier = token->value;
14312 attribute = build_tree_list (identifier, NULL_TREE);
14313
14314 /* Peek at the next token. */
14315 token = cp_lexer_peek_token (parser->lexer);
14316 /* If it's an `(', then parse the attribute arguments. */
14317 if (token->type == CPP_OPEN_PAREN)
14318 {
14319 tree arguments;
14320
14321 arguments = (cp_parser_parenthesized_expression_list
14322 (parser, true, /*cast_p=*/false,
14323 /*non_constant_p=*/NULL));
14324 /* Save the identifier and arguments away. */
14325 TREE_VALUE (attribute) = arguments;
14326 }
14327
14328 /* Add this attribute to the list. */
14329 TREE_CHAIN (attribute) = attribute_list;
14330 attribute_list = attribute;
14331
14332 token = cp_lexer_peek_token (parser->lexer);
14333 }
14334 /* Now, look for more attributes. If the next token isn't a
14335 `,', we're done. */
14336 if (token->type != CPP_COMMA)
14337 break;
14338
14339 /* Consume the comma and keep going. */
14340 cp_lexer_consume_token (parser->lexer);
14341 }
14342 parser->translate_strings_p = save_translate_strings_p;
14343
14344 /* We built up the list in reverse order. */
14345 return nreverse (attribute_list);
14346 }
14347
14348 /* Parse an optional `__extension__' keyword. Returns TRUE if it is
14349 present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
14350 current value of the PEDANTIC flag, regardless of whether or not
14351 the `__extension__' keyword is present. The caller is responsible
14352 for restoring the value of the PEDANTIC flag. */
14353
14354 static bool
14355 cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
14356 {
14357 /* Save the old value of the PEDANTIC flag. */
14358 *saved_pedantic = pedantic;
14359
14360 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
14361 {
14362 /* Consume the `__extension__' token. */
14363 cp_lexer_consume_token (parser->lexer);
14364 /* We're not being pedantic while the `__extension__' keyword is
14365 in effect. */
14366 pedantic = 0;
14367
14368 return true;
14369 }
14370
14371 return false;
14372 }
14373
14374 /* Parse a label declaration.
14375
14376 label-declaration:
14377 __label__ label-declarator-seq ;
14378
14379 label-declarator-seq:
14380 identifier , label-declarator-seq
14381 identifier */
14382
14383 static void
14384 cp_parser_label_declaration (cp_parser* parser)
14385 {
14386 /* Look for the `__label__' keyword. */
14387 cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
14388
14389 while (true)
14390 {
14391 tree identifier;
14392
14393 /* Look for an identifier. */
14394 identifier = cp_parser_identifier (parser);
14395 /* Declare it as a lobel. */
14396 finish_label_decl (identifier);
14397 /* If the next token is a `;', stop. */
14398 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
14399 break;
14400 /* Look for the `,' separating the label declarations. */
14401 cp_parser_require (parser, CPP_COMMA, "`,'");
14402 }
14403
14404 /* Look for the final `;'. */
14405 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
14406 }
14407
14408 /* Support Functions */
14409
14410 /* Looks up NAME in the current scope, as given by PARSER->SCOPE.
14411 NAME should have one of the representations used for an
14412 id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
14413 is returned. If PARSER->SCOPE is a dependent type, then a
14414 SCOPE_REF is returned.
14415
14416 If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
14417 returned; the name was already resolved when the TEMPLATE_ID_EXPR
14418 was formed. Abstractly, such entities should not be passed to this
14419 function, because they do not need to be looked up, but it is
14420 simpler to check for this special case here, rather than at the
14421 call-sites.
14422
14423 In cases not explicitly covered above, this function returns a
14424 DECL, OVERLOAD, or baselink representing the result of the lookup.
14425 If there was no entity with the indicated NAME, the ERROR_MARK_NODE
14426 is returned.
14427
14428 If TAG_TYPE is not NONE_TYPE, it indicates an explicit type keyword
14429 (e.g., "struct") that was used. In that case bindings that do not
14430 refer to types are ignored.
14431
14432 If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
14433 ignored.
14434
14435 If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
14436 are ignored.
14437
14438 If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
14439 types.
14440
14441 If AMBIGUOUS_P is non-NULL, it is set to true if name-lookup
14442 results in an ambiguity, and false otherwise. */
14443
14444 static tree
14445 cp_parser_lookup_name (cp_parser *parser, tree name,
14446 enum tag_types tag_type,
14447 bool is_template, bool is_namespace,
14448 bool check_dependency,
14449 bool *ambiguous_p)
14450 {
14451 tree decl;
14452 tree object_type = parser->context->object_type;
14453
14454 /* Assume that the lookup will be unambiguous. */
14455 if (ambiguous_p)
14456 *ambiguous_p = false;
14457
14458 /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
14459 no longer valid. Note that if we are parsing tentatively, and
14460 the parse fails, OBJECT_TYPE will be automatically restored. */
14461 parser->context->object_type = NULL_TREE;
14462
14463 if (name == error_mark_node)
14464 return error_mark_node;
14465
14466 /* A template-id has already been resolved; there is no lookup to
14467 do. */
14468 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
14469 return name;
14470 if (BASELINK_P (name))
14471 {
14472 gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name))
14473 == TEMPLATE_ID_EXPR);
14474 return name;
14475 }
14476
14477 /* A BIT_NOT_EXPR is used to represent a destructor. By this point,
14478 it should already have been checked to make sure that the name
14479 used matches the type being destroyed. */
14480 if (TREE_CODE (name) == BIT_NOT_EXPR)
14481 {
14482 tree type;
14483
14484 /* Figure out to which type this destructor applies. */
14485 if (parser->scope)
14486 type = parser->scope;
14487 else if (object_type)
14488 type = object_type;
14489 else
14490 type = current_class_type;
14491 /* If that's not a class type, there is no destructor. */
14492 if (!type || !CLASS_TYPE_P (type))
14493 return error_mark_node;
14494 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
14495 lazily_declare_fn (sfk_destructor, type);
14496 if (!CLASSTYPE_DESTRUCTORS (type))
14497 return error_mark_node;
14498 /* If it was a class type, return the destructor. */
14499 return CLASSTYPE_DESTRUCTORS (type);
14500 }
14501
14502 /* By this point, the NAME should be an ordinary identifier. If
14503 the id-expression was a qualified name, the qualifying scope is
14504 stored in PARSER->SCOPE at this point. */
14505 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
14506
14507 /* Perform the lookup. */
14508 if (parser->scope)
14509 {
14510 bool dependent_p;
14511
14512 if (parser->scope == error_mark_node)
14513 return error_mark_node;
14514
14515 /* If the SCOPE is dependent, the lookup must be deferred until
14516 the template is instantiated -- unless we are explicitly
14517 looking up names in uninstantiated templates. Even then, we
14518 cannot look up the name if the scope is not a class type; it
14519 might, for example, be a template type parameter. */
14520 dependent_p = (TYPE_P (parser->scope)
14521 && !(parser->in_declarator_p
14522 && currently_open_class (parser->scope))
14523 && dependent_type_p (parser->scope));
14524 if ((check_dependency || !CLASS_TYPE_P (parser->scope))
14525 && dependent_p)
14526 {
14527 if (tag_type)
14528 {
14529 tree type;
14530
14531 /* The resolution to Core Issue 180 says that `struct
14532 A::B' should be considered a type-name, even if `A'
14533 is dependent. */
14534 type = make_typename_type (parser->scope, name, tag_type,
14535 /*complain=*/1);
14536 decl = TYPE_NAME (type);
14537 }
14538 else if (is_template)
14539 decl = make_unbound_class_template (parser->scope,
14540 name, NULL_TREE,
14541 /*complain=*/1);
14542 else
14543 decl = build_nt (SCOPE_REF, parser->scope, name);
14544 }
14545 else
14546 {
14547 tree pushed_scope = NULL_TREE;
14548
14549 /* If PARSER->SCOPE is a dependent type, then it must be a
14550 class type, and we must not be checking dependencies;
14551 otherwise, we would have processed this lookup above. So
14552 that PARSER->SCOPE is not considered a dependent base by
14553 lookup_member, we must enter the scope here. */
14554 if (dependent_p)
14555 pushed_scope = push_scope (parser->scope);
14556 /* If the PARSER->SCOPE is a template specialization, it
14557 may be instantiated during name lookup. In that case,
14558 errors may be issued. Even if we rollback the current
14559 tentative parse, those errors are valid. */
14560 decl = lookup_qualified_name (parser->scope, name,
14561 tag_type != none_type,
14562 /*complain=*/true);
14563 if (pushed_scope)
14564 pop_scope (pushed_scope);
14565 }
14566 parser->qualifying_scope = parser->scope;
14567 parser->object_scope = NULL_TREE;
14568 }
14569 else if (object_type)
14570 {
14571 tree object_decl = NULL_TREE;
14572 /* Look up the name in the scope of the OBJECT_TYPE, unless the
14573 OBJECT_TYPE is not a class. */
14574 if (CLASS_TYPE_P (object_type))
14575 /* If the OBJECT_TYPE is a template specialization, it may
14576 be instantiated during name lookup. In that case, errors
14577 may be issued. Even if we rollback the current tentative
14578 parse, those errors are valid. */
14579 object_decl = lookup_member (object_type,
14580 name,
14581 /*protect=*/0,
14582 tag_type != none_type);
14583 /* Look it up in the enclosing context, too. */
14584 decl = lookup_name_real (name, tag_type != none_type,
14585 /*nonclass=*/0,
14586 /*block_p=*/true, is_namespace,
14587 /*flags=*/0);
14588 parser->object_scope = object_type;
14589 parser->qualifying_scope = NULL_TREE;
14590 if (object_decl)
14591 decl = object_decl;
14592 }
14593 else
14594 {
14595 decl = lookup_name_real (name, tag_type != none_type,
14596 /*nonclass=*/0,
14597 /*block_p=*/true, is_namespace,
14598 /*flags=*/0);
14599 parser->qualifying_scope = NULL_TREE;
14600 parser->object_scope = NULL_TREE;
14601 }
14602
14603 /* If the lookup failed, let our caller know. */
14604 if (!decl || decl == error_mark_node)
14605 return error_mark_node;
14606
14607 /* If it's a TREE_LIST, the result of the lookup was ambiguous. */
14608 if (TREE_CODE (decl) == TREE_LIST)
14609 {
14610 if (ambiguous_p)
14611 *ambiguous_p = true;
14612 /* The error message we have to print is too complicated for
14613 cp_parser_error, so we incorporate its actions directly. */
14614 if (!cp_parser_simulate_error (parser))
14615 {
14616 error ("reference to %qD is ambiguous", name);
14617 print_candidates (decl);
14618 }
14619 return error_mark_node;
14620 }
14621
14622 gcc_assert (DECL_P (decl)
14623 || TREE_CODE (decl) == OVERLOAD
14624 || TREE_CODE (decl) == SCOPE_REF
14625 || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
14626 || BASELINK_P (decl));
14627
14628 /* If we have resolved the name of a member declaration, check to
14629 see if the declaration is accessible. When the name resolves to
14630 set of overloaded functions, accessibility is checked when
14631 overload resolution is done.
14632
14633 During an explicit instantiation, access is not checked at all,
14634 as per [temp.explicit]. */
14635 if (DECL_P (decl))
14636 check_accessibility_of_qualified_id (decl, object_type, parser->scope);
14637
14638 return decl;
14639 }
14640
14641 /* Like cp_parser_lookup_name, but for use in the typical case where
14642 CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
14643 IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
14644
14645 static tree
14646 cp_parser_lookup_name_simple (cp_parser* parser, tree name)
14647 {
14648 return cp_parser_lookup_name (parser, name,
14649 none_type,
14650 /*is_template=*/false,
14651 /*is_namespace=*/false,
14652 /*check_dependency=*/true,
14653 /*ambiguous_p=*/NULL);
14654 }
14655
14656 /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
14657 the current context, return the TYPE_DECL. If TAG_NAME_P is
14658 true, the DECL indicates the class being defined in a class-head,
14659 or declared in an elaborated-type-specifier.
14660
14661 Otherwise, return DECL. */
14662
14663 static tree
14664 cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
14665 {
14666 /* If the TEMPLATE_DECL is being declared as part of a class-head,
14667 the translation from TEMPLATE_DECL to TYPE_DECL occurs:
14668
14669 struct A {
14670 template <typename T> struct B;
14671 };
14672
14673 template <typename T> struct A::B {};
14674
14675 Similarly, in a elaborated-type-specifier:
14676
14677 namespace N { struct X{}; }
14678
14679 struct A {
14680 template <typename T> friend struct N::X;
14681 };
14682
14683 However, if the DECL refers to a class type, and we are in
14684 the scope of the class, then the name lookup automatically
14685 finds the TYPE_DECL created by build_self_reference rather
14686 than a TEMPLATE_DECL. For example, in:
14687
14688 template <class T> struct S {
14689 S s;
14690 };
14691
14692 there is no need to handle such case. */
14693
14694 if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
14695 return DECL_TEMPLATE_RESULT (decl);
14696
14697 return decl;
14698 }
14699
14700 /* If too many, or too few, template-parameter lists apply to the
14701 declarator, issue an error message. Returns TRUE if all went well,
14702 and FALSE otherwise. */
14703
14704 static bool
14705 cp_parser_check_declarator_template_parameters (cp_parser* parser,
14706 cp_declarator *declarator)
14707 {
14708 unsigned num_templates;
14709
14710 /* We haven't seen any classes that involve template parameters yet. */
14711 num_templates = 0;
14712
14713 switch (declarator->kind)
14714 {
14715 case cdk_id:
14716 if (declarator->u.id.qualifying_scope)
14717 {
14718 tree scope;
14719 tree member;
14720
14721 scope = declarator->u.id.qualifying_scope;
14722 member = declarator->u.id.unqualified_name;
14723
14724 while (scope && CLASS_TYPE_P (scope))
14725 {
14726 /* You're supposed to have one `template <...>'
14727 for every template class, but you don't need one
14728 for a full specialization. For example:
14729
14730 template <class T> struct S{};
14731 template <> struct S<int> { void f(); };
14732 void S<int>::f () {}
14733
14734 is correct; there shouldn't be a `template <>' for
14735 the definition of `S<int>::f'. */
14736 if (CLASSTYPE_TEMPLATE_INFO (scope)
14737 && (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
14738 || uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
14739 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
14740 ++num_templates;
14741
14742 scope = TYPE_CONTEXT (scope);
14743 }
14744 }
14745 else if (TREE_CODE (declarator->u.id.unqualified_name)
14746 == TEMPLATE_ID_EXPR)
14747 /* If the DECLARATOR has the form `X<y>' then it uses one
14748 additional level of template parameters. */
14749 ++num_templates;
14750
14751 return cp_parser_check_template_parameters (parser,
14752 num_templates);
14753
14754 case cdk_function:
14755 case cdk_array:
14756 case cdk_pointer:
14757 case cdk_reference:
14758 case cdk_ptrmem:
14759 return (cp_parser_check_declarator_template_parameters
14760 (parser, declarator->declarator));
14761
14762 case cdk_error:
14763 return true;
14764
14765 default:
14766 gcc_unreachable ();
14767 }
14768 return false;
14769 }
14770
14771 /* NUM_TEMPLATES were used in the current declaration. If that is
14772 invalid, return FALSE and issue an error messages. Otherwise,
14773 return TRUE. */
14774
14775 static bool
14776 cp_parser_check_template_parameters (cp_parser* parser,
14777 unsigned num_templates)
14778 {
14779 /* If there are more template classes than parameter lists, we have
14780 something like:
14781
14782 template <class T> void S<T>::R<T>::f (); */
14783 if (parser->num_template_parameter_lists < num_templates)
14784 {
14785 error ("too few template-parameter-lists");
14786 return false;
14787 }
14788 /* If there are the same number of template classes and parameter
14789 lists, that's OK. */
14790 if (parser->num_template_parameter_lists == num_templates)
14791 return true;
14792 /* If there are more, but only one more, then we are referring to a
14793 member template. That's OK too. */
14794 if (parser->num_template_parameter_lists == num_templates + 1)
14795 return true;
14796 /* Otherwise, there are too many template parameter lists. We have
14797 something like:
14798
14799 template <class T> template <class U> void S::f(); */
14800 error ("too many template-parameter-lists");
14801 return false;
14802 }
14803
14804 /* Parse an optional `::' token indicating that the following name is
14805 from the global namespace. If so, PARSER->SCOPE is set to the
14806 GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
14807 unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
14808 Returns the new value of PARSER->SCOPE, if the `::' token is
14809 present, and NULL_TREE otherwise. */
14810
14811 static tree
14812 cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
14813 {
14814 cp_token *token;
14815
14816 /* Peek at the next token. */
14817 token = cp_lexer_peek_token (parser->lexer);
14818 /* If we're looking at a `::' token then we're starting from the
14819 global namespace, not our current location. */
14820 if (token->type == CPP_SCOPE)
14821 {
14822 /* Consume the `::' token. */
14823 cp_lexer_consume_token (parser->lexer);
14824 /* Set the SCOPE so that we know where to start the lookup. */
14825 parser->scope = global_namespace;
14826 parser->qualifying_scope = global_namespace;
14827 parser->object_scope = NULL_TREE;
14828
14829 return parser->scope;
14830 }
14831 else if (!current_scope_valid_p)
14832 {
14833 parser->scope = NULL_TREE;
14834 parser->qualifying_scope = NULL_TREE;
14835 parser->object_scope = NULL_TREE;
14836 }
14837
14838 return NULL_TREE;
14839 }
14840
14841 /* Returns TRUE if the upcoming token sequence is the start of a
14842 constructor declarator. If FRIEND_P is true, the declarator is
14843 preceded by the `friend' specifier. */
14844
14845 static bool
14846 cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
14847 {
14848 bool constructor_p;
14849 tree type_decl = NULL_TREE;
14850 bool nested_name_p;
14851 cp_token *next_token;
14852
14853 /* The common case is that this is not a constructor declarator, so
14854 try to avoid doing lots of work if at all possible. It's not
14855 valid declare a constructor at function scope. */
14856 if (at_function_scope_p ())
14857 return false;
14858 /* And only certain tokens can begin a constructor declarator. */
14859 next_token = cp_lexer_peek_token (parser->lexer);
14860 if (next_token->type != CPP_NAME
14861 && next_token->type != CPP_SCOPE
14862 && next_token->type != CPP_NESTED_NAME_SPECIFIER
14863 && next_token->type != CPP_TEMPLATE_ID)
14864 return false;
14865
14866 /* Parse tentatively; we are going to roll back all of the tokens
14867 consumed here. */
14868 cp_parser_parse_tentatively (parser);
14869 /* Assume that we are looking at a constructor declarator. */
14870 constructor_p = true;
14871
14872 /* Look for the optional `::' operator. */
14873 cp_parser_global_scope_opt (parser,
14874 /*current_scope_valid_p=*/false);
14875 /* Look for the nested-name-specifier. */
14876 nested_name_p
14877 = (cp_parser_nested_name_specifier_opt (parser,
14878 /*typename_keyword_p=*/false,
14879 /*check_dependency_p=*/false,
14880 /*type_p=*/false,
14881 /*is_declaration=*/false)
14882 != NULL_TREE);
14883 /* Outside of a class-specifier, there must be a
14884 nested-name-specifier. */
14885 if (!nested_name_p &&
14886 (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
14887 || friend_p))
14888 constructor_p = false;
14889 /* If we still think that this might be a constructor-declarator,
14890 look for a class-name. */
14891 if (constructor_p)
14892 {
14893 /* If we have:
14894
14895 template <typename T> struct S { S(); };
14896 template <typename T> S<T>::S ();
14897
14898 we must recognize that the nested `S' names a class.
14899 Similarly, for:
14900
14901 template <typename T> S<T>::S<T> ();
14902
14903 we must recognize that the nested `S' names a template. */
14904 type_decl = cp_parser_class_name (parser,
14905 /*typename_keyword_p=*/false,
14906 /*template_keyword_p=*/false,
14907 none_type,
14908 /*check_dependency_p=*/false,
14909 /*class_head_p=*/false,
14910 /*is_declaration=*/false);
14911 /* If there was no class-name, then this is not a constructor. */
14912 constructor_p = !cp_parser_error_occurred (parser);
14913 }
14914
14915 /* If we're still considering a constructor, we have to see a `(',
14916 to begin the parameter-declaration-clause, followed by either a
14917 `)', an `...', or a decl-specifier. We need to check for a
14918 type-specifier to avoid being fooled into thinking that:
14919
14920 S::S (f) (int);
14921
14922 is a constructor. (It is actually a function named `f' that
14923 takes one parameter (of type `int') and returns a value of type
14924 `S::S'. */
14925 if (constructor_p
14926 && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
14927 {
14928 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
14929 && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
14930 /* A parameter declaration begins with a decl-specifier,
14931 which is either the "attribute" keyword, a storage class
14932 specifier, or (usually) a type-specifier. */
14933 && !cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)
14934 && !cp_parser_storage_class_specifier_opt (parser))
14935 {
14936 tree type;
14937 tree pushed_scope = NULL_TREE;
14938 unsigned saved_num_template_parameter_lists;
14939
14940 /* Names appearing in the type-specifier should be looked up
14941 in the scope of the class. */
14942 if (current_class_type)
14943 type = NULL_TREE;
14944 else
14945 {
14946 type = TREE_TYPE (type_decl);
14947 if (TREE_CODE (type) == TYPENAME_TYPE)
14948 {
14949 type = resolve_typename_type (type,
14950 /*only_current_p=*/false);
14951 if (type == error_mark_node)
14952 {
14953 cp_parser_abort_tentative_parse (parser);
14954 return false;
14955 }
14956 }
14957 pushed_scope = push_scope (type);
14958 }
14959
14960 /* Inside the constructor parameter list, surrounding
14961 template-parameter-lists do not apply. */
14962 saved_num_template_parameter_lists
14963 = parser->num_template_parameter_lists;
14964 parser->num_template_parameter_lists = 0;
14965
14966 /* Look for the type-specifier. */
14967 cp_parser_type_specifier (parser,
14968 CP_PARSER_FLAGS_NONE,
14969 /*decl_specs=*/NULL,
14970 /*is_declarator=*/true,
14971 /*declares_class_or_enum=*/NULL,
14972 /*is_cv_qualifier=*/NULL);
14973
14974 parser->num_template_parameter_lists
14975 = saved_num_template_parameter_lists;
14976
14977 /* Leave the scope of the class. */
14978 if (pushed_scope)
14979 pop_scope (pushed_scope);
14980
14981 constructor_p = !cp_parser_error_occurred (parser);
14982 }
14983 }
14984 else
14985 constructor_p = false;
14986 /* We did not really want to consume any tokens. */
14987 cp_parser_abort_tentative_parse (parser);
14988
14989 return constructor_p;
14990 }
14991
14992 /* Parse the definition of the function given by the DECL_SPECIFIERS,
14993 ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
14994 they must be performed once we are in the scope of the function.
14995
14996 Returns the function defined. */
14997
14998 static tree
14999 cp_parser_function_definition_from_specifiers_and_declarator
15000 (cp_parser* parser,
15001 cp_decl_specifier_seq *decl_specifiers,
15002 tree attributes,
15003 const cp_declarator *declarator)
15004 {
15005 tree fn;
15006 bool success_p;
15007
15008 /* Begin the function-definition. */
15009 success_p = start_function (decl_specifiers, declarator, attributes);
15010
15011 /* The things we're about to see are not directly qualified by any
15012 template headers we've seen thus far. */
15013 reset_specialization ();
15014
15015 /* If there were names looked up in the decl-specifier-seq that we
15016 did not check, check them now. We must wait until we are in the
15017 scope of the function to perform the checks, since the function
15018 might be a friend. */
15019 perform_deferred_access_checks ();
15020
15021 if (!success_p)
15022 {
15023 /* Skip the entire function. */
15024 error ("invalid function declaration");
15025 cp_parser_skip_to_end_of_block_or_statement (parser);
15026 fn = error_mark_node;
15027 }
15028 else
15029 fn = cp_parser_function_definition_after_declarator (parser,
15030 /*inline_p=*/false);
15031
15032 return fn;
15033 }
15034
15035 /* Parse the part of a function-definition that follows the
15036 declarator. INLINE_P is TRUE iff this function is an inline
15037 function defined with a class-specifier.
15038
15039 Returns the function defined. */
15040
15041 static tree
15042 cp_parser_function_definition_after_declarator (cp_parser* parser,
15043 bool inline_p)
15044 {
15045 tree fn;
15046 bool ctor_initializer_p = false;
15047 bool saved_in_unbraced_linkage_specification_p;
15048 unsigned saved_num_template_parameter_lists;
15049
15050 /* If the next token is `return', then the code may be trying to
15051 make use of the "named return value" extension that G++ used to
15052 support. */
15053 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
15054 {
15055 /* Consume the `return' keyword. */
15056 cp_lexer_consume_token (parser->lexer);
15057 /* Look for the identifier that indicates what value is to be
15058 returned. */
15059 cp_parser_identifier (parser);
15060 /* Issue an error message. */
15061 error ("named return values are no longer supported");
15062 /* Skip tokens until we reach the start of the function body. */
15063 while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
15064 && cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
15065 cp_lexer_consume_token (parser->lexer);
15066 }
15067 /* The `extern' in `extern "C" void f () { ... }' does not apply to
15068 anything declared inside `f'. */
15069 saved_in_unbraced_linkage_specification_p
15070 = parser->in_unbraced_linkage_specification_p;
15071 parser->in_unbraced_linkage_specification_p = false;
15072 /* Inside the function, surrounding template-parameter-lists do not
15073 apply. */
15074 saved_num_template_parameter_lists
15075 = parser->num_template_parameter_lists;
15076 parser->num_template_parameter_lists = 0;
15077 /* If the next token is `try', then we are looking at a
15078 function-try-block. */
15079 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
15080 ctor_initializer_p = cp_parser_function_try_block (parser);
15081 /* A function-try-block includes the function-body, so we only do
15082 this next part if we're not processing a function-try-block. */
15083 else
15084 ctor_initializer_p
15085 = cp_parser_ctor_initializer_opt_and_function_body (parser);
15086
15087 /* Finish the function. */
15088 fn = finish_function ((ctor_initializer_p ? 1 : 0) |
15089 (inline_p ? 2 : 0));
15090 /* Generate code for it, if necessary. */
15091 expand_or_defer_fn (fn);
15092 /* Restore the saved values. */
15093 parser->in_unbraced_linkage_specification_p
15094 = saved_in_unbraced_linkage_specification_p;
15095 parser->num_template_parameter_lists
15096 = saved_num_template_parameter_lists;
15097
15098 return fn;
15099 }
15100
15101 /* Parse a template-declaration, assuming that the `export' (and
15102 `extern') keywords, if present, has already been scanned. MEMBER_P
15103 is as for cp_parser_template_declaration. */
15104
15105 static void
15106 cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
15107 {
15108 tree decl = NULL_TREE;
15109 tree parameter_list;
15110 bool friend_p = false;
15111
15112 /* Look for the `template' keyword. */
15113 if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
15114 return;
15115
15116 /* And the `<'. */
15117 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
15118 return;
15119
15120 /* If the next token is `>', then we have an invalid
15121 specialization. Rather than complain about an invalid template
15122 parameter, issue an error message here. */
15123 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15124 {
15125 cp_parser_error (parser, "invalid explicit specialization");
15126 begin_specialization ();
15127 parameter_list = NULL_TREE;
15128 }
15129 else
15130 {
15131 /* Parse the template parameters. */
15132 begin_template_parm_list ();
15133 parameter_list = cp_parser_template_parameter_list (parser);
15134 parameter_list = end_template_parm_list (parameter_list);
15135 }
15136
15137 /* Look for the `>'. */
15138 cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
15139 /* We just processed one more parameter list. */
15140 ++parser->num_template_parameter_lists;
15141 /* If the next token is `template', there are more template
15142 parameters. */
15143 if (cp_lexer_next_token_is_keyword (parser->lexer,
15144 RID_TEMPLATE))
15145 cp_parser_template_declaration_after_export (parser, member_p);
15146 else
15147 {
15148 /* There are no access checks when parsing a template, as we do not
15149 know if a specialization will be a friend. */
15150 push_deferring_access_checks (dk_no_check);
15151
15152 decl = cp_parser_single_declaration (parser,
15153 member_p,
15154 &friend_p);
15155
15156 pop_deferring_access_checks ();
15157
15158 /* If this is a member template declaration, let the front
15159 end know. */
15160 if (member_p && !friend_p && decl)
15161 {
15162 if (TREE_CODE (decl) == TYPE_DECL)
15163 cp_parser_check_access_in_redeclaration (decl);
15164
15165 decl = finish_member_template_decl (decl);
15166 }
15167 else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
15168 make_friend_class (current_class_type, TREE_TYPE (decl),
15169 /*complain=*/true);
15170 }
15171 /* We are done with the current parameter list. */
15172 --parser->num_template_parameter_lists;
15173
15174 /* Finish up. */
15175 finish_template_decl (parameter_list);
15176
15177 /* Register member declarations. */
15178 if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
15179 finish_member_declaration (decl);
15180
15181 /* If DECL is a function template, we must return to parse it later.
15182 (Even though there is no definition, there might be default
15183 arguments that need handling.) */
15184 if (member_p && decl
15185 && (TREE_CODE (decl) == FUNCTION_DECL
15186 || DECL_FUNCTION_TEMPLATE_P (decl)))
15187 TREE_VALUE (parser->unparsed_functions_queues)
15188 = tree_cons (NULL_TREE, decl,
15189 TREE_VALUE (parser->unparsed_functions_queues));
15190 }
15191
15192 /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
15193 `function-definition' sequence. MEMBER_P is true, this declaration
15194 appears in a class scope.
15195
15196 Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
15197 *FRIEND_P is set to TRUE iff the declaration is a friend. */
15198
15199 static tree
15200 cp_parser_single_declaration (cp_parser* parser,
15201 bool member_p,
15202 bool* friend_p)
15203 {
15204 int declares_class_or_enum;
15205 tree decl = NULL_TREE;
15206 cp_decl_specifier_seq decl_specifiers;
15207 bool function_definition_p = false;
15208
15209 /* This function is only used when processing a template
15210 declaration. */
15211 gcc_assert (innermost_scope_kind () == sk_template_parms
15212 || innermost_scope_kind () == sk_template_spec);
15213
15214 /* Defer access checks until we know what is being declared. */
15215 push_deferring_access_checks (dk_deferred);
15216
15217 /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
15218 alternative. */
15219 cp_parser_decl_specifier_seq (parser,
15220 CP_PARSER_FLAGS_OPTIONAL,
15221 &decl_specifiers,
15222 &declares_class_or_enum);
15223 if (friend_p)
15224 *friend_p = cp_parser_friend_p (&decl_specifiers);
15225
15226 /* There are no template typedefs. */
15227 if (decl_specifiers.specs[(int) ds_typedef])
15228 {
15229 error ("template declaration of %qs", "typedef");
15230 decl = error_mark_node;
15231 }
15232
15233 /* Gather up the access checks that occurred the
15234 decl-specifier-seq. */
15235 stop_deferring_access_checks ();
15236
15237 /* Check for the declaration of a template class. */
15238 if (declares_class_or_enum)
15239 {
15240 if (cp_parser_declares_only_class_p (parser))
15241 {
15242 decl = shadow_tag (&decl_specifiers);
15243
15244 /* In this case:
15245
15246 struct C {
15247 friend template <typename T> struct A<T>::B;
15248 };
15249
15250 A<T>::B will be represented by a TYPENAME_TYPE, and
15251 therefore not recognized by shadow_tag. */
15252 if (friend_p && *friend_p
15253 && !decl
15254 && decl_specifiers.type
15255 && TYPE_P (decl_specifiers.type))
15256 decl = decl_specifiers.type;
15257
15258 if (decl && decl != error_mark_node)
15259 decl = TYPE_NAME (decl);
15260 else
15261 decl = error_mark_node;
15262 }
15263 }
15264 /* If it's not a template class, try for a template function. If
15265 the next token is a `;', then this declaration does not declare
15266 anything. But, if there were errors in the decl-specifiers, then
15267 the error might well have come from an attempted class-specifier.
15268 In that case, there's no need to warn about a missing declarator. */
15269 if (!decl
15270 && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
15271 || decl_specifiers.type != error_mark_node))
15272 decl = cp_parser_init_declarator (parser,
15273 &decl_specifiers,
15274 /*function_definition_allowed_p=*/true,
15275 member_p,
15276 declares_class_or_enum,
15277 &function_definition_p);
15278
15279 pop_deferring_access_checks ();
15280
15281 /* Clear any current qualification; whatever comes next is the start
15282 of something new. */
15283 parser->scope = NULL_TREE;
15284 parser->qualifying_scope = NULL_TREE;
15285 parser->object_scope = NULL_TREE;
15286 /* Look for a trailing `;' after the declaration. */
15287 if (!function_definition_p
15288 && (decl == error_mark_node
15289 || !cp_parser_require (parser, CPP_SEMICOLON, "`;'")))
15290 cp_parser_skip_to_end_of_block_or_statement (parser);
15291
15292 return decl;
15293 }
15294
15295 /* Parse a cast-expression that is not the operand of a unary "&". */
15296
15297 static tree
15298 cp_parser_simple_cast_expression (cp_parser *parser)
15299 {
15300 return cp_parser_cast_expression (parser, /*address_p=*/false,
15301 /*cast_p=*/false);
15302 }
15303
15304 /* Parse a functional cast to TYPE. Returns an expression
15305 representing the cast. */
15306
15307 static tree
15308 cp_parser_functional_cast (cp_parser* parser, tree type)
15309 {
15310 tree expression_list;
15311 tree cast;
15312
15313 expression_list
15314 = cp_parser_parenthesized_expression_list (parser, false,
15315 /*cast_p=*/true,
15316 /*non_constant_p=*/NULL);
15317
15318 cast = build_functional_cast (type, expression_list);
15319 /* [expr.const]/1: In an integral constant expression "only type
15320 conversions to integral or enumeration type can be used". */
15321 if (cast != error_mark_node && !type_dependent_expression_p (type)
15322 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (type)))
15323 {
15324 if (cp_parser_non_integral_constant_expression
15325 (parser, "a call to a constructor"))
15326 return error_mark_node;
15327 }
15328 return cast;
15329 }
15330
15331 /* Save the tokens that make up the body of a member function defined
15332 in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
15333 already been parsed. The ATTRIBUTES are any GNU "__attribute__"
15334 specifiers applied to the declaration. Returns the FUNCTION_DECL
15335 for the member function. */
15336
15337 static tree
15338 cp_parser_save_member_function_body (cp_parser* parser,
15339 cp_decl_specifier_seq *decl_specifiers,
15340 cp_declarator *declarator,
15341 tree attributes)
15342 {
15343 cp_token *first;
15344 cp_token *last;
15345 tree fn;
15346
15347 /* Create the function-declaration. */
15348 fn = start_method (decl_specifiers, declarator, attributes);
15349 /* If something went badly wrong, bail out now. */
15350 if (fn == error_mark_node)
15351 {
15352 /* If there's a function-body, skip it. */
15353 if (cp_parser_token_starts_function_definition_p
15354 (cp_lexer_peek_token (parser->lexer)))
15355 cp_parser_skip_to_end_of_block_or_statement (parser);
15356 return error_mark_node;
15357 }
15358
15359 /* Remember it, if there default args to post process. */
15360 cp_parser_save_default_args (parser, fn);
15361
15362 /* Save away the tokens that make up the body of the
15363 function. */
15364 first = parser->lexer->next_token;
15365 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15366 /* Handle function try blocks. */
15367 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
15368 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15369 last = parser->lexer->next_token;
15370
15371 /* Save away the inline definition; we will process it when the
15372 class is complete. */
15373 DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last);
15374 DECL_PENDING_INLINE_P (fn) = 1;
15375
15376 /* We need to know that this was defined in the class, so that
15377 friend templates are handled correctly. */
15378 DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
15379
15380 /* We're done with the inline definition. */
15381 finish_method (fn);
15382
15383 /* Add FN to the queue of functions to be parsed later. */
15384 TREE_VALUE (parser->unparsed_functions_queues)
15385 = tree_cons (NULL_TREE, fn,
15386 TREE_VALUE (parser->unparsed_functions_queues));
15387
15388 return fn;
15389 }
15390
15391 /* Parse a template-argument-list, as well as the trailing ">" (but
15392 not the opening ">"). See cp_parser_template_argument_list for the
15393 return value. */
15394
15395 static tree
15396 cp_parser_enclosed_template_argument_list (cp_parser* parser)
15397 {
15398 tree arguments;
15399 tree saved_scope;
15400 tree saved_qualifying_scope;
15401 tree saved_object_scope;
15402 bool saved_greater_than_is_operator_p;
15403
15404 /* [temp.names]
15405
15406 When parsing a template-id, the first non-nested `>' is taken as
15407 the end of the template-argument-list rather than a greater-than
15408 operator. */
15409 saved_greater_than_is_operator_p
15410 = parser->greater_than_is_operator_p;
15411 parser->greater_than_is_operator_p = false;
15412 /* Parsing the argument list may modify SCOPE, so we save it
15413 here. */
15414 saved_scope = parser->scope;
15415 saved_qualifying_scope = parser->qualifying_scope;
15416 saved_object_scope = parser->object_scope;
15417 /* Parse the template-argument-list itself. */
15418 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15419 arguments = NULL_TREE;
15420 else
15421 arguments = cp_parser_template_argument_list (parser);
15422 /* Look for the `>' that ends the template-argument-list. If we find
15423 a '>>' instead, it's probably just a typo. */
15424 if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
15425 {
15426 if (!saved_greater_than_is_operator_p)
15427 {
15428 /* If we're in a nested template argument list, the '>>' has
15429 to be a typo for '> >'. We emit the error message, but we
15430 continue parsing and we push a '>' as next token, so that
15431 the argument list will be parsed correctly. Note that the
15432 global source location is still on the token before the
15433 '>>', so we need to say explicitly where we want it. */
15434 cp_token *token = cp_lexer_peek_token (parser->lexer);
15435 error ("%H%<>>%> should be %<> >%> "
15436 "within a nested template argument list",
15437 &token->location);
15438
15439 /* ??? Proper recovery should terminate two levels of
15440 template argument list here. */
15441 token->type = CPP_GREATER;
15442 }
15443 else
15444 {
15445 /* If this is not a nested template argument list, the '>>'
15446 is a typo for '>'. Emit an error message and continue.
15447 Same deal about the token location, but here we can get it
15448 right by consuming the '>>' before issuing the diagnostic. */
15449 cp_lexer_consume_token (parser->lexer);
15450 error ("spurious %<>>%>, use %<>%> to terminate "
15451 "a template argument list");
15452 }
15453 }
15454 else if (!cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15455 error ("missing %<>%> to terminate the template argument list");
15456 else
15457 /* It's what we want, a '>'; consume it. */
15458 cp_lexer_consume_token (parser->lexer);
15459 /* The `>' token might be a greater-than operator again now. */
15460 parser->greater_than_is_operator_p
15461 = saved_greater_than_is_operator_p;
15462 /* Restore the SAVED_SCOPE. */
15463 parser->scope = saved_scope;
15464 parser->qualifying_scope = saved_qualifying_scope;
15465 parser->object_scope = saved_object_scope;
15466
15467 return arguments;
15468 }
15469
15470 /* MEMBER_FUNCTION is a member function, or a friend. If default
15471 arguments, or the body of the function have not yet been parsed,
15472 parse them now. */
15473
15474 static void
15475 cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
15476 {
15477 /* If this member is a template, get the underlying
15478 FUNCTION_DECL. */
15479 if (DECL_FUNCTION_TEMPLATE_P (member_function))
15480 member_function = DECL_TEMPLATE_RESULT (member_function);
15481
15482 /* There should not be any class definitions in progress at this
15483 point; the bodies of members are only parsed outside of all class
15484 definitions. */
15485 gcc_assert (parser->num_classes_being_defined == 0);
15486 /* While we're parsing the member functions we might encounter more
15487 classes. We want to handle them right away, but we don't want
15488 them getting mixed up with functions that are currently in the
15489 queue. */
15490 parser->unparsed_functions_queues
15491 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15492
15493 /* Make sure that any template parameters are in scope. */
15494 maybe_begin_member_template_processing (member_function);
15495
15496 /* If the body of the function has not yet been parsed, parse it
15497 now. */
15498 if (DECL_PENDING_INLINE_P (member_function))
15499 {
15500 tree function_scope;
15501 cp_token_cache *tokens;
15502
15503 /* The function is no longer pending; we are processing it. */
15504 tokens = DECL_PENDING_INLINE_INFO (member_function);
15505 DECL_PENDING_INLINE_INFO (member_function) = NULL;
15506 DECL_PENDING_INLINE_P (member_function) = 0;
15507
15508 /* If this is a local class, enter the scope of the containing
15509 function. */
15510 function_scope = current_function_decl;
15511 if (function_scope)
15512 push_function_context_to (function_scope);
15513
15514
15515 /* Push the body of the function onto the lexer stack. */
15516 cp_parser_push_lexer_for_tokens (parser, tokens);
15517
15518 /* Let the front end know that we going to be defining this
15519 function. */
15520 start_preparsed_function (member_function, NULL_TREE,
15521 SF_PRE_PARSED | SF_INCLASS_INLINE);
15522
15523 /* Don't do access checking if it is a templated function. */
15524 if (processing_template_decl)
15525 push_deferring_access_checks (dk_no_check);
15526
15527 /* Now, parse the body of the function. */
15528 cp_parser_function_definition_after_declarator (parser,
15529 /*inline_p=*/true);
15530
15531 if (processing_template_decl)
15532 pop_deferring_access_checks ();
15533
15534 /* Leave the scope of the containing function. */
15535 if (function_scope)
15536 pop_function_context_from (function_scope);
15537 cp_parser_pop_lexer (parser);
15538 }
15539
15540 /* Remove any template parameters from the symbol table. */
15541 maybe_end_member_template_processing ();
15542
15543 /* Restore the queue. */
15544 parser->unparsed_functions_queues
15545 = TREE_CHAIN (parser->unparsed_functions_queues);
15546 }
15547
15548 /* If DECL contains any default args, remember it on the unparsed
15549 functions queue. */
15550
15551 static void
15552 cp_parser_save_default_args (cp_parser* parser, tree decl)
15553 {
15554 tree probe;
15555
15556 for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
15557 probe;
15558 probe = TREE_CHAIN (probe))
15559 if (TREE_PURPOSE (probe))
15560 {
15561 TREE_PURPOSE (parser->unparsed_functions_queues)
15562 = tree_cons (current_class_type, decl,
15563 TREE_PURPOSE (parser->unparsed_functions_queues));
15564 break;
15565 }
15566 return;
15567 }
15568
15569 /* FN is a FUNCTION_DECL which may contains a parameter with an
15570 unparsed DEFAULT_ARG. Parse the default args now. This function
15571 assumes that the current scope is the scope in which the default
15572 argument should be processed. */
15573
15574 static void
15575 cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
15576 {
15577 bool saved_local_variables_forbidden_p;
15578 tree parm;
15579
15580 /* While we're parsing the default args, we might (due to the
15581 statement expression extension) encounter more classes. We want
15582 to handle them right away, but we don't want them getting mixed
15583 up with default args that are currently in the queue. */
15584 parser->unparsed_functions_queues
15585 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15586
15587 /* Local variable names (and the `this' keyword) may not appear
15588 in a default argument. */
15589 saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
15590 parser->local_variables_forbidden_p = true;
15591
15592 for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
15593 parm;
15594 parm = TREE_CHAIN (parm))
15595 {
15596 cp_token_cache *tokens;
15597 tree default_arg = TREE_PURPOSE (parm);
15598 tree parsed_arg;
15599 VEC(tree,gc) *insts;
15600 tree copy;
15601 unsigned ix;
15602
15603 if (!default_arg)
15604 continue;
15605
15606 if (TREE_CODE (default_arg) != DEFAULT_ARG)
15607 /* This can happen for a friend declaration for a function
15608 already declared with default arguments. */
15609 continue;
15610
15611 /* Push the saved tokens for the default argument onto the parser's
15612 lexer stack. */
15613 tokens = DEFARG_TOKENS (default_arg);
15614 cp_parser_push_lexer_for_tokens (parser, tokens);
15615
15616 /* Parse the assignment-expression. */
15617 parsed_arg = cp_parser_assignment_expression (parser, /*cast_p=*/false);
15618
15619 TREE_PURPOSE (parm) = parsed_arg;
15620
15621 /* Update any instantiations we've already created. */
15622 for (insts = DEFARG_INSTANTIATIONS (default_arg), ix = 0;
15623 VEC_iterate (tree, insts, ix, copy); ix++)
15624 TREE_PURPOSE (copy) = parsed_arg;
15625
15626 /* If the token stream has not been completely used up, then
15627 there was extra junk after the end of the default
15628 argument. */
15629 if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15630 cp_parser_error (parser, "expected %<,%>");
15631
15632 /* Revert to the main lexer. */
15633 cp_parser_pop_lexer (parser);
15634 }
15635
15636 /* Restore the state of local_variables_forbidden_p. */
15637 parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
15638
15639 /* Restore the queue. */
15640 parser->unparsed_functions_queues
15641 = TREE_CHAIN (parser->unparsed_functions_queues);
15642 }
15643
15644 /* Parse the operand of `sizeof' (or a similar operator). Returns
15645 either a TYPE or an expression, depending on the form of the
15646 input. The KEYWORD indicates which kind of expression we have
15647 encountered. */
15648
15649 static tree
15650 cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
15651 {
15652 static const char *format;
15653 tree expr = NULL_TREE;
15654 const char *saved_message;
15655 bool saved_integral_constant_expression_p;
15656 bool saved_non_integral_constant_expression_p;
15657
15658 /* Initialize FORMAT the first time we get here. */
15659 if (!format)
15660 format = "types may not be defined in '%s' expressions";
15661
15662 /* Types cannot be defined in a `sizeof' expression. Save away the
15663 old message. */
15664 saved_message = parser->type_definition_forbidden_message;
15665 /* And create the new one. */
15666 parser->type_definition_forbidden_message
15667 = xmalloc (strlen (format)
15668 + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
15669 + 1 /* `\0' */);
15670 sprintf ((char *) parser->type_definition_forbidden_message,
15671 format, IDENTIFIER_POINTER (ridpointers[keyword]));
15672
15673 /* The restrictions on constant-expressions do not apply inside
15674 sizeof expressions. */
15675 saved_integral_constant_expression_p
15676 = parser->integral_constant_expression_p;
15677 saved_non_integral_constant_expression_p
15678 = parser->non_integral_constant_expression_p;
15679 parser->integral_constant_expression_p = false;
15680
15681 /* Do not actually evaluate the expression. */
15682 ++skip_evaluation;
15683 /* If it's a `(', then we might be looking at the type-id
15684 construction. */
15685 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
15686 {
15687 tree type;
15688 bool saved_in_type_id_in_expr_p;
15689
15690 /* We can't be sure yet whether we're looking at a type-id or an
15691 expression. */
15692 cp_parser_parse_tentatively (parser);
15693 /* Consume the `('. */
15694 cp_lexer_consume_token (parser->lexer);
15695 /* Parse the type-id. */
15696 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
15697 parser->in_type_id_in_expr_p = true;
15698 type = cp_parser_type_id (parser);
15699 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
15700 /* Now, look for the trailing `)'. */
15701 cp_parser_require (parser, CPP_CLOSE_PAREN, "%<)%>");
15702 /* If all went well, then we're done. */
15703 if (cp_parser_parse_definitely (parser))
15704 {
15705 cp_decl_specifier_seq decl_specs;
15706
15707 /* Build a trivial decl-specifier-seq. */
15708 clear_decl_specs (&decl_specs);
15709 decl_specs.type = type;
15710
15711 /* Call grokdeclarator to figure out what type this is. */
15712 expr = grokdeclarator (NULL,
15713 &decl_specs,
15714 TYPENAME,
15715 /*initialized=*/0,
15716 /*attrlist=*/NULL);
15717 }
15718 }
15719
15720 /* If the type-id production did not work out, then we must be
15721 looking at the unary-expression production. */
15722 if (!expr)
15723 expr = cp_parser_unary_expression (parser, /*address_p=*/false,
15724 /*cast_p=*/false);
15725 /* Go back to evaluating expressions. */
15726 --skip_evaluation;
15727
15728 /* Free the message we created. */
15729 free ((char *) parser->type_definition_forbidden_message);
15730 /* And restore the old one. */
15731 parser->type_definition_forbidden_message = saved_message;
15732 parser->integral_constant_expression_p
15733 = saved_integral_constant_expression_p;
15734 parser->non_integral_constant_expression_p
15735 = saved_non_integral_constant_expression_p;
15736
15737 return expr;
15738 }
15739
15740 /* If the current declaration has no declarator, return true. */
15741
15742 static bool
15743 cp_parser_declares_only_class_p (cp_parser *parser)
15744 {
15745 /* If the next token is a `;' or a `,' then there is no
15746 declarator. */
15747 return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
15748 || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
15749 }
15750
15751 /* Update the DECL_SPECS to reflect the STORAGE_CLASS. */
15752
15753 static void
15754 cp_parser_set_storage_class (cp_decl_specifier_seq *decl_specs,
15755 cp_storage_class storage_class)
15756 {
15757 if (decl_specs->storage_class != sc_none)
15758 decl_specs->multiple_storage_classes_p = true;
15759 else
15760 decl_specs->storage_class = storage_class;
15761 }
15762
15763 /* Update the DECL_SPECS to reflect the TYPE_SPEC. If USER_DEFINED_P
15764 is true, the type is a user-defined type; otherwise it is a
15765 built-in type specified by a keyword. */
15766
15767 static void
15768 cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
15769 tree type_spec,
15770 bool user_defined_p)
15771 {
15772 decl_specs->any_specifiers_p = true;
15773
15774 /* If the user tries to redeclare bool or wchar_t (with, for
15775 example, in "typedef int wchar_t;") we remember that this is what
15776 happened. In system headers, we ignore these declarations so
15777 that G++ can work with system headers that are not C++-safe. */
15778 if (decl_specs->specs[(int) ds_typedef]
15779 && !user_defined_p
15780 && (type_spec == boolean_type_node
15781 || type_spec == wchar_type_node)
15782 && (decl_specs->type
15783 || decl_specs->specs[(int) ds_long]
15784 || decl_specs->specs[(int) ds_short]
15785 || decl_specs->specs[(int) ds_unsigned]
15786 || decl_specs->specs[(int) ds_signed]))
15787 {
15788 decl_specs->redefined_builtin_type = type_spec;
15789 if (!decl_specs->type)
15790 {
15791 decl_specs->type = type_spec;
15792 decl_specs->user_defined_type_p = false;
15793 }
15794 }
15795 else if (decl_specs->type)
15796 decl_specs->multiple_types_p = true;
15797 else
15798 {
15799 decl_specs->type = type_spec;
15800 decl_specs->user_defined_type_p = user_defined_p;
15801 decl_specs->redefined_builtin_type = NULL_TREE;
15802 }
15803 }
15804
15805 /* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
15806 Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
15807
15808 static bool
15809 cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
15810 {
15811 return decl_specifiers->specs[(int) ds_friend] != 0;
15812 }
15813
15814 /* If the next token is of the indicated TYPE, consume it. Otherwise,
15815 issue an error message indicating that TOKEN_DESC was expected.
15816
15817 Returns the token consumed, if the token had the appropriate type.
15818 Otherwise, returns NULL. */
15819
15820 static cp_token *
15821 cp_parser_require (cp_parser* parser,
15822 enum cpp_ttype type,
15823 const char* token_desc)
15824 {
15825 if (cp_lexer_next_token_is (parser->lexer, type))
15826 return cp_lexer_consume_token (parser->lexer);
15827 else
15828 {
15829 /* Output the MESSAGE -- unless we're parsing tentatively. */
15830 if (!cp_parser_simulate_error (parser))
15831 {
15832 char *message = concat ("expected ", token_desc, NULL);
15833 cp_parser_error (parser, message);
15834 free (message);
15835 }
15836 return NULL;
15837 }
15838 }
15839
15840 /* Like cp_parser_require, except that tokens will be skipped until
15841 the desired token is found. An error message is still produced if
15842 the next token is not as expected. */
15843
15844 static void
15845 cp_parser_skip_until_found (cp_parser* parser,
15846 enum cpp_ttype type,
15847 const char* token_desc)
15848 {
15849 cp_token *token;
15850 unsigned nesting_depth = 0;
15851
15852 if (cp_parser_require (parser, type, token_desc))
15853 return;
15854
15855 /* Skip tokens until the desired token is found. */
15856 while (true)
15857 {
15858 /* Peek at the next token. */
15859 token = cp_lexer_peek_token (parser->lexer);
15860 /* If we've reached the token we want, consume it and
15861 stop. */
15862 if (token->type == type && !nesting_depth)
15863 {
15864 cp_lexer_consume_token (parser->lexer);
15865 return;
15866 }
15867 /* If we've run out of tokens, stop. */
15868 if (token->type == CPP_EOF)
15869 return;
15870 if (token->type == CPP_OPEN_BRACE
15871 || token->type == CPP_OPEN_PAREN
15872 || token->type == CPP_OPEN_SQUARE)
15873 ++nesting_depth;
15874 else if (token->type == CPP_CLOSE_BRACE
15875 || token->type == CPP_CLOSE_PAREN
15876 || token->type == CPP_CLOSE_SQUARE)
15877 {
15878 if (nesting_depth-- == 0)
15879 return;
15880 }
15881 /* Consume this token. */
15882 cp_lexer_consume_token (parser->lexer);
15883 }
15884 }
15885
15886 /* If the next token is the indicated keyword, consume it. Otherwise,
15887 issue an error message indicating that TOKEN_DESC was expected.
15888
15889 Returns the token consumed, if the token had the appropriate type.
15890 Otherwise, returns NULL. */
15891
15892 static cp_token *
15893 cp_parser_require_keyword (cp_parser* parser,
15894 enum rid keyword,
15895 const char* token_desc)
15896 {
15897 cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
15898
15899 if (token && token->keyword != keyword)
15900 {
15901 dyn_string_t error_msg;
15902
15903 /* Format the error message. */
15904 error_msg = dyn_string_new (0);
15905 dyn_string_append_cstr (error_msg, "expected ");
15906 dyn_string_append_cstr (error_msg, token_desc);
15907 cp_parser_error (parser, error_msg->s);
15908 dyn_string_delete (error_msg);
15909 return NULL;
15910 }
15911
15912 return token;
15913 }
15914
15915 /* Returns TRUE iff TOKEN is a token that can begin the body of a
15916 function-definition. */
15917
15918 static bool
15919 cp_parser_token_starts_function_definition_p (cp_token* token)
15920 {
15921 return (/* An ordinary function-body begins with an `{'. */
15922 token->type == CPP_OPEN_BRACE
15923 /* A ctor-initializer begins with a `:'. */
15924 || token->type == CPP_COLON
15925 /* A function-try-block begins with `try'. */
15926 || token->keyword == RID_TRY
15927 /* The named return value extension begins with `return'. */
15928 || token->keyword == RID_RETURN);
15929 }
15930
15931 /* Returns TRUE iff the next token is the ":" or "{" beginning a class
15932 definition. */
15933
15934 static bool
15935 cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
15936 {
15937 cp_token *token;
15938
15939 token = cp_lexer_peek_token (parser->lexer);
15940 return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
15941 }
15942
15943 /* Returns TRUE iff the next token is the "," or ">" ending a
15944 template-argument. */
15945
15946 static bool
15947 cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
15948 {
15949 cp_token *token;
15950
15951 token = cp_lexer_peek_token (parser->lexer);
15952 return (token->type == CPP_COMMA || token->type == CPP_GREATER);
15953 }
15954
15955 /* Returns TRUE iff the n-th token is a ">", or the n-th is a "[" and the
15956 (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
15957
15958 static bool
15959 cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
15960 size_t n)
15961 {
15962 cp_token *token;
15963
15964 token = cp_lexer_peek_nth_token (parser->lexer, n);
15965 if (token->type == CPP_LESS)
15966 return true;
15967 /* Check for the sequence `<::' in the original code. It would be lexed as
15968 `[:', where `[' is a digraph, and there is no whitespace before
15969 `:'. */
15970 if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
15971 {
15972 cp_token *token2;
15973 token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
15974 if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
15975 return true;
15976 }
15977 return false;
15978 }
15979
15980 /* Returns the kind of tag indicated by TOKEN, if it is a class-key,
15981 or none_type otherwise. */
15982
15983 static enum tag_types
15984 cp_parser_token_is_class_key (cp_token* token)
15985 {
15986 switch (token->keyword)
15987 {
15988 case RID_CLASS:
15989 return class_type;
15990 case RID_STRUCT:
15991 return record_type;
15992 case RID_UNION:
15993 return union_type;
15994
15995 default:
15996 return none_type;
15997 }
15998 }
15999
16000 /* Issue an error message if the CLASS_KEY does not match the TYPE. */
16001
16002 static void
16003 cp_parser_check_class_key (enum tag_types class_key, tree type)
16004 {
16005 if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
16006 pedwarn ("%qs tag used in naming %q#T",
16007 class_key == union_type ? "union"
16008 : class_key == record_type ? "struct" : "class",
16009 type);
16010 }
16011
16012 /* Issue an error message if DECL is redeclared with different
16013 access than its original declaration [class.access.spec/3].
16014 This applies to nested classes and nested class templates.
16015 [class.mem/1]. */
16016
16017 static void
16018 cp_parser_check_access_in_redeclaration (tree decl)
16019 {
16020 if (!CLASS_TYPE_P (TREE_TYPE (decl)))
16021 return;
16022
16023 if ((TREE_PRIVATE (decl)
16024 != (current_access_specifier == access_private_node))
16025 || (TREE_PROTECTED (decl)
16026 != (current_access_specifier == access_protected_node)))
16027 error ("%qD redeclared with different access", decl);
16028 }
16029
16030 /* Look for the `template' keyword, as a syntactic disambiguator.
16031 Return TRUE iff it is present, in which case it will be
16032 consumed. */
16033
16034 static bool
16035 cp_parser_optional_template_keyword (cp_parser *parser)
16036 {
16037 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
16038 {
16039 /* The `template' keyword can only be used within templates;
16040 outside templates the parser can always figure out what is a
16041 template and what is not. */
16042 if (!processing_template_decl)
16043 {
16044 error ("%<template%> (as a disambiguator) is only allowed "
16045 "within templates");
16046 /* If this part of the token stream is rescanned, the same
16047 error message would be generated. So, we purge the token
16048 from the stream. */
16049 cp_lexer_purge_token (parser->lexer);
16050 return false;
16051 }
16052 else
16053 {
16054 /* Consume the `template' keyword. */
16055 cp_lexer_consume_token (parser->lexer);
16056 return true;
16057 }
16058 }
16059
16060 return false;
16061 }
16062
16063 /* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
16064 set PARSER->SCOPE, and perform other related actions. */
16065
16066 static void
16067 cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
16068 {
16069 tree value;
16070 tree check;
16071
16072 /* Get the stored value. */
16073 value = cp_lexer_consume_token (parser->lexer)->value;
16074 /* Perform any access checks that were deferred. */
16075 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
16076 perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
16077 /* Set the scope from the stored value. */
16078 parser->scope = TREE_VALUE (value);
16079 parser->qualifying_scope = TREE_TYPE (value);
16080 parser->object_scope = NULL_TREE;
16081 }
16082
16083 /* Consume tokens up through a non-nested END token. */
16084
16085 static void
16086 cp_parser_cache_group (cp_parser *parser,
16087 enum cpp_ttype end,
16088 unsigned depth)
16089 {
16090 while (true)
16091 {
16092 cp_token *token;
16093
16094 /* Abort a parenthesized expression if we encounter a brace. */
16095 if ((end == CPP_CLOSE_PAREN || depth == 0)
16096 && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
16097 return;
16098 /* If we've reached the end of the file, stop. */
16099 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
16100 return;
16101 /* Consume the next token. */
16102 token = cp_lexer_consume_token (parser->lexer);
16103 /* See if it starts a new group. */
16104 if (token->type == CPP_OPEN_BRACE)
16105 {
16106 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1);
16107 if (depth == 0)
16108 return;
16109 }
16110 else if (token->type == CPP_OPEN_PAREN)
16111 cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1);
16112 else if (token->type == end)
16113 return;
16114 }
16115 }
16116
16117 /* Begin parsing tentatively. We always save tokens while parsing
16118 tentatively so that if the tentative parsing fails we can restore the
16119 tokens. */
16120
16121 static void
16122 cp_parser_parse_tentatively (cp_parser* parser)
16123 {
16124 /* Enter a new parsing context. */
16125 parser->context = cp_parser_context_new (parser->context);
16126 /* Begin saving tokens. */
16127 cp_lexer_save_tokens (parser->lexer);
16128 /* In order to avoid repetitive access control error messages,
16129 access checks are queued up until we are no longer parsing
16130 tentatively. */
16131 push_deferring_access_checks (dk_deferred);
16132 }
16133
16134 /* Commit to the currently active tentative parse. */
16135
16136 static void
16137 cp_parser_commit_to_tentative_parse (cp_parser* parser)
16138 {
16139 cp_parser_context *context;
16140 cp_lexer *lexer;
16141
16142 /* Mark all of the levels as committed. */
16143 lexer = parser->lexer;
16144 for (context = parser->context; context->next; context = context->next)
16145 {
16146 if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
16147 break;
16148 context->status = CP_PARSER_STATUS_KIND_COMMITTED;
16149 while (!cp_lexer_saving_tokens (lexer))
16150 lexer = lexer->next;
16151 cp_lexer_commit_tokens (lexer);
16152 }
16153 }
16154
16155 /* Abort the currently active tentative parse. All consumed tokens
16156 will be rolled back, and no diagnostics will be issued. */
16157
16158 static void
16159 cp_parser_abort_tentative_parse (cp_parser* parser)
16160 {
16161 cp_parser_simulate_error (parser);
16162 /* Now, pretend that we want to see if the construct was
16163 successfully parsed. */
16164 cp_parser_parse_definitely (parser);
16165 }
16166
16167 /* Stop parsing tentatively. If a parse error has occurred, restore the
16168 token stream. Otherwise, commit to the tokens we have consumed.
16169 Returns true if no error occurred; false otherwise. */
16170
16171 static bool
16172 cp_parser_parse_definitely (cp_parser* parser)
16173 {
16174 bool error_occurred;
16175 cp_parser_context *context;
16176
16177 /* Remember whether or not an error occurred, since we are about to
16178 destroy that information. */
16179 error_occurred = cp_parser_error_occurred (parser);
16180 /* Remove the topmost context from the stack. */
16181 context = parser->context;
16182 parser->context = context->next;
16183 /* If no parse errors occurred, commit to the tentative parse. */
16184 if (!error_occurred)
16185 {
16186 /* Commit to the tokens read tentatively, unless that was
16187 already done. */
16188 if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
16189 cp_lexer_commit_tokens (parser->lexer);
16190
16191 pop_to_parent_deferring_access_checks ();
16192 }
16193 /* Otherwise, if errors occurred, roll back our state so that things
16194 are just as they were before we began the tentative parse. */
16195 else
16196 {
16197 cp_lexer_rollback_tokens (parser->lexer);
16198 pop_deferring_access_checks ();
16199 }
16200 /* Add the context to the front of the free list. */
16201 context->next = cp_parser_context_free_list;
16202 cp_parser_context_free_list = context;
16203
16204 return !error_occurred;
16205 }
16206
16207 /* Returns true if we are parsing tentatively and are not committed to
16208 this tentative parse. */
16209
16210 static bool
16211 cp_parser_uncommitted_to_tentative_parse_p (cp_parser* parser)
16212 {
16213 return (cp_parser_parsing_tentatively (parser)
16214 && parser->context->status != CP_PARSER_STATUS_KIND_COMMITTED);
16215 }
16216
16217 /* Returns nonzero iff an error has occurred during the most recent
16218 tentative parse. */
16219
16220 static bool
16221 cp_parser_error_occurred (cp_parser* parser)
16222 {
16223 return (cp_parser_parsing_tentatively (parser)
16224 && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
16225 }
16226
16227 /* Returns nonzero if GNU extensions are allowed. */
16228
16229 static bool
16230 cp_parser_allow_gnu_extensions_p (cp_parser* parser)
16231 {
16232 return parser->allow_gnu_extensions_p;
16233 }
16234 \f
16235 /* Objective-C++ Productions */
16236
16237
16238 /* Parse an Objective-C expression, which feeds into a primary-expression
16239 above.
16240
16241 objc-expression:
16242 objc-message-expression
16243 objc-string-literal
16244 objc-encode-expression
16245 objc-protocol-expression
16246 objc-selector-expression
16247
16248 Returns a tree representation of the expression. */
16249
16250 static tree
16251 cp_parser_objc_expression (cp_parser* parser)
16252 {
16253 /* Try to figure out what kind of declaration is present. */
16254 cp_token *kwd = cp_lexer_peek_token (parser->lexer);
16255
16256 switch (kwd->type)
16257 {
16258 case CPP_OPEN_SQUARE:
16259 return cp_parser_objc_message_expression (parser);
16260
16261 case CPP_OBJC_STRING:
16262 kwd = cp_lexer_consume_token (parser->lexer);
16263 return objc_build_string_object (kwd->value);
16264
16265 case CPP_KEYWORD:
16266 switch (kwd->keyword)
16267 {
16268 case RID_AT_ENCODE:
16269 return cp_parser_objc_encode_expression (parser);
16270
16271 case RID_AT_PROTOCOL:
16272 return cp_parser_objc_protocol_expression (parser);
16273
16274 case RID_AT_SELECTOR:
16275 return cp_parser_objc_selector_expression (parser);
16276
16277 default:
16278 break;
16279 }
16280 default:
16281 error ("misplaced `@%D' Objective-C++ construct", kwd->value);
16282 cp_parser_skip_to_end_of_block_or_statement (parser);
16283 }
16284
16285 return error_mark_node;
16286 }
16287
16288 /* Parse an Objective-C message expression.
16289
16290 objc-message-expression:
16291 [ objc-message-receiver objc-message-args ]
16292
16293 Returns a representation of an Objective-C message. */
16294
16295 static tree
16296 cp_parser_objc_message_expression (cp_parser* parser)
16297 {
16298 tree receiver, messageargs;
16299
16300 cp_lexer_consume_token (parser->lexer); /* Eat '['. */
16301 receiver = cp_parser_objc_message_receiver (parser);
16302 messageargs = cp_parser_objc_message_args (parser);
16303 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
16304
16305 return objc_build_message_expr (build_tree_list (receiver, messageargs));
16306 }
16307
16308 /* Parse an objc-message-receiver.
16309
16310 objc-message-receiver:
16311 expression
16312 simple-type-specifier
16313
16314 Returns a representation of the type or expression. */
16315
16316 static tree
16317 cp_parser_objc_message_receiver (cp_parser* parser)
16318 {
16319 tree rcv;
16320
16321 /* An Objective-C message receiver may be either (1) a type
16322 or (2) an expression. */
16323 cp_parser_parse_tentatively (parser);
16324 rcv = cp_parser_expression (parser, false);
16325
16326 if (cp_parser_parse_definitely (parser))
16327 return rcv;
16328
16329 rcv = cp_parser_simple_type_specifier (parser,
16330 /*decl_specs=*/NULL,
16331 CP_PARSER_FLAGS_NONE);
16332
16333 return objc_get_class_reference (rcv);
16334 }
16335
16336 /* Parse the arguments and selectors comprising an Objective-C message.
16337
16338 objc-message-args:
16339 objc-selector
16340 objc-selector-args
16341 objc-selector-args , objc-comma-args
16342
16343 objc-selector-args:
16344 objc-selector [opt] : assignment-expression
16345 objc-selector-args objc-selector [opt] : assignment-expression
16346
16347 objc-comma-args:
16348 assignment-expression
16349 objc-comma-args , assignment-expression
16350
16351 Returns a TREE_LIST, with TREE_PURPOSE containing a list of
16352 selector arguments and TREE_VALUE containing a list of comma
16353 arguments. */
16354
16355 static tree
16356 cp_parser_objc_message_args (cp_parser* parser)
16357 {
16358 tree sel_args = NULL_TREE, addl_args = NULL_TREE;
16359 bool maybe_unary_selector_p = true;
16360 cp_token *token = cp_lexer_peek_token (parser->lexer);
16361
16362 while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
16363 {
16364 tree selector = NULL_TREE, arg;
16365
16366 if (token->type != CPP_COLON)
16367 selector = cp_parser_objc_selector (parser);
16368
16369 /* Detect if we have a unary selector. */
16370 if (maybe_unary_selector_p
16371 && cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
16372 return build_tree_list (selector, NULL_TREE);
16373
16374 maybe_unary_selector_p = false;
16375 cp_parser_require (parser, CPP_COLON, "`:'");
16376 arg = cp_parser_assignment_expression (parser, false);
16377
16378 sel_args
16379 = chainon (sel_args,
16380 build_tree_list (selector, arg));
16381
16382 token = cp_lexer_peek_token (parser->lexer);
16383 }
16384
16385 /* Handle non-selector arguments, if any. */
16386 while (token->type == CPP_COMMA)
16387 {
16388 tree arg;
16389
16390 cp_lexer_consume_token (parser->lexer);
16391 arg = cp_parser_assignment_expression (parser, false);
16392
16393 addl_args
16394 = chainon (addl_args,
16395 build_tree_list (NULL_TREE, arg));
16396
16397 token = cp_lexer_peek_token (parser->lexer);
16398 }
16399
16400 return build_tree_list (sel_args, addl_args);
16401 }
16402
16403 /* Parse an Objective-C encode expression.
16404
16405 objc-encode-expression:
16406 @encode objc-typename
16407
16408 Returns an encoded representation of the type argument. */
16409
16410 static tree
16411 cp_parser_objc_encode_expression (cp_parser* parser)
16412 {
16413 tree type;
16414
16415 cp_lexer_consume_token (parser->lexer); /* Eat '@encode'. */
16416 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
16417 type = complete_type (cp_parser_type_id (parser));
16418 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
16419
16420 if (!type)
16421 {
16422 error ("`@encode' must specify a type as an argument");
16423 return error_mark_node;
16424 }
16425
16426 return objc_build_encode_expr (type);
16427 }
16428
16429 /* Parse an Objective-C @defs expression. */
16430
16431 static tree
16432 cp_parser_objc_defs_expression (cp_parser *parser)
16433 {
16434 tree name;
16435
16436 cp_lexer_consume_token (parser->lexer); /* Eat '@defs'. */
16437 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
16438 name = cp_parser_identifier (parser);
16439 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
16440
16441 return objc_get_class_ivars (name);
16442 }
16443
16444 /* Parse an Objective-C protocol expression.
16445
16446 objc-protocol-expression:
16447 @protocol ( identifier )
16448
16449 Returns a representation of the protocol expression. */
16450
16451 static tree
16452 cp_parser_objc_protocol_expression (cp_parser* parser)
16453 {
16454 tree proto;
16455
16456 cp_lexer_consume_token (parser->lexer); /* Eat '@protocol'. */
16457 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
16458 proto = cp_parser_identifier (parser);
16459 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
16460
16461 return objc_build_protocol_expr (proto);
16462 }
16463
16464 /* Parse an Objective-C selector expression.
16465
16466 objc-selector-expression:
16467 @selector ( objc-method-signature )
16468
16469 objc-method-signature:
16470 objc-selector
16471 objc-selector-seq
16472
16473 objc-selector-seq:
16474 objc-selector :
16475 objc-selector-seq objc-selector :
16476
16477 Returns a representation of the method selector. */
16478
16479 static tree
16480 cp_parser_objc_selector_expression (cp_parser* parser)
16481 {
16482 tree sel_seq = NULL_TREE;
16483 bool maybe_unary_selector_p = true;
16484 cp_token *token;
16485
16486 cp_lexer_consume_token (parser->lexer); /* Eat '@selector'. */
16487 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
16488 token = cp_lexer_peek_token (parser->lexer);
16489
16490 while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
16491 {
16492 tree selector = NULL_TREE;
16493
16494 if (token->type != CPP_COLON)
16495 selector = cp_parser_objc_selector (parser);
16496
16497 /* Detect if we have a unary selector. */
16498 if (maybe_unary_selector_p
16499 && cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
16500 {
16501 sel_seq = selector;
16502 goto finish_selector;
16503 }
16504
16505 maybe_unary_selector_p = false;
16506 cp_parser_require (parser, CPP_COLON, "`:'");
16507
16508 sel_seq
16509 = chainon (sel_seq,
16510 build_tree_list (selector, NULL_TREE));
16511
16512 token = cp_lexer_peek_token (parser->lexer);
16513 }
16514
16515 finish_selector:
16516 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
16517
16518 return objc_build_selector_expr (sel_seq);
16519 }
16520
16521 /* Parse a list of identifiers.
16522
16523 objc-identifier-list:
16524 identifier
16525 objc-identifier-list , identifier
16526
16527 Returns a TREE_LIST of identifier nodes. */
16528
16529 static tree
16530 cp_parser_objc_identifier_list (cp_parser* parser)
16531 {
16532 tree list = build_tree_list (NULL_TREE, cp_parser_identifier (parser));
16533 cp_token *sep = cp_lexer_peek_token (parser->lexer);
16534
16535 while (sep->type == CPP_COMMA)
16536 {
16537 cp_lexer_consume_token (parser->lexer); /* Eat ','. */
16538 list = chainon (list,
16539 build_tree_list (NULL_TREE,
16540 cp_parser_identifier (parser)));
16541 sep = cp_lexer_peek_token (parser->lexer);
16542 }
16543
16544 return list;
16545 }
16546
16547 /* Parse an Objective-C alias declaration.
16548
16549 objc-alias-declaration:
16550 @compatibility_alias identifier identifier ;
16551
16552 This function registers the alias mapping with the Objective-C front-end.
16553 It returns nothing. */
16554
16555 static void
16556 cp_parser_objc_alias_declaration (cp_parser* parser)
16557 {
16558 tree alias, orig;
16559
16560 cp_lexer_consume_token (parser->lexer); /* Eat '@compatibility_alias'. */
16561 alias = cp_parser_identifier (parser);
16562 orig = cp_parser_identifier (parser);
16563 objc_declare_alias (alias, orig);
16564 cp_parser_consume_semicolon_at_end_of_statement (parser);
16565 }
16566
16567 /* Parse an Objective-C class forward-declaration.
16568
16569 objc-class-declaration:
16570 @class objc-identifier-list ;
16571
16572 The function registers the forward declarations with the Objective-C
16573 front-end. It returns nothing. */
16574
16575 static void
16576 cp_parser_objc_class_declaration (cp_parser* parser)
16577 {
16578 cp_lexer_consume_token (parser->lexer); /* Eat '@class'. */
16579 objc_declare_class (cp_parser_objc_identifier_list (parser));
16580 cp_parser_consume_semicolon_at_end_of_statement (parser);
16581 }
16582
16583 /* Parse a list of Objective-C protocol references.
16584
16585 objc-protocol-refs-opt:
16586 objc-protocol-refs [opt]
16587
16588 objc-protocol-refs:
16589 < objc-identifier-list >
16590
16591 Returns a TREE_LIST of identifiers, if any. */
16592
16593 static tree
16594 cp_parser_objc_protocol_refs_opt (cp_parser* parser)
16595 {
16596 tree protorefs = NULL_TREE;
16597
16598 if(cp_lexer_next_token_is (parser->lexer, CPP_LESS))
16599 {
16600 cp_lexer_consume_token (parser->lexer); /* Eat '<'. */
16601 protorefs = cp_parser_objc_identifier_list (parser);
16602 cp_parser_require (parser, CPP_GREATER, "`>'");
16603 }
16604
16605 return protorefs;
16606 }
16607
16608 /* Parse a Objective-C visibility specification. */
16609
16610 static void
16611 cp_parser_objc_visibility_spec (cp_parser* parser)
16612 {
16613 cp_token *vis = cp_lexer_peek_token (parser->lexer);
16614
16615 switch (vis->keyword)
16616 {
16617 case RID_AT_PRIVATE:
16618 objc_set_visibility (2);
16619 break;
16620 case RID_AT_PROTECTED:
16621 objc_set_visibility (0);
16622 break;
16623 case RID_AT_PUBLIC:
16624 objc_set_visibility (1);
16625 break;
16626 default:
16627 return;
16628 }
16629
16630 /* Eat '@private'/'@protected'/'@public'. */
16631 cp_lexer_consume_token (parser->lexer);
16632 }
16633
16634 /* Parse an Objective-C method type. */
16635
16636 static void
16637 cp_parser_objc_method_type (cp_parser* parser)
16638 {
16639 objc_set_method_type
16640 (cp_lexer_consume_token (parser->lexer)->type == CPP_PLUS
16641 ? PLUS_EXPR
16642 : MINUS_EXPR);
16643 }
16644
16645 /* Parse an Objective-C protocol qualifier. */
16646
16647 static tree
16648 cp_parser_objc_protocol_qualifiers (cp_parser* parser)
16649 {
16650 tree quals = NULL_TREE, node;
16651 cp_token *token = cp_lexer_peek_token (parser->lexer);
16652
16653 node = token->value;
16654
16655 while (node && TREE_CODE (node) == IDENTIFIER_NODE
16656 && (node == ridpointers [(int) RID_IN]
16657 || node == ridpointers [(int) RID_OUT]
16658 || node == ridpointers [(int) RID_INOUT]
16659 || node == ridpointers [(int) RID_BYCOPY]
16660 || node == ridpointers [(int) RID_BYREF]
16661 || node == ridpointers [(int) RID_ONEWAY]))
16662 {
16663 quals = tree_cons (NULL_TREE, node, quals);
16664 cp_lexer_consume_token (parser->lexer);
16665 token = cp_lexer_peek_token (parser->lexer);
16666 node = token->value;
16667 }
16668
16669 return quals;
16670 }
16671
16672 /* Parse an Objective-C typename. */
16673
16674 static tree
16675 cp_parser_objc_typename (cp_parser* parser)
16676 {
16677 tree typename = NULL_TREE;
16678
16679 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
16680 {
16681 tree proto_quals, cp_type = NULL_TREE;
16682
16683 cp_lexer_consume_token (parser->lexer); /* Eat '('. */
16684 proto_quals = cp_parser_objc_protocol_qualifiers (parser);
16685
16686 /* An ObjC type name may consist of just protocol qualifiers, in which
16687 case the type shall default to 'id'. */
16688 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
16689 cp_type = cp_parser_type_id (parser);
16690
16691 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
16692 typename = build_tree_list (proto_quals, cp_type);
16693 }
16694
16695 return typename;
16696 }
16697
16698 /* Check to see if TYPE refers to an Objective-C selector name. */
16699
16700 static bool
16701 cp_parser_objc_selector_p (enum cpp_ttype type)
16702 {
16703 return (type == CPP_NAME || type == CPP_KEYWORD
16704 || type == CPP_AND_AND || type == CPP_AND_EQ || type == CPP_AND
16705 || type == CPP_OR || type == CPP_COMPL || type == CPP_NOT
16706 || type == CPP_NOT_EQ || type == CPP_OR_OR || type == CPP_OR_EQ
16707 || type == CPP_XOR || type == CPP_XOR_EQ);
16708 }
16709
16710 /* Parse an Objective-C selector. */
16711
16712 static tree
16713 cp_parser_objc_selector (cp_parser* parser)
16714 {
16715 cp_token *token = cp_lexer_consume_token (parser->lexer);
16716
16717 if (!cp_parser_objc_selector_p (token->type))
16718 {
16719 error ("invalid Objective-C++ selector name");
16720 return error_mark_node;
16721 }
16722
16723 /* C++ operator names are allowed to appear in ObjC selectors. */
16724 switch (token->type)
16725 {
16726 case CPP_AND_AND: return get_identifier ("and");
16727 case CPP_AND_EQ: return get_identifier ("and_eq");
16728 case CPP_AND: return get_identifier ("bitand");
16729 case CPP_OR: return get_identifier ("bitor");
16730 case CPP_COMPL: return get_identifier ("compl");
16731 case CPP_NOT: return get_identifier ("not");
16732 case CPP_NOT_EQ: return get_identifier ("not_eq");
16733 case CPP_OR_OR: return get_identifier ("or");
16734 case CPP_OR_EQ: return get_identifier ("or_eq");
16735 case CPP_XOR: return get_identifier ("xor");
16736 case CPP_XOR_EQ: return get_identifier ("xor_eq");
16737 default: return token->value;
16738 }
16739 }
16740
16741 /* Parse an Objective-C params list. */
16742
16743 static tree
16744 cp_parser_objc_method_keyword_params (cp_parser* parser)
16745 {
16746 tree params = NULL_TREE;
16747 bool maybe_unary_selector_p = true;
16748 cp_token *token = cp_lexer_peek_token (parser->lexer);
16749
16750 while (cp_parser_objc_selector_p (token->type) || token->type == CPP_COLON)
16751 {
16752 tree selector = NULL_TREE, typename, identifier;
16753
16754 if (token->type != CPP_COLON)
16755 selector = cp_parser_objc_selector (parser);
16756
16757 /* Detect if we have a unary selector. */
16758 if (maybe_unary_selector_p
16759 && cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
16760 return selector;
16761
16762 maybe_unary_selector_p = false;
16763 cp_parser_require (parser, CPP_COLON, "`:'");
16764 typename = cp_parser_objc_typename (parser);
16765 identifier = cp_parser_identifier (parser);
16766
16767 params
16768 = chainon (params,
16769 objc_build_keyword_decl (selector,
16770 typename,
16771 identifier));
16772
16773 token = cp_lexer_peek_token (parser->lexer);
16774 }
16775
16776 return params;
16777 }
16778
16779 /* Parse the non-keyword Objective-C params. */
16780
16781 static tree
16782 cp_parser_objc_method_tail_params_opt (cp_parser* parser, bool *ellipsisp)
16783 {
16784 tree params = make_node (TREE_LIST);
16785 cp_token *token = cp_lexer_peek_token (parser->lexer);
16786 *ellipsisp = false; /* Initially, assume no ellipsis. */
16787
16788 while (token->type == CPP_COMMA)
16789 {
16790 cp_parameter_declarator *parmdecl;
16791 tree parm;
16792
16793 cp_lexer_consume_token (parser->lexer); /* Eat ','. */
16794 token = cp_lexer_peek_token (parser->lexer);
16795
16796 if (token->type == CPP_ELLIPSIS)
16797 {
16798 cp_lexer_consume_token (parser->lexer); /* Eat '...'. */
16799 *ellipsisp = true;
16800 break;
16801 }
16802
16803 parmdecl = cp_parser_parameter_declaration (parser, false, NULL);
16804 parm = grokdeclarator (parmdecl->declarator,
16805 &parmdecl->decl_specifiers,
16806 PARM, /*initialized=*/0,
16807 /*attrlist=*/NULL);
16808
16809 chainon (params, build_tree_list (NULL_TREE, parm));
16810 token = cp_lexer_peek_token (parser->lexer);
16811 }
16812
16813 return params;
16814 }
16815
16816 /* Parse a linkage specification, a pragma, an extra semicolon or a block. */
16817
16818 static void
16819 cp_parser_objc_interstitial_code (cp_parser* parser)
16820 {
16821 cp_token *token = cp_lexer_peek_token (parser->lexer);
16822
16823 /* If the next token is `extern' and the following token is a string
16824 literal, then we have a linkage specification. */
16825 if (token->keyword == RID_EXTERN
16826 && cp_parser_is_string_literal (cp_lexer_peek_nth_token (parser->lexer, 2)))
16827 cp_parser_linkage_specification (parser);
16828 /* Handle #pragma, if any. */
16829 else if (token->type == CPP_PRAGMA)
16830 cp_lexer_handle_pragma (parser->lexer);
16831 /* Allow stray semicolons. */
16832 else if (token->type == CPP_SEMICOLON)
16833 cp_lexer_consume_token (parser->lexer);
16834 /* Finally, try to parse a block-declaration, or a function-definition. */
16835 else
16836 cp_parser_block_declaration (parser, /*statement_p=*/false);
16837 }
16838
16839 /* Parse a method signature. */
16840
16841 static tree
16842 cp_parser_objc_method_signature (cp_parser* parser)
16843 {
16844 tree rettype, kwdparms, optparms;
16845 bool ellipsis = false;
16846
16847 cp_parser_objc_method_type (parser);
16848 rettype = cp_parser_objc_typename (parser);
16849 kwdparms = cp_parser_objc_method_keyword_params (parser);
16850 optparms = cp_parser_objc_method_tail_params_opt (parser, &ellipsis);
16851
16852 return objc_build_method_signature (rettype, kwdparms, optparms, ellipsis);
16853 }
16854
16855 /* Pars an Objective-C method prototype list. */
16856
16857 static void
16858 cp_parser_objc_method_prototype_list (cp_parser* parser)
16859 {
16860 cp_token *token = cp_lexer_peek_token (parser->lexer);
16861
16862 while (token->keyword != RID_AT_END)
16863 {
16864 if (token->type == CPP_PLUS || token->type == CPP_MINUS)
16865 {
16866 objc_add_method_declaration
16867 (cp_parser_objc_method_signature (parser));
16868 cp_parser_consume_semicolon_at_end_of_statement (parser);
16869 }
16870 else
16871 /* Allow for interspersed non-ObjC++ code. */
16872 cp_parser_objc_interstitial_code (parser);
16873
16874 token = cp_lexer_peek_token (parser->lexer);
16875 }
16876
16877 cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
16878 objc_finish_interface ();
16879 }
16880
16881 /* Parse an Objective-C method definition list. */
16882
16883 static void
16884 cp_parser_objc_method_definition_list (cp_parser* parser)
16885 {
16886 cp_token *token = cp_lexer_peek_token (parser->lexer);
16887
16888 while (token->keyword != RID_AT_END)
16889 {
16890 tree meth;
16891
16892 if (token->type == CPP_PLUS || token->type == CPP_MINUS)
16893 {
16894 push_deferring_access_checks (dk_deferred);
16895 objc_start_method_definition
16896 (cp_parser_objc_method_signature (parser));
16897
16898 /* For historical reasons, we accept an optional semicolon. */
16899 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
16900 cp_lexer_consume_token (parser->lexer);
16901
16902 perform_deferred_access_checks ();
16903 stop_deferring_access_checks ();
16904 meth = cp_parser_function_definition_after_declarator (parser,
16905 false);
16906 pop_deferring_access_checks ();
16907 objc_finish_method_definition (meth);
16908 }
16909 else
16910 /* Allow for interspersed non-ObjC++ code. */
16911 cp_parser_objc_interstitial_code (parser);
16912
16913 token = cp_lexer_peek_token (parser->lexer);
16914 }
16915
16916 cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
16917 objc_finish_implementation ();
16918 }
16919
16920 /* Parse Objective-C ivars. */
16921
16922 static void
16923 cp_parser_objc_class_ivars (cp_parser* parser)
16924 {
16925 cp_token *token = cp_lexer_peek_token (parser->lexer);
16926
16927 if (token->type != CPP_OPEN_BRACE)
16928 return; /* No ivars specified. */
16929
16930 cp_lexer_consume_token (parser->lexer); /* Eat '{'. */
16931 token = cp_lexer_peek_token (parser->lexer);
16932
16933 while (token->type != CPP_CLOSE_BRACE)
16934 {
16935 cp_decl_specifier_seq declspecs;
16936 int decl_class_or_enum_p;
16937 tree prefix_attributes;
16938
16939 cp_parser_objc_visibility_spec (parser);
16940
16941 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
16942 break;
16943
16944 cp_parser_decl_specifier_seq (parser,
16945 CP_PARSER_FLAGS_OPTIONAL,
16946 &declspecs,
16947 &decl_class_or_enum_p);
16948 prefix_attributes = declspecs.attributes;
16949 declspecs.attributes = NULL_TREE;
16950
16951 /* Keep going until we hit the `;' at the end of the
16952 declaration. */
16953 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
16954 {
16955 tree width = NULL_TREE, attributes, first_attribute, decl;
16956 cp_declarator *declarator = NULL;
16957 int ctor_dtor_or_conv_p;
16958
16959 /* Check for a (possibly unnamed) bitfield declaration. */
16960 token = cp_lexer_peek_token (parser->lexer);
16961 if (token->type == CPP_COLON)
16962 goto eat_colon;
16963
16964 if (token->type == CPP_NAME
16965 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
16966 == CPP_COLON))
16967 {
16968 /* Get the name of the bitfield. */
16969 declarator = make_id_declarator (NULL_TREE,
16970 cp_parser_identifier (parser));
16971
16972 eat_colon:
16973 cp_lexer_consume_token (parser->lexer); /* Eat ':'. */
16974 /* Get the width of the bitfield. */
16975 width
16976 = cp_parser_constant_expression (parser,
16977 /*allow_non_constant=*/false,
16978 NULL);
16979 }
16980 else
16981 {
16982 /* Parse the declarator. */
16983 declarator
16984 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
16985 &ctor_dtor_or_conv_p,
16986 /*parenthesized_p=*/NULL,
16987 /*member_p=*/false);
16988 }
16989
16990 /* Look for attributes that apply to the ivar. */
16991 attributes = cp_parser_attributes_opt (parser);
16992 /* Remember which attributes are prefix attributes and
16993 which are not. */
16994 first_attribute = attributes;
16995 /* Combine the attributes. */
16996 attributes = chainon (prefix_attributes, attributes);
16997
16998 if (width)
16999 {
17000 /* Create the bitfield declaration. */
17001 decl = grokbitfield (declarator, &declspecs, width);
17002 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
17003 }
17004 else
17005 decl = grokfield (declarator, &declspecs, NULL_TREE,
17006 NULL_TREE, attributes);
17007
17008 /* Add the instance variable. */
17009 objc_add_instance_variable (decl);
17010
17011 /* Reset PREFIX_ATTRIBUTES. */
17012 while (attributes && TREE_CHAIN (attributes) != first_attribute)
17013 attributes = TREE_CHAIN (attributes);
17014 if (attributes)
17015 TREE_CHAIN (attributes) = NULL_TREE;
17016
17017 token = cp_lexer_peek_token (parser->lexer);
17018
17019 if (token->type == CPP_COMMA)
17020 {
17021 cp_lexer_consume_token (parser->lexer); /* Eat ','. */
17022 continue;
17023 }
17024 break;
17025 }
17026
17027 cp_parser_consume_semicolon_at_end_of_statement (parser);
17028 token = cp_lexer_peek_token (parser->lexer);
17029 }
17030
17031 cp_lexer_consume_token (parser->lexer); /* Eat '}'. */
17032 /* For historical reasons, we accept an optional semicolon. */
17033 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
17034 cp_lexer_consume_token (parser->lexer);
17035 }
17036
17037 /* Parse an Objective-C protocol declaration. */
17038
17039 static void
17040 cp_parser_objc_protocol_declaration (cp_parser* parser)
17041 {
17042 tree proto, protorefs;
17043 cp_token *tok;
17044
17045 cp_lexer_consume_token (parser->lexer); /* Eat '@protocol'. */
17046 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME))
17047 {
17048 error ("identifier expected after `@protocol'");
17049 goto finish;
17050 }
17051
17052 /* See if we have a forward declaration or a definition. */
17053 tok = cp_lexer_peek_nth_token (parser->lexer, 2);
17054
17055 /* Try a forward declaration first. */
17056 if (tok->type == CPP_COMMA || tok->type == CPP_SEMICOLON)
17057 {
17058 objc_declare_protocols (cp_parser_objc_identifier_list (parser));
17059 finish:
17060 cp_parser_consume_semicolon_at_end_of_statement (parser);
17061 }
17062
17063 /* Ok, we got a full-fledged definition (or at least should). */
17064 else
17065 {
17066 proto = cp_parser_identifier (parser);
17067 protorefs = cp_parser_objc_protocol_refs_opt (parser);
17068 objc_start_protocol (proto, protorefs);
17069 cp_parser_objc_method_prototype_list (parser);
17070 }
17071 }
17072
17073 /* Parse an Objective-C superclass or category. */
17074
17075 static void
17076 cp_parser_objc_superclass_or_category (cp_parser *parser, tree *super,
17077 tree *categ)
17078 {
17079 cp_token *next = cp_lexer_peek_token (parser->lexer);
17080
17081 *super = *categ = NULL_TREE;
17082 if (next->type == CPP_COLON)
17083 {
17084 cp_lexer_consume_token (parser->lexer); /* Eat ':'. */
17085 *super = cp_parser_identifier (parser);
17086 }
17087 else if (next->type == CPP_OPEN_PAREN)
17088 {
17089 cp_lexer_consume_token (parser->lexer); /* Eat '('. */
17090 *categ = cp_parser_identifier (parser);
17091 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17092 }
17093 }
17094
17095 /* Parse an Objective-C class interface. */
17096
17097 static void
17098 cp_parser_objc_class_interface (cp_parser* parser)
17099 {
17100 tree name, super, categ, protos;
17101
17102 cp_lexer_consume_token (parser->lexer); /* Eat '@interface'. */
17103 name = cp_parser_identifier (parser);
17104 cp_parser_objc_superclass_or_category (parser, &super, &categ);
17105 protos = cp_parser_objc_protocol_refs_opt (parser);
17106
17107 /* We have either a class or a category on our hands. */
17108 if (categ)
17109 objc_start_category_interface (name, categ, protos);
17110 else
17111 {
17112 objc_start_class_interface (name, super, protos);
17113 /* Handle instance variable declarations, if any. */
17114 cp_parser_objc_class_ivars (parser);
17115 objc_continue_interface ();
17116 }
17117
17118 cp_parser_objc_method_prototype_list (parser);
17119 }
17120
17121 /* Parse an Objective-C class implementation. */
17122
17123 static void
17124 cp_parser_objc_class_implementation (cp_parser* parser)
17125 {
17126 tree name, super, categ;
17127
17128 cp_lexer_consume_token (parser->lexer); /* Eat '@implementation'. */
17129 name = cp_parser_identifier (parser);
17130 cp_parser_objc_superclass_or_category (parser, &super, &categ);
17131
17132 /* We have either a class or a category on our hands. */
17133 if (categ)
17134 objc_start_category_implementation (name, categ);
17135 else
17136 {
17137 objc_start_class_implementation (name, super);
17138 /* Handle instance variable declarations, if any. */
17139 cp_parser_objc_class_ivars (parser);
17140 objc_continue_implementation ();
17141 }
17142
17143 cp_parser_objc_method_definition_list (parser);
17144 }
17145
17146 /* Consume the @end token and finish off the implementation. */
17147
17148 static void
17149 cp_parser_objc_end_implementation (cp_parser* parser)
17150 {
17151 cp_lexer_consume_token (parser->lexer); /* Eat '@end'. */
17152 objc_finish_implementation ();
17153 }
17154
17155 /* Parse an Objective-C declaration. */
17156
17157 static void
17158 cp_parser_objc_declaration (cp_parser* parser)
17159 {
17160 /* Try to figure out what kind of declaration is present. */
17161 cp_token *kwd = cp_lexer_peek_token (parser->lexer);
17162
17163 switch (kwd->keyword)
17164 {
17165 case RID_AT_ALIAS:
17166 cp_parser_objc_alias_declaration (parser);
17167 break;
17168 case RID_AT_CLASS:
17169 cp_parser_objc_class_declaration (parser);
17170 break;
17171 case RID_AT_PROTOCOL:
17172 cp_parser_objc_protocol_declaration (parser);
17173 break;
17174 case RID_AT_INTERFACE:
17175 cp_parser_objc_class_interface (parser);
17176 break;
17177 case RID_AT_IMPLEMENTATION:
17178 cp_parser_objc_class_implementation (parser);
17179 break;
17180 case RID_AT_END:
17181 cp_parser_objc_end_implementation (parser);
17182 break;
17183 default:
17184 error ("misplaced `@%D' Objective-C++ construct", kwd->value);
17185 cp_parser_skip_to_end_of_block_or_statement (parser);
17186 }
17187 }
17188
17189 /* Parse an Objective-C try-catch-finally statement.
17190
17191 objc-try-catch-finally-stmt:
17192 @try compound-statement objc-catch-clause-seq [opt]
17193 objc-finally-clause [opt]
17194
17195 objc-catch-clause-seq:
17196 objc-catch-clause objc-catch-clause-seq [opt]
17197
17198 objc-catch-clause:
17199 @catch ( exception-declaration ) compound-statement
17200
17201 objc-finally-clause
17202 @finally compound-statement
17203
17204 Returns NULL_TREE. */
17205
17206 static tree
17207 cp_parser_objc_try_catch_finally_statement (cp_parser *parser) {
17208 location_t location;
17209 tree stmt;
17210
17211 cp_parser_require_keyword (parser, RID_AT_TRY, "`@try'");
17212 location = cp_lexer_peek_token (parser->lexer)->location;
17213 /* NB: The @try block needs to be wrapped in its own STATEMENT_LIST
17214 node, lest it get absorbed into the surrounding block. */
17215 stmt = push_stmt_list ();
17216 cp_parser_compound_statement (parser, NULL, false);
17217 objc_begin_try_stmt (location, pop_stmt_list (stmt));
17218
17219 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_CATCH))
17220 {
17221 cp_parameter_declarator *parmdecl;
17222 tree parm;
17223
17224 cp_lexer_consume_token (parser->lexer);
17225 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
17226 parmdecl = cp_parser_parameter_declaration (parser, false, NULL);
17227 parm = grokdeclarator (parmdecl->declarator,
17228 &parmdecl->decl_specifiers,
17229 PARM, /*initialized=*/0,
17230 /*attrlist=*/NULL);
17231 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17232 objc_begin_catch_clause (parm);
17233 cp_parser_compound_statement (parser, NULL, false);
17234 objc_finish_catch_clause ();
17235 }
17236
17237 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_AT_FINALLY))
17238 {
17239 cp_lexer_consume_token (parser->lexer);
17240 location = cp_lexer_peek_token (parser->lexer)->location;
17241 /* NB: The @finally block needs to be wrapped in its own STATEMENT_LIST
17242 node, lest it get absorbed into the surrounding block. */
17243 stmt = push_stmt_list ();
17244 cp_parser_compound_statement (parser, NULL, false);
17245 objc_build_finally_clause (location, pop_stmt_list (stmt));
17246 }
17247
17248 return objc_finish_try_stmt ();
17249 }
17250
17251 /* Parse an Objective-C synchronized statement.
17252
17253 objc-synchronized-stmt:
17254 @synchronized ( expression ) compound-statement
17255
17256 Returns NULL_TREE. */
17257
17258 static tree
17259 cp_parser_objc_synchronized_statement (cp_parser *parser) {
17260 location_t location;
17261 tree lock, stmt;
17262
17263 cp_parser_require_keyword (parser, RID_AT_SYNCHRONIZED, "`@synchronized'");
17264
17265 location = cp_lexer_peek_token (parser->lexer)->location;
17266 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
17267 lock = cp_parser_expression (parser, false);
17268 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
17269
17270 /* NB: The @synchronized block needs to be wrapped in its own STATEMENT_LIST
17271 node, lest it get absorbed into the surrounding block. */
17272 stmt = push_stmt_list ();
17273 cp_parser_compound_statement (parser, NULL, false);
17274
17275 return objc_build_synchronized (location, lock, pop_stmt_list (stmt));
17276 }
17277
17278 /* Parse an Objective-C throw statement.
17279
17280 objc-throw-stmt:
17281 @throw assignment-expression [opt] ;
17282
17283 Returns a constructed '@throw' statement. */
17284
17285 static tree
17286 cp_parser_objc_throw_statement (cp_parser *parser) {
17287 tree expr = NULL_TREE;
17288
17289 cp_parser_require_keyword (parser, RID_AT_THROW, "`@throw'");
17290
17291 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
17292 expr = cp_parser_assignment_expression (parser, false);
17293
17294 cp_parser_consume_semicolon_at_end_of_statement (parser);
17295
17296 return objc_build_throw_stmt (expr);
17297 }
17298
17299 /* Parse an Objective-C statement. */
17300
17301 static tree
17302 cp_parser_objc_statement (cp_parser * parser) {
17303 /* Try to figure out what kind of declaration is present. */
17304 cp_token *kwd = cp_lexer_peek_token (parser->lexer);
17305
17306 switch (kwd->keyword)
17307 {
17308 case RID_AT_TRY:
17309 return cp_parser_objc_try_catch_finally_statement (parser);
17310 case RID_AT_SYNCHRONIZED:
17311 return cp_parser_objc_synchronized_statement (parser);
17312 case RID_AT_THROW:
17313 return cp_parser_objc_throw_statement (parser);
17314 default:
17315 error ("misplaced `@%D' Objective-C++ construct", kwd->value);
17316 cp_parser_skip_to_end_of_block_or_statement (parser);
17317 }
17318
17319 return error_mark_node;
17320 }
17321 \f
17322 /* The parser. */
17323
17324 static GTY (()) cp_parser *the_parser;
17325
17326 /* External interface. */
17327
17328 /* Parse one entire translation unit. */
17329
17330 void
17331 c_parse_file (void)
17332 {
17333 bool error_occurred;
17334 static bool already_called = false;
17335
17336 if (already_called)
17337 {
17338 sorry ("inter-module optimizations not implemented for C++");
17339 return;
17340 }
17341 already_called = true;
17342
17343 the_parser = cp_parser_new ();
17344 push_deferring_access_checks (flag_access_control
17345 ? dk_no_deferred : dk_no_check);
17346 error_occurred = cp_parser_translation_unit (the_parser);
17347 the_parser = NULL;
17348 }
17349
17350 /* This variable must be provided by every front end. */
17351
17352 int yydebug;
17353
17354 #include "gt-cp-parser.h"