]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/tree.c
3cfc8690d8972a08e71280a2fe8e51d9da16eee0
[thirdparty/gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Hacked by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "cp-tree.h"
27 #include "flags.h"
28 #include "tree-inline.h"
29 #include "debug.h"
30 #include "convert.h"
31 #include "cgraph.h"
32 #include "splay-tree.h"
33 #include "gimple.h" /* gimple_has_body_p */
34 #include "hash-table.h"
35
36 static tree bot_manip (tree *, int *, void *);
37 static tree bot_replace (tree *, int *, void *);
38 static int list_hash_eq (const void *, const void *);
39 static hashval_t list_hash_pieces (tree, tree, tree);
40 static hashval_t list_hash (const void *);
41 static tree build_target_expr (tree, tree, tsubst_flags_t);
42 static tree count_trees_r (tree *, int *, void *);
43 static tree verify_stmt_tree_r (tree *, int *, void *);
44 static tree build_local_temp (tree);
45
46 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
47 static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
48 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
49 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *);
50
51 /* If REF is an lvalue, returns the kind of lvalue that REF is.
52 Otherwise, returns clk_none. */
53
54 cp_lvalue_kind
55 lvalue_kind (const_tree ref)
56 {
57 cp_lvalue_kind op1_lvalue_kind = clk_none;
58 cp_lvalue_kind op2_lvalue_kind = clk_none;
59
60 /* Expressions of reference type are sometimes wrapped in
61 INDIRECT_REFs. INDIRECT_REFs are just internal compiler
62 representation, not part of the language, so we have to look
63 through them. */
64 if (REFERENCE_REF_P (ref))
65 return lvalue_kind (TREE_OPERAND (ref, 0));
66
67 if (TREE_TYPE (ref)
68 && TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
69 {
70 /* unnamed rvalue references are rvalues */
71 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
72 && TREE_CODE (ref) != PARM_DECL
73 && TREE_CODE (ref) != VAR_DECL
74 && TREE_CODE (ref) != COMPONENT_REF
75 /* Functions are always lvalues. */
76 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
77 return clk_rvalueref;
78
79 /* lvalue references and named rvalue references are lvalues. */
80 return clk_ordinary;
81 }
82
83 if (ref == current_class_ptr)
84 return clk_none;
85
86 switch (TREE_CODE (ref))
87 {
88 case SAVE_EXPR:
89 return clk_none;
90 /* preincrements and predecrements are valid lvals, provided
91 what they refer to are valid lvals. */
92 case PREINCREMENT_EXPR:
93 case PREDECREMENT_EXPR:
94 case TRY_CATCH_EXPR:
95 case WITH_CLEANUP_EXPR:
96 case REALPART_EXPR:
97 case IMAGPART_EXPR:
98 return lvalue_kind (TREE_OPERAND (ref, 0));
99
100 case COMPONENT_REF:
101 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
102 /* Look at the member designator. */
103 if (!op1_lvalue_kind)
104 ;
105 else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
106 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
107 situations. If we're seeing a COMPONENT_REF, it's a non-static
108 member, so it isn't an lvalue. */
109 op1_lvalue_kind = clk_none;
110 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
111 /* This can be IDENTIFIER_NODE in a template. */;
112 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
113 {
114 /* Clear the ordinary bit. If this object was a class
115 rvalue we want to preserve that information. */
116 op1_lvalue_kind &= ~clk_ordinary;
117 /* The lvalue is for a bitfield. */
118 op1_lvalue_kind |= clk_bitfield;
119 }
120 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
121 op1_lvalue_kind |= clk_packed;
122
123 return op1_lvalue_kind;
124
125 case STRING_CST:
126 case COMPOUND_LITERAL_EXPR:
127 return clk_ordinary;
128
129 case CONST_DECL:
130 /* CONST_DECL without TREE_STATIC are enumeration values and
131 thus not lvalues. With TREE_STATIC they are used by ObjC++
132 in objc_build_string_object and need to be considered as
133 lvalues. */
134 if (! TREE_STATIC (ref))
135 return clk_none;
136 case VAR_DECL:
137 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
138 && DECL_LANG_SPECIFIC (ref)
139 && DECL_IN_AGGR_P (ref))
140 return clk_none;
141 case INDIRECT_REF:
142 case ARROW_EXPR:
143 case ARRAY_REF:
144 case PARM_DECL:
145 case RESULT_DECL:
146 return clk_ordinary;
147
148 /* A scope ref in a template, left as SCOPE_REF to support later
149 access checking. */
150 case SCOPE_REF:
151 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
152 {
153 tree op = TREE_OPERAND (ref, 1);
154 if (TREE_CODE (op) == FIELD_DECL)
155 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary);
156 else
157 return lvalue_kind (op);
158 }
159
160 case MAX_EXPR:
161 case MIN_EXPR:
162 /* Disallow <? and >? as lvalues if either argument side-effects. */
163 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
164 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
165 return clk_none;
166 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
167 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
168 break;
169
170 case COND_EXPR:
171 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
172 ? TREE_OPERAND (ref, 1)
173 : TREE_OPERAND (ref, 0));
174 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
175 break;
176
177 case MODIFY_EXPR:
178 case TYPEID_EXPR:
179 return clk_ordinary;
180
181 case COMPOUND_EXPR:
182 return lvalue_kind (TREE_OPERAND (ref, 1));
183
184 case TARGET_EXPR:
185 return clk_class;
186
187 case VA_ARG_EXPR:
188 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
189
190 case CALL_EXPR:
191 /* We can see calls outside of TARGET_EXPR in templates. */
192 if (CLASS_TYPE_P (TREE_TYPE (ref)))
193 return clk_class;
194 return clk_none;
195
196 case FUNCTION_DECL:
197 /* All functions (except non-static-member functions) are
198 lvalues. */
199 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
200 ? clk_none : clk_ordinary);
201
202 case BASELINK:
203 /* We now represent a reference to a single static member function
204 with a BASELINK. */
205 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
206 its argument unmodified and we assign it to a const_tree. */
207 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
208
209 case NON_DEPENDENT_EXPR:
210 /* We just return clk_ordinary for NON_DEPENDENT_EXPR in C++98, but
211 in C++11 lvalues don't bind to rvalue references, so we need to
212 work harder to avoid bogus errors (c++/44870). */
213 if (cxx_dialect < cxx0x)
214 return clk_ordinary;
215 else
216 return lvalue_kind (TREE_OPERAND (ref, 0));
217
218 default:
219 if (!TREE_TYPE (ref))
220 return clk_none;
221 if (CLASS_TYPE_P (TREE_TYPE (ref)))
222 return clk_class;
223 break;
224 }
225
226 /* If one operand is not an lvalue at all, then this expression is
227 not an lvalue. */
228 if (!op1_lvalue_kind || !op2_lvalue_kind)
229 return clk_none;
230
231 /* Otherwise, it's an lvalue, and it has all the odd properties
232 contributed by either operand. */
233 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
234 /* It's not an ordinary lvalue if it involves any other kind. */
235 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
236 op1_lvalue_kind &= ~clk_ordinary;
237 /* It can't be both a pseudo-lvalue and a non-addressable lvalue.
238 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
239 if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
240 && (op1_lvalue_kind & (clk_bitfield|clk_packed)))
241 op1_lvalue_kind = clk_none;
242 return op1_lvalue_kind;
243 }
244
245 /* Returns the kind of lvalue that REF is, in the sense of
246 [basic.lval]. This function should really be named lvalue_p; it
247 computes the C++ definition of lvalue. */
248
249 cp_lvalue_kind
250 real_lvalue_p (const_tree ref)
251 {
252 cp_lvalue_kind kind = lvalue_kind (ref);
253 if (kind & (clk_rvalueref|clk_class))
254 return clk_none;
255 else
256 return kind;
257 }
258
259 /* This differs from real_lvalue_p in that class rvalues are considered
260 lvalues. */
261
262 bool
263 lvalue_p (const_tree ref)
264 {
265 return (lvalue_kind (ref) != clk_none);
266 }
267
268 /* This differs from real_lvalue_p in that rvalues formed by dereferencing
269 rvalue references are considered rvalues. */
270
271 bool
272 lvalue_or_rvalue_with_address_p (const_tree ref)
273 {
274 cp_lvalue_kind kind = lvalue_kind (ref);
275 if (kind & clk_class)
276 return false;
277 else
278 return (kind != clk_none);
279 }
280
281 /* Returns true if REF is an xvalue, false otherwise. */
282
283 bool
284 xvalue_p (const_tree ref)
285 {
286 return (lvalue_kind (ref) == clk_rvalueref);
287 }
288
289 /* Test whether DECL is a builtin that may appear in a
290 constant-expression. */
291
292 bool
293 builtin_valid_in_constant_expr_p (const_tree decl)
294 {
295 /* At present BUILT_IN_CONSTANT_P is the only builtin we're allowing
296 in constant-expressions. We may want to add other builtins later. */
297 return DECL_IS_BUILTIN_CONSTANT_P (decl);
298 }
299
300 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
301
302 static tree
303 build_target_expr (tree decl, tree value, tsubst_flags_t complain)
304 {
305 tree t;
306 tree type = TREE_TYPE (decl);
307
308 #ifdef ENABLE_CHECKING
309 gcc_assert (VOID_TYPE_P (TREE_TYPE (value))
310 || TREE_TYPE (decl) == TREE_TYPE (value)
311 /* On ARM ctors return 'this'. */
312 || (TREE_CODE (TREE_TYPE (value)) == POINTER_TYPE
313 && TREE_CODE (value) == CALL_EXPR)
314 || useless_type_conversion_p (TREE_TYPE (decl),
315 TREE_TYPE (value)));
316 #endif
317
318 t = cxx_maybe_build_cleanup (decl, complain);
319 if (t == error_mark_node)
320 return error_mark_node;
321 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
322 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
323 ignore the TARGET_EXPR. If there really turn out to be no
324 side-effects, then the optimizer should be able to get rid of
325 whatever code is generated anyhow. */
326 TREE_SIDE_EFFECTS (t) = 1;
327
328 return t;
329 }
330
331 /* Return an undeclared local temporary of type TYPE for use in building a
332 TARGET_EXPR. */
333
334 static tree
335 build_local_temp (tree type)
336 {
337 tree slot = build_decl (input_location,
338 VAR_DECL, NULL_TREE, type);
339 DECL_ARTIFICIAL (slot) = 1;
340 DECL_IGNORED_P (slot) = 1;
341 DECL_CONTEXT (slot) = current_function_decl;
342 layout_decl (slot, 0);
343 return slot;
344 }
345
346 /* Set various status flags when building an AGGR_INIT_EXPR object T. */
347
348 static void
349 process_aggr_init_operands (tree t)
350 {
351 bool side_effects;
352
353 side_effects = TREE_SIDE_EFFECTS (t);
354 if (!side_effects)
355 {
356 int i, n;
357 n = TREE_OPERAND_LENGTH (t);
358 for (i = 1; i < n; i++)
359 {
360 tree op = TREE_OPERAND (t, i);
361 if (op && TREE_SIDE_EFFECTS (op))
362 {
363 side_effects = 1;
364 break;
365 }
366 }
367 }
368 TREE_SIDE_EFFECTS (t) = side_effects;
369 }
370
371 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
372 FN, and SLOT. NARGS is the number of call arguments which are specified
373 as a tree array ARGS. */
374
375 static tree
376 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
377 tree *args)
378 {
379 tree t;
380 int i;
381
382 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
383 TREE_TYPE (t) = return_type;
384 AGGR_INIT_EXPR_FN (t) = fn;
385 AGGR_INIT_EXPR_SLOT (t) = slot;
386 for (i = 0; i < nargs; i++)
387 AGGR_INIT_EXPR_ARG (t, i) = args[i];
388 process_aggr_init_operands (t);
389 return t;
390 }
391
392 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
393 target. TYPE is the type to be initialized.
394
395 Build an AGGR_INIT_EXPR to represent the initialization. This function
396 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
397 to initialize another object, whereas a TARGET_EXPR can either
398 initialize another object or create its own temporary object, and as a
399 result building up a TARGET_EXPR requires that the type's destructor be
400 callable. */
401
402 tree
403 build_aggr_init_expr (tree type, tree init)
404 {
405 tree fn;
406 tree slot;
407 tree rval;
408 int is_ctor;
409
410 /* Don't build AGGR_INIT_EXPR in a template. */
411 if (processing_template_decl)
412 return init;
413
414 if (TREE_CODE (init) == CALL_EXPR)
415 fn = CALL_EXPR_FN (init);
416 else if (TREE_CODE (init) == AGGR_INIT_EXPR)
417 fn = AGGR_INIT_EXPR_FN (init);
418 else
419 return convert (type, init);
420
421 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
422 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
423 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
424
425 /* We split the CALL_EXPR into its function and its arguments here.
426 Then, in expand_expr, we put them back together. The reason for
427 this is that this expression might be a default argument
428 expression. In that case, we need a new temporary every time the
429 expression is used. That's what break_out_target_exprs does; it
430 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
431 temporary slot. Then, expand_expr builds up a call-expression
432 using the new slot. */
433
434 /* If we don't need to use a constructor to create an object of this
435 type, don't mess with AGGR_INIT_EXPR. */
436 if (is_ctor || TREE_ADDRESSABLE (type))
437 {
438 slot = build_local_temp (type);
439
440 if (TREE_CODE(init) == CALL_EXPR)
441 rval = build_aggr_init_array (void_type_node, fn, slot,
442 call_expr_nargs (init),
443 CALL_EXPR_ARGP (init));
444 else
445 rval = build_aggr_init_array (void_type_node, fn, slot,
446 aggr_init_expr_nargs (init),
447 AGGR_INIT_EXPR_ARGP (init));
448 TREE_SIDE_EFFECTS (rval) = 1;
449 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
450 TREE_NOTHROW (rval) = TREE_NOTHROW (init);
451 }
452 else
453 rval = init;
454
455 return rval;
456 }
457
458 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
459 target. TYPE is the type that this initialization should appear to
460 have.
461
462 Build an encapsulation of the initialization to perform
463 and return it so that it can be processed by language-independent
464 and language-specific expression expanders. */
465
466 tree
467 build_cplus_new (tree type, tree init, tsubst_flags_t complain)
468 {
469 tree rval = build_aggr_init_expr (type, init);
470 tree slot;
471
472 if (!complete_type_or_maybe_complain (type, init, complain))
473 return error_mark_node;
474
475 /* Make sure that we're not trying to create an instance of an
476 abstract class. */
477 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
478 return error_mark_node;
479
480 if (TREE_CODE (rval) == AGGR_INIT_EXPR)
481 slot = AGGR_INIT_EXPR_SLOT (rval);
482 else if (TREE_CODE (rval) == CALL_EXPR
483 || TREE_CODE (rval) == CONSTRUCTOR)
484 slot = build_local_temp (type);
485 else
486 return rval;
487
488 rval = build_target_expr (slot, rval, complain);
489
490 if (rval != error_mark_node)
491 TARGET_EXPR_IMPLICIT_P (rval) = 1;
492
493 return rval;
494 }
495
496 /* Subroutine of build_vec_init_expr: Build up a single element
497 intialization as a proxy for the full array initialization to get things
498 marked as used and any appropriate diagnostics.
499
500 Since we're deferring building the actual constructor calls until
501 gimplification time, we need to build one now and throw it away so
502 that the relevant constructor gets mark_used before cgraph decides
503 what functions are needed. Here we assume that init is either
504 NULL_TREE, void_type_node (indicating value-initialization), or
505 another array to copy. */
506
507 static tree
508 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
509 {
510 tree inner_type = strip_array_types (type);
511 vec<tree, va_gc> *argvec;
512
513 if (integer_zerop (array_type_nelts_total (type))
514 || !CLASS_TYPE_P (inner_type))
515 /* No interesting initialization to do. */
516 return integer_zero_node;
517 else if (init == void_type_node)
518 return build_value_init (inner_type, complain);
519
520 gcc_assert (init == NULL_TREE
521 || (same_type_ignoring_top_level_qualifiers_p
522 (type, TREE_TYPE (init))));
523
524 argvec = make_tree_vector ();
525 if (init)
526 {
527 tree init_type = strip_array_types (TREE_TYPE (init));
528 tree dummy = build_dummy_object (init_type);
529 if (!real_lvalue_p (init))
530 dummy = move (dummy);
531 argvec->quick_push (dummy);
532 }
533 init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
534 &argvec, inner_type, LOOKUP_NORMAL,
535 complain);
536 release_tree_vector (argvec);
537
538 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
539 we don't want one here because we aren't creating a temporary. */
540 if (TREE_CODE (init) == TARGET_EXPR)
541 init = TARGET_EXPR_INITIAL (init);
542
543 return init;
544 }
545
546 /* Return a TARGET_EXPR which expresses the initialization of an array to
547 be named later, either default-initialization or copy-initialization
548 from another array of the same type. */
549
550 tree
551 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
552 {
553 tree slot;
554 bool value_init = false;
555 tree elt_init = build_vec_init_elt (type, init, complain);
556
557 if (init == void_type_node)
558 {
559 value_init = true;
560 init = NULL_TREE;
561 }
562
563 slot = build_local_temp (type);
564 init = build2 (VEC_INIT_EXPR, type, slot, init);
565 TREE_SIDE_EFFECTS (init) = true;
566 SET_EXPR_LOCATION (init, input_location);
567
568 if (cxx_dialect >= cxx0x
569 && potential_constant_expression (elt_init))
570 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
571 VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
572
573 return init;
574 }
575
576 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
577 that requires a constant expression. */
578
579 void
580 diagnose_non_constexpr_vec_init (tree expr)
581 {
582 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
583 tree init, elt_init;
584 if (VEC_INIT_EXPR_VALUE_INIT (expr))
585 init = void_type_node;
586 else
587 init = VEC_INIT_EXPR_INIT (expr);
588
589 elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
590 require_potential_constant_expression (elt_init);
591 }
592
593 tree
594 build_array_copy (tree init)
595 {
596 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
597 }
598
599 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
600 indicated TYPE. */
601
602 tree
603 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
604 {
605 gcc_assert (!VOID_TYPE_P (type));
606
607 if (TREE_CODE (init) == TARGET_EXPR
608 || init == error_mark_node)
609 return init;
610 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
611 && !VOID_TYPE_P (TREE_TYPE (init))
612 && TREE_CODE (init) != COND_EXPR
613 && TREE_CODE (init) != CONSTRUCTOR
614 && TREE_CODE (init) != VA_ARG_EXPR)
615 /* We need to build up a copy constructor call. A void initializer
616 means we're being called from bot_manip. COND_EXPR is a special
617 case because we already have copies on the arms and we don't want
618 another one here. A CONSTRUCTOR is aggregate initialization, which
619 is handled separately. A VA_ARG_EXPR is magic creation of an
620 aggregate; there's no additional work to be done. */
621 return force_rvalue (init, complain);
622
623 return force_target_expr (type, init, complain);
624 }
625
626 /* Like the above function, but without the checking. This function should
627 only be used by code which is deliberately trying to subvert the type
628 system, such as call_builtin_trap. Or build_over_call, to avoid
629 infinite recursion. */
630
631 tree
632 force_target_expr (tree type, tree init, tsubst_flags_t complain)
633 {
634 tree slot;
635
636 gcc_assert (!VOID_TYPE_P (type));
637
638 slot = build_local_temp (type);
639 return build_target_expr (slot, init, complain);
640 }
641
642 /* Like build_target_expr_with_type, but use the type of INIT. */
643
644 tree
645 get_target_expr_sfinae (tree init, tsubst_flags_t complain)
646 {
647 if (TREE_CODE (init) == AGGR_INIT_EXPR)
648 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
649 else if (TREE_CODE (init) == VEC_INIT_EXPR)
650 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
651 else
652 return build_target_expr_with_type (init, TREE_TYPE (init), complain);
653 }
654
655 tree
656 get_target_expr (tree init)
657 {
658 return get_target_expr_sfinae (init, tf_warning_or_error);
659 }
660
661 /* If EXPR is a bitfield reference, convert it to the declared type of
662 the bitfield, and return the resulting expression. Otherwise,
663 return EXPR itself. */
664
665 tree
666 convert_bitfield_to_declared_type (tree expr)
667 {
668 tree bitfield_type;
669
670 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
671 if (bitfield_type)
672 expr = convert_to_integer (TYPE_MAIN_VARIANT (bitfield_type),
673 expr);
674 return expr;
675 }
676
677 /* EXPR is being used in an rvalue context. Return a version of EXPR
678 that is marked as an rvalue. */
679
680 tree
681 rvalue (tree expr)
682 {
683 tree type;
684
685 if (error_operand_p (expr))
686 return expr;
687
688 expr = mark_rvalue_use (expr);
689
690 /* [basic.lval]
691
692 Non-class rvalues always have cv-unqualified types. */
693 type = TREE_TYPE (expr);
694 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
695 type = cv_unqualified (type);
696
697 /* We need to do this for rvalue refs as well to get the right answer
698 from decltype; see c++/36628. */
699 if (!processing_template_decl && lvalue_or_rvalue_with_address_p (expr))
700 expr = build1 (NON_LVALUE_EXPR, type, expr);
701 else if (type != TREE_TYPE (expr))
702 expr = build_nop (type, expr);
703
704 return expr;
705 }
706
707 \f
708 /* Hash an ARRAY_TYPE. K is really of type `tree'. */
709
710 static hashval_t
711 cplus_array_hash (const void* k)
712 {
713 hashval_t hash;
714 const_tree const t = (const_tree) k;
715
716 hash = TYPE_UID (TREE_TYPE (t));
717 if (TYPE_DOMAIN (t))
718 hash ^= TYPE_UID (TYPE_DOMAIN (t));
719 return hash;
720 }
721
722 typedef struct cplus_array_info {
723 tree type;
724 tree domain;
725 } cplus_array_info;
726
727 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
728 of type `cplus_array_info*'. */
729
730 static int
731 cplus_array_compare (const void * k1, const void * k2)
732 {
733 const_tree const t1 = (const_tree) k1;
734 const cplus_array_info *const t2 = (const cplus_array_info*) k2;
735
736 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
737 }
738
739 /* Hash table containing dependent array types, which are unsuitable for
740 the language-independent type hash table. */
741 static GTY ((param_is (union tree_node))) htab_t cplus_array_htab;
742
743 /* Like build_array_type, but handle special C++ semantics. */
744
745 tree
746 build_cplus_array_type (tree elt_type, tree index_type)
747 {
748 tree t;
749
750 if (elt_type == error_mark_node || index_type == error_mark_node)
751 return error_mark_node;
752
753 if (processing_template_decl
754 && (dependent_type_p (elt_type)
755 || (index_type && !TREE_CONSTANT (TYPE_MAX_VALUE (index_type)))))
756 {
757 void **e;
758 cplus_array_info cai;
759 hashval_t hash;
760
761 if (cplus_array_htab == NULL)
762 cplus_array_htab = htab_create_ggc (61, &cplus_array_hash,
763 &cplus_array_compare, NULL);
764
765 hash = TYPE_UID (elt_type);
766 if (index_type)
767 hash ^= TYPE_UID (index_type);
768 cai.type = elt_type;
769 cai.domain = index_type;
770
771 e = htab_find_slot_with_hash (cplus_array_htab, &cai, hash, INSERT);
772 if (*e)
773 /* We have found the type: we're done. */
774 return (tree) *e;
775 else
776 {
777 /* Build a new array type. */
778 t = cxx_make_type (ARRAY_TYPE);
779 TREE_TYPE (t) = elt_type;
780 TYPE_DOMAIN (t) = index_type;
781
782 /* Store it in the hash table. */
783 *e = t;
784
785 /* Set the canonical type for this new node. */
786 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
787 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
788 SET_TYPE_STRUCTURAL_EQUALITY (t);
789 else if (TYPE_CANONICAL (elt_type) != elt_type
790 || (index_type
791 && TYPE_CANONICAL (index_type) != index_type))
792 TYPE_CANONICAL (t)
793 = build_cplus_array_type
794 (TYPE_CANONICAL (elt_type),
795 index_type ? TYPE_CANONICAL (index_type) : index_type);
796 else
797 TYPE_CANONICAL (t) = t;
798 }
799 }
800 else
801 {
802 if (!TYPE_STRUCTURAL_EQUALITY_P (elt_type)
803 && !(index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
804 && (TYPE_CANONICAL (elt_type) != elt_type
805 || (index_type && TYPE_CANONICAL (index_type) != index_type)))
806 /* Make sure that the canonical type is on the appropriate
807 variants list. */
808 build_cplus_array_type
809 (TYPE_CANONICAL (elt_type),
810 index_type ? TYPE_CANONICAL (index_type) : index_type);
811 t = build_array_type (elt_type, index_type);
812 }
813
814 /* Push these needs up so that initialization takes place
815 more easily. */
816 bool needs_ctor
817 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
818 TYPE_NEEDS_CONSTRUCTING (t) = needs_ctor;
819 bool needs_dtor
820 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
821 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = needs_dtor;
822
823 /* We want TYPE_MAIN_VARIANT of an array to strip cv-quals from the
824 element type as well, so fix it up if needed. */
825 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
826 {
827 tree m = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
828 index_type);
829
830 if (TYPE_MAIN_VARIANT (t) != m)
831 {
832 if (COMPLETE_TYPE_P (t) && !COMPLETE_TYPE_P (m))
833 {
834 /* m was built before the element type was complete, so we
835 also need to copy the layout info from t. */
836 tree size = TYPE_SIZE (t);
837 tree size_unit = TYPE_SIZE_UNIT (t);
838 unsigned int align = TYPE_ALIGN (t);
839 unsigned int user_align = TYPE_USER_ALIGN (t);
840 enum machine_mode mode = TYPE_MODE (t);
841 for (tree var = m; var; var = TYPE_NEXT_VARIANT (var))
842 {
843 TYPE_SIZE (var) = size;
844 TYPE_SIZE_UNIT (var) = size_unit;
845 TYPE_ALIGN (var) = align;
846 TYPE_USER_ALIGN (var) = user_align;
847 SET_TYPE_MODE (var, mode);
848 TYPE_NEEDS_CONSTRUCTING (var) = needs_ctor;
849 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (var) = needs_dtor;
850 }
851 }
852
853 TYPE_MAIN_VARIANT (t) = m;
854 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
855 TYPE_NEXT_VARIANT (m) = t;
856 }
857 }
858
859 /* Avoid spurious warnings with VLAs (c++/54583). */
860 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t)))
861 TREE_NO_WARNING (TYPE_SIZE (t)) = 1;
862
863 return t;
864 }
865
866 /* Return an ARRAY_TYPE with element type ELT and length N. */
867
868 tree
869 build_array_of_n_type (tree elt, int n)
870 {
871 return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
872 }
873
874 /* Return a reference type node referring to TO_TYPE. If RVAL is
875 true, return an rvalue reference type, otherwise return an lvalue
876 reference type. If a type node exists, reuse it, otherwise create
877 a new one. */
878 tree
879 cp_build_reference_type (tree to_type, bool rval)
880 {
881 tree lvalue_ref, t;
882 lvalue_ref = build_reference_type (to_type);
883 if (!rval)
884 return lvalue_ref;
885
886 /* This code to create rvalue reference types is based on and tied
887 to the code creating lvalue reference types in the middle-end
888 functions build_reference_type_for_mode and build_reference_type.
889
890 It works by putting the rvalue reference type nodes after the
891 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
892 they will effectively be ignored by the middle end. */
893
894 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
895 if (TYPE_REF_IS_RVALUE (t))
896 return t;
897
898 t = build_distinct_type_copy (lvalue_ref);
899
900 TYPE_REF_IS_RVALUE (t) = true;
901 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
902 TYPE_NEXT_REF_TO (lvalue_ref) = t;
903
904 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
905 SET_TYPE_STRUCTURAL_EQUALITY (t);
906 else if (TYPE_CANONICAL (to_type) != to_type)
907 TYPE_CANONICAL (t)
908 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
909 else
910 TYPE_CANONICAL (t) = t;
911
912 layout_type (t);
913
914 return t;
915
916 }
917
918 /* Returns EXPR cast to rvalue reference type, like std::move. */
919
920 tree
921 move (tree expr)
922 {
923 tree type = TREE_TYPE (expr);
924 gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
925 type = cp_build_reference_type (type, /*rval*/true);
926 return build_static_cast (type, expr, tf_warning_or_error);
927 }
928
929 /* Used by the C++ front end to build qualified array types. However,
930 the C version of this function does not properly maintain canonical
931 types (which are not used in C). */
932 tree
933 c_build_qualified_type (tree type, int type_quals)
934 {
935 return cp_build_qualified_type (type, type_quals);
936 }
937
938 \f
939 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
940 arrays correctly. In particular, if TYPE is an array of T's, and
941 TYPE_QUALS is non-empty, returns an array of qualified T's.
942
943 FLAGS determines how to deal with ill-formed qualifications. If
944 tf_ignore_bad_quals is set, then bad qualifications are dropped
945 (this is permitted if TYPE was introduced via a typedef or template
946 type parameter). If bad qualifications are dropped and tf_warning
947 is set, then a warning is issued for non-const qualifications. If
948 tf_ignore_bad_quals is not set and tf_error is not set, we
949 return error_mark_node. Otherwise, we issue an error, and ignore
950 the qualifications.
951
952 Qualification of a reference type is valid when the reference came
953 via a typedef or template type argument. [dcl.ref] No such
954 dispensation is provided for qualifying a function type. [dcl.fct]
955 DR 295 queries this and the proposed resolution brings it into line
956 with qualifying a reference. We implement the DR. We also behave
957 in a similar manner for restricting non-pointer types. */
958
959 tree
960 cp_build_qualified_type_real (tree type,
961 int type_quals,
962 tsubst_flags_t complain)
963 {
964 tree result;
965 int bad_quals = TYPE_UNQUALIFIED;
966
967 if (type == error_mark_node)
968 return type;
969
970 if (type_quals == cp_type_quals (type))
971 return type;
972
973 if (TREE_CODE (type) == ARRAY_TYPE)
974 {
975 /* In C++, the qualification really applies to the array element
976 type. Obtain the appropriately qualified element type. */
977 tree t;
978 tree element_type
979 = cp_build_qualified_type_real (TREE_TYPE (type),
980 type_quals,
981 complain);
982
983 if (element_type == error_mark_node)
984 return error_mark_node;
985
986 /* See if we already have an identically qualified type. Tests
987 should be equivalent to those in check_qualified_type. */
988 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
989 if (TREE_TYPE (t) == element_type
990 && TYPE_NAME (t) == TYPE_NAME (type)
991 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
992 && attribute_list_equal (TYPE_ATTRIBUTES (t),
993 TYPE_ATTRIBUTES (type)))
994 break;
995
996 if (!t)
997 {
998 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
999
1000 /* Keep the typedef name. */
1001 if (TYPE_NAME (t) != TYPE_NAME (type))
1002 {
1003 t = build_variant_type_copy (t);
1004 TYPE_NAME (t) = TYPE_NAME (type);
1005 }
1006 }
1007
1008 /* Even if we already had this variant, we update
1009 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
1010 they changed since the variant was originally created.
1011
1012 This seems hokey; if there is some way to use a previous
1013 variant *without* coming through here,
1014 TYPE_NEEDS_CONSTRUCTING will never be updated. */
1015 TYPE_NEEDS_CONSTRUCTING (t)
1016 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
1017 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1018 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
1019 return t;
1020 }
1021 else if (TYPE_PTRMEMFUNC_P (type))
1022 {
1023 /* For a pointer-to-member type, we can't just return a
1024 cv-qualified version of the RECORD_TYPE. If we do, we
1025 haven't changed the field that contains the actual pointer to
1026 a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
1027 tree t;
1028
1029 t = TYPE_PTRMEMFUNC_FN_TYPE (type);
1030 t = cp_build_qualified_type_real (t, type_quals, complain);
1031 return build_ptrmemfunc_type (t);
1032 }
1033 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
1034 {
1035 tree t = PACK_EXPANSION_PATTERN (type);
1036
1037 t = cp_build_qualified_type_real (t, type_quals, complain);
1038 return make_pack_expansion (t);
1039 }
1040
1041 /* A reference or method type shall not be cv-qualified.
1042 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
1043 (in CD1) we always ignore extra cv-quals on functions. */
1044 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
1045 && (TREE_CODE (type) == REFERENCE_TYPE
1046 || TREE_CODE (type) == FUNCTION_TYPE
1047 || TREE_CODE (type) == METHOD_TYPE))
1048 {
1049 if (TREE_CODE (type) == REFERENCE_TYPE)
1050 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1051 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1052 }
1053
1054 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */
1055 if (TREE_CODE (type) == FUNCTION_TYPE)
1056 type_quals |= type_memfn_quals (type);
1057
1058 /* A restrict-qualified type must be a pointer (or reference)
1059 to object or incomplete type. */
1060 if ((type_quals & TYPE_QUAL_RESTRICT)
1061 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1062 && TREE_CODE (type) != TYPENAME_TYPE
1063 && !POINTER_TYPE_P (type))
1064 {
1065 bad_quals |= TYPE_QUAL_RESTRICT;
1066 type_quals &= ~TYPE_QUAL_RESTRICT;
1067 }
1068
1069 if (bad_quals == TYPE_UNQUALIFIED
1070 || (complain & tf_ignore_bad_quals))
1071 /*OK*/;
1072 else if (!(complain & tf_error))
1073 return error_mark_node;
1074 else
1075 {
1076 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
1077 error ("%qV qualifiers cannot be applied to %qT",
1078 bad_type, type);
1079 }
1080
1081 /* Retrieve (or create) the appropriately qualified variant. */
1082 result = build_qualified_type (type, type_quals);
1083
1084 /* If this was a pointer-to-method type, and we just made a copy,
1085 then we need to unshare the record that holds the cached
1086 pointer-to-member-function type, because these will be distinct
1087 between the unqualified and qualified types. */
1088 if (result != type
1089 && TREE_CODE (type) == POINTER_TYPE
1090 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE
1091 && TYPE_LANG_SPECIFIC (result) == TYPE_LANG_SPECIFIC (type))
1092 TYPE_LANG_SPECIFIC (result) = NULL;
1093
1094 /* We may also have ended up building a new copy of the canonical
1095 type of a pointer-to-method type, which could have the same
1096 sharing problem described above. */
1097 if (TYPE_CANONICAL (result) != TYPE_CANONICAL (type)
1098 && TREE_CODE (type) == POINTER_TYPE
1099 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE
1100 && (TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result))
1101 == TYPE_LANG_SPECIFIC (TYPE_CANONICAL (type))))
1102 TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result)) = NULL;
1103
1104 return result;
1105 }
1106
1107 /* Return TYPE with const and volatile removed. */
1108
1109 tree
1110 cv_unqualified (tree type)
1111 {
1112 int quals;
1113
1114 if (type == error_mark_node)
1115 return type;
1116
1117 quals = cp_type_quals (type);
1118 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
1119 return cp_build_qualified_type (type, quals);
1120 }
1121
1122 /* Builds a qualified variant of T that is not a typedef variant.
1123 E.g. consider the following declarations:
1124 typedef const int ConstInt;
1125 typedef ConstInt* PtrConstInt;
1126 If T is PtrConstInt, this function returns a type representing
1127 const int*.
1128 In other words, if T is a typedef, the function returns the underlying type.
1129 The cv-qualification and attributes of the type returned match the
1130 input type.
1131 They will always be compatible types.
1132 The returned type is built so that all of its subtypes
1133 recursively have their typedefs stripped as well.
1134
1135 This is different from just returning TYPE_CANONICAL (T)
1136 Because of several reasons:
1137 * If T is a type that needs structural equality
1138 its TYPE_CANONICAL (T) will be NULL.
1139 * TYPE_CANONICAL (T) desn't carry type attributes
1140 and loses template parameter names. */
1141
1142 tree
1143 strip_typedefs (tree t)
1144 {
1145 tree result = NULL, type = NULL, t0 = NULL;
1146
1147 if (!t || t == error_mark_node || t == TYPE_CANONICAL (t))
1148 return t;
1149
1150 gcc_assert (TYPE_P (t));
1151
1152 switch (TREE_CODE (t))
1153 {
1154 case POINTER_TYPE:
1155 type = strip_typedefs (TREE_TYPE (t));
1156 result = build_pointer_type (type);
1157 break;
1158 case REFERENCE_TYPE:
1159 type = strip_typedefs (TREE_TYPE (t));
1160 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
1161 break;
1162 case OFFSET_TYPE:
1163 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t));
1164 type = strip_typedefs (TREE_TYPE (t));
1165 result = build_offset_type (t0, type);
1166 break;
1167 case RECORD_TYPE:
1168 if (TYPE_PTRMEMFUNC_P (t))
1169 {
1170 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t));
1171 result = build_ptrmemfunc_type (t0);
1172 }
1173 break;
1174 case ARRAY_TYPE:
1175 type = strip_typedefs (TREE_TYPE (t));
1176 t0 = strip_typedefs (TYPE_DOMAIN (t));;
1177 result = build_cplus_array_type (type, t0);
1178 break;
1179 case FUNCTION_TYPE:
1180 case METHOD_TYPE:
1181 {
1182 tree arg_types = NULL, arg_node, arg_type;
1183 for (arg_node = TYPE_ARG_TYPES (t);
1184 arg_node;
1185 arg_node = TREE_CHAIN (arg_node))
1186 {
1187 if (arg_node == void_list_node)
1188 break;
1189 arg_type = strip_typedefs (TREE_VALUE (arg_node));
1190 gcc_assert (arg_type);
1191
1192 arg_types =
1193 tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
1194 }
1195
1196 if (arg_types)
1197 arg_types = nreverse (arg_types);
1198
1199 /* A list of parameters not ending with an ellipsis
1200 must end with void_list_node. */
1201 if (arg_node)
1202 arg_types = chainon (arg_types, void_list_node);
1203
1204 type = strip_typedefs (TREE_TYPE (t));
1205 if (TREE_CODE (t) == METHOD_TYPE)
1206 {
1207 tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
1208 gcc_assert (class_type);
1209 result =
1210 build_method_type_directly (class_type, type,
1211 TREE_CHAIN (arg_types));
1212 }
1213 else
1214 {
1215 result = build_function_type (type,
1216 arg_types);
1217 result = apply_memfn_quals (result, type_memfn_quals (t));
1218 }
1219
1220 if (TYPE_RAISES_EXCEPTIONS (t))
1221 result = build_exception_variant (result,
1222 TYPE_RAISES_EXCEPTIONS (t));
1223 }
1224 break;
1225 case TYPENAME_TYPE:
1226 {
1227 tree fullname = TYPENAME_TYPE_FULLNAME (t);
1228 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR
1229 && TREE_OPERAND (fullname, 1))
1230 {
1231 tree args = TREE_OPERAND (fullname, 1);
1232 tree new_args = copy_node (args);
1233 bool changed = false;
1234 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
1235 {
1236 tree arg = TREE_VEC_ELT (args, i);
1237 tree strip_arg;
1238 if (TYPE_P (arg))
1239 strip_arg = strip_typedefs (arg);
1240 else
1241 strip_arg = strip_typedefs_expr (arg);
1242 TREE_VEC_ELT (new_args, i) = strip_arg;
1243 if (strip_arg != arg)
1244 changed = true;
1245 }
1246 if (changed)
1247 fullname = lookup_template_function (TREE_OPERAND (fullname, 0),
1248 new_args);
1249 else
1250 ggc_free (new_args);
1251 }
1252 result = make_typename_type (strip_typedefs (TYPE_CONTEXT (t)),
1253 fullname, typename_type, tf_none);
1254 }
1255 break;
1256 case DECLTYPE_TYPE:
1257 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t));
1258 if (result == DECLTYPE_TYPE_EXPR (t))
1259 return t;
1260 else
1261 result = (finish_decltype_type
1262 (result,
1263 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t),
1264 tf_none));
1265 break;
1266 default:
1267 break;
1268 }
1269
1270 if (!result)
1271 result = TYPE_MAIN_VARIANT (t);
1272 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
1273 || TYPE_ALIGN (t) != TYPE_ALIGN (result))
1274 {
1275 gcc_assert (TYPE_USER_ALIGN (t));
1276 if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
1277 result = build_variant_type_copy (result);
1278 else
1279 result = build_aligned_type (result, TYPE_ALIGN (t));
1280 TYPE_USER_ALIGN (result) = true;
1281 }
1282 if (TYPE_ATTRIBUTES (t))
1283 result = cp_build_type_attribute_variant (result, TYPE_ATTRIBUTES (t));
1284 return cp_build_qualified_type (result, cp_type_quals (t));
1285 }
1286
1287 /* Like strip_typedefs above, but works on expressions, so that in
1288
1289 template<class T> struct A
1290 {
1291 typedef T TT;
1292 B<sizeof(TT)> b;
1293 };
1294
1295 sizeof(TT) is replaced by sizeof(T). */
1296
1297 tree
1298 strip_typedefs_expr (tree t)
1299 {
1300 unsigned i,n;
1301 tree r, type, *ops;
1302 enum tree_code code;
1303
1304 if (t == NULL_TREE || t == error_mark_node)
1305 return t;
1306
1307 if (DECL_P (t) || CONSTANT_CLASS_P (t))
1308 return t;
1309
1310 /* Some expressions have type operands, so let's handle types here rather
1311 than check TYPE_P in multiple places below. */
1312 if (TYPE_P (t))
1313 return strip_typedefs (t);
1314
1315 code = TREE_CODE (t);
1316 switch (code)
1317 {
1318 case IDENTIFIER_NODE:
1319 case TEMPLATE_PARM_INDEX:
1320 case OVERLOAD:
1321 case BASELINK:
1322 case ARGUMENT_PACK_SELECT:
1323 return t;
1324
1325 case TRAIT_EXPR:
1326 {
1327 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t));
1328 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t));
1329 if (type1 == TRAIT_EXPR_TYPE1 (t)
1330 && type2 == TRAIT_EXPR_TYPE2 (t))
1331 return t;
1332 r = copy_node (t);
1333 TRAIT_EXPR_TYPE1 (t) = type1;
1334 TRAIT_EXPR_TYPE2 (t) = type2;
1335 return r;
1336 }
1337
1338 case TREE_LIST:
1339 {
1340 vec<tree, va_gc> *vec = make_tree_vector ();
1341 bool changed = false;
1342 tree it;
1343 for (it = t; it; it = TREE_CHAIN (it))
1344 {
1345 tree val = strip_typedefs_expr (TREE_VALUE (t));
1346 vec_safe_push (vec, val);
1347 if (val != TREE_VALUE (t))
1348 changed = true;
1349 gcc_assert (TREE_PURPOSE (it) == NULL_TREE);
1350 }
1351 if (changed)
1352 {
1353 r = NULL_TREE;
1354 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it)
1355 r = tree_cons (NULL_TREE, it, r);
1356 }
1357 else
1358 r = t;
1359 release_tree_vector (vec);
1360 return r;
1361 }
1362
1363 case TREE_VEC:
1364 {
1365 bool changed = false;
1366 vec<tree, va_gc> *vec = make_tree_vector ();
1367 n = TREE_VEC_LENGTH (t);
1368 vec_safe_reserve (vec, n);
1369 for (i = 0; i < n; ++i)
1370 {
1371 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i));
1372 vec->quick_push (op);
1373 if (op != TREE_VEC_ELT (t, i))
1374 changed = true;
1375 }
1376 if (changed)
1377 {
1378 r = copy_node (t);
1379 for (i = 0; i < n; ++i)
1380 TREE_VEC_ELT (r, i) = (*vec)[i];
1381 SET_NON_DEFAULT_TEMPLATE_ARGS_COUNT
1382 (r, GET_NON_DEFAULT_TEMPLATE_ARGS_COUNT (t));
1383 }
1384 else
1385 r = t;
1386 release_tree_vector (vec);
1387 return r;
1388 }
1389
1390 case CONSTRUCTOR:
1391 {
1392 bool changed = false;
1393 vec<constructor_elt, va_gc> *vec
1394 = vec_safe_copy (CONSTRUCTOR_ELTS (t));
1395 n = CONSTRUCTOR_NELTS (t);
1396 type = strip_typedefs (TREE_TYPE (t));
1397 for (i = 0; i < n; ++i)
1398 {
1399 constructor_elt *e = &(*vec)[i];
1400 tree op = strip_typedefs_expr (e->value);
1401 if (op != e->value)
1402 {
1403 changed = true;
1404 e->value = op;
1405 }
1406 gcc_checking_assert (e->index == strip_typedefs_expr (e->index));
1407 }
1408
1409 if (!changed && type == TREE_TYPE (t))
1410 {
1411 vec_free (vec);
1412 return t;
1413 }
1414 else
1415 {
1416 r = copy_node (t);
1417 TREE_TYPE (r) = type;
1418 CONSTRUCTOR_ELTS (r) = vec;
1419 return r;
1420 }
1421 }
1422
1423 case LAMBDA_EXPR:
1424 error ("lambda-expression in a constant expression");
1425 return error_mark_node;
1426
1427 default:
1428 break;
1429 }
1430
1431 gcc_assert (EXPR_P (t));
1432
1433 n = TREE_OPERAND_LENGTH (t);
1434 ops = XALLOCAVEC (tree, n);
1435 type = TREE_TYPE (t);
1436
1437 switch (code)
1438 {
1439 CASE_CONVERT:
1440 case IMPLICIT_CONV_EXPR:
1441 case DYNAMIC_CAST_EXPR:
1442 case STATIC_CAST_EXPR:
1443 case CONST_CAST_EXPR:
1444 case REINTERPRET_CAST_EXPR:
1445 case CAST_EXPR:
1446 case NEW_EXPR:
1447 type = strip_typedefs (type);
1448 /* fallthrough */
1449
1450 default:
1451 for (i = 0; i < n; ++i)
1452 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i));
1453 break;
1454 }
1455
1456 /* If nothing changed, return t. */
1457 for (i = 0; i < n; ++i)
1458 if (ops[i] != TREE_OPERAND (t, i))
1459 break;
1460 if (i == n && type == TREE_TYPE (t))
1461 return t;
1462
1463 r = copy_node (t);
1464 TREE_TYPE (r) = type;
1465 for (i = 0; i < n; ++i)
1466 TREE_OPERAND (r, i) = ops[i];
1467 return r;
1468 }
1469
1470 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
1471 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
1472 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
1473 VIRT indicates whether TYPE is inherited virtually or not.
1474 IGO_PREV points at the previous binfo of the inheritance graph
1475 order chain. The newly copied binfo's TREE_CHAIN forms this
1476 ordering.
1477
1478 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
1479 correct order. That is in the order the bases themselves should be
1480 constructed in.
1481
1482 The BINFO_INHERITANCE of a virtual base class points to the binfo
1483 of the most derived type. ??? We could probably change this so that
1484 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
1485 remove a field. They currently can only differ for primary virtual
1486 virtual bases. */
1487
1488 tree
1489 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
1490 {
1491 tree new_binfo;
1492
1493 if (virt)
1494 {
1495 /* See if we've already made this virtual base. */
1496 new_binfo = binfo_for_vbase (type, t);
1497 if (new_binfo)
1498 return new_binfo;
1499 }
1500
1501 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
1502 BINFO_TYPE (new_binfo) = type;
1503
1504 /* Chain it into the inheritance graph. */
1505 TREE_CHAIN (*igo_prev) = new_binfo;
1506 *igo_prev = new_binfo;
1507
1508 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo))
1509 {
1510 int ix;
1511 tree base_binfo;
1512
1513 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
1514
1515 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
1516 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
1517
1518 /* We do not need to copy the accesses, as they are read only. */
1519 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
1520
1521 /* Recursively copy base binfos of BINFO. */
1522 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1523 {
1524 tree new_base_binfo;
1525 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
1526 t, igo_prev,
1527 BINFO_VIRTUAL_P (base_binfo));
1528
1529 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
1530 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
1531 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
1532 }
1533 }
1534 else
1535 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
1536
1537 if (virt)
1538 {
1539 /* Push it onto the list after any virtual bases it contains
1540 will have been pushed. */
1541 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo);
1542 BINFO_VIRTUAL_P (new_binfo) = 1;
1543 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
1544 }
1545
1546 return new_binfo;
1547 }
1548 \f
1549 /* Hashing of lists so that we don't make duplicates.
1550 The entry point is `list_hash_canon'. */
1551
1552 /* Now here is the hash table. When recording a list, it is added
1553 to the slot whose index is the hash code mod the table size.
1554 Note that the hash table is used for several kinds of lists.
1555 While all these live in the same table, they are completely independent,
1556 and the hash code is computed differently for each of these. */
1557
1558 static GTY ((param_is (union tree_node))) htab_t list_hash_table;
1559
1560 struct list_proxy
1561 {
1562 tree purpose;
1563 tree value;
1564 tree chain;
1565 };
1566
1567 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
1568 for a node we are thinking about adding). */
1569
1570 static int
1571 list_hash_eq (const void* entry, const void* data)
1572 {
1573 const_tree const t = (const_tree) entry;
1574 const struct list_proxy *const proxy = (const struct list_proxy *) data;
1575
1576 return (TREE_VALUE (t) == proxy->value
1577 && TREE_PURPOSE (t) == proxy->purpose
1578 && TREE_CHAIN (t) == proxy->chain);
1579 }
1580
1581 /* Compute a hash code for a list (chain of TREE_LIST nodes
1582 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
1583 TREE_COMMON slots), by adding the hash codes of the individual entries. */
1584
1585 static hashval_t
1586 list_hash_pieces (tree purpose, tree value, tree chain)
1587 {
1588 hashval_t hashcode = 0;
1589
1590 if (chain)
1591 hashcode += TREE_HASH (chain);
1592
1593 if (value)
1594 hashcode += TREE_HASH (value);
1595 else
1596 hashcode += 1007;
1597 if (purpose)
1598 hashcode += TREE_HASH (purpose);
1599 else
1600 hashcode += 1009;
1601 return hashcode;
1602 }
1603
1604 /* Hash an already existing TREE_LIST. */
1605
1606 static hashval_t
1607 list_hash (const void* p)
1608 {
1609 const_tree const t = (const_tree) p;
1610 return list_hash_pieces (TREE_PURPOSE (t),
1611 TREE_VALUE (t),
1612 TREE_CHAIN (t));
1613 }
1614
1615 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
1616 object for an identical list if one already exists. Otherwise, build a
1617 new one, and record it as the canonical object. */
1618
1619 tree
1620 hash_tree_cons (tree purpose, tree value, tree chain)
1621 {
1622 int hashcode = 0;
1623 void **slot;
1624 struct list_proxy proxy;
1625
1626 /* Hash the list node. */
1627 hashcode = list_hash_pieces (purpose, value, chain);
1628 /* Create a proxy for the TREE_LIST we would like to create. We
1629 don't actually create it so as to avoid creating garbage. */
1630 proxy.purpose = purpose;
1631 proxy.value = value;
1632 proxy.chain = chain;
1633 /* See if it is already in the table. */
1634 slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
1635 INSERT);
1636 /* If not, create a new node. */
1637 if (!*slot)
1638 *slot = tree_cons (purpose, value, chain);
1639 return (tree) *slot;
1640 }
1641
1642 /* Constructor for hashed lists. */
1643
1644 tree
1645 hash_tree_chain (tree value, tree chain)
1646 {
1647 return hash_tree_cons (NULL_TREE, value, chain);
1648 }
1649 \f
1650 void
1651 debug_binfo (tree elem)
1652 {
1653 HOST_WIDE_INT n;
1654 tree virtuals;
1655
1656 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
1657 "\nvtable type:\n",
1658 TYPE_NAME_STRING (BINFO_TYPE (elem)),
1659 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
1660 debug_tree (BINFO_TYPE (elem));
1661 if (BINFO_VTABLE (elem))
1662 fprintf (stderr, "vtable decl \"%s\"\n",
1663 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
1664 else
1665 fprintf (stderr, "no vtable decl yet\n");
1666 fprintf (stderr, "virtuals:\n");
1667 virtuals = BINFO_VIRTUALS (elem);
1668 n = 0;
1669
1670 while (virtuals)
1671 {
1672 tree fndecl = TREE_VALUE (virtuals);
1673 fprintf (stderr, "%s [%ld =? %ld]\n",
1674 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
1675 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
1676 ++n;
1677 virtuals = TREE_CHAIN (virtuals);
1678 }
1679 }
1680
1681 /* Build a representation for the qualified name SCOPE::NAME. TYPE is
1682 the type of the result expression, if known, or NULL_TREE if the
1683 resulting expression is type-dependent. If TEMPLATE_P is true,
1684 NAME is known to be a template because the user explicitly used the
1685 "template" keyword after the "::".
1686
1687 All SCOPE_REFs should be built by use of this function. */
1688
1689 tree
1690 build_qualified_name (tree type, tree scope, tree name, bool template_p)
1691 {
1692 tree t;
1693 if (type == error_mark_node
1694 || scope == error_mark_node
1695 || name == error_mark_node)
1696 return error_mark_node;
1697 t = build2 (SCOPE_REF, type, scope, name);
1698 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
1699 PTRMEM_OK_P (t) = true;
1700 if (type)
1701 t = convert_from_reference (t);
1702 return t;
1703 }
1704
1705 /* Returns nonzero if X is an expression for a (possibly overloaded)
1706 function. If "f" is a function or function template, "f", "c->f",
1707 "c.f", "C::f", and "f<int>" will all be considered possibly
1708 overloaded functions. Returns 2 if the function is actually
1709 overloaded, i.e., if it is impossible to know the type of the
1710 function without performing overload resolution. */
1711
1712 int
1713 is_overloaded_fn (tree x)
1714 {
1715 /* A baselink is also considered an overloaded function. */
1716 if (TREE_CODE (x) == OFFSET_REF
1717 || TREE_CODE (x) == COMPONENT_REF)
1718 x = TREE_OPERAND (x, 1);
1719 if (BASELINK_P (x))
1720 x = BASELINK_FUNCTIONS (x);
1721 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
1722 x = TREE_OPERAND (x, 0);
1723 if (DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
1724 || (TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x)))
1725 return 2;
1726 return (TREE_CODE (x) == FUNCTION_DECL
1727 || TREE_CODE (x) == OVERLOAD);
1728 }
1729
1730 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
1731 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
1732 NULL_TREE. */
1733
1734 tree
1735 dependent_name (tree x)
1736 {
1737 if (identifier_p (x))
1738 return x;
1739 if (TREE_CODE (x) != COMPONENT_REF
1740 && TREE_CODE (x) != OFFSET_REF
1741 && TREE_CODE (x) != BASELINK
1742 && is_overloaded_fn (x))
1743 return DECL_NAME (get_first_fn (x));
1744 return NULL_TREE;
1745 }
1746
1747 /* Returns true iff X is an expression for an overloaded function
1748 whose type cannot be known without performing overload
1749 resolution. */
1750
1751 bool
1752 really_overloaded_fn (tree x)
1753 {
1754 return is_overloaded_fn (x) == 2;
1755 }
1756
1757 tree
1758 get_fns (tree from)
1759 {
1760 gcc_assert (is_overloaded_fn (from));
1761 /* A baselink is also considered an overloaded function. */
1762 if (TREE_CODE (from) == OFFSET_REF
1763 || TREE_CODE (from) == COMPONENT_REF)
1764 from = TREE_OPERAND (from, 1);
1765 if (BASELINK_P (from))
1766 from = BASELINK_FUNCTIONS (from);
1767 if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
1768 from = TREE_OPERAND (from, 0);
1769 return from;
1770 }
1771
1772 tree
1773 get_first_fn (tree from)
1774 {
1775 return OVL_CURRENT (get_fns (from));
1776 }
1777
1778 /* Return a new OVL node, concatenating it with the old one. */
1779
1780 tree
1781 ovl_cons (tree decl, tree chain)
1782 {
1783 tree result = make_node (OVERLOAD);
1784 TREE_TYPE (result) = unknown_type_node;
1785 OVL_FUNCTION (result) = decl;
1786 TREE_CHAIN (result) = chain;
1787
1788 return result;
1789 }
1790
1791 /* Build a new overloaded function. If this is the first one,
1792 just return it; otherwise, ovl_cons the _DECLs */
1793
1794 tree
1795 build_overload (tree decl, tree chain)
1796 {
1797 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
1798 return decl;
1799 return ovl_cons (decl, chain);
1800 }
1801
1802 /* Return the scope where the overloaded functions OVL were found. */
1803
1804 tree
1805 ovl_scope (tree ovl)
1806 {
1807 if (TREE_CODE (ovl) == OFFSET_REF
1808 || TREE_CODE (ovl) == COMPONENT_REF)
1809 ovl = TREE_OPERAND (ovl, 1);
1810 if (TREE_CODE (ovl) == BASELINK)
1811 return BINFO_TYPE (BASELINK_BINFO (ovl));
1812 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
1813 ovl = TREE_OPERAND (ovl, 0);
1814 /* Skip using-declarations. */
1815 while (TREE_CODE (ovl) == OVERLOAD && OVL_USED (ovl) && OVL_CHAIN (ovl))
1816 ovl = OVL_CHAIN (ovl);
1817 return CP_DECL_CONTEXT (OVL_CURRENT (ovl));
1818 }
1819
1820 /* Return TRUE if FN is a non-static member function, FALSE otherwise.
1821 This function looks into BASELINK and OVERLOAD nodes. */
1822
1823 bool
1824 non_static_member_function_p (tree fn)
1825 {
1826 if (fn == NULL_TREE)
1827 return false;
1828
1829 if (is_overloaded_fn (fn))
1830 fn = get_first_fn (fn);
1831
1832 return (DECL_P (fn)
1833 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn));
1834 }
1835
1836 \f
1837 #define PRINT_RING_SIZE 4
1838
1839 static const char *
1840 cxx_printable_name_internal (tree decl, int v, bool translate)
1841 {
1842 static unsigned int uid_ring[PRINT_RING_SIZE];
1843 static char *print_ring[PRINT_RING_SIZE];
1844 static bool trans_ring[PRINT_RING_SIZE];
1845 static int ring_counter;
1846 int i;
1847
1848 /* Only cache functions. */
1849 if (v < 2
1850 || TREE_CODE (decl) != FUNCTION_DECL
1851 || DECL_LANG_SPECIFIC (decl) == 0)
1852 return lang_decl_name (decl, v, translate);
1853
1854 /* See if this print name is lying around. */
1855 for (i = 0; i < PRINT_RING_SIZE; i++)
1856 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
1857 /* yes, so return it. */
1858 return print_ring[i];
1859
1860 if (++ring_counter == PRINT_RING_SIZE)
1861 ring_counter = 0;
1862
1863 if (current_function_decl != NULL_TREE)
1864 {
1865 /* There may be both translated and untranslated versions of the
1866 name cached. */
1867 for (i = 0; i < 2; i++)
1868 {
1869 if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
1870 ring_counter += 1;
1871 if (ring_counter == PRINT_RING_SIZE)
1872 ring_counter = 0;
1873 }
1874 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
1875 }
1876
1877 free (print_ring[ring_counter]);
1878
1879 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
1880 uid_ring[ring_counter] = DECL_UID (decl);
1881 trans_ring[ring_counter] = translate;
1882 return print_ring[ring_counter];
1883 }
1884
1885 const char *
1886 cxx_printable_name (tree decl, int v)
1887 {
1888 return cxx_printable_name_internal (decl, v, false);
1889 }
1890
1891 const char *
1892 cxx_printable_name_translate (tree decl, int v)
1893 {
1894 return cxx_printable_name_internal (decl, v, true);
1895 }
1896 \f
1897 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
1898 listed in RAISES. */
1899
1900 tree
1901 build_exception_variant (tree type, tree raises)
1902 {
1903 tree v;
1904 int type_quals;
1905
1906 if (comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (type), ce_exact))
1907 return type;
1908
1909 type_quals = TYPE_QUALS (type);
1910 for (v = TYPE_MAIN_VARIANT (type); v; v = TYPE_NEXT_VARIANT (v))
1911 if (check_qualified_type (v, type, type_quals)
1912 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (v), ce_exact))
1913 return v;
1914
1915 /* Need to build a new variant. */
1916 v = build_variant_type_copy (type);
1917 TYPE_RAISES_EXCEPTIONS (v) = raises;
1918 return v;
1919 }
1920
1921 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
1922 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
1923 arguments. */
1924
1925 tree
1926 bind_template_template_parm (tree t, tree newargs)
1927 {
1928 tree decl = TYPE_NAME (t);
1929 tree t2;
1930
1931 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
1932 decl = build_decl (input_location,
1933 TYPE_DECL, DECL_NAME (decl), NULL_TREE);
1934
1935 /* These nodes have to be created to reflect new TYPE_DECL and template
1936 arguments. */
1937 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
1938 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
1939 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
1940 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
1941
1942 TREE_TYPE (decl) = t2;
1943 TYPE_NAME (t2) = decl;
1944 TYPE_STUB_DECL (t2) = decl;
1945 TYPE_SIZE (t2) = 0;
1946 SET_TYPE_STRUCTURAL_EQUALITY (t2);
1947
1948 return t2;
1949 }
1950
1951 /* Called from count_trees via walk_tree. */
1952
1953 static tree
1954 count_trees_r (tree *tp, int *walk_subtrees, void *data)
1955 {
1956 ++*((int *) data);
1957
1958 if (TYPE_P (*tp))
1959 *walk_subtrees = 0;
1960
1961 return NULL_TREE;
1962 }
1963
1964 /* Debugging function for measuring the rough complexity of a tree
1965 representation. */
1966
1967 int
1968 count_trees (tree t)
1969 {
1970 int n_trees = 0;
1971 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
1972 return n_trees;
1973 }
1974
1975 /* Called from verify_stmt_tree via walk_tree. */
1976
1977 static tree
1978 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data)
1979 {
1980 tree t = *tp;
1981 hash_table <pointer_hash <tree_node> > *statements
1982 = static_cast <hash_table <pointer_hash <tree_node> > *> (data);
1983 tree_node **slot;
1984
1985 if (!STATEMENT_CODE_P (TREE_CODE (t)))
1986 return NULL_TREE;
1987
1988 /* If this statement is already present in the hash table, then
1989 there is a circularity in the statement tree. */
1990 gcc_assert (!statements->find (t));
1991
1992 slot = statements->find_slot (t, INSERT);
1993 *slot = t;
1994
1995 return NULL_TREE;
1996 }
1997
1998 /* Debugging function to check that the statement T has not been
1999 corrupted. For now, this function simply checks that T contains no
2000 circularities. */
2001
2002 void
2003 verify_stmt_tree (tree t)
2004 {
2005 hash_table <pointer_hash <tree_node> > statements;
2006 statements.create (37);
2007 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
2008 statements.dispose ();
2009 }
2010
2011 /* Check if the type T depends on a type with no linkage and if so, return
2012 it. If RELAXED_P then do not consider a class type declared within
2013 a vague-linkage function to have no linkage. */
2014
2015 tree
2016 no_linkage_check (tree t, bool relaxed_p)
2017 {
2018 tree r;
2019
2020 /* There's no point in checking linkage on template functions; we
2021 can't know their complete types. */
2022 if (processing_template_decl)
2023 return NULL_TREE;
2024
2025 switch (TREE_CODE (t))
2026 {
2027 case RECORD_TYPE:
2028 if (TYPE_PTRMEMFUNC_P (t))
2029 goto ptrmem;
2030 /* Lambda types that don't have mangling scope have no linkage. We
2031 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because
2032 when we get here from pushtag none of the lambda information is
2033 set up yet, so we want to assume that the lambda has linkage and
2034 fix it up later if not. */
2035 if (CLASSTYPE_LAMBDA_EXPR (t)
2036 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node
2037 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
2038 return t;
2039 /* Fall through. */
2040 case UNION_TYPE:
2041 if (!CLASS_TYPE_P (t))
2042 return NULL_TREE;
2043 /* Fall through. */
2044 case ENUMERAL_TYPE:
2045 /* Only treat anonymous types as having no linkage if they're at
2046 namespace scope. This is core issue 966. */
2047 if (TYPE_ANONYMOUS_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
2048 return t;
2049
2050 for (r = CP_TYPE_CONTEXT (t); ; )
2051 {
2052 /* If we're a nested type of a !TREE_PUBLIC class, we might not
2053 have linkage, or we might just be in an anonymous namespace.
2054 If we're in a TREE_PUBLIC class, we have linkage. */
2055 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
2056 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
2057 else if (TREE_CODE (r) == FUNCTION_DECL)
2058 {
2059 if (!relaxed_p || !vague_linkage_p (r))
2060 return t;
2061 else
2062 r = CP_DECL_CONTEXT (r);
2063 }
2064 else
2065 break;
2066 }
2067
2068 return NULL_TREE;
2069
2070 case ARRAY_TYPE:
2071 case POINTER_TYPE:
2072 case REFERENCE_TYPE:
2073 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2074
2075 case OFFSET_TYPE:
2076 ptrmem:
2077 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
2078 relaxed_p);
2079 if (r)
2080 return r;
2081 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
2082
2083 case METHOD_TYPE:
2084 r = no_linkage_check (TYPE_METHOD_BASETYPE (t), relaxed_p);
2085 if (r)
2086 return r;
2087 /* Fall through. */
2088 case FUNCTION_TYPE:
2089 {
2090 tree parm;
2091 for (parm = TYPE_ARG_TYPES (t);
2092 parm && parm != void_list_node;
2093 parm = TREE_CHAIN (parm))
2094 {
2095 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
2096 if (r)
2097 return r;
2098 }
2099 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2100 }
2101
2102 default:
2103 return NULL_TREE;
2104 }
2105 }
2106
2107 extern int depth_reached;
2108
2109 void
2110 cxx_print_statistics (void)
2111 {
2112 print_search_statistics ();
2113 print_class_statistics ();
2114 print_template_statistics ();
2115 if (GATHER_STATISTICS)
2116 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
2117 depth_reached);
2118 }
2119
2120 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2121 (which is an ARRAY_TYPE). This counts only elements of the top
2122 array. */
2123
2124 tree
2125 array_type_nelts_top (tree type)
2126 {
2127 return fold_build2_loc (input_location,
2128 PLUS_EXPR, sizetype,
2129 array_type_nelts (type),
2130 size_one_node);
2131 }
2132
2133 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2134 (which is an ARRAY_TYPE). This one is a recursive count of all
2135 ARRAY_TYPEs that are clumped together. */
2136
2137 tree
2138 array_type_nelts_total (tree type)
2139 {
2140 tree sz = array_type_nelts_top (type);
2141 type = TREE_TYPE (type);
2142 while (TREE_CODE (type) == ARRAY_TYPE)
2143 {
2144 tree n = array_type_nelts_top (type);
2145 sz = fold_build2_loc (input_location,
2146 MULT_EXPR, sizetype, sz, n);
2147 type = TREE_TYPE (type);
2148 }
2149 return sz;
2150 }
2151
2152 /* Called from break_out_target_exprs via mapcar. */
2153
2154 static tree
2155 bot_manip (tree* tp, int* walk_subtrees, void* data)
2156 {
2157 splay_tree target_remap = ((splay_tree) data);
2158 tree t = *tp;
2159
2160 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
2161 {
2162 /* There can't be any TARGET_EXPRs or their slot variables below this
2163 point. But we must make a copy, in case subsequent processing
2164 alters any part of it. For example, during gimplification a cast
2165 of the form (T) &X::f (where "f" is a member function) will lead
2166 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
2167 *walk_subtrees = 0;
2168 *tp = unshare_expr (t);
2169 return NULL_TREE;
2170 }
2171 if (TREE_CODE (t) == TARGET_EXPR)
2172 {
2173 tree u;
2174
2175 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
2176 {
2177 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
2178 tf_warning_or_error);
2179 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
2180 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
2181 }
2182 else
2183 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
2184 tf_warning_or_error);
2185
2186 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
2187 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
2188 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
2189
2190 /* Map the old variable to the new one. */
2191 splay_tree_insert (target_remap,
2192 (splay_tree_key) TREE_OPERAND (t, 0),
2193 (splay_tree_value) TREE_OPERAND (u, 0));
2194
2195 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1));
2196
2197 /* Replace the old expression with the new version. */
2198 *tp = u;
2199 /* We don't have to go below this point; the recursive call to
2200 break_out_target_exprs will have handled anything below this
2201 point. */
2202 *walk_subtrees = 0;
2203 return NULL_TREE;
2204 }
2205
2206 /* Make a copy of this node. */
2207 t = copy_tree_r (tp, walk_subtrees, NULL);
2208 if (TREE_CODE (*tp) == CALL_EXPR)
2209 set_flags_from_callee (*tp);
2210 return t;
2211 }
2212
2213 /* Replace all remapped VAR_DECLs in T with their new equivalents.
2214 DATA is really a splay-tree mapping old variables to new
2215 variables. */
2216
2217 static tree
2218 bot_replace (tree* t, int* /*walk_subtrees*/, void* data)
2219 {
2220 splay_tree target_remap = ((splay_tree) data);
2221
2222 if (TREE_CODE (*t) == VAR_DECL)
2223 {
2224 splay_tree_node n = splay_tree_lookup (target_remap,
2225 (splay_tree_key) *t);
2226 if (n)
2227 *t = (tree) n->value;
2228 }
2229 else if (TREE_CODE (*t) == PARM_DECL
2230 && DECL_NAME (*t) == this_identifier)
2231 {
2232 /* In an NSDMI we need to replace the 'this' parameter we used for
2233 parsing with the real one for this function. */
2234 *t = current_class_ptr;
2235 }
2236 else if (TREE_CODE (*t) == CONVERT_EXPR
2237 && CONVERT_EXPR_VBASE_PATH (*t))
2238 {
2239 /* In an NSDMI build_base_path defers building conversions to virtual
2240 bases, and we handle it here. */
2241 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
2242 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2243 int i; tree binfo;
2244 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo)
2245 if (BINFO_TYPE (binfo) == basetype)
2246 break;
2247 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
2248 tf_warning_or_error);
2249 }
2250
2251 return NULL_TREE;
2252 }
2253
2254 /* When we parse a default argument expression, we may create
2255 temporary variables via TARGET_EXPRs. When we actually use the
2256 default-argument expression, we make a copy of the expression
2257 and replace the temporaries with appropriate local versions. */
2258
2259 tree
2260 break_out_target_exprs (tree t)
2261 {
2262 static int target_remap_count;
2263 static splay_tree target_remap;
2264
2265 if (!target_remap_count++)
2266 target_remap = splay_tree_new (splay_tree_compare_pointers,
2267 /*splay_tree_delete_key_fn=*/NULL,
2268 /*splay_tree_delete_value_fn=*/NULL);
2269 cp_walk_tree (&t, bot_manip, target_remap, NULL);
2270 cp_walk_tree (&t, bot_replace, target_remap, NULL);
2271
2272 if (!--target_remap_count)
2273 {
2274 splay_tree_delete (target_remap);
2275 target_remap = NULL;
2276 }
2277
2278 return t;
2279 }
2280
2281 /* Similar to `build_nt', but for template definitions of dependent
2282 expressions */
2283
2284 tree
2285 build_min_nt_loc (location_t loc, enum tree_code code, ...)
2286 {
2287 tree t;
2288 int length;
2289 int i;
2290 va_list p;
2291
2292 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2293
2294 va_start (p, code);
2295
2296 t = make_node (code);
2297 SET_EXPR_LOCATION (t, loc);
2298 length = TREE_CODE_LENGTH (code);
2299
2300 for (i = 0; i < length; i++)
2301 {
2302 tree x = va_arg (p, tree);
2303 TREE_OPERAND (t, i) = x;
2304 }
2305
2306 va_end (p);
2307 return t;
2308 }
2309
2310
2311 /* Similar to `build', but for template definitions. */
2312
2313 tree
2314 build_min (enum tree_code code, tree tt, ...)
2315 {
2316 tree t;
2317 int length;
2318 int i;
2319 va_list p;
2320
2321 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2322
2323 va_start (p, tt);
2324
2325 t = make_node (code);
2326 length = TREE_CODE_LENGTH (code);
2327 TREE_TYPE (t) = tt;
2328
2329 for (i = 0; i < length; i++)
2330 {
2331 tree x = va_arg (p, tree);
2332 TREE_OPERAND (t, i) = x;
2333 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
2334 TREE_SIDE_EFFECTS (t) = 1;
2335 }
2336
2337 va_end (p);
2338 return t;
2339 }
2340
2341 /* Similar to `build', but for template definitions of non-dependent
2342 expressions. NON_DEP is the non-dependent expression that has been
2343 built. */
2344
2345 tree
2346 build_min_non_dep (enum tree_code code, tree non_dep, ...)
2347 {
2348 tree t;
2349 int length;
2350 int i;
2351 va_list p;
2352
2353 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2354
2355 va_start (p, non_dep);
2356
2357 if (REFERENCE_REF_P (non_dep))
2358 non_dep = TREE_OPERAND (non_dep, 0);
2359
2360 t = make_node (code);
2361 length = TREE_CODE_LENGTH (code);
2362 TREE_TYPE (t) = TREE_TYPE (non_dep);
2363 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2364
2365 for (i = 0; i < length; i++)
2366 {
2367 tree x = va_arg (p, tree);
2368 TREE_OPERAND (t, i) = x;
2369 }
2370
2371 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
2372 /* This should not be considered a COMPOUND_EXPR, because it
2373 resolves to an overload. */
2374 COMPOUND_EXPR_OVERLOADED (t) = 1;
2375
2376 va_end (p);
2377 return convert_from_reference (t);
2378 }
2379
2380 /* Similar to `build_nt_call_vec', but for template definitions of
2381 non-dependent expressions. NON_DEP is the non-dependent expression
2382 that has been built. */
2383
2384 tree
2385 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec)
2386 {
2387 tree t = build_nt_call_vec (fn, argvec);
2388 if (REFERENCE_REF_P (non_dep))
2389 non_dep = TREE_OPERAND (non_dep, 0);
2390 TREE_TYPE (t) = TREE_TYPE (non_dep);
2391 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2392 return convert_from_reference (t);
2393 }
2394
2395 tree
2396 get_type_decl (tree t)
2397 {
2398 if (TREE_CODE (t) == TYPE_DECL)
2399 return t;
2400 if (TYPE_P (t))
2401 return TYPE_STUB_DECL (t);
2402 gcc_assert (t == error_mark_node);
2403 return t;
2404 }
2405
2406 /* Returns the namespace that contains DECL, whether directly or
2407 indirectly. */
2408
2409 tree
2410 decl_namespace_context (tree decl)
2411 {
2412 while (1)
2413 {
2414 if (TREE_CODE (decl) == NAMESPACE_DECL)
2415 return decl;
2416 else if (TYPE_P (decl))
2417 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
2418 else
2419 decl = CP_DECL_CONTEXT (decl);
2420 }
2421 }
2422
2423 /* Returns true if decl is within an anonymous namespace, however deeply
2424 nested, or false otherwise. */
2425
2426 bool
2427 decl_anon_ns_mem_p (const_tree decl)
2428 {
2429 while (1)
2430 {
2431 if (decl == NULL_TREE || decl == error_mark_node)
2432 return false;
2433 if (TREE_CODE (decl) == NAMESPACE_DECL
2434 && DECL_NAME (decl) == NULL_TREE)
2435 return true;
2436 /* Classes and namespaces inside anonymous namespaces have
2437 TREE_PUBLIC == 0, so we can shortcut the search. */
2438 else if (TYPE_P (decl))
2439 return (TREE_PUBLIC (TYPE_MAIN_DECL (decl)) == 0);
2440 else if (TREE_CODE (decl) == NAMESPACE_DECL)
2441 return (TREE_PUBLIC (decl) == 0);
2442 else
2443 decl = DECL_CONTEXT (decl);
2444 }
2445 }
2446
2447 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
2448 CALL_EXPRS. Return whether they are equivalent. */
2449
2450 static bool
2451 called_fns_equal (tree t1, tree t2)
2452 {
2453 /* Core 1321: dependent names are equivalent even if the overload sets
2454 are different. But do compare explicit template arguments. */
2455 tree name1 = dependent_name (t1);
2456 tree name2 = dependent_name (t2);
2457 if (name1 || name2)
2458 {
2459 tree targs1 = NULL_TREE, targs2 = NULL_TREE;
2460
2461 if (name1 != name2)
2462 return false;
2463
2464 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
2465 targs1 = TREE_OPERAND (t1, 1);
2466 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
2467 targs2 = TREE_OPERAND (t2, 1);
2468 return cp_tree_equal (targs1, targs2);
2469 }
2470 else
2471 return cp_tree_equal (t1, t2);
2472 }
2473
2474 /* Return truthvalue of whether T1 is the same tree structure as T2.
2475 Return 1 if they are the same. Return 0 if they are different. */
2476
2477 bool
2478 cp_tree_equal (tree t1, tree t2)
2479 {
2480 enum tree_code code1, code2;
2481
2482 if (t1 == t2)
2483 return true;
2484 if (!t1 || !t2)
2485 return false;
2486
2487 for (code1 = TREE_CODE (t1);
2488 CONVERT_EXPR_CODE_P (code1)
2489 || code1 == NON_LVALUE_EXPR;
2490 code1 = TREE_CODE (t1))
2491 t1 = TREE_OPERAND (t1, 0);
2492 for (code2 = TREE_CODE (t2);
2493 CONVERT_EXPR_CODE_P (code2)
2494 || code2 == NON_LVALUE_EXPR;
2495 code2 = TREE_CODE (t2))
2496 t2 = TREE_OPERAND (t2, 0);
2497
2498 /* They might have become equal now. */
2499 if (t1 == t2)
2500 return true;
2501
2502 if (code1 != code2)
2503 return false;
2504
2505 switch (code1)
2506 {
2507 case INTEGER_CST:
2508 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
2509 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
2510
2511 case REAL_CST:
2512 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
2513
2514 case STRING_CST:
2515 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
2516 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
2517 TREE_STRING_LENGTH (t1));
2518
2519 case FIXED_CST:
2520 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
2521 TREE_FIXED_CST (t2));
2522
2523 case COMPLEX_CST:
2524 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
2525 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
2526
2527 case VECTOR_CST:
2528 return operand_equal_p (t1, t2, OEP_ONLY_CONST);
2529
2530 case CONSTRUCTOR:
2531 /* We need to do this when determining whether or not two
2532 non-type pointer to member function template arguments
2533 are the same. */
2534 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
2535 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
2536 return false;
2537 {
2538 tree field, value;
2539 unsigned int i;
2540 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
2541 {
2542 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
2543 if (!cp_tree_equal (field, elt2->index)
2544 || !cp_tree_equal (value, elt2->value))
2545 return false;
2546 }
2547 }
2548 return true;
2549
2550 case TREE_LIST:
2551 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
2552 return false;
2553 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
2554 return false;
2555 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
2556
2557 case SAVE_EXPR:
2558 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2559
2560 case CALL_EXPR:
2561 {
2562 tree arg1, arg2;
2563 call_expr_arg_iterator iter1, iter2;
2564 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
2565 return false;
2566 for (arg1 = first_call_expr_arg (t1, &iter1),
2567 arg2 = first_call_expr_arg (t2, &iter2);
2568 arg1 && arg2;
2569 arg1 = next_call_expr_arg (&iter1),
2570 arg2 = next_call_expr_arg (&iter2))
2571 if (!cp_tree_equal (arg1, arg2))
2572 return false;
2573 if (arg1 || arg2)
2574 return false;
2575 return true;
2576 }
2577
2578 case TARGET_EXPR:
2579 {
2580 tree o1 = TREE_OPERAND (t1, 0);
2581 tree o2 = TREE_OPERAND (t2, 0);
2582
2583 /* Special case: if either target is an unallocated VAR_DECL,
2584 it means that it's going to be unified with whatever the
2585 TARGET_EXPR is really supposed to initialize, so treat it
2586 as being equivalent to anything. */
2587 if (TREE_CODE (o1) == VAR_DECL && DECL_NAME (o1) == NULL_TREE
2588 && !DECL_RTL_SET_P (o1))
2589 /*Nop*/;
2590 else if (TREE_CODE (o2) == VAR_DECL && DECL_NAME (o2) == NULL_TREE
2591 && !DECL_RTL_SET_P (o2))
2592 /*Nop*/;
2593 else if (!cp_tree_equal (o1, o2))
2594 return false;
2595
2596 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2597 }
2598
2599 case WITH_CLEANUP_EXPR:
2600 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
2601 return false;
2602 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
2603
2604 case COMPONENT_REF:
2605 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
2606 return false;
2607 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2608
2609 case PARM_DECL:
2610 /* For comparing uses of parameters in late-specified return types
2611 with an out-of-class definition of the function, but can also come
2612 up for expressions that involve 'this' in a member function
2613 template. */
2614
2615 if (comparing_specializations)
2616 /* When comparing hash table entries, only an exact match is
2617 good enough; we don't want to replace 'this' with the
2618 version from another function. */
2619 return false;
2620
2621 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
2622 {
2623 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
2624 return false;
2625 if (DECL_ARTIFICIAL (t1)
2626 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
2627 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
2628 return true;
2629 }
2630 return false;
2631
2632 case VAR_DECL:
2633 case CONST_DECL:
2634 case FIELD_DECL:
2635 case FUNCTION_DECL:
2636 case TEMPLATE_DECL:
2637 case IDENTIFIER_NODE:
2638 case SSA_NAME:
2639 return false;
2640
2641 case BASELINK:
2642 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
2643 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
2644 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
2645 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
2646 BASELINK_FUNCTIONS (t2)));
2647
2648 case TEMPLATE_PARM_INDEX:
2649 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
2650 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
2651 && (TEMPLATE_PARM_PARAMETER_PACK (t1)
2652 == TEMPLATE_PARM_PARAMETER_PACK (t2))
2653 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
2654 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
2655
2656 case TEMPLATE_ID_EXPR:
2657 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
2658 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
2659
2660 case TREE_VEC:
2661 {
2662 unsigned ix;
2663 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
2664 return false;
2665 for (ix = TREE_VEC_LENGTH (t1); ix--;)
2666 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
2667 TREE_VEC_ELT (t2, ix)))
2668 return false;
2669 return true;
2670 }
2671
2672 case SIZEOF_EXPR:
2673 case ALIGNOF_EXPR:
2674 {
2675 tree o1 = TREE_OPERAND (t1, 0);
2676 tree o2 = TREE_OPERAND (t2, 0);
2677
2678 if (code1 == SIZEOF_EXPR)
2679 {
2680 if (SIZEOF_EXPR_TYPE_P (t1))
2681 o1 = TREE_TYPE (o1);
2682 if (SIZEOF_EXPR_TYPE_P (t2))
2683 o2 = TREE_TYPE (o2);
2684 }
2685 if (TREE_CODE (o1) != TREE_CODE (o2))
2686 return false;
2687 if (TYPE_P (o1))
2688 return same_type_p (o1, o2);
2689 else
2690 return cp_tree_equal (o1, o2);
2691 }
2692
2693 case MODOP_EXPR:
2694 {
2695 tree t1_op1, t2_op1;
2696
2697 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
2698 return false;
2699
2700 t1_op1 = TREE_OPERAND (t1, 1);
2701 t2_op1 = TREE_OPERAND (t2, 1);
2702 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
2703 return false;
2704
2705 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
2706 }
2707
2708 case PTRMEM_CST:
2709 /* Two pointer-to-members are the same if they point to the same
2710 field or function in the same class. */
2711 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
2712 return false;
2713
2714 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
2715
2716 case OVERLOAD:
2717 if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2))
2718 return false;
2719 return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2));
2720
2721 case TRAIT_EXPR:
2722 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
2723 return false;
2724 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
2725 && same_type_p (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
2726
2727 case CAST_EXPR:
2728 case STATIC_CAST_EXPR:
2729 case REINTERPRET_CAST_EXPR:
2730 case CONST_CAST_EXPR:
2731 case DYNAMIC_CAST_EXPR:
2732 case IMPLICIT_CONV_EXPR:
2733 case NEW_EXPR:
2734 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
2735 return false;
2736 /* Now compare operands as usual. */
2737 break;
2738
2739 case DEFERRED_NOEXCEPT:
2740 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
2741 DEFERRED_NOEXCEPT_PATTERN (t2))
2742 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
2743 DEFERRED_NOEXCEPT_ARGS (t2)));
2744 break;
2745
2746 default:
2747 break;
2748 }
2749
2750 switch (TREE_CODE_CLASS (code1))
2751 {
2752 case tcc_unary:
2753 case tcc_binary:
2754 case tcc_comparison:
2755 case tcc_expression:
2756 case tcc_vl_exp:
2757 case tcc_reference:
2758 case tcc_statement:
2759 {
2760 int i, n;
2761
2762 n = cp_tree_operand_length (t1);
2763 if (TREE_CODE_CLASS (code1) == tcc_vl_exp
2764 && n != TREE_OPERAND_LENGTH (t2))
2765 return false;
2766
2767 for (i = 0; i < n; ++i)
2768 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
2769 return false;
2770
2771 return true;
2772 }
2773
2774 case tcc_type:
2775 return same_type_p (t1, t2);
2776 default:
2777 gcc_unreachable ();
2778 }
2779 /* We can get here with --disable-checking. */
2780 return false;
2781 }
2782
2783 /* The type of ARG when used as an lvalue. */
2784
2785 tree
2786 lvalue_type (tree arg)
2787 {
2788 tree type = TREE_TYPE (arg);
2789 return type;
2790 }
2791
2792 /* The type of ARG for printing error messages; denote lvalues with
2793 reference types. */
2794
2795 tree
2796 error_type (tree arg)
2797 {
2798 tree type = TREE_TYPE (arg);
2799
2800 if (TREE_CODE (type) == ARRAY_TYPE)
2801 ;
2802 else if (TREE_CODE (type) == ERROR_MARK)
2803 ;
2804 else if (real_lvalue_p (arg))
2805 type = build_reference_type (lvalue_type (arg));
2806 else if (MAYBE_CLASS_TYPE_P (type))
2807 type = lvalue_type (arg);
2808
2809 return type;
2810 }
2811
2812 /* Does FUNCTION use a variable-length argument list? */
2813
2814 int
2815 varargs_function_p (const_tree function)
2816 {
2817 return stdarg_p (TREE_TYPE (function));
2818 }
2819
2820 /* Returns 1 if decl is a member of a class. */
2821
2822 int
2823 member_p (const_tree decl)
2824 {
2825 const_tree const ctx = DECL_CONTEXT (decl);
2826 return (ctx && TYPE_P (ctx));
2827 }
2828
2829 /* Create a placeholder for member access where we don't actually have an
2830 object that the access is against. */
2831
2832 tree
2833 build_dummy_object (tree type)
2834 {
2835 tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
2836 return cp_build_indirect_ref (decl, RO_NULL, tf_warning_or_error);
2837 }
2838
2839 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
2840 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
2841 binfo path from current_class_type to TYPE, or 0. */
2842
2843 tree
2844 maybe_dummy_object (tree type, tree* binfop)
2845 {
2846 tree decl, context;
2847 tree binfo;
2848 tree current = current_nonlambda_class_type ();
2849
2850 if (current
2851 && (binfo = lookup_base (current, type, ba_any, NULL,
2852 tf_warning_or_error)))
2853 context = current;
2854 else
2855 {
2856 /* Reference from a nested class member function. */
2857 context = type;
2858 binfo = TYPE_BINFO (type);
2859 }
2860
2861 if (binfop)
2862 *binfop = binfo;
2863
2864 if (current_class_ref
2865 /* current_class_ref might not correspond to current_class_type if
2866 we're in tsubst_default_argument or a lambda-declarator; in either
2867 case, we want to use current_class_ref if it matches CONTEXT. */
2868 && (same_type_ignoring_top_level_qualifiers_p
2869 (TREE_TYPE (current_class_ref), context)))
2870 decl = current_class_ref;
2871 else
2872 decl = build_dummy_object (context);
2873
2874 return decl;
2875 }
2876
2877 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
2878
2879 int
2880 is_dummy_object (const_tree ob)
2881 {
2882 if (TREE_CODE (ob) == INDIRECT_REF)
2883 ob = TREE_OPERAND (ob, 0);
2884 return (TREE_CODE (ob) == NOP_EXPR
2885 && TREE_OPERAND (ob, 0) == void_zero_node);
2886 }
2887
2888 /* Returns 1 iff type T is something we want to treat as a scalar type for
2889 the purpose of deciding whether it is trivial/POD/standard-layout. */
2890
2891 bool
2892 scalarish_type_p (const_tree t)
2893 {
2894 if (t == error_mark_node)
2895 return 1;
2896
2897 return (SCALAR_TYPE_P (t)
2898 || TREE_CODE (t) == VECTOR_TYPE);
2899 }
2900
2901 /* Returns true iff T requires non-trivial default initialization. */
2902
2903 bool
2904 type_has_nontrivial_default_init (const_tree t)
2905 {
2906 t = strip_array_types (CONST_CAST_TREE (t));
2907
2908 if (CLASS_TYPE_P (t))
2909 return TYPE_HAS_COMPLEX_DFLT (t);
2910 else
2911 return 0;
2912 }
2913
2914 /* Returns true iff copying an object of type T (including via move
2915 constructor) is non-trivial. That is, T has no non-trivial copy
2916 constructors and no non-trivial move constructors. */
2917
2918 bool
2919 type_has_nontrivial_copy_init (const_tree t)
2920 {
2921 t = strip_array_types (CONST_CAST_TREE (t));
2922
2923 if (CLASS_TYPE_P (t))
2924 {
2925 gcc_assert (COMPLETE_TYPE_P (t));
2926 return ((TYPE_HAS_COPY_CTOR (t)
2927 && TYPE_HAS_COMPLEX_COPY_CTOR (t))
2928 || TYPE_HAS_COMPLEX_MOVE_CTOR (t));
2929 }
2930 else
2931 return 0;
2932 }
2933
2934 /* Returns 1 iff type T is a trivially copyable type, as defined in
2935 [basic.types] and [class]. */
2936
2937 bool
2938 trivially_copyable_p (const_tree t)
2939 {
2940 t = strip_array_types (CONST_CAST_TREE (t));
2941
2942 if (CLASS_TYPE_P (t))
2943 return ((!TYPE_HAS_COPY_CTOR (t)
2944 || !TYPE_HAS_COMPLEX_COPY_CTOR (t))
2945 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
2946 && (!TYPE_HAS_COPY_ASSIGN (t)
2947 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
2948 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
2949 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
2950 else
2951 return scalarish_type_p (t);
2952 }
2953
2954 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
2955 [class]. */
2956
2957 bool
2958 trivial_type_p (const_tree t)
2959 {
2960 t = strip_array_types (CONST_CAST_TREE (t));
2961
2962 if (CLASS_TYPE_P (t))
2963 return (TYPE_HAS_TRIVIAL_DFLT (t)
2964 && trivially_copyable_p (t));
2965 else
2966 return scalarish_type_p (t);
2967 }
2968
2969 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
2970
2971 bool
2972 pod_type_p (const_tree t)
2973 {
2974 /* This CONST_CAST is okay because strip_array_types returns its
2975 argument unmodified and we assign it to a const_tree. */
2976 t = strip_array_types (CONST_CAST_TREE(t));
2977
2978 if (!CLASS_TYPE_P (t))
2979 return scalarish_type_p (t);
2980 else if (cxx_dialect > cxx98)
2981 /* [class]/10: A POD struct is a class that is both a trivial class and a
2982 standard-layout class, and has no non-static data members of type
2983 non-POD struct, non-POD union (or array of such types).
2984
2985 We don't need to check individual members because if a member is
2986 non-std-layout or non-trivial, the class will be too. */
2987 return (std_layout_type_p (t) && trivial_type_p (t));
2988 else
2989 /* The C++98 definition of POD is different. */
2990 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
2991 }
2992
2993 /* Returns true iff T is POD for the purpose of layout, as defined in the
2994 C++ ABI. */
2995
2996 bool
2997 layout_pod_type_p (const_tree t)
2998 {
2999 t = strip_array_types (CONST_CAST_TREE (t));
3000
3001 if (CLASS_TYPE_P (t))
3002 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3003 else
3004 return scalarish_type_p (t);
3005 }
3006
3007 /* Returns true iff T is a standard-layout type, as defined in
3008 [basic.types]. */
3009
3010 bool
3011 std_layout_type_p (const_tree t)
3012 {
3013 t = strip_array_types (CONST_CAST_TREE (t));
3014
3015 if (CLASS_TYPE_P (t))
3016 return !CLASSTYPE_NON_STD_LAYOUT (t);
3017 else
3018 return scalarish_type_p (t);
3019 }
3020
3021 /* Nonzero iff type T is a class template implicit specialization. */
3022
3023 bool
3024 class_tmpl_impl_spec_p (const_tree t)
3025 {
3026 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
3027 }
3028
3029 /* Returns 1 iff zero initialization of type T means actually storing
3030 zeros in it. */
3031
3032 int
3033 zero_init_p (const_tree t)
3034 {
3035 /* This CONST_CAST is okay because strip_array_types returns its
3036 argument unmodified and we assign it to a const_tree. */
3037 t = strip_array_types (CONST_CAST_TREE(t));
3038
3039 if (t == error_mark_node)
3040 return 1;
3041
3042 /* NULL pointers to data members are initialized with -1. */
3043 if (TYPE_PTRDATAMEM_P (t))
3044 return 0;
3045
3046 /* Classes that contain types that can't be zero-initialized, cannot
3047 be zero-initialized themselves. */
3048 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
3049 return 0;
3050
3051 return 1;
3052 }
3053
3054 /* Table of valid C++ attributes. */
3055 const struct attribute_spec cxx_attribute_table[] =
3056 {
3057 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
3058 affects_type_identity } */
3059 { "java_interface", 0, 0, false, false, false,
3060 handle_java_interface_attribute, false },
3061 { "com_interface", 0, 0, false, false, false,
3062 handle_com_interface_attribute, false },
3063 { "init_priority", 1, 1, true, false, false,
3064 handle_init_priority_attribute, false },
3065 { "abi_tag", 1, -1, false, false, false,
3066 handle_abi_tag_attribute, true },
3067 { NULL, 0, 0, false, false, false, NULL, false }
3068 };
3069
3070 /* Handle a "java_interface" attribute; arguments as in
3071 struct attribute_spec.handler. */
3072 static tree
3073 handle_java_interface_attribute (tree* node,
3074 tree name,
3075 tree /*args*/,
3076 int flags,
3077 bool* no_add_attrs)
3078 {
3079 if (DECL_P (*node)
3080 || !CLASS_TYPE_P (*node)
3081 || !TYPE_FOR_JAVA (*node))
3082 {
3083 error ("%qE attribute can only be applied to Java class definitions",
3084 name);
3085 *no_add_attrs = true;
3086 return NULL_TREE;
3087 }
3088 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
3089 *node = build_variant_type_copy (*node);
3090 TYPE_JAVA_INTERFACE (*node) = 1;
3091
3092 return NULL_TREE;
3093 }
3094
3095 /* Handle a "com_interface" attribute; arguments as in
3096 struct attribute_spec.handler. */
3097 static tree
3098 handle_com_interface_attribute (tree* node,
3099 tree name,
3100 tree /*args*/,
3101 int /*flags*/,
3102 bool* no_add_attrs)
3103 {
3104 static int warned;
3105
3106 *no_add_attrs = true;
3107
3108 if (DECL_P (*node)
3109 || !CLASS_TYPE_P (*node)
3110 || *node != TYPE_MAIN_VARIANT (*node))
3111 {
3112 warning (OPT_Wattributes, "%qE attribute can only be applied "
3113 "to class definitions", name);
3114 return NULL_TREE;
3115 }
3116
3117 if (!warned++)
3118 warning (0, "%qE is obsolete; g++ vtables are now COM-compatible by default",
3119 name);
3120
3121 return NULL_TREE;
3122 }
3123
3124 /* Handle an "init_priority" attribute; arguments as in
3125 struct attribute_spec.handler. */
3126 static tree
3127 handle_init_priority_attribute (tree* node,
3128 tree name,
3129 tree args,
3130 int /*flags*/,
3131 bool* no_add_attrs)
3132 {
3133 tree initp_expr = TREE_VALUE (args);
3134 tree decl = *node;
3135 tree type = TREE_TYPE (decl);
3136 int pri;
3137
3138 STRIP_NOPS (initp_expr);
3139
3140 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
3141 {
3142 error ("requested init_priority is not an integer constant");
3143 *no_add_attrs = true;
3144 return NULL_TREE;
3145 }
3146
3147 pri = TREE_INT_CST_LOW (initp_expr);
3148
3149 type = strip_array_types (type);
3150
3151 if (decl == NULL_TREE
3152 || TREE_CODE (decl) != VAR_DECL
3153 || !TREE_STATIC (decl)
3154 || DECL_EXTERNAL (decl)
3155 || (TREE_CODE (type) != RECORD_TYPE
3156 && TREE_CODE (type) != UNION_TYPE)
3157 /* Static objects in functions are initialized the
3158 first time control passes through that
3159 function. This is not precise enough to pin down an
3160 init_priority value, so don't allow it. */
3161 || current_function_decl)
3162 {
3163 error ("can only use %qE attribute on file-scope definitions "
3164 "of objects of class type", name);
3165 *no_add_attrs = true;
3166 return NULL_TREE;
3167 }
3168
3169 if (pri > MAX_INIT_PRIORITY || pri <= 0)
3170 {
3171 error ("requested init_priority is out of range");
3172 *no_add_attrs = true;
3173 return NULL_TREE;
3174 }
3175
3176 /* Check for init_priorities that are reserved for
3177 language and runtime support implementations.*/
3178 if (pri <= MAX_RESERVED_INIT_PRIORITY)
3179 {
3180 warning
3181 (0, "requested init_priority is reserved for internal use");
3182 }
3183
3184 if (SUPPORTS_INIT_PRIORITY)
3185 {
3186 SET_DECL_INIT_PRIORITY (decl, pri);
3187 DECL_HAS_INIT_PRIORITY_P (decl) = 1;
3188 return NULL_TREE;
3189 }
3190 else
3191 {
3192 error ("%qE attribute is not supported on this platform", name);
3193 *no_add_attrs = true;
3194 return NULL_TREE;
3195 }
3196 }
3197
3198 /* DECL is being redeclared; the old declaration had the abi tags in OLD,
3199 and the new one has the tags in NEW_. Give an error if there are tags
3200 in NEW_ that weren't in OLD. */
3201
3202 bool
3203 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_)
3204 {
3205 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST)
3206 old = TREE_VALUE (old);
3207 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST)
3208 new_ = TREE_VALUE (new_);
3209 bool err = false;
3210 for (const_tree t = new_; t; t = TREE_CHAIN (t))
3211 {
3212 tree str = TREE_VALUE (t);
3213 for (const_tree in = old; in; in = TREE_CHAIN (in))
3214 {
3215 tree ostr = TREE_VALUE (in);
3216 if (cp_tree_equal (str, ostr))
3217 goto found;
3218 }
3219 error ("redeclaration of %qD adds abi tag %E", decl, str);
3220 err = true;
3221 found:;
3222 }
3223 if (err)
3224 {
3225 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here");
3226 return false;
3227 }
3228 return true;
3229 }
3230
3231 /* Handle an "abi_tag" attribute; arguments as in
3232 struct attribute_spec.handler. */
3233
3234 static tree
3235 handle_abi_tag_attribute (tree* node, tree name, tree args,
3236 int flags, bool* no_add_attrs)
3237 {
3238 if (TYPE_P (*node))
3239 {
3240 if (!TAGGED_TYPE_P (*node))
3241 {
3242 error ("%qE attribute applied to non-class, non-enum type %qT",
3243 name, *node);
3244 goto fail;
3245 }
3246 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE))
3247 {
3248 error ("%qE attribute applied to %qT after its definition",
3249 name, *node);
3250 goto fail;
3251 }
3252
3253 tree attributes = TYPE_ATTRIBUTES (*node);
3254 tree decl = TYPE_NAME (*node);
3255
3256 /* Make sure all declarations have the same abi tags. */
3257 if (DECL_SOURCE_LOCATION (decl) != input_location)
3258 {
3259 if (!check_abi_tag_redeclaration (decl,
3260 lookup_attribute ("abi_tag",
3261 attributes),
3262 args))
3263 goto fail;
3264 }
3265 }
3266 else
3267 {
3268 if (TREE_CODE (*node) != FUNCTION_DECL)
3269 {
3270 error ("%qE attribute applied to non-function %qD", name, *node);
3271 goto fail;
3272 }
3273 else if (DECL_LANGUAGE (*node) == lang_c)
3274 {
3275 error ("%qE attribute applied to extern \"C\" function %qD",
3276 name, *node);
3277 goto fail;
3278 }
3279 }
3280
3281 return NULL_TREE;
3282
3283 fail:
3284 *no_add_attrs = true;
3285 return NULL_TREE;
3286 }
3287
3288 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
3289 thing pointed to by the constant. */
3290
3291 tree
3292 make_ptrmem_cst (tree type, tree member)
3293 {
3294 tree ptrmem_cst = make_node (PTRMEM_CST);
3295 TREE_TYPE (ptrmem_cst) = type;
3296 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
3297 return ptrmem_cst;
3298 }
3299
3300 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
3301 return an existing type if an appropriate type already exists. */
3302
3303 tree
3304 cp_build_type_attribute_variant (tree type, tree attributes)
3305 {
3306 tree new_type;
3307
3308 new_type = build_type_attribute_variant (type, attributes);
3309 if (TREE_CODE (new_type) == FUNCTION_TYPE
3310 || TREE_CODE (new_type) == METHOD_TYPE)
3311 new_type = build_exception_variant (new_type,
3312 TYPE_RAISES_EXCEPTIONS (type));
3313
3314 /* Making a new main variant of a class type is broken. */
3315 gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
3316
3317 return new_type;
3318 }
3319
3320 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
3321 Called only after doing all language independent checks. Only
3322 to check TYPE_RAISES_EXCEPTIONS for FUNCTION_TYPE, the rest is already
3323 compared in type_hash_eq. */
3324
3325 bool
3326 cxx_type_hash_eq (const_tree typea, const_tree typeb)
3327 {
3328 gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE
3329 || TREE_CODE (typea) == METHOD_TYPE);
3330
3331 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
3332 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
3333 }
3334
3335 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
3336 traversal. Called from walk_tree. */
3337
3338 tree
3339 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
3340 void *data, struct pointer_set_t *pset)
3341 {
3342 enum tree_code code = TREE_CODE (*tp);
3343 tree result;
3344
3345 #define WALK_SUBTREE(NODE) \
3346 do \
3347 { \
3348 result = cp_walk_tree (&(NODE), func, data, pset); \
3349 if (result) goto out; \
3350 } \
3351 while (0)
3352
3353 /* Not one of the easy cases. We must explicitly go through the
3354 children. */
3355 result = NULL_TREE;
3356 switch (code)
3357 {
3358 case DEFAULT_ARG:
3359 case TEMPLATE_TEMPLATE_PARM:
3360 case BOUND_TEMPLATE_TEMPLATE_PARM:
3361 case UNBOUND_CLASS_TEMPLATE:
3362 case TEMPLATE_PARM_INDEX:
3363 case TEMPLATE_TYPE_PARM:
3364 case TYPENAME_TYPE:
3365 case TYPEOF_TYPE:
3366 case UNDERLYING_TYPE:
3367 /* None of these have subtrees other than those already walked
3368 above. */
3369 *walk_subtrees_p = 0;
3370 break;
3371
3372 case BASELINK:
3373 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
3374 *walk_subtrees_p = 0;
3375 break;
3376
3377 case PTRMEM_CST:
3378 WALK_SUBTREE (TREE_TYPE (*tp));
3379 *walk_subtrees_p = 0;
3380 break;
3381
3382 case TREE_LIST:
3383 WALK_SUBTREE (TREE_PURPOSE (*tp));
3384 break;
3385
3386 case OVERLOAD:
3387 WALK_SUBTREE (OVL_FUNCTION (*tp));
3388 WALK_SUBTREE (OVL_CHAIN (*tp));
3389 *walk_subtrees_p = 0;
3390 break;
3391
3392 case USING_DECL:
3393 WALK_SUBTREE (DECL_NAME (*tp));
3394 WALK_SUBTREE (USING_DECL_SCOPE (*tp));
3395 WALK_SUBTREE (USING_DECL_DECLS (*tp));
3396 *walk_subtrees_p = 0;
3397 break;
3398
3399 case RECORD_TYPE:
3400 if (TYPE_PTRMEMFUNC_P (*tp))
3401 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
3402 break;
3403
3404 case TYPE_ARGUMENT_PACK:
3405 case NONTYPE_ARGUMENT_PACK:
3406 {
3407 tree args = ARGUMENT_PACK_ARGS (*tp);
3408 int i, len = TREE_VEC_LENGTH (args);
3409 for (i = 0; i < len; i++)
3410 WALK_SUBTREE (TREE_VEC_ELT (args, i));
3411 }
3412 break;
3413
3414 case TYPE_PACK_EXPANSION:
3415 WALK_SUBTREE (TREE_TYPE (*tp));
3416 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
3417 *walk_subtrees_p = 0;
3418 break;
3419
3420 case EXPR_PACK_EXPANSION:
3421 WALK_SUBTREE (TREE_OPERAND (*tp, 0));
3422 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
3423 *walk_subtrees_p = 0;
3424 break;
3425
3426 case CAST_EXPR:
3427 case REINTERPRET_CAST_EXPR:
3428 case STATIC_CAST_EXPR:
3429 case CONST_CAST_EXPR:
3430 case DYNAMIC_CAST_EXPR:
3431 case IMPLICIT_CONV_EXPR:
3432 if (TREE_TYPE (*tp))
3433 WALK_SUBTREE (TREE_TYPE (*tp));
3434
3435 {
3436 int i;
3437 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
3438 WALK_SUBTREE (TREE_OPERAND (*tp, i));
3439 }
3440 *walk_subtrees_p = 0;
3441 break;
3442
3443 case TRAIT_EXPR:
3444 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
3445 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
3446 *walk_subtrees_p = 0;
3447 break;
3448
3449 case DECLTYPE_TYPE:
3450 WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp));
3451 *walk_subtrees_p = 0;
3452 break;
3453
3454
3455 default:
3456 return NULL_TREE;
3457 }
3458
3459 /* We didn't find what we were looking for. */
3460 out:
3461 return result;
3462
3463 #undef WALK_SUBTREE
3464 }
3465
3466 /* Like save_expr, but for C++. */
3467
3468 tree
3469 cp_save_expr (tree expr)
3470 {
3471 /* There is no reason to create a SAVE_EXPR within a template; if
3472 needed, we can create the SAVE_EXPR when instantiating the
3473 template. Furthermore, the middle-end cannot handle C++-specific
3474 tree codes. */
3475 if (processing_template_decl)
3476 return expr;
3477 return save_expr (expr);
3478 }
3479
3480 /* Initialize tree.c. */
3481
3482 void
3483 init_tree (void)
3484 {
3485 list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
3486 }
3487
3488 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
3489 is. Note that sfk_none is zero, so this function can be used as a
3490 predicate to test whether or not DECL is a special function. */
3491
3492 special_function_kind
3493 special_function_p (const_tree decl)
3494 {
3495 /* Rather than doing all this stuff with magic names, we should
3496 probably have a field of type `special_function_kind' in
3497 DECL_LANG_SPECIFIC. */
3498 if (DECL_INHERITED_CTOR_BASE (decl))
3499 return sfk_inheriting_constructor;
3500 if (DECL_COPY_CONSTRUCTOR_P (decl))
3501 return sfk_copy_constructor;
3502 if (DECL_MOVE_CONSTRUCTOR_P (decl))
3503 return sfk_move_constructor;
3504 if (DECL_CONSTRUCTOR_P (decl))
3505 return sfk_constructor;
3506 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
3507 {
3508 if (copy_fn_p (decl))
3509 return sfk_copy_assignment;
3510 if (move_fn_p (decl))
3511 return sfk_move_assignment;
3512 }
3513 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
3514 return sfk_destructor;
3515 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
3516 return sfk_complete_destructor;
3517 if (DECL_BASE_DESTRUCTOR_P (decl))
3518 return sfk_base_destructor;
3519 if (DECL_DELETING_DESTRUCTOR_P (decl))
3520 return sfk_deleting_destructor;
3521 if (DECL_CONV_FN_P (decl))
3522 return sfk_conversion;
3523
3524 return sfk_none;
3525 }
3526
3527 /* Returns nonzero if TYPE is a character type, including wchar_t. */
3528
3529 int
3530 char_type_p (tree type)
3531 {
3532 return (same_type_p (type, char_type_node)
3533 || same_type_p (type, unsigned_char_type_node)
3534 || same_type_p (type, signed_char_type_node)
3535 || same_type_p (type, char16_type_node)
3536 || same_type_p (type, char32_type_node)
3537 || same_type_p (type, wchar_type_node));
3538 }
3539
3540 /* Returns the kind of linkage associated with the indicated DECL. Th
3541 value returned is as specified by the language standard; it is
3542 independent of implementation details regarding template
3543 instantiation, etc. For example, it is possible that a declaration
3544 to which this function assigns external linkage would not show up
3545 as a global symbol when you run `nm' on the resulting object file. */
3546
3547 linkage_kind
3548 decl_linkage (tree decl)
3549 {
3550 /* This function doesn't attempt to calculate the linkage from first
3551 principles as given in [basic.link]. Instead, it makes use of
3552 the fact that we have already set TREE_PUBLIC appropriately, and
3553 then handles a few special cases. Ideally, we would calculate
3554 linkage first, and then transform that into a concrete
3555 implementation. */
3556
3557 /* Things that don't have names have no linkage. */
3558 if (!DECL_NAME (decl))
3559 return lk_none;
3560
3561 /* Fields have no linkage. */
3562 if (TREE_CODE (decl) == FIELD_DECL)
3563 return lk_none;
3564
3565 /* Things that are TREE_PUBLIC have external linkage. */
3566 if (TREE_PUBLIC (decl))
3567 return lk_external;
3568
3569 if (TREE_CODE (decl) == NAMESPACE_DECL)
3570 return lk_external;
3571
3572 /* Linkage of a CONST_DECL depends on the linkage of the enumeration
3573 type. */
3574 if (TREE_CODE (decl) == CONST_DECL)
3575 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl)));
3576
3577 /* Some things that are not TREE_PUBLIC have external linkage, too.
3578 For example, on targets that don't have weak symbols, we make all
3579 template instantiations have internal linkage (in the object
3580 file), but the symbols should still be treated as having external
3581 linkage from the point of view of the language. */
3582 if ((TREE_CODE (decl) == FUNCTION_DECL
3583 || TREE_CODE (decl) == VAR_DECL)
3584 && DECL_COMDAT (decl))
3585 return lk_external;
3586
3587 /* Things in local scope do not have linkage, if they don't have
3588 TREE_PUBLIC set. */
3589 if (decl_function_context (decl))
3590 return lk_none;
3591
3592 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but
3593 are considered to have external linkage for language purposes. DECLs
3594 really meant to have internal linkage have DECL_THIS_STATIC set. */
3595 if (TREE_CODE (decl) == TYPE_DECL)
3596 return lk_external;
3597 if (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == FUNCTION_DECL)
3598 {
3599 if (!DECL_THIS_STATIC (decl))
3600 return lk_external;
3601
3602 /* Static data members and static member functions from classes
3603 in anonymous namespace also don't have TREE_PUBLIC set. */
3604 if (DECL_CLASS_CONTEXT (decl))
3605 return lk_external;
3606 }
3607
3608 /* Everything else has internal linkage. */
3609 return lk_internal;
3610 }
3611
3612 /* Returns the storage duration of the object or reference associated with
3613 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
3614
3615 duration_kind
3616 decl_storage_duration (tree decl)
3617 {
3618 if (TREE_CODE (decl) == PARM_DECL)
3619 return dk_auto;
3620 if (TREE_CODE (decl) == FUNCTION_DECL)
3621 return dk_static;
3622 gcc_assert (TREE_CODE (decl) == VAR_DECL);
3623 if (!TREE_STATIC (decl)
3624 && !DECL_EXTERNAL (decl))
3625 return dk_auto;
3626 if (DECL_THREAD_LOCAL_P (decl))
3627 return dk_thread;
3628 return dk_static;
3629 }
3630 \f
3631 /* EXP is an expression that we want to pre-evaluate. Returns (in
3632 *INITP) an expression that will perform the pre-evaluation. The
3633 value returned by this function is a side-effect free expression
3634 equivalent to the pre-evaluated expression. Callers must ensure
3635 that *INITP is evaluated before EXP. */
3636
3637 tree
3638 stabilize_expr (tree exp, tree* initp)
3639 {
3640 tree init_expr;
3641
3642 if (!TREE_SIDE_EFFECTS (exp))
3643 init_expr = NULL_TREE;
3644 else if (VOID_TYPE_P (TREE_TYPE (exp)))
3645 {
3646 init_expr = exp;
3647 exp = void_zero_node;
3648 }
3649 /* There are no expressions with REFERENCE_TYPE, but there can be call
3650 arguments with such a type; just treat it as a pointer. */
3651 else if (TREE_CODE (TREE_TYPE (exp)) == REFERENCE_TYPE
3652 || SCALAR_TYPE_P (TREE_TYPE (exp))
3653 || !lvalue_or_rvalue_with_address_p (exp))
3654 {
3655 init_expr = get_target_expr (exp);
3656 exp = TARGET_EXPR_SLOT (init_expr);
3657 }
3658 else
3659 {
3660 bool xval = !real_lvalue_p (exp);
3661 exp = cp_build_addr_expr (exp, tf_warning_or_error);
3662 init_expr = get_target_expr (exp);
3663 exp = TARGET_EXPR_SLOT (init_expr);
3664 exp = cp_build_indirect_ref (exp, RO_NULL, tf_warning_or_error);
3665 if (xval)
3666 exp = move (exp);
3667 }
3668 *initp = init_expr;
3669
3670 gcc_assert (!TREE_SIDE_EFFECTS (exp));
3671 return exp;
3672 }
3673
3674 /* Add NEW_EXPR, an expression whose value we don't care about, after the
3675 similar expression ORIG. */
3676
3677 tree
3678 add_stmt_to_compound (tree orig, tree new_expr)
3679 {
3680 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
3681 return orig;
3682 if (!orig || !TREE_SIDE_EFFECTS (orig))
3683 return new_expr;
3684 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
3685 }
3686
3687 /* Like stabilize_expr, but for a call whose arguments we want to
3688 pre-evaluate. CALL is modified in place to use the pre-evaluated
3689 arguments, while, upon return, *INITP contains an expression to
3690 compute the arguments. */
3691
3692 void
3693 stabilize_call (tree call, tree *initp)
3694 {
3695 tree inits = NULL_TREE;
3696 int i;
3697 int nargs = call_expr_nargs (call);
3698
3699 if (call == error_mark_node || processing_template_decl)
3700 {
3701 *initp = NULL_TREE;
3702 return;
3703 }
3704
3705 gcc_assert (TREE_CODE (call) == CALL_EXPR);
3706
3707 for (i = 0; i < nargs; i++)
3708 {
3709 tree init;
3710 CALL_EXPR_ARG (call, i) =
3711 stabilize_expr (CALL_EXPR_ARG (call, i), &init);
3712 inits = add_stmt_to_compound (inits, init);
3713 }
3714
3715 *initp = inits;
3716 }
3717
3718 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
3719 to pre-evaluate. CALL is modified in place to use the pre-evaluated
3720 arguments, while, upon return, *INITP contains an expression to
3721 compute the arguments. */
3722
3723 static void
3724 stabilize_aggr_init (tree call, tree *initp)
3725 {
3726 tree inits = NULL_TREE;
3727 int i;
3728 int nargs = aggr_init_expr_nargs (call);
3729
3730 if (call == error_mark_node)
3731 return;
3732
3733 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
3734
3735 for (i = 0; i < nargs; i++)
3736 {
3737 tree init;
3738 AGGR_INIT_EXPR_ARG (call, i) =
3739 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
3740 inits = add_stmt_to_compound (inits, init);
3741 }
3742
3743 *initp = inits;
3744 }
3745
3746 /* Like stabilize_expr, but for an initialization.
3747
3748 If the initialization is for an object of class type, this function
3749 takes care not to introduce additional temporaries.
3750
3751 Returns TRUE iff the expression was successfully pre-evaluated,
3752 i.e., if INIT is now side-effect free, except for, possibly, a
3753 single call to a constructor. */
3754
3755 bool
3756 stabilize_init (tree init, tree *initp)
3757 {
3758 tree t = init;
3759
3760 *initp = NULL_TREE;
3761
3762 if (t == error_mark_node || processing_template_decl)
3763 return true;
3764
3765 if (TREE_CODE (t) == INIT_EXPR)
3766 t = TREE_OPERAND (t, 1);
3767 if (TREE_CODE (t) == TARGET_EXPR)
3768 t = TARGET_EXPR_INITIAL (t);
3769
3770 /* If the RHS can be stabilized without breaking copy elision, stabilize
3771 it. We specifically don't stabilize class prvalues here because that
3772 would mean an extra copy, but they might be stabilized below. */
3773 if (TREE_CODE (init) == INIT_EXPR
3774 && TREE_CODE (t) != CONSTRUCTOR
3775 && TREE_CODE (t) != AGGR_INIT_EXPR
3776 && (SCALAR_TYPE_P (TREE_TYPE (t))
3777 || lvalue_or_rvalue_with_address_p (t)))
3778 {
3779 TREE_OPERAND (init, 1) = stabilize_expr (t, initp);
3780 return true;
3781 }
3782
3783 if (TREE_CODE (t) == COMPOUND_EXPR
3784 && TREE_CODE (init) == INIT_EXPR)
3785 {
3786 tree last = expr_last (t);
3787 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */
3788 if (!TREE_SIDE_EFFECTS (last))
3789 {
3790 *initp = t;
3791 TREE_OPERAND (init, 1) = last;
3792 return true;
3793 }
3794 }
3795
3796 if (TREE_CODE (t) == CONSTRUCTOR)
3797 {
3798 /* Aggregate initialization: stabilize each of the field
3799 initializers. */
3800 unsigned i;
3801 constructor_elt *ce;
3802 bool good = true;
3803 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t);
3804 for (i = 0; vec_safe_iterate (v, i, &ce); ++i)
3805 {
3806 tree type = TREE_TYPE (ce->value);
3807 tree subinit;
3808 if (TREE_CODE (type) == REFERENCE_TYPE
3809 || SCALAR_TYPE_P (type))
3810 ce->value = stabilize_expr (ce->value, &subinit);
3811 else if (!stabilize_init (ce->value, &subinit))
3812 good = false;
3813 *initp = add_stmt_to_compound (*initp, subinit);
3814 }
3815 return good;
3816 }
3817
3818 if (TREE_CODE (t) == CALL_EXPR)
3819 {
3820 stabilize_call (t, initp);
3821 return true;
3822 }
3823
3824 if (TREE_CODE (t) == AGGR_INIT_EXPR)
3825 {
3826 stabilize_aggr_init (t, initp);
3827 return true;
3828 }
3829
3830 /* The initialization is being performed via a bitwise copy -- and
3831 the item copied may have side effects. */
3832 return !TREE_SIDE_EFFECTS (init);
3833 }
3834
3835 /* Like "fold", but should be used whenever we might be processing the
3836 body of a template. */
3837
3838 tree
3839 fold_if_not_in_template (tree expr)
3840 {
3841 /* In the body of a template, there is never any need to call
3842 "fold". We will call fold later when actually instantiating the
3843 template. Integral constant expressions in templates will be
3844 evaluated via fold_non_dependent_expr, as necessary. */
3845 if (processing_template_decl)
3846 return expr;
3847
3848 /* Fold C++ front-end specific tree codes. */
3849 if (TREE_CODE (expr) == UNARY_PLUS_EXPR)
3850 return fold_convert (TREE_TYPE (expr), TREE_OPERAND (expr, 0));
3851
3852 return fold (expr);
3853 }
3854
3855 /* Returns true if a cast to TYPE may appear in an integral constant
3856 expression. */
3857
3858 bool
3859 cast_valid_in_integral_constant_expression_p (tree type)
3860 {
3861 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3862 || cxx_dialect >= cxx0x
3863 || dependent_type_p (type)
3864 || type == error_mark_node);
3865 }
3866
3867 /* Return true if we need to fix linkage information of DECL. */
3868
3869 static bool
3870 cp_fix_function_decl_p (tree decl)
3871 {
3872 /* Skip if DECL is not externally visible. */
3873 if (!TREE_PUBLIC (decl))
3874 return false;
3875
3876 /* We need to fix DECL if it a appears to be exported but with no
3877 function body. Thunks do not have CFGs and we may need to
3878 handle them specially later. */
3879 if (!gimple_has_body_p (decl)
3880 && !DECL_THUNK_P (decl)
3881 && !DECL_EXTERNAL (decl))
3882 {
3883 struct cgraph_node *node = cgraph_get_node (decl);
3884
3885 /* Don't fix same_body aliases. Although they don't have their own
3886 CFG, they share it with what they alias to. */
3887 if (!node || !node->alias
3888 || !vec_safe_length (node->symbol.ref_list.references))
3889 return true;
3890 }
3891
3892 return false;
3893 }
3894
3895 /* Clean the C++ specific parts of the tree T. */
3896
3897 void
3898 cp_free_lang_data (tree t)
3899 {
3900 if (TREE_CODE (t) == METHOD_TYPE
3901 || TREE_CODE (t) == FUNCTION_TYPE)
3902 {
3903 /* Default args are not interesting anymore. */
3904 tree argtypes = TYPE_ARG_TYPES (t);
3905 while (argtypes)
3906 {
3907 TREE_PURPOSE (argtypes) = 0;
3908 argtypes = TREE_CHAIN (argtypes);
3909 }
3910 }
3911 else if (TREE_CODE (t) == FUNCTION_DECL
3912 && cp_fix_function_decl_p (t))
3913 {
3914 /* If T is used in this translation unit at all, the definition
3915 must exist somewhere else since we have decided to not emit it
3916 in this TU. So make it an external reference. */
3917 DECL_EXTERNAL (t) = 1;
3918 TREE_STATIC (t) = 0;
3919 }
3920 if (TREE_CODE (t) == NAMESPACE_DECL)
3921 {
3922 /* The list of users of a namespace isn't useful for the middle-end
3923 or debug generators. */
3924 DECL_NAMESPACE_USERS (t) = NULL_TREE;
3925 /* Neither do we need the leftover chaining of namespaces
3926 from the binding level. */
3927 DECL_CHAIN (t) = NULL_TREE;
3928 }
3929 }
3930
3931 /* Stub for c-common. Please keep in sync with c-decl.c.
3932 FIXME: If address space support is target specific, then this
3933 should be a C target hook. But currently this is not possible,
3934 because this function is called via REGISTER_TARGET_PRAGMAS. */
3935 void
3936 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/)
3937 {
3938 }
3939
3940 /* Return the number of operands in T that we care about for things like
3941 mangling. */
3942
3943 int
3944 cp_tree_operand_length (const_tree t)
3945 {
3946 enum tree_code code = TREE_CODE (t);
3947
3948 switch (code)
3949 {
3950 case PREINCREMENT_EXPR:
3951 case PREDECREMENT_EXPR:
3952 case POSTINCREMENT_EXPR:
3953 case POSTDECREMENT_EXPR:
3954 return 1;
3955
3956 case ARRAY_REF:
3957 return 2;
3958
3959 case EXPR_PACK_EXPANSION:
3960 return 1;
3961
3962 default:
3963 return TREE_OPERAND_LENGTH (t);
3964 }
3965 }
3966
3967 /* Implement -Wzero_as_null_pointer_constant. Return true if the
3968 conditions for the warning hold, false otherwise. */
3969 bool
3970 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc)
3971 {
3972 if (c_inhibit_evaluation_warnings == 0
3973 && !NULLPTR_TYPE_P (TREE_TYPE (expr)))
3974 {
3975 warning_at (loc, OPT_Wzero_as_null_pointer_constant,
3976 "zero as null pointer constant");
3977 return true;
3978 }
3979 return false;
3980 }
3981 \f
3982 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
3983 /* Complain that some language-specific thing hanging off a tree
3984 node has been accessed improperly. */
3985
3986 void
3987 lang_check_failed (const char* file, int line, const char* function)
3988 {
3989 internal_error ("lang_* check: failed in %s, at %s:%d",
3990 function, trim_filename (file), line);
3991 }
3992 #endif /* ENABLE_TREE_CHECKING */
3993
3994 #include "gt-cp-tree.h"