]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/tree.c
PR c++/60364 - noreturn after first decl not diagnosed.
[thirdparty/gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3 Hacked by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tree.h"
25 #include "cp-tree.h"
26 #include "gimple-expr.h"
27 #include "cgraph.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tree-iterator.h"
31 #include "tree-inline.h"
32 #include "debug.h"
33 #include "convert.h"
34 #include "gimplify.h"
35 #include "stringpool.h"
36 #include "attribs.h"
37 #include "flags.h"
38 #include "selftest.h"
39
40 static tree bot_manip (tree *, int *, void *);
41 static tree bot_replace (tree *, int *, void *);
42 static hashval_t list_hash_pieces (tree, tree, tree);
43 static tree build_target_expr (tree, tree, tsubst_flags_t);
44 static tree count_trees_r (tree *, int *, void *);
45 static tree verify_stmt_tree_r (tree *, int *, void *);
46 static tree build_local_temp (tree);
47
48 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
49 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *);
50
51 /* If REF is an lvalue, returns the kind of lvalue that REF is.
52 Otherwise, returns clk_none. */
53
54 cp_lvalue_kind
55 lvalue_kind (const_tree ref)
56 {
57 cp_lvalue_kind op1_lvalue_kind = clk_none;
58 cp_lvalue_kind op2_lvalue_kind = clk_none;
59
60 /* Expressions of reference type are sometimes wrapped in
61 INDIRECT_REFs. INDIRECT_REFs are just internal compiler
62 representation, not part of the language, so we have to look
63 through them. */
64 if (REFERENCE_REF_P (ref))
65 return lvalue_kind (TREE_OPERAND (ref, 0));
66
67 if (TREE_TYPE (ref)
68 && TYPE_REF_P (TREE_TYPE (ref)))
69 {
70 /* unnamed rvalue references are rvalues */
71 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
72 && TREE_CODE (ref) != PARM_DECL
73 && !VAR_P (ref)
74 && TREE_CODE (ref) != COMPONENT_REF
75 /* Functions are always lvalues. */
76 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
77 return clk_rvalueref;
78
79 /* lvalue references and named rvalue references are lvalues. */
80 return clk_ordinary;
81 }
82
83 if (ref == current_class_ptr)
84 return clk_none;
85
86 /* Expressions with cv void type are prvalues. */
87 if (TREE_TYPE (ref) && VOID_TYPE_P (TREE_TYPE (ref)))
88 return clk_none;
89
90 switch (TREE_CODE (ref))
91 {
92 case SAVE_EXPR:
93 return clk_none;
94
95 /* preincrements and predecrements are valid lvals, provided
96 what they refer to are valid lvals. */
97 case PREINCREMENT_EXPR:
98 case PREDECREMENT_EXPR:
99 case TRY_CATCH_EXPR:
100 case REALPART_EXPR:
101 case IMAGPART_EXPR:
102 case VIEW_CONVERT_EXPR:
103 return lvalue_kind (TREE_OPERAND (ref, 0));
104
105 case ARRAY_REF:
106 {
107 tree op1 = TREE_OPERAND (ref, 0);
108 if (TREE_CODE (TREE_TYPE (op1)) == ARRAY_TYPE)
109 {
110 op1_lvalue_kind = lvalue_kind (op1);
111 if (op1_lvalue_kind == clk_class)
112 /* in the case of an array operand, the result is an lvalue if
113 that operand is an lvalue and an xvalue otherwise */
114 op1_lvalue_kind = clk_rvalueref;
115 return op1_lvalue_kind;
116 }
117 else
118 return clk_ordinary;
119 }
120
121 case MEMBER_REF:
122 case DOTSTAR_EXPR:
123 if (TREE_CODE (ref) == MEMBER_REF)
124 op1_lvalue_kind = clk_ordinary;
125 else
126 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
127 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (ref, 1))))
128 op1_lvalue_kind = clk_none;
129 else if (op1_lvalue_kind == clk_class)
130 /* The result of a .* expression whose second operand is a pointer to a
131 data member is an lvalue if the first operand is an lvalue and an
132 xvalue otherwise. */
133 op1_lvalue_kind = clk_rvalueref;
134 return op1_lvalue_kind;
135
136 case COMPONENT_REF:
137 if (BASELINK_P (TREE_OPERAND (ref, 1)))
138 {
139 tree fn = BASELINK_FUNCTIONS (TREE_OPERAND (ref, 1));
140
141 /* For static member function recurse on the BASELINK, we can get
142 here e.g. from reference_binding. If BASELINK_FUNCTIONS is
143 OVERLOAD, the overload is resolved first if possible through
144 resolve_address_of_overloaded_function. */
145 if (TREE_CODE (fn) == FUNCTION_DECL && DECL_STATIC_FUNCTION_P (fn))
146 return lvalue_kind (TREE_OPERAND (ref, 1));
147 }
148 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
149 if (op1_lvalue_kind == clk_class)
150 /* If E1 is an lvalue, then E1.E2 is an lvalue;
151 otherwise E1.E2 is an xvalue. */
152 op1_lvalue_kind = clk_rvalueref;
153
154 /* Look at the member designator. */
155 if (!op1_lvalue_kind)
156 ;
157 else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
158 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
159 situations. If we're seeing a COMPONENT_REF, it's a non-static
160 member, so it isn't an lvalue. */
161 op1_lvalue_kind = clk_none;
162 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
163 /* This can be IDENTIFIER_NODE in a template. */;
164 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
165 {
166 /* Clear the ordinary bit. If this object was a class
167 rvalue we want to preserve that information. */
168 op1_lvalue_kind &= ~clk_ordinary;
169 /* The lvalue is for a bitfield. */
170 op1_lvalue_kind |= clk_bitfield;
171 }
172 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
173 op1_lvalue_kind |= clk_packed;
174
175 return op1_lvalue_kind;
176
177 case STRING_CST:
178 case COMPOUND_LITERAL_EXPR:
179 return clk_ordinary;
180
181 case CONST_DECL:
182 /* CONST_DECL without TREE_STATIC are enumeration values and
183 thus not lvalues. With TREE_STATIC they are used by ObjC++
184 in objc_build_string_object and need to be considered as
185 lvalues. */
186 if (! TREE_STATIC (ref))
187 return clk_none;
188 /* FALLTHRU */
189 case VAR_DECL:
190 if (VAR_P (ref) && DECL_HAS_VALUE_EXPR_P (ref))
191 return lvalue_kind (DECL_VALUE_EXPR (CONST_CAST_TREE (ref)));
192
193 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
194 && DECL_LANG_SPECIFIC (ref)
195 && DECL_IN_AGGR_P (ref))
196 return clk_none;
197 /* FALLTHRU */
198 case INDIRECT_REF:
199 case ARROW_EXPR:
200 case PARM_DECL:
201 case RESULT_DECL:
202 case PLACEHOLDER_EXPR:
203 return clk_ordinary;
204
205 /* A scope ref in a template, left as SCOPE_REF to support later
206 access checking. */
207 case SCOPE_REF:
208 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
209 {
210 tree op = TREE_OPERAND (ref, 1);
211 if (TREE_CODE (op) == FIELD_DECL)
212 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary);
213 else
214 return lvalue_kind (op);
215 }
216
217 case MAX_EXPR:
218 case MIN_EXPR:
219 /* Disallow <? and >? as lvalues if either argument side-effects. */
220 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
221 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
222 return clk_none;
223 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
224 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
225 break;
226
227 case COND_EXPR:
228 if (processing_template_decl)
229 {
230 /* Within templates, a REFERENCE_TYPE will indicate whether
231 the COND_EXPR result is an ordinary lvalue or rvalueref.
232 Since REFERENCE_TYPEs are handled above, if we reach this
233 point, we know we got a plain rvalue. Unless we have a
234 type-dependent expr, that is, but we shouldn't be testing
235 lvalueness if we can't even tell the types yet! */
236 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
237 goto default_;
238 }
239 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
240 ? TREE_OPERAND (ref, 1)
241 : TREE_OPERAND (ref, 0));
242 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
243 break;
244
245 case MODOP_EXPR:
246 /* We expect to see unlowered MODOP_EXPRs only during
247 template processing. */
248 gcc_assert (processing_template_decl);
249 return clk_ordinary;
250
251 case MODIFY_EXPR:
252 case TYPEID_EXPR:
253 return clk_ordinary;
254
255 case COMPOUND_EXPR:
256 return lvalue_kind (TREE_OPERAND (ref, 1));
257
258 case TARGET_EXPR:
259 return clk_class;
260
261 case VA_ARG_EXPR:
262 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
263
264 case CALL_EXPR:
265 /* We can see calls outside of TARGET_EXPR in templates. */
266 if (CLASS_TYPE_P (TREE_TYPE (ref)))
267 return clk_class;
268 return clk_none;
269
270 case FUNCTION_DECL:
271 /* All functions (except non-static-member functions) are
272 lvalues. */
273 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
274 ? clk_none : clk_ordinary);
275
276 case BASELINK:
277 /* We now represent a reference to a single static member function
278 with a BASELINK. */
279 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
280 its argument unmodified and we assign it to a const_tree. */
281 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
282
283 case NON_DEPENDENT_EXPR:
284 case PAREN_EXPR:
285 return lvalue_kind (TREE_OPERAND (ref, 0));
286
287 case TEMPLATE_PARM_INDEX:
288 if (CLASS_TYPE_P (TREE_TYPE (ref)))
289 /* A template parameter object is an lvalue. */
290 return clk_ordinary;
291 return clk_none;
292
293 default:
294 default_:
295 if (!TREE_TYPE (ref))
296 return clk_none;
297 if (CLASS_TYPE_P (TREE_TYPE (ref))
298 || TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE)
299 return clk_class;
300 return clk_none;
301 }
302
303 /* If one operand is not an lvalue at all, then this expression is
304 not an lvalue. */
305 if (!op1_lvalue_kind || !op2_lvalue_kind)
306 return clk_none;
307
308 /* Otherwise, it's an lvalue, and it has all the odd properties
309 contributed by either operand. */
310 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
311 /* It's not an ordinary lvalue if it involves any other kind. */
312 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
313 op1_lvalue_kind &= ~clk_ordinary;
314 /* It can't be both a pseudo-lvalue and a non-addressable lvalue.
315 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
316 if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
317 && (op1_lvalue_kind & (clk_bitfield|clk_packed)))
318 op1_lvalue_kind = clk_none;
319 return op1_lvalue_kind;
320 }
321
322 /* Returns the kind of lvalue that REF is, in the sense of [basic.lval]. */
323
324 cp_lvalue_kind
325 real_lvalue_p (const_tree ref)
326 {
327 cp_lvalue_kind kind = lvalue_kind (ref);
328 if (kind & (clk_rvalueref|clk_class))
329 return clk_none;
330 else
331 return kind;
332 }
333
334 /* c-common wants us to return bool. */
335
336 bool
337 lvalue_p (const_tree t)
338 {
339 return real_lvalue_p (t);
340 }
341
342 /* This differs from lvalue_p in that xvalues are included. */
343
344 bool
345 glvalue_p (const_tree ref)
346 {
347 cp_lvalue_kind kind = lvalue_kind (ref);
348 if (kind & clk_class)
349 return false;
350 else
351 return (kind != clk_none);
352 }
353
354 /* This differs from glvalue_p in that class prvalues are included. */
355
356 bool
357 obvalue_p (const_tree ref)
358 {
359 return (lvalue_kind (ref) != clk_none);
360 }
361
362 /* Returns true if REF is an xvalue (the result of dereferencing an rvalue
363 reference), false otherwise. */
364
365 bool
366 xvalue_p (const_tree ref)
367 {
368 return (lvalue_kind (ref) == clk_rvalueref);
369 }
370
371 /* True if REF is a bit-field. */
372
373 bool
374 bitfield_p (const_tree ref)
375 {
376 return (lvalue_kind (ref) & clk_bitfield);
377 }
378
379 /* C++-specific version of stabilize_reference. */
380
381 tree
382 cp_stabilize_reference (tree ref)
383 {
384 STRIP_ANY_LOCATION_WRAPPER (ref);
385 switch (TREE_CODE (ref))
386 {
387 case NON_DEPENDENT_EXPR:
388 /* We aren't actually evaluating this. */
389 return ref;
390
391 /* We need to treat specially anything stabilize_reference doesn't
392 handle specifically. */
393 case VAR_DECL:
394 case PARM_DECL:
395 case RESULT_DECL:
396 CASE_CONVERT:
397 case FLOAT_EXPR:
398 case FIX_TRUNC_EXPR:
399 case INDIRECT_REF:
400 case COMPONENT_REF:
401 case BIT_FIELD_REF:
402 case ARRAY_REF:
403 case ARRAY_RANGE_REF:
404 case ERROR_MARK:
405 break;
406 default:
407 cp_lvalue_kind kind = lvalue_kind (ref);
408 if ((kind & ~clk_class) != clk_none)
409 {
410 tree type = unlowered_expr_type (ref);
411 bool rval = !!(kind & clk_rvalueref);
412 type = cp_build_reference_type (type, rval);
413 /* This inhibits warnings in, eg, cxx_mark_addressable
414 (c++/60955). */
415 warning_sentinel s (extra_warnings);
416 ref = build_static_cast (type, ref, tf_error);
417 }
418 }
419
420 return stabilize_reference (ref);
421 }
422
423 /* Test whether DECL is a builtin that may appear in a
424 constant-expression. */
425
426 bool
427 builtin_valid_in_constant_expr_p (const_tree decl)
428 {
429 STRIP_ANY_LOCATION_WRAPPER (decl);
430 if (TREE_CODE (decl) != FUNCTION_DECL)
431 /* Not a function. */
432 return false;
433 if (DECL_BUILT_IN_CLASS (decl) != BUILT_IN_NORMAL)
434 {
435 if (fndecl_built_in_p (decl, CP_BUILT_IN_IS_CONSTANT_EVALUATED,
436 BUILT_IN_FRONTEND))
437 return true;
438 /* Not a built-in. */
439 return false;
440 }
441 switch (DECL_FUNCTION_CODE (decl))
442 {
443 /* These always have constant results like the corresponding
444 macros/symbol. */
445 case BUILT_IN_FILE:
446 case BUILT_IN_FUNCTION:
447 case BUILT_IN_LINE:
448
449 /* The following built-ins are valid in constant expressions
450 when their arguments are. */
451 case BUILT_IN_ADD_OVERFLOW_P:
452 case BUILT_IN_SUB_OVERFLOW_P:
453 case BUILT_IN_MUL_OVERFLOW_P:
454
455 /* These have constant results even if their operands are
456 non-constant. */
457 case BUILT_IN_CONSTANT_P:
458 case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE:
459 return true;
460 default:
461 return false;
462 }
463 }
464
465 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
466
467 static tree
468 build_target_expr (tree decl, tree value, tsubst_flags_t complain)
469 {
470 tree t;
471 tree type = TREE_TYPE (decl);
472
473 value = mark_rvalue_use (value);
474
475 gcc_checking_assert (VOID_TYPE_P (TREE_TYPE (value))
476 || TREE_TYPE (decl) == TREE_TYPE (value)
477 /* On ARM ctors return 'this'. */
478 || (TYPE_PTR_P (TREE_TYPE (value))
479 && TREE_CODE (value) == CALL_EXPR)
480 || useless_type_conversion_p (TREE_TYPE (decl),
481 TREE_TYPE (value)));
482
483 /* Set TREE_READONLY for optimization, such as gimplify_init_constructor
484 moving a constant aggregate into .rodata. */
485 if (CP_TYPE_CONST_NON_VOLATILE_P (type)
486 && !TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
487 && !VOID_TYPE_P (TREE_TYPE (value))
488 && reduced_constant_expression_p (value))
489 TREE_READONLY (decl) = true;
490
491 if (complain & tf_no_cleanup)
492 /* The caller is building a new-expr and does not need a cleanup. */
493 t = NULL_TREE;
494 else
495 {
496 t = cxx_maybe_build_cleanup (decl, complain);
497 if (t == error_mark_node)
498 return error_mark_node;
499 }
500 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
501 if (location_t eloc = cp_expr_location (value))
502 SET_EXPR_LOCATION (t, eloc);
503 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
504 ignore the TARGET_EXPR. If there really turn out to be no
505 side-effects, then the optimizer should be able to get rid of
506 whatever code is generated anyhow. */
507 TREE_SIDE_EFFECTS (t) = 1;
508
509 return t;
510 }
511
512 /* Return an undeclared local temporary of type TYPE for use in building a
513 TARGET_EXPR. */
514
515 static tree
516 build_local_temp (tree type)
517 {
518 tree slot = build_decl (input_location,
519 VAR_DECL, NULL_TREE, type);
520 DECL_ARTIFICIAL (slot) = 1;
521 DECL_IGNORED_P (slot) = 1;
522 DECL_CONTEXT (slot) = current_function_decl;
523 layout_decl (slot, 0);
524 return slot;
525 }
526
527 /* Set various status flags when building an AGGR_INIT_EXPR object T. */
528
529 static void
530 process_aggr_init_operands (tree t)
531 {
532 bool side_effects;
533
534 side_effects = TREE_SIDE_EFFECTS (t);
535 if (!side_effects)
536 {
537 int i, n;
538 n = TREE_OPERAND_LENGTH (t);
539 for (i = 1; i < n; i++)
540 {
541 tree op = TREE_OPERAND (t, i);
542 if (op && TREE_SIDE_EFFECTS (op))
543 {
544 side_effects = 1;
545 break;
546 }
547 }
548 }
549 TREE_SIDE_EFFECTS (t) = side_effects;
550 }
551
552 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
553 FN, and SLOT. NARGS is the number of call arguments which are specified
554 as a tree array ARGS. */
555
556 static tree
557 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
558 tree *args)
559 {
560 tree t;
561 int i;
562
563 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
564 TREE_TYPE (t) = return_type;
565 AGGR_INIT_EXPR_FN (t) = fn;
566 AGGR_INIT_EXPR_SLOT (t) = slot;
567 for (i = 0; i < nargs; i++)
568 AGGR_INIT_EXPR_ARG (t, i) = args[i];
569 process_aggr_init_operands (t);
570 return t;
571 }
572
573 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
574 target. TYPE is the type to be initialized.
575
576 Build an AGGR_INIT_EXPR to represent the initialization. This function
577 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
578 to initialize another object, whereas a TARGET_EXPR can either
579 initialize another object or create its own temporary object, and as a
580 result building up a TARGET_EXPR requires that the type's destructor be
581 callable. */
582
583 tree
584 build_aggr_init_expr (tree type, tree init)
585 {
586 tree fn;
587 tree slot;
588 tree rval;
589 int is_ctor;
590
591 gcc_assert (!VOID_TYPE_P (type));
592
593 /* Don't build AGGR_INIT_EXPR in a template. */
594 if (processing_template_decl)
595 return init;
596
597 fn = cp_get_callee (init);
598 if (fn == NULL_TREE)
599 return convert (type, init);
600
601 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
602 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
603 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
604
605 /* We split the CALL_EXPR into its function and its arguments here.
606 Then, in expand_expr, we put them back together. The reason for
607 this is that this expression might be a default argument
608 expression. In that case, we need a new temporary every time the
609 expression is used. That's what break_out_target_exprs does; it
610 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
611 temporary slot. Then, expand_expr builds up a call-expression
612 using the new slot. */
613
614 /* If we don't need to use a constructor to create an object of this
615 type, don't mess with AGGR_INIT_EXPR. */
616 if (is_ctor || TREE_ADDRESSABLE (type))
617 {
618 slot = build_local_temp (type);
619
620 if (TREE_CODE (init) == CALL_EXPR)
621 {
622 rval = build_aggr_init_array (void_type_node, fn, slot,
623 call_expr_nargs (init),
624 CALL_EXPR_ARGP (init));
625 AGGR_INIT_FROM_THUNK_P (rval)
626 = CALL_FROM_THUNK_P (init);
627 }
628 else
629 {
630 rval = build_aggr_init_array (void_type_node, fn, slot,
631 aggr_init_expr_nargs (init),
632 AGGR_INIT_EXPR_ARGP (init));
633 AGGR_INIT_FROM_THUNK_P (rval)
634 = AGGR_INIT_FROM_THUNK_P (init);
635 }
636 TREE_SIDE_EFFECTS (rval) = 1;
637 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
638 TREE_NOTHROW (rval) = TREE_NOTHROW (init);
639 CALL_EXPR_OPERATOR_SYNTAX (rval) = CALL_EXPR_OPERATOR_SYNTAX (init);
640 CALL_EXPR_ORDERED_ARGS (rval) = CALL_EXPR_ORDERED_ARGS (init);
641 CALL_EXPR_REVERSE_ARGS (rval) = CALL_EXPR_REVERSE_ARGS (init);
642 }
643 else
644 rval = init;
645
646 return rval;
647 }
648
649 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
650 target. TYPE is the type that this initialization should appear to
651 have.
652
653 Build an encapsulation of the initialization to perform
654 and return it so that it can be processed by language-independent
655 and language-specific expression expanders. */
656
657 tree
658 build_cplus_new (tree type, tree init, tsubst_flags_t complain)
659 {
660 tree rval = build_aggr_init_expr (type, init);
661 tree slot;
662
663 if (init == error_mark_node)
664 return error_mark_node;
665
666 if (!complete_type_or_maybe_complain (type, init, complain))
667 return error_mark_node;
668
669 /* Make sure that we're not trying to create an instance of an
670 abstract class. */
671 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
672 return error_mark_node;
673
674 if (TREE_CODE (rval) == AGGR_INIT_EXPR)
675 slot = AGGR_INIT_EXPR_SLOT (rval);
676 else if (TREE_CODE (rval) == CALL_EXPR
677 || TREE_CODE (rval) == CONSTRUCTOR)
678 slot = build_local_temp (type);
679 else
680 return rval;
681
682 rval = build_target_expr (slot, rval, complain);
683
684 if (rval != error_mark_node)
685 TARGET_EXPR_IMPLICIT_P (rval) = 1;
686
687 return rval;
688 }
689
690 /* Subroutine of build_vec_init_expr: Build up a single element
691 intialization as a proxy for the full array initialization to get things
692 marked as used and any appropriate diagnostics.
693
694 Since we're deferring building the actual constructor calls until
695 gimplification time, we need to build one now and throw it away so
696 that the relevant constructor gets mark_used before cgraph decides
697 what functions are needed. Here we assume that init is either
698 NULL_TREE, void_type_node (indicating value-initialization), or
699 another array to copy. */
700
701 static tree
702 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
703 {
704 tree inner_type = strip_array_types (type);
705
706 if (integer_zerop (array_type_nelts_total (type))
707 || !CLASS_TYPE_P (inner_type))
708 /* No interesting initialization to do. */
709 return integer_zero_node;
710 else if (init == void_type_node)
711 return build_value_init (inner_type, complain);
712
713 gcc_assert (init == NULL_TREE
714 || (same_type_ignoring_top_level_qualifiers_p
715 (type, TREE_TYPE (init))));
716
717 releasing_vec argvec;
718 if (init)
719 {
720 tree init_type = strip_array_types (TREE_TYPE (init));
721 tree dummy = build_dummy_object (init_type);
722 if (!lvalue_p (init))
723 dummy = move (dummy);
724 argvec->quick_push (dummy);
725 }
726 init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
727 &argvec, inner_type, LOOKUP_NORMAL,
728 complain);
729
730 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
731 we don't want one here because we aren't creating a temporary. */
732 if (TREE_CODE (init) == TARGET_EXPR)
733 init = TARGET_EXPR_INITIAL (init);
734
735 return init;
736 }
737
738 /* Return a TARGET_EXPR which expresses the initialization of an array to
739 be named later, either default-initialization or copy-initialization
740 from another array of the same type. */
741
742 tree
743 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
744 {
745 tree slot;
746 bool value_init = false;
747 tree elt_init = build_vec_init_elt (type, init, complain);
748
749 if (init == void_type_node)
750 {
751 value_init = true;
752 init = NULL_TREE;
753 }
754
755 slot = build_local_temp (type);
756 init = build2 (VEC_INIT_EXPR, type, slot, init);
757 TREE_SIDE_EFFECTS (init) = true;
758 SET_EXPR_LOCATION (init, input_location);
759
760 if (cxx_dialect >= cxx11
761 && potential_constant_expression (elt_init))
762 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
763 VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
764
765 return init;
766 }
767
768 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
769 that requires a constant expression. */
770
771 void
772 diagnose_non_constexpr_vec_init (tree expr)
773 {
774 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
775 tree init, elt_init;
776 if (VEC_INIT_EXPR_VALUE_INIT (expr))
777 init = void_type_node;
778 else
779 init = VEC_INIT_EXPR_INIT (expr);
780
781 elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
782 require_potential_constant_expression (elt_init);
783 }
784
785 tree
786 build_array_copy (tree init)
787 {
788 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
789 }
790
791 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
792 indicated TYPE. */
793
794 tree
795 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
796 {
797 gcc_assert (!VOID_TYPE_P (type));
798
799 if (TREE_CODE (init) == TARGET_EXPR
800 || init == error_mark_node)
801 return init;
802 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
803 && !VOID_TYPE_P (TREE_TYPE (init))
804 && TREE_CODE (init) != COND_EXPR
805 && TREE_CODE (init) != CONSTRUCTOR
806 && TREE_CODE (init) != VA_ARG_EXPR)
807 /* We need to build up a copy constructor call. A void initializer
808 means we're being called from bot_manip. COND_EXPR is a special
809 case because we already have copies on the arms and we don't want
810 another one here. A CONSTRUCTOR is aggregate initialization, which
811 is handled separately. A VA_ARG_EXPR is magic creation of an
812 aggregate; there's no additional work to be done. */
813 return force_rvalue (init, complain);
814
815 return force_target_expr (type, init, complain);
816 }
817
818 /* Like the above function, but without the checking. This function should
819 only be used by code which is deliberately trying to subvert the type
820 system, such as call_builtin_trap. Or build_over_call, to avoid
821 infinite recursion. */
822
823 tree
824 force_target_expr (tree type, tree init, tsubst_flags_t complain)
825 {
826 tree slot;
827
828 gcc_assert (!VOID_TYPE_P (type));
829
830 slot = build_local_temp (type);
831 return build_target_expr (slot, init, complain);
832 }
833
834 /* Like build_target_expr_with_type, but use the type of INIT. */
835
836 tree
837 get_target_expr_sfinae (tree init, tsubst_flags_t complain)
838 {
839 if (TREE_CODE (init) == AGGR_INIT_EXPR)
840 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
841 else if (TREE_CODE (init) == VEC_INIT_EXPR)
842 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
843 else
844 {
845 init = convert_bitfield_to_declared_type (init);
846 return build_target_expr_with_type (init, TREE_TYPE (init), complain);
847 }
848 }
849
850 tree
851 get_target_expr (tree init)
852 {
853 return get_target_expr_sfinae (init, tf_warning_or_error);
854 }
855
856 /* If EXPR is a bitfield reference, convert it to the declared type of
857 the bitfield, and return the resulting expression. Otherwise,
858 return EXPR itself. */
859
860 tree
861 convert_bitfield_to_declared_type (tree expr)
862 {
863 tree bitfield_type;
864
865 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
866 if (bitfield_type)
867 expr = convert_to_integer_nofold (TYPE_MAIN_VARIANT (bitfield_type),
868 expr);
869 return expr;
870 }
871
872 /* EXPR is being used in an rvalue context. Return a version of EXPR
873 that is marked as an rvalue. */
874
875 tree
876 rvalue (tree expr)
877 {
878 tree type;
879
880 if (error_operand_p (expr))
881 return expr;
882
883 expr = mark_rvalue_use (expr);
884
885 /* [basic.lval]
886
887 Non-class rvalues always have cv-unqualified types. */
888 type = TREE_TYPE (expr);
889 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
890 type = cv_unqualified (type);
891
892 /* We need to do this for rvalue refs as well to get the right answer
893 from decltype; see c++/36628. */
894 if (!processing_template_decl && glvalue_p (expr))
895 expr = build1 (NON_LVALUE_EXPR, type, expr);
896 else if (type != TREE_TYPE (expr))
897 expr = build_nop (type, expr);
898
899 return expr;
900 }
901
902 \f
903 struct cplus_array_info
904 {
905 tree type;
906 tree domain;
907 };
908
909 struct cplus_array_hasher : ggc_ptr_hash<tree_node>
910 {
911 typedef cplus_array_info *compare_type;
912
913 static hashval_t hash (tree t);
914 static bool equal (tree, cplus_array_info *);
915 };
916
917 /* Hash an ARRAY_TYPE. K is really of type `tree'. */
918
919 hashval_t
920 cplus_array_hasher::hash (tree t)
921 {
922 hashval_t hash;
923
924 hash = TYPE_UID (TREE_TYPE (t));
925 if (TYPE_DOMAIN (t))
926 hash ^= TYPE_UID (TYPE_DOMAIN (t));
927 return hash;
928 }
929
930 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
931 of type `cplus_array_info*'. */
932
933 bool
934 cplus_array_hasher::equal (tree t1, cplus_array_info *t2)
935 {
936 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
937 }
938
939 /* Hash table containing dependent array types, which are unsuitable for
940 the language-independent type hash table. */
941 static GTY (()) hash_table<cplus_array_hasher> *cplus_array_htab;
942
943 /* Build an ARRAY_TYPE without laying it out. */
944
945 static tree
946 build_min_array_type (tree elt_type, tree index_type)
947 {
948 tree t = cxx_make_type (ARRAY_TYPE);
949 TREE_TYPE (t) = elt_type;
950 TYPE_DOMAIN (t) = index_type;
951 return t;
952 }
953
954 /* Set TYPE_CANONICAL like build_array_type_1, but using
955 build_cplus_array_type. */
956
957 static void
958 set_array_type_canon (tree t, tree elt_type, tree index_type)
959 {
960 /* Set the canonical type for this new node. */
961 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
962 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
963 SET_TYPE_STRUCTURAL_EQUALITY (t);
964 else if (TYPE_CANONICAL (elt_type) != elt_type
965 || (index_type && TYPE_CANONICAL (index_type) != index_type))
966 TYPE_CANONICAL (t)
967 = build_cplus_array_type (TYPE_CANONICAL (elt_type),
968 index_type
969 ? TYPE_CANONICAL (index_type) : index_type);
970 else
971 TYPE_CANONICAL (t) = t;
972 }
973
974 /* Like build_array_type, but handle special C++ semantics: an array of a
975 variant element type is a variant of the array of the main variant of
976 the element type. */
977
978 tree
979 build_cplus_array_type (tree elt_type, tree index_type)
980 {
981 tree t;
982
983 if (elt_type == error_mark_node || index_type == error_mark_node)
984 return error_mark_node;
985
986 bool dependent = (uses_template_parms (elt_type)
987 || (index_type && uses_template_parms (index_type)));
988
989 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
990 /* Start with an array of the TYPE_MAIN_VARIANT. */
991 t = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
992 index_type);
993 else if (dependent)
994 {
995 /* Since type_hash_canon calls layout_type, we need to use our own
996 hash table. */
997 cplus_array_info cai;
998 hashval_t hash;
999
1000 if (cplus_array_htab == NULL)
1001 cplus_array_htab = hash_table<cplus_array_hasher>::create_ggc (61);
1002
1003 hash = TYPE_UID (elt_type);
1004 if (index_type)
1005 hash ^= TYPE_UID (index_type);
1006 cai.type = elt_type;
1007 cai.domain = index_type;
1008
1009 tree *e = cplus_array_htab->find_slot_with_hash (&cai, hash, INSERT);
1010 if (*e)
1011 /* We have found the type: we're done. */
1012 return (tree) *e;
1013 else
1014 {
1015 /* Build a new array type. */
1016 t = build_min_array_type (elt_type, index_type);
1017
1018 /* Store it in the hash table. */
1019 *e = t;
1020
1021 /* Set the canonical type for this new node. */
1022 set_array_type_canon (t, elt_type, index_type);
1023 }
1024 }
1025 else
1026 {
1027 bool typeless_storage
1028 = (elt_type == unsigned_char_type_node
1029 || elt_type == signed_char_type_node
1030 || elt_type == char_type_node
1031 || (TREE_CODE (elt_type) == ENUMERAL_TYPE
1032 && TYPE_CONTEXT (elt_type) == std_node
1033 && !strcmp ("byte", TYPE_NAME_STRING (elt_type))));
1034 t = build_array_type (elt_type, index_type, typeless_storage);
1035 }
1036
1037 /* Now check whether we already have this array variant. */
1038 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
1039 {
1040 tree m = t;
1041 for (t = m; t; t = TYPE_NEXT_VARIANT (t))
1042 if (TREE_TYPE (t) == elt_type
1043 && TYPE_NAME (t) == NULL_TREE
1044 && TYPE_ATTRIBUTES (t) == NULL_TREE)
1045 break;
1046 if (!t)
1047 {
1048 t = build_min_array_type (elt_type, index_type);
1049 set_array_type_canon (t, elt_type, index_type);
1050 if (!dependent)
1051 {
1052 layout_type (t);
1053 /* Make sure sizes are shared with the main variant.
1054 layout_type can't be called after setting TYPE_NEXT_VARIANT,
1055 as it will overwrite alignment etc. of all variants. */
1056 TYPE_SIZE (t) = TYPE_SIZE (m);
1057 TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (m);
1058 TYPE_TYPELESS_STORAGE (t) = TYPE_TYPELESS_STORAGE (m);
1059 }
1060
1061 TYPE_MAIN_VARIANT (t) = m;
1062 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
1063 TYPE_NEXT_VARIANT (m) = t;
1064 }
1065 }
1066
1067 /* Avoid spurious warnings with VLAs (c++/54583). */
1068 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t)))
1069 TREE_NO_WARNING (TYPE_SIZE (t)) = 1;
1070
1071 /* Push these needs up to the ARRAY_TYPE so that initialization takes
1072 place more easily. */
1073 bool needs_ctor = (TYPE_NEEDS_CONSTRUCTING (t)
1074 = TYPE_NEEDS_CONSTRUCTING (elt_type));
1075 bool needs_dtor = (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1076 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (elt_type));
1077
1078 if (!dependent && t == TYPE_MAIN_VARIANT (t)
1079 && !COMPLETE_TYPE_P (t) && COMPLETE_TYPE_P (elt_type))
1080 {
1081 /* The element type has been completed since the last time we saw
1082 this array type; update the layout and 'tor flags for any variants
1083 that need it. */
1084 layout_type (t);
1085 for (tree v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
1086 {
1087 TYPE_NEEDS_CONSTRUCTING (v) = needs_ctor;
1088 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (v) = needs_dtor;
1089 }
1090 }
1091
1092 return t;
1093 }
1094
1095 /* Return an ARRAY_TYPE with element type ELT and length N. */
1096
1097 tree
1098 build_array_of_n_type (tree elt, int n)
1099 {
1100 return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
1101 }
1102
1103 /* True iff T is an N3639 array of runtime bound (VLA). These were approved
1104 for C++14 but then removed. This should only be used for N3639
1105 specifically; code wondering more generally if something is a VLA should use
1106 vla_type_p. */
1107
1108 bool
1109 array_of_runtime_bound_p (tree t)
1110 {
1111 if (!t || TREE_CODE (t) != ARRAY_TYPE)
1112 return false;
1113 if (variably_modified_type_p (TREE_TYPE (t), NULL_TREE))
1114 return false;
1115 tree dom = TYPE_DOMAIN (t);
1116 if (!dom)
1117 return false;
1118 tree max = TYPE_MAX_VALUE (dom);
1119 return (!potential_rvalue_constant_expression (max)
1120 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max)));
1121 }
1122
1123 /* True iff T is a variable length array. */
1124
1125 bool
1126 vla_type_p (tree t)
1127 {
1128 for (; t && TREE_CODE (t) == ARRAY_TYPE;
1129 t = TREE_TYPE (t))
1130 if (tree dom = TYPE_DOMAIN (t))
1131 {
1132 tree max = TYPE_MAX_VALUE (dom);
1133 if (!potential_rvalue_constant_expression (max)
1134 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max)))
1135 return true;
1136 }
1137 return false;
1138 }
1139
1140 /* Return a reference type node referring to TO_TYPE. If RVAL is
1141 true, return an rvalue reference type, otherwise return an lvalue
1142 reference type. If a type node exists, reuse it, otherwise create
1143 a new one. */
1144 tree
1145 cp_build_reference_type (tree to_type, bool rval)
1146 {
1147 tree lvalue_ref, t;
1148
1149 if (to_type == error_mark_node)
1150 return error_mark_node;
1151
1152 if (TYPE_REF_P (to_type))
1153 {
1154 rval = rval && TYPE_REF_IS_RVALUE (to_type);
1155 to_type = TREE_TYPE (to_type);
1156 }
1157
1158 lvalue_ref = build_reference_type (to_type);
1159 if (!rval)
1160 return lvalue_ref;
1161
1162 /* This code to create rvalue reference types is based on and tied
1163 to the code creating lvalue reference types in the middle-end
1164 functions build_reference_type_for_mode and build_reference_type.
1165
1166 It works by putting the rvalue reference type nodes after the
1167 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
1168 they will effectively be ignored by the middle end. */
1169
1170 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
1171 if (TYPE_REF_IS_RVALUE (t))
1172 return t;
1173
1174 t = build_distinct_type_copy (lvalue_ref);
1175
1176 TYPE_REF_IS_RVALUE (t) = true;
1177 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
1178 TYPE_NEXT_REF_TO (lvalue_ref) = t;
1179
1180 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
1181 SET_TYPE_STRUCTURAL_EQUALITY (t);
1182 else if (TYPE_CANONICAL (to_type) != to_type)
1183 TYPE_CANONICAL (t)
1184 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
1185 else
1186 TYPE_CANONICAL (t) = t;
1187
1188 layout_type (t);
1189
1190 return t;
1191
1192 }
1193
1194 /* Returns EXPR cast to rvalue reference type, like std::move. */
1195
1196 tree
1197 move (tree expr)
1198 {
1199 tree type = TREE_TYPE (expr);
1200 gcc_assert (!TYPE_REF_P (type));
1201 type = cp_build_reference_type (type, /*rval*/true);
1202 return build_static_cast (type, expr, tf_warning_or_error);
1203 }
1204
1205 /* Used by the C++ front end to build qualified array types. However,
1206 the C version of this function does not properly maintain canonical
1207 types (which are not used in C). */
1208 tree
1209 c_build_qualified_type (tree type, int type_quals, tree /* orig_qual_type */,
1210 size_t /* orig_qual_indirect */)
1211 {
1212 return cp_build_qualified_type (type, type_quals);
1213 }
1214
1215 \f
1216 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
1217 arrays correctly. In particular, if TYPE is an array of T's, and
1218 TYPE_QUALS is non-empty, returns an array of qualified T's.
1219
1220 FLAGS determines how to deal with ill-formed qualifications. If
1221 tf_ignore_bad_quals is set, then bad qualifications are dropped
1222 (this is permitted if TYPE was introduced via a typedef or template
1223 type parameter). If bad qualifications are dropped and tf_warning
1224 is set, then a warning is issued for non-const qualifications. If
1225 tf_ignore_bad_quals is not set and tf_error is not set, we
1226 return error_mark_node. Otherwise, we issue an error, and ignore
1227 the qualifications.
1228
1229 Qualification of a reference type is valid when the reference came
1230 via a typedef or template type argument. [dcl.ref] No such
1231 dispensation is provided for qualifying a function type. [dcl.fct]
1232 DR 295 queries this and the proposed resolution brings it into line
1233 with qualifying a reference. We implement the DR. We also behave
1234 in a similar manner for restricting non-pointer types. */
1235
1236 tree
1237 cp_build_qualified_type_real (tree type,
1238 int type_quals,
1239 tsubst_flags_t complain)
1240 {
1241 tree result;
1242 int bad_quals = TYPE_UNQUALIFIED;
1243
1244 if (type == error_mark_node)
1245 return type;
1246
1247 if (type_quals == cp_type_quals (type))
1248 return type;
1249
1250 if (TREE_CODE (type) == ARRAY_TYPE)
1251 {
1252 /* In C++, the qualification really applies to the array element
1253 type. Obtain the appropriately qualified element type. */
1254 tree t;
1255 tree element_type
1256 = cp_build_qualified_type_real (TREE_TYPE (type),
1257 type_quals,
1258 complain);
1259
1260 if (element_type == error_mark_node)
1261 return error_mark_node;
1262
1263 /* See if we already have an identically qualified type. Tests
1264 should be equivalent to those in check_qualified_type. */
1265 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1266 if (TREE_TYPE (t) == element_type
1267 && TYPE_NAME (t) == TYPE_NAME (type)
1268 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
1269 && attribute_list_equal (TYPE_ATTRIBUTES (t),
1270 TYPE_ATTRIBUTES (type)))
1271 break;
1272
1273 if (!t)
1274 {
1275 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
1276
1277 /* Keep the typedef name. */
1278 if (TYPE_NAME (t) != TYPE_NAME (type))
1279 {
1280 t = build_variant_type_copy (t);
1281 TYPE_NAME (t) = TYPE_NAME (type);
1282 SET_TYPE_ALIGN (t, TYPE_ALIGN (type));
1283 TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (type);
1284 }
1285 }
1286
1287 /* Even if we already had this variant, we update
1288 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
1289 they changed since the variant was originally created.
1290
1291 This seems hokey; if there is some way to use a previous
1292 variant *without* coming through here,
1293 TYPE_NEEDS_CONSTRUCTING will never be updated. */
1294 TYPE_NEEDS_CONSTRUCTING (t)
1295 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
1296 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1297 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
1298 return t;
1299 }
1300 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
1301 {
1302 tree t = PACK_EXPANSION_PATTERN (type);
1303
1304 t = cp_build_qualified_type_real (t, type_quals, complain);
1305 return make_pack_expansion (t, complain);
1306 }
1307
1308 /* A reference or method type shall not be cv-qualified.
1309 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
1310 (in CD1) we always ignore extra cv-quals on functions. */
1311 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
1312 && (TYPE_REF_P (type)
1313 || FUNC_OR_METHOD_TYPE_P (type)))
1314 {
1315 if (TYPE_REF_P (type))
1316 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1317 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1318 }
1319
1320 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */
1321 if (TREE_CODE (type) == FUNCTION_TYPE)
1322 type_quals |= type_memfn_quals (type);
1323
1324 /* A restrict-qualified type must be a pointer (or reference)
1325 to object or incomplete type. */
1326 if ((type_quals & TYPE_QUAL_RESTRICT)
1327 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1328 && TREE_CODE (type) != TYPENAME_TYPE
1329 && !INDIRECT_TYPE_P (type))
1330 {
1331 bad_quals |= TYPE_QUAL_RESTRICT;
1332 type_quals &= ~TYPE_QUAL_RESTRICT;
1333 }
1334
1335 if (bad_quals == TYPE_UNQUALIFIED
1336 || (complain & tf_ignore_bad_quals))
1337 /*OK*/;
1338 else if (!(complain & tf_error))
1339 return error_mark_node;
1340 else
1341 {
1342 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
1343 error ("%qV qualifiers cannot be applied to %qT",
1344 bad_type, type);
1345 }
1346
1347 /* Retrieve (or create) the appropriately qualified variant. */
1348 result = build_qualified_type (type, type_quals);
1349
1350 return result;
1351 }
1352
1353 /* Return TYPE with const and volatile removed. */
1354
1355 tree
1356 cv_unqualified (tree type)
1357 {
1358 int quals;
1359
1360 if (type == error_mark_node)
1361 return type;
1362
1363 quals = cp_type_quals (type);
1364 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
1365 return cp_build_qualified_type (type, quals);
1366 }
1367
1368 /* Subroutine of strip_typedefs. We want to apply to RESULT the attributes
1369 from ATTRIBS that affect type identity, and no others. If any are not
1370 applied, set *remove_attributes to true. */
1371
1372 static tree
1373 apply_identity_attributes (tree result, tree attribs, bool *remove_attributes)
1374 {
1375 tree first_ident = NULL_TREE;
1376 tree new_attribs = NULL_TREE;
1377 tree *p = &new_attribs;
1378
1379 if (OVERLOAD_TYPE_P (result))
1380 {
1381 /* On classes and enums all attributes are ingrained. */
1382 gcc_assert (attribs == TYPE_ATTRIBUTES (result));
1383 return result;
1384 }
1385
1386 for (tree a = attribs; a; a = TREE_CHAIN (a))
1387 {
1388 const attribute_spec *as
1389 = lookup_attribute_spec (get_attribute_name (a));
1390 if (as && as->affects_type_identity)
1391 {
1392 if (!first_ident)
1393 first_ident = a;
1394 else if (first_ident == error_mark_node)
1395 {
1396 *p = tree_cons (TREE_PURPOSE (a), TREE_VALUE (a), NULL_TREE);
1397 p = &TREE_CHAIN (*p);
1398 }
1399 }
1400 else if (first_ident)
1401 {
1402 for (tree a2 = first_ident; a2; a2 = TREE_CHAIN (a2))
1403 {
1404 *p = tree_cons (TREE_PURPOSE (a2), TREE_VALUE (a2), NULL_TREE);
1405 p = &TREE_CHAIN (*p);
1406 }
1407 first_ident = error_mark_node;
1408 }
1409 }
1410 if (first_ident != error_mark_node)
1411 new_attribs = first_ident;
1412
1413 if (first_ident == attribs)
1414 /* All attributes affected type identity. */;
1415 else
1416 *remove_attributes = true;
1417
1418 return cp_build_type_attribute_variant (result, new_attribs);
1419 }
1420
1421 /* Builds a qualified variant of T that is not a typedef variant.
1422 E.g. consider the following declarations:
1423 typedef const int ConstInt;
1424 typedef ConstInt* PtrConstInt;
1425 If T is PtrConstInt, this function returns a type representing
1426 const int*.
1427 In other words, if T is a typedef, the function returns the underlying type.
1428 The cv-qualification and attributes of the type returned match the
1429 input type.
1430 They will always be compatible types.
1431 The returned type is built so that all of its subtypes
1432 recursively have their typedefs stripped as well.
1433
1434 This is different from just returning TYPE_CANONICAL (T)
1435 Because of several reasons:
1436 * If T is a type that needs structural equality
1437 its TYPE_CANONICAL (T) will be NULL.
1438 * TYPE_CANONICAL (T) desn't carry type attributes
1439 and loses template parameter names.
1440
1441 If REMOVE_ATTRIBUTES is non-null, also strip attributes that don't
1442 affect type identity, and set the referent to true if any were
1443 stripped. */
1444
1445 tree
1446 strip_typedefs (tree t, bool *remove_attributes)
1447 {
1448 tree result = NULL, type = NULL, t0 = NULL;
1449
1450 if (!t || t == error_mark_node)
1451 return t;
1452
1453 if (TREE_CODE (t) == TREE_LIST)
1454 {
1455 bool changed = false;
1456 releasing_vec vec;
1457 tree r = t;
1458 for (; t; t = TREE_CHAIN (t))
1459 {
1460 gcc_assert (!TREE_PURPOSE (t));
1461 tree elt = strip_typedefs (TREE_VALUE (t), remove_attributes);
1462 if (elt != TREE_VALUE (t))
1463 changed = true;
1464 vec_safe_push (vec, elt);
1465 }
1466 if (changed)
1467 r = build_tree_list_vec (vec);
1468 return r;
1469 }
1470
1471 gcc_assert (TYPE_P (t));
1472
1473 if (t == TYPE_CANONICAL (t))
1474 return t;
1475
1476 if (dependent_alias_template_spec_p (t))
1477 /* DR 1558: However, if the template-id is dependent, subsequent
1478 template argument substitution still applies to the template-id. */
1479 return t;
1480
1481 switch (TREE_CODE (t))
1482 {
1483 case POINTER_TYPE:
1484 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1485 result = build_pointer_type (type);
1486 break;
1487 case REFERENCE_TYPE:
1488 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1489 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
1490 break;
1491 case OFFSET_TYPE:
1492 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t), remove_attributes);
1493 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1494 result = build_offset_type (t0, type);
1495 break;
1496 case RECORD_TYPE:
1497 if (TYPE_PTRMEMFUNC_P (t))
1498 {
1499 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t), remove_attributes);
1500 result = build_ptrmemfunc_type (t0);
1501 }
1502 break;
1503 case ARRAY_TYPE:
1504 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1505 t0 = strip_typedefs (TYPE_DOMAIN (t), remove_attributes);
1506 result = build_cplus_array_type (type, t0);
1507 break;
1508 case FUNCTION_TYPE:
1509 case METHOD_TYPE:
1510 {
1511 tree arg_types = NULL, arg_node, arg_node2, arg_type;
1512 bool changed;
1513
1514 /* Because we stomp on TREE_PURPOSE of TYPE_ARG_TYPES in many places
1515 around the compiler (e.g. cp_parser_late_parsing_default_args), we
1516 can't expect that re-hashing a function type will find a previous
1517 equivalent type, so try to reuse the input type if nothing has
1518 changed. If the type is itself a variant, that will change. */
1519 bool is_variant = typedef_variant_p (t);
1520 if (remove_attributes
1521 && (TYPE_ATTRIBUTES (t) || TYPE_USER_ALIGN (t)))
1522 is_variant = true;
1523
1524 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1525 tree canon_spec = (flag_noexcept_type
1526 ? canonical_eh_spec (TYPE_RAISES_EXCEPTIONS (t))
1527 : NULL_TREE);
1528 changed = (type != TREE_TYPE (t) || is_variant
1529 || TYPE_RAISES_EXCEPTIONS (t) != canon_spec);
1530
1531 for (arg_node = TYPE_ARG_TYPES (t);
1532 arg_node;
1533 arg_node = TREE_CHAIN (arg_node))
1534 {
1535 if (arg_node == void_list_node)
1536 break;
1537 arg_type = strip_typedefs (TREE_VALUE (arg_node),
1538 remove_attributes);
1539 gcc_assert (arg_type);
1540 if (arg_type == TREE_VALUE (arg_node) && !changed)
1541 continue;
1542
1543 if (!changed)
1544 {
1545 changed = true;
1546 for (arg_node2 = TYPE_ARG_TYPES (t);
1547 arg_node2 != arg_node;
1548 arg_node2 = TREE_CHAIN (arg_node2))
1549 arg_types
1550 = tree_cons (TREE_PURPOSE (arg_node2),
1551 TREE_VALUE (arg_node2), arg_types);
1552 }
1553
1554 arg_types
1555 = tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
1556 }
1557
1558 if (!changed)
1559 return t;
1560
1561 if (arg_types)
1562 arg_types = nreverse (arg_types);
1563
1564 /* A list of parameters not ending with an ellipsis
1565 must end with void_list_node. */
1566 if (arg_node)
1567 arg_types = chainon (arg_types, void_list_node);
1568
1569 if (TREE_CODE (t) == METHOD_TYPE)
1570 {
1571 tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
1572 gcc_assert (class_type);
1573 result =
1574 build_method_type_directly (class_type, type,
1575 TREE_CHAIN (arg_types));
1576 }
1577 else
1578 {
1579 result = build_function_type (type, arg_types);
1580 result = apply_memfn_quals (result, type_memfn_quals (t));
1581 }
1582
1583 result = build_cp_fntype_variant (result,
1584 type_memfn_rqual (t), canon_spec,
1585 TYPE_HAS_LATE_RETURN_TYPE (t));
1586 }
1587 break;
1588 case TYPENAME_TYPE:
1589 {
1590 bool changed = false;
1591 tree fullname = TYPENAME_TYPE_FULLNAME (t);
1592 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR
1593 && TREE_OPERAND (fullname, 1))
1594 {
1595 tree args = TREE_OPERAND (fullname, 1);
1596 tree new_args = copy_node (args);
1597 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
1598 {
1599 tree arg = TREE_VEC_ELT (args, i);
1600 tree strip_arg;
1601 if (TYPE_P (arg))
1602 strip_arg = strip_typedefs (arg, remove_attributes);
1603 else
1604 strip_arg = strip_typedefs_expr (arg, remove_attributes);
1605 TREE_VEC_ELT (new_args, i) = strip_arg;
1606 if (strip_arg != arg)
1607 changed = true;
1608 }
1609 if (changed)
1610 {
1611 NON_DEFAULT_TEMPLATE_ARGS_COUNT (new_args)
1612 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (args);
1613 fullname
1614 = lookup_template_function (TREE_OPERAND (fullname, 0),
1615 new_args);
1616 }
1617 else
1618 ggc_free (new_args);
1619 }
1620 tree ctx = strip_typedefs (TYPE_CONTEXT (t), remove_attributes);
1621 if (!changed && ctx == TYPE_CONTEXT (t) && !typedef_variant_p (t))
1622 return t;
1623 tree name = fullname;
1624 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR)
1625 name = TREE_OPERAND (fullname, 0);
1626 /* Use build_typename_type rather than make_typename_type because we
1627 don't want to resolve it here, just strip typedefs. */
1628 result = build_typename_type (ctx, name, fullname, typename_type);
1629 }
1630 break;
1631 case DECLTYPE_TYPE:
1632 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t),
1633 remove_attributes);
1634 if (result == DECLTYPE_TYPE_EXPR (t))
1635 result = NULL_TREE;
1636 else
1637 result = (finish_decltype_type
1638 (result,
1639 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t),
1640 tf_none));
1641 break;
1642 case UNDERLYING_TYPE:
1643 type = strip_typedefs (UNDERLYING_TYPE_TYPE (t), remove_attributes);
1644 result = finish_underlying_type (type);
1645 break;
1646 default:
1647 break;
1648 }
1649
1650 if (!result)
1651 {
1652 if (typedef_variant_p (t))
1653 {
1654 /* Explicitly get the underlying type, as TYPE_MAIN_VARIANT doesn't
1655 strip typedefs with attributes. */
1656 result = TYPE_MAIN_VARIANT (DECL_ORIGINAL_TYPE (TYPE_NAME (t)));
1657 result = strip_typedefs (result);
1658 }
1659 else
1660 result = TYPE_MAIN_VARIANT (t);
1661 }
1662 gcc_assert (!typedef_variant_p (result));
1663
1664 if (COMPLETE_TYPE_P (result) && !COMPLETE_TYPE_P (t))
1665 /* If RESULT is complete and T isn't, it's likely the case that T
1666 is a variant of RESULT which hasn't been updated yet. Skip the
1667 attribute handling. */;
1668 else
1669 {
1670 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
1671 || TYPE_ALIGN (t) != TYPE_ALIGN (result))
1672 {
1673 gcc_assert (TYPE_USER_ALIGN (t));
1674 if (remove_attributes)
1675 *remove_attributes = true;
1676 else
1677 {
1678 if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
1679 result = build_variant_type_copy (result);
1680 else
1681 result = build_aligned_type (result, TYPE_ALIGN (t));
1682 TYPE_USER_ALIGN (result) = true;
1683 }
1684 }
1685
1686 if (TYPE_ATTRIBUTES (t))
1687 {
1688 if (remove_attributes)
1689 result = apply_identity_attributes (result, TYPE_ATTRIBUTES (t),
1690 remove_attributes);
1691 else
1692 result = cp_build_type_attribute_variant (result,
1693 TYPE_ATTRIBUTES (t));
1694 }
1695 }
1696
1697 return cp_build_qualified_type (result, cp_type_quals (t));
1698 }
1699
1700 /* Like strip_typedefs above, but works on expressions, so that in
1701
1702 template<class T> struct A
1703 {
1704 typedef T TT;
1705 B<sizeof(TT)> b;
1706 };
1707
1708 sizeof(TT) is replaced by sizeof(T). */
1709
1710 tree
1711 strip_typedefs_expr (tree t, bool *remove_attributes)
1712 {
1713 unsigned i,n;
1714 tree r, type, *ops;
1715 enum tree_code code;
1716
1717 if (t == NULL_TREE || t == error_mark_node)
1718 return t;
1719
1720 STRIP_ANY_LOCATION_WRAPPER (t);
1721
1722 if (DECL_P (t) || CONSTANT_CLASS_P (t))
1723 return t;
1724
1725 /* Some expressions have type operands, so let's handle types here rather
1726 than check TYPE_P in multiple places below. */
1727 if (TYPE_P (t))
1728 return strip_typedefs (t, remove_attributes);
1729
1730 code = TREE_CODE (t);
1731 switch (code)
1732 {
1733 case IDENTIFIER_NODE:
1734 case TEMPLATE_PARM_INDEX:
1735 case OVERLOAD:
1736 case BASELINK:
1737 case ARGUMENT_PACK_SELECT:
1738 return t;
1739
1740 case TRAIT_EXPR:
1741 {
1742 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t), remove_attributes);
1743 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t), remove_attributes);
1744 if (type1 == TRAIT_EXPR_TYPE1 (t)
1745 && type2 == TRAIT_EXPR_TYPE2 (t))
1746 return t;
1747 r = copy_node (t);
1748 TRAIT_EXPR_TYPE1 (r) = type1;
1749 TRAIT_EXPR_TYPE2 (r) = type2;
1750 return r;
1751 }
1752
1753 case TREE_LIST:
1754 {
1755 releasing_vec vec;
1756 bool changed = false;
1757 tree it;
1758 for (it = t; it; it = TREE_CHAIN (it))
1759 {
1760 tree val = strip_typedefs_expr (TREE_VALUE (it), remove_attributes);
1761 vec_safe_push (vec, val);
1762 if (val != TREE_VALUE (it))
1763 changed = true;
1764 gcc_assert (TREE_PURPOSE (it) == NULL_TREE);
1765 }
1766 if (changed)
1767 {
1768 r = NULL_TREE;
1769 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it)
1770 r = tree_cons (NULL_TREE, it, r);
1771 }
1772 else
1773 r = t;
1774 return r;
1775 }
1776
1777 case TREE_VEC:
1778 {
1779 bool changed = false;
1780 releasing_vec vec;
1781 n = TREE_VEC_LENGTH (t);
1782 vec_safe_reserve (vec, n);
1783 for (i = 0; i < n; ++i)
1784 {
1785 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i),
1786 remove_attributes);
1787 vec->quick_push (op);
1788 if (op != TREE_VEC_ELT (t, i))
1789 changed = true;
1790 }
1791 if (changed)
1792 {
1793 r = copy_node (t);
1794 for (i = 0; i < n; ++i)
1795 TREE_VEC_ELT (r, i) = (*vec)[i];
1796 NON_DEFAULT_TEMPLATE_ARGS_COUNT (r)
1797 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (t);
1798 }
1799 else
1800 r = t;
1801 return r;
1802 }
1803
1804 case CONSTRUCTOR:
1805 {
1806 bool changed = false;
1807 vec<constructor_elt, va_gc> *vec
1808 = vec_safe_copy (CONSTRUCTOR_ELTS (t));
1809 n = CONSTRUCTOR_NELTS (t);
1810 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1811 for (i = 0; i < n; ++i)
1812 {
1813 constructor_elt *e = &(*vec)[i];
1814 tree op = strip_typedefs_expr (e->value, remove_attributes);
1815 if (op != e->value)
1816 {
1817 changed = true;
1818 e->value = op;
1819 }
1820 gcc_checking_assert
1821 (e->index == strip_typedefs_expr (e->index, remove_attributes));
1822 }
1823
1824 if (!changed && type == TREE_TYPE (t))
1825 {
1826 vec_free (vec);
1827 return t;
1828 }
1829 else
1830 {
1831 r = copy_node (t);
1832 TREE_TYPE (r) = type;
1833 CONSTRUCTOR_ELTS (r) = vec;
1834 return r;
1835 }
1836 }
1837
1838 case LAMBDA_EXPR:
1839 return t;
1840
1841 case STATEMENT_LIST:
1842 error ("statement-expression in a constant expression");
1843 return error_mark_node;
1844
1845 default:
1846 break;
1847 }
1848
1849 gcc_assert (EXPR_P (t));
1850
1851 n = cp_tree_operand_length (t);
1852 ops = XALLOCAVEC (tree, n);
1853 type = TREE_TYPE (t);
1854
1855 switch (code)
1856 {
1857 CASE_CONVERT:
1858 case IMPLICIT_CONV_EXPR:
1859 case DYNAMIC_CAST_EXPR:
1860 case STATIC_CAST_EXPR:
1861 case CONST_CAST_EXPR:
1862 case REINTERPRET_CAST_EXPR:
1863 case CAST_EXPR:
1864 case NEW_EXPR:
1865 type = strip_typedefs (type, remove_attributes);
1866 /* fallthrough */
1867
1868 default:
1869 for (i = 0; i < n; ++i)
1870 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i), remove_attributes);
1871 break;
1872 }
1873
1874 /* If nothing changed, return t. */
1875 for (i = 0; i < n; ++i)
1876 if (ops[i] != TREE_OPERAND (t, i))
1877 break;
1878 if (i == n && type == TREE_TYPE (t))
1879 return t;
1880
1881 r = copy_node (t);
1882 TREE_TYPE (r) = type;
1883 for (i = 0; i < n; ++i)
1884 TREE_OPERAND (r, i) = ops[i];
1885 return r;
1886 }
1887
1888 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
1889 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
1890 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
1891 VIRT indicates whether TYPE is inherited virtually or not.
1892 IGO_PREV points at the previous binfo of the inheritance graph
1893 order chain. The newly copied binfo's TREE_CHAIN forms this
1894 ordering.
1895
1896 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
1897 correct order. That is in the order the bases themselves should be
1898 constructed in.
1899
1900 The BINFO_INHERITANCE of a virtual base class points to the binfo
1901 of the most derived type. ??? We could probably change this so that
1902 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
1903 remove a field. They currently can only differ for primary virtual
1904 virtual bases. */
1905
1906 tree
1907 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
1908 {
1909 tree new_binfo;
1910
1911 if (virt)
1912 {
1913 /* See if we've already made this virtual base. */
1914 new_binfo = binfo_for_vbase (type, t);
1915 if (new_binfo)
1916 return new_binfo;
1917 }
1918
1919 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
1920 BINFO_TYPE (new_binfo) = type;
1921
1922 /* Chain it into the inheritance graph. */
1923 TREE_CHAIN (*igo_prev) = new_binfo;
1924 *igo_prev = new_binfo;
1925
1926 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo))
1927 {
1928 int ix;
1929 tree base_binfo;
1930
1931 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
1932
1933 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
1934 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
1935
1936 /* We do not need to copy the accesses, as they are read only. */
1937 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
1938
1939 /* Recursively copy base binfos of BINFO. */
1940 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1941 {
1942 tree new_base_binfo;
1943 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
1944 t, igo_prev,
1945 BINFO_VIRTUAL_P (base_binfo));
1946
1947 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
1948 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
1949 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
1950 }
1951 }
1952 else
1953 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
1954
1955 if (virt)
1956 {
1957 /* Push it onto the list after any virtual bases it contains
1958 will have been pushed. */
1959 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo);
1960 BINFO_VIRTUAL_P (new_binfo) = 1;
1961 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
1962 }
1963
1964 return new_binfo;
1965 }
1966 \f
1967 /* Hashing of lists so that we don't make duplicates.
1968 The entry point is `list_hash_canon'. */
1969
1970 struct list_proxy
1971 {
1972 tree purpose;
1973 tree value;
1974 tree chain;
1975 };
1976
1977 struct list_hasher : ggc_ptr_hash<tree_node>
1978 {
1979 typedef list_proxy *compare_type;
1980
1981 static hashval_t hash (tree);
1982 static bool equal (tree, list_proxy *);
1983 };
1984
1985 /* Now here is the hash table. When recording a list, it is added
1986 to the slot whose index is the hash code mod the table size.
1987 Note that the hash table is used for several kinds of lists.
1988 While all these live in the same table, they are completely independent,
1989 and the hash code is computed differently for each of these. */
1990
1991 static GTY (()) hash_table<list_hasher> *list_hash_table;
1992
1993 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
1994 for a node we are thinking about adding). */
1995
1996 bool
1997 list_hasher::equal (tree t, list_proxy *proxy)
1998 {
1999 return (TREE_VALUE (t) == proxy->value
2000 && TREE_PURPOSE (t) == proxy->purpose
2001 && TREE_CHAIN (t) == proxy->chain);
2002 }
2003
2004 /* Compute a hash code for a list (chain of TREE_LIST nodes
2005 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
2006 TREE_COMMON slots), by adding the hash codes of the individual entries. */
2007
2008 static hashval_t
2009 list_hash_pieces (tree purpose, tree value, tree chain)
2010 {
2011 hashval_t hashcode = 0;
2012
2013 if (chain)
2014 hashcode += TREE_HASH (chain);
2015
2016 if (value)
2017 hashcode += TREE_HASH (value);
2018 else
2019 hashcode += 1007;
2020 if (purpose)
2021 hashcode += TREE_HASH (purpose);
2022 else
2023 hashcode += 1009;
2024 return hashcode;
2025 }
2026
2027 /* Hash an already existing TREE_LIST. */
2028
2029 hashval_t
2030 list_hasher::hash (tree t)
2031 {
2032 return list_hash_pieces (TREE_PURPOSE (t),
2033 TREE_VALUE (t),
2034 TREE_CHAIN (t));
2035 }
2036
2037 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
2038 object for an identical list if one already exists. Otherwise, build a
2039 new one, and record it as the canonical object. */
2040
2041 tree
2042 hash_tree_cons (tree purpose, tree value, tree chain)
2043 {
2044 int hashcode = 0;
2045 tree *slot;
2046 struct list_proxy proxy;
2047
2048 /* Hash the list node. */
2049 hashcode = list_hash_pieces (purpose, value, chain);
2050 /* Create a proxy for the TREE_LIST we would like to create. We
2051 don't actually create it so as to avoid creating garbage. */
2052 proxy.purpose = purpose;
2053 proxy.value = value;
2054 proxy.chain = chain;
2055 /* See if it is already in the table. */
2056 slot = list_hash_table->find_slot_with_hash (&proxy, hashcode, INSERT);
2057 /* If not, create a new node. */
2058 if (!*slot)
2059 *slot = tree_cons (purpose, value, chain);
2060 return (tree) *slot;
2061 }
2062
2063 /* Constructor for hashed lists. */
2064
2065 tree
2066 hash_tree_chain (tree value, tree chain)
2067 {
2068 return hash_tree_cons (NULL_TREE, value, chain);
2069 }
2070 \f
2071 void
2072 debug_binfo (tree elem)
2073 {
2074 HOST_WIDE_INT n;
2075 tree virtuals;
2076
2077 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
2078 "\nvtable type:\n",
2079 TYPE_NAME_STRING (BINFO_TYPE (elem)),
2080 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
2081 debug_tree (BINFO_TYPE (elem));
2082 if (BINFO_VTABLE (elem))
2083 fprintf (stderr, "vtable decl \"%s\"\n",
2084 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
2085 else
2086 fprintf (stderr, "no vtable decl yet\n");
2087 fprintf (stderr, "virtuals:\n");
2088 virtuals = BINFO_VIRTUALS (elem);
2089 n = 0;
2090
2091 while (virtuals)
2092 {
2093 tree fndecl = TREE_VALUE (virtuals);
2094 fprintf (stderr, "%s [%ld =? %ld]\n",
2095 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
2096 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
2097 ++n;
2098 virtuals = TREE_CHAIN (virtuals);
2099 }
2100 }
2101
2102 /* Build a representation for the qualified name SCOPE::NAME. TYPE is
2103 the type of the result expression, if known, or NULL_TREE if the
2104 resulting expression is type-dependent. If TEMPLATE_P is true,
2105 NAME is known to be a template because the user explicitly used the
2106 "template" keyword after the "::".
2107
2108 All SCOPE_REFs should be built by use of this function. */
2109
2110 tree
2111 build_qualified_name (tree type, tree scope, tree name, bool template_p)
2112 {
2113 tree t;
2114 if (type == error_mark_node
2115 || scope == error_mark_node
2116 || name == error_mark_node)
2117 return error_mark_node;
2118 gcc_assert (TREE_CODE (name) != SCOPE_REF);
2119 t = build2 (SCOPE_REF, type, scope, name);
2120 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
2121 PTRMEM_OK_P (t) = true;
2122 if (type)
2123 t = convert_from_reference (t);
2124 return t;
2125 }
2126
2127 /* Like check_qualified_type, but also check ref-qualifier, exception
2128 specification, and whether the return type was specified after the
2129 parameters. */
2130
2131 static bool
2132 cp_check_qualified_type (const_tree cand, const_tree base, int type_quals,
2133 cp_ref_qualifier rqual, tree raises, bool late)
2134 {
2135 return (TYPE_QUALS (cand) == type_quals
2136 && check_base_type (cand, base)
2137 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (cand),
2138 ce_exact)
2139 && TYPE_HAS_LATE_RETURN_TYPE (cand) == late
2140 && type_memfn_rqual (cand) == rqual);
2141 }
2142
2143 /* Build the FUNCTION_TYPE or METHOD_TYPE with the ref-qualifier RQUAL. */
2144
2145 tree
2146 build_ref_qualified_type (tree type, cp_ref_qualifier rqual)
2147 {
2148 tree raises = TYPE_RAISES_EXCEPTIONS (type);
2149 bool late = TYPE_HAS_LATE_RETURN_TYPE (type);
2150 return build_cp_fntype_variant (type, rqual, raises, late);
2151 }
2152
2153 /* Make a raw overload node containing FN. */
2154
2155 tree
2156 ovl_make (tree fn, tree next)
2157 {
2158 tree result = make_node (OVERLOAD);
2159
2160 if (TREE_CODE (fn) == OVERLOAD)
2161 OVL_NESTED_P (result) = true;
2162
2163 TREE_TYPE (result) = (next || TREE_CODE (fn) == TEMPLATE_DECL
2164 ? unknown_type_node : TREE_TYPE (fn));
2165 if (next && TREE_CODE (next) == OVERLOAD && OVL_DEDUP_P (next))
2166 OVL_DEDUP_P (result) = true;
2167 OVL_FUNCTION (result) = fn;
2168 OVL_CHAIN (result) = next;
2169 return result;
2170 }
2171
2172 /* Add FN to the (potentially NULL) overload set OVL. USING_P is
2173 true, if FN is via a using declaration. We also pay attention to
2174 DECL_HIDDEN. We keep the hidden decls first, but remaining ones
2175 are unordered. */
2176
2177 tree
2178 ovl_insert (tree fn, tree maybe_ovl, bool using_p)
2179 {
2180 tree result = maybe_ovl;
2181 tree insert_after = NULL_TREE;
2182
2183 /* Skip hidden. */
2184 for (; maybe_ovl && TREE_CODE (maybe_ovl) == OVERLOAD
2185 && OVL_HIDDEN_P (maybe_ovl);
2186 maybe_ovl = OVL_CHAIN (maybe_ovl))
2187 {
2188 gcc_checking_assert (!OVL_LOOKUP_P (maybe_ovl));
2189 insert_after = maybe_ovl;
2190 }
2191
2192 bool hidden_p = DECL_HIDDEN_P (fn);
2193 if (maybe_ovl || using_p || hidden_p || TREE_CODE (fn) == TEMPLATE_DECL)
2194 {
2195 maybe_ovl = ovl_make (fn, maybe_ovl);
2196 if (hidden_p)
2197 OVL_HIDDEN_P (maybe_ovl) = true;
2198 if (using_p)
2199 OVL_DEDUP_P (maybe_ovl) = OVL_USING_P (maybe_ovl) = true;
2200 }
2201 else
2202 maybe_ovl = fn;
2203
2204 if (insert_after)
2205 {
2206 OVL_CHAIN (insert_after) = maybe_ovl;
2207 TREE_TYPE (insert_after) = unknown_type_node;
2208 }
2209 else
2210 result = maybe_ovl;
2211
2212 return result;
2213 }
2214
2215 /* Skip any hidden names at the beginning of OVL. */
2216
2217 tree
2218 ovl_skip_hidden (tree ovl)
2219 {
2220 for (;
2221 ovl && TREE_CODE (ovl) == OVERLOAD && OVL_HIDDEN_P (ovl);
2222 ovl = OVL_CHAIN (ovl))
2223 gcc_checking_assert (DECL_HIDDEN_P (OVL_FUNCTION (ovl)));
2224
2225 if (ovl && TREE_CODE (ovl) != OVERLOAD && DECL_HIDDEN_P (ovl))
2226 {
2227 /* Any hidden functions should have been wrapped in an
2228 overload, but injected friend classes will not. */
2229 gcc_checking_assert (!DECL_DECLARES_FUNCTION_P (ovl));
2230 ovl = NULL_TREE;
2231 }
2232
2233 return ovl;
2234 }
2235
2236 /* NODE is an OVL_HIDDEN_P node which is now revealed. */
2237
2238 tree
2239 ovl_iterator::reveal_node (tree overload, tree node)
2240 {
2241 /* We cannot have returned NODE as part of a lookup overload, so we
2242 don't have to worry about preserving that. */
2243
2244 OVL_HIDDEN_P (node) = false;
2245 if (tree chain = OVL_CHAIN (node))
2246 if (TREE_CODE (chain) == OVERLOAD)
2247 {
2248 if (OVL_HIDDEN_P (chain))
2249 {
2250 /* The node needs moving, and the simplest way is to remove it
2251 and reinsert. */
2252 overload = remove_node (overload, node);
2253 overload = ovl_insert (OVL_FUNCTION (node), overload);
2254 }
2255 else if (OVL_DEDUP_P (chain))
2256 OVL_DEDUP_P (node) = true;
2257 }
2258 return overload;
2259 }
2260
2261 /* NODE is on the overloads of OVL. Remove it.
2262 The removed node is unaltered and may continue to be iterated
2263 from (i.e. it is safe to remove a node from an overload one is
2264 currently iterating over). */
2265
2266 tree
2267 ovl_iterator::remove_node (tree overload, tree node)
2268 {
2269 tree *slot = &overload;
2270 while (*slot != node)
2271 {
2272 tree probe = *slot;
2273 gcc_checking_assert (!OVL_LOOKUP_P (probe));
2274
2275 slot = &OVL_CHAIN (probe);
2276 }
2277
2278 /* Stitch out NODE. We don't have to worry about now making a
2279 singleton overload (and consequently maybe setting its type),
2280 because all uses of this function will be followed by inserting a
2281 new node that must follow the place we've cut this out from. */
2282 if (TREE_CODE (node) != OVERLOAD)
2283 /* Cloned inherited ctors don't mark themselves as via_using. */
2284 *slot = NULL_TREE;
2285 else
2286 *slot = OVL_CHAIN (node);
2287
2288 return overload;
2289 }
2290
2291 /* Mark or unmark a lookup set. */
2292
2293 void
2294 lookup_mark (tree ovl, bool val)
2295 {
2296 for (lkp_iterator iter (ovl); iter; ++iter)
2297 {
2298 gcc_checking_assert (LOOKUP_SEEN_P (*iter) != val);
2299 LOOKUP_SEEN_P (*iter) = val;
2300 }
2301 }
2302
2303 /* Add a set of new FNS into a lookup. */
2304
2305 tree
2306 lookup_add (tree fns, tree lookup)
2307 {
2308 if (lookup || TREE_CODE (fns) == TEMPLATE_DECL)
2309 {
2310 lookup = ovl_make (fns, lookup);
2311 OVL_LOOKUP_P (lookup) = true;
2312 }
2313 else
2314 lookup = fns;
2315
2316 return lookup;
2317 }
2318
2319 /* FNS is a new overload set, add them to LOOKUP, if they are not
2320 already present there. */
2321
2322 tree
2323 lookup_maybe_add (tree fns, tree lookup, bool deduping)
2324 {
2325 if (deduping)
2326 for (tree next, probe = fns; probe; probe = next)
2327 {
2328 tree fn = probe;
2329 next = NULL_TREE;
2330
2331 if (TREE_CODE (probe) == OVERLOAD)
2332 {
2333 fn = OVL_FUNCTION (probe);
2334 next = OVL_CHAIN (probe);
2335 }
2336
2337 if (!LOOKUP_SEEN_P (fn))
2338 LOOKUP_SEEN_P (fn) = true;
2339 else
2340 {
2341 /* This function was already seen. Insert all the
2342 predecessors onto the lookup. */
2343 for (; fns != probe; fns = OVL_CHAIN (fns))
2344 {
2345 lookup = lookup_add (OVL_FUNCTION (fns), lookup);
2346 /* Propagate OVL_USING, but OVL_HIDDEN &
2347 OVL_DEDUP_P don't matter. */
2348 if (OVL_USING_P (fns))
2349 OVL_USING_P (lookup) = true;
2350 }
2351
2352 /* And now skip this function. */
2353 fns = next;
2354 }
2355 }
2356
2357 if (fns)
2358 /* We ended in a set of new functions. Add them all in one go. */
2359 lookup = lookup_add (fns, lookup);
2360
2361 return lookup;
2362 }
2363
2364 /* Returns nonzero if X is an expression for a (possibly overloaded)
2365 function. If "f" is a function or function template, "f", "c->f",
2366 "c.f", "C::f", and "f<int>" will all be considered possibly
2367 overloaded functions. Returns 2 if the function is actually
2368 overloaded, i.e., if it is impossible to know the type of the
2369 function without performing overload resolution. */
2370
2371 int
2372 is_overloaded_fn (tree x)
2373 {
2374 STRIP_ANY_LOCATION_WRAPPER (x);
2375
2376 /* A baselink is also considered an overloaded function. */
2377 if (TREE_CODE (x) == OFFSET_REF
2378 || TREE_CODE (x) == COMPONENT_REF)
2379 x = TREE_OPERAND (x, 1);
2380 x = MAYBE_BASELINK_FUNCTIONS (x);
2381 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
2382 x = TREE_OPERAND (x, 0);
2383
2384 if (DECL_FUNCTION_TEMPLATE_P (OVL_FIRST (x))
2385 || (TREE_CODE (x) == OVERLOAD && !OVL_SINGLE_P (x)))
2386 return 2;
2387
2388 return OVL_P (x);
2389 }
2390
2391 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
2392 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
2393 NULL_TREE. */
2394
2395 tree
2396 dependent_name (tree x)
2397 {
2398 if (identifier_p (x))
2399 return x;
2400 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
2401 x = TREE_OPERAND (x, 0);
2402 if (OVL_P (x))
2403 return OVL_NAME (x);
2404 return NULL_TREE;
2405 }
2406
2407 /* Returns true iff X is an expression for an overloaded function
2408 whose type cannot be known without performing overload
2409 resolution. */
2410
2411 bool
2412 really_overloaded_fn (tree x)
2413 {
2414 return is_overloaded_fn (x) == 2;
2415 }
2416
2417 /* Get the overload set FROM refers to. Returns NULL if it's not an
2418 overload set. */
2419
2420 tree
2421 maybe_get_fns (tree from)
2422 {
2423 STRIP_ANY_LOCATION_WRAPPER (from);
2424
2425 /* A baselink is also considered an overloaded function. */
2426 if (TREE_CODE (from) == OFFSET_REF
2427 || TREE_CODE (from) == COMPONENT_REF)
2428 from = TREE_OPERAND (from, 1);
2429 if (BASELINK_P (from))
2430 from = BASELINK_FUNCTIONS (from);
2431 if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
2432 from = TREE_OPERAND (from, 0);
2433
2434 if (OVL_P (from))
2435 return from;
2436
2437 return NULL;
2438 }
2439
2440 /* FROM refers to an overload set. Return that set (or die). */
2441
2442 tree
2443 get_fns (tree from)
2444 {
2445 tree res = maybe_get_fns (from);
2446
2447 gcc_assert (res);
2448 return res;
2449 }
2450
2451 /* Return the first function of the overload set FROM refers to. */
2452
2453 tree
2454 get_first_fn (tree from)
2455 {
2456 return OVL_FIRST (get_fns (from));
2457 }
2458
2459 /* Return the scope where the overloaded functions OVL were found. */
2460
2461 tree
2462 ovl_scope (tree ovl)
2463 {
2464 if (TREE_CODE (ovl) == OFFSET_REF
2465 || TREE_CODE (ovl) == COMPONENT_REF)
2466 ovl = TREE_OPERAND (ovl, 1);
2467 if (TREE_CODE (ovl) == BASELINK)
2468 return BINFO_TYPE (BASELINK_BINFO (ovl));
2469 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
2470 ovl = TREE_OPERAND (ovl, 0);
2471 /* Skip using-declarations. */
2472 lkp_iterator iter (ovl);
2473 do
2474 ovl = *iter;
2475 while (iter.using_p () && ++iter);
2476
2477 return CP_DECL_CONTEXT (ovl);
2478 }
2479 \f
2480 #define PRINT_RING_SIZE 4
2481
2482 static const char *
2483 cxx_printable_name_internal (tree decl, int v, bool translate)
2484 {
2485 static unsigned int uid_ring[PRINT_RING_SIZE];
2486 static char *print_ring[PRINT_RING_SIZE];
2487 static bool trans_ring[PRINT_RING_SIZE];
2488 static int ring_counter;
2489 int i;
2490
2491 /* Only cache functions. */
2492 if (v < 2
2493 || TREE_CODE (decl) != FUNCTION_DECL
2494 || DECL_LANG_SPECIFIC (decl) == 0)
2495 return lang_decl_name (decl, v, translate);
2496
2497 /* See if this print name is lying around. */
2498 for (i = 0; i < PRINT_RING_SIZE; i++)
2499 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
2500 /* yes, so return it. */
2501 return print_ring[i];
2502
2503 if (++ring_counter == PRINT_RING_SIZE)
2504 ring_counter = 0;
2505
2506 if (current_function_decl != NULL_TREE)
2507 {
2508 /* There may be both translated and untranslated versions of the
2509 name cached. */
2510 for (i = 0; i < 2; i++)
2511 {
2512 if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
2513 ring_counter += 1;
2514 if (ring_counter == PRINT_RING_SIZE)
2515 ring_counter = 0;
2516 }
2517 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
2518 }
2519
2520 free (print_ring[ring_counter]);
2521
2522 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
2523 uid_ring[ring_counter] = DECL_UID (decl);
2524 trans_ring[ring_counter] = translate;
2525 return print_ring[ring_counter];
2526 }
2527
2528 const char *
2529 cxx_printable_name (tree decl, int v)
2530 {
2531 return cxx_printable_name_internal (decl, v, false);
2532 }
2533
2534 const char *
2535 cxx_printable_name_translate (tree decl, int v)
2536 {
2537 return cxx_printable_name_internal (decl, v, true);
2538 }
2539 \f
2540 /* Return the canonical version of exception-specification RAISES for a C++17
2541 function type, for use in type comparison and building TYPE_CANONICAL. */
2542
2543 tree
2544 canonical_eh_spec (tree raises)
2545 {
2546 if (raises == NULL_TREE)
2547 return raises;
2548 else if (DEFERRED_NOEXCEPT_SPEC_P (raises)
2549 || uses_template_parms (raises)
2550 || uses_template_parms (TREE_PURPOSE (raises)))
2551 /* Keep a dependent or deferred exception specification. */
2552 return raises;
2553 else if (nothrow_spec_p (raises))
2554 /* throw() -> noexcept. */
2555 return noexcept_true_spec;
2556 else
2557 /* For C++17 type matching, anything else -> nothing. */
2558 return NULL_TREE;
2559 }
2560
2561 tree
2562 build_cp_fntype_variant (tree type, cp_ref_qualifier rqual,
2563 tree raises, bool late)
2564 {
2565 cp_cv_quals type_quals = TYPE_QUALS (type);
2566
2567 if (cp_check_qualified_type (type, type, type_quals, rqual, raises, late))
2568 return type;
2569
2570 tree v = TYPE_MAIN_VARIANT (type);
2571 for (; v; v = TYPE_NEXT_VARIANT (v))
2572 if (cp_check_qualified_type (v, type, type_quals, rqual, raises, late))
2573 return v;
2574
2575 /* Need to build a new variant. */
2576 v = build_variant_type_copy (type);
2577 TYPE_RAISES_EXCEPTIONS (v) = raises;
2578 TYPE_HAS_LATE_RETURN_TYPE (v) = late;
2579 switch (rqual)
2580 {
2581 case REF_QUAL_RVALUE:
2582 FUNCTION_RVALUE_QUALIFIED (v) = 1;
2583 FUNCTION_REF_QUALIFIED (v) = 1;
2584 break;
2585 case REF_QUAL_LVALUE:
2586 FUNCTION_RVALUE_QUALIFIED (v) = 0;
2587 FUNCTION_REF_QUALIFIED (v) = 1;
2588 break;
2589 default:
2590 FUNCTION_REF_QUALIFIED (v) = 0;
2591 break;
2592 }
2593
2594 /* Canonicalize the exception specification. */
2595 tree cr = flag_noexcept_type ? canonical_eh_spec (raises) : NULL_TREE;
2596
2597 if (TYPE_STRUCTURAL_EQUALITY_P (type))
2598 /* Propagate structural equality. */
2599 SET_TYPE_STRUCTURAL_EQUALITY (v);
2600 else if (TYPE_CANONICAL (type) != type || cr != raises || late)
2601 /* Build the underlying canonical type, since it is different
2602 from TYPE. */
2603 TYPE_CANONICAL (v) = build_cp_fntype_variant (TYPE_CANONICAL (type),
2604 rqual, cr, false);
2605 else
2606 /* T is its own canonical type. */
2607 TYPE_CANONICAL (v) = v;
2608
2609 return v;
2610 }
2611
2612 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
2613 listed in RAISES. */
2614
2615 tree
2616 build_exception_variant (tree type, tree raises)
2617 {
2618 cp_ref_qualifier rqual = type_memfn_rqual (type);
2619 bool late = TYPE_HAS_LATE_RETURN_TYPE (type);
2620 return build_cp_fntype_variant (type, rqual, raises, late);
2621 }
2622
2623 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
2624 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
2625 arguments. */
2626
2627 tree
2628 bind_template_template_parm (tree t, tree newargs)
2629 {
2630 tree decl = TYPE_NAME (t);
2631 tree t2;
2632
2633 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
2634 decl = build_decl (input_location,
2635 TYPE_DECL, DECL_NAME (decl), NULL_TREE);
2636
2637 /* These nodes have to be created to reflect new TYPE_DECL and template
2638 arguments. */
2639 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
2640 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
2641 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
2642 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
2643
2644 TREE_TYPE (decl) = t2;
2645 TYPE_NAME (t2) = decl;
2646 TYPE_STUB_DECL (t2) = decl;
2647 TYPE_SIZE (t2) = 0;
2648 SET_TYPE_STRUCTURAL_EQUALITY (t2);
2649
2650 return t2;
2651 }
2652
2653 /* Called from count_trees via walk_tree. */
2654
2655 static tree
2656 count_trees_r (tree *tp, int *walk_subtrees, void *data)
2657 {
2658 ++*((int *) data);
2659
2660 if (TYPE_P (*tp))
2661 *walk_subtrees = 0;
2662
2663 return NULL_TREE;
2664 }
2665
2666 /* Debugging function for measuring the rough complexity of a tree
2667 representation. */
2668
2669 int
2670 count_trees (tree t)
2671 {
2672 int n_trees = 0;
2673 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
2674 return n_trees;
2675 }
2676
2677 /* Called from verify_stmt_tree via walk_tree. */
2678
2679 static tree
2680 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data)
2681 {
2682 tree t = *tp;
2683 hash_table<nofree_ptr_hash <tree_node> > *statements
2684 = static_cast <hash_table<nofree_ptr_hash <tree_node> > *> (data);
2685 tree_node **slot;
2686
2687 if (!STATEMENT_CODE_P (TREE_CODE (t)))
2688 return NULL_TREE;
2689
2690 /* If this statement is already present in the hash table, then
2691 there is a circularity in the statement tree. */
2692 gcc_assert (!statements->find (t));
2693
2694 slot = statements->find_slot (t, INSERT);
2695 *slot = t;
2696
2697 return NULL_TREE;
2698 }
2699
2700 /* Debugging function to check that the statement T has not been
2701 corrupted. For now, this function simply checks that T contains no
2702 circularities. */
2703
2704 void
2705 verify_stmt_tree (tree t)
2706 {
2707 hash_table<nofree_ptr_hash <tree_node> > statements (37);
2708 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
2709 }
2710
2711 /* Check if the type T depends on a type with no linkage and if so, return
2712 it. If RELAXED_P then do not consider a class type declared within
2713 a vague-linkage function to have no linkage. */
2714
2715 tree
2716 no_linkage_check (tree t, bool relaxed_p)
2717 {
2718 tree r;
2719
2720 /* Lambda types that don't have mangling scope have no linkage. We
2721 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because
2722 when we get here from pushtag none of the lambda information is
2723 set up yet, so we want to assume that the lambda has linkage and
2724 fix it up later if not. We need to check this even in templates so
2725 that we properly handle a lambda-expression in the signature. */
2726 if (LAMBDA_TYPE_P (t)
2727 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node
2728 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
2729 return t;
2730
2731 /* Otherwise there's no point in checking linkage on template functions; we
2732 can't know their complete types. */
2733 if (processing_template_decl)
2734 return NULL_TREE;
2735
2736 switch (TREE_CODE (t))
2737 {
2738 case RECORD_TYPE:
2739 if (TYPE_PTRMEMFUNC_P (t))
2740 goto ptrmem;
2741 /* Fall through. */
2742 case UNION_TYPE:
2743 if (!CLASS_TYPE_P (t))
2744 return NULL_TREE;
2745 /* Fall through. */
2746 case ENUMERAL_TYPE:
2747 /* Only treat unnamed types as having no linkage if they're at
2748 namespace scope. This is core issue 966. */
2749 if (TYPE_UNNAMED_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
2750 return t;
2751
2752 for (r = CP_TYPE_CONTEXT (t); ; )
2753 {
2754 /* If we're a nested type of a !TREE_PUBLIC class, we might not
2755 have linkage, or we might just be in an anonymous namespace.
2756 If we're in a TREE_PUBLIC class, we have linkage. */
2757 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
2758 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
2759 else if (TREE_CODE (r) == FUNCTION_DECL)
2760 {
2761 if (!relaxed_p || !vague_linkage_p (r))
2762 return t;
2763 else
2764 r = CP_DECL_CONTEXT (r);
2765 }
2766 else
2767 break;
2768 }
2769
2770 return NULL_TREE;
2771
2772 case ARRAY_TYPE:
2773 case POINTER_TYPE:
2774 case REFERENCE_TYPE:
2775 case VECTOR_TYPE:
2776 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2777
2778 case OFFSET_TYPE:
2779 ptrmem:
2780 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
2781 relaxed_p);
2782 if (r)
2783 return r;
2784 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
2785
2786 case METHOD_TYPE:
2787 case FUNCTION_TYPE:
2788 {
2789 tree parm = TYPE_ARG_TYPES (t);
2790 if (TREE_CODE (t) == METHOD_TYPE)
2791 /* The 'this' pointer isn't interesting; a method has the same
2792 linkage (or lack thereof) as its enclosing class. */
2793 parm = TREE_CHAIN (parm);
2794 for (;
2795 parm && parm != void_list_node;
2796 parm = TREE_CHAIN (parm))
2797 {
2798 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
2799 if (r)
2800 return r;
2801 }
2802 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2803 }
2804
2805 default:
2806 return NULL_TREE;
2807 }
2808 }
2809
2810 extern int depth_reached;
2811
2812 void
2813 cxx_print_statistics (void)
2814 {
2815 print_template_statistics ();
2816 if (GATHER_STATISTICS)
2817 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
2818 depth_reached);
2819 }
2820
2821 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2822 (which is an ARRAY_TYPE). This counts only elements of the top
2823 array. */
2824
2825 tree
2826 array_type_nelts_top (tree type)
2827 {
2828 return fold_build2_loc (input_location,
2829 PLUS_EXPR, sizetype,
2830 array_type_nelts (type),
2831 size_one_node);
2832 }
2833
2834 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2835 (which is an ARRAY_TYPE). This one is a recursive count of all
2836 ARRAY_TYPEs that are clumped together. */
2837
2838 tree
2839 array_type_nelts_total (tree type)
2840 {
2841 tree sz = array_type_nelts_top (type);
2842 type = TREE_TYPE (type);
2843 while (TREE_CODE (type) == ARRAY_TYPE)
2844 {
2845 tree n = array_type_nelts_top (type);
2846 sz = fold_build2_loc (input_location,
2847 MULT_EXPR, sizetype, sz, n);
2848 type = TREE_TYPE (type);
2849 }
2850 return sz;
2851 }
2852
2853 struct bot_data
2854 {
2855 splay_tree target_remap;
2856 bool clear_location;
2857 };
2858
2859 /* Called from break_out_target_exprs via mapcar. */
2860
2861 static tree
2862 bot_manip (tree* tp, int* walk_subtrees, void* data_)
2863 {
2864 bot_data &data = *(bot_data*)data_;
2865 splay_tree target_remap = data.target_remap;
2866 tree t = *tp;
2867
2868 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
2869 {
2870 /* There can't be any TARGET_EXPRs or their slot variables below this
2871 point. But we must make a copy, in case subsequent processing
2872 alters any part of it. For example, during gimplification a cast
2873 of the form (T) &X::f (where "f" is a member function) will lead
2874 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
2875 *walk_subtrees = 0;
2876 *tp = unshare_expr (t);
2877 return NULL_TREE;
2878 }
2879 if (TREE_CODE (t) == TARGET_EXPR)
2880 {
2881 tree u;
2882
2883 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
2884 {
2885 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
2886 tf_warning_or_error);
2887 if (u == error_mark_node)
2888 return u;
2889 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
2890 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
2891 }
2892 else
2893 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
2894 tf_warning_or_error);
2895
2896 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
2897 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
2898 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
2899
2900 /* Map the old variable to the new one. */
2901 splay_tree_insert (target_remap,
2902 (splay_tree_key) TREE_OPERAND (t, 0),
2903 (splay_tree_value) TREE_OPERAND (u, 0));
2904
2905 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1),
2906 data.clear_location);
2907 if (TREE_OPERAND (u, 1) == error_mark_node)
2908 return error_mark_node;
2909
2910 /* Replace the old expression with the new version. */
2911 *tp = u;
2912 /* We don't have to go below this point; the recursive call to
2913 break_out_target_exprs will have handled anything below this
2914 point. */
2915 *walk_subtrees = 0;
2916 return NULL_TREE;
2917 }
2918 if (TREE_CODE (*tp) == SAVE_EXPR)
2919 {
2920 t = *tp;
2921 splay_tree_node n = splay_tree_lookup (target_remap,
2922 (splay_tree_key) t);
2923 if (n)
2924 {
2925 *tp = (tree)n->value;
2926 *walk_subtrees = 0;
2927 }
2928 else
2929 {
2930 copy_tree_r (tp, walk_subtrees, NULL);
2931 splay_tree_insert (target_remap,
2932 (splay_tree_key)t,
2933 (splay_tree_value)*tp);
2934 /* Make sure we don't remap an already-remapped SAVE_EXPR. */
2935 splay_tree_insert (target_remap,
2936 (splay_tree_key)*tp,
2937 (splay_tree_value)*tp);
2938 }
2939 return NULL_TREE;
2940 }
2941
2942 /* Make a copy of this node. */
2943 t = copy_tree_r (tp, walk_subtrees, NULL);
2944 if (TREE_CODE (*tp) == CALL_EXPR || TREE_CODE (*tp) == AGGR_INIT_EXPR)
2945 if (!processing_template_decl)
2946 set_flags_from_callee (*tp);
2947 if (data.clear_location && EXPR_HAS_LOCATION (*tp))
2948 SET_EXPR_LOCATION (*tp, input_location);
2949 return t;
2950 }
2951
2952 /* Replace all remapped VAR_DECLs in T with their new equivalents.
2953 DATA is really a splay-tree mapping old variables to new
2954 variables. */
2955
2956 static tree
2957 bot_replace (tree* t, int* /*walk_subtrees*/, void* data_)
2958 {
2959 bot_data &data = *(bot_data*)data_;
2960 splay_tree target_remap = data.target_remap;
2961
2962 if (VAR_P (*t))
2963 {
2964 splay_tree_node n = splay_tree_lookup (target_remap,
2965 (splay_tree_key) *t);
2966 if (n)
2967 *t = (tree) n->value;
2968 }
2969 else if (TREE_CODE (*t) == PARM_DECL
2970 && DECL_NAME (*t) == this_identifier
2971 && !DECL_CONTEXT (*t))
2972 {
2973 /* In an NSDMI we need to replace the 'this' parameter we used for
2974 parsing with the real one for this function. */
2975 *t = current_class_ptr;
2976 }
2977 else if (TREE_CODE (*t) == CONVERT_EXPR
2978 && CONVERT_EXPR_VBASE_PATH (*t))
2979 {
2980 /* In an NSDMI build_base_path defers building conversions to virtual
2981 bases, and we handle it here. */
2982 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
2983 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2984 int i; tree binfo;
2985 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo)
2986 if (BINFO_TYPE (binfo) == basetype)
2987 break;
2988 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
2989 tf_warning_or_error);
2990 }
2991
2992 return NULL_TREE;
2993 }
2994
2995 /* When we parse a default argument expression, we may create
2996 temporary variables via TARGET_EXPRs. When we actually use the
2997 default-argument expression, we make a copy of the expression
2998 and replace the temporaries with appropriate local versions.
2999
3000 If CLEAR_LOCATION is true, override any EXPR_LOCATION with
3001 input_location. */
3002
3003 tree
3004 break_out_target_exprs (tree t, bool clear_location /* = false */)
3005 {
3006 static int target_remap_count;
3007 static splay_tree target_remap;
3008
3009 if (!target_remap_count++)
3010 target_remap = splay_tree_new (splay_tree_compare_pointers,
3011 /*splay_tree_delete_key_fn=*/NULL,
3012 /*splay_tree_delete_value_fn=*/NULL);
3013 bot_data data = { target_remap, clear_location };
3014 if (cp_walk_tree (&t, bot_manip, &data, NULL) == error_mark_node)
3015 t = error_mark_node;
3016 cp_walk_tree (&t, bot_replace, &data, NULL);
3017
3018 if (!--target_remap_count)
3019 {
3020 splay_tree_delete (target_remap);
3021 target_remap = NULL;
3022 }
3023
3024 return t;
3025 }
3026
3027 /* Build an expression for the subobject of OBJ at CONSTRUCTOR index INDEX,
3028 which we expect to have type TYPE. */
3029
3030 tree
3031 build_ctor_subob_ref (tree index, tree type, tree obj)
3032 {
3033 if (index == NULL_TREE)
3034 /* Can't refer to a particular member of a vector. */
3035 obj = NULL_TREE;
3036 else if (TREE_CODE (index) == INTEGER_CST)
3037 obj = cp_build_array_ref (input_location, obj, index, tf_none);
3038 else
3039 obj = build_class_member_access_expr (obj, index, NULL_TREE,
3040 /*reference*/false, tf_none);
3041 if (obj)
3042 {
3043 tree objtype = TREE_TYPE (obj);
3044 if (TREE_CODE (objtype) == ARRAY_TYPE && !TYPE_DOMAIN (objtype))
3045 {
3046 /* When the destination object refers to a flexible array member
3047 verify that it matches the type of the source object except
3048 for its domain and qualifiers. */
3049 gcc_assert (comptypes (TYPE_MAIN_VARIANT (type),
3050 TYPE_MAIN_VARIANT (objtype),
3051 COMPARE_REDECLARATION));
3052 }
3053 else
3054 gcc_assert (same_type_ignoring_top_level_qualifiers_p (type, objtype));
3055 }
3056
3057 return obj;
3058 }
3059
3060 struct replace_placeholders_t
3061 {
3062 tree obj; /* The object to be substituted for a PLACEHOLDER_EXPR. */
3063 tree exp; /* The outermost exp. */
3064 bool seen; /* Whether we've encountered a PLACEHOLDER_EXPR. */
3065 hash_set<tree> *pset; /* To avoid walking same trees multiple times. */
3066 };
3067
3068 /* Like substitute_placeholder_in_expr, but handle C++ tree codes and
3069 build up subexpressions as we go deeper. */
3070
3071 static tree
3072 replace_placeholders_r (tree* t, int* walk_subtrees, void* data_)
3073 {
3074 replace_placeholders_t *d = static_cast<replace_placeholders_t*>(data_);
3075 tree obj = d->obj;
3076
3077 if (TYPE_P (*t) || TREE_CONSTANT (*t))
3078 {
3079 *walk_subtrees = false;
3080 return NULL_TREE;
3081 }
3082
3083 switch (TREE_CODE (*t))
3084 {
3085 case PLACEHOLDER_EXPR:
3086 {
3087 tree x = obj;
3088 for (; !same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (*t),
3089 TREE_TYPE (x));
3090 x = TREE_OPERAND (x, 0))
3091 gcc_assert (handled_component_p (x));
3092 *t = unshare_expr (x);
3093 *walk_subtrees = false;
3094 d->seen = true;
3095 }
3096 break;
3097
3098 case CONSTRUCTOR:
3099 {
3100 constructor_elt *ce;
3101 vec<constructor_elt,va_gc> *v = CONSTRUCTOR_ELTS (*t);
3102 /* Don't walk into CONSTRUCTOR_PLACEHOLDER_BOUNDARY ctors
3103 other than the d->exp one, those have PLACEHOLDER_EXPRs
3104 related to another object. */
3105 if ((CONSTRUCTOR_PLACEHOLDER_BOUNDARY (*t)
3106 && *t != d->exp)
3107 || d->pset->add (*t))
3108 {
3109 *walk_subtrees = false;
3110 return NULL_TREE;
3111 }
3112 for (unsigned i = 0; vec_safe_iterate (v, i, &ce); ++i)
3113 {
3114 tree *valp = &ce->value;
3115 tree type = TREE_TYPE (*valp);
3116 tree subob = obj;
3117
3118 if (TREE_CODE (*valp) == CONSTRUCTOR
3119 && AGGREGATE_TYPE_P (type))
3120 {
3121 /* If we're looking at the initializer for OBJ, then build
3122 a sub-object reference. If we're looking at an
3123 initializer for another object, just pass OBJ down. */
3124 if (same_type_ignoring_top_level_qualifiers_p
3125 (TREE_TYPE (*t), TREE_TYPE (obj)))
3126 subob = build_ctor_subob_ref (ce->index, type, obj);
3127 if (TREE_CODE (*valp) == TARGET_EXPR)
3128 valp = &TARGET_EXPR_INITIAL (*valp);
3129 }
3130 d->obj = subob;
3131 cp_walk_tree (valp, replace_placeholders_r, data_, NULL);
3132 d->obj = obj;
3133 }
3134 *walk_subtrees = false;
3135 break;
3136 }
3137
3138 default:
3139 if (d->pset->add (*t))
3140 *walk_subtrees = false;
3141 break;
3142 }
3143
3144 return NULL_TREE;
3145 }
3146
3147 /* Replace PLACEHOLDER_EXPRs in EXP with object OBJ. SEEN_P is set if
3148 a PLACEHOLDER_EXPR has been encountered. */
3149
3150 tree
3151 replace_placeholders (tree exp, tree obj, bool *seen_p)
3152 {
3153 /* This is only relevant for C++14. */
3154 if (cxx_dialect < cxx14)
3155 return exp;
3156
3157 /* If the object isn't a (member of a) class, do nothing. */
3158 tree op0 = obj;
3159 while (TREE_CODE (op0) == COMPONENT_REF)
3160 op0 = TREE_OPERAND (op0, 0);
3161 if (!CLASS_TYPE_P (strip_array_types (TREE_TYPE (op0))))
3162 return exp;
3163
3164 tree *tp = &exp;
3165 if (TREE_CODE (exp) == TARGET_EXPR)
3166 tp = &TARGET_EXPR_INITIAL (exp);
3167 hash_set<tree> pset;
3168 replace_placeholders_t data = { obj, *tp, false, &pset };
3169 cp_walk_tree (tp, replace_placeholders_r, &data, NULL);
3170 if (seen_p)
3171 *seen_p = data.seen;
3172 return exp;
3173 }
3174
3175 /* Callback function for find_placeholders. */
3176
3177 static tree
3178 find_placeholders_r (tree *t, int *walk_subtrees, void *)
3179 {
3180 if (TYPE_P (*t) || TREE_CONSTANT (*t))
3181 {
3182 *walk_subtrees = false;
3183 return NULL_TREE;
3184 }
3185
3186 switch (TREE_CODE (*t))
3187 {
3188 case PLACEHOLDER_EXPR:
3189 return *t;
3190
3191 case CONSTRUCTOR:
3192 if (CONSTRUCTOR_PLACEHOLDER_BOUNDARY (*t))
3193 *walk_subtrees = false;
3194 break;
3195
3196 default:
3197 break;
3198 }
3199
3200 return NULL_TREE;
3201 }
3202
3203 /* Return true if EXP contains a PLACEHOLDER_EXPR. Don't walk into
3204 ctors with CONSTRUCTOR_PLACEHOLDER_BOUNDARY flag set. */
3205
3206 bool
3207 find_placeholders (tree exp)
3208 {
3209 /* This is only relevant for C++14. */
3210 if (cxx_dialect < cxx14)
3211 return false;
3212
3213 return cp_walk_tree_without_duplicates (&exp, find_placeholders_r, NULL);
3214 }
3215
3216 /* Similar to `build_nt', but for template definitions of dependent
3217 expressions */
3218
3219 tree
3220 build_min_nt_loc (location_t loc, enum tree_code code, ...)
3221 {
3222 tree t;
3223 int length;
3224 int i;
3225 va_list p;
3226
3227 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3228
3229 va_start (p, code);
3230
3231 t = make_node (code);
3232 SET_EXPR_LOCATION (t, loc);
3233 length = TREE_CODE_LENGTH (code);
3234
3235 for (i = 0; i < length; i++)
3236 TREE_OPERAND (t, i) = va_arg (p, tree);
3237
3238 va_end (p);
3239 return t;
3240 }
3241
3242 /* Similar to `build', but for template definitions. */
3243
3244 tree
3245 build_min (enum tree_code code, tree tt, ...)
3246 {
3247 tree t;
3248 int length;
3249 int i;
3250 va_list p;
3251
3252 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3253
3254 va_start (p, tt);
3255
3256 t = make_node (code);
3257 length = TREE_CODE_LENGTH (code);
3258 TREE_TYPE (t) = tt;
3259
3260 for (i = 0; i < length; i++)
3261 {
3262 tree x = va_arg (p, tree);
3263 TREE_OPERAND (t, i) = x;
3264 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
3265 TREE_SIDE_EFFECTS (t) = 1;
3266 }
3267
3268 va_end (p);
3269
3270 return t;
3271 }
3272
3273 /* Similar to `build', but for template definitions of non-dependent
3274 expressions. NON_DEP is the non-dependent expression that has been
3275 built. */
3276
3277 tree
3278 build_min_non_dep (enum tree_code code, tree non_dep, ...)
3279 {
3280 tree t;
3281 int length;
3282 int i;
3283 va_list p;
3284
3285 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3286
3287 va_start (p, non_dep);
3288
3289 if (REFERENCE_REF_P (non_dep))
3290 non_dep = TREE_OPERAND (non_dep, 0);
3291
3292 t = make_node (code);
3293 length = TREE_CODE_LENGTH (code);
3294 TREE_TYPE (t) = unlowered_expr_type (non_dep);
3295 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
3296
3297 for (i = 0; i < length; i++)
3298 TREE_OPERAND (t, i) = va_arg (p, tree);
3299
3300 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
3301 /* This should not be considered a COMPOUND_EXPR, because it
3302 resolves to an overload. */
3303 COMPOUND_EXPR_OVERLOADED (t) = 1;
3304
3305 va_end (p);
3306 return convert_from_reference (t);
3307 }
3308
3309 /* Similar to build_min_nt, but call expressions */
3310
3311 tree
3312 build_min_nt_call_vec (tree fn, vec<tree, va_gc> *args)
3313 {
3314 tree ret, t;
3315 unsigned int ix;
3316
3317 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
3318 CALL_EXPR_FN (ret) = fn;
3319 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3320 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
3321 CALL_EXPR_ARG (ret, ix) = t;
3322
3323 return ret;
3324 }
3325
3326 /* Similar to `build_min_nt_call_vec', but for template definitions of
3327 non-dependent expressions. NON_DEP is the non-dependent expression
3328 that has been built. */
3329
3330 tree
3331 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec)
3332 {
3333 tree t = build_min_nt_call_vec (fn, argvec);
3334 if (REFERENCE_REF_P (non_dep))
3335 non_dep = TREE_OPERAND (non_dep, 0);
3336 TREE_TYPE (t) = TREE_TYPE (non_dep);
3337 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
3338 return convert_from_reference (t);
3339 }
3340
3341 /* Similar to build_min_non_dep, but for expressions that have been resolved to
3342 a call to an operator overload. OP is the operator that has been
3343 overloaded. NON_DEP is the non-dependent expression that's been built,
3344 which should be a CALL_EXPR or an INDIRECT_REF to a CALL_EXPR. OVERLOAD is
3345 the overload that NON_DEP is calling. */
3346
3347 tree
3348 build_min_non_dep_op_overload (enum tree_code op,
3349 tree non_dep,
3350 tree overload, ...)
3351 {
3352 va_list p;
3353 int nargs, expected_nargs;
3354 tree fn, call;
3355
3356 non_dep = extract_call_expr (non_dep);
3357
3358 nargs = call_expr_nargs (non_dep);
3359
3360 expected_nargs = cp_tree_code_length (op);
3361 if ((op == POSTINCREMENT_EXPR
3362 || op == POSTDECREMENT_EXPR)
3363 /* With -fpermissive non_dep could be operator++(). */
3364 && (!flag_permissive || nargs != expected_nargs))
3365 expected_nargs += 1;
3366 gcc_assert (nargs == expected_nargs);
3367
3368 releasing_vec args;
3369 va_start (p, overload);
3370
3371 if (TREE_CODE (TREE_TYPE (overload)) == FUNCTION_TYPE)
3372 {
3373 fn = overload;
3374 for (int i = 0; i < nargs; i++)
3375 {
3376 tree arg = va_arg (p, tree);
3377 vec_safe_push (args, arg);
3378 }
3379 }
3380 else if (TREE_CODE (TREE_TYPE (overload)) == METHOD_TYPE)
3381 {
3382 tree object = va_arg (p, tree);
3383 tree binfo = TYPE_BINFO (TREE_TYPE (object));
3384 tree method = build_baselink (binfo, binfo, overload, NULL_TREE);
3385 fn = build_min (COMPONENT_REF, TREE_TYPE (overload),
3386 object, method, NULL_TREE);
3387 for (int i = 1; i < nargs; i++)
3388 {
3389 tree arg = va_arg (p, tree);
3390 vec_safe_push (args, arg);
3391 }
3392 }
3393 else
3394 gcc_unreachable ();
3395
3396 va_end (p);
3397 call = build_min_non_dep_call_vec (non_dep, fn, args);
3398
3399 tree call_expr = extract_call_expr (call);
3400 KOENIG_LOOKUP_P (call_expr) = KOENIG_LOOKUP_P (non_dep);
3401 CALL_EXPR_OPERATOR_SYNTAX (call_expr) = true;
3402 CALL_EXPR_ORDERED_ARGS (call_expr) = CALL_EXPR_ORDERED_ARGS (non_dep);
3403 CALL_EXPR_REVERSE_ARGS (call_expr) = CALL_EXPR_REVERSE_ARGS (non_dep);
3404
3405 return call;
3406 }
3407
3408 /* Return a new tree vec copied from VEC, with ELT inserted at index IDX. */
3409
3410 vec<tree, va_gc> *
3411 vec_copy_and_insert (vec<tree, va_gc> *old_vec, tree elt, unsigned idx)
3412 {
3413 unsigned len = vec_safe_length (old_vec);
3414 gcc_assert (idx <= len);
3415
3416 vec<tree, va_gc> *new_vec = NULL;
3417 vec_alloc (new_vec, len + 1);
3418
3419 unsigned i;
3420 for (i = 0; i < len; ++i)
3421 {
3422 if (i == idx)
3423 new_vec->quick_push (elt);
3424 new_vec->quick_push ((*old_vec)[i]);
3425 }
3426 if (i == idx)
3427 new_vec->quick_push (elt);
3428
3429 return new_vec;
3430 }
3431
3432 tree
3433 get_type_decl (tree t)
3434 {
3435 if (TREE_CODE (t) == TYPE_DECL)
3436 return t;
3437 if (TYPE_P (t))
3438 return TYPE_STUB_DECL (t);
3439 gcc_assert (t == error_mark_node);
3440 return t;
3441 }
3442
3443 /* Returns the namespace that contains DECL, whether directly or
3444 indirectly. */
3445
3446 tree
3447 decl_namespace_context (tree decl)
3448 {
3449 while (1)
3450 {
3451 if (TREE_CODE (decl) == NAMESPACE_DECL)
3452 return decl;
3453 else if (TYPE_P (decl))
3454 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
3455 else
3456 decl = CP_DECL_CONTEXT (decl);
3457 }
3458 }
3459
3460 /* Returns true if decl is within an anonymous namespace, however deeply
3461 nested, or false otherwise. */
3462
3463 bool
3464 decl_anon_ns_mem_p (const_tree decl)
3465 {
3466 while (TREE_CODE (decl) != NAMESPACE_DECL)
3467 {
3468 /* Classes inside anonymous namespaces have TREE_PUBLIC == 0. */
3469 if (TYPE_P (decl))
3470 return !TREE_PUBLIC (TYPE_MAIN_DECL (decl));
3471
3472 decl = CP_DECL_CONTEXT (decl);
3473 }
3474 return !TREE_PUBLIC (decl);
3475 }
3476
3477 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
3478 CALL_EXPRS. Return whether they are equivalent. */
3479
3480 static bool
3481 called_fns_equal (tree t1, tree t2)
3482 {
3483 /* Core 1321: dependent names are equivalent even if the overload sets
3484 are different. But do compare explicit template arguments. */
3485 tree name1 = dependent_name (t1);
3486 tree name2 = dependent_name (t2);
3487 if (name1 || name2)
3488 {
3489 tree targs1 = NULL_TREE, targs2 = NULL_TREE;
3490
3491 if (name1 != name2)
3492 return false;
3493
3494 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
3495 targs1 = TREE_OPERAND (t1, 1);
3496 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
3497 targs2 = TREE_OPERAND (t2, 1);
3498 return cp_tree_equal (targs1, targs2);
3499 }
3500 else
3501 return cp_tree_equal (t1, t2);
3502 }
3503
3504 /* Return truthvalue of whether T1 is the same tree structure as T2.
3505 Return 1 if they are the same. Return 0 if they are different. */
3506
3507 bool
3508 cp_tree_equal (tree t1, tree t2)
3509 {
3510 enum tree_code code1, code2;
3511
3512 if (t1 == t2)
3513 return true;
3514 if (!t1 || !t2)
3515 return false;
3516
3517 code1 = TREE_CODE (t1);
3518 code2 = TREE_CODE (t2);
3519
3520 if (code1 != code2)
3521 return false;
3522
3523 if (CONSTANT_CLASS_P (t1)
3524 && !same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3525 return false;
3526
3527 switch (code1)
3528 {
3529 case VOID_CST:
3530 /* There's only a single VOID_CST node, so we should never reach
3531 here. */
3532 gcc_unreachable ();
3533
3534 case INTEGER_CST:
3535 return tree_int_cst_equal (t1, t2);
3536
3537 case REAL_CST:
3538 return real_equal (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
3539
3540 case STRING_CST:
3541 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3542 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3543 TREE_STRING_LENGTH (t1));
3544
3545 case FIXED_CST:
3546 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
3547 TREE_FIXED_CST (t2));
3548
3549 case COMPLEX_CST:
3550 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
3551 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
3552
3553 case VECTOR_CST:
3554 return operand_equal_p (t1, t2, OEP_ONLY_CONST);
3555
3556 case CONSTRUCTOR:
3557 /* We need to do this when determining whether or not two
3558 non-type pointer to member function template arguments
3559 are the same. */
3560 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
3561 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
3562 return false;
3563 {
3564 tree field, value;
3565 unsigned int i;
3566 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
3567 {
3568 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
3569 if (!cp_tree_equal (field, elt2->index)
3570 || !cp_tree_equal (value, elt2->value))
3571 return false;
3572 }
3573 }
3574 return true;
3575
3576 case TREE_LIST:
3577 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
3578 return false;
3579 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
3580 return false;
3581 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
3582
3583 case SAVE_EXPR:
3584 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3585
3586 case CALL_EXPR:
3587 {
3588 tree arg1, arg2;
3589 call_expr_arg_iterator iter1, iter2;
3590 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
3591 return false;
3592 for (arg1 = first_call_expr_arg (t1, &iter1),
3593 arg2 = first_call_expr_arg (t2, &iter2);
3594 arg1 && arg2;
3595 arg1 = next_call_expr_arg (&iter1),
3596 arg2 = next_call_expr_arg (&iter2))
3597 if (!cp_tree_equal (arg1, arg2))
3598 return false;
3599 if (arg1 || arg2)
3600 return false;
3601 return true;
3602 }
3603
3604 case TARGET_EXPR:
3605 {
3606 tree o1 = TREE_OPERAND (t1, 0);
3607 tree o2 = TREE_OPERAND (t2, 0);
3608
3609 /* Special case: if either target is an unallocated VAR_DECL,
3610 it means that it's going to be unified with whatever the
3611 TARGET_EXPR is really supposed to initialize, so treat it
3612 as being equivalent to anything. */
3613 if (VAR_P (o1) && DECL_NAME (o1) == NULL_TREE
3614 && !DECL_RTL_SET_P (o1))
3615 /*Nop*/;
3616 else if (VAR_P (o2) && DECL_NAME (o2) == NULL_TREE
3617 && !DECL_RTL_SET_P (o2))
3618 /*Nop*/;
3619 else if (!cp_tree_equal (o1, o2))
3620 return false;
3621
3622 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3623 }
3624
3625 case PARM_DECL:
3626 /* For comparing uses of parameters in late-specified return types
3627 with an out-of-class definition of the function, but can also come
3628 up for expressions that involve 'this' in a member function
3629 template. */
3630
3631 if (comparing_specializations && !CONSTRAINT_VAR_P (t1))
3632 /* When comparing hash table entries, only an exact match is
3633 good enough; we don't want to replace 'this' with the
3634 version from another function. But be more flexible
3635 with local parameters in a requires-expression. */
3636 return false;
3637
3638 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3639 {
3640 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
3641 return false;
3642 if (CONSTRAINT_VAR_P (t1) ^ CONSTRAINT_VAR_P (t2))
3643 return false;
3644 if (DECL_ARTIFICIAL (t1)
3645 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
3646 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
3647 return true;
3648 }
3649 return false;
3650
3651 case VAR_DECL:
3652 case CONST_DECL:
3653 case FIELD_DECL:
3654 case FUNCTION_DECL:
3655 case TEMPLATE_DECL:
3656 case IDENTIFIER_NODE:
3657 case SSA_NAME:
3658 case USING_DECL:
3659 return false;
3660
3661 case BASELINK:
3662 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
3663 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
3664 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
3665 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
3666 BASELINK_FUNCTIONS (t2)));
3667
3668 case TEMPLATE_PARM_INDEX:
3669 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
3670 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
3671 && (TEMPLATE_PARM_PARAMETER_PACK (t1)
3672 == TEMPLATE_PARM_PARAMETER_PACK (t2))
3673 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
3674 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
3675
3676 case TEMPLATE_ID_EXPR:
3677 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
3678 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
3679
3680 case CONSTRAINT_INFO:
3681 return cp_tree_equal (CI_ASSOCIATED_CONSTRAINTS (t1),
3682 CI_ASSOCIATED_CONSTRAINTS (t2));
3683
3684 case CHECK_CONSTR:
3685 return (CHECK_CONSTR_CONCEPT (t1) == CHECK_CONSTR_CONCEPT (t2)
3686 && comp_template_args (CHECK_CONSTR_ARGS (t1),
3687 CHECK_CONSTR_ARGS (t2)));
3688
3689 case TREE_VEC:
3690 {
3691 unsigned ix;
3692 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
3693 return false;
3694 for (ix = TREE_VEC_LENGTH (t1); ix--;)
3695 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
3696 TREE_VEC_ELT (t2, ix)))
3697 return false;
3698 return true;
3699 }
3700
3701 case SIZEOF_EXPR:
3702 case ALIGNOF_EXPR:
3703 {
3704 tree o1 = TREE_OPERAND (t1, 0);
3705 tree o2 = TREE_OPERAND (t2, 0);
3706
3707 if (code1 == SIZEOF_EXPR)
3708 {
3709 if (SIZEOF_EXPR_TYPE_P (t1))
3710 o1 = TREE_TYPE (o1);
3711 if (SIZEOF_EXPR_TYPE_P (t2))
3712 o2 = TREE_TYPE (o2);
3713 }
3714 if (TREE_CODE (o1) != TREE_CODE (o2))
3715 return false;
3716 if (TYPE_P (o1))
3717 return same_type_p (o1, o2);
3718 else
3719 return cp_tree_equal (o1, o2);
3720 }
3721
3722 case MODOP_EXPR:
3723 {
3724 tree t1_op1, t2_op1;
3725
3726 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
3727 return false;
3728
3729 t1_op1 = TREE_OPERAND (t1, 1);
3730 t2_op1 = TREE_OPERAND (t2, 1);
3731 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
3732 return false;
3733
3734 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
3735 }
3736
3737 case PTRMEM_CST:
3738 /* Two pointer-to-members are the same if they point to the same
3739 field or function in the same class. */
3740 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
3741 return false;
3742
3743 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
3744
3745 case OVERLOAD:
3746 {
3747 /* Two overloads. Must be exactly the same set of decls. */
3748 lkp_iterator first (t1);
3749 lkp_iterator second (t2);
3750
3751 for (; first && second; ++first, ++second)
3752 if (*first != *second)
3753 return false;
3754 return !(first || second);
3755 }
3756
3757 case TRAIT_EXPR:
3758 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
3759 return false;
3760 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
3761 && cp_tree_equal (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
3762
3763 case CAST_EXPR:
3764 case STATIC_CAST_EXPR:
3765 case REINTERPRET_CAST_EXPR:
3766 case CONST_CAST_EXPR:
3767 case DYNAMIC_CAST_EXPR:
3768 case IMPLICIT_CONV_EXPR:
3769 case NEW_EXPR:
3770 CASE_CONVERT:
3771 case NON_LVALUE_EXPR:
3772 case VIEW_CONVERT_EXPR:
3773 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3774 return false;
3775 /* Now compare operands as usual. */
3776 break;
3777
3778 case DEFERRED_NOEXCEPT:
3779 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
3780 DEFERRED_NOEXCEPT_PATTERN (t2))
3781 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
3782 DEFERRED_NOEXCEPT_ARGS (t2)));
3783 break;
3784
3785 case LAMBDA_EXPR:
3786 /* Two lambda-expressions are never considered equivalent. */
3787 return false;
3788
3789 default:
3790 break;
3791 }
3792
3793 switch (TREE_CODE_CLASS (code1))
3794 {
3795 case tcc_unary:
3796 case tcc_binary:
3797 case tcc_comparison:
3798 case tcc_expression:
3799 case tcc_vl_exp:
3800 case tcc_reference:
3801 case tcc_statement:
3802 {
3803 int i, n;
3804
3805 n = cp_tree_operand_length (t1);
3806 if (TREE_CODE_CLASS (code1) == tcc_vl_exp
3807 && n != TREE_OPERAND_LENGTH (t2))
3808 return false;
3809
3810 for (i = 0; i < n; ++i)
3811 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
3812 return false;
3813
3814 return true;
3815 }
3816
3817 case tcc_type:
3818 return same_type_p (t1, t2);
3819 default:
3820 gcc_unreachable ();
3821 }
3822 /* We can get here with --disable-checking. */
3823 return false;
3824 }
3825
3826 /* The type of ARG when used as an lvalue. */
3827
3828 tree
3829 lvalue_type (tree arg)
3830 {
3831 tree type = TREE_TYPE (arg);
3832 return type;
3833 }
3834
3835 /* The type of ARG for printing error messages; denote lvalues with
3836 reference types. */
3837
3838 tree
3839 error_type (tree arg)
3840 {
3841 tree type = TREE_TYPE (arg);
3842
3843 if (TREE_CODE (type) == ARRAY_TYPE)
3844 ;
3845 else if (TREE_CODE (type) == ERROR_MARK)
3846 ;
3847 else if (lvalue_p (arg))
3848 type = build_reference_type (lvalue_type (arg));
3849 else if (MAYBE_CLASS_TYPE_P (type))
3850 type = lvalue_type (arg);
3851
3852 return type;
3853 }
3854
3855 /* Does FUNCTION use a variable-length argument list? */
3856
3857 int
3858 varargs_function_p (const_tree function)
3859 {
3860 return stdarg_p (TREE_TYPE (function));
3861 }
3862
3863 /* Returns 1 if decl is a member of a class. */
3864
3865 int
3866 member_p (const_tree decl)
3867 {
3868 const_tree const ctx = DECL_CONTEXT (decl);
3869 return (ctx && TYPE_P (ctx));
3870 }
3871
3872 /* Create a placeholder for member access where we don't actually have an
3873 object that the access is against. */
3874
3875 tree
3876 build_dummy_object (tree type)
3877 {
3878 tree decl = build1 (CONVERT_EXPR, build_pointer_type (type), void_node);
3879 return cp_build_fold_indirect_ref (decl);
3880 }
3881
3882 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
3883 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
3884 binfo path from current_class_type to TYPE, or 0. */
3885
3886 tree
3887 maybe_dummy_object (tree type, tree* binfop)
3888 {
3889 tree decl, context;
3890 tree binfo;
3891 tree current = current_nonlambda_class_type ();
3892
3893 if (current
3894 && (binfo = lookup_base (current, type, ba_any, NULL,
3895 tf_warning_or_error)))
3896 context = current;
3897 else
3898 {
3899 /* Reference from a nested class member function. */
3900 context = type;
3901 binfo = TYPE_BINFO (type);
3902 }
3903
3904 if (binfop)
3905 *binfop = binfo;
3906
3907 if (current_class_ref
3908 /* current_class_ref might not correspond to current_class_type if
3909 we're in tsubst_default_argument or a lambda-declarator; in either
3910 case, we want to use current_class_ref if it matches CONTEXT. */
3911 && (same_type_ignoring_top_level_qualifiers_p
3912 (TREE_TYPE (current_class_ref), context)))
3913 decl = current_class_ref;
3914 else
3915 decl = build_dummy_object (context);
3916
3917 return decl;
3918 }
3919
3920 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
3921
3922 int
3923 is_dummy_object (const_tree ob)
3924 {
3925 if (INDIRECT_REF_P (ob))
3926 ob = TREE_OPERAND (ob, 0);
3927 return (TREE_CODE (ob) == CONVERT_EXPR
3928 && TREE_OPERAND (ob, 0) == void_node);
3929 }
3930
3931 /* Returns 1 iff type T is something we want to treat as a scalar type for
3932 the purpose of deciding whether it is trivial/POD/standard-layout. */
3933
3934 bool
3935 scalarish_type_p (const_tree t)
3936 {
3937 if (t == error_mark_node)
3938 return 1;
3939
3940 return (SCALAR_TYPE_P (t) || VECTOR_TYPE_P (t));
3941 }
3942
3943 /* Returns true iff T requires non-trivial default initialization. */
3944
3945 bool
3946 type_has_nontrivial_default_init (const_tree t)
3947 {
3948 t = strip_array_types (CONST_CAST_TREE (t));
3949
3950 if (CLASS_TYPE_P (t))
3951 return TYPE_HAS_COMPLEX_DFLT (t);
3952 else
3953 return 0;
3954 }
3955
3956 /* Track classes with only deleted copy/move constructors so that we can warn
3957 if they are used in call/return by value. */
3958
3959 static GTY(()) hash_set<tree>* deleted_copy_types;
3960 static void
3961 remember_deleted_copy (const_tree t)
3962 {
3963 if (!deleted_copy_types)
3964 deleted_copy_types = hash_set<tree>::create_ggc(37);
3965 deleted_copy_types->add (CONST_CAST_TREE (t));
3966 }
3967 void
3968 maybe_warn_parm_abi (tree t, location_t loc)
3969 {
3970 if (!deleted_copy_types
3971 || !deleted_copy_types->contains (t))
3972 return;
3973
3974 if ((flag_abi_version == 12 || warn_abi_version == 12)
3975 && classtype_has_non_deleted_move_ctor (t))
3976 {
3977 bool w;
3978 auto_diagnostic_group d;
3979 if (flag_abi_version > 12)
3980 w = warning_at (loc, OPT_Wabi, "%<-fabi-version=13%> (GCC 8.2) fixes "
3981 "the calling convention for %qT, which was "
3982 "accidentally changed in 8.1", t);
3983 else
3984 w = warning_at (loc, OPT_Wabi, "%<-fabi-version=12%> (GCC 8.1) accident"
3985 "ally changes the calling convention for %qT", t);
3986 if (w)
3987 inform (location_of (t), " declared here");
3988 return;
3989 }
3990
3991 auto_diagnostic_group d;
3992 if (warning_at (loc, OPT_Wabi, "the calling convention for %qT changes in "
3993 "%<-fabi-version=13%> (GCC 8.2)", t))
3994 inform (location_of (t), " because all of its copy and move "
3995 "constructors are deleted");
3996 }
3997
3998 /* Returns true iff copying an object of type T (including via move
3999 constructor) is non-trivial. That is, T has no non-trivial copy
4000 constructors and no non-trivial move constructors, and not all copy/move
4001 constructors are deleted. This function implements the ABI notion of
4002 non-trivial copy, which has diverged from the one in the standard. */
4003
4004 bool
4005 type_has_nontrivial_copy_init (const_tree type)
4006 {
4007 tree t = strip_array_types (CONST_CAST_TREE (type));
4008
4009 if (CLASS_TYPE_P (t))
4010 {
4011 gcc_assert (COMPLETE_TYPE_P (t));
4012
4013 if (TYPE_HAS_COMPLEX_COPY_CTOR (t)
4014 || TYPE_HAS_COMPLEX_MOVE_CTOR (t))
4015 /* Nontrivial. */
4016 return true;
4017
4018 if (cxx_dialect < cxx11)
4019 /* No deleted functions before C++11. */
4020 return false;
4021
4022 /* Before ABI v12 we did a bitwise copy of types with only deleted
4023 copy/move constructors. */
4024 if (!abi_version_at_least (12)
4025 && !(warn_abi && abi_version_crosses (12)))
4026 return false;
4027
4028 bool saw_copy = false;
4029 bool saw_non_deleted = false;
4030 bool saw_non_deleted_move = false;
4031
4032 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
4033 saw_copy = saw_non_deleted = true;
4034 else if (CLASSTYPE_LAZY_COPY_CTOR (t))
4035 {
4036 saw_copy = true;
4037 if (classtype_has_move_assign_or_move_ctor_p (t, true))
4038 /* [class.copy]/8 If the class definition declares a move
4039 constructor or move assignment operator, the implicitly declared
4040 copy constructor is defined as deleted.... */;
4041 else
4042 /* Any other reason the implicitly-declared function would be
4043 deleted would also cause TYPE_HAS_COMPLEX_COPY_CTOR to be
4044 set. */
4045 saw_non_deleted = true;
4046 }
4047
4048 if (!saw_non_deleted)
4049 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
4050 {
4051 tree fn = *iter;
4052 if (copy_fn_p (fn))
4053 {
4054 saw_copy = true;
4055 if (!DECL_DELETED_FN (fn))
4056 {
4057 /* Not deleted, therefore trivial. */
4058 saw_non_deleted = true;
4059 break;
4060 }
4061 }
4062 else if (move_fn_p (fn))
4063 if (!DECL_DELETED_FN (fn))
4064 saw_non_deleted_move = true;
4065 }
4066
4067 gcc_assert (saw_copy);
4068
4069 /* ABI v12 buggily ignored move constructors. */
4070 bool v11nontriv = false;
4071 bool v12nontriv = !saw_non_deleted;
4072 bool v13nontriv = !saw_non_deleted && !saw_non_deleted_move;
4073 bool nontriv = (abi_version_at_least (13) ? v13nontriv
4074 : flag_abi_version == 12 ? v12nontriv
4075 : v11nontriv);
4076 bool warn_nontriv = (warn_abi_version >= 13 ? v13nontriv
4077 : warn_abi_version == 12 ? v12nontriv
4078 : v11nontriv);
4079 if (nontriv != warn_nontriv)
4080 remember_deleted_copy (t);
4081
4082 return nontriv;
4083 }
4084 else
4085 return 0;
4086 }
4087
4088 /* Returns 1 iff type T is a trivially copyable type, as defined in
4089 [basic.types] and [class]. */
4090
4091 bool
4092 trivially_copyable_p (const_tree t)
4093 {
4094 t = strip_array_types (CONST_CAST_TREE (t));
4095
4096 if (CLASS_TYPE_P (t))
4097 return ((!TYPE_HAS_COPY_CTOR (t)
4098 || !TYPE_HAS_COMPLEX_COPY_CTOR (t))
4099 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
4100 && (!TYPE_HAS_COPY_ASSIGN (t)
4101 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
4102 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
4103 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
4104 else
4105 /* CWG 2094 makes volatile-qualified scalars trivially copyable again. */
4106 return scalarish_type_p (t);
4107 }
4108
4109 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
4110 [class]. */
4111
4112 bool
4113 trivial_type_p (const_tree t)
4114 {
4115 t = strip_array_types (CONST_CAST_TREE (t));
4116
4117 if (CLASS_TYPE_P (t))
4118 return (TYPE_HAS_TRIVIAL_DFLT (t)
4119 && trivially_copyable_p (t));
4120 else
4121 return scalarish_type_p (t);
4122 }
4123
4124 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
4125
4126 bool
4127 pod_type_p (const_tree t)
4128 {
4129 /* This CONST_CAST is okay because strip_array_types returns its
4130 argument unmodified and we assign it to a const_tree. */
4131 t = strip_array_types (CONST_CAST_TREE(t));
4132
4133 if (!CLASS_TYPE_P (t))
4134 return scalarish_type_p (t);
4135 else if (cxx_dialect > cxx98)
4136 /* [class]/10: A POD struct is a class that is both a trivial class and a
4137 standard-layout class, and has no non-static data members of type
4138 non-POD struct, non-POD union (or array of such types).
4139
4140 We don't need to check individual members because if a member is
4141 non-std-layout or non-trivial, the class will be too. */
4142 return (std_layout_type_p (t) && trivial_type_p (t));
4143 else
4144 /* The C++98 definition of POD is different. */
4145 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
4146 }
4147
4148 /* Returns true iff T is POD for the purpose of layout, as defined in the
4149 C++ ABI. */
4150
4151 bool
4152 layout_pod_type_p (const_tree t)
4153 {
4154 t = strip_array_types (CONST_CAST_TREE (t));
4155
4156 if (CLASS_TYPE_P (t))
4157 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
4158 else
4159 return scalarish_type_p (t);
4160 }
4161
4162 /* Returns true iff T is a standard-layout type, as defined in
4163 [basic.types]. */
4164
4165 bool
4166 std_layout_type_p (const_tree t)
4167 {
4168 t = strip_array_types (CONST_CAST_TREE (t));
4169
4170 if (CLASS_TYPE_P (t))
4171 return !CLASSTYPE_NON_STD_LAYOUT (t);
4172 else
4173 return scalarish_type_p (t);
4174 }
4175
4176 static bool record_has_unique_obj_representations (const_tree, const_tree);
4177
4178 /* Returns true iff T satisfies std::has_unique_object_representations<T>,
4179 as defined in [meta.unary.prop]. */
4180
4181 bool
4182 type_has_unique_obj_representations (const_tree t)
4183 {
4184 bool ret;
4185
4186 t = strip_array_types (CONST_CAST_TREE (t));
4187
4188 if (!trivially_copyable_p (t))
4189 return false;
4190
4191 if (CLASS_TYPE_P (t) && CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t))
4192 return CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t);
4193
4194 switch (TREE_CODE (t))
4195 {
4196 case INTEGER_TYPE:
4197 case POINTER_TYPE:
4198 case REFERENCE_TYPE:
4199 /* If some backend has any paddings in these types, we should add
4200 a target hook for this and handle it there. */
4201 return true;
4202
4203 case BOOLEAN_TYPE:
4204 /* For bool values other than 0 and 1 should only appear with
4205 undefined behavior. */
4206 return true;
4207
4208 case ENUMERAL_TYPE:
4209 return type_has_unique_obj_representations (ENUM_UNDERLYING_TYPE (t));
4210
4211 case REAL_TYPE:
4212 /* XFmode certainly contains padding on x86, which the CPU doesn't store
4213 when storing long double values, so for that we have to return false.
4214 Other kinds of floating point values are questionable due to +.0/-.0
4215 and NaNs, let's play safe for now. */
4216 return false;
4217
4218 case FIXED_POINT_TYPE:
4219 return false;
4220
4221 case OFFSET_TYPE:
4222 return true;
4223
4224 case COMPLEX_TYPE:
4225 case VECTOR_TYPE:
4226 return type_has_unique_obj_representations (TREE_TYPE (t));
4227
4228 case RECORD_TYPE:
4229 ret = record_has_unique_obj_representations (t, TYPE_SIZE (t));
4230 if (CLASS_TYPE_P (t))
4231 {
4232 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t) = 1;
4233 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t) = ret;
4234 }
4235 return ret;
4236
4237 case UNION_TYPE:
4238 ret = true;
4239 bool any_fields;
4240 any_fields = false;
4241 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
4242 if (TREE_CODE (field) == FIELD_DECL)
4243 {
4244 any_fields = true;
4245 if (!type_has_unique_obj_representations (TREE_TYPE (field))
4246 || simple_cst_equal (DECL_SIZE (field), TYPE_SIZE (t)) != 1)
4247 {
4248 ret = false;
4249 break;
4250 }
4251 }
4252 if (!any_fields && !integer_zerop (TYPE_SIZE (t)))
4253 ret = false;
4254 if (CLASS_TYPE_P (t))
4255 {
4256 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t) = 1;
4257 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t) = ret;
4258 }
4259 return ret;
4260
4261 case NULLPTR_TYPE:
4262 return false;
4263
4264 case ERROR_MARK:
4265 return false;
4266
4267 default:
4268 gcc_unreachable ();
4269 }
4270 }
4271
4272 /* Helper function for type_has_unique_obj_representations. */
4273
4274 static bool
4275 record_has_unique_obj_representations (const_tree t, const_tree sz)
4276 {
4277 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
4278 if (TREE_CODE (field) != FIELD_DECL)
4279 ;
4280 /* For bases, can't use type_has_unique_obj_representations here, as in
4281 struct S { int i : 24; S (); };
4282 struct T : public S { int j : 8; T (); };
4283 S doesn't have unique obj representations, but T does. */
4284 else if (DECL_FIELD_IS_BASE (field))
4285 {
4286 if (!record_has_unique_obj_representations (TREE_TYPE (field),
4287 DECL_SIZE (field)))
4288 return false;
4289 }
4290 else if (DECL_C_BIT_FIELD (field))
4291 {
4292 tree btype = DECL_BIT_FIELD_TYPE (field);
4293 if (!type_has_unique_obj_representations (btype))
4294 return false;
4295 }
4296 else if (!type_has_unique_obj_representations (TREE_TYPE (field)))
4297 return false;
4298
4299 offset_int cur = 0;
4300 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
4301 if (TREE_CODE (field) == FIELD_DECL)
4302 {
4303 offset_int fld = wi::to_offset (DECL_FIELD_OFFSET (field));
4304 offset_int bitpos = wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
4305 fld = fld * BITS_PER_UNIT + bitpos;
4306 if (cur != fld)
4307 return false;
4308 if (DECL_SIZE (field))
4309 {
4310 offset_int size = wi::to_offset (DECL_SIZE (field));
4311 cur += size;
4312 }
4313 }
4314 if (cur != wi::to_offset (sz))
4315 return false;
4316
4317 return true;
4318 }
4319
4320 /* Nonzero iff type T is a class template implicit specialization. */
4321
4322 bool
4323 class_tmpl_impl_spec_p (const_tree t)
4324 {
4325 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
4326 }
4327
4328 /* Returns 1 iff zero initialization of type T means actually storing
4329 zeros in it. */
4330
4331 int
4332 zero_init_p (const_tree t)
4333 {
4334 /* This CONST_CAST is okay because strip_array_types returns its
4335 argument unmodified and we assign it to a const_tree. */
4336 t = strip_array_types (CONST_CAST_TREE(t));
4337
4338 if (t == error_mark_node)
4339 return 1;
4340
4341 /* NULL pointers to data members are initialized with -1. */
4342 if (TYPE_PTRDATAMEM_P (t))
4343 return 0;
4344
4345 /* Classes that contain types that can't be zero-initialized, cannot
4346 be zero-initialized themselves. */
4347 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
4348 return 0;
4349
4350 return 1;
4351 }
4352
4353 /* Handle the C++17 [[nodiscard]] attribute, which is similar to the GNU
4354 warn_unused_result attribute. */
4355
4356 static tree
4357 handle_nodiscard_attribute (tree *node, tree name, tree /*args*/,
4358 int /*flags*/, bool *no_add_attrs)
4359 {
4360 if (TREE_CODE (*node) == FUNCTION_DECL)
4361 {
4362 if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
4363 warning_at (DECL_SOURCE_LOCATION (*node),
4364 OPT_Wattributes, "%qE attribute applied to %qD with void "
4365 "return type", name, *node);
4366 }
4367 else if (OVERLOAD_TYPE_P (*node))
4368 /* OK */;
4369 else
4370 {
4371 warning (OPT_Wattributes, "%qE attribute can only be applied to "
4372 "functions or to class or enumeration types", name);
4373 *no_add_attrs = true;
4374 }
4375 return NULL_TREE;
4376 }
4377
4378 /* Handle a C++2a "no_unique_address" attribute; arguments as in
4379 struct attribute_spec.handler. */
4380 static tree
4381 handle_no_unique_addr_attribute (tree* node,
4382 tree name,
4383 tree /*args*/,
4384 int /*flags*/,
4385 bool* no_add_attrs)
4386 {
4387 if (TREE_CODE (*node) != FIELD_DECL)
4388 {
4389 warning (OPT_Wattributes, "%qE attribute can only be applied to "
4390 "non-static data members", name);
4391 *no_add_attrs = true;
4392 }
4393 else if (DECL_C_BIT_FIELD (*node))
4394 {
4395 warning (OPT_Wattributes, "%qE attribute cannot be applied to "
4396 "a bit-field", name);
4397 *no_add_attrs = true;
4398 }
4399
4400 return NULL_TREE;
4401 }
4402
4403 /* The C++20 [[likely]] and [[unlikely]] attributes on labels map to the GNU
4404 hot/cold attributes. */
4405
4406 static tree
4407 handle_likeliness_attribute (tree *node, tree name, tree args,
4408 int flags, bool *no_add_attrs)
4409 {
4410 *no_add_attrs = true;
4411 if (TREE_CODE (*node) == LABEL_DECL
4412 || TREE_CODE (*node) == FUNCTION_DECL)
4413 {
4414 if (args)
4415 warning (OPT_Wattributes, "%qE attribute takes no arguments", name);
4416 tree bname = (is_attribute_p ("likely", name)
4417 ? get_identifier ("hot") : get_identifier ("cold"));
4418 if (TREE_CODE (*node) == FUNCTION_DECL)
4419 warning (OPT_Wattributes, "ISO C++ %qE attribute does not apply to "
4420 "functions; treating as %<[[gnu::%E]]%>", name, bname);
4421 tree battr = build_tree_list (bname, NULL_TREE);
4422 decl_attributes (node, battr, flags);
4423 return NULL_TREE;
4424 }
4425 else
4426 return error_mark_node;
4427 }
4428
4429 /* Table of valid C++ attributes. */
4430 const struct attribute_spec cxx_attribute_table[] =
4431 {
4432 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
4433 affects_type_identity, handler, exclude } */
4434 { "init_priority", 1, 1, true, false, false, false,
4435 handle_init_priority_attribute, NULL },
4436 { "abi_tag", 1, -1, false, false, false, true,
4437 handle_abi_tag_attribute, NULL },
4438 { NULL, 0, 0, false, false, false, false, NULL, NULL }
4439 };
4440
4441 /* Table of C++ standard attributes. */
4442 const struct attribute_spec std_attribute_table[] =
4443 {
4444 /* { name, min_len, max_len, decl_req, type_req, fn_type_req,
4445 affects_type_identity, handler, exclude } */
4446 { "maybe_unused", 0, 0, false, false, false, false,
4447 handle_unused_attribute, NULL },
4448 { "nodiscard", 0, 0, false, false, false, false,
4449 handle_nodiscard_attribute, NULL },
4450 { "no_unique_address", 0, 0, true, false, false, false,
4451 handle_no_unique_addr_attribute, NULL },
4452 { "likely", 0, 0, false, false, false, false,
4453 handle_likeliness_attribute, attr_cold_hot_exclusions },
4454 { "unlikely", 0, 0, false, false, false, false,
4455 handle_likeliness_attribute, attr_cold_hot_exclusions },
4456 { "noreturn", 0, 0, true, false, false, false,
4457 handle_noreturn_attribute, attr_noreturn_exclusions },
4458 { NULL, 0, 0, false, false, false, false, NULL, NULL }
4459 };
4460
4461 /* Handle an "init_priority" attribute; arguments as in
4462 struct attribute_spec.handler. */
4463 static tree
4464 handle_init_priority_attribute (tree* node,
4465 tree name,
4466 tree args,
4467 int /*flags*/,
4468 bool* no_add_attrs)
4469 {
4470 tree initp_expr = TREE_VALUE (args);
4471 tree decl = *node;
4472 tree type = TREE_TYPE (decl);
4473 int pri;
4474
4475 STRIP_NOPS (initp_expr);
4476 initp_expr = default_conversion (initp_expr);
4477 if (initp_expr)
4478 initp_expr = maybe_constant_value (initp_expr);
4479
4480 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
4481 {
4482 error ("requested %<init_priority%> is not an integer constant");
4483 cxx_constant_value (initp_expr);
4484 *no_add_attrs = true;
4485 return NULL_TREE;
4486 }
4487
4488 pri = TREE_INT_CST_LOW (initp_expr);
4489
4490 type = strip_array_types (type);
4491
4492 if (decl == NULL_TREE
4493 || !VAR_P (decl)
4494 || !TREE_STATIC (decl)
4495 || DECL_EXTERNAL (decl)
4496 || (TREE_CODE (type) != RECORD_TYPE
4497 && TREE_CODE (type) != UNION_TYPE)
4498 /* Static objects in functions are initialized the
4499 first time control passes through that
4500 function. This is not precise enough to pin down an
4501 init_priority value, so don't allow it. */
4502 || current_function_decl)
4503 {
4504 error ("can only use %qE attribute on file-scope definitions "
4505 "of objects of class type", name);
4506 *no_add_attrs = true;
4507 return NULL_TREE;
4508 }
4509
4510 if (pri > MAX_INIT_PRIORITY || pri <= 0)
4511 {
4512 error ("requested %<init_priority%> %i is out of range [0, %i]",
4513 pri, MAX_INIT_PRIORITY);
4514 *no_add_attrs = true;
4515 return NULL_TREE;
4516 }
4517
4518 /* Check for init_priorities that are reserved for
4519 language and runtime support implementations.*/
4520 if (pri <= MAX_RESERVED_INIT_PRIORITY)
4521 {
4522 warning
4523 (0, "requested %<init_priority%> %i is reserved for internal use",
4524 pri);
4525 }
4526
4527 if (SUPPORTS_INIT_PRIORITY)
4528 {
4529 SET_DECL_INIT_PRIORITY (decl, pri);
4530 DECL_HAS_INIT_PRIORITY_P (decl) = 1;
4531 return NULL_TREE;
4532 }
4533 else
4534 {
4535 error ("%qE attribute is not supported on this platform", name);
4536 *no_add_attrs = true;
4537 return NULL_TREE;
4538 }
4539 }
4540
4541 /* DECL is being redeclared; the old declaration had the abi tags in OLD,
4542 and the new one has the tags in NEW_. Give an error if there are tags
4543 in NEW_ that weren't in OLD. */
4544
4545 bool
4546 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_)
4547 {
4548 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST)
4549 old = TREE_VALUE (old);
4550 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST)
4551 new_ = TREE_VALUE (new_);
4552 bool err = false;
4553 for (const_tree t = new_; t; t = TREE_CHAIN (t))
4554 {
4555 tree str = TREE_VALUE (t);
4556 for (const_tree in = old; in; in = TREE_CHAIN (in))
4557 {
4558 tree ostr = TREE_VALUE (in);
4559 if (cp_tree_equal (str, ostr))
4560 goto found;
4561 }
4562 error ("redeclaration of %qD adds abi tag %qE", decl, str);
4563 err = true;
4564 found:;
4565 }
4566 if (err)
4567 {
4568 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here");
4569 return false;
4570 }
4571 return true;
4572 }
4573
4574 /* The abi_tag attribute with the name NAME was given ARGS. If they are
4575 ill-formed, give an error and return false; otherwise, return true. */
4576
4577 bool
4578 check_abi_tag_args (tree args, tree name)
4579 {
4580 if (!args)
4581 {
4582 error ("the %qE attribute requires arguments", name);
4583 return false;
4584 }
4585 for (tree arg = args; arg; arg = TREE_CHAIN (arg))
4586 {
4587 tree elt = TREE_VALUE (arg);
4588 if (TREE_CODE (elt) != STRING_CST
4589 || (!same_type_ignoring_top_level_qualifiers_p
4590 (strip_array_types (TREE_TYPE (elt)),
4591 char_type_node)))
4592 {
4593 error ("arguments to the %qE attribute must be narrow string "
4594 "literals", name);
4595 return false;
4596 }
4597 const char *begin = TREE_STRING_POINTER (elt);
4598 const char *end = begin + TREE_STRING_LENGTH (elt);
4599 for (const char *p = begin; p != end; ++p)
4600 {
4601 char c = *p;
4602 if (p == begin)
4603 {
4604 if (!ISALPHA (c) && c != '_')
4605 {
4606 error ("arguments to the %qE attribute must contain valid "
4607 "identifiers", name);
4608 inform (input_location, "%<%c%> is not a valid first "
4609 "character for an identifier", c);
4610 return false;
4611 }
4612 }
4613 else if (p == end - 1)
4614 gcc_assert (c == 0);
4615 else
4616 {
4617 if (!ISALNUM (c) && c != '_')
4618 {
4619 error ("arguments to the %qE attribute must contain valid "
4620 "identifiers", name);
4621 inform (input_location, "%<%c%> is not a valid character "
4622 "in an identifier", c);
4623 return false;
4624 }
4625 }
4626 }
4627 }
4628 return true;
4629 }
4630
4631 /* Handle an "abi_tag" attribute; arguments as in
4632 struct attribute_spec.handler. */
4633
4634 static tree
4635 handle_abi_tag_attribute (tree* node, tree name, tree args,
4636 int flags, bool* no_add_attrs)
4637 {
4638 if (!check_abi_tag_args (args, name))
4639 goto fail;
4640
4641 if (TYPE_P (*node))
4642 {
4643 if (!OVERLOAD_TYPE_P (*node))
4644 {
4645 error ("%qE attribute applied to non-class, non-enum type %qT",
4646 name, *node);
4647 goto fail;
4648 }
4649 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE))
4650 {
4651 error ("%qE attribute applied to %qT after its definition",
4652 name, *node);
4653 goto fail;
4654 }
4655 else if (CLASS_TYPE_P (*node)
4656 && CLASSTYPE_TEMPLATE_INSTANTIATION (*node))
4657 {
4658 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
4659 "template instantiation %qT", name, *node);
4660 goto fail;
4661 }
4662 else if (CLASS_TYPE_P (*node)
4663 && CLASSTYPE_TEMPLATE_SPECIALIZATION (*node))
4664 {
4665 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
4666 "template specialization %qT", name, *node);
4667 goto fail;
4668 }
4669
4670 tree attributes = TYPE_ATTRIBUTES (*node);
4671 tree decl = TYPE_NAME (*node);
4672
4673 /* Make sure all declarations have the same abi tags. */
4674 if (DECL_SOURCE_LOCATION (decl) != input_location)
4675 {
4676 if (!check_abi_tag_redeclaration (decl,
4677 lookup_attribute ("abi_tag",
4678 attributes),
4679 args))
4680 goto fail;
4681 }
4682 }
4683 else
4684 {
4685 if (!VAR_OR_FUNCTION_DECL_P (*node))
4686 {
4687 error ("%qE attribute applied to non-function, non-variable %qD",
4688 name, *node);
4689 goto fail;
4690 }
4691 else if (DECL_LANGUAGE (*node) == lang_c)
4692 {
4693 error ("%qE attribute applied to extern \"C\" declaration %qD",
4694 name, *node);
4695 goto fail;
4696 }
4697 }
4698
4699 return NULL_TREE;
4700
4701 fail:
4702 *no_add_attrs = true;
4703 return NULL_TREE;
4704 }
4705
4706 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
4707 thing pointed to by the constant. */
4708
4709 tree
4710 make_ptrmem_cst (tree type, tree member)
4711 {
4712 tree ptrmem_cst = make_node (PTRMEM_CST);
4713 TREE_TYPE (ptrmem_cst) = type;
4714 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
4715 return ptrmem_cst;
4716 }
4717
4718 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
4719 return an existing type if an appropriate type already exists. */
4720
4721 tree
4722 cp_build_type_attribute_variant (tree type, tree attributes)
4723 {
4724 tree new_type;
4725
4726 new_type = build_type_attribute_variant (type, attributes);
4727 if (FUNC_OR_METHOD_TYPE_P (new_type))
4728 gcc_checking_assert (cxx_type_hash_eq (type, new_type));
4729
4730 /* Making a new main variant of a class type is broken. */
4731 gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
4732
4733 return new_type;
4734 }
4735
4736 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
4737 Called only after doing all language independent checks. */
4738
4739 bool
4740 cxx_type_hash_eq (const_tree typea, const_tree typeb)
4741 {
4742 gcc_assert (FUNC_OR_METHOD_TYPE_P (typea));
4743
4744 if (type_memfn_rqual (typea) != type_memfn_rqual (typeb))
4745 return false;
4746 if (TYPE_HAS_LATE_RETURN_TYPE (typea) != TYPE_HAS_LATE_RETURN_TYPE (typeb))
4747 return false;
4748 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
4749 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
4750 }
4751
4752 /* Copy the language-specific type variant modifiers from TYPEB to TYPEA. For
4753 C++, these are the exception-specifier and ref-qualifier. */
4754
4755 tree
4756 cxx_copy_lang_qualifiers (const_tree typea, const_tree typeb)
4757 {
4758 tree type = CONST_CAST_TREE (typea);
4759 if (FUNC_OR_METHOD_TYPE_P (type))
4760 type = build_cp_fntype_variant (type, type_memfn_rqual (typeb),
4761 TYPE_RAISES_EXCEPTIONS (typeb),
4762 TYPE_HAS_LATE_RETURN_TYPE (typeb));
4763 return type;
4764 }
4765
4766 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
4767 traversal. Called from walk_tree. */
4768
4769 tree
4770 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
4771 void *data, hash_set<tree> *pset)
4772 {
4773 enum tree_code code = TREE_CODE (*tp);
4774 tree result;
4775
4776 #define WALK_SUBTREE(NODE) \
4777 do \
4778 { \
4779 result = cp_walk_tree (&(NODE), func, data, pset); \
4780 if (result) goto out; \
4781 } \
4782 while (0)
4783
4784 /* Not one of the easy cases. We must explicitly go through the
4785 children. */
4786 result = NULL_TREE;
4787 switch (code)
4788 {
4789 case DEFAULT_ARG:
4790 case TEMPLATE_TEMPLATE_PARM:
4791 case BOUND_TEMPLATE_TEMPLATE_PARM:
4792 case UNBOUND_CLASS_TEMPLATE:
4793 case TEMPLATE_PARM_INDEX:
4794 case TEMPLATE_TYPE_PARM:
4795 case TYPENAME_TYPE:
4796 case TYPEOF_TYPE:
4797 case UNDERLYING_TYPE:
4798 /* None of these have subtrees other than those already walked
4799 above. */
4800 *walk_subtrees_p = 0;
4801 break;
4802
4803 case BASELINK:
4804 if (BASELINK_QUALIFIED_P (*tp))
4805 WALK_SUBTREE (BINFO_TYPE (BASELINK_ACCESS_BINFO (*tp)));
4806 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
4807 *walk_subtrees_p = 0;
4808 break;
4809
4810 case PTRMEM_CST:
4811 WALK_SUBTREE (TREE_TYPE (*tp));
4812 *walk_subtrees_p = 0;
4813 break;
4814
4815 case TREE_LIST:
4816 WALK_SUBTREE (TREE_PURPOSE (*tp));
4817 break;
4818
4819 case OVERLOAD:
4820 WALK_SUBTREE (OVL_FUNCTION (*tp));
4821 WALK_SUBTREE (OVL_CHAIN (*tp));
4822 *walk_subtrees_p = 0;
4823 break;
4824
4825 case USING_DECL:
4826 WALK_SUBTREE (DECL_NAME (*tp));
4827 WALK_SUBTREE (USING_DECL_SCOPE (*tp));
4828 WALK_SUBTREE (USING_DECL_DECLS (*tp));
4829 *walk_subtrees_p = 0;
4830 break;
4831
4832 case RECORD_TYPE:
4833 if (TYPE_PTRMEMFUNC_P (*tp))
4834 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE_RAW (*tp));
4835 break;
4836
4837 case TYPE_ARGUMENT_PACK:
4838 case NONTYPE_ARGUMENT_PACK:
4839 {
4840 tree args = ARGUMENT_PACK_ARGS (*tp);
4841 int i, len = TREE_VEC_LENGTH (args);
4842 for (i = 0; i < len; i++)
4843 WALK_SUBTREE (TREE_VEC_ELT (args, i));
4844 }
4845 break;
4846
4847 case TYPE_PACK_EXPANSION:
4848 WALK_SUBTREE (TREE_TYPE (*tp));
4849 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
4850 *walk_subtrees_p = 0;
4851 break;
4852
4853 case EXPR_PACK_EXPANSION:
4854 WALK_SUBTREE (TREE_OPERAND (*tp, 0));
4855 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
4856 *walk_subtrees_p = 0;
4857 break;
4858
4859 case CAST_EXPR:
4860 case REINTERPRET_CAST_EXPR:
4861 case STATIC_CAST_EXPR:
4862 case CONST_CAST_EXPR:
4863 case DYNAMIC_CAST_EXPR:
4864 case IMPLICIT_CONV_EXPR:
4865 if (TREE_TYPE (*tp))
4866 WALK_SUBTREE (TREE_TYPE (*tp));
4867
4868 {
4869 int i;
4870 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
4871 WALK_SUBTREE (TREE_OPERAND (*tp, i));
4872 }
4873 *walk_subtrees_p = 0;
4874 break;
4875
4876 case TRAIT_EXPR:
4877 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
4878 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
4879 *walk_subtrees_p = 0;
4880 break;
4881
4882 case DECLTYPE_TYPE:
4883 ++cp_unevaluated_operand;
4884 /* We can't use WALK_SUBTREE here because of the goto. */
4885 result = cp_walk_tree (&DECLTYPE_TYPE_EXPR (*tp), func, data, pset);
4886 --cp_unevaluated_operand;
4887 *walk_subtrees_p = 0;
4888 break;
4889
4890 case ALIGNOF_EXPR:
4891 case SIZEOF_EXPR:
4892 case NOEXCEPT_EXPR:
4893 ++cp_unevaluated_operand;
4894 result = cp_walk_tree (&TREE_OPERAND (*tp, 0), func, data, pset);
4895 --cp_unevaluated_operand;
4896 *walk_subtrees_p = 0;
4897 break;
4898
4899 case REQUIRES_EXPR:
4900 // Only recurse through the nested expression. Do not
4901 // walk the parameter list. Doing so causes false
4902 // positives in the pack expansion checker since the
4903 // requires parameters are introduced as pack expansions.
4904 WALK_SUBTREE (TREE_OPERAND (*tp, 1));
4905 *walk_subtrees_p = 0;
4906 break;
4907
4908 case DECL_EXPR:
4909 /* User variables should be mentioned in BIND_EXPR_VARS
4910 and their initializers and sizes walked when walking
4911 the containing BIND_EXPR. Compiler temporaries are
4912 handled here. And also normal variables in templates,
4913 since do_poplevel doesn't build a BIND_EXPR then. */
4914 if (VAR_P (TREE_OPERAND (*tp, 0))
4915 && (processing_template_decl
4916 || (DECL_ARTIFICIAL (TREE_OPERAND (*tp, 0))
4917 && !TREE_STATIC (TREE_OPERAND (*tp, 0)))))
4918 {
4919 tree decl = TREE_OPERAND (*tp, 0);
4920 WALK_SUBTREE (DECL_INITIAL (decl));
4921 WALK_SUBTREE (DECL_SIZE (decl));
4922 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
4923 }
4924 break;
4925
4926 case LAMBDA_EXPR:
4927 /* Don't walk into the body of the lambda, but the capture initializers
4928 are part of the enclosing context. */
4929 for (tree cap = LAMBDA_EXPR_CAPTURE_LIST (*tp); cap;
4930 cap = TREE_CHAIN (cap))
4931 WALK_SUBTREE (TREE_VALUE (cap));
4932 break;
4933
4934 default:
4935 return NULL_TREE;
4936 }
4937
4938 /* We didn't find what we were looking for. */
4939 out:
4940 return result;
4941
4942 #undef WALK_SUBTREE
4943 }
4944
4945 /* Like save_expr, but for C++. */
4946
4947 tree
4948 cp_save_expr (tree expr)
4949 {
4950 /* There is no reason to create a SAVE_EXPR within a template; if
4951 needed, we can create the SAVE_EXPR when instantiating the
4952 template. Furthermore, the middle-end cannot handle C++-specific
4953 tree codes. */
4954 if (processing_template_decl)
4955 return expr;
4956
4957 /* TARGET_EXPRs are only expanded once. */
4958 if (TREE_CODE (expr) == TARGET_EXPR)
4959 return expr;
4960
4961 return save_expr (expr);
4962 }
4963
4964 /* Initialize tree.c. */
4965
4966 void
4967 init_tree (void)
4968 {
4969 list_hash_table = hash_table<list_hasher>::create_ggc (61);
4970 register_scoped_attributes (std_attribute_table, NULL);
4971 }
4972
4973 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
4974 is. Note that sfk_none is zero, so this function can be used as a
4975 predicate to test whether or not DECL is a special function. */
4976
4977 special_function_kind
4978 special_function_p (const_tree decl)
4979 {
4980 /* Rather than doing all this stuff with magic names, we should
4981 probably have a field of type `special_function_kind' in
4982 DECL_LANG_SPECIFIC. */
4983 if (DECL_INHERITED_CTOR (decl))
4984 return sfk_inheriting_constructor;
4985 if (DECL_COPY_CONSTRUCTOR_P (decl))
4986 return sfk_copy_constructor;
4987 if (DECL_MOVE_CONSTRUCTOR_P (decl))
4988 return sfk_move_constructor;
4989 if (DECL_CONSTRUCTOR_P (decl))
4990 return sfk_constructor;
4991 if (DECL_ASSIGNMENT_OPERATOR_P (decl)
4992 && DECL_OVERLOADED_OPERATOR_IS (decl, NOP_EXPR))
4993 {
4994 if (copy_fn_p (decl))
4995 return sfk_copy_assignment;
4996 if (move_fn_p (decl))
4997 return sfk_move_assignment;
4998 }
4999 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
5000 return sfk_destructor;
5001 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
5002 return sfk_complete_destructor;
5003 if (DECL_BASE_DESTRUCTOR_P (decl))
5004 return sfk_base_destructor;
5005 if (DECL_DELETING_DESTRUCTOR_P (decl))
5006 return sfk_deleting_destructor;
5007 if (DECL_CONV_FN_P (decl))
5008 return sfk_conversion;
5009 if (deduction_guide_p (decl))
5010 return sfk_deduction_guide;
5011
5012 return sfk_none;
5013 }
5014
5015 /* Returns nonzero if TYPE is a character type, including wchar_t. */
5016
5017 int
5018 char_type_p (tree type)
5019 {
5020 return (same_type_p (type, char_type_node)
5021 || same_type_p (type, unsigned_char_type_node)
5022 || same_type_p (type, signed_char_type_node)
5023 || same_type_p (type, char8_type_node)
5024 || same_type_p (type, char16_type_node)
5025 || same_type_p (type, char32_type_node)
5026 || same_type_p (type, wchar_type_node));
5027 }
5028
5029 /* Returns the kind of linkage associated with the indicated DECL. Th
5030 value returned is as specified by the language standard; it is
5031 independent of implementation details regarding template
5032 instantiation, etc. For example, it is possible that a declaration
5033 to which this function assigns external linkage would not show up
5034 as a global symbol when you run `nm' on the resulting object file. */
5035
5036 linkage_kind
5037 decl_linkage (tree decl)
5038 {
5039 /* This function doesn't attempt to calculate the linkage from first
5040 principles as given in [basic.link]. Instead, it makes use of
5041 the fact that we have already set TREE_PUBLIC appropriately, and
5042 then handles a few special cases. Ideally, we would calculate
5043 linkage first, and then transform that into a concrete
5044 implementation. */
5045
5046 /* Things that don't have names have no linkage. */
5047 if (!DECL_NAME (decl))
5048 return lk_none;
5049
5050 /* Fields have no linkage. */
5051 if (TREE_CODE (decl) == FIELD_DECL)
5052 return lk_none;
5053
5054 /* Things that are TREE_PUBLIC have external linkage. */
5055 if (TREE_PUBLIC (decl))
5056 return lk_external;
5057
5058 /* maybe_thunk_body clears TREE_PUBLIC on the maybe-in-charge 'tor variants,
5059 check one of the "clones" for the real linkage. */
5060 if (DECL_MAYBE_IN_CHARGE_CDTOR_P (decl)
5061 && DECL_CHAIN (decl)
5062 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (decl)))
5063 return decl_linkage (DECL_CHAIN (decl));
5064
5065 if (TREE_CODE (decl) == NAMESPACE_DECL)
5066 return lk_external;
5067
5068 /* Linkage of a CONST_DECL depends on the linkage of the enumeration
5069 type. */
5070 if (TREE_CODE (decl) == CONST_DECL)
5071 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl)));
5072
5073 /* Things in local scope do not have linkage, if they don't have
5074 TREE_PUBLIC set. */
5075 if (decl_function_context (decl))
5076 return lk_none;
5077
5078 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but
5079 are considered to have external linkage for language purposes, as do
5080 template instantiations on targets without weak symbols. DECLs really
5081 meant to have internal linkage have DECL_THIS_STATIC set. */
5082 if (TREE_CODE (decl) == TYPE_DECL)
5083 return lk_external;
5084 if (VAR_OR_FUNCTION_DECL_P (decl))
5085 {
5086 if (!DECL_THIS_STATIC (decl))
5087 return lk_external;
5088
5089 /* Static data members and static member functions from classes
5090 in anonymous namespace also don't have TREE_PUBLIC set. */
5091 if (DECL_CLASS_CONTEXT (decl))
5092 return lk_external;
5093 }
5094
5095 /* Everything else has internal linkage. */
5096 return lk_internal;
5097 }
5098
5099 /* Returns the storage duration of the object or reference associated with
5100 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
5101
5102 duration_kind
5103 decl_storage_duration (tree decl)
5104 {
5105 if (TREE_CODE (decl) == PARM_DECL)
5106 return dk_auto;
5107 if (TREE_CODE (decl) == FUNCTION_DECL)
5108 return dk_static;
5109 gcc_assert (VAR_P (decl));
5110 if (!TREE_STATIC (decl)
5111 && !DECL_EXTERNAL (decl))
5112 return dk_auto;
5113 if (CP_DECL_THREAD_LOCAL_P (decl))
5114 return dk_thread;
5115 return dk_static;
5116 }
5117 \f
5118 /* EXP is an expression that we want to pre-evaluate. Returns (in
5119 *INITP) an expression that will perform the pre-evaluation. The
5120 value returned by this function is a side-effect free expression
5121 equivalent to the pre-evaluated expression. Callers must ensure
5122 that *INITP is evaluated before EXP. */
5123
5124 tree
5125 stabilize_expr (tree exp, tree* initp)
5126 {
5127 tree init_expr;
5128
5129 if (!TREE_SIDE_EFFECTS (exp))
5130 init_expr = NULL_TREE;
5131 else if (VOID_TYPE_P (TREE_TYPE (exp)))
5132 {
5133 init_expr = exp;
5134 exp = void_node;
5135 }
5136 /* There are no expressions with REFERENCE_TYPE, but there can be call
5137 arguments with such a type; just treat it as a pointer. */
5138 else if (TYPE_REF_P (TREE_TYPE (exp))
5139 || SCALAR_TYPE_P (TREE_TYPE (exp))
5140 || !glvalue_p (exp))
5141 {
5142 init_expr = get_target_expr (exp);
5143 exp = TARGET_EXPR_SLOT (init_expr);
5144 if (CLASS_TYPE_P (TREE_TYPE (exp)))
5145 exp = move (exp);
5146 else
5147 exp = rvalue (exp);
5148 }
5149 else
5150 {
5151 bool xval = !lvalue_p (exp);
5152 exp = cp_build_addr_expr (exp, tf_warning_or_error);
5153 init_expr = get_target_expr (exp);
5154 exp = TARGET_EXPR_SLOT (init_expr);
5155 exp = cp_build_fold_indirect_ref (exp);
5156 if (xval)
5157 exp = move (exp);
5158 }
5159 *initp = init_expr;
5160
5161 gcc_assert (!TREE_SIDE_EFFECTS (exp));
5162 return exp;
5163 }
5164
5165 /* Add NEW_EXPR, an expression whose value we don't care about, after the
5166 similar expression ORIG. */
5167
5168 tree
5169 add_stmt_to_compound (tree orig, tree new_expr)
5170 {
5171 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
5172 return orig;
5173 if (!orig || !TREE_SIDE_EFFECTS (orig))
5174 return new_expr;
5175 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
5176 }
5177
5178 /* Like stabilize_expr, but for a call whose arguments we want to
5179 pre-evaluate. CALL is modified in place to use the pre-evaluated
5180 arguments, while, upon return, *INITP contains an expression to
5181 compute the arguments. */
5182
5183 void
5184 stabilize_call (tree call, tree *initp)
5185 {
5186 tree inits = NULL_TREE;
5187 int i;
5188 int nargs = call_expr_nargs (call);
5189
5190 if (call == error_mark_node || processing_template_decl)
5191 {
5192 *initp = NULL_TREE;
5193 return;
5194 }
5195
5196 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5197
5198 for (i = 0; i < nargs; i++)
5199 {
5200 tree init;
5201 CALL_EXPR_ARG (call, i) =
5202 stabilize_expr (CALL_EXPR_ARG (call, i), &init);
5203 inits = add_stmt_to_compound (inits, init);
5204 }
5205
5206 *initp = inits;
5207 }
5208
5209 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
5210 to pre-evaluate. CALL is modified in place to use the pre-evaluated
5211 arguments, while, upon return, *INITP contains an expression to
5212 compute the arguments. */
5213
5214 static void
5215 stabilize_aggr_init (tree call, tree *initp)
5216 {
5217 tree inits = NULL_TREE;
5218 int i;
5219 int nargs = aggr_init_expr_nargs (call);
5220
5221 if (call == error_mark_node)
5222 return;
5223
5224 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
5225
5226 for (i = 0; i < nargs; i++)
5227 {
5228 tree init;
5229 AGGR_INIT_EXPR_ARG (call, i) =
5230 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
5231 inits = add_stmt_to_compound (inits, init);
5232 }
5233
5234 *initp = inits;
5235 }
5236
5237 /* Like stabilize_expr, but for an initialization.
5238
5239 If the initialization is for an object of class type, this function
5240 takes care not to introduce additional temporaries.
5241
5242 Returns TRUE iff the expression was successfully pre-evaluated,
5243 i.e., if INIT is now side-effect free, except for, possibly, a
5244 single call to a constructor. */
5245
5246 bool
5247 stabilize_init (tree init, tree *initp)
5248 {
5249 tree t = init;
5250
5251 *initp = NULL_TREE;
5252
5253 if (t == error_mark_node || processing_template_decl)
5254 return true;
5255
5256 if (TREE_CODE (t) == INIT_EXPR)
5257 t = TREE_OPERAND (t, 1);
5258 if (TREE_CODE (t) == TARGET_EXPR)
5259 t = TARGET_EXPR_INITIAL (t);
5260
5261 /* If the RHS can be stabilized without breaking copy elision, stabilize
5262 it. We specifically don't stabilize class prvalues here because that
5263 would mean an extra copy, but they might be stabilized below. */
5264 if (TREE_CODE (init) == INIT_EXPR
5265 && TREE_CODE (t) != CONSTRUCTOR
5266 && TREE_CODE (t) != AGGR_INIT_EXPR
5267 && (SCALAR_TYPE_P (TREE_TYPE (t))
5268 || glvalue_p (t)))
5269 {
5270 TREE_OPERAND (init, 1) = stabilize_expr (t, initp);
5271 return true;
5272 }
5273
5274 if (TREE_CODE (t) == COMPOUND_EXPR
5275 && TREE_CODE (init) == INIT_EXPR)
5276 {
5277 tree last = expr_last (t);
5278 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */
5279 if (!TREE_SIDE_EFFECTS (last))
5280 {
5281 *initp = t;
5282 TREE_OPERAND (init, 1) = last;
5283 return true;
5284 }
5285 }
5286
5287 if (TREE_CODE (t) == CONSTRUCTOR)
5288 {
5289 /* Aggregate initialization: stabilize each of the field
5290 initializers. */
5291 unsigned i;
5292 constructor_elt *ce;
5293 bool good = true;
5294 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t);
5295 for (i = 0; vec_safe_iterate (v, i, &ce); ++i)
5296 {
5297 tree type = TREE_TYPE (ce->value);
5298 tree subinit;
5299 if (TYPE_REF_P (type)
5300 || SCALAR_TYPE_P (type))
5301 ce->value = stabilize_expr (ce->value, &subinit);
5302 else if (!stabilize_init (ce->value, &subinit))
5303 good = false;
5304 *initp = add_stmt_to_compound (*initp, subinit);
5305 }
5306 return good;
5307 }
5308
5309 if (TREE_CODE (t) == CALL_EXPR)
5310 {
5311 stabilize_call (t, initp);
5312 return true;
5313 }
5314
5315 if (TREE_CODE (t) == AGGR_INIT_EXPR)
5316 {
5317 stabilize_aggr_init (t, initp);
5318 return true;
5319 }
5320
5321 /* The initialization is being performed via a bitwise copy -- and
5322 the item copied may have side effects. */
5323 return !TREE_SIDE_EFFECTS (init);
5324 }
5325
5326 /* Returns true if a cast to TYPE may appear in an integral constant
5327 expression. */
5328
5329 bool
5330 cast_valid_in_integral_constant_expression_p (tree type)
5331 {
5332 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5333 || cxx_dialect >= cxx11
5334 || dependent_type_p (type)
5335 || type == error_mark_node);
5336 }
5337
5338 /* Return true if we need to fix linkage information of DECL. */
5339
5340 static bool
5341 cp_fix_function_decl_p (tree decl)
5342 {
5343 /* Skip if DECL is not externally visible. */
5344 if (!TREE_PUBLIC (decl))
5345 return false;
5346
5347 /* We need to fix DECL if it a appears to be exported but with no
5348 function body. Thunks do not have CFGs and we may need to
5349 handle them specially later. */
5350 if (!gimple_has_body_p (decl)
5351 && !DECL_THUNK_P (decl)
5352 && !DECL_EXTERNAL (decl))
5353 {
5354 struct cgraph_node *node = cgraph_node::get (decl);
5355
5356 /* Don't fix same_body aliases. Although they don't have their own
5357 CFG, they share it with what they alias to. */
5358 if (!node || !node->alias
5359 || !vec_safe_length (node->ref_list.references))
5360 return true;
5361 }
5362
5363 return false;
5364 }
5365
5366 /* Clean the C++ specific parts of the tree T. */
5367
5368 void
5369 cp_free_lang_data (tree t)
5370 {
5371 if (FUNC_OR_METHOD_TYPE_P (t))
5372 {
5373 /* Default args are not interesting anymore. */
5374 tree argtypes = TYPE_ARG_TYPES (t);
5375 while (argtypes)
5376 {
5377 TREE_PURPOSE (argtypes) = 0;
5378 argtypes = TREE_CHAIN (argtypes);
5379 }
5380 }
5381 else if (TREE_CODE (t) == FUNCTION_DECL
5382 && cp_fix_function_decl_p (t))
5383 {
5384 /* If T is used in this translation unit at all, the definition
5385 must exist somewhere else since we have decided to not emit it
5386 in this TU. So make it an external reference. */
5387 DECL_EXTERNAL (t) = 1;
5388 TREE_STATIC (t) = 0;
5389 }
5390 if (TREE_CODE (t) == FUNCTION_DECL)
5391 discard_operator_bindings (t);
5392 if (TREE_CODE (t) == NAMESPACE_DECL)
5393 /* We do not need the leftover chaining of namespaces from the
5394 binding level. */
5395 DECL_CHAIN (t) = NULL_TREE;
5396 }
5397
5398 /* Stub for c-common. Please keep in sync with c-decl.c.
5399 FIXME: If address space support is target specific, then this
5400 should be a C target hook. But currently this is not possible,
5401 because this function is called via REGISTER_TARGET_PRAGMAS. */
5402 void
5403 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/)
5404 {
5405 }
5406
5407 /* Return the number of operands in T that we care about for things like
5408 mangling. */
5409
5410 int
5411 cp_tree_operand_length (const_tree t)
5412 {
5413 enum tree_code code = TREE_CODE (t);
5414
5415 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
5416 return VL_EXP_OPERAND_LENGTH (t);
5417
5418 return cp_tree_code_length (code);
5419 }
5420
5421 /* Like cp_tree_operand_length, but takes a tree_code CODE. */
5422
5423 int
5424 cp_tree_code_length (enum tree_code code)
5425 {
5426 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
5427
5428 switch (code)
5429 {
5430 case PREINCREMENT_EXPR:
5431 case PREDECREMENT_EXPR:
5432 case POSTINCREMENT_EXPR:
5433 case POSTDECREMENT_EXPR:
5434 return 1;
5435
5436 case ARRAY_REF:
5437 return 2;
5438
5439 case EXPR_PACK_EXPANSION:
5440 return 1;
5441
5442 default:
5443 return TREE_CODE_LENGTH (code);
5444 }
5445 }
5446
5447 /* Like EXPR_LOCATION, but also handle some tcc_exceptional that have
5448 locations. */
5449
5450 location_t
5451 cp_expr_location (const_tree t_)
5452 {
5453 tree t = CONST_CAST_TREE (t_);
5454 if (t == NULL_TREE)
5455 return UNKNOWN_LOCATION;
5456 switch (TREE_CODE (t))
5457 {
5458 case LAMBDA_EXPR:
5459 return LAMBDA_EXPR_LOCATION (t);
5460 case STATIC_ASSERT:
5461 return STATIC_ASSERT_SOURCE_LOCATION (t);
5462 default:
5463 return EXPR_LOCATION (t);
5464 }
5465 }
5466
5467 /* Implement -Wzero_as_null_pointer_constant. Return true if the
5468 conditions for the warning hold, false otherwise. */
5469 bool
5470 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc)
5471 {
5472 if (c_inhibit_evaluation_warnings == 0
5473 && !null_node_p (expr) && !NULLPTR_TYPE_P (TREE_TYPE (expr)))
5474 {
5475 warning_at (loc, OPT_Wzero_as_null_pointer_constant,
5476 "zero as null pointer constant");
5477 return true;
5478 }
5479 return false;
5480 }
5481 \f
5482 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5483 /* Complain that some language-specific thing hanging off a tree
5484 node has been accessed improperly. */
5485
5486 void
5487 lang_check_failed (const char* file, int line, const char* function)
5488 {
5489 internal_error ("%<lang_*%> check: failed in %s, at %s:%d",
5490 function, trim_filename (file), line);
5491 }
5492 #endif /* ENABLE_TREE_CHECKING */
5493
5494 #if CHECKING_P
5495
5496 namespace selftest {
5497
5498 /* Verify that lvalue_kind () works, for various expressions,
5499 and that location wrappers don't affect the results. */
5500
5501 static void
5502 test_lvalue_kind ()
5503 {
5504 location_t loc = BUILTINS_LOCATION;
5505
5506 /* Verify constants and parameters, without and with
5507 location wrappers. */
5508 tree int_cst = build_int_cst (integer_type_node, 42);
5509 ASSERT_EQ (clk_none, lvalue_kind (int_cst));
5510
5511 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
5512 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
5513 ASSERT_EQ (clk_none, lvalue_kind (wrapped_int_cst));
5514
5515 tree string_lit = build_string (4, "foo");
5516 TREE_TYPE (string_lit) = char_array_type_node;
5517 string_lit = fix_string_type (string_lit);
5518 ASSERT_EQ (clk_ordinary, lvalue_kind (string_lit));
5519
5520 tree wrapped_string_lit = maybe_wrap_with_location (string_lit, loc);
5521 ASSERT_TRUE (location_wrapper_p (wrapped_string_lit));
5522 ASSERT_EQ (clk_ordinary, lvalue_kind (wrapped_string_lit));
5523
5524 tree parm = build_decl (UNKNOWN_LOCATION, PARM_DECL,
5525 get_identifier ("some_parm"),
5526 integer_type_node);
5527 ASSERT_EQ (clk_ordinary, lvalue_kind (parm));
5528
5529 tree wrapped_parm = maybe_wrap_with_location (parm, loc);
5530 ASSERT_TRUE (location_wrapper_p (wrapped_parm));
5531 ASSERT_EQ (clk_ordinary, lvalue_kind (wrapped_parm));
5532
5533 /* Verify that lvalue_kind of std::move on a parm isn't
5534 affected by location wrappers. */
5535 tree rvalue_ref_of_parm = move (parm);
5536 ASSERT_EQ (clk_rvalueref, lvalue_kind (rvalue_ref_of_parm));
5537 tree rvalue_ref_of_wrapped_parm = move (wrapped_parm);
5538 ASSERT_EQ (clk_rvalueref, lvalue_kind (rvalue_ref_of_wrapped_parm));
5539
5540 /* Verify lvalue_p. */
5541 ASSERT_FALSE (lvalue_p (int_cst));
5542 ASSERT_FALSE (lvalue_p (wrapped_int_cst));
5543 ASSERT_TRUE (lvalue_p (parm));
5544 ASSERT_TRUE (lvalue_p (wrapped_parm));
5545 ASSERT_FALSE (lvalue_p (rvalue_ref_of_parm));
5546 ASSERT_FALSE (lvalue_p (rvalue_ref_of_wrapped_parm));
5547 }
5548
5549 /* Run all of the selftests within this file. */
5550
5551 void
5552 cp_tree_c_tests ()
5553 {
5554 test_lvalue_kind ();
5555 }
5556
5557 } // namespace selftest
5558
5559 #endif /* #if CHECKING_P */
5560
5561
5562 #include "gt-cp-tree.h"