]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cse.c
be3277b86609b356d440921b1cb299fb568d4605
[thirdparty/gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "cfgcleanup.h"
38 #include "alias.h"
39 #include "toplev.h"
40 #include "params.h"
41 #include "rtlhooks-def.h"
42 #include "tree-pass.h"
43 #include "dbgcnt.h"
44 #include "rtl-iter.h"
45 #include "regs.h"
46 #include "function-abi.h"
47
48 /* The basic idea of common subexpression elimination is to go
49 through the code, keeping a record of expressions that would
50 have the same value at the current scan point, and replacing
51 expressions encountered with the cheapest equivalent expression.
52
53 It is too complicated to keep track of the different possibilities
54 when control paths merge in this code; so, at each label, we forget all
55 that is known and start fresh. This can be described as processing each
56 extended basic block separately. We have a separate pass to perform
57 global CSE.
58
59 Note CSE can turn a conditional or computed jump into a nop or
60 an unconditional jump. When this occurs we arrange to run the jump
61 optimizer after CSE to delete the unreachable code.
62
63 We use two data structures to record the equivalent expressions:
64 a hash table for most expressions, and a vector of "quantity
65 numbers" to record equivalent (pseudo) registers.
66
67 The use of the special data structure for registers is desirable
68 because it is faster. It is possible because registers references
69 contain a fairly small number, the register number, taken from
70 a contiguously allocated series, and two register references are
71 identical if they have the same number. General expressions
72 do not have any such thing, so the only way to retrieve the
73 information recorded on an expression other than a register
74 is to keep it in a hash table.
75
76 Registers and "quantity numbers":
77
78 At the start of each basic block, all of the (hardware and pseudo)
79 registers used in the function are given distinct quantity
80 numbers to indicate their contents. During scan, when the code
81 copies one register into another, we copy the quantity number.
82 When a register is loaded in any other way, we allocate a new
83 quantity number to describe the value generated by this operation.
84 `REG_QTY (N)' records what quantity register N is currently thought
85 of as containing.
86
87 All real quantity numbers are greater than or equal to zero.
88 If register N has not been assigned a quantity, `REG_QTY (N)' will
89 equal -N - 1, which is always negative.
90
91 Quantity numbers below zero do not exist and none of the `qty_table'
92 entries should be referenced with a negative index.
93
94 We also maintain a bidirectional chain of registers for each
95 quantity number. The `qty_table` members `first_reg' and `last_reg',
96 and `reg_eqv_table' members `next' and `prev' hold these chains.
97
98 The first register in a chain is the one whose lifespan is least local.
99 Among equals, it is the one that was seen first.
100 We replace any equivalent register with that one.
101
102 If two registers have the same quantity number, it must be true that
103 REG expressions with qty_table `mode' must be in the hash table for both
104 registers and must be in the same class.
105
106 The converse is not true. Since hard registers may be referenced in
107 any mode, two REG expressions might be equivalent in the hash table
108 but not have the same quantity number if the quantity number of one
109 of the registers is not the same mode as those expressions.
110
111 Constants and quantity numbers
112
113 When a quantity has a known constant value, that value is stored
114 in the appropriate qty_table `const_rtx'. This is in addition to
115 putting the constant in the hash table as is usual for non-regs.
116
117 Whether a reg or a constant is preferred is determined by the configuration
118 macro CONST_COSTS and will often depend on the constant value. In any
119 event, expressions containing constants can be simplified, by fold_rtx.
120
121 When a quantity has a known nearly constant value (such as an address
122 of a stack slot), that value is stored in the appropriate qty_table
123 `const_rtx'.
124
125 Integer constants don't have a machine mode. However, cse
126 determines the intended machine mode from the destination
127 of the instruction that moves the constant. The machine mode
128 is recorded in the hash table along with the actual RTL
129 constant expression so that different modes are kept separate.
130
131 Other expressions:
132
133 To record known equivalences among expressions in general
134 we use a hash table called `table'. It has a fixed number of buckets
135 that contain chains of `struct table_elt' elements for expressions.
136 These chains connect the elements whose expressions have the same
137 hash codes.
138
139 Other chains through the same elements connect the elements which
140 currently have equivalent values.
141
142 Register references in an expression are canonicalized before hashing
143 the expression. This is done using `reg_qty' and qty_table `first_reg'.
144 The hash code of a register reference is computed using the quantity
145 number, not the register number.
146
147 When the value of an expression changes, it is necessary to remove from the
148 hash table not just that expression but all expressions whose values
149 could be different as a result.
150
151 1. If the value changing is in memory, except in special cases
152 ANYTHING referring to memory could be changed. That is because
153 nobody knows where a pointer does not point.
154 The function `invalidate_memory' removes what is necessary.
155
156 The special cases are when the address is constant or is
157 a constant plus a fixed register such as the frame pointer
158 or a static chain pointer. When such addresses are stored in,
159 we can tell exactly which other such addresses must be invalidated
160 due to overlap. `invalidate' does this.
161 All expressions that refer to non-constant
162 memory addresses are also invalidated. `invalidate_memory' does this.
163
164 2. If the value changing is a register, all expressions
165 containing references to that register, and only those,
166 must be removed.
167
168 Because searching the entire hash table for expressions that contain
169 a register is very slow, we try to figure out when it isn't necessary.
170 Precisely, this is necessary only when expressions have been
171 entered in the hash table using this register, and then the value has
172 changed, and then another expression wants to be added to refer to
173 the register's new value. This sequence of circumstances is rare
174 within any one basic block.
175
176 `REG_TICK' and `REG_IN_TABLE', accessors for members of
177 cse_reg_info, are used to detect this case. REG_TICK (i) is
178 incremented whenever a value is stored in register i.
179 REG_IN_TABLE (i) holds -1 if no references to register i have been
180 entered in the table; otherwise, it contains the value REG_TICK (i)
181 had when the references were entered. If we want to enter a
182 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
183 remove old references. Until we want to enter a new entry, the
184 mere fact that the two vectors don't match makes the entries be
185 ignored if anyone tries to match them.
186
187 Registers themselves are entered in the hash table as well as in
188 the equivalent-register chains. However, `REG_TICK' and
189 `REG_IN_TABLE' do not apply to expressions which are simple
190 register references. These expressions are removed from the table
191 immediately when they become invalid, and this can be done even if
192 we do not immediately search for all the expressions that refer to
193 the register.
194
195 A CLOBBER rtx in an instruction invalidates its operand for further
196 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
197 invalidates everything that resides in memory.
198
199 Related expressions:
200
201 Constant expressions that differ only by an additive integer
202 are called related. When a constant expression is put in
203 the table, the related expression with no constant term
204 is also entered. These are made to point at each other
205 so that it is possible to find out if there exists any
206 register equivalent to an expression related to a given expression. */
207
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
210
211 static int max_qty;
212
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
215
216 static int next_qty;
217
218 /* Per-qty information tracking.
219
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
222
223 `mode' contains the machine mode of this quantity.
224
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
230
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
242
243 struct qty_table_elem
244 {
245 rtx const_rtx;
246 rtx_insn *const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 unsigned int first_reg, last_reg;
250 /* The sizes of these fields should match the sizes of the
251 code and mode fields of struct rtx_def (see rtl.h). */
252 ENUM_BITFIELD(rtx_code) comparison_code : 16;
253 ENUM_BITFIELD(machine_mode) mode : 8;
254 };
255
256 /* The table of all qtys, indexed by qty number. */
257 static struct qty_table_elem *qty_table;
258
259 /* For machines that have a CC0, we do not record its value in the hash
260 table since its use is guaranteed to be the insn immediately following
261 its definition and any other insn is presumed to invalidate it.
262
263 Instead, we store below the current and last value assigned to CC0.
264 If it should happen to be a constant, it is stored in preference
265 to the actual assigned value. In case it is a constant, we store
266 the mode in which the constant should be interpreted. */
267
268 static rtx this_insn_cc0, prev_insn_cc0;
269 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
270
271 /* Insn being scanned. */
272
273 static rtx_insn *this_insn;
274 static bool optimize_this_for_speed_p;
275
276 /* Index by register number, gives the number of the next (or
277 previous) register in the chain of registers sharing the same
278 value.
279
280 Or -1 if this register is at the end of the chain.
281
282 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
283
284 /* Per-register equivalence chain. */
285 struct reg_eqv_elem
286 {
287 int next, prev;
288 };
289
290 /* The table of all register equivalence chains. */
291 static struct reg_eqv_elem *reg_eqv_table;
292
293 struct cse_reg_info
294 {
295 /* The timestamp at which this register is initialized. */
296 unsigned int timestamp;
297
298 /* The quantity number of the register's current contents. */
299 int reg_qty;
300
301 /* The number of times the register has been altered in the current
302 basic block. */
303 int reg_tick;
304
305 /* The REG_TICK value at which rtx's containing this register are
306 valid in the hash table. If this does not equal the current
307 reg_tick value, such expressions existing in the hash table are
308 invalid. */
309 int reg_in_table;
310
311 /* The SUBREG that was set when REG_TICK was last incremented. Set
312 to -1 if the last store was to the whole register, not a subreg. */
313 unsigned int subreg_ticked;
314 };
315
316 /* A table of cse_reg_info indexed by register numbers. */
317 static struct cse_reg_info *cse_reg_info_table;
318
319 /* The size of the above table. */
320 static unsigned int cse_reg_info_table_size;
321
322 /* The index of the first entry that has not been initialized. */
323 static unsigned int cse_reg_info_table_first_uninitialized;
324
325 /* The timestamp at the beginning of the current run of
326 cse_extended_basic_block. We increment this variable at the beginning of
327 the current run of cse_extended_basic_block. The timestamp field of a
328 cse_reg_info entry matches the value of this variable if and only
329 if the entry has been initialized during the current run of
330 cse_extended_basic_block. */
331 static unsigned int cse_reg_info_timestamp;
332
333 /* A HARD_REG_SET containing all the hard registers for which there is
334 currently a REG expression in the hash table. Note the difference
335 from the above variables, which indicate if the REG is mentioned in some
336 expression in the table. */
337
338 static HARD_REG_SET hard_regs_in_table;
339
340 /* True if CSE has altered the CFG. */
341 static bool cse_cfg_altered;
342
343 /* True if CSE has altered conditional jump insns in such a way
344 that jump optimization should be redone. */
345 static bool cse_jumps_altered;
346
347 /* True if we put a LABEL_REF into the hash table for an INSN
348 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
349 to put in the note. */
350 static bool recorded_label_ref;
351
352 /* canon_hash stores 1 in do_not_record
353 if it notices a reference to CC0, PC, or some other volatile
354 subexpression. */
355
356 static int do_not_record;
357
358 /* canon_hash stores 1 in hash_arg_in_memory
359 if it notices a reference to memory within the expression being hashed. */
360
361 static int hash_arg_in_memory;
362
363 /* The hash table contains buckets which are chains of `struct table_elt's,
364 each recording one expression's information.
365 That expression is in the `exp' field.
366
367 The canon_exp field contains a canonical (from the point of view of
368 alias analysis) version of the `exp' field.
369
370 Those elements with the same hash code are chained in both directions
371 through the `next_same_hash' and `prev_same_hash' fields.
372
373 Each set of expressions with equivalent values
374 are on a two-way chain through the `next_same_value'
375 and `prev_same_value' fields, and all point with
376 the `first_same_value' field at the first element in
377 that chain. The chain is in order of increasing cost.
378 Each element's cost value is in its `cost' field.
379
380 The `in_memory' field is nonzero for elements that
381 involve any reference to memory. These elements are removed
382 whenever a write is done to an unidentified location in memory.
383 To be safe, we assume that a memory address is unidentified unless
384 the address is either a symbol constant or a constant plus
385 the frame pointer or argument pointer.
386
387 The `related_value' field is used to connect related expressions
388 (that differ by adding an integer).
389 The related expressions are chained in a circular fashion.
390 `related_value' is zero for expressions for which this
391 chain is not useful.
392
393 The `cost' field stores the cost of this element's expression.
394 The `regcost' field stores the value returned by approx_reg_cost for
395 this element's expression.
396
397 The `is_const' flag is set if the element is a constant (including
398 a fixed address).
399
400 The `flag' field is used as a temporary during some search routines.
401
402 The `mode' field is usually the same as GET_MODE (`exp'), but
403 if `exp' is a CONST_INT and has no machine mode then the `mode'
404 field is the mode it was being used as. Each constant is
405 recorded separately for each mode it is used with. */
406
407 struct table_elt
408 {
409 rtx exp;
410 rtx canon_exp;
411 struct table_elt *next_same_hash;
412 struct table_elt *prev_same_hash;
413 struct table_elt *next_same_value;
414 struct table_elt *prev_same_value;
415 struct table_elt *first_same_value;
416 struct table_elt *related_value;
417 int cost;
418 int regcost;
419 /* The size of this field should match the size
420 of the mode field of struct rtx_def (see rtl.h). */
421 ENUM_BITFIELD(machine_mode) mode : 8;
422 char in_memory;
423 char is_const;
424 char flag;
425 };
426
427 /* We don't want a lot of buckets, because we rarely have very many
428 things stored in the hash table, and a lot of buckets slows
429 down a lot of loops that happen frequently. */
430 #define HASH_SHIFT 5
431 #define HASH_SIZE (1 << HASH_SHIFT)
432 #define HASH_MASK (HASH_SIZE - 1)
433
434 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
435 register (hard registers may require `do_not_record' to be set). */
436
437 #define HASH(X, M) \
438 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
439 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
440 : canon_hash (X, M)) & HASH_MASK)
441
442 /* Like HASH, but without side-effects. */
443 #define SAFE_HASH(X, M) \
444 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
445 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
446 : safe_hash (X, M)) & HASH_MASK)
447
448 /* Determine whether register number N is considered a fixed register for the
449 purpose of approximating register costs.
450 It is desirable to replace other regs with fixed regs, to reduce need for
451 non-fixed hard regs.
452 A reg wins if it is either the frame pointer or designated as fixed. */
453 #define FIXED_REGNO_P(N) \
454 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
455 || fixed_regs[N] || global_regs[N])
456
457 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
458 hard registers and pointers into the frame are the cheapest with a cost
459 of 0. Next come pseudos with a cost of one and other hard registers with
460 a cost of 2. Aside from these special cases, call `rtx_cost'. */
461
462 #define CHEAP_REGNO(N) \
463 (REGNO_PTR_FRAME_P (N) \
464 || (HARD_REGISTER_NUM_P (N) \
465 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
466
467 #define COST(X, MODE) \
468 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
469 #define COST_IN(X, MODE, OUTER, OPNO) \
470 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
471
472 /* Get the number of times this register has been updated in this
473 basic block. */
474
475 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
476
477 /* Get the point at which REG was recorded in the table. */
478
479 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
480
481 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
482 SUBREG). */
483
484 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
485
486 /* Get the quantity number for REG. */
487
488 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
489
490 /* Determine if the quantity number for register X represents a valid index
491 into the qty_table. */
492
493 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
494
495 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
496
497 #define CHEAPER(X, Y) \
498 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
499
500 static struct table_elt *table[HASH_SIZE];
501
502 /* Chain of `struct table_elt's made so far for this function
503 but currently removed from the table. */
504
505 static struct table_elt *free_element_chain;
506
507 /* Set to the cost of a constant pool reference if one was found for a
508 symbolic constant. If this was found, it means we should try to
509 convert constants into constant pool entries if they don't fit in
510 the insn. */
511
512 static int constant_pool_entries_cost;
513 static int constant_pool_entries_regcost;
514
515 /* Trace a patch through the CFG. */
516
517 struct branch_path
518 {
519 /* The basic block for this path entry. */
520 basic_block bb;
521 };
522
523 /* This data describes a block that will be processed by
524 cse_extended_basic_block. */
525
526 struct cse_basic_block_data
527 {
528 /* Total number of SETs in block. */
529 int nsets;
530 /* Size of current branch path, if any. */
531 int path_size;
532 /* Current path, indicating which basic_blocks will be processed. */
533 struct branch_path *path;
534 };
535
536
537 /* Pointers to the live in/live out bitmaps for the boundaries of the
538 current EBB. */
539 static bitmap cse_ebb_live_in, cse_ebb_live_out;
540
541 /* A simple bitmap to track which basic blocks have been visited
542 already as part of an already processed extended basic block. */
543 static sbitmap cse_visited_basic_blocks;
544
545 static bool fixed_base_plus_p (rtx x);
546 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
547 static int preferable (int, int, int, int);
548 static void new_basic_block (void);
549 static void make_new_qty (unsigned int, machine_mode);
550 static void make_regs_eqv (unsigned int, unsigned int);
551 static void delete_reg_equiv (unsigned int);
552 static int mention_regs (rtx);
553 static int insert_regs (rtx, struct table_elt *, int);
554 static void remove_from_table (struct table_elt *, unsigned);
555 static void remove_pseudo_from_table (rtx, unsigned);
556 static struct table_elt *lookup (rtx, unsigned, machine_mode);
557 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
558 static rtx lookup_as_function (rtx, enum rtx_code);
559 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
560 machine_mode, int, int);
561 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
562 machine_mode);
563 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
564 static void invalidate_reg (rtx, bool);
565 static void invalidate (rtx, machine_mode);
566 static void remove_invalid_refs (unsigned int);
567 static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
568 machine_mode);
569 static void rehash_using_reg (rtx);
570 static void invalidate_memory (void);
571 static rtx use_related_value (rtx, struct table_elt *);
572
573 static inline unsigned canon_hash (rtx, machine_mode);
574 static inline unsigned safe_hash (rtx, machine_mode);
575 static inline unsigned hash_rtx_string (const char *);
576
577 static rtx canon_reg (rtx, rtx_insn *);
578 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
579 machine_mode *,
580 machine_mode *);
581 static rtx fold_rtx (rtx, rtx_insn *);
582 static rtx equiv_constant (rtx);
583 static void record_jump_equiv (rtx_insn *, bool);
584 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
585 int);
586 static void cse_insn (rtx_insn *);
587 static void cse_prescan_path (struct cse_basic_block_data *);
588 static void invalidate_from_clobbers (rtx_insn *);
589 static void invalidate_from_sets_and_clobbers (rtx_insn *);
590 static rtx cse_process_notes (rtx, rtx, bool *);
591 static void cse_extended_basic_block (struct cse_basic_block_data *);
592 extern void dump_class (struct table_elt*);
593 static void get_cse_reg_info_1 (unsigned int regno);
594 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
595
596 static void flush_hash_table (void);
597 static bool insn_live_p (rtx_insn *, int *);
598 static bool set_live_p (rtx, rtx_insn *, int *);
599 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
600 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
601 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
602 bool);
603 \f
604
605 #undef RTL_HOOKS_GEN_LOWPART
606 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
607
608 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
609 \f
610 /* Nonzero if X has the form (PLUS frame-pointer integer). */
611
612 static bool
613 fixed_base_plus_p (rtx x)
614 {
615 switch (GET_CODE (x))
616 {
617 case REG:
618 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
619 return true;
620 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
621 return true;
622 return false;
623
624 case PLUS:
625 if (!CONST_INT_P (XEXP (x, 1)))
626 return false;
627 return fixed_base_plus_p (XEXP (x, 0));
628
629 default:
630 return false;
631 }
632 }
633
634 /* Dump the expressions in the equivalence class indicated by CLASSP.
635 This function is used only for debugging. */
636 DEBUG_FUNCTION void
637 dump_class (struct table_elt *classp)
638 {
639 struct table_elt *elt;
640
641 fprintf (stderr, "Equivalence chain for ");
642 print_rtl (stderr, classp->exp);
643 fprintf (stderr, ": \n");
644
645 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
646 {
647 print_rtl (stderr, elt->exp);
648 fprintf (stderr, "\n");
649 }
650 }
651
652 /* Return an estimate of the cost of the registers used in an rtx.
653 This is mostly the number of different REG expressions in the rtx;
654 however for some exceptions like fixed registers we use a cost of
655 0. If any other hard register reference occurs, return MAX_COST. */
656
657 static int
658 approx_reg_cost (const_rtx x)
659 {
660 int cost = 0;
661 subrtx_iterator::array_type array;
662 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
663 {
664 const_rtx x = *iter;
665 if (REG_P (x))
666 {
667 unsigned int regno = REGNO (x);
668 if (!CHEAP_REGNO (regno))
669 {
670 if (regno < FIRST_PSEUDO_REGISTER)
671 {
672 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
673 return MAX_COST;
674 cost += 2;
675 }
676 else
677 cost += 1;
678 }
679 }
680 }
681 return cost;
682 }
683
684 /* Return a negative value if an rtx A, whose costs are given by COST_A
685 and REGCOST_A, is more desirable than an rtx B.
686 Return a positive value if A is less desirable, or 0 if the two are
687 equally good. */
688 static int
689 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
690 {
691 /* First, get rid of cases involving expressions that are entirely
692 unwanted. */
693 if (cost_a != cost_b)
694 {
695 if (cost_a == MAX_COST)
696 return 1;
697 if (cost_b == MAX_COST)
698 return -1;
699 }
700
701 /* Avoid extending lifetimes of hardregs. */
702 if (regcost_a != regcost_b)
703 {
704 if (regcost_a == MAX_COST)
705 return 1;
706 if (regcost_b == MAX_COST)
707 return -1;
708 }
709
710 /* Normal operation costs take precedence. */
711 if (cost_a != cost_b)
712 return cost_a - cost_b;
713 /* Only if these are identical consider effects on register pressure. */
714 if (regcost_a != regcost_b)
715 return regcost_a - regcost_b;
716 return 0;
717 }
718
719 /* Internal function, to compute cost when X is not a register; called
720 from COST macro to keep it simple. */
721
722 static int
723 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
724 {
725 scalar_int_mode int_mode, inner_mode;
726 return ((GET_CODE (x) == SUBREG
727 && REG_P (SUBREG_REG (x))
728 && is_int_mode (mode, &int_mode)
729 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
730 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
731 && subreg_lowpart_p (x)
732 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
733 ? 0
734 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
735 }
736
737 \f
738 /* Initialize CSE_REG_INFO_TABLE. */
739
740 static void
741 init_cse_reg_info (unsigned int nregs)
742 {
743 /* Do we need to grow the table? */
744 if (nregs > cse_reg_info_table_size)
745 {
746 unsigned int new_size;
747
748 if (cse_reg_info_table_size < 2048)
749 {
750 /* Compute a new size that is a power of 2 and no smaller
751 than the large of NREGS and 64. */
752 new_size = (cse_reg_info_table_size
753 ? cse_reg_info_table_size : 64);
754
755 while (new_size < nregs)
756 new_size *= 2;
757 }
758 else
759 {
760 /* If we need a big table, allocate just enough to hold
761 NREGS registers. */
762 new_size = nregs;
763 }
764
765 /* Reallocate the table with NEW_SIZE entries. */
766 free (cse_reg_info_table);
767 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
768 cse_reg_info_table_size = new_size;
769 cse_reg_info_table_first_uninitialized = 0;
770 }
771
772 /* Do we have all of the first NREGS entries initialized? */
773 if (cse_reg_info_table_first_uninitialized < nregs)
774 {
775 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
776 unsigned int i;
777
778 /* Put the old timestamp on newly allocated entries so that they
779 will all be considered out of date. We do not touch those
780 entries beyond the first NREGS entries to be nice to the
781 virtual memory. */
782 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
783 cse_reg_info_table[i].timestamp = old_timestamp;
784
785 cse_reg_info_table_first_uninitialized = nregs;
786 }
787 }
788
789 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
790
791 static void
792 get_cse_reg_info_1 (unsigned int regno)
793 {
794 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
795 entry will be considered to have been initialized. */
796 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
797
798 /* Initialize the rest of the entry. */
799 cse_reg_info_table[regno].reg_tick = 1;
800 cse_reg_info_table[regno].reg_in_table = -1;
801 cse_reg_info_table[regno].subreg_ticked = -1;
802 cse_reg_info_table[regno].reg_qty = -regno - 1;
803 }
804
805 /* Find a cse_reg_info entry for REGNO. */
806
807 static inline struct cse_reg_info *
808 get_cse_reg_info (unsigned int regno)
809 {
810 struct cse_reg_info *p = &cse_reg_info_table[regno];
811
812 /* If this entry has not been initialized, go ahead and initialize
813 it. */
814 if (p->timestamp != cse_reg_info_timestamp)
815 get_cse_reg_info_1 (regno);
816
817 return p;
818 }
819
820 /* Clear the hash table and initialize each register with its own quantity,
821 for a new basic block. */
822
823 static void
824 new_basic_block (void)
825 {
826 int i;
827
828 next_qty = 0;
829
830 /* Invalidate cse_reg_info_table. */
831 cse_reg_info_timestamp++;
832
833 /* Clear out hash table state for this pass. */
834 CLEAR_HARD_REG_SET (hard_regs_in_table);
835
836 /* The per-quantity values used to be initialized here, but it is
837 much faster to initialize each as it is made in `make_new_qty'. */
838
839 for (i = 0; i < HASH_SIZE; i++)
840 {
841 struct table_elt *first;
842
843 first = table[i];
844 if (first != NULL)
845 {
846 struct table_elt *last = first;
847
848 table[i] = NULL;
849
850 while (last->next_same_hash != NULL)
851 last = last->next_same_hash;
852
853 /* Now relink this hash entire chain into
854 the free element list. */
855
856 last->next_same_hash = free_element_chain;
857 free_element_chain = first;
858 }
859 }
860
861 prev_insn_cc0 = 0;
862 }
863
864 /* Say that register REG contains a quantity in mode MODE not in any
865 register before and initialize that quantity. */
866
867 static void
868 make_new_qty (unsigned int reg, machine_mode mode)
869 {
870 int q;
871 struct qty_table_elem *ent;
872 struct reg_eqv_elem *eqv;
873
874 gcc_assert (next_qty < max_qty);
875
876 q = REG_QTY (reg) = next_qty++;
877 ent = &qty_table[q];
878 ent->first_reg = reg;
879 ent->last_reg = reg;
880 ent->mode = mode;
881 ent->const_rtx = ent->const_insn = NULL;
882 ent->comparison_code = UNKNOWN;
883
884 eqv = &reg_eqv_table[reg];
885 eqv->next = eqv->prev = -1;
886 }
887
888 /* Make reg NEW equivalent to reg OLD.
889 OLD is not changing; NEW is. */
890
891 static void
892 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
893 {
894 unsigned int lastr, firstr;
895 int q = REG_QTY (old_reg);
896 struct qty_table_elem *ent;
897
898 ent = &qty_table[q];
899
900 /* Nothing should become eqv until it has a "non-invalid" qty number. */
901 gcc_assert (REGNO_QTY_VALID_P (old_reg));
902
903 REG_QTY (new_reg) = q;
904 firstr = ent->first_reg;
905 lastr = ent->last_reg;
906
907 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
908 hard regs. Among pseudos, if NEW will live longer than any other reg
909 of the same qty, and that is beyond the current basic block,
910 make it the new canonical replacement for this qty. */
911 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
912 /* Certain fixed registers might be of the class NO_REGS. This means
913 that not only can they not be allocated by the compiler, but
914 they cannot be used in substitutions or canonicalizations
915 either. */
916 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
917 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
918 || (new_reg >= FIRST_PSEUDO_REGISTER
919 && (firstr < FIRST_PSEUDO_REGISTER
920 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
921 && !bitmap_bit_p (cse_ebb_live_out, firstr))
922 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
923 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
924 {
925 reg_eqv_table[firstr].prev = new_reg;
926 reg_eqv_table[new_reg].next = firstr;
927 reg_eqv_table[new_reg].prev = -1;
928 ent->first_reg = new_reg;
929 }
930 else
931 {
932 /* If NEW is a hard reg (known to be non-fixed), insert at end.
933 Otherwise, insert before any non-fixed hard regs that are at the
934 end. Registers of class NO_REGS cannot be used as an
935 equivalent for anything. */
936 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
937 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
938 && new_reg >= FIRST_PSEUDO_REGISTER)
939 lastr = reg_eqv_table[lastr].prev;
940 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
941 if (reg_eqv_table[lastr].next >= 0)
942 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
943 else
944 qty_table[q].last_reg = new_reg;
945 reg_eqv_table[lastr].next = new_reg;
946 reg_eqv_table[new_reg].prev = lastr;
947 }
948 }
949
950 /* Remove REG from its equivalence class. */
951
952 static void
953 delete_reg_equiv (unsigned int reg)
954 {
955 struct qty_table_elem *ent;
956 int q = REG_QTY (reg);
957 int p, n;
958
959 /* If invalid, do nothing. */
960 if (! REGNO_QTY_VALID_P (reg))
961 return;
962
963 ent = &qty_table[q];
964
965 p = reg_eqv_table[reg].prev;
966 n = reg_eqv_table[reg].next;
967
968 if (n != -1)
969 reg_eqv_table[n].prev = p;
970 else
971 ent->last_reg = p;
972 if (p != -1)
973 reg_eqv_table[p].next = n;
974 else
975 ent->first_reg = n;
976
977 REG_QTY (reg) = -reg - 1;
978 }
979
980 /* Remove any invalid expressions from the hash table
981 that refer to any of the registers contained in expression X.
982
983 Make sure that newly inserted references to those registers
984 as subexpressions will be considered valid.
985
986 mention_regs is not called when a register itself
987 is being stored in the table.
988
989 Return 1 if we have done something that may have changed the hash code
990 of X. */
991
992 static int
993 mention_regs (rtx x)
994 {
995 enum rtx_code code;
996 int i, j;
997 const char *fmt;
998 int changed = 0;
999
1000 if (x == 0)
1001 return 0;
1002
1003 code = GET_CODE (x);
1004 if (code == REG)
1005 {
1006 unsigned int regno = REGNO (x);
1007 unsigned int endregno = END_REGNO (x);
1008 unsigned int i;
1009
1010 for (i = regno; i < endregno; i++)
1011 {
1012 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1013 remove_invalid_refs (i);
1014
1015 REG_IN_TABLE (i) = REG_TICK (i);
1016 SUBREG_TICKED (i) = -1;
1017 }
1018
1019 return 0;
1020 }
1021
1022 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1023 pseudo if they don't use overlapping words. We handle only pseudos
1024 here for simplicity. */
1025 if (code == SUBREG && REG_P (SUBREG_REG (x))
1026 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1027 {
1028 unsigned int i = REGNO (SUBREG_REG (x));
1029
1030 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1031 {
1032 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1033 the last store to this register really stored into this
1034 subreg, then remove the memory of this subreg.
1035 Otherwise, remove any memory of the entire register and
1036 all its subregs from the table. */
1037 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1038 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1039 remove_invalid_refs (i);
1040 else
1041 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1042 }
1043
1044 REG_IN_TABLE (i) = REG_TICK (i);
1045 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1046 return 0;
1047 }
1048
1049 /* If X is a comparison or a COMPARE and either operand is a register
1050 that does not have a quantity, give it one. This is so that a later
1051 call to record_jump_equiv won't cause X to be assigned a different
1052 hash code and not found in the table after that call.
1053
1054 It is not necessary to do this here, since rehash_using_reg can
1055 fix up the table later, but doing this here eliminates the need to
1056 call that expensive function in the most common case where the only
1057 use of the register is in the comparison. */
1058
1059 if (code == COMPARE || COMPARISON_P (x))
1060 {
1061 if (REG_P (XEXP (x, 0))
1062 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1063 if (insert_regs (XEXP (x, 0), NULL, 0))
1064 {
1065 rehash_using_reg (XEXP (x, 0));
1066 changed = 1;
1067 }
1068
1069 if (REG_P (XEXP (x, 1))
1070 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1071 if (insert_regs (XEXP (x, 1), NULL, 0))
1072 {
1073 rehash_using_reg (XEXP (x, 1));
1074 changed = 1;
1075 }
1076 }
1077
1078 fmt = GET_RTX_FORMAT (code);
1079 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1080 if (fmt[i] == 'e')
1081 changed |= mention_regs (XEXP (x, i));
1082 else if (fmt[i] == 'E')
1083 for (j = 0; j < XVECLEN (x, i); j++)
1084 changed |= mention_regs (XVECEXP (x, i, j));
1085
1086 return changed;
1087 }
1088
1089 /* Update the register quantities for inserting X into the hash table
1090 with a value equivalent to CLASSP.
1091 (If the class does not contain a REG, it is irrelevant.)
1092 If MODIFIED is nonzero, X is a destination; it is being modified.
1093 Note that delete_reg_equiv should be called on a register
1094 before insert_regs is done on that register with MODIFIED != 0.
1095
1096 Nonzero value means that elements of reg_qty have changed
1097 so X's hash code may be different. */
1098
1099 static int
1100 insert_regs (rtx x, struct table_elt *classp, int modified)
1101 {
1102 if (REG_P (x))
1103 {
1104 unsigned int regno = REGNO (x);
1105 int qty_valid;
1106
1107 /* If REGNO is in the equivalence table already but is of the
1108 wrong mode for that equivalence, don't do anything here. */
1109
1110 qty_valid = REGNO_QTY_VALID_P (regno);
1111 if (qty_valid)
1112 {
1113 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1114
1115 if (ent->mode != GET_MODE (x))
1116 return 0;
1117 }
1118
1119 if (modified || ! qty_valid)
1120 {
1121 if (classp)
1122 for (classp = classp->first_same_value;
1123 classp != 0;
1124 classp = classp->next_same_value)
1125 if (REG_P (classp->exp)
1126 && GET_MODE (classp->exp) == GET_MODE (x))
1127 {
1128 unsigned c_regno = REGNO (classp->exp);
1129
1130 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1131
1132 /* Suppose that 5 is hard reg and 100 and 101 are
1133 pseudos. Consider
1134
1135 (set (reg:si 100) (reg:si 5))
1136 (set (reg:si 5) (reg:si 100))
1137 (set (reg:di 101) (reg:di 5))
1138
1139 We would now set REG_QTY (101) = REG_QTY (5), but the
1140 entry for 5 is in SImode. When we use this later in
1141 copy propagation, we get the register in wrong mode. */
1142 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1143 continue;
1144
1145 make_regs_eqv (regno, c_regno);
1146 return 1;
1147 }
1148
1149 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1150 than REG_IN_TABLE to find out if there was only a single preceding
1151 invalidation - for the SUBREG - or another one, which would be
1152 for the full register. However, if we find here that REG_TICK
1153 indicates that the register is invalid, it means that it has
1154 been invalidated in a separate operation. The SUBREG might be used
1155 now (then this is a recursive call), or we might use the full REG
1156 now and a SUBREG of it later. So bump up REG_TICK so that
1157 mention_regs will do the right thing. */
1158 if (! modified
1159 && REG_IN_TABLE (regno) >= 0
1160 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1161 REG_TICK (regno)++;
1162 make_new_qty (regno, GET_MODE (x));
1163 return 1;
1164 }
1165
1166 return 0;
1167 }
1168
1169 /* If X is a SUBREG, we will likely be inserting the inner register in the
1170 table. If that register doesn't have an assigned quantity number at
1171 this point but does later, the insertion that we will be doing now will
1172 not be accessible because its hash code will have changed. So assign
1173 a quantity number now. */
1174
1175 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1176 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1177 {
1178 insert_regs (SUBREG_REG (x), NULL, 0);
1179 mention_regs (x);
1180 return 1;
1181 }
1182 else
1183 return mention_regs (x);
1184 }
1185 \f
1186
1187 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1188 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1189 CST is equal to an anchor. */
1190
1191 static bool
1192 compute_const_anchors (rtx cst,
1193 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1194 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1195 {
1196 HOST_WIDE_INT n = INTVAL (cst);
1197
1198 *lower_base = n & ~(targetm.const_anchor - 1);
1199 if (*lower_base == n)
1200 return false;
1201
1202 *upper_base =
1203 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1204 *upper_offs = n - *upper_base;
1205 *lower_offs = n - *lower_base;
1206 return true;
1207 }
1208
1209 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1210
1211 static void
1212 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1213 machine_mode mode)
1214 {
1215 struct table_elt *elt;
1216 unsigned hash;
1217 rtx anchor_exp;
1218 rtx exp;
1219
1220 anchor_exp = GEN_INT (anchor);
1221 hash = HASH (anchor_exp, mode);
1222 elt = lookup (anchor_exp, hash, mode);
1223 if (!elt)
1224 elt = insert (anchor_exp, NULL, hash, mode);
1225
1226 exp = plus_constant (mode, reg, offs);
1227 /* REG has just been inserted and the hash codes recomputed. */
1228 mention_regs (exp);
1229 hash = HASH (exp, mode);
1230
1231 /* Use the cost of the register rather than the whole expression. When
1232 looking up constant anchors we will further offset the corresponding
1233 expression therefore it does not make sense to prefer REGs over
1234 reg-immediate additions. Prefer instead the oldest expression. Also
1235 don't prefer pseudos over hard regs so that we derive constants in
1236 argument registers from other argument registers rather than from the
1237 original pseudo that was used to synthesize the constant. */
1238 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1239 }
1240
1241 /* The constant CST is equivalent to the register REG. Create
1242 equivalences between the two anchors of CST and the corresponding
1243 register-offset expressions using REG. */
1244
1245 static void
1246 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1247 {
1248 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1249
1250 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1251 &upper_base, &upper_offs))
1252 return;
1253
1254 /* Ignore anchors of value 0. Constants accessible from zero are
1255 simple. */
1256 if (lower_base != 0)
1257 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1258
1259 if (upper_base != 0)
1260 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1261 }
1262
1263 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1264 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1265 valid expression. Return the cheapest and oldest of such expressions. In
1266 *OLD, return how old the resulting expression is compared to the other
1267 equivalent expressions. */
1268
1269 static rtx
1270 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1271 unsigned *old)
1272 {
1273 struct table_elt *elt;
1274 unsigned idx;
1275 struct table_elt *match_elt;
1276 rtx match;
1277
1278 /* Find the cheapest and *oldest* expression to maximize the chance of
1279 reusing the same pseudo. */
1280
1281 match_elt = NULL;
1282 match = NULL_RTX;
1283 for (elt = anchor_elt->first_same_value, idx = 0;
1284 elt;
1285 elt = elt->next_same_value, idx++)
1286 {
1287 if (match_elt && CHEAPER (match_elt, elt))
1288 return match;
1289
1290 if (REG_P (elt->exp)
1291 || (GET_CODE (elt->exp) == PLUS
1292 && REG_P (XEXP (elt->exp, 0))
1293 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1294 {
1295 rtx x;
1296
1297 /* Ignore expressions that are no longer valid. */
1298 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1299 continue;
1300
1301 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1302 if (REG_P (x)
1303 || (GET_CODE (x) == PLUS
1304 && IN_RANGE (INTVAL (XEXP (x, 1)),
1305 -targetm.const_anchor,
1306 targetm.const_anchor - 1)))
1307 {
1308 match = x;
1309 match_elt = elt;
1310 *old = idx;
1311 }
1312 }
1313 }
1314
1315 return match;
1316 }
1317
1318 /* Try to express the constant SRC_CONST using a register+offset expression
1319 derived from a constant anchor. Return it if successful or NULL_RTX,
1320 otherwise. */
1321
1322 static rtx
1323 try_const_anchors (rtx src_const, machine_mode mode)
1324 {
1325 struct table_elt *lower_elt, *upper_elt;
1326 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1327 rtx lower_anchor_rtx, upper_anchor_rtx;
1328 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1329 unsigned lower_old, upper_old;
1330
1331 /* CONST_INT is used for CC modes, but we should leave those alone. */
1332 if (GET_MODE_CLASS (mode) == MODE_CC)
1333 return NULL_RTX;
1334
1335 gcc_assert (SCALAR_INT_MODE_P (mode));
1336 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1337 &upper_base, &upper_offs))
1338 return NULL_RTX;
1339
1340 lower_anchor_rtx = GEN_INT (lower_base);
1341 upper_anchor_rtx = GEN_INT (upper_base);
1342 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1343 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1344
1345 if (lower_elt)
1346 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1347 if (upper_elt)
1348 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1349
1350 if (!lower_exp)
1351 return upper_exp;
1352 if (!upper_exp)
1353 return lower_exp;
1354
1355 /* Return the older expression. */
1356 return (upper_old > lower_old ? upper_exp : lower_exp);
1357 }
1358 \f
1359 /* Look in or update the hash table. */
1360
1361 /* Remove table element ELT from use in the table.
1362 HASH is its hash code, made using the HASH macro.
1363 It's an argument because often that is known in advance
1364 and we save much time not recomputing it. */
1365
1366 static void
1367 remove_from_table (struct table_elt *elt, unsigned int hash)
1368 {
1369 if (elt == 0)
1370 return;
1371
1372 /* Mark this element as removed. See cse_insn. */
1373 elt->first_same_value = 0;
1374
1375 /* Remove the table element from its equivalence class. */
1376
1377 {
1378 struct table_elt *prev = elt->prev_same_value;
1379 struct table_elt *next = elt->next_same_value;
1380
1381 if (next)
1382 next->prev_same_value = prev;
1383
1384 if (prev)
1385 prev->next_same_value = next;
1386 else
1387 {
1388 struct table_elt *newfirst = next;
1389 while (next)
1390 {
1391 next->first_same_value = newfirst;
1392 next = next->next_same_value;
1393 }
1394 }
1395 }
1396
1397 /* Remove the table element from its hash bucket. */
1398
1399 {
1400 struct table_elt *prev = elt->prev_same_hash;
1401 struct table_elt *next = elt->next_same_hash;
1402
1403 if (next)
1404 next->prev_same_hash = prev;
1405
1406 if (prev)
1407 prev->next_same_hash = next;
1408 else if (table[hash] == elt)
1409 table[hash] = next;
1410 else
1411 {
1412 /* This entry is not in the proper hash bucket. This can happen
1413 when two classes were merged by `merge_equiv_classes'. Search
1414 for the hash bucket that it heads. This happens only very
1415 rarely, so the cost is acceptable. */
1416 for (hash = 0; hash < HASH_SIZE; hash++)
1417 if (table[hash] == elt)
1418 table[hash] = next;
1419 }
1420 }
1421
1422 /* Remove the table element from its related-value circular chain. */
1423
1424 if (elt->related_value != 0 && elt->related_value != elt)
1425 {
1426 struct table_elt *p = elt->related_value;
1427
1428 while (p->related_value != elt)
1429 p = p->related_value;
1430 p->related_value = elt->related_value;
1431 if (p->related_value == p)
1432 p->related_value = 0;
1433 }
1434
1435 /* Now add it to the free element chain. */
1436 elt->next_same_hash = free_element_chain;
1437 free_element_chain = elt;
1438 }
1439
1440 /* Same as above, but X is a pseudo-register. */
1441
1442 static void
1443 remove_pseudo_from_table (rtx x, unsigned int hash)
1444 {
1445 struct table_elt *elt;
1446
1447 /* Because a pseudo-register can be referenced in more than one
1448 mode, we might have to remove more than one table entry. */
1449 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1450 remove_from_table (elt, hash);
1451 }
1452
1453 /* Look up X in the hash table and return its table element,
1454 or 0 if X is not in the table.
1455
1456 MODE is the machine-mode of X, or if X is an integer constant
1457 with VOIDmode then MODE is the mode with which X will be used.
1458
1459 Here we are satisfied to find an expression whose tree structure
1460 looks like X. */
1461
1462 static struct table_elt *
1463 lookup (rtx x, unsigned int hash, machine_mode mode)
1464 {
1465 struct table_elt *p;
1466
1467 for (p = table[hash]; p; p = p->next_same_hash)
1468 if (mode == p->mode && ((x == p->exp && REG_P (x))
1469 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1470 return p;
1471
1472 return 0;
1473 }
1474
1475 /* Like `lookup' but don't care whether the table element uses invalid regs.
1476 Also ignore discrepancies in the machine mode of a register. */
1477
1478 static struct table_elt *
1479 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1480 {
1481 struct table_elt *p;
1482
1483 if (REG_P (x))
1484 {
1485 unsigned int regno = REGNO (x);
1486
1487 /* Don't check the machine mode when comparing registers;
1488 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1489 for (p = table[hash]; p; p = p->next_same_hash)
1490 if (REG_P (p->exp)
1491 && REGNO (p->exp) == regno)
1492 return p;
1493 }
1494 else
1495 {
1496 for (p = table[hash]; p; p = p->next_same_hash)
1497 if (mode == p->mode
1498 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1499 return p;
1500 }
1501
1502 return 0;
1503 }
1504
1505 /* Look for an expression equivalent to X and with code CODE.
1506 If one is found, return that expression. */
1507
1508 static rtx
1509 lookup_as_function (rtx x, enum rtx_code code)
1510 {
1511 struct table_elt *p
1512 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1513
1514 if (p == 0)
1515 return 0;
1516
1517 for (p = p->first_same_value; p; p = p->next_same_value)
1518 if (GET_CODE (p->exp) == code
1519 /* Make sure this is a valid entry in the table. */
1520 && exp_equiv_p (p->exp, p->exp, 1, false))
1521 return p->exp;
1522
1523 return 0;
1524 }
1525
1526 /* Insert X in the hash table, assuming HASH is its hash code and
1527 CLASSP is an element of the class it should go in (or 0 if a new
1528 class should be made). COST is the code of X and reg_cost is the
1529 cost of registers in X. It is inserted at the proper position to
1530 keep the class in the order cheapest first.
1531
1532 MODE is the machine-mode of X, or if X is an integer constant
1533 with VOIDmode then MODE is the mode with which X will be used.
1534
1535 For elements of equal cheapness, the most recent one
1536 goes in front, except that the first element in the list
1537 remains first unless a cheaper element is added. The order of
1538 pseudo-registers does not matter, as canon_reg will be called to
1539 find the cheapest when a register is retrieved from the table.
1540
1541 The in_memory field in the hash table element is set to 0.
1542 The caller must set it nonzero if appropriate.
1543
1544 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1545 and if insert_regs returns a nonzero value
1546 you must then recompute its hash code before calling here.
1547
1548 If necessary, update table showing constant values of quantities. */
1549
1550 static struct table_elt *
1551 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1552 machine_mode mode, int cost, int reg_cost)
1553 {
1554 struct table_elt *elt;
1555
1556 /* If X is a register and we haven't made a quantity for it,
1557 something is wrong. */
1558 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1559
1560 /* If X is a hard register, show it is being put in the table. */
1561 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1562 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1563
1564 /* Put an element for X into the right hash bucket. */
1565
1566 elt = free_element_chain;
1567 if (elt)
1568 free_element_chain = elt->next_same_hash;
1569 else
1570 elt = XNEW (struct table_elt);
1571
1572 elt->exp = x;
1573 elt->canon_exp = NULL_RTX;
1574 elt->cost = cost;
1575 elt->regcost = reg_cost;
1576 elt->next_same_value = 0;
1577 elt->prev_same_value = 0;
1578 elt->next_same_hash = table[hash];
1579 elt->prev_same_hash = 0;
1580 elt->related_value = 0;
1581 elt->in_memory = 0;
1582 elt->mode = mode;
1583 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1584
1585 if (table[hash])
1586 table[hash]->prev_same_hash = elt;
1587 table[hash] = elt;
1588
1589 /* Put it into the proper value-class. */
1590 if (classp)
1591 {
1592 classp = classp->first_same_value;
1593 if (CHEAPER (elt, classp))
1594 /* Insert at the head of the class. */
1595 {
1596 struct table_elt *p;
1597 elt->next_same_value = classp;
1598 classp->prev_same_value = elt;
1599 elt->first_same_value = elt;
1600
1601 for (p = classp; p; p = p->next_same_value)
1602 p->first_same_value = elt;
1603 }
1604 else
1605 {
1606 /* Insert not at head of the class. */
1607 /* Put it after the last element cheaper than X. */
1608 struct table_elt *p, *next;
1609
1610 for (p = classp;
1611 (next = p->next_same_value) && CHEAPER (next, elt);
1612 p = next)
1613 ;
1614
1615 /* Put it after P and before NEXT. */
1616 elt->next_same_value = next;
1617 if (next)
1618 next->prev_same_value = elt;
1619
1620 elt->prev_same_value = p;
1621 p->next_same_value = elt;
1622 elt->first_same_value = classp;
1623 }
1624 }
1625 else
1626 elt->first_same_value = elt;
1627
1628 /* If this is a constant being set equivalent to a register or a register
1629 being set equivalent to a constant, note the constant equivalence.
1630
1631 If this is a constant, it cannot be equivalent to a different constant,
1632 and a constant is the only thing that can be cheaper than a register. So
1633 we know the register is the head of the class (before the constant was
1634 inserted).
1635
1636 If this is a register that is not already known equivalent to a
1637 constant, we must check the entire class.
1638
1639 If this is a register that is already known equivalent to an insn,
1640 update the qtys `const_insn' to show that `this_insn' is the latest
1641 insn making that quantity equivalent to the constant. */
1642
1643 if (elt->is_const && classp && REG_P (classp->exp)
1644 && !REG_P (x))
1645 {
1646 int exp_q = REG_QTY (REGNO (classp->exp));
1647 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1648
1649 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1650 exp_ent->const_insn = this_insn;
1651 }
1652
1653 else if (REG_P (x)
1654 && classp
1655 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1656 && ! elt->is_const)
1657 {
1658 struct table_elt *p;
1659
1660 for (p = classp; p != 0; p = p->next_same_value)
1661 {
1662 if (p->is_const && !REG_P (p->exp))
1663 {
1664 int x_q = REG_QTY (REGNO (x));
1665 struct qty_table_elem *x_ent = &qty_table[x_q];
1666
1667 x_ent->const_rtx
1668 = gen_lowpart (GET_MODE (x), p->exp);
1669 x_ent->const_insn = this_insn;
1670 break;
1671 }
1672 }
1673 }
1674
1675 else if (REG_P (x)
1676 && qty_table[REG_QTY (REGNO (x))].const_rtx
1677 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1678 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1679
1680 /* If this is a constant with symbolic value,
1681 and it has a term with an explicit integer value,
1682 link it up with related expressions. */
1683 if (GET_CODE (x) == CONST)
1684 {
1685 rtx subexp = get_related_value (x);
1686 unsigned subhash;
1687 struct table_elt *subelt, *subelt_prev;
1688
1689 if (subexp != 0)
1690 {
1691 /* Get the integer-free subexpression in the hash table. */
1692 subhash = SAFE_HASH (subexp, mode);
1693 subelt = lookup (subexp, subhash, mode);
1694 if (subelt == 0)
1695 subelt = insert (subexp, NULL, subhash, mode);
1696 /* Initialize SUBELT's circular chain if it has none. */
1697 if (subelt->related_value == 0)
1698 subelt->related_value = subelt;
1699 /* Find the element in the circular chain that precedes SUBELT. */
1700 subelt_prev = subelt;
1701 while (subelt_prev->related_value != subelt)
1702 subelt_prev = subelt_prev->related_value;
1703 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1704 This way the element that follows SUBELT is the oldest one. */
1705 elt->related_value = subelt_prev->related_value;
1706 subelt_prev->related_value = elt;
1707 }
1708 }
1709
1710 return elt;
1711 }
1712
1713 /* Wrap insert_with_costs by passing the default costs. */
1714
1715 static struct table_elt *
1716 insert (rtx x, struct table_elt *classp, unsigned int hash,
1717 machine_mode mode)
1718 {
1719 return insert_with_costs (x, classp, hash, mode,
1720 COST (x, mode), approx_reg_cost (x));
1721 }
1722
1723 \f
1724 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1725 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1726 the two classes equivalent.
1727
1728 CLASS1 will be the surviving class; CLASS2 should not be used after this
1729 call.
1730
1731 Any invalid entries in CLASS2 will not be copied. */
1732
1733 static void
1734 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1735 {
1736 struct table_elt *elt, *next, *new_elt;
1737
1738 /* Ensure we start with the head of the classes. */
1739 class1 = class1->first_same_value;
1740 class2 = class2->first_same_value;
1741
1742 /* If they were already equal, forget it. */
1743 if (class1 == class2)
1744 return;
1745
1746 for (elt = class2; elt; elt = next)
1747 {
1748 unsigned int hash;
1749 rtx exp = elt->exp;
1750 machine_mode mode = elt->mode;
1751
1752 next = elt->next_same_value;
1753
1754 /* Remove old entry, make a new one in CLASS1's class.
1755 Don't do this for invalid entries as we cannot find their
1756 hash code (it also isn't necessary). */
1757 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1758 {
1759 bool need_rehash = false;
1760
1761 hash_arg_in_memory = 0;
1762 hash = HASH (exp, mode);
1763
1764 if (REG_P (exp))
1765 {
1766 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1767 delete_reg_equiv (REGNO (exp));
1768 }
1769
1770 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1771 remove_pseudo_from_table (exp, hash);
1772 else
1773 remove_from_table (elt, hash);
1774
1775 if (insert_regs (exp, class1, 0) || need_rehash)
1776 {
1777 rehash_using_reg (exp);
1778 hash = HASH (exp, mode);
1779 }
1780 new_elt = insert (exp, class1, hash, mode);
1781 new_elt->in_memory = hash_arg_in_memory;
1782 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1783 new_elt->cost = MAX_COST;
1784 }
1785 }
1786 }
1787 \f
1788 /* Flush the entire hash table. */
1789
1790 static void
1791 flush_hash_table (void)
1792 {
1793 int i;
1794 struct table_elt *p;
1795
1796 for (i = 0; i < HASH_SIZE; i++)
1797 for (p = table[i]; p; p = table[i])
1798 {
1799 /* Note that invalidate can remove elements
1800 after P in the current hash chain. */
1801 if (REG_P (p->exp))
1802 invalidate (p->exp, VOIDmode);
1803 else
1804 remove_from_table (p, i);
1805 }
1806 }
1807 \f
1808 /* Check whether an anti dependence exists between X and EXP. MODE and
1809 ADDR are as for canon_anti_dependence. */
1810
1811 static bool
1812 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1813 {
1814 subrtx_iterator::array_type array;
1815 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1816 {
1817 const_rtx x = *iter;
1818 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1819 return true;
1820 }
1821 return false;
1822 }
1823
1824 /* Remove from the hash table, or mark as invalid, all expressions whose
1825 values could be altered by storing in register X.
1826
1827 CLOBBER_HIGH is set if X was part of a CLOBBER_HIGH expression. */
1828
1829 static void
1830 invalidate_reg (rtx x, bool clobber_high)
1831 {
1832 gcc_assert (GET_CODE (x) == REG);
1833
1834 /* If X is a register, dependencies on its contents are recorded
1835 through the qty number mechanism. Just change the qty number of
1836 the register, mark it as invalid for expressions that refer to it,
1837 and remove it itself. */
1838 unsigned int regno = REGNO (x);
1839 unsigned int hash = HASH (x, GET_MODE (x));
1840
1841 /* Remove REGNO from any quantity list it might be on and indicate
1842 that its value might have changed. If it is a pseudo, remove its
1843 entry from the hash table.
1844
1845 For a hard register, we do the first two actions above for any
1846 additional hard registers corresponding to X. Then, if any of these
1847 registers are in the table, we must remove any REG entries that
1848 overlap these registers. */
1849
1850 delete_reg_equiv (regno);
1851 REG_TICK (regno)++;
1852 SUBREG_TICKED (regno) = -1;
1853
1854 if (regno >= FIRST_PSEUDO_REGISTER)
1855 {
1856 gcc_assert (!clobber_high);
1857 remove_pseudo_from_table (x, hash);
1858 }
1859 else
1860 {
1861 HOST_WIDE_INT in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1862 unsigned int endregno = END_REGNO (x);
1863 unsigned int rn;
1864 struct table_elt *p, *next;
1865
1866 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1867
1868 for (rn = regno + 1; rn < endregno; rn++)
1869 {
1870 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1871 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1872 delete_reg_equiv (rn);
1873 REG_TICK (rn)++;
1874 SUBREG_TICKED (rn) = -1;
1875 }
1876
1877 if (in_table)
1878 for (hash = 0; hash < HASH_SIZE; hash++)
1879 for (p = table[hash]; p; p = next)
1880 {
1881 next = p->next_same_hash;
1882
1883 if (!REG_P (p->exp) || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1884 continue;
1885
1886 if (clobber_high)
1887 {
1888 if (reg_is_clobbered_by_clobber_high (p->exp, x))
1889 remove_from_table (p, hash);
1890 }
1891 else
1892 {
1893 unsigned int tregno = REGNO (p->exp);
1894 unsigned int tendregno = END_REGNO (p->exp);
1895 if (tendregno > regno && tregno < endregno)
1896 remove_from_table (p, hash);
1897 }
1898 }
1899 }
1900 }
1901
1902 /* Remove from the hash table, or mark as invalid, all expressions whose
1903 values could be altered by storing in X. X is a register, a subreg, or
1904 a memory reference with nonvarying address (because, when a memory
1905 reference with a varying address is stored in, all memory references are
1906 removed by invalidate_memory so specific invalidation is superfluous).
1907 FULL_MODE, if not VOIDmode, indicates that this much should be
1908 invalidated instead of just the amount indicated by the mode of X. This
1909 is only used for bitfield stores into memory.
1910
1911 A nonvarying address may be just a register or just a symbol reference,
1912 or it may be either of those plus a numeric offset. */
1913
1914 static void
1915 invalidate (rtx x, machine_mode full_mode)
1916 {
1917 int i;
1918 struct table_elt *p;
1919 rtx addr;
1920
1921 switch (GET_CODE (x))
1922 {
1923 case REG:
1924 invalidate_reg (x, false);
1925 return;
1926
1927 case SUBREG:
1928 invalidate (SUBREG_REG (x), VOIDmode);
1929 return;
1930
1931 case PARALLEL:
1932 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1933 invalidate (XVECEXP (x, 0, i), VOIDmode);
1934 return;
1935
1936 case EXPR_LIST:
1937 /* This is part of a disjoint return value; extract the location in
1938 question ignoring the offset. */
1939 invalidate (XEXP (x, 0), VOIDmode);
1940 return;
1941
1942 case MEM:
1943 addr = canon_rtx (get_addr (XEXP (x, 0)));
1944 /* Calculate the canonical version of X here so that
1945 true_dependence doesn't generate new RTL for X on each call. */
1946 x = canon_rtx (x);
1947
1948 /* Remove all hash table elements that refer to overlapping pieces of
1949 memory. */
1950 if (full_mode == VOIDmode)
1951 full_mode = GET_MODE (x);
1952
1953 for (i = 0; i < HASH_SIZE; i++)
1954 {
1955 struct table_elt *next;
1956
1957 for (p = table[i]; p; p = next)
1958 {
1959 next = p->next_same_hash;
1960 if (p->in_memory)
1961 {
1962 /* Just canonicalize the expression once;
1963 otherwise each time we call invalidate
1964 true_dependence will canonicalize the
1965 expression again. */
1966 if (!p->canon_exp)
1967 p->canon_exp = canon_rtx (p->exp);
1968 if (check_dependence (p->canon_exp, x, full_mode, addr))
1969 remove_from_table (p, i);
1970 }
1971 }
1972 }
1973 return;
1974
1975 default:
1976 gcc_unreachable ();
1977 }
1978 }
1979
1980 /* Invalidate DEST. Used when DEST is not going to be added
1981 into the hash table for some reason, e.g. do_not_record
1982 flagged on it. */
1983
1984 static void
1985 invalidate_dest (rtx dest)
1986 {
1987 if (REG_P (dest)
1988 || GET_CODE (dest) == SUBREG
1989 || MEM_P (dest))
1990 invalidate (dest, VOIDmode);
1991 else if (GET_CODE (dest) == STRICT_LOW_PART
1992 || GET_CODE (dest) == ZERO_EXTRACT)
1993 invalidate (XEXP (dest, 0), GET_MODE (dest));
1994 }
1995 \f
1996 /* Remove all expressions that refer to register REGNO,
1997 since they are already invalid, and we are about to
1998 mark that register valid again and don't want the old
1999 expressions to reappear as valid. */
2000
2001 static void
2002 remove_invalid_refs (unsigned int regno)
2003 {
2004 unsigned int i;
2005 struct table_elt *p, *next;
2006
2007 for (i = 0; i < HASH_SIZE; i++)
2008 for (p = table[i]; p; p = next)
2009 {
2010 next = p->next_same_hash;
2011 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
2012 remove_from_table (p, i);
2013 }
2014 }
2015
2016 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2017 and mode MODE. */
2018 static void
2019 remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
2020 machine_mode mode)
2021 {
2022 unsigned int i;
2023 struct table_elt *p, *next;
2024
2025 for (i = 0; i < HASH_SIZE; i++)
2026 for (p = table[i]; p; p = next)
2027 {
2028 rtx exp = p->exp;
2029 next = p->next_same_hash;
2030
2031 if (!REG_P (exp)
2032 && (GET_CODE (exp) != SUBREG
2033 || !REG_P (SUBREG_REG (exp))
2034 || REGNO (SUBREG_REG (exp)) != regno
2035 || ranges_maybe_overlap_p (SUBREG_BYTE (exp),
2036 GET_MODE_SIZE (GET_MODE (exp)),
2037 offset, GET_MODE_SIZE (mode)))
2038 && refers_to_regno_p (regno, p->exp))
2039 remove_from_table (p, i);
2040 }
2041 }
2042 \f
2043 /* Recompute the hash codes of any valid entries in the hash table that
2044 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2045
2046 This is called when we make a jump equivalence. */
2047
2048 static void
2049 rehash_using_reg (rtx x)
2050 {
2051 unsigned int i;
2052 struct table_elt *p, *next;
2053 unsigned hash;
2054
2055 if (GET_CODE (x) == SUBREG)
2056 x = SUBREG_REG (x);
2057
2058 /* If X is not a register or if the register is known not to be in any
2059 valid entries in the table, we have no work to do. */
2060
2061 if (!REG_P (x)
2062 || REG_IN_TABLE (REGNO (x)) < 0
2063 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2064 return;
2065
2066 /* Scan all hash chains looking for valid entries that mention X.
2067 If we find one and it is in the wrong hash chain, move it. */
2068
2069 for (i = 0; i < HASH_SIZE; i++)
2070 for (p = table[i]; p; p = next)
2071 {
2072 next = p->next_same_hash;
2073 if (reg_mentioned_p (x, p->exp)
2074 && exp_equiv_p (p->exp, p->exp, 1, false)
2075 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2076 {
2077 if (p->next_same_hash)
2078 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2079
2080 if (p->prev_same_hash)
2081 p->prev_same_hash->next_same_hash = p->next_same_hash;
2082 else
2083 table[i] = p->next_same_hash;
2084
2085 p->next_same_hash = table[hash];
2086 p->prev_same_hash = 0;
2087 if (table[hash])
2088 table[hash]->prev_same_hash = p;
2089 table[hash] = p;
2090 }
2091 }
2092 }
2093 \f
2094 /* Remove from the hash table any expression that is a call-clobbered
2095 register in INSN. Also update their TICK values. */
2096
2097 static void
2098 invalidate_for_call (rtx_insn *insn)
2099 {
2100 unsigned int regno;
2101 unsigned hash;
2102 struct table_elt *p, *next;
2103 int in_table = 0;
2104 hard_reg_set_iterator hrsi;
2105
2106 /* Go through all the hard registers. For each that might be clobbered
2107 in call insn INSN, remove the register from quantity chains and update
2108 reg_tick if defined. Also see if any of these registers is currently
2109 in the table.
2110
2111 ??? We could be more precise for partially-clobbered registers,
2112 and only invalidate values that actually occupy the clobbered part
2113 of the registers. It doesn't seem worth the effort though, since
2114 we shouldn't see this situation much before RA. Whatever choice
2115 we make here has to be consistent with the table walk below,
2116 so any change to this test will require a change there too. */
2117 HARD_REG_SET callee_clobbers
2118 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
2119 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
2120 {
2121 delete_reg_equiv (regno);
2122 if (REG_TICK (regno) >= 0)
2123 {
2124 REG_TICK (regno)++;
2125 SUBREG_TICKED (regno) = -1;
2126 }
2127 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2128 }
2129
2130 /* In the case where we have no call-clobbered hard registers in the
2131 table, we are done. Otherwise, scan the table and remove any
2132 entry that overlaps a call-clobbered register. */
2133
2134 if (in_table)
2135 for (hash = 0; hash < HASH_SIZE; hash++)
2136 for (p = table[hash]; p; p = next)
2137 {
2138 next = p->next_same_hash;
2139
2140 if (!REG_P (p->exp)
2141 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2142 continue;
2143
2144 /* This must use the same test as above rather than the
2145 more accurate clobbers_reg_p. */
2146 if (overlaps_hard_reg_set_p (callee_clobbers, GET_MODE (p->exp),
2147 REGNO (p->exp)))
2148 remove_from_table (p, hash);
2149 }
2150 }
2151 \f
2152 /* Given an expression X of type CONST,
2153 and ELT which is its table entry (or 0 if it
2154 is not in the hash table),
2155 return an alternate expression for X as a register plus integer.
2156 If none can be found, return 0. */
2157
2158 static rtx
2159 use_related_value (rtx x, struct table_elt *elt)
2160 {
2161 struct table_elt *relt = 0;
2162 struct table_elt *p, *q;
2163 HOST_WIDE_INT offset;
2164
2165 /* First, is there anything related known?
2166 If we have a table element, we can tell from that.
2167 Otherwise, must look it up. */
2168
2169 if (elt != 0 && elt->related_value != 0)
2170 relt = elt;
2171 else if (elt == 0 && GET_CODE (x) == CONST)
2172 {
2173 rtx subexp = get_related_value (x);
2174 if (subexp != 0)
2175 relt = lookup (subexp,
2176 SAFE_HASH (subexp, GET_MODE (subexp)),
2177 GET_MODE (subexp));
2178 }
2179
2180 if (relt == 0)
2181 return 0;
2182
2183 /* Search all related table entries for one that has an
2184 equivalent register. */
2185
2186 p = relt;
2187 while (1)
2188 {
2189 /* This loop is strange in that it is executed in two different cases.
2190 The first is when X is already in the table. Then it is searching
2191 the RELATED_VALUE list of X's class (RELT). The second case is when
2192 X is not in the table. Then RELT points to a class for the related
2193 value.
2194
2195 Ensure that, whatever case we are in, that we ignore classes that have
2196 the same value as X. */
2197
2198 if (rtx_equal_p (x, p->exp))
2199 q = 0;
2200 else
2201 for (q = p->first_same_value; q; q = q->next_same_value)
2202 if (REG_P (q->exp))
2203 break;
2204
2205 if (q)
2206 break;
2207
2208 p = p->related_value;
2209
2210 /* We went all the way around, so there is nothing to be found.
2211 Alternatively, perhaps RELT was in the table for some other reason
2212 and it has no related values recorded. */
2213 if (p == relt || p == 0)
2214 break;
2215 }
2216
2217 if (q == 0)
2218 return 0;
2219
2220 offset = (get_integer_term (x) - get_integer_term (p->exp));
2221 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2222 return plus_constant (q->mode, q->exp, offset);
2223 }
2224 \f
2225
2226 /* Hash a string. Just add its bytes up. */
2227 static inline unsigned
2228 hash_rtx_string (const char *ps)
2229 {
2230 unsigned hash = 0;
2231 const unsigned char *p = (const unsigned char *) ps;
2232
2233 if (p)
2234 while (*p)
2235 hash += *p++;
2236
2237 return hash;
2238 }
2239
2240 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2241 When the callback returns true, we continue with the new rtx. */
2242
2243 unsigned
2244 hash_rtx_cb (const_rtx x, machine_mode mode,
2245 int *do_not_record_p, int *hash_arg_in_memory_p,
2246 bool have_reg_qty, hash_rtx_callback_function cb)
2247 {
2248 int i, j;
2249 unsigned hash = 0;
2250 enum rtx_code code;
2251 const char *fmt;
2252 machine_mode newmode;
2253 rtx newx;
2254
2255 /* Used to turn recursion into iteration. We can't rely on GCC's
2256 tail-recursion elimination since we need to keep accumulating values
2257 in HASH. */
2258 repeat:
2259 if (x == 0)
2260 return hash;
2261
2262 /* Invoke the callback first. */
2263 if (cb != NULL
2264 && ((*cb) (x, mode, &newx, &newmode)))
2265 {
2266 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2267 hash_arg_in_memory_p, have_reg_qty, cb);
2268 return hash;
2269 }
2270
2271 code = GET_CODE (x);
2272 switch (code)
2273 {
2274 case REG:
2275 {
2276 unsigned int regno = REGNO (x);
2277
2278 if (do_not_record_p && !reload_completed)
2279 {
2280 /* On some machines, we can't record any non-fixed hard register,
2281 because extending its life will cause reload problems. We
2282 consider ap, fp, sp, gp to be fixed for this purpose.
2283
2284 We also consider CCmode registers to be fixed for this purpose;
2285 failure to do so leads to failure to simplify 0<100 type of
2286 conditionals.
2287
2288 On all machines, we can't record any global registers.
2289 Nor should we record any register that is in a small
2290 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2291 bool record;
2292
2293 if (regno >= FIRST_PSEUDO_REGISTER)
2294 record = true;
2295 else if (x == frame_pointer_rtx
2296 || x == hard_frame_pointer_rtx
2297 || x == arg_pointer_rtx
2298 || x == stack_pointer_rtx
2299 || x == pic_offset_table_rtx)
2300 record = true;
2301 else if (global_regs[regno])
2302 record = false;
2303 else if (fixed_regs[regno])
2304 record = true;
2305 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2306 record = true;
2307 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2308 record = false;
2309 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2310 record = false;
2311 else
2312 record = true;
2313
2314 if (!record)
2315 {
2316 *do_not_record_p = 1;
2317 return 0;
2318 }
2319 }
2320
2321 hash += ((unsigned int) REG << 7);
2322 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2323 return hash;
2324 }
2325
2326 /* We handle SUBREG of a REG specially because the underlying
2327 reg changes its hash value with every value change; we don't
2328 want to have to forget unrelated subregs when one subreg changes. */
2329 case SUBREG:
2330 {
2331 if (REG_P (SUBREG_REG (x)))
2332 {
2333 hash += (((unsigned int) SUBREG << 7)
2334 + REGNO (SUBREG_REG (x))
2335 + (constant_lower_bound (SUBREG_BYTE (x))
2336 / UNITS_PER_WORD));
2337 return hash;
2338 }
2339 break;
2340 }
2341
2342 case CONST_INT:
2343 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2344 + (unsigned int) INTVAL (x));
2345 return hash;
2346
2347 case CONST_WIDE_INT:
2348 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2349 hash += CONST_WIDE_INT_ELT (x, i);
2350 return hash;
2351
2352 case CONST_POLY_INT:
2353 {
2354 inchash::hash h;
2355 h.add_int (hash);
2356 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2357 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2358 return h.end ();
2359 }
2360
2361 case CONST_DOUBLE:
2362 /* This is like the general case, except that it only counts
2363 the integers representing the constant. */
2364 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2365 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2366 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2367 + (unsigned int) CONST_DOUBLE_HIGH (x));
2368 else
2369 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2370 return hash;
2371
2372 case CONST_FIXED:
2373 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2374 hash += fixed_hash (CONST_FIXED_VALUE (x));
2375 return hash;
2376
2377 case CONST_VECTOR:
2378 {
2379 int units;
2380 rtx elt;
2381
2382 units = const_vector_encoded_nelts (x);
2383
2384 for (i = 0; i < units; ++i)
2385 {
2386 elt = CONST_VECTOR_ENCODED_ELT (x, i);
2387 hash += hash_rtx_cb (elt, GET_MODE (elt),
2388 do_not_record_p, hash_arg_in_memory_p,
2389 have_reg_qty, cb);
2390 }
2391
2392 return hash;
2393 }
2394
2395 /* Assume there is only one rtx object for any given label. */
2396 case LABEL_REF:
2397 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2398 differences and differences between each stage's debugging dumps. */
2399 hash += (((unsigned int) LABEL_REF << 7)
2400 + CODE_LABEL_NUMBER (label_ref_label (x)));
2401 return hash;
2402
2403 case SYMBOL_REF:
2404 {
2405 /* Don't hash on the symbol's address to avoid bootstrap differences.
2406 Different hash values may cause expressions to be recorded in
2407 different orders and thus different registers to be used in the
2408 final assembler. This also avoids differences in the dump files
2409 between various stages. */
2410 unsigned int h = 0;
2411 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2412
2413 while (*p)
2414 h += (h << 7) + *p++; /* ??? revisit */
2415
2416 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2417 return hash;
2418 }
2419
2420 case MEM:
2421 /* We don't record if marked volatile or if BLKmode since we don't
2422 know the size of the move. */
2423 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2424 {
2425 *do_not_record_p = 1;
2426 return 0;
2427 }
2428 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2429 *hash_arg_in_memory_p = 1;
2430
2431 /* Now that we have already found this special case,
2432 might as well speed it up as much as possible. */
2433 hash += (unsigned) MEM;
2434 x = XEXP (x, 0);
2435 goto repeat;
2436
2437 case USE:
2438 /* A USE that mentions non-volatile memory needs special
2439 handling since the MEM may be BLKmode which normally
2440 prevents an entry from being made. Pure calls are
2441 marked by a USE which mentions BLKmode memory.
2442 See calls.c:emit_call_1. */
2443 if (MEM_P (XEXP (x, 0))
2444 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2445 {
2446 hash += (unsigned) USE;
2447 x = XEXP (x, 0);
2448
2449 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2450 *hash_arg_in_memory_p = 1;
2451
2452 /* Now that we have already found this special case,
2453 might as well speed it up as much as possible. */
2454 hash += (unsigned) MEM;
2455 x = XEXP (x, 0);
2456 goto repeat;
2457 }
2458 break;
2459
2460 case PRE_DEC:
2461 case PRE_INC:
2462 case POST_DEC:
2463 case POST_INC:
2464 case PRE_MODIFY:
2465 case POST_MODIFY:
2466 case PC:
2467 case CC0:
2468 case CALL:
2469 case UNSPEC_VOLATILE:
2470 if (do_not_record_p) {
2471 *do_not_record_p = 1;
2472 return 0;
2473 }
2474 else
2475 return hash;
2476 break;
2477
2478 case ASM_OPERANDS:
2479 if (do_not_record_p && MEM_VOLATILE_P (x))
2480 {
2481 *do_not_record_p = 1;
2482 return 0;
2483 }
2484 else
2485 {
2486 /* We don't want to take the filename and line into account. */
2487 hash += (unsigned) code + (unsigned) GET_MODE (x)
2488 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2489 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2490 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2491
2492 if (ASM_OPERANDS_INPUT_LENGTH (x))
2493 {
2494 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2495 {
2496 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2497 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2498 do_not_record_p, hash_arg_in_memory_p,
2499 have_reg_qty, cb)
2500 + hash_rtx_string
2501 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2502 }
2503
2504 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2505 x = ASM_OPERANDS_INPUT (x, 0);
2506 mode = GET_MODE (x);
2507 goto repeat;
2508 }
2509
2510 return hash;
2511 }
2512 break;
2513
2514 default:
2515 break;
2516 }
2517
2518 i = GET_RTX_LENGTH (code) - 1;
2519 hash += (unsigned) code + (unsigned) GET_MODE (x);
2520 fmt = GET_RTX_FORMAT (code);
2521 for (; i >= 0; i--)
2522 {
2523 switch (fmt[i])
2524 {
2525 case 'e':
2526 /* If we are about to do the last recursive call
2527 needed at this level, change it into iteration.
2528 This function is called enough to be worth it. */
2529 if (i == 0)
2530 {
2531 x = XEXP (x, i);
2532 goto repeat;
2533 }
2534
2535 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2536 hash_arg_in_memory_p,
2537 have_reg_qty, cb);
2538 break;
2539
2540 case 'E':
2541 for (j = 0; j < XVECLEN (x, i); j++)
2542 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2543 hash_arg_in_memory_p,
2544 have_reg_qty, cb);
2545 break;
2546
2547 case 's':
2548 hash += hash_rtx_string (XSTR (x, i));
2549 break;
2550
2551 case 'i':
2552 hash += (unsigned int) XINT (x, i);
2553 break;
2554
2555 case 'p':
2556 hash += constant_lower_bound (SUBREG_BYTE (x));
2557 break;
2558
2559 case '0': case 't':
2560 /* Unused. */
2561 break;
2562
2563 default:
2564 gcc_unreachable ();
2565 }
2566 }
2567
2568 return hash;
2569 }
2570
2571 /* Hash an rtx. We are careful to make sure the value is never negative.
2572 Equivalent registers hash identically.
2573 MODE is used in hashing for CONST_INTs only;
2574 otherwise the mode of X is used.
2575
2576 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2577
2578 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2579 a MEM rtx which does not have the MEM_READONLY_P flag set.
2580
2581 Note that cse_insn knows that the hash code of a MEM expression
2582 is just (int) MEM plus the hash code of the address. */
2583
2584 unsigned
2585 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2586 int *hash_arg_in_memory_p, bool have_reg_qty)
2587 {
2588 return hash_rtx_cb (x, mode, do_not_record_p,
2589 hash_arg_in_memory_p, have_reg_qty, NULL);
2590 }
2591
2592 /* Hash an rtx X for cse via hash_rtx.
2593 Stores 1 in do_not_record if any subexpression is volatile.
2594 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2595 does not have the MEM_READONLY_P flag set. */
2596
2597 static inline unsigned
2598 canon_hash (rtx x, machine_mode mode)
2599 {
2600 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2601 }
2602
2603 /* Like canon_hash but with no side effects, i.e. do_not_record
2604 and hash_arg_in_memory are not changed. */
2605
2606 static inline unsigned
2607 safe_hash (rtx x, machine_mode mode)
2608 {
2609 int dummy_do_not_record;
2610 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2611 }
2612 \f
2613 /* Return 1 iff X and Y would canonicalize into the same thing,
2614 without actually constructing the canonicalization of either one.
2615 If VALIDATE is nonzero,
2616 we assume X is an expression being processed from the rtl
2617 and Y was found in the hash table. We check register refs
2618 in Y for being marked as valid.
2619
2620 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2621
2622 int
2623 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2624 {
2625 int i, j;
2626 enum rtx_code code;
2627 const char *fmt;
2628
2629 /* Note: it is incorrect to assume an expression is equivalent to itself
2630 if VALIDATE is nonzero. */
2631 if (x == y && !validate)
2632 return 1;
2633
2634 if (x == 0 || y == 0)
2635 return x == y;
2636
2637 code = GET_CODE (x);
2638 if (code != GET_CODE (y))
2639 return 0;
2640
2641 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2642 if (GET_MODE (x) != GET_MODE (y))
2643 return 0;
2644
2645 /* MEMs referring to different address space are not equivalent. */
2646 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2647 return 0;
2648
2649 switch (code)
2650 {
2651 case PC:
2652 case CC0:
2653 CASE_CONST_UNIQUE:
2654 return x == y;
2655
2656 case LABEL_REF:
2657 return label_ref_label (x) == label_ref_label (y);
2658
2659 case SYMBOL_REF:
2660 return XSTR (x, 0) == XSTR (y, 0);
2661
2662 case REG:
2663 if (for_gcse)
2664 return REGNO (x) == REGNO (y);
2665 else
2666 {
2667 unsigned int regno = REGNO (y);
2668 unsigned int i;
2669 unsigned int endregno = END_REGNO (y);
2670
2671 /* If the quantities are not the same, the expressions are not
2672 equivalent. If there are and we are not to validate, they
2673 are equivalent. Otherwise, ensure all regs are up-to-date. */
2674
2675 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2676 return 0;
2677
2678 if (! validate)
2679 return 1;
2680
2681 for (i = regno; i < endregno; i++)
2682 if (REG_IN_TABLE (i) != REG_TICK (i))
2683 return 0;
2684
2685 return 1;
2686 }
2687
2688 case MEM:
2689 if (for_gcse)
2690 {
2691 /* A volatile mem should not be considered equivalent to any
2692 other. */
2693 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2694 return 0;
2695
2696 /* Can't merge two expressions in different alias sets, since we
2697 can decide that the expression is transparent in a block when
2698 it isn't, due to it being set with the different alias set.
2699
2700 Also, can't merge two expressions with different MEM_ATTRS.
2701 They could e.g. be two different entities allocated into the
2702 same space on the stack (see e.g. PR25130). In that case, the
2703 MEM addresses can be the same, even though the two MEMs are
2704 absolutely not equivalent.
2705
2706 But because really all MEM attributes should be the same for
2707 equivalent MEMs, we just use the invariant that MEMs that have
2708 the same attributes share the same mem_attrs data structure. */
2709 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2710 return 0;
2711
2712 /* If we are handling exceptions, we cannot consider two expressions
2713 with different trapping status as equivalent, because simple_mem
2714 might accept one and reject the other. */
2715 if (cfun->can_throw_non_call_exceptions
2716 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2717 return 0;
2718 }
2719 break;
2720
2721 /* For commutative operations, check both orders. */
2722 case PLUS:
2723 case MULT:
2724 case AND:
2725 case IOR:
2726 case XOR:
2727 case NE:
2728 case EQ:
2729 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2730 validate, for_gcse)
2731 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2732 validate, for_gcse))
2733 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2734 validate, for_gcse)
2735 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2736 validate, for_gcse)));
2737
2738 case ASM_OPERANDS:
2739 /* We don't use the generic code below because we want to
2740 disregard filename and line numbers. */
2741
2742 /* A volatile asm isn't equivalent to any other. */
2743 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2744 return 0;
2745
2746 if (GET_MODE (x) != GET_MODE (y)
2747 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2748 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2749 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2750 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2751 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2752 return 0;
2753
2754 if (ASM_OPERANDS_INPUT_LENGTH (x))
2755 {
2756 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2757 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2758 ASM_OPERANDS_INPUT (y, i),
2759 validate, for_gcse)
2760 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2761 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2762 return 0;
2763 }
2764
2765 return 1;
2766
2767 default:
2768 break;
2769 }
2770
2771 /* Compare the elements. If any pair of corresponding elements
2772 fail to match, return 0 for the whole thing. */
2773
2774 fmt = GET_RTX_FORMAT (code);
2775 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2776 {
2777 switch (fmt[i])
2778 {
2779 case 'e':
2780 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2781 validate, for_gcse))
2782 return 0;
2783 break;
2784
2785 case 'E':
2786 if (XVECLEN (x, i) != XVECLEN (y, i))
2787 return 0;
2788 for (j = 0; j < XVECLEN (x, i); j++)
2789 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2790 validate, for_gcse))
2791 return 0;
2792 break;
2793
2794 case 's':
2795 if (strcmp (XSTR (x, i), XSTR (y, i)))
2796 return 0;
2797 break;
2798
2799 case 'i':
2800 if (XINT (x, i) != XINT (y, i))
2801 return 0;
2802 break;
2803
2804 case 'w':
2805 if (XWINT (x, i) != XWINT (y, i))
2806 return 0;
2807 break;
2808
2809 case 'p':
2810 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2811 return 0;
2812 break;
2813
2814 case '0':
2815 case 't':
2816 break;
2817
2818 default:
2819 gcc_unreachable ();
2820 }
2821 }
2822
2823 return 1;
2824 }
2825 \f
2826 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2827 the result if necessary. INSN is as for canon_reg. */
2828
2829 static void
2830 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2831 {
2832 if (*xloc)
2833 {
2834 rtx new_rtx = canon_reg (*xloc, insn);
2835
2836 /* If replacing pseudo with hard reg or vice versa, ensure the
2837 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2838 gcc_assert (insn && new_rtx);
2839 validate_change (insn, xloc, new_rtx, 1);
2840 }
2841 }
2842
2843 /* Canonicalize an expression:
2844 replace each register reference inside it
2845 with the "oldest" equivalent register.
2846
2847 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2848 after we make our substitution. The calls are made with IN_GROUP nonzero
2849 so apply_change_group must be called upon the outermost return from this
2850 function (unless INSN is zero). The result of apply_change_group can
2851 generally be discarded since the changes we are making are optional. */
2852
2853 static rtx
2854 canon_reg (rtx x, rtx_insn *insn)
2855 {
2856 int i;
2857 enum rtx_code code;
2858 const char *fmt;
2859
2860 if (x == 0)
2861 return x;
2862
2863 code = GET_CODE (x);
2864 switch (code)
2865 {
2866 case PC:
2867 case CC0:
2868 case CONST:
2869 CASE_CONST_ANY:
2870 case SYMBOL_REF:
2871 case LABEL_REF:
2872 case ADDR_VEC:
2873 case ADDR_DIFF_VEC:
2874 return x;
2875
2876 case REG:
2877 {
2878 int first;
2879 int q;
2880 struct qty_table_elem *ent;
2881
2882 /* Never replace a hard reg, because hard regs can appear
2883 in more than one machine mode, and we must preserve the mode
2884 of each occurrence. Also, some hard regs appear in
2885 MEMs that are shared and mustn't be altered. Don't try to
2886 replace any reg that maps to a reg of class NO_REGS. */
2887 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2888 || ! REGNO_QTY_VALID_P (REGNO (x)))
2889 return x;
2890
2891 q = REG_QTY (REGNO (x));
2892 ent = &qty_table[q];
2893 first = ent->first_reg;
2894 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2895 : REGNO_REG_CLASS (first) == NO_REGS ? x
2896 : gen_rtx_REG (ent->mode, first));
2897 }
2898
2899 default:
2900 break;
2901 }
2902
2903 fmt = GET_RTX_FORMAT (code);
2904 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2905 {
2906 int j;
2907
2908 if (fmt[i] == 'e')
2909 validate_canon_reg (&XEXP (x, i), insn);
2910 else if (fmt[i] == 'E')
2911 for (j = 0; j < XVECLEN (x, i); j++)
2912 validate_canon_reg (&XVECEXP (x, i, j), insn);
2913 }
2914
2915 return x;
2916 }
2917 \f
2918 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2919 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2920 what values are being compared.
2921
2922 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2923 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2924 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2925 compared to produce cc0.
2926
2927 The return value is the comparison operator and is either the code of
2928 A or the code corresponding to the inverse of the comparison. */
2929
2930 static enum rtx_code
2931 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2932 machine_mode *pmode1, machine_mode *pmode2)
2933 {
2934 rtx arg1, arg2;
2935 hash_set<rtx> *visited = NULL;
2936 /* Set nonzero when we find something of interest. */
2937 rtx x = NULL;
2938
2939 arg1 = *parg1, arg2 = *parg2;
2940
2941 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2942
2943 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2944 {
2945 int reverse_code = 0;
2946 struct table_elt *p = 0;
2947
2948 /* Remember state from previous iteration. */
2949 if (x)
2950 {
2951 if (!visited)
2952 visited = new hash_set<rtx>;
2953 visited->add (x);
2954 x = 0;
2955 }
2956
2957 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2958 On machines with CC0, this is the only case that can occur, since
2959 fold_rtx will return the COMPARE or item being compared with zero
2960 when given CC0. */
2961
2962 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2963 x = arg1;
2964
2965 /* If ARG1 is a comparison operator and CODE is testing for
2966 STORE_FLAG_VALUE, get the inner arguments. */
2967
2968 else if (COMPARISON_P (arg1))
2969 {
2970 #ifdef FLOAT_STORE_FLAG_VALUE
2971 REAL_VALUE_TYPE fsfv;
2972 #endif
2973
2974 if (code == NE
2975 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2976 && code == LT && STORE_FLAG_VALUE == -1)
2977 #ifdef FLOAT_STORE_FLAG_VALUE
2978 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2979 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2980 REAL_VALUE_NEGATIVE (fsfv)))
2981 #endif
2982 )
2983 x = arg1;
2984 else if (code == EQ
2985 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2986 && code == GE && STORE_FLAG_VALUE == -1)
2987 #ifdef FLOAT_STORE_FLAG_VALUE
2988 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2989 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2990 REAL_VALUE_NEGATIVE (fsfv)))
2991 #endif
2992 )
2993 x = arg1, reverse_code = 1;
2994 }
2995
2996 /* ??? We could also check for
2997
2998 (ne (and (eq (...) (const_int 1))) (const_int 0))
2999
3000 and related forms, but let's wait until we see them occurring. */
3001
3002 if (x == 0)
3003 /* Look up ARG1 in the hash table and see if it has an equivalence
3004 that lets us see what is being compared. */
3005 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3006 if (p)
3007 {
3008 p = p->first_same_value;
3009
3010 /* If what we compare is already known to be constant, that is as
3011 good as it gets.
3012 We need to break the loop in this case, because otherwise we
3013 can have an infinite loop when looking at a reg that is known
3014 to be a constant which is the same as a comparison of a reg
3015 against zero which appears later in the insn stream, which in
3016 turn is constant and the same as the comparison of the first reg
3017 against zero... */
3018 if (p->is_const)
3019 break;
3020 }
3021
3022 for (; p; p = p->next_same_value)
3023 {
3024 machine_mode inner_mode = GET_MODE (p->exp);
3025 #ifdef FLOAT_STORE_FLAG_VALUE
3026 REAL_VALUE_TYPE fsfv;
3027 #endif
3028
3029 /* If the entry isn't valid, skip it. */
3030 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3031 continue;
3032
3033 /* If it's a comparison we've used before, skip it. */
3034 if (visited && visited->contains (p->exp))
3035 continue;
3036
3037 if (GET_CODE (p->exp) == COMPARE
3038 /* Another possibility is that this machine has a compare insn
3039 that includes the comparison code. In that case, ARG1 would
3040 be equivalent to a comparison operation that would set ARG1 to
3041 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3042 ORIG_CODE is the actual comparison being done; if it is an EQ,
3043 we must reverse ORIG_CODE. On machine with a negative value
3044 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3045 || ((code == NE
3046 || (code == LT
3047 && val_signbit_known_set_p (inner_mode,
3048 STORE_FLAG_VALUE))
3049 #ifdef FLOAT_STORE_FLAG_VALUE
3050 || (code == LT
3051 && SCALAR_FLOAT_MODE_P (inner_mode)
3052 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3053 REAL_VALUE_NEGATIVE (fsfv)))
3054 #endif
3055 )
3056 && COMPARISON_P (p->exp)))
3057 {
3058 x = p->exp;
3059 break;
3060 }
3061 else if ((code == EQ
3062 || (code == GE
3063 && val_signbit_known_set_p (inner_mode,
3064 STORE_FLAG_VALUE))
3065 #ifdef FLOAT_STORE_FLAG_VALUE
3066 || (code == GE
3067 && SCALAR_FLOAT_MODE_P (inner_mode)
3068 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3069 REAL_VALUE_NEGATIVE (fsfv)))
3070 #endif
3071 )
3072 && COMPARISON_P (p->exp))
3073 {
3074 reverse_code = 1;
3075 x = p->exp;
3076 break;
3077 }
3078
3079 /* If this non-trapping address, e.g. fp + constant, the
3080 equivalent is a better operand since it may let us predict
3081 the value of the comparison. */
3082 else if (!rtx_addr_can_trap_p (p->exp))
3083 {
3084 arg1 = p->exp;
3085 continue;
3086 }
3087 }
3088
3089 /* If we didn't find a useful equivalence for ARG1, we are done.
3090 Otherwise, set up for the next iteration. */
3091 if (x == 0)
3092 break;
3093
3094 /* If we need to reverse the comparison, make sure that is
3095 possible -- we can't necessarily infer the value of GE from LT
3096 with floating-point operands. */
3097 if (reverse_code)
3098 {
3099 enum rtx_code reversed = reversed_comparison_code (x, NULL);
3100 if (reversed == UNKNOWN)
3101 break;
3102 else
3103 code = reversed;
3104 }
3105 else if (COMPARISON_P (x))
3106 code = GET_CODE (x);
3107 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3108 }
3109
3110 /* Return our results. Return the modes from before fold_rtx
3111 because fold_rtx might produce const_int, and then it's too late. */
3112 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3113 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3114
3115 if (visited)
3116 delete visited;
3117 return code;
3118 }
3119 \f
3120 /* If X is a nontrivial arithmetic operation on an argument for which
3121 a constant value can be determined, return the result of operating
3122 on that value, as a constant. Otherwise, return X, possibly with
3123 one or more operands changed to a forward-propagated constant.
3124
3125 If X is a register whose contents are known, we do NOT return
3126 those contents here; equiv_constant is called to perform that task.
3127 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3128
3129 INSN is the insn that we may be modifying. If it is 0, make a copy
3130 of X before modifying it. */
3131
3132 static rtx
3133 fold_rtx (rtx x, rtx_insn *insn)
3134 {
3135 enum rtx_code code;
3136 machine_mode mode;
3137 const char *fmt;
3138 int i;
3139 rtx new_rtx = 0;
3140 int changed = 0;
3141 poly_int64 xval;
3142
3143 /* Operands of X. */
3144 /* Workaround -Wmaybe-uninitialized false positive during
3145 profiledbootstrap by initializing them. */
3146 rtx folded_arg0 = NULL_RTX;
3147 rtx folded_arg1 = NULL_RTX;
3148
3149 /* Constant equivalents of first three operands of X;
3150 0 when no such equivalent is known. */
3151 rtx const_arg0;
3152 rtx const_arg1;
3153 rtx const_arg2;
3154
3155 /* The mode of the first operand of X. We need this for sign and zero
3156 extends. */
3157 machine_mode mode_arg0;
3158
3159 if (x == 0)
3160 return x;
3161
3162 /* Try to perform some initial simplifications on X. */
3163 code = GET_CODE (x);
3164 switch (code)
3165 {
3166 case MEM:
3167 case SUBREG:
3168 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3169 than it would in other contexts. Basically its mode does not
3170 signify the size of the object read. That information is carried
3171 by size operand. If we happen to have a MEM of the appropriate
3172 mode in our tables with a constant value we could simplify the
3173 extraction incorrectly if we allowed substitution of that value
3174 for the MEM. */
3175 case ZERO_EXTRACT:
3176 case SIGN_EXTRACT:
3177 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3178 return new_rtx;
3179 return x;
3180
3181 case CONST:
3182 CASE_CONST_ANY:
3183 case SYMBOL_REF:
3184 case LABEL_REF:
3185 case REG:
3186 case PC:
3187 /* No use simplifying an EXPR_LIST
3188 since they are used only for lists of args
3189 in a function call's REG_EQUAL note. */
3190 case EXPR_LIST:
3191 return x;
3192
3193 case CC0:
3194 return prev_insn_cc0;
3195
3196 case ASM_OPERANDS:
3197 if (insn)
3198 {
3199 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3200 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3201 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3202 }
3203 return x;
3204
3205 case CALL:
3206 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3207 return x;
3208 break;
3209
3210 /* Anything else goes through the loop below. */
3211 default:
3212 break;
3213 }
3214
3215 mode = GET_MODE (x);
3216 const_arg0 = 0;
3217 const_arg1 = 0;
3218 const_arg2 = 0;
3219 mode_arg0 = VOIDmode;
3220
3221 /* Try folding our operands.
3222 Then see which ones have constant values known. */
3223
3224 fmt = GET_RTX_FORMAT (code);
3225 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3226 if (fmt[i] == 'e')
3227 {
3228 rtx folded_arg = XEXP (x, i), const_arg;
3229 machine_mode mode_arg = GET_MODE (folded_arg);
3230
3231 switch (GET_CODE (folded_arg))
3232 {
3233 case MEM:
3234 case REG:
3235 case SUBREG:
3236 const_arg = equiv_constant (folded_arg);
3237 break;
3238
3239 case CONST:
3240 CASE_CONST_ANY:
3241 case SYMBOL_REF:
3242 case LABEL_REF:
3243 const_arg = folded_arg;
3244 break;
3245
3246 case CC0:
3247 /* The cc0-user and cc0-setter may be in different blocks if
3248 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3249 will have been cleared as we exited the block with the
3250 setter.
3251
3252 While we could potentially track cc0 in this case, it just
3253 doesn't seem to be worth it given that cc0 targets are not
3254 terribly common or important these days and trapping math
3255 is rarely used. The combination of those two conditions
3256 necessary to trip this situation is exceedingly rare in the
3257 real world. */
3258 if (!prev_insn_cc0)
3259 {
3260 const_arg = NULL_RTX;
3261 }
3262 else
3263 {
3264 folded_arg = prev_insn_cc0;
3265 mode_arg = prev_insn_cc0_mode;
3266 const_arg = equiv_constant (folded_arg);
3267 }
3268 break;
3269
3270 default:
3271 folded_arg = fold_rtx (folded_arg, insn);
3272 const_arg = equiv_constant (folded_arg);
3273 break;
3274 }
3275
3276 /* For the first three operands, see if the operand
3277 is constant or equivalent to a constant. */
3278 switch (i)
3279 {
3280 case 0:
3281 folded_arg0 = folded_arg;
3282 const_arg0 = const_arg;
3283 mode_arg0 = mode_arg;
3284 break;
3285 case 1:
3286 folded_arg1 = folded_arg;
3287 const_arg1 = const_arg;
3288 break;
3289 case 2:
3290 const_arg2 = const_arg;
3291 break;
3292 }
3293
3294 /* Pick the least expensive of the argument and an equivalent constant
3295 argument. */
3296 if (const_arg != 0
3297 && const_arg != folded_arg
3298 && (COST_IN (const_arg, mode_arg, code, i)
3299 <= COST_IN (folded_arg, mode_arg, code, i))
3300
3301 /* It's not safe to substitute the operand of a conversion
3302 operator with a constant, as the conversion's identity
3303 depends upon the mode of its operand. This optimization
3304 is handled by the call to simplify_unary_operation. */
3305 && (GET_RTX_CLASS (code) != RTX_UNARY
3306 || GET_MODE (const_arg) == mode_arg0
3307 || (code != ZERO_EXTEND
3308 && code != SIGN_EXTEND
3309 && code != TRUNCATE
3310 && code != FLOAT_TRUNCATE
3311 && code != FLOAT_EXTEND
3312 && code != FLOAT
3313 && code != FIX
3314 && code != UNSIGNED_FLOAT
3315 && code != UNSIGNED_FIX)))
3316 folded_arg = const_arg;
3317
3318 if (folded_arg == XEXP (x, i))
3319 continue;
3320
3321 if (insn == NULL_RTX && !changed)
3322 x = copy_rtx (x);
3323 changed = 1;
3324 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3325 }
3326
3327 if (changed)
3328 {
3329 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3330 consistent with the order in X. */
3331 if (canonicalize_change_group (insn, x))
3332 {
3333 std::swap (const_arg0, const_arg1);
3334 std::swap (folded_arg0, folded_arg1);
3335 }
3336
3337 apply_change_group ();
3338 }
3339
3340 /* If X is an arithmetic operation, see if we can simplify it. */
3341
3342 switch (GET_RTX_CLASS (code))
3343 {
3344 case RTX_UNARY:
3345 {
3346 /* We can't simplify extension ops unless we know the
3347 original mode. */
3348 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3349 && mode_arg0 == VOIDmode)
3350 break;
3351
3352 new_rtx = simplify_unary_operation (code, mode,
3353 const_arg0 ? const_arg0 : folded_arg0,
3354 mode_arg0);
3355 }
3356 break;
3357
3358 case RTX_COMPARE:
3359 case RTX_COMM_COMPARE:
3360 /* See what items are actually being compared and set FOLDED_ARG[01]
3361 to those values and CODE to the actual comparison code. If any are
3362 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3363 do anything if both operands are already known to be constant. */
3364
3365 /* ??? Vector mode comparisons are not supported yet. */
3366 if (VECTOR_MODE_P (mode))
3367 break;
3368
3369 if (const_arg0 == 0 || const_arg1 == 0)
3370 {
3371 struct table_elt *p0, *p1;
3372 rtx true_rtx, false_rtx;
3373 machine_mode mode_arg1;
3374
3375 if (SCALAR_FLOAT_MODE_P (mode))
3376 {
3377 #ifdef FLOAT_STORE_FLAG_VALUE
3378 true_rtx = (const_double_from_real_value
3379 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3380 #else
3381 true_rtx = NULL_RTX;
3382 #endif
3383 false_rtx = CONST0_RTX (mode);
3384 }
3385 else
3386 {
3387 true_rtx = const_true_rtx;
3388 false_rtx = const0_rtx;
3389 }
3390
3391 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3392 &mode_arg0, &mode_arg1);
3393
3394 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3395 what kinds of things are being compared, so we can't do
3396 anything with this comparison. */
3397
3398 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3399 break;
3400
3401 const_arg0 = equiv_constant (folded_arg0);
3402 const_arg1 = equiv_constant (folded_arg1);
3403
3404 /* If we do not now have two constants being compared, see
3405 if we can nevertheless deduce some things about the
3406 comparison. */
3407 if (const_arg0 == 0 || const_arg1 == 0)
3408 {
3409 if (const_arg1 != NULL)
3410 {
3411 rtx cheapest_simplification;
3412 int cheapest_cost;
3413 rtx simp_result;
3414 struct table_elt *p;
3415
3416 /* See if we can find an equivalent of folded_arg0
3417 that gets us a cheaper expression, possibly a
3418 constant through simplifications. */
3419 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3420 mode_arg0);
3421
3422 if (p != NULL)
3423 {
3424 cheapest_simplification = x;
3425 cheapest_cost = COST (x, mode);
3426
3427 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3428 {
3429 int cost;
3430
3431 /* If the entry isn't valid, skip it. */
3432 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3433 continue;
3434
3435 /* Try to simplify using this equivalence. */
3436 simp_result
3437 = simplify_relational_operation (code, mode,
3438 mode_arg0,
3439 p->exp,
3440 const_arg1);
3441
3442 if (simp_result == NULL)
3443 continue;
3444
3445 cost = COST (simp_result, mode);
3446 if (cost < cheapest_cost)
3447 {
3448 cheapest_cost = cost;
3449 cheapest_simplification = simp_result;
3450 }
3451 }
3452
3453 /* If we have a cheaper expression now, use that
3454 and try folding it further, from the top. */
3455 if (cheapest_simplification != x)
3456 return fold_rtx (copy_rtx (cheapest_simplification),
3457 insn);
3458 }
3459 }
3460
3461 /* See if the two operands are the same. */
3462
3463 if ((REG_P (folded_arg0)
3464 && REG_P (folded_arg1)
3465 && (REG_QTY (REGNO (folded_arg0))
3466 == REG_QTY (REGNO (folded_arg1))))
3467 || ((p0 = lookup (folded_arg0,
3468 SAFE_HASH (folded_arg0, mode_arg0),
3469 mode_arg0))
3470 && (p1 = lookup (folded_arg1,
3471 SAFE_HASH (folded_arg1, mode_arg0),
3472 mode_arg0))
3473 && p0->first_same_value == p1->first_same_value))
3474 folded_arg1 = folded_arg0;
3475
3476 /* If FOLDED_ARG0 is a register, see if the comparison we are
3477 doing now is either the same as we did before or the reverse
3478 (we only check the reverse if not floating-point). */
3479 else if (REG_P (folded_arg0))
3480 {
3481 int qty = REG_QTY (REGNO (folded_arg0));
3482
3483 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3484 {
3485 struct qty_table_elem *ent = &qty_table[qty];
3486
3487 if ((comparison_dominates_p (ent->comparison_code, code)
3488 || (! FLOAT_MODE_P (mode_arg0)
3489 && comparison_dominates_p (ent->comparison_code,
3490 reverse_condition (code))))
3491 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3492 || (const_arg1
3493 && rtx_equal_p (ent->comparison_const,
3494 const_arg1))
3495 || (REG_P (folded_arg1)
3496 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3497 {
3498 if (comparison_dominates_p (ent->comparison_code, code))
3499 {
3500 if (true_rtx)
3501 return true_rtx;
3502 else
3503 break;
3504 }
3505 else
3506 return false_rtx;
3507 }
3508 }
3509 }
3510 }
3511 }
3512
3513 /* If we are comparing against zero, see if the first operand is
3514 equivalent to an IOR with a constant. If so, we may be able to
3515 determine the result of this comparison. */
3516 if (const_arg1 == const0_rtx && !const_arg0)
3517 {
3518 rtx y = lookup_as_function (folded_arg0, IOR);
3519 rtx inner_const;
3520
3521 if (y != 0
3522 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3523 && CONST_INT_P (inner_const)
3524 && INTVAL (inner_const) != 0)
3525 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3526 }
3527
3528 {
3529 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3530 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3531 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3532 op0, op1);
3533 }
3534 break;
3535
3536 case RTX_BIN_ARITH:
3537 case RTX_COMM_ARITH:
3538 switch (code)
3539 {
3540 case PLUS:
3541 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3542 with that LABEL_REF as its second operand. If so, the result is
3543 the first operand of that MINUS. This handles switches with an
3544 ADDR_DIFF_VEC table. */
3545 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3546 {
3547 rtx y
3548 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3549 : lookup_as_function (folded_arg0, MINUS);
3550
3551 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3552 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
3553 return XEXP (y, 0);
3554
3555 /* Now try for a CONST of a MINUS like the above. */
3556 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3557 : lookup_as_function (folded_arg0, CONST))) != 0
3558 && GET_CODE (XEXP (y, 0)) == MINUS
3559 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3560 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
3561 return XEXP (XEXP (y, 0), 0);
3562 }
3563
3564 /* Likewise if the operands are in the other order. */
3565 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3566 {
3567 rtx y
3568 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3569 : lookup_as_function (folded_arg1, MINUS);
3570
3571 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3572 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
3573 return XEXP (y, 0);
3574
3575 /* Now try for a CONST of a MINUS like the above. */
3576 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3577 : lookup_as_function (folded_arg1, CONST))) != 0
3578 && GET_CODE (XEXP (y, 0)) == MINUS
3579 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3580 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
3581 return XEXP (XEXP (y, 0), 0);
3582 }
3583
3584 /* If second operand is a register equivalent to a negative
3585 CONST_INT, see if we can find a register equivalent to the
3586 positive constant. Make a MINUS if so. Don't do this for
3587 a non-negative constant since we might then alternate between
3588 choosing positive and negative constants. Having the positive
3589 constant previously-used is the more common case. Be sure
3590 the resulting constant is non-negative; if const_arg1 were
3591 the smallest negative number this would overflow: depending
3592 on the mode, this would either just be the same value (and
3593 hence not save anything) or be incorrect. */
3594 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3595 && INTVAL (const_arg1) < 0
3596 /* This used to test
3597
3598 -INTVAL (const_arg1) >= 0
3599
3600 But The Sun V5.0 compilers mis-compiled that test. So
3601 instead we test for the problematic value in a more direct
3602 manner and hope the Sun compilers get it correct. */
3603 && INTVAL (const_arg1) !=
3604 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
3605 && REG_P (folded_arg1))
3606 {
3607 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3608 struct table_elt *p
3609 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3610
3611 if (p)
3612 for (p = p->first_same_value; p; p = p->next_same_value)
3613 if (REG_P (p->exp))
3614 return simplify_gen_binary (MINUS, mode, folded_arg0,
3615 canon_reg (p->exp, NULL));
3616 }
3617 goto from_plus;
3618
3619 case MINUS:
3620 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3621 If so, produce (PLUS Z C2-C). */
3622 if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
3623 {
3624 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3625 if (y && poly_int_rtx_p (XEXP (y, 1)))
3626 return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
3627 NULL);
3628 }
3629
3630 /* Fall through. */
3631
3632 from_plus:
3633 case SMIN: case SMAX: case UMIN: case UMAX:
3634 case IOR: case AND: case XOR:
3635 case MULT:
3636 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3637 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3638 is known to be of similar form, we may be able to replace the
3639 operation with a combined operation. This may eliminate the
3640 intermediate operation if every use is simplified in this way.
3641 Note that the similar optimization done by combine.c only works
3642 if the intermediate operation's result has only one reference. */
3643
3644 if (REG_P (folded_arg0)
3645 && const_arg1 && CONST_INT_P (const_arg1))
3646 {
3647 int is_shift
3648 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3649 rtx y, inner_const, new_const;
3650 rtx canon_const_arg1 = const_arg1;
3651 enum rtx_code associate_code;
3652
3653 if (is_shift
3654 && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
3655 || INTVAL (const_arg1) < 0))
3656 {
3657 if (SHIFT_COUNT_TRUNCATED)
3658 canon_const_arg1 = gen_int_shift_amount
3659 (mode, (INTVAL (const_arg1)
3660 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3661 else
3662 break;
3663 }
3664
3665 y = lookup_as_function (folded_arg0, code);
3666 if (y == 0)
3667 break;
3668
3669 /* If we have compiled a statement like
3670 "if (x == (x & mask1))", and now are looking at
3671 "x & mask2", we will have a case where the first operand
3672 of Y is the same as our first operand. Unless we detect
3673 this case, an infinite loop will result. */
3674 if (XEXP (y, 0) == folded_arg0)
3675 break;
3676
3677 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3678 if (!inner_const || !CONST_INT_P (inner_const))
3679 break;
3680
3681 /* Don't associate these operations if they are a PLUS with the
3682 same constant and it is a power of two. These might be doable
3683 with a pre- or post-increment. Similarly for two subtracts of
3684 identical powers of two with post decrement. */
3685
3686 if (code == PLUS && const_arg1 == inner_const
3687 && ((HAVE_PRE_INCREMENT
3688 && pow2p_hwi (INTVAL (const_arg1)))
3689 || (HAVE_POST_INCREMENT
3690 && pow2p_hwi (INTVAL (const_arg1)))
3691 || (HAVE_PRE_DECREMENT
3692 && pow2p_hwi (- INTVAL (const_arg1)))
3693 || (HAVE_POST_DECREMENT
3694 && pow2p_hwi (- INTVAL (const_arg1)))))
3695 break;
3696
3697 /* ??? Vector mode shifts by scalar
3698 shift operand are not supported yet. */
3699 if (is_shift && VECTOR_MODE_P (mode))
3700 break;
3701
3702 if (is_shift
3703 && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
3704 || INTVAL (inner_const) < 0))
3705 {
3706 if (SHIFT_COUNT_TRUNCATED)
3707 inner_const = gen_int_shift_amount
3708 (mode, (INTVAL (inner_const)
3709 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3710 else
3711 break;
3712 }
3713
3714 /* Compute the code used to compose the constants. For example,
3715 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3716
3717 associate_code = (is_shift || code == MINUS ? PLUS : code);
3718
3719 new_const = simplify_binary_operation (associate_code, mode,
3720 canon_const_arg1,
3721 inner_const);
3722
3723 if (new_const == 0)
3724 break;
3725
3726 /* If we are associating shift operations, don't let this
3727 produce a shift of the size of the object or larger.
3728 This could occur when we follow a sign-extend by a right
3729 shift on a machine that does a sign-extend as a pair
3730 of shifts. */
3731
3732 if (is_shift
3733 && CONST_INT_P (new_const)
3734 && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
3735 {
3736 /* As an exception, we can turn an ASHIFTRT of this
3737 form into a shift of the number of bits - 1. */
3738 if (code == ASHIFTRT)
3739 new_const = gen_int_shift_amount
3740 (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
3741 else if (!side_effects_p (XEXP (y, 0)))
3742 return CONST0_RTX (mode);
3743 else
3744 break;
3745 }
3746
3747 y = copy_rtx (XEXP (y, 0));
3748
3749 /* If Y contains our first operand (the most common way this
3750 can happen is if Y is a MEM), we would do into an infinite
3751 loop if we tried to fold it. So don't in that case. */
3752
3753 if (! reg_mentioned_p (folded_arg0, y))
3754 y = fold_rtx (y, insn);
3755
3756 return simplify_gen_binary (code, mode, y, new_const);
3757 }
3758 break;
3759
3760 case DIV: case UDIV:
3761 /* ??? The associative optimization performed immediately above is
3762 also possible for DIV and UDIV using associate_code of MULT.
3763 However, we would need extra code to verify that the
3764 multiplication does not overflow, that is, there is no overflow
3765 in the calculation of new_const. */
3766 break;
3767
3768 default:
3769 break;
3770 }
3771
3772 new_rtx = simplify_binary_operation (code, mode,
3773 const_arg0 ? const_arg0 : folded_arg0,
3774 const_arg1 ? const_arg1 : folded_arg1);
3775 break;
3776
3777 case RTX_OBJ:
3778 /* (lo_sum (high X) X) is simply X. */
3779 if (code == LO_SUM && const_arg0 != 0
3780 && GET_CODE (const_arg0) == HIGH
3781 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3782 return const_arg1;
3783 break;
3784
3785 case RTX_TERNARY:
3786 case RTX_BITFIELD_OPS:
3787 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3788 const_arg0 ? const_arg0 : folded_arg0,
3789 const_arg1 ? const_arg1 : folded_arg1,
3790 const_arg2 ? const_arg2 : XEXP (x, 2));
3791 break;
3792
3793 default:
3794 break;
3795 }
3796
3797 return new_rtx ? new_rtx : x;
3798 }
3799 \f
3800 /* Return a constant value currently equivalent to X.
3801 Return 0 if we don't know one. */
3802
3803 static rtx
3804 equiv_constant (rtx x)
3805 {
3806 if (REG_P (x)
3807 && REGNO_QTY_VALID_P (REGNO (x)))
3808 {
3809 int x_q = REG_QTY (REGNO (x));
3810 struct qty_table_elem *x_ent = &qty_table[x_q];
3811
3812 if (x_ent->const_rtx)
3813 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3814 }
3815
3816 if (x == 0 || CONSTANT_P (x))
3817 return x;
3818
3819 if (GET_CODE (x) == SUBREG)
3820 {
3821 machine_mode mode = GET_MODE (x);
3822 machine_mode imode = GET_MODE (SUBREG_REG (x));
3823 rtx new_rtx;
3824
3825 /* See if we previously assigned a constant value to this SUBREG. */
3826 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3827 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3828 || (NUM_POLY_INT_COEFFS > 1
3829 && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
3830 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3831 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3832 return new_rtx;
3833
3834 /* If we didn't and if doing so makes sense, see if we previously
3835 assigned a constant value to the enclosing word mode SUBREG. */
3836 if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3837 && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
3838 {
3839 poly_int64 byte = (SUBREG_BYTE (x)
3840 - subreg_lowpart_offset (mode, word_mode));
3841 if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
3842 {
3843 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3844 new_rtx = lookup_as_function (y, CONST_INT);
3845 if (new_rtx)
3846 return gen_lowpart (mode, new_rtx);
3847 }
3848 }
3849
3850 /* Otherwise see if we already have a constant for the inner REG,
3851 and if that is enough to calculate an equivalent constant for
3852 the subreg. Note that the upper bits of paradoxical subregs
3853 are undefined, so they cannot be said to equal anything. */
3854 if (REG_P (SUBREG_REG (x))
3855 && !paradoxical_subreg_p (x)
3856 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3857 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3858
3859 return 0;
3860 }
3861
3862 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3863 the hash table in case its value was seen before. */
3864
3865 if (MEM_P (x))
3866 {
3867 struct table_elt *elt;
3868
3869 x = avoid_constant_pool_reference (x);
3870 if (CONSTANT_P (x))
3871 return x;
3872
3873 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3874 if (elt == 0)
3875 return 0;
3876
3877 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3878 if (elt->is_const && CONSTANT_P (elt->exp))
3879 return elt->exp;
3880 }
3881
3882 return 0;
3883 }
3884 \f
3885 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3886 "taken" branch.
3887
3888 In certain cases, this can cause us to add an equivalence. For example,
3889 if we are following the taken case of
3890 if (i == 2)
3891 we can add the fact that `i' and '2' are now equivalent.
3892
3893 In any case, we can record that this comparison was passed. If the same
3894 comparison is seen later, we will know its value. */
3895
3896 static void
3897 record_jump_equiv (rtx_insn *insn, bool taken)
3898 {
3899 int cond_known_true;
3900 rtx op0, op1;
3901 rtx set;
3902 machine_mode mode, mode0, mode1;
3903 int reversed_nonequality = 0;
3904 enum rtx_code code;
3905
3906 /* Ensure this is the right kind of insn. */
3907 gcc_assert (any_condjump_p (insn));
3908
3909 set = pc_set (insn);
3910
3911 /* See if this jump condition is known true or false. */
3912 if (taken)
3913 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3914 else
3915 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3916
3917 /* Get the type of comparison being done and the operands being compared.
3918 If we had to reverse a non-equality condition, record that fact so we
3919 know that it isn't valid for floating-point. */
3920 code = GET_CODE (XEXP (SET_SRC (set), 0));
3921 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3922 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3923
3924 /* On a cc0 target the cc0-setter and cc0-user may end up in different
3925 blocks. When that happens the tracking of the cc0-setter via
3926 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return
3927 NULL_RTX. In those cases, there's nothing to record. */
3928 if (op0 == NULL_RTX || op1 == NULL_RTX)
3929 return;
3930
3931 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3932 if (! cond_known_true)
3933 {
3934 code = reversed_comparison_code_parts (code, op0, op1, insn);
3935
3936 /* Don't remember if we can't find the inverse. */
3937 if (code == UNKNOWN)
3938 return;
3939 }
3940
3941 /* The mode is the mode of the non-constant. */
3942 mode = mode0;
3943 if (mode1 != VOIDmode)
3944 mode = mode1;
3945
3946 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3947 }
3948
3949 /* Yet another form of subreg creation. In this case, we want something in
3950 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3951
3952 static rtx
3953 record_jump_cond_subreg (machine_mode mode, rtx op)
3954 {
3955 machine_mode op_mode = GET_MODE (op);
3956 if (op_mode == mode || op_mode == VOIDmode)
3957 return op;
3958 return lowpart_subreg (mode, op, op_mode);
3959 }
3960
3961 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3962 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3963 Make any useful entries we can with that information. Called from
3964 above function and called recursively. */
3965
3966 static void
3967 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3968 rtx op1, int reversed_nonequality)
3969 {
3970 unsigned op0_hash, op1_hash;
3971 int op0_in_memory, op1_in_memory;
3972 struct table_elt *op0_elt, *op1_elt;
3973
3974 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3975 we know that they are also equal in the smaller mode (this is also
3976 true for all smaller modes whether or not there is a SUBREG, but
3977 is not worth testing for with no SUBREG). */
3978
3979 /* Note that GET_MODE (op0) may not equal MODE. */
3980 if (code == EQ && paradoxical_subreg_p (op0))
3981 {
3982 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3983 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3984 if (tem)
3985 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3986 reversed_nonequality);
3987 }
3988
3989 if (code == EQ && paradoxical_subreg_p (op1))
3990 {
3991 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3992 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3993 if (tem)
3994 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3995 reversed_nonequality);
3996 }
3997
3998 /* Similarly, if this is an NE comparison, and either is a SUBREG
3999 making a smaller mode, we know the whole thing is also NE. */
4000
4001 /* Note that GET_MODE (op0) may not equal MODE;
4002 if we test MODE instead, we can get an infinite recursion
4003 alternating between two modes each wider than MODE. */
4004
4005 if (code == NE
4006 && partial_subreg_p (op0)
4007 && subreg_lowpart_p (op0))
4008 {
4009 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4010 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4011 if (tem)
4012 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4013 reversed_nonequality);
4014 }
4015
4016 if (code == NE
4017 && partial_subreg_p (op1)
4018 && subreg_lowpart_p (op1))
4019 {
4020 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4021 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4022 if (tem)
4023 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4024 reversed_nonequality);
4025 }
4026
4027 /* Hash both operands. */
4028
4029 do_not_record = 0;
4030 hash_arg_in_memory = 0;
4031 op0_hash = HASH (op0, mode);
4032 op0_in_memory = hash_arg_in_memory;
4033
4034 if (do_not_record)
4035 return;
4036
4037 do_not_record = 0;
4038 hash_arg_in_memory = 0;
4039 op1_hash = HASH (op1, mode);
4040 op1_in_memory = hash_arg_in_memory;
4041
4042 if (do_not_record)
4043 return;
4044
4045 /* Look up both operands. */
4046 op0_elt = lookup (op0, op0_hash, mode);
4047 op1_elt = lookup (op1, op1_hash, mode);
4048
4049 /* If both operands are already equivalent or if they are not in the
4050 table but are identical, do nothing. */
4051 if ((op0_elt != 0 && op1_elt != 0
4052 && op0_elt->first_same_value == op1_elt->first_same_value)
4053 || op0 == op1 || rtx_equal_p (op0, op1))
4054 return;
4055
4056 /* If we aren't setting two things equal all we can do is save this
4057 comparison. Similarly if this is floating-point. In the latter
4058 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4059 If we record the equality, we might inadvertently delete code
4060 whose intent was to change -0 to +0. */
4061
4062 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4063 {
4064 struct qty_table_elem *ent;
4065 int qty;
4066
4067 /* If we reversed a floating-point comparison, if OP0 is not a
4068 register, or if OP1 is neither a register or constant, we can't
4069 do anything. */
4070
4071 if (!REG_P (op1))
4072 op1 = equiv_constant (op1);
4073
4074 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4075 || !REG_P (op0) || op1 == 0)
4076 return;
4077
4078 /* Put OP0 in the hash table if it isn't already. This gives it a
4079 new quantity number. */
4080 if (op0_elt == 0)
4081 {
4082 if (insert_regs (op0, NULL, 0))
4083 {
4084 rehash_using_reg (op0);
4085 op0_hash = HASH (op0, mode);
4086
4087 /* If OP0 is contained in OP1, this changes its hash code
4088 as well. Faster to rehash than to check, except
4089 for the simple case of a constant. */
4090 if (! CONSTANT_P (op1))
4091 op1_hash = HASH (op1,mode);
4092 }
4093
4094 op0_elt = insert (op0, NULL, op0_hash, mode);
4095 op0_elt->in_memory = op0_in_memory;
4096 }
4097
4098 qty = REG_QTY (REGNO (op0));
4099 ent = &qty_table[qty];
4100
4101 ent->comparison_code = code;
4102 if (REG_P (op1))
4103 {
4104 /* Look it up again--in case op0 and op1 are the same. */
4105 op1_elt = lookup (op1, op1_hash, mode);
4106
4107 /* Put OP1 in the hash table so it gets a new quantity number. */
4108 if (op1_elt == 0)
4109 {
4110 if (insert_regs (op1, NULL, 0))
4111 {
4112 rehash_using_reg (op1);
4113 op1_hash = HASH (op1, mode);
4114 }
4115
4116 op1_elt = insert (op1, NULL, op1_hash, mode);
4117 op1_elt->in_memory = op1_in_memory;
4118 }
4119
4120 ent->comparison_const = NULL_RTX;
4121 ent->comparison_qty = REG_QTY (REGNO (op1));
4122 }
4123 else
4124 {
4125 ent->comparison_const = op1;
4126 ent->comparison_qty = -1;
4127 }
4128
4129 return;
4130 }
4131
4132 /* If either side is still missing an equivalence, make it now,
4133 then merge the equivalences. */
4134
4135 if (op0_elt == 0)
4136 {
4137 if (insert_regs (op0, NULL, 0))
4138 {
4139 rehash_using_reg (op0);
4140 op0_hash = HASH (op0, mode);
4141 }
4142
4143 op0_elt = insert (op0, NULL, op0_hash, mode);
4144 op0_elt->in_memory = op0_in_memory;
4145 }
4146
4147 if (op1_elt == 0)
4148 {
4149 if (insert_regs (op1, NULL, 0))
4150 {
4151 rehash_using_reg (op1);
4152 op1_hash = HASH (op1, mode);
4153 }
4154
4155 op1_elt = insert (op1, NULL, op1_hash, mode);
4156 op1_elt->in_memory = op1_in_memory;
4157 }
4158
4159 merge_equiv_classes (op0_elt, op1_elt);
4160 }
4161 \f
4162 /* CSE processing for one instruction.
4163
4164 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4165 but the few that "leak through" are cleaned up by cse_insn, and complex
4166 addressing modes are often formed here.
4167
4168 The main function is cse_insn, and between here and that function
4169 a couple of helper functions is defined to keep the size of cse_insn
4170 within reasonable proportions.
4171
4172 Data is shared between the main and helper functions via STRUCT SET,
4173 that contains all data related for every set in the instruction that
4174 is being processed.
4175
4176 Note that cse_main processes all sets in the instruction. Most
4177 passes in GCC only process simple SET insns or single_set insns, but
4178 CSE processes insns with multiple sets as well. */
4179
4180 /* Data on one SET contained in the instruction. */
4181
4182 struct set
4183 {
4184 /* The SET rtx itself. */
4185 rtx rtl;
4186 /* The SET_SRC of the rtx (the original value, if it is changing). */
4187 rtx src;
4188 /* The hash-table element for the SET_SRC of the SET. */
4189 struct table_elt *src_elt;
4190 /* Hash value for the SET_SRC. */
4191 unsigned src_hash;
4192 /* Hash value for the SET_DEST. */
4193 unsigned dest_hash;
4194 /* The SET_DEST, with SUBREG, etc., stripped. */
4195 rtx inner_dest;
4196 /* Nonzero if the SET_SRC is in memory. */
4197 char src_in_memory;
4198 /* Nonzero if the SET_SRC contains something
4199 whose value cannot be predicted and understood. */
4200 char src_volatile;
4201 /* Original machine mode, in case it becomes a CONST_INT.
4202 The size of this field should match the size of the mode
4203 field of struct rtx_def (see rtl.h). */
4204 ENUM_BITFIELD(machine_mode) mode : 8;
4205 /* Hash value of constant equivalent for SET_SRC. */
4206 unsigned src_const_hash;
4207 /* A constant equivalent for SET_SRC, if any. */
4208 rtx src_const;
4209 /* Table entry for constant equivalent for SET_SRC, if any. */
4210 struct table_elt *src_const_elt;
4211 /* Table entry for the destination address. */
4212 struct table_elt *dest_addr_elt;
4213 };
4214 \f
4215 /* Special handling for (set REG0 REG1) where REG0 is the
4216 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4217 be used in the sequel, so (if easily done) change this insn to
4218 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4219 that computed their value. Then REG1 will become a dead store
4220 and won't cloud the situation for later optimizations.
4221
4222 Do not make this change if REG1 is a hard register, because it will
4223 then be used in the sequel and we may be changing a two-operand insn
4224 into a three-operand insn.
4225
4226 This is the last transformation that cse_insn will try to do. */
4227
4228 static void
4229 try_back_substitute_reg (rtx set, rtx_insn *insn)
4230 {
4231 rtx dest = SET_DEST (set);
4232 rtx src = SET_SRC (set);
4233
4234 if (REG_P (dest)
4235 && REG_P (src) && ! HARD_REGISTER_P (src)
4236 && REGNO_QTY_VALID_P (REGNO (src)))
4237 {
4238 int src_q = REG_QTY (REGNO (src));
4239 struct qty_table_elem *src_ent = &qty_table[src_q];
4240
4241 if (src_ent->first_reg == REGNO (dest))
4242 {
4243 /* Scan for the previous nonnote insn, but stop at a basic
4244 block boundary. */
4245 rtx_insn *prev = insn;
4246 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4247 do
4248 {
4249 prev = PREV_INSN (prev);
4250 }
4251 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4252
4253 /* Do not swap the registers around if the previous instruction
4254 attaches a REG_EQUIV note to REG1.
4255
4256 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4257 from the pseudo that originally shadowed an incoming argument
4258 to another register. Some uses of REG_EQUIV might rely on it
4259 being attached to REG1 rather than REG2.
4260
4261 This section previously turned the REG_EQUIV into a REG_EQUAL
4262 note. We cannot do that because REG_EQUIV may provide an
4263 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4264 if (NONJUMP_INSN_P (prev)
4265 && GET_CODE (PATTERN (prev)) == SET
4266 && SET_DEST (PATTERN (prev)) == src
4267 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4268 {
4269 rtx note;
4270
4271 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4272 validate_change (insn, &SET_DEST (set), src, 1);
4273 validate_change (insn, &SET_SRC (set), dest, 1);
4274 apply_change_group ();
4275
4276 /* If INSN has a REG_EQUAL note, and this note mentions
4277 REG0, then we must delete it, because the value in
4278 REG0 has changed. If the note's value is REG1, we must
4279 also delete it because that is now this insn's dest. */
4280 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4281 if (note != 0
4282 && (reg_mentioned_p (dest, XEXP (note, 0))
4283 || rtx_equal_p (src, XEXP (note, 0))))
4284 remove_note (insn, note);
4285
4286 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */
4287 note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4288 if (note != 0)
4289 {
4290 remove_note (insn, note);
4291 gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4292 set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4293 }
4294 }
4295 }
4296 }
4297 }
4298 \f
4299 /* Record all the SETs in this instruction into SETS_PTR,
4300 and return the number of recorded sets. */
4301 static int
4302 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4303 {
4304 struct set *sets = *psets;
4305 int n_sets = 0;
4306 rtx x = PATTERN (insn);
4307
4308 if (GET_CODE (x) == SET)
4309 {
4310 /* Ignore SETs that are unconditional jumps.
4311 They never need cse processing, so this does not hurt.
4312 The reason is not efficiency but rather
4313 so that we can test at the end for instructions
4314 that have been simplified to unconditional jumps
4315 and not be misled by unchanged instructions
4316 that were unconditional jumps to begin with. */
4317 if (SET_DEST (x) == pc_rtx
4318 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4319 ;
4320 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4321 The hard function value register is used only once, to copy to
4322 someplace else, so it isn't worth cse'ing. */
4323 else if (GET_CODE (SET_SRC (x)) == CALL)
4324 ;
4325 else
4326 sets[n_sets++].rtl = x;
4327 }
4328 else if (GET_CODE (x) == PARALLEL)
4329 {
4330 int i, lim = XVECLEN (x, 0);
4331
4332 /* Go over the expressions of the PARALLEL in forward order, to
4333 put them in the same order in the SETS array. */
4334 for (i = 0; i < lim; i++)
4335 {
4336 rtx y = XVECEXP (x, 0, i);
4337 if (GET_CODE (y) == SET)
4338 {
4339 /* As above, we ignore unconditional jumps and call-insns and
4340 ignore the result of apply_change_group. */
4341 if (SET_DEST (y) == pc_rtx
4342 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4343 ;
4344 else if (GET_CODE (SET_SRC (y)) == CALL)
4345 ;
4346 else
4347 sets[n_sets++].rtl = y;
4348 }
4349 }
4350 }
4351
4352 return n_sets;
4353 }
4354 \f
4355 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4356
4357 static void
4358 canon_asm_operands (rtx x, rtx_insn *insn)
4359 {
4360 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4361 {
4362 rtx input = ASM_OPERANDS_INPUT (x, i);
4363 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4364 {
4365 input = canon_reg (input, insn);
4366 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4367 }
4368 }
4369 }
4370
4371 /* Where possible, substitute every register reference in the N_SETS
4372 number of SETS in INSN with the canonical register.
4373
4374 Register canonicalization propagatest the earliest register (i.e.
4375 one that is set before INSN) with the same value. This is a very
4376 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4377 to RTL. For instance, a CONST for an address is usually expanded
4378 multiple times to loads into different registers, thus creating many
4379 subexpressions of the form:
4380
4381 (set (reg1) (some_const))
4382 (set (mem (... reg1 ...) (thing)))
4383 (set (reg2) (some_const))
4384 (set (mem (... reg2 ...) (thing)))
4385
4386 After canonicalizing, the code takes the following form:
4387
4388 (set (reg1) (some_const))
4389 (set (mem (... reg1 ...) (thing)))
4390 (set (reg2) (some_const))
4391 (set (mem (... reg1 ...) (thing)))
4392
4393 The set to reg2 is now trivially dead, and the memory reference (or
4394 address, or whatever) may be a candidate for further CSEing.
4395
4396 In this function, the result of apply_change_group can be ignored;
4397 see canon_reg. */
4398
4399 static void
4400 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4401 {
4402 struct set *sets = *psets;
4403 rtx tem;
4404 rtx x = PATTERN (insn);
4405 int i;
4406
4407 if (CALL_P (insn))
4408 {
4409 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4410 if (GET_CODE (XEXP (tem, 0)) != SET)
4411 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4412 }
4413
4414 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4415 {
4416 canon_reg (SET_SRC (x), insn);
4417 apply_change_group ();
4418 fold_rtx (SET_SRC (x), insn);
4419 }
4420 else if (GET_CODE (x) == CLOBBER)
4421 {
4422 /* If we clobber memory, canon the address.
4423 This does nothing when a register is clobbered
4424 because we have already invalidated the reg. */
4425 if (MEM_P (XEXP (x, 0)))
4426 canon_reg (XEXP (x, 0), insn);
4427 }
4428 else if (GET_CODE (x) == CLOBBER_HIGH)
4429 gcc_assert (REG_P (XEXP (x, 0)));
4430 else if (GET_CODE (x) == USE
4431 && ! (REG_P (XEXP (x, 0))
4432 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4433 /* Canonicalize a USE of a pseudo register or memory location. */
4434 canon_reg (x, insn);
4435 else if (GET_CODE (x) == ASM_OPERANDS)
4436 canon_asm_operands (x, insn);
4437 else if (GET_CODE (x) == CALL)
4438 {
4439 canon_reg (x, insn);
4440 apply_change_group ();
4441 fold_rtx (x, insn);
4442 }
4443 else if (DEBUG_INSN_P (insn))
4444 canon_reg (PATTERN (insn), insn);
4445 else if (GET_CODE (x) == PARALLEL)
4446 {
4447 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4448 {
4449 rtx y = XVECEXP (x, 0, i);
4450 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4451 {
4452 canon_reg (SET_SRC (y), insn);
4453 apply_change_group ();
4454 fold_rtx (SET_SRC (y), insn);
4455 }
4456 else if (GET_CODE (y) == CLOBBER)
4457 {
4458 if (MEM_P (XEXP (y, 0)))
4459 canon_reg (XEXP (y, 0), insn);
4460 }
4461 else if (GET_CODE (y) == CLOBBER_HIGH)
4462 gcc_assert (REG_P (XEXP (y, 0)));
4463 else if (GET_CODE (y) == USE
4464 && ! (REG_P (XEXP (y, 0))
4465 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4466 canon_reg (y, insn);
4467 else if (GET_CODE (y) == ASM_OPERANDS)
4468 canon_asm_operands (y, insn);
4469 else if (GET_CODE (y) == CALL)
4470 {
4471 canon_reg (y, insn);
4472 apply_change_group ();
4473 fold_rtx (y, insn);
4474 }
4475 }
4476 }
4477
4478 if (n_sets == 1 && REG_NOTES (insn) != 0
4479 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4480 {
4481 /* We potentially will process this insn many times. Therefore,
4482 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4483 unique set in INSN.
4484
4485 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4486 because cse_insn handles those specially. */
4487 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4488 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4489 remove_note (insn, tem);
4490 else
4491 {
4492 canon_reg (XEXP (tem, 0), insn);
4493 apply_change_group ();
4494 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4495 df_notes_rescan (insn);
4496 }
4497 }
4498
4499 /* Canonicalize sources and addresses of destinations.
4500 We do this in a separate pass to avoid problems when a MATCH_DUP is
4501 present in the insn pattern. In that case, we want to ensure that
4502 we don't break the duplicate nature of the pattern. So we will replace
4503 both operands at the same time. Otherwise, we would fail to find an
4504 equivalent substitution in the loop calling validate_change below.
4505
4506 We used to suppress canonicalization of DEST if it appears in SRC,
4507 but we don't do this any more. */
4508
4509 for (i = 0; i < n_sets; i++)
4510 {
4511 rtx dest = SET_DEST (sets[i].rtl);
4512 rtx src = SET_SRC (sets[i].rtl);
4513 rtx new_rtx = canon_reg (src, insn);
4514
4515 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4516
4517 if (GET_CODE (dest) == ZERO_EXTRACT)
4518 {
4519 validate_change (insn, &XEXP (dest, 1),
4520 canon_reg (XEXP (dest, 1), insn), 1);
4521 validate_change (insn, &XEXP (dest, 2),
4522 canon_reg (XEXP (dest, 2), insn), 1);
4523 }
4524
4525 while (GET_CODE (dest) == SUBREG
4526 || GET_CODE (dest) == ZERO_EXTRACT
4527 || GET_CODE (dest) == STRICT_LOW_PART)
4528 dest = XEXP (dest, 0);
4529
4530 if (MEM_P (dest))
4531 canon_reg (dest, insn);
4532 }
4533
4534 /* Now that we have done all the replacements, we can apply the change
4535 group and see if they all work. Note that this will cause some
4536 canonicalizations that would have worked individually not to be applied
4537 because some other canonicalization didn't work, but this should not
4538 occur often.
4539
4540 The result of apply_change_group can be ignored; see canon_reg. */
4541
4542 apply_change_group ();
4543 }
4544 \f
4545 /* Main function of CSE.
4546 First simplify sources and addresses of all assignments
4547 in the instruction, using previously-computed equivalents values.
4548 Then install the new sources and destinations in the table
4549 of available values. */
4550
4551 static void
4552 cse_insn (rtx_insn *insn)
4553 {
4554 rtx x = PATTERN (insn);
4555 int i;
4556 rtx tem;
4557 int n_sets = 0;
4558
4559 rtx src_eqv = 0;
4560 struct table_elt *src_eqv_elt = 0;
4561 int src_eqv_volatile = 0;
4562 int src_eqv_in_memory = 0;
4563 unsigned src_eqv_hash = 0;
4564
4565 struct set *sets = (struct set *) 0;
4566
4567 if (GET_CODE (x) == SET)
4568 sets = XALLOCA (struct set);
4569 else if (GET_CODE (x) == PARALLEL)
4570 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4571
4572 this_insn = insn;
4573 /* Records what this insn does to set CC0. */
4574 this_insn_cc0 = 0;
4575 this_insn_cc0_mode = VOIDmode;
4576
4577 /* Find all regs explicitly clobbered in this insn,
4578 to ensure they are not replaced with any other regs
4579 elsewhere in this insn. */
4580 invalidate_from_sets_and_clobbers (insn);
4581
4582 /* Record all the SETs in this instruction. */
4583 n_sets = find_sets_in_insn (insn, &sets);
4584
4585 /* Substitute the canonical register where possible. */
4586 canonicalize_insn (insn, &sets, n_sets);
4587
4588 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4589 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4590 latter condition is necessary because SRC_EQV is handled specially for
4591 this case, and if it isn't set, then there will be no equivalence
4592 for the destination. */
4593 if (n_sets == 1 && REG_NOTES (insn) != 0
4594 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4595 {
4596
4597 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4598 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4599 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4600 src_eqv = copy_rtx (XEXP (tem, 0));
4601 /* If DEST is of the form ZERO_EXTACT, as in:
4602 (set (zero_extract:SI (reg:SI 119)
4603 (const_int 16 [0x10])
4604 (const_int 16 [0x10]))
4605 (const_int 51154 [0xc7d2]))
4606 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4607 point. Note that this is different from SRC_EQV. We can however
4608 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4609 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4610 && CONST_INT_P (XEXP (tem, 0))
4611 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4612 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4613 {
4614 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4615 /* This is the mode of XEXP (tem, 0) as well. */
4616 scalar_int_mode dest_mode
4617 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
4618 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4619 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4620 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4621 HOST_WIDE_INT mask;
4622 unsigned int shift;
4623 if (BITS_BIG_ENDIAN)
4624 shift = (GET_MODE_PRECISION (dest_mode)
4625 - INTVAL (pos) - INTVAL (width));
4626 else
4627 shift = INTVAL (pos);
4628 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4629 mask = HOST_WIDE_INT_M1;
4630 else
4631 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
4632 val = (val >> shift) & mask;
4633 src_eqv = GEN_INT (val);
4634 }
4635 }
4636
4637 /* Set sets[i].src_elt to the class each source belongs to.
4638 Detect assignments from or to volatile things
4639 and set set[i] to zero so they will be ignored
4640 in the rest of this function.
4641
4642 Nothing in this loop changes the hash table or the register chains. */
4643
4644 for (i = 0; i < n_sets; i++)
4645 {
4646 bool repeat = false;
4647 bool mem_noop_insn = false;
4648 rtx src, dest;
4649 rtx src_folded;
4650 struct table_elt *elt = 0, *p;
4651 machine_mode mode;
4652 rtx src_eqv_here;
4653 rtx src_const = 0;
4654 rtx src_related = 0;
4655 bool src_related_is_const_anchor = false;
4656 struct table_elt *src_const_elt = 0;
4657 int src_cost = MAX_COST;
4658 int src_eqv_cost = MAX_COST;
4659 int src_folded_cost = MAX_COST;
4660 int src_related_cost = MAX_COST;
4661 int src_elt_cost = MAX_COST;
4662 int src_regcost = MAX_COST;
4663 int src_eqv_regcost = MAX_COST;
4664 int src_folded_regcost = MAX_COST;
4665 int src_related_regcost = MAX_COST;
4666 int src_elt_regcost = MAX_COST;
4667 /* Set nonzero if we need to call force_const_mem on with the
4668 contents of src_folded before using it. */
4669 int src_folded_force_flag = 0;
4670 scalar_int_mode int_mode;
4671
4672 dest = SET_DEST (sets[i].rtl);
4673 src = SET_SRC (sets[i].rtl);
4674
4675 /* If SRC is a constant that has no machine mode,
4676 hash it with the destination's machine mode.
4677 This way we can keep different modes separate. */
4678
4679 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4680 sets[i].mode = mode;
4681
4682 if (src_eqv)
4683 {
4684 machine_mode eqvmode = mode;
4685 if (GET_CODE (dest) == STRICT_LOW_PART)
4686 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4687 do_not_record = 0;
4688 hash_arg_in_memory = 0;
4689 src_eqv_hash = HASH (src_eqv, eqvmode);
4690
4691 /* Find the equivalence class for the equivalent expression. */
4692
4693 if (!do_not_record)
4694 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4695
4696 src_eqv_volatile = do_not_record;
4697 src_eqv_in_memory = hash_arg_in_memory;
4698 }
4699
4700 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4701 value of the INNER register, not the destination. So it is not
4702 a valid substitution for the source. But save it for later. */
4703 if (GET_CODE (dest) == STRICT_LOW_PART)
4704 src_eqv_here = 0;
4705 else
4706 src_eqv_here = src_eqv;
4707
4708 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4709 simplified result, which may not necessarily be valid. */
4710 src_folded = fold_rtx (src, NULL);
4711
4712 #if 0
4713 /* ??? This caused bad code to be generated for the m68k port with -O2.
4714 Suppose src is (CONST_INT -1), and that after truncation src_folded
4715 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4716 At the end we will add src and src_const to the same equivalence
4717 class. We now have 3 and -1 on the same equivalence class. This
4718 causes later instructions to be mis-optimized. */
4719 /* If storing a constant in a bitfield, pre-truncate the constant
4720 so we will be able to record it later. */
4721 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4722 {
4723 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4724
4725 if (CONST_INT_P (src)
4726 && CONST_INT_P (width)
4727 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4728 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4729 src_folded
4730 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
4731 << INTVAL (width)) - 1));
4732 }
4733 #endif
4734
4735 /* Compute SRC's hash code, and also notice if it
4736 should not be recorded at all. In that case,
4737 prevent any further processing of this assignment. */
4738 do_not_record = 0;
4739 hash_arg_in_memory = 0;
4740
4741 sets[i].src = src;
4742 sets[i].src_hash = HASH (src, mode);
4743 sets[i].src_volatile = do_not_record;
4744 sets[i].src_in_memory = hash_arg_in_memory;
4745
4746 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4747 a pseudo, do not record SRC. Using SRC as a replacement for
4748 anything else will be incorrect in that situation. Note that
4749 this usually occurs only for stack slots, in which case all the
4750 RTL would be referring to SRC, so we don't lose any optimization
4751 opportunities by not having SRC in the hash table. */
4752
4753 if (MEM_P (src)
4754 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4755 && REG_P (dest)
4756 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4757 sets[i].src_volatile = 1;
4758
4759 else if (GET_CODE (src) == ASM_OPERANDS
4760 && GET_CODE (x) == PARALLEL)
4761 {
4762 /* Do not record result of a non-volatile inline asm with
4763 more than one result. */
4764 if (n_sets > 1)
4765 sets[i].src_volatile = 1;
4766
4767 int j, lim = XVECLEN (x, 0);
4768 for (j = 0; j < lim; j++)
4769 {
4770 rtx y = XVECEXP (x, 0, j);
4771 /* And do not record result of a non-volatile inline asm
4772 with "memory" clobber. */
4773 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4774 {
4775 sets[i].src_volatile = 1;
4776 break;
4777 }
4778 }
4779 }
4780
4781 #if 0
4782 /* It is no longer clear why we used to do this, but it doesn't
4783 appear to still be needed. So let's try without it since this
4784 code hurts cse'ing widened ops. */
4785 /* If source is a paradoxical subreg (such as QI treated as an SI),
4786 treat it as volatile. It may do the work of an SI in one context
4787 where the extra bits are not being used, but cannot replace an SI
4788 in general. */
4789 if (paradoxical_subreg_p (src))
4790 sets[i].src_volatile = 1;
4791 #endif
4792
4793 /* Locate all possible equivalent forms for SRC. Try to replace
4794 SRC in the insn with each cheaper equivalent.
4795
4796 We have the following types of equivalents: SRC itself, a folded
4797 version, a value given in a REG_EQUAL note, or a value related
4798 to a constant.
4799
4800 Each of these equivalents may be part of an additional class
4801 of equivalents (if more than one is in the table, they must be in
4802 the same class; we check for this).
4803
4804 If the source is volatile, we don't do any table lookups.
4805
4806 We note any constant equivalent for possible later use in a
4807 REG_NOTE. */
4808
4809 if (!sets[i].src_volatile)
4810 elt = lookup (src, sets[i].src_hash, mode);
4811
4812 sets[i].src_elt = elt;
4813
4814 if (elt && src_eqv_here && src_eqv_elt)
4815 {
4816 if (elt->first_same_value != src_eqv_elt->first_same_value)
4817 {
4818 /* The REG_EQUAL is indicating that two formerly distinct
4819 classes are now equivalent. So merge them. */
4820 merge_equiv_classes (elt, src_eqv_elt);
4821 src_eqv_hash = HASH (src_eqv, elt->mode);
4822 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4823 }
4824
4825 src_eqv_here = 0;
4826 }
4827
4828 else if (src_eqv_elt)
4829 elt = src_eqv_elt;
4830
4831 /* Try to find a constant somewhere and record it in `src_const'.
4832 Record its table element, if any, in `src_const_elt'. Look in
4833 any known equivalences first. (If the constant is not in the
4834 table, also set `sets[i].src_const_hash'). */
4835 if (elt)
4836 for (p = elt->first_same_value; p; p = p->next_same_value)
4837 if (p->is_const)
4838 {
4839 src_const = p->exp;
4840 src_const_elt = elt;
4841 break;
4842 }
4843
4844 if (src_const == 0
4845 && (CONSTANT_P (src_folded)
4846 /* Consider (minus (label_ref L1) (label_ref L2)) as
4847 "constant" here so we will record it. This allows us
4848 to fold switch statements when an ADDR_DIFF_VEC is used. */
4849 || (GET_CODE (src_folded) == MINUS
4850 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4851 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4852 src_const = src_folded, src_const_elt = elt;
4853 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4854 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4855
4856 /* If we don't know if the constant is in the table, get its
4857 hash code and look it up. */
4858 if (src_const && src_const_elt == 0)
4859 {
4860 sets[i].src_const_hash = HASH (src_const, mode);
4861 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4862 }
4863
4864 sets[i].src_const = src_const;
4865 sets[i].src_const_elt = src_const_elt;
4866
4867 /* If the constant and our source are both in the table, mark them as
4868 equivalent. Otherwise, if a constant is in the table but the source
4869 isn't, set ELT to it. */
4870 if (src_const_elt && elt
4871 && src_const_elt->first_same_value != elt->first_same_value)
4872 merge_equiv_classes (elt, src_const_elt);
4873 else if (src_const_elt && elt == 0)
4874 elt = src_const_elt;
4875
4876 /* See if there is a register linearly related to a constant
4877 equivalent of SRC. */
4878 if (src_const
4879 && (GET_CODE (src_const) == CONST
4880 || (src_const_elt && src_const_elt->related_value != 0)))
4881 {
4882 src_related = use_related_value (src_const, src_const_elt);
4883 if (src_related)
4884 {
4885 struct table_elt *src_related_elt
4886 = lookup (src_related, HASH (src_related, mode), mode);
4887 if (src_related_elt && elt)
4888 {
4889 if (elt->first_same_value
4890 != src_related_elt->first_same_value)
4891 /* This can occur when we previously saw a CONST
4892 involving a SYMBOL_REF and then see the SYMBOL_REF
4893 twice. Merge the involved classes. */
4894 merge_equiv_classes (elt, src_related_elt);
4895
4896 src_related = 0;
4897 src_related_elt = 0;
4898 }
4899 else if (src_related_elt && elt == 0)
4900 elt = src_related_elt;
4901 }
4902 }
4903
4904 /* See if we have a CONST_INT that is already in a register in a
4905 wider mode. */
4906
4907 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4908 && is_int_mode (mode, &int_mode)
4909 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4910 {
4911 opt_scalar_int_mode wider_mode_iter;
4912 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4913 {
4914 scalar_int_mode wider_mode = wider_mode_iter.require ();
4915 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4916 break;
4917
4918 struct table_elt *const_elt
4919 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4920
4921 if (const_elt == 0)
4922 continue;
4923
4924 for (const_elt = const_elt->first_same_value;
4925 const_elt; const_elt = const_elt->next_same_value)
4926 if (REG_P (const_elt->exp))
4927 {
4928 src_related = gen_lowpart (int_mode, const_elt->exp);
4929 break;
4930 }
4931
4932 if (src_related != 0)
4933 break;
4934 }
4935 }
4936
4937 /* Another possibility is that we have an AND with a constant in
4938 a mode narrower than a word. If so, it might have been generated
4939 as part of an "if" which would narrow the AND. If we already
4940 have done the AND in a wider mode, we can use a SUBREG of that
4941 value. */
4942
4943 if (flag_expensive_optimizations && ! src_related
4944 && is_a <scalar_int_mode> (mode, &int_mode)
4945 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4946 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
4947 {
4948 opt_scalar_int_mode tmode_iter;
4949 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4950
4951 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4952 {
4953 scalar_int_mode tmode = tmode_iter.require ();
4954 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4955 break;
4956
4957 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4958 struct table_elt *larger_elt;
4959
4960 if (inner)
4961 {
4962 PUT_MODE (new_and, tmode);
4963 XEXP (new_and, 0) = inner;
4964 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4965 if (larger_elt == 0)
4966 continue;
4967
4968 for (larger_elt = larger_elt->first_same_value;
4969 larger_elt; larger_elt = larger_elt->next_same_value)
4970 if (REG_P (larger_elt->exp))
4971 {
4972 src_related
4973 = gen_lowpart (int_mode, larger_elt->exp);
4974 break;
4975 }
4976
4977 if (src_related)
4978 break;
4979 }
4980 }
4981 }
4982
4983 /* See if a MEM has already been loaded with a widening operation;
4984 if it has, we can use a subreg of that. Many CISC machines
4985 also have such operations, but this is only likely to be
4986 beneficial on these machines. */
4987
4988 rtx_code extend_op;
4989 if (flag_expensive_optimizations && src_related == 0
4990 && MEM_P (src) && ! do_not_record
4991 && is_a <scalar_int_mode> (mode, &int_mode)
4992 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
4993 {
4994 struct rtx_def memory_extend_buf;
4995 rtx memory_extend_rtx = &memory_extend_buf;
4996
4997 /* Set what we are trying to extend and the operation it might
4998 have been extended with. */
4999 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
5000 PUT_CODE (memory_extend_rtx, extend_op);
5001 XEXP (memory_extend_rtx, 0) = src;
5002
5003 opt_scalar_int_mode tmode_iter;
5004 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
5005 {
5006 struct table_elt *larger_elt;
5007
5008 scalar_int_mode tmode = tmode_iter.require ();
5009 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
5010 break;
5011
5012 PUT_MODE (memory_extend_rtx, tmode);
5013 larger_elt = lookup (memory_extend_rtx,
5014 HASH (memory_extend_rtx, tmode), tmode);
5015 if (larger_elt == 0)
5016 continue;
5017
5018 for (larger_elt = larger_elt->first_same_value;
5019 larger_elt; larger_elt = larger_elt->next_same_value)
5020 if (REG_P (larger_elt->exp))
5021 {
5022 src_related = gen_lowpart (int_mode, larger_elt->exp);
5023 break;
5024 }
5025
5026 if (src_related)
5027 break;
5028 }
5029 }
5030
5031 /* Try to express the constant using a register+offset expression
5032 derived from a constant anchor. */
5033
5034 if (targetm.const_anchor
5035 && !src_related
5036 && src_const
5037 && GET_CODE (src_const) == CONST_INT)
5038 {
5039 src_related = try_const_anchors (src_const, mode);
5040 src_related_is_const_anchor = src_related != NULL_RTX;
5041 }
5042
5043
5044 if (src == src_folded)
5045 src_folded = 0;
5046
5047 /* At this point, ELT, if nonzero, points to a class of expressions
5048 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5049 and SRC_RELATED, if nonzero, each contain additional equivalent
5050 expressions. Prune these latter expressions by deleting expressions
5051 already in the equivalence class.
5052
5053 Check for an equivalent identical to the destination. If found,
5054 this is the preferred equivalent since it will likely lead to
5055 elimination of the insn. Indicate this by placing it in
5056 `src_related'. */
5057
5058 if (elt)
5059 elt = elt->first_same_value;
5060 for (p = elt; p; p = p->next_same_value)
5061 {
5062 enum rtx_code code = GET_CODE (p->exp);
5063
5064 /* If the expression is not valid, ignore it. Then we do not
5065 have to check for validity below. In most cases, we can use
5066 `rtx_equal_p', since canonicalization has already been done. */
5067 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5068 continue;
5069
5070 /* Also skip paradoxical subregs, unless that's what we're
5071 looking for. */
5072 if (paradoxical_subreg_p (p->exp)
5073 && ! (src != 0
5074 && GET_CODE (src) == SUBREG
5075 && GET_MODE (src) == GET_MODE (p->exp)
5076 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5077 GET_MODE (SUBREG_REG (p->exp)))))
5078 continue;
5079
5080 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5081 src = 0;
5082 else if (src_folded && GET_CODE (src_folded) == code
5083 && rtx_equal_p (src_folded, p->exp))
5084 src_folded = 0;
5085 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5086 && rtx_equal_p (src_eqv_here, p->exp))
5087 src_eqv_here = 0;
5088 else if (src_related && GET_CODE (src_related) == code
5089 && rtx_equal_p (src_related, p->exp))
5090 src_related = 0;
5091
5092 /* This is the same as the destination of the insns, we want
5093 to prefer it. Copy it to src_related. The code below will
5094 then give it a negative cost. */
5095 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5096 src_related = dest;
5097 }
5098
5099 /* Find the cheapest valid equivalent, trying all the available
5100 possibilities. Prefer items not in the hash table to ones
5101 that are when they are equal cost. Note that we can never
5102 worsen an insn as the current contents will also succeed.
5103 If we find an equivalent identical to the destination, use it as best,
5104 since this insn will probably be eliminated in that case. */
5105 if (src)
5106 {
5107 if (rtx_equal_p (src, dest))
5108 src_cost = src_regcost = -1;
5109 else
5110 {
5111 src_cost = COST (src, mode);
5112 src_regcost = approx_reg_cost (src);
5113 }
5114 }
5115
5116 if (src_eqv_here)
5117 {
5118 if (rtx_equal_p (src_eqv_here, dest))
5119 src_eqv_cost = src_eqv_regcost = -1;
5120 else
5121 {
5122 src_eqv_cost = COST (src_eqv_here, mode);
5123 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5124 }
5125 }
5126
5127 if (src_folded)
5128 {
5129 if (rtx_equal_p (src_folded, dest))
5130 src_folded_cost = src_folded_regcost = -1;
5131 else
5132 {
5133 src_folded_cost = COST (src_folded, mode);
5134 src_folded_regcost = approx_reg_cost (src_folded);
5135 }
5136 }
5137
5138 if (src_related)
5139 {
5140 if (rtx_equal_p (src_related, dest))
5141 src_related_cost = src_related_regcost = -1;
5142 else
5143 {
5144 src_related_cost = COST (src_related, mode);
5145 src_related_regcost = approx_reg_cost (src_related);
5146
5147 /* If a const-anchor is used to synthesize a constant that
5148 normally requires multiple instructions then slightly prefer
5149 it over the original sequence. These instructions are likely
5150 to become redundant now. We can't compare against the cost
5151 of src_eqv_here because, on MIPS for example, multi-insn
5152 constants have zero cost; they are assumed to be hoisted from
5153 loops. */
5154 if (src_related_is_const_anchor
5155 && src_related_cost == src_cost
5156 && src_eqv_here)
5157 src_related_cost--;
5158 }
5159 }
5160
5161 /* If this was an indirect jump insn, a known label will really be
5162 cheaper even though it looks more expensive. */
5163 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5164 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5165
5166 /* Terminate loop when replacement made. This must terminate since
5167 the current contents will be tested and will always be valid. */
5168 while (1)
5169 {
5170 rtx trial;
5171
5172 /* Skip invalid entries. */
5173 while (elt && !REG_P (elt->exp)
5174 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5175 elt = elt->next_same_value;
5176
5177 /* A paradoxical subreg would be bad here: it'll be the right
5178 size, but later may be adjusted so that the upper bits aren't
5179 what we want. So reject it. */
5180 if (elt != 0
5181 && paradoxical_subreg_p (elt->exp)
5182 /* It is okay, though, if the rtx we're trying to match
5183 will ignore any of the bits we can't predict. */
5184 && ! (src != 0
5185 && GET_CODE (src) == SUBREG
5186 && GET_MODE (src) == GET_MODE (elt->exp)
5187 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5188 GET_MODE (SUBREG_REG (elt->exp)))))
5189 {
5190 elt = elt->next_same_value;
5191 continue;
5192 }
5193
5194 if (elt)
5195 {
5196 src_elt_cost = elt->cost;
5197 src_elt_regcost = elt->regcost;
5198 }
5199
5200 /* Find cheapest and skip it for the next time. For items
5201 of equal cost, use this order:
5202 src_folded, src, src_eqv, src_related and hash table entry. */
5203 if (src_folded
5204 && preferable (src_folded_cost, src_folded_regcost,
5205 src_cost, src_regcost) <= 0
5206 && preferable (src_folded_cost, src_folded_regcost,
5207 src_eqv_cost, src_eqv_regcost) <= 0
5208 && preferable (src_folded_cost, src_folded_regcost,
5209 src_related_cost, src_related_regcost) <= 0
5210 && preferable (src_folded_cost, src_folded_regcost,
5211 src_elt_cost, src_elt_regcost) <= 0)
5212 {
5213 trial = src_folded, src_folded_cost = MAX_COST;
5214 if (src_folded_force_flag)
5215 {
5216 rtx forced = force_const_mem (mode, trial);
5217 if (forced)
5218 trial = forced;
5219 }
5220 }
5221 else if (src
5222 && preferable (src_cost, src_regcost,
5223 src_eqv_cost, src_eqv_regcost) <= 0
5224 && preferable (src_cost, src_regcost,
5225 src_related_cost, src_related_regcost) <= 0
5226 && preferable (src_cost, src_regcost,
5227 src_elt_cost, src_elt_regcost) <= 0)
5228 trial = src, src_cost = MAX_COST;
5229 else if (src_eqv_here
5230 && preferable (src_eqv_cost, src_eqv_regcost,
5231 src_related_cost, src_related_regcost) <= 0
5232 && preferable (src_eqv_cost, src_eqv_regcost,
5233 src_elt_cost, src_elt_regcost) <= 0)
5234 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5235 else if (src_related
5236 && preferable (src_related_cost, src_related_regcost,
5237 src_elt_cost, src_elt_regcost) <= 0)
5238 trial = src_related, src_related_cost = MAX_COST;
5239 else
5240 {
5241 trial = elt->exp;
5242 elt = elt->next_same_value;
5243 src_elt_cost = MAX_COST;
5244 }
5245
5246 /* Try to optimize
5247 (set (reg:M N) (const_int A))
5248 (set (reg:M2 O) (const_int B))
5249 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5250 (reg:M2 O)). */
5251 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5252 && CONST_INT_P (trial)
5253 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5254 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5255 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5256 && (known_ge
5257 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5258 INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
5259 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5260 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5261 <= HOST_BITS_PER_WIDE_INT))
5262 {
5263 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5264 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5265 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5266 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5267 struct table_elt *dest_elt
5268 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5269 rtx dest_cst = NULL;
5270
5271 if (dest_elt)
5272 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5273 if (p->is_const && CONST_INT_P (p->exp))
5274 {
5275 dest_cst = p->exp;
5276 break;
5277 }
5278 if (dest_cst)
5279 {
5280 HOST_WIDE_INT val = INTVAL (dest_cst);
5281 HOST_WIDE_INT mask;
5282 unsigned int shift;
5283 /* This is the mode of DEST_CST as well. */
5284 scalar_int_mode dest_mode
5285 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
5286 if (BITS_BIG_ENDIAN)
5287 shift = GET_MODE_PRECISION (dest_mode)
5288 - INTVAL (pos) - INTVAL (width);
5289 else
5290 shift = INTVAL (pos);
5291 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5292 mask = HOST_WIDE_INT_M1;
5293 else
5294 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
5295 val &= ~(mask << shift);
5296 val |= (INTVAL (trial) & mask) << shift;
5297 val = trunc_int_for_mode (val, dest_mode);
5298 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5299 dest_reg, 1);
5300 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5301 GEN_INT (val), 1);
5302 if (apply_change_group ())
5303 {
5304 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5305 if (note)
5306 {
5307 remove_note (insn, note);
5308 df_notes_rescan (insn);
5309 }
5310 src_eqv = NULL_RTX;
5311 src_eqv_elt = NULL;
5312 src_eqv_volatile = 0;
5313 src_eqv_in_memory = 0;
5314 src_eqv_hash = 0;
5315 repeat = true;
5316 break;
5317 }
5318 }
5319 }
5320
5321 /* We don't normally have an insn matching (set (pc) (pc)), so
5322 check for this separately here. We will delete such an
5323 insn below.
5324
5325 For other cases such as a table jump or conditional jump
5326 where we know the ultimate target, go ahead and replace the
5327 operand. While that may not make a valid insn, we will
5328 reemit the jump below (and also insert any necessary
5329 barriers). */
5330 if (n_sets == 1 && dest == pc_rtx
5331 && (trial == pc_rtx
5332 || (GET_CODE (trial) == LABEL_REF
5333 && ! condjump_p (insn))))
5334 {
5335 /* Don't substitute non-local labels, this confuses CFG. */
5336 if (GET_CODE (trial) == LABEL_REF
5337 && LABEL_REF_NONLOCAL_P (trial))
5338 continue;
5339
5340 SET_SRC (sets[i].rtl) = trial;
5341 cse_jumps_altered = true;
5342 break;
5343 }
5344
5345 /* Similarly, lots of targets don't allow no-op
5346 (set (mem x) (mem x)) moves. */
5347 else if (n_sets == 1
5348 && MEM_P (trial)
5349 && MEM_P (dest)
5350 && rtx_equal_p (trial, dest)
5351 && !side_effects_p (dest)
5352 && (cfun->can_delete_dead_exceptions
5353 || insn_nothrow_p (insn)))
5354 {
5355 SET_SRC (sets[i].rtl) = trial;
5356 mem_noop_insn = true;
5357 break;
5358 }
5359
5360 /* Reject certain invalid forms of CONST that we create. */
5361 else if (CONSTANT_P (trial)
5362 && GET_CODE (trial) == CONST
5363 /* Reject cases that will cause decode_rtx_const to
5364 die. On the alpha when simplifying a switch, we
5365 get (const (truncate (minus (label_ref)
5366 (label_ref)))). */
5367 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5368 /* Likewise on IA-64, except without the
5369 truncate. */
5370 || (GET_CODE (XEXP (trial, 0)) == MINUS
5371 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5372 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5373 /* Do nothing for this case. */
5374 ;
5375
5376 /* Do not replace anything with a MEM, except the replacement
5377 is a no-op. This allows this loop to terminate. */
5378 else if (MEM_P (trial) && !rtx_equal_p (trial, SET_SRC(sets[i].rtl)))
5379 /* Do nothing for this case. */
5380 ;
5381
5382 /* Look for a substitution that makes a valid insn. */
5383 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5384 trial, 0))
5385 {
5386 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5387
5388 /* The result of apply_change_group can be ignored; see
5389 canon_reg. */
5390
5391 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5392 apply_change_group ();
5393
5394 break;
5395 }
5396
5397 /* If we previously found constant pool entries for
5398 constants and this is a constant, try making a
5399 pool entry. Put it in src_folded unless we already have done
5400 this since that is where it likely came from. */
5401
5402 else if (constant_pool_entries_cost
5403 && CONSTANT_P (trial)
5404 && (src_folded == 0
5405 || (!MEM_P (src_folded)
5406 && ! src_folded_force_flag))
5407 && GET_MODE_CLASS (mode) != MODE_CC
5408 && mode != VOIDmode)
5409 {
5410 src_folded_force_flag = 1;
5411 src_folded = trial;
5412 src_folded_cost = constant_pool_entries_cost;
5413 src_folded_regcost = constant_pool_entries_regcost;
5414 }
5415 }
5416
5417 /* If we changed the insn too much, handle this set from scratch. */
5418 if (repeat)
5419 {
5420 i--;
5421 continue;
5422 }
5423
5424 src = SET_SRC (sets[i].rtl);
5425
5426 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5427 However, there is an important exception: If both are registers
5428 that are not the head of their equivalence class, replace SET_SRC
5429 with the head of the class. If we do not do this, we will have
5430 both registers live over a portion of the basic block. This way,
5431 their lifetimes will likely abut instead of overlapping. */
5432 if (REG_P (dest)
5433 && REGNO_QTY_VALID_P (REGNO (dest)))
5434 {
5435 int dest_q = REG_QTY (REGNO (dest));
5436 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5437
5438 if (dest_ent->mode == GET_MODE (dest)
5439 && dest_ent->first_reg != REGNO (dest)
5440 && REG_P (src) && REGNO (src) == REGNO (dest)
5441 /* Don't do this if the original insn had a hard reg as
5442 SET_SRC or SET_DEST. */
5443 && (!REG_P (sets[i].src)
5444 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5445 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5446 /* We can't call canon_reg here because it won't do anything if
5447 SRC is a hard register. */
5448 {
5449 int src_q = REG_QTY (REGNO (src));
5450 struct qty_table_elem *src_ent = &qty_table[src_q];
5451 int first = src_ent->first_reg;
5452 rtx new_src
5453 = (first >= FIRST_PSEUDO_REGISTER
5454 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5455
5456 /* We must use validate-change even for this, because this
5457 might be a special no-op instruction, suitable only to
5458 tag notes onto. */
5459 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5460 {
5461 src = new_src;
5462 /* If we had a constant that is cheaper than what we are now
5463 setting SRC to, use that constant. We ignored it when we
5464 thought we could make this into a no-op. */
5465 if (src_const && COST (src_const, mode) < COST (src, mode)
5466 && validate_change (insn, &SET_SRC (sets[i].rtl),
5467 src_const, 0))
5468 src = src_const;
5469 }
5470 }
5471 }
5472
5473 /* If we made a change, recompute SRC values. */
5474 if (src != sets[i].src)
5475 {
5476 do_not_record = 0;
5477 hash_arg_in_memory = 0;
5478 sets[i].src = src;
5479 sets[i].src_hash = HASH (src, mode);
5480 sets[i].src_volatile = do_not_record;
5481 sets[i].src_in_memory = hash_arg_in_memory;
5482 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5483 }
5484
5485 /* If this is a single SET, we are setting a register, and we have an
5486 equivalent constant, we want to add a REG_EQUAL note if the constant
5487 is different from the source. We don't want to do it for a constant
5488 pseudo since verifying that this pseudo hasn't been eliminated is a
5489 pain; moreover such a note won't help anything.
5490
5491 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5492 which can be created for a reference to a compile time computable
5493 entry in a jump table. */
5494 if (n_sets == 1
5495 && REG_P (dest)
5496 && src_const
5497 && !REG_P (src_const)
5498 && !(GET_CODE (src_const) == SUBREG
5499 && REG_P (SUBREG_REG (src_const)))
5500 && !(GET_CODE (src_const) == CONST
5501 && GET_CODE (XEXP (src_const, 0)) == MINUS
5502 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5503 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5504 && !rtx_equal_p (src, src_const))
5505 {
5506 /* Make sure that the rtx is not shared. */
5507 src_const = copy_rtx (src_const);
5508
5509 /* Record the actual constant value in a REG_EQUAL note,
5510 making a new one if one does not already exist. */
5511 set_unique_reg_note (insn, REG_EQUAL, src_const);
5512 df_notes_rescan (insn);
5513 }
5514
5515 /* Now deal with the destination. */
5516 do_not_record = 0;
5517
5518 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5519 while (GET_CODE (dest) == SUBREG
5520 || GET_CODE (dest) == ZERO_EXTRACT
5521 || GET_CODE (dest) == STRICT_LOW_PART)
5522 dest = XEXP (dest, 0);
5523
5524 sets[i].inner_dest = dest;
5525
5526 if (MEM_P (dest))
5527 {
5528 #ifdef PUSH_ROUNDING
5529 /* Stack pushes invalidate the stack pointer. */
5530 rtx addr = XEXP (dest, 0);
5531 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5532 && XEXP (addr, 0) == stack_pointer_rtx)
5533 invalidate (stack_pointer_rtx, VOIDmode);
5534 #endif
5535 dest = fold_rtx (dest, insn);
5536 }
5537
5538 /* Compute the hash code of the destination now,
5539 before the effects of this instruction are recorded,
5540 since the register values used in the address computation
5541 are those before this instruction. */
5542 sets[i].dest_hash = HASH (dest, mode);
5543
5544 /* Don't enter a bit-field in the hash table
5545 because the value in it after the store
5546 may not equal what was stored, due to truncation. */
5547
5548 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5549 {
5550 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5551
5552 if (src_const != 0 && CONST_INT_P (src_const)
5553 && CONST_INT_P (width)
5554 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5555 && ! (INTVAL (src_const)
5556 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5557 /* Exception: if the value is constant,
5558 and it won't be truncated, record it. */
5559 ;
5560 else
5561 {
5562 /* This is chosen so that the destination will be invalidated
5563 but no new value will be recorded.
5564 We must invalidate because sometimes constant
5565 values can be recorded for bitfields. */
5566 sets[i].src_elt = 0;
5567 sets[i].src_volatile = 1;
5568 src_eqv = 0;
5569 src_eqv_elt = 0;
5570 }
5571 }
5572
5573 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5574 the insn. */
5575 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5576 {
5577 /* One less use of the label this insn used to jump to. */
5578 cse_cfg_altered |= delete_insn_and_edges (insn);
5579 cse_jumps_altered = true;
5580 /* No more processing for this set. */
5581 sets[i].rtl = 0;
5582 }
5583
5584 /* Similarly for no-op MEM moves. */
5585 else if (mem_noop_insn)
5586 {
5587 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5588 cse_cfg_altered = true;
5589 cse_cfg_altered |= delete_insn_and_edges (insn);
5590 /* No more processing for this set. */
5591 sets[i].rtl = 0;
5592 }
5593
5594 /* If this SET is now setting PC to a label, we know it used to
5595 be a conditional or computed branch. */
5596 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5597 && !LABEL_REF_NONLOCAL_P (src))
5598 {
5599 /* We reemit the jump in as many cases as possible just in
5600 case the form of an unconditional jump is significantly
5601 different than a computed jump or conditional jump.
5602
5603 If this insn has multiple sets, then reemitting the
5604 jump is nontrivial. So instead we just force rerecognition
5605 and hope for the best. */
5606 if (n_sets == 1)
5607 {
5608 rtx_jump_insn *new_rtx;
5609 rtx note;
5610
5611 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5612 new_rtx = emit_jump_insn_before (seq, insn);
5613 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5614 LABEL_NUSES (XEXP (src, 0))++;
5615
5616 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5617 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5618 if (note)
5619 {
5620 XEXP (note, 1) = NULL_RTX;
5621 REG_NOTES (new_rtx) = note;
5622 }
5623
5624 cse_cfg_altered |= delete_insn_and_edges (insn);
5625 insn = new_rtx;
5626 }
5627 else
5628 INSN_CODE (insn) = -1;
5629
5630 /* Do not bother deleting any unreachable code, let jump do it. */
5631 cse_jumps_altered = true;
5632 sets[i].rtl = 0;
5633 }
5634
5635 /* If destination is volatile, invalidate it and then do no further
5636 processing for this assignment. */
5637
5638 else if (do_not_record)
5639 {
5640 invalidate_dest (dest);
5641 sets[i].rtl = 0;
5642 }
5643
5644 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5645 {
5646 do_not_record = 0;
5647 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5648 if (do_not_record)
5649 {
5650 invalidate_dest (SET_DEST (sets[i].rtl));
5651 sets[i].rtl = 0;
5652 }
5653 }
5654
5655 /* If setting CC0, record what it was set to, or a constant, if it
5656 is equivalent to a constant. If it is being set to a floating-point
5657 value, make a COMPARE with the appropriate constant of 0. If we
5658 don't do this, later code can interpret this as a test against
5659 const0_rtx, which can cause problems if we try to put it into an
5660 insn as a floating-point operand. */
5661 if (dest == cc0_rtx)
5662 {
5663 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5664 this_insn_cc0_mode = mode;
5665 if (FLOAT_MODE_P (mode))
5666 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5667 CONST0_RTX (mode));
5668 }
5669 }
5670
5671 /* Now enter all non-volatile source expressions in the hash table
5672 if they are not already present.
5673 Record their equivalence classes in src_elt.
5674 This way we can insert the corresponding destinations into
5675 the same classes even if the actual sources are no longer in them
5676 (having been invalidated). */
5677
5678 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5679 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5680 {
5681 struct table_elt *elt;
5682 struct table_elt *classp = sets[0].src_elt;
5683 rtx dest = SET_DEST (sets[0].rtl);
5684 machine_mode eqvmode = GET_MODE (dest);
5685
5686 if (GET_CODE (dest) == STRICT_LOW_PART)
5687 {
5688 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5689 classp = 0;
5690 }
5691 if (insert_regs (src_eqv, classp, 0))
5692 {
5693 rehash_using_reg (src_eqv);
5694 src_eqv_hash = HASH (src_eqv, eqvmode);
5695 }
5696 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5697 elt->in_memory = src_eqv_in_memory;
5698 src_eqv_elt = elt;
5699
5700 /* Check to see if src_eqv_elt is the same as a set source which
5701 does not yet have an elt, and if so set the elt of the set source
5702 to src_eqv_elt. */
5703 for (i = 0; i < n_sets; i++)
5704 if (sets[i].rtl && sets[i].src_elt == 0
5705 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5706 sets[i].src_elt = src_eqv_elt;
5707 }
5708
5709 for (i = 0; i < n_sets; i++)
5710 if (sets[i].rtl && ! sets[i].src_volatile
5711 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5712 {
5713 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5714 {
5715 /* REG_EQUAL in setting a STRICT_LOW_PART
5716 gives an equivalent for the entire destination register,
5717 not just for the subreg being stored in now.
5718 This is a more interesting equivalence, so we arrange later
5719 to treat the entire reg as the destination. */
5720 sets[i].src_elt = src_eqv_elt;
5721 sets[i].src_hash = src_eqv_hash;
5722 }
5723 else
5724 {
5725 /* Insert source and constant equivalent into hash table, if not
5726 already present. */
5727 struct table_elt *classp = src_eqv_elt;
5728 rtx src = sets[i].src;
5729 rtx dest = SET_DEST (sets[i].rtl);
5730 machine_mode mode
5731 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5732
5733 /* It's possible that we have a source value known to be
5734 constant but don't have a REG_EQUAL note on the insn.
5735 Lack of a note will mean src_eqv_elt will be NULL. This
5736 can happen where we've generated a SUBREG to access a
5737 CONST_INT that is already in a register in a wider mode.
5738 Ensure that the source expression is put in the proper
5739 constant class. */
5740 if (!classp)
5741 classp = sets[i].src_const_elt;
5742
5743 if (sets[i].src_elt == 0)
5744 {
5745 struct table_elt *elt;
5746
5747 /* Note that these insert_regs calls cannot remove
5748 any of the src_elt's, because they would have failed to
5749 match if not still valid. */
5750 if (insert_regs (src, classp, 0))
5751 {
5752 rehash_using_reg (src);
5753 sets[i].src_hash = HASH (src, mode);
5754 }
5755 elt = insert (src, classp, sets[i].src_hash, mode);
5756 elt->in_memory = sets[i].src_in_memory;
5757 /* If inline asm has any clobbers, ensure we only reuse
5758 existing inline asms and never try to put the ASM_OPERANDS
5759 into an insn that isn't inline asm. */
5760 if (GET_CODE (src) == ASM_OPERANDS
5761 && GET_CODE (x) == PARALLEL)
5762 elt->cost = MAX_COST;
5763 sets[i].src_elt = classp = elt;
5764 }
5765 if (sets[i].src_const && sets[i].src_const_elt == 0
5766 && src != sets[i].src_const
5767 && ! rtx_equal_p (sets[i].src_const, src))
5768 sets[i].src_elt = insert (sets[i].src_const, classp,
5769 sets[i].src_const_hash, mode);
5770 }
5771 }
5772 else if (sets[i].src_elt == 0)
5773 /* If we did not insert the source into the hash table (e.g., it was
5774 volatile), note the equivalence class for the REG_EQUAL value, if any,
5775 so that the destination goes into that class. */
5776 sets[i].src_elt = src_eqv_elt;
5777
5778 /* Record destination addresses in the hash table. This allows us to
5779 check if they are invalidated by other sets. */
5780 for (i = 0; i < n_sets; i++)
5781 {
5782 if (sets[i].rtl)
5783 {
5784 rtx x = sets[i].inner_dest;
5785 struct table_elt *elt;
5786 machine_mode mode;
5787 unsigned hash;
5788
5789 if (MEM_P (x))
5790 {
5791 x = XEXP (x, 0);
5792 mode = GET_MODE (x);
5793 hash = HASH (x, mode);
5794 elt = lookup (x, hash, mode);
5795 if (!elt)
5796 {
5797 if (insert_regs (x, NULL, 0))
5798 {
5799 rtx dest = SET_DEST (sets[i].rtl);
5800
5801 rehash_using_reg (x);
5802 hash = HASH (x, mode);
5803 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5804 }
5805 elt = insert (x, NULL, hash, mode);
5806 }
5807
5808 sets[i].dest_addr_elt = elt;
5809 }
5810 else
5811 sets[i].dest_addr_elt = NULL;
5812 }
5813 }
5814
5815 invalidate_from_clobbers (insn);
5816
5817 /* Some registers are invalidated by subroutine calls. Memory is
5818 invalidated by non-constant calls. */
5819
5820 if (CALL_P (insn))
5821 {
5822 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5823 invalidate_memory ();
5824 else
5825 /* For const/pure calls, invalidate any argument slots, because
5826 those are owned by the callee. */
5827 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5828 if (GET_CODE (XEXP (tem, 0)) == USE
5829 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5830 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
5831 invalidate_for_call (insn);
5832 }
5833
5834 /* Now invalidate everything set by this instruction.
5835 If a SUBREG or other funny destination is being set,
5836 sets[i].rtl is still nonzero, so here we invalidate the reg
5837 a part of which is being set. */
5838
5839 for (i = 0; i < n_sets; i++)
5840 if (sets[i].rtl)
5841 {
5842 /* We can't use the inner dest, because the mode associated with
5843 a ZERO_EXTRACT is significant. */
5844 rtx dest = SET_DEST (sets[i].rtl);
5845
5846 /* Needed for registers to remove the register from its
5847 previous quantity's chain.
5848 Needed for memory if this is a nonvarying address, unless
5849 we have just done an invalidate_memory that covers even those. */
5850 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5851 invalidate (dest, VOIDmode);
5852 else if (MEM_P (dest))
5853 invalidate (dest, VOIDmode);
5854 else if (GET_CODE (dest) == STRICT_LOW_PART
5855 || GET_CODE (dest) == ZERO_EXTRACT)
5856 invalidate (XEXP (dest, 0), GET_MODE (dest));
5857 }
5858
5859 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5860 the regs restored by the longjmp come from a later time
5861 than the setjmp. */
5862 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5863 {
5864 flush_hash_table ();
5865 goto done;
5866 }
5867
5868 /* Make sure registers mentioned in destinations
5869 are safe for use in an expression to be inserted.
5870 This removes from the hash table
5871 any invalid entry that refers to one of these registers.
5872
5873 We don't care about the return value from mention_regs because
5874 we are going to hash the SET_DEST values unconditionally. */
5875
5876 for (i = 0; i < n_sets; i++)
5877 {
5878 if (sets[i].rtl)
5879 {
5880 rtx x = SET_DEST (sets[i].rtl);
5881
5882 if (!REG_P (x))
5883 mention_regs (x);
5884 else
5885 {
5886 /* We used to rely on all references to a register becoming
5887 inaccessible when a register changes to a new quantity,
5888 since that changes the hash code. However, that is not
5889 safe, since after HASH_SIZE new quantities we get a
5890 hash 'collision' of a register with its own invalid
5891 entries. And since SUBREGs have been changed not to
5892 change their hash code with the hash code of the register,
5893 it wouldn't work any longer at all. So we have to check
5894 for any invalid references lying around now.
5895 This code is similar to the REG case in mention_regs,
5896 but it knows that reg_tick has been incremented, and
5897 it leaves reg_in_table as -1 . */
5898 unsigned int regno = REGNO (x);
5899 unsigned int endregno = END_REGNO (x);
5900 unsigned int i;
5901
5902 for (i = regno; i < endregno; i++)
5903 {
5904 if (REG_IN_TABLE (i) >= 0)
5905 {
5906 remove_invalid_refs (i);
5907 REG_IN_TABLE (i) = -1;
5908 }
5909 }
5910 }
5911 }
5912 }
5913
5914 /* We may have just removed some of the src_elt's from the hash table.
5915 So replace each one with the current head of the same class.
5916 Also check if destination addresses have been removed. */
5917
5918 for (i = 0; i < n_sets; i++)
5919 if (sets[i].rtl)
5920 {
5921 if (sets[i].dest_addr_elt
5922 && sets[i].dest_addr_elt->first_same_value == 0)
5923 {
5924 /* The elt was removed, which means this destination is not
5925 valid after this instruction. */
5926 sets[i].rtl = NULL_RTX;
5927 }
5928 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5929 /* If elt was removed, find current head of same class,
5930 or 0 if nothing remains of that class. */
5931 {
5932 struct table_elt *elt = sets[i].src_elt;
5933
5934 while (elt && elt->prev_same_value)
5935 elt = elt->prev_same_value;
5936
5937 while (elt && elt->first_same_value == 0)
5938 elt = elt->next_same_value;
5939 sets[i].src_elt = elt ? elt->first_same_value : 0;
5940 }
5941 }
5942
5943 /* Now insert the destinations into their equivalence classes. */
5944
5945 for (i = 0; i < n_sets; i++)
5946 if (sets[i].rtl)
5947 {
5948 rtx dest = SET_DEST (sets[i].rtl);
5949 struct table_elt *elt;
5950
5951 /* Don't record value if we are not supposed to risk allocating
5952 floating-point values in registers that might be wider than
5953 memory. */
5954 if ((flag_float_store
5955 && MEM_P (dest)
5956 && FLOAT_MODE_P (GET_MODE (dest)))
5957 /* Don't record BLKmode values, because we don't know the
5958 size of it, and can't be sure that other BLKmode values
5959 have the same or smaller size. */
5960 || GET_MODE (dest) == BLKmode
5961 /* If we didn't put a REG_EQUAL value or a source into the hash
5962 table, there is no point is recording DEST. */
5963 || sets[i].src_elt == 0)
5964 continue;
5965
5966 /* STRICT_LOW_PART isn't part of the value BEING set,
5967 and neither is the SUBREG inside it.
5968 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5969 if (GET_CODE (dest) == STRICT_LOW_PART)
5970 dest = SUBREG_REG (XEXP (dest, 0));
5971
5972 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5973 /* Registers must also be inserted into chains for quantities. */
5974 if (insert_regs (dest, sets[i].src_elt, 1))
5975 {
5976 /* If `insert_regs' changes something, the hash code must be
5977 recalculated. */
5978 rehash_using_reg (dest);
5979 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5980 }
5981
5982 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5983 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5984 if (paradoxical_subreg_p (dest))
5985 continue;
5986
5987 elt = insert (dest, sets[i].src_elt,
5988 sets[i].dest_hash, GET_MODE (dest));
5989
5990 /* If this is a constant, insert the constant anchors with the
5991 equivalent register-offset expressions using register DEST. */
5992 if (targetm.const_anchor
5993 && REG_P (dest)
5994 && SCALAR_INT_MODE_P (GET_MODE (dest))
5995 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5996 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5997
5998 elt->in_memory = (MEM_P (sets[i].inner_dest)
5999 && !MEM_READONLY_P (sets[i].inner_dest));
6000
6001 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6002 narrower than M2, and both M1 and M2 are the same number of words,
6003 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6004 make that equivalence as well.
6005
6006 However, BAR may have equivalences for which gen_lowpart
6007 will produce a simpler value than gen_lowpart applied to
6008 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6009 BAR's equivalences. If we don't get a simplified form, make
6010 the SUBREG. It will not be used in an equivalence, but will
6011 cause two similar assignments to be detected.
6012
6013 Note the loop below will find SUBREG_REG (DEST) since we have
6014 already entered SRC and DEST of the SET in the table. */
6015
6016 if (GET_CODE (dest) == SUBREG
6017 && (known_equal_after_align_down
6018 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
6019 GET_MODE_SIZE (GET_MODE (dest)) - 1,
6020 UNITS_PER_WORD))
6021 && !partial_subreg_p (dest)
6022 && sets[i].src_elt != 0)
6023 {
6024 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6025 struct table_elt *elt, *classp = 0;
6026
6027 for (elt = sets[i].src_elt->first_same_value; elt;
6028 elt = elt->next_same_value)
6029 {
6030 rtx new_src = 0;
6031 unsigned src_hash;
6032 struct table_elt *src_elt;
6033
6034 /* Ignore invalid entries. */
6035 if (!REG_P (elt->exp)
6036 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6037 continue;
6038
6039 /* We may have already been playing subreg games. If the
6040 mode is already correct for the destination, use it. */
6041 if (GET_MODE (elt->exp) == new_mode)
6042 new_src = elt->exp;
6043 else
6044 {
6045 poly_uint64 byte
6046 = subreg_lowpart_offset (new_mode, GET_MODE (dest));
6047 new_src = simplify_gen_subreg (new_mode, elt->exp,
6048 GET_MODE (dest), byte);
6049 }
6050
6051 /* The call to simplify_gen_subreg fails if the value
6052 is VOIDmode, yet we can't do any simplification, e.g.
6053 for EXPR_LISTs denoting function call results.
6054 It is invalid to construct a SUBREG with a VOIDmode
6055 SUBREG_REG, hence a zero new_src means we can't do
6056 this substitution. */
6057 if (! new_src)
6058 continue;
6059
6060 src_hash = HASH (new_src, new_mode);
6061 src_elt = lookup (new_src, src_hash, new_mode);
6062
6063 /* Put the new source in the hash table is if isn't
6064 already. */
6065 if (src_elt == 0)
6066 {
6067 if (insert_regs (new_src, classp, 0))
6068 {
6069 rehash_using_reg (new_src);
6070 src_hash = HASH (new_src, new_mode);
6071 }
6072 src_elt = insert (new_src, classp, src_hash, new_mode);
6073 src_elt->in_memory = elt->in_memory;
6074 if (GET_CODE (new_src) == ASM_OPERANDS
6075 && elt->cost == MAX_COST)
6076 src_elt->cost = MAX_COST;
6077 }
6078 else if (classp && classp != src_elt->first_same_value)
6079 /* Show that two things that we've seen before are
6080 actually the same. */
6081 merge_equiv_classes (src_elt, classp);
6082
6083 classp = src_elt->first_same_value;
6084 /* Ignore invalid entries. */
6085 while (classp
6086 && !REG_P (classp->exp)
6087 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6088 classp = classp->next_same_value;
6089 }
6090 }
6091 }
6092
6093 /* Special handling for (set REG0 REG1) where REG0 is the
6094 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6095 be used in the sequel, so (if easily done) change this insn to
6096 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6097 that computed their value. Then REG1 will become a dead store
6098 and won't cloud the situation for later optimizations.
6099
6100 Do not make this change if REG1 is a hard register, because it will
6101 then be used in the sequel and we may be changing a two-operand insn
6102 into a three-operand insn.
6103
6104 Also do not do this if we are operating on a copy of INSN. */
6105
6106 if (n_sets == 1 && sets[0].rtl)
6107 try_back_substitute_reg (sets[0].rtl, insn);
6108
6109 done:;
6110 }
6111 \f
6112 /* Remove from the hash table all expressions that reference memory. */
6113
6114 static void
6115 invalidate_memory (void)
6116 {
6117 int i;
6118 struct table_elt *p, *next;
6119
6120 for (i = 0; i < HASH_SIZE; i++)
6121 for (p = table[i]; p; p = next)
6122 {
6123 next = p->next_same_hash;
6124 if (p->in_memory)
6125 remove_from_table (p, i);
6126 }
6127 }
6128
6129 /* Perform invalidation on the basis of everything about INSN,
6130 except for invalidating the actual places that are SET in it.
6131 This includes the places CLOBBERed, and anything that might
6132 alias with something that is SET or CLOBBERed. */
6133
6134 static void
6135 invalidate_from_clobbers (rtx_insn *insn)
6136 {
6137 rtx x = PATTERN (insn);
6138
6139 if (GET_CODE (x) == CLOBBER)
6140 {
6141 rtx ref = XEXP (x, 0);
6142 if (ref)
6143 {
6144 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6145 || MEM_P (ref))
6146 invalidate (ref, VOIDmode);
6147 else if (GET_CODE (ref) == STRICT_LOW_PART
6148 || GET_CODE (ref) == ZERO_EXTRACT)
6149 invalidate (XEXP (ref, 0), GET_MODE (ref));
6150 }
6151 }
6152 if (GET_CODE (x) == CLOBBER_HIGH)
6153 {
6154 rtx ref = XEXP (x, 0);
6155 gcc_assert (REG_P (ref));
6156 invalidate_reg (ref, true);
6157 }
6158 else if (GET_CODE (x) == PARALLEL)
6159 {
6160 int i;
6161 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6162 {
6163 rtx y = XVECEXP (x, 0, i);
6164 if (GET_CODE (y) == CLOBBER)
6165 {
6166 rtx ref = XEXP (y, 0);
6167 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6168 || MEM_P (ref))
6169 invalidate (ref, VOIDmode);
6170 else if (GET_CODE (ref) == STRICT_LOW_PART
6171 || GET_CODE (ref) == ZERO_EXTRACT)
6172 invalidate (XEXP (ref, 0), GET_MODE (ref));
6173 }
6174 else if (GET_CODE (y) == CLOBBER_HIGH)
6175 {
6176 rtx ref = XEXP (y, 0);
6177 gcc_assert (REG_P (ref));
6178 invalidate_reg (ref, true);
6179 }
6180 }
6181 }
6182 }
6183 \f
6184 /* Perform invalidation on the basis of everything about INSN.
6185 This includes the places CLOBBERed, and anything that might
6186 alias with something that is SET or CLOBBERed. */
6187
6188 static void
6189 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6190 {
6191 rtx tem;
6192 rtx x = PATTERN (insn);
6193
6194 if (CALL_P (insn))
6195 {
6196 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6197 {
6198 rtx temx = XEXP (tem, 0);
6199 if (GET_CODE (temx) == CLOBBER)
6200 invalidate (SET_DEST (temx), VOIDmode);
6201 else if (GET_CODE (temx) == CLOBBER_HIGH)
6202 {
6203 rtx temref = XEXP (temx, 0);
6204 gcc_assert (REG_P (temref));
6205 invalidate_reg (temref, true);
6206 }
6207 }
6208 }
6209
6210 /* Ensure we invalidate the destination register of a CALL insn.
6211 This is necessary for machines where this register is a fixed_reg,
6212 because no other code would invalidate it. */
6213 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6214 invalidate (SET_DEST (x), VOIDmode);
6215
6216 else if (GET_CODE (x) == PARALLEL)
6217 {
6218 int i;
6219
6220 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6221 {
6222 rtx y = XVECEXP (x, 0, i);
6223 if (GET_CODE (y) == CLOBBER)
6224 {
6225 rtx clobbered = XEXP (y, 0);
6226
6227 if (REG_P (clobbered)
6228 || GET_CODE (clobbered) == SUBREG)
6229 invalidate (clobbered, VOIDmode);
6230 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6231 || GET_CODE (clobbered) == ZERO_EXTRACT)
6232 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6233 }
6234 else if (GET_CODE (y) == CLOBBER_HIGH)
6235 {
6236 rtx ref = XEXP (y, 0);
6237 gcc_assert (REG_P (ref));
6238 invalidate_reg (ref, true);
6239 }
6240 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6241 invalidate (SET_DEST (y), VOIDmode);
6242 }
6243 }
6244 }
6245 \f
6246 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6247 and replace any registers in them with either an equivalent constant
6248 or the canonical form of the register. If we are inside an address,
6249 only do this if the address remains valid.
6250
6251 OBJECT is 0 except when within a MEM in which case it is the MEM.
6252
6253 Return the replacement for X. */
6254
6255 static rtx
6256 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6257 {
6258 enum rtx_code code = GET_CODE (x);
6259 const char *fmt = GET_RTX_FORMAT (code);
6260 int i;
6261
6262 switch (code)
6263 {
6264 case CONST:
6265 case SYMBOL_REF:
6266 case LABEL_REF:
6267 CASE_CONST_ANY:
6268 case PC:
6269 case CC0:
6270 case LO_SUM:
6271 return x;
6272
6273 case MEM:
6274 validate_change (x, &XEXP (x, 0),
6275 cse_process_notes (XEXP (x, 0), x, changed), 0);
6276 return x;
6277
6278 case EXPR_LIST:
6279 if (REG_NOTE_KIND (x) == REG_EQUAL)
6280 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6281 /* Fall through. */
6282
6283 case INSN_LIST:
6284 case INT_LIST:
6285 if (XEXP (x, 1))
6286 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6287 return x;
6288
6289 case SIGN_EXTEND:
6290 case ZERO_EXTEND:
6291 case SUBREG:
6292 {
6293 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6294 /* We don't substitute VOIDmode constants into these rtx,
6295 since they would impede folding. */
6296 if (GET_MODE (new_rtx) != VOIDmode)
6297 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6298 return x;
6299 }
6300
6301 case UNSIGNED_FLOAT:
6302 {
6303 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6304 /* We don't substitute negative VOIDmode constants into these rtx,
6305 since they would impede folding. */
6306 if (GET_MODE (new_rtx) != VOIDmode
6307 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6308 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6309 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6310 return x;
6311 }
6312
6313 case REG:
6314 i = REG_QTY (REGNO (x));
6315
6316 /* Return a constant or a constant register. */
6317 if (REGNO_QTY_VALID_P (REGNO (x)))
6318 {
6319 struct qty_table_elem *ent = &qty_table[i];
6320
6321 if (ent->const_rtx != NULL_RTX
6322 && (CONSTANT_P (ent->const_rtx)
6323 || REG_P (ent->const_rtx)))
6324 {
6325 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6326 if (new_rtx)
6327 return copy_rtx (new_rtx);
6328 }
6329 }
6330
6331 /* Otherwise, canonicalize this register. */
6332 return canon_reg (x, NULL);
6333
6334 default:
6335 break;
6336 }
6337
6338 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6339 if (fmt[i] == 'e')
6340 validate_change (object, &XEXP (x, i),
6341 cse_process_notes (XEXP (x, i), object, changed), 0);
6342
6343 return x;
6344 }
6345
6346 static rtx
6347 cse_process_notes (rtx x, rtx object, bool *changed)
6348 {
6349 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6350 if (new_rtx != x)
6351 *changed = true;
6352 return new_rtx;
6353 }
6354
6355 \f
6356 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6357
6358 DATA is a pointer to a struct cse_basic_block_data, that is used to
6359 describe the path.
6360 It is filled with a queue of basic blocks, starting with FIRST_BB
6361 and following a trace through the CFG.
6362
6363 If all paths starting at FIRST_BB have been followed, or no new path
6364 starting at FIRST_BB can be constructed, this function returns FALSE.
6365 Otherwise, DATA->path is filled and the function returns TRUE indicating
6366 that a path to follow was found.
6367
6368 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6369 block in the path will be FIRST_BB. */
6370
6371 static bool
6372 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6373 int follow_jumps)
6374 {
6375 basic_block bb;
6376 edge e;
6377 int path_size;
6378
6379 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6380
6381 /* See if there is a previous path. */
6382 path_size = data->path_size;
6383
6384 /* There is a previous path. Make sure it started with FIRST_BB. */
6385 if (path_size)
6386 gcc_assert (data->path[0].bb == first_bb);
6387
6388 /* There was only one basic block in the last path. Clear the path and
6389 return, so that paths starting at another basic block can be tried. */
6390 if (path_size == 1)
6391 {
6392 path_size = 0;
6393 goto done;
6394 }
6395
6396 /* If the path was empty from the beginning, construct a new path. */
6397 if (path_size == 0)
6398 data->path[path_size++].bb = first_bb;
6399 else
6400 {
6401 /* Otherwise, path_size must be equal to or greater than 2, because
6402 a previous path exists that is at least two basic blocks long.
6403
6404 Update the previous branch path, if any. If the last branch was
6405 previously along the branch edge, take the fallthrough edge now. */
6406 while (path_size >= 2)
6407 {
6408 basic_block last_bb_in_path, previous_bb_in_path;
6409 edge e;
6410
6411 --path_size;
6412 last_bb_in_path = data->path[path_size].bb;
6413 previous_bb_in_path = data->path[path_size - 1].bb;
6414
6415 /* If we previously followed a path along the branch edge, try
6416 the fallthru edge now. */
6417 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6418 && any_condjump_p (BB_END (previous_bb_in_path))
6419 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6420 && e == BRANCH_EDGE (previous_bb_in_path))
6421 {
6422 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6423 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6424 && single_pred_p (bb)
6425 /* We used to assert here that we would only see blocks
6426 that we have not visited yet. But we may end up
6427 visiting basic blocks twice if the CFG has changed
6428 in this run of cse_main, because when the CFG changes
6429 the topological sort of the CFG also changes. A basic
6430 blocks that previously had more than two predecessors
6431 may now have a single predecessor, and become part of
6432 a path that starts at another basic block.
6433
6434 We still want to visit each basic block only once, so
6435 halt the path here if we have already visited BB. */
6436 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6437 {
6438 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6439 data->path[path_size++].bb = bb;
6440 break;
6441 }
6442 }
6443
6444 data->path[path_size].bb = NULL;
6445 }
6446
6447 /* If only one block remains in the path, bail. */
6448 if (path_size == 1)
6449 {
6450 path_size = 0;
6451 goto done;
6452 }
6453 }
6454
6455 /* Extend the path if possible. */
6456 if (follow_jumps)
6457 {
6458 bb = data->path[path_size - 1].bb;
6459 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6460 {
6461 if (single_succ_p (bb))
6462 e = single_succ_edge (bb);
6463 else if (EDGE_COUNT (bb->succs) == 2
6464 && any_condjump_p (BB_END (bb)))
6465 {
6466 /* First try to follow the branch. If that doesn't lead
6467 to a useful path, follow the fallthru edge. */
6468 e = BRANCH_EDGE (bb);
6469 if (!single_pred_p (e->dest))
6470 e = FALLTHRU_EDGE (bb);
6471 }
6472 else
6473 e = NULL;
6474
6475 if (e
6476 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6477 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6478 && single_pred_p (e->dest)
6479 /* Avoid visiting basic blocks twice. The large comment
6480 above explains why this can happen. */
6481 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6482 {
6483 basic_block bb2 = e->dest;
6484 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6485 data->path[path_size++].bb = bb2;
6486 bb = bb2;
6487 }
6488 else
6489 bb = NULL;
6490 }
6491 }
6492
6493 done:
6494 data->path_size = path_size;
6495 return path_size != 0;
6496 }
6497 \f
6498 /* Dump the path in DATA to file F. NSETS is the number of sets
6499 in the path. */
6500
6501 static void
6502 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6503 {
6504 int path_entry;
6505
6506 fprintf (f, ";; Following path with %d sets: ", nsets);
6507 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6508 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6509 fputc ('\n', f);
6510 fflush (f);
6511 }
6512
6513 \f
6514 /* Return true if BB has exception handling successor edges. */
6515
6516 static bool
6517 have_eh_succ_edges (basic_block bb)
6518 {
6519 edge e;
6520 edge_iterator ei;
6521
6522 FOR_EACH_EDGE (e, ei, bb->succs)
6523 if (e->flags & EDGE_EH)
6524 return true;
6525
6526 return false;
6527 }
6528
6529 \f
6530 /* Scan to the end of the path described by DATA. Return an estimate of
6531 the total number of SETs of all insns in the path. */
6532
6533 static void
6534 cse_prescan_path (struct cse_basic_block_data *data)
6535 {
6536 int nsets = 0;
6537 int path_size = data->path_size;
6538 int path_entry;
6539
6540 /* Scan to end of each basic block in the path. */
6541 for (path_entry = 0; path_entry < path_size; path_entry++)
6542 {
6543 basic_block bb;
6544 rtx_insn *insn;
6545
6546 bb = data->path[path_entry].bb;
6547
6548 FOR_BB_INSNS (bb, insn)
6549 {
6550 if (!INSN_P (insn))
6551 continue;
6552
6553 /* A PARALLEL can have lots of SETs in it,
6554 especially if it is really an ASM_OPERANDS. */
6555 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6556 nsets += XVECLEN (PATTERN (insn), 0);
6557 else
6558 nsets += 1;
6559 }
6560 }
6561
6562 data->nsets = nsets;
6563 }
6564 \f
6565 /* Return true if the pattern of INSN uses a LABEL_REF for which
6566 there isn't a REG_LABEL_OPERAND note. */
6567
6568 static bool
6569 check_for_label_ref (rtx_insn *insn)
6570 {
6571 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6572 note for it, we must rerun jump since it needs to place the note. If
6573 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6574 don't do this since no REG_LABEL_OPERAND will be added. */
6575 subrtx_iterator::array_type array;
6576 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6577 {
6578 const_rtx x = *iter;
6579 if (GET_CODE (x) == LABEL_REF
6580 && !LABEL_REF_NONLOCAL_P (x)
6581 && (!JUMP_P (insn)
6582 || !label_is_jump_target_p (label_ref_label (x), insn))
6583 && LABEL_P (label_ref_label (x))
6584 && INSN_UID (label_ref_label (x)) != 0
6585 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
6586 return true;
6587 }
6588 return false;
6589 }
6590
6591 /* Process a single extended basic block described by EBB_DATA. */
6592
6593 static void
6594 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6595 {
6596 int path_size = ebb_data->path_size;
6597 int path_entry;
6598 int num_insns = 0;
6599
6600 /* Allocate the space needed by qty_table. */
6601 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6602
6603 new_basic_block ();
6604 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6605 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6606 for (path_entry = 0; path_entry < path_size; path_entry++)
6607 {
6608 basic_block bb;
6609 rtx_insn *insn;
6610
6611 bb = ebb_data->path[path_entry].bb;
6612
6613 /* Invalidate recorded information for eh regs if there is an EH
6614 edge pointing to that bb. */
6615 if (bb_has_eh_pred (bb))
6616 {
6617 df_ref def;
6618
6619 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6620 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6621 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6622 }
6623
6624 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6625 FOR_BB_INSNS (bb, insn)
6626 {
6627 /* If we have processed 1,000 insns, flush the hash table to
6628 avoid extreme quadratic behavior. We must not include NOTEs
6629 in the count since there may be more of them when generating
6630 debugging information. If we clear the table at different
6631 times, code generated with -g -O might be different than code
6632 generated with -O but not -g.
6633
6634 FIXME: This is a real kludge and needs to be done some other
6635 way. */
6636 if (NONDEBUG_INSN_P (insn)
6637 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6638 {
6639 flush_hash_table ();
6640 num_insns = 0;
6641 }
6642
6643 if (INSN_P (insn))
6644 {
6645 /* Process notes first so we have all notes in canonical forms
6646 when looking for duplicate operations. */
6647 if (REG_NOTES (insn))
6648 {
6649 bool changed = false;
6650 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6651 NULL_RTX, &changed);
6652 if (changed)
6653 df_notes_rescan (insn);
6654 }
6655
6656 cse_insn (insn);
6657
6658 /* If we haven't already found an insn where we added a LABEL_REF,
6659 check this one. */
6660 if (INSN_P (insn) && !recorded_label_ref
6661 && check_for_label_ref (insn))
6662 recorded_label_ref = true;
6663
6664 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6665 {
6666 /* If the previous insn sets CC0 and this insn no
6667 longer references CC0, delete the previous insn.
6668 Here we use fact that nothing expects CC0 to be
6669 valid over an insn, which is true until the final
6670 pass. */
6671 rtx_insn *prev_insn;
6672 rtx tem;
6673
6674 prev_insn = prev_nonnote_nondebug_insn (insn);
6675 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6676 && (tem = single_set (prev_insn)) != NULL_RTX
6677 && SET_DEST (tem) == cc0_rtx
6678 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6679 delete_insn (prev_insn);
6680
6681 /* If this insn is not the last insn in the basic
6682 block, it will be PREV_INSN(insn) in the next
6683 iteration. If we recorded any CC0-related
6684 information for this insn, remember it. */
6685 if (insn != BB_END (bb))
6686 {
6687 prev_insn_cc0 = this_insn_cc0;
6688 prev_insn_cc0_mode = this_insn_cc0_mode;
6689 }
6690 }
6691 }
6692 }
6693
6694 /* With non-call exceptions, we are not always able to update
6695 the CFG properly inside cse_insn. So clean up possibly
6696 redundant EH edges here. */
6697 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6698 cse_cfg_altered |= purge_dead_edges (bb);
6699
6700 /* If we changed a conditional jump, we may have terminated
6701 the path we are following. Check that by verifying that
6702 the edge we would take still exists. If the edge does
6703 not exist anymore, purge the remainder of the path.
6704 Note that this will cause us to return to the caller. */
6705 if (path_entry < path_size - 1)
6706 {
6707 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6708 if (!find_edge (bb, next_bb))
6709 {
6710 do
6711 {
6712 path_size--;
6713
6714 /* If we truncate the path, we must also reset the
6715 visited bit on the remaining blocks in the path,
6716 or we will never visit them at all. */
6717 bitmap_clear_bit (cse_visited_basic_blocks,
6718 ebb_data->path[path_size].bb->index);
6719 ebb_data->path[path_size].bb = NULL;
6720 }
6721 while (path_size - 1 != path_entry);
6722 ebb_data->path_size = path_size;
6723 }
6724 }
6725
6726 /* If this is a conditional jump insn, record any known
6727 equivalences due to the condition being tested. */
6728 insn = BB_END (bb);
6729 if (path_entry < path_size - 1
6730 && EDGE_COUNT (bb->succs) == 2
6731 && JUMP_P (insn)
6732 && single_set (insn)
6733 && any_condjump_p (insn))
6734 {
6735 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6736 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6737 record_jump_equiv (insn, taken);
6738 }
6739
6740 /* Clear the CC0-tracking related insns, they can't provide
6741 useful information across basic block boundaries. */
6742 prev_insn_cc0 = 0;
6743 }
6744
6745 gcc_assert (next_qty <= max_qty);
6746
6747 free (qty_table);
6748 }
6749
6750 \f
6751 /* Perform cse on the instructions of a function.
6752 F is the first instruction.
6753 NREGS is one plus the highest pseudo-reg number used in the instruction.
6754
6755 Return 2 if jump optimizations should be redone due to simplifications
6756 in conditional jump instructions.
6757 Return 1 if the CFG should be cleaned up because it has been modified.
6758 Return 0 otherwise. */
6759
6760 static int
6761 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6762 {
6763 struct cse_basic_block_data ebb_data;
6764 basic_block bb;
6765 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6766 int i, n_blocks;
6767
6768 /* CSE doesn't use dominane info but can invalidate it in different ways.
6769 For simplicity free dominance info here. */
6770 free_dominance_info (CDI_DOMINATORS);
6771
6772 df_set_flags (DF_LR_RUN_DCE);
6773 df_note_add_problem ();
6774 df_analyze ();
6775 df_set_flags (DF_DEFER_INSN_RESCAN);
6776
6777 reg_scan (get_insns (), max_reg_num ());
6778 init_cse_reg_info (nregs);
6779
6780 ebb_data.path = XNEWVEC (struct branch_path,
6781 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6782
6783 cse_cfg_altered = false;
6784 cse_jumps_altered = false;
6785 recorded_label_ref = false;
6786 constant_pool_entries_cost = 0;
6787 constant_pool_entries_regcost = 0;
6788 ebb_data.path_size = 0;
6789 ebb_data.nsets = 0;
6790 rtl_hooks = cse_rtl_hooks;
6791
6792 init_recog ();
6793 init_alias_analysis ();
6794
6795 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6796
6797 /* Set up the table of already visited basic blocks. */
6798 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6799 bitmap_clear (cse_visited_basic_blocks);
6800
6801 /* Loop over basic blocks in reverse completion order (RPO),
6802 excluding the ENTRY and EXIT blocks. */
6803 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6804 i = 0;
6805 while (i < n_blocks)
6806 {
6807 /* Find the first block in the RPO queue that we have not yet
6808 processed before. */
6809 do
6810 {
6811 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6812 }
6813 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6814 && i < n_blocks);
6815
6816 /* Find all paths starting with BB, and process them. */
6817 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6818 {
6819 /* Pre-scan the path. */
6820 cse_prescan_path (&ebb_data);
6821
6822 /* If this basic block has no sets, skip it. */
6823 if (ebb_data.nsets == 0)
6824 continue;
6825
6826 /* Get a reasonable estimate for the maximum number of qty's
6827 needed for this path. For this, we take the number of sets
6828 and multiply that by MAX_RECOG_OPERANDS. */
6829 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6830
6831 /* Dump the path we're about to process. */
6832 if (dump_file)
6833 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6834
6835 cse_extended_basic_block (&ebb_data);
6836 }
6837 }
6838
6839 /* Clean up. */
6840 end_alias_analysis ();
6841 free (reg_eqv_table);
6842 free (ebb_data.path);
6843 sbitmap_free (cse_visited_basic_blocks);
6844 free (rc_order);
6845 rtl_hooks = general_rtl_hooks;
6846
6847 if (cse_jumps_altered || recorded_label_ref)
6848 return 2;
6849 else if (cse_cfg_altered)
6850 return 1;
6851 else
6852 return 0;
6853 }
6854 \f
6855 /* Count the number of times registers are used (not set) in X.
6856 COUNTS is an array in which we accumulate the count, INCR is how much
6857 we count each register usage.
6858
6859 Don't count a usage of DEST, which is the SET_DEST of a SET which
6860 contains X in its SET_SRC. This is because such a SET does not
6861 modify the liveness of DEST.
6862 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6863 We must then count uses of a SET_DEST regardless, because the insn can't be
6864 deleted here. */
6865
6866 static void
6867 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6868 {
6869 enum rtx_code code;
6870 rtx note;
6871 const char *fmt;
6872 int i, j;
6873
6874 if (x == 0)
6875 return;
6876
6877 switch (code = GET_CODE (x))
6878 {
6879 case REG:
6880 if (x != dest)
6881 counts[REGNO (x)] += incr;
6882 return;
6883
6884 case PC:
6885 case CC0:
6886 case CONST:
6887 CASE_CONST_ANY:
6888 case SYMBOL_REF:
6889 case LABEL_REF:
6890 return;
6891
6892 case CLOBBER:
6893 /* If we are clobbering a MEM, mark any registers inside the address
6894 as being used. */
6895 if (MEM_P (XEXP (x, 0)))
6896 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6897 return;
6898
6899 case CLOBBER_HIGH:
6900 gcc_assert (REG_P ((XEXP (x, 0))));
6901 return;
6902
6903 case SET:
6904 /* Unless we are setting a REG, count everything in SET_DEST. */
6905 if (!REG_P (SET_DEST (x)))
6906 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6907 count_reg_usage (SET_SRC (x), counts,
6908 dest ? dest : SET_DEST (x),
6909 incr);
6910 return;
6911
6912 case DEBUG_INSN:
6913 return;
6914
6915 case CALL_INSN:
6916 case INSN:
6917 case JUMP_INSN:
6918 /* We expect dest to be NULL_RTX here. If the insn may throw,
6919 or if it cannot be deleted due to side-effects, mark this fact
6920 by setting DEST to pc_rtx. */
6921 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6922 || side_effects_p (PATTERN (x)))
6923 dest = pc_rtx;
6924 if (code == CALL_INSN)
6925 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6926 count_reg_usage (PATTERN (x), counts, dest, incr);
6927
6928 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6929 use them. */
6930
6931 note = find_reg_equal_equiv_note (x);
6932 if (note)
6933 {
6934 rtx eqv = XEXP (note, 0);
6935
6936 if (GET_CODE (eqv) == EXPR_LIST)
6937 /* This REG_EQUAL note describes the result of a function call.
6938 Process all the arguments. */
6939 do
6940 {
6941 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6942 eqv = XEXP (eqv, 1);
6943 }
6944 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6945 else
6946 count_reg_usage (eqv, counts, dest, incr);
6947 }
6948 return;
6949
6950 case EXPR_LIST:
6951 if (REG_NOTE_KIND (x) == REG_EQUAL
6952 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6953 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6954 involving registers in the address. */
6955 || GET_CODE (XEXP (x, 0)) == CLOBBER
6956 || GET_CODE (XEXP (x, 0)) == CLOBBER_HIGH)
6957 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6958
6959 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6960 return;
6961
6962 case ASM_OPERANDS:
6963 /* Iterate over just the inputs, not the constraints as well. */
6964 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6965 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6966 return;
6967
6968 case INSN_LIST:
6969 case INT_LIST:
6970 gcc_unreachable ();
6971
6972 default:
6973 break;
6974 }
6975
6976 fmt = GET_RTX_FORMAT (code);
6977 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6978 {
6979 if (fmt[i] == 'e')
6980 count_reg_usage (XEXP (x, i), counts, dest, incr);
6981 else if (fmt[i] == 'E')
6982 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6983 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6984 }
6985 }
6986 \f
6987 /* Return true if X is a dead register. */
6988
6989 static inline int
6990 is_dead_reg (const_rtx x, int *counts)
6991 {
6992 return (REG_P (x)
6993 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6994 && counts[REGNO (x)] == 0);
6995 }
6996
6997 /* Return true if set is live. */
6998 static bool
6999 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7000 int *counts)
7001 {
7002 rtx_insn *tem;
7003
7004 if (set_noop_p (set))
7005 ;
7006
7007 else if (GET_CODE (SET_DEST (set)) == CC0
7008 && !side_effects_p (SET_SRC (set))
7009 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
7010 || !INSN_P (tem)
7011 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7012 return false;
7013 else if (!is_dead_reg (SET_DEST (set), counts)
7014 || side_effects_p (SET_SRC (set)))
7015 return true;
7016 return false;
7017 }
7018
7019 /* Return true if insn is live. */
7020
7021 static bool
7022 insn_live_p (rtx_insn *insn, int *counts)
7023 {
7024 int i;
7025 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
7026 return true;
7027 else if (GET_CODE (PATTERN (insn)) == SET)
7028 return set_live_p (PATTERN (insn), insn, counts);
7029 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7030 {
7031 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7032 {
7033 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7034
7035 if (GET_CODE (elt) == SET)
7036 {
7037 if (set_live_p (elt, insn, counts))
7038 return true;
7039 }
7040 else if (GET_CODE (elt) != CLOBBER
7041 && GET_CODE (elt) != CLOBBER_HIGH
7042 && GET_CODE (elt) != USE)
7043 return true;
7044 }
7045 return false;
7046 }
7047 else if (DEBUG_INSN_P (insn))
7048 {
7049 rtx_insn *next;
7050
7051 if (DEBUG_MARKER_INSN_P (insn))
7052 return true;
7053
7054 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
7055 if (NOTE_P (next))
7056 continue;
7057 else if (!DEBUG_INSN_P (next))
7058 return true;
7059 /* If we find an inspection point, such as a debug begin stmt,
7060 we want to keep the earlier debug insn. */
7061 else if (DEBUG_MARKER_INSN_P (next))
7062 return true;
7063 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
7064 return false;
7065
7066 return true;
7067 }
7068 else
7069 return true;
7070 }
7071
7072 /* Count the number of stores into pseudo. Callback for note_stores. */
7073
7074 static void
7075 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
7076 {
7077 int *counts = (int *) data;
7078 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
7079 counts[REGNO (x)]++;
7080 }
7081
7082 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
7083 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
7084 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
7085 Set *SEEN_REPL to true if we see a dead register that does have
7086 a replacement. */
7087
7088 static bool
7089 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
7090 bool *seen_repl)
7091 {
7092 subrtx_iterator::array_type array;
7093 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
7094 {
7095 const_rtx x = *iter;
7096 if (is_dead_reg (x, counts))
7097 {
7098 if (replacements && replacements[REGNO (x)] != NULL_RTX)
7099 *seen_repl = true;
7100 else
7101 return true;
7102 }
7103 }
7104 return false;
7105 }
7106
7107 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7108 Callback for simplify_replace_fn_rtx. */
7109
7110 static rtx
7111 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7112 {
7113 rtx *replacements = (rtx *) data;
7114
7115 if (REG_P (x)
7116 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7117 && replacements[REGNO (x)] != NULL_RTX)
7118 {
7119 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7120 return replacements[REGNO (x)];
7121 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7122 GET_MODE (replacements[REGNO (x)]));
7123 }
7124 return NULL_RTX;
7125 }
7126
7127 /* Scan all the insns and delete any that are dead; i.e., they store a register
7128 that is never used or they copy a register to itself.
7129
7130 This is used to remove insns made obviously dead by cse, loop or other
7131 optimizations. It improves the heuristics in loop since it won't try to
7132 move dead invariants out of loops or make givs for dead quantities. The
7133 remaining passes of the compilation are also sped up. */
7134
7135 int
7136 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7137 {
7138 int *counts;
7139 rtx_insn *insn, *prev;
7140 rtx *replacements = NULL;
7141 int ndead = 0;
7142
7143 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7144 /* First count the number of times each register is used. */
7145 if (MAY_HAVE_DEBUG_BIND_INSNS)
7146 {
7147 counts = XCNEWVEC (int, nreg * 3);
7148 for (insn = insns; insn; insn = NEXT_INSN (insn))
7149 if (DEBUG_BIND_INSN_P (insn))
7150 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7151 NULL_RTX, 1);
7152 else if (INSN_P (insn))
7153 {
7154 count_reg_usage (insn, counts, NULL_RTX, 1);
7155 note_stores (insn, count_stores, counts + nreg * 2);
7156 }
7157 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7158 First one counts how many times each pseudo is used outside
7159 of debug insns, second counts how many times each pseudo is
7160 used in debug insns and third counts how many times a pseudo
7161 is stored. */
7162 }
7163 else
7164 {
7165 counts = XCNEWVEC (int, nreg);
7166 for (insn = insns; insn; insn = NEXT_INSN (insn))
7167 if (INSN_P (insn))
7168 count_reg_usage (insn, counts, NULL_RTX, 1);
7169 /* If no debug insns can be present, COUNTS is just an array
7170 which counts how many times each pseudo is used. */
7171 }
7172 /* Pseudo PIC register should be considered as used due to possible
7173 new usages generated. */
7174 if (!reload_completed
7175 && pic_offset_table_rtx
7176 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7177 counts[REGNO (pic_offset_table_rtx)]++;
7178 /* Go from the last insn to the first and delete insns that only set unused
7179 registers or copy a register to itself. As we delete an insn, remove
7180 usage counts for registers it uses.
7181
7182 The first jump optimization pass may leave a real insn as the last
7183 insn in the function. We must not skip that insn or we may end
7184 up deleting code that is not really dead.
7185
7186 If some otherwise unused register is only used in DEBUG_INSNs,
7187 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7188 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7189 has been created for the unused register, replace it with
7190 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7191 for (insn = get_last_insn (); insn; insn = prev)
7192 {
7193 int live_insn = 0;
7194
7195 prev = PREV_INSN (insn);
7196 if (!INSN_P (insn))
7197 continue;
7198
7199 live_insn = insn_live_p (insn, counts);
7200
7201 /* If this is a dead insn, delete it and show registers in it aren't
7202 being used. */
7203
7204 if (! live_insn && dbg_cnt (delete_trivial_dead))
7205 {
7206 if (DEBUG_INSN_P (insn))
7207 {
7208 if (DEBUG_BIND_INSN_P (insn))
7209 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7210 NULL_RTX, -1);
7211 }
7212 else
7213 {
7214 rtx set;
7215 if (MAY_HAVE_DEBUG_BIND_INSNS
7216 && (set = single_set (insn)) != NULL_RTX
7217 && is_dead_reg (SET_DEST (set), counts)
7218 /* Used at least once in some DEBUG_INSN. */
7219 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7220 /* And set exactly once. */
7221 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7222 && !side_effects_p (SET_SRC (set))
7223 && asm_noperands (PATTERN (insn)) < 0)
7224 {
7225 rtx dval, bind_var_loc;
7226 rtx_insn *bind;
7227
7228 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7229 dval = make_debug_expr_from_rtl (SET_DEST (set));
7230
7231 /* Emit a debug bind insn before the insn in which
7232 reg dies. */
7233 bind_var_loc =
7234 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7235 DEBUG_EXPR_TREE_DECL (dval),
7236 SET_SRC (set),
7237 VAR_INIT_STATUS_INITIALIZED);
7238 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7239
7240 bind = emit_debug_insn_before (bind_var_loc, insn);
7241 df_insn_rescan (bind);
7242
7243 if (replacements == NULL)
7244 replacements = XCNEWVEC (rtx, nreg);
7245 replacements[REGNO (SET_DEST (set))] = dval;
7246 }
7247
7248 count_reg_usage (insn, counts, NULL_RTX, -1);
7249 ndead++;
7250 }
7251 cse_cfg_altered |= delete_insn_and_edges (insn);
7252 }
7253 }
7254
7255 if (MAY_HAVE_DEBUG_BIND_INSNS)
7256 {
7257 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7258 if (DEBUG_BIND_INSN_P (insn))
7259 {
7260 /* If this debug insn references a dead register that wasn't replaced
7261 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7262 bool seen_repl = false;
7263 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7264 counts, replacements, &seen_repl))
7265 {
7266 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7267 df_insn_rescan (insn);
7268 }
7269 else if (seen_repl)
7270 {
7271 INSN_VAR_LOCATION_LOC (insn)
7272 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7273 NULL_RTX, replace_dead_reg,
7274 replacements);
7275 df_insn_rescan (insn);
7276 }
7277 }
7278 free (replacements);
7279 }
7280
7281 if (dump_file && ndead)
7282 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7283 ndead);
7284 /* Clean up. */
7285 free (counts);
7286 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7287 return ndead;
7288 }
7289
7290 /* If LOC contains references to NEWREG in a different mode, change them
7291 to use NEWREG instead. */
7292
7293 static void
7294 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7295 rtx *loc, rtx_insn *insn, rtx newreg)
7296 {
7297 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7298 {
7299 rtx *loc = *iter;
7300 rtx x = *loc;
7301 if (x
7302 && REG_P (x)
7303 && REGNO (x) == REGNO (newreg)
7304 && GET_MODE (x) != GET_MODE (newreg))
7305 {
7306 validate_change (insn, loc, newreg, 1);
7307 iter.skip_subrtxes ();
7308 }
7309 }
7310 }
7311
7312 /* Change the mode of any reference to the register REGNO (NEWREG) to
7313 GET_MODE (NEWREG) in INSN. */
7314
7315 static void
7316 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7317 {
7318 int success;
7319
7320 if (!INSN_P (insn))
7321 return;
7322
7323 subrtx_ptr_iterator::array_type array;
7324 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7325 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7326
7327 /* If the following assertion was triggered, there is most probably
7328 something wrong with the cc_modes_compatible back end function.
7329 CC modes only can be considered compatible if the insn - with the mode
7330 replaced by any of the compatible modes - can still be recognized. */
7331 success = apply_change_group ();
7332 gcc_assert (success);
7333 }
7334
7335 /* Change the mode of any reference to the register REGNO (NEWREG) to
7336 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7337 any instruction which modifies NEWREG. */
7338
7339 static void
7340 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7341 {
7342 rtx_insn *insn;
7343
7344 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7345 {
7346 if (! INSN_P (insn))
7347 continue;
7348
7349 if (reg_set_p (newreg, insn))
7350 return;
7351
7352 cse_change_cc_mode_insn (insn, newreg);
7353 }
7354 }
7355
7356 /* BB is a basic block which finishes with CC_REG as a condition code
7357 register which is set to CC_SRC. Look through the successors of BB
7358 to find blocks which have a single predecessor (i.e., this one),
7359 and look through those blocks for an assignment to CC_REG which is
7360 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7361 permitted to change the mode of CC_SRC to a compatible mode. This
7362 returns VOIDmode if no equivalent assignments were found.
7363 Otherwise it returns the mode which CC_SRC should wind up with.
7364 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7365 but is passed unmodified down to recursive calls in order to prevent
7366 endless recursion.
7367
7368 The main complexity in this function is handling the mode issues.
7369 We may have more than one duplicate which we can eliminate, and we
7370 try to find a mode which will work for multiple duplicates. */
7371
7372 static machine_mode
7373 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7374 bool can_change_mode)
7375 {
7376 bool found_equiv;
7377 machine_mode mode;
7378 unsigned int insn_count;
7379 edge e;
7380 rtx_insn *insns[2];
7381 machine_mode modes[2];
7382 rtx_insn *last_insns[2];
7383 unsigned int i;
7384 rtx newreg;
7385 edge_iterator ei;
7386
7387 /* We expect to have two successors. Look at both before picking
7388 the final mode for the comparison. If we have more successors
7389 (i.e., some sort of table jump, although that seems unlikely),
7390 then we require all beyond the first two to use the same
7391 mode. */
7392
7393 found_equiv = false;
7394 mode = GET_MODE (cc_src);
7395 insn_count = 0;
7396 FOR_EACH_EDGE (e, ei, bb->succs)
7397 {
7398 rtx_insn *insn;
7399 rtx_insn *end;
7400
7401 if (e->flags & EDGE_COMPLEX)
7402 continue;
7403
7404 if (EDGE_COUNT (e->dest->preds) != 1
7405 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7406 /* Avoid endless recursion on unreachable blocks. */
7407 || e->dest == orig_bb)
7408 continue;
7409
7410 end = NEXT_INSN (BB_END (e->dest));
7411 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7412 {
7413 rtx set;
7414
7415 if (! INSN_P (insn))
7416 continue;
7417
7418 /* If CC_SRC is modified, we have to stop looking for
7419 something which uses it. */
7420 if (modified_in_p (cc_src, insn))
7421 break;
7422
7423 /* Check whether INSN sets CC_REG to CC_SRC. */
7424 set = single_set (insn);
7425 if (set
7426 && REG_P (SET_DEST (set))
7427 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7428 {
7429 bool found;
7430 machine_mode set_mode;
7431 machine_mode comp_mode;
7432
7433 found = false;
7434 set_mode = GET_MODE (SET_SRC (set));
7435 comp_mode = set_mode;
7436 if (rtx_equal_p (cc_src, SET_SRC (set)))
7437 found = true;
7438 else if (GET_CODE (cc_src) == COMPARE
7439 && GET_CODE (SET_SRC (set)) == COMPARE
7440 && mode != set_mode
7441 && rtx_equal_p (XEXP (cc_src, 0),
7442 XEXP (SET_SRC (set), 0))
7443 && rtx_equal_p (XEXP (cc_src, 1),
7444 XEXP (SET_SRC (set), 1)))
7445
7446 {
7447 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7448 if (comp_mode != VOIDmode
7449 && (can_change_mode || comp_mode == mode))
7450 found = true;
7451 }
7452
7453 if (found)
7454 {
7455 found_equiv = true;
7456 if (insn_count < ARRAY_SIZE (insns))
7457 {
7458 insns[insn_count] = insn;
7459 modes[insn_count] = set_mode;
7460 last_insns[insn_count] = end;
7461 ++insn_count;
7462
7463 if (mode != comp_mode)
7464 {
7465 gcc_assert (can_change_mode);
7466 mode = comp_mode;
7467
7468 /* The modified insn will be re-recognized later. */
7469 PUT_MODE (cc_src, mode);
7470 }
7471 }
7472 else
7473 {
7474 if (set_mode != mode)
7475 {
7476 /* We found a matching expression in the
7477 wrong mode, but we don't have room to
7478 store it in the array. Punt. This case
7479 should be rare. */
7480 break;
7481 }
7482 /* INSN sets CC_REG to a value equal to CC_SRC
7483 with the right mode. We can simply delete
7484 it. */
7485 delete_insn (insn);
7486 }
7487
7488 /* We found an instruction to delete. Keep looking,
7489 in the hopes of finding a three-way jump. */
7490 continue;
7491 }
7492
7493 /* We found an instruction which sets the condition
7494 code, so don't look any farther. */
7495 break;
7496 }
7497
7498 /* If INSN sets CC_REG in some other way, don't look any
7499 farther. */
7500 if (reg_set_p (cc_reg, insn))
7501 break;
7502 }
7503
7504 /* If we fell off the bottom of the block, we can keep looking
7505 through successors. We pass CAN_CHANGE_MODE as false because
7506 we aren't prepared to handle compatibility between the
7507 further blocks and this block. */
7508 if (insn == end)
7509 {
7510 machine_mode submode;
7511
7512 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7513 if (submode != VOIDmode)
7514 {
7515 gcc_assert (submode == mode);
7516 found_equiv = true;
7517 can_change_mode = false;
7518 }
7519 }
7520 }
7521
7522 if (! found_equiv)
7523 return VOIDmode;
7524
7525 /* Now INSN_COUNT is the number of instructions we found which set
7526 CC_REG to a value equivalent to CC_SRC. The instructions are in
7527 INSNS. The modes used by those instructions are in MODES. */
7528
7529 newreg = NULL_RTX;
7530 for (i = 0; i < insn_count; ++i)
7531 {
7532 if (modes[i] != mode)
7533 {
7534 /* We need to change the mode of CC_REG in INSNS[i] and
7535 subsequent instructions. */
7536 if (! newreg)
7537 {
7538 if (GET_MODE (cc_reg) == mode)
7539 newreg = cc_reg;
7540 else
7541 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7542 }
7543 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7544 newreg);
7545 }
7546
7547 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
7548 }
7549
7550 return mode;
7551 }
7552
7553 /* If we have a fixed condition code register (or two), walk through
7554 the instructions and try to eliminate duplicate assignments. */
7555
7556 static void
7557 cse_condition_code_reg (void)
7558 {
7559 unsigned int cc_regno_1;
7560 unsigned int cc_regno_2;
7561 rtx cc_reg_1;
7562 rtx cc_reg_2;
7563 basic_block bb;
7564
7565 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7566 return;
7567
7568 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7569 if (cc_regno_2 != INVALID_REGNUM)
7570 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7571 else
7572 cc_reg_2 = NULL_RTX;
7573
7574 FOR_EACH_BB_FN (bb, cfun)
7575 {
7576 rtx_insn *last_insn;
7577 rtx cc_reg;
7578 rtx_insn *insn;
7579 rtx_insn *cc_src_insn;
7580 rtx cc_src;
7581 machine_mode mode;
7582 machine_mode orig_mode;
7583
7584 /* Look for blocks which end with a conditional jump based on a
7585 condition code register. Then look for the instruction which
7586 sets the condition code register. Then look through the
7587 successor blocks for instructions which set the condition
7588 code register to the same value. There are other possible
7589 uses of the condition code register, but these are by far the
7590 most common and the ones which we are most likely to be able
7591 to optimize. */
7592
7593 last_insn = BB_END (bb);
7594 if (!JUMP_P (last_insn))
7595 continue;
7596
7597 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7598 cc_reg = cc_reg_1;
7599 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7600 cc_reg = cc_reg_2;
7601 else
7602 continue;
7603
7604 cc_src_insn = NULL;
7605 cc_src = NULL_RTX;
7606 for (insn = PREV_INSN (last_insn);
7607 insn && insn != PREV_INSN (BB_HEAD (bb));
7608 insn = PREV_INSN (insn))
7609 {
7610 rtx set;
7611
7612 if (! INSN_P (insn))
7613 continue;
7614 set = single_set (insn);
7615 if (set
7616 && REG_P (SET_DEST (set))
7617 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7618 {
7619 cc_src_insn = insn;
7620 cc_src = SET_SRC (set);
7621 break;
7622 }
7623 else if (reg_set_p (cc_reg, insn))
7624 break;
7625 }
7626
7627 if (! cc_src_insn)
7628 continue;
7629
7630 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7631 continue;
7632
7633 /* Now CC_REG is a condition code register used for a
7634 conditional jump at the end of the block, and CC_SRC, in
7635 CC_SRC_INSN, is the value to which that condition code
7636 register is set, and CC_SRC is still meaningful at the end of
7637 the basic block. */
7638
7639 orig_mode = GET_MODE (cc_src);
7640 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7641 if (mode != VOIDmode)
7642 {
7643 gcc_assert (mode == GET_MODE (cc_src));
7644 if (mode != orig_mode)
7645 {
7646 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7647
7648 cse_change_cc_mode_insn (cc_src_insn, newreg);
7649
7650 /* Do the same in the following insns that use the
7651 current value of CC_REG within BB. */
7652 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7653 NEXT_INSN (last_insn),
7654 newreg);
7655 }
7656 }
7657 }
7658 }
7659 \f
7660
7661 /* Perform common subexpression elimination. Nonzero value from
7662 `cse_main' means that jumps were simplified and some code may now
7663 be unreachable, so do jump optimization again. */
7664 static unsigned int
7665 rest_of_handle_cse (void)
7666 {
7667 int tem;
7668
7669 if (dump_file)
7670 dump_flow_info (dump_file, dump_flags);
7671
7672 tem = cse_main (get_insns (), max_reg_num ());
7673
7674 /* If we are not running more CSE passes, then we are no longer
7675 expecting CSE to be run. But always rerun it in a cheap mode. */
7676 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7677
7678 if (tem == 2)
7679 {
7680 timevar_push (TV_JUMP);
7681 rebuild_jump_labels (get_insns ());
7682 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7683 timevar_pop (TV_JUMP);
7684 }
7685 else if (tem == 1 || optimize > 1)
7686 cse_cfg_altered |= cleanup_cfg (0);
7687
7688 return 0;
7689 }
7690
7691 namespace {
7692
7693 const pass_data pass_data_cse =
7694 {
7695 RTL_PASS, /* type */
7696 "cse1", /* name */
7697 OPTGROUP_NONE, /* optinfo_flags */
7698 TV_CSE, /* tv_id */
7699 0, /* properties_required */
7700 0, /* properties_provided */
7701 0, /* properties_destroyed */
7702 0, /* todo_flags_start */
7703 TODO_df_finish, /* todo_flags_finish */
7704 };
7705
7706 class pass_cse : public rtl_opt_pass
7707 {
7708 public:
7709 pass_cse (gcc::context *ctxt)
7710 : rtl_opt_pass (pass_data_cse, ctxt)
7711 {}
7712
7713 /* opt_pass methods: */
7714 virtual bool gate (function *) { return optimize > 0; }
7715 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7716
7717 }; // class pass_cse
7718
7719 } // anon namespace
7720
7721 rtl_opt_pass *
7722 make_pass_cse (gcc::context *ctxt)
7723 {
7724 return new pass_cse (ctxt);
7725 }
7726
7727
7728 /* Run second CSE pass after loop optimizations. */
7729 static unsigned int
7730 rest_of_handle_cse2 (void)
7731 {
7732 int tem;
7733
7734 if (dump_file)
7735 dump_flow_info (dump_file, dump_flags);
7736
7737 tem = cse_main (get_insns (), max_reg_num ());
7738
7739 /* Run a pass to eliminate duplicated assignments to condition code
7740 registers. We have to run this after bypass_jumps, because it
7741 makes it harder for that pass to determine whether a jump can be
7742 bypassed safely. */
7743 cse_condition_code_reg ();
7744
7745 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7746
7747 if (tem == 2)
7748 {
7749 timevar_push (TV_JUMP);
7750 rebuild_jump_labels (get_insns ());
7751 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7752 timevar_pop (TV_JUMP);
7753 }
7754 else if (tem == 1)
7755 cse_cfg_altered |= cleanup_cfg (0);
7756
7757 cse_not_expected = 1;
7758 return 0;
7759 }
7760
7761
7762 namespace {
7763
7764 const pass_data pass_data_cse2 =
7765 {
7766 RTL_PASS, /* type */
7767 "cse2", /* name */
7768 OPTGROUP_NONE, /* optinfo_flags */
7769 TV_CSE2, /* tv_id */
7770 0, /* properties_required */
7771 0, /* properties_provided */
7772 0, /* properties_destroyed */
7773 0, /* todo_flags_start */
7774 TODO_df_finish, /* todo_flags_finish */
7775 };
7776
7777 class pass_cse2 : public rtl_opt_pass
7778 {
7779 public:
7780 pass_cse2 (gcc::context *ctxt)
7781 : rtl_opt_pass (pass_data_cse2, ctxt)
7782 {}
7783
7784 /* opt_pass methods: */
7785 virtual bool gate (function *)
7786 {
7787 return optimize > 0 && flag_rerun_cse_after_loop;
7788 }
7789
7790 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7791
7792 }; // class pass_cse2
7793
7794 } // anon namespace
7795
7796 rtl_opt_pass *
7797 make_pass_cse2 (gcc::context *ctxt)
7798 {
7799 return new pass_cse2 (ctxt);
7800 }
7801
7802 /* Run second CSE pass after loop optimizations. */
7803 static unsigned int
7804 rest_of_handle_cse_after_global_opts (void)
7805 {
7806 int save_cfj;
7807 int tem;
7808
7809 /* We only want to do local CSE, so don't follow jumps. */
7810 save_cfj = flag_cse_follow_jumps;
7811 flag_cse_follow_jumps = 0;
7812
7813 rebuild_jump_labels (get_insns ());
7814 tem = cse_main (get_insns (), max_reg_num ());
7815 cse_cfg_altered |= purge_all_dead_edges ();
7816 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7817
7818 cse_not_expected = !flag_rerun_cse_after_loop;
7819
7820 /* If cse altered any jumps, rerun jump opts to clean things up. */
7821 if (tem == 2)
7822 {
7823 timevar_push (TV_JUMP);
7824 rebuild_jump_labels (get_insns ());
7825 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7826 timevar_pop (TV_JUMP);
7827 }
7828 else if (tem == 1)
7829 cse_cfg_altered |= cleanup_cfg (0);
7830
7831 flag_cse_follow_jumps = save_cfj;
7832 return 0;
7833 }
7834
7835 namespace {
7836
7837 const pass_data pass_data_cse_after_global_opts =
7838 {
7839 RTL_PASS, /* type */
7840 "cse_local", /* name */
7841 OPTGROUP_NONE, /* optinfo_flags */
7842 TV_CSE, /* tv_id */
7843 0, /* properties_required */
7844 0, /* properties_provided */
7845 0, /* properties_destroyed */
7846 0, /* todo_flags_start */
7847 TODO_df_finish, /* todo_flags_finish */
7848 };
7849
7850 class pass_cse_after_global_opts : public rtl_opt_pass
7851 {
7852 public:
7853 pass_cse_after_global_opts (gcc::context *ctxt)
7854 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7855 {}
7856
7857 /* opt_pass methods: */
7858 virtual bool gate (function *)
7859 {
7860 return optimize > 0 && flag_rerun_cse_after_global_opts;
7861 }
7862
7863 virtual unsigned int execute (function *)
7864 {
7865 return rest_of_handle_cse_after_global_opts ();
7866 }
7867
7868 }; // class pass_cse_after_global_opts
7869
7870 } // anon namespace
7871
7872 rtl_opt_pass *
7873 make_pass_cse_after_global_opts (gcc::context *ctxt)
7874 {
7875 return new pass_cse_after_global_opts (ctxt);
7876 }