]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/df.c
81ba0ea0932806b4842fadf194e9146889f95644
[thirdparty/gcc.git] / gcc / df.c
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
5 mhayes@redhat.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA.
23
24
25 OVERVIEW:
26
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
32
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
39
40
41 USAGE:
42
43 Here's an example of using the dataflow routines.
44
45 struct df *df;
46
47 df = df_init ();
48
49 df_analyze (df, 0, DF_ALL);
50
51 df_dump (df, DF_ALL, stderr);
52
53 df_finish (df);
54
55
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
59 everything.
60
61 df_analyze performs the following:
62
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
77
78
79 PHILOSOPHY:
80
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
87 is called.
88
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
97 be called very often.
98
99
100 DATA STRUCTURES:
101
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
104
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
109
110 Note that the reg-def and reg-use chains are generally short (except for
111 the hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
113
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
116
117
118 TODO:
119
120 1) Incremental dataflow analysis.
121
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
126
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
129
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
134
135 2) Reduced memory requirements.
136
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
143
144 3) Ordering of reg-def and reg-use lists.
145
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
148 (within a BB)?
149
150 4) Working with a sub-CFG.
151
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
156
157
158 NOTES:
159
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
168
169 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
170 for which the number of word_mode units covered by the outer mode is
171 smaller than that covered by the inner mode, invokes a read-modify-write.
172 operation. We generate both a use and a def and again mark them
173 read/write.
174 Paradoxical subreg writes don't leave a trace of the old content, so they
175 are write-only operations. */
176
177 #include "config.h"
178 #include "system.h"
179 #include "coretypes.h"
180 #include "tm.h"
181 #include "rtl.h"
182 #include "tm_p.h"
183 #include "insn-config.h"
184 #include "recog.h"
185 #include "function.h"
186 #include "regs.h"
187 #include "alloc-pool.h"
188 #include "hard-reg-set.h"
189 #include "basic-block.h"
190 #include "sbitmap.h"
191 #include "bitmap.h"
192 #include "df.h"
193
194 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
195 do \
196 { \
197 unsigned int node_; \
198 bitmap_iterator bi; \
199 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, bi) \
200 { \
201 (BB) = BASIC_BLOCK (node_); \
202 CODE; \
203 } \
204 } \
205 while (0)
206
207 static alloc_pool df_ref_pool;
208 static alloc_pool df_link_pool;
209 static struct df *ddf;
210
211 static void df_reg_table_realloc (struct df *, int);
212 static void df_insn_table_realloc (struct df *, unsigned int);
213 static void df_bb_table_realloc (struct df *, unsigned int);
214 static void df_bitmaps_alloc (struct df *, bitmap, int);
215 static void df_bitmaps_free (struct df *, int);
216 static void df_free (struct df *);
217 static void df_alloc (struct df *, int);
218
219 static rtx df_reg_use_gen (unsigned int);
220
221 static inline struct df_link *df_link_create (struct ref *, struct df_link *);
222 static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
223 static void df_def_unlink (struct df *, struct ref *);
224 static void df_use_unlink (struct df *, struct ref *);
225 static void df_insn_refs_unlink (struct df *, basic_block, rtx);
226 #if 0
227 static void df_bb_refs_unlink (struct df *, basic_block);
228 static void df_refs_unlink (struct df *, bitmap);
229 #endif
230
231 static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
232 enum df_ref_type, enum df_ref_flags);
233 static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
234 enum df_ref_flags);
235 static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
236 enum df_ref_flags);
237 static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
238 static void df_defs_record (struct df *, rtx, basic_block, rtx);
239 static void df_uses_record (struct df *, rtx *, enum df_ref_type,
240 basic_block, rtx, enum df_ref_flags);
241 static void df_insn_refs_record (struct df *, basic_block, rtx);
242 static void df_bb_refs_record (struct df *, basic_block);
243 static void df_refs_record (struct df *, bitmap);
244
245 static void df_bb_reg_def_chain_create (struct df *, basic_block);
246 static void df_reg_def_chain_create (struct df *, bitmap, bool);
247 static void df_bb_reg_use_chain_create (struct df *, basic_block);
248 static void df_reg_use_chain_create (struct df *, bitmap, bool);
249 static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
250 static void df_du_chain_create (struct df *, bitmap);
251 static void df_bb_ud_chain_create (struct df *, basic_block);
252 static void df_ud_chain_create (struct df *, bitmap);
253 static void df_bb_rd_local_compute (struct df *, basic_block, bitmap);
254 static void df_rd_local_compute (struct df *, bitmap);
255 static void df_bb_ru_local_compute (struct df *, basic_block);
256 static void df_ru_local_compute (struct df *, bitmap);
257 static void df_bb_lr_local_compute (struct df *, basic_block);
258 static void df_lr_local_compute (struct df *, bitmap);
259 static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
260 static void df_reg_info_compute (struct df *, bitmap);
261
262 static int df_bb_luids_set (struct df *df, basic_block);
263 static int df_luids_set (struct df *df, bitmap);
264
265 static int df_modified_p (struct df *, bitmap);
266 static int df_refs_queue (struct df *);
267 static int df_refs_process (struct df *);
268 static int df_bb_refs_update (struct df *, basic_block);
269 static int df_refs_update (struct df *, bitmap);
270 static void df_analyze_1 (struct df *, bitmap, int, int);
271
272 static void df_insns_modify (struct df *, basic_block, rtx, rtx);
273 static int df_rtx_mem_replace (rtx *, void *);
274 static int df_rtx_reg_replace (rtx *, void *);
275 void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);
276
277 static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
278 static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
279 static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
280 rtx, unsigned int);
281 static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
282 rtx, unsigned int);
283
284 static void df_chain_dump (struct df_link *, FILE *file);
285 static void df_chain_dump_regno (struct df_link *, FILE *file);
286 static void df_regno_debug (struct df *, unsigned int, FILE *);
287 static void df_ref_debug (struct df *, struct ref *, FILE *);
288 static void df_rd_transfer_function (int, int *, void *, void *, void *,
289 void *, void *);
290 static void df_ru_transfer_function (int, int *, void *, void *, void *,
291 void *, void *);
292 static void df_lr_transfer_function (int, int *, void *, void *, void *,
293 void *, void *);
294 static void hybrid_search (basic_block, struct dataflow *,
295 sbitmap, sbitmap, sbitmap);
296
297 \f
298 /* Local memory allocation/deallocation routines. */
299
300
301 /* Increase the insn info table to have space for at least SIZE + 1
302 elements. */
303 static void
304 df_insn_table_realloc (struct df *df, unsigned int size)
305 {
306 size++;
307 if (size <= df->insn_size)
308 return;
309
310 /* Make the table a little larger than requested, so we do not need
311 to enlarge it so often. */
312 size += df->insn_size / 4;
313
314 df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));
315
316 memset (df->insns + df->insn_size, 0,
317 (size - df->insn_size) * sizeof (struct insn_info));
318
319 df->insn_size = size;
320
321 if (! df->insns_modified)
322 {
323 df->insns_modified = BITMAP_XMALLOC ();
324 bitmap_zero (df->insns_modified);
325 }
326 }
327
328 /* Increase the bb info table to have space for at least SIZE + 1
329 elements. */
330
331 static void
332 df_bb_table_realloc (struct df *df, unsigned int size)
333 {
334 size++;
335 if (size <= df->n_bbs)
336 return;
337
338 /* Make the table a little larger than requested, so we do not need
339 to enlarge it so often. */
340 size += df->n_bbs / 4;
341
342 df->bbs = xrealloc (df->bbs, size * sizeof (struct bb_info));
343
344 memset (df->bbs + df->n_bbs, 0, (size - df->n_bbs) * sizeof (struct bb_info));
345
346 df->n_bbs = size;
347 }
348
349 /* Increase the reg info table by SIZE more elements. */
350 static void
351 df_reg_table_realloc (struct df *df, int size)
352 {
353 /* Make table 25 percent larger by default. */
354 if (! size)
355 size = df->reg_size / 4;
356
357 size += df->reg_size;
358 if (size < max_reg_num ())
359 size = max_reg_num ();
360
361 df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
362 df->reg_def_last = xrealloc (df->reg_def_last,
363 size * sizeof (struct ref *));
364
365 /* Zero the new entries. */
366 memset (df->regs + df->reg_size, 0,
367 (size - df->reg_size) * sizeof (struct reg_info));
368
369 df->reg_size = size;
370 }
371
372
373 /* Allocate bitmaps for each basic block. */
374
375 static void
376 df_bitmaps_alloc (struct df *df, bitmap blocks, int flags)
377 {
378 basic_block bb;
379
380 df->n_defs = df->def_id;
381 df->n_uses = df->use_id;
382
383 if (!blocks)
384 blocks = df->all_blocks;
385
386 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
387 {
388 struct bb_info *bb_info = DF_BB_INFO (df, bb);
389
390 if (flags & DF_RD)
391 {
392 if (!bb_info->rd_in)
393 {
394 /* Allocate bitmaps for reaching definitions. */
395 bb_info->rd_kill = BITMAP_XMALLOC ();
396 bb_info->rd_gen = BITMAP_XMALLOC ();
397 bb_info->rd_in = BITMAP_XMALLOC ();
398 bb_info->rd_out = BITMAP_XMALLOC ();
399 }
400 else
401 {
402 bitmap_clear (bb_info->rd_kill);
403 bitmap_clear (bb_info->rd_gen);
404 bitmap_clear (bb_info->rd_in);
405 bitmap_clear (bb_info->rd_out);
406 }
407 }
408
409 if (flags & DF_RU)
410 {
411 if (!bb_info->ru_in)
412 {
413 /* Allocate bitmaps for upward exposed uses. */
414 bb_info->ru_kill = BITMAP_XMALLOC ();
415 bb_info->ru_gen = BITMAP_XMALLOC ();
416 bb_info->ru_in = BITMAP_XMALLOC ();
417 bb_info->ru_out = BITMAP_XMALLOC ();
418 }
419 else
420 {
421 bitmap_clear (bb_info->ru_kill);
422 bitmap_clear (bb_info->ru_gen);
423 bitmap_clear (bb_info->ru_in);
424 bitmap_clear (bb_info->ru_out);
425 }
426 }
427
428 if (flags & DF_LR)
429 {
430 if (!bb_info->lr_in)
431 {
432 /* Allocate bitmaps for live variables. */
433 bb_info->lr_def = BITMAP_XMALLOC ();
434 bb_info->lr_use = BITMAP_XMALLOC ();
435 bb_info->lr_in = BITMAP_XMALLOC ();
436 bb_info->lr_out = BITMAP_XMALLOC ();
437 }
438 else
439 {
440 bitmap_clear (bb_info->lr_def);
441 bitmap_clear (bb_info->lr_use);
442 bitmap_clear (bb_info->lr_in);
443 bitmap_clear (bb_info->lr_out);
444 }
445 }
446 });
447 }
448
449
450 /* Free bitmaps for each basic block. */
451 static void
452 df_bitmaps_free (struct df *df, int flags)
453 {
454 basic_block bb;
455
456 FOR_EACH_BB (bb)
457 {
458 struct bb_info *bb_info = DF_BB_INFO (df, bb);
459
460 if (!bb_info)
461 continue;
462
463 if ((flags & DF_RD) && bb_info->rd_in)
464 {
465 /* Free bitmaps for reaching definitions. */
466 BITMAP_XFREE (bb_info->rd_kill);
467 bb_info->rd_kill = NULL;
468 BITMAP_XFREE (bb_info->rd_gen);
469 bb_info->rd_gen = NULL;
470 BITMAP_XFREE (bb_info->rd_in);
471 bb_info->rd_in = NULL;
472 BITMAP_XFREE (bb_info->rd_out);
473 bb_info->rd_out = NULL;
474 }
475
476 if ((flags & DF_RU) && bb_info->ru_in)
477 {
478 /* Free bitmaps for upward exposed uses. */
479 BITMAP_XFREE (bb_info->ru_kill);
480 bb_info->ru_kill = NULL;
481 BITMAP_XFREE (bb_info->ru_gen);
482 bb_info->ru_gen = NULL;
483 BITMAP_XFREE (bb_info->ru_in);
484 bb_info->ru_in = NULL;
485 BITMAP_XFREE (bb_info->ru_out);
486 bb_info->ru_out = NULL;
487 }
488
489 if ((flags & DF_LR) && bb_info->lr_in)
490 {
491 /* Free bitmaps for live variables. */
492 BITMAP_XFREE (bb_info->lr_def);
493 bb_info->lr_def = NULL;
494 BITMAP_XFREE (bb_info->lr_use);
495 bb_info->lr_use = NULL;
496 BITMAP_XFREE (bb_info->lr_in);
497 bb_info->lr_in = NULL;
498 BITMAP_XFREE (bb_info->lr_out);
499 bb_info->lr_out = NULL;
500 }
501 }
502 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
503 }
504
505
506 /* Allocate and initialize dataflow memory. */
507 static void
508 df_alloc (struct df *df, int n_regs)
509 {
510 int n_insns;
511 basic_block bb;
512
513 df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
514 100);
515 df_ref_pool = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);
516
517 /* Perhaps we should use LUIDs to save memory for the insn_refs
518 table. This is only a small saving; a few pointers. */
519 n_insns = get_max_uid () + 1;
520
521 df->def_id = 0;
522 df->n_defs = 0;
523 /* Approximate number of defs by number of insns. */
524 df->def_size = n_insns;
525 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
526
527 df->use_id = 0;
528 df->n_uses = 0;
529 /* Approximate number of uses by twice number of insns. */
530 df->use_size = n_insns * 2;
531 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
532
533 df->n_regs = n_regs;
534 df->n_bbs = last_basic_block;
535
536 /* Allocate temporary working array used during local dataflow analysis. */
537 df_insn_table_realloc (df, n_insns);
538
539 df_reg_table_realloc (df, df->n_regs);
540
541 df->bbs_modified = BITMAP_XMALLOC ();
542 bitmap_zero (df->bbs_modified);
543
544 df->flags = 0;
545
546 df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
547
548 df->all_blocks = BITMAP_XMALLOC ();
549 FOR_EACH_BB (bb)
550 bitmap_set_bit (df->all_blocks, bb->index);
551 }
552
553
554 /* Free all the dataflow info. */
555 static void
556 df_free (struct df *df)
557 {
558 df_bitmaps_free (df, DF_ALL);
559
560 if (df->bbs)
561 free (df->bbs);
562 df->bbs = 0;
563
564 if (df->insns)
565 free (df->insns);
566 df->insns = 0;
567 df->insn_size = 0;
568
569 if (df->defs)
570 free (df->defs);
571 df->defs = 0;
572 df->def_size = 0;
573 df->def_id = 0;
574
575 if (df->uses)
576 free (df->uses);
577 df->uses = 0;
578 df->use_size = 0;
579 df->use_id = 0;
580
581 if (df->regs)
582 free (df->regs);
583 df->regs = 0;
584 df->reg_size = 0;
585
586 BITMAP_XFREE (df->bbs_modified);
587 df->bbs_modified = 0;
588
589 BITMAP_XFREE (df->insns_modified);
590 df->insns_modified = 0;
591
592 BITMAP_XFREE (df->all_blocks);
593 df->all_blocks = 0;
594
595 free_alloc_pool (df_ref_pool);
596 free_alloc_pool (df_link_pool);
597 }
598 \f
599 /* Local miscellaneous routines. */
600
601 /* Return a USE for register REGNO. */
602 static rtx df_reg_use_gen (unsigned int regno)
603 {
604 rtx reg;
605 rtx use;
606
607 reg = regno_reg_rtx[regno];
608
609 use = gen_rtx_USE (GET_MODE (reg), reg);
610 return use;
611 }
612 \f
613 /* Local chain manipulation routines. */
614
615 /* Create a link in a def-use or use-def chain. */
616 static inline struct df_link *
617 df_link_create (struct ref *ref, struct df_link *next)
618 {
619 struct df_link *link;
620
621 link = pool_alloc (df_link_pool);
622 link->next = next;
623 link->ref = ref;
624 return link;
625 }
626
627 /* Releases members of the CHAIN. */
628
629 static void
630 free_reg_ref_chain (struct df_link **chain)
631 {
632 struct df_link *act, *next;
633
634 for (act = *chain; act; act = next)
635 {
636 next = act->next;
637 pool_free (df_link_pool, act);
638 }
639
640 *chain = NULL;
641 }
642
643 /* Add REF to chain head pointed to by PHEAD. */
644 static struct df_link *
645 df_ref_unlink (struct df_link **phead, struct ref *ref)
646 {
647 struct df_link *link = *phead;
648
649 if (link)
650 {
651 if (! link->next)
652 {
653 /* Only a single ref. It must be the one we want.
654 If not, the def-use and use-def chains are likely to
655 be inconsistent. */
656 gcc_assert (link->ref == ref);
657
658 /* Now have an empty chain. */
659 *phead = NULL;
660 }
661 else
662 {
663 /* Multiple refs. One of them must be us. */
664 if (link->ref == ref)
665 *phead = link->next;
666 else
667 {
668 /* Follow chain. */
669 for (; link->next; link = link->next)
670 {
671 if (link->next->ref == ref)
672 {
673 /* Unlink from list. */
674 link->next = link->next->next;
675 return link->next;
676 }
677 }
678 }
679 }
680 }
681 return link;
682 }
683
684
685 /* Unlink REF from all def-use/use-def chains, etc. */
686 int
687 df_ref_remove (struct df *df, struct ref *ref)
688 {
689 if (DF_REF_REG_DEF_P (ref))
690 {
691 df_def_unlink (df, ref);
692 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
693 }
694 else
695 {
696 df_use_unlink (df, ref);
697 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
698 }
699 return 1;
700 }
701
702
703 /* Unlink DEF from use-def and reg-def chains. */
704 static void
705 df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
706 {
707 struct df_link *du_link;
708 unsigned int dregno = DF_REF_REGNO (def);
709
710 /* Follow def-use chain to find all the uses of this def. */
711 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
712 {
713 struct ref *use = du_link->ref;
714
715 /* Unlink this def from the use-def chain. */
716 df_ref_unlink (&DF_REF_CHAIN (use), def);
717 }
718 DF_REF_CHAIN (def) = 0;
719
720 /* Unlink def from reg-def chain. */
721 df_ref_unlink (&df->regs[dregno].defs, def);
722
723 df->defs[DF_REF_ID (def)] = 0;
724 }
725
726
727 /* Unlink use from def-use and reg-use chains. */
728 static void
729 df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
730 {
731 struct df_link *ud_link;
732 unsigned int uregno = DF_REF_REGNO (use);
733
734 /* Follow use-def chain to find all the defs of this use. */
735 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
736 {
737 struct ref *def = ud_link->ref;
738
739 /* Unlink this use from the def-use chain. */
740 df_ref_unlink (&DF_REF_CHAIN (def), use);
741 }
742 DF_REF_CHAIN (use) = 0;
743
744 /* Unlink use from reg-use chain. */
745 df_ref_unlink (&df->regs[uregno].uses, use);
746
747 df->uses[DF_REF_ID (use)] = 0;
748 }
749 \f
750 /* Local routines for recording refs. */
751
752
753 /* Create a new ref of type DF_REF_TYPE for register REG at address
754 LOC within INSN of BB. */
755 static struct ref *
756 df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
757 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
758 {
759 struct ref *this_ref;
760
761 this_ref = pool_alloc (df_ref_pool);
762 DF_REF_REG (this_ref) = reg;
763 DF_REF_LOC (this_ref) = loc;
764 DF_REF_INSN (this_ref) = insn;
765 DF_REF_CHAIN (this_ref) = 0;
766 DF_REF_TYPE (this_ref) = ref_type;
767 DF_REF_FLAGS (this_ref) = ref_flags;
768 DF_REF_DATA (this_ref) = NULL;
769
770 if (ref_type == DF_REF_REG_DEF)
771 {
772 if (df->def_id >= df->def_size)
773 {
774 /* Make table 25 percent larger. */
775 df->def_size += (df->def_size / 4);
776 df->defs = xrealloc (df->defs,
777 df->def_size * sizeof (*df->defs));
778 }
779 DF_REF_ID (this_ref) = df->def_id;
780 df->defs[df->def_id++] = this_ref;
781 }
782 else
783 {
784 if (df->use_id >= df->use_size)
785 {
786 /* Make table 25 percent larger. */
787 df->use_size += (df->use_size / 4);
788 df->uses = xrealloc (df->uses,
789 df->use_size * sizeof (*df->uses));
790 }
791 DF_REF_ID (this_ref) = df->use_id;
792 df->uses[df->use_id++] = this_ref;
793 }
794 return this_ref;
795 }
796
797
798 /* Create a new reference of type DF_REF_TYPE for a single register REG,
799 used inside the LOC rtx of INSN. */
800 static void
801 df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
802 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
803 {
804 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
805 }
806
807
808 /* Create new references of type DF_REF_TYPE for each part of register REG
809 at address LOC within INSN of BB. */
810 static void
811 df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
812 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
813 {
814 unsigned int regno;
815
816 gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
817
818 /* For the reg allocator we are interested in some SUBREG rtx's, but not
819 all. Notably only those representing a word extraction from a multi-word
820 reg. As written in the docu those should have the form
821 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
822 XXX Is that true? We could also use the global word_mode variable. */
823 if (GET_CODE (reg) == SUBREG
824 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
825 || GET_MODE_SIZE (GET_MODE (reg))
826 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
827 {
828 loc = &SUBREG_REG (reg);
829 reg = *loc;
830 ref_flags |= DF_REF_STRIPPED;
831 }
832
833 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
834 if (regno < FIRST_PSEUDO_REGISTER)
835 {
836 int i;
837 int endregno;
838
839 if (! (df->flags & DF_HARD_REGS))
840 return;
841
842 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
843 for the mode, because we only want to add references to regs, which
844 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
845 reference the whole reg 0 in DI mode (which would also include
846 reg 1, at least, if 0 and 1 are SImode registers). */
847 endregno = hard_regno_nregs[regno][GET_MODE (reg)];
848 if (GET_CODE (reg) == SUBREG)
849 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
850 SUBREG_BYTE (reg), GET_MODE (reg));
851 endregno += regno;
852
853 for (i = regno; i < endregno; i++)
854 df_ref_record_1 (df, regno_reg_rtx[i],
855 loc, insn, ref_type, ref_flags);
856 }
857 else
858 {
859 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
860 }
861 }
862
863
864 /* A set to a non-paradoxical SUBREG for which the number of word_mode units
865 covered by the outer mode is smaller than that covered by the inner mode,
866 is a read-modify-write operation.
867 This function returns true iff the SUBREG X is such a SUBREG. */
868 bool
869 read_modify_subreg_p (rtx x)
870 {
871 unsigned int isize, osize;
872 if (GET_CODE (x) != SUBREG)
873 return false;
874 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
875 osize = GET_MODE_SIZE (GET_MODE (x));
876 return (isize > osize && isize > UNITS_PER_WORD);
877 }
878
879
880 /* Process all the registers defined in the rtx, X. */
881 static void
882 df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
883 {
884 rtx *loc;
885 rtx dst;
886 enum df_ref_flags flags = 0;
887
888 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
889 construct. */
890 if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
891 loc = &XEXP (x, 0);
892 else
893 loc = &SET_DEST (x);
894 dst = *loc;
895
896 /* Some targets place small structures in registers for
897 return values of functions. */
898 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
899 {
900 int i;
901
902 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
903 {
904 rtx temp = XVECEXP (dst, 0, i);
905 if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
906 || GET_CODE (temp) == SET)
907 df_def_record_1 (df, temp, bb, insn);
908 }
909 return;
910 }
911
912 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
913 be handy for the reg allocator. */
914 while (GET_CODE (dst) == STRICT_LOW_PART
915 || GET_CODE (dst) == ZERO_EXTRACT
916 || ((df->flags & DF_FOR_REGALLOC) == 0
917 && read_modify_subreg_p (dst)))
918 {
919 /* Strict low part always contains SUBREG, but we do not want to make
920 it appear outside, as whole register is always considered. */
921 if (GET_CODE (dst) == STRICT_LOW_PART)
922 {
923 loc = &XEXP (dst, 0);
924 dst = *loc;
925 }
926 loc = &XEXP (dst, 0);
927 dst = *loc;
928 flags |= DF_REF_READ_WRITE;
929 }
930
931 if (REG_P (dst)
932 || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
933 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
934 }
935
936
937 /* Process all the registers defined in the pattern rtx, X. */
938 static void
939 df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
940 {
941 RTX_CODE code = GET_CODE (x);
942
943 if (code == SET || code == CLOBBER)
944 {
945 /* Mark the single def within the pattern. */
946 df_def_record_1 (df, x, bb, insn);
947 }
948 else if (code == PARALLEL)
949 {
950 int i;
951
952 /* Mark the multiple defs within the pattern. */
953 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
954 {
955 code = GET_CODE (XVECEXP (x, 0, i));
956 if (code == SET || code == CLOBBER)
957 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
958 }
959 }
960 }
961
962
963 /* Process all the registers used in the rtx at address LOC. */
964 static void
965 df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
966 basic_block bb, rtx insn, enum df_ref_flags flags)
967 {
968 RTX_CODE code;
969 rtx x;
970 retry:
971 x = *loc;
972 if (!x)
973 return;
974 code = GET_CODE (x);
975 switch (code)
976 {
977 case LABEL_REF:
978 case SYMBOL_REF:
979 case CONST_INT:
980 case CONST:
981 case CONST_DOUBLE:
982 case CONST_VECTOR:
983 case PC:
984 case CC0:
985 case ADDR_VEC:
986 case ADDR_DIFF_VEC:
987 return;
988
989 case CLOBBER:
990 /* If we are clobbering a MEM, mark any registers inside the address
991 as being used. */
992 if (MEM_P (XEXP (x, 0)))
993 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
994 DF_REF_REG_MEM_STORE, bb, insn, flags);
995
996 /* If we're clobbering a REG then we have a def so ignore. */
997 return;
998
999 case MEM:
1000 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, 0);
1001 return;
1002
1003 case SUBREG:
1004 /* While we're here, optimize this case. */
1005
1006 /* In case the SUBREG is not of a REG, do not optimize. */
1007 if (!REG_P (SUBREG_REG (x)))
1008 {
1009 loc = &SUBREG_REG (x);
1010 df_uses_record (df, loc, ref_type, bb, insn, flags);
1011 return;
1012 }
1013 /* ... Fall through ... */
1014
1015 case REG:
1016 df_ref_record (df, x, loc, insn, ref_type, flags);
1017 return;
1018
1019 case SET:
1020 {
1021 rtx dst = SET_DEST (x);
1022
1023 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1024
1025 switch (GET_CODE (dst))
1026 {
1027 case SUBREG:
1028 if ((df->flags & DF_FOR_REGALLOC) == 0
1029 && read_modify_subreg_p (dst))
1030 {
1031 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1032 insn, DF_REF_READ_WRITE);
1033 break;
1034 }
1035 /* Fall through. */
1036 case REG:
1037 case PARALLEL:
1038 case PC:
1039 case CC0:
1040 break;
1041 case MEM:
1042 df_uses_record (df, &XEXP (dst, 0),
1043 DF_REF_REG_MEM_STORE,
1044 bb, insn, 0);
1045 break;
1046 case STRICT_LOW_PART:
1047 /* A strict_low_part uses the whole REG and not just the
1048 SUBREG. */
1049 dst = XEXP (dst, 0);
1050 gcc_assert (GET_CODE (dst) == SUBREG);
1051 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1052 insn, DF_REF_READ_WRITE);
1053 break;
1054 case ZERO_EXTRACT:
1055 case SIGN_EXTRACT:
1056 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1057 DF_REF_READ_WRITE);
1058 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1059 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1060 dst = XEXP (dst, 0);
1061 break;
1062 default:
1063 gcc_unreachable ();
1064 }
1065 return;
1066 }
1067
1068 case RETURN:
1069 break;
1070
1071 case ASM_OPERANDS:
1072 case UNSPEC_VOLATILE:
1073 case TRAP_IF:
1074 case ASM_INPUT:
1075 {
1076 /* Traditional and volatile asm instructions must be considered to use
1077 and clobber all hard registers, all pseudo-registers and all of
1078 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1079
1080 Consider for instance a volatile asm that changes the fpu rounding
1081 mode. An insn should not be moved across this even if it only uses
1082 pseudo-regs because it might give an incorrectly rounded result.
1083
1084 For now, just mark any regs we can find in ASM_OPERANDS as
1085 used. */
1086
1087 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1088 We can not just fall through here since then we would be confused
1089 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1090 traditional asms unlike their normal usage. */
1091 if (code == ASM_OPERANDS)
1092 {
1093 int j;
1094
1095 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1096 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1097 DF_REF_REG_USE, bb, insn, 0);
1098 return;
1099 }
1100 break;
1101 }
1102
1103 case PRE_DEC:
1104 case POST_DEC:
1105 case PRE_INC:
1106 case POST_INC:
1107 case PRE_MODIFY:
1108 case POST_MODIFY:
1109 /* Catch the def of the register being modified. */
1110 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1111
1112 /* ... Fall through to handle uses ... */
1113
1114 default:
1115 break;
1116 }
1117
1118 /* Recursively scan the operands of this expression. */
1119 {
1120 const char *fmt = GET_RTX_FORMAT (code);
1121 int i;
1122
1123 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1124 {
1125 if (fmt[i] == 'e')
1126 {
1127 /* Tail recursive case: save a function call level. */
1128 if (i == 0)
1129 {
1130 loc = &XEXP (x, 0);
1131 goto retry;
1132 }
1133 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1134 }
1135 else if (fmt[i] == 'E')
1136 {
1137 int j;
1138 for (j = 0; j < XVECLEN (x, i); j++)
1139 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1140 bb, insn, flags);
1141 }
1142 }
1143 }
1144 }
1145
1146
1147 /* Record all the df within INSN of basic block BB. */
1148 static void
1149 df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
1150 {
1151 int i;
1152
1153 if (INSN_P (insn))
1154 {
1155 rtx note;
1156
1157 /* Record register defs. */
1158 df_defs_record (df, PATTERN (insn), bb, insn);
1159
1160 if (df->flags & DF_EQUIV_NOTES)
1161 for (note = REG_NOTES (insn); note;
1162 note = XEXP (note, 1))
1163 {
1164 switch (REG_NOTE_KIND (note))
1165 {
1166 case REG_EQUIV:
1167 case REG_EQUAL:
1168 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1169 bb, insn, 0);
1170 default:
1171 break;
1172 }
1173 }
1174
1175 if (CALL_P (insn))
1176 {
1177 rtx note;
1178 rtx x;
1179
1180 /* Record the registers used to pass arguments. */
1181 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1182 note = XEXP (note, 1))
1183 {
1184 if (GET_CODE (XEXP (note, 0)) == USE)
1185 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1186 bb, insn, 0);
1187 }
1188
1189 /* The stack ptr is used (honorarily) by a CALL insn. */
1190 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1191 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1192
1193 if (df->flags & DF_HARD_REGS)
1194 {
1195 /* Calls may also reference any of the global registers,
1196 so they are recorded as used. */
1197 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1198 if (global_regs[i])
1199 {
1200 x = df_reg_use_gen (i);
1201 df_uses_record (df, &SET_DEST (x),
1202 DF_REF_REG_USE, bb, insn, 0);
1203 }
1204 }
1205 }
1206
1207 /* Record the register uses. */
1208 df_uses_record (df, &PATTERN (insn),
1209 DF_REF_REG_USE, bb, insn, 0);
1210
1211 if (CALL_P (insn))
1212 {
1213 rtx note;
1214
1215 /* We do not record hard registers clobbered by the call,
1216 since there are awfully many of them and "defs" created
1217 through them are not interesting (since no use can be legally
1218 reached by them). So we must just make sure we include them when
1219 computing kill bitmaps. */
1220
1221 /* There may be extra registers to be clobbered. */
1222 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1223 note;
1224 note = XEXP (note, 1))
1225 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1226 df_defs_record (df, XEXP (note, 0), bb, insn);
1227 }
1228 }
1229 }
1230
1231
1232 /* Record all the refs within the basic block BB. */
1233 static void
1234 df_bb_refs_record (struct df *df, basic_block bb)
1235 {
1236 rtx insn;
1237
1238 /* Scan the block an insn at a time from beginning to end. */
1239 FOR_BB_INSNS (bb, insn)
1240 {
1241 if (INSN_P (insn))
1242 {
1243 /* Record defs within INSN. */
1244 df_insn_refs_record (df, bb, insn);
1245 }
1246 }
1247 }
1248
1249
1250 /* Record all the refs in the basic blocks specified by BLOCKS. */
1251 static void
1252 df_refs_record (struct df *df, bitmap blocks)
1253 {
1254 basic_block bb;
1255
1256 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1257 {
1258 df_bb_refs_record (df, bb);
1259 });
1260 }
1261 \f
1262 /* Dataflow analysis routines. */
1263
1264 /* Create reg-def chains for basic block BB. These are a list of
1265 definitions for each register. */
1266
1267 static void
1268 df_bb_reg_def_chain_create (struct df *df, basic_block bb)
1269 {
1270 rtx insn;
1271
1272 /* Perhaps the defs should be sorted using a depth first search
1273 of the CFG (or possibly a breadth first search). */
1274
1275 FOR_BB_INSNS_REVERSE (bb, insn)
1276 {
1277 struct df_link *link;
1278 unsigned int uid = INSN_UID (insn);
1279
1280 if (! INSN_P (insn))
1281 continue;
1282
1283 for (link = df->insns[uid].defs; link; link = link->next)
1284 {
1285 struct ref *def = link->ref;
1286 unsigned int dregno = DF_REF_REGNO (def);
1287
1288 /* Do not add ref's to the chain twice, i.e., only add new
1289 refs. XXX the same could be done by testing if the
1290 current insn is a modified (or a new) one. This would be
1291 faster. */
1292 if (DF_REF_ID (def) < df->def_id_save)
1293 continue;
1294
1295 df->regs[dregno].defs = df_link_create (def, df->regs[dregno].defs);
1296 }
1297 }
1298 }
1299
1300
1301 /* Create reg-def chains for each basic block within BLOCKS. These
1302 are a list of definitions for each register. If REDO is true, add
1303 all defs, otherwise just add the new defs. */
1304
1305 static void
1306 df_reg_def_chain_create (struct df *df, bitmap blocks, bool redo)
1307 {
1308 basic_block bb;
1309 #ifdef ENABLE_CHECKING
1310 unsigned regno;
1311 #endif
1312 unsigned old_def_id_save = df->def_id_save;
1313
1314 if (redo)
1315 {
1316 #ifdef ENABLE_CHECKING
1317 for (regno = 0; regno < df->n_regs; regno++)
1318 gcc_assert (!df->regs[regno].defs);
1319 #endif
1320
1321 /* Pretend that all defs are new. */
1322 df->def_id_save = 0;
1323 }
1324
1325 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1326 {
1327 df_bb_reg_def_chain_create (df, bb);
1328 });
1329
1330 df->def_id_save = old_def_id_save;
1331 }
1332
1333 /* Remove all reg-def chains stored in the dataflow object DF. */
1334
1335 static void
1336 df_reg_def_chain_clean (struct df *df)
1337 {
1338 unsigned regno;
1339
1340 for (regno = 0; regno < df->n_regs; regno++)
1341 free_reg_ref_chain (&df->regs[regno].defs);
1342 }
1343
1344 /* Create reg-use chains for basic block BB. These are a list of uses
1345 for each register. */
1346
1347 static void
1348 df_bb_reg_use_chain_create (struct df *df, basic_block bb)
1349 {
1350 rtx insn;
1351
1352 /* Scan in forward order so that the last uses appear at the start
1353 of the chain. */
1354
1355 FOR_BB_INSNS (bb, insn)
1356 {
1357 struct df_link *link;
1358 unsigned int uid = INSN_UID (insn);
1359
1360 if (! INSN_P (insn))
1361 continue;
1362
1363 for (link = df->insns[uid].uses; link; link = link->next)
1364 {
1365 struct ref *use = link->ref;
1366 unsigned int uregno = DF_REF_REGNO (use);
1367
1368 /* Do not add ref's to the chain twice, i.e., only add new
1369 refs. XXX the same could be done by testing if the
1370 current insn is a modified (or a new) one. This would be
1371 faster. */
1372 if (DF_REF_ID (use) < df->use_id_save)
1373 continue;
1374
1375 df->regs[uregno].uses
1376 = df_link_create (use, df->regs[uregno].uses);
1377 }
1378 }
1379 }
1380
1381
1382 /* Create reg-use chains for each basic block within BLOCKS. These
1383 are a list of uses for each register. If REDO is true, remove the
1384 old reg-use chains first, otherwise just add new uses to them. */
1385
1386 static void
1387 df_reg_use_chain_create (struct df *df, bitmap blocks, bool redo)
1388 {
1389 basic_block bb;
1390 #ifdef ENABLE_CHECKING
1391 unsigned regno;
1392 #endif
1393 unsigned old_use_id_save = df->use_id_save;
1394
1395 if (redo)
1396 {
1397 #ifdef ENABLE_CHECKING
1398 for (regno = 0; regno < df->n_regs; regno++)
1399 gcc_assert (!df->regs[regno].uses);
1400 #endif
1401
1402 /* Pretend that all uses are new. */
1403 df->use_id_save = 0;
1404 }
1405
1406 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1407 {
1408 df_bb_reg_use_chain_create (df, bb);
1409 });
1410
1411 df->use_id_save = old_use_id_save;
1412 }
1413
1414 /* Remove all reg-use chains stored in the dataflow object DF. */
1415
1416 static void
1417 df_reg_use_chain_clean (struct df *df)
1418 {
1419 unsigned regno;
1420
1421 for (regno = 0; regno < df->n_regs; regno++)
1422 free_reg_ref_chain (&df->regs[regno].uses);
1423 }
1424
1425 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1426 static void
1427 df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
1428 {
1429 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1430 rtx insn;
1431
1432 bitmap_copy (ru, bb_info->ru_out);
1433
1434 /* For each def in BB create a linked list (chain) of uses
1435 reached from the def. */
1436 FOR_BB_INSNS_REVERSE (bb, insn)
1437 {
1438 struct df_link *def_link;
1439 struct df_link *use_link;
1440 unsigned int uid = INSN_UID (insn);
1441
1442 if (! INSN_P (insn))
1443 continue;
1444
1445 /* For each def in insn... */
1446 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1447 {
1448 struct ref *def = def_link->ref;
1449 unsigned int dregno = DF_REF_REGNO (def);
1450
1451 DF_REF_CHAIN (def) = 0;
1452
1453 /* While the reg-use chains are not essential, it
1454 is _much_ faster to search these short lists rather
1455 than all the reaching uses, especially for large functions. */
1456 for (use_link = df->regs[dregno].uses; use_link;
1457 use_link = use_link->next)
1458 {
1459 struct ref *use = use_link->ref;
1460
1461 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1462 {
1463 DF_REF_CHAIN (def)
1464 = df_link_create (use, DF_REF_CHAIN (def));
1465
1466 bitmap_clear_bit (ru, DF_REF_ID (use));
1467 }
1468 }
1469 }
1470
1471 /* For each use in insn... */
1472 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1473 {
1474 struct ref *use = use_link->ref;
1475 bitmap_set_bit (ru, DF_REF_ID (use));
1476 }
1477 }
1478 }
1479
1480
1481 /* Create def-use chains from reaching use bitmaps for basic blocks
1482 in BLOCKS. */
1483 static void
1484 df_du_chain_create (struct df *df, bitmap blocks)
1485 {
1486 bitmap ru;
1487 basic_block bb;
1488
1489 ru = BITMAP_XMALLOC ();
1490
1491 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1492 {
1493 df_bb_du_chain_create (df, bb, ru);
1494 });
1495
1496 BITMAP_XFREE (ru);
1497 }
1498
1499
1500 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1501 static void
1502 df_bb_ud_chain_create (struct df *df, basic_block bb)
1503 {
1504 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1505 struct ref **reg_def_last = df->reg_def_last;
1506 rtx insn;
1507
1508 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1509
1510 /* For each use in BB create a linked list (chain) of defs
1511 that reach the use. */
1512 FOR_BB_INSNS (bb, insn)
1513 {
1514 unsigned int uid = INSN_UID (insn);
1515 struct df_link *use_link;
1516 struct df_link *def_link;
1517
1518 if (! INSN_P (insn))
1519 continue;
1520
1521 /* For each use in insn... */
1522 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1523 {
1524 struct ref *use = use_link->ref;
1525 unsigned int regno = DF_REF_REGNO (use);
1526
1527 DF_REF_CHAIN (use) = 0;
1528
1529 /* Has regno been defined in this BB yet? If so, use
1530 the last def as the single entry for the use-def
1531 chain for this use. Otherwise, we need to add all
1532 the defs using this regno that reach the start of
1533 this BB. */
1534 if (reg_def_last[regno])
1535 {
1536 DF_REF_CHAIN (use)
1537 = df_link_create (reg_def_last[regno], 0);
1538 }
1539 else
1540 {
1541 /* While the reg-def chains are not essential, it is
1542 _much_ faster to search these short lists rather than
1543 all the reaching defs, especially for large
1544 functions. */
1545 for (def_link = df->regs[regno].defs; def_link;
1546 def_link = def_link->next)
1547 {
1548 struct ref *def = def_link->ref;
1549
1550 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1551 {
1552 DF_REF_CHAIN (use)
1553 = df_link_create (def, DF_REF_CHAIN (use));
1554 }
1555 }
1556 }
1557 }
1558
1559
1560 /* For each def in insn... record the last def of each reg. */
1561 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1562 {
1563 struct ref *def = def_link->ref;
1564 int dregno = DF_REF_REGNO (def);
1565
1566 reg_def_last[dregno] = def;
1567 }
1568 }
1569 }
1570
1571
1572 /* Create use-def chains from reaching def bitmaps for basic blocks
1573 within BLOCKS. */
1574 static void
1575 df_ud_chain_create (struct df *df, bitmap blocks)
1576 {
1577 basic_block bb;
1578
1579 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1580 {
1581 df_bb_ud_chain_create (df, bb);
1582 });
1583 }
1584 \f
1585
1586
1587 static void
1588 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1589 void *out, void *gen, void *kill,
1590 void *data ATTRIBUTE_UNUSED)
1591 {
1592 *changed = bitmap_ior_and_compl (out, gen, in, kill);
1593 }
1594
1595
1596 static void
1597 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1598 void *out, void *gen, void *kill,
1599 void *data ATTRIBUTE_UNUSED)
1600 {
1601 *changed = bitmap_ior_and_compl (in, gen, out, kill);
1602 }
1603
1604
1605 static void
1606 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1607 void *out, void *use, void *def,
1608 void *data ATTRIBUTE_UNUSED)
1609 {
1610 *changed = bitmap_ior_and_compl (in, use, out, def);
1611 }
1612
1613
1614 /* Compute local reaching def info for basic block BB. */
1615 static void
1616 df_bb_rd_local_compute (struct df *df, basic_block bb, bitmap call_killed_defs)
1617 {
1618 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1619 rtx insn;
1620 bitmap seen = BITMAP_XMALLOC ();
1621 bool call_seen = false;
1622
1623 FOR_BB_INSNS_REVERSE (bb, insn)
1624 {
1625 unsigned int uid = INSN_UID (insn);
1626 struct df_link *def_link;
1627
1628 if (! INSN_P (insn))
1629 continue;
1630
1631 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1632 {
1633 struct ref *def = def_link->ref;
1634 unsigned int regno = DF_REF_REGNO (def);
1635 struct df_link *def2_link;
1636
1637 if (bitmap_bit_p (seen, regno)
1638 || (call_seen
1639 && regno < FIRST_PSEUDO_REGISTER
1640 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)))
1641 continue;
1642
1643 for (def2_link = df->regs[regno].defs; def2_link;
1644 def2_link = def2_link->next)
1645 {
1646 struct ref *def2 = def2_link->ref;
1647
1648 /* Add all defs of this reg to the set of kills. This
1649 is greedy since many of these defs will not actually
1650 be killed by this BB but it keeps things a lot
1651 simpler. */
1652 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1653 }
1654
1655 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1656 bitmap_set_bit (seen, regno);
1657 }
1658
1659 if (CALL_P (insn) && (df->flags & DF_HARD_REGS))
1660 {
1661 bitmap_ior_into (bb_info->rd_kill, call_killed_defs);
1662 call_seen = 1;
1663 }
1664 }
1665
1666 BITMAP_XFREE (seen);
1667 }
1668
1669
1670 /* Compute local reaching def info for each basic block within BLOCKS. */
1671 static void
1672 df_rd_local_compute (struct df *df, bitmap blocks)
1673 {
1674 basic_block bb;
1675 bitmap killed_by_call = NULL;
1676 unsigned regno;
1677 struct df_link *def_link;
1678
1679 if (df->flags & DF_HARD_REGS)
1680 {
1681 killed_by_call = BITMAP_XMALLOC ();
1682 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1683 {
1684 if (!TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1685 continue;
1686
1687 for (def_link = df->regs[regno].defs;
1688 def_link;
1689 def_link = def_link->next)
1690 bitmap_set_bit (killed_by_call, DF_REF_ID (def_link->ref));
1691 }
1692 }
1693
1694 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1695 {
1696 df_bb_rd_local_compute (df, bb, killed_by_call);
1697 });
1698
1699 if (df->flags & DF_HARD_REGS)
1700 BITMAP_XFREE (killed_by_call);
1701 }
1702
1703
1704 /* Compute local reaching use (upward exposed use) info for basic
1705 block BB. */
1706 static void
1707 df_bb_ru_local_compute (struct df *df, basic_block bb)
1708 {
1709 /* This is much more tricky than computing reaching defs. With
1710 reaching defs, defs get killed by other defs. With upwards
1711 exposed uses, these get killed by defs with the same regno. */
1712
1713 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1714 rtx insn;
1715
1716
1717 FOR_BB_INSNS_REVERSE (bb, insn)
1718 {
1719 unsigned int uid = INSN_UID (insn);
1720 struct df_link *def_link;
1721 struct df_link *use_link;
1722
1723 if (! INSN_P (insn))
1724 continue;
1725
1726 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1727 {
1728 struct ref *def = def_link->ref;
1729 unsigned int dregno = DF_REF_REGNO (def);
1730
1731 for (use_link = df->regs[dregno].uses; use_link;
1732 use_link = use_link->next)
1733 {
1734 struct ref *use = use_link->ref;
1735
1736 /* Add all uses of this reg to the set of kills. This
1737 is greedy since many of these uses will not actually
1738 be killed by this BB but it keeps things a lot
1739 simpler. */
1740 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1741
1742 /* Zap from the set of gens for this BB. */
1743 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1744 }
1745 }
1746
1747 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1748 {
1749 struct ref *use = use_link->ref;
1750 /* Add use to set of gens in this BB. */
1751 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1752 }
1753 }
1754 }
1755
1756
1757 /* Compute local reaching use (upward exposed use) info for each basic
1758 block within BLOCKS. */
1759 static void
1760 df_ru_local_compute (struct df *df, bitmap blocks)
1761 {
1762 basic_block bb;
1763
1764 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1765 {
1766 df_bb_ru_local_compute (df, bb);
1767 });
1768 }
1769
1770
1771 /* Compute local live variable info for basic block BB. */
1772 static void
1773 df_bb_lr_local_compute (struct df *df, basic_block bb)
1774 {
1775 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1776 rtx insn;
1777
1778 FOR_BB_INSNS_REVERSE (bb, insn)
1779 {
1780 unsigned int uid = INSN_UID (insn);
1781 struct df_link *link;
1782
1783 if (! INSN_P (insn))
1784 continue;
1785
1786 for (link = df->insns[uid].defs; link; link = link->next)
1787 {
1788 struct ref *def = link->ref;
1789 unsigned int dregno = DF_REF_REGNO (def);
1790
1791 /* Add def to set of defs in this BB. */
1792 bitmap_set_bit (bb_info->lr_def, dregno);
1793
1794 bitmap_clear_bit (bb_info->lr_use, dregno);
1795 }
1796
1797 for (link = df->insns[uid].uses; link; link = link->next)
1798 {
1799 struct ref *use = link->ref;
1800 /* Add use to set of uses in this BB. */
1801 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1802 }
1803 }
1804 }
1805
1806
1807 /* Compute local live variable info for each basic block within BLOCKS. */
1808 static void
1809 df_lr_local_compute (struct df *df, bitmap blocks)
1810 {
1811 basic_block bb;
1812
1813 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1814 {
1815 df_bb_lr_local_compute (df, bb);
1816 });
1817 }
1818
1819
1820 /* Compute register info: lifetime, bb, and number of defs and uses
1821 for basic block BB. */
1822 static void
1823 df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
1824 {
1825 struct reg_info *reg_info = df->regs;
1826 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1827 rtx insn;
1828
1829 bitmap_copy (live, bb_info->lr_out);
1830
1831 FOR_BB_INSNS_REVERSE (bb, insn)
1832 {
1833 unsigned int uid = INSN_UID (insn);
1834 unsigned int regno;
1835 struct df_link *link;
1836 bitmap_iterator bi;
1837
1838 if (! INSN_P (insn))
1839 continue;
1840
1841 for (link = df->insns[uid].defs; link; link = link->next)
1842 {
1843 struct ref *def = link->ref;
1844 unsigned int dregno = DF_REF_REGNO (def);
1845
1846 /* Kill this register. */
1847 bitmap_clear_bit (live, dregno);
1848 reg_info[dregno].n_defs++;
1849 }
1850
1851 for (link = df->insns[uid].uses; link; link = link->next)
1852 {
1853 struct ref *use = link->ref;
1854 unsigned int uregno = DF_REF_REGNO (use);
1855
1856 /* This register is now live. */
1857 bitmap_set_bit (live, uregno);
1858 reg_info[uregno].n_uses++;
1859 }
1860
1861 /* Increment lifetimes of all live registers. */
1862 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno, bi)
1863 {
1864 reg_info[regno].lifetime++;
1865 }
1866 }
1867 }
1868
1869
1870 /* Compute register info: lifetime, bb, and number of defs and uses. */
1871 static void
1872 df_reg_info_compute (struct df *df, bitmap blocks)
1873 {
1874 basic_block bb;
1875 bitmap live;
1876
1877 live = BITMAP_XMALLOC ();
1878
1879 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1880 {
1881 df_bb_reg_info_compute (df, bb, live);
1882 });
1883
1884 BITMAP_XFREE (live);
1885 }
1886
1887
1888 /* Assign LUIDs for BB. */
1889 static int
1890 df_bb_luids_set (struct df *df, basic_block bb)
1891 {
1892 rtx insn;
1893 int luid = 0;
1894
1895 /* The LUIDs are monotonically increasing for each basic block. */
1896
1897 FOR_BB_INSNS (bb, insn)
1898 {
1899 if (INSN_P (insn))
1900 DF_INSN_LUID (df, insn) = luid++;
1901 DF_INSN_LUID (df, insn) = luid;
1902 }
1903 return luid;
1904 }
1905
1906
1907 /* Assign LUIDs for each basic block within BLOCKS. */
1908 static int
1909 df_luids_set (struct df *df, bitmap blocks)
1910 {
1911 basic_block bb;
1912 int total = 0;
1913
1914 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1915 {
1916 total += df_bb_luids_set (df, bb);
1917 });
1918 return total;
1919 }
1920
1921
1922 /* Perform dataflow analysis using existing DF structure for blocks
1923 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1924 static void
1925 df_analyze_1 (struct df *df, bitmap blocks, int flags, int update)
1926 {
1927 int aflags;
1928 int dflags;
1929 int i;
1930 basic_block bb;
1931 struct dataflow dflow;
1932
1933 dflags = 0;
1934 aflags = flags;
1935 if (flags & DF_UD_CHAIN)
1936 aflags |= DF_RD | DF_RD_CHAIN;
1937
1938 if (flags & DF_DU_CHAIN)
1939 aflags |= DF_RU;
1940
1941 if (flags & DF_RU)
1942 aflags |= DF_RU_CHAIN;
1943
1944 if (flags & DF_REG_INFO)
1945 aflags |= DF_LR;
1946
1947 if (! blocks)
1948 blocks = df->all_blocks;
1949
1950 df->flags = flags;
1951 if (update)
1952 {
1953 df_refs_update (df, NULL);
1954 /* More fine grained incremental dataflow analysis would be
1955 nice. For now recompute the whole shebang for the
1956 modified blocks. */
1957 #if 0
1958 df_refs_unlink (df, blocks);
1959 #endif
1960 /* All the def-use, use-def chains can be potentially
1961 modified by changes in one block. The size of the
1962 bitmaps can also change. */
1963 }
1964 else
1965 {
1966 /* Scan the function for all register defs and uses. */
1967 df_refs_queue (df);
1968 df_refs_record (df, blocks);
1969
1970 /* Link all the new defs and uses to the insns. */
1971 df_refs_process (df);
1972 }
1973
1974 /* Allocate the bitmaps now the total number of defs and uses are
1975 known. If the number of defs or uses have changed, then
1976 these bitmaps need to be reallocated. */
1977 df_bitmaps_alloc (df, NULL, aflags);
1978
1979 /* Set the LUIDs for each specified basic block. */
1980 df_luids_set (df, blocks);
1981
1982 /* Recreate reg-def and reg-use chains from scratch so that first
1983 def is at the head of the reg-def chain and the last use is at
1984 the head of the reg-use chain. This is only important for
1985 regs local to a basic block as it speeds up searching. */
1986 if (aflags & DF_RD_CHAIN)
1987 {
1988 df_reg_def_chain_create (df, blocks, false);
1989 }
1990
1991 if (aflags & DF_RU_CHAIN)
1992 {
1993 df_reg_use_chain_create (df, blocks, false);
1994 }
1995
1996 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
1997 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
1998 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
1999 df->inverse_dfs_map = xmalloc (sizeof (int) * last_basic_block);
2000 df->inverse_rc_map = xmalloc (sizeof (int) * last_basic_block);
2001 df->inverse_rts_map = xmalloc (sizeof (int) * last_basic_block);
2002
2003 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2004 flow_reverse_top_sort_order_compute (df->rts_order);
2005 for (i = 0; i < n_basic_blocks; i++)
2006 {
2007 df->inverse_dfs_map[df->dfs_order[i]] = i;
2008 df->inverse_rc_map[df->rc_order[i]] = i;
2009 df->inverse_rts_map[df->rts_order[i]] = i;
2010 }
2011 if (aflags & DF_RD)
2012 {
2013 /* Compute the sets of gens and kills for the defs of each bb. */
2014 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2015 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2016 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2017 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2018
2019 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2020 FOR_EACH_BB (bb)
2021 {
2022 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2023 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2024 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2025 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2026 }
2027
2028 dflow.repr = SR_BITMAP;
2029 dflow.dir = DF_FORWARD;
2030 dflow.conf_op = DF_UNION;
2031 dflow.transfun = df_rd_transfer_function;
2032 dflow.n_blocks = n_basic_blocks;
2033 dflow.order = df->rc_order;
2034 dflow.data = NULL;
2035
2036 iterative_dataflow (&dflow);
2037 free (dflow.in);
2038 free (dflow.out);
2039 free (dflow.gen);
2040 free (dflow.kill);
2041 }
2042
2043 if (aflags & DF_UD_CHAIN)
2044 {
2045 /* Create use-def chains. */
2046 df_ud_chain_create (df, df->all_blocks);
2047
2048 if (! (flags & DF_RD))
2049 dflags |= DF_RD;
2050 }
2051
2052 if (aflags & DF_RU)
2053 {
2054 /* Compute the sets of gens and kills for the upwards exposed
2055 uses in each bb. */
2056 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2057 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2058 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2059 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2060
2061 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2062
2063 FOR_EACH_BB (bb)
2064 {
2065 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2066 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2067 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2068 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2069 }
2070
2071 dflow.repr = SR_BITMAP;
2072 dflow.dir = DF_BACKWARD;
2073 dflow.conf_op = DF_UNION;
2074 dflow.transfun = df_ru_transfer_function;
2075 dflow.n_blocks = n_basic_blocks;
2076 dflow.order = df->rts_order;
2077 dflow.data = NULL;
2078
2079 iterative_dataflow (&dflow);
2080 free (dflow.in);
2081 free (dflow.out);
2082 free (dflow.gen);
2083 free (dflow.kill);
2084 }
2085
2086 if (aflags & DF_DU_CHAIN)
2087 {
2088 /* Create def-use chains. */
2089 df_du_chain_create (df, df->all_blocks);
2090
2091 if (! (flags & DF_RU))
2092 dflags |= DF_RU;
2093 }
2094
2095 /* Free up bitmaps that are no longer required. */
2096 if (dflags)
2097 df_bitmaps_free (df, dflags);
2098
2099 if (aflags & DF_LR)
2100 {
2101 /* Compute the sets of defs and uses of live variables. */
2102 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2103 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2104 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2105 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2106
2107 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2108
2109 FOR_EACH_BB (bb)
2110 {
2111 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2112 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2113 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2114 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2115 }
2116
2117 dflow.repr = SR_BITMAP;
2118 dflow.dir = DF_BACKWARD;
2119 dflow.conf_op = DF_UNION;
2120 dflow.transfun = df_lr_transfer_function;
2121 dflow.n_blocks = n_basic_blocks;
2122 dflow.order = df->rts_order;
2123 dflow.data = NULL;
2124
2125 iterative_dataflow (&dflow);
2126 free (dflow.in);
2127 free (dflow.out);
2128 free (dflow.gen);
2129 free (dflow.kill);
2130 }
2131
2132 if (aflags & DF_REG_INFO)
2133 {
2134 df_reg_info_compute (df, df->all_blocks);
2135 }
2136
2137 free (df->dfs_order);
2138 free (df->rc_order);
2139 free (df->rts_order);
2140 free (df->inverse_rc_map);
2141 free (df->inverse_dfs_map);
2142 free (df->inverse_rts_map);
2143 }
2144
2145
2146 /* Initialize dataflow analysis. */
2147 struct df *
2148 df_init (void)
2149 {
2150 struct df *df;
2151
2152 df = xcalloc (1, sizeof (struct df));
2153
2154 /* Squirrel away a global for debugging. */
2155 ddf = df;
2156
2157 return df;
2158 }
2159
2160
2161 /* Start queuing refs. */
2162 static int
2163 df_refs_queue (struct df *df)
2164 {
2165 df->def_id_save = df->def_id;
2166 df->use_id_save = df->use_id;
2167 /* ???? Perhaps we should save current obstack state so that we can
2168 unwind it. */
2169 return 0;
2170 }
2171
2172
2173 /* Process queued refs. */
2174 static int
2175 df_refs_process (struct df *df)
2176 {
2177 unsigned int i;
2178
2179 /* Build new insn-def chains. */
2180 for (i = df->def_id_save; i != df->def_id; i++)
2181 {
2182 struct ref *def = df->defs[i];
2183 unsigned int uid = DF_REF_INSN_UID (def);
2184
2185 /* Add def to head of def list for INSN. */
2186 df->insns[uid].defs
2187 = df_link_create (def, df->insns[uid].defs);
2188 }
2189
2190 /* Build new insn-use chains. */
2191 for (i = df->use_id_save; i != df->use_id; i++)
2192 {
2193 struct ref *use = df->uses[i];
2194 unsigned int uid = DF_REF_INSN_UID (use);
2195
2196 /* Add use to head of use list for INSN. */
2197 df->insns[uid].uses
2198 = df_link_create (use, df->insns[uid].uses);
2199 }
2200 return 0;
2201 }
2202
2203
2204 /* Update refs for basic block BB. */
2205 static int
2206 df_bb_refs_update (struct df *df, basic_block bb)
2207 {
2208 rtx insn;
2209 int count = 0;
2210
2211 /* While we have to scan the chain of insns for this BB, we do not
2212 need to allocate and queue a long chain of BB/INSN pairs. Using
2213 a bitmap for insns_modified saves memory and avoids queuing
2214 duplicates. */
2215
2216 FOR_BB_INSNS (bb, insn)
2217 {
2218 unsigned int uid;
2219
2220 uid = INSN_UID (insn);
2221
2222 if (bitmap_bit_p (df->insns_modified, uid))
2223 {
2224 /* Delete any allocated refs of this insn. MPH, FIXME. */
2225 df_insn_refs_unlink (df, bb, insn);
2226
2227 /* Scan the insn for refs. */
2228 df_insn_refs_record (df, bb, insn);
2229
2230 count++;
2231 }
2232 }
2233 return count;
2234 }
2235
2236
2237 /* Process all the modified/deleted insns that were queued. */
2238 static int
2239 df_refs_update (struct df *df, bitmap blocks)
2240 {
2241 basic_block bb;
2242 unsigned count = 0, bbno;
2243
2244 df->n_regs = max_reg_num ();
2245 if (df->n_regs >= df->reg_size)
2246 df_reg_table_realloc (df, 0);
2247
2248 df_refs_queue (df);
2249
2250 if (!blocks)
2251 {
2252 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2253 {
2254 count += df_bb_refs_update (df, bb);
2255 });
2256 }
2257 else
2258 {
2259 bitmap_iterator bi;
2260
2261 EXECUTE_IF_AND_IN_BITMAP (df->bbs_modified, blocks, 0, bbno, bi)
2262 {
2263 count += df_bb_refs_update (df, BASIC_BLOCK (bbno));
2264 }
2265 }
2266
2267 df_refs_process (df);
2268 return count;
2269 }
2270
2271
2272 /* Return nonzero if any of the requested blocks in the bitmap
2273 BLOCKS have been modified. */
2274 static int
2275 df_modified_p (struct df *df, bitmap blocks)
2276 {
2277 int update = 0;
2278 basic_block bb;
2279
2280 if (!df->n_bbs)
2281 return 0;
2282
2283 FOR_EACH_BB (bb)
2284 if (bitmap_bit_p (df->bbs_modified, bb->index)
2285 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
2286 {
2287 update = 1;
2288 break;
2289 }
2290
2291 return update;
2292 }
2293
2294 /* Analyze dataflow info for the basic blocks specified by the bitmap
2295 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2296 modified blocks if BLOCKS is -1. */
2297
2298 int
2299 df_analyze (struct df *df, bitmap blocks, int flags)
2300 {
2301 int update;
2302
2303 /* We could deal with additional basic blocks being created by
2304 rescanning everything again. */
2305 gcc_assert (!df->n_bbs || df->n_bbs == (unsigned int) last_basic_block);
2306
2307 update = df_modified_p (df, blocks);
2308 if (update || (flags != df->flags))
2309 {
2310 if (! blocks)
2311 {
2312 if (df->n_bbs)
2313 {
2314 /* Recompute everything from scratch. */
2315 df_free (df);
2316 }
2317 /* Allocate and initialize data structures. */
2318 df_alloc (df, max_reg_num ());
2319 df_analyze_1 (df, 0, flags, 0);
2320 update = 1;
2321 }
2322 else
2323 {
2324 if (blocks == (bitmap) -1)
2325 blocks = df->bbs_modified;
2326
2327 gcc_assert (df->n_bbs);
2328
2329 df_analyze_1 (df, blocks, flags, 1);
2330 bitmap_zero (df->bbs_modified);
2331 bitmap_zero (df->insns_modified);
2332 }
2333 }
2334 return update;
2335 }
2336
2337 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2338 the order of the remaining entries. Returns the length of the resulting
2339 list. */
2340
2341 static unsigned
2342 prune_to_subcfg (int list[], unsigned len, bitmap blocks)
2343 {
2344 unsigned act, last;
2345
2346 for (act = 0, last = 0; act < len; act++)
2347 if (bitmap_bit_p (blocks, list[act]))
2348 list[last++] = list[act];
2349
2350 return last;
2351 }
2352
2353 /* Alternative entry point to the analysis. Analyze just the part of the cfg
2354 graph induced by BLOCKS.
2355
2356 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2357 here, and simultaneously not make even greater chaos in it. We behave
2358 slightly differently in some details, especially in handling modified
2359 insns. */
2360
2361 void
2362 df_analyze_subcfg (struct df *df, bitmap blocks, int flags)
2363 {
2364 rtx insn;
2365 basic_block bb;
2366 struct dataflow dflow;
2367 unsigned n_blocks;
2368
2369 if (flags & DF_UD_CHAIN)
2370 flags |= DF_RD | DF_RD_CHAIN;
2371 if (flags & DF_DU_CHAIN)
2372 flags |= DF_RU;
2373 if (flags & DF_RU)
2374 flags |= DF_RU_CHAIN;
2375 if (flags & DF_REG_INFO)
2376 flags |= DF_LR;
2377
2378 if (!df->n_bbs)
2379 {
2380 df_alloc (df, max_reg_num ());
2381
2382 /* Mark all insns as modified. */
2383
2384 FOR_EACH_BB (bb)
2385 {
2386 FOR_BB_INSNS (bb, insn)
2387 {
2388 df_insn_modify (df, bb, insn);
2389 }
2390 }
2391 }
2392
2393 df->flags = flags;
2394
2395 df_reg_def_chain_clean (df);
2396 df_reg_use_chain_clean (df);
2397
2398 df_refs_update (df, blocks);
2399
2400 /* Clear the updated stuff from ``modified'' bitmaps. */
2401 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2402 {
2403 if (bitmap_bit_p (df->bbs_modified, bb->index))
2404 {
2405 FOR_BB_INSNS (bb, insn)
2406 {
2407 bitmap_clear_bit (df->insns_modified, INSN_UID (insn));
2408 }
2409
2410 bitmap_clear_bit (df->bbs_modified, bb->index);
2411 }
2412 });
2413
2414 /* Allocate the bitmaps now the total number of defs and uses are
2415 known. If the number of defs or uses have changed, then
2416 these bitmaps need to be reallocated. */
2417 df_bitmaps_alloc (df, blocks, flags);
2418
2419 /* Set the LUIDs for each specified basic block. */
2420 df_luids_set (df, blocks);
2421
2422 /* Recreate reg-def and reg-use chains from scratch so that first
2423 def is at the head of the reg-def chain and the last use is at
2424 the head of the reg-use chain. This is only important for
2425 regs local to a basic block as it speeds up searching. */
2426 if (flags & DF_RD_CHAIN)
2427 {
2428 df_reg_def_chain_create (df, blocks, true);
2429 }
2430
2431 if (flags & DF_RU_CHAIN)
2432 {
2433 df_reg_use_chain_create (df, blocks, true);
2434 }
2435
2436 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks);
2437 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks);
2438 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks);
2439
2440 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2441 flow_reverse_top_sort_order_compute (df->rts_order);
2442
2443 n_blocks = prune_to_subcfg (df->dfs_order, n_basic_blocks, blocks);
2444 prune_to_subcfg (df->rc_order, n_basic_blocks, blocks);
2445 prune_to_subcfg (df->rts_order, n_basic_blocks, blocks);
2446
2447 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2448 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2449 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2450 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2451
2452 if (flags & DF_RD)
2453 {
2454 /* Compute the sets of gens and kills for the defs of each bb. */
2455 df_rd_local_compute (df, blocks);
2456
2457 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2458 {
2459 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2460 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2461 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2462 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2463 });
2464
2465 dflow.repr = SR_BITMAP;
2466 dflow.dir = DF_FORWARD;
2467 dflow.conf_op = DF_UNION;
2468 dflow.transfun = df_rd_transfer_function;
2469 dflow.n_blocks = n_blocks;
2470 dflow.order = df->rc_order;
2471 dflow.data = NULL;
2472
2473 iterative_dataflow (&dflow);
2474 }
2475
2476 if (flags & DF_UD_CHAIN)
2477 {
2478 /* Create use-def chains. */
2479 df_ud_chain_create (df, blocks);
2480 }
2481
2482 if (flags & DF_RU)
2483 {
2484 /* Compute the sets of gens and kills for the upwards exposed
2485 uses in each bb. */
2486 df_ru_local_compute (df, blocks);
2487
2488 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2489 {
2490 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2491 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2492 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2493 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2494 });
2495
2496 dflow.repr = SR_BITMAP;
2497 dflow.dir = DF_BACKWARD;
2498 dflow.conf_op = DF_UNION;
2499 dflow.transfun = df_ru_transfer_function;
2500 dflow.n_blocks = n_blocks;
2501 dflow.order = df->rts_order;
2502 dflow.data = NULL;
2503
2504 iterative_dataflow (&dflow);
2505 }
2506
2507 if (flags & DF_DU_CHAIN)
2508 {
2509 /* Create def-use chains. */
2510 df_du_chain_create (df, blocks);
2511 }
2512
2513 if (flags & DF_LR)
2514 {
2515 /* Compute the sets of defs and uses of live variables. */
2516 df_lr_local_compute (df, blocks);
2517
2518 FOR_EACH_BB (bb)
2519 {
2520 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2521 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2522 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2523 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2524 }
2525
2526 dflow.repr = SR_BITMAP;
2527 dflow.dir = DF_BACKWARD;
2528 dflow.conf_op = DF_UNION;
2529 dflow.transfun = df_lr_transfer_function;
2530 dflow.n_blocks = n_blocks;
2531 dflow.order = df->rts_order;
2532 dflow.data = NULL;
2533
2534 iterative_dataflow (&dflow);
2535 }
2536
2537 if (flags & DF_REG_INFO)
2538 {
2539 df_reg_info_compute (df, blocks);
2540 }
2541
2542 free (dflow.in);
2543 free (dflow.out);
2544 free (dflow.gen);
2545 free (dflow.kill);
2546
2547 free (df->dfs_order);
2548 free (df->rc_order);
2549 free (df->rts_order);
2550 }
2551
2552 /* Free all the dataflow info and the DF structure. */
2553 void
2554 df_finish (struct df *df)
2555 {
2556 df_free (df);
2557 free (df);
2558 }
2559
2560 /* Unlink INSN from its reference information. */
2561 static void
2562 df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2563 {
2564 struct df_link *link;
2565 unsigned int uid;
2566
2567 uid = INSN_UID (insn);
2568
2569 /* Unlink all refs defined by this insn. */
2570 for (link = df->insns[uid].defs; link; link = link->next)
2571 df_def_unlink (df, link->ref);
2572
2573 /* Unlink all refs used by this insn. */
2574 for (link = df->insns[uid].uses; link; link = link->next)
2575 df_use_unlink (df, link->ref);
2576
2577 df->insns[uid].defs = 0;
2578 df->insns[uid].uses = 0;
2579 }
2580
2581
2582 #if 0
2583 /* Unlink all the insns within BB from their reference information. */
2584 static void
2585 df_bb_refs_unlink (struct df *df, basic_block bb)
2586 {
2587 rtx insn;
2588
2589 /* Scan the block an insn at a time from beginning to end. */
2590 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
2591 {
2592 if (INSN_P (insn))
2593 {
2594 /* Unlink refs for INSN. */
2595 df_insn_refs_unlink (df, bb, insn);
2596 }
2597 if (insn == BB_END (bb))
2598 break;
2599 }
2600 }
2601
2602
2603 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2604 Not currently used. */
2605 static void
2606 df_refs_unlink (struct df *df, bitmap blocks)
2607 {
2608 basic_block bb;
2609
2610 if (blocks)
2611 {
2612 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2613 {
2614 df_bb_refs_unlink (df, bb);
2615 });
2616 }
2617 else
2618 {
2619 FOR_EACH_BB (bb)
2620 df_bb_refs_unlink (df, bb);
2621 }
2622 }
2623 #endif
2624 \f
2625 /* Functions to modify insns. */
2626
2627
2628 /* Delete INSN and all its reference information. */
2629 rtx
2630 df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2631 {
2632 /* If the insn is a jump, we should perhaps call delete_insn to
2633 handle the JUMP_LABEL? */
2634
2635 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2636 gcc_assert (insn != BB_HEAD (bb));
2637
2638 /* Delete the insn. */
2639 delete_insn (insn);
2640
2641 df_insn_modify (df, bb, insn);
2642
2643 return NEXT_INSN (insn);
2644 }
2645
2646 /* Mark that basic block BB was modified. */
2647
2648 static void
2649 df_bb_modify (struct df *df, basic_block bb)
2650 {
2651 if ((unsigned) bb->index >= df->n_bbs)
2652 df_bb_table_realloc (df, df->n_bbs);
2653
2654 bitmap_set_bit (df->bbs_modified, bb->index);
2655 }
2656
2657 /* Mark that INSN within BB may have changed (created/modified/deleted).
2658 This may be called multiple times for the same insn. There is no
2659 harm calling this function if the insn wasn't changed; it will just
2660 slow down the rescanning of refs. */
2661 void
2662 df_insn_modify (struct df *df, basic_block bb, rtx insn)
2663 {
2664 unsigned int uid;
2665
2666 uid = INSN_UID (insn);
2667 if (uid >= df->insn_size)
2668 df_insn_table_realloc (df, uid);
2669
2670 df_bb_modify (df, bb);
2671 bitmap_set_bit (df->insns_modified, uid);
2672
2673 /* For incremental updating on the fly, perhaps we could make a copy
2674 of all the refs of the original insn and turn them into
2675 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2676 the original refs. If validate_change fails then these anti-refs
2677 will just get ignored. */
2678 }
2679
2680 typedef struct replace_args
2681 {
2682 rtx match;
2683 rtx replacement;
2684 rtx insn;
2685 int modified;
2686 } replace_args;
2687
2688
2689 /* Replace mem pointed to by PX with its associated pseudo register.
2690 DATA is actually a pointer to a structure describing the
2691 instruction currently being scanned and the MEM we are currently
2692 replacing. */
2693 static int
2694 df_rtx_mem_replace (rtx *px, void *data)
2695 {
2696 replace_args *args = (replace_args *) data;
2697 rtx mem = *px;
2698
2699 if (mem == NULL_RTX)
2700 return 0;
2701
2702 switch (GET_CODE (mem))
2703 {
2704 case MEM:
2705 break;
2706
2707 case CONST_DOUBLE:
2708 /* We're not interested in the MEM associated with a
2709 CONST_DOUBLE, so there's no need to traverse into one. */
2710 return -1;
2711
2712 default:
2713 /* This is not a MEM. */
2714 return 0;
2715 }
2716
2717 if (!rtx_equal_p (args->match, mem))
2718 /* This is not the MEM we are currently replacing. */
2719 return 0;
2720
2721 /* Actually replace the MEM. */
2722 validate_change (args->insn, px, args->replacement, 1);
2723 args->modified++;
2724
2725 return 0;
2726 }
2727
2728
2729 int
2730 df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
2731 {
2732 replace_args args;
2733
2734 args.insn = insn;
2735 args.match = mem;
2736 args.replacement = reg;
2737 args.modified = 0;
2738
2739 /* Search and replace all matching mems within insn. */
2740 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2741
2742 if (args.modified)
2743 df_insn_modify (df, bb, insn);
2744
2745 /* ???? FIXME. We may have a new def or one or more new uses of REG
2746 in INSN. REG should be a new pseudo so it won't affect the
2747 dataflow information that we currently have. We should add
2748 the new uses and defs to INSN and then recreate the chains
2749 when df_analyze is called. */
2750 return args.modified;
2751 }
2752
2753
2754 /* Replace one register with another. Called through for_each_rtx; PX
2755 points to the rtx being scanned. DATA is actually a pointer to a
2756 structure of arguments. */
2757 static int
2758 df_rtx_reg_replace (rtx *px, void *data)
2759 {
2760 rtx x = *px;
2761 replace_args *args = (replace_args *) data;
2762
2763 if (x == NULL_RTX)
2764 return 0;
2765
2766 if (x == args->match)
2767 {
2768 validate_change (args->insn, px, args->replacement, 1);
2769 args->modified++;
2770 }
2771
2772 return 0;
2773 }
2774
2775
2776 /* Replace the reg within every ref on CHAIN that is within the set
2777 BLOCKS of basic blocks with NEWREG. Also update the regs within
2778 REG_NOTES. */
2779 void
2780 df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
2781 {
2782 struct df_link *link;
2783 replace_args args;
2784
2785 if (! blocks)
2786 blocks = df->all_blocks;
2787
2788 args.match = oldreg;
2789 args.replacement = newreg;
2790 args.modified = 0;
2791
2792 for (link = chain; link; link = link->next)
2793 {
2794 struct ref *ref = link->ref;
2795 rtx insn = DF_REF_INSN (ref);
2796
2797 if (! INSN_P (insn))
2798 continue;
2799
2800 gcc_assert (bitmap_bit_p (blocks, DF_REF_BBNO (ref)));
2801
2802 df_ref_reg_replace (df, ref, oldreg, newreg);
2803
2804 /* Replace occurrences of the reg within the REG_NOTES. */
2805 if ((! link->next || DF_REF_INSN (ref)
2806 != DF_REF_INSN (link->next->ref))
2807 && REG_NOTES (insn))
2808 {
2809 args.insn = insn;
2810 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2811 }
2812 }
2813 }
2814
2815
2816 /* Replace all occurrences of register OLDREG with register NEWREG in
2817 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2818 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2819 routine expects the reg-use and reg-def chains to be valid. */
2820 int
2821 df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
2822 {
2823 unsigned int oldregno = REGNO (oldreg);
2824
2825 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2826 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2827 return 1;
2828 }
2829
2830
2831 /* Try replacing the reg within REF with NEWREG. Do not modify
2832 def-use/use-def chains. */
2833 int
2834 df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
2835 {
2836 /* Check that insn was deleted by being converted into a NOTE. If
2837 so ignore this insn. */
2838 if (! INSN_P (DF_REF_INSN (ref)))
2839 return 0;
2840
2841 gcc_assert (!oldreg || oldreg == DF_REF_REG (ref));
2842
2843 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2844 return 0;
2845
2846 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2847 return 1;
2848 }
2849
2850
2851 struct ref*
2852 df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
2853 {
2854 struct ref *def;
2855 struct ref *use;
2856 int def_uid;
2857 int use_uid;
2858 struct df_link *link;
2859
2860 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2861 if (! def)
2862 return 0;
2863
2864 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2865 if (! use)
2866 return 0;
2867
2868 /* The USE no longer exists. */
2869 use_uid = INSN_UID (use_insn);
2870 df_use_unlink (df, use);
2871 df_ref_unlink (&df->insns[use_uid].uses, use);
2872
2873 /* The DEF requires shifting so remove it from DEF_INSN
2874 and add it to USE_INSN by reusing LINK. */
2875 def_uid = INSN_UID (def_insn);
2876 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2877 link->ref = def;
2878 link->next = df->insns[use_uid].defs;
2879 df->insns[use_uid].defs = link;
2880
2881 #if 0
2882 link = df_ref_unlink (&df->regs[regno].defs, def);
2883 link->ref = def;
2884 link->next = df->regs[regno].defs;
2885 df->insns[regno].defs = link;
2886 #endif
2887
2888 DF_REF_INSN (def) = use_insn;
2889 return def;
2890 }
2891
2892
2893 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2894 insns must be processed by this routine. */
2895 static void
2896 df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
2897 {
2898 rtx insn;
2899
2900 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2901 {
2902 unsigned int uid;
2903
2904 /* A non-const call should not have slipped through the net. If
2905 it does, we need to create a new basic block. Ouch. The
2906 same applies for a label. */
2907 gcc_assert ((!CALL_P (insn) || CONST_OR_PURE_CALL_P (insn))
2908 && !LABEL_P (insn));
2909
2910 uid = INSN_UID (insn);
2911
2912 if (uid >= df->insn_size)
2913 df_insn_table_realloc (df, uid);
2914
2915 df_insn_modify (df, bb, insn);
2916
2917 if (insn == last_insn)
2918 break;
2919 }
2920 }
2921
2922
2923 /* Emit PATTERN before INSN within BB. */
2924 rtx
2925 df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
2926 {
2927 rtx ret_insn;
2928 rtx prev_insn = PREV_INSN (insn);
2929
2930 /* We should not be inserting before the start of the block. */
2931 gcc_assert (insn != BB_HEAD (bb));
2932 ret_insn = emit_insn_before (pattern, insn);
2933 if (ret_insn == insn)
2934 return ret_insn;
2935
2936 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2937 return ret_insn;
2938 }
2939
2940
2941 /* Emit PATTERN after INSN within BB. */
2942 rtx
2943 df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2944 {
2945 rtx ret_insn;
2946
2947 ret_insn = emit_insn_after (pattern, insn);
2948 if (ret_insn == insn)
2949 return ret_insn;
2950
2951 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2952 return ret_insn;
2953 }
2954
2955
2956 /* Emit jump PATTERN after INSN within BB. */
2957 rtx
2958 df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2959 {
2960 rtx ret_insn;
2961
2962 ret_insn = emit_jump_insn_after (pattern, insn);
2963 if (ret_insn == insn)
2964 return ret_insn;
2965
2966 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2967 return ret_insn;
2968 }
2969
2970
2971 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2972
2973 This function should only be used to move loop invariant insns
2974 out of a loop where it has been proven that the def-use info
2975 will still be valid. */
2976 rtx
2977 df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
2978 {
2979 struct df_link *link;
2980 unsigned int uid;
2981
2982 if (! bb)
2983 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2984
2985 uid = INSN_UID (insn);
2986
2987 /* Change bb for all df defined and used by this insn. */
2988 for (link = df->insns[uid].defs; link; link = link->next)
2989 DF_REF_BB (link->ref) = before_bb;
2990 for (link = df->insns[uid].uses; link; link = link->next)
2991 DF_REF_BB (link->ref) = before_bb;
2992
2993 /* The lifetimes of the registers used in this insn will be reduced
2994 while the lifetimes of the registers defined in this insn
2995 are likely to be increased. */
2996
2997 /* ???? Perhaps all the insns moved should be stored on a list
2998 which df_analyze removes when it recalculates data flow. */
2999
3000 return emit_insn_before (insn, before_insn);
3001 }
3002 \f
3003 /* Functions to query dataflow information. */
3004
3005
3006 int
3007 df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3008 rtx insn, unsigned int regno)
3009 {
3010 unsigned int uid;
3011 struct df_link *link;
3012
3013 uid = INSN_UID (insn);
3014
3015 for (link = df->insns[uid].defs; link; link = link->next)
3016 {
3017 struct ref *def = link->ref;
3018
3019 if (DF_REF_REGNO (def) == regno)
3020 return 1;
3021 }
3022
3023 return 0;
3024 }
3025
3026 /* Finds the reference corresponding to the definition of REG in INSN.
3027 DF is the dataflow object. */
3028
3029 struct ref *
3030 df_find_def (struct df *df, rtx insn, rtx reg)
3031 {
3032 struct df_link *defs;
3033
3034 for (defs = DF_INSN_DEFS (df, insn); defs; defs = defs->next)
3035 if (rtx_equal_p (DF_REF_REG (defs->ref), reg))
3036 return defs->ref;
3037
3038 return NULL;
3039 }
3040
3041 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3042
3043 int
3044 df_reg_used (struct df *df, rtx insn, rtx reg)
3045 {
3046 struct df_link *uses;
3047
3048 for (uses = DF_INSN_USES (df, insn); uses; uses = uses->next)
3049 if (rtx_equal_p (DF_REF_REG (uses->ref), reg))
3050 return 1;
3051
3052 return 0;
3053 }
3054
3055 static int
3056 df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
3057 {
3058 struct df_link *du_link;
3059
3060 /* Follow def-use chain to find all the uses of this def. */
3061 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3062 {
3063 struct ref *use = du_link->ref;
3064 struct df_link *ud_link;
3065
3066 /* Follow use-def chain to check all the defs for this use. */
3067 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3068 if (ud_link->ref != def)
3069 return 0;
3070 }
3071 return 1;
3072 }
3073
3074
3075 int
3076 df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3077 rtx insn)
3078 {
3079 unsigned int uid;
3080 struct df_link *link;
3081
3082 uid = INSN_UID (insn);
3083
3084 for (link = df->insns[uid].defs; link; link = link->next)
3085 {
3086 struct ref *def = link->ref;
3087
3088 if (! df_def_dominates_all_uses_p (df, def))
3089 return 0;
3090 }
3091
3092 return 1;
3093 }
3094
3095
3096 /* Return nonzero if all DF dominates all the uses within the bitmap
3097 BLOCKS. */
3098 static int
3099 df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
3100 bitmap blocks)
3101 {
3102 struct df_link *du_link;
3103
3104 /* Follow def-use chain to find all the uses of this def. */
3105 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3106 {
3107 struct ref *use = du_link->ref;
3108 struct df_link *ud_link;
3109
3110 /* Only worry about the uses within BLOCKS. For example,
3111 consider a register defined within a loop that is live at the
3112 loop exits. */
3113 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
3114 {
3115 /* Follow use-def chain to check all the defs for this use. */
3116 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3117 if (ud_link->ref != def)
3118 return 0;
3119 }
3120 }
3121 return 1;
3122 }
3123
3124
3125 /* Return nonzero if all the defs of INSN within BB dominates
3126 all the corresponding uses. */
3127 int
3128 df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3129 rtx insn, bitmap blocks)
3130 {
3131 unsigned int uid;
3132 struct df_link *link;
3133
3134 uid = INSN_UID (insn);
3135
3136 for (link = df->insns[uid].defs; link; link = link->next)
3137 {
3138 struct ref *def = link->ref;
3139
3140 /* Only consider the defs within BLOCKS. */
3141 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
3142 && ! df_def_dominates_uses_p (df, def, blocks))
3143 return 0;
3144 }
3145 return 1;
3146 }
3147
3148
3149 /* Return the basic block that REG referenced in or NULL if referenced
3150 in multiple basic blocks. */
3151 basic_block
3152 df_regno_bb (struct df *df, unsigned int regno)
3153 {
3154 struct df_link *defs = df->regs[regno].defs;
3155 struct df_link *uses = df->regs[regno].uses;
3156 struct ref *def = defs ? defs->ref : 0;
3157 struct ref *use = uses ? uses->ref : 0;
3158 basic_block bb_def = def ? DF_REF_BB (def) : 0;
3159 basic_block bb_use = use ? DF_REF_BB (use) : 0;
3160
3161 /* Compare blocks of first def and last use. ???? FIXME. What if
3162 the reg-def and reg-use lists are not correctly ordered. */
3163 return bb_def == bb_use ? bb_def : 0;
3164 }
3165
3166
3167 /* Return nonzero if REG used in multiple basic blocks. */
3168 int
3169 df_reg_global_p (struct df *df, rtx reg)
3170 {
3171 return df_regno_bb (df, REGNO (reg)) != 0;
3172 }
3173
3174
3175 /* Return total lifetime (in insns) of REG. */
3176 int
3177 df_reg_lifetime (struct df *df, rtx reg)
3178 {
3179 return df->regs[REGNO (reg)].lifetime;
3180 }
3181
3182
3183 /* Return nonzero if REG live at start of BB. */
3184 int
3185 df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
3186 {
3187 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3188
3189 gcc_assert (bb_info->lr_in);
3190
3191 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3192 }
3193
3194
3195 /* Return nonzero if REG live at end of BB. */
3196 int
3197 df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
3198 {
3199 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3200
3201 gcc_assert (bb_info->lr_in);
3202
3203 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3204 }
3205
3206
3207 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3208 after life of REG2, or 0, if the lives overlap. */
3209 int
3210 df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
3211 {
3212 unsigned int regno1 = REGNO (reg1);
3213 unsigned int regno2 = REGNO (reg2);
3214 struct ref *def1;
3215 struct ref *use1;
3216 struct ref *def2;
3217 struct ref *use2;
3218
3219
3220 /* The regs must be local to BB. */
3221 gcc_assert (df_regno_bb (df, regno1) == bb
3222 && df_regno_bb (df, regno2) == bb);
3223
3224 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3225 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3226
3227 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3228 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3229 return -1;
3230
3231 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3232 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3233
3234 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3235 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3236 return 1;
3237
3238 return 0;
3239 }
3240
3241
3242 /* Return last use of REGNO within BB. */
3243 struct ref *
3244 df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
3245 {
3246 struct df_link *link;
3247
3248 /* This assumes that the reg-use list is ordered such that for any
3249 BB, the last use is found first. However, since the BBs are not
3250 ordered, the first use in the chain is not necessarily the last
3251 use in the function. */
3252 for (link = df->regs[regno].uses; link; link = link->next)
3253 {
3254 struct ref *use = link->ref;
3255
3256 if (DF_REF_BB (use) == bb)
3257 return use;
3258 }
3259 return 0;
3260 }
3261
3262
3263 /* Return first def of REGNO within BB. */
3264 struct ref *
3265 df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
3266 {
3267 struct df_link *link;
3268
3269 /* This assumes that the reg-def list is ordered such that for any
3270 BB, the first def is found first. However, since the BBs are not
3271 ordered, the first def in the chain is not necessarily the first
3272 def in the function. */
3273 for (link = df->regs[regno].defs; link; link = link->next)
3274 {
3275 struct ref *def = link->ref;
3276
3277 if (DF_REF_BB (def) == bb)
3278 return def;
3279 }
3280 return 0;
3281 }
3282
3283 /* Return last def of REGNO within BB. */
3284 struct ref *
3285 df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
3286 {
3287 struct df_link *link;
3288 struct ref *last_def = NULL;
3289 int in_bb = 0;
3290
3291 /* This assumes that the reg-def list is ordered such that for any
3292 BB, the first def is found first. However, since the BBs are not
3293 ordered, the first def in the chain is not necessarily the first
3294 def in the function. */
3295 for (link = df->regs[regno].defs; link; link = link->next)
3296 {
3297 struct ref *def = link->ref;
3298 /* The first time in the desired block. */
3299 if (DF_REF_BB (def) == bb)
3300 in_bb = 1;
3301 /* The last def in the desired block. */
3302 else if (in_bb)
3303 return last_def;
3304 last_def = def;
3305 }
3306 return last_def;
3307 }
3308
3309 /* Return first use of REGNO inside INSN within BB. */
3310 static struct ref *
3311 df_bb_insn_regno_last_use_find (struct df *df,
3312 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3313 unsigned int regno)
3314 {
3315 unsigned int uid;
3316 struct df_link *link;
3317
3318 uid = INSN_UID (insn);
3319
3320 for (link = df->insns[uid].uses; link; link = link->next)
3321 {
3322 struct ref *use = link->ref;
3323
3324 if (DF_REF_REGNO (use) == regno)
3325 return use;
3326 }
3327
3328 return 0;
3329 }
3330
3331
3332 /* Return first def of REGNO inside INSN within BB. */
3333 static struct ref *
3334 df_bb_insn_regno_first_def_find (struct df *df,
3335 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3336 unsigned int regno)
3337 {
3338 unsigned int uid;
3339 struct df_link *link;
3340
3341 uid = INSN_UID (insn);
3342
3343 for (link = df->insns[uid].defs; link; link = link->next)
3344 {
3345 struct ref *def = link->ref;
3346
3347 if (DF_REF_REGNO (def) == regno)
3348 return def;
3349 }
3350
3351 return 0;
3352 }
3353
3354
3355 /* Return insn using REG if the BB contains only a single
3356 use and def of REG. */
3357 rtx
3358 df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
3359 {
3360 struct ref *def;
3361 struct ref *use;
3362 struct df_link *du_link;
3363
3364 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3365
3366 gcc_assert (def);
3367
3368 du_link = DF_REF_CHAIN (def);
3369
3370 if (! du_link)
3371 return NULL_RTX;
3372
3373 use = du_link->ref;
3374
3375 /* Check if def is dead. */
3376 if (! use)
3377 return NULL_RTX;
3378
3379 /* Check for multiple uses. */
3380 if (du_link->next)
3381 return NULL_RTX;
3382
3383 return DF_REF_INSN (use);
3384 }
3385 \f
3386 /* Functions for debugging/dumping dataflow information. */
3387
3388
3389 /* Dump a def-use or use-def chain for REF to FILE. */
3390 static void
3391 df_chain_dump (struct df_link *link, FILE *file)
3392 {
3393 fprintf (file, "{ ");
3394 for (; link; link = link->next)
3395 {
3396 fprintf (file, "%c%d ",
3397 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3398 DF_REF_ID (link->ref));
3399 }
3400 fprintf (file, "}");
3401 }
3402
3403
3404 /* Dump a chain of refs with the associated regno. */
3405 static void
3406 df_chain_dump_regno (struct df_link *link, FILE *file)
3407 {
3408 fprintf (file, "{ ");
3409 for (; link; link = link->next)
3410 {
3411 fprintf (file, "%c%d(%d) ",
3412 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3413 DF_REF_ID (link->ref),
3414 DF_REF_REGNO (link->ref));
3415 }
3416 fprintf (file, "}");
3417 }
3418
3419
3420 /* Dump dataflow info. */
3421 void
3422 df_dump (struct df *df, int flags, FILE *file)
3423 {
3424 unsigned int j;
3425 basic_block bb;
3426
3427 if (! df || ! file)
3428 return;
3429
3430 fprintf (file, "\nDataflow summary:\n");
3431 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3432 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3433
3434 if (flags & DF_RD)
3435 {
3436 basic_block bb;
3437
3438 fprintf (file, "Reaching defs:\n");
3439 FOR_EACH_BB (bb)
3440 {
3441 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3442
3443 if (! bb_info->rd_in)
3444 continue;
3445
3446 fprintf (file, "bb %d in \t", bb->index);
3447 dump_bitmap (file, bb_info->rd_in);
3448 fprintf (file, "bb %d gen \t", bb->index);
3449 dump_bitmap (file, bb_info->rd_gen);
3450 fprintf (file, "bb %d kill\t", bb->index);
3451 dump_bitmap (file, bb_info->rd_kill);
3452 fprintf (file, "bb %d out \t", bb->index);
3453 dump_bitmap (file, bb_info->rd_out);
3454 }
3455 }
3456
3457 if (flags & DF_UD_CHAIN)
3458 {
3459 fprintf (file, "Use-def chains:\n");
3460 for (j = 0; j < df->n_defs; j++)
3461 {
3462 if (df->defs[j])
3463 {
3464 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3465 j, DF_REF_BBNO (df->defs[j]),
3466 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3467 DF_REF_INSN_UID (df->defs[j]),
3468 DF_REF_REGNO (df->defs[j]));
3469 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3470 fprintf (file, "read/write ");
3471 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3472 fprintf (file, "\n");
3473 }
3474 }
3475 }
3476
3477 if (flags & DF_RU)
3478 {
3479 fprintf (file, "Reaching uses:\n");
3480 FOR_EACH_BB (bb)
3481 {
3482 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3483
3484 if (! bb_info->ru_in)
3485 continue;
3486
3487 fprintf (file, "bb %d in \t", bb->index);
3488 dump_bitmap (file, bb_info->ru_in);
3489 fprintf (file, "bb %d gen \t", bb->index);
3490 dump_bitmap (file, bb_info->ru_gen);
3491 fprintf (file, "bb %d kill\t", bb->index);
3492 dump_bitmap (file, bb_info->ru_kill);
3493 fprintf (file, "bb %d out \t", bb->index);
3494 dump_bitmap (file, bb_info->ru_out);
3495 }
3496 }
3497
3498 if (flags & DF_DU_CHAIN)
3499 {
3500 fprintf (file, "Def-use chains:\n");
3501 for (j = 0; j < df->n_uses; j++)
3502 {
3503 if (df->uses[j])
3504 {
3505 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3506 j, DF_REF_BBNO (df->uses[j]),
3507 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3508 DF_REF_INSN_UID (df->uses[j]),
3509 DF_REF_REGNO (df->uses[j]));
3510 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3511 fprintf (file, "read/write ");
3512 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3513 fprintf (file, "\n");
3514 }
3515 }
3516 }
3517
3518 if (flags & DF_LR)
3519 {
3520 fprintf (file, "Live regs:\n");
3521 FOR_EACH_BB (bb)
3522 {
3523 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3524
3525 if (! bb_info->lr_in)
3526 continue;
3527
3528 fprintf (file, "bb %d in \t", bb->index);
3529 dump_bitmap (file, bb_info->lr_in);
3530 fprintf (file, "bb %d use \t", bb->index);
3531 dump_bitmap (file, bb_info->lr_use);
3532 fprintf (file, "bb %d def \t", bb->index);
3533 dump_bitmap (file, bb_info->lr_def);
3534 fprintf (file, "bb %d out \t", bb->index);
3535 dump_bitmap (file, bb_info->lr_out);
3536 }
3537 }
3538
3539 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3540 {
3541 struct reg_info *reg_info = df->regs;
3542
3543 fprintf (file, "Register info:\n");
3544 for (j = 0; j < df->n_regs; j++)
3545 {
3546 if (((flags & DF_REG_INFO)
3547 && (reg_info[j].n_uses || reg_info[j].n_defs))
3548 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3549 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3550 {
3551 fprintf (file, "reg %d", j);
3552 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3553 {
3554 basic_block bb = df_regno_bb (df, j);
3555
3556 if (bb)
3557 fprintf (file, " bb %d", bb->index);
3558 else
3559 fprintf (file, " bb ?");
3560 }
3561 if (flags & DF_REG_INFO)
3562 {
3563 fprintf (file, " life %d", reg_info[j].lifetime);
3564 }
3565
3566 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3567 {
3568 fprintf (file, " defs ");
3569 if (flags & DF_REG_INFO)
3570 fprintf (file, "%d ", reg_info[j].n_defs);
3571 if (flags & DF_RD_CHAIN)
3572 df_chain_dump (reg_info[j].defs, file);
3573 }
3574
3575 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3576 {
3577 fprintf (file, " uses ");
3578 if (flags & DF_REG_INFO)
3579 fprintf (file, "%d ", reg_info[j].n_uses);
3580 if (flags & DF_RU_CHAIN)
3581 df_chain_dump (reg_info[j].uses, file);
3582 }
3583
3584 fprintf (file, "\n");
3585 }
3586 }
3587 }
3588 fprintf (file, "\n");
3589 }
3590
3591
3592 void
3593 df_insn_debug (struct df *df, rtx insn, FILE *file)
3594 {
3595 unsigned int uid;
3596 int bbi;
3597
3598 uid = INSN_UID (insn);
3599 if (uid >= df->insn_size)
3600 return;
3601
3602 if (df->insns[uid].defs)
3603 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3604 else if (df->insns[uid].uses)
3605 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3606 else
3607 bbi = -1;
3608
3609 fprintf (file, "insn %d bb %d luid %d defs ",
3610 uid, bbi, DF_INSN_LUID (df, insn));
3611 df_chain_dump (df->insns[uid].defs, file);
3612 fprintf (file, " uses ");
3613 df_chain_dump (df->insns[uid].uses, file);
3614 fprintf (file, "\n");
3615 }
3616
3617
3618 void
3619 df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
3620 {
3621 unsigned int uid;
3622 int bbi;
3623
3624 uid = INSN_UID (insn);
3625 if (uid >= df->insn_size)
3626 return;
3627
3628 if (df->insns[uid].defs)
3629 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3630 else if (df->insns[uid].uses)
3631 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3632 else
3633 bbi = -1;
3634
3635 fprintf (file, "insn %d bb %d luid %d defs ",
3636 uid, bbi, DF_INSN_LUID (df, insn));
3637 df_chain_dump_regno (df->insns[uid].defs, file);
3638 fprintf (file, " uses ");
3639 df_chain_dump_regno (df->insns[uid].uses, file);
3640 fprintf (file, "\n");
3641 }
3642
3643
3644 static void
3645 df_regno_debug (struct df *df, unsigned int regno, FILE *file)
3646 {
3647 if (regno >= df->reg_size)
3648 return;
3649
3650 fprintf (file, "reg %d life %d defs ",
3651 regno, df->regs[regno].lifetime);
3652 df_chain_dump (df->regs[regno].defs, file);
3653 fprintf (file, " uses ");
3654 df_chain_dump (df->regs[regno].uses, file);
3655 fprintf (file, "\n");
3656 }
3657
3658
3659 static void
3660 df_ref_debug (struct df *df, struct ref *ref, FILE *file)
3661 {
3662 fprintf (file, "%c%d ",
3663 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3664 DF_REF_ID (ref));
3665 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3666 DF_REF_REGNO (ref),
3667 DF_REF_BBNO (ref),
3668 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3669 INSN_UID (DF_REF_INSN (ref)));
3670 df_chain_dump (DF_REF_CHAIN (ref), file);
3671 fprintf (file, "\n");
3672 }
3673 \f
3674 /* Functions for debugging from GDB. */
3675
3676 void
3677 debug_df_insn (rtx insn)
3678 {
3679 df_insn_debug (ddf, insn, stderr);
3680 debug_rtx (insn);
3681 }
3682
3683
3684 void
3685 debug_df_reg (rtx reg)
3686 {
3687 df_regno_debug (ddf, REGNO (reg), stderr);
3688 }
3689
3690
3691 void
3692 debug_df_regno (unsigned int regno)
3693 {
3694 df_regno_debug (ddf, regno, stderr);
3695 }
3696
3697
3698 void
3699 debug_df_ref (struct ref *ref)
3700 {
3701 df_ref_debug (ddf, ref, stderr);
3702 }
3703
3704
3705 void
3706 debug_df_defno (unsigned int defno)
3707 {
3708 df_ref_debug (ddf, ddf->defs[defno], stderr);
3709 }
3710
3711
3712 void
3713 debug_df_useno (unsigned int defno)
3714 {
3715 df_ref_debug (ddf, ddf->uses[defno], stderr);
3716 }
3717
3718
3719 void
3720 debug_df_chain (struct df_link *link)
3721 {
3722 df_chain_dump (link, stderr);
3723 fputc ('\n', stderr);
3724 }
3725 \f
3726
3727 /* Perform the set operation OP1 OP OP2, using set representation REPR, and
3728 storing the result in OP1. */
3729
3730 static void
3731 dataflow_set_a_op_b (enum set_representation repr,
3732 enum df_confluence_op op,
3733 void *op1, void *op2)
3734 {
3735 switch (repr)
3736 {
3737 case SR_SBITMAP:
3738 switch (op)
3739 {
3740 case DF_UNION:
3741 sbitmap_a_or_b (op1, op1, op2);
3742 break;
3743
3744 case DF_INTERSECTION:
3745 sbitmap_a_and_b (op1, op1, op2);
3746 break;
3747
3748 default:
3749 gcc_unreachable ();
3750 }
3751 break;
3752
3753 case SR_BITMAP:
3754 switch (op)
3755 {
3756 case DF_UNION:
3757 bitmap_ior_into (op1, op2);
3758 break;
3759
3760 case DF_INTERSECTION:
3761 bitmap_and_into (op1, op2);
3762 break;
3763
3764 default:
3765 gcc_unreachable ();
3766 }
3767 break;
3768
3769 default:
3770 gcc_unreachable ();
3771 }
3772 }
3773
3774 static void
3775 dataflow_set_copy (enum set_representation repr, void *dest, void *src)
3776 {
3777 switch (repr)
3778 {
3779 case SR_SBITMAP:
3780 sbitmap_copy (dest, src);
3781 break;
3782
3783 case SR_BITMAP:
3784 bitmap_copy (dest, src);
3785 break;
3786
3787 default:
3788 gcc_unreachable ();
3789 }
3790 }
3791
3792 /* Hybrid search algorithm from "Implementation Techniques for
3793 Efficient Data-Flow Analysis of Large Programs". */
3794
3795 static void
3796 hybrid_search (basic_block bb, struct dataflow *dataflow,
3797 sbitmap visited, sbitmap pending, sbitmap considered)
3798 {
3799 int changed;
3800 int i = bb->index;
3801 edge e;
3802 edge_iterator ei;
3803
3804 SET_BIT (visited, bb->index);
3805 gcc_assert (TEST_BIT (pending, bb->index));
3806 RESET_BIT (pending, i);
3807
3808 #define HS(E_ANTI, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3809 E, E_BB, E_START_BB, OUT_SET) \
3810 do \
3811 { \
3812 /* Calculate <conf_op> of predecessor_outs. */ \
3813 bitmap_zero (IN_SET[i]); \
3814 FOR_EACH_EDGE (e, ei, bb->E_ANTI) \
3815 { \
3816 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3817 continue; \
3818 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3819 continue; \
3820 \
3821 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3822 IN_SET[i], \
3823 OUT_SET[e->E_ANTI_BB->index]); \
3824 } \
3825 \
3826 (*dataflow->transfun)(i, &changed, \
3827 dataflow->in[i], dataflow->out[i], \
3828 dataflow->gen[i], dataflow->kill[i], \
3829 dataflow->data); \
3830 \
3831 if (!changed) \
3832 break; \
3833 \
3834 FOR_EACH_EDGE (e, ei, bb->E) \
3835 { \
3836 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3837 continue; \
3838 \
3839 if (!TEST_BIT (considered, e->E_BB->index)) \
3840 continue; \
3841 \
3842 SET_BIT (pending, e->E_BB->index); \
3843 } \
3844 \
3845 FOR_EACH_EDGE (e, ei, bb->E) \
3846 { \
3847 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3848 continue; \
3849 \
3850 if (!TEST_BIT (considered, e->E_BB->index)) \
3851 continue; \
3852 \
3853 if (!TEST_BIT (visited, e->E_BB->index)) \
3854 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3855 } \
3856 } while (0)
3857
3858 if (dataflow->dir == DF_FORWARD)
3859 HS (preds, src, ENTRY_BLOCK_PTR, dataflow->in,
3860 succs, dest, EXIT_BLOCK_PTR, dataflow->out);
3861 else
3862 HS (succs, dest, EXIT_BLOCK_PTR, dataflow->out,
3863 preds, src, ENTRY_BLOCK_PTR, dataflow->in);
3864 }
3865
3866 /* This function will perform iterative bitvector dataflow described by
3867 DATAFLOW, producing the in and out sets. Only the part of the cfg
3868 induced by blocks in DATAFLOW->order is taken into account.
3869
3870 For forward problems, you probably want to pass in a mapping of
3871 block number to rc_order (like df->inverse_rc_map). */
3872
3873 void
3874 iterative_dataflow (struct dataflow *dataflow)
3875 {
3876 unsigned i, idx;
3877 sbitmap visited, pending, considered;
3878
3879 pending = sbitmap_alloc (last_basic_block);
3880 visited = sbitmap_alloc (last_basic_block);
3881 considered = sbitmap_alloc (last_basic_block);
3882 sbitmap_zero (pending);
3883 sbitmap_zero (visited);
3884 sbitmap_zero (considered);
3885
3886 for (i = 0; i < dataflow->n_blocks; i++)
3887 {
3888 idx = dataflow->order[i];
3889 SET_BIT (pending, idx);
3890 SET_BIT (considered, idx);
3891 if (dataflow->dir == DF_FORWARD)
3892 dataflow_set_copy (dataflow->repr,
3893 dataflow->out[idx], dataflow->gen[idx]);
3894 else
3895 dataflow_set_copy (dataflow->repr,
3896 dataflow->in[idx], dataflow->gen[idx]);
3897 };
3898
3899 while (1)
3900 {
3901 for (i = 0; i < dataflow->n_blocks; i++)
3902 {
3903 idx = dataflow->order[i];
3904
3905 if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
3906 hybrid_search (BASIC_BLOCK (idx), dataflow,
3907 visited, pending, considered);
3908 }
3909
3910 if (sbitmap_first_set_bit (pending) == -1)
3911 break;
3912
3913 sbitmap_zero (visited);
3914 }
3915
3916 sbitmap_free (pending);
3917 sbitmap_free (visited);
3918 sbitmap_free (considered);
3919 }