]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/extend.texi
Add documentation for fcf-protection option and nocf_check attribute
[thirdparty/gcc.git] / gcc / doc / extend.texi
1 c Copyright (C) 1988-2017 Free Software Foundation, Inc.
2
3 @c This is part of the GCC manual.
4 @c For copying conditions, see the file gcc.texi.
5
6 @node C Extensions
7 @chapter Extensions to the C Language Family
8 @cindex extensions, C language
9 @cindex C language extensions
10
11 @opindex pedantic
12 GNU C provides several language features not found in ISO standard C@.
13 (The @option{-pedantic} option directs GCC to print a warning message if
14 any of these features is used.) To test for the availability of these
15 features in conditional compilation, check for a predefined macro
16 @code{__GNUC__}, which is always defined under GCC@.
17
18 These extensions are available in C and Objective-C@. Most of them are
19 also available in C++. @xref{C++ Extensions,,Extensions to the
20 C++ Language}, for extensions that apply @emph{only} to C++.
21
22 Some features that are in ISO C99 but not C90 or C++ are also, as
23 extensions, accepted by GCC in C90 mode and in C++.
24
25 @menu
26 * Statement Exprs:: Putting statements and declarations inside expressions.
27 * Local Labels:: Labels local to a block.
28 * Labels as Values:: Getting pointers to labels, and computed gotos.
29 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
30 * Constructing Calls:: Dispatching a call to another function.
31 * Typeof:: @code{typeof}: referring to the type of an expression.
32 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
33 * __int128:: 128-bit integers---@code{__int128}.
34 * Long Long:: Double-word integers---@code{long long int}.
35 * Complex:: Data types for complex numbers.
36 * Floating Types:: Additional Floating Types.
37 * Half-Precision:: Half-Precision Floating Point.
38 * Decimal Float:: Decimal Floating Types.
39 * Hex Floats:: Hexadecimal floating-point constants.
40 * Fixed-Point:: Fixed-Point Types.
41 * Named Address Spaces::Named address spaces.
42 * Zero Length:: Zero-length arrays.
43 * Empty Structures:: Structures with no members.
44 * Variable Length:: Arrays whose length is computed at run time.
45 * Variadic Macros:: Macros with a variable number of arguments.
46 * Escaped Newlines:: Slightly looser rules for escaped newlines.
47 * Subscripting:: Any array can be subscripted, even if not an lvalue.
48 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
49 * Pointers to Arrays:: Pointers to arrays with qualifiers work as expected.
50 * Initializers:: Non-constant initializers.
51 * Compound Literals:: Compound literals give structures, unions
52 or arrays as values.
53 * Designated Inits:: Labeling elements of initializers.
54 * Case Ranges:: `case 1 ... 9' and such.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Mixed Declarations:: Mixing declarations and code.
57 * Function Attributes:: Declaring that functions have no side effects,
58 or that they can never return.
59 * Variable Attributes:: Specifying attributes of variables.
60 * Type Attributes:: Specifying attributes of types.
61 * Label Attributes:: Specifying attributes on labels.
62 * Enumerator Attributes:: Specifying attributes on enumerators.
63 * Statement Attributes:: Specifying attributes on statements.
64 * Attribute Syntax:: Formal syntax for attributes.
65 * Function Prototypes:: Prototype declarations and old-style definitions.
66 * C++ Comments:: C++ comments are recognized.
67 * Dollar Signs:: Dollar sign is allowed in identifiers.
68 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
69 * Alignment:: Inquiring about the alignment of a type or variable.
70 * Inline:: Defining inline functions (as fast as macros).
71 * Volatiles:: What constitutes an access to a volatile object.
72 * Using Assembly Language with C:: Instructions and extensions for interfacing C with assembler.
73 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
74 * Incomplete Enums:: @code{enum foo;}, with details to follow.
75 * Function Names:: Printable strings which are the name of the current
76 function.
77 * Return Address:: Getting the return or frame address of a function.
78 * Vector Extensions:: Using vector instructions through built-in functions.
79 * Offsetof:: Special syntax for implementing @code{offsetof}.
80 * __sync Builtins:: Legacy built-in functions for atomic memory access.
81 * __atomic Builtins:: Atomic built-in functions with memory model.
82 * Integer Overflow Builtins:: Built-in functions to perform arithmetics and
83 arithmetic overflow checking.
84 * x86 specific memory model extensions for transactional memory:: x86 memory models.
85 * Object Size Checking:: Built-in functions for limited buffer overflow
86 checking.
87 * Pointer Bounds Checker builtins:: Built-in functions for Pointer Bounds Checker.
88 * Cilk Plus Builtins:: Built-in functions for the Cilk Plus language extension.
89 * Other Builtins:: Other built-in functions.
90 * Target Builtins:: Built-in functions specific to particular targets.
91 * Target Format Checks:: Format checks specific to particular targets.
92 * Pragmas:: Pragmas accepted by GCC.
93 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
94 * Thread-Local:: Per-thread variables.
95 * Binary constants:: Binary constants using the @samp{0b} prefix.
96 @end menu
97
98 @node Statement Exprs
99 @section Statements and Declarations in Expressions
100 @cindex statements inside expressions
101 @cindex declarations inside expressions
102 @cindex expressions containing statements
103 @cindex macros, statements in expressions
104
105 @c the above section title wrapped and causes an underfull hbox.. i
106 @c changed it from "within" to "in". --mew 4feb93
107 A compound statement enclosed in parentheses may appear as an expression
108 in GNU C@. This allows you to use loops, switches, and local variables
109 within an expression.
110
111 Recall that a compound statement is a sequence of statements surrounded
112 by braces; in this construct, parentheses go around the braces. For
113 example:
114
115 @smallexample
116 (@{ int y = foo (); int z;
117 if (y > 0) z = y;
118 else z = - y;
119 z; @})
120 @end smallexample
121
122 @noindent
123 is a valid (though slightly more complex than necessary) expression
124 for the absolute value of @code{foo ()}.
125
126 The last thing in the compound statement should be an expression
127 followed by a semicolon; the value of this subexpression serves as the
128 value of the entire construct. (If you use some other kind of statement
129 last within the braces, the construct has type @code{void}, and thus
130 effectively no value.)
131
132 This feature is especially useful in making macro definitions ``safe'' (so
133 that they evaluate each operand exactly once). For example, the
134 ``maximum'' function is commonly defined as a macro in standard C as
135 follows:
136
137 @smallexample
138 #define max(a,b) ((a) > (b) ? (a) : (b))
139 @end smallexample
140
141 @noindent
142 @cindex side effects, macro argument
143 But this definition computes either @var{a} or @var{b} twice, with bad
144 results if the operand has side effects. In GNU C, if you know the
145 type of the operands (here taken as @code{int}), you can define
146 the macro safely as follows:
147
148 @smallexample
149 #define maxint(a,b) \
150 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
151 @end smallexample
152
153 Embedded statements are not allowed in constant expressions, such as
154 the value of an enumeration constant, the width of a bit-field, or
155 the initial value of a static variable.
156
157 If you don't know the type of the operand, you can still do this, but you
158 must use @code{typeof} or @code{__auto_type} (@pxref{Typeof}).
159
160 In G++, the result value of a statement expression undergoes array and
161 function pointer decay, and is returned by value to the enclosing
162 expression. For instance, if @code{A} is a class, then
163
164 @smallexample
165 A a;
166
167 (@{a;@}).Foo ()
168 @end smallexample
169
170 @noindent
171 constructs a temporary @code{A} object to hold the result of the
172 statement expression, and that is used to invoke @code{Foo}.
173 Therefore the @code{this} pointer observed by @code{Foo} is not the
174 address of @code{a}.
175
176 In a statement expression, any temporaries created within a statement
177 are destroyed at that statement's end. This makes statement
178 expressions inside macros slightly different from function calls. In
179 the latter case temporaries introduced during argument evaluation are
180 destroyed at the end of the statement that includes the function
181 call. In the statement expression case they are destroyed during
182 the statement expression. For instance,
183
184 @smallexample
185 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
186 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
187
188 void foo ()
189 @{
190 macro (X ());
191 function (X ());
192 @}
193 @end smallexample
194
195 @noindent
196 has different places where temporaries are destroyed. For the
197 @code{macro} case, the temporary @code{X} is destroyed just after
198 the initialization of @code{b}. In the @code{function} case that
199 temporary is destroyed when the function returns.
200
201 These considerations mean that it is probably a bad idea to use
202 statement expressions of this form in header files that are designed to
203 work with C++. (Note that some versions of the GNU C Library contained
204 header files using statement expressions that lead to precisely this
205 bug.)
206
207 Jumping into a statement expression with @code{goto} or using a
208 @code{switch} statement outside the statement expression with a
209 @code{case} or @code{default} label inside the statement expression is
210 not permitted. Jumping into a statement expression with a computed
211 @code{goto} (@pxref{Labels as Values}) has undefined behavior.
212 Jumping out of a statement expression is permitted, but if the
213 statement expression is part of a larger expression then it is
214 unspecified which other subexpressions of that expression have been
215 evaluated except where the language definition requires certain
216 subexpressions to be evaluated before or after the statement
217 expression. In any case, as with a function call, the evaluation of a
218 statement expression is not interleaved with the evaluation of other
219 parts of the containing expression. For example,
220
221 @smallexample
222 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
223 @end smallexample
224
225 @noindent
226 calls @code{foo} and @code{bar1} and does not call @code{baz} but
227 may or may not call @code{bar2}. If @code{bar2} is called, it is
228 called after @code{foo} and before @code{bar1}.
229
230 @node Local Labels
231 @section Locally Declared Labels
232 @cindex local labels
233 @cindex macros, local labels
234
235 GCC allows you to declare @dfn{local labels} in any nested block
236 scope. A local label is just like an ordinary label, but you can
237 only reference it (with a @code{goto} statement, or by taking its
238 address) within the block in which it is declared.
239
240 A local label declaration looks like this:
241
242 @smallexample
243 __label__ @var{label};
244 @end smallexample
245
246 @noindent
247 or
248
249 @smallexample
250 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
251 @end smallexample
252
253 Local label declarations must come at the beginning of the block,
254 before any ordinary declarations or statements.
255
256 The label declaration defines the label @emph{name}, but does not define
257 the label itself. You must do this in the usual way, with
258 @code{@var{label}:}, within the statements of the statement expression.
259
260 The local label feature is useful for complex macros. If a macro
261 contains nested loops, a @code{goto} can be useful for breaking out of
262 them. However, an ordinary label whose scope is the whole function
263 cannot be used: if the macro can be expanded several times in one
264 function, the label is multiply defined in that function. A
265 local label avoids this problem. For example:
266
267 @smallexample
268 #define SEARCH(value, array, target) \
269 do @{ \
270 __label__ found; \
271 typeof (target) _SEARCH_target = (target); \
272 typeof (*(array)) *_SEARCH_array = (array); \
273 int i, j; \
274 int value; \
275 for (i = 0; i < max; i++) \
276 for (j = 0; j < max; j++) \
277 if (_SEARCH_array[i][j] == _SEARCH_target) \
278 @{ (value) = i; goto found; @} \
279 (value) = -1; \
280 found:; \
281 @} while (0)
282 @end smallexample
283
284 This could also be written using a statement expression:
285
286 @smallexample
287 #define SEARCH(array, target) \
288 (@{ \
289 __label__ found; \
290 typeof (target) _SEARCH_target = (target); \
291 typeof (*(array)) *_SEARCH_array = (array); \
292 int i, j; \
293 int value; \
294 for (i = 0; i < max; i++) \
295 for (j = 0; j < max; j++) \
296 if (_SEARCH_array[i][j] == _SEARCH_target) \
297 @{ value = i; goto found; @} \
298 value = -1; \
299 found: \
300 value; \
301 @})
302 @end smallexample
303
304 Local label declarations also make the labels they declare visible to
305 nested functions, if there are any. @xref{Nested Functions}, for details.
306
307 @node Labels as Values
308 @section Labels as Values
309 @cindex labels as values
310 @cindex computed gotos
311 @cindex goto with computed label
312 @cindex address of a label
313
314 You can get the address of a label defined in the current function
315 (or a containing function) with the unary operator @samp{&&}. The
316 value has type @code{void *}. This value is a constant and can be used
317 wherever a constant of that type is valid. For example:
318
319 @smallexample
320 void *ptr;
321 /* @r{@dots{}} */
322 ptr = &&foo;
323 @end smallexample
324
325 To use these values, you need to be able to jump to one. This is done
326 with the computed goto statement@footnote{The analogous feature in
327 Fortran is called an assigned goto, but that name seems inappropriate in
328 C, where one can do more than simply store label addresses in label
329 variables.}, @code{goto *@var{exp};}. For example,
330
331 @smallexample
332 goto *ptr;
333 @end smallexample
334
335 @noindent
336 Any expression of type @code{void *} is allowed.
337
338 One way of using these constants is in initializing a static array that
339 serves as a jump table:
340
341 @smallexample
342 static void *array[] = @{ &&foo, &&bar, &&hack @};
343 @end smallexample
344
345 @noindent
346 Then you can select a label with indexing, like this:
347
348 @smallexample
349 goto *array[i];
350 @end smallexample
351
352 @noindent
353 Note that this does not check whether the subscript is in bounds---array
354 indexing in C never does that.
355
356 Such an array of label values serves a purpose much like that of the
357 @code{switch} statement. The @code{switch} statement is cleaner, so
358 use that rather than an array unless the problem does not fit a
359 @code{switch} statement very well.
360
361 Another use of label values is in an interpreter for threaded code.
362 The labels within the interpreter function can be stored in the
363 threaded code for super-fast dispatching.
364
365 You may not use this mechanism to jump to code in a different function.
366 If you do that, totally unpredictable things happen. The best way to
367 avoid this is to store the label address only in automatic variables and
368 never pass it as an argument.
369
370 An alternate way to write the above example is
371
372 @smallexample
373 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
374 &&hack - &&foo @};
375 goto *(&&foo + array[i]);
376 @end smallexample
377
378 @noindent
379 This is more friendly to code living in shared libraries, as it reduces
380 the number of dynamic relocations that are needed, and by consequence,
381 allows the data to be read-only.
382 This alternative with label differences is not supported for the AVR target,
383 please use the first approach for AVR programs.
384
385 The @code{&&foo} expressions for the same label might have different
386 values if the containing function is inlined or cloned. If a program
387 relies on them being always the same,
388 @code{__attribute__((__noinline__,__noclone__))} should be used to
389 prevent inlining and cloning. If @code{&&foo} is used in a static
390 variable initializer, inlining and cloning is forbidden.
391
392 @node Nested Functions
393 @section Nested Functions
394 @cindex nested functions
395 @cindex downward funargs
396 @cindex thunks
397
398 A @dfn{nested function} is a function defined inside another function.
399 Nested functions are supported as an extension in GNU C, but are not
400 supported by GNU C++.
401
402 The nested function's name is local to the block where it is defined.
403 For example, here we define a nested function named @code{square}, and
404 call it twice:
405
406 @smallexample
407 @group
408 foo (double a, double b)
409 @{
410 double square (double z) @{ return z * z; @}
411
412 return square (a) + square (b);
413 @}
414 @end group
415 @end smallexample
416
417 The nested function can access all the variables of the containing
418 function that are visible at the point of its definition. This is
419 called @dfn{lexical scoping}. For example, here we show a nested
420 function which uses an inherited variable named @code{offset}:
421
422 @smallexample
423 @group
424 bar (int *array, int offset, int size)
425 @{
426 int access (int *array, int index)
427 @{ return array[index + offset]; @}
428 int i;
429 /* @r{@dots{}} */
430 for (i = 0; i < size; i++)
431 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
432 @}
433 @end group
434 @end smallexample
435
436 Nested function definitions are permitted within functions in the places
437 where variable definitions are allowed; that is, in any block, mixed
438 with the other declarations and statements in the block.
439
440 It is possible to call the nested function from outside the scope of its
441 name by storing its address or passing the address to another function:
442
443 @smallexample
444 hack (int *array, int size)
445 @{
446 void store (int index, int value)
447 @{ array[index] = value; @}
448
449 intermediate (store, size);
450 @}
451 @end smallexample
452
453 Here, the function @code{intermediate} receives the address of
454 @code{store} as an argument. If @code{intermediate} calls @code{store},
455 the arguments given to @code{store} are used to store into @code{array}.
456 But this technique works only so long as the containing function
457 (@code{hack}, in this example) does not exit.
458
459 If you try to call the nested function through its address after the
460 containing function exits, all hell breaks loose. If you try
461 to call it after a containing scope level exits, and if it refers
462 to some of the variables that are no longer in scope, you may be lucky,
463 but it's not wise to take the risk. If, however, the nested function
464 does not refer to anything that has gone out of scope, you should be
465 safe.
466
467 GCC implements taking the address of a nested function using a technique
468 called @dfn{trampolines}. This technique was described in
469 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
470 C++ Conference Proceedings, October 17-21, 1988).
471
472 A nested function can jump to a label inherited from a containing
473 function, provided the label is explicitly declared in the containing
474 function (@pxref{Local Labels}). Such a jump returns instantly to the
475 containing function, exiting the nested function that did the
476 @code{goto} and any intermediate functions as well. Here is an example:
477
478 @smallexample
479 @group
480 bar (int *array, int offset, int size)
481 @{
482 __label__ failure;
483 int access (int *array, int index)
484 @{
485 if (index > size)
486 goto failure;
487 return array[index + offset];
488 @}
489 int i;
490 /* @r{@dots{}} */
491 for (i = 0; i < size; i++)
492 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
493 /* @r{@dots{}} */
494 return 0;
495
496 /* @r{Control comes here from @code{access}
497 if it detects an error.} */
498 failure:
499 return -1;
500 @}
501 @end group
502 @end smallexample
503
504 A nested function always has no linkage. Declaring one with
505 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
506 before its definition, use @code{auto} (which is otherwise meaningless
507 for function declarations).
508
509 @smallexample
510 bar (int *array, int offset, int size)
511 @{
512 __label__ failure;
513 auto int access (int *, int);
514 /* @r{@dots{}} */
515 int access (int *array, int index)
516 @{
517 if (index > size)
518 goto failure;
519 return array[index + offset];
520 @}
521 /* @r{@dots{}} */
522 @}
523 @end smallexample
524
525 @node Constructing Calls
526 @section Constructing Function Calls
527 @cindex constructing calls
528 @cindex forwarding calls
529
530 Using the built-in functions described below, you can record
531 the arguments a function received, and call another function
532 with the same arguments, without knowing the number or types
533 of the arguments.
534
535 You can also record the return value of that function call,
536 and later return that value, without knowing what data type
537 the function tried to return (as long as your caller expects
538 that data type).
539
540 However, these built-in functions may interact badly with some
541 sophisticated features or other extensions of the language. It
542 is, therefore, not recommended to use them outside very simple
543 functions acting as mere forwarders for their arguments.
544
545 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
546 This built-in function returns a pointer to data
547 describing how to perform a call with the same arguments as are passed
548 to the current function.
549
550 The function saves the arg pointer register, structure value address,
551 and all registers that might be used to pass arguments to a function
552 into a block of memory allocated on the stack. Then it returns the
553 address of that block.
554 @end deftypefn
555
556 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
557 This built-in function invokes @var{function}
558 with a copy of the parameters described by @var{arguments}
559 and @var{size}.
560
561 The value of @var{arguments} should be the value returned by
562 @code{__builtin_apply_args}. The argument @var{size} specifies the size
563 of the stack argument data, in bytes.
564
565 This function returns a pointer to data describing
566 how to return whatever value is returned by @var{function}. The data
567 is saved in a block of memory allocated on the stack.
568
569 It is not always simple to compute the proper value for @var{size}. The
570 value is used by @code{__builtin_apply} to compute the amount of data
571 that should be pushed on the stack and copied from the incoming argument
572 area.
573 @end deftypefn
574
575 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
576 This built-in function returns the value described by @var{result} from
577 the containing function. You should specify, for @var{result}, a value
578 returned by @code{__builtin_apply}.
579 @end deftypefn
580
581 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
582 This built-in function represents all anonymous arguments of an inline
583 function. It can be used only in inline functions that are always
584 inlined, never compiled as a separate function, such as those using
585 @code{__attribute__ ((__always_inline__))} or
586 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
587 It must be only passed as last argument to some other function
588 with variable arguments. This is useful for writing small wrapper
589 inlines for variable argument functions, when using preprocessor
590 macros is undesirable. For example:
591 @smallexample
592 extern int myprintf (FILE *f, const char *format, ...);
593 extern inline __attribute__ ((__gnu_inline__)) int
594 myprintf (FILE *f, const char *format, ...)
595 @{
596 int r = fprintf (f, "myprintf: ");
597 if (r < 0)
598 return r;
599 int s = fprintf (f, format, __builtin_va_arg_pack ());
600 if (s < 0)
601 return s;
602 return r + s;
603 @}
604 @end smallexample
605 @end deftypefn
606
607 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
608 This built-in function returns the number of anonymous arguments of
609 an inline function. It can be used only in inline functions that
610 are always inlined, never compiled as a separate function, such
611 as those using @code{__attribute__ ((__always_inline__))} or
612 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
613 For example following does link- or run-time checking of open
614 arguments for optimized code:
615 @smallexample
616 #ifdef __OPTIMIZE__
617 extern inline __attribute__((__gnu_inline__)) int
618 myopen (const char *path, int oflag, ...)
619 @{
620 if (__builtin_va_arg_pack_len () > 1)
621 warn_open_too_many_arguments ();
622
623 if (__builtin_constant_p (oflag))
624 @{
625 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
626 @{
627 warn_open_missing_mode ();
628 return __open_2 (path, oflag);
629 @}
630 return open (path, oflag, __builtin_va_arg_pack ());
631 @}
632
633 if (__builtin_va_arg_pack_len () < 1)
634 return __open_2 (path, oflag);
635
636 return open (path, oflag, __builtin_va_arg_pack ());
637 @}
638 #endif
639 @end smallexample
640 @end deftypefn
641
642 @node Typeof
643 @section Referring to a Type with @code{typeof}
644 @findex typeof
645 @findex sizeof
646 @cindex macros, types of arguments
647
648 Another way to refer to the type of an expression is with @code{typeof}.
649 The syntax of using of this keyword looks like @code{sizeof}, but the
650 construct acts semantically like a type name defined with @code{typedef}.
651
652 There are two ways of writing the argument to @code{typeof}: with an
653 expression or with a type. Here is an example with an expression:
654
655 @smallexample
656 typeof (x[0](1))
657 @end smallexample
658
659 @noindent
660 This assumes that @code{x} is an array of pointers to functions;
661 the type described is that of the values of the functions.
662
663 Here is an example with a typename as the argument:
664
665 @smallexample
666 typeof (int *)
667 @end smallexample
668
669 @noindent
670 Here the type described is that of pointers to @code{int}.
671
672 If you are writing a header file that must work when included in ISO C
673 programs, write @code{__typeof__} instead of @code{typeof}.
674 @xref{Alternate Keywords}.
675
676 A @code{typeof} construct can be used anywhere a typedef name can be
677 used. For example, you can use it in a declaration, in a cast, or inside
678 of @code{sizeof} or @code{typeof}.
679
680 The operand of @code{typeof} is evaluated for its side effects if and
681 only if it is an expression of variably modified type or the name of
682 such a type.
683
684 @code{typeof} is often useful in conjunction with
685 statement expressions (@pxref{Statement Exprs}).
686 Here is how the two together can
687 be used to define a safe ``maximum'' macro which operates on any
688 arithmetic type and evaluates each of its arguments exactly once:
689
690 @smallexample
691 #define max(a,b) \
692 (@{ typeof (a) _a = (a); \
693 typeof (b) _b = (b); \
694 _a > _b ? _a : _b; @})
695 @end smallexample
696
697 @cindex underscores in variables in macros
698 @cindex @samp{_} in variables in macros
699 @cindex local variables in macros
700 @cindex variables, local, in macros
701 @cindex macros, local variables in
702
703 The reason for using names that start with underscores for the local
704 variables is to avoid conflicts with variable names that occur within the
705 expressions that are substituted for @code{a} and @code{b}. Eventually we
706 hope to design a new form of declaration syntax that allows you to declare
707 variables whose scopes start only after their initializers; this will be a
708 more reliable way to prevent such conflicts.
709
710 @noindent
711 Some more examples of the use of @code{typeof}:
712
713 @itemize @bullet
714 @item
715 This declares @code{y} with the type of what @code{x} points to.
716
717 @smallexample
718 typeof (*x) y;
719 @end smallexample
720
721 @item
722 This declares @code{y} as an array of such values.
723
724 @smallexample
725 typeof (*x) y[4];
726 @end smallexample
727
728 @item
729 This declares @code{y} as an array of pointers to characters:
730
731 @smallexample
732 typeof (typeof (char *)[4]) y;
733 @end smallexample
734
735 @noindent
736 It is equivalent to the following traditional C declaration:
737
738 @smallexample
739 char *y[4];
740 @end smallexample
741
742 To see the meaning of the declaration using @code{typeof}, and why it
743 might be a useful way to write, rewrite it with these macros:
744
745 @smallexample
746 #define pointer(T) typeof(T *)
747 #define array(T, N) typeof(T [N])
748 @end smallexample
749
750 @noindent
751 Now the declaration can be rewritten this way:
752
753 @smallexample
754 array (pointer (char), 4) y;
755 @end smallexample
756
757 @noindent
758 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
759 pointers to @code{char}.
760 @end itemize
761
762 In GNU C, but not GNU C++, you may also declare the type of a variable
763 as @code{__auto_type}. In that case, the declaration must declare
764 only one variable, whose declarator must just be an identifier, the
765 declaration must be initialized, and the type of the variable is
766 determined by the initializer; the name of the variable is not in
767 scope until after the initializer. (In C++, you should use C++11
768 @code{auto} for this purpose.) Using @code{__auto_type}, the
769 ``maximum'' macro above could be written as:
770
771 @smallexample
772 #define max(a,b) \
773 (@{ __auto_type _a = (a); \
774 __auto_type _b = (b); \
775 _a > _b ? _a : _b; @})
776 @end smallexample
777
778 Using @code{__auto_type} instead of @code{typeof} has two advantages:
779
780 @itemize @bullet
781 @item Each argument to the macro appears only once in the expansion of
782 the macro. This prevents the size of the macro expansion growing
783 exponentially when calls to such macros are nested inside arguments of
784 such macros.
785
786 @item If the argument to the macro has variably modified type, it is
787 evaluated only once when using @code{__auto_type}, but twice if
788 @code{typeof} is used.
789 @end itemize
790
791 @node Conditionals
792 @section Conditionals with Omitted Operands
793 @cindex conditional expressions, extensions
794 @cindex omitted middle-operands
795 @cindex middle-operands, omitted
796 @cindex extensions, @code{?:}
797 @cindex @code{?:} extensions
798
799 The middle operand in a conditional expression may be omitted. Then
800 if the first operand is nonzero, its value is the value of the conditional
801 expression.
802
803 Therefore, the expression
804
805 @smallexample
806 x ? : y
807 @end smallexample
808
809 @noindent
810 has the value of @code{x} if that is nonzero; otherwise, the value of
811 @code{y}.
812
813 This example is perfectly equivalent to
814
815 @smallexample
816 x ? x : y
817 @end smallexample
818
819 @cindex side effect in @code{?:}
820 @cindex @code{?:} side effect
821 @noindent
822 In this simple case, the ability to omit the middle operand is not
823 especially useful. When it becomes useful is when the first operand does,
824 or may (if it is a macro argument), contain a side effect. Then repeating
825 the operand in the middle would perform the side effect twice. Omitting
826 the middle operand uses the value already computed without the undesirable
827 effects of recomputing it.
828
829 @node __int128
830 @section 128-bit Integers
831 @cindex @code{__int128} data types
832
833 As an extension the integer scalar type @code{__int128} is supported for
834 targets which have an integer mode wide enough to hold 128 bits.
835 Simply write @code{__int128} for a signed 128-bit integer, or
836 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
837 support in GCC for expressing an integer constant of type @code{__int128}
838 for targets with @code{long long} integer less than 128 bits wide.
839
840 @node Long Long
841 @section Double-Word Integers
842 @cindex @code{long long} data types
843 @cindex double-word arithmetic
844 @cindex multiprecision arithmetic
845 @cindex @code{LL} integer suffix
846 @cindex @code{ULL} integer suffix
847
848 ISO C99 supports data types for integers that are at least 64 bits wide,
849 and as an extension GCC supports them in C90 mode and in C++.
850 Simply write @code{long long int} for a signed integer, or
851 @code{unsigned long long int} for an unsigned integer. To make an
852 integer constant of type @code{long long int}, add the suffix @samp{LL}
853 to the integer. To make an integer constant of type @code{unsigned long
854 long int}, add the suffix @samp{ULL} to the integer.
855
856 You can use these types in arithmetic like any other integer types.
857 Addition, subtraction, and bitwise boolean operations on these types
858 are open-coded on all types of machines. Multiplication is open-coded
859 if the machine supports a fullword-to-doubleword widening multiply
860 instruction. Division and shifts are open-coded only on machines that
861 provide special support. The operations that are not open-coded use
862 special library routines that come with GCC@.
863
864 There may be pitfalls when you use @code{long long} types for function
865 arguments without function prototypes. If a function
866 expects type @code{int} for its argument, and you pass a value of type
867 @code{long long int}, confusion results because the caller and the
868 subroutine disagree about the number of bytes for the argument.
869 Likewise, if the function expects @code{long long int} and you pass
870 @code{int}. The best way to avoid such problems is to use prototypes.
871
872 @node Complex
873 @section Complex Numbers
874 @cindex complex numbers
875 @cindex @code{_Complex} keyword
876 @cindex @code{__complex__} keyword
877
878 ISO C99 supports complex floating data types, and as an extension GCC
879 supports them in C90 mode and in C++. GCC also supports complex integer data
880 types which are not part of ISO C99. You can declare complex types
881 using the keyword @code{_Complex}. As an extension, the older GNU
882 keyword @code{__complex__} is also supported.
883
884 For example, @samp{_Complex double x;} declares @code{x} as a
885 variable whose real part and imaginary part are both of type
886 @code{double}. @samp{_Complex short int y;} declares @code{y} to
887 have real and imaginary parts of type @code{short int}; this is not
888 likely to be useful, but it shows that the set of complex types is
889 complete.
890
891 To write a constant with a complex data type, use the suffix @samp{i} or
892 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
893 has type @code{_Complex float} and @code{3i} has type
894 @code{_Complex int}. Such a constant always has a pure imaginary
895 value, but you can form any complex value you like by adding one to a
896 real constant. This is a GNU extension; if you have an ISO C99
897 conforming C library (such as the GNU C Library), and want to construct complex
898 constants of floating type, you should include @code{<complex.h>} and
899 use the macros @code{I} or @code{_Complex_I} instead.
900
901 @cindex @code{__real__} keyword
902 @cindex @code{__imag__} keyword
903 To extract the real part of a complex-valued expression @var{exp}, write
904 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
905 extract the imaginary part. This is a GNU extension; for values of
906 floating type, you should use the ISO C99 functions @code{crealf},
907 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
908 @code{cimagl}, declared in @code{<complex.h>} and also provided as
909 built-in functions by GCC@.
910
911 @cindex complex conjugation
912 The operator @samp{~} performs complex conjugation when used on a value
913 with a complex type. This is a GNU extension; for values of
914 floating type, you should use the ISO C99 functions @code{conjf},
915 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
916 provided as built-in functions by GCC@.
917
918 GCC can allocate complex automatic variables in a noncontiguous
919 fashion; it's even possible for the real part to be in a register while
920 the imaginary part is on the stack (or vice versa). Only the DWARF
921 debug info format can represent this, so use of DWARF is recommended.
922 If you are using the stabs debug info format, GCC describes a noncontiguous
923 complex variable as if it were two separate variables of noncomplex type.
924 If the variable's actual name is @code{foo}, the two fictitious
925 variables are named @code{foo$real} and @code{foo$imag}. You can
926 examine and set these two fictitious variables with your debugger.
927
928 @node Floating Types
929 @section Additional Floating Types
930 @cindex additional floating types
931 @cindex @code{_Float@var{n}} data types
932 @cindex @code{_Float@var{n}x} data types
933 @cindex @code{__float80} data type
934 @cindex @code{__float128} data type
935 @cindex @code{__ibm128} data type
936 @cindex @code{w} floating point suffix
937 @cindex @code{q} floating point suffix
938 @cindex @code{W} floating point suffix
939 @cindex @code{Q} floating point suffix
940
941 ISO/IEC TS 18661-3:2015 defines C support for additional floating
942 types @code{_Float@var{n}} and @code{_Float@var{n}x}, and GCC supports
943 these type names; the set of types supported depends on the target
944 architecture. These types are not supported when compiling C++.
945 Constants with these types use suffixes @code{f@var{n}} or
946 @code{F@var{n}} and @code{f@var{n}x} or @code{F@var{n}x}. These type
947 names can be used together with @code{_Complex} to declare complex
948 types.
949
950 As an extension, GNU C and GNU C++ support additional floating
951 types, which are not supported by all targets.
952 @itemize @bullet
953 @item @code{__float128} is available on i386, x86_64, IA-64, and
954 hppa HP-UX, as well as on PowerPC GNU/Linux targets that enable
955 the vector scalar (VSX) instruction set. @code{__float128} supports
956 the 128-bit floating type. On i386, x86_64, PowerPC, and IA-64
957 other than HP-UX, @code{__float128} is an alias for @code{_Float128}.
958 On hppa and IA-64 HP-UX, @code{__float128} is an alias for @code{long
959 double}.
960
961 @item @code{__float80} is available on the i386, x86_64, and IA-64
962 targets, and supports the 80-bit (@code{XFmode}) floating type. It is
963 an alias for the type name @code{_Float64x} on these targets.
964
965 @item @code{__ibm128} is available on PowerPC targets, and provides
966 access to the IBM extended double format which is the current format
967 used for @code{long double}. When @code{long double} transitions to
968 @code{__float128} on PowerPC in the future, @code{__ibm128} will remain
969 for use in conversions between the two types.
970 @end itemize
971
972 Support for these additional types includes the arithmetic operators:
973 add, subtract, multiply, divide; unary arithmetic operators;
974 relational operators; equality operators; and conversions to and from
975 integer and other floating types. Use a suffix @samp{w} or @samp{W}
976 in a literal constant of type @code{__float80} or type
977 @code{__ibm128}. Use a suffix @samp{q} or @samp{Q} for @code{_float128}.
978
979 In order to use @code{_Float128}, @code{__float128}, and @code{__ibm128}
980 on PowerPC Linux systems, you must use the @option{-mfloat128} option. It is
981 expected in future versions of GCC that @code{_Float128} and @code{__float128}
982 will be enabled automatically.
983
984 The @code{_Float128} type is supported on all systems where
985 @code{__float128} is supported or where @code{long double} has the
986 IEEE binary128 format. The @code{_Float64x} type is supported on all
987 systems where @code{__float128} is supported. The @code{_Float32}
988 type is supported on all systems supporting IEEE binary32; the
989 @code{_Float64} and @code{_Float32x} types are supported on all systems
990 supporting IEEE binary64. The @code{_Float16} type is supported on AArch64
991 systems by default, and on ARM systems when the IEEE format for 16-bit
992 floating-point types is selected with @option{-mfp16-format=ieee}.
993 GCC does not currently support @code{_Float128x} on any systems.
994
995 On the i386, x86_64, IA-64, and HP-UX targets, you can declare complex
996 types using the corresponding internal complex type, @code{XCmode} for
997 @code{__float80} type and @code{TCmode} for @code{__float128} type:
998
999 @smallexample
1000 typedef _Complex float __attribute__((mode(TC))) _Complex128;
1001 typedef _Complex float __attribute__((mode(XC))) _Complex80;
1002 @end smallexample
1003
1004 On the PowerPC Linux VSX targets, you can declare complex types using
1005 the corresponding internal complex type, @code{KCmode} for
1006 @code{__float128} type and @code{ICmode} for @code{__ibm128} type:
1007
1008 @smallexample
1009 typedef _Complex float __attribute__((mode(KC))) _Complex_float128;
1010 typedef _Complex float __attribute__((mode(IC))) _Complex_ibm128;
1011 @end smallexample
1012
1013 @node Half-Precision
1014 @section Half-Precision Floating Point
1015 @cindex half-precision floating point
1016 @cindex @code{__fp16} data type
1017
1018 On ARM and AArch64 targets, GCC supports half-precision (16-bit) floating
1019 point via the @code{__fp16} type defined in the ARM C Language Extensions.
1020 On ARM systems, you must enable this type explicitly with the
1021 @option{-mfp16-format} command-line option in order to use it.
1022
1023 ARM targets support two incompatible representations for half-precision
1024 floating-point values. You must choose one of the representations and
1025 use it consistently in your program.
1026
1027 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
1028 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
1029 There are 11 bits of significand precision, approximately 3
1030 decimal digits.
1031
1032 Specifying @option{-mfp16-format=alternative} selects the ARM
1033 alternative format. This representation is similar to the IEEE
1034 format, but does not support infinities or NaNs. Instead, the range
1035 of exponents is extended, so that this format can represent normalized
1036 values in the range of @math{2^{-14}} to 131008.
1037
1038 The GCC port for AArch64 only supports the IEEE 754-2008 format, and does
1039 not require use of the @option{-mfp16-format} command-line option.
1040
1041 The @code{__fp16} type may only be used as an argument to intrinsics defined
1042 in @code{<arm_fp16.h>}, or as a storage format. For purposes of
1043 arithmetic and other operations, @code{__fp16} values in C or C++
1044 expressions are automatically promoted to @code{float}.
1045
1046 The ARM target provides hardware support for conversions between
1047 @code{__fp16} and @code{float} values
1048 as an extension to VFP and NEON (Advanced SIMD), and from ARMv8 provides
1049 hardware support for conversions between @code{__fp16} and @code{double}
1050 values. GCC generates code using these hardware instructions if you
1051 compile with options to select an FPU that provides them;
1052 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
1053 in addition to the @option{-mfp16-format} option to select
1054 a half-precision format.
1055
1056 Language-level support for the @code{__fp16} data type is
1057 independent of whether GCC generates code using hardware floating-point
1058 instructions. In cases where hardware support is not specified, GCC
1059 implements conversions between @code{__fp16} and other types as library
1060 calls.
1061
1062 It is recommended that portable code use the @code{_Float16} type defined
1063 by ISO/IEC TS 18661-3:2015. @xref{Floating Types}.
1064
1065 @node Decimal Float
1066 @section Decimal Floating Types
1067 @cindex decimal floating types
1068 @cindex @code{_Decimal32} data type
1069 @cindex @code{_Decimal64} data type
1070 @cindex @code{_Decimal128} data type
1071 @cindex @code{df} integer suffix
1072 @cindex @code{dd} integer suffix
1073 @cindex @code{dl} integer suffix
1074 @cindex @code{DF} integer suffix
1075 @cindex @code{DD} integer suffix
1076 @cindex @code{DL} integer suffix
1077
1078 As an extension, GNU C supports decimal floating types as
1079 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1080 floating types in GCC will evolve as the draft technical report changes.
1081 Calling conventions for any target might also change. Not all targets
1082 support decimal floating types.
1083
1084 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1085 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1086 @code{float}, @code{double}, and @code{long double} whose radix is not
1087 specified by the C standard but is usually two.
1088
1089 Support for decimal floating types includes the arithmetic operators
1090 add, subtract, multiply, divide; unary arithmetic operators;
1091 relational operators; equality operators; and conversions to and from
1092 integer and other floating types. Use a suffix @samp{df} or
1093 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1094 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1095 @code{_Decimal128}.
1096
1097 GCC support of decimal float as specified by the draft technical report
1098 is incomplete:
1099
1100 @itemize @bullet
1101 @item
1102 When the value of a decimal floating type cannot be represented in the
1103 integer type to which it is being converted, the result is undefined
1104 rather than the result value specified by the draft technical report.
1105
1106 @item
1107 GCC does not provide the C library functionality associated with
1108 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1109 @file{wchar.h}, which must come from a separate C library implementation.
1110 Because of this the GNU C compiler does not define macro
1111 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1112 the technical report.
1113 @end itemize
1114
1115 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1116 are supported by the DWARF debug information format.
1117
1118 @node Hex Floats
1119 @section Hex Floats
1120 @cindex hex floats
1121
1122 ISO C99 supports floating-point numbers written not only in the usual
1123 decimal notation, such as @code{1.55e1}, but also numbers such as
1124 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1125 supports this in C90 mode (except in some cases when strictly
1126 conforming) and in C++. In that format the
1127 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1128 mandatory. The exponent is a decimal number that indicates the power of
1129 2 by which the significant part is multiplied. Thus @samp{0x1.f} is
1130 @tex
1131 $1 {15\over16}$,
1132 @end tex
1133 @ifnottex
1134 1 15/16,
1135 @end ifnottex
1136 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1137 is the same as @code{1.55e1}.
1138
1139 Unlike for floating-point numbers in the decimal notation the exponent
1140 is always required in the hexadecimal notation. Otherwise the compiler
1141 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1142 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1143 extension for floating-point constants of type @code{float}.
1144
1145 @node Fixed-Point
1146 @section Fixed-Point Types
1147 @cindex fixed-point types
1148 @cindex @code{_Fract} data type
1149 @cindex @code{_Accum} data type
1150 @cindex @code{_Sat} data type
1151 @cindex @code{hr} fixed-suffix
1152 @cindex @code{r} fixed-suffix
1153 @cindex @code{lr} fixed-suffix
1154 @cindex @code{llr} fixed-suffix
1155 @cindex @code{uhr} fixed-suffix
1156 @cindex @code{ur} fixed-suffix
1157 @cindex @code{ulr} fixed-suffix
1158 @cindex @code{ullr} fixed-suffix
1159 @cindex @code{hk} fixed-suffix
1160 @cindex @code{k} fixed-suffix
1161 @cindex @code{lk} fixed-suffix
1162 @cindex @code{llk} fixed-suffix
1163 @cindex @code{uhk} fixed-suffix
1164 @cindex @code{uk} fixed-suffix
1165 @cindex @code{ulk} fixed-suffix
1166 @cindex @code{ullk} fixed-suffix
1167 @cindex @code{HR} fixed-suffix
1168 @cindex @code{R} fixed-suffix
1169 @cindex @code{LR} fixed-suffix
1170 @cindex @code{LLR} fixed-suffix
1171 @cindex @code{UHR} fixed-suffix
1172 @cindex @code{UR} fixed-suffix
1173 @cindex @code{ULR} fixed-suffix
1174 @cindex @code{ULLR} fixed-suffix
1175 @cindex @code{HK} fixed-suffix
1176 @cindex @code{K} fixed-suffix
1177 @cindex @code{LK} fixed-suffix
1178 @cindex @code{LLK} fixed-suffix
1179 @cindex @code{UHK} fixed-suffix
1180 @cindex @code{UK} fixed-suffix
1181 @cindex @code{ULK} fixed-suffix
1182 @cindex @code{ULLK} fixed-suffix
1183
1184 As an extension, GNU C supports fixed-point types as
1185 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1186 types in GCC will evolve as the draft technical report changes.
1187 Calling conventions for any target might also change. Not all targets
1188 support fixed-point types.
1189
1190 The fixed-point types are
1191 @code{short _Fract},
1192 @code{_Fract},
1193 @code{long _Fract},
1194 @code{long long _Fract},
1195 @code{unsigned short _Fract},
1196 @code{unsigned _Fract},
1197 @code{unsigned long _Fract},
1198 @code{unsigned long long _Fract},
1199 @code{_Sat short _Fract},
1200 @code{_Sat _Fract},
1201 @code{_Sat long _Fract},
1202 @code{_Sat long long _Fract},
1203 @code{_Sat unsigned short _Fract},
1204 @code{_Sat unsigned _Fract},
1205 @code{_Sat unsigned long _Fract},
1206 @code{_Sat unsigned long long _Fract},
1207 @code{short _Accum},
1208 @code{_Accum},
1209 @code{long _Accum},
1210 @code{long long _Accum},
1211 @code{unsigned short _Accum},
1212 @code{unsigned _Accum},
1213 @code{unsigned long _Accum},
1214 @code{unsigned long long _Accum},
1215 @code{_Sat short _Accum},
1216 @code{_Sat _Accum},
1217 @code{_Sat long _Accum},
1218 @code{_Sat long long _Accum},
1219 @code{_Sat unsigned short _Accum},
1220 @code{_Sat unsigned _Accum},
1221 @code{_Sat unsigned long _Accum},
1222 @code{_Sat unsigned long long _Accum}.
1223
1224 Fixed-point data values contain fractional and optional integral parts.
1225 The format of fixed-point data varies and depends on the target machine.
1226
1227 Support for fixed-point types includes:
1228 @itemize @bullet
1229 @item
1230 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1231 @item
1232 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1233 @item
1234 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1235 @item
1236 binary shift operators (@code{<<}, @code{>>})
1237 @item
1238 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1239 @item
1240 equality operators (@code{==}, @code{!=})
1241 @item
1242 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1243 @code{<<=}, @code{>>=})
1244 @item
1245 conversions to and from integer, floating-point, or fixed-point types
1246 @end itemize
1247
1248 Use a suffix in a fixed-point literal constant:
1249 @itemize
1250 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1251 @code{_Sat short _Fract}
1252 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1253 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1254 @code{_Sat long _Fract}
1255 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1256 @code{_Sat long long _Fract}
1257 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1258 @code{_Sat unsigned short _Fract}
1259 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1260 @code{_Sat unsigned _Fract}
1261 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1262 @code{_Sat unsigned long _Fract}
1263 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1264 and @code{_Sat unsigned long long _Fract}
1265 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1266 @code{_Sat short _Accum}
1267 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1268 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1269 @code{_Sat long _Accum}
1270 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1271 @code{_Sat long long _Accum}
1272 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1273 @code{_Sat unsigned short _Accum}
1274 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1275 @code{_Sat unsigned _Accum}
1276 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1277 @code{_Sat unsigned long _Accum}
1278 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1279 and @code{_Sat unsigned long long _Accum}
1280 @end itemize
1281
1282 GCC support of fixed-point types as specified by the draft technical report
1283 is incomplete:
1284
1285 @itemize @bullet
1286 @item
1287 Pragmas to control overflow and rounding behaviors are not implemented.
1288 @end itemize
1289
1290 Fixed-point types are supported by the DWARF debug information format.
1291
1292 @node Named Address Spaces
1293 @section Named Address Spaces
1294 @cindex Named Address Spaces
1295
1296 As an extension, GNU C supports named address spaces as
1297 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1298 address spaces in GCC will evolve as the draft technical report
1299 changes. Calling conventions for any target might also change. At
1300 present, only the AVR, SPU, M32C, RL78, and x86 targets support
1301 address spaces other than the generic address space.
1302
1303 Address space identifiers may be used exactly like any other C type
1304 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1305 document for more details.
1306
1307 @anchor{AVR Named Address Spaces}
1308 @subsection AVR Named Address Spaces
1309
1310 On the AVR target, there are several address spaces that can be used
1311 in order to put read-only data into the flash memory and access that
1312 data by means of the special instructions @code{LPM} or @code{ELPM}
1313 needed to read from flash.
1314
1315 Devices belonging to @code{avrtiny} and @code{avrxmega3} can access
1316 flash memory by means of @code{LD*} instructions because the flash
1317 memory is mapped into the RAM address space. There is @emph{no need}
1318 for language extensions like @code{__flash} or attribute
1319 @ref{AVR Variable Attributes,,@code{progmem}}.
1320 The default linker description files for these devices cater for that
1321 feature and @code{.rodata} stays in flash: The compiler just generates
1322 @code{LD*} instructions, and the linker script adds core specific
1323 offsets to all @code{.rodata} symbols: @code{0x4000} in the case of
1324 @code{avrtiny} and @code{0x8000} in the case of @code{avrxmega3}.
1325 See @ref{AVR Options} for a list of respective devices.
1326
1327 For devices not in @code{avrtiny} or @code{avrxmega3},
1328 any data including read-only data is located in RAM (the generic
1329 address space) because flash memory is not visible in the RAM address
1330 space. In order to locate read-only data in flash memory @emph{and}
1331 to generate the right instructions to access this data without
1332 using (inline) assembler code, special address spaces are needed.
1333
1334 @table @code
1335 @item __flash
1336 @cindex @code{__flash} AVR Named Address Spaces
1337 The @code{__flash} qualifier locates data in the
1338 @code{.progmem.data} section. Data is read using the @code{LPM}
1339 instruction. Pointers to this address space are 16 bits wide.
1340
1341 @item __flash1
1342 @itemx __flash2
1343 @itemx __flash3
1344 @itemx __flash4
1345 @itemx __flash5
1346 @cindex @code{__flash1} AVR Named Address Spaces
1347 @cindex @code{__flash2} AVR Named Address Spaces
1348 @cindex @code{__flash3} AVR Named Address Spaces
1349 @cindex @code{__flash4} AVR Named Address Spaces
1350 @cindex @code{__flash5} AVR Named Address Spaces
1351 These are 16-bit address spaces locating data in section
1352 @code{.progmem@var{N}.data} where @var{N} refers to
1353 address space @code{__flash@var{N}}.
1354 The compiler sets the @code{RAMPZ} segment register appropriately
1355 before reading data by means of the @code{ELPM} instruction.
1356
1357 @item __memx
1358 @cindex @code{__memx} AVR Named Address Spaces
1359 This is a 24-bit address space that linearizes flash and RAM:
1360 If the high bit of the address is set, data is read from
1361 RAM using the lower two bytes as RAM address.
1362 If the high bit of the address is clear, data is read from flash
1363 with @code{RAMPZ} set according to the high byte of the address.
1364 @xref{AVR Built-in Functions,,@code{__builtin_avr_flash_segment}}.
1365
1366 Objects in this address space are located in @code{.progmemx.data}.
1367 @end table
1368
1369 @b{Example}
1370
1371 @smallexample
1372 char my_read (const __flash char ** p)
1373 @{
1374 /* p is a pointer to RAM that points to a pointer to flash.
1375 The first indirection of p reads that flash pointer
1376 from RAM and the second indirection reads a char from this
1377 flash address. */
1378
1379 return **p;
1380 @}
1381
1382 /* Locate array[] in flash memory */
1383 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1384
1385 int i = 1;
1386
1387 int main (void)
1388 @{
1389 /* Return 17 by reading from flash memory */
1390 return array[array[i]];
1391 @}
1392 @end smallexample
1393
1394 @noindent
1395 For each named address space supported by avr-gcc there is an equally
1396 named but uppercase built-in macro defined.
1397 The purpose is to facilitate testing if respective address space
1398 support is available or not:
1399
1400 @smallexample
1401 #ifdef __FLASH
1402 const __flash int var = 1;
1403
1404 int read_var (void)
1405 @{
1406 return var;
1407 @}
1408 #else
1409 #include <avr/pgmspace.h> /* From AVR-LibC */
1410
1411 const int var PROGMEM = 1;
1412
1413 int read_var (void)
1414 @{
1415 return (int) pgm_read_word (&var);
1416 @}
1417 #endif /* __FLASH */
1418 @end smallexample
1419
1420 @noindent
1421 Notice that attribute @ref{AVR Variable Attributes,,@code{progmem}}
1422 locates data in flash but
1423 accesses to these data read from generic address space, i.e.@:
1424 from RAM,
1425 so that you need special accessors like @code{pgm_read_byte}
1426 from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}}
1427 together with attribute @code{progmem}.
1428
1429 @noindent
1430 @b{Limitations and caveats}
1431
1432 @itemize
1433 @item
1434 Reading across the 64@tie{}KiB section boundary of
1435 the @code{__flash} or @code{__flash@var{N}} address spaces
1436 shows undefined behavior. The only address space that
1437 supports reading across the 64@tie{}KiB flash segment boundaries is
1438 @code{__memx}.
1439
1440 @item
1441 If you use one of the @code{__flash@var{N}} address spaces
1442 you must arrange your linker script to locate the
1443 @code{.progmem@var{N}.data} sections according to your needs.
1444
1445 @item
1446 Any data or pointers to the non-generic address spaces must
1447 be qualified as @code{const}, i.e.@: as read-only data.
1448 This still applies if the data in one of these address
1449 spaces like software version number or calibration lookup table are intended to
1450 be changed after load time by, say, a boot loader. In this case
1451 the right qualification is @code{const} @code{volatile} so that the compiler
1452 must not optimize away known values or insert them
1453 as immediates into operands of instructions.
1454
1455 @item
1456 The following code initializes a variable @code{pfoo}
1457 located in static storage with a 24-bit address:
1458 @smallexample
1459 extern const __memx char foo;
1460 const __memx void *pfoo = &foo;
1461 @end smallexample
1462
1463 @item
1464 On the reduced Tiny devices like ATtiny40, no address spaces are supported.
1465 Just use vanilla C / C++ code without overhead as outlined above.
1466 Attribute @code{progmem} is supported but works differently,
1467 see @ref{AVR Variable Attributes}.
1468
1469 @end itemize
1470
1471 @subsection M32C Named Address Spaces
1472 @cindex @code{__far} M32C Named Address Spaces
1473
1474 On the M32C target, with the R8C and M16C CPU variants, variables
1475 qualified with @code{__far} are accessed using 32-bit addresses in
1476 order to access memory beyond the first 64@tie{}Ki bytes. If
1477 @code{__far} is used with the M32CM or M32C CPU variants, it has no
1478 effect.
1479
1480 @subsection RL78 Named Address Spaces
1481 @cindex @code{__far} RL78 Named Address Spaces
1482
1483 On the RL78 target, variables qualified with @code{__far} are accessed
1484 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1485 addresses. Non-far variables are assumed to appear in the topmost
1486 64@tie{}KiB of the address space.
1487
1488 @subsection SPU Named Address Spaces
1489 @cindex @code{__ea} SPU Named Address Spaces
1490
1491 On the SPU target variables may be declared as
1492 belonging to another address space by qualifying the type with the
1493 @code{__ea} address space identifier:
1494
1495 @smallexample
1496 extern int __ea i;
1497 @end smallexample
1498
1499 @noindent
1500 The compiler generates special code to access the variable @code{i}.
1501 It may use runtime library
1502 support, or generate special machine instructions to access that address
1503 space.
1504
1505 @subsection x86 Named Address Spaces
1506 @cindex x86 named address spaces
1507
1508 On the x86 target, variables may be declared as being relative
1509 to the @code{%fs} or @code{%gs} segments.
1510
1511 @table @code
1512 @item __seg_fs
1513 @itemx __seg_gs
1514 @cindex @code{__seg_fs} x86 named address space
1515 @cindex @code{__seg_gs} x86 named address space
1516 The object is accessed with the respective segment override prefix.
1517
1518 The respective segment base must be set via some method specific to
1519 the operating system. Rather than require an expensive system call
1520 to retrieve the segment base, these address spaces are not considered
1521 to be subspaces of the generic (flat) address space. This means that
1522 explicit casts are required to convert pointers between these address
1523 spaces and the generic address space. In practice the application
1524 should cast to @code{uintptr_t} and apply the segment base offset
1525 that it installed previously.
1526
1527 The preprocessor symbols @code{__SEG_FS} and @code{__SEG_GS} are
1528 defined when these address spaces are supported.
1529 @end table
1530
1531 @node Zero Length
1532 @section Arrays of Length Zero
1533 @cindex arrays of length zero
1534 @cindex zero-length arrays
1535 @cindex length-zero arrays
1536 @cindex flexible array members
1537
1538 Zero-length arrays are allowed in GNU C@. They are very useful as the
1539 last element of a structure that is really a header for a variable-length
1540 object:
1541
1542 @smallexample
1543 struct line @{
1544 int length;
1545 char contents[0];
1546 @};
1547
1548 struct line *thisline = (struct line *)
1549 malloc (sizeof (struct line) + this_length);
1550 thisline->length = this_length;
1551 @end smallexample
1552
1553 In ISO C90, you would have to give @code{contents} a length of 1, which
1554 means either you waste space or complicate the argument to @code{malloc}.
1555
1556 In ISO C99, you would use a @dfn{flexible array member}, which is
1557 slightly different in syntax and semantics:
1558
1559 @itemize @bullet
1560 @item
1561 Flexible array members are written as @code{contents[]} without
1562 the @code{0}.
1563
1564 @item
1565 Flexible array members have incomplete type, and so the @code{sizeof}
1566 operator may not be applied. As a quirk of the original implementation
1567 of zero-length arrays, @code{sizeof} evaluates to zero.
1568
1569 @item
1570 Flexible array members may only appear as the last member of a
1571 @code{struct} that is otherwise non-empty.
1572
1573 @item
1574 A structure containing a flexible array member, or a union containing
1575 such a structure (possibly recursively), may not be a member of a
1576 structure or an element of an array. (However, these uses are
1577 permitted by GCC as extensions.)
1578 @end itemize
1579
1580 Non-empty initialization of zero-length
1581 arrays is treated like any case where there are more initializer
1582 elements than the array holds, in that a suitable warning about ``excess
1583 elements in array'' is given, and the excess elements (all of them, in
1584 this case) are ignored.
1585
1586 GCC allows static initialization of flexible array members.
1587 This is equivalent to defining a new structure containing the original
1588 structure followed by an array of sufficient size to contain the data.
1589 E.g.@: in the following, @code{f1} is constructed as if it were declared
1590 like @code{f2}.
1591
1592 @smallexample
1593 struct f1 @{
1594 int x; int y[];
1595 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1596
1597 struct f2 @{
1598 struct f1 f1; int data[3];
1599 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1600 @end smallexample
1601
1602 @noindent
1603 The convenience of this extension is that @code{f1} has the desired
1604 type, eliminating the need to consistently refer to @code{f2.f1}.
1605
1606 This has symmetry with normal static arrays, in that an array of
1607 unknown size is also written with @code{[]}.
1608
1609 Of course, this extension only makes sense if the extra data comes at
1610 the end of a top-level object, as otherwise we would be overwriting
1611 data at subsequent offsets. To avoid undue complication and confusion
1612 with initialization of deeply nested arrays, we simply disallow any
1613 non-empty initialization except when the structure is the top-level
1614 object. For example:
1615
1616 @smallexample
1617 struct foo @{ int x; int y[]; @};
1618 struct bar @{ struct foo z; @};
1619
1620 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1621 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1622 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1623 struct foo d[1] = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1624 @end smallexample
1625
1626 @node Empty Structures
1627 @section Structures with No Members
1628 @cindex empty structures
1629 @cindex zero-size structures
1630
1631 GCC permits a C structure to have no members:
1632
1633 @smallexample
1634 struct empty @{
1635 @};
1636 @end smallexample
1637
1638 The structure has size zero. In C++, empty structures are part
1639 of the language. G++ treats empty structures as if they had a single
1640 member of type @code{char}.
1641
1642 @node Variable Length
1643 @section Arrays of Variable Length
1644 @cindex variable-length arrays
1645 @cindex arrays of variable length
1646 @cindex VLAs
1647
1648 Variable-length automatic arrays are allowed in ISO C99, and as an
1649 extension GCC accepts them in C90 mode and in C++. These arrays are
1650 declared like any other automatic arrays, but with a length that is not
1651 a constant expression. The storage is allocated at the point of
1652 declaration and deallocated when the block scope containing the declaration
1653 exits. For
1654 example:
1655
1656 @smallexample
1657 FILE *
1658 concat_fopen (char *s1, char *s2, char *mode)
1659 @{
1660 char str[strlen (s1) + strlen (s2) + 1];
1661 strcpy (str, s1);
1662 strcat (str, s2);
1663 return fopen (str, mode);
1664 @}
1665 @end smallexample
1666
1667 @cindex scope of a variable length array
1668 @cindex variable-length array scope
1669 @cindex deallocating variable length arrays
1670 Jumping or breaking out of the scope of the array name deallocates the
1671 storage. Jumping into the scope is not allowed; you get an error
1672 message for it.
1673
1674 @cindex variable-length array in a structure
1675 As an extension, GCC accepts variable-length arrays as a member of
1676 a structure or a union. For example:
1677
1678 @smallexample
1679 void
1680 foo (int n)
1681 @{
1682 struct S @{ int x[n]; @};
1683 @}
1684 @end smallexample
1685
1686 @cindex @code{alloca} vs variable-length arrays
1687 You can use the function @code{alloca} to get an effect much like
1688 variable-length arrays. The function @code{alloca} is available in
1689 many other C implementations (but not in all). On the other hand,
1690 variable-length arrays are more elegant.
1691
1692 There are other differences between these two methods. Space allocated
1693 with @code{alloca} exists until the containing @emph{function} returns.
1694 The space for a variable-length array is deallocated as soon as the array
1695 name's scope ends, unless you also use @code{alloca} in this scope.
1696
1697 You can also use variable-length arrays as arguments to functions:
1698
1699 @smallexample
1700 struct entry
1701 tester (int len, char data[len][len])
1702 @{
1703 /* @r{@dots{}} */
1704 @}
1705 @end smallexample
1706
1707 The length of an array is computed once when the storage is allocated
1708 and is remembered for the scope of the array in case you access it with
1709 @code{sizeof}.
1710
1711 If you want to pass the array first and the length afterward, you can
1712 use a forward declaration in the parameter list---another GNU extension.
1713
1714 @smallexample
1715 struct entry
1716 tester (int len; char data[len][len], int len)
1717 @{
1718 /* @r{@dots{}} */
1719 @}
1720 @end smallexample
1721
1722 @cindex parameter forward declaration
1723 The @samp{int len} before the semicolon is a @dfn{parameter forward
1724 declaration}, and it serves the purpose of making the name @code{len}
1725 known when the declaration of @code{data} is parsed.
1726
1727 You can write any number of such parameter forward declarations in the
1728 parameter list. They can be separated by commas or semicolons, but the
1729 last one must end with a semicolon, which is followed by the ``real''
1730 parameter declarations. Each forward declaration must match a ``real''
1731 declaration in parameter name and data type. ISO C99 does not support
1732 parameter forward declarations.
1733
1734 @node Variadic Macros
1735 @section Macros with a Variable Number of Arguments.
1736 @cindex variable number of arguments
1737 @cindex macro with variable arguments
1738 @cindex rest argument (in macro)
1739 @cindex variadic macros
1740
1741 In the ISO C standard of 1999, a macro can be declared to accept a
1742 variable number of arguments much as a function can. The syntax for
1743 defining the macro is similar to that of a function. Here is an
1744 example:
1745
1746 @smallexample
1747 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1748 @end smallexample
1749
1750 @noindent
1751 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1752 such a macro, it represents the zero or more tokens until the closing
1753 parenthesis that ends the invocation, including any commas. This set of
1754 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1755 wherever it appears. See the CPP manual for more information.
1756
1757 GCC has long supported variadic macros, and used a different syntax that
1758 allowed you to give a name to the variable arguments just like any other
1759 argument. Here is an example:
1760
1761 @smallexample
1762 #define debug(format, args...) fprintf (stderr, format, args)
1763 @end smallexample
1764
1765 @noindent
1766 This is in all ways equivalent to the ISO C example above, but arguably
1767 more readable and descriptive.
1768
1769 GNU CPP has two further variadic macro extensions, and permits them to
1770 be used with either of the above forms of macro definition.
1771
1772 In standard C, you are not allowed to leave the variable argument out
1773 entirely; but you are allowed to pass an empty argument. For example,
1774 this invocation is invalid in ISO C, because there is no comma after
1775 the string:
1776
1777 @smallexample
1778 debug ("A message")
1779 @end smallexample
1780
1781 GNU CPP permits you to completely omit the variable arguments in this
1782 way. In the above examples, the compiler would complain, though since
1783 the expansion of the macro still has the extra comma after the format
1784 string.
1785
1786 To help solve this problem, CPP behaves specially for variable arguments
1787 used with the token paste operator, @samp{##}. If instead you write
1788
1789 @smallexample
1790 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1791 @end smallexample
1792
1793 @noindent
1794 and if the variable arguments are omitted or empty, the @samp{##}
1795 operator causes the preprocessor to remove the comma before it. If you
1796 do provide some variable arguments in your macro invocation, GNU CPP
1797 does not complain about the paste operation and instead places the
1798 variable arguments after the comma. Just like any other pasted macro
1799 argument, these arguments are not macro expanded.
1800
1801 @node Escaped Newlines
1802 @section Slightly Looser Rules for Escaped Newlines
1803 @cindex escaped newlines
1804 @cindex newlines (escaped)
1805
1806 The preprocessor treatment of escaped newlines is more relaxed
1807 than that specified by the C90 standard, which requires the newline
1808 to immediately follow a backslash.
1809 GCC's implementation allows whitespace in the form
1810 of spaces, horizontal and vertical tabs, and form feeds between the
1811 backslash and the subsequent newline. The preprocessor issues a
1812 warning, but treats it as a valid escaped newline and combines the two
1813 lines to form a single logical line. This works within comments and
1814 tokens, as well as between tokens. Comments are @emph{not} treated as
1815 whitespace for the purposes of this relaxation, since they have not
1816 yet been replaced with spaces.
1817
1818 @node Subscripting
1819 @section Non-Lvalue Arrays May Have Subscripts
1820 @cindex subscripting
1821 @cindex arrays, non-lvalue
1822
1823 @cindex subscripting and function values
1824 In ISO C99, arrays that are not lvalues still decay to pointers, and
1825 may be subscripted, although they may not be modified or used after
1826 the next sequence point and the unary @samp{&} operator may not be
1827 applied to them. As an extension, GNU C allows such arrays to be
1828 subscripted in C90 mode, though otherwise they do not decay to
1829 pointers outside C99 mode. For example,
1830 this is valid in GNU C though not valid in C90:
1831
1832 @smallexample
1833 @group
1834 struct foo @{int a[4];@};
1835
1836 struct foo f();
1837
1838 bar (int index)
1839 @{
1840 return f().a[index];
1841 @}
1842 @end group
1843 @end smallexample
1844
1845 @node Pointer Arith
1846 @section Arithmetic on @code{void}- and Function-Pointers
1847 @cindex void pointers, arithmetic
1848 @cindex void, size of pointer to
1849 @cindex function pointers, arithmetic
1850 @cindex function, size of pointer to
1851
1852 In GNU C, addition and subtraction operations are supported on pointers to
1853 @code{void} and on pointers to functions. This is done by treating the
1854 size of a @code{void} or of a function as 1.
1855
1856 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1857 and on function types, and returns 1.
1858
1859 @opindex Wpointer-arith
1860 The option @option{-Wpointer-arith} requests a warning if these extensions
1861 are used.
1862
1863 @node Pointers to Arrays
1864 @section Pointers to Arrays with Qualifiers Work as Expected
1865 @cindex pointers to arrays
1866 @cindex const qualifier
1867
1868 In GNU C, pointers to arrays with qualifiers work similar to pointers
1869 to other qualified types. For example, a value of type @code{int (*)[5]}
1870 can be used to initialize a variable of type @code{const int (*)[5]}.
1871 These types are incompatible in ISO C because the @code{const} qualifier
1872 is formally attached to the element type of the array and not the
1873 array itself.
1874
1875 @smallexample
1876 extern void
1877 transpose (int N, int M, double out[M][N], const double in[N][M]);
1878 double x[3][2];
1879 double y[2][3];
1880 @r{@dots{}}
1881 transpose(3, 2, y, x);
1882 @end smallexample
1883
1884 @node Initializers
1885 @section Non-Constant Initializers
1886 @cindex initializers, non-constant
1887 @cindex non-constant initializers
1888
1889 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1890 automatic variable are not required to be constant expressions in GNU C@.
1891 Here is an example of an initializer with run-time varying elements:
1892
1893 @smallexample
1894 foo (float f, float g)
1895 @{
1896 float beat_freqs[2] = @{ f-g, f+g @};
1897 /* @r{@dots{}} */
1898 @}
1899 @end smallexample
1900
1901 @node Compound Literals
1902 @section Compound Literals
1903 @cindex constructor expressions
1904 @cindex initializations in expressions
1905 @cindex structures, constructor expression
1906 @cindex expressions, constructor
1907 @cindex compound literals
1908 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1909
1910 A compound literal looks like a cast of a brace-enclosed aggregate
1911 initializer list. Its value is an object of the type specified in
1912 the cast, containing the elements specified in the initializer.
1913 Unlike the result of a cast, a compound literal is an lvalue. ISO
1914 C99 and later support compound literals. As an extension, GCC
1915 supports compound literals also in C90 mode and in C++, although
1916 as explained below, the C++ semantics are somewhat different.
1917
1918 Usually, the specified type of a compound literal is a structure. Assume
1919 that @code{struct foo} and @code{structure} are declared as shown:
1920
1921 @smallexample
1922 struct foo @{int a; char b[2];@} structure;
1923 @end smallexample
1924
1925 @noindent
1926 Here is an example of constructing a @code{struct foo} with a compound literal:
1927
1928 @smallexample
1929 structure = ((struct foo) @{x + y, 'a', 0@});
1930 @end smallexample
1931
1932 @noindent
1933 This is equivalent to writing the following:
1934
1935 @smallexample
1936 @{
1937 struct foo temp = @{x + y, 'a', 0@};
1938 structure = temp;
1939 @}
1940 @end smallexample
1941
1942 You can also construct an array, though this is dangerous in C++, as
1943 explained below. If all the elements of the compound literal are
1944 (made up of) simple constant expressions suitable for use in
1945 initializers of objects of static storage duration, then the compound
1946 literal can be coerced to a pointer to its first element and used in
1947 such an initializer, as shown here:
1948
1949 @smallexample
1950 char **foo = (char *[]) @{ "x", "y", "z" @};
1951 @end smallexample
1952
1953 Compound literals for scalar types and union types are also allowed. In
1954 the following example the variable @code{i} is initialized to the value
1955 @code{2}, the result of incrementing the unnamed object created by
1956 the compound literal.
1957
1958 @smallexample
1959 int i = ++(int) @{ 1 @};
1960 @end smallexample
1961
1962 As a GNU extension, GCC allows initialization of objects with static storage
1963 duration by compound literals (which is not possible in ISO C99 because
1964 the initializer is not a constant).
1965 It is handled as if the object were initialized only with the brace-enclosed
1966 list if the types of the compound literal and the object match.
1967 The elements of the compound literal must be constant.
1968 If the object being initialized has array type of unknown size, the size is
1969 determined by the size of the compound literal.
1970
1971 @smallexample
1972 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1973 static int y[] = (int []) @{1, 2, 3@};
1974 static int z[] = (int [3]) @{1@};
1975 @end smallexample
1976
1977 @noindent
1978 The above lines are equivalent to the following:
1979 @smallexample
1980 static struct foo x = @{1, 'a', 'b'@};
1981 static int y[] = @{1, 2, 3@};
1982 static int z[] = @{1, 0, 0@};
1983 @end smallexample
1984
1985 In C, a compound literal designates an unnamed object with static or
1986 automatic storage duration. In C++, a compound literal designates a
1987 temporary object that only lives until the end of its full-expression.
1988 As a result, well-defined C code that takes the address of a subobject
1989 of a compound literal can be undefined in C++, so G++ rejects
1990 the conversion of a temporary array to a pointer. For instance, if
1991 the array compound literal example above appeared inside a function,
1992 any subsequent use of @code{foo} in C++ would have undefined behavior
1993 because the lifetime of the array ends after the declaration of @code{foo}.
1994
1995 As an optimization, G++ sometimes gives array compound literals longer
1996 lifetimes: when the array either appears outside a function or has
1997 a @code{const}-qualified type. If @code{foo} and its initializer had
1998 elements of type @code{char *const} rather than @code{char *}, or if
1999 @code{foo} were a global variable, the array would have static storage
2000 duration. But it is probably safest just to avoid the use of array
2001 compound literals in C++ code.
2002
2003 @node Designated Inits
2004 @section Designated Initializers
2005 @cindex initializers with labeled elements
2006 @cindex labeled elements in initializers
2007 @cindex case labels in initializers
2008 @cindex designated initializers
2009
2010 Standard C90 requires the elements of an initializer to appear in a fixed
2011 order, the same as the order of the elements in the array or structure
2012 being initialized.
2013
2014 In ISO C99 you can give the elements in any order, specifying the array
2015 indices or structure field names they apply to, and GNU C allows this as
2016 an extension in C90 mode as well. This extension is not
2017 implemented in GNU C++.
2018
2019 To specify an array index, write
2020 @samp{[@var{index}] =} before the element value. For example,
2021
2022 @smallexample
2023 int a[6] = @{ [4] = 29, [2] = 15 @};
2024 @end smallexample
2025
2026 @noindent
2027 is equivalent to
2028
2029 @smallexample
2030 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
2031 @end smallexample
2032
2033 @noindent
2034 The index values must be constant expressions, even if the array being
2035 initialized is automatic.
2036
2037 An alternative syntax for this that has been obsolete since GCC 2.5 but
2038 GCC still accepts is to write @samp{[@var{index}]} before the element
2039 value, with no @samp{=}.
2040
2041 To initialize a range of elements to the same value, write
2042 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
2043 extension. For example,
2044
2045 @smallexample
2046 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
2047 @end smallexample
2048
2049 @noindent
2050 If the value in it has side-effects, the side-effects happen only once,
2051 not for each initialized field by the range initializer.
2052
2053 @noindent
2054 Note that the length of the array is the highest value specified
2055 plus one.
2056
2057 In a structure initializer, specify the name of a field to initialize
2058 with @samp{.@var{fieldname} =} before the element value. For example,
2059 given the following structure,
2060
2061 @smallexample
2062 struct point @{ int x, y; @};
2063 @end smallexample
2064
2065 @noindent
2066 the following initialization
2067
2068 @smallexample
2069 struct point p = @{ .y = yvalue, .x = xvalue @};
2070 @end smallexample
2071
2072 @noindent
2073 is equivalent to
2074
2075 @smallexample
2076 struct point p = @{ xvalue, yvalue @};
2077 @end smallexample
2078
2079 Another syntax that has the same meaning, obsolete since GCC 2.5, is
2080 @samp{@var{fieldname}:}, as shown here:
2081
2082 @smallexample
2083 struct point p = @{ y: yvalue, x: xvalue @};
2084 @end smallexample
2085
2086 Omitted field members are implicitly initialized the same as objects
2087 that have static storage duration.
2088
2089 @cindex designators
2090 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
2091 @dfn{designator}. You can also use a designator (or the obsolete colon
2092 syntax) when initializing a union, to specify which element of the union
2093 should be used. For example,
2094
2095 @smallexample
2096 union foo @{ int i; double d; @};
2097
2098 union foo f = @{ .d = 4 @};
2099 @end smallexample
2100
2101 @noindent
2102 converts 4 to a @code{double} to store it in the union using
2103 the second element. By contrast, casting 4 to type @code{union foo}
2104 stores it into the union as the integer @code{i}, since it is
2105 an integer. @xref{Cast to Union}.
2106
2107 You can combine this technique of naming elements with ordinary C
2108 initialization of successive elements. Each initializer element that
2109 does not have a designator applies to the next consecutive element of the
2110 array or structure. For example,
2111
2112 @smallexample
2113 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
2114 @end smallexample
2115
2116 @noindent
2117 is equivalent to
2118
2119 @smallexample
2120 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
2121 @end smallexample
2122
2123 Labeling the elements of an array initializer is especially useful
2124 when the indices are characters or belong to an @code{enum} type.
2125 For example:
2126
2127 @smallexample
2128 int whitespace[256]
2129 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
2130 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
2131 @end smallexample
2132
2133 @cindex designator lists
2134 You can also write a series of @samp{.@var{fieldname}} and
2135 @samp{[@var{index}]} designators before an @samp{=} to specify a
2136 nested subobject to initialize; the list is taken relative to the
2137 subobject corresponding to the closest surrounding brace pair. For
2138 example, with the @samp{struct point} declaration above:
2139
2140 @smallexample
2141 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
2142 @end smallexample
2143
2144 @noindent
2145 If the same field is initialized multiple times, it has the value from
2146 the last initialization. If any such overridden initialization has
2147 side-effect, it is unspecified whether the side-effect happens or not.
2148 Currently, GCC discards them and issues a warning.
2149
2150 @node Case Ranges
2151 @section Case Ranges
2152 @cindex case ranges
2153 @cindex ranges in case statements
2154
2155 You can specify a range of consecutive values in a single @code{case} label,
2156 like this:
2157
2158 @smallexample
2159 case @var{low} ... @var{high}:
2160 @end smallexample
2161
2162 @noindent
2163 This has the same effect as the proper number of individual @code{case}
2164 labels, one for each integer value from @var{low} to @var{high}, inclusive.
2165
2166 This feature is especially useful for ranges of ASCII character codes:
2167
2168 @smallexample
2169 case 'A' ... 'Z':
2170 @end smallexample
2171
2172 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
2173 it may be parsed wrong when you use it with integer values. For example,
2174 write this:
2175
2176 @smallexample
2177 case 1 ... 5:
2178 @end smallexample
2179
2180 @noindent
2181 rather than this:
2182
2183 @smallexample
2184 case 1...5:
2185 @end smallexample
2186
2187 @node Cast to Union
2188 @section Cast to a Union Type
2189 @cindex cast to a union
2190 @cindex union, casting to a
2191
2192 A cast to union type looks similar to other casts, except that the type
2193 specified is a union type. You can specify the type either with the
2194 @code{union} keyword or with a @code{typedef} name that refers to
2195 a union. A cast to a union actually creates a compound literal and
2196 yields an lvalue, not an rvalue like true casts do.
2197 @xref{Compound Literals}.
2198
2199 The types that may be cast to the union type are those of the members
2200 of the union. Thus, given the following union and variables:
2201
2202 @smallexample
2203 union foo @{ int i; double d; @};
2204 int x;
2205 double y;
2206 @end smallexample
2207
2208 @noindent
2209 both @code{x} and @code{y} can be cast to type @code{union foo}.
2210
2211 Using the cast as the right-hand side of an assignment to a variable of
2212 union type is equivalent to storing in a member of the union:
2213
2214 @smallexample
2215 union foo u;
2216 /* @r{@dots{}} */
2217 u = (union foo) x @equiv{} u.i = x
2218 u = (union foo) y @equiv{} u.d = y
2219 @end smallexample
2220
2221 You can also use the union cast as a function argument:
2222
2223 @smallexample
2224 void hack (union foo);
2225 /* @r{@dots{}} */
2226 hack ((union foo) x);
2227 @end smallexample
2228
2229 @node Mixed Declarations
2230 @section Mixed Declarations and Code
2231 @cindex mixed declarations and code
2232 @cindex declarations, mixed with code
2233 @cindex code, mixed with declarations
2234
2235 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2236 within compound statements. As an extension, GNU C also allows this in
2237 C90 mode. For example, you could do:
2238
2239 @smallexample
2240 int i;
2241 /* @r{@dots{}} */
2242 i++;
2243 int j = i + 2;
2244 @end smallexample
2245
2246 Each identifier is visible from where it is declared until the end of
2247 the enclosing block.
2248
2249 @node Function Attributes
2250 @section Declaring Attributes of Functions
2251 @cindex function attributes
2252 @cindex declaring attributes of functions
2253 @cindex @code{volatile} applied to function
2254 @cindex @code{const} applied to function
2255
2256 In GNU C, you can use function attributes to declare certain things
2257 about functions called in your program which help the compiler
2258 optimize calls and check your code more carefully. For example, you
2259 can use attributes to declare that a function never returns
2260 (@code{noreturn}), returns a value depending only on its arguments
2261 (@code{pure}), or has @code{printf}-style arguments (@code{format}).
2262
2263 You can also use attributes to control memory placement, code
2264 generation options or call/return conventions within the function
2265 being annotated. Many of these attributes are target-specific. For
2266 example, many targets support attributes for defining interrupt
2267 handler functions, which typically must follow special register usage
2268 and return conventions.
2269
2270 Function attributes are introduced by the @code{__attribute__} keyword
2271 on a declaration, followed by an attribute specification inside double
2272 parentheses. You can specify multiple attributes in a declaration by
2273 separating them by commas within the double parentheses or by
2274 immediately following an attribute declaration with another attribute
2275 declaration. @xref{Attribute Syntax}, for the exact rules on
2276 attribute syntax and placement.
2277
2278 GCC also supports attributes on
2279 variable declarations (@pxref{Variable Attributes}),
2280 labels (@pxref{Label Attributes}),
2281 enumerators (@pxref{Enumerator Attributes}),
2282 statements (@pxref{Statement Attributes}),
2283 and types (@pxref{Type Attributes}).
2284
2285 There is some overlap between the purposes of attributes and pragmas
2286 (@pxref{Pragmas,,Pragmas Accepted by GCC}). It has been
2287 found convenient to use @code{__attribute__} to achieve a natural
2288 attachment of attributes to their corresponding declarations, whereas
2289 @code{#pragma} is of use for compatibility with other compilers
2290 or constructs that do not naturally form part of the grammar.
2291
2292 In addition to the attributes documented here,
2293 GCC plugins may provide their own attributes.
2294
2295 @menu
2296 * Common Function Attributes::
2297 * AArch64 Function Attributes::
2298 * ARC Function Attributes::
2299 * ARM Function Attributes::
2300 * AVR Function Attributes::
2301 * Blackfin Function Attributes::
2302 * CR16 Function Attributes::
2303 * Epiphany Function Attributes::
2304 * H8/300 Function Attributes::
2305 * IA-64 Function Attributes::
2306 * M32C Function Attributes::
2307 * M32R/D Function Attributes::
2308 * m68k Function Attributes::
2309 * MCORE Function Attributes::
2310 * MeP Function Attributes::
2311 * MicroBlaze Function Attributes::
2312 * Microsoft Windows Function Attributes::
2313 * MIPS Function Attributes::
2314 * MSP430 Function Attributes::
2315 * NDS32 Function Attributes::
2316 * Nios II Function Attributes::
2317 * Nvidia PTX Function Attributes::
2318 * PowerPC Function Attributes::
2319 * RL78 Function Attributes::
2320 * RX Function Attributes::
2321 * S/390 Function Attributes::
2322 * SH Function Attributes::
2323 * SPU Function Attributes::
2324 * Symbian OS Function Attributes::
2325 * V850 Function Attributes::
2326 * Visium Function Attributes::
2327 * x86 Function Attributes::
2328 * Xstormy16 Function Attributes::
2329 @end menu
2330
2331 @node Common Function Attributes
2332 @subsection Common Function Attributes
2333
2334 The following attributes are supported on most targets.
2335
2336 @table @code
2337 @c Keep this table alphabetized by attribute name. Treat _ as space.
2338
2339 @item alias ("@var{target}")
2340 @cindex @code{alias} function attribute
2341 The @code{alias} attribute causes the declaration to be emitted as an
2342 alias for another symbol, which must be specified. For instance,
2343
2344 @smallexample
2345 void __f () @{ /* @r{Do something.} */; @}
2346 void f () __attribute__ ((weak, alias ("__f")));
2347 @end smallexample
2348
2349 @noindent
2350 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2351 mangled name for the target must be used. It is an error if @samp{__f}
2352 is not defined in the same translation unit.
2353
2354 This attribute requires assembler and object file support,
2355 and may not be available on all targets.
2356
2357 @item aligned (@var{alignment})
2358 @cindex @code{aligned} function attribute
2359 This attribute specifies a minimum alignment for the function,
2360 measured in bytes.
2361
2362 You cannot use this attribute to decrease the alignment of a function,
2363 only to increase it. However, when you explicitly specify a function
2364 alignment this overrides the effect of the
2365 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2366 function.
2367
2368 Note that the effectiveness of @code{aligned} attributes may be
2369 limited by inherent limitations in your linker. On many systems, the
2370 linker is only able to arrange for functions to be aligned up to a
2371 certain maximum alignment. (For some linkers, the maximum supported
2372 alignment may be very very small.) See your linker documentation for
2373 further information.
2374
2375 The @code{aligned} attribute can also be used for variables and fields
2376 (@pxref{Variable Attributes}.)
2377
2378 @item alloc_align
2379 @cindex @code{alloc_align} function attribute
2380 The @code{alloc_align} attribute is used to tell the compiler that the
2381 function return value points to memory, where the returned pointer minimum
2382 alignment is given by one of the functions parameters. GCC uses this
2383 information to improve pointer alignment analysis.
2384
2385 The function parameter denoting the allocated alignment is specified by
2386 one integer argument, whose number is the argument of the attribute.
2387 Argument numbering starts at one.
2388
2389 For instance,
2390
2391 @smallexample
2392 void* my_memalign(size_t, size_t) __attribute__((alloc_align(1)))
2393 @end smallexample
2394
2395 @noindent
2396 declares that @code{my_memalign} returns memory with minimum alignment
2397 given by parameter 1.
2398
2399 @item alloc_size
2400 @cindex @code{alloc_size} function attribute
2401 The @code{alloc_size} attribute is used to tell the compiler that the
2402 function return value points to memory, where the size is given by
2403 one or two of the functions parameters. GCC uses this
2404 information to improve the correctness of @code{__builtin_object_size}.
2405
2406 The function parameter(s) denoting the allocated size are specified by
2407 one or two integer arguments supplied to the attribute. The allocated size
2408 is either the value of the single function argument specified or the product
2409 of the two function arguments specified. Argument numbering starts at
2410 one.
2411
2412 For instance,
2413
2414 @smallexample
2415 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2416 void* my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2417 @end smallexample
2418
2419 @noindent
2420 declares that @code{my_calloc} returns memory of the size given by
2421 the product of parameter 1 and 2 and that @code{my_realloc} returns memory
2422 of the size given by parameter 2.
2423
2424 @item always_inline
2425 @cindex @code{always_inline} function attribute
2426 Generally, functions are not inlined unless optimization is specified.
2427 For functions declared inline, this attribute inlines the function
2428 independent of any restrictions that otherwise apply to inlining.
2429 Failure to inline such a function is diagnosed as an error.
2430 Note that if such a function is called indirectly the compiler may
2431 or may not inline it depending on optimization level and a failure
2432 to inline an indirect call may or may not be diagnosed.
2433
2434 @item artificial
2435 @cindex @code{artificial} function attribute
2436 This attribute is useful for small inline wrappers that if possible
2437 should appear during debugging as a unit. Depending on the debug
2438 info format it either means marking the function as artificial
2439 or using the caller location for all instructions within the inlined
2440 body.
2441
2442 @item assume_aligned
2443 @cindex @code{assume_aligned} function attribute
2444 The @code{assume_aligned} attribute is used to tell the compiler that the
2445 function return value points to memory, where the returned pointer minimum
2446 alignment is given by the first argument.
2447 If the attribute has two arguments, the second argument is misalignment offset.
2448
2449 For instance
2450
2451 @smallexample
2452 void* my_alloc1(size_t) __attribute__((assume_aligned(16)))
2453 void* my_alloc2(size_t) __attribute__((assume_aligned(32, 8)))
2454 @end smallexample
2455
2456 @noindent
2457 declares that @code{my_alloc1} returns 16-byte aligned pointer and
2458 that @code{my_alloc2} returns a pointer whose value modulo 32 is equal
2459 to 8.
2460
2461 @item bnd_instrument
2462 @cindex @code{bnd_instrument} function attribute
2463 The @code{bnd_instrument} attribute on functions is used to inform the
2464 compiler that the function should be instrumented when compiled
2465 with the @option{-fchkp-instrument-marked-only} option.
2466
2467 @item bnd_legacy
2468 @cindex @code{bnd_legacy} function attribute
2469 @cindex Pointer Bounds Checker attributes
2470 The @code{bnd_legacy} attribute on functions is used to inform the
2471 compiler that the function should not be instrumented when compiled
2472 with the @option{-fcheck-pointer-bounds} option.
2473
2474 @item cold
2475 @cindex @code{cold} function attribute
2476 The @code{cold} attribute on functions is used to inform the compiler that
2477 the function is unlikely to be executed. The function is optimized for
2478 size rather than speed and on many targets it is placed into a special
2479 subsection of the text section so all cold functions appear close together,
2480 improving code locality of non-cold parts of program. The paths leading
2481 to calls of cold functions within code are marked as unlikely by the branch
2482 prediction mechanism. It is thus useful to mark functions used to handle
2483 unlikely conditions, such as @code{perror}, as cold to improve optimization
2484 of hot functions that do call marked functions in rare occasions.
2485
2486 When profile feedback is available, via @option{-fprofile-use}, cold functions
2487 are automatically detected and this attribute is ignored.
2488
2489 @item const
2490 @cindex @code{const} function attribute
2491 @cindex functions that have no side effects
2492 Many functions do not examine any values except their arguments, and
2493 have no effects except the return value. Basically this is just slightly
2494 more strict class than the @code{pure} attribute below, since function is not
2495 allowed to read global memory.
2496
2497 @cindex pointer arguments
2498 Note that a function that has pointer arguments and examines the data
2499 pointed to must @emph{not} be declared @code{const}. Likewise, a
2500 function that calls a non-@code{const} function usually must not be
2501 @code{const}. It does not make sense for a @code{const} function to
2502 return @code{void}.
2503
2504 @item constructor
2505 @itemx destructor
2506 @itemx constructor (@var{priority})
2507 @itemx destructor (@var{priority})
2508 @cindex @code{constructor} function attribute
2509 @cindex @code{destructor} function attribute
2510 The @code{constructor} attribute causes the function to be called
2511 automatically before execution enters @code{main ()}. Similarly, the
2512 @code{destructor} attribute causes the function to be called
2513 automatically after @code{main ()} completes or @code{exit ()} is
2514 called. Functions with these attributes are useful for
2515 initializing data that is used implicitly during the execution of
2516 the program.
2517
2518 You may provide an optional integer priority to control the order in
2519 which constructor and destructor functions are run. A constructor
2520 with a smaller priority number runs before a constructor with a larger
2521 priority number; the opposite relationship holds for destructors. So,
2522 if you have a constructor that allocates a resource and a destructor
2523 that deallocates the same resource, both functions typically have the
2524 same priority. The priorities for constructor and destructor
2525 functions are the same as those specified for namespace-scope C++
2526 objects (@pxref{C++ Attributes}). However, at present, the order in which
2527 constructors for C++ objects with static storage duration and functions
2528 decorated with attribute @code{constructor} are invoked is unspecified.
2529 In mixed declarations, attribute @code{init_priority} can be used to
2530 impose a specific ordering.
2531
2532 @item deprecated
2533 @itemx deprecated (@var{msg})
2534 @cindex @code{deprecated} function attribute
2535 The @code{deprecated} attribute results in a warning if the function
2536 is used anywhere in the source file. This is useful when identifying
2537 functions that are expected to be removed in a future version of a
2538 program. The warning also includes the location of the declaration
2539 of the deprecated function, to enable users to easily find further
2540 information about why the function is deprecated, or what they should
2541 do instead. Note that the warnings only occurs for uses:
2542
2543 @smallexample
2544 int old_fn () __attribute__ ((deprecated));
2545 int old_fn ();
2546 int (*fn_ptr)() = old_fn;
2547 @end smallexample
2548
2549 @noindent
2550 results in a warning on line 3 but not line 2. The optional @var{msg}
2551 argument, which must be a string, is printed in the warning if
2552 present.
2553
2554 The @code{deprecated} attribute can also be used for variables and
2555 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2556
2557 @item error ("@var{message}")
2558 @itemx warning ("@var{message}")
2559 @cindex @code{error} function attribute
2560 @cindex @code{warning} function attribute
2561 If the @code{error} or @code{warning} attribute
2562 is used on a function declaration and a call to such a function
2563 is not eliminated through dead code elimination or other optimizations,
2564 an error or warning (respectively) that includes @var{message} is diagnosed.
2565 This is useful
2566 for compile-time checking, especially together with @code{__builtin_constant_p}
2567 and inline functions where checking the inline function arguments is not
2568 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2569
2570 While it is possible to leave the function undefined and thus invoke
2571 a link failure (to define the function with
2572 a message in @code{.gnu.warning*} section),
2573 when using these attributes the problem is diagnosed
2574 earlier and with exact location of the call even in presence of inline
2575 functions or when not emitting debugging information.
2576
2577 @item externally_visible
2578 @cindex @code{externally_visible} function attribute
2579 This attribute, attached to a global variable or function, nullifies
2580 the effect of the @option{-fwhole-program} command-line option, so the
2581 object remains visible outside the current compilation unit.
2582
2583 If @option{-fwhole-program} is used together with @option{-flto} and
2584 @command{gold} is used as the linker plugin,
2585 @code{externally_visible} attributes are automatically added to functions
2586 (not variable yet due to a current @command{gold} issue)
2587 that are accessed outside of LTO objects according to resolution file
2588 produced by @command{gold}.
2589 For other linkers that cannot generate resolution file,
2590 explicit @code{externally_visible} attributes are still necessary.
2591
2592 @item flatten
2593 @cindex @code{flatten} function attribute
2594 Generally, inlining into a function is limited. For a function marked with
2595 this attribute, every call inside this function is inlined, if possible.
2596 Whether the function itself is considered for inlining depends on its size and
2597 the current inlining parameters.
2598
2599 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2600 @cindex @code{format} function attribute
2601 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2602 @opindex Wformat
2603 The @code{format} attribute specifies that a function takes @code{printf},
2604 @code{scanf}, @code{strftime} or @code{strfmon} style arguments that
2605 should be type-checked against a format string. For example, the
2606 declaration:
2607
2608 @smallexample
2609 extern int
2610 my_printf (void *my_object, const char *my_format, ...)
2611 __attribute__ ((format (printf, 2, 3)));
2612 @end smallexample
2613
2614 @noindent
2615 causes the compiler to check the arguments in calls to @code{my_printf}
2616 for consistency with the @code{printf} style format string argument
2617 @code{my_format}.
2618
2619 The parameter @var{archetype} determines how the format string is
2620 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2621 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2622 @code{strfmon}. (You can also use @code{__printf__},
2623 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2624 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2625 @code{ms_strftime} are also present.
2626 @var{archetype} values such as @code{printf} refer to the formats accepted
2627 by the system's C runtime library,
2628 while values prefixed with @samp{gnu_} always refer
2629 to the formats accepted by the GNU C Library. On Microsoft Windows
2630 targets, values prefixed with @samp{ms_} refer to the formats accepted by the
2631 @file{msvcrt.dll} library.
2632 The parameter @var{string-index}
2633 specifies which argument is the format string argument (starting
2634 from 1), while @var{first-to-check} is the number of the first
2635 argument to check against the format string. For functions
2636 where the arguments are not available to be checked (such as
2637 @code{vprintf}), specify the third parameter as zero. In this case the
2638 compiler only checks the format string for consistency. For
2639 @code{strftime} formats, the third parameter is required to be zero.
2640 Since non-static C++ methods have an implicit @code{this} argument, the
2641 arguments of such methods should be counted from two, not one, when
2642 giving values for @var{string-index} and @var{first-to-check}.
2643
2644 In the example above, the format string (@code{my_format}) is the second
2645 argument of the function @code{my_print}, and the arguments to check
2646 start with the third argument, so the correct parameters for the format
2647 attribute are 2 and 3.
2648
2649 @opindex ffreestanding
2650 @opindex fno-builtin
2651 The @code{format} attribute allows you to identify your own functions
2652 that take format strings as arguments, so that GCC can check the
2653 calls to these functions for errors. The compiler always (unless
2654 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2655 for the standard library functions @code{printf}, @code{fprintf},
2656 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2657 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2658 warnings are requested (using @option{-Wformat}), so there is no need to
2659 modify the header file @file{stdio.h}. In C99 mode, the functions
2660 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2661 @code{vsscanf} are also checked. Except in strictly conforming C
2662 standard modes, the X/Open function @code{strfmon} is also checked as
2663 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2664 @xref{C Dialect Options,,Options Controlling C Dialect}.
2665
2666 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2667 recognized in the same context. Declarations including these format attributes
2668 are parsed for correct syntax, however the result of checking of such format
2669 strings is not yet defined, and is not carried out by this version of the
2670 compiler.
2671
2672 The target may also provide additional types of format checks.
2673 @xref{Target Format Checks,,Format Checks Specific to Particular
2674 Target Machines}.
2675
2676 @item format_arg (@var{string-index})
2677 @cindex @code{format_arg} function attribute
2678 @opindex Wformat-nonliteral
2679 The @code{format_arg} attribute specifies that a function takes a format
2680 string for a @code{printf}, @code{scanf}, @code{strftime} or
2681 @code{strfmon} style function and modifies it (for example, to translate
2682 it into another language), so the result can be passed to a
2683 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2684 function (with the remaining arguments to the format function the same
2685 as they would have been for the unmodified string). For example, the
2686 declaration:
2687
2688 @smallexample
2689 extern char *
2690 my_dgettext (char *my_domain, const char *my_format)
2691 __attribute__ ((format_arg (2)));
2692 @end smallexample
2693
2694 @noindent
2695 causes the compiler to check the arguments in calls to a @code{printf},
2696 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2697 format string argument is a call to the @code{my_dgettext} function, for
2698 consistency with the format string argument @code{my_format}. If the
2699 @code{format_arg} attribute had not been specified, all the compiler
2700 could tell in such calls to format functions would be that the format
2701 string argument is not constant; this would generate a warning when
2702 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2703 without the attribute.
2704
2705 The parameter @var{string-index} specifies which argument is the format
2706 string argument (starting from one). Since non-static C++ methods have
2707 an implicit @code{this} argument, the arguments of such methods should
2708 be counted from two.
2709
2710 The @code{format_arg} attribute allows you to identify your own
2711 functions that modify format strings, so that GCC can check the
2712 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2713 type function whose operands are a call to one of your own function.
2714 The compiler always treats @code{gettext}, @code{dgettext}, and
2715 @code{dcgettext} in this manner except when strict ISO C support is
2716 requested by @option{-ansi} or an appropriate @option{-std} option, or
2717 @option{-ffreestanding} or @option{-fno-builtin}
2718 is used. @xref{C Dialect Options,,Options
2719 Controlling C Dialect}.
2720
2721 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2722 @code{NSString} reference for compatibility with the @code{format} attribute
2723 above.
2724
2725 The target may also allow additional types in @code{format-arg} attributes.
2726 @xref{Target Format Checks,,Format Checks Specific to Particular
2727 Target Machines}.
2728
2729 @item gnu_inline
2730 @cindex @code{gnu_inline} function attribute
2731 This attribute should be used with a function that is also declared
2732 with the @code{inline} keyword. It directs GCC to treat the function
2733 as if it were defined in gnu90 mode even when compiling in C99 or
2734 gnu99 mode.
2735
2736 If the function is declared @code{extern}, then this definition of the
2737 function is used only for inlining. In no case is the function
2738 compiled as a standalone function, not even if you take its address
2739 explicitly. Such an address becomes an external reference, as if you
2740 had only declared the function, and had not defined it. This has
2741 almost the effect of a macro. The way to use this is to put a
2742 function definition in a header file with this attribute, and put
2743 another copy of the function, without @code{extern}, in a library
2744 file. The definition in the header file causes most calls to the
2745 function to be inlined. If any uses of the function remain, they
2746 refer to the single copy in the library. Note that the two
2747 definitions of the functions need not be precisely the same, although
2748 if they do not have the same effect your program may behave oddly.
2749
2750 In C, if the function is neither @code{extern} nor @code{static}, then
2751 the function is compiled as a standalone function, as well as being
2752 inlined where possible.
2753
2754 This is how GCC traditionally handled functions declared
2755 @code{inline}. Since ISO C99 specifies a different semantics for
2756 @code{inline}, this function attribute is provided as a transition
2757 measure and as a useful feature in its own right. This attribute is
2758 available in GCC 4.1.3 and later. It is available if either of the
2759 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2760 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2761 Function is As Fast As a Macro}.
2762
2763 In C++, this attribute does not depend on @code{extern} in any way,
2764 but it still requires the @code{inline} keyword to enable its special
2765 behavior.
2766
2767 @item hot
2768 @cindex @code{hot} function attribute
2769 The @code{hot} attribute on a function is used to inform the compiler that
2770 the function is a hot spot of the compiled program. The function is
2771 optimized more aggressively and on many targets it is placed into a special
2772 subsection of the text section so all hot functions appear close together,
2773 improving locality.
2774
2775 When profile feedback is available, via @option{-fprofile-use}, hot functions
2776 are automatically detected and this attribute is ignored.
2777
2778 @item ifunc ("@var{resolver}")
2779 @cindex @code{ifunc} function attribute
2780 @cindex indirect functions
2781 @cindex functions that are dynamically resolved
2782 The @code{ifunc} attribute is used to mark a function as an indirect
2783 function using the STT_GNU_IFUNC symbol type extension to the ELF
2784 standard. This allows the resolution of the symbol value to be
2785 determined dynamically at load time, and an optimized version of the
2786 routine to be selected for the particular processor or other system
2787 characteristics determined then. To use this attribute, first define
2788 the implementation functions available, and a resolver function that
2789 returns a pointer to the selected implementation function. The
2790 implementation functions' declarations must match the API of the
2791 function being implemented. The resolver should be declared to
2792 be a function taking no arguments and returning a pointer to
2793 a function of the same type as the implementation. For example:
2794
2795 @smallexample
2796 void *my_memcpy (void *dst, const void *src, size_t len)
2797 @{
2798 @dots{}
2799 return dst;
2800 @}
2801
2802 static void * (*resolve_memcpy (void))(void *, const void *, size_t)
2803 @{
2804 return my_memcpy; // we will just always select this routine
2805 @}
2806 @end smallexample
2807
2808 @noindent
2809 The exported header file declaring the function the user calls would
2810 contain:
2811
2812 @smallexample
2813 extern void *memcpy (void *, const void *, size_t);
2814 @end smallexample
2815
2816 @noindent
2817 allowing the user to call @code{memcpy} as a regular function, unaware of
2818 the actual implementation. Finally, the indirect function needs to be
2819 defined in the same translation unit as the resolver function:
2820
2821 @smallexample
2822 void *memcpy (void *, const void *, size_t)
2823 __attribute__ ((ifunc ("resolve_memcpy")));
2824 @end smallexample
2825
2826 In C++, the @code{ifunc} attribute takes a string that is the mangled name
2827 of the resolver function. A C++ resolver for a non-static member function
2828 of class @code{C} should be declared to return a pointer to a non-member
2829 function taking pointer to @code{C} as the first argument, followed by
2830 the same arguments as of the implementation function. G++ checks
2831 the signatures of the two functions and issues
2832 a @option{-Wattribute-alias} warning for mismatches. To suppress a warning
2833 for the necessary cast from a pointer to the implementation member function
2834 to the type of the corresponding non-member function use
2835 the @option{-Wno-pmf-conversions} option. For example:
2836
2837 @smallexample
2838 class S
2839 @{
2840 private:
2841 int debug_impl (int);
2842 int optimized_impl (int);
2843
2844 typedef int Func (S*, int);
2845
2846 static Func* resolver ();
2847 public:
2848
2849 int interface (int);
2850 @};
2851
2852 int S::debug_impl (int) @{ /* @r{@dots{}} */ @}
2853 int S::optimized_impl (int) @{ /* @r{@dots{}} */ @}
2854
2855 S::Func* S::resolver ()
2856 @{
2857 int (S::*pimpl) (int)
2858 = getenv ("DEBUG") ? &S::debug_impl : &S::optimized_impl;
2859
2860 // Cast triggers -Wno-pmf-conversions.
2861 return reinterpret_cast<Func*>(pimpl);
2862 @}
2863
2864 int S::interface (int) __attribute__ ((ifunc ("_ZN1S8resolverEv")));
2865 @end smallexample
2866
2867 Indirect functions cannot be weak. Binutils version 2.20.1 or higher
2868 and GNU C Library version 2.11.1 are required to use this feature.
2869
2870 @item interrupt
2871 @itemx interrupt_handler
2872 Many GCC back ends support attributes to indicate that a function is
2873 an interrupt handler, which tells the compiler to generate function
2874 entry and exit sequences that differ from those from regular
2875 functions. The exact syntax and behavior are target-specific;
2876 refer to the following subsections for details.
2877
2878 @item leaf
2879 @cindex @code{leaf} function attribute
2880 Calls to external functions with this attribute must return to the
2881 current compilation unit only by return or by exception handling. In
2882 particular, a leaf function is not allowed to invoke callback functions
2883 passed to it from the current compilation unit, directly call functions
2884 exported by the unit, or @code{longjmp} into the unit. Leaf functions
2885 might still call functions from other compilation units and thus they
2886 are not necessarily leaf in the sense that they contain no function
2887 calls at all.
2888
2889 The attribute is intended for library functions to improve dataflow
2890 analysis. The compiler takes the hint that any data not escaping the
2891 current compilation unit cannot be used or modified by the leaf
2892 function. For example, the @code{sin} function is a leaf function, but
2893 @code{qsort} is not.
2894
2895 Note that leaf functions might indirectly run a signal handler defined
2896 in the current compilation unit that uses static variables. Similarly,
2897 when lazy symbol resolution is in effect, leaf functions might invoke
2898 indirect functions whose resolver function or implementation function is
2899 defined in the current compilation unit and uses static variables. There
2900 is no standard-compliant way to write such a signal handler, resolver
2901 function, or implementation function, and the best that you can do is to
2902 remove the @code{leaf} attribute or mark all such static variables
2903 @code{volatile}. Lastly, for ELF-based systems that support symbol
2904 interposition, care should be taken that functions defined in the
2905 current compilation unit do not unexpectedly interpose other symbols
2906 based on the defined standards mode and defined feature test macros;
2907 otherwise an inadvertent callback would be added.
2908
2909 The attribute has no effect on functions defined within the current
2910 compilation unit. This is to allow easy merging of multiple compilation
2911 units into one, for example, by using the link-time optimization. For
2912 this reason the attribute is not allowed on types to annotate indirect
2913 calls.
2914
2915 @item malloc
2916 @cindex @code{malloc} function attribute
2917 @cindex functions that behave like malloc
2918 This tells the compiler that a function is @code{malloc}-like, i.e.,
2919 that the pointer @var{P} returned by the function cannot alias any
2920 other pointer valid when the function returns, and moreover no
2921 pointers to valid objects occur in any storage addressed by @var{P}.
2922
2923 Using this attribute can improve optimization. Functions like
2924 @code{malloc} and @code{calloc} have this property because they return
2925 a pointer to uninitialized or zeroed-out storage. However, functions
2926 like @code{realloc} do not have this property, as they can return a
2927 pointer to storage containing pointers.
2928
2929 @item no_icf
2930 @cindex @code{no_icf} function attribute
2931 This function attribute prevents a functions from being merged with another
2932 semantically equivalent function.
2933
2934 @item no_instrument_function
2935 @cindex @code{no_instrument_function} function attribute
2936 @opindex finstrument-functions
2937 If @option{-finstrument-functions} is given, profiling function calls are
2938 generated at entry and exit of most user-compiled functions.
2939 Functions with this attribute are not so instrumented.
2940
2941 @item no_profile_instrument_function
2942 @cindex @code{no_profile_instrument_function} function attribute
2943 The @code{no_profile_instrument_function} attribute on functions is used
2944 to inform the compiler that it should not process any profile feedback based
2945 optimization code instrumentation.
2946
2947 @item no_reorder
2948 @cindex @code{no_reorder} function attribute
2949 Do not reorder functions or variables marked @code{no_reorder}
2950 against each other or top level assembler statements the executable.
2951 The actual order in the program will depend on the linker command
2952 line. Static variables marked like this are also not removed.
2953 This has a similar effect
2954 as the @option{-fno-toplevel-reorder} option, but only applies to the
2955 marked symbols.
2956
2957 @item no_sanitize ("@var{sanitize_option}")
2958 @cindex @code{no_sanitize} function attribute
2959 The @code{no_sanitize} attribute on functions is used
2960 to inform the compiler that it should not do sanitization of all options
2961 mentioned in @var{sanitize_option}. A list of values acceptable by
2962 @option{-fsanitize} option can be provided.
2963
2964 @smallexample
2965 void __attribute__ ((no_sanitize ("alignment", "object-size")))
2966 f () @{ /* @r{Do something.} */; @}
2967 @end smallexample
2968
2969 @item no_sanitize_address
2970 @itemx no_address_safety_analysis
2971 @cindex @code{no_sanitize_address} function attribute
2972 The @code{no_sanitize_address} attribute on functions is used
2973 to inform the compiler that it should not instrument memory accesses
2974 in the function when compiling with the @option{-fsanitize=address} option.
2975 The @code{no_address_safety_analysis} is a deprecated alias of the
2976 @code{no_sanitize_address} attribute, new code should use
2977 @code{no_sanitize_address}.
2978
2979 @item no_sanitize_thread
2980 @cindex @code{no_sanitize_thread} function attribute
2981 The @code{no_sanitize_thread} attribute on functions is used
2982 to inform the compiler that it should not instrument memory accesses
2983 in the function when compiling with the @option{-fsanitize=thread} option.
2984
2985 @item no_sanitize_undefined
2986 @cindex @code{no_sanitize_undefined} function attribute
2987 The @code{no_sanitize_undefined} attribute on functions is used
2988 to inform the compiler that it should not check for undefined behavior
2989 in the function when compiling with the @option{-fsanitize=undefined} option.
2990
2991 @item no_split_stack
2992 @cindex @code{no_split_stack} function attribute
2993 @opindex fsplit-stack
2994 If @option{-fsplit-stack} is given, functions have a small
2995 prologue which decides whether to split the stack. Functions with the
2996 @code{no_split_stack} attribute do not have that prologue, and thus
2997 may run with only a small amount of stack space available.
2998
2999 @item no_stack_limit
3000 @cindex @code{no_stack_limit} function attribute
3001 This attribute locally overrides the @option{-fstack-limit-register}
3002 and @option{-fstack-limit-symbol} command-line options; it has the effect
3003 of disabling stack limit checking in the function it applies to.
3004
3005 @item noclone
3006 @cindex @code{noclone} function attribute
3007 This function attribute prevents a function from being considered for
3008 cloning---a mechanism that produces specialized copies of functions
3009 and which is (currently) performed by interprocedural constant
3010 propagation.
3011
3012 @item noinline
3013 @cindex @code{noinline} function attribute
3014 This function attribute prevents a function from being considered for
3015 inlining.
3016 @c Don't enumerate the optimizations by name here; we try to be
3017 @c future-compatible with this mechanism.
3018 If the function does not have side-effects, there are optimizations
3019 other than inlining that cause function calls to be optimized away,
3020 although the function call is live. To keep such calls from being
3021 optimized away, put
3022 @smallexample
3023 asm ("");
3024 @end smallexample
3025
3026 @noindent
3027 (@pxref{Extended Asm}) in the called function, to serve as a special
3028 side-effect.
3029
3030 @item noipa
3031 @cindex @code{noipa} function attribute
3032 Disable interprocedural optimizations between the function with this
3033 attribute and its callers, as if the body of the function is not available
3034 when optimizing callers and the callers are unavailable when optimizing
3035 the body. This attribute implies @code{noinline}, @code{noclone} and
3036 @code{no_icf} attributes. However, this attribute is not equivalent
3037 to a combination of other attributes, because its purpose is to suppress
3038 existing and future optimizations employing interprocedural analysis,
3039 including those that do not have an attribute suitable for disabling
3040 them individually. This attribute is supported mainly for the purpose
3041 of testing the compiler.
3042
3043 @item nonnull (@var{arg-index}, @dots{})
3044 @cindex @code{nonnull} function attribute
3045 @cindex functions with non-null pointer arguments
3046 The @code{nonnull} attribute specifies that some function parameters should
3047 be non-null pointers. For instance, the declaration:
3048
3049 @smallexample
3050 extern void *
3051 my_memcpy (void *dest, const void *src, size_t len)
3052 __attribute__((nonnull (1, 2)));
3053 @end smallexample
3054
3055 @noindent
3056 causes the compiler to check that, in calls to @code{my_memcpy},
3057 arguments @var{dest} and @var{src} are non-null. If the compiler
3058 determines that a null pointer is passed in an argument slot marked
3059 as non-null, and the @option{-Wnonnull} option is enabled, a warning
3060 is issued. The compiler may also choose to make optimizations based
3061 on the knowledge that certain function arguments will never be null.
3062
3063 If no argument index list is given to the @code{nonnull} attribute,
3064 all pointer arguments are marked as non-null. To illustrate, the
3065 following declaration is equivalent to the previous example:
3066
3067 @smallexample
3068 extern void *
3069 my_memcpy (void *dest, const void *src, size_t len)
3070 __attribute__((nonnull));
3071 @end smallexample
3072
3073 @item noplt
3074 @cindex @code{noplt} function attribute
3075 The @code{noplt} attribute is the counterpart to option @option{-fno-plt}.
3076 Calls to functions marked with this attribute in position-independent code
3077 do not use the PLT.
3078
3079 @smallexample
3080 @group
3081 /* Externally defined function foo. */
3082 int foo () __attribute__ ((noplt));
3083
3084 int
3085 main (/* @r{@dots{}} */)
3086 @{
3087 /* @r{@dots{}} */
3088 foo ();
3089 /* @r{@dots{}} */
3090 @}
3091 @end group
3092 @end smallexample
3093
3094 The @code{noplt} attribute on function @code{foo}
3095 tells the compiler to assume that
3096 the function @code{foo} is externally defined and that the call to
3097 @code{foo} must avoid the PLT
3098 in position-independent code.
3099
3100 In position-dependent code, a few targets also convert calls to
3101 functions that are marked to not use the PLT to use the GOT instead.
3102
3103 @item noreturn
3104 @cindex @code{noreturn} function attribute
3105 @cindex functions that never return
3106 A few standard library functions, such as @code{abort} and @code{exit},
3107 cannot return. GCC knows this automatically. Some programs define
3108 their own functions that never return. You can declare them
3109 @code{noreturn} to tell the compiler this fact. For example,
3110
3111 @smallexample
3112 @group
3113 void fatal () __attribute__ ((noreturn));
3114
3115 void
3116 fatal (/* @r{@dots{}} */)
3117 @{
3118 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3119 exit (1);
3120 @}
3121 @end group
3122 @end smallexample
3123
3124 The @code{noreturn} keyword tells the compiler to assume that
3125 @code{fatal} cannot return. It can then optimize without regard to what
3126 would happen if @code{fatal} ever did return. This makes slightly
3127 better code. More importantly, it helps avoid spurious warnings of
3128 uninitialized variables.
3129
3130 The @code{noreturn} keyword does not affect the exceptional path when that
3131 applies: a @code{noreturn}-marked function may still return to the caller
3132 by throwing an exception or calling @code{longjmp}.
3133
3134 Do not assume that registers saved by the calling function are
3135 restored before calling the @code{noreturn} function.
3136
3137 It does not make sense for a @code{noreturn} function to have a return
3138 type other than @code{void}.
3139
3140 @item nothrow
3141 @cindex @code{nothrow} function attribute
3142 The @code{nothrow} attribute is used to inform the compiler that a
3143 function cannot throw an exception. For example, most functions in
3144 the standard C library can be guaranteed not to throw an exception
3145 with the notable exceptions of @code{qsort} and @code{bsearch} that
3146 take function pointer arguments.
3147
3148 @item optimize
3149 @cindex @code{optimize} function attribute
3150 The @code{optimize} attribute is used to specify that a function is to
3151 be compiled with different optimization options than specified on the
3152 command line. Arguments can either be numbers or strings. Numbers
3153 are assumed to be an optimization level. Strings that begin with
3154 @code{O} are assumed to be an optimization option, while other options
3155 are assumed to be used with a @code{-f} prefix. You can also use the
3156 @samp{#pragma GCC optimize} pragma to set the optimization options
3157 that affect more than one function.
3158 @xref{Function Specific Option Pragmas}, for details about the
3159 @samp{#pragma GCC optimize} pragma.
3160
3161 This attribute should be used for debugging purposes only. It is not
3162 suitable in production code.
3163
3164 @item patchable_function_entry
3165 @cindex @code{patchable_function_entry} function attribute
3166 @cindex extra NOP instructions at the function entry point
3167 In case the target's text segment can be made writable at run time by
3168 any means, padding the function entry with a number of NOPs can be
3169 used to provide a universal tool for instrumentation.
3170
3171 The @code{patchable_function_entry} function attribute can be used to
3172 change the number of NOPs to any desired value. The two-value syntax
3173 is the same as for the command-line switch
3174 @option{-fpatchable-function-entry=N,M}, generating @var{N} NOPs, with
3175 the function entry point before the @var{M}th NOP instruction.
3176 @var{M} defaults to 0 if omitted e.g. function entry point is before
3177 the first NOP.
3178
3179 If patchable function entries are enabled globally using the command-line
3180 option @option{-fpatchable-function-entry=N,M}, then you must disable
3181 instrumentation on all functions that are part of the instrumentation
3182 framework with the attribute @code{patchable_function_entry (0)}
3183 to prevent recursion.
3184
3185 @item pure
3186 @cindex @code{pure} function attribute
3187 @cindex functions that have no side effects
3188 Many functions have no effects except the return value and their
3189 return value depends only on the parameters and/or global variables.
3190 Such a function can be subject
3191 to common subexpression elimination and loop optimization just as an
3192 arithmetic operator would be. These functions should be declared
3193 with the attribute @code{pure}. For example,
3194
3195 @smallexample
3196 int square (int) __attribute__ ((pure));
3197 @end smallexample
3198
3199 @noindent
3200 says that the hypothetical function @code{square} is safe to call
3201 fewer times than the program says.
3202
3203 Some common examples of pure functions are @code{strlen} or @code{memcmp}.
3204 Interesting non-pure functions are functions with infinite loops or those
3205 depending on volatile memory or other system resource, that may change between
3206 two consecutive calls (such as @code{feof} in a multithreading environment).
3207
3208 @item returns_nonnull
3209 @cindex @code{returns_nonnull} function attribute
3210 The @code{returns_nonnull} attribute specifies that the function
3211 return value should be a non-null pointer. For instance, the declaration:
3212
3213 @smallexample
3214 extern void *
3215 mymalloc (size_t len) __attribute__((returns_nonnull));
3216 @end smallexample
3217
3218 @noindent
3219 lets the compiler optimize callers based on the knowledge
3220 that the return value will never be null.
3221
3222 @item returns_twice
3223 @cindex @code{returns_twice} function attribute
3224 @cindex functions that return more than once
3225 The @code{returns_twice} attribute tells the compiler that a function may
3226 return more than one time. The compiler ensures that all registers
3227 are dead before calling such a function and emits a warning about
3228 the variables that may be clobbered after the second return from the
3229 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3230 The @code{longjmp}-like counterpart of such function, if any, might need
3231 to be marked with the @code{noreturn} attribute.
3232
3233 @item section ("@var{section-name}")
3234 @cindex @code{section} function attribute
3235 @cindex functions in arbitrary sections
3236 Normally, the compiler places the code it generates in the @code{text} section.
3237 Sometimes, however, you need additional sections, or you need certain
3238 particular functions to appear in special sections. The @code{section}
3239 attribute specifies that a function lives in a particular section.
3240 For example, the declaration:
3241
3242 @smallexample
3243 extern void foobar (void) __attribute__ ((section ("bar")));
3244 @end smallexample
3245
3246 @noindent
3247 puts the function @code{foobar} in the @code{bar} section.
3248
3249 Some file formats do not support arbitrary sections so the @code{section}
3250 attribute is not available on all platforms.
3251 If you need to map the entire contents of a module to a particular
3252 section, consider using the facilities of the linker instead.
3253
3254 @item sentinel
3255 @cindex @code{sentinel} function attribute
3256 This function attribute ensures that a parameter in a function call is
3257 an explicit @code{NULL}. The attribute is only valid on variadic
3258 functions. By default, the sentinel is located at position zero, the
3259 last parameter of the function call. If an optional integer position
3260 argument P is supplied to the attribute, the sentinel must be located at
3261 position P counting backwards from the end of the argument list.
3262
3263 @smallexample
3264 __attribute__ ((sentinel))
3265 is equivalent to
3266 __attribute__ ((sentinel(0)))
3267 @end smallexample
3268
3269 The attribute is automatically set with a position of 0 for the built-in
3270 functions @code{execl} and @code{execlp}. The built-in function
3271 @code{execle} has the attribute set with a position of 1.
3272
3273 A valid @code{NULL} in this context is defined as zero with any pointer
3274 type. If your system defines the @code{NULL} macro with an integer type
3275 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3276 with a copy that redefines NULL appropriately.
3277
3278 The warnings for missing or incorrect sentinels are enabled with
3279 @option{-Wformat}.
3280
3281 @item simd
3282 @itemx simd("@var{mask}")
3283 @cindex @code{simd} function attribute
3284 This attribute enables creation of one or more function versions that
3285 can process multiple arguments using SIMD instructions from a
3286 single invocation. Specifying this attribute allows compiler to
3287 assume that such versions are available at link time (provided
3288 in the same or another translation unit). Generated versions are
3289 target-dependent and described in the corresponding Vector ABI document. For
3290 x86_64 target this document can be found
3291 @w{@uref{https://sourceware.org/glibc/wiki/libmvec?action=AttachFile&do=view&target=VectorABI.txt,here}}.
3292
3293 The optional argument @var{mask} may have the value
3294 @code{notinbranch} or @code{inbranch},
3295 and instructs the compiler to generate non-masked or masked
3296 clones correspondingly. By default, all clones are generated.
3297
3298 The attribute should not be used together with Cilk Plus @code{vector}
3299 attribute on the same function.
3300
3301 If the attribute is specified and @code{#pragma omp declare simd} is
3302 present on a declaration and the @option{-fopenmp} or @option{-fopenmp-simd}
3303 switch is specified, then the attribute is ignored.
3304
3305 @item stack_protect
3306 @cindex @code{stack_protect} function attribute
3307 This attribute adds stack protection code to the function if
3308 flags @option{-fstack-protector}, @option{-fstack-protector-strong}
3309 or @option{-fstack-protector-explicit} are set.
3310
3311 @item target (@var{options})
3312 @cindex @code{target} function attribute
3313 Multiple target back ends implement the @code{target} attribute
3314 to specify that a function is to
3315 be compiled with different target options than specified on the
3316 command line. This can be used for instance to have functions
3317 compiled with a different ISA (instruction set architecture) than the
3318 default. You can also use the @samp{#pragma GCC target} pragma to set
3319 more than one function to be compiled with specific target options.
3320 @xref{Function Specific Option Pragmas}, for details about the
3321 @samp{#pragma GCC target} pragma.
3322
3323 For instance, on an x86, you could declare one function with the
3324 @code{target("sse4.1,arch=core2")} attribute and another with
3325 @code{target("sse4a,arch=amdfam10")}. This is equivalent to
3326 compiling the first function with @option{-msse4.1} and
3327 @option{-march=core2} options, and the second function with
3328 @option{-msse4a} and @option{-march=amdfam10} options. It is up to you
3329 to make sure that a function is only invoked on a machine that
3330 supports the particular ISA it is compiled for (for example by using
3331 @code{cpuid} on x86 to determine what feature bits and architecture
3332 family are used).
3333
3334 @smallexample
3335 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3336 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3337 @end smallexample
3338
3339 You can either use multiple
3340 strings separated by commas to specify multiple options,
3341 or separate the options with a comma (@samp{,}) within a single string.
3342
3343 The options supported are specific to each target; refer to @ref{x86
3344 Function Attributes}, @ref{PowerPC Function Attributes},
3345 @ref{ARM Function Attributes}, @ref{AArch64 Function Attributes},
3346 @ref{Nios II Function Attributes}, and @ref{S/390 Function Attributes}
3347 for details.
3348
3349 @item target_clones (@var{options})
3350 @cindex @code{target_clones} function attribute
3351 The @code{target_clones} attribute is used to specify that a function
3352 be cloned into multiple versions compiled with different target options
3353 than specified on the command line. The supported options and restrictions
3354 are the same as for @code{target} attribute.
3355
3356 For instance, on an x86, you could compile a function with
3357 @code{target_clones("sse4.1,avx")}. GCC creates two function clones,
3358 one compiled with @option{-msse4.1} and another with @option{-mavx}.
3359
3360 On a PowerPC, you can compile a function with
3361 @code{target_clones("cpu=power9,default")}. GCC will create two
3362 function clones, one compiled with @option{-mcpu=power9} and another
3363 with the default options. GCC must be configured to use GLIBC 2.23 or
3364 newer in order to use the @code{target_clones} attribute.
3365
3366 It also creates a resolver function (see
3367 the @code{ifunc} attribute above) that dynamically selects a clone
3368 suitable for current architecture. The resolver is created only if there
3369 is a usage of a function with @code{target_clones} attribute.
3370
3371 @item unused
3372 @cindex @code{unused} function attribute
3373 This attribute, attached to a function, means that the function is meant
3374 to be possibly unused. GCC does not produce a warning for this
3375 function.
3376
3377 @item used
3378 @cindex @code{used} function attribute
3379 This attribute, attached to a function, means that code must be emitted
3380 for the function even if it appears that the function is not referenced.
3381 This is useful, for example, when the function is referenced only in
3382 inline assembly.
3383
3384 When applied to a member function of a C++ class template, the
3385 attribute also means that the function is instantiated if the
3386 class itself is instantiated.
3387
3388 @item visibility ("@var{visibility_type}")
3389 @cindex @code{visibility} function attribute
3390 This attribute affects the linkage of the declaration to which it is attached.
3391 It can be applied to variables (@pxref{Common Variable Attributes}) and types
3392 (@pxref{Common Type Attributes}) as well as functions.
3393
3394 There are four supported @var{visibility_type} values: default,
3395 hidden, protected or internal visibility.
3396
3397 @smallexample
3398 void __attribute__ ((visibility ("protected")))
3399 f () @{ /* @r{Do something.} */; @}
3400 int i __attribute__ ((visibility ("hidden")));
3401 @end smallexample
3402
3403 The possible values of @var{visibility_type} correspond to the
3404 visibility settings in the ELF gABI.
3405
3406 @table @code
3407 @c keep this list of visibilities in alphabetical order.
3408
3409 @item default
3410 Default visibility is the normal case for the object file format.
3411 This value is available for the visibility attribute to override other
3412 options that may change the assumed visibility of entities.
3413
3414 On ELF, default visibility means that the declaration is visible to other
3415 modules and, in shared libraries, means that the declared entity may be
3416 overridden.
3417
3418 On Darwin, default visibility means that the declaration is visible to
3419 other modules.
3420
3421 Default visibility corresponds to ``external linkage'' in the language.
3422
3423 @item hidden
3424 Hidden visibility indicates that the entity declared has a new
3425 form of linkage, which we call ``hidden linkage''. Two
3426 declarations of an object with hidden linkage refer to the same object
3427 if they are in the same shared object.
3428
3429 @item internal
3430 Internal visibility is like hidden visibility, but with additional
3431 processor specific semantics. Unless otherwise specified by the
3432 psABI, GCC defines internal visibility to mean that a function is
3433 @emph{never} called from another module. Compare this with hidden
3434 functions which, while they cannot be referenced directly by other
3435 modules, can be referenced indirectly via function pointers. By
3436 indicating that a function cannot be called from outside the module,
3437 GCC may for instance omit the load of a PIC register since it is known
3438 that the calling function loaded the correct value.
3439
3440 @item protected
3441 Protected visibility is like default visibility except that it
3442 indicates that references within the defining module bind to the
3443 definition in that module. That is, the declared entity cannot be
3444 overridden by another module.
3445
3446 @end table
3447
3448 All visibilities are supported on many, but not all, ELF targets
3449 (supported when the assembler supports the @samp{.visibility}
3450 pseudo-op). Default visibility is supported everywhere. Hidden
3451 visibility is supported on Darwin targets.
3452
3453 The visibility attribute should be applied only to declarations that
3454 would otherwise have external linkage. The attribute should be applied
3455 consistently, so that the same entity should not be declared with
3456 different settings of the attribute.
3457
3458 In C++, the visibility attribute applies to types as well as functions
3459 and objects, because in C++ types have linkage. A class must not have
3460 greater visibility than its non-static data member types and bases,
3461 and class members default to the visibility of their class. Also, a
3462 declaration without explicit visibility is limited to the visibility
3463 of its type.
3464
3465 In C++, you can mark member functions and static member variables of a
3466 class with the visibility attribute. This is useful if you know a
3467 particular method or static member variable should only be used from
3468 one shared object; then you can mark it hidden while the rest of the
3469 class has default visibility. Care must be taken to avoid breaking
3470 the One Definition Rule; for example, it is usually not useful to mark
3471 an inline method as hidden without marking the whole class as hidden.
3472
3473 A C++ namespace declaration can also have the visibility attribute.
3474
3475 @smallexample
3476 namespace nspace1 __attribute__ ((visibility ("protected")))
3477 @{ /* @r{Do something.} */; @}
3478 @end smallexample
3479
3480 This attribute applies only to the particular namespace body, not to
3481 other definitions of the same namespace; it is equivalent to using
3482 @samp{#pragma GCC visibility} before and after the namespace
3483 definition (@pxref{Visibility Pragmas}).
3484
3485 In C++, if a template argument has limited visibility, this
3486 restriction is implicitly propagated to the template instantiation.
3487 Otherwise, template instantiations and specializations default to the
3488 visibility of their template.
3489
3490 If both the template and enclosing class have explicit visibility, the
3491 visibility from the template is used.
3492
3493 @item warn_unused_result
3494 @cindex @code{warn_unused_result} function attribute
3495 The @code{warn_unused_result} attribute causes a warning to be emitted
3496 if a caller of the function with this attribute does not use its
3497 return value. This is useful for functions where not checking
3498 the result is either a security problem or always a bug, such as
3499 @code{realloc}.
3500
3501 @smallexample
3502 int fn () __attribute__ ((warn_unused_result));
3503 int foo ()
3504 @{
3505 if (fn () < 0) return -1;
3506 fn ();
3507 return 0;
3508 @}
3509 @end smallexample
3510
3511 @noindent
3512 results in warning on line 5.
3513
3514 @item weak
3515 @cindex @code{weak} function attribute
3516 The @code{weak} attribute causes the declaration to be emitted as a weak
3517 symbol rather than a global. This is primarily useful in defining
3518 library functions that can be overridden in user code, though it can
3519 also be used with non-function declarations. Weak symbols are supported
3520 for ELF targets, and also for a.out targets when using the GNU assembler
3521 and linker.
3522
3523 @item weakref
3524 @itemx weakref ("@var{target}")
3525 @cindex @code{weakref} function attribute
3526 The @code{weakref} attribute marks a declaration as a weak reference.
3527 Without arguments, it should be accompanied by an @code{alias} attribute
3528 naming the target symbol. Optionally, the @var{target} may be given as
3529 an argument to @code{weakref} itself. In either case, @code{weakref}
3530 implicitly marks the declaration as @code{weak}. Without a
3531 @var{target}, given as an argument to @code{weakref} or to @code{alias},
3532 @code{weakref} is equivalent to @code{weak}.
3533
3534 @smallexample
3535 static int x() __attribute__ ((weakref ("y")));
3536 /* is equivalent to... */
3537 static int x() __attribute__ ((weak, weakref, alias ("y")));
3538 /* and to... */
3539 static int x() __attribute__ ((weakref));
3540 static int x() __attribute__ ((alias ("y")));
3541 @end smallexample
3542
3543 A weak reference is an alias that does not by itself require a
3544 definition to be given for the target symbol. If the target symbol is
3545 only referenced through weak references, then it becomes a @code{weak}
3546 undefined symbol. If it is directly referenced, however, then such
3547 strong references prevail, and a definition is required for the
3548 symbol, not necessarily in the same translation unit.
3549
3550 The effect is equivalent to moving all references to the alias to a
3551 separate translation unit, renaming the alias to the aliased symbol,
3552 declaring it as weak, compiling the two separate translation units and
3553 performing a reloadable link on them.
3554
3555 At present, a declaration to which @code{weakref} is attached can
3556 only be @code{static}.
3557
3558
3559 @end table
3560
3561 @c This is the end of the target-independent attribute table
3562
3563 @node AArch64 Function Attributes
3564 @subsection AArch64 Function Attributes
3565
3566 The following target-specific function attributes are available for the
3567 AArch64 target. For the most part, these options mirror the behavior of
3568 similar command-line options (@pxref{AArch64 Options}), but on a
3569 per-function basis.
3570
3571 @table @code
3572 @item general-regs-only
3573 @cindex @code{general-regs-only} function attribute, AArch64
3574 Indicates that no floating-point or Advanced SIMD registers should be
3575 used when generating code for this function. If the function explicitly
3576 uses floating-point code, then the compiler gives an error. This is
3577 the same behavior as that of the command-line option
3578 @option{-mgeneral-regs-only}.
3579
3580 @item fix-cortex-a53-835769
3581 @cindex @code{fix-cortex-a53-835769} function attribute, AArch64
3582 Indicates that the workaround for the Cortex-A53 erratum 835769 should be
3583 applied to this function. To explicitly disable the workaround for this
3584 function specify the negated form: @code{no-fix-cortex-a53-835769}.
3585 This corresponds to the behavior of the command line options
3586 @option{-mfix-cortex-a53-835769} and @option{-mno-fix-cortex-a53-835769}.
3587
3588 @item cmodel=
3589 @cindex @code{cmodel=} function attribute, AArch64
3590 Indicates that code should be generated for a particular code model for
3591 this function. The behavior and permissible arguments are the same as
3592 for the command line option @option{-mcmodel=}.
3593
3594 @item strict-align
3595 @cindex @code{strict-align} function attribute, AArch64
3596 Indicates that the compiler should not assume that unaligned memory references
3597 are handled by the system. The behavior is the same as for the command-line
3598 option @option{-mstrict-align}.
3599
3600 @item omit-leaf-frame-pointer
3601 @cindex @code{omit-leaf-frame-pointer} function attribute, AArch64
3602 Indicates that the frame pointer should be omitted for a leaf function call.
3603 To keep the frame pointer, the inverse attribute
3604 @code{no-omit-leaf-frame-pointer} can be specified. These attributes have
3605 the same behavior as the command-line options @option{-momit-leaf-frame-pointer}
3606 and @option{-mno-omit-leaf-frame-pointer}.
3607
3608 @item tls-dialect=
3609 @cindex @code{tls-dialect=} function attribute, AArch64
3610 Specifies the TLS dialect to use for this function. The behavior and
3611 permissible arguments are the same as for the command-line option
3612 @option{-mtls-dialect=}.
3613
3614 @item arch=
3615 @cindex @code{arch=} function attribute, AArch64
3616 Specifies the architecture version and architectural extensions to use
3617 for this function. The behavior and permissible arguments are the same as
3618 for the @option{-march=} command-line option.
3619
3620 @item tune=
3621 @cindex @code{tune=} function attribute, AArch64
3622 Specifies the core for which to tune the performance of this function.
3623 The behavior and permissible arguments are the same as for the @option{-mtune=}
3624 command-line option.
3625
3626 @item cpu=
3627 @cindex @code{cpu=} function attribute, AArch64
3628 Specifies the core for which to tune the performance of this function and also
3629 whose architectural features to use. The behavior and valid arguments are the
3630 same as for the @option{-mcpu=} command-line option.
3631
3632 @item sign-return-address
3633 @cindex @code{sign-return-address} function attribute, AArch64
3634 Select the function scope on which return address signing will be applied. The
3635 behavior and permissible arguments are the same as for the command-line option
3636 @option{-msign-return-address=}. The default value is @code{none}.
3637
3638 @end table
3639
3640 The above target attributes can be specified as follows:
3641
3642 @smallexample
3643 __attribute__((target("@var{attr-string}")))
3644 int
3645 f (int a)
3646 @{
3647 return a + 5;
3648 @}
3649 @end smallexample
3650
3651 where @code{@var{attr-string}} is one of the attribute strings specified above.
3652
3653 Additionally, the architectural extension string may be specified on its
3654 own. This can be used to turn on and off particular architectural extensions
3655 without having to specify a particular architecture version or core. Example:
3656
3657 @smallexample
3658 __attribute__((target("+crc+nocrypto")))
3659 int
3660 foo (int a)
3661 @{
3662 return a + 5;
3663 @}
3664 @end smallexample
3665
3666 In this example @code{target("+crc+nocrypto")} enables the @code{crc}
3667 extension and disables the @code{crypto} extension for the function @code{foo}
3668 without modifying an existing @option{-march=} or @option{-mcpu} option.
3669
3670 Multiple target function attributes can be specified by separating them with
3671 a comma. For example:
3672 @smallexample
3673 __attribute__((target("arch=armv8-a+crc+crypto,tune=cortex-a53")))
3674 int
3675 foo (int a)
3676 @{
3677 return a + 5;
3678 @}
3679 @end smallexample
3680
3681 is valid and compiles function @code{foo} for ARMv8-A with @code{crc}
3682 and @code{crypto} extensions and tunes it for @code{cortex-a53}.
3683
3684 @subsubsection Inlining rules
3685 Specifying target attributes on individual functions or performing link-time
3686 optimization across translation units compiled with different target options
3687 can affect function inlining rules:
3688
3689 In particular, a caller function can inline a callee function only if the
3690 architectural features available to the callee are a subset of the features
3691 available to the caller.
3692 For example: A function @code{foo} compiled with @option{-march=armv8-a+crc},
3693 or tagged with the equivalent @code{arch=armv8-a+crc} attribute,
3694 can inline a function @code{bar} compiled with @option{-march=armv8-a+nocrc}
3695 because the all the architectural features that function @code{bar} requires
3696 are available to function @code{foo}. Conversely, function @code{bar} cannot
3697 inline function @code{foo}.
3698
3699 Additionally inlining a function compiled with @option{-mstrict-align} into a
3700 function compiled without @code{-mstrict-align} is not allowed.
3701 However, inlining a function compiled without @option{-mstrict-align} into a
3702 function compiled with @option{-mstrict-align} is allowed.
3703
3704 Note that CPU tuning options and attributes such as the @option{-mcpu=},
3705 @option{-mtune=} do not inhibit inlining unless the CPU specified by the
3706 @option{-mcpu=} option or the @code{cpu=} attribute conflicts with the
3707 architectural feature rules specified above.
3708
3709 @node ARC Function Attributes
3710 @subsection ARC Function Attributes
3711
3712 These function attributes are supported by the ARC back end:
3713
3714 @table @code
3715 @item interrupt
3716 @cindex @code{interrupt} function attribute, ARC
3717 Use this attribute to indicate
3718 that the specified function is an interrupt handler. The compiler generates
3719 function entry and exit sequences suitable for use in an interrupt handler
3720 when this attribute is present.
3721
3722 On the ARC, you must specify the kind of interrupt to be handled
3723 in a parameter to the interrupt attribute like this:
3724
3725 @smallexample
3726 void f () __attribute__ ((interrupt ("ilink1")));
3727 @end smallexample
3728
3729 Permissible values for this parameter are: @w{@code{ilink1}} and
3730 @w{@code{ilink2}}.
3731
3732 @item long_call
3733 @itemx medium_call
3734 @itemx short_call
3735 @cindex @code{long_call} function attribute, ARC
3736 @cindex @code{medium_call} function attribute, ARC
3737 @cindex @code{short_call} function attribute, ARC
3738 @cindex indirect calls, ARC
3739 These attributes specify how a particular function is called.
3740 These attributes override the
3741 @option{-mlong-calls} and @option{-mmedium-calls} (@pxref{ARC Options})
3742 command-line switches and @code{#pragma long_calls} settings.
3743
3744 For ARC, a function marked with the @code{long_call} attribute is
3745 always called using register-indirect jump-and-link instructions,
3746 thereby enabling the called function to be placed anywhere within the
3747 32-bit address space. A function marked with the @code{medium_call}
3748 attribute will always be close enough to be called with an unconditional
3749 branch-and-link instruction, which has a 25-bit offset from
3750 the call site. A function marked with the @code{short_call}
3751 attribute will always be close enough to be called with a conditional
3752 branch-and-link instruction, which has a 21-bit offset from
3753 the call site.
3754 @end table
3755
3756 @node ARM Function Attributes
3757 @subsection ARM Function Attributes
3758
3759 These function attributes are supported for ARM targets:
3760
3761 @table @code
3762 @item interrupt
3763 @cindex @code{interrupt} function attribute, ARM
3764 Use this attribute to indicate
3765 that the specified function is an interrupt handler. The compiler generates
3766 function entry and exit sequences suitable for use in an interrupt handler
3767 when this attribute is present.
3768
3769 You can specify the kind of interrupt to be handled by
3770 adding an optional parameter to the interrupt attribute like this:
3771
3772 @smallexample
3773 void f () __attribute__ ((interrupt ("IRQ")));
3774 @end smallexample
3775
3776 @noindent
3777 Permissible values for this parameter are: @code{IRQ}, @code{FIQ},
3778 @code{SWI}, @code{ABORT} and @code{UNDEF}.
3779
3780 On ARMv7-M the interrupt type is ignored, and the attribute means the function
3781 may be called with a word-aligned stack pointer.
3782
3783 @item isr
3784 @cindex @code{isr} function attribute, ARM
3785 Use this attribute on ARM to write Interrupt Service Routines. This is an
3786 alias to the @code{interrupt} attribute above.
3787
3788 @item long_call
3789 @itemx short_call
3790 @cindex @code{long_call} function attribute, ARM
3791 @cindex @code{short_call} function attribute, ARM
3792 @cindex indirect calls, ARM
3793 These attributes specify how a particular function is called.
3794 These attributes override the
3795 @option{-mlong-calls} (@pxref{ARM Options})
3796 command-line switch and @code{#pragma long_calls} settings. For ARM, the
3797 @code{long_call} attribute indicates that the function might be far
3798 away from the call site and require a different (more expensive)
3799 calling sequence. The @code{short_call} attribute always places
3800 the offset to the function from the call site into the @samp{BL}
3801 instruction directly.
3802
3803 @item naked
3804 @cindex @code{naked} function attribute, ARM
3805 This attribute allows the compiler to construct the
3806 requisite function declaration, while allowing the body of the
3807 function to be assembly code. The specified function will not have
3808 prologue/epilogue sequences generated by the compiler. Only basic
3809 @code{asm} statements can safely be included in naked functions
3810 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3811 basic @code{asm} and C code may appear to work, they cannot be
3812 depended upon to work reliably and are not supported.
3813
3814 @item pcs
3815 @cindex @code{pcs} function attribute, ARM
3816
3817 The @code{pcs} attribute can be used to control the calling convention
3818 used for a function on ARM. The attribute takes an argument that specifies
3819 the calling convention to use.
3820
3821 When compiling using the AAPCS ABI (or a variant of it) then valid
3822 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3823 order to use a variant other than @code{"aapcs"} then the compiler must
3824 be permitted to use the appropriate co-processor registers (i.e., the
3825 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3826 For example,
3827
3828 @smallexample
3829 /* Argument passed in r0, and result returned in r0+r1. */
3830 double f2d (float) __attribute__((pcs("aapcs")));
3831 @end smallexample
3832
3833 Variadic functions always use the @code{"aapcs"} calling convention and
3834 the compiler rejects attempts to specify an alternative.
3835
3836 @item target (@var{options})
3837 @cindex @code{target} function attribute
3838 As discussed in @ref{Common Function Attributes}, this attribute
3839 allows specification of target-specific compilation options.
3840
3841 On ARM, the following options are allowed:
3842
3843 @table @samp
3844 @item thumb
3845 @cindex @code{target("thumb")} function attribute, ARM
3846 Force code generation in the Thumb (T16/T32) ISA, depending on the
3847 architecture level.
3848
3849 @item arm
3850 @cindex @code{target("arm")} function attribute, ARM
3851 Force code generation in the ARM (A32) ISA.
3852
3853 Functions from different modes can be inlined in the caller's mode.
3854
3855 @item fpu=
3856 @cindex @code{target("fpu=")} function attribute, ARM
3857 Specifies the fpu for which to tune the performance of this function.
3858 The behavior and permissible arguments are the same as for the @option{-mfpu=}
3859 command-line option.
3860
3861 @end table
3862
3863 @end table
3864
3865 @node AVR Function Attributes
3866 @subsection AVR Function Attributes
3867
3868 These function attributes are supported by the AVR back end:
3869
3870 @table @code
3871 @item interrupt
3872 @cindex @code{interrupt} function attribute, AVR
3873 Use this attribute to indicate
3874 that the specified function is an interrupt handler. The compiler generates
3875 function entry and exit sequences suitable for use in an interrupt handler
3876 when this attribute is present.
3877
3878 On the AVR, the hardware globally disables interrupts when an
3879 interrupt is executed. The first instruction of an interrupt handler
3880 declared with this attribute is a @code{SEI} instruction to
3881 re-enable interrupts. See also the @code{signal} function attribute
3882 that does not insert a @code{SEI} instruction. If both @code{signal} and
3883 @code{interrupt} are specified for the same function, @code{signal}
3884 is silently ignored.
3885
3886 @item naked
3887 @cindex @code{naked} function attribute, AVR
3888 This attribute allows the compiler to construct the
3889 requisite function declaration, while allowing the body of the
3890 function to be assembly code. The specified function will not have
3891 prologue/epilogue sequences generated by the compiler. Only basic
3892 @code{asm} statements can safely be included in naked functions
3893 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
3894 basic @code{asm} and C code may appear to work, they cannot be
3895 depended upon to work reliably and are not supported.
3896
3897 @item no_gccisr
3898 @cindex @code{no_gccisr} function attribute, AVR
3899 Do not use @code{__gcc_isr} pseudo instructions in a function with
3900 the @code{interrupt} or @code{signal} attribute aka. interrupt
3901 service routine (ISR).
3902 Use this attribute if the preamble of the ISR prologue should always read
3903 @example
3904 push __zero_reg__
3905 push __tmp_reg__
3906 in __tmp_reg__, __SREG__
3907 push __tmp_reg__
3908 clr __zero_reg__
3909 @end example
3910 and accordingly for the postamble of the epilogue --- no matter whether
3911 the mentioned registers are actually used in the ISR or not.
3912 Situations where you might want to use this attribute include:
3913 @itemize @bullet
3914 @item
3915 Code that (effectively) clobbers bits of @code{SREG} other than the
3916 @code{I}-flag by writing to the memory location of @code{SREG}.
3917 @item
3918 Code that uses inline assembler to jump to a different function which
3919 expects (parts of) the prologue code as outlined above to be present.
3920 @end itemize
3921 To disable @code{__gcc_isr} generation for the whole compilation unit,
3922 there is option @option{-mno-gas-isr-prologues}, @pxref{AVR Options}.
3923
3924 @item OS_main
3925 @itemx OS_task
3926 @cindex @code{OS_main} function attribute, AVR
3927 @cindex @code{OS_task} function attribute, AVR
3928 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3929 do not save/restore any call-saved register in their prologue/epilogue.
3930
3931 The @code{OS_main} attribute can be used when there @emph{is
3932 guarantee} that interrupts are disabled at the time when the function
3933 is entered. This saves resources when the stack pointer has to be
3934 changed to set up a frame for local variables.
3935
3936 The @code{OS_task} attribute can be used when there is @emph{no
3937 guarantee} that interrupts are disabled at that time when the function
3938 is entered like for, e@.g@. task functions in a multi-threading operating
3939 system. In that case, changing the stack pointer register is
3940 guarded by save/clear/restore of the global interrupt enable flag.
3941
3942 The differences to the @code{naked} function attribute are:
3943 @itemize @bullet
3944 @item @code{naked} functions do not have a return instruction whereas
3945 @code{OS_main} and @code{OS_task} functions have a @code{RET} or
3946 @code{RETI} return instruction.
3947 @item @code{naked} functions do not set up a frame for local variables
3948 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3949 as needed.
3950 @end itemize
3951
3952 @item signal
3953 @cindex @code{signal} function attribute, AVR
3954 Use this attribute on the AVR to indicate that the specified
3955 function is an interrupt handler. The compiler generates function
3956 entry and exit sequences suitable for use in an interrupt handler when this
3957 attribute is present.
3958
3959 See also the @code{interrupt} function attribute.
3960
3961 The AVR hardware globally disables interrupts when an interrupt is executed.
3962 Interrupt handler functions defined with the @code{signal} attribute
3963 do not re-enable interrupts. It is save to enable interrupts in a
3964 @code{signal} handler. This ``save'' only applies to the code
3965 generated by the compiler and not to the IRQ layout of the
3966 application which is responsibility of the application.
3967
3968 If both @code{signal} and @code{interrupt} are specified for the same
3969 function, @code{signal} is silently ignored.
3970 @end table
3971
3972 @node Blackfin Function Attributes
3973 @subsection Blackfin Function Attributes
3974
3975 These function attributes are supported by the Blackfin back end:
3976
3977 @table @code
3978
3979 @item exception_handler
3980 @cindex @code{exception_handler} function attribute
3981 @cindex exception handler functions, Blackfin
3982 Use this attribute on the Blackfin to indicate that the specified function
3983 is an exception handler. The compiler generates function entry and
3984 exit sequences suitable for use in an exception handler when this
3985 attribute is present.
3986
3987 @item interrupt_handler
3988 @cindex @code{interrupt_handler} function attribute, Blackfin
3989 Use this attribute to
3990 indicate that the specified function is an interrupt handler. The compiler
3991 generates function entry and exit sequences suitable for use in an
3992 interrupt handler when this attribute is present.
3993
3994 @item kspisusp
3995 @cindex @code{kspisusp} function attribute, Blackfin
3996 @cindex User stack pointer in interrupts on the Blackfin
3997 When used together with @code{interrupt_handler}, @code{exception_handler}
3998 or @code{nmi_handler}, code is generated to load the stack pointer
3999 from the USP register in the function prologue.
4000
4001 @item l1_text
4002 @cindex @code{l1_text} function attribute, Blackfin
4003 This attribute specifies a function to be placed into L1 Instruction
4004 SRAM@. The function is put into a specific section named @code{.l1.text}.
4005 With @option{-mfdpic}, function calls with a such function as the callee
4006 or caller uses inlined PLT.
4007
4008 @item l2
4009 @cindex @code{l2} function attribute, Blackfin
4010 This attribute specifies a function to be placed into L2
4011 SRAM. The function is put into a specific section named
4012 @code{.l2.text}. With @option{-mfdpic}, callers of such functions use
4013 an inlined PLT.
4014
4015 @item longcall
4016 @itemx shortcall
4017 @cindex indirect calls, Blackfin
4018 @cindex @code{longcall} function attribute, Blackfin
4019 @cindex @code{shortcall} function attribute, Blackfin
4020 The @code{longcall} attribute
4021 indicates that the function might be far away from the call site and
4022 require a different (more expensive) calling sequence. The
4023 @code{shortcall} attribute indicates that the function is always close
4024 enough for the shorter calling sequence to be used. These attributes
4025 override the @option{-mlongcall} switch.
4026
4027 @item nesting
4028 @cindex @code{nesting} function attribute, Blackfin
4029 @cindex Allow nesting in an interrupt handler on the Blackfin processor
4030 Use this attribute together with @code{interrupt_handler},
4031 @code{exception_handler} or @code{nmi_handler} to indicate that the function
4032 entry code should enable nested interrupts or exceptions.
4033
4034 @item nmi_handler
4035 @cindex @code{nmi_handler} function attribute, Blackfin
4036 @cindex NMI handler functions on the Blackfin processor
4037 Use this attribute on the Blackfin to indicate that the specified function
4038 is an NMI handler. The compiler generates function entry and
4039 exit sequences suitable for use in an NMI handler when this
4040 attribute is present.
4041
4042 @item saveall
4043 @cindex @code{saveall} function attribute, Blackfin
4044 @cindex save all registers on the Blackfin
4045 Use this attribute to indicate that
4046 all registers except the stack pointer should be saved in the prologue
4047 regardless of whether they are used or not.
4048 @end table
4049
4050 @node CR16 Function Attributes
4051 @subsection CR16 Function Attributes
4052
4053 These function attributes are supported by the CR16 back end:
4054
4055 @table @code
4056 @item interrupt
4057 @cindex @code{interrupt} function attribute, CR16
4058 Use this attribute to indicate
4059 that the specified function is an interrupt handler. The compiler generates
4060 function entry and exit sequences suitable for use in an interrupt handler
4061 when this attribute is present.
4062 @end table
4063
4064 @node Epiphany Function Attributes
4065 @subsection Epiphany Function Attributes
4066
4067 These function attributes are supported by the Epiphany back end:
4068
4069 @table @code
4070 @item disinterrupt
4071 @cindex @code{disinterrupt} function attribute, Epiphany
4072 This attribute causes the compiler to emit
4073 instructions to disable interrupts for the duration of the given
4074 function.
4075
4076 @item forwarder_section
4077 @cindex @code{forwarder_section} function attribute, Epiphany
4078 This attribute modifies the behavior of an interrupt handler.
4079 The interrupt handler may be in external memory which cannot be
4080 reached by a branch instruction, so generate a local memory trampoline
4081 to transfer control. The single parameter identifies the section where
4082 the trampoline is placed.
4083
4084 @item interrupt
4085 @cindex @code{interrupt} function attribute, Epiphany
4086 Use this attribute to indicate
4087 that the specified function is an interrupt handler. The compiler generates
4088 function entry and exit sequences suitable for use in an interrupt handler
4089 when this attribute is present. It may also generate
4090 a special section with code to initialize the interrupt vector table.
4091
4092 On Epiphany targets one or more optional parameters can be added like this:
4093
4094 @smallexample
4095 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
4096 @end smallexample
4097
4098 Permissible values for these parameters are: @w{@code{reset}},
4099 @w{@code{software_exception}}, @w{@code{page_miss}},
4100 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
4101 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
4102 Multiple parameters indicate that multiple entries in the interrupt
4103 vector table should be initialized for this function, i.e.@: for each
4104 parameter @w{@var{name}}, a jump to the function is emitted in
4105 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
4106 entirely, in which case no interrupt vector table entry is provided.
4107
4108 Note that interrupts are enabled inside the function
4109 unless the @code{disinterrupt} attribute is also specified.
4110
4111 The following examples are all valid uses of these attributes on
4112 Epiphany targets:
4113 @smallexample
4114 void __attribute__ ((interrupt)) universal_handler ();
4115 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
4116 void __attribute__ ((interrupt ("dma0, dma1")))
4117 universal_dma_handler ();
4118 void __attribute__ ((interrupt ("timer0"), disinterrupt))
4119 fast_timer_handler ();
4120 void __attribute__ ((interrupt ("dma0, dma1"),
4121 forwarder_section ("tramp")))
4122 external_dma_handler ();
4123 @end smallexample
4124
4125 @item long_call
4126 @itemx short_call
4127 @cindex @code{long_call} function attribute, Epiphany
4128 @cindex @code{short_call} function attribute, Epiphany
4129 @cindex indirect calls, Epiphany
4130 These attributes specify how a particular function is called.
4131 These attributes override the
4132 @option{-mlong-calls} (@pxref{Adapteva Epiphany Options})
4133 command-line switch and @code{#pragma long_calls} settings.
4134 @end table
4135
4136
4137 @node H8/300 Function Attributes
4138 @subsection H8/300 Function Attributes
4139
4140 These function attributes are available for H8/300 targets:
4141
4142 @table @code
4143 @item function_vector
4144 @cindex @code{function_vector} function attribute, H8/300
4145 Use this attribute on the H8/300, H8/300H, and H8S to indicate
4146 that the specified function should be called through the function vector.
4147 Calling a function through the function vector reduces code size; however,
4148 the function vector has a limited size (maximum 128 entries on the H8/300
4149 and 64 entries on the H8/300H and H8S)
4150 and shares space with the interrupt vector.
4151
4152 @item interrupt_handler
4153 @cindex @code{interrupt_handler} function attribute, H8/300
4154 Use this attribute on the H8/300, H8/300H, and H8S to
4155 indicate that the specified function is an interrupt handler. The compiler
4156 generates function entry and exit sequences suitable for use in an
4157 interrupt handler when this attribute is present.
4158
4159 @item saveall
4160 @cindex @code{saveall} function attribute, H8/300
4161 @cindex save all registers on the H8/300, H8/300H, and H8S
4162 Use this attribute on the H8/300, H8/300H, and H8S to indicate that
4163 all registers except the stack pointer should be saved in the prologue
4164 regardless of whether they are used or not.
4165 @end table
4166
4167 @node IA-64 Function Attributes
4168 @subsection IA-64 Function Attributes
4169
4170 These function attributes are supported on IA-64 targets:
4171
4172 @table @code
4173 @item syscall_linkage
4174 @cindex @code{syscall_linkage} function attribute, IA-64
4175 This attribute is used to modify the IA-64 calling convention by marking
4176 all input registers as live at all function exits. This makes it possible
4177 to restart a system call after an interrupt without having to save/restore
4178 the input registers. This also prevents kernel data from leaking into
4179 application code.
4180
4181 @item version_id
4182 @cindex @code{version_id} function attribute, IA-64
4183 This IA-64 HP-UX attribute, attached to a global variable or function, renames a
4184 symbol to contain a version string, thus allowing for function level
4185 versioning. HP-UX system header files may use function level versioning
4186 for some system calls.
4187
4188 @smallexample
4189 extern int foo () __attribute__((version_id ("20040821")));
4190 @end smallexample
4191
4192 @noindent
4193 Calls to @code{foo} are mapped to calls to @code{foo@{20040821@}}.
4194 @end table
4195
4196 @node M32C Function Attributes
4197 @subsection M32C Function Attributes
4198
4199 These function attributes are supported by the M32C back end:
4200
4201 @table @code
4202 @item bank_switch
4203 @cindex @code{bank_switch} function attribute, M32C
4204 When added to an interrupt handler with the M32C port, causes the
4205 prologue and epilogue to use bank switching to preserve the registers
4206 rather than saving them on the stack.
4207
4208 @item fast_interrupt
4209 @cindex @code{fast_interrupt} function attribute, M32C
4210 Use this attribute on the M32C port to indicate that the specified
4211 function is a fast interrupt handler. This is just like the
4212 @code{interrupt} attribute, except that @code{freit} is used to return
4213 instead of @code{reit}.
4214
4215 @item function_vector
4216 @cindex @code{function_vector} function attribute, M16C/M32C
4217 On M16C/M32C targets, the @code{function_vector} attribute declares a
4218 special page subroutine call function. Use of this attribute reduces
4219 the code size by 2 bytes for each call generated to the
4220 subroutine. The argument to the attribute is the vector number entry
4221 from the special page vector table which contains the 16 low-order
4222 bits of the subroutine's entry address. Each vector table has special
4223 page number (18 to 255) that is used in @code{jsrs} instructions.
4224 Jump addresses of the routines are generated by adding 0x0F0000 (in
4225 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the
4226 2-byte addresses set in the vector table. Therefore you need to ensure
4227 that all the special page vector routines should get mapped within the
4228 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
4229 (for M32C).
4230
4231 In the following example 2 bytes are saved for each call to
4232 function @code{foo}.
4233
4234 @smallexample
4235 void foo (void) __attribute__((function_vector(0x18)));
4236 void foo (void)
4237 @{
4238 @}
4239
4240 void bar (void)
4241 @{
4242 foo();
4243 @}
4244 @end smallexample
4245
4246 If functions are defined in one file and are called in another file,
4247 then be sure to write this declaration in both files.
4248
4249 This attribute is ignored for R8C target.
4250
4251 @item interrupt
4252 @cindex @code{interrupt} function attribute, M32C
4253 Use this attribute to indicate
4254 that the specified function is an interrupt handler. The compiler generates
4255 function entry and exit sequences suitable for use in an interrupt handler
4256 when this attribute is present.
4257 @end table
4258
4259 @node M32R/D Function Attributes
4260 @subsection M32R/D Function Attributes
4261
4262 These function attributes are supported by the M32R/D back end:
4263
4264 @table @code
4265 @item interrupt
4266 @cindex @code{interrupt} function attribute, M32R/D
4267 Use this attribute to indicate
4268 that the specified function is an interrupt handler. The compiler generates
4269 function entry and exit sequences suitable for use in an interrupt handler
4270 when this attribute is present.
4271
4272 @item model (@var{model-name})
4273 @cindex @code{model} function attribute, M32R/D
4274 @cindex function addressability on the M32R/D
4275
4276 On the M32R/D, use this attribute to set the addressability of an
4277 object, and of the code generated for a function. The identifier
4278 @var{model-name} is one of @code{small}, @code{medium}, or
4279 @code{large}, representing each of the code models.
4280
4281 Small model objects live in the lower 16MB of memory (so that their
4282 addresses can be loaded with the @code{ld24} instruction), and are
4283 callable with the @code{bl} instruction.
4284
4285 Medium model objects may live anywhere in the 32-bit address space (the
4286 compiler generates @code{seth/add3} instructions to load their addresses),
4287 and are callable with the @code{bl} instruction.
4288
4289 Large model objects may live anywhere in the 32-bit address space (the
4290 compiler generates @code{seth/add3} instructions to load their addresses),
4291 and may not be reachable with the @code{bl} instruction (the compiler
4292 generates the much slower @code{seth/add3/jl} instruction sequence).
4293 @end table
4294
4295 @node m68k Function Attributes
4296 @subsection m68k Function Attributes
4297
4298 These function attributes are supported by the m68k back end:
4299
4300 @table @code
4301 @item interrupt
4302 @itemx interrupt_handler
4303 @cindex @code{interrupt} function attribute, m68k
4304 @cindex @code{interrupt_handler} function attribute, m68k
4305 Use this attribute to
4306 indicate that the specified function is an interrupt handler. The compiler
4307 generates function entry and exit sequences suitable for use in an
4308 interrupt handler when this attribute is present. Either name may be used.
4309
4310 @item interrupt_thread
4311 @cindex @code{interrupt_thread} function attribute, fido
4312 Use this attribute on fido, a subarchitecture of the m68k, to indicate
4313 that the specified function is an interrupt handler that is designed
4314 to run as a thread. The compiler omits generate prologue/epilogue
4315 sequences and replaces the return instruction with a @code{sleep}
4316 instruction. This attribute is available only on fido.
4317 @end table
4318
4319 @node MCORE Function Attributes
4320 @subsection MCORE Function Attributes
4321
4322 These function attributes are supported by the MCORE back end:
4323
4324 @table @code
4325 @item naked
4326 @cindex @code{naked} function attribute, MCORE
4327 This attribute allows the compiler to construct the
4328 requisite function declaration, while allowing the body of the
4329 function to be assembly code. The specified function will not have
4330 prologue/epilogue sequences generated by the compiler. Only basic
4331 @code{asm} statements can safely be included in naked functions
4332 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4333 basic @code{asm} and C code may appear to work, they cannot be
4334 depended upon to work reliably and are not supported.
4335 @end table
4336
4337 @node MeP Function Attributes
4338 @subsection MeP Function Attributes
4339
4340 These function attributes are supported by the MeP back end:
4341
4342 @table @code
4343 @item disinterrupt
4344 @cindex @code{disinterrupt} function attribute, MeP
4345 On MeP targets, this attribute causes the compiler to emit
4346 instructions to disable interrupts for the duration of the given
4347 function.
4348
4349 @item interrupt
4350 @cindex @code{interrupt} function attribute, MeP
4351 Use this attribute to indicate
4352 that the specified function is an interrupt handler. The compiler generates
4353 function entry and exit sequences suitable for use in an interrupt handler
4354 when this attribute is present.
4355
4356 @item near
4357 @cindex @code{near} function attribute, MeP
4358 This attribute causes the compiler to assume the called
4359 function is close enough to use the normal calling convention,
4360 overriding the @option{-mtf} command-line option.
4361
4362 @item far
4363 @cindex @code{far} function attribute, MeP
4364 On MeP targets this causes the compiler to use a calling convention
4365 that assumes the called function is too far away for the built-in
4366 addressing modes.
4367
4368 @item vliw
4369 @cindex @code{vliw} function attribute, MeP
4370 The @code{vliw} attribute tells the compiler to emit
4371 instructions in VLIW mode instead of core mode. Note that this
4372 attribute is not allowed unless a VLIW coprocessor has been configured
4373 and enabled through command-line options.
4374 @end table
4375
4376 @node MicroBlaze Function Attributes
4377 @subsection MicroBlaze Function Attributes
4378
4379 These function attributes are supported on MicroBlaze targets:
4380
4381 @table @code
4382 @item save_volatiles
4383 @cindex @code{save_volatiles} function attribute, MicroBlaze
4384 Use this attribute to indicate that the function is
4385 an interrupt handler. All volatile registers (in addition to non-volatile
4386 registers) are saved in the function prologue. If the function is a leaf
4387 function, only volatiles used by the function are saved. A normal function
4388 return is generated instead of a return from interrupt.
4389
4390 @item break_handler
4391 @cindex @code{break_handler} function attribute, MicroBlaze
4392 @cindex break handler functions
4393 Use this attribute to indicate that
4394 the specified function is a break handler. The compiler generates function
4395 entry and exit sequences suitable for use in an break handler when this
4396 attribute is present. The return from @code{break_handler} is done through
4397 the @code{rtbd} instead of @code{rtsd}.
4398
4399 @smallexample
4400 void f () __attribute__ ((break_handler));
4401 @end smallexample
4402
4403 @item interrupt_handler
4404 @itemx fast_interrupt
4405 @cindex @code{interrupt_handler} function attribute, MicroBlaze
4406 @cindex @code{fast_interrupt} function attribute, MicroBlaze
4407 These attributes indicate that the specified function is an interrupt
4408 handler. Use the @code{fast_interrupt} attribute to indicate handlers
4409 used in low-latency interrupt mode, and @code{interrupt_handler} for
4410 interrupts that do not use low-latency handlers. In both cases, GCC
4411 emits appropriate prologue code and generates a return from the handler
4412 using @code{rtid} instead of @code{rtsd}.
4413 @end table
4414
4415 @node Microsoft Windows Function Attributes
4416 @subsection Microsoft Windows Function Attributes
4417
4418 The following attributes are available on Microsoft Windows and Symbian OS
4419 targets.
4420
4421 @table @code
4422 @item dllexport
4423 @cindex @code{dllexport} function attribute
4424 @cindex @code{__declspec(dllexport)}
4425 On Microsoft Windows targets and Symbian OS targets the
4426 @code{dllexport} attribute causes the compiler to provide a global
4427 pointer to a pointer in a DLL, so that it can be referenced with the
4428 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
4429 name is formed by combining @code{_imp__} and the function or variable
4430 name.
4431
4432 You can use @code{__declspec(dllexport)} as a synonym for
4433 @code{__attribute__ ((dllexport))} for compatibility with other
4434 compilers.
4435
4436 On systems that support the @code{visibility} attribute, this
4437 attribute also implies ``default'' visibility. It is an error to
4438 explicitly specify any other visibility.
4439
4440 GCC's default behavior is to emit all inline functions with the
4441 @code{dllexport} attribute. Since this can cause object file-size bloat,
4442 you can use @option{-fno-keep-inline-dllexport}, which tells GCC to
4443 ignore the attribute for inlined functions unless the
4444 @option{-fkeep-inline-functions} flag is used instead.
4445
4446 The attribute is ignored for undefined symbols.
4447
4448 When applied to C++ classes, the attribute marks defined non-inlined
4449 member functions and static data members as exports. Static consts
4450 initialized in-class are not marked unless they are also defined
4451 out-of-class.
4452
4453 For Microsoft Windows targets there are alternative methods for
4454 including the symbol in the DLL's export table such as using a
4455 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
4456 the @option{--export-all} linker flag.
4457
4458 @item dllimport
4459 @cindex @code{dllimport} function attribute
4460 @cindex @code{__declspec(dllimport)}
4461 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
4462 attribute causes the compiler to reference a function or variable via
4463 a global pointer to a pointer that is set up by the DLL exporting the
4464 symbol. The attribute implies @code{extern}. On Microsoft Windows
4465 targets, the pointer name is formed by combining @code{_imp__} and the
4466 function or variable name.
4467
4468 You can use @code{__declspec(dllimport)} as a synonym for
4469 @code{__attribute__ ((dllimport))} for compatibility with other
4470 compilers.
4471
4472 On systems that support the @code{visibility} attribute, this
4473 attribute also implies ``default'' visibility. It is an error to
4474 explicitly specify any other visibility.
4475
4476 Currently, the attribute is ignored for inlined functions. If the
4477 attribute is applied to a symbol @emph{definition}, an error is reported.
4478 If a symbol previously declared @code{dllimport} is later defined, the
4479 attribute is ignored in subsequent references, and a warning is emitted.
4480 The attribute is also overridden by a subsequent declaration as
4481 @code{dllexport}.
4482
4483 When applied to C++ classes, the attribute marks non-inlined
4484 member functions and static data members as imports. However, the
4485 attribute is ignored for virtual methods to allow creation of vtables
4486 using thunks.
4487
4488 On the SH Symbian OS target the @code{dllimport} attribute also has
4489 another affect---it can cause the vtable and run-time type information
4490 for a class to be exported. This happens when the class has a
4491 dllimported constructor or a non-inline, non-pure virtual function
4492 and, for either of those two conditions, the class also has an inline
4493 constructor or destructor and has a key function that is defined in
4494 the current translation unit.
4495
4496 For Microsoft Windows targets the use of the @code{dllimport}
4497 attribute on functions is not necessary, but provides a small
4498 performance benefit by eliminating a thunk in the DLL@. The use of the
4499 @code{dllimport} attribute on imported variables can be avoided by passing the
4500 @option{--enable-auto-import} switch to the GNU linker. As with
4501 functions, using the attribute for a variable eliminates a thunk in
4502 the DLL@.
4503
4504 One drawback to using this attribute is that a pointer to a
4505 @emph{variable} marked as @code{dllimport} cannot be used as a constant
4506 address. However, a pointer to a @emph{function} with the
4507 @code{dllimport} attribute can be used as a constant initializer; in
4508 this case, the address of a stub function in the import lib is
4509 referenced. On Microsoft Windows targets, the attribute can be disabled
4510 for functions by setting the @option{-mnop-fun-dllimport} flag.
4511 @end table
4512
4513 @node MIPS Function Attributes
4514 @subsection MIPS Function Attributes
4515
4516 These function attributes are supported by the MIPS back end:
4517
4518 @table @code
4519 @item interrupt
4520 @cindex @code{interrupt} function attribute, MIPS
4521 Use this attribute to indicate that the specified function is an interrupt
4522 handler. The compiler generates function entry and exit sequences suitable
4523 for use in an interrupt handler when this attribute is present.
4524 An optional argument is supported for the interrupt attribute which allows
4525 the interrupt mode to be described. By default GCC assumes the external
4526 interrupt controller (EIC) mode is in use, this can be explicitly set using
4527 @code{eic}. When interrupts are non-masked then the requested Interrupt
4528 Priority Level (IPL) is copied to the current IPL which has the effect of only
4529 enabling higher priority interrupts. To use vectored interrupt mode use
4530 the argument @code{vector=[sw0|sw1|hw0|hw1|hw2|hw3|hw4|hw5]}, this will change
4531 the behavior of the non-masked interrupt support and GCC will arrange to mask
4532 all interrupts from sw0 up to and including the specified interrupt vector.
4533
4534 You can use the following attributes to modify the behavior
4535 of an interrupt handler:
4536 @table @code
4537 @item use_shadow_register_set
4538 @cindex @code{use_shadow_register_set} function attribute, MIPS
4539 Assume that the handler uses a shadow register set, instead of
4540 the main general-purpose registers. An optional argument @code{intstack} is
4541 supported to indicate that the shadow register set contains a valid stack
4542 pointer.
4543
4544 @item keep_interrupts_masked
4545 @cindex @code{keep_interrupts_masked} function attribute, MIPS
4546 Keep interrupts masked for the whole function. Without this attribute,
4547 GCC tries to reenable interrupts for as much of the function as it can.
4548
4549 @item use_debug_exception_return
4550 @cindex @code{use_debug_exception_return} function attribute, MIPS
4551 Return using the @code{deret} instruction. Interrupt handlers that don't
4552 have this attribute return using @code{eret} instead.
4553 @end table
4554
4555 You can use any combination of these attributes, as shown below:
4556 @smallexample
4557 void __attribute__ ((interrupt)) v0 ();
4558 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
4559 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
4560 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
4561 void __attribute__ ((interrupt, use_shadow_register_set,
4562 keep_interrupts_masked)) v4 ();
4563 void __attribute__ ((interrupt, use_shadow_register_set,
4564 use_debug_exception_return)) v5 ();
4565 void __attribute__ ((interrupt, keep_interrupts_masked,
4566 use_debug_exception_return)) v6 ();
4567 void __attribute__ ((interrupt, use_shadow_register_set,
4568 keep_interrupts_masked,
4569 use_debug_exception_return)) v7 ();
4570 void __attribute__ ((interrupt("eic"))) v8 ();
4571 void __attribute__ ((interrupt("vector=hw3"))) v9 ();
4572 @end smallexample
4573
4574 @item long_call
4575 @itemx short_call
4576 @itemx near
4577 @itemx far
4578 @cindex indirect calls, MIPS
4579 @cindex @code{long_call} function attribute, MIPS
4580 @cindex @code{short_call} function attribute, MIPS
4581 @cindex @code{near} function attribute, MIPS
4582 @cindex @code{far} function attribute, MIPS
4583 These attributes specify how a particular function is called on MIPS@.
4584 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
4585 command-line switch. The @code{long_call} and @code{far} attributes are
4586 synonyms, and cause the compiler to always call
4587 the function by first loading its address into a register, and then using
4588 the contents of that register. The @code{short_call} and @code{near}
4589 attributes are synonyms, and have the opposite
4590 effect; they specify that non-PIC calls should be made using the more
4591 efficient @code{jal} instruction.
4592
4593 @item mips16
4594 @itemx nomips16
4595 @cindex @code{mips16} function attribute, MIPS
4596 @cindex @code{nomips16} function attribute, MIPS
4597
4598 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
4599 function attributes to locally select or turn off MIPS16 code generation.
4600 A function with the @code{mips16} attribute is emitted as MIPS16 code,
4601 while MIPS16 code generation is disabled for functions with the
4602 @code{nomips16} attribute. These attributes override the
4603 @option{-mips16} and @option{-mno-mips16} options on the command line
4604 (@pxref{MIPS Options}).
4605
4606 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
4607 preprocessor symbol @code{__mips16} reflects the setting on the command line,
4608 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
4609 may interact badly with some GCC extensions such as @code{__builtin_apply}
4610 (@pxref{Constructing Calls}).
4611
4612 @item micromips, MIPS
4613 @itemx nomicromips, MIPS
4614 @cindex @code{micromips} function attribute
4615 @cindex @code{nomicromips} function attribute
4616
4617 On MIPS targets, you can use the @code{micromips} and @code{nomicromips}
4618 function attributes to locally select or turn off microMIPS code generation.
4619 A function with the @code{micromips} attribute is emitted as microMIPS code,
4620 while microMIPS code generation is disabled for functions with the
4621 @code{nomicromips} attribute. These attributes override the
4622 @option{-mmicromips} and @option{-mno-micromips} options on the command line
4623 (@pxref{MIPS Options}).
4624
4625 When compiling files containing mixed microMIPS and non-microMIPS code, the
4626 preprocessor symbol @code{__mips_micromips} reflects the setting on the
4627 command line,
4628 not that within individual functions. Mixed microMIPS and non-microMIPS code
4629 may interact badly with some GCC extensions such as @code{__builtin_apply}
4630 (@pxref{Constructing Calls}).
4631
4632 @item nocompression
4633 @cindex @code{nocompression} function attribute, MIPS
4634 On MIPS targets, you can use the @code{nocompression} function attribute
4635 to locally turn off MIPS16 and microMIPS code generation. This attribute
4636 overrides the @option{-mips16} and @option{-mmicromips} options on the
4637 command line (@pxref{MIPS Options}).
4638 @end table
4639
4640 @node MSP430 Function Attributes
4641 @subsection MSP430 Function Attributes
4642
4643 These function attributes are supported by the MSP430 back end:
4644
4645 @table @code
4646 @item critical
4647 @cindex @code{critical} function attribute, MSP430
4648 Critical functions disable interrupts upon entry and restore the
4649 previous interrupt state upon exit. Critical functions cannot also
4650 have the @code{naked} or @code{reentrant} attributes. They can have
4651 the @code{interrupt} attribute.
4652
4653 @item interrupt
4654 @cindex @code{interrupt} function attribute, MSP430
4655 Use this attribute to indicate
4656 that the specified function is an interrupt handler. The compiler generates
4657 function entry and exit sequences suitable for use in an interrupt handler
4658 when this attribute is present.
4659
4660 You can provide an argument to the interrupt
4661 attribute which specifies a name or number. If the argument is a
4662 number it indicates the slot in the interrupt vector table (0 - 31) to
4663 which this handler should be assigned. If the argument is a name it
4664 is treated as a symbolic name for the vector slot. These names should
4665 match up with appropriate entries in the linker script. By default
4666 the names @code{watchdog} for vector 26, @code{nmi} for vector 30 and
4667 @code{reset} for vector 31 are recognized.
4668
4669 @item naked
4670 @cindex @code{naked} function attribute, MSP430
4671 This attribute allows the compiler to construct the
4672 requisite function declaration, while allowing the body of the
4673 function to be assembly code. The specified function will not have
4674 prologue/epilogue sequences generated by the compiler. Only basic
4675 @code{asm} statements can safely be included in naked functions
4676 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4677 basic @code{asm} and C code may appear to work, they cannot be
4678 depended upon to work reliably and are not supported.
4679
4680 @item reentrant
4681 @cindex @code{reentrant} function attribute, MSP430
4682 Reentrant functions disable interrupts upon entry and enable them
4683 upon exit. Reentrant functions cannot also have the @code{naked}
4684 or @code{critical} attributes. They can have the @code{interrupt}
4685 attribute.
4686
4687 @item wakeup
4688 @cindex @code{wakeup} function attribute, MSP430
4689 This attribute only applies to interrupt functions. It is silently
4690 ignored if applied to a non-interrupt function. A wakeup interrupt
4691 function will rouse the processor from any low-power state that it
4692 might be in when the function exits.
4693
4694 @item lower
4695 @itemx upper
4696 @itemx either
4697 @cindex @code{lower} function attribute, MSP430
4698 @cindex @code{upper} function attribute, MSP430
4699 @cindex @code{either} function attribute, MSP430
4700 On the MSP430 target these attributes can be used to specify whether
4701 the function or variable should be placed into low memory, high
4702 memory, or the placement should be left to the linker to decide. The
4703 attributes are only significant if compiling for the MSP430X
4704 architecture.
4705
4706 The attributes work in conjunction with a linker script that has been
4707 augmented to specify where to place sections with a @code{.lower} and
4708 a @code{.upper} prefix. So, for example, as well as placing the
4709 @code{.data} section, the script also specifies the placement of a
4710 @code{.lower.data} and a @code{.upper.data} section. The intention
4711 is that @code{lower} sections are placed into a small but easier to
4712 access memory region and the upper sections are placed into a larger, but
4713 slower to access, region.
4714
4715 The @code{either} attribute is special. It tells the linker to place
4716 the object into the corresponding @code{lower} section if there is
4717 room for it. If there is insufficient room then the object is placed
4718 into the corresponding @code{upper} section instead. Note that the
4719 placement algorithm is not very sophisticated. It does not attempt to
4720 find an optimal packing of the @code{lower} sections. It just makes
4721 one pass over the objects and does the best that it can. Using the
4722 @option{-ffunction-sections} and @option{-fdata-sections} command-line
4723 options can help the packing, however, since they produce smaller,
4724 easier to pack regions.
4725 @end table
4726
4727 @node NDS32 Function Attributes
4728 @subsection NDS32 Function Attributes
4729
4730 These function attributes are supported by the NDS32 back end:
4731
4732 @table @code
4733 @item exception
4734 @cindex @code{exception} function attribute
4735 @cindex exception handler functions, NDS32
4736 Use this attribute on the NDS32 target to indicate that the specified function
4737 is an exception handler. The compiler will generate corresponding sections
4738 for use in an exception handler.
4739
4740 @item interrupt
4741 @cindex @code{interrupt} function attribute, NDS32
4742 On NDS32 target, this attribute indicates that the specified function
4743 is an interrupt handler. The compiler generates corresponding sections
4744 for use in an interrupt handler. You can use the following attributes
4745 to modify the behavior:
4746 @table @code
4747 @item nested
4748 @cindex @code{nested} function attribute, NDS32
4749 This interrupt service routine is interruptible.
4750 @item not_nested
4751 @cindex @code{not_nested} function attribute, NDS32
4752 This interrupt service routine is not interruptible.
4753 @item nested_ready
4754 @cindex @code{nested_ready} function attribute, NDS32
4755 This interrupt service routine is interruptible after @code{PSW.GIE}
4756 (global interrupt enable) is set. This allows interrupt service routine to
4757 finish some short critical code before enabling interrupts.
4758 @item save_all
4759 @cindex @code{save_all} function attribute, NDS32
4760 The system will help save all registers into stack before entering
4761 interrupt handler.
4762 @item partial_save
4763 @cindex @code{partial_save} function attribute, NDS32
4764 The system will help save caller registers into stack before entering
4765 interrupt handler.
4766 @end table
4767
4768 @item naked
4769 @cindex @code{naked} function attribute, NDS32
4770 This attribute allows the compiler to construct the
4771 requisite function declaration, while allowing the body of the
4772 function to be assembly code. The specified function will not have
4773 prologue/epilogue sequences generated by the compiler. Only basic
4774 @code{asm} statements can safely be included in naked functions
4775 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
4776 basic @code{asm} and C code may appear to work, they cannot be
4777 depended upon to work reliably and are not supported.
4778
4779 @item reset
4780 @cindex @code{reset} function attribute, NDS32
4781 @cindex reset handler functions
4782 Use this attribute on the NDS32 target to indicate that the specified function
4783 is a reset handler. The compiler will generate corresponding sections
4784 for use in a reset handler. You can use the following attributes
4785 to provide extra exception handling:
4786 @table @code
4787 @item nmi
4788 @cindex @code{nmi} function attribute, NDS32
4789 Provide a user-defined function to handle NMI exception.
4790 @item warm
4791 @cindex @code{warm} function attribute, NDS32
4792 Provide a user-defined function to handle warm reset exception.
4793 @end table
4794 @end table
4795
4796 @node Nios II Function Attributes
4797 @subsection Nios II Function Attributes
4798
4799 These function attributes are supported by the Nios II back end:
4800
4801 @table @code
4802 @item target (@var{options})
4803 @cindex @code{target} function attribute
4804 As discussed in @ref{Common Function Attributes}, this attribute
4805 allows specification of target-specific compilation options.
4806
4807 When compiling for Nios II, the following options are allowed:
4808
4809 @table @samp
4810 @item custom-@var{insn}=@var{N}
4811 @itemx no-custom-@var{insn}
4812 @cindex @code{target("custom-@var{insn}=@var{N}")} function attribute, Nios II
4813 @cindex @code{target("no-custom-@var{insn}")} function attribute, Nios II
4814 Each @samp{custom-@var{insn}=@var{N}} attribute locally enables use of a
4815 custom instruction with encoding @var{N} when generating code that uses
4816 @var{insn}. Similarly, @samp{no-custom-@var{insn}} locally inhibits use of
4817 the custom instruction @var{insn}.
4818 These target attributes correspond to the
4819 @option{-mcustom-@var{insn}=@var{N}} and @option{-mno-custom-@var{insn}}
4820 command-line options, and support the same set of @var{insn} keywords.
4821 @xref{Nios II Options}, for more information.
4822
4823 @item custom-fpu-cfg=@var{name}
4824 @cindex @code{target("custom-fpu-cfg=@var{name}")} function attribute, Nios II
4825 This attribute corresponds to the @option{-mcustom-fpu-cfg=@var{name}}
4826 command-line option, to select a predefined set of custom instructions
4827 named @var{name}.
4828 @xref{Nios II Options}, for more information.
4829 @end table
4830 @end table
4831
4832 @node Nvidia PTX Function Attributes
4833 @subsection Nvidia PTX Function Attributes
4834
4835 These function attributes are supported by the Nvidia PTX back end:
4836
4837 @table @code
4838 @item kernel
4839 @cindex @code{kernel} attribute, Nvidia PTX
4840 This attribute indicates that the corresponding function should be compiled
4841 as a kernel function, which can be invoked from the host via the CUDA RT
4842 library.
4843 By default functions are only callable only from other PTX functions.
4844
4845 Kernel functions must have @code{void} return type.
4846 @end table
4847
4848 @node PowerPC Function Attributes
4849 @subsection PowerPC Function Attributes
4850
4851 These function attributes are supported by the PowerPC back end:
4852
4853 @table @code
4854 @item longcall
4855 @itemx shortcall
4856 @cindex indirect calls, PowerPC
4857 @cindex @code{longcall} function attribute, PowerPC
4858 @cindex @code{shortcall} function attribute, PowerPC
4859 The @code{longcall} attribute
4860 indicates that the function might be far away from the call site and
4861 require a different (more expensive) calling sequence. The
4862 @code{shortcall} attribute indicates that the function is always close
4863 enough for the shorter calling sequence to be used. These attributes
4864 override both the @option{-mlongcall} switch and
4865 the @code{#pragma longcall} setting.
4866
4867 @xref{RS/6000 and PowerPC Options}, for more information on whether long
4868 calls are necessary.
4869
4870 @item target (@var{options})
4871 @cindex @code{target} function attribute
4872 As discussed in @ref{Common Function Attributes}, this attribute
4873 allows specification of target-specific compilation options.
4874
4875 On the PowerPC, the following options are allowed:
4876
4877 @table @samp
4878 @item altivec
4879 @itemx no-altivec
4880 @cindex @code{target("altivec")} function attribute, PowerPC
4881 Generate code that uses (does not use) AltiVec instructions. In
4882 32-bit code, you cannot enable AltiVec instructions unless
4883 @option{-mabi=altivec} is used on the command line.
4884
4885 @item cmpb
4886 @itemx no-cmpb
4887 @cindex @code{target("cmpb")} function attribute, PowerPC
4888 Generate code that uses (does not use) the compare bytes instruction
4889 implemented on the POWER6 processor and other processors that support
4890 the PowerPC V2.05 architecture.
4891
4892 @item dlmzb
4893 @itemx no-dlmzb
4894 @cindex @code{target("dlmzb")} function attribute, PowerPC
4895 Generate code that uses (does not use) the string-search @samp{dlmzb}
4896 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
4897 generated by default when targeting those processors.
4898
4899 @item fprnd
4900 @itemx no-fprnd
4901 @cindex @code{target("fprnd")} function attribute, PowerPC
4902 Generate code that uses (does not use) the FP round to integer
4903 instructions implemented on the POWER5+ processor and other processors
4904 that support the PowerPC V2.03 architecture.
4905
4906 @item hard-dfp
4907 @itemx no-hard-dfp
4908 @cindex @code{target("hard-dfp")} function attribute, PowerPC
4909 Generate code that uses (does not use) the decimal floating-point
4910 instructions implemented on some POWER processors.
4911
4912 @item isel
4913 @itemx no-isel
4914 @cindex @code{target("isel")} function attribute, PowerPC
4915 Generate code that uses (does not use) ISEL instruction.
4916
4917 @item mfcrf
4918 @itemx no-mfcrf
4919 @cindex @code{target("mfcrf")} function attribute, PowerPC
4920 Generate code that uses (does not use) the move from condition
4921 register field instruction implemented on the POWER4 processor and
4922 other processors that support the PowerPC V2.01 architecture.
4923
4924 @item mfpgpr
4925 @itemx no-mfpgpr
4926 @cindex @code{target("mfpgpr")} function attribute, PowerPC
4927 Generate code that uses (does not use) the FP move to/from general
4928 purpose register instructions implemented on the POWER6X processor and
4929 other processors that support the extended PowerPC V2.05 architecture.
4930
4931 @item mulhw
4932 @itemx no-mulhw
4933 @cindex @code{target("mulhw")} function attribute, PowerPC
4934 Generate code that uses (does not use) the half-word multiply and
4935 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
4936 These instructions are generated by default when targeting those
4937 processors.
4938
4939 @item multiple
4940 @itemx no-multiple
4941 @cindex @code{target("multiple")} function attribute, PowerPC
4942 Generate code that uses (does not use) the load multiple word
4943 instructions and the store multiple word instructions.
4944
4945 @item update
4946 @itemx no-update
4947 @cindex @code{target("update")} function attribute, PowerPC
4948 Generate code that uses (does not use) the load or store instructions
4949 that update the base register to the address of the calculated memory
4950 location.
4951
4952 @item popcntb
4953 @itemx no-popcntb
4954 @cindex @code{target("popcntb")} function attribute, PowerPC
4955 Generate code that uses (does not use) the popcount and double-precision
4956 FP reciprocal estimate instruction implemented on the POWER5
4957 processor and other processors that support the PowerPC V2.02
4958 architecture.
4959
4960 @item popcntd
4961 @itemx no-popcntd
4962 @cindex @code{target("popcntd")} function attribute, PowerPC
4963 Generate code that uses (does not use) the popcount instruction
4964 implemented on the POWER7 processor and other processors that support
4965 the PowerPC V2.06 architecture.
4966
4967 @item powerpc-gfxopt
4968 @itemx no-powerpc-gfxopt
4969 @cindex @code{target("powerpc-gfxopt")} function attribute, PowerPC
4970 Generate code that uses (does not use) the optional PowerPC
4971 architecture instructions in the Graphics group, including
4972 floating-point select.
4973
4974 @item powerpc-gpopt
4975 @itemx no-powerpc-gpopt
4976 @cindex @code{target("powerpc-gpopt")} function attribute, PowerPC
4977 Generate code that uses (does not use) the optional PowerPC
4978 architecture instructions in the General Purpose group, including
4979 floating-point square root.
4980
4981 @item recip-precision
4982 @itemx no-recip-precision
4983 @cindex @code{target("recip-precision")} function attribute, PowerPC
4984 Assume (do not assume) that the reciprocal estimate instructions
4985 provide higher-precision estimates than is mandated by the PowerPC
4986 ABI.
4987
4988 @item string
4989 @itemx no-string
4990 @cindex @code{target("string")} function attribute, PowerPC
4991 Generate code that uses (does not use) the load string instructions
4992 and the store string word instructions to save multiple registers and
4993 do small block moves.
4994
4995 @item vsx
4996 @itemx no-vsx
4997 @cindex @code{target("vsx")} function attribute, PowerPC
4998 Generate code that uses (does not use) vector/scalar (VSX)
4999 instructions, and also enable the use of built-in functions that allow
5000 more direct access to the VSX instruction set. In 32-bit code, you
5001 cannot enable VSX or AltiVec instructions unless
5002 @option{-mabi=altivec} is used on the command line.
5003
5004 @item friz
5005 @itemx no-friz
5006 @cindex @code{target("friz")} function attribute, PowerPC
5007 Generate (do not generate) the @code{friz} instruction when the
5008 @option{-funsafe-math-optimizations} option is used to optimize
5009 rounding a floating-point value to 64-bit integer and back to floating
5010 point. The @code{friz} instruction does not return the same value if
5011 the floating-point number is too large to fit in an integer.
5012
5013 @item avoid-indexed-addresses
5014 @itemx no-avoid-indexed-addresses
5015 @cindex @code{target("avoid-indexed-addresses")} function attribute, PowerPC
5016 Generate code that tries to avoid (not avoid) the use of indexed load
5017 or store instructions.
5018
5019 @item paired
5020 @itemx no-paired
5021 @cindex @code{target("paired")} function attribute, PowerPC
5022 Generate code that uses (does not use) the generation of PAIRED simd
5023 instructions.
5024
5025 @item longcall
5026 @itemx no-longcall
5027 @cindex @code{target("longcall")} function attribute, PowerPC
5028 Generate code that assumes (does not assume) that all calls are far
5029 away so that a longer more expensive calling sequence is required.
5030
5031 @item cpu=@var{CPU}
5032 @cindex @code{target("cpu=@var{CPU}")} function attribute, PowerPC
5033 Specify the architecture to generate code for when compiling the
5034 function. If you select the @code{target("cpu=power7")} attribute when
5035 generating 32-bit code, VSX and AltiVec instructions are not generated
5036 unless you use the @option{-mabi=altivec} option on the command line.
5037
5038 @item tune=@var{TUNE}
5039 @cindex @code{target("tune=@var{TUNE}")} function attribute, PowerPC
5040 Specify the architecture to tune for when compiling the function. If
5041 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
5042 you do specify the @code{target("cpu=@var{CPU}")} attribute,
5043 compilation tunes for the @var{CPU} architecture, and not the
5044 default tuning specified on the command line.
5045 @end table
5046
5047 On the PowerPC, the inliner does not inline a
5048 function that has different target options than the caller, unless the
5049 callee has a subset of the target options of the caller.
5050 @end table
5051
5052 @node RL78 Function Attributes
5053 @subsection RL78 Function Attributes
5054
5055 These function attributes are supported by the RL78 back end:
5056
5057 @table @code
5058 @item interrupt
5059 @itemx brk_interrupt
5060 @cindex @code{interrupt} function attribute, RL78
5061 @cindex @code{brk_interrupt} function attribute, RL78
5062 These attributes indicate
5063 that the specified function is an interrupt handler. The compiler generates
5064 function entry and exit sequences suitable for use in an interrupt handler
5065 when this attribute is present.
5066
5067 Use @code{brk_interrupt} instead of @code{interrupt} for
5068 handlers intended to be used with the @code{BRK} opcode (i.e.@: those
5069 that must end with @code{RETB} instead of @code{RETI}).
5070
5071 @item naked
5072 @cindex @code{naked} function attribute, RL78
5073 This attribute allows the compiler to construct the
5074 requisite function declaration, while allowing the body of the
5075 function to be assembly code. The specified function will not have
5076 prologue/epilogue sequences generated by the compiler. Only basic
5077 @code{asm} statements can safely be included in naked functions
5078 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5079 basic @code{asm} and C code may appear to work, they cannot be
5080 depended upon to work reliably and are not supported.
5081 @end table
5082
5083 @node RX Function Attributes
5084 @subsection RX Function Attributes
5085
5086 These function attributes are supported by the RX back end:
5087
5088 @table @code
5089 @item fast_interrupt
5090 @cindex @code{fast_interrupt} function attribute, RX
5091 Use this attribute on the RX port to indicate that the specified
5092 function is a fast interrupt handler. This is just like the
5093 @code{interrupt} attribute, except that @code{freit} is used to return
5094 instead of @code{reit}.
5095
5096 @item interrupt
5097 @cindex @code{interrupt} function attribute, RX
5098 Use this attribute to indicate
5099 that the specified function is an interrupt handler. The compiler generates
5100 function entry and exit sequences suitable for use in an interrupt handler
5101 when this attribute is present.
5102
5103 On RX targets, you may specify one or more vector numbers as arguments
5104 to the attribute, as well as naming an alternate table name.
5105 Parameters are handled sequentially, so one handler can be assigned to
5106 multiple entries in multiple tables. One may also pass the magic
5107 string @code{"$default"} which causes the function to be used for any
5108 unfilled slots in the current table.
5109
5110 This example shows a simple assignment of a function to one vector in
5111 the default table (note that preprocessor macros may be used for
5112 chip-specific symbolic vector names):
5113 @smallexample
5114 void __attribute__ ((interrupt (5))) txd1_handler ();
5115 @end smallexample
5116
5117 This example assigns a function to two slots in the default table
5118 (using preprocessor macros defined elsewhere) and makes it the default
5119 for the @code{dct} table:
5120 @smallexample
5121 void __attribute__ ((interrupt (RXD1_VECT,RXD2_VECT,"dct","$default")))
5122 txd1_handler ();
5123 @end smallexample
5124
5125 @item naked
5126 @cindex @code{naked} function attribute, RX
5127 This attribute allows the compiler to construct the
5128 requisite function declaration, while allowing the body of the
5129 function to be assembly code. The specified function will not have
5130 prologue/epilogue sequences generated by the compiler. Only basic
5131 @code{asm} statements can safely be included in naked functions
5132 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5133 basic @code{asm} and C code may appear to work, they cannot be
5134 depended upon to work reliably and are not supported.
5135
5136 @item vector
5137 @cindex @code{vector} function attribute, RX
5138 This RX attribute is similar to the @code{interrupt} attribute, including its
5139 parameters, but does not make the function an interrupt-handler type
5140 function (i.e. it retains the normal C function calling ABI). See the
5141 @code{interrupt} attribute for a description of its arguments.
5142 @end table
5143
5144 @node S/390 Function Attributes
5145 @subsection S/390 Function Attributes
5146
5147 These function attributes are supported on the S/390:
5148
5149 @table @code
5150 @item hotpatch (@var{halfwords-before-function-label},@var{halfwords-after-function-label})
5151 @cindex @code{hotpatch} function attribute, S/390
5152
5153 On S/390 System z targets, you can use this function attribute to
5154 make GCC generate a ``hot-patching'' function prologue. If the
5155 @option{-mhotpatch=} command-line option is used at the same time,
5156 the @code{hotpatch} attribute takes precedence. The first of the
5157 two arguments specifies the number of halfwords to be added before
5158 the function label. A second argument can be used to specify the
5159 number of halfwords to be added after the function label. For
5160 both arguments the maximum allowed value is 1000000.
5161
5162 If both arguments are zero, hotpatching is disabled.
5163
5164 @item target (@var{options})
5165 @cindex @code{target} function attribute
5166 As discussed in @ref{Common Function Attributes}, this attribute
5167 allows specification of target-specific compilation options.
5168
5169 On S/390, the following options are supported:
5170
5171 @table @samp
5172 @item arch=
5173 @item tune=
5174 @item stack-guard=
5175 @item stack-size=
5176 @item branch-cost=
5177 @item warn-framesize=
5178 @item backchain
5179 @itemx no-backchain
5180 @item hard-dfp
5181 @itemx no-hard-dfp
5182 @item hard-float
5183 @itemx soft-float
5184 @item htm
5185 @itemx no-htm
5186 @item vx
5187 @itemx no-vx
5188 @item packed-stack
5189 @itemx no-packed-stack
5190 @item small-exec
5191 @itemx no-small-exec
5192 @item mvcle
5193 @itemx no-mvcle
5194 @item warn-dynamicstack
5195 @itemx no-warn-dynamicstack
5196 @end table
5197
5198 The options work exactly like the S/390 specific command line
5199 options (without the prefix @option{-m}) except that they do not
5200 change any feature macros. For example,
5201
5202 @smallexample
5203 @code{target("no-vx")}
5204 @end smallexample
5205
5206 does not undefine the @code{__VEC__} macro.
5207 @end table
5208
5209 @node SH Function Attributes
5210 @subsection SH Function Attributes
5211
5212 These function attributes are supported on the SH family of processors:
5213
5214 @table @code
5215 @item function_vector
5216 @cindex @code{function_vector} function attribute, SH
5217 @cindex calling functions through the function vector on SH2A
5218 On SH2A targets, this attribute declares a function to be called using the
5219 TBR relative addressing mode. The argument to this attribute is the entry
5220 number of the same function in a vector table containing all the TBR
5221 relative addressable functions. For correct operation the TBR must be setup
5222 accordingly to point to the start of the vector table before any functions with
5223 this attribute are invoked. Usually a good place to do the initialization is
5224 the startup routine. The TBR relative vector table can have at max 256 function
5225 entries. The jumps to these functions are generated using a SH2A specific,
5226 non delayed branch instruction JSR/N @@(disp8,TBR). You must use GAS and GLD
5227 from GNU binutils version 2.7 or later for this attribute to work correctly.
5228
5229 In an application, for a function being called once, this attribute
5230 saves at least 8 bytes of code; and if other successive calls are being
5231 made to the same function, it saves 2 bytes of code per each of these
5232 calls.
5233
5234 @item interrupt_handler
5235 @cindex @code{interrupt_handler} function attribute, SH
5236 Use this attribute to
5237 indicate that the specified function is an interrupt handler. The compiler
5238 generates function entry and exit sequences suitable for use in an
5239 interrupt handler when this attribute is present.
5240
5241 @item nosave_low_regs
5242 @cindex @code{nosave_low_regs} function attribute, SH
5243 Use this attribute on SH targets to indicate that an @code{interrupt_handler}
5244 function should not save and restore registers R0..R7. This can be used on SH3*
5245 and SH4* targets that have a second R0..R7 register bank for non-reentrant
5246 interrupt handlers.
5247
5248 @item renesas
5249 @cindex @code{renesas} function attribute, SH
5250 On SH targets this attribute specifies that the function or struct follows the
5251 Renesas ABI.
5252
5253 @item resbank
5254 @cindex @code{resbank} function attribute, SH
5255 On the SH2A target, this attribute enables the high-speed register
5256 saving and restoration using a register bank for @code{interrupt_handler}
5257 routines. Saving to the bank is performed automatically after the CPU
5258 accepts an interrupt that uses a register bank.
5259
5260 The nineteen 32-bit registers comprising general register R0 to R14,
5261 control register GBR, and system registers MACH, MACL, and PR and the
5262 vector table address offset are saved into a register bank. Register
5263 banks are stacked in first-in last-out (FILO) sequence. Restoration
5264 from the bank is executed by issuing a RESBANK instruction.
5265
5266 @item sp_switch
5267 @cindex @code{sp_switch} function attribute, SH
5268 Use this attribute on the SH to indicate an @code{interrupt_handler}
5269 function should switch to an alternate stack. It expects a string
5270 argument that names a global variable holding the address of the
5271 alternate stack.
5272
5273 @smallexample
5274 void *alt_stack;
5275 void f () __attribute__ ((interrupt_handler,
5276 sp_switch ("alt_stack")));
5277 @end smallexample
5278
5279 @item trap_exit
5280 @cindex @code{trap_exit} function attribute, SH
5281 Use this attribute on the SH for an @code{interrupt_handler} to return using
5282 @code{trapa} instead of @code{rte}. This attribute expects an integer
5283 argument specifying the trap number to be used.
5284
5285 @item trapa_handler
5286 @cindex @code{trapa_handler} function attribute, SH
5287 On SH targets this function attribute is similar to @code{interrupt_handler}
5288 but it does not save and restore all registers.
5289 @end table
5290
5291 @node SPU Function Attributes
5292 @subsection SPU Function Attributes
5293
5294 These function attributes are supported by the SPU back end:
5295
5296 @table @code
5297 @item naked
5298 @cindex @code{naked} function attribute, SPU
5299 This attribute allows the compiler to construct the
5300 requisite function declaration, while allowing the body of the
5301 function to be assembly code. The specified function will not have
5302 prologue/epilogue sequences generated by the compiler. Only basic
5303 @code{asm} statements can safely be included in naked functions
5304 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5305 basic @code{asm} and C code may appear to work, they cannot be
5306 depended upon to work reliably and are not supported.
5307 @end table
5308
5309 @node Symbian OS Function Attributes
5310 @subsection Symbian OS Function Attributes
5311
5312 @xref{Microsoft Windows Function Attributes}, for discussion of the
5313 @code{dllexport} and @code{dllimport} attributes.
5314
5315 @node V850 Function Attributes
5316 @subsection V850 Function Attributes
5317
5318 The V850 back end supports these function attributes:
5319
5320 @table @code
5321 @item interrupt
5322 @itemx interrupt_handler
5323 @cindex @code{interrupt} function attribute, V850
5324 @cindex @code{interrupt_handler} function attribute, V850
5325 Use these attributes to indicate
5326 that the specified function is an interrupt handler. The compiler generates
5327 function entry and exit sequences suitable for use in an interrupt handler
5328 when either attribute is present.
5329 @end table
5330
5331 @node Visium Function Attributes
5332 @subsection Visium Function Attributes
5333
5334 These function attributes are supported by the Visium back end:
5335
5336 @table @code
5337 @item interrupt
5338 @cindex @code{interrupt} function attribute, Visium
5339 Use this attribute to indicate
5340 that the specified function is an interrupt handler. The compiler generates
5341 function entry and exit sequences suitable for use in an interrupt handler
5342 when this attribute is present.
5343 @end table
5344
5345 @node x86 Function Attributes
5346 @subsection x86 Function Attributes
5347
5348 These function attributes are supported by the x86 back end:
5349
5350 @table @code
5351 @item cdecl
5352 @cindex @code{cdecl} function attribute, x86-32
5353 @cindex functions that pop the argument stack on x86-32
5354 @opindex mrtd
5355 On the x86-32 targets, the @code{cdecl} attribute causes the compiler to
5356 assume that the calling function pops off the stack space used to
5357 pass arguments. This is
5358 useful to override the effects of the @option{-mrtd} switch.
5359
5360 @item fastcall
5361 @cindex @code{fastcall} function attribute, x86-32
5362 @cindex functions that pop the argument stack on x86-32
5363 On x86-32 targets, the @code{fastcall} attribute causes the compiler to
5364 pass the first argument (if of integral type) in the register ECX and
5365 the second argument (if of integral type) in the register EDX@. Subsequent
5366 and other typed arguments are passed on the stack. The called function
5367 pops the arguments off the stack. If the number of arguments is variable all
5368 arguments are pushed on the stack.
5369
5370 @item thiscall
5371 @cindex @code{thiscall} function attribute, x86-32
5372 @cindex functions that pop the argument stack on x86-32
5373 On x86-32 targets, the @code{thiscall} attribute causes the compiler to
5374 pass the first argument (if of integral type) in the register ECX.
5375 Subsequent and other typed arguments are passed on the stack. The called
5376 function pops the arguments off the stack.
5377 If the number of arguments is variable all arguments are pushed on the
5378 stack.
5379 The @code{thiscall} attribute is intended for C++ non-static member functions.
5380 As a GCC extension, this calling convention can be used for C functions
5381 and for static member methods.
5382
5383 @item ms_abi
5384 @itemx sysv_abi
5385 @cindex @code{ms_abi} function attribute, x86
5386 @cindex @code{sysv_abi} function attribute, x86
5387
5388 On 32-bit and 64-bit x86 targets, you can use an ABI attribute
5389 to indicate which calling convention should be used for a function. The
5390 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
5391 while the @code{sysv_abi} attribute tells the compiler to use the ABI
5392 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
5393 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
5394
5395 Note, the @code{ms_abi} attribute for Microsoft Windows 64-bit targets currently
5396 requires the @option{-maccumulate-outgoing-args} option.
5397
5398 @item callee_pop_aggregate_return (@var{number})
5399 @cindex @code{callee_pop_aggregate_return} function attribute, x86
5400
5401 On x86-32 targets, you can use this attribute to control how
5402 aggregates are returned in memory. If the caller is responsible for
5403 popping the hidden pointer together with the rest of the arguments, specify
5404 @var{number} equal to zero. If callee is responsible for popping the
5405 hidden pointer, specify @var{number} equal to one.
5406
5407 The default x86-32 ABI assumes that the callee pops the
5408 stack for hidden pointer. However, on x86-32 Microsoft Windows targets,
5409 the compiler assumes that the
5410 caller pops the stack for hidden pointer.
5411
5412 @item ms_hook_prologue
5413 @cindex @code{ms_hook_prologue} function attribute, x86
5414
5415 On 32-bit and 64-bit x86 targets, you can use
5416 this function attribute to make GCC generate the ``hot-patching'' function
5417 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
5418 and newer.
5419
5420 @item naked
5421 @cindex @code{naked} function attribute, x86
5422 This attribute allows the compiler to construct the
5423 requisite function declaration, while allowing the body of the
5424 function to be assembly code. The specified function will not have
5425 prologue/epilogue sequences generated by the compiler. Only basic
5426 @code{asm} statements can safely be included in naked functions
5427 (@pxref{Basic Asm}). While using extended @code{asm} or a mixture of
5428 basic @code{asm} and C code may appear to work, they cannot be
5429 depended upon to work reliably and are not supported.
5430
5431 @item regparm (@var{number})
5432 @cindex @code{regparm} function attribute, x86
5433 @cindex functions that are passed arguments in registers on x86-32
5434 On x86-32 targets, the @code{regparm} attribute causes the compiler to
5435 pass arguments number one to @var{number} if they are of integral type
5436 in registers EAX, EDX, and ECX instead of on the stack. Functions that
5437 take a variable number of arguments continue to be passed all of their
5438 arguments on the stack.
5439
5440 Beware that on some ELF systems this attribute is unsuitable for
5441 global functions in shared libraries with lazy binding (which is the
5442 default). Lazy binding sends the first call via resolving code in
5443 the loader, which might assume EAX, EDX and ECX can be clobbered, as
5444 per the standard calling conventions. Solaris 8 is affected by this.
5445 Systems with the GNU C Library version 2.1 or higher
5446 and FreeBSD are believed to be
5447 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
5448 disabled with the linker or the loader if desired, to avoid the
5449 problem.)
5450
5451 @item sseregparm
5452 @cindex @code{sseregparm} function attribute, x86
5453 On x86-32 targets with SSE support, the @code{sseregparm} attribute
5454 causes the compiler to pass up to 3 floating-point arguments in
5455 SSE registers instead of on the stack. Functions that take a
5456 variable number of arguments continue to pass all of their
5457 floating-point arguments on the stack.
5458
5459 @item force_align_arg_pointer
5460 @cindex @code{force_align_arg_pointer} function attribute, x86
5461 On x86 targets, the @code{force_align_arg_pointer} attribute may be
5462 applied to individual function definitions, generating an alternate
5463 prologue and epilogue that realigns the run-time stack if necessary.
5464 This supports mixing legacy codes that run with a 4-byte aligned stack
5465 with modern codes that keep a 16-byte stack for SSE compatibility.
5466
5467 @item stdcall
5468 @cindex @code{stdcall} function attribute, x86-32
5469 @cindex functions that pop the argument stack on x86-32
5470 On x86-32 targets, the @code{stdcall} attribute causes the compiler to
5471 assume that the called function pops off the stack space used to
5472 pass arguments, unless it takes a variable number of arguments.
5473
5474 @item no_caller_saved_registers
5475 @cindex @code{no_caller_saved_registers} function attribute, x86
5476 Use this attribute to indicate that the specified function has no
5477 caller-saved registers. That is, all registers are callee-saved. For
5478 example, this attribute can be used for a function called from an
5479 interrupt handler. The compiler generates proper function entry and
5480 exit sequences to save and restore any modified registers, except for
5481 the EFLAGS register. Since GCC doesn't preserve MPX, SSE, MMX nor x87
5482 states, the GCC option @option{-mgeneral-regs-only} should be used to
5483 compile functions with @code{no_caller_saved_registers} attribute.
5484
5485 @item interrupt
5486 @cindex @code{interrupt} function attribute, x86
5487 Use this attribute to indicate that the specified function is an
5488 interrupt handler or an exception handler (depending on parameters passed
5489 to the function, explained further). The compiler generates function
5490 entry and exit sequences suitable for use in an interrupt handler when
5491 this attribute is present. The @code{IRET} instruction, instead of the
5492 @code{RET} instruction, is used to return from interrupt handlers. All
5493 registers, except for the EFLAGS register which is restored by the
5494 @code{IRET} instruction, are preserved by the compiler. Since GCC
5495 doesn't preserve MPX, SSE, MMX nor x87 states, the GCC option
5496 @option{-mgeneral-regs-only} should be used to compile interrupt and
5497 exception handlers.
5498
5499 Any interruptible-without-stack-switch code must be compiled with
5500 @option{-mno-red-zone} since interrupt handlers can and will, because
5501 of the hardware design, touch the red zone.
5502
5503 An interrupt handler must be declared with a mandatory pointer
5504 argument:
5505
5506 @smallexample
5507 struct interrupt_frame;
5508
5509 __attribute__ ((interrupt))
5510 void
5511 f (struct interrupt_frame *frame)
5512 @{
5513 @}
5514 @end smallexample
5515
5516 @noindent
5517 and you must define @code{struct interrupt_frame} as described in the
5518 processor's manual.
5519
5520 Exception handlers differ from interrupt handlers because the system
5521 pushes an error code on the stack. An exception handler declaration is
5522 similar to that for an interrupt handler, but with a different mandatory
5523 function signature. The compiler arranges to pop the error code off the
5524 stack before the @code{IRET} instruction.
5525
5526 @smallexample
5527 #ifdef __x86_64__
5528 typedef unsigned long long int uword_t;
5529 #else
5530 typedef unsigned int uword_t;
5531 #endif
5532
5533 struct interrupt_frame;
5534
5535 __attribute__ ((interrupt))
5536 void
5537 f (struct interrupt_frame *frame, uword_t error_code)
5538 @{
5539 ...
5540 @}
5541 @end smallexample
5542
5543 Exception handlers should only be used for exceptions that push an error
5544 code; you should use an interrupt handler in other cases. The system
5545 will crash if the wrong kind of handler is used.
5546
5547 @item target (@var{options})
5548 @cindex @code{target} function attribute
5549 As discussed in @ref{Common Function Attributes}, this attribute
5550 allows specification of target-specific compilation options.
5551
5552 On the x86, the following options are allowed:
5553 @table @samp
5554 @item abm
5555 @itemx no-abm
5556 @cindex @code{target("abm")} function attribute, x86
5557 Enable/disable the generation of the advanced bit instructions.
5558
5559 @item aes
5560 @itemx no-aes
5561 @cindex @code{target("aes")} function attribute, x86
5562 Enable/disable the generation of the AES instructions.
5563
5564 @item default
5565 @cindex @code{target("default")} function attribute, x86
5566 @xref{Function Multiversioning}, where it is used to specify the
5567 default function version.
5568
5569 @item mmx
5570 @itemx no-mmx
5571 @cindex @code{target("mmx")} function attribute, x86
5572 Enable/disable the generation of the MMX instructions.
5573
5574 @item pclmul
5575 @itemx no-pclmul
5576 @cindex @code{target("pclmul")} function attribute, x86
5577 Enable/disable the generation of the PCLMUL instructions.
5578
5579 @item popcnt
5580 @itemx no-popcnt
5581 @cindex @code{target("popcnt")} function attribute, x86
5582 Enable/disable the generation of the POPCNT instruction.
5583
5584 @item sse
5585 @itemx no-sse
5586 @cindex @code{target("sse")} function attribute, x86
5587 Enable/disable the generation of the SSE instructions.
5588
5589 @item sse2
5590 @itemx no-sse2
5591 @cindex @code{target("sse2")} function attribute, x86
5592 Enable/disable the generation of the SSE2 instructions.
5593
5594 @item sse3
5595 @itemx no-sse3
5596 @cindex @code{target("sse3")} function attribute, x86
5597 Enable/disable the generation of the SSE3 instructions.
5598
5599 @item sse4
5600 @itemx no-sse4
5601 @cindex @code{target("sse4")} function attribute, x86
5602 Enable/disable the generation of the SSE4 instructions (both SSE4.1
5603 and SSE4.2).
5604
5605 @item sse4.1
5606 @itemx no-sse4.1
5607 @cindex @code{target("sse4.1")} function attribute, x86
5608 Enable/disable the generation of the sse4.1 instructions.
5609
5610 @item sse4.2
5611 @itemx no-sse4.2
5612 @cindex @code{target("sse4.2")} function attribute, x86
5613 Enable/disable the generation of the sse4.2 instructions.
5614
5615 @item sse4a
5616 @itemx no-sse4a
5617 @cindex @code{target("sse4a")} function attribute, x86
5618 Enable/disable the generation of the SSE4A instructions.
5619
5620 @item fma4
5621 @itemx no-fma4
5622 @cindex @code{target("fma4")} function attribute, x86
5623 Enable/disable the generation of the FMA4 instructions.
5624
5625 @item xop
5626 @itemx no-xop
5627 @cindex @code{target("xop")} function attribute, x86
5628 Enable/disable the generation of the XOP instructions.
5629
5630 @item lwp
5631 @itemx no-lwp
5632 @cindex @code{target("lwp")} function attribute, x86
5633 Enable/disable the generation of the LWP instructions.
5634
5635 @item ssse3
5636 @itemx no-ssse3
5637 @cindex @code{target("ssse3")} function attribute, x86
5638 Enable/disable the generation of the SSSE3 instructions.
5639
5640 @item cld
5641 @itemx no-cld
5642 @cindex @code{target("cld")} function attribute, x86
5643 Enable/disable the generation of the CLD before string moves.
5644
5645 @item fancy-math-387
5646 @itemx no-fancy-math-387
5647 @cindex @code{target("fancy-math-387")} function attribute, x86
5648 Enable/disable the generation of the @code{sin}, @code{cos}, and
5649 @code{sqrt} instructions on the 387 floating-point unit.
5650
5651 @item ieee-fp
5652 @itemx no-ieee-fp
5653 @cindex @code{target("ieee-fp")} function attribute, x86
5654 Enable/disable the generation of floating point that depends on IEEE arithmetic.
5655
5656 @item inline-all-stringops
5657 @itemx no-inline-all-stringops
5658 @cindex @code{target("inline-all-stringops")} function attribute, x86
5659 Enable/disable inlining of string operations.
5660
5661 @item inline-stringops-dynamically
5662 @itemx no-inline-stringops-dynamically
5663 @cindex @code{target("inline-stringops-dynamically")} function attribute, x86
5664 Enable/disable the generation of the inline code to do small string
5665 operations and calling the library routines for large operations.
5666
5667 @item align-stringops
5668 @itemx no-align-stringops
5669 @cindex @code{target("align-stringops")} function attribute, x86
5670 Do/do not align destination of inlined string operations.
5671
5672 @item recip
5673 @itemx no-recip
5674 @cindex @code{target("recip")} function attribute, x86
5675 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
5676 instructions followed an additional Newton-Raphson step instead of
5677 doing a floating-point division.
5678
5679 @item arch=@var{ARCH}
5680 @cindex @code{target("arch=@var{ARCH}")} function attribute, x86
5681 Specify the architecture to generate code for in compiling the function.
5682
5683 @item tune=@var{TUNE}
5684 @cindex @code{target("tune=@var{TUNE}")} function attribute, x86
5685 Specify the architecture to tune for in compiling the function.
5686
5687 @item fpmath=@var{FPMATH}
5688 @cindex @code{target("fpmath=@var{FPMATH}")} function attribute, x86
5689 Specify which floating-point unit to use. You must specify the
5690 @code{target("fpmath=sse,387")} option as
5691 @code{target("fpmath=sse+387")} because the comma would separate
5692 different options.
5693
5694 @item nocf_check
5695 @cindex @code{nocf_check} function attribute
5696 The @code{nocf_check} attribute on a function is used to inform the
5697 compiler that the function's prologue should not be instrumented when
5698 compiled with the @option{-fcf-protection=branch} option. The
5699 compiler assumes that the function's address is a valid target for a
5700 control-flow transfer.
5701
5702 The @code{nocf_check} attribute on a type of pointer to function is
5703 used to inform the compiler that a call through the pointer should
5704 not be instrumented when compiled with the
5705 @option{-fcf-protection=branch} option. The compiler assumes
5706 that the function's address from the pointer is a valid target for
5707 a control-flow transfer. A direct function call through a function
5708 name is assumed to be a safe call thus direct calls are not
5709 instrumented by the compiler.
5710
5711 The @code{nocf_check} attribute is applied to an object's type.
5712 In case of assignment of a function address or a function pointer to
5713 another pointer, the attribute is not carried over from the right-hand
5714 object's type; the type of left-hand object stays unchanged. The
5715 compiler checks for @code{nocf_check} attribute mismatch and reports
5716 a warning in case of mismatch.
5717
5718 @smallexample
5719 @{
5720 int foo (void) __attribute__(nocf_check);
5721 void (*foo1)(void) __attribute__(nocf_check);
5722 void (*foo2)(void);
5723
5724 int
5725 foo (void) /* The function's address is assumed to be valid. */
5726
5727 /* This call site is not checked for control-flow validity. */
5728 (*foo1)();
5729
5730 foo1 = foo2; /* A warning is printed about attribute mismatch. */
5731 /* This call site is still not checked for control-flow validity. */
5732 (*foo1)();
5733
5734 /* This call site is checked for control-flow validity. */
5735 (*foo2)();
5736
5737 foo2 = foo1; /* A warning is printed about attribute mismatch. */
5738 /* This call site is still checked for control-flow validity. */
5739 (*foo2)();
5740
5741 return 0;
5742 @}
5743 @end smallexample
5744
5745 @end table
5746
5747 On the x86, the inliner does not inline a
5748 function that has different target options than the caller, unless the
5749 callee has a subset of the target options of the caller. For example
5750 a function declared with @code{target("sse3")} can inline a function
5751 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
5752 @end table
5753
5754 @node Xstormy16 Function Attributes
5755 @subsection Xstormy16 Function Attributes
5756
5757 These function attributes are supported by the Xstormy16 back end:
5758
5759 @table @code
5760 @item interrupt
5761 @cindex @code{interrupt} function attribute, Xstormy16
5762 Use this attribute to indicate
5763 that the specified function is an interrupt handler. The compiler generates
5764 function entry and exit sequences suitable for use in an interrupt handler
5765 when this attribute is present.
5766 @end table
5767
5768 @node Variable Attributes
5769 @section Specifying Attributes of Variables
5770 @cindex attribute of variables
5771 @cindex variable attributes
5772
5773 The keyword @code{__attribute__} allows you to specify special
5774 attributes of variables or structure fields. This keyword is followed
5775 by an attribute specification inside double parentheses. Some
5776 attributes are currently defined generically for variables.
5777 Other attributes are defined for variables on particular target
5778 systems. Other attributes are available for functions
5779 (@pxref{Function Attributes}), labels (@pxref{Label Attributes}),
5780 enumerators (@pxref{Enumerator Attributes}), statements
5781 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
5782 Other front ends might define more attributes
5783 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
5784
5785 @xref{Attribute Syntax}, for details of the exact syntax for using
5786 attributes.
5787
5788 @menu
5789 * Common Variable Attributes::
5790 * AVR Variable Attributes::
5791 * Blackfin Variable Attributes::
5792 * H8/300 Variable Attributes::
5793 * IA-64 Variable Attributes::
5794 * M32R/D Variable Attributes::
5795 * MeP Variable Attributes::
5796 * Microsoft Windows Variable Attributes::
5797 * MSP430 Variable Attributes::
5798 * Nvidia PTX Variable Attributes::
5799 * PowerPC Variable Attributes::
5800 * RL78 Variable Attributes::
5801 * SPU Variable Attributes::
5802 * V850 Variable Attributes::
5803 * x86 Variable Attributes::
5804 * Xstormy16 Variable Attributes::
5805 @end menu
5806
5807 @node Common Variable Attributes
5808 @subsection Common Variable Attributes
5809
5810 The following attributes are supported on most targets.
5811
5812 @table @code
5813 @cindex @code{aligned} variable attribute
5814 @item aligned (@var{alignment})
5815 This attribute specifies a minimum alignment for the variable or
5816 structure field, measured in bytes. For example, the declaration:
5817
5818 @smallexample
5819 int x __attribute__ ((aligned (16))) = 0;
5820 @end smallexample
5821
5822 @noindent
5823 causes the compiler to allocate the global variable @code{x} on a
5824 16-byte boundary. On a 68040, this could be used in conjunction with
5825 an @code{asm} expression to access the @code{move16} instruction which
5826 requires 16-byte aligned operands.
5827
5828 You can also specify the alignment of structure fields. For example, to
5829 create a double-word aligned @code{int} pair, you could write:
5830
5831 @smallexample
5832 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
5833 @end smallexample
5834
5835 @noindent
5836 This is an alternative to creating a union with a @code{double} member,
5837 which forces the union to be double-word aligned.
5838
5839 As in the preceding examples, you can explicitly specify the alignment
5840 (in bytes) that you wish the compiler to use for a given variable or
5841 structure field. Alternatively, you can leave out the alignment factor
5842 and just ask the compiler to align a variable or field to the
5843 default alignment for the target architecture you are compiling for.
5844 The default alignment is sufficient for all scalar types, but may not be
5845 enough for all vector types on a target that supports vector operations.
5846 The default alignment is fixed for a particular target ABI.
5847
5848 GCC also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
5849 which is the largest alignment ever used for any data type on the
5850 target machine you are compiling for. For example, you could write:
5851
5852 @smallexample
5853 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
5854 @end smallexample
5855
5856 The compiler automatically sets the alignment for the declared
5857 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
5858 often make copy operations more efficient, because the compiler can
5859 use whatever instructions copy the biggest chunks of memory when
5860 performing copies to or from the variables or fields that you have
5861 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
5862 may change depending on command-line options.
5863
5864 When used on a struct, or struct member, the @code{aligned} attribute can
5865 only increase the alignment; in order to decrease it, the @code{packed}
5866 attribute must be specified as well. When used as part of a typedef, the
5867 @code{aligned} attribute can both increase and decrease alignment, and
5868 specifying the @code{packed} attribute generates a warning.
5869
5870 Note that the effectiveness of @code{aligned} attributes may be limited
5871 by inherent limitations in your linker. On many systems, the linker is
5872 only able to arrange for variables to be aligned up to a certain maximum
5873 alignment. (For some linkers, the maximum supported alignment may
5874 be very very small.) If your linker is only able to align variables
5875 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
5876 in an @code{__attribute__} still only provides you with 8-byte
5877 alignment. See your linker documentation for further information.
5878
5879 The @code{aligned} attribute can also be used for functions
5880 (@pxref{Common Function Attributes}.)
5881
5882 @cindex @code{warn_if_not_aligned} variable attribute
5883 @item warn_if_not_aligned (@var{alignment})
5884 This attribute specifies a threshold for the structure field, measured
5885 in bytes. If the structure field is aligned below the threshold, a
5886 warning will be issued. For example, the declaration:
5887
5888 @smallexample
5889 struct foo
5890 @{
5891 int i1;
5892 int i2;
5893 unsigned long long x __attribute__((warn_if_not_aligned(16)));
5894 @};
5895 @end smallexample
5896
5897 @noindent
5898 causes the compiler to issue an warning on @code{struct foo}, like
5899 @samp{warning: alignment 8 of 'struct foo' is less than 16}.
5900 The compiler also issues a warning, like @samp{warning: 'x' offset
5901 8 in 'struct foo' isn't aligned to 16}, when the structure field has
5902 the misaligned offset:
5903
5904 @smallexample
5905 struct foo
5906 @{
5907 int i1;
5908 int i2;
5909 unsigned long long x __attribute__((warn_if_not_aligned(16)));
5910 @} __attribute__((aligned(16)));
5911 @end smallexample
5912
5913 This warning can be disabled by @option{-Wno-if-not-aligned}.
5914 The @code{warn_if_not_aligned} attribute can also be used for types
5915 (@pxref{Common Type Attributes}.)
5916
5917 @item cleanup (@var{cleanup_function})
5918 @cindex @code{cleanup} variable attribute
5919 The @code{cleanup} attribute runs a function when the variable goes
5920 out of scope. This attribute can only be applied to auto function
5921 scope variables; it may not be applied to parameters or variables
5922 with static storage duration. The function must take one parameter,
5923 a pointer to a type compatible with the variable. The return value
5924 of the function (if any) is ignored.
5925
5926 If @option{-fexceptions} is enabled, then @var{cleanup_function}
5927 is run during the stack unwinding that happens during the
5928 processing of the exception. Note that the @code{cleanup} attribute
5929 does not allow the exception to be caught, only to perform an action.
5930 It is undefined what happens if @var{cleanup_function} does not
5931 return normally.
5932
5933 @item common
5934 @itemx nocommon
5935 @cindex @code{common} variable attribute
5936 @cindex @code{nocommon} variable attribute
5937 @opindex fcommon
5938 @opindex fno-common
5939 The @code{common} attribute requests GCC to place a variable in
5940 ``common'' storage. The @code{nocommon} attribute requests the
5941 opposite---to allocate space for it directly.
5942
5943 These attributes override the default chosen by the
5944 @option{-fno-common} and @option{-fcommon} flags respectively.
5945
5946 @item deprecated
5947 @itemx deprecated (@var{msg})
5948 @cindex @code{deprecated} variable attribute
5949 The @code{deprecated} attribute results in a warning if the variable
5950 is used anywhere in the source file. This is useful when identifying
5951 variables that are expected to be removed in a future version of a
5952 program. The warning also includes the location of the declaration
5953 of the deprecated variable, to enable users to easily find further
5954 information about why the variable is deprecated, or what they should
5955 do instead. Note that the warning only occurs for uses:
5956
5957 @smallexample
5958 extern int old_var __attribute__ ((deprecated));
5959 extern int old_var;
5960 int new_fn () @{ return old_var; @}
5961 @end smallexample
5962
5963 @noindent
5964 results in a warning on line 3 but not line 2. The optional @var{msg}
5965 argument, which must be a string, is printed in the warning if
5966 present.
5967
5968 The @code{deprecated} attribute can also be used for functions and
5969 types (@pxref{Common Function Attributes},
5970 @pxref{Common Type Attributes}).
5971
5972 @item nonstring (@var{nonstring})
5973 @cindex @code{nonstring} variable attribute
5974 The @code{nonstring} variable attribute specifies that an object or member
5975 declaration with type array of @code{char} or pointer to @code{char} is
5976 intended to store character arrays that do not necessarily contain
5977 a terminating @code{NUL} character. This is useful to avoid warnings
5978 when such an array or pointer is used as an argument to a bounded string
5979 manipulation function such as @code{strncpy}. For example, without the
5980 attribute, GCC will issue a warning for the call below because it may
5981 truncate the copy without appending the terminating NUL character. Using
5982 the attribute makes it possible to suppress the warning.
5983
5984 @smallexample
5985 struct Data
5986 @{
5987 char name [32] __attribute__ ((nonstring));
5988 @};
5989 void f (struct Data *pd, const char *s)
5990 @{
5991 strncpy (pd->name, s, sizeof pd->name);
5992 @dots{}
5993 @}
5994 @end smallexample
5995
5996 @item mode (@var{mode})
5997 @cindex @code{mode} variable attribute
5998 This attribute specifies the data type for the declaration---whichever
5999 type corresponds to the mode @var{mode}. This in effect lets you
6000 request an integer or floating-point type according to its width.
6001
6002 @xref{Machine Modes,,, gccint, GNU Compiler Collection (GCC) Internals},
6003 for a list of the possible keywords for @var{mode}.
6004 You may also specify a mode of @code{byte} or @code{__byte__} to
6005 indicate the mode corresponding to a one-byte integer, @code{word} or
6006 @code{__word__} for the mode of a one-word integer, and @code{pointer}
6007 or @code{__pointer__} for the mode used to represent pointers.
6008
6009 @item packed
6010 @cindex @code{packed} variable attribute
6011 The @code{packed} attribute specifies that a variable or structure field
6012 should have the smallest possible alignment---one byte for a variable,
6013 and one bit for a field, unless you specify a larger value with the
6014 @code{aligned} attribute.
6015
6016 Here is a structure in which the field @code{x} is packed, so that it
6017 immediately follows @code{a}:
6018
6019 @smallexample
6020 struct foo
6021 @{
6022 char a;
6023 int x[2] __attribute__ ((packed));
6024 @};
6025 @end smallexample
6026
6027 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
6028 @code{packed} attribute on bit-fields of type @code{char}. This has
6029 been fixed in GCC 4.4 but the change can lead to differences in the
6030 structure layout. See the documentation of
6031 @option{-Wpacked-bitfield-compat} for more information.
6032
6033 @item section ("@var{section-name}")
6034 @cindex @code{section} variable attribute
6035 Normally, the compiler places the objects it generates in sections like
6036 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
6037 or you need certain particular variables to appear in special sections,
6038 for example to map to special hardware. The @code{section}
6039 attribute specifies that a variable (or function) lives in a particular
6040 section. For example, this small program uses several specific section names:
6041
6042 @smallexample
6043 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
6044 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
6045 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
6046 int init_data __attribute__ ((section ("INITDATA")));
6047
6048 main()
6049 @{
6050 /* @r{Initialize stack pointer} */
6051 init_sp (stack + sizeof (stack));
6052
6053 /* @r{Initialize initialized data} */
6054 memcpy (&init_data, &data, &edata - &data);
6055
6056 /* @r{Turn on the serial ports} */
6057 init_duart (&a);
6058 init_duart (&b);
6059 @}
6060 @end smallexample
6061
6062 @noindent
6063 Use the @code{section} attribute with
6064 @emph{global} variables and not @emph{local} variables,
6065 as shown in the example.
6066
6067 You may use the @code{section} attribute with initialized or
6068 uninitialized global variables but the linker requires
6069 each object be defined once, with the exception that uninitialized
6070 variables tentatively go in the @code{common} (or @code{bss}) section
6071 and can be multiply ``defined''. Using the @code{section} attribute
6072 changes what section the variable goes into and may cause the
6073 linker to issue an error if an uninitialized variable has multiple
6074 definitions. You can force a variable to be initialized with the
6075 @option{-fno-common} flag or the @code{nocommon} attribute.
6076
6077 Some file formats do not support arbitrary sections so the @code{section}
6078 attribute is not available on all platforms.
6079 If you need to map the entire contents of a module to a particular
6080 section, consider using the facilities of the linker instead.
6081
6082 @item tls_model ("@var{tls_model}")
6083 @cindex @code{tls_model} variable attribute
6084 The @code{tls_model} attribute sets thread-local storage model
6085 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
6086 overriding @option{-ftls-model=} command-line switch on a per-variable
6087 basis.
6088 The @var{tls_model} argument should be one of @code{global-dynamic},
6089 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
6090
6091 Not all targets support this attribute.
6092
6093 @item unused
6094 @cindex @code{unused} variable attribute
6095 This attribute, attached to a variable, means that the variable is meant
6096 to be possibly unused. GCC does not produce a warning for this
6097 variable.
6098
6099 @item used
6100 @cindex @code{used} variable attribute
6101 This attribute, attached to a variable with static storage, means that
6102 the variable must be emitted even if it appears that the variable is not
6103 referenced.
6104
6105 When applied to a static data member of a C++ class template, the
6106 attribute also means that the member is instantiated if the
6107 class itself is instantiated.
6108
6109 @item vector_size (@var{bytes})
6110 @cindex @code{vector_size} variable attribute
6111 This attribute specifies the vector size for the variable, measured in
6112 bytes. For example, the declaration:
6113
6114 @smallexample
6115 int foo __attribute__ ((vector_size (16)));
6116 @end smallexample
6117
6118 @noindent
6119 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
6120 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
6121 4 units of 4 bytes), the corresponding mode of @code{foo} is V4SI@.
6122
6123 This attribute is only applicable to integral and float scalars,
6124 although arrays, pointers, and function return values are allowed in
6125 conjunction with this construct.
6126
6127 Aggregates with this attribute are invalid, even if they are of the same
6128 size as a corresponding scalar. For example, the declaration:
6129
6130 @smallexample
6131 struct S @{ int a; @};
6132 struct S __attribute__ ((vector_size (16))) foo;
6133 @end smallexample
6134
6135 @noindent
6136 is invalid even if the size of the structure is the same as the size of
6137 the @code{int}.
6138
6139 @item visibility ("@var{visibility_type}")
6140 @cindex @code{visibility} variable attribute
6141 This attribute affects the linkage of the declaration to which it is attached.
6142 The @code{visibility} attribute is described in
6143 @ref{Common Function Attributes}.
6144
6145 @item weak
6146 @cindex @code{weak} variable attribute
6147 The @code{weak} attribute is described in
6148 @ref{Common Function Attributes}.
6149
6150 @end table
6151
6152 @node AVR Variable Attributes
6153 @subsection AVR Variable Attributes
6154
6155 @table @code
6156 @item progmem
6157 @cindex @code{progmem} variable attribute, AVR
6158 The @code{progmem} attribute is used on the AVR to place read-only
6159 data in the non-volatile program memory (flash). The @code{progmem}
6160 attribute accomplishes this by putting respective variables into a
6161 section whose name starts with @code{.progmem}.
6162
6163 This attribute works similar to the @code{section} attribute
6164 but adds additional checking.
6165
6166 @table @asis
6167 @item @bullet{}@tie{} Ordinary AVR cores with 32 general purpose registers:
6168 @code{progmem} affects the location
6169 of the data but not how this data is accessed.
6170 In order to read data located with the @code{progmem} attribute
6171 (inline) assembler must be used.
6172 @smallexample
6173 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC}} */
6174 #include <avr/pgmspace.h>
6175
6176 /* Locate var in flash memory */
6177 const int var[2] PROGMEM = @{ 1, 2 @};
6178
6179 int read_var (int i)
6180 @{
6181 /* Access var[] by accessor macro from avr/pgmspace.h */
6182 return (int) pgm_read_word (& var[i]);
6183 @}
6184 @end smallexample
6185
6186 AVR is a Harvard architecture processor and data and read-only data
6187 normally resides in the data memory (RAM).
6188
6189 See also the @ref{AVR Named Address Spaces} section for
6190 an alternate way to locate and access data in flash memory.
6191
6192 @item @bullet{}@tie{} AVR cores with flash memory visible in the RAM address range:
6193 On such devices, there is no need for attribute @code{progmem} or
6194 @ref{AVR Named Address Spaces,,@code{__flash}} qualifier at all.
6195 Just use standard C / C++. The compiler will generate @code{LD*}
6196 instructions. As flash memory is visible in the RAM address range,
6197 and the default linker script does @emph{not} locate @code{.rodata} in
6198 RAM, no special features are needed in order not to waste RAM for
6199 read-only data or to read from flash. You might even get slightly better
6200 performance by
6201 avoiding @code{progmem} and @code{__flash}. This applies to devices from
6202 families @code{avrtiny} and @code{avrxmega3}, see @ref{AVR Options} for
6203 an overview.
6204
6205 @item @bullet{}@tie{}Reduced AVR Tiny cores like ATtiny40:
6206 The compiler adds @code{0x4000}
6207 to the addresses of objects and declarations in @code{progmem} and locates
6208 the objects in flash memory, namely in section @code{.progmem.data}.
6209 The offset is needed because the flash memory is visible in the RAM
6210 address space starting at address @code{0x4000}.
6211
6212 Data in @code{progmem} can be accessed by means of ordinary C@tie{}code,
6213 no special functions or macros are needed.
6214
6215 @smallexample
6216 /* var is located in flash memory */
6217 extern const int var[2] __attribute__((progmem));
6218
6219 int read_var (int i)
6220 @{
6221 return var[i];
6222 @}
6223 @end smallexample
6224
6225 Please notice that on these devices, there is no need for @code{progmem}
6226 at all.
6227
6228 @end table
6229
6230 @item io
6231 @itemx io (@var{addr})
6232 @cindex @code{io} variable attribute, AVR
6233 Variables with the @code{io} attribute are used to address
6234 memory-mapped peripherals in the io address range.
6235 If an address is specified, the variable
6236 is assigned that address, and the value is interpreted as an
6237 address in the data address space.
6238 Example:
6239
6240 @smallexample
6241 volatile int porta __attribute__((io (0x22)));
6242 @end smallexample
6243
6244 The address specified in the address in the data address range.
6245
6246 Otherwise, the variable it is not assigned an address, but the
6247 compiler will still use in/out instructions where applicable,
6248 assuming some other module assigns an address in the io address range.
6249 Example:
6250
6251 @smallexample
6252 extern volatile int porta __attribute__((io));
6253 @end smallexample
6254
6255 @item io_low
6256 @itemx io_low (@var{addr})
6257 @cindex @code{io_low} variable attribute, AVR
6258 This is like the @code{io} attribute, but additionally it informs the
6259 compiler that the object lies in the lower half of the I/O area,
6260 allowing the use of @code{cbi}, @code{sbi}, @code{sbic} and @code{sbis}
6261 instructions.
6262
6263 @item address
6264 @itemx address (@var{addr})
6265 @cindex @code{address} variable attribute, AVR
6266 Variables with the @code{address} attribute are used to address
6267 memory-mapped peripherals that may lie outside the io address range.
6268
6269 @smallexample
6270 volatile int porta __attribute__((address (0x600)));
6271 @end smallexample
6272
6273 @item absdata
6274 @cindex @code{absdata} variable attribute, AVR
6275 Variables in static storage and with the @code{absdata} attribute can
6276 be accessed by the @code{LDS} and @code{STS} instructions which take
6277 absolute addresses.
6278
6279 @itemize @bullet
6280 @item
6281 This attribute is only supported for the reduced AVR Tiny core
6282 like ATtiny40.
6283
6284 @item
6285 You must make sure that respective data is located in the
6286 address range @code{0x40}@dots{}@code{0xbf} accessible by
6287 @code{LDS} and @code{STS}. One way to achieve this as an
6288 appropriate linker description file.
6289
6290 @item
6291 If the location does not fit the address range of @code{LDS}
6292 and @code{STS}, there is currently (Binutils 2.26) just an unspecific
6293 warning like
6294 @quotation
6295 @code{module.c:(.text+0x1c): warning: internal error: out of range error}
6296 @end quotation
6297
6298 @end itemize
6299
6300 See also the @option{-mabsdata} @ref{AVR Options,command-line option}.
6301
6302 @end table
6303
6304 @node Blackfin Variable Attributes
6305 @subsection Blackfin Variable Attributes
6306
6307 Three attributes are currently defined for the Blackfin.
6308
6309 @table @code
6310 @item l1_data
6311 @itemx l1_data_A
6312 @itemx l1_data_B
6313 @cindex @code{l1_data} variable attribute, Blackfin
6314 @cindex @code{l1_data_A} variable attribute, Blackfin
6315 @cindex @code{l1_data_B} variable attribute, Blackfin
6316 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
6317 Variables with @code{l1_data} attribute are put into the specific section
6318 named @code{.l1.data}. Those with @code{l1_data_A} attribute are put into
6319 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
6320 attribute are put into the specific section named @code{.l1.data.B}.
6321
6322 @item l2
6323 @cindex @code{l2} variable attribute, Blackfin
6324 Use this attribute on the Blackfin to place the variable into L2 SRAM.
6325 Variables with @code{l2} attribute are put into the specific section
6326 named @code{.l2.data}.
6327 @end table
6328
6329 @node H8/300 Variable Attributes
6330 @subsection H8/300 Variable Attributes
6331
6332 These variable attributes are available for H8/300 targets:
6333
6334 @table @code
6335 @item eightbit_data
6336 @cindex @code{eightbit_data} variable attribute, H8/300
6337 @cindex eight-bit data on the H8/300, H8/300H, and H8S
6338 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
6339 variable should be placed into the eight-bit data section.
6340 The compiler generates more efficient code for certain operations
6341 on data in the eight-bit data area. Note the eight-bit data area is limited to
6342 256 bytes of data.
6343
6344 You must use GAS and GLD from GNU binutils version 2.7 or later for
6345 this attribute to work correctly.
6346
6347 @item tiny_data
6348 @cindex @code{tiny_data} variable attribute, H8/300
6349 @cindex tiny data section on the H8/300H and H8S
6350 Use this attribute on the H8/300H and H8S to indicate that the specified
6351 variable should be placed into the tiny data section.
6352 The compiler generates more efficient code for loads and stores
6353 on data in the tiny data section. Note the tiny data area is limited to
6354 slightly under 32KB of data.
6355
6356 @end table
6357
6358 @node IA-64 Variable Attributes
6359 @subsection IA-64 Variable Attributes
6360
6361 The IA-64 back end supports the following variable attribute:
6362
6363 @table @code
6364 @item model (@var{model-name})
6365 @cindex @code{model} variable attribute, IA-64
6366
6367 On IA-64, use this attribute to set the addressability of an object.
6368 At present, the only supported identifier for @var{model-name} is
6369 @code{small}, indicating addressability via ``small'' (22-bit)
6370 addresses (so that their addresses can be loaded with the @code{addl}
6371 instruction). Caveat: such addressing is by definition not position
6372 independent and hence this attribute must not be used for objects
6373 defined by shared libraries.
6374
6375 @end table
6376
6377 @node M32R/D Variable Attributes
6378 @subsection M32R/D Variable Attributes
6379
6380 One attribute is currently defined for the M32R/D@.
6381
6382 @table @code
6383 @item model (@var{model-name})
6384 @cindex @code{model-name} variable attribute, M32R/D
6385 @cindex variable addressability on the M32R/D
6386 Use this attribute on the M32R/D to set the addressability of an object.
6387 The identifier @var{model-name} is one of @code{small}, @code{medium},
6388 or @code{large}, representing each of the code models.
6389
6390 Small model objects live in the lower 16MB of memory (so that their
6391 addresses can be loaded with the @code{ld24} instruction).
6392
6393 Medium and large model objects may live anywhere in the 32-bit address space
6394 (the compiler generates @code{seth/add3} instructions to load their
6395 addresses).
6396 @end table
6397
6398 @node MeP Variable Attributes
6399 @subsection MeP Variable Attributes
6400
6401 The MeP target has a number of addressing modes and busses. The
6402 @code{near} space spans the standard memory space's first 16 megabytes
6403 (24 bits). The @code{far} space spans the entire 32-bit memory space.
6404 The @code{based} space is a 128-byte region in the memory space that
6405 is addressed relative to the @code{$tp} register. The @code{tiny}
6406 space is a 65536-byte region relative to the @code{$gp} register. In
6407 addition to these memory regions, the MeP target has a separate 16-bit
6408 control bus which is specified with @code{cb} attributes.
6409
6410 @table @code
6411
6412 @item based
6413 @cindex @code{based} variable attribute, MeP
6414 Any variable with the @code{based} attribute is assigned to the
6415 @code{.based} section, and is accessed with relative to the
6416 @code{$tp} register.
6417
6418 @item tiny
6419 @cindex @code{tiny} variable attribute, MeP
6420 Likewise, the @code{tiny} attribute assigned variables to the
6421 @code{.tiny} section, relative to the @code{$gp} register.
6422
6423 @item near
6424 @cindex @code{near} variable attribute, MeP
6425 Variables with the @code{near} attribute are assumed to have addresses
6426 that fit in a 24-bit addressing mode. This is the default for large
6427 variables (@code{-mtiny=4} is the default) but this attribute can
6428 override @code{-mtiny=} for small variables, or override @code{-ml}.
6429
6430 @item far
6431 @cindex @code{far} variable attribute, MeP
6432 Variables with the @code{far} attribute are addressed using a full
6433 32-bit address. Since this covers the entire memory space, this
6434 allows modules to make no assumptions about where variables might be
6435 stored.
6436
6437 @item io
6438 @cindex @code{io} variable attribute, MeP
6439 @itemx io (@var{addr})
6440 Variables with the @code{io} attribute are used to address
6441 memory-mapped peripherals. If an address is specified, the variable
6442 is assigned that address, else it is not assigned an address (it is
6443 assumed some other module assigns an address). Example:
6444
6445 @smallexample
6446 int timer_count __attribute__((io(0x123)));
6447 @end smallexample
6448
6449 @item cb
6450 @itemx cb (@var{addr})
6451 @cindex @code{cb} variable attribute, MeP
6452 Variables with the @code{cb} attribute are used to access the control
6453 bus, using special instructions. @code{addr} indicates the control bus
6454 address. Example:
6455
6456 @smallexample
6457 int cpu_clock __attribute__((cb(0x123)));
6458 @end smallexample
6459
6460 @end table
6461
6462 @node Microsoft Windows Variable Attributes
6463 @subsection Microsoft Windows Variable Attributes
6464
6465 You can use these attributes on Microsoft Windows targets.
6466 @ref{x86 Variable Attributes} for additional Windows compatibility
6467 attributes available on all x86 targets.
6468
6469 @table @code
6470 @item dllimport
6471 @itemx dllexport
6472 @cindex @code{dllimport} variable attribute
6473 @cindex @code{dllexport} variable attribute
6474 The @code{dllimport} and @code{dllexport} attributes are described in
6475 @ref{Microsoft Windows Function Attributes}.
6476
6477 @item selectany
6478 @cindex @code{selectany} variable attribute
6479 The @code{selectany} attribute causes an initialized global variable to
6480 have link-once semantics. When multiple definitions of the variable are
6481 encountered by the linker, the first is selected and the remainder are
6482 discarded. Following usage by the Microsoft compiler, the linker is told
6483 @emph{not} to warn about size or content differences of the multiple
6484 definitions.
6485
6486 Although the primary usage of this attribute is for POD types, the
6487 attribute can also be applied to global C++ objects that are initialized
6488 by a constructor. In this case, the static initialization and destruction
6489 code for the object is emitted in each translation defining the object,
6490 but the calls to the constructor and destructor are protected by a
6491 link-once guard variable.
6492
6493 The @code{selectany} attribute is only available on Microsoft Windows
6494 targets. You can use @code{__declspec (selectany)} as a synonym for
6495 @code{__attribute__ ((selectany))} for compatibility with other
6496 compilers.
6497
6498 @item shared
6499 @cindex @code{shared} variable attribute
6500 On Microsoft Windows, in addition to putting variable definitions in a named
6501 section, the section can also be shared among all running copies of an
6502 executable or DLL@. For example, this small program defines shared data
6503 by putting it in a named section @code{shared} and marking the section
6504 shareable:
6505
6506 @smallexample
6507 int foo __attribute__((section ("shared"), shared)) = 0;
6508
6509 int
6510 main()
6511 @{
6512 /* @r{Read and write foo. All running
6513 copies see the same value.} */
6514 return 0;
6515 @}
6516 @end smallexample
6517
6518 @noindent
6519 You may only use the @code{shared} attribute along with @code{section}
6520 attribute with a fully-initialized global definition because of the way
6521 linkers work. See @code{section} attribute for more information.
6522
6523 The @code{shared} attribute is only available on Microsoft Windows@.
6524
6525 @end table
6526
6527 @node MSP430 Variable Attributes
6528 @subsection MSP430 Variable Attributes
6529
6530 @table @code
6531 @item noinit
6532 @cindex @code{noinit} variable attribute, MSP430
6533 Any data with the @code{noinit} attribute will not be initialised by
6534 the C runtime startup code, or the program loader. Not initialising
6535 data in this way can reduce program startup times.
6536
6537 @item persistent
6538 @cindex @code{persistent} variable attribute, MSP430
6539 Any variable with the @code{persistent} attribute will not be
6540 initialised by the C runtime startup code. Instead its value will be
6541 set once, when the application is loaded, and then never initialised
6542 again, even if the processor is reset or the program restarts.
6543 Persistent data is intended to be placed into FLASH RAM, where its
6544 value will be retained across resets. The linker script being used to
6545 create the application should ensure that persistent data is correctly
6546 placed.
6547
6548 @item lower
6549 @itemx upper
6550 @itemx either
6551 @cindex @code{lower} variable attribute, MSP430
6552 @cindex @code{upper} variable attribute, MSP430
6553 @cindex @code{either} variable attribute, MSP430
6554 These attributes are the same as the MSP430 function attributes of the
6555 same name (@pxref{MSP430 Function Attributes}).
6556 These attributes can be applied to both functions and variables.
6557 @end table
6558
6559 @node Nvidia PTX Variable Attributes
6560 @subsection Nvidia PTX Variable Attributes
6561
6562 These variable attributes are supported by the Nvidia PTX back end:
6563
6564 @table @code
6565 @item shared
6566 @cindex @code{shared} attribute, Nvidia PTX
6567 Use this attribute to place a variable in the @code{.shared} memory space.
6568 This memory space is private to each cooperative thread array; only threads
6569 within one thread block refer to the same instance of the variable.
6570 The runtime does not initialize variables in this memory space.
6571 @end table
6572
6573 @node PowerPC Variable Attributes
6574 @subsection PowerPC Variable Attributes
6575
6576 Three attributes currently are defined for PowerPC configurations:
6577 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
6578
6579 @cindex @code{ms_struct} variable attribute, PowerPC
6580 @cindex @code{gcc_struct} variable attribute, PowerPC
6581 For full documentation of the struct attributes please see the
6582 documentation in @ref{x86 Variable Attributes}.
6583
6584 @cindex @code{altivec} variable attribute, PowerPC
6585 For documentation of @code{altivec} attribute please see the
6586 documentation in @ref{PowerPC Type Attributes}.
6587
6588 @node RL78 Variable Attributes
6589 @subsection RL78 Variable Attributes
6590
6591 @cindex @code{saddr} variable attribute, RL78
6592 The RL78 back end supports the @code{saddr} variable attribute. This
6593 specifies placement of the corresponding variable in the SADDR area,
6594 which can be accessed more efficiently than the default memory region.
6595
6596 @node SPU Variable Attributes
6597 @subsection SPU Variable Attributes
6598
6599 @cindex @code{spu_vector} variable attribute, SPU
6600 The SPU supports the @code{spu_vector} attribute for variables. For
6601 documentation of this attribute please see the documentation in
6602 @ref{SPU Type Attributes}.
6603
6604 @node V850 Variable Attributes
6605 @subsection V850 Variable Attributes
6606
6607 These variable attributes are supported by the V850 back end:
6608
6609 @table @code
6610
6611 @item sda
6612 @cindex @code{sda} variable attribute, V850
6613 Use this attribute to explicitly place a variable in the small data area,
6614 which can hold up to 64 kilobytes.
6615
6616 @item tda
6617 @cindex @code{tda} variable attribute, V850
6618 Use this attribute to explicitly place a variable in the tiny data area,
6619 which can hold up to 256 bytes in total.
6620
6621 @item zda
6622 @cindex @code{zda} variable attribute, V850
6623 Use this attribute to explicitly place a variable in the first 32 kilobytes
6624 of memory.
6625 @end table
6626
6627 @node x86 Variable Attributes
6628 @subsection x86 Variable Attributes
6629
6630 Two attributes are currently defined for x86 configurations:
6631 @code{ms_struct} and @code{gcc_struct}.
6632
6633 @table @code
6634 @item ms_struct
6635 @itemx gcc_struct
6636 @cindex @code{ms_struct} variable attribute, x86
6637 @cindex @code{gcc_struct} variable attribute, x86
6638
6639 If @code{packed} is used on a structure, or if bit-fields are used,
6640 it may be that the Microsoft ABI lays out the structure differently
6641 than the way GCC normally does. Particularly when moving packed
6642 data between functions compiled with GCC and the native Microsoft compiler
6643 (either via function call or as data in a file), it may be necessary to access
6644 either format.
6645
6646 The @code{ms_struct} and @code{gcc_struct} attributes correspond
6647 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
6648 command-line options, respectively;
6649 see @ref{x86 Options}, for details of how structure layout is affected.
6650 @xref{x86 Type Attributes}, for information about the corresponding
6651 attributes on types.
6652
6653 @end table
6654
6655 @node Xstormy16 Variable Attributes
6656 @subsection Xstormy16 Variable Attributes
6657
6658 One attribute is currently defined for xstormy16 configurations:
6659 @code{below100}.
6660
6661 @table @code
6662 @item below100
6663 @cindex @code{below100} variable attribute, Xstormy16
6664
6665 If a variable has the @code{below100} attribute (@code{BELOW100} is
6666 allowed also), GCC places the variable in the first 0x100 bytes of
6667 memory and use special opcodes to access it. Such variables are
6668 placed in either the @code{.bss_below100} section or the
6669 @code{.data_below100} section.
6670
6671 @end table
6672
6673 @node Type Attributes
6674 @section Specifying Attributes of Types
6675 @cindex attribute of types
6676 @cindex type attributes
6677
6678 The keyword @code{__attribute__} allows you to specify special
6679 attributes of types. Some type attributes apply only to @code{struct}
6680 and @code{union} types, while others can apply to any type defined
6681 via a @code{typedef} declaration. Other attributes are defined for
6682 functions (@pxref{Function Attributes}), labels (@pxref{Label
6683 Attributes}), enumerators (@pxref{Enumerator Attributes}),
6684 statements (@pxref{Statement Attributes}), and for
6685 variables (@pxref{Variable Attributes}).
6686
6687 The @code{__attribute__} keyword is followed by an attribute specification
6688 inside double parentheses.
6689
6690 You may specify type attributes in an enum, struct or union type
6691 declaration or definition by placing them immediately after the
6692 @code{struct}, @code{union} or @code{enum} keyword. A less preferred
6693 syntax is to place them just past the closing curly brace of the
6694 definition.
6695
6696 You can also include type attributes in a @code{typedef} declaration.
6697 @xref{Attribute Syntax}, for details of the exact syntax for using
6698 attributes.
6699
6700 @menu
6701 * Common Type Attributes::
6702 * ARM Type Attributes::
6703 * MeP Type Attributes::
6704 * PowerPC Type Attributes::
6705 * SPU Type Attributes::
6706 * x86 Type Attributes::
6707 @end menu
6708
6709 @node Common Type Attributes
6710 @subsection Common Type Attributes
6711
6712 The following type attributes are supported on most targets.
6713
6714 @table @code
6715 @cindex @code{aligned} type attribute
6716 @item aligned (@var{alignment})
6717 This attribute specifies a minimum alignment (in bytes) for variables
6718 of the specified type. For example, the declarations:
6719
6720 @smallexample
6721 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
6722 typedef int more_aligned_int __attribute__ ((aligned (8)));
6723 @end smallexample
6724
6725 @noindent
6726 force the compiler to ensure (as far as it can) that each variable whose
6727 type is @code{struct S} or @code{more_aligned_int} is allocated and
6728 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
6729 variables of type @code{struct S} aligned to 8-byte boundaries allows
6730 the compiler to use the @code{ldd} and @code{std} (doubleword load and
6731 store) instructions when copying one variable of type @code{struct S} to
6732 another, thus improving run-time efficiency.
6733
6734 Note that the alignment of any given @code{struct} or @code{union} type
6735 is required by the ISO C standard to be at least a perfect multiple of
6736 the lowest common multiple of the alignments of all of the members of
6737 the @code{struct} or @code{union} in question. This means that you @emph{can}
6738 effectively adjust the alignment of a @code{struct} or @code{union}
6739 type by attaching an @code{aligned} attribute to any one of the members
6740 of such a type, but the notation illustrated in the example above is a
6741 more obvious, intuitive, and readable way to request the compiler to
6742 adjust the alignment of an entire @code{struct} or @code{union} type.
6743
6744 As in the preceding example, you can explicitly specify the alignment
6745 (in bytes) that you wish the compiler to use for a given @code{struct}
6746 or @code{union} type. Alternatively, you can leave out the alignment factor
6747 and just ask the compiler to align a type to the maximum
6748 useful alignment for the target machine you are compiling for. For
6749 example, you could write:
6750
6751 @smallexample
6752 struct S @{ short f[3]; @} __attribute__ ((aligned));
6753 @end smallexample
6754
6755 Whenever you leave out the alignment factor in an @code{aligned}
6756 attribute specification, the compiler automatically sets the alignment
6757 for the type to the largest alignment that is ever used for any data
6758 type on the target machine you are compiling for. Doing this can often
6759 make copy operations more efficient, because the compiler can use
6760 whatever instructions copy the biggest chunks of memory when performing
6761 copies to or from the variables that have types that you have aligned
6762 this way.
6763
6764 In the example above, if the size of each @code{short} is 2 bytes, then
6765 the size of the entire @code{struct S} type is 6 bytes. The smallest
6766 power of two that is greater than or equal to that is 8, so the
6767 compiler sets the alignment for the entire @code{struct S} type to 8
6768 bytes.
6769
6770 Note that although you can ask the compiler to select a time-efficient
6771 alignment for a given type and then declare only individual stand-alone
6772 objects of that type, the compiler's ability to select a time-efficient
6773 alignment is primarily useful only when you plan to create arrays of
6774 variables having the relevant (efficiently aligned) type. If you
6775 declare or use arrays of variables of an efficiently-aligned type, then
6776 it is likely that your program also does pointer arithmetic (or
6777 subscripting, which amounts to the same thing) on pointers to the
6778 relevant type, and the code that the compiler generates for these
6779 pointer arithmetic operations is often more efficient for
6780 efficiently-aligned types than for other types.
6781
6782 Note that the effectiveness of @code{aligned} attributes may be limited
6783 by inherent limitations in your linker. On many systems, the linker is
6784 only able to arrange for variables to be aligned up to a certain maximum
6785 alignment. (For some linkers, the maximum supported alignment may
6786 be very very small.) If your linker is only able to align variables
6787 up to a maximum of 8-byte alignment, then specifying @code{aligned(16)}
6788 in an @code{__attribute__} still only provides you with 8-byte
6789 alignment. See your linker documentation for further information.
6790
6791 The @code{aligned} attribute can only increase alignment. Alignment
6792 can be decreased by specifying the @code{packed} attribute. See below.
6793
6794 @cindex @code{warn_if_not_aligned} type attribute
6795 @item warn_if_not_aligned (@var{alignment})
6796 This attribute specifies a threshold for the structure field, measured
6797 in bytes. If the structure field is aligned below the threshold, a
6798 warning will be issued. For example, the declaration:
6799
6800 @smallexample
6801 typedef unsigned long long __u64
6802 __attribute__((aligned(4),warn_if_not_aligned(8)));
6803
6804 struct foo
6805 @{
6806 int i1;
6807 int i2;
6808 __u64 x;
6809 @};
6810 @end smallexample
6811
6812 @noindent
6813 causes the compiler to issue an warning on @code{struct foo}, like
6814 @samp{warning: alignment 4 of 'struct foo' is less than 8}.
6815 It is used to define @code{struct foo} in such a way that
6816 @code{struct foo} has the same layout and the structure field @code{x}
6817 has the same alignment when @code{__u64} is aligned at either 4 or
6818 8 bytes. Align @code{struct foo} to 8 bytes:
6819
6820 @smallexample
6821 struct foo
6822 @{
6823 int i1;
6824 int i2;
6825 __u64 x;
6826 @} __attribute__((aligned(8)));
6827 @end smallexample
6828
6829 @noindent
6830 silences the warning. The compiler also issues a warning, like
6831 @samp{warning: 'x' offset 12 in 'struct foo' isn't aligned to 8},
6832 when the structure field has the misaligned offset:
6833
6834 @smallexample
6835 struct foo
6836 @{
6837 int i1;
6838 int i2;
6839 int i3;
6840 __u64 x;
6841 @} __attribute__((aligned(8)));
6842 @end smallexample
6843
6844 This warning can be disabled by @option{-Wno-if-not-aligned}.
6845
6846 @item bnd_variable_size
6847 @cindex @code{bnd_variable_size} type attribute
6848 @cindex Pointer Bounds Checker attributes
6849 When applied to a structure field, this attribute tells Pointer
6850 Bounds Checker that the size of this field should not be computed
6851 using static type information. It may be used to mark variably-sized
6852 static array fields placed at the end of a structure.
6853
6854 @smallexample
6855 struct S
6856 @{
6857 int size;
6858 char data[1];
6859 @}
6860 S *p = (S *)malloc (sizeof(S) + 100);
6861 p->data[10] = 0; //Bounds violation
6862 @end smallexample
6863
6864 @noindent
6865 By using an attribute for the field we may avoid unwanted bound
6866 violation checks:
6867
6868 @smallexample
6869 struct S
6870 @{
6871 int size;
6872 char data[1] __attribute__((bnd_variable_size));
6873 @}
6874 S *p = (S *)malloc (sizeof(S) + 100);
6875 p->data[10] = 0; //OK
6876 @end smallexample
6877
6878 @item deprecated
6879 @itemx deprecated (@var{msg})
6880 @cindex @code{deprecated} type attribute
6881 The @code{deprecated} attribute results in a warning if the type
6882 is used anywhere in the source file. This is useful when identifying
6883 types that are expected to be removed in a future version of a program.
6884 If possible, the warning also includes the location of the declaration
6885 of the deprecated type, to enable users to easily find further
6886 information about why the type is deprecated, or what they should do
6887 instead. Note that the warnings only occur for uses and then only
6888 if the type is being applied to an identifier that itself is not being
6889 declared as deprecated.
6890
6891 @smallexample
6892 typedef int T1 __attribute__ ((deprecated));
6893 T1 x;
6894 typedef T1 T2;
6895 T2 y;
6896 typedef T1 T3 __attribute__ ((deprecated));
6897 T3 z __attribute__ ((deprecated));
6898 @end smallexample
6899
6900 @noindent
6901 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
6902 warning is issued for line 4 because T2 is not explicitly
6903 deprecated. Line 5 has no warning because T3 is explicitly
6904 deprecated. Similarly for line 6. The optional @var{msg}
6905 argument, which must be a string, is printed in the warning if
6906 present.
6907
6908 The @code{deprecated} attribute can also be used for functions and
6909 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
6910
6911 @item designated_init
6912 @cindex @code{designated_init} type attribute
6913 This attribute may only be applied to structure types. It indicates
6914 that any initialization of an object of this type must use designated
6915 initializers rather than positional initializers. The intent of this
6916 attribute is to allow the programmer to indicate that a structure's
6917 layout may change, and that therefore relying on positional
6918 initialization will result in future breakage.
6919
6920 GCC emits warnings based on this attribute by default; use
6921 @option{-Wno-designated-init} to suppress them.
6922
6923 @item may_alias
6924 @cindex @code{may_alias} type attribute
6925 Accesses through pointers to types with this attribute are not subject
6926 to type-based alias analysis, but are instead assumed to be able to alias
6927 any other type of objects.
6928 In the context of section 6.5 paragraph 7 of the C99 standard,
6929 an lvalue expression
6930 dereferencing such a pointer is treated like having a character type.
6931 See @option{-fstrict-aliasing} for more information on aliasing issues.
6932 This extension exists to support some vector APIs, in which pointers to
6933 one vector type are permitted to alias pointers to a different vector type.
6934
6935 Note that an object of a type with this attribute does not have any
6936 special semantics.
6937
6938 Example of use:
6939
6940 @smallexample
6941 typedef short __attribute__((__may_alias__)) short_a;
6942
6943 int
6944 main (void)
6945 @{
6946 int a = 0x12345678;
6947 short_a *b = (short_a *) &a;
6948
6949 b[1] = 0;
6950
6951 if (a == 0x12345678)
6952 abort();
6953
6954 exit(0);
6955 @}
6956 @end smallexample
6957
6958 @noindent
6959 If you replaced @code{short_a} with @code{short} in the variable
6960 declaration, the above program would abort when compiled with
6961 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
6962 above.
6963
6964 @item packed
6965 @cindex @code{packed} type attribute
6966 This attribute, attached to @code{struct} or @code{union} type
6967 definition, specifies that each member (other than zero-width bit-fields)
6968 of the structure or union is placed to minimize the memory required. When
6969 attached to an @code{enum} definition, it indicates that the smallest
6970 integral type should be used.
6971
6972 @opindex fshort-enums
6973 Specifying the @code{packed} attribute for @code{struct} and @code{union}
6974 types is equivalent to specifying the @code{packed} attribute on each
6975 of the structure or union members. Specifying the @option{-fshort-enums}
6976 flag on the command line is equivalent to specifying the @code{packed}
6977 attribute on all @code{enum} definitions.
6978
6979 In the following example @code{struct my_packed_struct}'s members are
6980 packed closely together, but the internal layout of its @code{s} member
6981 is not packed---to do that, @code{struct my_unpacked_struct} needs to
6982 be packed too.
6983
6984 @smallexample
6985 struct my_unpacked_struct
6986 @{
6987 char c;
6988 int i;
6989 @};
6990
6991 struct __attribute__ ((__packed__)) my_packed_struct
6992 @{
6993 char c;
6994 int i;
6995 struct my_unpacked_struct s;
6996 @};
6997 @end smallexample
6998
6999 You may only specify the @code{packed} attribute attribute on the definition
7000 of an @code{enum}, @code{struct} or @code{union}, not on a @code{typedef}
7001 that does not also define the enumerated type, structure or union.
7002
7003 @item scalar_storage_order ("@var{endianness}")
7004 @cindex @code{scalar_storage_order} type attribute
7005 When attached to a @code{union} or a @code{struct}, this attribute sets
7006 the storage order, aka endianness, of the scalar fields of the type, as
7007 well as the array fields whose component is scalar. The supported
7008 endiannesses are @code{big-endian} and @code{little-endian}. The attribute
7009 has no effects on fields which are themselves a @code{union}, a @code{struct}
7010 or an array whose component is a @code{union} or a @code{struct}, and it is
7011 possible for these fields to have a different scalar storage order than the
7012 enclosing type.
7013
7014 This attribute is supported only for targets that use a uniform default
7015 scalar storage order (fortunately, most of them), i.e. targets that store
7016 the scalars either all in big-endian or all in little-endian.
7017
7018 Additional restrictions are enforced for types with the reverse scalar
7019 storage order with regard to the scalar storage order of the target:
7020
7021 @itemize
7022 @item Taking the address of a scalar field of a @code{union} or a
7023 @code{struct} with reverse scalar storage order is not permitted and yields
7024 an error.
7025 @item Taking the address of an array field, whose component is scalar, of
7026 a @code{union} or a @code{struct} with reverse scalar storage order is
7027 permitted but yields a warning, unless @option{-Wno-scalar-storage-order}
7028 is specified.
7029 @item Taking the address of a @code{union} or a @code{struct} with reverse
7030 scalar storage order is permitted.
7031 @end itemize
7032
7033 These restrictions exist because the storage order attribute is lost when
7034 the address of a scalar or the address of an array with scalar component is
7035 taken, so storing indirectly through this address generally does not work.
7036 The second case is nevertheless allowed to be able to perform a block copy
7037 from or to the array.
7038
7039 Moreover, the use of type punning or aliasing to toggle the storage order
7040 is not supported; that is to say, a given scalar object cannot be accessed
7041 through distinct types that assign a different storage order to it.
7042
7043 @item transparent_union
7044 @cindex @code{transparent_union} type attribute
7045
7046 This attribute, attached to a @code{union} type definition, indicates
7047 that any function parameter having that union type causes calls to that
7048 function to be treated in a special way.
7049
7050 First, the argument corresponding to a transparent union type can be of
7051 any type in the union; no cast is required. Also, if the union contains
7052 a pointer type, the corresponding argument can be a null pointer
7053 constant or a void pointer expression; and if the union contains a void
7054 pointer type, the corresponding argument can be any pointer expression.
7055 If the union member type is a pointer, qualifiers like @code{const} on
7056 the referenced type must be respected, just as with normal pointer
7057 conversions.
7058
7059 Second, the argument is passed to the function using the calling
7060 conventions of the first member of the transparent union, not the calling
7061 conventions of the union itself. All members of the union must have the
7062 same machine representation; this is necessary for this argument passing
7063 to work properly.
7064
7065 Transparent unions are designed for library functions that have multiple
7066 interfaces for compatibility reasons. For example, suppose the
7067 @code{wait} function must accept either a value of type @code{int *} to
7068 comply with POSIX, or a value of type @code{union wait *} to comply with
7069 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
7070 @code{wait} would accept both kinds of arguments, but it would also
7071 accept any other pointer type and this would make argument type checking
7072 less useful. Instead, @code{<sys/wait.h>} might define the interface
7073 as follows:
7074
7075 @smallexample
7076 typedef union __attribute__ ((__transparent_union__))
7077 @{
7078 int *__ip;
7079 union wait *__up;
7080 @} wait_status_ptr_t;
7081
7082 pid_t wait (wait_status_ptr_t);
7083 @end smallexample
7084
7085 @noindent
7086 This interface allows either @code{int *} or @code{union wait *}
7087 arguments to be passed, using the @code{int *} calling convention.
7088 The program can call @code{wait} with arguments of either type:
7089
7090 @smallexample
7091 int w1 () @{ int w; return wait (&w); @}
7092 int w2 () @{ union wait w; return wait (&w); @}
7093 @end smallexample
7094
7095 @noindent
7096 With this interface, @code{wait}'s implementation might look like this:
7097
7098 @smallexample
7099 pid_t wait (wait_status_ptr_t p)
7100 @{
7101 return waitpid (-1, p.__ip, 0);
7102 @}
7103 @end smallexample
7104
7105 @item unused
7106 @cindex @code{unused} type attribute
7107 When attached to a type (including a @code{union} or a @code{struct}),
7108 this attribute means that variables of that type are meant to appear
7109 possibly unused. GCC does not produce a warning for any variables of
7110 that type, even if the variable appears to do nothing. This is often
7111 the case with lock or thread classes, which are usually defined and then
7112 not referenced, but contain constructors and destructors that have
7113 nontrivial bookkeeping functions.
7114
7115 @item visibility
7116 @cindex @code{visibility} type attribute
7117 In C++, attribute visibility (@pxref{Function Attributes}) can also be
7118 applied to class, struct, union and enum types. Unlike other type
7119 attributes, the attribute must appear between the initial keyword and
7120 the name of the type; it cannot appear after the body of the type.
7121
7122 Note that the type visibility is applied to vague linkage entities
7123 associated with the class (vtable, typeinfo node, etc.). In
7124 particular, if a class is thrown as an exception in one shared object
7125 and caught in another, the class must have default visibility.
7126 Otherwise the two shared objects are unable to use the same
7127 typeinfo node and exception handling will break.
7128
7129 @end table
7130
7131 To specify multiple attributes, separate them by commas within the
7132 double parentheses: for example, @samp{__attribute__ ((aligned (16),
7133 packed))}.
7134
7135 @node ARM Type Attributes
7136 @subsection ARM Type Attributes
7137
7138 @cindex @code{notshared} type attribute, ARM
7139 On those ARM targets that support @code{dllimport} (such as Symbian
7140 OS), you can use the @code{notshared} attribute to indicate that the
7141 virtual table and other similar data for a class should not be
7142 exported from a DLL@. For example:
7143
7144 @smallexample
7145 class __declspec(notshared) C @{
7146 public:
7147 __declspec(dllimport) C();
7148 virtual void f();
7149 @}
7150
7151 __declspec(dllexport)
7152 C::C() @{@}
7153 @end smallexample
7154
7155 @noindent
7156 In this code, @code{C::C} is exported from the current DLL, but the
7157 virtual table for @code{C} is not exported. (You can use
7158 @code{__attribute__} instead of @code{__declspec} if you prefer, but
7159 most Symbian OS code uses @code{__declspec}.)
7160
7161 @node MeP Type Attributes
7162 @subsection MeP Type Attributes
7163
7164 @cindex @code{based} type attribute, MeP
7165 @cindex @code{tiny} type attribute, MeP
7166 @cindex @code{near} type attribute, MeP
7167 @cindex @code{far} type attribute, MeP
7168 Many of the MeP variable attributes may be applied to types as well.
7169 Specifically, the @code{based}, @code{tiny}, @code{near}, and
7170 @code{far} attributes may be applied to either. The @code{io} and
7171 @code{cb} attributes may not be applied to types.
7172
7173 @node PowerPC Type Attributes
7174 @subsection PowerPC Type Attributes
7175
7176 Three attributes currently are defined for PowerPC configurations:
7177 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
7178
7179 @cindex @code{ms_struct} type attribute, PowerPC
7180 @cindex @code{gcc_struct} type attribute, PowerPC
7181 For full documentation of the @code{ms_struct} and @code{gcc_struct}
7182 attributes please see the documentation in @ref{x86 Type Attributes}.
7183
7184 @cindex @code{altivec} type attribute, PowerPC
7185 The @code{altivec} attribute allows one to declare AltiVec vector data
7186 types supported by the AltiVec Programming Interface Manual. The
7187 attribute requires an argument to specify one of three vector types:
7188 @code{vector__}, @code{pixel__} (always followed by unsigned short),
7189 and @code{bool__} (always followed by unsigned).
7190
7191 @smallexample
7192 __attribute__((altivec(vector__)))
7193 __attribute__((altivec(pixel__))) unsigned short
7194 __attribute__((altivec(bool__))) unsigned
7195 @end smallexample
7196
7197 These attributes mainly are intended to support the @code{__vector},
7198 @code{__pixel}, and @code{__bool} AltiVec keywords.
7199
7200 @node SPU Type Attributes
7201 @subsection SPU Type Attributes
7202
7203 @cindex @code{spu_vector} type attribute, SPU
7204 The SPU supports the @code{spu_vector} attribute for types. This attribute
7205 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
7206 Language Extensions Specification. It is intended to support the
7207 @code{__vector} keyword.
7208
7209 @node x86 Type Attributes
7210 @subsection x86 Type Attributes
7211
7212 Two attributes are currently defined for x86 configurations:
7213 @code{ms_struct} and @code{gcc_struct}.
7214
7215 @table @code
7216
7217 @item ms_struct
7218 @itemx gcc_struct
7219 @cindex @code{ms_struct} type attribute, x86
7220 @cindex @code{gcc_struct} type attribute, x86
7221
7222 If @code{packed} is used on a structure, or if bit-fields are used
7223 it may be that the Microsoft ABI packs them differently
7224 than GCC normally packs them. Particularly when moving packed
7225 data between functions compiled with GCC and the native Microsoft compiler
7226 (either via function call or as data in a file), it may be necessary to access
7227 either format.
7228
7229 The @code{ms_struct} and @code{gcc_struct} attributes correspond
7230 to the @option{-mms-bitfields} and @option{-mno-ms-bitfields}
7231 command-line options, respectively;
7232 see @ref{x86 Options}, for details of how structure layout is affected.
7233 @xref{x86 Variable Attributes}, for information about the corresponding
7234 attributes on variables.
7235
7236 @end table
7237
7238 @node Label Attributes
7239 @section Label Attributes
7240 @cindex Label Attributes
7241
7242 GCC allows attributes to be set on C labels. @xref{Attribute Syntax}, for
7243 details of the exact syntax for using attributes. Other attributes are
7244 available for functions (@pxref{Function Attributes}), variables
7245 (@pxref{Variable Attributes}), enumerators (@pxref{Enumerator Attributes}),
7246 statements (@pxref{Statement Attributes}), and for types
7247 (@pxref{Type Attributes}).
7248
7249 This example uses the @code{cold} label attribute to indicate the
7250 @code{ErrorHandling} branch is unlikely to be taken and that the
7251 @code{ErrorHandling} label is unused:
7252
7253 @smallexample
7254
7255 asm goto ("some asm" : : : : NoError);
7256
7257 /* This branch (the fall-through from the asm) is less commonly used */
7258 ErrorHandling:
7259 __attribute__((cold, unused)); /* Semi-colon is required here */
7260 printf("error\n");
7261 return 0;
7262
7263 NoError:
7264 printf("no error\n");
7265 return 1;
7266 @end smallexample
7267
7268 @table @code
7269 @item unused
7270 @cindex @code{unused} label attribute
7271 This feature is intended for program-generated code that may contain
7272 unused labels, but which is compiled with @option{-Wall}. It is
7273 not normally appropriate to use in it human-written code, though it
7274 could be useful in cases where the code that jumps to the label is
7275 contained within an @code{#ifdef} conditional.
7276
7277 @item hot
7278 @cindex @code{hot} label attribute
7279 The @code{hot} attribute on a label is used to inform the compiler that
7280 the path following the label is more likely than paths that are not so
7281 annotated. This attribute is used in cases where @code{__builtin_expect}
7282 cannot be used, for instance with computed goto or @code{asm goto}.
7283
7284 @item cold
7285 @cindex @code{cold} label attribute
7286 The @code{cold} attribute on labels is used to inform the compiler that
7287 the path following the label is unlikely to be executed. This attribute
7288 is used in cases where @code{__builtin_expect} cannot be used, for instance
7289 with computed goto or @code{asm goto}.
7290
7291 @end table
7292
7293 @node Enumerator Attributes
7294 @section Enumerator Attributes
7295 @cindex Enumerator Attributes
7296
7297 GCC allows attributes to be set on enumerators. @xref{Attribute Syntax}, for
7298 details of the exact syntax for using attributes. Other attributes are
7299 available for functions (@pxref{Function Attributes}), variables
7300 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), statements
7301 (@pxref{Statement Attributes}), and for types (@pxref{Type Attributes}).
7302
7303 This example uses the @code{deprecated} enumerator attribute to indicate the
7304 @code{oldval} enumerator is deprecated:
7305
7306 @smallexample
7307 enum E @{
7308 oldval __attribute__((deprecated)),
7309 newval
7310 @};
7311
7312 int
7313 fn (void)
7314 @{
7315 return oldval;
7316 @}
7317 @end smallexample
7318
7319 @table @code
7320 @item deprecated
7321 @cindex @code{deprecated} enumerator attribute
7322 The @code{deprecated} attribute results in a warning if the enumerator
7323 is used anywhere in the source file. This is useful when identifying
7324 enumerators that are expected to be removed in a future version of a
7325 program. The warning also includes the location of the declaration
7326 of the deprecated enumerator, to enable users to easily find further
7327 information about why the enumerator is deprecated, or what they should
7328 do instead. Note that the warnings only occurs for uses.
7329
7330 @end table
7331
7332 @node Statement Attributes
7333 @section Statement Attributes
7334 @cindex Statement Attributes
7335
7336 GCC allows attributes to be set on null statements. @xref{Attribute Syntax},
7337 for details of the exact syntax for using attributes. Other attributes are
7338 available for functions (@pxref{Function Attributes}), variables
7339 (@pxref{Variable Attributes}), labels (@pxref{Label Attributes}), enumerators
7340 (@pxref{Enumerator Attributes}), and for types (@pxref{Type Attributes}).
7341
7342 This example uses the @code{fallthrough} statement attribute to indicate that
7343 the @option{-Wimplicit-fallthrough} warning should not be emitted:
7344
7345 @smallexample
7346 switch (cond)
7347 @{
7348 case 1:
7349 bar (1);
7350 __attribute__((fallthrough));
7351 case 2:
7352 @dots{}
7353 @}
7354 @end smallexample
7355
7356 @table @code
7357 @item fallthrough
7358 @cindex @code{fallthrough} statement attribute
7359 The @code{fallthrough} attribute with a null statement serves as a
7360 fallthrough statement. It hints to the compiler that a statement
7361 that falls through to another case label, or user-defined label
7362 in a switch statement is intentional and thus the
7363 @option{-Wimplicit-fallthrough} warning must not trigger. The
7364 fallthrough attribute may appear at most once in each attribute
7365 list, and may not be mixed with other attributes. It can only
7366 be used in a switch statement (the compiler will issue an error
7367 otherwise), after a preceding statement and before a logically
7368 succeeding case label, or user-defined label.
7369
7370 @end table
7371
7372 @node Attribute Syntax
7373 @section Attribute Syntax
7374 @cindex attribute syntax
7375
7376 This section describes the syntax with which @code{__attribute__} may be
7377 used, and the constructs to which attribute specifiers bind, for the C
7378 language. Some details may vary for C++ and Objective-C@. Because of
7379 infelicities in the grammar for attributes, some forms described here
7380 may not be successfully parsed in all cases.
7381
7382 There are some problems with the semantics of attributes in C++. For
7383 example, there are no manglings for attributes, although they may affect
7384 code generation, so problems may arise when attributed types are used in
7385 conjunction with templates or overloading. Similarly, @code{typeid}
7386 does not distinguish between types with different attributes. Support
7387 for attributes in C++ may be restricted in future to attributes on
7388 declarations only, but not on nested declarators.
7389
7390 @xref{Function Attributes}, for details of the semantics of attributes
7391 applying to functions. @xref{Variable Attributes}, for details of the
7392 semantics of attributes applying to variables. @xref{Type Attributes},
7393 for details of the semantics of attributes applying to structure, union
7394 and enumerated types.
7395 @xref{Label Attributes}, for details of the semantics of attributes
7396 applying to labels.
7397 @xref{Enumerator Attributes}, for details of the semantics of attributes
7398 applying to enumerators.
7399 @xref{Statement Attributes}, for details of the semantics of attributes
7400 applying to statements.
7401
7402 An @dfn{attribute specifier} is of the form
7403 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
7404 is a possibly empty comma-separated sequence of @dfn{attributes}, where
7405 each attribute is one of the following:
7406
7407 @itemize @bullet
7408 @item
7409 Empty. Empty attributes are ignored.
7410
7411 @item
7412 An attribute name
7413 (which may be an identifier such as @code{unused}, or a reserved
7414 word such as @code{const}).
7415
7416 @item
7417 An attribute name followed by a parenthesized list of
7418 parameters for the attribute.
7419 These parameters take one of the following forms:
7420
7421 @itemize @bullet
7422 @item
7423 An identifier. For example, @code{mode} attributes use this form.
7424
7425 @item
7426 An identifier followed by a comma and a non-empty comma-separated list
7427 of expressions. For example, @code{format} attributes use this form.
7428
7429 @item
7430 A possibly empty comma-separated list of expressions. For example,
7431 @code{format_arg} attributes use this form with the list being a single
7432 integer constant expression, and @code{alias} attributes use this form
7433 with the list being a single string constant.
7434 @end itemize
7435 @end itemize
7436
7437 An @dfn{attribute specifier list} is a sequence of one or more attribute
7438 specifiers, not separated by any other tokens.
7439
7440 You may optionally specify attribute names with @samp{__}
7441 preceding and following the name.
7442 This allows you to use them in header files without
7443 being concerned about a possible macro of the same name. For example,
7444 you may use the attribute name @code{__noreturn__} instead of @code{noreturn}.
7445
7446
7447 @subsubheading Label Attributes
7448
7449 In GNU C, an attribute specifier list may appear after the colon following a
7450 label, other than a @code{case} or @code{default} label. GNU C++ only permits
7451 attributes on labels if the attribute specifier is immediately
7452 followed by a semicolon (i.e., the label applies to an empty
7453 statement). If the semicolon is missing, C++ label attributes are
7454 ambiguous, as it is permissible for a declaration, which could begin
7455 with an attribute list, to be labelled in C++. Declarations cannot be
7456 labelled in C90 or C99, so the ambiguity does not arise there.
7457
7458 @subsubheading Enumerator Attributes
7459
7460 In GNU C, an attribute specifier list may appear as part of an enumerator.
7461 The attribute goes after the enumeration constant, before @code{=}, if
7462 present. The optional attribute in the enumerator appertains to the
7463 enumeration constant. It is not possible to place the attribute after
7464 the constant expression, if present.
7465
7466 @subsubheading Statement Attributes
7467 In GNU C, an attribute specifier list may appear as part of a null
7468 statement. The attribute goes before the semicolon.
7469
7470 @subsubheading Type Attributes
7471
7472 An attribute specifier list may appear as part of a @code{struct},
7473 @code{union} or @code{enum} specifier. It may go either immediately
7474 after the @code{struct}, @code{union} or @code{enum} keyword, or after
7475 the closing brace. The former syntax is preferred.
7476 Where attribute specifiers follow the closing brace, they are considered
7477 to relate to the structure, union or enumerated type defined, not to any
7478 enclosing declaration the type specifier appears in, and the type
7479 defined is not complete until after the attribute specifiers.
7480 @c Otherwise, there would be the following problems: a shift/reduce
7481 @c conflict between attributes binding the struct/union/enum and
7482 @c binding to the list of specifiers/qualifiers; and "aligned"
7483 @c attributes could use sizeof for the structure, but the size could be
7484 @c changed later by "packed" attributes.
7485
7486
7487 @subsubheading All other attributes
7488
7489 Otherwise, an attribute specifier appears as part of a declaration,
7490 counting declarations of unnamed parameters and type names, and relates
7491 to that declaration (which may be nested in another declaration, for
7492 example in the case of a parameter declaration), or to a particular declarator
7493 within a declaration. Where an
7494 attribute specifier is applied to a parameter declared as a function or
7495 an array, it should apply to the function or array rather than the
7496 pointer to which the parameter is implicitly converted, but this is not
7497 yet correctly implemented.
7498
7499 Any list of specifiers and qualifiers at the start of a declaration may
7500 contain attribute specifiers, whether or not such a list may in that
7501 context contain storage class specifiers. (Some attributes, however,
7502 are essentially in the nature of storage class specifiers, and only make
7503 sense where storage class specifiers may be used; for example,
7504 @code{section}.) There is one necessary limitation to this syntax: the
7505 first old-style parameter declaration in a function definition cannot
7506 begin with an attribute specifier, because such an attribute applies to
7507 the function instead by syntax described below (which, however, is not
7508 yet implemented in this case). In some other cases, attribute
7509 specifiers are permitted by this grammar but not yet supported by the
7510 compiler. All attribute specifiers in this place relate to the
7511 declaration as a whole. In the obsolescent usage where a type of
7512 @code{int} is implied by the absence of type specifiers, such a list of
7513 specifiers and qualifiers may be an attribute specifier list with no
7514 other specifiers or qualifiers.
7515
7516 At present, the first parameter in a function prototype must have some
7517 type specifier that is not an attribute specifier; this resolves an
7518 ambiguity in the interpretation of @code{void f(int
7519 (__attribute__((foo)) x))}, but is subject to change. At present, if
7520 the parentheses of a function declarator contain only attributes then
7521 those attributes are ignored, rather than yielding an error or warning
7522 or implying a single parameter of type int, but this is subject to
7523 change.
7524
7525 An attribute specifier list may appear immediately before a declarator
7526 (other than the first) in a comma-separated list of declarators in a
7527 declaration of more than one identifier using a single list of
7528 specifiers and qualifiers. Such attribute specifiers apply
7529 only to the identifier before whose declarator they appear. For
7530 example, in
7531
7532 @smallexample
7533 __attribute__((noreturn)) void d0 (void),
7534 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
7535 d2 (void);
7536 @end smallexample
7537
7538 @noindent
7539 the @code{noreturn} attribute applies to all the functions
7540 declared; the @code{format} attribute only applies to @code{d1}.
7541
7542 An attribute specifier list may appear immediately before the comma,
7543 @code{=} or semicolon terminating the declaration of an identifier other
7544 than a function definition. Such attribute specifiers apply
7545 to the declared object or function. Where an
7546 assembler name for an object or function is specified (@pxref{Asm
7547 Labels}), the attribute must follow the @code{asm}
7548 specification.
7549
7550 An attribute specifier list may, in future, be permitted to appear after
7551 the declarator in a function definition (before any old-style parameter
7552 declarations or the function body).
7553
7554 Attribute specifiers may be mixed with type qualifiers appearing inside
7555 the @code{[]} of a parameter array declarator, in the C99 construct by
7556 which such qualifiers are applied to the pointer to which the array is
7557 implicitly converted. Such attribute specifiers apply to the pointer,
7558 not to the array, but at present this is not implemented and they are
7559 ignored.
7560
7561 An attribute specifier list may appear at the start of a nested
7562 declarator. At present, there are some limitations in this usage: the
7563 attributes correctly apply to the declarator, but for most individual
7564 attributes the semantics this implies are not implemented.
7565 When attribute specifiers follow the @code{*} of a pointer
7566 declarator, they may be mixed with any type qualifiers present.
7567 The following describes the formal semantics of this syntax. It makes the
7568 most sense if you are familiar with the formal specification of
7569 declarators in the ISO C standard.
7570
7571 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
7572 D1}, where @code{T} contains declaration specifiers that specify a type
7573 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
7574 contains an identifier @var{ident}. The type specified for @var{ident}
7575 for derived declarators whose type does not include an attribute
7576 specifier is as in the ISO C standard.
7577
7578 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
7579 and the declaration @code{T D} specifies the type
7580 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7581 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7582 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
7583
7584 If @code{D1} has the form @code{*
7585 @var{type-qualifier-and-attribute-specifier-list} D}, and the
7586 declaration @code{T D} specifies the type
7587 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
7588 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
7589 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
7590 @var{ident}.
7591
7592 For example,
7593
7594 @smallexample
7595 void (__attribute__((noreturn)) ****f) (void);
7596 @end smallexample
7597
7598 @noindent
7599 specifies the type ``pointer to pointer to pointer to pointer to
7600 non-returning function returning @code{void}''. As another example,
7601
7602 @smallexample
7603 char *__attribute__((aligned(8))) *f;
7604 @end smallexample
7605
7606 @noindent
7607 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
7608 Note again that this does not work with most attributes; for example,
7609 the usage of @samp{aligned} and @samp{noreturn} attributes given above
7610 is not yet supported.
7611
7612 For compatibility with existing code written for compiler versions that
7613 did not implement attributes on nested declarators, some laxity is
7614 allowed in the placing of attributes. If an attribute that only applies
7615 to types is applied to a declaration, it is treated as applying to
7616 the type of that declaration. If an attribute that only applies to
7617 declarations is applied to the type of a declaration, it is treated
7618 as applying to that declaration; and, for compatibility with code
7619 placing the attributes immediately before the identifier declared, such
7620 an attribute applied to a function return type is treated as
7621 applying to the function type, and such an attribute applied to an array
7622 element type is treated as applying to the array type. If an
7623 attribute that only applies to function types is applied to a
7624 pointer-to-function type, it is treated as applying to the pointer
7625 target type; if such an attribute is applied to a function return type
7626 that is not a pointer-to-function type, it is treated as applying
7627 to the function type.
7628
7629 @node Function Prototypes
7630 @section Prototypes and Old-Style Function Definitions
7631 @cindex function prototype declarations
7632 @cindex old-style function definitions
7633 @cindex promotion of formal parameters
7634
7635 GNU C extends ISO C to allow a function prototype to override a later
7636 old-style non-prototype definition. Consider the following example:
7637
7638 @smallexample
7639 /* @r{Use prototypes unless the compiler is old-fashioned.} */
7640 #ifdef __STDC__
7641 #define P(x) x
7642 #else
7643 #define P(x) ()
7644 #endif
7645
7646 /* @r{Prototype function declaration.} */
7647 int isroot P((uid_t));
7648
7649 /* @r{Old-style function definition.} */
7650 int
7651 isroot (x) /* @r{??? lossage here ???} */
7652 uid_t x;
7653 @{
7654 return x == 0;
7655 @}
7656 @end smallexample
7657
7658 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
7659 not allow this example, because subword arguments in old-style
7660 non-prototype definitions are promoted. Therefore in this example the
7661 function definition's argument is really an @code{int}, which does not
7662 match the prototype argument type of @code{short}.
7663
7664 This restriction of ISO C makes it hard to write code that is portable
7665 to traditional C compilers, because the programmer does not know
7666 whether the @code{uid_t} type is @code{short}, @code{int}, or
7667 @code{long}. Therefore, in cases like these GNU C allows a prototype
7668 to override a later old-style definition. More precisely, in GNU C, a
7669 function prototype argument type overrides the argument type specified
7670 by a later old-style definition if the former type is the same as the
7671 latter type before promotion. Thus in GNU C the above example is
7672 equivalent to the following:
7673
7674 @smallexample
7675 int isroot (uid_t);
7676
7677 int
7678 isroot (uid_t x)
7679 @{
7680 return x == 0;
7681 @}
7682 @end smallexample
7683
7684 @noindent
7685 GNU C++ does not support old-style function definitions, so this
7686 extension is irrelevant.
7687
7688 @node C++ Comments
7689 @section C++ Style Comments
7690 @cindex @code{//}
7691 @cindex C++ comments
7692 @cindex comments, C++ style
7693
7694 In GNU C, you may use C++ style comments, which start with @samp{//} and
7695 continue until the end of the line. Many other C implementations allow
7696 such comments, and they are included in the 1999 C standard. However,
7697 C++ style comments are not recognized if you specify an @option{-std}
7698 option specifying a version of ISO C before C99, or @option{-ansi}
7699 (equivalent to @option{-std=c90}).
7700
7701 @node Dollar Signs
7702 @section Dollar Signs in Identifier Names
7703 @cindex $
7704 @cindex dollar signs in identifier names
7705 @cindex identifier names, dollar signs in
7706
7707 In GNU C, you may normally use dollar signs in identifier names.
7708 This is because many traditional C implementations allow such identifiers.
7709 However, dollar signs in identifiers are not supported on a few target
7710 machines, typically because the target assembler does not allow them.
7711
7712 @node Character Escapes
7713 @section The Character @key{ESC} in Constants
7714
7715 You can use the sequence @samp{\e} in a string or character constant to
7716 stand for the ASCII character @key{ESC}.
7717
7718 @node Alignment
7719 @section Inquiring on Alignment of Types or Variables
7720 @cindex alignment
7721 @cindex type alignment
7722 @cindex variable alignment
7723
7724 The keyword @code{__alignof__} allows you to inquire about how an object
7725 is aligned, or the minimum alignment usually required by a type. Its
7726 syntax is just like @code{sizeof}.
7727
7728 For example, if the target machine requires a @code{double} value to be
7729 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
7730 This is true on many RISC machines. On more traditional machine
7731 designs, @code{__alignof__ (double)} is 4 or even 2.
7732
7733 Some machines never actually require alignment; they allow reference to any
7734 data type even at an odd address. For these machines, @code{__alignof__}
7735 reports the smallest alignment that GCC gives the data type, usually as
7736 mandated by the target ABI.
7737
7738 If the operand of @code{__alignof__} is an lvalue rather than a type,
7739 its value is the required alignment for its type, taking into account
7740 any minimum alignment specified with GCC's @code{__attribute__}
7741 extension (@pxref{Variable Attributes}). For example, after this
7742 declaration:
7743
7744 @smallexample
7745 struct foo @{ int x; char y; @} foo1;
7746 @end smallexample
7747
7748 @noindent
7749 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
7750 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
7751
7752 It is an error to ask for the alignment of an incomplete type.
7753
7754
7755 @node Inline
7756 @section An Inline Function is As Fast As a Macro
7757 @cindex inline functions
7758 @cindex integrating function code
7759 @cindex open coding
7760 @cindex macros, inline alternative
7761
7762 By declaring a function inline, you can direct GCC to make
7763 calls to that function faster. One way GCC can achieve this is to
7764 integrate that function's code into the code for its callers. This
7765 makes execution faster by eliminating the function-call overhead; in
7766 addition, if any of the actual argument values are constant, their
7767 known values may permit simplifications at compile time so that not
7768 all of the inline function's code needs to be included. The effect on
7769 code size is less predictable; object code may be larger or smaller
7770 with function inlining, depending on the particular case. You can
7771 also direct GCC to try to integrate all ``simple enough'' functions
7772 into their callers with the option @option{-finline-functions}.
7773
7774 GCC implements three different semantics of declaring a function
7775 inline. One is available with @option{-std=gnu89} or
7776 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
7777 on all inline declarations, another when
7778 @option{-std=c99}, @option{-std=c11},
7779 @option{-std=gnu99} or @option{-std=gnu11}
7780 (without @option{-fgnu89-inline}), and the third
7781 is used when compiling C++.
7782
7783 To declare a function inline, use the @code{inline} keyword in its
7784 declaration, like this:
7785
7786 @smallexample
7787 static inline int
7788 inc (int *a)
7789 @{
7790 return (*a)++;
7791 @}
7792 @end smallexample
7793
7794 If you are writing a header file to be included in ISO C90 programs, write
7795 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
7796
7797 The three types of inlining behave similarly in two important cases:
7798 when the @code{inline} keyword is used on a @code{static} function,
7799 like the example above, and when a function is first declared without
7800 using the @code{inline} keyword and then is defined with
7801 @code{inline}, like this:
7802
7803 @smallexample
7804 extern int inc (int *a);
7805 inline int
7806 inc (int *a)
7807 @{
7808 return (*a)++;
7809 @}
7810 @end smallexample
7811
7812 In both of these common cases, the program behaves the same as if you
7813 had not used the @code{inline} keyword, except for its speed.
7814
7815 @cindex inline functions, omission of
7816 @opindex fkeep-inline-functions
7817 When a function is both inline and @code{static}, if all calls to the
7818 function are integrated into the caller, and the function's address is
7819 never used, then the function's own assembler code is never referenced.
7820 In this case, GCC does not actually output assembler code for the
7821 function, unless you specify the option @option{-fkeep-inline-functions}.
7822 If there is a nonintegrated call, then the function is compiled to
7823 assembler code as usual. The function must also be compiled as usual if
7824 the program refers to its address, because that cannot be inlined.
7825
7826 @opindex Winline
7827 Note that certain usages in a function definition can make it unsuitable
7828 for inline substitution. Among these usages are: variadic functions,
7829 use of @code{alloca}, use of computed goto (@pxref{Labels as Values}),
7830 use of nonlocal goto, use of nested functions, use of @code{setjmp}, use
7831 of @code{__builtin_longjmp} and use of @code{__builtin_return} or
7832 @code{__builtin_apply_args}. Using @option{-Winline} warns when a
7833 function marked @code{inline} could not be substituted, and gives the
7834 reason for the failure.
7835
7836 @cindex automatic @code{inline} for C++ member fns
7837 @cindex @code{inline} automatic for C++ member fns
7838 @cindex member fns, automatically @code{inline}
7839 @cindex C++ member fns, automatically @code{inline}
7840 @opindex fno-default-inline
7841 As required by ISO C++, GCC considers member functions defined within
7842 the body of a class to be marked inline even if they are
7843 not explicitly declared with the @code{inline} keyword. You can
7844 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
7845 Options,,Options Controlling C++ Dialect}.
7846
7847 GCC does not inline any functions when not optimizing unless you specify
7848 the @samp{always_inline} attribute for the function, like this:
7849
7850 @smallexample
7851 /* @r{Prototype.} */
7852 inline void foo (const char) __attribute__((always_inline));
7853 @end smallexample
7854
7855 The remainder of this section is specific to GNU C90 inlining.
7856
7857 @cindex non-static inline function
7858 When an inline function is not @code{static}, then the compiler must assume
7859 that there may be calls from other source files; since a global symbol can
7860 be defined only once in any program, the function must not be defined in
7861 the other source files, so the calls therein cannot be integrated.
7862 Therefore, a non-@code{static} inline function is always compiled on its
7863 own in the usual fashion.
7864
7865 If you specify both @code{inline} and @code{extern} in the function
7866 definition, then the definition is used only for inlining. In no case
7867 is the function compiled on its own, not even if you refer to its
7868 address explicitly. Such an address becomes an external reference, as
7869 if you had only declared the function, and had not defined it.
7870
7871 This combination of @code{inline} and @code{extern} has almost the
7872 effect of a macro. The way to use it is to put a function definition in
7873 a header file with these keywords, and put another copy of the
7874 definition (lacking @code{inline} and @code{extern}) in a library file.
7875 The definition in the header file causes most calls to the function
7876 to be inlined. If any uses of the function remain, they refer to
7877 the single copy in the library.
7878
7879 @node Volatiles
7880 @section When is a Volatile Object Accessed?
7881 @cindex accessing volatiles
7882 @cindex volatile read
7883 @cindex volatile write
7884 @cindex volatile access
7885
7886 C has the concept of volatile objects. These are normally accessed by
7887 pointers and used for accessing hardware or inter-thread
7888 communication. The standard encourages compilers to refrain from
7889 optimizations concerning accesses to volatile objects, but leaves it
7890 implementation defined as to what constitutes a volatile access. The
7891 minimum requirement is that at a sequence point all previous accesses
7892 to volatile objects have stabilized and no subsequent accesses have
7893 occurred. Thus an implementation is free to reorder and combine
7894 volatile accesses that occur between sequence points, but cannot do
7895 so for accesses across a sequence point. The use of volatile does
7896 not allow you to violate the restriction on updating objects multiple
7897 times between two sequence points.
7898
7899 Accesses to non-volatile objects are not ordered with respect to
7900 volatile accesses. You cannot use a volatile object as a memory
7901 barrier to order a sequence of writes to non-volatile memory. For
7902 instance:
7903
7904 @smallexample
7905 int *ptr = @var{something};
7906 volatile int vobj;
7907 *ptr = @var{something};
7908 vobj = 1;
7909 @end smallexample
7910
7911 @noindent
7912 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
7913 that the write to @var{*ptr} occurs by the time the update
7914 of @var{vobj} happens. If you need this guarantee, you must use
7915 a stronger memory barrier such as:
7916
7917 @smallexample
7918 int *ptr = @var{something};
7919 volatile int vobj;
7920 *ptr = @var{something};
7921 asm volatile ("" : : : "memory");
7922 vobj = 1;
7923 @end smallexample
7924
7925 A scalar volatile object is read when it is accessed in a void context:
7926
7927 @smallexample
7928 volatile int *src = @var{somevalue};
7929 *src;
7930 @end smallexample
7931
7932 Such expressions are rvalues, and GCC implements this as a
7933 read of the volatile object being pointed to.
7934
7935 Assignments are also expressions and have an rvalue. However when
7936 assigning to a scalar volatile, the volatile object is not reread,
7937 regardless of whether the assignment expression's rvalue is used or
7938 not. If the assignment's rvalue is used, the value is that assigned
7939 to the volatile object. For instance, there is no read of @var{vobj}
7940 in all the following cases:
7941
7942 @smallexample
7943 int obj;
7944 volatile int vobj;
7945 vobj = @var{something};
7946 obj = vobj = @var{something};
7947 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
7948 obj = (@var{something}, vobj = @var{anotherthing});
7949 @end smallexample
7950
7951 If you need to read the volatile object after an assignment has
7952 occurred, you must use a separate expression with an intervening
7953 sequence point.
7954
7955 As bit-fields are not individually addressable, volatile bit-fields may
7956 be implicitly read when written to, or when adjacent bit-fields are
7957 accessed. Bit-field operations may be optimized such that adjacent
7958 bit-fields are only partially accessed, if they straddle a storage unit
7959 boundary. For these reasons it is unwise to use volatile bit-fields to
7960 access hardware.
7961
7962 @node Using Assembly Language with C
7963 @section How to Use Inline Assembly Language in C Code
7964 @cindex @code{asm} keyword
7965 @cindex assembly language in C
7966 @cindex inline assembly language
7967 @cindex mixing assembly language and C
7968
7969 The @code{asm} keyword allows you to embed assembler instructions
7970 within C code. GCC provides two forms of inline @code{asm}
7971 statements. A @dfn{basic @code{asm}} statement is one with no
7972 operands (@pxref{Basic Asm}), while an @dfn{extended @code{asm}}
7973 statement (@pxref{Extended Asm}) includes one or more operands.
7974 The extended form is preferred for mixing C and assembly language
7975 within a function, but to include assembly language at
7976 top level you must use basic @code{asm}.
7977
7978 You can also use the @code{asm} keyword to override the assembler name
7979 for a C symbol, or to place a C variable in a specific register.
7980
7981 @menu
7982 * Basic Asm:: Inline assembler without operands.
7983 * Extended Asm:: Inline assembler with operands.
7984 * Constraints:: Constraints for @code{asm} operands
7985 * Asm Labels:: Specifying the assembler name to use for a C symbol.
7986 * Explicit Register Variables:: Defining variables residing in specified
7987 registers.
7988 * Size of an asm:: How GCC calculates the size of an @code{asm} block.
7989 @end menu
7990
7991 @node Basic Asm
7992 @subsection Basic Asm --- Assembler Instructions Without Operands
7993 @cindex basic @code{asm}
7994 @cindex assembly language in C, basic
7995
7996 A basic @code{asm} statement has the following syntax:
7997
7998 @example
7999 asm @r{[} volatile @r{]} ( @var{AssemblerInstructions} )
8000 @end example
8001
8002 The @code{asm} keyword is a GNU extension.
8003 When writing code that can be compiled with @option{-ansi} and the
8004 various @option{-std} options, use @code{__asm__} instead of
8005 @code{asm} (@pxref{Alternate Keywords}).
8006
8007 @subsubheading Qualifiers
8008 @table @code
8009 @item volatile
8010 The optional @code{volatile} qualifier has no effect.
8011 All basic @code{asm} blocks are implicitly volatile.
8012 @end table
8013
8014 @subsubheading Parameters
8015 @table @var
8016
8017 @item AssemblerInstructions
8018 This is a literal string that specifies the assembler code. The string can
8019 contain any instructions recognized by the assembler, including directives.
8020 GCC does not parse the assembler instructions themselves and
8021 does not know what they mean or even whether they are valid assembler input.
8022
8023 You may place multiple assembler instructions together in a single @code{asm}
8024 string, separated by the characters normally used in assembly code for the
8025 system. A combination that works in most places is a newline to break the
8026 line, plus a tab character (written as @samp{\n\t}).
8027 Some assemblers allow semicolons as a line separator. However,
8028 note that some assembler dialects use semicolons to start a comment.
8029 @end table
8030
8031 @subsubheading Remarks
8032 Using extended @code{asm} (@pxref{Extended Asm}) typically produces
8033 smaller, safer, and more efficient code, and in most cases it is a
8034 better solution than basic @code{asm}. However, there are two
8035 situations where only basic @code{asm} can be used:
8036
8037 @itemize @bullet
8038 @item
8039 Extended @code{asm} statements have to be inside a C
8040 function, so to write inline assembly language at file scope (``top-level''),
8041 outside of C functions, you must use basic @code{asm}.
8042 You can use this technique to emit assembler directives,
8043 define assembly language macros that can be invoked elsewhere in the file,
8044 or write entire functions in assembly language.
8045
8046 @item
8047 Functions declared
8048 with the @code{naked} attribute also require basic @code{asm}
8049 (@pxref{Function Attributes}).
8050 @end itemize
8051
8052 Safely accessing C data and calling functions from basic @code{asm} is more
8053 complex than it may appear. To access C data, it is better to use extended
8054 @code{asm}.
8055
8056 Do not expect a sequence of @code{asm} statements to remain perfectly
8057 consecutive after compilation. If certain instructions need to remain
8058 consecutive in the output, put them in a single multi-instruction @code{asm}
8059 statement. Note that GCC's optimizers can move @code{asm} statements
8060 relative to other code, including across jumps.
8061
8062 @code{asm} statements may not perform jumps into other @code{asm} statements.
8063 GCC does not know about these jumps, and therefore cannot take
8064 account of them when deciding how to optimize. Jumps from @code{asm} to C
8065 labels are only supported in extended @code{asm}.
8066
8067 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
8068 assembly code when optimizing. This can lead to unexpected duplicate
8069 symbol errors during compilation if your assembly code defines symbols or
8070 labels.
8071
8072 @strong{Warning:} The C standards do not specify semantics for @code{asm},
8073 making it a potential source of incompatibilities between compilers. These
8074 incompatibilities may not produce compiler warnings/errors.
8075
8076 GCC does not parse basic @code{asm}'s @var{AssemblerInstructions}, which
8077 means there is no way to communicate to the compiler what is happening
8078 inside them. GCC has no visibility of symbols in the @code{asm} and may
8079 discard them as unreferenced. It also does not know about side effects of
8080 the assembler code, such as modifications to memory or registers. Unlike
8081 some compilers, GCC assumes that no changes to general purpose registers
8082 occur. This assumption may change in a future release.
8083
8084 To avoid complications from future changes to the semantics and the
8085 compatibility issues between compilers, consider replacing basic @code{asm}
8086 with extended @code{asm}. See
8087 @uref{https://gcc.gnu.org/wiki/ConvertBasicAsmToExtended, How to convert
8088 from basic asm to extended asm} for information about how to perform this
8089 conversion.
8090
8091 The compiler copies the assembler instructions in a basic @code{asm}
8092 verbatim to the assembly language output file, without
8093 processing dialects or any of the @samp{%} operators that are available with
8094 extended @code{asm}. This results in minor differences between basic
8095 @code{asm} strings and extended @code{asm} templates. For example, to refer to
8096 registers you might use @samp{%eax} in basic @code{asm} and
8097 @samp{%%eax} in extended @code{asm}.
8098
8099 On targets such as x86 that support multiple assembler dialects,
8100 all basic @code{asm} blocks use the assembler dialect specified by the
8101 @option{-masm} command-line option (@pxref{x86 Options}).
8102 Basic @code{asm} provides no
8103 mechanism to provide different assembler strings for different dialects.
8104
8105 For basic @code{asm} with non-empty assembler string GCC assumes
8106 the assembler block does not change any general purpose registers,
8107 but it may read or write any globally accessible variable.
8108
8109 Here is an example of basic @code{asm} for i386:
8110
8111 @example
8112 /* Note that this code will not compile with -masm=intel */
8113 #define DebugBreak() asm("int $3")
8114 @end example
8115
8116 @node Extended Asm
8117 @subsection Extended Asm - Assembler Instructions with C Expression Operands
8118 @cindex extended @code{asm}
8119 @cindex assembly language in C, extended
8120
8121 With extended @code{asm} you can read and write C variables from
8122 assembler and perform jumps from assembler code to C labels.
8123 Extended @code{asm} syntax uses colons (@samp{:}) to delimit
8124 the operand parameters after the assembler template:
8125
8126 @example
8127 asm @r{[}volatile@r{]} ( @var{AssemblerTemplate}
8128 : @var{OutputOperands}
8129 @r{[} : @var{InputOperands}
8130 @r{[} : @var{Clobbers} @r{]} @r{]})
8131
8132 asm @r{[}volatile@r{]} goto ( @var{AssemblerTemplate}
8133 :
8134 : @var{InputOperands}
8135 : @var{Clobbers}
8136 : @var{GotoLabels})
8137 @end example
8138
8139 The @code{asm} keyword is a GNU extension.
8140 When writing code that can be compiled with @option{-ansi} and the
8141 various @option{-std} options, use @code{__asm__} instead of
8142 @code{asm} (@pxref{Alternate Keywords}).
8143
8144 @subsubheading Qualifiers
8145 @table @code
8146
8147 @item volatile
8148 The typical use of extended @code{asm} statements is to manipulate input
8149 values to produce output values. However, your @code{asm} statements may
8150 also produce side effects. If so, you may need to use the @code{volatile}
8151 qualifier to disable certain optimizations. @xref{Volatile}.
8152
8153 @item goto
8154 This qualifier informs the compiler that the @code{asm} statement may
8155 perform a jump to one of the labels listed in the @var{GotoLabels}.
8156 @xref{GotoLabels}.
8157 @end table
8158
8159 @subsubheading Parameters
8160 @table @var
8161 @item AssemblerTemplate
8162 This is a literal string that is the template for the assembler code. It is a
8163 combination of fixed text and tokens that refer to the input, output,
8164 and goto parameters. @xref{AssemblerTemplate}.
8165
8166 @item OutputOperands
8167 A comma-separated list of the C variables modified by the instructions in the
8168 @var{AssemblerTemplate}. An empty list is permitted. @xref{OutputOperands}.
8169
8170 @item InputOperands
8171 A comma-separated list of C expressions read by the instructions in the
8172 @var{AssemblerTemplate}. An empty list is permitted. @xref{InputOperands}.
8173
8174 @item Clobbers
8175 A comma-separated list of registers or other values changed by the
8176 @var{AssemblerTemplate}, beyond those listed as outputs.
8177 An empty list is permitted. @xref{Clobbers and Scratch Registers}.
8178
8179 @item GotoLabels
8180 When you are using the @code{goto} form of @code{asm}, this section contains
8181 the list of all C labels to which the code in the
8182 @var{AssemblerTemplate} may jump.
8183 @xref{GotoLabels}.
8184
8185 @code{asm} statements may not perform jumps into other @code{asm} statements,
8186 only to the listed @var{GotoLabels}.
8187 GCC's optimizers do not know about other jumps; therefore they cannot take
8188 account of them when deciding how to optimize.
8189 @end table
8190
8191 The total number of input + output + goto operands is limited to 30.
8192
8193 @subsubheading Remarks
8194 The @code{asm} statement allows you to include assembly instructions directly
8195 within C code. This may help you to maximize performance in time-sensitive
8196 code or to access assembly instructions that are not readily available to C
8197 programs.
8198
8199 Note that extended @code{asm} statements must be inside a function. Only
8200 basic @code{asm} may be outside functions (@pxref{Basic Asm}).
8201 Functions declared with the @code{naked} attribute also require basic
8202 @code{asm} (@pxref{Function Attributes}).
8203
8204 While the uses of @code{asm} are many and varied, it may help to think of an
8205 @code{asm} statement as a series of low-level instructions that convert input
8206 parameters to output parameters. So a simple (if not particularly useful)
8207 example for i386 using @code{asm} might look like this:
8208
8209 @example
8210 int src = 1;
8211 int dst;
8212
8213 asm ("mov %1, %0\n\t"
8214 "add $1, %0"
8215 : "=r" (dst)
8216 : "r" (src));
8217
8218 printf("%d\n", dst);
8219 @end example
8220
8221 This code copies @code{src} to @code{dst} and add 1 to @code{dst}.
8222
8223 @anchor{Volatile}
8224 @subsubsection Volatile
8225 @cindex volatile @code{asm}
8226 @cindex @code{asm} volatile
8227
8228 GCC's optimizers sometimes discard @code{asm} statements if they determine
8229 there is no need for the output variables. Also, the optimizers may move
8230 code out of loops if they believe that the code will always return the same
8231 result (i.e. none of its input values change between calls). Using the
8232 @code{volatile} qualifier disables these optimizations. @code{asm} statements
8233 that have no output operands, including @code{asm goto} statements,
8234 are implicitly volatile.
8235
8236 This i386 code demonstrates a case that does not use (or require) the
8237 @code{volatile} qualifier. If it is performing assertion checking, this code
8238 uses @code{asm} to perform the validation. Otherwise, @code{dwRes} is
8239 unreferenced by any code. As a result, the optimizers can discard the
8240 @code{asm} statement, which in turn removes the need for the entire
8241 @code{DoCheck} routine. By omitting the @code{volatile} qualifier when it
8242 isn't needed you allow the optimizers to produce the most efficient code
8243 possible.
8244
8245 @example
8246 void DoCheck(uint32_t dwSomeValue)
8247 @{
8248 uint32_t dwRes;
8249
8250 // Assumes dwSomeValue is not zero.
8251 asm ("bsfl %1,%0"
8252 : "=r" (dwRes)
8253 : "r" (dwSomeValue)
8254 : "cc");
8255
8256 assert(dwRes > 3);
8257 @}
8258 @end example
8259
8260 The next example shows a case where the optimizers can recognize that the input
8261 (@code{dwSomeValue}) never changes during the execution of the function and can
8262 therefore move the @code{asm} outside the loop to produce more efficient code.
8263 Again, using @code{volatile} disables this type of optimization.
8264
8265 @example
8266 void do_print(uint32_t dwSomeValue)
8267 @{
8268 uint32_t dwRes;
8269
8270 for (uint32_t x=0; x < 5; x++)
8271 @{
8272 // Assumes dwSomeValue is not zero.
8273 asm ("bsfl %1,%0"
8274 : "=r" (dwRes)
8275 : "r" (dwSomeValue)
8276 : "cc");
8277
8278 printf("%u: %u %u\n", x, dwSomeValue, dwRes);
8279 @}
8280 @}
8281 @end example
8282
8283 The following example demonstrates a case where you need to use the
8284 @code{volatile} qualifier.
8285 It uses the x86 @code{rdtsc} instruction, which reads
8286 the computer's time-stamp counter. Without the @code{volatile} qualifier,
8287 the optimizers might assume that the @code{asm} block will always return the
8288 same value and therefore optimize away the second call.
8289
8290 @example
8291 uint64_t msr;
8292
8293 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
8294 "shl $32, %%rdx\n\t" // Shift the upper bits left.
8295 "or %%rdx, %0" // 'Or' in the lower bits.
8296 : "=a" (msr)
8297 :
8298 : "rdx");
8299
8300 printf("msr: %llx\n", msr);
8301
8302 // Do other work...
8303
8304 // Reprint the timestamp
8305 asm volatile ( "rdtsc\n\t" // Returns the time in EDX:EAX.
8306 "shl $32, %%rdx\n\t" // Shift the upper bits left.
8307 "or %%rdx, %0" // 'Or' in the lower bits.
8308 : "=a" (msr)
8309 :
8310 : "rdx");
8311
8312 printf("msr: %llx\n", msr);
8313 @end example
8314
8315 GCC's optimizers do not treat this code like the non-volatile code in the
8316 earlier examples. They do not move it out of loops or omit it on the
8317 assumption that the result from a previous call is still valid.
8318
8319 Note that the compiler can move even volatile @code{asm} instructions relative
8320 to other code, including across jump instructions. For example, on many
8321 targets there is a system register that controls the rounding mode of
8322 floating-point operations. Setting it with a volatile @code{asm}, as in the
8323 following PowerPC example, does not work reliably.
8324
8325 @example
8326 asm volatile("mtfsf 255, %0" : : "f" (fpenv));
8327 sum = x + y;
8328 @end example
8329
8330 The compiler may move the addition back before the volatile @code{asm}. To
8331 make it work as expected, add an artificial dependency to the @code{asm} by
8332 referencing a variable in the subsequent code, for example:
8333
8334 @example
8335 asm volatile ("mtfsf 255,%1" : "=X" (sum) : "f" (fpenv));
8336 sum = x + y;
8337 @end example
8338
8339 Under certain circumstances, GCC may duplicate (or remove duplicates of) your
8340 assembly code when optimizing. This can lead to unexpected duplicate symbol
8341 errors during compilation if your asm code defines symbols or labels.
8342 Using @samp{%=}
8343 (@pxref{AssemblerTemplate}) may help resolve this problem.
8344
8345 @anchor{AssemblerTemplate}
8346 @subsubsection Assembler Template
8347 @cindex @code{asm} assembler template
8348
8349 An assembler template is a literal string containing assembler instructions.
8350 The compiler replaces tokens in the template that refer
8351 to inputs, outputs, and goto labels,
8352 and then outputs the resulting string to the assembler. The
8353 string can contain any instructions recognized by the assembler, including
8354 directives. GCC does not parse the assembler instructions
8355 themselves and does not know what they mean or even whether they are valid
8356 assembler input. However, it does count the statements
8357 (@pxref{Size of an asm}).
8358
8359 You may place multiple assembler instructions together in a single @code{asm}
8360 string, separated by the characters normally used in assembly code for the
8361 system. A combination that works in most places is a newline to break the
8362 line, plus a tab character to move to the instruction field (written as
8363 @samp{\n\t}).
8364 Some assemblers allow semicolons as a line separator. However, note
8365 that some assembler dialects use semicolons to start a comment.
8366
8367 Do not expect a sequence of @code{asm} statements to remain perfectly
8368 consecutive after compilation, even when you are using the @code{volatile}
8369 qualifier. If certain instructions need to remain consecutive in the output,
8370 put them in a single multi-instruction asm statement.
8371
8372 Accessing data from C programs without using input/output operands (such as
8373 by using global symbols directly from the assembler template) may not work as
8374 expected. Similarly, calling functions directly from an assembler template
8375 requires a detailed understanding of the target assembler and ABI.
8376
8377 Since GCC does not parse the assembler template,
8378 it has no visibility of any
8379 symbols it references. This may result in GCC discarding those symbols as
8380 unreferenced unless they are also listed as input, output, or goto operands.
8381
8382 @subsubheading Special format strings
8383
8384 In addition to the tokens described by the input, output, and goto operands,
8385 these tokens have special meanings in the assembler template:
8386
8387 @table @samp
8388 @item %%
8389 Outputs a single @samp{%} into the assembler code.
8390
8391 @item %=
8392 Outputs a number that is unique to each instance of the @code{asm}
8393 statement in the entire compilation. This option is useful when creating local
8394 labels and referring to them multiple times in a single template that
8395 generates multiple assembler instructions.
8396
8397 @item %@{
8398 @itemx %|
8399 @itemx %@}
8400 Outputs @samp{@{}, @samp{|}, and @samp{@}} characters (respectively)
8401 into the assembler code. When unescaped, these characters have special
8402 meaning to indicate multiple assembler dialects, as described below.
8403 @end table
8404
8405 @subsubheading Multiple assembler dialects in @code{asm} templates
8406
8407 On targets such as x86, GCC supports multiple assembler dialects.
8408 The @option{-masm} option controls which dialect GCC uses as its
8409 default for inline assembler. The target-specific documentation for the
8410 @option{-masm} option contains the list of supported dialects, as well as the
8411 default dialect if the option is not specified. This information may be
8412 important to understand, since assembler code that works correctly when
8413 compiled using one dialect will likely fail if compiled using another.
8414 @xref{x86 Options}.
8415
8416 If your code needs to support multiple assembler dialects (for example, if
8417 you are writing public headers that need to support a variety of compilation
8418 options), use constructs of this form:
8419
8420 @example
8421 @{ dialect0 | dialect1 | dialect2... @}
8422 @end example
8423
8424 This construct outputs @code{dialect0}
8425 when using dialect #0 to compile the code,
8426 @code{dialect1} for dialect #1, etc. If there are fewer alternatives within the
8427 braces than the number of dialects the compiler supports, the construct
8428 outputs nothing.
8429
8430 For example, if an x86 compiler supports two dialects
8431 (@samp{att}, @samp{intel}), an
8432 assembler template such as this:
8433
8434 @example
8435 "bt@{l %[Offset],%[Base] | %[Base],%[Offset]@}; jc %l2"
8436 @end example
8437
8438 @noindent
8439 is equivalent to one of
8440
8441 @example
8442 "btl %[Offset],%[Base] ; jc %l2" @r{/* att dialect */}
8443 "bt %[Base],%[Offset]; jc %l2" @r{/* intel dialect */}
8444 @end example
8445
8446 Using that same compiler, this code:
8447
8448 @example
8449 "xchg@{l@}\t@{%%@}ebx, %1"
8450 @end example
8451
8452 @noindent
8453 corresponds to either
8454
8455 @example
8456 "xchgl\t%%ebx, %1" @r{/* att dialect */}
8457 "xchg\tebx, %1" @r{/* intel dialect */}
8458 @end example
8459
8460 There is no support for nesting dialect alternatives.
8461
8462 @anchor{OutputOperands}
8463 @subsubsection Output Operands
8464 @cindex @code{asm} output operands
8465
8466 An @code{asm} statement has zero or more output operands indicating the names
8467 of C variables modified by the assembler code.
8468
8469 In this i386 example, @code{old} (referred to in the template string as
8470 @code{%0}) and @code{*Base} (as @code{%1}) are outputs and @code{Offset}
8471 (@code{%2}) is an input:
8472
8473 @example
8474 bool old;
8475
8476 __asm__ ("btsl %2,%1\n\t" // Turn on zero-based bit #Offset in Base.
8477 "sbb %0,%0" // Use the CF to calculate old.
8478 : "=r" (old), "+rm" (*Base)
8479 : "Ir" (Offset)
8480 : "cc");
8481
8482 return old;
8483 @end example
8484
8485 Operands are separated by commas. Each operand has this format:
8486
8487 @example
8488 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cvariablename})
8489 @end example
8490
8491 @table @var
8492 @item asmSymbolicName
8493 Specifies a symbolic name for the operand.
8494 Reference the name in the assembler template
8495 by enclosing it in square brackets
8496 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8497 that contains the definition. Any valid C variable name is acceptable,
8498 including names already defined in the surrounding code. No two operands
8499 within the same @code{asm} statement can use the same symbolic name.
8500
8501 When not using an @var{asmSymbolicName}, use the (zero-based) position
8502 of the operand
8503 in the list of operands in the assembler template. For example if there are
8504 three output operands, use @samp{%0} in the template to refer to the first,
8505 @samp{%1} for the second, and @samp{%2} for the third.
8506
8507 @item constraint
8508 A string constant specifying constraints on the placement of the operand;
8509 @xref{Constraints}, for details.
8510
8511 Output constraints must begin with either @samp{=} (a variable overwriting an
8512 existing value) or @samp{+} (when reading and writing). When using
8513 @samp{=}, do not assume the location contains the existing value
8514 on entry to the @code{asm}, except
8515 when the operand is tied to an input; @pxref{InputOperands,,Input Operands}.
8516
8517 After the prefix, there must be one or more additional constraints
8518 (@pxref{Constraints}) that describe where the value resides. Common
8519 constraints include @samp{r} for register and @samp{m} for memory.
8520 When you list more than one possible location (for example, @code{"=rm"}),
8521 the compiler chooses the most efficient one based on the current context.
8522 If you list as many alternates as the @code{asm} statement allows, you permit
8523 the optimizers to produce the best possible code.
8524 If you must use a specific register, but your Machine Constraints do not
8525 provide sufficient control to select the specific register you want,
8526 local register variables may provide a solution (@pxref{Local Register
8527 Variables}).
8528
8529 @item cvariablename
8530 Specifies a C lvalue expression to hold the output, typically a variable name.
8531 The enclosing parentheses are a required part of the syntax.
8532
8533 @end table
8534
8535 When the compiler selects the registers to use to
8536 represent the output operands, it does not use any of the clobbered registers
8537 (@pxref{Clobbers and Scratch Registers}).
8538
8539 Output operand expressions must be lvalues. The compiler cannot check whether
8540 the operands have data types that are reasonable for the instruction being
8541 executed. For output expressions that are not directly addressable (for
8542 example a bit-field), the constraint must allow a register. In that case, GCC
8543 uses the register as the output of the @code{asm}, and then stores that
8544 register into the output.
8545
8546 Operands using the @samp{+} constraint modifier count as two operands
8547 (that is, both as input and output) towards the total maximum of 30 operands
8548 per @code{asm} statement.
8549
8550 Use the @samp{&} constraint modifier (@pxref{Modifiers}) on all output
8551 operands that must not overlap an input. Otherwise,
8552 GCC may allocate the output operand in the same register as an unrelated
8553 input operand, on the assumption that the assembler code consumes its
8554 inputs before producing outputs. This assumption may be false if the assembler
8555 code actually consists of more than one instruction.
8556
8557 The same problem can occur if one output parameter (@var{a}) allows a register
8558 constraint and another output parameter (@var{b}) allows a memory constraint.
8559 The code generated by GCC to access the memory address in @var{b} can contain
8560 registers which @emph{might} be shared by @var{a}, and GCC considers those
8561 registers to be inputs to the asm. As above, GCC assumes that such input
8562 registers are consumed before any outputs are written. This assumption may
8563 result in incorrect behavior if the asm writes to @var{a} before using
8564 @var{b}. Combining the @samp{&} modifier with the register constraint on @var{a}
8565 ensures that modifying @var{a} does not affect the address referenced by
8566 @var{b}. Otherwise, the location of @var{b}
8567 is undefined if @var{a} is modified before using @var{b}.
8568
8569 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8570 instead of simply @samp{%2}). Typically these qualifiers are hardware
8571 dependent. The list of supported modifiers for x86 is found at
8572 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8573
8574 If the C code that follows the @code{asm} makes no use of any of the output
8575 operands, use @code{volatile} for the @code{asm} statement to prevent the
8576 optimizers from discarding the @code{asm} statement as unneeded
8577 (see @ref{Volatile}).
8578
8579 This code makes no use of the optional @var{asmSymbolicName}. Therefore it
8580 references the first output operand as @code{%0} (were there a second, it
8581 would be @code{%1}, etc). The number of the first input operand is one greater
8582 than that of the last output operand. In this i386 example, that makes
8583 @code{Mask} referenced as @code{%1}:
8584
8585 @example
8586 uint32_t Mask = 1234;
8587 uint32_t Index;
8588
8589 asm ("bsfl %1, %0"
8590 : "=r" (Index)
8591 : "r" (Mask)
8592 : "cc");
8593 @end example
8594
8595 That code overwrites the variable @code{Index} (@samp{=}),
8596 placing the value in a register (@samp{r}).
8597 Using the generic @samp{r} constraint instead of a constraint for a specific
8598 register allows the compiler to pick the register to use, which can result
8599 in more efficient code. This may not be possible if an assembler instruction
8600 requires a specific register.
8601
8602 The following i386 example uses the @var{asmSymbolicName} syntax.
8603 It produces the
8604 same result as the code above, but some may consider it more readable or more
8605 maintainable since reordering index numbers is not necessary when adding or
8606 removing operands. The names @code{aIndex} and @code{aMask}
8607 are only used in this example to emphasize which
8608 names get used where.
8609 It is acceptable to reuse the names @code{Index} and @code{Mask}.
8610
8611 @example
8612 uint32_t Mask = 1234;
8613 uint32_t Index;
8614
8615 asm ("bsfl %[aMask], %[aIndex]"
8616 : [aIndex] "=r" (Index)
8617 : [aMask] "r" (Mask)
8618 : "cc");
8619 @end example
8620
8621 Here are some more examples of output operands.
8622
8623 @example
8624 uint32_t c = 1;
8625 uint32_t d;
8626 uint32_t *e = &c;
8627
8628 asm ("mov %[e], %[d]"
8629 : [d] "=rm" (d)
8630 : [e] "rm" (*e));
8631 @end example
8632
8633 Here, @code{d} may either be in a register or in memory. Since the compiler
8634 might already have the current value of the @code{uint32_t} location
8635 pointed to by @code{e}
8636 in a register, you can enable it to choose the best location
8637 for @code{d} by specifying both constraints.
8638
8639 @anchor{FlagOutputOperands}
8640 @subsubsection Flag Output Operands
8641 @cindex @code{asm} flag output operands
8642
8643 Some targets have a special register that holds the ``flags'' for the
8644 result of an operation or comparison. Normally, the contents of that
8645 register are either unmodifed by the asm, or the asm is considered to
8646 clobber the contents.
8647
8648 On some targets, a special form of output operand exists by which
8649 conditions in the flags register may be outputs of the asm. The set of
8650 conditions supported are target specific, but the general rule is that
8651 the output variable must be a scalar integer, and the value is boolean.
8652 When supported, the target defines the preprocessor symbol
8653 @code{__GCC_ASM_FLAG_OUTPUTS__}.
8654
8655 Because of the special nature of the flag output operands, the constraint
8656 may not include alternatives.
8657
8658 Most often, the target has only one flags register, and thus is an implied
8659 operand of many instructions. In this case, the operand should not be
8660 referenced within the assembler template via @code{%0} etc, as there's
8661 no corresponding text in the assembly language.
8662
8663 @table @asis
8664 @item x86 family
8665 The flag output constraints for the x86 family are of the form
8666 @samp{=@@cc@var{cond}} where @var{cond} is one of the standard
8667 conditions defined in the ISA manual for @code{j@var{cc}} or
8668 @code{set@var{cc}}.
8669
8670 @table @code
8671 @item a
8672 ``above'' or unsigned greater than
8673 @item ae
8674 ``above or equal'' or unsigned greater than or equal
8675 @item b
8676 ``below'' or unsigned less than
8677 @item be
8678 ``below or equal'' or unsigned less than or equal
8679 @item c
8680 carry flag set
8681 @item e
8682 @itemx z
8683 ``equal'' or zero flag set
8684 @item g
8685 signed greater than
8686 @item ge
8687 signed greater than or equal
8688 @item l
8689 signed less than
8690 @item le
8691 signed less than or equal
8692 @item o
8693 overflow flag set
8694 @item p
8695 parity flag set
8696 @item s
8697 sign flag set
8698 @item na
8699 @itemx nae
8700 @itemx nb
8701 @itemx nbe
8702 @itemx nc
8703 @itemx ne
8704 @itemx ng
8705 @itemx nge
8706 @itemx nl
8707 @itemx nle
8708 @itemx no
8709 @itemx np
8710 @itemx ns
8711 @itemx nz
8712 ``not'' @var{flag}, or inverted versions of those above
8713 @end table
8714
8715 @end table
8716
8717 @anchor{InputOperands}
8718 @subsubsection Input Operands
8719 @cindex @code{asm} input operands
8720 @cindex @code{asm} expressions
8721
8722 Input operands make values from C variables and expressions available to the
8723 assembly code.
8724
8725 Operands are separated by commas. Each operand has this format:
8726
8727 @example
8728 @r{[} [@var{asmSymbolicName}] @r{]} @var{constraint} (@var{cexpression})
8729 @end example
8730
8731 @table @var
8732 @item asmSymbolicName
8733 Specifies a symbolic name for the operand.
8734 Reference the name in the assembler template
8735 by enclosing it in square brackets
8736 (i.e. @samp{%[Value]}). The scope of the name is the @code{asm} statement
8737 that contains the definition. Any valid C variable name is acceptable,
8738 including names already defined in the surrounding code. No two operands
8739 within the same @code{asm} statement can use the same symbolic name.
8740
8741 When not using an @var{asmSymbolicName}, use the (zero-based) position
8742 of the operand
8743 in the list of operands in the assembler template. For example if there are
8744 two output operands and three inputs,
8745 use @samp{%2} in the template to refer to the first input operand,
8746 @samp{%3} for the second, and @samp{%4} for the third.
8747
8748 @item constraint
8749 A string constant specifying constraints on the placement of the operand;
8750 @xref{Constraints}, for details.
8751
8752 Input constraint strings may not begin with either @samp{=} or @samp{+}.
8753 When you list more than one possible location (for example, @samp{"irm"}),
8754 the compiler chooses the most efficient one based on the current context.
8755 If you must use a specific register, but your Machine Constraints do not
8756 provide sufficient control to select the specific register you want,
8757 local register variables may provide a solution (@pxref{Local Register
8758 Variables}).
8759
8760 Input constraints can also be digits (for example, @code{"0"}). This indicates
8761 that the specified input must be in the same place as the output constraint
8762 at the (zero-based) index in the output constraint list.
8763 When using @var{asmSymbolicName} syntax for the output operands,
8764 you may use these names (enclosed in brackets @samp{[]}) instead of digits.
8765
8766 @item cexpression
8767 This is the C variable or expression being passed to the @code{asm} statement
8768 as input. The enclosing parentheses are a required part of the syntax.
8769
8770 @end table
8771
8772 When the compiler selects the registers to use to represent the input
8773 operands, it does not use any of the clobbered registers
8774 (@pxref{Clobbers and Scratch Registers}).
8775
8776 If there are no output operands but there are input operands, place two
8777 consecutive colons where the output operands would go:
8778
8779 @example
8780 __asm__ ("some instructions"
8781 : /* No outputs. */
8782 : "r" (Offset / 8));
8783 @end example
8784
8785 @strong{Warning:} Do @emph{not} modify the contents of input-only operands
8786 (except for inputs tied to outputs). The compiler assumes that on exit from
8787 the @code{asm} statement these operands contain the same values as they
8788 had before executing the statement.
8789 It is @emph{not} possible to use clobbers
8790 to inform the compiler that the values in these inputs are changing. One
8791 common work-around is to tie the changing input variable to an output variable
8792 that never gets used. Note, however, that if the code that follows the
8793 @code{asm} statement makes no use of any of the output operands, the GCC
8794 optimizers may discard the @code{asm} statement as unneeded
8795 (see @ref{Volatile}).
8796
8797 @code{asm} supports operand modifiers on operands (for example @samp{%k2}
8798 instead of simply @samp{%2}). Typically these qualifiers are hardware
8799 dependent. The list of supported modifiers for x86 is found at
8800 @ref{x86Operandmodifiers,x86 Operand modifiers}.
8801
8802 In this example using the fictitious @code{combine} instruction, the
8803 constraint @code{"0"} for input operand 1 says that it must occupy the same
8804 location as output operand 0. Only input operands may use numbers in
8805 constraints, and they must each refer to an output operand. Only a number (or
8806 the symbolic assembler name) in the constraint can guarantee that one operand
8807 is in the same place as another. The mere fact that @code{foo} is the value of
8808 both operands is not enough to guarantee that they are in the same place in
8809 the generated assembler code.
8810
8811 @example
8812 asm ("combine %2, %0"
8813 : "=r" (foo)
8814 : "0" (foo), "g" (bar));
8815 @end example
8816
8817 Here is an example using symbolic names.
8818
8819 @example
8820 asm ("cmoveq %1, %2, %[result]"
8821 : [result] "=r"(result)
8822 : "r" (test), "r" (new), "[result]" (old));
8823 @end example
8824
8825 @anchor{Clobbers and Scratch Registers}
8826 @subsubsection Clobbers and Scratch Registers
8827 @cindex @code{asm} clobbers
8828 @cindex @code{asm} scratch registers
8829
8830 While the compiler is aware of changes to entries listed in the output
8831 operands, the inline @code{asm} code may modify more than just the outputs. For
8832 example, calculations may require additional registers, or the processor may
8833 overwrite a register as a side effect of a particular assembler instruction.
8834 In order to inform the compiler of these changes, list them in the clobber
8835 list. Clobber list items are either register names or the special clobbers
8836 (listed below). Each clobber list item is a string constant
8837 enclosed in double quotes and separated by commas.
8838
8839 Clobber descriptions may not in any way overlap with an input or output
8840 operand. For example, you may not have an operand describing a register class
8841 with one member when listing that register in the clobber list. Variables
8842 declared to live in specific registers (@pxref{Explicit Register
8843 Variables}) and used
8844 as @code{asm} input or output operands must have no part mentioned in the
8845 clobber description. In particular, there is no way to specify that input
8846 operands get modified without also specifying them as output operands.
8847
8848 When the compiler selects which registers to use to represent input and output
8849 operands, it does not use any of the clobbered registers. As a result,
8850 clobbered registers are available for any use in the assembler code.
8851
8852 Here is a realistic example for the VAX showing the use of clobbered
8853 registers:
8854
8855 @example
8856 asm volatile ("movc3 %0, %1, %2"
8857 : /* No outputs. */
8858 : "g" (from), "g" (to), "g" (count)
8859 : "r0", "r1", "r2", "r3", "r4", "r5", "memory");
8860 @end example
8861
8862 Also, there are two special clobber arguments:
8863
8864 @table @code
8865 @item "cc"
8866 The @code{"cc"} clobber indicates that the assembler code modifies the flags
8867 register. On some machines, GCC represents the condition codes as a specific
8868 hardware register; @code{"cc"} serves to name this register.
8869 On other machines, condition code handling is different,
8870 and specifying @code{"cc"} has no effect. But
8871 it is valid no matter what the target.
8872
8873 @item "memory"
8874 The @code{"memory"} clobber tells the compiler that the assembly code
8875 performs memory
8876 reads or writes to items other than those listed in the input and output
8877 operands (for example, accessing the memory pointed to by one of the input
8878 parameters). To ensure memory contains correct values, GCC may need to flush
8879 specific register values to memory before executing the @code{asm}. Further,
8880 the compiler does not assume that any values read from memory before an
8881 @code{asm} remain unchanged after that @code{asm}; it reloads them as
8882 needed.
8883 Using the @code{"memory"} clobber effectively forms a read/write
8884 memory barrier for the compiler.
8885
8886 Note that this clobber does not prevent the @emph{processor} from doing
8887 speculative reads past the @code{asm} statement. To prevent that, you need
8888 processor-specific fence instructions.
8889
8890 @end table
8891
8892 Flushing registers to memory has performance implications and may be
8893 an issue for time-sensitive code. You can provide better information
8894 to GCC to avoid this, as shown in the following examples. At a
8895 minimum, aliasing rules allow GCC to know what memory @emph{doesn't}
8896 need to be flushed.
8897
8898 Here is a fictitious sum of squares instruction, that takes two
8899 pointers to floating point values in memory and produces a floating
8900 point register output.
8901 Notice that @code{x}, and @code{y} both appear twice in the @code{asm}
8902 parameters, once to specify memory accessed, and once to specify a
8903 base register used by the @code{asm}. You won't normally be wasting a
8904 register by doing this as GCC can use the same register for both
8905 purposes. However, it would be foolish to use both @code{%1} and
8906 @code{%3} for @code{x} in this @code{asm} and expect them to be the
8907 same. In fact, @code{%3} may well not be a register. It might be a
8908 symbolic memory reference to the object pointed to by @code{x}.
8909
8910 @smallexample
8911 asm ("sumsq %0, %1, %2"
8912 : "+f" (result)
8913 : "r" (x), "r" (y), "m" (*x), "m" (*y));
8914 @end smallexample
8915
8916 Here is a fictitious @code{*z++ = *x++ * *y++} instruction.
8917 Notice that the @code{x}, @code{y} and @code{z} pointer registers
8918 must be specified as input/output because the @code{asm} modifies
8919 them.
8920
8921 @smallexample
8922 asm ("vecmul %0, %1, %2"
8923 : "+r" (z), "+r" (x), "+r" (y), "=m" (*z)
8924 : "m" (*x), "m" (*y));
8925 @end smallexample
8926
8927 An x86 example where the string memory argument is of unknown length.
8928
8929 @smallexample
8930 asm("repne scasb"
8931 : "=c" (count), "+D" (p)
8932 : "m" (*(const char (*)[]) p), "0" (-1), "a" (0));
8933 @end smallexample
8934
8935 If you know the above will only be reading a ten byte array then you
8936 could instead use a memory input like:
8937 @code{"m" (*(const char (*)[10]) p)}.
8938
8939 Here is an example of a PowerPC vector scale implemented in assembly,
8940 complete with vector and condition code clobbers, and some initialized
8941 offset registers that are unchanged by the @code{asm}.
8942
8943 @smallexample
8944 void
8945 dscal (size_t n, double *x, double alpha)
8946 @{
8947 asm ("/* lots of asm here */"
8948 : "+m" (*(double (*)[n]) x), "+&r" (n), "+b" (x)
8949 : "d" (alpha), "b" (32), "b" (48), "b" (64),
8950 "b" (80), "b" (96), "b" (112)
8951 : "cr0",
8952 "vs32","vs33","vs34","vs35","vs36","vs37","vs38","vs39",
8953 "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47");
8954 @}
8955 @end smallexample
8956
8957 Rather than allocating fixed registers via clobbers to provide scratch
8958 registers for an @code{asm} statement, an alternative is to define a
8959 variable and make it an early-clobber output as with @code{a2} and
8960 @code{a3} in the example below. This gives the compiler register
8961 allocator more freedom. You can also define a variable and make it an
8962 output tied to an input as with @code{a0} and @code{a1}, tied
8963 respectively to @code{ap} and @code{lda}. Of course, with tied
8964 outputs your @code{asm} can't use the input value after modifying the
8965 output register since they are one and the same register. What's
8966 more, if you omit the early-clobber on the output, it is possible that
8967 GCC might allocate the same register to another of the inputs if GCC
8968 could prove they had the same value on entry to the @code{asm}. This
8969 is why @code{a1} has an early-clobber. Its tied input, @code{lda}
8970 might conceivably be known to have the value 16 and without an
8971 early-clobber share the same register as @code{%11}. On the other
8972 hand, @code{ap} can't be the same as any of the other inputs, so an
8973 early-clobber on @code{a0} is not needed. It is also not desirable in
8974 this case. An early-clobber on @code{a0} would cause GCC to allocate
8975 a separate register for the @code{"m" (*(const double (*)[]) ap)}
8976 input. Note that tying an input to an output is the way to set up an
8977 initialized temporary register modified by an @code{asm} statement.
8978 An input not tied to an output is assumed by GCC to be unchanged, for
8979 example @code{"b" (16)} below sets up @code{%11} to 16, and GCC might
8980 use that register in following code if the value 16 happened to be
8981 needed. You can even use a normal @code{asm} output for a scratch if
8982 all inputs that might share the same register are consumed before the
8983 scratch is used. The VSX registers clobbered by the @code{asm}
8984 statement could have used this technique except for GCC's limit on the
8985 number of @code{asm} parameters.
8986
8987 @smallexample
8988 static void
8989 dgemv_kernel_4x4 (long n, const double *ap, long lda,
8990 const double *x, double *y, double alpha)
8991 @{
8992 double *a0;
8993 double *a1;
8994 double *a2;
8995 double *a3;
8996
8997 __asm__
8998 (
8999 /* lots of asm here */
9000 "#n=%1 ap=%8=%12 lda=%13 x=%7=%10 y=%0=%2 alpha=%9 o16=%11\n"
9001 "#a0=%3 a1=%4 a2=%5 a3=%6"
9002 :
9003 "+m" (*(double (*)[n]) y),
9004 "+&r" (n), // 1
9005 "+b" (y), // 2
9006 "=b" (a0), // 3
9007 "=&b" (a1), // 4
9008 "=&b" (a2), // 5
9009 "=&b" (a3) // 6
9010 :
9011 "m" (*(const double (*)[n]) x),
9012 "m" (*(const double (*)[]) ap),
9013 "d" (alpha), // 9
9014 "r" (x), // 10
9015 "b" (16), // 11
9016 "3" (ap), // 12
9017 "4" (lda) // 13
9018 :
9019 "cr0",
9020 "vs32","vs33","vs34","vs35","vs36","vs37",
9021 "vs40","vs41","vs42","vs43","vs44","vs45","vs46","vs47"
9022 );
9023 @}
9024 @end smallexample
9025
9026 @anchor{GotoLabels}
9027 @subsubsection Goto Labels
9028 @cindex @code{asm} goto labels
9029
9030 @code{asm goto} allows assembly code to jump to one or more C labels. The
9031 @var{GotoLabels} section in an @code{asm goto} statement contains
9032 a comma-separated
9033 list of all C labels to which the assembler code may jump. GCC assumes that
9034 @code{asm} execution falls through to the next statement (if this is not the
9035 case, consider using the @code{__builtin_unreachable} intrinsic after the
9036 @code{asm} statement). Optimization of @code{asm goto} may be improved by
9037 using the @code{hot} and @code{cold} label attributes (@pxref{Label
9038 Attributes}).
9039
9040 An @code{asm goto} statement cannot have outputs.
9041 This is due to an internal restriction of
9042 the compiler: control transfer instructions cannot have outputs.
9043 If the assembler code does modify anything, use the @code{"memory"} clobber
9044 to force the
9045 optimizers to flush all register values to memory and reload them if
9046 necessary after the @code{asm} statement.
9047
9048 Also note that an @code{asm goto} statement is always implicitly
9049 considered volatile.
9050
9051 To reference a label in the assembler template,
9052 prefix it with @samp{%l} (lowercase @samp{L}) followed
9053 by its (zero-based) position in @var{GotoLabels} plus the number of input
9054 operands. For example, if the @code{asm} has three inputs and references two
9055 labels, refer to the first label as @samp{%l3} and the second as @samp{%l4}).
9056
9057 Alternately, you can reference labels using the actual C label name enclosed
9058 in brackets. For example, to reference a label named @code{carry}, you can
9059 use @samp{%l[carry]}. The label must still be listed in the @var{GotoLabels}
9060 section when using this approach.
9061
9062 Here is an example of @code{asm goto} for i386:
9063
9064 @example
9065 asm goto (
9066 "btl %1, %0\n\t"
9067 "jc %l2"
9068 : /* No outputs. */
9069 : "r" (p1), "r" (p2)
9070 : "cc"
9071 : carry);
9072
9073 return 0;
9074
9075 carry:
9076 return 1;
9077 @end example
9078
9079 The following example shows an @code{asm goto} that uses a memory clobber.
9080
9081 @example
9082 int frob(int x)
9083 @{
9084 int y;
9085 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
9086 : /* No outputs. */
9087 : "r"(x), "r"(&y)
9088 : "r5", "memory"
9089 : error);
9090 return y;
9091 error:
9092 return -1;
9093 @}
9094 @end example
9095
9096 @anchor{x86Operandmodifiers}
9097 @subsubsection x86 Operand Modifiers
9098
9099 References to input, output, and goto operands in the assembler template
9100 of extended @code{asm} statements can use
9101 modifiers to affect the way the operands are formatted in
9102 the code output to the assembler. For example, the
9103 following code uses the @samp{h} and @samp{b} modifiers for x86:
9104
9105 @example
9106 uint16_t num;
9107 asm volatile ("xchg %h0, %b0" : "+a" (num) );
9108 @end example
9109
9110 @noindent
9111 These modifiers generate this assembler code:
9112
9113 @example
9114 xchg %ah, %al
9115 @end example
9116
9117 The rest of this discussion uses the following code for illustrative purposes.
9118
9119 @example
9120 int main()
9121 @{
9122 int iInt = 1;
9123
9124 top:
9125
9126 asm volatile goto ("some assembler instructions here"
9127 : /* No outputs. */
9128 : "q" (iInt), "X" (sizeof(unsigned char) + 1)
9129 : /* No clobbers. */
9130 : top);
9131 @}
9132 @end example
9133
9134 With no modifiers, this is what the output from the operands would be for the
9135 @samp{att} and @samp{intel} dialects of assembler:
9136
9137 @multitable {Operand} {$.L2} {OFFSET FLAT:.L2}
9138 @headitem Operand @tab @samp{att} @tab @samp{intel}
9139 @item @code{%0}
9140 @tab @code{%eax}
9141 @tab @code{eax}
9142 @item @code{%1}
9143 @tab @code{$2}
9144 @tab @code{2}
9145 @item @code{%2}
9146 @tab @code{$.L2}
9147 @tab @code{OFFSET FLAT:.L2}
9148 @end multitable
9149
9150 The table below shows the list of supported modifiers and their effects.
9151
9152 @multitable {Modifier} {Print the opcode suffix for the size of th} {Operand} {@samp{att}} {@samp{intel}}
9153 @headitem Modifier @tab Description @tab Operand @tab @samp{att} @tab @samp{intel}
9154 @item @code{z}
9155 @tab Print the opcode suffix for the size of the current integer operand (one of @code{b}/@code{w}/@code{l}/@code{q}).
9156 @tab @code{%z0}
9157 @tab @code{l}
9158 @tab
9159 @item @code{b}
9160 @tab Print the QImode name of the register.
9161 @tab @code{%b0}
9162 @tab @code{%al}
9163 @tab @code{al}
9164 @item @code{h}
9165 @tab Print the QImode name for a ``high'' register.
9166 @tab @code{%h0}
9167 @tab @code{%ah}
9168 @tab @code{ah}
9169 @item @code{w}
9170 @tab Print the HImode name of the register.
9171 @tab @code{%w0}
9172 @tab @code{%ax}
9173 @tab @code{ax}
9174 @item @code{k}
9175 @tab Print the SImode name of the register.
9176 @tab @code{%k0}
9177 @tab @code{%eax}
9178 @tab @code{eax}
9179 @item @code{q}
9180 @tab Print the DImode name of the register.
9181 @tab @code{%q0}
9182 @tab @code{%rax}
9183 @tab @code{rax}
9184 @item @code{l}
9185 @tab Print the label name with no punctuation.
9186 @tab @code{%l2}
9187 @tab @code{.L2}
9188 @tab @code{.L2}
9189 @item @code{c}
9190 @tab Require a constant operand and print the constant expression with no punctuation.
9191 @tab @code{%c1}
9192 @tab @code{2}
9193 @tab @code{2}
9194 @end multitable
9195
9196 @anchor{x86floatingpointasmoperands}
9197 @subsubsection x86 Floating-Point @code{asm} Operands
9198
9199 On x86 targets, there are several rules on the usage of stack-like registers
9200 in the operands of an @code{asm}. These rules apply only to the operands
9201 that are stack-like registers:
9202
9203 @enumerate
9204 @item
9205 Given a set of input registers that die in an @code{asm}, it is
9206 necessary to know which are implicitly popped by the @code{asm}, and
9207 which must be explicitly popped by GCC@.
9208
9209 An input register that is implicitly popped by the @code{asm} must be
9210 explicitly clobbered, unless it is constrained to match an
9211 output operand.
9212
9213 @item
9214 For any input register that is implicitly popped by an @code{asm}, it is
9215 necessary to know how to adjust the stack to compensate for the pop.
9216 If any non-popped input is closer to the top of the reg-stack than
9217 the implicitly popped register, it would not be possible to know what the
9218 stack looked like---it's not clear how the rest of the stack ``slides
9219 up''.
9220
9221 All implicitly popped input registers must be closer to the top of
9222 the reg-stack than any input that is not implicitly popped.
9223
9224 It is possible that if an input dies in an @code{asm}, the compiler might
9225 use the input register for an output reload. Consider this example:
9226
9227 @smallexample
9228 asm ("foo" : "=t" (a) : "f" (b));
9229 @end smallexample
9230
9231 @noindent
9232 This code says that input @code{b} is not popped by the @code{asm}, and that
9233 the @code{asm} pushes a result onto the reg-stack, i.e., the stack is one
9234 deeper after the @code{asm} than it was before. But, it is possible that
9235 reload may think that it can use the same register for both the input and
9236 the output.
9237
9238 To prevent this from happening,
9239 if any input operand uses the @samp{f} constraint, all output register
9240 constraints must use the @samp{&} early-clobber modifier.
9241
9242 The example above is correctly written as:
9243
9244 @smallexample
9245 asm ("foo" : "=&t" (a) : "f" (b));
9246 @end smallexample
9247
9248 @item
9249 Some operands need to be in particular places on the stack. All
9250 output operands fall in this category---GCC has no other way to
9251 know which registers the outputs appear in unless you indicate
9252 this in the constraints.
9253
9254 Output operands must specifically indicate which register an output
9255 appears in after an @code{asm}. @samp{=f} is not allowed: the operand
9256 constraints must select a class with a single register.
9257
9258 @item
9259 Output operands may not be ``inserted'' between existing stack registers.
9260 Since no 387 opcode uses a read/write operand, all output operands
9261 are dead before the @code{asm}, and are pushed by the @code{asm}.
9262 It makes no sense to push anywhere but the top of the reg-stack.
9263
9264 Output operands must start at the top of the reg-stack: output
9265 operands may not ``skip'' a register.
9266
9267 @item
9268 Some @code{asm} statements may need extra stack space for internal
9269 calculations. This can be guaranteed by clobbering stack registers
9270 unrelated to the inputs and outputs.
9271
9272 @end enumerate
9273
9274 This @code{asm}
9275 takes one input, which is internally popped, and produces two outputs.
9276
9277 @smallexample
9278 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
9279 @end smallexample
9280
9281 @noindent
9282 This @code{asm} takes two inputs, which are popped by the @code{fyl2xp1} opcode,
9283 and replaces them with one output. The @code{st(1)} clobber is necessary
9284 for the compiler to know that @code{fyl2xp1} pops both inputs.
9285
9286 @smallexample
9287 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
9288 @end smallexample
9289
9290 @lowersections
9291 @include md.texi
9292 @raisesections
9293
9294 @node Asm Labels
9295 @subsection Controlling Names Used in Assembler Code
9296 @cindex assembler names for identifiers
9297 @cindex names used in assembler code
9298 @cindex identifiers, names in assembler code
9299
9300 You can specify the name to be used in the assembler code for a C
9301 function or variable by writing the @code{asm} (or @code{__asm__})
9302 keyword after the declarator.
9303 It is up to you to make sure that the assembler names you choose do not
9304 conflict with any other assembler symbols, or reference registers.
9305
9306 @subsubheading Assembler names for data:
9307
9308 This sample shows how to specify the assembler name for data:
9309
9310 @smallexample
9311 int foo asm ("myfoo") = 2;
9312 @end smallexample
9313
9314 @noindent
9315 This specifies that the name to be used for the variable @code{foo} in
9316 the assembler code should be @samp{myfoo} rather than the usual
9317 @samp{_foo}.
9318
9319 On systems where an underscore is normally prepended to the name of a C
9320 variable, this feature allows you to define names for the
9321 linker that do not start with an underscore.
9322
9323 GCC does not support using this feature with a non-static local variable
9324 since such variables do not have assembler names. If you are
9325 trying to put the variable in a particular register, see
9326 @ref{Explicit Register Variables}.
9327
9328 @subsubheading Assembler names for functions:
9329
9330 To specify the assembler name for functions, write a declaration for the
9331 function before its definition and put @code{asm} there, like this:
9332
9333 @smallexample
9334 int func (int x, int y) asm ("MYFUNC");
9335
9336 int func (int x, int y)
9337 @{
9338 /* @r{@dots{}} */
9339 @end smallexample
9340
9341 @noindent
9342 This specifies that the name to be used for the function @code{func} in
9343 the assembler code should be @code{MYFUNC}.
9344
9345 @node Explicit Register Variables
9346 @subsection Variables in Specified Registers
9347 @anchor{Explicit Reg Vars}
9348 @cindex explicit register variables
9349 @cindex variables in specified registers
9350 @cindex specified registers
9351
9352 GNU C allows you to associate specific hardware registers with C
9353 variables. In almost all cases, allowing the compiler to assign
9354 registers produces the best code. However under certain unusual
9355 circumstances, more precise control over the variable storage is
9356 required.
9357
9358 Both global and local variables can be associated with a register. The
9359 consequences of performing this association are very different between
9360 the two, as explained in the sections below.
9361
9362 @menu
9363 * Global Register Variables:: Variables declared at global scope.
9364 * Local Register Variables:: Variables declared within a function.
9365 @end menu
9366
9367 @node Global Register Variables
9368 @subsubsection Defining Global Register Variables
9369 @anchor{Global Reg Vars}
9370 @cindex global register variables
9371 @cindex registers, global variables in
9372 @cindex registers, global allocation
9373
9374 You can define a global register variable and associate it with a specified
9375 register like this:
9376
9377 @smallexample
9378 register int *foo asm ("r12");
9379 @end smallexample
9380
9381 @noindent
9382 Here @code{r12} is the name of the register that should be used. Note that
9383 this is the same syntax used for defining local register variables, but for
9384 a global variable the declaration appears outside a function. The
9385 @code{register} keyword is required, and cannot be combined with
9386 @code{static}. The register name must be a valid register name for the
9387 target platform.
9388
9389 Registers are a scarce resource on most systems and allowing the
9390 compiler to manage their usage usually results in the best code. However,
9391 under special circumstances it can make sense to reserve some globally.
9392 For example this may be useful in programs such as programming language
9393 interpreters that have a couple of global variables that are accessed
9394 very often.
9395
9396 After defining a global register variable, for the current compilation
9397 unit:
9398
9399 @itemize @bullet
9400 @item The register is reserved entirely for this use, and will not be
9401 allocated for any other purpose.
9402 @item The register is not saved and restored by any functions.
9403 @item Stores into this register are never deleted even if they appear to be
9404 dead, but references may be deleted, moved or simplified.
9405 @end itemize
9406
9407 Note that these points @emph{only} apply to code that is compiled with the
9408 definition. The behavior of code that is merely linked in (for example
9409 code from libraries) is not affected.
9410
9411 If you want to recompile source files that do not actually use your global
9412 register variable so they do not use the specified register for any other
9413 purpose, you need not actually add the global register declaration to
9414 their source code. It suffices to specify the compiler option
9415 @option{-ffixed-@var{reg}} (@pxref{Code Gen Options}) to reserve the
9416 register.
9417
9418 @subsubheading Declaring the variable
9419
9420 Global register variables can not have initial values, because an
9421 executable file has no means to supply initial contents for a register.
9422
9423 When selecting a register, choose one that is normally saved and
9424 restored by function calls on your machine. This ensures that code
9425 which is unaware of this reservation (such as library routines) will
9426 restore it before returning.
9427
9428 On machines with register windows, be sure to choose a global
9429 register that is not affected magically by the function call mechanism.
9430
9431 @subsubheading Using the variable
9432
9433 @cindex @code{qsort}, and global register variables
9434 When calling routines that are not aware of the reservation, be
9435 cautious if those routines call back into code which uses them. As an
9436 example, if you call the system library version of @code{qsort}, it may
9437 clobber your registers during execution, but (if you have selected
9438 appropriate registers) it will restore them before returning. However
9439 it will @emph{not} restore them before calling @code{qsort}'s comparison
9440 function. As a result, global values will not reliably be available to
9441 the comparison function unless the @code{qsort} function itself is rebuilt.
9442
9443 Similarly, it is not safe to access the global register variables from signal
9444 handlers or from more than one thread of control. Unless you recompile
9445 them specially for the task at hand, the system library routines may
9446 temporarily use the register for other things.
9447
9448 @cindex register variable after @code{longjmp}
9449 @cindex global register after @code{longjmp}
9450 @cindex value after @code{longjmp}
9451 @findex longjmp
9452 @findex setjmp
9453 On most machines, @code{longjmp} restores to each global register
9454 variable the value it had at the time of the @code{setjmp}. On some
9455 machines, however, @code{longjmp} does not change the value of global
9456 register variables. To be portable, the function that called @code{setjmp}
9457 should make other arrangements to save the values of the global register
9458 variables, and to restore them in a @code{longjmp}. This way, the same
9459 thing happens regardless of what @code{longjmp} does.
9460
9461 Eventually there may be a way of asking the compiler to choose a register
9462 automatically, but first we need to figure out how it should choose and
9463 how to enable you to guide the choice. No solution is evident.
9464
9465 @node Local Register Variables
9466 @subsubsection Specifying Registers for Local Variables
9467 @anchor{Local Reg Vars}
9468 @cindex local variables, specifying registers
9469 @cindex specifying registers for local variables
9470 @cindex registers for local variables
9471
9472 You can define a local register variable and associate it with a specified
9473 register like this:
9474
9475 @smallexample
9476 register int *foo asm ("r12");
9477 @end smallexample
9478
9479 @noindent
9480 Here @code{r12} is the name of the register that should be used. Note
9481 that this is the same syntax used for defining global register variables,
9482 but for a local variable the declaration appears within a function. The
9483 @code{register} keyword is required, and cannot be combined with
9484 @code{static}. The register name must be a valid register name for the
9485 target platform.
9486
9487 As with global register variables, it is recommended that you choose
9488 a register that is normally saved and restored by function calls on your
9489 machine, so that calls to library routines will not clobber it.
9490
9491 The only supported use for this feature is to specify registers
9492 for input and output operands when calling Extended @code{asm}
9493 (@pxref{Extended Asm}). This may be necessary if the constraints for a
9494 particular machine don't provide sufficient control to select the desired
9495 register. To force an operand into a register, create a local variable
9496 and specify the register name after the variable's declaration. Then use
9497 the local variable for the @code{asm} operand and specify any constraint
9498 letter that matches the register:
9499
9500 @smallexample
9501 register int *p1 asm ("r0") = @dots{};
9502 register int *p2 asm ("r1") = @dots{};
9503 register int *result asm ("r0");
9504 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9505 @end smallexample
9506
9507 @emph{Warning:} In the above example, be aware that a register (for example
9508 @code{r0}) can be call-clobbered by subsequent code, including function
9509 calls and library calls for arithmetic operators on other variables (for
9510 example the initialization of @code{p2}). In this case, use temporary
9511 variables for expressions between the register assignments:
9512
9513 @smallexample
9514 int t1 = @dots{};
9515 register int *p1 asm ("r0") = @dots{};
9516 register int *p2 asm ("r1") = t1;
9517 register int *result asm ("r0");
9518 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
9519 @end smallexample
9520
9521 Defining a register variable does not reserve the register. Other than
9522 when invoking the Extended @code{asm}, the contents of the specified
9523 register are not guaranteed. For this reason, the following uses
9524 are explicitly @emph{not} supported. If they appear to work, it is only
9525 happenstance, and may stop working as intended due to (seemingly)
9526 unrelated changes in surrounding code, or even minor changes in the
9527 optimization of a future version of gcc:
9528
9529 @itemize @bullet
9530 @item Passing parameters to or from Basic @code{asm}
9531 @item Passing parameters to or from Extended @code{asm} without using input
9532 or output operands.
9533 @item Passing parameters to or from routines written in assembler (or
9534 other languages) using non-standard calling conventions.
9535 @end itemize
9536
9537 Some developers use Local Register Variables in an attempt to improve
9538 gcc's allocation of registers, especially in large functions. In this
9539 case the register name is essentially a hint to the register allocator.
9540 While in some instances this can generate better code, improvements are
9541 subject to the whims of the allocator/optimizers. Since there are no
9542 guarantees that your improvements won't be lost, this usage of Local
9543 Register Variables is discouraged.
9544
9545 On the MIPS platform, there is related use for local register variables
9546 with slightly different characteristics (@pxref{MIPS Coprocessors,,
9547 Defining coprocessor specifics for MIPS targets, gccint,
9548 GNU Compiler Collection (GCC) Internals}).
9549
9550 @node Size of an asm
9551 @subsection Size of an @code{asm}
9552
9553 Some targets require that GCC track the size of each instruction used
9554 in order to generate correct code. Because the final length of the
9555 code produced by an @code{asm} statement is only known by the
9556 assembler, GCC must make an estimate as to how big it will be. It
9557 does this by counting the number of instructions in the pattern of the
9558 @code{asm} and multiplying that by the length of the longest
9559 instruction supported by that processor. (When working out the number
9560 of instructions, it assumes that any occurrence of a newline or of
9561 whatever statement separator character is supported by the assembler --
9562 typically @samp{;} --- indicates the end of an instruction.)
9563
9564 Normally, GCC's estimate is adequate to ensure that correct
9565 code is generated, but it is possible to confuse the compiler if you use
9566 pseudo instructions or assembler macros that expand into multiple real
9567 instructions, or if you use assembler directives that expand to more
9568 space in the object file than is needed for a single instruction.
9569 If this happens then the assembler may produce a diagnostic saying that
9570 a label is unreachable.
9571
9572 @node Alternate Keywords
9573 @section Alternate Keywords
9574 @cindex alternate keywords
9575 @cindex keywords, alternate
9576
9577 @option{-ansi} and the various @option{-std} options disable certain
9578 keywords. This causes trouble when you want to use GNU C extensions, or
9579 a general-purpose header file that should be usable by all programs,
9580 including ISO C programs. The keywords @code{asm}, @code{typeof} and
9581 @code{inline} are not available in programs compiled with
9582 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
9583 program compiled with @option{-std=c99} or @option{-std=c11}). The
9584 ISO C99 keyword
9585 @code{restrict} is only available when @option{-std=gnu99} (which will
9586 eventually be the default) or @option{-std=c99} (or the equivalent
9587 @option{-std=iso9899:1999}), or an option for a later standard
9588 version, is used.
9589
9590 The way to solve these problems is to put @samp{__} at the beginning and
9591 end of each problematical keyword. For example, use @code{__asm__}
9592 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
9593
9594 Other C compilers won't accept these alternative keywords; if you want to
9595 compile with another compiler, you can define the alternate keywords as
9596 macros to replace them with the customary keywords. It looks like this:
9597
9598 @smallexample
9599 #ifndef __GNUC__
9600 #define __asm__ asm
9601 #endif
9602 @end smallexample
9603
9604 @findex __extension__
9605 @opindex pedantic
9606 @option{-pedantic} and other options cause warnings for many GNU C extensions.
9607 You can
9608 prevent such warnings within one expression by writing
9609 @code{__extension__} before the expression. @code{__extension__} has no
9610 effect aside from this.
9611
9612 @node Incomplete Enums
9613 @section Incomplete @code{enum} Types
9614
9615 You can define an @code{enum} tag without specifying its possible values.
9616 This results in an incomplete type, much like what you get if you write
9617 @code{struct foo} without describing the elements. A later declaration
9618 that does specify the possible values completes the type.
9619
9620 You cannot allocate variables or storage using the type while it is
9621 incomplete. However, you can work with pointers to that type.
9622
9623 This extension may not be very useful, but it makes the handling of
9624 @code{enum} more consistent with the way @code{struct} and @code{union}
9625 are handled.
9626
9627 This extension is not supported by GNU C++.
9628
9629 @node Function Names
9630 @section Function Names as Strings
9631 @cindex @code{__func__} identifier
9632 @cindex @code{__FUNCTION__} identifier
9633 @cindex @code{__PRETTY_FUNCTION__} identifier
9634
9635 GCC provides three magic constants that hold the name of the current
9636 function as a string. In C++11 and later modes, all three are treated
9637 as constant expressions and can be used in @code{constexpr} constexts.
9638 The first of these constants is @code{__func__}, which is part of
9639 the C99 standard:
9640
9641 The identifier @code{__func__} is implicitly declared by the translator
9642 as if, immediately following the opening brace of each function
9643 definition, the declaration
9644
9645 @smallexample
9646 static const char __func__[] = "function-name";
9647 @end smallexample
9648
9649 @noindent
9650 appeared, where function-name is the name of the lexically-enclosing
9651 function. This name is the unadorned name of the function. As an
9652 extension, at file (or, in C++, namespace scope), @code{__func__}
9653 evaluates to the empty string.
9654
9655 @code{__FUNCTION__} is another name for @code{__func__}, provided for
9656 backward compatibility with old versions of GCC.
9657
9658 In C, @code{__PRETTY_FUNCTION__} is yet another name for
9659 @code{__func__}, except that at file (or, in C++, namespace scope),
9660 it evaluates to the string @code{"top level"}. In addition, in C++,
9661 @code{__PRETTY_FUNCTION__} contains the signature of the function as
9662 well as its bare name. For example, this program:
9663
9664 @smallexample
9665 extern "C" int printf (const char *, ...);
9666
9667 class a @{
9668 public:
9669 void sub (int i)
9670 @{
9671 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
9672 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
9673 @}
9674 @};
9675
9676 int
9677 main (void)
9678 @{
9679 a ax;
9680 ax.sub (0);
9681 return 0;
9682 @}
9683 @end smallexample
9684
9685 @noindent
9686 gives this output:
9687
9688 @smallexample
9689 __FUNCTION__ = sub
9690 __PRETTY_FUNCTION__ = void a::sub(int)
9691 @end smallexample
9692
9693 These identifiers are variables, not preprocessor macros, and may not
9694 be used to initialize @code{char} arrays or be concatenated with string
9695 literals.
9696
9697 @node Return Address
9698 @section Getting the Return or Frame Address of a Function
9699
9700 These functions may be used to get information about the callers of a
9701 function.
9702
9703 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
9704 This function returns the return address of the current function, or of
9705 one of its callers. The @var{level} argument is number of frames to
9706 scan up the call stack. A value of @code{0} yields the return address
9707 of the current function, a value of @code{1} yields the return address
9708 of the caller of the current function, and so forth. When inlining
9709 the expected behavior is that the function returns the address of
9710 the function that is returned to. To work around this behavior use
9711 the @code{noinline} function attribute.
9712
9713 The @var{level} argument must be a constant integer.
9714
9715 On some machines it may be impossible to determine the return address of
9716 any function other than the current one; in such cases, or when the top
9717 of the stack has been reached, this function returns @code{0} or a
9718 random value. In addition, @code{__builtin_frame_address} may be used
9719 to determine if the top of the stack has been reached.
9720
9721 Additional post-processing of the returned value may be needed, see
9722 @code{__builtin_extract_return_addr}.
9723
9724 Calling this function with a nonzero argument can have unpredictable
9725 effects, including crashing the calling program. As a result, calls
9726 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9727 option is in effect. Such calls should only be made in debugging
9728 situations.
9729 @end deftypefn
9730
9731 @deftypefn {Built-in Function} {void *} __builtin_extract_return_addr (void *@var{addr})
9732 The address as returned by @code{__builtin_return_address} may have to be fed
9733 through this function to get the actual encoded address. For example, on the
9734 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
9735 platforms an offset has to be added for the true next instruction to be
9736 executed.
9737
9738 If no fixup is needed, this function simply passes through @var{addr}.
9739 @end deftypefn
9740
9741 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
9742 This function does the reverse of @code{__builtin_extract_return_addr}.
9743 @end deftypefn
9744
9745 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
9746 This function is similar to @code{__builtin_return_address}, but it
9747 returns the address of the function frame rather than the return address
9748 of the function. Calling @code{__builtin_frame_address} with a value of
9749 @code{0} yields the frame address of the current function, a value of
9750 @code{1} yields the frame address of the caller of the current function,
9751 and so forth.
9752
9753 The frame is the area on the stack that holds local variables and saved
9754 registers. The frame address is normally the address of the first word
9755 pushed on to the stack by the function. However, the exact definition
9756 depends upon the processor and the calling convention. If the processor
9757 has a dedicated frame pointer register, and the function has a frame,
9758 then @code{__builtin_frame_address} returns the value of the frame
9759 pointer register.
9760
9761 On some machines it may be impossible to determine the frame address of
9762 any function other than the current one; in such cases, or when the top
9763 of the stack has been reached, this function returns @code{0} if
9764 the first frame pointer is properly initialized by the startup code.
9765
9766 Calling this function with a nonzero argument can have unpredictable
9767 effects, including crashing the calling program. As a result, calls
9768 that are considered unsafe are diagnosed when the @option{-Wframe-address}
9769 option is in effect. Such calls should only be made in debugging
9770 situations.
9771 @end deftypefn
9772
9773 @node Vector Extensions
9774 @section Using Vector Instructions through Built-in Functions
9775
9776 On some targets, the instruction set contains SIMD vector instructions which
9777 operate on multiple values contained in one large register at the same time.
9778 For example, on the x86 the MMX, 3DNow!@: and SSE extensions can be used
9779 this way.
9780
9781 The first step in using these extensions is to provide the necessary data
9782 types. This should be done using an appropriate @code{typedef}:
9783
9784 @smallexample
9785 typedef int v4si __attribute__ ((vector_size (16)));
9786 @end smallexample
9787
9788 @noindent
9789 The @code{int} type specifies the base type, while the attribute specifies
9790 the vector size for the variable, measured in bytes. For example, the
9791 declaration above causes the compiler to set the mode for the @code{v4si}
9792 type to be 16 bytes wide and divided into @code{int} sized units. For
9793 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
9794 corresponding mode of @code{foo} is @acronym{V4SI}.
9795
9796 The @code{vector_size} attribute is only applicable to integral and
9797 float scalars, although arrays, pointers, and function return values
9798 are allowed in conjunction with this construct. Only sizes that are
9799 a power of two are currently allowed.
9800
9801 All the basic integer types can be used as base types, both as signed
9802 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
9803 @code{long long}. In addition, @code{float} and @code{double} can be
9804 used to build floating-point vector types.
9805
9806 Specifying a combination that is not valid for the current architecture
9807 causes GCC to synthesize the instructions using a narrower mode.
9808 For example, if you specify a variable of type @code{V4SI} and your
9809 architecture does not allow for this specific SIMD type, GCC
9810 produces code that uses 4 @code{SIs}.
9811
9812 The types defined in this manner can be used with a subset of normal C
9813 operations. Currently, GCC allows using the following operators
9814 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
9815
9816 The operations behave like C++ @code{valarrays}. Addition is defined as
9817 the addition of the corresponding elements of the operands. For
9818 example, in the code below, each of the 4 elements in @var{a} is
9819 added to the corresponding 4 elements in @var{b} and the resulting
9820 vector is stored in @var{c}.
9821
9822 @smallexample
9823 typedef int v4si __attribute__ ((vector_size (16)));
9824
9825 v4si a, b, c;
9826
9827 c = a + b;
9828 @end smallexample
9829
9830 Subtraction, multiplication, division, and the logical operations
9831 operate in a similar manner. Likewise, the result of using the unary
9832 minus or complement operators on a vector type is a vector whose
9833 elements are the negative or complemented values of the corresponding
9834 elements in the operand.
9835
9836 It is possible to use shifting operators @code{<<}, @code{>>} on
9837 integer-type vectors. The operation is defined as following: @code{@{a0,
9838 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
9839 @dots{}, an >> bn@}}@. Vector operands must have the same number of
9840 elements.
9841
9842 For convenience, it is allowed to use a binary vector operation
9843 where one operand is a scalar. In that case the compiler transforms
9844 the scalar operand into a vector where each element is the scalar from
9845 the operation. The transformation happens only if the scalar could be
9846 safely converted to the vector-element type.
9847 Consider the following code.
9848
9849 @smallexample
9850 typedef int v4si __attribute__ ((vector_size (16)));
9851
9852 v4si a, b, c;
9853 long l;
9854
9855 a = b + 1; /* a = b + @{1,1,1,1@}; */
9856 a = 2 * b; /* a = @{2,2,2,2@} * b; */
9857
9858 a = l + a; /* Error, cannot convert long to int. */
9859 @end smallexample
9860
9861 Vectors can be subscripted as if the vector were an array with
9862 the same number of elements and base type. Out of bound accesses
9863 invoke undefined behavior at run time. Warnings for out of bound
9864 accesses for vector subscription can be enabled with
9865 @option{-Warray-bounds}.
9866
9867 Vector comparison is supported with standard comparison
9868 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
9869 vector expressions of integer-type or real-type. Comparison between
9870 integer-type vectors and real-type vectors are not supported. The
9871 result of the comparison is a vector of the same width and number of
9872 elements as the comparison operands with a signed integral element
9873 type.
9874
9875 Vectors are compared element-wise producing 0 when comparison is false
9876 and -1 (constant of the appropriate type where all bits are set)
9877 otherwise. Consider the following example.
9878
9879 @smallexample
9880 typedef int v4si __attribute__ ((vector_size (16)));
9881
9882 v4si a = @{1,2,3,4@};
9883 v4si b = @{3,2,1,4@};
9884 v4si c;
9885
9886 c = a > b; /* The result would be @{0, 0,-1, 0@} */
9887 c = a == b; /* The result would be @{0,-1, 0,-1@} */
9888 @end smallexample
9889
9890 In C++, the ternary operator @code{?:} is available. @code{a?b:c}, where
9891 @code{b} and @code{c} are vectors of the same type and @code{a} is an
9892 integer vector with the same number of elements of the same size as @code{b}
9893 and @code{c}, computes all three arguments and creates a vector
9894 @code{@{a[0]?b[0]:c[0], a[1]?b[1]:c[1], @dots{}@}}. Note that unlike in
9895 OpenCL, @code{a} is thus interpreted as @code{a != 0} and not @code{a < 0}.
9896 As in the case of binary operations, this syntax is also accepted when
9897 one of @code{b} or @code{c} is a scalar that is then transformed into a
9898 vector. If both @code{b} and @code{c} are scalars and the type of
9899 @code{true?b:c} has the same size as the element type of @code{a}, then
9900 @code{b} and @code{c} are converted to a vector type whose elements have
9901 this type and with the same number of elements as @code{a}.
9902
9903 In C++, the logic operators @code{!, &&, ||} are available for vectors.
9904 @code{!v} is equivalent to @code{v == 0}, @code{a && b} is equivalent to
9905 @code{a!=0 & b!=0} and @code{a || b} is equivalent to @code{a!=0 | b!=0}.
9906 For mixed operations between a scalar @code{s} and a vector @code{v},
9907 @code{s && v} is equivalent to @code{s?v!=0:0} (the evaluation is
9908 short-circuit) and @code{v && s} is equivalent to @code{v!=0 & (s?-1:0)}.
9909
9910 @findex __builtin_shuffle
9911 Vector shuffling is available using functions
9912 @code{__builtin_shuffle (vec, mask)} and
9913 @code{__builtin_shuffle (vec0, vec1, mask)}.
9914 Both functions construct a permutation of elements from one or two
9915 vectors and return a vector of the same type as the input vector(s).
9916 The @var{mask} is an integral vector with the same width (@var{W})
9917 and element count (@var{N}) as the output vector.
9918
9919 The elements of the input vectors are numbered in memory ordering of
9920 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
9921 elements of @var{mask} are considered modulo @var{N} in the single-operand
9922 case and modulo @math{2*@var{N}} in the two-operand case.
9923
9924 Consider the following example,
9925
9926 @smallexample
9927 typedef int v4si __attribute__ ((vector_size (16)));
9928
9929 v4si a = @{1,2,3,4@};
9930 v4si b = @{5,6,7,8@};
9931 v4si mask1 = @{0,1,1,3@};
9932 v4si mask2 = @{0,4,2,5@};
9933 v4si res;
9934
9935 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
9936 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
9937 @end smallexample
9938
9939 Note that @code{__builtin_shuffle} is intentionally semantically
9940 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
9941
9942 You can declare variables and use them in function calls and returns, as
9943 well as in assignments and some casts. You can specify a vector type as
9944 a return type for a function. Vector types can also be used as function
9945 arguments. It is possible to cast from one vector type to another,
9946 provided they are of the same size (in fact, you can also cast vectors
9947 to and from other datatypes of the same size).
9948
9949 You cannot operate between vectors of different lengths or different
9950 signedness without a cast.
9951
9952 @node Offsetof
9953 @section Support for @code{offsetof}
9954 @findex __builtin_offsetof
9955
9956 GCC implements for both C and C++ a syntactic extension to implement
9957 the @code{offsetof} macro.
9958
9959 @smallexample
9960 primary:
9961 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
9962
9963 offsetof_member_designator:
9964 @code{identifier}
9965 | offsetof_member_designator "." @code{identifier}
9966 | offsetof_member_designator "[" @code{expr} "]"
9967 @end smallexample
9968
9969 This extension is sufficient such that
9970
9971 @smallexample
9972 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
9973 @end smallexample
9974
9975 @noindent
9976 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
9977 may be dependent. In either case, @var{member} may consist of a single
9978 identifier, or a sequence of member accesses and array references.
9979
9980 @node __sync Builtins
9981 @section Legacy @code{__sync} Built-in Functions for Atomic Memory Access
9982
9983 The following built-in functions
9984 are intended to be compatible with those described
9985 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
9986 section 7.4. As such, they depart from normal GCC practice by not using
9987 the @samp{__builtin_} prefix and also by being overloaded so that they
9988 work on multiple types.
9989
9990 The definition given in the Intel documentation allows only for the use of
9991 the types @code{int}, @code{long}, @code{long long} or their unsigned
9992 counterparts. GCC allows any scalar type that is 1, 2, 4 or 8 bytes in
9993 size other than the C type @code{_Bool} or the C++ type @code{bool}.
9994 Operations on pointer arguments are performed as if the operands were
9995 of the @code{uintptr_t} type. That is, they are not scaled by the size
9996 of the type to which the pointer points.
9997
9998 These functions are implemented in terms of the @samp{__atomic}
9999 builtins (@pxref{__atomic Builtins}). They should not be used for new
10000 code which should use the @samp{__atomic} builtins instead.
10001
10002 Not all operations are supported by all target processors. If a particular
10003 operation cannot be implemented on the target processor, a warning is
10004 generated and a call to an external function is generated. The external
10005 function carries the same name as the built-in version,
10006 with an additional suffix
10007 @samp{_@var{n}} where @var{n} is the size of the data type.
10008
10009 @c ??? Should we have a mechanism to suppress this warning? This is almost
10010 @c useful for implementing the operation under the control of an external
10011 @c mutex.
10012
10013 In most cases, these built-in functions are considered a @dfn{full barrier}.
10014 That is,
10015 no memory operand is moved across the operation, either forward or
10016 backward. Further, instructions are issued as necessary to prevent the
10017 processor from speculating loads across the operation and from queuing stores
10018 after the operation.
10019
10020 All of the routines are described in the Intel documentation to take
10021 ``an optional list of variables protected by the memory barrier''. It's
10022 not clear what is meant by that; it could mean that @emph{only} the
10023 listed variables are protected, or it could mean a list of additional
10024 variables to be protected. The list is ignored by GCC which treats it as
10025 empty. GCC interprets an empty list as meaning that all globally
10026 accessible variables should be protected.
10027
10028 @table @code
10029 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
10030 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
10031 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
10032 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
10033 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
10034 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
10035 @findex __sync_fetch_and_add
10036 @findex __sync_fetch_and_sub
10037 @findex __sync_fetch_and_or
10038 @findex __sync_fetch_and_and
10039 @findex __sync_fetch_and_xor
10040 @findex __sync_fetch_and_nand
10041 These built-in functions perform the operation suggested by the name, and
10042 returns the value that had previously been in memory. That is, operations
10043 on integer operands have the following semantics. Operations on pointer
10044 arguments are performed as if the operands were of the @code{uintptr_t}
10045 type. That is, they are not scaled by the size of the type to which
10046 the pointer points.
10047
10048 @smallexample
10049 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
10050 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
10051 @end smallexample
10052
10053 The object pointed to by the first argument must be of integer or pointer
10054 type. It must not be a boolean type.
10055
10056 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
10057 as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
10058
10059 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
10060 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
10061 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
10062 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
10063 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
10064 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
10065 @findex __sync_add_and_fetch
10066 @findex __sync_sub_and_fetch
10067 @findex __sync_or_and_fetch
10068 @findex __sync_and_and_fetch
10069 @findex __sync_xor_and_fetch
10070 @findex __sync_nand_and_fetch
10071 These built-in functions perform the operation suggested by the name, and
10072 return the new value. That is, operations on integer operands have
10073 the following semantics. Operations on pointer operands are performed as
10074 if the operand's type were @code{uintptr_t}.
10075
10076 @smallexample
10077 @{ *ptr @var{op}= value; return *ptr; @}
10078 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
10079 @end smallexample
10080
10081 The same constraints on arguments apply as for the corresponding
10082 @code{__sync_op_and_fetch} built-in functions.
10083
10084 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
10085 as @code{*ptr = ~(*ptr & value)} instead of
10086 @code{*ptr = ~*ptr & value}.
10087
10088 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
10089 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
10090 @findex __sync_bool_compare_and_swap
10091 @findex __sync_val_compare_and_swap
10092 These built-in functions perform an atomic compare and swap.
10093 That is, if the current
10094 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
10095 @code{*@var{ptr}}.
10096
10097 The ``bool'' version returns true if the comparison is successful and
10098 @var{newval} is written. The ``val'' version returns the contents
10099 of @code{*@var{ptr}} before the operation.
10100
10101 @item __sync_synchronize (...)
10102 @findex __sync_synchronize
10103 This built-in function issues a full memory barrier.
10104
10105 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
10106 @findex __sync_lock_test_and_set
10107 This built-in function, as described by Intel, is not a traditional test-and-set
10108 operation, but rather an atomic exchange operation. It writes @var{value}
10109 into @code{*@var{ptr}}, and returns the previous contents of
10110 @code{*@var{ptr}}.
10111
10112 Many targets have only minimal support for such locks, and do not support
10113 a full exchange operation. In this case, a target may support reduced
10114 functionality here by which the @emph{only} valid value to store is the
10115 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
10116 is implementation defined.
10117
10118 This built-in function is not a full barrier,
10119 but rather an @dfn{acquire barrier}.
10120 This means that references after the operation cannot move to (or be
10121 speculated to) before the operation, but previous memory stores may not
10122 be globally visible yet, and previous memory loads may not yet be
10123 satisfied.
10124
10125 @item void __sync_lock_release (@var{type} *ptr, ...)
10126 @findex __sync_lock_release
10127 This built-in function releases the lock acquired by
10128 @code{__sync_lock_test_and_set}.
10129 Normally this means writing the constant 0 to @code{*@var{ptr}}.
10130
10131 This built-in function is not a full barrier,
10132 but rather a @dfn{release barrier}.
10133 This means that all previous memory stores are globally visible, and all
10134 previous memory loads have been satisfied, but following memory reads
10135 are not prevented from being speculated to before the barrier.
10136 @end table
10137
10138 @node __atomic Builtins
10139 @section Built-in Functions for Memory Model Aware Atomic Operations
10140
10141 The following built-in functions approximately match the requirements
10142 for the C++11 memory model. They are all
10143 identified by being prefixed with @samp{__atomic} and most are
10144 overloaded so that they work with multiple types.
10145
10146 These functions are intended to replace the legacy @samp{__sync}
10147 builtins. The main difference is that the memory order that is requested
10148 is a parameter to the functions. New code should always use the
10149 @samp{__atomic} builtins rather than the @samp{__sync} builtins.
10150
10151 Note that the @samp{__atomic} builtins assume that programs will
10152 conform to the C++11 memory model. In particular, they assume
10153 that programs are free of data races. See the C++11 standard for
10154 detailed requirements.
10155
10156 The @samp{__atomic} builtins can be used with any integral scalar or
10157 pointer type that is 1, 2, 4, or 8 bytes in length. 16-byte integral
10158 types are also allowed if @samp{__int128} (@pxref{__int128}) is
10159 supported by the architecture.
10160
10161 The four non-arithmetic functions (load, store, exchange, and
10162 compare_exchange) all have a generic version as well. This generic
10163 version works on any data type. It uses the lock-free built-in function
10164 if the specific data type size makes that possible; otherwise, an
10165 external call is left to be resolved at run time. This external call is
10166 the same format with the addition of a @samp{size_t} parameter inserted
10167 as the first parameter indicating the size of the object being pointed to.
10168 All objects must be the same size.
10169
10170 There are 6 different memory orders that can be specified. These map
10171 to the C++11 memory orders with the same names, see the C++11 standard
10172 or the @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki
10173 on atomic synchronization} for detailed definitions. Individual
10174 targets may also support additional memory orders for use on specific
10175 architectures. Refer to the target documentation for details of
10176 these.
10177
10178 An atomic operation can both constrain code motion and
10179 be mapped to hardware instructions for synchronization between threads
10180 (e.g., a fence). To which extent this happens is controlled by the
10181 memory orders, which are listed here in approximately ascending order of
10182 strength. The description of each memory order is only meant to roughly
10183 illustrate the effects and is not a specification; see the C++11
10184 memory model for precise semantics.
10185
10186 @table @code
10187 @item __ATOMIC_RELAXED
10188 Implies no inter-thread ordering constraints.
10189 @item __ATOMIC_CONSUME
10190 This is currently implemented using the stronger @code{__ATOMIC_ACQUIRE}
10191 memory order because of a deficiency in C++11's semantics for
10192 @code{memory_order_consume}.
10193 @item __ATOMIC_ACQUIRE
10194 Creates an inter-thread happens-before constraint from the release (or
10195 stronger) semantic store to this acquire load. Can prevent hoisting
10196 of code to before the operation.
10197 @item __ATOMIC_RELEASE
10198 Creates an inter-thread happens-before constraint to acquire (or stronger)
10199 semantic loads that read from this release store. Can prevent sinking
10200 of code to after the operation.
10201 @item __ATOMIC_ACQ_REL
10202 Combines the effects of both @code{__ATOMIC_ACQUIRE} and
10203 @code{__ATOMIC_RELEASE}.
10204 @item __ATOMIC_SEQ_CST
10205 Enforces total ordering with all other @code{__ATOMIC_SEQ_CST} operations.
10206 @end table
10207
10208 Note that in the C++11 memory model, @emph{fences} (e.g.,
10209 @samp{__atomic_thread_fence}) take effect in combination with other
10210 atomic operations on specific memory locations (e.g., atomic loads);
10211 operations on specific memory locations do not necessarily affect other
10212 operations in the same way.
10213
10214 Target architectures are encouraged to provide their own patterns for
10215 each of the atomic built-in functions. If no target is provided, the original
10216 non-memory model set of @samp{__sync} atomic built-in functions are
10217 used, along with any required synchronization fences surrounding it in
10218 order to achieve the proper behavior. Execution in this case is subject
10219 to the same restrictions as those built-in functions.
10220
10221 If there is no pattern or mechanism to provide a lock-free instruction
10222 sequence, a call is made to an external routine with the same parameters
10223 to be resolved at run time.
10224
10225 When implementing patterns for these built-in functions, the memory order
10226 parameter can be ignored as long as the pattern implements the most
10227 restrictive @code{__ATOMIC_SEQ_CST} memory order. Any of the other memory
10228 orders execute correctly with this memory order but they may not execute as
10229 efficiently as they could with a more appropriate implementation of the
10230 relaxed requirements.
10231
10232 Note that the C++11 standard allows for the memory order parameter to be
10233 determined at run time rather than at compile time. These built-in
10234 functions map any run-time value to @code{__ATOMIC_SEQ_CST} rather
10235 than invoke a runtime library call or inline a switch statement. This is
10236 standard compliant, safe, and the simplest approach for now.
10237
10238 The memory order parameter is a signed int, but only the lower 16 bits are
10239 reserved for the memory order. The remainder of the signed int is reserved
10240 for target use and should be 0. Use of the predefined atomic values
10241 ensures proper usage.
10242
10243 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memorder)
10244 This built-in function implements an atomic load operation. It returns the
10245 contents of @code{*@var{ptr}}.
10246
10247 The valid memory order variants are
10248 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
10249 and @code{__ATOMIC_CONSUME}.
10250
10251 @end deftypefn
10252
10253 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memorder)
10254 This is the generic version of an atomic load. It returns the
10255 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
10256
10257 @end deftypefn
10258
10259 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memorder)
10260 This built-in function implements an atomic store operation. It writes
10261 @code{@var{val}} into @code{*@var{ptr}}.
10262
10263 The valid memory order variants are
10264 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
10265
10266 @end deftypefn
10267
10268 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memorder)
10269 This is the generic version of an atomic store. It stores the value
10270 of @code{*@var{val}} into @code{*@var{ptr}}.
10271
10272 @end deftypefn
10273
10274 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memorder)
10275 This built-in function implements an atomic exchange operation. It writes
10276 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
10277 @code{*@var{ptr}}.
10278
10279 The valid memory order variants are
10280 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
10281 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
10282
10283 @end deftypefn
10284
10285 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memorder)
10286 This is the generic version of an atomic exchange. It stores the
10287 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
10288 of @code{*@var{ptr}} is copied into @code{*@var{ret}}.
10289
10290 @end deftypefn
10291
10292 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memorder, int failure_memorder)
10293 This built-in function implements an atomic compare and exchange operation.
10294 This compares the contents of @code{*@var{ptr}} with the contents of
10295 @code{*@var{expected}}. If equal, the operation is a @emph{read-modify-write}
10296 operation that writes @var{desired} into @code{*@var{ptr}}. If they are not
10297 equal, the operation is a @emph{read} and the current contents of
10298 @code{*@var{ptr}} are written into @code{*@var{expected}}. @var{weak} is true
10299 for weak compare_exchange, which may fail spuriously, and false for
10300 the strong variation, which never fails spuriously. Many targets
10301 only offer the strong variation and ignore the parameter. When in doubt, use
10302 the strong variation.
10303
10304 If @var{desired} is written into @code{*@var{ptr}} then true is returned
10305 and memory is affected according to the
10306 memory order specified by @var{success_memorder}. There are no
10307 restrictions on what memory order can be used here.
10308
10309 Otherwise, false is returned and memory is affected according
10310 to @var{failure_memorder}. This memory order cannot be
10311 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
10312 stronger order than that specified by @var{success_memorder}.
10313
10314 @end deftypefn
10315
10316 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memorder, int failure_memorder)
10317 This built-in function implements the generic version of
10318 @code{__atomic_compare_exchange}. The function is virtually identical to
10319 @code{__atomic_compare_exchange_n}, except the desired value is also a
10320 pointer.
10321
10322 @end deftypefn
10323
10324 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memorder)
10325 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memorder)
10326 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memorder)
10327 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memorder)
10328 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memorder)
10329 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memorder)
10330 These built-in functions perform the operation suggested by the name, and
10331 return the result of the operation. Operations on pointer arguments are
10332 performed as if the operands were of the @code{uintptr_t} type. That is,
10333 they are not scaled by the size of the type to which the pointer points.
10334
10335 @smallexample
10336 @{ *ptr @var{op}= val; return *ptr; @}
10337 @end smallexample
10338
10339 The object pointed to by the first argument must be of integer or pointer
10340 type. It must not be a boolean type. All memory orders are valid.
10341
10342 @end deftypefn
10343
10344 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memorder)
10345 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memorder)
10346 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memorder)
10347 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memorder)
10348 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memorder)
10349 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memorder)
10350 These built-in functions perform the operation suggested by the name, and
10351 return the value that had previously been in @code{*@var{ptr}}. Operations
10352 on pointer arguments are performed as if the operands were of
10353 the @code{uintptr_t} type. That is, they are not scaled by the size of
10354 the type to which the pointer points.
10355
10356 @smallexample
10357 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
10358 @end smallexample
10359
10360 The same constraints on arguments apply as for the corresponding
10361 @code{__atomic_op_fetch} built-in functions. All memory orders are valid.
10362
10363 @end deftypefn
10364
10365 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memorder)
10366
10367 This built-in function performs an atomic test-and-set operation on
10368 the byte at @code{*@var{ptr}}. The byte is set to some implementation
10369 defined nonzero ``set'' value and the return value is @code{true} if and only
10370 if the previous contents were ``set''.
10371 It should be only used for operands of type @code{bool} or @code{char}. For
10372 other types only part of the value may be set.
10373
10374 All memory orders are valid.
10375
10376 @end deftypefn
10377
10378 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memorder)
10379
10380 This built-in function performs an atomic clear operation on
10381 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} contains 0.
10382 It should be only used for operands of type @code{bool} or @code{char} and
10383 in conjunction with @code{__atomic_test_and_set}.
10384 For other types it may only clear partially. If the type is not @code{bool}
10385 prefer using @code{__atomic_store}.
10386
10387 The valid memory order variants are
10388 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
10389 @code{__ATOMIC_RELEASE}.
10390
10391 @end deftypefn
10392
10393 @deftypefn {Built-in Function} void __atomic_thread_fence (int memorder)
10394
10395 This built-in function acts as a synchronization fence between threads
10396 based on the specified memory order.
10397
10398 All memory orders are valid.
10399
10400 @end deftypefn
10401
10402 @deftypefn {Built-in Function} void __atomic_signal_fence (int memorder)
10403
10404 This built-in function acts as a synchronization fence between a thread
10405 and signal handlers based in the same thread.
10406
10407 All memory orders are valid.
10408
10409 @end deftypefn
10410
10411 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
10412
10413 This built-in function returns true if objects of @var{size} bytes always
10414 generate lock-free atomic instructions for the target architecture.
10415 @var{size} must resolve to a compile-time constant and the result also
10416 resolves to a compile-time constant.
10417
10418 @var{ptr} is an optional pointer to the object that may be used to determine
10419 alignment. A value of 0 indicates typical alignment should be used. The
10420 compiler may also ignore this parameter.
10421
10422 @smallexample
10423 if (__atomic_always_lock_free (sizeof (long long), 0))
10424 @end smallexample
10425
10426 @end deftypefn
10427
10428 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
10429
10430 This built-in function returns true if objects of @var{size} bytes always
10431 generate lock-free atomic instructions for the target architecture. If
10432 the built-in function is not known to be lock-free, a call is made to a
10433 runtime routine named @code{__atomic_is_lock_free}.
10434
10435 @var{ptr} is an optional pointer to the object that may be used to determine
10436 alignment. A value of 0 indicates typical alignment should be used. The
10437 compiler may also ignore this parameter.
10438 @end deftypefn
10439
10440 @node Integer Overflow Builtins
10441 @section Built-in Functions to Perform Arithmetic with Overflow Checking
10442
10443 The following built-in functions allow performing simple arithmetic operations
10444 together with checking whether the operations overflowed.
10445
10446 @deftypefn {Built-in Function} bool __builtin_add_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10447 @deftypefnx {Built-in Function} bool __builtin_sadd_overflow (int a, int b, int *res)
10448 @deftypefnx {Built-in Function} bool __builtin_saddl_overflow (long int a, long int b, long int *res)
10449 @deftypefnx {Built-in Function} bool __builtin_saddll_overflow (long long int a, long long int b, long long int *res)
10450 @deftypefnx {Built-in Function} bool __builtin_uadd_overflow (unsigned int a, unsigned int b, unsigned int *res)
10451 @deftypefnx {Built-in Function} bool __builtin_uaddl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10452 @deftypefnx {Built-in Function} bool __builtin_uaddll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10453
10454 These built-in functions promote the first two operands into infinite precision signed
10455 type and perform addition on those promoted operands. The result is then
10456 cast to the type the third pointer argument points to and stored there.
10457 If the stored result is equal to the infinite precision result, the built-in
10458 functions return false, otherwise they return true. As the addition is
10459 performed in infinite signed precision, these built-in functions have fully defined
10460 behavior for all argument values.
10461
10462 The first built-in function allows arbitrary integral types for operands and
10463 the result type must be pointer to some integral type other than enumerated or
10464 boolean type, the rest of the built-in functions have explicit integer types.
10465
10466 The compiler will attempt to use hardware instructions to implement
10467 these built-in functions where possible, like conditional jump on overflow
10468 after addition, conditional jump on carry etc.
10469
10470 @end deftypefn
10471
10472 @deftypefn {Built-in Function} bool __builtin_sub_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10473 @deftypefnx {Built-in Function} bool __builtin_ssub_overflow (int a, int b, int *res)
10474 @deftypefnx {Built-in Function} bool __builtin_ssubl_overflow (long int a, long int b, long int *res)
10475 @deftypefnx {Built-in Function} bool __builtin_ssubll_overflow (long long int a, long long int b, long long int *res)
10476 @deftypefnx {Built-in Function} bool __builtin_usub_overflow (unsigned int a, unsigned int b, unsigned int *res)
10477 @deftypefnx {Built-in Function} bool __builtin_usubl_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10478 @deftypefnx {Built-in Function} bool __builtin_usubll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10479
10480 These built-in functions are similar to the add overflow checking built-in
10481 functions above, except they perform subtraction, subtract the second argument
10482 from the first one, instead of addition.
10483
10484 @end deftypefn
10485
10486 @deftypefn {Built-in Function} bool __builtin_mul_overflow (@var{type1} a, @var{type2} b, @var{type3} *res)
10487 @deftypefnx {Built-in Function} bool __builtin_smul_overflow (int a, int b, int *res)
10488 @deftypefnx {Built-in Function} bool __builtin_smull_overflow (long int a, long int b, long int *res)
10489 @deftypefnx {Built-in Function} bool __builtin_smulll_overflow (long long int a, long long int b, long long int *res)
10490 @deftypefnx {Built-in Function} bool __builtin_umul_overflow (unsigned int a, unsigned int b, unsigned int *res)
10491 @deftypefnx {Built-in Function} bool __builtin_umull_overflow (unsigned long int a, unsigned long int b, unsigned long int *res)
10492 @deftypefnx {Built-in Function} bool __builtin_umulll_overflow (unsigned long long int a, unsigned long long int b, unsigned long long int *res)
10493
10494 These built-in functions are similar to the add overflow checking built-in
10495 functions above, except they perform multiplication, instead of addition.
10496
10497 @end deftypefn
10498
10499 The following built-in functions allow checking if simple arithmetic operation
10500 would overflow.
10501
10502 @deftypefn {Built-in Function} bool __builtin_add_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10503 @deftypefnx {Built-in Function} bool __builtin_sub_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10504 @deftypefnx {Built-in Function} bool __builtin_mul_overflow_p (@var{type1} a, @var{type2} b, @var{type3} c)
10505
10506 These built-in functions are similar to @code{__builtin_add_overflow},
10507 @code{__builtin_sub_overflow}, or @code{__builtin_mul_overflow}, except that
10508 they don't store the result of the arithmetic operation anywhere and the
10509 last argument is not a pointer, but some expression with integral type other
10510 than enumerated or boolean type.
10511
10512 The built-in functions promote the first two operands into infinite precision signed type
10513 and perform addition on those promoted operands. The result is then
10514 cast to the type of the third argument. If the cast result is equal to the infinite
10515 precision result, the built-in functions return false, otherwise they return true.
10516 The value of the third argument is ignored, just the side-effects in the third argument
10517 are evaluated, and no integral argument promotions are performed on the last argument.
10518 If the third argument is a bit-field, the type used for the result cast has the
10519 precision and signedness of the given bit-field, rather than precision and signedness
10520 of the underlying type.
10521
10522 For example, the following macro can be used to portably check, at
10523 compile-time, whether or not adding two constant integers will overflow,
10524 and perform the addition only when it is known to be safe and not to trigger
10525 a @option{-Woverflow} warning.
10526
10527 @smallexample
10528 #define INT_ADD_OVERFLOW_P(a, b) \
10529 __builtin_add_overflow_p (a, b, (__typeof__ ((a) + (b))) 0)
10530
10531 enum @{
10532 A = INT_MAX, B = 3,
10533 C = INT_ADD_OVERFLOW_P (A, B) ? 0 : A + B,
10534 D = __builtin_add_overflow_p (1, SCHAR_MAX, (signed char) 0)
10535 @};
10536 @end smallexample
10537
10538 The compiler will attempt to use hardware instructions to implement
10539 these built-in functions where possible, like conditional jump on overflow
10540 after addition, conditional jump on carry etc.
10541
10542 @end deftypefn
10543
10544 @node x86 specific memory model extensions for transactional memory
10545 @section x86-Specific Memory Model Extensions for Transactional Memory
10546
10547 The x86 architecture supports additional memory ordering flags
10548 to mark critical sections for hardware lock elision.
10549 These must be specified in addition to an existing memory order to
10550 atomic intrinsics.
10551
10552 @table @code
10553 @item __ATOMIC_HLE_ACQUIRE
10554 Start lock elision on a lock variable.
10555 Memory order must be @code{__ATOMIC_ACQUIRE} or stronger.
10556 @item __ATOMIC_HLE_RELEASE
10557 End lock elision on a lock variable.
10558 Memory order must be @code{__ATOMIC_RELEASE} or stronger.
10559 @end table
10560
10561 When a lock acquire fails, it is required for good performance to abort
10562 the transaction quickly. This can be done with a @code{_mm_pause}.
10563
10564 @smallexample
10565 #include <immintrin.h> // For _mm_pause
10566
10567 int lockvar;
10568
10569 /* Acquire lock with lock elision */
10570 while (__atomic_exchange_n(&lockvar, 1, __ATOMIC_ACQUIRE|__ATOMIC_HLE_ACQUIRE))
10571 _mm_pause(); /* Abort failed transaction */
10572 ...
10573 /* Free lock with lock elision */
10574 __atomic_store_n(&lockvar, 0, __ATOMIC_RELEASE|__ATOMIC_HLE_RELEASE);
10575 @end smallexample
10576
10577 @node Object Size Checking
10578 @section Object Size Checking Built-in Functions
10579 @findex __builtin_object_size
10580 @findex __builtin___memcpy_chk
10581 @findex __builtin___mempcpy_chk
10582 @findex __builtin___memmove_chk
10583 @findex __builtin___memset_chk
10584 @findex __builtin___strcpy_chk
10585 @findex __builtin___stpcpy_chk
10586 @findex __builtin___strncpy_chk
10587 @findex __builtin___strcat_chk
10588 @findex __builtin___strncat_chk
10589 @findex __builtin___sprintf_chk
10590 @findex __builtin___snprintf_chk
10591 @findex __builtin___vsprintf_chk
10592 @findex __builtin___vsnprintf_chk
10593 @findex __builtin___printf_chk
10594 @findex __builtin___vprintf_chk
10595 @findex __builtin___fprintf_chk
10596 @findex __builtin___vfprintf_chk
10597
10598 GCC implements a limited buffer overflow protection mechanism that can
10599 prevent some buffer overflow attacks by determining the sizes of objects
10600 into which data is about to be written and preventing the writes when
10601 the size isn't sufficient. The built-in functions described below yield
10602 the best results when used together and when optimization is enabled.
10603 For example, to detect object sizes across function boundaries or to
10604 follow pointer assignments through non-trivial control flow they rely
10605 on various optimization passes enabled with @option{-O2}. However, to
10606 a limited extent, they can be used without optimization as well.
10607
10608 @deftypefn {Built-in Function} {size_t} __builtin_object_size (const void * @var{ptr}, int @var{type})
10609 is a built-in construct that returns a constant number of bytes from
10610 @var{ptr} to the end of the object @var{ptr} pointer points to
10611 (if known at compile time). @code{__builtin_object_size} never evaluates
10612 its arguments for side-effects. If there are any side-effects in them, it
10613 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10614 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
10615 point to and all of them are known at compile time, the returned number
10616 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
10617 0 and minimum if nonzero. If it is not possible to determine which objects
10618 @var{ptr} points to at compile time, @code{__builtin_object_size} should
10619 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
10620 for @var{type} 2 or 3.
10621
10622 @var{type} is an integer constant from 0 to 3. If the least significant
10623 bit is clear, objects are whole variables, if it is set, a closest
10624 surrounding subobject is considered the object a pointer points to.
10625 The second bit determines if maximum or minimum of remaining bytes
10626 is computed.
10627
10628 @smallexample
10629 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
10630 char *p = &var.buf1[1], *q = &var.b;
10631
10632 /* Here the object p points to is var. */
10633 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
10634 /* The subobject p points to is var.buf1. */
10635 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
10636 /* The object q points to is var. */
10637 assert (__builtin_object_size (q, 0)
10638 == (char *) (&var + 1) - (char *) &var.b);
10639 /* The subobject q points to is var.b. */
10640 assert (__builtin_object_size (q, 1) == sizeof (var.b));
10641 @end smallexample
10642 @end deftypefn
10643
10644 There are built-in functions added for many common string operation
10645 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
10646 built-in is provided. This built-in has an additional last argument,
10647 which is the number of bytes remaining in the object the @var{dest}
10648 argument points to or @code{(size_t) -1} if the size is not known.
10649
10650 The built-in functions are optimized into the normal string functions
10651 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
10652 it is known at compile time that the destination object will not
10653 be overflowed. If the compiler can determine at compile time that the
10654 object will always be overflowed, it issues a warning.
10655
10656 The intended use can be e.g.@:
10657
10658 @smallexample
10659 #undef memcpy
10660 #define bos0(dest) __builtin_object_size (dest, 0)
10661 #define memcpy(dest, src, n) \
10662 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
10663
10664 char *volatile p;
10665 char buf[10];
10666 /* It is unknown what object p points to, so this is optimized
10667 into plain memcpy - no checking is possible. */
10668 memcpy (p, "abcde", n);
10669 /* Destination is known and length too. It is known at compile
10670 time there will be no overflow. */
10671 memcpy (&buf[5], "abcde", 5);
10672 /* Destination is known, but the length is not known at compile time.
10673 This will result in __memcpy_chk call that can check for overflow
10674 at run time. */
10675 memcpy (&buf[5], "abcde", n);
10676 /* Destination is known and it is known at compile time there will
10677 be overflow. There will be a warning and __memcpy_chk call that
10678 will abort the program at run time. */
10679 memcpy (&buf[6], "abcde", 5);
10680 @end smallexample
10681
10682 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
10683 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
10684 @code{strcat} and @code{strncat}.
10685
10686 There are also checking built-in functions for formatted output functions.
10687 @smallexample
10688 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
10689 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10690 const char *fmt, ...);
10691 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
10692 va_list ap);
10693 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
10694 const char *fmt, va_list ap);
10695 @end smallexample
10696
10697 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
10698 etc.@: functions and can contain implementation specific flags on what
10699 additional security measures the checking function might take, such as
10700 handling @code{%n} differently.
10701
10702 The @var{os} argument is the object size @var{s} points to, like in the
10703 other built-in functions. There is a small difference in the behavior
10704 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
10705 optimized into the non-checking functions only if @var{flag} is 0, otherwise
10706 the checking function is called with @var{os} argument set to
10707 @code{(size_t) -1}.
10708
10709 In addition to this, there are checking built-in functions
10710 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
10711 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
10712 These have just one additional argument, @var{flag}, right before
10713 format string @var{fmt}. If the compiler is able to optimize them to
10714 @code{fputc} etc.@: functions, it does, otherwise the checking function
10715 is called and the @var{flag} argument passed to it.
10716
10717 @node Pointer Bounds Checker builtins
10718 @section Pointer Bounds Checker Built-in Functions
10719 @cindex Pointer Bounds Checker builtins
10720 @findex __builtin___bnd_set_ptr_bounds
10721 @findex __builtin___bnd_narrow_ptr_bounds
10722 @findex __builtin___bnd_copy_ptr_bounds
10723 @findex __builtin___bnd_init_ptr_bounds
10724 @findex __builtin___bnd_null_ptr_bounds
10725 @findex __builtin___bnd_store_ptr_bounds
10726 @findex __builtin___bnd_chk_ptr_lbounds
10727 @findex __builtin___bnd_chk_ptr_ubounds
10728 @findex __builtin___bnd_chk_ptr_bounds
10729 @findex __builtin___bnd_get_ptr_lbound
10730 @findex __builtin___bnd_get_ptr_ubound
10731
10732 GCC provides a set of built-in functions to control Pointer Bounds Checker
10733 instrumentation. Note that all Pointer Bounds Checker builtins can be used
10734 even if you compile with Pointer Bounds Checker off
10735 (@option{-fno-check-pointer-bounds}).
10736 The behavior may differ in such case as documented below.
10737
10738 @deftypefn {Built-in Function} {void *} __builtin___bnd_set_ptr_bounds (const void *@var{q}, size_t @var{size})
10739
10740 This built-in function returns a new pointer with the value of @var{q}, and
10741 associate it with the bounds [@var{q}, @var{q}+@var{size}-1]. With Pointer
10742 Bounds Checker off, the built-in function just returns the first argument.
10743
10744 @smallexample
10745 extern void *__wrap_malloc (size_t n)
10746 @{
10747 void *p = (void *)__real_malloc (n);
10748 if (!p) return __builtin___bnd_null_ptr_bounds (p);
10749 return __builtin___bnd_set_ptr_bounds (p, n);
10750 @}
10751 @end smallexample
10752
10753 @end deftypefn
10754
10755 @deftypefn {Built-in Function} {void *} __builtin___bnd_narrow_ptr_bounds (const void *@var{p}, const void *@var{q}, size_t @var{size})
10756
10757 This built-in function returns a new pointer with the value of @var{p}
10758 and associates it with the narrowed bounds formed by the intersection
10759 of bounds associated with @var{q} and the bounds
10760 [@var{p}, @var{p} + @var{size} - 1].
10761 With Pointer Bounds Checker off, the built-in function just returns the first
10762 argument.
10763
10764 @smallexample
10765 void init_objects (object *objs, size_t size)
10766 @{
10767 size_t i;
10768 /* Initialize objects one-by-one passing pointers with bounds of
10769 an object, not the full array of objects. */
10770 for (i = 0; i < size; i++)
10771 init_object (__builtin___bnd_narrow_ptr_bounds (objs + i, objs,
10772 sizeof(object)));
10773 @}
10774 @end smallexample
10775
10776 @end deftypefn
10777
10778 @deftypefn {Built-in Function} {void *} __builtin___bnd_copy_ptr_bounds (const void *@var{q}, const void *@var{r})
10779
10780 This built-in function returns a new pointer with the value of @var{q},
10781 and associates it with the bounds already associated with pointer @var{r}.
10782 With Pointer Bounds Checker off, the built-in function just returns the first
10783 argument.
10784
10785 @smallexample
10786 /* Here is a way to get pointer to object's field but
10787 still with the full object's bounds. */
10788 int *field_ptr = __builtin___bnd_copy_ptr_bounds (&objptr->int_field,
10789 objptr);
10790 @end smallexample
10791
10792 @end deftypefn
10793
10794 @deftypefn {Built-in Function} {void *} __builtin___bnd_init_ptr_bounds (const void *@var{q})
10795
10796 This built-in function returns a new pointer with the value of @var{q}, and
10797 associates it with INIT (allowing full memory access) bounds. With Pointer
10798 Bounds Checker off, the built-in function just returns the first argument.
10799
10800 @end deftypefn
10801
10802 @deftypefn {Built-in Function} {void *} __builtin___bnd_null_ptr_bounds (const void *@var{q})
10803
10804 This built-in function returns a new pointer with the value of @var{q}, and
10805 associates it with NULL (allowing no memory access) bounds. With Pointer
10806 Bounds Checker off, the built-in function just returns the first argument.
10807
10808 @end deftypefn
10809
10810 @deftypefn {Built-in Function} void __builtin___bnd_store_ptr_bounds (const void **@var{ptr_addr}, const void *@var{ptr_val})
10811
10812 This built-in function stores the bounds associated with pointer @var{ptr_val}
10813 and location @var{ptr_addr} into Bounds Table. This can be useful to propagate
10814 bounds from legacy code without touching the associated pointer's memory when
10815 pointers are copied as integers. With Pointer Bounds Checker off, the built-in
10816 function call is ignored.
10817
10818 @end deftypefn
10819
10820 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_lbounds (const void *@var{q})
10821
10822 This built-in function checks if the pointer @var{q} is within the lower
10823 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10824 function call is ignored.
10825
10826 @smallexample
10827 extern void *__wrap_memset (void *dst, int c, size_t len)
10828 @{
10829 if (len > 0)
10830 @{
10831 __builtin___bnd_chk_ptr_lbounds (dst);
10832 __builtin___bnd_chk_ptr_ubounds ((char *)dst + len - 1);
10833 __real_memset (dst, c, len);
10834 @}
10835 return dst;
10836 @}
10837 @end smallexample
10838
10839 @end deftypefn
10840
10841 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_ubounds (const void *@var{q})
10842
10843 This built-in function checks if the pointer @var{q} is within the upper
10844 bound of its associated bounds. With Pointer Bounds Checker off, the built-in
10845 function call is ignored.
10846
10847 @end deftypefn
10848
10849 @deftypefn {Built-in Function} void __builtin___bnd_chk_ptr_bounds (const void *@var{q}, size_t @var{size})
10850
10851 This built-in function checks if [@var{q}, @var{q} + @var{size} - 1] is within
10852 the lower and upper bounds associated with @var{q}. With Pointer Bounds Checker
10853 off, the built-in function call is ignored.
10854
10855 @smallexample
10856 extern void *__wrap_memcpy (void *dst, const void *src, size_t n)
10857 @{
10858 if (n > 0)
10859 @{
10860 __bnd_chk_ptr_bounds (dst, n);
10861 __bnd_chk_ptr_bounds (src, n);
10862 __real_memcpy (dst, src, n);
10863 @}
10864 return dst;
10865 @}
10866 @end smallexample
10867
10868 @end deftypefn
10869
10870 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_lbound (const void *@var{q})
10871
10872 This built-in function returns the lower bound associated
10873 with the pointer @var{q}, as a pointer value.
10874 This is useful for debugging using @code{printf}.
10875 With Pointer Bounds Checker off, the built-in function returns 0.
10876
10877 @smallexample
10878 void *lb = __builtin___bnd_get_ptr_lbound (q);
10879 void *ub = __builtin___bnd_get_ptr_ubound (q);
10880 printf ("q = %p lb(q) = %p ub(q) = %p", q, lb, ub);
10881 @end smallexample
10882
10883 @end deftypefn
10884
10885 @deftypefn {Built-in Function} {const void *} __builtin___bnd_get_ptr_ubound (const void *@var{q})
10886
10887 This built-in function returns the upper bound (which is a pointer) associated
10888 with the pointer @var{q}. With Pointer Bounds Checker off,
10889 the built-in function returns -1.
10890
10891 @end deftypefn
10892
10893 @node Cilk Plus Builtins
10894 @section Cilk Plus C/C++ Language Extension Built-in Functions
10895
10896 GCC provides support for the following built-in reduction functions if Cilk Plus
10897 is enabled. Cilk Plus can be enabled using the @option{-fcilkplus} flag.
10898
10899 @itemize @bullet
10900 @item @code{__sec_implicit_index}
10901 @item @code{__sec_reduce}
10902 @item @code{__sec_reduce_add}
10903 @item @code{__sec_reduce_all_nonzero}
10904 @item @code{__sec_reduce_all_zero}
10905 @item @code{__sec_reduce_any_nonzero}
10906 @item @code{__sec_reduce_any_zero}
10907 @item @code{__sec_reduce_max}
10908 @item @code{__sec_reduce_min}
10909 @item @code{__sec_reduce_max_ind}
10910 @item @code{__sec_reduce_min_ind}
10911 @item @code{__sec_reduce_mul}
10912 @item @code{__sec_reduce_mutating}
10913 @end itemize
10914
10915 Further details and examples about these built-in functions are described
10916 in the Cilk Plus language manual which can be found at
10917 @uref{https://www.cilkplus.org}.
10918
10919 @node Other Builtins
10920 @section Other Built-in Functions Provided by GCC
10921 @cindex built-in functions
10922 @findex __builtin_alloca
10923 @findex __builtin_alloca_with_align
10924 @findex __builtin_alloca_with_align_and_max
10925 @findex __builtin_call_with_static_chain
10926 @findex __builtin_fpclassify
10927 @findex __builtin_isfinite
10928 @findex __builtin_isnormal
10929 @findex __builtin_isgreater
10930 @findex __builtin_isgreaterequal
10931 @findex __builtin_isinf_sign
10932 @findex __builtin_isless
10933 @findex __builtin_islessequal
10934 @findex __builtin_islessgreater
10935 @findex __builtin_isunordered
10936 @findex __builtin_powi
10937 @findex __builtin_powif
10938 @findex __builtin_powil
10939 @findex _Exit
10940 @findex _exit
10941 @findex abort
10942 @findex abs
10943 @findex acos
10944 @findex acosf
10945 @findex acosh
10946 @findex acoshf
10947 @findex acoshl
10948 @findex acosl
10949 @findex alloca
10950 @findex asin
10951 @findex asinf
10952 @findex asinh
10953 @findex asinhf
10954 @findex asinhl
10955 @findex asinl
10956 @findex atan
10957 @findex atan2
10958 @findex atan2f
10959 @findex atan2l
10960 @findex atanf
10961 @findex atanh
10962 @findex atanhf
10963 @findex atanhl
10964 @findex atanl
10965 @findex bcmp
10966 @findex bzero
10967 @findex cabs
10968 @findex cabsf
10969 @findex cabsl
10970 @findex cacos
10971 @findex cacosf
10972 @findex cacosh
10973 @findex cacoshf
10974 @findex cacoshl
10975 @findex cacosl
10976 @findex calloc
10977 @findex carg
10978 @findex cargf
10979 @findex cargl
10980 @findex casin
10981 @findex casinf
10982 @findex casinh
10983 @findex casinhf
10984 @findex casinhl
10985 @findex casinl
10986 @findex catan
10987 @findex catanf
10988 @findex catanh
10989 @findex catanhf
10990 @findex catanhl
10991 @findex catanl
10992 @findex cbrt
10993 @findex cbrtf
10994 @findex cbrtl
10995 @findex ccos
10996 @findex ccosf
10997 @findex ccosh
10998 @findex ccoshf
10999 @findex ccoshl
11000 @findex ccosl
11001 @findex ceil
11002 @findex ceilf
11003 @findex ceill
11004 @findex cexp
11005 @findex cexpf
11006 @findex cexpl
11007 @findex cimag
11008 @findex cimagf
11009 @findex cimagl
11010 @findex clog
11011 @findex clogf
11012 @findex clogl
11013 @findex clog10
11014 @findex clog10f
11015 @findex clog10l
11016 @findex conj
11017 @findex conjf
11018 @findex conjl
11019 @findex copysign
11020 @findex copysignf
11021 @findex copysignl
11022 @findex cos
11023 @findex cosf
11024 @findex cosh
11025 @findex coshf
11026 @findex coshl
11027 @findex cosl
11028 @findex cpow
11029 @findex cpowf
11030 @findex cpowl
11031 @findex cproj
11032 @findex cprojf
11033 @findex cprojl
11034 @findex creal
11035 @findex crealf
11036 @findex creall
11037 @findex csin
11038 @findex csinf
11039 @findex csinh
11040 @findex csinhf
11041 @findex csinhl
11042 @findex csinl
11043 @findex csqrt
11044 @findex csqrtf
11045 @findex csqrtl
11046 @findex ctan
11047 @findex ctanf
11048 @findex ctanh
11049 @findex ctanhf
11050 @findex ctanhl
11051 @findex ctanl
11052 @findex dcgettext
11053 @findex dgettext
11054 @findex drem
11055 @findex dremf
11056 @findex dreml
11057 @findex erf
11058 @findex erfc
11059 @findex erfcf
11060 @findex erfcl
11061 @findex erff
11062 @findex erfl
11063 @findex exit
11064 @findex exp
11065 @findex exp10
11066 @findex exp10f
11067 @findex exp10l
11068 @findex exp2
11069 @findex exp2f
11070 @findex exp2l
11071 @findex expf
11072 @findex expl
11073 @findex expm1
11074 @findex expm1f
11075 @findex expm1l
11076 @findex fabs
11077 @findex fabsf
11078 @findex fabsl
11079 @findex fdim
11080 @findex fdimf
11081 @findex fdiml
11082 @findex ffs
11083 @findex floor
11084 @findex floorf
11085 @findex floorl
11086 @findex fma
11087 @findex fmaf
11088 @findex fmal
11089 @findex fmax
11090 @findex fmaxf
11091 @findex fmaxl
11092 @findex fmin
11093 @findex fminf
11094 @findex fminl
11095 @findex fmod
11096 @findex fmodf
11097 @findex fmodl
11098 @findex fprintf
11099 @findex fprintf_unlocked
11100 @findex fputs
11101 @findex fputs_unlocked
11102 @findex frexp
11103 @findex frexpf
11104 @findex frexpl
11105 @findex fscanf
11106 @findex gamma
11107 @findex gammaf
11108 @findex gammal
11109 @findex gamma_r
11110 @findex gammaf_r
11111 @findex gammal_r
11112 @findex gettext
11113 @findex hypot
11114 @findex hypotf
11115 @findex hypotl
11116 @findex ilogb
11117 @findex ilogbf
11118 @findex ilogbl
11119 @findex imaxabs
11120 @findex index
11121 @findex isalnum
11122 @findex isalpha
11123 @findex isascii
11124 @findex isblank
11125 @findex iscntrl
11126 @findex isdigit
11127 @findex isgraph
11128 @findex islower
11129 @findex isprint
11130 @findex ispunct
11131 @findex isspace
11132 @findex isupper
11133 @findex iswalnum
11134 @findex iswalpha
11135 @findex iswblank
11136 @findex iswcntrl
11137 @findex iswdigit
11138 @findex iswgraph
11139 @findex iswlower
11140 @findex iswprint
11141 @findex iswpunct
11142 @findex iswspace
11143 @findex iswupper
11144 @findex iswxdigit
11145 @findex isxdigit
11146 @findex j0
11147 @findex j0f
11148 @findex j0l
11149 @findex j1
11150 @findex j1f
11151 @findex j1l
11152 @findex jn
11153 @findex jnf
11154 @findex jnl
11155 @findex labs
11156 @findex ldexp
11157 @findex ldexpf
11158 @findex ldexpl
11159 @findex lgamma
11160 @findex lgammaf
11161 @findex lgammal
11162 @findex lgamma_r
11163 @findex lgammaf_r
11164 @findex lgammal_r
11165 @findex llabs
11166 @findex llrint
11167 @findex llrintf
11168 @findex llrintl
11169 @findex llround
11170 @findex llroundf
11171 @findex llroundl
11172 @findex log
11173 @findex log10
11174 @findex log10f
11175 @findex log10l
11176 @findex log1p
11177 @findex log1pf
11178 @findex log1pl
11179 @findex log2
11180 @findex log2f
11181 @findex log2l
11182 @findex logb
11183 @findex logbf
11184 @findex logbl
11185 @findex logf
11186 @findex logl
11187 @findex lrint
11188 @findex lrintf
11189 @findex lrintl
11190 @findex lround
11191 @findex lroundf
11192 @findex lroundl
11193 @findex malloc
11194 @findex memchr
11195 @findex memcmp
11196 @findex memcpy
11197 @findex mempcpy
11198 @findex memset
11199 @findex modf
11200 @findex modff
11201 @findex modfl
11202 @findex nearbyint
11203 @findex nearbyintf
11204 @findex nearbyintl
11205 @findex nextafter
11206 @findex nextafterf
11207 @findex nextafterl
11208 @findex nexttoward
11209 @findex nexttowardf
11210 @findex nexttowardl
11211 @findex pow
11212 @findex pow10
11213 @findex pow10f
11214 @findex pow10l
11215 @findex powf
11216 @findex powl
11217 @findex printf
11218 @findex printf_unlocked
11219 @findex putchar
11220 @findex puts
11221 @findex remainder
11222 @findex remainderf
11223 @findex remainderl
11224 @findex remquo
11225 @findex remquof
11226 @findex remquol
11227 @findex rindex
11228 @findex rint
11229 @findex rintf
11230 @findex rintl
11231 @findex round
11232 @findex roundf
11233 @findex roundl
11234 @findex scalb
11235 @findex scalbf
11236 @findex scalbl
11237 @findex scalbln
11238 @findex scalblnf
11239 @findex scalblnf
11240 @findex scalbn
11241 @findex scalbnf
11242 @findex scanfnl
11243 @findex signbit
11244 @findex signbitf
11245 @findex signbitl
11246 @findex signbitd32
11247 @findex signbitd64
11248 @findex signbitd128
11249 @findex significand
11250 @findex significandf
11251 @findex significandl
11252 @findex sin
11253 @findex sincos
11254 @findex sincosf
11255 @findex sincosl
11256 @findex sinf
11257 @findex sinh
11258 @findex sinhf
11259 @findex sinhl
11260 @findex sinl
11261 @findex snprintf
11262 @findex sprintf
11263 @findex sqrt
11264 @findex sqrtf
11265 @findex sqrtl
11266 @findex sscanf
11267 @findex stpcpy
11268 @findex stpncpy
11269 @findex strcasecmp
11270 @findex strcat
11271 @findex strchr
11272 @findex strcmp
11273 @findex strcpy
11274 @findex strcspn
11275 @findex strdup
11276 @findex strfmon
11277 @findex strftime
11278 @findex strlen
11279 @findex strncasecmp
11280 @findex strncat
11281 @findex strncmp
11282 @findex strncpy
11283 @findex strndup
11284 @findex strpbrk
11285 @findex strrchr
11286 @findex strspn
11287 @findex strstr
11288 @findex tan
11289 @findex tanf
11290 @findex tanh
11291 @findex tanhf
11292 @findex tanhl
11293 @findex tanl
11294 @findex tgamma
11295 @findex tgammaf
11296 @findex tgammal
11297 @findex toascii
11298 @findex tolower
11299 @findex toupper
11300 @findex towlower
11301 @findex towupper
11302 @findex trunc
11303 @findex truncf
11304 @findex truncl
11305 @findex vfprintf
11306 @findex vfscanf
11307 @findex vprintf
11308 @findex vscanf
11309 @findex vsnprintf
11310 @findex vsprintf
11311 @findex vsscanf
11312 @findex y0
11313 @findex y0f
11314 @findex y0l
11315 @findex y1
11316 @findex y1f
11317 @findex y1l
11318 @findex yn
11319 @findex ynf
11320 @findex ynl
11321
11322 GCC provides a large number of built-in functions other than the ones
11323 mentioned above. Some of these are for internal use in the processing
11324 of exceptions or variable-length argument lists and are not
11325 documented here because they may change from time to time; we do not
11326 recommend general use of these functions.
11327
11328 The remaining functions are provided for optimization purposes.
11329
11330 With the exception of built-ins that have library equivalents such as
11331 the standard C library functions discussed below, or that expand to
11332 library calls, GCC built-in functions are always expanded inline and
11333 thus do not have corresponding entry points and their address cannot
11334 be obtained. Attempting to use them in an expression other than
11335 a function call results in a compile-time error.
11336
11337 @opindex fno-builtin
11338 GCC includes built-in versions of many of the functions in the standard
11339 C library. These functions come in two forms: one whose names start with
11340 the @code{__builtin_} prefix, and the other without. Both forms have the
11341 same type (including prototype), the same address (when their address is
11342 taken), and the same meaning as the C library functions even if you specify
11343 the @option{-fno-builtin} option @pxref{C Dialect Options}). Many of these
11344 functions are only optimized in certain cases; if they are not optimized in
11345 a particular case, a call to the library function is emitted.
11346
11347 @opindex ansi
11348 @opindex std
11349 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
11350 @option{-std=c99} or @option{-std=c11}), the functions
11351 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
11352 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
11353 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
11354 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
11355 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
11356 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
11357 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
11358 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
11359 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
11360 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
11361 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
11362 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
11363 @code{signbitd64}, @code{signbitd128}, @code{significandf},
11364 @code{significandl}, @code{significand}, @code{sincosf},
11365 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
11366 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
11367 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
11368 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
11369 @code{yn}
11370 may be handled as built-in functions.
11371 All these functions have corresponding versions
11372 prefixed with @code{__builtin_}, which may be used even in strict C90
11373 mode.
11374
11375 The ISO C99 functions
11376 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
11377 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
11378 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
11379 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
11380 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
11381 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
11382 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
11383 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
11384 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
11385 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
11386 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
11387 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
11388 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
11389 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
11390 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
11391 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
11392 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
11393 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
11394 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
11395 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
11396 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
11397 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
11398 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
11399 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
11400 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
11401 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
11402 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
11403 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
11404 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
11405 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
11406 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
11407 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
11408 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
11409 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
11410 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
11411 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
11412 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
11413 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
11414 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
11415 are handled as built-in functions
11416 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
11417
11418 There are also built-in versions of the ISO C99 functions
11419 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
11420 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
11421 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
11422 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
11423 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
11424 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
11425 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
11426 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
11427 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
11428 that are recognized in any mode since ISO C90 reserves these names for
11429 the purpose to which ISO C99 puts them. All these functions have
11430 corresponding versions prefixed with @code{__builtin_}.
11431
11432 There are also built-in functions @code{__builtin_fabsf@var{n}},
11433 @code{__builtin_fabsf@var{n}x}, @code{__builtin_copysignf@var{n}} and
11434 @code{__builtin_copysignf@var{n}x}, corresponding to the TS 18661-3
11435 functions @code{fabsf@var{n}}, @code{fabsf@var{n}x},
11436 @code{copysignf@var{n}} and @code{copysignf@var{n}x}, for supported
11437 types @code{_Float@var{n}} and @code{_Float@var{n}x}.
11438
11439 There are also GNU extension functions @code{clog10}, @code{clog10f} and
11440 @code{clog10l} which names are reserved by ISO C99 for future use.
11441 All these functions have versions prefixed with @code{__builtin_}.
11442
11443 The ISO C94 functions
11444 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
11445 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
11446 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
11447 @code{towupper}
11448 are handled as built-in functions
11449 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
11450
11451 The ISO C90 functions
11452 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
11453 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
11454 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
11455 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
11456 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
11457 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
11458 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
11459 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
11460 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
11461 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
11462 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
11463 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
11464 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
11465 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
11466 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
11467 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
11468 are all recognized as built-in functions unless
11469 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
11470 is specified for an individual function). All of these functions have
11471 corresponding versions prefixed with @code{__builtin_}.
11472
11473 GCC provides built-in versions of the ISO C99 floating-point comparison
11474 macros that avoid raising exceptions for unordered operands. They have
11475 the same names as the standard macros ( @code{isgreater},
11476 @code{isgreaterequal}, @code{isless}, @code{islessequal},
11477 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
11478 prefixed. We intend for a library implementor to be able to simply
11479 @code{#define} each standard macro to its built-in equivalent.
11480 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
11481 @code{isinf_sign}, @code{isnormal} and @code{signbit} built-ins used with
11482 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
11483 built-in functions appear both with and without the @code{__builtin_} prefix.
11484
11485 @deftypefn {Built-in Function} void *__builtin_alloca (size_t size)
11486 The @code{__builtin_alloca} function must be called at block scope.
11487 The function allocates an object @var{size} bytes large on the stack
11488 of the calling function. The object is aligned on the default stack
11489 alignment boundary for the target determined by the
11490 @code{__BIGGEST_ALIGNMENT__} macro. The @code{__builtin_alloca}
11491 function returns a pointer to the first byte of the allocated object.
11492 The lifetime of the allocated object ends just before the calling
11493 function returns to its caller. This is so even when
11494 @code{__builtin_alloca} is called within a nested block.
11495
11496 For example, the following function allocates eight objects of @code{n}
11497 bytes each on the stack, storing a pointer to each in consecutive elements
11498 of the array @code{a}. It then passes the array to function @code{g}
11499 which can safely use the storage pointed to by each of the array elements.
11500
11501 @smallexample
11502 void f (unsigned n)
11503 @{
11504 void *a [8];
11505 for (int i = 0; i != 8; ++i)
11506 a [i] = __builtin_alloca (n);
11507
11508 g (a, n); // @r{safe}
11509 @}
11510 @end smallexample
11511
11512 Since the @code{__builtin_alloca} function doesn't validate its argument
11513 it is the responsibility of its caller to make sure the argument doesn't
11514 cause it to exceed the stack size limit.
11515 The @code{__builtin_alloca} function is provided to make it possible to
11516 allocate on the stack arrays of bytes with an upper bound that may be
11517 computed at run time. Since C99 Variable Length Arrays offer
11518 similar functionality under a portable, more convenient, and safer
11519 interface they are recommended instead, in both C99 and C++ programs
11520 where GCC provides them as an extension.
11521 @xref{Variable Length}, for details.
11522
11523 @end deftypefn
11524
11525 @deftypefn {Built-in Function} void *__builtin_alloca_with_align (size_t size, size_t alignment)
11526 The @code{__builtin_alloca_with_align} function must be called at block
11527 scope. The function allocates an object @var{size} bytes large on
11528 the stack of the calling function. The allocated object is aligned on
11529 the boundary specified by the argument @var{alignment} whose unit is given
11530 in bits (not bytes). The @var{size} argument must be positive and not
11531 exceed the stack size limit. The @var{alignment} argument must be a constant
11532 integer expression that evaluates to a power of 2 greater than or equal to
11533 @code{CHAR_BIT} and less than some unspecified maximum. Invocations
11534 with other values are rejected with an error indicating the valid bounds.
11535 The function returns a pointer to the first byte of the allocated object.
11536 The lifetime of the allocated object ends at the end of the block in which
11537 the function was called. The allocated storage is released no later than
11538 just before the calling function returns to its caller, but may be released
11539 at the end of the block in which the function was called.
11540
11541 For example, in the following function the call to @code{g} is unsafe
11542 because when @code{overalign} is non-zero, the space allocated by
11543 @code{__builtin_alloca_with_align} may have been released at the end
11544 of the @code{if} statement in which it was called.
11545
11546 @smallexample
11547 void f (unsigned n, bool overalign)
11548 @{
11549 void *p;
11550 if (overalign)
11551 p = __builtin_alloca_with_align (n, 64 /* bits */);
11552 else
11553 p = __builtin_alloc (n);
11554
11555 g (p, n); // @r{unsafe}
11556 @}
11557 @end smallexample
11558
11559 Since the @code{__builtin_alloca_with_align} function doesn't validate its
11560 @var{size} argument it is the responsibility of its caller to make sure
11561 the argument doesn't cause it to exceed the stack size limit.
11562 The @code{__builtin_alloca_with_align} function is provided to make
11563 it possible to allocate on the stack overaligned arrays of bytes with
11564 an upper bound that may be computed at run time. Since C99
11565 Variable Length Arrays offer the same functionality under
11566 a portable, more convenient, and safer interface they are recommended
11567 instead, in both C99 and C++ programs where GCC provides them as
11568 an extension. @xref{Variable Length}, for details.
11569
11570 @end deftypefn
11571
11572 @deftypefn {Built-in Function} void *__builtin_alloca_with_align_and_max (size_t size, size_t alignment, size_t max_size)
11573 Similar to @code{__builtin_alloca_with_align} but takes an extra argument
11574 specifying an upper bound for @var{size} in case its value cannot be computed
11575 at compile time, for use by @option{-fstack-usage}, @option{-Wstack-usage}
11576 and @option{-Walloca-larger-than}. @var{max_size} must be a constant integer
11577 expression, it has no effect on code generation and no attempt is made to
11578 check its compatibility with @var{size}.
11579
11580 @end deftypefn
11581
11582 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
11583
11584 You can use the built-in function @code{__builtin_types_compatible_p} to
11585 determine whether two types are the same.
11586
11587 This built-in function returns 1 if the unqualified versions of the
11588 types @var{type1} and @var{type2} (which are types, not expressions) are
11589 compatible, 0 otherwise. The result of this built-in function can be
11590 used in integer constant expressions.
11591
11592 This built-in function ignores top level qualifiers (e.g., @code{const},
11593 @code{volatile}). For example, @code{int} is equivalent to @code{const
11594 int}.
11595
11596 The type @code{int[]} and @code{int[5]} are compatible. On the other
11597 hand, @code{int} and @code{char *} are not compatible, even if the size
11598 of their types, on the particular architecture are the same. Also, the
11599 amount of pointer indirection is taken into account when determining
11600 similarity. Consequently, @code{short *} is not similar to
11601 @code{short **}. Furthermore, two types that are typedefed are
11602 considered compatible if their underlying types are compatible.
11603
11604 An @code{enum} type is not considered to be compatible with another
11605 @code{enum} type even if both are compatible with the same integer
11606 type; this is what the C standard specifies.
11607 For example, @code{enum @{foo, bar@}} is not similar to
11608 @code{enum @{hot, dog@}}.
11609
11610 You typically use this function in code whose execution varies
11611 depending on the arguments' types. For example:
11612
11613 @smallexample
11614 #define foo(x) \
11615 (@{ \
11616 typeof (x) tmp = (x); \
11617 if (__builtin_types_compatible_p (typeof (x), long double)) \
11618 tmp = foo_long_double (tmp); \
11619 else if (__builtin_types_compatible_p (typeof (x), double)) \
11620 tmp = foo_double (tmp); \
11621 else if (__builtin_types_compatible_p (typeof (x), float)) \
11622 tmp = foo_float (tmp); \
11623 else \
11624 abort (); \
11625 tmp; \
11626 @})
11627 @end smallexample
11628
11629 @emph{Note:} This construct is only available for C@.
11630
11631 @end deftypefn
11632
11633 @deftypefn {Built-in Function} @var{type} __builtin_call_with_static_chain (@var{call_exp}, @var{pointer_exp})
11634
11635 The @var{call_exp} expression must be a function call, and the
11636 @var{pointer_exp} expression must be a pointer. The @var{pointer_exp}
11637 is passed to the function call in the target's static chain location.
11638 The result of builtin is the result of the function call.
11639
11640 @emph{Note:} This builtin is only available for C@.
11641 This builtin can be used to call Go closures from C.
11642
11643 @end deftypefn
11644
11645 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
11646
11647 You can use the built-in function @code{__builtin_choose_expr} to
11648 evaluate code depending on the value of a constant expression. This
11649 built-in function returns @var{exp1} if @var{const_exp}, which is an
11650 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
11651
11652 This built-in function is analogous to the @samp{? :} operator in C,
11653 except that the expression returned has its type unaltered by promotion
11654 rules. Also, the built-in function does not evaluate the expression
11655 that is not chosen. For example, if @var{const_exp} evaluates to true,
11656 @var{exp2} is not evaluated even if it has side-effects.
11657
11658 This built-in function can return an lvalue if the chosen argument is an
11659 lvalue.
11660
11661 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
11662 type. Similarly, if @var{exp2} is returned, its return type is the same
11663 as @var{exp2}.
11664
11665 Example:
11666
11667 @smallexample
11668 #define foo(x) \
11669 __builtin_choose_expr ( \
11670 __builtin_types_compatible_p (typeof (x), double), \
11671 foo_double (x), \
11672 __builtin_choose_expr ( \
11673 __builtin_types_compatible_p (typeof (x), float), \
11674 foo_float (x), \
11675 /* @r{The void expression results in a compile-time error} \
11676 @r{when assigning the result to something.} */ \
11677 (void)0))
11678 @end smallexample
11679
11680 @emph{Note:} This construct is only available for C@. Furthermore, the
11681 unused expression (@var{exp1} or @var{exp2} depending on the value of
11682 @var{const_exp}) may still generate syntax errors. This may change in
11683 future revisions.
11684
11685 @end deftypefn
11686
11687 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
11688
11689 The built-in function @code{__builtin_complex} is provided for use in
11690 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
11691 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
11692 real binary floating-point type, and the result has the corresponding
11693 complex type with real and imaginary parts @var{real} and @var{imag}.
11694 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
11695 infinities, NaNs and negative zeros are involved.
11696
11697 @end deftypefn
11698
11699 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
11700 You can use the built-in function @code{__builtin_constant_p} to
11701 determine if a value is known to be constant at compile time and hence
11702 that GCC can perform constant-folding on expressions involving that
11703 value. The argument of the function is the value to test. The function
11704 returns the integer 1 if the argument is known to be a compile-time
11705 constant and 0 if it is not known to be a compile-time constant. A
11706 return of 0 does not indicate that the value is @emph{not} a constant,
11707 but merely that GCC cannot prove it is a constant with the specified
11708 value of the @option{-O} option.
11709
11710 You typically use this function in an embedded application where
11711 memory is a critical resource. If you have some complex calculation,
11712 you may want it to be folded if it involves constants, but need to call
11713 a function if it does not. For example:
11714
11715 @smallexample
11716 #define Scale_Value(X) \
11717 (__builtin_constant_p (X) \
11718 ? ((X) * SCALE + OFFSET) : Scale (X))
11719 @end smallexample
11720
11721 You may use this built-in function in either a macro or an inline
11722 function. However, if you use it in an inlined function and pass an
11723 argument of the function as the argument to the built-in, GCC
11724 never returns 1 when you call the inline function with a string constant
11725 or compound literal (@pxref{Compound Literals}) and does not return 1
11726 when you pass a constant numeric value to the inline function unless you
11727 specify the @option{-O} option.
11728
11729 You may also use @code{__builtin_constant_p} in initializers for static
11730 data. For instance, you can write
11731
11732 @smallexample
11733 static const int table[] = @{
11734 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
11735 /* @r{@dots{}} */
11736 @};
11737 @end smallexample
11738
11739 @noindent
11740 This is an acceptable initializer even if @var{EXPRESSION} is not a
11741 constant expression, including the case where
11742 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
11743 folded to a constant but @var{EXPRESSION} contains operands that are
11744 not otherwise permitted in a static initializer (for example,
11745 @code{0 && foo ()}). GCC must be more conservative about evaluating the
11746 built-in in this case, because it has no opportunity to perform
11747 optimization.
11748 @end deftypefn
11749
11750 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
11751 @opindex fprofile-arcs
11752 You may use @code{__builtin_expect} to provide the compiler with
11753 branch prediction information. In general, you should prefer to
11754 use actual profile feedback for this (@option{-fprofile-arcs}), as
11755 programmers are notoriously bad at predicting how their programs
11756 actually perform. However, there are applications in which this
11757 data is hard to collect.
11758
11759 The return value is the value of @var{exp}, which should be an integral
11760 expression. The semantics of the built-in are that it is expected that
11761 @var{exp} == @var{c}. For example:
11762
11763 @smallexample
11764 if (__builtin_expect (x, 0))
11765 foo ();
11766 @end smallexample
11767
11768 @noindent
11769 indicates that we do not expect to call @code{foo}, since
11770 we expect @code{x} to be zero. Since you are limited to integral
11771 expressions for @var{exp}, you should use constructions such as
11772
11773 @smallexample
11774 if (__builtin_expect (ptr != NULL, 1))
11775 foo (*ptr);
11776 @end smallexample
11777
11778 @noindent
11779 when testing pointer or floating-point values.
11780 @end deftypefn
11781
11782 @deftypefn {Built-in Function} void __builtin_trap (void)
11783 This function causes the program to exit abnormally. GCC implements
11784 this function by using a target-dependent mechanism (such as
11785 intentionally executing an illegal instruction) or by calling
11786 @code{abort}. The mechanism used may vary from release to release so
11787 you should not rely on any particular implementation.
11788 @end deftypefn
11789
11790 @deftypefn {Built-in Function} void __builtin_unreachable (void)
11791 If control flow reaches the point of the @code{__builtin_unreachable},
11792 the program is undefined. It is useful in situations where the
11793 compiler cannot deduce the unreachability of the code.
11794
11795 One such case is immediately following an @code{asm} statement that
11796 either never terminates, or one that transfers control elsewhere
11797 and never returns. In this example, without the
11798 @code{__builtin_unreachable}, GCC issues a warning that control
11799 reaches the end of a non-void function. It also generates code
11800 to return after the @code{asm}.
11801
11802 @smallexample
11803 int f (int c, int v)
11804 @{
11805 if (c)
11806 @{
11807 return v;
11808 @}
11809 else
11810 @{
11811 asm("jmp error_handler");
11812 __builtin_unreachable ();
11813 @}
11814 @}
11815 @end smallexample
11816
11817 @noindent
11818 Because the @code{asm} statement unconditionally transfers control out
11819 of the function, control never reaches the end of the function
11820 body. The @code{__builtin_unreachable} is in fact unreachable and
11821 communicates this fact to the compiler.
11822
11823 Another use for @code{__builtin_unreachable} is following a call a
11824 function that never returns but that is not declared
11825 @code{__attribute__((noreturn))}, as in this example:
11826
11827 @smallexample
11828 void function_that_never_returns (void);
11829
11830 int g (int c)
11831 @{
11832 if (c)
11833 @{
11834 return 1;
11835 @}
11836 else
11837 @{
11838 function_that_never_returns ();
11839 __builtin_unreachable ();
11840 @}
11841 @}
11842 @end smallexample
11843
11844 @end deftypefn
11845
11846 @deftypefn {Built-in Function} {void *} __builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
11847 This function returns its first argument, and allows the compiler
11848 to assume that the returned pointer is at least @var{align} bytes
11849 aligned. This built-in can have either two or three arguments,
11850 if it has three, the third argument should have integer type, and
11851 if it is nonzero means misalignment offset. For example:
11852
11853 @smallexample
11854 void *x = __builtin_assume_aligned (arg, 16);
11855 @end smallexample
11856
11857 @noindent
11858 means that the compiler can assume @code{x}, set to @code{arg}, is at least
11859 16-byte aligned, while:
11860
11861 @smallexample
11862 void *x = __builtin_assume_aligned (arg, 32, 8);
11863 @end smallexample
11864
11865 @noindent
11866 means that the compiler can assume for @code{x}, set to @code{arg}, that
11867 @code{(char *) x - 8} is 32-byte aligned.
11868 @end deftypefn
11869
11870 @deftypefn {Built-in Function} int __builtin_LINE ()
11871 This function is the equivalent of the preprocessor @code{__LINE__}
11872 macro and returns a constant integer expression that evaluates to
11873 the line number of the invocation of the built-in. When used as a C++
11874 default argument for a function @var{F}, it returns the line number
11875 of the call to @var{F}.
11876 @end deftypefn
11877
11878 @deftypefn {Built-in Function} {const char *} __builtin_FUNCTION ()
11879 This function is the equivalent of the @code{__FUNCTION__} symbol
11880 and returns an address constant pointing to the name of the function
11881 from which the built-in was invoked, or the empty string if
11882 the invocation is not at function scope. When used as a C++ default
11883 argument for a function @var{F}, it returns the name of @var{F}'s
11884 caller or the empty string if the call was not made at function
11885 scope.
11886 @end deftypefn
11887
11888 @deftypefn {Built-in Function} {const char *} __builtin_FILE ()
11889 This function is the equivalent of the preprocessor @code{__FILE__}
11890 macro and returns an address constant pointing to the file name
11891 containing the invocation of the built-in, or the empty string if
11892 the invocation is not at function scope. When used as a C++ default
11893 argument for a function @var{F}, it returns the file name of the call
11894 to @var{F} or the empty string if the call was not made at function
11895 scope.
11896
11897 For example, in the following, each call to function @code{foo} will
11898 print a line similar to @code{"file.c:123: foo: message"} with the name
11899 of the file and the line number of the @code{printf} call, the name of
11900 the function @code{foo}, followed by the word @code{message}.
11901
11902 @smallexample
11903 const char*
11904 function (const char *func = __builtin_FUNCTION ())
11905 @{
11906 return func;
11907 @}
11908
11909 void foo (void)
11910 @{
11911 printf ("%s:%i: %s: message\n", file (), line (), function ());
11912 @}
11913 @end smallexample
11914
11915 @end deftypefn
11916
11917 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
11918 This function is used to flush the processor's instruction cache for
11919 the region of memory between @var{begin} inclusive and @var{end}
11920 exclusive. Some targets require that the instruction cache be
11921 flushed, after modifying memory containing code, in order to obtain
11922 deterministic behavior.
11923
11924 If the target does not require instruction cache flushes,
11925 @code{__builtin___clear_cache} has no effect. Otherwise either
11926 instructions are emitted in-line to clear the instruction cache or a
11927 call to the @code{__clear_cache} function in libgcc is made.
11928 @end deftypefn
11929
11930 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
11931 This function is used to minimize cache-miss latency by moving data into
11932 a cache before it is accessed.
11933 You can insert calls to @code{__builtin_prefetch} into code for which
11934 you know addresses of data in memory that is likely to be accessed soon.
11935 If the target supports them, data prefetch instructions are generated.
11936 If the prefetch is done early enough before the access then the data will
11937 be in the cache by the time it is accessed.
11938
11939 The value of @var{addr} is the address of the memory to prefetch.
11940 There are two optional arguments, @var{rw} and @var{locality}.
11941 The value of @var{rw} is a compile-time constant one or zero; one
11942 means that the prefetch is preparing for a write to the memory address
11943 and zero, the default, means that the prefetch is preparing for a read.
11944 The value @var{locality} must be a compile-time constant integer between
11945 zero and three. A value of zero means that the data has no temporal
11946 locality, so it need not be left in the cache after the access. A value
11947 of three means that the data has a high degree of temporal locality and
11948 should be left in all levels of cache possible. Values of one and two
11949 mean, respectively, a low or moderate degree of temporal locality. The
11950 default is three.
11951
11952 @smallexample
11953 for (i = 0; i < n; i++)
11954 @{
11955 a[i] = a[i] + b[i];
11956 __builtin_prefetch (&a[i+j], 1, 1);
11957 __builtin_prefetch (&b[i+j], 0, 1);
11958 /* @r{@dots{}} */
11959 @}
11960 @end smallexample
11961
11962 Data prefetch does not generate faults if @var{addr} is invalid, but
11963 the address expression itself must be valid. For example, a prefetch
11964 of @code{p->next} does not fault if @code{p->next} is not a valid
11965 address, but evaluation faults if @code{p} is not a valid address.
11966
11967 If the target does not support data prefetch, the address expression
11968 is evaluated if it includes side effects but no other code is generated
11969 and GCC does not issue a warning.
11970 @end deftypefn
11971
11972 @deftypefn {Built-in Function} double __builtin_huge_val (void)
11973 Returns a positive infinity, if supported by the floating-point format,
11974 else @code{DBL_MAX}. This function is suitable for implementing the
11975 ISO C macro @code{HUGE_VAL}.
11976 @end deftypefn
11977
11978 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
11979 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
11980 @end deftypefn
11981
11982 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
11983 Similar to @code{__builtin_huge_val}, except the return
11984 type is @code{long double}.
11985 @end deftypefn
11986
11987 @deftypefn {Built-in Function} _Float@var{n} __builtin_huge_valf@var{n} (void)
11988 Similar to @code{__builtin_huge_val}, except the return type is
11989 @code{_Float@var{n}}.
11990 @end deftypefn
11991
11992 @deftypefn {Built-in Function} _Float@var{n}x __builtin_huge_valf@var{n}x (void)
11993 Similar to @code{__builtin_huge_val}, except the return type is
11994 @code{_Float@var{n}x}.
11995 @end deftypefn
11996
11997 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
11998 This built-in implements the C99 fpclassify functionality. The first
11999 five int arguments should be the target library's notion of the
12000 possible FP classes and are used for return values. They must be
12001 constant values and they must appear in this order: @code{FP_NAN},
12002 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
12003 @code{FP_ZERO}. The ellipsis is for exactly one floating-point value
12004 to classify. GCC treats the last argument as type-generic, which
12005 means it does not do default promotion from float to double.
12006 @end deftypefn
12007
12008 @deftypefn {Built-in Function} double __builtin_inf (void)
12009 Similar to @code{__builtin_huge_val}, except a warning is generated
12010 if the target floating-point format does not support infinities.
12011 @end deftypefn
12012
12013 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
12014 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
12015 @end deftypefn
12016
12017 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
12018 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
12019 @end deftypefn
12020
12021 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
12022 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
12023 @end deftypefn
12024
12025 @deftypefn {Built-in Function} float __builtin_inff (void)
12026 Similar to @code{__builtin_inf}, except the return type is @code{float}.
12027 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
12028 @end deftypefn
12029
12030 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
12031 Similar to @code{__builtin_inf}, except the return
12032 type is @code{long double}.
12033 @end deftypefn
12034
12035 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n} (void)
12036 Similar to @code{__builtin_inf}, except the return
12037 type is @code{_Float@var{n}}.
12038 @end deftypefn
12039
12040 @deftypefn {Built-in Function} _Float@var{n} __builtin_inff@var{n}x (void)
12041 Similar to @code{__builtin_inf}, except the return
12042 type is @code{_Float@var{n}x}.
12043 @end deftypefn
12044
12045 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
12046 Similar to @code{isinf}, except the return value is -1 for
12047 an argument of @code{-Inf} and 1 for an argument of @code{+Inf}.
12048 Note while the parameter list is an
12049 ellipsis, this function only accepts exactly one floating-point
12050 argument. GCC treats this parameter as type-generic, which means it
12051 does not do default promotion from float to double.
12052 @end deftypefn
12053
12054 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
12055 This is an implementation of the ISO C99 function @code{nan}.
12056
12057 Since ISO C99 defines this function in terms of @code{strtod}, which we
12058 do not implement, a description of the parsing is in order. The string
12059 is parsed as by @code{strtol}; that is, the base is recognized by
12060 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
12061 in the significand such that the least significant bit of the number
12062 is at the least significant bit of the significand. The number is
12063 truncated to fit the significand field provided. The significand is
12064 forced to be a quiet NaN@.
12065
12066 This function, if given a string literal all of which would have been
12067 consumed by @code{strtol}, is evaluated early enough that it is considered a
12068 compile-time constant.
12069 @end deftypefn
12070
12071 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
12072 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
12073 @end deftypefn
12074
12075 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
12076 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
12077 @end deftypefn
12078
12079 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
12080 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
12081 @end deftypefn
12082
12083 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
12084 Similar to @code{__builtin_nan}, except the return type is @code{float}.
12085 @end deftypefn
12086
12087 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
12088 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
12089 @end deftypefn
12090
12091 @deftypefn {Built-in Function} _Float@var{n} __builtin_nanf@var{n} (const char *str)
12092 Similar to @code{__builtin_nan}, except the return type is
12093 @code{_Float@var{n}}.
12094 @end deftypefn
12095
12096 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nanf@var{n}x (const char *str)
12097 Similar to @code{__builtin_nan}, except the return type is
12098 @code{_Float@var{n}x}.
12099 @end deftypefn
12100
12101 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
12102 Similar to @code{__builtin_nan}, except the significand is forced
12103 to be a signaling NaN@. The @code{nans} function is proposed by
12104 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
12105 @end deftypefn
12106
12107 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
12108 Similar to @code{__builtin_nans}, except the return type is @code{float}.
12109 @end deftypefn
12110
12111 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
12112 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
12113 @end deftypefn
12114
12115 @deftypefn {Built-in Function} _Float@var{n} __builtin_nansf@var{n} (const char *str)
12116 Similar to @code{__builtin_nans}, except the return type is
12117 @code{_Float@var{n}}.
12118 @end deftypefn
12119
12120 @deftypefn {Built-in Function} _Float@var{n}x __builtin_nansf@var{n}x (const char *str)
12121 Similar to @code{__builtin_nans}, except the return type is
12122 @code{_Float@var{n}x}.
12123 @end deftypefn
12124
12125 @deftypefn {Built-in Function} int __builtin_ffs (int x)
12126 Returns one plus the index of the least significant 1-bit of @var{x}, or
12127 if @var{x} is zero, returns zero.
12128 @end deftypefn
12129
12130 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
12131 Returns the number of leading 0-bits in @var{x}, starting at the most
12132 significant bit position. If @var{x} is 0, the result is undefined.
12133 @end deftypefn
12134
12135 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
12136 Returns the number of trailing 0-bits in @var{x}, starting at the least
12137 significant bit position. If @var{x} is 0, the result is undefined.
12138 @end deftypefn
12139
12140 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
12141 Returns the number of leading redundant sign bits in @var{x}, i.e.@: the
12142 number of bits following the most significant bit that are identical
12143 to it. There are no special cases for 0 or other values.
12144 @end deftypefn
12145
12146 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
12147 Returns the number of 1-bits in @var{x}.
12148 @end deftypefn
12149
12150 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
12151 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
12152 modulo 2.
12153 @end deftypefn
12154
12155 @deftypefn {Built-in Function} int __builtin_ffsl (long)
12156 Similar to @code{__builtin_ffs}, except the argument type is
12157 @code{long}.
12158 @end deftypefn
12159
12160 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
12161 Similar to @code{__builtin_clz}, except the argument type is
12162 @code{unsigned long}.
12163 @end deftypefn
12164
12165 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
12166 Similar to @code{__builtin_ctz}, except the argument type is
12167 @code{unsigned long}.
12168 @end deftypefn
12169
12170 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
12171 Similar to @code{__builtin_clrsb}, except the argument type is
12172 @code{long}.
12173 @end deftypefn
12174
12175 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
12176 Similar to @code{__builtin_popcount}, except the argument type is
12177 @code{unsigned long}.
12178 @end deftypefn
12179
12180 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
12181 Similar to @code{__builtin_parity}, except the argument type is
12182 @code{unsigned long}.
12183 @end deftypefn
12184
12185 @deftypefn {Built-in Function} int __builtin_ffsll (long long)
12186 Similar to @code{__builtin_ffs}, except the argument type is
12187 @code{long long}.
12188 @end deftypefn
12189
12190 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
12191 Similar to @code{__builtin_clz}, except the argument type is
12192 @code{unsigned long long}.
12193 @end deftypefn
12194
12195 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
12196 Similar to @code{__builtin_ctz}, except the argument type is
12197 @code{unsigned long long}.
12198 @end deftypefn
12199
12200 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
12201 Similar to @code{__builtin_clrsb}, except the argument type is
12202 @code{long long}.
12203 @end deftypefn
12204
12205 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
12206 Similar to @code{__builtin_popcount}, except the argument type is
12207 @code{unsigned long long}.
12208 @end deftypefn
12209
12210 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
12211 Similar to @code{__builtin_parity}, except the argument type is
12212 @code{unsigned long long}.
12213 @end deftypefn
12214
12215 @deftypefn {Built-in Function} double __builtin_powi (double, int)
12216 Returns the first argument raised to the power of the second. Unlike the
12217 @code{pow} function no guarantees about precision and rounding are made.
12218 @end deftypefn
12219
12220 @deftypefn {Built-in Function} float __builtin_powif (float, int)
12221 Similar to @code{__builtin_powi}, except the argument and return types
12222 are @code{float}.
12223 @end deftypefn
12224
12225 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
12226 Similar to @code{__builtin_powi}, except the argument and return types
12227 are @code{long double}.
12228 @end deftypefn
12229
12230 @deftypefn {Built-in Function} uint16_t __builtin_bswap16 (uint16_t x)
12231 Returns @var{x} with the order of the bytes reversed; for example,
12232 @code{0xaabb} becomes @code{0xbbaa}. Byte here always means
12233 exactly 8 bits.
12234 @end deftypefn
12235
12236 @deftypefn {Built-in Function} uint32_t __builtin_bswap32 (uint32_t x)
12237 Similar to @code{__builtin_bswap16}, except the argument and return types
12238 are 32 bit.
12239 @end deftypefn
12240
12241 @deftypefn {Built-in Function} uint64_t __builtin_bswap64 (uint64_t x)
12242 Similar to @code{__builtin_bswap32}, except the argument and return types
12243 are 64 bit.
12244 @end deftypefn
12245
12246 @node Target Builtins
12247 @section Built-in Functions Specific to Particular Target Machines
12248
12249 On some target machines, GCC supports many built-in functions specific
12250 to those machines. Generally these generate calls to specific machine
12251 instructions, but allow the compiler to schedule those calls.
12252
12253 @menu
12254 * AArch64 Built-in Functions::
12255 * Alpha Built-in Functions::
12256 * Altera Nios II Built-in Functions::
12257 * ARC Built-in Functions::
12258 * ARC SIMD Built-in Functions::
12259 * ARM iWMMXt Built-in Functions::
12260 * ARM C Language Extensions (ACLE)::
12261 * ARM Floating Point Status and Control Intrinsics::
12262 * ARM ARMv8-M Security Extensions::
12263 * AVR Built-in Functions::
12264 * Blackfin Built-in Functions::
12265 * FR-V Built-in Functions::
12266 * MIPS DSP Built-in Functions::
12267 * MIPS Paired-Single Support::
12268 * MIPS Loongson Built-in Functions::
12269 * MIPS SIMD Architecture (MSA) Support::
12270 * Other MIPS Built-in Functions::
12271 * MSP430 Built-in Functions::
12272 * NDS32 Built-in Functions::
12273 * picoChip Built-in Functions::
12274 * PowerPC Built-in Functions::
12275 * PowerPC AltiVec/VSX Built-in Functions::
12276 * PowerPC Hardware Transactional Memory Built-in Functions::
12277 * PowerPC Atomic Memory Operation Functions::
12278 * RX Built-in Functions::
12279 * S/390 System z Built-in Functions::
12280 * SH Built-in Functions::
12281 * SPARC VIS Built-in Functions::
12282 * SPU Built-in Functions::
12283 * TI C6X Built-in Functions::
12284 * TILE-Gx Built-in Functions::
12285 * TILEPro Built-in Functions::
12286 * x86 Built-in Functions::
12287 * x86 transactional memory intrinsics::
12288 @end menu
12289
12290 @node AArch64 Built-in Functions
12291 @subsection AArch64 Built-in Functions
12292
12293 These built-in functions are available for the AArch64 family of
12294 processors.
12295 @smallexample
12296 unsigned int __builtin_aarch64_get_fpcr ()
12297 void __builtin_aarch64_set_fpcr (unsigned int)
12298 unsigned int __builtin_aarch64_get_fpsr ()
12299 void __builtin_aarch64_set_fpsr (unsigned int)
12300 @end smallexample
12301
12302 @node Alpha Built-in Functions
12303 @subsection Alpha Built-in Functions
12304
12305 These built-in functions are available for the Alpha family of
12306 processors, depending on the command-line switches used.
12307
12308 The following built-in functions are always available. They
12309 all generate the machine instruction that is part of the name.
12310
12311 @smallexample
12312 long __builtin_alpha_implver (void)
12313 long __builtin_alpha_rpcc (void)
12314 long __builtin_alpha_amask (long)
12315 long __builtin_alpha_cmpbge (long, long)
12316 long __builtin_alpha_extbl (long, long)
12317 long __builtin_alpha_extwl (long, long)
12318 long __builtin_alpha_extll (long, long)
12319 long __builtin_alpha_extql (long, long)
12320 long __builtin_alpha_extwh (long, long)
12321 long __builtin_alpha_extlh (long, long)
12322 long __builtin_alpha_extqh (long, long)
12323 long __builtin_alpha_insbl (long, long)
12324 long __builtin_alpha_inswl (long, long)
12325 long __builtin_alpha_insll (long, long)
12326 long __builtin_alpha_insql (long, long)
12327 long __builtin_alpha_inswh (long, long)
12328 long __builtin_alpha_inslh (long, long)
12329 long __builtin_alpha_insqh (long, long)
12330 long __builtin_alpha_mskbl (long, long)
12331 long __builtin_alpha_mskwl (long, long)
12332 long __builtin_alpha_mskll (long, long)
12333 long __builtin_alpha_mskql (long, long)
12334 long __builtin_alpha_mskwh (long, long)
12335 long __builtin_alpha_msklh (long, long)
12336 long __builtin_alpha_mskqh (long, long)
12337 long __builtin_alpha_umulh (long, long)
12338 long __builtin_alpha_zap (long, long)
12339 long __builtin_alpha_zapnot (long, long)
12340 @end smallexample
12341
12342 The following built-in functions are always with @option{-mmax}
12343 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
12344 later. They all generate the machine instruction that is part
12345 of the name.
12346
12347 @smallexample
12348 long __builtin_alpha_pklb (long)
12349 long __builtin_alpha_pkwb (long)
12350 long __builtin_alpha_unpkbl (long)
12351 long __builtin_alpha_unpkbw (long)
12352 long __builtin_alpha_minub8 (long, long)
12353 long __builtin_alpha_minsb8 (long, long)
12354 long __builtin_alpha_minuw4 (long, long)
12355 long __builtin_alpha_minsw4 (long, long)
12356 long __builtin_alpha_maxub8 (long, long)
12357 long __builtin_alpha_maxsb8 (long, long)
12358 long __builtin_alpha_maxuw4 (long, long)
12359 long __builtin_alpha_maxsw4 (long, long)
12360 long __builtin_alpha_perr (long, long)
12361 @end smallexample
12362
12363 The following built-in functions are always with @option{-mcix}
12364 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
12365 later. They all generate the machine instruction that is part
12366 of the name.
12367
12368 @smallexample
12369 long __builtin_alpha_cttz (long)
12370 long __builtin_alpha_ctlz (long)
12371 long __builtin_alpha_ctpop (long)
12372 @end smallexample
12373
12374 The following built-in functions are available on systems that use the OSF/1
12375 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
12376 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
12377 @code{rdval} and @code{wrval}.
12378
12379 @smallexample
12380 void *__builtin_thread_pointer (void)
12381 void __builtin_set_thread_pointer (void *)
12382 @end smallexample
12383
12384 @node Altera Nios II Built-in Functions
12385 @subsection Altera Nios II Built-in Functions
12386
12387 These built-in functions are available for the Altera Nios II
12388 family of processors.
12389
12390 The following built-in functions are always available. They
12391 all generate the machine instruction that is part of the name.
12392
12393 @example
12394 int __builtin_ldbio (volatile const void *)
12395 int __builtin_ldbuio (volatile const void *)
12396 int __builtin_ldhio (volatile const void *)
12397 int __builtin_ldhuio (volatile const void *)
12398 int __builtin_ldwio (volatile const void *)
12399 void __builtin_stbio (volatile void *, int)
12400 void __builtin_sthio (volatile void *, int)
12401 void __builtin_stwio (volatile void *, int)
12402 void __builtin_sync (void)
12403 int __builtin_rdctl (int)
12404 int __builtin_rdprs (int, int)
12405 void __builtin_wrctl (int, int)
12406 void __builtin_flushd (volatile void *)
12407 void __builtin_flushda (volatile void *)
12408 int __builtin_wrpie (int);
12409 void __builtin_eni (int);
12410 int __builtin_ldex (volatile const void *)
12411 int __builtin_stex (volatile void *, int)
12412 int __builtin_ldsex (volatile const void *)
12413 int __builtin_stsex (volatile void *, int)
12414 @end example
12415
12416 The following built-in functions are always available. They
12417 all generate a Nios II Custom Instruction. The name of the
12418 function represents the types that the function takes and
12419 returns. The letter before the @code{n} is the return type
12420 or void if absent. The @code{n} represents the first parameter
12421 to all the custom instructions, the custom instruction number.
12422 The two letters after the @code{n} represent the up to two
12423 parameters to the function.
12424
12425 The letters represent the following data types:
12426 @table @code
12427 @item <no letter>
12428 @code{void} for return type and no parameter for parameter types.
12429
12430 @item i
12431 @code{int} for return type and parameter type
12432
12433 @item f
12434 @code{float} for return type and parameter type
12435
12436 @item p
12437 @code{void *} for return type and parameter type
12438
12439 @end table
12440
12441 And the function names are:
12442 @example
12443 void __builtin_custom_n (void)
12444 void __builtin_custom_ni (int)
12445 void __builtin_custom_nf (float)
12446 void __builtin_custom_np (void *)
12447 void __builtin_custom_nii (int, int)
12448 void __builtin_custom_nif (int, float)
12449 void __builtin_custom_nip (int, void *)
12450 void __builtin_custom_nfi (float, int)
12451 void __builtin_custom_nff (float, float)
12452 void __builtin_custom_nfp (float, void *)
12453 void __builtin_custom_npi (void *, int)
12454 void __builtin_custom_npf (void *, float)
12455 void __builtin_custom_npp (void *, void *)
12456 int __builtin_custom_in (void)
12457 int __builtin_custom_ini (int)
12458 int __builtin_custom_inf (float)
12459 int __builtin_custom_inp (void *)
12460 int __builtin_custom_inii (int, int)
12461 int __builtin_custom_inif (int, float)
12462 int __builtin_custom_inip (int, void *)
12463 int __builtin_custom_infi (float, int)
12464 int __builtin_custom_inff (float, float)
12465 int __builtin_custom_infp (float, void *)
12466 int __builtin_custom_inpi (void *, int)
12467 int __builtin_custom_inpf (void *, float)
12468 int __builtin_custom_inpp (void *, void *)
12469 float __builtin_custom_fn (void)
12470 float __builtin_custom_fni (int)
12471 float __builtin_custom_fnf (float)
12472 float __builtin_custom_fnp (void *)
12473 float __builtin_custom_fnii (int, int)
12474 float __builtin_custom_fnif (int, float)
12475 float __builtin_custom_fnip (int, void *)
12476 float __builtin_custom_fnfi (float, int)
12477 float __builtin_custom_fnff (float, float)
12478 float __builtin_custom_fnfp (float, void *)
12479 float __builtin_custom_fnpi (void *, int)
12480 float __builtin_custom_fnpf (void *, float)
12481 float __builtin_custom_fnpp (void *, void *)
12482 void * __builtin_custom_pn (void)
12483 void * __builtin_custom_pni (int)
12484 void * __builtin_custom_pnf (float)
12485 void * __builtin_custom_pnp (void *)
12486 void * __builtin_custom_pnii (int, int)
12487 void * __builtin_custom_pnif (int, float)
12488 void * __builtin_custom_pnip (int, void *)
12489 void * __builtin_custom_pnfi (float, int)
12490 void * __builtin_custom_pnff (float, float)
12491 void * __builtin_custom_pnfp (float, void *)
12492 void * __builtin_custom_pnpi (void *, int)
12493 void * __builtin_custom_pnpf (void *, float)
12494 void * __builtin_custom_pnpp (void *, void *)
12495 @end example
12496
12497 @node ARC Built-in Functions
12498 @subsection ARC Built-in Functions
12499
12500 The following built-in functions are provided for ARC targets. The
12501 built-ins generate the corresponding assembly instructions. In the
12502 examples given below, the generated code often requires an operand or
12503 result to be in a register. Where necessary further code will be
12504 generated to ensure this is true, but for brevity this is not
12505 described in each case.
12506
12507 @emph{Note:} Using a built-in to generate an instruction not supported
12508 by a target may cause problems. At present the compiler is not
12509 guaranteed to detect such misuse, and as a result an internal compiler
12510 error may be generated.
12511
12512 @deftypefn {Built-in Function} int __builtin_arc_aligned (void *@var{val}, int @var{alignval})
12513 Return 1 if @var{val} is known to have the byte alignment given
12514 by @var{alignval}, otherwise return 0.
12515 Note that this is different from
12516 @smallexample
12517 __alignof__(*(char *)@var{val}) >= alignval
12518 @end smallexample
12519 because __alignof__ sees only the type of the dereference, whereas
12520 __builtin_arc_align uses alignment information from the pointer
12521 as well as from the pointed-to type.
12522 The information available will depend on optimization level.
12523 @end deftypefn
12524
12525 @deftypefn {Built-in Function} void __builtin_arc_brk (void)
12526 Generates
12527 @example
12528 brk
12529 @end example
12530 @end deftypefn
12531
12532 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_core_read (unsigned int @var{regno})
12533 The operand is the number of a register to be read. Generates:
12534 @example
12535 mov @var{dest}, r@var{regno}
12536 @end example
12537 where the value in @var{dest} will be the result returned from the
12538 built-in.
12539 @end deftypefn
12540
12541 @deftypefn {Built-in Function} void __builtin_arc_core_write (unsigned int @var{regno}, unsigned int @var{val})
12542 The first operand is the number of a register to be written, the
12543 second operand is a compile time constant to write into that
12544 register. Generates:
12545 @example
12546 mov r@var{regno}, @var{val}
12547 @end example
12548 @end deftypefn
12549
12550 @deftypefn {Built-in Function} int __builtin_arc_divaw (int @var{a}, int @var{b})
12551 Only available if either @option{-mcpu=ARC700} or @option{-meA} is set.
12552 Generates:
12553 @example
12554 divaw @var{dest}, @var{a}, @var{b}
12555 @end example
12556 where the value in @var{dest} will be the result returned from the
12557 built-in.
12558 @end deftypefn
12559
12560 @deftypefn {Built-in Function} void __builtin_arc_flag (unsigned int @var{a})
12561 Generates
12562 @example
12563 flag @var{a}
12564 @end example
12565 @end deftypefn
12566
12567 @deftypefn {Built-in Function} {unsigned int} __builtin_arc_lr (unsigned int @var{auxr})
12568 The operand, @var{auxv}, is the address of an auxiliary register and
12569 must be a compile time constant. Generates:
12570 @example
12571 lr @var{dest}, [@var{auxr}]
12572 @end example
12573 Where the value in @var{dest} will be the result returned from the
12574 built-in.
12575 @end deftypefn
12576
12577 @deftypefn {Built-in Function} void __builtin_arc_mul64 (int @var{a}, int @var{b})
12578 Only available with @option{-mmul64}. Generates:
12579 @example
12580 mul64 @var{a}, @var{b}
12581 @end example
12582 @end deftypefn
12583
12584 @deftypefn {Built-in Function} void __builtin_arc_mulu64 (unsigned int @var{a}, unsigned int @var{b})
12585 Only available with @option{-mmul64}. Generates:
12586 @example
12587 mulu64 @var{a}, @var{b}
12588 @end example
12589 @end deftypefn
12590
12591 @deftypefn {Built-in Function} void __builtin_arc_nop (void)
12592 Generates:
12593 @example
12594 nop
12595 @end example
12596 @end deftypefn
12597
12598 @deftypefn {Built-in Function} int __builtin_arc_norm (int @var{src})
12599 Only valid if the @samp{norm} instruction is available through the
12600 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12601 Generates:
12602 @example
12603 norm @var{dest}, @var{src}
12604 @end example
12605 Where the value in @var{dest} will be the result returned from the
12606 built-in.
12607 @end deftypefn
12608
12609 @deftypefn {Built-in Function} {short int} __builtin_arc_normw (short int @var{src})
12610 Only valid if the @samp{normw} instruction is available through the
12611 @option{-mnorm} option or by default with @option{-mcpu=ARC700}.
12612 Generates:
12613 @example
12614 normw @var{dest}, @var{src}
12615 @end example
12616 Where the value in @var{dest} will be the result returned from the
12617 built-in.
12618 @end deftypefn
12619
12620 @deftypefn {Built-in Function} void __builtin_arc_rtie (void)
12621 Generates:
12622 @example
12623 rtie
12624 @end example
12625 @end deftypefn
12626
12627 @deftypefn {Built-in Function} void __builtin_arc_sleep (int @var{a}
12628 Generates:
12629 @example
12630 sleep @var{a}
12631 @end example
12632 @end deftypefn
12633
12634 @deftypefn {Built-in Function} void __builtin_arc_sr (unsigned int @var{auxr}, unsigned int @var{val})
12635 The first argument, @var{auxv}, is the address of an auxiliary
12636 register, the second argument, @var{val}, is a compile time constant
12637 to be written to the register. Generates:
12638 @example
12639 sr @var{auxr}, [@var{val}]
12640 @end example
12641 @end deftypefn
12642
12643 @deftypefn {Built-in Function} int __builtin_arc_swap (int @var{src})
12644 Only valid with @option{-mswap}. Generates:
12645 @example
12646 swap @var{dest}, @var{src}
12647 @end example
12648 Where the value in @var{dest} will be the result returned from the
12649 built-in.
12650 @end deftypefn
12651
12652 @deftypefn {Built-in Function} void __builtin_arc_swi (void)
12653 Generates:
12654 @example
12655 swi
12656 @end example
12657 @end deftypefn
12658
12659 @deftypefn {Built-in Function} void __builtin_arc_sync (void)
12660 Only available with @option{-mcpu=ARC700}. Generates:
12661 @example
12662 sync
12663 @end example
12664 @end deftypefn
12665
12666 @deftypefn {Built-in Function} void __builtin_arc_trap_s (unsigned int @var{c})
12667 Only available with @option{-mcpu=ARC700}. Generates:
12668 @example
12669 trap_s @var{c}
12670 @end example
12671 @end deftypefn
12672
12673 @deftypefn {Built-in Function} void __builtin_arc_unimp_s (void)
12674 Only available with @option{-mcpu=ARC700}. Generates:
12675 @example
12676 unimp_s
12677 @end example
12678 @end deftypefn
12679
12680 The instructions generated by the following builtins are not
12681 considered as candidates for scheduling. They are not moved around by
12682 the compiler during scheduling, and thus can be expected to appear
12683 where they are put in the C code:
12684 @example
12685 __builtin_arc_brk()
12686 __builtin_arc_core_read()
12687 __builtin_arc_core_write()
12688 __builtin_arc_flag()
12689 __builtin_arc_lr()
12690 __builtin_arc_sleep()
12691 __builtin_arc_sr()
12692 __builtin_arc_swi()
12693 @end example
12694
12695 @node ARC SIMD Built-in Functions
12696 @subsection ARC SIMD Built-in Functions
12697
12698 SIMD builtins provided by the compiler can be used to generate the
12699 vector instructions. This section describes the available builtins
12700 and their usage in programs. With the @option{-msimd} option, the
12701 compiler provides 128-bit vector types, which can be specified using
12702 the @code{vector_size} attribute. The header file @file{arc-simd.h}
12703 can be included to use the following predefined types:
12704 @example
12705 typedef int __v4si __attribute__((vector_size(16)));
12706 typedef short __v8hi __attribute__((vector_size(16)));
12707 @end example
12708
12709 These types can be used to define 128-bit variables. The built-in
12710 functions listed in the following section can be used on these
12711 variables to generate the vector operations.
12712
12713 For all builtins, @code{__builtin_arc_@var{someinsn}}, the header file
12714 @file{arc-simd.h} also provides equivalent macros called
12715 @code{_@var{someinsn}} that can be used for programming ease and
12716 improved readability. The following macros for DMA control are also
12717 provided:
12718 @example
12719 #define _setup_dma_in_channel_reg _vdiwr
12720 #define _setup_dma_out_channel_reg _vdowr
12721 @end example
12722
12723 The following is a complete list of all the SIMD built-ins provided
12724 for ARC, grouped by calling signature.
12725
12726 The following take two @code{__v8hi} arguments and return a
12727 @code{__v8hi} result:
12728 @example
12729 __v8hi __builtin_arc_vaddaw (__v8hi, __v8hi)
12730 __v8hi __builtin_arc_vaddw (__v8hi, __v8hi)
12731 __v8hi __builtin_arc_vand (__v8hi, __v8hi)
12732 __v8hi __builtin_arc_vandaw (__v8hi, __v8hi)
12733 __v8hi __builtin_arc_vavb (__v8hi, __v8hi)
12734 __v8hi __builtin_arc_vavrb (__v8hi, __v8hi)
12735 __v8hi __builtin_arc_vbic (__v8hi, __v8hi)
12736 __v8hi __builtin_arc_vbicaw (__v8hi, __v8hi)
12737 __v8hi __builtin_arc_vdifaw (__v8hi, __v8hi)
12738 __v8hi __builtin_arc_vdifw (__v8hi, __v8hi)
12739 __v8hi __builtin_arc_veqw (__v8hi, __v8hi)
12740 __v8hi __builtin_arc_vh264f (__v8hi, __v8hi)
12741 __v8hi __builtin_arc_vh264ft (__v8hi, __v8hi)
12742 __v8hi __builtin_arc_vh264fw (__v8hi, __v8hi)
12743 __v8hi __builtin_arc_vlew (__v8hi, __v8hi)
12744 __v8hi __builtin_arc_vltw (__v8hi, __v8hi)
12745 __v8hi __builtin_arc_vmaxaw (__v8hi, __v8hi)
12746 __v8hi __builtin_arc_vmaxw (__v8hi, __v8hi)
12747 __v8hi __builtin_arc_vminaw (__v8hi, __v8hi)
12748 __v8hi __builtin_arc_vminw (__v8hi, __v8hi)
12749 __v8hi __builtin_arc_vmr1aw (__v8hi, __v8hi)
12750 __v8hi __builtin_arc_vmr1w (__v8hi, __v8hi)
12751 __v8hi __builtin_arc_vmr2aw (__v8hi, __v8hi)
12752 __v8hi __builtin_arc_vmr2w (__v8hi, __v8hi)
12753 __v8hi __builtin_arc_vmr3aw (__v8hi, __v8hi)
12754 __v8hi __builtin_arc_vmr3w (__v8hi, __v8hi)
12755 __v8hi __builtin_arc_vmr4aw (__v8hi, __v8hi)
12756 __v8hi __builtin_arc_vmr4w (__v8hi, __v8hi)
12757 __v8hi __builtin_arc_vmr5aw (__v8hi, __v8hi)
12758 __v8hi __builtin_arc_vmr5w (__v8hi, __v8hi)
12759 __v8hi __builtin_arc_vmr6aw (__v8hi, __v8hi)
12760 __v8hi __builtin_arc_vmr6w (__v8hi, __v8hi)
12761 __v8hi __builtin_arc_vmr7aw (__v8hi, __v8hi)
12762 __v8hi __builtin_arc_vmr7w (__v8hi, __v8hi)
12763 __v8hi __builtin_arc_vmrb (__v8hi, __v8hi)
12764 __v8hi __builtin_arc_vmulaw (__v8hi, __v8hi)
12765 __v8hi __builtin_arc_vmulfaw (__v8hi, __v8hi)
12766 __v8hi __builtin_arc_vmulfw (__v8hi, __v8hi)
12767 __v8hi __builtin_arc_vmulw (__v8hi, __v8hi)
12768 __v8hi __builtin_arc_vnew (__v8hi, __v8hi)
12769 __v8hi __builtin_arc_vor (__v8hi, __v8hi)
12770 __v8hi __builtin_arc_vsubaw (__v8hi, __v8hi)
12771 __v8hi __builtin_arc_vsubw (__v8hi, __v8hi)
12772 __v8hi __builtin_arc_vsummw (__v8hi, __v8hi)
12773 __v8hi __builtin_arc_vvc1f (__v8hi, __v8hi)
12774 __v8hi __builtin_arc_vvc1ft (__v8hi, __v8hi)
12775 __v8hi __builtin_arc_vxor (__v8hi, __v8hi)
12776 __v8hi __builtin_arc_vxoraw (__v8hi, __v8hi)
12777 @end example
12778
12779 The following take one @code{__v8hi} and one @code{int} argument and return a
12780 @code{__v8hi} result:
12781
12782 @example
12783 __v8hi __builtin_arc_vbaddw (__v8hi, int)
12784 __v8hi __builtin_arc_vbmaxw (__v8hi, int)
12785 __v8hi __builtin_arc_vbminw (__v8hi, int)
12786 __v8hi __builtin_arc_vbmulaw (__v8hi, int)
12787 __v8hi __builtin_arc_vbmulfw (__v8hi, int)
12788 __v8hi __builtin_arc_vbmulw (__v8hi, int)
12789 __v8hi __builtin_arc_vbrsubw (__v8hi, int)
12790 __v8hi __builtin_arc_vbsubw (__v8hi, int)
12791 @end example
12792
12793 The following take one @code{__v8hi} argument and one @code{int} argument which
12794 must be a 3-bit compile time constant indicating a register number
12795 I0-I7. They return a @code{__v8hi} result.
12796 @example
12797 __v8hi __builtin_arc_vasrw (__v8hi, const int)
12798 __v8hi __builtin_arc_vsr8 (__v8hi, const int)
12799 __v8hi __builtin_arc_vsr8aw (__v8hi, const int)
12800 @end example
12801
12802 The following take one @code{__v8hi} argument and one @code{int}
12803 argument which must be a 6-bit compile time constant. They return a
12804 @code{__v8hi} result.
12805 @example
12806 __v8hi __builtin_arc_vasrpwbi (__v8hi, const int)
12807 __v8hi __builtin_arc_vasrrpwbi (__v8hi, const int)
12808 __v8hi __builtin_arc_vasrrwi (__v8hi, const int)
12809 __v8hi __builtin_arc_vasrsrwi (__v8hi, const int)
12810 __v8hi __builtin_arc_vasrwi (__v8hi, const int)
12811 __v8hi __builtin_arc_vsr8awi (__v8hi, const int)
12812 __v8hi __builtin_arc_vsr8i (__v8hi, const int)
12813 @end example
12814
12815 The following take one @code{__v8hi} argument and one @code{int} argument which
12816 must be a 8-bit compile time constant. They return a @code{__v8hi}
12817 result.
12818 @example
12819 __v8hi __builtin_arc_vd6tapf (__v8hi, const int)
12820 __v8hi __builtin_arc_vmvaw (__v8hi, const int)
12821 __v8hi __builtin_arc_vmvw (__v8hi, const int)
12822 __v8hi __builtin_arc_vmvzw (__v8hi, const int)
12823 @end example
12824
12825 The following take two @code{int} arguments, the second of which which
12826 must be a 8-bit compile time constant. They return a @code{__v8hi}
12827 result:
12828 @example
12829 __v8hi __builtin_arc_vmovaw (int, const int)
12830 __v8hi __builtin_arc_vmovw (int, const int)
12831 __v8hi __builtin_arc_vmovzw (int, const int)
12832 @end example
12833
12834 The following take a single @code{__v8hi} argument and return a
12835 @code{__v8hi} result:
12836 @example
12837 __v8hi __builtin_arc_vabsaw (__v8hi)
12838 __v8hi __builtin_arc_vabsw (__v8hi)
12839 __v8hi __builtin_arc_vaddsuw (__v8hi)
12840 __v8hi __builtin_arc_vexch1 (__v8hi)
12841 __v8hi __builtin_arc_vexch2 (__v8hi)
12842 __v8hi __builtin_arc_vexch4 (__v8hi)
12843 __v8hi __builtin_arc_vsignw (__v8hi)
12844 __v8hi __builtin_arc_vupbaw (__v8hi)
12845 __v8hi __builtin_arc_vupbw (__v8hi)
12846 __v8hi __builtin_arc_vupsbaw (__v8hi)
12847 __v8hi __builtin_arc_vupsbw (__v8hi)
12848 @end example
12849
12850 The following take two @code{int} arguments and return no result:
12851 @example
12852 void __builtin_arc_vdirun (int, int)
12853 void __builtin_arc_vdorun (int, int)
12854 @end example
12855
12856 The following take two @code{int} arguments and return no result. The
12857 first argument must a 3-bit compile time constant indicating one of
12858 the DR0-DR7 DMA setup channels:
12859 @example
12860 void __builtin_arc_vdiwr (const int, int)
12861 void __builtin_arc_vdowr (const int, int)
12862 @end example
12863
12864 The following take an @code{int} argument and return no result:
12865 @example
12866 void __builtin_arc_vendrec (int)
12867 void __builtin_arc_vrec (int)
12868 void __builtin_arc_vrecrun (int)
12869 void __builtin_arc_vrun (int)
12870 @end example
12871
12872 The following take a @code{__v8hi} argument and two @code{int}
12873 arguments and return a @code{__v8hi} result. The second argument must
12874 be a 3-bit compile time constants, indicating one the registers I0-I7,
12875 and the third argument must be an 8-bit compile time constant.
12876
12877 @emph{Note:} Although the equivalent hardware instructions do not take
12878 an SIMD register as an operand, these builtins overwrite the relevant
12879 bits of the @code{__v8hi} register provided as the first argument with
12880 the value loaded from the @code{[Ib, u8]} location in the SDM.
12881
12882 @example
12883 __v8hi __builtin_arc_vld32 (__v8hi, const int, const int)
12884 __v8hi __builtin_arc_vld32wh (__v8hi, const int, const int)
12885 __v8hi __builtin_arc_vld32wl (__v8hi, const int, const int)
12886 __v8hi __builtin_arc_vld64 (__v8hi, const int, const int)
12887 @end example
12888
12889 The following take two @code{int} arguments and return a @code{__v8hi}
12890 result. The first argument must be a 3-bit compile time constants,
12891 indicating one the registers I0-I7, and the second argument must be an
12892 8-bit compile time constant.
12893
12894 @example
12895 __v8hi __builtin_arc_vld128 (const int, const int)
12896 __v8hi __builtin_arc_vld64w (const int, const int)
12897 @end example
12898
12899 The following take a @code{__v8hi} argument and two @code{int}
12900 arguments and return no result. The second argument must be a 3-bit
12901 compile time constants, indicating one the registers I0-I7, and the
12902 third argument must be an 8-bit compile time constant.
12903
12904 @example
12905 void __builtin_arc_vst128 (__v8hi, const int, const int)
12906 void __builtin_arc_vst64 (__v8hi, const int, const int)
12907 @end example
12908
12909 The following take a @code{__v8hi} argument and three @code{int}
12910 arguments and return no result. The second argument must be a 3-bit
12911 compile-time constant, identifying the 16-bit sub-register to be
12912 stored, the third argument must be a 3-bit compile time constants,
12913 indicating one the registers I0-I7, and the fourth argument must be an
12914 8-bit compile time constant.
12915
12916 @example
12917 void __builtin_arc_vst16_n (__v8hi, const int, const int, const int)
12918 void __builtin_arc_vst32_n (__v8hi, const int, const int, const int)
12919 @end example
12920
12921 @node ARM iWMMXt Built-in Functions
12922 @subsection ARM iWMMXt Built-in Functions
12923
12924 These built-in functions are available for the ARM family of
12925 processors when the @option{-mcpu=iwmmxt} switch is used:
12926
12927 @smallexample
12928 typedef int v2si __attribute__ ((vector_size (8)));
12929 typedef short v4hi __attribute__ ((vector_size (8)));
12930 typedef char v8qi __attribute__ ((vector_size (8)));
12931
12932 int __builtin_arm_getwcgr0 (void)
12933 void __builtin_arm_setwcgr0 (int)
12934 int __builtin_arm_getwcgr1 (void)
12935 void __builtin_arm_setwcgr1 (int)
12936 int __builtin_arm_getwcgr2 (void)
12937 void __builtin_arm_setwcgr2 (int)
12938 int __builtin_arm_getwcgr3 (void)
12939 void __builtin_arm_setwcgr3 (int)
12940 int __builtin_arm_textrmsb (v8qi, int)
12941 int __builtin_arm_textrmsh (v4hi, int)
12942 int __builtin_arm_textrmsw (v2si, int)
12943 int __builtin_arm_textrmub (v8qi, int)
12944 int __builtin_arm_textrmuh (v4hi, int)
12945 int __builtin_arm_textrmuw (v2si, int)
12946 v8qi __builtin_arm_tinsrb (v8qi, int, int)
12947 v4hi __builtin_arm_tinsrh (v4hi, int, int)
12948 v2si __builtin_arm_tinsrw (v2si, int, int)
12949 long long __builtin_arm_tmia (long long, int, int)
12950 long long __builtin_arm_tmiabb (long long, int, int)
12951 long long __builtin_arm_tmiabt (long long, int, int)
12952 long long __builtin_arm_tmiaph (long long, int, int)
12953 long long __builtin_arm_tmiatb (long long, int, int)
12954 long long __builtin_arm_tmiatt (long long, int, int)
12955 int __builtin_arm_tmovmskb (v8qi)
12956 int __builtin_arm_tmovmskh (v4hi)
12957 int __builtin_arm_tmovmskw (v2si)
12958 long long __builtin_arm_waccb (v8qi)
12959 long long __builtin_arm_wacch (v4hi)
12960 long long __builtin_arm_waccw (v2si)
12961 v8qi __builtin_arm_waddb (v8qi, v8qi)
12962 v8qi __builtin_arm_waddbss (v8qi, v8qi)
12963 v8qi __builtin_arm_waddbus (v8qi, v8qi)
12964 v4hi __builtin_arm_waddh (v4hi, v4hi)
12965 v4hi __builtin_arm_waddhss (v4hi, v4hi)
12966 v4hi __builtin_arm_waddhus (v4hi, v4hi)
12967 v2si __builtin_arm_waddw (v2si, v2si)
12968 v2si __builtin_arm_waddwss (v2si, v2si)
12969 v2si __builtin_arm_waddwus (v2si, v2si)
12970 v8qi __builtin_arm_walign (v8qi, v8qi, int)
12971 long long __builtin_arm_wand(long long, long long)
12972 long long __builtin_arm_wandn (long long, long long)
12973 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
12974 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
12975 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
12976 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
12977 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
12978 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
12979 v2si __builtin_arm_wcmpeqw (v2si, v2si)
12980 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
12981 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
12982 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
12983 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
12984 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
12985 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
12986 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
12987 long long __builtin_arm_wmacsz (v4hi, v4hi)
12988 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
12989 long long __builtin_arm_wmacuz (v4hi, v4hi)
12990 v4hi __builtin_arm_wmadds (v4hi, v4hi)
12991 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
12992 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
12993 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
12994 v2si __builtin_arm_wmaxsw (v2si, v2si)
12995 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
12996 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
12997 v2si __builtin_arm_wmaxuw (v2si, v2si)
12998 v8qi __builtin_arm_wminsb (v8qi, v8qi)
12999 v4hi __builtin_arm_wminsh (v4hi, v4hi)
13000 v2si __builtin_arm_wminsw (v2si, v2si)
13001 v8qi __builtin_arm_wminub (v8qi, v8qi)
13002 v4hi __builtin_arm_wminuh (v4hi, v4hi)
13003 v2si __builtin_arm_wminuw (v2si, v2si)
13004 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
13005 v4hi __builtin_arm_wmulul (v4hi, v4hi)
13006 v4hi __builtin_arm_wmulum (v4hi, v4hi)
13007 long long __builtin_arm_wor (long long, long long)
13008 v2si __builtin_arm_wpackdss (long long, long long)
13009 v2si __builtin_arm_wpackdus (long long, long long)
13010 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
13011 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
13012 v4hi __builtin_arm_wpackwss (v2si, v2si)
13013 v4hi __builtin_arm_wpackwus (v2si, v2si)
13014 long long __builtin_arm_wrord (long long, long long)
13015 long long __builtin_arm_wrordi (long long, int)
13016 v4hi __builtin_arm_wrorh (v4hi, long long)
13017 v4hi __builtin_arm_wrorhi (v4hi, int)
13018 v2si __builtin_arm_wrorw (v2si, long long)
13019 v2si __builtin_arm_wrorwi (v2si, int)
13020 v2si __builtin_arm_wsadb (v2si, v8qi, v8qi)
13021 v2si __builtin_arm_wsadbz (v8qi, v8qi)
13022 v2si __builtin_arm_wsadh (v2si, v4hi, v4hi)
13023 v2si __builtin_arm_wsadhz (v4hi, v4hi)
13024 v4hi __builtin_arm_wshufh (v4hi, int)
13025 long long __builtin_arm_wslld (long long, long long)
13026 long long __builtin_arm_wslldi (long long, int)
13027 v4hi __builtin_arm_wsllh (v4hi, long long)
13028 v4hi __builtin_arm_wsllhi (v4hi, int)
13029 v2si __builtin_arm_wsllw (v2si, long long)
13030 v2si __builtin_arm_wsllwi (v2si, int)
13031 long long __builtin_arm_wsrad (long long, long long)
13032 long long __builtin_arm_wsradi (long long, int)
13033 v4hi __builtin_arm_wsrah (v4hi, long long)
13034 v4hi __builtin_arm_wsrahi (v4hi, int)
13035 v2si __builtin_arm_wsraw (v2si, long long)
13036 v2si __builtin_arm_wsrawi (v2si, int)
13037 long long __builtin_arm_wsrld (long long, long long)
13038 long long __builtin_arm_wsrldi (long long, int)
13039 v4hi __builtin_arm_wsrlh (v4hi, long long)
13040 v4hi __builtin_arm_wsrlhi (v4hi, int)
13041 v2si __builtin_arm_wsrlw (v2si, long long)
13042 v2si __builtin_arm_wsrlwi (v2si, int)
13043 v8qi __builtin_arm_wsubb (v8qi, v8qi)
13044 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
13045 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
13046 v4hi __builtin_arm_wsubh (v4hi, v4hi)
13047 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
13048 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
13049 v2si __builtin_arm_wsubw (v2si, v2si)
13050 v2si __builtin_arm_wsubwss (v2si, v2si)
13051 v2si __builtin_arm_wsubwus (v2si, v2si)
13052 v4hi __builtin_arm_wunpckehsb (v8qi)
13053 v2si __builtin_arm_wunpckehsh (v4hi)
13054 long long __builtin_arm_wunpckehsw (v2si)
13055 v4hi __builtin_arm_wunpckehub (v8qi)
13056 v2si __builtin_arm_wunpckehuh (v4hi)
13057 long long __builtin_arm_wunpckehuw (v2si)
13058 v4hi __builtin_arm_wunpckelsb (v8qi)
13059 v2si __builtin_arm_wunpckelsh (v4hi)
13060 long long __builtin_arm_wunpckelsw (v2si)
13061 v4hi __builtin_arm_wunpckelub (v8qi)
13062 v2si __builtin_arm_wunpckeluh (v4hi)
13063 long long __builtin_arm_wunpckeluw (v2si)
13064 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
13065 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
13066 v2si __builtin_arm_wunpckihw (v2si, v2si)
13067 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
13068 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
13069 v2si __builtin_arm_wunpckilw (v2si, v2si)
13070 long long __builtin_arm_wxor (long long, long long)
13071 long long __builtin_arm_wzero ()
13072 @end smallexample
13073
13074
13075 @node ARM C Language Extensions (ACLE)
13076 @subsection ARM C Language Extensions (ACLE)
13077
13078 GCC implements extensions for C as described in the ARM C Language
13079 Extensions (ACLE) specification, which can be found at
13080 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf}.
13081
13082 As a part of ACLE, GCC implements extensions for Advanced SIMD as described in
13083 the ARM C Language Extensions Specification. The complete list of Advanced SIMD
13084 intrinsics can be found at
13085 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ihi0073a/IHI0073A_arm_neon_intrinsics_ref.pdf}.
13086 The built-in intrinsics for the Advanced SIMD extension are available when
13087 NEON is enabled.
13088
13089 Currently, ARM and AArch64 back ends do not support ACLE 2.0 fully. Both
13090 back ends support CRC32 intrinsics and the ARM back end supports the
13091 Coprocessor intrinsics, all from @file{arm_acle.h}. The ARM back end's 16-bit
13092 floating-point Advanced SIMD intrinsics currently comply to ACLE v1.1.
13093 AArch64's back end does not have support for 16-bit floating point Advanced SIMD
13094 intrinsics yet.
13095
13096 See @ref{ARM Options} and @ref{AArch64 Options} for more information on the
13097 availability of extensions.
13098
13099 @node ARM Floating Point Status and Control Intrinsics
13100 @subsection ARM Floating Point Status and Control Intrinsics
13101
13102 These built-in functions are available for the ARM family of
13103 processors with floating-point unit.
13104
13105 @smallexample
13106 unsigned int __builtin_arm_get_fpscr ()
13107 void __builtin_arm_set_fpscr (unsigned int)
13108 @end smallexample
13109
13110 @node ARM ARMv8-M Security Extensions
13111 @subsection ARM ARMv8-M Security Extensions
13112
13113 GCC implements the ARMv8-M Security Extensions as described in the ARMv8-M
13114 Security Extensions: Requirements on Development Tools Engineering
13115 Specification, which can be found at
13116 @uref{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
13117
13118 As part of the Security Extensions GCC implements two new function attributes:
13119 @code{cmse_nonsecure_entry} and @code{cmse_nonsecure_call}.
13120
13121 As part of the Security Extensions GCC implements the intrinsics below. FPTR
13122 is used here to mean any function pointer type.
13123
13124 @smallexample
13125 cmse_address_info_t cmse_TT (void *)
13126 cmse_address_info_t cmse_TT_fptr (FPTR)
13127 cmse_address_info_t cmse_TTT (void *)
13128 cmse_address_info_t cmse_TTT_fptr (FPTR)
13129 cmse_address_info_t cmse_TTA (void *)
13130 cmse_address_info_t cmse_TTA_fptr (FPTR)
13131 cmse_address_info_t cmse_TTAT (void *)
13132 cmse_address_info_t cmse_TTAT_fptr (FPTR)
13133 void * cmse_check_address_range (void *, size_t, int)
13134 typeof(p) cmse_nsfptr_create (FPTR p)
13135 intptr_t cmse_is_nsfptr (FPTR)
13136 int cmse_nonsecure_caller (void)
13137 @end smallexample
13138
13139 @node AVR Built-in Functions
13140 @subsection AVR Built-in Functions
13141
13142 For each built-in function for AVR, there is an equally named,
13143 uppercase built-in macro defined. That way users can easily query if
13144 or if not a specific built-in is implemented or not. For example, if
13145 @code{__builtin_avr_nop} is available the macro
13146 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
13147
13148 @table @code
13149
13150 @item void __builtin_avr_nop (void)
13151 @itemx void __builtin_avr_sei (void)
13152 @itemx void __builtin_avr_cli (void)
13153 @itemx void __builtin_avr_sleep (void)
13154 @itemx void __builtin_avr_wdr (void)
13155 @itemx unsigned char __builtin_avr_swap (unsigned char)
13156 @itemx unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
13157 @itemx int __builtin_avr_fmuls (char, char)
13158 @itemx int __builtin_avr_fmulsu (char, unsigned char)
13159 These built-in functions map to the respective machine
13160 instruction, i.e.@: @code{nop}, @code{sei}, @code{cli}, @code{sleep},
13161 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
13162 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
13163 as library call if no hardware multiplier is available.
13164
13165 @item void __builtin_avr_delay_cycles (unsigned long ticks)
13166 Delay execution for @var{ticks} cycles. Note that this
13167 built-in does not take into account the effect of interrupts that
13168 might increase delay time. @var{ticks} must be a compile-time
13169 integer constant; delays with a variable number of cycles are not supported.
13170
13171 @item char __builtin_avr_flash_segment (const __memx void*)
13172 This built-in takes a byte address to the 24-bit
13173 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
13174 the number of the flash segment (the 64 KiB chunk) where the address
13175 points to. Counting starts at @code{0}.
13176 If the address does not point to flash memory, return @code{-1}.
13177
13178 @item uint8_t __builtin_avr_insert_bits (uint32_t map, uint8_t bits, uint8_t val)
13179 Insert bits from @var{bits} into @var{val} and return the resulting
13180 value. The nibbles of @var{map} determine how the insertion is
13181 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
13182 @enumerate
13183 @item If @var{X} is @code{0xf},
13184 then the @var{n}-th bit of @var{val} is returned unaltered.
13185
13186 @item If X is in the range 0@dots{}7,
13187 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
13188
13189 @item If X is in the range 8@dots{}@code{0xe},
13190 then the @var{n}-th result bit is undefined.
13191 @end enumerate
13192
13193 @noindent
13194 One typical use case for this built-in is adjusting input and
13195 output values to non-contiguous port layouts. Some examples:
13196
13197 @smallexample
13198 // same as val, bits is unused
13199 __builtin_avr_insert_bits (0xffffffff, bits, val)
13200 @end smallexample
13201
13202 @smallexample
13203 // same as bits, val is unused
13204 __builtin_avr_insert_bits (0x76543210, bits, val)
13205 @end smallexample
13206
13207 @smallexample
13208 // same as rotating bits by 4
13209 __builtin_avr_insert_bits (0x32107654, bits, 0)
13210 @end smallexample
13211
13212 @smallexample
13213 // high nibble of result is the high nibble of val
13214 // low nibble of result is the low nibble of bits
13215 __builtin_avr_insert_bits (0xffff3210, bits, val)
13216 @end smallexample
13217
13218 @smallexample
13219 // reverse the bit order of bits
13220 __builtin_avr_insert_bits (0x01234567, bits, 0)
13221 @end smallexample
13222
13223 @item void __builtin_avr_nops (unsigned count)
13224 Insert @var{count} @code{NOP} instructions.
13225 The number of instructions must be a compile-time integer constant.
13226
13227 @end table
13228
13229 @noindent
13230 There are many more AVR-specific built-in functions that are used to
13231 implement the ISO/IEC TR 18037 ``Embedded C'' fixed-point functions of
13232 section 7.18a.6. You don't need to use these built-ins directly.
13233 Instead, use the declarations as supplied by the @code{stdfix.h} header
13234 with GNU-C99:
13235
13236 @smallexample
13237 #include <stdfix.h>
13238
13239 // Re-interpret the bit representation of unsigned 16-bit
13240 // integer @var{uval} as Q-format 0.16 value.
13241 unsigned fract get_bits (uint_ur_t uval)
13242 @{
13243 return urbits (uval);
13244 @}
13245 @end smallexample
13246
13247 @node Blackfin Built-in Functions
13248 @subsection Blackfin Built-in Functions
13249
13250 Currently, there are two Blackfin-specific built-in functions. These are
13251 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
13252 using inline assembly; by using these built-in functions the compiler can
13253 automatically add workarounds for hardware errata involving these
13254 instructions. These functions are named as follows:
13255
13256 @smallexample
13257 void __builtin_bfin_csync (void)
13258 void __builtin_bfin_ssync (void)
13259 @end smallexample
13260
13261 @node FR-V Built-in Functions
13262 @subsection FR-V Built-in Functions
13263
13264 GCC provides many FR-V-specific built-in functions. In general,
13265 these functions are intended to be compatible with those described
13266 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
13267 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
13268 @code{__MBTOHE}, the GCC forms of which pass 128-bit values by
13269 pointer rather than by value.
13270
13271 Most of the functions are named after specific FR-V instructions.
13272 Such functions are said to be ``directly mapped'' and are summarized
13273 here in tabular form.
13274
13275 @menu
13276 * Argument Types::
13277 * Directly-mapped Integer Functions::
13278 * Directly-mapped Media Functions::
13279 * Raw read/write Functions::
13280 * Other Built-in Functions::
13281 @end menu
13282
13283 @node Argument Types
13284 @subsubsection Argument Types
13285
13286 The arguments to the built-in functions can be divided into three groups:
13287 register numbers, compile-time constants and run-time values. In order
13288 to make this classification clear at a glance, the arguments and return
13289 values are given the following pseudo types:
13290
13291 @multitable @columnfractions .20 .30 .15 .35
13292 @item Pseudo type @tab Real C type @tab Constant? @tab Description
13293 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
13294 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
13295 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
13296 @item @code{uw2} @tab @code{unsigned long long} @tab No
13297 @tab an unsigned doubleword
13298 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
13299 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
13300 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
13301 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
13302 @end multitable
13303
13304 These pseudo types are not defined by GCC, they are simply a notational
13305 convenience used in this manual.
13306
13307 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
13308 and @code{sw2} are evaluated at run time. They correspond to
13309 register operands in the underlying FR-V instructions.
13310
13311 @code{const} arguments represent immediate operands in the underlying
13312 FR-V instructions. They must be compile-time constants.
13313
13314 @code{acc} arguments are evaluated at compile time and specify the number
13315 of an accumulator register. For example, an @code{acc} argument of 2
13316 selects the ACC2 register.
13317
13318 @code{iacc} arguments are similar to @code{acc} arguments but specify the
13319 number of an IACC register. See @pxref{Other Built-in Functions}
13320 for more details.
13321
13322 @node Directly-mapped Integer Functions
13323 @subsubsection Directly-Mapped Integer Functions
13324
13325 The functions listed below map directly to FR-V I-type instructions.
13326
13327 @multitable @columnfractions .45 .32 .23
13328 @item Function prototype @tab Example usage @tab Assembly output
13329 @item @code{sw1 __ADDSS (sw1, sw1)}
13330 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
13331 @tab @code{ADDSS @var{a},@var{b},@var{c}}
13332 @item @code{sw1 __SCAN (sw1, sw1)}
13333 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
13334 @tab @code{SCAN @var{a},@var{b},@var{c}}
13335 @item @code{sw1 __SCUTSS (sw1)}
13336 @tab @code{@var{b} = __SCUTSS (@var{a})}
13337 @tab @code{SCUTSS @var{a},@var{b}}
13338 @item @code{sw1 __SLASS (sw1, sw1)}
13339 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
13340 @tab @code{SLASS @var{a},@var{b},@var{c}}
13341 @item @code{void __SMASS (sw1, sw1)}
13342 @tab @code{__SMASS (@var{a}, @var{b})}
13343 @tab @code{SMASS @var{a},@var{b}}
13344 @item @code{void __SMSSS (sw1, sw1)}
13345 @tab @code{__SMSSS (@var{a}, @var{b})}
13346 @tab @code{SMSSS @var{a},@var{b}}
13347 @item @code{void __SMU (sw1, sw1)}
13348 @tab @code{__SMU (@var{a}, @var{b})}
13349 @tab @code{SMU @var{a},@var{b}}
13350 @item @code{sw2 __SMUL (sw1, sw1)}
13351 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
13352 @tab @code{SMUL @var{a},@var{b},@var{c}}
13353 @item @code{sw1 __SUBSS (sw1, sw1)}
13354 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
13355 @tab @code{SUBSS @var{a},@var{b},@var{c}}
13356 @item @code{uw2 __UMUL (uw1, uw1)}
13357 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
13358 @tab @code{UMUL @var{a},@var{b},@var{c}}
13359 @end multitable
13360
13361 @node Directly-mapped Media Functions
13362 @subsubsection Directly-Mapped Media Functions
13363
13364 The functions listed below map directly to FR-V M-type instructions.
13365
13366 @multitable @columnfractions .45 .32 .23
13367 @item Function prototype @tab Example usage @tab Assembly output
13368 @item @code{uw1 __MABSHS (sw1)}
13369 @tab @code{@var{b} = __MABSHS (@var{a})}
13370 @tab @code{MABSHS @var{a},@var{b}}
13371 @item @code{void __MADDACCS (acc, acc)}
13372 @tab @code{__MADDACCS (@var{b}, @var{a})}
13373 @tab @code{MADDACCS @var{a},@var{b}}
13374 @item @code{sw1 __MADDHSS (sw1, sw1)}
13375 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
13376 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
13377 @item @code{uw1 __MADDHUS (uw1, uw1)}
13378 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
13379 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
13380 @item @code{uw1 __MAND (uw1, uw1)}
13381 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
13382 @tab @code{MAND @var{a},@var{b},@var{c}}
13383 @item @code{void __MASACCS (acc, acc)}
13384 @tab @code{__MASACCS (@var{b}, @var{a})}
13385 @tab @code{MASACCS @var{a},@var{b}}
13386 @item @code{uw1 __MAVEH (uw1, uw1)}
13387 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
13388 @tab @code{MAVEH @var{a},@var{b},@var{c}}
13389 @item @code{uw2 __MBTOH (uw1)}
13390 @tab @code{@var{b} = __MBTOH (@var{a})}
13391 @tab @code{MBTOH @var{a},@var{b}}
13392 @item @code{void __MBTOHE (uw1 *, uw1)}
13393 @tab @code{__MBTOHE (&@var{b}, @var{a})}
13394 @tab @code{MBTOHE @var{a},@var{b}}
13395 @item @code{void __MCLRACC (acc)}
13396 @tab @code{__MCLRACC (@var{a})}
13397 @tab @code{MCLRACC @var{a}}
13398 @item @code{void __MCLRACCA (void)}
13399 @tab @code{__MCLRACCA ()}
13400 @tab @code{MCLRACCA}
13401 @item @code{uw1 __Mcop1 (uw1, uw1)}
13402 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
13403 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
13404 @item @code{uw1 __Mcop2 (uw1, uw1)}
13405 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
13406 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
13407 @item @code{uw1 __MCPLHI (uw2, const)}
13408 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
13409 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
13410 @item @code{uw1 __MCPLI (uw2, const)}
13411 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
13412 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
13413 @item @code{void __MCPXIS (acc, sw1, sw1)}
13414 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
13415 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
13416 @item @code{void __MCPXIU (acc, uw1, uw1)}
13417 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
13418 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
13419 @item @code{void __MCPXRS (acc, sw1, sw1)}
13420 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
13421 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
13422 @item @code{void __MCPXRU (acc, uw1, uw1)}
13423 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
13424 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
13425 @item @code{uw1 __MCUT (acc, uw1)}
13426 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
13427 @tab @code{MCUT @var{a},@var{b},@var{c}}
13428 @item @code{uw1 __MCUTSS (acc, sw1)}
13429 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
13430 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
13431 @item @code{void __MDADDACCS (acc, acc)}
13432 @tab @code{__MDADDACCS (@var{b}, @var{a})}
13433 @tab @code{MDADDACCS @var{a},@var{b}}
13434 @item @code{void __MDASACCS (acc, acc)}
13435 @tab @code{__MDASACCS (@var{b}, @var{a})}
13436 @tab @code{MDASACCS @var{a},@var{b}}
13437 @item @code{uw2 __MDCUTSSI (acc, const)}
13438 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
13439 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
13440 @item @code{uw2 __MDPACKH (uw2, uw2)}
13441 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
13442 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
13443 @item @code{uw2 __MDROTLI (uw2, const)}
13444 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
13445 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
13446 @item @code{void __MDSUBACCS (acc, acc)}
13447 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
13448 @tab @code{MDSUBACCS @var{a},@var{b}}
13449 @item @code{void __MDUNPACKH (uw1 *, uw2)}
13450 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
13451 @tab @code{MDUNPACKH @var{a},@var{b}}
13452 @item @code{uw2 __MEXPDHD (uw1, const)}
13453 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
13454 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
13455 @item @code{uw1 __MEXPDHW (uw1, const)}
13456 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
13457 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
13458 @item @code{uw1 __MHDSETH (uw1, const)}
13459 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
13460 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
13461 @item @code{sw1 __MHDSETS (const)}
13462 @tab @code{@var{b} = __MHDSETS (@var{a})}
13463 @tab @code{MHDSETS #@var{a},@var{b}}
13464 @item @code{uw1 __MHSETHIH (uw1, const)}
13465 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
13466 @tab @code{MHSETHIH #@var{a},@var{b}}
13467 @item @code{sw1 __MHSETHIS (sw1, const)}
13468 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
13469 @tab @code{MHSETHIS #@var{a},@var{b}}
13470 @item @code{uw1 __MHSETLOH (uw1, const)}
13471 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
13472 @tab @code{MHSETLOH #@var{a},@var{b}}
13473 @item @code{sw1 __MHSETLOS (sw1, const)}
13474 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
13475 @tab @code{MHSETLOS #@var{a},@var{b}}
13476 @item @code{uw1 __MHTOB (uw2)}
13477 @tab @code{@var{b} = __MHTOB (@var{a})}
13478 @tab @code{MHTOB @var{a},@var{b}}
13479 @item @code{void __MMACHS (acc, sw1, sw1)}
13480 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
13481 @tab @code{MMACHS @var{a},@var{b},@var{c}}
13482 @item @code{void __MMACHU (acc, uw1, uw1)}
13483 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
13484 @tab @code{MMACHU @var{a},@var{b},@var{c}}
13485 @item @code{void __MMRDHS (acc, sw1, sw1)}
13486 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
13487 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
13488 @item @code{void __MMRDHU (acc, uw1, uw1)}
13489 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
13490 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
13491 @item @code{void __MMULHS (acc, sw1, sw1)}
13492 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
13493 @tab @code{MMULHS @var{a},@var{b},@var{c}}
13494 @item @code{void __MMULHU (acc, uw1, uw1)}
13495 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
13496 @tab @code{MMULHU @var{a},@var{b},@var{c}}
13497 @item @code{void __MMULXHS (acc, sw1, sw1)}
13498 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
13499 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
13500 @item @code{void __MMULXHU (acc, uw1, uw1)}
13501 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
13502 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
13503 @item @code{uw1 __MNOT (uw1)}
13504 @tab @code{@var{b} = __MNOT (@var{a})}
13505 @tab @code{MNOT @var{a},@var{b}}
13506 @item @code{uw1 __MOR (uw1, uw1)}
13507 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
13508 @tab @code{MOR @var{a},@var{b},@var{c}}
13509 @item @code{uw1 __MPACKH (uh, uh)}
13510 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
13511 @tab @code{MPACKH @var{a},@var{b},@var{c}}
13512 @item @code{sw2 __MQADDHSS (sw2, sw2)}
13513 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
13514 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
13515 @item @code{uw2 __MQADDHUS (uw2, uw2)}
13516 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
13517 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
13518 @item @code{void __MQCPXIS (acc, sw2, sw2)}
13519 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
13520 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
13521 @item @code{void __MQCPXIU (acc, uw2, uw2)}
13522 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
13523 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
13524 @item @code{void __MQCPXRS (acc, sw2, sw2)}
13525 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
13526 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
13527 @item @code{void __MQCPXRU (acc, uw2, uw2)}
13528 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
13529 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
13530 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
13531 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
13532 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
13533 @item @code{sw2 __MQLMTHS (sw2, sw2)}
13534 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
13535 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
13536 @item @code{void __MQMACHS (acc, sw2, sw2)}
13537 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
13538 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
13539 @item @code{void __MQMACHU (acc, uw2, uw2)}
13540 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
13541 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
13542 @item @code{void __MQMACXHS (acc, sw2, sw2)}
13543 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
13544 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
13545 @item @code{void __MQMULHS (acc, sw2, sw2)}
13546 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
13547 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
13548 @item @code{void __MQMULHU (acc, uw2, uw2)}
13549 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
13550 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
13551 @item @code{void __MQMULXHS (acc, sw2, sw2)}
13552 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
13553 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
13554 @item @code{void __MQMULXHU (acc, uw2, uw2)}
13555 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
13556 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
13557 @item @code{sw2 __MQSATHS (sw2, sw2)}
13558 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
13559 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
13560 @item @code{uw2 __MQSLLHI (uw2, int)}
13561 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
13562 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
13563 @item @code{sw2 __MQSRAHI (sw2, int)}
13564 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
13565 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
13566 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
13567 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
13568 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
13569 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
13570 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
13571 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
13572 @item @code{void __MQXMACHS (acc, sw2, sw2)}
13573 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
13574 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
13575 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
13576 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
13577 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
13578 @item @code{uw1 __MRDACC (acc)}
13579 @tab @code{@var{b} = __MRDACC (@var{a})}
13580 @tab @code{MRDACC @var{a},@var{b}}
13581 @item @code{uw1 __MRDACCG (acc)}
13582 @tab @code{@var{b} = __MRDACCG (@var{a})}
13583 @tab @code{MRDACCG @var{a},@var{b}}
13584 @item @code{uw1 __MROTLI (uw1, const)}
13585 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
13586 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
13587 @item @code{uw1 __MROTRI (uw1, const)}
13588 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
13589 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
13590 @item @code{sw1 __MSATHS (sw1, sw1)}
13591 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
13592 @tab @code{MSATHS @var{a},@var{b},@var{c}}
13593 @item @code{uw1 __MSATHU (uw1, uw1)}
13594 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
13595 @tab @code{MSATHU @var{a},@var{b},@var{c}}
13596 @item @code{uw1 __MSLLHI (uw1, const)}
13597 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
13598 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
13599 @item @code{sw1 __MSRAHI (sw1, const)}
13600 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
13601 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
13602 @item @code{uw1 __MSRLHI (uw1, const)}
13603 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
13604 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
13605 @item @code{void __MSUBACCS (acc, acc)}
13606 @tab @code{__MSUBACCS (@var{b}, @var{a})}
13607 @tab @code{MSUBACCS @var{a},@var{b}}
13608 @item @code{sw1 __MSUBHSS (sw1, sw1)}
13609 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
13610 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
13611 @item @code{uw1 __MSUBHUS (uw1, uw1)}
13612 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
13613 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
13614 @item @code{void __MTRAP (void)}
13615 @tab @code{__MTRAP ()}
13616 @tab @code{MTRAP}
13617 @item @code{uw2 __MUNPACKH (uw1)}
13618 @tab @code{@var{b} = __MUNPACKH (@var{a})}
13619 @tab @code{MUNPACKH @var{a},@var{b}}
13620 @item @code{uw1 __MWCUT (uw2, uw1)}
13621 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
13622 @tab @code{MWCUT @var{a},@var{b},@var{c}}
13623 @item @code{void __MWTACC (acc, uw1)}
13624 @tab @code{__MWTACC (@var{b}, @var{a})}
13625 @tab @code{MWTACC @var{a},@var{b}}
13626 @item @code{void __MWTACCG (acc, uw1)}
13627 @tab @code{__MWTACCG (@var{b}, @var{a})}
13628 @tab @code{MWTACCG @var{a},@var{b}}
13629 @item @code{uw1 __MXOR (uw1, uw1)}
13630 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
13631 @tab @code{MXOR @var{a},@var{b},@var{c}}
13632 @end multitable
13633
13634 @node Raw read/write Functions
13635 @subsubsection Raw Read/Write Functions
13636
13637 This sections describes built-in functions related to read and write
13638 instructions to access memory. These functions generate
13639 @code{membar} instructions to flush the I/O load and stores where
13640 appropriate, as described in Fujitsu's manual described above.
13641
13642 @table @code
13643
13644 @item unsigned char __builtin_read8 (void *@var{data})
13645 @item unsigned short __builtin_read16 (void *@var{data})
13646 @item unsigned long __builtin_read32 (void *@var{data})
13647 @item unsigned long long __builtin_read64 (void *@var{data})
13648
13649 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
13650 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
13651 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
13652 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
13653 @end table
13654
13655 @node Other Built-in Functions
13656 @subsubsection Other Built-in Functions
13657
13658 This section describes built-in functions that are not named after
13659 a specific FR-V instruction.
13660
13661 @table @code
13662 @item sw2 __IACCreadll (iacc @var{reg})
13663 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
13664 for future expansion and must be 0.
13665
13666 @item sw1 __IACCreadl (iacc @var{reg})
13667 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
13668 Other values of @var{reg} are rejected as invalid.
13669
13670 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
13671 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
13672 is reserved for future expansion and must be 0.
13673
13674 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
13675 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
13676 is 1. Other values of @var{reg} are rejected as invalid.
13677
13678 @item void __data_prefetch0 (const void *@var{x})
13679 Use the @code{dcpl} instruction to load the contents of address @var{x}
13680 into the data cache.
13681
13682 @item void __data_prefetch (const void *@var{x})
13683 Use the @code{nldub} instruction to load the contents of address @var{x}
13684 into the data cache. The instruction is issued in slot I1@.
13685 @end table
13686
13687 @node MIPS DSP Built-in Functions
13688 @subsection MIPS DSP Built-in Functions
13689
13690 The MIPS DSP Application-Specific Extension (ASE) includes new
13691 instructions that are designed to improve the performance of DSP and
13692 media applications. It provides instructions that operate on packed
13693 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
13694
13695 GCC supports MIPS DSP operations using both the generic
13696 vector extensions (@pxref{Vector Extensions}) and a collection of
13697 MIPS-specific built-in functions. Both kinds of support are
13698 enabled by the @option{-mdsp} command-line option.
13699
13700 Revision 2 of the ASE was introduced in the second half of 2006.
13701 This revision adds extra instructions to the original ASE, but is
13702 otherwise backwards-compatible with it. You can select revision 2
13703 using the command-line option @option{-mdspr2}; this option implies
13704 @option{-mdsp}.
13705
13706 The SCOUNT and POS bits of the DSP control register are global. The
13707 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
13708 POS bits. During optimization, the compiler does not delete these
13709 instructions and it does not delete calls to functions containing
13710 these instructions.
13711
13712 At present, GCC only provides support for operations on 32-bit
13713 vectors. The vector type associated with 8-bit integer data is
13714 usually called @code{v4i8}, the vector type associated with Q7
13715 is usually called @code{v4q7}, the vector type associated with 16-bit
13716 integer data is usually called @code{v2i16}, and the vector type
13717 associated with Q15 is usually called @code{v2q15}. They can be
13718 defined in C as follows:
13719
13720 @smallexample
13721 typedef signed char v4i8 __attribute__ ((vector_size(4)));
13722 typedef signed char v4q7 __attribute__ ((vector_size(4)));
13723 typedef short v2i16 __attribute__ ((vector_size(4)));
13724 typedef short v2q15 __attribute__ ((vector_size(4)));
13725 @end smallexample
13726
13727 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
13728 initialized in the same way as aggregates. For example:
13729
13730 @smallexample
13731 v4i8 a = @{1, 2, 3, 4@};
13732 v4i8 b;
13733 b = (v4i8) @{5, 6, 7, 8@};
13734
13735 v2q15 c = @{0x0fcb, 0x3a75@};
13736 v2q15 d;
13737 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
13738 @end smallexample
13739
13740 @emph{Note:} The CPU's endianness determines the order in which values
13741 are packed. On little-endian targets, the first value is the least
13742 significant and the last value is the most significant. The opposite
13743 order applies to big-endian targets. For example, the code above
13744 sets the lowest byte of @code{a} to @code{1} on little-endian targets
13745 and @code{4} on big-endian targets.
13746
13747 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
13748 representation. As shown in this example, the integer representation
13749 of a Q7 value can be obtained by multiplying the fractional value by
13750 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
13751 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
13752 @code{0x1.0p31}.
13753
13754 The table below lists the @code{v4i8} and @code{v2q15} operations for which
13755 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
13756 and @code{c} and @code{d} are @code{v2q15} values.
13757
13758 @multitable @columnfractions .50 .50
13759 @item C code @tab MIPS instruction
13760 @item @code{a + b} @tab @code{addu.qb}
13761 @item @code{c + d} @tab @code{addq.ph}
13762 @item @code{a - b} @tab @code{subu.qb}
13763 @item @code{c - d} @tab @code{subq.ph}
13764 @end multitable
13765
13766 The table below lists the @code{v2i16} operation for which
13767 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
13768 @code{v2i16} values.
13769
13770 @multitable @columnfractions .50 .50
13771 @item C code @tab MIPS instruction
13772 @item @code{e * f} @tab @code{mul.ph}
13773 @end multitable
13774
13775 It is easier to describe the DSP built-in functions if we first define
13776 the following types:
13777
13778 @smallexample
13779 typedef int q31;
13780 typedef int i32;
13781 typedef unsigned int ui32;
13782 typedef long long a64;
13783 @end smallexample
13784
13785 @code{q31} and @code{i32} are actually the same as @code{int}, but we
13786 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
13787 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
13788 @code{long long}, but we use @code{a64} to indicate values that are
13789 placed in one of the four DSP accumulators (@code{$ac0},
13790 @code{$ac1}, @code{$ac2} or @code{$ac3}).
13791
13792 Also, some built-in functions prefer or require immediate numbers as
13793 parameters, because the corresponding DSP instructions accept both immediate
13794 numbers and register operands, or accept immediate numbers only. The
13795 immediate parameters are listed as follows.
13796
13797 @smallexample
13798 imm0_3: 0 to 3.
13799 imm0_7: 0 to 7.
13800 imm0_15: 0 to 15.
13801 imm0_31: 0 to 31.
13802 imm0_63: 0 to 63.
13803 imm0_255: 0 to 255.
13804 imm_n32_31: -32 to 31.
13805 imm_n512_511: -512 to 511.
13806 @end smallexample
13807
13808 The following built-in functions map directly to a particular MIPS DSP
13809 instruction. Please refer to the architecture specification
13810 for details on what each instruction does.
13811
13812 @smallexample
13813 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
13814 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
13815 q31 __builtin_mips_addq_s_w (q31, q31)
13816 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
13817 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
13818 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
13819 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
13820 q31 __builtin_mips_subq_s_w (q31, q31)
13821 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
13822 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
13823 i32 __builtin_mips_addsc (i32, i32)
13824 i32 __builtin_mips_addwc (i32, i32)
13825 i32 __builtin_mips_modsub (i32, i32)
13826 i32 __builtin_mips_raddu_w_qb (v4i8)
13827 v2q15 __builtin_mips_absq_s_ph (v2q15)
13828 q31 __builtin_mips_absq_s_w (q31)
13829 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
13830 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
13831 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
13832 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
13833 q31 __builtin_mips_preceq_w_phl (v2q15)
13834 q31 __builtin_mips_preceq_w_phr (v2q15)
13835 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
13836 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
13837 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
13838 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
13839 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
13840 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
13841 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
13842 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
13843 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
13844 v4i8 __builtin_mips_shll_qb (v4i8, i32)
13845 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
13846 v2q15 __builtin_mips_shll_ph (v2q15, i32)
13847 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
13848 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
13849 q31 __builtin_mips_shll_s_w (q31, imm0_31)
13850 q31 __builtin_mips_shll_s_w (q31, i32)
13851 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
13852 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
13853 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
13854 v2q15 __builtin_mips_shra_ph (v2q15, i32)
13855 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
13856 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
13857 q31 __builtin_mips_shra_r_w (q31, imm0_31)
13858 q31 __builtin_mips_shra_r_w (q31, i32)
13859 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
13860 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
13861 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
13862 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
13863 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
13864 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
13865 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
13866 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
13867 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
13868 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
13869 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
13870 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
13871 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
13872 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
13873 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
13874 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
13875 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
13876 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
13877 i32 __builtin_mips_bitrev (i32)
13878 i32 __builtin_mips_insv (i32, i32)
13879 v4i8 __builtin_mips_repl_qb (imm0_255)
13880 v4i8 __builtin_mips_repl_qb (i32)
13881 v2q15 __builtin_mips_repl_ph (imm_n512_511)
13882 v2q15 __builtin_mips_repl_ph (i32)
13883 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
13884 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
13885 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
13886 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
13887 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
13888 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
13889 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
13890 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
13891 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
13892 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
13893 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
13894 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
13895 i32 __builtin_mips_extr_w (a64, imm0_31)
13896 i32 __builtin_mips_extr_w (a64, i32)
13897 i32 __builtin_mips_extr_r_w (a64, imm0_31)
13898 i32 __builtin_mips_extr_s_h (a64, i32)
13899 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
13900 i32 __builtin_mips_extr_rs_w (a64, i32)
13901 i32 __builtin_mips_extr_s_h (a64, imm0_31)
13902 i32 __builtin_mips_extr_r_w (a64, i32)
13903 i32 __builtin_mips_extp (a64, imm0_31)
13904 i32 __builtin_mips_extp (a64, i32)
13905 i32 __builtin_mips_extpdp (a64, imm0_31)
13906 i32 __builtin_mips_extpdp (a64, i32)
13907 a64 __builtin_mips_shilo (a64, imm_n32_31)
13908 a64 __builtin_mips_shilo (a64, i32)
13909 a64 __builtin_mips_mthlip (a64, i32)
13910 void __builtin_mips_wrdsp (i32, imm0_63)
13911 i32 __builtin_mips_rddsp (imm0_63)
13912 i32 __builtin_mips_lbux (void *, i32)
13913 i32 __builtin_mips_lhx (void *, i32)
13914 i32 __builtin_mips_lwx (void *, i32)
13915 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
13916 i32 __builtin_mips_bposge32 (void)
13917 a64 __builtin_mips_madd (a64, i32, i32);
13918 a64 __builtin_mips_maddu (a64, ui32, ui32);
13919 a64 __builtin_mips_msub (a64, i32, i32);
13920 a64 __builtin_mips_msubu (a64, ui32, ui32);
13921 a64 __builtin_mips_mult (i32, i32);
13922 a64 __builtin_mips_multu (ui32, ui32);
13923 @end smallexample
13924
13925 The following built-in functions map directly to a particular MIPS DSP REV 2
13926 instruction. Please refer to the architecture specification
13927 for details on what each instruction does.
13928
13929 @smallexample
13930 v4q7 __builtin_mips_absq_s_qb (v4q7);
13931 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
13932 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
13933 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
13934 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
13935 i32 __builtin_mips_append (i32, i32, imm0_31);
13936 i32 __builtin_mips_balign (i32, i32, imm0_3);
13937 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
13938 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
13939 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
13940 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
13941 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
13942 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
13943 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
13944 q31 __builtin_mips_mulq_rs_w (q31, q31);
13945 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
13946 q31 __builtin_mips_mulq_s_w (q31, q31);
13947 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
13948 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
13949 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
13950 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
13951 i32 __builtin_mips_prepend (i32, i32, imm0_31);
13952 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
13953 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
13954 v4i8 __builtin_mips_shra_qb (v4i8, i32);
13955 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
13956 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
13957 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
13958 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
13959 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
13960 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
13961 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
13962 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
13963 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
13964 q31 __builtin_mips_addqh_w (q31, q31);
13965 q31 __builtin_mips_addqh_r_w (q31, q31);
13966 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
13967 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
13968 q31 __builtin_mips_subqh_w (q31, q31);
13969 q31 __builtin_mips_subqh_r_w (q31, q31);
13970 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
13971 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
13972 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
13973 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
13974 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
13975 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
13976 @end smallexample
13977
13978
13979 @node MIPS Paired-Single Support
13980 @subsection MIPS Paired-Single Support
13981
13982 The MIPS64 architecture includes a number of instructions that
13983 operate on pairs of single-precision floating-point values.
13984 Each pair is packed into a 64-bit floating-point register,
13985 with one element being designated the ``upper half'' and
13986 the other being designated the ``lower half''.
13987
13988 GCC supports paired-single operations using both the generic
13989 vector extensions (@pxref{Vector Extensions}) and a collection of
13990 MIPS-specific built-in functions. Both kinds of support are
13991 enabled by the @option{-mpaired-single} command-line option.
13992
13993 The vector type associated with paired-single values is usually
13994 called @code{v2sf}. It can be defined in C as follows:
13995
13996 @smallexample
13997 typedef float v2sf __attribute__ ((vector_size (8)));
13998 @end smallexample
13999
14000 @code{v2sf} values are initialized in the same way as aggregates.
14001 For example:
14002
14003 @smallexample
14004 v2sf a = @{1.5, 9.1@};
14005 v2sf b;
14006 float e, f;
14007 b = (v2sf) @{e, f@};
14008 @end smallexample
14009
14010 @emph{Note:} The CPU's endianness determines which value is stored in
14011 the upper half of a register and which value is stored in the lower half.
14012 On little-endian targets, the first value is the lower one and the second
14013 value is the upper one. The opposite order applies to big-endian targets.
14014 For example, the code above sets the lower half of @code{a} to
14015 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
14016
14017 @node MIPS Loongson Built-in Functions
14018 @subsection MIPS Loongson Built-in Functions
14019
14020 GCC provides intrinsics to access the SIMD instructions provided by the
14021 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
14022 available after inclusion of the @code{loongson.h} header file,
14023 operate on the following 64-bit vector types:
14024
14025 @itemize
14026 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
14027 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
14028 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
14029 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
14030 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
14031 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
14032 @end itemize
14033
14034 The intrinsics provided are listed below; each is named after the
14035 machine instruction to which it corresponds, with suffixes added as
14036 appropriate to distinguish intrinsics that expand to the same machine
14037 instruction yet have different argument types. Refer to the architecture
14038 documentation for a description of the functionality of each
14039 instruction.
14040
14041 @smallexample
14042 int16x4_t packsswh (int32x2_t s, int32x2_t t);
14043 int8x8_t packsshb (int16x4_t s, int16x4_t t);
14044 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
14045 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
14046 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
14047 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
14048 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
14049 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
14050 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
14051 uint64_t paddd_u (uint64_t s, uint64_t t);
14052 int64_t paddd_s (int64_t s, int64_t t);
14053 int16x4_t paddsh (int16x4_t s, int16x4_t t);
14054 int8x8_t paddsb (int8x8_t s, int8x8_t t);
14055 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
14056 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
14057 uint64_t pandn_ud (uint64_t s, uint64_t t);
14058 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
14059 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
14060 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
14061 int64_t pandn_sd (int64_t s, int64_t t);
14062 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
14063 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
14064 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
14065 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
14066 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
14067 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
14068 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
14069 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
14070 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
14071 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
14072 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
14073 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
14074 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
14075 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
14076 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
14077 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
14078 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
14079 uint16x4_t pextrh_u (uint16x4_t s, int field);
14080 int16x4_t pextrh_s (int16x4_t s, int field);
14081 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
14082 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
14083 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
14084 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
14085 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
14086 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
14087 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
14088 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
14089 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
14090 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
14091 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
14092 int16x4_t pminsh (int16x4_t s, int16x4_t t);
14093 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
14094 uint8x8_t pmovmskb_u (uint8x8_t s);
14095 int8x8_t pmovmskb_s (int8x8_t s);
14096 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
14097 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
14098 int16x4_t pmullh (int16x4_t s, int16x4_t t);
14099 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
14100 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
14101 uint16x4_t biadd (uint8x8_t s);
14102 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
14103 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
14104 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
14105 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
14106 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
14107 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
14108 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
14109 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
14110 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
14111 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
14112 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
14113 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
14114 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
14115 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
14116 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
14117 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
14118 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
14119 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
14120 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
14121 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
14122 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
14123 uint64_t psubd_u (uint64_t s, uint64_t t);
14124 int64_t psubd_s (int64_t s, int64_t t);
14125 int16x4_t psubsh (int16x4_t s, int16x4_t t);
14126 int8x8_t psubsb (int8x8_t s, int8x8_t t);
14127 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
14128 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
14129 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
14130 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
14131 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
14132 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
14133 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
14134 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
14135 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
14136 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
14137 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
14138 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
14139 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
14140 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
14141 @end smallexample
14142
14143 @menu
14144 * Paired-Single Arithmetic::
14145 * Paired-Single Built-in Functions::
14146 * MIPS-3D Built-in Functions::
14147 @end menu
14148
14149 @node Paired-Single Arithmetic
14150 @subsubsection Paired-Single Arithmetic
14151
14152 The table below lists the @code{v2sf} operations for which hardware
14153 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
14154 values and @code{x} is an integral value.
14155
14156 @multitable @columnfractions .50 .50
14157 @item C code @tab MIPS instruction
14158 @item @code{a + b} @tab @code{add.ps}
14159 @item @code{a - b} @tab @code{sub.ps}
14160 @item @code{-a} @tab @code{neg.ps}
14161 @item @code{a * b} @tab @code{mul.ps}
14162 @item @code{a * b + c} @tab @code{madd.ps}
14163 @item @code{a * b - c} @tab @code{msub.ps}
14164 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
14165 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
14166 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
14167 @end multitable
14168
14169 Note that the multiply-accumulate instructions can be disabled
14170 using the command-line option @code{-mno-fused-madd}.
14171
14172 @node Paired-Single Built-in Functions
14173 @subsubsection Paired-Single Built-in Functions
14174
14175 The following paired-single functions map directly to a particular
14176 MIPS instruction. Please refer to the architecture specification
14177 for details on what each instruction does.
14178
14179 @table @code
14180 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
14181 Pair lower lower (@code{pll.ps}).
14182
14183 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
14184 Pair upper lower (@code{pul.ps}).
14185
14186 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
14187 Pair lower upper (@code{plu.ps}).
14188
14189 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
14190 Pair upper upper (@code{puu.ps}).
14191
14192 @item v2sf __builtin_mips_cvt_ps_s (float, float)
14193 Convert pair to paired single (@code{cvt.ps.s}).
14194
14195 @item float __builtin_mips_cvt_s_pl (v2sf)
14196 Convert pair lower to single (@code{cvt.s.pl}).
14197
14198 @item float __builtin_mips_cvt_s_pu (v2sf)
14199 Convert pair upper to single (@code{cvt.s.pu}).
14200
14201 @item v2sf __builtin_mips_abs_ps (v2sf)
14202 Absolute value (@code{abs.ps}).
14203
14204 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
14205 Align variable (@code{alnv.ps}).
14206
14207 @emph{Note:} The value of the third parameter must be 0 or 4
14208 modulo 8, otherwise the result is unpredictable. Please read the
14209 instruction description for details.
14210 @end table
14211
14212 The following multi-instruction functions are also available.
14213 In each case, @var{cond} can be any of the 16 floating-point conditions:
14214 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
14215 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
14216 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
14217
14218 @table @code
14219 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14220 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14221 Conditional move based on floating-point comparison (@code{c.@var{cond}.ps},
14222 @code{movt.ps}/@code{movf.ps}).
14223
14224 The @code{movt} functions return the value @var{x} computed by:
14225
14226 @smallexample
14227 c.@var{cond}.ps @var{cc},@var{a},@var{b}
14228 mov.ps @var{x},@var{c}
14229 movt.ps @var{x},@var{d},@var{cc}
14230 @end smallexample
14231
14232 The @code{movf} functions are similar but use @code{movf.ps} instead
14233 of @code{movt.ps}.
14234
14235 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14236 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14237 Comparison of two paired-single values (@code{c.@var{cond}.ps},
14238 @code{bc1t}/@code{bc1f}).
14239
14240 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
14241 and return either the upper or lower half of the result. For example:
14242
14243 @smallexample
14244 v2sf a, b;
14245 if (__builtin_mips_upper_c_eq_ps (a, b))
14246 upper_halves_are_equal ();
14247 else
14248 upper_halves_are_unequal ();
14249
14250 if (__builtin_mips_lower_c_eq_ps (a, b))
14251 lower_halves_are_equal ();
14252 else
14253 lower_halves_are_unequal ();
14254 @end smallexample
14255 @end table
14256
14257 @node MIPS-3D Built-in Functions
14258 @subsubsection MIPS-3D Built-in Functions
14259
14260 The MIPS-3D Application-Specific Extension (ASE) includes additional
14261 paired-single instructions that are designed to improve the performance
14262 of 3D graphics operations. Support for these instructions is controlled
14263 by the @option{-mips3d} command-line option.
14264
14265 The functions listed below map directly to a particular MIPS-3D
14266 instruction. Please refer to the architecture specification for
14267 more details on what each instruction does.
14268
14269 @table @code
14270 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
14271 Reduction add (@code{addr.ps}).
14272
14273 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
14274 Reduction multiply (@code{mulr.ps}).
14275
14276 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
14277 Convert paired single to paired word (@code{cvt.pw.ps}).
14278
14279 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
14280 Convert paired word to paired single (@code{cvt.ps.pw}).
14281
14282 @item float __builtin_mips_recip1_s (float)
14283 @itemx double __builtin_mips_recip1_d (double)
14284 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
14285 Reduced-precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
14286
14287 @item float __builtin_mips_recip2_s (float, float)
14288 @itemx double __builtin_mips_recip2_d (double, double)
14289 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
14290 Reduced-precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
14291
14292 @item float __builtin_mips_rsqrt1_s (float)
14293 @itemx double __builtin_mips_rsqrt1_d (double)
14294 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
14295 Reduced-precision reciprocal square root (sequence step 1)
14296 (@code{rsqrt1.@var{fmt}}).
14297
14298 @item float __builtin_mips_rsqrt2_s (float, float)
14299 @itemx double __builtin_mips_rsqrt2_d (double, double)
14300 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
14301 Reduced-precision reciprocal square root (sequence step 2)
14302 (@code{rsqrt2.@var{fmt}}).
14303 @end table
14304
14305 The following multi-instruction functions are also available.
14306 In each case, @var{cond} can be any of the 16 floating-point conditions:
14307 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
14308 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
14309 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
14310
14311 @table @code
14312 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
14313 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
14314 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
14315 @code{bc1t}/@code{bc1f}).
14316
14317 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
14318 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
14319 For example:
14320
14321 @smallexample
14322 float a, b;
14323 if (__builtin_mips_cabs_eq_s (a, b))
14324 true ();
14325 else
14326 false ();
14327 @end smallexample
14328
14329 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14330 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14331 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
14332 @code{bc1t}/@code{bc1f}).
14333
14334 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
14335 and return either the upper or lower half of the result. For example:
14336
14337 @smallexample
14338 v2sf a, b;
14339 if (__builtin_mips_upper_cabs_eq_ps (a, b))
14340 upper_halves_are_equal ();
14341 else
14342 upper_halves_are_unequal ();
14343
14344 if (__builtin_mips_lower_cabs_eq_ps (a, b))
14345 lower_halves_are_equal ();
14346 else
14347 lower_halves_are_unequal ();
14348 @end smallexample
14349
14350 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14351 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14352 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
14353 @code{movt.ps}/@code{movf.ps}).
14354
14355 The @code{movt} functions return the value @var{x} computed by:
14356
14357 @smallexample
14358 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
14359 mov.ps @var{x},@var{c}
14360 movt.ps @var{x},@var{d},@var{cc}
14361 @end smallexample
14362
14363 The @code{movf} functions are similar but use @code{movf.ps} instead
14364 of @code{movt.ps}.
14365
14366 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14367 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14368 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14369 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
14370 Comparison of two paired-single values
14371 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
14372 @code{bc1any2t}/@code{bc1any2f}).
14373
14374 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
14375 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
14376 result is true and the @code{all} forms return true if both results are true.
14377 For example:
14378
14379 @smallexample
14380 v2sf a, b;
14381 if (__builtin_mips_any_c_eq_ps (a, b))
14382 one_is_true ();
14383 else
14384 both_are_false ();
14385
14386 if (__builtin_mips_all_c_eq_ps (a, b))
14387 both_are_true ();
14388 else
14389 one_is_false ();
14390 @end smallexample
14391
14392 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14393 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14394 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14395 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
14396 Comparison of four paired-single values
14397 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
14398 @code{bc1any4t}/@code{bc1any4f}).
14399
14400 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
14401 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
14402 The @code{any} forms return true if any of the four results are true
14403 and the @code{all} forms return true if all four results are true.
14404 For example:
14405
14406 @smallexample
14407 v2sf a, b, c, d;
14408 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
14409 some_are_true ();
14410 else
14411 all_are_false ();
14412
14413 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
14414 all_are_true ();
14415 else
14416 some_are_false ();
14417 @end smallexample
14418 @end table
14419
14420 @node MIPS SIMD Architecture (MSA) Support
14421 @subsection MIPS SIMD Architecture (MSA) Support
14422
14423 @menu
14424 * MIPS SIMD Architecture Built-in Functions::
14425 @end menu
14426
14427 GCC provides intrinsics to access the SIMD instructions provided by the
14428 MSA MIPS SIMD Architecture. The interface is made available by including
14429 @code{<msa.h>} and using @option{-mmsa -mhard-float -mfp64 -mnan=2008}.
14430 For each @code{__builtin_msa_*}, there is a shortened name of the intrinsic,
14431 @code{__msa_*}.
14432
14433 MSA implements 128-bit wide vector registers, operating on 8-, 16-, 32- and
14434 64-bit integer, 16- and 32-bit fixed-point, or 32- and 64-bit floating point
14435 data elements. The following vectors typedefs are included in @code{msa.h}:
14436 @itemize
14437 @item @code{v16i8}, a vector of sixteen signed 8-bit integers;
14438 @item @code{v16u8}, a vector of sixteen unsigned 8-bit integers;
14439 @item @code{v8i16}, a vector of eight signed 16-bit integers;
14440 @item @code{v8u16}, a vector of eight unsigned 16-bit integers;
14441 @item @code{v4i32}, a vector of four signed 32-bit integers;
14442 @item @code{v4u32}, a vector of four unsigned 32-bit integers;
14443 @item @code{v2i64}, a vector of two signed 64-bit integers;
14444 @item @code{v2u64}, a vector of two unsigned 64-bit integers;
14445 @item @code{v4f32}, a vector of four 32-bit floats;
14446 @item @code{v2f64}, a vector of two 64-bit doubles.
14447 @end itemize
14448
14449 Instructions and corresponding built-ins may have additional restrictions and/or
14450 input/output values manipulated:
14451 @itemize
14452 @item @code{imm0_1}, an integer literal in range 0 to 1;
14453 @item @code{imm0_3}, an integer literal in range 0 to 3;
14454 @item @code{imm0_7}, an integer literal in range 0 to 7;
14455 @item @code{imm0_15}, an integer literal in range 0 to 15;
14456 @item @code{imm0_31}, an integer literal in range 0 to 31;
14457 @item @code{imm0_63}, an integer literal in range 0 to 63;
14458 @item @code{imm0_255}, an integer literal in range 0 to 255;
14459 @item @code{imm_n16_15}, an integer literal in range -16 to 15;
14460 @item @code{imm_n512_511}, an integer literal in range -512 to 511;
14461 @item @code{imm_n1024_1022}, an integer literal in range -512 to 511 left
14462 shifted by 1 bit, i.e., -1024, -1022, @dots{}, 1020, 1022;
14463 @item @code{imm_n2048_2044}, an integer literal in range -512 to 511 left
14464 shifted by 2 bits, i.e., -2048, -2044, @dots{}, 2040, 2044;
14465 @item @code{imm_n4096_4088}, an integer literal in range -512 to 511 left
14466 shifted by 3 bits, i.e., -4096, -4088, @dots{}, 4080, 4088;
14467 @item @code{imm1_4}, an integer literal in range 1 to 4;
14468 @item @code{i32, i64, u32, u64, f32, f64}, defined as follows:
14469 @end itemize
14470
14471 @smallexample
14472 @{
14473 typedef int i32;
14474 #if __LONG_MAX__ == __LONG_LONG_MAX__
14475 typedef long i64;
14476 #else
14477 typedef long long i64;
14478 #endif
14479
14480 typedef unsigned int u32;
14481 #if __LONG_MAX__ == __LONG_LONG_MAX__
14482 typedef unsigned long u64;
14483 #else
14484 typedef unsigned long long u64;
14485 #endif
14486
14487 typedef double f64;
14488 typedef float f32;
14489 @}
14490 @end smallexample
14491
14492 @node MIPS SIMD Architecture Built-in Functions
14493 @subsubsection MIPS SIMD Architecture Built-in Functions
14494
14495 The intrinsics provided are listed below; each is named after the
14496 machine instruction.
14497
14498 @smallexample
14499 v16i8 __builtin_msa_add_a_b (v16i8, v16i8);
14500 v8i16 __builtin_msa_add_a_h (v8i16, v8i16);
14501 v4i32 __builtin_msa_add_a_w (v4i32, v4i32);
14502 v2i64 __builtin_msa_add_a_d (v2i64, v2i64);
14503
14504 v16i8 __builtin_msa_adds_a_b (v16i8, v16i8);
14505 v8i16 __builtin_msa_adds_a_h (v8i16, v8i16);
14506 v4i32 __builtin_msa_adds_a_w (v4i32, v4i32);
14507 v2i64 __builtin_msa_adds_a_d (v2i64, v2i64);
14508
14509 v16i8 __builtin_msa_adds_s_b (v16i8, v16i8);
14510 v8i16 __builtin_msa_adds_s_h (v8i16, v8i16);
14511 v4i32 __builtin_msa_adds_s_w (v4i32, v4i32);
14512 v2i64 __builtin_msa_adds_s_d (v2i64, v2i64);
14513
14514 v16u8 __builtin_msa_adds_u_b (v16u8, v16u8);
14515 v8u16 __builtin_msa_adds_u_h (v8u16, v8u16);
14516 v4u32 __builtin_msa_adds_u_w (v4u32, v4u32);
14517 v2u64 __builtin_msa_adds_u_d (v2u64, v2u64);
14518
14519 v16i8 __builtin_msa_addv_b (v16i8, v16i8);
14520 v8i16 __builtin_msa_addv_h (v8i16, v8i16);
14521 v4i32 __builtin_msa_addv_w (v4i32, v4i32);
14522 v2i64 __builtin_msa_addv_d (v2i64, v2i64);
14523
14524 v16i8 __builtin_msa_addvi_b (v16i8, imm0_31);
14525 v8i16 __builtin_msa_addvi_h (v8i16, imm0_31);
14526 v4i32 __builtin_msa_addvi_w (v4i32, imm0_31);
14527 v2i64 __builtin_msa_addvi_d (v2i64, imm0_31);
14528
14529 v16u8 __builtin_msa_and_v (v16u8, v16u8);
14530
14531 v16u8 __builtin_msa_andi_b (v16u8, imm0_255);
14532
14533 v16i8 __builtin_msa_asub_s_b (v16i8, v16i8);
14534 v8i16 __builtin_msa_asub_s_h (v8i16, v8i16);
14535 v4i32 __builtin_msa_asub_s_w (v4i32, v4i32);
14536 v2i64 __builtin_msa_asub_s_d (v2i64, v2i64);
14537
14538 v16u8 __builtin_msa_asub_u_b (v16u8, v16u8);
14539 v8u16 __builtin_msa_asub_u_h (v8u16, v8u16);
14540 v4u32 __builtin_msa_asub_u_w (v4u32, v4u32);
14541 v2u64 __builtin_msa_asub_u_d (v2u64, v2u64);
14542
14543 v16i8 __builtin_msa_ave_s_b (v16i8, v16i8);
14544 v8i16 __builtin_msa_ave_s_h (v8i16, v8i16);
14545 v4i32 __builtin_msa_ave_s_w (v4i32, v4i32);
14546 v2i64 __builtin_msa_ave_s_d (v2i64, v2i64);
14547
14548 v16u8 __builtin_msa_ave_u_b (v16u8, v16u8);
14549 v8u16 __builtin_msa_ave_u_h (v8u16, v8u16);
14550 v4u32 __builtin_msa_ave_u_w (v4u32, v4u32);
14551 v2u64 __builtin_msa_ave_u_d (v2u64, v2u64);
14552
14553 v16i8 __builtin_msa_aver_s_b (v16i8, v16i8);
14554 v8i16 __builtin_msa_aver_s_h (v8i16, v8i16);
14555 v4i32 __builtin_msa_aver_s_w (v4i32, v4i32);
14556 v2i64 __builtin_msa_aver_s_d (v2i64, v2i64);
14557
14558 v16u8 __builtin_msa_aver_u_b (v16u8, v16u8);
14559 v8u16 __builtin_msa_aver_u_h (v8u16, v8u16);
14560 v4u32 __builtin_msa_aver_u_w (v4u32, v4u32);
14561 v2u64 __builtin_msa_aver_u_d (v2u64, v2u64);
14562
14563 v16u8 __builtin_msa_bclr_b (v16u8, v16u8);
14564 v8u16 __builtin_msa_bclr_h (v8u16, v8u16);
14565 v4u32 __builtin_msa_bclr_w (v4u32, v4u32);
14566 v2u64 __builtin_msa_bclr_d (v2u64, v2u64);
14567
14568 v16u8 __builtin_msa_bclri_b (v16u8, imm0_7);
14569 v8u16 __builtin_msa_bclri_h (v8u16, imm0_15);
14570 v4u32 __builtin_msa_bclri_w (v4u32, imm0_31);
14571 v2u64 __builtin_msa_bclri_d (v2u64, imm0_63);
14572
14573 v16u8 __builtin_msa_binsl_b (v16u8, v16u8, v16u8);
14574 v8u16 __builtin_msa_binsl_h (v8u16, v8u16, v8u16);
14575 v4u32 __builtin_msa_binsl_w (v4u32, v4u32, v4u32);
14576 v2u64 __builtin_msa_binsl_d (v2u64, v2u64, v2u64);
14577
14578 v16u8 __builtin_msa_binsli_b (v16u8, v16u8, imm0_7);
14579 v8u16 __builtin_msa_binsli_h (v8u16, v8u16, imm0_15);
14580 v4u32 __builtin_msa_binsli_w (v4u32, v4u32, imm0_31);
14581 v2u64 __builtin_msa_binsli_d (v2u64, v2u64, imm0_63);
14582
14583 v16u8 __builtin_msa_binsr_b (v16u8, v16u8, v16u8);
14584 v8u16 __builtin_msa_binsr_h (v8u16, v8u16, v8u16);
14585 v4u32 __builtin_msa_binsr_w (v4u32, v4u32, v4u32);
14586 v2u64 __builtin_msa_binsr_d (v2u64, v2u64, v2u64);
14587
14588 v16u8 __builtin_msa_binsri_b (v16u8, v16u8, imm0_7);
14589 v8u16 __builtin_msa_binsri_h (v8u16, v8u16, imm0_15);
14590 v4u32 __builtin_msa_binsri_w (v4u32, v4u32, imm0_31);
14591 v2u64 __builtin_msa_binsri_d (v2u64, v2u64, imm0_63);
14592
14593 v16u8 __builtin_msa_bmnz_v (v16u8, v16u8, v16u8);
14594
14595 v16u8 __builtin_msa_bmnzi_b (v16u8, v16u8, imm0_255);
14596
14597 v16u8 __builtin_msa_bmz_v (v16u8, v16u8, v16u8);
14598
14599 v16u8 __builtin_msa_bmzi_b (v16u8, v16u8, imm0_255);
14600
14601 v16u8 __builtin_msa_bneg_b (v16u8, v16u8);
14602 v8u16 __builtin_msa_bneg_h (v8u16, v8u16);
14603 v4u32 __builtin_msa_bneg_w (v4u32, v4u32);
14604 v2u64 __builtin_msa_bneg_d (v2u64, v2u64);
14605
14606 v16u8 __builtin_msa_bnegi_b (v16u8, imm0_7);
14607 v8u16 __builtin_msa_bnegi_h (v8u16, imm0_15);
14608 v4u32 __builtin_msa_bnegi_w (v4u32, imm0_31);
14609 v2u64 __builtin_msa_bnegi_d (v2u64, imm0_63);
14610
14611 i32 __builtin_msa_bnz_b (v16u8);
14612 i32 __builtin_msa_bnz_h (v8u16);
14613 i32 __builtin_msa_bnz_w (v4u32);
14614 i32 __builtin_msa_bnz_d (v2u64);
14615
14616 i32 __builtin_msa_bnz_v (v16u8);
14617
14618 v16u8 __builtin_msa_bsel_v (v16u8, v16u8, v16u8);
14619
14620 v16u8 __builtin_msa_bseli_b (v16u8, v16u8, imm0_255);
14621
14622 v16u8 __builtin_msa_bset_b (v16u8, v16u8);
14623 v8u16 __builtin_msa_bset_h (v8u16, v8u16);
14624 v4u32 __builtin_msa_bset_w (v4u32, v4u32);
14625 v2u64 __builtin_msa_bset_d (v2u64, v2u64);
14626
14627 v16u8 __builtin_msa_bseti_b (v16u8, imm0_7);
14628 v8u16 __builtin_msa_bseti_h (v8u16, imm0_15);
14629 v4u32 __builtin_msa_bseti_w (v4u32, imm0_31);
14630 v2u64 __builtin_msa_bseti_d (v2u64, imm0_63);
14631
14632 i32 __builtin_msa_bz_b (v16u8);
14633 i32 __builtin_msa_bz_h (v8u16);
14634 i32 __builtin_msa_bz_w (v4u32);
14635 i32 __builtin_msa_bz_d (v2u64);
14636
14637 i32 __builtin_msa_bz_v (v16u8);
14638
14639 v16i8 __builtin_msa_ceq_b (v16i8, v16i8);
14640 v8i16 __builtin_msa_ceq_h (v8i16, v8i16);
14641 v4i32 __builtin_msa_ceq_w (v4i32, v4i32);
14642 v2i64 __builtin_msa_ceq_d (v2i64, v2i64);
14643
14644 v16i8 __builtin_msa_ceqi_b (v16i8, imm_n16_15);
14645 v8i16 __builtin_msa_ceqi_h (v8i16, imm_n16_15);
14646 v4i32 __builtin_msa_ceqi_w (v4i32, imm_n16_15);
14647 v2i64 __builtin_msa_ceqi_d (v2i64, imm_n16_15);
14648
14649 i32 __builtin_msa_cfcmsa (imm0_31);
14650
14651 v16i8 __builtin_msa_cle_s_b (v16i8, v16i8);
14652 v8i16 __builtin_msa_cle_s_h (v8i16, v8i16);
14653 v4i32 __builtin_msa_cle_s_w (v4i32, v4i32);
14654 v2i64 __builtin_msa_cle_s_d (v2i64, v2i64);
14655
14656 v16i8 __builtin_msa_cle_u_b (v16u8, v16u8);
14657 v8i16 __builtin_msa_cle_u_h (v8u16, v8u16);
14658 v4i32 __builtin_msa_cle_u_w (v4u32, v4u32);
14659 v2i64 __builtin_msa_cle_u_d (v2u64, v2u64);
14660
14661 v16i8 __builtin_msa_clei_s_b (v16i8, imm_n16_15);
14662 v8i16 __builtin_msa_clei_s_h (v8i16, imm_n16_15);
14663 v4i32 __builtin_msa_clei_s_w (v4i32, imm_n16_15);
14664 v2i64 __builtin_msa_clei_s_d (v2i64, imm_n16_15);
14665
14666 v16i8 __builtin_msa_clei_u_b (v16u8, imm0_31);
14667 v8i16 __builtin_msa_clei_u_h (v8u16, imm0_31);
14668 v4i32 __builtin_msa_clei_u_w (v4u32, imm0_31);
14669 v2i64 __builtin_msa_clei_u_d (v2u64, imm0_31);
14670
14671 v16i8 __builtin_msa_clt_s_b (v16i8, v16i8);
14672 v8i16 __builtin_msa_clt_s_h (v8i16, v8i16);
14673 v4i32 __builtin_msa_clt_s_w (v4i32, v4i32);
14674 v2i64 __builtin_msa_clt_s_d (v2i64, v2i64);
14675
14676 v16i8 __builtin_msa_clt_u_b (v16u8, v16u8);
14677 v8i16 __builtin_msa_clt_u_h (v8u16, v8u16);
14678 v4i32 __builtin_msa_clt_u_w (v4u32, v4u32);
14679 v2i64 __builtin_msa_clt_u_d (v2u64, v2u64);
14680
14681 v16i8 __builtin_msa_clti_s_b (v16i8, imm_n16_15);
14682 v8i16 __builtin_msa_clti_s_h (v8i16, imm_n16_15);
14683 v4i32 __builtin_msa_clti_s_w (v4i32, imm_n16_15);
14684 v2i64 __builtin_msa_clti_s_d (v2i64, imm_n16_15);
14685
14686 v16i8 __builtin_msa_clti_u_b (v16u8, imm0_31);
14687 v8i16 __builtin_msa_clti_u_h (v8u16, imm0_31);
14688 v4i32 __builtin_msa_clti_u_w (v4u32, imm0_31);
14689 v2i64 __builtin_msa_clti_u_d (v2u64, imm0_31);
14690
14691 i32 __builtin_msa_copy_s_b (v16i8, imm0_15);
14692 i32 __builtin_msa_copy_s_h (v8i16, imm0_7);
14693 i32 __builtin_msa_copy_s_w (v4i32, imm0_3);
14694 i64 __builtin_msa_copy_s_d (v2i64, imm0_1);
14695
14696 u32 __builtin_msa_copy_u_b (v16i8, imm0_15);
14697 u32 __builtin_msa_copy_u_h (v8i16, imm0_7);
14698 u32 __builtin_msa_copy_u_w (v4i32, imm0_3);
14699 u64 __builtin_msa_copy_u_d (v2i64, imm0_1);
14700
14701 void __builtin_msa_ctcmsa (imm0_31, i32);
14702
14703 v16i8 __builtin_msa_div_s_b (v16i8, v16i8);
14704 v8i16 __builtin_msa_div_s_h (v8i16, v8i16);
14705 v4i32 __builtin_msa_div_s_w (v4i32, v4i32);
14706 v2i64 __builtin_msa_div_s_d (v2i64, v2i64);
14707
14708 v16u8 __builtin_msa_div_u_b (v16u8, v16u8);
14709 v8u16 __builtin_msa_div_u_h (v8u16, v8u16);
14710 v4u32 __builtin_msa_div_u_w (v4u32, v4u32);
14711 v2u64 __builtin_msa_div_u_d (v2u64, v2u64);
14712
14713 v8i16 __builtin_msa_dotp_s_h (v16i8, v16i8);
14714 v4i32 __builtin_msa_dotp_s_w (v8i16, v8i16);
14715 v2i64 __builtin_msa_dotp_s_d (v4i32, v4i32);
14716
14717 v8u16 __builtin_msa_dotp_u_h (v16u8, v16u8);
14718 v4u32 __builtin_msa_dotp_u_w (v8u16, v8u16);
14719 v2u64 __builtin_msa_dotp_u_d (v4u32, v4u32);
14720
14721 v8i16 __builtin_msa_dpadd_s_h (v8i16, v16i8, v16i8);
14722 v4i32 __builtin_msa_dpadd_s_w (v4i32, v8i16, v8i16);
14723 v2i64 __builtin_msa_dpadd_s_d (v2i64, v4i32, v4i32);
14724
14725 v8u16 __builtin_msa_dpadd_u_h (v8u16, v16u8, v16u8);
14726 v4u32 __builtin_msa_dpadd_u_w (v4u32, v8u16, v8u16);
14727 v2u64 __builtin_msa_dpadd_u_d (v2u64, v4u32, v4u32);
14728
14729 v8i16 __builtin_msa_dpsub_s_h (v8i16, v16i8, v16i8);
14730 v4i32 __builtin_msa_dpsub_s_w (v4i32, v8i16, v8i16);
14731 v2i64 __builtin_msa_dpsub_s_d (v2i64, v4i32, v4i32);
14732
14733 v8i16 __builtin_msa_dpsub_u_h (v8i16, v16u8, v16u8);
14734 v4i32 __builtin_msa_dpsub_u_w (v4i32, v8u16, v8u16);
14735 v2i64 __builtin_msa_dpsub_u_d (v2i64, v4u32, v4u32);
14736
14737 v4f32 __builtin_msa_fadd_w (v4f32, v4f32);
14738 v2f64 __builtin_msa_fadd_d (v2f64, v2f64);
14739
14740 v4i32 __builtin_msa_fcaf_w (v4f32, v4f32);
14741 v2i64 __builtin_msa_fcaf_d (v2f64, v2f64);
14742
14743 v4i32 __builtin_msa_fceq_w (v4f32, v4f32);
14744 v2i64 __builtin_msa_fceq_d (v2f64, v2f64);
14745
14746 v4i32 __builtin_msa_fclass_w (v4f32);
14747 v2i64 __builtin_msa_fclass_d (v2f64);
14748
14749 v4i32 __builtin_msa_fcle_w (v4f32, v4f32);
14750 v2i64 __builtin_msa_fcle_d (v2f64, v2f64);
14751
14752 v4i32 __builtin_msa_fclt_w (v4f32, v4f32);
14753 v2i64 __builtin_msa_fclt_d (v2f64, v2f64);
14754
14755 v4i32 __builtin_msa_fcne_w (v4f32, v4f32);
14756 v2i64 __builtin_msa_fcne_d (v2f64, v2f64);
14757
14758 v4i32 __builtin_msa_fcor_w (v4f32, v4f32);
14759 v2i64 __builtin_msa_fcor_d (v2f64, v2f64);
14760
14761 v4i32 __builtin_msa_fcueq_w (v4f32, v4f32);
14762 v2i64 __builtin_msa_fcueq_d (v2f64, v2f64);
14763
14764 v4i32 __builtin_msa_fcule_w (v4f32, v4f32);
14765 v2i64 __builtin_msa_fcule_d (v2f64, v2f64);
14766
14767 v4i32 __builtin_msa_fcult_w (v4f32, v4f32);
14768 v2i64 __builtin_msa_fcult_d (v2f64, v2f64);
14769
14770 v4i32 __builtin_msa_fcun_w (v4f32, v4f32);
14771 v2i64 __builtin_msa_fcun_d (v2f64, v2f64);
14772
14773 v4i32 __builtin_msa_fcune_w (v4f32, v4f32);
14774 v2i64 __builtin_msa_fcune_d (v2f64, v2f64);
14775
14776 v4f32 __builtin_msa_fdiv_w (v4f32, v4f32);
14777 v2f64 __builtin_msa_fdiv_d (v2f64, v2f64);
14778
14779 v8i16 __builtin_msa_fexdo_h (v4f32, v4f32);
14780 v4f32 __builtin_msa_fexdo_w (v2f64, v2f64);
14781
14782 v4f32 __builtin_msa_fexp2_w (v4f32, v4i32);
14783 v2f64 __builtin_msa_fexp2_d (v2f64, v2i64);
14784
14785 v4f32 __builtin_msa_fexupl_w (v8i16);
14786 v2f64 __builtin_msa_fexupl_d (v4f32);
14787
14788 v4f32 __builtin_msa_fexupr_w (v8i16);
14789 v2f64 __builtin_msa_fexupr_d (v4f32);
14790
14791 v4f32 __builtin_msa_ffint_s_w (v4i32);
14792 v2f64 __builtin_msa_ffint_s_d (v2i64);
14793
14794 v4f32 __builtin_msa_ffint_u_w (v4u32);
14795 v2f64 __builtin_msa_ffint_u_d (v2u64);
14796
14797 v4f32 __builtin_msa_ffql_w (v8i16);
14798 v2f64 __builtin_msa_ffql_d (v4i32);
14799
14800 v4f32 __builtin_msa_ffqr_w (v8i16);
14801 v2f64 __builtin_msa_ffqr_d (v4i32);
14802
14803 v16i8 __builtin_msa_fill_b (i32);
14804 v8i16 __builtin_msa_fill_h (i32);
14805 v4i32 __builtin_msa_fill_w (i32);
14806 v2i64 __builtin_msa_fill_d (i64);
14807
14808 v4f32 __builtin_msa_flog2_w (v4f32);
14809 v2f64 __builtin_msa_flog2_d (v2f64);
14810
14811 v4f32 __builtin_msa_fmadd_w (v4f32, v4f32, v4f32);
14812 v2f64 __builtin_msa_fmadd_d (v2f64, v2f64, v2f64);
14813
14814 v4f32 __builtin_msa_fmax_w (v4f32, v4f32);
14815 v2f64 __builtin_msa_fmax_d (v2f64, v2f64);
14816
14817 v4f32 __builtin_msa_fmax_a_w (v4f32, v4f32);
14818 v2f64 __builtin_msa_fmax_a_d (v2f64, v2f64);
14819
14820 v4f32 __builtin_msa_fmin_w (v4f32, v4f32);
14821 v2f64 __builtin_msa_fmin_d (v2f64, v2f64);
14822
14823 v4f32 __builtin_msa_fmin_a_w (v4f32, v4f32);
14824 v2f64 __builtin_msa_fmin_a_d (v2f64, v2f64);
14825
14826 v4f32 __builtin_msa_fmsub_w (v4f32, v4f32, v4f32);
14827 v2f64 __builtin_msa_fmsub_d (v2f64, v2f64, v2f64);
14828
14829 v4f32 __builtin_msa_fmul_w (v4f32, v4f32);
14830 v2f64 __builtin_msa_fmul_d (v2f64, v2f64);
14831
14832 v4f32 __builtin_msa_frint_w (v4f32);
14833 v2f64 __builtin_msa_frint_d (v2f64);
14834
14835 v4f32 __builtin_msa_frcp_w (v4f32);
14836 v2f64 __builtin_msa_frcp_d (v2f64);
14837
14838 v4f32 __builtin_msa_frsqrt_w (v4f32);
14839 v2f64 __builtin_msa_frsqrt_d (v2f64);
14840
14841 v4i32 __builtin_msa_fsaf_w (v4f32, v4f32);
14842 v2i64 __builtin_msa_fsaf_d (v2f64, v2f64);
14843
14844 v4i32 __builtin_msa_fseq_w (v4f32, v4f32);
14845 v2i64 __builtin_msa_fseq_d (v2f64, v2f64);
14846
14847 v4i32 __builtin_msa_fsle_w (v4f32, v4f32);
14848 v2i64 __builtin_msa_fsle_d (v2f64, v2f64);
14849
14850 v4i32 __builtin_msa_fslt_w (v4f32, v4f32);
14851 v2i64 __builtin_msa_fslt_d (v2f64, v2f64);
14852
14853 v4i32 __builtin_msa_fsne_w (v4f32, v4f32);
14854 v2i64 __builtin_msa_fsne_d (v2f64, v2f64);
14855
14856 v4i32 __builtin_msa_fsor_w (v4f32, v4f32);
14857 v2i64 __builtin_msa_fsor_d (v2f64, v2f64);
14858
14859 v4f32 __builtin_msa_fsqrt_w (v4f32);
14860 v2f64 __builtin_msa_fsqrt_d (v2f64);
14861
14862 v4f32 __builtin_msa_fsub_w (v4f32, v4f32);
14863 v2f64 __builtin_msa_fsub_d (v2f64, v2f64);
14864
14865 v4i32 __builtin_msa_fsueq_w (v4f32, v4f32);
14866 v2i64 __builtin_msa_fsueq_d (v2f64, v2f64);
14867
14868 v4i32 __builtin_msa_fsule_w (v4f32, v4f32);
14869 v2i64 __builtin_msa_fsule_d (v2f64, v2f64);
14870
14871 v4i32 __builtin_msa_fsult_w (v4f32, v4f32);
14872 v2i64 __builtin_msa_fsult_d (v2f64, v2f64);
14873
14874 v4i32 __builtin_msa_fsun_w (v4f32, v4f32);
14875 v2i64 __builtin_msa_fsun_d (v2f64, v2f64);
14876
14877 v4i32 __builtin_msa_fsune_w (v4f32, v4f32);
14878 v2i64 __builtin_msa_fsune_d (v2f64, v2f64);
14879
14880 v4i32 __builtin_msa_ftint_s_w (v4f32);
14881 v2i64 __builtin_msa_ftint_s_d (v2f64);
14882
14883 v4u32 __builtin_msa_ftint_u_w (v4f32);
14884 v2u64 __builtin_msa_ftint_u_d (v2f64);
14885
14886 v8i16 __builtin_msa_ftq_h (v4f32, v4f32);
14887 v4i32 __builtin_msa_ftq_w (v2f64, v2f64);
14888
14889 v4i32 __builtin_msa_ftrunc_s_w (v4f32);
14890 v2i64 __builtin_msa_ftrunc_s_d (v2f64);
14891
14892 v4u32 __builtin_msa_ftrunc_u_w (v4f32);
14893 v2u64 __builtin_msa_ftrunc_u_d (v2f64);
14894
14895 v8i16 __builtin_msa_hadd_s_h (v16i8, v16i8);
14896 v4i32 __builtin_msa_hadd_s_w (v8i16, v8i16);
14897 v2i64 __builtin_msa_hadd_s_d (v4i32, v4i32);
14898
14899 v8u16 __builtin_msa_hadd_u_h (v16u8, v16u8);
14900 v4u32 __builtin_msa_hadd_u_w (v8u16, v8u16);
14901 v2u64 __builtin_msa_hadd_u_d (v4u32, v4u32);
14902
14903 v8i16 __builtin_msa_hsub_s_h (v16i8, v16i8);
14904 v4i32 __builtin_msa_hsub_s_w (v8i16, v8i16);
14905 v2i64 __builtin_msa_hsub_s_d (v4i32, v4i32);
14906
14907 v8i16 __builtin_msa_hsub_u_h (v16u8, v16u8);
14908 v4i32 __builtin_msa_hsub_u_w (v8u16, v8u16);
14909 v2i64 __builtin_msa_hsub_u_d (v4u32, v4u32);
14910
14911 v16i8 __builtin_msa_ilvev_b (v16i8, v16i8);
14912 v8i16 __builtin_msa_ilvev_h (v8i16, v8i16);
14913 v4i32 __builtin_msa_ilvev_w (v4i32, v4i32);
14914 v2i64 __builtin_msa_ilvev_d (v2i64, v2i64);
14915
14916 v16i8 __builtin_msa_ilvl_b (v16i8, v16i8);
14917 v8i16 __builtin_msa_ilvl_h (v8i16, v8i16);
14918 v4i32 __builtin_msa_ilvl_w (v4i32, v4i32);
14919 v2i64 __builtin_msa_ilvl_d (v2i64, v2i64);
14920
14921 v16i8 __builtin_msa_ilvod_b (v16i8, v16i8);
14922 v8i16 __builtin_msa_ilvod_h (v8i16, v8i16);
14923 v4i32 __builtin_msa_ilvod_w (v4i32, v4i32);
14924 v2i64 __builtin_msa_ilvod_d (v2i64, v2i64);
14925
14926 v16i8 __builtin_msa_ilvr_b (v16i8, v16i8);
14927 v8i16 __builtin_msa_ilvr_h (v8i16, v8i16);
14928 v4i32 __builtin_msa_ilvr_w (v4i32, v4i32);
14929 v2i64 __builtin_msa_ilvr_d (v2i64, v2i64);
14930
14931 v16i8 __builtin_msa_insert_b (v16i8, imm0_15, i32);
14932 v8i16 __builtin_msa_insert_h (v8i16, imm0_7, i32);
14933 v4i32 __builtin_msa_insert_w (v4i32, imm0_3, i32);
14934 v2i64 __builtin_msa_insert_d (v2i64, imm0_1, i64);
14935
14936 v16i8 __builtin_msa_insve_b (v16i8, imm0_15, v16i8);
14937 v8i16 __builtin_msa_insve_h (v8i16, imm0_7, v8i16);
14938 v4i32 __builtin_msa_insve_w (v4i32, imm0_3, v4i32);
14939 v2i64 __builtin_msa_insve_d (v2i64, imm0_1, v2i64);
14940
14941 v16i8 __builtin_msa_ld_b (void *, imm_n512_511);
14942 v8i16 __builtin_msa_ld_h (void *, imm_n1024_1022);
14943 v4i32 __builtin_msa_ld_w (void *, imm_n2048_2044);
14944 v2i64 __builtin_msa_ld_d (void *, imm_n4096_4088);
14945
14946 v16i8 __builtin_msa_ldi_b (imm_n512_511);
14947 v8i16 __builtin_msa_ldi_h (imm_n512_511);
14948 v4i32 __builtin_msa_ldi_w (imm_n512_511);
14949 v2i64 __builtin_msa_ldi_d (imm_n512_511);
14950
14951 v8i16 __builtin_msa_madd_q_h (v8i16, v8i16, v8i16);
14952 v4i32 __builtin_msa_madd_q_w (v4i32, v4i32, v4i32);
14953
14954 v8i16 __builtin_msa_maddr_q_h (v8i16, v8i16, v8i16);
14955 v4i32 __builtin_msa_maddr_q_w (v4i32, v4i32, v4i32);
14956
14957 v16i8 __builtin_msa_maddv_b (v16i8, v16i8, v16i8);
14958 v8i16 __builtin_msa_maddv_h (v8i16, v8i16, v8i16);
14959 v4i32 __builtin_msa_maddv_w (v4i32, v4i32, v4i32);
14960 v2i64 __builtin_msa_maddv_d (v2i64, v2i64, v2i64);
14961
14962 v16i8 __builtin_msa_max_a_b (v16i8, v16i8);
14963 v8i16 __builtin_msa_max_a_h (v8i16, v8i16);
14964 v4i32 __builtin_msa_max_a_w (v4i32, v4i32);
14965 v2i64 __builtin_msa_max_a_d (v2i64, v2i64);
14966
14967 v16i8 __builtin_msa_max_s_b (v16i8, v16i8);
14968 v8i16 __builtin_msa_max_s_h (v8i16, v8i16);
14969 v4i32 __builtin_msa_max_s_w (v4i32, v4i32);
14970 v2i64 __builtin_msa_max_s_d (v2i64, v2i64);
14971
14972 v16u8 __builtin_msa_max_u_b (v16u8, v16u8);
14973 v8u16 __builtin_msa_max_u_h (v8u16, v8u16);
14974 v4u32 __builtin_msa_max_u_w (v4u32, v4u32);
14975 v2u64 __builtin_msa_max_u_d (v2u64, v2u64);
14976
14977 v16i8 __builtin_msa_maxi_s_b (v16i8, imm_n16_15);
14978 v8i16 __builtin_msa_maxi_s_h (v8i16, imm_n16_15);
14979 v4i32 __builtin_msa_maxi_s_w (v4i32, imm_n16_15);
14980 v2i64 __builtin_msa_maxi_s_d (v2i64, imm_n16_15);
14981
14982 v16u8 __builtin_msa_maxi_u_b (v16u8, imm0_31);
14983 v8u16 __builtin_msa_maxi_u_h (v8u16, imm0_31);
14984 v4u32 __builtin_msa_maxi_u_w (v4u32, imm0_31);
14985 v2u64 __builtin_msa_maxi_u_d (v2u64, imm0_31);
14986
14987 v16i8 __builtin_msa_min_a_b (v16i8, v16i8);
14988 v8i16 __builtin_msa_min_a_h (v8i16, v8i16);
14989 v4i32 __builtin_msa_min_a_w (v4i32, v4i32);
14990 v2i64 __builtin_msa_min_a_d (v2i64, v2i64);
14991
14992 v16i8 __builtin_msa_min_s_b (v16i8, v16i8);
14993 v8i16 __builtin_msa_min_s_h (v8i16, v8i16);
14994 v4i32 __builtin_msa_min_s_w (v4i32, v4i32);
14995 v2i64 __builtin_msa_min_s_d (v2i64, v2i64);
14996
14997 v16u8 __builtin_msa_min_u_b (v16u8, v16u8);
14998 v8u16 __builtin_msa_min_u_h (v8u16, v8u16);
14999 v4u32 __builtin_msa_min_u_w (v4u32, v4u32);
15000 v2u64 __builtin_msa_min_u_d (v2u64, v2u64);
15001
15002 v16i8 __builtin_msa_mini_s_b (v16i8, imm_n16_15);
15003 v8i16 __builtin_msa_mini_s_h (v8i16, imm_n16_15);
15004 v4i32 __builtin_msa_mini_s_w (v4i32, imm_n16_15);
15005 v2i64 __builtin_msa_mini_s_d (v2i64, imm_n16_15);
15006
15007 v16u8 __builtin_msa_mini_u_b (v16u8, imm0_31);
15008 v8u16 __builtin_msa_mini_u_h (v8u16, imm0_31);
15009 v4u32 __builtin_msa_mini_u_w (v4u32, imm0_31);
15010 v2u64 __builtin_msa_mini_u_d (v2u64, imm0_31);
15011
15012 v16i8 __builtin_msa_mod_s_b (v16i8, v16i8);
15013 v8i16 __builtin_msa_mod_s_h (v8i16, v8i16);
15014 v4i32 __builtin_msa_mod_s_w (v4i32, v4i32);
15015 v2i64 __builtin_msa_mod_s_d (v2i64, v2i64);
15016
15017 v16u8 __builtin_msa_mod_u_b (v16u8, v16u8);
15018 v8u16 __builtin_msa_mod_u_h (v8u16, v8u16);
15019 v4u32 __builtin_msa_mod_u_w (v4u32, v4u32);
15020 v2u64 __builtin_msa_mod_u_d (v2u64, v2u64);
15021
15022 v16i8 __builtin_msa_move_v (v16i8);
15023
15024 v8i16 __builtin_msa_msub_q_h (v8i16, v8i16, v8i16);
15025 v4i32 __builtin_msa_msub_q_w (v4i32, v4i32, v4i32);
15026
15027 v8i16 __builtin_msa_msubr_q_h (v8i16, v8i16, v8i16);
15028 v4i32 __builtin_msa_msubr_q_w (v4i32, v4i32, v4i32);
15029
15030 v16i8 __builtin_msa_msubv_b (v16i8, v16i8, v16i8);
15031 v8i16 __builtin_msa_msubv_h (v8i16, v8i16, v8i16);
15032 v4i32 __builtin_msa_msubv_w (v4i32, v4i32, v4i32);
15033 v2i64 __builtin_msa_msubv_d (v2i64, v2i64, v2i64);
15034
15035 v8i16 __builtin_msa_mul_q_h (v8i16, v8i16);
15036 v4i32 __builtin_msa_mul_q_w (v4i32, v4i32);
15037
15038 v8i16 __builtin_msa_mulr_q_h (v8i16, v8i16);
15039 v4i32 __builtin_msa_mulr_q_w (v4i32, v4i32);
15040
15041 v16i8 __builtin_msa_mulv_b (v16i8, v16i8);
15042 v8i16 __builtin_msa_mulv_h (v8i16, v8i16);
15043 v4i32 __builtin_msa_mulv_w (v4i32, v4i32);
15044 v2i64 __builtin_msa_mulv_d (v2i64, v2i64);
15045
15046 v16i8 __builtin_msa_nloc_b (v16i8);
15047 v8i16 __builtin_msa_nloc_h (v8i16);
15048 v4i32 __builtin_msa_nloc_w (v4i32);
15049 v2i64 __builtin_msa_nloc_d (v2i64);
15050
15051 v16i8 __builtin_msa_nlzc_b (v16i8);
15052 v8i16 __builtin_msa_nlzc_h (v8i16);
15053 v4i32 __builtin_msa_nlzc_w (v4i32);
15054 v2i64 __builtin_msa_nlzc_d (v2i64);
15055
15056 v16u8 __builtin_msa_nor_v (v16u8, v16u8);
15057
15058 v16u8 __builtin_msa_nori_b (v16u8, imm0_255);
15059
15060 v16u8 __builtin_msa_or_v (v16u8, v16u8);
15061
15062 v16u8 __builtin_msa_ori_b (v16u8, imm0_255);
15063
15064 v16i8 __builtin_msa_pckev_b (v16i8, v16i8);
15065 v8i16 __builtin_msa_pckev_h (v8i16, v8i16);
15066 v4i32 __builtin_msa_pckev_w (v4i32, v4i32);
15067 v2i64 __builtin_msa_pckev_d (v2i64, v2i64);
15068
15069 v16i8 __builtin_msa_pckod_b (v16i8, v16i8);
15070 v8i16 __builtin_msa_pckod_h (v8i16, v8i16);
15071 v4i32 __builtin_msa_pckod_w (v4i32, v4i32);
15072 v2i64 __builtin_msa_pckod_d (v2i64, v2i64);
15073
15074 v16i8 __builtin_msa_pcnt_b (v16i8);
15075 v8i16 __builtin_msa_pcnt_h (v8i16);
15076 v4i32 __builtin_msa_pcnt_w (v4i32);
15077 v2i64 __builtin_msa_pcnt_d (v2i64);
15078
15079 v16i8 __builtin_msa_sat_s_b (v16i8, imm0_7);
15080 v8i16 __builtin_msa_sat_s_h (v8i16, imm0_15);
15081 v4i32 __builtin_msa_sat_s_w (v4i32, imm0_31);
15082 v2i64 __builtin_msa_sat_s_d (v2i64, imm0_63);
15083
15084 v16u8 __builtin_msa_sat_u_b (v16u8, imm0_7);
15085 v8u16 __builtin_msa_sat_u_h (v8u16, imm0_15);
15086 v4u32 __builtin_msa_sat_u_w (v4u32, imm0_31);
15087 v2u64 __builtin_msa_sat_u_d (v2u64, imm0_63);
15088
15089 v16i8 __builtin_msa_shf_b (v16i8, imm0_255);
15090 v8i16 __builtin_msa_shf_h (v8i16, imm0_255);
15091 v4i32 __builtin_msa_shf_w (v4i32, imm0_255);
15092
15093 v16i8 __builtin_msa_sld_b (v16i8, v16i8, i32);
15094 v8i16 __builtin_msa_sld_h (v8i16, v8i16, i32);
15095 v4i32 __builtin_msa_sld_w (v4i32, v4i32, i32);
15096 v2i64 __builtin_msa_sld_d (v2i64, v2i64, i32);
15097
15098 v16i8 __builtin_msa_sldi_b (v16i8, v16i8, imm0_15);
15099 v8i16 __builtin_msa_sldi_h (v8i16, v8i16, imm0_7);
15100 v4i32 __builtin_msa_sldi_w (v4i32, v4i32, imm0_3);
15101 v2i64 __builtin_msa_sldi_d (v2i64, v2i64, imm0_1);
15102
15103 v16i8 __builtin_msa_sll_b (v16i8, v16i8);
15104 v8i16 __builtin_msa_sll_h (v8i16, v8i16);
15105 v4i32 __builtin_msa_sll_w (v4i32, v4i32);
15106 v2i64 __builtin_msa_sll_d (v2i64, v2i64);
15107
15108 v16i8 __builtin_msa_slli_b (v16i8, imm0_7);
15109 v8i16 __builtin_msa_slli_h (v8i16, imm0_15);
15110 v4i32 __builtin_msa_slli_w (v4i32, imm0_31);
15111 v2i64 __builtin_msa_slli_d (v2i64, imm0_63);
15112
15113 v16i8 __builtin_msa_splat_b (v16i8, i32);
15114 v8i16 __builtin_msa_splat_h (v8i16, i32);
15115 v4i32 __builtin_msa_splat_w (v4i32, i32);
15116 v2i64 __builtin_msa_splat_d (v2i64, i32);
15117
15118 v16i8 __builtin_msa_splati_b (v16i8, imm0_15);
15119 v8i16 __builtin_msa_splati_h (v8i16, imm0_7);
15120 v4i32 __builtin_msa_splati_w (v4i32, imm0_3);
15121 v2i64 __builtin_msa_splati_d (v2i64, imm0_1);
15122
15123 v16i8 __builtin_msa_sra_b (v16i8, v16i8);
15124 v8i16 __builtin_msa_sra_h (v8i16, v8i16);
15125 v4i32 __builtin_msa_sra_w (v4i32, v4i32);
15126 v2i64 __builtin_msa_sra_d (v2i64, v2i64);
15127
15128 v16i8 __builtin_msa_srai_b (v16i8, imm0_7);
15129 v8i16 __builtin_msa_srai_h (v8i16, imm0_15);
15130 v4i32 __builtin_msa_srai_w (v4i32, imm0_31);
15131 v2i64 __builtin_msa_srai_d (v2i64, imm0_63);
15132
15133 v16i8 __builtin_msa_srar_b (v16i8, v16i8);
15134 v8i16 __builtin_msa_srar_h (v8i16, v8i16);
15135 v4i32 __builtin_msa_srar_w (v4i32, v4i32);
15136 v2i64 __builtin_msa_srar_d (v2i64, v2i64);
15137
15138 v16i8 __builtin_msa_srari_b (v16i8, imm0_7);
15139 v8i16 __builtin_msa_srari_h (v8i16, imm0_15);
15140 v4i32 __builtin_msa_srari_w (v4i32, imm0_31);
15141 v2i64 __builtin_msa_srari_d (v2i64, imm0_63);
15142
15143 v16i8 __builtin_msa_srl_b (v16i8, v16i8);
15144 v8i16 __builtin_msa_srl_h (v8i16, v8i16);
15145 v4i32 __builtin_msa_srl_w (v4i32, v4i32);
15146 v2i64 __builtin_msa_srl_d (v2i64, v2i64);
15147
15148 v16i8 __builtin_msa_srli_b (v16i8, imm0_7);
15149 v8i16 __builtin_msa_srli_h (v8i16, imm0_15);
15150 v4i32 __builtin_msa_srli_w (v4i32, imm0_31);
15151 v2i64 __builtin_msa_srli_d (v2i64, imm0_63);
15152
15153 v16i8 __builtin_msa_srlr_b (v16i8, v16i8);
15154 v8i16 __builtin_msa_srlr_h (v8i16, v8i16);
15155 v4i32 __builtin_msa_srlr_w (v4i32, v4i32);
15156 v2i64 __builtin_msa_srlr_d (v2i64, v2i64);
15157
15158 v16i8 __builtin_msa_srlri_b (v16i8, imm0_7);
15159 v8i16 __builtin_msa_srlri_h (v8i16, imm0_15);
15160 v4i32 __builtin_msa_srlri_w (v4i32, imm0_31);
15161 v2i64 __builtin_msa_srlri_d (v2i64, imm0_63);
15162
15163 void __builtin_msa_st_b (v16i8, void *, imm_n512_511);
15164 void __builtin_msa_st_h (v8i16, void *, imm_n1024_1022);
15165 void __builtin_msa_st_w (v4i32, void *, imm_n2048_2044);
15166 void __builtin_msa_st_d (v2i64, void *, imm_n4096_4088);
15167
15168 v16i8 __builtin_msa_subs_s_b (v16i8, v16i8);
15169 v8i16 __builtin_msa_subs_s_h (v8i16, v8i16);
15170 v4i32 __builtin_msa_subs_s_w (v4i32, v4i32);
15171 v2i64 __builtin_msa_subs_s_d (v2i64, v2i64);
15172
15173 v16u8 __builtin_msa_subs_u_b (v16u8, v16u8);
15174 v8u16 __builtin_msa_subs_u_h (v8u16, v8u16);
15175 v4u32 __builtin_msa_subs_u_w (v4u32, v4u32);
15176 v2u64 __builtin_msa_subs_u_d (v2u64, v2u64);
15177
15178 v16u8 __builtin_msa_subsus_u_b (v16u8, v16i8);
15179 v8u16 __builtin_msa_subsus_u_h (v8u16, v8i16);
15180 v4u32 __builtin_msa_subsus_u_w (v4u32, v4i32);
15181 v2u64 __builtin_msa_subsus_u_d (v2u64, v2i64);
15182
15183 v16i8 __builtin_msa_subsuu_s_b (v16u8, v16u8);
15184 v8i16 __builtin_msa_subsuu_s_h (v8u16, v8u16);
15185 v4i32 __builtin_msa_subsuu_s_w (v4u32, v4u32);
15186 v2i64 __builtin_msa_subsuu_s_d (v2u64, v2u64);
15187
15188 v16i8 __builtin_msa_subv_b (v16i8, v16i8);
15189 v8i16 __builtin_msa_subv_h (v8i16, v8i16);
15190 v4i32 __builtin_msa_subv_w (v4i32, v4i32);
15191 v2i64 __builtin_msa_subv_d (v2i64, v2i64);
15192
15193 v16i8 __builtin_msa_subvi_b (v16i8, imm0_31);
15194 v8i16 __builtin_msa_subvi_h (v8i16, imm0_31);
15195 v4i32 __builtin_msa_subvi_w (v4i32, imm0_31);
15196 v2i64 __builtin_msa_subvi_d (v2i64, imm0_31);
15197
15198 v16i8 __builtin_msa_vshf_b (v16i8, v16i8, v16i8);
15199 v8i16 __builtin_msa_vshf_h (v8i16, v8i16, v8i16);
15200 v4i32 __builtin_msa_vshf_w (v4i32, v4i32, v4i32);
15201 v2i64 __builtin_msa_vshf_d (v2i64, v2i64, v2i64);
15202
15203 v16u8 __builtin_msa_xor_v (v16u8, v16u8);
15204
15205 v16u8 __builtin_msa_xori_b (v16u8, imm0_255);
15206 @end smallexample
15207
15208 @node Other MIPS Built-in Functions
15209 @subsection Other MIPS Built-in Functions
15210
15211 GCC provides other MIPS-specific built-in functions:
15212
15213 @table @code
15214 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
15215 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
15216 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
15217 when this function is available.
15218
15219 @item unsigned int __builtin_mips_get_fcsr (void)
15220 @itemx void __builtin_mips_set_fcsr (unsigned int @var{value})
15221 Get and set the contents of the floating-point control and status register
15222 (FPU control register 31). These functions are only available in hard-float
15223 code but can be called in both MIPS16 and non-MIPS16 contexts.
15224
15225 @code{__builtin_mips_set_fcsr} can be used to change any bit of the
15226 register except the condition codes, which GCC assumes are preserved.
15227 @end table
15228
15229 @node MSP430 Built-in Functions
15230 @subsection MSP430 Built-in Functions
15231
15232 GCC provides a couple of special builtin functions to aid in the
15233 writing of interrupt handlers in C.
15234
15235 @table @code
15236 @item __bic_SR_register_on_exit (int @var{mask})
15237 This clears the indicated bits in the saved copy of the status register
15238 currently residing on the stack. This only works inside interrupt
15239 handlers and the changes to the status register will only take affect
15240 once the handler returns.
15241
15242 @item __bis_SR_register_on_exit (int @var{mask})
15243 This sets the indicated bits in the saved copy of the status register
15244 currently residing on the stack. This only works inside interrupt
15245 handlers and the changes to the status register will only take affect
15246 once the handler returns.
15247
15248 @item __delay_cycles (long long @var{cycles})
15249 This inserts an instruction sequence that takes exactly @var{cycles}
15250 cycles (between 0 and about 17E9) to complete. The inserted sequence
15251 may use jumps, loops, or no-ops, and does not interfere with any other
15252 instructions. Note that @var{cycles} must be a compile-time constant
15253 integer - that is, you must pass a number, not a variable that may be
15254 optimized to a constant later. The number of cycles delayed by this
15255 builtin is exact.
15256 @end table
15257
15258 @node NDS32 Built-in Functions
15259 @subsection NDS32 Built-in Functions
15260
15261 These built-in functions are available for the NDS32 target:
15262
15263 @deftypefn {Built-in Function} void __builtin_nds32_isync (int *@var{addr})
15264 Insert an ISYNC instruction into the instruction stream where
15265 @var{addr} is an instruction address for serialization.
15266 @end deftypefn
15267
15268 @deftypefn {Built-in Function} void __builtin_nds32_isb (void)
15269 Insert an ISB instruction into the instruction stream.
15270 @end deftypefn
15271
15272 @deftypefn {Built-in Function} int __builtin_nds32_mfsr (int @var{sr})
15273 Return the content of a system register which is mapped by @var{sr}.
15274 @end deftypefn
15275
15276 @deftypefn {Built-in Function} int __builtin_nds32_mfusr (int @var{usr})
15277 Return the content of a user space register which is mapped by @var{usr}.
15278 @end deftypefn
15279
15280 @deftypefn {Built-in Function} void __builtin_nds32_mtsr (int @var{value}, int @var{sr})
15281 Move the @var{value} to a system register which is mapped by @var{sr}.
15282 @end deftypefn
15283
15284 @deftypefn {Built-in Function} void __builtin_nds32_mtusr (int @var{value}, int @var{usr})
15285 Move the @var{value} to a user space register which is mapped by @var{usr}.
15286 @end deftypefn
15287
15288 @deftypefn {Built-in Function} void __builtin_nds32_setgie_en (void)
15289 Enable global interrupt.
15290 @end deftypefn
15291
15292 @deftypefn {Built-in Function} void __builtin_nds32_setgie_dis (void)
15293 Disable global interrupt.
15294 @end deftypefn
15295
15296 @node picoChip Built-in Functions
15297 @subsection picoChip Built-in Functions
15298
15299 GCC provides an interface to selected machine instructions from the
15300 picoChip instruction set.
15301
15302 @table @code
15303 @item int __builtin_sbc (int @var{value})
15304 Sign bit count. Return the number of consecutive bits in @var{value}
15305 that have the same value as the sign bit. The result is the number of
15306 leading sign bits minus one, giving the number of redundant sign bits in
15307 @var{value}.
15308
15309 @item int __builtin_byteswap (int @var{value})
15310 Byte swap. Return the result of swapping the upper and lower bytes of
15311 @var{value}.
15312
15313 @item int __builtin_brev (int @var{value})
15314 Bit reversal. Return the result of reversing the bits in
15315 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
15316 and so on.
15317
15318 @item int __builtin_adds (int @var{x}, int @var{y})
15319 Saturating addition. Return the result of adding @var{x} and @var{y},
15320 storing the value 32767 if the result overflows.
15321
15322 @item int __builtin_subs (int @var{x}, int @var{y})
15323 Saturating subtraction. Return the result of subtracting @var{y} from
15324 @var{x}, storing the value @minus{}32768 if the result overflows.
15325
15326 @item void __builtin_halt (void)
15327 Halt. The processor stops execution. This built-in is useful for
15328 implementing assertions.
15329
15330 @end table
15331
15332 @node PowerPC Built-in Functions
15333 @subsection PowerPC Built-in Functions
15334
15335 The following built-in functions are always available and can be used to
15336 check the PowerPC target platform type:
15337
15338 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
15339 This function is a @code{nop} on the PowerPC platform and is included solely
15340 to maintain API compatibility with the x86 builtins.
15341 @end deftypefn
15342
15343 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
15344 This function returns a value of @code{1} if the run-time CPU is of type
15345 @var{cpuname} and returns @code{0} otherwise
15346
15347 The @code{__builtin_cpu_is} function requires GLIBC 2.23 or newer
15348 which exports the hardware capability bits. GCC defines the macro
15349 @code{__BUILTIN_CPU_SUPPORTS__} if the @code{__builtin_cpu_supports}
15350 built-in function is fully supported.
15351
15352 If GCC was configured to use a GLIBC before 2.23, the built-in
15353 function @code{__builtin_cpu_is} always returns a 0 and the compiler
15354 issues a warning.
15355
15356 The following CPU names can be detected:
15357
15358 @table @samp
15359 @item power9
15360 IBM POWER9 Server CPU.
15361 @item power8
15362 IBM POWER8 Server CPU.
15363 @item power7
15364 IBM POWER7 Server CPU.
15365 @item power6x
15366 IBM POWER6 Server CPU (RAW mode).
15367 @item power6
15368 IBM POWER6 Server CPU (Architected mode).
15369 @item power5+
15370 IBM POWER5+ Server CPU.
15371 @item power5
15372 IBM POWER5 Server CPU.
15373 @item ppc970
15374 IBM 970 Server CPU (ie, Apple G5).
15375 @item power4
15376 IBM POWER4 Server CPU.
15377 @item ppca2
15378 IBM A2 64-bit Embedded CPU
15379 @item ppc476
15380 IBM PowerPC 476FP 32-bit Embedded CPU.
15381 @item ppc464
15382 IBM PowerPC 464 32-bit Embedded CPU.
15383 @item ppc440
15384 PowerPC 440 32-bit Embedded CPU.
15385 @item ppc405
15386 PowerPC 405 32-bit Embedded CPU.
15387 @item ppc-cell-be
15388 IBM PowerPC Cell Broadband Engine Architecture CPU.
15389 @end table
15390
15391 Here is an example:
15392 @smallexample
15393 #ifdef __BUILTIN_CPU_SUPPORTS__
15394 if (__builtin_cpu_is ("power8"))
15395 @{
15396 do_power8 (); // POWER8 specific implementation.
15397 @}
15398 else
15399 #endif
15400 @{
15401 do_generic (); // Generic implementation.
15402 @}
15403 @end smallexample
15404 @end deftypefn
15405
15406 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
15407 This function returns a value of @code{1} if the run-time CPU supports the HWCAP
15408 feature @var{feature} and returns @code{0} otherwise.
15409
15410 The @code{__builtin_cpu_supports} function requires GLIBC 2.23 or
15411 newer which exports the hardware capability bits. GCC defines the
15412 macro @code{__BUILTIN_CPU_SUPPORTS__} if the
15413 @code{__builtin_cpu_supports} built-in function is fully supported.
15414
15415 If GCC was configured to use a GLIBC before 2.23, the built-in
15416 function @code{__builtin_cpu_suports} always returns a 0 and the
15417 compiler issues a warning.
15418
15419 The following features can be
15420 detected:
15421
15422 @table @samp
15423 @item 4xxmac
15424 4xx CPU has a Multiply Accumulator.
15425 @item altivec
15426 CPU has a SIMD/Vector Unit.
15427 @item arch_2_05
15428 CPU supports ISA 2.05 (eg, POWER6)
15429 @item arch_2_06
15430 CPU supports ISA 2.06 (eg, POWER7)
15431 @item arch_2_07
15432 CPU supports ISA 2.07 (eg, POWER8)
15433 @item arch_3_00
15434 CPU supports ISA 3.0 (eg, POWER9)
15435 @item archpmu
15436 CPU supports the set of compatible performance monitoring events.
15437 @item booke
15438 CPU supports the Embedded ISA category.
15439 @item cellbe
15440 CPU has a CELL broadband engine.
15441 @item dfp
15442 CPU has a decimal floating point unit.
15443 @item dscr
15444 CPU supports the data stream control register.
15445 @item ebb
15446 CPU supports event base branching.
15447 @item efpdouble
15448 CPU has a SPE double precision floating point unit.
15449 @item efpsingle
15450 CPU has a SPE single precision floating point unit.
15451 @item fpu
15452 CPU has a floating point unit.
15453 @item htm
15454 CPU has hardware transaction memory instructions.
15455 @item htm-nosc
15456 Kernel aborts hardware transactions when a syscall is made.
15457 @item ic_snoop
15458 CPU supports icache snooping capabilities.
15459 @item ieee128
15460 CPU supports 128-bit IEEE binary floating point instructions.
15461 @item isel
15462 CPU supports the integer select instruction.
15463 @item mmu
15464 CPU has a memory management unit.
15465 @item notb
15466 CPU does not have a timebase (eg, 601 and 403gx).
15467 @item pa6t
15468 CPU supports the PA Semi 6T CORE ISA.
15469 @item power4
15470 CPU supports ISA 2.00 (eg, POWER4)
15471 @item power5
15472 CPU supports ISA 2.02 (eg, POWER5)
15473 @item power5+
15474 CPU supports ISA 2.03 (eg, POWER5+)
15475 @item power6x
15476 CPU supports ISA 2.05 (eg, POWER6) extended opcodes mffgpr and mftgpr.
15477 @item ppc32
15478 CPU supports 32-bit mode execution.
15479 @item ppc601
15480 CPU supports the old POWER ISA (eg, 601)
15481 @item ppc64
15482 CPU supports 64-bit mode execution.
15483 @item ppcle
15484 CPU supports a little-endian mode that uses address swizzling.
15485 @item smt
15486 CPU support simultaneous multi-threading.
15487 @item spe
15488 CPU has a signal processing extension unit.
15489 @item tar
15490 CPU supports the target address register.
15491 @item true_le
15492 CPU supports true little-endian mode.
15493 @item ucache
15494 CPU has unified I/D cache.
15495 @item vcrypto
15496 CPU supports the vector cryptography instructions.
15497 @item vsx
15498 CPU supports the vector-scalar extension.
15499 @end table
15500
15501 Here is an example:
15502 @smallexample
15503 #ifdef __BUILTIN_CPU_SUPPORTS__
15504 if (__builtin_cpu_supports ("fpu"))
15505 @{
15506 asm("fadd %0,%1,%2" : "=d"(dst) : "d"(src1), "d"(src2));
15507 @}
15508 else
15509 #endif
15510 @{
15511 dst = __fadd (src1, src2); // Software FP addition function.
15512 @}
15513 @end smallexample
15514 @end deftypefn
15515
15516 These built-in functions are available for the PowerPC family of
15517 processors:
15518 @smallexample
15519 float __builtin_recipdivf (float, float);
15520 float __builtin_rsqrtf (float);
15521 double __builtin_recipdiv (double, double);
15522 double __builtin_rsqrt (double);
15523 uint64_t __builtin_ppc_get_timebase ();
15524 unsigned long __builtin_ppc_mftb ();
15525 double __builtin_unpack_longdouble (long double, int);
15526 long double __builtin_pack_longdouble (double, double);
15527 @end smallexample
15528
15529 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
15530 @code{__builtin_rsqrtf} functions generate multiple instructions to
15531 implement the reciprocal sqrt functionality using reciprocal sqrt
15532 estimate instructions.
15533
15534 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
15535 functions generate multiple instructions to implement division using
15536 the reciprocal estimate instructions.
15537
15538 The @code{__builtin_ppc_get_timebase} and @code{__builtin_ppc_mftb}
15539 functions generate instructions to read the Time Base Register. The
15540 @code{__builtin_ppc_get_timebase} function may generate multiple
15541 instructions and always returns the 64 bits of the Time Base Register.
15542 The @code{__builtin_ppc_mftb} function always generates one instruction and
15543 returns the Time Base Register value as an unsigned long, throwing away
15544 the most significant word on 32-bit environments.
15545
15546 Additional built-in functions are available for the 64-bit PowerPC
15547 family of processors, for efficient use of 128-bit floating point
15548 (@code{__float128}) values.
15549
15550 The following floating-point built-in functions are available with
15551 @code{-mfloat128} and Altivec support. All of them implement the
15552 function that is part of the name.
15553
15554 @smallexample
15555 __float128 __builtin_fabsq (__float128)
15556 __float128 __builtin_copysignq (__float128, __float128)
15557 @end smallexample
15558
15559 The following built-in functions are available with @code{-mfloat128}
15560 and Altivec support.
15561
15562 @table @code
15563 @item __float128 __builtin_infq (void)
15564 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
15565 @findex __builtin_infq
15566
15567 @item __float128 __builtin_huge_valq (void)
15568 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
15569 @findex __builtin_huge_valq
15570
15571 @item __float128 __builtin_nanq (void)
15572 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
15573 @findex __builtin_nanq
15574
15575 @item __float128 __builtin_nansq (void)
15576 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
15577 @findex __builtin_nansq
15578 @end table
15579
15580 The following built-in functions are available on Linux 64-bit systems
15581 that use the ISA 3.0 instruction set.
15582
15583 @table @code
15584 @item __float128 __builtin_sqrtf128 (__float128)
15585 Perform a 128-bit IEEE floating point square root operation.
15586 @findex __builtin_sqrtf128
15587
15588 @item __float128 __builtin_fmaf128 (__float128, __float128, __float128)
15589 Perform a 128-bit IEEE floating point fused multiply and add operation.
15590 @findex __builtin_fmaf128
15591
15592 @item __float128 __builtin_addf128_round_to_odd (__float128, __float128)
15593 Perform a 128-bit IEEE floating point add using round to odd as the
15594 rounding mode.
15595 @findex __builtin_addf128_round_to_odd
15596
15597 @item __float128 __builtin_subf128_round_to_odd (__float128, __float128)
15598 Perform a 128-bit IEEE floating point subtract using round to odd as
15599 the rounding mode.
15600 @findex __builtin_subf128_round_to_odd
15601
15602 @item __float128 __builtin_mulf128_round_to_odd (__float128, __float128)
15603 Perform a 128-bit IEEE floating point multiply using round to odd as
15604 the rounding mode.
15605 @findex __builtin_mulf128_round_to_odd
15606
15607 @item __float128 __builtin_divf128_round_to_odd (__float128, __float128)
15608 Perform a 128-bit IEEE floating point divide using round to odd as
15609 the rounding mode.
15610 @findex __builtin_divf128_round_to_odd
15611
15612 @item __float128 __builtin_sqrtf128_round_to_odd (__float128)
15613 Perform a 128-bit IEEE floating point square root using round to odd
15614 as the rounding mode.
15615 @findex __builtin_sqrtf128_round_to_odd
15616
15617 @item __float128 __builtin_fmaf128 (__float128, __float128, __float128)
15618 Perform a 128-bit IEEE floating point fused multiply and add operation
15619 using round to odd as the rounding mode.
15620 @findex __builtin_fmaf128_round_to_odd
15621
15622 @item double __builtin_truncf128_round_to_odd (__float128)
15623 Convert a 128-bit IEEE floating point value to @code{double} using
15624 round to odd as the rounding mode.
15625 @findex __builtin_truncf128_round_to_odd
15626 @end table
15627
15628 The following built-in functions are available for the PowerPC family
15629 of processors, starting with ISA 2.05 or later (@option{-mcpu=power6}
15630 or @option{-mcmpb}):
15631 @smallexample
15632 unsigned long long __builtin_cmpb (unsigned long long int, unsigned long long int);
15633 unsigned int __builtin_cmpb (unsigned int, unsigned int);
15634 @end smallexample
15635
15636 The @code{__builtin_cmpb} function
15637 performs a byte-wise compare on the contents of its two arguments,
15638 returning the result of the byte-wise comparison as the returned
15639 value. For each byte comparison, the corresponding byte of the return
15640 value holds 0xff if the input bytes are equal and 0 if the input bytes
15641 are not equal. If either of the arguments to this built-in function
15642 is wider than 32 bits, the function call expands into the form that
15643 expects @code{unsigned long long int} arguments
15644 which is only available on 64-bit targets.
15645
15646 The following built-in functions are available for the PowerPC family
15647 of processors, starting with ISA 2.06 or later (@option{-mcpu=power7}
15648 or @option{-mpopcntd}):
15649 @smallexample
15650 long __builtin_bpermd (long, long);
15651 int __builtin_divwe (int, int);
15652 int __builtin_divweo (int, int);
15653 unsigned int __builtin_divweu (unsigned int, unsigned int);
15654 unsigned int __builtin_divweuo (unsigned int, unsigned int);
15655 long __builtin_divde (long, long);
15656 long __builtin_divdeo (long, long);
15657 unsigned long __builtin_divdeu (unsigned long, unsigned long);
15658 unsigned long __builtin_divdeuo (unsigned long, unsigned long);
15659 unsigned int cdtbcd (unsigned int);
15660 unsigned int cbcdtd (unsigned int);
15661 unsigned int addg6s (unsigned int, unsigned int);
15662 @end smallexample
15663
15664 The @code{__builtin_divde}, @code{__builtin_divdeo},
15665 @code{__builtin_divdeu}, @code{__builtin_divdeou} functions require a
15666 64-bit environment support ISA 2.06 or later.
15667
15668 The following built-in functions are available for the PowerPC family
15669 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
15670 @smallexample
15671 long long __builtin_darn (void);
15672 long long __builtin_darn_raw (void);
15673 int __builtin_darn_32 (void);
15674
15675 unsigned int scalar_extract_exp (double source);
15676 unsigned long long int scalar_extract_exp (__ieee128 source);
15677
15678 unsigned long long int scalar_extract_sig (double source);
15679 unsigned __int128 scalar_extract_sig (__ieee128 source);
15680
15681 double
15682 scalar_insert_exp (unsigned long long int significand, unsigned long long int exponent);
15683 double
15684 scalar_insert_exp (double significand, unsigned long long int exponent);
15685
15686 ieee_128
15687 scalar_insert_exp (unsigned __int128 significand, unsigned long long int exponent);
15688 ieee_128
15689 scalar_insert_exp (ieee_128 significand, unsigned long long int exponent);
15690
15691 int scalar_cmp_exp_gt (double arg1, double arg2);
15692 int scalar_cmp_exp_lt (double arg1, double arg2);
15693 int scalar_cmp_exp_eq (double arg1, double arg2);
15694 int scalar_cmp_exp_unordered (double arg1, double arg2);
15695
15696 bool scalar_test_data_class (float source, const int condition);
15697 bool scalar_test_data_class (double source, const int condition);
15698 bool scalar_test_data_class (__ieee128 source, const int condition);
15699
15700 bool scalar_test_neg (float source);
15701 bool scalar_test_neg (double source);
15702 bool scalar_test_neg (__ieee128 source);
15703
15704 int __builtin_byte_in_set (unsigned char u, unsigned long long set);
15705 int __builtin_byte_in_range (unsigned char u, unsigned int range);
15706 int __builtin_byte_in_either_range (unsigned char u, unsigned int ranges);
15707
15708 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal64 value);
15709 int __builtin_dfp_dtstsfi_lt (unsigned int comparison, _Decimal128 value);
15710 int __builtin_dfp_dtstsfi_lt_dd (unsigned int comparison, _Decimal64 value);
15711 int __builtin_dfp_dtstsfi_lt_td (unsigned int comparison, _Decimal128 value);
15712
15713 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal64 value);
15714 int __builtin_dfp_dtstsfi_gt (unsigned int comparison, _Decimal128 value);
15715 int __builtin_dfp_dtstsfi_gt_dd (unsigned int comparison, _Decimal64 value);
15716 int __builtin_dfp_dtstsfi_gt_td (unsigned int comparison, _Decimal128 value);
15717
15718 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal64 value);
15719 int __builtin_dfp_dtstsfi_eq (unsigned int comparison, _Decimal128 value);
15720 int __builtin_dfp_dtstsfi_eq_dd (unsigned int comparison, _Decimal64 value);
15721 int __builtin_dfp_dtstsfi_eq_td (unsigned int comparison, _Decimal128 value);
15722
15723 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal64 value);
15724 int __builtin_dfp_dtstsfi_ov (unsigned int comparison, _Decimal128 value);
15725 int __builtin_dfp_dtstsfi_ov_dd (unsigned int comparison, _Decimal64 value);
15726 int __builtin_dfp_dtstsfi_ov_td (unsigned int comparison, _Decimal128 value);
15727 @end smallexample
15728
15729 The @code{__builtin_darn} and @code{__builtin_darn_raw}
15730 functions require a
15731 64-bit environment supporting ISA 3.0 or later.
15732 The @code{__builtin_darn} function provides a 64-bit conditioned
15733 random number. The @code{__builtin_darn_raw} function provides a
15734 64-bit raw random number. The @code{__builtin_darn_32} function
15735 provides a 32-bit random number.
15736
15737 The @code{scalar_extract_exp} and @code{scalar_extract_sig}
15738 functions require a 64-bit environment supporting ISA 3.0 or later.
15739 The @code{scalar_extract_exp} and @code{scalar_extract_sig} built-in
15740 functions return the significand and the biased exponent value
15741 respectively of their @code{source} arguments.
15742 When supplied with a 64-bit @code{source} argument, the
15743 result returned by @code{scalar_extract_sig} has
15744 the @code{0x0010000000000000} bit set if the
15745 function's @code{source} argument is in normalized form.
15746 Otherwise, this bit is set to 0.
15747 When supplied with a 128-bit @code{source} argument, the
15748 @code{0x00010000000000000000000000000000} bit of the result is
15749 treated similarly.
15750 Note that the sign of the significand is not represented in the result
15751 returned from the @code{scalar_extract_sig} function. Use the
15752 @code{scalar_test_neg} function to test the sign of its @code{double}
15753 argument.
15754
15755 The @code{scalar_insert_exp}
15756 functions require a 64-bit environment supporting ISA 3.0 or later.
15757 When supplied with a 64-bit first argument, the
15758 @code{scalar_insert_exp} built-in function returns a double-precision
15759 floating point value that is constructed by assembling the values of its
15760 @code{significand} and @code{exponent} arguments. The sign of the
15761 result is copied from the most significant bit of the
15762 @code{significand} argument. The significand and exponent components
15763 of the result are composed of the least significant 11 bits of the
15764 @code{exponent} argument and the least significant 52 bits of the
15765 @code{significand} argument respectively.
15766
15767 When supplied with a 128-bit first argument, the
15768 @code{scalar_insert_exp} built-in function returns a quad-precision
15769 ieee floating point value. The sign bit of the result is copied from
15770 the most significant bit of the @code{significand} argument.
15771 The significand and exponent components of the result are composed of
15772 the least significant 15 bits of the @code{exponent} argument and the
15773 least significant 112 bits of the @code{significand} argument respectively.
15774
15775 The @code{scalar_cmp_exp_gt}, @code{scalar_cmp_exp_lt},
15776 @code{scalar_cmp_exp_eq}, and @code{scalar_cmp_exp_unordered} built-in
15777 functions return a non-zero value if @code{arg1} is greater than, less
15778 than, equal to, or not comparable to @code{arg2} respectively. The
15779 arguments are not comparable if one or the other equals NaN (not a
15780 number).
15781
15782 The @code{scalar_test_data_class} built-in function returns 1
15783 if any of the condition tests enabled by the value of the
15784 @code{condition} variable are true, and 0 otherwise. The
15785 @code{condition} argument must be a compile-time constant integer with
15786 value not exceeding 127. The
15787 @code{condition} argument is encoded as a bitmask with each bit
15788 enabling the testing of a different condition, as characterized by the
15789 following:
15790 @smallexample
15791 0x40 Test for NaN
15792 0x20 Test for +Infinity
15793 0x10 Test for -Infinity
15794 0x08 Test for +Zero
15795 0x04 Test for -Zero
15796 0x02 Test for +Denormal
15797 0x01 Test for -Denormal
15798 @end smallexample
15799
15800 The @code{scalar_test_neg} built-in function returns 1 if its
15801 @code{source} argument holds a negative value, 0 otherwise.
15802
15803 The @code{__builtin_byte_in_set} function requires a
15804 64-bit environment supporting ISA 3.0 or later. This function returns
15805 a non-zero value if and only if its @code{u} argument exactly equals one of
15806 the eight bytes contained within its 64-bit @code{set} argument.
15807
15808 The @code{__builtin_byte_in_range} and
15809 @code{__builtin_byte_in_either_range} require an environment
15810 supporting ISA 3.0 or later. For these two functions, the
15811 @code{range} argument is encoded as 4 bytes, organized as
15812 @code{hi_1:lo_1:hi_2:lo_2}.
15813 The @code{__builtin_byte_in_range} function returns a
15814 non-zero value if and only if its @code{u} argument is within the
15815 range bounded between @code{lo_2} and @code{hi_2} inclusive.
15816 The @code{__builtin_byte_in_either_range} function returns non-zero if
15817 and only if its @code{u} argument is within either the range bounded
15818 between @code{lo_1} and @code{hi_1} inclusive or the range bounded
15819 between @code{lo_2} and @code{hi_2} inclusive.
15820
15821 The @code{__builtin_dfp_dtstsfi_lt} function returns a non-zero value
15822 if and only if the number of signficant digits of its @code{value} argument
15823 is less than its @code{comparison} argument. The
15824 @code{__builtin_dfp_dtstsfi_lt_dd} and
15825 @code{__builtin_dfp_dtstsfi_lt_td} functions behave similarly, but
15826 require that the type of the @code{value} argument be
15827 @code{__Decimal64} and @code{__Decimal128} respectively.
15828
15829 The @code{__builtin_dfp_dtstsfi_gt} function returns a non-zero value
15830 if and only if the number of signficant digits of its @code{value} argument
15831 is greater than its @code{comparison} argument. The
15832 @code{__builtin_dfp_dtstsfi_gt_dd} and
15833 @code{__builtin_dfp_dtstsfi_gt_td} functions behave similarly, but
15834 require that the type of the @code{value} argument be
15835 @code{__Decimal64} and @code{__Decimal128} respectively.
15836
15837 The @code{__builtin_dfp_dtstsfi_eq} function returns a non-zero value
15838 if and only if the number of signficant digits of its @code{value} argument
15839 equals its @code{comparison} argument. The
15840 @code{__builtin_dfp_dtstsfi_eq_dd} and
15841 @code{__builtin_dfp_dtstsfi_eq_td} functions behave similarly, but
15842 require that the type of the @code{value} argument be
15843 @code{__Decimal64} and @code{__Decimal128} respectively.
15844
15845 The @code{__builtin_dfp_dtstsfi_ov} function returns a non-zero value
15846 if and only if its @code{value} argument has an undefined number of
15847 significant digits, such as when @code{value} is an encoding of @code{NaN}.
15848 The @code{__builtin_dfp_dtstsfi_ov_dd} and
15849 @code{__builtin_dfp_dtstsfi_ov_td} functions behave similarly, but
15850 require that the type of the @code{value} argument be
15851 @code{__Decimal64} and @code{__Decimal128} respectively.
15852
15853 The following built-in functions are also available for the PowerPC family
15854 of processors, starting with ISA 3.0 or later
15855 (@option{-mcpu=power9}). These string functions are described
15856 separately in order to group the descriptions closer to the function
15857 prototypes:
15858 @smallexample
15859 int vec_all_nez (vector signed char, vector signed char);
15860 int vec_all_nez (vector unsigned char, vector unsigned char);
15861 int vec_all_nez (vector signed short, vector signed short);
15862 int vec_all_nez (vector unsigned short, vector unsigned short);
15863 int vec_all_nez (vector signed int, vector signed int);
15864 int vec_all_nez (vector unsigned int, vector unsigned int);
15865
15866 int vec_any_eqz (vector signed char, vector signed char);
15867 int vec_any_eqz (vector unsigned char, vector unsigned char);
15868 int vec_any_eqz (vector signed short, vector signed short);
15869 int vec_any_eqz (vector unsigned short, vector unsigned short);
15870 int vec_any_eqz (vector signed int, vector signed int);
15871 int vec_any_eqz (vector unsigned int, vector unsigned int);
15872
15873 vector bool char vec_cmpnez (vector signed char arg1, vector signed char arg2);
15874 vector bool char vec_cmpnez (vector unsigned char arg1, vector unsigned char arg2);
15875 vector bool short vec_cmpnez (vector signed short arg1, vector signed short arg2);
15876 vector bool short vec_cmpnez (vector unsigned short arg1, vector unsigned short arg2);
15877 vector bool int vec_cmpnez (vector signed int arg1, vector signed int arg2);
15878 vector bool int vec_cmpnez (vector unsigned int, vector unsigned int);
15879
15880 vector signed char vec_cnttz (vector signed char);
15881 vector unsigned char vec_cnttz (vector unsigned char);
15882 vector signed short vec_cnttz (vector signed short);
15883 vector unsigned short vec_cnttz (vector unsigned short);
15884 vector signed int vec_cnttz (vector signed int);
15885 vector unsigned int vec_cnttz (vector unsigned int);
15886 vector signed long long vec_cnttz (vector signed long long);
15887 vector unsigned long long vec_cnttz (vector unsigned long long);
15888
15889 signed int vec_cntlz_lsbb (vector signed char);
15890 signed int vec_cntlz_lsbb (vector unsigned char);
15891
15892 signed int vec_cnttz_lsbb (vector signed char);
15893 signed int vec_cnttz_lsbb (vector unsigned char);
15894
15895 vector unsigned short vec_pack_to_short_fp32 (vector float, vector float);
15896
15897 vector signed char vec_xl_be (signed long long, signed char *);
15898 vector unsigned char vec_xl_be (signed long long, unsigned char *);
15899 vector signed int vec_xl_be (signed long long, signed int *);
15900 vector unsigned int vec_xl_be (signed long long, unsigned int *);
15901 vector signed __int128 vec_xl_be (signed long long, signed __int128 *);
15902 vector unsigned __int128 vec_xl_be (signed long long, unsigned __int128 *);
15903 vector signed long long vec_xl_be (signed long long, signed long long *);
15904 vector unsigned long long vec_xl_be (signed long long, unsigned long long *);
15905 vector signed short vec_xl_be (signed long long, signed short *);
15906 vector unsigned short vec_xl_be (signed long long, unsigned short *);
15907 vector double vec_xl_be (signed long long, double *);
15908 vector float vec_xl_be (signed long long, float *);
15909
15910 vector signed char vec_xl_len (signed char *addr, size_t len);
15911 vector unsigned char vec_xl_len (unsigned char *addr, size_t len);
15912 vector signed int vec_xl_len (signed int *addr, size_t len);
15913 vector unsigned int vec_xl_len (unsigned int *addr, size_t len);
15914 vector signed __int128 vec_xl_len (signed __int128 *addr, size_t len);
15915 vector unsigned __int128 vec_xl_len (unsigned __int128 *addr, size_t len);
15916 vector signed long long vec_xl_len (signed long long *addr, size_t len);
15917 vector unsigned long long vec_xl_len (unsigned long long *addr, size_t len);
15918 vector signed short vec_xl_len (signed short *addr, size_t len);
15919 vector unsigned short vec_xl_len (unsigned short *addr, size_t len);
15920 vector double vec_xl_len (double *addr, size_t len);
15921 vector float vec_xl_len (float *addr, size_t len);
15922
15923 vector unsigned char vec_xl_len_r (unsigned char *addr, size_t len);
15924
15925 void vec_xst_len (vector signed char data, signed char *addr, size_t len);
15926 void vec_xst_len (vector unsigned char data, unsigned char *addr, size_t len);
15927 void vec_xst_len (vector signed int data, signed int *addr, size_t len);
15928 void vec_xst_len (vector unsigned int data, unsigned int *addr, size_t len);
15929 void vec_xst_len (vector unsigned __int128 data, unsigned __int128 *addr, size_t len);
15930 void vec_xst_len (vector signed long long data, signed long long *addr, size_t len);
15931 void vec_xst_len (vector unsigned long long data, unsigned long long *addr, size_t len);
15932 void vec_xst_len (vector signed short data, signed short *addr, size_t len);
15933 void vec_xst_len (vector unsigned short data, unsigned short *addr, size_t len);
15934 void vec_xst_len (vector signed __int128 data, signed __int128 *addr, size_t len);
15935 void vec_xst_len (vector double data, double *addr, size_t len);
15936 void vec_xst_len (vector float data, float *addr, size_t len);
15937
15938 void vec_xst_len_r (vector unsigned char data, unsigned char *addr, size_t len);
15939
15940 signed char vec_xlx (unsigned int index, vector signed char data);
15941 unsigned char vec_xlx (unsigned int index, vector unsigned char data);
15942 signed short vec_xlx (unsigned int index, vector signed short data);
15943 unsigned short vec_xlx (unsigned int index, vector unsigned short data);
15944 signed int vec_xlx (unsigned int index, vector signed int data);
15945 unsigned int vec_xlx (unsigned int index, vector unsigned int data);
15946 float vec_xlx (unsigned int index, vector float data);
15947
15948 signed char vec_xrx (unsigned int index, vector signed char data);
15949 unsigned char vec_xrx (unsigned int index, vector unsigned char data);
15950 signed short vec_xrx (unsigned int index, vector signed short data);
15951 unsigned short vec_xrx (unsigned int index, vector unsigned short data);
15952 signed int vec_xrx (unsigned int index, vector signed int data);
15953 unsigned int vec_xrx (unsigned int index, vector unsigned int data);
15954 float vec_xrx (unsigned int index, vector float data);
15955 @end smallexample
15956
15957 The @code{vec_all_nez}, @code{vec_any_eqz}, and @code{vec_cmpnez}
15958 perform pairwise comparisons between the elements at the same
15959 positions within their two vector arguments.
15960 The @code{vec_all_nez} function returns a
15961 non-zero value if and only if all pairwise comparisons are not
15962 equal and no element of either vector argument contains a zero.
15963 The @code{vec_any_eqz} function returns a
15964 non-zero value if and only if at least one pairwise comparison is equal
15965 or if at least one element of either vector argument contains a zero.
15966 The @code{vec_cmpnez} function returns a vector of the same type as
15967 its two arguments, within which each element consists of all ones to
15968 denote that either the corresponding elements of the incoming arguments are
15969 not equal or that at least one of the corresponding elements contains
15970 zero. Otherwise, the element of the returned vector contains all zeros.
15971
15972 The @code{vec_cntlz_lsbb} function returns the count of the number of
15973 consecutive leading byte elements (starting from position 0 within the
15974 supplied vector argument) for which the least-significant bit
15975 equals zero. The @code{vec_cnttz_lsbb} function returns the count of
15976 the number of consecutive trailing byte elements (starting from
15977 position 15 and counting backwards within the supplied vector
15978 argument) for which the least-significant bit equals zero.
15979
15980 The @code{vec_xl_len} and @code{vec_xst_len} functions require a
15981 64-bit environment supporting ISA 3.0 or later. The @code{vec_xl_len}
15982 function loads a variable length vector from memory. The
15983 @code{vec_xst_len} function stores a variable length vector to memory.
15984 With both the @code{vec_xl_len} and @code{vec_xst_len} functions, the
15985 @code{addr} argument represents the memory address to or from which
15986 data will be transferred, and the
15987 @code{len} argument represents the number of bytes to be
15988 transferred, as computed by the C expression @code{min((len & 0xff), 16)}.
15989 If this expression's value is not a multiple of the vector element's
15990 size, the behavior of this function is undefined.
15991 In the case that the underlying computer is configured to run in
15992 big-endian mode, the data transfer moves bytes 0 to @code{(len - 1)} of
15993 the corresponding vector. In little-endian mode, the data transfer
15994 moves bytes @code{(16 - len)} to @code{15} of the corresponding
15995 vector. For the load function, any bytes of the result vector that
15996 are not loaded from memory are set to zero.
15997 The value of the @code{addr} argument need not be aligned on a
15998 multiple of the vector's element size.
15999
16000 The @code{vec_xlx} and @code{vec_xrx} functions extract the single
16001 element selected by the @code{index} argument from the vector
16002 represented by the @code{data} argument. The @code{index} argument
16003 always specifies a byte offset, regardless of the size of the vector
16004 element. With @code{vec_xlx}, @code{index} is the offset of the first
16005 byte of the element to be extracted. With @code{vec_xrx}, @code{index}
16006 represents the last byte of the element to be extracted, measured
16007 from the right end of the vector. In other words, the last byte of
16008 the element to be extracted is found at position @code{(15 - index)}.
16009 There is no requirement that @code{index} be a multiple of the vector
16010 element size. However, if the size of the vector element added to
16011 @code{index} is greater than 15, the content of the returned value is
16012 undefined.
16013
16014 The following built-in functions are available for the PowerPC family
16015 of processors when hardware decimal floating point
16016 (@option{-mhard-dfp}) is available:
16017 @smallexample
16018 long long __builtin_dxex (_Decimal64);
16019 long long __builtin_dxexq (_Decimal128);
16020 _Decimal64 __builtin_ddedpd (int, _Decimal64);
16021 _Decimal128 __builtin_ddedpdq (int, _Decimal128);
16022 _Decimal64 __builtin_denbcd (int, _Decimal64);
16023 _Decimal128 __builtin_denbcdq (int, _Decimal128);
16024 _Decimal64 __builtin_diex (long long, _Decimal64);
16025 _Decimal128 _builtin_diexq (long long, _Decimal128);
16026 _Decimal64 __builtin_dscli (_Decimal64, int);
16027 _Decimal128 __builtin_dscliq (_Decimal128, int);
16028 _Decimal64 __builtin_dscri (_Decimal64, int);
16029 _Decimal128 __builtin_dscriq (_Decimal128, int);
16030 unsigned long long __builtin_unpack_dec128 (_Decimal128, int);
16031 _Decimal128 __builtin_pack_dec128 (unsigned long long, unsigned long long);
16032 @end smallexample
16033
16034 The following built-in functions are available for the PowerPC family
16035 of processors when the Vector Scalar (vsx) instruction set is
16036 available:
16037 @smallexample
16038 unsigned long long __builtin_unpack_vector_int128 (vector __int128_t, int);
16039 vector __int128_t __builtin_pack_vector_int128 (unsigned long long,
16040 unsigned long long);
16041 @end smallexample
16042
16043 @node PowerPC AltiVec/VSX Built-in Functions
16044 @subsection PowerPC AltiVec Built-in Functions
16045
16046 GCC provides an interface for the PowerPC family of processors to access
16047 the AltiVec operations described in Motorola's AltiVec Programming
16048 Interface Manual. The interface is made available by including
16049 @code{<altivec.h>} and using @option{-maltivec} and
16050 @option{-mabi=altivec}. The interface supports the following vector
16051 types.
16052
16053 @smallexample
16054 vector unsigned char
16055 vector signed char
16056 vector bool char
16057
16058 vector unsigned short
16059 vector signed short
16060 vector bool short
16061 vector pixel
16062
16063 vector unsigned int
16064 vector signed int
16065 vector bool int
16066 vector float
16067 @end smallexample
16068
16069 If @option{-mvsx} is used the following additional vector types are
16070 implemented.
16071
16072 @smallexample
16073 vector unsigned long
16074 vector signed long
16075 vector double
16076 @end smallexample
16077
16078 The long types are only implemented for 64-bit code generation, and
16079 the long type is only used in the floating point/integer conversion
16080 instructions.
16081
16082 GCC's implementation of the high-level language interface available from
16083 C and C++ code differs from Motorola's documentation in several ways.
16084
16085 @itemize @bullet
16086
16087 @item
16088 A vector constant is a list of constant expressions within curly braces.
16089
16090 @item
16091 A vector initializer requires no cast if the vector constant is of the
16092 same type as the variable it is initializing.
16093
16094 @item
16095 If @code{signed} or @code{unsigned} is omitted, the signedness of the
16096 vector type is the default signedness of the base type. The default
16097 varies depending on the operating system, so a portable program should
16098 always specify the signedness.
16099
16100 @item
16101 Compiling with @option{-maltivec} adds keywords @code{__vector},
16102 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
16103 @code{bool}. When compiling ISO C, the context-sensitive substitution
16104 of the keywords @code{vector}, @code{pixel} and @code{bool} is
16105 disabled. To use them, you must include @code{<altivec.h>} instead.
16106
16107 @item
16108 GCC allows using a @code{typedef} name as the type specifier for a
16109 vector type.
16110
16111 @item
16112 For C, overloaded functions are implemented with macros so the following
16113 does not work:
16114
16115 @smallexample
16116 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
16117 @end smallexample
16118
16119 @noindent
16120 Since @code{vec_add} is a macro, the vector constant in the example
16121 is treated as four separate arguments. Wrap the entire argument in
16122 parentheses for this to work.
16123 @end itemize
16124
16125 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
16126 Internally, GCC uses built-in functions to achieve the functionality in
16127 the aforementioned header file, but they are not supported and are
16128 subject to change without notice.
16129
16130 GCC complies with the OpenPOWER 64-Bit ELF V2 ABI Specification,
16131 which may be found at
16132 @uref{http://openpowerfoundation.org/wp-content/uploads/resources/leabi-prd/content/index.html}.
16133 Appendix A of this document lists the vector API interfaces that must be
16134 provided by compliant compilers. Programmers should preferentially use
16135 the interfaces described therein. However, historically GCC has provided
16136 additional interfaces for access to vector instructions. These are
16137 briefly described below.
16138
16139 The following interfaces are supported for the generic and specific
16140 AltiVec operations and the AltiVec predicates. In cases where there
16141 is a direct mapping between generic and specific operations, only the
16142 generic names are shown here, although the specific operations can also
16143 be used.
16144
16145 Arguments that are documented as @code{const int} require literal
16146 integral values within the range required for that operation.
16147
16148 @smallexample
16149 vector signed char vec_abs (vector signed char);
16150 vector signed short vec_abs (vector signed short);
16151 vector signed int vec_abs (vector signed int);
16152 vector float vec_abs (vector float);
16153
16154 vector signed char vec_abss (vector signed char);
16155 vector signed short vec_abss (vector signed short);
16156 vector signed int vec_abss (vector signed int);
16157
16158 vector signed char vec_add (vector bool char, vector signed char);
16159 vector signed char vec_add (vector signed char, vector bool char);
16160 vector signed char vec_add (vector signed char, vector signed char);
16161 vector unsigned char vec_add (vector bool char, vector unsigned char);
16162 vector unsigned char vec_add (vector unsigned char, vector bool char);
16163 vector unsigned char vec_add (vector unsigned char,
16164 vector unsigned char);
16165 vector signed short vec_add (vector bool short, vector signed short);
16166 vector signed short vec_add (vector signed short, vector bool short);
16167 vector signed short vec_add (vector signed short, vector signed short);
16168 vector unsigned short vec_add (vector bool short,
16169 vector unsigned short);
16170 vector unsigned short vec_add (vector unsigned short,
16171 vector bool short);
16172 vector unsigned short vec_add (vector unsigned short,
16173 vector unsigned short);
16174 vector signed int vec_add (vector bool int, vector signed int);
16175 vector signed int vec_add (vector signed int, vector bool int);
16176 vector signed int vec_add (vector signed int, vector signed int);
16177 vector unsigned int vec_add (vector bool int, vector unsigned int);
16178 vector unsigned int vec_add (vector unsigned int, vector bool int);
16179 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
16180 vector float vec_add (vector float, vector float);
16181
16182 vector float vec_vaddfp (vector float, vector float);
16183
16184 vector signed int vec_vadduwm (vector bool int, vector signed int);
16185 vector signed int vec_vadduwm (vector signed int, vector bool int);
16186 vector signed int vec_vadduwm (vector signed int, vector signed int);
16187 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
16188 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
16189 vector unsigned int vec_vadduwm (vector unsigned int,
16190 vector unsigned int);
16191
16192 vector signed short vec_vadduhm (vector bool short,
16193 vector signed short);
16194 vector signed short vec_vadduhm (vector signed short,
16195 vector bool short);
16196 vector signed short vec_vadduhm (vector signed short,
16197 vector signed short);
16198 vector unsigned short vec_vadduhm (vector bool short,
16199 vector unsigned short);
16200 vector unsigned short vec_vadduhm (vector unsigned short,
16201 vector bool short);
16202 vector unsigned short vec_vadduhm (vector unsigned short,
16203 vector unsigned short);
16204
16205 vector signed char vec_vaddubm (vector bool char, vector signed char);
16206 vector signed char vec_vaddubm (vector signed char, vector bool char);
16207 vector signed char vec_vaddubm (vector signed char, vector signed char);
16208 vector unsigned char vec_vaddubm (vector bool char,
16209 vector unsigned char);
16210 vector unsigned char vec_vaddubm (vector unsigned char,
16211 vector bool char);
16212 vector unsigned char vec_vaddubm (vector unsigned char,
16213 vector unsigned char);
16214
16215 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
16216
16217 vector unsigned char vec_adds (vector bool char, vector unsigned char);
16218 vector unsigned char vec_adds (vector unsigned char, vector bool char);
16219 vector unsigned char vec_adds (vector unsigned char,
16220 vector unsigned char);
16221 vector signed char vec_adds (vector bool char, vector signed char);
16222 vector signed char vec_adds (vector signed char, vector bool char);
16223 vector signed char vec_adds (vector signed char, vector signed char);
16224 vector unsigned short vec_adds (vector bool short,
16225 vector unsigned short);
16226 vector unsigned short vec_adds (vector unsigned short,
16227 vector bool short);
16228 vector unsigned short vec_adds (vector unsigned short,
16229 vector unsigned short);
16230 vector signed short vec_adds (vector bool short, vector signed short);
16231 vector signed short vec_adds (vector signed short, vector bool short);
16232 vector signed short vec_adds (vector signed short, vector signed short);
16233 vector unsigned int vec_adds (vector bool int, vector unsigned int);
16234 vector unsigned int vec_adds (vector unsigned int, vector bool int);
16235 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
16236 vector signed int vec_adds (vector bool int, vector signed int);
16237 vector signed int vec_adds (vector signed int, vector bool int);
16238 vector signed int vec_adds (vector signed int, vector signed int);
16239
16240 vector signed int vec_vaddsws (vector bool int, vector signed int);
16241 vector signed int vec_vaddsws (vector signed int, vector bool int);
16242 vector signed int vec_vaddsws (vector signed int, vector signed int);
16243
16244 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
16245 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
16246 vector unsigned int vec_vadduws (vector unsigned int,
16247 vector unsigned int);
16248
16249 vector signed short vec_vaddshs (vector bool short,
16250 vector signed short);
16251 vector signed short vec_vaddshs (vector signed short,
16252 vector bool short);
16253 vector signed short vec_vaddshs (vector signed short,
16254 vector signed short);
16255
16256 vector unsigned short vec_vadduhs (vector bool short,
16257 vector unsigned short);
16258 vector unsigned short vec_vadduhs (vector unsigned short,
16259 vector bool short);
16260 vector unsigned short vec_vadduhs (vector unsigned short,
16261 vector unsigned short);
16262
16263 vector signed char vec_vaddsbs (vector bool char, vector signed char);
16264 vector signed char vec_vaddsbs (vector signed char, vector bool char);
16265 vector signed char vec_vaddsbs (vector signed char, vector signed char);
16266
16267 vector unsigned char vec_vaddubs (vector bool char,
16268 vector unsigned char);
16269 vector unsigned char vec_vaddubs (vector unsigned char,
16270 vector bool char);
16271 vector unsigned char vec_vaddubs (vector unsigned char,
16272 vector unsigned char);
16273
16274 vector float vec_and (vector float, vector float);
16275 vector float vec_and (vector float, vector bool int);
16276 vector float vec_and (vector bool int, vector float);
16277 vector bool int vec_and (vector bool int, vector bool int);
16278 vector signed int vec_and (vector bool int, vector signed int);
16279 vector signed int vec_and (vector signed int, vector bool int);
16280 vector signed int vec_and (vector signed int, vector signed int);
16281 vector unsigned int vec_and (vector bool int, vector unsigned int);
16282 vector unsigned int vec_and (vector unsigned int, vector bool int);
16283 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
16284 vector bool short vec_and (vector bool short, vector bool short);
16285 vector signed short vec_and (vector bool short, vector signed short);
16286 vector signed short vec_and (vector signed short, vector bool short);
16287 vector signed short vec_and (vector signed short, vector signed short);
16288 vector unsigned short vec_and (vector bool short,
16289 vector unsigned short);
16290 vector unsigned short vec_and (vector unsigned short,
16291 vector bool short);
16292 vector unsigned short vec_and (vector unsigned short,
16293 vector unsigned short);
16294 vector signed char vec_and (vector bool char, vector signed char);
16295 vector bool char vec_and (vector bool char, vector bool char);
16296 vector signed char vec_and (vector signed char, vector bool char);
16297 vector signed char vec_and (vector signed char, vector signed char);
16298 vector unsigned char vec_and (vector bool char, vector unsigned char);
16299 vector unsigned char vec_and (vector unsigned char, vector bool char);
16300 vector unsigned char vec_and (vector unsigned char,
16301 vector unsigned char);
16302
16303 vector float vec_andc (vector float, vector float);
16304 vector float vec_andc (vector float, vector bool int);
16305 vector float vec_andc (vector bool int, vector float);
16306 vector bool int vec_andc (vector bool int, vector bool int);
16307 vector signed int vec_andc (vector bool int, vector signed int);
16308 vector signed int vec_andc (vector signed int, vector bool int);
16309 vector signed int vec_andc (vector signed int, vector signed int);
16310 vector unsigned int vec_andc (vector bool int, vector unsigned int);
16311 vector unsigned int vec_andc (vector unsigned int, vector bool int);
16312 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
16313 vector bool short vec_andc (vector bool short, vector bool short);
16314 vector signed short vec_andc (vector bool short, vector signed short);
16315 vector signed short vec_andc (vector signed short, vector bool short);
16316 vector signed short vec_andc (vector signed short, vector signed short);
16317 vector unsigned short vec_andc (vector bool short,
16318 vector unsigned short);
16319 vector unsigned short vec_andc (vector unsigned short,
16320 vector bool short);
16321 vector unsigned short vec_andc (vector unsigned short,
16322 vector unsigned short);
16323 vector signed char vec_andc (vector bool char, vector signed char);
16324 vector bool char vec_andc (vector bool char, vector bool char);
16325 vector signed char vec_andc (vector signed char, vector bool char);
16326 vector signed char vec_andc (vector signed char, vector signed char);
16327 vector unsigned char vec_andc (vector bool char, vector unsigned char);
16328 vector unsigned char vec_andc (vector unsigned char, vector bool char);
16329 vector unsigned char vec_andc (vector unsigned char,
16330 vector unsigned char);
16331
16332 vector unsigned char vec_avg (vector unsigned char,
16333 vector unsigned char);
16334 vector signed char vec_avg (vector signed char, vector signed char);
16335 vector unsigned short vec_avg (vector unsigned short,
16336 vector unsigned short);
16337 vector signed short vec_avg (vector signed short, vector signed short);
16338 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
16339 vector signed int vec_avg (vector signed int, vector signed int);
16340
16341 vector signed int vec_vavgsw (vector signed int, vector signed int);
16342
16343 vector unsigned int vec_vavguw (vector unsigned int,
16344 vector unsigned int);
16345
16346 vector signed short vec_vavgsh (vector signed short,
16347 vector signed short);
16348
16349 vector unsigned short vec_vavguh (vector unsigned short,
16350 vector unsigned short);
16351
16352 vector signed char vec_vavgsb (vector signed char, vector signed char);
16353
16354 vector unsigned char vec_vavgub (vector unsigned char,
16355 vector unsigned char);
16356
16357 vector float vec_copysign (vector float);
16358
16359 vector float vec_ceil (vector float);
16360
16361 vector signed int vec_cmpb (vector float, vector float);
16362
16363 vector bool char vec_cmpeq (vector bool char, vector bool char);
16364 vector bool short vec_cmpeq (vector bool short, vector bool short);
16365 vector bool int vec_cmpeq (vector bool int, vector bool int);
16366 vector bool char vec_cmpeq (vector signed char, vector signed char);
16367 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
16368 vector bool short vec_cmpeq (vector signed short, vector signed short);
16369 vector bool short vec_cmpeq (vector unsigned short,
16370 vector unsigned short);
16371 vector bool int vec_cmpeq (vector signed int, vector signed int);
16372 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
16373 vector bool int vec_cmpeq (vector float, vector float);
16374
16375 vector bool int vec_vcmpeqfp (vector float, vector float);
16376
16377 vector bool int vec_vcmpequw (vector signed int, vector signed int);
16378 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
16379
16380 vector bool short vec_vcmpequh (vector signed short,
16381 vector signed short);
16382 vector bool short vec_vcmpequh (vector unsigned short,
16383 vector unsigned short);
16384
16385 vector bool char vec_vcmpequb (vector signed char, vector signed char);
16386 vector bool char vec_vcmpequb (vector unsigned char,
16387 vector unsigned char);
16388
16389 vector bool int vec_cmpge (vector float, vector float);
16390
16391 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
16392 vector bool char vec_cmpgt (vector signed char, vector signed char);
16393 vector bool short vec_cmpgt (vector unsigned short,
16394 vector unsigned short);
16395 vector bool short vec_cmpgt (vector signed short, vector signed short);
16396 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
16397 vector bool int vec_cmpgt (vector signed int, vector signed int);
16398 vector bool int vec_cmpgt (vector float, vector float);
16399
16400 vector bool int vec_vcmpgtfp (vector float, vector float);
16401
16402 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
16403
16404 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
16405
16406 vector bool short vec_vcmpgtsh (vector signed short,
16407 vector signed short);
16408
16409 vector bool short vec_vcmpgtuh (vector unsigned short,
16410 vector unsigned short);
16411
16412 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
16413
16414 vector bool char vec_vcmpgtub (vector unsigned char,
16415 vector unsigned char);
16416
16417 vector bool int vec_cmple (vector float, vector float);
16418
16419 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
16420 vector bool char vec_cmplt (vector signed char, vector signed char);
16421 vector bool short vec_cmplt (vector unsigned short,
16422 vector unsigned short);
16423 vector bool short vec_cmplt (vector signed short, vector signed short);
16424 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
16425 vector bool int vec_cmplt (vector signed int, vector signed int);
16426 vector bool int vec_cmplt (vector float, vector float);
16427
16428 vector float vec_cpsgn (vector float, vector float);
16429
16430 vector float vec_ctf (vector unsigned int, const int);
16431 vector float vec_ctf (vector signed int, const int);
16432 vector double vec_ctf (vector unsigned long, const int);
16433 vector double vec_ctf (vector signed long, const int);
16434
16435 vector float vec_vcfsx (vector signed int, const int);
16436
16437 vector float vec_vcfux (vector unsigned int, const int);
16438
16439 vector signed int vec_cts (vector float, const int);
16440 vector signed long vec_cts (vector double, const int);
16441
16442 vector unsigned int vec_ctu (vector float, const int);
16443 vector unsigned long vec_ctu (vector double, const int);
16444
16445 vector double vec_doublee (vector float);
16446 vector double vec_doublee (vector signed int);
16447 vector double vec_doublee (vector unsigned int);
16448
16449 vector double vec_doubleo (vector float);
16450 vector double vec_doubleo (vector signed int);
16451 vector double vec_doubleo (vector unsigned int);
16452
16453 vector double vec_doubleh (vector float);
16454 vector double vec_doubleh (vector signed int);
16455 vector double vec_doubleh (vector unsigned int);
16456
16457 vector double vec_doublel (vector float);
16458 vector double vec_doublel (vector signed int);
16459 vector double vec_doublel (vector unsigned int);
16460
16461 void vec_dss (const int);
16462
16463 void vec_dssall (void);
16464
16465 void vec_dst (const vector unsigned char *, int, const int);
16466 void vec_dst (const vector signed char *, int, const int);
16467 void vec_dst (const vector bool char *, int, const int);
16468 void vec_dst (const vector unsigned short *, int, const int);
16469 void vec_dst (const vector signed short *, int, const int);
16470 void vec_dst (const vector bool short *, int, const int);
16471 void vec_dst (const vector pixel *, int, const int);
16472 void vec_dst (const vector unsigned int *, int, const int);
16473 void vec_dst (const vector signed int *, int, const int);
16474 void vec_dst (const vector bool int *, int, const int);
16475 void vec_dst (const vector float *, int, const int);
16476 void vec_dst (const unsigned char *, int, const int);
16477 void vec_dst (const signed char *, int, const int);
16478 void vec_dst (const unsigned short *, int, const int);
16479 void vec_dst (const short *, int, const int);
16480 void vec_dst (const unsigned int *, int, const int);
16481 void vec_dst (const int *, int, const int);
16482 void vec_dst (const unsigned long *, int, const int);
16483 void vec_dst (const long *, int, const int);
16484 void vec_dst (const float *, int, const int);
16485
16486 void vec_dstst (const vector unsigned char *, int, const int);
16487 void vec_dstst (const vector signed char *, int, const int);
16488 void vec_dstst (const vector bool char *, int, const int);
16489 void vec_dstst (const vector unsigned short *, int, const int);
16490 void vec_dstst (const vector signed short *, int, const int);
16491 void vec_dstst (const vector bool short *, int, const int);
16492 void vec_dstst (const vector pixel *, int, const int);
16493 void vec_dstst (const vector unsigned int *, int, const int);
16494 void vec_dstst (const vector signed int *, int, const int);
16495 void vec_dstst (const vector bool int *, int, const int);
16496 void vec_dstst (const vector float *, int, const int);
16497 void vec_dstst (const unsigned char *, int, const int);
16498 void vec_dstst (const signed char *, int, const int);
16499 void vec_dstst (const unsigned short *, int, const int);
16500 void vec_dstst (const short *, int, const int);
16501 void vec_dstst (const unsigned int *, int, const int);
16502 void vec_dstst (const int *, int, const int);
16503 void vec_dstst (const unsigned long *, int, const int);
16504 void vec_dstst (const long *, int, const int);
16505 void vec_dstst (const float *, int, const int);
16506
16507 void vec_dststt (const vector unsigned char *, int, const int);
16508 void vec_dststt (const vector signed char *, int, const int);
16509 void vec_dststt (const vector bool char *, int, const int);
16510 void vec_dststt (const vector unsigned short *, int, const int);
16511 void vec_dststt (const vector signed short *, int, const int);
16512 void vec_dststt (const vector bool short *, int, const int);
16513 void vec_dststt (const vector pixel *, int, const int);
16514 void vec_dststt (const vector unsigned int *, int, const int);
16515 void vec_dststt (const vector signed int *, int, const int);
16516 void vec_dststt (const vector bool int *, int, const int);
16517 void vec_dststt (const vector float *, int, const int);
16518 void vec_dststt (const unsigned char *, int, const int);
16519 void vec_dststt (const signed char *, int, const int);
16520 void vec_dststt (const unsigned short *, int, const int);
16521 void vec_dststt (const short *, int, const int);
16522 void vec_dststt (const unsigned int *, int, const int);
16523 void vec_dststt (const int *, int, const int);
16524 void vec_dststt (const unsigned long *, int, const int);
16525 void vec_dststt (const long *, int, const int);
16526 void vec_dststt (const float *, int, const int);
16527
16528 void vec_dstt (const vector unsigned char *, int, const int);
16529 void vec_dstt (const vector signed char *, int, const int);
16530 void vec_dstt (const vector bool char *, int, const int);
16531 void vec_dstt (const vector unsigned short *, int, const int);
16532 void vec_dstt (const vector signed short *, int, const int);
16533 void vec_dstt (const vector bool short *, int, const int);
16534 void vec_dstt (const vector pixel *, int, const int);
16535 void vec_dstt (const vector unsigned int *, int, const int);
16536 void vec_dstt (const vector signed int *, int, const int);
16537 void vec_dstt (const vector bool int *, int, const int);
16538 void vec_dstt (const vector float *, int, const int);
16539 void vec_dstt (const unsigned char *, int, const int);
16540 void vec_dstt (const signed char *, int, const int);
16541 void vec_dstt (const unsigned short *, int, const int);
16542 void vec_dstt (const short *, int, const int);
16543 void vec_dstt (const unsigned int *, int, const int);
16544 void vec_dstt (const int *, int, const int);
16545 void vec_dstt (const unsigned long *, int, const int);
16546 void vec_dstt (const long *, int, const int);
16547 void vec_dstt (const float *, int, const int);
16548
16549 vector float vec_expte (vector float);
16550
16551 vector float vec_floor (vector float);
16552
16553 vector float vec_float (vector signed int);
16554 vector float vec_float (vector unsigned int);
16555
16556 vector float vec_float2 (vector signed long long, vector signed long long);
16557 vector float vec_float2 (vector unsigned long long, vector signed long long);
16558
16559 vector float vec_floate (vector double);
16560 vector float vec_floate (vector signed long long);
16561 vector float vec_floate (vector unsigned long long);
16562
16563 vector float vec_floato (vector double);
16564 vector float vec_floato (vector signed long long);
16565 vector float vec_floato (vector unsigned long long);
16566
16567 vector float vec_ld (int, const vector float *);
16568 vector float vec_ld (int, const float *);
16569 vector bool int vec_ld (int, const vector bool int *);
16570 vector signed int vec_ld (int, const vector signed int *);
16571 vector signed int vec_ld (int, const int *);
16572 vector signed int vec_ld (int, const long *);
16573 vector unsigned int vec_ld (int, const vector unsigned int *);
16574 vector unsigned int vec_ld (int, const unsigned int *);
16575 vector unsigned int vec_ld (int, const unsigned long *);
16576 vector bool short vec_ld (int, const vector bool short *);
16577 vector pixel vec_ld (int, const vector pixel *);
16578 vector signed short vec_ld (int, const vector signed short *);
16579 vector signed short vec_ld (int, const short *);
16580 vector unsigned short vec_ld (int, const vector unsigned short *);
16581 vector unsigned short vec_ld (int, const unsigned short *);
16582 vector bool char vec_ld (int, const vector bool char *);
16583 vector signed char vec_ld (int, const vector signed char *);
16584 vector signed char vec_ld (int, const signed char *);
16585 vector unsigned char vec_ld (int, const vector unsigned char *);
16586 vector unsigned char vec_ld (int, const unsigned char *);
16587
16588 vector signed char vec_lde (int, const signed char *);
16589 vector unsigned char vec_lde (int, const unsigned char *);
16590 vector signed short vec_lde (int, const short *);
16591 vector unsigned short vec_lde (int, const unsigned short *);
16592 vector float vec_lde (int, const float *);
16593 vector signed int vec_lde (int, const int *);
16594 vector unsigned int vec_lde (int, const unsigned int *);
16595 vector signed int vec_lde (int, const long *);
16596 vector unsigned int vec_lde (int, const unsigned long *);
16597
16598 vector float vec_lvewx (int, float *);
16599 vector signed int vec_lvewx (int, int *);
16600 vector unsigned int vec_lvewx (int, unsigned int *);
16601 vector signed int vec_lvewx (int, long *);
16602 vector unsigned int vec_lvewx (int, unsigned long *);
16603
16604 vector signed short vec_lvehx (int, short *);
16605 vector unsigned short vec_lvehx (int, unsigned short *);
16606
16607 vector signed char vec_lvebx (int, char *);
16608 vector unsigned char vec_lvebx (int, unsigned char *);
16609
16610 vector float vec_ldl (int, const vector float *);
16611 vector float vec_ldl (int, const float *);
16612 vector bool int vec_ldl (int, const vector bool int *);
16613 vector signed int vec_ldl (int, const vector signed int *);
16614 vector signed int vec_ldl (int, const int *);
16615 vector signed int vec_ldl (int, const long *);
16616 vector unsigned int vec_ldl (int, const vector unsigned int *);
16617 vector unsigned int vec_ldl (int, const unsigned int *);
16618 vector unsigned int vec_ldl (int, const unsigned long *);
16619 vector bool short vec_ldl (int, const vector bool short *);
16620 vector pixel vec_ldl (int, const vector pixel *);
16621 vector signed short vec_ldl (int, const vector signed short *);
16622 vector signed short vec_ldl (int, const short *);
16623 vector unsigned short vec_ldl (int, const vector unsigned short *);
16624 vector unsigned short vec_ldl (int, const unsigned short *);
16625 vector bool char vec_ldl (int, const vector bool char *);
16626 vector signed char vec_ldl (int, const vector signed char *);
16627 vector signed char vec_ldl (int, const signed char *);
16628 vector unsigned char vec_ldl (int, const vector unsigned char *);
16629 vector unsigned char vec_ldl (int, const unsigned char *);
16630
16631 vector float vec_loge (vector float);
16632
16633 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
16634 vector unsigned char vec_lvsl (int, const volatile signed char *);
16635 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
16636 vector unsigned char vec_lvsl (int, const volatile short *);
16637 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
16638 vector unsigned char vec_lvsl (int, const volatile int *);
16639 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
16640 vector unsigned char vec_lvsl (int, const volatile long *);
16641 vector unsigned char vec_lvsl (int, const volatile float *);
16642
16643 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
16644 vector unsigned char vec_lvsr (int, const volatile signed char *);
16645 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
16646 vector unsigned char vec_lvsr (int, const volatile short *);
16647 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
16648 vector unsigned char vec_lvsr (int, const volatile int *);
16649 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
16650 vector unsigned char vec_lvsr (int, const volatile long *);
16651 vector unsigned char vec_lvsr (int, const volatile float *);
16652
16653 vector float vec_madd (vector float, vector float, vector float);
16654
16655 vector signed short vec_madds (vector signed short,
16656 vector signed short,
16657 vector signed short);
16658
16659 vector unsigned char vec_max (vector bool char, vector unsigned char);
16660 vector unsigned char vec_max (vector unsigned char, vector bool char);
16661 vector unsigned char vec_max (vector unsigned char,
16662 vector unsigned char);
16663 vector signed char vec_max (vector bool char, vector signed char);
16664 vector signed char vec_max (vector signed char, vector bool char);
16665 vector signed char vec_max (vector signed char, vector signed char);
16666 vector unsigned short vec_max (vector bool short,
16667 vector unsigned short);
16668 vector unsigned short vec_max (vector unsigned short,
16669 vector bool short);
16670 vector unsigned short vec_max (vector unsigned short,
16671 vector unsigned short);
16672 vector signed short vec_max (vector bool short, vector signed short);
16673 vector signed short vec_max (vector signed short, vector bool short);
16674 vector signed short vec_max (vector signed short, vector signed short);
16675 vector unsigned int vec_max (vector bool int, vector unsigned int);
16676 vector unsigned int vec_max (vector unsigned int, vector bool int);
16677 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
16678 vector signed int vec_max (vector bool int, vector signed int);
16679 vector signed int vec_max (vector signed int, vector bool int);
16680 vector signed int vec_max (vector signed int, vector signed int);
16681 vector float vec_max (vector float, vector float);
16682
16683 vector float vec_vmaxfp (vector float, vector float);
16684
16685 vector signed int vec_vmaxsw (vector bool int, vector signed int);
16686 vector signed int vec_vmaxsw (vector signed int, vector bool int);
16687 vector signed int vec_vmaxsw (vector signed int, vector signed int);
16688
16689 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
16690 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
16691 vector unsigned int vec_vmaxuw (vector unsigned int,
16692 vector unsigned int);
16693
16694 vector signed short vec_vmaxsh (vector bool short, vector signed short);
16695 vector signed short vec_vmaxsh (vector signed short, vector bool short);
16696 vector signed short vec_vmaxsh (vector signed short,
16697 vector signed short);
16698
16699 vector unsigned short vec_vmaxuh (vector bool short,
16700 vector unsigned short);
16701 vector unsigned short vec_vmaxuh (vector unsigned short,
16702 vector bool short);
16703 vector unsigned short vec_vmaxuh (vector unsigned short,
16704 vector unsigned short);
16705
16706 vector signed char vec_vmaxsb (vector bool char, vector signed char);
16707 vector signed char vec_vmaxsb (vector signed char, vector bool char);
16708 vector signed char vec_vmaxsb (vector signed char, vector signed char);
16709
16710 vector unsigned char vec_vmaxub (vector bool char,
16711 vector unsigned char);
16712 vector unsigned char vec_vmaxub (vector unsigned char,
16713 vector bool char);
16714 vector unsigned char vec_vmaxub (vector unsigned char,
16715 vector unsigned char);
16716
16717 vector bool char vec_mergeh (vector bool char, vector bool char);
16718 vector signed char vec_mergeh (vector signed char, vector signed char);
16719 vector unsigned char vec_mergeh (vector unsigned char,
16720 vector unsigned char);
16721 vector bool short vec_mergeh (vector bool short, vector bool short);
16722 vector pixel vec_mergeh (vector pixel, vector pixel);
16723 vector signed short vec_mergeh (vector signed short,
16724 vector signed short);
16725 vector unsigned short vec_mergeh (vector unsigned short,
16726 vector unsigned short);
16727 vector float vec_mergeh (vector float, vector float);
16728 vector bool int vec_mergeh (vector bool int, vector bool int);
16729 vector signed int vec_mergeh (vector signed int, vector signed int);
16730 vector unsigned int vec_mergeh (vector unsigned int,
16731 vector unsigned int);
16732
16733 vector float vec_vmrghw (vector float, vector float);
16734 vector bool int vec_vmrghw (vector bool int, vector bool int);
16735 vector signed int vec_vmrghw (vector signed int, vector signed int);
16736 vector unsigned int vec_vmrghw (vector unsigned int,
16737 vector unsigned int);
16738
16739 vector bool short vec_vmrghh (vector bool short, vector bool short);
16740 vector signed short vec_vmrghh (vector signed short,
16741 vector signed short);
16742 vector unsigned short vec_vmrghh (vector unsigned short,
16743 vector unsigned short);
16744 vector pixel vec_vmrghh (vector pixel, vector pixel);
16745
16746 vector bool char vec_vmrghb (vector bool char, vector bool char);
16747 vector signed char vec_vmrghb (vector signed char, vector signed char);
16748 vector unsigned char vec_vmrghb (vector unsigned char,
16749 vector unsigned char);
16750
16751 vector bool char vec_mergel (vector bool char, vector bool char);
16752 vector signed char vec_mergel (vector signed char, vector signed char);
16753 vector unsigned char vec_mergel (vector unsigned char,
16754 vector unsigned char);
16755 vector bool short vec_mergel (vector bool short, vector bool short);
16756 vector pixel vec_mergel (vector pixel, vector pixel);
16757 vector signed short vec_mergel (vector signed short,
16758 vector signed short);
16759 vector unsigned short vec_mergel (vector unsigned short,
16760 vector unsigned short);
16761 vector float vec_mergel (vector float, vector float);
16762 vector bool int vec_mergel (vector bool int, vector bool int);
16763 vector signed int vec_mergel (vector signed int, vector signed int);
16764 vector unsigned int vec_mergel (vector unsigned int,
16765 vector unsigned int);
16766
16767 vector float vec_vmrglw (vector float, vector float);
16768 vector signed int vec_vmrglw (vector signed int, vector signed int);
16769 vector unsigned int vec_vmrglw (vector unsigned int,
16770 vector unsigned int);
16771 vector bool int vec_vmrglw (vector bool int, vector bool int);
16772
16773 vector bool short vec_vmrglh (vector bool short, vector bool short);
16774 vector signed short vec_vmrglh (vector signed short,
16775 vector signed short);
16776 vector unsigned short vec_vmrglh (vector unsigned short,
16777 vector unsigned short);
16778 vector pixel vec_vmrglh (vector pixel, vector pixel);
16779
16780 vector bool char vec_vmrglb (vector bool char, vector bool char);
16781 vector signed char vec_vmrglb (vector signed char, vector signed char);
16782 vector unsigned char vec_vmrglb (vector unsigned char,
16783 vector unsigned char);
16784
16785 vector unsigned short vec_mfvscr (void);
16786
16787 vector unsigned char vec_min (vector bool char, vector unsigned char);
16788 vector unsigned char vec_min (vector unsigned char, vector bool char);
16789 vector unsigned char vec_min (vector unsigned char,
16790 vector unsigned char);
16791 vector signed char vec_min (vector bool char, vector signed char);
16792 vector signed char vec_min (vector signed char, vector bool char);
16793 vector signed char vec_min (vector signed char, vector signed char);
16794 vector unsigned short vec_min (vector bool short,
16795 vector unsigned short);
16796 vector unsigned short vec_min (vector unsigned short,
16797 vector bool short);
16798 vector unsigned short vec_min (vector unsigned short,
16799 vector unsigned short);
16800 vector signed short vec_min (vector bool short, vector signed short);
16801 vector signed short vec_min (vector signed short, vector bool short);
16802 vector signed short vec_min (vector signed short, vector signed short);
16803 vector unsigned int vec_min (vector bool int, vector unsigned int);
16804 vector unsigned int vec_min (vector unsigned int, vector bool int);
16805 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
16806 vector signed int vec_min (vector bool int, vector signed int);
16807 vector signed int vec_min (vector signed int, vector bool int);
16808 vector signed int vec_min (vector signed int, vector signed int);
16809 vector float vec_min (vector float, vector float);
16810
16811 vector float vec_vminfp (vector float, vector float);
16812
16813 vector signed int vec_vminsw (vector bool int, vector signed int);
16814 vector signed int vec_vminsw (vector signed int, vector bool int);
16815 vector signed int vec_vminsw (vector signed int, vector signed int);
16816
16817 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
16818 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
16819 vector unsigned int vec_vminuw (vector unsigned int,
16820 vector unsigned int);
16821
16822 vector signed short vec_vminsh (vector bool short, vector signed short);
16823 vector signed short vec_vminsh (vector signed short, vector bool short);
16824 vector signed short vec_vminsh (vector signed short,
16825 vector signed short);
16826
16827 vector unsigned short vec_vminuh (vector bool short,
16828 vector unsigned short);
16829 vector unsigned short vec_vminuh (vector unsigned short,
16830 vector bool short);
16831 vector unsigned short vec_vminuh (vector unsigned short,
16832 vector unsigned short);
16833
16834 vector signed char vec_vminsb (vector bool char, vector signed char);
16835 vector signed char vec_vminsb (vector signed char, vector bool char);
16836 vector signed char vec_vminsb (vector signed char, vector signed char);
16837
16838 vector unsigned char vec_vminub (vector bool char,
16839 vector unsigned char);
16840 vector unsigned char vec_vminub (vector unsigned char,
16841 vector bool char);
16842 vector unsigned char vec_vminub (vector unsigned char,
16843 vector unsigned char);
16844
16845 vector signed short vec_mladd (vector signed short,
16846 vector signed short,
16847 vector signed short);
16848 vector signed short vec_mladd (vector signed short,
16849 vector unsigned short,
16850 vector unsigned short);
16851 vector signed short vec_mladd (vector unsigned short,
16852 vector signed short,
16853 vector signed short);
16854 vector unsigned short vec_mladd (vector unsigned short,
16855 vector unsigned short,
16856 vector unsigned short);
16857
16858 vector signed short vec_mradds (vector signed short,
16859 vector signed short,
16860 vector signed short);
16861
16862 vector unsigned int vec_msum (vector unsigned char,
16863 vector unsigned char,
16864 vector unsigned int);
16865 vector signed int vec_msum (vector signed char,
16866 vector unsigned char,
16867 vector signed int);
16868 vector unsigned int vec_msum (vector unsigned short,
16869 vector unsigned short,
16870 vector unsigned int);
16871 vector signed int vec_msum (vector signed short,
16872 vector signed short,
16873 vector signed int);
16874
16875 vector signed int vec_vmsumshm (vector signed short,
16876 vector signed short,
16877 vector signed int);
16878
16879 vector unsigned int vec_vmsumuhm (vector unsigned short,
16880 vector unsigned short,
16881 vector unsigned int);
16882
16883 vector signed int vec_vmsummbm (vector signed char,
16884 vector unsigned char,
16885 vector signed int);
16886
16887 vector unsigned int vec_vmsumubm (vector unsigned char,
16888 vector unsigned char,
16889 vector unsigned int);
16890
16891 vector unsigned int vec_msums (vector unsigned short,
16892 vector unsigned short,
16893 vector unsigned int);
16894 vector signed int vec_msums (vector signed short,
16895 vector signed short,
16896 vector signed int);
16897
16898 vector signed int vec_vmsumshs (vector signed short,
16899 vector signed short,
16900 vector signed int);
16901
16902 vector unsigned int vec_vmsumuhs (vector unsigned short,
16903 vector unsigned short,
16904 vector unsigned int);
16905
16906 void vec_mtvscr (vector signed int);
16907 void vec_mtvscr (vector unsigned int);
16908 void vec_mtvscr (vector bool int);
16909 void vec_mtvscr (vector signed short);
16910 void vec_mtvscr (vector unsigned short);
16911 void vec_mtvscr (vector bool short);
16912 void vec_mtvscr (vector pixel);
16913 void vec_mtvscr (vector signed char);
16914 void vec_mtvscr (vector unsigned char);
16915 void vec_mtvscr (vector bool char);
16916
16917 vector unsigned short vec_mule (vector unsigned char,
16918 vector unsigned char);
16919 vector signed short vec_mule (vector signed char,
16920 vector signed char);
16921 vector unsigned int vec_mule (vector unsigned short,
16922 vector unsigned short);
16923 vector signed int vec_mule (vector signed short, vector signed short);
16924 vector unsigned long long vec_mule (vector unsigned int,
16925 vector unsigned int);
16926 vector signed long long vec_mule (vector signed int,
16927 vector signed int);
16928
16929 vector signed int vec_vmulesh (vector signed short,
16930 vector signed short);
16931
16932 vector unsigned int vec_vmuleuh (vector unsigned short,
16933 vector unsigned short);
16934
16935 vector signed short vec_vmulesb (vector signed char,
16936 vector signed char);
16937
16938 vector unsigned short vec_vmuleub (vector unsigned char,
16939 vector unsigned char);
16940
16941 vector unsigned short vec_mulo (vector unsigned char,
16942 vector unsigned char);
16943 vector signed short vec_mulo (vector signed char, vector signed char);
16944 vector unsigned int vec_mulo (vector unsigned short,
16945 vector unsigned short);
16946 vector signed int vec_mulo (vector signed short, vector signed short);
16947 vector unsigned long long vec_mulo (vector unsigned int,
16948 vector unsigned int);
16949 vector signed long long vec_mulo (vector signed int,
16950 vector signed int);
16951
16952 vector signed int vec_vmulosh (vector signed short,
16953 vector signed short);
16954
16955 vector unsigned int vec_vmulouh (vector unsigned short,
16956 vector unsigned short);
16957
16958 vector signed short vec_vmulosb (vector signed char,
16959 vector signed char);
16960
16961 vector unsigned short vec_vmuloub (vector unsigned char,
16962 vector unsigned char);
16963
16964 vector float vec_nmsub (vector float, vector float, vector float);
16965
16966 vector signed char vec_nabs (vector signed char);
16967 vector signed short vec_nabs (vector signed short);
16968 vector signed int vec_nabs (vector signed int);
16969 vector float vec_nabs (vector float);
16970 vector double vec_nabs (vector double);
16971
16972 vector signed char vec_neg (vector signed char);
16973 vector signed short vec_neg (vector signed short);
16974 vector signed int vec_neg (vector signed int);
16975 vector signed long long vec_neg (vector signed long long);
16976 vector float char vec_neg (vector float);
16977 vector double vec_neg (vector double);
16978
16979 vector float vec_nor (vector float, vector float);
16980 vector signed int vec_nor (vector signed int, vector signed int);
16981 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
16982 vector bool int vec_nor (vector bool int, vector bool int);
16983 vector signed short vec_nor (vector signed short, vector signed short);
16984 vector unsigned short vec_nor (vector unsigned short,
16985 vector unsigned short);
16986 vector bool short vec_nor (vector bool short, vector bool short);
16987 vector signed char vec_nor (vector signed char, vector signed char);
16988 vector unsigned char vec_nor (vector unsigned char,
16989 vector unsigned char);
16990 vector bool char vec_nor (vector bool char, vector bool char);
16991
16992 vector float vec_or (vector float, vector float);
16993 vector float vec_or (vector float, vector bool int);
16994 vector float vec_or (vector bool int, vector float);
16995 vector bool int vec_or (vector bool int, vector bool int);
16996 vector signed int vec_or (vector bool int, vector signed int);
16997 vector signed int vec_or (vector signed int, vector bool int);
16998 vector signed int vec_or (vector signed int, vector signed int);
16999 vector unsigned int vec_or (vector bool int, vector unsigned int);
17000 vector unsigned int vec_or (vector unsigned int, vector bool int);
17001 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
17002 vector bool short vec_or (vector bool short, vector bool short);
17003 vector signed short vec_or (vector bool short, vector signed short);
17004 vector signed short vec_or (vector signed short, vector bool short);
17005 vector signed short vec_or (vector signed short, vector signed short);
17006 vector unsigned short vec_or (vector bool short, vector unsigned short);
17007 vector unsigned short vec_or (vector unsigned short, vector bool short);
17008 vector unsigned short vec_or (vector unsigned short,
17009 vector unsigned short);
17010 vector signed char vec_or (vector bool char, vector signed char);
17011 vector bool char vec_or (vector bool char, vector bool char);
17012 vector signed char vec_or (vector signed char, vector bool char);
17013 vector signed char vec_or (vector signed char, vector signed char);
17014 vector unsigned char vec_or (vector bool char, vector unsigned char);
17015 vector unsigned char vec_or (vector unsigned char, vector bool char);
17016 vector unsigned char vec_or (vector unsigned char,
17017 vector unsigned char);
17018
17019 vector signed char vec_pack (vector signed short, vector signed short);
17020 vector unsigned char vec_pack (vector unsigned short,
17021 vector unsigned short);
17022 vector bool char vec_pack (vector bool short, vector bool short);
17023 vector signed short vec_pack (vector signed int, vector signed int);
17024 vector unsigned short vec_pack (vector unsigned int,
17025 vector unsigned int);
17026 vector bool short vec_pack (vector bool int, vector bool int);
17027
17028 vector bool short vec_vpkuwum (vector bool int, vector bool int);
17029 vector signed short vec_vpkuwum (vector signed int, vector signed int);
17030 vector unsigned short vec_vpkuwum (vector unsigned int,
17031 vector unsigned int);
17032
17033 vector bool char vec_vpkuhum (vector bool short, vector bool short);
17034 vector signed char vec_vpkuhum (vector signed short,
17035 vector signed short);
17036 vector unsigned char vec_vpkuhum (vector unsigned short,
17037 vector unsigned short);
17038
17039 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
17040
17041 vector unsigned char vec_packs (vector unsigned short,
17042 vector unsigned short);
17043 vector signed char vec_packs (vector signed short, vector signed short);
17044 vector unsigned short vec_packs (vector unsigned int,
17045 vector unsigned int);
17046 vector signed short vec_packs (vector signed int, vector signed int);
17047
17048 vector signed short vec_vpkswss (vector signed int, vector signed int);
17049
17050 vector unsigned short vec_vpkuwus (vector unsigned int,
17051 vector unsigned int);
17052
17053 vector signed char vec_vpkshss (vector signed short,
17054 vector signed short);
17055
17056 vector unsigned char vec_vpkuhus (vector unsigned short,
17057 vector unsigned short);
17058
17059 vector unsigned char vec_packsu (vector unsigned short,
17060 vector unsigned short);
17061 vector unsigned char vec_packsu (vector signed short,
17062 vector signed short);
17063 vector unsigned short vec_packsu (vector unsigned int,
17064 vector unsigned int);
17065 vector unsigned short vec_packsu (vector signed int, vector signed int);
17066
17067 vector unsigned short vec_vpkswus (vector signed int,
17068 vector signed int);
17069
17070 vector unsigned char vec_vpkshus (vector signed short,
17071 vector signed short);
17072
17073 vector float vec_perm (vector float,
17074 vector float,
17075 vector unsigned char);
17076 vector signed int vec_perm (vector signed int,
17077 vector signed int,
17078 vector unsigned char);
17079 vector unsigned int vec_perm (vector unsigned int,
17080 vector unsigned int,
17081 vector unsigned char);
17082 vector bool int vec_perm (vector bool int,
17083 vector bool int,
17084 vector unsigned char);
17085 vector signed short vec_perm (vector signed short,
17086 vector signed short,
17087 vector unsigned char);
17088 vector unsigned short vec_perm (vector unsigned short,
17089 vector unsigned short,
17090 vector unsigned char);
17091 vector bool short vec_perm (vector bool short,
17092 vector bool short,
17093 vector unsigned char);
17094 vector pixel vec_perm (vector pixel,
17095 vector pixel,
17096 vector unsigned char);
17097 vector signed char vec_perm (vector signed char,
17098 vector signed char,
17099 vector unsigned char);
17100 vector unsigned char vec_perm (vector unsigned char,
17101 vector unsigned char,
17102 vector unsigned char);
17103 vector bool char vec_perm (vector bool char,
17104 vector bool char,
17105 vector unsigned char);
17106
17107 vector float vec_re (vector float);
17108
17109 vector bool char vec_reve (vector bool char);
17110 vector signed char vec_reve (vector signed char);
17111 vector unsigned char vec_reve (vector unsigned char);
17112 vector bool int vec_reve (vector bool int);
17113 vector signed int vec_reve (vector signed int);
17114 vector unsigned int vec_reve (vector unsigned int);
17115 vector bool long long vec_reve (vector bool long long);
17116 vector signed long long vec_reve (vector signed long long);
17117 vector unsigned long long vec_reve (vector unsigned long long);
17118 vector bool short vec_reve (vector bool short);
17119 vector signed short vec_reve (vector signed short);
17120 vector unsigned short vec_reve (vector unsigned short);
17121
17122 vector signed char vec_rl (vector signed char,
17123 vector unsigned char);
17124 vector unsigned char vec_rl (vector unsigned char,
17125 vector unsigned char);
17126 vector signed short vec_rl (vector signed short, vector unsigned short);
17127 vector unsigned short vec_rl (vector unsigned short,
17128 vector unsigned short);
17129 vector signed int vec_rl (vector signed int, vector unsigned int);
17130 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
17131
17132 vector signed int vec_vrlw (vector signed int, vector unsigned int);
17133 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
17134
17135 vector signed short vec_vrlh (vector signed short,
17136 vector unsigned short);
17137 vector unsigned short vec_vrlh (vector unsigned short,
17138 vector unsigned short);
17139
17140 vector signed char vec_vrlb (vector signed char, vector unsigned char);
17141 vector unsigned char vec_vrlb (vector unsigned char,
17142 vector unsigned char);
17143
17144 vector float vec_round (vector float);
17145
17146 vector float vec_recip (vector float, vector float);
17147
17148 vector float vec_rsqrt (vector float);
17149
17150 vector float vec_rsqrte (vector float);
17151
17152 vector float vec_sel (vector float, vector float, vector bool int);
17153 vector float vec_sel (vector float, vector float, vector unsigned int);
17154 vector signed int vec_sel (vector signed int,
17155 vector signed int,
17156 vector bool int);
17157 vector signed int vec_sel (vector signed int,
17158 vector signed int,
17159 vector unsigned int);
17160 vector unsigned int vec_sel (vector unsigned int,
17161 vector unsigned int,
17162 vector bool int);
17163 vector unsigned int vec_sel (vector unsigned int,
17164 vector unsigned int,
17165 vector unsigned int);
17166 vector bool int vec_sel (vector bool int,
17167 vector bool int,
17168 vector bool int);
17169 vector bool int vec_sel (vector bool int,
17170 vector bool int,
17171 vector unsigned int);
17172 vector signed short vec_sel (vector signed short,
17173 vector signed short,
17174 vector bool short);
17175 vector signed short vec_sel (vector signed short,
17176 vector signed short,
17177 vector unsigned short);
17178 vector unsigned short vec_sel (vector unsigned short,
17179 vector unsigned short,
17180 vector bool short);
17181 vector unsigned short vec_sel (vector unsigned short,
17182 vector unsigned short,
17183 vector unsigned short);
17184 vector bool short vec_sel (vector bool short,
17185 vector bool short,
17186 vector bool short);
17187 vector bool short vec_sel (vector bool short,
17188 vector bool short,
17189 vector unsigned short);
17190 vector signed char vec_sel (vector signed char,
17191 vector signed char,
17192 vector bool char);
17193 vector signed char vec_sel (vector signed char,
17194 vector signed char,
17195 vector unsigned char);
17196 vector unsigned char vec_sel (vector unsigned char,
17197 vector unsigned char,
17198 vector bool char);
17199 vector unsigned char vec_sel (vector unsigned char,
17200 vector unsigned char,
17201 vector unsigned char);
17202 vector bool char vec_sel (vector bool char,
17203 vector bool char,
17204 vector bool char);
17205 vector bool char vec_sel (vector bool char,
17206 vector bool char,
17207 vector unsigned char);
17208
17209 vector signed long long vec_signed (vector double);
17210 vector signed int vec_signed (vector float);
17211
17212 vector signed int vec_signede (vector double);
17213 vector signed int vec_signedo (vector double);
17214 vector signed int vec_signed2 (vector double, vector double);
17215
17216 vector signed char vec_sl (vector signed char,
17217 vector unsigned char);
17218 vector unsigned char vec_sl (vector unsigned char,
17219 vector unsigned char);
17220 vector signed short vec_sl (vector signed short, vector unsigned short);
17221 vector unsigned short vec_sl (vector unsigned short,
17222 vector unsigned short);
17223 vector signed int vec_sl (vector signed int, vector unsigned int);
17224 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
17225
17226 vector signed int vec_vslw (vector signed int, vector unsigned int);
17227 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
17228
17229 vector signed short vec_vslh (vector signed short,
17230 vector unsigned short);
17231 vector unsigned short vec_vslh (vector unsigned short,
17232 vector unsigned short);
17233
17234 vector signed char vec_vslb (vector signed char, vector unsigned char);
17235 vector unsigned char vec_vslb (vector unsigned char,
17236 vector unsigned char);
17237
17238 vector float vec_sld (vector float, vector float, const int);
17239 vector double vec_sld (vector double, vector double, const int);
17240
17241 vector signed int vec_sld (vector signed int,
17242 vector signed int,
17243 const int);
17244 vector unsigned int vec_sld (vector unsigned int,
17245 vector unsigned int,
17246 const int);
17247 vector bool int vec_sld (vector bool int,
17248 vector bool int,
17249 const int);
17250 vector signed short vec_sld (vector signed short,
17251 vector signed short,
17252 const int);
17253 vector unsigned short vec_sld (vector unsigned short,
17254 vector unsigned short,
17255 const int);
17256 vector bool short vec_sld (vector bool short,
17257 vector bool short,
17258 const int);
17259 vector pixel vec_sld (vector pixel,
17260 vector pixel,
17261 const int);
17262 vector signed char vec_sld (vector signed char,
17263 vector signed char,
17264 const int);
17265 vector unsigned char vec_sld (vector unsigned char,
17266 vector unsigned char,
17267 const int);
17268 vector bool char vec_sld (vector bool char,
17269 vector bool char,
17270 const int);
17271
17272 vector signed char vec_sldw (vector signed char,
17273 vector signed char,
17274 const int);
17275 vector unsigned char vec_sldw (vector unsigned char,
17276 vector unsigned char,
17277 const int);
17278 vector signed short vec_sldw (vector signed short,
17279 vector signed short,
17280 const int);
17281 vector unsigned short vec_sldw (vector unsigned short,
17282 vector unsigned short,
17283 const int);
17284 vector signed int vec_sldw (vector signed int,
17285 vector signed int,
17286 const int);
17287 vector unsigned int vec_sldw (vector unsigned int,
17288 vector unsigned int,
17289 const int);
17290 vector signed long long vec_sldw (vector signed long long,
17291 vector signed long long,
17292 const int);
17293 vector unsigned long long vec_sldw (vector unsigned long long,
17294 vector unsigned long long,
17295 const int);
17296
17297 vector signed int vec_sll (vector signed int,
17298 vector unsigned int);
17299 vector signed int vec_sll (vector signed int,
17300 vector unsigned short);
17301 vector signed int vec_sll (vector signed int,
17302 vector unsigned char);
17303 vector unsigned int vec_sll (vector unsigned int,
17304 vector unsigned int);
17305 vector unsigned int vec_sll (vector unsigned int,
17306 vector unsigned short);
17307 vector unsigned int vec_sll (vector unsigned int,
17308 vector unsigned char);
17309 vector bool int vec_sll (vector bool int,
17310 vector unsigned int);
17311 vector bool int vec_sll (vector bool int,
17312 vector unsigned short);
17313 vector bool int vec_sll (vector bool int,
17314 vector unsigned char);
17315 vector signed short vec_sll (vector signed short,
17316 vector unsigned int);
17317 vector signed short vec_sll (vector signed short,
17318 vector unsigned short);
17319 vector signed short vec_sll (vector signed short,
17320 vector unsigned char);
17321 vector unsigned short vec_sll (vector unsigned short,
17322 vector unsigned int);
17323 vector unsigned short vec_sll (vector unsigned short,
17324 vector unsigned short);
17325 vector unsigned short vec_sll (vector unsigned short,
17326 vector unsigned char);
17327 vector bool short vec_sll (vector bool short, vector unsigned int);
17328 vector bool short vec_sll (vector bool short, vector unsigned short);
17329 vector bool short vec_sll (vector bool short, vector unsigned char);
17330 vector pixel vec_sll (vector pixel, vector unsigned int);
17331 vector pixel vec_sll (vector pixel, vector unsigned short);
17332 vector pixel vec_sll (vector pixel, vector unsigned char);
17333 vector signed char vec_sll (vector signed char, vector unsigned int);
17334 vector signed char vec_sll (vector signed char, vector unsigned short);
17335 vector signed char vec_sll (vector signed char, vector unsigned char);
17336 vector unsigned char vec_sll (vector unsigned char,
17337 vector unsigned int);
17338 vector unsigned char vec_sll (vector unsigned char,
17339 vector unsigned short);
17340 vector unsigned char vec_sll (vector unsigned char,
17341 vector unsigned char);
17342 vector bool char vec_sll (vector bool char, vector unsigned int);
17343 vector bool char vec_sll (vector bool char, vector unsigned short);
17344 vector bool char vec_sll (vector bool char, vector unsigned char);
17345
17346 vector float vec_slo (vector float, vector signed char);
17347 vector float vec_slo (vector float, vector unsigned char);
17348 vector signed int vec_slo (vector signed int, vector signed char);
17349 vector signed int vec_slo (vector signed int, vector unsigned char);
17350 vector unsigned int vec_slo (vector unsigned int, vector signed char);
17351 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
17352 vector signed short vec_slo (vector signed short, vector signed char);
17353 vector signed short vec_slo (vector signed short, vector unsigned char);
17354 vector unsigned short vec_slo (vector unsigned short,
17355 vector signed char);
17356 vector unsigned short vec_slo (vector unsigned short,
17357 vector unsigned char);
17358 vector pixel vec_slo (vector pixel, vector signed char);
17359 vector pixel vec_slo (vector pixel, vector unsigned char);
17360 vector signed char vec_slo (vector signed char, vector signed char);
17361 vector signed char vec_slo (vector signed char, vector unsigned char);
17362 vector unsigned char vec_slo (vector unsigned char, vector signed char);
17363 vector unsigned char vec_slo (vector unsigned char,
17364 vector unsigned char);
17365 vector signed long long vec_slo (vector signed long long, vector signed char);
17366 vector signed long long vec_slo (vector signed long long, vector unsigned char);
17367 vector unsigned long long vec_slo (vector unsigned long long, vector signed char);
17368 vector unsigned long long vec_slo (vector unsigned long long, vector unsigned char);
17369
17370 vector signed char vec_splat (vector signed char, const int);
17371 vector unsigned char vec_splat (vector unsigned char, const int);
17372 vector bool char vec_splat (vector bool char, const int);
17373 vector signed short vec_splat (vector signed short, const int);
17374 vector unsigned short vec_splat (vector unsigned short, const int);
17375 vector bool short vec_splat (vector bool short, const int);
17376 vector pixel vec_splat (vector pixel, const int);
17377 vector float vec_splat (vector float, const int);
17378 vector signed int vec_splat (vector signed int, const int);
17379 vector unsigned int vec_splat (vector unsigned int, const int);
17380 vector bool int vec_splat (vector bool int, const int);
17381 vector signed long vec_splat (vector signed long, const int);
17382 vector unsigned long vec_splat (vector unsigned long, const int);
17383
17384 vector signed char vec_splats (signed char);
17385 vector unsigned char vec_splats (unsigned char);
17386 vector signed short vec_splats (signed short);
17387 vector unsigned short vec_splats (unsigned short);
17388 vector signed int vec_splats (signed int);
17389 vector unsigned int vec_splats (unsigned int);
17390 vector float vec_splats (float);
17391
17392 vector float vec_vspltw (vector float, const int);
17393 vector signed int vec_vspltw (vector signed int, const int);
17394 vector unsigned int vec_vspltw (vector unsigned int, const int);
17395 vector bool int vec_vspltw (vector bool int, const int);
17396
17397 vector bool short vec_vsplth (vector bool short, const int);
17398 vector signed short vec_vsplth (vector signed short, const int);
17399 vector unsigned short vec_vsplth (vector unsigned short, const int);
17400 vector pixel vec_vsplth (vector pixel, const int);
17401
17402 vector signed char vec_vspltb (vector signed char, const int);
17403 vector unsigned char vec_vspltb (vector unsigned char, const int);
17404 vector bool char vec_vspltb (vector bool char, const int);
17405
17406 vector signed char vec_splat_s8 (const int);
17407
17408 vector signed short vec_splat_s16 (const int);
17409
17410 vector signed int vec_splat_s32 (const int);
17411
17412 vector unsigned char vec_splat_u8 (const int);
17413
17414 vector unsigned short vec_splat_u16 (const int);
17415
17416 vector unsigned int vec_splat_u32 (const int);
17417
17418 vector signed char vec_sr (vector signed char, vector unsigned char);
17419 vector unsigned char vec_sr (vector unsigned char,
17420 vector unsigned char);
17421 vector signed short vec_sr (vector signed short,
17422 vector unsigned short);
17423 vector unsigned short vec_sr (vector unsigned short,
17424 vector unsigned short);
17425 vector signed int vec_sr (vector signed int, vector unsigned int);
17426 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
17427
17428 vector signed int vec_vsrw (vector signed int, vector unsigned int);
17429 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
17430
17431 vector signed short vec_vsrh (vector signed short,
17432 vector unsigned short);
17433 vector unsigned short vec_vsrh (vector unsigned short,
17434 vector unsigned short);
17435
17436 vector signed char vec_vsrb (vector signed char, vector unsigned char);
17437 vector unsigned char vec_vsrb (vector unsigned char,
17438 vector unsigned char);
17439
17440 vector signed char vec_sra (vector signed char, vector unsigned char);
17441 vector unsigned char vec_sra (vector unsigned char,
17442 vector unsigned char);
17443 vector signed short vec_sra (vector signed short,
17444 vector unsigned short);
17445 vector unsigned short vec_sra (vector unsigned short,
17446 vector unsigned short);
17447 vector signed int vec_sra (vector signed int, vector unsigned int);
17448 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
17449
17450 vector signed int vec_vsraw (vector signed int, vector unsigned int);
17451 vector unsigned int vec_vsraw (vector unsigned int,
17452 vector unsigned int);
17453
17454 vector signed short vec_vsrah (vector signed short,
17455 vector unsigned short);
17456 vector unsigned short vec_vsrah (vector unsigned short,
17457 vector unsigned short);
17458
17459 vector signed char vec_vsrab (vector signed char, vector unsigned char);
17460 vector unsigned char vec_vsrab (vector unsigned char,
17461 vector unsigned char);
17462
17463 vector signed int vec_srl (vector signed int, vector unsigned int);
17464 vector signed int vec_srl (vector signed int, vector unsigned short);
17465 vector signed int vec_srl (vector signed int, vector unsigned char);
17466 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
17467 vector unsigned int vec_srl (vector unsigned int,
17468 vector unsigned short);
17469 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
17470 vector bool int vec_srl (vector bool int, vector unsigned int);
17471 vector bool int vec_srl (vector bool int, vector unsigned short);
17472 vector bool int vec_srl (vector bool int, vector unsigned char);
17473 vector signed short vec_srl (vector signed short, vector unsigned int);
17474 vector signed short vec_srl (vector signed short,
17475 vector unsigned short);
17476 vector signed short vec_srl (vector signed short, vector unsigned char);
17477 vector unsigned short vec_srl (vector unsigned short,
17478 vector unsigned int);
17479 vector unsigned short vec_srl (vector unsigned short,
17480 vector unsigned short);
17481 vector unsigned short vec_srl (vector unsigned short,
17482 vector unsigned char);
17483 vector bool short vec_srl (vector bool short, vector unsigned int);
17484 vector bool short vec_srl (vector bool short, vector unsigned short);
17485 vector bool short vec_srl (vector bool short, vector unsigned char);
17486 vector pixel vec_srl (vector pixel, vector unsigned int);
17487 vector pixel vec_srl (vector pixel, vector unsigned short);
17488 vector pixel vec_srl (vector pixel, vector unsigned char);
17489 vector signed char vec_srl (vector signed char, vector unsigned int);
17490 vector signed char vec_srl (vector signed char, vector unsigned short);
17491 vector signed char vec_srl (vector signed char, vector unsigned char);
17492 vector unsigned char vec_srl (vector unsigned char,
17493 vector unsigned int);
17494 vector unsigned char vec_srl (vector unsigned char,
17495 vector unsigned short);
17496 vector unsigned char vec_srl (vector unsigned char,
17497 vector unsigned char);
17498 vector bool char vec_srl (vector bool char, vector unsigned int);
17499 vector bool char vec_srl (vector bool char, vector unsigned short);
17500 vector bool char vec_srl (vector bool char, vector unsigned char);
17501
17502 vector float vec_sro (vector float, vector signed char);
17503 vector float vec_sro (vector float, vector unsigned char);
17504 vector signed int vec_sro (vector signed int, vector signed char);
17505 vector signed int vec_sro (vector signed int, vector unsigned char);
17506 vector unsigned int vec_sro (vector unsigned int, vector signed char);
17507 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
17508 vector signed short vec_sro (vector signed short, vector signed char);
17509 vector signed short vec_sro (vector signed short, vector unsigned char);
17510 vector unsigned short vec_sro (vector unsigned short,
17511 vector signed char);
17512 vector unsigned short vec_sro (vector unsigned short,
17513 vector unsigned char);
17514 vector pixel vec_sro (vector pixel, vector signed char);
17515 vector pixel vec_sro (vector pixel, vector unsigned char);
17516 vector signed char vec_sro (vector signed char, vector signed char);
17517 vector signed char vec_sro (vector signed char, vector unsigned char);
17518 vector unsigned char vec_sro (vector unsigned char, vector signed char);
17519 vector unsigned char vec_sro (vector unsigned char,
17520 vector unsigned char);
17521
17522 void vec_st (vector float, int, vector float *);
17523 void vec_st (vector float, int, float *);
17524 void vec_st (vector signed int, int, vector signed int *);
17525 void vec_st (vector signed int, int, int *);
17526 void vec_st (vector unsigned int, int, vector unsigned int *);
17527 void vec_st (vector unsigned int, int, unsigned int *);
17528 void vec_st (vector bool int, int, vector bool int *);
17529 void vec_st (vector bool int, int, unsigned int *);
17530 void vec_st (vector bool int, int, int *);
17531 void vec_st (vector signed short, int, vector signed short *);
17532 void vec_st (vector signed short, int, short *);
17533 void vec_st (vector unsigned short, int, vector unsigned short *);
17534 void vec_st (vector unsigned short, int, unsigned short *);
17535 void vec_st (vector bool short, int, vector bool short *);
17536 void vec_st (vector bool short, int, unsigned short *);
17537 void vec_st (vector pixel, int, vector pixel *);
17538 void vec_st (vector pixel, int, unsigned short *);
17539 void vec_st (vector pixel, int, short *);
17540 void vec_st (vector bool short, int, short *);
17541 void vec_st (vector signed char, int, vector signed char *);
17542 void vec_st (vector signed char, int, signed char *);
17543 void vec_st (vector unsigned char, int, vector unsigned char *);
17544 void vec_st (vector unsigned char, int, unsigned char *);
17545 void vec_st (vector bool char, int, vector bool char *);
17546 void vec_st (vector bool char, int, unsigned char *);
17547 void vec_st (vector bool char, int, signed char *);
17548
17549 void vec_ste (vector signed char, int, signed char *);
17550 void vec_ste (vector unsigned char, int, unsigned char *);
17551 void vec_ste (vector bool char, int, signed char *);
17552 void vec_ste (vector bool char, int, unsigned char *);
17553 void vec_ste (vector signed short, int, short *);
17554 void vec_ste (vector unsigned short, int, unsigned short *);
17555 void vec_ste (vector bool short, int, short *);
17556 void vec_ste (vector bool short, int, unsigned short *);
17557 void vec_ste (vector pixel, int, short *);
17558 void vec_ste (vector pixel, int, unsigned short *);
17559 void vec_ste (vector float, int, float *);
17560 void vec_ste (vector signed int, int, int *);
17561 void vec_ste (vector unsigned int, int, unsigned int *);
17562 void vec_ste (vector bool int, int, int *);
17563 void vec_ste (vector bool int, int, unsigned int *);
17564
17565 void vec_stvewx (vector float, int, float *);
17566 void vec_stvewx (vector signed int, int, int *);
17567 void vec_stvewx (vector unsigned int, int, unsigned int *);
17568 void vec_stvewx (vector bool int, int, int *);
17569 void vec_stvewx (vector bool int, int, unsigned int *);
17570
17571 void vec_stvehx (vector signed short, int, short *);
17572 void vec_stvehx (vector unsigned short, int, unsigned short *);
17573 void vec_stvehx (vector bool short, int, short *);
17574 void vec_stvehx (vector bool short, int, unsigned short *);
17575 void vec_stvehx (vector pixel, int, short *);
17576 void vec_stvehx (vector pixel, int, unsigned short *);
17577
17578 void vec_stvebx (vector signed char, int, signed char *);
17579 void vec_stvebx (vector unsigned char, int, unsigned char *);
17580 void vec_stvebx (vector bool char, int, signed char *);
17581 void vec_stvebx (vector bool char, int, unsigned char *);
17582
17583 void vec_stl (vector float, int, vector float *);
17584 void vec_stl (vector float, int, float *);
17585 void vec_stl (vector signed int, int, vector signed int *);
17586 void vec_stl (vector signed int, int, int *);
17587 void vec_stl (vector unsigned int, int, vector unsigned int *);
17588 void vec_stl (vector unsigned int, int, unsigned int *);
17589 void vec_stl (vector bool int, int, vector bool int *);
17590 void vec_stl (vector bool int, int, unsigned int *);
17591 void vec_stl (vector bool int, int, int *);
17592 void vec_stl (vector signed short, int, vector signed short *);
17593 void vec_stl (vector signed short, int, short *);
17594 void vec_stl (vector unsigned short, int, vector unsigned short *);
17595 void vec_stl (vector unsigned short, int, unsigned short *);
17596 void vec_stl (vector bool short, int, vector bool short *);
17597 void vec_stl (vector bool short, int, unsigned short *);
17598 void vec_stl (vector bool short, int, short *);
17599 void vec_stl (vector pixel, int, vector pixel *);
17600 void vec_stl (vector pixel, int, unsigned short *);
17601 void vec_stl (vector pixel, int, short *);
17602 void vec_stl (vector signed char, int, vector signed char *);
17603 void vec_stl (vector signed char, int, signed char *);
17604 void vec_stl (vector unsigned char, int, vector unsigned char *);
17605 void vec_stl (vector unsigned char, int, unsigned char *);
17606 void vec_stl (vector bool char, int, vector bool char *);
17607 void vec_stl (vector bool char, int, unsigned char *);
17608 void vec_stl (vector bool char, int, signed char *);
17609
17610 vector signed char vec_sub (vector bool char, vector signed char);
17611 vector signed char vec_sub (vector signed char, vector bool char);
17612 vector signed char vec_sub (vector signed char, vector signed char);
17613 vector unsigned char vec_sub (vector bool char, vector unsigned char);
17614 vector unsigned char vec_sub (vector unsigned char, vector bool char);
17615 vector unsigned char vec_sub (vector unsigned char,
17616 vector unsigned char);
17617 vector signed short vec_sub (vector bool short, vector signed short);
17618 vector signed short vec_sub (vector signed short, vector bool short);
17619 vector signed short vec_sub (vector signed short, vector signed short);
17620 vector unsigned short vec_sub (vector bool short,
17621 vector unsigned short);
17622 vector unsigned short vec_sub (vector unsigned short,
17623 vector bool short);
17624 vector unsigned short vec_sub (vector unsigned short,
17625 vector unsigned short);
17626 vector signed int vec_sub (vector bool int, vector signed int);
17627 vector signed int vec_sub (vector signed int, vector bool int);
17628 vector signed int vec_sub (vector signed int, vector signed int);
17629 vector unsigned int vec_sub (vector bool int, vector unsigned int);
17630 vector unsigned int vec_sub (vector unsigned int, vector bool int);
17631 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
17632 vector float vec_sub (vector float, vector float);
17633
17634 vector float vec_vsubfp (vector float, vector float);
17635
17636 vector signed int vec_vsubuwm (vector bool int, vector signed int);
17637 vector signed int vec_vsubuwm (vector signed int, vector bool int);
17638 vector signed int vec_vsubuwm (vector signed int, vector signed int);
17639 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
17640 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
17641 vector unsigned int vec_vsubuwm (vector unsigned int,
17642 vector unsigned int);
17643
17644 vector signed short vec_vsubuhm (vector bool short,
17645 vector signed short);
17646 vector signed short vec_vsubuhm (vector signed short,
17647 vector bool short);
17648 vector signed short vec_vsubuhm (vector signed short,
17649 vector signed short);
17650 vector unsigned short vec_vsubuhm (vector bool short,
17651 vector unsigned short);
17652 vector unsigned short vec_vsubuhm (vector unsigned short,
17653 vector bool short);
17654 vector unsigned short vec_vsubuhm (vector unsigned short,
17655 vector unsigned short);
17656
17657 vector signed char vec_vsububm (vector bool char, vector signed char);
17658 vector signed char vec_vsububm (vector signed char, vector bool char);
17659 vector signed char vec_vsububm (vector signed char, vector signed char);
17660 vector unsigned char vec_vsububm (vector bool char,
17661 vector unsigned char);
17662 vector unsigned char vec_vsububm (vector unsigned char,
17663 vector bool char);
17664 vector unsigned char vec_vsububm (vector unsigned char,
17665 vector unsigned char);
17666
17667 vector signed int vec_subc (vector signed int, vector signed int);
17668 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
17669 vector signed __int128 vec_subc (vector signed __int128,
17670 vector signed __int128);
17671 vector unsigned __int128 vec_subc (vector unsigned __int128,
17672 vector unsigned __int128);
17673
17674 vector signed int vec_sube (vector signed int, vector signed int,
17675 vector signed int);
17676 vector unsigned int vec_sube (vector unsigned int, vector unsigned int,
17677 vector unsigned int);
17678 vector signed __int128 vec_sube (vector signed __int128,
17679 vector signed __int128,
17680 vector signed __int128);
17681 vector unsigned __int128 vec_sube (vector unsigned __int128,
17682 vector unsigned __int128,
17683 vector unsigned __int128);
17684
17685 vector signed int vec_subec (vector signed int, vector signed int,
17686 vector signed int);
17687 vector unsigned int vec_subec (vector unsigned int, vector unsigned int,
17688 vector unsigned int);
17689 vector signed __int128 vec_subec (vector signed __int128,
17690 vector signed __int128,
17691 vector signed __int128);
17692 vector unsigned __int128 vec_subec (vector unsigned __int128,
17693 vector unsigned __int128,
17694 vector unsigned __int128);
17695
17696 vector unsigned char vec_subs (vector bool char, vector unsigned char);
17697 vector unsigned char vec_subs (vector unsigned char, vector bool char);
17698 vector unsigned char vec_subs (vector unsigned char,
17699 vector unsigned char);
17700 vector signed char vec_subs (vector bool char, vector signed char);
17701 vector signed char vec_subs (vector signed char, vector bool char);
17702 vector signed char vec_subs (vector signed char, vector signed char);
17703 vector unsigned short vec_subs (vector bool short,
17704 vector unsigned short);
17705 vector unsigned short vec_subs (vector unsigned short,
17706 vector bool short);
17707 vector unsigned short vec_subs (vector unsigned short,
17708 vector unsigned short);
17709 vector signed short vec_subs (vector bool short, vector signed short);
17710 vector signed short vec_subs (vector signed short, vector bool short);
17711 vector signed short vec_subs (vector signed short, vector signed short);
17712 vector unsigned int vec_subs (vector bool int, vector unsigned int);
17713 vector unsigned int vec_subs (vector unsigned int, vector bool int);
17714 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
17715 vector signed int vec_subs (vector bool int, vector signed int);
17716 vector signed int vec_subs (vector signed int, vector bool int);
17717 vector signed int vec_subs (vector signed int, vector signed int);
17718
17719 vector signed int vec_vsubsws (vector bool int, vector signed int);
17720 vector signed int vec_vsubsws (vector signed int, vector bool int);
17721 vector signed int vec_vsubsws (vector signed int, vector signed int);
17722
17723 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
17724 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
17725 vector unsigned int vec_vsubuws (vector unsigned int,
17726 vector unsigned int);
17727
17728 vector signed short vec_vsubshs (vector bool short,
17729 vector signed short);
17730 vector signed short vec_vsubshs (vector signed short,
17731 vector bool short);
17732 vector signed short vec_vsubshs (vector signed short,
17733 vector signed short);
17734
17735 vector unsigned short vec_vsubuhs (vector bool short,
17736 vector unsigned short);
17737 vector unsigned short vec_vsubuhs (vector unsigned short,
17738 vector bool short);
17739 vector unsigned short vec_vsubuhs (vector unsigned short,
17740 vector unsigned short);
17741
17742 vector signed char vec_vsubsbs (vector bool char, vector signed char);
17743 vector signed char vec_vsubsbs (vector signed char, vector bool char);
17744 vector signed char vec_vsubsbs (vector signed char, vector signed char);
17745
17746 vector unsigned char vec_vsububs (vector bool char,
17747 vector unsigned char);
17748 vector unsigned char vec_vsububs (vector unsigned char,
17749 vector bool char);
17750 vector unsigned char vec_vsububs (vector unsigned char,
17751 vector unsigned char);
17752
17753 vector unsigned int vec_sum4s (vector unsigned char,
17754 vector unsigned int);
17755 vector signed int vec_sum4s (vector signed char, vector signed int);
17756 vector signed int vec_sum4s (vector signed short, vector signed int);
17757
17758 vector signed int vec_vsum4shs (vector signed short, vector signed int);
17759
17760 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
17761
17762 vector unsigned int vec_vsum4ubs (vector unsigned char,
17763 vector unsigned int);
17764
17765 vector signed int vec_sum2s (vector signed int, vector signed int);
17766
17767 vector signed int vec_sums (vector signed int, vector signed int);
17768
17769 vector float vec_trunc (vector float);
17770
17771 vector signed long long vec_unsigned (vector double);
17772 vector signed int vec_unsigned (vector float);
17773
17774 vector signed int vec_unsignede (vector double);
17775 vector signed int vec_unsignedo (vector double);
17776 vector signed int vec_unsigned2 (vector double, vector double);
17777
17778 vector signed short vec_unpackh (vector signed char);
17779 vector bool short vec_unpackh (vector bool char);
17780 vector signed int vec_unpackh (vector signed short);
17781 vector bool int vec_unpackh (vector bool short);
17782 vector unsigned int vec_unpackh (vector pixel);
17783
17784 vector bool int vec_vupkhsh (vector bool short);
17785 vector signed int vec_vupkhsh (vector signed short);
17786
17787 vector unsigned int vec_vupkhpx (vector pixel);
17788
17789 vector bool short vec_vupkhsb (vector bool char);
17790 vector signed short vec_vupkhsb (vector signed char);
17791
17792 vector signed short vec_unpackl (vector signed char);
17793 vector bool short vec_unpackl (vector bool char);
17794 vector unsigned int vec_unpackl (vector pixel);
17795 vector signed int vec_unpackl (vector signed short);
17796 vector bool int vec_unpackl (vector bool short);
17797
17798 vector unsigned int vec_vupklpx (vector pixel);
17799
17800 vector bool int vec_vupklsh (vector bool short);
17801 vector signed int vec_vupklsh (vector signed short);
17802
17803 vector bool short vec_vupklsb (vector bool char);
17804 vector signed short vec_vupklsb (vector signed char);
17805
17806 vector float vec_xor (vector float, vector float);
17807 vector float vec_xor (vector float, vector bool int);
17808 vector float vec_xor (vector bool int, vector float);
17809 vector bool int vec_xor (vector bool int, vector bool int);
17810 vector signed int vec_xor (vector bool int, vector signed int);
17811 vector signed int vec_xor (vector signed int, vector bool int);
17812 vector signed int vec_xor (vector signed int, vector signed int);
17813 vector unsigned int vec_xor (vector bool int, vector unsigned int);
17814 vector unsigned int vec_xor (vector unsigned int, vector bool int);
17815 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
17816 vector bool short vec_xor (vector bool short, vector bool short);
17817 vector signed short vec_xor (vector bool short, vector signed short);
17818 vector signed short vec_xor (vector signed short, vector bool short);
17819 vector signed short vec_xor (vector signed short, vector signed short);
17820 vector unsigned short vec_xor (vector bool short,
17821 vector unsigned short);
17822 vector unsigned short vec_xor (vector unsigned short,
17823 vector bool short);
17824 vector unsigned short vec_xor (vector unsigned short,
17825 vector unsigned short);
17826 vector signed char vec_xor (vector bool char, vector signed char);
17827 vector bool char vec_xor (vector bool char, vector bool char);
17828 vector signed char vec_xor (vector signed char, vector bool char);
17829 vector signed char vec_xor (vector signed char, vector signed char);
17830 vector unsigned char vec_xor (vector bool char, vector unsigned char);
17831 vector unsigned char vec_xor (vector unsigned char, vector bool char);
17832 vector unsigned char vec_xor (vector unsigned char,
17833 vector unsigned char);
17834
17835 int vec_all_eq (vector signed char, vector bool char);
17836 int vec_all_eq (vector signed char, vector signed char);
17837 int vec_all_eq (vector unsigned char, vector bool char);
17838 int vec_all_eq (vector unsigned char, vector unsigned char);
17839 int vec_all_eq (vector bool char, vector bool char);
17840 int vec_all_eq (vector bool char, vector unsigned char);
17841 int vec_all_eq (vector bool char, vector signed char);
17842 int vec_all_eq (vector signed short, vector bool short);
17843 int vec_all_eq (vector signed short, vector signed short);
17844 int vec_all_eq (vector unsigned short, vector bool short);
17845 int vec_all_eq (vector unsigned short, vector unsigned short);
17846 int vec_all_eq (vector bool short, vector bool short);
17847 int vec_all_eq (vector bool short, vector unsigned short);
17848 int vec_all_eq (vector bool short, vector signed short);
17849 int vec_all_eq (vector pixel, vector pixel);
17850 int vec_all_eq (vector signed int, vector bool int);
17851 int vec_all_eq (vector signed int, vector signed int);
17852 int vec_all_eq (vector unsigned int, vector bool int);
17853 int vec_all_eq (vector unsigned int, vector unsigned int);
17854 int vec_all_eq (vector bool int, vector bool int);
17855 int vec_all_eq (vector bool int, vector unsigned int);
17856 int vec_all_eq (vector bool int, vector signed int);
17857 int vec_all_eq (vector float, vector float);
17858
17859 int vec_all_ge (vector bool char, vector unsigned char);
17860 int vec_all_ge (vector unsigned char, vector bool char);
17861 int vec_all_ge (vector unsigned char, vector unsigned char);
17862 int vec_all_ge (vector bool char, vector signed char);
17863 int vec_all_ge (vector signed char, vector bool char);
17864 int vec_all_ge (vector signed char, vector signed char);
17865 int vec_all_ge (vector bool short, vector unsigned short);
17866 int vec_all_ge (vector unsigned short, vector bool short);
17867 int vec_all_ge (vector unsigned short, vector unsigned short);
17868 int vec_all_ge (vector signed short, vector signed short);
17869 int vec_all_ge (vector bool short, vector signed short);
17870 int vec_all_ge (vector signed short, vector bool short);
17871 int vec_all_ge (vector bool int, vector unsigned int);
17872 int vec_all_ge (vector unsigned int, vector bool int);
17873 int vec_all_ge (vector unsigned int, vector unsigned int);
17874 int vec_all_ge (vector bool int, vector signed int);
17875 int vec_all_ge (vector signed int, vector bool int);
17876 int vec_all_ge (vector signed int, vector signed int);
17877 int vec_all_ge (vector float, vector float);
17878
17879 int vec_all_gt (vector bool char, vector unsigned char);
17880 int vec_all_gt (vector unsigned char, vector bool char);
17881 int vec_all_gt (vector unsigned char, vector unsigned char);
17882 int vec_all_gt (vector bool char, vector signed char);
17883 int vec_all_gt (vector signed char, vector bool char);
17884 int vec_all_gt (vector signed char, vector signed char);
17885 int vec_all_gt (vector bool short, vector unsigned short);
17886 int vec_all_gt (vector unsigned short, vector bool short);
17887 int vec_all_gt (vector unsigned short, vector unsigned short);
17888 int vec_all_gt (vector bool short, vector signed short);
17889 int vec_all_gt (vector signed short, vector bool short);
17890 int vec_all_gt (vector signed short, vector signed short);
17891 int vec_all_gt (vector bool int, vector unsigned int);
17892 int vec_all_gt (vector unsigned int, vector bool int);
17893 int vec_all_gt (vector unsigned int, vector unsigned int);
17894 int vec_all_gt (vector bool int, vector signed int);
17895 int vec_all_gt (vector signed int, vector bool int);
17896 int vec_all_gt (vector signed int, vector signed int);
17897 int vec_all_gt (vector float, vector float);
17898
17899 int vec_all_in (vector float, vector float);
17900
17901 int vec_all_le (vector bool char, vector unsigned char);
17902 int vec_all_le (vector unsigned char, vector bool char);
17903 int vec_all_le (vector unsigned char, vector unsigned char);
17904 int vec_all_le (vector bool char, vector signed char);
17905 int vec_all_le (vector signed char, vector bool char);
17906 int vec_all_le (vector signed char, vector signed char);
17907 int vec_all_le (vector bool short, vector unsigned short);
17908 int vec_all_le (vector unsigned short, vector bool short);
17909 int vec_all_le (vector unsigned short, vector unsigned short);
17910 int vec_all_le (vector bool short, vector signed short);
17911 int vec_all_le (vector signed short, vector bool short);
17912 int vec_all_le (vector signed short, vector signed short);
17913 int vec_all_le (vector bool int, vector unsigned int);
17914 int vec_all_le (vector unsigned int, vector bool int);
17915 int vec_all_le (vector unsigned int, vector unsigned int);
17916 int vec_all_le (vector bool int, vector signed int);
17917 int vec_all_le (vector signed int, vector bool int);
17918 int vec_all_le (vector signed int, vector signed int);
17919 int vec_all_le (vector float, vector float);
17920
17921 int vec_all_lt (vector bool char, vector unsigned char);
17922 int vec_all_lt (vector unsigned char, vector bool char);
17923 int vec_all_lt (vector unsigned char, vector unsigned char);
17924 int vec_all_lt (vector bool char, vector signed char);
17925 int vec_all_lt (vector signed char, vector bool char);
17926 int vec_all_lt (vector signed char, vector signed char);
17927 int vec_all_lt (vector bool short, vector unsigned short);
17928 int vec_all_lt (vector unsigned short, vector bool short);
17929 int vec_all_lt (vector unsigned short, vector unsigned short);
17930 int vec_all_lt (vector bool short, vector signed short);
17931 int vec_all_lt (vector signed short, vector bool short);
17932 int vec_all_lt (vector signed short, vector signed short);
17933 int vec_all_lt (vector bool int, vector unsigned int);
17934 int vec_all_lt (vector unsigned int, vector bool int);
17935 int vec_all_lt (vector unsigned int, vector unsigned int);
17936 int vec_all_lt (vector bool int, vector signed int);
17937 int vec_all_lt (vector signed int, vector bool int);
17938 int vec_all_lt (vector signed int, vector signed int);
17939 int vec_all_lt (vector float, vector float);
17940
17941 int vec_all_nan (vector float);
17942
17943 int vec_all_ne (vector signed char, vector bool char);
17944 int vec_all_ne (vector signed char, vector signed char);
17945 int vec_all_ne (vector unsigned char, vector bool char);
17946 int vec_all_ne (vector unsigned char, vector unsigned char);
17947 int vec_all_ne (vector bool char, vector bool char);
17948 int vec_all_ne (vector bool char, vector unsigned char);
17949 int vec_all_ne (vector bool char, vector signed char);
17950 int vec_all_ne (vector signed short, vector bool short);
17951 int vec_all_ne (vector signed short, vector signed short);
17952 int vec_all_ne (vector unsigned short, vector bool short);
17953 int vec_all_ne (vector unsigned short, vector unsigned short);
17954 int vec_all_ne (vector bool short, vector bool short);
17955 int vec_all_ne (vector bool short, vector unsigned short);
17956 int vec_all_ne (vector bool short, vector signed short);
17957 int vec_all_ne (vector pixel, vector pixel);
17958 int vec_all_ne (vector signed int, vector bool int);
17959 int vec_all_ne (vector signed int, vector signed int);
17960 int vec_all_ne (vector unsigned int, vector bool int);
17961 int vec_all_ne (vector unsigned int, vector unsigned int);
17962 int vec_all_ne (vector bool int, vector bool int);
17963 int vec_all_ne (vector bool int, vector unsigned int);
17964 int vec_all_ne (vector bool int, vector signed int);
17965 int vec_all_ne (vector float, vector float);
17966
17967 int vec_all_nge (vector float, vector float);
17968
17969 int vec_all_ngt (vector float, vector float);
17970
17971 int vec_all_nle (vector float, vector float);
17972
17973 int vec_all_nlt (vector float, vector float);
17974
17975 int vec_all_numeric (vector float);
17976
17977 int vec_any_eq (vector signed char, vector bool char);
17978 int vec_any_eq (vector signed char, vector signed char);
17979 int vec_any_eq (vector unsigned char, vector bool char);
17980 int vec_any_eq (vector unsigned char, vector unsigned char);
17981 int vec_any_eq (vector bool char, vector bool char);
17982 int vec_any_eq (vector bool char, vector unsigned char);
17983 int vec_any_eq (vector bool char, vector signed char);
17984 int vec_any_eq (vector signed short, vector bool short);
17985 int vec_any_eq (vector signed short, vector signed short);
17986 int vec_any_eq (vector unsigned short, vector bool short);
17987 int vec_any_eq (vector unsigned short, vector unsigned short);
17988 int vec_any_eq (vector bool short, vector bool short);
17989 int vec_any_eq (vector bool short, vector unsigned short);
17990 int vec_any_eq (vector bool short, vector signed short);
17991 int vec_any_eq (vector pixel, vector pixel);
17992 int vec_any_eq (vector signed int, vector bool int);
17993 int vec_any_eq (vector signed int, vector signed int);
17994 int vec_any_eq (vector unsigned int, vector bool int);
17995 int vec_any_eq (vector unsigned int, vector unsigned int);
17996 int vec_any_eq (vector bool int, vector bool int);
17997 int vec_any_eq (vector bool int, vector unsigned int);
17998 int vec_any_eq (vector bool int, vector signed int);
17999 int vec_any_eq (vector float, vector float);
18000
18001 int vec_any_ge (vector signed char, vector bool char);
18002 int vec_any_ge (vector unsigned char, vector bool char);
18003 int vec_any_ge (vector unsigned char, vector unsigned char);
18004 int vec_any_ge (vector signed char, vector signed char);
18005 int vec_any_ge (vector bool char, vector unsigned char);
18006 int vec_any_ge (vector bool char, vector signed char);
18007 int vec_any_ge (vector unsigned short, vector bool short);
18008 int vec_any_ge (vector unsigned short, vector unsigned short);
18009 int vec_any_ge (vector signed short, vector signed short);
18010 int vec_any_ge (vector signed short, vector bool short);
18011 int vec_any_ge (vector bool short, vector unsigned short);
18012 int vec_any_ge (vector bool short, vector signed short);
18013 int vec_any_ge (vector signed int, vector bool int);
18014 int vec_any_ge (vector unsigned int, vector bool int);
18015 int vec_any_ge (vector unsigned int, vector unsigned int);
18016 int vec_any_ge (vector signed int, vector signed int);
18017 int vec_any_ge (vector bool int, vector unsigned int);
18018 int vec_any_ge (vector bool int, vector signed int);
18019 int vec_any_ge (vector float, vector float);
18020
18021 int vec_any_gt (vector bool char, vector unsigned char);
18022 int vec_any_gt (vector unsigned char, vector bool char);
18023 int vec_any_gt (vector unsigned char, vector unsigned char);
18024 int vec_any_gt (vector bool char, vector signed char);
18025 int vec_any_gt (vector signed char, vector bool char);
18026 int vec_any_gt (vector signed char, vector signed char);
18027 int vec_any_gt (vector bool short, vector unsigned short);
18028 int vec_any_gt (vector unsigned short, vector bool short);
18029 int vec_any_gt (vector unsigned short, vector unsigned short);
18030 int vec_any_gt (vector bool short, vector signed short);
18031 int vec_any_gt (vector signed short, vector bool short);
18032 int vec_any_gt (vector signed short, vector signed short);
18033 int vec_any_gt (vector bool int, vector unsigned int);
18034 int vec_any_gt (vector unsigned int, vector bool int);
18035 int vec_any_gt (vector unsigned int, vector unsigned int);
18036 int vec_any_gt (vector bool int, vector signed int);
18037 int vec_any_gt (vector signed int, vector bool int);
18038 int vec_any_gt (vector signed int, vector signed int);
18039 int vec_any_gt (vector float, vector float);
18040
18041 int vec_any_le (vector bool char, vector unsigned char);
18042 int vec_any_le (vector unsigned char, vector bool char);
18043 int vec_any_le (vector unsigned char, vector unsigned char);
18044 int vec_any_le (vector bool char, vector signed char);
18045 int vec_any_le (vector signed char, vector bool char);
18046 int vec_any_le (vector signed char, vector signed char);
18047 int vec_any_le (vector bool short, vector unsigned short);
18048 int vec_any_le (vector unsigned short, vector bool short);
18049 int vec_any_le (vector unsigned short, vector unsigned short);
18050 int vec_any_le (vector bool short, vector signed short);
18051 int vec_any_le (vector signed short, vector bool short);
18052 int vec_any_le (vector signed short, vector signed short);
18053 int vec_any_le (vector bool int, vector unsigned int);
18054 int vec_any_le (vector unsigned int, vector bool int);
18055 int vec_any_le (vector unsigned int, vector unsigned int);
18056 int vec_any_le (vector bool int, vector signed int);
18057 int vec_any_le (vector signed int, vector bool int);
18058 int vec_any_le (vector signed int, vector signed int);
18059 int vec_any_le (vector float, vector float);
18060
18061 int vec_any_lt (vector bool char, vector unsigned char);
18062 int vec_any_lt (vector unsigned char, vector bool char);
18063 int vec_any_lt (vector unsigned char, vector unsigned char);
18064 int vec_any_lt (vector bool char, vector signed char);
18065 int vec_any_lt (vector signed char, vector bool char);
18066 int vec_any_lt (vector signed char, vector signed char);
18067 int vec_any_lt (vector bool short, vector unsigned short);
18068 int vec_any_lt (vector unsigned short, vector bool short);
18069 int vec_any_lt (vector unsigned short, vector unsigned short);
18070 int vec_any_lt (vector bool short, vector signed short);
18071 int vec_any_lt (vector signed short, vector bool short);
18072 int vec_any_lt (vector signed short, vector signed short);
18073 int vec_any_lt (vector bool int, vector unsigned int);
18074 int vec_any_lt (vector unsigned int, vector bool int);
18075 int vec_any_lt (vector unsigned int, vector unsigned int);
18076 int vec_any_lt (vector bool int, vector signed int);
18077 int vec_any_lt (vector signed int, vector bool int);
18078 int vec_any_lt (vector signed int, vector signed int);
18079 int vec_any_lt (vector float, vector float);
18080
18081 int vec_any_nan (vector float);
18082
18083 int vec_any_ne (vector signed char, vector bool char);
18084 int vec_any_ne (vector signed char, vector signed char);
18085 int vec_any_ne (vector unsigned char, vector bool char);
18086 int vec_any_ne (vector unsigned char, vector unsigned char);
18087 int vec_any_ne (vector bool char, vector bool char);
18088 int vec_any_ne (vector bool char, vector unsigned char);
18089 int vec_any_ne (vector bool char, vector signed char);
18090 int vec_any_ne (vector signed short, vector bool short);
18091 int vec_any_ne (vector signed short, vector signed short);
18092 int vec_any_ne (vector unsigned short, vector bool short);
18093 int vec_any_ne (vector unsigned short, vector unsigned short);
18094 int vec_any_ne (vector bool short, vector bool short);
18095 int vec_any_ne (vector bool short, vector unsigned short);
18096 int vec_any_ne (vector bool short, vector signed short);
18097 int vec_any_ne (vector pixel, vector pixel);
18098 int vec_any_ne (vector signed int, vector bool int);
18099 int vec_any_ne (vector signed int, vector signed int);
18100 int vec_any_ne (vector unsigned int, vector bool int);
18101 int vec_any_ne (vector unsigned int, vector unsigned int);
18102 int vec_any_ne (vector bool int, vector bool int);
18103 int vec_any_ne (vector bool int, vector unsigned int);
18104 int vec_any_ne (vector bool int, vector signed int);
18105 int vec_any_ne (vector float, vector float);
18106
18107 int vec_any_nge (vector float, vector float);
18108
18109 int vec_any_ngt (vector float, vector float);
18110
18111 int vec_any_nle (vector float, vector float);
18112
18113 int vec_any_nlt (vector float, vector float);
18114
18115 int vec_any_numeric (vector float);
18116
18117 int vec_any_out (vector float, vector float);
18118 @end smallexample
18119
18120 If the vector/scalar (VSX) instruction set is available, the following
18121 additional functions are available:
18122
18123 @smallexample
18124 vector double vec_abs (vector double);
18125 vector double vec_add (vector double, vector double);
18126 vector double vec_and (vector double, vector double);
18127 vector double vec_and (vector double, vector bool long);
18128 vector double vec_and (vector bool long, vector double);
18129 vector long vec_and (vector long, vector long);
18130 vector long vec_and (vector long, vector bool long);
18131 vector long vec_and (vector bool long, vector long);
18132 vector unsigned long vec_and (vector unsigned long, vector unsigned long);
18133 vector unsigned long vec_and (vector unsigned long, vector bool long);
18134 vector unsigned long vec_and (vector bool long, vector unsigned long);
18135 vector double vec_andc (vector double, vector double);
18136 vector double vec_andc (vector double, vector bool long);
18137 vector double vec_andc (vector bool long, vector double);
18138 vector long vec_andc (vector long, vector long);
18139 vector long vec_andc (vector long, vector bool long);
18140 vector long vec_andc (vector bool long, vector long);
18141 vector unsigned long vec_andc (vector unsigned long, vector unsigned long);
18142 vector unsigned long vec_andc (vector unsigned long, vector bool long);
18143 vector unsigned long vec_andc (vector bool long, vector unsigned long);
18144 vector double vec_ceil (vector double);
18145 vector bool long vec_cmpeq (vector double, vector double);
18146 vector bool long vec_cmpge (vector double, vector double);
18147 vector bool long vec_cmpgt (vector double, vector double);
18148 vector bool long vec_cmple (vector double, vector double);
18149 vector bool long vec_cmplt (vector double, vector double);
18150 vector double vec_cpsgn (vector double, vector double);
18151 vector float vec_div (vector float, vector float);
18152 vector double vec_div (vector double, vector double);
18153 vector long vec_div (vector long, vector long);
18154 vector unsigned long vec_div (vector unsigned long, vector unsigned long);
18155 vector double vec_floor (vector double);
18156 vector double vec_ld (int, const vector double *);
18157 vector double vec_ld (int, const double *);
18158 vector double vec_ldl (int, const vector double *);
18159 vector double vec_ldl (int, const double *);
18160 vector unsigned char vec_lvsl (int, const volatile double *);
18161 vector unsigned char vec_lvsr (int, const volatile double *);
18162 vector double vec_madd (vector double, vector double, vector double);
18163 vector double vec_max (vector double, vector double);
18164 vector signed long vec_mergeh (vector signed long, vector signed long);
18165 vector signed long vec_mergeh (vector signed long, vector bool long);
18166 vector signed long vec_mergeh (vector bool long, vector signed long);
18167 vector unsigned long vec_mergeh (vector unsigned long, vector unsigned long);
18168 vector unsigned long vec_mergeh (vector unsigned long, vector bool long);
18169 vector unsigned long vec_mergeh (vector bool long, vector unsigned long);
18170 vector signed long vec_mergel (vector signed long, vector signed long);
18171 vector signed long vec_mergel (vector signed long, vector bool long);
18172 vector signed long vec_mergel (vector bool long, vector signed long);
18173 vector unsigned long vec_mergel (vector unsigned long, vector unsigned long);
18174 vector unsigned long vec_mergel (vector unsigned long, vector bool long);
18175 vector unsigned long vec_mergel (vector bool long, vector unsigned long);
18176 vector double vec_min (vector double, vector double);
18177 vector float vec_msub (vector float, vector float, vector float);
18178 vector double vec_msub (vector double, vector double, vector double);
18179 vector float vec_mul (vector float, vector float);
18180 vector double vec_mul (vector double, vector double);
18181 vector long vec_mul (vector long, vector long);
18182 vector unsigned long vec_mul (vector unsigned long, vector unsigned long);
18183 vector float vec_nearbyint (vector float);
18184 vector double vec_nearbyint (vector double);
18185 vector float vec_nmadd (vector float, vector float, vector float);
18186 vector double vec_nmadd (vector double, vector double, vector double);
18187 vector double vec_nmsub (vector double, vector double, vector double);
18188 vector double vec_nor (vector double, vector double);
18189 vector long vec_nor (vector long, vector long);
18190 vector long vec_nor (vector long, vector bool long);
18191 vector long vec_nor (vector bool long, vector long);
18192 vector unsigned long vec_nor (vector unsigned long, vector unsigned long);
18193 vector unsigned long vec_nor (vector unsigned long, vector bool long);
18194 vector unsigned long vec_nor (vector bool long, vector unsigned long);
18195 vector double vec_or (vector double, vector double);
18196 vector double vec_or (vector double, vector bool long);
18197 vector double vec_or (vector bool long, vector double);
18198 vector long vec_or (vector long, vector long);
18199 vector long vec_or (vector long, vector bool long);
18200 vector long vec_or (vector bool long, vector long);
18201 vector unsigned long vec_or (vector unsigned long, vector unsigned long);
18202 vector unsigned long vec_or (vector unsigned long, vector bool long);
18203 vector unsigned long vec_or (vector bool long, vector unsigned long);
18204 vector double vec_perm (vector double, vector double, vector unsigned char);
18205 vector long vec_perm (vector long, vector long, vector unsigned char);
18206 vector unsigned long vec_perm (vector unsigned long, vector unsigned long,
18207 vector unsigned char);
18208 vector double vec_rint (vector double);
18209 vector double vec_recip (vector double, vector double);
18210 vector double vec_rsqrt (vector double);
18211 vector double vec_rsqrte (vector double);
18212 vector double vec_sel (vector double, vector double, vector bool long);
18213 vector double vec_sel (vector double, vector double, vector unsigned long);
18214 vector long vec_sel (vector long, vector long, vector long);
18215 vector long vec_sel (vector long, vector long, vector unsigned long);
18216 vector long vec_sel (vector long, vector long, vector bool long);
18217 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
18218 vector long);
18219 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
18220 vector unsigned long);
18221 vector unsigned long vec_sel (vector unsigned long, vector unsigned long,
18222 vector bool long);
18223 vector double vec_splats (double);
18224 vector signed long vec_splats (signed long);
18225 vector unsigned long vec_splats (unsigned long);
18226 vector float vec_sqrt (vector float);
18227 vector double vec_sqrt (vector double);
18228 void vec_st (vector double, int, vector double *);
18229 void vec_st (vector double, int, double *);
18230 vector double vec_sub (vector double, vector double);
18231 vector double vec_trunc (vector double);
18232 vector double vec_xl (int, vector double *);
18233 vector double vec_xl (int, double *);
18234 vector long long vec_xl (int, vector long long *);
18235 vector long long vec_xl (int, long long *);
18236 vector unsigned long long vec_xl (int, vector unsigned long long *);
18237 vector unsigned long long vec_xl (int, unsigned long long *);
18238 vector float vec_xl (int, vector float *);
18239 vector float vec_xl (int, float *);
18240 vector int vec_xl (int, vector int *);
18241 vector int vec_xl (int, int *);
18242 vector unsigned int vec_xl (int, vector unsigned int *);
18243 vector unsigned int vec_xl (int, unsigned int *);
18244 vector double vec_xor (vector double, vector double);
18245 vector double vec_xor (vector double, vector bool long);
18246 vector double vec_xor (vector bool long, vector double);
18247 vector long vec_xor (vector long, vector long);
18248 vector long vec_xor (vector long, vector bool long);
18249 vector long vec_xor (vector bool long, vector long);
18250 vector unsigned long vec_xor (vector unsigned long, vector unsigned long);
18251 vector unsigned long vec_xor (vector unsigned long, vector bool long);
18252 vector unsigned long vec_xor (vector bool long, vector unsigned long);
18253 void vec_xst (vector double, int, vector double *);
18254 void vec_xst (vector double, int, double *);
18255 void vec_xst (vector long long, int, vector long long *);
18256 void vec_xst (vector long long, int, long long *);
18257 void vec_xst (vector unsigned long long, int, vector unsigned long long *);
18258 void vec_xst (vector unsigned long long, int, unsigned long long *);
18259 void vec_xst (vector float, int, vector float *);
18260 void vec_xst (vector float, int, float *);
18261 void vec_xst (vector int, int, vector int *);
18262 void vec_xst (vector int, int, int *);
18263 void vec_xst (vector unsigned int, int, vector unsigned int *);
18264 void vec_xst (vector unsigned int, int, unsigned int *);
18265 int vec_all_eq (vector double, vector double);
18266 int vec_all_ge (vector double, vector double);
18267 int vec_all_gt (vector double, vector double);
18268 int vec_all_le (vector double, vector double);
18269 int vec_all_lt (vector double, vector double);
18270 int vec_all_nan (vector double);
18271 int vec_all_ne (vector double, vector double);
18272 int vec_all_nge (vector double, vector double);
18273 int vec_all_ngt (vector double, vector double);
18274 int vec_all_nle (vector double, vector double);
18275 int vec_all_nlt (vector double, vector double);
18276 int vec_all_numeric (vector double);
18277 int vec_any_eq (vector double, vector double);
18278 int vec_any_ge (vector double, vector double);
18279 int vec_any_gt (vector double, vector double);
18280 int vec_any_le (vector double, vector double);
18281 int vec_any_lt (vector double, vector double);
18282 int vec_any_nan (vector double);
18283 int vec_any_ne (vector double, vector double);
18284 int vec_any_nge (vector double, vector double);
18285 int vec_any_ngt (vector double, vector double);
18286 int vec_any_nle (vector double, vector double);
18287 int vec_any_nlt (vector double, vector double);
18288 int vec_any_numeric (vector double);
18289
18290 vector double vec_vsx_ld (int, const vector double *);
18291 vector double vec_vsx_ld (int, const double *);
18292 vector float vec_vsx_ld (int, const vector float *);
18293 vector float vec_vsx_ld (int, const float *);
18294 vector bool int vec_vsx_ld (int, const vector bool int *);
18295 vector signed int vec_vsx_ld (int, const vector signed int *);
18296 vector signed int vec_vsx_ld (int, const int *);
18297 vector signed int vec_vsx_ld (int, const long *);
18298 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
18299 vector unsigned int vec_vsx_ld (int, const unsigned int *);
18300 vector unsigned int vec_vsx_ld (int, const unsigned long *);
18301 vector bool short vec_vsx_ld (int, const vector bool short *);
18302 vector pixel vec_vsx_ld (int, const vector pixel *);
18303 vector signed short vec_vsx_ld (int, const vector signed short *);
18304 vector signed short vec_vsx_ld (int, const short *);
18305 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
18306 vector unsigned short vec_vsx_ld (int, const unsigned short *);
18307 vector bool char vec_vsx_ld (int, const vector bool char *);
18308 vector signed char vec_vsx_ld (int, const vector signed char *);
18309 vector signed char vec_vsx_ld (int, const signed char *);
18310 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
18311 vector unsigned char vec_vsx_ld (int, const unsigned char *);
18312
18313 void vec_vsx_st (vector double, int, vector double *);
18314 void vec_vsx_st (vector double, int, double *);
18315 void vec_vsx_st (vector float, int, vector float *);
18316 void vec_vsx_st (vector float, int, float *);
18317 void vec_vsx_st (vector signed int, int, vector signed int *);
18318 void vec_vsx_st (vector signed int, int, int *);
18319 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
18320 void vec_vsx_st (vector unsigned int, int, unsigned int *);
18321 void vec_vsx_st (vector bool int, int, vector bool int *);
18322 void vec_vsx_st (vector bool int, int, unsigned int *);
18323 void vec_vsx_st (vector bool int, int, int *);
18324 void vec_vsx_st (vector signed short, int, vector signed short *);
18325 void vec_vsx_st (vector signed short, int, short *);
18326 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
18327 void vec_vsx_st (vector unsigned short, int, unsigned short *);
18328 void vec_vsx_st (vector bool short, int, vector bool short *);
18329 void vec_vsx_st (vector bool short, int, unsigned short *);
18330 void vec_vsx_st (vector pixel, int, vector pixel *);
18331 void vec_vsx_st (vector pixel, int, unsigned short *);
18332 void vec_vsx_st (vector pixel, int, short *);
18333 void vec_vsx_st (vector bool short, int, short *);
18334 void vec_vsx_st (vector signed char, int, vector signed char *);
18335 void vec_vsx_st (vector signed char, int, signed char *);
18336 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
18337 void vec_vsx_st (vector unsigned char, int, unsigned char *);
18338 void vec_vsx_st (vector bool char, int, vector bool char *);
18339 void vec_vsx_st (vector bool char, int, unsigned char *);
18340 void vec_vsx_st (vector bool char, int, signed char *);
18341
18342 vector double vec_xxpermdi (vector double, vector double, const int);
18343 vector float vec_xxpermdi (vector float, vector float, const int);
18344 vector long long vec_xxpermdi (vector long long, vector long long, const int);
18345 vector unsigned long long vec_xxpermdi (vector unsigned long long,
18346 vector unsigned long long, const int);
18347 vector int vec_xxpermdi (vector int, vector int, const int);
18348 vector unsigned int vec_xxpermdi (vector unsigned int,
18349 vector unsigned int, const int);
18350 vector short vec_xxpermdi (vector short, vector short, const int);
18351 vector unsigned short vec_xxpermdi (vector unsigned short,
18352 vector unsigned short, const int);
18353 vector signed char vec_xxpermdi (vector signed char, vector signed char,
18354 const int);
18355 vector unsigned char vec_xxpermdi (vector unsigned char,
18356 vector unsigned char, const int);
18357
18358 vector double vec_xxsldi (vector double, vector double, int);
18359 vector float vec_xxsldi (vector float, vector float, int);
18360 vector long long vec_xxsldi (vector long long, vector long long, int);
18361 vector unsigned long long vec_xxsldi (vector unsigned long long,
18362 vector unsigned long long, int);
18363 vector int vec_xxsldi (vector int, vector int, int);
18364 vector unsigned int vec_xxsldi (vector unsigned int, vector unsigned int, int);
18365 vector short vec_xxsldi (vector short, vector short, int);
18366 vector unsigned short vec_xxsldi (vector unsigned short,
18367 vector unsigned short, int);
18368 vector signed char vec_xxsldi (vector signed char, vector signed char, int);
18369 vector unsigned char vec_xxsldi (vector unsigned char,
18370 vector unsigned char, int);
18371 @end smallexample
18372
18373 Note that the @samp{vec_ld} and @samp{vec_st} built-in functions always
18374 generate the AltiVec @samp{LVX} and @samp{STVX} instructions even
18375 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
18376 @samp{vec_vsx_st} built-in functions always generate the VSX @samp{LXVD2X},
18377 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
18378
18379 If the ISA 2.07 additions to the vector/scalar (power8-vector)
18380 instruction set are available, the following additional functions are
18381 available for both 32-bit and 64-bit targets. For 64-bit targets, you
18382 can use @var{vector long} instead of @var{vector long long},
18383 @var{vector bool long} instead of @var{vector bool long long}, and
18384 @var{vector unsigned long} instead of @var{vector unsigned long long}.
18385
18386 @smallexample
18387 vector long long vec_abs (vector long long);
18388
18389 vector long long vec_add (vector long long, vector long long);
18390 vector unsigned long long vec_add (vector unsigned long long,
18391 vector unsigned long long);
18392
18393 int vec_all_eq (vector long long, vector long long);
18394 int vec_all_eq (vector unsigned long long, vector unsigned long long);
18395 int vec_all_ge (vector long long, vector long long);
18396 int vec_all_ge (vector unsigned long long, vector unsigned long long);
18397 int vec_all_gt (vector long long, vector long long);
18398 int vec_all_gt (vector unsigned long long, vector unsigned long long);
18399 int vec_all_le (vector long long, vector long long);
18400 int vec_all_le (vector unsigned long long, vector unsigned long long);
18401 int vec_all_lt (vector long long, vector long long);
18402 int vec_all_lt (vector unsigned long long, vector unsigned long long);
18403 int vec_all_ne (vector long long, vector long long);
18404 int vec_all_ne (vector unsigned long long, vector unsigned long long);
18405
18406 int vec_any_eq (vector long long, vector long long);
18407 int vec_any_eq (vector unsigned long long, vector unsigned long long);
18408 int vec_any_ge (vector long long, vector long long);
18409 int vec_any_ge (vector unsigned long long, vector unsigned long long);
18410 int vec_any_gt (vector long long, vector long long);
18411 int vec_any_gt (vector unsigned long long, vector unsigned long long);
18412 int vec_any_le (vector long long, vector long long);
18413 int vec_any_le (vector unsigned long long, vector unsigned long long);
18414 int vec_any_lt (vector long long, vector long long);
18415 int vec_any_lt (vector unsigned long long, vector unsigned long long);
18416 int vec_any_ne (vector long long, vector long long);
18417 int vec_any_ne (vector unsigned long long, vector unsigned long long);
18418
18419 vector bool long long vec_cmpeq (vector bool long long, vector bool long long);
18420
18421 vector long long vec_eqv (vector long long, vector long long);
18422 vector long long vec_eqv (vector bool long long, vector long long);
18423 vector long long vec_eqv (vector long long, vector bool long long);
18424 vector unsigned long long vec_eqv (vector unsigned long long,
18425 vector unsigned long long);
18426 vector unsigned long long vec_eqv (vector bool long long,
18427 vector unsigned long long);
18428 vector unsigned long long vec_eqv (vector unsigned long long,
18429 vector bool long long);
18430 vector int vec_eqv (vector int, vector int);
18431 vector int vec_eqv (vector bool int, vector int);
18432 vector int vec_eqv (vector int, vector bool int);
18433 vector unsigned int vec_eqv (vector unsigned int, vector unsigned int);
18434 vector unsigned int vec_eqv (vector bool unsigned int,
18435 vector unsigned int);
18436 vector unsigned int vec_eqv (vector unsigned int,
18437 vector bool unsigned int);
18438 vector short vec_eqv (vector short, vector short);
18439 vector short vec_eqv (vector bool short, vector short);
18440 vector short vec_eqv (vector short, vector bool short);
18441 vector unsigned short vec_eqv (vector unsigned short, vector unsigned short);
18442 vector unsigned short vec_eqv (vector bool unsigned short,
18443 vector unsigned short);
18444 vector unsigned short vec_eqv (vector unsigned short,
18445 vector bool unsigned short);
18446 vector signed char vec_eqv (vector signed char, vector signed char);
18447 vector signed char vec_eqv (vector bool signed char, vector signed char);
18448 vector signed char vec_eqv (vector signed char, vector bool signed char);
18449 vector unsigned char vec_eqv (vector unsigned char, vector unsigned char);
18450 vector unsigned char vec_eqv (vector bool unsigned char, vector unsigned char);
18451 vector unsigned char vec_eqv (vector unsigned char, vector bool unsigned char);
18452
18453 vector long long vec_max (vector long long, vector long long);
18454 vector unsigned long long vec_max (vector unsigned long long,
18455 vector unsigned long long);
18456
18457 vector signed int vec_mergee (vector signed int, vector signed int);
18458 vector unsigned int vec_mergee (vector unsigned int, vector unsigned int);
18459 vector bool int vec_mergee (vector bool int, vector bool int);
18460
18461 vector signed int vec_mergeo (vector signed int, vector signed int);
18462 vector unsigned int vec_mergeo (vector unsigned int, vector unsigned int);
18463 vector bool int vec_mergeo (vector bool int, vector bool int);
18464
18465 vector long long vec_min (vector long long, vector long long);
18466 vector unsigned long long vec_min (vector unsigned long long,
18467 vector unsigned long long);
18468
18469 vector signed long long vec_nabs (vector signed long long);
18470
18471 vector long long vec_nand (vector long long, vector long long);
18472 vector long long vec_nand (vector bool long long, vector long long);
18473 vector long long vec_nand (vector long long, vector bool long long);
18474 vector unsigned long long vec_nand (vector unsigned long long,
18475 vector unsigned long long);
18476 vector unsigned long long vec_nand (vector bool long long,
18477 vector unsigned long long);
18478 vector unsigned long long vec_nand (vector unsigned long long,
18479 vector bool long long);
18480 vector int vec_nand (vector int, vector int);
18481 vector int vec_nand (vector bool int, vector int);
18482 vector int vec_nand (vector int, vector bool int);
18483 vector unsigned int vec_nand (vector unsigned int, vector unsigned int);
18484 vector unsigned int vec_nand (vector bool unsigned int,
18485 vector unsigned int);
18486 vector unsigned int vec_nand (vector unsigned int,
18487 vector bool unsigned int);
18488 vector short vec_nand (vector short, vector short);
18489 vector short vec_nand (vector bool short, vector short);
18490 vector short vec_nand (vector short, vector bool short);
18491 vector unsigned short vec_nand (vector unsigned short, vector unsigned short);
18492 vector unsigned short vec_nand (vector bool unsigned short,
18493 vector unsigned short);
18494 vector unsigned short vec_nand (vector unsigned short,
18495 vector bool unsigned short);
18496 vector signed char vec_nand (vector signed char, vector signed char);
18497 vector signed char vec_nand (vector bool signed char, vector signed char);
18498 vector signed char vec_nand (vector signed char, vector bool signed char);
18499 vector unsigned char vec_nand (vector unsigned char, vector unsigned char);
18500 vector unsigned char vec_nand (vector bool unsigned char, vector unsigned char);
18501 vector unsigned char vec_nand (vector unsigned char, vector bool unsigned char);
18502
18503 vector long long vec_orc (vector long long, vector long long);
18504 vector long long vec_orc (vector bool long long, vector long long);
18505 vector long long vec_orc (vector long long, vector bool long long);
18506 vector unsigned long long vec_orc (vector unsigned long long,
18507 vector unsigned long long);
18508 vector unsigned long long vec_orc (vector bool long long,
18509 vector unsigned long long);
18510 vector unsigned long long vec_orc (vector unsigned long long,
18511 vector bool long long);
18512 vector int vec_orc (vector int, vector int);
18513 vector int vec_orc (vector bool int, vector int);
18514 vector int vec_orc (vector int, vector bool int);
18515 vector unsigned int vec_orc (vector unsigned int, vector unsigned int);
18516 vector unsigned int vec_orc (vector bool unsigned int,
18517 vector unsigned int);
18518 vector unsigned int vec_orc (vector unsigned int,
18519 vector bool unsigned int);
18520 vector short vec_orc (vector short, vector short);
18521 vector short vec_orc (vector bool short, vector short);
18522 vector short vec_orc (vector short, vector bool short);
18523 vector unsigned short vec_orc (vector unsigned short, vector unsigned short);
18524 vector unsigned short vec_orc (vector bool unsigned short,
18525 vector unsigned short);
18526 vector unsigned short vec_orc (vector unsigned short,
18527 vector bool unsigned short);
18528 vector signed char vec_orc (vector signed char, vector signed char);
18529 vector signed char vec_orc (vector bool signed char, vector signed char);
18530 vector signed char vec_orc (vector signed char, vector bool signed char);
18531 vector unsigned char vec_orc (vector unsigned char, vector unsigned char);
18532 vector unsigned char vec_orc (vector bool unsigned char, vector unsigned char);
18533 vector unsigned char vec_orc (vector unsigned char, vector bool unsigned char);
18534
18535 vector int vec_pack (vector long long, vector long long);
18536 vector unsigned int vec_pack (vector unsigned long long,
18537 vector unsigned long long);
18538 vector bool int vec_pack (vector bool long long, vector bool long long);
18539 vector float vec_pack (vector double, vector double);
18540
18541 vector int vec_packs (vector long long, vector long long);
18542 vector unsigned int vec_packs (vector unsigned long long,
18543 vector unsigned long long);
18544
18545 vector unsigned int vec_packsu (vector long long, vector long long);
18546 vector unsigned int vec_packsu (vector unsigned long long,
18547 vector unsigned long long);
18548
18549 vector unsigned char vec_popcnt (vector signed char);
18550 vector unsigned char vec_popcnt (vector unsigned char);
18551 vector unsigned short vec_popcnt (vector signed short);
18552 vector unsigned short vec_popcnt (vector unsigned short);
18553 vector unsigned int vec_popcnt (vector signed int);
18554 vector unsigned int vec_popcnt (vector unsigned int);
18555 vector unsigned long long vec_popcnt (vector signed long long);
18556 vector unsigned long long vec_popcnt (vector unsigned long long);
18557
18558 vector long long vec_rl (vector long long,
18559 vector unsigned long long);
18560 vector long long vec_rl (vector unsigned long long,
18561 vector unsigned long long);
18562
18563 vector long long vec_sl (vector long long, vector unsigned long long);
18564 vector long long vec_sl (vector unsigned long long,
18565 vector unsigned long long);
18566
18567 vector long long vec_sr (vector long long, vector unsigned long long);
18568 vector unsigned long long char vec_sr (vector unsigned long long,
18569 vector unsigned long long);
18570
18571 vector long long vec_sra (vector long long, vector unsigned long long);
18572 vector unsigned long long vec_sra (vector unsigned long long,
18573 vector unsigned long long);
18574
18575 vector long long vec_sub (vector long long, vector long long);
18576 vector unsigned long long vec_sub (vector unsigned long long,
18577 vector unsigned long long);
18578
18579 vector long long vec_unpackh (vector int);
18580 vector unsigned long long vec_unpackh (vector unsigned int);
18581
18582 vector long long vec_unpackl (vector int);
18583 vector unsigned long long vec_unpackl (vector unsigned int);
18584
18585 vector long long vec_vaddudm (vector long long, vector long long);
18586 vector long long vec_vaddudm (vector bool long long, vector long long);
18587 vector long long vec_vaddudm (vector long long, vector bool long long);
18588 vector unsigned long long vec_vaddudm (vector unsigned long long,
18589 vector unsigned long long);
18590 vector unsigned long long vec_vaddudm (vector bool unsigned long long,
18591 vector unsigned long long);
18592 vector unsigned long long vec_vaddudm (vector unsigned long long,
18593 vector bool unsigned long long);
18594
18595 vector long long vec_vbpermq (vector signed char, vector signed char);
18596 vector long long vec_vbpermq (vector unsigned char, vector unsigned char);
18597
18598 vector unsigned char vec_bperm (vector unsigned char, vector unsigned char);
18599 vector unsigned char vec_bperm (vector unsigned long long,
18600 vector unsigned char);
18601 vector unsigned long long vec_bperm (vector unsigned __int128,
18602 vector unsigned char);
18603
18604 vector long long vec_cntlz (vector long long);
18605 vector unsigned long long vec_cntlz (vector unsigned long long);
18606 vector int vec_cntlz (vector int);
18607 vector unsigned int vec_cntlz (vector int);
18608 vector short vec_cntlz (vector short);
18609 vector unsigned short vec_cntlz (vector unsigned short);
18610 vector signed char vec_cntlz (vector signed char);
18611 vector unsigned char vec_cntlz (vector unsigned char);
18612
18613 vector long long vec_vclz (vector long long);
18614 vector unsigned long long vec_vclz (vector unsigned long long);
18615 vector int vec_vclz (vector int);
18616 vector unsigned int vec_vclz (vector int);
18617 vector short vec_vclz (vector short);
18618 vector unsigned short vec_vclz (vector unsigned short);
18619 vector signed char vec_vclz (vector signed char);
18620 vector unsigned char vec_vclz (vector unsigned char);
18621
18622 vector signed char vec_vclzb (vector signed char);
18623 vector unsigned char vec_vclzb (vector unsigned char);
18624
18625 vector long long vec_vclzd (vector long long);
18626 vector unsigned long long vec_vclzd (vector unsigned long long);
18627
18628 vector short vec_vclzh (vector short);
18629 vector unsigned short vec_vclzh (vector unsigned short);
18630
18631 vector int vec_vclzw (vector int);
18632 vector unsigned int vec_vclzw (vector int);
18633
18634 vector signed char vec_vgbbd (vector signed char);
18635 vector unsigned char vec_vgbbd (vector unsigned char);
18636
18637 vector long long vec_vmaxsd (vector long long, vector long long);
18638
18639 vector unsigned long long vec_vmaxud (vector unsigned long long,
18640 unsigned vector long long);
18641
18642 vector long long vec_vminsd (vector long long, vector long long);
18643
18644 vector unsigned long long vec_vminud (vector long long,
18645 vector long long);
18646
18647 vector int vec_vpksdss (vector long long, vector long long);
18648 vector unsigned int vec_vpksdss (vector long long, vector long long);
18649
18650 vector unsigned int vec_vpkudus (vector unsigned long long,
18651 vector unsigned long long);
18652
18653 vector int vec_vpkudum (vector long long, vector long long);
18654 vector unsigned int vec_vpkudum (vector unsigned long long,
18655 vector unsigned long long);
18656 vector bool int vec_vpkudum (vector bool long long, vector bool long long);
18657
18658 vector long long vec_vpopcnt (vector long long);
18659 vector unsigned long long vec_vpopcnt (vector unsigned long long);
18660 vector int vec_vpopcnt (vector int);
18661 vector unsigned int vec_vpopcnt (vector int);
18662 vector short vec_vpopcnt (vector short);
18663 vector unsigned short vec_vpopcnt (vector unsigned short);
18664 vector signed char vec_vpopcnt (vector signed char);
18665 vector unsigned char vec_vpopcnt (vector unsigned char);
18666
18667 vector signed char vec_vpopcntb (vector signed char);
18668 vector unsigned char vec_vpopcntb (vector unsigned char);
18669
18670 vector long long vec_vpopcntd (vector long long);
18671 vector unsigned long long vec_vpopcntd (vector unsigned long long);
18672
18673 vector short vec_vpopcnth (vector short);
18674 vector unsigned short vec_vpopcnth (vector unsigned short);
18675
18676 vector int vec_vpopcntw (vector int);
18677 vector unsigned int vec_vpopcntw (vector int);
18678
18679 vector long long vec_vrld (vector long long, vector unsigned long long);
18680 vector unsigned long long vec_vrld (vector unsigned long long,
18681 vector unsigned long long);
18682
18683 vector long long vec_vsld (vector long long, vector unsigned long long);
18684 vector long long vec_vsld (vector unsigned long long,
18685 vector unsigned long long);
18686
18687 vector long long vec_vsrad (vector long long, vector unsigned long long);
18688 vector unsigned long long vec_vsrad (vector unsigned long long,
18689 vector unsigned long long);
18690
18691 vector long long vec_vsrd (vector long long, vector unsigned long long);
18692 vector unsigned long long char vec_vsrd (vector unsigned long long,
18693 vector unsigned long long);
18694
18695 vector long long vec_vsubudm (vector long long, vector long long);
18696 vector long long vec_vsubudm (vector bool long long, vector long long);
18697 vector long long vec_vsubudm (vector long long, vector bool long long);
18698 vector unsigned long long vec_vsubudm (vector unsigned long long,
18699 vector unsigned long long);
18700 vector unsigned long long vec_vsubudm (vector bool long long,
18701 vector unsigned long long);
18702 vector unsigned long long vec_vsubudm (vector unsigned long long,
18703 vector bool long long);
18704
18705 vector long long vec_vupkhsw (vector int);
18706 vector unsigned long long vec_vupkhsw (vector unsigned int);
18707
18708 vector long long vec_vupklsw (vector int);
18709 vector unsigned long long vec_vupklsw (vector int);
18710 @end smallexample
18711
18712 If the ISA 2.07 additions to the vector/scalar (power8-vector)
18713 instruction set are available, the following additional functions are
18714 available for 64-bit targets. New vector types
18715 (@var{vector __int128_t} and @var{vector __uint128_t}) are available
18716 to hold the @var{__int128_t} and @var{__uint128_t} types to use these
18717 builtins.
18718
18719 The normal vector extract, and set operations work on
18720 @var{vector __int128_t} and @var{vector __uint128_t} types,
18721 but the index value must be 0.
18722
18723 @smallexample
18724 vector __int128_t vec_vaddcuq (vector __int128_t, vector __int128_t);
18725 vector __uint128_t vec_vaddcuq (vector __uint128_t, vector __uint128_t);
18726
18727 vector __int128_t vec_vadduqm (vector __int128_t, vector __int128_t);
18728 vector __uint128_t vec_vadduqm (vector __uint128_t, vector __uint128_t);
18729
18730 vector __int128_t vec_vaddecuq (vector __int128_t, vector __int128_t,
18731 vector __int128_t);
18732 vector __uint128_t vec_vaddecuq (vector __uint128_t, vector __uint128_t,
18733 vector __uint128_t);
18734
18735 vector __int128_t vec_vaddeuqm (vector __int128_t, vector __int128_t,
18736 vector __int128_t);
18737 vector __uint128_t vec_vaddeuqm (vector __uint128_t, vector __uint128_t,
18738 vector __uint128_t);
18739
18740 vector __int128_t vec_vsubecuq (vector __int128_t, vector __int128_t,
18741 vector __int128_t);
18742 vector __uint128_t vec_vsubecuq (vector __uint128_t, vector __uint128_t,
18743 vector __uint128_t);
18744
18745 vector __int128_t vec_vsubeuqm (vector __int128_t, vector __int128_t,
18746 vector __int128_t);
18747 vector __uint128_t vec_vsubeuqm (vector __uint128_t, vector __uint128_t,
18748 vector __uint128_t);
18749
18750 vector __int128_t vec_vsubcuq (vector __int128_t, vector __int128_t);
18751 vector __uint128_t vec_vsubcuq (vector __uint128_t, vector __uint128_t);
18752
18753 __int128_t vec_vsubuqm (__int128_t, __int128_t);
18754 __uint128_t vec_vsubuqm (__uint128_t, __uint128_t);
18755
18756 vector __int128_t __builtin_bcdadd (vector __int128_t, vector__int128_t);
18757 int __builtin_bcdadd_lt (vector __int128_t, vector__int128_t);
18758 int __builtin_bcdadd_eq (vector __int128_t, vector__int128_t);
18759 int __builtin_bcdadd_gt (vector __int128_t, vector__int128_t);
18760 int __builtin_bcdadd_ov (vector __int128_t, vector__int128_t);
18761 vector __int128_t bcdsub (vector __int128_t, vector__int128_t);
18762 int __builtin_bcdsub_lt (vector __int128_t, vector__int128_t);
18763 int __builtin_bcdsub_eq (vector __int128_t, vector__int128_t);
18764 int __builtin_bcdsub_gt (vector __int128_t, vector__int128_t);
18765 int __builtin_bcdsub_ov (vector __int128_t, vector__int128_t);
18766 @end smallexample
18767
18768 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
18769 are available:
18770
18771 @smallexample
18772 vector unsigned long long vec_bperm (vector unsigned long long,
18773 vector unsigned char);
18774
18775 vector bool char vec_cmpne (vector bool char, vector bool char);
18776 vector bool short vec_cmpne (vector bool short, vector bool short);
18777 vector bool int vec_cmpne (vector bool int, vector bool int);
18778 vector bool long long vec_cmpne (vector bool long long, vector bool long long);
18779
18780 vector float vec_extract_fp32_from_shorth (vector unsigned short);
18781 vector float vec_extract_fp32_from_shortl (vector unsigned short);
18782
18783 vector long long vec_vctz (vector long long);
18784 vector unsigned long long vec_vctz (vector unsigned long long);
18785 vector int vec_vctz (vector int);
18786 vector unsigned int vec_vctz (vector int);
18787 vector short vec_vctz (vector short);
18788 vector unsigned short vec_vctz (vector unsigned short);
18789 vector signed char vec_vctz (vector signed char);
18790 vector unsigned char vec_vctz (vector unsigned char);
18791
18792 vector signed char vec_vctzb (vector signed char);
18793 vector unsigned char vec_vctzb (vector unsigned char);
18794
18795 vector long long vec_vctzd (vector long long);
18796 vector unsigned long long vec_vctzd (vector unsigned long long);
18797
18798 vector short vec_vctzh (vector short);
18799 vector unsigned short vec_vctzh (vector unsigned short);
18800
18801 vector int vec_vctzw (vector int);
18802 vector unsigned int vec_vctzw (vector int);
18803
18804 long long vec_vextract4b (const vector signed char, const int);
18805 long long vec_vextract4b (const vector unsigned char, const int);
18806
18807 vector signed char vec_insert4b (vector int, vector signed char, const int);
18808 vector unsigned char vec_insert4b (vector unsigned int, vector unsigned char,
18809 const int);
18810 vector signed char vec_insert4b (long long, vector signed char, const int);
18811 vector unsigned char vec_insert4b (long long, vector unsigned char, const int);
18812
18813 vector unsigned int vec_parity_lsbb (vector signed int);
18814 vector unsigned int vec_parity_lsbb (vector unsigned int);
18815 vector unsigned __int128 vec_parity_lsbb (vector signed __int128);
18816 vector unsigned __int128 vec_parity_lsbb (vector unsigned __int128);
18817 vector unsigned long long vec_parity_lsbb (vector signed long long);
18818 vector unsigned long long vec_parity_lsbb (vector unsigned long long);
18819
18820 vector int vec_vprtyb (vector int);
18821 vector unsigned int vec_vprtyb (vector unsigned int);
18822 vector long long vec_vprtyb (vector long long);
18823 vector unsigned long long vec_vprtyb (vector unsigned long long);
18824
18825 vector int vec_vprtybw (vector int);
18826 vector unsigned int vec_vprtybw (vector unsigned int);
18827
18828 vector long long vec_vprtybd (vector long long);
18829 vector unsigned long long vec_vprtybd (vector unsigned long long);
18830 @end smallexample
18831
18832 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
18833 are available:
18834
18835 @smallexample
18836 vector long vec_vprtyb (vector long);
18837 vector unsigned long vec_vprtyb (vector unsigned long);
18838 vector __int128_t vec_vprtyb (vector __int128_t);
18839 vector __uint128_t vec_vprtyb (vector __uint128_t);
18840
18841 vector long vec_vprtybd (vector long);
18842 vector unsigned long vec_vprtybd (vector unsigned long);
18843
18844 vector __int128_t vec_vprtybq (vector __int128_t);
18845 vector __uint128_t vec_vprtybd (vector __uint128_t);
18846 @end smallexample
18847
18848 The following built-in vector functions are available for the PowerPC family
18849 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18850 @smallexample
18851 __vector unsigned char
18852 vec_slv (__vector unsigned char src, __vector unsigned char shift_distance);
18853 __vector unsigned char
18854 vec_srv (__vector unsigned char src, __vector unsigned char shift_distance);
18855 @end smallexample
18856
18857 The @code{vec_slv} and @code{vec_srv} functions operate on
18858 all of the bytes of their @code{src} and @code{shift_distance}
18859 arguments in parallel. The behavior of the @code{vec_slv} is as if
18860 there existed a temporary array of 17 unsigned characters
18861 @code{slv_array} within which elements 0 through 15 are the same as
18862 the entries in the @code{src} array and element 16 equals 0. The
18863 result returned from the @code{vec_slv} function is a
18864 @code{__vector} of 16 unsigned characters within which element
18865 @code{i} is computed using the C expression
18866 @code{0xff & (*((unsigned short *)(slv_array + i)) << (0x07 &
18867 shift_distance[i]))},
18868 with this resulting value coerced to the @code{unsigned char} type.
18869 The behavior of the @code{vec_srv} is as if
18870 there existed a temporary array of 17 unsigned characters
18871 @code{srv_array} within which element 0 equals zero and
18872 elements 1 through 16 equal the elements 0 through 15 of
18873 the @code{src} array. The
18874 result returned from the @code{vec_srv} function is a
18875 @code{__vector} of 16 unsigned characters within which element
18876 @code{i} is computed using the C expression
18877 @code{0xff & (*((unsigned short *)(srv_array + i)) >>
18878 (0x07 & shift_distance[i]))},
18879 with this resulting value coerced to the @code{unsigned char} type.
18880
18881 The following built-in functions are available for the PowerPC family
18882 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18883 @smallexample
18884 __vector unsigned char
18885 vec_absd (__vector unsigned char arg1, __vector unsigned char arg2);
18886 __vector unsigned short
18887 vec_absd (__vector unsigned short arg1, __vector unsigned short arg2);
18888 __vector unsigned int
18889 vec_absd (__vector unsigned int arg1, __vector unsigned int arg2);
18890
18891 __vector unsigned char
18892 vec_absdb (__vector unsigned char arg1, __vector unsigned char arg2);
18893 __vector unsigned short
18894 vec_absdh (__vector unsigned short arg1, __vector unsigned short arg2);
18895 __vector unsigned int
18896 vec_absdw (__vector unsigned int arg1, __vector unsigned int arg2);
18897 @end smallexample
18898
18899 The @code{vec_absd}, @code{vec_absdb}, @code{vec_absdh}, and
18900 @code{vec_absdw} built-in functions each computes the absolute
18901 differences of the pairs of vector elements supplied in its two vector
18902 arguments, placing the absolute differences into the corresponding
18903 elements of the vector result.
18904
18905 The following built-in functions are available for the PowerPC family
18906 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18907 @smallexample
18908 __vector unsigned int
18909 vec_extract_exp (__vector float source);
18910 __vector unsigned long long int
18911 vec_extract_exp (__vector double source);
18912
18913 __vector unsigned int
18914 vec_extract_sig (__vector float source);
18915 __vector unsigned long long int
18916 vec_extract_sig (__vector double source);
18917
18918 __vector float
18919 vec_insert_exp (__vector unsigned int significands,
18920 __vector unsigned int exponents);
18921 __vector float
18922 vec_insert_exp (__vector unsigned float significands,
18923 __vector unsigned int exponents);
18924 __vector double
18925 vec_insert_exp (__vector unsigned long long int significands,
18926 __vector unsigned long long int exponents);
18927 __vector double
18928 vec_insert_exp (__vector unsigned double significands,
18929 __vector unsigned long long int exponents);
18930
18931 __vector bool int vec_test_data_class (__vector float source,
18932 const int condition);
18933 __vector bool long long int vec_test_data_class (__vector double source,
18934 const int condition);
18935 @end smallexample
18936
18937 The @code{vec_extract_sig} and @code{vec_extract_exp} built-in
18938 functions return vectors representing the significands and biased
18939 exponent values of their @code{source} arguments respectively.
18940 Within the result vector returned by @code{vec_extract_sig}, the
18941 @code{0x800000} bit of each vector element returned when the
18942 function's @code{source} argument is of type @code{float} is set to 1
18943 if the corresponding floating point value is in normalized form.
18944 Otherwise, this bit is set to 0. When the @code{source} argument is
18945 of type @code{double}, the @code{0x10000000000000} bit within each of
18946 the result vector's elements is set according to the same rules.
18947 Note that the sign of the significand is not represented in the result
18948 returned from the @code{vec_extract_sig} function. To extract the
18949 sign bits, use the
18950 @code{vec_cpsgn} function, which returns a new vector within which all
18951 of the sign bits of its second argument vector are overwritten with the
18952 sign bits copied from the coresponding elements of its first argument
18953 vector, and all other (non-sign) bits of the second argument vector
18954 are copied unchanged into the result vector.
18955
18956 The @code{vec_insert_exp} built-in functions return a vector of
18957 single- or double-precision floating
18958 point values constructed by assembling the values of their
18959 @code{significands} and @code{exponents} arguments into the
18960 corresponding elements of the returned vector.
18961 The sign of each
18962 element of the result is copied from the most significant bit of the
18963 corresponding entry within the @code{significands} argument.
18964 Note that the relevant
18965 bits of the @code{significands} argument are the same, for both integer
18966 and floating point types.
18967 The
18968 significand and exponent components of each element of the result are
18969 composed of the least significant bits of the corresponding
18970 @code{significands} element and the least significant bits of the
18971 corresponding @code{exponents} element.
18972
18973 The @code{vec_test_data_class} built-in function returns a vector
18974 representing the results of testing the @code{source} vector for the
18975 condition selected by the @code{condition} argument. The
18976 @code{condition} argument must be a compile-time constant integer with
18977 value not exceeding 127. The
18978 @code{condition} argument is encoded as a bitmask with each bit
18979 enabling the testing of a different condition, as characterized by the
18980 following:
18981 @smallexample
18982 0x40 Test for NaN
18983 0x20 Test for +Infinity
18984 0x10 Test for -Infinity
18985 0x08 Test for +Zero
18986 0x04 Test for -Zero
18987 0x02 Test for +Denormal
18988 0x01 Test for -Denormal
18989 @end smallexample
18990
18991 If any of the enabled test conditions is true, the corresponding entry
18992 in the result vector is -1. Otherwise (all of the enabled test
18993 conditions are false), the corresponding entry of the result vector is 0.
18994
18995 The following built-in functions are available for the PowerPC family
18996 of processors, starting with ISA 3.0 or later (@option{-mcpu=power9}):
18997 @smallexample
18998 vector unsigned int vec_rlmi (vector unsigned int, vector unsigned int,
18999 vector unsigned int);
19000 vector unsigned long long vec_rlmi (vector unsigned long long,
19001 vector unsigned long long,
19002 vector unsigned long long);
19003 vector unsigned int vec_rlnm (vector unsigned int, vector unsigned int,
19004 vector unsigned int);
19005 vector unsigned long long vec_rlnm (vector unsigned long long,
19006 vector unsigned long long,
19007 vector unsigned long long);
19008 vector unsigned int vec_vrlnm (vector unsigned int, vector unsigned int);
19009 vector unsigned long long vec_vrlnm (vector unsigned long long,
19010 vector unsigned long long);
19011 @end smallexample
19012
19013 The result of @code{vec_rlmi} is obtained by rotating each element of
19014 the first argument vector left and inserting it under mask into the
19015 second argument vector. The third argument vector contains the mask
19016 beginning in bits 11:15, the mask end in bits 19:23, and the shift
19017 count in bits 27:31, of each element.
19018
19019 The result of @code{vec_rlnm} is obtained by rotating each element of
19020 the first argument vector left and ANDing it with a mask specified by
19021 the second and third argument vectors. The second argument vector
19022 contains the shift count for each element in the low-order byte. The
19023 third argument vector contains the mask end for each element in the
19024 low-order byte, with the mask begin in the next higher byte.
19025
19026 The result of @code{vec_vrlnm} is obtained by rotating each element
19027 of the first argument vector left and ANDing it with a mask. The
19028 second argument vector contains the mask beginning in bits 11:15,
19029 the mask end in bits 19:23, and the shift count in bits 27:31,
19030 of each element.
19031
19032 If the ISA 3.0 instruction set additions (@option{-mcpu=power9})
19033 are available:
19034 @smallexample
19035 vector signed bool char vec_revb (vector signed char);
19036 vector signed char vec_revb (vector signed char);
19037 vector unsigned char vec_revb (vector unsigned char);
19038 vector bool short vec_revb (vector bool short);
19039 vector short vec_revb (vector short);
19040 vector unsigned short vec_revb (vector unsigned short);
19041 vector bool int vec_revb (vector bool int);
19042 vector int vec_revb (vector int);
19043 vector unsigned int vec_revb (vector unsigned int);
19044 vector float vec_revb (vector float);
19045 vector bool long long vec_revb (vector bool long long);
19046 vector long long vec_revb (vector long long);
19047 vector unsigned long long vec_revb (vector unsigned long long);
19048 vector double vec_revb (vector double);
19049 @end smallexample
19050
19051 On 64-bit targets, if the ISA 3.0 additions (@option{-mcpu=power9})
19052 are available:
19053 @smallexample
19054 vector long vec_revb (vector long);
19055 vector unsigned long vec_revb (vector unsigned long);
19056 vector __int128_t vec_revb (vector __int128_t);
19057 vector __uint128_t vec_revb (vector __uint128_t);
19058 @end smallexample
19059
19060 The @code{vec_revb} built-in function reverses the bytes on an element
19061 by element basis. A vector of @code{vector unsigned char} or
19062 @code{vector signed char} reverses the bytes in the whole word.
19063
19064 If the cryptographic instructions are enabled (@option{-mcrypto} or
19065 @option{-mcpu=power8}), the following builtins are enabled.
19066
19067 @smallexample
19068 vector unsigned long long __builtin_crypto_vsbox (vector unsigned long long);
19069
19070 vector unsigned long long __builtin_crypto_vcipher (vector unsigned long long,
19071 vector unsigned long long);
19072
19073 vector unsigned long long __builtin_crypto_vcipherlast
19074 (vector unsigned long long,
19075 vector unsigned long long);
19076
19077 vector unsigned long long __builtin_crypto_vncipher (vector unsigned long long,
19078 vector unsigned long long);
19079
19080 vector unsigned long long __builtin_crypto_vncipherlast
19081 (vector unsigned long long,
19082 vector unsigned long long);
19083
19084 vector unsigned char __builtin_crypto_vpermxor (vector unsigned char,
19085 vector unsigned char,
19086 vector unsigned char);
19087
19088 vector unsigned short __builtin_crypto_vpermxor (vector unsigned short,
19089 vector unsigned short,
19090 vector unsigned short);
19091
19092 vector unsigned int __builtin_crypto_vpermxor (vector unsigned int,
19093 vector unsigned int,
19094 vector unsigned int);
19095
19096 vector unsigned long long __builtin_crypto_vpermxor (vector unsigned long long,
19097 vector unsigned long long,
19098 vector unsigned long long);
19099
19100 vector unsigned char __builtin_crypto_vpmsumb (vector unsigned char,
19101 vector unsigned char);
19102
19103 vector unsigned short __builtin_crypto_vpmsumb (vector unsigned short,
19104 vector unsigned short);
19105
19106 vector unsigned int __builtin_crypto_vpmsumb (vector unsigned int,
19107 vector unsigned int);
19108
19109 vector unsigned long long __builtin_crypto_vpmsumb (vector unsigned long long,
19110 vector unsigned long long);
19111
19112 vector unsigned long long __builtin_crypto_vshasigmad
19113 (vector unsigned long long, int, int);
19114
19115 vector unsigned int __builtin_crypto_vshasigmaw (vector unsigned int,
19116 int, int);
19117 @end smallexample
19118
19119 The second argument to @var{__builtin_crypto_vshasigmad} and
19120 @var{__builtin_crypto_vshasigmaw} must be a constant
19121 integer that is 0 or 1. The third argument to these built-in functions
19122 must be a constant integer in the range of 0 to 15.
19123
19124 If the ISA 3.0 instruction set additions
19125 are enabled (@option{-mcpu=power9}), the following additional
19126 functions are available for both 32-bit and 64-bit targets.
19127
19128 vector short vec_xl (int, vector short *);
19129 vector short vec_xl (int, short *);
19130 vector unsigned short vec_xl (int, vector unsigned short *);
19131 vector unsigned short vec_xl (int, unsigned short *);
19132 vector char vec_xl (int, vector char *);
19133 vector char vec_xl (int, char *);
19134 vector unsigned char vec_xl (int, vector unsigned char *);
19135 vector unsigned char vec_xl (int, unsigned char *);
19136
19137 void vec_xst (vector short, int, vector short *);
19138 void vec_xst (vector short, int, short *);
19139 void vec_xst (vector unsigned short, int, vector unsigned short *);
19140 void vec_xst (vector unsigned short, int, unsigned short *);
19141 void vec_xst (vector char, int, vector char *);
19142 void vec_xst (vector char, int, char *);
19143 void vec_xst (vector unsigned char, int, vector unsigned char *);
19144 void vec_xst (vector unsigned char, int, unsigned char *);
19145
19146 @node PowerPC Hardware Transactional Memory Built-in Functions
19147 @subsection PowerPC Hardware Transactional Memory Built-in Functions
19148 GCC provides two interfaces for accessing the Hardware Transactional
19149 Memory (HTM) instructions available on some of the PowerPC family
19150 of processors (eg, POWER8). The two interfaces come in a low level
19151 interface, consisting of built-in functions specific to PowerPC and a
19152 higher level interface consisting of inline functions that are common
19153 between PowerPC and S/390.
19154
19155 @subsubsection PowerPC HTM Low Level Built-in Functions
19156
19157 The following low level built-in functions are available with
19158 @option{-mhtm} or @option{-mcpu=CPU} where CPU is `power8' or later.
19159 They all generate the machine instruction that is part of the name.
19160
19161 The HTM builtins (with the exception of @code{__builtin_tbegin}) return
19162 the full 4-bit condition register value set by their associated hardware
19163 instruction. The header file @code{htmintrin.h} defines some macros that can
19164 be used to decipher the return value. The @code{__builtin_tbegin} builtin
19165 returns a simple true or false value depending on whether a transaction was
19166 successfully started or not. The arguments of the builtins match exactly the
19167 type and order of the associated hardware instruction's operands, except for
19168 the @code{__builtin_tcheck} builtin, which does not take any input arguments.
19169 Refer to the ISA manual for a description of each instruction's operands.
19170
19171 @smallexample
19172 unsigned int __builtin_tbegin (unsigned int)
19173 unsigned int __builtin_tend (unsigned int)
19174
19175 unsigned int __builtin_tabort (unsigned int)
19176 unsigned int __builtin_tabortdc (unsigned int, unsigned int, unsigned int)
19177 unsigned int __builtin_tabortdci (unsigned int, unsigned int, int)
19178 unsigned int __builtin_tabortwc (unsigned int, unsigned int, unsigned int)
19179 unsigned int __builtin_tabortwci (unsigned int, unsigned int, int)
19180
19181 unsigned int __builtin_tcheck (void)
19182 unsigned int __builtin_treclaim (unsigned int)
19183 unsigned int __builtin_trechkpt (void)
19184 unsigned int __builtin_tsr (unsigned int)
19185 @end smallexample
19186
19187 In addition to the above HTM built-ins, we have added built-ins for
19188 some common extended mnemonics of the HTM instructions:
19189
19190 @smallexample
19191 unsigned int __builtin_tendall (void)
19192 unsigned int __builtin_tresume (void)
19193 unsigned int __builtin_tsuspend (void)
19194 @end smallexample
19195
19196 Note that the semantics of the above HTM builtins are required to mimic
19197 the locking semantics used for critical sections. Builtins that are used
19198 to create a new transaction or restart a suspended transaction must have
19199 lock acquisition like semantics while those builtins that end or suspend a
19200 transaction must have lock release like semantics. Specifically, this must
19201 mimic lock semantics as specified by C++11, for example: Lock acquisition is
19202 as-if an execution of __atomic_exchange_n(&globallock,1,__ATOMIC_ACQUIRE)
19203 that returns 0, and lock release is as-if an execution of
19204 __atomic_store(&globallock,0,__ATOMIC_RELEASE), with globallock being an
19205 implicit implementation-defined lock used for all transactions. The HTM
19206 instructions associated with with the builtins inherently provide the
19207 correct acquisition and release hardware barriers required. However,
19208 the compiler must also be prohibited from moving loads and stores across
19209 the builtins in a way that would violate their semantics. This has been
19210 accomplished by adding memory barriers to the associated HTM instructions
19211 (which is a conservative approach to provide acquire and release semantics).
19212 Earlier versions of the compiler did not treat the HTM instructions as
19213 memory barriers. A @code{__TM_FENCE__} macro has been added, which can
19214 be used to determine whether the current compiler treats HTM instructions
19215 as memory barriers or not. This allows the user to explicitly add memory
19216 barriers to their code when using an older version of the compiler.
19217
19218 The following set of built-in functions are available to gain access
19219 to the HTM specific special purpose registers.
19220
19221 @smallexample
19222 unsigned long __builtin_get_texasr (void)
19223 unsigned long __builtin_get_texasru (void)
19224 unsigned long __builtin_get_tfhar (void)
19225 unsigned long __builtin_get_tfiar (void)
19226
19227 void __builtin_set_texasr (unsigned long);
19228 void __builtin_set_texasru (unsigned long);
19229 void __builtin_set_tfhar (unsigned long);
19230 void __builtin_set_tfiar (unsigned long);
19231 @end smallexample
19232
19233 Example usage of these low level built-in functions may look like:
19234
19235 @smallexample
19236 #include <htmintrin.h>
19237
19238 int num_retries = 10;
19239
19240 while (1)
19241 @{
19242 if (__builtin_tbegin (0))
19243 @{
19244 /* Transaction State Initiated. */
19245 if (is_locked (lock))
19246 __builtin_tabort (0);
19247 ... transaction code...
19248 __builtin_tend (0);
19249 break;
19250 @}
19251 else
19252 @{
19253 /* Transaction State Failed. Use locks if the transaction
19254 failure is "persistent" or we've tried too many times. */
19255 if (num_retries-- <= 0
19256 || _TEXASRU_FAILURE_PERSISTENT (__builtin_get_texasru ()))
19257 @{
19258 acquire_lock (lock);
19259 ... non transactional fallback path...
19260 release_lock (lock);
19261 break;
19262 @}
19263 @}
19264 @}
19265 @end smallexample
19266
19267 One final built-in function has been added that returns the value of
19268 the 2-bit Transaction State field of the Machine Status Register (MSR)
19269 as stored in @code{CR0}.
19270
19271 @smallexample
19272 unsigned long __builtin_ttest (void)
19273 @end smallexample
19274
19275 This built-in can be used to determine the current transaction state
19276 using the following code example:
19277
19278 @smallexample
19279 #include <htmintrin.h>
19280
19281 unsigned char tx_state = _HTM_STATE (__builtin_ttest ());
19282
19283 if (tx_state == _HTM_TRANSACTIONAL)
19284 @{
19285 /* Code to use in transactional state. */
19286 @}
19287 else if (tx_state == _HTM_NONTRANSACTIONAL)
19288 @{
19289 /* Code to use in non-transactional state. */
19290 @}
19291 else if (tx_state == _HTM_SUSPENDED)
19292 @{
19293 /* Code to use in transaction suspended state. */
19294 @}
19295 @end smallexample
19296
19297 @subsubsection PowerPC HTM High Level Inline Functions
19298
19299 The following high level HTM interface is made available by including
19300 @code{<htmxlintrin.h>} and using @option{-mhtm} or @option{-mcpu=CPU}
19301 where CPU is `power8' or later. This interface is common between PowerPC
19302 and S/390, allowing users to write one HTM source implementation that
19303 can be compiled and executed on either system.
19304
19305 @smallexample
19306 long __TM_simple_begin (void)
19307 long __TM_begin (void* const TM_buff)
19308 long __TM_end (void)
19309 void __TM_abort (void)
19310 void __TM_named_abort (unsigned char const code)
19311 void __TM_resume (void)
19312 void __TM_suspend (void)
19313
19314 long __TM_is_user_abort (void* const TM_buff)
19315 long __TM_is_named_user_abort (void* const TM_buff, unsigned char *code)
19316 long __TM_is_illegal (void* const TM_buff)
19317 long __TM_is_footprint_exceeded (void* const TM_buff)
19318 long __TM_nesting_depth (void* const TM_buff)
19319 long __TM_is_nested_too_deep(void* const TM_buff)
19320 long __TM_is_conflict(void* const TM_buff)
19321 long __TM_is_failure_persistent(void* const TM_buff)
19322 long __TM_failure_address(void* const TM_buff)
19323 long long __TM_failure_code(void* const TM_buff)
19324 @end smallexample
19325
19326 Using these common set of HTM inline functions, we can create
19327 a more portable version of the HTM example in the previous
19328 section that will work on either PowerPC or S/390:
19329
19330 @smallexample
19331 #include <htmxlintrin.h>
19332
19333 int num_retries = 10;
19334 TM_buff_type TM_buff;
19335
19336 while (1)
19337 @{
19338 if (__TM_begin (TM_buff) == _HTM_TBEGIN_STARTED)
19339 @{
19340 /* Transaction State Initiated. */
19341 if (is_locked (lock))
19342 __TM_abort ();
19343 ... transaction code...
19344 __TM_end ();
19345 break;
19346 @}
19347 else
19348 @{
19349 /* Transaction State Failed. Use locks if the transaction
19350 failure is "persistent" or we've tried too many times. */
19351 if (num_retries-- <= 0
19352 || __TM_is_failure_persistent (TM_buff))
19353 @{
19354 acquire_lock (lock);
19355 ... non transactional fallback path...
19356 release_lock (lock);
19357 break;
19358 @}
19359 @}
19360 @}
19361 @end smallexample
19362
19363 @node PowerPC Atomic Memory Operation Functions
19364 @subsection PowerPC Atomic Memory Operation Functions
19365 ISA 3.0 of the PowerPC added new atomic memory operation (amo)
19366 instructions. GCC provides support for these instructions in 64-bit
19367 environments. All of the functions are declared in the include file
19368 @code{amo.h}.
19369
19370 The functions supported are:
19371
19372 @smallexample
19373 #include <amo.h>
19374
19375 uint32_t amo_lwat_add (uint32_t *, uint32_t);
19376 uint32_t amo_lwat_xor (uint32_t *, uint32_t);
19377 uint32_t amo_lwat_ior (uint32_t *, uint32_t);
19378 uint32_t amo_lwat_and (uint32_t *, uint32_t);
19379 uint32_t amo_lwat_umax (uint32_t *, uint32_t);
19380 uint32_t amo_lwat_umin (uint32_t *, uint32_t);
19381 uint32_t amo_lwat_swap (uint32_t *, uint32_t);
19382
19383 int32_t amo_lwat_sadd (int32_t *, int32_t);
19384 int32_t amo_lwat_smax (int32_t *, int32_t);
19385 int32_t amo_lwat_smin (int32_t *, int32_t);
19386 int32_t amo_lwat_sswap (int32_t *, int32_t);
19387
19388 uint64_t amo_ldat_add (uint64_t *, uint64_t);
19389 uint64_t amo_ldat_xor (uint64_t *, uint64_t);
19390 uint64_t amo_ldat_ior (uint64_t *, uint64_t);
19391 uint64_t amo_ldat_and (uint64_t *, uint64_t);
19392 uint64_t amo_ldat_umax (uint64_t *, uint64_t);
19393 uint64_t amo_ldat_umin (uint64_t *, uint64_t);
19394 uint64_t amo_ldat_swap (uint64_t *, uint64_t);
19395
19396 int64_t amo_ldat_sadd (int64_t *, int64_t);
19397 int64_t amo_ldat_smax (int64_t *, int64_t);
19398 int64_t amo_ldat_smin (int64_t *, int64_t);
19399 int64_t amo_ldat_sswap (int64_t *, int64_t);
19400
19401 void amo_stwat_add (uint32_t *, uint32_t);
19402 void amo_stwat_xor (uint32_t *, uint32_t);
19403 void amo_stwat_ior (uint32_t *, uint32_t);
19404 void amo_stwat_and (uint32_t *, uint32_t);
19405 void amo_stwat_umax (uint32_t *, uint32_t);
19406 void amo_stwat_umin (uint32_t *, uint32_t);
19407
19408 void amo_stwat_sadd (int32_t *, int32_t);
19409 void amo_stwat_smax (int32_t *, int32_t);
19410 void amo_stwat_smin (int32_t *, int32_t);
19411
19412 void amo_stdat_add (uint64_t *, uint64_t);
19413 void amo_stdat_xor (uint64_t *, uint64_t);
19414 void amo_stdat_ior (uint64_t *, uint64_t);
19415 void amo_stdat_and (uint64_t *, uint64_t);
19416 void amo_stdat_umax (uint64_t *, uint64_t);
19417 void amo_stdat_umin (uint64_t *, uint64_t);
19418
19419 void amo_stdat_sadd (int64_t *, int64_t);
19420 void amo_stdat_smax (int64_t *, int64_t);
19421 void amo_stdat_smin (int64_t *, int64_t);
19422 @end smallexample
19423
19424 @node RX Built-in Functions
19425 @subsection RX Built-in Functions
19426 GCC supports some of the RX instructions which cannot be expressed in
19427 the C programming language via the use of built-in functions. The
19428 following functions are supported:
19429
19430 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
19431 Generates the @code{brk} machine instruction.
19432 @end deftypefn
19433
19434 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
19435 Generates the @code{clrpsw} machine instruction to clear the specified
19436 bit in the processor status word.
19437 @end deftypefn
19438
19439 @deftypefn {Built-in Function} void __builtin_rx_int (int)
19440 Generates the @code{int} machine instruction to generate an interrupt
19441 with the specified value.
19442 @end deftypefn
19443
19444 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
19445 Generates the @code{machi} machine instruction to add the result of
19446 multiplying the top 16 bits of the two arguments into the
19447 accumulator.
19448 @end deftypefn
19449
19450 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
19451 Generates the @code{maclo} machine instruction to add the result of
19452 multiplying the bottom 16 bits of the two arguments into the
19453 accumulator.
19454 @end deftypefn
19455
19456 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
19457 Generates the @code{mulhi} machine instruction to place the result of
19458 multiplying the top 16 bits of the two arguments into the
19459 accumulator.
19460 @end deftypefn
19461
19462 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
19463 Generates the @code{mullo} machine instruction to place the result of
19464 multiplying the bottom 16 bits of the two arguments into the
19465 accumulator.
19466 @end deftypefn
19467
19468 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
19469 Generates the @code{mvfachi} machine instruction to read the top
19470 32 bits of the accumulator.
19471 @end deftypefn
19472
19473 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
19474 Generates the @code{mvfacmi} machine instruction to read the middle
19475 32 bits of the accumulator.
19476 @end deftypefn
19477
19478 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
19479 Generates the @code{mvfc} machine instruction which reads the control
19480 register specified in its argument and returns its value.
19481 @end deftypefn
19482
19483 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
19484 Generates the @code{mvtachi} machine instruction to set the top
19485 32 bits of the accumulator.
19486 @end deftypefn
19487
19488 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
19489 Generates the @code{mvtaclo} machine instruction to set the bottom
19490 32 bits of the accumulator.
19491 @end deftypefn
19492
19493 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
19494 Generates the @code{mvtc} machine instruction which sets control
19495 register number @code{reg} to @code{val}.
19496 @end deftypefn
19497
19498 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
19499 Generates the @code{mvtipl} machine instruction set the interrupt
19500 priority level.
19501 @end deftypefn
19502
19503 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
19504 Generates the @code{racw} machine instruction to round the accumulator
19505 according to the specified mode.
19506 @end deftypefn
19507
19508 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
19509 Generates the @code{revw} machine instruction which swaps the bytes in
19510 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
19511 and also bits 16--23 occupy bits 24--31 and vice versa.
19512 @end deftypefn
19513
19514 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
19515 Generates the @code{rmpa} machine instruction which initiates a
19516 repeated multiply and accumulate sequence.
19517 @end deftypefn
19518
19519 @deftypefn {Built-in Function} void __builtin_rx_round (float)
19520 Generates the @code{round} machine instruction which returns the
19521 floating-point argument rounded according to the current rounding mode
19522 set in the floating-point status word register.
19523 @end deftypefn
19524
19525 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
19526 Generates the @code{sat} machine instruction which returns the
19527 saturated value of the argument.
19528 @end deftypefn
19529
19530 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
19531 Generates the @code{setpsw} machine instruction to set the specified
19532 bit in the processor status word.
19533 @end deftypefn
19534
19535 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
19536 Generates the @code{wait} machine instruction.
19537 @end deftypefn
19538
19539 @node S/390 System z Built-in Functions
19540 @subsection S/390 System z Built-in Functions
19541 @deftypefn {Built-in Function} int __builtin_tbegin (void*)
19542 Generates the @code{tbegin} machine instruction starting a
19543 non-constrained hardware transaction. If the parameter is non-NULL the
19544 memory area is used to store the transaction diagnostic buffer and
19545 will be passed as first operand to @code{tbegin}. This buffer can be
19546 defined using the @code{struct __htm_tdb} C struct defined in
19547 @code{htmintrin.h} and must reside on a double-word boundary. The
19548 second tbegin operand is set to @code{0xff0c}. This enables
19549 save/restore of all GPRs and disables aborts for FPR and AR
19550 manipulations inside the transaction body. The condition code set by
19551 the tbegin instruction is returned as integer value. The tbegin
19552 instruction by definition overwrites the content of all FPRs. The
19553 compiler will generate code which saves and restores the FPRs. For
19554 soft-float code it is recommended to used the @code{*_nofloat}
19555 variant. In order to prevent a TDB from being written it is required
19556 to pass a constant zero value as parameter. Passing a zero value
19557 through a variable is not sufficient. Although modifications of
19558 access registers inside the transaction will not trigger an
19559 transaction abort it is not supported to actually modify them. Access
19560 registers do not get saved when entering a transaction. They will have
19561 undefined state when reaching the abort code.
19562 @end deftypefn
19563
19564 Macros for the possible return codes of tbegin are defined in the
19565 @code{htmintrin.h} header file:
19566
19567 @table @code
19568 @item _HTM_TBEGIN_STARTED
19569 @code{tbegin} has been executed as part of normal processing. The
19570 transaction body is supposed to be executed.
19571 @item _HTM_TBEGIN_INDETERMINATE
19572 The transaction was aborted due to an indeterminate condition which
19573 might be persistent.
19574 @item _HTM_TBEGIN_TRANSIENT
19575 The transaction aborted due to a transient failure. The transaction
19576 should be re-executed in that case.
19577 @item _HTM_TBEGIN_PERSISTENT
19578 The transaction aborted due to a persistent failure. Re-execution
19579 under same circumstances will not be productive.
19580 @end table
19581
19582 @defmac _HTM_FIRST_USER_ABORT_CODE
19583 The @code{_HTM_FIRST_USER_ABORT_CODE} defined in @code{htmintrin.h}
19584 specifies the first abort code which can be used for
19585 @code{__builtin_tabort}. Values below this threshold are reserved for
19586 machine use.
19587 @end defmac
19588
19589 @deftp {Data type} {struct __htm_tdb}
19590 The @code{struct __htm_tdb} defined in @code{htmintrin.h} describes
19591 the structure of the transaction diagnostic block as specified in the
19592 Principles of Operation manual chapter 5-91.
19593 @end deftp
19594
19595 @deftypefn {Built-in Function} int __builtin_tbegin_nofloat (void*)
19596 Same as @code{__builtin_tbegin} but without FPR saves and restores.
19597 Using this variant in code making use of FPRs will leave the FPRs in
19598 undefined state when entering the transaction abort handler code.
19599 @end deftypefn
19600
19601 @deftypefn {Built-in Function} int __builtin_tbegin_retry (void*, int)
19602 In addition to @code{__builtin_tbegin} a loop for transient failures
19603 is generated. If tbegin returns a condition code of 2 the transaction
19604 will be retried as often as specified in the second argument. The
19605 perform processor assist instruction is used to tell the CPU about the
19606 number of fails so far.
19607 @end deftypefn
19608
19609 @deftypefn {Built-in Function} int __builtin_tbegin_retry_nofloat (void*, int)
19610 Same as @code{__builtin_tbegin_retry} but without FPR saves and
19611 restores. Using this variant in code making use of FPRs will leave
19612 the FPRs in undefined state when entering the transaction abort
19613 handler code.
19614 @end deftypefn
19615
19616 @deftypefn {Built-in Function} void __builtin_tbeginc (void)
19617 Generates the @code{tbeginc} machine instruction starting a constrained
19618 hardware transaction. The second operand is set to @code{0xff08}.
19619 @end deftypefn
19620
19621 @deftypefn {Built-in Function} int __builtin_tend (void)
19622 Generates the @code{tend} machine instruction finishing a transaction
19623 and making the changes visible to other threads. The condition code
19624 generated by tend is returned as integer value.
19625 @end deftypefn
19626
19627 @deftypefn {Built-in Function} void __builtin_tabort (int)
19628 Generates the @code{tabort} machine instruction with the specified
19629 abort code. Abort codes from 0 through 255 are reserved and will
19630 result in an error message.
19631 @end deftypefn
19632
19633 @deftypefn {Built-in Function} void __builtin_tx_assist (int)
19634 Generates the @code{ppa rX,rY,1} machine instruction. Where the
19635 integer parameter is loaded into rX and a value of zero is loaded into
19636 rY. The integer parameter specifies the number of times the
19637 transaction repeatedly aborted.
19638 @end deftypefn
19639
19640 @deftypefn {Built-in Function} int __builtin_tx_nesting_depth (void)
19641 Generates the @code{etnd} machine instruction. The current nesting
19642 depth is returned as integer value. For a nesting depth of 0 the code
19643 is not executed as part of an transaction.
19644 @end deftypefn
19645
19646 @deftypefn {Built-in Function} void __builtin_non_tx_store (uint64_t *, uint64_t)
19647
19648 Generates the @code{ntstg} machine instruction. The second argument
19649 is written to the first arguments location. The store operation will
19650 not be rolled-back in case of an transaction abort.
19651 @end deftypefn
19652
19653 @node SH Built-in Functions
19654 @subsection SH Built-in Functions
19655 The following built-in functions are supported on the SH1, SH2, SH3 and SH4
19656 families of processors:
19657
19658 @deftypefn {Built-in Function} {void} __builtin_set_thread_pointer (void *@var{ptr})
19659 Sets the @samp{GBR} register to the specified value @var{ptr}. This is usually
19660 used by system code that manages threads and execution contexts. The compiler
19661 normally does not generate code that modifies the contents of @samp{GBR} and
19662 thus the value is preserved across function calls. Changing the @samp{GBR}
19663 value in user code must be done with caution, since the compiler might use
19664 @samp{GBR} in order to access thread local variables.
19665
19666 @end deftypefn
19667
19668 @deftypefn {Built-in Function} {void *} __builtin_thread_pointer (void)
19669 Returns the value that is currently set in the @samp{GBR} register.
19670 Memory loads and stores that use the thread pointer as a base address are
19671 turned into @samp{GBR} based displacement loads and stores, if possible.
19672 For example:
19673 @smallexample
19674 struct my_tcb
19675 @{
19676 int a, b, c, d, e;
19677 @};
19678
19679 int get_tcb_value (void)
19680 @{
19681 // Generate @samp{mov.l @@(8,gbr),r0} instruction
19682 return ((my_tcb*)__builtin_thread_pointer ())->c;
19683 @}
19684
19685 @end smallexample
19686 @end deftypefn
19687
19688 @deftypefn {Built-in Function} {unsigned int} __builtin_sh_get_fpscr (void)
19689 Returns the value that is currently set in the @samp{FPSCR} register.
19690 @end deftypefn
19691
19692 @deftypefn {Built-in Function} {void} __builtin_sh_set_fpscr (unsigned int @var{val})
19693 Sets the @samp{FPSCR} register to the specified value @var{val}, while
19694 preserving the current values of the FR, SZ and PR bits.
19695 @end deftypefn
19696
19697 @node SPARC VIS Built-in Functions
19698 @subsection SPARC VIS Built-in Functions
19699
19700 GCC supports SIMD operations on the SPARC using both the generic vector
19701 extensions (@pxref{Vector Extensions}) as well as built-in functions for
19702 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
19703 switch, the VIS extension is exposed as the following built-in functions:
19704
19705 @smallexample
19706 typedef int v1si __attribute__ ((vector_size (4)));
19707 typedef int v2si __attribute__ ((vector_size (8)));
19708 typedef short v4hi __attribute__ ((vector_size (8)));
19709 typedef short v2hi __attribute__ ((vector_size (4)));
19710 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
19711 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
19712
19713 void __builtin_vis_write_gsr (int64_t);
19714 int64_t __builtin_vis_read_gsr (void);
19715
19716 void * __builtin_vis_alignaddr (void *, long);
19717 void * __builtin_vis_alignaddrl (void *, long);
19718 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
19719 v2si __builtin_vis_faligndatav2si (v2si, v2si);
19720 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
19721 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
19722
19723 v4hi __builtin_vis_fexpand (v4qi);
19724
19725 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
19726 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
19727 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
19728 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
19729 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
19730 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
19731 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
19732
19733 v4qi __builtin_vis_fpack16 (v4hi);
19734 v8qi __builtin_vis_fpack32 (v2si, v8qi);
19735 v2hi __builtin_vis_fpackfix (v2si);
19736 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
19737
19738 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
19739
19740 long __builtin_vis_edge8 (void *, void *);
19741 long __builtin_vis_edge8l (void *, void *);
19742 long __builtin_vis_edge16 (void *, void *);
19743 long __builtin_vis_edge16l (void *, void *);
19744 long __builtin_vis_edge32 (void *, void *);
19745 long __builtin_vis_edge32l (void *, void *);
19746
19747 long __builtin_vis_fcmple16 (v4hi, v4hi);
19748 long __builtin_vis_fcmple32 (v2si, v2si);
19749 long __builtin_vis_fcmpne16 (v4hi, v4hi);
19750 long __builtin_vis_fcmpne32 (v2si, v2si);
19751 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
19752 long __builtin_vis_fcmpgt32 (v2si, v2si);
19753 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
19754 long __builtin_vis_fcmpeq32 (v2si, v2si);
19755
19756 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
19757 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
19758 v2si __builtin_vis_fpadd32 (v2si, v2si);
19759 v1si __builtin_vis_fpadd32s (v1si, v1si);
19760 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
19761 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
19762 v2si __builtin_vis_fpsub32 (v2si, v2si);
19763 v1si __builtin_vis_fpsub32s (v1si, v1si);
19764
19765 long __builtin_vis_array8 (long, long);
19766 long __builtin_vis_array16 (long, long);
19767 long __builtin_vis_array32 (long, long);
19768 @end smallexample
19769
19770 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
19771 functions also become available:
19772
19773 @smallexample
19774 long __builtin_vis_bmask (long, long);
19775 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
19776 v2si __builtin_vis_bshufflev2si (v2si, v2si);
19777 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
19778 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
19779
19780 long __builtin_vis_edge8n (void *, void *);
19781 long __builtin_vis_edge8ln (void *, void *);
19782 long __builtin_vis_edge16n (void *, void *);
19783 long __builtin_vis_edge16ln (void *, void *);
19784 long __builtin_vis_edge32n (void *, void *);
19785 long __builtin_vis_edge32ln (void *, void *);
19786 @end smallexample
19787
19788 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
19789 functions also become available:
19790
19791 @smallexample
19792 void __builtin_vis_cmask8 (long);
19793 void __builtin_vis_cmask16 (long);
19794 void __builtin_vis_cmask32 (long);
19795
19796 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
19797
19798 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
19799 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
19800 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
19801 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
19802 v2si __builtin_vis_fsll16 (v2si, v2si);
19803 v2si __builtin_vis_fslas16 (v2si, v2si);
19804 v2si __builtin_vis_fsrl16 (v2si, v2si);
19805 v2si __builtin_vis_fsra16 (v2si, v2si);
19806
19807 long __builtin_vis_pdistn (v8qi, v8qi);
19808
19809 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
19810
19811 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
19812 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
19813
19814 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
19815 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
19816 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
19817 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
19818 v2si __builtin_vis_fpadds32 (v2si, v2si);
19819 v1si __builtin_vis_fpadds32s (v1si, v1si);
19820 v2si __builtin_vis_fpsubs32 (v2si, v2si);
19821 v1si __builtin_vis_fpsubs32s (v1si, v1si);
19822
19823 long __builtin_vis_fucmple8 (v8qi, v8qi);
19824 long __builtin_vis_fucmpne8 (v8qi, v8qi);
19825 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
19826 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
19827
19828 float __builtin_vis_fhadds (float, float);
19829 double __builtin_vis_fhaddd (double, double);
19830 float __builtin_vis_fhsubs (float, float);
19831 double __builtin_vis_fhsubd (double, double);
19832 float __builtin_vis_fnhadds (float, float);
19833 double __builtin_vis_fnhaddd (double, double);
19834
19835 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
19836 int64_t __builtin_vis_xmulx (int64_t, int64_t);
19837 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
19838 @end smallexample
19839
19840 When you use the @option{-mvis4} switch, the VIS version 4.0 built-in
19841 functions also become available:
19842
19843 @smallexample
19844 v8qi __builtin_vis_fpadd8 (v8qi, v8qi);
19845 v8qi __builtin_vis_fpadds8 (v8qi, v8qi);
19846 v8qi __builtin_vis_fpaddus8 (v8qi, v8qi);
19847 v4hi __builtin_vis_fpaddus16 (v4hi, v4hi);
19848
19849 v8qi __builtin_vis_fpsub8 (v8qi, v8qi);
19850 v8qi __builtin_vis_fpsubs8 (v8qi, v8qi);
19851 v8qi __builtin_vis_fpsubus8 (v8qi, v8qi);
19852 v4hi __builtin_vis_fpsubus16 (v4hi, v4hi);
19853
19854 long __builtin_vis_fpcmple8 (v8qi, v8qi);
19855 long __builtin_vis_fpcmpgt8 (v8qi, v8qi);
19856 long __builtin_vis_fpcmpule16 (v4hi, v4hi);
19857 long __builtin_vis_fpcmpugt16 (v4hi, v4hi);
19858 long __builtin_vis_fpcmpule32 (v2si, v2si);
19859 long __builtin_vis_fpcmpugt32 (v2si, v2si);
19860
19861 v8qi __builtin_vis_fpmax8 (v8qi, v8qi);
19862 v4hi __builtin_vis_fpmax16 (v4hi, v4hi);
19863 v2si __builtin_vis_fpmax32 (v2si, v2si);
19864
19865 v8qi __builtin_vis_fpmaxu8 (v8qi, v8qi);
19866 v4hi __builtin_vis_fpmaxu16 (v4hi, v4hi);
19867 v2si __builtin_vis_fpmaxu32 (v2si, v2si);
19868
19869
19870 v8qi __builtin_vis_fpmin8 (v8qi, v8qi);
19871 v4hi __builtin_vis_fpmin16 (v4hi, v4hi);
19872 v2si __builtin_vis_fpmin32 (v2si, v2si);
19873
19874 v8qi __builtin_vis_fpminu8 (v8qi, v8qi);
19875 v4hi __builtin_vis_fpminu16 (v4hi, v4hi);
19876 v2si __builtin_vis_fpminu32 (v2si, v2si);
19877 @end smallexample
19878
19879 When you use the @option{-mvis4b} switch, the VIS version 4.0B
19880 built-in functions also become available:
19881
19882 @smallexample
19883 v8qi __builtin_vis_dictunpack8 (double, int);
19884 v4hi __builtin_vis_dictunpack16 (double, int);
19885 v2si __builtin_vis_dictunpack32 (double, int);
19886
19887 long __builtin_vis_fpcmple8shl (v8qi, v8qi, int);
19888 long __builtin_vis_fpcmpgt8shl (v8qi, v8qi, int);
19889 long __builtin_vis_fpcmpeq8shl (v8qi, v8qi, int);
19890 long __builtin_vis_fpcmpne8shl (v8qi, v8qi, int);
19891
19892 long __builtin_vis_fpcmple16shl (v4hi, v4hi, int);
19893 long __builtin_vis_fpcmpgt16shl (v4hi, v4hi, int);
19894 long __builtin_vis_fpcmpeq16shl (v4hi, v4hi, int);
19895 long __builtin_vis_fpcmpne16shl (v4hi, v4hi, int);
19896
19897 long __builtin_vis_fpcmple32shl (v2si, v2si, int);
19898 long __builtin_vis_fpcmpgt32shl (v2si, v2si, int);
19899 long __builtin_vis_fpcmpeq32shl (v2si, v2si, int);
19900 long __builtin_vis_fpcmpne32shl (v2si, v2si, int);
19901
19902 long __builtin_vis_fpcmpule8shl (v8qi, v8qi, int);
19903 long __builtin_vis_fpcmpugt8shl (v8qi, v8qi, int);
19904 long __builtin_vis_fpcmpule16shl (v4hi, v4hi, int);
19905 long __builtin_vis_fpcmpugt16shl (v4hi, v4hi, int);
19906 long __builtin_vis_fpcmpule32shl (v2si, v2si, int);
19907 long __builtin_vis_fpcmpugt32shl (v2si, v2si, int);
19908
19909 long __builtin_vis_fpcmpde8shl (v8qi, v8qi, int);
19910 long __builtin_vis_fpcmpde16shl (v4hi, v4hi, int);
19911 long __builtin_vis_fpcmpde32shl (v2si, v2si, int);
19912
19913 long __builtin_vis_fpcmpur8shl (v8qi, v8qi, int);
19914 long __builtin_vis_fpcmpur16shl (v4hi, v4hi, int);
19915 long __builtin_vis_fpcmpur32shl (v2si, v2si, int);
19916 @end smallexample
19917
19918 @node SPU Built-in Functions
19919 @subsection SPU Built-in Functions
19920
19921 GCC provides extensions for the SPU processor as described in the
19922 Sony/Toshiba/IBM SPU Language Extensions Specification. GCC's
19923 implementation differs in several ways.
19924
19925 @itemize @bullet
19926
19927 @item
19928 The optional extension of specifying vector constants in parentheses is
19929 not supported.
19930
19931 @item
19932 A vector initializer requires no cast if the vector constant is of the
19933 same type as the variable it is initializing.
19934
19935 @item
19936 If @code{signed} or @code{unsigned} is omitted, the signedness of the
19937 vector type is the default signedness of the base type. The default
19938 varies depending on the operating system, so a portable program should
19939 always specify the signedness.
19940
19941 @item
19942 By default, the keyword @code{__vector} is added. The macro
19943 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
19944 undefined.
19945
19946 @item
19947 GCC allows using a @code{typedef} name as the type specifier for a
19948 vector type.
19949
19950 @item
19951 For C, overloaded functions are implemented with macros so the following
19952 does not work:
19953
19954 @smallexample
19955 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
19956 @end smallexample
19957
19958 @noindent
19959 Since @code{spu_add} is a macro, the vector constant in the example
19960 is treated as four separate arguments. Wrap the entire argument in
19961 parentheses for this to work.
19962
19963 @item
19964 The extended version of @code{__builtin_expect} is not supported.
19965
19966 @end itemize
19967
19968 @emph{Note:} Only the interface described in the aforementioned
19969 specification is supported. Internally, GCC uses built-in functions to
19970 implement the required functionality, but these are not supported and
19971 are subject to change without notice.
19972
19973 @node TI C6X Built-in Functions
19974 @subsection TI C6X Built-in Functions
19975
19976 GCC provides intrinsics to access certain instructions of the TI C6X
19977 processors. These intrinsics, listed below, are available after
19978 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
19979 to C6X instructions.
19980
19981 @smallexample
19982
19983 int _sadd (int, int)
19984 int _ssub (int, int)
19985 int _sadd2 (int, int)
19986 int _ssub2 (int, int)
19987 long long _mpy2 (int, int)
19988 long long _smpy2 (int, int)
19989 int _add4 (int, int)
19990 int _sub4 (int, int)
19991 int _saddu4 (int, int)
19992
19993 int _smpy (int, int)
19994 int _smpyh (int, int)
19995 int _smpyhl (int, int)
19996 int _smpylh (int, int)
19997
19998 int _sshl (int, int)
19999 int _subc (int, int)
20000
20001 int _avg2 (int, int)
20002 int _avgu4 (int, int)
20003
20004 int _clrr (int, int)
20005 int _extr (int, int)
20006 int _extru (int, int)
20007 int _abs (int)
20008 int _abs2 (int)
20009
20010 @end smallexample
20011
20012 @node TILE-Gx Built-in Functions
20013 @subsection TILE-Gx Built-in Functions
20014
20015 GCC provides intrinsics to access every instruction of the TILE-Gx
20016 processor. The intrinsics are of the form:
20017
20018 @smallexample
20019
20020 unsigned long long __insn_@var{op} (...)
20021
20022 @end smallexample
20023
20024 Where @var{op} is the name of the instruction. Refer to the ISA manual
20025 for the complete list of instructions.
20026
20027 GCC also provides intrinsics to directly access the network registers.
20028 The intrinsics are:
20029
20030 @smallexample
20031
20032 unsigned long long __tile_idn0_receive (void)
20033 unsigned long long __tile_idn1_receive (void)
20034 unsigned long long __tile_udn0_receive (void)
20035 unsigned long long __tile_udn1_receive (void)
20036 unsigned long long __tile_udn2_receive (void)
20037 unsigned long long __tile_udn3_receive (void)
20038 void __tile_idn_send (unsigned long long)
20039 void __tile_udn_send (unsigned long long)
20040
20041 @end smallexample
20042
20043 The intrinsic @code{void __tile_network_barrier (void)} is used to
20044 guarantee that no network operations before it are reordered with
20045 those after it.
20046
20047 @node TILEPro Built-in Functions
20048 @subsection TILEPro Built-in Functions
20049
20050 GCC provides intrinsics to access every instruction of the TILEPro
20051 processor. The intrinsics are of the form:
20052
20053 @smallexample
20054
20055 unsigned __insn_@var{op} (...)
20056
20057 @end smallexample
20058
20059 @noindent
20060 where @var{op} is the name of the instruction. Refer to the ISA manual
20061 for the complete list of instructions.
20062
20063 GCC also provides intrinsics to directly access the network registers.
20064 The intrinsics are:
20065
20066 @smallexample
20067
20068 unsigned __tile_idn0_receive (void)
20069 unsigned __tile_idn1_receive (void)
20070 unsigned __tile_sn_receive (void)
20071 unsigned __tile_udn0_receive (void)
20072 unsigned __tile_udn1_receive (void)
20073 unsigned __tile_udn2_receive (void)
20074 unsigned __tile_udn3_receive (void)
20075 void __tile_idn_send (unsigned)
20076 void __tile_sn_send (unsigned)
20077 void __tile_udn_send (unsigned)
20078
20079 @end smallexample
20080
20081 The intrinsic @code{void __tile_network_barrier (void)} is used to
20082 guarantee that no network operations before it are reordered with
20083 those after it.
20084
20085 @node x86 Built-in Functions
20086 @subsection x86 Built-in Functions
20087
20088 These built-in functions are available for the x86-32 and x86-64 family
20089 of computers, depending on the command-line switches used.
20090
20091 If you specify command-line switches such as @option{-msse},
20092 the compiler could use the extended instruction sets even if the built-ins
20093 are not used explicitly in the program. For this reason, applications
20094 that perform run-time CPU detection must compile separate files for each
20095 supported architecture, using the appropriate flags. In particular,
20096 the file containing the CPU detection code should be compiled without
20097 these options.
20098
20099 The following machine modes are available for use with MMX built-in functions
20100 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
20101 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
20102 vector of eight 8-bit integers. Some of the built-in functions operate on
20103 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
20104
20105 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
20106 of two 32-bit floating-point values.
20107
20108 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
20109 floating-point values. Some instructions use a vector of four 32-bit
20110 integers, these use @code{V4SI}. Finally, some instructions operate on an
20111 entire vector register, interpreting it as a 128-bit integer, these use mode
20112 @code{TI}.
20113
20114 The x86-32 and x86-64 family of processors use additional built-in
20115 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
20116 floating point and @code{TC} 128-bit complex floating-point values.
20117
20118 The following floating-point built-in functions are always available. All
20119 of them implement the function that is part of the name.
20120
20121 @smallexample
20122 __float128 __builtin_fabsq (__float128)
20123 __float128 __builtin_copysignq (__float128, __float128)
20124 @end smallexample
20125
20126 The following built-in functions are always available.
20127
20128 @table @code
20129 @item __float128 __builtin_infq (void)
20130 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
20131 @findex __builtin_infq
20132
20133 @item __float128 __builtin_huge_valq (void)
20134 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
20135 @findex __builtin_huge_valq
20136
20137 @item __float128 __builtin_nanq (void)
20138 Similar to @code{__builtin_nan}, except the return type is @code{__float128}.
20139 @findex __builtin_nanq
20140
20141 @item __float128 __builtin_nansq (void)
20142 Similar to @code{__builtin_nans}, except the return type is @code{__float128}.
20143 @findex __builtin_nansq
20144 @end table
20145
20146 The following built-in function is always available.
20147
20148 @table @code
20149 @item void __builtin_ia32_pause (void)
20150 Generates the @code{pause} machine instruction with a compiler memory
20151 barrier.
20152 @end table
20153
20154 The following built-in functions are always available and can be used to
20155 check the target platform type.
20156
20157 @deftypefn {Built-in Function} void __builtin_cpu_init (void)
20158 This function runs the CPU detection code to check the type of CPU and the
20159 features supported. This built-in function needs to be invoked along with the built-in functions
20160 to check CPU type and features, @code{__builtin_cpu_is} and
20161 @code{__builtin_cpu_supports}, only when used in a function that is
20162 executed before any constructors are called. The CPU detection code is
20163 automatically executed in a very high priority constructor.
20164
20165 For example, this function has to be used in @code{ifunc} resolvers that
20166 check for CPU type using the built-in functions @code{__builtin_cpu_is}
20167 and @code{__builtin_cpu_supports}, or in constructors on targets that
20168 don't support constructor priority.
20169 @smallexample
20170
20171 static void (*resolve_memcpy (void)) (void)
20172 @{
20173 // ifunc resolvers fire before constructors, explicitly call the init
20174 // function.
20175 __builtin_cpu_init ();
20176 if (__builtin_cpu_supports ("ssse3"))
20177 return ssse3_memcpy; // super fast memcpy with ssse3 instructions.
20178 else
20179 return default_memcpy;
20180 @}
20181
20182 void *memcpy (void *, const void *, size_t)
20183 __attribute__ ((ifunc ("resolve_memcpy")));
20184 @end smallexample
20185
20186 @end deftypefn
20187
20188 @deftypefn {Built-in Function} int __builtin_cpu_is (const char *@var{cpuname})
20189 This function returns a positive integer if the run-time CPU
20190 is of type @var{cpuname}
20191 and returns @code{0} otherwise. The following CPU names can be detected:
20192
20193 @table @samp
20194 @item intel
20195 Intel CPU.
20196
20197 @item atom
20198 Intel Atom CPU.
20199
20200 @item core2
20201 Intel Core 2 CPU.
20202
20203 @item corei7
20204 Intel Core i7 CPU.
20205
20206 @item nehalem
20207 Intel Core i7 Nehalem CPU.
20208
20209 @item westmere
20210 Intel Core i7 Westmere CPU.
20211
20212 @item sandybridge
20213 Intel Core i7 Sandy Bridge CPU.
20214
20215 @item amd
20216 AMD CPU.
20217
20218 @item amdfam10h
20219 AMD Family 10h CPU.
20220
20221 @item barcelona
20222 AMD Family 10h Barcelona CPU.
20223
20224 @item shanghai
20225 AMD Family 10h Shanghai CPU.
20226
20227 @item istanbul
20228 AMD Family 10h Istanbul CPU.
20229
20230 @item btver1
20231 AMD Family 14h CPU.
20232
20233 @item amdfam15h
20234 AMD Family 15h CPU.
20235
20236 @item bdver1
20237 AMD Family 15h Bulldozer version 1.
20238
20239 @item bdver2
20240 AMD Family 15h Bulldozer version 2.
20241
20242 @item bdver3
20243 AMD Family 15h Bulldozer version 3.
20244
20245 @item bdver4
20246 AMD Family 15h Bulldozer version 4.
20247
20248 @item btver2
20249 AMD Family 16h CPU.
20250
20251 @item amdfam17h
20252 AMD Family 17h CPU.
20253
20254 @item znver1
20255 AMD Family 17h Zen version 1.
20256 @end table
20257
20258 Here is an example:
20259 @smallexample
20260 if (__builtin_cpu_is ("corei7"))
20261 @{
20262 do_corei7 (); // Core i7 specific implementation.
20263 @}
20264 else
20265 @{
20266 do_generic (); // Generic implementation.
20267 @}
20268 @end smallexample
20269 @end deftypefn
20270
20271 @deftypefn {Built-in Function} int __builtin_cpu_supports (const char *@var{feature})
20272 This function returns a positive integer if the run-time CPU
20273 supports @var{feature}
20274 and returns @code{0} otherwise. The following features can be detected:
20275
20276 @table @samp
20277 @item cmov
20278 CMOV instruction.
20279 @item mmx
20280 MMX instructions.
20281 @item popcnt
20282 POPCNT instruction.
20283 @item sse
20284 SSE instructions.
20285 @item sse2
20286 SSE2 instructions.
20287 @item sse3
20288 SSE3 instructions.
20289 @item ssse3
20290 SSSE3 instructions.
20291 @item sse4.1
20292 SSE4.1 instructions.
20293 @item sse4.2
20294 SSE4.2 instructions.
20295 @item avx
20296 AVX instructions.
20297 @item avx2
20298 AVX2 instructions.
20299 @item avx512f
20300 AVX512F instructions.
20301 @end table
20302
20303 Here is an example:
20304 @smallexample
20305 if (__builtin_cpu_supports ("popcnt"))
20306 @{
20307 asm("popcnt %1,%0" : "=r"(count) : "rm"(n) : "cc");
20308 @}
20309 else
20310 @{
20311 count = generic_countbits (n); //generic implementation.
20312 @}
20313 @end smallexample
20314 @end deftypefn
20315
20316
20317 The following built-in functions are made available by @option{-mmmx}.
20318 All of them generate the machine instruction that is part of the name.
20319
20320 @smallexample
20321 v8qi __builtin_ia32_paddb (v8qi, v8qi)
20322 v4hi __builtin_ia32_paddw (v4hi, v4hi)
20323 v2si __builtin_ia32_paddd (v2si, v2si)
20324 v8qi __builtin_ia32_psubb (v8qi, v8qi)
20325 v4hi __builtin_ia32_psubw (v4hi, v4hi)
20326 v2si __builtin_ia32_psubd (v2si, v2si)
20327 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
20328 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
20329 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
20330 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
20331 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
20332 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
20333 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
20334 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
20335 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
20336 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
20337 di __builtin_ia32_pand (di, di)
20338 di __builtin_ia32_pandn (di,di)
20339 di __builtin_ia32_por (di, di)
20340 di __builtin_ia32_pxor (di, di)
20341 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
20342 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
20343 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
20344 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
20345 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
20346 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
20347 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
20348 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
20349 v2si __builtin_ia32_punpckhdq (v2si, v2si)
20350 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
20351 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
20352 v2si __builtin_ia32_punpckldq (v2si, v2si)
20353 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
20354 v4hi __builtin_ia32_packssdw (v2si, v2si)
20355 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
20356
20357 v4hi __builtin_ia32_psllw (v4hi, v4hi)
20358 v2si __builtin_ia32_pslld (v2si, v2si)
20359 v1di __builtin_ia32_psllq (v1di, v1di)
20360 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
20361 v2si __builtin_ia32_psrld (v2si, v2si)
20362 v1di __builtin_ia32_psrlq (v1di, v1di)
20363 v4hi __builtin_ia32_psraw (v4hi, v4hi)
20364 v2si __builtin_ia32_psrad (v2si, v2si)
20365 v4hi __builtin_ia32_psllwi (v4hi, int)
20366 v2si __builtin_ia32_pslldi (v2si, int)
20367 v1di __builtin_ia32_psllqi (v1di, int)
20368 v4hi __builtin_ia32_psrlwi (v4hi, int)
20369 v2si __builtin_ia32_psrldi (v2si, int)
20370 v1di __builtin_ia32_psrlqi (v1di, int)
20371 v4hi __builtin_ia32_psrawi (v4hi, int)
20372 v2si __builtin_ia32_psradi (v2si, int)
20373
20374 @end smallexample
20375
20376 The following built-in functions are made available either with
20377 @option{-msse}, or with @option{-m3dnowa}. All of them generate
20378 the machine instruction that is part of the name.
20379
20380 @smallexample
20381 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
20382 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
20383 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
20384 v1di __builtin_ia32_psadbw (v8qi, v8qi)
20385 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
20386 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
20387 v8qi __builtin_ia32_pminub (v8qi, v8qi)
20388 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
20389 int __builtin_ia32_pmovmskb (v8qi)
20390 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
20391 void __builtin_ia32_movntq (di *, di)
20392 void __builtin_ia32_sfence (void)
20393 @end smallexample
20394
20395 The following built-in functions are available when @option{-msse} is used.
20396 All of them generate the machine instruction that is part of the name.
20397
20398 @smallexample
20399 int __builtin_ia32_comieq (v4sf, v4sf)
20400 int __builtin_ia32_comineq (v4sf, v4sf)
20401 int __builtin_ia32_comilt (v4sf, v4sf)
20402 int __builtin_ia32_comile (v4sf, v4sf)
20403 int __builtin_ia32_comigt (v4sf, v4sf)
20404 int __builtin_ia32_comige (v4sf, v4sf)
20405 int __builtin_ia32_ucomieq (v4sf, v4sf)
20406 int __builtin_ia32_ucomineq (v4sf, v4sf)
20407 int __builtin_ia32_ucomilt (v4sf, v4sf)
20408 int __builtin_ia32_ucomile (v4sf, v4sf)
20409 int __builtin_ia32_ucomigt (v4sf, v4sf)
20410 int __builtin_ia32_ucomige (v4sf, v4sf)
20411 v4sf __builtin_ia32_addps (v4sf, v4sf)
20412 v4sf __builtin_ia32_subps (v4sf, v4sf)
20413 v4sf __builtin_ia32_mulps (v4sf, v4sf)
20414 v4sf __builtin_ia32_divps (v4sf, v4sf)
20415 v4sf __builtin_ia32_addss (v4sf, v4sf)
20416 v4sf __builtin_ia32_subss (v4sf, v4sf)
20417 v4sf __builtin_ia32_mulss (v4sf, v4sf)
20418 v4sf __builtin_ia32_divss (v4sf, v4sf)
20419 v4sf __builtin_ia32_cmpeqps (v4sf, v4sf)
20420 v4sf __builtin_ia32_cmpltps (v4sf, v4sf)
20421 v4sf __builtin_ia32_cmpleps (v4sf, v4sf)
20422 v4sf __builtin_ia32_cmpgtps (v4sf, v4sf)
20423 v4sf __builtin_ia32_cmpgeps (v4sf, v4sf)
20424 v4sf __builtin_ia32_cmpunordps (v4sf, v4sf)
20425 v4sf __builtin_ia32_cmpneqps (v4sf, v4sf)
20426 v4sf __builtin_ia32_cmpnltps (v4sf, v4sf)
20427 v4sf __builtin_ia32_cmpnleps (v4sf, v4sf)
20428 v4sf __builtin_ia32_cmpngtps (v4sf, v4sf)
20429 v4sf __builtin_ia32_cmpngeps (v4sf, v4sf)
20430 v4sf __builtin_ia32_cmpordps (v4sf, v4sf)
20431 v4sf __builtin_ia32_cmpeqss (v4sf, v4sf)
20432 v4sf __builtin_ia32_cmpltss (v4sf, v4sf)
20433 v4sf __builtin_ia32_cmpless (v4sf, v4sf)
20434 v4sf __builtin_ia32_cmpunordss (v4sf, v4sf)
20435 v4sf __builtin_ia32_cmpneqss (v4sf, v4sf)
20436 v4sf __builtin_ia32_cmpnltss (v4sf, v4sf)
20437 v4sf __builtin_ia32_cmpnless (v4sf, v4sf)
20438 v4sf __builtin_ia32_cmpordss (v4sf, v4sf)
20439 v4sf __builtin_ia32_maxps (v4sf, v4sf)
20440 v4sf __builtin_ia32_maxss (v4sf, v4sf)
20441 v4sf __builtin_ia32_minps (v4sf, v4sf)
20442 v4sf __builtin_ia32_minss (v4sf, v4sf)
20443 v4sf __builtin_ia32_andps (v4sf, v4sf)
20444 v4sf __builtin_ia32_andnps (v4sf, v4sf)
20445 v4sf __builtin_ia32_orps (v4sf, v4sf)
20446 v4sf __builtin_ia32_xorps (v4sf, v4sf)
20447 v4sf __builtin_ia32_movss (v4sf, v4sf)
20448 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
20449 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
20450 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
20451 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
20452 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
20453 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
20454 v2si __builtin_ia32_cvtps2pi (v4sf)
20455 int __builtin_ia32_cvtss2si (v4sf)
20456 v2si __builtin_ia32_cvttps2pi (v4sf)
20457 int __builtin_ia32_cvttss2si (v4sf)
20458 v4sf __builtin_ia32_rcpps (v4sf)
20459 v4sf __builtin_ia32_rsqrtps (v4sf)
20460 v4sf __builtin_ia32_sqrtps (v4sf)
20461 v4sf __builtin_ia32_rcpss (v4sf)
20462 v4sf __builtin_ia32_rsqrtss (v4sf)
20463 v4sf __builtin_ia32_sqrtss (v4sf)
20464 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
20465 void __builtin_ia32_movntps (float *, v4sf)
20466 int __builtin_ia32_movmskps (v4sf)
20467 @end smallexample
20468
20469 The following built-in functions are available when @option{-msse} is used.
20470
20471 @table @code
20472 @item v4sf __builtin_ia32_loadups (float *)
20473 Generates the @code{movups} machine instruction as a load from memory.
20474 @item void __builtin_ia32_storeups (float *, v4sf)
20475 Generates the @code{movups} machine instruction as a store to memory.
20476 @item v4sf __builtin_ia32_loadss (float *)
20477 Generates the @code{movss} machine instruction as a load from memory.
20478 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
20479 Generates the @code{movhps} machine instruction as a load from memory.
20480 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
20481 Generates the @code{movlps} machine instruction as a load from memory
20482 @item void __builtin_ia32_storehps (v2sf *, v4sf)
20483 Generates the @code{movhps} machine instruction as a store to memory.
20484 @item void __builtin_ia32_storelps (v2sf *, v4sf)
20485 Generates the @code{movlps} machine instruction as a store to memory.
20486 @end table
20487
20488 The following built-in functions are available when @option{-msse2} is used.
20489 All of them generate the machine instruction that is part of the name.
20490
20491 @smallexample
20492 int __builtin_ia32_comisdeq (v2df, v2df)
20493 int __builtin_ia32_comisdlt (v2df, v2df)
20494 int __builtin_ia32_comisdle (v2df, v2df)
20495 int __builtin_ia32_comisdgt (v2df, v2df)
20496 int __builtin_ia32_comisdge (v2df, v2df)
20497 int __builtin_ia32_comisdneq (v2df, v2df)
20498 int __builtin_ia32_ucomisdeq (v2df, v2df)
20499 int __builtin_ia32_ucomisdlt (v2df, v2df)
20500 int __builtin_ia32_ucomisdle (v2df, v2df)
20501 int __builtin_ia32_ucomisdgt (v2df, v2df)
20502 int __builtin_ia32_ucomisdge (v2df, v2df)
20503 int __builtin_ia32_ucomisdneq (v2df, v2df)
20504 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
20505 v2df __builtin_ia32_cmpltpd (v2df, v2df)
20506 v2df __builtin_ia32_cmplepd (v2df, v2df)
20507 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
20508 v2df __builtin_ia32_cmpgepd (v2df, v2df)
20509 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
20510 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
20511 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
20512 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
20513 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
20514 v2df __builtin_ia32_cmpngepd (v2df, v2df)
20515 v2df __builtin_ia32_cmpordpd (v2df, v2df)
20516 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
20517 v2df __builtin_ia32_cmpltsd (v2df, v2df)
20518 v2df __builtin_ia32_cmplesd (v2df, v2df)
20519 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
20520 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
20521 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
20522 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
20523 v2df __builtin_ia32_cmpordsd (v2df, v2df)
20524 v2di __builtin_ia32_paddq (v2di, v2di)
20525 v2di __builtin_ia32_psubq (v2di, v2di)
20526 v2df __builtin_ia32_addpd (v2df, v2df)
20527 v2df __builtin_ia32_subpd (v2df, v2df)
20528 v2df __builtin_ia32_mulpd (v2df, v2df)
20529 v2df __builtin_ia32_divpd (v2df, v2df)
20530 v2df __builtin_ia32_addsd (v2df, v2df)
20531 v2df __builtin_ia32_subsd (v2df, v2df)
20532 v2df __builtin_ia32_mulsd (v2df, v2df)
20533 v2df __builtin_ia32_divsd (v2df, v2df)
20534 v2df __builtin_ia32_minpd (v2df, v2df)
20535 v2df __builtin_ia32_maxpd (v2df, v2df)
20536 v2df __builtin_ia32_minsd (v2df, v2df)
20537 v2df __builtin_ia32_maxsd (v2df, v2df)
20538 v2df __builtin_ia32_andpd (v2df, v2df)
20539 v2df __builtin_ia32_andnpd (v2df, v2df)
20540 v2df __builtin_ia32_orpd (v2df, v2df)
20541 v2df __builtin_ia32_xorpd (v2df, v2df)
20542 v2df __builtin_ia32_movsd (v2df, v2df)
20543 v2df __builtin_ia32_unpckhpd (v2df, v2df)
20544 v2df __builtin_ia32_unpcklpd (v2df, v2df)
20545 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
20546 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
20547 v4si __builtin_ia32_paddd128 (v4si, v4si)
20548 v2di __builtin_ia32_paddq128 (v2di, v2di)
20549 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
20550 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
20551 v4si __builtin_ia32_psubd128 (v4si, v4si)
20552 v2di __builtin_ia32_psubq128 (v2di, v2di)
20553 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
20554 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
20555 v2di __builtin_ia32_pand128 (v2di, v2di)
20556 v2di __builtin_ia32_pandn128 (v2di, v2di)
20557 v2di __builtin_ia32_por128 (v2di, v2di)
20558 v2di __builtin_ia32_pxor128 (v2di, v2di)
20559 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
20560 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
20561 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
20562 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
20563 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
20564 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
20565 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
20566 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
20567 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
20568 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
20569 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
20570 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
20571 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
20572 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
20573 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
20574 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
20575 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
20576 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
20577 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
20578 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
20579 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
20580 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
20581 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
20582 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
20583 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
20584 v2df __builtin_ia32_loadupd (double *)
20585 void __builtin_ia32_storeupd (double *, v2df)
20586 v2df __builtin_ia32_loadhpd (v2df, double const *)
20587 v2df __builtin_ia32_loadlpd (v2df, double const *)
20588 int __builtin_ia32_movmskpd (v2df)
20589 int __builtin_ia32_pmovmskb128 (v16qi)
20590 void __builtin_ia32_movnti (int *, int)
20591 void __builtin_ia32_movnti64 (long long int *, long long int)
20592 void __builtin_ia32_movntpd (double *, v2df)
20593 void __builtin_ia32_movntdq (v2df *, v2df)
20594 v4si __builtin_ia32_pshufd (v4si, int)
20595 v8hi __builtin_ia32_pshuflw (v8hi, int)
20596 v8hi __builtin_ia32_pshufhw (v8hi, int)
20597 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
20598 v2df __builtin_ia32_sqrtpd (v2df)
20599 v2df __builtin_ia32_sqrtsd (v2df)
20600 v2df __builtin_ia32_shufpd (v2df, v2df, int)
20601 v2df __builtin_ia32_cvtdq2pd (v4si)
20602 v4sf __builtin_ia32_cvtdq2ps (v4si)
20603 v4si __builtin_ia32_cvtpd2dq (v2df)
20604 v2si __builtin_ia32_cvtpd2pi (v2df)
20605 v4sf __builtin_ia32_cvtpd2ps (v2df)
20606 v4si __builtin_ia32_cvttpd2dq (v2df)
20607 v2si __builtin_ia32_cvttpd2pi (v2df)
20608 v2df __builtin_ia32_cvtpi2pd (v2si)
20609 int __builtin_ia32_cvtsd2si (v2df)
20610 int __builtin_ia32_cvttsd2si (v2df)
20611 long long __builtin_ia32_cvtsd2si64 (v2df)
20612 long long __builtin_ia32_cvttsd2si64 (v2df)
20613 v4si __builtin_ia32_cvtps2dq (v4sf)
20614 v2df __builtin_ia32_cvtps2pd (v4sf)
20615 v4si __builtin_ia32_cvttps2dq (v4sf)
20616 v2df __builtin_ia32_cvtsi2sd (v2df, int)
20617 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
20618 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
20619 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
20620 void __builtin_ia32_clflush (const void *)
20621 void __builtin_ia32_lfence (void)
20622 void __builtin_ia32_mfence (void)
20623 v16qi __builtin_ia32_loaddqu (const char *)
20624 void __builtin_ia32_storedqu (char *, v16qi)
20625 v1di __builtin_ia32_pmuludq (v2si, v2si)
20626 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
20627 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
20628 v4si __builtin_ia32_pslld128 (v4si, v4si)
20629 v2di __builtin_ia32_psllq128 (v2di, v2di)
20630 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
20631 v4si __builtin_ia32_psrld128 (v4si, v4si)
20632 v2di __builtin_ia32_psrlq128 (v2di, v2di)
20633 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
20634 v4si __builtin_ia32_psrad128 (v4si, v4si)
20635 v2di __builtin_ia32_pslldqi128 (v2di, int)
20636 v8hi __builtin_ia32_psllwi128 (v8hi, int)
20637 v4si __builtin_ia32_pslldi128 (v4si, int)
20638 v2di __builtin_ia32_psllqi128 (v2di, int)
20639 v2di __builtin_ia32_psrldqi128 (v2di, int)
20640 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
20641 v4si __builtin_ia32_psrldi128 (v4si, int)
20642 v2di __builtin_ia32_psrlqi128 (v2di, int)
20643 v8hi __builtin_ia32_psrawi128 (v8hi, int)
20644 v4si __builtin_ia32_psradi128 (v4si, int)
20645 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
20646 v2di __builtin_ia32_movq128 (v2di)
20647 @end smallexample
20648
20649 The following built-in functions are available when @option{-msse3} is used.
20650 All of them generate the machine instruction that is part of the name.
20651
20652 @smallexample
20653 v2df __builtin_ia32_addsubpd (v2df, v2df)
20654 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
20655 v2df __builtin_ia32_haddpd (v2df, v2df)
20656 v4sf __builtin_ia32_haddps (v4sf, v4sf)
20657 v2df __builtin_ia32_hsubpd (v2df, v2df)
20658 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
20659 v16qi __builtin_ia32_lddqu (char const *)
20660 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
20661 v4sf __builtin_ia32_movshdup (v4sf)
20662 v4sf __builtin_ia32_movsldup (v4sf)
20663 void __builtin_ia32_mwait (unsigned int, unsigned int)
20664 @end smallexample
20665
20666 The following built-in functions are available when @option{-mssse3} is used.
20667 All of them generate the machine instruction that is part of the name.
20668
20669 @smallexample
20670 v2si __builtin_ia32_phaddd (v2si, v2si)
20671 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
20672 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
20673 v2si __builtin_ia32_phsubd (v2si, v2si)
20674 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
20675 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
20676 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
20677 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
20678 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
20679 v8qi __builtin_ia32_psignb (v8qi, v8qi)
20680 v2si __builtin_ia32_psignd (v2si, v2si)
20681 v4hi __builtin_ia32_psignw (v4hi, v4hi)
20682 v1di __builtin_ia32_palignr (v1di, v1di, int)
20683 v8qi __builtin_ia32_pabsb (v8qi)
20684 v2si __builtin_ia32_pabsd (v2si)
20685 v4hi __builtin_ia32_pabsw (v4hi)
20686 @end smallexample
20687
20688 The following built-in functions are available when @option{-mssse3} is used.
20689 All of them generate the machine instruction that is part of the name.
20690
20691 @smallexample
20692 v4si __builtin_ia32_phaddd128 (v4si, v4si)
20693 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
20694 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
20695 v4si __builtin_ia32_phsubd128 (v4si, v4si)
20696 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
20697 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
20698 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
20699 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
20700 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
20701 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
20702 v4si __builtin_ia32_psignd128 (v4si, v4si)
20703 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
20704 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
20705 v16qi __builtin_ia32_pabsb128 (v16qi)
20706 v4si __builtin_ia32_pabsd128 (v4si)
20707 v8hi __builtin_ia32_pabsw128 (v8hi)
20708 @end smallexample
20709
20710 The following built-in functions are available when @option{-msse4.1} is
20711 used. All of them generate the machine instruction that is part of the
20712 name.
20713
20714 @smallexample
20715 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
20716 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
20717 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
20718 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
20719 v2df __builtin_ia32_dppd (v2df, v2df, const int)
20720 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
20721 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
20722 v2di __builtin_ia32_movntdqa (v2di *);
20723 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
20724 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
20725 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
20726 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
20727 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
20728 v8hi __builtin_ia32_phminposuw128 (v8hi)
20729 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
20730 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
20731 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
20732 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
20733 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
20734 v4si __builtin_ia32_pminsd128 (v4si, v4si)
20735 v4si __builtin_ia32_pminud128 (v4si, v4si)
20736 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
20737 v4si __builtin_ia32_pmovsxbd128 (v16qi)
20738 v2di __builtin_ia32_pmovsxbq128 (v16qi)
20739 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
20740 v2di __builtin_ia32_pmovsxdq128 (v4si)
20741 v4si __builtin_ia32_pmovsxwd128 (v8hi)
20742 v2di __builtin_ia32_pmovsxwq128 (v8hi)
20743 v4si __builtin_ia32_pmovzxbd128 (v16qi)
20744 v2di __builtin_ia32_pmovzxbq128 (v16qi)
20745 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
20746 v2di __builtin_ia32_pmovzxdq128 (v4si)
20747 v4si __builtin_ia32_pmovzxwd128 (v8hi)
20748 v2di __builtin_ia32_pmovzxwq128 (v8hi)
20749 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
20750 v4si __builtin_ia32_pmulld128 (v4si, v4si)
20751 int __builtin_ia32_ptestc128 (v2di, v2di)
20752 int __builtin_ia32_ptestnzc128 (v2di, v2di)
20753 int __builtin_ia32_ptestz128 (v2di, v2di)
20754 v2df __builtin_ia32_roundpd (v2df, const int)
20755 v4sf __builtin_ia32_roundps (v4sf, const int)
20756 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
20757 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
20758 @end smallexample
20759
20760 The following built-in functions are available when @option{-msse4.1} is
20761 used.
20762
20763 @table @code
20764 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
20765 Generates the @code{insertps} machine instruction.
20766 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
20767 Generates the @code{pextrb} machine instruction.
20768 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
20769 Generates the @code{pinsrb} machine instruction.
20770 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
20771 Generates the @code{pinsrd} machine instruction.
20772 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
20773 Generates the @code{pinsrq} machine instruction in 64bit mode.
20774 @end table
20775
20776 The following built-in functions are changed to generate new SSE4.1
20777 instructions when @option{-msse4.1} is used.
20778
20779 @table @code
20780 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
20781 Generates the @code{extractps} machine instruction.
20782 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
20783 Generates the @code{pextrd} machine instruction.
20784 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
20785 Generates the @code{pextrq} machine instruction in 64bit mode.
20786 @end table
20787
20788 The following built-in functions are available when @option{-msse4.2} is
20789 used. All of them generate the machine instruction that is part of the
20790 name.
20791
20792 @smallexample
20793 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
20794 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
20795 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
20796 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
20797 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
20798 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
20799 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
20800 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
20801 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
20802 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
20803 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
20804 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
20805 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
20806 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
20807 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
20808 @end smallexample
20809
20810 The following built-in functions are available when @option{-msse4.2} is
20811 used.
20812
20813 @table @code
20814 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
20815 Generates the @code{crc32b} machine instruction.
20816 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
20817 Generates the @code{crc32w} machine instruction.
20818 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
20819 Generates the @code{crc32l} machine instruction.
20820 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
20821 Generates the @code{crc32q} machine instruction.
20822 @end table
20823
20824 The following built-in functions are changed to generate new SSE4.2
20825 instructions when @option{-msse4.2} is used.
20826
20827 @table @code
20828 @item int __builtin_popcount (unsigned int)
20829 Generates the @code{popcntl} machine instruction.
20830 @item int __builtin_popcountl (unsigned long)
20831 Generates the @code{popcntl} or @code{popcntq} machine instruction,
20832 depending on the size of @code{unsigned long}.
20833 @item int __builtin_popcountll (unsigned long long)
20834 Generates the @code{popcntq} machine instruction.
20835 @end table
20836
20837 The following built-in functions are available when @option{-mavx} is
20838 used. All of them generate the machine instruction that is part of the
20839 name.
20840
20841 @smallexample
20842 v4df __builtin_ia32_addpd256 (v4df,v4df)
20843 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
20844 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
20845 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
20846 v4df __builtin_ia32_andnpd256 (v4df,v4df)
20847 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
20848 v4df __builtin_ia32_andpd256 (v4df,v4df)
20849 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
20850 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
20851 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
20852 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
20853 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
20854 v2df __builtin_ia32_cmppd (v2df,v2df,int)
20855 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
20856 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
20857 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
20858 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
20859 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
20860 v4df __builtin_ia32_cvtdq2pd256 (v4si)
20861 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
20862 v4si __builtin_ia32_cvtpd2dq256 (v4df)
20863 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
20864 v8si __builtin_ia32_cvtps2dq256 (v8sf)
20865 v4df __builtin_ia32_cvtps2pd256 (v4sf)
20866 v4si __builtin_ia32_cvttpd2dq256 (v4df)
20867 v8si __builtin_ia32_cvttps2dq256 (v8sf)
20868 v4df __builtin_ia32_divpd256 (v4df,v4df)
20869 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
20870 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
20871 v4df __builtin_ia32_haddpd256 (v4df,v4df)
20872 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
20873 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
20874 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
20875 v32qi __builtin_ia32_lddqu256 (pcchar)
20876 v32qi __builtin_ia32_loaddqu256 (pcchar)
20877 v4df __builtin_ia32_loadupd256 (pcdouble)
20878 v8sf __builtin_ia32_loadups256 (pcfloat)
20879 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
20880 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
20881 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
20882 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
20883 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
20884 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
20885 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
20886 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
20887 v4df __builtin_ia32_maxpd256 (v4df,v4df)
20888 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
20889 v4df __builtin_ia32_minpd256 (v4df,v4df)
20890 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
20891 v4df __builtin_ia32_movddup256 (v4df)
20892 int __builtin_ia32_movmskpd256 (v4df)
20893 int __builtin_ia32_movmskps256 (v8sf)
20894 v8sf __builtin_ia32_movshdup256 (v8sf)
20895 v8sf __builtin_ia32_movsldup256 (v8sf)
20896 v4df __builtin_ia32_mulpd256 (v4df,v4df)
20897 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
20898 v4df __builtin_ia32_orpd256 (v4df,v4df)
20899 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
20900 v2df __builtin_ia32_pd_pd256 (v4df)
20901 v4df __builtin_ia32_pd256_pd (v2df)
20902 v4sf __builtin_ia32_ps_ps256 (v8sf)
20903 v8sf __builtin_ia32_ps256_ps (v4sf)
20904 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
20905 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
20906 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
20907 v8sf __builtin_ia32_rcpps256 (v8sf)
20908 v4df __builtin_ia32_roundpd256 (v4df,int)
20909 v8sf __builtin_ia32_roundps256 (v8sf,int)
20910 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
20911 v8sf __builtin_ia32_rsqrtps256 (v8sf)
20912 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
20913 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
20914 v4si __builtin_ia32_si_si256 (v8si)
20915 v8si __builtin_ia32_si256_si (v4si)
20916 v4df __builtin_ia32_sqrtpd256 (v4df)
20917 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
20918 v8sf __builtin_ia32_sqrtps256 (v8sf)
20919 void __builtin_ia32_storedqu256 (pchar,v32qi)
20920 void __builtin_ia32_storeupd256 (pdouble,v4df)
20921 void __builtin_ia32_storeups256 (pfloat,v8sf)
20922 v4df __builtin_ia32_subpd256 (v4df,v4df)
20923 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
20924 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
20925 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
20926 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
20927 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
20928 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
20929 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
20930 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
20931 v4sf __builtin_ia32_vbroadcastss (pcfloat)
20932 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
20933 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
20934 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
20935 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
20936 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
20937 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
20938 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
20939 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
20940 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
20941 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
20942 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
20943 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
20944 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
20945 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
20946 v2df __builtin_ia32_vpermilpd (v2df,int)
20947 v4df __builtin_ia32_vpermilpd256 (v4df,int)
20948 v4sf __builtin_ia32_vpermilps (v4sf,int)
20949 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
20950 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
20951 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
20952 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
20953 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
20954 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
20955 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
20956 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
20957 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
20958 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
20959 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
20960 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
20961 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
20962 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
20963 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
20964 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
20965 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
20966 void __builtin_ia32_vzeroall (void)
20967 void __builtin_ia32_vzeroupper (void)
20968 v4df __builtin_ia32_xorpd256 (v4df,v4df)
20969 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
20970 @end smallexample
20971
20972 The following built-in functions are available when @option{-mavx2} is
20973 used. All of them generate the machine instruction that is part of the
20974 name.
20975
20976 @smallexample
20977 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,int)
20978 v32qi __builtin_ia32_pabsb256 (v32qi)
20979 v16hi __builtin_ia32_pabsw256 (v16hi)
20980 v8si __builtin_ia32_pabsd256 (v8si)
20981 v16hi __builtin_ia32_packssdw256 (v8si,v8si)
20982 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
20983 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
20984 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
20985 v32qi __builtin_ia32_paddb256 (v32qi,v32qi)
20986 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
20987 v8si __builtin_ia32_paddd256 (v8si,v8si)
20988 v4di __builtin_ia32_paddq256 (v4di,v4di)
20989 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
20990 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
20991 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
20992 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
20993 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
20994 v4di __builtin_ia32_andsi256 (v4di,v4di)
20995 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
20996 v32qi __builtin_ia32_pavgb256 (v32qi,v32qi)
20997 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
20998 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
20999 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
21000 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
21001 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
21002 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
21003 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
21004 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
21005 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
21006 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
21007 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
21008 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
21009 v8si __builtin_ia32_phaddd256 (v8si,v8si)
21010 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
21011 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
21012 v8si __builtin_ia32_phsubd256 (v8si,v8si)
21013 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
21014 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
21015 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
21016 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
21017 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
21018 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
21019 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
21020 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
21021 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
21022 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
21023 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
21024 v8si __builtin_ia32_pminsd256 (v8si,v8si)
21025 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
21026 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
21027 v8si __builtin_ia32_pminud256 (v8si,v8si)
21028 int __builtin_ia32_pmovmskb256 (v32qi)
21029 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
21030 v8si __builtin_ia32_pmovsxbd256 (v16qi)
21031 v4di __builtin_ia32_pmovsxbq256 (v16qi)
21032 v8si __builtin_ia32_pmovsxwd256 (v8hi)
21033 v4di __builtin_ia32_pmovsxwq256 (v8hi)
21034 v4di __builtin_ia32_pmovsxdq256 (v4si)
21035 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
21036 v8si __builtin_ia32_pmovzxbd256 (v16qi)
21037 v4di __builtin_ia32_pmovzxbq256 (v16qi)
21038 v8si __builtin_ia32_pmovzxwd256 (v8hi)
21039 v4di __builtin_ia32_pmovzxwq256 (v8hi)
21040 v4di __builtin_ia32_pmovzxdq256 (v4si)
21041 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
21042 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
21043 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
21044 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
21045 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
21046 v8si __builtin_ia32_pmulld256 (v8si,v8si)
21047 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
21048 v4di __builtin_ia32_por256 (v4di,v4di)
21049 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
21050 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
21051 v8si __builtin_ia32_pshufd256 (v8si,int)
21052 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
21053 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
21054 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
21055 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
21056 v8si __builtin_ia32_psignd256 (v8si,v8si)
21057 v4di __builtin_ia32_pslldqi256 (v4di,int)
21058 v16hi __builtin_ia32_psllwi256 (16hi,int)
21059 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
21060 v8si __builtin_ia32_pslldi256 (v8si,int)
21061 v8si __builtin_ia32_pslld256(v8si,v4si)
21062 v4di __builtin_ia32_psllqi256 (v4di,int)
21063 v4di __builtin_ia32_psllq256(v4di,v2di)
21064 v16hi __builtin_ia32_psrawi256 (v16hi,int)
21065 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
21066 v8si __builtin_ia32_psradi256 (v8si,int)
21067 v8si __builtin_ia32_psrad256 (v8si,v4si)
21068 v4di __builtin_ia32_psrldqi256 (v4di, int)
21069 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
21070 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
21071 v8si __builtin_ia32_psrldi256 (v8si,int)
21072 v8si __builtin_ia32_psrld256 (v8si,v4si)
21073 v4di __builtin_ia32_psrlqi256 (v4di,int)
21074 v4di __builtin_ia32_psrlq256(v4di,v2di)
21075 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
21076 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
21077 v8si __builtin_ia32_psubd256 (v8si,v8si)
21078 v4di __builtin_ia32_psubq256 (v4di,v4di)
21079 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
21080 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
21081 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
21082 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
21083 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
21084 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
21085 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
21086 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
21087 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
21088 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
21089 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
21090 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
21091 v4di __builtin_ia32_pxor256 (v4di,v4di)
21092 v4di __builtin_ia32_movntdqa256 (pv4di)
21093 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
21094 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
21095 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
21096 v4di __builtin_ia32_vbroadcastsi256 (v2di)
21097 v4si __builtin_ia32_pblendd128 (v4si,v4si)
21098 v8si __builtin_ia32_pblendd256 (v8si,v8si)
21099 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
21100 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
21101 v8si __builtin_ia32_pbroadcastd256 (v4si)
21102 v4di __builtin_ia32_pbroadcastq256 (v2di)
21103 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
21104 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
21105 v4si __builtin_ia32_pbroadcastd128 (v4si)
21106 v2di __builtin_ia32_pbroadcastq128 (v2di)
21107 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
21108 v4df __builtin_ia32_permdf256 (v4df,int)
21109 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
21110 v4di __builtin_ia32_permdi256 (v4di,int)
21111 v4di __builtin_ia32_permti256 (v4di,v4di,int)
21112 v4di __builtin_ia32_extract128i256 (v4di,int)
21113 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
21114 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
21115 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
21116 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
21117 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
21118 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
21119 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
21120 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
21121 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
21122 v8si __builtin_ia32_psllv8si (v8si,v8si)
21123 v4si __builtin_ia32_psllv4si (v4si,v4si)
21124 v4di __builtin_ia32_psllv4di (v4di,v4di)
21125 v2di __builtin_ia32_psllv2di (v2di,v2di)
21126 v8si __builtin_ia32_psrav8si (v8si,v8si)
21127 v4si __builtin_ia32_psrav4si (v4si,v4si)
21128 v8si __builtin_ia32_psrlv8si (v8si,v8si)
21129 v4si __builtin_ia32_psrlv4si (v4si,v4si)
21130 v4di __builtin_ia32_psrlv4di (v4di,v4di)
21131 v2di __builtin_ia32_psrlv2di (v2di,v2di)
21132 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
21133 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
21134 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
21135 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
21136 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
21137 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
21138 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
21139 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
21140 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
21141 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
21142 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
21143 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
21144 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
21145 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
21146 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
21147 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
21148 @end smallexample
21149
21150 The following built-in functions are available when @option{-maes} is
21151 used. All of them generate the machine instruction that is part of the
21152 name.
21153
21154 @smallexample
21155 v2di __builtin_ia32_aesenc128 (v2di, v2di)
21156 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
21157 v2di __builtin_ia32_aesdec128 (v2di, v2di)
21158 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
21159 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
21160 v2di __builtin_ia32_aesimc128 (v2di)
21161 @end smallexample
21162
21163 The following built-in function is available when @option{-mpclmul} is
21164 used.
21165
21166 @table @code
21167 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
21168 Generates the @code{pclmulqdq} machine instruction.
21169 @end table
21170
21171 The following built-in function is available when @option{-mfsgsbase} is
21172 used. All of them generate the machine instruction that is part of the
21173 name.
21174
21175 @smallexample
21176 unsigned int __builtin_ia32_rdfsbase32 (void)
21177 unsigned long long __builtin_ia32_rdfsbase64 (void)
21178 unsigned int __builtin_ia32_rdgsbase32 (void)
21179 unsigned long long __builtin_ia32_rdgsbase64 (void)
21180 void _writefsbase_u32 (unsigned int)
21181 void _writefsbase_u64 (unsigned long long)
21182 void _writegsbase_u32 (unsigned int)
21183 void _writegsbase_u64 (unsigned long long)
21184 @end smallexample
21185
21186 The following built-in function is available when @option{-mrdrnd} is
21187 used. All of them generate the machine instruction that is part of the
21188 name.
21189
21190 @smallexample
21191 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
21192 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
21193 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
21194 @end smallexample
21195
21196 The following built-in functions are available when @option{-msse4a} is used.
21197 All of them generate the machine instruction that is part of the name.
21198
21199 @smallexample
21200 void __builtin_ia32_movntsd (double *, v2df)
21201 void __builtin_ia32_movntss (float *, v4sf)
21202 v2di __builtin_ia32_extrq (v2di, v16qi)
21203 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
21204 v2di __builtin_ia32_insertq (v2di, v2di)
21205 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
21206 @end smallexample
21207
21208 The following built-in functions are available when @option{-mxop} is used.
21209 @smallexample
21210 v2df __builtin_ia32_vfrczpd (v2df)
21211 v4sf __builtin_ia32_vfrczps (v4sf)
21212 v2df __builtin_ia32_vfrczsd (v2df)
21213 v4sf __builtin_ia32_vfrczss (v4sf)
21214 v4df __builtin_ia32_vfrczpd256 (v4df)
21215 v8sf __builtin_ia32_vfrczps256 (v8sf)
21216 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
21217 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
21218 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
21219 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
21220 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
21221 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
21222 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
21223 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
21224 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
21225 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
21226 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
21227 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
21228 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
21229 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
21230 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
21231 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
21232 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
21233 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
21234 v4si __builtin_ia32_vpcomequd (v4si, v4si)
21235 v2di __builtin_ia32_vpcomequq (v2di, v2di)
21236 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
21237 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
21238 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
21239 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
21240 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
21241 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
21242 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
21243 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
21244 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
21245 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
21246 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
21247 v4si __builtin_ia32_vpcomged (v4si, v4si)
21248 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
21249 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
21250 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
21251 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
21252 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
21253 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
21254 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
21255 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
21256 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
21257 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
21258 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
21259 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
21260 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
21261 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
21262 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
21263 v4si __builtin_ia32_vpcomled (v4si, v4si)
21264 v2di __builtin_ia32_vpcomleq (v2di, v2di)
21265 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
21266 v4si __builtin_ia32_vpcomleud (v4si, v4si)
21267 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
21268 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
21269 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
21270 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
21271 v4si __builtin_ia32_vpcomltd (v4si, v4si)
21272 v2di __builtin_ia32_vpcomltq (v2di, v2di)
21273 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
21274 v4si __builtin_ia32_vpcomltud (v4si, v4si)
21275 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
21276 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
21277 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
21278 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
21279 v4si __builtin_ia32_vpcomned (v4si, v4si)
21280 v2di __builtin_ia32_vpcomneq (v2di, v2di)
21281 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
21282 v4si __builtin_ia32_vpcomneud (v4si, v4si)
21283 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
21284 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
21285 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
21286 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
21287 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
21288 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
21289 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
21290 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
21291 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
21292 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
21293 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
21294 v4si __builtin_ia32_vphaddbd (v16qi)
21295 v2di __builtin_ia32_vphaddbq (v16qi)
21296 v8hi __builtin_ia32_vphaddbw (v16qi)
21297 v2di __builtin_ia32_vphadddq (v4si)
21298 v4si __builtin_ia32_vphaddubd (v16qi)
21299 v2di __builtin_ia32_vphaddubq (v16qi)
21300 v8hi __builtin_ia32_vphaddubw (v16qi)
21301 v2di __builtin_ia32_vphaddudq (v4si)
21302 v4si __builtin_ia32_vphadduwd (v8hi)
21303 v2di __builtin_ia32_vphadduwq (v8hi)
21304 v4si __builtin_ia32_vphaddwd (v8hi)
21305 v2di __builtin_ia32_vphaddwq (v8hi)
21306 v8hi __builtin_ia32_vphsubbw (v16qi)
21307 v2di __builtin_ia32_vphsubdq (v4si)
21308 v4si __builtin_ia32_vphsubwd (v8hi)
21309 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
21310 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
21311 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
21312 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
21313 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
21314 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
21315 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
21316 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
21317 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
21318 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
21319 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
21320 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
21321 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
21322 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
21323 v4si __builtin_ia32_vprotd (v4si, v4si)
21324 v2di __builtin_ia32_vprotq (v2di, v2di)
21325 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
21326 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
21327 v4si __builtin_ia32_vpshad (v4si, v4si)
21328 v2di __builtin_ia32_vpshaq (v2di, v2di)
21329 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
21330 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
21331 v4si __builtin_ia32_vpshld (v4si, v4si)
21332 v2di __builtin_ia32_vpshlq (v2di, v2di)
21333 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
21334 @end smallexample
21335
21336 The following built-in functions are available when @option{-mfma4} is used.
21337 All of them generate the machine instruction that is part of the name.
21338
21339 @smallexample
21340 v2df __builtin_ia32_vfmaddpd (v2df, v2df, v2df)
21341 v4sf __builtin_ia32_vfmaddps (v4sf, v4sf, v4sf)
21342 v2df __builtin_ia32_vfmaddsd (v2df, v2df, v2df)
21343 v4sf __builtin_ia32_vfmaddss (v4sf, v4sf, v4sf)
21344 v2df __builtin_ia32_vfmsubpd (v2df, v2df, v2df)
21345 v4sf __builtin_ia32_vfmsubps (v4sf, v4sf, v4sf)
21346 v2df __builtin_ia32_vfmsubsd (v2df, v2df, v2df)
21347 v4sf __builtin_ia32_vfmsubss (v4sf, v4sf, v4sf)
21348 v2df __builtin_ia32_vfnmaddpd (v2df, v2df, v2df)
21349 v4sf __builtin_ia32_vfnmaddps (v4sf, v4sf, v4sf)
21350 v2df __builtin_ia32_vfnmaddsd (v2df, v2df, v2df)
21351 v4sf __builtin_ia32_vfnmaddss (v4sf, v4sf, v4sf)
21352 v2df __builtin_ia32_vfnmsubpd (v2df, v2df, v2df)
21353 v4sf __builtin_ia32_vfnmsubps (v4sf, v4sf, v4sf)
21354 v2df __builtin_ia32_vfnmsubsd (v2df, v2df, v2df)
21355 v4sf __builtin_ia32_vfnmsubss (v4sf, v4sf, v4sf)
21356 v2df __builtin_ia32_vfmaddsubpd (v2df, v2df, v2df)
21357 v4sf __builtin_ia32_vfmaddsubps (v4sf, v4sf, v4sf)
21358 v2df __builtin_ia32_vfmsubaddpd (v2df, v2df, v2df)
21359 v4sf __builtin_ia32_vfmsubaddps (v4sf, v4sf, v4sf)
21360 v4df __builtin_ia32_vfmaddpd256 (v4df, v4df, v4df)
21361 v8sf __builtin_ia32_vfmaddps256 (v8sf, v8sf, v8sf)
21362 v4df __builtin_ia32_vfmsubpd256 (v4df, v4df, v4df)
21363 v8sf __builtin_ia32_vfmsubps256 (v8sf, v8sf, v8sf)
21364 v4df __builtin_ia32_vfnmaddpd256 (v4df, v4df, v4df)
21365 v8sf __builtin_ia32_vfnmaddps256 (v8sf, v8sf, v8sf)
21366 v4df __builtin_ia32_vfnmsubpd256 (v4df, v4df, v4df)
21367 v8sf __builtin_ia32_vfnmsubps256 (v8sf, v8sf, v8sf)
21368 v4df __builtin_ia32_vfmaddsubpd256 (v4df, v4df, v4df)
21369 v8sf __builtin_ia32_vfmaddsubps256 (v8sf, v8sf, v8sf)
21370 v4df __builtin_ia32_vfmsubaddpd256 (v4df, v4df, v4df)
21371 v8sf __builtin_ia32_vfmsubaddps256 (v8sf, v8sf, v8sf)
21372
21373 @end smallexample
21374
21375 The following built-in functions are available when @option{-mlwp} is used.
21376
21377 @smallexample
21378 void __builtin_ia32_llwpcb16 (void *);
21379 void __builtin_ia32_llwpcb32 (void *);
21380 void __builtin_ia32_llwpcb64 (void *);
21381 void * __builtin_ia32_llwpcb16 (void);
21382 void * __builtin_ia32_llwpcb32 (void);
21383 void * __builtin_ia32_llwpcb64 (void);
21384 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
21385 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
21386 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
21387 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
21388 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
21389 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
21390 @end smallexample
21391
21392 The following built-in functions are available when @option{-mbmi} is used.
21393 All of them generate the machine instruction that is part of the name.
21394 @smallexample
21395 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
21396 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
21397 @end smallexample
21398
21399 The following built-in functions are available when @option{-mbmi2} is used.
21400 All of them generate the machine instruction that is part of the name.
21401 @smallexample
21402 unsigned int _bzhi_u32 (unsigned int, unsigned int)
21403 unsigned int _pdep_u32 (unsigned int, unsigned int)
21404 unsigned int _pext_u32 (unsigned int, unsigned int)
21405 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
21406 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
21407 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
21408 @end smallexample
21409
21410 The following built-in functions are available when @option{-mlzcnt} is used.
21411 All of them generate the machine instruction that is part of the name.
21412 @smallexample
21413 unsigned short __builtin_ia32_lzcnt_u16(unsigned short);
21414 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
21415 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
21416 @end smallexample
21417
21418 The following built-in functions are available when @option{-mfxsr} is used.
21419 All of them generate the machine instruction that is part of the name.
21420 @smallexample
21421 void __builtin_ia32_fxsave (void *)
21422 void __builtin_ia32_fxrstor (void *)
21423 void __builtin_ia32_fxsave64 (void *)
21424 void __builtin_ia32_fxrstor64 (void *)
21425 @end smallexample
21426
21427 The following built-in functions are available when @option{-mxsave} is used.
21428 All of them generate the machine instruction that is part of the name.
21429 @smallexample
21430 void __builtin_ia32_xsave (void *, long long)
21431 void __builtin_ia32_xrstor (void *, long long)
21432 void __builtin_ia32_xsave64 (void *, long long)
21433 void __builtin_ia32_xrstor64 (void *, long long)
21434 @end smallexample
21435
21436 The following built-in functions are available when @option{-mxsaveopt} is used.
21437 All of them generate the machine instruction that is part of the name.
21438 @smallexample
21439 void __builtin_ia32_xsaveopt (void *, long long)
21440 void __builtin_ia32_xsaveopt64 (void *, long long)
21441 @end smallexample
21442
21443 The following built-in functions are available when @option{-mtbm} is used.
21444 Both of them generate the immediate form of the bextr machine instruction.
21445 @smallexample
21446 unsigned int __builtin_ia32_bextri_u32 (unsigned int,
21447 const unsigned int);
21448 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long,
21449 const unsigned long long);
21450 @end smallexample
21451
21452
21453 The following built-in functions are available when @option{-m3dnow} is used.
21454 All of them generate the machine instruction that is part of the name.
21455
21456 @smallexample
21457 void __builtin_ia32_femms (void)
21458 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
21459 v2si __builtin_ia32_pf2id (v2sf)
21460 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
21461 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
21462 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
21463 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
21464 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
21465 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
21466 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
21467 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
21468 v2sf __builtin_ia32_pfrcp (v2sf)
21469 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
21470 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
21471 v2sf __builtin_ia32_pfrsqrt (v2sf)
21472 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
21473 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
21474 v2sf __builtin_ia32_pi2fd (v2si)
21475 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
21476 @end smallexample
21477
21478 The following built-in functions are available when @option{-m3dnowa} is used.
21479 All of them generate the machine instruction that is part of the name.
21480
21481 @smallexample
21482 v2si __builtin_ia32_pf2iw (v2sf)
21483 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
21484 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
21485 v2sf __builtin_ia32_pi2fw (v2si)
21486 v2sf __builtin_ia32_pswapdsf (v2sf)
21487 v2si __builtin_ia32_pswapdsi (v2si)
21488 @end smallexample
21489
21490 The following built-in functions are available when @option{-mrtm} is used
21491 They are used for restricted transactional memory. These are the internal
21492 low level functions. Normally the functions in
21493 @ref{x86 transactional memory intrinsics} should be used instead.
21494
21495 @smallexample
21496 int __builtin_ia32_xbegin ()
21497 void __builtin_ia32_xend ()
21498 void __builtin_ia32_xabort (status)
21499 int __builtin_ia32_xtest ()
21500 @end smallexample
21501
21502 The following built-in functions are available when @option{-mmwaitx} is used.
21503 All of them generate the machine instruction that is part of the name.
21504 @smallexample
21505 void __builtin_ia32_monitorx (void *, unsigned int, unsigned int)
21506 void __builtin_ia32_mwaitx (unsigned int, unsigned int, unsigned int)
21507 @end smallexample
21508
21509 The following built-in functions are available when @option{-mclzero} is used.
21510 All of them generate the machine instruction that is part of the name.
21511 @smallexample
21512 void __builtin_i32_clzero (void *)
21513 @end smallexample
21514
21515 The following built-in functions are available when @option{-mpku} is used.
21516 They generate reads and writes to PKRU.
21517 @smallexample
21518 void __builtin_ia32_wrpkru (unsigned int)
21519 unsigned int __builtin_ia32_rdpkru ()
21520 @end smallexample
21521
21522 @node x86 transactional memory intrinsics
21523 @subsection x86 Transactional Memory Intrinsics
21524
21525 These hardware transactional memory intrinsics for x86 allow you to use
21526 memory transactions with RTM (Restricted Transactional Memory).
21527 This support is enabled with the @option{-mrtm} option.
21528 For using HLE (Hardware Lock Elision) see
21529 @ref{x86 specific memory model extensions for transactional memory} instead.
21530
21531 A memory transaction commits all changes to memory in an atomic way,
21532 as visible to other threads. If the transaction fails it is rolled back
21533 and all side effects discarded.
21534
21535 Generally there is no guarantee that a memory transaction ever succeeds
21536 and suitable fallback code always needs to be supplied.
21537
21538 @deftypefn {RTM Function} {unsigned} _xbegin ()
21539 Start a RTM (Restricted Transactional Memory) transaction.
21540 Returns @code{_XBEGIN_STARTED} when the transaction
21541 started successfully (note this is not 0, so the constant has to be
21542 explicitly tested).
21543
21544 If the transaction aborts, all side-effects
21545 are undone and an abort code encoded as a bit mask is returned.
21546 The following macros are defined:
21547
21548 @table @code
21549 @item _XABORT_EXPLICIT
21550 Transaction was explicitly aborted with @code{_xabort}. The parameter passed
21551 to @code{_xabort} is available with @code{_XABORT_CODE(status)}.
21552 @item _XABORT_RETRY
21553 Transaction retry is possible.
21554 @item _XABORT_CONFLICT
21555 Transaction abort due to a memory conflict with another thread.
21556 @item _XABORT_CAPACITY
21557 Transaction abort due to the transaction using too much memory.
21558 @item _XABORT_DEBUG
21559 Transaction abort due to a debug trap.
21560 @item _XABORT_NESTED
21561 Transaction abort in an inner nested transaction.
21562 @end table
21563
21564 There is no guarantee
21565 any transaction ever succeeds, so there always needs to be a valid
21566 fallback path.
21567 @end deftypefn
21568
21569 @deftypefn {RTM Function} {void} _xend ()
21570 Commit the current transaction. When no transaction is active this faults.
21571 All memory side-effects of the transaction become visible
21572 to other threads in an atomic manner.
21573 @end deftypefn
21574
21575 @deftypefn {RTM Function} {int} _xtest ()
21576 Return a nonzero value if a transaction is currently active, otherwise 0.
21577 @end deftypefn
21578
21579 @deftypefn {RTM Function} {void} _xabort (status)
21580 Abort the current transaction. When no transaction is active this is a no-op.
21581 The @var{status} is an 8-bit constant; its value is encoded in the return
21582 value from @code{_xbegin}.
21583 @end deftypefn
21584
21585 Here is an example showing handling for @code{_XABORT_RETRY}
21586 and a fallback path for other failures:
21587
21588 @smallexample
21589 #include <immintrin.h>
21590
21591 int n_tries, max_tries;
21592 unsigned status = _XABORT_EXPLICIT;
21593 ...
21594
21595 for (n_tries = 0; n_tries < max_tries; n_tries++)
21596 @{
21597 status = _xbegin ();
21598 if (status == _XBEGIN_STARTED || !(status & _XABORT_RETRY))
21599 break;
21600 @}
21601 if (status == _XBEGIN_STARTED)
21602 @{
21603 ... transaction code...
21604 _xend ();
21605 @}
21606 else
21607 @{
21608 ... non-transactional fallback path...
21609 @}
21610 @end smallexample
21611
21612 @noindent
21613 Note that, in most cases, the transactional and non-transactional code
21614 must synchronize together to ensure consistency.
21615
21616 @node Target Format Checks
21617 @section Format Checks Specific to Particular Target Machines
21618
21619 For some target machines, GCC supports additional options to the
21620 format attribute
21621 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
21622
21623 @menu
21624 * Solaris Format Checks::
21625 * Darwin Format Checks::
21626 @end menu
21627
21628 @node Solaris Format Checks
21629 @subsection Solaris Format Checks
21630
21631 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
21632 check. @code{cmn_err} accepts a subset of the standard @code{printf}
21633 conversions, and the two-argument @code{%b} conversion for displaying
21634 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
21635
21636 @node Darwin Format Checks
21637 @subsection Darwin Format Checks
21638
21639 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
21640 attribute context. Declarations made with such attribution are parsed for correct syntax
21641 and format argument types. However, parsing of the format string itself is currently undefined
21642 and is not carried out by this version of the compiler.
21643
21644 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
21645 also be used as format arguments. Note that the relevant headers are only likely to be
21646 available on Darwin (OSX) installations. On such installations, the XCode and system
21647 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
21648 associated functions.
21649
21650 @node Pragmas
21651 @section Pragmas Accepted by GCC
21652 @cindex pragmas
21653 @cindex @code{#pragma}
21654
21655 GCC supports several types of pragmas, primarily in order to compile
21656 code originally written for other compilers. Note that in general
21657 we do not recommend the use of pragmas; @xref{Function Attributes},
21658 for further explanation.
21659
21660 @menu
21661 * AArch64 Pragmas::
21662 * ARM Pragmas::
21663 * M32C Pragmas::
21664 * MeP Pragmas::
21665 * RS/6000 and PowerPC Pragmas::
21666 * S/390 Pragmas::
21667 * Darwin Pragmas::
21668 * Solaris Pragmas::
21669 * Symbol-Renaming Pragmas::
21670 * Structure-Layout Pragmas::
21671 * Weak Pragmas::
21672 * Diagnostic Pragmas::
21673 * Visibility Pragmas::
21674 * Push/Pop Macro Pragmas::
21675 * Function Specific Option Pragmas::
21676 * Loop-Specific Pragmas::
21677 @end menu
21678
21679 @node AArch64 Pragmas
21680 @subsection AArch64 Pragmas
21681
21682 The pragmas defined by the AArch64 target correspond to the AArch64
21683 target function attributes. They can be specified as below:
21684 @smallexample
21685 #pragma GCC target("string")
21686 @end smallexample
21687
21688 where @code{@var{string}} can be any string accepted as an AArch64 target
21689 attribute. @xref{AArch64 Function Attributes}, for more details
21690 on the permissible values of @code{string}.
21691
21692 @node ARM Pragmas
21693 @subsection ARM Pragmas
21694
21695 The ARM target defines pragmas for controlling the default addition of
21696 @code{long_call} and @code{short_call} attributes to functions.
21697 @xref{Function Attributes}, for information about the effects of these
21698 attributes.
21699
21700 @table @code
21701 @item long_calls
21702 @cindex pragma, long_calls
21703 Set all subsequent functions to have the @code{long_call} attribute.
21704
21705 @item no_long_calls
21706 @cindex pragma, no_long_calls
21707 Set all subsequent functions to have the @code{short_call} attribute.
21708
21709 @item long_calls_off
21710 @cindex pragma, long_calls_off
21711 Do not affect the @code{long_call} or @code{short_call} attributes of
21712 subsequent functions.
21713 @end table
21714
21715 @node M32C Pragmas
21716 @subsection M32C Pragmas
21717
21718 @table @code
21719 @item GCC memregs @var{number}
21720 @cindex pragma, memregs
21721 Overrides the command-line option @code{-memregs=} for the current
21722 file. Use with care! This pragma must be before any function in the
21723 file, and mixing different memregs values in different objects may
21724 make them incompatible. This pragma is useful when a
21725 performance-critical function uses a memreg for temporary values,
21726 as it may allow you to reduce the number of memregs used.
21727
21728 @item ADDRESS @var{name} @var{address}
21729 @cindex pragma, address
21730 For any declared symbols matching @var{name}, this does three things
21731 to that symbol: it forces the symbol to be located at the given
21732 address (a number), it forces the symbol to be volatile, and it
21733 changes the symbol's scope to be static. This pragma exists for
21734 compatibility with other compilers, but note that the common
21735 @code{1234H} numeric syntax is not supported (use @code{0x1234}
21736 instead). Example:
21737
21738 @smallexample
21739 #pragma ADDRESS port3 0x103
21740 char port3;
21741 @end smallexample
21742
21743 @end table
21744
21745 @node MeP Pragmas
21746 @subsection MeP Pragmas
21747
21748 @table @code
21749
21750 @item custom io_volatile (on|off)
21751 @cindex pragma, custom io_volatile
21752 Overrides the command-line option @code{-mio-volatile} for the current
21753 file. Note that for compatibility with future GCC releases, this
21754 option should only be used once before any @code{io} variables in each
21755 file.
21756
21757 @item GCC coprocessor available @var{registers}
21758 @cindex pragma, coprocessor available
21759 Specifies which coprocessor registers are available to the register
21760 allocator. @var{registers} may be a single register, register range
21761 separated by ellipses, or comma-separated list of those. Example:
21762
21763 @smallexample
21764 #pragma GCC coprocessor available $c0...$c10, $c28
21765 @end smallexample
21766
21767 @item GCC coprocessor call_saved @var{registers}
21768 @cindex pragma, coprocessor call_saved
21769 Specifies which coprocessor registers are to be saved and restored by
21770 any function using them. @var{registers} may be a single register,
21771 register range separated by ellipses, or comma-separated list of
21772 those. Example:
21773
21774 @smallexample
21775 #pragma GCC coprocessor call_saved $c4...$c6, $c31
21776 @end smallexample
21777
21778 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
21779 @cindex pragma, coprocessor subclass
21780 Creates and defines a register class. These register classes can be
21781 used by inline @code{asm} constructs. @var{registers} may be a single
21782 register, register range separated by ellipses, or comma-separated
21783 list of those. Example:
21784
21785 @smallexample
21786 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
21787
21788 asm ("cpfoo %0" : "=B" (x));
21789 @end smallexample
21790
21791 @item GCC disinterrupt @var{name} , @var{name} @dots{}
21792 @cindex pragma, disinterrupt
21793 For the named functions, the compiler adds code to disable interrupts
21794 for the duration of those functions. If any functions so named
21795 are not encountered in the source, a warning is emitted that the pragma is
21796 not used. Examples:
21797
21798 @smallexample
21799 #pragma disinterrupt foo
21800 #pragma disinterrupt bar, grill
21801 int foo () @{ @dots{} @}
21802 @end smallexample
21803
21804 @item GCC call @var{name} , @var{name} @dots{}
21805 @cindex pragma, call
21806 For the named functions, the compiler always uses a register-indirect
21807 call model when calling the named functions. Examples:
21808
21809 @smallexample
21810 extern int foo ();
21811 #pragma call foo
21812 @end smallexample
21813
21814 @end table
21815
21816 @node RS/6000 and PowerPC Pragmas
21817 @subsection RS/6000 and PowerPC Pragmas
21818
21819 The RS/6000 and PowerPC targets define one pragma for controlling
21820 whether or not the @code{longcall} attribute is added to function
21821 declarations by default. This pragma overrides the @option{-mlongcall}
21822 option, but not the @code{longcall} and @code{shortcall} attributes.
21823 @xref{RS/6000 and PowerPC Options}, for more information about when long
21824 calls are and are not necessary.
21825
21826 @table @code
21827 @item longcall (1)
21828 @cindex pragma, longcall
21829 Apply the @code{longcall} attribute to all subsequent function
21830 declarations.
21831
21832 @item longcall (0)
21833 Do not apply the @code{longcall} attribute to subsequent function
21834 declarations.
21835 @end table
21836
21837 @c Describe h8300 pragmas here.
21838 @c Describe sh pragmas here.
21839 @c Describe v850 pragmas here.
21840
21841 @node S/390 Pragmas
21842 @subsection S/390 Pragmas
21843
21844 The pragmas defined by the S/390 target correspond to the S/390
21845 target function attributes and some the additional options:
21846
21847 @table @samp
21848 @item zvector
21849 @itemx no-zvector
21850 @end table
21851
21852 Note that options of the pragma, unlike options of the target
21853 attribute, do change the value of preprocessor macros like
21854 @code{__VEC__}. They can be specified as below:
21855
21856 @smallexample
21857 #pragma GCC target("string[,string]...")
21858 #pragma GCC target("string"[,"string"]...)
21859 @end smallexample
21860
21861 @node Darwin Pragmas
21862 @subsection Darwin Pragmas
21863
21864 The following pragmas are available for all architectures running the
21865 Darwin operating system. These are useful for compatibility with other
21866 Mac OS compilers.
21867
21868 @table @code
21869 @item mark @var{tokens}@dots{}
21870 @cindex pragma, mark
21871 This pragma is accepted, but has no effect.
21872
21873 @item options align=@var{alignment}
21874 @cindex pragma, options align
21875 This pragma sets the alignment of fields in structures. The values of
21876 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
21877 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
21878 properly; to restore the previous setting, use @code{reset} for the
21879 @var{alignment}.
21880
21881 @item segment @var{tokens}@dots{}
21882 @cindex pragma, segment
21883 This pragma is accepted, but has no effect.
21884
21885 @item unused (@var{var} [, @var{var}]@dots{})
21886 @cindex pragma, unused
21887 This pragma declares variables to be possibly unused. GCC does not
21888 produce warnings for the listed variables. The effect is similar to
21889 that of the @code{unused} attribute, except that this pragma may appear
21890 anywhere within the variables' scopes.
21891 @end table
21892
21893 @node Solaris Pragmas
21894 @subsection Solaris Pragmas
21895
21896 The Solaris target supports @code{#pragma redefine_extname}
21897 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
21898 @code{#pragma} directives for compatibility with the system compiler.
21899
21900 @table @code
21901 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
21902 @cindex pragma, align
21903
21904 Increase the minimum alignment of each @var{variable} to @var{alignment}.
21905 This is the same as GCC's @code{aligned} attribute @pxref{Variable
21906 Attributes}). Macro expansion occurs on the arguments to this pragma
21907 when compiling C and Objective-C@. It does not currently occur when
21908 compiling C++, but this is a bug which may be fixed in a future
21909 release.
21910
21911 @item fini (@var{function} [, @var{function}]...)
21912 @cindex pragma, fini
21913
21914 This pragma causes each listed @var{function} to be called after
21915 main, or during shared module unloading, by adding a call to the
21916 @code{.fini} section.
21917
21918 @item init (@var{function} [, @var{function}]...)
21919 @cindex pragma, init
21920
21921 This pragma causes each listed @var{function} to be called during
21922 initialization (before @code{main}) or during shared module loading, by
21923 adding a call to the @code{.init} section.
21924
21925 @end table
21926
21927 @node Symbol-Renaming Pragmas
21928 @subsection Symbol-Renaming Pragmas
21929
21930 GCC supports a @code{#pragma} directive that changes the name used in
21931 assembly for a given declaration. While this pragma is supported on all
21932 platforms, it is intended primarily to provide compatibility with the
21933 Solaris system headers. This effect can also be achieved using the asm
21934 labels extension (@pxref{Asm Labels}).
21935
21936 @table @code
21937 @item redefine_extname @var{oldname} @var{newname}
21938 @cindex pragma, redefine_extname
21939
21940 This pragma gives the C function @var{oldname} the assembly symbol
21941 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
21942 is defined if this pragma is available (currently on all platforms).
21943 @end table
21944
21945 This pragma and the asm labels extension interact in a complicated
21946 manner. Here are some corner cases you may want to be aware of:
21947
21948 @enumerate
21949 @item This pragma silently applies only to declarations with external
21950 linkage. Asm labels do not have this restriction.
21951
21952 @item In C++, this pragma silently applies only to declarations with
21953 ``C'' linkage. Again, asm labels do not have this restriction.
21954
21955 @item If either of the ways of changing the assembly name of a
21956 declaration are applied to a declaration whose assembly name has
21957 already been determined (either by a previous use of one of these
21958 features, or because the compiler needed the assembly name in order to
21959 generate code), and the new name is different, a warning issues and
21960 the name does not change.
21961
21962 @item The @var{oldname} used by @code{#pragma redefine_extname} is
21963 always the C-language name.
21964 @end enumerate
21965
21966 @node Structure-Layout Pragmas
21967 @subsection Structure-Layout Pragmas
21968
21969 For compatibility with Microsoft Windows compilers, GCC supports a
21970 set of @code{#pragma} directives that change the maximum alignment of
21971 members of structures (other than zero-width bit-fields), unions, and
21972 classes subsequently defined. The @var{n} value below always is required
21973 to be a small power of two and specifies the new alignment in bytes.
21974
21975 @enumerate
21976 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
21977 @item @code{#pragma pack()} sets the alignment to the one that was in
21978 effect when compilation started (see also command-line option
21979 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
21980 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
21981 setting on an internal stack and then optionally sets the new alignment.
21982 @item @code{#pragma pack(pop)} restores the alignment setting to the one
21983 saved at the top of the internal stack (and removes that stack entry).
21984 Note that @code{#pragma pack([@var{n}])} does not influence this internal
21985 stack; thus it is possible to have @code{#pragma pack(push)} followed by
21986 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
21987 @code{#pragma pack(pop)}.
21988 @end enumerate
21989
21990 Some targets, e.g.@: x86 and PowerPC, support the @code{#pragma ms_struct}
21991 directive which lays out structures and unions subsequently defined as the
21992 documented @code{__attribute__ ((ms_struct))}.
21993
21994 @enumerate
21995 @item @code{#pragma ms_struct on} turns on the Microsoft layout.
21996 @item @code{#pragma ms_struct off} turns off the Microsoft layout.
21997 @item @code{#pragma ms_struct reset} goes back to the default layout.
21998 @end enumerate
21999
22000 Most targets also support the @code{#pragma scalar_storage_order} directive
22001 which lays out structures and unions subsequently defined as the documented
22002 @code{__attribute__ ((scalar_storage_order))}.
22003
22004 @enumerate
22005 @item @code{#pragma scalar_storage_order big-endian} sets the storage order
22006 of the scalar fields to big-endian.
22007 @item @code{#pragma scalar_storage_order little-endian} sets the storage order
22008 of the scalar fields to little-endian.
22009 @item @code{#pragma scalar_storage_order default} goes back to the endianness
22010 that was in effect when compilation started (see also command-line option
22011 @option{-fsso-struct=@var{endianness}} @pxref{C Dialect Options}).
22012 @end enumerate
22013
22014 @node Weak Pragmas
22015 @subsection Weak Pragmas
22016
22017 For compatibility with SVR4, GCC supports a set of @code{#pragma}
22018 directives for declaring symbols to be weak, and defining weak
22019 aliases.
22020
22021 @table @code
22022 @item #pragma weak @var{symbol}
22023 @cindex pragma, weak
22024 This pragma declares @var{symbol} to be weak, as if the declaration
22025 had the attribute of the same name. The pragma may appear before
22026 or after the declaration of @var{symbol}. It is not an error for
22027 @var{symbol} to never be defined at all.
22028
22029 @item #pragma weak @var{symbol1} = @var{symbol2}
22030 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
22031 It is an error if @var{symbol2} is not defined in the current
22032 translation unit.
22033 @end table
22034
22035 @node Diagnostic Pragmas
22036 @subsection Diagnostic Pragmas
22037
22038 GCC allows the user to selectively enable or disable certain types of
22039 diagnostics, and change the kind of the diagnostic. For example, a
22040 project's policy might require that all sources compile with
22041 @option{-Werror} but certain files might have exceptions allowing
22042 specific types of warnings. Or, a project might selectively enable
22043 diagnostics and treat them as errors depending on which preprocessor
22044 macros are defined.
22045
22046 @table @code
22047 @item #pragma GCC diagnostic @var{kind} @var{option}
22048 @cindex pragma, diagnostic
22049
22050 Modifies the disposition of a diagnostic. Note that not all
22051 diagnostics are modifiable; at the moment only warnings (normally
22052 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
22053 Use @option{-fdiagnostics-show-option} to determine which diagnostics
22054 are controllable and which option controls them.
22055
22056 @var{kind} is @samp{error} to treat this diagnostic as an error,
22057 @samp{warning} to treat it like a warning (even if @option{-Werror} is
22058 in effect), or @samp{ignored} if the diagnostic is to be ignored.
22059 @var{option} is a double quoted string that matches the command-line
22060 option.
22061
22062 @smallexample
22063 #pragma GCC diagnostic warning "-Wformat"
22064 #pragma GCC diagnostic error "-Wformat"
22065 #pragma GCC diagnostic ignored "-Wformat"
22066 @end smallexample
22067
22068 Note that these pragmas override any command-line options. GCC keeps
22069 track of the location of each pragma, and issues diagnostics according
22070 to the state as of that point in the source file. Thus, pragmas occurring
22071 after a line do not affect diagnostics caused by that line.
22072
22073 @item #pragma GCC diagnostic push
22074 @itemx #pragma GCC diagnostic pop
22075
22076 Causes GCC to remember the state of the diagnostics as of each
22077 @code{push}, and restore to that point at each @code{pop}. If a
22078 @code{pop} has no matching @code{push}, the command-line options are
22079 restored.
22080
22081 @smallexample
22082 #pragma GCC diagnostic error "-Wuninitialized"
22083 foo(a); /* error is given for this one */
22084 #pragma GCC diagnostic push
22085 #pragma GCC diagnostic ignored "-Wuninitialized"
22086 foo(b); /* no diagnostic for this one */
22087 #pragma GCC diagnostic pop
22088 foo(c); /* error is given for this one */
22089 #pragma GCC diagnostic pop
22090 foo(d); /* depends on command-line options */
22091 @end smallexample
22092
22093 @end table
22094
22095 GCC also offers a simple mechanism for printing messages during
22096 compilation.
22097
22098 @table @code
22099 @item #pragma message @var{string}
22100 @cindex pragma, diagnostic
22101
22102 Prints @var{string} as a compiler message on compilation. The message
22103 is informational only, and is neither a compilation warning nor an error.
22104
22105 @smallexample
22106 #pragma message "Compiling " __FILE__ "..."
22107 @end smallexample
22108
22109 @var{string} may be parenthesized, and is printed with location
22110 information. For example,
22111
22112 @smallexample
22113 #define DO_PRAGMA(x) _Pragma (#x)
22114 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
22115
22116 TODO(Remember to fix this)
22117 @end smallexample
22118
22119 @noindent
22120 prints @samp{/tmp/file.c:4: note: #pragma message:
22121 TODO - Remember to fix this}.
22122
22123 @end table
22124
22125 @node Visibility Pragmas
22126 @subsection Visibility Pragmas
22127
22128 @table @code
22129 @item #pragma GCC visibility push(@var{visibility})
22130 @itemx #pragma GCC visibility pop
22131 @cindex pragma, visibility
22132
22133 This pragma allows the user to set the visibility for multiple
22134 declarations without having to give each a visibility attribute
22135 (@pxref{Function Attributes}).
22136
22137 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
22138 declarations. Class members and template specializations are not
22139 affected; if you want to override the visibility for a particular
22140 member or instantiation, you must use an attribute.
22141
22142 @end table
22143
22144
22145 @node Push/Pop Macro Pragmas
22146 @subsection Push/Pop Macro Pragmas
22147
22148 For compatibility with Microsoft Windows compilers, GCC supports
22149 @samp{#pragma push_macro(@var{"macro_name"})}
22150 and @samp{#pragma pop_macro(@var{"macro_name"})}.
22151
22152 @table @code
22153 @item #pragma push_macro(@var{"macro_name"})
22154 @cindex pragma, push_macro
22155 This pragma saves the value of the macro named as @var{macro_name} to
22156 the top of the stack for this macro.
22157
22158 @item #pragma pop_macro(@var{"macro_name"})
22159 @cindex pragma, pop_macro
22160 This pragma sets the value of the macro named as @var{macro_name} to
22161 the value on top of the stack for this macro. If the stack for
22162 @var{macro_name} is empty, the value of the macro remains unchanged.
22163 @end table
22164
22165 For example:
22166
22167 @smallexample
22168 #define X 1
22169 #pragma push_macro("X")
22170 #undef X
22171 #define X -1
22172 #pragma pop_macro("X")
22173 int x [X];
22174 @end smallexample
22175
22176 @noindent
22177 In this example, the definition of X as 1 is saved by @code{#pragma
22178 push_macro} and restored by @code{#pragma pop_macro}.
22179
22180 @node Function Specific Option Pragmas
22181 @subsection Function Specific Option Pragmas
22182
22183 @table @code
22184 @item #pragma GCC target (@var{"string"}...)
22185 @cindex pragma GCC target
22186
22187 This pragma allows you to set target specific options for functions
22188 defined later in the source file. One or more strings can be
22189 specified. Each function that is defined after this point is as
22190 if @code{attribute((target("STRING")))} was specified for that
22191 function. The parenthesis around the options is optional.
22192 @xref{Function Attributes}, for more information about the
22193 @code{target} attribute and the attribute syntax.
22194
22195 The @code{#pragma GCC target} pragma is presently implemented for
22196 x86, ARM, AArch64, PowerPC, S/390, and Nios II targets only.
22197 @end table
22198
22199 @table @code
22200 @item #pragma GCC optimize (@var{"string"}...)
22201 @cindex pragma GCC optimize
22202
22203 This pragma allows you to set global optimization options for functions
22204 defined later in the source file. One or more strings can be
22205 specified. Each function that is defined after this point is as
22206 if @code{attribute((optimize("STRING")))} was specified for that
22207 function. The parenthesis around the options is optional.
22208 @xref{Function Attributes}, for more information about the
22209 @code{optimize} attribute and the attribute syntax.
22210 @end table
22211
22212 @table @code
22213 @item #pragma GCC push_options
22214 @itemx #pragma GCC pop_options
22215 @cindex pragma GCC push_options
22216 @cindex pragma GCC pop_options
22217
22218 These pragmas maintain a stack of the current target and optimization
22219 options. It is intended for include files where you temporarily want
22220 to switch to using a different @samp{#pragma GCC target} or
22221 @samp{#pragma GCC optimize} and then to pop back to the previous
22222 options.
22223 @end table
22224
22225 @table @code
22226 @item #pragma GCC reset_options
22227 @cindex pragma GCC reset_options
22228
22229 This pragma clears the current @code{#pragma GCC target} and
22230 @code{#pragma GCC optimize} to use the default switches as specified
22231 on the command line.
22232 @end table
22233
22234 @node Loop-Specific Pragmas
22235 @subsection Loop-Specific Pragmas
22236
22237 @table @code
22238 @item #pragma GCC ivdep
22239 @cindex pragma GCC ivdep
22240 @end table
22241
22242 With this pragma, the programmer asserts that there are no loop-carried
22243 dependencies which would prevent consecutive iterations of
22244 the following loop from executing concurrently with SIMD
22245 (single instruction multiple data) instructions.
22246
22247 For example, the compiler can only unconditionally vectorize the following
22248 loop with the pragma:
22249
22250 @smallexample
22251 void foo (int n, int *a, int *b, int *c)
22252 @{
22253 int i, j;
22254 #pragma GCC ivdep
22255 for (i = 0; i < n; ++i)
22256 a[i] = b[i] + c[i];
22257 @}
22258 @end smallexample
22259
22260 @noindent
22261 In this example, using the @code{restrict} qualifier had the same
22262 effect. In the following example, that would not be possible. Assume
22263 @math{k < -m} or @math{k >= m}. Only with the pragma, the compiler knows
22264 that it can unconditionally vectorize the following loop:
22265
22266 @smallexample
22267 void ignore_vec_dep (int *a, int k, int c, int m)
22268 @{
22269 #pragma GCC ivdep
22270 for (int i = 0; i < m; i++)
22271 a[i] = a[i + k] * c;
22272 @}
22273 @end smallexample
22274
22275
22276 @node Unnamed Fields
22277 @section Unnamed Structure and Union Fields
22278 @cindex @code{struct}
22279 @cindex @code{union}
22280
22281 As permitted by ISO C11 and for compatibility with other compilers,
22282 GCC allows you to define
22283 a structure or union that contains, as fields, structures and unions
22284 without names. For example:
22285
22286 @smallexample
22287 struct @{
22288 int a;
22289 union @{
22290 int b;
22291 float c;
22292 @};
22293 int d;
22294 @} foo;
22295 @end smallexample
22296
22297 @noindent
22298 In this example, you are able to access members of the unnamed
22299 union with code like @samp{foo.b}. Note that only unnamed structs and
22300 unions are allowed, you may not have, for example, an unnamed
22301 @code{int}.
22302
22303 You must never create such structures that cause ambiguous field definitions.
22304 For example, in this structure:
22305
22306 @smallexample
22307 struct @{
22308 int a;
22309 struct @{
22310 int a;
22311 @};
22312 @} foo;
22313 @end smallexample
22314
22315 @noindent
22316 it is ambiguous which @code{a} is being referred to with @samp{foo.a}.
22317 The compiler gives errors for such constructs.
22318
22319 @opindex fms-extensions
22320 Unless @option{-fms-extensions} is used, the unnamed field must be a
22321 structure or union definition without a tag (for example, @samp{struct
22322 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
22323 also be a definition with a tag such as @samp{struct foo @{ int a;
22324 @};}, a reference to a previously defined structure or union such as
22325 @samp{struct foo;}, or a reference to a @code{typedef} name for a
22326 previously defined structure or union type.
22327
22328 @opindex fplan9-extensions
22329 The option @option{-fplan9-extensions} enables
22330 @option{-fms-extensions} as well as two other extensions. First, a
22331 pointer to a structure is automatically converted to a pointer to an
22332 anonymous field for assignments and function calls. For example:
22333
22334 @smallexample
22335 struct s1 @{ int a; @};
22336 struct s2 @{ struct s1; @};
22337 extern void f1 (struct s1 *);
22338 void f2 (struct s2 *p) @{ f1 (p); @}
22339 @end smallexample
22340
22341 @noindent
22342 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
22343 converted into a pointer to the anonymous field.
22344
22345 Second, when the type of an anonymous field is a @code{typedef} for a
22346 @code{struct} or @code{union}, code may refer to the field using the
22347 name of the @code{typedef}.
22348
22349 @smallexample
22350 typedef struct @{ int a; @} s1;
22351 struct s2 @{ s1; @};
22352 s1 f1 (struct s2 *p) @{ return p->s1; @}
22353 @end smallexample
22354
22355 These usages are only permitted when they are not ambiguous.
22356
22357 @node Thread-Local
22358 @section Thread-Local Storage
22359 @cindex Thread-Local Storage
22360 @cindex @acronym{TLS}
22361 @cindex @code{__thread}
22362
22363 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
22364 are allocated such that there is one instance of the variable per extant
22365 thread. The runtime model GCC uses to implement this originates
22366 in the IA-64 processor-specific ABI, but has since been migrated
22367 to other processors as well. It requires significant support from
22368 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
22369 system libraries (@file{libc.so} and @file{libpthread.so}), so it
22370 is not available everywhere.
22371
22372 At the user level, the extension is visible with a new storage
22373 class keyword: @code{__thread}. For example:
22374
22375 @smallexample
22376 __thread int i;
22377 extern __thread struct state s;
22378 static __thread char *p;
22379 @end smallexample
22380
22381 The @code{__thread} specifier may be used alone, with the @code{extern}
22382 or @code{static} specifiers, but with no other storage class specifier.
22383 When used with @code{extern} or @code{static}, @code{__thread} must appear
22384 immediately after the other storage class specifier.
22385
22386 The @code{__thread} specifier may be applied to any global, file-scoped
22387 static, function-scoped static, or static data member of a class. It may
22388 not be applied to block-scoped automatic or non-static data member.
22389
22390 When the address-of operator is applied to a thread-local variable, it is
22391 evaluated at run time and returns the address of the current thread's
22392 instance of that variable. An address so obtained may be used by any
22393 thread. When a thread terminates, any pointers to thread-local variables
22394 in that thread become invalid.
22395
22396 No static initialization may refer to the address of a thread-local variable.
22397
22398 In C++, if an initializer is present for a thread-local variable, it must
22399 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
22400 standard.
22401
22402 See @uref{https://www.akkadia.org/drepper/tls.pdf,
22403 ELF Handling For Thread-Local Storage} for a detailed explanation of
22404 the four thread-local storage addressing models, and how the runtime
22405 is expected to function.
22406
22407 @menu
22408 * C99 Thread-Local Edits::
22409 * C++98 Thread-Local Edits::
22410 @end menu
22411
22412 @node C99 Thread-Local Edits
22413 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
22414
22415 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
22416 that document the exact semantics of the language extension.
22417
22418 @itemize @bullet
22419 @item
22420 @cite{5.1.2 Execution environments}
22421
22422 Add new text after paragraph 1
22423
22424 @quotation
22425 Within either execution environment, a @dfn{thread} is a flow of
22426 control within a program. It is implementation defined whether
22427 or not there may be more than one thread associated with a program.
22428 It is implementation defined how threads beyond the first are
22429 created, the name and type of the function called at thread
22430 startup, and how threads may be terminated. However, objects
22431 with thread storage duration shall be initialized before thread
22432 startup.
22433 @end quotation
22434
22435 @item
22436 @cite{6.2.4 Storage durations of objects}
22437
22438 Add new text before paragraph 3
22439
22440 @quotation
22441 An object whose identifier is declared with the storage-class
22442 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
22443 Its lifetime is the entire execution of the thread, and its
22444 stored value is initialized only once, prior to thread startup.
22445 @end quotation
22446
22447 @item
22448 @cite{6.4.1 Keywords}
22449
22450 Add @code{__thread}.
22451
22452 @item
22453 @cite{6.7.1 Storage-class specifiers}
22454
22455 Add @code{__thread} to the list of storage class specifiers in
22456 paragraph 1.
22457
22458 Change paragraph 2 to
22459
22460 @quotation
22461 With the exception of @code{__thread}, at most one storage-class
22462 specifier may be given [@dots{}]. The @code{__thread} specifier may
22463 be used alone, or immediately following @code{extern} or
22464 @code{static}.
22465 @end quotation
22466
22467 Add new text after paragraph 6
22468
22469 @quotation
22470 The declaration of an identifier for a variable that has
22471 block scope that specifies @code{__thread} shall also
22472 specify either @code{extern} or @code{static}.
22473
22474 The @code{__thread} specifier shall be used only with
22475 variables.
22476 @end quotation
22477 @end itemize
22478
22479 @node C++98 Thread-Local Edits
22480 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
22481
22482 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
22483 that document the exact semantics of the language extension.
22484
22485 @itemize @bullet
22486 @item
22487 @b{[intro.execution]}
22488
22489 New text after paragraph 4
22490
22491 @quotation
22492 A @dfn{thread} is a flow of control within the abstract machine.
22493 It is implementation defined whether or not there may be more than
22494 one thread.
22495 @end quotation
22496
22497 New text after paragraph 7
22498
22499 @quotation
22500 It is unspecified whether additional action must be taken to
22501 ensure when and whether side effects are visible to other threads.
22502 @end quotation
22503
22504 @item
22505 @b{[lex.key]}
22506
22507 Add @code{__thread}.
22508
22509 @item
22510 @b{[basic.start.main]}
22511
22512 Add after paragraph 5
22513
22514 @quotation
22515 The thread that begins execution at the @code{main} function is called
22516 the @dfn{main thread}. It is implementation defined how functions
22517 beginning threads other than the main thread are designated or typed.
22518 A function so designated, as well as the @code{main} function, is called
22519 a @dfn{thread startup function}. It is implementation defined what
22520 happens if a thread startup function returns. It is implementation
22521 defined what happens to other threads when any thread calls @code{exit}.
22522 @end quotation
22523
22524 @item
22525 @b{[basic.start.init]}
22526
22527 Add after paragraph 4
22528
22529 @quotation
22530 The storage for an object of thread storage duration shall be
22531 statically initialized before the first statement of the thread startup
22532 function. An object of thread storage duration shall not require
22533 dynamic initialization.
22534 @end quotation
22535
22536 @item
22537 @b{[basic.start.term]}
22538
22539 Add after paragraph 3
22540
22541 @quotation
22542 The type of an object with thread storage duration shall not have a
22543 non-trivial destructor, nor shall it be an array type whose elements
22544 (directly or indirectly) have non-trivial destructors.
22545 @end quotation
22546
22547 @item
22548 @b{[basic.stc]}
22549
22550 Add ``thread storage duration'' to the list in paragraph 1.
22551
22552 Change paragraph 2
22553
22554 @quotation
22555 Thread, static, and automatic storage durations are associated with
22556 objects introduced by declarations [@dots{}].
22557 @end quotation
22558
22559 Add @code{__thread} to the list of specifiers in paragraph 3.
22560
22561 @item
22562 @b{[basic.stc.thread]}
22563
22564 New section before @b{[basic.stc.static]}
22565
22566 @quotation
22567 The keyword @code{__thread} applied to a non-local object gives the
22568 object thread storage duration.
22569
22570 A local variable or class data member declared both @code{static}
22571 and @code{__thread} gives the variable or member thread storage
22572 duration.
22573 @end quotation
22574
22575 @item
22576 @b{[basic.stc.static]}
22577
22578 Change paragraph 1
22579
22580 @quotation
22581 All objects that have neither thread storage duration, dynamic
22582 storage duration nor are local [@dots{}].
22583 @end quotation
22584
22585 @item
22586 @b{[dcl.stc]}
22587
22588 Add @code{__thread} to the list in paragraph 1.
22589
22590 Change paragraph 1
22591
22592 @quotation
22593 With the exception of @code{__thread}, at most one
22594 @var{storage-class-specifier} shall appear in a given
22595 @var{decl-specifier-seq}. The @code{__thread} specifier may
22596 be used alone, or immediately following the @code{extern} or
22597 @code{static} specifiers. [@dots{}]
22598 @end quotation
22599
22600 Add after paragraph 5
22601
22602 @quotation
22603 The @code{__thread} specifier can be applied only to the names of objects
22604 and to anonymous unions.
22605 @end quotation
22606
22607 @item
22608 @b{[class.mem]}
22609
22610 Add after paragraph 6
22611
22612 @quotation
22613 Non-@code{static} members shall not be @code{__thread}.
22614 @end quotation
22615 @end itemize
22616
22617 @node Binary constants
22618 @section Binary Constants using the @samp{0b} Prefix
22619 @cindex Binary constants using the @samp{0b} prefix
22620
22621 Integer constants can be written as binary constants, consisting of a
22622 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
22623 @samp{0B}. This is particularly useful in environments that operate a
22624 lot on the bit level (like microcontrollers).
22625
22626 The following statements are identical:
22627
22628 @smallexample
22629 i = 42;
22630 i = 0x2a;
22631 i = 052;
22632 i = 0b101010;
22633 @end smallexample
22634
22635 The type of these constants follows the same rules as for octal or
22636 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
22637 can be applied.
22638
22639 @node C++ Extensions
22640 @chapter Extensions to the C++ Language
22641 @cindex extensions, C++ language
22642 @cindex C++ language extensions
22643
22644 The GNU compiler provides these extensions to the C++ language (and you
22645 can also use most of the C language extensions in your C++ programs). If you
22646 want to write code that checks whether these features are available, you can
22647 test for the GNU compiler the same way as for C programs: check for a
22648 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
22649 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
22650 Predefined Macros,cpp,The GNU C Preprocessor}).
22651
22652 @menu
22653 * C++ Volatiles:: What constitutes an access to a volatile object.
22654 * Restricted Pointers:: C99 restricted pointers and references.
22655 * Vague Linkage:: Where G++ puts inlines, vtables and such.
22656 * C++ Interface:: You can use a single C++ header file for both
22657 declarations and definitions.
22658 * Template Instantiation:: Methods for ensuring that exactly one copy of
22659 each needed template instantiation is emitted.
22660 * Bound member functions:: You can extract a function pointer to the
22661 method denoted by a @samp{->*} or @samp{.*} expression.
22662 * C++ Attributes:: Variable, function, and type attributes for C++ only.
22663 * Function Multiversioning:: Declaring multiple function versions.
22664 * Type Traits:: Compiler support for type traits.
22665 * C++ Concepts:: Improved support for generic programming.
22666 * Deprecated Features:: Things will disappear from G++.
22667 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
22668 @end menu
22669
22670 @node C++ Volatiles
22671 @section When is a Volatile C++ Object Accessed?
22672 @cindex accessing volatiles
22673 @cindex volatile read
22674 @cindex volatile write
22675 @cindex volatile access
22676
22677 The C++ standard differs from the C standard in its treatment of
22678 volatile objects. It fails to specify what constitutes a volatile
22679 access, except to say that C++ should behave in a similar manner to C
22680 with respect to volatiles, where possible. However, the different
22681 lvalueness of expressions between C and C++ complicate the behavior.
22682 G++ behaves the same as GCC for volatile access, @xref{C
22683 Extensions,,Volatiles}, for a description of GCC's behavior.
22684
22685 The C and C++ language specifications differ when an object is
22686 accessed in a void context:
22687
22688 @smallexample
22689 volatile int *src = @var{somevalue};
22690 *src;
22691 @end smallexample
22692
22693 The C++ standard specifies that such expressions do not undergo lvalue
22694 to rvalue conversion, and that the type of the dereferenced object may
22695 be incomplete. The C++ standard does not specify explicitly that it
22696 is lvalue to rvalue conversion that is responsible for causing an
22697 access. There is reason to believe that it is, because otherwise
22698 certain simple expressions become undefined. However, because it
22699 would surprise most programmers, G++ treats dereferencing a pointer to
22700 volatile object of complete type as GCC would do for an equivalent
22701 type in C@. When the object has incomplete type, G++ issues a
22702 warning; if you wish to force an error, you must force a conversion to
22703 rvalue with, for instance, a static cast.
22704
22705 When using a reference to volatile, G++ does not treat equivalent
22706 expressions as accesses to volatiles, but instead issues a warning that
22707 no volatile is accessed. The rationale for this is that otherwise it
22708 becomes difficult to determine where volatile access occur, and not
22709 possible to ignore the return value from functions returning volatile
22710 references. Again, if you wish to force a read, cast the reference to
22711 an rvalue.
22712
22713 G++ implements the same behavior as GCC does when assigning to a
22714 volatile object---there is no reread of the assigned-to object, the
22715 assigned rvalue is reused. Note that in C++ assignment expressions
22716 are lvalues, and if used as an lvalue, the volatile object is
22717 referred to. For instance, @var{vref} refers to @var{vobj}, as
22718 expected, in the following example:
22719
22720 @smallexample
22721 volatile int vobj;
22722 volatile int &vref = vobj = @var{something};
22723 @end smallexample
22724
22725 @node Restricted Pointers
22726 @section Restricting Pointer Aliasing
22727 @cindex restricted pointers
22728 @cindex restricted references
22729 @cindex restricted this pointer
22730
22731 As with the C front end, G++ understands the C99 feature of restricted pointers,
22732 specified with the @code{__restrict__}, or @code{__restrict} type
22733 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
22734 language flag, @code{restrict} is not a keyword in C++.
22735
22736 In addition to allowing restricted pointers, you can specify restricted
22737 references, which indicate that the reference is not aliased in the local
22738 context.
22739
22740 @smallexample
22741 void fn (int *__restrict__ rptr, int &__restrict__ rref)
22742 @{
22743 /* @r{@dots{}} */
22744 @}
22745 @end smallexample
22746
22747 @noindent
22748 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
22749 @var{rref} refers to a (different) unaliased integer.
22750
22751 You may also specify whether a member function's @var{this} pointer is
22752 unaliased by using @code{__restrict__} as a member function qualifier.
22753
22754 @smallexample
22755 void T::fn () __restrict__
22756 @{
22757 /* @r{@dots{}} */
22758 @}
22759 @end smallexample
22760
22761 @noindent
22762 Within the body of @code{T::fn}, @var{this} has the effective
22763 definition @code{T *__restrict__ const this}. Notice that the
22764 interpretation of a @code{__restrict__} member function qualifier is
22765 different to that of @code{const} or @code{volatile} qualifier, in that it
22766 is applied to the pointer rather than the object. This is consistent with
22767 other compilers that implement restricted pointers.
22768
22769 As with all outermost parameter qualifiers, @code{__restrict__} is
22770 ignored in function definition matching. This means you only need to
22771 specify @code{__restrict__} in a function definition, rather than
22772 in a function prototype as well.
22773
22774 @node Vague Linkage
22775 @section Vague Linkage
22776 @cindex vague linkage
22777
22778 There are several constructs in C++ that require space in the object
22779 file but are not clearly tied to a single translation unit. We say that
22780 these constructs have ``vague linkage''. Typically such constructs are
22781 emitted wherever they are needed, though sometimes we can be more
22782 clever.
22783
22784 @table @asis
22785 @item Inline Functions
22786 Inline functions are typically defined in a header file which can be
22787 included in many different compilations. Hopefully they can usually be
22788 inlined, but sometimes an out-of-line copy is necessary, if the address
22789 of the function is taken or if inlining fails. In general, we emit an
22790 out-of-line copy in all translation units where one is needed. As an
22791 exception, we only emit inline virtual functions with the vtable, since
22792 it always requires a copy.
22793
22794 Local static variables and string constants used in an inline function
22795 are also considered to have vague linkage, since they must be shared
22796 between all inlined and out-of-line instances of the function.
22797
22798 @item VTables
22799 @cindex vtable
22800 C++ virtual functions are implemented in most compilers using a lookup
22801 table, known as a vtable. The vtable contains pointers to the virtual
22802 functions provided by a class, and each object of the class contains a
22803 pointer to its vtable (or vtables, in some multiple-inheritance
22804 situations). If the class declares any non-inline, non-pure virtual
22805 functions, the first one is chosen as the ``key method'' for the class,
22806 and the vtable is only emitted in the translation unit where the key
22807 method is defined.
22808
22809 @emph{Note:} If the chosen key method is later defined as inline, the
22810 vtable is still emitted in every translation unit that defines it.
22811 Make sure that any inline virtuals are declared inline in the class
22812 body, even if they are not defined there.
22813
22814 @item @code{type_info} objects
22815 @cindex @code{type_info}
22816 @cindex RTTI
22817 C++ requires information about types to be written out in order to
22818 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
22819 For polymorphic classes (classes with virtual functions), the @samp{type_info}
22820 object is written out along with the vtable so that @samp{dynamic_cast}
22821 can determine the dynamic type of a class object at run time. For all
22822 other types, we write out the @samp{type_info} object when it is used: when
22823 applying @samp{typeid} to an expression, throwing an object, or
22824 referring to a type in a catch clause or exception specification.
22825
22826 @item Template Instantiations
22827 Most everything in this section also applies to template instantiations,
22828 but there are other options as well.
22829 @xref{Template Instantiation,,Where's the Template?}.
22830
22831 @end table
22832
22833 When used with GNU ld version 2.8 or later on an ELF system such as
22834 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
22835 these constructs will be discarded at link time. This is known as
22836 COMDAT support.
22837
22838 On targets that don't support COMDAT, but do support weak symbols, GCC
22839 uses them. This way one copy overrides all the others, but
22840 the unused copies still take up space in the executable.
22841
22842 For targets that do not support either COMDAT or weak symbols,
22843 most entities with vague linkage are emitted as local symbols to
22844 avoid duplicate definition errors from the linker. This does not happen
22845 for local statics in inlines, however, as having multiple copies
22846 almost certainly breaks things.
22847
22848 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
22849 another way to control placement of these constructs.
22850
22851 @node C++ Interface
22852 @section C++ Interface and Implementation Pragmas
22853
22854 @cindex interface and implementation headers, C++
22855 @cindex C++ interface and implementation headers
22856 @cindex pragmas, interface and implementation
22857
22858 @code{#pragma interface} and @code{#pragma implementation} provide the
22859 user with a way of explicitly directing the compiler to emit entities
22860 with vague linkage (and debugging information) in a particular
22861 translation unit.
22862
22863 @emph{Note:} These @code{#pragma}s have been superceded as of GCC 2.7.2
22864 by COMDAT support and the ``key method'' heuristic
22865 mentioned in @ref{Vague Linkage}. Using them can actually cause your
22866 program to grow due to unnecessary out-of-line copies of inline
22867 functions.
22868
22869 @table @code
22870 @item #pragma interface
22871 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
22872 @kindex #pragma interface
22873 Use this directive in @emph{header files} that define object classes, to save
22874 space in most of the object files that use those classes. Normally,
22875 local copies of certain information (backup copies of inline member
22876 functions, debugging information, and the internal tables that implement
22877 virtual functions) must be kept in each object file that includes class
22878 definitions. You can use this pragma to avoid such duplication. When a
22879 header file containing @samp{#pragma interface} is included in a
22880 compilation, this auxiliary information is not generated (unless
22881 the main input source file itself uses @samp{#pragma implementation}).
22882 Instead, the object files contain references to be resolved at link
22883 time.
22884
22885 The second form of this directive is useful for the case where you have
22886 multiple headers with the same name in different directories. If you
22887 use this form, you must specify the same string to @samp{#pragma
22888 implementation}.
22889
22890 @item #pragma implementation
22891 @itemx #pragma implementation "@var{objects}.h"
22892 @kindex #pragma implementation
22893 Use this pragma in a @emph{main input file}, when you want full output from
22894 included header files to be generated (and made globally visible). The
22895 included header file, in turn, should use @samp{#pragma interface}.
22896 Backup copies of inline member functions, debugging information, and the
22897 internal tables used to implement virtual functions are all generated in
22898 implementation files.
22899
22900 @cindex implied @code{#pragma implementation}
22901 @cindex @code{#pragma implementation}, implied
22902 @cindex naming convention, implementation headers
22903 If you use @samp{#pragma implementation} with no argument, it applies to
22904 an include file with the same basename@footnote{A file's @dfn{basename}
22905 is the name stripped of all leading path information and of trailing
22906 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
22907 file. For example, in @file{allclass.cc}, giving just
22908 @samp{#pragma implementation}
22909 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
22910
22911 Use the string argument if you want a single implementation file to
22912 include code from multiple header files. (You must also use
22913 @samp{#include} to include the header file; @samp{#pragma
22914 implementation} only specifies how to use the file---it doesn't actually
22915 include it.)
22916
22917 There is no way to split up the contents of a single header file into
22918 multiple implementation files.
22919 @end table
22920
22921 @cindex inlining and C++ pragmas
22922 @cindex C++ pragmas, effect on inlining
22923 @cindex pragmas in C++, effect on inlining
22924 @samp{#pragma implementation} and @samp{#pragma interface} also have an
22925 effect on function inlining.
22926
22927 If you define a class in a header file marked with @samp{#pragma
22928 interface}, the effect on an inline function defined in that class is
22929 similar to an explicit @code{extern} declaration---the compiler emits
22930 no code at all to define an independent version of the function. Its
22931 definition is used only for inlining with its callers.
22932
22933 @opindex fno-implement-inlines
22934 Conversely, when you include the same header file in a main source file
22935 that declares it as @samp{#pragma implementation}, the compiler emits
22936 code for the function itself; this defines a version of the function
22937 that can be found via pointers (or by callers compiled without
22938 inlining). If all calls to the function can be inlined, you can avoid
22939 emitting the function by compiling with @option{-fno-implement-inlines}.
22940 If any calls are not inlined, you will get linker errors.
22941
22942 @node Template Instantiation
22943 @section Where's the Template?
22944 @cindex template instantiation
22945
22946 C++ templates were the first language feature to require more
22947 intelligence from the environment than was traditionally found on a UNIX
22948 system. Somehow the compiler and linker have to make sure that each
22949 template instance occurs exactly once in the executable if it is needed,
22950 and not at all otherwise. There are two basic approaches to this
22951 problem, which are referred to as the Borland model and the Cfront model.
22952
22953 @table @asis
22954 @item Borland model
22955 Borland C++ solved the template instantiation problem by adding the code
22956 equivalent of common blocks to their linker; the compiler emits template
22957 instances in each translation unit that uses them, and the linker
22958 collapses them together. The advantage of this model is that the linker
22959 only has to consider the object files themselves; there is no external
22960 complexity to worry about. The disadvantage is that compilation time
22961 is increased because the template code is being compiled repeatedly.
22962 Code written for this model tends to include definitions of all
22963 templates in the header file, since they must be seen to be
22964 instantiated.
22965
22966 @item Cfront model
22967 The AT&T C++ translator, Cfront, solved the template instantiation
22968 problem by creating the notion of a template repository, an
22969 automatically maintained place where template instances are stored. A
22970 more modern version of the repository works as follows: As individual
22971 object files are built, the compiler places any template definitions and
22972 instantiations encountered in the repository. At link time, the link
22973 wrapper adds in the objects in the repository and compiles any needed
22974 instances that were not previously emitted. The advantages of this
22975 model are more optimal compilation speed and the ability to use the
22976 system linker; to implement the Borland model a compiler vendor also
22977 needs to replace the linker. The disadvantages are vastly increased
22978 complexity, and thus potential for error; for some code this can be
22979 just as transparent, but in practice it can been very difficult to build
22980 multiple programs in one directory and one program in multiple
22981 directories. Code written for this model tends to separate definitions
22982 of non-inline member templates into a separate file, which should be
22983 compiled separately.
22984 @end table
22985
22986 G++ implements the Borland model on targets where the linker supports it,
22987 including ELF targets (such as GNU/Linux), Mac OS X and Microsoft Windows.
22988 Otherwise G++ implements neither automatic model.
22989
22990 You have the following options for dealing with template instantiations:
22991
22992 @enumerate
22993 @item
22994 Do nothing. Code written for the Borland model works fine, but
22995 each translation unit contains instances of each of the templates it
22996 uses. The duplicate instances will be discarded by the linker, but in
22997 a large program, this can lead to an unacceptable amount of code
22998 duplication in object files or shared libraries.
22999
23000 Duplicate instances of a template can be avoided by defining an explicit
23001 instantiation in one object file, and preventing the compiler from doing
23002 implicit instantiations in any other object files by using an explicit
23003 instantiation declaration, using the @code{extern template} syntax:
23004
23005 @smallexample
23006 extern template int max (int, int);
23007 @end smallexample
23008
23009 This syntax is defined in the C++ 2011 standard, but has been supported by
23010 G++ and other compilers since well before 2011.
23011
23012 Explicit instantiations can be used for the largest or most frequently
23013 duplicated instances, without having to know exactly which other instances
23014 are used in the rest of the program. You can scatter the explicit
23015 instantiations throughout your program, perhaps putting them in the
23016 translation units where the instances are used or the translation units
23017 that define the templates themselves; you can put all of the explicit
23018 instantiations you need into one big file; or you can create small files
23019 like
23020
23021 @smallexample
23022 #include "Foo.h"
23023 #include "Foo.cc"
23024
23025 template class Foo<int>;
23026 template ostream& operator <<
23027 (ostream&, const Foo<int>&);
23028 @end smallexample
23029
23030 @noindent
23031 for each of the instances you need, and create a template instantiation
23032 library from those.
23033
23034 This is the simplest option, but also offers flexibility and
23035 fine-grained control when necessary. It is also the most portable
23036 alternative and programs using this approach will work with most modern
23037 compilers.
23038
23039 @item
23040 @opindex frepo
23041 Compile your template-using code with @option{-frepo}. The compiler
23042 generates files with the extension @samp{.rpo} listing all of the
23043 template instantiations used in the corresponding object files that
23044 could be instantiated there; the link wrapper, @samp{collect2},
23045 then updates the @samp{.rpo} files to tell the compiler where to place
23046 those instantiations and rebuild any affected object files. The
23047 link-time overhead is negligible after the first pass, as the compiler
23048 continues to place the instantiations in the same files.
23049
23050 This can be a suitable option for application code written for the Borland
23051 model, as it usually just works. Code written for the Cfront model
23052 needs to be modified so that the template definitions are available at
23053 one or more points of instantiation; usually this is as simple as adding
23054 @code{#include <tmethods.cc>} to the end of each template header.
23055
23056 For library code, if you want the library to provide all of the template
23057 instantiations it needs, just try to link all of its object files
23058 together; the link will fail, but cause the instantiations to be
23059 generated as a side effect. Be warned, however, that this may cause
23060 conflicts if multiple libraries try to provide the same instantiations.
23061 For greater control, use explicit instantiation as described in the next
23062 option.
23063
23064 @item
23065 @opindex fno-implicit-templates
23066 Compile your code with @option{-fno-implicit-templates} to disable the
23067 implicit generation of template instances, and explicitly instantiate
23068 all the ones you use. This approach requires more knowledge of exactly
23069 which instances you need than do the others, but it's less
23070 mysterious and allows greater control if you want to ensure that only
23071 the intended instances are used.
23072
23073 If you are using Cfront-model code, you can probably get away with not
23074 using @option{-fno-implicit-templates} when compiling files that don't
23075 @samp{#include} the member template definitions.
23076
23077 If you use one big file to do the instantiations, you may want to
23078 compile it without @option{-fno-implicit-templates} so you get all of the
23079 instances required by your explicit instantiations (but not by any
23080 other files) without having to specify them as well.
23081
23082 In addition to forward declaration of explicit instantiations
23083 (with @code{extern}), G++ has extended the template instantiation
23084 syntax to support instantiation of the compiler support data for a
23085 template class (i.e.@: the vtable) without instantiating any of its
23086 members (with @code{inline}), and instantiation of only the static data
23087 members of a template class, without the support data or member
23088 functions (with @code{static}):
23089
23090 @smallexample
23091 inline template class Foo<int>;
23092 static template class Foo<int>;
23093 @end smallexample
23094 @end enumerate
23095
23096 @node Bound member functions
23097 @section Extracting the Function Pointer from a Bound Pointer to Member Function
23098 @cindex pmf
23099 @cindex pointer to member function
23100 @cindex bound pointer to member function
23101
23102 In C++, pointer to member functions (PMFs) are implemented using a wide
23103 pointer of sorts to handle all the possible call mechanisms; the PMF
23104 needs to store information about how to adjust the @samp{this} pointer,
23105 and if the function pointed to is virtual, where to find the vtable, and
23106 where in the vtable to look for the member function. If you are using
23107 PMFs in an inner loop, you should really reconsider that decision. If
23108 that is not an option, you can extract the pointer to the function that
23109 would be called for a given object/PMF pair and call it directly inside
23110 the inner loop, to save a bit of time.
23111
23112 Note that you still pay the penalty for the call through a
23113 function pointer; on most modern architectures, such a call defeats the
23114 branch prediction features of the CPU@. This is also true of normal
23115 virtual function calls.
23116
23117 The syntax for this extension is
23118
23119 @smallexample
23120 extern A a;
23121 extern int (A::*fp)();
23122 typedef int (*fptr)(A *);
23123
23124 fptr p = (fptr)(a.*fp);
23125 @end smallexample
23126
23127 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
23128 no object is needed to obtain the address of the function. They can be
23129 converted to function pointers directly:
23130
23131 @smallexample
23132 fptr p1 = (fptr)(&A::foo);
23133 @end smallexample
23134
23135 @opindex Wno-pmf-conversions
23136 You must specify @option{-Wno-pmf-conversions} to use this extension.
23137
23138 @node C++ Attributes
23139 @section C++-Specific Variable, Function, and Type Attributes
23140
23141 Some attributes only make sense for C++ programs.
23142
23143 @table @code
23144 @item abi_tag ("@var{tag}", ...)
23145 @cindex @code{abi_tag} function attribute
23146 @cindex @code{abi_tag} variable attribute
23147 @cindex @code{abi_tag} type attribute
23148 The @code{abi_tag} attribute can be applied to a function, variable, or class
23149 declaration. It modifies the mangled name of the entity to
23150 incorporate the tag name, in order to distinguish the function or
23151 class from an earlier version with a different ABI; perhaps the class
23152 has changed size, or the function has a different return type that is
23153 not encoded in the mangled name.
23154
23155 The attribute can also be applied to an inline namespace, but does not
23156 affect the mangled name of the namespace; in this case it is only used
23157 for @option{-Wabi-tag} warnings and automatic tagging of functions and
23158 variables. Tagging inline namespaces is generally preferable to
23159 tagging individual declarations, but the latter is sometimes
23160 necessary, such as when only certain members of a class need to be
23161 tagged.
23162
23163 The argument can be a list of strings of arbitrary length. The
23164 strings are sorted on output, so the order of the list is
23165 unimportant.
23166
23167 A redeclaration of an entity must not add new ABI tags,
23168 since doing so would change the mangled name.
23169
23170 The ABI tags apply to a name, so all instantiations and
23171 specializations of a template have the same tags. The attribute will
23172 be ignored if applied to an explicit specialization or instantiation.
23173
23174 The @option{-Wabi-tag} flag enables a warning about a class which does
23175 not have all the ABI tags used by its subobjects and virtual functions; for users with code
23176 that needs to coexist with an earlier ABI, using this option can help
23177 to find all affected types that need to be tagged.
23178
23179 When a type involving an ABI tag is used as the type of a variable or
23180 return type of a function where that tag is not already present in the
23181 signature of the function, the tag is automatically applied to the
23182 variable or function. @option{-Wabi-tag} also warns about this
23183 situation; this warning can be avoided by explicitly tagging the
23184 variable or function or moving it into a tagged inline namespace.
23185
23186 @item init_priority (@var{priority})
23187 @cindex @code{init_priority} variable attribute
23188
23189 In Standard C++, objects defined at namespace scope are guaranteed to be
23190 initialized in an order in strict accordance with that of their definitions
23191 @emph{in a given translation unit}. No guarantee is made for initializations
23192 across translation units. However, GNU C++ allows users to control the
23193 order of initialization of objects defined at namespace scope with the
23194 @code{init_priority} attribute by specifying a relative @var{priority},
23195 a constant integral expression currently bounded between 101 and 65535
23196 inclusive. Lower numbers indicate a higher priority.
23197
23198 In the following example, @code{A} would normally be created before
23199 @code{B}, but the @code{init_priority} attribute reverses that order:
23200
23201 @smallexample
23202 Some_Class A __attribute__ ((init_priority (2000)));
23203 Some_Class B __attribute__ ((init_priority (543)));
23204 @end smallexample
23205
23206 @noindent
23207 Note that the particular values of @var{priority} do not matter; only their
23208 relative ordering.
23209
23210 @item warn_unused
23211 @cindex @code{warn_unused} type attribute
23212
23213 For C++ types with non-trivial constructors and/or destructors it is
23214 impossible for the compiler to determine whether a variable of this
23215 type is truly unused if it is not referenced. This type attribute
23216 informs the compiler that variables of this type should be warned
23217 about if they appear to be unused, just like variables of fundamental
23218 types.
23219
23220 This attribute is appropriate for types which just represent a value,
23221 such as @code{std::string}; it is not appropriate for types which
23222 control a resource, such as @code{std::lock_guard}.
23223
23224 This attribute is also accepted in C, but it is unnecessary because C
23225 does not have constructors or destructors.
23226
23227 @end table
23228
23229 @node Function Multiversioning
23230 @section Function Multiversioning
23231 @cindex function versions
23232
23233 With the GNU C++ front end, for x86 targets, you may specify multiple
23234 versions of a function, where each function is specialized for a
23235 specific target feature. At runtime, the appropriate version of the
23236 function is automatically executed depending on the characteristics of
23237 the execution platform. Here is an example.
23238
23239 @smallexample
23240 __attribute__ ((target ("default")))
23241 int foo ()
23242 @{
23243 // The default version of foo.
23244 return 0;
23245 @}
23246
23247 __attribute__ ((target ("sse4.2")))
23248 int foo ()
23249 @{
23250 // foo version for SSE4.2
23251 return 1;
23252 @}
23253
23254 __attribute__ ((target ("arch=atom")))
23255 int foo ()
23256 @{
23257 // foo version for the Intel ATOM processor
23258 return 2;
23259 @}
23260
23261 __attribute__ ((target ("arch=amdfam10")))
23262 int foo ()
23263 @{
23264 // foo version for the AMD Family 0x10 processors.
23265 return 3;
23266 @}
23267
23268 int main ()
23269 @{
23270 int (*p)() = &foo;
23271 assert ((*p) () == foo ());
23272 return 0;
23273 @}
23274 @end smallexample
23275
23276 In the above example, four versions of function foo are created. The
23277 first version of foo with the target attribute "default" is the default
23278 version. This version gets executed when no other target specific
23279 version qualifies for execution on a particular platform. A new version
23280 of foo is created by using the same function signature but with a
23281 different target string. Function foo is called or a pointer to it is
23282 taken just like a regular function. GCC takes care of doing the
23283 dispatching to call the right version at runtime. Refer to the
23284 @uref{http://gcc.gnu.org/wiki/FunctionMultiVersioning, GCC wiki on
23285 Function Multiversioning} for more details.
23286
23287 @node Type Traits
23288 @section Type Traits
23289
23290 The C++ front end implements syntactic extensions that allow
23291 compile-time determination of
23292 various characteristics of a type (or of a
23293 pair of types).
23294
23295 @table @code
23296 @item __has_nothrow_assign (type)
23297 If @code{type} is const qualified or is a reference type then the trait is
23298 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
23299 is true, else if @code{type} is a cv class or union type with copy assignment
23300 operators that are known not to throw an exception then the trait is true,
23301 else it is false. Requires: @code{type} shall be a complete type,
23302 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23303
23304 @item __has_nothrow_copy (type)
23305 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
23306 @code{type} is a cv class or union type with copy constructors that
23307 are known not to throw an exception then the trait is true, else it is false.
23308 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
23309 @code{void}, or an array of unknown bound.
23310
23311 @item __has_nothrow_constructor (type)
23312 If @code{__has_trivial_constructor (type)} is true then the trait is
23313 true, else if @code{type} is a cv class or union type (or array
23314 thereof) with a default constructor that is known not to throw an
23315 exception then the trait is true, else it is false. Requires:
23316 @code{type} shall be a complete type, (possibly cv-qualified)
23317 @code{void}, or an array of unknown bound.
23318
23319 @item __has_trivial_assign (type)
23320 If @code{type} is const qualified or is a reference type then the trait is
23321 false. Otherwise if @code{__is_pod (type)} is true then the trait is
23322 true, else if @code{type} is a cv class or union type with a trivial
23323 copy assignment ([class.copy]) then the trait is true, else it is
23324 false. Requires: @code{type} shall be a complete type, (possibly
23325 cv-qualified) @code{void}, or an array of unknown bound.
23326
23327 @item __has_trivial_copy (type)
23328 If @code{__is_pod (type)} is true or @code{type} is a reference type
23329 then the trait is true, else if @code{type} is a cv class or union type
23330 with a trivial copy constructor ([class.copy]) then the trait
23331 is true, else it is false. Requires: @code{type} shall be a complete
23332 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23333
23334 @item __has_trivial_constructor (type)
23335 If @code{__is_pod (type)} is true then the trait is true, else if
23336 @code{type} is a cv class or union type (or array thereof) with a
23337 trivial default constructor ([class.ctor]) then the trait is true,
23338 else it is false. Requires: @code{type} shall be a complete
23339 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23340
23341 @item __has_trivial_destructor (type)
23342 If @code{__is_pod (type)} is true or @code{type} is a reference type then
23343 the trait is true, else if @code{type} is a cv class or union type (or
23344 array thereof) with a trivial destructor ([class.dtor]) then the trait
23345 is true, else it is false. Requires: @code{type} shall be a complete
23346 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23347
23348 @item __has_virtual_destructor (type)
23349 If @code{type} is a class type with a virtual destructor
23350 ([class.dtor]) then the trait is true, else it is false. Requires:
23351 @code{type} shall be a complete type, (possibly cv-qualified)
23352 @code{void}, or an array of unknown bound.
23353
23354 @item __is_abstract (type)
23355 If @code{type} is an abstract class ([class.abstract]) then the trait
23356 is true, else it is false. Requires: @code{type} shall be a complete
23357 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23358
23359 @item __is_base_of (base_type, derived_type)
23360 If @code{base_type} is a base class of @code{derived_type}
23361 ([class.derived]) then the trait is true, otherwise it is false.
23362 Top-level cv qualifications of @code{base_type} and
23363 @code{derived_type} are ignored. For the purposes of this trait, a
23364 class type is considered is own base. Requires: if @code{__is_class
23365 (base_type)} and @code{__is_class (derived_type)} are true and
23366 @code{base_type} and @code{derived_type} are not the same type
23367 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
23368 type. A diagnostic is produced if this requirement is not met.
23369
23370 @item __is_class (type)
23371 If @code{type} is a cv class type, and not a union type
23372 ([basic.compound]) the trait is true, else it is false.
23373
23374 @item __is_empty (type)
23375 If @code{__is_class (type)} is false then the trait is false.
23376 Otherwise @code{type} is considered empty if and only if: @code{type}
23377 has no non-static data members, or all non-static data members, if
23378 any, are bit-fields of length 0, and @code{type} has no virtual
23379 members, and @code{type} has no virtual base classes, and @code{type}
23380 has no base classes @code{base_type} for which
23381 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
23382 be a complete type, (possibly cv-qualified) @code{void}, or an array
23383 of unknown bound.
23384
23385 @item __is_enum (type)
23386 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
23387 true, else it is false.
23388
23389 @item __is_literal_type (type)
23390 If @code{type} is a literal type ([basic.types]) the trait is
23391 true, else it is false. Requires: @code{type} shall be a complete type,
23392 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23393
23394 @item __is_pod (type)
23395 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
23396 else it is false. Requires: @code{type} shall be a complete type,
23397 (possibly cv-qualified) @code{void}, or an array of unknown bound.
23398
23399 @item __is_polymorphic (type)
23400 If @code{type} is a polymorphic class ([class.virtual]) then the trait
23401 is true, else it is false. Requires: @code{type} shall be a complete
23402 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23403
23404 @item __is_standard_layout (type)
23405 If @code{type} is a standard-layout type ([basic.types]) the trait is
23406 true, else it is false. Requires: @code{type} shall be a complete
23407 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23408
23409 @item __is_trivial (type)
23410 If @code{type} is a trivial type ([basic.types]) the trait is
23411 true, else it is false. Requires: @code{type} shall be a complete
23412 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
23413
23414 @item __is_union (type)
23415 If @code{type} is a cv union type ([basic.compound]) the trait is
23416 true, else it is false.
23417
23418 @item __underlying_type (type)
23419 The underlying type of @code{type}. Requires: @code{type} shall be
23420 an enumeration type ([dcl.enum]).
23421
23422 @item __integer_pack (length)
23423 When used as the pattern of a pack expansion within a template
23424 definition, expands to a template argument pack containing integers
23425 from @code{0} to @code{length-1}. This is provided for efficient
23426 implementation of @code{std::make_integer_sequence}.
23427
23428 @end table
23429
23430
23431 @node C++ Concepts
23432 @section C++ Concepts
23433
23434 C++ concepts provide much-improved support for generic programming. In
23435 particular, they allow the specification of constraints on template arguments.
23436 The constraints are used to extend the usual overloading and partial
23437 specialization capabilities of the language, allowing generic data structures
23438 and algorithms to be ``refined'' based on their properties rather than their
23439 type names.
23440
23441 The following keywords are reserved for concepts.
23442
23443 @table @code
23444 @item assumes
23445 States an expression as an assumption, and if possible, verifies that the
23446 assumption is valid. For example, @code{assume(n > 0)}.
23447
23448 @item axiom
23449 Introduces an axiom definition. Axioms introduce requirements on values.
23450
23451 @item forall
23452 Introduces a universally quantified object in an axiom. For example,
23453 @code{forall (int n) n + 0 == n}).
23454
23455 @item concept
23456 Introduces a concept definition. Concepts are sets of syntactic and semantic
23457 requirements on types and their values.
23458
23459 @item requires
23460 Introduces constraints on template arguments or requirements for a member
23461 function of a class template.
23462
23463 @end table
23464
23465 The front end also exposes a number of internal mechanism that can be used
23466 to simplify the writing of type traits. Note that some of these traits are
23467 likely to be removed in the future.
23468
23469 @table @code
23470 @item __is_same (type1, type2)
23471 A binary type trait: true whenever the type arguments are the same.
23472
23473 @end table
23474
23475
23476 @node Deprecated Features
23477 @section Deprecated Features
23478
23479 In the past, the GNU C++ compiler was extended to experiment with new
23480 features, at a time when the C++ language was still evolving. Now that
23481 the C++ standard is complete, some of those features are superseded by
23482 superior alternatives. Using the old features might cause a warning in
23483 some cases that the feature will be dropped in the future. In other
23484 cases, the feature might be gone already.
23485
23486 While the list below is not exhaustive, it documents some of the options
23487 that are now deprecated:
23488
23489 @table @code
23490 @item -fexternal-templates
23491 @itemx -falt-external-templates
23492 These are two of the many ways for G++ to implement template
23493 instantiation. @xref{Template Instantiation}. The C++ standard clearly
23494 defines how template definitions have to be organized across
23495 implementation units. G++ has an implicit instantiation mechanism that
23496 should work just fine for standard-conforming code.
23497
23498 @item -fstrict-prototype
23499 @itemx -fno-strict-prototype
23500 Previously it was possible to use an empty prototype parameter list to
23501 indicate an unspecified number of parameters (like C), rather than no
23502 parameters, as C++ demands. This feature has been removed, except where
23503 it is required for backwards compatibility. @xref{Backwards Compatibility}.
23504 @end table
23505
23506 G++ allows a virtual function returning @samp{void *} to be overridden
23507 by one returning a different pointer type. This extension to the
23508 covariant return type rules is now deprecated and will be removed from a
23509 future version.
23510
23511 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
23512 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
23513 and are now removed from G++. Code using these operators should be
23514 modified to use @code{std::min} and @code{std::max} instead.
23515
23516 The named return value extension has been deprecated, and is now
23517 removed from G++.
23518
23519 The use of initializer lists with new expressions has been deprecated,
23520 and is now removed from G++.
23521
23522 Floating and complex non-type template parameters have been deprecated,
23523 and are now removed from G++.
23524
23525 The implicit typename extension has been deprecated and is now
23526 removed from G++.
23527
23528 The use of default arguments in function pointers, function typedefs
23529 and other places where they are not permitted by the standard is
23530 deprecated and will be removed from a future version of G++.
23531
23532 G++ allows floating-point literals to appear in integral constant expressions,
23533 e.g.@: @samp{ enum E @{ e = int(2.2 * 3.7) @} }
23534 This extension is deprecated and will be removed from a future version.
23535
23536 G++ allows static data members of const floating-point type to be declared
23537 with an initializer in a class definition. The standard only allows
23538 initializers for static members of const integral types and const
23539 enumeration types so this extension has been deprecated and will be removed
23540 from a future version.
23541
23542 @node Backwards Compatibility
23543 @section Backwards Compatibility
23544 @cindex Backwards Compatibility
23545 @cindex ARM [Annotated C++ Reference Manual]
23546
23547 Now that there is a definitive ISO standard C++, G++ has a specification
23548 to adhere to. The C++ language evolved over time, and features that
23549 used to be acceptable in previous drafts of the standard, such as the ARM
23550 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
23551 compilation of C++ written to such drafts, G++ contains some backwards
23552 compatibilities. @emph{All such backwards compatibility features are
23553 liable to disappear in future versions of G++.} They should be considered
23554 deprecated. @xref{Deprecated Features}.
23555
23556 @table @code
23557 @item For scope
23558 If a variable is declared at for scope, it used to remain in scope until
23559 the end of the scope that contained the for statement (rather than just
23560 within the for scope). G++ retains this, but issues a warning, if such a
23561 variable is accessed outside the for scope.
23562
23563 @item Implicit C language
23564 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
23565 scope to set the language. On such systems, all header files are
23566 implicitly scoped inside a C language scope. Also, an empty prototype
23567 @code{()} is treated as an unspecified number of arguments, rather
23568 than no arguments, as C++ demands.
23569 @end table
23570
23571 @c LocalWords: emph deftypefn builtin ARCv2EM SIMD builtins msimd
23572 @c LocalWords: typedef v4si v8hi DMA dma vdiwr vdowr