]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/extend.texi
c770e35cb7f8001a7e94ac9037d68eb351286451
[thirdparty/gcc.git] / gcc / doc / extend.texi
1 @c Copyright (C) 1988, 1989, 1992, 1993, 1994, 1996, 1998, 1999, 2000, 2001,
2 @c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 @c Free Software Foundation, Inc.
4
5 @c This is part of the GCC manual.
6 @c For copying conditions, see the file gcc.texi.
7
8 @node C Extensions
9 @chapter Extensions to the C Language Family
10 @cindex extensions, C language
11 @cindex C language extensions
12
13 @opindex pedantic
14 GNU C provides several language features not found in ISO standard C@.
15 (The @option{-pedantic} option directs GCC to print a warning message if
16 any of these features is used.) To test for the availability of these
17 features in conditional compilation, check for a predefined macro
18 @code{__GNUC__}, which is always defined under GCC@.
19
20 These extensions are available in C and Objective-C@. Most of them are
21 also available in C++. @xref{C++ Extensions,,Extensions to the
22 C++ Language}, for extensions that apply @emph{only} to C++.
23
24 Some features that are in ISO C99 but not C90 or C++ are also, as
25 extensions, accepted by GCC in C90 mode and in C++.
26
27 @menu
28 * Statement Exprs:: Putting statements and declarations inside expressions.
29 * Local Labels:: Labels local to a block.
30 * Labels as Values:: Getting pointers to labels, and computed gotos.
31 * Nested Functions:: As in Algol and Pascal, lexical scoping of functions.
32 * Constructing Calls:: Dispatching a call to another function.
33 * Typeof:: @code{typeof}: referring to the type of an expression.
34 * Conditionals:: Omitting the middle operand of a @samp{?:} expression.
35 * Long Long:: Double-word integers---@code{long long int}.
36 * __int128:: 128-bit integers---@code{__int128}.
37 * Complex:: Data types for complex numbers.
38 * Floating Types:: Additional Floating Types.
39 * Half-Precision:: Half-Precision Floating Point.
40 * Decimal Float:: Decimal Floating Types.
41 * Hex Floats:: Hexadecimal floating-point constants.
42 * Fixed-Point:: Fixed-Point Types.
43 * Named Address Spaces::Named address spaces.
44 * Zero Length:: Zero-length arrays.
45 * Variable Length:: Arrays whose length is computed at run time.
46 * Empty Structures:: Structures with no members.
47 * Variadic Macros:: Macros with a variable number of arguments.
48 * Escaped Newlines:: Slightly looser rules for escaped newlines.
49 * Subscripting:: Any array can be subscripted, even if not an lvalue.
50 * Pointer Arith:: Arithmetic on @code{void}-pointers and function pointers.
51 * Initializers:: Non-constant initializers.
52 * Compound Literals:: Compound literals give structures, unions
53 or arrays as values.
54 * Designated Inits:: Labeling elements of initializers.
55 * Cast to Union:: Casting to union type from any member of the union.
56 * Case Ranges:: `case 1 ... 9' and such.
57 * Mixed Declarations:: Mixing declarations and code.
58 * Function Attributes:: Declaring that functions have no side effects,
59 or that they can never return.
60 * Attribute Syntax:: Formal syntax for attributes.
61 * Function Prototypes:: Prototype declarations and old-style definitions.
62 * C++ Comments:: C++ comments are recognized.
63 * Dollar Signs:: Dollar sign is allowed in identifiers.
64 * Character Escapes:: @samp{\e} stands for the character @key{ESC}.
65 * Variable Attributes:: Specifying attributes of variables.
66 * Type Attributes:: Specifying attributes of types.
67 * Alignment:: Inquiring about the alignment of a type or variable.
68 * Inline:: Defining inline functions (as fast as macros).
69 * Volatiles:: What constitutes an access to a volatile object.
70 * Extended Asm:: Assembler instructions with C expressions as operands.
71 (With them you can define ``built-in'' functions.)
72 * Constraints:: Constraints for asm operands
73 * Asm Labels:: Specifying the assembler name to use for a C symbol.
74 * Explicit Reg Vars:: Defining variables residing in specified registers.
75 * Alternate Keywords:: @code{__const__}, @code{__asm__}, etc., for header files.
76 * Incomplete Enums:: @code{enum foo;}, with details to follow.
77 * Function Names:: Printable strings which are the name of the current
78 function.
79 * Return Address:: Getting the return or frame address of a function.
80 * Vector Extensions:: Using vector instructions through built-in functions.
81 * Offsetof:: Special syntax for implementing @code{offsetof}.
82 * __sync Builtins:: Legacy built-in functions for atomic memory access.
83 * __atomic Builtins:: Atomic built-in functions with memory model.
84 * Object Size Checking:: Built-in functions for limited buffer overflow
85 checking.
86 * Other Builtins:: Other built-in functions.
87 * Target Builtins:: Built-in functions specific to particular targets.
88 * Target Format Checks:: Format checks specific to particular targets.
89 * Pragmas:: Pragmas accepted by GCC.
90 * Unnamed Fields:: Unnamed struct/union fields within structs/unions.
91 * Thread-Local:: Per-thread variables.
92 * Binary constants:: Binary constants using the @samp{0b} prefix.
93 @end menu
94
95 @node Statement Exprs
96 @section Statements and Declarations in Expressions
97 @cindex statements inside expressions
98 @cindex declarations inside expressions
99 @cindex expressions containing statements
100 @cindex macros, statements in expressions
101
102 @c the above section title wrapped and causes an underfull hbox.. i
103 @c changed it from "within" to "in". --mew 4feb93
104 A compound statement enclosed in parentheses may appear as an expression
105 in GNU C@. This allows you to use loops, switches, and local variables
106 within an expression.
107
108 Recall that a compound statement is a sequence of statements surrounded
109 by braces; in this construct, parentheses go around the braces. For
110 example:
111
112 @smallexample
113 (@{ int y = foo (); int z;
114 if (y > 0) z = y;
115 else z = - y;
116 z; @})
117 @end smallexample
118
119 @noindent
120 is a valid (though slightly more complex than necessary) expression
121 for the absolute value of @code{foo ()}.
122
123 The last thing in the compound statement should be an expression
124 followed by a semicolon; the value of this subexpression serves as the
125 value of the entire construct. (If you use some other kind of statement
126 last within the braces, the construct has type @code{void}, and thus
127 effectively no value.)
128
129 This feature is especially useful in making macro definitions ``safe'' (so
130 that they evaluate each operand exactly once). For example, the
131 ``maximum'' function is commonly defined as a macro in standard C as
132 follows:
133
134 @smallexample
135 #define max(a,b) ((a) > (b) ? (a) : (b))
136 @end smallexample
137
138 @noindent
139 @cindex side effects, macro argument
140 But this definition computes either @var{a} or @var{b} twice, with bad
141 results if the operand has side effects. In GNU C, if you know the
142 type of the operands (here taken as @code{int}), you can define
143 the macro safely as follows:
144
145 @smallexample
146 #define maxint(a,b) \
147 (@{int _a = (a), _b = (b); _a > _b ? _a : _b; @})
148 @end smallexample
149
150 Embedded statements are not allowed in constant expressions, such as
151 the value of an enumeration constant, the width of a bit-field, or
152 the initial value of a static variable.
153
154 If you don't know the type of the operand, you can still do this, but you
155 must use @code{typeof} (@pxref{Typeof}).
156
157 In G++, the result value of a statement expression undergoes array and
158 function pointer decay, and is returned by value to the enclosing
159 expression. For instance, if @code{A} is a class, then
160
161 @smallexample
162 A a;
163
164 (@{a;@}).Foo ()
165 @end smallexample
166
167 @noindent
168 will construct a temporary @code{A} object to hold the result of the
169 statement expression, and that will be used to invoke @code{Foo}.
170 Therefore the @code{this} pointer observed by @code{Foo} will not be the
171 address of @code{a}.
172
173 Any temporaries created within a statement within a statement expression
174 will be destroyed at the statement's end. This makes statement
175 expressions inside macros slightly different from function calls. In
176 the latter case temporaries introduced during argument evaluation will
177 be destroyed at the end of the statement that includes the function
178 call. In the statement expression case they will be destroyed during
179 the statement expression. For instance,
180
181 @smallexample
182 #define macro(a) (@{__typeof__(a) b = (a); b + 3; @})
183 template<typename T> T function(T a) @{ T b = a; return b + 3; @}
184
185 void foo ()
186 @{
187 macro (X ());
188 function (X ());
189 @}
190 @end smallexample
191
192 @noindent
193 will have different places where temporaries are destroyed. For the
194 @code{macro} case, the temporary @code{X} will be destroyed just after
195 the initialization of @code{b}. In the @code{function} case that
196 temporary will be destroyed when the function returns.
197
198 These considerations mean that it is probably a bad idea to use
199 statement-expressions of this form in header files that are designed to
200 work with C++. (Note that some versions of the GNU C Library contained
201 header files using statement-expression that lead to precisely this
202 bug.)
203
204 Jumping into a statement expression with @code{goto} or using a
205 @code{switch} statement outside the statement expression with a
206 @code{case} or @code{default} label inside the statement expression is
207 not permitted. Jumping into a statement expression with a computed
208 @code{goto} (@pxref{Labels as Values}) yields undefined behavior.
209 Jumping out of a statement expression is permitted, but if the
210 statement expression is part of a larger expression then it is
211 unspecified which other subexpressions of that expression have been
212 evaluated except where the language definition requires certain
213 subexpressions to be evaluated before or after the statement
214 expression. In any case, as with a function call the evaluation of a
215 statement expression is not interleaved with the evaluation of other
216 parts of the containing expression. For example,
217
218 @smallexample
219 foo (), ((@{ bar1 (); goto a; 0; @}) + bar2 ()), baz();
220 @end smallexample
221
222 @noindent
223 will call @code{foo} and @code{bar1} and will not call @code{baz} but
224 may or may not call @code{bar2}. If @code{bar2} is called, it will be
225 called after @code{foo} and before @code{bar1}
226
227 @node Local Labels
228 @section Locally Declared Labels
229 @cindex local labels
230 @cindex macros, local labels
231
232 GCC allows you to declare @dfn{local labels} in any nested block
233 scope. A local label is just like an ordinary label, but you can
234 only reference it (with a @code{goto} statement, or by taking its
235 address) within the block in which it was declared.
236
237 A local label declaration looks like this:
238
239 @smallexample
240 __label__ @var{label};
241 @end smallexample
242
243 @noindent
244 or
245
246 @smallexample
247 __label__ @var{label1}, @var{label2}, /* @r{@dots{}} */;
248 @end smallexample
249
250 Local label declarations must come at the beginning of the block,
251 before any ordinary declarations or statements.
252
253 The label declaration defines the label @emph{name}, but does not define
254 the label itself. You must do this in the usual way, with
255 @code{@var{label}:}, within the statements of the statement expression.
256
257 The local label feature is useful for complex macros. If a macro
258 contains nested loops, a @code{goto} can be useful for breaking out of
259 them. However, an ordinary label whose scope is the whole function
260 cannot be used: if the macro can be expanded several times in one
261 function, the label will be multiply defined in that function. A
262 local label avoids this problem. For example:
263
264 @smallexample
265 #define SEARCH(value, array, target) \
266 do @{ \
267 __label__ found; \
268 typeof (target) _SEARCH_target = (target); \
269 typeof (*(array)) *_SEARCH_array = (array); \
270 int i, j; \
271 int value; \
272 for (i = 0; i < max; i++) \
273 for (j = 0; j < max; j++) \
274 if (_SEARCH_array[i][j] == _SEARCH_target) \
275 @{ (value) = i; goto found; @} \
276 (value) = -1; \
277 found:; \
278 @} while (0)
279 @end smallexample
280
281 This could also be written using a statement-expression:
282
283 @smallexample
284 #define SEARCH(array, target) \
285 (@{ \
286 __label__ found; \
287 typeof (target) _SEARCH_target = (target); \
288 typeof (*(array)) *_SEARCH_array = (array); \
289 int i, j; \
290 int value; \
291 for (i = 0; i < max; i++) \
292 for (j = 0; j < max; j++) \
293 if (_SEARCH_array[i][j] == _SEARCH_target) \
294 @{ value = i; goto found; @} \
295 value = -1; \
296 found: \
297 value; \
298 @})
299 @end smallexample
300
301 Local label declarations also make the labels they declare visible to
302 nested functions, if there are any. @xref{Nested Functions}, for details.
303
304 @node Labels as Values
305 @section Labels as Values
306 @cindex labels as values
307 @cindex computed gotos
308 @cindex goto with computed label
309 @cindex address of a label
310
311 You can get the address of a label defined in the current function
312 (or a containing function) with the unary operator @samp{&&}. The
313 value has type @code{void *}. This value is a constant and can be used
314 wherever a constant of that type is valid. For example:
315
316 @smallexample
317 void *ptr;
318 /* @r{@dots{}} */
319 ptr = &&foo;
320 @end smallexample
321
322 To use these values, you need to be able to jump to one. This is done
323 with the computed goto statement@footnote{The analogous feature in
324 Fortran is called an assigned goto, but that name seems inappropriate in
325 C, where one can do more than simply store label addresses in label
326 variables.}, @code{goto *@var{exp};}. For example,
327
328 @smallexample
329 goto *ptr;
330 @end smallexample
331
332 @noindent
333 Any expression of type @code{void *} is allowed.
334
335 One way of using these constants is in initializing a static array that
336 will serve as a jump table:
337
338 @smallexample
339 static void *array[] = @{ &&foo, &&bar, &&hack @};
340 @end smallexample
341
342 Then you can select a label with indexing, like this:
343
344 @smallexample
345 goto *array[i];
346 @end smallexample
347
348 @noindent
349 Note that this does not check whether the subscript is in bounds---array
350 indexing in C never does that.
351
352 Such an array of label values serves a purpose much like that of the
353 @code{switch} statement. The @code{switch} statement is cleaner, so
354 use that rather than an array unless the problem does not fit a
355 @code{switch} statement very well.
356
357 Another use of label values is in an interpreter for threaded code.
358 The labels within the interpreter function can be stored in the
359 threaded code for super-fast dispatching.
360
361 You may not use this mechanism to jump to code in a different function.
362 If you do that, totally unpredictable things will happen. The best way to
363 avoid this is to store the label address only in automatic variables and
364 never pass it as an argument.
365
366 An alternate way to write the above example is
367
368 @smallexample
369 static const int array[] = @{ &&foo - &&foo, &&bar - &&foo,
370 &&hack - &&foo @};
371 goto *(&&foo + array[i]);
372 @end smallexample
373
374 @noindent
375 This is more friendly to code living in shared libraries, as it reduces
376 the number of dynamic relocations that are needed, and by consequence,
377 allows the data to be read-only.
378
379 The @code{&&foo} expressions for the same label might have different
380 values if the containing function is inlined or cloned. If a program
381 relies on them being always the same,
382 @code{__attribute__((__noinline__,__noclone__))} should be used to
383 prevent inlining and cloning. If @code{&&foo} is used in a static
384 variable initializer, inlining and cloning is forbidden.
385
386 @node Nested Functions
387 @section Nested Functions
388 @cindex nested functions
389 @cindex downward funargs
390 @cindex thunks
391
392 A @dfn{nested function} is a function defined inside another function.
393 (Nested functions are not supported for GNU C++.) The nested function's
394 name is local to the block where it is defined. For example, here we
395 define a nested function named @code{square}, and call it twice:
396
397 @smallexample
398 @group
399 foo (double a, double b)
400 @{
401 double square (double z) @{ return z * z; @}
402
403 return square (a) + square (b);
404 @}
405 @end group
406 @end smallexample
407
408 The nested function can access all the variables of the containing
409 function that are visible at the point of its definition. This is
410 called @dfn{lexical scoping}. For example, here we show a nested
411 function which uses an inherited variable named @code{offset}:
412
413 @smallexample
414 @group
415 bar (int *array, int offset, int size)
416 @{
417 int access (int *array, int index)
418 @{ return array[index + offset]; @}
419 int i;
420 /* @r{@dots{}} */
421 for (i = 0; i < size; i++)
422 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
423 @}
424 @end group
425 @end smallexample
426
427 Nested function definitions are permitted within functions in the places
428 where variable definitions are allowed; that is, in any block, mixed
429 with the other declarations and statements in the block.
430
431 It is possible to call the nested function from outside the scope of its
432 name by storing its address or passing the address to another function:
433
434 @smallexample
435 hack (int *array, int size)
436 @{
437 void store (int index, int value)
438 @{ array[index] = value; @}
439
440 intermediate (store, size);
441 @}
442 @end smallexample
443
444 Here, the function @code{intermediate} receives the address of
445 @code{store} as an argument. If @code{intermediate} calls @code{store},
446 the arguments given to @code{store} are used to store into @code{array}.
447 But this technique works only so long as the containing function
448 (@code{hack}, in this example) does not exit.
449
450 If you try to call the nested function through its address after the
451 containing function has exited, all hell will break loose. If you try
452 to call it after a containing scope level has exited, and if it refers
453 to some of the variables that are no longer in scope, you may be lucky,
454 but it's not wise to take the risk. If, however, the nested function
455 does not refer to anything that has gone out of scope, you should be
456 safe.
457
458 GCC implements taking the address of a nested function using a technique
459 called @dfn{trampolines}. This technique was described in
460 @cite{Lexical Closures for C++} (Thomas M. Breuel, USENIX
461 C++ Conference Proceedings, October 17-21, 1988).
462
463 A nested function can jump to a label inherited from a containing
464 function, provided the label was explicitly declared in the containing
465 function (@pxref{Local Labels}). Such a jump returns instantly to the
466 containing function, exiting the nested function which did the
467 @code{goto} and any intermediate functions as well. Here is an example:
468
469 @smallexample
470 @group
471 bar (int *array, int offset, int size)
472 @{
473 __label__ failure;
474 int access (int *array, int index)
475 @{
476 if (index > size)
477 goto failure;
478 return array[index + offset];
479 @}
480 int i;
481 /* @r{@dots{}} */
482 for (i = 0; i < size; i++)
483 /* @r{@dots{}} */ access (array, i) /* @r{@dots{}} */
484 /* @r{@dots{}} */
485 return 0;
486
487 /* @r{Control comes here from @code{access}
488 if it detects an error.} */
489 failure:
490 return -1;
491 @}
492 @end group
493 @end smallexample
494
495 A nested function always has no linkage. Declaring one with
496 @code{extern} or @code{static} is erroneous. If you need to declare the nested function
497 before its definition, use @code{auto} (which is otherwise meaningless
498 for function declarations).
499
500 @smallexample
501 bar (int *array, int offset, int size)
502 @{
503 __label__ failure;
504 auto int access (int *, int);
505 /* @r{@dots{}} */
506 int access (int *array, int index)
507 @{
508 if (index > size)
509 goto failure;
510 return array[index + offset];
511 @}
512 /* @r{@dots{}} */
513 @}
514 @end smallexample
515
516 @node Constructing Calls
517 @section Constructing Function Calls
518 @cindex constructing calls
519 @cindex forwarding calls
520
521 Using the built-in functions described below, you can record
522 the arguments a function received, and call another function
523 with the same arguments, without knowing the number or types
524 of the arguments.
525
526 You can also record the return value of that function call,
527 and later return that value, without knowing what data type
528 the function tried to return (as long as your caller expects
529 that data type).
530
531 However, these built-in functions may interact badly with some
532 sophisticated features or other extensions of the language. It
533 is, therefore, not recommended to use them outside very simple
534 functions acting as mere forwarders for their arguments.
535
536 @deftypefn {Built-in Function} {void *} __builtin_apply_args ()
537 This built-in function returns a pointer to data
538 describing how to perform a call with the same arguments as were passed
539 to the current function.
540
541 The function saves the arg pointer register, structure value address,
542 and all registers that might be used to pass arguments to a function
543 into a block of memory allocated on the stack. Then it returns the
544 address of that block.
545 @end deftypefn
546
547 @deftypefn {Built-in Function} {void *} __builtin_apply (void (*@var{function})(), void *@var{arguments}, size_t @var{size})
548 This built-in function invokes @var{function}
549 with a copy of the parameters described by @var{arguments}
550 and @var{size}.
551
552 The value of @var{arguments} should be the value returned by
553 @code{__builtin_apply_args}. The argument @var{size} specifies the size
554 of the stack argument data, in bytes.
555
556 This function returns a pointer to data describing
557 how to return whatever value was returned by @var{function}. The data
558 is saved in a block of memory allocated on the stack.
559
560 It is not always simple to compute the proper value for @var{size}. The
561 value is used by @code{__builtin_apply} to compute the amount of data
562 that should be pushed on the stack and copied from the incoming argument
563 area.
564 @end deftypefn
565
566 @deftypefn {Built-in Function} {void} __builtin_return (void *@var{result})
567 This built-in function returns the value described by @var{result} from
568 the containing function. You should specify, for @var{result}, a value
569 returned by @code{__builtin_apply}.
570 @end deftypefn
571
572 @deftypefn {Built-in Function} {} __builtin_va_arg_pack ()
573 This built-in function represents all anonymous arguments of an inline
574 function. It can be used only in inline functions which will be always
575 inlined, never compiled as a separate function, such as those using
576 @code{__attribute__ ((__always_inline__))} or
577 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
578 It must be only passed as last argument to some other function
579 with variable arguments. This is useful for writing small wrapper
580 inlines for variable argument functions, when using preprocessor
581 macros is undesirable. For example:
582 @smallexample
583 extern int myprintf (FILE *f, const char *format, ...);
584 extern inline __attribute__ ((__gnu_inline__)) int
585 myprintf (FILE *f, const char *format, ...)
586 @{
587 int r = fprintf (f, "myprintf: ");
588 if (r < 0)
589 return r;
590 int s = fprintf (f, format, __builtin_va_arg_pack ());
591 if (s < 0)
592 return s;
593 return r + s;
594 @}
595 @end smallexample
596 @end deftypefn
597
598 @deftypefn {Built-in Function} {size_t} __builtin_va_arg_pack_len ()
599 This built-in function returns the number of anonymous arguments of
600 an inline function. It can be used only in inline functions which
601 will be always inlined, never compiled as a separate function, such
602 as those using @code{__attribute__ ((__always_inline__))} or
603 @code{__attribute__ ((__gnu_inline__))} extern inline functions.
604 For example following will do link or runtime checking of open
605 arguments for optimized code:
606 @smallexample
607 #ifdef __OPTIMIZE__
608 extern inline __attribute__((__gnu_inline__)) int
609 myopen (const char *path, int oflag, ...)
610 @{
611 if (__builtin_va_arg_pack_len () > 1)
612 warn_open_too_many_arguments ();
613
614 if (__builtin_constant_p (oflag))
615 @{
616 if ((oflag & O_CREAT) != 0 && __builtin_va_arg_pack_len () < 1)
617 @{
618 warn_open_missing_mode ();
619 return __open_2 (path, oflag);
620 @}
621 return open (path, oflag, __builtin_va_arg_pack ());
622 @}
623
624 if (__builtin_va_arg_pack_len () < 1)
625 return __open_2 (path, oflag);
626
627 return open (path, oflag, __builtin_va_arg_pack ());
628 @}
629 #endif
630 @end smallexample
631 @end deftypefn
632
633 @node Typeof
634 @section Referring to a Type with @code{typeof}
635 @findex typeof
636 @findex sizeof
637 @cindex macros, types of arguments
638
639 Another way to refer to the type of an expression is with @code{typeof}.
640 The syntax of using of this keyword looks like @code{sizeof}, but the
641 construct acts semantically like a type name defined with @code{typedef}.
642
643 There are two ways of writing the argument to @code{typeof}: with an
644 expression or with a type. Here is an example with an expression:
645
646 @smallexample
647 typeof (x[0](1))
648 @end smallexample
649
650 @noindent
651 This assumes that @code{x} is an array of pointers to functions;
652 the type described is that of the values of the functions.
653
654 Here is an example with a typename as the argument:
655
656 @smallexample
657 typeof (int *)
658 @end smallexample
659
660 @noindent
661 Here the type described is that of pointers to @code{int}.
662
663 If you are writing a header file that must work when included in ISO C
664 programs, write @code{__typeof__} instead of @code{typeof}.
665 @xref{Alternate Keywords}.
666
667 A @code{typeof}-construct can be used anywhere a typedef name could be
668 used. For example, you can use it in a declaration, in a cast, or inside
669 of @code{sizeof} or @code{typeof}.
670
671 The operand of @code{typeof} is evaluated for its side effects if and
672 only if it is an expression of variably modified type or the name of
673 such a type.
674
675 @code{typeof} is often useful in conjunction with the
676 statements-within-expressions feature. Here is how the two together can
677 be used to define a safe ``maximum'' macro that operates on any
678 arithmetic type and evaluates each of its arguments exactly once:
679
680 @smallexample
681 #define max(a,b) \
682 (@{ typeof (a) _a = (a); \
683 typeof (b) _b = (b); \
684 _a > _b ? _a : _b; @})
685 @end smallexample
686
687 @cindex underscores in variables in macros
688 @cindex @samp{_} in variables in macros
689 @cindex local variables in macros
690 @cindex variables, local, in macros
691 @cindex macros, local variables in
692
693 The reason for using names that start with underscores for the local
694 variables is to avoid conflicts with variable names that occur within the
695 expressions that are substituted for @code{a} and @code{b}. Eventually we
696 hope to design a new form of declaration syntax that allows you to declare
697 variables whose scopes start only after their initializers; this will be a
698 more reliable way to prevent such conflicts.
699
700 @noindent
701 Some more examples of the use of @code{typeof}:
702
703 @itemize @bullet
704 @item
705 This declares @code{y} with the type of what @code{x} points to.
706
707 @smallexample
708 typeof (*x) y;
709 @end smallexample
710
711 @item
712 This declares @code{y} as an array of such values.
713
714 @smallexample
715 typeof (*x) y[4];
716 @end smallexample
717
718 @item
719 This declares @code{y} as an array of pointers to characters:
720
721 @smallexample
722 typeof (typeof (char *)[4]) y;
723 @end smallexample
724
725 @noindent
726 It is equivalent to the following traditional C declaration:
727
728 @smallexample
729 char *y[4];
730 @end smallexample
731
732 To see the meaning of the declaration using @code{typeof}, and why it
733 might be a useful way to write, rewrite it with these macros:
734
735 @smallexample
736 #define pointer(T) typeof(T *)
737 #define array(T, N) typeof(T [N])
738 @end smallexample
739
740 @noindent
741 Now the declaration can be rewritten this way:
742
743 @smallexample
744 array (pointer (char), 4) y;
745 @end smallexample
746
747 @noindent
748 Thus, @code{array (pointer (char), 4)} is the type of arrays of 4
749 pointers to @code{char}.
750 @end itemize
751
752 @emph{Compatibility Note:} In addition to @code{typeof}, GCC 2 supported
753 a more limited extension which permitted one to write
754
755 @smallexample
756 typedef @var{T} = @var{expr};
757 @end smallexample
758
759 @noindent
760 with the effect of declaring @var{T} to have the type of the expression
761 @var{expr}. This extension does not work with GCC 3 (versions between
762 3.0 and 3.2 will crash; 3.2.1 and later give an error). Code which
763 relies on it should be rewritten to use @code{typeof}:
764
765 @smallexample
766 typedef typeof(@var{expr}) @var{T};
767 @end smallexample
768
769 @noindent
770 This will work with all versions of GCC@.
771
772 @node Conditionals
773 @section Conditionals with Omitted Operands
774 @cindex conditional expressions, extensions
775 @cindex omitted middle-operands
776 @cindex middle-operands, omitted
777 @cindex extensions, @code{?:}
778 @cindex @code{?:} extensions
779
780 The middle operand in a conditional expression may be omitted. Then
781 if the first operand is nonzero, its value is the value of the conditional
782 expression.
783
784 Therefore, the expression
785
786 @smallexample
787 x ? : y
788 @end smallexample
789
790 @noindent
791 has the value of @code{x} if that is nonzero; otherwise, the value of
792 @code{y}.
793
794 This example is perfectly equivalent to
795
796 @smallexample
797 x ? x : y
798 @end smallexample
799
800 @cindex side effect in @code{?:}
801 @cindex @code{?:} side effect
802 @noindent
803 In this simple case, the ability to omit the middle operand is not
804 especially useful. When it becomes useful is when the first operand does,
805 or may (if it is a macro argument), contain a side effect. Then repeating
806 the operand in the middle would perform the side effect twice. Omitting
807 the middle operand uses the value already computed without the undesirable
808 effects of recomputing it.
809
810 @node __int128
811 @section 128-bits integers
812 @cindex @code{__int128} data types
813
814 As an extension the integer scalar type @code{__int128} is supported for
815 targets having an integer mode wide enough to hold 128-bit.
816 Simply write @code{__int128} for a signed 128-bit integer, or
817 @code{unsigned __int128} for an unsigned 128-bit integer. There is no
818 support in GCC to express an integer constant of type @code{__int128}
819 for targets having @code{long long} integer with less then 128 bit width.
820
821 @node Long Long
822 @section Double-Word Integers
823 @cindex @code{long long} data types
824 @cindex double-word arithmetic
825 @cindex multiprecision arithmetic
826 @cindex @code{LL} integer suffix
827 @cindex @code{ULL} integer suffix
828
829 ISO C99 supports data types for integers that are at least 64 bits wide,
830 and as an extension GCC supports them in C90 mode and in C++.
831 Simply write @code{long long int} for a signed integer, or
832 @code{unsigned long long int} for an unsigned integer. To make an
833 integer constant of type @code{long long int}, add the suffix @samp{LL}
834 to the integer. To make an integer constant of type @code{unsigned long
835 long int}, add the suffix @samp{ULL} to the integer.
836
837 You can use these types in arithmetic like any other integer types.
838 Addition, subtraction, and bitwise boolean operations on these types
839 are open-coded on all types of machines. Multiplication is open-coded
840 if the machine supports fullword-to-doubleword a widening multiply
841 instruction. Division and shifts are open-coded only on machines that
842 provide special support. The operations that are not open-coded use
843 special library routines that come with GCC@.
844
845 There may be pitfalls when you use @code{long long} types for function
846 arguments, unless you declare function prototypes. If a function
847 expects type @code{int} for its argument, and you pass a value of type
848 @code{long long int}, confusion will result because the caller and the
849 subroutine will disagree about the number of bytes for the argument.
850 Likewise, if the function expects @code{long long int} and you pass
851 @code{int}. The best way to avoid such problems is to use prototypes.
852
853 @node Complex
854 @section Complex Numbers
855 @cindex complex numbers
856 @cindex @code{_Complex} keyword
857 @cindex @code{__complex__} keyword
858
859 ISO C99 supports complex floating data types, and as an extension GCC
860 supports them in C90 mode and in C++, and supports complex integer data
861 types which are not part of ISO C99. You can declare complex types
862 using the keyword @code{_Complex}. As an extension, the older GNU
863 keyword @code{__complex__} is also supported.
864
865 For example, @samp{_Complex double x;} declares @code{x} as a
866 variable whose real part and imaginary part are both of type
867 @code{double}. @samp{_Complex short int y;} declares @code{y} to
868 have real and imaginary parts of type @code{short int}; this is not
869 likely to be useful, but it shows that the set of complex types is
870 complete.
871
872 To write a constant with a complex data type, use the suffix @samp{i} or
873 @samp{j} (either one; they are equivalent). For example, @code{2.5fi}
874 has type @code{_Complex float} and @code{3i} has type
875 @code{_Complex int}. Such a constant always has a pure imaginary
876 value, but you can form any complex value you like by adding one to a
877 real constant. This is a GNU extension; if you have an ISO C99
878 conforming C library (such as GNU libc), and want to construct complex
879 constants of floating type, you should include @code{<complex.h>} and
880 use the macros @code{I} or @code{_Complex_I} instead.
881
882 @cindex @code{__real__} keyword
883 @cindex @code{__imag__} keyword
884 To extract the real part of a complex-valued expression @var{exp}, write
885 @code{__real__ @var{exp}}. Likewise, use @code{__imag__} to
886 extract the imaginary part. This is a GNU extension; for values of
887 floating type, you should use the ISO C99 functions @code{crealf},
888 @code{creal}, @code{creall}, @code{cimagf}, @code{cimag} and
889 @code{cimagl}, declared in @code{<complex.h>} and also provided as
890 built-in functions by GCC@.
891
892 @cindex complex conjugation
893 The operator @samp{~} performs complex conjugation when used on a value
894 with a complex type. This is a GNU extension; for values of
895 floating type, you should use the ISO C99 functions @code{conjf},
896 @code{conj} and @code{conjl}, declared in @code{<complex.h>} and also
897 provided as built-in functions by GCC@.
898
899 GCC can allocate complex automatic variables in a noncontiguous
900 fashion; it's even possible for the real part to be in a register while
901 the imaginary part is on the stack (or vice-versa). Only the DWARF2
902 debug info format can represent this, so use of DWARF2 is recommended.
903 If you are using the stabs debug info format, GCC describes a noncontiguous
904 complex variable as if it were two separate variables of noncomplex type.
905 If the variable's actual name is @code{foo}, the two fictitious
906 variables are named @code{foo$real} and @code{foo$imag}. You can
907 examine and set these two fictitious variables with your debugger.
908
909 @node Floating Types
910 @section Additional Floating Types
911 @cindex additional floating types
912 @cindex @code{__float80} data type
913 @cindex @code{__float128} data type
914 @cindex @code{w} floating point suffix
915 @cindex @code{q} floating point suffix
916 @cindex @code{W} floating point suffix
917 @cindex @code{Q} floating point suffix
918
919 As an extension, the GNU C compiler supports additional floating
920 types, @code{__float80} and @code{__float128} to support 80bit
921 (@code{XFmode}) and 128 bit (@code{TFmode}) floating types.
922 Support for additional types includes the arithmetic operators:
923 add, subtract, multiply, divide; unary arithmetic operators;
924 relational operators; equality operators; and conversions to and from
925 integer and other floating types. Use a suffix @samp{w} or @samp{W}
926 in a literal constant of type @code{__float80} and @samp{q} or @samp{Q}
927 for @code{_float128}. You can declare complex types using the
928 corresponding internal complex type, @code{XCmode} for @code{__float80}
929 type and @code{TCmode} for @code{__float128} type:
930
931 @smallexample
932 typedef _Complex float __attribute__((mode(TC))) _Complex128;
933 typedef _Complex float __attribute__((mode(XC))) _Complex80;
934 @end smallexample
935
936 Not all targets support additional floating point types. @code{__float80}
937 and @code{__float128} types are supported on i386, x86_64 and ia64 targets.
938 The @code{__float128} type is supported on hppa HP-UX targets.
939
940 @node Half-Precision
941 @section Half-Precision Floating Point
942 @cindex half-precision floating point
943 @cindex @code{__fp16} data type
944
945 On ARM targets, GCC supports half-precision (16-bit) floating point via
946 the @code{__fp16} type. You must enable this type explicitly
947 with the @option{-mfp16-format} command-line option in order to use it.
948
949 ARM supports two incompatible representations for half-precision
950 floating-point values. You must choose one of the representations and
951 use it consistently in your program.
952
953 Specifying @option{-mfp16-format=ieee} selects the IEEE 754-2008 format.
954 This format can represent normalized values in the range of @math{2^{-14}} to 65504.
955 There are 11 bits of significand precision, approximately 3
956 decimal digits.
957
958 Specifying @option{-mfp16-format=alternative} selects the ARM
959 alternative format. This representation is similar to the IEEE
960 format, but does not support infinities or NaNs. Instead, the range
961 of exponents is extended, so that this format can represent normalized
962 values in the range of @math{2^{-14}} to 131008.
963
964 The @code{__fp16} type is a storage format only. For purposes
965 of arithmetic and other operations, @code{__fp16} values in C or C++
966 expressions are automatically promoted to @code{float}. In addition,
967 you cannot declare a function with a return value or parameters
968 of type @code{__fp16}.
969
970 Note that conversions from @code{double} to @code{__fp16}
971 involve an intermediate conversion to @code{float}. Because
972 of rounding, this can sometimes produce a different result than a
973 direct conversion.
974
975 ARM provides hardware support for conversions between
976 @code{__fp16} and @code{float} values
977 as an extension to VFP and NEON (Advanced SIMD). GCC generates
978 code using these hardware instructions if you compile with
979 options to select an FPU that provides them;
980 for example, @option{-mfpu=neon-fp16 -mfloat-abi=softfp},
981 in addition to the @option{-mfp16-format} option to select
982 a half-precision format.
983
984 Language-level support for the @code{__fp16} data type is
985 independent of whether GCC generates code using hardware floating-point
986 instructions. In cases where hardware support is not specified, GCC
987 implements conversions between @code{__fp16} and @code{float} values
988 as library calls.
989
990 @node Decimal Float
991 @section Decimal Floating Types
992 @cindex decimal floating types
993 @cindex @code{_Decimal32} data type
994 @cindex @code{_Decimal64} data type
995 @cindex @code{_Decimal128} data type
996 @cindex @code{df} integer suffix
997 @cindex @code{dd} integer suffix
998 @cindex @code{dl} integer suffix
999 @cindex @code{DF} integer suffix
1000 @cindex @code{DD} integer suffix
1001 @cindex @code{DL} integer suffix
1002
1003 As an extension, the GNU C compiler supports decimal floating types as
1004 defined in the N1312 draft of ISO/IEC WDTR24732. Support for decimal
1005 floating types in GCC will evolve as the draft technical report changes.
1006 Calling conventions for any target might also change. Not all targets
1007 support decimal floating types.
1008
1009 The decimal floating types are @code{_Decimal32}, @code{_Decimal64}, and
1010 @code{_Decimal128}. They use a radix of ten, unlike the floating types
1011 @code{float}, @code{double}, and @code{long double} whose radix is not
1012 specified by the C standard but is usually two.
1013
1014 Support for decimal floating types includes the arithmetic operators
1015 add, subtract, multiply, divide; unary arithmetic operators;
1016 relational operators; equality operators; and conversions to and from
1017 integer and other floating types. Use a suffix @samp{df} or
1018 @samp{DF} in a literal constant of type @code{_Decimal32}, @samp{dd}
1019 or @samp{DD} for @code{_Decimal64}, and @samp{dl} or @samp{DL} for
1020 @code{_Decimal128}.
1021
1022 GCC support of decimal float as specified by the draft technical report
1023 is incomplete:
1024
1025 @itemize @bullet
1026 @item
1027 When the value of a decimal floating type cannot be represented in the
1028 integer type to which it is being converted, the result is undefined
1029 rather than the result value specified by the draft technical report.
1030
1031 @item
1032 GCC does not provide the C library functionality associated with
1033 @file{math.h}, @file{fenv.h}, @file{stdio.h}, @file{stdlib.h}, and
1034 @file{wchar.h}, which must come from a separate C library implementation.
1035 Because of this the GNU C compiler does not define macro
1036 @code{__STDC_DEC_FP__} to indicate that the implementation conforms to
1037 the technical report.
1038 @end itemize
1039
1040 Types @code{_Decimal32}, @code{_Decimal64}, and @code{_Decimal128}
1041 are supported by the DWARF2 debug information format.
1042
1043 @node Hex Floats
1044 @section Hex Floats
1045 @cindex hex floats
1046
1047 ISO C99 supports floating-point numbers written not only in the usual
1048 decimal notation, such as @code{1.55e1}, but also numbers such as
1049 @code{0x1.fp3} written in hexadecimal format. As a GNU extension, GCC
1050 supports this in C90 mode (except in some cases when strictly
1051 conforming) and in C++. In that format the
1052 @samp{0x} hex introducer and the @samp{p} or @samp{P} exponent field are
1053 mandatory. The exponent is a decimal number that indicates the power of
1054 2 by which the significant part will be multiplied. Thus @samp{0x1.f} is
1055 @tex
1056 $1 {15\over16}$,
1057 @end tex
1058 @ifnottex
1059 1 15/16,
1060 @end ifnottex
1061 @samp{p3} multiplies it by 8, and the value of @code{0x1.fp3}
1062 is the same as @code{1.55e1}.
1063
1064 Unlike for floating-point numbers in the decimal notation the exponent
1065 is always required in the hexadecimal notation. Otherwise the compiler
1066 would not be able to resolve the ambiguity of, e.g., @code{0x1.f}. This
1067 could mean @code{1.0f} or @code{1.9375} since @samp{f} is also the
1068 extension for floating-point constants of type @code{float}.
1069
1070 @node Fixed-Point
1071 @section Fixed-Point Types
1072 @cindex fixed-point types
1073 @cindex @code{_Fract} data type
1074 @cindex @code{_Accum} data type
1075 @cindex @code{_Sat} data type
1076 @cindex @code{hr} fixed-suffix
1077 @cindex @code{r} fixed-suffix
1078 @cindex @code{lr} fixed-suffix
1079 @cindex @code{llr} fixed-suffix
1080 @cindex @code{uhr} fixed-suffix
1081 @cindex @code{ur} fixed-suffix
1082 @cindex @code{ulr} fixed-suffix
1083 @cindex @code{ullr} fixed-suffix
1084 @cindex @code{hk} fixed-suffix
1085 @cindex @code{k} fixed-suffix
1086 @cindex @code{lk} fixed-suffix
1087 @cindex @code{llk} fixed-suffix
1088 @cindex @code{uhk} fixed-suffix
1089 @cindex @code{uk} fixed-suffix
1090 @cindex @code{ulk} fixed-suffix
1091 @cindex @code{ullk} fixed-suffix
1092 @cindex @code{HR} fixed-suffix
1093 @cindex @code{R} fixed-suffix
1094 @cindex @code{LR} fixed-suffix
1095 @cindex @code{LLR} fixed-suffix
1096 @cindex @code{UHR} fixed-suffix
1097 @cindex @code{UR} fixed-suffix
1098 @cindex @code{ULR} fixed-suffix
1099 @cindex @code{ULLR} fixed-suffix
1100 @cindex @code{HK} fixed-suffix
1101 @cindex @code{K} fixed-suffix
1102 @cindex @code{LK} fixed-suffix
1103 @cindex @code{LLK} fixed-suffix
1104 @cindex @code{UHK} fixed-suffix
1105 @cindex @code{UK} fixed-suffix
1106 @cindex @code{ULK} fixed-suffix
1107 @cindex @code{ULLK} fixed-suffix
1108
1109 As an extension, the GNU C compiler supports fixed-point types as
1110 defined in the N1169 draft of ISO/IEC DTR 18037. Support for fixed-point
1111 types in GCC will evolve as the draft technical report changes.
1112 Calling conventions for any target might also change. Not all targets
1113 support fixed-point types.
1114
1115 The fixed-point types are
1116 @code{short _Fract},
1117 @code{_Fract},
1118 @code{long _Fract},
1119 @code{long long _Fract},
1120 @code{unsigned short _Fract},
1121 @code{unsigned _Fract},
1122 @code{unsigned long _Fract},
1123 @code{unsigned long long _Fract},
1124 @code{_Sat short _Fract},
1125 @code{_Sat _Fract},
1126 @code{_Sat long _Fract},
1127 @code{_Sat long long _Fract},
1128 @code{_Sat unsigned short _Fract},
1129 @code{_Sat unsigned _Fract},
1130 @code{_Sat unsigned long _Fract},
1131 @code{_Sat unsigned long long _Fract},
1132 @code{short _Accum},
1133 @code{_Accum},
1134 @code{long _Accum},
1135 @code{long long _Accum},
1136 @code{unsigned short _Accum},
1137 @code{unsigned _Accum},
1138 @code{unsigned long _Accum},
1139 @code{unsigned long long _Accum},
1140 @code{_Sat short _Accum},
1141 @code{_Sat _Accum},
1142 @code{_Sat long _Accum},
1143 @code{_Sat long long _Accum},
1144 @code{_Sat unsigned short _Accum},
1145 @code{_Sat unsigned _Accum},
1146 @code{_Sat unsigned long _Accum},
1147 @code{_Sat unsigned long long _Accum}.
1148
1149 Fixed-point data values contain fractional and optional integral parts.
1150 The format of fixed-point data varies and depends on the target machine.
1151
1152 Support for fixed-point types includes:
1153 @itemize @bullet
1154 @item
1155 prefix and postfix increment and decrement operators (@code{++}, @code{--})
1156 @item
1157 unary arithmetic operators (@code{+}, @code{-}, @code{!})
1158 @item
1159 binary arithmetic operators (@code{+}, @code{-}, @code{*}, @code{/})
1160 @item
1161 binary shift operators (@code{<<}, @code{>>})
1162 @item
1163 relational operators (@code{<}, @code{<=}, @code{>=}, @code{>})
1164 @item
1165 equality operators (@code{==}, @code{!=})
1166 @item
1167 assignment operators (@code{+=}, @code{-=}, @code{*=}, @code{/=},
1168 @code{<<=}, @code{>>=})
1169 @item
1170 conversions to and from integer, floating-point, or fixed-point types
1171 @end itemize
1172
1173 Use a suffix in a fixed-point literal constant:
1174 @itemize
1175 @item @samp{hr} or @samp{HR} for @code{short _Fract} and
1176 @code{_Sat short _Fract}
1177 @item @samp{r} or @samp{R} for @code{_Fract} and @code{_Sat _Fract}
1178 @item @samp{lr} or @samp{LR} for @code{long _Fract} and
1179 @code{_Sat long _Fract}
1180 @item @samp{llr} or @samp{LLR} for @code{long long _Fract} and
1181 @code{_Sat long long _Fract}
1182 @item @samp{uhr} or @samp{UHR} for @code{unsigned short _Fract} and
1183 @code{_Sat unsigned short _Fract}
1184 @item @samp{ur} or @samp{UR} for @code{unsigned _Fract} and
1185 @code{_Sat unsigned _Fract}
1186 @item @samp{ulr} or @samp{ULR} for @code{unsigned long _Fract} and
1187 @code{_Sat unsigned long _Fract}
1188 @item @samp{ullr} or @samp{ULLR} for @code{unsigned long long _Fract}
1189 and @code{_Sat unsigned long long _Fract}
1190 @item @samp{hk} or @samp{HK} for @code{short _Accum} and
1191 @code{_Sat short _Accum}
1192 @item @samp{k} or @samp{K} for @code{_Accum} and @code{_Sat _Accum}
1193 @item @samp{lk} or @samp{LK} for @code{long _Accum} and
1194 @code{_Sat long _Accum}
1195 @item @samp{llk} or @samp{LLK} for @code{long long _Accum} and
1196 @code{_Sat long long _Accum}
1197 @item @samp{uhk} or @samp{UHK} for @code{unsigned short _Accum} and
1198 @code{_Sat unsigned short _Accum}
1199 @item @samp{uk} or @samp{UK} for @code{unsigned _Accum} and
1200 @code{_Sat unsigned _Accum}
1201 @item @samp{ulk} or @samp{ULK} for @code{unsigned long _Accum} and
1202 @code{_Sat unsigned long _Accum}
1203 @item @samp{ullk} or @samp{ULLK} for @code{unsigned long long _Accum}
1204 and @code{_Sat unsigned long long _Accum}
1205 @end itemize
1206
1207 GCC support of fixed-point types as specified by the draft technical report
1208 is incomplete:
1209
1210 @itemize @bullet
1211 @item
1212 Pragmas to control overflow and rounding behaviors are not implemented.
1213 @end itemize
1214
1215 Fixed-point types are supported by the DWARF2 debug information format.
1216
1217 @node Named Address Spaces
1218 @section Named Address Spaces
1219 @cindex Named Address Spaces
1220
1221 As an extension, the GNU C compiler supports named address spaces as
1222 defined in the N1275 draft of ISO/IEC DTR 18037. Support for named
1223 address spaces in GCC will evolve as the draft technical report
1224 changes. Calling conventions for any target might also change. At
1225 present, only the AVR, SPU, M32C, and RL78 targets support address
1226 spaces other than the generic address space.
1227
1228 Address space identifiers may be used exactly like any other C type
1229 qualifier (e.g., @code{const} or @code{volatile}). See the N1275
1230 document for more details.
1231
1232 @anchor{AVR Named Address Spaces}
1233 @subsection AVR Named Address Spaces
1234
1235 On the AVR target, there are several address spaces that can be used
1236 in order to put read-only data into the flash memory and access that
1237 data by means of the special instructions @code{LPM} or @code{ELPM}
1238 needed to read from flash.
1239
1240 Per default, any data including read-only data is located in RAM
1241 (the generic address space) so that non-generic address spaces are
1242 needed to locate read-only data in flash memory
1243 @emph{and} to generate the right instructions to access this data
1244 without using (inline) assembler code.
1245
1246 @table @code
1247 @item __flash
1248 @cindex @code{__flash} AVR Named Address Spaces
1249 The @code{__flash} qualifier will locate data in the
1250 @code{.progmem.data} section. Data will be read using the @code{LPM}
1251 instruction. Pointers to this address space are 16 bits wide.
1252
1253 @item __flash1
1254 @item __flash2
1255 @item __flash3
1256 @item __flash4
1257 @item __flash5
1258 @cindex @code{__flash1} AVR Named Address Spaces
1259 @cindex @code{__flash2} AVR Named Address Spaces
1260 @cindex @code{__flash3} AVR Named Address Spaces
1261 @cindex @code{__flash4} AVR Named Address Spaces
1262 @cindex @code{__flash5} AVR Named Address Spaces
1263 These are 16-bit address spaces locating data in section
1264 @code{.progmem@var{N}.data} where @var{N} refers to
1265 address space @code{__flash@var{N}}.
1266 The compiler will set the @code{RAMPZ} segment register approptiately
1267 before reading data by means of the @code{ELPM} instruction.
1268
1269 @item __memx
1270 @cindex @code{__memx} AVR Named Address Spaces
1271 This is a 24-bit address space that linearizes flash and RAM:
1272 If the high bit of the address is set, data is read from
1273 RAM using the lower two bytes as RAM address.
1274 If the high bit of the address is clear, data is read from flash
1275 with @code{RAMPZ} set according to the high byte of the address.
1276
1277 Objects in this address space will be located in @code{.progmem.data}.
1278 @end table
1279
1280 @b{Example}
1281
1282 @example
1283 char my_read (const __flash char ** p)
1284 @{
1285 /* p is a pointer to RAM that points to a pointer to flash.
1286 The first indirection of p will read that flash pointer
1287 from RAM and the second indirection reads a char from this
1288 flash address. */
1289
1290 return **p;
1291 @}
1292
1293 /* Locate array[] in flash memory */
1294 const __flash int array[] = @{ 3, 5, 7, 11, 13, 17, 19 @};
1295
1296 int i = 1;
1297
1298 int main (void)
1299 @{
1300 /* Return 17 by reading from flash memory */
1301 return array[array[i]];
1302 @}
1303 @end example
1304
1305 For each named address space supported by avr-gcc there is an equally
1306 named but uppercase built-in macro defined.
1307 The purpose is to facilitate testing if respective address space
1308 support is available or not:
1309
1310 @example
1311 #ifdef __FLASH
1312 const __flash int var = 1;
1313
1314 int read_i (void)
1315 @{
1316 return i;
1317 @}
1318 #else
1319 #include <avr/pgmspace.h> /* From avr-libc */
1320
1321 const int var PROGMEM = 1;
1322
1323 int read_i (void)
1324 @{
1325 return (int) pgm_read_word (&i);
1326 @}
1327 #endif /* __FLASH */
1328 @end example
1329
1330 Notice that attribute @ref{AVR Variable Attributes,@code{progmem}}
1331 locates data in flash but
1332 accesses to these data will read from generic address space, i.e.@:
1333 from RAM,
1334 so that you need special accessors like @code{pgm_read_byte}
1335 from @w{@uref{http://nongnu.org/avr-libc/user-manual,avr-libc}}.
1336
1337 @b{Limitations and caveats}
1338
1339 @itemize
1340 @item
1341 Reading across the 64@tie{}KiB section boundary of
1342 the @code{__flash} or @code{__flash@var{N}} address spaces
1343 will show undefined behaviour. The only address space that
1344 supports reading across the 64@tie{}KiB flash segment boundaries is
1345 @code{__memx}.
1346
1347 @item
1348 If you use one if the @code{__flash@var{N}} address spaces
1349 you will have to arrange your linker skript to locate the
1350 @code{.progmem@var{N}.data} sections according to your needs.
1351
1352 @item
1353 Any data or pointers to the non-generic address spaces must
1354 be qualified as @code{const}, i.e.@: as read-only data.
1355 This still applies if the data in one of these address
1356 spaces like software version number or calibration lookup table are intended to
1357 be changed after load time by, say, a boot loader. In this case
1358 the right qualification is @code{const} @code{volatile} so that the compiler
1359 must not optimize away known values or insert them
1360 as immediates into operands of instructions.
1361
1362 @item
1363 Code like the following is not yet supported because of missing
1364 support in avr-binutils,
1365 see @w{@uref{http://sourceware.org/PR13503,PR13503}}.
1366 @example
1367 extern const __memx char foo;
1368 const __memx void *pfoo = &foo;
1369 @end example
1370 The code will throw an assembler warning and the high byte of
1371 @code{pfoo} will be initialized with@tie{}@code{0}, i.e.@: the
1372 initialization will be as if @code{foo} was located in the first
1373 64@tie{}KiB chunk of flash.
1374
1375 @end itemize
1376
1377 @subsection M32C Named Address Spaces
1378 @cindex @code{__far} M32C Named Address Spaces
1379
1380 On the M32C target, with the R8C and M16C cpu variants, variables
1381 qualified with @code{__far} are accessed using 32-bit addresses in
1382 order to access memory beyond the first 64@tie{}Ki bytes. If
1383 @code{__far} is used with the M32CM or M32C cpu variants, it has no
1384 effect.
1385
1386 @subsection RL78 Named Address Spaces
1387 @cindex @code{__far} RL78 Named Address Spaces
1388
1389 On the RL78 target, variables qualified with @code{__far} are accessed
1390 with 32-bit pointers (20-bit addresses) rather than the default 16-bit
1391 addresses. Non-far variables are assumed to appear in the topmost
1392 64@tie{}KiB of the address space.
1393
1394 @subsection SPU Named Address Spaces
1395 @cindex @code{__ea} SPU Named Address Spaces
1396
1397 On the SPU target variables may be declared as
1398 belonging to another address space by qualifying the type with the
1399 @code{__ea} address space identifier:
1400
1401 @smallexample
1402 extern int __ea i;
1403 @end smallexample
1404
1405 When the variable @code{i} is accessed, the compiler will generate
1406 special code to access this variable. It may use runtime library
1407 support, or generate special machine instructions to access that address
1408 space.
1409
1410 @node Zero Length
1411 @section Arrays of Length Zero
1412 @cindex arrays of length zero
1413 @cindex zero-length arrays
1414 @cindex length-zero arrays
1415 @cindex flexible array members
1416
1417 Zero-length arrays are allowed in GNU C@. They are very useful as the
1418 last element of a structure which is really a header for a variable-length
1419 object:
1420
1421 @smallexample
1422 struct line @{
1423 int length;
1424 char contents[0];
1425 @};
1426
1427 struct line *thisline = (struct line *)
1428 malloc (sizeof (struct line) + this_length);
1429 thisline->length = this_length;
1430 @end smallexample
1431
1432 In ISO C90, you would have to give @code{contents} a length of 1, which
1433 means either you waste space or complicate the argument to @code{malloc}.
1434
1435 In ISO C99, you would use a @dfn{flexible array member}, which is
1436 slightly different in syntax and semantics:
1437
1438 @itemize @bullet
1439 @item
1440 Flexible array members are written as @code{contents[]} without
1441 the @code{0}.
1442
1443 @item
1444 Flexible array members have incomplete type, and so the @code{sizeof}
1445 operator may not be applied. As a quirk of the original implementation
1446 of zero-length arrays, @code{sizeof} evaluates to zero.
1447
1448 @item
1449 Flexible array members may only appear as the last member of a
1450 @code{struct} that is otherwise non-empty.
1451
1452 @item
1453 A structure containing a flexible array member, or a union containing
1454 such a structure (possibly recursively), may not be a member of a
1455 structure or an element of an array. (However, these uses are
1456 permitted by GCC as extensions.)
1457 @end itemize
1458
1459 GCC versions before 3.0 allowed zero-length arrays to be statically
1460 initialized, as if they were flexible arrays. In addition to those
1461 cases that were useful, it also allowed initializations in situations
1462 that would corrupt later data. Non-empty initialization of zero-length
1463 arrays is now treated like any case where there are more initializer
1464 elements than the array holds, in that a suitable warning about "excess
1465 elements in array" is given, and the excess elements (all of them, in
1466 this case) are ignored.
1467
1468 Instead GCC allows static initialization of flexible array members.
1469 This is equivalent to defining a new structure containing the original
1470 structure followed by an array of sufficient size to contain the data.
1471 I.e.@: in the following, @code{f1} is constructed as if it were declared
1472 like @code{f2}.
1473
1474 @smallexample
1475 struct f1 @{
1476 int x; int y[];
1477 @} f1 = @{ 1, @{ 2, 3, 4 @} @};
1478
1479 struct f2 @{
1480 struct f1 f1; int data[3];
1481 @} f2 = @{ @{ 1 @}, @{ 2, 3, 4 @} @};
1482 @end smallexample
1483
1484 @noindent
1485 The convenience of this extension is that @code{f1} has the desired
1486 type, eliminating the need to consistently refer to @code{f2.f1}.
1487
1488 This has symmetry with normal static arrays, in that an array of
1489 unknown size is also written with @code{[]}.
1490
1491 Of course, this extension only makes sense if the extra data comes at
1492 the end of a top-level object, as otherwise we would be overwriting
1493 data at subsequent offsets. To avoid undue complication and confusion
1494 with initialization of deeply nested arrays, we simply disallow any
1495 non-empty initialization except when the structure is the top-level
1496 object. For example:
1497
1498 @smallexample
1499 struct foo @{ int x; int y[]; @};
1500 struct bar @{ struct foo z; @};
1501
1502 struct foo a = @{ 1, @{ 2, 3, 4 @} @}; // @r{Valid.}
1503 struct bar b = @{ @{ 1, @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1504 struct bar c = @{ @{ 1, @{ @} @} @}; // @r{Valid.}
1505 struct foo d[1] = @{ @{ 1 @{ 2, 3, 4 @} @} @}; // @r{Invalid.}
1506 @end smallexample
1507
1508 @node Empty Structures
1509 @section Structures With No Members
1510 @cindex empty structures
1511 @cindex zero-size structures
1512
1513 GCC permits a C structure to have no members:
1514
1515 @smallexample
1516 struct empty @{
1517 @};
1518 @end smallexample
1519
1520 The structure will have size zero. In C++, empty structures are part
1521 of the language. G++ treats empty structures as if they had a single
1522 member of type @code{char}.
1523
1524 @node Variable Length
1525 @section Arrays of Variable Length
1526 @cindex variable-length arrays
1527 @cindex arrays of variable length
1528 @cindex VLAs
1529
1530 Variable-length automatic arrays are allowed in ISO C99, and as an
1531 extension GCC accepts them in C90 mode and in C++. These arrays are
1532 declared like any other automatic arrays, but with a length that is not
1533 a constant expression. The storage is allocated at the point of
1534 declaration and deallocated when the brace-level is exited. For
1535 example:
1536
1537 @smallexample
1538 FILE *
1539 concat_fopen (char *s1, char *s2, char *mode)
1540 @{
1541 char str[strlen (s1) + strlen (s2) + 1];
1542 strcpy (str, s1);
1543 strcat (str, s2);
1544 return fopen (str, mode);
1545 @}
1546 @end smallexample
1547
1548 @cindex scope of a variable length array
1549 @cindex variable-length array scope
1550 @cindex deallocating variable length arrays
1551 Jumping or breaking out of the scope of the array name deallocates the
1552 storage. Jumping into the scope is not allowed; you get an error
1553 message for it.
1554
1555 @cindex @code{alloca} vs variable-length arrays
1556 You can use the function @code{alloca} to get an effect much like
1557 variable-length arrays. The function @code{alloca} is available in
1558 many other C implementations (but not in all). On the other hand,
1559 variable-length arrays are more elegant.
1560
1561 There are other differences between these two methods. Space allocated
1562 with @code{alloca} exists until the containing @emph{function} returns.
1563 The space for a variable-length array is deallocated as soon as the array
1564 name's scope ends. (If you use both variable-length arrays and
1565 @code{alloca} in the same function, deallocation of a variable-length array
1566 will also deallocate anything more recently allocated with @code{alloca}.)
1567
1568 You can also use variable-length arrays as arguments to functions:
1569
1570 @smallexample
1571 struct entry
1572 tester (int len, char data[len][len])
1573 @{
1574 /* @r{@dots{}} */
1575 @}
1576 @end smallexample
1577
1578 The length of an array is computed once when the storage is allocated
1579 and is remembered for the scope of the array in case you access it with
1580 @code{sizeof}.
1581
1582 If you want to pass the array first and the length afterward, you can
1583 use a forward declaration in the parameter list---another GNU extension.
1584
1585 @smallexample
1586 struct entry
1587 tester (int len; char data[len][len], int len)
1588 @{
1589 /* @r{@dots{}} */
1590 @}
1591 @end smallexample
1592
1593 @cindex parameter forward declaration
1594 The @samp{int len} before the semicolon is a @dfn{parameter forward
1595 declaration}, and it serves the purpose of making the name @code{len}
1596 known when the declaration of @code{data} is parsed.
1597
1598 You can write any number of such parameter forward declarations in the
1599 parameter list. They can be separated by commas or semicolons, but the
1600 last one must end with a semicolon, which is followed by the ``real''
1601 parameter declarations. Each forward declaration must match a ``real''
1602 declaration in parameter name and data type. ISO C99 does not support
1603 parameter forward declarations.
1604
1605 @node Variadic Macros
1606 @section Macros with a Variable Number of Arguments.
1607 @cindex variable number of arguments
1608 @cindex macro with variable arguments
1609 @cindex rest argument (in macro)
1610 @cindex variadic macros
1611
1612 In the ISO C standard of 1999, a macro can be declared to accept a
1613 variable number of arguments much as a function can. The syntax for
1614 defining the macro is similar to that of a function. Here is an
1615 example:
1616
1617 @smallexample
1618 #define debug(format, ...) fprintf (stderr, format, __VA_ARGS__)
1619 @end smallexample
1620
1621 Here @samp{@dots{}} is a @dfn{variable argument}. In the invocation of
1622 such a macro, it represents the zero or more tokens until the closing
1623 parenthesis that ends the invocation, including any commas. This set of
1624 tokens replaces the identifier @code{__VA_ARGS__} in the macro body
1625 wherever it appears. See the CPP manual for more information.
1626
1627 GCC has long supported variadic macros, and used a different syntax that
1628 allowed you to give a name to the variable arguments just like any other
1629 argument. Here is an example:
1630
1631 @smallexample
1632 #define debug(format, args...) fprintf (stderr, format, args)
1633 @end smallexample
1634
1635 This is in all ways equivalent to the ISO C example above, but arguably
1636 more readable and descriptive.
1637
1638 GNU CPP has two further variadic macro extensions, and permits them to
1639 be used with either of the above forms of macro definition.
1640
1641 In standard C, you are not allowed to leave the variable argument out
1642 entirely; but you are allowed to pass an empty argument. For example,
1643 this invocation is invalid in ISO C, because there is no comma after
1644 the string:
1645
1646 @smallexample
1647 debug ("A message")
1648 @end smallexample
1649
1650 GNU CPP permits you to completely omit the variable arguments in this
1651 way. In the above examples, the compiler would complain, though since
1652 the expansion of the macro still has the extra comma after the format
1653 string.
1654
1655 To help solve this problem, CPP behaves specially for variable arguments
1656 used with the token paste operator, @samp{##}. If instead you write
1657
1658 @smallexample
1659 #define debug(format, ...) fprintf (stderr, format, ## __VA_ARGS__)
1660 @end smallexample
1661
1662 and if the variable arguments are omitted or empty, the @samp{##}
1663 operator causes the preprocessor to remove the comma before it. If you
1664 do provide some variable arguments in your macro invocation, GNU CPP
1665 does not complain about the paste operation and instead places the
1666 variable arguments after the comma. Just like any other pasted macro
1667 argument, these arguments are not macro expanded.
1668
1669 @node Escaped Newlines
1670 @section Slightly Looser Rules for Escaped Newlines
1671 @cindex escaped newlines
1672 @cindex newlines (escaped)
1673
1674 Recently, the preprocessor has relaxed its treatment of escaped
1675 newlines. Previously, the newline had to immediately follow a
1676 backslash. The current implementation allows whitespace in the form
1677 of spaces, horizontal and vertical tabs, and form feeds between the
1678 backslash and the subsequent newline. The preprocessor issues a
1679 warning, but treats it as a valid escaped newline and combines the two
1680 lines to form a single logical line. This works within comments and
1681 tokens, as well as between tokens. Comments are @emph{not} treated as
1682 whitespace for the purposes of this relaxation, since they have not
1683 yet been replaced with spaces.
1684
1685 @node Subscripting
1686 @section Non-Lvalue Arrays May Have Subscripts
1687 @cindex subscripting
1688 @cindex arrays, non-lvalue
1689
1690 @cindex subscripting and function values
1691 In ISO C99, arrays that are not lvalues still decay to pointers, and
1692 may be subscripted, although they may not be modified or used after
1693 the next sequence point and the unary @samp{&} operator may not be
1694 applied to them. As an extension, GCC allows such arrays to be
1695 subscripted in C90 mode, though otherwise they do not decay to
1696 pointers outside C99 mode. For example,
1697 this is valid in GNU C though not valid in C90:
1698
1699 @smallexample
1700 @group
1701 struct foo @{int a[4];@};
1702
1703 struct foo f();
1704
1705 bar (int index)
1706 @{
1707 return f().a[index];
1708 @}
1709 @end group
1710 @end smallexample
1711
1712 @node Pointer Arith
1713 @section Arithmetic on @code{void}- and Function-Pointers
1714 @cindex void pointers, arithmetic
1715 @cindex void, size of pointer to
1716 @cindex function pointers, arithmetic
1717 @cindex function, size of pointer to
1718
1719 In GNU C, addition and subtraction operations are supported on pointers to
1720 @code{void} and on pointers to functions. This is done by treating the
1721 size of a @code{void} or of a function as 1.
1722
1723 A consequence of this is that @code{sizeof} is also allowed on @code{void}
1724 and on function types, and returns 1.
1725
1726 @opindex Wpointer-arith
1727 The option @option{-Wpointer-arith} requests a warning if these extensions
1728 are used.
1729
1730 @node Initializers
1731 @section Non-Constant Initializers
1732 @cindex initializers, non-constant
1733 @cindex non-constant initializers
1734
1735 As in standard C++ and ISO C99, the elements of an aggregate initializer for an
1736 automatic variable are not required to be constant expressions in GNU C@.
1737 Here is an example of an initializer with run-time varying elements:
1738
1739 @smallexample
1740 foo (float f, float g)
1741 @{
1742 float beat_freqs[2] = @{ f-g, f+g @};
1743 /* @r{@dots{}} */
1744 @}
1745 @end smallexample
1746
1747 @node Compound Literals
1748 @section Compound Literals
1749 @cindex constructor expressions
1750 @cindex initializations in expressions
1751 @cindex structures, constructor expression
1752 @cindex expressions, constructor
1753 @cindex compound literals
1754 @c The GNU C name for what C99 calls compound literals was "constructor expressions".
1755
1756 ISO C99 supports compound literals. A compound literal looks like
1757 a cast containing an initializer. Its value is an object of the
1758 type specified in the cast, containing the elements specified in
1759 the initializer; it is an lvalue. As an extension, GCC supports
1760 compound literals in C90 mode and in C++.
1761
1762 Usually, the specified type is a structure. Assume that
1763 @code{struct foo} and @code{structure} are declared as shown:
1764
1765 @smallexample
1766 struct foo @{int a; char b[2];@} structure;
1767 @end smallexample
1768
1769 @noindent
1770 Here is an example of constructing a @code{struct foo} with a compound literal:
1771
1772 @smallexample
1773 structure = ((struct foo) @{x + y, 'a', 0@});
1774 @end smallexample
1775
1776 @noindent
1777 This is equivalent to writing the following:
1778
1779 @smallexample
1780 @{
1781 struct foo temp = @{x + y, 'a', 0@};
1782 structure = temp;
1783 @}
1784 @end smallexample
1785
1786 You can also construct an array. If all the elements of the compound literal
1787 are (made up of) simple constant expressions, suitable for use in
1788 initializers of objects of static storage duration, then the compound
1789 literal can be coerced to a pointer to its first element and used in
1790 such an initializer, as shown here:
1791
1792 @smallexample
1793 char **foo = (char *[]) @{ "x", "y", "z" @};
1794 @end smallexample
1795
1796 Compound literals for scalar types and union types are
1797 also allowed, but then the compound literal is equivalent
1798 to a cast.
1799
1800 As a GNU extension, GCC allows initialization of objects with static storage
1801 duration by compound literals (which is not possible in ISO C99, because
1802 the initializer is not a constant).
1803 It is handled as if the object was initialized only with the bracket
1804 enclosed list if the types of the compound literal and the object match.
1805 The initializer list of the compound literal must be constant.
1806 If the object being initialized has array type of unknown size, the size is
1807 determined by compound literal size.
1808
1809 @smallexample
1810 static struct foo x = (struct foo) @{1, 'a', 'b'@};
1811 static int y[] = (int []) @{1, 2, 3@};
1812 static int z[] = (int [3]) @{1@};
1813 @end smallexample
1814
1815 @noindent
1816 The above lines are equivalent to the following:
1817 @smallexample
1818 static struct foo x = @{1, 'a', 'b'@};
1819 static int y[] = @{1, 2, 3@};
1820 static int z[] = @{1, 0, 0@};
1821 @end smallexample
1822
1823 @node Designated Inits
1824 @section Designated Initializers
1825 @cindex initializers with labeled elements
1826 @cindex labeled elements in initializers
1827 @cindex case labels in initializers
1828 @cindex designated initializers
1829
1830 Standard C90 requires the elements of an initializer to appear in a fixed
1831 order, the same as the order of the elements in the array or structure
1832 being initialized.
1833
1834 In ISO C99 you can give the elements in any order, specifying the array
1835 indices or structure field names they apply to, and GNU C allows this as
1836 an extension in C90 mode as well. This extension is not
1837 implemented in GNU C++.
1838
1839 To specify an array index, write
1840 @samp{[@var{index}] =} before the element value. For example,
1841
1842 @smallexample
1843 int a[6] = @{ [4] = 29, [2] = 15 @};
1844 @end smallexample
1845
1846 @noindent
1847 is equivalent to
1848
1849 @smallexample
1850 int a[6] = @{ 0, 0, 15, 0, 29, 0 @};
1851 @end smallexample
1852
1853 @noindent
1854 The index values must be constant expressions, even if the array being
1855 initialized is automatic.
1856
1857 An alternative syntax for this which has been obsolete since GCC 2.5 but
1858 GCC still accepts is to write @samp{[@var{index}]} before the element
1859 value, with no @samp{=}.
1860
1861 To initialize a range of elements to the same value, write
1862 @samp{[@var{first} ... @var{last}] = @var{value}}. This is a GNU
1863 extension. For example,
1864
1865 @smallexample
1866 int widths[] = @{ [0 ... 9] = 1, [10 ... 99] = 2, [100] = 3 @};
1867 @end smallexample
1868
1869 @noindent
1870 If the value in it has side-effects, the side-effects will happen only once,
1871 not for each initialized field by the range initializer.
1872
1873 @noindent
1874 Note that the length of the array is the highest value specified
1875 plus one.
1876
1877 In a structure initializer, specify the name of a field to initialize
1878 with @samp{.@var{fieldname} =} before the element value. For example,
1879 given the following structure,
1880
1881 @smallexample
1882 struct point @{ int x, y; @};
1883 @end smallexample
1884
1885 @noindent
1886 the following initialization
1887
1888 @smallexample
1889 struct point p = @{ .y = yvalue, .x = xvalue @};
1890 @end smallexample
1891
1892 @noindent
1893 is equivalent to
1894
1895 @smallexample
1896 struct point p = @{ xvalue, yvalue @};
1897 @end smallexample
1898
1899 Another syntax which has the same meaning, obsolete since GCC 2.5, is
1900 @samp{@var{fieldname}:}, as shown here:
1901
1902 @smallexample
1903 struct point p = @{ y: yvalue, x: xvalue @};
1904 @end smallexample
1905
1906 @cindex designators
1907 The @samp{[@var{index}]} or @samp{.@var{fieldname}} is known as a
1908 @dfn{designator}. You can also use a designator (or the obsolete colon
1909 syntax) when initializing a union, to specify which element of the union
1910 should be used. For example,
1911
1912 @smallexample
1913 union foo @{ int i; double d; @};
1914
1915 union foo f = @{ .d = 4 @};
1916 @end smallexample
1917
1918 @noindent
1919 will convert 4 to a @code{double} to store it in the union using
1920 the second element. By contrast, casting 4 to type @code{union foo}
1921 would store it into the union as the integer @code{i}, since it is
1922 an integer. (@xref{Cast to Union}.)
1923
1924 You can combine this technique of naming elements with ordinary C
1925 initialization of successive elements. Each initializer element that
1926 does not have a designator applies to the next consecutive element of the
1927 array or structure. For example,
1928
1929 @smallexample
1930 int a[6] = @{ [1] = v1, v2, [4] = v4 @};
1931 @end smallexample
1932
1933 @noindent
1934 is equivalent to
1935
1936 @smallexample
1937 int a[6] = @{ 0, v1, v2, 0, v4, 0 @};
1938 @end smallexample
1939
1940 Labeling the elements of an array initializer is especially useful
1941 when the indices are characters or belong to an @code{enum} type.
1942 For example:
1943
1944 @smallexample
1945 int whitespace[256]
1946 = @{ [' '] = 1, ['\t'] = 1, ['\h'] = 1,
1947 ['\f'] = 1, ['\n'] = 1, ['\r'] = 1 @};
1948 @end smallexample
1949
1950 @cindex designator lists
1951 You can also write a series of @samp{.@var{fieldname}} and
1952 @samp{[@var{index}]} designators before an @samp{=} to specify a
1953 nested subobject to initialize; the list is taken relative to the
1954 subobject corresponding to the closest surrounding brace pair. For
1955 example, with the @samp{struct point} declaration above:
1956
1957 @smallexample
1958 struct point ptarray[10] = @{ [2].y = yv2, [2].x = xv2, [0].x = xv0 @};
1959 @end smallexample
1960
1961 @noindent
1962 If the same field is initialized multiple times, it will have value from
1963 the last initialization. If any such overridden initialization has
1964 side-effect, it is unspecified whether the side-effect happens or not.
1965 Currently, GCC will discard them and issue a warning.
1966
1967 @node Case Ranges
1968 @section Case Ranges
1969 @cindex case ranges
1970 @cindex ranges in case statements
1971
1972 You can specify a range of consecutive values in a single @code{case} label,
1973 like this:
1974
1975 @smallexample
1976 case @var{low} ... @var{high}:
1977 @end smallexample
1978
1979 @noindent
1980 This has the same effect as the proper number of individual @code{case}
1981 labels, one for each integer value from @var{low} to @var{high}, inclusive.
1982
1983 This feature is especially useful for ranges of ASCII character codes:
1984
1985 @smallexample
1986 case 'A' ... 'Z':
1987 @end smallexample
1988
1989 @strong{Be careful:} Write spaces around the @code{...}, for otherwise
1990 it may be parsed wrong when you use it with integer values. For example,
1991 write this:
1992
1993 @smallexample
1994 case 1 ... 5:
1995 @end smallexample
1996
1997 @noindent
1998 rather than this:
1999
2000 @smallexample
2001 case 1...5:
2002 @end smallexample
2003
2004 @node Cast to Union
2005 @section Cast to a Union Type
2006 @cindex cast to a union
2007 @cindex union, casting to a
2008
2009 A cast to union type is similar to other casts, except that the type
2010 specified is a union type. You can specify the type either with
2011 @code{union @var{tag}} or with a typedef name. A cast to union is actually
2012 a constructor though, not a cast, and hence does not yield an lvalue like
2013 normal casts. (@xref{Compound Literals}.)
2014
2015 The types that may be cast to the union type are those of the members
2016 of the union. Thus, given the following union and variables:
2017
2018 @smallexample
2019 union foo @{ int i; double d; @};
2020 int x;
2021 double y;
2022 @end smallexample
2023
2024 @noindent
2025 both @code{x} and @code{y} can be cast to type @code{union foo}.
2026
2027 Using the cast as the right-hand side of an assignment to a variable of
2028 union type is equivalent to storing in a member of the union:
2029
2030 @smallexample
2031 union foo u;
2032 /* @r{@dots{}} */
2033 u = (union foo) x @equiv{} u.i = x
2034 u = (union foo) y @equiv{} u.d = y
2035 @end smallexample
2036
2037 You can also use the union cast as a function argument:
2038
2039 @smallexample
2040 void hack (union foo);
2041 /* @r{@dots{}} */
2042 hack ((union foo) x);
2043 @end smallexample
2044
2045 @node Mixed Declarations
2046 @section Mixed Declarations and Code
2047 @cindex mixed declarations and code
2048 @cindex declarations, mixed with code
2049 @cindex code, mixed with declarations
2050
2051 ISO C99 and ISO C++ allow declarations and code to be freely mixed
2052 within compound statements. As an extension, GCC also allows this in
2053 C90 mode. For example, you could do:
2054
2055 @smallexample
2056 int i;
2057 /* @r{@dots{}} */
2058 i++;
2059 int j = i + 2;
2060 @end smallexample
2061
2062 Each identifier is visible from where it is declared until the end of
2063 the enclosing block.
2064
2065 @node Function Attributes
2066 @section Declaring Attributes of Functions
2067 @cindex function attributes
2068 @cindex declaring attributes of functions
2069 @cindex functions that never return
2070 @cindex functions that return more than once
2071 @cindex functions that have no side effects
2072 @cindex functions in arbitrary sections
2073 @cindex functions that behave like malloc
2074 @cindex @code{volatile} applied to function
2075 @cindex @code{const} applied to function
2076 @cindex functions with @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style arguments
2077 @cindex functions with non-null pointer arguments
2078 @cindex functions that are passed arguments in registers on the 386
2079 @cindex functions that pop the argument stack on the 386
2080 @cindex functions that do not pop the argument stack on the 386
2081 @cindex functions that have different compilation options on the 386
2082 @cindex functions that have different optimization options
2083 @cindex functions that are dynamically resolved
2084
2085 In GNU C, you declare certain things about functions called in your program
2086 which help the compiler optimize function calls and check your code more
2087 carefully.
2088
2089 The keyword @code{__attribute__} allows you to specify special
2090 attributes when making a declaration. This keyword is followed by an
2091 attribute specification inside double parentheses. The following
2092 attributes are currently defined for functions on all targets:
2093 @code{aligned}, @code{alloc_size}, @code{noreturn},
2094 @code{returns_twice}, @code{noinline}, @code{noclone},
2095 @code{always_inline}, @code{flatten}, @code{pure}, @code{const},
2096 @code{nothrow}, @code{sentinel}, @code{format}, @code{format_arg},
2097 @code{no_instrument_function}, @code{no_split_stack},
2098 @code{section}, @code{constructor},
2099 @code{destructor}, @code{used}, @code{unused}, @code{deprecated},
2100 @code{weak}, @code{malloc}, @code{alias}, @code{ifunc},
2101 @code{warn_unused_result}, @code{nonnull}, @code{gnu_inline},
2102 @code{externally_visible}, @code{hot}, @code{cold}, @code{artificial},
2103 @code{error} and @code{warning}. Several other attributes are defined
2104 for functions on particular target systems. Other attributes,
2105 including @code{section} are supported for variables declarations
2106 (@pxref{Variable Attributes}) and for types (@pxref{Type Attributes}).
2107
2108 GCC plugins may provide their own attributes.
2109
2110 You may also specify attributes with @samp{__} preceding and following
2111 each keyword. This allows you to use them in header files without
2112 being concerned about a possible macro of the same name. For example,
2113 you may use @code{__noreturn__} instead of @code{noreturn}.
2114
2115 @xref{Attribute Syntax}, for details of the exact syntax for using
2116 attributes.
2117
2118 @table @code
2119 @c Keep this table alphabetized by attribute name. Treat _ as space.
2120
2121 @item alias ("@var{target}")
2122 @cindex @code{alias} attribute
2123 The @code{alias} attribute causes the declaration to be emitted as an
2124 alias for another symbol, which must be specified. For instance,
2125
2126 @smallexample
2127 void __f () @{ /* @r{Do something.} */; @}
2128 void f () __attribute__ ((weak, alias ("__f")));
2129 @end smallexample
2130
2131 defines @samp{f} to be a weak alias for @samp{__f}. In C++, the
2132 mangled name for the target must be used. It is an error if @samp{__f}
2133 is not defined in the same translation unit.
2134
2135 Not all target machines support this attribute.
2136
2137 @item aligned (@var{alignment})
2138 @cindex @code{aligned} attribute
2139 This attribute specifies a minimum alignment for the function,
2140 measured in bytes.
2141
2142 You cannot use this attribute to decrease the alignment of a function,
2143 only to increase it. However, when you explicitly specify a function
2144 alignment this will override the effect of the
2145 @option{-falign-functions} (@pxref{Optimize Options}) option for this
2146 function.
2147
2148 Note that the effectiveness of @code{aligned} attributes may be
2149 limited by inherent limitations in your linker. On many systems, the
2150 linker is only able to arrange for functions to be aligned up to a
2151 certain maximum alignment. (For some linkers, the maximum supported
2152 alignment may be very very small.) See your linker documentation for
2153 further information.
2154
2155 The @code{aligned} attribute can also be used for variables and fields
2156 (@pxref{Variable Attributes}.)
2157
2158 @item alloc_size
2159 @cindex @code{alloc_size} attribute
2160 The @code{alloc_size} attribute is used to tell the compiler that the
2161 function return value points to memory, where the size is given by
2162 one or two of the functions parameters. GCC uses this
2163 information to improve the correctness of @code{__builtin_object_size}.
2164
2165 The function parameter(s) denoting the allocated size are specified by
2166 one or two integer arguments supplied to the attribute. The allocated size
2167 is either the value of the single function argument specified or the product
2168 of the two function arguments specified. Argument numbering starts at
2169 one.
2170
2171 For instance,
2172
2173 @smallexample
2174 void* my_calloc(size_t, size_t) __attribute__((alloc_size(1,2)))
2175 void my_realloc(void*, size_t) __attribute__((alloc_size(2)))
2176 @end smallexample
2177
2178 declares that my_calloc will return memory of the size given by
2179 the product of parameter 1 and 2 and that my_realloc will return memory
2180 of the size given by parameter 2.
2181
2182 @item always_inline
2183 @cindex @code{always_inline} function attribute
2184 Generally, functions are not inlined unless optimization is specified.
2185 For functions declared inline, this attribute inlines the function even
2186 if no optimization level was specified.
2187
2188 @item gnu_inline
2189 @cindex @code{gnu_inline} function attribute
2190 This attribute should be used with a function which is also declared
2191 with the @code{inline} keyword. It directs GCC to treat the function
2192 as if it were defined in gnu90 mode even when compiling in C99 or
2193 gnu99 mode.
2194
2195 If the function is declared @code{extern}, then this definition of the
2196 function is used only for inlining. In no case is the function
2197 compiled as a standalone function, not even if you take its address
2198 explicitly. Such an address becomes an external reference, as if you
2199 had only declared the function, and had not defined it. This has
2200 almost the effect of a macro. The way to use this is to put a
2201 function definition in a header file with this attribute, and put
2202 another copy of the function, without @code{extern}, in a library
2203 file. The definition in the header file will cause most calls to the
2204 function to be inlined. If any uses of the function remain, they will
2205 refer to the single copy in the library. Note that the two
2206 definitions of the functions need not be precisely the same, although
2207 if they do not have the same effect your program may behave oddly.
2208
2209 In C, if the function is neither @code{extern} nor @code{static}, then
2210 the function is compiled as a standalone function, as well as being
2211 inlined where possible.
2212
2213 This is how GCC traditionally handled functions declared
2214 @code{inline}. Since ISO C99 specifies a different semantics for
2215 @code{inline}, this function attribute is provided as a transition
2216 measure and as a useful feature in its own right. This attribute is
2217 available in GCC 4.1.3 and later. It is available if either of the
2218 preprocessor macros @code{__GNUC_GNU_INLINE__} or
2219 @code{__GNUC_STDC_INLINE__} are defined. @xref{Inline,,An Inline
2220 Function is As Fast As a Macro}.
2221
2222 In C++, this attribute does not depend on @code{extern} in any way,
2223 but it still requires the @code{inline} keyword to enable its special
2224 behavior.
2225
2226 @item artificial
2227 @cindex @code{artificial} function attribute
2228 This attribute is useful for small inline wrappers which if possible
2229 should appear during debugging as a unit, depending on the debug
2230 info format it will either mean marking the function as artificial
2231 or using the caller location for all instructions within the inlined
2232 body.
2233
2234 @item bank_switch
2235 @cindex interrupt handler functions
2236 When added to an interrupt handler with the M32C port, causes the
2237 prologue and epilogue to use bank switching to preserve the registers
2238 rather than saving them on the stack.
2239
2240 @item flatten
2241 @cindex @code{flatten} function attribute
2242 Generally, inlining into a function is limited. For a function marked with
2243 this attribute, every call inside this function will be inlined, if possible.
2244 Whether the function itself is considered for inlining depends on its size and
2245 the current inlining parameters.
2246
2247 @item error ("@var{message}")
2248 @cindex @code{error} function attribute
2249 If this attribute is used on a function declaration and a call to such a function
2250 is not eliminated through dead code elimination or other optimizations, an error
2251 which will include @var{message} will be diagnosed. This is useful
2252 for compile time checking, especially together with @code{__builtin_constant_p}
2253 and inline functions where checking the inline function arguments is not
2254 possible through @code{extern char [(condition) ? 1 : -1];} tricks.
2255 While it is possible to leave the function undefined and thus invoke
2256 a link failure, when using this attribute the problem will be diagnosed
2257 earlier and with exact location of the call even in presence of inline
2258 functions or when not emitting debugging information.
2259
2260 @item warning ("@var{message}")
2261 @cindex @code{warning} function attribute
2262 If this attribute is used on a function declaration and a call to such a function
2263 is not eliminated through dead code elimination or other optimizations, a warning
2264 which will include @var{message} will be diagnosed. This is useful
2265 for compile time checking, especially together with @code{__builtin_constant_p}
2266 and inline functions. While it is possible to define the function with
2267 a message in @code{.gnu.warning*} section, when using this attribute the problem
2268 will be diagnosed earlier and with exact location of the call even in presence
2269 of inline functions or when not emitting debugging information.
2270
2271 @item cdecl
2272 @cindex functions that do pop the argument stack on the 386
2273 @opindex mrtd
2274 On the Intel 386, the @code{cdecl} attribute causes the compiler to
2275 assume that the calling function will pop off the stack space used to
2276 pass arguments. This is
2277 useful to override the effects of the @option{-mrtd} switch.
2278
2279 @item const
2280 @cindex @code{const} function attribute
2281 Many functions do not examine any values except their arguments, and
2282 have no effects except the return value. Basically this is just slightly
2283 more strict class than the @code{pure} attribute below, since function is not
2284 allowed to read global memory.
2285
2286 @cindex pointer arguments
2287 Note that a function that has pointer arguments and examines the data
2288 pointed to must @emph{not} be declared @code{const}. Likewise, a
2289 function that calls a non-@code{const} function usually must not be
2290 @code{const}. It does not make sense for a @code{const} function to
2291 return @code{void}.
2292
2293 The attribute @code{const} is not implemented in GCC versions earlier
2294 than 2.5. An alternative way to declare that a function has no side
2295 effects, which works in the current version and in some older versions,
2296 is as follows:
2297
2298 @smallexample
2299 typedef int intfn ();
2300
2301 extern const intfn square;
2302 @end smallexample
2303
2304 This approach does not work in GNU C++ from 2.6.0 on, since the language
2305 specifies that the @samp{const} must be attached to the return value.
2306
2307 @item constructor
2308 @itemx destructor
2309 @itemx constructor (@var{priority})
2310 @itemx destructor (@var{priority})
2311 @cindex @code{constructor} function attribute
2312 @cindex @code{destructor} function attribute
2313 The @code{constructor} attribute causes the function to be called
2314 automatically before execution enters @code{main ()}. Similarly, the
2315 @code{destructor} attribute causes the function to be called
2316 automatically after @code{main ()} has completed or @code{exit ()} has
2317 been called. Functions with these attributes are useful for
2318 initializing data that will be used implicitly during the execution of
2319 the program.
2320
2321 You may provide an optional integer priority to control the order in
2322 which constructor and destructor functions are run. A constructor
2323 with a smaller priority number runs before a constructor with a larger
2324 priority number; the opposite relationship holds for destructors. So,
2325 if you have a constructor that allocates a resource and a destructor
2326 that deallocates the same resource, both functions typically have the
2327 same priority. The priorities for constructor and destructor
2328 functions are the same as those specified for namespace-scope C++
2329 objects (@pxref{C++ Attributes}).
2330
2331 These attributes are not currently implemented for Objective-C@.
2332
2333 @item deprecated
2334 @itemx deprecated (@var{msg})
2335 @cindex @code{deprecated} attribute.
2336 The @code{deprecated} attribute results in a warning if the function
2337 is used anywhere in the source file. This is useful when identifying
2338 functions that are expected to be removed in a future version of a
2339 program. The warning also includes the location of the declaration
2340 of the deprecated function, to enable users to easily find further
2341 information about why the function is deprecated, or what they should
2342 do instead. Note that the warnings only occurs for uses:
2343
2344 @smallexample
2345 int old_fn () __attribute__ ((deprecated));
2346 int old_fn ();
2347 int (*fn_ptr)() = old_fn;
2348 @end smallexample
2349
2350 results in a warning on line 3 but not line 2. The optional msg
2351 argument, which must be a string, will be printed in the warning if
2352 present.
2353
2354 The @code{deprecated} attribute can also be used for variables and
2355 types (@pxref{Variable Attributes}, @pxref{Type Attributes}.)
2356
2357 @item disinterrupt
2358 @cindex @code{disinterrupt} attribute
2359 On Epiphany and MeP targets, this attribute causes the compiler to emit
2360 instructions to disable interrupts for the duration of the given
2361 function.
2362
2363 @item dllexport
2364 @cindex @code{__declspec(dllexport)}
2365 On Microsoft Windows targets and Symbian OS targets the
2366 @code{dllexport} attribute causes the compiler to provide a global
2367 pointer to a pointer in a DLL, so that it can be referenced with the
2368 @code{dllimport} attribute. On Microsoft Windows targets, the pointer
2369 name is formed by combining @code{_imp__} and the function or variable
2370 name.
2371
2372 You can use @code{__declspec(dllexport)} as a synonym for
2373 @code{__attribute__ ((dllexport))} for compatibility with other
2374 compilers.
2375
2376 On systems that support the @code{visibility} attribute, this
2377 attribute also implies ``default'' visibility. It is an error to
2378 explicitly specify any other visibility.
2379
2380 In previous versions of GCC, the @code{dllexport} attribute was ignored
2381 for inlined functions, unless the @option{-fkeep-inline-functions} flag
2382 had been used. The default behaviour now is to emit all dllexported
2383 inline functions; however, this can cause object file-size bloat, in
2384 which case the old behaviour can be restored by using
2385 @option{-fno-keep-inline-dllexport}.
2386
2387 The attribute is also ignored for undefined symbols.
2388
2389 When applied to C++ classes, the attribute marks defined non-inlined
2390 member functions and static data members as exports. Static consts
2391 initialized in-class are not marked unless they are also defined
2392 out-of-class.
2393
2394 For Microsoft Windows targets there are alternative methods for
2395 including the symbol in the DLL's export table such as using a
2396 @file{.def} file with an @code{EXPORTS} section or, with GNU ld, using
2397 the @option{--export-all} linker flag.
2398
2399 @item dllimport
2400 @cindex @code{__declspec(dllimport)}
2401 On Microsoft Windows and Symbian OS targets, the @code{dllimport}
2402 attribute causes the compiler to reference a function or variable via
2403 a global pointer to a pointer that is set up by the DLL exporting the
2404 symbol. The attribute implies @code{extern}. On Microsoft Windows
2405 targets, the pointer name is formed by combining @code{_imp__} and the
2406 function or variable name.
2407
2408 You can use @code{__declspec(dllimport)} as a synonym for
2409 @code{__attribute__ ((dllimport))} for compatibility with other
2410 compilers.
2411
2412 On systems that support the @code{visibility} attribute, this
2413 attribute also implies ``default'' visibility. It is an error to
2414 explicitly specify any other visibility.
2415
2416 Currently, the attribute is ignored for inlined functions. If the
2417 attribute is applied to a symbol @emph{definition}, an error is reported.
2418 If a symbol previously declared @code{dllimport} is later defined, the
2419 attribute is ignored in subsequent references, and a warning is emitted.
2420 The attribute is also overridden by a subsequent declaration as
2421 @code{dllexport}.
2422
2423 When applied to C++ classes, the attribute marks non-inlined
2424 member functions and static data members as imports. However, the
2425 attribute is ignored for virtual methods to allow creation of vtables
2426 using thunks.
2427
2428 On the SH Symbian OS target the @code{dllimport} attribute also has
2429 another affect---it can cause the vtable and run-time type information
2430 for a class to be exported. This happens when the class has a
2431 dllimport'ed constructor or a non-inline, non-pure virtual function
2432 and, for either of those two conditions, the class also has an inline
2433 constructor or destructor and has a key function that is defined in
2434 the current translation unit.
2435
2436 For Microsoft Windows based targets the use of the @code{dllimport}
2437 attribute on functions is not necessary, but provides a small
2438 performance benefit by eliminating a thunk in the DLL@. The use of the
2439 @code{dllimport} attribute on imported variables was required on older
2440 versions of the GNU linker, but can now be avoided by passing the
2441 @option{--enable-auto-import} switch to the GNU linker. As with
2442 functions, using the attribute for a variable eliminates a thunk in
2443 the DLL@.
2444
2445 One drawback to using this attribute is that a pointer to a
2446 @emph{variable} marked as @code{dllimport} cannot be used as a constant
2447 address. However, a pointer to a @emph{function} with the
2448 @code{dllimport} attribute can be used as a constant initializer; in
2449 this case, the address of a stub function in the import lib is
2450 referenced. On Microsoft Windows targets, the attribute can be disabled
2451 for functions by setting the @option{-mnop-fun-dllimport} flag.
2452
2453 @item eightbit_data
2454 @cindex eight bit data on the H8/300, H8/300H, and H8S
2455 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2456 variable should be placed into the eight bit data section.
2457 The compiler will generate more efficient code for certain operations
2458 on data in the eight bit data area. Note the eight bit data area is limited to
2459 256 bytes of data.
2460
2461 You must use GAS and GLD from GNU binutils version 2.7 or later for
2462 this attribute to work correctly.
2463
2464 @item exception_handler
2465 @cindex exception handler functions on the Blackfin processor
2466 Use this attribute on the Blackfin to indicate that the specified function
2467 is an exception handler. The compiler will generate function entry and
2468 exit sequences suitable for use in an exception handler when this
2469 attribute is present.
2470
2471 @item externally_visible
2472 @cindex @code{externally_visible} attribute.
2473 This attribute, attached to a global variable or function, nullifies
2474 the effect of the @option{-fwhole-program} command-line option, so the
2475 object remains visible outside the current compilation unit. If @option{-fwhole-program} is used together with @option{-flto} and @command{gold} is used as the linker plugin, @code{externally_visible} attributes are automatically added to functions (not variable yet due to a current @command{gold} issue) that are accessed outside of LTO objects according to resolution file produced by @command{gold}. For other linkers that cannot generate resolution file, explicit @code{externally_visible} attributes are still necessary.
2476
2477 @item far
2478 @cindex functions which handle memory bank switching
2479 On 68HC11 and 68HC12 the @code{far} attribute causes the compiler to
2480 use a calling convention that takes care of switching memory banks when
2481 entering and leaving a function. This calling convention is also the
2482 default when using the @option{-mlong-calls} option.
2483
2484 On 68HC12 the compiler will use the @code{call} and @code{rtc} instructions
2485 to call and return from a function.
2486
2487 On 68HC11 the compiler will generate a sequence of instructions
2488 to invoke a board-specific routine to switch the memory bank and call the
2489 real function. The board-specific routine simulates a @code{call}.
2490 At the end of a function, it will jump to a board-specific routine
2491 instead of using @code{rts}. The board-specific return routine simulates
2492 the @code{rtc}.
2493
2494 On MeP targets this causes the compiler to use a calling convention
2495 which assumes the called function is too far away for the built-in
2496 addressing modes.
2497
2498 @item fast_interrupt
2499 @cindex interrupt handler functions
2500 Use this attribute on the M32C and RX ports to indicate that the specified
2501 function is a fast interrupt handler. This is just like the
2502 @code{interrupt} attribute, except that @code{freit} is used to return
2503 instead of @code{reit}.
2504
2505 @item fastcall
2506 @cindex functions that pop the argument stack on the 386
2507 On the Intel 386, the @code{fastcall} attribute causes the compiler to
2508 pass the first argument (if of integral type) in the register ECX and
2509 the second argument (if of integral type) in the register EDX@. Subsequent
2510 and other typed arguments are passed on the stack. The called function will
2511 pop the arguments off the stack. If the number of arguments is variable all
2512 arguments are pushed on the stack.
2513
2514 @item thiscall
2515 @cindex functions that pop the argument stack on the 386
2516 On the Intel 386, the @code{thiscall} attribute causes the compiler to
2517 pass the first argument (if of integral type) in the register ECX.
2518 Subsequent and other typed arguments are passed on the stack. The called
2519 function will pop the arguments off the stack.
2520 If the number of arguments is variable all arguments are pushed on the
2521 stack.
2522 The @code{thiscall} attribute is intended for C++ non-static member functions.
2523 As gcc extension this calling convention can be used for C-functions
2524 and for static member methods.
2525
2526 @item format (@var{archetype}, @var{string-index}, @var{first-to-check})
2527 @cindex @code{format} function attribute
2528 @opindex Wformat
2529 The @code{format} attribute specifies that a function takes @code{printf},
2530 @code{scanf}, @code{strftime} or @code{strfmon} style arguments which
2531 should be type-checked against a format string. For example, the
2532 declaration:
2533
2534 @smallexample
2535 extern int
2536 my_printf (void *my_object, const char *my_format, ...)
2537 __attribute__ ((format (printf, 2, 3)));
2538 @end smallexample
2539
2540 @noindent
2541 causes the compiler to check the arguments in calls to @code{my_printf}
2542 for consistency with the @code{printf} style format string argument
2543 @code{my_format}.
2544
2545 The parameter @var{archetype} determines how the format string is
2546 interpreted, and should be @code{printf}, @code{scanf}, @code{strftime},
2547 @code{gnu_printf}, @code{gnu_scanf}, @code{gnu_strftime} or
2548 @code{strfmon}. (You can also use @code{__printf__},
2549 @code{__scanf__}, @code{__strftime__} or @code{__strfmon__}.) On
2550 MinGW targets, @code{ms_printf}, @code{ms_scanf}, and
2551 @code{ms_strftime} are also present.
2552 @var{archtype} values such as @code{printf} refer to the formats accepted
2553 by the system's C run-time library, while @code{gnu_} values always refer
2554 to the formats accepted by the GNU C Library. On Microsoft Windows
2555 targets, @code{ms_} values refer to the formats accepted by the
2556 @file{msvcrt.dll} library.
2557 The parameter @var{string-index}
2558 specifies which argument is the format string argument (starting
2559 from 1), while @var{first-to-check} is the number of the first
2560 argument to check against the format string. For functions
2561 where the arguments are not available to be checked (such as
2562 @code{vprintf}), specify the third parameter as zero. In this case the
2563 compiler only checks the format string for consistency. For
2564 @code{strftime} formats, the third parameter is required to be zero.
2565 Since non-static C++ methods have an implicit @code{this} argument, the
2566 arguments of such methods should be counted from two, not one, when
2567 giving values for @var{string-index} and @var{first-to-check}.
2568
2569 In the example above, the format string (@code{my_format}) is the second
2570 argument of the function @code{my_print}, and the arguments to check
2571 start with the third argument, so the correct parameters for the format
2572 attribute are 2 and 3.
2573
2574 @opindex ffreestanding
2575 @opindex fno-builtin
2576 The @code{format} attribute allows you to identify your own functions
2577 which take format strings as arguments, so that GCC can check the
2578 calls to these functions for errors. The compiler always (unless
2579 @option{-ffreestanding} or @option{-fno-builtin} is used) checks formats
2580 for the standard library functions @code{printf}, @code{fprintf},
2581 @code{sprintf}, @code{scanf}, @code{fscanf}, @code{sscanf}, @code{strftime},
2582 @code{vprintf}, @code{vfprintf} and @code{vsprintf} whenever such
2583 warnings are requested (using @option{-Wformat}), so there is no need to
2584 modify the header file @file{stdio.h}. In C99 mode, the functions
2585 @code{snprintf}, @code{vsnprintf}, @code{vscanf}, @code{vfscanf} and
2586 @code{vsscanf} are also checked. Except in strictly conforming C
2587 standard modes, the X/Open function @code{strfmon} is also checked as
2588 are @code{printf_unlocked} and @code{fprintf_unlocked}.
2589 @xref{C Dialect Options,,Options Controlling C Dialect}.
2590
2591 For Objective-C dialects, @code{NSString} (or @code{__NSString__}) is
2592 recognized in the same context. Declarations including these format attributes
2593 will be parsed for correct syntax, however the result of checking of such format
2594 strings is not yet defined, and will not be carried out by this version of the
2595 compiler.
2596
2597 The target may also provide additional types of format checks.
2598 @xref{Target Format Checks,,Format Checks Specific to Particular
2599 Target Machines}.
2600
2601 @item format_arg (@var{string-index})
2602 @cindex @code{format_arg} function attribute
2603 @opindex Wformat-nonliteral
2604 The @code{format_arg} attribute specifies that a function takes a format
2605 string for a @code{printf}, @code{scanf}, @code{strftime} or
2606 @code{strfmon} style function and modifies it (for example, to translate
2607 it into another language), so the result can be passed to a
2608 @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon} style
2609 function (with the remaining arguments to the format function the same
2610 as they would have been for the unmodified string). For example, the
2611 declaration:
2612
2613 @smallexample
2614 extern char *
2615 my_dgettext (char *my_domain, const char *my_format)
2616 __attribute__ ((format_arg (2)));
2617 @end smallexample
2618
2619 @noindent
2620 causes the compiler to check the arguments in calls to a @code{printf},
2621 @code{scanf}, @code{strftime} or @code{strfmon} type function, whose
2622 format string argument is a call to the @code{my_dgettext} function, for
2623 consistency with the format string argument @code{my_format}. If the
2624 @code{format_arg} attribute had not been specified, all the compiler
2625 could tell in such calls to format functions would be that the format
2626 string argument is not constant; this would generate a warning when
2627 @option{-Wformat-nonliteral} is used, but the calls could not be checked
2628 without the attribute.
2629
2630 The parameter @var{string-index} specifies which argument is the format
2631 string argument (starting from one). Since non-static C++ methods have
2632 an implicit @code{this} argument, the arguments of such methods should
2633 be counted from two.
2634
2635 The @code{format-arg} attribute allows you to identify your own
2636 functions which modify format strings, so that GCC can check the
2637 calls to @code{printf}, @code{scanf}, @code{strftime} or @code{strfmon}
2638 type function whose operands are a call to one of your own function.
2639 The compiler always treats @code{gettext}, @code{dgettext}, and
2640 @code{dcgettext} in this manner except when strict ISO C support is
2641 requested by @option{-ansi} or an appropriate @option{-std} option, or
2642 @option{-ffreestanding} or @option{-fno-builtin}
2643 is used. @xref{C Dialect Options,,Options
2644 Controlling C Dialect}.
2645
2646 For Objective-C dialects, the @code{format-arg} attribute may refer to an
2647 @code{NSString} reference for compatibility with the @code{format} attribute
2648 above.
2649
2650 The target may also allow additional types in @code{format-arg} attributes.
2651 @xref{Target Format Checks,,Format Checks Specific to Particular
2652 Target Machines}.
2653
2654 @item function_vector
2655 @cindex calling functions through the function vector on H8/300, M16C, M32C and SH2A processors
2656 Use this attribute on the H8/300, H8/300H, and H8S to indicate that the specified
2657 function should be called through the function vector. Calling a
2658 function through the function vector will reduce code size, however;
2659 the function vector has a limited size (maximum 128 entries on the H8/300
2660 and 64 entries on the H8/300H and H8S) and shares space with the interrupt vector.
2661
2662 In SH2A target, this attribute declares a function to be called using the
2663 TBR relative addressing mode. The argument to this attribute is the entry
2664 number of the same function in a vector table containing all the TBR
2665 relative addressable functions. For the successful jump, register TBR
2666 should contain the start address of this TBR relative vector table.
2667 In the startup routine of the user application, user needs to care of this
2668 TBR register initialization. The TBR relative vector table can have at
2669 max 256 function entries. The jumps to these functions will be generated
2670 using a SH2A specific, non delayed branch instruction JSR/N @@(disp8,TBR).
2671 You must use GAS and GLD from GNU binutils version 2.7 or later for
2672 this attribute to work correctly.
2673
2674 Please refer the example of M16C target, to see the use of this
2675 attribute while declaring a function,
2676
2677 In an application, for a function being called once, this attribute will
2678 save at least 8 bytes of code; and if other successive calls are being
2679 made to the same function, it will save 2 bytes of code per each of these
2680 calls.
2681
2682 On M16C/M32C targets, the @code{function_vector} attribute declares a
2683 special page subroutine call function. Use of this attribute reduces
2684 the code size by 2 bytes for each call generated to the
2685 subroutine. The argument to the attribute is the vector number entry
2686 from the special page vector table which contains the 16 low-order
2687 bits of the subroutine's entry address. Each vector table has special
2688 page number (18 to 255) which are used in @code{jsrs} instruction.
2689 Jump addresses of the routines are generated by adding 0x0F0000 (in
2690 case of M16C targets) or 0xFF0000 (in case of M32C targets), to the 2
2691 byte addresses set in the vector table. Therefore you need to ensure
2692 that all the special page vector routines should get mapped within the
2693 address range 0x0F0000 to 0x0FFFFF (for M16C) and 0xFF0000 to 0xFFFFFF
2694 (for M32C).
2695
2696 In the following example 2 bytes will be saved for each call to
2697 function @code{foo}.
2698
2699 @smallexample
2700 void foo (void) __attribute__((function_vector(0x18)));
2701 void foo (void)
2702 @{
2703 @}
2704
2705 void bar (void)
2706 @{
2707 foo();
2708 @}
2709 @end smallexample
2710
2711 If functions are defined in one file and are called in another file,
2712 then be sure to write this declaration in both files.
2713
2714 This attribute is ignored for R8C target.
2715
2716 @item interrupt
2717 @cindex interrupt handler functions
2718 Use this attribute on the ARM, AVR, CR16, Epiphany, M32C, M32R/D, m68k, MeP, MIPS,
2719 RL78, RX and Xstormy16 ports to indicate that the specified function is an
2720 interrupt handler. The compiler will generate function entry and exit
2721 sequences suitable for use in an interrupt handler when this attribute
2722 is present. With Epiphany targets it may also generate a special section with
2723 code to initialize the interrupt vector table.
2724
2725 Note, interrupt handlers for the Blackfin, H8/300, H8/300H, H8S, MicroBlaze,
2726 and SH processors can be specified via the @code{interrupt_handler} attribute.
2727
2728 Note, on the AVR, interrupts will be enabled inside the function.
2729
2730 Note, for the ARM, you can specify the kind of interrupt to be handled by
2731 adding an optional parameter to the interrupt attribute like this:
2732
2733 @smallexample
2734 void f () __attribute__ ((interrupt ("IRQ")));
2735 @end smallexample
2736
2737 Permissible values for this parameter are: IRQ, FIQ, SWI, ABORT and UNDEF@.
2738
2739 On ARMv7-M the interrupt type is ignored, and the attribute means the function
2740 may be called with a word aligned stack pointer.
2741
2742 On Epiphany targets one or more optional parameters can be added like this:
2743
2744 @smallexample
2745 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
2746 @end smallexample
2747
2748 Permissible values for these parameters are: @w{@code{reset}},
2749 @w{@code{software_exception}}, @w{@code{page_miss}},
2750 @w{@code{timer0}}, @w{@code{timer1}}, @w{@code{message}},
2751 @w{@code{dma0}}, @w{@code{dma1}}, @w{@code{wand}} and @w{@code{swi}}.
2752 Multiple parameters indicate that multiple entries in the interrupt
2753 vector table should be initialized for this function, i.e. for each
2754 parameter @w{@var{name}}, a jump to the function will be emitted in
2755 the section @w{ivt_entry_@var{name}}. The parameter(s) may be omitted
2756 entirely, in which case no interrupt vector table entry will be provided.
2757
2758 Note, on Epiphany targets, interrupts are enabled inside the function
2759 unless the @code{disinterrupt} attribute is also specified.
2760
2761 On Epiphany targets, you can also use the following attribute to
2762 modify the behavior of an interrupt handler:
2763 @table @code
2764 @item forwarder_section
2765 @cindex @code{forwarder_section} attribute
2766 The interrupt handler may be in external memory which cannot be
2767 reached by a branch instruction, so generate a local memory trampoline
2768 to transfer control. The single parameter identifies the section where
2769 the trampoline will be placed.
2770 @end table
2771
2772 The following examples are all valid uses of these attributes on
2773 Epiphany targets:
2774 @smallexample
2775 void __attribute__ ((interrupt)) universal_handler ();
2776 void __attribute__ ((interrupt ("dma1"))) dma1_handler ();
2777 void __attribute__ ((interrupt ("dma0, dma1"))) universal_dma_handler ();
2778 void __attribute__ ((interrupt ("timer0"), disinterrupt))
2779 fast_timer_handler ();
2780 void __attribute__ ((interrupt ("dma0, dma1"), forwarder_section ("tramp")))
2781 external_dma_handler ();
2782 @end smallexample
2783
2784 On MIPS targets, you can use the following attributes to modify the behavior
2785 of an interrupt handler:
2786 @table @code
2787 @item use_shadow_register_set
2788 @cindex @code{use_shadow_register_set} attribute
2789 Assume that the handler uses a shadow register set, instead of
2790 the main general-purpose registers.
2791
2792 @item keep_interrupts_masked
2793 @cindex @code{keep_interrupts_masked} attribute
2794 Keep interrupts masked for the whole function. Without this attribute,
2795 GCC tries to reenable interrupts for as much of the function as it can.
2796
2797 @item use_debug_exception_return
2798 @cindex @code{use_debug_exception_return} attribute
2799 Return using the @code{deret} instruction. Interrupt handlers that don't
2800 have this attribute return using @code{eret} instead.
2801 @end table
2802
2803 You can use any combination of these attributes, as shown below:
2804 @smallexample
2805 void __attribute__ ((interrupt)) v0 ();
2806 void __attribute__ ((interrupt, use_shadow_register_set)) v1 ();
2807 void __attribute__ ((interrupt, keep_interrupts_masked)) v2 ();
2808 void __attribute__ ((interrupt, use_debug_exception_return)) v3 ();
2809 void __attribute__ ((interrupt, use_shadow_register_set,
2810 keep_interrupts_masked)) v4 ();
2811 void __attribute__ ((interrupt, use_shadow_register_set,
2812 use_debug_exception_return)) v5 ();
2813 void __attribute__ ((interrupt, keep_interrupts_masked,
2814 use_debug_exception_return)) v6 ();
2815 void __attribute__ ((interrupt, use_shadow_register_set,
2816 keep_interrupts_masked,
2817 use_debug_exception_return)) v7 ();
2818 @end smallexample
2819
2820 On RL78, use @code{brk_interrupt} instead of @code{interrupt} for
2821 handlers intended to be used with the @code{BRK} opcode (i.e. those
2822 that must end with @code{RETB} instead of @code{RETI}).
2823
2824 @item ifunc ("@var{resolver}")
2825 @cindex @code{ifunc} attribute
2826 The @code{ifunc} attribute is used to mark a function as an indirect
2827 function using the STT_GNU_IFUNC symbol type extension to the ELF
2828 standard. This allows the resolution of the symbol value to be
2829 determined dynamically at load time, and an optimized version of the
2830 routine can be selected for the particular processor or other system
2831 characteristics determined then. To use this attribute, first define
2832 the implementation functions available, and a resolver function that
2833 returns a pointer to the selected implementation function. The
2834 implementation functions' declarations must match the API of the
2835 function being implemented, the resolver's declaration is be a
2836 function returning pointer to void function returning void:
2837
2838 @smallexample
2839 void *my_memcpy (void *dst, const void *src, size_t len)
2840 @{
2841 @dots{}
2842 @}
2843
2844 static void (*resolve_memcpy (void)) (void)
2845 @{
2846 return my_memcpy; // we'll just always select this routine
2847 @}
2848 @end smallexample
2849
2850 The exported header file declaring the function the user calls would
2851 contain:
2852
2853 @smallexample
2854 extern void *memcpy (void *, const void *, size_t);
2855 @end smallexample
2856
2857 allowing the user to call this as a regular function, unaware of the
2858 implementation. Finally, the indirect function needs to be defined in
2859 the same translation unit as the resolver function:
2860
2861 @smallexample
2862 void *memcpy (void *, const void *, size_t)
2863 __attribute__ ((ifunc ("resolve_memcpy")));
2864 @end smallexample
2865
2866 Indirect functions cannot be weak, and require a recent binutils (at
2867 least version 2.20.1), and GNU C library (at least version 2.11.1).
2868
2869 @item interrupt_handler
2870 @cindex interrupt handler functions on the Blackfin, m68k, H8/300 and SH processors
2871 Use this attribute on the Blackfin, m68k, H8/300, H8/300H, H8S, and SH to
2872 indicate that the specified function is an interrupt handler. The compiler
2873 will generate function entry and exit sequences suitable for use in an
2874 interrupt handler when this attribute is present.
2875
2876 @item interrupt_thread
2877 @cindex interrupt thread functions on fido
2878 Use this attribute on fido, a subarchitecture of the m68k, to indicate
2879 that the specified function is an interrupt handler that is designed
2880 to run as a thread. The compiler omits generate prologue/epilogue
2881 sequences and replaces the return instruction with a @code{sleep}
2882 instruction. This attribute is available only on fido.
2883
2884 @item isr
2885 @cindex interrupt service routines on ARM
2886 Use this attribute on ARM to write Interrupt Service Routines. This is an
2887 alias to the @code{interrupt} attribute above.
2888
2889 @item kspisusp
2890 @cindex User stack pointer in interrupts on the Blackfin
2891 When used together with @code{interrupt_handler}, @code{exception_handler}
2892 or @code{nmi_handler}, code will be generated to load the stack pointer
2893 from the USP register in the function prologue.
2894
2895 @item l1_text
2896 @cindex @code{l1_text} function attribute
2897 This attribute specifies a function to be placed into L1 Instruction
2898 SRAM@. The function will be put into a specific section named @code{.l1.text}.
2899 With @option{-mfdpic}, function calls with a such function as the callee
2900 or caller will use inlined PLT.
2901
2902 @item l2
2903 @cindex @code{l2} function attribute
2904 On the Blackfin, this attribute specifies a function to be placed into L2
2905 SRAM. The function will be put into a specific section named
2906 @code{.l1.text}. With @option{-mfdpic}, callers of such functions will use
2907 an inlined PLT.
2908
2909 @item leaf
2910 @cindex @code{leaf} function attribute
2911 Calls to external functions with this attribute must return to the current
2912 compilation unit only by return or by exception handling. In particular, leaf
2913 functions are not allowed to call callback function passed to it from the current
2914 compilation unit or directly call functions exported by the unit or longjmp
2915 into the unit. Leaf function might still call functions from other compilation
2916 units and thus they are not necessarily leaf in the sense that they contain no
2917 function calls at all.
2918
2919 The attribute is intended for library functions to improve dataflow analysis.
2920 The compiler takes the hint that any data not escaping the current compilation unit can
2921 not be used or modified by the leaf function. For example, the @code{sin} function
2922 is a leaf function, but @code{qsort} is not.
2923
2924 Note that leaf functions might invoke signals and signal handlers might be
2925 defined in the current compilation unit and use static variables. The only
2926 compliant way to write such a signal handler is to declare such variables
2927 @code{volatile}.
2928
2929 The attribute has no effect on functions defined within the current compilation
2930 unit. This is to allow easy merging of multiple compilation units into one,
2931 for example, by using the link time optimization. For this reason the
2932 attribute is not allowed on types to annotate indirect calls.
2933
2934 @item long_call/short_call
2935 @cindex indirect calls on ARM
2936 This attribute specifies how a particular function is called on
2937 ARM and Epiphany. Both attributes override the
2938 @option{-mlong-calls} (@pxref{ARM Options})
2939 command-line switch and @code{#pragma long_calls} settings. The
2940 @code{long_call} attribute indicates that the function might be far
2941 away from the call site and require a different (more expensive)
2942 calling sequence. The @code{short_call} attribute always places
2943 the offset to the function from the call site into the @samp{BL}
2944 instruction directly.
2945
2946 @item longcall/shortcall
2947 @cindex functions called via pointer on the RS/6000 and PowerPC
2948 On the Blackfin, RS/6000 and PowerPC, the @code{longcall} attribute
2949 indicates that the function might be far away from the call site and
2950 require a different (more expensive) calling sequence. The
2951 @code{shortcall} attribute indicates that the function is always close
2952 enough for the shorter calling sequence to be used. These attributes
2953 override both the @option{-mlongcall} switch and, on the RS/6000 and
2954 PowerPC, the @code{#pragma longcall} setting.
2955
2956 @xref{RS/6000 and PowerPC Options}, for more information on whether long
2957 calls are necessary.
2958
2959 @item long_call/near/far
2960 @cindex indirect calls on MIPS
2961 These attributes specify how a particular function is called on MIPS@.
2962 The attributes override the @option{-mlong-calls} (@pxref{MIPS Options})
2963 command-line switch. The @code{long_call} and @code{far} attributes are
2964 synonyms, and cause the compiler to always call
2965 the function by first loading its address into a register, and then using
2966 the contents of that register. The @code{near} attribute has the opposite
2967 effect; it specifies that non-PIC calls should be made using the more
2968 efficient @code{jal} instruction.
2969
2970 @item malloc
2971 @cindex @code{malloc} attribute
2972 The @code{malloc} attribute is used to tell the compiler that a function
2973 may be treated as if any non-@code{NULL} pointer it returns cannot
2974 alias any other pointer valid when the function returns and that the memory
2975 has undefined content.
2976 This will often improve optimization.
2977 Standard functions with this property include @code{malloc} and
2978 @code{calloc}. @code{realloc}-like functions do not have this
2979 property as the memory pointed to does not have undefined content.
2980
2981 @item mips16/nomips16
2982 @cindex @code{mips16} attribute
2983 @cindex @code{nomips16} attribute
2984
2985 On MIPS targets, you can use the @code{mips16} and @code{nomips16}
2986 function attributes to locally select or turn off MIPS16 code generation.
2987 A function with the @code{mips16} attribute is emitted as MIPS16 code,
2988 while MIPS16 code generation is disabled for functions with the
2989 @code{nomips16} attribute. These attributes override the
2990 @option{-mips16} and @option{-mno-mips16} options on the command line
2991 (@pxref{MIPS Options}).
2992
2993 When compiling files containing mixed MIPS16 and non-MIPS16 code, the
2994 preprocessor symbol @code{__mips16} reflects the setting on the command line,
2995 not that within individual functions. Mixed MIPS16 and non-MIPS16 code
2996 may interact badly with some GCC extensions such as @code{__builtin_apply}
2997 (@pxref{Constructing Calls}).
2998
2999 @item model (@var{model-name})
3000 @cindex function addressability on the M32R/D
3001 @cindex variable addressability on the IA-64
3002
3003 On the M32R/D, use this attribute to set the addressability of an
3004 object, and of the code generated for a function. The identifier
3005 @var{model-name} is one of @code{small}, @code{medium}, or
3006 @code{large}, representing each of the code models.
3007
3008 Small model objects live in the lower 16MB of memory (so that their
3009 addresses can be loaded with the @code{ld24} instruction), and are
3010 callable with the @code{bl} instruction.
3011
3012 Medium model objects may live anywhere in the 32-bit address space (the
3013 compiler will generate @code{seth/add3} instructions to load their addresses),
3014 and are callable with the @code{bl} instruction.
3015
3016 Large model objects may live anywhere in the 32-bit address space (the
3017 compiler will generate @code{seth/add3} instructions to load their addresses),
3018 and may not be reachable with the @code{bl} instruction (the compiler will
3019 generate the much slower @code{seth/add3/jl} instruction sequence).
3020
3021 On IA-64, use this attribute to set the addressability of an object.
3022 At present, the only supported identifier for @var{model-name} is
3023 @code{small}, indicating addressability via ``small'' (22-bit)
3024 addresses (so that their addresses can be loaded with the @code{addl}
3025 instruction). Caveat: such addressing is by definition not position
3026 independent and hence this attribute must not be used for objects
3027 defined by shared libraries.
3028
3029 @item ms_abi/sysv_abi
3030 @cindex @code{ms_abi} attribute
3031 @cindex @code{sysv_abi} attribute
3032
3033 On 32-bit and 64-bit (i?86|x86_64)-*-* targets, you can use an ABI attribute
3034 to indicate which calling convention should be used for a function. The
3035 @code{ms_abi} attribute tells the compiler to use the Microsoft ABI,
3036 while the @code{sysv_abi} attribute tells the compiler to use the ABI
3037 used on GNU/Linux and other systems. The default is to use the Microsoft ABI
3038 when targeting Windows. On all other systems, the default is the x86/AMD ABI.
3039
3040 Note, the @code{ms_abi} attribute for Windows 64-bit targets currently
3041 requires the @option{-maccumulate-outgoing-args} option.
3042
3043 @item callee_pop_aggregate_return (@var{number})
3044 @cindex @code{callee_pop_aggregate_return} attribute
3045
3046 On 32-bit i?86-*-* targets, you can control by those attribute for
3047 aggregate return in memory, if the caller is responsible to pop the hidden
3048 pointer together with the rest of the arguments - @var{number} equal to
3049 zero -, or if the callee is responsible to pop hidden pointer - @var{number}
3050 equal to one. The default i386 ABI assumes that the callee pops the
3051 stack for hidden pointer.
3052
3053 Note, that on 32-bit i386 Windows targets the compiler assumes that the
3054 caller pops the stack for hidden pointer.
3055
3056 @item ms_hook_prologue
3057 @cindex @code{ms_hook_prologue} attribute
3058
3059 On 32 bit i[34567]86-*-* targets and 64 bit x86_64-*-* targets, you can use
3060 this function attribute to make gcc generate the "hot-patching" function
3061 prologue used in Win32 API functions in Microsoft Windows XP Service Pack 2
3062 and newer.
3063
3064 @item naked
3065 @cindex function without a prologue/epilogue code
3066 Use this attribute on the ARM, AVR, MCORE, RX and SPU ports to indicate that
3067 the specified function does not need prologue/epilogue sequences generated by
3068 the compiler. It is up to the programmer to provide these sequences. The
3069 only statements that can be safely included in naked functions are
3070 @code{asm} statements that do not have operands. All other statements,
3071 including declarations of local variables, @code{if} statements, and so
3072 forth, should be avoided. Naked functions should be used to implement the
3073 body of an assembly function, while allowing the compiler to construct
3074 the requisite function declaration for the assembler.
3075
3076 @item near
3077 @cindex functions which do not handle memory bank switching on 68HC11/68HC12
3078 On 68HC11 and 68HC12 the @code{near} attribute causes the compiler to
3079 use the normal calling convention based on @code{jsr} and @code{rts}.
3080 This attribute can be used to cancel the effect of the @option{-mlong-calls}
3081 option.
3082
3083 On MeP targets this attribute causes the compiler to assume the called
3084 function is close enough to use the normal calling convention,
3085 overriding the @code{-mtf} command line option.
3086
3087 @item nesting
3088 @cindex Allow nesting in an interrupt handler on the Blackfin processor.
3089 Use this attribute together with @code{interrupt_handler},
3090 @code{exception_handler} or @code{nmi_handler} to indicate that the function
3091 entry code should enable nested interrupts or exceptions.
3092
3093 @item nmi_handler
3094 @cindex NMI handler functions on the Blackfin processor
3095 Use this attribute on the Blackfin to indicate that the specified function
3096 is an NMI handler. The compiler will generate function entry and
3097 exit sequences suitable for use in an NMI handler when this
3098 attribute is present.
3099
3100 @item no_instrument_function
3101 @cindex @code{no_instrument_function} function attribute
3102 @opindex finstrument-functions
3103 If @option{-finstrument-functions} is given, profiling function calls will
3104 be generated at entry and exit of most user-compiled functions.
3105 Functions with this attribute will not be so instrumented.
3106
3107 @item no_split_stack
3108 @cindex @code{no_split_stack} function attribute
3109 @opindex fsplit-stack
3110 If @option{-fsplit-stack} is given, functions will have a small
3111 prologue which decides whether to split the stack. Functions with the
3112 @code{no_split_stack} attribute will not have that prologue, and thus
3113 may run with only a small amount of stack space available.
3114
3115 @item noinline
3116 @cindex @code{noinline} function attribute
3117 This function attribute prevents a function from being considered for
3118 inlining.
3119 @c Don't enumerate the optimizations by name here; we try to be
3120 @c future-compatible with this mechanism.
3121 If the function does not have side-effects, there are optimizations
3122 other than inlining that causes function calls to be optimized away,
3123 although the function call is live. To keep such calls from being
3124 optimized away, put
3125 @smallexample
3126 asm ("");
3127 @end smallexample
3128 (@pxref{Extended Asm}) in the called function, to serve as a special
3129 side-effect.
3130
3131 @item noclone
3132 @cindex @code{noclone} function attribute
3133 This function attribute prevents a function from being considered for
3134 cloning - a mechanism which produces specialized copies of functions
3135 and which is (currently) performed by interprocedural constant
3136 propagation.
3137
3138 @item nonnull (@var{arg-index}, @dots{})
3139 @cindex @code{nonnull} function attribute
3140 The @code{nonnull} attribute specifies that some function parameters should
3141 be non-null pointers. For instance, the declaration:
3142
3143 @smallexample
3144 extern void *
3145 my_memcpy (void *dest, const void *src, size_t len)
3146 __attribute__((nonnull (1, 2)));
3147 @end smallexample
3148
3149 @noindent
3150 causes the compiler to check that, in calls to @code{my_memcpy},
3151 arguments @var{dest} and @var{src} are non-null. If the compiler
3152 determines that a null pointer is passed in an argument slot marked
3153 as non-null, and the @option{-Wnonnull} option is enabled, a warning
3154 is issued. The compiler may also choose to make optimizations based
3155 on the knowledge that certain function arguments will not be null.
3156
3157 If no argument index list is given to the @code{nonnull} attribute,
3158 all pointer arguments are marked as non-null. To illustrate, the
3159 following declaration is equivalent to the previous example:
3160
3161 @smallexample
3162 extern void *
3163 my_memcpy (void *dest, const void *src, size_t len)
3164 __attribute__((nonnull));
3165 @end smallexample
3166
3167 @item noreturn
3168 @cindex @code{noreturn} function attribute
3169 A few standard library functions, such as @code{abort} and @code{exit},
3170 cannot return. GCC knows this automatically. Some programs define
3171 their own functions that never return. You can declare them
3172 @code{noreturn} to tell the compiler this fact. For example,
3173
3174 @smallexample
3175 @group
3176 void fatal () __attribute__ ((noreturn));
3177
3178 void
3179 fatal (/* @r{@dots{}} */)
3180 @{
3181 /* @r{@dots{}} */ /* @r{Print error message.} */ /* @r{@dots{}} */
3182 exit (1);
3183 @}
3184 @end group
3185 @end smallexample
3186
3187 The @code{noreturn} keyword tells the compiler to assume that
3188 @code{fatal} cannot return. It can then optimize without regard to what
3189 would happen if @code{fatal} ever did return. This makes slightly
3190 better code. More importantly, it helps avoid spurious warnings of
3191 uninitialized variables.
3192
3193 The @code{noreturn} keyword does not affect the exceptional path when that
3194 applies: a @code{noreturn}-marked function may still return to the caller
3195 by throwing an exception or calling @code{longjmp}.
3196
3197 Do not assume that registers saved by the calling function are
3198 restored before calling the @code{noreturn} function.
3199
3200 It does not make sense for a @code{noreturn} function to have a return
3201 type other than @code{void}.
3202
3203 The attribute @code{noreturn} is not implemented in GCC versions
3204 earlier than 2.5. An alternative way to declare that a function does
3205 not return, which works in the current version and in some older
3206 versions, is as follows:
3207
3208 @smallexample
3209 typedef void voidfn ();
3210
3211 volatile voidfn fatal;
3212 @end smallexample
3213
3214 This approach does not work in GNU C++.
3215
3216 @item nothrow
3217 @cindex @code{nothrow} function attribute
3218 The @code{nothrow} attribute is used to inform the compiler that a
3219 function cannot throw an exception. For example, most functions in
3220 the standard C library can be guaranteed not to throw an exception
3221 with the notable exceptions of @code{qsort} and @code{bsearch} that
3222 take function pointer arguments. The @code{nothrow} attribute is not
3223 implemented in GCC versions earlier than 3.3.
3224
3225 @item optimize
3226 @cindex @code{optimize} function attribute
3227 The @code{optimize} attribute is used to specify that a function is to
3228 be compiled with different optimization options than specified on the
3229 command line. Arguments can either be numbers or strings. Numbers
3230 are assumed to be an optimization level. Strings that begin with
3231 @code{O} are assumed to be an optimization option, while other options
3232 are assumed to be used with a @code{-f} prefix. You can also use the
3233 @samp{#pragma GCC optimize} pragma to set the optimization options
3234 that affect more than one function.
3235 @xref{Function Specific Option Pragmas}, for details about the
3236 @samp{#pragma GCC optimize} pragma.
3237
3238 This can be used for instance to have frequently executed functions
3239 compiled with more aggressive optimization options that produce faster
3240 and larger code, while other functions can be called with less
3241 aggressive options.
3242
3243 @item OS_main/OS_task
3244 @cindex @code{OS_main} AVR function attribute
3245 @cindex @code{OS_task} AVR function attribute
3246 On AVR, functions with the @code{OS_main} or @code{OS_task} attribute
3247 do not save/restore any call-saved register in their prologue/epilogue.
3248
3249 The @code{OS_main} attribute can be used when there @emph{is
3250 guarantee} that interrupts are disabled at the time when the function
3251 is entered. This will save resources when the stack pointer has to be
3252 changed to set up a frame for local variables.
3253
3254 The @code{OS_task} attribute can be used when there is @emph{no
3255 guarantee} that interrupts are disabled at that time when the function
3256 is entered like for, e@.g@. task functions in a multi-threading operating
3257 system. In that case, changing the stack pointer register will be
3258 guarded by save/clear/restore of the global interrupt enable flag.
3259
3260 The differences to the @code{naked} function attribute are:
3261 @itemize @bullet
3262 @item @code{naked} functions do not have a return instruction whereas
3263 @code{OS_main} and @code{OS_task} functions will have a @code{RET} or
3264 @code{RETI} return instruction.
3265 @item @code{naked} functions do not set up a frame for local variables
3266 or a frame pointer whereas @code{OS_main} and @code{OS_task} do this
3267 as needed.
3268 @end itemize
3269
3270 @item pcs
3271 @cindex @code{pcs} function attribute
3272
3273 The @code{pcs} attribute can be used to control the calling convention
3274 used for a function on ARM. The attribute takes an argument that specifies
3275 the calling convention to use.
3276
3277 When compiling using the AAPCS ABI (or a variant of that) then valid
3278 values for the argument are @code{"aapcs"} and @code{"aapcs-vfp"}. In
3279 order to use a variant other than @code{"aapcs"} then the compiler must
3280 be permitted to use the appropriate co-processor registers (i.e., the
3281 VFP registers must be available in order to use @code{"aapcs-vfp"}).
3282 For example,
3283
3284 @smallexample
3285 /* Argument passed in r0, and result returned in r0+r1. */
3286 double f2d (float) __attribute__((pcs("aapcs")));
3287 @end smallexample
3288
3289 Variadic functions always use the @code{"aapcs"} calling convention and
3290 the compiler will reject attempts to specify an alternative.
3291
3292 @item pure
3293 @cindex @code{pure} function attribute
3294 Many functions have no effects except the return value and their
3295 return value depends only on the parameters and/or global variables.
3296 Such a function can be subject
3297 to common subexpression elimination and loop optimization just as an
3298 arithmetic operator would be. These functions should be declared
3299 with the attribute @code{pure}. For example,
3300
3301 @smallexample
3302 int square (int) __attribute__ ((pure));
3303 @end smallexample
3304
3305 @noindent
3306 says that the hypothetical function @code{square} is safe to call
3307 fewer times than the program says.
3308
3309 Some of common examples of pure functions are @code{strlen} or @code{memcmp}.
3310 Interesting non-pure functions are functions with infinite loops or those
3311 depending on volatile memory or other system resource, that may change between
3312 two consecutive calls (such as @code{feof} in a multithreading environment).
3313
3314 The attribute @code{pure} is not implemented in GCC versions earlier
3315 than 2.96.
3316
3317 @item hot
3318 @cindex @code{hot} function attribute
3319 The @code{hot} attribute is used to inform the compiler that a function is a
3320 hot spot of the compiled program. The function is optimized more aggressively
3321 and on many target it is placed into special subsection of the text section so
3322 all hot functions appears close together improving locality.
3323
3324 When profile feedback is available, via @option{-fprofile-use}, hot functions
3325 are automatically detected and this attribute is ignored.
3326
3327 The @code{hot} attribute is not implemented in GCC versions earlier
3328 than 4.3.
3329
3330 @item cold
3331 @cindex @code{cold} function attribute
3332 The @code{cold} attribute is used to inform the compiler that a function is
3333 unlikely executed. The function is optimized for size rather than speed and on
3334 many targets it is placed into special subsection of the text section so all
3335 cold functions appears close together improving code locality of non-cold parts
3336 of program. The paths leading to call of cold functions within code are marked
3337 as unlikely by the branch prediction mechanism. It is thus useful to mark
3338 functions used to handle unlikely conditions, such as @code{perror}, as cold to
3339 improve optimization of hot functions that do call marked functions in rare
3340 occasions.
3341
3342 When profile feedback is available, via @option{-fprofile-use}, hot functions
3343 are automatically detected and this attribute is ignored.
3344
3345 The @code{cold} attribute is not implemented in GCC versions earlier than 4.3.
3346
3347 @item regparm (@var{number})
3348 @cindex @code{regparm} attribute
3349 @cindex functions that are passed arguments in registers on the 386
3350 On the Intel 386, the @code{regparm} attribute causes the compiler to
3351 pass arguments number one to @var{number} if they are of integral type
3352 in registers EAX, EDX, and ECX instead of on the stack. Functions that
3353 take a variable number of arguments will continue to be passed all of their
3354 arguments on the stack.
3355
3356 Beware that on some ELF systems this attribute is unsuitable for
3357 global functions in shared libraries with lazy binding (which is the
3358 default). Lazy binding will send the first call via resolving code in
3359 the loader, which might assume EAX, EDX and ECX can be clobbered, as
3360 per the standard calling conventions. Solaris 8 is affected by this.
3361 GNU systems with GLIBC 2.1 or higher, and FreeBSD, are believed to be
3362 safe since the loaders there save EAX, EDX and ECX. (Lazy binding can be
3363 disabled with the linker or the loader if desired, to avoid the
3364 problem.)
3365
3366 @item sseregparm
3367 @cindex @code{sseregparm} attribute
3368 On the Intel 386 with SSE support, the @code{sseregparm} attribute
3369 causes the compiler to pass up to 3 floating point arguments in
3370 SSE registers instead of on the stack. Functions that take a
3371 variable number of arguments will continue to pass all of their
3372 floating point arguments on the stack.
3373
3374 @item force_align_arg_pointer
3375 @cindex @code{force_align_arg_pointer} attribute
3376 On the Intel x86, the @code{force_align_arg_pointer} attribute may be
3377 applied to individual function definitions, generating an alternate
3378 prologue and epilogue that realigns the runtime stack if necessary.
3379 This supports mixing legacy codes that run with a 4-byte aligned stack
3380 with modern codes that keep a 16-byte stack for SSE compatibility.
3381
3382 @item resbank
3383 @cindex @code{resbank} attribute
3384 On the SH2A target, this attribute enables the high-speed register
3385 saving and restoration using a register bank for @code{interrupt_handler}
3386 routines. Saving to the bank is performed automatically after the CPU
3387 accepts an interrupt that uses a register bank.
3388
3389 The nineteen 32-bit registers comprising general register R0 to R14,
3390 control register GBR, and system registers MACH, MACL, and PR and the
3391 vector table address offset are saved into a register bank. Register
3392 banks are stacked in first-in last-out (FILO) sequence. Restoration
3393 from the bank is executed by issuing a RESBANK instruction.
3394
3395 @item returns_twice
3396 @cindex @code{returns_twice} attribute
3397 The @code{returns_twice} attribute tells the compiler that a function may
3398 return more than one time. The compiler will ensure that all registers
3399 are dead before calling such a function and will emit a warning about
3400 the variables that may be clobbered after the second return from the
3401 function. Examples of such functions are @code{setjmp} and @code{vfork}.
3402 The @code{longjmp}-like counterpart of such function, if any, might need
3403 to be marked with the @code{noreturn} attribute.
3404
3405 @item saveall
3406 @cindex save all registers on the Blackfin, H8/300, H8/300H, and H8S
3407 Use this attribute on the Blackfin, H8/300, H8/300H, and H8S to indicate that
3408 all registers except the stack pointer should be saved in the prologue
3409 regardless of whether they are used or not.
3410
3411 @item save_volatiles
3412 @cindex save volatile registers on the MicroBlaze
3413 Use this attribute on the MicroBlaze to indicate that the function is
3414 an interrupt handler. All volatile registers (in addition to non-volatile
3415 registers) will be saved in the function prologue. If the function is a leaf
3416 function, only volatiles used by the function are saved. A normal function
3417 return is generated instead of a return from interrupt.
3418
3419 @item section ("@var{section-name}")
3420 @cindex @code{section} function attribute
3421 Normally, the compiler places the code it generates in the @code{text} section.
3422 Sometimes, however, you need additional sections, or you need certain
3423 particular functions to appear in special sections. The @code{section}
3424 attribute specifies that a function lives in a particular section.
3425 For example, the declaration:
3426
3427 @smallexample
3428 extern void foobar (void) __attribute__ ((section ("bar")));
3429 @end smallexample
3430
3431 @noindent
3432 puts the function @code{foobar} in the @code{bar} section.
3433
3434 Some file formats do not support arbitrary sections so the @code{section}
3435 attribute is not available on all platforms.
3436 If you need to map the entire contents of a module to a particular
3437 section, consider using the facilities of the linker instead.
3438
3439 @item sentinel
3440 @cindex @code{sentinel} function attribute
3441 This function attribute ensures that a parameter in a function call is
3442 an explicit @code{NULL}. The attribute is only valid on variadic
3443 functions. By default, the sentinel is located at position zero, the
3444 last parameter of the function call. If an optional integer position
3445 argument P is supplied to the attribute, the sentinel must be located at
3446 position P counting backwards from the end of the argument list.
3447
3448 @smallexample
3449 __attribute__ ((sentinel))
3450 is equivalent to
3451 __attribute__ ((sentinel(0)))
3452 @end smallexample
3453
3454 The attribute is automatically set with a position of 0 for the built-in
3455 functions @code{execl} and @code{execlp}. The built-in function
3456 @code{execle} has the attribute set with a position of 1.
3457
3458 A valid @code{NULL} in this context is defined as zero with any pointer
3459 type. If your system defines the @code{NULL} macro with an integer type
3460 then you need to add an explicit cast. GCC replaces @code{stddef.h}
3461 with a copy that redefines NULL appropriately.
3462
3463 The warnings for missing or incorrect sentinels are enabled with
3464 @option{-Wformat}.
3465
3466 @item short_call
3467 See long_call/short_call.
3468
3469 @item shortcall
3470 See longcall/shortcall.
3471
3472 @item signal
3473 @cindex signal handler functions on the AVR processors
3474 Use this attribute on the AVR to indicate that the specified
3475 function is a signal handler. The compiler will generate function
3476 entry and exit sequences suitable for use in a signal handler when this
3477 attribute is present. Interrupts will be disabled inside the function.
3478
3479 @item sp_switch
3480 Use this attribute on the SH to indicate an @code{interrupt_handler}
3481 function should switch to an alternate stack. It expects a string
3482 argument that names a global variable holding the address of the
3483 alternate stack.
3484
3485 @smallexample
3486 void *alt_stack;
3487 void f () __attribute__ ((interrupt_handler,
3488 sp_switch ("alt_stack")));
3489 @end smallexample
3490
3491 @item stdcall
3492 @cindex functions that pop the argument stack on the 386
3493 On the Intel 386, the @code{stdcall} attribute causes the compiler to
3494 assume that the called function will pop off the stack space used to
3495 pass arguments, unless it takes a variable number of arguments.
3496
3497 @item syscall_linkage
3498 @cindex @code{syscall_linkage} attribute
3499 This attribute is used to modify the IA64 calling convention by marking
3500 all input registers as live at all function exits. This makes it possible
3501 to restart a system call after an interrupt without having to save/restore
3502 the input registers. This also prevents kernel data from leaking into
3503 application code.
3504
3505 @item target
3506 @cindex @code{target} function attribute
3507 The @code{target} attribute is used to specify that a function is to
3508 be compiled with different target options than specified on the
3509 command line. This can be used for instance to have functions
3510 compiled with a different ISA (instruction set architecture) than the
3511 default. You can also use the @samp{#pragma GCC target} pragma to set
3512 more than one function to be compiled with specific target options.
3513 @xref{Function Specific Option Pragmas}, for details about the
3514 @samp{#pragma GCC target} pragma.
3515
3516 For instance on a 386, you could compile one function with
3517 @code{target("sse4.1,arch=core2")} and another with
3518 @code{target("sse4a,arch=amdfam10")} that would be equivalent to
3519 compiling the first function with @option{-msse4.1} and
3520 @option{-march=core2} options, and the second function with
3521 @option{-msse4a} and @option{-march=amdfam10} options. It is up to the
3522 user to make sure that a function is only invoked on a machine that
3523 supports the particular ISA it was compiled for (for example by using
3524 @code{cpuid} on 386 to determine what feature bits and architecture
3525 family are used).
3526
3527 @smallexample
3528 int core2_func (void) __attribute__ ((__target__ ("arch=core2")));
3529 int sse3_func (void) __attribute__ ((__target__ ("sse3")));
3530 @end smallexample
3531
3532 On the 386, the following options are allowed:
3533
3534 @table @samp
3535 @item abm
3536 @itemx no-abm
3537 @cindex @code{target("abm")} attribute
3538 Enable/disable the generation of the advanced bit instructions.
3539
3540 @item aes
3541 @itemx no-aes
3542 @cindex @code{target("aes")} attribute
3543 Enable/disable the generation of the AES instructions.
3544
3545 @item mmx
3546 @itemx no-mmx
3547 @cindex @code{target("mmx")} attribute
3548 Enable/disable the generation of the MMX instructions.
3549
3550 @item pclmul
3551 @itemx no-pclmul
3552 @cindex @code{target("pclmul")} attribute
3553 Enable/disable the generation of the PCLMUL instructions.
3554
3555 @item popcnt
3556 @itemx no-popcnt
3557 @cindex @code{target("popcnt")} attribute
3558 Enable/disable the generation of the POPCNT instruction.
3559
3560 @item sse
3561 @itemx no-sse
3562 @cindex @code{target("sse")} attribute
3563 Enable/disable the generation of the SSE instructions.
3564
3565 @item sse2
3566 @itemx no-sse2
3567 @cindex @code{target("sse2")} attribute
3568 Enable/disable the generation of the SSE2 instructions.
3569
3570 @item sse3
3571 @itemx no-sse3
3572 @cindex @code{target("sse3")} attribute
3573 Enable/disable the generation of the SSE3 instructions.
3574
3575 @item sse4
3576 @itemx no-sse4
3577 @cindex @code{target("sse4")} attribute
3578 Enable/disable the generation of the SSE4 instructions (both SSE4.1
3579 and SSE4.2).
3580
3581 @item sse4.1
3582 @itemx no-sse4.1
3583 @cindex @code{target("sse4.1")} attribute
3584 Enable/disable the generation of the sse4.1 instructions.
3585
3586 @item sse4.2
3587 @itemx no-sse4.2
3588 @cindex @code{target("sse4.2")} attribute
3589 Enable/disable the generation of the sse4.2 instructions.
3590
3591 @item sse4a
3592 @itemx no-sse4a
3593 @cindex @code{target("sse4a")} attribute
3594 Enable/disable the generation of the SSE4A instructions.
3595
3596 @item fma4
3597 @itemx no-fma4
3598 @cindex @code{target("fma4")} attribute
3599 Enable/disable the generation of the FMA4 instructions.
3600
3601 @item xop
3602 @itemx no-xop
3603 @cindex @code{target("xop")} attribute
3604 Enable/disable the generation of the XOP instructions.
3605
3606 @item lwp
3607 @itemx no-lwp
3608 @cindex @code{target("lwp")} attribute
3609 Enable/disable the generation of the LWP instructions.
3610
3611 @item ssse3
3612 @itemx no-ssse3
3613 @cindex @code{target("ssse3")} attribute
3614 Enable/disable the generation of the SSSE3 instructions.
3615
3616 @item cld
3617 @itemx no-cld
3618 @cindex @code{target("cld")} attribute
3619 Enable/disable the generation of the CLD before string moves.
3620
3621 @item fancy-math-387
3622 @itemx no-fancy-math-387
3623 @cindex @code{target("fancy-math-387")} attribute
3624 Enable/disable the generation of the @code{sin}, @code{cos}, and
3625 @code{sqrt} instructions on the 387 floating point unit.
3626
3627 @item fused-madd
3628 @itemx no-fused-madd
3629 @cindex @code{target("fused-madd")} attribute
3630 Enable/disable the generation of the fused multiply/add instructions.
3631
3632 @item ieee-fp
3633 @itemx no-ieee-fp
3634 @cindex @code{target("ieee-fp")} attribute
3635 Enable/disable the generation of floating point that depends on IEEE arithmetic.
3636
3637 @item inline-all-stringops
3638 @itemx no-inline-all-stringops
3639 @cindex @code{target("inline-all-stringops")} attribute
3640 Enable/disable inlining of string operations.
3641
3642 @item inline-stringops-dynamically
3643 @itemx no-inline-stringops-dynamically
3644 @cindex @code{target("inline-stringops-dynamically")} attribute
3645 Enable/disable the generation of the inline code to do small string
3646 operations and calling the library routines for large operations.
3647
3648 @item align-stringops
3649 @itemx no-align-stringops
3650 @cindex @code{target("align-stringops")} attribute
3651 Do/do not align destination of inlined string operations.
3652
3653 @item recip
3654 @itemx no-recip
3655 @cindex @code{target("recip")} attribute
3656 Enable/disable the generation of RCPSS, RCPPS, RSQRTSS and RSQRTPS
3657 instructions followed an additional Newton-Raphson step instead of
3658 doing a floating point division.
3659
3660 @item arch=@var{ARCH}
3661 @cindex @code{target("arch=@var{ARCH}")} attribute
3662 Specify the architecture to generate code for in compiling the function.
3663
3664 @item tune=@var{TUNE}
3665 @cindex @code{target("tune=@var{TUNE}")} attribute
3666 Specify the architecture to tune for in compiling the function.
3667
3668 @item fpmath=@var{FPMATH}
3669 @cindex @code{target("fpmath=@var{FPMATH}")} attribute
3670 Specify which floating point unit to use. The
3671 @code{target("fpmath=sse,387")} option must be specified as
3672 @code{target("fpmath=sse+387")} because the comma would separate
3673 different options.
3674 @end table
3675
3676 On the PowerPC, the following options are allowed:
3677
3678 @table @samp
3679 @item altivec
3680 @itemx no-altivec
3681 @cindex @code{target("altivec")} attribute
3682 Generate code that uses (does not use) AltiVec instructions. In
3683 32-bit code, you cannot enable Altivec instructions unless
3684 @option{-mabi=altivec} was used on the command line.
3685
3686 @item cmpb
3687 @itemx no-cmpb
3688 @cindex @code{target("cmpb")} attribute
3689 Generate code that uses (does not use) the compare bytes instruction
3690 implemented on the POWER6 processor and other processors that support
3691 the PowerPC V2.05 architecture.
3692
3693 @item dlmzb
3694 @itemx no-dlmzb
3695 @cindex @code{target("dlmzb")} attribute
3696 Generate code that uses (does not use) the string-search @samp{dlmzb}
3697 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
3698 generated by default when targetting those processors.
3699
3700 @item fprnd
3701 @itemx no-fprnd
3702 @cindex @code{target("fprnd")} attribute
3703 Generate code that uses (does not use) the FP round to integer
3704 instructions implemented on the POWER5+ processor and other processors
3705 that support the PowerPC V2.03 architecture.
3706
3707 @item hard-dfp
3708 @itemx no-hard-dfp
3709 @cindex @code{target("hard-dfp")} attribute
3710 Generate code that uses (does not use) the decimal floating point
3711 instructions implemented on some POWER processors.
3712
3713 @item isel
3714 @itemx no-isel
3715 @cindex @code{target("isel")} attribute
3716 Generate code that uses (does not use) ISEL instruction.
3717
3718 @item mfcrf
3719 @itemx no-mfcrf
3720 @cindex @code{target("mfcrf")} attribute
3721 Generate code that uses (does not use) the move from condition
3722 register field instruction implemented on the POWER4 processor and
3723 other processors that support the PowerPC V2.01 architecture.
3724
3725 @item mfpgpr
3726 @itemx no-mfpgpr
3727 @cindex @code{target("mfpgpr")} attribute
3728 Generate code that uses (does not use) the FP move to/from general
3729 purpose register instructions implemented on the POWER6X processor and
3730 other processors that support the extended PowerPC V2.05 architecture.
3731
3732 @item mulhw
3733 @itemx no-mulhw
3734 @cindex @code{target("mulhw")} attribute
3735 Generate code that uses (does not use) the half-word multiply and
3736 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
3737 These instructions are generated by default when targetting those
3738 processors.
3739
3740 @item multiple
3741 @itemx no-multiple
3742 @cindex @code{target("multiple")} attribute
3743 Generate code that uses (does not use) the load multiple word
3744 instructions and the store multiple word instructions.
3745
3746 @item update
3747 @itemx no-update
3748 @cindex @code{target("update")} attribute
3749 Generate code that uses (does not use) the load or store instructions
3750 that update the base register to the address of the calculated memory
3751 location.
3752
3753 @item popcntb
3754 @itemx no-popcntb
3755 @cindex @code{target("popcntb")} attribute
3756 Generate code that uses (does not use) the popcount and double
3757 precision FP reciprocal estimate instruction implemented on the POWER5
3758 processor and other processors that support the PowerPC V2.02
3759 architecture.
3760
3761 @item popcntd
3762 @itemx no-popcntd
3763 @cindex @code{target("popcntd")} attribute
3764 Generate code that uses (does not use) the popcount instruction
3765 implemented on the POWER7 processor and other processors that support
3766 the PowerPC V2.06 architecture.
3767
3768 @item powerpc-gfxopt
3769 @itemx no-powerpc-gfxopt
3770 @cindex @code{target("powerpc-gfxopt")} attribute
3771 Generate code that uses (does not use) the optional PowerPC
3772 architecture instructions in the Graphics group, including
3773 floating-point select.
3774
3775 @item powerpc-gpopt
3776 @itemx no-powerpc-gpopt
3777 @cindex @code{target("powerpc-gpopt")} attribute
3778 Generate code that uses (does not use) the optional PowerPC
3779 architecture instructions in the General Purpose group, including
3780 floating-point square root.
3781
3782 @item recip-precision
3783 @itemx no-recip-precision
3784 @cindex @code{target("recip-precision")} attribute
3785 Assume (do not assume) that the reciprocal estimate instructions
3786 provide higher precision estimates than is mandated by the powerpc
3787 ABI.
3788
3789 @item string
3790 @itemx no-string
3791 @cindex @code{target("string")} attribute
3792 Generate code that uses (does not use) the load string instructions
3793 and the store string word instructions to save multiple registers and
3794 do small block moves.
3795
3796 @item vsx
3797 @itemx no-vsx
3798 @cindex @code{target("vsx")} attribute
3799 Generate code that uses (does not use) vector/scalar (VSX)
3800 instructions, and also enable the use of built-in functions that allow
3801 more direct access to the VSX instruction set. In 32-bit code, you
3802 cannot enable VSX or Altivec instructions unless
3803 @option{-mabi=altivec} was used on the command line.
3804
3805 @item friz
3806 @itemx no-friz
3807 @cindex @code{target("friz")} attribute
3808 Generate (do not generate) the @code{friz} instruction when the
3809 @option{-funsafe-math-optimizations} option is used to optimize
3810 rounding a floating point value to 64-bit integer and back to floating
3811 point. The @code{friz} instruction does not return the same value if
3812 the floating point number is too large to fit in an integer.
3813
3814 @item avoid-indexed-addresses
3815 @itemx no-avoid-indexed-addresses
3816 @cindex @code{target("avoid-indexed-addresses")} attribute
3817 Generate code that tries to avoid (not avoid) the use of indexed load
3818 or store instructions.
3819
3820 @item paired
3821 @itemx no-paired
3822 @cindex @code{target("paired")} attribute
3823 Generate code that uses (does not use) the generation of PAIRED simd
3824 instructions.
3825
3826 @item longcall
3827 @itemx no-longcall
3828 @cindex @code{target("longcall")} attribute
3829 Generate code that assumes (does not assume) that all calls are far
3830 away so that a longer more expensive calling sequence is required.
3831
3832 @item cpu=@var{CPU}
3833 @cindex @code{target("cpu=@var{CPU}")} attribute
3834 Specify the architecture to generate code for when compiling the
3835 function. If you select the @code{target("cpu=power7")} attribute when
3836 generating 32-bit code, VSX and Altivec instructions are not generated
3837 unless you use the @option{-mabi=altivec} option on the command line.
3838
3839 @item tune=@var{TUNE}
3840 @cindex @code{target("tune=@var{TUNE}")} attribute
3841 Specify the architecture to tune for when compiling the function. If
3842 you do not specify the @code{target("tune=@var{TUNE}")} attribute and
3843 you do specify the @code{target("cpu=@var{CPU}")} attribute,
3844 compilation will tune for the @var{CPU} architecture, and not the
3845 default tuning specified on the command line.
3846 @end table
3847
3848 On the 386/x86_64 and PowerPC backends, you can use either multiple
3849 strings to specify multiple options, or you can separate the option
3850 with a comma (@code{,}).
3851
3852 On the 386/x86_64 and PowerPC backends, the inliner will not inline a
3853 function that has different target options than the caller, unless the
3854 callee has a subset of the target options of the caller. For example
3855 a function declared with @code{target("sse3")} can inline a function
3856 with @code{target("sse2")}, since @code{-msse3} implies @code{-msse2}.
3857
3858 The @code{target} attribute is not implemented in GCC versions earlier
3859 than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends. It is
3860 not currently implemented for other backends.
3861
3862 @item tiny_data
3863 @cindex tiny data section on the H8/300H and H8S
3864 Use this attribute on the H8/300H and H8S to indicate that the specified
3865 variable should be placed into the tiny data section.
3866 The compiler will generate more efficient code for loads and stores
3867 on data in the tiny data section. Note the tiny data area is limited to
3868 slightly under 32kbytes of data.
3869
3870 @item trap_exit
3871 Use this attribute on the SH for an @code{interrupt_handler} to return using
3872 @code{trapa} instead of @code{rte}. This attribute expects an integer
3873 argument specifying the trap number to be used.
3874
3875 @item unused
3876 @cindex @code{unused} attribute.
3877 This attribute, attached to a function, means that the function is meant
3878 to be possibly unused. GCC will not produce a warning for this
3879 function.
3880
3881 @item used
3882 @cindex @code{used} attribute.
3883 This attribute, attached to a function, means that code must be emitted
3884 for the function even if it appears that the function is not referenced.
3885 This is useful, for example, when the function is referenced only in
3886 inline assembly.
3887
3888 When applied to a member function of a C++ class template, the
3889 attribute also means that the function will be instantiated if the
3890 class itself is instantiated.
3891
3892 @item version_id
3893 @cindex @code{version_id} attribute
3894 This IA64 HP-UX attribute, attached to a global variable or function, renames a
3895 symbol to contain a version string, thus allowing for function level
3896 versioning. HP-UX system header files may use version level functioning
3897 for some system calls.
3898
3899 @smallexample
3900 extern int foo () __attribute__((version_id ("20040821")));
3901 @end smallexample
3902
3903 Calls to @var{foo} will be mapped to calls to @var{foo@{20040821@}}.
3904
3905 @item visibility ("@var{visibility_type}")
3906 @cindex @code{visibility} attribute
3907 This attribute affects the linkage of the declaration to which it is attached.
3908 There are four supported @var{visibility_type} values: default,
3909 hidden, protected or internal visibility.
3910
3911 @smallexample
3912 void __attribute__ ((visibility ("protected")))
3913 f () @{ /* @r{Do something.} */; @}
3914 int i __attribute__ ((visibility ("hidden")));
3915 @end smallexample
3916
3917 The possible values of @var{visibility_type} correspond to the
3918 visibility settings in the ELF gABI.
3919
3920 @table @dfn
3921 @c keep this list of visibilities in alphabetical order.
3922
3923 @item default
3924 Default visibility is the normal case for the object file format.
3925 This value is available for the visibility attribute to override other
3926 options that may change the assumed visibility of entities.
3927
3928 On ELF, default visibility means that the declaration is visible to other
3929 modules and, in shared libraries, means that the declared entity may be
3930 overridden.
3931
3932 On Darwin, default visibility means that the declaration is visible to
3933 other modules.
3934
3935 Default visibility corresponds to ``external linkage'' in the language.
3936
3937 @item hidden
3938 Hidden visibility indicates that the entity declared will have a new
3939 form of linkage, which we'll call ``hidden linkage''. Two
3940 declarations of an object with hidden linkage refer to the same object
3941 if they are in the same shared object.
3942
3943 @item internal
3944 Internal visibility is like hidden visibility, but with additional
3945 processor specific semantics. Unless otherwise specified by the
3946 psABI, GCC defines internal visibility to mean that a function is
3947 @emph{never} called from another module. Compare this with hidden
3948 functions which, while they cannot be referenced directly by other
3949 modules, can be referenced indirectly via function pointers. By
3950 indicating that a function cannot be called from outside the module,
3951 GCC may for instance omit the load of a PIC register since it is known
3952 that the calling function loaded the correct value.
3953
3954 @item protected
3955 Protected visibility is like default visibility except that it
3956 indicates that references within the defining module will bind to the
3957 definition in that module. That is, the declared entity cannot be
3958 overridden by another module.
3959
3960 @end table
3961
3962 All visibilities are supported on many, but not all, ELF targets
3963 (supported when the assembler supports the @samp{.visibility}
3964 pseudo-op). Default visibility is supported everywhere. Hidden
3965 visibility is supported on Darwin targets.
3966
3967 The visibility attribute should be applied only to declarations which
3968 would otherwise have external linkage. The attribute should be applied
3969 consistently, so that the same entity should not be declared with
3970 different settings of the attribute.
3971
3972 In C++, the visibility attribute applies to types as well as functions
3973 and objects, because in C++ types have linkage. A class must not have
3974 greater visibility than its non-static data member types and bases,
3975 and class members default to the visibility of their class. Also, a
3976 declaration without explicit visibility is limited to the visibility
3977 of its type.
3978
3979 In C++, you can mark member functions and static member variables of a
3980 class with the visibility attribute. This is useful if you know a
3981 particular method or static member variable should only be used from
3982 one shared object; then you can mark it hidden while the rest of the
3983 class has default visibility. Care must be taken to avoid breaking
3984 the One Definition Rule; for example, it is usually not useful to mark
3985 an inline method as hidden without marking the whole class as hidden.
3986
3987 A C++ namespace declaration can also have the visibility attribute.
3988 This attribute applies only to the particular namespace body, not to
3989 other definitions of the same namespace; it is equivalent to using
3990 @samp{#pragma GCC visibility} before and after the namespace
3991 definition (@pxref{Visibility Pragmas}).
3992
3993 In C++, if a template argument has limited visibility, this
3994 restriction is implicitly propagated to the template instantiation.
3995 Otherwise, template instantiations and specializations default to the
3996 visibility of their template.
3997
3998 If both the template and enclosing class have explicit visibility, the
3999 visibility from the template is used.
4000
4001 @item vliw
4002 @cindex @code{vliw} attribute
4003 On MeP, the @code{vliw} attribute tells the compiler to emit
4004 instructions in VLIW mode instead of core mode. Note that this
4005 attribute is not allowed unless a VLIW coprocessor has been configured
4006 and enabled through command line options.
4007
4008 @item warn_unused_result
4009 @cindex @code{warn_unused_result} attribute
4010 The @code{warn_unused_result} attribute causes a warning to be emitted
4011 if a caller of the function with this attribute does not use its
4012 return value. This is useful for functions where not checking
4013 the result is either a security problem or always a bug, such as
4014 @code{realloc}.
4015
4016 @smallexample
4017 int fn () __attribute__ ((warn_unused_result));
4018 int foo ()
4019 @{
4020 if (fn () < 0) return -1;
4021 fn ();
4022 return 0;
4023 @}
4024 @end smallexample
4025
4026 results in warning on line 5.
4027
4028 @item weak
4029 @cindex @code{weak} attribute
4030 The @code{weak} attribute causes the declaration to be emitted as a weak
4031 symbol rather than a global. This is primarily useful in defining
4032 library functions which can be overridden in user code, though it can
4033 also be used with non-function declarations. Weak symbols are supported
4034 for ELF targets, and also for a.out targets when using the GNU assembler
4035 and linker.
4036
4037 @item weakref
4038 @itemx weakref ("@var{target}")
4039 @cindex @code{weakref} attribute
4040 The @code{weakref} attribute marks a declaration as a weak reference.
4041 Without arguments, it should be accompanied by an @code{alias} attribute
4042 naming the target symbol. Optionally, the @var{target} may be given as
4043 an argument to @code{weakref} itself. In either case, @code{weakref}
4044 implicitly marks the declaration as @code{weak}. Without a
4045 @var{target}, given as an argument to @code{weakref} or to @code{alias},
4046 @code{weakref} is equivalent to @code{weak}.
4047
4048 @smallexample
4049 static int x() __attribute__ ((weakref ("y")));
4050 /* is equivalent to... */
4051 static int x() __attribute__ ((weak, weakref, alias ("y")));
4052 /* and to... */
4053 static int x() __attribute__ ((weakref));
4054 static int x() __attribute__ ((alias ("y")));
4055 @end smallexample
4056
4057 A weak reference is an alias that does not by itself require a
4058 definition to be given for the target symbol. If the target symbol is
4059 only referenced through weak references, then it becomes a @code{weak}
4060 undefined symbol. If it is directly referenced, however, then such
4061 strong references prevail, and a definition will be required for the
4062 symbol, not necessarily in the same translation unit.
4063
4064 The effect is equivalent to moving all references to the alias to a
4065 separate translation unit, renaming the alias to the aliased symbol,
4066 declaring it as weak, compiling the two separate translation units and
4067 performing a reloadable link on them.
4068
4069 At present, a declaration to which @code{weakref} is attached can
4070 only be @code{static}.
4071
4072 @end table
4073
4074 You can specify multiple attributes in a declaration by separating them
4075 by commas within the double parentheses or by immediately following an
4076 attribute declaration with another attribute declaration.
4077
4078 @cindex @code{#pragma}, reason for not using
4079 @cindex pragma, reason for not using
4080 Some people object to the @code{__attribute__} feature, suggesting that
4081 ISO C's @code{#pragma} should be used instead. At the time
4082 @code{__attribute__} was designed, there were two reasons for not doing
4083 this.
4084
4085 @enumerate
4086 @item
4087 It is impossible to generate @code{#pragma} commands from a macro.
4088
4089 @item
4090 There is no telling what the same @code{#pragma} might mean in another
4091 compiler.
4092 @end enumerate
4093
4094 These two reasons applied to almost any application that might have been
4095 proposed for @code{#pragma}. It was basically a mistake to use
4096 @code{#pragma} for @emph{anything}.
4097
4098 The ISO C99 standard includes @code{_Pragma}, which now allows pragmas
4099 to be generated from macros. In addition, a @code{#pragma GCC}
4100 namespace is now in use for GCC-specific pragmas. However, it has been
4101 found convenient to use @code{__attribute__} to achieve a natural
4102 attachment of attributes to their corresponding declarations, whereas
4103 @code{#pragma GCC} is of use for constructs that do not naturally form
4104 part of the grammar. @xref{Other Directives,,Miscellaneous
4105 Preprocessing Directives, cpp, The GNU C Preprocessor}.
4106
4107 @node Attribute Syntax
4108 @section Attribute Syntax
4109 @cindex attribute syntax
4110
4111 This section describes the syntax with which @code{__attribute__} may be
4112 used, and the constructs to which attribute specifiers bind, for the C
4113 language. Some details may vary for C++ and Objective-C@. Because of
4114 infelicities in the grammar for attributes, some forms described here
4115 may not be successfully parsed in all cases.
4116
4117 There are some problems with the semantics of attributes in C++. For
4118 example, there are no manglings for attributes, although they may affect
4119 code generation, so problems may arise when attributed types are used in
4120 conjunction with templates or overloading. Similarly, @code{typeid}
4121 does not distinguish between types with different attributes. Support
4122 for attributes in C++ may be restricted in future to attributes on
4123 declarations only, but not on nested declarators.
4124
4125 @xref{Function Attributes}, for details of the semantics of attributes
4126 applying to functions. @xref{Variable Attributes}, for details of the
4127 semantics of attributes applying to variables. @xref{Type Attributes},
4128 for details of the semantics of attributes applying to structure, union
4129 and enumerated types.
4130
4131 An @dfn{attribute specifier} is of the form
4132 @code{__attribute__ ((@var{attribute-list}))}. An @dfn{attribute list}
4133 is a possibly empty comma-separated sequence of @dfn{attributes}, where
4134 each attribute is one of the following:
4135
4136 @itemize @bullet
4137 @item
4138 Empty. Empty attributes are ignored.
4139
4140 @item
4141 A word (which may be an identifier such as @code{unused}, or a reserved
4142 word such as @code{const}).
4143
4144 @item
4145 A word, followed by, in parentheses, parameters for the attribute.
4146 These parameters take one of the following forms:
4147
4148 @itemize @bullet
4149 @item
4150 An identifier. For example, @code{mode} attributes use this form.
4151
4152 @item
4153 An identifier followed by a comma and a non-empty comma-separated list
4154 of expressions. For example, @code{format} attributes use this form.
4155
4156 @item
4157 A possibly empty comma-separated list of expressions. For example,
4158 @code{format_arg} attributes use this form with the list being a single
4159 integer constant expression, and @code{alias} attributes use this form
4160 with the list being a single string constant.
4161 @end itemize
4162 @end itemize
4163
4164 An @dfn{attribute specifier list} is a sequence of one or more attribute
4165 specifiers, not separated by any other tokens.
4166
4167 In GNU C, an attribute specifier list may appear after the colon following a
4168 label, other than a @code{case} or @code{default} label. The only
4169 attribute it makes sense to use after a label is @code{unused}. This
4170 feature is intended for code generated by programs which contains labels
4171 that may be unused but which is compiled with @option{-Wall}. It would
4172 not normally be appropriate to use in it human-written code, though it
4173 could be useful in cases where the code that jumps to the label is
4174 contained within an @code{#ifdef} conditional. GNU C++ only permits
4175 attributes on labels if the attribute specifier is immediately
4176 followed by a semicolon (i.e., the label applies to an empty
4177 statement). If the semicolon is missing, C++ label attributes are
4178 ambiguous, as it is permissible for a declaration, which could begin
4179 with an attribute list, to be labelled in C++. Declarations cannot be
4180 labelled in C90 or C99, so the ambiguity does not arise there.
4181
4182 An attribute specifier list may appear as part of a @code{struct},
4183 @code{union} or @code{enum} specifier. It may go either immediately
4184 after the @code{struct}, @code{union} or @code{enum} keyword, or after
4185 the closing brace. The former syntax is preferred.
4186 Where attribute specifiers follow the closing brace, they are considered
4187 to relate to the structure, union or enumerated type defined, not to any
4188 enclosing declaration the type specifier appears in, and the type
4189 defined is not complete until after the attribute specifiers.
4190 @c Otherwise, there would be the following problems: a shift/reduce
4191 @c conflict between attributes binding the struct/union/enum and
4192 @c binding to the list of specifiers/qualifiers; and "aligned"
4193 @c attributes could use sizeof for the structure, but the size could be
4194 @c changed later by "packed" attributes.
4195
4196 Otherwise, an attribute specifier appears as part of a declaration,
4197 counting declarations of unnamed parameters and type names, and relates
4198 to that declaration (which may be nested in another declaration, for
4199 example in the case of a parameter declaration), or to a particular declarator
4200 within a declaration. Where an
4201 attribute specifier is applied to a parameter declared as a function or
4202 an array, it should apply to the function or array rather than the
4203 pointer to which the parameter is implicitly converted, but this is not
4204 yet correctly implemented.
4205
4206 Any list of specifiers and qualifiers at the start of a declaration may
4207 contain attribute specifiers, whether or not such a list may in that
4208 context contain storage class specifiers. (Some attributes, however,
4209 are essentially in the nature of storage class specifiers, and only make
4210 sense where storage class specifiers may be used; for example,
4211 @code{section}.) There is one necessary limitation to this syntax: the
4212 first old-style parameter declaration in a function definition cannot
4213 begin with an attribute specifier, because such an attribute applies to
4214 the function instead by syntax described below (which, however, is not
4215 yet implemented in this case). In some other cases, attribute
4216 specifiers are permitted by this grammar but not yet supported by the
4217 compiler. All attribute specifiers in this place relate to the
4218 declaration as a whole. In the obsolescent usage where a type of
4219 @code{int} is implied by the absence of type specifiers, such a list of
4220 specifiers and qualifiers may be an attribute specifier list with no
4221 other specifiers or qualifiers.
4222
4223 At present, the first parameter in a function prototype must have some
4224 type specifier which is not an attribute specifier; this resolves an
4225 ambiguity in the interpretation of @code{void f(int
4226 (__attribute__((foo)) x))}, but is subject to change. At present, if
4227 the parentheses of a function declarator contain only attributes then
4228 those attributes are ignored, rather than yielding an error or warning
4229 or implying a single parameter of type int, but this is subject to
4230 change.
4231
4232 An attribute specifier list may appear immediately before a declarator
4233 (other than the first) in a comma-separated list of declarators in a
4234 declaration of more than one identifier using a single list of
4235 specifiers and qualifiers. Such attribute specifiers apply
4236 only to the identifier before whose declarator they appear. For
4237 example, in
4238
4239 @smallexample
4240 __attribute__((noreturn)) void d0 (void),
4241 __attribute__((format(printf, 1, 2))) d1 (const char *, ...),
4242 d2 (void)
4243 @end smallexample
4244
4245 @noindent
4246 the @code{noreturn} attribute applies to all the functions
4247 declared; the @code{format} attribute only applies to @code{d1}.
4248
4249 An attribute specifier list may appear immediately before the comma,
4250 @code{=} or semicolon terminating the declaration of an identifier other
4251 than a function definition. Such attribute specifiers apply
4252 to the declared object or function. Where an
4253 assembler name for an object or function is specified (@pxref{Asm
4254 Labels}), the attribute must follow the @code{asm}
4255 specification.
4256
4257 An attribute specifier list may, in future, be permitted to appear after
4258 the declarator in a function definition (before any old-style parameter
4259 declarations or the function body).
4260
4261 Attribute specifiers may be mixed with type qualifiers appearing inside
4262 the @code{[]} of a parameter array declarator, in the C99 construct by
4263 which such qualifiers are applied to the pointer to which the array is
4264 implicitly converted. Such attribute specifiers apply to the pointer,
4265 not to the array, but at present this is not implemented and they are
4266 ignored.
4267
4268 An attribute specifier list may appear at the start of a nested
4269 declarator. At present, there are some limitations in this usage: the
4270 attributes correctly apply to the declarator, but for most individual
4271 attributes the semantics this implies are not implemented.
4272 When attribute specifiers follow the @code{*} of a pointer
4273 declarator, they may be mixed with any type qualifiers present.
4274 The following describes the formal semantics of this syntax. It will make the
4275 most sense if you are familiar with the formal specification of
4276 declarators in the ISO C standard.
4277
4278 Consider (as in C99 subclause 6.7.5 paragraph 4) a declaration @code{T
4279 D1}, where @code{T} contains declaration specifiers that specify a type
4280 @var{Type} (such as @code{int}) and @code{D1} is a declarator that
4281 contains an identifier @var{ident}. The type specified for @var{ident}
4282 for derived declarators whose type does not include an attribute
4283 specifier is as in the ISO C standard.
4284
4285 If @code{D1} has the form @code{( @var{attribute-specifier-list} D )},
4286 and the declaration @code{T D} specifies the type
4287 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4288 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
4289 @var{attribute-specifier-list} @var{Type}'' for @var{ident}.
4290
4291 If @code{D1} has the form @code{*
4292 @var{type-qualifier-and-attribute-specifier-list} D}, and the
4293 declaration @code{T D} specifies the type
4294 ``@var{derived-declarator-type-list} @var{Type}'' for @var{ident}, then
4295 @code{T D1} specifies the type ``@var{derived-declarator-type-list}
4296 @var{type-qualifier-and-attribute-specifier-list} pointer to @var{Type}'' for
4297 @var{ident}.
4298
4299 For example,
4300
4301 @smallexample
4302 void (__attribute__((noreturn)) ****f) (void);
4303 @end smallexample
4304
4305 @noindent
4306 specifies the type ``pointer to pointer to pointer to pointer to
4307 non-returning function returning @code{void}''. As another example,
4308
4309 @smallexample
4310 char *__attribute__((aligned(8))) *f;
4311 @end smallexample
4312
4313 @noindent
4314 specifies the type ``pointer to 8-byte-aligned pointer to @code{char}''.
4315 Note again that this does not work with most attributes; for example,
4316 the usage of @samp{aligned} and @samp{noreturn} attributes given above
4317 is not yet supported.
4318
4319 For compatibility with existing code written for compiler versions that
4320 did not implement attributes on nested declarators, some laxity is
4321 allowed in the placing of attributes. If an attribute that only applies
4322 to types is applied to a declaration, it will be treated as applying to
4323 the type of that declaration. If an attribute that only applies to
4324 declarations is applied to the type of a declaration, it will be treated
4325 as applying to that declaration; and, for compatibility with code
4326 placing the attributes immediately before the identifier declared, such
4327 an attribute applied to a function return type will be treated as
4328 applying to the function type, and such an attribute applied to an array
4329 element type will be treated as applying to the array type. If an
4330 attribute that only applies to function types is applied to a
4331 pointer-to-function type, it will be treated as applying to the pointer
4332 target type; if such an attribute is applied to a function return type
4333 that is not a pointer-to-function type, it will be treated as applying
4334 to the function type.
4335
4336 @node Function Prototypes
4337 @section Prototypes and Old-Style Function Definitions
4338 @cindex function prototype declarations
4339 @cindex old-style function definitions
4340 @cindex promotion of formal parameters
4341
4342 GNU C extends ISO C to allow a function prototype to override a later
4343 old-style non-prototype definition. Consider the following example:
4344
4345 @smallexample
4346 /* @r{Use prototypes unless the compiler is old-fashioned.} */
4347 #ifdef __STDC__
4348 #define P(x) x
4349 #else
4350 #define P(x) ()
4351 #endif
4352
4353 /* @r{Prototype function declaration.} */
4354 int isroot P((uid_t));
4355
4356 /* @r{Old-style function definition.} */
4357 int
4358 isroot (x) /* @r{??? lossage here ???} */
4359 uid_t x;
4360 @{
4361 return x == 0;
4362 @}
4363 @end smallexample
4364
4365 Suppose the type @code{uid_t} happens to be @code{short}. ISO C does
4366 not allow this example, because subword arguments in old-style
4367 non-prototype definitions are promoted. Therefore in this example the
4368 function definition's argument is really an @code{int}, which does not
4369 match the prototype argument type of @code{short}.
4370
4371 This restriction of ISO C makes it hard to write code that is portable
4372 to traditional C compilers, because the programmer does not know
4373 whether the @code{uid_t} type is @code{short}, @code{int}, or
4374 @code{long}. Therefore, in cases like these GNU C allows a prototype
4375 to override a later old-style definition. More precisely, in GNU C, a
4376 function prototype argument type overrides the argument type specified
4377 by a later old-style definition if the former type is the same as the
4378 latter type before promotion. Thus in GNU C the above example is
4379 equivalent to the following:
4380
4381 @smallexample
4382 int isroot (uid_t);
4383
4384 int
4385 isroot (uid_t x)
4386 @{
4387 return x == 0;
4388 @}
4389 @end smallexample
4390
4391 @noindent
4392 GNU C++ does not support old-style function definitions, so this
4393 extension is irrelevant.
4394
4395 @node C++ Comments
4396 @section C++ Style Comments
4397 @cindex @code{//}
4398 @cindex C++ comments
4399 @cindex comments, C++ style
4400
4401 In GNU C, you may use C++ style comments, which start with @samp{//} and
4402 continue until the end of the line. Many other C implementations allow
4403 such comments, and they are included in the 1999 C standard. However,
4404 C++ style comments are not recognized if you specify an @option{-std}
4405 option specifying a version of ISO C before C99, or @option{-ansi}
4406 (equivalent to @option{-std=c90}).
4407
4408 @node Dollar Signs
4409 @section Dollar Signs in Identifier Names
4410 @cindex $
4411 @cindex dollar signs in identifier names
4412 @cindex identifier names, dollar signs in
4413
4414 In GNU C, you may normally use dollar signs in identifier names.
4415 This is because many traditional C implementations allow such identifiers.
4416 However, dollar signs in identifiers are not supported on a few target
4417 machines, typically because the target assembler does not allow them.
4418
4419 @node Character Escapes
4420 @section The Character @key{ESC} in Constants
4421
4422 You can use the sequence @samp{\e} in a string or character constant to
4423 stand for the ASCII character @key{ESC}.
4424
4425 @node Variable Attributes
4426 @section Specifying Attributes of Variables
4427 @cindex attribute of variables
4428 @cindex variable attributes
4429
4430 The keyword @code{__attribute__} allows you to specify special
4431 attributes of variables or structure fields. This keyword is followed
4432 by an attribute specification inside double parentheses. Some
4433 attributes are currently defined generically for variables.
4434 Other attributes are defined for variables on particular target
4435 systems. Other attributes are available for functions
4436 (@pxref{Function Attributes}) and for types (@pxref{Type Attributes}).
4437 Other front ends might define more attributes
4438 (@pxref{C++ Extensions,,Extensions to the C++ Language}).
4439
4440 You may also specify attributes with @samp{__} preceding and following
4441 each keyword. This allows you to use them in header files without
4442 being concerned about a possible macro of the same name. For example,
4443 you may use @code{__aligned__} instead of @code{aligned}.
4444
4445 @xref{Attribute Syntax}, for details of the exact syntax for using
4446 attributes.
4447
4448 @table @code
4449 @cindex @code{aligned} attribute
4450 @item aligned (@var{alignment})
4451 This attribute specifies a minimum alignment for the variable or
4452 structure field, measured in bytes. For example, the declaration:
4453
4454 @smallexample
4455 int x __attribute__ ((aligned (16))) = 0;
4456 @end smallexample
4457
4458 @noindent
4459 causes the compiler to allocate the global variable @code{x} on a
4460 16-byte boundary. On a 68040, this could be used in conjunction with
4461 an @code{asm} expression to access the @code{move16} instruction which
4462 requires 16-byte aligned operands.
4463
4464 You can also specify the alignment of structure fields. For example, to
4465 create a double-word aligned @code{int} pair, you could write:
4466
4467 @smallexample
4468 struct foo @{ int x[2] __attribute__ ((aligned (8))); @};
4469 @end smallexample
4470
4471 @noindent
4472 This is an alternative to creating a union with a @code{double} member
4473 that forces the union to be double-word aligned.
4474
4475 As in the preceding examples, you can explicitly specify the alignment
4476 (in bytes) that you wish the compiler to use for a given variable or
4477 structure field. Alternatively, you can leave out the alignment factor
4478 and just ask the compiler to align a variable or field to the
4479 default alignment for the target architecture you are compiling for.
4480 The default alignment is sufficient for all scalar types, but may not be
4481 enough for all vector types on a target which supports vector operations.
4482 The default alignment is fixed for a particular target ABI.
4483
4484 Gcc also provides a target specific macro @code{__BIGGEST_ALIGNMENT__},
4485 which is the largest alignment ever used for any data type on the
4486 target machine you are compiling for. For example, you could write:
4487
4488 @smallexample
4489 short array[3] __attribute__ ((aligned (__BIGGEST_ALIGNMENT__)));
4490 @end smallexample
4491
4492 The compiler automatically sets the alignment for the declared
4493 variable or field to @code{__BIGGEST_ALIGNMENT__}. Doing this can
4494 often make copy operations more efficient, because the compiler can
4495 use whatever instructions copy the biggest chunks of memory when
4496 performing copies to or from the variables or fields that you have
4497 aligned this way. Note that the value of @code{__BIGGEST_ALIGNMENT__}
4498 may change depending on command line options.
4499
4500 When used on a struct, or struct member, the @code{aligned} attribute can
4501 only increase the alignment; in order to decrease it, the @code{packed}
4502 attribute must be specified as well. When used as part of a typedef, the
4503 @code{aligned} attribute can both increase and decrease alignment, and
4504 specifying the @code{packed} attribute will generate a warning.
4505
4506 Note that the effectiveness of @code{aligned} attributes may be limited
4507 by inherent limitations in your linker. On many systems, the linker is
4508 only able to arrange for variables to be aligned up to a certain maximum
4509 alignment. (For some linkers, the maximum supported alignment may
4510 be very very small.) If your linker is only able to align variables
4511 up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
4512 in an @code{__attribute__} will still only provide you with 8 byte
4513 alignment. See your linker documentation for further information.
4514
4515 The @code{aligned} attribute can also be used for functions
4516 (@pxref{Function Attributes}.)
4517
4518 @item cleanup (@var{cleanup_function})
4519 @cindex @code{cleanup} attribute
4520 The @code{cleanup} attribute runs a function when the variable goes
4521 out of scope. This attribute can only be applied to auto function
4522 scope variables; it may not be applied to parameters or variables
4523 with static storage duration. The function must take one parameter,
4524 a pointer to a type compatible with the variable. The return value
4525 of the function (if any) is ignored.
4526
4527 If @option{-fexceptions} is enabled, then @var{cleanup_function}
4528 will be run during the stack unwinding that happens during the
4529 processing of the exception. Note that the @code{cleanup} attribute
4530 does not allow the exception to be caught, only to perform an action.
4531 It is undefined what happens if @var{cleanup_function} does not
4532 return normally.
4533
4534 @item common
4535 @itemx nocommon
4536 @cindex @code{common} attribute
4537 @cindex @code{nocommon} attribute
4538 @opindex fcommon
4539 @opindex fno-common
4540 The @code{common} attribute requests GCC to place a variable in
4541 ``common'' storage. The @code{nocommon} attribute requests the
4542 opposite---to allocate space for it directly.
4543
4544 These attributes override the default chosen by the
4545 @option{-fno-common} and @option{-fcommon} flags respectively.
4546
4547 @item deprecated
4548 @itemx deprecated (@var{msg})
4549 @cindex @code{deprecated} attribute
4550 The @code{deprecated} attribute results in a warning if the variable
4551 is used anywhere in the source file. This is useful when identifying
4552 variables that are expected to be removed in a future version of a
4553 program. The warning also includes the location of the declaration
4554 of the deprecated variable, to enable users to easily find further
4555 information about why the variable is deprecated, or what they should
4556 do instead. Note that the warning only occurs for uses:
4557
4558 @smallexample
4559 extern int old_var __attribute__ ((deprecated));
4560 extern int old_var;
4561 int new_fn () @{ return old_var; @}
4562 @end smallexample
4563
4564 results in a warning on line 3 but not line 2. The optional msg
4565 argument, which must be a string, will be printed in the warning if
4566 present.
4567
4568 The @code{deprecated} attribute can also be used for functions and
4569 types (@pxref{Function Attributes}, @pxref{Type Attributes}.)
4570
4571 @item mode (@var{mode})
4572 @cindex @code{mode} attribute
4573 This attribute specifies the data type for the declaration---whichever
4574 type corresponds to the mode @var{mode}. This in effect lets you
4575 request an integer or floating point type according to its width.
4576
4577 You may also specify a mode of @samp{byte} or @samp{__byte__} to
4578 indicate the mode corresponding to a one-byte integer, @samp{word} or
4579 @samp{__word__} for the mode of a one-word integer, and @samp{pointer}
4580 or @samp{__pointer__} for the mode used to represent pointers.
4581
4582 @item packed
4583 @cindex @code{packed} attribute
4584 The @code{packed} attribute specifies that a variable or structure field
4585 should have the smallest possible alignment---one byte for a variable,
4586 and one bit for a field, unless you specify a larger value with the
4587 @code{aligned} attribute.
4588
4589 Here is a structure in which the field @code{x} is packed, so that it
4590 immediately follows @code{a}:
4591
4592 @smallexample
4593 struct foo
4594 @{
4595 char a;
4596 int x[2] __attribute__ ((packed));
4597 @};
4598 @end smallexample
4599
4600 @emph{Note:} The 4.1, 4.2 and 4.3 series of GCC ignore the
4601 @code{packed} attribute on bit-fields of type @code{char}. This has
4602 been fixed in GCC 4.4 but the change can lead to differences in the
4603 structure layout. See the documentation of
4604 @option{-Wpacked-bitfield-compat} for more information.
4605
4606 @item section ("@var{section-name}")
4607 @cindex @code{section} variable attribute
4608 Normally, the compiler places the objects it generates in sections like
4609 @code{data} and @code{bss}. Sometimes, however, you need additional sections,
4610 or you need certain particular variables to appear in special sections,
4611 for example to map to special hardware. The @code{section}
4612 attribute specifies that a variable (or function) lives in a particular
4613 section. For example, this small program uses several specific section names:
4614
4615 @smallexample
4616 struct duart a __attribute__ ((section ("DUART_A"))) = @{ 0 @};
4617 struct duart b __attribute__ ((section ("DUART_B"))) = @{ 0 @};
4618 char stack[10000] __attribute__ ((section ("STACK"))) = @{ 0 @};
4619 int init_data __attribute__ ((section ("INITDATA")));
4620
4621 main()
4622 @{
4623 /* @r{Initialize stack pointer} */
4624 init_sp (stack + sizeof (stack));
4625
4626 /* @r{Initialize initialized data} */
4627 memcpy (&init_data, &data, &edata - &data);
4628
4629 /* @r{Turn on the serial ports} */
4630 init_duart (&a);
4631 init_duart (&b);
4632 @}
4633 @end smallexample
4634
4635 @noindent
4636 Use the @code{section} attribute with
4637 @emph{global} variables and not @emph{local} variables,
4638 as shown in the example.
4639
4640 You may use the @code{section} attribute with initialized or
4641 uninitialized global variables but the linker requires
4642 each object be defined once, with the exception that uninitialized
4643 variables tentatively go in the @code{common} (or @code{bss}) section
4644 and can be multiply ``defined''. Using the @code{section} attribute
4645 will change what section the variable goes into and may cause the
4646 linker to issue an error if an uninitialized variable has multiple
4647 definitions. You can force a variable to be initialized with the
4648 @option{-fno-common} flag or the @code{nocommon} attribute.
4649
4650 Some file formats do not support arbitrary sections so the @code{section}
4651 attribute is not available on all platforms.
4652 If you need to map the entire contents of a module to a particular
4653 section, consider using the facilities of the linker instead.
4654
4655 @item shared
4656 @cindex @code{shared} variable attribute
4657 On Microsoft Windows, in addition to putting variable definitions in a named
4658 section, the section can also be shared among all running copies of an
4659 executable or DLL@. For example, this small program defines shared data
4660 by putting it in a named section @code{shared} and marking the section
4661 shareable:
4662
4663 @smallexample
4664 int foo __attribute__((section ("shared"), shared)) = 0;
4665
4666 int
4667 main()
4668 @{
4669 /* @r{Read and write foo. All running
4670 copies see the same value.} */
4671 return 0;
4672 @}
4673 @end smallexample
4674
4675 @noindent
4676 You may only use the @code{shared} attribute along with @code{section}
4677 attribute with a fully initialized global definition because of the way
4678 linkers work. See @code{section} attribute for more information.
4679
4680 The @code{shared} attribute is only available on Microsoft Windows@.
4681
4682 @item tls_model ("@var{tls_model}")
4683 @cindex @code{tls_model} attribute
4684 The @code{tls_model} attribute sets thread-local storage model
4685 (@pxref{Thread-Local}) of a particular @code{__thread} variable,
4686 overriding @option{-ftls-model=} command-line switch on a per-variable
4687 basis.
4688 The @var{tls_model} argument should be one of @code{global-dynamic},
4689 @code{local-dynamic}, @code{initial-exec} or @code{local-exec}.
4690
4691 Not all targets support this attribute.
4692
4693 @item unused
4694 This attribute, attached to a variable, means that the variable is meant
4695 to be possibly unused. GCC will not produce a warning for this
4696 variable.
4697
4698 @item used
4699 This attribute, attached to a variable, means that the variable must be
4700 emitted even if it appears that the variable is not referenced.
4701
4702 When applied to a static data member of a C++ class template, the
4703 attribute also means that the member will be instantiated if the
4704 class itself is instantiated.
4705
4706 @item vector_size (@var{bytes})
4707 This attribute specifies the vector size for the variable, measured in
4708 bytes. For example, the declaration:
4709
4710 @smallexample
4711 int foo __attribute__ ((vector_size (16)));
4712 @end smallexample
4713
4714 @noindent
4715 causes the compiler to set the mode for @code{foo}, to be 16 bytes,
4716 divided into @code{int} sized units. Assuming a 32-bit int (a vector of
4717 4 units of 4 bytes), the corresponding mode of @code{foo} will be V4SI@.
4718
4719 This attribute is only applicable to integral and float scalars,
4720 although arrays, pointers, and function return values are allowed in
4721 conjunction with this construct.
4722
4723 Aggregates with this attribute are invalid, even if they are of the same
4724 size as a corresponding scalar. For example, the declaration:
4725
4726 @smallexample
4727 struct S @{ int a; @};
4728 struct S __attribute__ ((vector_size (16))) foo;
4729 @end smallexample
4730
4731 @noindent
4732 is invalid even if the size of the structure is the same as the size of
4733 the @code{int}.
4734
4735 @item selectany
4736 The @code{selectany} attribute causes an initialized global variable to
4737 have link-once semantics. When multiple definitions of the variable are
4738 encountered by the linker, the first is selected and the remainder are
4739 discarded. Following usage by the Microsoft compiler, the linker is told
4740 @emph{not} to warn about size or content differences of the multiple
4741 definitions.
4742
4743 Although the primary usage of this attribute is for POD types, the
4744 attribute can also be applied to global C++ objects that are initialized
4745 by a constructor. In this case, the static initialization and destruction
4746 code for the object is emitted in each translation defining the object,
4747 but the calls to the constructor and destructor are protected by a
4748 link-once guard variable.
4749
4750 The @code{selectany} attribute is only available on Microsoft Windows
4751 targets. You can use @code{__declspec (selectany)} as a synonym for
4752 @code{__attribute__ ((selectany))} for compatibility with other
4753 compilers.
4754
4755 @item weak
4756 The @code{weak} attribute is described in @ref{Function Attributes}.
4757
4758 @item dllimport
4759 The @code{dllimport} attribute is described in @ref{Function Attributes}.
4760
4761 @item dllexport
4762 The @code{dllexport} attribute is described in @ref{Function Attributes}.
4763
4764 @end table
4765
4766 @anchor{AVR Variable Attributes}
4767 @subsection AVR Variable Attributes
4768
4769 @table @code
4770 @item progmem
4771 @cindex @code{progmem} AVR variable attribute
4772 The @code{progmem} attribute is used on the AVR to place read-only
4773 data in the non-volatile program memory (flash). The @code{progmem}
4774 attribute accomplishes this by putting respective variables into a
4775 section whose name starts with @code{.progmem}.
4776
4777 This attribute works similar to the @code{section} attribute
4778 but adds additional checking. Notice that just like the
4779 @code{section} attribute, @code{progmem} affects the location
4780 of the data but not how this data is accessed.
4781
4782 In order to read data located with the @code{progmem} attribute
4783 (inline) assembler must be used.
4784 @example
4785 /* Use custom macros from @w{@uref{http://nongnu.org/avr-libc/user-manual,avr-libc}} */
4786 #include <avr/pgmspace.h>
4787
4788 /* Locate var in flash memory */
4789 const int var[2] PROGMEM = @{ 1, 2 @};
4790
4791 int read_var (int i)
4792 @{
4793 /* Access var[] by accessor macro from avr/pgmspace.h */
4794 return (int) pgm_read_word (& var[i]);
4795 @}
4796 @end example
4797
4798 AVR is a Harvard architecture processor and data and read-only data
4799 normally resides in the data memory (RAM).
4800
4801 See also the @ref{AVR Named Address Spaces} section for
4802 an alternate way to locate and access data in flash memory.
4803 @end table
4804
4805 @subsection Blackfin Variable Attributes
4806
4807 Three attributes are currently defined for the Blackfin.
4808
4809 @table @code
4810 @item l1_data
4811 @itemx l1_data_A
4812 @itemx l1_data_B
4813 @cindex @code{l1_data} variable attribute
4814 @cindex @code{l1_data_A} variable attribute
4815 @cindex @code{l1_data_B} variable attribute
4816 Use these attributes on the Blackfin to place the variable into L1 Data SRAM.
4817 Variables with @code{l1_data} attribute will be put into the specific section
4818 named @code{.l1.data}. Those with @code{l1_data_A} attribute will be put into
4819 the specific section named @code{.l1.data.A}. Those with @code{l1_data_B}
4820 attribute will be put into the specific section named @code{.l1.data.B}.
4821
4822 @item l2
4823 @cindex @code{l2} variable attribute
4824 Use this attribute on the Blackfin to place the variable into L2 SRAM.
4825 Variables with @code{l2} attribute will be put into the specific section
4826 named @code{.l2.data}.
4827 @end table
4828
4829 @subsection M32R/D Variable Attributes
4830
4831 One attribute is currently defined for the M32R/D@.
4832
4833 @table @code
4834 @item model (@var{model-name})
4835 @cindex variable addressability on the M32R/D
4836 Use this attribute on the M32R/D to set the addressability of an object.
4837 The identifier @var{model-name} is one of @code{small}, @code{medium},
4838 or @code{large}, representing each of the code models.
4839
4840 Small model objects live in the lower 16MB of memory (so that their
4841 addresses can be loaded with the @code{ld24} instruction).
4842
4843 Medium and large model objects may live anywhere in the 32-bit address space
4844 (the compiler will generate @code{seth/add3} instructions to load their
4845 addresses).
4846 @end table
4847
4848 @anchor{MeP Variable Attributes}
4849 @subsection MeP Variable Attributes
4850
4851 The MeP target has a number of addressing modes and busses. The
4852 @code{near} space spans the standard memory space's first 16 megabytes
4853 (24 bits). The @code{far} space spans the entire 32-bit memory space.
4854 The @code{based} space is a 128 byte region in the memory space which
4855 is addressed relative to the @code{$tp} register. The @code{tiny}
4856 space is a 65536 byte region relative to the @code{$gp} register. In
4857 addition to these memory regions, the MeP target has a separate 16-bit
4858 control bus which is specified with @code{cb} attributes.
4859
4860 @table @code
4861
4862 @item based
4863 Any variable with the @code{based} attribute will be assigned to the
4864 @code{.based} section, and will be accessed with relative to the
4865 @code{$tp} register.
4866
4867 @item tiny
4868 Likewise, the @code{tiny} attribute assigned variables to the
4869 @code{.tiny} section, relative to the @code{$gp} register.
4870
4871 @item near
4872 Variables with the @code{near} attribute are assumed to have addresses
4873 that fit in a 24-bit addressing mode. This is the default for large
4874 variables (@code{-mtiny=4} is the default) but this attribute can
4875 override @code{-mtiny=} for small variables, or override @code{-ml}.
4876
4877 @item far
4878 Variables with the @code{far} attribute are addressed using a full
4879 32-bit address. Since this covers the entire memory space, this
4880 allows modules to make no assumptions about where variables might be
4881 stored.
4882
4883 @item io
4884 @itemx io (@var{addr})
4885 Variables with the @code{io} attribute are used to address
4886 memory-mapped peripherals. If an address is specified, the variable
4887 is assigned that address, else it is not assigned an address (it is
4888 assumed some other module will assign an address). Example:
4889
4890 @example
4891 int timer_count __attribute__((io(0x123)));
4892 @end example
4893
4894 @item cb
4895 @itemx cb (@var{addr})
4896 Variables with the @code{cb} attribute are used to access the control
4897 bus, using special instructions. @code{addr} indicates the control bus
4898 address. Example:
4899
4900 @example
4901 int cpu_clock __attribute__((cb(0x123)));
4902 @end example
4903
4904 @end table
4905
4906 @anchor{i386 Variable Attributes}
4907 @subsection i386 Variable Attributes
4908
4909 Two attributes are currently defined for i386 configurations:
4910 @code{ms_struct} and @code{gcc_struct}
4911
4912 @table @code
4913 @item ms_struct
4914 @itemx gcc_struct
4915 @cindex @code{ms_struct} attribute
4916 @cindex @code{gcc_struct} attribute
4917
4918 If @code{packed} is used on a structure, or if bit-fields are used
4919 it may be that the Microsoft ABI packs them differently
4920 than GCC would normally pack them. Particularly when moving packed
4921 data between functions compiled with GCC and the native Microsoft compiler
4922 (either via function call or as data in a file), it may be necessary to access
4923 either format.
4924
4925 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
4926 compilers to match the native Microsoft compiler.
4927
4928 The Microsoft structure layout algorithm is fairly simple with the exception
4929 of the bitfield packing:
4930
4931 The padding and alignment of members of structures and whether a bit field
4932 can straddle a storage-unit boundary
4933
4934 @enumerate
4935 @item Structure members are stored sequentially in the order in which they are
4936 declared: the first member has the lowest memory address and the last member
4937 the highest.
4938
4939 @item Every data object has an alignment-requirement. The alignment-requirement
4940 for all data except structures, unions, and arrays is either the size of the
4941 object or the current packing size (specified with either the aligned attribute
4942 or the pack pragma), whichever is less. For structures, unions, and arrays,
4943 the alignment-requirement is the largest alignment-requirement of its members.
4944 Every object is allocated an offset so that:
4945
4946 offset % alignment-requirement == 0
4947
4948 @item Adjacent bit fields are packed into the same 1-, 2-, or 4-byte allocation
4949 unit if the integral types are the same size and if the next bit field fits
4950 into the current allocation unit without crossing the boundary imposed by the
4951 common alignment requirements of the bit fields.
4952 @end enumerate
4953
4954 Handling of zero-length bitfields:
4955
4956 MSVC interprets zero-length bitfields in the following ways:
4957
4958 @enumerate
4959 @item If a zero-length bitfield is inserted between two bitfields that would
4960 normally be coalesced, the bitfields will not be coalesced.
4961
4962 For example:
4963
4964 @smallexample
4965 struct
4966 @{
4967 unsigned long bf_1 : 12;
4968 unsigned long : 0;
4969 unsigned long bf_2 : 12;
4970 @} t1;
4971 @end smallexample
4972
4973 The size of @code{t1} would be 8 bytes with the zero-length bitfield. If the
4974 zero-length bitfield were removed, @code{t1}'s size would be 4 bytes.
4975
4976 @item If a zero-length bitfield is inserted after a bitfield, @code{foo}, and the
4977 alignment of the zero-length bitfield is greater than the member that follows it,
4978 @code{bar}, @code{bar} will be aligned as the type of the zero-length bitfield.
4979
4980 For example:
4981
4982 @smallexample
4983 struct
4984 @{
4985 char foo : 4;
4986 short : 0;
4987 char bar;
4988 @} t2;
4989
4990 struct
4991 @{
4992 char foo : 4;
4993 short : 0;
4994 double bar;
4995 @} t3;
4996 @end smallexample
4997
4998 For @code{t2}, @code{bar} will be placed at offset 2, rather than offset 1.
4999 Accordingly, the size of @code{t2} will be 4. For @code{t3}, the zero-length
5000 bitfield will not affect the alignment of @code{bar} or, as a result, the size
5001 of the structure.
5002
5003 Taking this into account, it is important to note the following:
5004
5005 @enumerate
5006 @item If a zero-length bitfield follows a normal bitfield, the type of the
5007 zero-length bitfield may affect the alignment of the structure as whole. For
5008 example, @code{t2} has a size of 4 bytes, since the zero-length bitfield follows a
5009 normal bitfield, and is of type short.
5010
5011 @item Even if a zero-length bitfield is not followed by a normal bitfield, it may
5012 still affect the alignment of the structure:
5013
5014 @smallexample
5015 struct
5016 @{
5017 char foo : 6;
5018 long : 0;
5019 @} t4;
5020 @end smallexample
5021
5022 Here, @code{t4} will take up 4 bytes.
5023 @end enumerate
5024
5025 @item Zero-length bitfields following non-bitfield members are ignored:
5026
5027 @smallexample
5028 struct
5029 @{
5030 char foo;
5031 long : 0;
5032 char bar;
5033 @} t5;
5034 @end smallexample
5035
5036 Here, @code{t5} will take up 2 bytes.
5037 @end enumerate
5038 @end table
5039
5040 @subsection PowerPC Variable Attributes
5041
5042 Three attributes currently are defined for PowerPC configurations:
5043 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5044
5045 For full documentation of the struct attributes please see the
5046 documentation in @ref{i386 Variable Attributes}.
5047
5048 For documentation of @code{altivec} attribute please see the
5049 documentation in @ref{PowerPC Type Attributes}.
5050
5051 @subsection SPU Variable Attributes
5052
5053 The SPU supports the @code{spu_vector} attribute for variables. For
5054 documentation of this attribute please see the documentation in
5055 @ref{SPU Type Attributes}.
5056
5057 @subsection Xstormy16 Variable Attributes
5058
5059 One attribute is currently defined for xstormy16 configurations:
5060 @code{below100}.
5061
5062 @table @code
5063 @item below100
5064 @cindex @code{below100} attribute
5065
5066 If a variable has the @code{below100} attribute (@code{BELOW100} is
5067 allowed also), GCC will place the variable in the first 0x100 bytes of
5068 memory and use special opcodes to access it. Such variables will be
5069 placed in either the @code{.bss_below100} section or the
5070 @code{.data_below100} section.
5071
5072 @end table
5073
5074 @node Type Attributes
5075 @section Specifying Attributes of Types
5076 @cindex attribute of types
5077 @cindex type attributes
5078
5079 The keyword @code{__attribute__} allows you to specify special
5080 attributes of @code{struct} and @code{union} types when you define
5081 such types. This keyword is followed by an attribute specification
5082 inside double parentheses. Seven attributes are currently defined for
5083 types: @code{aligned}, @code{packed}, @code{transparent_union},
5084 @code{unused}, @code{deprecated}, @code{visibility}, and
5085 @code{may_alias}. Other attributes are defined for functions
5086 (@pxref{Function Attributes}) and for variables (@pxref{Variable
5087 Attributes}).
5088
5089 You may also specify any one of these attributes with @samp{__}
5090 preceding and following its keyword. This allows you to use these
5091 attributes in header files without being concerned about a possible
5092 macro of the same name. For example, you may use @code{__aligned__}
5093 instead of @code{aligned}.
5094
5095 You may specify type attributes in an enum, struct or union type
5096 declaration or definition, or for other types in a @code{typedef}
5097 declaration.
5098
5099 For an enum, struct or union type, you may specify attributes either
5100 between the enum, struct or union tag and the name of the type, or
5101 just past the closing curly brace of the @emph{definition}. The
5102 former syntax is preferred.
5103
5104 @xref{Attribute Syntax}, for details of the exact syntax for using
5105 attributes.
5106
5107 @table @code
5108 @cindex @code{aligned} attribute
5109 @item aligned (@var{alignment})
5110 This attribute specifies a minimum alignment (in bytes) for variables
5111 of the specified type. For example, the declarations:
5112
5113 @smallexample
5114 struct S @{ short f[3]; @} __attribute__ ((aligned (8)));
5115 typedef int more_aligned_int __attribute__ ((aligned (8)));
5116 @end smallexample
5117
5118 @noindent
5119 force the compiler to insure (as far as it can) that each variable whose
5120 type is @code{struct S} or @code{more_aligned_int} will be allocated and
5121 aligned @emph{at least} on a 8-byte boundary. On a SPARC, having all
5122 variables of type @code{struct S} aligned to 8-byte boundaries allows
5123 the compiler to use the @code{ldd} and @code{std} (doubleword load and
5124 store) instructions when copying one variable of type @code{struct S} to
5125 another, thus improving run-time efficiency.
5126
5127 Note that the alignment of any given @code{struct} or @code{union} type
5128 is required by the ISO C standard to be at least a perfect multiple of
5129 the lowest common multiple of the alignments of all of the members of
5130 the @code{struct} or @code{union} in question. This means that you @emph{can}
5131 effectively adjust the alignment of a @code{struct} or @code{union}
5132 type by attaching an @code{aligned} attribute to any one of the members
5133 of such a type, but the notation illustrated in the example above is a
5134 more obvious, intuitive, and readable way to request the compiler to
5135 adjust the alignment of an entire @code{struct} or @code{union} type.
5136
5137 As in the preceding example, you can explicitly specify the alignment
5138 (in bytes) that you wish the compiler to use for a given @code{struct}
5139 or @code{union} type. Alternatively, you can leave out the alignment factor
5140 and just ask the compiler to align a type to the maximum
5141 useful alignment for the target machine you are compiling for. For
5142 example, you could write:
5143
5144 @smallexample
5145 struct S @{ short f[3]; @} __attribute__ ((aligned));
5146 @end smallexample
5147
5148 Whenever you leave out the alignment factor in an @code{aligned}
5149 attribute specification, the compiler automatically sets the alignment
5150 for the type to the largest alignment which is ever used for any data
5151 type on the target machine you are compiling for. Doing this can often
5152 make copy operations more efficient, because the compiler can use
5153 whatever instructions copy the biggest chunks of memory when performing
5154 copies to or from the variables which have types that you have aligned
5155 this way.
5156
5157 In the example above, if the size of each @code{short} is 2 bytes, then
5158 the size of the entire @code{struct S} type is 6 bytes. The smallest
5159 power of two which is greater than or equal to that is 8, so the
5160 compiler sets the alignment for the entire @code{struct S} type to 8
5161 bytes.
5162
5163 Note that although you can ask the compiler to select a time-efficient
5164 alignment for a given type and then declare only individual stand-alone
5165 objects of that type, the compiler's ability to select a time-efficient
5166 alignment is primarily useful only when you plan to create arrays of
5167 variables having the relevant (efficiently aligned) type. If you
5168 declare or use arrays of variables of an efficiently-aligned type, then
5169 it is likely that your program will also be doing pointer arithmetic (or
5170 subscripting, which amounts to the same thing) on pointers to the
5171 relevant type, and the code that the compiler generates for these
5172 pointer arithmetic operations will often be more efficient for
5173 efficiently-aligned types than for other types.
5174
5175 The @code{aligned} attribute can only increase the alignment; but you
5176 can decrease it by specifying @code{packed} as well. See below.
5177
5178 Note that the effectiveness of @code{aligned} attributes may be limited
5179 by inherent limitations in your linker. On many systems, the linker is
5180 only able to arrange for variables to be aligned up to a certain maximum
5181 alignment. (For some linkers, the maximum supported alignment may
5182 be very very small.) If your linker is only able to align variables
5183 up to a maximum of 8 byte alignment, then specifying @code{aligned(16)}
5184 in an @code{__attribute__} will still only provide you with 8 byte
5185 alignment. See your linker documentation for further information.
5186
5187 @item packed
5188 This attribute, attached to @code{struct} or @code{union} type
5189 definition, specifies that each member (other than zero-width bitfields)
5190 of the structure or union is placed to minimize the memory required. When
5191 attached to an @code{enum} definition, it indicates that the smallest
5192 integral type should be used.
5193
5194 @opindex fshort-enums
5195 Specifying this attribute for @code{struct} and @code{union} types is
5196 equivalent to specifying the @code{packed} attribute on each of the
5197 structure or union members. Specifying the @option{-fshort-enums}
5198 flag on the line is equivalent to specifying the @code{packed}
5199 attribute on all @code{enum} definitions.
5200
5201 In the following example @code{struct my_packed_struct}'s members are
5202 packed closely together, but the internal layout of its @code{s} member
5203 is not packed---to do that, @code{struct my_unpacked_struct} would need to
5204 be packed too.
5205
5206 @smallexample
5207 struct my_unpacked_struct
5208 @{
5209 char c;
5210 int i;
5211 @};
5212
5213 struct __attribute__ ((__packed__)) my_packed_struct
5214 @{
5215 char c;
5216 int i;
5217 struct my_unpacked_struct s;
5218 @};
5219 @end smallexample
5220
5221 You may only specify this attribute on the definition of an @code{enum},
5222 @code{struct} or @code{union}, not on a @code{typedef} which does not
5223 also define the enumerated type, structure or union.
5224
5225 @item transparent_union
5226 This attribute, attached to a @code{union} type definition, indicates
5227 that any function parameter having that union type causes calls to that
5228 function to be treated in a special way.
5229
5230 First, the argument corresponding to a transparent union type can be of
5231 any type in the union; no cast is required. Also, if the union contains
5232 a pointer type, the corresponding argument can be a null pointer
5233 constant or a void pointer expression; and if the union contains a void
5234 pointer type, the corresponding argument can be any pointer expression.
5235 If the union member type is a pointer, qualifiers like @code{const} on
5236 the referenced type must be respected, just as with normal pointer
5237 conversions.
5238
5239 Second, the argument is passed to the function using the calling
5240 conventions of the first member of the transparent union, not the calling
5241 conventions of the union itself. All members of the union must have the
5242 same machine representation; this is necessary for this argument passing
5243 to work properly.
5244
5245 Transparent unions are designed for library functions that have multiple
5246 interfaces for compatibility reasons. For example, suppose the
5247 @code{wait} function must accept either a value of type @code{int *} to
5248 comply with Posix, or a value of type @code{union wait *} to comply with
5249 the 4.1BSD interface. If @code{wait}'s parameter were @code{void *},
5250 @code{wait} would accept both kinds of arguments, but it would also
5251 accept any other pointer type and this would make argument type checking
5252 less useful. Instead, @code{<sys/wait.h>} might define the interface
5253 as follows:
5254
5255 @smallexample
5256 typedef union __attribute__ ((__transparent_union__))
5257 @{
5258 int *__ip;
5259 union wait *__up;
5260 @} wait_status_ptr_t;
5261
5262 pid_t wait (wait_status_ptr_t);
5263 @end smallexample
5264
5265 This interface allows either @code{int *} or @code{union wait *}
5266 arguments to be passed, using the @code{int *} calling convention.
5267 The program can call @code{wait} with arguments of either type:
5268
5269 @smallexample
5270 int w1 () @{ int w; return wait (&w); @}
5271 int w2 () @{ union wait w; return wait (&w); @}
5272 @end smallexample
5273
5274 With this interface, @code{wait}'s implementation might look like this:
5275
5276 @smallexample
5277 pid_t wait (wait_status_ptr_t p)
5278 @{
5279 return waitpid (-1, p.__ip, 0);
5280 @}
5281 @end smallexample
5282
5283 @item unused
5284 When attached to a type (including a @code{union} or a @code{struct}),
5285 this attribute means that variables of that type are meant to appear
5286 possibly unused. GCC will not produce a warning for any variables of
5287 that type, even if the variable appears to do nothing. This is often
5288 the case with lock or thread classes, which are usually defined and then
5289 not referenced, but contain constructors and destructors that have
5290 nontrivial bookkeeping functions.
5291
5292 @item deprecated
5293 @itemx deprecated (@var{msg})
5294 The @code{deprecated} attribute results in a warning if the type
5295 is used anywhere in the source file. This is useful when identifying
5296 types that are expected to be removed in a future version of a program.
5297 If possible, the warning also includes the location of the declaration
5298 of the deprecated type, to enable users to easily find further
5299 information about why the type is deprecated, or what they should do
5300 instead. Note that the warnings only occur for uses and then only
5301 if the type is being applied to an identifier that itself is not being
5302 declared as deprecated.
5303
5304 @smallexample
5305 typedef int T1 __attribute__ ((deprecated));
5306 T1 x;
5307 typedef T1 T2;
5308 T2 y;
5309 typedef T1 T3 __attribute__ ((deprecated));
5310 T3 z __attribute__ ((deprecated));
5311 @end smallexample
5312
5313 results in a warning on line 2 and 3 but not lines 4, 5, or 6. No
5314 warning is issued for line 4 because T2 is not explicitly
5315 deprecated. Line 5 has no warning because T3 is explicitly
5316 deprecated. Similarly for line 6. The optional msg
5317 argument, which must be a string, will be printed in the warning if
5318 present.
5319
5320 The @code{deprecated} attribute can also be used for functions and
5321 variables (@pxref{Function Attributes}, @pxref{Variable Attributes}.)
5322
5323 @item may_alias
5324 Accesses through pointers to types with this attribute are not subject
5325 to type-based alias analysis, but are instead assumed to be able to alias
5326 any other type of objects. In the context of 6.5/7 an lvalue expression
5327 dereferencing such a pointer is treated like having a character type.
5328 See @option{-fstrict-aliasing} for more information on aliasing issues.
5329 This extension exists to support some vector APIs, in which pointers to
5330 one vector type are permitted to alias pointers to a different vector type.
5331
5332 Note that an object of a type with this attribute does not have any
5333 special semantics.
5334
5335 Example of use:
5336
5337 @smallexample
5338 typedef short __attribute__((__may_alias__)) short_a;
5339
5340 int
5341 main (void)
5342 @{
5343 int a = 0x12345678;
5344 short_a *b = (short_a *) &a;
5345
5346 b[1] = 0;
5347
5348 if (a == 0x12345678)
5349 abort();
5350
5351 exit(0);
5352 @}
5353 @end smallexample
5354
5355 If you replaced @code{short_a} with @code{short} in the variable
5356 declaration, the above program would abort when compiled with
5357 @option{-fstrict-aliasing}, which is on by default at @option{-O2} or
5358 above in recent GCC versions.
5359
5360 @item visibility
5361 In C++, attribute visibility (@pxref{Function Attributes}) can also be
5362 applied to class, struct, union and enum types. Unlike other type
5363 attributes, the attribute must appear between the initial keyword and
5364 the name of the type; it cannot appear after the body of the type.
5365
5366 Note that the type visibility is applied to vague linkage entities
5367 associated with the class (vtable, typeinfo node, etc.). In
5368 particular, if a class is thrown as an exception in one shared object
5369 and caught in another, the class must have default visibility.
5370 Otherwise the two shared objects will be unable to use the same
5371 typeinfo node and exception handling will break.
5372
5373 @end table
5374
5375 @subsection ARM Type Attributes
5376
5377 On those ARM targets that support @code{dllimport} (such as Symbian
5378 OS), you can use the @code{notshared} attribute to indicate that the
5379 virtual table and other similar data for a class should not be
5380 exported from a DLL@. For example:
5381
5382 @smallexample
5383 class __declspec(notshared) C @{
5384 public:
5385 __declspec(dllimport) C();
5386 virtual void f();
5387 @}
5388
5389 __declspec(dllexport)
5390 C::C() @{@}
5391 @end smallexample
5392
5393 In this code, @code{C::C} is exported from the current DLL, but the
5394 virtual table for @code{C} is not exported. (You can use
5395 @code{__attribute__} instead of @code{__declspec} if you prefer, but
5396 most Symbian OS code uses @code{__declspec}.)
5397
5398 @anchor{MeP Type Attributes}
5399 @subsection MeP Type Attributes
5400
5401 Many of the MeP variable attributes may be applied to types as well.
5402 Specifically, the @code{based}, @code{tiny}, @code{near}, and
5403 @code{far} attributes may be applied to either. The @code{io} and
5404 @code{cb} attributes may not be applied to types.
5405
5406 @anchor{i386 Type Attributes}
5407 @subsection i386 Type Attributes
5408
5409 Two attributes are currently defined for i386 configurations:
5410 @code{ms_struct} and @code{gcc_struct}.
5411
5412 @table @code
5413
5414 @item ms_struct
5415 @itemx gcc_struct
5416 @cindex @code{ms_struct}
5417 @cindex @code{gcc_struct}
5418
5419 If @code{packed} is used on a structure, or if bit-fields are used
5420 it may be that the Microsoft ABI packs them differently
5421 than GCC would normally pack them. Particularly when moving packed
5422 data between functions compiled with GCC and the native Microsoft compiler
5423 (either via function call or as data in a file), it may be necessary to access
5424 either format.
5425
5426 Currently @option{-m[no-]ms-bitfields} is provided for the Microsoft Windows X86
5427 compilers to match the native Microsoft compiler.
5428 @end table
5429
5430 To specify multiple attributes, separate them by commas within the
5431 double parentheses: for example, @samp{__attribute__ ((aligned (16),
5432 packed))}.
5433
5434 @anchor{PowerPC Type Attributes}
5435 @subsection PowerPC Type Attributes
5436
5437 Three attributes currently are defined for PowerPC configurations:
5438 @code{altivec}, @code{ms_struct} and @code{gcc_struct}.
5439
5440 For full documentation of the @code{ms_struct} and @code{gcc_struct}
5441 attributes please see the documentation in @ref{i386 Type Attributes}.
5442
5443 The @code{altivec} attribute allows one to declare AltiVec vector data
5444 types supported by the AltiVec Programming Interface Manual. The
5445 attribute requires an argument to specify one of three vector types:
5446 @code{vector__}, @code{pixel__} (always followed by unsigned short),
5447 and @code{bool__} (always followed by unsigned).
5448
5449 @smallexample
5450 __attribute__((altivec(vector__)))
5451 __attribute__((altivec(pixel__))) unsigned short
5452 __attribute__((altivec(bool__))) unsigned
5453 @end smallexample
5454
5455 These attributes mainly are intended to support the @code{__vector},
5456 @code{__pixel}, and @code{__bool} AltiVec keywords.
5457
5458 @anchor{SPU Type Attributes}
5459 @subsection SPU Type Attributes
5460
5461 The SPU supports the @code{spu_vector} attribute for types. This attribute
5462 allows one to declare vector data types supported by the Sony/Toshiba/IBM SPU
5463 Language Extensions Specification. It is intended to support the
5464 @code{__vector} keyword.
5465
5466 @node Alignment
5467 @section Inquiring on Alignment of Types or Variables
5468 @cindex alignment
5469 @cindex type alignment
5470 @cindex variable alignment
5471
5472 The keyword @code{__alignof__} allows you to inquire about how an object
5473 is aligned, or the minimum alignment usually required by a type. Its
5474 syntax is just like @code{sizeof}.
5475
5476 For example, if the target machine requires a @code{double} value to be
5477 aligned on an 8-byte boundary, then @code{__alignof__ (double)} is 8.
5478 This is true on many RISC machines. On more traditional machine
5479 designs, @code{__alignof__ (double)} is 4 or even 2.
5480
5481 Some machines never actually require alignment; they allow reference to any
5482 data type even at an odd address. For these machines, @code{__alignof__}
5483 reports the smallest alignment that GCC will give the data type, usually as
5484 mandated by the target ABI.
5485
5486 If the operand of @code{__alignof__} is an lvalue rather than a type,
5487 its value is the required alignment for its type, taking into account
5488 any minimum alignment specified with GCC's @code{__attribute__}
5489 extension (@pxref{Variable Attributes}). For example, after this
5490 declaration:
5491
5492 @smallexample
5493 struct foo @{ int x; char y; @} foo1;
5494 @end smallexample
5495
5496 @noindent
5497 the value of @code{__alignof__ (foo1.y)} is 1, even though its actual
5498 alignment is probably 2 or 4, the same as @code{__alignof__ (int)}.
5499
5500 It is an error to ask for the alignment of an incomplete type.
5501
5502
5503 @node Inline
5504 @section An Inline Function is As Fast As a Macro
5505 @cindex inline functions
5506 @cindex integrating function code
5507 @cindex open coding
5508 @cindex macros, inline alternative
5509
5510 By declaring a function inline, you can direct GCC to make
5511 calls to that function faster. One way GCC can achieve this is to
5512 integrate that function's code into the code for its callers. This
5513 makes execution faster by eliminating the function-call overhead; in
5514 addition, if any of the actual argument values are constant, their
5515 known values may permit simplifications at compile time so that not
5516 all of the inline function's code needs to be included. The effect on
5517 code size is less predictable; object code may be larger or smaller
5518 with function inlining, depending on the particular case. You can
5519 also direct GCC to try to integrate all ``simple enough'' functions
5520 into their callers with the option @option{-finline-functions}.
5521
5522 GCC implements three different semantics of declaring a function
5523 inline. One is available with @option{-std=gnu89} or
5524 @option{-fgnu89-inline} or when @code{gnu_inline} attribute is present
5525 on all inline declarations, another when
5526 @option{-std=c99}, @option{-std=c11},
5527 @option{-std=gnu99} or @option{-std=gnu11}
5528 (without @option{-fgnu89-inline}), and the third
5529 is used when compiling C++.
5530
5531 To declare a function inline, use the @code{inline} keyword in its
5532 declaration, like this:
5533
5534 @smallexample
5535 static inline int
5536 inc (int *a)
5537 @{
5538 return (*a)++;
5539 @}
5540 @end smallexample
5541
5542 If you are writing a header file to be included in ISO C90 programs, write
5543 @code{__inline__} instead of @code{inline}. @xref{Alternate Keywords}.
5544
5545 The three types of inlining behave similarly in two important cases:
5546 when the @code{inline} keyword is used on a @code{static} function,
5547 like the example above, and when a function is first declared without
5548 using the @code{inline} keyword and then is defined with
5549 @code{inline}, like this:
5550
5551 @smallexample
5552 extern int inc (int *a);
5553 inline int
5554 inc (int *a)
5555 @{
5556 return (*a)++;
5557 @}
5558 @end smallexample
5559
5560 In both of these common cases, the program behaves the same as if you
5561 had not used the @code{inline} keyword, except for its speed.
5562
5563 @cindex inline functions, omission of
5564 @opindex fkeep-inline-functions
5565 When a function is both inline and @code{static}, if all calls to the
5566 function are integrated into the caller, and the function's address is
5567 never used, then the function's own assembler code is never referenced.
5568 In this case, GCC does not actually output assembler code for the
5569 function, unless you specify the option @option{-fkeep-inline-functions}.
5570 Some calls cannot be integrated for various reasons (in particular,
5571 calls that precede the function's definition cannot be integrated, and
5572 neither can recursive calls within the definition). If there is a
5573 nonintegrated call, then the function is compiled to assembler code as
5574 usual. The function must also be compiled as usual if the program
5575 refers to its address, because that can't be inlined.
5576
5577 @opindex Winline
5578 Note that certain usages in a function definition can make it unsuitable
5579 for inline substitution. Among these usages are: use of varargs, use of
5580 alloca, use of variable sized data types (@pxref{Variable Length}),
5581 use of computed goto (@pxref{Labels as Values}), use of nonlocal goto,
5582 and nested functions (@pxref{Nested Functions}). Using @option{-Winline}
5583 will warn when a function marked @code{inline} could not be substituted,
5584 and will give the reason for the failure.
5585
5586 @cindex automatic @code{inline} for C++ member fns
5587 @cindex @code{inline} automatic for C++ member fns
5588 @cindex member fns, automatically @code{inline}
5589 @cindex C++ member fns, automatically @code{inline}
5590 @opindex fno-default-inline
5591 As required by ISO C++, GCC considers member functions defined within
5592 the body of a class to be marked inline even if they are
5593 not explicitly declared with the @code{inline} keyword. You can
5594 override this with @option{-fno-default-inline}; @pxref{C++ Dialect
5595 Options,,Options Controlling C++ Dialect}.
5596
5597 GCC does not inline any functions when not optimizing unless you specify
5598 the @samp{always_inline} attribute for the function, like this:
5599
5600 @smallexample
5601 /* @r{Prototype.} */
5602 inline void foo (const char) __attribute__((always_inline));
5603 @end smallexample
5604
5605 The remainder of this section is specific to GNU C90 inlining.
5606
5607 @cindex non-static inline function
5608 When an inline function is not @code{static}, then the compiler must assume
5609 that there may be calls from other source files; since a global symbol can
5610 be defined only once in any program, the function must not be defined in
5611 the other source files, so the calls therein cannot be integrated.
5612 Therefore, a non-@code{static} inline function is always compiled on its
5613 own in the usual fashion.
5614
5615 If you specify both @code{inline} and @code{extern} in the function
5616 definition, then the definition is used only for inlining. In no case
5617 is the function compiled on its own, not even if you refer to its
5618 address explicitly. Such an address becomes an external reference, as
5619 if you had only declared the function, and had not defined it.
5620
5621 This combination of @code{inline} and @code{extern} has almost the
5622 effect of a macro. The way to use it is to put a function definition in
5623 a header file with these keywords, and put another copy of the
5624 definition (lacking @code{inline} and @code{extern}) in a library file.
5625 The definition in the header file will cause most calls to the function
5626 to be inlined. If any uses of the function remain, they will refer to
5627 the single copy in the library.
5628
5629 @node Volatiles
5630 @section When is a Volatile Object Accessed?
5631 @cindex accessing volatiles
5632 @cindex volatile read
5633 @cindex volatile write
5634 @cindex volatile access
5635
5636 C has the concept of volatile objects. These are normally accessed by
5637 pointers and used for accessing hardware or inter-thread
5638 communication. The standard encourages compilers to refrain from
5639 optimizations concerning accesses to volatile objects, but leaves it
5640 implementation defined as to what constitutes a volatile access. The
5641 minimum requirement is that at a sequence point all previous accesses
5642 to volatile objects have stabilized and no subsequent accesses have
5643 occurred. Thus an implementation is free to reorder and combine
5644 volatile accesses which occur between sequence points, but cannot do
5645 so for accesses across a sequence point. The use of volatile does
5646 not allow you to violate the restriction on updating objects multiple
5647 times between two sequence points.
5648
5649 Accesses to non-volatile objects are not ordered with respect to
5650 volatile accesses. You cannot use a volatile object as a memory
5651 barrier to order a sequence of writes to non-volatile memory. For
5652 instance:
5653
5654 @smallexample
5655 int *ptr = @var{something};
5656 volatile int vobj;
5657 *ptr = @var{something};
5658 vobj = 1;
5659 @end smallexample
5660
5661 Unless @var{*ptr} and @var{vobj} can be aliased, it is not guaranteed
5662 that the write to @var{*ptr} will have occurred by the time the update
5663 of @var{vobj} has happened. If you need this guarantee, you must use
5664 a stronger memory barrier such as:
5665
5666 @smallexample
5667 int *ptr = @var{something};
5668 volatile int vobj;
5669 *ptr = @var{something};
5670 asm volatile ("" : : : "memory");
5671 vobj = 1;
5672 @end smallexample
5673
5674 A scalar volatile object is read when it is accessed in a void context:
5675
5676 @smallexample
5677 volatile int *src = @var{somevalue};
5678 *src;
5679 @end smallexample
5680
5681 Such expressions are rvalues, and GCC implements this as a
5682 read of the volatile object being pointed to.
5683
5684 Assignments are also expressions and have an rvalue. However when
5685 assigning to a scalar volatile, the volatile object is not reread,
5686 regardless of whether the assignment expression's rvalue is used or
5687 not. If the assignment's rvalue is used, the value is that assigned
5688 to the volatile object. For instance, there is no read of @var{vobj}
5689 in all the following cases:
5690
5691 @smallexample
5692 int obj;
5693 volatile int vobj;
5694 vobj = @var{something};
5695 obj = vobj = @var{something};
5696 obj ? vobj = @var{onething} : vobj = @var{anotherthing};
5697 obj = (@var{something}, vobj = @var{anotherthing});
5698 @end smallexample
5699
5700 If you need to read the volatile object after an assignment has
5701 occurred, you must use a separate expression with an intervening
5702 sequence point.
5703
5704 As bitfields are not individually addressable, volatile bitfields may
5705 be implicitly read when written to, or when adjacent bitfields are
5706 accessed. Bitfield operations may be optimized such that adjacent
5707 bitfields are only partially accessed, if they straddle a storage unit
5708 boundary. For these reasons it is unwise to use volatile bitfields to
5709 access hardware.
5710
5711 @node Extended Asm
5712 @section Assembler Instructions with C Expression Operands
5713 @cindex extended @code{asm}
5714 @cindex @code{asm} expressions
5715 @cindex assembler instructions
5716 @cindex registers
5717
5718 In an assembler instruction using @code{asm}, you can specify the
5719 operands of the instruction using C expressions. This means you need not
5720 guess which registers or memory locations will contain the data you want
5721 to use.
5722
5723 You must specify an assembler instruction template much like what
5724 appears in a machine description, plus an operand constraint string for
5725 each operand.
5726
5727 For example, here is how to use the 68881's @code{fsinx} instruction:
5728
5729 @smallexample
5730 asm ("fsinx %1,%0" : "=f" (result) : "f" (angle));
5731 @end smallexample
5732
5733 @noindent
5734 Here @code{angle} is the C expression for the input operand while
5735 @code{result} is that of the output operand. Each has @samp{"f"} as its
5736 operand constraint, saying that a floating point register is required.
5737 The @samp{=} in @samp{=f} indicates that the operand is an output; all
5738 output operands' constraints must use @samp{=}. The constraints use the
5739 same language used in the machine description (@pxref{Constraints}).
5740
5741 Each operand is described by an operand-constraint string followed by
5742 the C expression in parentheses. A colon separates the assembler
5743 template from the first output operand and another separates the last
5744 output operand from the first input, if any. Commas separate the
5745 operands within each group. The total number of operands is currently
5746 limited to 30; this limitation may be lifted in some future version of
5747 GCC@.
5748
5749 If there are no output operands but there are input operands, you must
5750 place two consecutive colons surrounding the place where the output
5751 operands would go.
5752
5753 As of GCC version 3.1, it is also possible to specify input and output
5754 operands using symbolic names which can be referenced within the
5755 assembler code. These names are specified inside square brackets
5756 preceding the constraint string, and can be referenced inside the
5757 assembler code using @code{%[@var{name}]} instead of a percentage sign
5758 followed by the operand number. Using named operands the above example
5759 could look like:
5760
5761 @smallexample
5762 asm ("fsinx %[angle],%[output]"
5763 : [output] "=f" (result)
5764 : [angle] "f" (angle));
5765 @end smallexample
5766
5767 @noindent
5768 Note that the symbolic operand names have no relation whatsoever to
5769 other C identifiers. You may use any name you like, even those of
5770 existing C symbols, but you must ensure that no two operands within the same
5771 assembler construct use the same symbolic name.
5772
5773 Output operand expressions must be lvalues; the compiler can check this.
5774 The input operands need not be lvalues. The compiler cannot check
5775 whether the operands have data types that are reasonable for the
5776 instruction being executed. It does not parse the assembler instruction
5777 template and does not know what it means or even whether it is valid
5778 assembler input. The extended @code{asm} feature is most often used for
5779 machine instructions the compiler itself does not know exist. If
5780 the output expression cannot be directly addressed (for example, it is a
5781 bit-field), your constraint must allow a register. In that case, GCC
5782 will use the register as the output of the @code{asm}, and then store
5783 that register into the output.
5784
5785 The ordinary output operands must be write-only; GCC will assume that
5786 the values in these operands before the instruction are dead and need
5787 not be generated. Extended asm supports input-output or read-write
5788 operands. Use the constraint character @samp{+} to indicate such an
5789 operand and list it with the output operands. You should only use
5790 read-write operands when the constraints for the operand (or the
5791 operand in which only some of the bits are to be changed) allow a
5792 register.
5793
5794 You may, as an alternative, logically split its function into two
5795 separate operands, one input operand and one write-only output
5796 operand. The connection between them is expressed by constraints
5797 which say they need to be in the same location when the instruction
5798 executes. You can use the same C expression for both operands, or
5799 different expressions. For example, here we write the (fictitious)
5800 @samp{combine} instruction with @code{bar} as its read-only source
5801 operand and @code{foo} as its read-write destination:
5802
5803 @smallexample
5804 asm ("combine %2,%0" : "=r" (foo) : "0" (foo), "g" (bar));
5805 @end smallexample
5806
5807 @noindent
5808 The constraint @samp{"0"} for operand 1 says that it must occupy the
5809 same location as operand 0. A number in constraint is allowed only in
5810 an input operand and it must refer to an output operand.
5811
5812 Only a number in the constraint can guarantee that one operand will be in
5813 the same place as another. The mere fact that @code{foo} is the value
5814 of both operands is not enough to guarantee that they will be in the
5815 same place in the generated assembler code. The following would not
5816 work reliably:
5817
5818 @smallexample
5819 asm ("combine %2,%0" : "=r" (foo) : "r" (foo), "g" (bar));
5820 @end smallexample
5821
5822 Various optimizations or reloading could cause operands 0 and 1 to be in
5823 different registers; GCC knows no reason not to do so. For example, the
5824 compiler might find a copy of the value of @code{foo} in one register and
5825 use it for operand 1, but generate the output operand 0 in a different
5826 register (copying it afterward to @code{foo}'s own address). Of course,
5827 since the register for operand 1 is not even mentioned in the assembler
5828 code, the result will not work, but GCC can't tell that.
5829
5830 As of GCC version 3.1, one may write @code{[@var{name}]} instead of
5831 the operand number for a matching constraint. For example:
5832
5833 @smallexample
5834 asm ("cmoveq %1,%2,%[result]"
5835 : [result] "=r"(result)
5836 : "r" (test), "r"(new), "[result]"(old));
5837 @end smallexample
5838
5839 Sometimes you need to make an @code{asm} operand be a specific register,
5840 but there's no matching constraint letter for that register @emph{by
5841 itself}. To force the operand into that register, use a local variable
5842 for the operand and specify the register in the variable declaration.
5843 @xref{Explicit Reg Vars}. Then for the @code{asm} operand, use any
5844 register constraint letter that matches the register:
5845
5846 @smallexample
5847 register int *p1 asm ("r0") = @dots{};
5848 register int *p2 asm ("r1") = @dots{};
5849 register int *result asm ("r0");
5850 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5851 @end smallexample
5852
5853 @anchor{Example of asm with clobbered asm reg}
5854 In the above example, beware that a register that is call-clobbered by
5855 the target ABI will be overwritten by any function call in the
5856 assignment, including library calls for arithmetic operators.
5857 Also a register may be clobbered when generating some operations,
5858 like variable shift, memory copy or memory move on x86.
5859 Assuming it is a call-clobbered register, this may happen to @code{r0}
5860 above by the assignment to @code{p2}. If you have to use such a
5861 register, use temporary variables for expressions between the register
5862 assignment and use:
5863
5864 @smallexample
5865 int t1 = @dots{};
5866 register int *p1 asm ("r0") = @dots{};
5867 register int *p2 asm ("r1") = t1;
5868 register int *result asm ("r0");
5869 asm ("sysint" : "=r" (result) : "0" (p1), "r" (p2));
5870 @end smallexample
5871
5872 Some instructions clobber specific hard registers. To describe this,
5873 write a third colon after the input operands, followed by the names of
5874 the clobbered hard registers (given as strings). Here is a realistic
5875 example for the VAX:
5876
5877 @smallexample
5878 asm volatile ("movc3 %0,%1,%2"
5879 : /* @r{no outputs} */
5880 : "g" (from), "g" (to), "g" (count)
5881 : "r0", "r1", "r2", "r3", "r4", "r5");
5882 @end smallexample
5883
5884 You may not write a clobber description in a way that overlaps with an
5885 input or output operand. For example, you may not have an operand
5886 describing a register class with one member if you mention that register
5887 in the clobber list. Variables declared to live in specific registers
5888 (@pxref{Explicit Reg Vars}), and used as asm input or output operands must
5889 have no part mentioned in the clobber description.
5890 There is no way for you to specify that an input
5891 operand is modified without also specifying it as an output
5892 operand. Note that if all the output operands you specify are for this
5893 purpose (and hence unused), you will then also need to specify
5894 @code{volatile} for the @code{asm} construct, as described below, to
5895 prevent GCC from deleting the @code{asm} statement as unused.
5896
5897 If you refer to a particular hardware register from the assembler code,
5898 you will probably have to list the register after the third colon to
5899 tell the compiler the register's value is modified. In some assemblers,
5900 the register names begin with @samp{%}; to produce one @samp{%} in the
5901 assembler code, you must write @samp{%%} in the input.
5902
5903 If your assembler instruction can alter the condition code register, add
5904 @samp{cc} to the list of clobbered registers. GCC on some machines
5905 represents the condition codes as a specific hardware register;
5906 @samp{cc} serves to name this register. On other machines, the
5907 condition code is handled differently, and specifying @samp{cc} has no
5908 effect. But it is valid no matter what the machine.
5909
5910 If your assembler instructions access memory in an unpredictable
5911 fashion, add @samp{memory} to the list of clobbered registers. This
5912 will cause GCC to not keep memory values cached in registers across the
5913 assembler instruction and not optimize stores or loads to that memory.
5914 You will also want to add the @code{volatile} keyword if the memory
5915 affected is not listed in the inputs or outputs of the @code{asm}, as
5916 the @samp{memory} clobber does not count as a side-effect of the
5917 @code{asm}. If you know how large the accessed memory is, you can add
5918 it as input or output but if this is not known, you should add
5919 @samp{memory}. As an example, if you access ten bytes of a string, you
5920 can use a memory input like:
5921
5922 @smallexample
5923 @{"m"( (@{ struct @{ char x[10]; @} *p = (void *)ptr ; *p; @}) )@}.
5924 @end smallexample
5925
5926 Note that in the following example the memory input is necessary,
5927 otherwise GCC might optimize the store to @code{x} away:
5928 @smallexample
5929 int foo ()
5930 @{
5931 int x = 42;
5932 int *y = &x;
5933 int result;
5934 asm ("magic stuff accessing an 'int' pointed to by '%1'"
5935 "=&d" (r) : "a" (y), "m" (*y));
5936 return result;
5937 @}
5938 @end smallexample
5939
5940 You can put multiple assembler instructions together in a single
5941 @code{asm} template, separated by the characters normally used in assembly
5942 code for the system. A combination that works in most places is a newline
5943 to break the line, plus a tab character to move to the instruction field
5944 (written as @samp{\n\t}). Sometimes semicolons can be used, if the
5945 assembler allows semicolons as a line-breaking character. Note that some
5946 assembler dialects use semicolons to start a comment.
5947 The input operands are guaranteed not to use any of the clobbered
5948 registers, and neither will the output operands' addresses, so you can
5949 read and write the clobbered registers as many times as you like. Here
5950 is an example of multiple instructions in a template; it assumes the
5951 subroutine @code{_foo} accepts arguments in registers 9 and 10:
5952
5953 @smallexample
5954 asm ("movl %0,r9\n\tmovl %1,r10\n\tcall _foo"
5955 : /* no outputs */
5956 : "g" (from), "g" (to)
5957 : "r9", "r10");
5958 @end smallexample
5959
5960 Unless an output operand has the @samp{&} constraint modifier, GCC
5961 may allocate it in the same register as an unrelated input operand, on
5962 the assumption the inputs are consumed before the outputs are produced.
5963 This assumption may be false if the assembler code actually consists of
5964 more than one instruction. In such a case, use @samp{&} for each output
5965 operand that may not overlap an input. @xref{Modifiers}.
5966
5967 If you want to test the condition code produced by an assembler
5968 instruction, you must include a branch and a label in the @code{asm}
5969 construct, as follows:
5970
5971 @smallexample
5972 asm ("clr %0\n\tfrob %1\n\tbeq 0f\n\tmov #1,%0\n0:"
5973 : "g" (result)
5974 : "g" (input));
5975 @end smallexample
5976
5977 @noindent
5978 This assumes your assembler supports local labels, as the GNU assembler
5979 and most Unix assemblers do.
5980
5981 Speaking of labels, jumps from one @code{asm} to another are not
5982 supported. The compiler's optimizers do not know about these jumps, and
5983 therefore they cannot take account of them when deciding how to
5984 optimize. @xref{Extended asm with goto}.
5985
5986 @cindex macros containing @code{asm}
5987 Usually the most convenient way to use these @code{asm} instructions is to
5988 encapsulate them in macros that look like functions. For example,
5989
5990 @smallexample
5991 #define sin(x) \
5992 (@{ double __value, __arg = (x); \
5993 asm ("fsinx %1,%0": "=f" (__value): "f" (__arg)); \
5994 __value; @})
5995 @end smallexample
5996
5997 @noindent
5998 Here the variable @code{__arg} is used to make sure that the instruction
5999 operates on a proper @code{double} value, and to accept only those
6000 arguments @code{x} which can convert automatically to a @code{double}.
6001
6002 Another way to make sure the instruction operates on the correct data
6003 type is to use a cast in the @code{asm}. This is different from using a
6004 variable @code{__arg} in that it converts more different types. For
6005 example, if the desired type were @code{int}, casting the argument to
6006 @code{int} would accept a pointer with no complaint, while assigning the
6007 argument to an @code{int} variable named @code{__arg} would warn about
6008 using a pointer unless the caller explicitly casts it.
6009
6010 If an @code{asm} has output operands, GCC assumes for optimization
6011 purposes the instruction has no side effects except to change the output
6012 operands. This does not mean instructions with a side effect cannot be
6013 used, but you must be careful, because the compiler may eliminate them
6014 if the output operands aren't used, or move them out of loops, or
6015 replace two with one if they constitute a common subexpression. Also,
6016 if your instruction does have a side effect on a variable that otherwise
6017 appears not to change, the old value of the variable may be reused later
6018 if it happens to be found in a register.
6019
6020 You can prevent an @code{asm} instruction from being deleted
6021 by writing the keyword @code{volatile} after
6022 the @code{asm}. For example:
6023
6024 @smallexample
6025 #define get_and_set_priority(new) \
6026 (@{ int __old; \
6027 asm volatile ("get_and_set_priority %0, %1" \
6028 : "=g" (__old) : "g" (new)); \
6029 __old; @})
6030 @end smallexample
6031
6032 @noindent
6033 The @code{volatile} keyword indicates that the instruction has
6034 important side-effects. GCC will not delete a volatile @code{asm} if
6035 it is reachable. (The instruction can still be deleted if GCC can
6036 prove that control-flow will never reach the location of the
6037 instruction.) Note that even a volatile @code{asm} instruction
6038 can be moved relative to other code, including across jump
6039 instructions. For example, on many targets there is a system
6040 register which can be set to control the rounding mode of
6041 floating point operations. You might try
6042 setting it with a volatile @code{asm}, like this PowerPC example:
6043
6044 @smallexample
6045 asm volatile("mtfsf 255,%0" : : "f" (fpenv));
6046 sum = x + y;
6047 @end smallexample
6048
6049 @noindent
6050 This will not work reliably, as the compiler may move the addition back
6051 before the volatile @code{asm}. To make it work you need to add an
6052 artificial dependency to the @code{asm} referencing a variable in the code
6053 you don't want moved, for example:
6054
6055 @smallexample
6056 asm volatile ("mtfsf 255,%1" : "=X"(sum): "f"(fpenv));
6057 sum = x + y;
6058 @end smallexample
6059
6060 Similarly, you can't expect a
6061 sequence of volatile @code{asm} instructions to remain perfectly
6062 consecutive. If you want consecutive output, use a single @code{asm}.
6063 Also, GCC will perform some optimizations across a volatile @code{asm}
6064 instruction; GCC does not ``forget everything'' when it encounters
6065 a volatile @code{asm} instruction the way some other compilers do.
6066
6067 An @code{asm} instruction without any output operands will be treated
6068 identically to a volatile @code{asm} instruction.
6069
6070 It is a natural idea to look for a way to give access to the condition
6071 code left by the assembler instruction. However, when we attempted to
6072 implement this, we found no way to make it work reliably. The problem
6073 is that output operands might need reloading, which would result in
6074 additional following ``store'' instructions. On most machines, these
6075 instructions would alter the condition code before there was time to
6076 test it. This problem doesn't arise for ordinary ``test'' and
6077 ``compare'' instructions because they don't have any output operands.
6078
6079 For reasons similar to those described above, it is not possible to give
6080 an assembler instruction access to the condition code left by previous
6081 instructions.
6082
6083 @anchor{Extended asm with goto}
6084 As of GCC version 4.5, @code{asm goto} may be used to have the assembly
6085 jump to one or more C labels. In this form, a fifth section after the
6086 clobber list contains a list of all C labels to which the assembly may jump.
6087 Each label operand is implicitly self-named. The @code{asm} is also assumed
6088 to fall through to the next statement.
6089
6090 This form of @code{asm} is restricted to not have outputs. This is due
6091 to a internal restriction in the compiler that control transfer instructions
6092 cannot have outputs. This restriction on @code{asm goto} may be lifted
6093 in some future version of the compiler. In the mean time, @code{asm goto}
6094 may include a memory clobber, and so leave outputs in memory.
6095
6096 @smallexample
6097 int frob(int x)
6098 @{
6099 int y;
6100 asm goto ("frob %%r5, %1; jc %l[error]; mov (%2), %%r5"
6101 : : "r"(x), "r"(&y) : "r5", "memory" : error);
6102 return y;
6103 error:
6104 return -1;
6105 @}
6106 @end smallexample
6107
6108 In this (inefficient) example, the @code{frob} instruction sets the
6109 carry bit to indicate an error. The @code{jc} instruction detects
6110 this and branches to the @code{error} label. Finally, the output
6111 of the @code{frob} instruction (@code{%r5}) is stored into the memory
6112 for variable @code{y}, which is later read by the @code{return} statement.
6113
6114 @smallexample
6115 void doit(void)
6116 @{
6117 int i = 0;
6118 asm goto ("mfsr %%r1, 123; jmp %%r1;"
6119 ".pushsection doit_table;"
6120 ".long %l0, %l1, %l2, %l3;"
6121 ".popsection"
6122 : : : "r1" : label1, label2, label3, label4);
6123 __builtin_unreachable ();
6124
6125 label1:
6126 f1();
6127 return;
6128 label2:
6129 f2();
6130 return;
6131 label3:
6132 i = 1;
6133 label4:
6134 f3(i);
6135 @}
6136 @end smallexample
6137
6138 In this (also inefficient) example, the @code{mfsr} instruction reads
6139 an address from some out-of-band machine register, and the following
6140 @code{jmp} instruction branches to that address. The address read by
6141 the @code{mfsr} instruction is assumed to have been previously set via
6142 some application-specific mechanism to be one of the four values stored
6143 in the @code{doit_table} section. Finally, the @code{asm} is followed
6144 by a call to @code{__builtin_unreachable} to indicate that the @code{asm}
6145 does not in fact fall through.
6146
6147 @smallexample
6148 #define TRACE1(NUM) \
6149 do @{ \
6150 asm goto ("0: nop;" \
6151 ".pushsection trace_table;" \
6152 ".long 0b, %l0;" \
6153 ".popsection" \
6154 : : : : trace#NUM); \
6155 if (0) @{ trace#NUM: trace(); @} \
6156 @} while (0)
6157 #define TRACE TRACE1(__COUNTER__)
6158 @end smallexample
6159
6160 In this example (which in fact inspired the @code{asm goto} feature)
6161 we want on rare occasions to call the @code{trace} function; on other
6162 occasions we'd like to keep the overhead to the absolute minimum.
6163 The normal code path consists of a single @code{nop} instruction.
6164 However, we record the address of this @code{nop} together with the
6165 address of a label that calls the @code{trace} function. This allows
6166 the @code{nop} instruction to be patched at runtime to be an
6167 unconditional branch to the stored label. It is assumed that an
6168 optimizing compiler will move the labeled block out of line, to
6169 optimize the fall through path from the @code{asm}.
6170
6171 If you are writing a header file that should be includable in ISO C
6172 programs, write @code{__asm__} instead of @code{asm}. @xref{Alternate
6173 Keywords}.
6174
6175 @subsection Size of an @code{asm}
6176
6177 Some targets require that GCC track the size of each instruction used in
6178 order to generate correct code. Because the final length of an
6179 @code{asm} is only known by the assembler, GCC must make an estimate as
6180 to how big it will be. The estimate is formed by counting the number of
6181 statements in the pattern of the @code{asm} and multiplying that by the
6182 length of the longest instruction on that processor. Statements in the
6183 @code{asm} are identified by newline characters and whatever statement
6184 separator characters are supported by the assembler; on most processors
6185 this is the `@code{;}' character.
6186
6187 Normally, GCC's estimate is perfectly adequate to ensure that correct
6188 code is generated, but it is possible to confuse the compiler if you use
6189 pseudo instructions or assembler macros that expand into multiple real
6190 instructions or if you use assembler directives that expand to more
6191 space in the object file than would be needed for a single instruction.
6192 If this happens then the assembler will produce a diagnostic saying that
6193 a label is unreachable.
6194
6195 @subsection i386 floating point asm operands
6196
6197 There are several rules on the usage of stack-like regs in
6198 asm_operands insns. These rules apply only to the operands that are
6199 stack-like regs:
6200
6201 @enumerate
6202 @item
6203 Given a set of input regs that die in an asm_operands, it is
6204 necessary to know which are implicitly popped by the asm, and
6205 which must be explicitly popped by gcc.
6206
6207 An input reg that is implicitly popped by the asm must be
6208 explicitly clobbered, unless it is constrained to match an
6209 output operand.
6210
6211 @item
6212 For any input reg that is implicitly popped by an asm, it is
6213 necessary to know how to adjust the stack to compensate for the pop.
6214 If any non-popped input is closer to the top of the reg-stack than
6215 the implicitly popped reg, it would not be possible to know what the
6216 stack looked like---it's not clear how the rest of the stack ``slides
6217 up''.
6218
6219 All implicitly popped input regs must be closer to the top of
6220 the reg-stack than any input that is not implicitly popped.
6221
6222 It is possible that if an input dies in an insn, reload might
6223 use the input reg for an output reload. Consider this example:
6224
6225 @smallexample
6226 asm ("foo" : "=t" (a) : "f" (b));
6227 @end smallexample
6228
6229 This asm says that input B is not popped by the asm, and that
6230 the asm pushes a result onto the reg-stack, i.e., the stack is one
6231 deeper after the asm than it was before. But, it is possible that
6232 reload will think that it can use the same reg for both the input and
6233 the output, if input B dies in this insn.
6234
6235 If any input operand uses the @code{f} constraint, all output reg
6236 constraints must use the @code{&} earlyclobber.
6237
6238 The asm above would be written as
6239
6240 @smallexample
6241 asm ("foo" : "=&t" (a) : "f" (b));
6242 @end smallexample
6243
6244 @item
6245 Some operands need to be in particular places on the stack. All
6246 output operands fall in this category---there is no other way to
6247 know which regs the outputs appear in unless the user indicates
6248 this in the constraints.
6249
6250 Output operands must specifically indicate which reg an output
6251 appears in after an asm. @code{=f} is not allowed: the operand
6252 constraints must select a class with a single reg.
6253
6254 @item
6255 Output operands may not be ``inserted'' between existing stack regs.
6256 Since no 387 opcode uses a read/write operand, all output operands
6257 are dead before the asm_operands, and are pushed by the asm_operands.
6258 It makes no sense to push anywhere but the top of the reg-stack.
6259
6260 Output operands must start at the top of the reg-stack: output
6261 operands may not ``skip'' a reg.
6262
6263 @item
6264 Some asm statements may need extra stack space for internal
6265 calculations. This can be guaranteed by clobbering stack registers
6266 unrelated to the inputs and outputs.
6267
6268 @end enumerate
6269
6270 Here are a couple of reasonable asms to want to write. This asm
6271 takes one input, which is internally popped, and produces two outputs.
6272
6273 @smallexample
6274 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
6275 @end smallexample
6276
6277 This asm takes two inputs, which are popped by the @code{fyl2xp1} opcode,
6278 and replaces them with one output. The user must code the @code{st(1)}
6279 clobber for reg-stack.c to know that @code{fyl2xp1} pops both inputs.
6280
6281 @smallexample
6282 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
6283 @end smallexample
6284
6285 @include md.texi
6286
6287 @node Asm Labels
6288 @section Controlling Names Used in Assembler Code
6289 @cindex assembler names for identifiers
6290 @cindex names used in assembler code
6291 @cindex identifiers, names in assembler code
6292
6293 You can specify the name to be used in the assembler code for a C
6294 function or variable by writing the @code{asm} (or @code{__asm__})
6295 keyword after the declarator as follows:
6296
6297 @smallexample
6298 int foo asm ("myfoo") = 2;
6299 @end smallexample
6300
6301 @noindent
6302 This specifies that the name to be used for the variable @code{foo} in
6303 the assembler code should be @samp{myfoo} rather than the usual
6304 @samp{_foo}.
6305
6306 On systems where an underscore is normally prepended to the name of a C
6307 function or variable, this feature allows you to define names for the
6308 linker that do not start with an underscore.
6309
6310 It does not make sense to use this feature with a non-static local
6311 variable since such variables do not have assembler names. If you are
6312 trying to put the variable in a particular register, see @ref{Explicit
6313 Reg Vars}. GCC presently accepts such code with a warning, but will
6314 probably be changed to issue an error, rather than a warning, in the
6315 future.
6316
6317 You cannot use @code{asm} in this way in a function @emph{definition}; but
6318 you can get the same effect by writing a declaration for the function
6319 before its definition and putting @code{asm} there, like this:
6320
6321 @smallexample
6322 extern func () asm ("FUNC");
6323
6324 func (x, y)
6325 int x, y;
6326 /* @r{@dots{}} */
6327 @end smallexample
6328
6329 It is up to you to make sure that the assembler names you choose do not
6330 conflict with any other assembler symbols. Also, you must not use a
6331 register name; that would produce completely invalid assembler code. GCC
6332 does not as yet have the ability to store static variables in registers.
6333 Perhaps that will be added.
6334
6335 @node Explicit Reg Vars
6336 @section Variables in Specified Registers
6337 @cindex explicit register variables
6338 @cindex variables in specified registers
6339 @cindex specified registers
6340 @cindex registers, global allocation
6341
6342 GNU C allows you to put a few global variables into specified hardware
6343 registers. You can also specify the register in which an ordinary
6344 register variable should be allocated.
6345
6346 @itemize @bullet
6347 @item
6348 Global register variables reserve registers throughout the program.
6349 This may be useful in programs such as programming language
6350 interpreters which have a couple of global variables that are accessed
6351 very often.
6352
6353 @item
6354 Local register variables in specific registers do not reserve the
6355 registers, except at the point where they are used as input or output
6356 operands in an @code{asm} statement and the @code{asm} statement itself is
6357 not deleted. The compiler's data flow analysis is capable of determining
6358 where the specified registers contain live values, and where they are
6359 available for other uses. Stores into local register variables may be deleted
6360 when they appear to be dead according to dataflow analysis. References
6361 to local register variables may be deleted or moved or simplified.
6362
6363 These local variables are sometimes convenient for use with the extended
6364 @code{asm} feature (@pxref{Extended Asm}), if you want to write one
6365 output of the assembler instruction directly into a particular register.
6366 (This will work provided the register you specify fits the constraints
6367 specified for that operand in the @code{asm}.)
6368 @end itemize
6369
6370 @menu
6371 * Global Reg Vars::
6372 * Local Reg Vars::
6373 @end menu
6374
6375 @node Global Reg Vars
6376 @subsection Defining Global Register Variables
6377 @cindex global register variables
6378 @cindex registers, global variables in
6379
6380 You can define a global register variable in GNU C like this:
6381
6382 @smallexample
6383 register int *foo asm ("a5");
6384 @end smallexample
6385
6386 @noindent
6387 Here @code{a5} is the name of the register which should be used. Choose a
6388 register which is normally saved and restored by function calls on your
6389 machine, so that library routines will not clobber it.
6390
6391 Naturally the register name is cpu-dependent, so you would need to
6392 conditionalize your program according to cpu type. The register
6393 @code{a5} would be a good choice on a 68000 for a variable of pointer
6394 type. On machines with register windows, be sure to choose a ``global''
6395 register that is not affected magically by the function call mechanism.
6396
6397 In addition, operating systems on one type of cpu may differ in how they
6398 name the registers; then you would need additional conditionals. For
6399 example, some 68000 operating systems call this register @code{%a5}.
6400
6401 Eventually there may be a way of asking the compiler to choose a register
6402 automatically, but first we need to figure out how it should choose and
6403 how to enable you to guide the choice. No solution is evident.
6404
6405 Defining a global register variable in a certain register reserves that
6406 register entirely for this use, at least within the current compilation.
6407 The register will not be allocated for any other purpose in the functions
6408 in the current compilation. The register will not be saved and restored by
6409 these functions. Stores into this register are never deleted even if they
6410 would appear to be dead, but references may be deleted or moved or
6411 simplified.
6412
6413 It is not safe to access the global register variables from signal
6414 handlers, or from more than one thread of control, because the system
6415 library routines may temporarily use the register for other things (unless
6416 you recompile them specially for the task at hand).
6417
6418 @cindex @code{qsort}, and global register variables
6419 It is not safe for one function that uses a global register variable to
6420 call another such function @code{foo} by way of a third function
6421 @code{lose} that was compiled without knowledge of this variable (i.e.@: in a
6422 different source file in which the variable wasn't declared). This is
6423 because @code{lose} might save the register and put some other value there.
6424 For example, you can't expect a global register variable to be available in
6425 the comparison-function that you pass to @code{qsort}, since @code{qsort}
6426 might have put something else in that register. (If you are prepared to
6427 recompile @code{qsort} with the same global register variable, you can
6428 solve this problem.)
6429
6430 If you want to recompile @code{qsort} or other source files which do not
6431 actually use your global register variable, so that they will not use that
6432 register for any other purpose, then it suffices to specify the compiler
6433 option @option{-ffixed-@var{reg}}. You need not actually add a global
6434 register declaration to their source code.
6435
6436 A function which can alter the value of a global register variable cannot
6437 safely be called from a function compiled without this variable, because it
6438 could clobber the value the caller expects to find there on return.
6439 Therefore, the function which is the entry point into the part of the
6440 program that uses the global register variable must explicitly save and
6441 restore the value which belongs to its caller.
6442
6443 @cindex register variable after @code{longjmp}
6444 @cindex global register after @code{longjmp}
6445 @cindex value after @code{longjmp}
6446 @findex longjmp
6447 @findex setjmp
6448 On most machines, @code{longjmp} will restore to each global register
6449 variable the value it had at the time of the @code{setjmp}. On some
6450 machines, however, @code{longjmp} will not change the value of global
6451 register variables. To be portable, the function that called @code{setjmp}
6452 should make other arrangements to save the values of the global register
6453 variables, and to restore them in a @code{longjmp}. This way, the same
6454 thing will happen regardless of what @code{longjmp} does.
6455
6456 All global register variable declarations must precede all function
6457 definitions. If such a declaration could appear after function
6458 definitions, the declaration would be too late to prevent the register from
6459 being used for other purposes in the preceding functions.
6460
6461 Global register variables may not have initial values, because an
6462 executable file has no means to supply initial contents for a register.
6463
6464 On the SPARC, there are reports that g3 @dots{} g7 are suitable
6465 registers, but certain library functions, such as @code{getwd}, as well
6466 as the subroutines for division and remainder, modify g3 and g4. g1 and
6467 g2 are local temporaries.
6468
6469 On the 68000, a2 @dots{} a5 should be suitable, as should d2 @dots{} d7.
6470 Of course, it will not do to use more than a few of those.
6471
6472 @node Local Reg Vars
6473 @subsection Specifying Registers for Local Variables
6474 @cindex local variables, specifying registers
6475 @cindex specifying registers for local variables
6476 @cindex registers for local variables
6477
6478 You can define a local register variable with a specified register
6479 like this:
6480
6481 @smallexample
6482 register int *foo asm ("a5");
6483 @end smallexample
6484
6485 @noindent
6486 Here @code{a5} is the name of the register which should be used. Note
6487 that this is the same syntax used for defining global register
6488 variables, but for a local variable it would appear within a function.
6489
6490 Naturally the register name is cpu-dependent, but this is not a
6491 problem, since specific registers are most often useful with explicit
6492 assembler instructions (@pxref{Extended Asm}). Both of these things
6493 generally require that you conditionalize your program according to
6494 cpu type.
6495
6496 In addition, operating systems on one type of cpu may differ in how they
6497 name the registers; then you would need additional conditionals. For
6498 example, some 68000 operating systems call this register @code{%a5}.
6499
6500 Defining such a register variable does not reserve the register; it
6501 remains available for other uses in places where flow control determines
6502 the variable's value is not live.
6503
6504 This option does not guarantee that GCC will generate code that has
6505 this variable in the register you specify at all times. You may not
6506 code an explicit reference to this register in the @emph{assembler
6507 instruction template} part of an @code{asm} statement and assume it will
6508 always refer to this variable. However, using the variable as an
6509 @code{asm} @emph{operand} guarantees that the specified register is used
6510 for the operand.
6511
6512 Stores into local register variables may be deleted when they appear to be dead
6513 according to dataflow analysis. References to local register variables may
6514 be deleted or moved or simplified.
6515
6516 As for global register variables, it's recommended that you choose a
6517 register which is normally saved and restored by function calls on
6518 your machine, so that library routines will not clobber it. A common
6519 pitfall is to initialize multiple call-clobbered registers with
6520 arbitrary expressions, where a function call or library call for an
6521 arithmetic operator will overwrite a register value from a previous
6522 assignment, for example @code{r0} below:
6523 @smallexample
6524 register int *p1 asm ("r0") = @dots{};
6525 register int *p2 asm ("r1") = @dots{};
6526 @end smallexample
6527 In those cases, a solution is to use a temporary variable for
6528 each arbitrary expression. @xref{Example of asm with clobbered asm reg}.
6529
6530 @node Alternate Keywords
6531 @section Alternate Keywords
6532 @cindex alternate keywords
6533 @cindex keywords, alternate
6534
6535 @option{-ansi} and the various @option{-std} options disable certain
6536 keywords. This causes trouble when you want to use GNU C extensions, or
6537 a general-purpose header file that should be usable by all programs,
6538 including ISO C programs. The keywords @code{asm}, @code{typeof} and
6539 @code{inline} are not available in programs compiled with
6540 @option{-ansi} or @option{-std} (although @code{inline} can be used in a
6541 program compiled with @option{-std=c99} or @option{-std=c11}). The
6542 ISO C99 keyword
6543 @code{restrict} is only available when @option{-std=gnu99} (which will
6544 eventually be the default) or @option{-std=c99} (or the equivalent
6545 @option{-std=iso9899:1999}), or an option for a later standard
6546 version, is used.
6547
6548 The way to solve these problems is to put @samp{__} at the beginning and
6549 end of each problematical keyword. For example, use @code{__asm__}
6550 instead of @code{asm}, and @code{__inline__} instead of @code{inline}.
6551
6552 Other C compilers won't accept these alternative keywords; if you want to
6553 compile with another compiler, you can define the alternate keywords as
6554 macros to replace them with the customary keywords. It looks like this:
6555
6556 @smallexample
6557 #ifndef __GNUC__
6558 #define __asm__ asm
6559 #endif
6560 @end smallexample
6561
6562 @findex __extension__
6563 @opindex pedantic
6564 @option{-pedantic} and other options cause warnings for many GNU C extensions.
6565 You can
6566 prevent such warnings within one expression by writing
6567 @code{__extension__} before the expression. @code{__extension__} has no
6568 effect aside from this.
6569
6570 @node Incomplete Enums
6571 @section Incomplete @code{enum} Types
6572
6573 You can define an @code{enum} tag without specifying its possible values.
6574 This results in an incomplete type, much like what you get if you write
6575 @code{struct foo} without describing the elements. A later declaration
6576 which does specify the possible values completes the type.
6577
6578 You can't allocate variables or storage using the type while it is
6579 incomplete. However, you can work with pointers to that type.
6580
6581 This extension may not be very useful, but it makes the handling of
6582 @code{enum} more consistent with the way @code{struct} and @code{union}
6583 are handled.
6584
6585 This extension is not supported by GNU C++.
6586
6587 @node Function Names
6588 @section Function Names as Strings
6589 @cindex @code{__func__} identifier
6590 @cindex @code{__FUNCTION__} identifier
6591 @cindex @code{__PRETTY_FUNCTION__} identifier
6592
6593 GCC provides three magic variables which hold the name of the current
6594 function, as a string. The first of these is @code{__func__}, which
6595 is part of the C99 standard:
6596
6597 The identifier @code{__func__} is implicitly declared by the translator
6598 as if, immediately following the opening brace of each function
6599 definition, the declaration
6600
6601 @smallexample
6602 static const char __func__[] = "function-name";
6603 @end smallexample
6604
6605 @noindent
6606 appeared, where function-name is the name of the lexically-enclosing
6607 function. This name is the unadorned name of the function.
6608
6609 @code{__FUNCTION__} is another name for @code{__func__}. Older
6610 versions of GCC recognize only this name. However, it is not
6611 standardized. For maximum portability, we recommend you use
6612 @code{__func__}, but provide a fallback definition with the
6613 preprocessor:
6614
6615 @smallexample
6616 #if __STDC_VERSION__ < 199901L
6617 # if __GNUC__ >= 2
6618 # define __func__ __FUNCTION__
6619 # else
6620 # define __func__ "<unknown>"
6621 # endif
6622 #endif
6623 @end smallexample
6624
6625 In C, @code{__PRETTY_FUNCTION__} is yet another name for
6626 @code{__func__}. However, in C++, @code{__PRETTY_FUNCTION__} contains
6627 the type signature of the function as well as its bare name. For
6628 example, this program:
6629
6630 @smallexample
6631 extern "C" @{
6632 extern int printf (char *, ...);
6633 @}
6634
6635 class a @{
6636 public:
6637 void sub (int i)
6638 @{
6639 printf ("__FUNCTION__ = %s\n", __FUNCTION__);
6640 printf ("__PRETTY_FUNCTION__ = %s\n", __PRETTY_FUNCTION__);
6641 @}
6642 @};
6643
6644 int
6645 main (void)
6646 @{
6647 a ax;
6648 ax.sub (0);
6649 return 0;
6650 @}
6651 @end smallexample
6652
6653 @noindent
6654 gives this output:
6655
6656 @smallexample
6657 __FUNCTION__ = sub
6658 __PRETTY_FUNCTION__ = void a::sub(int)
6659 @end smallexample
6660
6661 These identifiers are not preprocessor macros. In GCC 3.3 and
6662 earlier, in C only, @code{__FUNCTION__} and @code{__PRETTY_FUNCTION__}
6663 were treated as string literals; they could be used to initialize
6664 @code{char} arrays, and they could be concatenated with other string
6665 literals. GCC 3.4 and later treat them as variables, like
6666 @code{__func__}. In C++, @code{__FUNCTION__} and
6667 @code{__PRETTY_FUNCTION__} have always been variables.
6668
6669 @node Return Address
6670 @section Getting the Return or Frame Address of a Function
6671
6672 These functions may be used to get information about the callers of a
6673 function.
6674
6675 @deftypefn {Built-in Function} {void *} __builtin_return_address (unsigned int @var{level})
6676 This function returns the return address of the current function, or of
6677 one of its callers. The @var{level} argument is number of frames to
6678 scan up the call stack. A value of @code{0} yields the return address
6679 of the current function, a value of @code{1} yields the return address
6680 of the caller of the current function, and so forth. When inlining
6681 the expected behavior is that the function will return the address of
6682 the function that will be returned to. To work around this behavior use
6683 the @code{noinline} function attribute.
6684
6685 The @var{level} argument must be a constant integer.
6686
6687 On some machines it may be impossible to determine the return address of
6688 any function other than the current one; in such cases, or when the top
6689 of the stack has been reached, this function will return @code{0} or a
6690 random value. In addition, @code{__builtin_frame_address} may be used
6691 to determine if the top of the stack has been reached.
6692
6693 Additional post-processing of the returned value may be needed, see
6694 @code{__builtin_extract_return_address}.
6695
6696 This function should only be used with a nonzero argument for debugging
6697 purposes.
6698 @end deftypefn
6699
6700 @deftypefn {Built-in Function} {void *} __builtin_extract_return_address (void *@var{addr})
6701 The address as returned by @code{__builtin_return_address} may have to be fed
6702 through this function to get the actual encoded address. For example, on the
6703 31-bit S/390 platform the highest bit has to be masked out, or on SPARC
6704 platforms an offset has to be added for the true next instruction to be
6705 executed.
6706
6707 If no fixup is needed, this function simply passes through @var{addr}.
6708 @end deftypefn
6709
6710 @deftypefn {Built-in Function} {void *} __builtin_frob_return_address (void *@var{addr})
6711 This function does the reverse of @code{__builtin_extract_return_address}.
6712 @end deftypefn
6713
6714 @deftypefn {Built-in Function} {void *} __builtin_frame_address (unsigned int @var{level})
6715 This function is similar to @code{__builtin_return_address}, but it
6716 returns the address of the function frame rather than the return address
6717 of the function. Calling @code{__builtin_frame_address} with a value of
6718 @code{0} yields the frame address of the current function, a value of
6719 @code{1} yields the frame address of the caller of the current function,
6720 and so forth.
6721
6722 The frame is the area on the stack which holds local variables and saved
6723 registers. The frame address is normally the address of the first word
6724 pushed on to the stack by the function. However, the exact definition
6725 depends upon the processor and the calling convention. If the processor
6726 has a dedicated frame pointer register, and the function has a frame,
6727 then @code{__builtin_frame_address} will return the value of the frame
6728 pointer register.
6729
6730 On some machines it may be impossible to determine the frame address of
6731 any function other than the current one; in such cases, or when the top
6732 of the stack has been reached, this function will return @code{0} if
6733 the first frame pointer is properly initialized by the startup code.
6734
6735 This function should only be used with a nonzero argument for debugging
6736 purposes.
6737 @end deftypefn
6738
6739 @node Vector Extensions
6740 @section Using vector instructions through built-in functions
6741
6742 On some targets, the instruction set contains SIMD vector instructions that
6743 operate on multiple values contained in one large register at the same time.
6744 For example, on the i386 the MMX, 3DNow!@: and SSE extensions can be used
6745 this way.
6746
6747 The first step in using these extensions is to provide the necessary data
6748 types. This should be done using an appropriate @code{typedef}:
6749
6750 @smallexample
6751 typedef int v4si __attribute__ ((vector_size (16)));
6752 @end smallexample
6753
6754 The @code{int} type specifies the base type, while the attribute specifies
6755 the vector size for the variable, measured in bytes. For example, the
6756 declaration above causes the compiler to set the mode for the @code{v4si}
6757 type to be 16 bytes wide and divided into @code{int} sized units. For
6758 a 32-bit @code{int} this means a vector of 4 units of 4 bytes, and the
6759 corresponding mode of @code{foo} will be @acronym{V4SI}.
6760
6761 The @code{vector_size} attribute is only applicable to integral and
6762 float scalars, although arrays, pointers, and function return values
6763 are allowed in conjunction with this construct.
6764
6765 All the basic integer types can be used as base types, both as signed
6766 and as unsigned: @code{char}, @code{short}, @code{int}, @code{long},
6767 @code{long long}. In addition, @code{float} and @code{double} can be
6768 used to build floating-point vector types.
6769
6770 Specifying a combination that is not valid for the current architecture
6771 will cause GCC to synthesize the instructions using a narrower mode.
6772 For example, if you specify a variable of type @code{V4SI} and your
6773 architecture does not allow for this specific SIMD type, GCC will
6774 produce code that uses 4 @code{SIs}.
6775
6776 The types defined in this manner can be used with a subset of normal C
6777 operations. Currently, GCC will allow using the following operators
6778 on these types: @code{+, -, *, /, unary minus, ^, |, &, ~, %}@.
6779
6780 The operations behave like C++ @code{valarrays}. Addition is defined as
6781 the addition of the corresponding elements of the operands. For
6782 example, in the code below, each of the 4 elements in @var{a} will be
6783 added to the corresponding 4 elements in @var{b} and the resulting
6784 vector will be stored in @var{c}.
6785
6786 @smallexample
6787 typedef int v4si __attribute__ ((vector_size (16)));
6788
6789 v4si a, b, c;
6790
6791 c = a + b;
6792 @end smallexample
6793
6794 Subtraction, multiplication, division, and the logical operations
6795 operate in a similar manner. Likewise, the result of using the unary
6796 minus or complement operators on a vector type is a vector whose
6797 elements are the negative or complemented values of the corresponding
6798 elements in the operand.
6799
6800 In C it is possible to use shifting operators @code{<<}, @code{>>} on
6801 integer-type vectors. The operation is defined as following: @code{@{a0,
6802 a1, @dots{}, an@} >> @{b0, b1, @dots{}, bn@} == @{a0 >> b0, a1 >> b1,
6803 @dots{}, an >> bn@}}@. Vector operands must have the same number of
6804 elements.
6805
6806 For the convenience in C it is allowed to use a binary vector operation
6807 where one operand is a scalar. In that case the compiler will transform
6808 the scalar operand into a vector where each element is the scalar from
6809 the operation. The transformation will happen only if the scalar could be
6810 safely converted to the vector-element type.
6811 Consider the following code.
6812
6813 @smallexample
6814 typedef int v4si __attribute__ ((vector_size (16)));
6815
6816 v4si a, b, c;
6817 long l;
6818
6819 a = b + 1; /* a = b + @{1,1,1,1@}; */
6820 a = 2 * b; /* a = @{2,2,2,2@} * b; */
6821
6822 a = l + a; /* Error, cannot convert long to int. */
6823 @end smallexample
6824
6825 In C vectors can be subscripted as if the vector were an array with
6826 the same number of elements and base type. Out of bound accesses
6827 invoke undefined behavior at runtime. Warnings for out of bound
6828 accesses for vector subscription can be enabled with
6829 @option{-Warray-bounds}.
6830
6831 In GNU C vector comparison is supported within standard comparison
6832 operators: @code{==, !=, <, <=, >, >=}. Comparison operands can be
6833 vector expressions of integer-type or real-type. Comparison between
6834 integer-type vectors and real-type vectors are not supported. The
6835 result of the comparison is a vector of the same width and number of
6836 elements as the comparison operands with a signed integral element
6837 type.
6838
6839 Vectors are compared element-wise producing 0 when comparison is false
6840 and -1 (constant of the appropriate type where all bits are set)
6841 otherwise. Consider the following example.
6842
6843 @smallexample
6844 typedef int v4si __attribute__ ((vector_size (16)));
6845
6846 v4si a = @{1,2,3,4@};
6847 v4si b = @{3,2,1,4@};
6848 v4si c;
6849
6850 c = a > b; /* The result would be @{0, 0,-1, 0@} */
6851 c = a == b; /* The result would be @{0,-1, 0,-1@} */
6852 @end smallexample
6853
6854 Vector shuffling is available using functions
6855 @code{__builtin_shuffle (vec, mask)} and
6856 @code{__builtin_shuffle (vec0, vec1, mask)}.
6857 Both functions construct a permutation of elements from one or two
6858 vectors and return a vector of the same type as the input vector(s).
6859 The @var{mask} is an integral vector with the same width (@var{W})
6860 and element count (@var{N}) as the output vector.
6861
6862 The elements of the input vectors are numbered in memory ordering of
6863 @var{vec0} beginning at 0 and @var{vec1} beginning at @var{N}. The
6864 elements of @var{mask} are considered modulo @var{N} in the single-operand
6865 case and modulo @math{2*@var{N}} in the two-operand case.
6866
6867 Consider the following example,
6868
6869 @smallexample
6870 typedef int v4si __attribute__ ((vector_size (16)));
6871
6872 v4si a = @{1,2,3,4@};
6873 v4si b = @{5,6,7,8@};
6874 v4si mask1 = @{0,1,1,3@};
6875 v4si mask2 = @{0,4,2,5@};
6876 v4si res;
6877
6878 res = __builtin_shuffle (a, mask1); /* res is @{1,2,2,4@} */
6879 res = __builtin_shuffle (a, b, mask2); /* res is @{1,5,3,6@} */
6880 @end smallexample
6881
6882 Note that @code{__builtin_shuffle} is intentionally semantically
6883 compatible with the OpenCL @code{shuffle} and @code{shuffle2} functions.
6884
6885 You can declare variables and use them in function calls and returns, as
6886 well as in assignments and some casts. You can specify a vector type as
6887 a return type for a function. Vector types can also be used as function
6888 arguments. It is possible to cast from one vector type to another,
6889 provided they are of the same size (in fact, you can also cast vectors
6890 to and from other datatypes of the same size).
6891
6892 You cannot operate between vectors of different lengths or different
6893 signedness without a cast.
6894
6895 @node Offsetof
6896 @section Offsetof
6897 @findex __builtin_offsetof
6898
6899 GCC implements for both C and C++ a syntactic extension to implement
6900 the @code{offsetof} macro.
6901
6902 @smallexample
6903 primary:
6904 "__builtin_offsetof" "(" @code{typename} "," offsetof_member_designator ")"
6905
6906 offsetof_member_designator:
6907 @code{identifier}
6908 | offsetof_member_designator "." @code{identifier}
6909 | offsetof_member_designator "[" @code{expr} "]"
6910 @end smallexample
6911
6912 This extension is sufficient such that
6913
6914 @smallexample
6915 #define offsetof(@var{type}, @var{member}) __builtin_offsetof (@var{type}, @var{member})
6916 @end smallexample
6917
6918 is a suitable definition of the @code{offsetof} macro. In C++, @var{type}
6919 may be dependent. In either case, @var{member} may consist of a single
6920 identifier, or a sequence of member accesses and array references.
6921
6922 @node __sync Builtins
6923 @section Legacy __sync built-in functions for atomic memory access
6924
6925 The following builtins are intended to be compatible with those described
6926 in the @cite{Intel Itanium Processor-specific Application Binary Interface},
6927 section 7.4. As such, they depart from the normal GCC practice of using
6928 the ``__builtin_'' prefix, and further that they are overloaded such that
6929 they work on multiple types.
6930
6931 The definition given in the Intel documentation allows only for the use of
6932 the types @code{int}, @code{long}, @code{long long} as well as their unsigned
6933 counterparts. GCC will allow any integral scalar or pointer type that is
6934 1, 2, 4 or 8 bytes in length.
6935
6936 Not all operations are supported by all target processors. If a particular
6937 operation cannot be implemented on the target processor, a warning will be
6938 generated and a call an external function will be generated. The external
6939 function will carry the same name as the builtin, with an additional suffix
6940 @samp{_@var{n}} where @var{n} is the size of the data type.
6941
6942 @c ??? Should we have a mechanism to suppress this warning? This is almost
6943 @c useful for implementing the operation under the control of an external
6944 @c mutex.
6945
6946 In most cases, these builtins are considered a @dfn{full barrier}. That is,
6947 no memory operand will be moved across the operation, either forward or
6948 backward. Further, instructions will be issued as necessary to prevent the
6949 processor from speculating loads across the operation and from queuing stores
6950 after the operation.
6951
6952 All of the routines are described in the Intel documentation to take
6953 ``an optional list of variables protected by the memory barrier''. It's
6954 not clear what is meant by that; it could mean that @emph{only} the
6955 following variables are protected, or it could mean that these variables
6956 should in addition be protected. At present GCC ignores this list and
6957 protects all variables which are globally accessible. If in the future
6958 we make some use of this list, an empty list will continue to mean all
6959 globally accessible variables.
6960
6961 @table @code
6962 @item @var{type} __sync_fetch_and_add (@var{type} *ptr, @var{type} value, ...)
6963 @itemx @var{type} __sync_fetch_and_sub (@var{type} *ptr, @var{type} value, ...)
6964 @itemx @var{type} __sync_fetch_and_or (@var{type} *ptr, @var{type} value, ...)
6965 @itemx @var{type} __sync_fetch_and_and (@var{type} *ptr, @var{type} value, ...)
6966 @itemx @var{type} __sync_fetch_and_xor (@var{type} *ptr, @var{type} value, ...)
6967 @itemx @var{type} __sync_fetch_and_nand (@var{type} *ptr, @var{type} value, ...)
6968 @findex __sync_fetch_and_add
6969 @findex __sync_fetch_and_sub
6970 @findex __sync_fetch_and_or
6971 @findex __sync_fetch_and_and
6972 @findex __sync_fetch_and_xor
6973 @findex __sync_fetch_and_nand
6974 These builtins perform the operation suggested by the name, and
6975 returns the value that had previously been in memory. That is,
6976
6977 @smallexample
6978 @{ tmp = *ptr; *ptr @var{op}= value; return tmp; @}
6979 @{ tmp = *ptr; *ptr = ~(tmp & value); return tmp; @} // nand
6980 @end smallexample
6981
6982 @emph{Note:} GCC 4.4 and later implement @code{__sync_fetch_and_nand}
6983 builtin as @code{*ptr = ~(tmp & value)} instead of @code{*ptr = ~tmp & value}.
6984
6985 @item @var{type} __sync_add_and_fetch (@var{type} *ptr, @var{type} value, ...)
6986 @itemx @var{type} __sync_sub_and_fetch (@var{type} *ptr, @var{type} value, ...)
6987 @itemx @var{type} __sync_or_and_fetch (@var{type} *ptr, @var{type} value, ...)
6988 @itemx @var{type} __sync_and_and_fetch (@var{type} *ptr, @var{type} value, ...)
6989 @itemx @var{type} __sync_xor_and_fetch (@var{type} *ptr, @var{type} value, ...)
6990 @itemx @var{type} __sync_nand_and_fetch (@var{type} *ptr, @var{type} value, ...)
6991 @findex __sync_add_and_fetch
6992 @findex __sync_sub_and_fetch
6993 @findex __sync_or_and_fetch
6994 @findex __sync_and_and_fetch
6995 @findex __sync_xor_and_fetch
6996 @findex __sync_nand_and_fetch
6997 These builtins perform the operation suggested by the name, and
6998 return the new value. That is,
6999
7000 @smallexample
7001 @{ *ptr @var{op}= value; return *ptr; @}
7002 @{ *ptr = ~(*ptr & value); return *ptr; @} // nand
7003 @end smallexample
7004
7005 @emph{Note:} GCC 4.4 and later implement @code{__sync_nand_and_fetch}
7006 builtin as @code{*ptr = ~(*ptr & value)} instead of
7007 @code{*ptr = ~*ptr & value}.
7008
7009 @item bool __sync_bool_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
7010 @itemx @var{type} __sync_val_compare_and_swap (@var{type} *ptr, @var{type} oldval, @var{type} newval, ...)
7011 @findex __sync_bool_compare_and_swap
7012 @findex __sync_val_compare_and_swap
7013 These builtins perform an atomic compare and swap. That is, if the current
7014 value of @code{*@var{ptr}} is @var{oldval}, then write @var{newval} into
7015 @code{*@var{ptr}}.
7016
7017 The ``bool'' version returns true if the comparison is successful and
7018 @var{newval} was written. The ``val'' version returns the contents
7019 of @code{*@var{ptr}} before the operation.
7020
7021 @item __sync_synchronize (...)
7022 @findex __sync_synchronize
7023 This builtin issues a full memory barrier.
7024
7025 @item @var{type} __sync_lock_test_and_set (@var{type} *ptr, @var{type} value, ...)
7026 @findex __sync_lock_test_and_set
7027 This builtin, as described by Intel, is not a traditional test-and-set
7028 operation, but rather an atomic exchange operation. It writes @var{value}
7029 into @code{*@var{ptr}}, and returns the previous contents of
7030 @code{*@var{ptr}}.
7031
7032 Many targets have only minimal support for such locks, and do not support
7033 a full exchange operation. In this case, a target may support reduced
7034 functionality here by which the @emph{only} valid value to store is the
7035 immediate constant 1. The exact value actually stored in @code{*@var{ptr}}
7036 is implementation defined.
7037
7038 This builtin is not a full barrier, but rather an @dfn{acquire barrier}.
7039 This means that references after the builtin cannot move to (or be
7040 speculated to) before the builtin, but previous memory stores may not
7041 be globally visible yet, and previous memory loads may not yet be
7042 satisfied.
7043
7044 @item void __sync_lock_release (@var{type} *ptr, ...)
7045 @findex __sync_lock_release
7046 This builtin releases the lock acquired by @code{__sync_lock_test_and_set}.
7047 Normally this means writing the constant 0 to @code{*@var{ptr}}.
7048
7049 This builtin is not a full barrier, but rather a @dfn{release barrier}.
7050 This means that all previous memory stores are globally visible, and all
7051 previous memory loads have been satisfied, but following memory reads
7052 are not prevented from being speculated to before the barrier.
7053 @end table
7054
7055 @node __atomic Builtins
7056 @section Built-in functions for memory model aware atomic operations
7057
7058 The following built-in functions approximately match the requirements for
7059 C++11 memory model. Many are similar to the @samp{__sync} prefixed built-in
7060 functions, but all also have a memory model parameter. These are all
7061 identified by being prefixed with @samp{__atomic}, and most are overloaded
7062 such that they work with multiple types.
7063
7064 GCC will allow any integral scalar or pointer type that is 1, 2, 4, or 8
7065 bytes in length. 16-byte integral types are also allowed if
7066 @samp{__int128} (@pxref{__int128}) is supported by the architecture.
7067
7068 Target architectures are encouraged to provide their own patterns for
7069 each of these built-in functions. If no target is provided, the original
7070 non-memory model set of @samp{__sync} atomic built-in functions will be
7071 utilized, along with any required synchronization fences surrounding it in
7072 order to achieve the proper behaviour. Execution in this case is subject
7073 to the same restrictions as those built-in functions.
7074
7075 If there is no pattern or mechanism to provide a lock free instruction
7076 sequence, a call is made to an external routine with the same parameters
7077 to be resolved at runtime.
7078
7079 The four non-arithmetic functions (load, store, exchange, and
7080 compare_exchange) all have a generic version as well. This generic
7081 version will work on any data type. If the data type size maps to one
7082 of the integral sizes which may have lock free support, the generic
7083 version will utilize the lock free built-in function. Otherwise an
7084 external call is left to be resolved at runtime. This external call will
7085 be the same format with the addition of a @samp{size_t} parameter inserted
7086 as the first parameter indicating the size of the object being pointed to.
7087 All objects must be the same size.
7088
7089 There are 6 different memory models which can be specified. These map
7090 to the same names in the C++11 standard. Refer there or to the
7091 @uref{http://gcc.gnu.org/wiki/Atomic/GCCMM/AtomicSync,GCC wiki on
7092 atomic synchronization} for more detailed definitions. These memory
7093 models integrate both barriers to code motion as well as synchronization
7094 requirements with other threads. These are listed in approximately
7095 ascending order of strength.
7096
7097 @table @code
7098 @item __ATOMIC_RELAXED
7099 No barriers or synchronization.
7100 @item __ATOMIC_CONSUME
7101 Data dependency only for both barrier and synchronization with another
7102 thread.
7103 @item __ATOMIC_ACQUIRE
7104 Barrier to hoisting of code and synchronizes with release (or stronger)
7105 semantic stores from another thread.
7106 @item __ATOMIC_RELEASE
7107 Barrier to sinking of code and synchronizes with acquire (or stronger)
7108 semantic loads from another thread.
7109 @item __ATOMIC_ACQ_REL
7110 Full barrier in both directions and synchronizes with acquire loads and
7111 release stores in another thread.
7112 @item __ATOMIC_SEQ_CST
7113 Full barrier in both directions and synchronizes with acquire loads and
7114 release stores in all threads.
7115 @end table
7116
7117 When implementing patterns for these built-in functions , the memory model
7118 parameter can be ignored as long as the pattern implements the most
7119 restrictive @code{__ATOMIC_SEQ_CST} model. Any of the other memory models
7120 will execute correctly with this memory model but they may not execute as
7121 efficiently as they could with a more appropriate implemention of the
7122 relaxed requirements.
7123
7124 Note that the C++11 standard allows for the memory model parameter to be
7125 determined at runtime rather than at compile time. These built-in
7126 functions will map any runtime value to @code{__ATOMIC_SEQ_CST} rather
7127 than invoke a runtime library call or inline a switch statement. This is
7128 standard compliant, safe, and the simplest approach for now.
7129
7130 The memory model parameter is a signed int, but only the lower 8 bits are
7131 reserved for the memory model. The remainder of the signed int is reserved
7132 for future use and should be 0. Use of the predefined atomic values will
7133 ensure proper usage.
7134
7135 @deftypefn {Built-in Function} @var{type} __atomic_load_n (@var{type} *ptr, int memmodel)
7136 This built-in function implements an atomic load operation. It returns the
7137 contents of @code{*@var{ptr}}.
7138
7139 The valid memory model variants are
7140 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7141 and @code{__ATOMIC_CONSUME}.
7142
7143 @end deftypefn
7144
7145 @deftypefn {Built-in Function} void __atomic_load (@var{type} *ptr, @var{type} *ret, int memmodel)
7146 This is the generic version of an atomic load. It will return the
7147 contents of @code{*@var{ptr}} in @code{*@var{ret}}.
7148
7149 @end deftypefn
7150
7151 @deftypefn {Built-in Function} void __atomic_store_n (@var{type} *ptr, @var{type} val, int memmodel)
7152 This built-in function implements an atomic store operation. It writes
7153 @code{@var{val}} into @code{*@var{ptr}}.
7154
7155 The valid memory model variants are
7156 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and @code{__ATOMIC_RELEASE}.
7157
7158 @end deftypefn
7159
7160 @deftypefn {Built-in Function} void __atomic_store (@var{type} *ptr, @var{type} *val, int memmodel)
7161 This is the generic version of an atomic store. It will store the value
7162 of @code{*@var{val}} into @code{*@var{ptr}}.
7163
7164 @end deftypefn
7165
7166 @deftypefn {Built-in Function} @var{type} __atomic_exchange_n (@var{type} *ptr, @var{type} val, int memmodel)
7167 This built-in function implements an atomic exchange operation. It writes
7168 @var{val} into @code{*@var{ptr}}, and returns the previous contents of
7169 @code{*@var{ptr}}.
7170
7171 The valid memory model variants are
7172 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, @code{__ATOMIC_ACQUIRE},
7173 @code{__ATOMIC_RELEASE}, and @code{__ATOMIC_ACQ_REL}.
7174
7175 @end deftypefn
7176
7177 @deftypefn {Built-in Function} void __atomic_exchange (@var{type} *ptr, @var{type} *val, @var{type} *ret, int memmodel)
7178 This is the generic version of an atomic exchange. It will store the
7179 contents of @code{*@var{val}} into @code{*@var{ptr}}. The original value
7180 of @code{*@var{ptr}} will be copied into @code{*@var{ret}}.
7181
7182 @end deftypefn
7183
7184 @deftypefn {Built-in Function} bool __atomic_compare_exchange_n (@var{type} *ptr, @var{type} *expected, @var{type} desired, bool weak, int success_memmodel, int failure_memmodel)
7185 This built-in function implements an atomic compare and exchange operation.
7186 This compares the contents of @code{*@var{ptr}} with the contents of
7187 @code{*@var{expected}} and if equal, writes @var{desired} into
7188 @code{*@var{ptr}}. If they are not equal, the current contents of
7189 @code{*@var{ptr}} is written into @code{*@var{expected}}. @var{weak} is true
7190 for weak compare_exchange, and false for the strong variation. Many targets
7191 only offer the strong variation and ignore the parameter. When in doubt, use
7192 the strong variation.
7193
7194 True is returned if @var{desired} is written into
7195 @code{*@var{ptr}} and the execution is considered to conform to the
7196 memory model specified by @var{success_memmodel}. There are no
7197 restrictions on what memory model can be used here.
7198
7199 False is returned otherwise, and the execution is considered to conform
7200 to @var{failure_memmodel}. This memory model cannot be
7201 @code{__ATOMIC_RELEASE} nor @code{__ATOMIC_ACQ_REL}. It also cannot be a
7202 stronger model than that specified by @var{success_memmodel}.
7203
7204 @end deftypefn
7205
7206 @deftypefn {Built-in Function} bool __atomic_compare_exchange (@var{type} *ptr, @var{type} *expected, @var{type} *desired, bool weak, int success_memmodel, int failure_memmodel)
7207 This built-in function implements the generic version of
7208 @code{__atomic_compare_exchange}. The function is virtually identical to
7209 @code{__atomic_compare_exchange_n}, except the desired value is also a
7210 pointer.
7211
7212 @end deftypefn
7213
7214 @deftypefn {Built-in Function} @var{type} __atomic_add_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7215 @deftypefnx {Built-in Function} @var{type} __atomic_sub_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7216 @deftypefnx {Built-in Function} @var{type} __atomic_and_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7217 @deftypefnx {Built-in Function} @var{type} __atomic_xor_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7218 @deftypefnx {Built-in Function} @var{type} __atomic_or_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7219 @deftypefnx {Built-in Function} @var{type} __atomic_nand_fetch (@var{type} *ptr, @var{type} val, int memmodel)
7220 These built-in functions perform the operation suggested by the name, and
7221 return the result of the operation. That is,
7222
7223 @smallexample
7224 @{ *ptr @var{op}= val; return *ptr; @}
7225 @end smallexample
7226
7227 All memory models are valid.
7228
7229 @end deftypefn
7230
7231 @deftypefn {Built-in Function} @var{type} __atomic_fetch_add (@var{type} *ptr, @var{type} val, int memmodel)
7232 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_sub (@var{type} *ptr, @var{type} val, int memmodel)
7233 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_and (@var{type} *ptr, @var{type} val, int memmodel)
7234 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_xor (@var{type} *ptr, @var{type} val, int memmodel)
7235 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_or (@var{type} *ptr, @var{type} val, int memmodel)
7236 @deftypefnx {Built-in Function} @var{type} __atomic_fetch_nand (@var{type} *ptr, @var{type} val, int memmodel)
7237 These built-in functions perform the operation suggested by the name, and
7238 return the value that had previously been in @code{*@var{ptr}}. That is,
7239
7240 @smallexample
7241 @{ tmp = *ptr; *ptr @var{op}= val; return tmp; @}
7242 @end smallexample
7243
7244 All memory models are valid.
7245
7246 @end deftypefn
7247
7248 @deftypefn {Built-in Function} bool __atomic_test_and_set (void *ptr, int memmodel)
7249
7250 This built-in function performs an atomic test-and-set operation on
7251 the byte at @code{*@var{ptr}}. The byte is set to some implementation
7252 defined non-zero "set" value and the return value is @code{true} if and only
7253 if the previous contents were "set".
7254
7255 All memory models are valid.
7256
7257 @end deftypefn
7258
7259 @deftypefn {Built-in Function} void __atomic_clear (bool *ptr, int memmodel)
7260
7261 This built-in function performs an atomic clear operation on
7262 @code{*@var{ptr}}. After the operation, @code{*@var{ptr}} will contain 0.
7263
7264 The valid memory model variants are
7265 @code{__ATOMIC_RELAXED}, @code{__ATOMIC_SEQ_CST}, and
7266 @code{__ATOMIC_RELEASE}.
7267
7268 @end deftypefn
7269
7270 @deftypefn {Built-in Function} void __atomic_thread_fence (int memmodel)
7271
7272 This built-in function acts as a synchronization fence between threads
7273 based on the specified memory model.
7274
7275 All memory orders are valid.
7276
7277 @end deftypefn
7278
7279 @deftypefn {Built-in Function} void __atomic_signal_fence (int memmodel)
7280
7281 This built-in function acts as a synchronization fence between a thread
7282 and signal handlers based in the same thread.
7283
7284 All memory orders are valid.
7285
7286 @end deftypefn
7287
7288 @deftypefn {Built-in Function} bool __atomic_always_lock_free (size_t size, void *ptr)
7289
7290 This built-in function returns true if objects of @var{size} bytes will always
7291 generate lock free atomic instructions for the target architecture.
7292 @var{size} must resolve to a compile time constant and the result also resolves to compile time constant.
7293
7294 @var{ptr} is an optional pointer to the object which may be used to determine
7295 alignment. A value of 0 indicates typical alignment should be used. The
7296 compiler may also ignore this parameter.
7297
7298 @smallexample
7299 if (_atomic_always_lock_free (sizeof (long long), 0))
7300 @end smallexample
7301
7302 @end deftypefn
7303
7304 @deftypefn {Built-in Function} bool __atomic_is_lock_free (size_t size, void *ptr)
7305
7306 This built-in function returns true if objects of @var{size} bytes will always
7307 generate lock free atomic instructions for the target architecture. If
7308 it is not known to be lock free a call is made to a runtime routine named
7309 @code{__atomic_is_lock_free}.
7310
7311 @var{ptr} is an optional pointer to the object which may be used to determine
7312 alignment. A value of 0 indicates typical alignment should be used. The
7313 compiler may also ignore this parameter.
7314 @end deftypefn
7315
7316 @node Object Size Checking
7317 @section Object Size Checking Builtins
7318 @findex __builtin_object_size
7319 @findex __builtin___memcpy_chk
7320 @findex __builtin___mempcpy_chk
7321 @findex __builtin___memmove_chk
7322 @findex __builtin___memset_chk
7323 @findex __builtin___strcpy_chk
7324 @findex __builtin___stpcpy_chk
7325 @findex __builtin___strncpy_chk
7326 @findex __builtin___strcat_chk
7327 @findex __builtin___strncat_chk
7328 @findex __builtin___sprintf_chk
7329 @findex __builtin___snprintf_chk
7330 @findex __builtin___vsprintf_chk
7331 @findex __builtin___vsnprintf_chk
7332 @findex __builtin___printf_chk
7333 @findex __builtin___vprintf_chk
7334 @findex __builtin___fprintf_chk
7335 @findex __builtin___vfprintf_chk
7336
7337 GCC implements a limited buffer overflow protection mechanism
7338 that can prevent some buffer overflow attacks.
7339
7340 @deftypefn {Built-in Function} {size_t} __builtin_object_size (void * @var{ptr}, int @var{type})
7341 is a built-in construct that returns a constant number of bytes from
7342 @var{ptr} to the end of the object @var{ptr} pointer points to
7343 (if known at compile time). @code{__builtin_object_size} never evaluates
7344 its arguments for side-effects. If there are any side-effects in them, it
7345 returns @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7346 for @var{type} 2 or 3. If there are multiple objects @var{ptr} can
7347 point to and all of them are known at compile time, the returned number
7348 is the maximum of remaining byte counts in those objects if @var{type} & 2 is
7349 0 and minimum if nonzero. If it is not possible to determine which objects
7350 @var{ptr} points to at compile time, @code{__builtin_object_size} should
7351 return @code{(size_t) -1} for @var{type} 0 or 1 and @code{(size_t) 0}
7352 for @var{type} 2 or 3.
7353
7354 @var{type} is an integer constant from 0 to 3. If the least significant
7355 bit is clear, objects are whole variables, if it is set, a closest
7356 surrounding subobject is considered the object a pointer points to.
7357 The second bit determines if maximum or minimum of remaining bytes
7358 is computed.
7359
7360 @smallexample
7361 struct V @{ char buf1[10]; int b; char buf2[10]; @} var;
7362 char *p = &var.buf1[1], *q = &var.b;
7363
7364 /* Here the object p points to is var. */
7365 assert (__builtin_object_size (p, 0) == sizeof (var) - 1);
7366 /* The subobject p points to is var.buf1. */
7367 assert (__builtin_object_size (p, 1) == sizeof (var.buf1) - 1);
7368 /* The object q points to is var. */
7369 assert (__builtin_object_size (q, 0)
7370 == (char *) (&var + 1) - (char *) &var.b);
7371 /* The subobject q points to is var.b. */
7372 assert (__builtin_object_size (q, 1) == sizeof (var.b));
7373 @end smallexample
7374 @end deftypefn
7375
7376 There are built-in functions added for many common string operation
7377 functions, e.g., for @code{memcpy} @code{__builtin___memcpy_chk}
7378 built-in is provided. This built-in has an additional last argument,
7379 which is the number of bytes remaining in object the @var{dest}
7380 argument points to or @code{(size_t) -1} if the size is not known.
7381
7382 The built-in functions are optimized into the normal string functions
7383 like @code{memcpy} if the last argument is @code{(size_t) -1} or if
7384 it is known at compile time that the destination object will not
7385 be overflown. If the compiler can determine at compile time the
7386 object will be always overflown, it issues a warning.
7387
7388 The intended use can be e.g.
7389
7390 @smallexample
7391 #undef memcpy
7392 #define bos0(dest) __builtin_object_size (dest, 0)
7393 #define memcpy(dest, src, n) \
7394 __builtin___memcpy_chk (dest, src, n, bos0 (dest))
7395
7396 char *volatile p;
7397 char buf[10];
7398 /* It is unknown what object p points to, so this is optimized
7399 into plain memcpy - no checking is possible. */
7400 memcpy (p, "abcde", n);
7401 /* Destination is known and length too. It is known at compile
7402 time there will be no overflow. */
7403 memcpy (&buf[5], "abcde", 5);
7404 /* Destination is known, but the length is not known at compile time.
7405 This will result in __memcpy_chk call that can check for overflow
7406 at runtime. */
7407 memcpy (&buf[5], "abcde", n);
7408 /* Destination is known and it is known at compile time there will
7409 be overflow. There will be a warning and __memcpy_chk call that
7410 will abort the program at runtime. */
7411 memcpy (&buf[6], "abcde", 5);
7412 @end smallexample
7413
7414 Such built-in functions are provided for @code{memcpy}, @code{mempcpy},
7415 @code{memmove}, @code{memset}, @code{strcpy}, @code{stpcpy}, @code{strncpy},
7416 @code{strcat} and @code{strncat}.
7417
7418 There are also checking built-in functions for formatted output functions.
7419 @smallexample
7420 int __builtin___sprintf_chk (char *s, int flag, size_t os, const char *fmt, ...);
7421 int __builtin___snprintf_chk (char *s, size_t maxlen, int flag, size_t os,
7422 const char *fmt, ...);
7423 int __builtin___vsprintf_chk (char *s, int flag, size_t os, const char *fmt,
7424 va_list ap);
7425 int __builtin___vsnprintf_chk (char *s, size_t maxlen, int flag, size_t os,
7426 const char *fmt, va_list ap);
7427 @end smallexample
7428
7429 The added @var{flag} argument is passed unchanged to @code{__sprintf_chk}
7430 etc.@: functions and can contain implementation specific flags on what
7431 additional security measures the checking function might take, such as
7432 handling @code{%n} differently.
7433
7434 The @var{os} argument is the object size @var{s} points to, like in the
7435 other built-in functions. There is a small difference in the behavior
7436 though, if @var{os} is @code{(size_t) -1}, the built-in functions are
7437 optimized into the non-checking functions only if @var{flag} is 0, otherwise
7438 the checking function is called with @var{os} argument set to
7439 @code{(size_t) -1}.
7440
7441 In addition to this, there are checking built-in functions
7442 @code{__builtin___printf_chk}, @code{__builtin___vprintf_chk},
7443 @code{__builtin___fprintf_chk} and @code{__builtin___vfprintf_chk}.
7444 These have just one additional argument, @var{flag}, right before
7445 format string @var{fmt}. If the compiler is able to optimize them to
7446 @code{fputc} etc.@: functions, it will, otherwise the checking function
7447 should be called and the @var{flag} argument passed to it.
7448
7449 @node Other Builtins
7450 @section Other built-in functions provided by GCC
7451 @cindex built-in functions
7452 @findex __builtin_fpclassify
7453 @findex __builtin_isfinite
7454 @findex __builtin_isnormal
7455 @findex __builtin_isgreater
7456 @findex __builtin_isgreaterequal
7457 @findex __builtin_isinf_sign
7458 @findex __builtin_isless
7459 @findex __builtin_islessequal
7460 @findex __builtin_islessgreater
7461 @findex __builtin_isunordered
7462 @findex __builtin_powi
7463 @findex __builtin_powif
7464 @findex __builtin_powil
7465 @findex _Exit
7466 @findex _exit
7467 @findex abort
7468 @findex abs
7469 @findex acos
7470 @findex acosf
7471 @findex acosh
7472 @findex acoshf
7473 @findex acoshl
7474 @findex acosl
7475 @findex alloca
7476 @findex asin
7477 @findex asinf
7478 @findex asinh
7479 @findex asinhf
7480 @findex asinhl
7481 @findex asinl
7482 @findex atan
7483 @findex atan2
7484 @findex atan2f
7485 @findex atan2l
7486 @findex atanf
7487 @findex atanh
7488 @findex atanhf
7489 @findex atanhl
7490 @findex atanl
7491 @findex bcmp
7492 @findex bzero
7493 @findex cabs
7494 @findex cabsf
7495 @findex cabsl
7496 @findex cacos
7497 @findex cacosf
7498 @findex cacosh
7499 @findex cacoshf
7500 @findex cacoshl
7501 @findex cacosl
7502 @findex calloc
7503 @findex carg
7504 @findex cargf
7505 @findex cargl
7506 @findex casin
7507 @findex casinf
7508 @findex casinh
7509 @findex casinhf
7510 @findex casinhl
7511 @findex casinl
7512 @findex catan
7513 @findex catanf
7514 @findex catanh
7515 @findex catanhf
7516 @findex catanhl
7517 @findex catanl
7518 @findex cbrt
7519 @findex cbrtf
7520 @findex cbrtl
7521 @findex ccos
7522 @findex ccosf
7523 @findex ccosh
7524 @findex ccoshf
7525 @findex ccoshl
7526 @findex ccosl
7527 @findex ceil
7528 @findex ceilf
7529 @findex ceill
7530 @findex cexp
7531 @findex cexpf
7532 @findex cexpl
7533 @findex cimag
7534 @findex cimagf
7535 @findex cimagl
7536 @findex clog
7537 @findex clogf
7538 @findex clogl
7539 @findex conj
7540 @findex conjf
7541 @findex conjl
7542 @findex copysign
7543 @findex copysignf
7544 @findex copysignl
7545 @findex cos
7546 @findex cosf
7547 @findex cosh
7548 @findex coshf
7549 @findex coshl
7550 @findex cosl
7551 @findex cpow
7552 @findex cpowf
7553 @findex cpowl
7554 @findex cproj
7555 @findex cprojf
7556 @findex cprojl
7557 @findex creal
7558 @findex crealf
7559 @findex creall
7560 @findex csin
7561 @findex csinf
7562 @findex csinh
7563 @findex csinhf
7564 @findex csinhl
7565 @findex csinl
7566 @findex csqrt
7567 @findex csqrtf
7568 @findex csqrtl
7569 @findex ctan
7570 @findex ctanf
7571 @findex ctanh
7572 @findex ctanhf
7573 @findex ctanhl
7574 @findex ctanl
7575 @findex dcgettext
7576 @findex dgettext
7577 @findex drem
7578 @findex dremf
7579 @findex dreml
7580 @findex erf
7581 @findex erfc
7582 @findex erfcf
7583 @findex erfcl
7584 @findex erff
7585 @findex erfl
7586 @findex exit
7587 @findex exp
7588 @findex exp10
7589 @findex exp10f
7590 @findex exp10l
7591 @findex exp2
7592 @findex exp2f
7593 @findex exp2l
7594 @findex expf
7595 @findex expl
7596 @findex expm1
7597 @findex expm1f
7598 @findex expm1l
7599 @findex fabs
7600 @findex fabsf
7601 @findex fabsl
7602 @findex fdim
7603 @findex fdimf
7604 @findex fdiml
7605 @findex ffs
7606 @findex floor
7607 @findex floorf
7608 @findex floorl
7609 @findex fma
7610 @findex fmaf
7611 @findex fmal
7612 @findex fmax
7613 @findex fmaxf
7614 @findex fmaxl
7615 @findex fmin
7616 @findex fminf
7617 @findex fminl
7618 @findex fmod
7619 @findex fmodf
7620 @findex fmodl
7621 @findex fprintf
7622 @findex fprintf_unlocked
7623 @findex fputs
7624 @findex fputs_unlocked
7625 @findex frexp
7626 @findex frexpf
7627 @findex frexpl
7628 @findex fscanf
7629 @findex gamma
7630 @findex gammaf
7631 @findex gammal
7632 @findex gamma_r
7633 @findex gammaf_r
7634 @findex gammal_r
7635 @findex gettext
7636 @findex hypot
7637 @findex hypotf
7638 @findex hypotl
7639 @findex ilogb
7640 @findex ilogbf
7641 @findex ilogbl
7642 @findex imaxabs
7643 @findex index
7644 @findex isalnum
7645 @findex isalpha
7646 @findex isascii
7647 @findex isblank
7648 @findex iscntrl
7649 @findex isdigit
7650 @findex isgraph
7651 @findex islower
7652 @findex isprint
7653 @findex ispunct
7654 @findex isspace
7655 @findex isupper
7656 @findex iswalnum
7657 @findex iswalpha
7658 @findex iswblank
7659 @findex iswcntrl
7660 @findex iswdigit
7661 @findex iswgraph
7662 @findex iswlower
7663 @findex iswprint
7664 @findex iswpunct
7665 @findex iswspace
7666 @findex iswupper
7667 @findex iswxdigit
7668 @findex isxdigit
7669 @findex j0
7670 @findex j0f
7671 @findex j0l
7672 @findex j1
7673 @findex j1f
7674 @findex j1l
7675 @findex jn
7676 @findex jnf
7677 @findex jnl
7678 @findex labs
7679 @findex ldexp
7680 @findex ldexpf
7681 @findex ldexpl
7682 @findex lgamma
7683 @findex lgammaf
7684 @findex lgammal
7685 @findex lgamma_r
7686 @findex lgammaf_r
7687 @findex lgammal_r
7688 @findex llabs
7689 @findex llrint
7690 @findex llrintf
7691 @findex llrintl
7692 @findex llround
7693 @findex llroundf
7694 @findex llroundl
7695 @findex log
7696 @findex log10
7697 @findex log10f
7698 @findex log10l
7699 @findex log1p
7700 @findex log1pf
7701 @findex log1pl
7702 @findex log2
7703 @findex log2f
7704 @findex log2l
7705 @findex logb
7706 @findex logbf
7707 @findex logbl
7708 @findex logf
7709 @findex logl
7710 @findex lrint
7711 @findex lrintf
7712 @findex lrintl
7713 @findex lround
7714 @findex lroundf
7715 @findex lroundl
7716 @findex malloc
7717 @findex memchr
7718 @findex memcmp
7719 @findex memcpy
7720 @findex mempcpy
7721 @findex memset
7722 @findex modf
7723 @findex modff
7724 @findex modfl
7725 @findex nearbyint
7726 @findex nearbyintf
7727 @findex nearbyintl
7728 @findex nextafter
7729 @findex nextafterf
7730 @findex nextafterl
7731 @findex nexttoward
7732 @findex nexttowardf
7733 @findex nexttowardl
7734 @findex pow
7735 @findex pow10
7736 @findex pow10f
7737 @findex pow10l
7738 @findex powf
7739 @findex powl
7740 @findex printf
7741 @findex printf_unlocked
7742 @findex putchar
7743 @findex puts
7744 @findex remainder
7745 @findex remainderf
7746 @findex remainderl
7747 @findex remquo
7748 @findex remquof
7749 @findex remquol
7750 @findex rindex
7751 @findex rint
7752 @findex rintf
7753 @findex rintl
7754 @findex round
7755 @findex roundf
7756 @findex roundl
7757 @findex scalb
7758 @findex scalbf
7759 @findex scalbl
7760 @findex scalbln
7761 @findex scalblnf
7762 @findex scalblnf
7763 @findex scalbn
7764 @findex scalbnf
7765 @findex scanfnl
7766 @findex signbit
7767 @findex signbitf
7768 @findex signbitl
7769 @findex signbitd32
7770 @findex signbitd64
7771 @findex signbitd128
7772 @findex significand
7773 @findex significandf
7774 @findex significandl
7775 @findex sin
7776 @findex sincos
7777 @findex sincosf
7778 @findex sincosl
7779 @findex sinf
7780 @findex sinh
7781 @findex sinhf
7782 @findex sinhl
7783 @findex sinl
7784 @findex snprintf
7785 @findex sprintf
7786 @findex sqrt
7787 @findex sqrtf
7788 @findex sqrtl
7789 @findex sscanf
7790 @findex stpcpy
7791 @findex stpncpy
7792 @findex strcasecmp
7793 @findex strcat
7794 @findex strchr
7795 @findex strcmp
7796 @findex strcpy
7797 @findex strcspn
7798 @findex strdup
7799 @findex strfmon
7800 @findex strftime
7801 @findex strlen
7802 @findex strncasecmp
7803 @findex strncat
7804 @findex strncmp
7805 @findex strncpy
7806 @findex strndup
7807 @findex strpbrk
7808 @findex strrchr
7809 @findex strspn
7810 @findex strstr
7811 @findex tan
7812 @findex tanf
7813 @findex tanh
7814 @findex tanhf
7815 @findex tanhl
7816 @findex tanl
7817 @findex tgamma
7818 @findex tgammaf
7819 @findex tgammal
7820 @findex toascii
7821 @findex tolower
7822 @findex toupper
7823 @findex towlower
7824 @findex towupper
7825 @findex trunc
7826 @findex truncf
7827 @findex truncl
7828 @findex vfprintf
7829 @findex vfscanf
7830 @findex vprintf
7831 @findex vscanf
7832 @findex vsnprintf
7833 @findex vsprintf
7834 @findex vsscanf
7835 @findex y0
7836 @findex y0f
7837 @findex y0l
7838 @findex y1
7839 @findex y1f
7840 @findex y1l
7841 @findex yn
7842 @findex ynf
7843 @findex ynl
7844
7845 GCC provides a large number of built-in functions other than the ones
7846 mentioned above. Some of these are for internal use in the processing
7847 of exceptions or variable-length argument lists and will not be
7848 documented here because they may change from time to time; we do not
7849 recommend general use of these functions.
7850
7851 The remaining functions are provided for optimization purposes.
7852
7853 @opindex fno-builtin
7854 GCC includes built-in versions of many of the functions in the standard
7855 C library. The versions prefixed with @code{__builtin_} will always be
7856 treated as having the same meaning as the C library function even if you
7857 specify the @option{-fno-builtin} option. (@pxref{C Dialect Options})
7858 Many of these functions are only optimized in certain cases; if they are
7859 not optimized in a particular case, a call to the library function will
7860 be emitted.
7861
7862 @opindex ansi
7863 @opindex std
7864 Outside strict ISO C mode (@option{-ansi}, @option{-std=c90},
7865 @option{-std=c99} or @option{-std=c11}), the functions
7866 @code{_exit}, @code{alloca}, @code{bcmp}, @code{bzero},
7867 @code{dcgettext}, @code{dgettext}, @code{dremf}, @code{dreml},
7868 @code{drem}, @code{exp10f}, @code{exp10l}, @code{exp10}, @code{ffsll},
7869 @code{ffsl}, @code{ffs}, @code{fprintf_unlocked},
7870 @code{fputs_unlocked}, @code{gammaf}, @code{gammal}, @code{gamma},
7871 @code{gammaf_r}, @code{gammal_r}, @code{gamma_r}, @code{gettext},
7872 @code{index}, @code{isascii}, @code{j0f}, @code{j0l}, @code{j0},
7873 @code{j1f}, @code{j1l}, @code{j1}, @code{jnf}, @code{jnl}, @code{jn},
7874 @code{lgammaf_r}, @code{lgammal_r}, @code{lgamma_r}, @code{mempcpy},
7875 @code{pow10f}, @code{pow10l}, @code{pow10}, @code{printf_unlocked},
7876 @code{rindex}, @code{scalbf}, @code{scalbl}, @code{scalb},
7877 @code{signbit}, @code{signbitf}, @code{signbitl}, @code{signbitd32},
7878 @code{signbitd64}, @code{signbitd128}, @code{significandf},
7879 @code{significandl}, @code{significand}, @code{sincosf},
7880 @code{sincosl}, @code{sincos}, @code{stpcpy}, @code{stpncpy},
7881 @code{strcasecmp}, @code{strdup}, @code{strfmon}, @code{strncasecmp},
7882 @code{strndup}, @code{toascii}, @code{y0f}, @code{y0l}, @code{y0},
7883 @code{y1f}, @code{y1l}, @code{y1}, @code{ynf}, @code{ynl} and
7884 @code{yn}
7885 may be handled as built-in functions.
7886 All these functions have corresponding versions
7887 prefixed with @code{__builtin_}, which may be used even in strict C90
7888 mode.
7889
7890 The ISO C99 functions
7891 @code{_Exit}, @code{acoshf}, @code{acoshl}, @code{acosh}, @code{asinhf},
7892 @code{asinhl}, @code{asinh}, @code{atanhf}, @code{atanhl}, @code{atanh},
7893 @code{cabsf}, @code{cabsl}, @code{cabs}, @code{cacosf}, @code{cacoshf},
7894 @code{cacoshl}, @code{cacosh}, @code{cacosl}, @code{cacos},
7895 @code{cargf}, @code{cargl}, @code{carg}, @code{casinf}, @code{casinhf},
7896 @code{casinhl}, @code{casinh}, @code{casinl}, @code{casin},
7897 @code{catanf}, @code{catanhf}, @code{catanhl}, @code{catanh},
7898 @code{catanl}, @code{catan}, @code{cbrtf}, @code{cbrtl}, @code{cbrt},
7899 @code{ccosf}, @code{ccoshf}, @code{ccoshl}, @code{ccosh}, @code{ccosl},
7900 @code{ccos}, @code{cexpf}, @code{cexpl}, @code{cexp}, @code{cimagf},
7901 @code{cimagl}, @code{cimag}, @code{clogf}, @code{clogl}, @code{clog},
7902 @code{conjf}, @code{conjl}, @code{conj}, @code{copysignf}, @code{copysignl},
7903 @code{copysign}, @code{cpowf}, @code{cpowl}, @code{cpow}, @code{cprojf},
7904 @code{cprojl}, @code{cproj}, @code{crealf}, @code{creall}, @code{creal},
7905 @code{csinf}, @code{csinhf}, @code{csinhl}, @code{csinh}, @code{csinl},
7906 @code{csin}, @code{csqrtf}, @code{csqrtl}, @code{csqrt}, @code{ctanf},
7907 @code{ctanhf}, @code{ctanhl}, @code{ctanh}, @code{ctanl}, @code{ctan},
7908 @code{erfcf}, @code{erfcl}, @code{erfc}, @code{erff}, @code{erfl},
7909 @code{erf}, @code{exp2f}, @code{exp2l}, @code{exp2}, @code{expm1f},
7910 @code{expm1l}, @code{expm1}, @code{fdimf}, @code{fdiml}, @code{fdim},
7911 @code{fmaf}, @code{fmal}, @code{fmaxf}, @code{fmaxl}, @code{fmax},
7912 @code{fma}, @code{fminf}, @code{fminl}, @code{fmin}, @code{hypotf},
7913 @code{hypotl}, @code{hypot}, @code{ilogbf}, @code{ilogbl}, @code{ilogb},
7914 @code{imaxabs}, @code{isblank}, @code{iswblank}, @code{lgammaf},
7915 @code{lgammal}, @code{lgamma}, @code{llabs}, @code{llrintf}, @code{llrintl},
7916 @code{llrint}, @code{llroundf}, @code{llroundl}, @code{llround},
7917 @code{log1pf}, @code{log1pl}, @code{log1p}, @code{log2f}, @code{log2l},
7918 @code{log2}, @code{logbf}, @code{logbl}, @code{logb}, @code{lrintf},
7919 @code{lrintl}, @code{lrint}, @code{lroundf}, @code{lroundl},
7920 @code{lround}, @code{nearbyintf}, @code{nearbyintl}, @code{nearbyint},
7921 @code{nextafterf}, @code{nextafterl}, @code{nextafter},
7922 @code{nexttowardf}, @code{nexttowardl}, @code{nexttoward},
7923 @code{remainderf}, @code{remainderl}, @code{remainder}, @code{remquof},
7924 @code{remquol}, @code{remquo}, @code{rintf}, @code{rintl}, @code{rint},
7925 @code{roundf}, @code{roundl}, @code{round}, @code{scalblnf},
7926 @code{scalblnl}, @code{scalbln}, @code{scalbnf}, @code{scalbnl},
7927 @code{scalbn}, @code{snprintf}, @code{tgammaf}, @code{tgammal},
7928 @code{tgamma}, @code{truncf}, @code{truncl}, @code{trunc},
7929 @code{vfscanf}, @code{vscanf}, @code{vsnprintf} and @code{vsscanf}
7930 are handled as built-in functions
7931 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
7932
7933 There are also built-in versions of the ISO C99 functions
7934 @code{acosf}, @code{acosl}, @code{asinf}, @code{asinl}, @code{atan2f},
7935 @code{atan2l}, @code{atanf}, @code{atanl}, @code{ceilf}, @code{ceill},
7936 @code{cosf}, @code{coshf}, @code{coshl}, @code{cosl}, @code{expf},
7937 @code{expl}, @code{fabsf}, @code{fabsl}, @code{floorf}, @code{floorl},
7938 @code{fmodf}, @code{fmodl}, @code{frexpf}, @code{frexpl}, @code{ldexpf},
7939 @code{ldexpl}, @code{log10f}, @code{log10l}, @code{logf}, @code{logl},
7940 @code{modfl}, @code{modf}, @code{powf}, @code{powl}, @code{sinf},
7941 @code{sinhf}, @code{sinhl}, @code{sinl}, @code{sqrtf}, @code{sqrtl},
7942 @code{tanf}, @code{tanhf}, @code{tanhl} and @code{tanl}
7943 that are recognized in any mode since ISO C90 reserves these names for
7944 the purpose to which ISO C99 puts them. All these functions have
7945 corresponding versions prefixed with @code{__builtin_}.
7946
7947 The ISO C94 functions
7948 @code{iswalnum}, @code{iswalpha}, @code{iswcntrl}, @code{iswdigit},
7949 @code{iswgraph}, @code{iswlower}, @code{iswprint}, @code{iswpunct},
7950 @code{iswspace}, @code{iswupper}, @code{iswxdigit}, @code{towlower} and
7951 @code{towupper}
7952 are handled as built-in functions
7953 except in strict ISO C90 mode (@option{-ansi} or @option{-std=c90}).
7954
7955 The ISO C90 functions
7956 @code{abort}, @code{abs}, @code{acos}, @code{asin}, @code{atan2},
7957 @code{atan}, @code{calloc}, @code{ceil}, @code{cosh}, @code{cos},
7958 @code{exit}, @code{exp}, @code{fabs}, @code{floor}, @code{fmod},
7959 @code{fprintf}, @code{fputs}, @code{frexp}, @code{fscanf},
7960 @code{isalnum}, @code{isalpha}, @code{iscntrl}, @code{isdigit},
7961 @code{isgraph}, @code{islower}, @code{isprint}, @code{ispunct},
7962 @code{isspace}, @code{isupper}, @code{isxdigit}, @code{tolower},
7963 @code{toupper}, @code{labs}, @code{ldexp}, @code{log10}, @code{log},
7964 @code{malloc}, @code{memchr}, @code{memcmp}, @code{memcpy},
7965 @code{memset}, @code{modf}, @code{pow}, @code{printf}, @code{putchar},
7966 @code{puts}, @code{scanf}, @code{sinh}, @code{sin}, @code{snprintf},
7967 @code{sprintf}, @code{sqrt}, @code{sscanf}, @code{strcat},
7968 @code{strchr}, @code{strcmp}, @code{strcpy}, @code{strcspn},
7969 @code{strlen}, @code{strncat}, @code{strncmp}, @code{strncpy},
7970 @code{strpbrk}, @code{strrchr}, @code{strspn}, @code{strstr},
7971 @code{tanh}, @code{tan}, @code{vfprintf}, @code{vprintf} and @code{vsprintf}
7972 are all recognized as built-in functions unless
7973 @option{-fno-builtin} is specified (or @option{-fno-builtin-@var{function}}
7974 is specified for an individual function). All of these functions have
7975 corresponding versions prefixed with @code{__builtin_}.
7976
7977 GCC provides built-in versions of the ISO C99 floating point comparison
7978 macros that avoid raising exceptions for unordered operands. They have
7979 the same names as the standard macros ( @code{isgreater},
7980 @code{isgreaterequal}, @code{isless}, @code{islessequal},
7981 @code{islessgreater}, and @code{isunordered}) , with @code{__builtin_}
7982 prefixed. We intend for a library implementor to be able to simply
7983 @code{#define} each standard macro to its built-in equivalent.
7984 In the same fashion, GCC provides @code{fpclassify}, @code{isfinite},
7985 @code{isinf_sign} and @code{isnormal} built-ins used with
7986 @code{__builtin_} prefixed. The @code{isinf} and @code{isnan}
7987 builtins appear both with and without the @code{__builtin_} prefix.
7988
7989 @deftypefn {Built-in Function} int __builtin_types_compatible_p (@var{type1}, @var{type2})
7990
7991 You can use the built-in function @code{__builtin_types_compatible_p} to
7992 determine whether two types are the same.
7993
7994 This built-in function returns 1 if the unqualified versions of the
7995 types @var{type1} and @var{type2} (which are types, not expressions) are
7996 compatible, 0 otherwise. The result of this built-in function can be
7997 used in integer constant expressions.
7998
7999 This built-in function ignores top level qualifiers (e.g., @code{const},
8000 @code{volatile}). For example, @code{int} is equivalent to @code{const
8001 int}.
8002
8003 The type @code{int[]} and @code{int[5]} are compatible. On the other
8004 hand, @code{int} and @code{char *} are not compatible, even if the size
8005 of their types, on the particular architecture are the same. Also, the
8006 amount of pointer indirection is taken into account when determining
8007 similarity. Consequently, @code{short *} is not similar to
8008 @code{short **}. Furthermore, two types that are typedefed are
8009 considered compatible if their underlying types are compatible.
8010
8011 An @code{enum} type is not considered to be compatible with another
8012 @code{enum} type even if both are compatible with the same integer
8013 type; this is what the C standard specifies.
8014 For example, @code{enum @{foo, bar@}} is not similar to
8015 @code{enum @{hot, dog@}}.
8016
8017 You would typically use this function in code whose execution varies
8018 depending on the arguments' types. For example:
8019
8020 @smallexample
8021 #define foo(x) \
8022 (@{ \
8023 typeof (x) tmp = (x); \
8024 if (__builtin_types_compatible_p (typeof (x), long double)) \
8025 tmp = foo_long_double (tmp); \
8026 else if (__builtin_types_compatible_p (typeof (x), double)) \
8027 tmp = foo_double (tmp); \
8028 else if (__builtin_types_compatible_p (typeof (x), float)) \
8029 tmp = foo_float (tmp); \
8030 else \
8031 abort (); \
8032 tmp; \
8033 @})
8034 @end smallexample
8035
8036 @emph{Note:} This construct is only available for C@.
8037
8038 @end deftypefn
8039
8040 @deftypefn {Built-in Function} @var{type} __builtin_choose_expr (@var{const_exp}, @var{exp1}, @var{exp2})
8041
8042 You can use the built-in function @code{__builtin_choose_expr} to
8043 evaluate code depending on the value of a constant expression. This
8044 built-in function returns @var{exp1} if @var{const_exp}, which is an
8045 integer constant expression, is nonzero. Otherwise it returns @var{exp2}.
8046
8047 This built-in function is analogous to the @samp{? :} operator in C,
8048 except that the expression returned has its type unaltered by promotion
8049 rules. Also, the built-in function does not evaluate the expression
8050 that was not chosen. For example, if @var{const_exp} evaluates to true,
8051 @var{exp2} is not evaluated even if it has side-effects.
8052
8053 This built-in function can return an lvalue if the chosen argument is an
8054 lvalue.
8055
8056 If @var{exp1} is returned, the return type is the same as @var{exp1}'s
8057 type. Similarly, if @var{exp2} is returned, its return type is the same
8058 as @var{exp2}.
8059
8060 Example:
8061
8062 @smallexample
8063 #define foo(x) \
8064 __builtin_choose_expr ( \
8065 __builtin_types_compatible_p (typeof (x), double), \
8066 foo_double (x), \
8067 __builtin_choose_expr ( \
8068 __builtin_types_compatible_p (typeof (x), float), \
8069 foo_float (x), \
8070 /* @r{The void expression results in a compile-time error} \
8071 @r{when assigning the result to something.} */ \
8072 (void)0))
8073 @end smallexample
8074
8075 @emph{Note:} This construct is only available for C@. Furthermore, the
8076 unused expression (@var{exp1} or @var{exp2} depending on the value of
8077 @var{const_exp}) may still generate syntax errors. This may change in
8078 future revisions.
8079
8080 @end deftypefn
8081
8082 @deftypefn {Built-in Function} @var{type} __builtin_complex (@var{real}, @var{imag})
8083
8084 The built-in function @code{__builtin_complex} is provided for use in
8085 implementing the ISO C11 macros @code{CMPLXF}, @code{CMPLX} and
8086 @code{CMPLXL}. @var{real} and @var{imag} must have the same type, a
8087 real binary floating-point type, and the result has the corresponding
8088 complex type with real and imaginary parts @var{real} and @var{imag}.
8089 Unlike @samp{@var{real} + I * @var{imag}}, this works even when
8090 infinities, NaNs and negative zeros are involved.
8091
8092 @end deftypefn
8093
8094 @deftypefn {Built-in Function} int __builtin_constant_p (@var{exp})
8095 You can use the built-in function @code{__builtin_constant_p} to
8096 determine if a value is known to be constant at compile-time and hence
8097 that GCC can perform constant-folding on expressions involving that
8098 value. The argument of the function is the value to test. The function
8099 returns the integer 1 if the argument is known to be a compile-time
8100 constant and 0 if it is not known to be a compile-time constant. A
8101 return of 0 does not indicate that the value is @emph{not} a constant,
8102 but merely that GCC cannot prove it is a constant with the specified
8103 value of the @option{-O} option.
8104
8105 You would typically use this function in an embedded application where
8106 memory was a critical resource. If you have some complex calculation,
8107 you may want it to be folded if it involves constants, but need to call
8108 a function if it does not. For example:
8109
8110 @smallexample
8111 #define Scale_Value(X) \
8112 (__builtin_constant_p (X) \
8113 ? ((X) * SCALE + OFFSET) : Scale (X))
8114 @end smallexample
8115
8116 You may use this built-in function in either a macro or an inline
8117 function. However, if you use it in an inlined function and pass an
8118 argument of the function as the argument to the built-in, GCC will
8119 never return 1 when you call the inline function with a string constant
8120 or compound literal (@pxref{Compound Literals}) and will not return 1
8121 when you pass a constant numeric value to the inline function unless you
8122 specify the @option{-O} option.
8123
8124 You may also use @code{__builtin_constant_p} in initializers for static
8125 data. For instance, you can write
8126
8127 @smallexample
8128 static const int table[] = @{
8129 __builtin_constant_p (EXPRESSION) ? (EXPRESSION) : -1,
8130 /* @r{@dots{}} */
8131 @};
8132 @end smallexample
8133
8134 @noindent
8135 This is an acceptable initializer even if @var{EXPRESSION} is not a
8136 constant expression, including the case where
8137 @code{__builtin_constant_p} returns 1 because @var{EXPRESSION} can be
8138 folded to a constant but @var{EXPRESSION} contains operands that would
8139 not otherwise be permitted in a static initializer (for example,
8140 @code{0 && foo ()}). GCC must be more conservative about evaluating the
8141 built-in in this case, because it has no opportunity to perform
8142 optimization.
8143
8144 Previous versions of GCC did not accept this built-in in data
8145 initializers. The earliest version where it is completely safe is
8146 3.0.1.
8147 @end deftypefn
8148
8149 @deftypefn {Built-in Function} long __builtin_expect (long @var{exp}, long @var{c})
8150 @opindex fprofile-arcs
8151 You may use @code{__builtin_expect} to provide the compiler with
8152 branch prediction information. In general, you should prefer to
8153 use actual profile feedback for this (@option{-fprofile-arcs}), as
8154 programmers are notoriously bad at predicting how their programs
8155 actually perform. However, there are applications in which this
8156 data is hard to collect.
8157
8158 The return value is the value of @var{exp}, which should be an integral
8159 expression. The semantics of the built-in are that it is expected that
8160 @var{exp} == @var{c}. For example:
8161
8162 @smallexample
8163 if (__builtin_expect (x, 0))
8164 foo ();
8165 @end smallexample
8166
8167 @noindent
8168 would indicate that we do not expect to call @code{foo}, since
8169 we expect @code{x} to be zero. Since you are limited to integral
8170 expressions for @var{exp}, you should use constructions such as
8171
8172 @smallexample
8173 if (__builtin_expect (ptr != NULL, 1))
8174 foo (*ptr);
8175 @end smallexample
8176
8177 @noindent
8178 when testing pointer or floating-point values.
8179 @end deftypefn
8180
8181 @deftypefn {Built-in Function} void __builtin_trap (void)
8182 This function causes the program to exit abnormally. GCC implements
8183 this function by using a target-dependent mechanism (such as
8184 intentionally executing an illegal instruction) or by calling
8185 @code{abort}. The mechanism used may vary from release to release so
8186 you should not rely on any particular implementation.
8187 @end deftypefn
8188
8189 @deftypefn {Built-in Function} void __builtin_unreachable (void)
8190 If control flow reaches the point of the @code{__builtin_unreachable},
8191 the program is undefined. It is useful in situations where the
8192 compiler cannot deduce the unreachability of the code.
8193
8194 One such case is immediately following an @code{asm} statement that
8195 will either never terminate, or one that transfers control elsewhere
8196 and never returns. In this example, without the
8197 @code{__builtin_unreachable}, GCC would issue a warning that control
8198 reaches the end of a non-void function. It would also generate code
8199 to return after the @code{asm}.
8200
8201 @smallexample
8202 int f (int c, int v)
8203 @{
8204 if (c)
8205 @{
8206 return v;
8207 @}
8208 else
8209 @{
8210 asm("jmp error_handler");
8211 __builtin_unreachable ();
8212 @}
8213 @}
8214 @end smallexample
8215
8216 Because the @code{asm} statement unconditionally transfers control out
8217 of the function, control will never reach the end of the function
8218 body. The @code{__builtin_unreachable} is in fact unreachable and
8219 communicates this fact to the compiler.
8220
8221 Another use for @code{__builtin_unreachable} is following a call a
8222 function that never returns but that is not declared
8223 @code{__attribute__((noreturn))}, as in this example:
8224
8225 @smallexample
8226 void function_that_never_returns (void);
8227
8228 int g (int c)
8229 @{
8230 if (c)
8231 @{
8232 return 1;
8233 @}
8234 else
8235 @{
8236 function_that_never_returns ();
8237 __builtin_unreachable ();
8238 @}
8239 @}
8240 @end smallexample
8241
8242 @end deftypefn
8243
8244 @deftypefn {Built-in Function} void *__builtin_assume_aligned (const void *@var{exp}, size_t @var{align}, ...)
8245 This function returns its first argument, and allows the compiler
8246 to assume that the returned pointer is at least @var{align} bytes
8247 aligned. This built-in can have either two or three arguments,
8248 if it has three, the third argument should have integer type, and
8249 if it is non-zero means misalignment offset. For example:
8250
8251 @smallexample
8252 void *x = __builtin_assume_aligned (arg, 16);
8253 @end smallexample
8254
8255 means that the compiler can assume x, set to arg, is at least
8256 16 byte aligned, while:
8257
8258 @smallexample
8259 void *x = __builtin_assume_aligned (arg, 32, 8);
8260 @end smallexample
8261
8262 means that the compiler can assume for x, set to arg, that
8263 (char *) x - 8 is 32 byte aligned.
8264 @end deftypefn
8265
8266 @deftypefn {Built-in Function} void __builtin___clear_cache (char *@var{begin}, char *@var{end})
8267 This function is used to flush the processor's instruction cache for
8268 the region of memory between @var{begin} inclusive and @var{end}
8269 exclusive. Some targets require that the instruction cache be
8270 flushed, after modifying memory containing code, in order to obtain
8271 deterministic behavior.
8272
8273 If the target does not require instruction cache flushes,
8274 @code{__builtin___clear_cache} has no effect. Otherwise either
8275 instructions are emitted in-line to clear the instruction cache or a
8276 call to the @code{__clear_cache} function in libgcc is made.
8277 @end deftypefn
8278
8279 @deftypefn {Built-in Function} void __builtin_prefetch (const void *@var{addr}, ...)
8280 This function is used to minimize cache-miss latency by moving data into
8281 a cache before it is accessed.
8282 You can insert calls to @code{__builtin_prefetch} into code for which
8283 you know addresses of data in memory that is likely to be accessed soon.
8284 If the target supports them, data prefetch instructions will be generated.
8285 If the prefetch is done early enough before the access then the data will
8286 be in the cache by the time it is accessed.
8287
8288 The value of @var{addr} is the address of the memory to prefetch.
8289 There are two optional arguments, @var{rw} and @var{locality}.
8290 The value of @var{rw} is a compile-time constant one or zero; one
8291 means that the prefetch is preparing for a write to the memory address
8292 and zero, the default, means that the prefetch is preparing for a read.
8293 The value @var{locality} must be a compile-time constant integer between
8294 zero and three. A value of zero means that the data has no temporal
8295 locality, so it need not be left in the cache after the access. A value
8296 of three means that the data has a high degree of temporal locality and
8297 should be left in all levels of cache possible. Values of one and two
8298 mean, respectively, a low or moderate degree of temporal locality. The
8299 default is three.
8300
8301 @smallexample
8302 for (i = 0; i < n; i++)
8303 @{
8304 a[i] = a[i] + b[i];
8305 __builtin_prefetch (&a[i+j], 1, 1);
8306 __builtin_prefetch (&b[i+j], 0, 1);
8307 /* @r{@dots{}} */
8308 @}
8309 @end smallexample
8310
8311 Data prefetch does not generate faults if @var{addr} is invalid, but
8312 the address expression itself must be valid. For example, a prefetch
8313 of @code{p->next} will not fault if @code{p->next} is not a valid
8314 address, but evaluation will fault if @code{p} is not a valid address.
8315
8316 If the target does not support data prefetch, the address expression
8317 is evaluated if it includes side effects but no other code is generated
8318 and GCC does not issue a warning.
8319 @end deftypefn
8320
8321 @deftypefn {Built-in Function} double __builtin_huge_val (void)
8322 Returns a positive infinity, if supported by the floating-point format,
8323 else @code{DBL_MAX}. This function is suitable for implementing the
8324 ISO C macro @code{HUGE_VAL}.
8325 @end deftypefn
8326
8327 @deftypefn {Built-in Function} float __builtin_huge_valf (void)
8328 Similar to @code{__builtin_huge_val}, except the return type is @code{float}.
8329 @end deftypefn
8330
8331 @deftypefn {Built-in Function} {long double} __builtin_huge_vall (void)
8332 Similar to @code{__builtin_huge_val}, except the return
8333 type is @code{long double}.
8334 @end deftypefn
8335
8336 @deftypefn {Built-in Function} int __builtin_fpclassify (int, int, int, int, int, ...)
8337 This built-in implements the C99 fpclassify functionality. The first
8338 five int arguments should be the target library's notion of the
8339 possible FP classes and are used for return values. They must be
8340 constant values and they must appear in this order: @code{FP_NAN},
8341 @code{FP_INFINITE}, @code{FP_NORMAL}, @code{FP_SUBNORMAL} and
8342 @code{FP_ZERO}. The ellipsis is for exactly one floating point value
8343 to classify. GCC treats the last argument as type-generic, which
8344 means it does not do default promotion from float to double.
8345 @end deftypefn
8346
8347 @deftypefn {Built-in Function} double __builtin_inf (void)
8348 Similar to @code{__builtin_huge_val}, except a warning is generated
8349 if the target floating-point format does not support infinities.
8350 @end deftypefn
8351
8352 @deftypefn {Built-in Function} _Decimal32 __builtin_infd32 (void)
8353 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal32}.
8354 @end deftypefn
8355
8356 @deftypefn {Built-in Function} _Decimal64 __builtin_infd64 (void)
8357 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal64}.
8358 @end deftypefn
8359
8360 @deftypefn {Built-in Function} _Decimal128 __builtin_infd128 (void)
8361 Similar to @code{__builtin_inf}, except the return type is @code{_Decimal128}.
8362 @end deftypefn
8363
8364 @deftypefn {Built-in Function} float __builtin_inff (void)
8365 Similar to @code{__builtin_inf}, except the return type is @code{float}.
8366 This function is suitable for implementing the ISO C99 macro @code{INFINITY}.
8367 @end deftypefn
8368
8369 @deftypefn {Built-in Function} {long double} __builtin_infl (void)
8370 Similar to @code{__builtin_inf}, except the return
8371 type is @code{long double}.
8372 @end deftypefn
8373
8374 @deftypefn {Built-in Function} int __builtin_isinf_sign (...)
8375 Similar to @code{isinf}, except the return value will be negative for
8376 an argument of @code{-Inf}. Note while the parameter list is an
8377 ellipsis, this function only accepts exactly one floating point
8378 argument. GCC treats this parameter as type-generic, which means it
8379 does not do default promotion from float to double.
8380 @end deftypefn
8381
8382 @deftypefn {Built-in Function} double __builtin_nan (const char *str)
8383 This is an implementation of the ISO C99 function @code{nan}.
8384
8385 Since ISO C99 defines this function in terms of @code{strtod}, which we
8386 do not implement, a description of the parsing is in order. The string
8387 is parsed as by @code{strtol}; that is, the base is recognized by
8388 leading @samp{0} or @samp{0x} prefixes. The number parsed is placed
8389 in the significand such that the least significant bit of the number
8390 is at the least significant bit of the significand. The number is
8391 truncated to fit the significand field provided. The significand is
8392 forced to be a quiet NaN@.
8393
8394 This function, if given a string literal all of which would have been
8395 consumed by strtol, is evaluated early enough that it is considered a
8396 compile-time constant.
8397 @end deftypefn
8398
8399 @deftypefn {Built-in Function} _Decimal32 __builtin_nand32 (const char *str)
8400 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal32}.
8401 @end deftypefn
8402
8403 @deftypefn {Built-in Function} _Decimal64 __builtin_nand64 (const char *str)
8404 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal64}.
8405 @end deftypefn
8406
8407 @deftypefn {Built-in Function} _Decimal128 __builtin_nand128 (const char *str)
8408 Similar to @code{__builtin_nan}, except the return type is @code{_Decimal128}.
8409 @end deftypefn
8410
8411 @deftypefn {Built-in Function} float __builtin_nanf (const char *str)
8412 Similar to @code{__builtin_nan}, except the return type is @code{float}.
8413 @end deftypefn
8414
8415 @deftypefn {Built-in Function} {long double} __builtin_nanl (const char *str)
8416 Similar to @code{__builtin_nan}, except the return type is @code{long double}.
8417 @end deftypefn
8418
8419 @deftypefn {Built-in Function} double __builtin_nans (const char *str)
8420 Similar to @code{__builtin_nan}, except the significand is forced
8421 to be a signaling NaN@. The @code{nans} function is proposed by
8422 @uref{http://www.open-std.org/jtc1/sc22/wg14/www/docs/n965.htm,,WG14 N965}.
8423 @end deftypefn
8424
8425 @deftypefn {Built-in Function} float __builtin_nansf (const char *str)
8426 Similar to @code{__builtin_nans}, except the return type is @code{float}.
8427 @end deftypefn
8428
8429 @deftypefn {Built-in Function} {long double} __builtin_nansl (const char *str)
8430 Similar to @code{__builtin_nans}, except the return type is @code{long double}.
8431 @end deftypefn
8432
8433 @deftypefn {Built-in Function} int __builtin_ffs (unsigned int x)
8434 Returns one plus the index of the least significant 1-bit of @var{x}, or
8435 if @var{x} is zero, returns zero.
8436 @end deftypefn
8437
8438 @deftypefn {Built-in Function} int __builtin_clz (unsigned int x)
8439 Returns the number of leading 0-bits in @var{x}, starting at the most
8440 significant bit position. If @var{x} is 0, the result is undefined.
8441 @end deftypefn
8442
8443 @deftypefn {Built-in Function} int __builtin_ctz (unsigned int x)
8444 Returns the number of trailing 0-bits in @var{x}, starting at the least
8445 significant bit position. If @var{x} is 0, the result is undefined.
8446 @end deftypefn
8447
8448 @deftypefn {Built-in Function} int __builtin_clrsb (int x)
8449 Returns the number of leading redundant sign bits in @var{x}, i.e. the
8450 number of bits following the most significant bit which are identical
8451 to it. There are no special cases for 0 or other values.
8452 @end deftypefn
8453
8454 @deftypefn {Built-in Function} int __builtin_popcount (unsigned int x)
8455 Returns the number of 1-bits in @var{x}.
8456 @end deftypefn
8457
8458 @deftypefn {Built-in Function} int __builtin_parity (unsigned int x)
8459 Returns the parity of @var{x}, i.e.@: the number of 1-bits in @var{x}
8460 modulo 2.
8461 @end deftypefn
8462
8463 @deftypefn {Built-in Function} int __builtin_ffsl (unsigned long)
8464 Similar to @code{__builtin_ffs}, except the argument type is
8465 @code{unsigned long}.
8466 @end deftypefn
8467
8468 @deftypefn {Built-in Function} int __builtin_clzl (unsigned long)
8469 Similar to @code{__builtin_clz}, except the argument type is
8470 @code{unsigned long}.
8471 @end deftypefn
8472
8473 @deftypefn {Built-in Function} int __builtin_ctzl (unsigned long)
8474 Similar to @code{__builtin_ctz}, except the argument type is
8475 @code{unsigned long}.
8476 @end deftypefn
8477
8478 @deftypefn {Built-in Function} int __builtin_clrsbl (long)
8479 Similar to @code{__builtin_clrsb}, except the argument type is
8480 @code{long}.
8481 @end deftypefn
8482
8483 @deftypefn {Built-in Function} int __builtin_popcountl (unsigned long)
8484 Similar to @code{__builtin_popcount}, except the argument type is
8485 @code{unsigned long}.
8486 @end deftypefn
8487
8488 @deftypefn {Built-in Function} int __builtin_parityl (unsigned long)
8489 Similar to @code{__builtin_parity}, except the argument type is
8490 @code{unsigned long}.
8491 @end deftypefn
8492
8493 @deftypefn {Built-in Function} int __builtin_ffsll (unsigned long long)
8494 Similar to @code{__builtin_ffs}, except the argument type is
8495 @code{unsigned long long}.
8496 @end deftypefn
8497
8498 @deftypefn {Built-in Function} int __builtin_clzll (unsigned long long)
8499 Similar to @code{__builtin_clz}, except the argument type is
8500 @code{unsigned long long}.
8501 @end deftypefn
8502
8503 @deftypefn {Built-in Function} int __builtin_ctzll (unsigned long long)
8504 Similar to @code{__builtin_ctz}, except the argument type is
8505 @code{unsigned long long}.
8506 @end deftypefn
8507
8508 @deftypefn {Built-in Function} int __builtin_clrsbll (long long)
8509 Similar to @code{__builtin_clrsb}, except the argument type is
8510 @code{long long}.
8511 @end deftypefn
8512
8513 @deftypefn {Built-in Function} int __builtin_popcountll (unsigned long long)
8514 Similar to @code{__builtin_popcount}, except the argument type is
8515 @code{unsigned long long}.
8516 @end deftypefn
8517
8518 @deftypefn {Built-in Function} int __builtin_parityll (unsigned long long)
8519 Similar to @code{__builtin_parity}, except the argument type is
8520 @code{unsigned long long}.
8521 @end deftypefn
8522
8523 @deftypefn {Built-in Function} double __builtin_powi (double, int)
8524 Returns the first argument raised to the power of the second. Unlike the
8525 @code{pow} function no guarantees about precision and rounding are made.
8526 @end deftypefn
8527
8528 @deftypefn {Built-in Function} float __builtin_powif (float, int)
8529 Similar to @code{__builtin_powi}, except the argument and return types
8530 are @code{float}.
8531 @end deftypefn
8532
8533 @deftypefn {Built-in Function} {long double} __builtin_powil (long double, int)
8534 Similar to @code{__builtin_powi}, except the argument and return types
8535 are @code{long double}.
8536 @end deftypefn
8537
8538 @deftypefn {Built-in Function} int32_t __builtin_bswap32 (int32_t x)
8539 Returns @var{x} with the order of the bytes reversed; for example,
8540 @code{0xaabbccdd} becomes @code{0xddccbbaa}. Byte here always means
8541 exactly 8 bits.
8542 @end deftypefn
8543
8544 @deftypefn {Built-in Function} int64_t __builtin_bswap64 (int64_t x)
8545 Similar to @code{__builtin_bswap32}, except the argument and return types
8546 are 64-bit.
8547 @end deftypefn
8548
8549 @node Target Builtins
8550 @section Built-in Functions Specific to Particular Target Machines
8551
8552 On some target machines, GCC supports many built-in functions specific
8553 to those machines. Generally these generate calls to specific machine
8554 instructions, but allow the compiler to schedule those calls.
8555
8556 @menu
8557 * Alpha Built-in Functions::
8558 * ARM iWMMXt Built-in Functions::
8559 * ARM NEON Intrinsics::
8560 * AVR Built-in Functions::
8561 * Blackfin Built-in Functions::
8562 * FR-V Built-in Functions::
8563 * X86 Built-in Functions::
8564 * MIPS DSP Built-in Functions::
8565 * MIPS Paired-Single Support::
8566 * MIPS Loongson Built-in Functions::
8567 * Other MIPS Built-in Functions::
8568 * picoChip Built-in Functions::
8569 * PowerPC AltiVec/VSX Built-in Functions::
8570 * RX Built-in Functions::
8571 * SPARC VIS Built-in Functions::
8572 * SPU Built-in Functions::
8573 * TI C6X Built-in Functions::
8574 * TILE-Gx Built-in Functions::
8575 * TILEPro Built-in Functions::
8576 @end menu
8577
8578 @node Alpha Built-in Functions
8579 @subsection Alpha Built-in Functions
8580
8581 These built-in functions are available for the Alpha family of
8582 processors, depending on the command-line switches used.
8583
8584 The following built-in functions are always available. They
8585 all generate the machine instruction that is part of the name.
8586
8587 @smallexample
8588 long __builtin_alpha_implver (void)
8589 long __builtin_alpha_rpcc (void)
8590 long __builtin_alpha_amask (long)
8591 long __builtin_alpha_cmpbge (long, long)
8592 long __builtin_alpha_extbl (long, long)
8593 long __builtin_alpha_extwl (long, long)
8594 long __builtin_alpha_extll (long, long)
8595 long __builtin_alpha_extql (long, long)
8596 long __builtin_alpha_extwh (long, long)
8597 long __builtin_alpha_extlh (long, long)
8598 long __builtin_alpha_extqh (long, long)
8599 long __builtin_alpha_insbl (long, long)
8600 long __builtin_alpha_inswl (long, long)
8601 long __builtin_alpha_insll (long, long)
8602 long __builtin_alpha_insql (long, long)
8603 long __builtin_alpha_inswh (long, long)
8604 long __builtin_alpha_inslh (long, long)
8605 long __builtin_alpha_insqh (long, long)
8606 long __builtin_alpha_mskbl (long, long)
8607 long __builtin_alpha_mskwl (long, long)
8608 long __builtin_alpha_mskll (long, long)
8609 long __builtin_alpha_mskql (long, long)
8610 long __builtin_alpha_mskwh (long, long)
8611 long __builtin_alpha_msklh (long, long)
8612 long __builtin_alpha_mskqh (long, long)
8613 long __builtin_alpha_umulh (long, long)
8614 long __builtin_alpha_zap (long, long)
8615 long __builtin_alpha_zapnot (long, long)
8616 @end smallexample
8617
8618 The following built-in functions are always with @option{-mmax}
8619 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{pca56} or
8620 later. They all generate the machine instruction that is part
8621 of the name.
8622
8623 @smallexample
8624 long __builtin_alpha_pklb (long)
8625 long __builtin_alpha_pkwb (long)
8626 long __builtin_alpha_unpkbl (long)
8627 long __builtin_alpha_unpkbw (long)
8628 long __builtin_alpha_minub8 (long, long)
8629 long __builtin_alpha_minsb8 (long, long)
8630 long __builtin_alpha_minuw4 (long, long)
8631 long __builtin_alpha_minsw4 (long, long)
8632 long __builtin_alpha_maxub8 (long, long)
8633 long __builtin_alpha_maxsb8 (long, long)
8634 long __builtin_alpha_maxuw4 (long, long)
8635 long __builtin_alpha_maxsw4 (long, long)
8636 long __builtin_alpha_perr (long, long)
8637 @end smallexample
8638
8639 The following built-in functions are always with @option{-mcix}
8640 or @option{-mcpu=@var{cpu}} where @var{cpu} is @code{ev67} or
8641 later. They all generate the machine instruction that is part
8642 of the name.
8643
8644 @smallexample
8645 long __builtin_alpha_cttz (long)
8646 long __builtin_alpha_ctlz (long)
8647 long __builtin_alpha_ctpop (long)
8648 @end smallexample
8649
8650 The following builtins are available on systems that use the OSF/1
8651 PALcode. Normally they invoke the @code{rduniq} and @code{wruniq}
8652 PAL calls, but when invoked with @option{-mtls-kernel}, they invoke
8653 @code{rdval} and @code{wrval}.
8654
8655 @smallexample
8656 void *__builtin_thread_pointer (void)
8657 void __builtin_set_thread_pointer (void *)
8658 @end smallexample
8659
8660 @node ARM iWMMXt Built-in Functions
8661 @subsection ARM iWMMXt Built-in Functions
8662
8663 These built-in functions are available for the ARM family of
8664 processors when the @option{-mcpu=iwmmxt} switch is used:
8665
8666 @smallexample
8667 typedef int v2si __attribute__ ((vector_size (8)));
8668 typedef short v4hi __attribute__ ((vector_size (8)));
8669 typedef char v8qi __attribute__ ((vector_size (8)));
8670
8671 int __builtin_arm_getwcx (int)
8672 void __builtin_arm_setwcx (int, int)
8673 int __builtin_arm_textrmsb (v8qi, int)
8674 int __builtin_arm_textrmsh (v4hi, int)
8675 int __builtin_arm_textrmsw (v2si, int)
8676 int __builtin_arm_textrmub (v8qi, int)
8677 int __builtin_arm_textrmuh (v4hi, int)
8678 int __builtin_arm_textrmuw (v2si, int)
8679 v8qi __builtin_arm_tinsrb (v8qi, int)
8680 v4hi __builtin_arm_tinsrh (v4hi, int)
8681 v2si __builtin_arm_tinsrw (v2si, int)
8682 long long __builtin_arm_tmia (long long, int, int)
8683 long long __builtin_arm_tmiabb (long long, int, int)
8684 long long __builtin_arm_tmiabt (long long, int, int)
8685 long long __builtin_arm_tmiaph (long long, int, int)
8686 long long __builtin_arm_tmiatb (long long, int, int)
8687 long long __builtin_arm_tmiatt (long long, int, int)
8688 int __builtin_arm_tmovmskb (v8qi)
8689 int __builtin_arm_tmovmskh (v4hi)
8690 int __builtin_arm_tmovmskw (v2si)
8691 long long __builtin_arm_waccb (v8qi)
8692 long long __builtin_arm_wacch (v4hi)
8693 long long __builtin_arm_waccw (v2si)
8694 v8qi __builtin_arm_waddb (v8qi, v8qi)
8695 v8qi __builtin_arm_waddbss (v8qi, v8qi)
8696 v8qi __builtin_arm_waddbus (v8qi, v8qi)
8697 v4hi __builtin_arm_waddh (v4hi, v4hi)
8698 v4hi __builtin_arm_waddhss (v4hi, v4hi)
8699 v4hi __builtin_arm_waddhus (v4hi, v4hi)
8700 v2si __builtin_arm_waddw (v2si, v2si)
8701 v2si __builtin_arm_waddwss (v2si, v2si)
8702 v2si __builtin_arm_waddwus (v2si, v2si)
8703 v8qi __builtin_arm_walign (v8qi, v8qi, int)
8704 long long __builtin_arm_wand(long long, long long)
8705 long long __builtin_arm_wandn (long long, long long)
8706 v8qi __builtin_arm_wavg2b (v8qi, v8qi)
8707 v8qi __builtin_arm_wavg2br (v8qi, v8qi)
8708 v4hi __builtin_arm_wavg2h (v4hi, v4hi)
8709 v4hi __builtin_arm_wavg2hr (v4hi, v4hi)
8710 v8qi __builtin_arm_wcmpeqb (v8qi, v8qi)
8711 v4hi __builtin_arm_wcmpeqh (v4hi, v4hi)
8712 v2si __builtin_arm_wcmpeqw (v2si, v2si)
8713 v8qi __builtin_arm_wcmpgtsb (v8qi, v8qi)
8714 v4hi __builtin_arm_wcmpgtsh (v4hi, v4hi)
8715 v2si __builtin_arm_wcmpgtsw (v2si, v2si)
8716 v8qi __builtin_arm_wcmpgtub (v8qi, v8qi)
8717 v4hi __builtin_arm_wcmpgtuh (v4hi, v4hi)
8718 v2si __builtin_arm_wcmpgtuw (v2si, v2si)
8719 long long __builtin_arm_wmacs (long long, v4hi, v4hi)
8720 long long __builtin_arm_wmacsz (v4hi, v4hi)
8721 long long __builtin_arm_wmacu (long long, v4hi, v4hi)
8722 long long __builtin_arm_wmacuz (v4hi, v4hi)
8723 v4hi __builtin_arm_wmadds (v4hi, v4hi)
8724 v4hi __builtin_arm_wmaddu (v4hi, v4hi)
8725 v8qi __builtin_arm_wmaxsb (v8qi, v8qi)
8726 v4hi __builtin_arm_wmaxsh (v4hi, v4hi)
8727 v2si __builtin_arm_wmaxsw (v2si, v2si)
8728 v8qi __builtin_arm_wmaxub (v8qi, v8qi)
8729 v4hi __builtin_arm_wmaxuh (v4hi, v4hi)
8730 v2si __builtin_arm_wmaxuw (v2si, v2si)
8731 v8qi __builtin_arm_wminsb (v8qi, v8qi)
8732 v4hi __builtin_arm_wminsh (v4hi, v4hi)
8733 v2si __builtin_arm_wminsw (v2si, v2si)
8734 v8qi __builtin_arm_wminub (v8qi, v8qi)
8735 v4hi __builtin_arm_wminuh (v4hi, v4hi)
8736 v2si __builtin_arm_wminuw (v2si, v2si)
8737 v4hi __builtin_arm_wmulsm (v4hi, v4hi)
8738 v4hi __builtin_arm_wmulul (v4hi, v4hi)
8739 v4hi __builtin_arm_wmulum (v4hi, v4hi)
8740 long long __builtin_arm_wor (long long, long long)
8741 v2si __builtin_arm_wpackdss (long long, long long)
8742 v2si __builtin_arm_wpackdus (long long, long long)
8743 v8qi __builtin_arm_wpackhss (v4hi, v4hi)
8744 v8qi __builtin_arm_wpackhus (v4hi, v4hi)
8745 v4hi __builtin_arm_wpackwss (v2si, v2si)
8746 v4hi __builtin_arm_wpackwus (v2si, v2si)
8747 long long __builtin_arm_wrord (long long, long long)
8748 long long __builtin_arm_wrordi (long long, int)
8749 v4hi __builtin_arm_wrorh (v4hi, long long)
8750 v4hi __builtin_arm_wrorhi (v4hi, int)
8751 v2si __builtin_arm_wrorw (v2si, long long)
8752 v2si __builtin_arm_wrorwi (v2si, int)
8753 v2si __builtin_arm_wsadb (v8qi, v8qi)
8754 v2si __builtin_arm_wsadbz (v8qi, v8qi)
8755 v2si __builtin_arm_wsadh (v4hi, v4hi)
8756 v2si __builtin_arm_wsadhz (v4hi, v4hi)
8757 v4hi __builtin_arm_wshufh (v4hi, int)
8758 long long __builtin_arm_wslld (long long, long long)
8759 long long __builtin_arm_wslldi (long long, int)
8760 v4hi __builtin_arm_wsllh (v4hi, long long)
8761 v4hi __builtin_arm_wsllhi (v4hi, int)
8762 v2si __builtin_arm_wsllw (v2si, long long)
8763 v2si __builtin_arm_wsllwi (v2si, int)
8764 long long __builtin_arm_wsrad (long long, long long)
8765 long long __builtin_arm_wsradi (long long, int)
8766 v4hi __builtin_arm_wsrah (v4hi, long long)
8767 v4hi __builtin_arm_wsrahi (v4hi, int)
8768 v2si __builtin_arm_wsraw (v2si, long long)
8769 v2si __builtin_arm_wsrawi (v2si, int)
8770 long long __builtin_arm_wsrld (long long, long long)
8771 long long __builtin_arm_wsrldi (long long, int)
8772 v4hi __builtin_arm_wsrlh (v4hi, long long)
8773 v4hi __builtin_arm_wsrlhi (v4hi, int)
8774 v2si __builtin_arm_wsrlw (v2si, long long)
8775 v2si __builtin_arm_wsrlwi (v2si, int)
8776 v8qi __builtin_arm_wsubb (v8qi, v8qi)
8777 v8qi __builtin_arm_wsubbss (v8qi, v8qi)
8778 v8qi __builtin_arm_wsubbus (v8qi, v8qi)
8779 v4hi __builtin_arm_wsubh (v4hi, v4hi)
8780 v4hi __builtin_arm_wsubhss (v4hi, v4hi)
8781 v4hi __builtin_arm_wsubhus (v4hi, v4hi)
8782 v2si __builtin_arm_wsubw (v2si, v2si)
8783 v2si __builtin_arm_wsubwss (v2si, v2si)
8784 v2si __builtin_arm_wsubwus (v2si, v2si)
8785 v4hi __builtin_arm_wunpckehsb (v8qi)
8786 v2si __builtin_arm_wunpckehsh (v4hi)
8787 long long __builtin_arm_wunpckehsw (v2si)
8788 v4hi __builtin_arm_wunpckehub (v8qi)
8789 v2si __builtin_arm_wunpckehuh (v4hi)
8790 long long __builtin_arm_wunpckehuw (v2si)
8791 v4hi __builtin_arm_wunpckelsb (v8qi)
8792 v2si __builtin_arm_wunpckelsh (v4hi)
8793 long long __builtin_arm_wunpckelsw (v2si)
8794 v4hi __builtin_arm_wunpckelub (v8qi)
8795 v2si __builtin_arm_wunpckeluh (v4hi)
8796 long long __builtin_arm_wunpckeluw (v2si)
8797 v8qi __builtin_arm_wunpckihb (v8qi, v8qi)
8798 v4hi __builtin_arm_wunpckihh (v4hi, v4hi)
8799 v2si __builtin_arm_wunpckihw (v2si, v2si)
8800 v8qi __builtin_arm_wunpckilb (v8qi, v8qi)
8801 v4hi __builtin_arm_wunpckilh (v4hi, v4hi)
8802 v2si __builtin_arm_wunpckilw (v2si, v2si)
8803 long long __builtin_arm_wxor (long long, long long)
8804 long long __builtin_arm_wzero ()
8805 @end smallexample
8806
8807 @node ARM NEON Intrinsics
8808 @subsection ARM NEON Intrinsics
8809
8810 These built-in intrinsics for the ARM Advanced SIMD extension are available
8811 when the @option{-mfpu=neon} switch is used:
8812
8813 @include arm-neon-intrinsics.texi
8814
8815 @node AVR Built-in Functions
8816 @subsection AVR Built-in Functions
8817
8818 For each built-in function for AVR, there is an equally named,
8819 uppercase built-in macro defined. That way users can easily query if
8820 or if not a specific built-in is implemented or not. For example, if
8821 @code{__builtin_avr_nop} is available the macro
8822 @code{__BUILTIN_AVR_NOP} is defined to @code{1} and undefined otherwise.
8823
8824 The following built-in functions map to the respective machine
8825 instruction, i.e. @code{nop}, @code{sei}, @code{cli}, @code{sleep},
8826 @code{wdr}, @code{swap}, @code{fmul}, @code{fmuls}
8827 resp. @code{fmulsu}. The three @code{fmul*} built-ins are implemented
8828 as library call if no hardware multiplier is available.
8829
8830 @smallexample
8831 void __builtin_avr_nop (void)
8832 void __builtin_avr_sei (void)
8833 void __builtin_avr_cli (void)
8834 void __builtin_avr_sleep (void)
8835 void __builtin_avr_wdr (void)
8836 unsigned char __builtin_avr_swap (unsigned char)
8837 unsigned int __builtin_avr_fmul (unsigned char, unsigned char)
8838 int __builtin_avr_fmuls (char, char)
8839 int __builtin_avr_fmulsu (char, unsigned char)
8840 @end smallexample
8841
8842 In order to delay execution for a specific number of cycles, GCC
8843 implements
8844 @smallexample
8845 void __builtin_avr_delay_cycles (unsigned long ticks)
8846 @end smallexample
8847
8848 @noindent
8849 @code{ticks} is the number of ticks to delay execution. Note that this
8850 built-in does not take into account the effect of interrupts which
8851 might increase delay time. @code{ticks} must be a compile time
8852 integer constant; delays with a variable number of cycles are not supported.
8853
8854 @smallexample
8855 char __builtin_avr_flash_segment (const __memx void*)
8856 @end smallexample
8857
8858 @noindent
8859 This built-in takes a byte address to the 24-bit
8860 @ref{AVR Named Address Spaces,address space} @code{__memx} and returns
8861 the number of the flash segment (the 64 KiB chunk) where the address
8862 points to. Counting starts at @code{0}.
8863 If the address does not point to flash memory, return @code{-1}.
8864
8865 @smallexample
8866 unsigned char __builtin_avr_insert_bits (unsigned long map, unsigned char bits, unsigned char val)
8867 @end smallexample
8868
8869 @noindent
8870 Insert bits from @var{bits} into @var{val} and return the resulting
8871 value. The nibbles of @var{map} determine how the insertion is
8872 performed: Let @var{X} be the @var{n}-th nibble of @var{map}
8873 @enumerate
8874 @item If @var{X} is @code{0xf},
8875 then the @var{n}-th bit of @var{val} is returned unaltered.
8876
8877 @item If X is in the range 0@dots{}7,
8878 then the @var{n}-th result bit is set to the @var{X}-th bit of @var{bits}
8879
8880 @item If X is in the range 8@dots{}@code{0xe},
8881 then the @var{n}-th result bit is undefined.
8882 @end enumerate
8883
8884 @noindent
8885 One typical use case for this built-in is adjusting input and
8886 output values to non-contiguous port layouts. Some examples:
8887
8888 @smallexample
8889 // same as val, bits is unused
8890 __builtin_avr_insert_bits (0xffffffff, bits, val)
8891 @end smallexample
8892
8893 @smallexample
8894 // same as bits, val is unused
8895 __builtin_avr_insert_bits (0x76543210, bits, val)
8896 @end smallexample
8897
8898 @smallexample
8899 // same as rotating bits by 4
8900 __builtin_avr_insert_bits (0x32107654, bits, 0)
8901 @end smallexample
8902
8903 @smallexample
8904 // high-nibble of result is the high-nibble of val
8905 // low-nibble of result is the low-nibble of bits
8906 __builtin_avr_insert_bits (0xffff3210, bits, val)
8907 @end smallexample
8908
8909 @smallexample
8910 // reverse the bit order of bits
8911 __builtin_avr_insert_bits (0x01234567, bits, 0)
8912 @end smallexample
8913
8914 @node Blackfin Built-in Functions
8915 @subsection Blackfin Built-in Functions
8916
8917 Currently, there are two Blackfin-specific built-in functions. These are
8918 used for generating @code{CSYNC} and @code{SSYNC} machine insns without
8919 using inline assembly; by using these built-in functions the compiler can
8920 automatically add workarounds for hardware errata involving these
8921 instructions. These functions are named as follows:
8922
8923 @smallexample
8924 void __builtin_bfin_csync (void)
8925 void __builtin_bfin_ssync (void)
8926 @end smallexample
8927
8928 @node FR-V Built-in Functions
8929 @subsection FR-V Built-in Functions
8930
8931 GCC provides many FR-V-specific built-in functions. In general,
8932 these functions are intended to be compatible with those described
8933 by @cite{FR-V Family, Softune C/C++ Compiler Manual (V6), Fujitsu
8934 Semiconductor}. The two exceptions are @code{__MDUNPACKH} and
8935 @code{__MBTOHE}, the gcc forms of which pass 128-bit values by
8936 pointer rather than by value.
8937
8938 Most of the functions are named after specific FR-V instructions.
8939 Such functions are said to be ``directly mapped'' and are summarized
8940 here in tabular form.
8941
8942 @menu
8943 * Argument Types::
8944 * Directly-mapped Integer Functions::
8945 * Directly-mapped Media Functions::
8946 * Raw read/write Functions::
8947 * Other Built-in Functions::
8948 @end menu
8949
8950 @node Argument Types
8951 @subsubsection Argument Types
8952
8953 The arguments to the built-in functions can be divided into three groups:
8954 register numbers, compile-time constants and run-time values. In order
8955 to make this classification clear at a glance, the arguments and return
8956 values are given the following pseudo types:
8957
8958 @multitable @columnfractions .20 .30 .15 .35
8959 @item Pseudo type @tab Real C type @tab Constant? @tab Description
8960 @item @code{uh} @tab @code{unsigned short} @tab No @tab an unsigned halfword
8961 @item @code{uw1} @tab @code{unsigned int} @tab No @tab an unsigned word
8962 @item @code{sw1} @tab @code{int} @tab No @tab a signed word
8963 @item @code{uw2} @tab @code{unsigned long long} @tab No
8964 @tab an unsigned doubleword
8965 @item @code{sw2} @tab @code{long long} @tab No @tab a signed doubleword
8966 @item @code{const} @tab @code{int} @tab Yes @tab an integer constant
8967 @item @code{acc} @tab @code{int} @tab Yes @tab an ACC register number
8968 @item @code{iacc} @tab @code{int} @tab Yes @tab an IACC register number
8969 @end multitable
8970
8971 These pseudo types are not defined by GCC, they are simply a notational
8972 convenience used in this manual.
8973
8974 Arguments of type @code{uh}, @code{uw1}, @code{sw1}, @code{uw2}
8975 and @code{sw2} are evaluated at run time. They correspond to
8976 register operands in the underlying FR-V instructions.
8977
8978 @code{const} arguments represent immediate operands in the underlying
8979 FR-V instructions. They must be compile-time constants.
8980
8981 @code{acc} arguments are evaluated at compile time and specify the number
8982 of an accumulator register. For example, an @code{acc} argument of 2
8983 will select the ACC2 register.
8984
8985 @code{iacc} arguments are similar to @code{acc} arguments but specify the
8986 number of an IACC register. See @pxref{Other Built-in Functions}
8987 for more details.
8988
8989 @node Directly-mapped Integer Functions
8990 @subsubsection Directly-mapped Integer Functions
8991
8992 The functions listed below map directly to FR-V I-type instructions.
8993
8994 @multitable @columnfractions .45 .32 .23
8995 @item Function prototype @tab Example usage @tab Assembly output
8996 @item @code{sw1 __ADDSS (sw1, sw1)}
8997 @tab @code{@var{c} = __ADDSS (@var{a}, @var{b})}
8998 @tab @code{ADDSS @var{a},@var{b},@var{c}}
8999 @item @code{sw1 __SCAN (sw1, sw1)}
9000 @tab @code{@var{c} = __SCAN (@var{a}, @var{b})}
9001 @tab @code{SCAN @var{a},@var{b},@var{c}}
9002 @item @code{sw1 __SCUTSS (sw1)}
9003 @tab @code{@var{b} = __SCUTSS (@var{a})}
9004 @tab @code{SCUTSS @var{a},@var{b}}
9005 @item @code{sw1 __SLASS (sw1, sw1)}
9006 @tab @code{@var{c} = __SLASS (@var{a}, @var{b})}
9007 @tab @code{SLASS @var{a},@var{b},@var{c}}
9008 @item @code{void __SMASS (sw1, sw1)}
9009 @tab @code{__SMASS (@var{a}, @var{b})}
9010 @tab @code{SMASS @var{a},@var{b}}
9011 @item @code{void __SMSSS (sw1, sw1)}
9012 @tab @code{__SMSSS (@var{a}, @var{b})}
9013 @tab @code{SMSSS @var{a},@var{b}}
9014 @item @code{void __SMU (sw1, sw1)}
9015 @tab @code{__SMU (@var{a}, @var{b})}
9016 @tab @code{SMU @var{a},@var{b}}
9017 @item @code{sw2 __SMUL (sw1, sw1)}
9018 @tab @code{@var{c} = __SMUL (@var{a}, @var{b})}
9019 @tab @code{SMUL @var{a},@var{b},@var{c}}
9020 @item @code{sw1 __SUBSS (sw1, sw1)}
9021 @tab @code{@var{c} = __SUBSS (@var{a}, @var{b})}
9022 @tab @code{SUBSS @var{a},@var{b},@var{c}}
9023 @item @code{uw2 __UMUL (uw1, uw1)}
9024 @tab @code{@var{c} = __UMUL (@var{a}, @var{b})}
9025 @tab @code{UMUL @var{a},@var{b},@var{c}}
9026 @end multitable
9027
9028 @node Directly-mapped Media Functions
9029 @subsubsection Directly-mapped Media Functions
9030
9031 The functions listed below map directly to FR-V M-type instructions.
9032
9033 @multitable @columnfractions .45 .32 .23
9034 @item Function prototype @tab Example usage @tab Assembly output
9035 @item @code{uw1 __MABSHS (sw1)}
9036 @tab @code{@var{b} = __MABSHS (@var{a})}
9037 @tab @code{MABSHS @var{a},@var{b}}
9038 @item @code{void __MADDACCS (acc, acc)}
9039 @tab @code{__MADDACCS (@var{b}, @var{a})}
9040 @tab @code{MADDACCS @var{a},@var{b}}
9041 @item @code{sw1 __MADDHSS (sw1, sw1)}
9042 @tab @code{@var{c} = __MADDHSS (@var{a}, @var{b})}
9043 @tab @code{MADDHSS @var{a},@var{b},@var{c}}
9044 @item @code{uw1 __MADDHUS (uw1, uw1)}
9045 @tab @code{@var{c} = __MADDHUS (@var{a}, @var{b})}
9046 @tab @code{MADDHUS @var{a},@var{b},@var{c}}
9047 @item @code{uw1 __MAND (uw1, uw1)}
9048 @tab @code{@var{c} = __MAND (@var{a}, @var{b})}
9049 @tab @code{MAND @var{a},@var{b},@var{c}}
9050 @item @code{void __MASACCS (acc, acc)}
9051 @tab @code{__MASACCS (@var{b}, @var{a})}
9052 @tab @code{MASACCS @var{a},@var{b}}
9053 @item @code{uw1 __MAVEH (uw1, uw1)}
9054 @tab @code{@var{c} = __MAVEH (@var{a}, @var{b})}
9055 @tab @code{MAVEH @var{a},@var{b},@var{c}}
9056 @item @code{uw2 __MBTOH (uw1)}
9057 @tab @code{@var{b} = __MBTOH (@var{a})}
9058 @tab @code{MBTOH @var{a},@var{b}}
9059 @item @code{void __MBTOHE (uw1 *, uw1)}
9060 @tab @code{__MBTOHE (&@var{b}, @var{a})}
9061 @tab @code{MBTOHE @var{a},@var{b}}
9062 @item @code{void __MCLRACC (acc)}
9063 @tab @code{__MCLRACC (@var{a})}
9064 @tab @code{MCLRACC @var{a}}
9065 @item @code{void __MCLRACCA (void)}
9066 @tab @code{__MCLRACCA ()}
9067 @tab @code{MCLRACCA}
9068 @item @code{uw1 __Mcop1 (uw1, uw1)}
9069 @tab @code{@var{c} = __Mcop1 (@var{a}, @var{b})}
9070 @tab @code{Mcop1 @var{a},@var{b},@var{c}}
9071 @item @code{uw1 __Mcop2 (uw1, uw1)}
9072 @tab @code{@var{c} = __Mcop2 (@var{a}, @var{b})}
9073 @tab @code{Mcop2 @var{a},@var{b},@var{c}}
9074 @item @code{uw1 __MCPLHI (uw2, const)}
9075 @tab @code{@var{c} = __MCPLHI (@var{a}, @var{b})}
9076 @tab @code{MCPLHI @var{a},#@var{b},@var{c}}
9077 @item @code{uw1 __MCPLI (uw2, const)}
9078 @tab @code{@var{c} = __MCPLI (@var{a}, @var{b})}
9079 @tab @code{MCPLI @var{a},#@var{b},@var{c}}
9080 @item @code{void __MCPXIS (acc, sw1, sw1)}
9081 @tab @code{__MCPXIS (@var{c}, @var{a}, @var{b})}
9082 @tab @code{MCPXIS @var{a},@var{b},@var{c}}
9083 @item @code{void __MCPXIU (acc, uw1, uw1)}
9084 @tab @code{__MCPXIU (@var{c}, @var{a}, @var{b})}
9085 @tab @code{MCPXIU @var{a},@var{b},@var{c}}
9086 @item @code{void __MCPXRS (acc, sw1, sw1)}
9087 @tab @code{__MCPXRS (@var{c}, @var{a}, @var{b})}
9088 @tab @code{MCPXRS @var{a},@var{b},@var{c}}
9089 @item @code{void __MCPXRU (acc, uw1, uw1)}
9090 @tab @code{__MCPXRU (@var{c}, @var{a}, @var{b})}
9091 @tab @code{MCPXRU @var{a},@var{b},@var{c}}
9092 @item @code{uw1 __MCUT (acc, uw1)}
9093 @tab @code{@var{c} = __MCUT (@var{a}, @var{b})}
9094 @tab @code{MCUT @var{a},@var{b},@var{c}}
9095 @item @code{uw1 __MCUTSS (acc, sw1)}
9096 @tab @code{@var{c} = __MCUTSS (@var{a}, @var{b})}
9097 @tab @code{MCUTSS @var{a},@var{b},@var{c}}
9098 @item @code{void __MDADDACCS (acc, acc)}
9099 @tab @code{__MDADDACCS (@var{b}, @var{a})}
9100 @tab @code{MDADDACCS @var{a},@var{b}}
9101 @item @code{void __MDASACCS (acc, acc)}
9102 @tab @code{__MDASACCS (@var{b}, @var{a})}
9103 @tab @code{MDASACCS @var{a},@var{b}}
9104 @item @code{uw2 __MDCUTSSI (acc, const)}
9105 @tab @code{@var{c} = __MDCUTSSI (@var{a}, @var{b})}
9106 @tab @code{MDCUTSSI @var{a},#@var{b},@var{c}}
9107 @item @code{uw2 __MDPACKH (uw2, uw2)}
9108 @tab @code{@var{c} = __MDPACKH (@var{a}, @var{b})}
9109 @tab @code{MDPACKH @var{a},@var{b},@var{c}}
9110 @item @code{uw2 __MDROTLI (uw2, const)}
9111 @tab @code{@var{c} = __MDROTLI (@var{a}, @var{b})}
9112 @tab @code{MDROTLI @var{a},#@var{b},@var{c}}
9113 @item @code{void __MDSUBACCS (acc, acc)}
9114 @tab @code{__MDSUBACCS (@var{b}, @var{a})}
9115 @tab @code{MDSUBACCS @var{a},@var{b}}
9116 @item @code{void __MDUNPACKH (uw1 *, uw2)}
9117 @tab @code{__MDUNPACKH (&@var{b}, @var{a})}
9118 @tab @code{MDUNPACKH @var{a},@var{b}}
9119 @item @code{uw2 __MEXPDHD (uw1, const)}
9120 @tab @code{@var{c} = __MEXPDHD (@var{a}, @var{b})}
9121 @tab @code{MEXPDHD @var{a},#@var{b},@var{c}}
9122 @item @code{uw1 __MEXPDHW (uw1, const)}
9123 @tab @code{@var{c} = __MEXPDHW (@var{a}, @var{b})}
9124 @tab @code{MEXPDHW @var{a},#@var{b},@var{c}}
9125 @item @code{uw1 __MHDSETH (uw1, const)}
9126 @tab @code{@var{c} = __MHDSETH (@var{a}, @var{b})}
9127 @tab @code{MHDSETH @var{a},#@var{b},@var{c}}
9128 @item @code{sw1 __MHDSETS (const)}
9129 @tab @code{@var{b} = __MHDSETS (@var{a})}
9130 @tab @code{MHDSETS #@var{a},@var{b}}
9131 @item @code{uw1 __MHSETHIH (uw1, const)}
9132 @tab @code{@var{b} = __MHSETHIH (@var{b}, @var{a})}
9133 @tab @code{MHSETHIH #@var{a},@var{b}}
9134 @item @code{sw1 __MHSETHIS (sw1, const)}
9135 @tab @code{@var{b} = __MHSETHIS (@var{b}, @var{a})}
9136 @tab @code{MHSETHIS #@var{a},@var{b}}
9137 @item @code{uw1 __MHSETLOH (uw1, const)}
9138 @tab @code{@var{b} = __MHSETLOH (@var{b}, @var{a})}
9139 @tab @code{MHSETLOH #@var{a},@var{b}}
9140 @item @code{sw1 __MHSETLOS (sw1, const)}
9141 @tab @code{@var{b} = __MHSETLOS (@var{b}, @var{a})}
9142 @tab @code{MHSETLOS #@var{a},@var{b}}
9143 @item @code{uw1 __MHTOB (uw2)}
9144 @tab @code{@var{b} = __MHTOB (@var{a})}
9145 @tab @code{MHTOB @var{a},@var{b}}
9146 @item @code{void __MMACHS (acc, sw1, sw1)}
9147 @tab @code{__MMACHS (@var{c}, @var{a}, @var{b})}
9148 @tab @code{MMACHS @var{a},@var{b},@var{c}}
9149 @item @code{void __MMACHU (acc, uw1, uw1)}
9150 @tab @code{__MMACHU (@var{c}, @var{a}, @var{b})}
9151 @tab @code{MMACHU @var{a},@var{b},@var{c}}
9152 @item @code{void __MMRDHS (acc, sw1, sw1)}
9153 @tab @code{__MMRDHS (@var{c}, @var{a}, @var{b})}
9154 @tab @code{MMRDHS @var{a},@var{b},@var{c}}
9155 @item @code{void __MMRDHU (acc, uw1, uw1)}
9156 @tab @code{__MMRDHU (@var{c}, @var{a}, @var{b})}
9157 @tab @code{MMRDHU @var{a},@var{b},@var{c}}
9158 @item @code{void __MMULHS (acc, sw1, sw1)}
9159 @tab @code{__MMULHS (@var{c}, @var{a}, @var{b})}
9160 @tab @code{MMULHS @var{a},@var{b},@var{c}}
9161 @item @code{void __MMULHU (acc, uw1, uw1)}
9162 @tab @code{__MMULHU (@var{c}, @var{a}, @var{b})}
9163 @tab @code{MMULHU @var{a},@var{b},@var{c}}
9164 @item @code{void __MMULXHS (acc, sw1, sw1)}
9165 @tab @code{__MMULXHS (@var{c}, @var{a}, @var{b})}
9166 @tab @code{MMULXHS @var{a},@var{b},@var{c}}
9167 @item @code{void __MMULXHU (acc, uw1, uw1)}
9168 @tab @code{__MMULXHU (@var{c}, @var{a}, @var{b})}
9169 @tab @code{MMULXHU @var{a},@var{b},@var{c}}
9170 @item @code{uw1 __MNOT (uw1)}
9171 @tab @code{@var{b} = __MNOT (@var{a})}
9172 @tab @code{MNOT @var{a},@var{b}}
9173 @item @code{uw1 __MOR (uw1, uw1)}
9174 @tab @code{@var{c} = __MOR (@var{a}, @var{b})}
9175 @tab @code{MOR @var{a},@var{b},@var{c}}
9176 @item @code{uw1 __MPACKH (uh, uh)}
9177 @tab @code{@var{c} = __MPACKH (@var{a}, @var{b})}
9178 @tab @code{MPACKH @var{a},@var{b},@var{c}}
9179 @item @code{sw2 __MQADDHSS (sw2, sw2)}
9180 @tab @code{@var{c} = __MQADDHSS (@var{a}, @var{b})}
9181 @tab @code{MQADDHSS @var{a},@var{b},@var{c}}
9182 @item @code{uw2 __MQADDHUS (uw2, uw2)}
9183 @tab @code{@var{c} = __MQADDHUS (@var{a}, @var{b})}
9184 @tab @code{MQADDHUS @var{a},@var{b},@var{c}}
9185 @item @code{void __MQCPXIS (acc, sw2, sw2)}
9186 @tab @code{__MQCPXIS (@var{c}, @var{a}, @var{b})}
9187 @tab @code{MQCPXIS @var{a},@var{b},@var{c}}
9188 @item @code{void __MQCPXIU (acc, uw2, uw2)}
9189 @tab @code{__MQCPXIU (@var{c}, @var{a}, @var{b})}
9190 @tab @code{MQCPXIU @var{a},@var{b},@var{c}}
9191 @item @code{void __MQCPXRS (acc, sw2, sw2)}
9192 @tab @code{__MQCPXRS (@var{c}, @var{a}, @var{b})}
9193 @tab @code{MQCPXRS @var{a},@var{b},@var{c}}
9194 @item @code{void __MQCPXRU (acc, uw2, uw2)}
9195 @tab @code{__MQCPXRU (@var{c}, @var{a}, @var{b})}
9196 @tab @code{MQCPXRU @var{a},@var{b},@var{c}}
9197 @item @code{sw2 __MQLCLRHS (sw2, sw2)}
9198 @tab @code{@var{c} = __MQLCLRHS (@var{a}, @var{b})}
9199 @tab @code{MQLCLRHS @var{a},@var{b},@var{c}}
9200 @item @code{sw2 __MQLMTHS (sw2, sw2)}
9201 @tab @code{@var{c} = __MQLMTHS (@var{a}, @var{b})}
9202 @tab @code{MQLMTHS @var{a},@var{b},@var{c}}
9203 @item @code{void __MQMACHS (acc, sw2, sw2)}
9204 @tab @code{__MQMACHS (@var{c}, @var{a}, @var{b})}
9205 @tab @code{MQMACHS @var{a},@var{b},@var{c}}
9206 @item @code{void __MQMACHU (acc, uw2, uw2)}
9207 @tab @code{__MQMACHU (@var{c}, @var{a}, @var{b})}
9208 @tab @code{MQMACHU @var{a},@var{b},@var{c}}
9209 @item @code{void __MQMACXHS (acc, sw2, sw2)}
9210 @tab @code{__MQMACXHS (@var{c}, @var{a}, @var{b})}
9211 @tab @code{MQMACXHS @var{a},@var{b},@var{c}}
9212 @item @code{void __MQMULHS (acc, sw2, sw2)}
9213 @tab @code{__MQMULHS (@var{c}, @var{a}, @var{b})}
9214 @tab @code{MQMULHS @var{a},@var{b},@var{c}}
9215 @item @code{void __MQMULHU (acc, uw2, uw2)}
9216 @tab @code{__MQMULHU (@var{c}, @var{a}, @var{b})}
9217 @tab @code{MQMULHU @var{a},@var{b},@var{c}}
9218 @item @code{void __MQMULXHS (acc, sw2, sw2)}
9219 @tab @code{__MQMULXHS (@var{c}, @var{a}, @var{b})}
9220 @tab @code{MQMULXHS @var{a},@var{b},@var{c}}
9221 @item @code{void __MQMULXHU (acc, uw2, uw2)}
9222 @tab @code{__MQMULXHU (@var{c}, @var{a}, @var{b})}
9223 @tab @code{MQMULXHU @var{a},@var{b},@var{c}}
9224 @item @code{sw2 __MQSATHS (sw2, sw2)}
9225 @tab @code{@var{c} = __MQSATHS (@var{a}, @var{b})}
9226 @tab @code{MQSATHS @var{a},@var{b},@var{c}}
9227 @item @code{uw2 __MQSLLHI (uw2, int)}
9228 @tab @code{@var{c} = __MQSLLHI (@var{a}, @var{b})}
9229 @tab @code{MQSLLHI @var{a},@var{b},@var{c}}
9230 @item @code{sw2 __MQSRAHI (sw2, int)}
9231 @tab @code{@var{c} = __MQSRAHI (@var{a}, @var{b})}
9232 @tab @code{MQSRAHI @var{a},@var{b},@var{c}}
9233 @item @code{sw2 __MQSUBHSS (sw2, sw2)}
9234 @tab @code{@var{c} = __MQSUBHSS (@var{a}, @var{b})}
9235 @tab @code{MQSUBHSS @var{a},@var{b},@var{c}}
9236 @item @code{uw2 __MQSUBHUS (uw2, uw2)}
9237 @tab @code{@var{c} = __MQSUBHUS (@var{a}, @var{b})}
9238 @tab @code{MQSUBHUS @var{a},@var{b},@var{c}}
9239 @item @code{void __MQXMACHS (acc, sw2, sw2)}
9240 @tab @code{__MQXMACHS (@var{c}, @var{a}, @var{b})}
9241 @tab @code{MQXMACHS @var{a},@var{b},@var{c}}
9242 @item @code{void __MQXMACXHS (acc, sw2, sw2)}
9243 @tab @code{__MQXMACXHS (@var{c}, @var{a}, @var{b})}
9244 @tab @code{MQXMACXHS @var{a},@var{b},@var{c}}
9245 @item @code{uw1 __MRDACC (acc)}
9246 @tab @code{@var{b} = __MRDACC (@var{a})}
9247 @tab @code{MRDACC @var{a},@var{b}}
9248 @item @code{uw1 __MRDACCG (acc)}
9249 @tab @code{@var{b} = __MRDACCG (@var{a})}
9250 @tab @code{MRDACCG @var{a},@var{b}}
9251 @item @code{uw1 __MROTLI (uw1, const)}
9252 @tab @code{@var{c} = __MROTLI (@var{a}, @var{b})}
9253 @tab @code{MROTLI @var{a},#@var{b},@var{c}}
9254 @item @code{uw1 __MROTRI (uw1, const)}
9255 @tab @code{@var{c} = __MROTRI (@var{a}, @var{b})}
9256 @tab @code{MROTRI @var{a},#@var{b},@var{c}}
9257 @item @code{sw1 __MSATHS (sw1, sw1)}
9258 @tab @code{@var{c} = __MSATHS (@var{a}, @var{b})}
9259 @tab @code{MSATHS @var{a},@var{b},@var{c}}
9260 @item @code{uw1 __MSATHU (uw1, uw1)}
9261 @tab @code{@var{c} = __MSATHU (@var{a}, @var{b})}
9262 @tab @code{MSATHU @var{a},@var{b},@var{c}}
9263 @item @code{uw1 __MSLLHI (uw1, const)}
9264 @tab @code{@var{c} = __MSLLHI (@var{a}, @var{b})}
9265 @tab @code{MSLLHI @var{a},#@var{b},@var{c}}
9266 @item @code{sw1 __MSRAHI (sw1, const)}
9267 @tab @code{@var{c} = __MSRAHI (@var{a}, @var{b})}
9268 @tab @code{MSRAHI @var{a},#@var{b},@var{c}}
9269 @item @code{uw1 __MSRLHI (uw1, const)}
9270 @tab @code{@var{c} = __MSRLHI (@var{a}, @var{b})}
9271 @tab @code{MSRLHI @var{a},#@var{b},@var{c}}
9272 @item @code{void __MSUBACCS (acc, acc)}
9273 @tab @code{__MSUBACCS (@var{b}, @var{a})}
9274 @tab @code{MSUBACCS @var{a},@var{b}}
9275 @item @code{sw1 __MSUBHSS (sw1, sw1)}
9276 @tab @code{@var{c} = __MSUBHSS (@var{a}, @var{b})}
9277 @tab @code{MSUBHSS @var{a},@var{b},@var{c}}
9278 @item @code{uw1 __MSUBHUS (uw1, uw1)}
9279 @tab @code{@var{c} = __MSUBHUS (@var{a}, @var{b})}
9280 @tab @code{MSUBHUS @var{a},@var{b},@var{c}}
9281 @item @code{void __MTRAP (void)}
9282 @tab @code{__MTRAP ()}
9283 @tab @code{MTRAP}
9284 @item @code{uw2 __MUNPACKH (uw1)}
9285 @tab @code{@var{b} = __MUNPACKH (@var{a})}
9286 @tab @code{MUNPACKH @var{a},@var{b}}
9287 @item @code{uw1 __MWCUT (uw2, uw1)}
9288 @tab @code{@var{c} = __MWCUT (@var{a}, @var{b})}
9289 @tab @code{MWCUT @var{a},@var{b},@var{c}}
9290 @item @code{void __MWTACC (acc, uw1)}
9291 @tab @code{__MWTACC (@var{b}, @var{a})}
9292 @tab @code{MWTACC @var{a},@var{b}}
9293 @item @code{void __MWTACCG (acc, uw1)}
9294 @tab @code{__MWTACCG (@var{b}, @var{a})}
9295 @tab @code{MWTACCG @var{a},@var{b}}
9296 @item @code{uw1 __MXOR (uw1, uw1)}
9297 @tab @code{@var{c} = __MXOR (@var{a}, @var{b})}
9298 @tab @code{MXOR @var{a},@var{b},@var{c}}
9299 @end multitable
9300
9301 @node Raw read/write Functions
9302 @subsubsection Raw read/write Functions
9303
9304 This sections describes built-in functions related to read and write
9305 instructions to access memory. These functions generate
9306 @code{membar} instructions to flush the I/O load and stores where
9307 appropriate, as described in Fujitsu's manual described above.
9308
9309 @table @code
9310
9311 @item unsigned char __builtin_read8 (void *@var{data})
9312 @item unsigned short __builtin_read16 (void *@var{data})
9313 @item unsigned long __builtin_read32 (void *@var{data})
9314 @item unsigned long long __builtin_read64 (void *@var{data})
9315
9316 @item void __builtin_write8 (void *@var{data}, unsigned char @var{datum})
9317 @item void __builtin_write16 (void *@var{data}, unsigned short @var{datum})
9318 @item void __builtin_write32 (void *@var{data}, unsigned long @var{datum})
9319 @item void __builtin_write64 (void *@var{data}, unsigned long long @var{datum})
9320 @end table
9321
9322 @node Other Built-in Functions
9323 @subsubsection Other Built-in Functions
9324
9325 This section describes built-in functions that are not named after
9326 a specific FR-V instruction.
9327
9328 @table @code
9329 @item sw2 __IACCreadll (iacc @var{reg})
9330 Return the full 64-bit value of IACC0@. The @var{reg} argument is reserved
9331 for future expansion and must be 0.
9332
9333 @item sw1 __IACCreadl (iacc @var{reg})
9334 Return the value of IACC0H if @var{reg} is 0 and IACC0L if @var{reg} is 1.
9335 Other values of @var{reg} are rejected as invalid.
9336
9337 @item void __IACCsetll (iacc @var{reg}, sw2 @var{x})
9338 Set the full 64-bit value of IACC0 to @var{x}. The @var{reg} argument
9339 is reserved for future expansion and must be 0.
9340
9341 @item void __IACCsetl (iacc @var{reg}, sw1 @var{x})
9342 Set IACC0H to @var{x} if @var{reg} is 0 and IACC0L to @var{x} if @var{reg}
9343 is 1. Other values of @var{reg} are rejected as invalid.
9344
9345 @item void __data_prefetch0 (const void *@var{x})
9346 Use the @code{dcpl} instruction to load the contents of address @var{x}
9347 into the data cache.
9348
9349 @item void __data_prefetch (const void *@var{x})
9350 Use the @code{nldub} instruction to load the contents of address @var{x}
9351 into the data cache. The instruction will be issued in slot I1@.
9352 @end table
9353
9354 @node X86 Built-in Functions
9355 @subsection X86 Built-in Functions
9356
9357 These built-in functions are available for the i386 and x86-64 family
9358 of computers, depending on the command-line switches used.
9359
9360 Note that, if you specify command-line switches such as @option{-msse},
9361 the compiler could use the extended instruction sets even if the built-ins
9362 are not used explicitly in the program. For this reason, applications
9363 which perform runtime CPU detection must compile separate files for each
9364 supported architecture, using the appropriate flags. In particular,
9365 the file containing the CPU detection code should be compiled without
9366 these options.
9367
9368 The following machine modes are available for use with MMX built-in functions
9369 (@pxref{Vector Extensions}): @code{V2SI} for a vector of two 32-bit integers,
9370 @code{V4HI} for a vector of four 16-bit integers, and @code{V8QI} for a
9371 vector of eight 8-bit integers. Some of the built-in functions operate on
9372 MMX registers as a whole 64-bit entity, these use @code{V1DI} as their mode.
9373
9374 If 3DNow!@: extensions are enabled, @code{V2SF} is used as a mode for a vector
9375 of two 32-bit floating point values.
9376
9377 If SSE extensions are enabled, @code{V4SF} is used for a vector of four 32-bit
9378 floating point values. Some instructions use a vector of four 32-bit
9379 integers, these use @code{V4SI}. Finally, some instructions operate on an
9380 entire vector register, interpreting it as a 128-bit integer, these use mode
9381 @code{TI}.
9382
9383 In 64-bit mode, the x86-64 family of processors uses additional built-in
9384 functions for efficient use of @code{TF} (@code{__float128}) 128-bit
9385 floating point and @code{TC} 128-bit complex floating point values.
9386
9387 The following floating point built-in functions are available in 64-bit
9388 mode. All of them implement the function that is part of the name.
9389
9390 @smallexample
9391 __float128 __builtin_fabsq (__float128)
9392 __float128 __builtin_copysignq (__float128, __float128)
9393 @end smallexample
9394
9395 The following built-in function is always available.
9396
9397 @table @code
9398 @item void __builtin_ia32_pause (void)
9399 Generates the @code{pause} machine instruction with a compiler memory
9400 barrier.
9401 @end table
9402
9403 The following floating point built-in functions are made available in the
9404 64-bit mode.
9405
9406 @table @code
9407 @item __float128 __builtin_infq (void)
9408 Similar to @code{__builtin_inf}, except the return type is @code{__float128}.
9409 @findex __builtin_infq
9410
9411 @item __float128 __builtin_huge_valq (void)
9412 Similar to @code{__builtin_huge_val}, except the return type is @code{__float128}.
9413 @findex __builtin_huge_valq
9414 @end table
9415
9416 The following built-in functions are made available by @option{-mmmx}.
9417 All of them generate the machine instruction that is part of the name.
9418
9419 @smallexample
9420 v8qi __builtin_ia32_paddb (v8qi, v8qi)
9421 v4hi __builtin_ia32_paddw (v4hi, v4hi)
9422 v2si __builtin_ia32_paddd (v2si, v2si)
9423 v8qi __builtin_ia32_psubb (v8qi, v8qi)
9424 v4hi __builtin_ia32_psubw (v4hi, v4hi)
9425 v2si __builtin_ia32_psubd (v2si, v2si)
9426 v8qi __builtin_ia32_paddsb (v8qi, v8qi)
9427 v4hi __builtin_ia32_paddsw (v4hi, v4hi)
9428 v8qi __builtin_ia32_psubsb (v8qi, v8qi)
9429 v4hi __builtin_ia32_psubsw (v4hi, v4hi)
9430 v8qi __builtin_ia32_paddusb (v8qi, v8qi)
9431 v4hi __builtin_ia32_paddusw (v4hi, v4hi)
9432 v8qi __builtin_ia32_psubusb (v8qi, v8qi)
9433 v4hi __builtin_ia32_psubusw (v4hi, v4hi)
9434 v4hi __builtin_ia32_pmullw (v4hi, v4hi)
9435 v4hi __builtin_ia32_pmulhw (v4hi, v4hi)
9436 di __builtin_ia32_pand (di, di)
9437 di __builtin_ia32_pandn (di,di)
9438 di __builtin_ia32_por (di, di)
9439 di __builtin_ia32_pxor (di, di)
9440 v8qi __builtin_ia32_pcmpeqb (v8qi, v8qi)
9441 v4hi __builtin_ia32_pcmpeqw (v4hi, v4hi)
9442 v2si __builtin_ia32_pcmpeqd (v2si, v2si)
9443 v8qi __builtin_ia32_pcmpgtb (v8qi, v8qi)
9444 v4hi __builtin_ia32_pcmpgtw (v4hi, v4hi)
9445 v2si __builtin_ia32_pcmpgtd (v2si, v2si)
9446 v8qi __builtin_ia32_punpckhbw (v8qi, v8qi)
9447 v4hi __builtin_ia32_punpckhwd (v4hi, v4hi)
9448 v2si __builtin_ia32_punpckhdq (v2si, v2si)
9449 v8qi __builtin_ia32_punpcklbw (v8qi, v8qi)
9450 v4hi __builtin_ia32_punpcklwd (v4hi, v4hi)
9451 v2si __builtin_ia32_punpckldq (v2si, v2si)
9452 v8qi __builtin_ia32_packsswb (v4hi, v4hi)
9453 v4hi __builtin_ia32_packssdw (v2si, v2si)
9454 v8qi __builtin_ia32_packuswb (v4hi, v4hi)
9455
9456 v4hi __builtin_ia32_psllw (v4hi, v4hi)
9457 v2si __builtin_ia32_pslld (v2si, v2si)
9458 v1di __builtin_ia32_psllq (v1di, v1di)
9459 v4hi __builtin_ia32_psrlw (v4hi, v4hi)
9460 v2si __builtin_ia32_psrld (v2si, v2si)
9461 v1di __builtin_ia32_psrlq (v1di, v1di)
9462 v4hi __builtin_ia32_psraw (v4hi, v4hi)
9463 v2si __builtin_ia32_psrad (v2si, v2si)
9464 v4hi __builtin_ia32_psllwi (v4hi, int)
9465 v2si __builtin_ia32_pslldi (v2si, int)
9466 v1di __builtin_ia32_psllqi (v1di, int)
9467 v4hi __builtin_ia32_psrlwi (v4hi, int)
9468 v2si __builtin_ia32_psrldi (v2si, int)
9469 v1di __builtin_ia32_psrlqi (v1di, int)
9470 v4hi __builtin_ia32_psrawi (v4hi, int)
9471 v2si __builtin_ia32_psradi (v2si, int)
9472
9473 @end smallexample
9474
9475 The following built-in functions are made available either with
9476 @option{-msse}, or with a combination of @option{-m3dnow} and
9477 @option{-march=athlon}. All of them generate the machine
9478 instruction that is part of the name.
9479
9480 @smallexample
9481 v4hi __builtin_ia32_pmulhuw (v4hi, v4hi)
9482 v8qi __builtin_ia32_pavgb (v8qi, v8qi)
9483 v4hi __builtin_ia32_pavgw (v4hi, v4hi)
9484 v1di __builtin_ia32_psadbw (v8qi, v8qi)
9485 v8qi __builtin_ia32_pmaxub (v8qi, v8qi)
9486 v4hi __builtin_ia32_pmaxsw (v4hi, v4hi)
9487 v8qi __builtin_ia32_pminub (v8qi, v8qi)
9488 v4hi __builtin_ia32_pminsw (v4hi, v4hi)
9489 int __builtin_ia32_pextrw (v4hi, int)
9490 v4hi __builtin_ia32_pinsrw (v4hi, int, int)
9491 int __builtin_ia32_pmovmskb (v8qi)
9492 void __builtin_ia32_maskmovq (v8qi, v8qi, char *)
9493 void __builtin_ia32_movntq (di *, di)
9494 void __builtin_ia32_sfence (void)
9495 @end smallexample
9496
9497 The following built-in functions are available when @option{-msse} is used.
9498 All of them generate the machine instruction that is part of the name.
9499
9500 @smallexample
9501 int __builtin_ia32_comieq (v4sf, v4sf)
9502 int __builtin_ia32_comineq (v4sf, v4sf)
9503 int __builtin_ia32_comilt (v4sf, v4sf)
9504 int __builtin_ia32_comile (v4sf, v4sf)
9505 int __builtin_ia32_comigt (v4sf, v4sf)
9506 int __builtin_ia32_comige (v4sf, v4sf)
9507 int __builtin_ia32_ucomieq (v4sf, v4sf)
9508 int __builtin_ia32_ucomineq (v4sf, v4sf)
9509 int __builtin_ia32_ucomilt (v4sf, v4sf)
9510 int __builtin_ia32_ucomile (v4sf, v4sf)
9511 int __builtin_ia32_ucomigt (v4sf, v4sf)
9512 int __builtin_ia32_ucomige (v4sf, v4sf)
9513 v4sf __builtin_ia32_addps (v4sf, v4sf)
9514 v4sf __builtin_ia32_subps (v4sf, v4sf)
9515 v4sf __builtin_ia32_mulps (v4sf, v4sf)
9516 v4sf __builtin_ia32_divps (v4sf, v4sf)
9517 v4sf __builtin_ia32_addss (v4sf, v4sf)
9518 v4sf __builtin_ia32_subss (v4sf, v4sf)
9519 v4sf __builtin_ia32_mulss (v4sf, v4sf)
9520 v4sf __builtin_ia32_divss (v4sf, v4sf)
9521 v4si __builtin_ia32_cmpeqps (v4sf, v4sf)
9522 v4si __builtin_ia32_cmpltps (v4sf, v4sf)
9523 v4si __builtin_ia32_cmpleps (v4sf, v4sf)
9524 v4si __builtin_ia32_cmpgtps (v4sf, v4sf)
9525 v4si __builtin_ia32_cmpgeps (v4sf, v4sf)
9526 v4si __builtin_ia32_cmpunordps (v4sf, v4sf)
9527 v4si __builtin_ia32_cmpneqps (v4sf, v4sf)
9528 v4si __builtin_ia32_cmpnltps (v4sf, v4sf)
9529 v4si __builtin_ia32_cmpnleps (v4sf, v4sf)
9530 v4si __builtin_ia32_cmpngtps (v4sf, v4sf)
9531 v4si __builtin_ia32_cmpngeps (v4sf, v4sf)
9532 v4si __builtin_ia32_cmpordps (v4sf, v4sf)
9533 v4si __builtin_ia32_cmpeqss (v4sf, v4sf)
9534 v4si __builtin_ia32_cmpltss (v4sf, v4sf)
9535 v4si __builtin_ia32_cmpless (v4sf, v4sf)
9536 v4si __builtin_ia32_cmpunordss (v4sf, v4sf)
9537 v4si __builtin_ia32_cmpneqss (v4sf, v4sf)
9538 v4si __builtin_ia32_cmpnlts (v4sf, v4sf)
9539 v4si __builtin_ia32_cmpnless (v4sf, v4sf)
9540 v4si __builtin_ia32_cmpordss (v4sf, v4sf)
9541 v4sf __builtin_ia32_maxps (v4sf, v4sf)
9542 v4sf __builtin_ia32_maxss (v4sf, v4sf)
9543 v4sf __builtin_ia32_minps (v4sf, v4sf)
9544 v4sf __builtin_ia32_minss (v4sf, v4sf)
9545 v4sf __builtin_ia32_andps (v4sf, v4sf)
9546 v4sf __builtin_ia32_andnps (v4sf, v4sf)
9547 v4sf __builtin_ia32_orps (v4sf, v4sf)
9548 v4sf __builtin_ia32_xorps (v4sf, v4sf)
9549 v4sf __builtin_ia32_movss (v4sf, v4sf)
9550 v4sf __builtin_ia32_movhlps (v4sf, v4sf)
9551 v4sf __builtin_ia32_movlhps (v4sf, v4sf)
9552 v4sf __builtin_ia32_unpckhps (v4sf, v4sf)
9553 v4sf __builtin_ia32_unpcklps (v4sf, v4sf)
9554 v4sf __builtin_ia32_cvtpi2ps (v4sf, v2si)
9555 v4sf __builtin_ia32_cvtsi2ss (v4sf, int)
9556 v2si __builtin_ia32_cvtps2pi (v4sf)
9557 int __builtin_ia32_cvtss2si (v4sf)
9558 v2si __builtin_ia32_cvttps2pi (v4sf)
9559 int __builtin_ia32_cvttss2si (v4sf)
9560 v4sf __builtin_ia32_rcpps (v4sf)
9561 v4sf __builtin_ia32_rsqrtps (v4sf)
9562 v4sf __builtin_ia32_sqrtps (v4sf)
9563 v4sf __builtin_ia32_rcpss (v4sf)
9564 v4sf __builtin_ia32_rsqrtss (v4sf)
9565 v4sf __builtin_ia32_sqrtss (v4sf)
9566 v4sf __builtin_ia32_shufps (v4sf, v4sf, int)
9567 void __builtin_ia32_movntps (float *, v4sf)
9568 int __builtin_ia32_movmskps (v4sf)
9569 @end smallexample
9570
9571 The following built-in functions are available when @option{-msse} is used.
9572
9573 @table @code
9574 @item v4sf __builtin_ia32_loadaps (float *)
9575 Generates the @code{movaps} machine instruction as a load from memory.
9576 @item void __builtin_ia32_storeaps (float *, v4sf)
9577 Generates the @code{movaps} machine instruction as a store to memory.
9578 @item v4sf __builtin_ia32_loadups (float *)
9579 Generates the @code{movups} machine instruction as a load from memory.
9580 @item void __builtin_ia32_storeups (float *, v4sf)
9581 Generates the @code{movups} machine instruction as a store to memory.
9582 @item v4sf __builtin_ia32_loadsss (float *)
9583 Generates the @code{movss} machine instruction as a load from memory.
9584 @item void __builtin_ia32_storess (float *, v4sf)
9585 Generates the @code{movss} machine instruction as a store to memory.
9586 @item v4sf __builtin_ia32_loadhps (v4sf, const v2sf *)
9587 Generates the @code{movhps} machine instruction as a load from memory.
9588 @item v4sf __builtin_ia32_loadlps (v4sf, const v2sf *)
9589 Generates the @code{movlps} machine instruction as a load from memory
9590 @item void __builtin_ia32_storehps (v2sf *, v4sf)
9591 Generates the @code{movhps} machine instruction as a store to memory.
9592 @item void __builtin_ia32_storelps (v2sf *, v4sf)
9593 Generates the @code{movlps} machine instruction as a store to memory.
9594 @end table
9595
9596 The following built-in functions are available when @option{-msse2} is used.
9597 All of them generate the machine instruction that is part of the name.
9598
9599 @smallexample
9600 int __builtin_ia32_comisdeq (v2df, v2df)
9601 int __builtin_ia32_comisdlt (v2df, v2df)
9602 int __builtin_ia32_comisdle (v2df, v2df)
9603 int __builtin_ia32_comisdgt (v2df, v2df)
9604 int __builtin_ia32_comisdge (v2df, v2df)
9605 int __builtin_ia32_comisdneq (v2df, v2df)
9606 int __builtin_ia32_ucomisdeq (v2df, v2df)
9607 int __builtin_ia32_ucomisdlt (v2df, v2df)
9608 int __builtin_ia32_ucomisdle (v2df, v2df)
9609 int __builtin_ia32_ucomisdgt (v2df, v2df)
9610 int __builtin_ia32_ucomisdge (v2df, v2df)
9611 int __builtin_ia32_ucomisdneq (v2df, v2df)
9612 v2df __builtin_ia32_cmpeqpd (v2df, v2df)
9613 v2df __builtin_ia32_cmpltpd (v2df, v2df)
9614 v2df __builtin_ia32_cmplepd (v2df, v2df)
9615 v2df __builtin_ia32_cmpgtpd (v2df, v2df)
9616 v2df __builtin_ia32_cmpgepd (v2df, v2df)
9617 v2df __builtin_ia32_cmpunordpd (v2df, v2df)
9618 v2df __builtin_ia32_cmpneqpd (v2df, v2df)
9619 v2df __builtin_ia32_cmpnltpd (v2df, v2df)
9620 v2df __builtin_ia32_cmpnlepd (v2df, v2df)
9621 v2df __builtin_ia32_cmpngtpd (v2df, v2df)
9622 v2df __builtin_ia32_cmpngepd (v2df, v2df)
9623 v2df __builtin_ia32_cmpordpd (v2df, v2df)
9624 v2df __builtin_ia32_cmpeqsd (v2df, v2df)
9625 v2df __builtin_ia32_cmpltsd (v2df, v2df)
9626 v2df __builtin_ia32_cmplesd (v2df, v2df)
9627 v2df __builtin_ia32_cmpunordsd (v2df, v2df)
9628 v2df __builtin_ia32_cmpneqsd (v2df, v2df)
9629 v2df __builtin_ia32_cmpnltsd (v2df, v2df)
9630 v2df __builtin_ia32_cmpnlesd (v2df, v2df)
9631 v2df __builtin_ia32_cmpordsd (v2df, v2df)
9632 v2di __builtin_ia32_paddq (v2di, v2di)
9633 v2di __builtin_ia32_psubq (v2di, v2di)
9634 v2df __builtin_ia32_addpd (v2df, v2df)
9635 v2df __builtin_ia32_subpd (v2df, v2df)
9636 v2df __builtin_ia32_mulpd (v2df, v2df)
9637 v2df __builtin_ia32_divpd (v2df, v2df)
9638 v2df __builtin_ia32_addsd (v2df, v2df)
9639 v2df __builtin_ia32_subsd (v2df, v2df)
9640 v2df __builtin_ia32_mulsd (v2df, v2df)
9641 v2df __builtin_ia32_divsd (v2df, v2df)
9642 v2df __builtin_ia32_minpd (v2df, v2df)
9643 v2df __builtin_ia32_maxpd (v2df, v2df)
9644 v2df __builtin_ia32_minsd (v2df, v2df)
9645 v2df __builtin_ia32_maxsd (v2df, v2df)
9646 v2df __builtin_ia32_andpd (v2df, v2df)
9647 v2df __builtin_ia32_andnpd (v2df, v2df)
9648 v2df __builtin_ia32_orpd (v2df, v2df)
9649 v2df __builtin_ia32_xorpd (v2df, v2df)
9650 v2df __builtin_ia32_movsd (v2df, v2df)
9651 v2df __builtin_ia32_unpckhpd (v2df, v2df)
9652 v2df __builtin_ia32_unpcklpd (v2df, v2df)
9653 v16qi __builtin_ia32_paddb128 (v16qi, v16qi)
9654 v8hi __builtin_ia32_paddw128 (v8hi, v8hi)
9655 v4si __builtin_ia32_paddd128 (v4si, v4si)
9656 v2di __builtin_ia32_paddq128 (v2di, v2di)
9657 v16qi __builtin_ia32_psubb128 (v16qi, v16qi)
9658 v8hi __builtin_ia32_psubw128 (v8hi, v8hi)
9659 v4si __builtin_ia32_psubd128 (v4si, v4si)
9660 v2di __builtin_ia32_psubq128 (v2di, v2di)
9661 v8hi __builtin_ia32_pmullw128 (v8hi, v8hi)
9662 v8hi __builtin_ia32_pmulhw128 (v8hi, v8hi)
9663 v2di __builtin_ia32_pand128 (v2di, v2di)
9664 v2di __builtin_ia32_pandn128 (v2di, v2di)
9665 v2di __builtin_ia32_por128 (v2di, v2di)
9666 v2di __builtin_ia32_pxor128 (v2di, v2di)
9667 v16qi __builtin_ia32_pavgb128 (v16qi, v16qi)
9668 v8hi __builtin_ia32_pavgw128 (v8hi, v8hi)
9669 v16qi __builtin_ia32_pcmpeqb128 (v16qi, v16qi)
9670 v8hi __builtin_ia32_pcmpeqw128 (v8hi, v8hi)
9671 v4si __builtin_ia32_pcmpeqd128 (v4si, v4si)
9672 v16qi __builtin_ia32_pcmpgtb128 (v16qi, v16qi)
9673 v8hi __builtin_ia32_pcmpgtw128 (v8hi, v8hi)
9674 v4si __builtin_ia32_pcmpgtd128 (v4si, v4si)
9675 v16qi __builtin_ia32_pmaxub128 (v16qi, v16qi)
9676 v8hi __builtin_ia32_pmaxsw128 (v8hi, v8hi)
9677 v16qi __builtin_ia32_pminub128 (v16qi, v16qi)
9678 v8hi __builtin_ia32_pminsw128 (v8hi, v8hi)
9679 v16qi __builtin_ia32_punpckhbw128 (v16qi, v16qi)
9680 v8hi __builtin_ia32_punpckhwd128 (v8hi, v8hi)
9681 v4si __builtin_ia32_punpckhdq128 (v4si, v4si)
9682 v2di __builtin_ia32_punpckhqdq128 (v2di, v2di)
9683 v16qi __builtin_ia32_punpcklbw128 (v16qi, v16qi)
9684 v8hi __builtin_ia32_punpcklwd128 (v8hi, v8hi)
9685 v4si __builtin_ia32_punpckldq128 (v4si, v4si)
9686 v2di __builtin_ia32_punpcklqdq128 (v2di, v2di)
9687 v16qi __builtin_ia32_packsswb128 (v8hi, v8hi)
9688 v8hi __builtin_ia32_packssdw128 (v4si, v4si)
9689 v16qi __builtin_ia32_packuswb128 (v8hi, v8hi)
9690 v8hi __builtin_ia32_pmulhuw128 (v8hi, v8hi)
9691 void __builtin_ia32_maskmovdqu (v16qi, v16qi)
9692 v2df __builtin_ia32_loadupd (double *)
9693 void __builtin_ia32_storeupd (double *, v2df)
9694 v2df __builtin_ia32_loadhpd (v2df, double const *)
9695 v2df __builtin_ia32_loadlpd (v2df, double const *)
9696 int __builtin_ia32_movmskpd (v2df)
9697 int __builtin_ia32_pmovmskb128 (v16qi)
9698 void __builtin_ia32_movnti (int *, int)
9699 void __builtin_ia32_movnti64 (long long int *, long long int)
9700 void __builtin_ia32_movntpd (double *, v2df)
9701 void __builtin_ia32_movntdq (v2df *, v2df)
9702 v4si __builtin_ia32_pshufd (v4si, int)
9703 v8hi __builtin_ia32_pshuflw (v8hi, int)
9704 v8hi __builtin_ia32_pshufhw (v8hi, int)
9705 v2di __builtin_ia32_psadbw128 (v16qi, v16qi)
9706 v2df __builtin_ia32_sqrtpd (v2df)
9707 v2df __builtin_ia32_sqrtsd (v2df)
9708 v2df __builtin_ia32_shufpd (v2df, v2df, int)
9709 v2df __builtin_ia32_cvtdq2pd (v4si)
9710 v4sf __builtin_ia32_cvtdq2ps (v4si)
9711 v4si __builtin_ia32_cvtpd2dq (v2df)
9712 v2si __builtin_ia32_cvtpd2pi (v2df)
9713 v4sf __builtin_ia32_cvtpd2ps (v2df)
9714 v4si __builtin_ia32_cvttpd2dq (v2df)
9715 v2si __builtin_ia32_cvttpd2pi (v2df)
9716 v2df __builtin_ia32_cvtpi2pd (v2si)
9717 int __builtin_ia32_cvtsd2si (v2df)
9718 int __builtin_ia32_cvttsd2si (v2df)
9719 long long __builtin_ia32_cvtsd2si64 (v2df)
9720 long long __builtin_ia32_cvttsd2si64 (v2df)
9721 v4si __builtin_ia32_cvtps2dq (v4sf)
9722 v2df __builtin_ia32_cvtps2pd (v4sf)
9723 v4si __builtin_ia32_cvttps2dq (v4sf)
9724 v2df __builtin_ia32_cvtsi2sd (v2df, int)
9725 v2df __builtin_ia32_cvtsi642sd (v2df, long long)
9726 v4sf __builtin_ia32_cvtsd2ss (v4sf, v2df)
9727 v2df __builtin_ia32_cvtss2sd (v2df, v4sf)
9728 void __builtin_ia32_clflush (const void *)
9729 void __builtin_ia32_lfence (void)
9730 void __builtin_ia32_mfence (void)
9731 v16qi __builtin_ia32_loaddqu (const char *)
9732 void __builtin_ia32_storedqu (char *, v16qi)
9733 v1di __builtin_ia32_pmuludq (v2si, v2si)
9734 v2di __builtin_ia32_pmuludq128 (v4si, v4si)
9735 v8hi __builtin_ia32_psllw128 (v8hi, v8hi)
9736 v4si __builtin_ia32_pslld128 (v4si, v4si)
9737 v2di __builtin_ia32_psllq128 (v2di, v2di)
9738 v8hi __builtin_ia32_psrlw128 (v8hi, v8hi)
9739 v4si __builtin_ia32_psrld128 (v4si, v4si)
9740 v2di __builtin_ia32_psrlq128 (v2di, v2di)
9741 v8hi __builtin_ia32_psraw128 (v8hi, v8hi)
9742 v4si __builtin_ia32_psrad128 (v4si, v4si)
9743 v2di __builtin_ia32_pslldqi128 (v2di, int)
9744 v8hi __builtin_ia32_psllwi128 (v8hi, int)
9745 v4si __builtin_ia32_pslldi128 (v4si, int)
9746 v2di __builtin_ia32_psllqi128 (v2di, int)
9747 v2di __builtin_ia32_psrldqi128 (v2di, int)
9748 v8hi __builtin_ia32_psrlwi128 (v8hi, int)
9749 v4si __builtin_ia32_psrldi128 (v4si, int)
9750 v2di __builtin_ia32_psrlqi128 (v2di, int)
9751 v8hi __builtin_ia32_psrawi128 (v8hi, int)
9752 v4si __builtin_ia32_psradi128 (v4si, int)
9753 v4si __builtin_ia32_pmaddwd128 (v8hi, v8hi)
9754 v2di __builtin_ia32_movq128 (v2di)
9755 @end smallexample
9756
9757 The following built-in functions are available when @option{-msse3} is used.
9758 All of them generate the machine instruction that is part of the name.
9759
9760 @smallexample
9761 v2df __builtin_ia32_addsubpd (v2df, v2df)
9762 v4sf __builtin_ia32_addsubps (v4sf, v4sf)
9763 v2df __builtin_ia32_haddpd (v2df, v2df)
9764 v4sf __builtin_ia32_haddps (v4sf, v4sf)
9765 v2df __builtin_ia32_hsubpd (v2df, v2df)
9766 v4sf __builtin_ia32_hsubps (v4sf, v4sf)
9767 v16qi __builtin_ia32_lddqu (char const *)
9768 void __builtin_ia32_monitor (void *, unsigned int, unsigned int)
9769 v2df __builtin_ia32_movddup (v2df)
9770 v4sf __builtin_ia32_movshdup (v4sf)
9771 v4sf __builtin_ia32_movsldup (v4sf)
9772 void __builtin_ia32_mwait (unsigned int, unsigned int)
9773 @end smallexample
9774
9775 The following built-in functions are available when @option{-msse3} is used.
9776
9777 @table @code
9778 @item v2df __builtin_ia32_loadddup (double const *)
9779 Generates the @code{movddup} machine instruction as a load from memory.
9780 @end table
9781
9782 The following built-in functions are available when @option{-mssse3} is used.
9783 All of them generate the machine instruction that is part of the name
9784 with MMX registers.
9785
9786 @smallexample
9787 v2si __builtin_ia32_phaddd (v2si, v2si)
9788 v4hi __builtin_ia32_phaddw (v4hi, v4hi)
9789 v4hi __builtin_ia32_phaddsw (v4hi, v4hi)
9790 v2si __builtin_ia32_phsubd (v2si, v2si)
9791 v4hi __builtin_ia32_phsubw (v4hi, v4hi)
9792 v4hi __builtin_ia32_phsubsw (v4hi, v4hi)
9793 v4hi __builtin_ia32_pmaddubsw (v8qi, v8qi)
9794 v4hi __builtin_ia32_pmulhrsw (v4hi, v4hi)
9795 v8qi __builtin_ia32_pshufb (v8qi, v8qi)
9796 v8qi __builtin_ia32_psignb (v8qi, v8qi)
9797 v2si __builtin_ia32_psignd (v2si, v2si)
9798 v4hi __builtin_ia32_psignw (v4hi, v4hi)
9799 v1di __builtin_ia32_palignr (v1di, v1di, int)
9800 v8qi __builtin_ia32_pabsb (v8qi)
9801 v2si __builtin_ia32_pabsd (v2si)
9802 v4hi __builtin_ia32_pabsw (v4hi)
9803 @end smallexample
9804
9805 The following built-in functions are available when @option{-mssse3} is used.
9806 All of them generate the machine instruction that is part of the name
9807 with SSE registers.
9808
9809 @smallexample
9810 v4si __builtin_ia32_phaddd128 (v4si, v4si)
9811 v8hi __builtin_ia32_phaddw128 (v8hi, v8hi)
9812 v8hi __builtin_ia32_phaddsw128 (v8hi, v8hi)
9813 v4si __builtin_ia32_phsubd128 (v4si, v4si)
9814 v8hi __builtin_ia32_phsubw128 (v8hi, v8hi)
9815 v8hi __builtin_ia32_phsubsw128 (v8hi, v8hi)
9816 v8hi __builtin_ia32_pmaddubsw128 (v16qi, v16qi)
9817 v8hi __builtin_ia32_pmulhrsw128 (v8hi, v8hi)
9818 v16qi __builtin_ia32_pshufb128 (v16qi, v16qi)
9819 v16qi __builtin_ia32_psignb128 (v16qi, v16qi)
9820 v4si __builtin_ia32_psignd128 (v4si, v4si)
9821 v8hi __builtin_ia32_psignw128 (v8hi, v8hi)
9822 v2di __builtin_ia32_palignr128 (v2di, v2di, int)
9823 v16qi __builtin_ia32_pabsb128 (v16qi)
9824 v4si __builtin_ia32_pabsd128 (v4si)
9825 v8hi __builtin_ia32_pabsw128 (v8hi)
9826 @end smallexample
9827
9828 The following built-in functions are available when @option{-msse4.1} is
9829 used. All of them generate the machine instruction that is part of the
9830 name.
9831
9832 @smallexample
9833 v2df __builtin_ia32_blendpd (v2df, v2df, const int)
9834 v4sf __builtin_ia32_blendps (v4sf, v4sf, const int)
9835 v2df __builtin_ia32_blendvpd (v2df, v2df, v2df)
9836 v4sf __builtin_ia32_blendvps (v4sf, v4sf, v4sf)
9837 v2df __builtin_ia32_dppd (v2df, v2df, const int)
9838 v4sf __builtin_ia32_dpps (v4sf, v4sf, const int)
9839 v4sf __builtin_ia32_insertps128 (v4sf, v4sf, const int)
9840 v2di __builtin_ia32_movntdqa (v2di *);
9841 v16qi __builtin_ia32_mpsadbw128 (v16qi, v16qi, const int)
9842 v8hi __builtin_ia32_packusdw128 (v4si, v4si)
9843 v16qi __builtin_ia32_pblendvb128 (v16qi, v16qi, v16qi)
9844 v8hi __builtin_ia32_pblendw128 (v8hi, v8hi, const int)
9845 v2di __builtin_ia32_pcmpeqq (v2di, v2di)
9846 v8hi __builtin_ia32_phminposuw128 (v8hi)
9847 v16qi __builtin_ia32_pmaxsb128 (v16qi, v16qi)
9848 v4si __builtin_ia32_pmaxsd128 (v4si, v4si)
9849 v4si __builtin_ia32_pmaxud128 (v4si, v4si)
9850 v8hi __builtin_ia32_pmaxuw128 (v8hi, v8hi)
9851 v16qi __builtin_ia32_pminsb128 (v16qi, v16qi)
9852 v4si __builtin_ia32_pminsd128 (v4si, v4si)
9853 v4si __builtin_ia32_pminud128 (v4si, v4si)
9854 v8hi __builtin_ia32_pminuw128 (v8hi, v8hi)
9855 v4si __builtin_ia32_pmovsxbd128 (v16qi)
9856 v2di __builtin_ia32_pmovsxbq128 (v16qi)
9857 v8hi __builtin_ia32_pmovsxbw128 (v16qi)
9858 v2di __builtin_ia32_pmovsxdq128 (v4si)
9859 v4si __builtin_ia32_pmovsxwd128 (v8hi)
9860 v2di __builtin_ia32_pmovsxwq128 (v8hi)
9861 v4si __builtin_ia32_pmovzxbd128 (v16qi)
9862 v2di __builtin_ia32_pmovzxbq128 (v16qi)
9863 v8hi __builtin_ia32_pmovzxbw128 (v16qi)
9864 v2di __builtin_ia32_pmovzxdq128 (v4si)
9865 v4si __builtin_ia32_pmovzxwd128 (v8hi)
9866 v2di __builtin_ia32_pmovzxwq128 (v8hi)
9867 v2di __builtin_ia32_pmuldq128 (v4si, v4si)
9868 v4si __builtin_ia32_pmulld128 (v4si, v4si)
9869 int __builtin_ia32_ptestc128 (v2di, v2di)
9870 int __builtin_ia32_ptestnzc128 (v2di, v2di)
9871 int __builtin_ia32_ptestz128 (v2di, v2di)
9872 v2df __builtin_ia32_roundpd (v2df, const int)
9873 v4sf __builtin_ia32_roundps (v4sf, const int)
9874 v2df __builtin_ia32_roundsd (v2df, v2df, const int)
9875 v4sf __builtin_ia32_roundss (v4sf, v4sf, const int)
9876 @end smallexample
9877
9878 The following built-in functions are available when @option{-msse4.1} is
9879 used.
9880
9881 @table @code
9882 @item v4sf __builtin_ia32_vec_set_v4sf (v4sf, float, const int)
9883 Generates the @code{insertps} machine instruction.
9884 @item int __builtin_ia32_vec_ext_v16qi (v16qi, const int)
9885 Generates the @code{pextrb} machine instruction.
9886 @item v16qi __builtin_ia32_vec_set_v16qi (v16qi, int, const int)
9887 Generates the @code{pinsrb} machine instruction.
9888 @item v4si __builtin_ia32_vec_set_v4si (v4si, int, const int)
9889 Generates the @code{pinsrd} machine instruction.
9890 @item v2di __builtin_ia32_vec_set_v2di (v2di, long long, const int)
9891 Generates the @code{pinsrq} machine instruction in 64bit mode.
9892 @end table
9893
9894 The following built-in functions are changed to generate new SSE4.1
9895 instructions when @option{-msse4.1} is used.
9896
9897 @table @code
9898 @item float __builtin_ia32_vec_ext_v4sf (v4sf, const int)
9899 Generates the @code{extractps} machine instruction.
9900 @item int __builtin_ia32_vec_ext_v4si (v4si, const int)
9901 Generates the @code{pextrd} machine instruction.
9902 @item long long __builtin_ia32_vec_ext_v2di (v2di, const int)
9903 Generates the @code{pextrq} machine instruction in 64bit mode.
9904 @end table
9905
9906 The following built-in functions are available when @option{-msse4.2} is
9907 used. All of them generate the machine instruction that is part of the
9908 name.
9909
9910 @smallexample
9911 v16qi __builtin_ia32_pcmpestrm128 (v16qi, int, v16qi, int, const int)
9912 int __builtin_ia32_pcmpestri128 (v16qi, int, v16qi, int, const int)
9913 int __builtin_ia32_pcmpestria128 (v16qi, int, v16qi, int, const int)
9914 int __builtin_ia32_pcmpestric128 (v16qi, int, v16qi, int, const int)
9915 int __builtin_ia32_pcmpestrio128 (v16qi, int, v16qi, int, const int)
9916 int __builtin_ia32_pcmpestris128 (v16qi, int, v16qi, int, const int)
9917 int __builtin_ia32_pcmpestriz128 (v16qi, int, v16qi, int, const int)
9918 v16qi __builtin_ia32_pcmpistrm128 (v16qi, v16qi, const int)
9919 int __builtin_ia32_pcmpistri128 (v16qi, v16qi, const int)
9920 int __builtin_ia32_pcmpistria128 (v16qi, v16qi, const int)
9921 int __builtin_ia32_pcmpistric128 (v16qi, v16qi, const int)
9922 int __builtin_ia32_pcmpistrio128 (v16qi, v16qi, const int)
9923 int __builtin_ia32_pcmpistris128 (v16qi, v16qi, const int)
9924 int __builtin_ia32_pcmpistriz128 (v16qi, v16qi, const int)
9925 v2di __builtin_ia32_pcmpgtq (v2di, v2di)
9926 @end smallexample
9927
9928 The following built-in functions are available when @option{-msse4.2} is
9929 used.
9930
9931 @table @code
9932 @item unsigned int __builtin_ia32_crc32qi (unsigned int, unsigned char)
9933 Generates the @code{crc32b} machine instruction.
9934 @item unsigned int __builtin_ia32_crc32hi (unsigned int, unsigned short)
9935 Generates the @code{crc32w} machine instruction.
9936 @item unsigned int __builtin_ia32_crc32si (unsigned int, unsigned int)
9937 Generates the @code{crc32l} machine instruction.
9938 @item unsigned long long __builtin_ia32_crc32di (unsigned long long, unsigned long long)
9939 Generates the @code{crc32q} machine instruction.
9940 @end table
9941
9942 The following built-in functions are changed to generate new SSE4.2
9943 instructions when @option{-msse4.2} is used.
9944
9945 @table @code
9946 @item int __builtin_popcount (unsigned int)
9947 Generates the @code{popcntl} machine instruction.
9948 @item int __builtin_popcountl (unsigned long)
9949 Generates the @code{popcntl} or @code{popcntq} machine instruction,
9950 depending on the size of @code{unsigned long}.
9951 @item int __builtin_popcountll (unsigned long long)
9952 Generates the @code{popcntq} machine instruction.
9953 @end table
9954
9955 The following built-in functions are available when @option{-mavx} is
9956 used. All of them generate the machine instruction that is part of the
9957 name.
9958
9959 @smallexample
9960 v4df __builtin_ia32_addpd256 (v4df,v4df)
9961 v8sf __builtin_ia32_addps256 (v8sf,v8sf)
9962 v4df __builtin_ia32_addsubpd256 (v4df,v4df)
9963 v8sf __builtin_ia32_addsubps256 (v8sf,v8sf)
9964 v4df __builtin_ia32_andnpd256 (v4df,v4df)
9965 v8sf __builtin_ia32_andnps256 (v8sf,v8sf)
9966 v4df __builtin_ia32_andpd256 (v4df,v4df)
9967 v8sf __builtin_ia32_andps256 (v8sf,v8sf)
9968 v4df __builtin_ia32_blendpd256 (v4df,v4df,int)
9969 v8sf __builtin_ia32_blendps256 (v8sf,v8sf,int)
9970 v4df __builtin_ia32_blendvpd256 (v4df,v4df,v4df)
9971 v8sf __builtin_ia32_blendvps256 (v8sf,v8sf,v8sf)
9972 v2df __builtin_ia32_cmppd (v2df,v2df,int)
9973 v4df __builtin_ia32_cmppd256 (v4df,v4df,int)
9974 v4sf __builtin_ia32_cmpps (v4sf,v4sf,int)
9975 v8sf __builtin_ia32_cmpps256 (v8sf,v8sf,int)
9976 v2df __builtin_ia32_cmpsd (v2df,v2df,int)
9977 v4sf __builtin_ia32_cmpss (v4sf,v4sf,int)
9978 v4df __builtin_ia32_cvtdq2pd256 (v4si)
9979 v8sf __builtin_ia32_cvtdq2ps256 (v8si)
9980 v4si __builtin_ia32_cvtpd2dq256 (v4df)
9981 v4sf __builtin_ia32_cvtpd2ps256 (v4df)
9982 v8si __builtin_ia32_cvtps2dq256 (v8sf)
9983 v4df __builtin_ia32_cvtps2pd256 (v4sf)
9984 v4si __builtin_ia32_cvttpd2dq256 (v4df)
9985 v8si __builtin_ia32_cvttps2dq256 (v8sf)
9986 v4df __builtin_ia32_divpd256 (v4df,v4df)
9987 v8sf __builtin_ia32_divps256 (v8sf,v8sf)
9988 v8sf __builtin_ia32_dpps256 (v8sf,v8sf,int)
9989 v4df __builtin_ia32_haddpd256 (v4df,v4df)
9990 v8sf __builtin_ia32_haddps256 (v8sf,v8sf)
9991 v4df __builtin_ia32_hsubpd256 (v4df,v4df)
9992 v8sf __builtin_ia32_hsubps256 (v8sf,v8sf)
9993 v32qi __builtin_ia32_lddqu256 (pcchar)
9994 v32qi __builtin_ia32_loaddqu256 (pcchar)
9995 v4df __builtin_ia32_loadupd256 (pcdouble)
9996 v8sf __builtin_ia32_loadups256 (pcfloat)
9997 v2df __builtin_ia32_maskloadpd (pcv2df,v2df)
9998 v4df __builtin_ia32_maskloadpd256 (pcv4df,v4df)
9999 v4sf __builtin_ia32_maskloadps (pcv4sf,v4sf)
10000 v8sf __builtin_ia32_maskloadps256 (pcv8sf,v8sf)
10001 void __builtin_ia32_maskstorepd (pv2df,v2df,v2df)
10002 void __builtin_ia32_maskstorepd256 (pv4df,v4df,v4df)
10003 void __builtin_ia32_maskstoreps (pv4sf,v4sf,v4sf)
10004 void __builtin_ia32_maskstoreps256 (pv8sf,v8sf,v8sf)
10005 v4df __builtin_ia32_maxpd256 (v4df,v4df)
10006 v8sf __builtin_ia32_maxps256 (v8sf,v8sf)
10007 v4df __builtin_ia32_minpd256 (v4df,v4df)
10008 v8sf __builtin_ia32_minps256 (v8sf,v8sf)
10009 v4df __builtin_ia32_movddup256 (v4df)
10010 int __builtin_ia32_movmskpd256 (v4df)
10011 int __builtin_ia32_movmskps256 (v8sf)
10012 v8sf __builtin_ia32_movshdup256 (v8sf)
10013 v8sf __builtin_ia32_movsldup256 (v8sf)
10014 v4df __builtin_ia32_mulpd256 (v4df,v4df)
10015 v8sf __builtin_ia32_mulps256 (v8sf,v8sf)
10016 v4df __builtin_ia32_orpd256 (v4df,v4df)
10017 v8sf __builtin_ia32_orps256 (v8sf,v8sf)
10018 v2df __builtin_ia32_pd_pd256 (v4df)
10019 v4df __builtin_ia32_pd256_pd (v2df)
10020 v4sf __builtin_ia32_ps_ps256 (v8sf)
10021 v8sf __builtin_ia32_ps256_ps (v4sf)
10022 int __builtin_ia32_ptestc256 (v4di,v4di,ptest)
10023 int __builtin_ia32_ptestnzc256 (v4di,v4di,ptest)
10024 int __builtin_ia32_ptestz256 (v4di,v4di,ptest)
10025 v8sf __builtin_ia32_rcpps256 (v8sf)
10026 v4df __builtin_ia32_roundpd256 (v4df,int)
10027 v8sf __builtin_ia32_roundps256 (v8sf,int)
10028 v8sf __builtin_ia32_rsqrtps_nr256 (v8sf)
10029 v8sf __builtin_ia32_rsqrtps256 (v8sf)
10030 v4df __builtin_ia32_shufpd256 (v4df,v4df,int)
10031 v8sf __builtin_ia32_shufps256 (v8sf,v8sf,int)
10032 v4si __builtin_ia32_si_si256 (v8si)
10033 v8si __builtin_ia32_si256_si (v4si)
10034 v4df __builtin_ia32_sqrtpd256 (v4df)
10035 v8sf __builtin_ia32_sqrtps_nr256 (v8sf)
10036 v8sf __builtin_ia32_sqrtps256 (v8sf)
10037 void __builtin_ia32_storedqu256 (pchar,v32qi)
10038 void __builtin_ia32_storeupd256 (pdouble,v4df)
10039 void __builtin_ia32_storeups256 (pfloat,v8sf)
10040 v4df __builtin_ia32_subpd256 (v4df,v4df)
10041 v8sf __builtin_ia32_subps256 (v8sf,v8sf)
10042 v4df __builtin_ia32_unpckhpd256 (v4df,v4df)
10043 v8sf __builtin_ia32_unpckhps256 (v8sf,v8sf)
10044 v4df __builtin_ia32_unpcklpd256 (v4df,v4df)
10045 v8sf __builtin_ia32_unpcklps256 (v8sf,v8sf)
10046 v4df __builtin_ia32_vbroadcastf128_pd256 (pcv2df)
10047 v8sf __builtin_ia32_vbroadcastf128_ps256 (pcv4sf)
10048 v4df __builtin_ia32_vbroadcastsd256 (pcdouble)
10049 v4sf __builtin_ia32_vbroadcastss (pcfloat)
10050 v8sf __builtin_ia32_vbroadcastss256 (pcfloat)
10051 v2df __builtin_ia32_vextractf128_pd256 (v4df,int)
10052 v4sf __builtin_ia32_vextractf128_ps256 (v8sf,int)
10053 v4si __builtin_ia32_vextractf128_si256 (v8si,int)
10054 v4df __builtin_ia32_vinsertf128_pd256 (v4df,v2df,int)
10055 v8sf __builtin_ia32_vinsertf128_ps256 (v8sf,v4sf,int)
10056 v8si __builtin_ia32_vinsertf128_si256 (v8si,v4si,int)
10057 v4df __builtin_ia32_vperm2f128_pd256 (v4df,v4df,int)
10058 v8sf __builtin_ia32_vperm2f128_ps256 (v8sf,v8sf,int)
10059 v8si __builtin_ia32_vperm2f128_si256 (v8si,v8si,int)
10060 v2df __builtin_ia32_vpermil2pd (v2df,v2df,v2di,int)
10061 v4df __builtin_ia32_vpermil2pd256 (v4df,v4df,v4di,int)
10062 v4sf __builtin_ia32_vpermil2ps (v4sf,v4sf,v4si,int)
10063 v8sf __builtin_ia32_vpermil2ps256 (v8sf,v8sf,v8si,int)
10064 v2df __builtin_ia32_vpermilpd (v2df,int)
10065 v4df __builtin_ia32_vpermilpd256 (v4df,int)
10066 v4sf __builtin_ia32_vpermilps (v4sf,int)
10067 v8sf __builtin_ia32_vpermilps256 (v8sf,int)
10068 v2df __builtin_ia32_vpermilvarpd (v2df,v2di)
10069 v4df __builtin_ia32_vpermilvarpd256 (v4df,v4di)
10070 v4sf __builtin_ia32_vpermilvarps (v4sf,v4si)
10071 v8sf __builtin_ia32_vpermilvarps256 (v8sf,v8si)
10072 int __builtin_ia32_vtestcpd (v2df,v2df,ptest)
10073 int __builtin_ia32_vtestcpd256 (v4df,v4df,ptest)
10074 int __builtin_ia32_vtestcps (v4sf,v4sf,ptest)
10075 int __builtin_ia32_vtestcps256 (v8sf,v8sf,ptest)
10076 int __builtin_ia32_vtestnzcpd (v2df,v2df,ptest)
10077 int __builtin_ia32_vtestnzcpd256 (v4df,v4df,ptest)
10078 int __builtin_ia32_vtestnzcps (v4sf,v4sf,ptest)
10079 int __builtin_ia32_vtestnzcps256 (v8sf,v8sf,ptest)
10080 int __builtin_ia32_vtestzpd (v2df,v2df,ptest)
10081 int __builtin_ia32_vtestzpd256 (v4df,v4df,ptest)
10082 int __builtin_ia32_vtestzps (v4sf,v4sf,ptest)
10083 int __builtin_ia32_vtestzps256 (v8sf,v8sf,ptest)
10084 void __builtin_ia32_vzeroall (void)
10085 void __builtin_ia32_vzeroupper (void)
10086 v4df __builtin_ia32_xorpd256 (v4df,v4df)
10087 v8sf __builtin_ia32_xorps256 (v8sf,v8sf)
10088 @end smallexample
10089
10090 The following built-in functions are available when @option{-mavx2} is
10091 used. All of them generate the machine instruction that is part of the
10092 name.
10093
10094 @smallexample
10095 v32qi __builtin_ia32_mpsadbw256 (v32qi,v32qi,v32qi,int)
10096 v32qi __builtin_ia32_pabsb256 (v32qi)
10097 v16hi __builtin_ia32_pabsw256 (v16hi)
10098 v8si __builtin_ia32_pabsd256 (v8si)
10099 v16hi builtin_ia32_packssdw256 (v8si,v8si)
10100 v32qi __builtin_ia32_packsswb256 (v16hi,v16hi)
10101 v16hi __builtin_ia32_packusdw256 (v8si,v8si)
10102 v32qi __builtin_ia32_packuswb256 (v16hi,v16hi)
10103 v32qi__builtin_ia32_paddb256 (v32qi,v32qi)
10104 v16hi __builtin_ia32_paddw256 (v16hi,v16hi)
10105 v8si __builtin_ia32_paddd256 (v8si,v8si)
10106 v4di __builtin_ia32_paddq256 (v4di,v4di)
10107 v32qi __builtin_ia32_paddsb256 (v32qi,v32qi)
10108 v16hi __builtin_ia32_paddsw256 (v16hi,v16hi)
10109 v32qi __builtin_ia32_paddusb256 (v32qi,v32qi)
10110 v16hi __builtin_ia32_paddusw256 (v16hi,v16hi)
10111 v4di __builtin_ia32_palignr256 (v4di,v4di,int)
10112 v4di __builtin_ia32_andsi256 (v4di,v4di)
10113 v4di __builtin_ia32_andnotsi256 (v4di,v4di)
10114 v32qi__builtin_ia32_pavgb256 (v32qi,v32qi)
10115 v16hi __builtin_ia32_pavgw256 (v16hi,v16hi)
10116 v32qi __builtin_ia32_pblendvb256 (v32qi,v32qi,v32qi)
10117 v16hi __builtin_ia32_pblendw256 (v16hi,v16hi,int)
10118 v32qi __builtin_ia32_pcmpeqb256 (v32qi,v32qi)
10119 v16hi __builtin_ia32_pcmpeqw256 (v16hi,v16hi)
10120 v8si __builtin_ia32_pcmpeqd256 (c8si,v8si)
10121 v4di __builtin_ia32_pcmpeqq256 (v4di,v4di)
10122 v32qi __builtin_ia32_pcmpgtb256 (v32qi,v32qi)
10123 v16hi __builtin_ia32_pcmpgtw256 (16hi,v16hi)
10124 v8si __builtin_ia32_pcmpgtd256 (v8si,v8si)
10125 v4di __builtin_ia32_pcmpgtq256 (v4di,v4di)
10126 v16hi __builtin_ia32_phaddw256 (v16hi,v16hi)
10127 v8si __builtin_ia32_phaddd256 (v8si,v8si)
10128 v16hi __builtin_ia32_phaddsw256 (v16hi,v16hi)
10129 v16hi __builtin_ia32_phsubw256 (v16hi,v16hi)
10130 v8si __builtin_ia32_phsubd256 (v8si,v8si)
10131 v16hi __builtin_ia32_phsubsw256 (v16hi,v16hi)
10132 v32qi __builtin_ia32_pmaddubsw256 (v32qi,v32qi)
10133 v16hi __builtin_ia32_pmaddwd256 (v16hi,v16hi)
10134 v32qi __builtin_ia32_pmaxsb256 (v32qi,v32qi)
10135 v16hi __builtin_ia32_pmaxsw256 (v16hi,v16hi)
10136 v8si __builtin_ia32_pmaxsd256 (v8si,v8si)
10137 v32qi __builtin_ia32_pmaxub256 (v32qi,v32qi)
10138 v16hi __builtin_ia32_pmaxuw256 (v16hi,v16hi)
10139 v8si __builtin_ia32_pmaxud256 (v8si,v8si)
10140 v32qi __builtin_ia32_pminsb256 (v32qi,v32qi)
10141 v16hi __builtin_ia32_pminsw256 (v16hi,v16hi)
10142 v8si __builtin_ia32_pminsd256 (v8si,v8si)
10143 v32qi __builtin_ia32_pminub256 (v32qi,v32qi)
10144 v16hi __builtin_ia32_pminuw256 (v16hi,v16hi)
10145 v8si __builtin_ia32_pminud256 (v8si,v8si)
10146 int __builtin_ia32_pmovmskb256 (v32qi)
10147 v16hi __builtin_ia32_pmovsxbw256 (v16qi)
10148 v8si __builtin_ia32_pmovsxbd256 (v16qi)
10149 v4di __builtin_ia32_pmovsxbq256 (v16qi)
10150 v8si __builtin_ia32_pmovsxwd256 (v8hi)
10151 v4di __builtin_ia32_pmovsxwq256 (v8hi)
10152 v4di __builtin_ia32_pmovsxdq256 (v4si)
10153 v16hi __builtin_ia32_pmovzxbw256 (v16qi)
10154 v8si __builtin_ia32_pmovzxbd256 (v16qi)
10155 v4di __builtin_ia32_pmovzxbq256 (v16qi)
10156 v8si __builtin_ia32_pmovzxwd256 (v8hi)
10157 v4di __builtin_ia32_pmovzxwq256 (v8hi)
10158 v4di __builtin_ia32_pmovzxdq256 (v4si)
10159 v4di __builtin_ia32_pmuldq256 (v8si,v8si)
10160 v16hi __builtin_ia32_pmulhrsw256 (v16hi, v16hi)
10161 v16hi __builtin_ia32_pmulhuw256 (v16hi,v16hi)
10162 v16hi __builtin_ia32_pmulhw256 (v16hi,v16hi)
10163 v16hi __builtin_ia32_pmullw256 (v16hi,v16hi)
10164 v8si __builtin_ia32_pmulld256 (v8si,v8si)
10165 v4di __builtin_ia32_pmuludq256 (v8si,v8si)
10166 v4di __builtin_ia32_por256 (v4di,v4di)
10167 v16hi __builtin_ia32_psadbw256 (v32qi,v32qi)
10168 v32qi __builtin_ia32_pshufb256 (v32qi,v32qi)
10169 v8si __builtin_ia32_pshufd256 (v8si,int)
10170 v16hi __builtin_ia32_pshufhw256 (v16hi,int)
10171 v16hi __builtin_ia32_pshuflw256 (v16hi,int)
10172 v32qi __builtin_ia32_psignb256 (v32qi,v32qi)
10173 v16hi __builtin_ia32_psignw256 (v16hi,v16hi)
10174 v8si __builtin_ia32_psignd256 (v8si,v8si)
10175 v4di __builtin_ia32_pslldqi256 (v4di,int)
10176 v16hi __builtin_ia32_psllwi256 (16hi,int)
10177 v16hi __builtin_ia32_psllw256(v16hi,v8hi)
10178 v8si __builtin_ia32_pslldi256 (v8si,int)
10179 v8si __builtin_ia32_pslld256(v8si,v4si)
10180 v4di __builtin_ia32_psllqi256 (v4di,int)
10181 v4di __builtin_ia32_psllq256(v4di,v2di)
10182 v16hi __builtin_ia32_psrawi256 (v16hi,int)
10183 v16hi __builtin_ia32_psraw256 (v16hi,v8hi)
10184 v8si __builtin_ia32_psradi256 (v8si,int)
10185 v8si __builtin_ia32_psrad256 (v8si,v4si)
10186 v4di __builtin_ia32_psrldqi256 (v4di, int)
10187 v16hi __builtin_ia32_psrlwi256 (v16hi,int)
10188 v16hi __builtin_ia32_psrlw256 (v16hi,v8hi)
10189 v8si __builtin_ia32_psrldi256 (v8si,int)
10190 v8si __builtin_ia32_psrld256 (v8si,v4si)
10191 v4di __builtin_ia32_psrlqi256 (v4di,int)
10192 v4di __builtin_ia32_psrlq256(v4di,v2di)
10193 v32qi __builtin_ia32_psubb256 (v32qi,v32qi)
10194 v32hi __builtin_ia32_psubw256 (v16hi,v16hi)
10195 v8si __builtin_ia32_psubd256 (v8si,v8si)
10196 v4di __builtin_ia32_psubq256 (v4di,v4di)
10197 v32qi __builtin_ia32_psubsb256 (v32qi,v32qi)
10198 v16hi __builtin_ia32_psubsw256 (v16hi,v16hi)
10199 v32qi __builtin_ia32_psubusb256 (v32qi,v32qi)
10200 v16hi __builtin_ia32_psubusw256 (v16hi,v16hi)
10201 v32qi __builtin_ia32_punpckhbw256 (v32qi,v32qi)
10202 v16hi __builtin_ia32_punpckhwd256 (v16hi,v16hi)
10203 v8si __builtin_ia32_punpckhdq256 (v8si,v8si)
10204 v4di __builtin_ia32_punpckhqdq256 (v4di,v4di)
10205 v32qi __builtin_ia32_punpcklbw256 (v32qi,v32qi)
10206 v16hi __builtin_ia32_punpcklwd256 (v16hi,v16hi)
10207 v8si __builtin_ia32_punpckldq256 (v8si,v8si)
10208 v4di __builtin_ia32_punpcklqdq256 (v4di,v4di)
10209 v4di __builtin_ia32_pxor256 (v4di,v4di)
10210 v4di __builtin_ia32_movntdqa256 (pv4di)
10211 v4sf __builtin_ia32_vbroadcastss_ps (v4sf)
10212 v8sf __builtin_ia32_vbroadcastss_ps256 (v4sf)
10213 v4df __builtin_ia32_vbroadcastsd_pd256 (v2df)
10214 v4di __builtin_ia32_vbroadcastsi256 (v2di)
10215 v4si __builtin_ia32_pblendd128 (v4si,v4si)
10216 v8si __builtin_ia32_pblendd256 (v8si,v8si)
10217 v32qi __builtin_ia32_pbroadcastb256 (v16qi)
10218 v16hi __builtin_ia32_pbroadcastw256 (v8hi)
10219 v8si __builtin_ia32_pbroadcastd256 (v4si)
10220 v4di __builtin_ia32_pbroadcastq256 (v2di)
10221 v16qi __builtin_ia32_pbroadcastb128 (v16qi)
10222 v8hi __builtin_ia32_pbroadcastw128 (v8hi)
10223 v4si __builtin_ia32_pbroadcastd128 (v4si)
10224 v2di __builtin_ia32_pbroadcastq128 (v2di)
10225 v8si __builtin_ia32_permvarsi256 (v8si,v8si)
10226 v4df __builtin_ia32_permdf256 (v4df,int)
10227 v8sf __builtin_ia32_permvarsf256 (v8sf,v8sf)
10228 v4di __builtin_ia32_permdi256 (v4di,int)
10229 v4di __builtin_ia32_permti256 (v4di,v4di,int)
10230 v4di __builtin_ia32_extract128i256 (v4di,int)
10231 v4di __builtin_ia32_insert128i256 (v4di,v2di,int)
10232 v8si __builtin_ia32_maskloadd256 (pcv8si,v8si)
10233 v4di __builtin_ia32_maskloadq256 (pcv4di,v4di)
10234 v4si __builtin_ia32_maskloadd (pcv4si,v4si)
10235 v2di __builtin_ia32_maskloadq (pcv2di,v2di)
10236 void __builtin_ia32_maskstored256 (pv8si,v8si,v8si)
10237 void __builtin_ia32_maskstoreq256 (pv4di,v4di,v4di)
10238 void __builtin_ia32_maskstored (pv4si,v4si,v4si)
10239 void __builtin_ia32_maskstoreq (pv2di,v2di,v2di)
10240 v8si __builtin_ia32_psllv8si (v8si,v8si)
10241 v4si __builtin_ia32_psllv4si (v4si,v4si)
10242 v4di __builtin_ia32_psllv4di (v4di,v4di)
10243 v2di __builtin_ia32_psllv2di (v2di,v2di)
10244 v8si __builtin_ia32_psrav8si (v8si,v8si)
10245 v4si __builtin_ia32_psrav4si (v4si,v4si)
10246 v8si __builtin_ia32_psrlv8si (v8si,v8si)
10247 v4si __builtin_ia32_psrlv4si (v4si,v4si)
10248 v4di __builtin_ia32_psrlv4di (v4di,v4di)
10249 v2di __builtin_ia32_psrlv2di (v2di,v2di)
10250 v2df __builtin_ia32_gathersiv2df (v2df, pcdouble,v4si,v2df,int)
10251 v4df __builtin_ia32_gathersiv4df (v4df, pcdouble,v4si,v4df,int)
10252 v2df __builtin_ia32_gatherdiv2df (v2df, pcdouble,v2di,v2df,int)
10253 v4df __builtin_ia32_gatherdiv4df (v4df, pcdouble,v4di,v4df,int)
10254 v4sf __builtin_ia32_gathersiv4sf (v4sf, pcfloat,v4si,v4sf,int)
10255 v8sf __builtin_ia32_gathersiv8sf (v8sf, pcfloat,v8si,v8sf,int)
10256 v4sf __builtin_ia32_gatherdiv4sf (v4sf, pcfloat,v2di,v4sf,int)
10257 v4sf __builtin_ia32_gatherdiv4sf256 (v4sf, pcfloat,v4di,v4sf,int)
10258 v2di __builtin_ia32_gathersiv2di (v2di, pcint64,v4si,v2di,int)
10259 v4di __builtin_ia32_gathersiv4di (v4di, pcint64,v4si,v4di,int)
10260 v2di __builtin_ia32_gatherdiv2di (v2di, pcint64,v2di,v2di,int)
10261 v4di __builtin_ia32_gatherdiv4di (v4di, pcint64,v4di,v4di,int)
10262 v4si __builtin_ia32_gathersiv4si (v4si, pcint,v4si,v4si,int)
10263 v8si __builtin_ia32_gathersiv8si (v8si, pcint,v8si,v8si,int)
10264 v4si __builtin_ia32_gatherdiv4si (v4si, pcint,v2di,v4si,int)
10265 v4si __builtin_ia32_gatherdiv4si256 (v4si, pcint,v4di,v4si,int)
10266 @end smallexample
10267
10268 The following built-in functions are available when @option{-maes} is
10269 used. All of them generate the machine instruction that is part of the
10270 name.
10271
10272 @smallexample
10273 v2di __builtin_ia32_aesenc128 (v2di, v2di)
10274 v2di __builtin_ia32_aesenclast128 (v2di, v2di)
10275 v2di __builtin_ia32_aesdec128 (v2di, v2di)
10276 v2di __builtin_ia32_aesdeclast128 (v2di, v2di)
10277 v2di __builtin_ia32_aeskeygenassist128 (v2di, const int)
10278 v2di __builtin_ia32_aesimc128 (v2di)
10279 @end smallexample
10280
10281 The following built-in function is available when @option{-mpclmul} is
10282 used.
10283
10284 @table @code
10285 @item v2di __builtin_ia32_pclmulqdq128 (v2di, v2di, const int)
10286 Generates the @code{pclmulqdq} machine instruction.
10287 @end table
10288
10289 The following built-in function is available when @option{-mfsgsbase} is
10290 used. All of them generate the machine instruction that is part of the
10291 name.
10292
10293 @smallexample
10294 unsigned int __builtin_ia32_rdfsbase32 (void)
10295 unsigned long long __builtin_ia32_rdfsbase64 (void)
10296 unsigned int __builtin_ia32_rdgsbase32 (void)
10297 unsigned long long __builtin_ia32_rdgsbase64 (void)
10298 void _writefsbase_u32 (unsigned int)
10299 void _writefsbase_u64 (unsigned long long)
10300 void _writegsbase_u32 (unsigned int)
10301 void _writegsbase_u64 (unsigned long long)
10302 @end smallexample
10303
10304 The following built-in function is available when @option{-mrdrnd} is
10305 used. All of them generate the machine instruction that is part of the
10306 name.
10307
10308 @smallexample
10309 unsigned int __builtin_ia32_rdrand16_step (unsigned short *)
10310 unsigned int __builtin_ia32_rdrand32_step (unsigned int *)
10311 unsigned int __builtin_ia32_rdrand64_step (unsigned long long *)
10312 @end smallexample
10313
10314 The following built-in functions are available when @option{-msse4a} is used.
10315 All of them generate the machine instruction that is part of the name.
10316
10317 @smallexample
10318 void __builtin_ia32_movntsd (double *, v2df)
10319 void __builtin_ia32_movntss (float *, v4sf)
10320 v2di __builtin_ia32_extrq (v2di, v16qi)
10321 v2di __builtin_ia32_extrqi (v2di, const unsigned int, const unsigned int)
10322 v2di __builtin_ia32_insertq (v2di, v2di)
10323 v2di __builtin_ia32_insertqi (v2di, v2di, const unsigned int, const unsigned int)
10324 @end smallexample
10325
10326 The following built-in functions are available when @option{-mxop} is used.
10327 @smallexample
10328 v2df __builtin_ia32_vfrczpd (v2df)
10329 v4sf __builtin_ia32_vfrczps (v4sf)
10330 v2df __builtin_ia32_vfrczsd (v2df, v2df)
10331 v4sf __builtin_ia32_vfrczss (v4sf, v4sf)
10332 v4df __builtin_ia32_vfrczpd256 (v4df)
10333 v8sf __builtin_ia32_vfrczps256 (v8sf)
10334 v2di __builtin_ia32_vpcmov (v2di, v2di, v2di)
10335 v2di __builtin_ia32_vpcmov_v2di (v2di, v2di, v2di)
10336 v4si __builtin_ia32_vpcmov_v4si (v4si, v4si, v4si)
10337 v8hi __builtin_ia32_vpcmov_v8hi (v8hi, v8hi, v8hi)
10338 v16qi __builtin_ia32_vpcmov_v16qi (v16qi, v16qi, v16qi)
10339 v2df __builtin_ia32_vpcmov_v2df (v2df, v2df, v2df)
10340 v4sf __builtin_ia32_vpcmov_v4sf (v4sf, v4sf, v4sf)
10341 v4di __builtin_ia32_vpcmov_v4di256 (v4di, v4di, v4di)
10342 v8si __builtin_ia32_vpcmov_v8si256 (v8si, v8si, v8si)
10343 v16hi __builtin_ia32_vpcmov_v16hi256 (v16hi, v16hi, v16hi)
10344 v32qi __builtin_ia32_vpcmov_v32qi256 (v32qi, v32qi, v32qi)
10345 v4df __builtin_ia32_vpcmov_v4df256 (v4df, v4df, v4df)
10346 v8sf __builtin_ia32_vpcmov_v8sf256 (v8sf, v8sf, v8sf)
10347 v16qi __builtin_ia32_vpcomeqb (v16qi, v16qi)
10348 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
10349 v4si __builtin_ia32_vpcomeqd (v4si, v4si)
10350 v2di __builtin_ia32_vpcomeqq (v2di, v2di)
10351 v16qi __builtin_ia32_vpcomequb (v16qi, v16qi)
10352 v4si __builtin_ia32_vpcomequd (v4si, v4si)
10353 v2di __builtin_ia32_vpcomequq (v2di, v2di)
10354 v8hi __builtin_ia32_vpcomequw (v8hi, v8hi)
10355 v8hi __builtin_ia32_vpcomeqw (v8hi, v8hi)
10356 v16qi __builtin_ia32_vpcomfalseb (v16qi, v16qi)
10357 v4si __builtin_ia32_vpcomfalsed (v4si, v4si)
10358 v2di __builtin_ia32_vpcomfalseq (v2di, v2di)
10359 v16qi __builtin_ia32_vpcomfalseub (v16qi, v16qi)
10360 v4si __builtin_ia32_vpcomfalseud (v4si, v4si)
10361 v2di __builtin_ia32_vpcomfalseuq (v2di, v2di)
10362 v8hi __builtin_ia32_vpcomfalseuw (v8hi, v8hi)
10363 v8hi __builtin_ia32_vpcomfalsew (v8hi, v8hi)
10364 v16qi __builtin_ia32_vpcomgeb (v16qi, v16qi)
10365 v4si __builtin_ia32_vpcomged (v4si, v4si)
10366 v2di __builtin_ia32_vpcomgeq (v2di, v2di)
10367 v16qi __builtin_ia32_vpcomgeub (v16qi, v16qi)
10368 v4si __builtin_ia32_vpcomgeud (v4si, v4si)
10369 v2di __builtin_ia32_vpcomgeuq (v2di, v2di)
10370 v8hi __builtin_ia32_vpcomgeuw (v8hi, v8hi)
10371 v8hi __builtin_ia32_vpcomgew (v8hi, v8hi)
10372 v16qi __builtin_ia32_vpcomgtb (v16qi, v16qi)
10373 v4si __builtin_ia32_vpcomgtd (v4si, v4si)
10374 v2di __builtin_ia32_vpcomgtq (v2di, v2di)
10375 v16qi __builtin_ia32_vpcomgtub (v16qi, v16qi)
10376 v4si __builtin_ia32_vpcomgtud (v4si, v4si)
10377 v2di __builtin_ia32_vpcomgtuq (v2di, v2di)
10378 v8hi __builtin_ia32_vpcomgtuw (v8hi, v8hi)
10379 v8hi __builtin_ia32_vpcomgtw (v8hi, v8hi)
10380 v16qi __builtin_ia32_vpcomleb (v16qi, v16qi)
10381 v4si __builtin_ia32_vpcomled (v4si, v4si)
10382 v2di __builtin_ia32_vpcomleq (v2di, v2di)
10383 v16qi __builtin_ia32_vpcomleub (v16qi, v16qi)
10384 v4si __builtin_ia32_vpcomleud (v4si, v4si)
10385 v2di __builtin_ia32_vpcomleuq (v2di, v2di)
10386 v8hi __builtin_ia32_vpcomleuw (v8hi, v8hi)
10387 v8hi __builtin_ia32_vpcomlew (v8hi, v8hi)
10388 v16qi __builtin_ia32_vpcomltb (v16qi, v16qi)
10389 v4si __builtin_ia32_vpcomltd (v4si, v4si)
10390 v2di __builtin_ia32_vpcomltq (v2di, v2di)
10391 v16qi __builtin_ia32_vpcomltub (v16qi, v16qi)
10392 v4si __builtin_ia32_vpcomltud (v4si, v4si)
10393 v2di __builtin_ia32_vpcomltuq (v2di, v2di)
10394 v8hi __builtin_ia32_vpcomltuw (v8hi, v8hi)
10395 v8hi __builtin_ia32_vpcomltw (v8hi, v8hi)
10396 v16qi __builtin_ia32_vpcomneb (v16qi, v16qi)
10397 v4si __builtin_ia32_vpcomned (v4si, v4si)
10398 v2di __builtin_ia32_vpcomneq (v2di, v2di)
10399 v16qi __builtin_ia32_vpcomneub (v16qi, v16qi)
10400 v4si __builtin_ia32_vpcomneud (v4si, v4si)
10401 v2di __builtin_ia32_vpcomneuq (v2di, v2di)
10402 v8hi __builtin_ia32_vpcomneuw (v8hi, v8hi)
10403 v8hi __builtin_ia32_vpcomnew (v8hi, v8hi)
10404 v16qi __builtin_ia32_vpcomtrueb (v16qi, v16qi)
10405 v4si __builtin_ia32_vpcomtrued (v4si, v4si)
10406 v2di __builtin_ia32_vpcomtrueq (v2di, v2di)
10407 v16qi __builtin_ia32_vpcomtrueub (v16qi, v16qi)
10408 v4si __builtin_ia32_vpcomtrueud (v4si, v4si)
10409 v2di __builtin_ia32_vpcomtrueuq (v2di, v2di)
10410 v8hi __builtin_ia32_vpcomtrueuw (v8hi, v8hi)
10411 v8hi __builtin_ia32_vpcomtruew (v8hi, v8hi)
10412 v4si __builtin_ia32_vphaddbd (v16qi)
10413 v2di __builtin_ia32_vphaddbq (v16qi)
10414 v8hi __builtin_ia32_vphaddbw (v16qi)
10415 v2di __builtin_ia32_vphadddq (v4si)
10416 v4si __builtin_ia32_vphaddubd (v16qi)
10417 v2di __builtin_ia32_vphaddubq (v16qi)
10418 v8hi __builtin_ia32_vphaddubw (v16qi)
10419 v2di __builtin_ia32_vphaddudq (v4si)
10420 v4si __builtin_ia32_vphadduwd (v8hi)
10421 v2di __builtin_ia32_vphadduwq (v8hi)
10422 v4si __builtin_ia32_vphaddwd (v8hi)
10423 v2di __builtin_ia32_vphaddwq (v8hi)
10424 v8hi __builtin_ia32_vphsubbw (v16qi)
10425 v2di __builtin_ia32_vphsubdq (v4si)
10426 v4si __builtin_ia32_vphsubwd (v8hi)
10427 v4si __builtin_ia32_vpmacsdd (v4si, v4si, v4si)
10428 v2di __builtin_ia32_vpmacsdqh (v4si, v4si, v2di)
10429 v2di __builtin_ia32_vpmacsdql (v4si, v4si, v2di)
10430 v4si __builtin_ia32_vpmacssdd (v4si, v4si, v4si)
10431 v2di __builtin_ia32_vpmacssdqh (v4si, v4si, v2di)
10432 v2di __builtin_ia32_vpmacssdql (v4si, v4si, v2di)
10433 v4si __builtin_ia32_vpmacsswd (v8hi, v8hi, v4si)
10434 v8hi __builtin_ia32_vpmacssww (v8hi, v8hi, v8hi)
10435 v4si __builtin_ia32_vpmacswd (v8hi, v8hi, v4si)
10436 v8hi __builtin_ia32_vpmacsww (v8hi, v8hi, v8hi)
10437 v4si __builtin_ia32_vpmadcsswd (v8hi, v8hi, v4si)
10438 v4si __builtin_ia32_vpmadcswd (v8hi, v8hi, v4si)
10439 v16qi __builtin_ia32_vpperm (v16qi, v16qi, v16qi)
10440 v16qi __builtin_ia32_vprotb (v16qi, v16qi)
10441 v4si __builtin_ia32_vprotd (v4si, v4si)
10442 v2di __builtin_ia32_vprotq (v2di, v2di)
10443 v8hi __builtin_ia32_vprotw (v8hi, v8hi)
10444 v16qi __builtin_ia32_vpshab (v16qi, v16qi)
10445 v4si __builtin_ia32_vpshad (v4si, v4si)
10446 v2di __builtin_ia32_vpshaq (v2di, v2di)
10447 v8hi __builtin_ia32_vpshaw (v8hi, v8hi)
10448 v16qi __builtin_ia32_vpshlb (v16qi, v16qi)
10449 v4si __builtin_ia32_vpshld (v4si, v4si)
10450 v2di __builtin_ia32_vpshlq (v2di, v2di)
10451 v8hi __builtin_ia32_vpshlw (v8hi, v8hi)
10452 @end smallexample
10453
10454 The following built-in functions are available when @option{-mfma4} is used.
10455 All of them generate the machine instruction that is part of the name
10456 with MMX registers.
10457
10458 @smallexample
10459 v2df __builtin_ia32_fmaddpd (v2df, v2df, v2df)
10460 v4sf __builtin_ia32_fmaddps (v4sf, v4sf, v4sf)
10461 v2df __builtin_ia32_fmaddsd (v2df, v2df, v2df)
10462 v4sf __builtin_ia32_fmaddss (v4sf, v4sf, v4sf)
10463 v2df __builtin_ia32_fmsubpd (v2df, v2df, v2df)
10464 v4sf __builtin_ia32_fmsubps (v4sf, v4sf, v4sf)
10465 v2df __builtin_ia32_fmsubsd (v2df, v2df, v2df)
10466 v4sf __builtin_ia32_fmsubss (v4sf, v4sf, v4sf)
10467 v2df __builtin_ia32_fnmaddpd (v2df, v2df, v2df)
10468 v4sf __builtin_ia32_fnmaddps (v4sf, v4sf, v4sf)
10469 v2df __builtin_ia32_fnmaddsd (v2df, v2df, v2df)
10470 v4sf __builtin_ia32_fnmaddss (v4sf, v4sf, v4sf)
10471 v2df __builtin_ia32_fnmsubpd (v2df, v2df, v2df)
10472 v4sf __builtin_ia32_fnmsubps (v4sf, v4sf, v4sf)
10473 v2df __builtin_ia32_fnmsubsd (v2df, v2df, v2df)
10474 v4sf __builtin_ia32_fnmsubss (v4sf, v4sf, v4sf)
10475 v2df __builtin_ia32_fmaddsubpd (v2df, v2df, v2df)
10476 v4sf __builtin_ia32_fmaddsubps (v4sf, v4sf, v4sf)
10477 v2df __builtin_ia32_fmsubaddpd (v2df, v2df, v2df)
10478 v4sf __builtin_ia32_fmsubaddps (v4sf, v4sf, v4sf)
10479 v4df __builtin_ia32_fmaddpd256 (v4df, v4df, v4df)
10480 v8sf __builtin_ia32_fmaddps256 (v8sf, v8sf, v8sf)
10481 v4df __builtin_ia32_fmsubpd256 (v4df, v4df, v4df)
10482 v8sf __builtin_ia32_fmsubps256 (v8sf, v8sf, v8sf)
10483 v4df __builtin_ia32_fnmaddpd256 (v4df, v4df, v4df)
10484 v8sf __builtin_ia32_fnmaddps256 (v8sf, v8sf, v8sf)
10485 v4df __builtin_ia32_fnmsubpd256 (v4df, v4df, v4df)
10486 v8sf __builtin_ia32_fnmsubps256 (v8sf, v8sf, v8sf)
10487 v4df __builtin_ia32_fmaddsubpd256 (v4df, v4df, v4df)
10488 v8sf __builtin_ia32_fmaddsubps256 (v8sf, v8sf, v8sf)
10489 v4df __builtin_ia32_fmsubaddpd256 (v4df, v4df, v4df)
10490 v8sf __builtin_ia32_fmsubaddps256 (v8sf, v8sf, v8sf)
10491
10492 @end smallexample
10493
10494 The following built-in functions are available when @option{-mlwp} is used.
10495
10496 @smallexample
10497 void __builtin_ia32_llwpcb16 (void *);
10498 void __builtin_ia32_llwpcb32 (void *);
10499 void __builtin_ia32_llwpcb64 (void *);
10500 void * __builtin_ia32_llwpcb16 (void);
10501 void * __builtin_ia32_llwpcb32 (void);
10502 void * __builtin_ia32_llwpcb64 (void);
10503 void __builtin_ia32_lwpval16 (unsigned short, unsigned int, unsigned short)
10504 void __builtin_ia32_lwpval32 (unsigned int, unsigned int, unsigned int)
10505 void __builtin_ia32_lwpval64 (unsigned __int64, unsigned int, unsigned int)
10506 unsigned char __builtin_ia32_lwpins16 (unsigned short, unsigned int, unsigned short)
10507 unsigned char __builtin_ia32_lwpins32 (unsigned int, unsigned int, unsigned int)
10508 unsigned char __builtin_ia32_lwpins64 (unsigned __int64, unsigned int, unsigned int)
10509 @end smallexample
10510
10511 The following built-in functions are available when @option{-mbmi} is used.
10512 All of them generate the machine instruction that is part of the name.
10513 @smallexample
10514 unsigned int __builtin_ia32_bextr_u32(unsigned int, unsigned int);
10515 unsigned long long __builtin_ia32_bextr_u64 (unsigned long long, unsigned long long);
10516 @end smallexample
10517
10518 The following built-in functions are available when @option{-mbmi2} is used.
10519 All of them generate the machine instruction that is part of the name.
10520 @smallexample
10521 unsigned int _bzhi_u32 (unsigned int, unsigned int)
10522 unsigned int _pdep_u32 (unsigned int, unsigned int)
10523 unsigned int _pext_u32 (unsigned int, unsigned int)
10524 unsigned long long _bzhi_u64 (unsigned long long, unsigned long long)
10525 unsigned long long _pdep_u64 (unsigned long long, unsigned long long)
10526 unsigned long long _pext_u64 (unsigned long long, unsigned long long)
10527 @end smallexample
10528
10529 The following built-in functions are available when @option{-mlzcnt} is used.
10530 All of them generate the machine instruction that is part of the name.
10531 @smallexample
10532 unsigned short __builtin_ia32_lzcnt_16(unsigned short);
10533 unsigned int __builtin_ia32_lzcnt_u32(unsigned int);
10534 unsigned long long __builtin_ia32_lzcnt_u64 (unsigned long long);
10535 @end smallexample
10536
10537 The following built-in functions are available when @option{-mtbm} is used.
10538 Both of them generate the immediate form of the bextr machine instruction.
10539 @smallexample
10540 unsigned int __builtin_ia32_bextri_u32 (unsigned int, const unsigned int);
10541 unsigned long long __builtin_ia32_bextri_u64 (unsigned long long, const unsigned long long);
10542 @end smallexample
10543
10544
10545 The following built-in functions are available when @option{-m3dnow} is used.
10546 All of them generate the machine instruction that is part of the name.
10547
10548 @smallexample
10549 void __builtin_ia32_femms (void)
10550 v8qi __builtin_ia32_pavgusb (v8qi, v8qi)
10551 v2si __builtin_ia32_pf2id (v2sf)
10552 v2sf __builtin_ia32_pfacc (v2sf, v2sf)
10553 v2sf __builtin_ia32_pfadd (v2sf, v2sf)
10554 v2si __builtin_ia32_pfcmpeq (v2sf, v2sf)
10555 v2si __builtin_ia32_pfcmpge (v2sf, v2sf)
10556 v2si __builtin_ia32_pfcmpgt (v2sf, v2sf)
10557 v2sf __builtin_ia32_pfmax (v2sf, v2sf)
10558 v2sf __builtin_ia32_pfmin (v2sf, v2sf)
10559 v2sf __builtin_ia32_pfmul (v2sf, v2sf)
10560 v2sf __builtin_ia32_pfrcp (v2sf)
10561 v2sf __builtin_ia32_pfrcpit1 (v2sf, v2sf)
10562 v2sf __builtin_ia32_pfrcpit2 (v2sf, v2sf)
10563 v2sf __builtin_ia32_pfrsqrt (v2sf)
10564 v2sf __builtin_ia32_pfrsqrtit1 (v2sf, v2sf)
10565 v2sf __builtin_ia32_pfsub (v2sf, v2sf)
10566 v2sf __builtin_ia32_pfsubr (v2sf, v2sf)
10567 v2sf __builtin_ia32_pi2fd (v2si)
10568 v4hi __builtin_ia32_pmulhrw (v4hi, v4hi)
10569 @end smallexample
10570
10571 The following built-in functions are available when both @option{-m3dnow}
10572 and @option{-march=athlon} are used. All of them generate the machine
10573 instruction that is part of the name.
10574
10575 @smallexample
10576 v2si __builtin_ia32_pf2iw (v2sf)
10577 v2sf __builtin_ia32_pfnacc (v2sf, v2sf)
10578 v2sf __builtin_ia32_pfpnacc (v2sf, v2sf)
10579 v2sf __builtin_ia32_pi2fw (v2si)
10580 v2sf __builtin_ia32_pswapdsf (v2sf)
10581 v2si __builtin_ia32_pswapdsi (v2si)
10582 @end smallexample
10583
10584 @node MIPS DSP Built-in Functions
10585 @subsection MIPS DSP Built-in Functions
10586
10587 The MIPS DSP Application-Specific Extension (ASE) includes new
10588 instructions that are designed to improve the performance of DSP and
10589 media applications. It provides instructions that operate on packed
10590 8-bit/16-bit integer data, Q7, Q15 and Q31 fractional data.
10591
10592 GCC supports MIPS DSP operations using both the generic
10593 vector extensions (@pxref{Vector Extensions}) and a collection of
10594 MIPS-specific built-in functions. Both kinds of support are
10595 enabled by the @option{-mdsp} command-line option.
10596
10597 Revision 2 of the ASE was introduced in the second half of 2006.
10598 This revision adds extra instructions to the original ASE, but is
10599 otherwise backwards-compatible with it. You can select revision 2
10600 using the command-line option @option{-mdspr2}; this option implies
10601 @option{-mdsp}.
10602
10603 The SCOUNT and POS bits of the DSP control register are global. The
10604 WRDSP, EXTPDP, EXTPDPV and MTHLIP instructions modify the SCOUNT and
10605 POS bits. During optimization, the compiler will not delete these
10606 instructions and it will not delete calls to functions containing
10607 these instructions.
10608
10609 At present, GCC only provides support for operations on 32-bit
10610 vectors. The vector type associated with 8-bit integer data is
10611 usually called @code{v4i8}, the vector type associated with Q7
10612 is usually called @code{v4q7}, the vector type associated with 16-bit
10613 integer data is usually called @code{v2i16}, and the vector type
10614 associated with Q15 is usually called @code{v2q15}. They can be
10615 defined in C as follows:
10616
10617 @smallexample
10618 typedef signed char v4i8 __attribute__ ((vector_size(4)));
10619 typedef signed char v4q7 __attribute__ ((vector_size(4)));
10620 typedef short v2i16 __attribute__ ((vector_size(4)));
10621 typedef short v2q15 __attribute__ ((vector_size(4)));
10622 @end smallexample
10623
10624 @code{v4i8}, @code{v4q7}, @code{v2i16} and @code{v2q15} values are
10625 initialized in the same way as aggregates. For example:
10626
10627 @smallexample
10628 v4i8 a = @{1, 2, 3, 4@};
10629 v4i8 b;
10630 b = (v4i8) @{5, 6, 7, 8@};
10631
10632 v2q15 c = @{0x0fcb, 0x3a75@};
10633 v2q15 d;
10634 d = (v2q15) @{0.1234 * 0x1.0p15, 0.4567 * 0x1.0p15@};
10635 @end smallexample
10636
10637 @emph{Note:} The CPU's endianness determines the order in which values
10638 are packed. On little-endian targets, the first value is the least
10639 significant and the last value is the most significant. The opposite
10640 order applies to big-endian targets. For example, the code above will
10641 set the lowest byte of @code{a} to @code{1} on little-endian targets
10642 and @code{4} on big-endian targets.
10643
10644 @emph{Note:} Q7, Q15 and Q31 values must be initialized with their integer
10645 representation. As shown in this example, the integer representation
10646 of a Q7 value can be obtained by multiplying the fractional value by
10647 @code{0x1.0p7}. The equivalent for Q15 values is to multiply by
10648 @code{0x1.0p15}. The equivalent for Q31 values is to multiply by
10649 @code{0x1.0p31}.
10650
10651 The table below lists the @code{v4i8} and @code{v2q15} operations for which
10652 hardware support exists. @code{a} and @code{b} are @code{v4i8} values,
10653 and @code{c} and @code{d} are @code{v2q15} values.
10654
10655 @multitable @columnfractions .50 .50
10656 @item C code @tab MIPS instruction
10657 @item @code{a + b} @tab @code{addu.qb}
10658 @item @code{c + d} @tab @code{addq.ph}
10659 @item @code{a - b} @tab @code{subu.qb}
10660 @item @code{c - d} @tab @code{subq.ph}
10661 @end multitable
10662
10663 The table below lists the @code{v2i16} operation for which
10664 hardware support exists for the DSP ASE REV 2. @code{e} and @code{f} are
10665 @code{v2i16} values.
10666
10667 @multitable @columnfractions .50 .50
10668 @item C code @tab MIPS instruction
10669 @item @code{e * f} @tab @code{mul.ph}
10670 @end multitable
10671
10672 It is easier to describe the DSP built-in functions if we first define
10673 the following types:
10674
10675 @smallexample
10676 typedef int q31;
10677 typedef int i32;
10678 typedef unsigned int ui32;
10679 typedef long long a64;
10680 @end smallexample
10681
10682 @code{q31} and @code{i32} are actually the same as @code{int}, but we
10683 use @code{q31} to indicate a Q31 fractional value and @code{i32} to
10684 indicate a 32-bit integer value. Similarly, @code{a64} is the same as
10685 @code{long long}, but we use @code{a64} to indicate values that will
10686 be placed in one of the four DSP accumulators (@code{$ac0},
10687 @code{$ac1}, @code{$ac2} or @code{$ac3}).
10688
10689 Also, some built-in functions prefer or require immediate numbers as
10690 parameters, because the corresponding DSP instructions accept both immediate
10691 numbers and register operands, or accept immediate numbers only. The
10692 immediate parameters are listed as follows.
10693
10694 @smallexample
10695 imm0_3: 0 to 3.
10696 imm0_7: 0 to 7.
10697 imm0_15: 0 to 15.
10698 imm0_31: 0 to 31.
10699 imm0_63: 0 to 63.
10700 imm0_255: 0 to 255.
10701 imm_n32_31: -32 to 31.
10702 imm_n512_511: -512 to 511.
10703 @end smallexample
10704
10705 The following built-in functions map directly to a particular MIPS DSP
10706 instruction. Please refer to the architecture specification
10707 for details on what each instruction does.
10708
10709 @smallexample
10710 v2q15 __builtin_mips_addq_ph (v2q15, v2q15)
10711 v2q15 __builtin_mips_addq_s_ph (v2q15, v2q15)
10712 q31 __builtin_mips_addq_s_w (q31, q31)
10713 v4i8 __builtin_mips_addu_qb (v4i8, v4i8)
10714 v4i8 __builtin_mips_addu_s_qb (v4i8, v4i8)
10715 v2q15 __builtin_mips_subq_ph (v2q15, v2q15)
10716 v2q15 __builtin_mips_subq_s_ph (v2q15, v2q15)
10717 q31 __builtin_mips_subq_s_w (q31, q31)
10718 v4i8 __builtin_mips_subu_qb (v4i8, v4i8)
10719 v4i8 __builtin_mips_subu_s_qb (v4i8, v4i8)
10720 i32 __builtin_mips_addsc (i32, i32)
10721 i32 __builtin_mips_addwc (i32, i32)
10722 i32 __builtin_mips_modsub (i32, i32)
10723 i32 __builtin_mips_raddu_w_qb (v4i8)
10724 v2q15 __builtin_mips_absq_s_ph (v2q15)
10725 q31 __builtin_mips_absq_s_w (q31)
10726 v4i8 __builtin_mips_precrq_qb_ph (v2q15, v2q15)
10727 v2q15 __builtin_mips_precrq_ph_w (q31, q31)
10728 v2q15 __builtin_mips_precrq_rs_ph_w (q31, q31)
10729 v4i8 __builtin_mips_precrqu_s_qb_ph (v2q15, v2q15)
10730 q31 __builtin_mips_preceq_w_phl (v2q15)
10731 q31 __builtin_mips_preceq_w_phr (v2q15)
10732 v2q15 __builtin_mips_precequ_ph_qbl (v4i8)
10733 v2q15 __builtin_mips_precequ_ph_qbr (v4i8)
10734 v2q15 __builtin_mips_precequ_ph_qbla (v4i8)
10735 v2q15 __builtin_mips_precequ_ph_qbra (v4i8)
10736 v2q15 __builtin_mips_preceu_ph_qbl (v4i8)
10737 v2q15 __builtin_mips_preceu_ph_qbr (v4i8)
10738 v2q15 __builtin_mips_preceu_ph_qbla (v4i8)
10739 v2q15 __builtin_mips_preceu_ph_qbra (v4i8)
10740 v4i8 __builtin_mips_shll_qb (v4i8, imm0_7)
10741 v4i8 __builtin_mips_shll_qb (v4i8, i32)
10742 v2q15 __builtin_mips_shll_ph (v2q15, imm0_15)
10743 v2q15 __builtin_mips_shll_ph (v2q15, i32)
10744 v2q15 __builtin_mips_shll_s_ph (v2q15, imm0_15)
10745 v2q15 __builtin_mips_shll_s_ph (v2q15, i32)
10746 q31 __builtin_mips_shll_s_w (q31, imm0_31)
10747 q31 __builtin_mips_shll_s_w (q31, i32)
10748 v4i8 __builtin_mips_shrl_qb (v4i8, imm0_7)
10749 v4i8 __builtin_mips_shrl_qb (v4i8, i32)
10750 v2q15 __builtin_mips_shra_ph (v2q15, imm0_15)
10751 v2q15 __builtin_mips_shra_ph (v2q15, i32)
10752 v2q15 __builtin_mips_shra_r_ph (v2q15, imm0_15)
10753 v2q15 __builtin_mips_shra_r_ph (v2q15, i32)
10754 q31 __builtin_mips_shra_r_w (q31, imm0_31)
10755 q31 __builtin_mips_shra_r_w (q31, i32)
10756 v2q15 __builtin_mips_muleu_s_ph_qbl (v4i8, v2q15)
10757 v2q15 __builtin_mips_muleu_s_ph_qbr (v4i8, v2q15)
10758 v2q15 __builtin_mips_mulq_rs_ph (v2q15, v2q15)
10759 q31 __builtin_mips_muleq_s_w_phl (v2q15, v2q15)
10760 q31 __builtin_mips_muleq_s_w_phr (v2q15, v2q15)
10761 a64 __builtin_mips_dpau_h_qbl (a64, v4i8, v4i8)
10762 a64 __builtin_mips_dpau_h_qbr (a64, v4i8, v4i8)
10763 a64 __builtin_mips_dpsu_h_qbl (a64, v4i8, v4i8)
10764 a64 __builtin_mips_dpsu_h_qbr (a64, v4i8, v4i8)
10765 a64 __builtin_mips_dpaq_s_w_ph (a64, v2q15, v2q15)
10766 a64 __builtin_mips_dpaq_sa_l_w (a64, q31, q31)
10767 a64 __builtin_mips_dpsq_s_w_ph (a64, v2q15, v2q15)
10768 a64 __builtin_mips_dpsq_sa_l_w (a64, q31, q31)
10769 a64 __builtin_mips_mulsaq_s_w_ph (a64, v2q15, v2q15)
10770 a64 __builtin_mips_maq_s_w_phl (a64, v2q15, v2q15)
10771 a64 __builtin_mips_maq_s_w_phr (a64, v2q15, v2q15)
10772 a64 __builtin_mips_maq_sa_w_phl (a64, v2q15, v2q15)
10773 a64 __builtin_mips_maq_sa_w_phr (a64, v2q15, v2q15)
10774 i32 __builtin_mips_bitrev (i32)
10775 i32 __builtin_mips_insv (i32, i32)
10776 v4i8 __builtin_mips_repl_qb (imm0_255)
10777 v4i8 __builtin_mips_repl_qb (i32)
10778 v2q15 __builtin_mips_repl_ph (imm_n512_511)
10779 v2q15 __builtin_mips_repl_ph (i32)
10780 void __builtin_mips_cmpu_eq_qb (v4i8, v4i8)
10781 void __builtin_mips_cmpu_lt_qb (v4i8, v4i8)
10782 void __builtin_mips_cmpu_le_qb (v4i8, v4i8)
10783 i32 __builtin_mips_cmpgu_eq_qb (v4i8, v4i8)
10784 i32 __builtin_mips_cmpgu_lt_qb (v4i8, v4i8)
10785 i32 __builtin_mips_cmpgu_le_qb (v4i8, v4i8)
10786 void __builtin_mips_cmp_eq_ph (v2q15, v2q15)
10787 void __builtin_mips_cmp_lt_ph (v2q15, v2q15)
10788 void __builtin_mips_cmp_le_ph (v2q15, v2q15)
10789 v4i8 __builtin_mips_pick_qb (v4i8, v4i8)
10790 v2q15 __builtin_mips_pick_ph (v2q15, v2q15)
10791 v2q15 __builtin_mips_packrl_ph (v2q15, v2q15)
10792 i32 __builtin_mips_extr_w (a64, imm0_31)
10793 i32 __builtin_mips_extr_w (a64, i32)
10794 i32 __builtin_mips_extr_r_w (a64, imm0_31)
10795 i32 __builtin_mips_extr_s_h (a64, i32)
10796 i32 __builtin_mips_extr_rs_w (a64, imm0_31)
10797 i32 __builtin_mips_extr_rs_w (a64, i32)
10798 i32 __builtin_mips_extr_s_h (a64, imm0_31)
10799 i32 __builtin_mips_extr_r_w (a64, i32)
10800 i32 __builtin_mips_extp (a64, imm0_31)
10801 i32 __builtin_mips_extp (a64, i32)
10802 i32 __builtin_mips_extpdp (a64, imm0_31)
10803 i32 __builtin_mips_extpdp (a64, i32)
10804 a64 __builtin_mips_shilo (a64, imm_n32_31)
10805 a64 __builtin_mips_shilo (a64, i32)
10806 a64 __builtin_mips_mthlip (a64, i32)
10807 void __builtin_mips_wrdsp (i32, imm0_63)
10808 i32 __builtin_mips_rddsp (imm0_63)
10809 i32 __builtin_mips_lbux (void *, i32)
10810 i32 __builtin_mips_lhx (void *, i32)
10811 i32 __builtin_mips_lwx (void *, i32)
10812 a64 __builtin_mips_ldx (void *, i32) [MIPS64 only]
10813 i32 __builtin_mips_bposge32 (void)
10814 a64 __builtin_mips_madd (a64, i32, i32);
10815 a64 __builtin_mips_maddu (a64, ui32, ui32);
10816 a64 __builtin_mips_msub (a64, i32, i32);
10817 a64 __builtin_mips_msubu (a64, ui32, ui32);
10818 a64 __builtin_mips_mult (i32, i32);
10819 a64 __builtin_mips_multu (ui32, ui32);
10820 @end smallexample
10821
10822 The following built-in functions map directly to a particular MIPS DSP REV 2
10823 instruction. Please refer to the architecture specification
10824 for details on what each instruction does.
10825
10826 @smallexample
10827 v4q7 __builtin_mips_absq_s_qb (v4q7);
10828 v2i16 __builtin_mips_addu_ph (v2i16, v2i16);
10829 v2i16 __builtin_mips_addu_s_ph (v2i16, v2i16);
10830 v4i8 __builtin_mips_adduh_qb (v4i8, v4i8);
10831 v4i8 __builtin_mips_adduh_r_qb (v4i8, v4i8);
10832 i32 __builtin_mips_append (i32, i32, imm0_31);
10833 i32 __builtin_mips_balign (i32, i32, imm0_3);
10834 i32 __builtin_mips_cmpgdu_eq_qb (v4i8, v4i8);
10835 i32 __builtin_mips_cmpgdu_lt_qb (v4i8, v4i8);
10836 i32 __builtin_mips_cmpgdu_le_qb (v4i8, v4i8);
10837 a64 __builtin_mips_dpa_w_ph (a64, v2i16, v2i16);
10838 a64 __builtin_mips_dps_w_ph (a64, v2i16, v2i16);
10839 v2i16 __builtin_mips_mul_ph (v2i16, v2i16);
10840 v2i16 __builtin_mips_mul_s_ph (v2i16, v2i16);
10841 q31 __builtin_mips_mulq_rs_w (q31, q31);
10842 v2q15 __builtin_mips_mulq_s_ph (v2q15, v2q15);
10843 q31 __builtin_mips_mulq_s_w (q31, q31);
10844 a64 __builtin_mips_mulsa_w_ph (a64, v2i16, v2i16);
10845 v4i8 __builtin_mips_precr_qb_ph (v2i16, v2i16);
10846 v2i16 __builtin_mips_precr_sra_ph_w (i32, i32, imm0_31);
10847 v2i16 __builtin_mips_precr_sra_r_ph_w (i32, i32, imm0_31);
10848 i32 __builtin_mips_prepend (i32, i32, imm0_31);
10849 v4i8 __builtin_mips_shra_qb (v4i8, imm0_7);
10850 v4i8 __builtin_mips_shra_r_qb (v4i8, imm0_7);
10851 v4i8 __builtin_mips_shra_qb (v4i8, i32);
10852 v4i8 __builtin_mips_shra_r_qb (v4i8, i32);
10853 v2i16 __builtin_mips_shrl_ph (v2i16, imm0_15);
10854 v2i16 __builtin_mips_shrl_ph (v2i16, i32);
10855 v2i16 __builtin_mips_subu_ph (v2i16, v2i16);
10856 v2i16 __builtin_mips_subu_s_ph (v2i16, v2i16);
10857 v4i8 __builtin_mips_subuh_qb (v4i8, v4i8);
10858 v4i8 __builtin_mips_subuh_r_qb (v4i8, v4i8);
10859 v2q15 __builtin_mips_addqh_ph (v2q15, v2q15);
10860 v2q15 __builtin_mips_addqh_r_ph (v2q15, v2q15);
10861 q31 __builtin_mips_addqh_w (q31, q31);
10862 q31 __builtin_mips_addqh_r_w (q31, q31);
10863 v2q15 __builtin_mips_subqh_ph (v2q15, v2q15);
10864 v2q15 __builtin_mips_subqh_r_ph (v2q15, v2q15);
10865 q31 __builtin_mips_subqh_w (q31, q31);
10866 q31 __builtin_mips_subqh_r_w (q31, q31);
10867 a64 __builtin_mips_dpax_w_ph (a64, v2i16, v2i16);
10868 a64 __builtin_mips_dpsx_w_ph (a64, v2i16, v2i16);
10869 a64 __builtin_mips_dpaqx_s_w_ph (a64, v2q15, v2q15);
10870 a64 __builtin_mips_dpaqx_sa_w_ph (a64, v2q15, v2q15);
10871 a64 __builtin_mips_dpsqx_s_w_ph (a64, v2q15, v2q15);
10872 a64 __builtin_mips_dpsqx_sa_w_ph (a64, v2q15, v2q15);
10873 @end smallexample
10874
10875
10876 @node MIPS Paired-Single Support
10877 @subsection MIPS Paired-Single Support
10878
10879 The MIPS64 architecture includes a number of instructions that
10880 operate on pairs of single-precision floating-point values.
10881 Each pair is packed into a 64-bit floating-point register,
10882 with one element being designated the ``upper half'' and
10883 the other being designated the ``lower half''.
10884
10885 GCC supports paired-single operations using both the generic
10886 vector extensions (@pxref{Vector Extensions}) and a collection of
10887 MIPS-specific built-in functions. Both kinds of support are
10888 enabled by the @option{-mpaired-single} command-line option.
10889
10890 The vector type associated with paired-single values is usually
10891 called @code{v2sf}. It can be defined in C as follows:
10892
10893 @smallexample
10894 typedef float v2sf __attribute__ ((vector_size (8)));
10895 @end smallexample
10896
10897 @code{v2sf} values are initialized in the same way as aggregates.
10898 For example:
10899
10900 @smallexample
10901 v2sf a = @{1.5, 9.1@};
10902 v2sf b;
10903 float e, f;
10904 b = (v2sf) @{e, f@};
10905 @end smallexample
10906
10907 @emph{Note:} The CPU's endianness determines which value is stored in
10908 the upper half of a register and which value is stored in the lower half.
10909 On little-endian targets, the first value is the lower one and the second
10910 value is the upper one. The opposite order applies to big-endian targets.
10911 For example, the code above will set the lower half of @code{a} to
10912 @code{1.5} on little-endian targets and @code{9.1} on big-endian targets.
10913
10914 @node MIPS Loongson Built-in Functions
10915 @subsection MIPS Loongson Built-in Functions
10916
10917 GCC provides intrinsics to access the SIMD instructions provided by the
10918 ST Microelectronics Loongson-2E and -2F processors. These intrinsics,
10919 available after inclusion of the @code{loongson.h} header file,
10920 operate on the following 64-bit vector types:
10921
10922 @itemize
10923 @item @code{uint8x8_t}, a vector of eight unsigned 8-bit integers;
10924 @item @code{uint16x4_t}, a vector of four unsigned 16-bit integers;
10925 @item @code{uint32x2_t}, a vector of two unsigned 32-bit integers;
10926 @item @code{int8x8_t}, a vector of eight signed 8-bit integers;
10927 @item @code{int16x4_t}, a vector of four signed 16-bit integers;
10928 @item @code{int32x2_t}, a vector of two signed 32-bit integers.
10929 @end itemize
10930
10931 The intrinsics provided are listed below; each is named after the
10932 machine instruction to which it corresponds, with suffixes added as
10933 appropriate to distinguish intrinsics that expand to the same machine
10934 instruction yet have different argument types. Refer to the architecture
10935 documentation for a description of the functionality of each
10936 instruction.
10937
10938 @smallexample
10939 int16x4_t packsswh (int32x2_t s, int32x2_t t);
10940 int8x8_t packsshb (int16x4_t s, int16x4_t t);
10941 uint8x8_t packushb (uint16x4_t s, uint16x4_t t);
10942 uint32x2_t paddw_u (uint32x2_t s, uint32x2_t t);
10943 uint16x4_t paddh_u (uint16x4_t s, uint16x4_t t);
10944 uint8x8_t paddb_u (uint8x8_t s, uint8x8_t t);
10945 int32x2_t paddw_s (int32x2_t s, int32x2_t t);
10946 int16x4_t paddh_s (int16x4_t s, int16x4_t t);
10947 int8x8_t paddb_s (int8x8_t s, int8x8_t t);
10948 uint64_t paddd_u (uint64_t s, uint64_t t);
10949 int64_t paddd_s (int64_t s, int64_t t);
10950 int16x4_t paddsh (int16x4_t s, int16x4_t t);
10951 int8x8_t paddsb (int8x8_t s, int8x8_t t);
10952 uint16x4_t paddush (uint16x4_t s, uint16x4_t t);
10953 uint8x8_t paddusb (uint8x8_t s, uint8x8_t t);
10954 uint64_t pandn_ud (uint64_t s, uint64_t t);
10955 uint32x2_t pandn_uw (uint32x2_t s, uint32x2_t t);
10956 uint16x4_t pandn_uh (uint16x4_t s, uint16x4_t t);
10957 uint8x8_t pandn_ub (uint8x8_t s, uint8x8_t t);
10958 int64_t pandn_sd (int64_t s, int64_t t);
10959 int32x2_t pandn_sw (int32x2_t s, int32x2_t t);
10960 int16x4_t pandn_sh (int16x4_t s, int16x4_t t);
10961 int8x8_t pandn_sb (int8x8_t s, int8x8_t t);
10962 uint16x4_t pavgh (uint16x4_t s, uint16x4_t t);
10963 uint8x8_t pavgb (uint8x8_t s, uint8x8_t t);
10964 uint32x2_t pcmpeqw_u (uint32x2_t s, uint32x2_t t);
10965 uint16x4_t pcmpeqh_u (uint16x4_t s, uint16x4_t t);
10966 uint8x8_t pcmpeqb_u (uint8x8_t s, uint8x8_t t);
10967 int32x2_t pcmpeqw_s (int32x2_t s, int32x2_t t);
10968 int16x4_t pcmpeqh_s (int16x4_t s, int16x4_t t);
10969 int8x8_t pcmpeqb_s (int8x8_t s, int8x8_t t);
10970 uint32x2_t pcmpgtw_u (uint32x2_t s, uint32x2_t t);
10971 uint16x4_t pcmpgth_u (uint16x4_t s, uint16x4_t t);
10972 uint8x8_t pcmpgtb_u (uint8x8_t s, uint8x8_t t);
10973 int32x2_t pcmpgtw_s (int32x2_t s, int32x2_t t);
10974 int16x4_t pcmpgth_s (int16x4_t s, int16x4_t t);
10975 int8x8_t pcmpgtb_s (int8x8_t s, int8x8_t t);
10976 uint16x4_t pextrh_u (uint16x4_t s, int field);
10977 int16x4_t pextrh_s (int16x4_t s, int field);
10978 uint16x4_t pinsrh_0_u (uint16x4_t s, uint16x4_t t);
10979 uint16x4_t pinsrh_1_u (uint16x4_t s, uint16x4_t t);
10980 uint16x4_t pinsrh_2_u (uint16x4_t s, uint16x4_t t);
10981 uint16x4_t pinsrh_3_u (uint16x4_t s, uint16x4_t t);
10982 int16x4_t pinsrh_0_s (int16x4_t s, int16x4_t t);
10983 int16x4_t pinsrh_1_s (int16x4_t s, int16x4_t t);
10984 int16x4_t pinsrh_2_s (int16x4_t s, int16x4_t t);
10985 int16x4_t pinsrh_3_s (int16x4_t s, int16x4_t t);
10986 int32x2_t pmaddhw (int16x4_t s, int16x4_t t);
10987 int16x4_t pmaxsh (int16x4_t s, int16x4_t t);
10988 uint8x8_t pmaxub (uint8x8_t s, uint8x8_t t);
10989 int16x4_t pminsh (int16x4_t s, int16x4_t t);
10990 uint8x8_t pminub (uint8x8_t s, uint8x8_t t);
10991 uint8x8_t pmovmskb_u (uint8x8_t s);
10992 int8x8_t pmovmskb_s (int8x8_t s);
10993 uint16x4_t pmulhuh (uint16x4_t s, uint16x4_t t);
10994 int16x4_t pmulhh (int16x4_t s, int16x4_t t);
10995 int16x4_t pmullh (int16x4_t s, int16x4_t t);
10996 int64_t pmuluw (uint32x2_t s, uint32x2_t t);
10997 uint8x8_t pasubub (uint8x8_t s, uint8x8_t t);
10998 uint16x4_t biadd (uint8x8_t s);
10999 uint16x4_t psadbh (uint8x8_t s, uint8x8_t t);
11000 uint16x4_t pshufh_u (uint16x4_t dest, uint16x4_t s, uint8_t order);
11001 int16x4_t pshufh_s (int16x4_t dest, int16x4_t s, uint8_t order);
11002 uint16x4_t psllh_u (uint16x4_t s, uint8_t amount);
11003 int16x4_t psllh_s (int16x4_t s, uint8_t amount);
11004 uint32x2_t psllw_u (uint32x2_t s, uint8_t amount);
11005 int32x2_t psllw_s (int32x2_t s, uint8_t amount);
11006 uint16x4_t psrlh_u (uint16x4_t s, uint8_t amount);
11007 int16x4_t psrlh_s (int16x4_t s, uint8_t amount);
11008 uint32x2_t psrlw_u (uint32x2_t s, uint8_t amount);
11009 int32x2_t psrlw_s (int32x2_t s, uint8_t amount);
11010 uint16x4_t psrah_u (uint16x4_t s, uint8_t amount);
11011 int16x4_t psrah_s (int16x4_t s, uint8_t amount);
11012 uint32x2_t psraw_u (uint32x2_t s, uint8_t amount);
11013 int32x2_t psraw_s (int32x2_t s, uint8_t amount);
11014 uint32x2_t psubw_u (uint32x2_t s, uint32x2_t t);
11015 uint16x4_t psubh_u (uint16x4_t s, uint16x4_t t);
11016 uint8x8_t psubb_u (uint8x8_t s, uint8x8_t t);
11017 int32x2_t psubw_s (int32x2_t s, int32x2_t t);
11018 int16x4_t psubh_s (int16x4_t s, int16x4_t t);
11019 int8x8_t psubb_s (int8x8_t s, int8x8_t t);
11020 uint64_t psubd_u (uint64_t s, uint64_t t);
11021 int64_t psubd_s (int64_t s, int64_t t);
11022 int16x4_t psubsh (int16x4_t s, int16x4_t t);
11023 int8x8_t psubsb (int8x8_t s, int8x8_t t);
11024 uint16x4_t psubush (uint16x4_t s, uint16x4_t t);
11025 uint8x8_t psubusb (uint8x8_t s, uint8x8_t t);
11026 uint32x2_t punpckhwd_u (uint32x2_t s, uint32x2_t t);
11027 uint16x4_t punpckhhw_u (uint16x4_t s, uint16x4_t t);
11028 uint8x8_t punpckhbh_u (uint8x8_t s, uint8x8_t t);
11029 int32x2_t punpckhwd_s (int32x2_t s, int32x2_t t);
11030 int16x4_t punpckhhw_s (int16x4_t s, int16x4_t t);
11031 int8x8_t punpckhbh_s (int8x8_t s, int8x8_t t);
11032 uint32x2_t punpcklwd_u (uint32x2_t s, uint32x2_t t);
11033 uint16x4_t punpcklhw_u (uint16x4_t s, uint16x4_t t);
11034 uint8x8_t punpcklbh_u (uint8x8_t s, uint8x8_t t);
11035 int32x2_t punpcklwd_s (int32x2_t s, int32x2_t t);
11036 int16x4_t punpcklhw_s (int16x4_t s, int16x4_t t);
11037 int8x8_t punpcklbh_s (int8x8_t s, int8x8_t t);
11038 @end smallexample
11039
11040 @menu
11041 * Paired-Single Arithmetic::
11042 * Paired-Single Built-in Functions::
11043 * MIPS-3D Built-in Functions::
11044 @end menu
11045
11046 @node Paired-Single Arithmetic
11047 @subsubsection Paired-Single Arithmetic
11048
11049 The table below lists the @code{v2sf} operations for which hardware
11050 support exists. @code{a}, @code{b} and @code{c} are @code{v2sf}
11051 values and @code{x} is an integral value.
11052
11053 @multitable @columnfractions .50 .50
11054 @item C code @tab MIPS instruction
11055 @item @code{a + b} @tab @code{add.ps}
11056 @item @code{a - b} @tab @code{sub.ps}
11057 @item @code{-a} @tab @code{neg.ps}
11058 @item @code{a * b} @tab @code{mul.ps}
11059 @item @code{a * b + c} @tab @code{madd.ps}
11060 @item @code{a * b - c} @tab @code{msub.ps}
11061 @item @code{-(a * b + c)} @tab @code{nmadd.ps}
11062 @item @code{-(a * b - c)} @tab @code{nmsub.ps}
11063 @item @code{x ? a : b} @tab @code{movn.ps}/@code{movz.ps}
11064 @end multitable
11065
11066 Note that the multiply-accumulate instructions can be disabled
11067 using the command-line option @code{-mno-fused-madd}.
11068
11069 @node Paired-Single Built-in Functions
11070 @subsubsection Paired-Single Built-in Functions
11071
11072 The following paired-single functions map directly to a particular
11073 MIPS instruction. Please refer to the architecture specification
11074 for details on what each instruction does.
11075
11076 @table @code
11077 @item v2sf __builtin_mips_pll_ps (v2sf, v2sf)
11078 Pair lower lower (@code{pll.ps}).
11079
11080 @item v2sf __builtin_mips_pul_ps (v2sf, v2sf)
11081 Pair upper lower (@code{pul.ps}).
11082
11083 @item v2sf __builtin_mips_plu_ps (v2sf, v2sf)
11084 Pair lower upper (@code{plu.ps}).
11085
11086 @item v2sf __builtin_mips_puu_ps (v2sf, v2sf)
11087 Pair upper upper (@code{puu.ps}).
11088
11089 @item v2sf __builtin_mips_cvt_ps_s (float, float)
11090 Convert pair to paired single (@code{cvt.ps.s}).
11091
11092 @item float __builtin_mips_cvt_s_pl (v2sf)
11093 Convert pair lower to single (@code{cvt.s.pl}).
11094
11095 @item float __builtin_mips_cvt_s_pu (v2sf)
11096 Convert pair upper to single (@code{cvt.s.pu}).
11097
11098 @item v2sf __builtin_mips_abs_ps (v2sf)
11099 Absolute value (@code{abs.ps}).
11100
11101 @item v2sf __builtin_mips_alnv_ps (v2sf, v2sf, int)
11102 Align variable (@code{alnv.ps}).
11103
11104 @emph{Note:} The value of the third parameter must be 0 or 4
11105 modulo 8, otherwise the result will be unpredictable. Please read the
11106 instruction description for details.
11107 @end table
11108
11109 The following multi-instruction functions are also available.
11110 In each case, @var{cond} can be any of the 16 floating-point conditions:
11111 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
11112 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq}, @code{ngl},
11113 @code{lt}, @code{nge}, @code{le} or @code{ngt}.
11114
11115 @table @code
11116 @item v2sf __builtin_mips_movt_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11117 @itemx v2sf __builtin_mips_movf_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11118 Conditional move based on floating point comparison (@code{c.@var{cond}.ps},
11119 @code{movt.ps}/@code{movf.ps}).
11120
11121 The @code{movt} functions return the value @var{x} computed by:
11122
11123 @smallexample
11124 c.@var{cond}.ps @var{cc},@var{a},@var{b}
11125 mov.ps @var{x},@var{c}
11126 movt.ps @var{x},@var{d},@var{cc}
11127 @end smallexample
11128
11129 The @code{movf} functions are similar but use @code{movf.ps} instead
11130 of @code{movt.ps}.
11131
11132 @item int __builtin_mips_upper_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11133 @itemx int __builtin_mips_lower_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11134 Comparison of two paired-single values (@code{c.@var{cond}.ps},
11135 @code{bc1t}/@code{bc1f}).
11136
11137 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
11138 and return either the upper or lower half of the result. For example:
11139
11140 @smallexample
11141 v2sf a, b;
11142 if (__builtin_mips_upper_c_eq_ps (a, b))
11143 upper_halves_are_equal ();
11144 else
11145 upper_halves_are_unequal ();
11146
11147 if (__builtin_mips_lower_c_eq_ps (a, b))
11148 lower_halves_are_equal ();
11149 else
11150 lower_halves_are_unequal ();
11151 @end smallexample
11152 @end table
11153
11154 @node MIPS-3D Built-in Functions
11155 @subsubsection MIPS-3D Built-in Functions
11156
11157 The MIPS-3D Application-Specific Extension (ASE) includes additional
11158 paired-single instructions that are designed to improve the performance
11159 of 3D graphics operations. Support for these instructions is controlled
11160 by the @option{-mips3d} command-line option.
11161
11162 The functions listed below map directly to a particular MIPS-3D
11163 instruction. Please refer to the architecture specification for
11164 more details on what each instruction does.
11165
11166 @table @code
11167 @item v2sf __builtin_mips_addr_ps (v2sf, v2sf)
11168 Reduction add (@code{addr.ps}).
11169
11170 @item v2sf __builtin_mips_mulr_ps (v2sf, v2sf)
11171 Reduction multiply (@code{mulr.ps}).
11172
11173 @item v2sf __builtin_mips_cvt_pw_ps (v2sf)
11174 Convert paired single to paired word (@code{cvt.pw.ps}).
11175
11176 @item v2sf __builtin_mips_cvt_ps_pw (v2sf)
11177 Convert paired word to paired single (@code{cvt.ps.pw}).
11178
11179 @item float __builtin_mips_recip1_s (float)
11180 @itemx double __builtin_mips_recip1_d (double)
11181 @itemx v2sf __builtin_mips_recip1_ps (v2sf)
11182 Reduced precision reciprocal (sequence step 1) (@code{recip1.@var{fmt}}).
11183
11184 @item float __builtin_mips_recip2_s (float, float)
11185 @itemx double __builtin_mips_recip2_d (double, double)
11186 @itemx v2sf __builtin_mips_recip2_ps (v2sf, v2sf)
11187 Reduced precision reciprocal (sequence step 2) (@code{recip2.@var{fmt}}).
11188
11189 @item float __builtin_mips_rsqrt1_s (float)
11190 @itemx double __builtin_mips_rsqrt1_d (double)
11191 @itemx v2sf __builtin_mips_rsqrt1_ps (v2sf)
11192 Reduced precision reciprocal square root (sequence step 1)
11193 (@code{rsqrt1.@var{fmt}}).
11194
11195 @item float __builtin_mips_rsqrt2_s (float, float)
11196 @itemx double __builtin_mips_rsqrt2_d (double, double)
11197 @itemx v2sf __builtin_mips_rsqrt2_ps (v2sf, v2sf)
11198 Reduced precision reciprocal square root (sequence step 2)
11199 (@code{rsqrt2.@var{fmt}}).
11200 @end table
11201
11202 The following multi-instruction functions are also available.
11203 In each case, @var{cond} can be any of the 16 floating-point conditions:
11204 @code{f}, @code{un}, @code{eq}, @code{ueq}, @code{olt}, @code{ult},
11205 @code{ole}, @code{ule}, @code{sf}, @code{ngle}, @code{seq},
11206 @code{ngl}, @code{lt}, @code{nge}, @code{le} or @code{ngt}.
11207
11208 @table @code
11209 @item int __builtin_mips_cabs_@var{cond}_s (float @var{a}, float @var{b})
11210 @itemx int __builtin_mips_cabs_@var{cond}_d (double @var{a}, double @var{b})
11211 Absolute comparison of two scalar values (@code{cabs.@var{cond}.@var{fmt}},
11212 @code{bc1t}/@code{bc1f}).
11213
11214 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.s}
11215 or @code{cabs.@var{cond}.d} and return the result as a boolean value.
11216 For example:
11217
11218 @smallexample
11219 float a, b;
11220 if (__builtin_mips_cabs_eq_s (a, b))
11221 true ();
11222 else
11223 false ();
11224 @end smallexample
11225
11226 @item int __builtin_mips_upper_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11227 @itemx int __builtin_mips_lower_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11228 Absolute comparison of two paired-single values (@code{cabs.@var{cond}.ps},
11229 @code{bc1t}/@code{bc1f}).
11230
11231 These functions compare @var{a} and @var{b} using @code{cabs.@var{cond}.ps}
11232 and return either the upper or lower half of the result. For example:
11233
11234 @smallexample
11235 v2sf a, b;
11236 if (__builtin_mips_upper_cabs_eq_ps (a, b))
11237 upper_halves_are_equal ();
11238 else
11239 upper_halves_are_unequal ();
11240
11241 if (__builtin_mips_lower_cabs_eq_ps (a, b))
11242 lower_halves_are_equal ();
11243 else
11244 lower_halves_are_unequal ();
11245 @end smallexample
11246
11247 @item v2sf __builtin_mips_movt_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11248 @itemx v2sf __builtin_mips_movf_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11249 Conditional move based on absolute comparison (@code{cabs.@var{cond}.ps},
11250 @code{movt.ps}/@code{movf.ps}).
11251
11252 The @code{movt} functions return the value @var{x} computed by:
11253
11254 @smallexample
11255 cabs.@var{cond}.ps @var{cc},@var{a},@var{b}
11256 mov.ps @var{x},@var{c}
11257 movt.ps @var{x},@var{d},@var{cc}
11258 @end smallexample
11259
11260 The @code{movf} functions are similar but use @code{movf.ps} instead
11261 of @code{movt.ps}.
11262
11263 @item int __builtin_mips_any_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11264 @itemx int __builtin_mips_all_c_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11265 @itemx int __builtin_mips_any_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11266 @itemx int __builtin_mips_all_cabs_@var{cond}_ps (v2sf @var{a}, v2sf @var{b})
11267 Comparison of two paired-single values
11268 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
11269 @code{bc1any2t}/@code{bc1any2f}).
11270
11271 These functions compare @var{a} and @var{b} using @code{c.@var{cond}.ps}
11272 or @code{cabs.@var{cond}.ps}. The @code{any} forms return true if either
11273 result is true and the @code{all} forms return true if both results are true.
11274 For example:
11275
11276 @smallexample
11277 v2sf a, b;
11278 if (__builtin_mips_any_c_eq_ps (a, b))
11279 one_is_true ();
11280 else
11281 both_are_false ();
11282
11283 if (__builtin_mips_all_c_eq_ps (a, b))
11284 both_are_true ();
11285 else
11286 one_is_false ();
11287 @end smallexample
11288
11289 @item int __builtin_mips_any_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11290 @itemx int __builtin_mips_all_c_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11291 @itemx int __builtin_mips_any_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11292 @itemx int __builtin_mips_all_cabs_@var{cond}_4s (v2sf @var{a}, v2sf @var{b}, v2sf @var{c}, v2sf @var{d})
11293 Comparison of four paired-single values
11294 (@code{c.@var{cond}.ps}/@code{cabs.@var{cond}.ps},
11295 @code{bc1any4t}/@code{bc1any4f}).
11296
11297 These functions use @code{c.@var{cond}.ps} or @code{cabs.@var{cond}.ps}
11298 to compare @var{a} with @var{b} and to compare @var{c} with @var{d}.
11299 The @code{any} forms return true if any of the four results are true
11300 and the @code{all} forms return true if all four results are true.
11301 For example:
11302
11303 @smallexample
11304 v2sf a, b, c, d;
11305 if (__builtin_mips_any_c_eq_4s (a, b, c, d))
11306 some_are_true ();
11307 else
11308 all_are_false ();
11309
11310 if (__builtin_mips_all_c_eq_4s (a, b, c, d))
11311 all_are_true ();
11312 else
11313 some_are_false ();
11314 @end smallexample
11315 @end table
11316
11317 @node picoChip Built-in Functions
11318 @subsection picoChip Built-in Functions
11319
11320 GCC provides an interface to selected machine instructions from the
11321 picoChip instruction set.
11322
11323 @table @code
11324 @item int __builtin_sbc (int @var{value})
11325 Sign bit count. Return the number of consecutive bits in @var{value}
11326 which have the same value as the sign-bit. The result is the number of
11327 leading sign bits minus one, giving the number of redundant sign bits in
11328 @var{value}.
11329
11330 @item int __builtin_byteswap (int @var{value})
11331 Byte swap. Return the result of swapping the upper and lower bytes of
11332 @var{value}.
11333
11334 @item int __builtin_brev (int @var{value})
11335 Bit reversal. Return the result of reversing the bits in
11336 @var{value}. Bit 15 is swapped with bit 0, bit 14 is swapped with bit 1,
11337 and so on.
11338
11339 @item int __builtin_adds (int @var{x}, int @var{y})
11340 Saturating addition. Return the result of adding @var{x} and @var{y},
11341 storing the value 32767 if the result overflows.
11342
11343 @item int __builtin_subs (int @var{x}, int @var{y})
11344 Saturating subtraction. Return the result of subtracting @var{y} from
11345 @var{x}, storing the value @minus{}32768 if the result overflows.
11346
11347 @item void __builtin_halt (void)
11348 Halt. The processor will stop execution. This built-in is useful for
11349 implementing assertions.
11350
11351 @end table
11352
11353 @node Other MIPS Built-in Functions
11354 @subsection Other MIPS Built-in Functions
11355
11356 GCC provides other MIPS-specific built-in functions:
11357
11358 @table @code
11359 @item void __builtin_mips_cache (int @var{op}, const volatile void *@var{addr})
11360 Insert a @samp{cache} instruction with operands @var{op} and @var{addr}.
11361 GCC defines the preprocessor macro @code{___GCC_HAVE_BUILTIN_MIPS_CACHE}
11362 when this function is available.
11363 @end table
11364
11365 @node PowerPC AltiVec/VSX Built-in Functions
11366 @subsection PowerPC AltiVec Built-in Functions
11367
11368 GCC provides an interface for the PowerPC family of processors to access
11369 the AltiVec operations described in Motorola's AltiVec Programming
11370 Interface Manual. The interface is made available by including
11371 @code{<altivec.h>} and using @option{-maltivec} and
11372 @option{-mabi=altivec}. The interface supports the following vector
11373 types.
11374
11375 @smallexample
11376 vector unsigned char
11377 vector signed char
11378 vector bool char
11379
11380 vector unsigned short
11381 vector signed short
11382 vector bool short
11383 vector pixel
11384
11385 vector unsigned int
11386 vector signed int
11387 vector bool int
11388 vector float
11389 @end smallexample
11390
11391 If @option{-mvsx} is used the following additional vector types are
11392 implemented.
11393
11394 @smallexample
11395 vector unsigned long
11396 vector signed long
11397 vector double
11398 @end smallexample
11399
11400 The long types are only implemented for 64-bit code generation, and
11401 the long type is only used in the floating point/integer conversion
11402 instructions.
11403
11404 GCC's implementation of the high-level language interface available from
11405 C and C++ code differs from Motorola's documentation in several ways.
11406
11407 @itemize @bullet
11408
11409 @item
11410 A vector constant is a list of constant expressions within curly braces.
11411
11412 @item
11413 A vector initializer requires no cast if the vector constant is of the
11414 same type as the variable it is initializing.
11415
11416 @item
11417 If @code{signed} or @code{unsigned} is omitted, the signedness of the
11418 vector type is the default signedness of the base type. The default
11419 varies depending on the operating system, so a portable program should
11420 always specify the signedness.
11421
11422 @item
11423 Compiling with @option{-maltivec} adds keywords @code{__vector},
11424 @code{vector}, @code{__pixel}, @code{pixel}, @code{__bool} and
11425 @code{bool}. When compiling ISO C, the context-sensitive substitution
11426 of the keywords @code{vector}, @code{pixel} and @code{bool} is
11427 disabled. To use them, you must include @code{<altivec.h>} instead.
11428
11429 @item
11430 GCC allows using a @code{typedef} name as the type specifier for a
11431 vector type.
11432
11433 @item
11434 For C, overloaded functions are implemented with macros so the following
11435 does not work:
11436
11437 @smallexample
11438 vec_add ((vector signed int)@{1, 2, 3, 4@}, foo);
11439 @end smallexample
11440
11441 Since @code{vec_add} is a macro, the vector constant in the example
11442 is treated as four separate arguments. Wrap the entire argument in
11443 parentheses for this to work.
11444 @end itemize
11445
11446 @emph{Note:} Only the @code{<altivec.h>} interface is supported.
11447 Internally, GCC uses built-in functions to achieve the functionality in
11448 the aforementioned header file, but they are not supported and are
11449 subject to change without notice.
11450
11451 The following interfaces are supported for the generic and specific
11452 AltiVec operations and the AltiVec predicates. In cases where there
11453 is a direct mapping between generic and specific operations, only the
11454 generic names are shown here, although the specific operations can also
11455 be used.
11456
11457 Arguments that are documented as @code{const int} require literal
11458 integral values within the range required for that operation.
11459
11460 @smallexample
11461 vector signed char vec_abs (vector signed char);
11462 vector signed short vec_abs (vector signed short);
11463 vector signed int vec_abs (vector signed int);
11464 vector float vec_abs (vector float);
11465
11466 vector signed char vec_abss (vector signed char);
11467 vector signed short vec_abss (vector signed short);
11468 vector signed int vec_abss (vector signed int);
11469
11470 vector signed char vec_add (vector bool char, vector signed char);
11471 vector signed char vec_add (vector signed char, vector bool char);
11472 vector signed char vec_add (vector signed char, vector signed char);
11473 vector unsigned char vec_add (vector bool char, vector unsigned char);
11474 vector unsigned char vec_add (vector unsigned char, vector bool char);
11475 vector unsigned char vec_add (vector unsigned char,
11476 vector unsigned char);
11477 vector signed short vec_add (vector bool short, vector signed short);
11478 vector signed short vec_add (vector signed short, vector bool short);
11479 vector signed short vec_add (vector signed short, vector signed short);
11480 vector unsigned short vec_add (vector bool short,
11481 vector unsigned short);
11482 vector unsigned short vec_add (vector unsigned short,
11483 vector bool short);
11484 vector unsigned short vec_add (vector unsigned short,
11485 vector unsigned short);
11486 vector signed int vec_add (vector bool int, vector signed int);
11487 vector signed int vec_add (vector signed int, vector bool int);
11488 vector signed int vec_add (vector signed int, vector signed int);
11489 vector unsigned int vec_add (vector bool int, vector unsigned int);
11490 vector unsigned int vec_add (vector unsigned int, vector bool int);
11491 vector unsigned int vec_add (vector unsigned int, vector unsigned int);
11492 vector float vec_add (vector float, vector float);
11493
11494 vector float vec_vaddfp (vector float, vector float);
11495
11496 vector signed int vec_vadduwm (vector bool int, vector signed int);
11497 vector signed int vec_vadduwm (vector signed int, vector bool int);
11498 vector signed int vec_vadduwm (vector signed int, vector signed int);
11499 vector unsigned int vec_vadduwm (vector bool int, vector unsigned int);
11500 vector unsigned int vec_vadduwm (vector unsigned int, vector bool int);
11501 vector unsigned int vec_vadduwm (vector unsigned int,
11502 vector unsigned int);
11503
11504 vector signed short vec_vadduhm (vector bool short,
11505 vector signed short);
11506 vector signed short vec_vadduhm (vector signed short,
11507 vector bool short);
11508 vector signed short vec_vadduhm (vector signed short,
11509 vector signed short);
11510 vector unsigned short vec_vadduhm (vector bool short,
11511 vector unsigned short);
11512 vector unsigned short vec_vadduhm (vector unsigned short,
11513 vector bool short);
11514 vector unsigned short vec_vadduhm (vector unsigned short,
11515 vector unsigned short);
11516
11517 vector signed char vec_vaddubm (vector bool char, vector signed char);
11518 vector signed char vec_vaddubm (vector signed char, vector bool char);
11519 vector signed char vec_vaddubm (vector signed char, vector signed char);
11520 vector unsigned char vec_vaddubm (vector bool char,
11521 vector unsigned char);
11522 vector unsigned char vec_vaddubm (vector unsigned char,
11523 vector bool char);
11524 vector unsigned char vec_vaddubm (vector unsigned char,
11525 vector unsigned char);
11526
11527 vector unsigned int vec_addc (vector unsigned int, vector unsigned int);
11528
11529 vector unsigned char vec_adds (vector bool char, vector unsigned char);
11530 vector unsigned char vec_adds (vector unsigned char, vector bool char);
11531 vector unsigned char vec_adds (vector unsigned char,
11532 vector unsigned char);
11533 vector signed char vec_adds (vector bool char, vector signed char);
11534 vector signed char vec_adds (vector signed char, vector bool char);
11535 vector signed char vec_adds (vector signed char, vector signed char);
11536 vector unsigned short vec_adds (vector bool short,
11537 vector unsigned short);
11538 vector unsigned short vec_adds (vector unsigned short,
11539 vector bool short);
11540 vector unsigned short vec_adds (vector unsigned short,
11541 vector unsigned short);
11542 vector signed short vec_adds (vector bool short, vector signed short);
11543 vector signed short vec_adds (vector signed short, vector bool short);
11544 vector signed short vec_adds (vector signed short, vector signed short);
11545 vector unsigned int vec_adds (vector bool int, vector unsigned int);
11546 vector unsigned int vec_adds (vector unsigned int, vector bool int);
11547 vector unsigned int vec_adds (vector unsigned int, vector unsigned int);
11548 vector signed int vec_adds (vector bool int, vector signed int);
11549 vector signed int vec_adds (vector signed int, vector bool int);
11550 vector signed int vec_adds (vector signed int, vector signed int);
11551
11552 vector signed int vec_vaddsws (vector bool int, vector signed int);
11553 vector signed int vec_vaddsws (vector signed int, vector bool int);
11554 vector signed int vec_vaddsws (vector signed int, vector signed int);
11555
11556 vector unsigned int vec_vadduws (vector bool int, vector unsigned int);
11557 vector unsigned int vec_vadduws (vector unsigned int, vector bool int);
11558 vector unsigned int vec_vadduws (vector unsigned int,
11559 vector unsigned int);
11560
11561 vector signed short vec_vaddshs (vector bool short,
11562 vector signed short);
11563 vector signed short vec_vaddshs (vector signed short,
11564 vector bool short);
11565 vector signed short vec_vaddshs (vector signed short,
11566 vector signed short);
11567
11568 vector unsigned short vec_vadduhs (vector bool short,
11569 vector unsigned short);
11570 vector unsigned short vec_vadduhs (vector unsigned short,
11571 vector bool short);
11572 vector unsigned short vec_vadduhs (vector unsigned short,
11573 vector unsigned short);
11574
11575 vector signed char vec_vaddsbs (vector bool char, vector signed char);
11576 vector signed char vec_vaddsbs (vector signed char, vector bool char);
11577 vector signed char vec_vaddsbs (vector signed char, vector signed char);
11578
11579 vector unsigned char vec_vaddubs (vector bool char,
11580 vector unsigned char);
11581 vector unsigned char vec_vaddubs (vector unsigned char,
11582 vector bool char);
11583 vector unsigned char vec_vaddubs (vector unsigned char,
11584 vector unsigned char);
11585
11586 vector float vec_and (vector float, vector float);
11587 vector float vec_and (vector float, vector bool int);
11588 vector float vec_and (vector bool int, vector float);
11589 vector bool int vec_and (vector bool int, vector bool int);
11590 vector signed int vec_and (vector bool int, vector signed int);
11591 vector signed int vec_and (vector signed int, vector bool int);
11592 vector signed int vec_and (vector signed int, vector signed int);
11593 vector unsigned int vec_and (vector bool int, vector unsigned int);
11594 vector unsigned int vec_and (vector unsigned int, vector bool int);
11595 vector unsigned int vec_and (vector unsigned int, vector unsigned int);
11596 vector bool short vec_and (vector bool short, vector bool short);
11597 vector signed short vec_and (vector bool short, vector signed short);
11598 vector signed short vec_and (vector signed short, vector bool short);
11599 vector signed short vec_and (vector signed short, vector signed short);
11600 vector unsigned short vec_and (vector bool short,
11601 vector unsigned short);
11602 vector unsigned short vec_and (vector unsigned short,
11603 vector bool short);
11604 vector unsigned short vec_and (vector unsigned short,
11605 vector unsigned short);
11606 vector signed char vec_and (vector bool char, vector signed char);
11607 vector bool char vec_and (vector bool char, vector bool char);
11608 vector signed char vec_and (vector signed char, vector bool char);
11609 vector signed char vec_and (vector signed char, vector signed char);
11610 vector unsigned char vec_and (vector bool char, vector unsigned char);
11611 vector unsigned char vec_and (vector unsigned char, vector bool char);
11612 vector unsigned char vec_and (vector unsigned char,
11613 vector unsigned char);
11614
11615 vector float vec_andc (vector float, vector float);
11616 vector float vec_andc (vector float, vector bool int);
11617 vector float vec_andc (vector bool int, vector float);
11618 vector bool int vec_andc (vector bool int, vector bool int);
11619 vector signed int vec_andc (vector bool int, vector signed int);
11620 vector signed int vec_andc (vector signed int, vector bool int);
11621 vector signed int vec_andc (vector signed int, vector signed int);
11622 vector unsigned int vec_andc (vector bool int, vector unsigned int);
11623 vector unsigned int vec_andc (vector unsigned int, vector bool int);
11624 vector unsigned int vec_andc (vector unsigned int, vector unsigned int);
11625 vector bool short vec_andc (vector bool short, vector bool short);
11626 vector signed short vec_andc (vector bool short, vector signed short);
11627 vector signed short vec_andc (vector signed short, vector bool short);
11628 vector signed short vec_andc (vector signed short, vector signed short);
11629 vector unsigned short vec_andc (vector bool short,
11630 vector unsigned short);
11631 vector unsigned short vec_andc (vector unsigned short,
11632 vector bool short);
11633 vector unsigned short vec_andc (vector unsigned short,
11634 vector unsigned short);
11635 vector signed char vec_andc (vector bool char, vector signed char);
11636 vector bool char vec_andc (vector bool char, vector bool char);
11637 vector signed char vec_andc (vector signed char, vector bool char);
11638 vector signed char vec_andc (vector signed char, vector signed char);
11639 vector unsigned char vec_andc (vector bool char, vector unsigned char);
11640 vector unsigned char vec_andc (vector unsigned char, vector bool char);
11641 vector unsigned char vec_andc (vector unsigned char,
11642 vector unsigned char);
11643
11644 vector unsigned char vec_avg (vector unsigned char,
11645 vector unsigned char);
11646 vector signed char vec_avg (vector signed char, vector signed char);
11647 vector unsigned short vec_avg (vector unsigned short,
11648 vector unsigned short);
11649 vector signed short vec_avg (vector signed short, vector signed short);
11650 vector unsigned int vec_avg (vector unsigned int, vector unsigned int);
11651 vector signed int vec_avg (vector signed int, vector signed int);
11652
11653 vector signed int vec_vavgsw (vector signed int, vector signed int);
11654
11655 vector unsigned int vec_vavguw (vector unsigned int,
11656 vector unsigned int);
11657
11658 vector signed short vec_vavgsh (vector signed short,
11659 vector signed short);
11660
11661 vector unsigned short vec_vavguh (vector unsigned short,
11662 vector unsigned short);
11663
11664 vector signed char vec_vavgsb (vector signed char, vector signed char);
11665
11666 vector unsigned char vec_vavgub (vector unsigned char,
11667 vector unsigned char);
11668
11669 vector float vec_copysign (vector float);
11670
11671 vector float vec_ceil (vector float);
11672
11673 vector signed int vec_cmpb (vector float, vector float);
11674
11675 vector bool char vec_cmpeq (vector signed char, vector signed char);
11676 vector bool char vec_cmpeq (vector unsigned char, vector unsigned char);
11677 vector bool short vec_cmpeq (vector signed short, vector signed short);
11678 vector bool short vec_cmpeq (vector unsigned short,
11679 vector unsigned short);
11680 vector bool int vec_cmpeq (vector signed int, vector signed int);
11681 vector bool int vec_cmpeq (vector unsigned int, vector unsigned int);
11682 vector bool int vec_cmpeq (vector float, vector float);
11683
11684 vector bool int vec_vcmpeqfp (vector float, vector float);
11685
11686 vector bool int vec_vcmpequw (vector signed int, vector signed int);
11687 vector bool int vec_vcmpequw (vector unsigned int, vector unsigned int);
11688
11689 vector bool short vec_vcmpequh (vector signed short,
11690 vector signed short);
11691 vector bool short vec_vcmpequh (vector unsigned short,
11692 vector unsigned short);
11693
11694 vector bool char vec_vcmpequb (vector signed char, vector signed char);
11695 vector bool char vec_vcmpequb (vector unsigned char,
11696 vector unsigned char);
11697
11698 vector bool int vec_cmpge (vector float, vector float);
11699
11700 vector bool char vec_cmpgt (vector unsigned char, vector unsigned char);
11701 vector bool char vec_cmpgt (vector signed char, vector signed char);
11702 vector bool short vec_cmpgt (vector unsigned short,
11703 vector unsigned short);
11704 vector bool short vec_cmpgt (vector signed short, vector signed short);
11705 vector bool int vec_cmpgt (vector unsigned int, vector unsigned int);
11706 vector bool int vec_cmpgt (vector signed int, vector signed int);
11707 vector bool int vec_cmpgt (vector float, vector float);
11708
11709 vector bool int vec_vcmpgtfp (vector float, vector float);
11710
11711 vector bool int vec_vcmpgtsw (vector signed int, vector signed int);
11712
11713 vector bool int vec_vcmpgtuw (vector unsigned int, vector unsigned int);
11714
11715 vector bool short vec_vcmpgtsh (vector signed short,
11716 vector signed short);
11717
11718 vector bool short vec_vcmpgtuh (vector unsigned short,
11719 vector unsigned short);
11720
11721 vector bool char vec_vcmpgtsb (vector signed char, vector signed char);
11722
11723 vector bool char vec_vcmpgtub (vector unsigned char,
11724 vector unsigned char);
11725
11726 vector bool int vec_cmple (vector float, vector float);
11727
11728 vector bool char vec_cmplt (vector unsigned char, vector unsigned char);
11729 vector bool char vec_cmplt (vector signed char, vector signed char);
11730 vector bool short vec_cmplt (vector unsigned short,
11731 vector unsigned short);
11732 vector bool short vec_cmplt (vector signed short, vector signed short);
11733 vector bool int vec_cmplt (vector unsigned int, vector unsigned int);
11734 vector bool int vec_cmplt (vector signed int, vector signed int);
11735 vector bool int vec_cmplt (vector float, vector float);
11736
11737 vector float vec_ctf (vector unsigned int, const int);
11738 vector float vec_ctf (vector signed int, const int);
11739
11740 vector float vec_vcfsx (vector signed int, const int);
11741
11742 vector float vec_vcfux (vector unsigned int, const int);
11743
11744 vector signed int vec_cts (vector float, const int);
11745
11746 vector unsigned int vec_ctu (vector float, const int);
11747
11748 void vec_dss (const int);
11749
11750 void vec_dssall (void);
11751
11752 void vec_dst (const vector unsigned char *, int, const int);
11753 void vec_dst (const vector signed char *, int, const int);
11754 void vec_dst (const vector bool char *, int, const int);
11755 void vec_dst (const vector unsigned short *, int, const int);
11756 void vec_dst (const vector signed short *, int, const int);
11757 void vec_dst (const vector bool short *, int, const int);
11758 void vec_dst (const vector pixel *, int, const int);
11759 void vec_dst (const vector unsigned int *, int, const int);
11760 void vec_dst (const vector signed int *, int, const int);
11761 void vec_dst (const vector bool int *, int, const int);
11762 void vec_dst (const vector float *, int, const int);
11763 void vec_dst (const unsigned char *, int, const int);
11764 void vec_dst (const signed char *, int, const int);
11765 void vec_dst (const unsigned short *, int, const int);
11766 void vec_dst (const short *, int, const int);
11767 void vec_dst (const unsigned int *, int, const int);
11768 void vec_dst (const int *, int, const int);
11769 void vec_dst (const unsigned long *, int, const int);
11770 void vec_dst (const long *, int, const int);
11771 void vec_dst (const float *, int, const int);
11772
11773 void vec_dstst (const vector unsigned char *, int, const int);
11774 void vec_dstst (const vector signed char *, int, const int);
11775 void vec_dstst (const vector bool char *, int, const int);
11776 void vec_dstst (const vector unsigned short *, int, const int);
11777 void vec_dstst (const vector signed short *, int, const int);
11778 void vec_dstst (const vector bool short *, int, const int);
11779 void vec_dstst (const vector pixel *, int, const int);
11780 void vec_dstst (const vector unsigned int *, int, const int);
11781 void vec_dstst (const vector signed int *, int, const int);
11782 void vec_dstst (const vector bool int *, int, const int);
11783 void vec_dstst (const vector float *, int, const int);
11784 void vec_dstst (const unsigned char *, int, const int);
11785 void vec_dstst (const signed char *, int, const int);
11786 void vec_dstst (const unsigned short *, int, const int);
11787 void vec_dstst (const short *, int, const int);
11788 void vec_dstst (const unsigned int *, int, const int);
11789 void vec_dstst (const int *, int, const int);
11790 void vec_dstst (const unsigned long *, int, const int);
11791 void vec_dstst (const long *, int, const int);
11792 void vec_dstst (const float *, int, const int);
11793
11794 void vec_dststt (const vector unsigned char *, int, const int);
11795 void vec_dststt (const vector signed char *, int, const int);
11796 void vec_dststt (const vector bool char *, int, const int);
11797 void vec_dststt (const vector unsigned short *, int, const int);
11798 void vec_dststt (const vector signed short *, int, const int);
11799 void vec_dststt (const vector bool short *, int, const int);
11800 void vec_dststt (const vector pixel *, int, const int);
11801 void vec_dststt (const vector unsigned int *, int, const int);
11802 void vec_dststt (const vector signed int *, int, const int);
11803 void vec_dststt (const vector bool int *, int, const int);
11804 void vec_dststt (const vector float *, int, const int);
11805 void vec_dststt (const unsigned char *, int, const int);
11806 void vec_dststt (const signed char *, int, const int);
11807 void vec_dststt (const unsigned short *, int, const int);
11808 void vec_dststt (const short *, int, const int);
11809 void vec_dststt (const unsigned int *, int, const int);
11810 void vec_dststt (const int *, int, const int);
11811 void vec_dststt (const unsigned long *, int, const int);
11812 void vec_dststt (const long *, int, const int);
11813 void vec_dststt (const float *, int, const int);
11814
11815 void vec_dstt (const vector unsigned char *, int, const int);
11816 void vec_dstt (const vector signed char *, int, const int);
11817 void vec_dstt (const vector bool char *, int, const int);
11818 void vec_dstt (const vector unsigned short *, int, const int);
11819 void vec_dstt (const vector signed short *, int, const int);
11820 void vec_dstt (const vector bool short *, int, const int);
11821 void vec_dstt (const vector pixel *, int, const int);
11822 void vec_dstt (const vector unsigned int *, int, const int);
11823 void vec_dstt (const vector signed int *, int, const int);
11824 void vec_dstt (const vector bool int *, int, const int);
11825 void vec_dstt (const vector float *, int, const int);
11826 void vec_dstt (const unsigned char *, int, const int);
11827 void vec_dstt (const signed char *, int, const int);
11828 void vec_dstt (const unsigned short *, int, const int);
11829 void vec_dstt (const short *, int, const int);
11830 void vec_dstt (const unsigned int *, int, const int);
11831 void vec_dstt (const int *, int, const int);
11832 void vec_dstt (const unsigned long *, int, const int);
11833 void vec_dstt (const long *, int, const int);
11834 void vec_dstt (const float *, int, const int);
11835
11836 vector float vec_expte (vector float);
11837
11838 vector float vec_floor (vector float);
11839
11840 vector float vec_ld (int, const vector float *);
11841 vector float vec_ld (int, const float *);
11842 vector bool int vec_ld (int, const vector bool int *);
11843 vector signed int vec_ld (int, const vector signed int *);
11844 vector signed int vec_ld (int, const int *);
11845 vector signed int vec_ld (int, const long *);
11846 vector unsigned int vec_ld (int, const vector unsigned int *);
11847 vector unsigned int vec_ld (int, const unsigned int *);
11848 vector unsigned int vec_ld (int, const unsigned long *);
11849 vector bool short vec_ld (int, const vector bool short *);
11850 vector pixel vec_ld (int, const vector pixel *);
11851 vector signed short vec_ld (int, const vector signed short *);
11852 vector signed short vec_ld (int, const short *);
11853 vector unsigned short vec_ld (int, const vector unsigned short *);
11854 vector unsigned short vec_ld (int, const unsigned short *);
11855 vector bool char vec_ld (int, const vector bool char *);
11856 vector signed char vec_ld (int, const vector signed char *);
11857 vector signed char vec_ld (int, const signed char *);
11858 vector unsigned char vec_ld (int, const vector unsigned char *);
11859 vector unsigned char vec_ld (int, const unsigned char *);
11860
11861 vector signed char vec_lde (int, const signed char *);
11862 vector unsigned char vec_lde (int, const unsigned char *);
11863 vector signed short vec_lde (int, const short *);
11864 vector unsigned short vec_lde (int, const unsigned short *);
11865 vector float vec_lde (int, const float *);
11866 vector signed int vec_lde (int, const int *);
11867 vector unsigned int vec_lde (int, const unsigned int *);
11868 vector signed int vec_lde (int, const long *);
11869 vector unsigned int vec_lde (int, const unsigned long *);
11870
11871 vector float vec_lvewx (int, float *);
11872 vector signed int vec_lvewx (int, int *);
11873 vector unsigned int vec_lvewx (int, unsigned int *);
11874 vector signed int vec_lvewx (int, long *);
11875 vector unsigned int vec_lvewx (int, unsigned long *);
11876
11877 vector signed short vec_lvehx (int, short *);
11878 vector unsigned short vec_lvehx (int, unsigned short *);
11879
11880 vector signed char vec_lvebx (int, char *);
11881 vector unsigned char vec_lvebx (int, unsigned char *);
11882
11883 vector float vec_ldl (int, const vector float *);
11884 vector float vec_ldl (int, const float *);
11885 vector bool int vec_ldl (int, const vector bool int *);
11886 vector signed int vec_ldl (int, const vector signed int *);
11887 vector signed int vec_ldl (int, const int *);
11888 vector signed int vec_ldl (int, const long *);
11889 vector unsigned int vec_ldl (int, const vector unsigned int *);
11890 vector unsigned int vec_ldl (int, const unsigned int *);
11891 vector unsigned int vec_ldl (int, const unsigned long *);
11892 vector bool short vec_ldl (int, const vector bool short *);
11893 vector pixel vec_ldl (int, const vector pixel *);
11894 vector signed short vec_ldl (int, const vector signed short *);
11895 vector signed short vec_ldl (int, const short *);
11896 vector unsigned short vec_ldl (int, const vector unsigned short *);
11897 vector unsigned short vec_ldl (int, const unsigned short *);
11898 vector bool char vec_ldl (int, const vector bool char *);
11899 vector signed char vec_ldl (int, const vector signed char *);
11900 vector signed char vec_ldl (int, const signed char *);
11901 vector unsigned char vec_ldl (int, const vector unsigned char *);
11902 vector unsigned char vec_ldl (int, const unsigned char *);
11903
11904 vector float vec_loge (vector float);
11905
11906 vector unsigned char vec_lvsl (int, const volatile unsigned char *);
11907 vector unsigned char vec_lvsl (int, const volatile signed char *);
11908 vector unsigned char vec_lvsl (int, const volatile unsigned short *);
11909 vector unsigned char vec_lvsl (int, const volatile short *);
11910 vector unsigned char vec_lvsl (int, const volatile unsigned int *);
11911 vector unsigned char vec_lvsl (int, const volatile int *);
11912 vector unsigned char vec_lvsl (int, const volatile unsigned long *);
11913 vector unsigned char vec_lvsl (int, const volatile long *);
11914 vector unsigned char vec_lvsl (int, const volatile float *);
11915
11916 vector unsigned char vec_lvsr (int, const volatile unsigned char *);
11917 vector unsigned char vec_lvsr (int, const volatile signed char *);
11918 vector unsigned char vec_lvsr (int, const volatile unsigned short *);
11919 vector unsigned char vec_lvsr (int, const volatile short *);
11920 vector unsigned char vec_lvsr (int, const volatile unsigned int *);
11921 vector unsigned char vec_lvsr (int, const volatile int *);
11922 vector unsigned char vec_lvsr (int, const volatile unsigned long *);
11923 vector unsigned char vec_lvsr (int, const volatile long *);
11924 vector unsigned char vec_lvsr (int, const volatile float *);
11925
11926 vector float vec_madd (vector float, vector float, vector float);
11927
11928 vector signed short vec_madds (vector signed short,
11929 vector signed short,
11930 vector signed short);
11931
11932 vector unsigned char vec_max (vector bool char, vector unsigned char);
11933 vector unsigned char vec_max (vector unsigned char, vector bool char);
11934 vector unsigned char vec_max (vector unsigned char,
11935 vector unsigned char);
11936 vector signed char vec_max (vector bool char, vector signed char);
11937 vector signed char vec_max (vector signed char, vector bool char);
11938 vector signed char vec_max (vector signed char, vector signed char);
11939 vector unsigned short vec_max (vector bool short,
11940 vector unsigned short);
11941 vector unsigned short vec_max (vector unsigned short,
11942 vector bool short);
11943 vector unsigned short vec_max (vector unsigned short,
11944 vector unsigned short);
11945 vector signed short vec_max (vector bool short, vector signed short);
11946 vector signed short vec_max (vector signed short, vector bool short);
11947 vector signed short vec_max (vector signed short, vector signed short);
11948 vector unsigned int vec_max (vector bool int, vector unsigned int);
11949 vector unsigned int vec_max (vector unsigned int, vector bool int);
11950 vector unsigned int vec_max (vector unsigned int, vector unsigned int);
11951 vector signed int vec_max (vector bool int, vector signed int);
11952 vector signed int vec_max (vector signed int, vector bool int);
11953 vector signed int vec_max (vector signed int, vector signed int);
11954 vector float vec_max (vector float, vector float);
11955
11956 vector float vec_vmaxfp (vector float, vector float);
11957
11958 vector signed int vec_vmaxsw (vector bool int, vector signed int);
11959 vector signed int vec_vmaxsw (vector signed int, vector bool int);
11960 vector signed int vec_vmaxsw (vector signed int, vector signed int);
11961
11962 vector unsigned int vec_vmaxuw (vector bool int, vector unsigned int);
11963 vector unsigned int vec_vmaxuw (vector unsigned int, vector bool int);
11964 vector unsigned int vec_vmaxuw (vector unsigned int,
11965 vector unsigned int);
11966
11967 vector signed short vec_vmaxsh (vector bool short, vector signed short);
11968 vector signed short vec_vmaxsh (vector signed short, vector bool short);
11969 vector signed short vec_vmaxsh (vector signed short,
11970 vector signed short);
11971
11972 vector unsigned short vec_vmaxuh (vector bool short,
11973 vector unsigned short);
11974 vector unsigned short vec_vmaxuh (vector unsigned short,
11975 vector bool short);
11976 vector unsigned short vec_vmaxuh (vector unsigned short,
11977 vector unsigned short);
11978
11979 vector signed char vec_vmaxsb (vector bool char, vector signed char);
11980 vector signed char vec_vmaxsb (vector signed char, vector bool char);
11981 vector signed char vec_vmaxsb (vector signed char, vector signed char);
11982
11983 vector unsigned char vec_vmaxub (vector bool char,
11984 vector unsigned char);
11985 vector unsigned char vec_vmaxub (vector unsigned char,
11986 vector bool char);
11987 vector unsigned char vec_vmaxub (vector unsigned char,
11988 vector unsigned char);
11989
11990 vector bool char vec_mergeh (vector bool char, vector bool char);
11991 vector signed char vec_mergeh (vector signed char, vector signed char);
11992 vector unsigned char vec_mergeh (vector unsigned char,
11993 vector unsigned char);
11994 vector bool short vec_mergeh (vector bool short, vector bool short);
11995 vector pixel vec_mergeh (vector pixel, vector pixel);
11996 vector signed short vec_mergeh (vector signed short,
11997 vector signed short);
11998 vector unsigned short vec_mergeh (vector unsigned short,
11999 vector unsigned short);
12000 vector float vec_mergeh (vector float, vector float);
12001 vector bool int vec_mergeh (vector bool int, vector bool int);
12002 vector signed int vec_mergeh (vector signed int, vector signed int);
12003 vector unsigned int vec_mergeh (vector unsigned int,
12004 vector unsigned int);
12005
12006 vector float vec_vmrghw (vector float, vector float);
12007 vector bool int vec_vmrghw (vector bool int, vector bool int);
12008 vector signed int vec_vmrghw (vector signed int, vector signed int);
12009 vector unsigned int vec_vmrghw (vector unsigned int,
12010 vector unsigned int);
12011
12012 vector bool short vec_vmrghh (vector bool short, vector bool short);
12013 vector signed short vec_vmrghh (vector signed short,
12014 vector signed short);
12015 vector unsigned short vec_vmrghh (vector unsigned short,
12016 vector unsigned short);
12017 vector pixel vec_vmrghh (vector pixel, vector pixel);
12018
12019 vector bool char vec_vmrghb (vector bool char, vector bool char);
12020 vector signed char vec_vmrghb (vector signed char, vector signed char);
12021 vector unsigned char vec_vmrghb (vector unsigned char,
12022 vector unsigned char);
12023
12024 vector bool char vec_mergel (vector bool char, vector bool char);
12025 vector signed char vec_mergel (vector signed char, vector signed char);
12026 vector unsigned char vec_mergel (vector unsigned char,
12027 vector unsigned char);
12028 vector bool short vec_mergel (vector bool short, vector bool short);
12029 vector pixel vec_mergel (vector pixel, vector pixel);
12030 vector signed short vec_mergel (vector signed short,
12031 vector signed short);
12032 vector unsigned short vec_mergel (vector unsigned short,
12033 vector unsigned short);
12034 vector float vec_mergel (vector float, vector float);
12035 vector bool int vec_mergel (vector bool int, vector bool int);
12036 vector signed int vec_mergel (vector signed int, vector signed int);
12037 vector unsigned int vec_mergel (vector unsigned int,
12038 vector unsigned int);
12039
12040 vector float vec_vmrglw (vector float, vector float);
12041 vector signed int vec_vmrglw (vector signed int, vector signed int);
12042 vector unsigned int vec_vmrglw (vector unsigned int,
12043 vector unsigned int);
12044 vector bool int vec_vmrglw (vector bool int, vector bool int);
12045
12046 vector bool short vec_vmrglh (vector bool short, vector bool short);
12047 vector signed short vec_vmrglh (vector signed short,
12048 vector signed short);
12049 vector unsigned short vec_vmrglh (vector unsigned short,
12050 vector unsigned short);
12051 vector pixel vec_vmrglh (vector pixel, vector pixel);
12052
12053 vector bool char vec_vmrglb (vector bool char, vector bool char);
12054 vector signed char vec_vmrglb (vector signed char, vector signed char);
12055 vector unsigned char vec_vmrglb (vector unsigned char,
12056 vector unsigned char);
12057
12058 vector unsigned short vec_mfvscr (void);
12059
12060 vector unsigned char vec_min (vector bool char, vector unsigned char);
12061 vector unsigned char vec_min (vector unsigned char, vector bool char);
12062 vector unsigned char vec_min (vector unsigned char,
12063 vector unsigned char);
12064 vector signed char vec_min (vector bool char, vector signed char);
12065 vector signed char vec_min (vector signed char, vector bool char);
12066 vector signed char vec_min (vector signed char, vector signed char);
12067 vector unsigned short vec_min (vector bool short,
12068 vector unsigned short);
12069 vector unsigned short vec_min (vector unsigned short,
12070 vector bool short);
12071 vector unsigned short vec_min (vector unsigned short,
12072 vector unsigned short);
12073 vector signed short vec_min (vector bool short, vector signed short);
12074 vector signed short vec_min (vector signed short, vector bool short);
12075 vector signed short vec_min (vector signed short, vector signed short);
12076 vector unsigned int vec_min (vector bool int, vector unsigned int);
12077 vector unsigned int vec_min (vector unsigned int, vector bool int);
12078 vector unsigned int vec_min (vector unsigned int, vector unsigned int);
12079 vector signed int vec_min (vector bool int, vector signed int);
12080 vector signed int vec_min (vector signed int, vector bool int);
12081 vector signed int vec_min (vector signed int, vector signed int);
12082 vector float vec_min (vector float, vector float);
12083
12084 vector float vec_vminfp (vector float, vector float);
12085
12086 vector signed int vec_vminsw (vector bool int, vector signed int);
12087 vector signed int vec_vminsw (vector signed int, vector bool int);
12088 vector signed int vec_vminsw (vector signed int, vector signed int);
12089
12090 vector unsigned int vec_vminuw (vector bool int, vector unsigned int);
12091 vector unsigned int vec_vminuw (vector unsigned int, vector bool int);
12092 vector unsigned int vec_vminuw (vector unsigned int,
12093 vector unsigned int);
12094
12095 vector signed short vec_vminsh (vector bool short, vector signed short);
12096 vector signed short vec_vminsh (vector signed short, vector bool short);
12097 vector signed short vec_vminsh (vector signed short,
12098 vector signed short);
12099
12100 vector unsigned short vec_vminuh (vector bool short,
12101 vector unsigned short);
12102 vector unsigned short vec_vminuh (vector unsigned short,
12103 vector bool short);
12104 vector unsigned short vec_vminuh (vector unsigned short,
12105 vector unsigned short);
12106
12107 vector signed char vec_vminsb (vector bool char, vector signed char);
12108 vector signed char vec_vminsb (vector signed char, vector bool char);
12109 vector signed char vec_vminsb (vector signed char, vector signed char);
12110
12111 vector unsigned char vec_vminub (vector bool char,
12112 vector unsigned char);
12113 vector unsigned char vec_vminub (vector unsigned char,
12114 vector bool char);
12115 vector unsigned char vec_vminub (vector unsigned char,
12116 vector unsigned char);
12117
12118 vector signed short vec_mladd (vector signed short,
12119 vector signed short,
12120 vector signed short);
12121 vector signed short vec_mladd (vector signed short,
12122 vector unsigned short,
12123 vector unsigned short);
12124 vector signed short vec_mladd (vector unsigned short,
12125 vector signed short,
12126 vector signed short);
12127 vector unsigned short vec_mladd (vector unsigned short,
12128 vector unsigned short,
12129 vector unsigned short);
12130
12131 vector signed short vec_mradds (vector signed short,
12132 vector signed short,
12133 vector signed short);
12134
12135 vector unsigned int vec_msum (vector unsigned char,
12136 vector unsigned char,
12137 vector unsigned int);
12138 vector signed int vec_msum (vector signed char,
12139 vector unsigned char,
12140 vector signed int);
12141 vector unsigned int vec_msum (vector unsigned short,
12142 vector unsigned short,
12143 vector unsigned int);
12144 vector signed int vec_msum (vector signed short,
12145 vector signed short,
12146 vector signed int);
12147
12148 vector signed int vec_vmsumshm (vector signed short,
12149 vector signed short,
12150 vector signed int);
12151
12152 vector unsigned int vec_vmsumuhm (vector unsigned short,
12153 vector unsigned short,
12154 vector unsigned int);
12155
12156 vector signed int vec_vmsummbm (vector signed char,
12157 vector unsigned char,
12158 vector signed int);
12159
12160 vector unsigned int vec_vmsumubm (vector unsigned char,
12161 vector unsigned char,
12162 vector unsigned int);
12163
12164 vector unsigned int vec_msums (vector unsigned short,
12165 vector unsigned short,
12166 vector unsigned int);
12167 vector signed int vec_msums (vector signed short,
12168 vector signed short,
12169 vector signed int);
12170
12171 vector signed int vec_vmsumshs (vector signed short,
12172 vector signed short,
12173 vector signed int);
12174
12175 vector unsigned int vec_vmsumuhs (vector unsigned short,
12176 vector unsigned short,
12177 vector unsigned int);
12178
12179 void vec_mtvscr (vector signed int);
12180 void vec_mtvscr (vector unsigned int);
12181 void vec_mtvscr (vector bool int);
12182 void vec_mtvscr (vector signed short);
12183 void vec_mtvscr (vector unsigned short);
12184 void vec_mtvscr (vector bool short);
12185 void vec_mtvscr (vector pixel);
12186 void vec_mtvscr (vector signed char);
12187 void vec_mtvscr (vector unsigned char);
12188 void vec_mtvscr (vector bool char);
12189
12190 vector unsigned short vec_mule (vector unsigned char,
12191 vector unsigned char);
12192 vector signed short vec_mule (vector signed char,
12193 vector signed char);
12194 vector unsigned int vec_mule (vector unsigned short,
12195 vector unsigned short);
12196 vector signed int vec_mule (vector signed short, vector signed short);
12197
12198 vector signed int vec_vmulesh (vector signed short,
12199 vector signed short);
12200
12201 vector unsigned int vec_vmuleuh (vector unsigned short,
12202 vector unsigned short);
12203
12204 vector signed short vec_vmulesb (vector signed char,
12205 vector signed char);
12206
12207 vector unsigned short vec_vmuleub (vector unsigned char,
12208 vector unsigned char);
12209
12210 vector unsigned short vec_mulo (vector unsigned char,
12211 vector unsigned char);
12212 vector signed short vec_mulo (vector signed char, vector signed char);
12213 vector unsigned int vec_mulo (vector unsigned short,
12214 vector unsigned short);
12215 vector signed int vec_mulo (vector signed short, vector signed short);
12216
12217 vector signed int vec_vmulosh (vector signed short,
12218 vector signed short);
12219
12220 vector unsigned int vec_vmulouh (vector unsigned short,
12221 vector unsigned short);
12222
12223 vector signed short vec_vmulosb (vector signed char,
12224 vector signed char);
12225
12226 vector unsigned short vec_vmuloub (vector unsigned char,
12227 vector unsigned char);
12228
12229 vector float vec_nmsub (vector float, vector float, vector float);
12230
12231 vector float vec_nor (vector float, vector float);
12232 vector signed int vec_nor (vector signed int, vector signed int);
12233 vector unsigned int vec_nor (vector unsigned int, vector unsigned int);
12234 vector bool int vec_nor (vector bool int, vector bool int);
12235 vector signed short vec_nor (vector signed short, vector signed short);
12236 vector unsigned short vec_nor (vector unsigned short,
12237 vector unsigned short);
12238 vector bool short vec_nor (vector bool short, vector bool short);
12239 vector signed char vec_nor (vector signed char, vector signed char);
12240 vector unsigned char vec_nor (vector unsigned char,
12241 vector unsigned char);
12242 vector bool char vec_nor (vector bool char, vector bool char);
12243
12244 vector float vec_or (vector float, vector float);
12245 vector float vec_or (vector float, vector bool int);
12246 vector float vec_or (vector bool int, vector float);
12247 vector bool int vec_or (vector bool int, vector bool int);
12248 vector signed int vec_or (vector bool int, vector signed int);
12249 vector signed int vec_or (vector signed int, vector bool int);
12250 vector signed int vec_or (vector signed int, vector signed int);
12251 vector unsigned int vec_or (vector bool int, vector unsigned int);
12252 vector unsigned int vec_or (vector unsigned int, vector bool int);
12253 vector unsigned int vec_or (vector unsigned int, vector unsigned int);
12254 vector bool short vec_or (vector bool short, vector bool short);
12255 vector signed short vec_or (vector bool short, vector signed short);
12256 vector signed short vec_or (vector signed short, vector bool short);
12257 vector signed short vec_or (vector signed short, vector signed short);
12258 vector unsigned short vec_or (vector bool short, vector unsigned short);
12259 vector unsigned short vec_or (vector unsigned short, vector bool short);
12260 vector unsigned short vec_or (vector unsigned short,
12261 vector unsigned short);
12262 vector signed char vec_or (vector bool char, vector signed char);
12263 vector bool char vec_or (vector bool char, vector bool char);
12264 vector signed char vec_or (vector signed char, vector bool char);
12265 vector signed char vec_or (vector signed char, vector signed char);
12266 vector unsigned char vec_or (vector bool char, vector unsigned char);
12267 vector unsigned char vec_or (vector unsigned char, vector bool char);
12268 vector unsigned char vec_or (vector unsigned char,
12269 vector unsigned char);
12270
12271 vector signed char vec_pack (vector signed short, vector signed short);
12272 vector unsigned char vec_pack (vector unsigned short,
12273 vector unsigned short);
12274 vector bool char vec_pack (vector bool short, vector bool short);
12275 vector signed short vec_pack (vector signed int, vector signed int);
12276 vector unsigned short vec_pack (vector unsigned int,
12277 vector unsigned int);
12278 vector bool short vec_pack (vector bool int, vector bool int);
12279
12280 vector bool short vec_vpkuwum (vector bool int, vector bool int);
12281 vector signed short vec_vpkuwum (vector signed int, vector signed int);
12282 vector unsigned short vec_vpkuwum (vector unsigned int,
12283 vector unsigned int);
12284
12285 vector bool char vec_vpkuhum (vector bool short, vector bool short);
12286 vector signed char vec_vpkuhum (vector signed short,
12287 vector signed short);
12288 vector unsigned char vec_vpkuhum (vector unsigned short,
12289 vector unsigned short);
12290
12291 vector pixel vec_packpx (vector unsigned int, vector unsigned int);
12292
12293 vector unsigned char vec_packs (vector unsigned short,
12294 vector unsigned short);
12295 vector signed char vec_packs (vector signed short, vector signed short);
12296 vector unsigned short vec_packs (vector unsigned int,
12297 vector unsigned int);
12298 vector signed short vec_packs (vector signed int, vector signed int);
12299
12300 vector signed short vec_vpkswss (vector signed int, vector signed int);
12301
12302 vector unsigned short vec_vpkuwus (vector unsigned int,
12303 vector unsigned int);
12304
12305 vector signed char vec_vpkshss (vector signed short,
12306 vector signed short);
12307
12308 vector unsigned char vec_vpkuhus (vector unsigned short,
12309 vector unsigned short);
12310
12311 vector unsigned char vec_packsu (vector unsigned short,
12312 vector unsigned short);
12313 vector unsigned char vec_packsu (vector signed short,
12314 vector signed short);
12315 vector unsigned short vec_packsu (vector unsigned int,
12316 vector unsigned int);
12317 vector unsigned short vec_packsu (vector signed int, vector signed int);
12318
12319 vector unsigned short vec_vpkswus (vector signed int,
12320 vector signed int);
12321
12322 vector unsigned char vec_vpkshus (vector signed short,
12323 vector signed short);
12324
12325 vector float vec_perm (vector float,
12326 vector float,
12327 vector unsigned char);
12328 vector signed int vec_perm (vector signed int,
12329 vector signed int,
12330 vector unsigned char);
12331 vector unsigned int vec_perm (vector unsigned int,
12332 vector unsigned int,
12333 vector unsigned char);
12334 vector bool int vec_perm (vector bool int,
12335 vector bool int,
12336 vector unsigned char);
12337 vector signed short vec_perm (vector signed short,
12338 vector signed short,
12339 vector unsigned char);
12340 vector unsigned short vec_perm (vector unsigned short,
12341 vector unsigned short,
12342 vector unsigned char);
12343 vector bool short vec_perm (vector bool short,
12344 vector bool short,
12345 vector unsigned char);
12346 vector pixel vec_perm (vector pixel,
12347 vector pixel,
12348 vector unsigned char);
12349 vector signed char vec_perm (vector signed char,
12350 vector signed char,
12351 vector unsigned char);
12352 vector unsigned char vec_perm (vector unsigned char,
12353 vector unsigned char,
12354 vector unsigned char);
12355 vector bool char vec_perm (vector bool char,
12356 vector bool char,
12357 vector unsigned char);
12358
12359 vector float vec_re (vector float);
12360
12361 vector signed char vec_rl (vector signed char,
12362 vector unsigned char);
12363 vector unsigned char vec_rl (vector unsigned char,
12364 vector unsigned char);
12365 vector signed short vec_rl (vector signed short, vector unsigned short);
12366 vector unsigned short vec_rl (vector unsigned short,
12367 vector unsigned short);
12368 vector signed int vec_rl (vector signed int, vector unsigned int);
12369 vector unsigned int vec_rl (vector unsigned int, vector unsigned int);
12370
12371 vector signed int vec_vrlw (vector signed int, vector unsigned int);
12372 vector unsigned int vec_vrlw (vector unsigned int, vector unsigned int);
12373
12374 vector signed short vec_vrlh (vector signed short,
12375 vector unsigned short);
12376 vector unsigned short vec_vrlh (vector unsigned short,
12377 vector unsigned short);
12378
12379 vector signed char vec_vrlb (vector signed char, vector unsigned char);
12380 vector unsigned char vec_vrlb (vector unsigned char,
12381 vector unsigned char);
12382
12383 vector float vec_round (vector float);
12384
12385 vector float vec_recip (vector float, vector float);
12386
12387 vector float vec_rsqrt (vector float);
12388
12389 vector float vec_rsqrte (vector float);
12390
12391 vector float vec_sel (vector float, vector float, vector bool int);
12392 vector float vec_sel (vector float, vector float, vector unsigned int);
12393 vector signed int vec_sel (vector signed int,
12394 vector signed int,
12395 vector bool int);
12396 vector signed int vec_sel (vector signed int,
12397 vector signed int,
12398 vector unsigned int);
12399 vector unsigned int vec_sel (vector unsigned int,
12400 vector unsigned int,
12401 vector bool int);
12402 vector unsigned int vec_sel (vector unsigned int,
12403 vector unsigned int,
12404 vector unsigned int);
12405 vector bool int vec_sel (vector bool int,
12406 vector bool int,
12407 vector bool int);
12408 vector bool int vec_sel (vector bool int,
12409 vector bool int,
12410 vector unsigned int);
12411 vector signed short vec_sel (vector signed short,
12412 vector signed short,
12413 vector bool short);
12414 vector signed short vec_sel (vector signed short,
12415 vector signed short,
12416 vector unsigned short);
12417 vector unsigned short vec_sel (vector unsigned short,
12418 vector unsigned short,
12419 vector bool short);
12420 vector unsigned short vec_sel (vector unsigned short,
12421 vector unsigned short,
12422 vector unsigned short);
12423 vector bool short vec_sel (vector bool short,
12424 vector bool short,
12425 vector bool short);
12426 vector bool short vec_sel (vector bool short,
12427 vector bool short,
12428 vector unsigned short);
12429 vector signed char vec_sel (vector signed char,
12430 vector signed char,
12431 vector bool char);
12432 vector signed char vec_sel (vector signed char,
12433 vector signed char,
12434 vector unsigned char);
12435 vector unsigned char vec_sel (vector unsigned char,
12436 vector unsigned char,
12437 vector bool char);
12438 vector unsigned char vec_sel (vector unsigned char,
12439 vector unsigned char,
12440 vector unsigned char);
12441 vector bool char vec_sel (vector bool char,
12442 vector bool char,
12443 vector bool char);
12444 vector bool char vec_sel (vector bool char,
12445 vector bool char,
12446 vector unsigned char);
12447
12448 vector signed char vec_sl (vector signed char,
12449 vector unsigned char);
12450 vector unsigned char vec_sl (vector unsigned char,
12451 vector unsigned char);
12452 vector signed short vec_sl (vector signed short, vector unsigned short);
12453 vector unsigned short vec_sl (vector unsigned short,
12454 vector unsigned short);
12455 vector signed int vec_sl (vector signed int, vector unsigned int);
12456 vector unsigned int vec_sl (vector unsigned int, vector unsigned int);
12457
12458 vector signed int vec_vslw (vector signed int, vector unsigned int);
12459 vector unsigned int vec_vslw (vector unsigned int, vector unsigned int);
12460
12461 vector signed short vec_vslh (vector signed short,
12462 vector unsigned short);
12463 vector unsigned short vec_vslh (vector unsigned short,
12464 vector unsigned short);
12465
12466 vector signed char vec_vslb (vector signed char, vector unsigned char);
12467 vector unsigned char vec_vslb (vector unsigned char,
12468 vector unsigned char);
12469
12470 vector float vec_sld (vector float, vector float, const int);
12471 vector signed int vec_sld (vector signed int,
12472 vector signed int,
12473 const int);
12474 vector unsigned int vec_sld (vector unsigned int,
12475 vector unsigned int,
12476 const int);
12477 vector bool int vec_sld (vector bool int,
12478 vector bool int,
12479 const int);
12480 vector signed short vec_sld (vector signed short,
12481 vector signed short,
12482 const int);
12483 vector unsigned short vec_sld (vector unsigned short,
12484 vector unsigned short,
12485 const int);
12486 vector bool short vec_sld (vector bool short,
12487 vector bool short,
12488 const int);
12489 vector pixel vec_sld (vector pixel,
12490 vector pixel,
12491 const int);
12492 vector signed char vec_sld (vector signed char,
12493 vector signed char,
12494 const int);
12495 vector unsigned char vec_sld (vector unsigned char,
12496 vector unsigned char,
12497 const int);
12498 vector bool char vec_sld (vector bool char,
12499 vector bool char,
12500 const int);
12501
12502 vector signed int vec_sll (vector signed int,
12503 vector unsigned int);
12504 vector signed int vec_sll (vector signed int,
12505 vector unsigned short);
12506 vector signed int vec_sll (vector signed int,
12507 vector unsigned char);
12508 vector unsigned int vec_sll (vector unsigned int,
12509 vector unsigned int);
12510 vector unsigned int vec_sll (vector unsigned int,
12511 vector unsigned short);
12512 vector unsigned int vec_sll (vector unsigned int,
12513 vector unsigned char);
12514 vector bool int vec_sll (vector bool int,
12515 vector unsigned int);
12516 vector bool int vec_sll (vector bool int,
12517 vector unsigned short);
12518 vector bool int vec_sll (vector bool int,
12519 vector unsigned char);
12520 vector signed short vec_sll (vector signed short,
12521 vector unsigned int);
12522 vector signed short vec_sll (vector signed short,
12523 vector unsigned short);
12524 vector signed short vec_sll (vector signed short,
12525 vector unsigned char);
12526 vector unsigned short vec_sll (vector unsigned short,
12527 vector unsigned int);
12528 vector unsigned short vec_sll (vector unsigned short,
12529 vector unsigned short);
12530 vector unsigned short vec_sll (vector unsigned short,
12531 vector unsigned char);
12532 vector bool short vec_sll (vector bool short, vector unsigned int);
12533 vector bool short vec_sll (vector bool short, vector unsigned short);
12534 vector bool short vec_sll (vector bool short, vector unsigned char);
12535 vector pixel vec_sll (vector pixel, vector unsigned int);
12536 vector pixel vec_sll (vector pixel, vector unsigned short);
12537 vector pixel vec_sll (vector pixel, vector unsigned char);
12538 vector signed char vec_sll (vector signed char, vector unsigned int);
12539 vector signed char vec_sll (vector signed char, vector unsigned short);
12540 vector signed char vec_sll (vector signed char, vector unsigned char);
12541 vector unsigned char vec_sll (vector unsigned char,
12542 vector unsigned int);
12543 vector unsigned char vec_sll (vector unsigned char,
12544 vector unsigned short);
12545 vector unsigned char vec_sll (vector unsigned char,
12546 vector unsigned char);
12547 vector bool char vec_sll (vector bool char, vector unsigned int);
12548 vector bool char vec_sll (vector bool char, vector unsigned short);
12549 vector bool char vec_sll (vector bool char, vector unsigned char);
12550
12551 vector float vec_slo (vector float, vector signed char);
12552 vector float vec_slo (vector float, vector unsigned char);
12553 vector signed int vec_slo (vector signed int, vector signed char);
12554 vector signed int vec_slo (vector signed int, vector unsigned char);
12555 vector unsigned int vec_slo (vector unsigned int, vector signed char);
12556 vector unsigned int vec_slo (vector unsigned int, vector unsigned char);
12557 vector signed short vec_slo (vector signed short, vector signed char);
12558 vector signed short vec_slo (vector signed short, vector unsigned char);
12559 vector unsigned short vec_slo (vector unsigned short,
12560 vector signed char);
12561 vector unsigned short vec_slo (vector unsigned short,
12562 vector unsigned char);
12563 vector pixel vec_slo (vector pixel, vector signed char);
12564 vector pixel vec_slo (vector pixel, vector unsigned char);
12565 vector signed char vec_slo (vector signed char, vector signed char);
12566 vector signed char vec_slo (vector signed char, vector unsigned char);
12567 vector unsigned char vec_slo (vector unsigned char, vector signed char);
12568 vector unsigned char vec_slo (vector unsigned char,
12569 vector unsigned char);
12570
12571 vector signed char vec_splat (vector signed char, const int);
12572 vector unsigned char vec_splat (vector unsigned char, const int);
12573 vector bool char vec_splat (vector bool char, const int);
12574 vector signed short vec_splat (vector signed short, const int);
12575 vector unsigned short vec_splat (vector unsigned short, const int);
12576 vector bool short vec_splat (vector bool short, const int);
12577 vector pixel vec_splat (vector pixel, const int);
12578 vector float vec_splat (vector float, const int);
12579 vector signed int vec_splat (vector signed int, const int);
12580 vector unsigned int vec_splat (vector unsigned int, const int);
12581 vector bool int vec_splat (vector bool int, const int);
12582
12583 vector float vec_vspltw (vector float, const int);
12584 vector signed int vec_vspltw (vector signed int, const int);
12585 vector unsigned int vec_vspltw (vector unsigned int, const int);
12586 vector bool int vec_vspltw (vector bool int, const int);
12587
12588 vector bool short vec_vsplth (vector bool short, const int);
12589 vector signed short vec_vsplth (vector signed short, const int);
12590 vector unsigned short vec_vsplth (vector unsigned short, const int);
12591 vector pixel vec_vsplth (vector pixel, const int);
12592
12593 vector signed char vec_vspltb (vector signed char, const int);
12594 vector unsigned char vec_vspltb (vector unsigned char, const int);
12595 vector bool char vec_vspltb (vector bool char, const int);
12596
12597 vector signed char vec_splat_s8 (const int);
12598
12599 vector signed short vec_splat_s16 (const int);
12600
12601 vector signed int vec_splat_s32 (const int);
12602
12603 vector unsigned char vec_splat_u8 (const int);
12604
12605 vector unsigned short vec_splat_u16 (const int);
12606
12607 vector unsigned int vec_splat_u32 (const int);
12608
12609 vector signed char vec_sr (vector signed char, vector unsigned char);
12610 vector unsigned char vec_sr (vector unsigned char,
12611 vector unsigned char);
12612 vector signed short vec_sr (vector signed short,
12613 vector unsigned short);
12614 vector unsigned short vec_sr (vector unsigned short,
12615 vector unsigned short);
12616 vector signed int vec_sr (vector signed int, vector unsigned int);
12617 vector unsigned int vec_sr (vector unsigned int, vector unsigned int);
12618
12619 vector signed int vec_vsrw (vector signed int, vector unsigned int);
12620 vector unsigned int vec_vsrw (vector unsigned int, vector unsigned int);
12621
12622 vector signed short vec_vsrh (vector signed short,
12623 vector unsigned short);
12624 vector unsigned short vec_vsrh (vector unsigned short,
12625 vector unsigned short);
12626
12627 vector signed char vec_vsrb (vector signed char, vector unsigned char);
12628 vector unsigned char vec_vsrb (vector unsigned char,
12629 vector unsigned char);
12630
12631 vector signed char vec_sra (vector signed char, vector unsigned char);
12632 vector unsigned char vec_sra (vector unsigned char,
12633 vector unsigned char);
12634 vector signed short vec_sra (vector signed short,
12635 vector unsigned short);
12636 vector unsigned short vec_sra (vector unsigned short,
12637 vector unsigned short);
12638 vector signed int vec_sra (vector signed int, vector unsigned int);
12639 vector unsigned int vec_sra (vector unsigned int, vector unsigned int);
12640
12641 vector signed int vec_vsraw (vector signed int, vector unsigned int);
12642 vector unsigned int vec_vsraw (vector unsigned int,
12643 vector unsigned int);
12644
12645 vector signed short vec_vsrah (vector signed short,
12646 vector unsigned short);
12647 vector unsigned short vec_vsrah (vector unsigned short,
12648 vector unsigned short);
12649
12650 vector signed char vec_vsrab (vector signed char, vector unsigned char);
12651 vector unsigned char vec_vsrab (vector unsigned char,
12652 vector unsigned char);
12653
12654 vector signed int vec_srl (vector signed int, vector unsigned int);
12655 vector signed int vec_srl (vector signed int, vector unsigned short);
12656 vector signed int vec_srl (vector signed int, vector unsigned char);
12657 vector unsigned int vec_srl (vector unsigned int, vector unsigned int);
12658 vector unsigned int vec_srl (vector unsigned int,
12659 vector unsigned short);
12660 vector unsigned int vec_srl (vector unsigned int, vector unsigned char);
12661 vector bool int vec_srl (vector bool int, vector unsigned int);
12662 vector bool int vec_srl (vector bool int, vector unsigned short);
12663 vector bool int vec_srl (vector bool int, vector unsigned char);
12664 vector signed short vec_srl (vector signed short, vector unsigned int);
12665 vector signed short vec_srl (vector signed short,
12666 vector unsigned short);
12667 vector signed short vec_srl (vector signed short, vector unsigned char);
12668 vector unsigned short vec_srl (vector unsigned short,
12669 vector unsigned int);
12670 vector unsigned short vec_srl (vector unsigned short,
12671 vector unsigned short);
12672 vector unsigned short vec_srl (vector unsigned short,
12673 vector unsigned char);
12674 vector bool short vec_srl (vector bool short, vector unsigned int);
12675 vector bool short vec_srl (vector bool short, vector unsigned short);
12676 vector bool short vec_srl (vector bool short, vector unsigned char);
12677 vector pixel vec_srl (vector pixel, vector unsigned int);
12678 vector pixel vec_srl (vector pixel, vector unsigned short);
12679 vector pixel vec_srl (vector pixel, vector unsigned char);
12680 vector signed char vec_srl (vector signed char, vector unsigned int);
12681 vector signed char vec_srl (vector signed char, vector unsigned short);
12682 vector signed char vec_srl (vector signed char, vector unsigned char);
12683 vector unsigned char vec_srl (vector unsigned char,
12684 vector unsigned int);
12685 vector unsigned char vec_srl (vector unsigned char,
12686 vector unsigned short);
12687 vector unsigned char vec_srl (vector unsigned char,
12688 vector unsigned char);
12689 vector bool char vec_srl (vector bool char, vector unsigned int);
12690 vector bool char vec_srl (vector bool char, vector unsigned short);
12691 vector bool char vec_srl (vector bool char, vector unsigned char);
12692
12693 vector float vec_sro (vector float, vector signed char);
12694 vector float vec_sro (vector float, vector unsigned char);
12695 vector signed int vec_sro (vector signed int, vector signed char);
12696 vector signed int vec_sro (vector signed int, vector unsigned char);
12697 vector unsigned int vec_sro (vector unsigned int, vector signed char);
12698 vector unsigned int vec_sro (vector unsigned int, vector unsigned char);
12699 vector signed short vec_sro (vector signed short, vector signed char);
12700 vector signed short vec_sro (vector signed short, vector unsigned char);
12701 vector unsigned short vec_sro (vector unsigned short,
12702 vector signed char);
12703 vector unsigned short vec_sro (vector unsigned short,
12704 vector unsigned char);
12705 vector pixel vec_sro (vector pixel, vector signed char);
12706 vector pixel vec_sro (vector pixel, vector unsigned char);
12707 vector signed char vec_sro (vector signed char, vector signed char);
12708 vector signed char vec_sro (vector signed char, vector unsigned char);
12709 vector unsigned char vec_sro (vector unsigned char, vector signed char);
12710 vector unsigned char vec_sro (vector unsigned char,
12711 vector unsigned char);
12712
12713 void vec_st (vector float, int, vector float *);
12714 void vec_st (vector float, int, float *);
12715 void vec_st (vector signed int, int, vector signed int *);
12716 void vec_st (vector signed int, int, int *);
12717 void vec_st (vector unsigned int, int, vector unsigned int *);
12718 void vec_st (vector unsigned int, int, unsigned int *);
12719 void vec_st (vector bool int, int, vector bool int *);
12720 void vec_st (vector bool int, int, unsigned int *);
12721 void vec_st (vector bool int, int, int *);
12722 void vec_st (vector signed short, int, vector signed short *);
12723 void vec_st (vector signed short, int, short *);
12724 void vec_st (vector unsigned short, int, vector unsigned short *);
12725 void vec_st (vector unsigned short, int, unsigned short *);
12726 void vec_st (vector bool short, int, vector bool short *);
12727 void vec_st (vector bool short, int, unsigned short *);
12728 void vec_st (vector pixel, int, vector pixel *);
12729 void vec_st (vector pixel, int, unsigned short *);
12730 void vec_st (vector pixel, int, short *);
12731 void vec_st (vector bool short, int, short *);
12732 void vec_st (vector signed char, int, vector signed char *);
12733 void vec_st (vector signed char, int, signed char *);
12734 void vec_st (vector unsigned char, int, vector unsigned char *);
12735 void vec_st (vector unsigned char, int, unsigned char *);
12736 void vec_st (vector bool char, int, vector bool char *);
12737 void vec_st (vector bool char, int, unsigned char *);
12738 void vec_st (vector bool char, int, signed char *);
12739
12740 void vec_ste (vector signed char, int, signed char *);
12741 void vec_ste (vector unsigned char, int, unsigned char *);
12742 void vec_ste (vector bool char, int, signed char *);
12743 void vec_ste (vector bool char, int, unsigned char *);
12744 void vec_ste (vector signed short, int, short *);
12745 void vec_ste (vector unsigned short, int, unsigned short *);
12746 void vec_ste (vector bool short, int, short *);
12747 void vec_ste (vector bool short, int, unsigned short *);
12748 void vec_ste (vector pixel, int, short *);
12749 void vec_ste (vector pixel, int, unsigned short *);
12750 void vec_ste (vector float, int, float *);
12751 void vec_ste (vector signed int, int, int *);
12752 void vec_ste (vector unsigned int, int, unsigned int *);
12753 void vec_ste (vector bool int, int, int *);
12754 void vec_ste (vector bool int, int, unsigned int *);
12755
12756 void vec_stvewx (vector float, int, float *);
12757 void vec_stvewx (vector signed int, int, int *);
12758 void vec_stvewx (vector unsigned int, int, unsigned int *);
12759 void vec_stvewx (vector bool int, int, int *);
12760 void vec_stvewx (vector bool int, int, unsigned int *);
12761
12762 void vec_stvehx (vector signed short, int, short *);
12763 void vec_stvehx (vector unsigned short, int, unsigned short *);
12764 void vec_stvehx (vector bool short, int, short *);
12765 void vec_stvehx (vector bool short, int, unsigned short *);
12766 void vec_stvehx (vector pixel, int, short *);
12767 void vec_stvehx (vector pixel, int, unsigned short *);
12768
12769 void vec_stvebx (vector signed char, int, signed char *);
12770 void vec_stvebx (vector unsigned char, int, unsigned char *);
12771 void vec_stvebx (vector bool char, int, signed char *);
12772 void vec_stvebx (vector bool char, int, unsigned char *);
12773
12774 void vec_stl (vector float, int, vector float *);
12775 void vec_stl (vector float, int, float *);
12776 void vec_stl (vector signed int, int, vector signed int *);
12777 void vec_stl (vector signed int, int, int *);
12778 void vec_stl (vector unsigned int, int, vector unsigned int *);
12779 void vec_stl (vector unsigned int, int, unsigned int *);
12780 void vec_stl (vector bool int, int, vector bool int *);
12781 void vec_stl (vector bool int, int, unsigned int *);
12782 void vec_stl (vector bool int, int, int *);
12783 void vec_stl (vector signed short, int, vector signed short *);
12784 void vec_stl (vector signed short, int, short *);
12785 void vec_stl (vector unsigned short, int, vector unsigned short *);
12786 void vec_stl (vector unsigned short, int, unsigned short *);
12787 void vec_stl (vector bool short, int, vector bool short *);
12788 void vec_stl (vector bool short, int, unsigned short *);
12789 void vec_stl (vector bool short, int, short *);
12790 void vec_stl (vector pixel, int, vector pixel *);
12791 void vec_stl (vector pixel, int, unsigned short *);
12792 void vec_stl (vector pixel, int, short *);
12793 void vec_stl (vector signed char, int, vector signed char *);
12794 void vec_stl (vector signed char, int, signed char *);
12795 void vec_stl (vector unsigned char, int, vector unsigned char *);
12796 void vec_stl (vector unsigned char, int, unsigned char *);
12797 void vec_stl (vector bool char, int, vector bool char *);
12798 void vec_stl (vector bool char, int, unsigned char *);
12799 void vec_stl (vector bool char, int, signed char *);
12800
12801 vector signed char vec_sub (vector bool char, vector signed char);
12802 vector signed char vec_sub (vector signed char, vector bool char);
12803 vector signed char vec_sub (vector signed char, vector signed char);
12804 vector unsigned char vec_sub (vector bool char, vector unsigned char);
12805 vector unsigned char vec_sub (vector unsigned char, vector bool char);
12806 vector unsigned char vec_sub (vector unsigned char,
12807 vector unsigned char);
12808 vector signed short vec_sub (vector bool short, vector signed short);
12809 vector signed short vec_sub (vector signed short, vector bool short);
12810 vector signed short vec_sub (vector signed short, vector signed short);
12811 vector unsigned short vec_sub (vector bool short,
12812 vector unsigned short);
12813 vector unsigned short vec_sub (vector unsigned short,
12814 vector bool short);
12815 vector unsigned short vec_sub (vector unsigned short,
12816 vector unsigned short);
12817 vector signed int vec_sub (vector bool int, vector signed int);
12818 vector signed int vec_sub (vector signed int, vector bool int);
12819 vector signed int vec_sub (vector signed int, vector signed int);
12820 vector unsigned int vec_sub (vector bool int, vector unsigned int);
12821 vector unsigned int vec_sub (vector unsigned int, vector bool int);
12822 vector unsigned int vec_sub (vector unsigned int, vector unsigned int);
12823 vector float vec_sub (vector float, vector float);
12824
12825 vector float vec_vsubfp (vector float, vector float);
12826
12827 vector signed int vec_vsubuwm (vector bool int, vector signed int);
12828 vector signed int vec_vsubuwm (vector signed int, vector bool int);
12829 vector signed int vec_vsubuwm (vector signed int, vector signed int);
12830 vector unsigned int vec_vsubuwm (vector bool int, vector unsigned int);
12831 vector unsigned int vec_vsubuwm (vector unsigned int, vector bool int);
12832 vector unsigned int vec_vsubuwm (vector unsigned int,
12833 vector unsigned int);
12834
12835 vector signed short vec_vsubuhm (vector bool short,
12836 vector signed short);
12837 vector signed short vec_vsubuhm (vector signed short,
12838 vector bool short);
12839 vector signed short vec_vsubuhm (vector signed short,
12840 vector signed short);
12841 vector unsigned short vec_vsubuhm (vector bool short,
12842 vector unsigned short);
12843 vector unsigned short vec_vsubuhm (vector unsigned short,
12844 vector bool short);
12845 vector unsigned short vec_vsubuhm (vector unsigned short,
12846 vector unsigned short);
12847
12848 vector signed char vec_vsububm (vector bool char, vector signed char);
12849 vector signed char vec_vsububm (vector signed char, vector bool char);
12850 vector signed char vec_vsububm (vector signed char, vector signed char);
12851 vector unsigned char vec_vsububm (vector bool char,
12852 vector unsigned char);
12853 vector unsigned char vec_vsububm (vector unsigned char,
12854 vector bool char);
12855 vector unsigned char vec_vsububm (vector unsigned char,
12856 vector unsigned char);
12857
12858 vector unsigned int vec_subc (vector unsigned int, vector unsigned int);
12859
12860 vector unsigned char vec_subs (vector bool char, vector unsigned char);
12861 vector unsigned char vec_subs (vector unsigned char, vector bool char);
12862 vector unsigned char vec_subs (vector unsigned char,
12863 vector unsigned char);
12864 vector signed char vec_subs (vector bool char, vector signed char);
12865 vector signed char vec_subs (vector signed char, vector bool char);
12866 vector signed char vec_subs (vector signed char, vector signed char);
12867 vector unsigned short vec_subs (vector bool short,
12868 vector unsigned short);
12869 vector unsigned short vec_subs (vector unsigned short,
12870 vector bool short);
12871 vector unsigned short vec_subs (vector unsigned short,
12872 vector unsigned short);
12873 vector signed short vec_subs (vector bool short, vector signed short);
12874 vector signed short vec_subs (vector signed short, vector bool short);
12875 vector signed short vec_subs (vector signed short, vector signed short);
12876 vector unsigned int vec_subs (vector bool int, vector unsigned int);
12877 vector unsigned int vec_subs (vector unsigned int, vector bool int);
12878 vector unsigned int vec_subs (vector unsigned int, vector unsigned int);
12879 vector signed int vec_subs (vector bool int, vector signed int);
12880 vector signed int vec_subs (vector signed int, vector bool int);
12881 vector signed int vec_subs (vector signed int, vector signed int);
12882
12883 vector signed int vec_vsubsws (vector bool int, vector signed int);
12884 vector signed int vec_vsubsws (vector signed int, vector bool int);
12885 vector signed int vec_vsubsws (vector signed int, vector signed int);
12886
12887 vector unsigned int vec_vsubuws (vector bool int, vector unsigned int);
12888 vector unsigned int vec_vsubuws (vector unsigned int, vector bool int);
12889 vector unsigned int vec_vsubuws (vector unsigned int,
12890 vector unsigned int);
12891
12892 vector signed short vec_vsubshs (vector bool short,
12893 vector signed short);
12894 vector signed short vec_vsubshs (vector signed short,
12895 vector bool short);
12896 vector signed short vec_vsubshs (vector signed short,
12897 vector signed short);
12898
12899 vector unsigned short vec_vsubuhs (vector bool short,
12900 vector unsigned short);
12901 vector unsigned short vec_vsubuhs (vector unsigned short,
12902 vector bool short);
12903 vector unsigned short vec_vsubuhs (vector unsigned short,
12904 vector unsigned short);
12905
12906 vector signed char vec_vsubsbs (vector bool char, vector signed char);
12907 vector signed char vec_vsubsbs (vector signed char, vector bool char);
12908 vector signed char vec_vsubsbs (vector signed char, vector signed char);
12909
12910 vector unsigned char vec_vsububs (vector bool char,
12911 vector unsigned char);
12912 vector unsigned char vec_vsububs (vector unsigned char,
12913 vector bool char);
12914 vector unsigned char vec_vsububs (vector unsigned char,
12915 vector unsigned char);
12916
12917 vector unsigned int vec_sum4s (vector unsigned char,
12918 vector unsigned int);
12919 vector signed int vec_sum4s (vector signed char, vector signed int);
12920 vector signed int vec_sum4s (vector signed short, vector signed int);
12921
12922 vector signed int vec_vsum4shs (vector signed short, vector signed int);
12923
12924 vector signed int vec_vsum4sbs (vector signed char, vector signed int);
12925
12926 vector unsigned int vec_vsum4ubs (vector unsigned char,
12927 vector unsigned int);
12928
12929 vector signed int vec_sum2s (vector signed int, vector signed int);
12930
12931 vector signed int vec_sums (vector signed int, vector signed int);
12932
12933 vector float vec_trunc (vector float);
12934
12935 vector signed short vec_unpackh (vector signed char);
12936 vector bool short vec_unpackh (vector bool char);
12937 vector signed int vec_unpackh (vector signed short);
12938 vector bool int vec_unpackh (vector bool short);
12939 vector unsigned int vec_unpackh (vector pixel);
12940
12941 vector bool int vec_vupkhsh (vector bool short);
12942 vector signed int vec_vupkhsh (vector signed short);
12943
12944 vector unsigned int vec_vupkhpx (vector pixel);
12945
12946 vector bool short vec_vupkhsb (vector bool char);
12947 vector signed short vec_vupkhsb (vector signed char);
12948
12949 vector signed short vec_unpackl (vector signed char);
12950 vector bool short vec_unpackl (vector bool char);
12951 vector unsigned int vec_unpackl (vector pixel);
12952 vector signed int vec_unpackl (vector signed short);
12953 vector bool int vec_unpackl (vector bool short);
12954
12955 vector unsigned int vec_vupklpx (vector pixel);
12956
12957 vector bool int vec_vupklsh (vector bool short);
12958 vector signed int vec_vupklsh (vector signed short);
12959
12960 vector bool short vec_vupklsb (vector bool char);
12961 vector signed short vec_vupklsb (vector signed char);
12962
12963 vector float vec_xor (vector float, vector float);
12964 vector float vec_xor (vector float, vector bool int);
12965 vector float vec_xor (vector bool int, vector float);
12966 vector bool int vec_xor (vector bool int, vector bool int);
12967 vector signed int vec_xor (vector bool int, vector signed int);
12968 vector signed int vec_xor (vector signed int, vector bool int);
12969 vector signed int vec_xor (vector signed int, vector signed int);
12970 vector unsigned int vec_xor (vector bool int, vector unsigned int);
12971 vector unsigned int vec_xor (vector unsigned int, vector bool int);
12972 vector unsigned int vec_xor (vector unsigned int, vector unsigned int);
12973 vector bool short vec_xor (vector bool short, vector bool short);
12974 vector signed short vec_xor (vector bool short, vector signed short);
12975 vector signed short vec_xor (vector signed short, vector bool short);
12976 vector signed short vec_xor (vector signed short, vector signed short);
12977 vector unsigned short vec_xor (vector bool short,
12978 vector unsigned short);
12979 vector unsigned short vec_xor (vector unsigned short,
12980 vector bool short);
12981 vector unsigned short vec_xor (vector unsigned short,
12982 vector unsigned short);
12983 vector signed char vec_xor (vector bool char, vector signed char);
12984 vector bool char vec_xor (vector bool char, vector bool char);
12985 vector signed char vec_xor (vector signed char, vector bool char);
12986 vector signed char vec_xor (vector signed char, vector signed char);
12987 vector unsigned char vec_xor (vector bool char, vector unsigned char);
12988 vector unsigned char vec_xor (vector unsigned char, vector bool char);
12989 vector unsigned char vec_xor (vector unsigned char,
12990 vector unsigned char);
12991
12992 int vec_all_eq (vector signed char, vector bool char);
12993 int vec_all_eq (vector signed char, vector signed char);
12994 int vec_all_eq (vector unsigned char, vector bool char);
12995 int vec_all_eq (vector unsigned char, vector unsigned char);
12996 int vec_all_eq (vector bool char, vector bool char);
12997 int vec_all_eq (vector bool char, vector unsigned char);
12998 int vec_all_eq (vector bool char, vector signed char);
12999 int vec_all_eq (vector signed short, vector bool short);
13000 int vec_all_eq (vector signed short, vector signed short);
13001 int vec_all_eq (vector unsigned short, vector bool short);
13002 int vec_all_eq (vector unsigned short, vector unsigned short);
13003 int vec_all_eq (vector bool short, vector bool short);
13004 int vec_all_eq (vector bool short, vector unsigned short);
13005 int vec_all_eq (vector bool short, vector signed short);
13006 int vec_all_eq (vector pixel, vector pixel);
13007 int vec_all_eq (vector signed int, vector bool int);
13008 int vec_all_eq (vector signed int, vector signed int);
13009 int vec_all_eq (vector unsigned int, vector bool int);
13010 int vec_all_eq (vector unsigned int, vector unsigned int);
13011 int vec_all_eq (vector bool int, vector bool int);
13012 int vec_all_eq (vector bool int, vector unsigned int);
13013 int vec_all_eq (vector bool int, vector signed int);
13014 int vec_all_eq (vector float, vector float);
13015
13016 int vec_all_ge (vector bool char, vector unsigned char);
13017 int vec_all_ge (vector unsigned char, vector bool char);
13018 int vec_all_ge (vector unsigned char, vector unsigned char);
13019 int vec_all_ge (vector bool char, vector signed char);
13020 int vec_all_ge (vector signed char, vector bool char);
13021 int vec_all_ge (vector signed char, vector signed char);
13022 int vec_all_ge (vector bool short, vector unsigned short);
13023 int vec_all_ge (vector unsigned short, vector bool short);
13024 int vec_all_ge (vector unsigned short, vector unsigned short);
13025 int vec_all_ge (vector signed short, vector signed short);
13026 int vec_all_ge (vector bool short, vector signed short);
13027 int vec_all_ge (vector signed short, vector bool short);
13028 int vec_all_ge (vector bool int, vector unsigned int);
13029 int vec_all_ge (vector unsigned int, vector bool int);
13030 int vec_all_ge (vector unsigned int, vector unsigned int);
13031 int vec_all_ge (vector bool int, vector signed int);
13032 int vec_all_ge (vector signed int, vector bool int);
13033 int vec_all_ge (vector signed int, vector signed int);
13034 int vec_all_ge (vector float, vector float);
13035
13036 int vec_all_gt (vector bool char, vector unsigned char);
13037 int vec_all_gt (vector unsigned char, vector bool char);
13038 int vec_all_gt (vector unsigned char, vector unsigned char);
13039 int vec_all_gt (vector bool char, vector signed char);
13040 int vec_all_gt (vector signed char, vector bool char);
13041 int vec_all_gt (vector signed char, vector signed char);
13042 int vec_all_gt (vector bool short, vector unsigned short);
13043 int vec_all_gt (vector unsigned short, vector bool short);
13044 int vec_all_gt (vector unsigned short, vector unsigned short);
13045 int vec_all_gt (vector bool short, vector signed short);
13046 int vec_all_gt (vector signed short, vector bool short);
13047 int vec_all_gt (vector signed short, vector signed short);
13048 int vec_all_gt (vector bool int, vector unsigned int);
13049 int vec_all_gt (vector unsigned int, vector bool int);
13050 int vec_all_gt (vector unsigned int, vector unsigned int);
13051 int vec_all_gt (vector bool int, vector signed int);
13052 int vec_all_gt (vector signed int, vector bool int);
13053 int vec_all_gt (vector signed int, vector signed int);
13054 int vec_all_gt (vector float, vector float);
13055
13056 int vec_all_in (vector float, vector float);
13057
13058 int vec_all_le (vector bool char, vector unsigned char);
13059 int vec_all_le (vector unsigned char, vector bool char);
13060 int vec_all_le (vector unsigned char, vector unsigned char);
13061 int vec_all_le (vector bool char, vector signed char);
13062 int vec_all_le (vector signed char, vector bool char);
13063 int vec_all_le (vector signed char, vector signed char);
13064 int vec_all_le (vector bool short, vector unsigned short);
13065 int vec_all_le (vector unsigned short, vector bool short);
13066 int vec_all_le (vector unsigned short, vector unsigned short);
13067 int vec_all_le (vector bool short, vector signed short);
13068 int vec_all_le (vector signed short, vector bool short);
13069 int vec_all_le (vector signed short, vector signed short);
13070 int vec_all_le (vector bool int, vector unsigned int);
13071 int vec_all_le (vector unsigned int, vector bool int);
13072 int vec_all_le (vector unsigned int, vector unsigned int);
13073 int vec_all_le (vector bool int, vector signed int);
13074 int vec_all_le (vector signed int, vector bool int);
13075 int vec_all_le (vector signed int, vector signed int);
13076 int vec_all_le (vector float, vector float);
13077
13078 int vec_all_lt (vector bool char, vector unsigned char);
13079 int vec_all_lt (vector unsigned char, vector bool char);
13080 int vec_all_lt (vector unsigned char, vector unsigned char);
13081 int vec_all_lt (vector bool char, vector signed char);
13082 int vec_all_lt (vector signed char, vector bool char);
13083 int vec_all_lt (vector signed char, vector signed char);
13084 int vec_all_lt (vector bool short, vector unsigned short);
13085 int vec_all_lt (vector unsigned short, vector bool short);
13086 int vec_all_lt (vector unsigned short, vector unsigned short);
13087 int vec_all_lt (vector bool short, vector signed short);
13088 int vec_all_lt (vector signed short, vector bool short);
13089 int vec_all_lt (vector signed short, vector signed short);
13090 int vec_all_lt (vector bool int, vector unsigned int);
13091 int vec_all_lt (vector unsigned int, vector bool int);
13092 int vec_all_lt (vector unsigned int, vector unsigned int);
13093 int vec_all_lt (vector bool int, vector signed int);
13094 int vec_all_lt (vector signed int, vector bool int);
13095 int vec_all_lt (vector signed int, vector signed int);
13096 int vec_all_lt (vector float, vector float);
13097
13098 int vec_all_nan (vector float);
13099
13100 int vec_all_ne (vector signed char, vector bool char);
13101 int vec_all_ne (vector signed char, vector signed char);
13102 int vec_all_ne (vector unsigned char, vector bool char);
13103 int vec_all_ne (vector unsigned char, vector unsigned char);
13104 int vec_all_ne (vector bool char, vector bool char);
13105 int vec_all_ne (vector bool char, vector unsigned char);
13106 int vec_all_ne (vector bool char, vector signed char);
13107 int vec_all_ne (vector signed short, vector bool short);
13108 int vec_all_ne (vector signed short, vector signed short);
13109 int vec_all_ne (vector unsigned short, vector bool short);
13110 int vec_all_ne (vector unsigned short, vector unsigned short);
13111 int vec_all_ne (vector bool short, vector bool short);
13112 int vec_all_ne (vector bool short, vector unsigned short);
13113 int vec_all_ne (vector bool short, vector signed short);
13114 int vec_all_ne (vector pixel, vector pixel);
13115 int vec_all_ne (vector signed int, vector bool int);
13116 int vec_all_ne (vector signed int, vector signed int);
13117 int vec_all_ne (vector unsigned int, vector bool int);
13118 int vec_all_ne (vector unsigned int, vector unsigned int);
13119 int vec_all_ne (vector bool int, vector bool int);
13120 int vec_all_ne (vector bool int, vector unsigned int);
13121 int vec_all_ne (vector bool int, vector signed int);
13122 int vec_all_ne (vector float, vector float);
13123
13124 int vec_all_nge (vector float, vector float);
13125
13126 int vec_all_ngt (vector float, vector float);
13127
13128 int vec_all_nle (vector float, vector float);
13129
13130 int vec_all_nlt (vector float, vector float);
13131
13132 int vec_all_numeric (vector float);
13133
13134 int vec_any_eq (vector signed char, vector bool char);
13135 int vec_any_eq (vector signed char, vector signed char);
13136 int vec_any_eq (vector unsigned char, vector bool char);
13137 int vec_any_eq (vector unsigned char, vector unsigned char);
13138 int vec_any_eq (vector bool char, vector bool char);
13139 int vec_any_eq (vector bool char, vector unsigned char);
13140 int vec_any_eq (vector bool char, vector signed char);
13141 int vec_any_eq (vector signed short, vector bool short);
13142 int vec_any_eq (vector signed short, vector signed short);
13143 int vec_any_eq (vector unsigned short, vector bool short);
13144 int vec_any_eq (vector unsigned short, vector unsigned short);
13145 int vec_any_eq (vector bool short, vector bool short);
13146 int vec_any_eq (vector bool short, vector unsigned short);
13147 int vec_any_eq (vector bool short, vector signed short);
13148 int vec_any_eq (vector pixel, vector pixel);
13149 int vec_any_eq (vector signed int, vector bool int);
13150 int vec_any_eq (vector signed int, vector signed int);
13151 int vec_any_eq (vector unsigned int, vector bool int);
13152 int vec_any_eq (vector unsigned int, vector unsigned int);
13153 int vec_any_eq (vector bool int, vector bool int);
13154 int vec_any_eq (vector bool int, vector unsigned int);
13155 int vec_any_eq (vector bool int, vector signed int);
13156 int vec_any_eq (vector float, vector float);
13157
13158 int vec_any_ge (vector signed char, vector bool char);
13159 int vec_any_ge (vector unsigned char, vector bool char);
13160 int vec_any_ge (vector unsigned char, vector unsigned char);
13161 int vec_any_ge (vector signed char, vector signed char);
13162 int vec_any_ge (vector bool char, vector unsigned char);
13163 int vec_any_ge (vector bool char, vector signed char);
13164 int vec_any_ge (vector unsigned short, vector bool short);
13165 int vec_any_ge (vector unsigned short, vector unsigned short);
13166 int vec_any_ge (vector signed short, vector signed short);
13167 int vec_any_ge (vector signed short, vector bool short);
13168 int vec_any_ge (vector bool short, vector unsigned short);
13169 int vec_any_ge (vector bool short, vector signed short);
13170 int vec_any_ge (vector signed int, vector bool int);
13171 int vec_any_ge (vector unsigned int, vector bool int);
13172 int vec_any_ge (vector unsigned int, vector unsigned int);
13173 int vec_any_ge (vector signed int, vector signed int);
13174 int vec_any_ge (vector bool int, vector unsigned int);
13175 int vec_any_ge (vector bool int, vector signed int);
13176 int vec_any_ge (vector float, vector float);
13177
13178 int vec_any_gt (vector bool char, vector unsigned char);
13179 int vec_any_gt (vector unsigned char, vector bool char);
13180 int vec_any_gt (vector unsigned char, vector unsigned char);
13181 int vec_any_gt (vector bool char, vector signed char);
13182 int vec_any_gt (vector signed char, vector bool char);
13183 int vec_any_gt (vector signed char, vector signed char);
13184 int vec_any_gt (vector bool short, vector unsigned short);
13185 int vec_any_gt (vector unsigned short, vector bool short);
13186 int vec_any_gt (vector unsigned short, vector unsigned short);
13187 int vec_any_gt (vector bool short, vector signed short);
13188 int vec_any_gt (vector signed short, vector bool short);
13189 int vec_any_gt (vector signed short, vector signed short);
13190 int vec_any_gt (vector bool int, vector unsigned int);
13191 int vec_any_gt (vector unsigned int, vector bool int);
13192 int vec_any_gt (vector unsigned int, vector unsigned int);
13193 int vec_any_gt (vector bool int, vector signed int);
13194 int vec_any_gt (vector signed int, vector bool int);
13195 int vec_any_gt (vector signed int, vector signed int);
13196 int vec_any_gt (vector float, vector float);
13197
13198 int vec_any_le (vector bool char, vector unsigned char);
13199 int vec_any_le (vector unsigned char, vector bool char);
13200 int vec_any_le (vector unsigned char, vector unsigned char);
13201 int vec_any_le (vector bool char, vector signed char);
13202 int vec_any_le (vector signed char, vector bool char);
13203 int vec_any_le (vector signed char, vector signed char);
13204 int vec_any_le (vector bool short, vector unsigned short);
13205 int vec_any_le (vector unsigned short, vector bool short);
13206 int vec_any_le (vector unsigned short, vector unsigned short);
13207 int vec_any_le (vector bool short, vector signed short);
13208 int vec_any_le (vector signed short, vector bool short);
13209 int vec_any_le (vector signed short, vector signed short);
13210 int vec_any_le (vector bool int, vector unsigned int);
13211 int vec_any_le (vector unsigned int, vector bool int);
13212 int vec_any_le (vector unsigned int, vector unsigned int);
13213 int vec_any_le (vector bool int, vector signed int);
13214 int vec_any_le (vector signed int, vector bool int);
13215 int vec_any_le (vector signed int, vector signed int);
13216 int vec_any_le (vector float, vector float);
13217
13218 int vec_any_lt (vector bool char, vector unsigned char);
13219 int vec_any_lt (vector unsigned char, vector bool char);
13220 int vec_any_lt (vector unsigned char, vector unsigned char);
13221 int vec_any_lt (vector bool char, vector signed char);
13222 int vec_any_lt (vector signed char, vector bool char);
13223 int vec_any_lt (vector signed char, vector signed char);
13224 int vec_any_lt (vector bool short, vector unsigned short);
13225 int vec_any_lt (vector unsigned short, vector bool short);
13226 int vec_any_lt (vector unsigned short, vector unsigned short);
13227 int vec_any_lt (vector bool short, vector signed short);
13228 int vec_any_lt (vector signed short, vector bool short);
13229 int vec_any_lt (vector signed short, vector signed short);
13230 int vec_any_lt (vector bool int, vector unsigned int);
13231 int vec_any_lt (vector unsigned int, vector bool int);
13232 int vec_any_lt (vector unsigned int, vector unsigned int);
13233 int vec_any_lt (vector bool int, vector signed int);
13234 int vec_any_lt (vector signed int, vector bool int);
13235 int vec_any_lt (vector signed int, vector signed int);
13236 int vec_any_lt (vector float, vector float);
13237
13238 int vec_any_nan (vector float);
13239
13240 int vec_any_ne (vector signed char, vector bool char);
13241 int vec_any_ne (vector signed char, vector signed char);
13242 int vec_any_ne (vector unsigned char, vector bool char);
13243 int vec_any_ne (vector unsigned char, vector unsigned char);
13244 int vec_any_ne (vector bool char, vector bool char);
13245 int vec_any_ne (vector bool char, vector unsigned char);
13246 int vec_any_ne (vector bool char, vector signed char);
13247 int vec_any_ne (vector signed short, vector bool short);
13248 int vec_any_ne (vector signed short, vector signed short);
13249 int vec_any_ne (vector unsigned short, vector bool short);
13250 int vec_any_ne (vector unsigned short, vector unsigned short);
13251 int vec_any_ne (vector bool short, vector bool short);
13252 int vec_any_ne (vector bool short, vector unsigned short);
13253 int vec_any_ne (vector bool short, vector signed short);
13254 int vec_any_ne (vector pixel, vector pixel);
13255 int vec_any_ne (vector signed int, vector bool int);
13256 int vec_any_ne (vector signed int, vector signed int);
13257 int vec_any_ne (vector unsigned int, vector bool int);
13258 int vec_any_ne (vector unsigned int, vector unsigned int);
13259 int vec_any_ne (vector bool int, vector bool int);
13260 int vec_any_ne (vector bool int, vector unsigned int);
13261 int vec_any_ne (vector bool int, vector signed int);
13262 int vec_any_ne (vector float, vector float);
13263
13264 int vec_any_nge (vector float, vector float);
13265
13266 int vec_any_ngt (vector float, vector float);
13267
13268 int vec_any_nle (vector float, vector float);
13269
13270 int vec_any_nlt (vector float, vector float);
13271
13272 int vec_any_numeric (vector float);
13273
13274 int vec_any_out (vector float, vector float);
13275 @end smallexample
13276
13277 If the vector/scalar (VSX) instruction set is available, the following
13278 additional functions are available:
13279
13280 @smallexample
13281 vector double vec_abs (vector double);
13282 vector double vec_add (vector double, vector double);
13283 vector double vec_and (vector double, vector double);
13284 vector double vec_and (vector double, vector bool long);
13285 vector double vec_and (vector bool long, vector double);
13286 vector double vec_andc (vector double, vector double);
13287 vector double vec_andc (vector double, vector bool long);
13288 vector double vec_andc (vector bool long, vector double);
13289 vector double vec_ceil (vector double);
13290 vector bool long vec_cmpeq (vector double, vector double);
13291 vector bool long vec_cmpge (vector double, vector double);
13292 vector bool long vec_cmpgt (vector double, vector double);
13293 vector bool long vec_cmple (vector double, vector double);
13294 vector bool long vec_cmplt (vector double, vector double);
13295 vector float vec_div (vector float, vector float);
13296 vector double vec_div (vector double, vector double);
13297 vector double vec_floor (vector double);
13298 vector double vec_ld (int, const vector double *);
13299 vector double vec_ld (int, const double *);
13300 vector double vec_ldl (int, const vector double *);
13301 vector double vec_ldl (int, const double *);
13302 vector unsigned char vec_lvsl (int, const volatile double *);
13303 vector unsigned char vec_lvsr (int, const volatile double *);
13304 vector double vec_madd (vector double, vector double, vector double);
13305 vector double vec_max (vector double, vector double);
13306 vector double vec_min (vector double, vector double);
13307 vector float vec_msub (vector float, vector float, vector float);
13308 vector double vec_msub (vector double, vector double, vector double);
13309 vector float vec_mul (vector float, vector float);
13310 vector double vec_mul (vector double, vector double);
13311 vector float vec_nearbyint (vector float);
13312 vector double vec_nearbyint (vector double);
13313 vector float vec_nmadd (vector float, vector float, vector float);
13314 vector double vec_nmadd (vector double, vector double, vector double);
13315 vector double vec_nmsub (vector double, vector double, vector double);
13316 vector double vec_nor (vector double, vector double);
13317 vector double vec_or (vector double, vector double);
13318 vector double vec_or (vector double, vector bool long);
13319 vector double vec_or (vector bool long, vector double);
13320 vector double vec_perm (vector double,
13321 vector double,
13322 vector unsigned char);
13323 vector double vec_rint (vector double);
13324 vector double vec_recip (vector double, vector double);
13325 vector double vec_rsqrt (vector double);
13326 vector double vec_rsqrte (vector double);
13327 vector double vec_sel (vector double, vector double, vector bool long);
13328 vector double vec_sel (vector double, vector double, vector unsigned long);
13329 vector double vec_sub (vector double, vector double);
13330 vector float vec_sqrt (vector float);
13331 vector double vec_sqrt (vector double);
13332 void vec_st (vector double, int, vector double *);
13333 void vec_st (vector double, int, double *);
13334 vector double vec_trunc (vector double);
13335 vector double vec_xor (vector double, vector double);
13336 vector double vec_xor (vector double, vector bool long);
13337 vector double vec_xor (vector bool long, vector double);
13338 int vec_all_eq (vector double, vector double);
13339 int vec_all_ge (vector double, vector double);
13340 int vec_all_gt (vector double, vector double);
13341 int vec_all_le (vector double, vector double);
13342 int vec_all_lt (vector double, vector double);
13343 int vec_all_nan (vector double);
13344 int vec_all_ne (vector double, vector double);
13345 int vec_all_nge (vector double, vector double);
13346 int vec_all_ngt (vector double, vector double);
13347 int vec_all_nle (vector double, vector double);
13348 int vec_all_nlt (vector double, vector double);
13349 int vec_all_numeric (vector double);
13350 int vec_any_eq (vector double, vector double);
13351 int vec_any_ge (vector double, vector double);
13352 int vec_any_gt (vector double, vector double);
13353 int vec_any_le (vector double, vector double);
13354 int vec_any_lt (vector double, vector double);
13355 int vec_any_nan (vector double);
13356 int vec_any_ne (vector double, vector double);
13357 int vec_any_nge (vector double, vector double);
13358 int vec_any_ngt (vector double, vector double);
13359 int vec_any_nle (vector double, vector double);
13360 int vec_any_nlt (vector double, vector double);
13361 int vec_any_numeric (vector double);
13362
13363 vector double vec_vsx_ld (int, const vector double *);
13364 vector double vec_vsx_ld (int, const double *);
13365 vector float vec_vsx_ld (int, const vector float *);
13366 vector float vec_vsx_ld (int, const float *);
13367 vector bool int vec_vsx_ld (int, const vector bool int *);
13368 vector signed int vec_vsx_ld (int, const vector signed int *);
13369 vector signed int vec_vsx_ld (int, const int *);
13370 vector signed int vec_vsx_ld (int, const long *);
13371 vector unsigned int vec_vsx_ld (int, const vector unsigned int *);
13372 vector unsigned int vec_vsx_ld (int, const unsigned int *);
13373 vector unsigned int vec_vsx_ld (int, const unsigned long *);
13374 vector bool short vec_vsx_ld (int, const vector bool short *);
13375 vector pixel vec_vsx_ld (int, const vector pixel *);
13376 vector signed short vec_vsx_ld (int, const vector signed short *);
13377 vector signed short vec_vsx_ld (int, const short *);
13378 vector unsigned short vec_vsx_ld (int, const vector unsigned short *);
13379 vector unsigned short vec_vsx_ld (int, const unsigned short *);
13380 vector bool char vec_vsx_ld (int, const vector bool char *);
13381 vector signed char vec_vsx_ld (int, const vector signed char *);
13382 vector signed char vec_vsx_ld (int, const signed char *);
13383 vector unsigned char vec_vsx_ld (int, const vector unsigned char *);
13384 vector unsigned char vec_vsx_ld (int, const unsigned char *);
13385
13386 void vec_vsx_st (vector double, int, vector double *);
13387 void vec_vsx_st (vector double, int, double *);
13388 void vec_vsx_st (vector float, int, vector float *);
13389 void vec_vsx_st (vector float, int, float *);
13390 void vec_vsx_st (vector signed int, int, vector signed int *);
13391 void vec_vsx_st (vector signed int, int, int *);
13392 void vec_vsx_st (vector unsigned int, int, vector unsigned int *);
13393 void vec_vsx_st (vector unsigned int, int, unsigned int *);
13394 void vec_vsx_st (vector bool int, int, vector bool int *);
13395 void vec_vsx_st (vector bool int, int, unsigned int *);
13396 void vec_vsx_st (vector bool int, int, int *);
13397 void vec_vsx_st (vector signed short, int, vector signed short *);
13398 void vec_vsx_st (vector signed short, int, short *);
13399 void vec_vsx_st (vector unsigned short, int, vector unsigned short *);
13400 void vec_vsx_st (vector unsigned short, int, unsigned short *);
13401 void vec_vsx_st (vector bool short, int, vector bool short *);
13402 void vec_vsx_st (vector bool short, int, unsigned short *);
13403 void vec_vsx_st (vector pixel, int, vector pixel *);
13404 void vec_vsx_st (vector pixel, int, unsigned short *);
13405 void vec_vsx_st (vector pixel, int, short *);
13406 void vec_vsx_st (vector bool short, int, short *);
13407 void vec_vsx_st (vector signed char, int, vector signed char *);
13408 void vec_vsx_st (vector signed char, int, signed char *);
13409 void vec_vsx_st (vector unsigned char, int, vector unsigned char *);
13410 void vec_vsx_st (vector unsigned char, int, unsigned char *);
13411 void vec_vsx_st (vector bool char, int, vector bool char *);
13412 void vec_vsx_st (vector bool char, int, unsigned char *);
13413 void vec_vsx_st (vector bool char, int, signed char *);
13414 @end smallexample
13415
13416 Note that the @samp{vec_ld} and @samp{vec_st} builtins will always
13417 generate the Altivec @samp{LVX} and @samp{STVX} instructions even
13418 if the VSX instruction set is available. The @samp{vec_vsx_ld} and
13419 @samp{vec_vsx_st} builtins will always generate the VSX @samp{LXVD2X},
13420 @samp{LXVW4X}, @samp{STXVD2X}, and @samp{STXVW4X} instructions.
13421
13422 GCC provides a few other builtins on Powerpc to access certain instructions:
13423 @smallexample
13424 float __builtin_recipdivf (float, float);
13425 float __builtin_rsqrtf (float);
13426 double __builtin_recipdiv (double, double);
13427 double __builtin_rsqrt (double);
13428 long __builtin_bpermd (long, long);
13429 int __builtin_bswap16 (int);
13430 @end smallexample
13431
13432 The @code{vec_rsqrt}, @code{__builtin_rsqrt}, and
13433 @code{__builtin_rsqrtf} functions generate multiple instructions to
13434 implement the reciprocal sqrt functionality using reciprocal sqrt
13435 estimate instructions.
13436
13437 The @code{__builtin_recipdiv}, and @code{__builtin_recipdivf}
13438 functions generate multiple instructions to implement division using
13439 the reciprocal estimate instructions.
13440
13441 @node RX Built-in Functions
13442 @subsection RX Built-in Functions
13443 GCC supports some of the RX instructions which cannot be expressed in
13444 the C programming language via the use of built-in functions. The
13445 following functions are supported:
13446
13447 @deftypefn {Built-in Function} void __builtin_rx_brk (void)
13448 Generates the @code{brk} machine instruction.
13449 @end deftypefn
13450
13451 @deftypefn {Built-in Function} void __builtin_rx_clrpsw (int)
13452 Generates the @code{clrpsw} machine instruction to clear the specified
13453 bit in the processor status word.
13454 @end deftypefn
13455
13456 @deftypefn {Built-in Function} void __builtin_rx_int (int)
13457 Generates the @code{int} machine instruction to generate an interrupt
13458 with the specified value.
13459 @end deftypefn
13460
13461 @deftypefn {Built-in Function} void __builtin_rx_machi (int, int)
13462 Generates the @code{machi} machine instruction to add the result of
13463 multiplying the top 16-bits of the two arguments into the
13464 accumulator.
13465 @end deftypefn
13466
13467 @deftypefn {Built-in Function} void __builtin_rx_maclo (int, int)
13468 Generates the @code{maclo} machine instruction to add the result of
13469 multiplying the bottom 16-bits of the two arguments into the
13470 accumulator.
13471 @end deftypefn
13472
13473 @deftypefn {Built-in Function} void __builtin_rx_mulhi (int, int)
13474 Generates the @code{mulhi} machine instruction to place the result of
13475 multiplying the top 16-bits of the two arguments into the
13476 accumulator.
13477 @end deftypefn
13478
13479 @deftypefn {Built-in Function} void __builtin_rx_mullo (int, int)
13480 Generates the @code{mullo} machine instruction to place the result of
13481 multiplying the bottom 16-bits of the two arguments into the
13482 accumulator.
13483 @end deftypefn
13484
13485 @deftypefn {Built-in Function} int __builtin_rx_mvfachi (void)
13486 Generates the @code{mvfachi} machine instruction to read the top
13487 32-bits of the accumulator.
13488 @end deftypefn
13489
13490 @deftypefn {Built-in Function} int __builtin_rx_mvfacmi (void)
13491 Generates the @code{mvfacmi} machine instruction to read the middle
13492 32-bits of the accumulator.
13493 @end deftypefn
13494
13495 @deftypefn {Built-in Function} int __builtin_rx_mvfc (int)
13496 Generates the @code{mvfc} machine instruction which reads the control
13497 register specified in its argument and returns its value.
13498 @end deftypefn
13499
13500 @deftypefn {Built-in Function} void __builtin_rx_mvtachi (int)
13501 Generates the @code{mvtachi} machine instruction to set the top
13502 32-bits of the accumulator.
13503 @end deftypefn
13504
13505 @deftypefn {Built-in Function} void __builtin_rx_mvtaclo (int)
13506 Generates the @code{mvtaclo} machine instruction to set the bottom
13507 32-bits of the accumulator.
13508 @end deftypefn
13509
13510 @deftypefn {Built-in Function} void __builtin_rx_mvtc (int reg, int val)
13511 Generates the @code{mvtc} machine instruction which sets control
13512 register number @code{reg} to @code{val}.
13513 @end deftypefn
13514
13515 @deftypefn {Built-in Function} void __builtin_rx_mvtipl (int)
13516 Generates the @code{mvtipl} machine instruction set the interrupt
13517 priority level.
13518 @end deftypefn
13519
13520 @deftypefn {Built-in Function} void __builtin_rx_racw (int)
13521 Generates the @code{racw} machine instruction to round the accumulator
13522 according to the specified mode.
13523 @end deftypefn
13524
13525 @deftypefn {Built-in Function} int __builtin_rx_revw (int)
13526 Generates the @code{revw} machine instruction which swaps the bytes in
13527 the argument so that bits 0--7 now occupy bits 8--15 and vice versa,
13528 and also bits 16--23 occupy bits 24--31 and vice versa.
13529 @end deftypefn
13530
13531 @deftypefn {Built-in Function} void __builtin_rx_rmpa (void)
13532 Generates the @code{rmpa} machine instruction which initiates a
13533 repeated multiply and accumulate sequence.
13534 @end deftypefn
13535
13536 @deftypefn {Built-in Function} void __builtin_rx_round (float)
13537 Generates the @code{round} machine instruction which returns the
13538 floating point argument rounded according to the current rounding mode
13539 set in the floating point status word register.
13540 @end deftypefn
13541
13542 @deftypefn {Built-in Function} int __builtin_rx_sat (int)
13543 Generates the @code{sat} machine instruction which returns the
13544 saturated value of the argument.
13545 @end deftypefn
13546
13547 @deftypefn {Built-in Function} void __builtin_rx_setpsw (int)
13548 Generates the @code{setpsw} machine instruction to set the specified
13549 bit in the processor status word.
13550 @end deftypefn
13551
13552 @deftypefn {Built-in Function} void __builtin_rx_wait (void)
13553 Generates the @code{wait} machine instruction.
13554 @end deftypefn
13555
13556 @node SPARC VIS Built-in Functions
13557 @subsection SPARC VIS Built-in Functions
13558
13559 GCC supports SIMD operations on the SPARC using both the generic vector
13560 extensions (@pxref{Vector Extensions}) as well as built-in functions for
13561 the SPARC Visual Instruction Set (VIS). When you use the @option{-mvis}
13562 switch, the VIS extension is exposed as the following built-in functions:
13563
13564 @smallexample
13565 typedef int v1si __attribute__ ((vector_size (4)));
13566 typedef int v2si __attribute__ ((vector_size (8)));
13567 typedef short v4hi __attribute__ ((vector_size (8)));
13568 typedef short v2hi __attribute__ ((vector_size (4)));
13569 typedef unsigned char v8qi __attribute__ ((vector_size (8)));
13570 typedef unsigned char v4qi __attribute__ ((vector_size (4)));
13571
13572 void __builtin_vis_write_gsr (int64_t);
13573 int64_t __builtin_vis_read_gsr (void);
13574
13575 void * __builtin_vis_alignaddr (void *, long);
13576 void * __builtin_vis_alignaddrl (void *, long);
13577 int64_t __builtin_vis_faligndatadi (int64_t, int64_t);
13578 v2si __builtin_vis_faligndatav2si (v2si, v2si);
13579 v4hi __builtin_vis_faligndatav4hi (v4si, v4si);
13580 v8qi __builtin_vis_faligndatav8qi (v8qi, v8qi);
13581
13582 v4hi __builtin_vis_fexpand (v4qi);
13583
13584 v4hi __builtin_vis_fmul8x16 (v4qi, v4hi);
13585 v4hi __builtin_vis_fmul8x16au (v4qi, v2hi);
13586 v4hi __builtin_vis_fmul8x16al (v4qi, v2hi);
13587 v4hi __builtin_vis_fmul8sux16 (v8qi, v4hi);
13588 v4hi __builtin_vis_fmul8ulx16 (v8qi, v4hi);
13589 v2si __builtin_vis_fmuld8sux16 (v4qi, v2hi);
13590 v2si __builtin_vis_fmuld8ulx16 (v4qi, v2hi);
13591
13592 v4qi __builtin_vis_fpack16 (v4hi);
13593 v8qi __builtin_vis_fpack32 (v2si, v8qi);
13594 v2hi __builtin_vis_fpackfix (v2si);
13595 v8qi __builtin_vis_fpmerge (v4qi, v4qi);
13596
13597 int64_t __builtin_vis_pdist (v8qi, v8qi, int64_t);
13598
13599 long __builtin_vis_edge8 (void *, void *);
13600 long __builtin_vis_edge8l (void *, void *);
13601 long __builtin_vis_edge16 (void *, void *);
13602 long __builtin_vis_edge16l (void *, void *);
13603 long __builtin_vis_edge32 (void *, void *);
13604 long __builtin_vis_edge32l (void *, void *);
13605
13606 long __builtin_vis_fcmple16 (v4hi, v4hi);
13607 long __builtin_vis_fcmple32 (v2si, v2si);
13608 long __builtin_vis_fcmpne16 (v4hi, v4hi);
13609 long __builtin_vis_fcmpne32 (v2si, v2si);
13610 long __builtin_vis_fcmpgt16 (v4hi, v4hi);
13611 long __builtin_vis_fcmpgt32 (v2si, v2si);
13612 long __builtin_vis_fcmpeq16 (v4hi, v4hi);
13613 long __builtin_vis_fcmpeq32 (v2si, v2si);
13614
13615 v4hi __builtin_vis_fpadd16 (v4hi, v4hi);
13616 v2hi __builtin_vis_fpadd16s (v2hi, v2hi);
13617 v2si __builtin_vis_fpadd32 (v2si, v2si);
13618 v1si __builtin_vis_fpadd32s (v1si, v1si);
13619 v4hi __builtin_vis_fpsub16 (v4hi, v4hi);
13620 v2hi __builtin_vis_fpsub16s (v2hi, v2hi);
13621 v2si __builtin_vis_fpsub32 (v2si, v2si);
13622 v1si __builtin_vis_fpsub32s (v1si, v1si);
13623
13624 long __builtin_vis_array8 (long, long);
13625 long __builtin_vis_array16 (long, long);
13626 long __builtin_vis_array32 (long, long);
13627 @end smallexample
13628
13629 When you use the @option{-mvis2} switch, the VIS version 2.0 built-in
13630 functions also become available:
13631
13632 @smallexample
13633 long __builtin_vis_bmask (long, long);
13634 int64_t __builtin_vis_bshuffledi (int64_t, int64_t);
13635 v2si __builtin_vis_bshufflev2si (v2si, v2si);
13636 v4hi __builtin_vis_bshufflev2si (v4hi, v4hi);
13637 v8qi __builtin_vis_bshufflev2si (v8qi, v8qi);
13638
13639 long __builtin_vis_edge8n (void *, void *);
13640 long __builtin_vis_edge8ln (void *, void *);
13641 long __builtin_vis_edge16n (void *, void *);
13642 long __builtin_vis_edge16ln (void *, void *);
13643 long __builtin_vis_edge32n (void *, void *);
13644 long __builtin_vis_edge32ln (void *, void *);
13645 @end smallexample
13646
13647 When you use the @option{-mvis3} switch, the VIS version 3.0 built-in
13648 functions also become available:
13649
13650 @smallexample
13651 void __builtin_vis_cmask8 (long);
13652 void __builtin_vis_cmask16 (long);
13653 void __builtin_vis_cmask32 (long);
13654
13655 v4hi __builtin_vis_fchksm16 (v4hi, v4hi);
13656
13657 v4hi __builtin_vis_fsll16 (v4hi, v4hi);
13658 v4hi __builtin_vis_fslas16 (v4hi, v4hi);
13659 v4hi __builtin_vis_fsrl16 (v4hi, v4hi);
13660 v4hi __builtin_vis_fsra16 (v4hi, v4hi);
13661 v2si __builtin_vis_fsll16 (v2si, v2si);
13662 v2si __builtin_vis_fslas16 (v2si, v2si);
13663 v2si __builtin_vis_fsrl16 (v2si, v2si);
13664 v2si __builtin_vis_fsra16 (v2si, v2si);
13665
13666 long __builtin_vis_pdistn (v8qi, v8qi);
13667
13668 v4hi __builtin_vis_fmean16 (v4hi, v4hi);
13669
13670 int64_t __builtin_vis_fpadd64 (int64_t, int64_t);
13671 int64_t __builtin_vis_fpsub64 (int64_t, int64_t);
13672
13673 v4hi __builtin_vis_fpadds16 (v4hi, v4hi);
13674 v2hi __builtin_vis_fpadds16s (v2hi, v2hi);
13675 v4hi __builtin_vis_fpsubs16 (v4hi, v4hi);
13676 v2hi __builtin_vis_fpsubs16s (v2hi, v2hi);
13677 v2si __builtin_vis_fpadds32 (v2si, v2si);
13678 v1si __builtin_vis_fpadds32s (v1si, v1si);
13679 v2si __builtin_vis_fpsubs32 (v2si, v2si);
13680 v1si __builtin_vis_fpsubs32s (v1si, v1si);
13681
13682 long __builtin_vis_fucmple8 (v8qi, v8qi);
13683 long __builtin_vis_fucmpne8 (v8qi, v8qi);
13684 long __builtin_vis_fucmpgt8 (v8qi, v8qi);
13685 long __builtin_vis_fucmpeq8 (v8qi, v8qi);
13686
13687 float __builtin_vis_fhadds (float, float);
13688 double __builtin_vis_fhaddd (double, double);
13689 float __builtin_vis_fhsubs (float, float);
13690 double __builtin_vis_fhsubd (double, double);
13691 float __builtin_vis_fnhadds (float, float);
13692 double __builtin_vis_fnhaddd (double, double);
13693
13694 int64_t __builtin_vis_umulxhi (int64_t, int64_t);
13695 int64_t __builtin_vis_xmulx (int64_t, int64_t);
13696 int64_t __builtin_vis_xmulxhi (int64_t, int64_t);
13697 @end smallexample
13698
13699 @node SPU Built-in Functions
13700 @subsection SPU Built-in Functions
13701
13702 GCC provides extensions for the SPU processor as described in the
13703 Sony/Toshiba/IBM SPU Language Extensions Specification, which can be
13704 found at @uref{http://cell.scei.co.jp/} or
13705 @uref{http://www.ibm.com/developerworks/power/cell/}. GCC's
13706 implementation differs in several ways.
13707
13708 @itemize @bullet
13709
13710 @item
13711 The optional extension of specifying vector constants in parentheses is
13712 not supported.
13713
13714 @item
13715 A vector initializer requires no cast if the vector constant is of the
13716 same type as the variable it is initializing.
13717
13718 @item
13719 If @code{signed} or @code{unsigned} is omitted, the signedness of the
13720 vector type is the default signedness of the base type. The default
13721 varies depending on the operating system, so a portable program should
13722 always specify the signedness.
13723
13724 @item
13725 By default, the keyword @code{__vector} is added. The macro
13726 @code{vector} is defined in @code{<spu_intrinsics.h>} and can be
13727 undefined.
13728
13729 @item
13730 GCC allows using a @code{typedef} name as the type specifier for a
13731 vector type.
13732
13733 @item
13734 For C, overloaded functions are implemented with macros so the following
13735 does not work:
13736
13737 @smallexample
13738 spu_add ((vector signed int)@{1, 2, 3, 4@}, foo);
13739 @end smallexample
13740
13741 Since @code{spu_add} is a macro, the vector constant in the example
13742 is treated as four separate arguments. Wrap the entire argument in
13743 parentheses for this to work.
13744
13745 @item
13746 The extended version of @code{__builtin_expect} is not supported.
13747
13748 @end itemize
13749
13750 @emph{Note:} Only the interface described in the aforementioned
13751 specification is supported. Internally, GCC uses built-in functions to
13752 implement the required functionality, but these are not supported and
13753 are subject to change without notice.
13754
13755 @node TI C6X Built-in Functions
13756 @subsection TI C6X Built-in Functions
13757
13758 GCC provides intrinsics to access certain instructions of the TI C6X
13759 processors. These intrinsics, listed below, are available after
13760 inclusion of the @code{c6x_intrinsics.h} header file. They map directly
13761 to C6X instructions.
13762
13763 @smallexample
13764
13765 int _sadd (int, int)
13766 int _ssub (int, int)
13767 int _sadd2 (int, int)
13768 int _ssub2 (int, int)
13769 long long _mpy2 (int, int)
13770 long long _smpy2 (int, int)
13771 int _add4 (int, int)
13772 int _sub4 (int, int)
13773 int _saddu4 (int, int)
13774
13775 int _smpy (int, int)
13776 int _smpyh (int, int)
13777 int _smpyhl (int, int)
13778 int _smpylh (int, int)
13779
13780 int _sshl (int, int)
13781 int _subc (int, int)
13782
13783 int _avg2 (int, int)
13784 int _avgu4 (int, int)
13785
13786 int _clrr (int, int)
13787 int _extr (int, int)
13788 int _extru (int, int)
13789 int _abs (int)
13790 int _abs2 (int)
13791
13792 @end smallexample
13793
13794 @node TILE-Gx Built-in Functions
13795 @subsection TILE-Gx Built-in Functions
13796
13797 GCC provides intrinsics to access every instruction of the TILE-Gx
13798 processor. The intrinsics are of the form:
13799
13800 @smallexample
13801
13802 unsigned long long __insn_@var{op} (...)
13803
13804 @end smallexample
13805
13806 Where @var{op} is the name of the instruction. Refer to the ISA manual
13807 for the complete list of instructions.
13808
13809 GCC also provides intrinsics to directly access the network registers.
13810 The intrinsics are:
13811
13812 @smallexample
13813
13814 unsigned long long __tile_idn0_receive (void)
13815 unsigned long long __tile_idn1_receive (void)
13816 unsigned long long __tile_udn0_receive (void)
13817 unsigned long long __tile_udn1_receive (void)
13818 unsigned long long __tile_udn2_receive (void)
13819 unsigned long long __tile_udn3_receive (void)
13820 void __tile_idn_send (unsigned long long)
13821 void __tile_udn_send (unsigned long long)
13822
13823 @end smallexample
13824
13825 The intrinsic @code{void __tile_network_barrier (void)} is used to
13826 guarantee that no network operatons before it will be reordered with
13827 those after it.
13828
13829 @node TILEPro Built-in Functions
13830 @subsection TILEPro Built-in Functions
13831
13832 GCC provides intrinsics to access every instruction of the TILEPro
13833 processor. The intrinsics are of the form:
13834
13835 @smallexample
13836
13837 unsigned __insn_@var{op} (...)
13838
13839 @end smallexample
13840
13841 Where @var{op} is the name of the instruction. Refer to the ISA manual
13842 for the complete list of instructions.
13843
13844 GCC also provides intrinsics to directly access the network registers.
13845 The intrinsics are:
13846
13847 @smallexample
13848
13849 unsigned __tile_idn0_receive (void)
13850 unsigned __tile_idn1_receive (void)
13851 unsigned __tile_sn_receive (void)
13852 unsigned __tile_udn0_receive (void)
13853 unsigned __tile_udn1_receive (void)
13854 unsigned __tile_udn2_receive (void)
13855 unsigned __tile_udn3_receive (void)
13856 void __tile_idn_send (unsigned)
13857 void __tile_sn_send (unsigned)
13858 void __tile_udn_send (unsigned)
13859
13860 @end smallexample
13861
13862 The intrinsic @code{void __tile_network_barrier (void)} is used to
13863 guarantee that no network operatons before it will be reordered with
13864 those after it.
13865
13866 @node Target Format Checks
13867 @section Format Checks Specific to Particular Target Machines
13868
13869 For some target machines, GCC supports additional options to the
13870 format attribute
13871 (@pxref{Function Attributes,,Declaring Attributes of Functions}).
13872
13873 @menu
13874 * Solaris Format Checks::
13875 * Darwin Format Checks::
13876 @end menu
13877
13878 @node Solaris Format Checks
13879 @subsection Solaris Format Checks
13880
13881 Solaris targets support the @code{cmn_err} (or @code{__cmn_err__}) format
13882 check. @code{cmn_err} accepts a subset of the standard @code{printf}
13883 conversions, and the two-argument @code{%b} conversion for displaying
13884 bit-fields. See the Solaris man page for @code{cmn_err} for more information.
13885
13886 @node Darwin Format Checks
13887 @subsection Darwin Format Checks
13888
13889 Darwin targets support the @code{CFString} (or @code{__CFString__}) in the format
13890 attribute context. Declarations made with such attribution will be parsed for correct syntax
13891 and format argument types. However, parsing of the format string itself is currently undefined
13892 and will not be carried out by this version of the compiler.
13893
13894 Additionally, @code{CFStringRefs} (defined by the @code{CoreFoundation} headers) may
13895 also be used as format arguments. Note that the relevant headers are only likely to be
13896 available on Darwin (OSX) installations. On such installations, the XCode and system
13897 documentation provide descriptions of @code{CFString}, @code{CFStringRefs} and
13898 associated functions.
13899
13900 @node Pragmas
13901 @section Pragmas Accepted by GCC
13902 @cindex pragmas
13903 @cindex @code{#pragma}
13904
13905 GCC supports several types of pragmas, primarily in order to compile
13906 code originally written for other compilers. Note that in general
13907 we do not recommend the use of pragmas; @xref{Function Attributes},
13908 for further explanation.
13909
13910 @menu
13911 * ARM Pragmas::
13912 * M32C Pragmas::
13913 * MeP Pragmas::
13914 * RS/6000 and PowerPC Pragmas::
13915 * Darwin Pragmas::
13916 * Solaris Pragmas::
13917 * Symbol-Renaming Pragmas::
13918 * Structure-Packing Pragmas::
13919 * Weak Pragmas::
13920 * Diagnostic Pragmas::
13921 * Visibility Pragmas::
13922 * Push/Pop Macro Pragmas::
13923 * Function Specific Option Pragmas::
13924 @end menu
13925
13926 @node ARM Pragmas
13927 @subsection ARM Pragmas
13928
13929 The ARM target defines pragmas for controlling the default addition of
13930 @code{long_call} and @code{short_call} attributes to functions.
13931 @xref{Function Attributes}, for information about the effects of these
13932 attributes.
13933
13934 @table @code
13935 @item long_calls
13936 @cindex pragma, long_calls
13937 Set all subsequent functions to have the @code{long_call} attribute.
13938
13939 @item no_long_calls
13940 @cindex pragma, no_long_calls
13941 Set all subsequent functions to have the @code{short_call} attribute.
13942
13943 @item long_calls_off
13944 @cindex pragma, long_calls_off
13945 Do not affect the @code{long_call} or @code{short_call} attributes of
13946 subsequent functions.
13947 @end table
13948
13949 @node M32C Pragmas
13950 @subsection M32C Pragmas
13951
13952 @table @code
13953 @item GCC memregs @var{number}
13954 @cindex pragma, memregs
13955 Overrides the command-line option @code{-memregs=} for the current
13956 file. Use with care! This pragma must be before any function in the
13957 file, and mixing different memregs values in different objects may
13958 make them incompatible. This pragma is useful when a
13959 performance-critical function uses a memreg for temporary values,
13960 as it may allow you to reduce the number of memregs used.
13961
13962 @item ADDRESS @var{name} @var{address}
13963 @cindex pragma, address
13964 For any declared symbols matching @var{name}, this does three things
13965 to that symbol: it forces the symbol to be located at the given
13966 address (a number), it forces the symbol to be volatile, and it
13967 changes the symbol's scope to be static. This pragma exists for
13968 compatibility with other compilers, but note that the common
13969 @code{1234H} numeric syntax is not supported (use @code{0x1234}
13970 instead). Example:
13971
13972 @example
13973 #pragma ADDRESS port3 0x103
13974 char port3;
13975 @end example
13976
13977 @end table
13978
13979 @node MeP Pragmas
13980 @subsection MeP Pragmas
13981
13982 @table @code
13983
13984 @item custom io_volatile (on|off)
13985 @cindex pragma, custom io_volatile
13986 Overrides the command line option @code{-mio-volatile} for the current
13987 file. Note that for compatibility with future GCC releases, this
13988 option should only be used once before any @code{io} variables in each
13989 file.
13990
13991 @item GCC coprocessor available @var{registers}
13992 @cindex pragma, coprocessor available
13993 Specifies which coprocessor registers are available to the register
13994 allocator. @var{registers} may be a single register, register range
13995 separated by ellipses, or comma-separated list of those. Example:
13996
13997 @example
13998 #pragma GCC coprocessor available $c0...$c10, $c28
13999 @end example
14000
14001 @item GCC coprocessor call_saved @var{registers}
14002 @cindex pragma, coprocessor call_saved
14003 Specifies which coprocessor registers are to be saved and restored by
14004 any function using them. @var{registers} may be a single register,
14005 register range separated by ellipses, or comma-separated list of
14006 those. Example:
14007
14008 @example
14009 #pragma GCC coprocessor call_saved $c4...$c6, $c31
14010 @end example
14011
14012 @item GCC coprocessor subclass '(A|B|C|D)' = @var{registers}
14013 @cindex pragma, coprocessor subclass
14014 Creates and defines a register class. These register classes can be
14015 used by inline @code{asm} constructs. @var{registers} may be a single
14016 register, register range separated by ellipses, or comma-separated
14017 list of those. Example:
14018
14019 @example
14020 #pragma GCC coprocessor subclass 'B' = $c2, $c4, $c6
14021
14022 asm ("cpfoo %0" : "=B" (x));
14023 @end example
14024
14025 @item GCC disinterrupt @var{name} , @var{name} @dots{}
14026 @cindex pragma, disinterrupt
14027 For the named functions, the compiler adds code to disable interrupts
14028 for the duration of those functions. Any functions so named, which
14029 are not encountered in the source, cause a warning that the pragma was
14030 not used. Examples:
14031
14032 @example
14033 #pragma disinterrupt foo
14034 #pragma disinterrupt bar, grill
14035 int foo () @{ @dots{} @}
14036 @end example
14037
14038 @item GCC call @var{name} , @var{name} @dots{}
14039 @cindex pragma, call
14040 For the named functions, the compiler always uses a register-indirect
14041 call model when calling the named functions. Examples:
14042
14043 @example
14044 extern int foo ();
14045 #pragma call foo
14046 @end example
14047
14048 @end table
14049
14050 @node RS/6000 and PowerPC Pragmas
14051 @subsection RS/6000 and PowerPC Pragmas
14052
14053 The RS/6000 and PowerPC targets define one pragma for controlling
14054 whether or not the @code{longcall} attribute is added to function
14055 declarations by default. This pragma overrides the @option{-mlongcall}
14056 option, but not the @code{longcall} and @code{shortcall} attributes.
14057 @xref{RS/6000 and PowerPC Options}, for more information about when long
14058 calls are and are not necessary.
14059
14060 @table @code
14061 @item longcall (1)
14062 @cindex pragma, longcall
14063 Apply the @code{longcall} attribute to all subsequent function
14064 declarations.
14065
14066 @item longcall (0)
14067 Do not apply the @code{longcall} attribute to subsequent function
14068 declarations.
14069 @end table
14070
14071 @c Describe h8300 pragmas here.
14072 @c Describe sh pragmas here.
14073 @c Describe v850 pragmas here.
14074
14075 @node Darwin Pragmas
14076 @subsection Darwin Pragmas
14077
14078 The following pragmas are available for all architectures running the
14079 Darwin operating system. These are useful for compatibility with other
14080 Mac OS compilers.
14081
14082 @table @code
14083 @item mark @var{tokens}@dots{}
14084 @cindex pragma, mark
14085 This pragma is accepted, but has no effect.
14086
14087 @item options align=@var{alignment}
14088 @cindex pragma, options align
14089 This pragma sets the alignment of fields in structures. The values of
14090 @var{alignment} may be @code{mac68k}, to emulate m68k alignment, or
14091 @code{power}, to emulate PowerPC alignment. Uses of this pragma nest
14092 properly; to restore the previous setting, use @code{reset} for the
14093 @var{alignment}.
14094
14095 @item segment @var{tokens}@dots{}
14096 @cindex pragma, segment
14097 This pragma is accepted, but has no effect.
14098
14099 @item unused (@var{var} [, @var{var}]@dots{})
14100 @cindex pragma, unused
14101 This pragma declares variables to be possibly unused. GCC will not
14102 produce warnings for the listed variables. The effect is similar to
14103 that of the @code{unused} attribute, except that this pragma may appear
14104 anywhere within the variables' scopes.
14105 @end table
14106
14107 @node Solaris Pragmas
14108 @subsection Solaris Pragmas
14109
14110 The Solaris target supports @code{#pragma redefine_extname}
14111 (@pxref{Symbol-Renaming Pragmas}). It also supports additional
14112 @code{#pragma} directives for compatibility with the system compiler.
14113
14114 @table @code
14115 @item align @var{alignment} (@var{variable} [, @var{variable}]...)
14116 @cindex pragma, align
14117
14118 Increase the minimum alignment of each @var{variable} to @var{alignment}.
14119 This is the same as GCC's @code{aligned} attribute @pxref{Variable
14120 Attributes}). Macro expansion occurs on the arguments to this pragma
14121 when compiling C and Objective-C@. It does not currently occur when
14122 compiling C++, but this is a bug which may be fixed in a future
14123 release.
14124
14125 @item fini (@var{function} [, @var{function}]...)
14126 @cindex pragma, fini
14127
14128 This pragma causes each listed @var{function} to be called after
14129 main, or during shared module unloading, by adding a call to the
14130 @code{.fini} section.
14131
14132 @item init (@var{function} [, @var{function}]...)
14133 @cindex pragma, init
14134
14135 This pragma causes each listed @var{function} to be called during
14136 initialization (before @code{main}) or during shared module loading, by
14137 adding a call to the @code{.init} section.
14138
14139 @end table
14140
14141 @node Symbol-Renaming Pragmas
14142 @subsection Symbol-Renaming Pragmas
14143
14144 For compatibility with the Solaris and Tru64 UNIX system headers, GCC
14145 supports two @code{#pragma} directives which change the name used in
14146 assembly for a given declaration. @code{#pragma extern_prefix} is only
14147 available on platforms whose system headers need it. To get this effect
14148 on all platforms supported by GCC, use the asm labels extension (@pxref{Asm
14149 Labels}).
14150
14151 @table @code
14152 @item redefine_extname @var{oldname} @var{newname}
14153 @cindex pragma, redefine_extname
14154
14155 This pragma gives the C function @var{oldname} the assembly symbol
14156 @var{newname}. The preprocessor macro @code{__PRAGMA_REDEFINE_EXTNAME}
14157 will be defined if this pragma is available (currently on all platforms).
14158
14159 @item extern_prefix @var{string}
14160 @cindex pragma, extern_prefix
14161
14162 This pragma causes all subsequent external function and variable
14163 declarations to have @var{string} prepended to their assembly symbols.
14164 This effect may be terminated with another @code{extern_prefix} pragma
14165 whose argument is an empty string. The preprocessor macro
14166 @code{__PRAGMA_EXTERN_PREFIX} will be defined if this pragma is
14167 available (currently only on Tru64 UNIX)@.
14168 @end table
14169
14170 These pragmas and the asm labels extension interact in a complicated
14171 manner. Here are some corner cases you may want to be aware of.
14172
14173 @enumerate
14174 @item Both pragmas silently apply only to declarations with external
14175 linkage. Asm labels do not have this restriction.
14176
14177 @item In C++, both pragmas silently apply only to declarations with
14178 ``C'' linkage. Again, asm labels do not have this restriction.
14179
14180 @item If any of the three ways of changing the assembly name of a
14181 declaration is applied to a declaration whose assembly name has
14182 already been determined (either by a previous use of one of these
14183 features, or because the compiler needed the assembly name in order to
14184 generate code), and the new name is different, a warning issues and
14185 the name does not change.
14186
14187 @item The @var{oldname} used by @code{#pragma redefine_extname} is
14188 always the C-language name.
14189
14190 @item If @code{#pragma extern_prefix} is in effect, and a declaration
14191 occurs with an asm label attached, the prefix is silently ignored for
14192 that declaration.
14193
14194 @item If @code{#pragma extern_prefix} and @code{#pragma redefine_extname}
14195 apply to the same declaration, whichever triggered first wins, and a
14196 warning issues if they contradict each other. (We would like to have
14197 @code{#pragma redefine_extname} always win, for consistency with asm
14198 labels, but if @code{#pragma extern_prefix} triggers first we have no
14199 way of knowing that that happened.)
14200 @end enumerate
14201
14202 @node Structure-Packing Pragmas
14203 @subsection Structure-Packing Pragmas
14204
14205 For compatibility with Microsoft Windows compilers, GCC supports a
14206 set of @code{#pragma} directives which change the maximum alignment of
14207 members of structures (other than zero-width bitfields), unions, and
14208 classes subsequently defined. The @var{n} value below always is required
14209 to be a small power of two and specifies the new alignment in bytes.
14210
14211 @enumerate
14212 @item @code{#pragma pack(@var{n})} simply sets the new alignment.
14213 @item @code{#pragma pack()} sets the alignment to the one that was in
14214 effect when compilation started (see also command-line option
14215 @option{-fpack-struct[=@var{n}]} @pxref{Code Gen Options}).
14216 @item @code{#pragma pack(push[,@var{n}])} pushes the current alignment
14217 setting on an internal stack and then optionally sets the new alignment.
14218 @item @code{#pragma pack(pop)} restores the alignment setting to the one
14219 saved at the top of the internal stack (and removes that stack entry).
14220 Note that @code{#pragma pack([@var{n}])} does not influence this internal
14221 stack; thus it is possible to have @code{#pragma pack(push)} followed by
14222 multiple @code{#pragma pack(@var{n})} instances and finalized by a single
14223 @code{#pragma pack(pop)}.
14224 @end enumerate
14225
14226 Some targets, e.g.@: i386 and powerpc, support the @code{ms_struct}
14227 @code{#pragma} which lays out a structure as the documented
14228 @code{__attribute__ ((ms_struct))}.
14229 @enumerate
14230 @item @code{#pragma ms_struct on} turns on the layout for structures
14231 declared.
14232 @item @code{#pragma ms_struct off} turns off the layout for structures
14233 declared.
14234 @item @code{#pragma ms_struct reset} goes back to the default layout.
14235 @end enumerate
14236
14237 @node Weak Pragmas
14238 @subsection Weak Pragmas
14239
14240 For compatibility with SVR4, GCC supports a set of @code{#pragma}
14241 directives for declaring symbols to be weak, and defining weak
14242 aliases.
14243
14244 @table @code
14245 @item #pragma weak @var{symbol}
14246 @cindex pragma, weak
14247 This pragma declares @var{symbol} to be weak, as if the declaration
14248 had the attribute of the same name. The pragma may appear before
14249 or after the declaration of @var{symbol}. It is not an error for
14250 @var{symbol} to never be defined at all.
14251
14252 @item #pragma weak @var{symbol1} = @var{symbol2}
14253 This pragma declares @var{symbol1} to be a weak alias of @var{symbol2}.
14254 It is an error if @var{symbol2} is not defined in the current
14255 translation unit.
14256 @end table
14257
14258 @node Diagnostic Pragmas
14259 @subsection Diagnostic Pragmas
14260
14261 GCC allows the user to selectively enable or disable certain types of
14262 diagnostics, and change the kind of the diagnostic. For example, a
14263 project's policy might require that all sources compile with
14264 @option{-Werror} but certain files might have exceptions allowing
14265 specific types of warnings. Or, a project might selectively enable
14266 diagnostics and treat them as errors depending on which preprocessor
14267 macros are defined.
14268
14269 @table @code
14270 @item #pragma GCC diagnostic @var{kind} @var{option}
14271 @cindex pragma, diagnostic
14272
14273 Modifies the disposition of a diagnostic. Note that not all
14274 diagnostics are modifiable; at the moment only warnings (normally
14275 controlled by @samp{-W@dots{}}) can be controlled, and not all of them.
14276 Use @option{-fdiagnostics-show-option} to determine which diagnostics
14277 are controllable and which option controls them.
14278
14279 @var{kind} is @samp{error} to treat this diagnostic as an error,
14280 @samp{warning} to treat it like a warning (even if @option{-Werror} is
14281 in effect), or @samp{ignored} if the diagnostic is to be ignored.
14282 @var{option} is a double quoted string which matches the command-line
14283 option.
14284
14285 @example
14286 #pragma GCC diagnostic warning "-Wformat"
14287 #pragma GCC diagnostic error "-Wformat"
14288 #pragma GCC diagnostic ignored "-Wformat"
14289 @end example
14290
14291 Note that these pragmas override any command-line options. GCC keeps
14292 track of the location of each pragma, and issues diagnostics according
14293 to the state as of that point in the source file. Thus, pragmas occurring
14294 after a line do not affect diagnostics caused by that line.
14295
14296 @item #pragma GCC diagnostic push
14297 @itemx #pragma GCC diagnostic pop
14298
14299 Causes GCC to remember the state of the diagnostics as of each
14300 @code{push}, and restore to that point at each @code{pop}. If a
14301 @code{pop} has no matching @code{push}, the command line options are
14302 restored.
14303
14304 @example
14305 #pragma GCC diagnostic error "-Wuninitialized"
14306 foo(a); /* error is given for this one */
14307 #pragma GCC diagnostic push
14308 #pragma GCC diagnostic ignored "-Wuninitialized"
14309 foo(b); /* no diagnostic for this one */
14310 #pragma GCC diagnostic pop
14311 foo(c); /* error is given for this one */
14312 #pragma GCC diagnostic pop
14313 foo(d); /* depends on command line options */
14314 @end example
14315
14316 @end table
14317
14318 GCC also offers a simple mechanism for printing messages during
14319 compilation.
14320
14321 @table @code
14322 @item #pragma message @var{string}
14323 @cindex pragma, diagnostic
14324
14325 Prints @var{string} as a compiler message on compilation. The message
14326 is informational only, and is neither a compilation warning nor an error.
14327
14328 @smallexample
14329 #pragma message "Compiling " __FILE__ "..."
14330 @end smallexample
14331
14332 @var{string} may be parenthesized, and is printed with location
14333 information. For example,
14334
14335 @smallexample
14336 #define DO_PRAGMA(x) _Pragma (#x)
14337 #define TODO(x) DO_PRAGMA(message ("TODO - " #x))
14338
14339 TODO(Remember to fix this)
14340 @end smallexample
14341
14342 prints @samp{/tmp/file.c:4: note: #pragma message:
14343 TODO - Remember to fix this}.
14344
14345 @end table
14346
14347 @node Visibility Pragmas
14348 @subsection Visibility Pragmas
14349
14350 @table @code
14351 @item #pragma GCC visibility push(@var{visibility})
14352 @itemx #pragma GCC visibility pop
14353 @cindex pragma, visibility
14354
14355 This pragma allows the user to set the visibility for multiple
14356 declarations without having to give each a visibility attribute
14357 @xref{Function Attributes}, for more information about visibility and
14358 the attribute syntax.
14359
14360 In C++, @samp{#pragma GCC visibility} affects only namespace-scope
14361 declarations. Class members and template specializations are not
14362 affected; if you want to override the visibility for a particular
14363 member or instantiation, you must use an attribute.
14364
14365 @end table
14366
14367
14368 @node Push/Pop Macro Pragmas
14369 @subsection Push/Pop Macro Pragmas
14370
14371 For compatibility with Microsoft Windows compilers, GCC supports
14372 @samp{#pragma push_macro(@var{"macro_name"})}
14373 and @samp{#pragma pop_macro(@var{"macro_name"})}.
14374
14375 @table @code
14376 @item #pragma push_macro(@var{"macro_name"})
14377 @cindex pragma, push_macro
14378 This pragma saves the value of the macro named as @var{macro_name} to
14379 the top of the stack for this macro.
14380
14381 @item #pragma pop_macro(@var{"macro_name"})
14382 @cindex pragma, pop_macro
14383 This pragma sets the value of the macro named as @var{macro_name} to
14384 the value on top of the stack for this macro. If the stack for
14385 @var{macro_name} is empty, the value of the macro remains unchanged.
14386 @end table
14387
14388 For example:
14389
14390 @smallexample
14391 #define X 1
14392 #pragma push_macro("X")
14393 #undef X
14394 #define X -1
14395 #pragma pop_macro("X")
14396 int x [X];
14397 @end smallexample
14398
14399 In this example, the definition of X as 1 is saved by @code{#pragma
14400 push_macro} and restored by @code{#pragma pop_macro}.
14401
14402 @node Function Specific Option Pragmas
14403 @subsection Function Specific Option Pragmas
14404
14405 @table @code
14406 @item #pragma GCC target (@var{"string"}...)
14407 @cindex pragma GCC target
14408
14409 This pragma allows you to set target specific options for functions
14410 defined later in the source file. One or more strings can be
14411 specified. Each function that is defined after this point will be as
14412 if @code{attribute((target("STRING")))} was specified for that
14413 function. The parenthesis around the options is optional.
14414 @xref{Function Attributes}, for more information about the
14415 @code{target} attribute and the attribute syntax.
14416
14417 The @code{#pragma GCC target} attribute is not implemented in GCC versions earlier
14418 than 4.4 for the i386/x86_64 and 4.6 for the PowerPC backends. At
14419 present, it is not implemented for other backends.
14420 @end table
14421
14422 @table @code
14423 @item #pragma GCC optimize (@var{"string"}...)
14424 @cindex pragma GCC optimize
14425
14426 This pragma allows you to set global optimization options for functions
14427 defined later in the source file. One or more strings can be
14428 specified. Each function that is defined after this point will be as
14429 if @code{attribute((optimize("STRING")))} was specified for that
14430 function. The parenthesis around the options is optional.
14431 @xref{Function Attributes}, for more information about the
14432 @code{optimize} attribute and the attribute syntax.
14433
14434 The @samp{#pragma GCC optimize} pragma is not implemented in GCC
14435 versions earlier than 4.4.
14436 @end table
14437
14438 @table @code
14439 @item #pragma GCC push_options
14440 @itemx #pragma GCC pop_options
14441 @cindex pragma GCC push_options
14442 @cindex pragma GCC pop_options
14443
14444 These pragmas maintain a stack of the current target and optimization
14445 options. It is intended for include files where you temporarily want
14446 to switch to using a different @samp{#pragma GCC target} or
14447 @samp{#pragma GCC optimize} and then to pop back to the previous
14448 options.
14449
14450 The @samp{#pragma GCC push_options} and @samp{#pragma GCC pop_options}
14451 pragmas are not implemented in GCC versions earlier than 4.4.
14452 @end table
14453
14454 @table @code
14455 @item #pragma GCC reset_options
14456 @cindex pragma GCC reset_options
14457
14458 This pragma clears the current @code{#pragma GCC target} and
14459 @code{#pragma GCC optimize} to use the default switches as specified
14460 on the command line.
14461
14462 The @samp{#pragma GCC reset_options} pragma is not implemented in GCC
14463 versions earlier than 4.4.
14464 @end table
14465
14466 @node Unnamed Fields
14467 @section Unnamed struct/union fields within structs/unions
14468 @cindex @code{struct}
14469 @cindex @code{union}
14470
14471 As permitted by ISO C11 and for compatibility with other compilers,
14472 GCC allows you to define
14473 a structure or union that contains, as fields, structures and unions
14474 without names. For example:
14475
14476 @smallexample
14477 struct @{
14478 int a;
14479 union @{
14480 int b;
14481 float c;
14482 @};
14483 int d;
14484 @} foo;
14485 @end smallexample
14486
14487 In this example, the user would be able to access members of the unnamed
14488 union with code like @samp{foo.b}. Note that only unnamed structs and
14489 unions are allowed, you may not have, for example, an unnamed
14490 @code{int}.
14491
14492 You must never create such structures that cause ambiguous field definitions.
14493 For example, this structure:
14494
14495 @smallexample
14496 struct @{
14497 int a;
14498 struct @{
14499 int a;
14500 @};
14501 @} foo;
14502 @end smallexample
14503
14504 It is ambiguous which @code{a} is being referred to with @samp{foo.a}.
14505 The compiler gives errors for such constructs.
14506
14507 @opindex fms-extensions
14508 Unless @option{-fms-extensions} is used, the unnamed field must be a
14509 structure or union definition without a tag (for example, @samp{struct
14510 @{ int a; @};}). If @option{-fms-extensions} is used, the field may
14511 also be a definition with a tag such as @samp{struct foo @{ int a;
14512 @};}, a reference to a previously defined structure or union such as
14513 @samp{struct foo;}, or a reference to a @code{typedef} name for a
14514 previously defined structure or union type.
14515
14516 @opindex fplan9-extensions
14517 The option @option{-fplan9-extensions} enables
14518 @option{-fms-extensions} as well as two other extensions. First, a
14519 pointer to a structure is automatically converted to a pointer to an
14520 anonymous field for assignments and function calls. For example:
14521
14522 @smallexample
14523 struct s1 @{ int a; @};
14524 struct s2 @{ struct s1; @};
14525 extern void f1 (struct s1 *);
14526 void f2 (struct s2 *p) @{ f1 (p); @}
14527 @end smallexample
14528
14529 In the call to @code{f1} inside @code{f2}, the pointer @code{p} is
14530 converted into a pointer to the anonymous field.
14531
14532 Second, when the type of an anonymous field is a @code{typedef} for a
14533 @code{struct} or @code{union}, code may refer to the field using the
14534 name of the @code{typedef}.
14535
14536 @smallexample
14537 typedef struct @{ int a; @} s1;
14538 struct s2 @{ s1; @};
14539 s1 f1 (struct s2 *p) @{ return p->s1; @}
14540 @end smallexample
14541
14542 These usages are only permitted when they are not ambiguous.
14543
14544 @node Thread-Local
14545 @section Thread-Local Storage
14546 @cindex Thread-Local Storage
14547 @cindex @acronym{TLS}
14548 @cindex @code{__thread}
14549
14550 Thread-local storage (@acronym{TLS}) is a mechanism by which variables
14551 are allocated such that there is one instance of the variable per extant
14552 thread. The run-time model GCC uses to implement this originates
14553 in the IA-64 processor-specific ABI, but has since been migrated
14554 to other processors as well. It requires significant support from
14555 the linker (@command{ld}), dynamic linker (@command{ld.so}), and
14556 system libraries (@file{libc.so} and @file{libpthread.so}), so it
14557 is not available everywhere.
14558
14559 At the user level, the extension is visible with a new storage
14560 class keyword: @code{__thread}. For example:
14561
14562 @smallexample
14563 __thread int i;
14564 extern __thread struct state s;
14565 static __thread char *p;
14566 @end smallexample
14567
14568 The @code{__thread} specifier may be used alone, with the @code{extern}
14569 or @code{static} specifiers, but with no other storage class specifier.
14570 When used with @code{extern} or @code{static}, @code{__thread} must appear
14571 immediately after the other storage class specifier.
14572
14573 The @code{__thread} specifier may be applied to any global, file-scoped
14574 static, function-scoped static, or static data member of a class. It may
14575 not be applied to block-scoped automatic or non-static data member.
14576
14577 When the address-of operator is applied to a thread-local variable, it is
14578 evaluated at run-time and returns the address of the current thread's
14579 instance of that variable. An address so obtained may be used by any
14580 thread. When a thread terminates, any pointers to thread-local variables
14581 in that thread become invalid.
14582
14583 No static initialization may refer to the address of a thread-local variable.
14584
14585 In C++, if an initializer is present for a thread-local variable, it must
14586 be a @var{constant-expression}, as defined in 5.19.2 of the ANSI/ISO C++
14587 standard.
14588
14589 See @uref{http://www.akkadia.org/drepper/tls.pdf,
14590 ELF Handling For Thread-Local Storage} for a detailed explanation of
14591 the four thread-local storage addressing models, and how the run-time
14592 is expected to function.
14593
14594 @menu
14595 * C99 Thread-Local Edits::
14596 * C++98 Thread-Local Edits::
14597 @end menu
14598
14599 @node C99 Thread-Local Edits
14600 @subsection ISO/IEC 9899:1999 Edits for Thread-Local Storage
14601
14602 The following are a set of changes to ISO/IEC 9899:1999 (aka C99)
14603 that document the exact semantics of the language extension.
14604
14605 @itemize @bullet
14606 @item
14607 @cite{5.1.2 Execution environments}
14608
14609 Add new text after paragraph 1
14610
14611 @quotation
14612 Within either execution environment, a @dfn{thread} is a flow of
14613 control within a program. It is implementation defined whether
14614 or not there may be more than one thread associated with a program.
14615 It is implementation defined how threads beyond the first are
14616 created, the name and type of the function called at thread
14617 startup, and how threads may be terminated. However, objects
14618 with thread storage duration shall be initialized before thread
14619 startup.
14620 @end quotation
14621
14622 @item
14623 @cite{6.2.4 Storage durations of objects}
14624
14625 Add new text before paragraph 3
14626
14627 @quotation
14628 An object whose identifier is declared with the storage-class
14629 specifier @w{@code{__thread}} has @dfn{thread storage duration}.
14630 Its lifetime is the entire execution of the thread, and its
14631 stored value is initialized only once, prior to thread startup.
14632 @end quotation
14633
14634 @item
14635 @cite{6.4.1 Keywords}
14636
14637 Add @code{__thread}.
14638
14639 @item
14640 @cite{6.7.1 Storage-class specifiers}
14641
14642 Add @code{__thread} to the list of storage class specifiers in
14643 paragraph 1.
14644
14645 Change paragraph 2 to
14646
14647 @quotation
14648 With the exception of @code{__thread}, at most one storage-class
14649 specifier may be given [@dots{}]. The @code{__thread} specifier may
14650 be used alone, or immediately following @code{extern} or
14651 @code{static}.
14652 @end quotation
14653
14654 Add new text after paragraph 6
14655
14656 @quotation
14657 The declaration of an identifier for a variable that has
14658 block scope that specifies @code{__thread} shall also
14659 specify either @code{extern} or @code{static}.
14660
14661 The @code{__thread} specifier shall be used only with
14662 variables.
14663 @end quotation
14664 @end itemize
14665
14666 @node C++98 Thread-Local Edits
14667 @subsection ISO/IEC 14882:1998 Edits for Thread-Local Storage
14668
14669 The following are a set of changes to ISO/IEC 14882:1998 (aka C++98)
14670 that document the exact semantics of the language extension.
14671
14672 @itemize @bullet
14673 @item
14674 @b{[intro.execution]}
14675
14676 New text after paragraph 4
14677
14678 @quotation
14679 A @dfn{thread} is a flow of control within the abstract machine.
14680 It is implementation defined whether or not there may be more than
14681 one thread.
14682 @end quotation
14683
14684 New text after paragraph 7
14685
14686 @quotation
14687 It is unspecified whether additional action must be taken to
14688 ensure when and whether side effects are visible to other threads.
14689 @end quotation
14690
14691 @item
14692 @b{[lex.key]}
14693
14694 Add @code{__thread}.
14695
14696 @item
14697 @b{[basic.start.main]}
14698
14699 Add after paragraph 5
14700
14701 @quotation
14702 The thread that begins execution at the @code{main} function is called
14703 the @dfn{main thread}. It is implementation defined how functions
14704 beginning threads other than the main thread are designated or typed.
14705 A function so designated, as well as the @code{main} function, is called
14706 a @dfn{thread startup function}. It is implementation defined what
14707 happens if a thread startup function returns. It is implementation
14708 defined what happens to other threads when any thread calls @code{exit}.
14709 @end quotation
14710
14711 @item
14712 @b{[basic.start.init]}
14713
14714 Add after paragraph 4
14715
14716 @quotation
14717 The storage for an object of thread storage duration shall be
14718 statically initialized before the first statement of the thread startup
14719 function. An object of thread storage duration shall not require
14720 dynamic initialization.
14721 @end quotation
14722
14723 @item
14724 @b{[basic.start.term]}
14725
14726 Add after paragraph 3
14727
14728 @quotation
14729 The type of an object with thread storage duration shall not have a
14730 non-trivial destructor, nor shall it be an array type whose elements
14731 (directly or indirectly) have non-trivial destructors.
14732 @end quotation
14733
14734 @item
14735 @b{[basic.stc]}
14736
14737 Add ``thread storage duration'' to the list in paragraph 1.
14738
14739 Change paragraph 2
14740
14741 @quotation
14742 Thread, static, and automatic storage durations are associated with
14743 objects introduced by declarations [@dots{}].
14744 @end quotation
14745
14746 Add @code{__thread} to the list of specifiers in paragraph 3.
14747
14748 @item
14749 @b{[basic.stc.thread]}
14750
14751 New section before @b{[basic.stc.static]}
14752
14753 @quotation
14754 The keyword @code{__thread} applied to a non-local object gives the
14755 object thread storage duration.
14756
14757 A local variable or class data member declared both @code{static}
14758 and @code{__thread} gives the variable or member thread storage
14759 duration.
14760 @end quotation
14761
14762 @item
14763 @b{[basic.stc.static]}
14764
14765 Change paragraph 1
14766
14767 @quotation
14768 All objects which have neither thread storage duration, dynamic
14769 storage duration nor are local [@dots{}].
14770 @end quotation
14771
14772 @item
14773 @b{[dcl.stc]}
14774
14775 Add @code{__thread} to the list in paragraph 1.
14776
14777 Change paragraph 1
14778
14779 @quotation
14780 With the exception of @code{__thread}, at most one
14781 @var{storage-class-specifier} shall appear in a given
14782 @var{decl-specifier-seq}. The @code{__thread} specifier may
14783 be used alone, or immediately following the @code{extern} or
14784 @code{static} specifiers. [@dots{}]
14785 @end quotation
14786
14787 Add after paragraph 5
14788
14789 @quotation
14790 The @code{__thread} specifier can be applied only to the names of objects
14791 and to anonymous unions.
14792 @end quotation
14793
14794 @item
14795 @b{[class.mem]}
14796
14797 Add after paragraph 6
14798
14799 @quotation
14800 Non-@code{static} members shall not be @code{__thread}.
14801 @end quotation
14802 @end itemize
14803
14804 @node Binary constants
14805 @section Binary constants using the @samp{0b} prefix
14806 @cindex Binary constants using the @samp{0b} prefix
14807
14808 Integer constants can be written as binary constants, consisting of a
14809 sequence of @samp{0} and @samp{1} digits, prefixed by @samp{0b} or
14810 @samp{0B}. This is particularly useful in environments that operate a
14811 lot on the bit-level (like microcontrollers).
14812
14813 The following statements are identical:
14814
14815 @smallexample
14816 i = 42;
14817 i = 0x2a;
14818 i = 052;
14819 i = 0b101010;
14820 @end smallexample
14821
14822 The type of these constants follows the same rules as for octal or
14823 hexadecimal integer constants, so suffixes like @samp{L} or @samp{UL}
14824 can be applied.
14825
14826 @node C++ Extensions
14827 @chapter Extensions to the C++ Language
14828 @cindex extensions, C++ language
14829 @cindex C++ language extensions
14830
14831 The GNU compiler provides these extensions to the C++ language (and you
14832 can also use most of the C language extensions in your C++ programs). If you
14833 want to write code that checks whether these features are available, you can
14834 test for the GNU compiler the same way as for C programs: check for a
14835 predefined macro @code{__GNUC__}. You can also use @code{__GNUG__} to
14836 test specifically for GNU C++ (@pxref{Common Predefined Macros,,
14837 Predefined Macros,cpp,The GNU C Preprocessor}).
14838
14839 @menu
14840 * C++ Volatiles:: What constitutes an access to a volatile object.
14841 * Restricted Pointers:: C99 restricted pointers and references.
14842 * Vague Linkage:: Where G++ puts inlines, vtables and such.
14843 * C++ Interface:: You can use a single C++ header file for both
14844 declarations and definitions.
14845 * Template Instantiation:: Methods for ensuring that exactly one copy of
14846 each needed template instantiation is emitted.
14847 * Bound member functions:: You can extract a function pointer to the
14848 method denoted by a @samp{->*} or @samp{.*} expression.
14849 * C++ Attributes:: Variable, function, and type attributes for C++ only.
14850 * Namespace Association:: Strong using-directives for namespace association.
14851 * Type Traits:: Compiler support for type traits
14852 * Java Exceptions:: Tweaking exception handling to work with Java.
14853 * Deprecated Features:: Things will disappear from g++.
14854 * Backwards Compatibility:: Compatibilities with earlier definitions of C++.
14855 @end menu
14856
14857 @node C++ Volatiles
14858 @section When is a Volatile C++ Object Accessed?
14859 @cindex accessing volatiles
14860 @cindex volatile read
14861 @cindex volatile write
14862 @cindex volatile access
14863
14864 The C++ standard differs from the C standard in its treatment of
14865 volatile objects. It fails to specify what constitutes a volatile
14866 access, except to say that C++ should behave in a similar manner to C
14867 with respect to volatiles, where possible. However, the different
14868 lvalueness of expressions between C and C++ complicate the behavior.
14869 G++ behaves the same as GCC for volatile access, @xref{C
14870 Extensions,,Volatiles}, for a description of GCC's behavior.
14871
14872 The C and C++ language specifications differ when an object is
14873 accessed in a void context:
14874
14875 @smallexample
14876 volatile int *src = @var{somevalue};
14877 *src;
14878 @end smallexample
14879
14880 The C++ standard specifies that such expressions do not undergo lvalue
14881 to rvalue conversion, and that the type of the dereferenced object may
14882 be incomplete. The C++ standard does not specify explicitly that it
14883 is lvalue to rvalue conversion which is responsible for causing an
14884 access. There is reason to believe that it is, because otherwise
14885 certain simple expressions become undefined. However, because it
14886 would surprise most programmers, G++ treats dereferencing a pointer to
14887 volatile object of complete type as GCC would do for an equivalent
14888 type in C@. When the object has incomplete type, G++ issues a
14889 warning; if you wish to force an error, you must force a conversion to
14890 rvalue with, for instance, a static cast.
14891
14892 When using a reference to volatile, G++ does not treat equivalent
14893 expressions as accesses to volatiles, but instead issues a warning that
14894 no volatile is accessed. The rationale for this is that otherwise it
14895 becomes difficult to determine where volatile access occur, and not
14896 possible to ignore the return value from functions returning volatile
14897 references. Again, if you wish to force a read, cast the reference to
14898 an rvalue.
14899
14900 G++ implements the same behavior as GCC does when assigning to a
14901 volatile object -- there is no reread of the assigned-to object, the
14902 assigned rvalue is reused. Note that in C++ assignment expressions
14903 are lvalues, and if used as an lvalue, the volatile object will be
14904 referred to. For instance, @var{vref} will refer to @var{vobj}, as
14905 expected, in the following example:
14906
14907 @smallexample
14908 volatile int vobj;
14909 volatile int &vref = vobj = @var{something};
14910 @end smallexample
14911
14912 @node Restricted Pointers
14913 @section Restricting Pointer Aliasing
14914 @cindex restricted pointers
14915 @cindex restricted references
14916 @cindex restricted this pointer
14917
14918 As with the C front end, G++ understands the C99 feature of restricted pointers,
14919 specified with the @code{__restrict__}, or @code{__restrict} type
14920 qualifier. Because you cannot compile C++ by specifying the @option{-std=c99}
14921 language flag, @code{restrict} is not a keyword in C++.
14922
14923 In addition to allowing restricted pointers, you can specify restricted
14924 references, which indicate that the reference is not aliased in the local
14925 context.
14926
14927 @smallexample
14928 void fn (int *__restrict__ rptr, int &__restrict__ rref)
14929 @{
14930 /* @r{@dots{}} */
14931 @}
14932 @end smallexample
14933
14934 @noindent
14935 In the body of @code{fn}, @var{rptr} points to an unaliased integer and
14936 @var{rref} refers to a (different) unaliased integer.
14937
14938 You may also specify whether a member function's @var{this} pointer is
14939 unaliased by using @code{__restrict__} as a member function qualifier.
14940
14941 @smallexample
14942 void T::fn () __restrict__
14943 @{
14944 /* @r{@dots{}} */
14945 @}
14946 @end smallexample
14947
14948 @noindent
14949 Within the body of @code{T::fn}, @var{this} will have the effective
14950 definition @code{T *__restrict__ const this}. Notice that the
14951 interpretation of a @code{__restrict__} member function qualifier is
14952 different to that of @code{const} or @code{volatile} qualifier, in that it
14953 is applied to the pointer rather than the object. This is consistent with
14954 other compilers which implement restricted pointers.
14955
14956 As with all outermost parameter qualifiers, @code{__restrict__} is
14957 ignored in function definition matching. This means you only need to
14958 specify @code{__restrict__} in a function definition, rather than
14959 in a function prototype as well.
14960
14961 @node Vague Linkage
14962 @section Vague Linkage
14963 @cindex vague linkage
14964
14965 There are several constructs in C++ which require space in the object
14966 file but are not clearly tied to a single translation unit. We say that
14967 these constructs have ``vague linkage''. Typically such constructs are
14968 emitted wherever they are needed, though sometimes we can be more
14969 clever.
14970
14971 @table @asis
14972 @item Inline Functions
14973 Inline functions are typically defined in a header file which can be
14974 included in many different compilations. Hopefully they can usually be
14975 inlined, but sometimes an out-of-line copy is necessary, if the address
14976 of the function is taken or if inlining fails. In general, we emit an
14977 out-of-line copy in all translation units where one is needed. As an
14978 exception, we only emit inline virtual functions with the vtable, since
14979 it will always require a copy.
14980
14981 Local static variables and string constants used in an inline function
14982 are also considered to have vague linkage, since they must be shared
14983 between all inlined and out-of-line instances of the function.
14984
14985 @item VTables
14986 @cindex vtable
14987 C++ virtual functions are implemented in most compilers using a lookup
14988 table, known as a vtable. The vtable contains pointers to the virtual
14989 functions provided by a class, and each object of the class contains a
14990 pointer to its vtable (or vtables, in some multiple-inheritance
14991 situations). If the class declares any non-inline, non-pure virtual
14992 functions, the first one is chosen as the ``key method'' for the class,
14993 and the vtable is only emitted in the translation unit where the key
14994 method is defined.
14995
14996 @emph{Note:} If the chosen key method is later defined as inline, the
14997 vtable will still be emitted in every translation unit which defines it.
14998 Make sure that any inline virtuals are declared inline in the class
14999 body, even if they are not defined there.
15000
15001 @item @code{type_info} objects
15002 @cindex @code{type_info}
15003 @cindex RTTI
15004 C++ requires information about types to be written out in order to
15005 implement @samp{dynamic_cast}, @samp{typeid} and exception handling.
15006 For polymorphic classes (classes with virtual functions), the @samp{type_info}
15007 object is written out along with the vtable so that @samp{dynamic_cast}
15008 can determine the dynamic type of a class object at runtime. For all
15009 other types, we write out the @samp{type_info} object when it is used: when
15010 applying @samp{typeid} to an expression, throwing an object, or
15011 referring to a type in a catch clause or exception specification.
15012
15013 @item Template Instantiations
15014 Most everything in this section also applies to template instantiations,
15015 but there are other options as well.
15016 @xref{Template Instantiation,,Where's the Template?}.
15017
15018 @end table
15019
15020 When used with GNU ld version 2.8 or later on an ELF system such as
15021 GNU/Linux or Solaris 2, or on Microsoft Windows, duplicate copies of
15022 these constructs will be discarded at link time. This is known as
15023 COMDAT support.
15024
15025 On targets that don't support COMDAT, but do support weak symbols, GCC
15026 will use them. This way one copy will override all the others, but
15027 the unused copies will still take up space in the executable.
15028
15029 For targets which do not support either COMDAT or weak symbols,
15030 most entities with vague linkage will be emitted as local symbols to
15031 avoid duplicate definition errors from the linker. This will not happen
15032 for local statics in inlines, however, as having multiple copies will
15033 almost certainly break things.
15034
15035 @xref{C++ Interface,,Declarations and Definitions in One Header}, for
15036 another way to control placement of these constructs.
15037
15038 @node C++ Interface
15039 @section #pragma interface and implementation
15040
15041 @cindex interface and implementation headers, C++
15042 @cindex C++ interface and implementation headers
15043 @cindex pragmas, interface and implementation
15044
15045 @code{#pragma interface} and @code{#pragma implementation} provide the
15046 user with a way of explicitly directing the compiler to emit entities
15047 with vague linkage (and debugging information) in a particular
15048 translation unit.
15049
15050 @emph{Note:} As of GCC 2.7.2, these @code{#pragma}s are not useful in
15051 most cases, because of COMDAT support and the ``key method'' heuristic
15052 mentioned in @ref{Vague Linkage}. Using them can actually cause your
15053 program to grow due to unnecessary out-of-line copies of inline
15054 functions. Currently (3.4) the only benefit of these
15055 @code{#pragma}s is reduced duplication of debugging information, and
15056 that should be addressed soon on DWARF 2 targets with the use of
15057 COMDAT groups.
15058
15059 @table @code
15060 @item #pragma interface
15061 @itemx #pragma interface "@var{subdir}/@var{objects}.h"
15062 @kindex #pragma interface
15063 Use this directive in @emph{header files} that define object classes, to save
15064 space in most of the object files that use those classes. Normally,
15065 local copies of certain information (backup copies of inline member
15066 functions, debugging information, and the internal tables that implement
15067 virtual functions) must be kept in each object file that includes class
15068 definitions. You can use this pragma to avoid such duplication. When a
15069 header file containing @samp{#pragma interface} is included in a
15070 compilation, this auxiliary information will not be generated (unless
15071 the main input source file itself uses @samp{#pragma implementation}).
15072 Instead, the object files will contain references to be resolved at link
15073 time.
15074
15075 The second form of this directive is useful for the case where you have
15076 multiple headers with the same name in different directories. If you
15077 use this form, you must specify the same string to @samp{#pragma
15078 implementation}.
15079
15080 @item #pragma implementation
15081 @itemx #pragma implementation "@var{objects}.h"
15082 @kindex #pragma implementation
15083 Use this pragma in a @emph{main input file}, when you want full output from
15084 included header files to be generated (and made globally visible). The
15085 included header file, in turn, should use @samp{#pragma interface}.
15086 Backup copies of inline member functions, debugging information, and the
15087 internal tables used to implement virtual functions are all generated in
15088 implementation files.
15089
15090 @cindex implied @code{#pragma implementation}
15091 @cindex @code{#pragma implementation}, implied
15092 @cindex naming convention, implementation headers
15093 If you use @samp{#pragma implementation} with no argument, it applies to
15094 an include file with the same basename@footnote{A file's @dfn{basename}
15095 was the name stripped of all leading path information and of trailing
15096 suffixes, such as @samp{.h} or @samp{.C} or @samp{.cc}.} as your source
15097 file. For example, in @file{allclass.cc}, giving just
15098 @samp{#pragma implementation}
15099 by itself is equivalent to @samp{#pragma implementation "allclass.h"}.
15100
15101 In versions of GNU C++ prior to 2.6.0 @file{allclass.h} was treated as
15102 an implementation file whenever you would include it from
15103 @file{allclass.cc} even if you never specified @samp{#pragma
15104 implementation}. This was deemed to be more trouble than it was worth,
15105 however, and disabled.
15106
15107 Use the string argument if you want a single implementation file to
15108 include code from multiple header files. (You must also use
15109 @samp{#include} to include the header file; @samp{#pragma
15110 implementation} only specifies how to use the file---it doesn't actually
15111 include it.)
15112
15113 There is no way to split up the contents of a single header file into
15114 multiple implementation files.
15115 @end table
15116
15117 @cindex inlining and C++ pragmas
15118 @cindex C++ pragmas, effect on inlining
15119 @cindex pragmas in C++, effect on inlining
15120 @samp{#pragma implementation} and @samp{#pragma interface} also have an
15121 effect on function inlining.
15122
15123 If you define a class in a header file marked with @samp{#pragma
15124 interface}, the effect on an inline function defined in that class is
15125 similar to an explicit @code{extern} declaration---the compiler emits
15126 no code at all to define an independent version of the function. Its
15127 definition is used only for inlining with its callers.
15128
15129 @opindex fno-implement-inlines
15130 Conversely, when you include the same header file in a main source file
15131 that declares it as @samp{#pragma implementation}, the compiler emits
15132 code for the function itself; this defines a version of the function
15133 that can be found via pointers (or by callers compiled without
15134 inlining). If all calls to the function can be inlined, you can avoid
15135 emitting the function by compiling with @option{-fno-implement-inlines}.
15136 If any calls were not inlined, you will get linker errors.
15137
15138 @node Template Instantiation
15139 @section Where's the Template?
15140 @cindex template instantiation
15141
15142 C++ templates are the first language feature to require more
15143 intelligence from the environment than one usually finds on a UNIX
15144 system. Somehow the compiler and linker have to make sure that each
15145 template instance occurs exactly once in the executable if it is needed,
15146 and not at all otherwise. There are two basic approaches to this
15147 problem, which are referred to as the Borland model and the Cfront model.
15148
15149 @table @asis
15150 @item Borland model
15151 Borland C++ solved the template instantiation problem by adding the code
15152 equivalent of common blocks to their linker; the compiler emits template
15153 instances in each translation unit that uses them, and the linker
15154 collapses them together. The advantage of this model is that the linker
15155 only has to consider the object files themselves; there is no external
15156 complexity to worry about. This disadvantage is that compilation time
15157 is increased because the template code is being compiled repeatedly.
15158 Code written for this model tends to include definitions of all
15159 templates in the header file, since they must be seen to be
15160 instantiated.
15161
15162 @item Cfront model
15163 The AT&T C++ translator, Cfront, solved the template instantiation
15164 problem by creating the notion of a template repository, an
15165 automatically maintained place where template instances are stored. A
15166 more modern version of the repository works as follows: As individual
15167 object files are built, the compiler places any template definitions and
15168 instantiations encountered in the repository. At link time, the link
15169 wrapper adds in the objects in the repository and compiles any needed
15170 instances that were not previously emitted. The advantages of this
15171 model are more optimal compilation speed and the ability to use the
15172 system linker; to implement the Borland model a compiler vendor also
15173 needs to replace the linker. The disadvantages are vastly increased
15174 complexity, and thus potential for error; for some code this can be
15175 just as transparent, but in practice it can been very difficult to build
15176 multiple programs in one directory and one program in multiple
15177 directories. Code written for this model tends to separate definitions
15178 of non-inline member templates into a separate file, which should be
15179 compiled separately.
15180 @end table
15181
15182 When used with GNU ld version 2.8 or later on an ELF system such as
15183 GNU/Linux or Solaris 2, or on Microsoft Windows, G++ supports the
15184 Borland model. On other systems, G++ implements neither automatic
15185 model.
15186
15187 A future version of G++ will support a hybrid model whereby the compiler
15188 will emit any instantiations for which the template definition is
15189 included in the compile, and store template definitions and
15190 instantiation context information into the object file for the rest.
15191 The link wrapper will extract that information as necessary and invoke
15192 the compiler to produce the remaining instantiations. The linker will
15193 then combine duplicate instantiations.
15194
15195 In the mean time, you have the following options for dealing with
15196 template instantiations:
15197
15198 @enumerate
15199 @item
15200 @opindex frepo
15201 Compile your template-using code with @option{-frepo}. The compiler will
15202 generate files with the extension @samp{.rpo} listing all of the
15203 template instantiations used in the corresponding object files which
15204 could be instantiated there; the link wrapper, @samp{collect2}, will
15205 then update the @samp{.rpo} files to tell the compiler where to place
15206 those instantiations and rebuild any affected object files. The
15207 link-time overhead is negligible after the first pass, as the compiler
15208 will continue to place the instantiations in the same files.
15209
15210 This is your best option for application code written for the Borland
15211 model, as it will just work. Code written for the Cfront model will
15212 need to be modified so that the template definitions are available at
15213 one or more points of instantiation; usually this is as simple as adding
15214 @code{#include <tmethods.cc>} to the end of each template header.
15215
15216 For library code, if you want the library to provide all of the template
15217 instantiations it needs, just try to link all of its object files
15218 together; the link will fail, but cause the instantiations to be
15219 generated as a side effect. Be warned, however, that this may cause
15220 conflicts if multiple libraries try to provide the same instantiations.
15221 For greater control, use explicit instantiation as described in the next
15222 option.
15223
15224 @item
15225 @opindex fno-implicit-templates
15226 Compile your code with @option{-fno-implicit-templates} to disable the
15227 implicit generation of template instances, and explicitly instantiate
15228 all the ones you use. This approach requires more knowledge of exactly
15229 which instances you need than do the others, but it's less
15230 mysterious and allows greater control. You can scatter the explicit
15231 instantiations throughout your program, perhaps putting them in the
15232 translation units where the instances are used or the translation units
15233 that define the templates themselves; you can put all of the explicit
15234 instantiations you need into one big file; or you can create small files
15235 like
15236
15237 @smallexample
15238 #include "Foo.h"
15239 #include "Foo.cc"
15240
15241 template class Foo<int>;
15242 template ostream& operator <<
15243 (ostream&, const Foo<int>&);
15244 @end smallexample
15245
15246 for each of the instances you need, and create a template instantiation
15247 library from those.
15248
15249 If you are using Cfront-model code, you can probably get away with not
15250 using @option{-fno-implicit-templates} when compiling files that don't
15251 @samp{#include} the member template definitions.
15252
15253 If you use one big file to do the instantiations, you may want to
15254 compile it without @option{-fno-implicit-templates} so you get all of the
15255 instances required by your explicit instantiations (but not by any
15256 other files) without having to specify them as well.
15257
15258 G++ has extended the template instantiation syntax given in the ISO
15259 standard to allow forward declaration of explicit instantiations
15260 (with @code{extern}), instantiation of the compiler support data for a
15261 template class (i.e.@: the vtable) without instantiating any of its
15262 members (with @code{inline}), and instantiation of only the static data
15263 members of a template class, without the support data or member
15264 functions (with (@code{static}):
15265
15266 @smallexample
15267 extern template int max (int, int);
15268 inline template class Foo<int>;
15269 static template class Foo<int>;
15270 @end smallexample
15271
15272 @item
15273 Do nothing. Pretend G++ does implement automatic instantiation
15274 management. Code written for the Borland model will work fine, but
15275 each translation unit will contain instances of each of the templates it
15276 uses. In a large program, this can lead to an unacceptable amount of code
15277 duplication.
15278 @end enumerate
15279
15280 @node Bound member functions
15281 @section Extracting the function pointer from a bound pointer to member function
15282 @cindex pmf
15283 @cindex pointer to member function
15284 @cindex bound pointer to member function
15285
15286 In C++, pointer to member functions (PMFs) are implemented using a wide
15287 pointer of sorts to handle all the possible call mechanisms; the PMF
15288 needs to store information about how to adjust the @samp{this} pointer,
15289 and if the function pointed to is virtual, where to find the vtable, and
15290 where in the vtable to look for the member function. If you are using
15291 PMFs in an inner loop, you should really reconsider that decision. If
15292 that is not an option, you can extract the pointer to the function that
15293 would be called for a given object/PMF pair and call it directly inside
15294 the inner loop, to save a bit of time.
15295
15296 Note that you will still be paying the penalty for the call through a
15297 function pointer; on most modern architectures, such a call defeats the
15298 branch prediction features of the CPU@. This is also true of normal
15299 virtual function calls.
15300
15301 The syntax for this extension is
15302
15303 @smallexample
15304 extern A a;
15305 extern int (A::*fp)();
15306 typedef int (*fptr)(A *);
15307
15308 fptr p = (fptr)(a.*fp);
15309 @end smallexample
15310
15311 For PMF constants (i.e.@: expressions of the form @samp{&Klasse::Member}),
15312 no object is needed to obtain the address of the function. They can be
15313 converted to function pointers directly:
15314
15315 @smallexample
15316 fptr p1 = (fptr)(&A::foo);
15317 @end smallexample
15318
15319 @opindex Wno-pmf-conversions
15320 You must specify @option{-Wno-pmf-conversions} to use this extension.
15321
15322 @node C++ Attributes
15323 @section C++-Specific Variable, Function, and Type Attributes
15324
15325 Some attributes only make sense for C++ programs.
15326
15327 @table @code
15328 @item init_priority (@var{priority})
15329 @cindex @code{init_priority} attribute
15330
15331
15332 In Standard C++, objects defined at namespace scope are guaranteed to be
15333 initialized in an order in strict accordance with that of their definitions
15334 @emph{in a given translation unit}. No guarantee is made for initializations
15335 across translation units. However, GNU C++ allows users to control the
15336 order of initialization of objects defined at namespace scope with the
15337 @code{init_priority} attribute by specifying a relative @var{priority},
15338 a constant integral expression currently bounded between 101 and 65535
15339 inclusive. Lower numbers indicate a higher priority.
15340
15341 In the following example, @code{A} would normally be created before
15342 @code{B}, but the @code{init_priority} attribute has reversed that order:
15343
15344 @smallexample
15345 Some_Class A __attribute__ ((init_priority (2000)));
15346 Some_Class B __attribute__ ((init_priority (543)));
15347 @end smallexample
15348
15349 @noindent
15350 Note that the particular values of @var{priority} do not matter; only their
15351 relative ordering.
15352
15353 @item java_interface
15354 @cindex @code{java_interface} attribute
15355
15356 This type attribute informs C++ that the class is a Java interface. It may
15357 only be applied to classes declared within an @code{extern "Java"} block.
15358 Calls to methods declared in this interface will be dispatched using GCJ's
15359 interface table mechanism, instead of regular virtual table dispatch.
15360
15361 @end table
15362
15363 See also @ref{Namespace Association}.
15364
15365 @node Namespace Association
15366 @section Namespace Association
15367
15368 @strong{Caution:} The semantics of this extension are not fully
15369 defined. Users should refrain from using this extension as its
15370 semantics may change subtly over time. It is possible that this
15371 extension will be removed in future versions of G++.
15372
15373 A using-directive with @code{__attribute ((strong))} is stronger
15374 than a normal using-directive in two ways:
15375
15376 @itemize @bullet
15377 @item
15378 Templates from the used namespace can be specialized and explicitly
15379 instantiated as though they were members of the using namespace.
15380
15381 @item
15382 The using namespace is considered an associated namespace of all
15383 templates in the used namespace for purposes of argument-dependent
15384 name lookup.
15385 @end itemize
15386
15387 The used namespace must be nested within the using namespace so that
15388 normal unqualified lookup works properly.
15389
15390 This is useful for composing a namespace transparently from
15391 implementation namespaces. For example:
15392
15393 @smallexample
15394 namespace std @{
15395 namespace debug @{
15396 template <class T> struct A @{ @};
15397 @}
15398 using namespace debug __attribute ((__strong__));
15399 template <> struct A<int> @{ @}; // @r{ok to specialize}
15400
15401 template <class T> void f (A<T>);
15402 @}
15403
15404 int main()
15405 @{
15406 f (std::A<float>()); // @r{lookup finds} std::f
15407 f (std::A<int>());
15408 @}
15409 @end smallexample
15410
15411 @node Type Traits
15412 @section Type Traits
15413
15414 The C++ front-end implements syntactic extensions that allow to
15415 determine at compile time various characteristics of a type (or of a
15416 pair of types).
15417
15418 @table @code
15419 @item __has_nothrow_assign (type)
15420 If @code{type} is const qualified or is a reference type then the trait is
15421 false. Otherwise if @code{__has_trivial_assign (type)} is true then the trait
15422 is true, else if @code{type} is a cv class or union type with copy assignment
15423 operators that are known not to throw an exception then the trait is true,
15424 else it is false. Requires: @code{type} shall be a complete type,
15425 (possibly cv-qualified) @code{void}, or an array of unknown bound.
15426
15427 @item __has_nothrow_copy (type)
15428 If @code{__has_trivial_copy (type)} is true then the trait is true, else if
15429 @code{type} is a cv class or union type with copy constructors that
15430 are known not to throw an exception then the trait is true, else it is false.
15431 Requires: @code{type} shall be a complete type, (possibly cv-qualified)
15432 @code{void}, or an array of unknown bound.
15433
15434 @item __has_nothrow_constructor (type)
15435 If @code{__has_trivial_constructor (type)} is true then the trait is
15436 true, else if @code{type} is a cv class or union type (or array
15437 thereof) with a default constructor that is known not to throw an
15438 exception then the trait is true, else it is false. Requires:
15439 @code{type} shall be a complete type, (possibly cv-qualified)
15440 @code{void}, or an array of unknown bound.
15441
15442 @item __has_trivial_assign (type)
15443 If @code{type} is const qualified or is a reference type then the trait is
15444 false. Otherwise if @code{__is_pod (type)} is true then the trait is
15445 true, else if @code{type} is a cv class or union type with a trivial
15446 copy assignment ([class.copy]) then the trait is true, else it is
15447 false. Requires: @code{type} shall be a complete type, (possibly
15448 cv-qualified) @code{void}, or an array of unknown bound.
15449
15450 @item __has_trivial_copy (type)
15451 If @code{__is_pod (type)} is true or @code{type} is a reference type
15452 then the trait is true, else if @code{type} is a cv class or union type
15453 with a trivial copy constructor ([class.copy]) then the trait
15454 is true, else it is false. Requires: @code{type} shall be a complete
15455 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15456
15457 @item __has_trivial_constructor (type)
15458 If @code{__is_pod (type)} is true then the trait is true, else if
15459 @code{type} is a cv class or union type (or array thereof) with a
15460 trivial default constructor ([class.ctor]) then the trait is true,
15461 else it is false. Requires: @code{type} shall be a complete
15462 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15463
15464 @item __has_trivial_destructor (type)
15465 If @code{__is_pod (type)} is true or @code{type} is a reference type then
15466 the trait is true, else if @code{type} is a cv class or union type (or
15467 array thereof) with a trivial destructor ([class.dtor]) then the trait
15468 is true, else it is false. Requires: @code{type} shall be a complete
15469 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15470
15471 @item __has_virtual_destructor (type)
15472 If @code{type} is a class type with a virtual destructor
15473 ([class.dtor]) then the trait is true, else it is false. Requires:
15474 @code{type} shall be a complete type, (possibly cv-qualified)
15475 @code{void}, or an array of unknown bound.
15476
15477 @item __is_abstract (type)
15478 If @code{type} is an abstract class ([class.abstract]) then the trait
15479 is true, else it is false. Requires: @code{type} shall be a complete
15480 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15481
15482 @item __is_base_of (base_type, derived_type)
15483 If @code{base_type} is a base class of @code{derived_type}
15484 ([class.derived]) then the trait is true, otherwise it is false.
15485 Top-level cv qualifications of @code{base_type} and
15486 @code{derived_type} are ignored. For the purposes of this trait, a
15487 class type is considered is own base. Requires: if @code{__is_class
15488 (base_type)} and @code{__is_class (derived_type)} are true and
15489 @code{base_type} and @code{derived_type} are not the same type
15490 (disregarding cv-qualifiers), @code{derived_type} shall be a complete
15491 type. Diagnostic is produced if this requirement is not met.
15492
15493 @item __is_class (type)
15494 If @code{type} is a cv class type, and not a union type
15495 ([basic.compound]) the trait is true, else it is false.
15496
15497 @item __is_empty (type)
15498 If @code{__is_class (type)} is false then the trait is false.
15499 Otherwise @code{type} is considered empty if and only if: @code{type}
15500 has no non-static data members, or all non-static data members, if
15501 any, are bit-fields of length 0, and @code{type} has no virtual
15502 members, and @code{type} has no virtual base classes, and @code{type}
15503 has no base classes @code{base_type} for which
15504 @code{__is_empty (base_type)} is false. Requires: @code{type} shall
15505 be a complete type, (possibly cv-qualified) @code{void}, or an array
15506 of unknown bound.
15507
15508 @item __is_enum (type)
15509 If @code{type} is a cv enumeration type ([basic.compound]) the trait is
15510 true, else it is false.
15511
15512 @item __is_literal_type (type)
15513 If @code{type} is a literal type ([basic.types]) the trait is
15514 true, else it is false. Requires: @code{type} shall be a complete type,
15515 (possibly cv-qualified) @code{void}, or an array of unknown bound.
15516
15517 @item __is_pod (type)
15518 If @code{type} is a cv POD type ([basic.types]) then the trait is true,
15519 else it is false. Requires: @code{type} shall be a complete type,
15520 (possibly cv-qualified) @code{void}, or an array of unknown bound.
15521
15522 @item __is_polymorphic (type)
15523 If @code{type} is a polymorphic class ([class.virtual]) then the trait
15524 is true, else it is false. Requires: @code{type} shall be a complete
15525 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15526
15527 @item __is_standard_layout (type)
15528 If @code{type} is a standard-layout type ([basic.types]) the trait is
15529 true, else it is false. Requires: @code{type} shall be a complete
15530 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15531
15532 @item __is_trivial (type)
15533 If @code{type} is a trivial type ([basic.types]) the trait is
15534 true, else it is false. Requires: @code{type} shall be a complete
15535 type, (possibly cv-qualified) @code{void}, or an array of unknown bound.
15536
15537 @item __is_union (type)
15538 If @code{type} is a cv union type ([basic.compound]) the trait is
15539 true, else it is false.
15540
15541 @item __underlying_type (type)
15542 The underlying type of @code{type}. Requires: @code{type} shall be
15543 an enumeration type ([dcl.enum]).
15544
15545 @end table
15546
15547 @node Java Exceptions
15548 @section Java Exceptions
15549
15550 The Java language uses a slightly different exception handling model
15551 from C++. Normally, GNU C++ will automatically detect when you are
15552 writing C++ code that uses Java exceptions, and handle them
15553 appropriately. However, if C++ code only needs to execute destructors
15554 when Java exceptions are thrown through it, GCC will guess incorrectly.
15555 Sample problematic code is:
15556
15557 @smallexample
15558 struct S @{ ~S(); @};
15559 extern void bar(); // @r{is written in Java, and may throw exceptions}
15560 void foo()
15561 @{
15562 S s;
15563 bar();
15564 @}
15565 @end smallexample
15566
15567 @noindent
15568 The usual effect of an incorrect guess is a link failure, complaining of
15569 a missing routine called @samp{__gxx_personality_v0}.
15570
15571 You can inform the compiler that Java exceptions are to be used in a
15572 translation unit, irrespective of what it might think, by writing
15573 @samp{@w{#pragma GCC java_exceptions}} at the head of the file. This
15574 @samp{#pragma} must appear before any functions that throw or catch
15575 exceptions, or run destructors when exceptions are thrown through them.
15576
15577 You cannot mix Java and C++ exceptions in the same translation unit. It
15578 is believed to be safe to throw a C++ exception from one file through
15579 another file compiled for the Java exception model, or vice versa, but
15580 there may be bugs in this area.
15581
15582 @node Deprecated Features
15583 @section Deprecated Features
15584
15585 In the past, the GNU C++ compiler was extended to experiment with new
15586 features, at a time when the C++ language was still evolving. Now that
15587 the C++ standard is complete, some of those features are superseded by
15588 superior alternatives. Using the old features might cause a warning in
15589 some cases that the feature will be dropped in the future. In other
15590 cases, the feature might be gone already.
15591
15592 While the list below is not exhaustive, it documents some of the options
15593 that are now deprecated:
15594
15595 @table @code
15596 @item -fexternal-templates
15597 @itemx -falt-external-templates
15598 These are two of the many ways for G++ to implement template
15599 instantiation. @xref{Template Instantiation}. The C++ standard clearly
15600 defines how template definitions have to be organized across
15601 implementation units. G++ has an implicit instantiation mechanism that
15602 should work just fine for standard-conforming code.
15603
15604 @item -fstrict-prototype
15605 @itemx -fno-strict-prototype
15606 Previously it was possible to use an empty prototype parameter list to
15607 indicate an unspecified number of parameters (like C), rather than no
15608 parameters, as C++ demands. This feature has been removed, except where
15609 it is required for backwards compatibility. @xref{Backwards Compatibility}.
15610 @end table
15611
15612 G++ allows a virtual function returning @samp{void *} to be overridden
15613 by one returning a different pointer type. This extension to the
15614 covariant return type rules is now deprecated and will be removed from a
15615 future version.
15616
15617 The G++ minimum and maximum operators (@samp{<?} and @samp{>?}) and
15618 their compound forms (@samp{<?=}) and @samp{>?=}) have been deprecated
15619 and are now removed from G++. Code using these operators should be
15620 modified to use @code{std::min} and @code{std::max} instead.
15621
15622 The named return value extension has been deprecated, and is now
15623 removed from G++.
15624
15625 The use of initializer lists with new expressions has been deprecated,
15626 and is now removed from G++.
15627
15628 Floating and complex non-type template parameters have been deprecated,
15629 and are now removed from G++.
15630
15631 The implicit typename extension has been deprecated and is now
15632 removed from G++.
15633
15634 The use of default arguments in function pointers, function typedefs
15635 and other places where they are not permitted by the standard is
15636 deprecated and will be removed from a future version of G++.
15637
15638 G++ allows floating-point literals to appear in integral constant expressions,
15639 e.g. @samp{ enum E @{ e = int(2.2 * 3.7) @} }
15640 This extension is deprecated and will be removed from a future version.
15641
15642 G++ allows static data members of const floating-point type to be declared
15643 with an initializer in a class definition. The standard only allows
15644 initializers for static members of const integral types and const
15645 enumeration types so this extension has been deprecated and will be removed
15646 from a future version.
15647
15648 @node Backwards Compatibility
15649 @section Backwards Compatibility
15650 @cindex Backwards Compatibility
15651 @cindex ARM [Annotated C++ Reference Manual]
15652
15653 Now that there is a definitive ISO standard C++, G++ has a specification
15654 to adhere to. The C++ language evolved over time, and features that
15655 used to be acceptable in previous drafts of the standard, such as the ARM
15656 [Annotated C++ Reference Manual], are no longer accepted. In order to allow
15657 compilation of C++ written to such drafts, G++ contains some backwards
15658 compatibilities. @emph{All such backwards compatibility features are
15659 liable to disappear in future versions of G++.} They should be considered
15660 deprecated. @xref{Deprecated Features}.
15661
15662 @table @code
15663 @item For scope
15664 If a variable is declared at for scope, it used to remain in scope until
15665 the end of the scope which contained the for statement (rather than just
15666 within the for scope). G++ retains this, but issues a warning, if such a
15667 variable is accessed outside the for scope.
15668
15669 @item Implicit C language
15670 Old C system header files did not contain an @code{extern "C" @{@dots{}@}}
15671 scope to set the language. On such systems, all header files are
15672 implicitly scoped inside a C language scope. Also, an empty prototype
15673 @code{()} will be treated as an unspecified number of arguments, rather
15674 than no arguments, as C++ demands.
15675 @end table