]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
4e21aa35da3aad4d8c46632f2c0d32bd2f680da5
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2018 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2018 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 @c man end
125
126 @xref{Option Index}, for an index to GCC's options.
127
128 @menu
129 * Option Summary:: Brief list of all options, without explanations.
130 * Overall Options:: Controlling the kind of output:
131 an executable, object files, assembler files,
132 or preprocessed source.
133 * Invoking G++:: Compiling C++ programs.
134 * C Dialect Options:: Controlling the variant of C language compiled.
135 * C++ Dialect Options:: Variations on C++.
136 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
137 and Objective-C++.
138 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
139 be formatted.
140 * Warning Options:: How picky should the compiler be?
141 * Debugging Options:: Producing debuggable code.
142 * Optimize Options:: How much optimization?
143 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
144 * Preprocessor Options:: Controlling header files and macro definitions.
145 Also, getting dependency information for Make.
146 * Assembler Options:: Passing options to the assembler.
147 * Link Options:: Specifying libraries and so on.
148 * Directory Options:: Where to find header files and libraries.
149 Where to find the compiler executable files.
150 * Code Gen Options:: Specifying conventions for function calls, data layout
151 and register usage.
152 * Developer Options:: Printing GCC configuration info, statistics, and
153 debugging dumps.
154 * Submodel Options:: Target-specific options, such as compiling for a
155 specific processor variant.
156 * Spec Files:: How to pass switches to sub-processes.
157 * Environment Variables:: Env vars that affect GCC.
158 * Precompiled Headers:: Compiling a header once, and using it many times.
159 @end menu
160
161 @c man begin OPTIONS
162
163 @node Option Summary
164 @section Option Summary
165
166 Here is a summary of all the options, grouped by type. Explanations are
167 in the following sections.
168
169 @table @emph
170 @item Overall Options
171 @xref{Overall Options,,Options Controlling the Kind of Output}.
172 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
173 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
174 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
175 @@@var{file} -ffile-prefix-map=@var{old}=@var{new} @gol
176 -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
177 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
178
179 @item C Language Options
180 @xref{C Dialect Options,,Options Controlling C Dialect}.
181 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
182 -fpermitted-flt-eval-methods=@var{standard} @gol
183 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
184 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
185 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
186 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
187 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
188 -fsigned-bitfields -fsigned-char @gol
189 -funsigned-bitfields -funsigned-char}
190
191 @item C++ Language Options
192 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
193 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
194 -faligned-new=@var{n} -fargs-in-order=@var{n} -fcheck-new @gol
195 -fconstexpr-depth=@var{n} -fconstexpr-loop-limit=@var{n} @gol
196 -ffriend-injection @gol
197 -fno-elide-constructors @gol
198 -fno-enforce-eh-specs @gol
199 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
200 -fno-implicit-templates @gol
201 -fno-implicit-inline-templates @gol
202 -fno-implement-inlines -fms-extensions @gol
203 -fnew-inheriting-ctors @gol
204 -fnew-ttp-matching @gol
205 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
206 -fno-optional-diags -fpermissive @gol
207 -fno-pretty-templates @gol
208 -frepo -fno-rtti -fsized-deallocation @gol
209 -ftemplate-backtrace-limit=@var{n} @gol
210 -ftemplate-depth=@var{n} @gol
211 -fno-threadsafe-statics -fuse-cxa-atexit @gol
212 -fno-weak -nostdinc++ @gol
213 -fvisibility-inlines-hidden @gol
214 -fvisibility-ms-compat @gol
215 -fext-numeric-literals @gol
216 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
217 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wmultiple-inheritance @gol
218 -Wnamespaces -Wnarrowing @gol
219 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
220 -Wnon-virtual-dtor -Wreorder -Wregister @gol
221 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
222 -Wno-non-template-friend -Wold-style-cast @gol
223 -Woverloaded-virtual -Wno-pmf-conversions @gol
224 -Wsign-promo -Wvirtual-inheritance}
225
226 @item Objective-C and Objective-C++ Language Options
227 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
228 Objective-C and Objective-C++ Dialects}.
229 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
230 -fgnu-runtime -fnext-runtime @gol
231 -fno-nil-receivers @gol
232 -fobjc-abi-version=@var{n} @gol
233 -fobjc-call-cxx-cdtors @gol
234 -fobjc-direct-dispatch @gol
235 -fobjc-exceptions @gol
236 -fobjc-gc @gol
237 -fobjc-nilcheck @gol
238 -fobjc-std=objc1 @gol
239 -fno-local-ivars @gol
240 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
241 -freplace-objc-classes @gol
242 -fzero-link @gol
243 -gen-decls @gol
244 -Wassign-intercept @gol
245 -Wno-protocol -Wselector @gol
246 -Wstrict-selector-match @gol
247 -Wundeclared-selector}
248
249 @item Diagnostic Message Formatting Options
250 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
251 @gccoptlist{-fmessage-length=@var{n} @gol
252 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
253 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
254 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
255 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
256 -fdiagnostics-show-template-tree -fno-elide-type @gol
257 -fno-show-column}
258
259 @item Warning Options
260 @xref{Warning Options,,Options to Request or Suppress Warnings}.
261 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
262 -pedantic-errors @gol
263 -w -Wextra -Wall -Waddress -Waggregate-return @gol
264 -Walloc-zero -Walloc-size-larger-than=@var{n}
265 -Walloca -Walloca-larger-than=@var{n} @gol
266 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
267 -Wno-attributes -Wbool-compare -Wbool-operation @gol
268 -Wno-builtin-declaration-mismatch @gol
269 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
270 -Wc++-compat -Wc++11-compat -Wc++14-compat @gol
271 -Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual @gol
272 -Wchar-subscripts -Wchkp -Wcatch-value -Wcatch-value=@var{n} @gol
273 -Wclobbered -Wcomment -Wconditionally-supported @gol
274 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
275 -Wdelete-incomplete @gol
276 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
277 -Wdisabled-optimization @gol
278 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
279 -Wno-div-by-zero -Wdouble-promotion @gol
280 -Wduplicated-branches -Wduplicated-cond @gol
281 -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined @gol
282 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
283 -Wfloat-equal -Wformat -Wformat=2 @gol
284 -Wno-format-contains-nul -Wno-format-extra-args @gol
285 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
286 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
287 -Wformat-y2k -Wframe-address @gol
288 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
289 -Wif-not-aligned @gol
290 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
291 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
292 -Wimplicit-function-declaration -Wimplicit-int @gol
293 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
294 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
295 -Winvalid-pch -Wlarger-than=@var{len} @gol
296 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
297 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
298 -Wmisleading-indentation -Wmissing-braces @gol
299 -Wmissing-field-initializers -Wmissing-include-dirs @gol
300 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
301 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
302 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
303 -Woverride-init-side-effects -Woverlength-strings @gol
304 -Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
305 -Wparentheses -Wno-pedantic-ms-format @gol
306 -Wplacement-new -Wplacement-new=@var{n} @gol
307 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
308 -Wno-pragmas -Wredundant-decls -Wrestrict -Wno-return-local-addr @gol
309 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
310 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
311 -Wshift-overflow -Wshift-overflow=@var{n} @gol
312 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
313 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
314 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
315 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
316 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
317 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
318 -Wstringop-overflow=@var{n} -Wstringop-truncation @gol
319 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
320 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
321 -Wmissing-format-attribute -Wsubobject-linkage @gol
322 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
323 -Wswitch-unreachable -Wsync-nand @gol
324 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
325 -Wtype-limits -Wundef @gol
326 -Wuninitialized -Wunknown-pragmas -Wunsafe-loop-optimizations @gol
327 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
328 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
329 -Wunused-parameter -Wno-unused-result @gol
330 -Wunused-value -Wunused-variable @gol
331 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
332 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
333 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
334 -Wvla -Wvla-larger-than=@var{n} -Wvolatile-register-var -Wwrite-strings @gol
335 -Wzero-as-null-pointer-constant -Whsa}
336
337 @item C and Objective-C-only Warning Options
338 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
339 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
340 -Wold-style-declaration -Wold-style-definition @gol
341 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
342 -Wdeclaration-after-statement -Wpointer-sign}
343
344 @item Debugging Options
345 @xref{Debugging Options,,Options for Debugging Your Program}.
346 @gccoptlist{-g -g@var{level} -gdwarf -gdwarf-@var{version} @gol
347 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
348 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
349 -gcolumn-info -gno-column-info @gol
350 -gstatement-frontiers -gno-statement-frontiers @gol
351 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
352 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
353 -fno-eliminate-unused-debug-types @gol
354 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
355 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
356 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
357 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
358 -fvar-tracking -fvar-tracking-assignments}
359
360 @item Optimization Options
361 @xref{Optimize Options,,Options that Control Optimization}.
362 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
363 -falign-jumps[=@var{n}] @gol
364 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
365 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
366 -fauto-inc-dec -fbranch-probabilities @gol
367 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
368 -fbtr-bb-exclusive -fcaller-saves @gol
369 -fcombine-stack-adjustments -fconserve-stack @gol
370 -fcompare-elim -fcprop-registers -fcrossjumping @gol
371 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
372 -fcx-limited-range @gol
373 -fdata-sections -fdce -fdelayed-branch @gol
374 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
375 -fdevirtualize-at-ltrans -fdse @gol
376 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
377 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
378 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
379 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
380 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
381 -fif-conversion2 -findirect-inlining @gol
382 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
383 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
384 -fipa-bit-cp -fipa-vrp @gol
385 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
386 -fira-algorithm=@var{algorithm} @gol
387 -fira-region=@var{region} -fira-hoist-pressure @gol
388 -fira-loop-pressure -fno-ira-share-save-slots @gol
389 -fno-ira-share-spill-slots @gol
390 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
391 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
392 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
393 -floop-block -floop-interchange -floop-strip-mine @gol
394 -floop-unroll-and-jam -floop-nest-optimize @gol
395 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
396 -flto-partition=@var{alg} -fmerge-all-constants @gol
397 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
398 -fmove-loop-invariants -fno-branch-count-reg @gol
399 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
400 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
401 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
402 -fno-sched-spec -fno-signed-zeros @gol
403 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
404 -fomit-frame-pointer -foptimize-sibling-calls @gol
405 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
406 -fprefetch-loop-arrays @gol
407 -fprofile-correction @gol
408 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
409 -fprofile-reorder-functions @gol
410 -freciprocal-math -free -frename-registers -freorder-blocks @gol
411 -freorder-blocks-algorithm=@var{algorithm} @gol
412 -freorder-blocks-and-partition -freorder-functions @gol
413 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
414 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
415 -fsched-spec-load -fsched-spec-load-dangerous @gol
416 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
417 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
418 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
419 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
420 -fschedule-fusion @gol
421 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
422 -fselective-scheduling -fselective-scheduling2 @gol
423 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
424 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
425 -fsignaling-nans @gol
426 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
427 -fsplit-paths @gol
428 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
429 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
430 -fthread-jumps -ftracer -ftree-bit-ccp @gol
431 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
432 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
433 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
434 -ftree-loop-if-convert -ftree-loop-im @gol
435 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
436 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
437 -ftree-loop-vectorize @gol
438 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
439 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
440 -ftree-switch-conversion -ftree-tail-merge @gol
441 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
442 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
443 -funsafe-math-optimizations -funswitch-loops @gol
444 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
445 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
446 --param @var{name}=@var{value}
447 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
448
449 @item Program Instrumentation Options
450 @xref{Instrumentation Options,,Program Instrumentation Options}.
451 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
452 -fprofile-abs-path @gol
453 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
454 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
455 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
456 -fsanitize-undefined-trap-on-error -fbounds-check @gol
457 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
458 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
459 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
460 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
461 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
462 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
463 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
464 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
465 -fchkp-use-wrappers -fchkp-flexible-struct-trailing-arrays@gol
466 -fcf-protection==@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
467 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
468 -fstack-protector-explicit -fstack-check @gol
469 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
470 -fno-stack-limit -fsplit-stack @gol
471 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
472 -fvtv-counts -fvtv-debug @gol
473 -finstrument-functions @gol
474 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
475 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
476
477 @item Preprocessor Options
478 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
479 @gccoptlist{-A@var{question}=@var{answer} @gol
480 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
481 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
482 -dD -dI -dM -dN -dU @gol
483 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
484 -fexec-charset=@var{charset} -fextended-identifiers @gol
485 -finput-charset=@var{charset} -fmacro-prefix-map=@var{old}=@var{new} @gol
486 -fno-canonical-system-headers @gol -fpch-deps -fpch-preprocess @gol
487 -fpreprocessed -ftabstop=@var{width} -ftrack-macro-expansion @gol
488 -fwide-exec-charset=@var{charset} -fworking-directory @gol
489 -H -imacros @var{file} -include @var{file} @gol
490 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
491 -no-integrated-cpp -P -pthread -remap @gol
492 -traditional -traditional-cpp -trigraphs @gol
493 -U@var{macro} -undef @gol
494 -Wp,@var{option} -Xpreprocessor @var{option}}
495
496 @item Assembler Options
497 @xref{Assembler Options,,Passing Options to the Assembler}.
498 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
499
500 @item Linker Options
501 @xref{Link Options,,Options for Linking}.
502 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
503 -nostartfiles -nodefaultlibs -nostdlib -pie -pthread -rdynamic @gol
504 -s -static -static-pie -static-libgcc -static-libstdc++ @gol
505 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
506 -static-libmpx -static-libmpxwrappers @gol
507 -shared -shared-libgcc -symbolic @gol
508 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
509 -u @var{symbol} -z @var{keyword}}
510
511 @item Directory Options
512 @xref{Directory Options,,Options for Directory Search}.
513 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
514 -idirafter @var{dir} @gol
515 -imacros @var{file} -imultilib @var{dir} @gol
516 -iplugindir=@var{dir} -iprefix @var{file} @gol
517 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
518 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
519 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
520 -nostdinc -nostdinc++ --sysroot=@var{dir}}
521
522 @item Code Generation Options
523 @xref{Code Gen Options,,Options for Code Generation Conventions}.
524 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
525 -ffixed-@var{reg} -fexceptions @gol
526 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
527 -fasynchronous-unwind-tables @gol
528 -fno-gnu-unique @gol
529 -finhibit-size-directive -fno-common -fno-ident @gol
530 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
531 -fno-jump-tables @gol
532 -frecord-gcc-switches @gol
533 -freg-struct-return -fshort-enums -fshort-wchar @gol
534 -fverbose-asm -fpack-struct[=@var{n}] @gol
535 -fleading-underscore -ftls-model=@var{model} @gol
536 -fstack-reuse=@var{reuse_level} @gol
537 -ftrampolines -ftrapv -fwrapv @gol
538 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
539 -fstrict-volatile-bitfields -fsync-libcalls}
540
541 @item Developer Options
542 @xref{Developer Options,,GCC Developer Options}.
543 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
544 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
545 -fdbg-cnt=@var{counter-value-list} @gol
546 -fdisable-ipa-@var{pass_name} @gol
547 -fdisable-rtl-@var{pass_name} @gol
548 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
549 -fdisable-tree-@var{pass_name} @gol
550 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
551 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
552 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
553 -fdump-final-insns@r{[}=@var{file}@r{]} @gol
554 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
555 -fdump-lang-all @gol
556 -fdump-lang-@var{switch} @gol
557 -fdump-lang-@var{switch}-@var{options} @gol
558 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
559 -fdump-passes @gol
560 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
561 -fdump-statistics @gol
562 -fdump-tree-all @gol
563 -fdump-tree-@var{switch} @gol
564 -fdump-tree-@var{switch}-@var{options} @gol
565 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
566 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
567 -fenable-@var{kind}-@var{pass} @gol
568 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
569 -fira-verbose=@var{n} @gol
570 -flto-report -flto-report-wpa -fmem-report-wpa @gol
571 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
572 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
573 -fprofile-report @gol
574 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
575 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
576 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
577 -fvar-tracking-assignments-toggle -gtoggle @gol
578 -print-file-name=@var{library} -print-libgcc-file-name @gol
579 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
580 -print-prog-name=@var{program} -print-search-dirs -Q @gol
581 -print-sysroot -print-sysroot-headers-suffix @gol
582 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
583
584 @item Machine-Dependent Options
585 @xref{Submodel Options,,Machine-Dependent Options}.
586 @c This list is ordered alphanumerically by subsection name.
587 @c Try and put the significant identifier (CPU or system) first,
588 @c so users have a clue at guessing where the ones they want will be.
589
590 @emph{AArch64 Options}
591 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
592 -mgeneral-regs-only @gol
593 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
594 -mstrict-align @gol
595 -momit-leaf-frame-pointer @gol
596 -mtls-dialect=desc -mtls-dialect=traditional @gol
597 -mtls-size=@var{size} @gol
598 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
599 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
600 -mpc-relative-literal-loads @gol
601 -msign-return-address=@var{scope} @gol
602 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} @gol
603 -moverride=@var{string} -mverbose-cost-dump}
604
605 @emph{Adapteva Epiphany Options}
606 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
607 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
608 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
609 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
610 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
611 -msplit-vecmove-early -m1reg-@var{reg}}
612
613 @emph{ARC Options}
614 @gccoptlist{-mbarrel-shifter @gol
615 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
616 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
617 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
618 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
619 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
620 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
621 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
622 -mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
623 -mvolatile-cache -mtp-regno=@var{regno} @gol
624 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
625 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
626 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
627 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
628 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
629 -mtune=@var{cpu} -mmultcost=@var{num} @gol
630 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
631 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu}}
632
633 @emph{ARM Options}
634 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
635 -mabi=@var{name} @gol
636 -mapcs-stack-check -mno-apcs-stack-check @gol
637 -mapcs-reentrant -mno-apcs-reentrant @gol
638 -msched-prolog -mno-sched-prolog @gol
639 -mlittle-endian -mbig-endian @gol
640 -mbe8 -mbe32 @gol
641 -mfloat-abi=@var{name} @gol
642 -mfp16-format=@var{name}
643 -mthumb-interwork -mno-thumb-interwork @gol
644 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
645 -mtune=@var{name} -mprint-tune-info @gol
646 -mstructure-size-boundary=@var{n} @gol
647 -mabort-on-noreturn @gol
648 -mlong-calls -mno-long-calls @gol
649 -msingle-pic-base -mno-single-pic-base @gol
650 -mpic-register=@var{reg} @gol
651 -mnop-fun-dllimport @gol
652 -mpoke-function-name @gol
653 -mthumb -marm -mflip-thumb @gol
654 -mtpcs-frame -mtpcs-leaf-frame @gol
655 -mcaller-super-interworking -mcallee-super-interworking @gol
656 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
657 -mword-relocations @gol
658 -mfix-cortex-m3-ldrd @gol
659 -munaligned-access @gol
660 -mneon-for-64bits @gol
661 -mslow-flash-data @gol
662 -masm-syntax-unified @gol
663 -mrestrict-it @gol
664 -mverbose-cost-dump @gol
665 -mpure-code @gol
666 -mcmse}
667
668 @emph{AVR Options}
669 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
670 -mbranch-cost=@var{cost} @gol
671 -mcall-prologues -mgas-isr-prologues -mint8 @gol
672 -mn_flash=@var{size} -mno-interrupts @gol
673 -mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack @gol
674 -mfract-convert-truncate @gol
675 -mshort-calls -nodevicelib @gol
676 -Waddr-space-convert -Wmisspelled-isr}
677
678 @emph{Blackfin Options}
679 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
680 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
681 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
682 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
683 -mno-id-shared-library -mshared-library-id=@var{n} @gol
684 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
685 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
686 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
687 -micplb}
688
689 @emph{C6X Options}
690 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
691 -msim -msdata=@var{sdata-type}}
692
693 @emph{CRIS Options}
694 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
695 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
696 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
697 -mstack-align -mdata-align -mconst-align @gol
698 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
699 -melf -maout -melinux -mlinux -sim -sim2 @gol
700 -mmul-bug-workaround -mno-mul-bug-workaround}
701
702 @emph{CR16 Options}
703 @gccoptlist{-mmac @gol
704 -mcr16cplus -mcr16c @gol
705 -msim -mint32 -mbit-ops
706 -mdata-model=@var{model}}
707
708 @emph{Darwin Options}
709 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
710 -arch_only -bind_at_load -bundle -bundle_loader @gol
711 -client_name -compatibility_version -current_version @gol
712 -dead_strip @gol
713 -dependency-file -dylib_file -dylinker_install_name @gol
714 -dynamic -dynamiclib -exported_symbols_list @gol
715 -filelist -flat_namespace -force_cpusubtype_ALL @gol
716 -force_flat_namespace -headerpad_max_install_names @gol
717 -iframework @gol
718 -image_base -init -install_name -keep_private_externs @gol
719 -multi_module -multiply_defined -multiply_defined_unused @gol
720 -noall_load -no_dead_strip_inits_and_terms @gol
721 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
722 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
723 -private_bundle -read_only_relocs -sectalign @gol
724 -sectobjectsymbols -whyload -seg1addr @gol
725 -sectcreate -sectobjectsymbols -sectorder @gol
726 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
727 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
728 -segprot -segs_read_only_addr -segs_read_write_addr @gol
729 -single_module -static -sub_library -sub_umbrella @gol
730 -twolevel_namespace -umbrella -undefined @gol
731 -unexported_symbols_list -weak_reference_mismatches @gol
732 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
733 -mkernel -mone-byte-bool}
734
735 @emph{DEC Alpha Options}
736 @gccoptlist{-mno-fp-regs -msoft-float @gol
737 -mieee -mieee-with-inexact -mieee-conformant @gol
738 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
739 -mtrap-precision=@var{mode} -mbuild-constants @gol
740 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
741 -mbwx -mmax -mfix -mcix @gol
742 -mfloat-vax -mfloat-ieee @gol
743 -mexplicit-relocs -msmall-data -mlarge-data @gol
744 -msmall-text -mlarge-text @gol
745 -mmemory-latency=@var{time}}
746
747 @emph{FR30 Options}
748 @gccoptlist{-msmall-model -mno-lsim}
749
750 @emph{FT32 Options}
751 @gccoptlist{-msim -mlra -mnodiv -mft32b -mcompress -mnopm}
752
753 @emph{FRV Options}
754 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
755 -mhard-float -msoft-float @gol
756 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
757 -mdouble -mno-double @gol
758 -mmedia -mno-media -mmuladd -mno-muladd @gol
759 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
760 -mlinked-fp -mlong-calls -malign-labels @gol
761 -mlibrary-pic -macc-4 -macc-8 @gol
762 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
763 -moptimize-membar -mno-optimize-membar @gol
764 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
765 -mvliw-branch -mno-vliw-branch @gol
766 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
767 -mno-nested-cond-exec -mtomcat-stats @gol
768 -mTLS -mtls @gol
769 -mcpu=@var{cpu}}
770
771 @emph{GNU/Linux Options}
772 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
773 -tno-android-cc -tno-android-ld}
774
775 @emph{H8/300 Options}
776 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
777
778 @emph{HPPA Options}
779 @gccoptlist{-march=@var{architecture-type} @gol
780 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
781 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
782 -mfixed-range=@var{register-range} @gol
783 -mjump-in-delay -mlinker-opt -mlong-calls @gol
784 -mlong-load-store -mno-disable-fpregs @gol
785 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
786 -mno-jump-in-delay -mno-long-load-store @gol
787 -mno-portable-runtime -mno-soft-float @gol
788 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
789 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
790 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
791 -munix=@var{unix-std} -nolibdld -static -threads}
792
793 @emph{IA-64 Options}
794 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
795 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
796 -mconstant-gp -mauto-pic -mfused-madd @gol
797 -minline-float-divide-min-latency @gol
798 -minline-float-divide-max-throughput @gol
799 -mno-inline-float-divide @gol
800 -minline-int-divide-min-latency @gol
801 -minline-int-divide-max-throughput @gol
802 -mno-inline-int-divide @gol
803 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
804 -mno-inline-sqrt @gol
805 -mdwarf2-asm -mearly-stop-bits @gol
806 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
807 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
808 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
809 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
810 -msched-spec-ldc -msched-spec-control-ldc @gol
811 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
812 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
813 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
814 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
815
816 @emph{LM32 Options}
817 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
818 -msign-extend-enabled -muser-enabled}
819
820 @emph{M32R/D Options}
821 @gccoptlist{-m32r2 -m32rx -m32r @gol
822 -mdebug @gol
823 -malign-loops -mno-align-loops @gol
824 -missue-rate=@var{number} @gol
825 -mbranch-cost=@var{number} @gol
826 -mmodel=@var{code-size-model-type} @gol
827 -msdata=@var{sdata-type} @gol
828 -mno-flush-func -mflush-func=@var{name} @gol
829 -mno-flush-trap -mflush-trap=@var{number} @gol
830 -G @var{num}}
831
832 @emph{M32C Options}
833 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
834
835 @emph{M680x0 Options}
836 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
837 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
838 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
839 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
840 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
841 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
842 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
843 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
844 -mxgot -mno-xgot -mlong-jump-table-offsets}
845
846 @emph{MCore Options}
847 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
848 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
849 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
850 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
851 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
852
853 @emph{MeP Options}
854 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
855 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
856 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
857 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
858 -mtiny=@var{n}}
859
860 @emph{MicroBlaze Options}
861 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
862 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
863 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
864 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
865 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
866
867 @emph{MIPS Options}
868 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
869 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
870 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
871 -mips16 -mno-mips16 -mflip-mips16 @gol
872 -minterlink-compressed -mno-interlink-compressed @gol
873 -minterlink-mips16 -mno-interlink-mips16 @gol
874 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
875 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
876 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
877 -mno-float -msingle-float -mdouble-float @gol
878 -modd-spreg -mno-odd-spreg @gol
879 -mabs=@var{mode} -mnan=@var{encoding} @gol
880 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
881 -mmcu -mmno-mcu @gol
882 -meva -mno-eva @gol
883 -mvirt -mno-virt @gol
884 -mxpa -mno-xpa @gol
885 -mmicromips -mno-micromips @gol
886 -mmsa -mno-msa @gol
887 -mfpu=@var{fpu-type} @gol
888 -msmartmips -mno-smartmips @gol
889 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
890 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
891 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
892 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
893 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
894 -membedded-data -mno-embedded-data @gol
895 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
896 -mcode-readable=@var{setting} @gol
897 -msplit-addresses -mno-split-addresses @gol
898 -mexplicit-relocs -mno-explicit-relocs @gol
899 -mcheck-zero-division -mno-check-zero-division @gol
900 -mdivide-traps -mdivide-breaks @gol
901 -mload-store-pairs -mno-load-store-pairs @gol
902 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
903 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
904 -mfix-24k -mno-fix-24k @gol
905 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
906 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
907 -mfix-vr4120 -mno-fix-vr4120 @gol
908 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
909 -mflush-func=@var{func} -mno-flush-func @gol
910 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
911 -mcompact-branches=@var{policy} @gol
912 -mfp-exceptions -mno-fp-exceptions @gol
913 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
914 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
915 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
916 -mframe-header-opt -mno-frame-header-opt}
917
918 @emph{MMIX Options}
919 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
920 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
921 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
922 -mno-base-addresses -msingle-exit -mno-single-exit}
923
924 @emph{MN10300 Options}
925 @gccoptlist{-mmult-bug -mno-mult-bug @gol
926 -mno-am33 -mam33 -mam33-2 -mam34 @gol
927 -mtune=@var{cpu-type} @gol
928 -mreturn-pointer-on-d0 @gol
929 -mno-crt0 -mrelax -mliw -msetlb}
930
931 @emph{Moxie Options}
932 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
933
934 @emph{MSP430 Options}
935 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
936 -mwarn-mcu @gol
937 -mcode-region= -mdata-region= @gol
938 -msilicon-errata= -msilicon-errata-warn= @gol
939 -mhwmult= -minrt}
940
941 @emph{NDS32 Options}
942 @gccoptlist{-mbig-endian -mlittle-endian @gol
943 -mreduced-regs -mfull-regs @gol
944 -mcmov -mno-cmov @gol
945 -mext-perf -mno-ext-perf @gol
946 -mext-perf2 -mno-ext-perf2 @gol
947 -mext-string -mno-ext-string @gol
948 -mv3push -mno-v3push @gol
949 -m16bit -mno-16bit @gol
950 -misr-vector-size=@var{num} @gol
951 -mcache-block-size=@var{num} @gol
952 -march=@var{arch} @gol
953 -mcmodel=@var{code-model} @gol
954 -mctor-dtor -mrelax}
955
956 @emph{Nios II Options}
957 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
958 -mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
959 -mel -meb @gol
960 -mno-bypass-cache -mbypass-cache @gol
961 -mno-cache-volatile -mcache-volatile @gol
962 -mno-fast-sw-div -mfast-sw-div @gol
963 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
964 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
965 -mcustom-fpu-cfg=@var{name} @gol
966 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
967 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
968
969 @emph{Nvidia PTX Options}
970 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
971
972 @emph{PDP-11 Options}
973 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
974 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
975 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
976 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
977 -mbranch-expensive -mbranch-cheap @gol
978 -munix-asm -mdec-asm}
979
980 @emph{picoChip Options}
981 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
982 -msymbol-as-address -mno-inefficient-warnings}
983
984 @emph{PowerPC Options}
985 See RS/6000 and PowerPC Options.
986
987 @emph{RISC-V Options}
988 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
989 -mplt -mno-plt @gol
990 -mabi=@var{ABI-string} @gol
991 -mfdiv -mno-fdiv @gol
992 -mdiv -mno-div @gol
993 -march=@var{ISA-string} @gol
994 -mtune=@var{processor-string} @gol
995 -mpreferred-stack-boundary=@var{num} @gol
996 -msmall-data-limit=@var{N-bytes} @gol
997 -msave-restore -mno-save-restore @gol
998 -mstrict-align -mno-strict-align @gol
999 -mcmodel=medlow -mcmodel=medany @gol
1000 -mexplicit-relocs -mno-explicit-relocs @gol}
1001
1002 @emph{RL78 Options}
1003 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
1004 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
1005 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
1006
1007 @emph{RS/6000 and PowerPC Options}
1008 @gccoptlist{-mcpu=@var{cpu-type} @gol
1009 -mtune=@var{cpu-type} @gol
1010 -mcmodel=@var{code-model} @gol
1011 -mpowerpc64 @gol
1012 -maltivec -mno-altivec @gol
1013 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1014 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1015 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1016 -mfprnd -mno-fprnd @gol
1017 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
1018 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1019 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1020 -malign-power -malign-natural @gol
1021 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1022 -msingle-float -mdouble-float -msimple-fpu @gol
1023 -mupdate -mno-update @gol
1024 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1025 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1026 -mstrict-align -mno-strict-align -mrelocatable @gol
1027 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1028 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1029 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
1030 -mprioritize-restricted-insns=@var{priority} @gol
1031 -msched-costly-dep=@var{dependence_type} @gol
1032 -minsert-sched-nops=@var{scheme} @gol
1033 -mcall-sysv -mcall-netbsd @gol
1034 -maix-struct-return -msvr4-struct-return @gol
1035 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1036 -mblock-move-inline-limit=@var{num} @gol
1037 -misel -mno-isel @gol
1038 -misel=yes -misel=no @gol
1039 -mspe -mno-spe @gol
1040 -mspe=yes -mspe=no @gol
1041 -mpaired @gol
1042 -mvrsave -mno-vrsave @gol
1043 -mmulhw -mno-mulhw @gol
1044 -mdlmzb -mno-dlmzb @gol
1045 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
1046 -mprototype -mno-prototype @gol
1047 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1048 -msdata=@var{opt} -mvxworks -G @var{num} @gol
1049 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1050 -mno-recip-precision @gol
1051 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1052 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1053 -msave-toc-indirect -mno-save-toc-indirect @gol
1054 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1055 -mcrypto -mno-crypto -mhtm -mno-htm -mdirect-move -mno-direct-move @gol
1056 -mquad-memory -mno-quad-memory @gol
1057 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1058 -mcompat-align-parm -mno-compat-align-parm @gol
1059 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1060 -mgnu-attribute -mno-gnu-attribute @gol
1061 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1062 -mstack-protector-guard-offset=@var{offset}}
1063
1064 @emph{RX Options}
1065 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1066 -mcpu=@gol
1067 -mbig-endian-data -mlittle-endian-data @gol
1068 -msmall-data @gol
1069 -msim -mno-sim@gol
1070 -mas100-syntax -mno-as100-syntax@gol
1071 -mrelax@gol
1072 -mmax-constant-size=@gol
1073 -mint-register=@gol
1074 -mpid@gol
1075 -mallow-string-insns -mno-allow-string-insns@gol
1076 -mjsr@gol
1077 -mno-warn-multiple-fast-interrupts@gol
1078 -msave-acc-in-interrupts}
1079
1080 @emph{S/390 and zSeries Options}
1081 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1082 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1083 -mlong-double-64 -mlong-double-128 @gol
1084 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1085 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1086 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1087 -mhtm -mvx -mzvector @gol
1088 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1089 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1090 -mhotpatch=@var{halfwords},@var{halfwords}}
1091
1092 @emph{Score Options}
1093 @gccoptlist{-meb -mel @gol
1094 -mnhwloop @gol
1095 -muls @gol
1096 -mmac @gol
1097 -mscore5 -mscore5u -mscore7 -mscore7d}
1098
1099 @emph{SH Options}
1100 @gccoptlist{-m1 -m2 -m2e @gol
1101 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1102 -m3 -m3e @gol
1103 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1104 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1105 -mb -ml -mdalign -mrelax @gol
1106 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1107 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1108 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1109 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1110 -maccumulate-outgoing-args @gol
1111 -matomic-model=@var{atomic-model} @gol
1112 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1113 -mcbranch-force-delay-slot @gol
1114 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1115 -mpretend-cmove -mtas}
1116
1117 @emph{Solaris 2 Options}
1118 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1119 -pthreads}
1120
1121 @emph{SPARC Options}
1122 @gccoptlist{-mcpu=@var{cpu-type} @gol
1123 -mtune=@var{cpu-type} @gol
1124 -mcmodel=@var{code-model} @gol
1125 -mmemory-model=@var{mem-model} @gol
1126 -m32 -m64 -mapp-regs -mno-app-regs @gol
1127 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1128 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1129 -mhard-quad-float -msoft-quad-float @gol
1130 -mstack-bias -mno-stack-bias @gol
1131 -mstd-struct-return -mno-std-struct-return @gol
1132 -munaligned-doubles -mno-unaligned-doubles @gol
1133 -muser-mode -mno-user-mode @gol
1134 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1135 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1136 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1137 -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld @gol
1138 -mpopc -mno-popc -msubxc -mno-subxc @gol
1139 -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc @gol
1140 -mlra -mno-lra}
1141
1142 @emph{SPU Options}
1143 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1144 -msafe-dma -munsafe-dma @gol
1145 -mbranch-hints @gol
1146 -msmall-mem -mlarge-mem -mstdmain @gol
1147 -mfixed-range=@var{register-range} @gol
1148 -mea32 -mea64 @gol
1149 -maddress-space-conversion -mno-address-space-conversion @gol
1150 -mcache-size=@var{cache-size} @gol
1151 -matomic-updates -mno-atomic-updates}
1152
1153 @emph{System V Options}
1154 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1155
1156 @emph{TILE-Gx Options}
1157 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1158 -mcmodel=@var{code-model}}
1159
1160 @emph{TILEPro Options}
1161 @gccoptlist{-mcpu=@var{cpu} -m32}
1162
1163 @emph{V850 Options}
1164 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1165 -mprolog-function -mno-prolog-function -mspace @gol
1166 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1167 -mapp-regs -mno-app-regs @gol
1168 -mdisable-callt -mno-disable-callt @gol
1169 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1170 -mv850e -mv850 -mv850e3v5 @gol
1171 -mloop @gol
1172 -mrelax @gol
1173 -mlong-jumps @gol
1174 -msoft-float @gol
1175 -mhard-float @gol
1176 -mgcc-abi @gol
1177 -mrh850-abi @gol
1178 -mbig-switch}
1179
1180 @emph{VAX Options}
1181 @gccoptlist{-mg -mgnu -munix}
1182
1183 @emph{Visium Options}
1184 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1185 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1186
1187 @emph{VMS Options}
1188 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1189 -mpointer-size=@var{size}}
1190
1191 @emph{VxWorks Options}
1192 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1193 -Xbind-lazy -Xbind-now}
1194
1195 @emph{x86 Options}
1196 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1197 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1198 -mfpmath=@var{unit} @gol
1199 -masm=@var{dialect} -mno-fancy-math-387 @gol
1200 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1201 -mno-wide-multiply -mrtd -malign-double @gol
1202 -mpreferred-stack-boundary=@var{num} @gol
1203 -mincoming-stack-boundary=@var{num} @gol
1204 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1205 -mrecip -mrecip=@var{opt} @gol
1206 -mvzeroupper -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1207 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1208 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1209 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1210 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma @gol
1211 -mprefetchwt1 -mclflushopt -mxsavec -mxsaves @gol
1212 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1213 -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx @gol
1214 -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes @gol
1215 -mcet -mibt -mshstk -mforce-indirect-call -mavx512vbmi2 @gol
1216 -mvpclmulqdq -mavx512bitalg -mavx512vpopcntdq @gol
1217 -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1218 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1219 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1220 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1221 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1222 -mregparm=@var{num} -msseregparm @gol
1223 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1224 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1225 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1226 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1227 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1228 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1229 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1230 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1231 -mstack-protector-guard-reg=@var{reg} @gol
1232 -mstack-protector-guard-offset=@var{offset} @gol
1233 -mstack-protector-guard-symbol=@var{symbol} -mmitigate-rop @gol
1234 -mgeneral-regs-only -mcall-ms2sysv-xlogues @gol
1235 -mindirect-branch=@var{choice} -mfunction-return==@var{choice} @gol
1236 -mindirect-branch-register}
1237
1238 @emph{x86 Windows Options}
1239 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1240 -mnop-fun-dllimport -mthread @gol
1241 -municode -mwin32 -mwindows -fno-set-stack-executable}
1242
1243 @emph{Xstormy16 Options}
1244 @gccoptlist{-msim}
1245
1246 @emph{Xtensa Options}
1247 @gccoptlist{-mconst16 -mno-const16 @gol
1248 -mfused-madd -mno-fused-madd @gol
1249 -mforce-no-pic @gol
1250 -mserialize-volatile -mno-serialize-volatile @gol
1251 -mtext-section-literals -mno-text-section-literals @gol
1252 -mauto-litpools -mno-auto-litpools @gol
1253 -mtarget-align -mno-target-align @gol
1254 -mlongcalls -mno-longcalls}
1255
1256 @emph{zSeries Options}
1257 See S/390 and zSeries Options.
1258 @end table
1259
1260
1261 @node Overall Options
1262 @section Options Controlling the Kind of Output
1263
1264 Compilation can involve up to four stages: preprocessing, compilation
1265 proper, assembly and linking, always in that order. GCC is capable of
1266 preprocessing and compiling several files either into several
1267 assembler input files, or into one assembler input file; then each
1268 assembler input file produces an object file, and linking combines all
1269 the object files (those newly compiled, and those specified as input)
1270 into an executable file.
1271
1272 @cindex file name suffix
1273 For any given input file, the file name suffix determines what kind of
1274 compilation is done:
1275
1276 @table @gcctabopt
1277 @item @var{file}.c
1278 C source code that must be preprocessed.
1279
1280 @item @var{file}.i
1281 C source code that should not be preprocessed.
1282
1283 @item @var{file}.ii
1284 C++ source code that should not be preprocessed.
1285
1286 @item @var{file}.m
1287 Objective-C source code. Note that you must link with the @file{libobjc}
1288 library to make an Objective-C program work.
1289
1290 @item @var{file}.mi
1291 Objective-C source code that should not be preprocessed.
1292
1293 @item @var{file}.mm
1294 @itemx @var{file}.M
1295 Objective-C++ source code. Note that you must link with the @file{libobjc}
1296 library to make an Objective-C++ program work. Note that @samp{.M} refers
1297 to a literal capital M@.
1298
1299 @item @var{file}.mii
1300 Objective-C++ source code that should not be preprocessed.
1301
1302 @item @var{file}.h
1303 C, C++, Objective-C or Objective-C++ header file to be turned into a
1304 precompiled header (default), or C, C++ header file to be turned into an
1305 Ada spec (via the @option{-fdump-ada-spec} switch).
1306
1307 @item @var{file}.cc
1308 @itemx @var{file}.cp
1309 @itemx @var{file}.cxx
1310 @itemx @var{file}.cpp
1311 @itemx @var{file}.CPP
1312 @itemx @var{file}.c++
1313 @itemx @var{file}.C
1314 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1315 the last two letters must both be literally @samp{x}. Likewise,
1316 @samp{.C} refers to a literal capital C@.
1317
1318 @item @var{file}.mm
1319 @itemx @var{file}.M
1320 Objective-C++ source code that must be preprocessed.
1321
1322 @item @var{file}.mii
1323 Objective-C++ source code that should not be preprocessed.
1324
1325 @item @var{file}.hh
1326 @itemx @var{file}.H
1327 @itemx @var{file}.hp
1328 @itemx @var{file}.hxx
1329 @itemx @var{file}.hpp
1330 @itemx @var{file}.HPP
1331 @itemx @var{file}.h++
1332 @itemx @var{file}.tcc
1333 C++ header file to be turned into a precompiled header or Ada spec.
1334
1335 @item @var{file}.f
1336 @itemx @var{file}.for
1337 @itemx @var{file}.ftn
1338 Fixed form Fortran source code that should not be preprocessed.
1339
1340 @item @var{file}.F
1341 @itemx @var{file}.FOR
1342 @itemx @var{file}.fpp
1343 @itemx @var{file}.FPP
1344 @itemx @var{file}.FTN
1345 Fixed form Fortran source code that must be preprocessed (with the traditional
1346 preprocessor).
1347
1348 @item @var{file}.f90
1349 @itemx @var{file}.f95
1350 @itemx @var{file}.f03
1351 @itemx @var{file}.f08
1352 Free form Fortran source code that should not be preprocessed.
1353
1354 @item @var{file}.F90
1355 @itemx @var{file}.F95
1356 @itemx @var{file}.F03
1357 @itemx @var{file}.F08
1358 Free form Fortran source code that must be preprocessed (with the
1359 traditional preprocessor).
1360
1361 @item @var{file}.go
1362 Go source code.
1363
1364 @item @var{file}.brig
1365 BRIG files (binary representation of HSAIL).
1366
1367 @item @var{file}.ads
1368 Ada source code file that contains a library unit declaration (a
1369 declaration of a package, subprogram, or generic, or a generic
1370 instantiation), or a library unit renaming declaration (a package,
1371 generic, or subprogram renaming declaration). Such files are also
1372 called @dfn{specs}.
1373
1374 @item @var{file}.adb
1375 Ada source code file containing a library unit body (a subprogram or
1376 package body). Such files are also called @dfn{bodies}.
1377
1378 @c GCC also knows about some suffixes for languages not yet included:
1379 @c Pascal:
1380 @c @var{file}.p
1381 @c @var{file}.pas
1382 @c Ratfor:
1383 @c @var{file}.r
1384
1385 @item @var{file}.s
1386 Assembler code.
1387
1388 @item @var{file}.S
1389 @itemx @var{file}.sx
1390 Assembler code that must be preprocessed.
1391
1392 @item @var{other}
1393 An object file to be fed straight into linking.
1394 Any file name with no recognized suffix is treated this way.
1395 @end table
1396
1397 @opindex x
1398 You can specify the input language explicitly with the @option{-x} option:
1399
1400 @table @gcctabopt
1401 @item -x @var{language}
1402 Specify explicitly the @var{language} for the following input files
1403 (rather than letting the compiler choose a default based on the file
1404 name suffix). This option applies to all following input files until
1405 the next @option{-x} option. Possible values for @var{language} are:
1406 @smallexample
1407 c c-header cpp-output
1408 c++ c++-header c++-cpp-output
1409 objective-c objective-c-header objective-c-cpp-output
1410 objective-c++ objective-c++-header objective-c++-cpp-output
1411 assembler assembler-with-cpp
1412 ada
1413 f77 f77-cpp-input f95 f95-cpp-input
1414 go
1415 brig
1416 @end smallexample
1417
1418 @item -x none
1419 Turn off any specification of a language, so that subsequent files are
1420 handled according to their file name suffixes (as they are if @option{-x}
1421 has not been used at all).
1422 @end table
1423
1424 If you only want some of the stages of compilation, you can use
1425 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1426 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1427 @command{gcc} is to stop. Note that some combinations (for example,
1428 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1429
1430 @table @gcctabopt
1431 @item -c
1432 @opindex c
1433 Compile or assemble the source files, but do not link. The linking
1434 stage simply is not done. The ultimate output is in the form of an
1435 object file for each source file.
1436
1437 By default, the object file name for a source file is made by replacing
1438 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1439
1440 Unrecognized input files, not requiring compilation or assembly, are
1441 ignored.
1442
1443 @item -S
1444 @opindex S
1445 Stop after the stage of compilation proper; do not assemble. The output
1446 is in the form of an assembler code file for each non-assembler input
1447 file specified.
1448
1449 By default, the assembler file name for a source file is made by
1450 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1451
1452 Input files that don't require compilation are ignored.
1453
1454 @item -E
1455 @opindex E
1456 Stop after the preprocessing stage; do not run the compiler proper. The
1457 output is in the form of preprocessed source code, which is sent to the
1458 standard output.
1459
1460 Input files that don't require preprocessing are ignored.
1461
1462 @cindex output file option
1463 @item -o @var{file}
1464 @opindex o
1465 Place output in file @var{file}. This applies to whatever
1466 sort of output is being produced, whether it be an executable file,
1467 an object file, an assembler file or preprocessed C code.
1468
1469 If @option{-o} is not specified, the default is to put an executable
1470 file in @file{a.out}, the object file for
1471 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1472 assembler file in @file{@var{source}.s}, a precompiled header file in
1473 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1474 standard output.
1475
1476 @item -v
1477 @opindex v
1478 Print (on standard error output) the commands executed to run the stages
1479 of compilation. Also print the version number of the compiler driver
1480 program and of the preprocessor and the compiler proper.
1481
1482 @item -###
1483 @opindex ###
1484 Like @option{-v} except the commands are not executed and arguments
1485 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1486 This is useful for shell scripts to capture the driver-generated command lines.
1487
1488 @item --help
1489 @opindex help
1490 Print (on the standard output) a description of the command-line options
1491 understood by @command{gcc}. If the @option{-v} option is also specified
1492 then @option{--help} is also passed on to the various processes
1493 invoked by @command{gcc}, so that they can display the command-line options
1494 they accept. If the @option{-Wextra} option has also been specified
1495 (prior to the @option{--help} option), then command-line options that
1496 have no documentation associated with them are also displayed.
1497
1498 @item --target-help
1499 @opindex target-help
1500 Print (on the standard output) a description of target-specific command-line
1501 options for each tool. For some targets extra target-specific
1502 information may also be printed.
1503
1504 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1505 Print (on the standard output) a description of the command-line
1506 options understood by the compiler that fit into all specified classes
1507 and qualifiers. These are the supported classes:
1508
1509 @table @asis
1510 @item @samp{optimizers}
1511 Display all of the optimization options supported by the
1512 compiler.
1513
1514 @item @samp{warnings}
1515 Display all of the options controlling warning messages
1516 produced by the compiler.
1517
1518 @item @samp{target}
1519 Display target-specific options. Unlike the
1520 @option{--target-help} option however, target-specific options of the
1521 linker and assembler are not displayed. This is because those
1522 tools do not currently support the extended @option{--help=} syntax.
1523
1524 @item @samp{params}
1525 Display the values recognized by the @option{--param}
1526 option.
1527
1528 @item @var{language}
1529 Display the options supported for @var{language}, where
1530 @var{language} is the name of one of the languages supported in this
1531 version of GCC@.
1532
1533 @item @samp{common}
1534 Display the options that are common to all languages.
1535 @end table
1536
1537 These are the supported qualifiers:
1538
1539 @table @asis
1540 @item @samp{undocumented}
1541 Display only those options that are undocumented.
1542
1543 @item @samp{joined}
1544 Display options taking an argument that appears after an equal
1545 sign in the same continuous piece of text, such as:
1546 @samp{--help=target}.
1547
1548 @item @samp{separate}
1549 Display options taking an argument that appears as a separate word
1550 following the original option, such as: @samp{-o output-file}.
1551 @end table
1552
1553 Thus for example to display all the undocumented target-specific
1554 switches supported by the compiler, use:
1555
1556 @smallexample
1557 --help=target,undocumented
1558 @end smallexample
1559
1560 The sense of a qualifier can be inverted by prefixing it with the
1561 @samp{^} character, so for example to display all binary warning
1562 options (i.e., ones that are either on or off and that do not take an
1563 argument) that have a description, use:
1564
1565 @smallexample
1566 --help=warnings,^joined,^undocumented
1567 @end smallexample
1568
1569 The argument to @option{--help=} should not consist solely of inverted
1570 qualifiers.
1571
1572 Combining several classes is possible, although this usually
1573 restricts the output so much that there is nothing to display. One
1574 case where it does work, however, is when one of the classes is
1575 @var{target}. For example, to display all the target-specific
1576 optimization options, use:
1577
1578 @smallexample
1579 --help=target,optimizers
1580 @end smallexample
1581
1582 The @option{--help=} option can be repeated on the command line. Each
1583 successive use displays its requested class of options, skipping
1584 those that have already been displayed.
1585
1586 If the @option{-Q} option appears on the command line before the
1587 @option{--help=} option, then the descriptive text displayed by
1588 @option{--help=} is changed. Instead of describing the displayed
1589 options, an indication is given as to whether the option is enabled,
1590 disabled or set to a specific value (assuming that the compiler
1591 knows this at the point where the @option{--help=} option is used).
1592
1593 Here is a truncated example from the ARM port of @command{gcc}:
1594
1595 @smallexample
1596 % gcc -Q -mabi=2 --help=target -c
1597 The following options are target specific:
1598 -mabi= 2
1599 -mabort-on-noreturn [disabled]
1600 -mapcs [disabled]
1601 @end smallexample
1602
1603 The output is sensitive to the effects of previous command-line
1604 options, so for example it is possible to find out which optimizations
1605 are enabled at @option{-O2} by using:
1606
1607 @smallexample
1608 -Q -O2 --help=optimizers
1609 @end smallexample
1610
1611 Alternatively you can discover which binary optimizations are enabled
1612 by @option{-O3} by using:
1613
1614 @smallexample
1615 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1616 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1617 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1618 @end smallexample
1619
1620 @item --version
1621 @opindex version
1622 Display the version number and copyrights of the invoked GCC@.
1623
1624 @item -pass-exit-codes
1625 @opindex pass-exit-codes
1626 Normally the @command{gcc} program exits with the code of 1 if any
1627 phase of the compiler returns a non-success return code. If you specify
1628 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1629 the numerically highest error produced by any phase returning an error
1630 indication. The C, C++, and Fortran front ends return 4 if an internal
1631 compiler error is encountered.
1632
1633 @item -pipe
1634 @opindex pipe
1635 Use pipes rather than temporary files for communication between the
1636 various stages of compilation. This fails to work on some systems where
1637 the assembler is unable to read from a pipe; but the GNU assembler has
1638 no trouble.
1639
1640 @item -specs=@var{file}
1641 @opindex specs
1642 Process @var{file} after the compiler reads in the standard @file{specs}
1643 file, in order to override the defaults which the @command{gcc} driver
1644 program uses when determining what switches to pass to @command{cc1},
1645 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1646 @option{-specs=@var{file}} can be specified on the command line, and they
1647 are processed in order, from left to right. @xref{Spec Files}, for
1648 information about the format of the @var{file}.
1649
1650 @item -wrapper
1651 @opindex wrapper
1652 Invoke all subcommands under a wrapper program. The name of the
1653 wrapper program and its parameters are passed as a comma separated
1654 list.
1655
1656 @smallexample
1657 gcc -c t.c -wrapper gdb,--args
1658 @end smallexample
1659
1660 @noindent
1661 This invokes all subprograms of @command{gcc} under
1662 @samp{gdb --args}, thus the invocation of @command{cc1} is
1663 @samp{gdb --args cc1 @dots{}}.
1664
1665 @item -ffile-prefix-map=@var{old}=@var{new}
1666 @opindex ffile-prefix-map
1667 When compiling files residing in directory @file{@var{old}}, record
1668 any references to them in the result of the compilation as if the
1669 files resided in directory @file{@var{new}} instead. Specifying this
1670 option is equivalent to specifying all the individual
1671 @option{-f*-prefix-map} options. This can be used to make reproducible
1672 builds that are location independent. See also
1673 @option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1674
1675 @item -fplugin=@var{name}.so
1676 @opindex fplugin
1677 Load the plugin code in file @var{name}.so, assumed to be a
1678 shared object to be dlopen'd by the compiler. The base name of
1679 the shared object file is used to identify the plugin for the
1680 purposes of argument parsing (See
1681 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1682 Each plugin should define the callback functions specified in the
1683 Plugins API.
1684
1685 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1686 @opindex fplugin-arg
1687 Define an argument called @var{key} with a value of @var{value}
1688 for the plugin called @var{name}.
1689
1690 @item -fdump-ada-spec@r{[}-slim@r{]}
1691 @opindex fdump-ada-spec
1692 For C and C++ source and include files, generate corresponding Ada specs.
1693 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1694 GNAT User's Guide}, which provides detailed documentation on this feature.
1695
1696 @item -fada-spec-parent=@var{unit}
1697 @opindex fada-spec-parent
1698 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1699 Ada specs as child units of parent @var{unit}.
1700
1701 @item -fdump-go-spec=@var{file}
1702 @opindex fdump-go-spec
1703 For input files in any language, generate corresponding Go
1704 declarations in @var{file}. This generates Go @code{const},
1705 @code{type}, @code{var}, and @code{func} declarations which may be a
1706 useful way to start writing a Go interface to code written in some
1707 other language.
1708
1709 @include @value{srcdir}/../libiberty/at-file.texi
1710 @end table
1711
1712 @node Invoking G++
1713 @section Compiling C++ Programs
1714
1715 @cindex suffixes for C++ source
1716 @cindex C++ source file suffixes
1717 C++ source files conventionally use one of the suffixes @samp{.C},
1718 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1719 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1720 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1721 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1722 files with these names and compiles them as C++ programs even if you
1723 call the compiler the same way as for compiling C programs (usually
1724 with the name @command{gcc}).
1725
1726 @findex g++
1727 @findex c++
1728 However, the use of @command{gcc} does not add the C++ library.
1729 @command{g++} is a program that calls GCC and automatically specifies linking
1730 against the C++ library. It treats @samp{.c},
1731 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1732 files unless @option{-x} is used. This program is also useful when
1733 precompiling a C header file with a @samp{.h} extension for use in C++
1734 compilations. On many systems, @command{g++} is also installed with
1735 the name @command{c++}.
1736
1737 @cindex invoking @command{g++}
1738 When you compile C++ programs, you may specify many of the same
1739 command-line options that you use for compiling programs in any
1740 language; or command-line options meaningful for C and related
1741 languages; or options that are meaningful only for C++ programs.
1742 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1743 explanations of options for languages related to C@.
1744 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1745 explanations of options that are meaningful only for C++ programs.
1746
1747 @node C Dialect Options
1748 @section Options Controlling C Dialect
1749 @cindex dialect options
1750 @cindex language dialect options
1751 @cindex options, dialect
1752
1753 The following options control the dialect of C (or languages derived
1754 from C, such as C++, Objective-C and Objective-C++) that the compiler
1755 accepts:
1756
1757 @table @gcctabopt
1758 @cindex ANSI support
1759 @cindex ISO support
1760 @item -ansi
1761 @opindex ansi
1762 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1763 equivalent to @option{-std=c++98}.
1764
1765 This turns off certain features of GCC that are incompatible with ISO
1766 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1767 such as the @code{asm} and @code{typeof} keywords, and
1768 predefined macros such as @code{unix} and @code{vax} that identify the
1769 type of system you are using. It also enables the undesirable and
1770 rarely used ISO trigraph feature. For the C compiler,
1771 it disables recognition of C++ style @samp{//} comments as well as
1772 the @code{inline} keyword.
1773
1774 The alternate keywords @code{__asm__}, @code{__extension__},
1775 @code{__inline__} and @code{__typeof__} continue to work despite
1776 @option{-ansi}. You would not want to use them in an ISO C program, of
1777 course, but it is useful to put them in header files that might be included
1778 in compilations done with @option{-ansi}. Alternate predefined macros
1779 such as @code{__unix__} and @code{__vax__} are also available, with or
1780 without @option{-ansi}.
1781
1782 The @option{-ansi} option does not cause non-ISO programs to be
1783 rejected gratuitously. For that, @option{-Wpedantic} is required in
1784 addition to @option{-ansi}. @xref{Warning Options}.
1785
1786 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1787 option is used. Some header files may notice this macro and refrain
1788 from declaring certain functions or defining certain macros that the
1789 ISO standard doesn't call for; this is to avoid interfering with any
1790 programs that might use these names for other things.
1791
1792 Functions that are normally built in but do not have semantics
1793 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1794 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1795 built-in functions provided by GCC}, for details of the functions
1796 affected.
1797
1798 @item -std=
1799 @opindex std
1800 Determine the language standard. @xref{Standards,,Language Standards
1801 Supported by GCC}, for details of these standard versions. This option
1802 is currently only supported when compiling C or C++.
1803
1804 The compiler can accept several base standards, such as @samp{c90} or
1805 @samp{c++98}, and GNU dialects of those standards, such as
1806 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1807 compiler accepts all programs following that standard plus those
1808 using GNU extensions that do not contradict it. For example,
1809 @option{-std=c90} turns off certain features of GCC that are
1810 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1811 keywords, but not other GNU extensions that do not have a meaning in
1812 ISO C90, such as omitting the middle term of a @code{?:}
1813 expression. On the other hand, when a GNU dialect of a standard is
1814 specified, all features supported by the compiler are enabled, even when
1815 those features change the meaning of the base standard. As a result, some
1816 strict-conforming programs may be rejected. The particular standard
1817 is used by @option{-Wpedantic} to identify which features are GNU
1818 extensions given that version of the standard. For example
1819 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1820 comments, while @option{-std=gnu99 -Wpedantic} does not.
1821
1822 A value for this option must be provided; possible values are
1823
1824 @table @samp
1825 @item c90
1826 @itemx c89
1827 @itemx iso9899:1990
1828 Support all ISO C90 programs (certain GNU extensions that conflict
1829 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1830
1831 @item iso9899:199409
1832 ISO C90 as modified in amendment 1.
1833
1834 @item c99
1835 @itemx c9x
1836 @itemx iso9899:1999
1837 @itemx iso9899:199x
1838 ISO C99. This standard is substantially completely supported, modulo
1839 bugs and floating-point issues
1840 (mainly but not entirely relating to optional C99 features from
1841 Annexes F and G). See
1842 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1843 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1844
1845 @item c11
1846 @itemx c1x
1847 @itemx iso9899:2011
1848 ISO C11, the 2011 revision of the ISO C standard. This standard is
1849 substantially completely supported, modulo bugs, floating-point issues
1850 (mainly but not entirely relating to optional C11 features from
1851 Annexes F and G) and the optional Annexes K (Bounds-checking
1852 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1853
1854 @item c17
1855 @itemx c18
1856 @itemx iso9899:2017
1857 @itemx iso9899:2018
1858 ISO C17, the 2017 revision of the ISO C standard (expected to be
1859 published in 2018). This standard is
1860 same as C11 except for corrections of defects (all of which are also
1861 applied with @option{-std=c11}) and a new value of
1862 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1863
1864 @item gnu90
1865 @itemx gnu89
1866 GNU dialect of ISO C90 (including some C99 features).
1867
1868 @item gnu99
1869 @itemx gnu9x
1870 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1871
1872 @item gnu11
1873 @itemx gnu1x
1874 GNU dialect of ISO C11.
1875 The name @samp{gnu1x} is deprecated.
1876
1877 @item gnu17
1878 @itemx gnu18
1879 GNU dialect of ISO C17. This is the default for C code.
1880
1881 @item c++98
1882 @itemx c++03
1883 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1884 additional defect reports. Same as @option{-ansi} for C++ code.
1885
1886 @item gnu++98
1887 @itemx gnu++03
1888 GNU dialect of @option{-std=c++98}.
1889
1890 @item c++11
1891 @itemx c++0x
1892 The 2011 ISO C++ standard plus amendments.
1893 The name @samp{c++0x} is deprecated.
1894
1895 @item gnu++11
1896 @itemx gnu++0x
1897 GNU dialect of @option{-std=c++11}.
1898 The name @samp{gnu++0x} is deprecated.
1899
1900 @item c++14
1901 @itemx c++1y
1902 The 2014 ISO C++ standard plus amendments.
1903 The name @samp{c++1y} is deprecated.
1904
1905 @item gnu++14
1906 @itemx gnu++1y
1907 GNU dialect of @option{-std=c++14}.
1908 This is the default for C++ code.
1909 The name @samp{gnu++1y} is deprecated.
1910
1911 @item c++17
1912 @itemx c++1z
1913 The 2017 ISO C++ standard plus amendments.
1914 The name @samp{c++1z} is deprecated.
1915
1916 @item gnu++17
1917 @itemx gnu++1z
1918 GNU dialect of @option{-std=c++17}.
1919 The name @samp{gnu++1z} is deprecated.
1920
1921 @item c++2a
1922 The next revision of the ISO C++ standard, tentatively planned for
1923 2020. Support is highly experimental, and will almost certainly
1924 change in incompatible ways in future releases.
1925
1926 @item gnu++2a
1927 GNU dialect of @option{-std=c++2a}. Support is highly experimental,
1928 and will almost certainly change in incompatible ways in future
1929 releases.
1930 @end table
1931
1932 @item -fgnu89-inline
1933 @opindex fgnu89-inline
1934 The option @option{-fgnu89-inline} tells GCC to use the traditional
1935 GNU semantics for @code{inline} functions when in C99 mode.
1936 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1937 Using this option is roughly equivalent to adding the
1938 @code{gnu_inline} function attribute to all inline functions
1939 (@pxref{Function Attributes}).
1940
1941 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1942 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1943 specifies the default behavior).
1944 This option is not supported in @option{-std=c90} or
1945 @option{-std=gnu90} mode.
1946
1947 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1948 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1949 in effect for @code{inline} functions. @xref{Common Predefined
1950 Macros,,,cpp,The C Preprocessor}.
1951
1952 @item -fpermitted-flt-eval-methods=@var{style}
1953 @opindex fpermitted-flt-eval-methods
1954 @opindex fpermitted-flt-eval-methods=c11
1955 @opindex fpermitted-flt-eval-methods=ts-18661-3
1956 ISO/IEC TS 18661-3 defines new permissible values for
1957 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
1958 a semantic type that is an interchange or extended format should be
1959 evaluated to the precision and range of that type. These new values are
1960 a superset of those permitted under C99/C11, which does not specify the
1961 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
1962 conforming to C11 may not have been written expecting the possibility of
1963 the new values.
1964
1965 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
1966 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
1967 or the extended set of values specified in ISO/IEC TS 18661-3.
1968
1969 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
1970
1971 The default when in a standards compliant mode (@option{-std=c11} or similar)
1972 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
1973 dialect (@option{-std=gnu11} or similar) is
1974 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
1975
1976 @item -aux-info @var{filename}
1977 @opindex aux-info
1978 Output to the given filename prototyped declarations for all functions
1979 declared and/or defined in a translation unit, including those in header
1980 files. This option is silently ignored in any language other than C@.
1981
1982 Besides declarations, the file indicates, in comments, the origin of
1983 each declaration (source file and line), whether the declaration was
1984 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1985 @samp{O} for old, respectively, in the first character after the line
1986 number and the colon), and whether it came from a declaration or a
1987 definition (@samp{C} or @samp{F}, respectively, in the following
1988 character). In the case of function definitions, a K&R-style list of
1989 arguments followed by their declarations is also provided, inside
1990 comments, after the declaration.
1991
1992 @item -fallow-parameterless-variadic-functions
1993 @opindex fallow-parameterless-variadic-functions
1994 Accept variadic functions without named parameters.
1995
1996 Although it is possible to define such a function, this is not very
1997 useful as it is not possible to read the arguments. This is only
1998 supported for C as this construct is allowed by C++.
1999
2000 @item -fno-asm
2001 @opindex fno-asm
2002 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2003 keyword, so that code can use these words as identifiers. You can use
2004 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2005 instead. @option{-ansi} implies @option{-fno-asm}.
2006
2007 In C++, this switch only affects the @code{typeof} keyword, since
2008 @code{asm} and @code{inline} are standard keywords. You may want to
2009 use the @option{-fno-gnu-keywords} flag instead, which has the same
2010 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2011 switch only affects the @code{asm} and @code{typeof} keywords, since
2012 @code{inline} is a standard keyword in ISO C99.
2013
2014 @item -fno-builtin
2015 @itemx -fno-builtin-@var{function}
2016 @opindex fno-builtin
2017 @cindex built-in functions
2018 Don't recognize built-in functions that do not begin with
2019 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
2020 functions provided by GCC}, for details of the functions affected,
2021 including those which are not built-in functions when @option{-ansi} or
2022 @option{-std} options for strict ISO C conformance are used because they
2023 do not have an ISO standard meaning.
2024
2025 GCC normally generates special code to handle certain built-in functions
2026 more efficiently; for instance, calls to @code{alloca} may become single
2027 instructions which adjust the stack directly, and calls to @code{memcpy}
2028 may become inline copy loops. The resulting code is often both smaller
2029 and faster, but since the function calls no longer appear as such, you
2030 cannot set a breakpoint on those calls, nor can you change the behavior
2031 of the functions by linking with a different library. In addition,
2032 when a function is recognized as a built-in function, GCC may use
2033 information about that function to warn about problems with calls to
2034 that function, or to generate more efficient code, even if the
2035 resulting code still contains calls to that function. For example,
2036 warnings are given with @option{-Wformat} for bad calls to
2037 @code{printf} when @code{printf} is built in and @code{strlen} is
2038 known not to modify global memory.
2039
2040 With the @option{-fno-builtin-@var{function}} option
2041 only the built-in function @var{function} is
2042 disabled. @var{function} must not begin with @samp{__builtin_}. If a
2043 function is named that is not built-in in this version of GCC, this
2044 option is ignored. There is no corresponding
2045 @option{-fbuiltin-@var{function}} option; if you wish to enable
2046 built-in functions selectively when using @option{-fno-builtin} or
2047 @option{-ffreestanding}, you may define macros such as:
2048
2049 @smallexample
2050 #define abs(n) __builtin_abs ((n))
2051 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2052 @end smallexample
2053
2054 @item -fgimple
2055 @opindex fgimple
2056
2057 Enable parsing of function definitions marked with @code{__GIMPLE}.
2058 This is an experimental feature that allows unit testing of GIMPLE
2059 passes.
2060
2061 @item -fhosted
2062 @opindex fhosted
2063 @cindex hosted environment
2064
2065 Assert that compilation targets a hosted environment. This implies
2066 @option{-fbuiltin}. A hosted environment is one in which the
2067 entire standard library is available, and in which @code{main} has a return
2068 type of @code{int}. Examples are nearly everything except a kernel.
2069 This is equivalent to @option{-fno-freestanding}.
2070
2071 @item -ffreestanding
2072 @opindex ffreestanding
2073 @cindex hosted environment
2074
2075 Assert that compilation targets a freestanding environment. This
2076 implies @option{-fno-builtin}. A freestanding environment
2077 is one in which the standard library may not exist, and program startup may
2078 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2079 This is equivalent to @option{-fno-hosted}.
2080
2081 @xref{Standards,,Language Standards Supported by GCC}, for details of
2082 freestanding and hosted environments.
2083
2084 @item -fopenacc
2085 @opindex fopenacc
2086 @cindex OpenACC accelerator programming
2087 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2088 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2089 compiler generates accelerated code according to the OpenACC Application
2090 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}. This option
2091 implies @option{-pthread}, and thus is only supported on targets that
2092 have support for @option{-pthread}.
2093
2094 @item -fopenacc-dim=@var{geom}
2095 @opindex fopenacc-dim
2096 @cindex OpenACC accelerator programming
2097 Specify default compute dimensions for parallel offload regions that do
2098 not explicitly specify. The @var{geom} value is a triple of
2099 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2100 can be omitted, to use a target-specific default value.
2101
2102 @item -fopenmp
2103 @opindex fopenmp
2104 @cindex OpenMP parallel
2105 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2106 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2107 compiler generates parallel code according to the OpenMP Application
2108 Program Interface v4.5 @w{@uref{http://www.openmp.org/}}. This option
2109 implies @option{-pthread}, and thus is only supported on targets that
2110 have support for @option{-pthread}. @option{-fopenmp} implies
2111 @option{-fopenmp-simd}.
2112
2113 @item -fopenmp-simd
2114 @opindex fopenmp-simd
2115 @cindex OpenMP SIMD
2116 @cindex SIMD
2117 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2118 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2119 are ignored.
2120
2121 @item -fgnu-tm
2122 @opindex fgnu-tm
2123 When the option @option{-fgnu-tm} is specified, the compiler
2124 generates code for the Linux variant of Intel's current Transactional
2125 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2126 an experimental feature whose interface may change in future versions
2127 of GCC, as the official specification changes. Please note that not
2128 all architectures are supported for this feature.
2129
2130 For more information on GCC's support for transactional memory,
2131 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2132 Transactional Memory Library}.
2133
2134 Note that the transactional memory feature is not supported with
2135 non-call exceptions (@option{-fnon-call-exceptions}).
2136
2137 @item -fms-extensions
2138 @opindex fms-extensions
2139 Accept some non-standard constructs used in Microsoft header files.
2140
2141 In C++ code, this allows member names in structures to be similar
2142 to previous types declarations.
2143
2144 @smallexample
2145 typedef int UOW;
2146 struct ABC @{
2147 UOW UOW;
2148 @};
2149 @end smallexample
2150
2151 Some cases of unnamed fields in structures and unions are only
2152 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2153 fields within structs/unions}, for details.
2154
2155 Note that this option is off for all targets but x86
2156 targets using ms-abi.
2157
2158 @item -fplan9-extensions
2159 @opindex fplan9-extensions
2160 Accept some non-standard constructs used in Plan 9 code.
2161
2162 This enables @option{-fms-extensions}, permits passing pointers to
2163 structures with anonymous fields to functions that expect pointers to
2164 elements of the type of the field, and permits referring to anonymous
2165 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2166 struct/union fields within structs/unions}, for details. This is only
2167 supported for C, not C++.
2168
2169 @item -fcond-mismatch
2170 @opindex fcond-mismatch
2171 Allow conditional expressions with mismatched types in the second and
2172 third arguments. The value of such an expression is void. This option
2173 is not supported for C++.
2174
2175 @item -flax-vector-conversions
2176 @opindex flax-vector-conversions
2177 Allow implicit conversions between vectors with differing numbers of
2178 elements and/or incompatible element types. This option should not be
2179 used for new code.
2180
2181 @item -funsigned-char
2182 @opindex funsigned-char
2183 Let the type @code{char} be unsigned, like @code{unsigned char}.
2184
2185 Each kind of machine has a default for what @code{char} should
2186 be. It is either like @code{unsigned char} by default or like
2187 @code{signed char} by default.
2188
2189 Ideally, a portable program should always use @code{signed char} or
2190 @code{unsigned char} when it depends on the signedness of an object.
2191 But many programs have been written to use plain @code{char} and
2192 expect it to be signed, or expect it to be unsigned, depending on the
2193 machines they were written for. This option, and its inverse, let you
2194 make such a program work with the opposite default.
2195
2196 The type @code{char} is always a distinct type from each of
2197 @code{signed char} or @code{unsigned char}, even though its behavior
2198 is always just like one of those two.
2199
2200 @item -fsigned-char
2201 @opindex fsigned-char
2202 Let the type @code{char} be signed, like @code{signed char}.
2203
2204 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2205 the negative form of @option{-funsigned-char}. Likewise, the option
2206 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2207
2208 @item -fsigned-bitfields
2209 @itemx -funsigned-bitfields
2210 @itemx -fno-signed-bitfields
2211 @itemx -fno-unsigned-bitfields
2212 @opindex fsigned-bitfields
2213 @opindex funsigned-bitfields
2214 @opindex fno-signed-bitfields
2215 @opindex fno-unsigned-bitfields
2216 These options control whether a bit-field is signed or unsigned, when the
2217 declaration does not use either @code{signed} or @code{unsigned}. By
2218 default, such a bit-field is signed, because this is consistent: the
2219 basic integer types such as @code{int} are signed types.
2220
2221 @item -fsso-struct=@var{endianness}
2222 @opindex fsso-struct
2223 Set the default scalar storage order of structures and unions to the
2224 specified endianness. The accepted values are @samp{big-endian},
2225 @samp{little-endian} and @samp{native} for the native endianness of
2226 the target (the default). This option is not supported for C++.
2227
2228 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2229 code that is not binary compatible with code generated without it if the
2230 specified endianness is not the native endianness of the target.
2231 @end table
2232
2233 @node C++ Dialect Options
2234 @section Options Controlling C++ Dialect
2235
2236 @cindex compiler options, C++
2237 @cindex C++ options, command-line
2238 @cindex options, C++
2239 This section describes the command-line options that are only meaningful
2240 for C++ programs. You can also use most of the GNU compiler options
2241 regardless of what language your program is in. For example, you
2242 might compile a file @file{firstClass.C} like this:
2243
2244 @smallexample
2245 g++ -g -fstrict-enums -O -c firstClass.C
2246 @end smallexample
2247
2248 @noindent
2249 In this example, only @option{-fstrict-enums} is an option meant
2250 only for C++ programs; you can use the other options with any
2251 language supported by GCC@.
2252
2253 Some options for compiling C programs, such as @option{-std}, are also
2254 relevant for C++ programs.
2255 @xref{C Dialect Options,,Options Controlling C Dialect}.
2256
2257 Here is a list of options that are @emph{only} for compiling C++ programs:
2258
2259 @table @gcctabopt
2260
2261 @item -fabi-version=@var{n}
2262 @opindex fabi-version
2263 Use version @var{n} of the C++ ABI@. The default is version 0.
2264
2265 Version 0 refers to the version conforming most closely to
2266 the C++ ABI specification. Therefore, the ABI obtained using version 0
2267 will change in different versions of G++ as ABI bugs are fixed.
2268
2269 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2270
2271 Version 2 is the version of the C++ ABI that first appeared in G++
2272 3.4, and was the default through G++ 4.9.
2273
2274 Version 3 corrects an error in mangling a constant address as a
2275 template argument.
2276
2277 Version 4, which first appeared in G++ 4.5, implements a standard
2278 mangling for vector types.
2279
2280 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2281 attribute const/volatile on function pointer types, decltype of a
2282 plain decl, and use of a function parameter in the declaration of
2283 another parameter.
2284
2285 Version 6, which first appeared in G++ 4.7, corrects the promotion
2286 behavior of C++11 scoped enums and the mangling of template argument
2287 packs, const/static_cast, prefix ++ and --, and a class scope function
2288 used as a template argument.
2289
2290 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2291 builtin type and corrects the mangling of lambdas in default argument
2292 scope.
2293
2294 Version 8, which first appeared in G++ 4.9, corrects the substitution
2295 behavior of function types with function-cv-qualifiers.
2296
2297 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2298 @code{nullptr_t}.
2299
2300 Version 10, which first appeared in G++ 6.1, adds mangling of
2301 attributes that affect type identity, such as ia32 calling convention
2302 attributes (e.g. @samp{stdcall}).
2303
2304 Version 11, which first appeared in G++ 7, corrects the mangling of
2305 sizeof... expressions and operator names. For multiple entities with
2306 the same name within a function, that are declared in different scopes,
2307 the mangling now changes starting with the twelfth occurrence. It also
2308 implies @option{-fnew-inheriting-ctors}.
2309
2310 See also @option{-Wabi}.
2311
2312 @item -fabi-compat-version=@var{n}
2313 @opindex fabi-compat-version
2314 On targets that support strong aliases, G++
2315 works around mangling changes by creating an alias with the correct
2316 mangled name when defining a symbol with an incorrect mangled name.
2317 This switch specifies which ABI version to use for the alias.
2318
2319 With @option{-fabi-version=0} (the default), this defaults to 8 (GCC 5
2320 compatibility). If another ABI version is explicitly selected, this
2321 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2322 use @option{-fabi-compat-version=2}.
2323
2324 If this option is not provided but @option{-Wabi=@var{n}} is, that
2325 version is used for compatibility aliases. If this option is provided
2326 along with @option{-Wabi} (without the version), the version from this
2327 option is used for the warning.
2328
2329 @item -fno-access-control
2330 @opindex fno-access-control
2331 Turn off all access checking. This switch is mainly useful for working
2332 around bugs in the access control code.
2333
2334 @item -faligned-new
2335 @opindex faligned-new
2336 Enable support for C++17 @code{new} of types that require more
2337 alignment than @code{void* ::operator new(std::size_t)} provides. A
2338 numeric argument such as @code{-faligned-new=32} can be used to
2339 specify how much alignment (in bytes) is provided by that function,
2340 but few users will need to override the default of
2341 @code{alignof(std::max_align_t)}.
2342
2343 This flag is enabled by default for @option{-std=c++17}.
2344
2345 @item -fcheck-new
2346 @opindex fcheck-new
2347 Check that the pointer returned by @code{operator new} is non-null
2348 before attempting to modify the storage allocated. This check is
2349 normally unnecessary because the C++ standard specifies that
2350 @code{operator new} only returns @code{0} if it is declared
2351 @code{throw()}, in which case the compiler always checks the
2352 return value even without this option. In all other cases, when
2353 @code{operator new} has a non-empty exception specification, memory
2354 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2355 @samp{new (nothrow)}.
2356
2357 @item -fconcepts
2358 @opindex fconcepts
2359 Enable support for the C++ Extensions for Concepts Technical
2360 Specification, ISO 19217 (2015), which allows code like
2361
2362 @smallexample
2363 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2364 template <Addable T> T add (T a, T b) @{ return a + b; @}
2365 @end smallexample
2366
2367 @item -fconstexpr-depth=@var{n}
2368 @opindex fconstexpr-depth
2369 Set the maximum nested evaluation depth for C++11 constexpr functions
2370 to @var{n}. A limit is needed to detect endless recursion during
2371 constant expression evaluation. The minimum specified by the standard
2372 is 512.
2373
2374 @item -fconstexpr-loop-limit=@var{n}
2375 @opindex fconstexpr-loop-limit
2376 Set the maximum number of iterations for a loop in C++14 constexpr functions
2377 to @var{n}. A limit is needed to detect infinite loops during
2378 constant expression evaluation. The default is 262144 (1<<18).
2379
2380 @item -fdeduce-init-list
2381 @opindex fdeduce-init-list
2382 Enable deduction of a template type parameter as
2383 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2384
2385 @smallexample
2386 template <class T> auto forward(T t) -> decltype (realfn (t))
2387 @{
2388 return realfn (t);
2389 @}
2390
2391 void f()
2392 @{
2393 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2394 @}
2395 @end smallexample
2396
2397 This deduction was implemented as a possible extension to the
2398 originally proposed semantics for the C++11 standard, but was not part
2399 of the final standard, so it is disabled by default. This option is
2400 deprecated, and may be removed in a future version of G++.
2401
2402 @item -ffriend-injection
2403 @opindex ffriend-injection
2404 Inject friend functions into the enclosing namespace, so that they are
2405 visible outside the scope of the class in which they are declared.
2406 Friend functions were documented to work this way in the old Annotated
2407 C++ Reference Manual.
2408 However, in ISO C++ a friend function that is not declared
2409 in an enclosing scope can only be found using argument dependent
2410 lookup. GCC defaults to the standard behavior.
2411
2412 This option is for compatibility, and may be removed in a future
2413 release of G++.
2414
2415 @item -fno-elide-constructors
2416 @opindex fno-elide-constructors
2417 The C++ standard allows an implementation to omit creating a temporary
2418 that is only used to initialize another object of the same type.
2419 Specifying this option disables that optimization, and forces G++ to
2420 call the copy constructor in all cases. This option also causes G++
2421 to call trivial member functions which otherwise would be expanded inline.
2422
2423 In C++17, the compiler is required to omit these temporaries, but this
2424 option still affects trivial member functions.
2425
2426 @item -fno-enforce-eh-specs
2427 @opindex fno-enforce-eh-specs
2428 Don't generate code to check for violation of exception specifications
2429 at run time. This option violates the C++ standard, but may be useful
2430 for reducing code size in production builds, much like defining
2431 @code{NDEBUG}. This does not give user code permission to throw
2432 exceptions in violation of the exception specifications; the compiler
2433 still optimizes based on the specifications, so throwing an
2434 unexpected exception results in undefined behavior at run time.
2435
2436 @item -fextern-tls-init
2437 @itemx -fno-extern-tls-init
2438 @opindex fextern-tls-init
2439 @opindex fno-extern-tls-init
2440 The C++11 and OpenMP standards allow @code{thread_local} and
2441 @code{threadprivate} variables to have dynamic (runtime)
2442 initialization. To support this, any use of such a variable goes
2443 through a wrapper function that performs any necessary initialization.
2444 When the use and definition of the variable are in the same
2445 translation unit, this overhead can be optimized away, but when the
2446 use is in a different translation unit there is significant overhead
2447 even if the variable doesn't actually need dynamic initialization. If
2448 the programmer can be sure that no use of the variable in a
2449 non-defining TU needs to trigger dynamic initialization (either
2450 because the variable is statically initialized, or a use of the
2451 variable in the defining TU will be executed before any uses in
2452 another TU), they can avoid this overhead with the
2453 @option{-fno-extern-tls-init} option.
2454
2455 On targets that support symbol aliases, the default is
2456 @option{-fextern-tls-init}. On targets that do not support symbol
2457 aliases, the default is @option{-fno-extern-tls-init}.
2458
2459 @item -ffor-scope
2460 @itemx -fno-for-scope
2461 @opindex ffor-scope
2462 @opindex fno-for-scope
2463 If @option{-ffor-scope} is specified, the scope of variables declared in
2464 a @i{for-init-statement} is limited to the @code{for} loop itself,
2465 as specified by the C++ standard.
2466 If @option{-fno-for-scope} is specified, the scope of variables declared in
2467 a @i{for-init-statement} extends to the end of the enclosing scope,
2468 as was the case in old versions of G++, and other (traditional)
2469 implementations of C++.
2470
2471 This option is deprecated and the associated non-standard
2472 functionality will be removed.
2473
2474 @item -fno-gnu-keywords
2475 @opindex fno-gnu-keywords
2476 Do not recognize @code{typeof} as a keyword, so that code can use this
2477 word as an identifier. You can use the keyword @code{__typeof__} instead.
2478 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2479 @option{-std=c++98}, @option{-std=c++11}, etc.
2480
2481 @item -fno-implicit-templates
2482 @opindex fno-implicit-templates
2483 Never emit code for non-inline templates that are instantiated
2484 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2485 @xref{Template Instantiation}, for more information.
2486
2487 @item -fno-implicit-inline-templates
2488 @opindex fno-implicit-inline-templates
2489 Don't emit code for implicit instantiations of inline templates, either.
2490 The default is to handle inlines differently so that compiles with and
2491 without optimization need the same set of explicit instantiations.
2492
2493 @item -fno-implement-inlines
2494 @opindex fno-implement-inlines
2495 To save space, do not emit out-of-line copies of inline functions
2496 controlled by @code{#pragma implementation}. This causes linker
2497 errors if these functions are not inlined everywhere they are called.
2498
2499 @item -fms-extensions
2500 @opindex fms-extensions
2501 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2502 int and getting a pointer to member function via non-standard syntax.
2503
2504 @item -fnew-inheriting-ctors
2505 @opindex fnew-inheriting-ctors
2506 Enable the P0136 adjustment to the semantics of C++11 constructor
2507 inheritance. This is part of C++17 but also considered to be a Defect
2508 Report against C++11 and C++14. This flag is enabled by default
2509 unless @option{-fabi-version=10} or lower is specified.
2510
2511 @item -fnew-ttp-matching
2512 @opindex fnew-ttp-matching
2513 Enable the P0522 resolution to Core issue 150, template template
2514 parameters and default arguments: this allows a template with default
2515 template arguments as an argument for a template template parameter
2516 with fewer template parameters. This flag is enabled by default for
2517 @option{-std=c++17}.
2518
2519 @item -fno-nonansi-builtins
2520 @opindex fno-nonansi-builtins
2521 Disable built-in declarations of functions that are not mandated by
2522 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2523 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2524
2525 @item -fnothrow-opt
2526 @opindex fnothrow-opt
2527 Treat a @code{throw()} exception specification as if it were a
2528 @code{noexcept} specification to reduce or eliminate the text size
2529 overhead relative to a function with no exception specification. If
2530 the function has local variables of types with non-trivial
2531 destructors, the exception specification actually makes the
2532 function smaller because the EH cleanups for those variables can be
2533 optimized away. The semantic effect is that an exception thrown out of
2534 a function with such an exception specification results in a call
2535 to @code{terminate} rather than @code{unexpected}.
2536
2537 @item -fno-operator-names
2538 @opindex fno-operator-names
2539 Do not treat the operator name keywords @code{and}, @code{bitand},
2540 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2541 synonyms as keywords.
2542
2543 @item -fno-optional-diags
2544 @opindex fno-optional-diags
2545 Disable diagnostics that the standard says a compiler does not need to
2546 issue. Currently, the only such diagnostic issued by G++ is the one for
2547 a name having multiple meanings within a class.
2548
2549 @item -fpermissive
2550 @opindex fpermissive
2551 Downgrade some diagnostics about nonconformant code from errors to
2552 warnings. Thus, using @option{-fpermissive} allows some
2553 nonconforming code to compile.
2554
2555 @item -fno-pretty-templates
2556 @opindex fno-pretty-templates
2557 When an error message refers to a specialization of a function
2558 template, the compiler normally prints the signature of the
2559 template followed by the template arguments and any typedefs or
2560 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2561 rather than @code{void f(int)}) so that it's clear which template is
2562 involved. When an error message refers to a specialization of a class
2563 template, the compiler omits any template arguments that match
2564 the default template arguments for that template. If either of these
2565 behaviors make it harder to understand the error message rather than
2566 easier, you can use @option{-fno-pretty-templates} to disable them.
2567
2568 @item -frepo
2569 @opindex frepo
2570 Enable automatic template instantiation at link time. This option also
2571 implies @option{-fno-implicit-templates}. @xref{Template
2572 Instantiation}, for more information.
2573
2574 @item -fno-rtti
2575 @opindex fno-rtti
2576 Disable generation of information about every class with virtual
2577 functions for use by the C++ run-time type identification features
2578 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2579 of the language, you can save some space by using this flag. Note that
2580 exception handling uses the same information, but G++ generates it as
2581 needed. The @code{dynamic_cast} operator can still be used for casts that
2582 do not require run-time type information, i.e.@: casts to @code{void *} or to
2583 unambiguous base classes.
2584
2585 @item -fsized-deallocation
2586 @opindex fsized-deallocation
2587 Enable the built-in global declarations
2588 @smallexample
2589 void operator delete (void *, std::size_t) noexcept;
2590 void operator delete[] (void *, std::size_t) noexcept;
2591 @end smallexample
2592 as introduced in C++14. This is useful for user-defined replacement
2593 deallocation functions that, for example, use the size of the object
2594 to make deallocation faster. Enabled by default under
2595 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2596 warns about places that might want to add a definition.
2597
2598 @item -fstrict-enums
2599 @opindex fstrict-enums
2600 Allow the compiler to optimize using the assumption that a value of
2601 enumerated type can only be one of the values of the enumeration (as
2602 defined in the C++ standard; basically, a value that can be
2603 represented in the minimum number of bits needed to represent all the
2604 enumerators). This assumption may not be valid if the program uses a
2605 cast to convert an arbitrary integer value to the enumerated type.
2606
2607 @item -fstrong-eval-order
2608 @opindex fstrong-eval-order
2609 Evaluate member access, array subscripting, and shift expressions in
2610 left-to-right order, and evaluate assignment in right-to-left order,
2611 as adopted for C++17. Enabled by default with @option{-std=c++17}.
2612 @option{-fstrong-eval-order=some} enables just the ordering of member
2613 access and shift expressions, and is the default without
2614 @option{-std=c++17}.
2615
2616 @item -ftemplate-backtrace-limit=@var{n}
2617 @opindex ftemplate-backtrace-limit
2618 Set the maximum number of template instantiation notes for a single
2619 warning or error to @var{n}. The default value is 10.
2620
2621 @item -ftemplate-depth=@var{n}
2622 @opindex ftemplate-depth
2623 Set the maximum instantiation depth for template classes to @var{n}.
2624 A limit on the template instantiation depth is needed to detect
2625 endless recursions during template class instantiation. ANSI/ISO C++
2626 conforming programs must not rely on a maximum depth greater than 17
2627 (changed to 1024 in C++11). The default value is 900, as the compiler
2628 can run out of stack space before hitting 1024 in some situations.
2629
2630 @item -fno-threadsafe-statics
2631 @opindex fno-threadsafe-statics
2632 Do not emit the extra code to use the routines specified in the C++
2633 ABI for thread-safe initialization of local statics. You can use this
2634 option to reduce code size slightly in code that doesn't need to be
2635 thread-safe.
2636
2637 @item -fuse-cxa-atexit
2638 @opindex fuse-cxa-atexit
2639 Register destructors for objects with static storage duration with the
2640 @code{__cxa_atexit} function rather than the @code{atexit} function.
2641 This option is required for fully standards-compliant handling of static
2642 destructors, but only works if your C library supports
2643 @code{__cxa_atexit}.
2644
2645 @item -fno-use-cxa-get-exception-ptr
2646 @opindex fno-use-cxa-get-exception-ptr
2647 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2648 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2649 if the runtime routine is not available.
2650
2651 @item -fvisibility-inlines-hidden
2652 @opindex fvisibility-inlines-hidden
2653 This switch declares that the user does not attempt to compare
2654 pointers to inline functions or methods where the addresses of the two functions
2655 are taken in different shared objects.
2656
2657 The effect of this is that GCC may, effectively, mark inline methods with
2658 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2659 appear in the export table of a DSO and do not require a PLT indirection
2660 when used within the DSO@. Enabling this option can have a dramatic effect
2661 on load and link times of a DSO as it massively reduces the size of the
2662 dynamic export table when the library makes heavy use of templates.
2663
2664 The behavior of this switch is not quite the same as marking the
2665 methods as hidden directly, because it does not affect static variables
2666 local to the function or cause the compiler to deduce that
2667 the function is defined in only one shared object.
2668
2669 You may mark a method as having a visibility explicitly to negate the
2670 effect of the switch for that method. For example, if you do want to
2671 compare pointers to a particular inline method, you might mark it as
2672 having default visibility. Marking the enclosing class with explicit
2673 visibility has no effect.
2674
2675 Explicitly instantiated inline methods are unaffected by this option
2676 as their linkage might otherwise cross a shared library boundary.
2677 @xref{Template Instantiation}.
2678
2679 @item -fvisibility-ms-compat
2680 @opindex fvisibility-ms-compat
2681 This flag attempts to use visibility settings to make GCC's C++
2682 linkage model compatible with that of Microsoft Visual Studio.
2683
2684 The flag makes these changes to GCC's linkage model:
2685
2686 @enumerate
2687 @item
2688 It sets the default visibility to @code{hidden}, like
2689 @option{-fvisibility=hidden}.
2690
2691 @item
2692 Types, but not their members, are not hidden by default.
2693
2694 @item
2695 The One Definition Rule is relaxed for types without explicit
2696 visibility specifications that are defined in more than one
2697 shared object: those declarations are permitted if they are
2698 permitted when this option is not used.
2699 @end enumerate
2700
2701 In new code it is better to use @option{-fvisibility=hidden} and
2702 export those classes that are intended to be externally visible.
2703 Unfortunately it is possible for code to rely, perhaps accidentally,
2704 on the Visual Studio behavior.
2705
2706 Among the consequences of these changes are that static data members
2707 of the same type with the same name but defined in different shared
2708 objects are different, so changing one does not change the other;
2709 and that pointers to function members defined in different shared
2710 objects may not compare equal. When this flag is given, it is a
2711 violation of the ODR to define types with the same name differently.
2712
2713 @item -fno-weak
2714 @opindex fno-weak
2715 Do not use weak symbol support, even if it is provided by the linker.
2716 By default, G++ uses weak symbols if they are available. This
2717 option exists only for testing, and should not be used by end-users;
2718 it results in inferior code and has no benefits. This option may
2719 be removed in a future release of G++.
2720
2721 @item -nostdinc++
2722 @opindex nostdinc++
2723 Do not search for header files in the standard directories specific to
2724 C++, but do still search the other standard directories. (This option
2725 is used when building the C++ library.)
2726 @end table
2727
2728 In addition, these optimization, warning, and code generation options
2729 have meanings only for C++ programs:
2730
2731 @table @gcctabopt
2732 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2733 @opindex Wabi
2734 @opindex Wno-abi
2735 Warn when G++ it generates code that is probably not compatible with
2736 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2737 ABI with each major release, normally @option{-Wabi} will warn only if
2738 there is a check added later in a release series for an ABI issue
2739 discovered since the initial release. @option{-Wabi} will warn about
2740 more things if an older ABI version is selected (with
2741 @option{-fabi-version=@var{n}}).
2742
2743 @option{-Wabi} can also be used with an explicit version number to
2744 warn about compatibility with a particular @option{-fabi-version}
2745 level, e.g. @option{-Wabi=2} to warn about changes relative to
2746 @option{-fabi-version=2}.
2747
2748 If an explicit version number is provided and
2749 @option{-fabi-compat-version} is not specified, the version number
2750 from this option is used for compatibility aliases. If no explicit
2751 version number is provided with this option, but
2752 @option{-fabi-compat-version} is specified, that version number is
2753 used for ABI warnings.
2754
2755 Although an effort has been made to warn about
2756 all such cases, there are probably some cases that are not warned about,
2757 even though G++ is generating incompatible code. There may also be
2758 cases where warnings are emitted even though the code that is generated
2759 is compatible.
2760
2761 You should rewrite your code to avoid these warnings if you are
2762 concerned about the fact that code generated by G++ may not be binary
2763 compatible with code generated by other compilers.
2764
2765 Known incompatibilities in @option{-fabi-version=2} (which was the
2766 default from GCC 3.4 to 4.9) include:
2767
2768 @itemize @bullet
2769
2770 @item
2771 A template with a non-type template parameter of reference type was
2772 mangled incorrectly:
2773 @smallexample
2774 extern int N;
2775 template <int &> struct S @{@};
2776 void n (S<N>) @{2@}
2777 @end smallexample
2778
2779 This was fixed in @option{-fabi-version=3}.
2780
2781 @item
2782 SIMD vector types declared using @code{__attribute ((vector_size))} were
2783 mangled in a non-standard way that does not allow for overloading of
2784 functions taking vectors of different sizes.
2785
2786 The mangling was changed in @option{-fabi-version=4}.
2787
2788 @item
2789 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2790 qualifiers, and @code{decltype} of a plain declaration was folded away.
2791
2792 These mangling issues were fixed in @option{-fabi-version=5}.
2793
2794 @item
2795 Scoped enumerators passed as arguments to a variadic function are
2796 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2797 On most targets this does not actually affect the parameter passing
2798 ABI, as there is no way to pass an argument smaller than @code{int}.
2799
2800 Also, the ABI changed the mangling of template argument packs,
2801 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2802 a class scope function used as a template argument.
2803
2804 These issues were corrected in @option{-fabi-version=6}.
2805
2806 @item
2807 Lambdas in default argument scope were mangled incorrectly, and the
2808 ABI changed the mangling of @code{nullptr_t}.
2809
2810 These issues were corrected in @option{-fabi-version=7}.
2811
2812 @item
2813 When mangling a function type with function-cv-qualifiers, the
2814 un-qualified function type was incorrectly treated as a substitution
2815 candidate.
2816
2817 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2818
2819 @item
2820 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2821 unaligned accesses. Note that this did not affect the ABI of a
2822 function with a @code{nullptr_t} parameter, as parameters have a
2823 minimum alignment.
2824
2825 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2826
2827 @item
2828 Target-specific attributes that affect the identity of a type, such as
2829 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2830 did not affect the mangled name, leading to name collisions when
2831 function pointers were used as template arguments.
2832
2833 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2834
2835 @end itemize
2836
2837 It also warns about psABI-related changes. The known psABI changes at this
2838 point include:
2839
2840 @itemize @bullet
2841
2842 @item
2843 For SysV/x86-64, unions with @code{long double} members are
2844 passed in memory as specified in psABI. For example:
2845
2846 @smallexample
2847 union U @{
2848 long double ld;
2849 int i;
2850 @};
2851 @end smallexample
2852
2853 @noindent
2854 @code{union U} is always passed in memory.
2855
2856 @end itemize
2857
2858 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2859 @opindex Wabi-tag
2860 @opindex -Wabi-tag
2861 Warn when a type with an ABI tag is used in a context that does not
2862 have that ABI tag. See @ref{C++ Attributes} for more information
2863 about ABI tags.
2864
2865 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2866 @opindex Wctor-dtor-privacy
2867 @opindex Wno-ctor-dtor-privacy
2868 Warn when a class seems unusable because all the constructors or
2869 destructors in that class are private, and it has neither friends nor
2870 public static member functions. Also warn if there are no non-private
2871 methods, and there's at least one private member function that isn't
2872 a constructor or destructor.
2873
2874 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2875 @opindex Wdelete-non-virtual-dtor
2876 @opindex Wno-delete-non-virtual-dtor
2877 Warn when @code{delete} is used to destroy an instance of a class that
2878 has virtual functions and non-virtual destructor. It is unsafe to delete
2879 an instance of a derived class through a pointer to a base class if the
2880 base class does not have a virtual destructor. This warning is enabled
2881 by @option{-Wall}.
2882
2883 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2884 @opindex Wliteral-suffix
2885 @opindex Wno-literal-suffix
2886 Warn when a string or character literal is followed by a ud-suffix which does
2887 not begin with an underscore. As a conforming extension, GCC treats such
2888 suffixes as separate preprocessing tokens in order to maintain backwards
2889 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2890 For example:
2891
2892 @smallexample
2893 #define __STDC_FORMAT_MACROS
2894 #include <inttypes.h>
2895 #include <stdio.h>
2896
2897 int main() @{
2898 int64_t i64 = 123;
2899 printf("My int64: %" PRId64"\n", i64);
2900 @}
2901 @end smallexample
2902
2903 In this case, @code{PRId64} is treated as a separate preprocessing token.
2904
2905 Additionally, warn when a user-defined literal operator is declared with
2906 a literal suffix identifier that doesn't begin with an underscore. Literal
2907 suffix identifiers that don't begin with an underscore are reserved for
2908 future standardization.
2909
2910 This warning is enabled by default.
2911
2912 @item -Wlto-type-mismatch
2913 @opindex Wlto-type-mismatch
2914 @opindex Wno-lto-type-mismatch
2915
2916 During the link-time optimization warn about type mismatches in
2917 global declarations from different compilation units.
2918 Requires @option{-flto} to be enabled. Enabled by default.
2919
2920 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
2921 @opindex Wnarrowing
2922 @opindex Wno-narrowing
2923 For C++11 and later standards, narrowing conversions are diagnosed by default,
2924 as required by the standard. A narrowing conversion from a constant produces
2925 an error, and a narrowing conversion from a non-constant produces a warning,
2926 but @option{-Wno-narrowing} suppresses the diagnostic.
2927 Note that this does not affect the meaning of well-formed code;
2928 narrowing conversions are still considered ill-formed in SFINAE contexts.
2929
2930 With @option{-Wnarrowing} in C++98, warn when a narrowing
2931 conversion prohibited by C++11 occurs within
2932 @samp{@{ @}}, e.g.
2933
2934 @smallexample
2935 int i = @{ 2.2 @}; // error: narrowing from double to int
2936 @end smallexample
2937
2938 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2939
2940 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2941 @opindex Wnoexcept
2942 @opindex Wno-noexcept
2943 Warn when a noexcept-expression evaluates to false because of a call
2944 to a function that does not have a non-throwing exception
2945 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2946 the compiler to never throw an exception.
2947
2948 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
2949 @opindex Wnoexcept-type
2950 @opindex Wno-noexcept-type
2951 Warn if the C++17 feature making @code{noexcept} part of a function
2952 type changes the mangled name of a symbol relative to C++14. Enabled
2953 by @option{-Wabi} and @option{-Wc++17-compat}.
2954
2955 As an example:
2956
2957 @smallexample
2958 template <class T> void f(T t) @{ t(); @};
2959 void g() noexcept;
2960 void h() @{ f(g); @}
2961 @end smallexample
2962
2963 @noindent
2964 In C++14, @code{f} calls calls @code{f<void(*)()>}, but in
2965 C++17 it calls @code{f<void(*)()noexcept>}.
2966
2967 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
2968 @opindex Wclass-memaccess
2969 Warn when the destination of a call to a raw memory function such as
2970 @code{memset} or @code{memcpy} is an object of class type, and when writing
2971 into such an object might bypass the class non-trivial or deleted constructor
2972 or copy assignment, violate const-correctness or encapsulation, or corrupt
2973 virtual table pointers. Modifying the representation of such objects may
2974 violate invariants maintained by member functions of the class. For example,
2975 the call to @code{memset} below is undefined because it modifies a non-trivial
2976 class object and is, therefore, diagnosed. The safe way to either initialize
2977 or clear the storage of objects of such types is by using the appropriate
2978 constructor or assignment operator, if one is available.
2979 @smallexample
2980 std::string str = "abc";
2981 memset (&str, 0, sizeof str);
2982 @end smallexample
2983 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
2984 Explicitly casting the pointer to the class object to @code{void *} or
2985 to a type that can be safely accessed by the raw memory function suppresses
2986 the warning.
2987
2988 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2989 @opindex Wnon-virtual-dtor
2990 @opindex Wno-non-virtual-dtor
2991 Warn when a class has virtual functions and an accessible non-virtual
2992 destructor itself or in an accessible polymorphic base class, in which
2993 case it is possible but unsafe to delete an instance of a derived
2994 class through a pointer to the class itself or base class. This
2995 warning is automatically enabled if @option{-Weffc++} is specified.
2996
2997 @item -Wregister @r{(C++ and Objective-C++ only)}
2998 @opindex Wregister
2999 @opindex Wno-register
3000 Warn on uses of the @code{register} storage class specifier, except
3001 when it is part of the GNU @ref{Explicit Register Variables} extension.
3002 The use of the @code{register} keyword as storage class specifier has
3003 been deprecated in C++11 and removed in C++17.
3004 Enabled by default with @option{-std=c++17}.
3005
3006 @item -Wreorder @r{(C++ and Objective-C++ only)}
3007 @opindex Wreorder
3008 @opindex Wno-reorder
3009 @cindex reordering, warning
3010 @cindex warning for reordering of member initializers
3011 Warn when the order of member initializers given in the code does not
3012 match the order in which they must be executed. For instance:
3013
3014 @smallexample
3015 struct A @{
3016 int i;
3017 int j;
3018 A(): j (0), i (1) @{ @}
3019 @};
3020 @end smallexample
3021
3022 @noindent
3023 The compiler rearranges the member initializers for @code{i}
3024 and @code{j} to match the declaration order of the members, emitting
3025 a warning to that effect. This warning is enabled by @option{-Wall}.
3026
3027 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3028 @opindex fext-numeric-literals
3029 @opindex fno-ext-numeric-literals
3030 Accept imaginary, fixed-point, or machine-defined
3031 literal number suffixes as GNU extensions.
3032 When this option is turned off these suffixes are treated
3033 as C++11 user-defined literal numeric suffixes.
3034 This is on by default for all pre-C++11 dialects and all GNU dialects:
3035 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3036 @option{-std=gnu++14}.
3037 This option is off by default
3038 for ISO C++11 onwards (@option{-std=c++11}, ...).
3039 @end table
3040
3041 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3042
3043 @table @gcctabopt
3044 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3045 @opindex Weffc++
3046 @opindex Wno-effc++
3047 Warn about violations of the following style guidelines from Scott Meyers'
3048 @cite{Effective C++} series of books:
3049
3050 @itemize @bullet
3051 @item
3052 Define a copy constructor and an assignment operator for classes
3053 with dynamically-allocated memory.
3054
3055 @item
3056 Prefer initialization to assignment in constructors.
3057
3058 @item
3059 Have @code{operator=} return a reference to @code{*this}.
3060
3061 @item
3062 Don't try to return a reference when you must return an object.
3063
3064 @item
3065 Distinguish between prefix and postfix forms of increment and
3066 decrement operators.
3067
3068 @item
3069 Never overload @code{&&}, @code{||}, or @code{,}.
3070
3071 @end itemize
3072
3073 This option also enables @option{-Wnon-virtual-dtor}, which is also
3074 one of the effective C++ recommendations. However, the check is
3075 extended to warn about the lack of virtual destructor in accessible
3076 non-polymorphic bases classes too.
3077
3078 When selecting this option, be aware that the standard library
3079 headers do not obey all of these guidelines; use @samp{grep -v}
3080 to filter out those warnings.
3081
3082 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3083 @opindex Wstrict-null-sentinel
3084 @opindex Wno-strict-null-sentinel
3085 Warn about the use of an uncasted @code{NULL} as sentinel. When
3086 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3087 to @code{__null}. Although it is a null pointer constant rather than a
3088 null pointer, it is guaranteed to be of the same size as a pointer.
3089 But this use is not portable across different compilers.
3090
3091 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3092 @opindex Wno-non-template-friend
3093 @opindex Wnon-template-friend
3094 Disable warnings when non-template friend functions are declared
3095 within a template. In very old versions of GCC that predate implementation
3096 of the ISO standard, declarations such as
3097 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3098 could be interpreted as a particular specialization of a template
3099 function; the warning exists to diagnose compatibility problems,
3100 and is enabled by default.
3101
3102 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3103 @opindex Wold-style-cast
3104 @opindex Wno-old-style-cast
3105 Warn if an old-style (C-style) cast to a non-void type is used within
3106 a C++ program. The new-style casts (@code{dynamic_cast},
3107 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3108 less vulnerable to unintended effects and much easier to search for.
3109
3110 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3111 @opindex Woverloaded-virtual
3112 @opindex Wno-overloaded-virtual
3113 @cindex overloaded virtual function, warning
3114 @cindex warning for overloaded virtual function
3115 Warn when a function declaration hides virtual functions from a
3116 base class. For example, in:
3117
3118 @smallexample
3119 struct A @{
3120 virtual void f();
3121 @};
3122
3123 struct B: public A @{
3124 void f(int);
3125 @};
3126 @end smallexample
3127
3128 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3129 like:
3130
3131 @smallexample
3132 B* b;
3133 b->f();
3134 @end smallexample
3135
3136 @noindent
3137 fails to compile.
3138
3139 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3140 @opindex Wno-pmf-conversions
3141 @opindex Wpmf-conversions
3142 Disable the diagnostic for converting a bound pointer to member function
3143 to a plain pointer.
3144
3145 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3146 @opindex Wsign-promo
3147 @opindex Wno-sign-promo
3148 Warn when overload resolution chooses a promotion from unsigned or
3149 enumerated type to a signed type, over a conversion to an unsigned type of
3150 the same size. Previous versions of G++ tried to preserve
3151 unsignedness, but the standard mandates the current behavior.
3152
3153 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3154 @opindex Wtemplates
3155 Warn when a primary template declaration is encountered. Some coding
3156 rules disallow templates, and this may be used to enforce that rule.
3157 The warning is inactive inside a system header file, such as the STL, so
3158 one can still use the STL. One may also instantiate or specialize
3159 templates.
3160
3161 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3162 @opindex Wmultiple-inheritance
3163 Warn when a class is defined with multiple direct base classes. Some
3164 coding rules disallow multiple inheritance, and this may be used to
3165 enforce that rule. The warning is inactive inside a system header file,
3166 such as the STL, so one can still use the STL. One may also define
3167 classes that indirectly use multiple inheritance.
3168
3169 @item -Wvirtual-inheritance
3170 @opindex Wvirtual-inheritance
3171 Warn when a class is defined with a virtual direct base class. Some
3172 coding rules disallow multiple inheritance, and this may be used to
3173 enforce that rule. The warning is inactive inside a system header file,
3174 such as the STL, so one can still use the STL. One may also define
3175 classes that indirectly use virtual inheritance.
3176
3177 @item -Wnamespaces
3178 @opindex Wnamespaces
3179 Warn when a namespace definition is opened. Some coding rules disallow
3180 namespaces, and this may be used to enforce that rule. The warning is
3181 inactive inside a system header file, such as the STL, so one can still
3182 use the STL. One may also use using directives and qualified names.
3183
3184 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3185 @opindex Wterminate
3186 @opindex Wno-terminate
3187 Disable the warning about a throw-expression that will immediately
3188 result in a call to @code{terminate}.
3189 @end table
3190
3191 @node Objective-C and Objective-C++ Dialect Options
3192 @section Options Controlling Objective-C and Objective-C++ Dialects
3193
3194 @cindex compiler options, Objective-C and Objective-C++
3195 @cindex Objective-C and Objective-C++ options, command-line
3196 @cindex options, Objective-C and Objective-C++
3197 (NOTE: This manual does not describe the Objective-C and Objective-C++
3198 languages themselves. @xref{Standards,,Language Standards
3199 Supported by GCC}, for references.)
3200
3201 This section describes the command-line options that are only meaningful
3202 for Objective-C and Objective-C++ programs. You can also use most of
3203 the language-independent GNU compiler options.
3204 For example, you might compile a file @file{some_class.m} like this:
3205
3206 @smallexample
3207 gcc -g -fgnu-runtime -O -c some_class.m
3208 @end smallexample
3209
3210 @noindent
3211 In this example, @option{-fgnu-runtime} is an option meant only for
3212 Objective-C and Objective-C++ programs; you can use the other options with
3213 any language supported by GCC@.
3214
3215 Note that since Objective-C is an extension of the C language, Objective-C
3216 compilations may also use options specific to the C front-end (e.g.,
3217 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3218 C++-specific options (e.g., @option{-Wabi}).
3219
3220 Here is a list of options that are @emph{only} for compiling Objective-C
3221 and Objective-C++ programs:
3222
3223 @table @gcctabopt
3224 @item -fconstant-string-class=@var{class-name}
3225 @opindex fconstant-string-class
3226 Use @var{class-name} as the name of the class to instantiate for each
3227 literal string specified with the syntax @code{@@"@dots{}"}. The default
3228 class name is @code{NXConstantString} if the GNU runtime is being used, and
3229 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3230 @option{-fconstant-cfstrings} option, if also present, overrides the
3231 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3232 to be laid out as constant CoreFoundation strings.
3233
3234 @item -fgnu-runtime
3235 @opindex fgnu-runtime
3236 Generate object code compatible with the standard GNU Objective-C
3237 runtime. This is the default for most types of systems.
3238
3239 @item -fnext-runtime
3240 @opindex fnext-runtime
3241 Generate output compatible with the NeXT runtime. This is the default
3242 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3243 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3244 used.
3245
3246 @item -fno-nil-receivers
3247 @opindex fno-nil-receivers
3248 Assume that all Objective-C message dispatches (@code{[receiver
3249 message:arg]}) in this translation unit ensure that the receiver is
3250 not @code{nil}. This allows for more efficient entry points in the
3251 runtime to be used. This option is only available in conjunction with
3252 the NeXT runtime and ABI version 0 or 1.
3253
3254 @item -fobjc-abi-version=@var{n}
3255 @opindex fobjc-abi-version
3256 Use version @var{n} of the Objective-C ABI for the selected runtime.
3257 This option is currently supported only for the NeXT runtime. In that
3258 case, Version 0 is the traditional (32-bit) ABI without support for
3259 properties and other Objective-C 2.0 additions. Version 1 is the
3260 traditional (32-bit) ABI with support for properties and other
3261 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3262 nothing is specified, the default is Version 0 on 32-bit target
3263 machines, and Version 2 on 64-bit target machines.
3264
3265 @item -fobjc-call-cxx-cdtors
3266 @opindex fobjc-call-cxx-cdtors
3267 For each Objective-C class, check if any of its instance variables is a
3268 C++ object with a non-trivial default constructor. If so, synthesize a
3269 special @code{- (id) .cxx_construct} instance method which runs
3270 non-trivial default constructors on any such instance variables, in order,
3271 and then return @code{self}. Similarly, check if any instance variable
3272 is a C++ object with a non-trivial destructor, and if so, synthesize a
3273 special @code{- (void) .cxx_destruct} method which runs
3274 all such default destructors, in reverse order.
3275
3276 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3277 methods thusly generated only operate on instance variables
3278 declared in the current Objective-C class, and not those inherited
3279 from superclasses. It is the responsibility of the Objective-C
3280 runtime to invoke all such methods in an object's inheritance
3281 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3282 by the runtime immediately after a new object instance is allocated;
3283 the @code{- (void) .cxx_destruct} methods are invoked immediately
3284 before the runtime deallocates an object instance.
3285
3286 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3287 support for invoking the @code{- (id) .cxx_construct} and
3288 @code{- (void) .cxx_destruct} methods.
3289
3290 @item -fobjc-direct-dispatch
3291 @opindex fobjc-direct-dispatch
3292 Allow fast jumps to the message dispatcher. On Darwin this is
3293 accomplished via the comm page.
3294
3295 @item -fobjc-exceptions
3296 @opindex fobjc-exceptions
3297 Enable syntactic support for structured exception handling in
3298 Objective-C, similar to what is offered by C++. This option
3299 is required to use the Objective-C keywords @code{@@try},
3300 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3301 @code{@@synchronized}. This option is available with both the GNU
3302 runtime and the NeXT runtime (but not available in conjunction with
3303 the NeXT runtime on Mac OS X 10.2 and earlier).
3304
3305 @item -fobjc-gc
3306 @opindex fobjc-gc
3307 Enable garbage collection (GC) in Objective-C and Objective-C++
3308 programs. This option is only available with the NeXT runtime; the
3309 GNU runtime has a different garbage collection implementation that
3310 does not require special compiler flags.
3311
3312 @item -fobjc-nilcheck
3313 @opindex fobjc-nilcheck
3314 For the NeXT runtime with version 2 of the ABI, check for a nil
3315 receiver in method invocations before doing the actual method call.
3316 This is the default and can be disabled using
3317 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3318 checked for nil in this way no matter what this flag is set to.
3319 Currently this flag does nothing when the GNU runtime, or an older
3320 version of the NeXT runtime ABI, is used.
3321
3322 @item -fobjc-std=objc1
3323 @opindex fobjc-std
3324 Conform to the language syntax of Objective-C 1.0, the language
3325 recognized by GCC 4.0. This only affects the Objective-C additions to
3326 the C/C++ language; it does not affect conformance to C/C++ standards,
3327 which is controlled by the separate C/C++ dialect option flags. When
3328 this option is used with the Objective-C or Objective-C++ compiler,
3329 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3330 This is useful if you need to make sure that your Objective-C code can
3331 be compiled with older versions of GCC@.
3332
3333 @item -freplace-objc-classes
3334 @opindex freplace-objc-classes
3335 Emit a special marker instructing @command{ld(1)} not to statically link in
3336 the resulting object file, and allow @command{dyld(1)} to load it in at
3337 run time instead. This is used in conjunction with the Fix-and-Continue
3338 debugging mode, where the object file in question may be recompiled and
3339 dynamically reloaded in the course of program execution, without the need
3340 to restart the program itself. Currently, Fix-and-Continue functionality
3341 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3342 and later.
3343
3344 @item -fzero-link
3345 @opindex fzero-link
3346 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3347 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3348 compile time) with static class references that get initialized at load time,
3349 which improves run-time performance. Specifying the @option{-fzero-link} flag
3350 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3351 to be retained. This is useful in Zero-Link debugging mode, since it allows
3352 for individual class implementations to be modified during program execution.
3353 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3354 regardless of command-line options.
3355
3356 @item -fno-local-ivars
3357 @opindex fno-local-ivars
3358 @opindex flocal-ivars
3359 By default instance variables in Objective-C can be accessed as if
3360 they were local variables from within the methods of the class they're
3361 declared in. This can lead to shadowing between instance variables
3362 and other variables declared either locally inside a class method or
3363 globally with the same name. Specifying the @option{-fno-local-ivars}
3364 flag disables this behavior thus avoiding variable shadowing issues.
3365
3366 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3367 @opindex fivar-visibility
3368 Set the default instance variable visibility to the specified option
3369 so that instance variables declared outside the scope of any access
3370 modifier directives default to the specified visibility.
3371
3372 @item -gen-decls
3373 @opindex gen-decls
3374 Dump interface declarations for all classes seen in the source file to a
3375 file named @file{@var{sourcename}.decl}.
3376
3377 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3378 @opindex Wassign-intercept
3379 @opindex Wno-assign-intercept
3380 Warn whenever an Objective-C assignment is being intercepted by the
3381 garbage collector.
3382
3383 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3384 @opindex Wno-protocol
3385 @opindex Wprotocol
3386 If a class is declared to implement a protocol, a warning is issued for
3387 every method in the protocol that is not implemented by the class. The
3388 default behavior is to issue a warning for every method not explicitly
3389 implemented in the class, even if a method implementation is inherited
3390 from the superclass. If you use the @option{-Wno-protocol} option, then
3391 methods inherited from the superclass are considered to be implemented,
3392 and no warning is issued for them.
3393
3394 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3395 @opindex Wselector
3396 @opindex Wno-selector
3397 Warn if multiple methods of different types for the same selector are
3398 found during compilation. The check is performed on the list of methods
3399 in the final stage of compilation. Additionally, a check is performed
3400 for each selector appearing in a @code{@@selector(@dots{})}
3401 expression, and a corresponding method for that selector has been found
3402 during compilation. Because these checks scan the method table only at
3403 the end of compilation, these warnings are not produced if the final
3404 stage of compilation is not reached, for example because an error is
3405 found during compilation, or because the @option{-fsyntax-only} option is
3406 being used.
3407
3408 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3409 @opindex Wstrict-selector-match
3410 @opindex Wno-strict-selector-match
3411 Warn if multiple methods with differing argument and/or return types are
3412 found for a given selector when attempting to send a message using this
3413 selector to a receiver of type @code{id} or @code{Class}. When this flag
3414 is off (which is the default behavior), the compiler omits such warnings
3415 if any differences found are confined to types that share the same size
3416 and alignment.
3417
3418 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3419 @opindex Wundeclared-selector
3420 @opindex Wno-undeclared-selector
3421 Warn if a @code{@@selector(@dots{})} expression referring to an
3422 undeclared selector is found. A selector is considered undeclared if no
3423 method with that name has been declared before the
3424 @code{@@selector(@dots{})} expression, either explicitly in an
3425 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3426 an @code{@@implementation} section. This option always performs its
3427 checks as soon as a @code{@@selector(@dots{})} expression is found,
3428 while @option{-Wselector} only performs its checks in the final stage of
3429 compilation. This also enforces the coding style convention
3430 that methods and selectors must be declared before being used.
3431
3432 @item -print-objc-runtime-info
3433 @opindex print-objc-runtime-info
3434 Generate C header describing the largest structure that is passed by
3435 value, if any.
3436
3437 @end table
3438
3439 @node Diagnostic Message Formatting Options
3440 @section Options to Control Diagnostic Messages Formatting
3441 @cindex options to control diagnostics formatting
3442 @cindex diagnostic messages
3443 @cindex message formatting
3444
3445 Traditionally, diagnostic messages have been formatted irrespective of
3446 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3447 options described below
3448 to control the formatting algorithm for diagnostic messages,
3449 e.g.@: how many characters per line, how often source location
3450 information should be reported. Note that some language front ends may not
3451 honor these options.
3452
3453 @table @gcctabopt
3454 @item -fmessage-length=@var{n}
3455 @opindex fmessage-length
3456 Try to format error messages so that they fit on lines of about
3457 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3458 done; each error message appears on a single line. This is the
3459 default for all front ends.
3460
3461 @item -fdiagnostics-show-location=once
3462 @opindex fdiagnostics-show-location
3463 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3464 reporter to emit source location information @emph{once}; that is, in
3465 case the message is too long to fit on a single physical line and has to
3466 be wrapped, the source location won't be emitted (as prefix) again,
3467 over and over, in subsequent continuation lines. This is the default
3468 behavior.
3469
3470 @item -fdiagnostics-show-location=every-line
3471 Only meaningful in line-wrapping mode. Instructs the diagnostic
3472 messages reporter to emit the same source location information (as
3473 prefix) for physical lines that result from the process of breaking
3474 a message which is too long to fit on a single line.
3475
3476 @item -fdiagnostics-color[=@var{WHEN}]
3477 @itemx -fno-diagnostics-color
3478 @opindex fdiagnostics-color
3479 @cindex highlight, color
3480 @vindex GCC_COLORS @r{environment variable}
3481 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3482 or @samp{auto}. The default depends on how the compiler has been configured,
3483 it can be any of the above @var{WHEN} options or also @samp{never}
3484 if @env{GCC_COLORS} environment variable isn't present in the environment,
3485 and @samp{auto} otherwise.
3486 @samp{auto} means to use color only when the standard error is a terminal.
3487 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3488 aliases for @option{-fdiagnostics-color=always} and
3489 @option{-fdiagnostics-color=never}, respectively.
3490
3491 The colors are defined by the environment variable @env{GCC_COLORS}.
3492 Its value is a colon-separated list of capabilities and Select Graphic
3493 Rendition (SGR) substrings. SGR commands are interpreted by the
3494 terminal or terminal emulator. (See the section in the documentation
3495 of your text terminal for permitted values and their meanings as
3496 character attributes.) These substring values are integers in decimal
3497 representation and can be concatenated with semicolons.
3498 Common values to concatenate include
3499 @samp{1} for bold,
3500 @samp{4} for underline,
3501 @samp{5} for blink,
3502 @samp{7} for inverse,
3503 @samp{39} for default foreground color,
3504 @samp{30} to @samp{37} for foreground colors,
3505 @samp{90} to @samp{97} for 16-color mode foreground colors,
3506 @samp{38;5;0} to @samp{38;5;255}
3507 for 88-color and 256-color modes foreground colors,
3508 @samp{49} for default background color,
3509 @samp{40} to @samp{47} for background colors,
3510 @samp{100} to @samp{107} for 16-color mode background colors,
3511 and @samp{48;5;0} to @samp{48;5;255}
3512 for 88-color and 256-color modes background colors.
3513
3514 The default @env{GCC_COLORS} is
3515 @smallexample
3516 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3517 quote=01:fixit-insert=32:fixit-delete=31:\
3518 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3519 type-diff=01;32
3520 @end smallexample
3521 @noindent
3522 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3523 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3524 @samp{01} is bold, and @samp{31} is red.
3525 Setting @env{GCC_COLORS} to the empty string disables colors.
3526 Supported capabilities are as follows.
3527
3528 @table @code
3529 @item error=
3530 @vindex error GCC_COLORS @r{capability}
3531 SGR substring for error: markers.
3532
3533 @item warning=
3534 @vindex warning GCC_COLORS @r{capability}
3535 SGR substring for warning: markers.
3536
3537 @item note=
3538 @vindex note GCC_COLORS @r{capability}
3539 SGR substring for note: markers.
3540
3541 @item range1=
3542 @vindex range1 GCC_COLORS @r{capability}
3543 SGR substring for first additional range.
3544
3545 @item range2=
3546 @vindex range2 GCC_COLORS @r{capability}
3547 SGR substring for second additional range.
3548
3549 @item locus=
3550 @vindex locus GCC_COLORS @r{capability}
3551 SGR substring for location information, @samp{file:line} or
3552 @samp{file:line:column} etc.
3553
3554 @item quote=
3555 @vindex quote GCC_COLORS @r{capability}
3556 SGR substring for information printed within quotes.
3557
3558 @item fixit-insert=
3559 @vindex fixit-insert GCC_COLORS @r{capability}
3560 SGR substring for fix-it hints suggesting text to
3561 be inserted or replaced.
3562
3563 @item fixit-delete=
3564 @vindex fixit-delete GCC_COLORS @r{capability}
3565 SGR substring for fix-it hints suggesting text to
3566 be deleted.
3567
3568 @item diff-filename=
3569 @vindex diff-filename GCC_COLORS @r{capability}
3570 SGR substring for filename headers within generated patches.
3571
3572 @item diff-hunk=
3573 @vindex diff-hunk GCC_COLORS @r{capability}
3574 SGR substring for the starts of hunks within generated patches.
3575
3576 @item diff-delete=
3577 @vindex diff-delete GCC_COLORS @r{capability}
3578 SGR substring for deleted lines within generated patches.
3579
3580 @item diff-insert=
3581 @vindex diff-insert GCC_COLORS @r{capability}
3582 SGR substring for inserted lines within generated patches.
3583
3584 @item type-diff=
3585 @vindex type-diff GCC_COLORS @r{capability}
3586 SGR substring for highlighting mismatching types within template
3587 arguments in the C++ frontend.
3588 @end table
3589
3590 @item -fno-diagnostics-show-option
3591 @opindex fno-diagnostics-show-option
3592 @opindex fdiagnostics-show-option
3593 By default, each diagnostic emitted includes text indicating the
3594 command-line option that directly controls the diagnostic (if such an
3595 option is known to the diagnostic machinery). Specifying the
3596 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3597
3598 @item -fno-diagnostics-show-caret
3599 @opindex fno-diagnostics-show-caret
3600 @opindex fdiagnostics-show-caret
3601 By default, each diagnostic emitted includes the original source line
3602 and a caret @samp{^} indicating the column. This option suppresses this
3603 information. The source line is truncated to @var{n} characters, if
3604 the @option{-fmessage-length=n} option is given. When the output is done
3605 to the terminal, the width is limited to the width given by the
3606 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3607
3608 @item -fdiagnostics-parseable-fixits
3609 @opindex fdiagnostics-parseable-fixits
3610 Emit fix-it hints in a machine-parseable format, suitable for consumption
3611 by IDEs. For each fix-it, a line will be printed after the relevant
3612 diagnostic, starting with the string ``fix-it:''. For example:
3613
3614 @smallexample
3615 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3616 @end smallexample
3617
3618 The location is expressed as a half-open range, expressed as a count of
3619 bytes, starting at byte 1 for the initial column. In the above example,
3620 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3621 given string:
3622
3623 @smallexample
3624 00000000011111111112222222222
3625 12345678901234567890123456789
3626 gtk_widget_showall (dlg);
3627 ^^^^^^^^^^^^^^^^^^
3628 gtk_widget_show_all
3629 @end smallexample
3630
3631 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3632 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3633 (e.g. vertical tab as ``\013'').
3634
3635 An empty replacement string indicates that the given range is to be removed.
3636 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3637 be inserted at the given position.
3638
3639 @item -fdiagnostics-generate-patch
3640 @opindex fdiagnostics-generate-patch
3641 Print fix-it hints to stderr in unified diff format, after any diagnostics
3642 are printed. For example:
3643
3644 @smallexample
3645 --- test.c
3646 +++ test.c
3647 @@ -42,5 +42,5 @@
3648
3649 void show_cb(GtkDialog *dlg)
3650 @{
3651 - gtk_widget_showall(dlg);
3652 + gtk_widget_show_all(dlg);
3653 @}
3654
3655 @end smallexample
3656
3657 The diff may or may not be colorized, following the same rules
3658 as for diagnostics (see @option{-fdiagnostics-color}).
3659
3660 @item -fdiagnostics-show-template-tree
3661 @opindex fdiagnostics-show-template-tree
3662
3663 In the C++ frontend, when printing diagnostics showing mismatching
3664 template types, such as:
3665
3666 @smallexample
3667 could not convert 'std::map<int, std::vector<double> >()'
3668 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3669 @end smallexample
3670
3671 the @option{-fdiagnostics-show-template-tree} flag enables printing a
3672 tree-like structure showing the common and differing parts of the types,
3673 such as:
3674
3675 @smallexample
3676 map<
3677 [...],
3678 vector<
3679 [double != float]>>
3680 @end smallexample
3681
3682 The parts that differ are highlighted with color (``double'' and
3683 ``float'' in this case).
3684
3685 @item -fno-elide-type
3686 @opindex fno-elide-type
3687 @opindex felide-type
3688 By default when the C++ frontend prints diagnostics showing mismatching
3689 template types, common parts of the types are printed as ``[...]'' to
3690 simplify the error message. For example:
3691
3692 @smallexample
3693 could not convert 'std::map<int, std::vector<double> >()'
3694 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3695 @end smallexample
3696
3697 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
3698 This flag also affects the output of the
3699 @option{-fdiagnostics-show-template-tree} flag.
3700
3701 @item -fno-show-column
3702 @opindex fno-show-column
3703 Do not print column numbers in diagnostics. This may be necessary if
3704 diagnostics are being scanned by a program that does not understand the
3705 column numbers, such as @command{dejagnu}.
3706
3707 @end table
3708
3709 @node Warning Options
3710 @section Options to Request or Suppress Warnings
3711 @cindex options to control warnings
3712 @cindex warning messages
3713 @cindex messages, warning
3714 @cindex suppressing warnings
3715
3716 Warnings are diagnostic messages that report constructions that
3717 are not inherently erroneous but that are risky or suggest there
3718 may have been an error.
3719
3720 The following language-independent options do not enable specific
3721 warnings but control the kinds of diagnostics produced by GCC@.
3722
3723 @table @gcctabopt
3724 @cindex syntax checking
3725 @item -fsyntax-only
3726 @opindex fsyntax-only
3727 Check the code for syntax errors, but don't do anything beyond that.
3728
3729 @item -fmax-errors=@var{n}
3730 @opindex fmax-errors
3731 Limits the maximum number of error messages to @var{n}, at which point
3732 GCC bails out rather than attempting to continue processing the source
3733 code. If @var{n} is 0 (the default), there is no limit on the number
3734 of error messages produced. If @option{-Wfatal-errors} is also
3735 specified, then @option{-Wfatal-errors} takes precedence over this
3736 option.
3737
3738 @item -w
3739 @opindex w
3740 Inhibit all warning messages.
3741
3742 @item -Werror
3743 @opindex Werror
3744 @opindex Wno-error
3745 Make all warnings into errors.
3746
3747 @item -Werror=
3748 @opindex Werror=
3749 @opindex Wno-error=
3750 Make the specified warning into an error. The specifier for a warning
3751 is appended; for example @option{-Werror=switch} turns the warnings
3752 controlled by @option{-Wswitch} into errors. This switch takes a
3753 negative form, to be used to negate @option{-Werror} for specific
3754 warnings; for example @option{-Wno-error=switch} makes
3755 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3756 is in effect.
3757
3758 The warning message for each controllable warning includes the
3759 option that controls the warning. That option can then be used with
3760 @option{-Werror=} and @option{-Wno-error=} as described above.
3761 (Printing of the option in the warning message can be disabled using the
3762 @option{-fno-diagnostics-show-option} flag.)
3763
3764 Note that specifying @option{-Werror=}@var{foo} automatically implies
3765 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3766 imply anything.
3767
3768 @item -Wfatal-errors
3769 @opindex Wfatal-errors
3770 @opindex Wno-fatal-errors
3771 This option causes the compiler to abort compilation on the first error
3772 occurred rather than trying to keep going and printing further error
3773 messages.
3774
3775 @end table
3776
3777 You can request many specific warnings with options beginning with
3778 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3779 implicit declarations. Each of these specific warning options also
3780 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3781 example, @option{-Wno-implicit}. This manual lists only one of the
3782 two forms, whichever is not the default. For further
3783 language-specific options also refer to @ref{C++ Dialect Options} and
3784 @ref{Objective-C and Objective-C++ Dialect Options}.
3785
3786 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3787 options, such as @option{-Wunused}, which may turn on further options,
3788 such as @option{-Wunused-value}. The combined effect of positive and
3789 negative forms is that more specific options have priority over less
3790 specific ones, independently of their position in the command-line. For
3791 options of the same specificity, the last one takes effect. Options
3792 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3793 as if they appeared at the end of the command-line.
3794
3795 When an unrecognized warning option is requested (e.g.,
3796 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3797 that the option is not recognized. However, if the @option{-Wno-} form
3798 is used, the behavior is slightly different: no diagnostic is
3799 produced for @option{-Wno-unknown-warning} unless other diagnostics
3800 are being produced. This allows the use of new @option{-Wno-} options
3801 with old compilers, but if something goes wrong, the compiler
3802 warns that an unrecognized option is present.
3803
3804 @table @gcctabopt
3805 @item -Wpedantic
3806 @itemx -pedantic
3807 @opindex pedantic
3808 @opindex Wpedantic
3809 Issue all the warnings demanded by strict ISO C and ISO C++;
3810 reject all programs that use forbidden extensions, and some other
3811 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3812 version of the ISO C standard specified by any @option{-std} option used.
3813
3814 Valid ISO C and ISO C++ programs should compile properly with or without
3815 this option (though a rare few require @option{-ansi} or a
3816 @option{-std} option specifying the required version of ISO C)@. However,
3817 without this option, certain GNU extensions and traditional C and C++
3818 features are supported as well. With this option, they are rejected.
3819
3820 @option{-Wpedantic} does not cause warning messages for use of the
3821 alternate keywords whose names begin and end with @samp{__}. Pedantic
3822 warnings are also disabled in the expression that follows
3823 @code{__extension__}. However, only system header files should use
3824 these escape routes; application programs should avoid them.
3825 @xref{Alternate Keywords}.
3826
3827 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3828 C conformance. They soon find that it does not do quite what they want:
3829 it finds some non-ISO practices, but not all---only those for which
3830 ISO C @emph{requires} a diagnostic, and some others for which
3831 diagnostics have been added.
3832
3833 A feature to report any failure to conform to ISO C might be useful in
3834 some instances, but would require considerable additional work and would
3835 be quite different from @option{-Wpedantic}. We don't have plans to
3836 support such a feature in the near future.
3837
3838 Where the standard specified with @option{-std} represents a GNU
3839 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3840 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3841 extended dialect is based. Warnings from @option{-Wpedantic} are given
3842 where they are required by the base standard. (It does not make sense
3843 for such warnings to be given only for features not in the specified GNU
3844 C dialect, since by definition the GNU dialects of C include all
3845 features the compiler supports with the given option, and there would be
3846 nothing to warn about.)
3847
3848 @item -pedantic-errors
3849 @opindex pedantic-errors
3850 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3851 requires a diagnostic, in some cases where there is undefined behavior
3852 at compile-time and in some other cases that do not prevent compilation
3853 of programs that are valid according to the standard. This is not
3854 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3855 by this option and not enabled by the latter and vice versa.
3856
3857 @item -Wall
3858 @opindex Wall
3859 @opindex Wno-all
3860 This enables all the warnings about constructions that some users
3861 consider questionable, and that are easy to avoid (or modify to
3862 prevent the warning), even in conjunction with macros. This also
3863 enables some language-specific warnings described in @ref{C++ Dialect
3864 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3865
3866 @option{-Wall} turns on the following warning flags:
3867
3868 @gccoptlist{-Waddress @gol
3869 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3870 -Wbool-compare @gol
3871 -Wbool-operation @gol
3872 -Wc++11-compat -Wc++14-compat @gol
3873 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
3874 -Wchar-subscripts @gol
3875 -Wcomment @gol
3876 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
3877 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3878 -Wformat @gol
3879 -Wint-in-bool-context @gol
3880 -Wimplicit @r{(C and Objective-C only)} @gol
3881 -Wimplicit-int @r{(C and Objective-C only)} @gol
3882 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3883 -Winit-self @r{(only for C++)} @gol
3884 -Wlogical-not-parentheses @gol
3885 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3886 -Wmaybe-uninitialized @gol
3887 -Wmemset-elt-size @gol
3888 -Wmemset-transposed-args @gol
3889 -Wmisleading-indentation @r{(only for C/C++)} @gol
3890 -Wmissing-braces @r{(only for C/ObjC)} @gol
3891 -Wmultistatement-macros @gol
3892 -Wnarrowing @r{(only for C++)} @gol
3893 -Wnonnull @gol
3894 -Wnonnull-compare @gol
3895 -Wopenmp-simd @gol
3896 -Wparentheses @gol
3897 -Wpointer-sign @gol
3898 -Wreorder @gol
3899 -Wrestrict @gol
3900 -Wreturn-type @gol
3901 -Wsequence-point @gol
3902 -Wsign-compare @r{(only in C++)} @gol
3903 -Wsizeof-pointer-div @gol
3904 -Wsizeof-pointer-memaccess @gol
3905 -Wstrict-aliasing @gol
3906 -Wstrict-overflow=1 @gol
3907 -Wswitch @gol
3908 -Wtautological-compare @gol
3909 -Wtrigraphs @gol
3910 -Wuninitialized @gol
3911 -Wunknown-pragmas @gol
3912 -Wunused-function @gol
3913 -Wunused-label @gol
3914 -Wunused-value @gol
3915 -Wunused-variable @gol
3916 -Wvolatile-register-var @gol
3917 }
3918
3919 Note that some warning flags are not implied by @option{-Wall}. Some of
3920 them warn about constructions that users generally do not consider
3921 questionable, but which occasionally you might wish to check for;
3922 others warn about constructions that are necessary or hard to avoid in
3923 some cases, and there is no simple way to modify the code to suppress
3924 the warning. Some of them are enabled by @option{-Wextra} but many of
3925 them must be enabled individually.
3926
3927 @item -Wextra
3928 @opindex W
3929 @opindex Wextra
3930 @opindex Wno-extra
3931 This enables some extra warning flags that are not enabled by
3932 @option{-Wall}. (This option used to be called @option{-W}. The older
3933 name is still supported, but the newer name is more descriptive.)
3934
3935 @gccoptlist{-Wclobbered @gol
3936 -Wcast-function-type @gol
3937 -Wempty-body @gol
3938 -Wignored-qualifiers @gol
3939 -Wimplicit-fallthrough=3 @gol
3940 -Wmissing-field-initializers @gol
3941 -Wmissing-parameter-type @r{(C only)} @gol
3942 -Wold-style-declaration @r{(C only)} @gol
3943 -Woverride-init @gol
3944 -Wsign-compare @r{(C only)} @gol
3945 -Wtype-limits @gol
3946 -Wuninitialized @gol
3947 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
3948 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3949 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3950 }
3951
3952 The option @option{-Wextra} also prints warning messages for the
3953 following cases:
3954
3955 @itemize @bullet
3956
3957 @item
3958 A pointer is compared against integer zero with @code{<}, @code{<=},
3959 @code{>}, or @code{>=}.
3960
3961 @item
3962 (C++ only) An enumerator and a non-enumerator both appear in a
3963 conditional expression.
3964
3965 @item
3966 (C++ only) Ambiguous virtual bases.
3967
3968 @item
3969 (C++ only) Subscripting an array that has been declared @code{register}.
3970
3971 @item
3972 (C++ only) Taking the address of a variable that has been declared
3973 @code{register}.
3974
3975 @item
3976 (C++ only) A base class is not initialized in the copy constructor
3977 of a derived class.
3978
3979 @end itemize
3980
3981 @item -Wchar-subscripts
3982 @opindex Wchar-subscripts
3983 @opindex Wno-char-subscripts
3984 Warn if an array subscript has type @code{char}. This is a common cause
3985 of error, as programmers often forget that this type is signed on some
3986 machines.
3987 This warning is enabled by @option{-Wall}.
3988
3989 @item -Wchkp
3990 @opindex Wchkp
3991 Warn about an invalid memory access that is found by Pointer Bounds Checker
3992 (@option{-fcheck-pointer-bounds}).
3993
3994 @item -Wno-coverage-mismatch
3995 @opindex Wno-coverage-mismatch
3996 Warn if feedback profiles do not match when using the
3997 @option{-fprofile-use} option.
3998 If a source file is changed between compiling with @option{-fprofile-gen} and
3999 with @option{-fprofile-use}, the files with the profile feedback can fail
4000 to match the source file and GCC cannot use the profile feedback
4001 information. By default, this warning is enabled and is treated as an
4002 error. @option{-Wno-coverage-mismatch} can be used to disable the
4003 warning or @option{-Wno-error=coverage-mismatch} can be used to
4004 disable the error. Disabling the error for this warning can result in
4005 poorly optimized code and is useful only in the
4006 case of very minor changes such as bug fixes to an existing code-base.
4007 Completely disabling the warning is not recommended.
4008
4009 @item -Wno-cpp
4010 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4011
4012 Suppress warning messages emitted by @code{#warning} directives.
4013
4014 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4015 @opindex Wdouble-promotion
4016 @opindex Wno-double-promotion
4017 Give a warning when a value of type @code{float} is implicitly
4018 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
4019 floating-point unit implement @code{float} in hardware, but emulate
4020 @code{double} in software. On such a machine, doing computations
4021 using @code{double} values is much more expensive because of the
4022 overhead required for software emulation.
4023
4024 It is easy to accidentally do computations with @code{double} because
4025 floating-point literals are implicitly of type @code{double}. For
4026 example, in:
4027 @smallexample
4028 @group
4029 float area(float radius)
4030 @{
4031 return 3.14159 * radius * radius;
4032 @}
4033 @end group
4034 @end smallexample
4035 the compiler performs the entire computation with @code{double}
4036 because the floating-point literal is a @code{double}.
4037
4038 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4039 @opindex Wduplicate-decl-specifier
4040 @opindex Wno-duplicate-decl-specifier
4041 Warn if a declaration has duplicate @code{const}, @code{volatile},
4042 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
4043 @option{-Wall}.
4044
4045 @item -Wformat
4046 @itemx -Wformat=@var{n}
4047 @opindex Wformat
4048 @opindex Wno-format
4049 @opindex ffreestanding
4050 @opindex fno-builtin
4051 @opindex Wformat=
4052 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4053 the arguments supplied have types appropriate to the format string
4054 specified, and that the conversions specified in the format string make
4055 sense. This includes standard functions, and others specified by format
4056 attributes (@pxref{Function Attributes}), in the @code{printf},
4057 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4058 not in the C standard) families (or other target-specific families).
4059 Which functions are checked without format attributes having been
4060 specified depends on the standard version selected, and such checks of
4061 functions without the attribute specified are disabled by
4062 @option{-ffreestanding} or @option{-fno-builtin}.
4063
4064 The formats are checked against the format features supported by GNU
4065 libc version 2.2. These include all ISO C90 and C99 features, as well
4066 as features from the Single Unix Specification and some BSD and GNU
4067 extensions. Other library implementations may not support all these
4068 features; GCC does not support warning about features that go beyond a
4069 particular library's limitations. However, if @option{-Wpedantic} is used
4070 with @option{-Wformat}, warnings are given about format features not
4071 in the selected standard version (but not for @code{strfmon} formats,
4072 since those are not in any version of the C standard). @xref{C Dialect
4073 Options,,Options Controlling C Dialect}.
4074
4075 @table @gcctabopt
4076 @item -Wformat=1
4077 @itemx -Wformat
4078 @opindex Wformat
4079 @opindex Wformat=1
4080 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4081 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4082 @option{-Wformat} also checks for null format arguments for several
4083 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4084 aspects of this level of format checking can be disabled by the
4085 options: @option{-Wno-format-contains-nul},
4086 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4087 @option{-Wformat} is enabled by @option{-Wall}.
4088
4089 @item -Wno-format-contains-nul
4090 @opindex Wno-format-contains-nul
4091 @opindex Wformat-contains-nul
4092 If @option{-Wformat} is specified, do not warn about format strings that
4093 contain NUL bytes.
4094
4095 @item -Wno-format-extra-args
4096 @opindex Wno-format-extra-args
4097 @opindex Wformat-extra-args
4098 If @option{-Wformat} is specified, do not warn about excess arguments to a
4099 @code{printf} or @code{scanf} format function. The C standard specifies
4100 that such arguments are ignored.
4101
4102 Where the unused arguments lie between used arguments that are
4103 specified with @samp{$} operand number specifications, normally
4104 warnings are still given, since the implementation could not know what
4105 type to pass to @code{va_arg} to skip the unused arguments. However,
4106 in the case of @code{scanf} formats, this option suppresses the
4107 warning if the unused arguments are all pointers, since the Single
4108 Unix Specification says that such unused arguments are allowed.
4109
4110 @item -Wformat-overflow
4111 @itemx -Wformat-overflow=@var{level}
4112 @opindex Wformat-overflow
4113 @opindex Wno-format-overflow
4114 Warn about calls to formatted input/output functions such as @code{sprintf}
4115 and @code{vsprintf} that might overflow the destination buffer. When the
4116 exact number of bytes written by a format directive cannot be determined
4117 at compile-time it is estimated based on heuristics that depend on the
4118 @var{level} argument and on optimization. While enabling optimization
4119 will in most cases improve the accuracy of the warning, it may also
4120 result in false positives.
4121
4122 @table @gcctabopt
4123 @item -Wformat-overflow
4124 @item -Wformat-overflow=1
4125 @opindex Wformat-overflow
4126 @opindex Wno-format-overflow
4127 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4128 employs a conservative approach that warns only about calls that most
4129 likely overflow the buffer. At this level, numeric arguments to format
4130 directives with unknown values are assumed to have the value of one, and
4131 strings of unknown length to be empty. Numeric arguments that are known
4132 to be bounded to a subrange of their type, or string arguments whose output
4133 is bounded either by their directive's precision or by a finite set of
4134 string literals, are assumed to take on the value within the range that
4135 results in the most bytes on output. For example, the call to @code{sprintf}
4136 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4137 the terminating NUL character (@code{'\0'}) appended by the function
4138 to the destination buffer will be written past its end. Increasing
4139 the size of the buffer by a single byte is sufficient to avoid the
4140 warning, though it may not be sufficient to avoid the overflow.
4141
4142 @smallexample
4143 void f (int a, int b)
4144 @{
4145 char buf [12];
4146 sprintf (buf, "a = %i, b = %i\n", a, b);
4147 @}
4148 @end smallexample
4149
4150 @item -Wformat-overflow=2
4151 Level @var{2} warns also about calls that might overflow the destination
4152 buffer given an argument of sufficient length or magnitude. At level
4153 @var{2}, unknown numeric arguments are assumed to have the minimum
4154 representable value for signed types with a precision greater than 1, and
4155 the maximum representable value otherwise. Unknown string arguments whose
4156 length cannot be assumed to be bounded either by the directive's precision,
4157 or by a finite set of string literals they may evaluate to, or the character
4158 array they may point to, are assumed to be 1 character long.
4159
4160 At level @var{2}, the call in the example above is again diagnosed, but
4161 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4162 @code{%i} directive will write some of its digits beyond the end of
4163 the destination buffer. To make the call safe regardless of the values
4164 of the two variables, the size of the destination buffer must be increased
4165 to at least 34 bytes. GCC includes the minimum size of the buffer in
4166 an informational note following the warning.
4167
4168 An alternative to increasing the size of the destination buffer is to
4169 constrain the range of formatted values. The maximum length of string
4170 arguments can be bounded by specifying the precision in the format
4171 directive. When numeric arguments of format directives can be assumed
4172 to be bounded by less than the precision of their type, choosing
4173 an appropriate length modifier to the format specifier will reduce
4174 the required buffer size. For example, if @var{a} and @var{b} in the
4175 example above can be assumed to be within the precision of
4176 the @code{short int} type then using either the @code{%hi} format
4177 directive or casting the argument to @code{short} reduces the maximum
4178 required size of the buffer to 24 bytes.
4179
4180 @smallexample
4181 void f (int a, int b)
4182 @{
4183 char buf [23];
4184 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4185 @}
4186 @end smallexample
4187 @end table
4188
4189 @item -Wno-format-zero-length
4190 @opindex Wno-format-zero-length
4191 @opindex Wformat-zero-length
4192 If @option{-Wformat} is specified, do not warn about zero-length formats.
4193 The C standard specifies that zero-length formats are allowed.
4194
4195
4196 @item -Wformat=2
4197 @opindex Wformat=2
4198 Enable @option{-Wformat} plus additional format checks. Currently
4199 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4200 -Wformat-y2k}.
4201
4202 @item -Wformat-nonliteral
4203 @opindex Wformat-nonliteral
4204 @opindex Wno-format-nonliteral
4205 If @option{-Wformat} is specified, also warn if the format string is not a
4206 string literal and so cannot be checked, unless the format function
4207 takes its format arguments as a @code{va_list}.
4208
4209 @item -Wformat-security
4210 @opindex Wformat-security
4211 @opindex Wno-format-security
4212 If @option{-Wformat} is specified, also warn about uses of format
4213 functions that represent possible security problems. At present, this
4214 warns about calls to @code{printf} and @code{scanf} functions where the
4215 format string is not a string literal and there are no format arguments,
4216 as in @code{printf (foo);}. This may be a security hole if the format
4217 string came from untrusted input and contains @samp{%n}. (This is
4218 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4219 in future warnings may be added to @option{-Wformat-security} that are not
4220 included in @option{-Wformat-nonliteral}.)
4221
4222 @item -Wformat-signedness
4223 @opindex Wformat-signedness
4224 @opindex Wno-format-signedness
4225 If @option{-Wformat} is specified, also warn if the format string
4226 requires an unsigned argument and the argument is signed and vice versa.
4227
4228 @item -Wformat-truncation
4229 @itemx -Wformat-truncation=@var{level}
4230 @opindex Wformat-truncation
4231 @opindex Wno-format-truncation
4232 Warn about calls to formatted input/output functions such as @code{snprintf}
4233 and @code{vsnprintf} that might result in output truncation. When the exact
4234 number of bytes written by a format directive cannot be determined at
4235 compile-time it is estimated based on heuristics that depend on
4236 the @var{level} argument and on optimization. While enabling optimization
4237 will in most cases improve the accuracy of the warning, it may also result
4238 in false positives. Except as noted otherwise, the option uses the same
4239 logic @option{-Wformat-overflow}.
4240
4241 @table @gcctabopt
4242 @item -Wformat-truncation
4243 @item -Wformat-truncation=1
4244 @opindex Wformat-truncation
4245 @opindex Wno-format-overflow
4246 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4247 employs a conservative approach that warns only about calls to bounded
4248 functions whose return value is unused and that will most likely result
4249 in output truncation.
4250
4251 @item -Wformat-truncation=2
4252 Level @var{2} warns also about calls to bounded functions whose return
4253 value is used and that might result in truncation given an argument of
4254 sufficient length or magnitude.
4255 @end table
4256
4257 @item -Wformat-y2k
4258 @opindex Wformat-y2k
4259 @opindex Wno-format-y2k
4260 If @option{-Wformat} is specified, also warn about @code{strftime}
4261 formats that may yield only a two-digit year.
4262 @end table
4263
4264 @item -Wnonnull
4265 @opindex Wnonnull
4266 @opindex Wno-nonnull
4267 Warn about passing a null pointer for arguments marked as
4268 requiring a non-null value by the @code{nonnull} function attribute.
4269
4270 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4271 can be disabled with the @option{-Wno-nonnull} option.
4272
4273 @item -Wnonnull-compare
4274 @opindex Wnonnull-compare
4275 @opindex Wno-nonnull-compare
4276 Warn when comparing an argument marked with the @code{nonnull}
4277 function attribute against null inside the function.
4278
4279 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4280 can be disabled with the @option{-Wno-nonnull-compare} option.
4281
4282 @item -Wnull-dereference
4283 @opindex Wnull-dereference
4284 @opindex Wno-null-dereference
4285 Warn if the compiler detects paths that trigger erroneous or
4286 undefined behavior due to dereferencing a null pointer. This option
4287 is only active when @option{-fdelete-null-pointer-checks} is active,
4288 which is enabled by optimizations in most targets. The precision of
4289 the warnings depends on the optimization options used.
4290
4291 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4292 @opindex Winit-self
4293 @opindex Wno-init-self
4294 Warn about uninitialized variables that are initialized with themselves.
4295 Note this option can only be used with the @option{-Wuninitialized} option.
4296
4297 For example, GCC warns about @code{i} being uninitialized in the
4298 following snippet only when @option{-Winit-self} has been specified:
4299 @smallexample
4300 @group
4301 int f()
4302 @{
4303 int i = i;
4304 return i;
4305 @}
4306 @end group
4307 @end smallexample
4308
4309 This warning is enabled by @option{-Wall} in C++.
4310
4311 @item -Wimplicit-int @r{(C and Objective-C only)}
4312 @opindex Wimplicit-int
4313 @opindex Wno-implicit-int
4314 Warn when a declaration does not specify a type.
4315 This warning is enabled by @option{-Wall}.
4316
4317 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4318 @opindex Wimplicit-function-declaration
4319 @opindex Wno-implicit-function-declaration
4320 Give a warning whenever a function is used before being declared. In
4321 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4322 enabled by default and it is made into an error by
4323 @option{-pedantic-errors}. This warning is also enabled by
4324 @option{-Wall}.
4325
4326 @item -Wimplicit @r{(C and Objective-C only)}
4327 @opindex Wimplicit
4328 @opindex Wno-implicit
4329 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4330 This warning is enabled by @option{-Wall}.
4331
4332 @item -Wimplicit-fallthrough
4333 @opindex Wimplicit-fallthrough
4334 @opindex Wno-implicit-fallthrough
4335 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4336 and @option{-Wno-implicit-fallthrough} is the same as
4337 @option{-Wimplicit-fallthrough=0}.
4338
4339 @item -Wimplicit-fallthrough=@var{n}
4340 @opindex Wimplicit-fallthrough=
4341 Warn when a switch case falls through. For example:
4342
4343 @smallexample
4344 @group
4345 switch (cond)
4346 @{
4347 case 1:
4348 a = 1;
4349 break;
4350 case 2:
4351 a = 2;
4352 case 3:
4353 a = 3;
4354 break;
4355 @}
4356 @end group
4357 @end smallexample
4358
4359 This warning does not warn when the last statement of a case cannot
4360 fall through, e.g. when there is a return statement or a call to function
4361 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4362 also takes into account control flow statements, such as ifs, and only
4363 warns when appropriate. E.g.@:
4364
4365 @smallexample
4366 @group
4367 switch (cond)
4368 @{
4369 case 1:
4370 if (i > 3) @{
4371 bar (5);
4372 break;
4373 @} else if (i < 1) @{
4374 bar (0);
4375 @} else
4376 return;
4377 default:
4378 @dots{}
4379 @}
4380 @end group
4381 @end smallexample
4382
4383 Since there are occasions where a switch case fall through is desirable,
4384 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4385 to be used along with a null statement to suppress this warning that
4386 would normally occur:
4387
4388 @smallexample
4389 @group
4390 switch (cond)
4391 @{
4392 case 1:
4393 bar (0);
4394 __attribute__ ((fallthrough));
4395 default:
4396 @dots{}
4397 @}
4398 @end group
4399 @end smallexample
4400
4401 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4402 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4403 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4404 Instead of these attributes, it is also possible to add a fallthrough comment
4405 to silence the warning. The whole body of the C or C++ style comment should
4406 match the given regular expressions listed below. The option argument @var{n}
4407 specifies what kind of comments are accepted:
4408
4409 @itemize @bullet
4410
4411 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4412
4413 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4414 expression, any comment is used as fallthrough comment.
4415
4416 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4417 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4418
4419 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4420 following regular expressions:
4421
4422 @itemize @bullet
4423
4424 @item @code{-fallthrough}
4425
4426 @item @code{@@fallthrough@@}
4427
4428 @item @code{lint -fallthrough[ \t]*}
4429
4430 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4431
4432 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4433
4434 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4435
4436 @end itemize
4437
4438 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4439 following regular expressions:
4440
4441 @itemize @bullet
4442
4443 @item @code{-fallthrough}
4444
4445 @item @code{@@fallthrough@@}
4446
4447 @item @code{lint -fallthrough[ \t]*}
4448
4449 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4450
4451 @end itemize
4452
4453 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4454 fallthrough comments, only attributes disable the warning.
4455
4456 @end itemize
4457
4458 The comment needs to be followed after optional whitespace and other comments
4459 by @code{case} or @code{default} keywords or by a user label that precedes some
4460 @code{case} or @code{default} label.
4461
4462 @smallexample
4463 @group
4464 switch (cond)
4465 @{
4466 case 1:
4467 bar (0);
4468 /* FALLTHRU */
4469 default:
4470 @dots{}
4471 @}
4472 @end group
4473 @end smallexample
4474
4475 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4476
4477 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
4478 @opindex Wif-not-aligned
4479 @opindex Wno-if-not-aligned
4480 Control if warning triggered by the @code{warn_if_not_aligned} attribute
4481 should be issued. This is is enabled by default.
4482 Use @option{-Wno-if-not-aligned} to disable it.
4483
4484 @item -Wignored-qualifiers @r{(C and C++ only)}
4485 @opindex Wignored-qualifiers
4486 @opindex Wno-ignored-qualifiers
4487 Warn if the return type of a function has a type qualifier
4488 such as @code{const}. For ISO C such a type qualifier has no effect,
4489 since the value returned by a function is not an lvalue.
4490 For C++, the warning is only emitted for scalar types or @code{void}.
4491 ISO C prohibits qualified @code{void} return types on function
4492 definitions, so such return types always receive a warning
4493 even without this option.
4494
4495 This warning is also enabled by @option{-Wextra}.
4496
4497 @item -Wignored-attributes @r{(C and C++ only)}
4498 @opindex Wignored-attributes
4499 @opindex Wno-ignored-attributes
4500 Warn when an attribute is ignored. This is different from the
4501 @option{-Wattributes} option in that it warns whenever the compiler decides
4502 to drop an attribute, not that the attribute is either unknown, used in a
4503 wrong place, etc. This warning is enabled by default.
4504
4505 @item -Wmain
4506 @opindex Wmain
4507 @opindex Wno-main
4508 Warn if the type of @code{main} is suspicious. @code{main} should be
4509 a function with external linkage, returning int, taking either zero
4510 arguments, two, or three arguments of appropriate types. This warning
4511 is enabled by default in C++ and is enabled by either @option{-Wall}
4512 or @option{-Wpedantic}.
4513
4514 @item -Wmisleading-indentation @r{(C and C++ only)}
4515 @opindex Wmisleading-indentation
4516 @opindex Wno-misleading-indentation
4517 Warn when the indentation of the code does not reflect the block structure.
4518 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
4519 @code{for} clauses with a guarded statement that does not use braces,
4520 followed by an unguarded statement with the same indentation.
4521
4522 In the following example, the call to ``bar'' is misleadingly indented as
4523 if it were guarded by the ``if'' conditional.
4524
4525 @smallexample
4526 if (some_condition ())
4527 foo ();
4528 bar (); /* Gotcha: this is not guarded by the "if". */
4529 @end smallexample
4530
4531 In the case of mixed tabs and spaces, the warning uses the
4532 @option{-ftabstop=} option to determine if the statements line up
4533 (defaulting to 8).
4534
4535 The warning is not issued for code involving multiline preprocessor logic
4536 such as the following example.
4537
4538 @smallexample
4539 if (flagA)
4540 foo (0);
4541 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
4542 if (flagB)
4543 #endif
4544 foo (1);
4545 @end smallexample
4546
4547 The warning is not issued after a @code{#line} directive, since this
4548 typically indicates autogenerated code, and no assumptions can be made
4549 about the layout of the file that the directive references.
4550
4551 This warning is enabled by @option{-Wall} in C and C++.
4552
4553 @item -Wmissing-braces
4554 @opindex Wmissing-braces
4555 @opindex Wno-missing-braces
4556 Warn if an aggregate or union initializer is not fully bracketed. In
4557 the following example, the initializer for @code{a} is not fully
4558 bracketed, but that for @code{b} is fully bracketed. This warning is
4559 enabled by @option{-Wall} in C.
4560
4561 @smallexample
4562 int a[2][2] = @{ 0, 1, 2, 3 @};
4563 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
4564 @end smallexample
4565
4566 This warning is enabled by @option{-Wall}.
4567
4568 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
4569 @opindex Wmissing-include-dirs
4570 @opindex Wno-missing-include-dirs
4571 Warn if a user-supplied include directory does not exist.
4572
4573 @item -Wmultistatement-macros
4574 @opindex Wmultistatement-macros
4575 @opindex Wno-multistatement-macros
4576 Warn about unsafe multiple statement macros that appear to be guarded
4577 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
4578 @code{while}, in which only the first statement is actually guarded after
4579 the macro is expanded.
4580
4581 For example:
4582
4583 @smallexample
4584 #define DOIT x++; y++
4585 if (c)
4586 DOIT;
4587 @end smallexample
4588
4589 will increment @code{y} unconditionally, not just when @code{c} holds.
4590 The can usually be fixed by wrapping the macro in a do-while loop:
4591 @smallexample
4592 #define DOIT do @{ x++; y++; @} while (0)
4593 if (c)
4594 DOIT;
4595 @end smallexample
4596
4597 This warning is enabled by @option{-Wall} in C and C++.
4598
4599 @item -Wparentheses
4600 @opindex Wparentheses
4601 @opindex Wno-parentheses
4602 Warn if parentheses are omitted in certain contexts, such
4603 as when there is an assignment in a context where a truth value
4604 is expected, or when operators are nested whose precedence people
4605 often get confused about.
4606
4607 Also warn if a comparison like @code{x<=y<=z} appears; this is
4608 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
4609 interpretation from that of ordinary mathematical notation.
4610
4611 Also warn for dangerous uses of the GNU extension to
4612 @code{?:} with omitted middle operand. When the condition
4613 in the @code{?}: operator is a boolean expression, the omitted value is
4614 always 1. Often programmers expect it to be a value computed
4615 inside the conditional expression instead.
4616
4617 For C++ this also warns for some cases of unnecessary parentheses in
4618 declarations, which can indicate an attempt at a function call instead
4619 of a declaration:
4620 @smallexample
4621 @{
4622 // Declares a local variable called mymutex.
4623 std::unique_lock<std::mutex> (mymutex);
4624 // User meant std::unique_lock<std::mutex> lock (mymutex);
4625 @}
4626 @end smallexample
4627
4628 This warning is enabled by @option{-Wall}.
4629
4630 @item -Wsequence-point
4631 @opindex Wsequence-point
4632 @opindex Wno-sequence-point
4633 Warn about code that may have undefined semantics because of violations
4634 of sequence point rules in the C and C++ standards.
4635
4636 The C and C++ standards define the order in which expressions in a C/C++
4637 program are evaluated in terms of @dfn{sequence points}, which represent
4638 a partial ordering between the execution of parts of the program: those
4639 executed before the sequence point, and those executed after it. These
4640 occur after the evaluation of a full expression (one which is not part
4641 of a larger expression), after the evaluation of the first operand of a
4642 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
4643 function is called (but after the evaluation of its arguments and the
4644 expression denoting the called function), and in certain other places.
4645 Other than as expressed by the sequence point rules, the order of
4646 evaluation of subexpressions of an expression is not specified. All
4647 these rules describe only a partial order rather than a total order,
4648 since, for example, if two functions are called within one expression
4649 with no sequence point between them, the order in which the functions
4650 are called is not specified. However, the standards committee have
4651 ruled that function calls do not overlap.
4652
4653 It is not specified when between sequence points modifications to the
4654 values of objects take effect. Programs whose behavior depends on this
4655 have undefined behavior; the C and C++ standards specify that ``Between
4656 the previous and next sequence point an object shall have its stored
4657 value modified at most once by the evaluation of an expression.
4658 Furthermore, the prior value shall be read only to determine the value
4659 to be stored.''. If a program breaks these rules, the results on any
4660 particular implementation are entirely unpredictable.
4661
4662 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
4663 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
4664 diagnosed by this option, and it may give an occasional false positive
4665 result, but in general it has been found fairly effective at detecting
4666 this sort of problem in programs.
4667
4668 The C++17 standard will define the order of evaluation of operands in
4669 more cases: in particular it requires that the right-hand side of an
4670 assignment be evaluated before the left-hand side, so the above
4671 examples are no longer undefined. But this warning will still warn
4672 about them, to help people avoid writing code that is undefined in C
4673 and earlier revisions of C++.
4674
4675 The standard is worded confusingly, therefore there is some debate
4676 over the precise meaning of the sequence point rules in subtle cases.
4677 Links to discussions of the problem, including proposed formal
4678 definitions, may be found on the GCC readings page, at
4679 @uref{http://gcc.gnu.org/@/readings.html}.
4680
4681 This warning is enabled by @option{-Wall} for C and C++.
4682
4683 @item -Wno-return-local-addr
4684 @opindex Wno-return-local-addr
4685 @opindex Wreturn-local-addr
4686 Do not warn about returning a pointer (or in C++, a reference) to a
4687 variable that goes out of scope after the function returns.
4688
4689 @item -Wreturn-type
4690 @opindex Wreturn-type
4691 @opindex Wno-return-type
4692 Warn whenever a function is defined with a return type that defaults
4693 to @code{int}. Also warn about any @code{return} statement with no
4694 return value in a function whose return type is not @code{void}
4695 (falling off the end of the function body is considered returning
4696 without a value).
4697
4698 For C only, warn about a @code{return} statement with an expression in a
4699 function whose return type is @code{void}, unless the expression type is
4700 also @code{void}. As a GNU extension, the latter case is accepted
4701 without a warning unless @option{-Wpedantic} is used.
4702
4703 For C++, a function without return type always produces a diagnostic
4704 message, even when @option{-Wno-return-type} is specified. The only
4705 exceptions are @code{main} and functions defined in system headers.
4706
4707 This warning is enabled by @option{-Wall}.
4708
4709 @item -Wshift-count-negative
4710 @opindex Wshift-count-negative
4711 @opindex Wno-shift-count-negative
4712 Warn if shift count is negative. This warning is enabled by default.
4713
4714 @item -Wshift-count-overflow
4715 @opindex Wshift-count-overflow
4716 @opindex Wno-shift-count-overflow
4717 Warn if shift count >= width of type. This warning is enabled by default.
4718
4719 @item -Wshift-negative-value
4720 @opindex Wshift-negative-value
4721 @opindex Wno-shift-negative-value
4722 Warn if left shifting a negative value. This warning is enabled by
4723 @option{-Wextra} in C99 and C++11 modes (and newer).
4724
4725 @item -Wshift-overflow
4726 @itemx -Wshift-overflow=@var{n}
4727 @opindex Wshift-overflow
4728 @opindex Wno-shift-overflow
4729 Warn about left shift overflows. This warning is enabled by
4730 default in C99 and C++11 modes (and newer).
4731
4732 @table @gcctabopt
4733 @item -Wshift-overflow=1
4734 This is the warning level of @option{-Wshift-overflow} and is enabled
4735 by default in C99 and C++11 modes (and newer). This warning level does
4736 not warn about left-shifting 1 into the sign bit. (However, in C, such
4737 an overflow is still rejected in contexts where an integer constant expression
4738 is required.)
4739
4740 @item -Wshift-overflow=2
4741 This warning level also warns about left-shifting 1 into the sign bit,
4742 unless C++14 mode is active.
4743 @end table
4744
4745 @item -Wswitch
4746 @opindex Wswitch
4747 @opindex Wno-switch
4748 Warn whenever a @code{switch} statement has an index of enumerated type
4749 and lacks a @code{case} for one or more of the named codes of that
4750 enumeration. (The presence of a @code{default} label prevents this
4751 warning.) @code{case} labels outside the enumeration range also
4752 provoke warnings when this option is used (even if there is a
4753 @code{default} label).
4754 This warning is enabled by @option{-Wall}.
4755
4756 @item -Wswitch-default
4757 @opindex Wswitch-default
4758 @opindex Wno-switch-default
4759 Warn whenever a @code{switch} statement does not have a @code{default}
4760 case.
4761
4762 @item -Wswitch-enum
4763 @opindex Wswitch-enum
4764 @opindex Wno-switch-enum
4765 Warn whenever a @code{switch} statement has an index of enumerated type
4766 and lacks a @code{case} for one or more of the named codes of that
4767 enumeration. @code{case} labels outside the enumeration range also
4768 provoke warnings when this option is used. The only difference
4769 between @option{-Wswitch} and this option is that this option gives a
4770 warning about an omitted enumeration code even if there is a
4771 @code{default} label.
4772
4773 @item -Wswitch-bool
4774 @opindex Wswitch-bool
4775 @opindex Wno-switch-bool
4776 Warn whenever a @code{switch} statement has an index of boolean type
4777 and the case values are outside the range of a boolean type.
4778 It is possible to suppress this warning by casting the controlling
4779 expression to a type other than @code{bool}. For example:
4780 @smallexample
4781 @group
4782 switch ((int) (a == 4))
4783 @{
4784 @dots{}
4785 @}
4786 @end group
4787 @end smallexample
4788 This warning is enabled by default for C and C++ programs.
4789
4790 @item -Wswitch-unreachable
4791 @opindex Wswitch-unreachable
4792 @opindex Wno-switch-unreachable
4793 Warn whenever a @code{switch} statement contains statements between the
4794 controlling expression and the first case label, which will never be
4795 executed. For example:
4796 @smallexample
4797 @group
4798 switch (cond)
4799 @{
4800 i = 15;
4801 @dots{}
4802 case 5:
4803 @dots{}
4804 @}
4805 @end group
4806 @end smallexample
4807 @option{-Wswitch-unreachable} does not warn if the statement between the
4808 controlling expression and the first case label is just a declaration:
4809 @smallexample
4810 @group
4811 switch (cond)
4812 @{
4813 int i;
4814 @dots{}
4815 case 5:
4816 i = 5;
4817 @dots{}
4818 @}
4819 @end group
4820 @end smallexample
4821 This warning is enabled by default for C and C++ programs.
4822
4823 @item -Wsync-nand @r{(C and C++ only)}
4824 @opindex Wsync-nand
4825 @opindex Wno-sync-nand
4826 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
4827 built-in functions are used. These functions changed semantics in GCC 4.4.
4828
4829 @item -Wunused-but-set-parameter
4830 @opindex Wunused-but-set-parameter
4831 @opindex Wno-unused-but-set-parameter
4832 Warn whenever a function parameter is assigned to, but otherwise unused
4833 (aside from its declaration).
4834
4835 To suppress this warning use the @code{unused} attribute
4836 (@pxref{Variable Attributes}).
4837
4838 This warning is also enabled by @option{-Wunused} together with
4839 @option{-Wextra}.
4840
4841 @item -Wunused-but-set-variable
4842 @opindex Wunused-but-set-variable
4843 @opindex Wno-unused-but-set-variable
4844 Warn whenever a local variable is assigned to, but otherwise unused
4845 (aside from its declaration).
4846 This warning is enabled by @option{-Wall}.
4847
4848 To suppress this warning use the @code{unused} attribute
4849 (@pxref{Variable Attributes}).
4850
4851 This warning is also enabled by @option{-Wunused}, which is enabled
4852 by @option{-Wall}.
4853
4854 @item -Wunused-function
4855 @opindex Wunused-function
4856 @opindex Wno-unused-function
4857 Warn whenever a static function is declared but not defined or a
4858 non-inline static function is unused.
4859 This warning is enabled by @option{-Wall}.
4860
4861 @item -Wunused-label
4862 @opindex Wunused-label
4863 @opindex Wno-unused-label
4864 Warn whenever a label is declared but not used.
4865 This warning is enabled by @option{-Wall}.
4866
4867 To suppress this warning use the @code{unused} attribute
4868 (@pxref{Variable Attributes}).
4869
4870 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4871 @opindex Wunused-local-typedefs
4872 Warn when a typedef locally defined in a function is not used.
4873 This warning is enabled by @option{-Wall}.
4874
4875 @item -Wunused-parameter
4876 @opindex Wunused-parameter
4877 @opindex Wno-unused-parameter
4878 Warn whenever a function parameter is unused aside from its declaration.
4879
4880 To suppress this warning use the @code{unused} attribute
4881 (@pxref{Variable Attributes}).
4882
4883 @item -Wno-unused-result
4884 @opindex Wunused-result
4885 @opindex Wno-unused-result
4886 Do not warn if a caller of a function marked with attribute
4887 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4888 its return value. The default is @option{-Wunused-result}.
4889
4890 @item -Wunused-variable
4891 @opindex Wunused-variable
4892 @opindex Wno-unused-variable
4893 Warn whenever a local or static variable is unused aside from its
4894 declaration. This option implies @option{-Wunused-const-variable=1} for C,
4895 but not for C++. This warning is enabled by @option{-Wall}.
4896
4897 To suppress this warning use the @code{unused} attribute
4898 (@pxref{Variable Attributes}).
4899
4900 @item -Wunused-const-variable
4901 @itemx -Wunused-const-variable=@var{n}
4902 @opindex Wunused-const-variable
4903 @opindex Wno-unused-const-variable
4904 Warn whenever a constant static variable is unused aside from its declaration.
4905 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
4906 for C, but not for C++. In C this declares variable storage, but in C++ this
4907 is not an error since const variables take the place of @code{#define}s.
4908
4909 To suppress this warning use the @code{unused} attribute
4910 (@pxref{Variable Attributes}).
4911
4912 @table @gcctabopt
4913 @item -Wunused-const-variable=1
4914 This is the warning level that is enabled by @option{-Wunused-variable} for
4915 C. It warns only about unused static const variables defined in the main
4916 compilation unit, but not about static const variables declared in any
4917 header included.
4918
4919 @item -Wunused-const-variable=2
4920 This warning level also warns for unused constant static variables in
4921 headers (excluding system headers). This is the warning level of
4922 @option{-Wunused-const-variable} and must be explicitly requested since
4923 in C++ this isn't an error and in C it might be harder to clean up all
4924 headers included.
4925 @end table
4926
4927 @item -Wunused-value
4928 @opindex Wunused-value
4929 @opindex Wno-unused-value
4930 Warn whenever a statement computes a result that is explicitly not
4931 used. To suppress this warning cast the unused expression to
4932 @code{void}. This includes an expression-statement or the left-hand
4933 side of a comma expression that contains no side effects. For example,
4934 an expression such as @code{x[i,j]} causes a warning, while
4935 @code{x[(void)i,j]} does not.
4936
4937 This warning is enabled by @option{-Wall}.
4938
4939 @item -Wunused
4940 @opindex Wunused
4941 @opindex Wno-unused
4942 All the above @option{-Wunused} options combined.
4943
4944 In order to get a warning about an unused function parameter, you must
4945 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4946 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4947
4948 @item -Wuninitialized
4949 @opindex Wuninitialized
4950 @opindex Wno-uninitialized
4951 Warn if an automatic variable is used without first being initialized
4952 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4953 warn if a non-static reference or non-static @code{const} member
4954 appears in a class without constructors.
4955
4956 If you want to warn about code that uses the uninitialized value of the
4957 variable in its own initializer, use the @option{-Winit-self} option.
4958
4959 These warnings occur for individual uninitialized or clobbered
4960 elements of structure, union or array variables as well as for
4961 variables that are uninitialized or clobbered as a whole. They do
4962 not occur for variables or elements declared @code{volatile}. Because
4963 these warnings depend on optimization, the exact variables or elements
4964 for which there are warnings depends on the precise optimization
4965 options and version of GCC used.
4966
4967 Note that there may be no warning about a variable that is used only
4968 to compute a value that itself is never used, because such
4969 computations may be deleted by data flow analysis before the warnings
4970 are printed.
4971
4972 @item -Winvalid-memory-model
4973 @opindex Winvalid-memory-model
4974 @opindex Wno-invalid-memory-model
4975 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
4976 and the C11 atomic generic functions with a memory consistency argument
4977 that is either invalid for the operation or outside the range of values
4978 of the @code{memory_order} enumeration. For example, since the
4979 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
4980 defined for the relaxed, release, and sequentially consistent memory
4981 orders the following code is diagnosed:
4982
4983 @smallexample
4984 void store (int *i)
4985 @{
4986 __atomic_store_n (i, 0, memory_order_consume);
4987 @}
4988 @end smallexample
4989
4990 @option{-Winvalid-memory-model} is enabled by default.
4991
4992 @item -Wmaybe-uninitialized
4993 @opindex Wmaybe-uninitialized
4994 @opindex Wno-maybe-uninitialized
4995 For an automatic (i.e.@ local) variable, if there exists a path from the
4996 function entry to a use of the variable that is initialized, but there exist
4997 some other paths for which the variable is not initialized, the compiler
4998 emits a warning if it cannot prove the uninitialized paths are not
4999 executed at run time.
5000
5001 These warnings are only possible in optimizing compilation, because otherwise
5002 GCC does not keep track of the state of variables.
5003
5004 These warnings are made optional because GCC may not be able to determine when
5005 the code is correct in spite of appearing to have an error. Here is one
5006 example of how this can happen:
5007
5008 @smallexample
5009 @group
5010 @{
5011 int x;
5012 switch (y)
5013 @{
5014 case 1: x = 1;
5015 break;
5016 case 2: x = 4;
5017 break;
5018 case 3: x = 5;
5019 @}
5020 foo (x);
5021 @}
5022 @end group
5023 @end smallexample
5024
5025 @noindent
5026 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5027 always initialized, but GCC doesn't know this. To suppress the
5028 warning, you need to provide a default case with assert(0) or
5029 similar code.
5030
5031 @cindex @code{longjmp} warnings
5032 This option also warns when a non-volatile automatic variable might be
5033 changed by a call to @code{longjmp}.
5034 The compiler sees only the calls to @code{setjmp}. It cannot know
5035 where @code{longjmp} will be called; in fact, a signal handler could
5036 call it at any point in the code. As a result, you may get a warning
5037 even when there is in fact no problem because @code{longjmp} cannot
5038 in fact be called at the place that would cause a problem.
5039
5040 Some spurious warnings can be avoided if you declare all the functions
5041 you use that never return as @code{noreturn}. @xref{Function
5042 Attributes}.
5043
5044 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5045
5046 @item -Wunknown-pragmas
5047 @opindex Wunknown-pragmas
5048 @opindex Wno-unknown-pragmas
5049 @cindex warning for unknown pragmas
5050 @cindex unknown pragmas, warning
5051 @cindex pragmas, warning of unknown
5052 Warn when a @code{#pragma} directive is encountered that is not understood by
5053 GCC@. If this command-line option is used, warnings are even issued
5054 for unknown pragmas in system header files. This is not the case if
5055 the warnings are only enabled by the @option{-Wall} command-line option.
5056
5057 @item -Wno-pragmas
5058 @opindex Wno-pragmas
5059 @opindex Wpragmas
5060 Do not warn about misuses of pragmas, such as incorrect parameters,
5061 invalid syntax, or conflicts between pragmas. See also
5062 @option{-Wunknown-pragmas}.
5063
5064 @item -Wstrict-aliasing
5065 @opindex Wstrict-aliasing
5066 @opindex Wno-strict-aliasing
5067 This option is only active when @option{-fstrict-aliasing} is active.
5068 It warns about code that might break the strict aliasing rules that the
5069 compiler is using for optimization. The warning does not catch all
5070 cases, but does attempt to catch the more common pitfalls. It is
5071 included in @option{-Wall}.
5072 It is equivalent to @option{-Wstrict-aliasing=3}
5073
5074 @item -Wstrict-aliasing=n
5075 @opindex Wstrict-aliasing=n
5076 This option is only active when @option{-fstrict-aliasing} is active.
5077 It warns about code that might break the strict aliasing rules that the
5078 compiler is using for optimization.
5079 Higher levels correspond to higher accuracy (fewer false positives).
5080 Higher levels also correspond to more effort, similar to the way @option{-O}
5081 works.
5082 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5083
5084 Level 1: Most aggressive, quick, least accurate.
5085 Possibly useful when higher levels
5086 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5087 false negatives. However, it has many false positives.
5088 Warns for all pointer conversions between possibly incompatible types,
5089 even if never dereferenced. Runs in the front end only.
5090
5091 Level 2: Aggressive, quick, not too precise.
5092 May still have many false positives (not as many as level 1 though),
5093 and few false negatives (but possibly more than level 1).
5094 Unlike level 1, it only warns when an address is taken. Warns about
5095 incomplete types. Runs in the front end only.
5096
5097 Level 3 (default for @option{-Wstrict-aliasing}):
5098 Should have very few false positives and few false
5099 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5100 Takes care of the common pun+dereference pattern in the front end:
5101 @code{*(int*)&some_float}.
5102 If optimization is enabled, it also runs in the back end, where it deals
5103 with multiple statement cases using flow-sensitive points-to information.
5104 Only warns when the converted pointer is dereferenced.
5105 Does not warn about incomplete types.
5106
5107 @item -Wstrict-overflow
5108 @itemx -Wstrict-overflow=@var{n}
5109 @opindex Wstrict-overflow
5110 @opindex Wno-strict-overflow
5111 This option is only active when signed overflow is undefined.
5112 It warns about cases where the compiler optimizes based on the
5113 assumption that signed overflow does not occur. Note that it does not
5114 warn about all cases where the code might overflow: it only warns
5115 about cases where the compiler implements some optimization. Thus
5116 this warning depends on the optimization level.
5117
5118 An optimization that assumes that signed overflow does not occur is
5119 perfectly safe if the values of the variables involved are such that
5120 overflow never does, in fact, occur. Therefore this warning can
5121 easily give a false positive: a warning about code that is not
5122 actually a problem. To help focus on important issues, several
5123 warning levels are defined. No warnings are issued for the use of
5124 undefined signed overflow when estimating how many iterations a loop
5125 requires, in particular when determining whether a loop will be
5126 executed at all.
5127
5128 @table @gcctabopt
5129 @item -Wstrict-overflow=1
5130 Warn about cases that are both questionable and easy to avoid. For
5131 example the compiler simplifies
5132 @code{x + 1 > x} to @code{1}. This level of
5133 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5134 are not, and must be explicitly requested.
5135
5136 @item -Wstrict-overflow=2
5137 Also warn about other cases where a comparison is simplified to a
5138 constant. For example: @code{abs (x) >= 0}. This can only be
5139 simplified when signed integer overflow is undefined, because
5140 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5141 zero. @option{-Wstrict-overflow} (with no level) is the same as
5142 @option{-Wstrict-overflow=2}.
5143
5144 @item -Wstrict-overflow=3
5145 Also warn about other cases where a comparison is simplified. For
5146 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5147
5148 @item -Wstrict-overflow=4
5149 Also warn about other simplifications not covered by the above cases.
5150 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5151
5152 @item -Wstrict-overflow=5
5153 Also warn about cases where the compiler reduces the magnitude of a
5154 constant involved in a comparison. For example: @code{x + 2 > y} is
5155 simplified to @code{x + 1 >= y}. This is reported only at the
5156 highest warning level because this simplification applies to many
5157 comparisons, so this warning level gives a very large number of
5158 false positives.
5159 @end table
5160
5161 @item -Wstringop-overflow
5162 @itemx -Wstringop-overflow=@var{type}
5163 @opindex Wstringop-overflow
5164 @opindex Wno-stringop-overflow
5165 Warn for calls to string manipulation functions such as @code{memcpy} and
5166 @code{strcpy} that are determined to overflow the destination buffer. The
5167 optional argument is one greater than the type of Object Size Checking to
5168 perform to determine the size of the destination. @xref{Object Size Checking}.
5169 The argument is meaningful only for functions that operate on character arrays
5170 but not for raw memory functions like @code{memcpy} which always make use
5171 of Object Size type-0. The option also warns for calls that specify a size
5172 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5173 The option produces the best results with optimization enabled but can detect
5174 a small subset of simple buffer overflows even without optimization in
5175 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5176 correspond to the standard functions. In any case, the option warns about
5177 just a subset of buffer overflows detected by the corresponding overflow
5178 checking built-ins. For example, the option will issue a warning for
5179 the @code{strcpy} call below because it copies at least 5 characters
5180 (the string @code{"blue"} including the terminating NUL) into the buffer
5181 of size 4.
5182
5183 @smallexample
5184 enum Color @{ blue, purple, yellow @};
5185 const char* f (enum Color clr)
5186 @{
5187 static char buf [4];
5188 const char *str;
5189 switch (clr)
5190 @{
5191 case blue: str = "blue"; break;
5192 case purple: str = "purple"; break;
5193 case yellow: str = "yellow"; break;
5194 @}
5195
5196 return strcpy (buf, str); // warning here
5197 @}
5198 @end smallexample
5199
5200 Option @option{-Wstringop-overflow=2} is enabled by default.
5201
5202 @table @gcctabopt
5203 @item -Wstringop-overflow
5204 @item -Wstringop-overflow=1
5205 @opindex Wstringop-overflow
5206 @opindex Wno-stringop-overflow
5207 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5208 to determine the sizes of destination objects. This is the default setting
5209 of the option. At this setting the option will not warn for writes past
5210 the end of subobjects of larger objects accessed by pointers unless the
5211 size of the largest surrounding object is known. When the destination may
5212 be one of several objects it is assumed to be the largest one of them. On
5213 Linux systems, when optimization is enabled at this setting the option warns
5214 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5215 a non-zero value.
5216
5217 @item -Wstringop-overflow=2
5218 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5219 to determine the sizes of destination objects. At this setting the option
5220 will warn about overflows when writing to members of the largest complete
5221 objects whose exact size is known. It will, however, not warn for excessive
5222 writes to the same members of unknown objects referenced by pointers since
5223 they may point to arrays containing unknown numbers of elements.
5224
5225 @item -Wstringop-overflow=3
5226 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5227 to determine the sizes of destination objects. At this setting the option
5228 warns about overflowing the smallest object or data member. This is the
5229 most restrictive setting of the option that may result in warnings for safe
5230 code.
5231
5232 @item -Wstringop-overflow=4
5233 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5234 to determine the sizes of destination objects. At this setting the option
5235 will warn about overflowing any data members, and when the destination is
5236 one of several objects it uses the size of the largest of them to decide
5237 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5238 setting of the option may result in warnings for benign code.
5239 @end table
5240
5241 @item -Wstringop-truncation
5242 @opindex Wstringop-truncation
5243 @opindex Wno-stringop-truncation
5244 Warn for calls to bounded string manipulation functions such as @code{strncat},
5245 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5246 or leave the destination unchanged.
5247
5248 In the following example, the call to @code{strncat} specifies a bound that
5249 is less than the length of the source string. As a result, the copy of
5250 the source will be truncated and so the call is diagnosed. To avoid the
5251 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5252
5253 @smallexample
5254 void append (char *buf, size_t bufsize)
5255 @{
5256 strncat (buf, ".txt", 3);
5257 @}
5258 @end smallexample
5259
5260 As another example, the following call to @code{strncpy} results in copying
5261 to @code{d} just the characters preceding the terminating NUL, without
5262 appending the NUL to the end. Assuming the result of @code{strncpy} is
5263 necessarily a NUL-terminated string is a common mistake, and so the call
5264 is diagnosed. To avoid the warning when the result is not expected to be
5265 NUL-terminated, call @code{memcpy} instead.
5266
5267 @smallexample
5268 void copy (char *d, const char *s)
5269 @{
5270 strncpy (d, s, strlen (s));
5271 @}
5272 @end smallexample
5273
5274 In the following example, the call to @code{strncpy} specifies the size
5275 of the destination buffer as the bound. If the length of the source
5276 string is equal to or greater than this size the result of the copy will
5277 not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
5278 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5279 element of the buffer to @code{NUL}.
5280
5281 @smallexample
5282 void copy (const char *s)
5283 @{
5284 char buf[80];
5285 strncpy (buf, s, sizeof buf);
5286 @dots{}
5287 @}
5288 @end smallexample
5289
5290 In situations where a character array is intended to store a sequence
5291 of bytes with no terminating @code{NUL} such an array may be annotated
5292 with attribute @code{nonstring} to avoid this warning. Such arrays,
5293 however, are not suitable arguments to functions that expect
5294 @code{NUL}-terminated strings. To help detect accidental misuses of
5295 such arrays GCC issues warnings unless it can prove that the use is
5296 safe. @xref{Common Variable Attributes}.
5297
5298 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5299 @opindex Wsuggest-attribute=
5300 @opindex Wno-suggest-attribute=
5301 Warn for cases where adding an attribute may be beneficial. The
5302 attributes currently supported are listed below.
5303
5304 @table @gcctabopt
5305 @item -Wsuggest-attribute=pure
5306 @itemx -Wsuggest-attribute=const
5307 @itemx -Wsuggest-attribute=noreturn
5308 @itemx -Wsuggest-attribute=malloc
5309 @opindex Wsuggest-attribute=pure
5310 @opindex Wno-suggest-attribute=pure
5311 @opindex Wsuggest-attribute=const
5312 @opindex Wno-suggest-attribute=const
5313 @opindex Wsuggest-attribute=noreturn
5314 @opindex Wno-suggest-attribute=noreturn
5315 @opindex Wsuggest-attribute=malloc
5316 @opindex Wno-suggest-attribute=malloc
5317
5318 Warn about functions that might be candidates for attributes
5319 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5320 only warns for functions visible in other compilation units or (in the case of
5321 @code{pure} and @code{const}) if it cannot prove that the function returns
5322 normally. A function returns normally if it doesn't contain an infinite loop or
5323 return abnormally by throwing, calling @code{abort} or trapping. This analysis
5324 requires option @option{-fipa-pure-const}, which is enabled by default at
5325 @option{-O} and higher. Higher optimization levels improve the accuracy
5326 of the analysis.
5327
5328 @item -Wsuggest-attribute=format
5329 @itemx -Wmissing-format-attribute
5330 @opindex Wsuggest-attribute=format
5331 @opindex Wmissing-format-attribute
5332 @opindex Wno-suggest-attribute=format
5333 @opindex Wno-missing-format-attribute
5334 @opindex Wformat
5335 @opindex Wno-format
5336
5337 Warn about function pointers that might be candidates for @code{format}
5338 attributes. Note these are only possible candidates, not absolute ones.
5339 GCC guesses that function pointers with @code{format} attributes that
5340 are used in assignment, initialization, parameter passing or return
5341 statements should have a corresponding @code{format} attribute in the
5342 resulting type. I.e.@: the left-hand side of the assignment or
5343 initialization, the type of the parameter variable, or the return type
5344 of the containing function respectively should also have a @code{format}
5345 attribute to avoid the warning.
5346
5347 GCC also warns about function definitions that might be
5348 candidates for @code{format} attributes. Again, these are only
5349 possible candidates. GCC guesses that @code{format} attributes
5350 might be appropriate for any function that calls a function like
5351 @code{vprintf} or @code{vscanf}, but this might not always be the
5352 case, and some functions for which @code{format} attributes are
5353 appropriate may not be detected.
5354
5355 @item -Wsuggest-attribute=cold
5356 @opindex Wsuggest-attribute=cold
5357 @opindex Wno-suggest-attribute=cold
5358
5359 Warn about functions that might be candidates for @code{cold} attribute. This
5360 is based on static detection and generally will only warn about functions which
5361 always leads to a call to another @code{cold} function such as wrappers of
5362 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
5363 @end table
5364
5365 @item -Wsuggest-final-types
5366 @opindex Wno-suggest-final-types
5367 @opindex Wsuggest-final-types
5368 Warn about types with virtual methods where code quality would be improved
5369 if the type were declared with the C++11 @code{final} specifier,
5370 or, if possible,
5371 declared in an anonymous namespace. This allows GCC to more aggressively
5372 devirtualize the polymorphic calls. This warning is more effective with link
5373 time optimization, where the information about the class hierarchy graph is
5374 more complete.
5375
5376 @item -Wsuggest-final-methods
5377 @opindex Wno-suggest-final-methods
5378 @opindex Wsuggest-final-methods
5379 Warn about virtual methods where code quality would be improved if the method
5380 were declared with the C++11 @code{final} specifier,
5381 or, if possible, its type were
5382 declared in an anonymous namespace or with the @code{final} specifier.
5383 This warning is
5384 more effective with link-time optimization, where the information about the
5385 class hierarchy graph is more complete. It is recommended to first consider
5386 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5387 annotations.
5388
5389 @item -Wsuggest-override
5390 Warn about overriding virtual functions that are not marked with the override
5391 keyword.
5392
5393 @item -Walloc-zero
5394 @opindex Wno-alloc-zero
5395 @opindex Walloc-zero
5396 Warn about calls to allocation functions decorated with attribute
5397 @code{alloc_size} that specify zero bytes, including those to the built-in
5398 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5399 @code{malloc}, and @code{realloc}. Because the behavior of these functions
5400 when called with a zero size differs among implementations (and in the case
5401 of @code{realloc} has been deprecated) relying on it may result in subtle
5402 portability bugs and should be avoided.
5403
5404 @item -Walloc-size-larger-than=@var{n}
5405 Warn about calls to functions decorated with attribute @code{alloc_size}
5406 that attempt to allocate objects larger than the specified number of bytes,
5407 or where the result of the size computation in an integer type with infinite
5408 precision would exceed @code{SIZE_MAX / 2}. The option argument @var{n}
5409 may end in one of the standard suffixes designating a multiple of bytes
5410 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
5411 @code{MB} and @code{MiB} for megabyte and mebibyte, and so on.
5412 @xref{Function Attributes}.
5413
5414 @item -Walloca
5415 @opindex Wno-alloca
5416 @opindex Walloca
5417 This option warns on all uses of @code{alloca} in the source.
5418
5419 @item -Walloca-larger-than=@var{n}
5420 This option warns on calls to @code{alloca} that are not bounded by a
5421 controlling predicate limiting its argument of integer type to at most
5422 @var{n} bytes, or calls to @code{alloca} where the bound is unknown.
5423 Arguments of non-integer types are considered unbounded even if they
5424 appear to be constrained to the expected range.
5425
5426 For example, a bounded case of @code{alloca} could be:
5427
5428 @smallexample
5429 void func (size_t n)
5430 @{
5431 void *p;
5432 if (n <= 1000)
5433 p = alloca (n);
5434 else
5435 p = malloc (n);
5436 f (p);
5437 @}
5438 @end smallexample
5439
5440 In the above example, passing @code{-Walloca-larger-than=1000} would not
5441 issue a warning because the call to @code{alloca} is known to be at most
5442 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
5443 the compiler would emit a warning.
5444
5445 Unbounded uses, on the other hand, are uses of @code{alloca} with no
5446 controlling predicate constraining its integer argument. For example:
5447
5448 @smallexample
5449 void func ()
5450 @{
5451 void *p = alloca (n);
5452 f (p);
5453 @}
5454 @end smallexample
5455
5456 If @code{-Walloca-larger-than=500} were passed, the above would trigger
5457 a warning, but this time because of the lack of bounds checking.
5458
5459 Note, that even seemingly correct code involving signed integers could
5460 cause a warning:
5461
5462 @smallexample
5463 void func (signed int n)
5464 @{
5465 if (n < 500)
5466 @{
5467 p = alloca (n);
5468 f (p);
5469 @}
5470 @}
5471 @end smallexample
5472
5473 In the above example, @var{n} could be negative, causing a larger than
5474 expected argument to be implicitly cast into the @code{alloca} call.
5475
5476 This option also warns when @code{alloca} is used in a loop.
5477
5478 This warning is not enabled by @option{-Wall}, and is only active when
5479 @option{-ftree-vrp} is active (default for @option{-O2} and above).
5480
5481 See also @option{-Wvla-larger-than=@var{n}}.
5482
5483 @item -Warray-bounds
5484 @itemx -Warray-bounds=@var{n}
5485 @opindex Wno-array-bounds
5486 @opindex Warray-bounds
5487 This option is only active when @option{-ftree-vrp} is active
5488 (default for @option{-O2} and above). It warns about subscripts to arrays
5489 that are always out of bounds. This warning is enabled by @option{-Wall}.
5490
5491 @table @gcctabopt
5492 @item -Warray-bounds=1
5493 This is the warning level of @option{-Warray-bounds} and is enabled
5494 by @option{-Wall}; higher levels are not, and must be explicitly requested.
5495
5496 @item -Warray-bounds=2
5497 This warning level also warns about out of bounds access for
5498 arrays at the end of a struct and for arrays accessed through
5499 pointers. This warning level may give a larger number of
5500 false positives and is deactivated by default.
5501 @end table
5502
5503 @item -Wattribute-alias
5504 Warn about declarations using the @code{alias} and similar attributes whose
5505 target is incompatible with the type of the alias. @xref{Function Attributes,
5506 ,Declaring Attributes of Functions}.
5507
5508 @item -Wbool-compare
5509 @opindex Wno-bool-compare
5510 @opindex Wbool-compare
5511 Warn about boolean expression compared with an integer value different from
5512 @code{true}/@code{false}. For instance, the following comparison is
5513 always false:
5514 @smallexample
5515 int n = 5;
5516 @dots{}
5517 if ((n > 1) == 2) @{ @dots{} @}
5518 @end smallexample
5519 This warning is enabled by @option{-Wall}.
5520
5521 @item -Wbool-operation
5522 @opindex Wno-bool-operation
5523 @opindex Wbool-operation
5524 Warn about suspicious operations on expressions of a boolean type. For
5525 instance, bitwise negation of a boolean is very likely a bug in the program.
5526 For C, this warning also warns about incrementing or decrementing a boolean,
5527 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
5528 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
5529
5530 This warning is enabled by @option{-Wall}.
5531
5532 @item -Wduplicated-branches
5533 @opindex Wno-duplicated-branches
5534 @opindex Wduplicated-branches
5535 Warn when an if-else has identical branches. This warning detects cases like
5536 @smallexample
5537 if (p != NULL)
5538 return 0;
5539 else
5540 return 0;
5541 @end smallexample
5542 It doesn't warn when both branches contain just a null statement. This warning
5543 also warn for conditional operators:
5544 @smallexample
5545 int i = x ? *p : *p;
5546 @end smallexample
5547
5548 @item -Wduplicated-cond
5549 @opindex Wno-duplicated-cond
5550 @opindex Wduplicated-cond
5551 Warn about duplicated conditions in an if-else-if chain. For instance,
5552 warn for the following code:
5553 @smallexample
5554 if (p->q != NULL) @{ @dots{} @}
5555 else if (p->q != NULL) @{ @dots{} @}
5556 @end smallexample
5557
5558 @item -Wframe-address
5559 @opindex Wno-frame-address
5560 @opindex Wframe-address
5561 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
5562 is called with an argument greater than 0. Such calls may return indeterminate
5563 values or crash the program. The warning is included in @option{-Wall}.
5564
5565 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
5566 @opindex Wno-discarded-qualifiers
5567 @opindex Wdiscarded-qualifiers
5568 Do not warn if type qualifiers on pointers are being discarded.
5569 Typically, the compiler warns if a @code{const char *} variable is
5570 passed to a function that takes a @code{char *} parameter. This option
5571 can be used to suppress such a warning.
5572
5573 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
5574 @opindex Wno-discarded-array-qualifiers
5575 @opindex Wdiscarded-array-qualifiers
5576 Do not warn if type qualifiers on arrays which are pointer targets
5577 are being discarded. Typically, the compiler warns if a
5578 @code{const int (*)[]} variable is passed to a function that
5579 takes a @code{int (*)[]} parameter. This option can be used to
5580 suppress such a warning.
5581
5582 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
5583 @opindex Wno-incompatible-pointer-types
5584 @opindex Wincompatible-pointer-types
5585 Do not warn when there is a conversion between pointers that have incompatible
5586 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
5587 which warns for pointer argument passing or assignment with different
5588 signedness.
5589
5590 @item -Wno-int-conversion @r{(C and Objective-C only)}
5591 @opindex Wno-int-conversion
5592 @opindex Wint-conversion
5593 Do not warn about incompatible integer to pointer and pointer to integer
5594 conversions. This warning is about implicit conversions; for explicit
5595 conversions the warnings @option{-Wno-int-to-pointer-cast} and
5596 @option{-Wno-pointer-to-int-cast} may be used.
5597
5598 @item -Wno-div-by-zero
5599 @opindex Wno-div-by-zero
5600 @opindex Wdiv-by-zero
5601 Do not warn about compile-time integer division by zero. Floating-point
5602 division by zero is not warned about, as it can be a legitimate way of
5603 obtaining infinities and NaNs.
5604
5605 @item -Wsystem-headers
5606 @opindex Wsystem-headers
5607 @opindex Wno-system-headers
5608 @cindex warnings from system headers
5609 @cindex system headers, warnings from
5610 Print warning messages for constructs found in system header files.
5611 Warnings from system headers are normally suppressed, on the assumption
5612 that they usually do not indicate real problems and would only make the
5613 compiler output harder to read. Using this command-line option tells
5614 GCC to emit warnings from system headers as if they occurred in user
5615 code. However, note that using @option{-Wall} in conjunction with this
5616 option does @emph{not} warn about unknown pragmas in system
5617 headers---for that, @option{-Wunknown-pragmas} must also be used.
5618
5619 @item -Wtautological-compare
5620 @opindex Wtautological-compare
5621 @opindex Wno-tautological-compare
5622 Warn if a self-comparison always evaluates to true or false. This
5623 warning detects various mistakes such as:
5624 @smallexample
5625 int i = 1;
5626 @dots{}
5627 if (i > i) @{ @dots{} @}
5628 @end smallexample
5629
5630 This warning also warns about bitwise comparisons that always evaluate
5631 to true or false, for instance:
5632 @smallexample
5633 if ((a & 16) == 10) @{ @dots{} @}
5634 @end smallexample
5635 will always be false.
5636
5637 This warning is enabled by @option{-Wall}.
5638
5639 @item -Wtrampolines
5640 @opindex Wtrampolines
5641 @opindex Wno-trampolines
5642 Warn about trampolines generated for pointers to nested functions.
5643 A trampoline is a small piece of data or code that is created at run
5644 time on the stack when the address of a nested function is taken, and is
5645 used to call the nested function indirectly. For some targets, it is
5646 made up of data only and thus requires no special treatment. But, for
5647 most targets, it is made up of code and thus requires the stack to be
5648 made executable in order for the program to work properly.
5649
5650 @item -Wfloat-equal
5651 @opindex Wfloat-equal
5652 @opindex Wno-float-equal
5653 Warn if floating-point values are used in equality comparisons.
5654
5655 The idea behind this is that sometimes it is convenient (for the
5656 programmer) to consider floating-point values as approximations to
5657 infinitely precise real numbers. If you are doing this, then you need
5658 to compute (by analyzing the code, or in some other way) the maximum or
5659 likely maximum error that the computation introduces, and allow for it
5660 when performing comparisons (and when producing output, but that's a
5661 different problem). In particular, instead of testing for equality, you
5662 should check to see whether the two values have ranges that overlap; and
5663 this is done with the relational operators, so equality comparisons are
5664 probably mistaken.
5665
5666 @item -Wtraditional @r{(C and Objective-C only)}
5667 @opindex Wtraditional
5668 @opindex Wno-traditional
5669 Warn about certain constructs that behave differently in traditional and
5670 ISO C@. Also warn about ISO C constructs that have no traditional C
5671 equivalent, and/or problematic constructs that should be avoided.
5672
5673 @itemize @bullet
5674 @item
5675 Macro parameters that appear within string literals in the macro body.
5676 In traditional C macro replacement takes place within string literals,
5677 but in ISO C it does not.
5678
5679 @item
5680 In traditional C, some preprocessor directives did not exist.
5681 Traditional preprocessors only considered a line to be a directive
5682 if the @samp{#} appeared in column 1 on the line. Therefore
5683 @option{-Wtraditional} warns about directives that traditional C
5684 understands but ignores because the @samp{#} does not appear as the
5685 first character on the line. It also suggests you hide directives like
5686 @code{#pragma} not understood by traditional C by indenting them. Some
5687 traditional implementations do not recognize @code{#elif}, so this option
5688 suggests avoiding it altogether.
5689
5690 @item
5691 A function-like macro that appears without arguments.
5692
5693 @item
5694 The unary plus operator.
5695
5696 @item
5697 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
5698 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
5699 constants.) Note, these suffixes appear in macros defined in the system
5700 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
5701 Use of these macros in user code might normally lead to spurious
5702 warnings, however GCC's integrated preprocessor has enough context to
5703 avoid warning in these cases.
5704
5705 @item
5706 A function declared external in one block and then used after the end of
5707 the block.
5708
5709 @item
5710 A @code{switch} statement has an operand of type @code{long}.
5711
5712 @item
5713 A non-@code{static} function declaration follows a @code{static} one.
5714 This construct is not accepted by some traditional C compilers.
5715
5716 @item
5717 The ISO type of an integer constant has a different width or
5718 signedness from its traditional type. This warning is only issued if
5719 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
5720 typically represent bit patterns, are not warned about.
5721
5722 @item
5723 Usage of ISO string concatenation is detected.
5724
5725 @item
5726 Initialization of automatic aggregates.
5727
5728 @item
5729 Identifier conflicts with labels. Traditional C lacks a separate
5730 namespace for labels.
5731
5732 @item
5733 Initialization of unions. If the initializer is zero, the warning is
5734 omitted. This is done under the assumption that the zero initializer in
5735 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
5736 initializer warnings and relies on default initialization to zero in the
5737 traditional C case.
5738
5739 @item
5740 Conversions by prototypes between fixed/floating-point values and vice
5741 versa. The absence of these prototypes when compiling with traditional
5742 C causes serious problems. This is a subset of the possible
5743 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
5744
5745 @item
5746 Use of ISO C style function definitions. This warning intentionally is
5747 @emph{not} issued for prototype declarations or variadic functions
5748 because these ISO C features appear in your code when using
5749 libiberty's traditional C compatibility macros, @code{PARAMS} and
5750 @code{VPARAMS}. This warning is also bypassed for nested functions
5751 because that feature is already a GCC extension and thus not relevant to
5752 traditional C compatibility.
5753 @end itemize
5754
5755 @item -Wtraditional-conversion @r{(C and Objective-C only)}
5756 @opindex Wtraditional-conversion
5757 @opindex Wno-traditional-conversion
5758 Warn if a prototype causes a type conversion that is different from what
5759 would happen to the same argument in the absence of a prototype. This
5760 includes conversions of fixed point to floating and vice versa, and
5761 conversions changing the width or signedness of a fixed-point argument
5762 except when the same as the default promotion.
5763
5764 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
5765 @opindex Wdeclaration-after-statement
5766 @opindex Wno-declaration-after-statement
5767 Warn when a declaration is found after a statement in a block. This
5768 construct, known from C++, was introduced with ISO C99 and is by default
5769 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
5770
5771 @item -Wshadow
5772 @opindex Wshadow
5773 @opindex Wno-shadow
5774 Warn whenever a local variable or type declaration shadows another
5775 variable, parameter, type, class member (in C++), or instance variable
5776 (in Objective-C) or whenever a built-in function is shadowed. Note
5777 that in C++, the compiler warns if a local variable shadows an
5778 explicit typedef, but not if it shadows a struct/class/enum.
5779 Same as @option{-Wshadow=global}.
5780
5781 @item -Wno-shadow-ivar @r{(Objective-C only)}
5782 @opindex Wno-shadow-ivar
5783 @opindex Wshadow-ivar
5784 Do not warn whenever a local variable shadows an instance variable in an
5785 Objective-C method.
5786
5787 @item -Wshadow=global
5788 @opindex Wshadow=local
5789 The default for @option{-Wshadow}. Warns for any (global) shadowing.
5790
5791 @item -Wshadow=local
5792 @opindex Wshadow=local
5793 Warn when a local variable shadows another local variable or parameter.
5794 This warning is enabled by @option{-Wshadow=global}.
5795
5796 @item -Wshadow=compatible-local
5797 @opindex Wshadow=compatible-local
5798 Warn when a local variable shadows another local variable or parameter
5799 whose type is compatible with that of the shadowing variable. In C++,
5800 type compatibility here means the type of the shadowing variable can be
5801 converted to that of the shadowed variable. The creation of this flag
5802 (in addition to @option{-Wshadow=local}) is based on the idea that when
5803 a local variable shadows another one of incompatible type, it is most
5804 likely intentional, not a bug or typo, as shown in the following example:
5805
5806 @smallexample
5807 @group
5808 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
5809 @{
5810 for (int i = 0; i < N; ++i)
5811 @{
5812 ...
5813 @}
5814 ...
5815 @}
5816 @end group
5817 @end smallexample
5818
5819 Since the two variable @code{i} in the example above have incompatible types,
5820 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
5821 Because their types are incompatible, if a programmer accidentally uses one
5822 in place of the other, type checking will catch that and emit an error or
5823 warning. So not warning (about shadowing) in this case will not lead to
5824 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
5825 possibly reduce the number of warnings triggered by intentional shadowing.
5826
5827 This warning is enabled by @option{-Wshadow=local}.
5828
5829 @item -Wlarger-than=@var{len}
5830 @opindex Wlarger-than=@var{len}
5831 @opindex Wlarger-than-@var{len}
5832 Warn whenever an object of larger than @var{len} bytes is defined.
5833
5834 @item -Wframe-larger-than=@var{len}
5835 @opindex Wframe-larger-than
5836 Warn if the size of a function frame is larger than @var{len} bytes.
5837 The computation done to determine the stack frame size is approximate
5838 and not conservative.
5839 The actual requirements may be somewhat greater than @var{len}
5840 even if you do not get a warning. In addition, any space allocated
5841 via @code{alloca}, variable-length arrays, or related constructs
5842 is not included by the compiler when determining
5843 whether or not to issue a warning.
5844
5845 @item -Wno-free-nonheap-object
5846 @opindex Wno-free-nonheap-object
5847 @opindex Wfree-nonheap-object
5848 Do not warn when attempting to free an object that was not allocated
5849 on the heap.
5850
5851 @item -Wstack-usage=@var{len}
5852 @opindex Wstack-usage
5853 Warn if the stack usage of a function might be larger than @var{len} bytes.
5854 The computation done to determine the stack usage is conservative.
5855 Any space allocated via @code{alloca}, variable-length arrays, or related
5856 constructs is included by the compiler when determining whether or not to
5857 issue a warning.
5858
5859 The message is in keeping with the output of @option{-fstack-usage}.
5860
5861 @itemize
5862 @item
5863 If the stack usage is fully static but exceeds the specified amount, it's:
5864
5865 @smallexample
5866 warning: stack usage is 1120 bytes
5867 @end smallexample
5868 @item
5869 If the stack usage is (partly) dynamic but bounded, it's:
5870
5871 @smallexample
5872 warning: stack usage might be 1648 bytes
5873 @end smallexample
5874 @item
5875 If the stack usage is (partly) dynamic and not bounded, it's:
5876
5877 @smallexample
5878 warning: stack usage might be unbounded
5879 @end smallexample
5880 @end itemize
5881
5882 @item -Wunsafe-loop-optimizations
5883 @opindex Wunsafe-loop-optimizations
5884 @opindex Wno-unsafe-loop-optimizations
5885 Warn if the loop cannot be optimized because the compiler cannot
5886 assume anything on the bounds of the loop indices. With
5887 @option{-funsafe-loop-optimizations} warn if the compiler makes
5888 such assumptions.
5889
5890 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
5891 @opindex Wno-pedantic-ms-format
5892 @opindex Wpedantic-ms-format
5893 When used in combination with @option{-Wformat}
5894 and @option{-pedantic} without GNU extensions, this option
5895 disables the warnings about non-ISO @code{printf} / @code{scanf} format
5896 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
5897 which depend on the MS runtime.
5898
5899 @item -Waligned-new
5900 @opindex Waligned-new
5901 @opindex Wno-aligned-new
5902 Warn about a new-expression of a type that requires greater alignment
5903 than the @code{alignof(std::max_align_t)} but uses an allocation
5904 function without an explicit alignment parameter. This option is
5905 enabled by @option{-Wall}.
5906
5907 Normally this only warns about global allocation functions, but
5908 @option{-Waligned-new=all} also warns about class member allocation
5909 functions.
5910
5911 @item -Wplacement-new
5912 @itemx -Wplacement-new=@var{n}
5913 @opindex Wplacement-new
5914 @opindex Wno-placement-new
5915 Warn about placement new expressions with undefined behavior, such as
5916 constructing an object in a buffer that is smaller than the type of
5917 the object. For example, the placement new expression below is diagnosed
5918 because it attempts to construct an array of 64 integers in a buffer only
5919 64 bytes large.
5920 @smallexample
5921 char buf [64];
5922 new (buf) int[64];
5923 @end smallexample
5924 This warning is enabled by default.
5925
5926 @table @gcctabopt
5927 @item -Wplacement-new=1
5928 This is the default warning level of @option{-Wplacement-new}. At this
5929 level the warning is not issued for some strictly undefined constructs that
5930 GCC allows as extensions for compatibility with legacy code. For example,
5931 the following @code{new} expression is not diagnosed at this level even
5932 though it has undefined behavior according to the C++ standard because
5933 it writes past the end of the one-element array.
5934 @smallexample
5935 struct S @{ int n, a[1]; @};
5936 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
5937 new (s->a)int [32]();
5938 @end smallexample
5939
5940 @item -Wplacement-new=2
5941 At this level, in addition to diagnosing all the same constructs as at level
5942 1, a diagnostic is also issued for placement new expressions that construct
5943 an object in the last member of structure whose type is an array of a single
5944 element and whose size is less than the size of the object being constructed.
5945 While the previous example would be diagnosed, the following construct makes
5946 use of the flexible member array extension to avoid the warning at level 2.
5947 @smallexample
5948 struct S @{ int n, a[]; @};
5949 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
5950 new (s->a)int [32]();
5951 @end smallexample
5952
5953 @end table
5954
5955 @item -Wpointer-arith
5956 @opindex Wpointer-arith
5957 @opindex Wno-pointer-arith
5958 Warn about anything that depends on the ``size of'' a function type or
5959 of @code{void}. GNU C assigns these types a size of 1, for
5960 convenience in calculations with @code{void *} pointers and pointers
5961 to functions. In C++, warn also when an arithmetic operation involves
5962 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
5963
5964 @item -Wpointer-compare
5965 @opindex Wpointer-compare
5966 @opindex Wno-pointer-compare
5967 Warn if a pointer is compared with a zero character constant. This usually
5968 means that the pointer was meant to be dereferenced. For example:
5969
5970 @smallexample
5971 const char *p = foo ();
5972 if (p == '\0')
5973 return 42;
5974 @end smallexample
5975
5976 Note that the code above is invalid in C++11.
5977
5978 This warning is enabled by default.
5979
5980 @item -Wtype-limits
5981 @opindex Wtype-limits
5982 @opindex Wno-type-limits
5983 Warn if a comparison is always true or always false due to the limited
5984 range of the data type, but do not warn for constant expressions. For
5985 example, warn if an unsigned variable is compared against zero with
5986 @code{<} or @code{>=}. This warning is also enabled by
5987 @option{-Wextra}.
5988
5989 @include cppwarnopts.texi
5990
5991 @item -Wbad-function-cast @r{(C and Objective-C only)}
5992 @opindex Wbad-function-cast
5993 @opindex Wno-bad-function-cast
5994 Warn when a function call is cast to a non-matching type.
5995 For example, warn if a call to a function returning an integer type
5996 is cast to a pointer type.
5997
5998 @item -Wc90-c99-compat @r{(C and Objective-C only)}
5999 @opindex Wc90-c99-compat
6000 @opindex Wno-c90-c99-compat
6001 Warn about features not present in ISO C90, but present in ISO C99.
6002 For instance, warn about use of variable length arrays, @code{long long}
6003 type, @code{bool} type, compound literals, designated initializers, and so
6004 on. This option is independent of the standards mode. Warnings are disabled
6005 in the expression that follows @code{__extension__}.
6006
6007 @item -Wc99-c11-compat @r{(C and Objective-C only)}
6008 @opindex Wc99-c11-compat
6009 @opindex Wno-c99-c11-compat
6010 Warn about features not present in ISO C99, but present in ISO C11.
6011 For instance, warn about use of anonymous structures and unions,
6012 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6013 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6014 and so on. This option is independent of the standards mode. Warnings are
6015 disabled in the expression that follows @code{__extension__}.
6016
6017 @item -Wc++-compat @r{(C and Objective-C only)}
6018 @opindex Wc++-compat
6019 Warn about ISO C constructs that are outside of the common subset of
6020 ISO C and ISO C++, e.g.@: request for implicit conversion from
6021 @code{void *} to a pointer to non-@code{void} type.
6022
6023 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6024 @opindex Wc++11-compat
6025 Warn about C++ constructs whose meaning differs between ISO C++ 1998
6026 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6027 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
6028 enabled by @option{-Wall}.
6029
6030 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6031 @opindex Wc++14-compat
6032 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6033 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
6034
6035 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6036 @opindex Wc++17-compat
6037 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6038 and ISO C++ 2017. This warning is enabled by @option{-Wall}.
6039
6040 @item -Wcast-qual
6041 @opindex Wcast-qual
6042 @opindex Wno-cast-qual
6043 Warn whenever a pointer is cast so as to remove a type qualifier from
6044 the target type. For example, warn if a @code{const char *} is cast
6045 to an ordinary @code{char *}.
6046
6047 Also warn when making a cast that introduces a type qualifier in an
6048 unsafe way. For example, casting @code{char **} to @code{const char **}
6049 is unsafe, as in this example:
6050
6051 @smallexample
6052 /* p is char ** value. */
6053 const char **q = (const char **) p;
6054 /* Assignment of readonly string to const char * is OK. */
6055 *q = "string";
6056 /* Now char** pointer points to read-only memory. */
6057 **p = 'b';
6058 @end smallexample
6059
6060 @item -Wcast-align
6061 @opindex Wcast-align
6062 @opindex Wno-cast-align
6063 Warn whenever a pointer is cast such that the required alignment of the
6064 target is increased. For example, warn if a @code{char *} is cast to
6065 an @code{int *} on machines where integers can only be accessed at
6066 two- or four-byte boundaries.
6067
6068 @item -Wcast-align=strict
6069 @opindex Wcast-align=strict
6070 Warn whenever a pointer is cast such that the required alignment of the
6071 target is increased. For example, warn if a @code{char *} is cast to
6072 an @code{int *} regardless of the target machine.
6073
6074 @item -Wcast-function-type
6075 @opindex Wcast-function-type
6076 @opindex Wno-cast-function-type
6077 Warn when a function pointer is cast to an incompatible function pointer.
6078 In a cast involving function types with a variable argument list only
6079 the types of initial arguments that are provided are considered.
6080 Any parameter of pointer-type matches any other pointer-type. Any benign
6081 differences in integral types are ignored, like @code{int} vs. @code{long}
6082 on ILP32 targets. Likewise type qualifiers are ignored. The function
6083 type @code{void (*) (void)} is special and matches everything, which can
6084 be used to suppress this warning.
6085 In a cast involving pointer to member types this warning warns whenever
6086 the type cast is changing the pointer to member type.
6087 This warning is enabled by @option{-Wextra}.
6088
6089 @item -Wwrite-strings
6090 @opindex Wwrite-strings
6091 @opindex Wno-write-strings
6092 When compiling C, give string constants the type @code{const
6093 char[@var{length}]} so that copying the address of one into a
6094 non-@code{const} @code{char *} pointer produces a warning. These
6095 warnings help you find at compile time code that can try to write
6096 into a string constant, but only if you have been very careful about
6097 using @code{const} in declarations and prototypes. Otherwise, it is
6098 just a nuisance. This is why we did not make @option{-Wall} request
6099 these warnings.
6100
6101 When compiling C++, warn about the deprecated conversion from string
6102 literals to @code{char *}. This warning is enabled by default for C++
6103 programs.
6104
6105 @item -Wcatch-value
6106 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6107 @opindex Wcatch-value
6108 @opindex Wno-catch-value
6109 Warn about catch handlers that do not catch via reference.
6110 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6111 warn about polymorphic class types that are caught by value.
6112 With @option{-Wcatch-value=2} warn about all class types that are caught
6113 by value. With @option{-Wcatch-value=3} warn about all types that are
6114 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6115
6116 @item -Wclobbered
6117 @opindex Wclobbered
6118 @opindex Wno-clobbered
6119 Warn for variables that might be changed by @code{longjmp} or
6120 @code{vfork}. This warning is also enabled by @option{-Wextra}.
6121
6122 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6123 @opindex Wconditionally-supported
6124 @opindex Wno-conditionally-supported
6125 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6126
6127 @item -Wconversion
6128 @opindex Wconversion
6129 @opindex Wno-conversion
6130 Warn for implicit conversions that may alter a value. This includes
6131 conversions between real and integer, like @code{abs (x)} when
6132 @code{x} is @code{double}; conversions between signed and unsigned,
6133 like @code{unsigned ui = -1}; and conversions to smaller types, like
6134 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6135 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6136 changed by the conversion like in @code{abs (2.0)}. Warnings about
6137 conversions between signed and unsigned integers can be disabled by
6138 using @option{-Wno-sign-conversion}.
6139
6140 For C++, also warn for confusing overload resolution for user-defined
6141 conversions; and conversions that never use a type conversion
6142 operator: conversions to @code{void}, the same type, a base class or a
6143 reference to them. Warnings about conversions between signed and
6144 unsigned integers are disabled by default in C++ unless
6145 @option{-Wsign-conversion} is explicitly enabled.
6146
6147 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6148 @opindex Wconversion-null
6149 @opindex Wno-conversion-null
6150 Do not warn for conversions between @code{NULL} and non-pointer
6151 types. @option{-Wconversion-null} is enabled by default.
6152
6153 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6154 @opindex Wzero-as-null-pointer-constant
6155 @opindex Wno-zero-as-null-pointer-constant
6156 Warn when a literal @samp{0} is used as null pointer constant. This can
6157 be useful to facilitate the conversion to @code{nullptr} in C++11.
6158
6159 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6160 @opindex Wsubobject-linkage
6161 @opindex Wno-subobject-linkage
6162 Warn if a class type has a base or a field whose type uses the anonymous
6163 namespace or depends on a type with no linkage. If a type A depends on
6164 a type B with no or internal linkage, defining it in multiple
6165 translation units would be an ODR violation because the meaning of B
6166 is different in each translation unit. If A only appears in a single
6167 translation unit, the best way to silence the warning is to give it
6168 internal linkage by putting it in an anonymous namespace as well. The
6169 compiler doesn't give this warning for types defined in the main .C
6170 file, as those are unlikely to have multiple definitions.
6171 @option{-Wsubobject-linkage} is enabled by default.
6172
6173 @item -Wdangling-else
6174 @opindex Wdangling-else
6175 @opindex Wno-dangling-else
6176 Warn about constructions where there may be confusion to which
6177 @code{if} statement an @code{else} branch belongs. Here is an example of
6178 such a case:
6179
6180 @smallexample
6181 @group
6182 @{
6183 if (a)
6184 if (b)
6185 foo ();
6186 else
6187 bar ();
6188 @}
6189 @end group
6190 @end smallexample
6191
6192 In C/C++, every @code{else} branch belongs to the innermost possible
6193 @code{if} statement, which in this example is @code{if (b)}. This is
6194 often not what the programmer expected, as illustrated in the above
6195 example by indentation the programmer chose. When there is the
6196 potential for this confusion, GCC issues a warning when this flag
6197 is specified. To eliminate the warning, add explicit braces around
6198 the innermost @code{if} statement so there is no way the @code{else}
6199 can belong to the enclosing @code{if}. The resulting code
6200 looks like this:
6201
6202 @smallexample
6203 @group
6204 @{
6205 if (a)
6206 @{
6207 if (b)
6208 foo ();
6209 else
6210 bar ();
6211 @}
6212 @}
6213 @end group
6214 @end smallexample
6215
6216 This warning is enabled by @option{-Wparentheses}.
6217
6218 @item -Wdate-time
6219 @opindex Wdate-time
6220 @opindex Wno-date-time
6221 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6222 are encountered as they might prevent bit-wise-identical reproducible
6223 compilations.
6224
6225 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6226 @opindex Wdelete-incomplete
6227 @opindex Wno-delete-incomplete
6228 Warn when deleting a pointer to incomplete type, which may cause
6229 undefined behavior at runtime. This warning is enabled by default.
6230
6231 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6232 @opindex Wuseless-cast
6233 @opindex Wno-useless-cast
6234 Warn when an expression is casted to its own type.
6235
6236 @item -Wempty-body
6237 @opindex Wempty-body
6238 @opindex Wno-empty-body
6239 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6240 while} statement. This warning is also enabled by @option{-Wextra}.
6241
6242 @item -Wenum-compare
6243 @opindex Wenum-compare
6244 @opindex Wno-enum-compare
6245 Warn about a comparison between values of different enumerated types.
6246 In C++ enumerated type mismatches in conditional expressions are also
6247 diagnosed and the warning is enabled by default. In C this warning is
6248 enabled by @option{-Wall}.
6249
6250 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6251 @opindex Wextra-semi
6252 @opindex Wno-extra-semi
6253 Warn about redundant semicolon after in-class function definition.
6254
6255 @item -Wjump-misses-init @r{(C, Objective-C only)}
6256 @opindex Wjump-misses-init
6257 @opindex Wno-jump-misses-init
6258 Warn if a @code{goto} statement or a @code{switch} statement jumps
6259 forward across the initialization of a variable, or jumps backward to a
6260 label after the variable has been initialized. This only warns about
6261 variables that are initialized when they are declared. This warning is
6262 only supported for C and Objective-C; in C++ this sort of branch is an
6263 error in any case.
6264
6265 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
6266 can be disabled with the @option{-Wno-jump-misses-init} option.
6267
6268 @item -Wsign-compare
6269 @opindex Wsign-compare
6270 @opindex Wno-sign-compare
6271 @cindex warning for comparison of signed and unsigned values
6272 @cindex comparison of signed and unsigned values, warning
6273 @cindex signed and unsigned values, comparison warning
6274 Warn when a comparison between signed and unsigned values could produce
6275 an incorrect result when the signed value is converted to unsigned.
6276 In C++, this warning is also enabled by @option{-Wall}. In C, it is
6277 also enabled by @option{-Wextra}.
6278
6279 @item -Wsign-conversion
6280 @opindex Wsign-conversion
6281 @opindex Wno-sign-conversion
6282 Warn for implicit conversions that may change the sign of an integer
6283 value, like assigning a signed integer expression to an unsigned
6284 integer variable. An explicit cast silences the warning. In C, this
6285 option is enabled also by @option{-Wconversion}.
6286
6287 @item -Wfloat-conversion
6288 @opindex Wfloat-conversion
6289 @opindex Wno-float-conversion
6290 Warn for implicit conversions that reduce the precision of a real value.
6291 This includes conversions from real to integer, and from higher precision
6292 real to lower precision real values. This option is also enabled by
6293 @option{-Wconversion}.
6294
6295 @item -Wno-scalar-storage-order
6296 @opindex -Wno-scalar-storage-order
6297 @opindex -Wscalar-storage-order
6298 Do not warn on suspicious constructs involving reverse scalar storage order.
6299
6300 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6301 @opindex Wsized-deallocation
6302 @opindex Wno-sized-deallocation
6303 Warn about a definition of an unsized deallocation function
6304 @smallexample
6305 void operator delete (void *) noexcept;
6306 void operator delete[] (void *) noexcept;
6307 @end smallexample
6308 without a definition of the corresponding sized deallocation function
6309 @smallexample
6310 void operator delete (void *, std::size_t) noexcept;
6311 void operator delete[] (void *, std::size_t) noexcept;
6312 @end smallexample
6313 or vice versa. Enabled by @option{-Wextra} along with
6314 @option{-fsized-deallocation}.
6315
6316 @item -Wsizeof-pointer-div
6317 @opindex Wsizeof-pointer-div
6318 @opindex Wno-sizeof-pointer-div
6319 Warn for suspicious divisions of two sizeof expressions that divide
6320 the pointer size by the element size, which is the usual way to compute
6321 the array size but won't work out correctly with pointers. This warning
6322 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
6323 not an array, but a pointer. This warning is enabled by @option{-Wall}.
6324
6325 @item -Wsizeof-pointer-memaccess
6326 @opindex Wsizeof-pointer-memaccess
6327 @opindex Wno-sizeof-pointer-memaccess
6328 Warn for suspicious length parameters to certain string and memory built-in
6329 functions if the argument uses @code{sizeof}. This warning triggers for
6330 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
6331 an array, but a pointer, and suggests a possible fix, or about
6332 @code{memcpy (&foo, ptr, sizeof (&foo));}. @option{-Wsizeof-pointer-memaccess}
6333 also warns about calls to bounded string copy functions like @code{strncat}
6334 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
6335 the source array. For example, in the following function the call to
6336 @code{strncat} specifies the size of the source string as the bound. That
6337 is almost certainly a mistake and so the call is diagnosed.
6338 @smallexample
6339 void make_file (const char *name)
6340 @{
6341 char path[PATH_MAX];
6342 strncpy (path, name, sizeof path - 1);
6343 strncat (path, ".text", sizeof ".text");
6344 @dots{}
6345 @}
6346 @end smallexample
6347
6348 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
6349
6350 @item -Wsizeof-array-argument
6351 @opindex Wsizeof-array-argument
6352 @opindex Wno-sizeof-array-argument
6353 Warn when the @code{sizeof} operator is applied to a parameter that is
6354 declared as an array in a function definition. This warning is enabled by
6355 default for C and C++ programs.
6356
6357 @item -Wmemset-elt-size
6358 @opindex Wmemset-elt-size
6359 @opindex Wno-memset-elt-size
6360 Warn for suspicious calls to the @code{memset} built-in function, if the
6361 first argument references an array, and the third argument is a number
6362 equal to the number of elements, but not equal to the size of the array
6363 in memory. This indicates that the user has omitted a multiplication by
6364 the element size. This warning is enabled by @option{-Wall}.
6365
6366 @item -Wmemset-transposed-args
6367 @opindex Wmemset-transposed-args
6368 @opindex Wno-memset-transposed-args
6369 Warn for suspicious calls to the @code{memset} built-in function, if the
6370 second argument is not zero and the third argument is zero. This warns e.g.@
6371 about @code{memset (buf, sizeof buf, 0)} where most probably
6372 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
6373 is only emitted if the third argument is literal zero. If it is some
6374 expression that is folded to zero, a cast of zero to some type, etc.,
6375 it is far less likely that the user has mistakenly exchanged the arguments
6376 and no warning is emitted. This warning is enabled by @option{-Wall}.
6377
6378 @item -Waddress
6379 @opindex Waddress
6380 @opindex Wno-address
6381 Warn about suspicious uses of memory addresses. These include using
6382 the address of a function in a conditional expression, such as
6383 @code{void func(void); if (func)}, and comparisons against the memory
6384 address of a string literal, such as @code{if (x == "abc")}. Such
6385 uses typically indicate a programmer error: the address of a function
6386 always evaluates to true, so their use in a conditional usually
6387 indicate that the programmer forgot the parentheses in a function
6388 call; and comparisons against string literals result in unspecified
6389 behavior and are not portable in C, so they usually indicate that the
6390 programmer intended to use @code{strcmp}. This warning is enabled by
6391 @option{-Wall}.
6392
6393 @item -Wlogical-op
6394 @opindex Wlogical-op
6395 @opindex Wno-logical-op
6396 Warn about suspicious uses of logical operators in expressions.
6397 This includes using logical operators in contexts where a
6398 bit-wise operator is likely to be expected. Also warns when
6399 the operands of a logical operator are the same:
6400 @smallexample
6401 extern int a;
6402 if (a < 0 && a < 0) @{ @dots{} @}
6403 @end smallexample
6404
6405 @item -Wlogical-not-parentheses
6406 @opindex Wlogical-not-parentheses
6407 @opindex Wno-logical-not-parentheses
6408 Warn about logical not used on the left hand side operand of a comparison.
6409 This option does not warn if the right operand is considered to be a boolean
6410 expression. Its purpose is to detect suspicious code like the following:
6411 @smallexample
6412 int a;
6413 @dots{}
6414 if (!a > 1) @{ @dots{} @}
6415 @end smallexample
6416
6417 It is possible to suppress the warning by wrapping the LHS into
6418 parentheses:
6419 @smallexample
6420 if ((!a) > 1) @{ @dots{} @}
6421 @end smallexample
6422
6423 This warning is enabled by @option{-Wall}.
6424
6425 @item -Waggregate-return
6426 @opindex Waggregate-return
6427 @opindex Wno-aggregate-return
6428 Warn if any functions that return structures or unions are defined or
6429 called. (In languages where you can return an array, this also elicits
6430 a warning.)
6431
6432 @item -Wno-aggressive-loop-optimizations
6433 @opindex Wno-aggressive-loop-optimizations
6434 @opindex Waggressive-loop-optimizations
6435 Warn if in a loop with constant number of iterations the compiler detects
6436 undefined behavior in some statement during one or more of the iterations.
6437
6438 @item -Wno-attributes
6439 @opindex Wno-attributes
6440 @opindex Wattributes
6441 Do not warn if an unexpected @code{__attribute__} is used, such as
6442 unrecognized attributes, function attributes applied to variables,
6443 etc. This does not stop errors for incorrect use of supported
6444 attributes.
6445
6446 @item -Wno-builtin-declaration-mismatch
6447 @opindex Wno-builtin-declaration-mismatch
6448 @opindex Wbuiltin-declaration-mismatch
6449 Warn if a built-in function is declared with the wrong signature or
6450 as non-function.
6451 This warning is enabled by default.
6452
6453 @item -Wno-builtin-macro-redefined
6454 @opindex Wno-builtin-macro-redefined
6455 @opindex Wbuiltin-macro-redefined
6456 Do not warn if certain built-in macros are redefined. This suppresses
6457 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
6458 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
6459
6460 @item -Wstrict-prototypes @r{(C and Objective-C only)}
6461 @opindex Wstrict-prototypes
6462 @opindex Wno-strict-prototypes
6463 Warn if a function is declared or defined without specifying the
6464 argument types. (An old-style function definition is permitted without
6465 a warning if preceded by a declaration that specifies the argument
6466 types.)
6467
6468 @item -Wold-style-declaration @r{(C and Objective-C only)}
6469 @opindex Wold-style-declaration
6470 @opindex Wno-old-style-declaration
6471 Warn for obsolescent usages, according to the C Standard, in a
6472 declaration. For example, warn if storage-class specifiers like
6473 @code{static} are not the first things in a declaration. This warning
6474 is also enabled by @option{-Wextra}.
6475
6476 @item -Wold-style-definition @r{(C and Objective-C only)}
6477 @opindex Wold-style-definition
6478 @opindex Wno-old-style-definition
6479 Warn if an old-style function definition is used. A warning is given
6480 even if there is a previous prototype.
6481
6482 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
6483 @opindex Wmissing-parameter-type
6484 @opindex Wno-missing-parameter-type
6485 A function parameter is declared without a type specifier in K&R-style
6486 functions:
6487
6488 @smallexample
6489 void foo(bar) @{ @}
6490 @end smallexample
6491
6492 This warning is also enabled by @option{-Wextra}.
6493
6494 @item -Wmissing-prototypes @r{(C and Objective-C only)}
6495 @opindex Wmissing-prototypes
6496 @opindex Wno-missing-prototypes
6497 Warn if a global function is defined without a previous prototype
6498 declaration. This warning is issued even if the definition itself
6499 provides a prototype. Use this option to detect global functions
6500 that do not have a matching prototype declaration in a header file.
6501 This option is not valid for C++ because all function declarations
6502 provide prototypes and a non-matching declaration declares an
6503 overload rather than conflict with an earlier declaration.
6504 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
6505
6506 @item -Wmissing-declarations
6507 @opindex Wmissing-declarations
6508 @opindex Wno-missing-declarations
6509 Warn if a global function is defined without a previous declaration.
6510 Do so even if the definition itself provides a prototype.
6511 Use this option to detect global functions that are not declared in
6512 header files. In C, no warnings are issued for functions with previous
6513 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
6514 missing prototypes. In C++, no warnings are issued for function templates,
6515 or for inline functions, or for functions in anonymous namespaces.
6516
6517 @item -Wmissing-field-initializers
6518 @opindex Wmissing-field-initializers
6519 @opindex Wno-missing-field-initializers
6520 @opindex W
6521 @opindex Wextra
6522 @opindex Wno-extra
6523 Warn if a structure's initializer has some fields missing. For
6524 example, the following code causes such a warning, because
6525 @code{x.h} is implicitly zero:
6526
6527 @smallexample
6528 struct s @{ int f, g, h; @};
6529 struct s x = @{ 3, 4 @};
6530 @end smallexample
6531
6532 This option does not warn about designated initializers, so the following
6533 modification does not trigger a warning:
6534
6535 @smallexample
6536 struct s @{ int f, g, h; @};
6537 struct s x = @{ .f = 3, .g = 4 @};
6538 @end smallexample
6539
6540 In C this option does not warn about the universal zero initializer
6541 @samp{@{ 0 @}}:
6542
6543 @smallexample
6544 struct s @{ int f, g, h; @};
6545 struct s x = @{ 0 @};
6546 @end smallexample
6547
6548 Likewise, in C++ this option does not warn about the empty @{ @}
6549 initializer, for example:
6550
6551 @smallexample
6552 struct s @{ int f, g, h; @};
6553 s x = @{ @};
6554 @end smallexample
6555
6556 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
6557 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
6558
6559 @item -Wno-multichar
6560 @opindex Wno-multichar
6561 @opindex Wmultichar
6562 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
6563 Usually they indicate a typo in the user's code, as they have
6564 implementation-defined values, and should not be used in portable code.
6565
6566 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
6567 @opindex Wnormalized=
6568 @opindex Wnormalized
6569 @opindex Wno-normalized
6570 @cindex NFC
6571 @cindex NFKC
6572 @cindex character set, input normalization
6573 In ISO C and ISO C++, two identifiers are different if they are
6574 different sequences of characters. However, sometimes when characters
6575 outside the basic ASCII character set are used, you can have two
6576 different character sequences that look the same. To avoid confusion,
6577 the ISO 10646 standard sets out some @dfn{normalization rules} which
6578 when applied ensure that two sequences that look the same are turned into
6579 the same sequence. GCC can warn you if you are using identifiers that
6580 have not been normalized; this option controls that warning.
6581
6582 There are four levels of warning supported by GCC@. The default is
6583 @option{-Wnormalized=nfc}, which warns about any identifier that is
6584 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
6585 recommended form for most uses. It is equivalent to
6586 @option{-Wnormalized}.
6587
6588 Unfortunately, there are some characters allowed in identifiers by
6589 ISO C and ISO C++ that, when turned into NFC, are not allowed in
6590 identifiers. That is, there's no way to use these symbols in portable
6591 ISO C or C++ and have all your identifiers in NFC@.
6592 @option{-Wnormalized=id} suppresses the warning for these characters.
6593 It is hoped that future versions of the standards involved will correct
6594 this, which is why this option is not the default.
6595
6596 You can switch the warning off for all characters by writing
6597 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
6598 only do this if you are using some other normalization scheme (like
6599 ``D''), because otherwise you can easily create bugs that are
6600 literally impossible to see.
6601
6602 Some characters in ISO 10646 have distinct meanings but look identical
6603 in some fonts or display methodologies, especially once formatting has
6604 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
6605 LETTER N'', displays just like a regular @code{n} that has been
6606 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
6607 normalization scheme to convert all these into a standard form as
6608 well, and GCC warns if your code is not in NFKC if you use
6609 @option{-Wnormalized=nfkc}. This warning is comparable to warning
6610 about every identifier that contains the letter O because it might be
6611 confused with the digit 0, and so is not the default, but may be
6612 useful as a local coding convention if the programming environment
6613 cannot be fixed to display these characters distinctly.
6614
6615 @item -Wno-deprecated
6616 @opindex Wno-deprecated
6617 @opindex Wdeprecated
6618 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
6619
6620 @item -Wno-deprecated-declarations
6621 @opindex Wno-deprecated-declarations
6622 @opindex Wdeprecated-declarations
6623 Do not warn about uses of functions (@pxref{Function Attributes}),
6624 variables (@pxref{Variable Attributes}), and types (@pxref{Type
6625 Attributes}) marked as deprecated by using the @code{deprecated}
6626 attribute.
6627
6628 @item -Wno-overflow
6629 @opindex Wno-overflow
6630 @opindex Woverflow
6631 Do not warn about compile-time overflow in constant expressions.
6632
6633 @item -Wno-odr
6634 @opindex Wno-odr
6635 @opindex Wodr
6636 Warn about One Definition Rule violations during link-time optimization.
6637 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
6638
6639 @item -Wopenmp-simd
6640 @opindex Wopenm-simd
6641 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
6642 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
6643 option can be used to relax the cost model.
6644
6645 @item -Woverride-init @r{(C and Objective-C only)}
6646 @opindex Woverride-init
6647 @opindex Wno-override-init
6648 @opindex W
6649 @opindex Wextra
6650 @opindex Wno-extra
6651 Warn if an initialized field without side effects is overridden when
6652 using designated initializers (@pxref{Designated Inits, , Designated
6653 Initializers}).
6654
6655 This warning is included in @option{-Wextra}. To get other
6656 @option{-Wextra} warnings without this one, use @option{-Wextra
6657 -Wno-override-init}.
6658
6659 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
6660 @opindex Woverride-init-side-effects
6661 @opindex Wno-override-init-side-effects
6662 Warn if an initialized field with side effects is overridden when
6663 using designated initializers (@pxref{Designated Inits, , Designated
6664 Initializers}). This warning is enabled by default.
6665
6666 @item -Wpacked
6667 @opindex Wpacked
6668 @opindex Wno-packed
6669 Warn if a structure is given the packed attribute, but the packed
6670 attribute has no effect on the layout or size of the structure.
6671 Such structures may be mis-aligned for little benefit. For
6672 instance, in this code, the variable @code{f.x} in @code{struct bar}
6673 is misaligned even though @code{struct bar} does not itself
6674 have the packed attribute:
6675
6676 @smallexample
6677 @group
6678 struct foo @{
6679 int x;
6680 char a, b, c, d;
6681 @} __attribute__((packed));
6682 struct bar @{
6683 char z;
6684 struct foo f;
6685 @};
6686 @end group
6687 @end smallexample
6688
6689 @item -Wpacked-bitfield-compat
6690 @opindex Wpacked-bitfield-compat
6691 @opindex Wno-packed-bitfield-compat
6692 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
6693 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
6694 the change can lead to differences in the structure layout. GCC
6695 informs you when the offset of such a field has changed in GCC 4.4.
6696 For example there is no longer a 4-bit padding between field @code{a}
6697 and @code{b} in this structure:
6698
6699 @smallexample
6700 struct foo
6701 @{
6702 char a:4;
6703 char b:8;
6704 @} __attribute__ ((packed));
6705 @end smallexample
6706
6707 This warning is enabled by default. Use
6708 @option{-Wno-packed-bitfield-compat} to disable this warning.
6709
6710 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
6711 @opindex Wpacked-not-aligned
6712 @opindex Wno-packed-not-aligned
6713 Warn if a structure field with explicitly specified alignment in a
6714 packed struct or union is misaligned. For example, a warning will
6715 be issued on @code{struct S}, like, @code{warning: alignment 1 of
6716 'struct S' is less than 8}, in this code:
6717
6718 @smallexample
6719 @group
6720 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
6721 struct __attribute__ ((packed)) S @{
6722 struct S8 s8;
6723 @};
6724 @end group
6725 @end smallexample
6726
6727 This warning is enabled by @option{-Wall}.
6728
6729 @item -Wpadded
6730 @opindex Wpadded
6731 @opindex Wno-padded
6732 Warn if padding is included in a structure, either to align an element
6733 of the structure or to align the whole structure. Sometimes when this
6734 happens it is possible to rearrange the fields of the structure to
6735 reduce the padding and so make the structure smaller.
6736
6737 @item -Wredundant-decls
6738 @opindex Wredundant-decls
6739 @opindex Wno-redundant-decls
6740 Warn if anything is declared more than once in the same scope, even in
6741 cases where multiple declaration is valid and changes nothing.
6742
6743 @item -Wno-restrict
6744 @opindex Wrestrict
6745 @opindex Wno-restrict
6746 Warn when an object referenced by a @code{restrict}-qualified parameter
6747 (or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
6748 argument, or when copies between such objects overlap. For example,
6749 the call to the @code{strcpy} function below attempts to truncate the string
6750 by replacing its initial characters with the last four. However, because
6751 the call writes the terminating NUL into @code{a[4]}, the copies overlap and
6752 the call is diagnosed.
6753
6754 @smallexample
6755 struct foo
6756 @{
6757 char a[] = "abcd1234";
6758 strcpy (a, a + 4);
6759 @};
6760 @end smallexample
6761 The @option{-Wrestrict} is included in @option{-Wall}.
6762
6763 @item -Wnested-externs @r{(C and Objective-C only)}
6764 @opindex Wnested-externs
6765 @opindex Wno-nested-externs
6766 Warn if an @code{extern} declaration is encountered within a function.
6767
6768 @item -Wno-inherited-variadic-ctor
6769 @opindex Winherited-variadic-ctor
6770 @opindex Wno-inherited-variadic-ctor
6771 Suppress warnings about use of C++11 inheriting constructors when the
6772 base class inherited from has a C variadic constructor; the warning is
6773 on by default because the ellipsis is not inherited.
6774
6775 @item -Winline
6776 @opindex Winline
6777 @opindex Wno-inline
6778 Warn if a function that is declared as inline cannot be inlined.
6779 Even with this option, the compiler does not warn about failures to
6780 inline functions declared in system headers.
6781
6782 The compiler uses a variety of heuristics to determine whether or not
6783 to inline a function. For example, the compiler takes into account
6784 the size of the function being inlined and the amount of inlining
6785 that has already been done in the current function. Therefore,
6786 seemingly insignificant changes in the source program can cause the
6787 warnings produced by @option{-Winline} to appear or disappear.
6788
6789 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
6790 @opindex Wno-invalid-offsetof
6791 @opindex Winvalid-offsetof
6792 Suppress warnings from applying the @code{offsetof} macro to a non-POD
6793 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
6794 to a non-standard-layout type is undefined. In existing C++ implementations,
6795 however, @code{offsetof} typically gives meaningful results.
6796 This flag is for users who are aware that they are
6797 writing nonportable code and who have deliberately chosen to ignore the
6798 warning about it.
6799
6800 The restrictions on @code{offsetof} may be relaxed in a future version
6801 of the C++ standard.
6802
6803 @item -Wint-in-bool-context
6804 @opindex Wint-in-bool-context
6805 @opindex Wno-int-in-bool-context
6806 Warn for suspicious use of integer values where boolean values are expected,
6807 such as conditional expressions (?:) using non-boolean integer constants in
6808 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
6809 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
6810 for all kinds of multiplications regardless of the data type.
6811 This warning is enabled by @option{-Wall}.
6812
6813 @item -Wno-int-to-pointer-cast
6814 @opindex Wno-int-to-pointer-cast
6815 @opindex Wint-to-pointer-cast
6816 Suppress warnings from casts to pointer type of an integer of a
6817 different size. In C++, casting to a pointer type of smaller size is
6818 an error. @option{Wint-to-pointer-cast} is enabled by default.
6819
6820
6821 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
6822 @opindex Wno-pointer-to-int-cast
6823 @opindex Wpointer-to-int-cast
6824 Suppress warnings from casts from a pointer to an integer type of a
6825 different size.
6826
6827 @item -Winvalid-pch
6828 @opindex Winvalid-pch
6829 @opindex Wno-invalid-pch
6830 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
6831 the search path but cannot be used.
6832
6833 @item -Wlong-long
6834 @opindex Wlong-long
6835 @opindex Wno-long-long
6836 Warn if @code{long long} type is used. This is enabled by either
6837 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
6838 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
6839
6840 @item -Wvariadic-macros
6841 @opindex Wvariadic-macros
6842 @opindex Wno-variadic-macros
6843 Warn if variadic macros are used in ISO C90 mode, or if the GNU
6844 alternate syntax is used in ISO C99 mode. This is enabled by either
6845 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
6846 messages, use @option{-Wno-variadic-macros}.
6847
6848 @item -Wvarargs
6849 @opindex Wvarargs
6850 @opindex Wno-varargs
6851 Warn upon questionable usage of the macros used to handle variable
6852 arguments like @code{va_start}. This is default. To inhibit the
6853 warning messages, use @option{-Wno-varargs}.
6854
6855 @item -Wvector-operation-performance
6856 @opindex Wvector-operation-performance
6857 @opindex Wno-vector-operation-performance
6858 Warn if vector operation is not implemented via SIMD capabilities of the
6859 architecture. Mainly useful for the performance tuning.
6860 Vector operation can be implemented @code{piecewise}, which means that the
6861 scalar operation is performed on every vector element;
6862 @code{in parallel}, which means that the vector operation is implemented
6863 using scalars of wider type, which normally is more performance efficient;
6864 and @code{as a single scalar}, which means that vector fits into a
6865 scalar type.
6866
6867 @item -Wno-virtual-move-assign
6868 @opindex Wvirtual-move-assign
6869 @opindex Wno-virtual-move-assign
6870 Suppress warnings about inheriting from a virtual base with a
6871 non-trivial C++11 move assignment operator. This is dangerous because
6872 if the virtual base is reachable along more than one path, it is
6873 moved multiple times, which can mean both objects end up in the
6874 moved-from state. If the move assignment operator is written to avoid
6875 moving from a moved-from object, this warning can be disabled.
6876
6877 @item -Wvla
6878 @opindex Wvla
6879 @opindex Wno-vla
6880 Warn if a variable-length array is used in the code.
6881 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
6882 the variable-length array.
6883
6884 @item -Wvla-larger-than=@var{n}
6885 If this option is used, the compiler will warn on uses of
6886 variable-length arrays where the size is either unbounded, or bounded
6887 by an argument that can be larger than @var{n} bytes. This is similar
6888 to how @option{-Walloca-larger-than=@var{n}} works, but with
6889 variable-length arrays.
6890
6891 Note that GCC may optimize small variable-length arrays of a known
6892 value into plain arrays, so this warning may not get triggered for
6893 such arrays.
6894
6895 This warning is not enabled by @option{-Wall}, and is only active when
6896 @option{-ftree-vrp} is active (default for @option{-O2} and above).
6897
6898 See also @option{-Walloca-larger-than=@var{n}}.
6899
6900 @item -Wvolatile-register-var
6901 @opindex Wvolatile-register-var
6902 @opindex Wno-volatile-register-var
6903 Warn if a register variable is declared volatile. The volatile
6904 modifier does not inhibit all optimizations that may eliminate reads
6905 and/or writes to register variables. This warning is enabled by
6906 @option{-Wall}.
6907
6908 @item -Wdisabled-optimization
6909 @opindex Wdisabled-optimization
6910 @opindex Wno-disabled-optimization
6911 Warn if a requested optimization pass is disabled. This warning does
6912 not generally indicate that there is anything wrong with your code; it
6913 merely indicates that GCC's optimizers are unable to handle the code
6914 effectively. Often, the problem is that your code is too big or too
6915 complex; GCC refuses to optimize programs when the optimization
6916 itself is likely to take inordinate amounts of time.
6917
6918 @item -Wpointer-sign @r{(C and Objective-C only)}
6919 @opindex Wpointer-sign
6920 @opindex Wno-pointer-sign
6921 Warn for pointer argument passing or assignment with different signedness.
6922 This option is only supported for C and Objective-C@. It is implied by
6923 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
6924 @option{-Wno-pointer-sign}.
6925
6926 @item -Wstack-protector
6927 @opindex Wstack-protector
6928 @opindex Wno-stack-protector
6929 This option is only active when @option{-fstack-protector} is active. It
6930 warns about functions that are not protected against stack smashing.
6931
6932 @item -Woverlength-strings
6933 @opindex Woverlength-strings
6934 @opindex Wno-overlength-strings
6935 Warn about string constants that are longer than the ``minimum
6936 maximum'' length specified in the C standard. Modern compilers
6937 generally allow string constants that are much longer than the
6938 standard's minimum limit, but very portable programs should avoid
6939 using longer strings.
6940
6941 The limit applies @emph{after} string constant concatenation, and does
6942 not count the trailing NUL@. In C90, the limit was 509 characters; in
6943 C99, it was raised to 4095. C++98 does not specify a normative
6944 minimum maximum, so we do not diagnose overlength strings in C++@.
6945
6946 This option is implied by @option{-Wpedantic}, and can be disabled with
6947 @option{-Wno-overlength-strings}.
6948
6949 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
6950 @opindex Wunsuffixed-float-constants
6951
6952 Issue a warning for any floating constant that does not have
6953 a suffix. When used together with @option{-Wsystem-headers} it
6954 warns about such constants in system header files. This can be useful
6955 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
6956 from the decimal floating-point extension to C99.
6957
6958 @item -Wno-designated-init @r{(C and Objective-C only)}
6959 Suppress warnings when a positional initializer is used to initialize
6960 a structure that has been marked with the @code{designated_init}
6961 attribute.
6962
6963 @item -Whsa
6964 Issue a warning when HSAIL cannot be emitted for the compiled function or
6965 OpenMP construct.
6966
6967 @end table
6968
6969 @node Debugging Options
6970 @section Options for Debugging Your Program
6971 @cindex options, debugging
6972 @cindex debugging information options
6973
6974 To tell GCC to emit extra information for use by a debugger, in almost
6975 all cases you need only to add @option{-g} to your other options.
6976
6977 GCC allows you to use @option{-g} with
6978 @option{-O}. The shortcuts taken by optimized code may occasionally
6979 be surprising: some variables you declared may not exist
6980 at all; flow of control may briefly move where you did not expect it;
6981 some statements may not be executed because they compute constant
6982 results or their values are already at hand; some statements may
6983 execute in different places because they have been moved out of loops.
6984 Nevertheless it is possible to debug optimized output. This makes
6985 it reasonable to use the optimizer for programs that might have bugs.
6986
6987 If you are not using some other optimization option, consider
6988 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
6989 With no @option{-O} option at all, some compiler passes that collect
6990 information useful for debugging do not run at all, so that
6991 @option{-Og} may result in a better debugging experience.
6992
6993 @table @gcctabopt
6994 @item -g
6995 @opindex g
6996 Produce debugging information in the operating system's native format
6997 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
6998 information.
6999
7000 On most systems that use stabs format, @option{-g} enables use of extra
7001 debugging information that only GDB can use; this extra information
7002 makes debugging work better in GDB but probably makes other debuggers
7003 crash or
7004 refuse to read the program. If you want to control for certain whether
7005 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7006 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7007
7008 @item -ggdb
7009 @opindex ggdb
7010 Produce debugging information for use by GDB@. This means to use the
7011 most expressive format available (DWARF, stabs, or the native format
7012 if neither of those are supported), including GDB extensions if at all
7013 possible.
7014
7015 @item -gdwarf
7016 @itemx -gdwarf-@var{version}
7017 @opindex gdwarf
7018 Produce debugging information in DWARF format (if that is supported).
7019 The value of @var{version} may be either 2, 3, 4 or 5; the default version
7020 for most targets is 4. DWARF Version 5 is only experimental.
7021
7022 Note that with DWARF Version 2, some ports require and always
7023 use some non-conflicting DWARF 3 extensions in the unwind tables.
7024
7025 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7026 for maximum benefit.
7027
7028 GCC no longer supports DWARF Version 1, which is substantially
7029 different than Version 2 and later. For historical reasons, some
7030 other DWARF-related options such as
7031 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7032 in their names, but apply to all currently-supported versions of DWARF.
7033
7034 @item -gstabs
7035 @opindex gstabs
7036 Produce debugging information in stabs format (if that is supported),
7037 without GDB extensions. This is the format used by DBX on most BSD
7038 systems. On MIPS, Alpha and System V Release 4 systems this option
7039 produces stabs debugging output that is not understood by DBX@.
7040 On System V Release 4 systems this option requires the GNU assembler.
7041
7042 @item -gstabs+
7043 @opindex gstabs+
7044 Produce debugging information in stabs format (if that is supported),
7045 using GNU extensions understood only by the GNU debugger (GDB)@. The
7046 use of these extensions is likely to make other debuggers crash or
7047 refuse to read the program.
7048
7049 @item -gxcoff
7050 @opindex gxcoff
7051 Produce debugging information in XCOFF format (if that is supported).
7052 This is the format used by the DBX debugger on IBM RS/6000 systems.
7053
7054 @item -gxcoff+
7055 @opindex gxcoff+
7056 Produce debugging information in XCOFF format (if that is supported),
7057 using GNU extensions understood only by the GNU debugger (GDB)@. The
7058 use of these extensions is likely to make other debuggers crash or
7059 refuse to read the program, and may cause assemblers other than the GNU
7060 assembler (GAS) to fail with an error.
7061
7062 @item -gvms
7063 @opindex gvms
7064 Produce debugging information in Alpha/VMS debug format (if that is
7065 supported). This is the format used by DEBUG on Alpha/VMS systems.
7066
7067 @item -g@var{level}
7068 @itemx -ggdb@var{level}
7069 @itemx -gstabs@var{level}
7070 @itemx -gxcoff@var{level}
7071 @itemx -gvms@var{level}
7072 Request debugging information and also use @var{level} to specify how
7073 much information. The default level is 2.
7074
7075 Level 0 produces no debug information at all. Thus, @option{-g0} negates
7076 @option{-g}.
7077
7078 Level 1 produces minimal information, enough for making backtraces in
7079 parts of the program that you don't plan to debug. This includes
7080 descriptions of functions and external variables, and line number
7081 tables, but no information about local variables.
7082
7083 Level 3 includes extra information, such as all the macro definitions
7084 present in the program. Some debuggers support macro expansion when
7085 you use @option{-g3}.
7086
7087 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7088 confusion with @option{-gdwarf-@var{level}}.
7089 Instead use an additional @option{-g@var{level}} option to change the
7090 debug level for DWARF.
7091
7092 @item -feliminate-unused-debug-symbols
7093 @opindex feliminate-unused-debug-symbols
7094 Produce debugging information in stabs format (if that is supported),
7095 for only symbols that are actually used.
7096
7097 @item -femit-class-debug-always
7098 @opindex femit-class-debug-always
7099 Instead of emitting debugging information for a C++ class in only one
7100 object file, emit it in all object files using the class. This option
7101 should be used only with debuggers that are unable to handle the way GCC
7102 normally emits debugging information for classes because using this
7103 option increases the size of debugging information by as much as a
7104 factor of two.
7105
7106 @item -fno-merge-debug-strings
7107 @opindex fmerge-debug-strings
7108 @opindex fno-merge-debug-strings
7109 Direct the linker to not merge together strings in the debugging
7110 information that are identical in different object files. Merging is
7111 not supported by all assemblers or linkers. Merging decreases the size
7112 of the debug information in the output file at the cost of increasing
7113 link processing time. Merging is enabled by default.
7114
7115 @item -fdebug-prefix-map=@var{old}=@var{new}
7116 @opindex fdebug-prefix-map
7117 When compiling files residing in directory @file{@var{old}}, record
7118 debugging information describing them as if the files resided in
7119 directory @file{@var{new}} instead. This can be used to replace a
7120 build-time path with an install-time path in the debug info. It can
7121 also be used to change an absolute path to a relative path by using
7122 @file{.} for @var{new}. This can give more reproducible builds, which
7123 are location independent, but may require an extra command to tell GDB
7124 where to find the source files. See also @option{-ffile-prefix-map}.
7125
7126 @item -fvar-tracking
7127 @opindex fvar-tracking
7128 Run variable tracking pass. It computes where variables are stored at each
7129 position in code. Better debugging information is then generated
7130 (if the debugging information format supports this information).
7131
7132 It is enabled by default when compiling with optimization (@option{-Os},
7133 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7134 the debug info format supports it.
7135
7136 @item -fvar-tracking-assignments
7137 @opindex fvar-tracking-assignments
7138 @opindex fno-var-tracking-assignments
7139 Annotate assignments to user variables early in the compilation and
7140 attempt to carry the annotations over throughout the compilation all the
7141 way to the end, in an attempt to improve debug information while
7142 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7143
7144 It can be enabled even if var-tracking is disabled, in which case
7145 annotations are created and maintained, but discarded at the end.
7146 By default, this flag is enabled together with @option{-fvar-tracking},
7147 except when selective scheduling is enabled.
7148
7149 @item -gsplit-dwarf
7150 @opindex gsplit-dwarf
7151 Separate as much DWARF debugging information as possible into a
7152 separate output file with the extension @file{.dwo}. This option allows
7153 the build system to avoid linking files with debug information. To
7154 be useful, this option requires a debugger capable of reading @file{.dwo}
7155 files.
7156
7157 @item -gpubnames
7158 @opindex gpubnames
7159 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7160
7161 @item -ggnu-pubnames
7162 @opindex ggnu-pubnames
7163 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7164 suitable for conversion into a GDB@ index. This option is only useful
7165 with a linker that can produce GDB@ index version 7.
7166
7167 @item -fdebug-types-section
7168 @opindex fdebug-types-section
7169 @opindex fno-debug-types-section
7170 When using DWARF Version 4 or higher, type DIEs can be put into
7171 their own @code{.debug_types} section instead of making them part of the
7172 @code{.debug_info} section. It is more efficient to put them in a separate
7173 comdat sections since the linker can then remove duplicates.
7174 But not all DWARF consumers support @code{.debug_types} sections yet
7175 and on some objects @code{.debug_types} produces larger instead of smaller
7176 debugging information.
7177
7178 @item -grecord-gcc-switches
7179 @item -gno-record-gcc-switches
7180 @opindex grecord-gcc-switches
7181 @opindex gno-record-gcc-switches
7182 This switch causes the command-line options used to invoke the
7183 compiler that may affect code generation to be appended to the
7184 DW_AT_producer attribute in DWARF debugging information. The options
7185 are concatenated with spaces separating them from each other and from
7186 the compiler version.
7187 It is enabled by default.
7188 See also @option{-frecord-gcc-switches} for another
7189 way of storing compiler options into the object file.
7190
7191 @item -gstrict-dwarf
7192 @opindex gstrict-dwarf
7193 Disallow using extensions of later DWARF standard version than selected
7194 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
7195 DWARF extensions from later standard versions is allowed.
7196
7197 @item -gno-strict-dwarf
7198 @opindex gno-strict-dwarf
7199 Allow using extensions of later DWARF standard version than selected with
7200 @option{-gdwarf-@var{version}}.
7201
7202 @item -gcolumn-info
7203 @item -gno-column-info
7204 @opindex gcolumn-info
7205 @opindex gno-column-info
7206 Emit location column information into DWARF debugging information, rather
7207 than just file and line.
7208 This option is enabled by default.
7209
7210 @item -gstatement-frontiers
7211 @item -gno-statement-frontiers
7212 @opindex gstatement-frontiers
7213 @opindex gno-statement-frontiers
7214 This option causes GCC to create markers in the internal representation
7215 at the beginning of statements, and to keep them roughly in place
7216 throughout compilation, using them to guide the output of @code{is_stmt}
7217 markers in the line number table. This is enabled by default when
7218 compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
7219 @dots{}), and outputting DWARF 2 debug information at the normal level.
7220
7221 @item -gz@r{[}=@var{type}@r{]}
7222 @opindex gz
7223 Produce compressed debug sections in DWARF format, if that is supported.
7224 If @var{type} is not given, the default type depends on the capabilities
7225 of the assembler and linker used. @var{type} may be one of
7226 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
7227 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
7228 compression in traditional GNU format). If the linker doesn't support
7229 writing compressed debug sections, the option is rejected. Otherwise,
7230 if the assembler does not support them, @option{-gz} is silently ignored
7231 when producing object files.
7232
7233 @item -femit-struct-debug-baseonly
7234 @opindex femit-struct-debug-baseonly
7235 Emit debug information for struct-like types
7236 only when the base name of the compilation source file
7237 matches the base name of file in which the struct is defined.
7238
7239 This option substantially reduces the size of debugging information,
7240 but at significant potential loss in type information to the debugger.
7241 See @option{-femit-struct-debug-reduced} for a less aggressive option.
7242 See @option{-femit-struct-debug-detailed} for more detailed control.
7243
7244 This option works only with DWARF debug output.
7245
7246 @item -femit-struct-debug-reduced
7247 @opindex femit-struct-debug-reduced
7248 Emit debug information for struct-like types
7249 only when the base name of the compilation source file
7250 matches the base name of file in which the type is defined,
7251 unless the struct is a template or defined in a system header.
7252
7253 This option significantly reduces the size of debugging information,
7254 with some potential loss in type information to the debugger.
7255 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
7256 See @option{-femit-struct-debug-detailed} for more detailed control.
7257
7258 This option works only with DWARF debug output.
7259
7260 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
7261 @opindex femit-struct-debug-detailed
7262 Specify the struct-like types
7263 for which the compiler generates debug information.
7264 The intent is to reduce duplicate struct debug information
7265 between different object files within the same program.
7266
7267 This option is a detailed version of
7268 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
7269 which serves for most needs.
7270
7271 A specification has the syntax@*
7272 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
7273
7274 The optional first word limits the specification to
7275 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
7276 A struct type is used directly when it is the type of a variable, member.
7277 Indirect uses arise through pointers to structs.
7278 That is, when use of an incomplete struct is valid, the use is indirect.
7279 An example is
7280 @samp{struct one direct; struct two * indirect;}.
7281
7282 The optional second word limits the specification to
7283 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
7284 Generic structs are a bit complicated to explain.
7285 For C++, these are non-explicit specializations of template classes,
7286 or non-template classes within the above.
7287 Other programming languages have generics,
7288 but @option{-femit-struct-debug-detailed} does not yet implement them.
7289
7290 The third word specifies the source files for those
7291 structs for which the compiler should emit debug information.
7292 The values @samp{none} and @samp{any} have the normal meaning.
7293 The value @samp{base} means that
7294 the base of name of the file in which the type declaration appears
7295 must match the base of the name of the main compilation file.
7296 In practice, this means that when compiling @file{foo.c}, debug information
7297 is generated for types declared in that file and @file{foo.h},
7298 but not other header files.
7299 The value @samp{sys} means those types satisfying @samp{base}
7300 or declared in system or compiler headers.
7301
7302 You may need to experiment to determine the best settings for your application.
7303
7304 The default is @option{-femit-struct-debug-detailed=all}.
7305
7306 This option works only with DWARF debug output.
7307
7308 @item -fno-dwarf2-cfi-asm
7309 @opindex fdwarf2-cfi-asm
7310 @opindex fno-dwarf2-cfi-asm
7311 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
7312 instead of using GAS @code{.cfi_*} directives.
7313
7314 @item -fno-eliminate-unused-debug-types
7315 @opindex feliminate-unused-debug-types
7316 @opindex fno-eliminate-unused-debug-types
7317 Normally, when producing DWARF output, GCC avoids producing debug symbol
7318 output for types that are nowhere used in the source file being compiled.
7319 Sometimes it is useful to have GCC emit debugging
7320 information for all types declared in a compilation
7321 unit, regardless of whether or not they are actually used
7322 in that compilation unit, for example
7323 if, in the debugger, you want to cast a value to a type that is
7324 not actually used in your program (but is declared). More often,
7325 however, this results in a significant amount of wasted space.
7326 @end table
7327
7328 @node Optimize Options
7329 @section Options That Control Optimization
7330 @cindex optimize options
7331 @cindex options, optimization
7332
7333 These options control various sorts of optimizations.
7334
7335 Without any optimization option, the compiler's goal is to reduce the
7336 cost of compilation and to make debugging produce the expected
7337 results. Statements are independent: if you stop the program with a
7338 breakpoint between statements, you can then assign a new value to any
7339 variable or change the program counter to any other statement in the
7340 function and get exactly the results you expect from the source
7341 code.
7342
7343 Turning on optimization flags makes the compiler attempt to improve
7344 the performance and/or code size at the expense of compilation time
7345 and possibly the ability to debug the program.
7346
7347 The compiler performs optimization based on the knowledge it has of the
7348 program. Compiling multiple files at once to a single output file mode allows
7349 the compiler to use information gained from all of the files when compiling
7350 each of them.
7351
7352 Not all optimizations are controlled directly by a flag. Only
7353 optimizations that have a flag are listed in this section.
7354
7355 Most optimizations are only enabled if an @option{-O} level is set on
7356 the command line. Otherwise they are disabled, even if individual
7357 optimization flags are specified.
7358
7359 Depending on the target and how GCC was configured, a slightly different
7360 set of optimizations may be enabled at each @option{-O} level than
7361 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7362 to find out the exact set of optimizations that are enabled at each level.
7363 @xref{Overall Options}, for examples.
7364
7365 @table @gcctabopt
7366 @item -O
7367 @itemx -O1
7368 @opindex O
7369 @opindex O1
7370 Optimize. Optimizing compilation takes somewhat more time, and a lot
7371 more memory for a large function.
7372
7373 With @option{-O}, the compiler tries to reduce code size and execution
7374 time, without performing any optimizations that take a great deal of
7375 compilation time.
7376
7377 @option{-O} turns on the following optimization flags:
7378 @gccoptlist{
7379 -fauto-inc-dec @gol
7380 -fbranch-count-reg @gol
7381 -fcombine-stack-adjustments @gol
7382 -fcompare-elim @gol
7383 -fcprop-registers @gol
7384 -fdce @gol
7385 -fdefer-pop @gol
7386 -fdelayed-branch @gol
7387 -fdse @gol
7388 -fforward-propagate @gol
7389 -fguess-branch-probability @gol
7390 -fif-conversion2 @gol
7391 -fif-conversion @gol
7392 -finline-functions-called-once @gol
7393 -fipa-pure-const @gol
7394 -fipa-profile @gol
7395 -fipa-reference @gol
7396 -fmerge-constants @gol
7397 -fmove-loop-invariants @gol
7398 -fomit-frame-pointer @gol
7399 -freorder-blocks @gol
7400 -fshrink-wrap @gol
7401 -fshrink-wrap-separate @gol
7402 -fsplit-wide-types @gol
7403 -fssa-backprop @gol
7404 -fssa-phiopt @gol
7405 -ftree-bit-ccp @gol
7406 -ftree-ccp @gol
7407 -ftree-ch @gol
7408 -ftree-coalesce-vars @gol
7409 -ftree-copy-prop @gol
7410 -ftree-dce @gol
7411 -ftree-dominator-opts @gol
7412 -ftree-dse @gol
7413 -ftree-forwprop @gol
7414 -ftree-fre @gol
7415 -ftree-phiprop @gol
7416 -ftree-sink @gol
7417 -ftree-slsr @gol
7418 -ftree-sra @gol
7419 -ftree-pta @gol
7420 -ftree-ter @gol
7421 -funit-at-a-time}
7422
7423 @item -O2
7424 @opindex O2
7425 Optimize even more. GCC performs nearly all supported optimizations
7426 that do not involve a space-speed tradeoff.
7427 As compared to @option{-O}, this option increases both compilation time
7428 and the performance of the generated code.
7429
7430 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7431 also turns on the following optimization flags:
7432 @gccoptlist{-fthread-jumps @gol
7433 -falign-functions -falign-jumps @gol
7434 -falign-loops -falign-labels @gol
7435 -fcaller-saves @gol
7436 -fcrossjumping @gol
7437 -fcse-follow-jumps -fcse-skip-blocks @gol
7438 -fdelete-null-pointer-checks @gol
7439 -fdevirtualize -fdevirtualize-speculatively @gol
7440 -fexpensive-optimizations @gol
7441 -fgcse -fgcse-lm @gol
7442 -fhoist-adjacent-loads @gol
7443 -finline-small-functions @gol
7444 -findirect-inlining @gol
7445 -fipa-cp @gol
7446 -fipa-bit-cp @gol
7447 -fipa-vrp @gol
7448 -fipa-sra @gol
7449 -fipa-icf @gol
7450 -fisolate-erroneous-paths-dereference @gol
7451 -flra-remat @gol
7452 -foptimize-sibling-calls @gol
7453 -foptimize-strlen @gol
7454 -fpartial-inlining @gol
7455 -fpeephole2 @gol
7456 -freorder-blocks-algorithm=stc @gol
7457 -freorder-blocks-and-partition -freorder-functions @gol
7458 -frerun-cse-after-loop @gol
7459 -fsched-interblock -fsched-spec @gol
7460 -fschedule-insns -fschedule-insns2 @gol
7461 -fstore-merging @gol
7462 -fstrict-aliasing @gol
7463 -ftree-builtin-call-dce @gol
7464 -ftree-switch-conversion -ftree-tail-merge @gol
7465 -fcode-hoisting @gol
7466 -ftree-pre @gol
7467 -ftree-vrp @gol
7468 -fipa-ra}
7469
7470 Please note the warning under @option{-fgcse} about
7471 invoking @option{-O2} on programs that use computed gotos.
7472
7473 @item -O3
7474 @opindex O3
7475 Optimize yet more. @option{-O3} turns on all optimizations specified
7476 by @option{-O2} and also turns on the following optimization flags:
7477 @gccoptlist{-finline-functions @gol
7478 -funswitch-loops @gol
7479 -fpredictive-commoning @gol
7480 -fgcse-after-reload @gol
7481 -ftree-loop-vectorize @gol
7482 -ftree-loop-distribution @gol
7483 -ftree-loop-distribute-patterns @gol
7484 -floop-interchange @gol
7485 -fsplit-paths @gol
7486 -ftree-slp-vectorize @gol
7487 -fvect-cost-model @gol
7488 -ftree-partial-pre @gol
7489 -fpeel-loops @gol
7490 -fipa-cp-clone}
7491
7492 @item -O0
7493 @opindex O0
7494 Reduce compilation time and make debugging produce the expected
7495 results. This is the default.
7496
7497 @item -Os
7498 @opindex Os
7499 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7500 do not typically increase code size. It also performs further
7501 optimizations designed to reduce code size.
7502
7503 @option{-Os} disables the following optimization flags:
7504 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7505 -falign-labels -freorder-blocks -freorder-blocks-algorithm=stc @gol
7506 -freorder-blocks-and-partition -fprefetch-loop-arrays}
7507
7508 @item -Ofast
7509 @opindex Ofast
7510 Disregard strict standards compliance. @option{-Ofast} enables all
7511 @option{-O3} optimizations. It also enables optimizations that are not
7512 valid for all standard-compliant programs.
7513 It turns on @option{-ffast-math} and the Fortran-specific
7514 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
7515 specified, and @option{-fno-protect-parens}.
7516
7517 @item -Og
7518 @opindex Og
7519 Optimize debugging experience. @option{-Og} enables optimizations
7520 that do not interfere with debugging. It should be the optimization
7521 level of choice for the standard edit-compile-debug cycle, offering
7522 a reasonable level of optimization while maintaining fast compilation
7523 and a good debugging experience.
7524 @end table
7525
7526 If you use multiple @option{-O} options, with or without level numbers,
7527 the last such option is the one that is effective.
7528
7529 Options of the form @option{-f@var{flag}} specify machine-independent
7530 flags. Most flags have both positive and negative forms; the negative
7531 form of @option{-ffoo} is @option{-fno-foo}. In the table
7532 below, only one of the forms is listed---the one you typically
7533 use. You can figure out the other form by either removing @samp{no-}
7534 or adding it.
7535
7536 The following options control specific optimizations. They are either
7537 activated by @option{-O} options or are related to ones that are. You
7538 can use the following flags in the rare cases when ``fine-tuning'' of
7539 optimizations to be performed is desired.
7540
7541 @table @gcctabopt
7542 @item -fno-defer-pop
7543 @opindex fno-defer-pop
7544 Always pop the arguments to each function call as soon as that function
7545 returns. For machines that must pop arguments after a function call,
7546 the compiler normally lets arguments accumulate on the stack for several
7547 function calls and pops them all at once.
7548
7549 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7550
7551 @item -fforward-propagate
7552 @opindex fforward-propagate
7553 Perform a forward propagation pass on RTL@. The pass tries to combine two
7554 instructions and checks if the result can be simplified. If loop unrolling
7555 is active, two passes are performed and the second is scheduled after
7556 loop unrolling.
7557
7558 This option is enabled by default at optimization levels @option{-O},
7559 @option{-O2}, @option{-O3}, @option{-Os}.
7560
7561 @item -ffp-contract=@var{style}
7562 @opindex ffp-contract
7563 @option{-ffp-contract=off} disables floating-point expression contraction.
7564 @option{-ffp-contract=fast} enables floating-point expression contraction
7565 such as forming of fused multiply-add operations if the target has
7566 native support for them.
7567 @option{-ffp-contract=on} enables floating-point expression contraction
7568 if allowed by the language standard. This is currently not implemented
7569 and treated equal to @option{-ffp-contract=off}.
7570
7571 The default is @option{-ffp-contract=fast}.
7572
7573 @item -fomit-frame-pointer
7574 @opindex fomit-frame-pointer
7575 Omit the frame pointer in functions that don't need one. This avoids the
7576 instructions to save, set up and restore the frame pointer; on many targets
7577 it also makes an extra register available.
7578
7579 On some targets this flag has no effect because the standard calling sequence
7580 always uses a frame pointer, so it cannot be omitted.
7581
7582 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
7583 is used in all functions. Several targets always omit the frame pointer in
7584 leaf functions.
7585
7586 Enabled by default at @option{-O} and higher.
7587
7588 @item -foptimize-sibling-calls
7589 @opindex foptimize-sibling-calls
7590 Optimize sibling and tail recursive calls.
7591
7592 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7593
7594 @item -foptimize-strlen
7595 @opindex foptimize-strlen
7596 Optimize various standard C string functions (e.g. @code{strlen},
7597 @code{strchr} or @code{strcpy}) and
7598 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7599
7600 Enabled at levels @option{-O2}, @option{-O3}.
7601
7602 @item -fno-inline
7603 @opindex fno-inline
7604 Do not expand any functions inline apart from those marked with
7605 the @code{always_inline} attribute. This is the default when not
7606 optimizing.
7607
7608 Single functions can be exempted from inlining by marking them
7609 with the @code{noinline} attribute.
7610
7611 @item -finline-small-functions
7612 @opindex finline-small-functions
7613 Integrate functions into their callers when their body is smaller than expected
7614 function call code (so overall size of program gets smaller). The compiler
7615 heuristically decides which functions are simple enough to be worth integrating
7616 in this way. This inlining applies to all functions, even those not declared
7617 inline.
7618
7619 Enabled at level @option{-O2}.
7620
7621 @item -findirect-inlining
7622 @opindex findirect-inlining
7623 Inline also indirect calls that are discovered to be known at compile
7624 time thanks to previous inlining. This option has any effect only
7625 when inlining itself is turned on by the @option{-finline-functions}
7626 or @option{-finline-small-functions} options.
7627
7628 Enabled at level @option{-O2}.
7629
7630 @item -finline-functions
7631 @opindex finline-functions
7632 Consider all functions for inlining, even if they are not declared inline.
7633 The compiler heuristically decides which functions are worth integrating
7634 in this way.
7635
7636 If all calls to a given function are integrated, and the function is
7637 declared @code{static}, then the function is normally not output as
7638 assembler code in its own right.
7639
7640 Enabled at level @option{-O3}.
7641
7642 @item -finline-functions-called-once
7643 @opindex finline-functions-called-once
7644 Consider all @code{static} functions called once for inlining into their
7645 caller even if they are not marked @code{inline}. If a call to a given
7646 function is integrated, then the function is not output as assembler code
7647 in its own right.
7648
7649 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7650
7651 @item -fearly-inlining
7652 @opindex fearly-inlining
7653 Inline functions marked by @code{always_inline} and functions whose body seems
7654 smaller than the function call overhead early before doing
7655 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7656 makes profiling significantly cheaper and usually inlining faster on programs
7657 having large chains of nested wrapper functions.
7658
7659 Enabled by default.
7660
7661 @item -fipa-sra
7662 @opindex fipa-sra
7663 Perform interprocedural scalar replacement of aggregates, removal of
7664 unused parameters and replacement of parameters passed by reference
7665 by parameters passed by value.
7666
7667 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7668
7669 @item -finline-limit=@var{n}
7670 @opindex finline-limit
7671 By default, GCC limits the size of functions that can be inlined. This flag
7672 allows coarse control of this limit. @var{n} is the size of functions that
7673 can be inlined in number of pseudo instructions.
7674
7675 Inlining is actually controlled by a number of parameters, which may be
7676 specified individually by using @option{--param @var{name}=@var{value}}.
7677 The @option{-finline-limit=@var{n}} option sets some of these parameters
7678 as follows:
7679
7680 @table @gcctabopt
7681 @item max-inline-insns-single
7682 is set to @var{n}/2.
7683 @item max-inline-insns-auto
7684 is set to @var{n}/2.
7685 @end table
7686
7687 See below for a documentation of the individual
7688 parameters controlling inlining and for the defaults of these parameters.
7689
7690 @emph{Note:} there may be no value to @option{-finline-limit} that results
7691 in default behavior.
7692
7693 @emph{Note:} pseudo instruction represents, in this particular context, an
7694 abstract measurement of function's size. In no way does it represent a count
7695 of assembly instructions and as such its exact meaning might change from one
7696 release to an another.
7697
7698 @item -fno-keep-inline-dllexport
7699 @opindex fno-keep-inline-dllexport
7700 This is a more fine-grained version of @option{-fkeep-inline-functions},
7701 which applies only to functions that are declared using the @code{dllexport}
7702 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
7703 Functions}.
7704
7705 @item -fkeep-inline-functions
7706 @opindex fkeep-inline-functions
7707 In C, emit @code{static} functions that are declared @code{inline}
7708 into the object file, even if the function has been inlined into all
7709 of its callers. This switch does not affect functions using the
7710 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7711 inline functions into the object file.
7712
7713 @item -fkeep-static-functions
7714 @opindex fkeep-static-functions
7715 Emit @code{static} functions into the object file, even if the function
7716 is never used.
7717
7718 @item -fkeep-static-consts
7719 @opindex fkeep-static-consts
7720 Emit variables declared @code{static const} when optimization isn't turned
7721 on, even if the variables aren't referenced.
7722
7723 GCC enables this option by default. If you want to force the compiler to
7724 check if a variable is referenced, regardless of whether or not
7725 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7726
7727 @item -fmerge-constants
7728 @opindex fmerge-constants
7729 Attempt to merge identical constants (string constants and floating-point
7730 constants) across compilation units.
7731
7732 This option is the default for optimized compilation if the assembler and
7733 linker support it. Use @option{-fno-merge-constants} to inhibit this
7734 behavior.
7735
7736 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7737
7738 @item -fmerge-all-constants
7739 @opindex fmerge-all-constants
7740 Attempt to merge identical constants and identical variables.
7741
7742 This option implies @option{-fmerge-constants}. In addition to
7743 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7744 arrays or initialized constant variables with integral or floating-point
7745 types. Languages like C or C++ require each variable, including multiple
7746 instances of the same variable in recursive calls, to have distinct locations,
7747 so using this option results in non-conforming
7748 behavior.
7749
7750 @item -fmodulo-sched
7751 @opindex fmodulo-sched
7752 Perform swing modulo scheduling immediately before the first scheduling
7753 pass. This pass looks at innermost loops and reorders their
7754 instructions by overlapping different iterations.
7755
7756 @item -fmodulo-sched-allow-regmoves
7757 @opindex fmodulo-sched-allow-regmoves
7758 Perform more aggressive SMS-based modulo scheduling with register moves
7759 allowed. By setting this flag certain anti-dependences edges are
7760 deleted, which triggers the generation of reg-moves based on the
7761 life-range analysis. This option is effective only with
7762 @option{-fmodulo-sched} enabled.
7763
7764 @item -fno-branch-count-reg
7765 @opindex fno-branch-count-reg
7766 Avoid running a pass scanning for opportunities to use ``decrement and
7767 branch'' instructions on a count register instead of generating sequences
7768 of instructions that decrement a register, compare it against zero, and
7769 then branch based upon the result. This option is only meaningful on
7770 architectures that support such instructions, which include x86, PowerPC,
7771 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
7772 doesn't remove the decrement and branch instructions from the generated
7773 instruction stream introduced by other optimization passes.
7774
7775 Enabled by default at @option{-O1} and higher.
7776
7777 The default is @option{-fbranch-count-reg}.
7778
7779 @item -fno-function-cse
7780 @opindex fno-function-cse
7781 Do not put function addresses in registers; make each instruction that
7782 calls a constant function contain the function's address explicitly.
7783
7784 This option results in less efficient code, but some strange hacks
7785 that alter the assembler output may be confused by the optimizations
7786 performed when this option is not used.
7787
7788 The default is @option{-ffunction-cse}
7789
7790 @item -fno-zero-initialized-in-bss
7791 @opindex fno-zero-initialized-in-bss
7792 If the target supports a BSS section, GCC by default puts variables that
7793 are initialized to zero into BSS@. This can save space in the resulting
7794 code.
7795
7796 This option turns off this behavior because some programs explicitly
7797 rely on variables going to the data section---e.g., so that the
7798 resulting executable can find the beginning of that section and/or make
7799 assumptions based on that.
7800
7801 The default is @option{-fzero-initialized-in-bss}.
7802
7803 @item -fthread-jumps
7804 @opindex fthread-jumps
7805 Perform optimizations that check to see if a jump branches to a
7806 location where another comparison subsumed by the first is found. If
7807 so, the first branch is redirected to either the destination of the
7808 second branch or a point immediately following it, depending on whether
7809 the condition is known to be true or false.
7810
7811 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7812
7813 @item -fsplit-wide-types
7814 @opindex fsplit-wide-types
7815 When using a type that occupies multiple registers, such as @code{long
7816 long} on a 32-bit system, split the registers apart and allocate them
7817 independently. This normally generates better code for those types,
7818 but may make debugging more difficult.
7819
7820 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7821 @option{-Os}.
7822
7823 @item -fcse-follow-jumps
7824 @opindex fcse-follow-jumps
7825 In common subexpression elimination (CSE), scan through jump instructions
7826 when the target of the jump is not reached by any other path. For
7827 example, when CSE encounters an @code{if} statement with an
7828 @code{else} clause, CSE follows the jump when the condition
7829 tested is false.
7830
7831 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7832
7833 @item -fcse-skip-blocks
7834 @opindex fcse-skip-blocks
7835 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7836 follow jumps that conditionally skip over blocks. When CSE
7837 encounters a simple @code{if} statement with no else clause,
7838 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7839 body of the @code{if}.
7840
7841 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7842
7843 @item -frerun-cse-after-loop
7844 @opindex frerun-cse-after-loop
7845 Re-run common subexpression elimination after loop optimizations are
7846 performed.
7847
7848 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7849
7850 @item -fgcse
7851 @opindex fgcse
7852 Perform a global common subexpression elimination pass.
7853 This pass also performs global constant and copy propagation.
7854
7855 @emph{Note:} When compiling a program using computed gotos, a GCC
7856 extension, you may get better run-time performance if you disable
7857 the global common subexpression elimination pass by adding
7858 @option{-fno-gcse} to the command line.
7859
7860 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7861
7862 @item -fgcse-lm
7863 @opindex fgcse-lm
7864 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7865 attempts to move loads that are only killed by stores into themselves. This
7866 allows a loop containing a load/store sequence to be changed to a load outside
7867 the loop, and a copy/store within the loop.
7868
7869 Enabled by default when @option{-fgcse} is enabled.
7870
7871 @item -fgcse-sm
7872 @opindex fgcse-sm
7873 When @option{-fgcse-sm} is enabled, a store motion pass is run after
7874 global common subexpression elimination. This pass attempts to move
7875 stores out of loops. When used in conjunction with @option{-fgcse-lm},
7876 loops containing a load/store sequence can be changed to a load before
7877 the loop and a store after the loop.
7878
7879 Not enabled at any optimization level.
7880
7881 @item -fgcse-las
7882 @opindex fgcse-las
7883 When @option{-fgcse-las} is enabled, the global common subexpression
7884 elimination pass eliminates redundant loads that come after stores to the
7885 same memory location (both partial and full redundancies).
7886
7887 Not enabled at any optimization level.
7888
7889 @item -fgcse-after-reload
7890 @opindex fgcse-after-reload
7891 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7892 pass is performed after reload. The purpose of this pass is to clean up
7893 redundant spilling.
7894
7895 @item -faggressive-loop-optimizations
7896 @opindex faggressive-loop-optimizations
7897 This option tells the loop optimizer to use language constraints to
7898 derive bounds for the number of iterations of a loop. This assumes that
7899 loop code does not invoke undefined behavior by for example causing signed
7900 integer overflows or out-of-bound array accesses. The bounds for the
7901 number of iterations of a loop are used to guide loop unrolling and peeling
7902 and loop exit test optimizations.
7903 This option is enabled by default.
7904
7905 @item -funconstrained-commons
7906 @opindex funconstrained-commons
7907 This option tells the compiler that variables declared in common blocks
7908 (e.g. Fortran) may later be overridden with longer trailing arrays. This
7909 prevents certain optimizations that depend on knowing the array bounds.
7910
7911 @item -fcrossjumping
7912 @opindex fcrossjumping
7913 Perform cross-jumping transformation.
7914 This transformation unifies equivalent code and saves code size. The
7915 resulting code may or may not perform better than without cross-jumping.
7916
7917 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7918
7919 @item -fauto-inc-dec
7920 @opindex fauto-inc-dec
7921 Combine increments or decrements of addresses with memory accesses.
7922 This pass is always skipped on architectures that do not have
7923 instructions to support this. Enabled by default at @option{-O} and
7924 higher on architectures that support this.
7925
7926 @item -fdce
7927 @opindex fdce
7928 Perform dead code elimination (DCE) on RTL@.
7929 Enabled by default at @option{-O} and higher.
7930
7931 @item -fdse
7932 @opindex fdse
7933 Perform dead store elimination (DSE) on RTL@.
7934 Enabled by default at @option{-O} and higher.
7935
7936 @item -fif-conversion
7937 @opindex fif-conversion
7938 Attempt to transform conditional jumps into branch-less equivalents. This
7939 includes use of conditional moves, min, max, set flags and abs instructions, and
7940 some tricks doable by standard arithmetics. The use of conditional execution
7941 on chips where it is available is controlled by @option{-fif-conversion2}.
7942
7943 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7944
7945 @item -fif-conversion2
7946 @opindex fif-conversion2
7947 Use conditional execution (where available) to transform conditional jumps into
7948 branch-less equivalents.
7949
7950 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7951
7952 @item -fdeclone-ctor-dtor
7953 @opindex fdeclone-ctor-dtor
7954 The C++ ABI requires multiple entry points for constructors and
7955 destructors: one for a base subobject, one for a complete object, and
7956 one for a virtual destructor that calls operator delete afterwards.
7957 For a hierarchy with virtual bases, the base and complete variants are
7958 clones, which means two copies of the function. With this option, the
7959 base and complete variants are changed to be thunks that call a common
7960 implementation.
7961
7962 Enabled by @option{-Os}.
7963
7964 @item -fdelete-null-pointer-checks
7965 @opindex fdelete-null-pointer-checks
7966 Assume that programs cannot safely dereference null pointers, and that
7967 no code or data element resides at address zero.
7968 This option enables simple constant
7969 folding optimizations at all optimization levels. In addition, other
7970 optimization passes in GCC use this flag to control global dataflow
7971 analyses that eliminate useless checks for null pointers; these assume
7972 that a memory access to address zero always results in a trap, so
7973 that if a pointer is checked after it has already been dereferenced,
7974 it cannot be null.
7975
7976 Note however that in some environments this assumption is not true.
7977 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
7978 for programs that depend on that behavior.
7979
7980 This option is enabled by default on most targets. On Nios II ELF, it
7981 defaults to off. On AVR, CR16, and MSP430, this option is completely disabled.
7982
7983 Passes that use the dataflow information
7984 are enabled independently at different optimization levels.
7985
7986 @item -fdevirtualize
7987 @opindex fdevirtualize
7988 Attempt to convert calls to virtual functions to direct calls. This
7989 is done both within a procedure and interprocedurally as part of
7990 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
7991 propagation (@option{-fipa-cp}).
7992 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7993
7994 @item -fdevirtualize-speculatively
7995 @opindex fdevirtualize-speculatively
7996 Attempt to convert calls to virtual functions to speculative direct calls.
7997 Based on the analysis of the type inheritance graph, determine for a given call
7998 the set of likely targets. If the set is small, preferably of size 1, change
7999 the call into a conditional deciding between direct and indirect calls. The
8000 speculative calls enable more optimizations, such as inlining. When they seem
8001 useless after further optimization, they are converted back into original form.
8002
8003 @item -fdevirtualize-at-ltrans
8004 @opindex fdevirtualize-at-ltrans
8005 Stream extra information needed for aggressive devirtualization when running
8006 the link-time optimizer in local transformation mode.
8007 This option enables more devirtualization but
8008 significantly increases the size of streamed data. For this reason it is
8009 disabled by default.
8010
8011 @item -fexpensive-optimizations
8012 @opindex fexpensive-optimizations
8013 Perform a number of minor optimizations that are relatively expensive.
8014
8015 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8016
8017 @item -free
8018 @opindex free
8019 Attempt to remove redundant extension instructions. This is especially
8020 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8021 registers after writing to their lower 32-bit half.
8022
8023 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8024 @option{-O3}, @option{-Os}.
8025
8026 @item -fno-lifetime-dse
8027 @opindex fno-lifetime-dse
8028 In C++ the value of an object is only affected by changes within its
8029 lifetime: when the constructor begins, the object has an indeterminate
8030 value, and any changes during the lifetime of the object are dead when
8031 the object is destroyed. Normally dead store elimination will take
8032 advantage of this; if your code relies on the value of the object
8033 storage persisting beyond the lifetime of the object, you can use this
8034 flag to disable this optimization. To preserve stores before the
8035 constructor starts (e.g. because your operator new clears the object
8036 storage) but still treat the object as dead after the destructor you,
8037 can use @option{-flifetime-dse=1}. The default behavior can be
8038 explicitly selected with @option{-flifetime-dse=2}.
8039 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8040
8041 @item -flive-range-shrinkage
8042 @opindex flive-range-shrinkage
8043 Attempt to decrease register pressure through register live range
8044 shrinkage. This is helpful for fast processors with small or moderate
8045 size register sets.
8046
8047 @item -fira-algorithm=@var{algorithm}
8048 @opindex fira-algorithm
8049 Use the specified coloring algorithm for the integrated register
8050 allocator. The @var{algorithm} argument can be @samp{priority}, which
8051 specifies Chow's priority coloring, or @samp{CB}, which specifies
8052 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8053 for all architectures, but for those targets that do support it, it is
8054 the default because it generates better code.
8055
8056 @item -fira-region=@var{region}
8057 @opindex fira-region
8058 Use specified regions for the integrated register allocator. The
8059 @var{region} argument should be one of the following:
8060
8061 @table @samp
8062
8063 @item all
8064 Use all loops as register allocation regions.
8065 This can give the best results for machines with a small and/or
8066 irregular register set.
8067
8068 @item mixed
8069 Use all loops except for loops with small register pressure
8070 as the regions. This value usually gives
8071 the best results in most cases and for most architectures,
8072 and is enabled by default when compiling with optimization for speed
8073 (@option{-O}, @option{-O2}, @dots{}).
8074
8075 @item one
8076 Use all functions as a single region.
8077 This typically results in the smallest code size, and is enabled by default for
8078 @option{-Os} or @option{-O0}.
8079
8080 @end table
8081
8082 @item -fira-hoist-pressure
8083 @opindex fira-hoist-pressure
8084 Use IRA to evaluate register pressure in the code hoisting pass for
8085 decisions to hoist expressions. This option usually results in smaller
8086 code, but it can slow the compiler down.
8087
8088 This option is enabled at level @option{-Os} for all targets.
8089
8090 @item -fira-loop-pressure
8091 @opindex fira-loop-pressure
8092 Use IRA to evaluate register pressure in loops for decisions to move
8093 loop invariants. This option usually results in generation
8094 of faster and smaller code on machines with large register files (>= 32
8095 registers), but it can slow the compiler down.
8096
8097 This option is enabled at level @option{-O3} for some targets.
8098
8099 @item -fno-ira-share-save-slots
8100 @opindex fno-ira-share-save-slots
8101 Disable sharing of stack slots used for saving call-used hard
8102 registers living through a call. Each hard register gets a
8103 separate stack slot, and as a result function stack frames are
8104 larger.
8105
8106 @item -fno-ira-share-spill-slots
8107 @opindex fno-ira-share-spill-slots
8108 Disable sharing of stack slots allocated for pseudo-registers. Each
8109 pseudo-register that does not get a hard register gets a separate
8110 stack slot, and as a result function stack frames are larger.
8111
8112 @item -flra-remat
8113 @opindex flra-remat
8114 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8115 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8116 values if it is profitable.
8117
8118 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8119
8120 @item -fdelayed-branch
8121 @opindex fdelayed-branch
8122 If supported for the target machine, attempt to reorder instructions
8123 to exploit instruction slots available after delayed branch
8124 instructions.
8125
8126 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8127
8128 @item -fschedule-insns
8129 @opindex fschedule-insns
8130 If supported for the target machine, attempt to reorder instructions to
8131 eliminate execution stalls due to required data being unavailable. This
8132 helps machines that have slow floating point or memory load instructions
8133 by allowing other instructions to be issued until the result of the load
8134 or floating-point instruction is required.
8135
8136 Enabled at levels @option{-O2}, @option{-O3}.
8137
8138 @item -fschedule-insns2
8139 @opindex fschedule-insns2
8140 Similar to @option{-fschedule-insns}, but requests an additional pass of
8141 instruction scheduling after register allocation has been done. This is
8142 especially useful on machines with a relatively small number of
8143 registers and where memory load instructions take more than one cycle.
8144
8145 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8146
8147 @item -fno-sched-interblock
8148 @opindex fno-sched-interblock
8149 Don't schedule instructions across basic blocks. This is normally
8150 enabled by default when scheduling before register allocation, i.e.@:
8151 with @option{-fschedule-insns} or at @option{-O2} or higher.
8152
8153 @item -fno-sched-spec
8154 @opindex fno-sched-spec
8155 Don't allow speculative motion of non-load instructions. This is normally
8156 enabled by default when scheduling before register allocation, i.e.@:
8157 with @option{-fschedule-insns} or at @option{-O2} or higher.
8158
8159 @item -fsched-pressure
8160 @opindex fsched-pressure
8161 Enable register pressure sensitive insn scheduling before register
8162 allocation. This only makes sense when scheduling before register
8163 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8164 @option{-O2} or higher. Usage of this option can improve the
8165 generated code and decrease its size by preventing register pressure
8166 increase above the number of available hard registers and subsequent
8167 spills in register allocation.
8168
8169 @item -fsched-spec-load
8170 @opindex fsched-spec-load
8171 Allow speculative motion of some load instructions. This only makes
8172 sense when scheduling before register allocation, i.e.@: with
8173 @option{-fschedule-insns} or at @option{-O2} or higher.
8174
8175 @item -fsched-spec-load-dangerous
8176 @opindex fsched-spec-load-dangerous
8177 Allow speculative motion of more load instructions. This only makes
8178 sense when scheduling before register allocation, i.e.@: with
8179 @option{-fschedule-insns} or at @option{-O2} or higher.
8180
8181 @item -fsched-stalled-insns
8182 @itemx -fsched-stalled-insns=@var{n}
8183 @opindex fsched-stalled-insns
8184 Define how many insns (if any) can be moved prematurely from the queue
8185 of stalled insns into the ready list during the second scheduling pass.
8186 @option{-fno-sched-stalled-insns} means that no insns are moved
8187 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8188 on how many queued insns can be moved prematurely.
8189 @option{-fsched-stalled-insns} without a value is equivalent to
8190 @option{-fsched-stalled-insns=1}.
8191
8192 @item -fsched-stalled-insns-dep
8193 @itemx -fsched-stalled-insns-dep=@var{n}
8194 @opindex fsched-stalled-insns-dep
8195 Define how many insn groups (cycles) are examined for a dependency
8196 on a stalled insn that is a candidate for premature removal from the queue
8197 of stalled insns. This has an effect only during the second scheduling pass,
8198 and only if @option{-fsched-stalled-insns} is used.
8199 @option{-fno-sched-stalled-insns-dep} is equivalent to
8200 @option{-fsched-stalled-insns-dep=0}.
8201 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8202 @option{-fsched-stalled-insns-dep=1}.
8203
8204 @item -fsched2-use-superblocks
8205 @opindex fsched2-use-superblocks
8206 When scheduling after register allocation, use superblock scheduling.
8207 This allows motion across basic block boundaries,
8208 resulting in faster schedules. This option is experimental, as not all machine
8209 descriptions used by GCC model the CPU closely enough to avoid unreliable
8210 results from the algorithm.
8211
8212 This only makes sense when scheduling after register allocation, i.e.@: with
8213 @option{-fschedule-insns2} or at @option{-O2} or higher.
8214
8215 @item -fsched-group-heuristic
8216 @opindex fsched-group-heuristic
8217 Enable the group heuristic in the scheduler. This heuristic favors
8218 the instruction that belongs to a schedule group. This is enabled
8219 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8220 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8221
8222 @item -fsched-critical-path-heuristic
8223 @opindex fsched-critical-path-heuristic
8224 Enable the critical-path heuristic in the scheduler. This heuristic favors
8225 instructions on the critical path. This is enabled by default when
8226 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8227 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8228
8229 @item -fsched-spec-insn-heuristic
8230 @opindex fsched-spec-insn-heuristic
8231 Enable the speculative instruction heuristic in the scheduler. This
8232 heuristic favors speculative instructions with greater dependency weakness.
8233 This is enabled by default when scheduling is enabled, i.e.@:
8234 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8235 or at @option{-O2} or higher.
8236
8237 @item -fsched-rank-heuristic
8238 @opindex fsched-rank-heuristic
8239 Enable the rank heuristic in the scheduler. This heuristic favors
8240 the instruction belonging to a basic block with greater size or frequency.
8241 This is enabled by default when scheduling is enabled, i.e.@:
8242 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8243 at @option{-O2} or higher.
8244
8245 @item -fsched-last-insn-heuristic
8246 @opindex fsched-last-insn-heuristic
8247 Enable the last-instruction heuristic in the scheduler. This heuristic
8248 favors the instruction that is less dependent on the last instruction
8249 scheduled. This is enabled by default when scheduling is enabled,
8250 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8251 at @option{-O2} or higher.
8252
8253 @item -fsched-dep-count-heuristic
8254 @opindex fsched-dep-count-heuristic
8255 Enable the dependent-count heuristic in the scheduler. This heuristic
8256 favors the instruction that has more instructions depending on it.
8257 This is enabled by default when scheduling is enabled, i.e.@:
8258 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8259 at @option{-O2} or higher.
8260
8261 @item -freschedule-modulo-scheduled-loops
8262 @opindex freschedule-modulo-scheduled-loops
8263 Modulo scheduling is performed before traditional scheduling. If a loop
8264 is modulo scheduled, later scheduling passes may change its schedule.
8265 Use this option to control that behavior.
8266
8267 @item -fselective-scheduling
8268 @opindex fselective-scheduling
8269 Schedule instructions using selective scheduling algorithm. Selective
8270 scheduling runs instead of the first scheduler pass.
8271
8272 @item -fselective-scheduling2
8273 @opindex fselective-scheduling2
8274 Schedule instructions using selective scheduling algorithm. Selective
8275 scheduling runs instead of the second scheduler pass.
8276
8277 @item -fsel-sched-pipelining
8278 @opindex fsel-sched-pipelining
8279 Enable software pipelining of innermost loops during selective scheduling.
8280 This option has no effect unless one of @option{-fselective-scheduling} or
8281 @option{-fselective-scheduling2} is turned on.
8282
8283 @item -fsel-sched-pipelining-outer-loops
8284 @opindex fsel-sched-pipelining-outer-loops
8285 When pipelining loops during selective scheduling, also pipeline outer loops.
8286 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8287
8288 @item -fsemantic-interposition
8289 @opindex fsemantic-interposition
8290 Some object formats, like ELF, allow interposing of symbols by the
8291 dynamic linker.
8292 This means that for symbols exported from the DSO, the compiler cannot perform
8293 interprocedural propagation, inlining and other optimizations in anticipation
8294 that the function or variable in question may change. While this feature is
8295 useful, for example, to rewrite memory allocation functions by a debugging
8296 implementation, it is expensive in the terms of code quality.
8297 With @option{-fno-semantic-interposition} the compiler assumes that
8298 if interposition happens for functions the overwriting function will have
8299 precisely the same semantics (and side effects).
8300 Similarly if interposition happens
8301 for variables, the constructor of the variable will be the same. The flag
8302 has no effect for functions explicitly declared inline
8303 (where it is never allowed for interposition to change semantics)
8304 and for symbols explicitly declared weak.
8305
8306 @item -fshrink-wrap
8307 @opindex fshrink-wrap
8308 Emit function prologues only before parts of the function that need it,
8309 rather than at the top of the function. This flag is enabled by default at
8310 @option{-O} and higher.
8311
8312 @item -fshrink-wrap-separate
8313 @opindex fshrink-wrap-separate
8314 Shrink-wrap separate parts of the prologue and epilogue separately, so that
8315 those parts are only executed when needed.
8316 This option is on by default, but has no effect unless @option{-fshrink-wrap}
8317 is also turned on and the target supports this.
8318
8319 @item -fcaller-saves
8320 @opindex fcaller-saves
8321 Enable allocation of values to registers that are clobbered by
8322 function calls, by emitting extra instructions to save and restore the
8323 registers around such calls. Such allocation is done only when it
8324 seems to result in better code.
8325
8326 This option is always enabled by default on certain machines, usually
8327 those which have no call-preserved registers to use instead.
8328
8329 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8330
8331 @item -fcombine-stack-adjustments
8332 @opindex fcombine-stack-adjustments
8333 Tracks stack adjustments (pushes and pops) and stack memory references
8334 and then tries to find ways to combine them.
8335
8336 Enabled by default at @option{-O1} and higher.
8337
8338 @item -fipa-ra
8339 @opindex fipa-ra
8340 Use caller save registers for allocation if those registers are not used by
8341 any called function. In that case it is not necessary to save and restore
8342 them around calls. This is only possible if called functions are part of
8343 same compilation unit as current function and they are compiled before it.
8344
8345 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
8346 is disabled if generated code will be instrumented for profiling
8347 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
8348 exactly (this happens on targets that do not expose prologues
8349 and epilogues in RTL).
8350
8351 @item -fconserve-stack
8352 @opindex fconserve-stack
8353 Attempt to minimize stack usage. The compiler attempts to use less
8354 stack space, even if that makes the program slower. This option
8355 implies setting the @option{large-stack-frame} parameter to 100
8356 and the @option{large-stack-frame-growth} parameter to 400.
8357
8358 @item -ftree-reassoc
8359 @opindex ftree-reassoc
8360 Perform reassociation on trees. This flag is enabled by default
8361 at @option{-O} and higher.
8362
8363 @item -fcode-hoisting
8364 @opindex fcode-hoisting
8365 Perform code hoisting. Code hoisting tries to move the
8366 evaluation of expressions executed on all paths to the function exit
8367 as early as possible. This is especially useful as a code size
8368 optimization, but it often helps for code speed as well.
8369 This flag is enabled by default at @option{-O2} and higher.
8370
8371 @item -ftree-pre
8372 @opindex ftree-pre
8373 Perform partial redundancy elimination (PRE) on trees. This flag is
8374 enabled by default at @option{-O2} and @option{-O3}.
8375
8376 @item -ftree-partial-pre
8377 @opindex ftree-partial-pre
8378 Make partial redundancy elimination (PRE) more aggressive. This flag is
8379 enabled by default at @option{-O3}.
8380
8381 @item -ftree-forwprop
8382 @opindex ftree-forwprop
8383 Perform forward propagation on trees. This flag is enabled by default
8384 at @option{-O} and higher.
8385
8386 @item -ftree-fre
8387 @opindex ftree-fre
8388 Perform full redundancy elimination (FRE) on trees. The difference
8389 between FRE and PRE is that FRE only considers expressions
8390 that are computed on all paths leading to the redundant computation.
8391 This analysis is faster than PRE, though it exposes fewer redundancies.
8392 This flag is enabled by default at @option{-O} and higher.
8393
8394 @item -ftree-phiprop
8395 @opindex ftree-phiprop
8396 Perform hoisting of loads from conditional pointers on trees. This
8397 pass is enabled by default at @option{-O} and higher.
8398
8399 @item -fhoist-adjacent-loads
8400 @opindex fhoist-adjacent-loads
8401 Speculatively hoist loads from both branches of an if-then-else if the
8402 loads are from adjacent locations in the same structure and the target
8403 architecture has a conditional move instruction. This flag is enabled
8404 by default at @option{-O2} and higher.
8405
8406 @item -ftree-copy-prop
8407 @opindex ftree-copy-prop
8408 Perform copy propagation on trees. This pass eliminates unnecessary
8409 copy operations. This flag is enabled by default at @option{-O} and
8410 higher.
8411
8412 @item -fipa-pure-const
8413 @opindex fipa-pure-const
8414 Discover which functions are pure or constant.
8415 Enabled by default at @option{-O} and higher.
8416
8417 @item -fipa-reference
8418 @opindex fipa-reference
8419 Discover which static variables do not escape the
8420 compilation unit.
8421 Enabled by default at @option{-O} and higher.
8422
8423 @item -fipa-pta
8424 @opindex fipa-pta
8425 Perform interprocedural pointer analysis and interprocedural modification
8426 and reference analysis. This option can cause excessive memory and
8427 compile-time usage on large compilation units. It is not enabled by
8428 default at any optimization level.
8429
8430 @item -fipa-profile
8431 @opindex fipa-profile
8432 Perform interprocedural profile propagation. The functions called only from
8433 cold functions are marked as cold. Also functions executed once (such as
8434 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8435 functions and loop less parts of functions executed once are then optimized for
8436 size.
8437 Enabled by default at @option{-O} and higher.
8438
8439 @item -fipa-cp
8440 @opindex fipa-cp
8441 Perform interprocedural constant propagation.
8442 This optimization analyzes the program to determine when values passed
8443 to functions are constants and then optimizes accordingly.
8444 This optimization can substantially increase performance
8445 if the application has constants passed to functions.
8446 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8447
8448 @item -fipa-cp-clone
8449 @opindex fipa-cp-clone
8450 Perform function cloning to make interprocedural constant propagation stronger.
8451 When enabled, interprocedural constant propagation performs function cloning
8452 when externally visible function can be called with constant arguments.
8453 Because this optimization can create multiple copies of functions,
8454 it may significantly increase code size
8455 (see @option{--param ipcp-unit-growth=@var{value}}).
8456 This flag is enabled by default at @option{-O3}.
8457
8458 @item -fipa-bit-cp
8459 @opindex -fipa-bit-cp
8460 When enabled, perform interprocedural bitwise constant
8461 propagation. This flag is enabled by default at @option{-O2}. It
8462 requires that @option{-fipa-cp} is enabled.
8463
8464 @item -fipa-vrp
8465 @opindex -fipa-vrp
8466 When enabled, perform interprocedural propagation of value
8467 ranges. This flag is enabled by default at @option{-O2}. It requires
8468 that @option{-fipa-cp} is enabled.
8469
8470 @item -fipa-icf
8471 @opindex fipa-icf
8472 Perform Identical Code Folding for functions and read-only variables.
8473 The optimization reduces code size and may disturb unwind stacks by replacing
8474 a function by equivalent one with a different name. The optimization works
8475 more effectively with link-time optimization enabled.
8476
8477 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8478 works on different levels and thus the optimizations are not same - there are
8479 equivalences that are found only by GCC and equivalences found only by Gold.
8480
8481 This flag is enabled by default at @option{-O2} and @option{-Os}.
8482
8483 @item -fisolate-erroneous-paths-dereference
8484 @opindex fisolate-erroneous-paths-dereference
8485 Detect paths that trigger erroneous or undefined behavior due to
8486 dereferencing a null pointer. Isolate those paths from the main control
8487 flow and turn the statement with erroneous or undefined behavior into a trap.
8488 This flag is enabled by default at @option{-O2} and higher and depends on
8489 @option{-fdelete-null-pointer-checks} also being enabled.
8490
8491 @item -fisolate-erroneous-paths-attribute
8492 @opindex fisolate-erroneous-paths-attribute
8493 Detect paths that trigger erroneous or undefined behavior due a null value
8494 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8495 attribute. Isolate those paths from the main control flow and turn the
8496 statement with erroneous or undefined behavior into a trap. This is not
8497 currently enabled, but may be enabled by @option{-O2} in the future.
8498
8499 @item -ftree-sink
8500 @opindex ftree-sink
8501 Perform forward store motion on trees. This flag is
8502 enabled by default at @option{-O} and higher.
8503
8504 @item -ftree-bit-ccp
8505 @opindex ftree-bit-ccp
8506 Perform sparse conditional bit constant propagation on trees and propagate
8507 pointer alignment information.
8508 This pass only operates on local scalar variables and is enabled by default
8509 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8510
8511 @item -ftree-ccp
8512 @opindex ftree-ccp
8513 Perform sparse conditional constant propagation (CCP) on trees. This
8514 pass only operates on local scalar variables and is enabled by default
8515 at @option{-O} and higher.
8516
8517 @item -fssa-backprop
8518 @opindex fssa-backprop
8519 Propagate information about uses of a value up the definition chain
8520 in order to simplify the definitions. For example, this pass strips
8521 sign operations if the sign of a value never matters. The flag is
8522 enabled by default at @option{-O} and higher.
8523
8524 @item -fssa-phiopt
8525 @opindex fssa-phiopt
8526 Perform pattern matching on SSA PHI nodes to optimize conditional
8527 code. This pass is enabled by default at @option{-O} and higher.
8528
8529 @item -ftree-switch-conversion
8530 @opindex ftree-switch-conversion
8531 Perform conversion of simple initializations in a switch to
8532 initializations from a scalar array. This flag is enabled by default
8533 at @option{-O2} and higher.
8534
8535 @item -ftree-tail-merge
8536 @opindex ftree-tail-merge
8537 Look for identical code sequences. When found, replace one with a jump to the
8538 other. This optimization is known as tail merging or cross jumping. This flag
8539 is enabled by default at @option{-O2} and higher. The compilation time
8540 in this pass can
8541 be limited using @option{max-tail-merge-comparisons} parameter and
8542 @option{max-tail-merge-iterations} parameter.
8543
8544 @item -ftree-dce
8545 @opindex ftree-dce
8546 Perform dead code elimination (DCE) on trees. This flag is enabled by
8547 default at @option{-O} and higher.
8548
8549 @item -ftree-builtin-call-dce
8550 @opindex ftree-builtin-call-dce
8551 Perform conditional dead code elimination (DCE) for calls to built-in functions
8552 that may set @code{errno} but are otherwise side-effect free. This flag is
8553 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8554 specified.
8555
8556 @item -ftree-dominator-opts
8557 @opindex ftree-dominator-opts
8558 Perform a variety of simple scalar cleanups (constant/copy
8559 propagation, redundancy elimination, range propagation and expression
8560 simplification) based on a dominator tree traversal. This also
8561 performs jump threading (to reduce jumps to jumps). This flag is
8562 enabled by default at @option{-O} and higher.
8563
8564 @item -ftree-dse
8565 @opindex ftree-dse
8566 Perform dead store elimination (DSE) on trees. A dead store is a store into
8567 a memory location that is later overwritten by another store without
8568 any intervening loads. In this case the earlier store can be deleted. This
8569 flag is enabled by default at @option{-O} and higher.
8570
8571 @item -ftree-ch
8572 @opindex ftree-ch
8573 Perform loop header copying on trees. This is beneficial since it increases
8574 effectiveness of code motion optimizations. It also saves one jump. This flag
8575 is enabled by default at @option{-O} and higher. It is not enabled
8576 for @option{-Os}, since it usually increases code size.
8577
8578 @item -ftree-loop-optimize
8579 @opindex ftree-loop-optimize
8580 Perform loop optimizations on trees. This flag is enabled by default
8581 at @option{-O} and higher.
8582
8583 @item -ftree-loop-linear
8584 @itemx -floop-strip-mine
8585 @itemx -floop-block
8586 @opindex ftree-loop-linear
8587 @opindex floop-strip-mine
8588 @opindex floop-block
8589 Perform loop nest optimizations. Same as
8590 @option{-floop-nest-optimize}. To use this code transformation, GCC has
8591 to be configured with @option{--with-isl} to enable the Graphite loop
8592 transformation infrastructure.
8593
8594 @item -fgraphite-identity
8595 @opindex fgraphite-identity
8596 Enable the identity transformation for graphite. For every SCoP we generate
8597 the polyhedral representation and transform it back to gimple. Using
8598 @option{-fgraphite-identity} we can check the costs or benefits of the
8599 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8600 are also performed by the code generator isl, like index splitting and
8601 dead code elimination in loops.
8602
8603 @item -floop-nest-optimize
8604 @opindex floop-nest-optimize
8605 Enable the isl based loop nest optimizer. This is a generic loop nest
8606 optimizer based on the Pluto optimization algorithms. It calculates a loop
8607 structure optimized for data-locality and parallelism. This option
8608 is experimental.
8609
8610 @item -floop-parallelize-all
8611 @opindex floop-parallelize-all
8612 Use the Graphite data dependence analysis to identify loops that can
8613 be parallelized. Parallelize all the loops that can be analyzed to
8614 not contain loop carried dependences without checking that it is
8615 profitable to parallelize the loops.
8616
8617 @item -ftree-coalesce-vars
8618 @opindex ftree-coalesce-vars
8619 While transforming the program out of the SSA representation, attempt to
8620 reduce copying by coalescing versions of different user-defined
8621 variables, instead of just compiler temporaries. This may severely
8622 limit the ability to debug an optimized program compiled with
8623 @option{-fno-var-tracking-assignments}. In the negated form, this flag
8624 prevents SSA coalescing of user variables. This option is enabled by
8625 default if optimization is enabled, and it does very little otherwise.
8626
8627 @item -ftree-loop-if-convert
8628 @opindex ftree-loop-if-convert
8629 Attempt to transform conditional jumps in the innermost loops to
8630 branch-less equivalents. The intent is to remove control-flow from
8631 the innermost loops in order to improve the ability of the
8632 vectorization pass to handle these loops. This is enabled by default
8633 if vectorization is enabled.
8634
8635 @item -ftree-loop-distribution
8636 @opindex ftree-loop-distribution
8637 Perform loop distribution. This flag can improve cache performance on
8638 big loop bodies and allow further loop optimizations, like
8639 parallelization or vectorization, to take place. For example, the loop
8640 @smallexample
8641 DO I = 1, N
8642 A(I) = B(I) + C
8643 D(I) = E(I) * F
8644 ENDDO
8645 @end smallexample
8646 is transformed to
8647 @smallexample
8648 DO I = 1, N
8649 A(I) = B(I) + C
8650 ENDDO
8651 DO I = 1, N
8652 D(I) = E(I) * F
8653 ENDDO
8654 @end smallexample
8655
8656 @item -ftree-loop-distribute-patterns
8657 @opindex ftree-loop-distribute-patterns
8658 Perform loop distribution of patterns that can be code generated with
8659 calls to a library. This flag is enabled by default at @option{-O3}.
8660
8661 This pass distributes the initialization loops and generates a call to
8662 memset zero. For example, the loop
8663 @smallexample
8664 DO I = 1, N
8665 A(I) = 0
8666 B(I) = A(I) + I
8667 ENDDO
8668 @end smallexample
8669 is transformed to
8670 @smallexample
8671 DO I = 1, N
8672 A(I) = 0
8673 ENDDO
8674 DO I = 1, N
8675 B(I) = A(I) + I
8676 ENDDO
8677 @end smallexample
8678 and the initialization loop is transformed into a call to memset zero.
8679
8680 @item -floop-interchange
8681 @opindex floop-interchange
8682 Perform loop interchange outside of graphite. This flag can improve cache
8683 performance on loop nest and allow further loop optimizations, like
8684 vectorization, to take place. For example, the loop
8685 @smallexample
8686 for (int i = 0; i < N; i++)
8687 for (int j = 0; j < N; j++)
8688 for (int k = 0; k < N; k++)
8689 c[i][j] = c[i][j] + a[i][k]*b[k][j];
8690 @end smallexample
8691 is transformed to
8692 @smallexample
8693 for (int i = 0; i < N; i++)
8694 for (int k = 0; k < N; k++)
8695 for (int j = 0; j < N; j++)
8696 c[i][j] = c[i][j] + a[i][k]*b[k][j];
8697 @end smallexample
8698
8699 @item -ftree-loop-im
8700 @opindex ftree-loop-im
8701 Perform loop invariant motion on trees. This pass moves only invariants that
8702 are hard to handle at RTL level (function calls, operations that expand to
8703 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8704 operands of conditions that are invariant out of the loop, so that we can use
8705 just trivial invariantness analysis in loop unswitching. The pass also includes
8706 store motion.
8707
8708 @item -ftree-loop-ivcanon
8709 @opindex ftree-loop-ivcanon
8710 Create a canonical counter for number of iterations in loops for which
8711 determining number of iterations requires complicated analysis. Later
8712 optimizations then may determine the number easily. Useful especially
8713 in connection with unrolling.
8714
8715 @item -fivopts
8716 @opindex fivopts
8717 Perform induction variable optimizations (strength reduction, induction
8718 variable merging and induction variable elimination) on trees.
8719
8720 @item -ftree-parallelize-loops=n
8721 @opindex ftree-parallelize-loops
8722 Parallelize loops, i.e., split their iteration space to run in n threads.
8723 This is only possible for loops whose iterations are independent
8724 and can be arbitrarily reordered. The optimization is only
8725 profitable on multiprocessor machines, for loops that are CPU-intensive,
8726 rather than constrained e.g.@: by memory bandwidth. This option
8727 implies @option{-pthread}, and thus is only supported on targets
8728 that have support for @option{-pthread}.
8729
8730 @item -ftree-pta
8731 @opindex ftree-pta
8732 Perform function-local points-to analysis on trees. This flag is
8733 enabled by default at @option{-O} and higher.
8734
8735 @item -ftree-sra
8736 @opindex ftree-sra
8737 Perform scalar replacement of aggregates. This pass replaces structure
8738 references with scalars to prevent committing structures to memory too
8739 early. This flag is enabled by default at @option{-O} and higher.
8740
8741 @item -fstore-merging
8742 @opindex fstore-merging
8743 Perform merging of narrow stores to consecutive memory addresses. This pass
8744 merges contiguous stores of immediate values narrower than a word into fewer
8745 wider stores to reduce the number of instructions. This is enabled by default
8746 at @option{-O2} and higher as well as @option{-Os}.
8747
8748 @item -ftree-ter
8749 @opindex ftree-ter
8750 Perform temporary expression replacement during the SSA->normal phase. Single
8751 use/single def temporaries are replaced at their use location with their
8752 defining expression. This results in non-GIMPLE code, but gives the expanders
8753 much more complex trees to work on resulting in better RTL generation. This is
8754 enabled by default at @option{-O} and higher.
8755
8756 @item -ftree-slsr
8757 @opindex ftree-slsr
8758 Perform straight-line strength reduction on trees. This recognizes related
8759 expressions involving multiplications and replaces them by less expensive
8760 calculations when possible. This is enabled by default at @option{-O} and
8761 higher.
8762
8763 @item -ftree-vectorize
8764 @opindex ftree-vectorize
8765 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8766 and @option{-ftree-slp-vectorize} if not explicitly specified.
8767
8768 @item -ftree-loop-vectorize
8769 @opindex ftree-loop-vectorize
8770 Perform loop vectorization on trees. This flag is enabled by default at
8771 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8772
8773 @item -ftree-slp-vectorize
8774 @opindex ftree-slp-vectorize
8775 Perform basic block vectorization on trees. This flag is enabled by default at
8776 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8777
8778 @item -fvect-cost-model=@var{model}
8779 @opindex fvect-cost-model
8780 Alter the cost model used for vectorization. The @var{model} argument
8781 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8782 With the @samp{unlimited} model the vectorized code-path is assumed
8783 to be profitable while with the @samp{dynamic} model a runtime check
8784 guards the vectorized code-path to enable it only for iteration
8785 counts that will likely execute faster than when executing the original
8786 scalar loop. The @samp{cheap} model disables vectorization of
8787 loops where doing so would be cost prohibitive for example due to
8788 required runtime checks for data dependence or alignment but otherwise
8789 is equal to the @samp{dynamic} model.
8790 The default cost model depends on other optimization flags and is
8791 either @samp{dynamic} or @samp{cheap}.
8792
8793 @item -fsimd-cost-model=@var{model}
8794 @opindex fsimd-cost-model
8795 Alter the cost model used for vectorization of loops marked with the OpenMP
8796 or Cilk Plus simd directive. The @var{model} argument should be one of
8797 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
8798 have the same meaning as described in @option{-fvect-cost-model} and by
8799 default a cost model defined with @option{-fvect-cost-model} is used.
8800
8801 @item -ftree-vrp
8802 @opindex ftree-vrp
8803 Perform Value Range Propagation on trees. This is similar to the
8804 constant propagation pass, but instead of values, ranges of values are
8805 propagated. This allows the optimizers to remove unnecessary range
8806 checks like array bound checks and null pointer checks. This is
8807 enabled by default at @option{-O2} and higher. Null pointer check
8808 elimination is only done if @option{-fdelete-null-pointer-checks} is
8809 enabled.
8810
8811 @item -fsplit-paths
8812 @opindex fsplit-paths
8813 Split paths leading to loop backedges. This can improve dead code
8814 elimination and common subexpression elimination. This is enabled by
8815 default at @option{-O2} and above.
8816
8817 @item -fsplit-ivs-in-unroller
8818 @opindex fsplit-ivs-in-unroller
8819 Enables expression of values of induction variables in later iterations
8820 of the unrolled loop using the value in the first iteration. This breaks
8821 long dependency chains, thus improving efficiency of the scheduling passes.
8822
8823 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8824 same effect. However, that is not reliable in cases where the loop body
8825 is more complicated than a single basic block. It also does not work at all
8826 on some architectures due to restrictions in the CSE pass.
8827
8828 This optimization is enabled by default.
8829
8830 @item -fvariable-expansion-in-unroller
8831 @opindex fvariable-expansion-in-unroller
8832 With this option, the compiler creates multiple copies of some
8833 local variables when unrolling a loop, which can result in superior code.
8834
8835 @item -fpartial-inlining
8836 @opindex fpartial-inlining
8837 Inline parts of functions. This option has any effect only
8838 when inlining itself is turned on by the @option{-finline-functions}
8839 or @option{-finline-small-functions} options.
8840
8841 Enabled at level @option{-O2}.
8842
8843 @item -fpredictive-commoning
8844 @opindex fpredictive-commoning
8845 Perform predictive commoning optimization, i.e., reusing computations
8846 (especially memory loads and stores) performed in previous
8847 iterations of loops.
8848
8849 This option is enabled at level @option{-O3}.
8850
8851 @item -fprefetch-loop-arrays
8852 @opindex fprefetch-loop-arrays
8853 If supported by the target machine, generate instructions to prefetch
8854 memory to improve the performance of loops that access large arrays.
8855
8856 This option may generate better or worse code; results are highly
8857 dependent on the structure of loops within the source code.
8858
8859 Disabled at level @option{-Os}.
8860
8861 @item -fno-printf-return-value
8862 @opindex fno-printf-return-value
8863 Do not substitute constants for known return value of formatted output
8864 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
8865 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
8866 transformation allows GCC to optimize or even eliminate branches based
8867 on the known return value of these functions called with arguments that
8868 are either constant, or whose values are known to be in a range that
8869 makes determining the exact return value possible. For example, when
8870 @option{-fprintf-return-value} is in effect, both the branch and the
8871 body of the @code{if} statement (but not the call to @code{snprint})
8872 can be optimized away when @code{i} is a 32-bit or smaller integer
8873 because the return value is guaranteed to be at most 8.
8874
8875 @smallexample
8876 char buf[9];
8877 if (snprintf (buf, "%08x", i) >= sizeof buf)
8878 @dots{}
8879 @end smallexample
8880
8881 The @option{-fprintf-return-value} option relies on other optimizations
8882 and yields best results with @option{-O2}. It works in tandem with the
8883 @option{-Wformat-overflow} and @option{-Wformat-truncation} options.
8884 The @option{-fprintf-return-value} option is enabled by default.
8885
8886 @item -fno-peephole
8887 @itemx -fno-peephole2
8888 @opindex fno-peephole
8889 @opindex fno-peephole2
8890 Disable any machine-specific peephole optimizations. The difference
8891 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
8892 are implemented in the compiler; some targets use one, some use the
8893 other, a few use both.
8894
8895 @option{-fpeephole} is enabled by default.
8896 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8897
8898 @item -fno-guess-branch-probability
8899 @opindex fno-guess-branch-probability
8900 Do not guess branch probabilities using heuristics.
8901
8902 GCC uses heuristics to guess branch probabilities if they are
8903 not provided by profiling feedback (@option{-fprofile-arcs}). These
8904 heuristics are based on the control flow graph. If some branch probabilities
8905 are specified by @code{__builtin_expect}, then the heuristics are
8906 used to guess branch probabilities for the rest of the control flow graph,
8907 taking the @code{__builtin_expect} info into account. The interactions
8908 between the heuristics and @code{__builtin_expect} can be complex, and in
8909 some cases, it may be useful to disable the heuristics so that the effects
8910 of @code{__builtin_expect} are easier to understand.
8911
8912 The default is @option{-fguess-branch-probability} at levels
8913 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8914
8915 @item -freorder-blocks
8916 @opindex freorder-blocks
8917 Reorder basic blocks in the compiled function in order to reduce number of
8918 taken branches and improve code locality.
8919
8920 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8921
8922 @item -freorder-blocks-algorithm=@var{algorithm}
8923 @opindex freorder-blocks-algorithm
8924 Use the specified algorithm for basic block reordering. The
8925 @var{algorithm} argument can be @samp{simple}, which does not increase
8926 code size (except sometimes due to secondary effects like alignment),
8927 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
8928 put all often executed code together, minimizing the number of branches
8929 executed by making extra copies of code.
8930
8931 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
8932 @samp{stc} at levels @option{-O2}, @option{-O3}.
8933
8934 @item -freorder-blocks-and-partition
8935 @opindex freorder-blocks-and-partition
8936 In addition to reordering basic blocks in the compiled function, in order
8937 to reduce number of taken branches, partitions hot and cold basic blocks
8938 into separate sections of the assembly and @file{.o} files, to improve
8939 paging and cache locality performance.
8940
8941 This optimization is automatically turned off in the presence of
8942 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
8943 section attribute and on any architecture that does not support named
8944 sections. When @option{-fsplit-stack} is used this option is not
8945 enabled by default (to avoid linker errors), but may be enabled
8946 explicitly (if using a working linker).
8947
8948 Enabled for x86 at levels @option{-O2}, @option{-O3}.
8949
8950 @item -freorder-functions
8951 @opindex freorder-functions
8952 Reorder functions in the object file in order to
8953 improve code locality. This is implemented by using special
8954 subsections @code{.text.hot} for most frequently executed functions and
8955 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
8956 the linker so object file format must support named sections and linker must
8957 place them in a reasonable way.
8958
8959 Also profile feedback must be available to make this option effective. See
8960 @option{-fprofile-arcs} for details.
8961
8962 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8963
8964 @item -fstrict-aliasing
8965 @opindex fstrict-aliasing
8966 Allow the compiler to assume the strictest aliasing rules applicable to
8967 the language being compiled. For C (and C++), this activates
8968 optimizations based on the type of expressions. In particular, an
8969 object of one type is assumed never to reside at the same address as an
8970 object of a different type, unless the types are almost the same. For
8971 example, an @code{unsigned int} can alias an @code{int}, but not a
8972 @code{void*} or a @code{double}. A character type may alias any other
8973 type.
8974
8975 @anchor{Type-punning}Pay special attention to code like this:
8976 @smallexample
8977 union a_union @{
8978 int i;
8979 double d;
8980 @};
8981
8982 int f() @{
8983 union a_union t;
8984 t.d = 3.0;
8985 return t.i;
8986 @}
8987 @end smallexample
8988 The practice of reading from a different union member than the one most
8989 recently written to (called ``type-punning'') is common. Even with
8990 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
8991 is accessed through the union type. So, the code above works as
8992 expected. @xref{Structures unions enumerations and bit-fields
8993 implementation}. However, this code might not:
8994 @smallexample
8995 int f() @{
8996 union a_union t;
8997 int* ip;
8998 t.d = 3.0;
8999 ip = &t.i;
9000 return *ip;
9001 @}
9002 @end smallexample
9003
9004 Similarly, access by taking the address, casting the resulting pointer
9005 and dereferencing the result has undefined behavior, even if the cast
9006 uses a union type, e.g.:
9007 @smallexample
9008 int f() @{
9009 double d = 3.0;
9010 return ((union a_union *) &d)->i;
9011 @}
9012 @end smallexample
9013
9014 The @option{-fstrict-aliasing} option is enabled at levels
9015 @option{-O2}, @option{-O3}, @option{-Os}.
9016
9017 @item -falign-functions
9018 @itemx -falign-functions=@var{n}
9019 @opindex falign-functions
9020 Align the start of functions to the next power-of-two greater than
9021 @var{n}, skipping up to @var{n} bytes. For instance,
9022 @option{-falign-functions=32} aligns functions to the next 32-byte
9023 boundary, but @option{-falign-functions=24} aligns to the next
9024 32-byte boundary only if this can be done by skipping 23 bytes or less.
9025
9026 @option{-fno-align-functions} and @option{-falign-functions=1} are
9027 equivalent and mean that functions are not aligned.
9028
9029 Some assemblers only support this flag when @var{n} is a power of two;
9030 in that case, it is rounded up.
9031
9032 If @var{n} is not specified or is zero, use a machine-dependent default.
9033
9034 Enabled at levels @option{-O2}, @option{-O3}.
9035
9036 @item -flimit-function-alignment
9037 If this option is enabled, the compiler tries to avoid unnecessarily
9038 overaligning functions. It attempts to instruct the assembler to align
9039 by the amount specified by @option{-falign-functions}, but not to
9040 skip more bytes than the size of the function.
9041
9042 @item -falign-labels
9043 @itemx -falign-labels=@var{n}
9044 @opindex falign-labels
9045 Align all branch targets to a power-of-two boundary, skipping up to
9046 @var{n} bytes like @option{-falign-functions}. This option can easily
9047 make code slower, because it must insert dummy operations for when the
9048 branch target is reached in the usual flow of the code.
9049
9050 @option{-fno-align-labels} and @option{-falign-labels=1} are
9051 equivalent and mean that labels are not aligned.
9052
9053 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9054 are greater than this value, then their values are used instead.
9055
9056 If @var{n} is not specified or is zero, use a machine-dependent default
9057 which is very likely to be @samp{1}, meaning no alignment.
9058
9059 Enabled at levels @option{-O2}, @option{-O3}.
9060
9061 @item -falign-loops
9062 @itemx -falign-loops=@var{n}
9063 @opindex falign-loops
9064 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9065 like @option{-falign-functions}. If the loops are
9066 executed many times, this makes up for any execution of the dummy
9067 operations.
9068
9069 @option{-fno-align-loops} and @option{-falign-loops=1} are
9070 equivalent and mean that loops are not aligned.
9071
9072 If @var{n} is not specified or is zero, use a machine-dependent default.
9073
9074 Enabled at levels @option{-O2}, @option{-O3}.
9075
9076 @item -falign-jumps
9077 @itemx -falign-jumps=@var{n}
9078 @opindex falign-jumps
9079 Align branch targets to a power-of-two boundary, for branch targets
9080 where the targets can only be reached by jumping, skipping up to @var{n}
9081 bytes like @option{-falign-functions}. In this case, no dummy operations
9082 need be executed.
9083
9084 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9085 equivalent and mean that loops are not aligned.
9086
9087 If @var{n} is not specified or is zero, use a machine-dependent default.
9088
9089 Enabled at levels @option{-O2}, @option{-O3}.
9090
9091 @item -funit-at-a-time
9092 @opindex funit-at-a-time
9093 This option is left for compatibility reasons. @option{-funit-at-a-time}
9094 has no effect, while @option{-fno-unit-at-a-time} implies
9095 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9096
9097 Enabled by default.
9098
9099 @item -fno-toplevel-reorder
9100 @opindex fno-toplevel-reorder
9101 Do not reorder top-level functions, variables, and @code{asm}
9102 statements. Output them in the same order that they appear in the
9103 input file. When this option is used, unreferenced static variables
9104 are not removed. This option is intended to support existing code
9105 that relies on a particular ordering. For new code, it is better to
9106 use attributes when possible.
9107
9108 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9109 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9110 targets.
9111
9112 @item -fweb
9113 @opindex fweb
9114 Constructs webs as commonly used for register allocation purposes and assign
9115 each web individual pseudo register. This allows the register allocation pass
9116 to operate on pseudos directly, but also strengthens several other optimization
9117 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9118 however, make debugging impossible, since variables no longer stay in a
9119 ``home register''.
9120
9121 Enabled by default with @option{-funroll-loops}.
9122
9123 @item -fwhole-program
9124 @opindex fwhole-program
9125 Assume that the current compilation unit represents the whole program being
9126 compiled. All public functions and variables with the exception of @code{main}
9127 and those merged by attribute @code{externally_visible} become static functions
9128 and in effect are optimized more aggressively by interprocedural optimizers.
9129
9130 This option should not be used in combination with @option{-flto}.
9131 Instead relying on a linker plugin should provide safer and more precise
9132 information.
9133
9134 @item -flto[=@var{n}]
9135 @opindex flto
9136 This option runs the standard link-time optimizer. When invoked
9137 with source code, it generates GIMPLE (one of GCC's internal
9138 representations) and writes it to special ELF sections in the object
9139 file. When the object files are linked together, all the function
9140 bodies are read from these ELF sections and instantiated as if they
9141 had been part of the same translation unit.
9142
9143 To use the link-time optimizer, @option{-flto} and optimization
9144 options should be specified at compile time and during the final link.
9145 It is recommended that you compile all the files participating in the
9146 same link with the same options and also specify those options at
9147 link time.
9148 For example:
9149
9150 @smallexample
9151 gcc -c -O2 -flto foo.c
9152 gcc -c -O2 -flto bar.c
9153 gcc -o myprog -flto -O2 foo.o bar.o
9154 @end smallexample
9155
9156 The first two invocations to GCC save a bytecode representation
9157 of GIMPLE into special ELF sections inside @file{foo.o} and
9158 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9159 @file{foo.o} and @file{bar.o}, merges the two files into a single
9160 internal image, and compiles the result as usual. Since both
9161 @file{foo.o} and @file{bar.o} are merged into a single image, this
9162 causes all the interprocedural analyses and optimizations in GCC to
9163 work across the two files as if they were a single one. This means,
9164 for example, that the inliner is able to inline functions in
9165 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9166
9167 Another (simpler) way to enable link-time optimization is:
9168
9169 @smallexample
9170 gcc -o myprog -flto -O2 foo.c bar.c
9171 @end smallexample
9172
9173 The above generates bytecode for @file{foo.c} and @file{bar.c},
9174 merges them together into a single GIMPLE representation and optimizes
9175 them as usual to produce @file{myprog}.
9176
9177 The only important thing to keep in mind is that to enable link-time
9178 optimizations you need to use the GCC driver to perform the link step.
9179 GCC then automatically performs link-time optimization if any of the
9180 objects involved were compiled with the @option{-flto} command-line option.
9181 You generally
9182 should specify the optimization options to be used for link-time
9183 optimization though GCC tries to be clever at guessing an
9184 optimization level to use from the options used at compile time
9185 if you fail to specify one at link time. You can always override
9186 the automatic decision to do link-time optimization
9187 by passing @option{-fno-lto} to the link command.
9188
9189 To make whole program optimization effective, it is necessary to make
9190 certain whole program assumptions. The compiler needs to know
9191 what functions and variables can be accessed by libraries and runtime
9192 outside of the link-time optimized unit. When supported by the linker,
9193 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9194 to the compiler about used and externally visible symbols. When
9195 the linker plugin is not available, @option{-fwhole-program} should be
9196 used to allow the compiler to make these assumptions, which leads
9197 to more aggressive optimization decisions.
9198
9199 When @option{-fuse-linker-plugin} is not enabled, when a file is
9200 compiled with @option{-flto}, the generated object file is larger than
9201 a regular object file because it contains GIMPLE bytecodes and the usual
9202 final code (see @option{-ffat-lto-objects}. This means that
9203 object files with LTO information can be linked as normal object
9204 files; if @option{-fno-lto} is passed to the linker, no
9205 interprocedural optimizations are applied. Note that when
9206 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
9207 but you cannot perform a regular, non-LTO link on them.
9208
9209 Additionally, the optimization flags used to compile individual files
9210 are not necessarily related to those used at link time. For instance,
9211
9212 @smallexample
9213 gcc -c -O0 -ffat-lto-objects -flto foo.c
9214 gcc -c -O0 -ffat-lto-objects -flto bar.c
9215 gcc -o myprog -O3 foo.o bar.o
9216 @end smallexample
9217
9218 This produces individual object files with unoptimized assembler
9219 code, but the resulting binary @file{myprog} is optimized at
9220 @option{-O3}. If, instead, the final binary is generated with
9221 @option{-fno-lto}, then @file{myprog} is not optimized.
9222
9223 When producing the final binary, GCC only
9224 applies link-time optimizations to those files that contain bytecode.
9225 Therefore, you can mix and match object files and libraries with
9226 GIMPLE bytecodes and final object code. GCC automatically selects
9227 which files to optimize in LTO mode and which files to link without
9228 further processing.
9229
9230 There are some code generation flags preserved by GCC when
9231 generating bytecodes, as they need to be used during the final link
9232 stage. Generally options specified at link time override those
9233 specified at compile time.
9234
9235 If you do not specify an optimization level option @option{-O} at
9236 link time, then GCC uses the highest optimization level
9237 used when compiling the object files.
9238
9239 Currently, the following options and their settings are taken from
9240 the first object file that explicitly specifies them:
9241 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9242 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9243 and all the @option{-m} target flags.
9244
9245 Certain ABI-changing flags are required to match in all compilation units,
9246 and trying to override this at link time with a conflicting value
9247 is ignored. This includes options such as @option{-freg-struct-return}
9248 and @option{-fpcc-struct-return}.
9249
9250 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9251 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9252 are passed through to the link stage and merged conservatively for
9253 conflicting translation units. Specifically
9254 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9255 precedence; and for example @option{-ffp-contract=off} takes precedence
9256 over @option{-ffp-contract=fast}. You can override them at link time.
9257
9258 If LTO encounters objects with C linkage declared with incompatible
9259 types in separate translation units to be linked together (undefined
9260 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9261 issued. The behavior is still undefined at run time. Similar
9262 diagnostics may be raised for other languages.
9263
9264 Another feature of LTO is that it is possible to apply interprocedural
9265 optimizations on files written in different languages:
9266
9267 @smallexample
9268 gcc -c -flto foo.c
9269 g++ -c -flto bar.cc
9270 gfortran -c -flto baz.f90
9271 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9272 @end smallexample
9273
9274 Notice that the final link is done with @command{g++} to get the C++
9275 runtime libraries and @option{-lgfortran} is added to get the Fortran
9276 runtime libraries. In general, when mixing languages in LTO mode, you
9277 should use the same link command options as when mixing languages in a
9278 regular (non-LTO) compilation.
9279
9280 If object files containing GIMPLE bytecode are stored in a library archive, say
9281 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9282 are using a linker with plugin support. To create static libraries suitable
9283 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9284 and @command{ranlib};
9285 to show the symbols of object files with GIMPLE bytecode, use
9286 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9287 and @command{nm} have been compiled with plugin support. At link time, use the the
9288 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9289 the LTO optimization process:
9290
9291 @smallexample
9292 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9293 @end smallexample
9294
9295 With the linker plugin enabled, the linker extracts the needed
9296 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9297 to make them part of the aggregated GIMPLE image to be optimized.
9298
9299 If you are not using a linker with plugin support and/or do not
9300 enable the linker plugin, then the objects inside @file{libfoo.a}
9301 are extracted and linked as usual, but they do not participate
9302 in the LTO optimization process. In order to make a static library suitable
9303 for both LTO optimization and usual linkage, compile its object files with
9304 @option{-flto} @option{-ffat-lto-objects}.
9305
9306 Link-time optimizations do not require the presence of the whole program to
9307 operate. If the program does not require any symbols to be exported, it is
9308 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9309 the interprocedural optimizers to use more aggressive assumptions which may
9310 lead to improved optimization opportunities.
9311 Use of @option{-fwhole-program} is not needed when linker plugin is
9312 active (see @option{-fuse-linker-plugin}).
9313
9314 The current implementation of LTO makes no
9315 attempt to generate bytecode that is portable between different
9316 types of hosts. The bytecode files are versioned and there is a
9317 strict version check, so bytecode files generated in one version of
9318 GCC do not work with an older or newer version of GCC.
9319
9320 Link-time optimization does not work well with generation of debugging
9321 information. Combining @option{-flto} with
9322 @option{-g} is currently experimental and expected to produce unexpected
9323 results.
9324
9325 If you specify the optional @var{n}, the optimization and code
9326 generation done at link time is executed in parallel using @var{n}
9327 parallel jobs by utilizing an installed @command{make} program. The
9328 environment variable @env{MAKE} may be used to override the program
9329 used. The default value for @var{n} is 1.
9330
9331 You can also specify @option{-flto=jobserver} to use GNU make's
9332 job server mode to determine the number of parallel jobs. This
9333 is useful when the Makefile calling GCC is already executing in parallel.
9334 You must prepend a @samp{+} to the command recipe in the parent Makefile
9335 for this to work. This option likely only works if @env{MAKE} is
9336 GNU make.
9337
9338 @item -flto-partition=@var{alg}
9339 @opindex flto-partition
9340 Specify the partitioning algorithm used by the link-time optimizer.
9341 The value is either @samp{1to1} to specify a partitioning mirroring
9342 the original source files or @samp{balanced} to specify partitioning
9343 into equally sized chunks (whenever possible) or @samp{max} to create
9344 new partition for every symbol where possible. Specifying @samp{none}
9345 as an algorithm disables partitioning and streaming completely.
9346 The default value is @samp{balanced}. While @samp{1to1} can be used
9347 as an workaround for various code ordering issues, the @samp{max}
9348 partitioning is intended for internal testing only.
9349 The value @samp{one} specifies that exactly one partition should be
9350 used while the value @samp{none} bypasses partitioning and executes
9351 the link-time optimization step directly from the WPA phase.
9352
9353 @item -flto-odr-type-merging
9354 @opindex flto-odr-type-merging
9355 Enable streaming of mangled types names of C++ types and their unification
9356 at link time. This increases size of LTO object files, but enables
9357 diagnostics about One Definition Rule violations.
9358
9359 @item -flto-compression-level=@var{n}
9360 @opindex flto-compression-level
9361 This option specifies the level of compression used for intermediate
9362 language written to LTO object files, and is only meaningful in
9363 conjunction with LTO mode (@option{-flto}). Valid
9364 values are 0 (no compression) to 9 (maximum compression). Values
9365 outside this range are clamped to either 0 or 9. If the option is not
9366 given, a default balanced compression setting is used.
9367
9368 @item -fuse-linker-plugin
9369 @opindex fuse-linker-plugin
9370 Enables the use of a linker plugin during link-time optimization. This
9371 option relies on plugin support in the linker, which is available in gold
9372 or in GNU ld 2.21 or newer.
9373
9374 This option enables the extraction of object files with GIMPLE bytecode out
9375 of library archives. This improves the quality of optimization by exposing
9376 more code to the link-time optimizer. This information specifies what
9377 symbols can be accessed externally (by non-LTO object or during dynamic
9378 linking). Resulting code quality improvements on binaries (and shared
9379 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9380 See @option{-flto} for a description of the effect of this flag and how to
9381 use it.
9382
9383 This option is enabled by default when LTO support in GCC is enabled
9384 and GCC was configured for use with
9385 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9386
9387 @item -ffat-lto-objects
9388 @opindex ffat-lto-objects
9389 Fat LTO objects are object files that contain both the intermediate language
9390 and the object code. This makes them usable for both LTO linking and normal
9391 linking. This option is effective only when compiling with @option{-flto}
9392 and is ignored at link time.
9393
9394 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9395 requires the complete toolchain to be aware of LTO. It requires a linker with
9396 linker plugin support for basic functionality. Additionally,
9397 @command{nm}, @command{ar} and @command{ranlib}
9398 need to support linker plugins to allow a full-featured build environment
9399 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9400 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9401 to these tools. With non fat LTO makefiles need to be modified to use them.
9402
9403 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9404 support.
9405
9406 @item -fcompare-elim
9407 @opindex fcompare-elim
9408 After register allocation and post-register allocation instruction splitting,
9409 identify arithmetic instructions that compute processor flags similar to a
9410 comparison operation based on that arithmetic. If possible, eliminate the
9411 explicit comparison operation.
9412
9413 This pass only applies to certain targets that cannot explicitly represent
9414 the comparison operation before register allocation is complete.
9415
9416 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9417
9418 @item -fcprop-registers
9419 @opindex fcprop-registers
9420 After register allocation and post-register allocation instruction splitting,
9421 perform a copy-propagation pass to try to reduce scheduling dependencies
9422 and occasionally eliminate the copy.
9423
9424 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9425
9426 @item -fprofile-correction
9427 @opindex fprofile-correction
9428 Profiles collected using an instrumented binary for multi-threaded programs may
9429 be inconsistent due to missed counter updates. When this option is specified,
9430 GCC uses heuristics to correct or smooth out such inconsistencies. By
9431 default, GCC emits an error message when an inconsistent profile is detected.
9432
9433 @item -fprofile-use
9434 @itemx -fprofile-use=@var{path}
9435 @opindex fprofile-use
9436 Enable profile feedback-directed optimizations,
9437 and the following optimizations
9438 which are generally profitable only with profile feedback available:
9439 @option{-fbranch-probabilities}, @option{-fvpt},
9440 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9441 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9442
9443 Before you can use this option, you must first generate profiling information.
9444 @xref{Instrumentation Options}, for information about the
9445 @option{-fprofile-generate} option.
9446
9447 By default, GCC emits an error message if the feedback profiles do not
9448 match the source code. This error can be turned into a warning by using
9449 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9450 code.
9451
9452 If @var{path} is specified, GCC looks at the @var{path} to find
9453 the profile feedback data files. See @option{-fprofile-dir}.
9454
9455 @item -fauto-profile
9456 @itemx -fauto-profile=@var{path}
9457 @opindex fauto-profile
9458 Enable sampling-based feedback-directed optimizations,
9459 and the following optimizations
9460 which are generally profitable only with profile feedback available:
9461 @option{-fbranch-probabilities}, @option{-fvpt},
9462 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9463 @option{-ftree-vectorize},
9464 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9465 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9466 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9467
9468 @var{path} is the name of a file containing AutoFDO profile information.
9469 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9470
9471 Producing an AutoFDO profile data file requires running your program
9472 with the @command{perf} utility on a supported GNU/Linux target system.
9473 For more information, see @uref{https://perf.wiki.kernel.org/}.
9474
9475 E.g.
9476 @smallexample
9477 perf record -e br_inst_retired:near_taken -b -o perf.data \
9478 -- your_program
9479 @end smallexample
9480
9481 Then use the @command{create_gcov} tool to convert the raw profile data
9482 to a format that can be used by GCC.@ You must also supply the
9483 unstripped binary for your program to this tool.
9484 See @uref{https://github.com/google/autofdo}.
9485
9486 E.g.
9487 @smallexample
9488 create_gcov --binary=your_program.unstripped --profile=perf.data \
9489 --gcov=profile.afdo
9490 @end smallexample
9491 @end table
9492
9493 The following options control compiler behavior regarding floating-point
9494 arithmetic. These options trade off between speed and
9495 correctness. All must be specifically enabled.
9496
9497 @table @gcctabopt
9498 @item -ffloat-store
9499 @opindex ffloat-store
9500 Do not store floating-point variables in registers, and inhibit other
9501 options that might change whether a floating-point value is taken from a
9502 register or memory.
9503
9504 @cindex floating-point precision
9505 This option prevents undesirable excess precision on machines such as
9506 the 68000 where the floating registers (of the 68881) keep more
9507 precision than a @code{double} is supposed to have. Similarly for the
9508 x86 architecture. For most programs, the excess precision does only
9509 good, but a few programs rely on the precise definition of IEEE floating
9510 point. Use @option{-ffloat-store} for such programs, after modifying
9511 them to store all pertinent intermediate computations into variables.
9512
9513 @item -fexcess-precision=@var{style}
9514 @opindex fexcess-precision
9515 This option allows further control over excess precision on machines
9516 where floating-point operations occur in a format with more precision or
9517 range than the IEEE standard and interchange floating-point types. By
9518 default, @option{-fexcess-precision=fast} is in effect; this means that
9519 operations may be carried out in a wider precision than the types specified
9520 in the source if that would result in faster code, and it is unpredictable
9521 when rounding to the types specified in the source code takes place.
9522 When compiling C, if @option{-fexcess-precision=standard} is specified then
9523 excess precision follows the rules specified in ISO C99; in particular,
9524 both casts and assignments cause values to be rounded to their
9525 semantic types (whereas @option{-ffloat-store} only affects
9526 assignments). This option is enabled by default for C if a strict
9527 conformance option such as @option{-std=c99} is used.
9528 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
9529 regardless of whether a strict conformance option is used.
9530
9531 @opindex mfpmath
9532 @option{-fexcess-precision=standard} is not implemented for languages
9533 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
9534 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9535 semantics apply without excess precision, and in the latter, rounding
9536 is unpredictable.
9537
9538 @item -ffast-math
9539 @opindex ffast-math
9540 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9541 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9542 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
9543 @option{-fexcess-precision=fast}.
9544
9545 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9546
9547 This option is not turned on by any @option{-O} option besides
9548 @option{-Ofast} since it can result in incorrect output for programs
9549 that depend on an exact implementation of IEEE or ISO rules/specifications
9550 for math functions. It may, however, yield faster code for programs
9551 that do not require the guarantees of these specifications.
9552
9553 @item -fno-math-errno
9554 @opindex fno-math-errno
9555 Do not set @code{errno} after calling math functions that are executed
9556 with a single instruction, e.g., @code{sqrt}. A program that relies on
9557 IEEE exceptions for math error handling may want to use this flag
9558 for speed while maintaining IEEE arithmetic compatibility.
9559
9560 This option is not turned on by any @option{-O} option since
9561 it can result in incorrect output for programs that depend on
9562 an exact implementation of IEEE or ISO rules/specifications for
9563 math functions. It may, however, yield faster code for programs
9564 that do not require the guarantees of these specifications.
9565
9566 The default is @option{-fmath-errno}.
9567
9568 On Darwin systems, the math library never sets @code{errno}. There is
9569 therefore no reason for the compiler to consider the possibility that
9570 it might, and @option{-fno-math-errno} is the default.
9571
9572 @item -funsafe-math-optimizations
9573 @opindex funsafe-math-optimizations
9574
9575 Allow optimizations for floating-point arithmetic that (a) assume
9576 that arguments and results are valid and (b) may violate IEEE or
9577 ANSI standards. When used at link time, it may include libraries
9578 or startup files that change the default FPU control word or other
9579 similar optimizations.
9580
9581 This option is not turned on by any @option{-O} option since
9582 it can result in incorrect output for programs that depend on
9583 an exact implementation of IEEE or ISO rules/specifications for
9584 math functions. It may, however, yield faster code for programs
9585 that do not require the guarantees of these specifications.
9586 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9587 @option{-fassociative-math} and @option{-freciprocal-math}.
9588
9589 The default is @option{-fno-unsafe-math-optimizations}.
9590
9591 @item -fassociative-math
9592 @opindex fassociative-math
9593
9594 Allow re-association of operands in series of floating-point operations.
9595 This violates the ISO C and C++ language standard by possibly changing
9596 computation result. NOTE: re-ordering may change the sign of zero as
9597 well as ignore NaNs and inhibit or create underflow or overflow (and
9598 thus cannot be used on code that relies on rounding behavior like
9599 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9600 and thus may not be used when ordered comparisons are required.
9601 This option requires that both @option{-fno-signed-zeros} and
9602 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9603 much sense with @option{-frounding-math}. For Fortran the option
9604 is automatically enabled when both @option{-fno-signed-zeros} and
9605 @option{-fno-trapping-math} are in effect.
9606
9607 The default is @option{-fno-associative-math}.
9608
9609 @item -freciprocal-math
9610 @opindex freciprocal-math
9611
9612 Allow the reciprocal of a value to be used instead of dividing by
9613 the value if this enables optimizations. For example @code{x / y}
9614 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9615 is subject to common subexpression elimination. Note that this loses
9616 precision and increases the number of flops operating on the value.
9617
9618 The default is @option{-fno-reciprocal-math}.
9619
9620 @item -ffinite-math-only
9621 @opindex ffinite-math-only
9622 Allow optimizations for floating-point arithmetic that assume
9623 that arguments and results are not NaNs or +-Infs.
9624
9625 This option is not turned on by any @option{-O} option since
9626 it can result in incorrect output for programs that depend on
9627 an exact implementation of IEEE or ISO rules/specifications for
9628 math functions. It may, however, yield faster code for programs
9629 that do not require the guarantees of these specifications.
9630
9631 The default is @option{-fno-finite-math-only}.
9632
9633 @item -fno-signed-zeros
9634 @opindex fno-signed-zeros
9635 Allow optimizations for floating-point arithmetic that ignore the
9636 signedness of zero. IEEE arithmetic specifies the behavior of
9637 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9638 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9639 This option implies that the sign of a zero result isn't significant.
9640
9641 The default is @option{-fsigned-zeros}.
9642
9643 @item -fno-trapping-math
9644 @opindex fno-trapping-math
9645 Compile code assuming that floating-point operations cannot generate
9646 user-visible traps. These traps include division by zero, overflow,
9647 underflow, inexact result and invalid operation. This option requires
9648 that @option{-fno-signaling-nans} be in effect. Setting this option may
9649 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9650
9651 This option should never be turned on by any @option{-O} option since
9652 it can result in incorrect output for programs that depend on
9653 an exact implementation of IEEE or ISO rules/specifications for
9654 math functions.
9655
9656 The default is @option{-ftrapping-math}.
9657
9658 @item -frounding-math
9659 @opindex frounding-math
9660 Disable transformations and optimizations that assume default floating-point
9661 rounding behavior. This is round-to-zero for all floating point
9662 to integer conversions, and round-to-nearest for all other arithmetic
9663 truncations. This option should be specified for programs that change
9664 the FP rounding mode dynamically, or that may be executed with a
9665 non-default rounding mode. This option disables constant folding of
9666 floating-point expressions at compile time (which may be affected by
9667 rounding mode) and arithmetic transformations that are unsafe in the
9668 presence of sign-dependent rounding modes.
9669
9670 The default is @option{-fno-rounding-math}.
9671
9672 This option is experimental and does not currently guarantee to
9673 disable all GCC optimizations that are affected by rounding mode.
9674 Future versions of GCC may provide finer control of this setting
9675 using C99's @code{FENV_ACCESS} pragma. This command-line option
9676 will be used to specify the default state for @code{FENV_ACCESS}.
9677
9678 @item -fsignaling-nans
9679 @opindex fsignaling-nans
9680 Compile code assuming that IEEE signaling NaNs may generate user-visible
9681 traps during floating-point operations. Setting this option disables
9682 optimizations that may change the number of exceptions visible with
9683 signaling NaNs. This option implies @option{-ftrapping-math}.
9684
9685 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9686 be defined.
9687
9688 The default is @option{-fno-signaling-nans}.
9689
9690 This option is experimental and does not currently guarantee to
9691 disable all GCC optimizations that affect signaling NaN behavior.
9692
9693 @item -fno-fp-int-builtin-inexact
9694 @opindex fno-fp-int-builtin-inexact
9695 Do not allow the built-in functions @code{ceil}, @code{floor},
9696 @code{round} and @code{trunc}, and their @code{float} and @code{long
9697 double} variants, to generate code that raises the ``inexact''
9698 floating-point exception for noninteger arguments. ISO C99 and C11
9699 allow these functions to raise the ``inexact'' exception, but ISO/IEC
9700 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
9701 functions to do so.
9702
9703 The default is @option{-ffp-int-builtin-inexact}, allowing the
9704 exception to be raised. This option does nothing unless
9705 @option{-ftrapping-math} is in effect.
9706
9707 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
9708 generate a call to a library function then the ``inexact'' exception
9709 may be raised if the library implementation does not follow TS 18661.
9710
9711 @item -fsingle-precision-constant
9712 @opindex fsingle-precision-constant
9713 Treat floating-point constants as single precision instead of
9714 implicitly converting them to double-precision constants.
9715
9716 @item -fcx-limited-range
9717 @opindex fcx-limited-range
9718 When enabled, this option states that a range reduction step is not
9719 needed when performing complex division. Also, there is no checking
9720 whether the result of a complex multiplication or division is @code{NaN
9721 + I*NaN}, with an attempt to rescue the situation in that case. The
9722 default is @option{-fno-cx-limited-range}, but is enabled by
9723 @option{-ffast-math}.
9724
9725 This option controls the default setting of the ISO C99
9726 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9727 all languages.
9728
9729 @item -fcx-fortran-rules
9730 @opindex fcx-fortran-rules
9731 Complex multiplication and division follow Fortran rules. Range
9732 reduction is done as part of complex division, but there is no checking
9733 whether the result of a complex multiplication or division is @code{NaN
9734 + I*NaN}, with an attempt to rescue the situation in that case.
9735
9736 The default is @option{-fno-cx-fortran-rules}.
9737
9738 @end table
9739
9740 The following options control optimizations that may improve
9741 performance, but are not enabled by any @option{-O} options. This
9742 section includes experimental options that may produce broken code.
9743
9744 @table @gcctabopt
9745 @item -fbranch-probabilities
9746 @opindex fbranch-probabilities
9747 After running a program compiled with @option{-fprofile-arcs}
9748 (@pxref{Instrumentation Options}),
9749 you can compile it a second time using
9750 @option{-fbranch-probabilities}, to improve optimizations based on
9751 the number of times each branch was taken. When a program
9752 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9753 counts to a file called @file{@var{sourcename}.gcda} for each source
9754 file. The information in this data file is very dependent on the
9755 structure of the generated code, so you must use the same source code
9756 and the same optimization options for both compilations.
9757
9758 With @option{-fbranch-probabilities}, GCC puts a
9759 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9760 These can be used to improve optimization. Currently, they are only
9761 used in one place: in @file{reorg.c}, instead of guessing which path a
9762 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9763 exactly determine which path is taken more often.
9764
9765 @item -fprofile-values
9766 @opindex fprofile-values
9767 If combined with @option{-fprofile-arcs}, it adds code so that some
9768 data about values of expressions in the program is gathered.
9769
9770 With @option{-fbranch-probabilities}, it reads back the data gathered
9771 from profiling values of expressions for usage in optimizations.
9772
9773 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9774
9775 @item -fprofile-reorder-functions
9776 @opindex fprofile-reorder-functions
9777 Function reordering based on profile instrumentation collects
9778 first time of execution of a function and orders these functions
9779 in ascending order.
9780
9781 Enabled with @option{-fprofile-use}.
9782
9783 @item -fvpt
9784 @opindex fvpt
9785 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9786 to add code to gather information about values of expressions.
9787
9788 With @option{-fbranch-probabilities}, it reads back the data gathered
9789 and actually performs the optimizations based on them.
9790 Currently the optimizations include specialization of division operations
9791 using the knowledge about the value of the denominator.
9792
9793 @item -frename-registers
9794 @opindex frename-registers
9795 Attempt to avoid false dependencies in scheduled code by making use
9796 of registers left over after register allocation. This optimization
9797 most benefits processors with lots of registers. Depending on the
9798 debug information format adopted by the target, however, it can
9799 make debugging impossible, since variables no longer stay in
9800 a ``home register''.
9801
9802 Enabled by default with @option{-funroll-loops}.
9803
9804 @item -fschedule-fusion
9805 @opindex fschedule-fusion
9806 Performs a target dependent pass over the instruction stream to schedule
9807 instructions of same type together because target machine can execute them
9808 more efficiently if they are adjacent to each other in the instruction flow.
9809
9810 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9811
9812 @item -ftracer
9813 @opindex ftracer
9814 Perform tail duplication to enlarge superblock size. This transformation
9815 simplifies the control flow of the function allowing other optimizations to do
9816 a better job.
9817
9818 Enabled with @option{-fprofile-use}.
9819
9820 @item -funroll-loops
9821 @opindex funroll-loops
9822 Unroll loops whose number of iterations can be determined at compile time or
9823 upon entry to the loop. @option{-funroll-loops} implies
9824 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9825 It also turns on complete loop peeling (i.e.@: complete removal of loops with
9826 a small constant number of iterations). This option makes code larger, and may
9827 or may not make it run faster.
9828
9829 Enabled with @option{-fprofile-use}.
9830
9831 @item -funroll-all-loops
9832 @opindex funroll-all-loops
9833 Unroll all loops, even if their number of iterations is uncertain when
9834 the loop is entered. This usually makes programs run more slowly.
9835 @option{-funroll-all-loops} implies the same options as
9836 @option{-funroll-loops}.
9837
9838 @item -fpeel-loops
9839 @opindex fpeel-loops
9840 Peels loops for which there is enough information that they do not
9841 roll much (from profile feedback or static analysis). It also turns on
9842 complete loop peeling (i.e.@: complete removal of loops with small constant
9843 number of iterations).
9844
9845 Enabled with @option{-O3} and/or @option{-fprofile-use}.
9846
9847 @item -fmove-loop-invariants
9848 @opindex fmove-loop-invariants
9849 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
9850 at level @option{-O1}
9851
9852 @item -fsplit-loops
9853 @opindex fsplit-loops
9854 Split a loop into two if it contains a condition that's always true
9855 for one side of the iteration space and false for the other.
9856
9857 @item -funswitch-loops
9858 @opindex funswitch-loops
9859 Move branches with loop invariant conditions out of the loop, with duplicates
9860 of the loop on both branches (modified according to result of the condition).
9861
9862 @item -floop-unroll-and-jam
9863 @opindex floop-unroll-and-jam
9864 Apply unroll and jam transformations on feasible loops. In a loop
9865 nest this unrolls the outer loop by some factor and fuses the resulting
9866 multiple inner loops.
9867
9868 @item -ffunction-sections
9869 @itemx -fdata-sections
9870 @opindex ffunction-sections
9871 @opindex fdata-sections
9872 Place each function or data item into its own section in the output
9873 file if the target supports arbitrary sections. The name of the
9874 function or the name of the data item determines the section's name
9875 in the output file.
9876
9877 Use these options on systems where the linker can perform optimizations to
9878 improve locality of reference in the instruction space. Most systems using the
9879 ELF object format have linkers with such optimizations. On AIX, the linker
9880 rearranges sections (CSECTs) based on the call graph. The performance impact
9881 varies.
9882
9883 Together with a linker garbage collection (linker @option{--gc-sections}
9884 option) these options may lead to smaller statically-linked executables (after
9885 stripping).
9886
9887 On ELF/DWARF systems these options do not degenerate the quality of the debug
9888 information. There could be issues with other object files/debug info formats.
9889
9890 Only use these options when there are significant benefits from doing so. When
9891 you specify these options, the assembler and linker create larger object and
9892 executable files and are also slower. These options affect code generation.
9893 They prevent optimizations by the compiler and assembler using relative
9894 locations inside a translation unit since the locations are unknown until
9895 link time. An example of such an optimization is relaxing calls to short call
9896 instructions.
9897
9898 @item -fbranch-target-load-optimize
9899 @opindex fbranch-target-load-optimize
9900 Perform branch target register load optimization before prologue / epilogue
9901 threading.
9902 The use of target registers can typically be exposed only during reload,
9903 thus hoisting loads out of loops and doing inter-block scheduling needs
9904 a separate optimization pass.
9905
9906 @item -fbranch-target-load-optimize2
9907 @opindex fbranch-target-load-optimize2
9908 Perform branch target register load optimization after prologue / epilogue
9909 threading.
9910
9911 @item -fbtr-bb-exclusive
9912 @opindex fbtr-bb-exclusive
9913 When performing branch target register load optimization, don't reuse
9914 branch target registers within any basic block.
9915
9916 @item -fstdarg-opt
9917 @opindex fstdarg-opt
9918 Optimize the prologue of variadic argument functions with respect to usage of
9919 those arguments.
9920
9921 @item -fsection-anchors
9922 @opindex fsection-anchors
9923 Try to reduce the number of symbolic address calculations by using
9924 shared ``anchor'' symbols to address nearby objects. This transformation
9925 can help to reduce the number of GOT entries and GOT accesses on some
9926 targets.
9927
9928 For example, the implementation of the following function @code{foo}:
9929
9930 @smallexample
9931 static int a, b, c;
9932 int foo (void) @{ return a + b + c; @}
9933 @end smallexample
9934
9935 @noindent
9936 usually calculates the addresses of all three variables, but if you
9937 compile it with @option{-fsection-anchors}, it accesses the variables
9938 from a common anchor point instead. The effect is similar to the
9939 following pseudocode (which isn't valid C):
9940
9941 @smallexample
9942 int foo (void)
9943 @{
9944 register int *xr = &x;
9945 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
9946 @}
9947 @end smallexample
9948
9949 Not all targets support this option.
9950
9951 @item --param @var{name}=@var{value}
9952 @opindex param
9953 In some places, GCC uses various constants to control the amount of
9954 optimization that is done. For example, GCC does not inline functions
9955 that contain more than a certain number of instructions. You can
9956 control some of these constants on the command line using the
9957 @option{--param} option.
9958
9959 The names of specific parameters, and the meaning of the values, are
9960 tied to the internals of the compiler, and are subject to change
9961 without notice in future releases.
9962
9963 In each case, the @var{value} is an integer. The allowable choices for
9964 @var{name} are:
9965
9966 @table @gcctabopt
9967 @item predictable-branch-outcome
9968 When branch is predicted to be taken with probability lower than this threshold
9969 (in percent), then it is considered well predictable. The default is 10.
9970
9971 @item max-rtl-if-conversion-insns
9972 RTL if-conversion tries to remove conditional branches around a block and
9973 replace them with conditionally executed instructions. This parameter
9974 gives the maximum number of instructions in a block which should be
9975 considered for if-conversion. The default is 10, though the compiler will
9976 also use other heuristics to decide whether if-conversion is likely to be
9977 profitable.
9978
9979 @item max-rtl-if-conversion-predictable-cost
9980 @item max-rtl-if-conversion-unpredictable-cost
9981 RTL if-conversion will try to remove conditional branches around a block
9982 and replace them with conditionally executed instructions. These parameters
9983 give the maximum permissible cost for the sequence that would be generated
9984 by if-conversion depending on whether the branch is statically determined
9985 to be predictable or not. The units for this parameter are the same as
9986 those for the GCC internal seq_cost metric. The compiler will try to
9987 provide a reasonable default for this parameter using the BRANCH_COST
9988 target macro.
9989
9990 @item max-crossjump-edges
9991 The maximum number of incoming edges to consider for cross-jumping.
9992 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
9993 the number of edges incoming to each block. Increasing values mean
9994 more aggressive optimization, making the compilation time increase with
9995 probably small improvement in executable size.
9996
9997 @item min-crossjump-insns
9998 The minimum number of instructions that must be matched at the end
9999 of two blocks before cross-jumping is performed on them. This
10000 value is ignored in the case where all instructions in the block being
10001 cross-jumped from are matched. The default value is 5.
10002
10003 @item max-grow-copy-bb-insns
10004 The maximum code size expansion factor when copying basic blocks
10005 instead of jumping. The expansion is relative to a jump instruction.
10006 The default value is 8.
10007
10008 @item max-goto-duplication-insns
10009 The maximum number of instructions to duplicate to a block that jumps
10010 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10011 passes, GCC factors computed gotos early in the compilation process,
10012 and unfactors them as late as possible. Only computed jumps at the
10013 end of a basic blocks with no more than max-goto-duplication-insns are
10014 unfactored. The default value is 8.
10015
10016 @item max-delay-slot-insn-search
10017 The maximum number of instructions to consider when looking for an
10018 instruction to fill a delay slot. If more than this arbitrary number of
10019 instructions are searched, the time savings from filling the delay slot
10020 are minimal, so stop searching. Increasing values mean more
10021 aggressive optimization, making the compilation time increase with probably
10022 small improvement in execution time.
10023
10024 @item max-delay-slot-live-search
10025 When trying to fill delay slots, the maximum number of instructions to
10026 consider when searching for a block with valid live register
10027 information. Increasing this arbitrarily chosen value means more
10028 aggressive optimization, increasing the compilation time. This parameter
10029 should be removed when the delay slot code is rewritten to maintain the
10030 control-flow graph.
10031
10032 @item max-gcse-memory
10033 The approximate maximum amount of memory that can be allocated in
10034 order to perform the global common subexpression elimination
10035 optimization. If more memory than specified is required, the
10036 optimization is not done.
10037
10038 @item max-gcse-insertion-ratio
10039 If the ratio of expression insertions to deletions is larger than this value
10040 for any expression, then RTL PRE inserts or removes the expression and thus
10041 leaves partially redundant computations in the instruction stream. The default value is 20.
10042
10043 @item max-pending-list-length
10044 The maximum number of pending dependencies scheduling allows
10045 before flushing the current state and starting over. Large functions
10046 with few branches or calls can create excessively large lists which
10047 needlessly consume memory and resources.
10048
10049 @item max-modulo-backtrack-attempts
10050 The maximum number of backtrack attempts the scheduler should make
10051 when modulo scheduling a loop. Larger values can exponentially increase
10052 compilation time.
10053
10054 @item max-inline-insns-single
10055 Several parameters control the tree inliner used in GCC@.
10056 This number sets the maximum number of instructions (counted in GCC's
10057 internal representation) in a single function that the tree inliner
10058 considers for inlining. This only affects functions declared
10059 inline and methods implemented in a class declaration (C++).
10060 The default value is 400.
10061
10062 @item max-inline-insns-auto
10063 When you use @option{-finline-functions} (included in @option{-O3}),
10064 a lot of functions that would otherwise not be considered for inlining
10065 by the compiler are investigated. To those functions, a different
10066 (more restrictive) limit compared to functions declared inline can
10067 be applied.
10068 The default value is 40.
10069
10070 @item inline-min-speedup
10071 When estimated performance improvement of caller + callee runtime exceeds this
10072 threshold (in percent), the function can be inlined regardless of the limit on
10073 @option{--param max-inline-insns-single} and @option{--param
10074 max-inline-insns-auto}.
10075
10076 @item large-function-insns
10077 The limit specifying really large functions. For functions larger than this
10078 limit after inlining, inlining is constrained by
10079 @option{--param large-function-growth}. This parameter is useful primarily
10080 to avoid extreme compilation time caused by non-linear algorithms used by the
10081 back end.
10082 The default value is 2700.
10083
10084 @item large-function-growth
10085 Specifies maximal growth of large function caused by inlining in percents.
10086 The default value is 100 which limits large function growth to 2.0 times
10087 the original size.
10088
10089 @item large-unit-insns
10090 The limit specifying large translation unit. Growth caused by inlining of
10091 units larger than this limit is limited by @option{--param inline-unit-growth}.
10092 For small units this might be too tight.
10093 For example, consider a unit consisting of function A
10094 that is inline and B that just calls A three times. If B is small relative to
10095 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10096 large units consisting of small inlineable functions, however, the overall unit
10097 growth limit is needed to avoid exponential explosion of code size. Thus for
10098 smaller units, the size is increased to @option{--param large-unit-insns}
10099 before applying @option{--param inline-unit-growth}. The default is 10000.
10100
10101 @item inline-unit-growth
10102 Specifies maximal overall growth of the compilation unit caused by inlining.
10103 The default value is 20 which limits unit growth to 1.2 times the original
10104 size. Cold functions (either marked cold via an attribute or by profile
10105 feedback) are not accounted into the unit size.
10106
10107 @item ipcp-unit-growth
10108 Specifies maximal overall growth of the compilation unit caused by
10109 interprocedural constant propagation. The default value is 10 which limits
10110 unit growth to 1.1 times the original size.
10111
10112 @item large-stack-frame
10113 The limit specifying large stack frames. While inlining the algorithm is trying
10114 to not grow past this limit too much. The default value is 256 bytes.
10115
10116 @item large-stack-frame-growth
10117 Specifies maximal growth of large stack frames caused by inlining in percents.
10118 The default value is 1000 which limits large stack frame growth to 11 times
10119 the original size.
10120
10121 @item max-inline-insns-recursive
10122 @itemx max-inline-insns-recursive-auto
10123 Specifies the maximum number of instructions an out-of-line copy of a
10124 self-recursive inline
10125 function can grow into by performing recursive inlining.
10126
10127 @option{--param max-inline-insns-recursive} applies to functions
10128 declared inline.
10129 For functions not declared inline, recursive inlining
10130 happens only when @option{-finline-functions} (included in @option{-O3}) is
10131 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10132 default value is 450.
10133
10134 @item max-inline-recursive-depth
10135 @itemx max-inline-recursive-depth-auto
10136 Specifies the maximum recursion depth used for recursive inlining.
10137
10138 @option{--param max-inline-recursive-depth} applies to functions
10139 declared inline. For functions not declared inline, recursive inlining
10140 happens only when @option{-finline-functions} (included in @option{-O3}) is
10141 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10142 default value is 8.
10143
10144 @item min-inline-recursive-probability
10145 Recursive inlining is profitable only for function having deep recursion
10146 in average and can hurt for function having little recursion depth by
10147 increasing the prologue size or complexity of function body to other
10148 optimizers.
10149
10150 When profile feedback is available (see @option{-fprofile-generate}) the actual
10151 recursion depth can be guessed from the probability that function recurses
10152 via a given call expression. This parameter limits inlining only to call
10153 expressions whose probability exceeds the given threshold (in percents).
10154 The default value is 10.
10155
10156 @item early-inlining-insns
10157 Specify growth that the early inliner can make. In effect it increases
10158 the amount of inlining for code having a large abstraction penalty.
10159 The default value is 14.
10160
10161 @item max-early-inliner-iterations
10162 Limit of iterations of the early inliner. This basically bounds
10163 the number of nested indirect calls the early inliner can resolve.
10164 Deeper chains are still handled by late inlining.
10165
10166 @item comdat-sharing-probability
10167 Probability (in percent) that C++ inline function with comdat visibility
10168 are shared across multiple compilation units. The default value is 20.
10169
10170 @item profile-func-internal-id
10171 A parameter to control whether to use function internal id in profile
10172 database lookup. If the value is 0, the compiler uses an id that
10173 is based on function assembler name and filename, which makes old profile
10174 data more tolerant to source changes such as function reordering etc.
10175 The default value is 0.
10176
10177 @item min-vect-loop-bound
10178 The minimum number of iterations under which loops are not vectorized
10179 when @option{-ftree-vectorize} is used. The number of iterations after
10180 vectorization needs to be greater than the value specified by this option
10181 to allow vectorization. The default value is 0.
10182
10183 @item gcse-cost-distance-ratio
10184 Scaling factor in calculation of maximum distance an expression
10185 can be moved by GCSE optimizations. This is currently supported only in the
10186 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10187 is with simple expressions, i.e., the expressions that have cost
10188 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10189 hoisting of simple expressions. The default value is 10.
10190
10191 @item gcse-unrestricted-cost
10192 Cost, roughly measured as the cost of a single typical machine
10193 instruction, at which GCSE optimizations do not constrain
10194 the distance an expression can travel. This is currently
10195 supported only in the code hoisting pass. The lesser the cost,
10196 the more aggressive code hoisting is. Specifying 0
10197 allows all expressions to travel unrestricted distances.
10198 The default value is 3.
10199
10200 @item max-hoist-depth
10201 The depth of search in the dominator tree for expressions to hoist.
10202 This is used to avoid quadratic behavior in hoisting algorithm.
10203 The value of 0 does not limit on the search, but may slow down compilation
10204 of huge functions. The default value is 30.
10205
10206 @item max-tail-merge-comparisons
10207 The maximum amount of similar bbs to compare a bb with. This is used to
10208 avoid quadratic behavior in tree tail merging. The default value is 10.
10209
10210 @item max-tail-merge-iterations
10211 The maximum amount of iterations of the pass over the function. This is used to
10212 limit compilation time in tree tail merging. The default value is 2.
10213
10214 @item store-merging-allow-unaligned
10215 Allow the store merging pass to introduce unaligned stores if it is legal to
10216 do so. The default value is 1.
10217
10218 @item max-stores-to-merge
10219 The maximum number of stores to attempt to merge into wider stores in the store
10220 merging pass. The minimum value is 2 and the default is 64.
10221
10222 @item max-unrolled-insns
10223 The maximum number of instructions that a loop may have to be unrolled.
10224 If a loop is unrolled, this parameter also determines how many times
10225 the loop code is unrolled.
10226
10227 @item max-average-unrolled-insns
10228 The maximum number of instructions biased by probabilities of their execution
10229 that a loop may have to be unrolled. If a loop is unrolled,
10230 this parameter also determines how many times the loop code is unrolled.
10231
10232 @item max-unroll-times
10233 The maximum number of unrollings of a single loop.
10234
10235 @item max-peeled-insns
10236 The maximum number of instructions that a loop may have to be peeled.
10237 If a loop is peeled, this parameter also determines how many times
10238 the loop code is peeled.
10239
10240 @item max-peel-times
10241 The maximum number of peelings of a single loop.
10242
10243 @item max-peel-branches
10244 The maximum number of branches on the hot path through the peeled sequence.
10245
10246 @item max-completely-peeled-insns
10247 The maximum number of insns of a completely peeled loop.
10248
10249 @item max-completely-peel-times
10250 The maximum number of iterations of a loop to be suitable for complete peeling.
10251
10252 @item max-completely-peel-loop-nest-depth
10253 The maximum depth of a loop nest suitable for complete peeling.
10254
10255 @item max-unswitch-insns
10256 The maximum number of insns of an unswitched loop.
10257
10258 @item max-unswitch-level
10259 The maximum number of branches unswitched in a single loop.
10260
10261 @item max-loop-headers-insns
10262 The maximum number of insns in loop header duplicated by the copy loop headers
10263 pass.
10264
10265 @item lim-expensive
10266 The minimum cost of an expensive expression in the loop invariant motion.
10267
10268 @item iv-consider-all-candidates-bound
10269 Bound on number of candidates for induction variables, below which
10270 all candidates are considered for each use in induction variable
10271 optimizations. If there are more candidates than this,
10272 only the most relevant ones are considered to avoid quadratic time complexity.
10273
10274 @item iv-max-considered-uses
10275 The induction variable optimizations give up on loops that contain more
10276 induction variable uses.
10277
10278 @item iv-always-prune-cand-set-bound
10279 If the number of candidates in the set is smaller than this value,
10280 always try to remove unnecessary ivs from the set
10281 when adding a new one.
10282
10283 @item avg-loop-niter
10284 Average number of iterations of a loop.
10285
10286 @item dse-max-object-size
10287 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
10288 Larger values may result in larger compilation times.
10289
10290 @item scev-max-expr-size
10291 Bound on size of expressions used in the scalar evolutions analyzer.
10292 Large expressions slow the analyzer.
10293
10294 @item scev-max-expr-complexity
10295 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10296 Complex expressions slow the analyzer.
10297
10298 @item max-tree-if-conversion-phi-args
10299 Maximum number of arguments in a PHI supported by TREE if conversion
10300 unless the loop is marked with simd pragma.
10301
10302 @item vect-max-version-for-alignment-checks
10303 The maximum number of run-time checks that can be performed when
10304 doing loop versioning for alignment in the vectorizer.
10305
10306 @item vect-max-version-for-alias-checks
10307 The maximum number of run-time checks that can be performed when
10308 doing loop versioning for alias in the vectorizer.
10309
10310 @item vect-max-peeling-for-alignment
10311 The maximum number of loop peels to enhance access alignment
10312 for vectorizer. Value -1 means no limit.
10313
10314 @item max-iterations-to-track
10315 The maximum number of iterations of a loop the brute-force algorithm
10316 for analysis of the number of iterations of the loop tries to evaluate.
10317
10318 @item hot-bb-count-ws-permille
10319 A basic block profile count is considered hot if it contributes to
10320 the given permillage (i.e. 0...1000) of the entire profiled execution.
10321
10322 @item hot-bb-frequency-fraction
10323 Select fraction of the entry block frequency of executions of basic block in
10324 function given basic block needs to have to be considered hot.
10325
10326 @item max-predicted-iterations
10327 The maximum number of loop iterations we predict statically. This is useful
10328 in cases where a function contains a single loop with known bound and
10329 another loop with unknown bound.
10330 The known number of iterations is predicted correctly, while
10331 the unknown number of iterations average to roughly 10. This means that the
10332 loop without bounds appears artificially cold relative to the other one.
10333
10334 @item builtin-expect-probability
10335 Control the probability of the expression having the specified value. This
10336 parameter takes a percentage (i.e. 0 ... 100) as input.
10337 The default probability of 90 is obtained empirically.
10338
10339 @item align-threshold
10340
10341 Select fraction of the maximal frequency of executions of a basic block in
10342 a function to align the basic block.
10343
10344 @item align-loop-iterations
10345
10346 A loop expected to iterate at least the selected number of iterations is
10347 aligned.
10348
10349 @item tracer-dynamic-coverage
10350 @itemx tracer-dynamic-coverage-feedback
10351
10352 This value is used to limit superblock formation once the given percentage of
10353 executed instructions is covered. This limits unnecessary code size
10354 expansion.
10355
10356 The @option{tracer-dynamic-coverage-feedback} parameter
10357 is used only when profile
10358 feedback is available. The real profiles (as opposed to statically estimated
10359 ones) are much less balanced allowing the threshold to be larger value.
10360
10361 @item tracer-max-code-growth
10362 Stop tail duplication once code growth has reached given percentage. This is
10363 a rather artificial limit, as most of the duplicates are eliminated later in
10364 cross jumping, so it may be set to much higher values than is the desired code
10365 growth.
10366
10367 @item tracer-min-branch-ratio
10368
10369 Stop reverse growth when the reverse probability of best edge is less than this
10370 threshold (in percent).
10371
10372 @item tracer-min-branch-probability
10373 @itemx tracer-min-branch-probability-feedback
10374
10375 Stop forward growth if the best edge has probability lower than this
10376 threshold.
10377
10378 Similarly to @option{tracer-dynamic-coverage} two parameters are
10379 provided. @option{tracer-min-branch-probability-feedback} is used for
10380 compilation with profile feedback and @option{tracer-min-branch-probability}
10381 compilation without. The value for compilation with profile feedback
10382 needs to be more conservative (higher) in order to make tracer
10383 effective.
10384
10385 @item stack-clash-protection-guard-size
10386 Specify the size of the operating system provided stack guard as
10387 2 raised to @var{num} bytes. The default value is 12 (4096 bytes).
10388 Acceptable values are between 12 and 30. Higher values may reduce the
10389 number of explicit probes, but a value larger than the operating system
10390 provided guard will leave code vulnerable to stack clash style attacks.
10391
10392 @item stack-clash-protection-probe-interval
10393 Stack clash protection involves probing stack space as it is allocated. This
10394 param controls the maximum distance between probes into the stack as 2 raised
10395 to @var{num} bytes. Acceptable values are between 10 and 16 and defaults to
10396 12. Higher values may reduce the number of explicit probes, but a value
10397 larger than the operating system provided guard will leave code vulnerable to
10398 stack clash style attacks.
10399
10400 @item max-cse-path-length
10401
10402 The maximum number of basic blocks on path that CSE considers.
10403 The default is 10.
10404
10405 @item max-cse-insns
10406 The maximum number of instructions CSE processes before flushing.
10407 The default is 1000.
10408
10409 @item ggc-min-expand
10410
10411 GCC uses a garbage collector to manage its own memory allocation. This
10412 parameter specifies the minimum percentage by which the garbage
10413 collector's heap should be allowed to expand between collections.
10414 Tuning this may improve compilation speed; it has no effect on code
10415 generation.
10416
10417 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10418 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10419 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10420 GCC is not able to calculate RAM on a particular platform, the lower
10421 bound of 30% is used. Setting this parameter and
10422 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10423 every opportunity. This is extremely slow, but can be useful for
10424 debugging.
10425
10426 @item ggc-min-heapsize
10427
10428 Minimum size of the garbage collector's heap before it begins bothering
10429 to collect garbage. The first collection occurs after the heap expands
10430 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10431 tuning this may improve compilation speed, and has no effect on code
10432 generation.
10433
10434 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10435 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10436 with a lower bound of 4096 (four megabytes) and an upper bound of
10437 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10438 particular platform, the lower bound is used. Setting this parameter
10439 very large effectively disables garbage collection. Setting this
10440 parameter and @option{ggc-min-expand} to zero causes a full collection
10441 to occur at every opportunity.
10442
10443 @item max-reload-search-insns
10444 The maximum number of instruction reload should look backward for equivalent
10445 register. Increasing values mean more aggressive optimization, making the
10446 compilation time increase with probably slightly better performance.
10447 The default value is 100.
10448
10449 @item max-cselib-memory-locations
10450 The maximum number of memory locations cselib should take into account.
10451 Increasing values mean more aggressive optimization, making the compilation time
10452 increase with probably slightly better performance. The default value is 500.
10453
10454 @item max-sched-ready-insns
10455 The maximum number of instructions ready to be issued the scheduler should
10456 consider at any given time during the first scheduling pass. Increasing
10457 values mean more thorough searches, making the compilation time increase
10458 with probably little benefit. The default value is 100.
10459
10460 @item max-sched-region-blocks
10461 The maximum number of blocks in a region to be considered for
10462 interblock scheduling. The default value is 10.
10463
10464 @item max-pipeline-region-blocks
10465 The maximum number of blocks in a region to be considered for
10466 pipelining in the selective scheduler. The default value is 15.
10467
10468 @item max-sched-region-insns
10469 The maximum number of insns in a region to be considered for
10470 interblock scheduling. The default value is 100.
10471
10472 @item max-pipeline-region-insns
10473 The maximum number of insns in a region to be considered for
10474 pipelining in the selective scheduler. The default value is 200.
10475
10476 @item min-spec-prob
10477 The minimum probability (in percents) of reaching a source block
10478 for interblock speculative scheduling. The default value is 40.
10479
10480 @item max-sched-extend-regions-iters
10481 The maximum number of iterations through CFG to extend regions.
10482 A value of 0 (the default) disables region extensions.
10483
10484 @item max-sched-insn-conflict-delay
10485 The maximum conflict delay for an insn to be considered for speculative motion.
10486 The default value is 3.
10487
10488 @item sched-spec-prob-cutoff
10489 The minimal probability of speculation success (in percents), so that
10490 speculative insns are scheduled.
10491 The default value is 40.
10492
10493 @item sched-state-edge-prob-cutoff
10494 The minimum probability an edge must have for the scheduler to save its
10495 state across it.
10496 The default value is 10.
10497
10498 @item sched-mem-true-dep-cost
10499 Minimal distance (in CPU cycles) between store and load targeting same
10500 memory locations. The default value is 1.
10501
10502 @item selsched-max-lookahead
10503 The maximum size of the lookahead window of selective scheduling. It is a
10504 depth of search for available instructions.
10505 The default value is 50.
10506
10507 @item selsched-max-sched-times
10508 The maximum number of times that an instruction is scheduled during
10509 selective scheduling. This is the limit on the number of iterations
10510 through which the instruction may be pipelined. The default value is 2.
10511
10512 @item selsched-insns-to-rename
10513 The maximum number of best instructions in the ready list that are considered
10514 for renaming in the selective scheduler. The default value is 2.
10515
10516 @item sms-min-sc
10517 The minimum value of stage count that swing modulo scheduler
10518 generates. The default value is 2.
10519
10520 @item max-last-value-rtl
10521 The maximum size measured as number of RTLs that can be recorded in an expression
10522 in combiner for a pseudo register as last known value of that register. The default
10523 is 10000.
10524
10525 @item max-combine-insns
10526 The maximum number of instructions the RTL combiner tries to combine.
10527 The default value is 2 at @option{-Og} and 4 otherwise.
10528
10529 @item integer-share-limit
10530 Small integer constants can use a shared data structure, reducing the
10531 compiler's memory usage and increasing its speed. This sets the maximum
10532 value of a shared integer constant. The default value is 256.
10533
10534 @item ssp-buffer-size
10535 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10536 protection when @option{-fstack-protection} is used.
10537
10538 @item min-size-for-stack-sharing
10539 The minimum size of variables taking part in stack slot sharing when not
10540 optimizing. The default value is 32.
10541
10542 @item max-jump-thread-duplication-stmts
10543 Maximum number of statements allowed in a block that needs to be
10544 duplicated when threading jumps.
10545
10546 @item max-fields-for-field-sensitive
10547 Maximum number of fields in a structure treated in
10548 a field sensitive manner during pointer analysis. The default is zero
10549 for @option{-O0} and @option{-O1},
10550 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10551
10552 @item prefetch-latency
10553 Estimate on average number of instructions that are executed before
10554 prefetch finishes. The distance prefetched ahead is proportional
10555 to this constant. Increasing this number may also lead to less
10556 streams being prefetched (see @option{simultaneous-prefetches}).
10557
10558 @item simultaneous-prefetches
10559 Maximum number of prefetches that can run at the same time.
10560
10561 @item l1-cache-line-size
10562 The size of cache line in L1 cache, in bytes.
10563
10564 @item l1-cache-size
10565 The size of L1 cache, in kilobytes.
10566
10567 @item l2-cache-size
10568 The size of L2 cache, in kilobytes.
10569
10570 @item loop-interchange-max-num-stmts
10571 The maximum number of stmts in a loop to be interchanged.
10572
10573 @item loop-interchange-stride-ratio
10574 The minimum ratio between stride of two loops for interchange to be profitable.
10575
10576 @item min-insn-to-prefetch-ratio
10577 The minimum ratio between the number of instructions and the
10578 number of prefetches to enable prefetching in a loop.
10579
10580 @item prefetch-min-insn-to-mem-ratio
10581 The minimum ratio between the number of instructions and the
10582 number of memory references to enable prefetching in a loop.
10583
10584 @item use-canonical-types
10585 Whether the compiler should use the ``canonical'' type system. By
10586 default, this should always be 1, which uses a more efficient internal
10587 mechanism for comparing types in C++ and Objective-C++. However, if
10588 bugs in the canonical type system are causing compilation failures,
10589 set this value to 0 to disable canonical types.
10590
10591 @item switch-conversion-max-branch-ratio
10592 Switch initialization conversion refuses to create arrays that are
10593 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10594 branches in the switch.
10595
10596 @item max-partial-antic-length
10597 Maximum length of the partial antic set computed during the tree
10598 partial redundancy elimination optimization (@option{-ftree-pre}) when
10599 optimizing at @option{-O3} and above. For some sorts of source code
10600 the enhanced partial redundancy elimination optimization can run away,
10601 consuming all of the memory available on the host machine. This
10602 parameter sets a limit on the length of the sets that are computed,
10603 which prevents the runaway behavior. Setting a value of 0 for
10604 this parameter allows an unlimited set length.
10605
10606 @item sccvn-max-scc-size
10607 Maximum size of a strongly connected component (SCC) during SCCVN
10608 processing. If this limit is hit, SCCVN processing for the whole
10609 function is not done and optimizations depending on it are
10610 disabled. The default maximum SCC size is 10000.
10611
10612 @item sccvn-max-alias-queries-per-access
10613 Maximum number of alias-oracle queries we perform when looking for
10614 redundancies for loads and stores. If this limit is hit the search
10615 is aborted and the load or store is not considered redundant. The
10616 number of queries is algorithmically limited to the number of
10617 stores on all paths from the load to the function entry.
10618 The default maximum number of queries is 1000.
10619
10620 @item ira-max-loops-num
10621 IRA uses regional register allocation by default. If a function
10622 contains more loops than the number given by this parameter, only at most
10623 the given number of the most frequently-executed loops form regions
10624 for regional register allocation. The default value of the
10625 parameter is 100.
10626
10627 @item ira-max-conflict-table-size
10628 Although IRA uses a sophisticated algorithm to compress the conflict
10629 table, the table can still require excessive amounts of memory for
10630 huge functions. If the conflict table for a function could be more
10631 than the size in MB given by this parameter, the register allocator
10632 instead uses a faster, simpler, and lower-quality
10633 algorithm that does not require building a pseudo-register conflict table.
10634 The default value of the parameter is 2000.
10635
10636 @item ira-loop-reserved-regs
10637 IRA can be used to evaluate more accurate register pressure in loops
10638 for decisions to move loop invariants (see @option{-O3}). The number
10639 of available registers reserved for some other purposes is given
10640 by this parameter. The default value of the parameter is 2, which is
10641 the minimal number of registers needed by typical instructions.
10642 This value is the best found from numerous experiments.
10643
10644 @item lra-inheritance-ebb-probability-cutoff
10645 LRA tries to reuse values reloaded in registers in subsequent insns.
10646 This optimization is called inheritance. EBB is used as a region to
10647 do this optimization. The parameter defines a minimal fall-through
10648 edge probability in percentage used to add BB to inheritance EBB in
10649 LRA. The default value of the parameter is 40. The value was chosen
10650 from numerous runs of SPEC2000 on x86-64.
10651
10652 @item loop-invariant-max-bbs-in-loop
10653 Loop invariant motion can be very expensive, both in compilation time and
10654 in amount of needed compile-time memory, with very large loops. Loops
10655 with more basic blocks than this parameter won't have loop invariant
10656 motion optimization performed on them. The default value of the
10657 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10658
10659 @item loop-max-datarefs-for-datadeps
10660 Building data dependencies is expensive for very large loops. This
10661 parameter limits the number of data references in loops that are
10662 considered for data dependence analysis. These large loops are no
10663 handled by the optimizations using loop data dependencies.
10664 The default value is 1000.
10665
10666 @item max-vartrack-size
10667 Sets a maximum number of hash table slots to use during variable
10668 tracking dataflow analysis of any function. If this limit is exceeded
10669 with variable tracking at assignments enabled, analysis for that
10670 function is retried without it, after removing all debug insns from
10671 the function. If the limit is exceeded even without debug insns, var
10672 tracking analysis is completely disabled for the function. Setting
10673 the parameter to zero makes it unlimited.
10674
10675 @item max-vartrack-expr-depth
10676 Sets a maximum number of recursion levels when attempting to map
10677 variable names or debug temporaries to value expressions. This trades
10678 compilation time for more complete debug information. If this is set too
10679 low, value expressions that are available and could be represented in
10680 debug information may end up not being used; setting this higher may
10681 enable the compiler to find more complex debug expressions, but compile
10682 time and memory use may grow. The default is 12.
10683
10684 @item max-debug-marker-count
10685 Sets a threshold on the number of debug markers (e.g. begin stmt
10686 markers) to avoid complexity explosion at inlining or expanding to RTL.
10687 If a function has more such gimple stmts than the set limit, such stmts
10688 will be dropped from the inlined copy of a function, and from its RTL
10689 expansion. The default is 100000.
10690
10691 @item min-nondebug-insn-uid
10692 Use uids starting at this parameter for nondebug insns. The range below
10693 the parameter is reserved exclusively for debug insns created by
10694 @option{-fvar-tracking-assignments}, but debug insns may get
10695 (non-overlapping) uids above it if the reserved range is exhausted.
10696
10697 @item ipa-sra-ptr-growth-factor
10698 IPA-SRA replaces a pointer to an aggregate with one or more new
10699 parameters only when their cumulative size is less or equal to
10700 @option{ipa-sra-ptr-growth-factor} times the size of the original
10701 pointer parameter.
10702
10703 @item sra-max-scalarization-size-Ospeed
10704 @item sra-max-scalarization-size-Osize
10705 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10706 replace scalar parts of aggregates with uses of independent scalar
10707 variables. These parameters control the maximum size, in storage units,
10708 of aggregate which is considered for replacement when compiling for
10709 speed
10710 (@option{sra-max-scalarization-size-Ospeed}) or size
10711 (@option{sra-max-scalarization-size-Osize}) respectively.
10712
10713 @item tm-max-aggregate-size
10714 When making copies of thread-local variables in a transaction, this
10715 parameter specifies the size in bytes after which variables are
10716 saved with the logging functions as opposed to save/restore code
10717 sequence pairs. This option only applies when using
10718 @option{-fgnu-tm}.
10719
10720 @item graphite-max-nb-scop-params
10721 To avoid exponential effects in the Graphite loop transforms, the
10722 number of parameters in a Static Control Part (SCoP) is bounded. The
10723 default value is 10 parameters, a value of zero can be used to lift
10724 the bound. A variable whose value is unknown at compilation time and
10725 defined outside a SCoP is a parameter of the SCoP.
10726
10727 @item loop-block-tile-size
10728 Loop blocking or strip mining transforms, enabled with
10729 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10730 loop in the loop nest by a given number of iterations. The strip
10731 length can be changed using the @option{loop-block-tile-size}
10732 parameter. The default value is 51 iterations.
10733
10734 @item loop-unroll-jam-size
10735 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10736 default value is 4.
10737
10738 @item loop-unroll-jam-depth
10739 Specify the dimension to be unrolled (counting from the most inner loop)
10740 for the @option{-floop-unroll-and-jam}. The default value is 2.
10741
10742 @item ipa-cp-value-list-size
10743 IPA-CP attempts to track all possible values and types passed to a function's
10744 parameter in order to propagate them and perform devirtualization.
10745 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10746 stores per one formal parameter of a function.
10747
10748 @item ipa-cp-eval-threshold
10749 IPA-CP calculates its own score of cloning profitability heuristics
10750 and performs those cloning opportunities with scores that exceed
10751 @option{ipa-cp-eval-threshold}.
10752
10753 @item ipa-cp-recursion-penalty
10754 Percentage penalty the recursive functions will receive when they
10755 are evaluated for cloning.
10756
10757 @item ipa-cp-single-call-penalty
10758 Percentage penalty functions containing a single call to another
10759 function will receive when they are evaluated for cloning.
10760
10761
10762 @item ipa-max-agg-items
10763 IPA-CP is also capable to propagate a number of scalar values passed
10764 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10765 number of such values per one parameter.
10766
10767 @item ipa-cp-loop-hint-bonus
10768 When IPA-CP determines that a cloning candidate would make the number
10769 of iterations of a loop known, it adds a bonus of
10770 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10771 the candidate.
10772
10773 @item ipa-cp-array-index-hint-bonus
10774 When IPA-CP determines that a cloning candidate would make the index of
10775 an array access known, it adds a bonus of
10776 @option{ipa-cp-array-index-hint-bonus} to the profitability
10777 score of the candidate.
10778
10779 @item ipa-max-aa-steps
10780 During its analysis of function bodies, IPA-CP employs alias analysis
10781 in order to track values pointed to by function parameters. In order
10782 not spend too much time analyzing huge functions, it gives up and
10783 consider all memory clobbered after examining
10784 @option{ipa-max-aa-steps} statements modifying memory.
10785
10786 @item lto-partitions
10787 Specify desired number of partitions produced during WHOPR compilation.
10788 The number of partitions should exceed the number of CPUs used for compilation.
10789 The default value is 32.
10790
10791 @item lto-min-partition
10792 Size of minimal partition for WHOPR (in estimated instructions).
10793 This prevents expenses of splitting very small programs into too many
10794 partitions.
10795
10796 @item lto-max-partition
10797 Size of max partition for WHOPR (in estimated instructions).
10798 to provide an upper bound for individual size of partition.
10799 Meant to be used only with balanced partitioning.
10800
10801 @item cxx-max-namespaces-for-diagnostic-help
10802 The maximum number of namespaces to consult for suggestions when C++
10803 name lookup fails for an identifier. The default is 1000.
10804
10805 @item sink-frequency-threshold
10806 The maximum relative execution frequency (in percents) of the target block
10807 relative to a statement's original block to allow statement sinking of a
10808 statement. Larger numbers result in more aggressive statement sinking.
10809 The default value is 75. A small positive adjustment is applied for
10810 statements with memory operands as those are even more profitable so sink.
10811
10812 @item max-stores-to-sink
10813 The maximum number of conditional store pairs that can be sunk. Set to 0
10814 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10815 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
10816
10817 @item allow-store-data-races
10818 Allow optimizers to introduce new data races on stores.
10819 Set to 1 to allow, otherwise to 0. This option is enabled by default
10820 at optimization level @option{-Ofast}.
10821
10822 @item case-values-threshold
10823 The smallest number of different values for which it is best to use a
10824 jump-table instead of a tree of conditional branches. If the value is
10825 0, use the default for the machine. The default is 0.
10826
10827 @item tree-reassoc-width
10828 Set the maximum number of instructions executed in parallel in
10829 reassociated tree. This parameter overrides target dependent
10830 heuristics used by default if has non zero value.
10831
10832 @item sched-pressure-algorithm
10833 Choose between the two available implementations of
10834 @option{-fsched-pressure}. Algorithm 1 is the original implementation
10835 and is the more likely to prevent instructions from being reordered.
10836 Algorithm 2 was designed to be a compromise between the relatively
10837 conservative approach taken by algorithm 1 and the rather aggressive
10838 approach taken by the default scheduler. It relies more heavily on
10839 having a regular register file and accurate register pressure classes.
10840 See @file{haifa-sched.c} in the GCC sources for more details.
10841
10842 The default choice depends on the target.
10843
10844 @item max-slsr-cand-scan
10845 Set the maximum number of existing candidates that are considered when
10846 seeking a basis for a new straight-line strength reduction candidate.
10847
10848 @item asan-globals
10849 Enable buffer overflow detection for global objects. This kind
10850 of protection is enabled by default if you are using
10851 @option{-fsanitize=address} option.
10852 To disable global objects protection use @option{--param asan-globals=0}.
10853
10854 @item asan-stack
10855 Enable buffer overflow detection for stack objects. This kind of
10856 protection is enabled by default when using @option{-fsanitize=address}.
10857 To disable stack protection use @option{--param asan-stack=0} option.
10858
10859 @item asan-instrument-reads
10860 Enable buffer overflow detection for memory reads. This kind of
10861 protection is enabled by default when using @option{-fsanitize=address}.
10862 To disable memory reads protection use
10863 @option{--param asan-instrument-reads=0}.
10864
10865 @item asan-instrument-writes
10866 Enable buffer overflow detection for memory writes. This kind of
10867 protection is enabled by default when using @option{-fsanitize=address}.
10868 To disable memory writes protection use
10869 @option{--param asan-instrument-writes=0} option.
10870
10871 @item asan-memintrin
10872 Enable detection for built-in functions. This kind of protection
10873 is enabled by default when using @option{-fsanitize=address}.
10874 To disable built-in functions protection use
10875 @option{--param asan-memintrin=0}.
10876
10877 @item asan-use-after-return
10878 Enable detection of use-after-return. This kind of protection
10879 is enabled by default when using the @option{-fsanitize=address} option.
10880 To disable it use @option{--param asan-use-after-return=0}.
10881
10882 Note: By default the check is disabled at run time. To enable it,
10883 add @code{detect_stack_use_after_return=1} to the environment variable
10884 @env{ASAN_OPTIONS}.
10885
10886 @item asan-instrumentation-with-call-threshold
10887 If number of memory accesses in function being instrumented
10888 is greater or equal to this number, use callbacks instead of inline checks.
10889 E.g. to disable inline code use
10890 @option{--param asan-instrumentation-with-call-threshold=0}.
10891
10892 @item use-after-scope-direct-emission-threshold
10893 If the size of a local variable in bytes is smaller or equal to this
10894 number, directly poison (or unpoison) shadow memory instead of using
10895 run-time callbacks. The default value is 256.
10896
10897 @item chkp-max-ctor-size
10898 Static constructors generated by Pointer Bounds Checker may become very
10899 large and significantly increase compile time at optimization level
10900 @option{-O1} and higher. This parameter is a maximum number of statements
10901 in a single generated constructor. Default value is 5000.
10902
10903 @item max-fsm-thread-path-insns
10904 Maximum number of instructions to copy when duplicating blocks on a
10905 finite state automaton jump thread path. The default is 100.
10906
10907 @item max-fsm-thread-length
10908 Maximum number of basic blocks on a finite state automaton jump thread
10909 path. The default is 10.
10910
10911 @item max-fsm-thread-paths
10912 Maximum number of new jump thread paths to create for a finite state
10913 automaton. The default is 50.
10914
10915 @item parloops-chunk-size
10916 Chunk size of omp schedule for loops parallelized by parloops. The default
10917 is 0.
10918
10919 @item parloops-schedule
10920 Schedule type of omp schedule for loops parallelized by parloops (static,
10921 dynamic, guided, auto, runtime). The default is static.
10922
10923 @item parloops-min-per-thread
10924 The minimum number of iterations per thread of an innermost parallelized
10925 loop for which the parallelized variant is prefered over the single threaded
10926 one. The default is 100. Note that for a parallelized loop nest the
10927 minimum number of iterations of the outermost loop per thread is two.
10928
10929 @item max-ssa-name-query-depth
10930 Maximum depth of recursion when querying properties of SSA names in things
10931 like fold routines. One level of recursion corresponds to following a
10932 use-def chain.
10933
10934 @item hsa-gen-debug-stores
10935 Enable emission of special debug stores within HSA kernels which are
10936 then read and reported by libgomp plugin. Generation of these stores
10937 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
10938 enable it.
10939
10940 @item max-speculative-devirt-maydefs
10941 The maximum number of may-defs we analyze when looking for a must-def
10942 specifying the dynamic type of an object that invokes a virtual call
10943 we may be able to devirtualize speculatively.
10944
10945 @item max-vrp-switch-assertions
10946 The maximum number of assertions to add along the default edge of a switch
10947 statement during VRP. The default is 10.
10948
10949 @item unroll-jam-min-percent
10950 The minimum percentage of memory references that must be optimized
10951 away for the unroll-and-jam transformation to be considered profitable.
10952
10953 @item unroll-jam-max-unroll
10954 The maximum number of times the outer loop should be unrolled by
10955 the unroll-and-jam transformation.
10956 @end table
10957 @end table
10958
10959 @node Instrumentation Options
10960 @section Program Instrumentation Options
10961 @cindex instrumentation options
10962 @cindex program instrumentation options
10963 @cindex run-time error checking options
10964 @cindex profiling options
10965 @cindex options, program instrumentation
10966 @cindex options, run-time error checking
10967 @cindex options, profiling
10968
10969 GCC supports a number of command-line options that control adding
10970 run-time instrumentation to the code it normally generates.
10971 For example, one purpose of instrumentation is collect profiling
10972 statistics for use in finding program hot spots, code coverage
10973 analysis, or profile-guided optimizations.
10974 Another class of program instrumentation is adding run-time checking
10975 to detect programming errors like invalid pointer
10976 dereferences or out-of-bounds array accesses, as well as deliberately
10977 hostile attacks such as stack smashing or C++ vtable hijacking.
10978 There is also a general hook which can be used to implement other
10979 forms of tracing or function-level instrumentation for debug or
10980 program analysis purposes.
10981
10982 @table @gcctabopt
10983 @cindex @command{prof}
10984 @item -p
10985 @opindex p
10986 Generate extra code to write profile information suitable for the
10987 analysis program @command{prof}. You must use this option when compiling
10988 the source files you want data about, and you must also use it when
10989 linking.
10990
10991 @cindex @command{gprof}
10992 @item -pg
10993 @opindex pg
10994 Generate extra code to write profile information suitable for the
10995 analysis program @command{gprof}. You must use this option when compiling
10996 the source files you want data about, and you must also use it when
10997 linking.
10998
10999 @item -fprofile-arcs
11000 @opindex fprofile-arcs
11001 Add code so that program flow @dfn{arcs} are instrumented. During
11002 execution the program records how many times each branch and call is
11003 executed and how many times it is taken or returns. On targets that support
11004 constructors with priority support, profiling properly handles constructors,
11005 destructors and C++ constructors (and destructors) of classes which are used
11006 as a type of a global variable.
11007
11008 When the compiled
11009 program exits it saves this data to a file called
11010 @file{@var{auxname}.gcda} for each source file. The data may be used for
11011 profile-directed optimizations (@option{-fbranch-probabilities}), or for
11012 test coverage analysis (@option{-ftest-coverage}). Each object file's
11013 @var{auxname} is generated from the name of the output file, if
11014 explicitly specified and it is not the final executable, otherwise it is
11015 the basename of the source file. In both cases any suffix is removed
11016 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
11017 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
11018 @xref{Cross-profiling}.
11019
11020 @cindex @command{gcov}
11021 @item --coverage
11022 @opindex coverage
11023
11024 This option is used to compile and link code instrumented for coverage
11025 analysis. The option is a synonym for @option{-fprofile-arcs}
11026 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
11027 linking). See the documentation for those options for more details.
11028
11029 @itemize
11030
11031 @item
11032 Compile the source files with @option{-fprofile-arcs} plus optimization
11033 and code generation options. For test coverage analysis, use the
11034 additional @option{-ftest-coverage} option. You do not need to profile
11035 every source file in a program.
11036
11037 @item
11038 Compile the source files additionally with @option{-fprofile-abs-path}
11039 to create absolute path names in the @file{.gcno} files. This allows
11040 @command{gcov} to find the correct sources in projects where compilations
11041 occur with different working directories.
11042
11043 @item
11044 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
11045 (the latter implies the former).
11046
11047 @item
11048 Run the program on a representative workload to generate the arc profile
11049 information. This may be repeated any number of times. You can run
11050 concurrent instances of your program, and provided that the file system
11051 supports locking, the data files will be correctly updated. Unless
11052 a strict ISO C dialect option is in effect, @code{fork} calls are
11053 detected and correctly handled without double counting.
11054
11055 @item
11056 For profile-directed optimizations, compile the source files again with
11057 the same optimization and code generation options plus
11058 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
11059 Control Optimization}).
11060
11061 @item
11062 For test coverage analysis, use @command{gcov} to produce human readable
11063 information from the @file{.gcno} and @file{.gcda} files. Refer to the
11064 @command{gcov} documentation for further information.
11065
11066 @end itemize
11067
11068 With @option{-fprofile-arcs}, for each function of your program GCC
11069 creates a program flow graph, then finds a spanning tree for the graph.
11070 Only arcs that are not on the spanning tree have to be instrumented: the
11071 compiler adds code to count the number of times that these arcs are
11072 executed. When an arc is the only exit or only entrance to a block, the
11073 instrumentation code can be added to the block; otherwise, a new basic
11074 block must be created to hold the instrumentation code.
11075
11076 @need 2000
11077 @item -ftest-coverage
11078 @opindex ftest-coverage
11079 Produce a notes file that the @command{gcov} code-coverage utility
11080 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
11081 show program coverage. Each source file's note file is called
11082 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
11083 above for a description of @var{auxname} and instructions on how to
11084 generate test coverage data. Coverage data matches the source files
11085 more closely if you do not optimize.
11086
11087 @item -fprofile-abs-path
11088 @opindex fprofile-abs-path
11089 Automatically convert relative source file names to absolute path names
11090 in the @file{.gcno} files. This allows @command{gcov} to find the correct
11091 sources in projects where compilations occur with different working
11092 directories.
11093
11094 @item -fprofile-dir=@var{path}
11095 @opindex fprofile-dir
11096
11097 Set the directory to search for the profile data files in to @var{path}.
11098 This option affects only the profile data generated by
11099 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
11100 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
11101 and its related options. Both absolute and relative paths can be used.
11102 By default, GCC uses the current directory as @var{path}, thus the
11103 profile data file appears in the same directory as the object file.
11104
11105 @item -fprofile-generate
11106 @itemx -fprofile-generate=@var{path}
11107 @opindex fprofile-generate
11108
11109 Enable options usually used for instrumenting application to produce
11110 profile useful for later recompilation with profile feedback based
11111 optimization. You must use @option{-fprofile-generate} both when
11112 compiling and when linking your program.
11113
11114 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
11115
11116 If @var{path} is specified, GCC looks at the @var{path} to find
11117 the profile feedback data files. See @option{-fprofile-dir}.
11118
11119 To optimize the program based on the collected profile information, use
11120 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
11121
11122 @item -fprofile-update=@var{method}
11123 @opindex fprofile-update
11124
11125 Alter the update method for an application instrumented for profile
11126 feedback based optimization. The @var{method} argument should be one of
11127 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
11128 The first one is useful for single-threaded applications,
11129 while the second one prevents profile corruption by emitting thread-safe code.
11130
11131 @strong{Warning:} When an application does not properly join all threads
11132 (or creates an detached thread), a profile file can be still corrupted.
11133
11134 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
11135 when supported by a target, or to @samp{single} otherwise. The GCC driver
11136 automatically selects @samp{prefer-atomic} when @option{-pthread}
11137 is present in the command line.
11138
11139 @item -fsanitize=address
11140 @opindex fsanitize=address
11141 Enable AddressSanitizer, a fast memory error detector.
11142 Memory access instructions are instrumented to detect
11143 out-of-bounds and use-after-free bugs.
11144 The option enables @option{-fsanitize-address-use-after-scope}.
11145 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
11146 more details. The run-time behavior can be influenced using the
11147 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
11148 the available options are shown at startup of the instrumented program. See
11149 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
11150 for a list of supported options.
11151 The option cannot be combined with @option{-fsanitize=thread}
11152 and/or @option{-fcheck-pointer-bounds}.
11153
11154 @item -fsanitize=kernel-address
11155 @opindex fsanitize=kernel-address
11156 Enable AddressSanitizer for Linux kernel.
11157 See @uref{https://github.com/google/kasan/wiki} for more details.
11158 The option cannot be combined with @option{-fcheck-pointer-bounds}.
11159
11160 @item -fsanitize=pointer-compare
11161 @opindex fsanitize=pointer-compare
11162 Instrument comparison operation (<, <=, >, >=) with pointer operands.
11163 The option must be combined with either @option{-fsanitize=kernel-address} or
11164 @option{-fsanitize=address}
11165 The option cannot be combined with @option{-fsanitize=thread}
11166 and/or @option{-fcheck-pointer-bounds}.
11167 Note: By default the check is disabled at run time. To enable it,
11168 add @code{detect_invalid_pointer_pairs=1} to the environment variable
11169 @env{ASAN_OPTIONS}.
11170
11171 @item -fsanitize=pointer-subtract
11172 @opindex fsanitize=pointer-subtract
11173 Instrument subtraction with pointer operands.
11174 The option must be combined with either @option{-fsanitize=kernel-address} or
11175 @option{-fsanitize=address}
11176 The option cannot be combined with @option{-fsanitize=thread}
11177 and/or @option{-fcheck-pointer-bounds}.
11178 Note: By default the check is disabled at run time. To enable it,
11179 add @code{detect_invalid_pointer_pairs=1} to the environment variable
11180 @env{ASAN_OPTIONS}.
11181
11182 @item -fsanitize=thread
11183 @opindex fsanitize=thread
11184 Enable ThreadSanitizer, a fast data race detector.
11185 Memory access instructions are instrumented to detect
11186 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
11187 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
11188 environment variable; see
11189 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
11190 supported options.
11191 The option cannot be combined with @option{-fsanitize=address},
11192 @option{-fsanitize=leak} and/or @option{-fcheck-pointer-bounds}.
11193
11194 Note that sanitized atomic builtins cannot throw exceptions when
11195 operating on invalid memory addresses with non-call exceptions
11196 (@option{-fnon-call-exceptions}).
11197
11198 @item -fsanitize=leak
11199 @opindex fsanitize=leak
11200 Enable LeakSanitizer, a memory leak detector.
11201 This option only matters for linking of executables and
11202 the executable is linked against a library that overrides @code{malloc}
11203 and other allocator functions. See
11204 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
11205 details. The run-time behavior can be influenced using the
11206 @env{LSAN_OPTIONS} environment variable.
11207 The option cannot be combined with @option{-fsanitize=thread}.
11208
11209 @item -fsanitize=undefined
11210 @opindex fsanitize=undefined
11211 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
11212 Various computations are instrumented to detect undefined behavior
11213 at runtime. Current suboptions are:
11214
11215 @table @gcctabopt
11216
11217 @item -fsanitize=shift
11218 @opindex fsanitize=shift
11219 This option enables checking that the result of a shift operation is
11220 not undefined. Note that what exactly is considered undefined differs
11221 slightly between C and C++, as well as between ISO C90 and C99, etc.
11222 This option has two suboptions, @option{-fsanitize=shift-base} and
11223 @option{-fsanitize=shift-exponent}.
11224
11225 @item -fsanitize=shift-exponent
11226 @opindex fsanitize=shift-exponent
11227 This option enables checking that the second argument of a shift operation
11228 is not negative and is smaller than the precision of the promoted first
11229 argument.
11230
11231 @item -fsanitize=shift-base
11232 @opindex fsanitize=shift-base
11233 If the second argument of a shift operation is within range, check that the
11234 result of a shift operation is not undefined. Note that what exactly is
11235 considered undefined differs slightly between C and C++, as well as between
11236 ISO C90 and C99, etc.
11237
11238 @item -fsanitize=integer-divide-by-zero
11239 @opindex fsanitize=integer-divide-by-zero
11240 Detect integer division by zero as well as @code{INT_MIN / -1} division.
11241
11242 @item -fsanitize=unreachable
11243 @opindex fsanitize=unreachable
11244 With this option, the compiler turns the @code{__builtin_unreachable}
11245 call into a diagnostics message call instead. When reaching the
11246 @code{__builtin_unreachable} call, the behavior is undefined.
11247
11248 @item -fsanitize=vla-bound
11249 @opindex fsanitize=vla-bound
11250 This option instructs the compiler to check that the size of a variable
11251 length array is positive.
11252
11253 @item -fsanitize=null
11254 @opindex fsanitize=null
11255 This option enables pointer checking. Particularly, the application
11256 built with this option turned on will issue an error message when it
11257 tries to dereference a NULL pointer, or if a reference (possibly an
11258 rvalue reference) is bound to a NULL pointer, or if a method is invoked
11259 on an object pointed by a NULL pointer.
11260
11261 @item -fsanitize=return
11262 @opindex fsanitize=return
11263 This option enables return statement checking. Programs
11264 built with this option turned on will issue an error message
11265 when the end of a non-void function is reached without actually
11266 returning a value. This option works in C++ only.
11267
11268 @item -fsanitize=signed-integer-overflow
11269 @opindex fsanitize=signed-integer-overflow
11270 This option enables signed integer overflow checking. We check that
11271 the result of @code{+}, @code{*}, and both unary and binary @code{-}
11272 does not overflow in the signed arithmetics. Note, integer promotion
11273 rules must be taken into account. That is, the following is not an
11274 overflow:
11275 @smallexample
11276 signed char a = SCHAR_MAX;
11277 a++;
11278 @end smallexample
11279
11280 @item -fsanitize=bounds
11281 @opindex fsanitize=bounds
11282 This option enables instrumentation of array bounds. Various out of bounds
11283 accesses are detected. Flexible array members, flexible array member-like
11284 arrays, and initializers of variables with static storage are not instrumented.
11285 The option cannot be combined with @option{-fcheck-pointer-bounds}.
11286
11287 @item -fsanitize=bounds-strict
11288 @opindex fsanitize=bounds-strict
11289 This option enables strict instrumentation of array bounds. Most out of bounds
11290 accesses are detected, including flexible array members and flexible array
11291 member-like arrays. Initializers of variables with static storage are not
11292 instrumented. The option cannot be combined
11293 with @option{-fcheck-pointer-bounds}.
11294
11295 @item -fsanitize=alignment
11296 @opindex fsanitize=alignment
11297
11298 This option enables checking of alignment of pointers when they are
11299 dereferenced, or when a reference is bound to insufficiently aligned target,
11300 or when a method or constructor is invoked on insufficiently aligned object.
11301
11302 @item -fsanitize=object-size
11303 @opindex fsanitize=object-size
11304 This option enables instrumentation of memory references using the
11305 @code{__builtin_object_size} function. Various out of bounds pointer
11306 accesses are detected.
11307
11308 @item -fsanitize=float-divide-by-zero
11309 @opindex fsanitize=float-divide-by-zero
11310 Detect floating-point division by zero. Unlike other similar options,
11311 @option{-fsanitize=float-divide-by-zero} is not enabled by
11312 @option{-fsanitize=undefined}, since floating-point division by zero can
11313 be a legitimate way of obtaining infinities and NaNs.
11314
11315 @item -fsanitize=float-cast-overflow
11316 @opindex fsanitize=float-cast-overflow
11317 This option enables floating-point type to integer conversion checking.
11318 We check that the result of the conversion does not overflow.
11319 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
11320 not enabled by @option{-fsanitize=undefined}.
11321 This option does not work well with @code{FE_INVALID} exceptions enabled.
11322
11323 @item -fsanitize=nonnull-attribute
11324 @opindex fsanitize=nonnull-attribute
11325
11326 This option enables instrumentation of calls, checking whether null values
11327 are not passed to arguments marked as requiring a non-null value by the
11328 @code{nonnull} function attribute.
11329
11330 @item -fsanitize=returns-nonnull-attribute
11331 @opindex fsanitize=returns-nonnull-attribute
11332
11333 This option enables instrumentation of return statements in functions
11334 marked with @code{returns_nonnull} function attribute, to detect returning
11335 of null values from such functions.
11336
11337 @item -fsanitize=bool
11338 @opindex fsanitize=bool
11339
11340 This option enables instrumentation of loads from bool. If a value other
11341 than 0/1 is loaded, a run-time error is issued.
11342
11343 @item -fsanitize=enum
11344 @opindex fsanitize=enum
11345
11346 This option enables instrumentation of loads from an enum type. If
11347 a value outside the range of values for the enum type is loaded,
11348 a run-time error is issued.
11349
11350 @item -fsanitize=vptr
11351 @opindex fsanitize=vptr
11352
11353 This option enables instrumentation of C++ member function calls, member
11354 accesses and some conversions between pointers to base and derived classes,
11355 to verify the referenced object has the correct dynamic type.
11356
11357 @item -fsanitize=pointer-overflow
11358 @opindex fsanitize=pointer-overflow
11359
11360 This option enables instrumentation of pointer arithmetics. If the pointer
11361 arithmetics overflows, a run-time error is issued.
11362
11363 @item -fsanitize=builtin
11364 @opindex fsanitize=builtin
11365
11366 This option enables instrumentation of arguments to selected builtin
11367 functions. If an invalid value is passed to such arguments, a run-time
11368 error is issued. E.g.@ passing 0 as the argument to @code{__builtin_ctz}
11369 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
11370 by this option.
11371
11372 @end table
11373
11374 While @option{-ftrapv} causes traps for signed overflows to be emitted,
11375 @option{-fsanitize=undefined} gives a diagnostic message.
11376 This currently works only for the C family of languages.
11377
11378 @item -fno-sanitize=all
11379 @opindex fno-sanitize=all
11380
11381 This option disables all previously enabled sanitizers.
11382 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
11383 together.
11384
11385 @item -fasan-shadow-offset=@var{number}
11386 @opindex fasan-shadow-offset
11387 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
11388 It is useful for experimenting with different shadow memory layouts in
11389 Kernel AddressSanitizer.
11390
11391 @item -fsanitize-sections=@var{s1},@var{s2},...
11392 @opindex fsanitize-sections
11393 Sanitize global variables in selected user-defined sections. @var{si} may
11394 contain wildcards.
11395
11396 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
11397 @opindex fsanitize-recover
11398 @opindex fno-sanitize-recover
11399 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
11400 mentioned in comma-separated list of @var{opts}. Enabling this option
11401 for a sanitizer component causes it to attempt to continue
11402 running the program as if no error happened. This means multiple
11403 runtime errors can be reported in a single program run, and the exit
11404 code of the program may indicate success even when errors
11405 have been reported. The @option{-fno-sanitize-recover=} option
11406 can be used to alter
11407 this behavior: only the first detected error is reported
11408 and program then exits with a non-zero exit code.
11409
11410 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
11411 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
11412 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
11413 @option{-fsanitize=bounds-strict},
11414 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
11415 For these sanitizers error recovery is turned on by default,
11416 except @option{-fsanitize=address}, for which this feature is experimental.
11417 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
11418 accepted, the former enables recovery for all sanitizers that support it,
11419 the latter disables recovery for all sanitizers that support it.
11420
11421 Even if a recovery mode is turned on the compiler side, it needs to be also
11422 enabled on the runtime library side, otherwise the failures are still fatal.
11423 The runtime library defaults to @code{halt_on_error=0} for
11424 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
11425 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
11426 setting the @code{halt_on_error} flag in the corresponding environment variable.
11427
11428 Syntax without an explicit @var{opts} parameter is deprecated. It is
11429 equivalent to specifying an @var{opts} list of:
11430
11431 @smallexample
11432 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
11433 @end smallexample
11434
11435 @item -fsanitize-address-use-after-scope
11436 @opindex fsanitize-address-use-after-scope
11437 Enable sanitization of local variables to detect use-after-scope bugs.
11438 The option sets @option{-fstack-reuse} to @samp{none}.
11439
11440 @item -fsanitize-undefined-trap-on-error
11441 @opindex fsanitize-undefined-trap-on-error
11442 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
11443 report undefined behavior using @code{__builtin_trap} rather than
11444 a @code{libubsan} library routine. The advantage of this is that the
11445 @code{libubsan} library is not needed and is not linked in, so this
11446 is usable even in freestanding environments.
11447
11448 @item -fsanitize-coverage=trace-pc
11449 @opindex fsanitize-coverage=trace-pc
11450 Enable coverage-guided fuzzing code instrumentation.
11451 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
11452
11453 @item -fsanitize-coverage=trace-cmp
11454 @opindex fsanitize-coverage=trace-cmp
11455 Enable dataflow guided fuzzing code instrumentation.
11456 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
11457 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
11458 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
11459 variable or @code{__sanitizer_cov_trace_const_cmp1},
11460 @code{__sanitizer_cov_trace_const_cmp2},
11461 @code{__sanitizer_cov_trace_const_cmp4} or
11462 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
11463 operand constant, @code{__sanitizer_cov_trace_cmpf} or
11464 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
11465 @code{__sanitizer_cov_trace_switch} for switch statements.
11466
11467 @item -fbounds-check
11468 @opindex fbounds-check
11469 For front ends that support it, generate additional code to check that
11470 indices used to access arrays are within the declared range. This is
11471 currently only supported by the Fortran front end, where this option
11472 defaults to false.
11473
11474 @item -fcheck-pointer-bounds
11475 @opindex fcheck-pointer-bounds
11476 @opindex fno-check-pointer-bounds
11477 @cindex Pointer Bounds Checker options
11478 Enable Pointer Bounds Checker instrumentation. Each memory reference
11479 is instrumented with checks of the pointer used for memory access against
11480 bounds associated with that pointer.
11481
11482 Currently there
11483 is only an implementation for Intel MPX available, thus x86 GNU/Linux target
11484 and @option{-mmpx} are required to enable this feature.
11485 MPX-based instrumentation requires
11486 a runtime library to enable MPX in hardware and handle bounds
11487 violation signals. By default when @option{-fcheck-pointer-bounds}
11488 and @option{-mmpx} options are used to link a program, the GCC driver
11489 links against the @file{libmpx} and @file{libmpxwrappers} libraries.
11490 Bounds checking on calls to dynamic libraries requires a linker
11491 with @option{-z bndplt} support; if GCC was configured with a linker
11492 without support for this option (including the Gold linker and older
11493 versions of ld), a warning is given if you link with @option{-mmpx}
11494 without also specifying @option{-static}, since the overall effectiveness
11495 of the bounds checking protection is reduced.
11496 See also @option{-static-libmpxwrappers}.
11497
11498 MPX-based instrumentation
11499 may be used for debugging and also may be included in production code
11500 to increase program security. Depending on usage, you may
11501 have different requirements for the runtime library. The current version
11502 of the MPX runtime library is more oriented for use as a debugging
11503 tool. MPX runtime library usage implies @option{-lpthread}. See
11504 also @option{-static-libmpx}. The runtime library behavior can be
11505 influenced using various @env{CHKP_RT_*} environment variables. See
11506 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
11507 for more details.
11508
11509 Generated instrumentation may be controlled by various
11510 @option{-fchkp-*} options and by the @code{bnd_variable_size}
11511 structure field attribute (@pxref{Type Attributes}) and
11512 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
11513 (@pxref{Function Attributes}). GCC also provides a number of built-in
11514 functions for controlling the Pointer Bounds Checker. @xref{Pointer
11515 Bounds Checker builtins}, for more information.
11516
11517 @item -fchkp-check-incomplete-type
11518 @opindex fchkp-check-incomplete-type
11519 @opindex fno-chkp-check-incomplete-type
11520 Generate pointer bounds checks for variables with incomplete type.
11521 Enabled by default.
11522
11523 @item -fchkp-narrow-bounds
11524 @opindex fchkp-narrow-bounds
11525 @opindex fno-chkp-narrow-bounds
11526 Controls bounds used by Pointer Bounds Checker for pointers to object
11527 fields. If narrowing is enabled then field bounds are used. Otherwise
11528 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
11529 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
11530
11531 @item -fchkp-first-field-has-own-bounds
11532 @opindex fchkp-first-field-has-own-bounds
11533 @opindex fno-chkp-first-field-has-own-bounds
11534 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
11535 first field in the structure. By default a pointer to the first field has
11536 the same bounds as a pointer to the whole structure.
11537
11538 @item -fchkp-flexible-struct-trailing-arrays
11539 @opindex fchkp-flexible-struct-trailing-arrays
11540 @opindex fno-chkp-flexible-struct-trailing-arrays
11541 Forces Pointer Bounds Checker to treat all trailing arrays in structures as
11542 possibly flexible. By default only array fields with zero length or that are
11543 marked with attribute bnd_variable_size are treated as flexible.
11544
11545 @item -fchkp-narrow-to-innermost-array
11546 @opindex fchkp-narrow-to-innermost-array
11547 @opindex fno-chkp-narrow-to-innermost-array
11548 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
11549 case of nested static array access. By default this option is disabled and
11550 bounds of the outermost array are used.
11551
11552 @item -fchkp-optimize
11553 @opindex fchkp-optimize
11554 @opindex fno-chkp-optimize
11555 Enables Pointer Bounds Checker optimizations. Enabled by default at
11556 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
11557
11558 @item -fchkp-use-fast-string-functions
11559 @opindex fchkp-use-fast-string-functions
11560 @opindex fno-chkp-use-fast-string-functions
11561 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
11562 by Pointer Bounds Checker. Disabled by default.
11563
11564 @item -fchkp-use-nochk-string-functions
11565 @opindex fchkp-use-nochk-string-functions
11566 @opindex fno-chkp-use-nochk-string-functions
11567 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
11568 by Pointer Bounds Checker. Disabled by default.
11569
11570 @item -fchkp-use-static-bounds
11571 @opindex fchkp-use-static-bounds
11572 @opindex fno-chkp-use-static-bounds
11573 Allow Pointer Bounds Checker to generate static bounds holding
11574 bounds of static variables. Enabled by default.
11575
11576 @item -fchkp-use-static-const-bounds
11577 @opindex fchkp-use-static-const-bounds
11578 @opindex fno-chkp-use-static-const-bounds
11579 Use statically-initialized bounds for constant bounds instead of
11580 generating them each time they are required. By default enabled when
11581 @option{-fchkp-use-static-bounds} is enabled.
11582
11583 @item -fchkp-treat-zero-dynamic-size-as-infinite
11584 @opindex fchkp-treat-zero-dynamic-size-as-infinite
11585 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
11586 With this option, objects with incomplete type whose
11587 dynamically-obtained size is zero are treated as having infinite size
11588 instead by Pointer Bounds
11589 Checker. This option may be helpful if a program is linked with a library
11590 missing size information for some symbols. Disabled by default.
11591
11592 @item -fchkp-check-read
11593 @opindex fchkp-check-read
11594 @opindex fno-chkp-check-read
11595 Instructs Pointer Bounds Checker to generate checks for all read
11596 accesses to memory. Enabled by default.
11597
11598 @item -fchkp-check-write
11599 @opindex fchkp-check-write
11600 @opindex fno-chkp-check-write
11601 Instructs Pointer Bounds Checker to generate checks for all write
11602 accesses to memory. Enabled by default.
11603
11604 @item -fchkp-store-bounds
11605 @opindex fchkp-store-bounds
11606 @opindex fno-chkp-store-bounds
11607 Instructs Pointer Bounds Checker to generate bounds stores for
11608 pointer writes. Enabled by default.
11609
11610 @item -fchkp-instrument-calls
11611 @opindex fchkp-instrument-calls
11612 @opindex fno-chkp-instrument-calls
11613 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
11614 Enabled by default.
11615
11616 @item -fchkp-instrument-marked-only
11617 @opindex fchkp-instrument-marked-only
11618 @opindex fno-chkp-instrument-marked-only
11619 Instructs Pointer Bounds Checker to instrument only functions
11620 marked with the @code{bnd_instrument} attribute
11621 (@pxref{Function Attributes}). Disabled by default.
11622
11623 @item -fchkp-use-wrappers
11624 @opindex fchkp-use-wrappers
11625 @opindex fno-chkp-use-wrappers
11626 Allows Pointer Bounds Checker to replace calls to built-in functions
11627 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
11628 is used to link a program, the GCC driver automatically links
11629 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
11630 Enabled by default.
11631
11632 @item -fcf-protection==@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
11633 @opindex fcf-protection
11634 Enable code instrumentation of control-flow transfers to increase
11635 program security by checking that target addresses of control-flow
11636 transfer instructions (such as indirect function call, function return,
11637 indirect jump) are valid. This prevents diverting the flow of control
11638 to an unexpected target. This is intended to protect against such
11639 threats as Return-oriented Programming (ROP), and similarly
11640 call/jmp-oriented programming (COP/JOP).
11641
11642 The value @code{branch} tells the compiler to implement checking of
11643 validity of control-flow transfer at the point of indirect branch
11644 instructions, i.e. call/jmp instructions. The value @code{return}
11645 implements checking of validity at the point of returning from a
11646 function. The value @code{full} is an alias for specifying both
11647 @code{branch} and @code{return}. The value @code{none} turns off
11648 instrumentation.
11649
11650 You can also use the @code{nocf_check} attribute to identify
11651 which functions and calls should be skipped from instrumentation
11652 (@pxref{Function Attributes}).
11653
11654 Currently the x86 GNU/Linux target provides an implementation based
11655 on Intel Control-flow Enforcement Technology (CET). Instrumentation
11656 for x86 is controlled by target-specific options @option{-mcet},
11657 @option{-mibt} and @option{-mshstk} (@pxref{x86 Options}).
11658
11659 @item -fstack-protector
11660 @opindex fstack-protector
11661 Emit extra code to check for buffer overflows, such as stack smashing
11662 attacks. This is done by adding a guard variable to functions with
11663 vulnerable objects. This includes functions that call @code{alloca}, and
11664 functions with buffers larger than 8 bytes. The guards are initialized
11665 when a function is entered and then checked when the function exits.
11666 If a guard check fails, an error message is printed and the program exits.
11667
11668 @item -fstack-protector-all
11669 @opindex fstack-protector-all
11670 Like @option{-fstack-protector} except that all functions are protected.
11671
11672 @item -fstack-protector-strong
11673 @opindex fstack-protector-strong
11674 Like @option{-fstack-protector} but includes additional functions to
11675 be protected --- those that have local array definitions, or have
11676 references to local frame addresses.
11677
11678 @item -fstack-protector-explicit
11679 @opindex fstack-protector-explicit
11680 Like @option{-fstack-protector} but only protects those functions which
11681 have the @code{stack_protect} attribute.
11682
11683 @item -fstack-check
11684 @opindex fstack-check
11685 Generate code to verify that you do not go beyond the boundary of the
11686 stack. You should specify this flag if you are running in an
11687 environment with multiple threads, but you only rarely need to specify it in
11688 a single-threaded environment since stack overflow is automatically
11689 detected on nearly all systems if there is only one stack.
11690
11691 Note that this switch does not actually cause checking to be done; the
11692 operating system or the language runtime must do that. The switch causes
11693 generation of code to ensure that they see the stack being extended.
11694
11695 You can additionally specify a string parameter: @samp{no} means no
11696 checking, @samp{generic} means force the use of old-style checking,
11697 @samp{specific} means use the best checking method and is equivalent
11698 to bare @option{-fstack-check}.
11699
11700 Old-style checking is a generic mechanism that requires no specific
11701 target support in the compiler but comes with the following drawbacks:
11702
11703 @enumerate
11704 @item
11705 Modified allocation strategy for large objects: they are always
11706 allocated dynamically if their size exceeds a fixed threshold. Note this
11707 may change the semantics of some code.
11708
11709 @item
11710 Fixed limit on the size of the static frame of functions: when it is
11711 topped by a particular function, stack checking is not reliable and
11712 a warning is issued by the compiler.
11713
11714 @item
11715 Inefficiency: because of both the modified allocation strategy and the
11716 generic implementation, code performance is hampered.
11717 @end enumerate
11718
11719 Note that old-style stack checking is also the fallback method for
11720 @samp{specific} if no target support has been added in the compiler.
11721
11722 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
11723 and stack overflows. @samp{specific} is an excellent choice when compiling
11724 Ada code. It is not generally sufficient to protect against stack-clash
11725 attacks. To protect against those you want @samp{-fstack-clash-protection}.
11726
11727 @item -fstack-clash-protection
11728 @opindex fstack-clash-protection
11729 Generate code to prevent stack clash style attacks. When this option is
11730 enabled, the compiler will only allocate one page of stack space at a time
11731 and each page is accessed immediately after allocation. Thus, it prevents
11732 allocations from jumping over any stack guard page provided by the
11733 operating system.
11734
11735 Most targets do not fully support stack clash protection. However, on
11736 those targets @option{-fstack-clash-protection} will protect dynamic stack
11737 allocations. @option{-fstack-clash-protection} may also provide limited
11738 protection for static stack allocations if the target supports
11739 @option{-fstack-check=specific}.
11740
11741 @item -fstack-limit-register=@var{reg}
11742 @itemx -fstack-limit-symbol=@var{sym}
11743 @itemx -fno-stack-limit
11744 @opindex fstack-limit-register
11745 @opindex fstack-limit-symbol
11746 @opindex fno-stack-limit
11747 Generate code to ensure that the stack does not grow beyond a certain value,
11748 either the value of a register or the address of a symbol. If a larger
11749 stack is required, a signal is raised at run time. For most targets,
11750 the signal is raised before the stack overruns the boundary, so
11751 it is possible to catch the signal without taking special precautions.
11752
11753 For instance, if the stack starts at absolute address @samp{0x80000000}
11754 and grows downwards, you can use the flags
11755 @option{-fstack-limit-symbol=__stack_limit} and
11756 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
11757 of 128KB@. Note that this may only work with the GNU linker.
11758
11759 You can locally override stack limit checking by using the
11760 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
11761
11762 @item -fsplit-stack
11763 @opindex fsplit-stack
11764 Generate code to automatically split the stack before it overflows.
11765 The resulting program has a discontiguous stack which can only
11766 overflow if the program is unable to allocate any more memory. This
11767 is most useful when running threaded programs, as it is no longer
11768 necessary to calculate a good stack size to use for each thread. This
11769 is currently only implemented for the x86 targets running
11770 GNU/Linux.
11771
11772 When code compiled with @option{-fsplit-stack} calls code compiled
11773 without @option{-fsplit-stack}, there may not be much stack space
11774 available for the latter code to run. If compiling all code,
11775 including library code, with @option{-fsplit-stack} is not an option,
11776 then the linker can fix up these calls so that the code compiled
11777 without @option{-fsplit-stack} always has a large stack. Support for
11778 this is implemented in the gold linker in GNU binutils release 2.21
11779 and later.
11780
11781 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
11782 @opindex fvtable-verify
11783 This option is only available when compiling C++ code.
11784 It turns on (or off, if using @option{-fvtable-verify=none}) the security
11785 feature that verifies at run time, for every virtual call, that
11786 the vtable pointer through which the call is made is valid for the type of
11787 the object, and has not been corrupted or overwritten. If an invalid vtable
11788 pointer is detected at run time, an error is reported and execution of the
11789 program is immediately halted.
11790
11791 This option causes run-time data structures to be built at program startup,
11792 which are used for verifying the vtable pointers.
11793 The options @samp{std} and @samp{preinit}
11794 control the timing of when these data structures are built. In both cases the
11795 data structures are built before execution reaches @code{main}. Using
11796 @option{-fvtable-verify=std} causes the data structures to be built after
11797 shared libraries have been loaded and initialized.
11798 @option{-fvtable-verify=preinit} causes them to be built before shared
11799 libraries have been loaded and initialized.
11800
11801 If this option appears multiple times in the command line with different
11802 values specified, @samp{none} takes highest priority over both @samp{std} and
11803 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
11804
11805 @item -fvtv-debug
11806 @opindex fvtv-debug
11807 When used in conjunction with @option{-fvtable-verify=std} or
11808 @option{-fvtable-verify=preinit}, causes debug versions of the
11809 runtime functions for the vtable verification feature to be called.
11810 This flag also causes the compiler to log information about which
11811 vtable pointers it finds for each class.
11812 This information is written to a file named @file{vtv_set_ptr_data.log}
11813 in the directory named by the environment variable @env{VTV_LOGS_DIR}
11814 if that is defined or the current working directory otherwise.
11815
11816 Note: This feature @emph{appends} data to the log file. If you want a fresh log
11817 file, be sure to delete any existing one.
11818
11819 @item -fvtv-counts
11820 @opindex fvtv-counts
11821 This is a debugging flag. When used in conjunction with
11822 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
11823 causes the compiler to keep track of the total number of virtual calls
11824 it encounters and the number of verifications it inserts. It also
11825 counts the number of calls to certain run-time library functions
11826 that it inserts and logs this information for each compilation unit.
11827 The compiler writes this information to a file named
11828 @file{vtv_count_data.log} in the directory named by the environment
11829 variable @env{VTV_LOGS_DIR} if that is defined or the current working
11830 directory otherwise. It also counts the size of the vtable pointer sets
11831 for each class, and writes this information to @file{vtv_class_set_sizes.log}
11832 in the same directory.
11833
11834 Note: This feature @emph{appends} data to the log files. To get fresh log
11835 files, be sure to delete any existing ones.
11836
11837 @item -finstrument-functions
11838 @opindex finstrument-functions
11839 Generate instrumentation calls for entry and exit to functions. Just
11840 after function entry and just before function exit, the following
11841 profiling functions are called with the address of the current
11842 function and its call site. (On some platforms,
11843 @code{__builtin_return_address} does not work beyond the current
11844 function, so the call site information may not be available to the
11845 profiling functions otherwise.)
11846
11847 @smallexample
11848 void __cyg_profile_func_enter (void *this_fn,
11849 void *call_site);
11850 void __cyg_profile_func_exit (void *this_fn,
11851 void *call_site);
11852 @end smallexample
11853
11854 The first argument is the address of the start of the current function,
11855 which may be looked up exactly in the symbol table.
11856
11857 This instrumentation is also done for functions expanded inline in other
11858 functions. The profiling calls indicate where, conceptually, the
11859 inline function is entered and exited. This means that addressable
11860 versions of such functions must be available. If all your uses of a
11861 function are expanded inline, this may mean an additional expansion of
11862 code size. If you use @code{extern inline} in your C code, an
11863 addressable version of such functions must be provided. (This is
11864 normally the case anyway, but if you get lucky and the optimizer always
11865 expands the functions inline, you might have gotten away without
11866 providing static copies.)
11867
11868 A function may be given the attribute @code{no_instrument_function}, in
11869 which case this instrumentation is not done. This can be used, for
11870 example, for the profiling functions listed above, high-priority
11871 interrupt routines, and any functions from which the profiling functions
11872 cannot safely be called (perhaps signal handlers, if the profiling
11873 routines generate output or allocate memory).
11874
11875 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
11876 @opindex finstrument-functions-exclude-file-list
11877
11878 Set the list of functions that are excluded from instrumentation (see
11879 the description of @option{-finstrument-functions}). If the file that
11880 contains a function definition matches with one of @var{file}, then
11881 that function is not instrumented. The match is done on substrings:
11882 if the @var{file} parameter is a substring of the file name, it is
11883 considered to be a match.
11884
11885 For example:
11886
11887 @smallexample
11888 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
11889 @end smallexample
11890
11891 @noindent
11892 excludes any inline function defined in files whose pathnames
11893 contain @file{/bits/stl} or @file{include/sys}.
11894
11895 If, for some reason, you want to include letter @samp{,} in one of
11896 @var{sym}, write @samp{\,}. For example,
11897 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
11898 (note the single quote surrounding the option).
11899
11900 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
11901 @opindex finstrument-functions-exclude-function-list
11902
11903 This is similar to @option{-finstrument-functions-exclude-file-list},
11904 but this option sets the list of function names to be excluded from
11905 instrumentation. The function name to be matched is its user-visible
11906 name, such as @code{vector<int> blah(const vector<int> &)}, not the
11907 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
11908 match is done on substrings: if the @var{sym} parameter is a substring
11909 of the function name, it is considered to be a match. For C99 and C++
11910 extended identifiers, the function name must be given in UTF-8, not
11911 using universal character names.
11912
11913 @item -fpatchable-function-entry=@var{N}[,@var{M}]
11914 @opindex fpatchable-function-entry
11915 Generate @var{N} NOPs right at the beginning
11916 of each function, with the function entry point before the @var{M}th NOP.
11917 If @var{M} is omitted, it defaults to @code{0} so the
11918 function entry points to the address just at the first NOP.
11919 The NOP instructions reserve extra space which can be used to patch in
11920 any desired instrumentation at run time, provided that the code segment
11921 is writable. The amount of space is controllable indirectly via
11922 the number of NOPs; the NOP instruction used corresponds to the instruction
11923 emitted by the internal GCC back-end interface @code{gen_nop}. This behavior
11924 is target-specific and may also depend on the architecture variant and/or
11925 other compilation options.
11926
11927 For run-time identification, the starting addresses of these areas,
11928 which correspond to their respective function entries minus @var{M},
11929 are additionally collected in the @code{__patchable_function_entries}
11930 section of the resulting binary.
11931
11932 Note that the value of @code{__attribute__ ((patchable_function_entry
11933 (N,M)))} takes precedence over command-line option
11934 @option{-fpatchable-function-entry=N,M}. This can be used to increase
11935 the area size or to remove it completely on a single function.
11936 If @code{N=0}, no pad location is recorded.
11937
11938 The NOP instructions are inserted at---and maybe before, depending on
11939 @var{M}---the function entry address, even before the prologue.
11940
11941 @end table
11942
11943
11944 @node Preprocessor Options
11945 @section Options Controlling the Preprocessor
11946 @cindex preprocessor options
11947 @cindex options, preprocessor
11948
11949 These options control the C preprocessor, which is run on each C source
11950 file before actual compilation.
11951
11952 If you use the @option{-E} option, nothing is done except preprocessing.
11953 Some of these options make sense only together with @option{-E} because
11954 they cause the preprocessor output to be unsuitable for actual
11955 compilation.
11956
11957 In addition to the options listed here, there are a number of options
11958 to control search paths for include files documented in
11959 @ref{Directory Options}.
11960 Options to control preprocessor diagnostics are listed in
11961 @ref{Warning Options}.
11962
11963 @table @gcctabopt
11964 @include cppopts.texi
11965
11966 @item -Wp,@var{option}
11967 @opindex Wp
11968 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11969 and pass @var{option} directly through to the preprocessor. If
11970 @var{option} contains commas, it is split into multiple options at the
11971 commas. However, many options are modified, translated or interpreted
11972 by the compiler driver before being passed to the preprocessor, and
11973 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11974 interface is undocumented and subject to change, so whenever possible
11975 you should avoid using @option{-Wp} and let the driver handle the
11976 options instead.
11977
11978 @item -Xpreprocessor @var{option}
11979 @opindex Xpreprocessor
11980 Pass @var{option} as an option to the preprocessor. You can use this to
11981 supply system-specific preprocessor options that GCC does not
11982 recognize.
11983
11984 If you want to pass an option that takes an argument, you must use
11985 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11986
11987 @item -no-integrated-cpp
11988 @opindex no-integrated-cpp
11989 Perform preprocessing as a separate pass before compilation.
11990 By default, GCC performs preprocessing as an integrated part of
11991 input tokenization and parsing.
11992 If this option is provided, the appropriate language front end
11993 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11994 and Objective-C, respectively) is instead invoked twice,
11995 once for preprocessing only and once for actual compilation
11996 of the preprocessed input.
11997 This option may be useful in conjunction with the @option{-B} or
11998 @option{-wrapper} options to specify an alternate preprocessor or
11999 perform additional processing of the program source between
12000 normal preprocessing and compilation.
12001
12002 @end table
12003
12004 @node Assembler Options
12005 @section Passing Options to the Assembler
12006
12007 @c prevent bad page break with this line
12008 You can pass options to the assembler.
12009
12010 @table @gcctabopt
12011 @item -Wa,@var{option}
12012 @opindex Wa
12013 Pass @var{option} as an option to the assembler. If @var{option}
12014 contains commas, it is split into multiple options at the commas.
12015
12016 @item -Xassembler @var{option}
12017 @opindex Xassembler
12018 Pass @var{option} as an option to the assembler. You can use this to
12019 supply system-specific assembler options that GCC does not
12020 recognize.
12021
12022 If you want to pass an option that takes an argument, you must use
12023 @option{-Xassembler} twice, once for the option and once for the argument.
12024
12025 @end table
12026
12027 @node Link Options
12028 @section Options for Linking
12029 @cindex link options
12030 @cindex options, linking
12031
12032 These options come into play when the compiler links object files into
12033 an executable output file. They are meaningless if the compiler is
12034 not doing a link step.
12035
12036 @table @gcctabopt
12037 @cindex file names
12038 @item @var{object-file-name}
12039 A file name that does not end in a special recognized suffix is
12040 considered to name an object file or library. (Object files are
12041 distinguished from libraries by the linker according to the file
12042 contents.) If linking is done, these object files are used as input
12043 to the linker.
12044
12045 @item -c
12046 @itemx -S
12047 @itemx -E
12048 @opindex c
12049 @opindex S
12050 @opindex E
12051 If any of these options is used, then the linker is not run, and
12052 object file names should not be used as arguments. @xref{Overall
12053 Options}.
12054
12055 @item -fuse-ld=bfd
12056 @opindex fuse-ld=bfd
12057 Use the @command{bfd} linker instead of the default linker.
12058
12059 @item -fuse-ld=gold
12060 @opindex fuse-ld=gold
12061 Use the @command{gold} linker instead of the default linker.
12062
12063 @cindex Libraries
12064 @item -l@var{library}
12065 @itemx -l @var{library}
12066 @opindex l
12067 Search the library named @var{library} when linking. (The second
12068 alternative with the library as a separate argument is only for
12069 POSIX compliance and is not recommended.)
12070
12071 It makes a difference where in the command you write this option; the
12072 linker searches and processes libraries and object files in the order they
12073 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
12074 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
12075 to functions in @samp{z}, those functions may not be loaded.
12076
12077 The linker searches a standard list of directories for the library,
12078 which is actually a file named @file{lib@var{library}.a}. The linker
12079 then uses this file as if it had been specified precisely by name.
12080
12081 The directories searched include several standard system directories
12082 plus any that you specify with @option{-L}.
12083
12084 Normally the files found this way are library files---archive files
12085 whose members are object files. The linker handles an archive file by
12086 scanning through it for members which define symbols that have so far
12087 been referenced but not defined. But if the file that is found is an
12088 ordinary object file, it is linked in the usual fashion. The only
12089 difference between using an @option{-l} option and specifying a file name
12090 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
12091 and searches several directories.
12092
12093 @item -lobjc
12094 @opindex lobjc
12095 You need this special case of the @option{-l} option in order to
12096 link an Objective-C or Objective-C++ program.
12097
12098 @item -nostartfiles
12099 @opindex nostartfiles
12100 Do not use the standard system startup files when linking.
12101 The standard system libraries are used normally, unless @option{-nostdlib}
12102 or @option{-nodefaultlibs} is used.
12103
12104 @item -nodefaultlibs
12105 @opindex nodefaultlibs
12106 Do not use the standard system libraries when linking.
12107 Only the libraries you specify are passed to the linker, and options
12108 specifying linkage of the system libraries, such as @option{-static-libgcc}
12109 or @option{-shared-libgcc}, are ignored.
12110 The standard startup files are used normally, unless @option{-nostartfiles}
12111 is used.
12112
12113 The compiler may generate calls to @code{memcmp},
12114 @code{memset}, @code{memcpy} and @code{memmove}.
12115 These entries are usually resolved by entries in
12116 libc. These entry points should be supplied through some other
12117 mechanism when this option is specified.
12118
12119 @item -nostdlib
12120 @opindex nostdlib
12121 Do not use the standard system startup files or libraries when linking.
12122 No startup files and only the libraries you specify are passed to
12123 the linker, and options specifying linkage of the system libraries, such as
12124 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
12125
12126 The compiler may generate calls to @code{memcmp}, @code{memset},
12127 @code{memcpy} and @code{memmove}.
12128 These entries are usually resolved by entries in
12129 libc. These entry points should be supplied through some other
12130 mechanism when this option is specified.
12131
12132 @cindex @option{-lgcc}, use with @option{-nostdlib}
12133 @cindex @option{-nostdlib} and unresolved references
12134 @cindex unresolved references and @option{-nostdlib}
12135 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
12136 @cindex @option{-nodefaultlibs} and unresolved references
12137 @cindex unresolved references and @option{-nodefaultlibs}
12138 One of the standard libraries bypassed by @option{-nostdlib} and
12139 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
12140 which GCC uses to overcome shortcomings of particular machines, or special
12141 needs for some languages.
12142 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
12143 Collection (GCC) Internals},
12144 for more discussion of @file{libgcc.a}.)
12145 In most cases, you need @file{libgcc.a} even when you want to avoid
12146 other standard libraries. In other words, when you specify @option{-nostdlib}
12147 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
12148 This ensures that you have no unresolved references to internal GCC
12149 library subroutines.
12150 (An example of such an internal subroutine is @code{__main}, used to ensure C++
12151 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
12152 GNU Compiler Collection (GCC) Internals}.)
12153
12154 @item -pie
12155 @opindex pie
12156 Produce a dynamically linked position independent executable on targets
12157 that support it. For predictable results, you must also specify the same
12158 set of options used for compilation (@option{-fpie}, @option{-fPIE},
12159 or model suboptions) when you specify this linker option.
12160
12161 @item -no-pie
12162 @opindex no-pie
12163 Don't produce a dynamically linked position independent executable.
12164
12165 @item -static-pie
12166 @opindex static-pie
12167 Produce a static position independent executable on targets that support
12168 it. A static position independent executable is similar to a static
12169 executable, but can be loaded at any address without a dynamic linker.
12170 For predictable results, you must also specify the same set of options
12171 used for compilation (@option{-fpie}, @option{-fPIE}, or model
12172 suboptions) when you specify this linker option.
12173
12174 @item -pthread
12175 @opindex pthread
12176 Link with the POSIX threads library. This option is supported on
12177 GNU/Linux targets, most other Unix derivatives, and also on
12178 x86 Cygwin and MinGW targets. On some targets this option also sets
12179 flags for the preprocessor, so it should be used consistently for both
12180 compilation and linking.
12181
12182 @item -rdynamic
12183 @opindex rdynamic
12184 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
12185 that support it. This instructs the linker to add all symbols, not
12186 only used ones, to the dynamic symbol table. This option is needed
12187 for some uses of @code{dlopen} or to allow obtaining backtraces
12188 from within a program.
12189
12190 @item -s
12191 @opindex s
12192 Remove all symbol table and relocation information from the executable.
12193
12194 @item -static
12195 @opindex static
12196 On systems that support dynamic linking, this overrides @option{-pie}
12197 and prevents linking with the shared libraries. On other systems, this
12198 option has no effect.
12199
12200 @item -shared
12201 @opindex shared
12202 Produce a shared object which can then be linked with other objects to
12203 form an executable. Not all systems support this option. For predictable
12204 results, you must also specify the same set of options used for compilation
12205 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
12206 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
12207 needs to build supplementary stub code for constructors to work. On
12208 multi-libbed systems, @samp{gcc -shared} must select the correct support
12209 libraries to link against. Failing to supply the correct flags may lead
12210 to subtle defects. Supplying them in cases where they are not necessary
12211 is innocuous.}
12212
12213 @item -shared-libgcc
12214 @itemx -static-libgcc
12215 @opindex shared-libgcc
12216 @opindex static-libgcc
12217 On systems that provide @file{libgcc} as a shared library, these options
12218 force the use of either the shared or static version, respectively.
12219 If no shared version of @file{libgcc} was built when the compiler was
12220 configured, these options have no effect.
12221
12222 There are several situations in which an application should use the
12223 shared @file{libgcc} instead of the static version. The most common
12224 of these is when the application wishes to throw and catch exceptions
12225 across different shared libraries. In that case, each of the libraries
12226 as well as the application itself should use the shared @file{libgcc}.
12227
12228 Therefore, the G++ and driver automatically adds @option{-shared-libgcc}
12229 whenever you build a shared library or a main executable, because C++
12230 programs typically use exceptions, so this is the right thing to do.
12231
12232 If, instead, you use the GCC driver to create shared libraries, you may
12233 find that they are not always linked with the shared @file{libgcc}.
12234 If GCC finds, at its configuration time, that you have a non-GNU linker
12235 or a GNU linker that does not support option @option{--eh-frame-hdr},
12236 it links the shared version of @file{libgcc} into shared libraries
12237 by default. Otherwise, it takes advantage of the linker and optimizes
12238 away the linking with the shared version of @file{libgcc}, linking with
12239 the static version of libgcc by default. This allows exceptions to
12240 propagate through such shared libraries, without incurring relocation
12241 costs at library load time.
12242
12243 However, if a library or main executable is supposed to throw or catch
12244 exceptions, you must link it using the G++ driver, as appropriate
12245 for the languages used in the program, or using the option
12246 @option{-shared-libgcc}, such that it is linked with the shared
12247 @file{libgcc}.
12248
12249 @item -static-libasan
12250 @opindex static-libasan
12251 When the @option{-fsanitize=address} option is used to link a program,
12252 the GCC driver automatically links against @option{libasan}. If
12253 @file{libasan} is available as a shared library, and the @option{-static}
12254 option is not used, then this links against the shared version of
12255 @file{libasan}. The @option{-static-libasan} option directs the GCC
12256 driver to link @file{libasan} statically, without necessarily linking
12257 other libraries statically.
12258
12259 @item -static-libtsan
12260 @opindex static-libtsan
12261 When the @option{-fsanitize=thread} option is used to link a program,
12262 the GCC driver automatically links against @option{libtsan}. If
12263 @file{libtsan} is available as a shared library, and the @option{-static}
12264 option is not used, then this links against the shared version of
12265 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
12266 driver to link @file{libtsan} statically, without necessarily linking
12267 other libraries statically.
12268
12269 @item -static-liblsan
12270 @opindex static-liblsan
12271 When the @option{-fsanitize=leak} option is used to link a program,
12272 the GCC driver automatically links against @option{liblsan}. If
12273 @file{liblsan} is available as a shared library, and the @option{-static}
12274 option is not used, then this links against the shared version of
12275 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
12276 driver to link @file{liblsan} statically, without necessarily linking
12277 other libraries statically.
12278
12279 @item -static-libubsan
12280 @opindex static-libubsan
12281 When the @option{-fsanitize=undefined} option is used to link a program,
12282 the GCC driver automatically links against @option{libubsan}. If
12283 @file{libubsan} is available as a shared library, and the @option{-static}
12284 option is not used, then this links against the shared version of
12285 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
12286 driver to link @file{libubsan} statically, without necessarily linking
12287 other libraries statically.
12288
12289 @item -static-libmpx
12290 @opindex static-libmpx
12291 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
12292 used to link a program, the GCC driver automatically links against
12293 @file{libmpx}. If @file{libmpx} is available as a shared library,
12294 and the @option{-static} option is not used, then this links against
12295 the shared version of @file{libmpx}. The @option{-static-libmpx}
12296 option directs the GCC driver to link @file{libmpx} statically,
12297 without necessarily linking other libraries statically.
12298
12299 @item -static-libmpxwrappers
12300 @opindex static-libmpxwrappers
12301 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
12302 to link a program without also using @option{-fno-chkp-use-wrappers}, the
12303 GCC driver automatically links against @file{libmpxwrappers}. If
12304 @file{libmpxwrappers} is available as a shared library, and the
12305 @option{-static} option is not used, then this links against the shared
12306 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
12307 option directs the GCC driver to link @file{libmpxwrappers} statically,
12308 without necessarily linking other libraries statically.
12309
12310 @item -static-libstdc++
12311 @opindex static-libstdc++
12312 When the @command{g++} program is used to link a C++ program, it
12313 normally automatically links against @option{libstdc++}. If
12314 @file{libstdc++} is available as a shared library, and the
12315 @option{-static} option is not used, then this links against the
12316 shared version of @file{libstdc++}. That is normally fine. However, it
12317 is sometimes useful to freeze the version of @file{libstdc++} used by
12318 the program without going all the way to a fully static link. The
12319 @option{-static-libstdc++} option directs the @command{g++} driver to
12320 link @file{libstdc++} statically, without necessarily linking other
12321 libraries statically.
12322
12323 @item -symbolic
12324 @opindex symbolic
12325 Bind references to global symbols when building a shared object. Warn
12326 about any unresolved references (unless overridden by the link editor
12327 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
12328 this option.
12329
12330 @item -T @var{script}
12331 @opindex T
12332 @cindex linker script
12333 Use @var{script} as the linker script. This option is supported by most
12334 systems using the GNU linker. On some targets, such as bare-board
12335 targets without an operating system, the @option{-T} option may be required
12336 when linking to avoid references to undefined symbols.
12337
12338 @item -Xlinker @var{option}
12339 @opindex Xlinker
12340 Pass @var{option} as an option to the linker. You can use this to
12341 supply system-specific linker options that GCC does not recognize.
12342
12343 If you want to pass an option that takes a separate argument, you must use
12344 @option{-Xlinker} twice, once for the option and once for the argument.
12345 For example, to pass @option{-assert definitions}, you must write
12346 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
12347 @option{-Xlinker "-assert definitions"}, because this passes the entire
12348 string as a single argument, which is not what the linker expects.
12349
12350 When using the GNU linker, it is usually more convenient to pass
12351 arguments to linker options using the @option{@var{option}=@var{value}}
12352 syntax than as separate arguments. For example, you can specify
12353 @option{-Xlinker -Map=output.map} rather than
12354 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
12355 this syntax for command-line options.
12356
12357 @item -Wl,@var{option}
12358 @opindex Wl
12359 Pass @var{option} as an option to the linker. If @var{option} contains
12360 commas, it is split into multiple options at the commas. You can use this
12361 syntax to pass an argument to the option.
12362 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
12363 linker. When using the GNU linker, you can also get the same effect with
12364 @option{-Wl,-Map=output.map}.
12365
12366 @item -u @var{symbol}
12367 @opindex u
12368 Pretend the symbol @var{symbol} is undefined, to force linking of
12369 library modules to define it. You can use @option{-u} multiple times with
12370 different symbols to force loading of additional library modules.
12371
12372 @item -z @var{keyword}
12373 @opindex z
12374 @option{-z} is passed directly on to the linker along with the keyword
12375 @var{keyword}. See the section in the documentation of your linker for
12376 permitted values and their meanings.
12377 @end table
12378
12379 @node Directory Options
12380 @section Options for Directory Search
12381 @cindex directory options
12382 @cindex options, directory search
12383 @cindex search path
12384
12385 These options specify directories to search for header files, for
12386 libraries and for parts of the compiler:
12387
12388 @table @gcctabopt
12389 @include cppdiropts.texi
12390
12391 @item -iplugindir=@var{dir}
12392 @opindex iplugindir=
12393 Set the directory to search for plugins that are passed
12394 by @option{-fplugin=@var{name}} instead of
12395 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
12396 to be used by the user, but only passed by the driver.
12397
12398 @item -L@var{dir}
12399 @opindex L
12400 Add directory @var{dir} to the list of directories to be searched
12401 for @option{-l}.
12402
12403 @item -B@var{prefix}
12404 @opindex B
12405 This option specifies where to find the executables, libraries,
12406 include files, and data files of the compiler itself.
12407
12408 The compiler driver program runs one or more of the subprograms
12409 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
12410 @var{prefix} as a prefix for each program it tries to run, both with and
12411 without @samp{@var{machine}/@var{version}/} for the corresponding target
12412 machine and compiler version.
12413
12414 For each subprogram to be run, the compiler driver first tries the
12415 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
12416 is not specified, the driver tries two standard prefixes,
12417 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
12418 those results in a file name that is found, the unmodified program
12419 name is searched for using the directories specified in your
12420 @env{PATH} environment variable.
12421
12422 The compiler checks to see if the path provided by @option{-B}
12423 refers to a directory, and if necessary it adds a directory
12424 separator character at the end of the path.
12425
12426 @option{-B} prefixes that effectively specify directory names also apply
12427 to libraries in the linker, because the compiler translates these
12428 options into @option{-L} options for the linker. They also apply to
12429 include files in the preprocessor, because the compiler translates these
12430 options into @option{-isystem} options for the preprocessor. In this case,
12431 the compiler appends @samp{include} to the prefix.
12432
12433 The runtime support file @file{libgcc.a} can also be searched for using
12434 the @option{-B} prefix, if needed. If it is not found there, the two
12435 standard prefixes above are tried, and that is all. The file is left
12436 out of the link if it is not found by those means.
12437
12438 Another way to specify a prefix much like the @option{-B} prefix is to use
12439 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
12440 Variables}.
12441
12442 As a special kludge, if the path provided by @option{-B} is
12443 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
12444 9, then it is replaced by @file{[dir/]include}. This is to help
12445 with boot-strapping the compiler.
12446
12447 @item -no-canonical-prefixes
12448 @opindex no-canonical-prefixes
12449 Do not expand any symbolic links, resolve references to @samp{/../}
12450 or @samp{/./}, or make the path absolute when generating a relative
12451 prefix.
12452
12453 @item --sysroot=@var{dir}
12454 @opindex sysroot
12455 Use @var{dir} as the logical root directory for headers and libraries.
12456 For example, if the compiler normally searches for headers in
12457 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
12458 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
12459
12460 If you use both this option and the @option{-isysroot} option, then
12461 the @option{--sysroot} option applies to libraries, but the
12462 @option{-isysroot} option applies to header files.
12463
12464 The GNU linker (beginning with version 2.16) has the necessary support
12465 for this option. If your linker does not support this option, the
12466 header file aspect of @option{--sysroot} still works, but the
12467 library aspect does not.
12468
12469 @item --no-sysroot-suffix
12470 @opindex no-sysroot-suffix
12471 For some targets, a suffix is added to the root directory specified
12472 with @option{--sysroot}, depending on the other options used, so that
12473 headers may for example be found in
12474 @file{@var{dir}/@var{suffix}/usr/include} instead of
12475 @file{@var{dir}/usr/include}. This option disables the addition of
12476 such a suffix.
12477
12478 @end table
12479
12480 @node Code Gen Options
12481 @section Options for Code Generation Conventions
12482 @cindex code generation conventions
12483 @cindex options, code generation
12484 @cindex run-time options
12485
12486 These machine-independent options control the interface conventions
12487 used in code generation.
12488
12489 Most of them have both positive and negative forms; the negative form
12490 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
12491 one of the forms is listed---the one that is not the default. You
12492 can figure out the other form by either removing @samp{no-} or adding
12493 it.
12494
12495 @table @gcctabopt
12496 @item -fstack-reuse=@var{reuse-level}
12497 @opindex fstack_reuse
12498 This option controls stack space reuse for user declared local/auto variables
12499 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
12500 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
12501 local variables and temporaries, @samp{named_vars} enables the reuse only for
12502 user defined local variables with names, and @samp{none} disables stack reuse
12503 completely. The default value is @samp{all}. The option is needed when the
12504 program extends the lifetime of a scoped local variable or a compiler generated
12505 temporary beyond the end point defined by the language. When a lifetime of
12506 a variable ends, and if the variable lives in memory, the optimizing compiler
12507 has the freedom to reuse its stack space with other temporaries or scoped
12508 local variables whose live range does not overlap with it. Legacy code extending
12509 local lifetime is likely to break with the stack reuse optimization.
12510
12511 For example,
12512
12513 @smallexample
12514 int *p;
12515 @{
12516 int local1;
12517
12518 p = &local1;
12519 local1 = 10;
12520 ....
12521 @}
12522 @{
12523 int local2;
12524 local2 = 20;
12525 ...
12526 @}
12527
12528 if (*p == 10) // out of scope use of local1
12529 @{
12530
12531 @}
12532 @end smallexample
12533
12534 Another example:
12535 @smallexample
12536
12537 struct A
12538 @{
12539 A(int k) : i(k), j(k) @{ @}
12540 int i;
12541 int j;
12542 @};
12543
12544 A *ap;
12545
12546 void foo(const A& ar)
12547 @{
12548 ap = &ar;
12549 @}
12550
12551 void bar()
12552 @{
12553 foo(A(10)); // temp object's lifetime ends when foo returns
12554
12555 @{
12556 A a(20);
12557 ....
12558 @}
12559 ap->i+= 10; // ap references out of scope temp whose space
12560 // is reused with a. What is the value of ap->i?
12561 @}
12562
12563 @end smallexample
12564
12565 The lifetime of a compiler generated temporary is well defined by the C++
12566 standard. When a lifetime of a temporary ends, and if the temporary lives
12567 in memory, the optimizing compiler has the freedom to reuse its stack
12568 space with other temporaries or scoped local variables whose live range
12569 does not overlap with it. However some of the legacy code relies on
12570 the behavior of older compilers in which temporaries' stack space is
12571 not reused, the aggressive stack reuse can lead to runtime errors. This
12572 option is used to control the temporary stack reuse optimization.
12573
12574 @item -ftrapv
12575 @opindex ftrapv
12576 This option generates traps for signed overflow on addition, subtraction,
12577 multiplication operations.
12578 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12579 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12580 @option{-fwrapv} being effective. Note that only active options override, so
12581 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12582 results in @option{-ftrapv} being effective.
12583
12584 @item -fwrapv
12585 @opindex fwrapv
12586 This option instructs the compiler to assume that signed arithmetic
12587 overflow of addition, subtraction and multiplication wraps around
12588 using twos-complement representation. This flag enables some optimizations
12589 and disables others.
12590 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
12591 @option{-ftrapv} @option{-fwrapv} on the command-line results in
12592 @option{-fwrapv} being effective. Note that only active options override, so
12593 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
12594 results in @option{-ftrapv} being effective.
12595
12596 @item -fwrapv-pointer
12597 @opindex fwrapv-pointer
12598 This option instructs the compiler to assume that pointer arithmetic
12599 overflow on addition and subtraction wraps around using twos-complement
12600 representation. This flag disables some optimizations which assume
12601 pointer overflow is invalid.
12602
12603 @item -fstrict-overflow
12604 @opindex fstrict-overflow
12605 This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
12606 negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
12607
12608 @item -fexceptions
12609 @opindex fexceptions
12610 Enable exception handling. Generates extra code needed to propagate
12611 exceptions. For some targets, this implies GCC generates frame
12612 unwind information for all functions, which can produce significant data
12613 size overhead, although it does not affect execution. If you do not
12614 specify this option, GCC enables it by default for languages like
12615 C++ that normally require exception handling, and disables it for
12616 languages like C that do not normally require it. However, you may need
12617 to enable this option when compiling C code that needs to interoperate
12618 properly with exception handlers written in C++. You may also wish to
12619 disable this option if you are compiling older C++ programs that don't
12620 use exception handling.
12621
12622 @item -fnon-call-exceptions
12623 @opindex fnon-call-exceptions
12624 Generate code that allows trapping instructions to throw exceptions.
12625 Note that this requires platform-specific runtime support that does
12626 not exist everywhere. Moreover, it only allows @emph{trapping}
12627 instructions to throw exceptions, i.e.@: memory references or floating-point
12628 instructions. It does not allow exceptions to be thrown from
12629 arbitrary signal handlers such as @code{SIGALRM}.
12630
12631 @item -fdelete-dead-exceptions
12632 @opindex fdelete-dead-exceptions
12633 Consider that instructions that may throw exceptions but don't otherwise
12634 contribute to the execution of the program can be optimized away.
12635 This option is enabled by default for the Ada front end, as permitted by
12636 the Ada language specification.
12637 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
12638
12639 @item -funwind-tables
12640 @opindex funwind-tables
12641 Similar to @option{-fexceptions}, except that it just generates any needed
12642 static data, but does not affect the generated code in any other way.
12643 You normally do not need to enable this option; instead, a language processor
12644 that needs this handling enables it on your behalf.
12645
12646 @item -fasynchronous-unwind-tables
12647 @opindex fasynchronous-unwind-tables
12648 Generate unwind table in DWARF format, if supported by target machine. The
12649 table is exact at each instruction boundary, so it can be used for stack
12650 unwinding from asynchronous events (such as debugger or garbage collector).
12651
12652 @item -fno-gnu-unique
12653 @opindex fno-gnu-unique
12654 On systems with recent GNU assembler and C library, the C++ compiler
12655 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
12656 of template static data members and static local variables in inline
12657 functions are unique even in the presence of @code{RTLD_LOCAL}; this
12658 is necessary to avoid problems with a library used by two different
12659 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
12660 therefore disagreeing with the other one about the binding of the
12661 symbol. But this causes @code{dlclose} to be ignored for affected
12662 DSOs; if your program relies on reinitialization of a DSO via
12663 @code{dlclose} and @code{dlopen}, you can use
12664 @option{-fno-gnu-unique}.
12665
12666 @item -fpcc-struct-return
12667 @opindex fpcc-struct-return
12668 Return ``short'' @code{struct} and @code{union} values in memory like
12669 longer ones, rather than in registers. This convention is less
12670 efficient, but it has the advantage of allowing intercallability between
12671 GCC-compiled files and files compiled with other compilers, particularly
12672 the Portable C Compiler (pcc).
12673
12674 The precise convention for returning structures in memory depends
12675 on the target configuration macros.
12676
12677 Short structures and unions are those whose size and alignment match
12678 that of some integer type.
12679
12680 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
12681 switch is not binary compatible with code compiled with the
12682 @option{-freg-struct-return} switch.
12683 Use it to conform to a non-default application binary interface.
12684
12685 @item -freg-struct-return
12686 @opindex freg-struct-return
12687 Return @code{struct} and @code{union} values in registers when possible.
12688 This is more efficient for small structures than
12689 @option{-fpcc-struct-return}.
12690
12691 If you specify neither @option{-fpcc-struct-return} nor
12692 @option{-freg-struct-return}, GCC defaults to whichever convention is
12693 standard for the target. If there is no standard convention, GCC
12694 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
12695 the principal compiler. In those cases, we can choose the standard, and
12696 we chose the more efficient register return alternative.
12697
12698 @strong{Warning:} code compiled with the @option{-freg-struct-return}
12699 switch is not binary compatible with code compiled with the
12700 @option{-fpcc-struct-return} switch.
12701 Use it to conform to a non-default application binary interface.
12702
12703 @item -fshort-enums
12704 @opindex fshort-enums
12705 Allocate to an @code{enum} type only as many bytes as it needs for the
12706 declared range of possible values. Specifically, the @code{enum} type
12707 is equivalent to the smallest integer type that has enough room.
12708
12709 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
12710 code that is not binary compatible with code generated without that switch.
12711 Use it to conform to a non-default application binary interface.
12712
12713 @item -fshort-wchar
12714 @opindex fshort-wchar
12715 Override the underlying type for @code{wchar_t} to be @code{short
12716 unsigned int} instead of the default for the target. This option is
12717 useful for building programs to run under WINE@.
12718
12719 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
12720 code that is not binary compatible with code generated without that switch.
12721 Use it to conform to a non-default application binary interface.
12722
12723 @item -fno-common
12724 @opindex fno-common
12725 @cindex tentative definitions
12726 In C code, this option controls the placement of global variables
12727 defined without an initializer, known as @dfn{tentative definitions}
12728 in the C standard. Tentative definitions are distinct from declarations
12729 of a variable with the @code{extern} keyword, which do not allocate storage.
12730
12731 Unix C compilers have traditionally allocated storage for
12732 uninitialized global variables in a common block. This allows the
12733 linker to resolve all tentative definitions of the same variable
12734 in different compilation units to the same object, or to a non-tentative
12735 definition.
12736 This is the behavior specified by @option{-fcommon}, and is the default for
12737 GCC on most targets.
12738 On the other hand, this behavior is not required by ISO
12739 C, and on some targets may carry a speed or code size penalty on
12740 variable references.
12741
12742 The @option{-fno-common} option specifies that the compiler should instead
12743 place uninitialized global variables in the data section of the object file.
12744 This inhibits the merging of tentative definitions by the linker so
12745 you get a multiple-definition error if the same
12746 variable is defined in more than one compilation unit.
12747 Compiling with @option{-fno-common} is useful on targets for which
12748 it provides better performance, or if you wish to verify that the
12749 program will work on other systems that always treat uninitialized
12750 variable definitions this way.
12751
12752 @item -fno-ident
12753 @opindex fno-ident
12754 Ignore the @code{#ident} directive.
12755
12756 @item -finhibit-size-directive
12757 @opindex finhibit-size-directive
12758 Don't output a @code{.size} assembler directive, or anything else that
12759 would cause trouble if the function is split in the middle, and the
12760 two halves are placed at locations far apart in memory. This option is
12761 used when compiling @file{crtstuff.c}; you should not need to use it
12762 for anything else.
12763
12764 @item -fverbose-asm
12765 @opindex fverbose-asm
12766 Put extra commentary information in the generated assembly code to
12767 make it more readable. This option is generally only of use to those
12768 who actually need to read the generated assembly code (perhaps while
12769 debugging the compiler itself).
12770
12771 @option{-fno-verbose-asm}, the default, causes the
12772 extra information to be omitted and is useful when comparing two assembler
12773 files.
12774
12775 The added comments include:
12776
12777 @itemize @bullet
12778
12779 @item
12780 information on the compiler version and command-line options,
12781
12782 @item
12783 the source code lines associated with the assembly instructions,
12784 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
12785
12786 @item
12787 hints on which high-level expressions correspond to
12788 the various assembly instruction operands.
12789
12790 @end itemize
12791
12792 For example, given this C source file:
12793
12794 @smallexample
12795 int test (int n)
12796 @{
12797 int i;
12798 int total = 0;
12799
12800 for (i = 0; i < n; i++)
12801 total += i * i;
12802
12803 return total;
12804 @}
12805 @end smallexample
12806
12807 compiling to (x86_64) assembly via @option{-S} and emitting the result
12808 direct to stdout via @option{-o} @option{-}
12809
12810 @smallexample
12811 gcc -S test.c -fverbose-asm -Os -o -
12812 @end smallexample
12813
12814 gives output similar to this:
12815
12816 @smallexample
12817 .file "test.c"
12818 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
12819 [...snip...]
12820 # options passed:
12821 [...snip...]
12822
12823 .text
12824 .globl test
12825 .type test, @@function
12826 test:
12827 .LFB0:
12828 .cfi_startproc
12829 # test.c:4: int total = 0;
12830 xorl %eax, %eax # <retval>
12831 # test.c:6: for (i = 0; i < n; i++)
12832 xorl %edx, %edx # i
12833 .L2:
12834 # test.c:6: for (i = 0; i < n; i++)
12835 cmpl %edi, %edx # n, i
12836 jge .L5 #,
12837 # test.c:7: total += i * i;
12838 movl %edx, %ecx # i, tmp92
12839 imull %edx, %ecx # i, tmp92
12840 # test.c:6: for (i = 0; i < n; i++)
12841 incl %edx # i
12842 # test.c:7: total += i * i;
12843 addl %ecx, %eax # tmp92, <retval>
12844 jmp .L2 #
12845 .L5:
12846 # test.c:10: @}
12847 ret
12848 .cfi_endproc
12849 .LFE0:
12850 .size test, .-test
12851 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
12852 .section .note.GNU-stack,"",@@progbits
12853 @end smallexample
12854
12855 The comments are intended for humans rather than machines and hence the
12856 precise format of the comments is subject to change.
12857
12858 @item -frecord-gcc-switches
12859 @opindex frecord-gcc-switches
12860 This switch causes the command line used to invoke the
12861 compiler to be recorded into the object file that is being created.
12862 This switch is only implemented on some targets and the exact format
12863 of the recording is target and binary file format dependent, but it
12864 usually takes the form of a section containing ASCII text. This
12865 switch is related to the @option{-fverbose-asm} switch, but that
12866 switch only records information in the assembler output file as
12867 comments, so it never reaches the object file.
12868 See also @option{-grecord-gcc-switches} for another
12869 way of storing compiler options into the object file.
12870
12871 @item -fpic
12872 @opindex fpic
12873 @cindex global offset table
12874 @cindex PIC
12875 Generate position-independent code (PIC) suitable for use in a shared
12876 library, if supported for the target machine. Such code accesses all
12877 constant addresses through a global offset table (GOT)@. The dynamic
12878 loader resolves the GOT entries when the program starts (the dynamic
12879 loader is not part of GCC; it is part of the operating system). If
12880 the GOT size for the linked executable exceeds a machine-specific
12881 maximum size, you get an error message from the linker indicating that
12882 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
12883 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
12884 on the m68k and RS/6000. The x86 has no such limit.)
12885
12886 Position-independent code requires special support, and therefore works
12887 only on certain machines. For the x86, GCC supports PIC for System V
12888 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
12889 position-independent.
12890
12891 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12892 are defined to 1.
12893
12894 @item -fPIC
12895 @opindex fPIC
12896 If supported for the target machine, emit position-independent code,
12897 suitable for dynamic linking and avoiding any limit on the size of the
12898 global offset table. This option makes a difference on AArch64, m68k,
12899 PowerPC and SPARC@.
12900
12901 Position-independent code requires special support, and therefore works
12902 only on certain machines.
12903
12904 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
12905 are defined to 2.
12906
12907 @item -fpie
12908 @itemx -fPIE
12909 @opindex fpie
12910 @opindex fPIE
12911 These options are similar to @option{-fpic} and @option{-fPIC}, but
12912 generated position independent code can be only linked into executables.
12913 Usually these options are used when @option{-pie} GCC option is
12914 used during linking.
12915
12916 @option{-fpie} and @option{-fPIE} both define the macros
12917 @code{__pie__} and @code{__PIE__}. The macros have the value 1
12918 for @option{-fpie} and 2 for @option{-fPIE}.
12919
12920 @item -fno-plt
12921 @opindex fno-plt
12922 Do not use the PLT for external function calls in position-independent code.
12923 Instead, load the callee address at call sites from the GOT and branch to it.
12924 This leads to more efficient code by eliminating PLT stubs and exposing
12925 GOT loads to optimizations. On architectures such as 32-bit x86 where
12926 PLT stubs expect the GOT pointer in a specific register, this gives more
12927 register allocation freedom to the compiler.
12928 Lazy binding requires use of the PLT;
12929 with @option{-fno-plt} all external symbols are resolved at load time.
12930
12931 Alternatively, the function attribute @code{noplt} can be used to avoid calls
12932 through the PLT for specific external functions.
12933
12934 In position-dependent code, a few targets also convert calls to
12935 functions that are marked to not use the PLT to use the GOT instead.
12936
12937 @item -fno-jump-tables
12938 @opindex fno-jump-tables
12939 Do not use jump tables for switch statements even where it would be
12940 more efficient than other code generation strategies. This option is
12941 of use in conjunction with @option{-fpic} or @option{-fPIC} for
12942 building code that forms part of a dynamic linker and cannot
12943 reference the address of a jump table. On some targets, jump tables
12944 do not require a GOT and this option is not needed.
12945
12946 @item -ffixed-@var{reg}
12947 @opindex ffixed
12948 Treat the register named @var{reg} as a fixed register; generated code
12949 should never refer to it (except perhaps as a stack pointer, frame
12950 pointer or in some other fixed role).
12951
12952 @var{reg} must be the name of a register. The register names accepted
12953 are machine-specific and are defined in the @code{REGISTER_NAMES}
12954 macro in the machine description macro file.
12955
12956 This flag does not have a negative form, because it specifies a
12957 three-way choice.
12958
12959 @item -fcall-used-@var{reg}
12960 @opindex fcall-used
12961 Treat the register named @var{reg} as an allocable register that is
12962 clobbered by function calls. It may be allocated for temporaries or
12963 variables that do not live across a call. Functions compiled this way
12964 do not save and restore the register @var{reg}.
12965
12966 It is an error to use this flag with the frame pointer or stack pointer.
12967 Use of this flag for other registers that have fixed pervasive roles in
12968 the machine's execution model produces disastrous results.
12969
12970 This flag does not have a negative form, because it specifies a
12971 three-way choice.
12972
12973 @item -fcall-saved-@var{reg}
12974 @opindex fcall-saved
12975 Treat the register named @var{reg} as an allocable register saved by
12976 functions. It may be allocated even for temporaries or variables that
12977 live across a call. Functions compiled this way save and restore
12978 the register @var{reg} if they use it.
12979
12980 It is an error to use this flag with the frame pointer or stack pointer.
12981 Use of this flag for other registers that have fixed pervasive roles in
12982 the machine's execution model produces disastrous results.
12983
12984 A different sort of disaster results from the use of this flag for
12985 a register in which function values may be returned.
12986
12987 This flag does not have a negative form, because it specifies a
12988 three-way choice.
12989
12990 @item -fpack-struct[=@var{n}]
12991 @opindex fpack-struct
12992 Without a value specified, pack all structure members together without
12993 holes. When a value is specified (which must be a small power of two), pack
12994 structure members according to this value, representing the maximum
12995 alignment (that is, objects with default alignment requirements larger than
12996 this are output potentially unaligned at the next fitting location.
12997
12998 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
12999 code that is not binary compatible with code generated without that switch.
13000 Additionally, it makes the code suboptimal.
13001 Use it to conform to a non-default application binary interface.
13002
13003 @item -fleading-underscore
13004 @opindex fleading-underscore
13005 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
13006 change the way C symbols are represented in the object file. One use
13007 is to help link with legacy assembly code.
13008
13009 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
13010 generate code that is not binary compatible with code generated without that
13011 switch. Use it to conform to a non-default application binary interface.
13012 Not all targets provide complete support for this switch.
13013
13014 @item -ftls-model=@var{model}
13015 @opindex ftls-model
13016 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
13017 The @var{model} argument should be one of @samp{global-dynamic},
13018 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
13019 Note that the choice is subject to optimization: the compiler may use
13020 a more efficient model for symbols not visible outside of the translation
13021 unit, or if @option{-fpic} is not given on the command line.
13022
13023 The default without @option{-fpic} is @samp{initial-exec}; with
13024 @option{-fpic} the default is @samp{global-dynamic}.
13025
13026 @item -ftrampolines
13027 @opindex ftrampolines
13028 For targets that normally need trampolines for nested functions, always
13029 generate them instead of using descriptors. Otherwise, for targets that
13030 do not need them, like for example HP-PA or IA-64, do nothing.
13031
13032 A trampoline is a small piece of code that is created at run time on the
13033 stack when the address of a nested function is taken, and is used to call
13034 the nested function indirectly. Therefore, it requires the stack to be
13035 made executable in order for the program to work properly.
13036
13037 @option{-fno-trampolines} is enabled by default on a language by language
13038 basis to let the compiler avoid generating them, if it computes that this
13039 is safe, and replace them with descriptors. Descriptors are made up of data
13040 only, but the generated code must be prepared to deal with them. As of this
13041 writing, @option{-fno-trampolines} is enabled by default only for Ada.
13042
13043 Moreover, code compiled with @option{-ftrampolines} and code compiled with
13044 @option{-fno-trampolines} are not binary compatible if nested functions are
13045 present. This option must therefore be used on a program-wide basis and be
13046 manipulated with extreme care.
13047
13048 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
13049 @opindex fvisibility
13050 Set the default ELF image symbol visibility to the specified option---all
13051 symbols are marked with this unless overridden within the code.
13052 Using this feature can very substantially improve linking and
13053 load times of shared object libraries, produce more optimized
13054 code, provide near-perfect API export and prevent symbol clashes.
13055 It is @strong{strongly} recommended that you use this in any shared objects
13056 you distribute.
13057
13058 Despite the nomenclature, @samp{default} always means public; i.e.,
13059 available to be linked against from outside the shared object.
13060 @samp{protected} and @samp{internal} are pretty useless in real-world
13061 usage so the only other commonly used option is @samp{hidden}.
13062 The default if @option{-fvisibility} isn't specified is
13063 @samp{default}, i.e., make every symbol public.
13064
13065 A good explanation of the benefits offered by ensuring ELF
13066 symbols have the correct visibility is given by ``How To Write
13067 Shared Libraries'' by Ulrich Drepper (which can be found at
13068 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
13069 solution made possible by this option to marking things hidden when
13070 the default is public is to make the default hidden and mark things
13071 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
13072 and @code{__attribute__ ((visibility("default")))} instead of
13073 @code{__declspec(dllexport)} you get almost identical semantics with
13074 identical syntax. This is a great boon to those working with
13075 cross-platform projects.
13076
13077 For those adding visibility support to existing code, you may find
13078 @code{#pragma GCC visibility} of use. This works by you enclosing
13079 the declarations you wish to set visibility for with (for example)
13080 @code{#pragma GCC visibility push(hidden)} and
13081 @code{#pragma GCC visibility pop}.
13082 Bear in mind that symbol visibility should be viewed @strong{as
13083 part of the API interface contract} and thus all new code should
13084 always specify visibility when it is not the default; i.e., declarations
13085 only for use within the local DSO should @strong{always} be marked explicitly
13086 as hidden as so to avoid PLT indirection overheads---making this
13087 abundantly clear also aids readability and self-documentation of the code.
13088 Note that due to ISO C++ specification requirements, @code{operator new} and
13089 @code{operator delete} must always be of default visibility.
13090
13091 Be aware that headers from outside your project, in particular system
13092 headers and headers from any other library you use, may not be
13093 expecting to be compiled with visibility other than the default. You
13094 may need to explicitly say @code{#pragma GCC visibility push(default)}
13095 before including any such headers.
13096
13097 @code{extern} declarations are not affected by @option{-fvisibility}, so
13098 a lot of code can be recompiled with @option{-fvisibility=hidden} with
13099 no modifications. However, this means that calls to @code{extern}
13100 functions with no explicit visibility use the PLT, so it is more
13101 effective to use @code{__attribute ((visibility))} and/or
13102 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
13103 declarations should be treated as hidden.
13104
13105 Note that @option{-fvisibility} does affect C++ vague linkage
13106 entities. This means that, for instance, an exception class that is
13107 be thrown between DSOs must be explicitly marked with default
13108 visibility so that the @samp{type_info} nodes are unified between
13109 the DSOs.
13110
13111 An overview of these techniques, their benefits and how to use them
13112 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
13113
13114 @item -fstrict-volatile-bitfields
13115 @opindex fstrict-volatile-bitfields
13116 This option should be used if accesses to volatile bit-fields (or other
13117 structure fields, although the compiler usually honors those types
13118 anyway) should use a single access of the width of the
13119 field's type, aligned to a natural alignment if possible. For
13120 example, targets with memory-mapped peripheral registers might require
13121 all such accesses to be 16 bits wide; with this flag you can
13122 declare all peripheral bit-fields as @code{unsigned short} (assuming short
13123 is 16 bits on these targets) to force GCC to use 16-bit accesses
13124 instead of, perhaps, a more efficient 32-bit access.
13125
13126 If this option is disabled, the compiler uses the most efficient
13127 instruction. In the previous example, that might be a 32-bit load
13128 instruction, even though that accesses bytes that do not contain
13129 any portion of the bit-field, or memory-mapped registers unrelated to
13130 the one being updated.
13131
13132 In some cases, such as when the @code{packed} attribute is applied to a
13133 structure field, it may not be possible to access the field with a single
13134 read or write that is correctly aligned for the target machine. In this
13135 case GCC falls back to generating multiple accesses rather than code that
13136 will fault or truncate the result at run time.
13137
13138 Note: Due to restrictions of the C/C++11 memory model, write accesses are
13139 not allowed to touch non bit-field members. It is therefore recommended
13140 to define all bits of the field's type as bit-field members.
13141
13142 The default value of this option is determined by the application binary
13143 interface for the target processor.
13144
13145 @item -fsync-libcalls
13146 @opindex fsync-libcalls
13147 This option controls whether any out-of-line instance of the @code{__sync}
13148 family of functions may be used to implement the C++11 @code{__atomic}
13149 family of functions.
13150
13151 The default value of this option is enabled, thus the only useful form
13152 of the option is @option{-fno-sync-libcalls}. This option is used in
13153 the implementation of the @file{libatomic} runtime library.
13154
13155 @end table
13156
13157 @node Developer Options
13158 @section GCC Developer Options
13159 @cindex developer options
13160 @cindex debugging GCC
13161 @cindex debug dump options
13162 @cindex dump options
13163 @cindex compilation statistics
13164
13165 This section describes command-line options that are primarily of
13166 interest to GCC developers, including options to support compiler
13167 testing and investigation of compiler bugs and compile-time
13168 performance problems. This includes options that produce debug dumps
13169 at various points in the compilation; that print statistics such as
13170 memory use and execution time; and that print information about GCC's
13171 configuration, such as where it searches for libraries. You should
13172 rarely need to use any of these options for ordinary compilation and
13173 linking tasks.
13174
13175 @table @gcctabopt
13176
13177 @item -d@var{letters}
13178 @itemx -fdump-rtl-@var{pass}
13179 @itemx -fdump-rtl-@var{pass}=@var{filename}
13180 @opindex d
13181 @opindex fdump-rtl-@var{pass}
13182 Says to make debugging dumps during compilation at times specified by
13183 @var{letters}. This is used for debugging the RTL-based passes of the
13184 compiler. The file names for most of the dumps are made by appending
13185 a pass number and a word to the @var{dumpname}, and the files are
13186 created in the directory of the output file. In case of
13187 @option{=@var{filename}} option, the dump is output on the given file
13188 instead of the pass numbered dump files. Note that the pass number is
13189 assigned as passes are registered into the pass manager. Most passes
13190 are registered in the order that they will execute and for these passes
13191 the number corresponds to the pass execution order. However, passes
13192 registered by plugins, passes specific to compilation targets, or
13193 passes that are otherwise registered after all the other passes are
13194 numbered higher than a pass named "final", even if they are executed
13195 earlier. @var{dumpname} is generated from the name of the output
13196 file if explicitly specified and not an executable, otherwise it is
13197 the basename of the source file.
13198
13199 Some @option{-d@var{letters}} switches have different meaning when
13200 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
13201 for information about preprocessor-specific dump options.
13202
13203 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
13204 @option{-d} option @var{letters}. Here are the possible
13205 letters for use in @var{pass} and @var{letters}, and their meanings:
13206
13207 @table @gcctabopt
13208
13209 @item -fdump-rtl-alignments
13210 @opindex fdump-rtl-alignments
13211 Dump after branch alignments have been computed.
13212
13213 @item -fdump-rtl-asmcons
13214 @opindex fdump-rtl-asmcons
13215 Dump after fixing rtl statements that have unsatisfied in/out constraints.
13216
13217 @item -fdump-rtl-auto_inc_dec
13218 @opindex fdump-rtl-auto_inc_dec
13219 Dump after auto-inc-dec discovery. This pass is only run on
13220 architectures that have auto inc or auto dec instructions.
13221
13222 @item -fdump-rtl-barriers
13223 @opindex fdump-rtl-barriers
13224 Dump after cleaning up the barrier instructions.
13225
13226 @item -fdump-rtl-bbpart
13227 @opindex fdump-rtl-bbpart
13228 Dump after partitioning hot and cold basic blocks.
13229
13230 @item -fdump-rtl-bbro
13231 @opindex fdump-rtl-bbro
13232 Dump after block reordering.
13233
13234 @item -fdump-rtl-btl1
13235 @itemx -fdump-rtl-btl2
13236 @opindex fdump-rtl-btl2
13237 @opindex fdump-rtl-btl2
13238 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
13239 after the two branch
13240 target load optimization passes.
13241
13242 @item -fdump-rtl-bypass
13243 @opindex fdump-rtl-bypass
13244 Dump after jump bypassing and control flow optimizations.
13245
13246 @item -fdump-rtl-combine
13247 @opindex fdump-rtl-combine
13248 Dump after the RTL instruction combination pass.
13249
13250 @item -fdump-rtl-compgotos
13251 @opindex fdump-rtl-compgotos
13252 Dump after duplicating the computed gotos.
13253
13254 @item -fdump-rtl-ce1
13255 @itemx -fdump-rtl-ce2
13256 @itemx -fdump-rtl-ce3
13257 @opindex fdump-rtl-ce1
13258 @opindex fdump-rtl-ce2
13259 @opindex fdump-rtl-ce3
13260 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
13261 @option{-fdump-rtl-ce3} enable dumping after the three
13262 if conversion passes.
13263
13264 @item -fdump-rtl-cprop_hardreg
13265 @opindex fdump-rtl-cprop_hardreg
13266 Dump after hard register copy propagation.
13267
13268 @item -fdump-rtl-csa
13269 @opindex fdump-rtl-csa
13270 Dump after combining stack adjustments.
13271
13272 @item -fdump-rtl-cse1
13273 @itemx -fdump-rtl-cse2
13274 @opindex fdump-rtl-cse1
13275 @opindex fdump-rtl-cse2
13276 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
13277 the two common subexpression elimination passes.
13278
13279 @item -fdump-rtl-dce
13280 @opindex fdump-rtl-dce
13281 Dump after the standalone dead code elimination passes.
13282
13283 @item -fdump-rtl-dbr
13284 @opindex fdump-rtl-dbr
13285 Dump after delayed branch scheduling.
13286
13287 @item -fdump-rtl-dce1
13288 @itemx -fdump-rtl-dce2
13289 @opindex fdump-rtl-dce1
13290 @opindex fdump-rtl-dce2
13291 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
13292 the two dead store elimination passes.
13293
13294 @item -fdump-rtl-eh
13295 @opindex fdump-rtl-eh
13296 Dump after finalization of EH handling code.
13297
13298 @item -fdump-rtl-eh_ranges
13299 @opindex fdump-rtl-eh_ranges
13300 Dump after conversion of EH handling range regions.
13301
13302 @item -fdump-rtl-expand
13303 @opindex fdump-rtl-expand
13304 Dump after RTL generation.
13305
13306 @item -fdump-rtl-fwprop1
13307 @itemx -fdump-rtl-fwprop2
13308 @opindex fdump-rtl-fwprop1
13309 @opindex fdump-rtl-fwprop2
13310 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
13311 dumping after the two forward propagation passes.
13312
13313 @item -fdump-rtl-gcse1
13314 @itemx -fdump-rtl-gcse2
13315 @opindex fdump-rtl-gcse1
13316 @opindex fdump-rtl-gcse2
13317 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
13318 after global common subexpression elimination.
13319
13320 @item -fdump-rtl-init-regs
13321 @opindex fdump-rtl-init-regs
13322 Dump after the initialization of the registers.
13323
13324 @item -fdump-rtl-initvals
13325 @opindex fdump-rtl-initvals
13326 Dump after the computation of the initial value sets.
13327
13328 @item -fdump-rtl-into_cfglayout
13329 @opindex fdump-rtl-into_cfglayout
13330 Dump after converting to cfglayout mode.
13331
13332 @item -fdump-rtl-ira
13333 @opindex fdump-rtl-ira
13334 Dump after iterated register allocation.
13335
13336 @item -fdump-rtl-jump
13337 @opindex fdump-rtl-jump
13338 Dump after the second jump optimization.
13339
13340 @item -fdump-rtl-loop2
13341 @opindex fdump-rtl-loop2
13342 @option{-fdump-rtl-loop2} enables dumping after the rtl
13343 loop optimization passes.
13344
13345 @item -fdump-rtl-mach
13346 @opindex fdump-rtl-mach
13347 Dump after performing the machine dependent reorganization pass, if that
13348 pass exists.
13349
13350 @item -fdump-rtl-mode_sw
13351 @opindex fdump-rtl-mode_sw
13352 Dump after removing redundant mode switches.
13353
13354 @item -fdump-rtl-rnreg
13355 @opindex fdump-rtl-rnreg
13356 Dump after register renumbering.
13357
13358 @item -fdump-rtl-outof_cfglayout
13359 @opindex fdump-rtl-outof_cfglayout
13360 Dump after converting from cfglayout mode.
13361
13362 @item -fdump-rtl-peephole2
13363 @opindex fdump-rtl-peephole2
13364 Dump after the peephole pass.
13365
13366 @item -fdump-rtl-postreload
13367 @opindex fdump-rtl-postreload
13368 Dump after post-reload optimizations.
13369
13370 @item -fdump-rtl-pro_and_epilogue
13371 @opindex fdump-rtl-pro_and_epilogue
13372 Dump after generating the function prologues and epilogues.
13373
13374 @item -fdump-rtl-sched1
13375 @itemx -fdump-rtl-sched2
13376 @opindex fdump-rtl-sched1
13377 @opindex fdump-rtl-sched2
13378 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
13379 after the basic block scheduling passes.
13380
13381 @item -fdump-rtl-ree
13382 @opindex fdump-rtl-ree
13383 Dump after sign/zero extension elimination.
13384
13385 @item -fdump-rtl-seqabstr
13386 @opindex fdump-rtl-seqabstr
13387 Dump after common sequence discovery.
13388
13389 @item -fdump-rtl-shorten
13390 @opindex fdump-rtl-shorten
13391 Dump after shortening branches.
13392
13393 @item -fdump-rtl-sibling
13394 @opindex fdump-rtl-sibling
13395 Dump after sibling call optimizations.
13396
13397 @item -fdump-rtl-split1
13398 @itemx -fdump-rtl-split2
13399 @itemx -fdump-rtl-split3
13400 @itemx -fdump-rtl-split4
13401 @itemx -fdump-rtl-split5
13402 @opindex fdump-rtl-split1
13403 @opindex fdump-rtl-split2
13404 @opindex fdump-rtl-split3
13405 @opindex fdump-rtl-split4
13406 @opindex fdump-rtl-split5
13407 These options enable dumping after five rounds of
13408 instruction splitting.
13409
13410 @item -fdump-rtl-sms
13411 @opindex fdump-rtl-sms
13412 Dump after modulo scheduling. This pass is only run on some
13413 architectures.
13414
13415 @item -fdump-rtl-stack
13416 @opindex fdump-rtl-stack
13417 Dump after conversion from GCC's ``flat register file'' registers to the
13418 x87's stack-like registers. This pass is only run on x86 variants.
13419
13420 @item -fdump-rtl-subreg1
13421 @itemx -fdump-rtl-subreg2
13422 @opindex fdump-rtl-subreg1
13423 @opindex fdump-rtl-subreg2
13424 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
13425 the two subreg expansion passes.
13426
13427 @item -fdump-rtl-unshare
13428 @opindex fdump-rtl-unshare
13429 Dump after all rtl has been unshared.
13430
13431 @item -fdump-rtl-vartrack
13432 @opindex fdump-rtl-vartrack
13433 Dump after variable tracking.
13434
13435 @item -fdump-rtl-vregs
13436 @opindex fdump-rtl-vregs
13437 Dump after converting virtual registers to hard registers.
13438
13439 @item -fdump-rtl-web
13440 @opindex fdump-rtl-web
13441 Dump after live range splitting.
13442
13443 @item -fdump-rtl-regclass
13444 @itemx -fdump-rtl-subregs_of_mode_init
13445 @itemx -fdump-rtl-subregs_of_mode_finish
13446 @itemx -fdump-rtl-dfinit
13447 @itemx -fdump-rtl-dfinish
13448 @opindex fdump-rtl-regclass
13449 @opindex fdump-rtl-subregs_of_mode_init
13450 @opindex fdump-rtl-subregs_of_mode_finish
13451 @opindex fdump-rtl-dfinit
13452 @opindex fdump-rtl-dfinish
13453 These dumps are defined but always produce empty files.
13454
13455 @item -da
13456 @itemx -fdump-rtl-all
13457 @opindex da
13458 @opindex fdump-rtl-all
13459 Produce all the dumps listed above.
13460
13461 @item -dA
13462 @opindex dA
13463 Annotate the assembler output with miscellaneous debugging information.
13464
13465 @item -dD
13466 @opindex dD
13467 Dump all macro definitions, at the end of preprocessing, in addition to
13468 normal output.
13469
13470 @item -dH
13471 @opindex dH
13472 Produce a core dump whenever an error occurs.
13473
13474 @item -dp
13475 @opindex dp
13476 Annotate the assembler output with a comment indicating which
13477 pattern and alternative is used. The length and cost of each instruction are
13478 also printed.
13479
13480 @item -dP
13481 @opindex dP
13482 Dump the RTL in the assembler output as a comment before each instruction.
13483 Also turns on @option{-dp} annotation.
13484
13485 @item -dx
13486 @opindex dx
13487 Just generate RTL for a function instead of compiling it. Usually used
13488 with @option{-fdump-rtl-expand}.
13489 @end table
13490
13491 @item -fdump-noaddr
13492 @opindex fdump-noaddr
13493 When doing debugging dumps, suppress address output. This makes it more
13494 feasible to use diff on debugging dumps for compiler invocations with
13495 different compiler binaries and/or different
13496 text / bss / data / heap / stack / dso start locations.
13497
13498 @item -freport-bug
13499 @opindex freport-bug
13500 Collect and dump debug information into a temporary file if an
13501 internal compiler error (ICE) occurs.
13502
13503 @item -fdump-unnumbered
13504 @opindex fdump-unnumbered
13505 When doing debugging dumps, suppress instruction numbers and address output.
13506 This makes it more feasible to use diff on debugging dumps for compiler
13507 invocations with different options, in particular with and without
13508 @option{-g}.
13509
13510 @item -fdump-unnumbered-links
13511 @opindex fdump-unnumbered-links
13512 When doing debugging dumps (see @option{-d} option above), suppress
13513 instruction numbers for the links to the previous and next instructions
13514 in a sequence.
13515
13516 @item -fdump-ipa-@var{switch}
13517 @opindex fdump-ipa
13518 Control the dumping at various stages of inter-procedural analysis
13519 language tree to a file. The file name is generated by appending a
13520 switch specific suffix to the source file name, and the file is created
13521 in the same directory as the output file. The following dumps are
13522 possible:
13523
13524 @table @samp
13525 @item all
13526 Enables all inter-procedural analysis dumps.
13527
13528 @item cgraph
13529 Dumps information about call-graph optimization, unused function removal,
13530 and inlining decisions.
13531
13532 @item inline
13533 Dump after function inlining.
13534
13535 @end table
13536
13537 @item -fdump-lang-all
13538 @itemx -fdump-lang-@var{switch}
13539 @itemx -fdump-lang-@var{switch}-@var{options}
13540 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
13541 @opindex fdump-lang-all
13542 @opindex fdump-lang
13543 Control the dumping of language-specific information. The @var{options}
13544 and @var{filename} portions behave as described in the
13545 @option{-fdump-tree} option. The following @var{switch} values are
13546 accepted:
13547
13548 @table @samp
13549 @item all
13550
13551 Enable all language-specific dumps.
13552
13553 @item class
13554 Dump class hierarchy information. Virtual table information is emitted
13555 unless '@option{slim}' is specified. This option is applicable to C++ only.
13556
13557 @item raw
13558 Dump the raw internal tree data. This option is applicable to C++ only.
13559
13560 @end table
13561
13562 @item -fdump-passes
13563 @opindex fdump-passes
13564 Print on @file{stderr} the list of optimization passes that are turned
13565 on and off by the current command-line options.
13566
13567 @item -fdump-statistics-@var{option}
13568 @opindex fdump-statistics
13569 Enable and control dumping of pass statistics in a separate file. The
13570 file name is generated by appending a suffix ending in
13571 @samp{.statistics} to the source file name, and the file is created in
13572 the same directory as the output file. If the @samp{-@var{option}}
13573 form is used, @samp{-stats} causes counters to be summed over the
13574 whole compilation unit while @samp{-details} dumps every event as
13575 the passes generate them. The default with no option is to sum
13576 counters for each function compiled.
13577
13578 @item -fdump-tree-all
13579 @itemx -fdump-tree-@var{switch}
13580 @itemx -fdump-tree-@var{switch}-@var{options}
13581 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
13582 @opindex fdump-tree-all
13583 @opindex fdump-tree
13584 Control the dumping at various stages of processing the intermediate
13585 language tree to a file. The file name is generated by appending a
13586 switch-specific suffix to the source file name, and the file is
13587 created in the same directory as the output file. In case of
13588 @option{=@var{filename}} option, the dump is output on the given file
13589 instead of the auto named dump files. If the @samp{-@var{options}}
13590 form is used, @var{options} is a list of @samp{-} separated options
13591 which control the details of the dump. Not all options are applicable
13592 to all dumps; those that are not meaningful are ignored. The
13593 following options are available
13594
13595 @table @samp
13596 @item address
13597 Print the address of each node. Usually this is not meaningful as it
13598 changes according to the environment and source file. Its primary use
13599 is for tying up a dump file with a debug environment.
13600 @item asmname
13601 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
13602 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
13603 use working backward from mangled names in the assembly file.
13604 @item slim
13605 When dumping front-end intermediate representations, inhibit dumping
13606 of members of a scope or body of a function merely because that scope
13607 has been reached. Only dump such items when they are directly reachable
13608 by some other path.
13609
13610 When dumping pretty-printed trees, this option inhibits dumping the
13611 bodies of control structures.
13612
13613 When dumping RTL, print the RTL in slim (condensed) form instead of
13614 the default LISP-like representation.
13615 @item raw
13616 Print a raw representation of the tree. By default, trees are
13617 pretty-printed into a C-like representation.
13618 @item details
13619 Enable more detailed dumps (not honored by every dump option). Also
13620 include information from the optimization passes.
13621 @item stats
13622 Enable dumping various statistics about the pass (not honored by every dump
13623 option).
13624 @item blocks
13625 Enable showing basic block boundaries (disabled in raw dumps).
13626 @item graph
13627 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
13628 dump a representation of the control flow graph suitable for viewing with
13629 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
13630 the file is pretty-printed as a subgraph, so that GraphViz can render them
13631 all in a single plot.
13632
13633 This option currently only works for RTL dumps, and the RTL is always
13634 dumped in slim form.
13635 @item vops
13636 Enable showing virtual operands for every statement.
13637 @item lineno
13638 Enable showing line numbers for statements.
13639 @item uid
13640 Enable showing the unique ID (@code{DECL_UID}) for each variable.
13641 @item verbose
13642 Enable showing the tree dump for each statement.
13643 @item eh
13644 Enable showing the EH region number holding each statement.
13645 @item scev
13646 Enable showing scalar evolution analysis details.
13647 @item optimized
13648 Enable showing optimization information (only available in certain
13649 passes).
13650 @item missed
13651 Enable showing missed optimization information (only available in certain
13652 passes).
13653 @item note
13654 Enable other detailed optimization information (only available in
13655 certain passes).
13656 @item =@var{filename}
13657 Instead of an auto named dump file, output into the given file
13658 name. The file names @file{stdout} and @file{stderr} are treated
13659 specially and are considered already open standard streams. For
13660 example,
13661
13662 @smallexample
13663 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
13664 -fdump-tree-pre=/dev/stderr file.c
13665 @end smallexample
13666
13667 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
13668 output on to @file{stderr}. If two conflicting dump filenames are
13669 given for the same pass, then the latter option overrides the earlier
13670 one.
13671
13672 @item all
13673 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
13674 and @option{lineno}.
13675
13676 @item optall
13677 Turn on all optimization options, i.e., @option{optimized},
13678 @option{missed}, and @option{note}.
13679 @end table
13680
13681 To determine what tree dumps are available or find the dump for a pass
13682 of interest follow the steps below.
13683
13684 @enumerate
13685 @item
13686 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
13687 look for a code that corresponds to the pass you are interested in.
13688 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
13689 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
13690 The number at the end distinguishes distinct invocations of the same pass.
13691 @item
13692 To enable the creation of the dump file, append the pass code to
13693 the @option{-fdump-} option prefix and invoke GCC with it. For example,
13694 to enable the dump from the Early Value Range Propagation pass, invoke
13695 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
13696 specify the name of the dump file. If you don't specify one, GCC
13697 creates as described below.
13698 @item
13699 Find the pass dump in a file whose name is composed of three components
13700 separated by a period: the name of the source file GCC was invoked to
13701 compile, a numeric suffix indicating the pass number followed by the
13702 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
13703 and finally the pass code. For example, the Early VRP pass dump might
13704 be in a file named @file{myfile.c.038t.evrp} in the current working
13705 directory. Note that the numeric codes are not stable and may change
13706 from one version of GCC to another.
13707 @end enumerate
13708
13709 @item -fopt-info
13710 @itemx -fopt-info-@var{options}
13711 @itemx -fopt-info-@var{options}=@var{filename}
13712 @opindex fopt-info
13713 Controls optimization dumps from various optimization passes. If the
13714 @samp{-@var{options}} form is used, @var{options} is a list of
13715 @samp{-} separated option keywords to select the dump details and
13716 optimizations.
13717
13718 The @var{options} can be divided into two groups: options describing the
13719 verbosity of the dump, and options describing which optimizations
13720 should be included. The options from both the groups can be freely
13721 mixed as they are non-overlapping. However, in case of any conflicts,
13722 the later options override the earlier options on the command
13723 line.
13724
13725 The following options control the dump verbosity:
13726
13727 @table @samp
13728 @item optimized
13729 Print information when an optimization is successfully applied. It is
13730 up to a pass to decide which information is relevant. For example, the
13731 vectorizer passes print the source location of loops which are
13732 successfully vectorized.
13733 @item missed
13734 Print information about missed optimizations. Individual passes
13735 control which information to include in the output.
13736 @item note
13737 Print verbose information about optimizations, such as certain
13738 transformations, more detailed messages about decisions etc.
13739 @item all
13740 Print detailed optimization information. This includes
13741 @samp{optimized}, @samp{missed}, and @samp{note}.
13742 @end table
13743
13744 One or more of the following option keywords can be used to describe a
13745 group of optimizations:
13746
13747 @table @samp
13748 @item ipa
13749 Enable dumps from all interprocedural optimizations.
13750 @item loop
13751 Enable dumps from all loop optimizations.
13752 @item inline
13753 Enable dumps from all inlining optimizations.
13754 @item omp
13755 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
13756 @item vec
13757 Enable dumps from all vectorization optimizations.
13758 @item optall
13759 Enable dumps from all optimizations. This is a superset of
13760 the optimization groups listed above.
13761 @end table
13762
13763 If @var{options} is
13764 omitted, it defaults to @samp{optimized-optall}, which means to dump all
13765 info about successful optimizations from all the passes.
13766
13767 If the @var{filename} is provided, then the dumps from all the
13768 applicable optimizations are concatenated into the @var{filename}.
13769 Otherwise the dump is output onto @file{stderr}. Though multiple
13770 @option{-fopt-info} options are accepted, only one of them can include
13771 a @var{filename}. If other filenames are provided then all but the
13772 first such option are ignored.
13773
13774 Note that the output @var{filename} is overwritten
13775 in case of multiple translation units. If a combined output from
13776 multiple translation units is desired, @file{stderr} should be used
13777 instead.
13778
13779 In the following example, the optimization info is output to
13780 @file{stderr}:
13781
13782 @smallexample
13783 gcc -O3 -fopt-info
13784 @end smallexample
13785
13786 This example:
13787 @smallexample
13788 gcc -O3 -fopt-info-missed=missed.all
13789 @end smallexample
13790
13791 @noindent
13792 outputs missed optimization report from all the passes into
13793 @file{missed.all}, and this one:
13794
13795 @smallexample
13796 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
13797 @end smallexample
13798
13799 @noindent
13800 prints information about missed optimization opportunities from
13801 vectorization passes on @file{stderr}.
13802 Note that @option{-fopt-info-vec-missed} is equivalent to
13803 @option{-fopt-info-missed-vec}. The order of the optimization group
13804 names and message types listed after @option{-fopt-info} does not matter.
13805
13806 As another example,
13807 @smallexample
13808 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
13809 @end smallexample
13810
13811 @noindent
13812 outputs information about missed optimizations as well as
13813 optimized locations from all the inlining passes into
13814 @file{inline.txt}.
13815
13816 Finally, consider:
13817
13818 @smallexample
13819 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
13820 @end smallexample
13821
13822 @noindent
13823 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
13824 in conflict since only one output file is allowed. In this case, only
13825 the first option takes effect and the subsequent options are
13826 ignored. Thus only @file{vec.miss} is produced which contains
13827 dumps from the vectorizer about missed opportunities.
13828
13829 @item -fsched-verbose=@var{n}
13830 @opindex fsched-verbose
13831 On targets that use instruction scheduling, this option controls the
13832 amount of debugging output the scheduler prints to the dump files.
13833
13834 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
13835 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
13836 For @var{n} greater than one, it also output basic block probabilities,
13837 detailed ready list information and unit/insn info. For @var{n} greater
13838 than two, it includes RTL at abort point, control-flow and regions info.
13839 And for @var{n} over four, @option{-fsched-verbose} also includes
13840 dependence info.
13841
13842
13843
13844 @item -fenable-@var{kind}-@var{pass}
13845 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
13846 @opindex fdisable-
13847 @opindex fenable-
13848
13849 This is a set of options that are used to explicitly disable/enable
13850 optimization passes. These options are intended for use for debugging GCC.
13851 Compiler users should use regular options for enabling/disabling
13852 passes instead.
13853
13854 @table @gcctabopt
13855
13856 @item -fdisable-ipa-@var{pass}
13857 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13858 statically invoked in the compiler multiple times, the pass name should be
13859 appended with a sequential number starting from 1.
13860
13861 @item -fdisable-rtl-@var{pass}
13862 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
13863 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
13864 statically invoked in the compiler multiple times, the pass name should be
13865 appended with a sequential number starting from 1. @var{range-list} is a
13866 comma-separated list of function ranges or assembler names. Each range is a number
13867 pair separated by a colon. The range is inclusive in both ends. If the range
13868 is trivial, the number pair can be simplified as a single number. If the
13869 function's call graph node's @var{uid} falls within one of the specified ranges,
13870 the @var{pass} is disabled for that function. The @var{uid} is shown in the
13871 function header of a dump file, and the pass names can be dumped by using
13872 option @option{-fdump-passes}.
13873
13874 @item -fdisable-tree-@var{pass}
13875 @itemx -fdisable-tree-@var{pass}=@var{range-list}
13876 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
13877 option arguments.
13878
13879 @item -fenable-ipa-@var{pass}
13880 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
13881 statically invoked in the compiler multiple times, the pass name should be
13882 appended with a sequential number starting from 1.
13883
13884 @item -fenable-rtl-@var{pass}
13885 @itemx -fenable-rtl-@var{pass}=@var{range-list}
13886 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
13887 description and examples.
13888
13889 @item -fenable-tree-@var{pass}
13890 @itemx -fenable-tree-@var{pass}=@var{range-list}
13891 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
13892 of option arguments.
13893
13894 @end table
13895
13896 Here are some examples showing uses of these options.
13897
13898 @smallexample
13899
13900 # disable ccp1 for all functions
13901 -fdisable-tree-ccp1
13902 # disable complete unroll for function whose cgraph node uid is 1
13903 -fenable-tree-cunroll=1
13904 # disable gcse2 for functions at the following ranges [1,1],
13905 # [300,400], and [400,1000]
13906 # disable gcse2 for functions foo and foo2
13907 -fdisable-rtl-gcse2=foo,foo2
13908 # disable early inlining
13909 -fdisable-tree-einline
13910 # disable ipa inlining
13911 -fdisable-ipa-inline
13912 # enable tree full unroll
13913 -fenable-tree-unroll
13914
13915 @end smallexample
13916
13917 @item -fchecking
13918 @itemx -fchecking=@var{n}
13919 @opindex fchecking
13920 @opindex fno-checking
13921 Enable internal consistency checking. The default depends on
13922 the compiler configuration. @option{-fchecking=2} enables further
13923 internal consistency checking that might affect code generation.
13924
13925 @item -frandom-seed=@var{string}
13926 @opindex frandom-seed
13927 This option provides a seed that GCC uses in place of
13928 random numbers in generating certain symbol names
13929 that have to be different in every compiled file. It is also used to
13930 place unique stamps in coverage data files and the object files that
13931 produce them. You can use the @option{-frandom-seed} option to produce
13932 reproducibly identical object files.
13933
13934 The @var{string} can either be a number (decimal, octal or hex) or an
13935 arbitrary string (in which case it's converted to a number by
13936 computing CRC32).
13937
13938 The @var{string} should be different for every file you compile.
13939
13940 @item -save-temps
13941 @itemx -save-temps=cwd
13942 @opindex save-temps
13943 Store the usual ``temporary'' intermediate files permanently; place them
13944 in the current directory and name them based on the source file. Thus,
13945 compiling @file{foo.c} with @option{-c -save-temps} produces files
13946 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
13947 preprocessed @file{foo.i} output file even though the compiler now
13948 normally uses an integrated preprocessor.
13949
13950 When used in combination with the @option{-x} command-line option,
13951 @option{-save-temps} is sensible enough to avoid over writing an
13952 input source file with the same extension as an intermediate file.
13953 The corresponding intermediate file may be obtained by renaming the
13954 source file before using @option{-save-temps}.
13955
13956 If you invoke GCC in parallel, compiling several different source
13957 files that share a common base name in different subdirectories or the
13958 same source file compiled for multiple output destinations, it is
13959 likely that the different parallel compilers will interfere with each
13960 other, and overwrite the temporary files. For instance:
13961
13962 @smallexample
13963 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
13964 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
13965 @end smallexample
13966
13967 may result in @file{foo.i} and @file{foo.o} being written to
13968 simultaneously by both compilers.
13969
13970 @item -save-temps=obj
13971 @opindex save-temps=obj
13972 Store the usual ``temporary'' intermediate files permanently. If the
13973 @option{-o} option is used, the temporary files are based on the
13974 object file. If the @option{-o} option is not used, the
13975 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
13976
13977 For example:
13978
13979 @smallexample
13980 gcc -save-temps=obj -c foo.c
13981 gcc -save-temps=obj -c bar.c -o dir/xbar.o
13982 gcc -save-temps=obj foobar.c -o dir2/yfoobar
13983 @end smallexample
13984
13985 @noindent
13986 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
13987 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
13988 @file{dir2/yfoobar.o}.
13989
13990 @item -time@r{[}=@var{file}@r{]}
13991 @opindex time
13992 Report the CPU time taken by each subprocess in the compilation
13993 sequence. For C source files, this is the compiler proper and assembler
13994 (plus the linker if linking is done).
13995
13996 Without the specification of an output file, the output looks like this:
13997
13998 @smallexample
13999 # cc1 0.12 0.01
14000 # as 0.00 0.01
14001 @end smallexample
14002
14003 The first number on each line is the ``user time'', that is time spent
14004 executing the program itself. The second number is ``system time'',
14005 time spent executing operating system routines on behalf of the program.
14006 Both numbers are in seconds.
14007
14008 With the specification of an output file, the output is appended to the
14009 named file, and it looks like this:
14010
14011 @smallexample
14012 0.12 0.01 cc1 @var{options}
14013 0.00 0.01 as @var{options}
14014 @end smallexample
14015
14016 The ``user time'' and the ``system time'' are moved before the program
14017 name, and the options passed to the program are displayed, so that one
14018 can later tell what file was being compiled, and with which options.
14019
14020 @item -fdump-final-insns@r{[}=@var{file}@r{]}
14021 @opindex fdump-final-insns
14022 Dump the final internal representation (RTL) to @var{file}. If the
14023 optional argument is omitted (or if @var{file} is @code{.}), the name
14024 of the dump file is determined by appending @code{.gkd} to the
14025 compilation output file name.
14026
14027 @item -fcompare-debug@r{[}=@var{opts}@r{]}
14028 @opindex fcompare-debug
14029 @opindex fno-compare-debug
14030 If no error occurs during compilation, run the compiler a second time,
14031 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
14032 passed to the second compilation. Dump the final internal
14033 representation in both compilations, and print an error if they differ.
14034
14035 If the equal sign is omitted, the default @option{-gtoggle} is used.
14036
14037 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
14038 and nonzero, implicitly enables @option{-fcompare-debug}. If
14039 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
14040 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
14041 is used.
14042
14043 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
14044 is equivalent to @option{-fno-compare-debug}, which disables the dumping
14045 of the final representation and the second compilation, preventing even
14046 @env{GCC_COMPARE_DEBUG} from taking effect.
14047
14048 To verify full coverage during @option{-fcompare-debug} testing, set
14049 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
14050 which GCC rejects as an invalid option in any actual compilation
14051 (rather than preprocessing, assembly or linking). To get just a
14052 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
14053 not overridden} will do.
14054
14055 @item -fcompare-debug-second
14056 @opindex fcompare-debug-second
14057 This option is implicitly passed to the compiler for the second
14058 compilation requested by @option{-fcompare-debug}, along with options to
14059 silence warnings, and omitting other options that would cause
14060 side-effect compiler outputs to files or to the standard output. Dump
14061 files and preserved temporary files are renamed so as to contain the
14062 @code{.gk} additional extension during the second compilation, to avoid
14063 overwriting those generated by the first.
14064
14065 When this option is passed to the compiler driver, it causes the
14066 @emph{first} compilation to be skipped, which makes it useful for little
14067 other than debugging the compiler proper.
14068
14069 @item -gtoggle
14070 @opindex gtoggle
14071 Turn off generation of debug info, if leaving out this option
14072 generates it, or turn it on at level 2 otherwise. The position of this
14073 argument in the command line does not matter; it takes effect after all
14074 other options are processed, and it does so only once, no matter how
14075 many times it is given. This is mainly intended to be used with
14076 @option{-fcompare-debug}.
14077
14078 @item -fvar-tracking-assignments-toggle
14079 @opindex fvar-tracking-assignments-toggle
14080 @opindex fno-var-tracking-assignments-toggle
14081 Toggle @option{-fvar-tracking-assignments}, in the same way that
14082 @option{-gtoggle} toggles @option{-g}.
14083
14084 @item -Q
14085 @opindex Q
14086 Makes the compiler print out each function name as it is compiled, and
14087 print some statistics about each pass when it finishes.
14088
14089 @item -ftime-report
14090 @opindex ftime-report
14091 Makes the compiler print some statistics about the time consumed by each
14092 pass when it finishes.
14093
14094 @item -ftime-report-details
14095 @opindex ftime-report-details
14096 Record the time consumed by infrastructure parts separately for each pass.
14097
14098 @item -fira-verbose=@var{n}
14099 @opindex fira-verbose
14100 Control the verbosity of the dump file for the integrated register allocator.
14101 The default value is 5. If the value @var{n} is greater or equal to 10,
14102 the dump output is sent to stderr using the same format as @var{n} minus 10.
14103
14104 @item -flto-report
14105 @opindex flto-report
14106 Prints a report with internal details on the workings of the link-time
14107 optimizer. The contents of this report vary from version to version.
14108 It is meant to be useful to GCC developers when processing object
14109 files in LTO mode (via @option{-flto}).
14110
14111 Disabled by default.
14112
14113 @item -flto-report-wpa
14114 @opindex flto-report-wpa
14115 Like @option{-flto-report}, but only print for the WPA phase of Link
14116 Time Optimization.
14117
14118 @item -fmem-report
14119 @opindex fmem-report
14120 Makes the compiler print some statistics about permanent memory
14121 allocation when it finishes.
14122
14123 @item -fmem-report-wpa
14124 @opindex fmem-report-wpa
14125 Makes the compiler print some statistics about permanent memory
14126 allocation for the WPA phase only.
14127
14128 @item -fpre-ipa-mem-report
14129 @opindex fpre-ipa-mem-report
14130 @item -fpost-ipa-mem-report
14131 @opindex fpost-ipa-mem-report
14132 Makes the compiler print some statistics about permanent memory
14133 allocation before or after interprocedural optimization.
14134
14135 @item -fprofile-report
14136 @opindex fprofile-report
14137 Makes the compiler print some statistics about consistency of the
14138 (estimated) profile and effect of individual passes.
14139
14140 @item -fstack-usage
14141 @opindex fstack-usage
14142 Makes the compiler output stack usage information for the program, on a
14143 per-function basis. The filename for the dump is made by appending
14144 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
14145 the output file, if explicitly specified and it is not an executable,
14146 otherwise it is the basename of the source file. An entry is made up
14147 of three fields:
14148
14149 @itemize
14150 @item
14151 The name of the function.
14152 @item
14153 A number of bytes.
14154 @item
14155 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
14156 @end itemize
14157
14158 The qualifier @code{static} means that the function manipulates the stack
14159 statically: a fixed number of bytes are allocated for the frame on function
14160 entry and released on function exit; no stack adjustments are otherwise made
14161 in the function. The second field is this fixed number of bytes.
14162
14163 The qualifier @code{dynamic} means that the function manipulates the stack
14164 dynamically: in addition to the static allocation described above, stack
14165 adjustments are made in the body of the function, for example to push/pop
14166 arguments around function calls. If the qualifier @code{bounded} is also
14167 present, the amount of these adjustments is bounded at compile time and
14168 the second field is an upper bound of the total amount of stack used by
14169 the function. If it is not present, the amount of these adjustments is
14170 not bounded at compile time and the second field only represents the
14171 bounded part.
14172
14173 @item -fstats
14174 @opindex fstats
14175 Emit statistics about front-end processing at the end of the compilation.
14176 This option is supported only by the C++ front end, and
14177 the information is generally only useful to the G++ development team.
14178
14179 @item -fdbg-cnt-list
14180 @opindex fdbg-cnt-list
14181 Print the name and the counter upper bound for all debug counters.
14182
14183
14184 @item -fdbg-cnt=@var{counter-value-list}
14185 @opindex fdbg-cnt
14186 Set the internal debug counter upper bound. @var{counter-value-list}
14187 is a comma-separated list of @var{name}:@var{value} pairs
14188 which sets the upper bound of each debug counter @var{name} to @var{value}.
14189 All debug counters have the initial upper bound of @code{UINT_MAX};
14190 thus @code{dbg_cnt} returns true always unless the upper bound
14191 is set by this option.
14192 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
14193 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
14194
14195 @item -print-file-name=@var{library}
14196 @opindex print-file-name
14197 Print the full absolute name of the library file @var{library} that
14198 would be used when linking---and don't do anything else. With this
14199 option, GCC does not compile or link anything; it just prints the
14200 file name.
14201
14202 @item -print-multi-directory
14203 @opindex print-multi-directory
14204 Print the directory name corresponding to the multilib selected by any
14205 other switches present in the command line. This directory is supposed
14206 to exist in @env{GCC_EXEC_PREFIX}.
14207
14208 @item -print-multi-lib
14209 @opindex print-multi-lib
14210 Print the mapping from multilib directory names to compiler switches
14211 that enable them. The directory name is separated from the switches by
14212 @samp{;}, and each switch starts with an @samp{@@} instead of the
14213 @samp{-}, without spaces between multiple switches. This is supposed to
14214 ease shell processing.
14215
14216 @item -print-multi-os-directory
14217 @opindex print-multi-os-directory
14218 Print the path to OS libraries for the selected
14219 multilib, relative to some @file{lib} subdirectory. If OS libraries are
14220 present in the @file{lib} subdirectory and no multilibs are used, this is
14221 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
14222 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
14223 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
14224 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
14225
14226 @item -print-multiarch
14227 @opindex print-multiarch
14228 Print the path to OS libraries for the selected multiarch,
14229 relative to some @file{lib} subdirectory.
14230
14231 @item -print-prog-name=@var{program}
14232 @opindex print-prog-name
14233 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
14234
14235 @item -print-libgcc-file-name
14236 @opindex print-libgcc-file-name
14237 Same as @option{-print-file-name=libgcc.a}.
14238
14239 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
14240 but you do want to link with @file{libgcc.a}. You can do:
14241
14242 @smallexample
14243 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
14244 @end smallexample
14245
14246 @item -print-search-dirs
14247 @opindex print-search-dirs
14248 Print the name of the configured installation directory and a list of
14249 program and library directories @command{gcc} searches---and don't do anything else.
14250
14251 This is useful when @command{gcc} prints the error message
14252 @samp{installation problem, cannot exec cpp0: No such file or directory}.
14253 To resolve this you either need to put @file{cpp0} and the other compiler
14254 components where @command{gcc} expects to find them, or you can set the environment
14255 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
14256 Don't forget the trailing @samp{/}.
14257 @xref{Environment Variables}.
14258
14259 @item -print-sysroot
14260 @opindex print-sysroot
14261 Print the target sysroot directory that is used during
14262 compilation. This is the target sysroot specified either at configure
14263 time or using the @option{--sysroot} option, possibly with an extra
14264 suffix that depends on compilation options. If no target sysroot is
14265 specified, the option prints nothing.
14266
14267 @item -print-sysroot-headers-suffix
14268 @opindex print-sysroot-headers-suffix
14269 Print the suffix added to the target sysroot when searching for
14270 headers, or give an error if the compiler is not configured with such
14271 a suffix---and don't do anything else.
14272
14273 @item -dumpmachine
14274 @opindex dumpmachine
14275 Print the compiler's target machine (for example,
14276 @samp{i686-pc-linux-gnu})---and don't do anything else.
14277
14278 @item -dumpversion
14279 @opindex dumpversion
14280 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
14281 anything else. This is the compiler version used in filesystem paths,
14282 specs, can be depending on how the compiler has been configured just
14283 a single number (major version), two numbers separated by dot (major and
14284 minor version) or three numbers separated by dots (major, minor and patchlevel
14285 version).
14286
14287 @item -dumpfullversion
14288 @opindex dumpfullversion
14289 Print the full compiler version, always 3 numbers separated by dots,
14290 major, minor and patchlevel version.
14291
14292 @item -dumpspecs
14293 @opindex dumpspecs
14294 Print the compiler's built-in specs---and don't do anything else. (This
14295 is used when GCC itself is being built.) @xref{Spec Files}.
14296 @end table
14297
14298 @node Submodel Options
14299 @section Machine-Dependent Options
14300 @cindex submodel options
14301 @cindex specifying hardware config
14302 @cindex hardware models and configurations, specifying
14303 @cindex target-dependent options
14304 @cindex machine-dependent options
14305
14306 Each target machine supported by GCC can have its own options---for
14307 example, to allow you to compile for a particular processor variant or
14308 ABI, or to control optimizations specific to that machine. By
14309 convention, the names of machine-specific options start with
14310 @samp{-m}.
14311
14312 Some configurations of the compiler also support additional target-specific
14313 options, usually for compatibility with other compilers on the same
14314 platform.
14315
14316 @c This list is ordered alphanumerically by subsection name.
14317 @c It should be the same order and spelling as these options are listed
14318 @c in Machine Dependent Options
14319
14320 @menu
14321 * AArch64 Options::
14322 * Adapteva Epiphany Options::
14323 * ARC Options::
14324 * ARM Options::
14325 * AVR Options::
14326 * Blackfin Options::
14327 * C6X Options::
14328 * CRIS Options::
14329 * CR16 Options::
14330 * Darwin Options::
14331 * DEC Alpha Options::
14332 * FR30 Options::
14333 * FT32 Options::
14334 * FRV Options::
14335 * GNU/Linux Options::
14336 * H8/300 Options::
14337 * HPPA Options::
14338 * IA-64 Options::
14339 * LM32 Options::
14340 * M32C Options::
14341 * M32R/D Options::
14342 * M680x0 Options::
14343 * MCore Options::
14344 * MeP Options::
14345 * MicroBlaze Options::
14346 * MIPS Options::
14347 * MMIX Options::
14348 * MN10300 Options::
14349 * Moxie Options::
14350 * MSP430 Options::
14351 * NDS32 Options::
14352 * Nios II Options::
14353 * Nvidia PTX Options::
14354 * PDP-11 Options::
14355 * picoChip Options::
14356 * PowerPC Options::
14357 * RISC-V Options::
14358 * RL78 Options::
14359 * RS/6000 and PowerPC Options::
14360 * RX Options::
14361 * S/390 and zSeries Options::
14362 * Score Options::
14363 * SH Options::
14364 * Solaris 2 Options::
14365 * SPARC Options::
14366 * SPU Options::
14367 * System V Options::
14368 * TILE-Gx Options::
14369 * TILEPro Options::
14370 * V850 Options::
14371 * VAX Options::
14372 * Visium Options::
14373 * VMS Options::
14374 * VxWorks Options::
14375 * x86 Options::
14376 * x86 Windows Options::
14377 * Xstormy16 Options::
14378 * Xtensa Options::
14379 * zSeries Options::
14380 @end menu
14381
14382 @node AArch64 Options
14383 @subsection AArch64 Options
14384 @cindex AArch64 Options
14385
14386 These options are defined for AArch64 implementations:
14387
14388 @table @gcctabopt
14389
14390 @item -mabi=@var{name}
14391 @opindex mabi
14392 Generate code for the specified data model. Permissible values
14393 are @samp{ilp32} for SysV-like data model where int, long int and pointers
14394 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
14395 but long int and pointers are 64 bits.
14396
14397 The default depends on the specific target configuration. Note that
14398 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
14399 entire program with the same ABI, and link with a compatible set of libraries.
14400
14401 @item -mbig-endian
14402 @opindex mbig-endian
14403 Generate big-endian code. This is the default when GCC is configured for an
14404 @samp{aarch64_be-*-*} target.
14405
14406 @item -mgeneral-regs-only
14407 @opindex mgeneral-regs-only
14408 Generate code which uses only the general-purpose registers. This will prevent
14409 the compiler from using floating-point and Advanced SIMD registers but will not
14410 impose any restrictions on the assembler.
14411
14412 @item -mlittle-endian
14413 @opindex mlittle-endian
14414 Generate little-endian code. This is the default when GCC is configured for an
14415 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
14416
14417 @item -mcmodel=tiny
14418 @opindex mcmodel=tiny
14419 Generate code for the tiny code model. The program and its statically defined
14420 symbols must be within 1MB of each other. Programs can be statically or
14421 dynamically linked.
14422
14423 @item -mcmodel=small
14424 @opindex mcmodel=small
14425 Generate code for the small code model. The program and its statically defined
14426 symbols must be within 4GB of each other. Programs can be statically or
14427 dynamically linked. This is the default code model.
14428
14429 @item -mcmodel=large
14430 @opindex mcmodel=large
14431 Generate code for the large code model. This makes no assumptions about
14432 addresses and sizes of sections. Programs can be statically linked only.
14433
14434 @item -mstrict-align
14435 @opindex mstrict-align
14436 Avoid generating memory accesses that may not be aligned on a natural object
14437 boundary as described in the architecture specification.
14438
14439 @item -momit-leaf-frame-pointer
14440 @itemx -mno-omit-leaf-frame-pointer
14441 @opindex momit-leaf-frame-pointer
14442 @opindex mno-omit-leaf-frame-pointer
14443 Omit or keep the frame pointer in leaf functions. The former behavior is the
14444 default.
14445
14446 @item -mtls-dialect=desc
14447 @opindex mtls-dialect=desc
14448 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
14449 of TLS variables. This is the default.
14450
14451 @item -mtls-dialect=traditional
14452 @opindex mtls-dialect=traditional
14453 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
14454 of TLS variables.
14455
14456 @item -mtls-size=@var{size}
14457 @opindex mtls-size
14458 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
14459 This option requires binutils 2.26 or newer.
14460
14461 @item -mfix-cortex-a53-835769
14462 @itemx -mno-fix-cortex-a53-835769
14463 @opindex mfix-cortex-a53-835769
14464 @opindex mno-fix-cortex-a53-835769
14465 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
14466 This involves inserting a NOP instruction between memory instructions and
14467 64-bit integer multiply-accumulate instructions.
14468
14469 @item -mfix-cortex-a53-843419
14470 @itemx -mno-fix-cortex-a53-843419
14471 @opindex mfix-cortex-a53-843419
14472 @opindex mno-fix-cortex-a53-843419
14473 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
14474 This erratum workaround is made at link time and this will only pass the
14475 corresponding flag to the linker.
14476
14477 @item -mlow-precision-recip-sqrt
14478 @item -mno-low-precision-recip-sqrt
14479 @opindex mlow-precision-recip-sqrt
14480 @opindex mno-low-precision-recip-sqrt
14481 Enable or disable the reciprocal square root approximation.
14482 This option only has an effect if @option{-ffast-math} or
14483 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14484 precision of reciprocal square root results to about 16 bits for
14485 single precision and to 32 bits for double precision.
14486
14487 @item -mlow-precision-sqrt
14488 @item -mno-low-precision-sqrt
14489 @opindex -mlow-precision-sqrt
14490 @opindex -mno-low-precision-sqrt
14491 Enable or disable the square root approximation.
14492 This option only has an effect if @option{-ffast-math} or
14493 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14494 precision of square root results to about 16 bits for
14495 single precision and to 32 bits for double precision.
14496 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
14497
14498 @item -mlow-precision-div
14499 @item -mno-low-precision-div
14500 @opindex -mlow-precision-div
14501 @opindex -mno-low-precision-div
14502 Enable or disable the division approximation.
14503 This option only has an effect if @option{-ffast-math} or
14504 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
14505 precision of division results to about 16 bits for
14506 single precision and to 32 bits for double precision.
14507
14508 @item -march=@var{name}
14509 @opindex march
14510 Specify the name of the target architecture and, optionally, one or
14511 more feature modifiers. This option has the form
14512 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
14513
14514 The permissible values for @var{arch} are @samp{armv8-a},
14515 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a} or @samp{armv8.4-a}
14516 or @var{native}.
14517
14518 The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
14519 support for the ARMv8.4-A architecture extensions.
14520
14521 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
14522 support for the ARMv8.3-A architecture extensions.
14523
14524 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
14525 support for the ARMv8.2-A architecture extensions.
14526
14527 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
14528 support for the ARMv8.1-A architecture extension. In particular, it
14529 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
14530
14531 The value @samp{native} is available on native AArch64 GNU/Linux and
14532 causes the compiler to pick the architecture of the host system. This
14533 option has no effect if the compiler is unable to recognize the
14534 architecture of the host system,
14535
14536 The permissible values for @var{feature} are listed in the sub-section
14537 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14538 Feature Modifiers}. Where conflicting feature modifiers are
14539 specified, the right-most feature is used.
14540
14541 GCC uses @var{name} to determine what kind of instructions it can emit
14542 when generating assembly code. If @option{-march} is specified
14543 without either of @option{-mtune} or @option{-mcpu} also being
14544 specified, the code is tuned to perform well across a range of target
14545 processors implementing the target architecture.
14546
14547 @item -mtune=@var{name}
14548 @opindex mtune
14549 Specify the name of the target processor for which GCC should tune the
14550 performance of the code. Permissible values for this option are:
14551 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
14552 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
14553 @samp{exynos-m1}, @samp{falkor}, @samp{qdf24xx}, @samp{saphira},
14554 @samp{xgene1}, @samp{vulcan}, @samp{thunderx},
14555 @samp{thunderxt88}, @samp{thunderxt88p1}, @samp{thunderxt81},
14556 @samp{thunderxt83}, @samp{thunderx2t99}, @samp{cortex-a57.cortex-a53},
14557 @samp{cortex-a72.cortex-a53}, @samp{cortex-a73.cortex-a35},
14558 @samp{cortex-a73.cortex-a53}, @samp{cortex-a75.cortex-a55},
14559 @samp{native}.
14560
14561 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
14562 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
14563 @samp{cortex-a75.cortex-a55} specify that GCC should tune for a
14564 big.LITTLE system.
14565
14566 Additionally on native AArch64 GNU/Linux systems the value
14567 @samp{native} tunes performance to the host system. This option has no effect
14568 if the compiler is unable to recognize the processor of the host system.
14569
14570 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
14571 are specified, the code is tuned to perform well across a range
14572 of target processors.
14573
14574 This option cannot be suffixed by feature modifiers.
14575
14576 @item -mcpu=@var{name}
14577 @opindex mcpu
14578 Specify the name of the target processor, optionally suffixed by one
14579 or more feature modifiers. This option has the form
14580 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
14581 the permissible values for @var{cpu} are the same as those available
14582 for @option{-mtune}. The permissible values for @var{feature} are
14583 documented in the sub-section on
14584 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
14585 Feature Modifiers}. Where conflicting feature modifiers are
14586 specified, the right-most feature is used.
14587
14588 GCC uses @var{name} to determine what kind of instructions it can emit when
14589 generating assembly code (as if by @option{-march}) and to determine
14590 the target processor for which to tune for performance (as if
14591 by @option{-mtune}). Where this option is used in conjunction
14592 with @option{-march} or @option{-mtune}, those options take precedence
14593 over the appropriate part of this option.
14594
14595 @item -moverride=@var{string}
14596 @opindex moverride
14597 Override tuning decisions made by the back-end in response to a
14598 @option{-mtune=} switch. The syntax, semantics, and accepted values
14599 for @var{string} in this option are not guaranteed to be consistent
14600 across releases.
14601
14602 This option is only intended to be useful when developing GCC.
14603
14604 @item -mverbose-cost-dump
14605 @opindex mverbose-cost-dump
14606 Enable verbose cost model dumping in the debug dump files. This option is
14607 provided for use in debugging the compiler.
14608
14609 @item -mpc-relative-literal-loads
14610 @itemx -mno-pc-relative-literal-loads
14611 @opindex mpc-relative-literal-loads
14612 @opindex mno-pc-relative-literal-loads
14613 Enable or disable PC-relative literal loads. With this option literal pools are
14614 accessed using a single instruction and emitted after each function. This
14615 limits the maximum size of functions to 1MB. This is enabled by default for
14616 @option{-mcmodel=tiny}.
14617
14618 @item -msign-return-address=@var{scope}
14619 @opindex msign-return-address
14620 Select the function scope on which return address signing will be applied.
14621 Permissible values are @samp{none}, which disables return address signing,
14622 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
14623 functions, and @samp{all}, which enables pointer signing for all functions. The
14624 default value is @samp{none}.
14625
14626 @item -msve-vector-bits=@var{bits}
14627 @opindex msve-vector-bits
14628 Specify the number of bits in an SVE vector register. This option only has
14629 an effect when SVE is enabled.
14630
14631 GCC supports two forms of SVE code generation: ``vector-length
14632 agnostic'' output that works with any size of vector register and
14633 ``vector-length specific'' output that only works when the vector
14634 registers are a particular size. Replacing @var{bits} with
14635 @samp{scalable} selects vector-length agnostic output while
14636 replacing it with a number selects vector-length specific output.
14637 The possible lengths in the latter case are: 128, 256, 512, 1024
14638 and 2048. @samp{scalable} is the default.
14639
14640 At present, @samp{-msve-vector-bits=128} produces the same output
14641 as @samp{-msve-vector-bits=scalable}.
14642
14643 @end table
14644
14645 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
14646 @anchor{aarch64-feature-modifiers}
14647 @cindex @option{-march} feature modifiers
14648 @cindex @option{-mcpu} feature modifiers
14649 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
14650 the following and their inverses @option{no@var{feature}}:
14651
14652 @table @samp
14653 @item crc
14654 Enable CRC extension. This is on by default for
14655 @option{-march=armv8.1-a}.
14656 @item crypto
14657 Enable Crypto extension. This also enables Advanced SIMD and floating-point
14658 instructions.
14659 @item fp
14660 Enable floating-point instructions. This is on by default for all possible
14661 values for options @option{-march} and @option{-mcpu}.
14662 @item simd
14663 Enable Advanced SIMD instructions. This also enables floating-point
14664 instructions. This is on by default for all possible values for options
14665 @option{-march} and @option{-mcpu}.
14666 @item sve
14667 Enable Scalable Vector Extension instructions. This also enables Advanced
14668 SIMD and floating-point instructions.
14669 @item lse
14670 Enable Large System Extension instructions. This is on by default for
14671 @option{-march=armv8.1-a}.
14672 @item rdma
14673 Enable Round Double Multiply Accumulate instructions. This is on by default
14674 for @option{-march=armv8.1-a}.
14675 @item fp16
14676 Enable FP16 extension. This also enables floating-point instructions.
14677 @item fp16fml
14678 Enable FP16 fmla extension. This also enables FP16 extensions and
14679 floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
14680
14681 @item rcpc
14682 Enable the RcPc extension. This does not change code generation from GCC,
14683 but is passed on to the assembler, enabling inline asm statements to use
14684 instructions from the RcPc extension.
14685 @item dotprod
14686 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
14687 @item aes
14688 Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
14689 SIMD instructions.
14690 @item sha2
14691 Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
14692 @item sha3
14693 Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
14694 instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
14695 @item sm4
14696 Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
14697 Use of this option with architectures prior to Armv8.2-A is not supported.
14698
14699 @end table
14700
14701 Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
14702 which implies @option{fp}.
14703 Conversely, @option{nofp} implies @option{nosimd}, which implies
14704 @option{nocrypto}, @option{noaes} and @option{nosha2}.
14705
14706 @node Adapteva Epiphany Options
14707 @subsection Adapteva Epiphany Options
14708
14709 These @samp{-m} options are defined for Adapteva Epiphany:
14710
14711 @table @gcctabopt
14712 @item -mhalf-reg-file
14713 @opindex mhalf-reg-file
14714 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
14715 That allows code to run on hardware variants that lack these registers.
14716
14717 @item -mprefer-short-insn-regs
14718 @opindex mprefer-short-insn-regs
14719 Preferentially allocate registers that allow short instruction generation.
14720 This can result in increased instruction count, so this may either reduce or
14721 increase overall code size.
14722
14723 @item -mbranch-cost=@var{num}
14724 @opindex mbranch-cost
14725 Set the cost of branches to roughly @var{num} ``simple'' instructions.
14726 This cost is only a heuristic and is not guaranteed to produce
14727 consistent results across releases.
14728
14729 @item -mcmove
14730 @opindex mcmove
14731 Enable the generation of conditional moves.
14732
14733 @item -mnops=@var{num}
14734 @opindex mnops
14735 Emit @var{num} NOPs before every other generated instruction.
14736
14737 @item -mno-soft-cmpsf
14738 @opindex mno-soft-cmpsf
14739 For single-precision floating-point comparisons, emit an @code{fsub} instruction
14740 and test the flags. This is faster than a software comparison, but can
14741 get incorrect results in the presence of NaNs, or when two different small
14742 numbers are compared such that their difference is calculated as zero.
14743 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
14744 software comparisons.
14745
14746 @item -mstack-offset=@var{num}
14747 @opindex mstack-offset
14748 Set the offset between the top of the stack and the stack pointer.
14749 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
14750 can be used by leaf functions without stack allocation.
14751 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
14752 Note also that this option changes the ABI; compiling a program with a
14753 different stack offset than the libraries have been compiled with
14754 generally does not work.
14755 This option can be useful if you want to evaluate if a different stack
14756 offset would give you better code, but to actually use a different stack
14757 offset to build working programs, it is recommended to configure the
14758 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
14759
14760 @item -mno-round-nearest
14761 @opindex mno-round-nearest
14762 Make the scheduler assume that the rounding mode has been set to
14763 truncating. The default is @option{-mround-nearest}.
14764
14765 @item -mlong-calls
14766 @opindex mlong-calls
14767 If not otherwise specified by an attribute, assume all calls might be beyond
14768 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
14769 function address into a register before performing a (otherwise direct) call.
14770 This is the default.
14771
14772 @item -mshort-calls
14773 @opindex short-calls
14774 If not otherwise specified by an attribute, assume all direct calls are
14775 in the range of the @code{b} / @code{bl} instructions, so use these instructions
14776 for direct calls. The default is @option{-mlong-calls}.
14777
14778 @item -msmall16
14779 @opindex msmall16
14780 Assume addresses can be loaded as 16-bit unsigned values. This does not
14781 apply to function addresses for which @option{-mlong-calls} semantics
14782 are in effect.
14783
14784 @item -mfp-mode=@var{mode}
14785 @opindex mfp-mode
14786 Set the prevailing mode of the floating-point unit.
14787 This determines the floating-point mode that is provided and expected
14788 at function call and return time. Making this mode match the mode you
14789 predominantly need at function start can make your programs smaller and
14790 faster by avoiding unnecessary mode switches.
14791
14792 @var{mode} can be set to one the following values:
14793
14794 @table @samp
14795 @item caller
14796 Any mode at function entry is valid, and retained or restored when
14797 the function returns, and when it calls other functions.
14798 This mode is useful for compiling libraries or other compilation units
14799 you might want to incorporate into different programs with different
14800 prevailing FPU modes, and the convenience of being able to use a single
14801 object file outweighs the size and speed overhead for any extra
14802 mode switching that might be needed, compared with what would be needed
14803 with a more specific choice of prevailing FPU mode.
14804
14805 @item truncate
14806 This is the mode used for floating-point calculations with
14807 truncating (i.e.@: round towards zero) rounding mode. That includes
14808 conversion from floating point to integer.
14809
14810 @item round-nearest
14811 This is the mode used for floating-point calculations with
14812 round-to-nearest-or-even rounding mode.
14813
14814 @item int
14815 This is the mode used to perform integer calculations in the FPU, e.g.@:
14816 integer multiply, or integer multiply-and-accumulate.
14817 @end table
14818
14819 The default is @option{-mfp-mode=caller}
14820
14821 @item -mnosplit-lohi
14822 @itemx -mno-postinc
14823 @itemx -mno-postmodify
14824 @opindex mnosplit-lohi
14825 @opindex mno-postinc
14826 @opindex mno-postmodify
14827 Code generation tweaks that disable, respectively, splitting of 32-bit
14828 loads, generation of post-increment addresses, and generation of
14829 post-modify addresses. The defaults are @option{msplit-lohi},
14830 @option{-mpost-inc}, and @option{-mpost-modify}.
14831
14832 @item -mnovect-double
14833 @opindex mno-vect-double
14834 Change the preferred SIMD mode to SImode. The default is
14835 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
14836
14837 @item -max-vect-align=@var{num}
14838 @opindex max-vect-align
14839 The maximum alignment for SIMD vector mode types.
14840 @var{num} may be 4 or 8. The default is 8.
14841 Note that this is an ABI change, even though many library function
14842 interfaces are unaffected if they don't use SIMD vector modes
14843 in places that affect size and/or alignment of relevant types.
14844
14845 @item -msplit-vecmove-early
14846 @opindex msplit-vecmove-early
14847 Split vector moves into single word moves before reload. In theory this
14848 can give better register allocation, but so far the reverse seems to be
14849 generally the case.
14850
14851 @item -m1reg-@var{reg}
14852 @opindex m1reg-
14853 Specify a register to hold the constant @minus{}1, which makes loading small negative
14854 constants and certain bitmasks faster.
14855 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
14856 which specify use of that register as a fixed register,
14857 and @samp{none}, which means that no register is used for this
14858 purpose. The default is @option{-m1reg-none}.
14859
14860 @end table
14861
14862 @node ARC Options
14863 @subsection ARC Options
14864 @cindex ARC options
14865
14866 The following options control the architecture variant for which code
14867 is being compiled:
14868
14869 @c architecture variants
14870 @table @gcctabopt
14871
14872 @item -mbarrel-shifter
14873 @opindex mbarrel-shifter
14874 Generate instructions supported by barrel shifter. This is the default
14875 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
14876
14877 @item -mcpu=@var{cpu}
14878 @opindex mcpu
14879 Set architecture type, register usage, and instruction scheduling
14880 parameters for @var{cpu}. There are also shortcut alias options
14881 available for backward compatibility and convenience. Supported
14882 values for @var{cpu} are
14883
14884 @table @samp
14885 @opindex mA6
14886 @opindex mARC600
14887 @item arc600
14888 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
14889
14890 @item arc601
14891 @opindex mARC601
14892 Compile for ARC601. Alias: @option{-mARC601}.
14893
14894 @item arc700
14895 @opindex mA7
14896 @opindex mARC700
14897 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
14898 This is the default when configured with @option{--with-cpu=arc700}@.
14899
14900 @item arcem
14901 Compile for ARC EM.
14902
14903 @item archs
14904 Compile for ARC HS.
14905
14906 @item em
14907 Compile for ARC EM CPU with no hardware extensions.
14908
14909 @item em4
14910 Compile for ARC EM4 CPU.
14911
14912 @item em4_dmips
14913 Compile for ARC EM4 DMIPS CPU.
14914
14915 @item em4_fpus
14916 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
14917 extension.
14918
14919 @item em4_fpuda
14920 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
14921 double assist instructions.
14922
14923 @item hs
14924 Compile for ARC HS CPU with no hardware extensions except the atomic
14925 instructions.
14926
14927 @item hs34
14928 Compile for ARC HS34 CPU.
14929
14930 @item hs38
14931 Compile for ARC HS38 CPU.
14932
14933 @item hs38_linux
14934 Compile for ARC HS38 CPU with all hardware extensions on.
14935
14936 @item arc600_norm
14937 Compile for ARC 600 CPU with @code{norm} instructions enabled.
14938
14939 @item arc600_mul32x16
14940 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
14941 instructions enabled.
14942
14943 @item arc600_mul64
14944 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
14945 instructions enabled.
14946
14947 @item arc601_norm
14948 Compile for ARC 601 CPU with @code{norm} instructions enabled.
14949
14950 @item arc601_mul32x16
14951 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
14952 instructions enabled.
14953
14954 @item arc601_mul64
14955 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
14956 instructions enabled.
14957
14958 @item nps400
14959 Compile for ARC 700 on NPS400 chip.
14960
14961 @end table
14962
14963 @item -mdpfp
14964 @opindex mdpfp
14965 @itemx -mdpfp-compact
14966 @opindex mdpfp-compact
14967 Generate double-precision FPX instructions, tuned for the compact
14968 implementation.
14969
14970 @item -mdpfp-fast
14971 @opindex mdpfp-fast
14972 Generate double-precision FPX instructions, tuned for the fast
14973 implementation.
14974
14975 @item -mno-dpfp-lrsr
14976 @opindex mno-dpfp-lrsr
14977 Disable @code{lr} and @code{sr} instructions from using FPX extension
14978 aux registers.
14979
14980 @item -mea
14981 @opindex mea
14982 Generate extended arithmetic instructions. Currently only
14983 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
14984 supported. This is always enabled for @option{-mcpu=ARC700}.
14985
14986 @item -mno-mpy
14987 @opindex mno-mpy
14988 Do not generate @code{mpy}-family instructions for ARC700. This option is
14989 deprecated.
14990
14991 @item -mmul32x16
14992 @opindex mmul32x16
14993 Generate 32x16-bit multiply and multiply-accumulate instructions.
14994
14995 @item -mmul64
14996 @opindex mmul64
14997 Generate @code{mul64} and @code{mulu64} instructions.
14998 Only valid for @option{-mcpu=ARC600}.
14999
15000 @item -mnorm
15001 @opindex mnorm
15002 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
15003 is in effect.
15004
15005 @item -mspfp
15006 @opindex mspfp
15007 @itemx -mspfp-compact
15008 @opindex mspfp-compact
15009 Generate single-precision FPX instructions, tuned for the compact
15010 implementation.
15011
15012 @item -mspfp-fast
15013 @opindex mspfp-fast
15014 Generate single-precision FPX instructions, tuned for the fast
15015 implementation.
15016
15017 @item -msimd
15018 @opindex msimd
15019 Enable generation of ARC SIMD instructions via target-specific
15020 builtins. Only valid for @option{-mcpu=ARC700}.
15021
15022 @item -msoft-float
15023 @opindex msoft-float
15024 This option ignored; it is provided for compatibility purposes only.
15025 Software floating-point code is emitted by default, and this default
15026 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
15027 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
15028 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
15029
15030 @item -mswap
15031 @opindex mswap
15032 Generate @code{swap} instructions.
15033
15034 @item -matomic
15035 @opindex matomic
15036 This enables use of the locked load/store conditional extension to implement
15037 atomic memory built-in functions. Not available for ARC 6xx or ARC
15038 EM cores.
15039
15040 @item -mdiv-rem
15041 @opindex mdiv-rem
15042 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
15043
15044 @item -mcode-density
15045 @opindex mcode-density
15046 Enable code density instructions for ARC EM.
15047 This option is on by default for ARC HS.
15048
15049 @item -mll64
15050 @opindex mll64
15051 Enable double load/store operations for ARC HS cores.
15052
15053 @item -mtp-regno=@var{regno}
15054 @opindex mtp-regno
15055 Specify thread pointer register number.
15056
15057 @item -mmpy-option=@var{multo}
15058 @opindex mmpy-option
15059 Compile ARCv2 code with a multiplier design option. You can specify
15060 the option using either a string or numeric value for @var{multo}.
15061 @samp{wlh1} is the default value. The recognized values are:
15062
15063 @table @samp
15064 @item 0
15065 @itemx none
15066 No multiplier available.
15067
15068 @item 1
15069 @itemx w
15070 16x16 multiplier, fully pipelined.
15071 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
15072
15073 @item 2
15074 @itemx wlh1
15075 32x32 multiplier, fully
15076 pipelined (1 stage). The following instructions are additionally
15077 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15078
15079 @item 3
15080 @itemx wlh2
15081 32x32 multiplier, fully pipelined
15082 (2 stages). The following instructions are additionally enabled: @code{mpy},
15083 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15084
15085 @item 4
15086 @itemx wlh3
15087 Two 16x16 multipliers, blocking,
15088 sequential. The following instructions are additionally enabled: @code{mpy},
15089 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15090
15091 @item 5
15092 @itemx wlh4
15093 One 16x16 multiplier, blocking,
15094 sequential. The following instructions are additionally enabled: @code{mpy},
15095 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15096
15097 @item 6
15098 @itemx wlh5
15099 One 32x4 multiplier, blocking,
15100 sequential. The following instructions are additionally enabled: @code{mpy},
15101 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
15102
15103 @item 7
15104 @itemx plus_dmpy
15105 ARC HS SIMD support.
15106
15107 @item 8
15108 @itemx plus_macd
15109 ARC HS SIMD support.
15110
15111 @item 9
15112 @itemx plus_qmacw
15113 ARC HS SIMD support.
15114
15115 @end table
15116
15117 This option is only available for ARCv2 cores@.
15118
15119 @item -mfpu=@var{fpu}
15120 @opindex mfpu
15121 Enables support for specific floating-point hardware extensions for ARCv2
15122 cores. Supported values for @var{fpu} are:
15123
15124 @table @samp
15125
15126 @item fpus
15127 Enables support for single-precision floating-point hardware
15128 extensions@.
15129
15130 @item fpud
15131 Enables support for double-precision floating-point hardware
15132 extensions. The single-precision floating-point extension is also
15133 enabled. Not available for ARC EM@.
15134
15135 @item fpuda
15136 Enables support for double-precision floating-point hardware
15137 extensions using double-precision assist instructions. The single-precision
15138 floating-point extension is also enabled. This option is
15139 only available for ARC EM@.
15140
15141 @item fpuda_div
15142 Enables support for double-precision floating-point hardware
15143 extensions using double-precision assist instructions.
15144 The single-precision floating-point, square-root, and divide
15145 extensions are also enabled. This option is
15146 only available for ARC EM@.
15147
15148 @item fpuda_fma
15149 Enables support for double-precision floating-point hardware
15150 extensions using double-precision assist instructions.
15151 The single-precision floating-point and fused multiply and add
15152 hardware extensions are also enabled. This option is
15153 only available for ARC EM@.
15154
15155 @item fpuda_all
15156 Enables support for double-precision floating-point hardware
15157 extensions using double-precision assist instructions.
15158 All single-precision floating-point hardware extensions are also
15159 enabled. This option is only available for ARC EM@.
15160
15161 @item fpus_div
15162 Enables support for single-precision floating-point, square-root and divide
15163 hardware extensions@.
15164
15165 @item fpud_div
15166 Enables support for double-precision floating-point, square-root and divide
15167 hardware extensions. This option
15168 includes option @samp{fpus_div}. Not available for ARC EM@.
15169
15170 @item fpus_fma
15171 Enables support for single-precision floating-point and
15172 fused multiply and add hardware extensions@.
15173
15174 @item fpud_fma
15175 Enables support for double-precision floating-point and
15176 fused multiply and add hardware extensions. This option
15177 includes option @samp{fpus_fma}. Not available for ARC EM@.
15178
15179 @item fpus_all
15180 Enables support for all single-precision floating-point hardware
15181 extensions@.
15182
15183 @item fpud_all
15184 Enables support for all single- and double-precision floating-point
15185 hardware extensions. Not available for ARC EM@.
15186
15187 @end table
15188
15189 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
15190 @opindex mirq-ctrl-saved
15191 Specifies general-purposes registers that the processor automatically
15192 saves/restores on interrupt entry and exit. @var{register-range} is
15193 specified as two registers separated by a dash. The register range
15194 always starts with @code{r0}, the upper limit is @code{fp} register.
15195 @var{blink} and @var{lp_count} are optional. This option is only
15196 valid for ARC EM and ARC HS cores.
15197
15198 @item -mrgf-banked-regs=@var{number}
15199 @opindex mrgf-banked-regs
15200 Specifies the number of registers replicated in second register bank
15201 on entry to fast interrupt. Fast interrupts are interrupts with the
15202 highest priority level P0. These interrupts save only PC and STATUS32
15203 registers to avoid memory transactions during interrupt entry and exit
15204 sequences. Use this option when you are using fast interrupts in an
15205 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
15206
15207 @item -mlpc-width=@var{width}
15208 @opindex mlpc-width
15209 Specify the width of the @code{lp_count} register. Valid values for
15210 @var{width} are 8, 16, 20, 24, 28 and 32 bits. The default width is
15211 fixed to 32 bits. If the width is less than 32, the compiler does not
15212 attempt to transform loops in your program to use the zero-delay loop
15213 mechanism unless it is known that the @code{lp_count} register can
15214 hold the required loop-counter value. Depending on the width
15215 specified, the compiler and run-time library might continue to use the
15216 loop mechanism for various needs. This option defines macro
15217 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
15218
15219 @end table
15220
15221 The following options are passed through to the assembler, and also
15222 define preprocessor macro symbols.
15223
15224 @c Flags used by the assembler, but for which we define preprocessor
15225 @c macro symbols as well.
15226 @table @gcctabopt
15227 @item -mdsp-packa
15228 @opindex mdsp-packa
15229 Passed down to the assembler to enable the DSP Pack A extensions.
15230 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
15231 deprecated.
15232
15233 @item -mdvbf
15234 @opindex mdvbf
15235 Passed down to the assembler to enable the dual Viterbi butterfly
15236 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
15237 option is deprecated.
15238
15239 @c ARC700 4.10 extension instruction
15240 @item -mlock
15241 @opindex mlock
15242 Passed down to the assembler to enable the locked load/store
15243 conditional extension. Also sets the preprocessor symbol
15244 @code{__Xlock}.
15245
15246 @item -mmac-d16
15247 @opindex mmac-d16
15248 Passed down to the assembler. Also sets the preprocessor symbol
15249 @code{__Xxmac_d16}. This option is deprecated.
15250
15251 @item -mmac-24
15252 @opindex mmac-24
15253 Passed down to the assembler. Also sets the preprocessor symbol
15254 @code{__Xxmac_24}. This option is deprecated.
15255
15256 @c ARC700 4.10 extension instruction
15257 @item -mrtsc
15258 @opindex mrtsc
15259 Passed down to the assembler to enable the 64-bit time-stamp counter
15260 extension instruction. Also sets the preprocessor symbol
15261 @code{__Xrtsc}. This option is deprecated.
15262
15263 @c ARC700 4.10 extension instruction
15264 @item -mswape
15265 @opindex mswape
15266 Passed down to the assembler to enable the swap byte ordering
15267 extension instruction. Also sets the preprocessor symbol
15268 @code{__Xswape}.
15269
15270 @item -mtelephony
15271 @opindex mtelephony
15272 Passed down to the assembler to enable dual- and single-operand
15273 instructions for telephony. Also sets the preprocessor symbol
15274 @code{__Xtelephony}. This option is deprecated.
15275
15276 @item -mxy
15277 @opindex mxy
15278 Passed down to the assembler to enable the XY memory extension. Also
15279 sets the preprocessor symbol @code{__Xxy}.
15280
15281 @end table
15282
15283 The following options control how the assembly code is annotated:
15284
15285 @c Assembly annotation options
15286 @table @gcctabopt
15287 @item -misize
15288 @opindex misize
15289 Annotate assembler instructions with estimated addresses.
15290
15291 @item -mannotate-align
15292 @opindex mannotate-align
15293 Explain what alignment considerations lead to the decision to make an
15294 instruction short or long.
15295
15296 @end table
15297
15298 The following options are passed through to the linker:
15299
15300 @c options passed through to the linker
15301 @table @gcctabopt
15302 @item -marclinux
15303 @opindex marclinux
15304 Passed through to the linker, to specify use of the @code{arclinux} emulation.
15305 This option is enabled by default in tool chains built for
15306 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
15307 when profiling is not requested.
15308
15309 @item -marclinux_prof
15310 @opindex marclinux_prof
15311 Passed through to the linker, to specify use of the
15312 @code{arclinux_prof} emulation. This option is enabled by default in
15313 tool chains built for @w{@code{arc-linux-uclibc}} and
15314 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
15315
15316 @end table
15317
15318 The following options control the semantics of generated code:
15319
15320 @c semantically relevant code generation options
15321 @table @gcctabopt
15322 @item -mlong-calls
15323 @opindex mlong-calls
15324 Generate calls as register indirect calls, thus providing access
15325 to the full 32-bit address range.
15326
15327 @item -mmedium-calls
15328 @opindex mmedium-calls
15329 Don't use less than 25-bit addressing range for calls, which is the
15330 offset available for an unconditional branch-and-link
15331 instruction. Conditional execution of function calls is suppressed, to
15332 allow use of the 25-bit range, rather than the 21-bit range with
15333 conditional branch-and-link. This is the default for tool chains built
15334 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
15335
15336 @item -G @var{num}
15337 @opindex G
15338 Put definitions of externally-visible data in a small data section if
15339 that data is no bigger than @var{num} bytes. The default value of
15340 @var{num} is 4 for any ARC configuration, or 8 when we have double
15341 load/store operations.
15342
15343 @item -mno-sdata
15344 @opindex mno-sdata
15345 Do not generate sdata references. This is the default for tool chains
15346 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
15347 targets.
15348
15349 @item -mvolatile-cache
15350 @opindex mvolatile-cache
15351 Use ordinarily cached memory accesses for volatile references. This is the
15352 default.
15353
15354 @item -mno-volatile-cache
15355 @opindex mno-volatile-cache
15356 Enable cache bypass for volatile references.
15357
15358 @end table
15359
15360 The following options fine tune code generation:
15361 @c code generation tuning options
15362 @table @gcctabopt
15363 @item -malign-call
15364 @opindex malign-call
15365 Do alignment optimizations for call instructions.
15366
15367 @item -mauto-modify-reg
15368 @opindex mauto-modify-reg
15369 Enable the use of pre/post modify with register displacement.
15370
15371 @item -mbbit-peephole
15372 @opindex mbbit-peephole
15373 Enable bbit peephole2.
15374
15375 @item -mno-brcc
15376 @opindex mno-brcc
15377 This option disables a target-specific pass in @file{arc_reorg} to
15378 generate compare-and-branch (@code{br@var{cc}}) instructions.
15379 It has no effect on
15380 generation of these instructions driven by the combiner pass.
15381
15382 @item -mcase-vector-pcrel
15383 @opindex mcase-vector-pcrel
15384 Use PC-relative switch case tables to enable case table shortening.
15385 This is the default for @option{-Os}.
15386
15387 @item -mcompact-casesi
15388 @opindex mcompact-casesi
15389 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
15390 and only available for ARCv1 cores.
15391
15392 @item -mno-cond-exec
15393 @opindex mno-cond-exec
15394 Disable the ARCompact-specific pass to generate conditional
15395 execution instructions.
15396
15397 Due to delay slot scheduling and interactions between operand numbers,
15398 literal sizes, instruction lengths, and the support for conditional execution,
15399 the target-independent pass to generate conditional execution is often lacking,
15400 so the ARC port has kept a special pass around that tries to find more
15401 conditional execution generation opportunities after register allocation,
15402 branch shortening, and delay slot scheduling have been done. This pass
15403 generally, but not always, improves performance and code size, at the cost of
15404 extra compilation time, which is why there is an option to switch it off.
15405 If you have a problem with call instructions exceeding their allowable
15406 offset range because they are conditionalized, you should consider using
15407 @option{-mmedium-calls} instead.
15408
15409 @item -mearly-cbranchsi
15410 @opindex mearly-cbranchsi
15411 Enable pre-reload use of the @code{cbranchsi} pattern.
15412
15413 @item -mexpand-adddi
15414 @opindex mexpand-adddi
15415 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
15416 @code{add.f}, @code{adc} etc. This option is deprecated.
15417
15418 @item -mindexed-loads
15419 @opindex mindexed-loads
15420 Enable the use of indexed loads. This can be problematic because some
15421 optimizers then assume that indexed stores exist, which is not
15422 the case.
15423
15424 @item -mlra
15425 @opindex mlra
15426 Enable Local Register Allocation. This is still experimental for ARC,
15427 so by default the compiler uses standard reload
15428 (i.e. @option{-mno-lra}).
15429
15430 @item -mlra-priority-none
15431 @opindex mlra-priority-none
15432 Don't indicate any priority for target registers.
15433
15434 @item -mlra-priority-compact
15435 @opindex mlra-priority-compact
15436 Indicate target register priority for r0..r3 / r12..r15.
15437
15438 @item -mlra-priority-noncompact
15439 @opindex mlra-priority-noncompact
15440 Reduce target register priority for r0..r3 / r12..r15.
15441
15442 @item -mno-millicode
15443 @opindex mno-millicode
15444 When optimizing for size (using @option{-Os}), prologues and epilogues
15445 that have to save or restore a large number of registers are often
15446 shortened by using call to a special function in libgcc; this is
15447 referred to as a @emph{millicode} call. As these calls can pose
15448 performance issues, and/or cause linking issues when linking in a
15449 nonstandard way, this option is provided to turn off millicode call
15450 generation.
15451
15452 @item -mmixed-code
15453 @opindex mmixed-code
15454 Tweak register allocation to help 16-bit instruction generation.
15455 This generally has the effect of decreasing the average instruction size
15456 while increasing the instruction count.
15457
15458 @item -mq-class
15459 @opindex mq-class
15460 Enable @samp{q} instruction alternatives.
15461 This is the default for @option{-Os}.
15462
15463 @item -mRcq
15464 @opindex mRcq
15465 Enable @samp{Rcq} constraint handling.
15466 Most short code generation depends on this.
15467 This is the default.
15468
15469 @item -mRcw
15470 @opindex mRcw
15471 Enable @samp{Rcw} constraint handling.
15472 Most ccfsm condexec mostly depends on this.
15473 This is the default.
15474
15475 @item -msize-level=@var{level}
15476 @opindex msize-level
15477 Fine-tune size optimization with regards to instruction lengths and alignment.
15478 The recognized values for @var{level} are:
15479 @table @samp
15480 @item 0
15481 No size optimization. This level is deprecated and treated like @samp{1}.
15482
15483 @item 1
15484 Short instructions are used opportunistically.
15485
15486 @item 2
15487 In addition, alignment of loops and of code after barriers are dropped.
15488
15489 @item 3
15490 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
15491
15492 @end table
15493
15494 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
15495 the behavior when this is not set is equivalent to level @samp{1}.
15496
15497 @item -mtune=@var{cpu}
15498 @opindex mtune
15499 Set instruction scheduling parameters for @var{cpu}, overriding any implied
15500 by @option{-mcpu=}.
15501
15502 Supported values for @var{cpu} are
15503
15504 @table @samp
15505 @item ARC600
15506 Tune for ARC600 CPU.
15507
15508 @item ARC601
15509 Tune for ARC601 CPU.
15510
15511 @item ARC700
15512 Tune for ARC700 CPU with standard multiplier block.
15513
15514 @item ARC700-xmac
15515 Tune for ARC700 CPU with XMAC block.
15516
15517 @item ARC725D
15518 Tune for ARC725D CPU.
15519
15520 @item ARC750D
15521 Tune for ARC750D CPU.
15522
15523 @end table
15524
15525 @item -mmultcost=@var{num}
15526 @opindex mmultcost
15527 Cost to assume for a multiply instruction, with @samp{4} being equal to a
15528 normal instruction.
15529
15530 @item -munalign-prob-threshold=@var{probability}
15531 @opindex munalign-prob-threshold
15532 Set probability threshold for unaligning branches.
15533 When tuning for @samp{ARC700} and optimizing for speed, branches without
15534 filled delay slot are preferably emitted unaligned and long, unless
15535 profiling indicates that the probability for the branch to be taken
15536 is below @var{probability}. @xref{Cross-profiling}.
15537 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
15538
15539 @end table
15540
15541 The following options are maintained for backward compatibility, but
15542 are now deprecated and will be removed in a future release:
15543
15544 @c Deprecated options
15545 @table @gcctabopt
15546
15547 @item -margonaut
15548 @opindex margonaut
15549 Obsolete FPX.
15550
15551 @item -mbig-endian
15552 @opindex mbig-endian
15553 @itemx -EB
15554 @opindex EB
15555 Compile code for big-endian targets. Use of these options is now
15556 deprecated. Big-endian code is supported by configuring GCC to build
15557 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
15558 for which big endian is the default.
15559
15560 @item -mlittle-endian
15561 @opindex mlittle-endian
15562 @itemx -EL
15563 @opindex EL
15564 Compile code for little-endian targets. Use of these options is now
15565 deprecated. Little-endian code is supported by configuring GCC to build
15566 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
15567 for which little endian is the default.
15568
15569 @item -mbarrel_shifter
15570 @opindex mbarrel_shifter
15571 Replaced by @option{-mbarrel-shifter}.
15572
15573 @item -mdpfp_compact
15574 @opindex mdpfp_compact
15575 Replaced by @option{-mdpfp-compact}.
15576
15577 @item -mdpfp_fast
15578 @opindex mdpfp_fast
15579 Replaced by @option{-mdpfp-fast}.
15580
15581 @item -mdsp_packa
15582 @opindex mdsp_packa
15583 Replaced by @option{-mdsp-packa}.
15584
15585 @item -mEA
15586 @opindex mEA
15587 Replaced by @option{-mea}.
15588
15589 @item -mmac_24
15590 @opindex mmac_24
15591 Replaced by @option{-mmac-24}.
15592
15593 @item -mmac_d16
15594 @opindex mmac_d16
15595 Replaced by @option{-mmac-d16}.
15596
15597 @item -mspfp_compact
15598 @opindex mspfp_compact
15599 Replaced by @option{-mspfp-compact}.
15600
15601 @item -mspfp_fast
15602 @opindex mspfp_fast
15603 Replaced by @option{-mspfp-fast}.
15604
15605 @item -mtune=@var{cpu}
15606 @opindex mtune
15607 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
15608 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
15609 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
15610
15611 @item -multcost=@var{num}
15612 @opindex multcost
15613 Replaced by @option{-mmultcost}.
15614
15615 @end table
15616
15617 @node ARM Options
15618 @subsection ARM Options
15619 @cindex ARM options
15620
15621 These @samp{-m} options are defined for the ARM port:
15622
15623 @table @gcctabopt
15624 @item -mabi=@var{name}
15625 @opindex mabi
15626 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
15627 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
15628
15629 @item -mapcs-frame
15630 @opindex mapcs-frame
15631 Generate a stack frame that is compliant with the ARM Procedure Call
15632 Standard for all functions, even if this is not strictly necessary for
15633 correct execution of the code. Specifying @option{-fomit-frame-pointer}
15634 with this option causes the stack frames not to be generated for
15635 leaf functions. The default is @option{-mno-apcs-frame}.
15636 This option is deprecated.
15637
15638 @item -mapcs
15639 @opindex mapcs
15640 This is a synonym for @option{-mapcs-frame} and is deprecated.
15641
15642 @ignore
15643 @c not currently implemented
15644 @item -mapcs-stack-check
15645 @opindex mapcs-stack-check
15646 Generate code to check the amount of stack space available upon entry to
15647 every function (that actually uses some stack space). If there is
15648 insufficient space available then either the function
15649 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
15650 called, depending upon the amount of stack space required. The runtime
15651 system is required to provide these functions. The default is
15652 @option{-mno-apcs-stack-check}, since this produces smaller code.
15653
15654 @c not currently implemented
15655 @item -mapcs-reentrant
15656 @opindex mapcs-reentrant
15657 Generate reentrant, position-independent code. The default is
15658 @option{-mno-apcs-reentrant}.
15659 @end ignore
15660
15661 @item -mthumb-interwork
15662 @opindex mthumb-interwork
15663 Generate code that supports calling between the ARM and Thumb
15664 instruction sets. Without this option, on pre-v5 architectures, the
15665 two instruction sets cannot be reliably used inside one program. The
15666 default is @option{-mno-thumb-interwork}, since slightly larger code
15667 is generated when @option{-mthumb-interwork} is specified. In AAPCS
15668 configurations this option is meaningless.
15669
15670 @item -mno-sched-prolog
15671 @opindex mno-sched-prolog
15672 Prevent the reordering of instructions in the function prologue, or the
15673 merging of those instruction with the instructions in the function's
15674 body. This means that all functions start with a recognizable set
15675 of instructions (or in fact one of a choice from a small set of
15676 different function prologues), and this information can be used to
15677 locate the start of functions inside an executable piece of code. The
15678 default is @option{-msched-prolog}.
15679
15680 @item -mfloat-abi=@var{name}
15681 @opindex mfloat-abi
15682 Specifies which floating-point ABI to use. Permissible values
15683 are: @samp{soft}, @samp{softfp} and @samp{hard}.
15684
15685 Specifying @samp{soft} causes GCC to generate output containing
15686 library calls for floating-point operations.
15687 @samp{softfp} allows the generation of code using hardware floating-point
15688 instructions, but still uses the soft-float calling conventions.
15689 @samp{hard} allows generation of floating-point instructions
15690 and uses FPU-specific calling conventions.
15691
15692 The default depends on the specific target configuration. Note that
15693 the hard-float and soft-float ABIs are not link-compatible; you must
15694 compile your entire program with the same ABI, and link with a
15695 compatible set of libraries.
15696
15697 @item -mlittle-endian
15698 @opindex mlittle-endian
15699 Generate code for a processor running in little-endian mode. This is
15700 the default for all standard configurations.
15701
15702 @item -mbig-endian
15703 @opindex mbig-endian
15704 Generate code for a processor running in big-endian mode; the default is
15705 to compile code for a little-endian processor.
15706
15707 @item -mbe8
15708 @itemx -mbe32
15709 @opindex mbe8
15710 When linking a big-endian image select between BE8 and BE32 formats.
15711 The option has no effect for little-endian images and is ignored. The
15712 default is dependent on the selected target architecture. For ARMv6
15713 and later architectures the default is BE8, for older architectures
15714 the default is BE32. BE32 format has been deprecated by ARM.
15715
15716 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
15717 @opindex march
15718 This specifies the name of the target ARM architecture. GCC uses this
15719 name to determine what kind of instructions it can emit when generating
15720 assembly code. This option can be used in conjunction with or instead
15721 of the @option{-mcpu=} option.
15722
15723 Permissible names are:
15724 @samp{armv4t},
15725 @samp{armv5t}, @samp{armv5te},
15726 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
15727 @samp{armv6z}, @samp{armv6zk},
15728 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
15729 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
15730 @samp{armv8.4-a},
15731 @samp{armv7-r},
15732 @samp{armv8-r},
15733 @samp{armv6-m}, @samp{armv6s-m},
15734 @samp{armv7-m}, @samp{armv7e-m},
15735 @samp{armv8-m.base}, @samp{armv8-m.main},
15736 @samp{iwmmxt} and @samp{iwmmxt2}.
15737
15738 Additionally, the following architectures, which lack support for the
15739 Thumb execution state, are recognized but support is deprecated:
15740 @samp{armv2}, @samp{armv2a}, @samp{armv3}, @samp{armv3m},
15741 @samp{armv4}, @samp{armv5} and @samp{armv5e}.
15742
15743 Many of the architectures support extensions. These can be added by
15744 appending @samp{+@var{extension}} to the architecture name. Extension
15745 options are processed in order and capabilities accumulate. An extension
15746 will also enable any necessary base extensions
15747 upon which it depends. For example, the @samp{+crypto} extension
15748 will always enable the @samp{+simd} extension. The exception to the
15749 additive construction is for extensions that are prefixed with
15750 @samp{+no@dots{}}: these extensions disable the specified option and
15751 any other extensions that may depend on the presence of that
15752 extension.
15753
15754 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
15755 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
15756 entirely disabled by the @samp{+nofp} option that follows it.
15757
15758 Most extension names are generically named, but have an effect that is
15759 dependent upon the architecture to which it is applied. For example,
15760 the @samp{+simd} option can be applied to both @samp{armv7-a} and
15761 @samp{armv8-a} architectures, but will enable the original ARMv7-A
15762 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
15763 variant for @samp{armv8-a}.
15764
15765 The table below lists the supported extensions for each architecture.
15766 Architectures not mentioned do not support any extensions.
15767
15768 @table @samp
15769 @item armv5e
15770 @itemx armv5te
15771 @itemx armv6
15772 @itemx armv6j
15773 @itemx armv6k
15774 @itemx armv6kz
15775 @itemx armv6t2
15776 @itemx armv6z
15777 @itemx armv6zk
15778 @table @samp
15779 @item +fp
15780 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
15781 used as an alias for this extension.
15782
15783 @item +nofp
15784 Disable the floating-point instructions.
15785 @end table
15786
15787 @item armv7
15788 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
15789 @table @samp
15790 @item +fp
15791 The VFPv3 floating-point instructions, with 16 double-precision
15792 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15793 for this extension. Note that floating-point is not supported by the
15794 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
15795 ARMv7-R architectures.
15796
15797 @item +nofp
15798 Disable the floating-point instructions.
15799 @end table
15800
15801 @item armv7-a
15802 @table @samp
15803 @item +fp
15804 The VFPv3 floating-point instructions, with 16 double-precision
15805 registers. The extension @samp{+vfpv3-d16} can be used as an alias
15806 for this extension.
15807
15808 @item +simd
15809 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15810 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
15811 for this extension.
15812
15813 @item +vfpv3
15814 The VFPv3 floating-point instructions, with 32 double-precision
15815 registers.
15816
15817 @item +vfpv3-d16-fp16
15818 The VFPv3 floating-point instructions, with 16 double-precision
15819 registers and the half-precision floating-point conversion operations.
15820
15821 @item +vfpv3-fp16
15822 The VFPv3 floating-point instructions, with 32 double-precision
15823 registers and the half-precision floating-point conversion operations.
15824
15825 @item +vfpv4-d16
15826 The VFPv4 floating-point instructions, with 16 double-precision
15827 registers.
15828
15829 @item +vfpv4
15830 The VFPv4 floating-point instructions, with 32 double-precision
15831 registers.
15832
15833 @item +neon-fp16
15834 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15835 the half-precision floating-point conversion operations.
15836
15837 @item +neon-vfpv4
15838 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
15839
15840 @item +nosimd
15841 Disable the Advanced SIMD instructions (does not disable floating point).
15842
15843 @item +nofp
15844 Disable the floating-point and Advanced SIMD instructions.
15845 @end table
15846
15847 @item armv7ve
15848 The extended version of the ARMv7-A architecture with support for
15849 virtualization.
15850 @table @samp
15851 @item +fp
15852 The VFPv4 floating-point instructions, with 16 double-precision registers.
15853 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
15854
15855 @item +simd
15856 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
15857 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
15858
15859 @item +vfpv3-d16
15860 The VFPv3 floating-point instructions, with 16 double-precision
15861 registers.
15862
15863 @item +vfpv3
15864 The VFPv3 floating-point instructions, with 32 double-precision
15865 registers.
15866
15867 @item +vfpv3-d16-fp16
15868 The VFPv3 floating-point instructions, with 16 double-precision
15869 registers and the half-precision floating-point conversion operations.
15870
15871 @item +vfpv3-fp16
15872 The VFPv3 floating-point instructions, with 32 double-precision
15873 registers and the half-precision floating-point conversion operations.
15874
15875 @item +vfpv4-d16
15876 The VFPv4 floating-point instructions, with 16 double-precision
15877 registers.
15878
15879 @item +vfpv4
15880 The VFPv4 floating-point instructions, with 32 double-precision
15881 registers.
15882
15883 @item +neon
15884 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
15885 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
15886
15887 @item +neon-fp16
15888 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
15889 the half-precision floating-point conversion operations.
15890
15891 @item +nosimd
15892 Disable the Advanced SIMD instructions (does not disable floating point).
15893
15894 @item +nofp
15895 Disable the floating-point and Advanced SIMD instructions.
15896 @end table
15897
15898 @item armv8-a
15899 @table @samp
15900 @item +crc
15901 The Cyclic Redundancy Check (CRC) instructions.
15902 @item +simd
15903 The ARMv8-A Advanced SIMD and floating-point instructions.
15904 @item +crypto
15905 The cryptographic instructions.
15906 @item +nocrypto
15907 Disable the cryptographic instructions.
15908 @item +nofp
15909 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15910 @end table
15911
15912 @item armv8.1-a
15913 @table @samp
15914 @item +simd
15915 The ARMv8.1-A Advanced SIMD and floating-point instructions.
15916
15917 @item +crypto
15918 The cryptographic instructions. This also enables the Advanced SIMD and
15919 floating-point instructions.
15920
15921 @item +nocrypto
15922 Disable the cryptographic instructions.
15923
15924 @item +nofp
15925 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15926 @end table
15927
15928 @item armv8.2-a
15929 @itemx armv8.3-a
15930 @table @samp
15931 @item +fp16
15932 The half-precision floating-point data processing instructions.
15933 This also enables the Advanced SIMD and floating-point instructions.
15934
15935 @item +fp16fml
15936 The half-precision floating-point fmla extension. This also enables
15937 the half-precision floating-point extension and Advanced SIMD and
15938 floating-point instructions.
15939
15940 @item +simd
15941 The ARMv8.1-A Advanced SIMD and floating-point instructions.
15942
15943 @item +crypto
15944 The cryptographic instructions. This also enables the Advanced SIMD and
15945 floating-point instructions.
15946
15947 @item +dotprod
15948 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
15949
15950 @item +nocrypto
15951 Disable the cryptographic extension.
15952
15953 @item +nofp
15954 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15955 @end table
15956
15957 @item armv8.4-a
15958 @table @samp
15959 @item +fp16
15960 The half-precision floating-point data processing instructions.
15961 This also enables the Advanced SIMD and floating-point instructions as well
15962 as the Dot Product extension and the half-precision floating-point fmla
15963 extension.
15964
15965 @item +simd
15966 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
15967 Dot Product extension.
15968
15969 @item +crypto
15970 The cryptographic instructions. This also enables the Advanced SIMD and
15971 floating-point instructions as well as the Dot Product extension.
15972
15973 @item +nocrypto
15974 Disable the cryptographic extension.
15975
15976 @item +nofp
15977 Disable the floating-point, Advanced SIMD and cryptographic instructions.
15978 @end table
15979
15980 @item armv7-r
15981 @table @samp
15982 @item +fp.sp
15983 The single-precision VFPv3 floating-point instructions. The extension
15984 @samp{+vfpv3xd} can be used as an alias for this extension.
15985
15986 @item +fp
15987 The VFPv3 floating-point instructions with 16 double-precision registers.
15988 The extension +vfpv3-d16 can be used as an alias for this extension.
15989
15990 @item +nofp
15991 Disable the floating-point extension.
15992
15993 @item +idiv
15994 The ARM-state integer division instructions.
15995
15996 @item +noidiv
15997 Disable the ARM-state integer division extension.
15998 @end table
15999
16000 @item armv7e-m
16001 @table @samp
16002 @item +fp
16003 The single-precision VFPv4 floating-point instructions.
16004
16005 @item +fpv5
16006 The single-precision FPv5 floating-point instructions.
16007
16008 @item +fp.dp
16009 The single- and double-precision FPv5 floating-point instructions.
16010
16011 @item +nofp
16012 Disable the floating-point extensions.
16013 @end table
16014
16015 @item armv8-m.main
16016 @table @samp
16017 @item +dsp
16018 The DSP instructions.
16019
16020 @item +nodsp
16021 Disable the DSP extension.
16022
16023 @item +fp
16024 The single-precision floating-point instructions.
16025
16026 @item +fp.dp
16027 The single- and double-precision floating-point instructions.
16028
16029 @item +nofp
16030 Disable the floating-point extension.
16031 @end table
16032
16033 @item armv8-r
16034 @table @samp
16035 @item +crc
16036 The Cyclic Redundancy Check (CRC) instructions.
16037 @item +fp.sp
16038 The single-precision FPv5 floating-point instructions.
16039 @item +simd
16040 The ARMv8-A Advanced SIMD and floating-point instructions.
16041 @item +crypto
16042 The cryptographic instructions.
16043 @item +nocrypto
16044 Disable the cryptographic instructions.
16045 @item +nofp
16046 Disable the floating-point, Advanced SIMD and cryptographic instructions.
16047 @end table
16048
16049 @end table
16050
16051 @option{-march=native} causes the compiler to auto-detect the architecture
16052 of the build computer. At present, this feature is only supported on
16053 GNU/Linux, and not all architectures are recognized. If the auto-detect
16054 is unsuccessful the option has no effect.
16055
16056 @item -mtune=@var{name}
16057 @opindex mtune
16058 This option specifies the name of the target ARM processor for
16059 which GCC should tune the performance of the code.
16060 For some ARM implementations better performance can be obtained by using
16061 this option.
16062 Permissible names are: @samp{arm2}, @samp{arm250},
16063 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
16064 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
16065 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
16066 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
16067 @samp{arm720},
16068 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
16069 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
16070 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
16071 @samp{strongarm1110},
16072 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
16073 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
16074 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
16075 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
16076 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
16077 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
16078 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
16079 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
16080 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
16081 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
16082 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
16083 @samp{cortex-r4}, @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7},
16084 @samp{cortex-r8}, @samp{cortex-r52},
16085 @samp{cortex-m33},
16086 @samp{cortex-m23},
16087 @samp{cortex-m7},
16088 @samp{cortex-m4},
16089 @samp{cortex-m3},
16090 @samp{cortex-m1},
16091 @samp{cortex-m0},
16092 @samp{cortex-m0plus},
16093 @samp{cortex-m1.small-multiply},
16094 @samp{cortex-m0.small-multiply},
16095 @samp{cortex-m0plus.small-multiply},
16096 @samp{exynos-m1},
16097 @samp{marvell-pj4},
16098 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
16099 @samp{fa526}, @samp{fa626},
16100 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
16101 @samp{xgene1}.
16102
16103 Additionally, this option can specify that GCC should tune the performance
16104 of the code for a big.LITTLE system. Permissible names are:
16105 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
16106 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
16107 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
16108 @samp{cortex-a75.cortex-a55}.
16109
16110 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
16111 performance for a blend of processors within architecture @var{arch}.
16112 The aim is to generate code that run well on the current most popular
16113 processors, balancing between optimizations that benefit some CPUs in the
16114 range, and avoiding performance pitfalls of other CPUs. The effects of
16115 this option may change in future GCC versions as CPU models come and go.
16116
16117 @option{-mtune} permits the same extension options as @option{-mcpu}, but
16118 the extension options do not affect the tuning of the generated code.
16119
16120 @option{-mtune=native} causes the compiler to auto-detect the CPU
16121 of the build computer. At present, this feature is only supported on
16122 GNU/Linux, and not all architectures are recognized. If the auto-detect is
16123 unsuccessful the option has no effect.
16124
16125 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
16126 @opindex mcpu
16127 This specifies the name of the target ARM processor. GCC uses this name
16128 to derive the name of the target ARM architecture (as if specified
16129 by @option{-march}) and the ARM processor type for which to tune for
16130 performance (as if specified by @option{-mtune}). Where this option
16131 is used in conjunction with @option{-march} or @option{-mtune},
16132 those options take precedence over the appropriate part of this option.
16133
16134 Many of the supported CPUs implement optional architectural
16135 extensions. Where this is so the architectural extensions are
16136 normally enabled by default. If implementations that lack the
16137 extension exist, then the extension syntax can be used to disable
16138 those extensions that have been omitted. For floating-point and
16139 Advanced SIMD (Neon) instructions, the settings of the options
16140 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
16141 floating-point and Advanced SIMD instructions will only be used if
16142 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
16143 @option{-mfpu} other than @samp{auto} will override the available
16144 floating-point and SIMD extension instructions.
16145
16146 For example, @samp{cortex-a9} can be found in three major
16147 configurations: integer only, with just a floating-point unit or with
16148 floating-point and Advanced SIMD. The default is to enable all the
16149 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
16150 be used to disable just the SIMD or both the SIMD and floating-point
16151 instructions respectively.
16152
16153 Permissible names for this option are the same as those for
16154 @option{-mtune}.
16155
16156 The following extension options are common to the listed CPUs:
16157
16158 @table @samp
16159 @item +nodsp
16160 Disable the DSP instructions on @samp{cortex-m33}.
16161
16162 @item +nofp
16163 Disables the floating-point instructions on @samp{arm9e},
16164 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
16165 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
16166 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
16167 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
16168 Disables the floating-point and SIMD instructions on
16169 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
16170 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
16171 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
16172 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
16173 @samp{cortex-a53} and @samp{cortex-a55}.
16174
16175 @item +nofp.dp
16176 Disables the double-precision component of the floating-point instructions
16177 on @samp{cortex-r5}, @samp{cortex-r52} and @samp{cortex-m7}.
16178
16179 @item +nosimd
16180 Disables the SIMD (but not floating-point) instructions on
16181 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
16182 and @samp{cortex-a9}.
16183
16184 @item +crypto
16185 Enables the cryptographic instructions on @samp{cortex-a32},
16186 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
16187 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
16188 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
16189 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
16190 @samp{cortex-a75.cortex-a55}.
16191 @end table
16192
16193 Additionally the @samp{generic-armv7-a} pseudo target defaults to
16194 VFPv3 with 16 double-precision registers. It supports the following
16195 extension options: @samp{vfpv3-d16}, @samp{vfpv3},
16196 @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16}, @samp{vfpv4-d16},
16197 @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3}, @samp{neon-fp16},
16198 @samp{neon-vfpv4}. The meanings are the same as for the extensions to
16199 @option{-march=armv7-a}.
16200
16201 @option{-mcpu=generic-@var{arch}} is also permissible, and is
16202 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
16203 See @option{-mtune} for more information.
16204
16205 @option{-mcpu=native} causes the compiler to auto-detect the CPU
16206 of the build computer. At present, this feature is only supported on
16207 GNU/Linux, and not all architectures are recognized. If the auto-detect
16208 is unsuccessful the option has no effect.
16209
16210 @item -mfpu=@var{name}
16211 @opindex mfpu
16212 This specifies what floating-point hardware (or hardware emulation) is
16213 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
16214 @samp{vfpv3},
16215 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
16216 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
16217 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
16218 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
16219 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
16220 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
16221 is an alias for @samp{vfpv2}.
16222
16223 The setting @samp{auto} is the default and is special. It causes the
16224 compiler to select the floating-point and Advanced SIMD instructions
16225 based on the settings of @option{-mcpu} and @option{-march}.
16226
16227 If the selected floating-point hardware includes the NEON extension
16228 (e.g. @option{-mfpu=neon}), note that floating-point
16229 operations are not generated by GCC's auto-vectorization pass unless
16230 @option{-funsafe-math-optimizations} is also specified. This is
16231 because NEON hardware does not fully implement the IEEE 754 standard for
16232 floating-point arithmetic (in particular denormal values are treated as
16233 zero), so the use of NEON instructions may lead to a loss of precision.
16234
16235 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
16236
16237 @item -mfp16-format=@var{name}
16238 @opindex mfp16-format
16239 Specify the format of the @code{__fp16} half-precision floating-point type.
16240 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
16241 the default is @samp{none}, in which case the @code{__fp16} type is not
16242 defined. @xref{Half-Precision}, for more information.
16243
16244 @item -mstructure-size-boundary=@var{n}
16245 @opindex mstructure-size-boundary
16246 The sizes of all structures and unions are rounded up to a multiple
16247 of the number of bits set by this option. Permissible values are 8, 32
16248 and 64. The default value varies for different toolchains. For the COFF
16249 targeted toolchain the default value is 8. A value of 64 is only allowed
16250 if the underlying ABI supports it.
16251
16252 Specifying a larger number can produce faster, more efficient code, but
16253 can also increase the size of the program. Different values are potentially
16254 incompatible. Code compiled with one value cannot necessarily expect to
16255 work with code or libraries compiled with another value, if they exchange
16256 information using structures or unions.
16257
16258 This option is deprecated.
16259
16260 @item -mabort-on-noreturn
16261 @opindex mabort-on-noreturn
16262 Generate a call to the function @code{abort} at the end of a
16263 @code{noreturn} function. It is executed if the function tries to
16264 return.
16265
16266 @item -mlong-calls
16267 @itemx -mno-long-calls
16268 @opindex mlong-calls
16269 @opindex mno-long-calls
16270 Tells the compiler to perform function calls by first loading the
16271 address of the function into a register and then performing a subroutine
16272 call on this register. This switch is needed if the target function
16273 lies outside of the 64-megabyte addressing range of the offset-based
16274 version of subroutine call instruction.
16275
16276 Even if this switch is enabled, not all function calls are turned
16277 into long calls. The heuristic is that static functions, functions
16278 that have the @code{short_call} attribute, functions that are inside
16279 the scope of a @code{#pragma no_long_calls} directive, and functions whose
16280 definitions have already been compiled within the current compilation
16281 unit are not turned into long calls. The exceptions to this rule are
16282 that weak function definitions, functions with the @code{long_call}
16283 attribute or the @code{section} attribute, and functions that are within
16284 the scope of a @code{#pragma long_calls} directive are always
16285 turned into long calls.
16286
16287 This feature is not enabled by default. Specifying
16288 @option{-mno-long-calls} restores the default behavior, as does
16289 placing the function calls within the scope of a @code{#pragma
16290 long_calls_off} directive. Note these switches have no effect on how
16291 the compiler generates code to handle function calls via function
16292 pointers.
16293
16294 @item -msingle-pic-base
16295 @opindex msingle-pic-base
16296 Treat the register used for PIC addressing as read-only, rather than
16297 loading it in the prologue for each function. The runtime system is
16298 responsible for initializing this register with an appropriate value
16299 before execution begins.
16300
16301 @item -mpic-register=@var{reg}
16302 @opindex mpic-register
16303 Specify the register to be used for PIC addressing.
16304 For standard PIC base case, the default is any suitable register
16305 determined by compiler. For single PIC base case, the default is
16306 @samp{R9} if target is EABI based or stack-checking is enabled,
16307 otherwise the default is @samp{R10}.
16308
16309 @item -mpic-data-is-text-relative
16310 @opindex mpic-data-is-text-relative
16311 Assume that the displacement between the text and data segments is fixed
16312 at static link time. This permits using PC-relative addressing
16313 operations to access data known to be in the data segment. For
16314 non-VxWorks RTP targets, this option is enabled by default. When
16315 disabled on such targets, it will enable @option{-msingle-pic-base} by
16316 default.
16317
16318 @item -mpoke-function-name
16319 @opindex mpoke-function-name
16320 Write the name of each function into the text section, directly
16321 preceding the function prologue. The generated code is similar to this:
16322
16323 @smallexample
16324 t0
16325 .ascii "arm_poke_function_name", 0
16326 .align
16327 t1
16328 .word 0xff000000 + (t1 - t0)
16329 arm_poke_function_name
16330 mov ip, sp
16331 stmfd sp!, @{fp, ip, lr, pc@}
16332 sub fp, ip, #4
16333 @end smallexample
16334
16335 When performing a stack backtrace, code can inspect the value of
16336 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
16337 location @code{pc - 12} and the top 8 bits are set, then we know that
16338 there is a function name embedded immediately preceding this location
16339 and has length @code{((pc[-3]) & 0xff000000)}.
16340
16341 @item -mthumb
16342 @itemx -marm
16343 @opindex marm
16344 @opindex mthumb
16345
16346 Select between generating code that executes in ARM and Thumb
16347 states. The default for most configurations is to generate code
16348 that executes in ARM state, but the default can be changed by
16349 configuring GCC with the @option{--with-mode=}@var{state}
16350 configure option.
16351
16352 You can also override the ARM and Thumb mode for each function
16353 by using the @code{target("thumb")} and @code{target("arm")} function attributes
16354 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
16355
16356 @item -mflip-thumb
16357 @opindex mflip-thumb
16358 Switch ARM/Thumb modes on alternating functions.
16359 This option is provided for regression testing of mixed Thumb/ARM code
16360 generation, and is not intended for ordinary use in compiling code.
16361
16362 @item -mtpcs-frame
16363 @opindex mtpcs-frame
16364 Generate a stack frame that is compliant with the Thumb Procedure Call
16365 Standard for all non-leaf functions. (A leaf function is one that does
16366 not call any other functions.) The default is @option{-mno-tpcs-frame}.
16367
16368 @item -mtpcs-leaf-frame
16369 @opindex mtpcs-leaf-frame
16370 Generate a stack frame that is compliant with the Thumb Procedure Call
16371 Standard for all leaf functions. (A leaf function is one that does
16372 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
16373
16374 @item -mcallee-super-interworking
16375 @opindex mcallee-super-interworking
16376 Gives all externally visible functions in the file being compiled an ARM
16377 instruction set header which switches to Thumb mode before executing the
16378 rest of the function. This allows these functions to be called from
16379 non-interworking code. This option is not valid in AAPCS configurations
16380 because interworking is enabled by default.
16381
16382 @item -mcaller-super-interworking
16383 @opindex mcaller-super-interworking
16384 Allows calls via function pointers (including virtual functions) to
16385 execute correctly regardless of whether the target code has been
16386 compiled for interworking or not. There is a small overhead in the cost
16387 of executing a function pointer if this option is enabled. This option
16388 is not valid in AAPCS configurations because interworking is enabled
16389 by default.
16390
16391 @item -mtp=@var{name}
16392 @opindex mtp
16393 Specify the access model for the thread local storage pointer. The valid
16394 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
16395 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
16396 (supported in the arm6k architecture), and @samp{auto}, which uses the
16397 best available method for the selected processor. The default setting is
16398 @samp{auto}.
16399
16400 @item -mtls-dialect=@var{dialect}
16401 @opindex mtls-dialect
16402 Specify the dialect to use for accessing thread local storage. Two
16403 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
16404 @samp{gnu} dialect selects the original GNU scheme for supporting
16405 local and global dynamic TLS models. The @samp{gnu2} dialect
16406 selects the GNU descriptor scheme, which provides better performance
16407 for shared libraries. The GNU descriptor scheme is compatible with
16408 the original scheme, but does require new assembler, linker and
16409 library support. Initial and local exec TLS models are unaffected by
16410 this option and always use the original scheme.
16411
16412 @item -mword-relocations
16413 @opindex mword-relocations
16414 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
16415 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
16416 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
16417 is specified.
16418
16419 @item -mfix-cortex-m3-ldrd
16420 @opindex mfix-cortex-m3-ldrd
16421 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
16422 with overlapping destination and base registers are used. This option avoids
16423 generating these instructions. This option is enabled by default when
16424 @option{-mcpu=cortex-m3} is specified.
16425
16426 @item -munaligned-access
16427 @itemx -mno-unaligned-access
16428 @opindex munaligned-access
16429 @opindex mno-unaligned-access
16430 Enables (or disables) reading and writing of 16- and 32- bit values
16431 from addresses that are not 16- or 32- bit aligned. By default
16432 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
16433 ARMv8-M Baseline architectures, and enabled for all other
16434 architectures. If unaligned access is not enabled then words in packed
16435 data structures are accessed a byte at a time.
16436
16437 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
16438 generated object file to either true or false, depending upon the
16439 setting of this option. If unaligned access is enabled then the
16440 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
16441 defined.
16442
16443 @item -mneon-for-64bits
16444 @opindex mneon-for-64bits
16445 Enables using Neon to handle scalar 64-bits operations. This is
16446 disabled by default since the cost of moving data from core registers
16447 to Neon is high.
16448
16449 @item -mslow-flash-data
16450 @opindex mslow-flash-data
16451 Assume loading data from flash is slower than fetching instruction.
16452 Therefore literal load is minimized for better performance.
16453 This option is only supported when compiling for ARMv7 M-profile and
16454 off by default.
16455
16456 @item -masm-syntax-unified
16457 @opindex masm-syntax-unified
16458 Assume inline assembler is using unified asm syntax. The default is
16459 currently off which implies divided syntax. This option has no impact
16460 on Thumb2. However, this may change in future releases of GCC.
16461 Divided syntax should be considered deprecated.
16462
16463 @item -mrestrict-it
16464 @opindex mrestrict-it
16465 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
16466 IT blocks can only contain a single 16-bit instruction from a select
16467 set of instructions. This option is on by default for ARMv8-A Thumb mode.
16468
16469 @item -mprint-tune-info
16470 @opindex mprint-tune-info
16471 Print CPU tuning information as comment in assembler file. This is
16472 an option used only for regression testing of the compiler and not
16473 intended for ordinary use in compiling code. This option is disabled
16474 by default.
16475
16476 @item -mverbose-cost-dump
16477 @opindex mverbose-cost-dump
16478 Enable verbose cost model dumping in the debug dump files. This option is
16479 provided for use in debugging the compiler.
16480
16481 @item -mpure-code
16482 @opindex mpure-code
16483 Do not allow constant data to be placed in code sections.
16484 Additionally, when compiling for ELF object format give all text sections the
16485 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
16486 is only available when generating non-pic code for M-profile targets with the
16487 MOVT instruction.
16488
16489 @item -mcmse
16490 @opindex mcmse
16491 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
16492 Development Tools Engineering Specification", which can be found on
16493 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
16494 @end table
16495
16496 @node AVR Options
16497 @subsection AVR Options
16498 @cindex AVR Options
16499
16500 These options are defined for AVR implementations:
16501
16502 @table @gcctabopt
16503 @item -mmcu=@var{mcu}
16504 @opindex mmcu
16505 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
16506
16507 The default for this option is@tie{}@samp{avr2}.
16508
16509 GCC supports the following AVR devices and ISAs:
16510
16511 @include avr-mmcu.texi
16512
16513 @item -mabsdata
16514 @opindex mabsdata
16515
16516 Assume that all data in static storage can be accessed by LDS / STS
16517 instructions. This option has only an effect on reduced Tiny devices like
16518 ATtiny40. See also the @code{absdata}
16519 @ref{AVR Variable Attributes,variable attribute}.
16520
16521 @item -maccumulate-args
16522 @opindex maccumulate-args
16523 Accumulate outgoing function arguments and acquire/release the needed
16524 stack space for outgoing function arguments once in function
16525 prologue/epilogue. Without this option, outgoing arguments are pushed
16526 before calling a function and popped afterwards.
16527
16528 Popping the arguments after the function call can be expensive on
16529 AVR so that accumulating the stack space might lead to smaller
16530 executables because arguments need not be removed from the
16531 stack after such a function call.
16532
16533 This option can lead to reduced code size for functions that perform
16534 several calls to functions that get their arguments on the stack like
16535 calls to printf-like functions.
16536
16537 @item -mbranch-cost=@var{cost}
16538 @opindex mbranch-cost
16539 Set the branch costs for conditional branch instructions to
16540 @var{cost}. Reasonable values for @var{cost} are small, non-negative
16541 integers. The default branch cost is 0.
16542
16543 @item -mcall-prologues
16544 @opindex mcall-prologues
16545 Functions prologues/epilogues are expanded as calls to appropriate
16546 subroutines. Code size is smaller.
16547
16548 @item -mgas-isr-prologues
16549 @opindex mgas-isr-prologues
16550 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
16551 instruction supported by GNU Binutils.
16552 If this option is on, the feature can still be disabled for individual
16553 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
16554 function attribute. This feature is activated per default
16555 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
16556 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
16557
16558 @item -mint8
16559 @opindex mint8
16560 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
16561 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
16562 and @code{long long} is 4 bytes. Please note that this option does not
16563 conform to the C standards, but it results in smaller code
16564 size.
16565
16566 @item -mmain-is-OS_task
16567 @opindex mmain-is-OS_task
16568 Do not save registers in @code{main}. The effect is the same like
16569 attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
16570 to @code{main}. It is activated per default if optimization is on.
16571
16572 @item -mn-flash=@var{num}
16573 @opindex mn-flash
16574 Assume that the flash memory has a size of
16575 @var{num} times 64@tie{}KiB.
16576
16577 @item -mno-interrupts
16578 @opindex mno-interrupts
16579 Generated code is not compatible with hardware interrupts.
16580 Code size is smaller.
16581
16582 @item -mrelax
16583 @opindex mrelax
16584 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
16585 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
16586 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
16587 the assembler's command line and the @option{--relax} option to the
16588 linker's command line.
16589
16590 Jump relaxing is performed by the linker because jump offsets are not
16591 known before code is located. Therefore, the assembler code generated by the
16592 compiler is the same, but the instructions in the executable may
16593 differ from instructions in the assembler code.
16594
16595 Relaxing must be turned on if linker stubs are needed, see the
16596 section on @code{EIND} and linker stubs below.
16597
16598 @item -mrmw
16599 @opindex mrmw
16600 Assume that the device supports the Read-Modify-Write
16601 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
16602
16603 @item -mshort-calls
16604 @opindex mshort-calls
16605
16606 Assume that @code{RJMP} and @code{RCALL} can target the whole
16607 program memory.
16608
16609 This option is used internally for multilib selection. It is
16610 not an optimization option, and you don't need to set it by hand.
16611
16612 @item -msp8
16613 @opindex msp8
16614 Treat the stack pointer register as an 8-bit register,
16615 i.e.@: assume the high byte of the stack pointer is zero.
16616 In general, you don't need to set this option by hand.
16617
16618 This option is used internally by the compiler to select and
16619 build multilibs for architectures @code{avr2} and @code{avr25}.
16620 These architectures mix devices with and without @code{SPH}.
16621 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
16622 the compiler driver adds or removes this option from the compiler
16623 proper's command line, because the compiler then knows if the device
16624 or architecture has an 8-bit stack pointer and thus no @code{SPH}
16625 register or not.
16626
16627 @item -mstrict-X
16628 @opindex mstrict-X
16629 Use address register @code{X} in a way proposed by the hardware. This means
16630 that @code{X} is only used in indirect, post-increment or
16631 pre-decrement addressing.
16632
16633 Without this option, the @code{X} register may be used in the same way
16634 as @code{Y} or @code{Z} which then is emulated by additional
16635 instructions.
16636 For example, loading a value with @code{X+const} addressing with a
16637 small non-negative @code{const < 64} to a register @var{Rn} is
16638 performed as
16639
16640 @example
16641 adiw r26, const ; X += const
16642 ld @var{Rn}, X ; @var{Rn} = *X
16643 sbiw r26, const ; X -= const
16644 @end example
16645
16646 @item -mtiny-stack
16647 @opindex mtiny-stack
16648 Only change the lower 8@tie{}bits of the stack pointer.
16649
16650 @item -mfract-convert-truncate
16651 @opindex mfract-convert-truncate
16652 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
16653
16654 @item -nodevicelib
16655 @opindex nodevicelib
16656 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
16657
16658 @item -Waddr-space-convert
16659 @opindex Waddr-space-convert
16660 Warn about conversions between address spaces in the case where the
16661 resulting address space is not contained in the incoming address space.
16662
16663 @item -Wmisspelled-isr
16664 @opindex Wmisspelled-isr
16665 Warn if the ISR is misspelled, i.e. without __vector prefix.
16666 Enabled by default.
16667 @end table
16668
16669 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
16670 @cindex @code{EIND}
16671 Pointers in the implementation are 16@tie{}bits wide.
16672 The address of a function or label is represented as word address so
16673 that indirect jumps and calls can target any code address in the
16674 range of 64@tie{}Ki words.
16675
16676 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
16677 bytes of program memory space, there is a special function register called
16678 @code{EIND} that serves as most significant part of the target address
16679 when @code{EICALL} or @code{EIJMP} instructions are used.
16680
16681 Indirect jumps and calls on these devices are handled as follows by
16682 the compiler and are subject to some limitations:
16683
16684 @itemize @bullet
16685
16686 @item
16687 The compiler never sets @code{EIND}.
16688
16689 @item
16690 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
16691 instructions or might read @code{EIND} directly in order to emulate an
16692 indirect call/jump by means of a @code{RET} instruction.
16693
16694 @item
16695 The compiler assumes that @code{EIND} never changes during the startup
16696 code or during the application. In particular, @code{EIND} is not
16697 saved/restored in function or interrupt service routine
16698 prologue/epilogue.
16699
16700 @item
16701 For indirect calls to functions and computed goto, the linker
16702 generates @emph{stubs}. Stubs are jump pads sometimes also called
16703 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
16704 The stub contains a direct jump to the desired address.
16705
16706 @item
16707 Linker relaxation must be turned on so that the linker generates
16708 the stubs correctly in all situations. See the compiler option
16709 @option{-mrelax} and the linker option @option{--relax}.
16710 There are corner cases where the linker is supposed to generate stubs
16711 but aborts without relaxation and without a helpful error message.
16712
16713 @item
16714 The default linker script is arranged for code with @code{EIND = 0}.
16715 If code is supposed to work for a setup with @code{EIND != 0}, a custom
16716 linker script has to be used in order to place the sections whose
16717 name start with @code{.trampolines} into the segment where @code{EIND}
16718 points to.
16719
16720 @item
16721 The startup code from libgcc never sets @code{EIND}.
16722 Notice that startup code is a blend of code from libgcc and AVR-LibC.
16723 For the impact of AVR-LibC on @code{EIND}, see the
16724 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
16725
16726 @item
16727 It is legitimate for user-specific startup code to set up @code{EIND}
16728 early, for example by means of initialization code located in
16729 section @code{.init3}. Such code runs prior to general startup code
16730 that initializes RAM and calls constructors, but after the bit
16731 of startup code from AVR-LibC that sets @code{EIND} to the segment
16732 where the vector table is located.
16733 @example
16734 #include <avr/io.h>
16735
16736 static void
16737 __attribute__((section(".init3"),naked,used,no_instrument_function))
16738 init3_set_eind (void)
16739 @{
16740 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
16741 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
16742 @}
16743 @end example
16744
16745 @noindent
16746 The @code{__trampolines_start} symbol is defined in the linker script.
16747
16748 @item
16749 Stubs are generated automatically by the linker if
16750 the following two conditions are met:
16751 @itemize @minus
16752
16753 @item The address of a label is taken by means of the @code{gs} modifier
16754 (short for @emph{generate stubs}) like so:
16755 @example
16756 LDI r24, lo8(gs(@var{func}))
16757 LDI r25, hi8(gs(@var{func}))
16758 @end example
16759 @item The final location of that label is in a code segment
16760 @emph{outside} the segment where the stubs are located.
16761 @end itemize
16762
16763 @item
16764 The compiler emits such @code{gs} modifiers for code labels in the
16765 following situations:
16766 @itemize @minus
16767 @item Taking address of a function or code label.
16768 @item Computed goto.
16769 @item If prologue-save function is used, see @option{-mcall-prologues}
16770 command-line option.
16771 @item Switch/case dispatch tables. If you do not want such dispatch
16772 tables you can specify the @option{-fno-jump-tables} command-line option.
16773 @item C and C++ constructors/destructors called during startup/shutdown.
16774 @item If the tools hit a @code{gs()} modifier explained above.
16775 @end itemize
16776
16777 @item
16778 Jumping to non-symbolic addresses like so is @emph{not} supported:
16779
16780 @example
16781 int main (void)
16782 @{
16783 /* Call function at word address 0x2 */
16784 return ((int(*)(void)) 0x2)();
16785 @}
16786 @end example
16787
16788 Instead, a stub has to be set up, i.e.@: the function has to be called
16789 through a symbol (@code{func_4} in the example):
16790
16791 @example
16792 int main (void)
16793 @{
16794 extern int func_4 (void);
16795
16796 /* Call function at byte address 0x4 */
16797 return func_4();
16798 @}
16799 @end example
16800
16801 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
16802 Alternatively, @code{func_4} can be defined in the linker script.
16803 @end itemize
16804
16805 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
16806 @cindex @code{RAMPD}
16807 @cindex @code{RAMPX}
16808 @cindex @code{RAMPY}
16809 @cindex @code{RAMPZ}
16810 Some AVR devices support memories larger than the 64@tie{}KiB range
16811 that can be accessed with 16-bit pointers. To access memory locations
16812 outside this 64@tie{}KiB range, the content of a @code{RAMP}
16813 register is used as high part of the address:
16814 The @code{X}, @code{Y}, @code{Z} address register is concatenated
16815 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
16816 register, respectively, to get a wide address. Similarly,
16817 @code{RAMPD} is used together with direct addressing.
16818
16819 @itemize
16820 @item
16821 The startup code initializes the @code{RAMP} special function
16822 registers with zero.
16823
16824 @item
16825 If a @ref{AVR Named Address Spaces,named address space} other than
16826 generic or @code{__flash} is used, then @code{RAMPZ} is set
16827 as needed before the operation.
16828
16829 @item
16830 If the device supports RAM larger than 64@tie{}KiB and the compiler
16831 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
16832 is reset to zero after the operation.
16833
16834 @item
16835 If the device comes with a specific @code{RAMP} register, the ISR
16836 prologue/epilogue saves/restores that SFR and initializes it with
16837 zero in case the ISR code might (implicitly) use it.
16838
16839 @item
16840 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
16841 If you use inline assembler to read from locations outside the
16842 16-bit address range and change one of the @code{RAMP} registers,
16843 you must reset it to zero after the access.
16844
16845 @end itemize
16846
16847 @subsubsection AVR Built-in Macros
16848
16849 GCC defines several built-in macros so that the user code can test
16850 for the presence or absence of features. Almost any of the following
16851 built-in macros are deduced from device capabilities and thus
16852 triggered by the @option{-mmcu=} command-line option.
16853
16854 For even more AVR-specific built-in macros see
16855 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
16856
16857 @table @code
16858
16859 @item __AVR_ARCH__
16860 Build-in macro that resolves to a decimal number that identifies the
16861 architecture and depends on the @option{-mmcu=@var{mcu}} option.
16862 Possible values are:
16863
16864 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
16865 @code{4}, @code{5}, @code{51}, @code{6}
16866
16867 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
16868 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
16869
16870 respectively and
16871
16872 @code{100},
16873 @code{102}, @code{103}, @code{104},
16874 @code{105}, @code{106}, @code{107}
16875
16876 for @var{mcu}=@code{avrtiny},
16877 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
16878 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
16879 If @var{mcu} specifies a device, this built-in macro is set
16880 accordingly. For example, with @option{-mmcu=atmega8} the macro is
16881 defined to @code{4}.
16882
16883 @item __AVR_@var{Device}__
16884 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
16885 the device's name. For example, @option{-mmcu=atmega8} defines the
16886 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
16887 @code{__AVR_ATtiny261A__}, etc.
16888
16889 The built-in macros' names follow
16890 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
16891 the device name as from the AVR user manual. The difference between
16892 @var{Device} in the built-in macro and @var{device} in
16893 @option{-mmcu=@var{device}} is that the latter is always lowercase.
16894
16895 If @var{device} is not a device but only a core architecture like
16896 @samp{avr51}, this macro is not defined.
16897
16898 @item __AVR_DEVICE_NAME__
16899 Setting @option{-mmcu=@var{device}} defines this built-in macro to
16900 the device's name. For example, with @option{-mmcu=atmega8} the macro
16901 is defined to @code{atmega8}.
16902
16903 If @var{device} is not a device but only a core architecture like
16904 @samp{avr51}, this macro is not defined.
16905
16906 @item __AVR_XMEGA__
16907 The device / architecture belongs to the XMEGA family of devices.
16908
16909 @item __AVR_HAVE_ELPM__
16910 The device has the @code{ELPM} instruction.
16911
16912 @item __AVR_HAVE_ELPMX__
16913 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
16914 R@var{n},Z+} instructions.
16915
16916 @item __AVR_HAVE_MOVW__
16917 The device has the @code{MOVW} instruction to perform 16-bit
16918 register-register moves.
16919
16920 @item __AVR_HAVE_LPMX__
16921 The device has the @code{LPM R@var{n},Z} and
16922 @code{LPM R@var{n},Z+} instructions.
16923
16924 @item __AVR_HAVE_MUL__
16925 The device has a hardware multiplier.
16926
16927 @item __AVR_HAVE_JMP_CALL__
16928 The device has the @code{JMP} and @code{CALL} instructions.
16929 This is the case for devices with more than 8@tie{}KiB of program
16930 memory.
16931
16932 @item __AVR_HAVE_EIJMP_EICALL__
16933 @itemx __AVR_3_BYTE_PC__
16934 The device has the @code{EIJMP} and @code{EICALL} instructions.
16935 This is the case for devices with more than 128@tie{}KiB of program memory.
16936 This also means that the program counter
16937 (PC) is 3@tie{}bytes wide.
16938
16939 @item __AVR_2_BYTE_PC__
16940 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
16941 with up to 128@tie{}KiB of program memory.
16942
16943 @item __AVR_HAVE_8BIT_SP__
16944 @itemx __AVR_HAVE_16BIT_SP__
16945 The stack pointer (SP) register is treated as 8-bit respectively
16946 16-bit register by the compiler.
16947 The definition of these macros is affected by @option{-mtiny-stack}.
16948
16949 @item __AVR_HAVE_SPH__
16950 @itemx __AVR_SP8__
16951 The device has the SPH (high part of stack pointer) special function
16952 register or has an 8-bit stack pointer, respectively.
16953 The definition of these macros is affected by @option{-mmcu=} and
16954 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
16955 by @option{-msp8}.
16956
16957 @item __AVR_HAVE_RAMPD__
16958 @itemx __AVR_HAVE_RAMPX__
16959 @itemx __AVR_HAVE_RAMPY__
16960 @itemx __AVR_HAVE_RAMPZ__
16961 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
16962 @code{RAMPZ} special function register, respectively.
16963
16964 @item __NO_INTERRUPTS__
16965 This macro reflects the @option{-mno-interrupts} command-line option.
16966
16967 @item __AVR_ERRATA_SKIP__
16968 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
16969 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
16970 instructions because of a hardware erratum. Skip instructions are
16971 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
16972 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
16973 set.
16974
16975 @item __AVR_ISA_RMW__
16976 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
16977
16978 @item __AVR_SFR_OFFSET__=@var{offset}
16979 Instructions that can address I/O special function registers directly
16980 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
16981 address as if addressed by an instruction to access RAM like @code{LD}
16982 or @code{STS}. This offset depends on the device architecture and has
16983 to be subtracted from the RAM address in order to get the
16984 respective I/O@tie{}address.
16985
16986 @item __AVR_SHORT_CALLS__
16987 The @option{-mshort-calls} command line option is set.
16988
16989 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
16990 Some devices support reading from flash memory by means of @code{LD*}
16991 instructions. The flash memory is seen in the data address space
16992 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
16993 is not defined, this feature is not available. If defined,
16994 the address space is linear and there is no need to put
16995 @code{.rodata} into RAM. This is handled by the default linker
16996 description file, and is currently available for
16997 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
16998 there is no need to use address spaces like @code{__flash} or
16999 features like attribute @code{progmem} and @code{pgm_read_*}.
17000
17001 @item __WITH_AVRLIBC__
17002 The compiler is configured to be used together with AVR-Libc.
17003 See the @option{--with-avrlibc} configure option.
17004
17005 @end table
17006
17007 @node Blackfin Options
17008 @subsection Blackfin Options
17009 @cindex Blackfin Options
17010
17011 @table @gcctabopt
17012 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
17013 @opindex mcpu=
17014 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
17015 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
17016 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
17017 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
17018 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
17019 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
17020 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
17021 @samp{bf561}, @samp{bf592}.
17022
17023 The optional @var{sirevision} specifies the silicon revision of the target
17024 Blackfin processor. Any workarounds available for the targeted silicon revision
17025 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
17026 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
17027 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
17028 hexadecimal digits representing the major and minor numbers in the silicon
17029 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
17030 is not defined. If @var{sirevision} is @samp{any}, the
17031 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
17032 If this optional @var{sirevision} is not used, GCC assumes the latest known
17033 silicon revision of the targeted Blackfin processor.
17034
17035 GCC defines a preprocessor macro for the specified @var{cpu}.
17036 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
17037 provided by libgloss to be linked in if @option{-msim} is not given.
17038
17039 Without this option, @samp{bf532} is used as the processor by default.
17040
17041 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
17042 only the preprocessor macro is defined.
17043
17044 @item -msim
17045 @opindex msim
17046 Specifies that the program will be run on the simulator. This causes
17047 the simulator BSP provided by libgloss to be linked in. This option
17048 has effect only for @samp{bfin-elf} toolchain.
17049 Certain other options, such as @option{-mid-shared-library} and
17050 @option{-mfdpic}, imply @option{-msim}.
17051
17052 @item -momit-leaf-frame-pointer
17053 @opindex momit-leaf-frame-pointer
17054 Don't keep the frame pointer in a register for leaf functions. This
17055 avoids the instructions to save, set up and restore frame pointers and
17056 makes an extra register available in leaf functions.
17057
17058 @item -mspecld-anomaly
17059 @opindex mspecld-anomaly
17060 When enabled, the compiler ensures that the generated code does not
17061 contain speculative loads after jump instructions. If this option is used,
17062 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
17063
17064 @item -mno-specld-anomaly
17065 @opindex mno-specld-anomaly
17066 Don't generate extra code to prevent speculative loads from occurring.
17067
17068 @item -mcsync-anomaly
17069 @opindex mcsync-anomaly
17070 When enabled, the compiler ensures that the generated code does not
17071 contain CSYNC or SSYNC instructions too soon after conditional branches.
17072 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
17073
17074 @item -mno-csync-anomaly
17075 @opindex mno-csync-anomaly
17076 Don't generate extra code to prevent CSYNC or SSYNC instructions from
17077 occurring too soon after a conditional branch.
17078
17079 @item -mlow-64k
17080 @opindex mlow-64k
17081 When enabled, the compiler is free to take advantage of the knowledge that
17082 the entire program fits into the low 64k of memory.
17083
17084 @item -mno-low-64k
17085 @opindex mno-low-64k
17086 Assume that the program is arbitrarily large. This is the default.
17087
17088 @item -mstack-check-l1
17089 @opindex mstack-check-l1
17090 Do stack checking using information placed into L1 scratchpad memory by the
17091 uClinux kernel.
17092
17093 @item -mid-shared-library
17094 @opindex mid-shared-library
17095 Generate code that supports shared libraries via the library ID method.
17096 This allows for execute in place and shared libraries in an environment
17097 without virtual memory management. This option implies @option{-fPIC}.
17098 With a @samp{bfin-elf} target, this option implies @option{-msim}.
17099
17100 @item -mno-id-shared-library
17101 @opindex mno-id-shared-library
17102 Generate code that doesn't assume ID-based shared libraries are being used.
17103 This is the default.
17104
17105 @item -mleaf-id-shared-library
17106 @opindex mleaf-id-shared-library
17107 Generate code that supports shared libraries via the library ID method,
17108 but assumes that this library or executable won't link against any other
17109 ID shared libraries. That allows the compiler to use faster code for jumps
17110 and calls.
17111
17112 @item -mno-leaf-id-shared-library
17113 @opindex mno-leaf-id-shared-library
17114 Do not assume that the code being compiled won't link against any ID shared
17115 libraries. Slower code is generated for jump and call insns.
17116
17117 @item -mshared-library-id=n
17118 @opindex mshared-library-id
17119 Specifies the identification number of the ID-based shared library being
17120 compiled. Specifying a value of 0 generates more compact code; specifying
17121 other values forces the allocation of that number to the current
17122 library but is no more space- or time-efficient than omitting this option.
17123
17124 @item -msep-data
17125 @opindex msep-data
17126 Generate code that allows the data segment to be located in a different
17127 area of memory from the text segment. This allows for execute in place in
17128 an environment without virtual memory management by eliminating relocations
17129 against the text section.
17130
17131 @item -mno-sep-data
17132 @opindex mno-sep-data
17133 Generate code that assumes that the data segment follows the text segment.
17134 This is the default.
17135
17136 @item -mlong-calls
17137 @itemx -mno-long-calls
17138 @opindex mlong-calls
17139 @opindex mno-long-calls
17140 Tells the compiler to perform function calls by first loading the
17141 address of the function into a register and then performing a subroutine
17142 call on this register. This switch is needed if the target function
17143 lies outside of the 24-bit addressing range of the offset-based
17144 version of subroutine call instruction.
17145
17146 This feature is not enabled by default. Specifying
17147 @option{-mno-long-calls} restores the default behavior. Note these
17148 switches have no effect on how the compiler generates code to handle
17149 function calls via function pointers.
17150
17151 @item -mfast-fp
17152 @opindex mfast-fp
17153 Link with the fast floating-point library. This library relaxes some of
17154 the IEEE floating-point standard's rules for checking inputs against
17155 Not-a-Number (NAN), in the interest of performance.
17156
17157 @item -minline-plt
17158 @opindex minline-plt
17159 Enable inlining of PLT entries in function calls to functions that are
17160 not known to bind locally. It has no effect without @option{-mfdpic}.
17161
17162 @item -mmulticore
17163 @opindex mmulticore
17164 Build a standalone application for multicore Blackfin processors.
17165 This option causes proper start files and link scripts supporting
17166 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
17167 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
17168
17169 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
17170 selects the one-application-per-core programming model. Without
17171 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
17172 programming model is used. In this model, the main function of Core B
17173 should be named as @code{coreb_main}.
17174
17175 If this option is not used, the single-core application programming
17176 model is used.
17177
17178 @item -mcorea
17179 @opindex mcorea
17180 Build a standalone application for Core A of BF561 when using
17181 the one-application-per-core programming model. Proper start files
17182 and link scripts are used to support Core A, and the macro
17183 @code{__BFIN_COREA} is defined.
17184 This option can only be used in conjunction with @option{-mmulticore}.
17185
17186 @item -mcoreb
17187 @opindex mcoreb
17188 Build a standalone application for Core B of BF561 when using
17189 the one-application-per-core programming model. Proper start files
17190 and link scripts are used to support Core B, and the macro
17191 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
17192 should be used instead of @code{main}.
17193 This option can only be used in conjunction with @option{-mmulticore}.
17194
17195 @item -msdram
17196 @opindex msdram
17197 Build a standalone application for SDRAM. Proper start files and
17198 link scripts are used to put the application into SDRAM, and the macro
17199 @code{__BFIN_SDRAM} is defined.
17200 The loader should initialize SDRAM before loading the application.
17201
17202 @item -micplb
17203 @opindex micplb
17204 Assume that ICPLBs are enabled at run time. This has an effect on certain
17205 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
17206 are enabled; for standalone applications the default is off.
17207 @end table
17208
17209 @node C6X Options
17210 @subsection C6X Options
17211 @cindex C6X Options
17212
17213 @table @gcctabopt
17214 @item -march=@var{name}
17215 @opindex march
17216 This specifies the name of the target architecture. GCC uses this
17217 name to determine what kind of instructions it can emit when generating
17218 assembly code. Permissible names are: @samp{c62x},
17219 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
17220
17221 @item -mbig-endian
17222 @opindex mbig-endian
17223 Generate code for a big-endian target.
17224
17225 @item -mlittle-endian
17226 @opindex mlittle-endian
17227 Generate code for a little-endian target. This is the default.
17228
17229 @item -msim
17230 @opindex msim
17231 Choose startup files and linker script suitable for the simulator.
17232
17233 @item -msdata=default
17234 @opindex msdata=default
17235 Put small global and static data in the @code{.neardata} section,
17236 which is pointed to by register @code{B14}. Put small uninitialized
17237 global and static data in the @code{.bss} section, which is adjacent
17238 to the @code{.neardata} section. Put small read-only data into the
17239 @code{.rodata} section. The corresponding sections used for large
17240 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
17241
17242 @item -msdata=all
17243 @opindex msdata=all
17244 Put all data, not just small objects, into the sections reserved for
17245 small data, and use addressing relative to the @code{B14} register to
17246 access them.
17247
17248 @item -msdata=none
17249 @opindex msdata=none
17250 Make no use of the sections reserved for small data, and use absolute
17251 addresses to access all data. Put all initialized global and static
17252 data in the @code{.fardata} section, and all uninitialized data in the
17253 @code{.far} section. Put all constant data into the @code{.const}
17254 section.
17255 @end table
17256
17257 @node CRIS Options
17258 @subsection CRIS Options
17259 @cindex CRIS Options
17260
17261 These options are defined specifically for the CRIS ports.
17262
17263 @table @gcctabopt
17264 @item -march=@var{architecture-type}
17265 @itemx -mcpu=@var{architecture-type}
17266 @opindex march
17267 @opindex mcpu
17268 Generate code for the specified architecture. The choices for
17269 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
17270 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
17271 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
17272 @samp{v10}.
17273
17274 @item -mtune=@var{architecture-type}
17275 @opindex mtune
17276 Tune to @var{architecture-type} everything applicable about the generated
17277 code, except for the ABI and the set of available instructions. The
17278 choices for @var{architecture-type} are the same as for
17279 @option{-march=@var{architecture-type}}.
17280
17281 @item -mmax-stack-frame=@var{n}
17282 @opindex mmax-stack-frame
17283 Warn when the stack frame of a function exceeds @var{n} bytes.
17284
17285 @item -metrax4
17286 @itemx -metrax100
17287 @opindex metrax4
17288 @opindex metrax100
17289 The options @option{-metrax4} and @option{-metrax100} are synonyms for
17290 @option{-march=v3} and @option{-march=v8} respectively.
17291
17292 @item -mmul-bug-workaround
17293 @itemx -mno-mul-bug-workaround
17294 @opindex mmul-bug-workaround
17295 @opindex mno-mul-bug-workaround
17296 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
17297 models where it applies. This option is active by default.
17298
17299 @item -mpdebug
17300 @opindex mpdebug
17301 Enable CRIS-specific verbose debug-related information in the assembly
17302 code. This option also has the effect of turning off the @samp{#NO_APP}
17303 formatted-code indicator to the assembler at the beginning of the
17304 assembly file.
17305
17306 @item -mcc-init
17307 @opindex mcc-init
17308 Do not use condition-code results from previous instruction; always emit
17309 compare and test instructions before use of condition codes.
17310
17311 @item -mno-side-effects
17312 @opindex mno-side-effects
17313 Do not emit instructions with side effects in addressing modes other than
17314 post-increment.
17315
17316 @item -mstack-align
17317 @itemx -mno-stack-align
17318 @itemx -mdata-align
17319 @itemx -mno-data-align
17320 @itemx -mconst-align
17321 @itemx -mno-const-align
17322 @opindex mstack-align
17323 @opindex mno-stack-align
17324 @opindex mdata-align
17325 @opindex mno-data-align
17326 @opindex mconst-align
17327 @opindex mno-const-align
17328 These options (@samp{no-} options) arrange (eliminate arrangements) for the
17329 stack frame, individual data and constants to be aligned for the maximum
17330 single data access size for the chosen CPU model. The default is to
17331 arrange for 32-bit alignment. ABI details such as structure layout are
17332 not affected by these options.
17333
17334 @item -m32-bit
17335 @itemx -m16-bit
17336 @itemx -m8-bit
17337 @opindex m32-bit
17338 @opindex m16-bit
17339 @opindex m8-bit
17340 Similar to the stack- data- and const-align options above, these options
17341 arrange for stack frame, writable data and constants to all be 32-bit,
17342 16-bit or 8-bit aligned. The default is 32-bit alignment.
17343
17344 @item -mno-prologue-epilogue
17345 @itemx -mprologue-epilogue
17346 @opindex mno-prologue-epilogue
17347 @opindex mprologue-epilogue
17348 With @option{-mno-prologue-epilogue}, the normal function prologue and
17349 epilogue which set up the stack frame are omitted and no return
17350 instructions or return sequences are generated in the code. Use this
17351 option only together with visual inspection of the compiled code: no
17352 warnings or errors are generated when call-saved registers must be saved,
17353 or storage for local variables needs to be allocated.
17354
17355 @item -mno-gotplt
17356 @itemx -mgotplt
17357 @opindex mno-gotplt
17358 @opindex mgotplt
17359 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
17360 instruction sequences that load addresses for functions from the PLT part
17361 of the GOT rather than (traditional on other architectures) calls to the
17362 PLT@. The default is @option{-mgotplt}.
17363
17364 @item -melf
17365 @opindex melf
17366 Legacy no-op option only recognized with the cris-axis-elf and
17367 cris-axis-linux-gnu targets.
17368
17369 @item -mlinux
17370 @opindex mlinux
17371 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
17372
17373 @item -sim
17374 @opindex sim
17375 This option, recognized for the cris-axis-elf, arranges
17376 to link with input-output functions from a simulator library. Code,
17377 initialized data and zero-initialized data are allocated consecutively.
17378
17379 @item -sim2
17380 @opindex sim2
17381 Like @option{-sim}, but pass linker options to locate initialized data at
17382 0x40000000 and zero-initialized data at 0x80000000.
17383 @end table
17384
17385 @node CR16 Options
17386 @subsection CR16 Options
17387 @cindex CR16 Options
17388
17389 These options are defined specifically for the CR16 ports.
17390
17391 @table @gcctabopt
17392
17393 @item -mmac
17394 @opindex mmac
17395 Enable the use of multiply-accumulate instructions. Disabled by default.
17396
17397 @item -mcr16cplus
17398 @itemx -mcr16c
17399 @opindex mcr16cplus
17400 @opindex mcr16c
17401 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
17402 is default.
17403
17404 @item -msim
17405 @opindex msim
17406 Links the library libsim.a which is in compatible with simulator. Applicable
17407 to ELF compiler only.
17408
17409 @item -mint32
17410 @opindex mint32
17411 Choose integer type as 32-bit wide.
17412
17413 @item -mbit-ops
17414 @opindex mbit-ops
17415 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
17416
17417 @item -mdata-model=@var{model}
17418 @opindex mdata-model
17419 Choose a data model. The choices for @var{model} are @samp{near},
17420 @samp{far} or @samp{medium}. @samp{medium} is default.
17421 However, @samp{far} is not valid with @option{-mcr16c}, as the
17422 CR16C architecture does not support the far data model.
17423 @end table
17424
17425 @node Darwin Options
17426 @subsection Darwin Options
17427 @cindex Darwin options
17428
17429 These options are defined for all architectures running the Darwin operating
17430 system.
17431
17432 FSF GCC on Darwin does not create ``fat'' object files; it creates
17433 an object file for the single architecture that GCC was built to
17434 target. Apple's GCC on Darwin does create ``fat'' files if multiple
17435 @option{-arch} options are used; it does so by running the compiler or
17436 linker multiple times and joining the results together with
17437 @file{lipo}.
17438
17439 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
17440 @samp{i686}) is determined by the flags that specify the ISA
17441 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
17442 @option{-force_cpusubtype_ALL} option can be used to override this.
17443
17444 The Darwin tools vary in their behavior when presented with an ISA
17445 mismatch. The assembler, @file{as}, only permits instructions to
17446 be used that are valid for the subtype of the file it is generating,
17447 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
17448 The linker for shared libraries, @file{/usr/bin/libtool}, fails
17449 and prints an error if asked to create a shared library with a less
17450 restrictive subtype than its input files (for instance, trying to put
17451 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
17452 for executables, @command{ld}, quietly gives the executable the most
17453 restrictive subtype of any of its input files.
17454
17455 @table @gcctabopt
17456 @item -F@var{dir}
17457 @opindex F
17458 Add the framework directory @var{dir} to the head of the list of
17459 directories to be searched for header files. These directories are
17460 interleaved with those specified by @option{-I} options and are
17461 scanned in a left-to-right order.
17462
17463 A framework directory is a directory with frameworks in it. A
17464 framework is a directory with a @file{Headers} and/or
17465 @file{PrivateHeaders} directory contained directly in it that ends
17466 in @file{.framework}. The name of a framework is the name of this
17467 directory excluding the @file{.framework}. Headers associated with
17468 the framework are found in one of those two directories, with
17469 @file{Headers} being searched first. A subframework is a framework
17470 directory that is in a framework's @file{Frameworks} directory.
17471 Includes of subframework headers can only appear in a header of a
17472 framework that contains the subframework, or in a sibling subframework
17473 header. Two subframeworks are siblings if they occur in the same
17474 framework. A subframework should not have the same name as a
17475 framework; a warning is issued if this is violated. Currently a
17476 subframework cannot have subframeworks; in the future, the mechanism
17477 may be extended to support this. The standard frameworks can be found
17478 in @file{/System/Library/Frameworks} and
17479 @file{/Library/Frameworks}. An example include looks like
17480 @code{#include <Framework/header.h>}, where @file{Framework} denotes
17481 the name of the framework and @file{header.h} is found in the
17482 @file{PrivateHeaders} or @file{Headers} directory.
17483
17484 @item -iframework@var{dir}
17485 @opindex iframework
17486 Like @option{-F} except the directory is a treated as a system
17487 directory. The main difference between this @option{-iframework} and
17488 @option{-F} is that with @option{-iframework} the compiler does not
17489 warn about constructs contained within header files found via
17490 @var{dir}. This option is valid only for the C family of languages.
17491
17492 @item -gused
17493 @opindex gused
17494 Emit debugging information for symbols that are used. For stabs
17495 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
17496 This is by default ON@.
17497
17498 @item -gfull
17499 @opindex gfull
17500 Emit debugging information for all symbols and types.
17501
17502 @item -mmacosx-version-min=@var{version}
17503 The earliest version of MacOS X that this executable will run on
17504 is @var{version}. Typical values of @var{version} include @code{10.1},
17505 @code{10.2}, and @code{10.3.9}.
17506
17507 If the compiler was built to use the system's headers by default,
17508 then the default for this option is the system version on which the
17509 compiler is running, otherwise the default is to make choices that
17510 are compatible with as many systems and code bases as possible.
17511
17512 @item -mkernel
17513 @opindex mkernel
17514 Enable kernel development mode. The @option{-mkernel} option sets
17515 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
17516 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
17517 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
17518 applicable. This mode also sets @option{-mno-altivec},
17519 @option{-msoft-float}, @option{-fno-builtin} and
17520 @option{-mlong-branch} for PowerPC targets.
17521
17522 @item -mone-byte-bool
17523 @opindex mone-byte-bool
17524 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
17525 By default @code{sizeof(bool)} is @code{4} when compiling for
17526 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
17527 option has no effect on x86.
17528
17529 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
17530 to generate code that is not binary compatible with code generated
17531 without that switch. Using this switch may require recompiling all
17532 other modules in a program, including system libraries. Use this
17533 switch to conform to a non-default data model.
17534
17535 @item -mfix-and-continue
17536 @itemx -ffix-and-continue
17537 @itemx -findirect-data
17538 @opindex mfix-and-continue
17539 @opindex ffix-and-continue
17540 @opindex findirect-data
17541 Generate code suitable for fast turnaround development, such as to
17542 allow GDB to dynamically load @file{.o} files into already-running
17543 programs. @option{-findirect-data} and @option{-ffix-and-continue}
17544 are provided for backwards compatibility.
17545
17546 @item -all_load
17547 @opindex all_load
17548 Loads all members of static archive libraries.
17549 See man ld(1) for more information.
17550
17551 @item -arch_errors_fatal
17552 @opindex arch_errors_fatal
17553 Cause the errors having to do with files that have the wrong architecture
17554 to be fatal.
17555
17556 @item -bind_at_load
17557 @opindex bind_at_load
17558 Causes the output file to be marked such that the dynamic linker will
17559 bind all undefined references when the file is loaded or launched.
17560
17561 @item -bundle
17562 @opindex bundle
17563 Produce a Mach-o bundle format file.
17564 See man ld(1) for more information.
17565
17566 @item -bundle_loader @var{executable}
17567 @opindex bundle_loader
17568 This option specifies the @var{executable} that will load the build
17569 output file being linked. See man ld(1) for more information.
17570
17571 @item -dynamiclib
17572 @opindex dynamiclib
17573 When passed this option, GCC produces a dynamic library instead of
17574 an executable when linking, using the Darwin @file{libtool} command.
17575
17576 @item -force_cpusubtype_ALL
17577 @opindex force_cpusubtype_ALL
17578 This causes GCC's output file to have the @samp{ALL} subtype, instead of
17579 one controlled by the @option{-mcpu} or @option{-march} option.
17580
17581 @item -allowable_client @var{client_name}
17582 @itemx -client_name
17583 @itemx -compatibility_version
17584 @itemx -current_version
17585 @itemx -dead_strip
17586 @itemx -dependency-file
17587 @itemx -dylib_file
17588 @itemx -dylinker_install_name
17589 @itemx -dynamic
17590 @itemx -exported_symbols_list
17591 @itemx -filelist
17592 @need 800
17593 @itemx -flat_namespace
17594 @itemx -force_flat_namespace
17595 @itemx -headerpad_max_install_names
17596 @itemx -image_base
17597 @itemx -init
17598 @itemx -install_name
17599 @itemx -keep_private_externs
17600 @itemx -multi_module
17601 @itemx -multiply_defined
17602 @itemx -multiply_defined_unused
17603 @need 800
17604 @itemx -noall_load
17605 @itemx -no_dead_strip_inits_and_terms
17606 @itemx -nofixprebinding
17607 @itemx -nomultidefs
17608 @itemx -noprebind
17609 @itemx -noseglinkedit
17610 @itemx -pagezero_size
17611 @itemx -prebind
17612 @itemx -prebind_all_twolevel_modules
17613 @itemx -private_bundle
17614 @need 800
17615 @itemx -read_only_relocs
17616 @itemx -sectalign
17617 @itemx -sectobjectsymbols
17618 @itemx -whyload
17619 @itemx -seg1addr
17620 @itemx -sectcreate
17621 @itemx -sectobjectsymbols
17622 @itemx -sectorder
17623 @itemx -segaddr
17624 @itemx -segs_read_only_addr
17625 @need 800
17626 @itemx -segs_read_write_addr
17627 @itemx -seg_addr_table
17628 @itemx -seg_addr_table_filename
17629 @itemx -seglinkedit
17630 @itemx -segprot
17631 @itemx -segs_read_only_addr
17632 @itemx -segs_read_write_addr
17633 @itemx -single_module
17634 @itemx -static
17635 @itemx -sub_library
17636 @need 800
17637 @itemx -sub_umbrella
17638 @itemx -twolevel_namespace
17639 @itemx -umbrella
17640 @itemx -undefined
17641 @itemx -unexported_symbols_list
17642 @itemx -weak_reference_mismatches
17643 @itemx -whatsloaded
17644 @opindex allowable_client
17645 @opindex client_name
17646 @opindex compatibility_version
17647 @opindex current_version
17648 @opindex dead_strip
17649 @opindex dependency-file
17650 @opindex dylib_file
17651 @opindex dylinker_install_name
17652 @opindex dynamic
17653 @opindex exported_symbols_list
17654 @opindex filelist
17655 @opindex flat_namespace
17656 @opindex force_flat_namespace
17657 @opindex headerpad_max_install_names
17658 @opindex image_base
17659 @opindex init
17660 @opindex install_name
17661 @opindex keep_private_externs
17662 @opindex multi_module
17663 @opindex multiply_defined
17664 @opindex multiply_defined_unused
17665 @opindex noall_load
17666 @opindex no_dead_strip_inits_and_terms
17667 @opindex nofixprebinding
17668 @opindex nomultidefs
17669 @opindex noprebind
17670 @opindex noseglinkedit
17671 @opindex pagezero_size
17672 @opindex prebind
17673 @opindex prebind_all_twolevel_modules
17674 @opindex private_bundle
17675 @opindex read_only_relocs
17676 @opindex sectalign
17677 @opindex sectobjectsymbols
17678 @opindex whyload
17679 @opindex seg1addr
17680 @opindex sectcreate
17681 @opindex sectobjectsymbols
17682 @opindex sectorder
17683 @opindex segaddr
17684 @opindex segs_read_only_addr
17685 @opindex segs_read_write_addr
17686 @opindex seg_addr_table
17687 @opindex seg_addr_table_filename
17688 @opindex seglinkedit
17689 @opindex segprot
17690 @opindex segs_read_only_addr
17691 @opindex segs_read_write_addr
17692 @opindex single_module
17693 @opindex static
17694 @opindex sub_library
17695 @opindex sub_umbrella
17696 @opindex twolevel_namespace
17697 @opindex umbrella
17698 @opindex undefined
17699 @opindex unexported_symbols_list
17700 @opindex weak_reference_mismatches
17701 @opindex whatsloaded
17702 These options are passed to the Darwin linker. The Darwin linker man page
17703 describes them in detail.
17704 @end table
17705
17706 @node DEC Alpha Options
17707 @subsection DEC Alpha Options
17708
17709 These @samp{-m} options are defined for the DEC Alpha implementations:
17710
17711 @table @gcctabopt
17712 @item -mno-soft-float
17713 @itemx -msoft-float
17714 @opindex mno-soft-float
17715 @opindex msoft-float
17716 Use (do not use) the hardware floating-point instructions for
17717 floating-point operations. When @option{-msoft-float} is specified,
17718 functions in @file{libgcc.a} are used to perform floating-point
17719 operations. Unless they are replaced by routines that emulate the
17720 floating-point operations, or compiled in such a way as to call such
17721 emulations routines, these routines issue floating-point
17722 operations. If you are compiling for an Alpha without floating-point
17723 operations, you must ensure that the library is built so as not to call
17724 them.
17725
17726 Note that Alpha implementations without floating-point operations are
17727 required to have floating-point registers.
17728
17729 @item -mfp-reg
17730 @itemx -mno-fp-regs
17731 @opindex mfp-reg
17732 @opindex mno-fp-regs
17733 Generate code that uses (does not use) the floating-point register set.
17734 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
17735 register set is not used, floating-point operands are passed in integer
17736 registers as if they were integers and floating-point results are passed
17737 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
17738 so any function with a floating-point argument or return value called by code
17739 compiled with @option{-mno-fp-regs} must also be compiled with that
17740 option.
17741
17742 A typical use of this option is building a kernel that does not use,
17743 and hence need not save and restore, any floating-point registers.
17744
17745 @item -mieee
17746 @opindex mieee
17747 The Alpha architecture implements floating-point hardware optimized for
17748 maximum performance. It is mostly compliant with the IEEE floating-point
17749 standard. However, for full compliance, software assistance is
17750 required. This option generates code fully IEEE-compliant code
17751 @emph{except} that the @var{inexact-flag} is not maintained (see below).
17752 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
17753 defined during compilation. The resulting code is less efficient but is
17754 able to correctly support denormalized numbers and exceptional IEEE
17755 values such as not-a-number and plus/minus infinity. Other Alpha
17756 compilers call this option @option{-ieee_with_no_inexact}.
17757
17758 @item -mieee-with-inexact
17759 @opindex mieee-with-inexact
17760 This is like @option{-mieee} except the generated code also maintains
17761 the IEEE @var{inexact-flag}. Turning on this option causes the
17762 generated code to implement fully-compliant IEEE math. In addition to
17763 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
17764 macro. On some Alpha implementations the resulting code may execute
17765 significantly slower than the code generated by default. Since there is
17766 very little code that depends on the @var{inexact-flag}, you should
17767 normally not specify this option. Other Alpha compilers call this
17768 option @option{-ieee_with_inexact}.
17769
17770 @item -mfp-trap-mode=@var{trap-mode}
17771 @opindex mfp-trap-mode
17772 This option controls what floating-point related traps are enabled.
17773 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
17774 The trap mode can be set to one of four values:
17775
17776 @table @samp
17777 @item n
17778 This is the default (normal) setting. The only traps that are enabled
17779 are the ones that cannot be disabled in software (e.g., division by zero
17780 trap).
17781
17782 @item u
17783 In addition to the traps enabled by @samp{n}, underflow traps are enabled
17784 as well.
17785
17786 @item su
17787 Like @samp{u}, but the instructions are marked to be safe for software
17788 completion (see Alpha architecture manual for details).
17789
17790 @item sui
17791 Like @samp{su}, but inexact traps are enabled as well.
17792 @end table
17793
17794 @item -mfp-rounding-mode=@var{rounding-mode}
17795 @opindex mfp-rounding-mode
17796 Selects the IEEE rounding mode. Other Alpha compilers call this option
17797 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
17798 of:
17799
17800 @table @samp
17801 @item n
17802 Normal IEEE rounding mode. Floating-point numbers are rounded towards
17803 the nearest machine number or towards the even machine number in case
17804 of a tie.
17805
17806 @item m
17807 Round towards minus infinity.
17808
17809 @item c
17810 Chopped rounding mode. Floating-point numbers are rounded towards zero.
17811
17812 @item d
17813 Dynamic rounding mode. A field in the floating-point control register
17814 (@var{fpcr}, see Alpha architecture reference manual) controls the
17815 rounding mode in effect. The C library initializes this register for
17816 rounding towards plus infinity. Thus, unless your program modifies the
17817 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
17818 @end table
17819
17820 @item -mtrap-precision=@var{trap-precision}
17821 @opindex mtrap-precision
17822 In the Alpha architecture, floating-point traps are imprecise. This
17823 means without software assistance it is impossible to recover from a
17824 floating trap and program execution normally needs to be terminated.
17825 GCC can generate code that can assist operating system trap handlers
17826 in determining the exact location that caused a floating-point trap.
17827 Depending on the requirements of an application, different levels of
17828 precisions can be selected:
17829
17830 @table @samp
17831 @item p
17832 Program precision. This option is the default and means a trap handler
17833 can only identify which program caused a floating-point exception.
17834
17835 @item f
17836 Function precision. The trap handler can determine the function that
17837 caused a floating-point exception.
17838
17839 @item i
17840 Instruction precision. The trap handler can determine the exact
17841 instruction that caused a floating-point exception.
17842 @end table
17843
17844 Other Alpha compilers provide the equivalent options called
17845 @option{-scope_safe} and @option{-resumption_safe}.
17846
17847 @item -mieee-conformant
17848 @opindex mieee-conformant
17849 This option marks the generated code as IEEE conformant. You must not
17850 use this option unless you also specify @option{-mtrap-precision=i} and either
17851 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
17852 is to emit the line @samp{.eflag 48} in the function prologue of the
17853 generated assembly file.
17854
17855 @item -mbuild-constants
17856 @opindex mbuild-constants
17857 Normally GCC examines a 32- or 64-bit integer constant to
17858 see if it can construct it from smaller constants in two or three
17859 instructions. If it cannot, it outputs the constant as a literal and
17860 generates code to load it from the data segment at run time.
17861
17862 Use this option to require GCC to construct @emph{all} integer constants
17863 using code, even if it takes more instructions (the maximum is six).
17864
17865 You typically use this option to build a shared library dynamic
17866 loader. Itself a shared library, it must relocate itself in memory
17867 before it can find the variables and constants in its own data segment.
17868
17869 @item -mbwx
17870 @itemx -mno-bwx
17871 @itemx -mcix
17872 @itemx -mno-cix
17873 @itemx -mfix
17874 @itemx -mno-fix
17875 @itemx -mmax
17876 @itemx -mno-max
17877 @opindex mbwx
17878 @opindex mno-bwx
17879 @opindex mcix
17880 @opindex mno-cix
17881 @opindex mfix
17882 @opindex mno-fix
17883 @opindex mmax
17884 @opindex mno-max
17885 Indicate whether GCC should generate code to use the optional BWX,
17886 CIX, FIX and MAX instruction sets. The default is to use the instruction
17887 sets supported by the CPU type specified via @option{-mcpu=} option or that
17888 of the CPU on which GCC was built if none is specified.
17889
17890 @item -mfloat-vax
17891 @itemx -mfloat-ieee
17892 @opindex mfloat-vax
17893 @opindex mfloat-ieee
17894 Generate code that uses (does not use) VAX F and G floating-point
17895 arithmetic instead of IEEE single and double precision.
17896
17897 @item -mexplicit-relocs
17898 @itemx -mno-explicit-relocs
17899 @opindex mexplicit-relocs
17900 @opindex mno-explicit-relocs
17901 Older Alpha assemblers provided no way to generate symbol relocations
17902 except via assembler macros. Use of these macros does not allow
17903 optimal instruction scheduling. GNU binutils as of version 2.12
17904 supports a new syntax that allows the compiler to explicitly mark
17905 which relocations should apply to which instructions. This option
17906 is mostly useful for debugging, as GCC detects the capabilities of
17907 the assembler when it is built and sets the default accordingly.
17908
17909 @item -msmall-data
17910 @itemx -mlarge-data
17911 @opindex msmall-data
17912 @opindex mlarge-data
17913 When @option{-mexplicit-relocs} is in effect, static data is
17914 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
17915 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
17916 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
17917 16-bit relocations off of the @code{$gp} register. This limits the
17918 size of the small data area to 64KB, but allows the variables to be
17919 directly accessed via a single instruction.
17920
17921 The default is @option{-mlarge-data}. With this option the data area
17922 is limited to just below 2GB@. Programs that require more than 2GB of
17923 data must use @code{malloc} or @code{mmap} to allocate the data in the
17924 heap instead of in the program's data segment.
17925
17926 When generating code for shared libraries, @option{-fpic} implies
17927 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
17928
17929 @item -msmall-text
17930 @itemx -mlarge-text
17931 @opindex msmall-text
17932 @opindex mlarge-text
17933 When @option{-msmall-text} is used, the compiler assumes that the
17934 code of the entire program (or shared library) fits in 4MB, and is
17935 thus reachable with a branch instruction. When @option{-msmall-data}
17936 is used, the compiler can assume that all local symbols share the
17937 same @code{$gp} value, and thus reduce the number of instructions
17938 required for a function call from 4 to 1.
17939
17940 The default is @option{-mlarge-text}.
17941
17942 @item -mcpu=@var{cpu_type}
17943 @opindex mcpu
17944 Set the instruction set and instruction scheduling parameters for
17945 machine type @var{cpu_type}. You can specify either the @samp{EV}
17946 style name or the corresponding chip number. GCC supports scheduling
17947 parameters for the EV4, EV5 and EV6 family of processors and
17948 chooses the default values for the instruction set from the processor
17949 you specify. If you do not specify a processor type, GCC defaults
17950 to the processor on which the compiler was built.
17951
17952 Supported values for @var{cpu_type} are
17953
17954 @table @samp
17955 @item ev4
17956 @itemx ev45
17957 @itemx 21064
17958 Schedules as an EV4 and has no instruction set extensions.
17959
17960 @item ev5
17961 @itemx 21164
17962 Schedules as an EV5 and has no instruction set extensions.
17963
17964 @item ev56
17965 @itemx 21164a
17966 Schedules as an EV5 and supports the BWX extension.
17967
17968 @item pca56
17969 @itemx 21164pc
17970 @itemx 21164PC
17971 Schedules as an EV5 and supports the BWX and MAX extensions.
17972
17973 @item ev6
17974 @itemx 21264
17975 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
17976
17977 @item ev67
17978 @itemx 21264a
17979 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
17980 @end table
17981
17982 Native toolchains also support the value @samp{native},
17983 which selects the best architecture option for the host processor.
17984 @option{-mcpu=native} has no effect if GCC does not recognize
17985 the processor.
17986
17987 @item -mtune=@var{cpu_type}
17988 @opindex mtune
17989 Set only the instruction scheduling parameters for machine type
17990 @var{cpu_type}. The instruction set is not changed.
17991
17992 Native toolchains also support the value @samp{native},
17993 which selects the best architecture option for the host processor.
17994 @option{-mtune=native} has no effect if GCC does not recognize
17995 the processor.
17996
17997 @item -mmemory-latency=@var{time}
17998 @opindex mmemory-latency
17999 Sets the latency the scheduler should assume for typical memory
18000 references as seen by the application. This number is highly
18001 dependent on the memory access patterns used by the application
18002 and the size of the external cache on the machine.
18003
18004 Valid options for @var{time} are
18005
18006 @table @samp
18007 @item @var{number}
18008 A decimal number representing clock cycles.
18009
18010 @item L1
18011 @itemx L2
18012 @itemx L3
18013 @itemx main
18014 The compiler contains estimates of the number of clock cycles for
18015 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
18016 (also called Dcache, Scache, and Bcache), as well as to main memory.
18017 Note that L3 is only valid for EV5.
18018
18019 @end table
18020 @end table
18021
18022 @node FR30 Options
18023 @subsection FR30 Options
18024 @cindex FR30 Options
18025
18026 These options are defined specifically for the FR30 port.
18027
18028 @table @gcctabopt
18029
18030 @item -msmall-model
18031 @opindex msmall-model
18032 Use the small address space model. This can produce smaller code, but
18033 it does assume that all symbolic values and addresses fit into a
18034 20-bit range.
18035
18036 @item -mno-lsim
18037 @opindex mno-lsim
18038 Assume that runtime support has been provided and so there is no need
18039 to include the simulator library (@file{libsim.a}) on the linker
18040 command line.
18041
18042 @end table
18043
18044 @node FT32 Options
18045 @subsection FT32 Options
18046 @cindex FT32 Options
18047
18048 These options are defined specifically for the FT32 port.
18049
18050 @table @gcctabopt
18051
18052 @item -msim
18053 @opindex msim
18054 Specifies that the program will be run on the simulator. This causes
18055 an alternate runtime startup and library to be linked.
18056 You must not use this option when generating programs that will run on
18057 real hardware; you must provide your own runtime library for whatever
18058 I/O functions are needed.
18059
18060 @item -mlra
18061 @opindex mlra
18062 Enable Local Register Allocation. This is still experimental for FT32,
18063 so by default the compiler uses standard reload.
18064
18065 @item -mnodiv
18066 @opindex mnodiv
18067 Do not use div and mod instructions.
18068
18069 @item -mft32b
18070 @opindex mft32b
18071 Enable use of the extended instructions of the FT32B processor.
18072
18073 @item -mcompress
18074 @opindex mcompress
18075 Compress all code using the Ft32B code compression scheme.
18076
18077 @item -mnopm
18078 @opindex mnopm
18079 Do not generate code that reads program memory.
18080
18081 @end table
18082
18083 @node FRV Options
18084 @subsection FRV Options
18085 @cindex FRV Options
18086
18087 @table @gcctabopt
18088 @item -mgpr-32
18089 @opindex mgpr-32
18090
18091 Only use the first 32 general-purpose registers.
18092
18093 @item -mgpr-64
18094 @opindex mgpr-64
18095
18096 Use all 64 general-purpose registers.
18097
18098 @item -mfpr-32
18099 @opindex mfpr-32
18100
18101 Use only the first 32 floating-point registers.
18102
18103 @item -mfpr-64
18104 @opindex mfpr-64
18105
18106 Use all 64 floating-point registers.
18107
18108 @item -mhard-float
18109 @opindex mhard-float
18110
18111 Use hardware instructions for floating-point operations.
18112
18113 @item -msoft-float
18114 @opindex msoft-float
18115
18116 Use library routines for floating-point operations.
18117
18118 @item -malloc-cc
18119 @opindex malloc-cc
18120
18121 Dynamically allocate condition code registers.
18122
18123 @item -mfixed-cc
18124 @opindex mfixed-cc
18125
18126 Do not try to dynamically allocate condition code registers, only
18127 use @code{icc0} and @code{fcc0}.
18128
18129 @item -mdword
18130 @opindex mdword
18131
18132 Change ABI to use double word insns.
18133
18134 @item -mno-dword
18135 @opindex mno-dword
18136
18137 Do not use double word instructions.
18138
18139 @item -mdouble
18140 @opindex mdouble
18141
18142 Use floating-point double instructions.
18143
18144 @item -mno-double
18145 @opindex mno-double
18146
18147 Do not use floating-point double instructions.
18148
18149 @item -mmedia
18150 @opindex mmedia
18151
18152 Use media instructions.
18153
18154 @item -mno-media
18155 @opindex mno-media
18156
18157 Do not use media instructions.
18158
18159 @item -mmuladd
18160 @opindex mmuladd
18161
18162 Use multiply and add/subtract instructions.
18163
18164 @item -mno-muladd
18165 @opindex mno-muladd
18166
18167 Do not use multiply and add/subtract instructions.
18168
18169 @item -mfdpic
18170 @opindex mfdpic
18171
18172 Select the FDPIC ABI, which uses function descriptors to represent
18173 pointers to functions. Without any PIC/PIE-related options, it
18174 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
18175 assumes GOT entries and small data are within a 12-bit range from the
18176 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
18177 are computed with 32 bits.
18178 With a @samp{bfin-elf} target, this option implies @option{-msim}.
18179
18180 @item -minline-plt
18181 @opindex minline-plt
18182
18183 Enable inlining of PLT entries in function calls to functions that are
18184 not known to bind locally. It has no effect without @option{-mfdpic}.
18185 It's enabled by default if optimizing for speed and compiling for
18186 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
18187 optimization option such as @option{-O3} or above is present in the
18188 command line.
18189
18190 @item -mTLS
18191 @opindex mTLS
18192
18193 Assume a large TLS segment when generating thread-local code.
18194
18195 @item -mtls
18196 @opindex mtls
18197
18198 Do not assume a large TLS segment when generating thread-local code.
18199
18200 @item -mgprel-ro
18201 @opindex mgprel-ro
18202
18203 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
18204 that is known to be in read-only sections. It's enabled by default,
18205 except for @option{-fpic} or @option{-fpie}: even though it may help
18206 make the global offset table smaller, it trades 1 instruction for 4.
18207 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
18208 one of which may be shared by multiple symbols, and it avoids the need
18209 for a GOT entry for the referenced symbol, so it's more likely to be a
18210 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
18211
18212 @item -multilib-library-pic
18213 @opindex multilib-library-pic
18214
18215 Link with the (library, not FD) pic libraries. It's implied by
18216 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
18217 @option{-fpic} without @option{-mfdpic}. You should never have to use
18218 it explicitly.
18219
18220 @item -mlinked-fp
18221 @opindex mlinked-fp
18222
18223 Follow the EABI requirement of always creating a frame pointer whenever
18224 a stack frame is allocated. This option is enabled by default and can
18225 be disabled with @option{-mno-linked-fp}.
18226
18227 @item -mlong-calls
18228 @opindex mlong-calls
18229
18230 Use indirect addressing to call functions outside the current
18231 compilation unit. This allows the functions to be placed anywhere
18232 within the 32-bit address space.
18233
18234 @item -malign-labels
18235 @opindex malign-labels
18236
18237 Try to align labels to an 8-byte boundary by inserting NOPs into the
18238 previous packet. This option only has an effect when VLIW packing
18239 is enabled. It doesn't create new packets; it merely adds NOPs to
18240 existing ones.
18241
18242 @item -mlibrary-pic
18243 @opindex mlibrary-pic
18244
18245 Generate position-independent EABI code.
18246
18247 @item -macc-4
18248 @opindex macc-4
18249
18250 Use only the first four media accumulator registers.
18251
18252 @item -macc-8
18253 @opindex macc-8
18254
18255 Use all eight media accumulator registers.
18256
18257 @item -mpack
18258 @opindex mpack
18259
18260 Pack VLIW instructions.
18261
18262 @item -mno-pack
18263 @opindex mno-pack
18264
18265 Do not pack VLIW instructions.
18266
18267 @item -mno-eflags
18268 @opindex mno-eflags
18269
18270 Do not mark ABI switches in e_flags.
18271
18272 @item -mcond-move
18273 @opindex mcond-move
18274
18275 Enable the use of conditional-move instructions (default).
18276
18277 This switch is mainly for debugging the compiler and will likely be removed
18278 in a future version.
18279
18280 @item -mno-cond-move
18281 @opindex mno-cond-move
18282
18283 Disable the use of conditional-move instructions.
18284
18285 This switch is mainly for debugging the compiler and will likely be removed
18286 in a future version.
18287
18288 @item -mscc
18289 @opindex mscc
18290
18291 Enable the use of conditional set instructions (default).
18292
18293 This switch is mainly for debugging the compiler and will likely be removed
18294 in a future version.
18295
18296 @item -mno-scc
18297 @opindex mno-scc
18298
18299 Disable the use of conditional set instructions.
18300
18301 This switch is mainly for debugging the compiler and will likely be removed
18302 in a future version.
18303
18304 @item -mcond-exec
18305 @opindex mcond-exec
18306
18307 Enable the use of conditional execution (default).
18308
18309 This switch is mainly for debugging the compiler and will likely be removed
18310 in a future version.
18311
18312 @item -mno-cond-exec
18313 @opindex mno-cond-exec
18314
18315 Disable the use of conditional execution.
18316
18317 This switch is mainly for debugging the compiler and will likely be removed
18318 in a future version.
18319
18320 @item -mvliw-branch
18321 @opindex mvliw-branch
18322
18323 Run a pass to pack branches into VLIW instructions (default).
18324
18325 This switch is mainly for debugging the compiler and will likely be removed
18326 in a future version.
18327
18328 @item -mno-vliw-branch
18329 @opindex mno-vliw-branch
18330
18331 Do not run a pass to pack branches into VLIW instructions.
18332
18333 This switch is mainly for debugging the compiler and will likely be removed
18334 in a future version.
18335
18336 @item -mmulti-cond-exec
18337 @opindex mmulti-cond-exec
18338
18339 Enable optimization of @code{&&} and @code{||} in conditional execution
18340 (default).
18341
18342 This switch is mainly for debugging the compiler and will likely be removed
18343 in a future version.
18344
18345 @item -mno-multi-cond-exec
18346 @opindex mno-multi-cond-exec
18347
18348 Disable optimization of @code{&&} and @code{||} in conditional execution.
18349
18350 This switch is mainly for debugging the compiler and will likely be removed
18351 in a future version.
18352
18353 @item -mnested-cond-exec
18354 @opindex mnested-cond-exec
18355
18356 Enable nested conditional execution optimizations (default).
18357
18358 This switch is mainly for debugging the compiler and will likely be removed
18359 in a future version.
18360
18361 @item -mno-nested-cond-exec
18362 @opindex mno-nested-cond-exec
18363
18364 Disable nested conditional execution optimizations.
18365
18366 This switch is mainly for debugging the compiler and will likely be removed
18367 in a future version.
18368
18369 @item -moptimize-membar
18370 @opindex moptimize-membar
18371
18372 This switch removes redundant @code{membar} instructions from the
18373 compiler-generated code. It is enabled by default.
18374
18375 @item -mno-optimize-membar
18376 @opindex mno-optimize-membar
18377
18378 This switch disables the automatic removal of redundant @code{membar}
18379 instructions from the generated code.
18380
18381 @item -mtomcat-stats
18382 @opindex mtomcat-stats
18383
18384 Cause gas to print out tomcat statistics.
18385
18386 @item -mcpu=@var{cpu}
18387 @opindex mcpu
18388
18389 Select the processor type for which to generate code. Possible values are
18390 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
18391 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
18392
18393 @end table
18394
18395 @node GNU/Linux Options
18396 @subsection GNU/Linux Options
18397
18398 These @samp{-m} options are defined for GNU/Linux targets:
18399
18400 @table @gcctabopt
18401 @item -mglibc
18402 @opindex mglibc
18403 Use the GNU C library. This is the default except
18404 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
18405 @samp{*-*-linux-*android*} targets.
18406
18407 @item -muclibc
18408 @opindex muclibc
18409 Use uClibc C library. This is the default on
18410 @samp{*-*-linux-*uclibc*} targets.
18411
18412 @item -mmusl
18413 @opindex mmusl
18414 Use the musl C library. This is the default on
18415 @samp{*-*-linux-*musl*} targets.
18416
18417 @item -mbionic
18418 @opindex mbionic
18419 Use Bionic C library. This is the default on
18420 @samp{*-*-linux-*android*} targets.
18421
18422 @item -mandroid
18423 @opindex mandroid
18424 Compile code compatible with Android platform. This is the default on
18425 @samp{*-*-linux-*android*} targets.
18426
18427 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
18428 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
18429 this option makes the GCC driver pass Android-specific options to the linker.
18430 Finally, this option causes the preprocessor macro @code{__ANDROID__}
18431 to be defined.
18432
18433 @item -tno-android-cc
18434 @opindex tno-android-cc
18435 Disable compilation effects of @option{-mandroid}, i.e., do not enable
18436 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
18437 @option{-fno-rtti} by default.
18438
18439 @item -tno-android-ld
18440 @opindex tno-android-ld
18441 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
18442 linking options to the linker.
18443
18444 @end table
18445
18446 @node H8/300 Options
18447 @subsection H8/300 Options
18448
18449 These @samp{-m} options are defined for the H8/300 implementations:
18450
18451 @table @gcctabopt
18452 @item -mrelax
18453 @opindex mrelax
18454 Shorten some address references at link time, when possible; uses the
18455 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
18456 ld, Using ld}, for a fuller description.
18457
18458 @item -mh
18459 @opindex mh
18460 Generate code for the H8/300H@.
18461
18462 @item -ms
18463 @opindex ms
18464 Generate code for the H8S@.
18465
18466 @item -mn
18467 @opindex mn
18468 Generate code for the H8S and H8/300H in the normal mode. This switch
18469 must be used either with @option{-mh} or @option{-ms}.
18470
18471 @item -ms2600
18472 @opindex ms2600
18473 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
18474
18475 @item -mexr
18476 @opindex mexr
18477 Extended registers are stored on stack before execution of function
18478 with monitor attribute. Default option is @option{-mexr}.
18479 This option is valid only for H8S targets.
18480
18481 @item -mno-exr
18482 @opindex mno-exr
18483 Extended registers are not stored on stack before execution of function
18484 with monitor attribute. Default option is @option{-mno-exr}.
18485 This option is valid only for H8S targets.
18486
18487 @item -mint32
18488 @opindex mint32
18489 Make @code{int} data 32 bits by default.
18490
18491 @item -malign-300
18492 @opindex malign-300
18493 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
18494 The default for the H8/300H and H8S is to align longs and floats on
18495 4-byte boundaries.
18496 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
18497 This option has no effect on the H8/300.
18498 @end table
18499
18500 @node HPPA Options
18501 @subsection HPPA Options
18502 @cindex HPPA Options
18503
18504 These @samp{-m} options are defined for the HPPA family of computers:
18505
18506 @table @gcctabopt
18507 @item -march=@var{architecture-type}
18508 @opindex march
18509 Generate code for the specified architecture. The choices for
18510 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
18511 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
18512 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
18513 architecture option for your machine. Code compiled for lower numbered
18514 architectures runs on higher numbered architectures, but not the
18515 other way around.
18516
18517 @item -mpa-risc-1-0
18518 @itemx -mpa-risc-1-1
18519 @itemx -mpa-risc-2-0
18520 @opindex mpa-risc-1-0
18521 @opindex mpa-risc-1-1
18522 @opindex mpa-risc-2-0
18523 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
18524
18525 @item -mcaller-copies
18526 @opindex mcaller-copies
18527 The caller copies function arguments passed by hidden reference. This
18528 option should be used with care as it is not compatible with the default
18529 32-bit runtime. However, only aggregates larger than eight bytes are
18530 passed by hidden reference and the option provides better compatibility
18531 with OpenMP.
18532
18533 @item -mjump-in-delay
18534 @opindex mjump-in-delay
18535 This option is ignored and provided for compatibility purposes only.
18536
18537 @item -mdisable-fpregs
18538 @opindex mdisable-fpregs
18539 Prevent floating-point registers from being used in any manner. This is
18540 necessary for compiling kernels that perform lazy context switching of
18541 floating-point registers. If you use this option and attempt to perform
18542 floating-point operations, the compiler aborts.
18543
18544 @item -mdisable-indexing
18545 @opindex mdisable-indexing
18546 Prevent the compiler from using indexing address modes. This avoids some
18547 rather obscure problems when compiling MIG generated code under MACH@.
18548
18549 @item -mno-space-regs
18550 @opindex mno-space-regs
18551 Generate code that assumes the target has no space registers. This allows
18552 GCC to generate faster indirect calls and use unscaled index address modes.
18553
18554 Such code is suitable for level 0 PA systems and kernels.
18555
18556 @item -mfast-indirect-calls
18557 @opindex mfast-indirect-calls
18558 Generate code that assumes calls never cross space boundaries. This
18559 allows GCC to emit code that performs faster indirect calls.
18560
18561 This option does not work in the presence of shared libraries or nested
18562 functions.
18563
18564 @item -mfixed-range=@var{register-range}
18565 @opindex mfixed-range
18566 Generate code treating the given register range as fixed registers.
18567 A fixed register is one that the register allocator cannot use. This is
18568 useful when compiling kernel code. A register range is specified as
18569 two registers separated by a dash. Multiple register ranges can be
18570 specified separated by a comma.
18571
18572 @item -mlong-load-store
18573 @opindex mlong-load-store
18574 Generate 3-instruction load and store sequences as sometimes required by
18575 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
18576 the HP compilers.
18577
18578 @item -mportable-runtime
18579 @opindex mportable-runtime
18580 Use the portable calling conventions proposed by HP for ELF systems.
18581
18582 @item -mgas
18583 @opindex mgas
18584 Enable the use of assembler directives only GAS understands.
18585
18586 @item -mschedule=@var{cpu-type}
18587 @opindex mschedule
18588 Schedule code according to the constraints for the machine type
18589 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
18590 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
18591 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
18592 proper scheduling option for your machine. The default scheduling is
18593 @samp{8000}.
18594
18595 @item -mlinker-opt
18596 @opindex mlinker-opt
18597 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
18598 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
18599 linkers in which they give bogus error messages when linking some programs.
18600
18601 @item -msoft-float
18602 @opindex msoft-float
18603 Generate output containing library calls for floating point.
18604 @strong{Warning:} the requisite libraries are not available for all HPPA
18605 targets. Normally the facilities of the machine's usual C compiler are
18606 used, but this cannot be done directly in cross-compilation. You must make
18607 your own arrangements to provide suitable library functions for
18608 cross-compilation.
18609
18610 @option{-msoft-float} changes the calling convention in the output file;
18611 therefore, it is only useful if you compile @emph{all} of a program with
18612 this option. In particular, you need to compile @file{libgcc.a}, the
18613 library that comes with GCC, with @option{-msoft-float} in order for
18614 this to work.
18615
18616 @item -msio
18617 @opindex msio
18618 Generate the predefine, @code{_SIO}, for server IO@. The default is
18619 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
18620 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
18621 options are available under HP-UX and HI-UX@.
18622
18623 @item -mgnu-ld
18624 @opindex mgnu-ld
18625 Use options specific to GNU @command{ld}.
18626 This passes @option{-shared} to @command{ld} when
18627 building a shared library. It is the default when GCC is configured,
18628 explicitly or implicitly, with the GNU linker. This option does not
18629 affect which @command{ld} is called; it only changes what parameters
18630 are passed to that @command{ld}.
18631 The @command{ld} that is called is determined by the
18632 @option{--with-ld} configure option, GCC's program search path, and
18633 finally by the user's @env{PATH}. The linker used by GCC can be printed
18634 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
18635 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18636
18637 @item -mhp-ld
18638 @opindex mhp-ld
18639 Use options specific to HP @command{ld}.
18640 This passes @option{-b} to @command{ld} when building
18641 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
18642 links. It is the default when GCC is configured, explicitly or
18643 implicitly, with the HP linker. This option does not affect
18644 which @command{ld} is called; it only changes what parameters are passed to that
18645 @command{ld}.
18646 The @command{ld} that is called is determined by the @option{--with-ld}
18647 configure option, GCC's program search path, and finally by the user's
18648 @env{PATH}. The linker used by GCC can be printed using @samp{which
18649 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
18650 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
18651
18652 @item -mlong-calls
18653 @opindex mno-long-calls
18654 Generate code that uses long call sequences. This ensures that a call
18655 is always able to reach linker generated stubs. The default is to generate
18656 long calls only when the distance from the call site to the beginning
18657 of the function or translation unit, as the case may be, exceeds a
18658 predefined limit set by the branch type being used. The limits for
18659 normal calls are 7,600,000 and 240,000 bytes, respectively for the
18660 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
18661 240,000 bytes.
18662
18663 Distances are measured from the beginning of functions when using the
18664 @option{-ffunction-sections} option, or when using the @option{-mgas}
18665 and @option{-mno-portable-runtime} options together under HP-UX with
18666 the SOM linker.
18667
18668 It is normally not desirable to use this option as it degrades
18669 performance. However, it may be useful in large applications,
18670 particularly when partial linking is used to build the application.
18671
18672 The types of long calls used depends on the capabilities of the
18673 assembler and linker, and the type of code being generated. The
18674 impact on systems that support long absolute calls, and long pic
18675 symbol-difference or pc-relative calls should be relatively small.
18676 However, an indirect call is used on 32-bit ELF systems in pic code
18677 and it is quite long.
18678
18679 @item -munix=@var{unix-std}
18680 @opindex march
18681 Generate compiler predefines and select a startfile for the specified
18682 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
18683 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
18684 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
18685 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
18686 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
18687 and later.
18688
18689 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
18690 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
18691 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
18692 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
18693 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
18694 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
18695
18696 It is @emph{important} to note that this option changes the interfaces
18697 for various library routines. It also affects the operational behavior
18698 of the C library. Thus, @emph{extreme} care is needed in using this
18699 option.
18700
18701 Library code that is intended to operate with more than one UNIX
18702 standard must test, set and restore the variable @code{__xpg4_extended_mask}
18703 as appropriate. Most GNU software doesn't provide this capability.
18704
18705 @item -nolibdld
18706 @opindex nolibdld
18707 Suppress the generation of link options to search libdld.sl when the
18708 @option{-static} option is specified on HP-UX 10 and later.
18709
18710 @item -static
18711 @opindex static
18712 The HP-UX implementation of setlocale in libc has a dependency on
18713 libdld.sl. There isn't an archive version of libdld.sl. Thus,
18714 when the @option{-static} option is specified, special link options
18715 are needed to resolve this dependency.
18716
18717 On HP-UX 10 and later, the GCC driver adds the necessary options to
18718 link with libdld.sl when the @option{-static} option is specified.
18719 This causes the resulting binary to be dynamic. On the 64-bit port,
18720 the linkers generate dynamic binaries by default in any case. The
18721 @option{-nolibdld} option can be used to prevent the GCC driver from
18722 adding these link options.
18723
18724 @item -threads
18725 @opindex threads
18726 Add support for multithreading with the @dfn{dce thread} library
18727 under HP-UX@. This option sets flags for both the preprocessor and
18728 linker.
18729 @end table
18730
18731 @node IA-64 Options
18732 @subsection IA-64 Options
18733 @cindex IA-64 Options
18734
18735 These are the @samp{-m} options defined for the Intel IA-64 architecture.
18736
18737 @table @gcctabopt
18738 @item -mbig-endian
18739 @opindex mbig-endian
18740 Generate code for a big-endian target. This is the default for HP-UX@.
18741
18742 @item -mlittle-endian
18743 @opindex mlittle-endian
18744 Generate code for a little-endian target. This is the default for AIX5
18745 and GNU/Linux.
18746
18747 @item -mgnu-as
18748 @itemx -mno-gnu-as
18749 @opindex mgnu-as
18750 @opindex mno-gnu-as
18751 Generate (or don't) code for the GNU assembler. This is the default.
18752 @c Also, this is the default if the configure option @option{--with-gnu-as}
18753 @c is used.
18754
18755 @item -mgnu-ld
18756 @itemx -mno-gnu-ld
18757 @opindex mgnu-ld
18758 @opindex mno-gnu-ld
18759 Generate (or don't) code for the GNU linker. This is the default.
18760 @c Also, this is the default if the configure option @option{--with-gnu-ld}
18761 @c is used.
18762
18763 @item -mno-pic
18764 @opindex mno-pic
18765 Generate code that does not use a global pointer register. The result
18766 is not position independent code, and violates the IA-64 ABI@.
18767
18768 @item -mvolatile-asm-stop
18769 @itemx -mno-volatile-asm-stop
18770 @opindex mvolatile-asm-stop
18771 @opindex mno-volatile-asm-stop
18772 Generate (or don't) a stop bit immediately before and after volatile asm
18773 statements.
18774
18775 @item -mregister-names
18776 @itemx -mno-register-names
18777 @opindex mregister-names
18778 @opindex mno-register-names
18779 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
18780 the stacked registers. This may make assembler output more readable.
18781
18782 @item -mno-sdata
18783 @itemx -msdata
18784 @opindex mno-sdata
18785 @opindex msdata
18786 Disable (or enable) optimizations that use the small data section. This may
18787 be useful for working around optimizer bugs.
18788
18789 @item -mconstant-gp
18790 @opindex mconstant-gp
18791 Generate code that uses a single constant global pointer value. This is
18792 useful when compiling kernel code.
18793
18794 @item -mauto-pic
18795 @opindex mauto-pic
18796 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
18797 This is useful when compiling firmware code.
18798
18799 @item -minline-float-divide-min-latency
18800 @opindex minline-float-divide-min-latency
18801 Generate code for inline divides of floating-point values
18802 using the minimum latency algorithm.
18803
18804 @item -minline-float-divide-max-throughput
18805 @opindex minline-float-divide-max-throughput
18806 Generate code for inline divides of floating-point values
18807 using the maximum throughput algorithm.
18808
18809 @item -mno-inline-float-divide
18810 @opindex mno-inline-float-divide
18811 Do not generate inline code for divides of floating-point values.
18812
18813 @item -minline-int-divide-min-latency
18814 @opindex minline-int-divide-min-latency
18815 Generate code for inline divides of integer values
18816 using the minimum latency algorithm.
18817
18818 @item -minline-int-divide-max-throughput
18819 @opindex minline-int-divide-max-throughput
18820 Generate code for inline divides of integer values
18821 using the maximum throughput algorithm.
18822
18823 @item -mno-inline-int-divide
18824 @opindex mno-inline-int-divide
18825 Do not generate inline code for divides of integer values.
18826
18827 @item -minline-sqrt-min-latency
18828 @opindex minline-sqrt-min-latency
18829 Generate code for inline square roots
18830 using the minimum latency algorithm.
18831
18832 @item -minline-sqrt-max-throughput
18833 @opindex minline-sqrt-max-throughput
18834 Generate code for inline square roots
18835 using the maximum throughput algorithm.
18836
18837 @item -mno-inline-sqrt
18838 @opindex mno-inline-sqrt
18839 Do not generate inline code for @code{sqrt}.
18840
18841 @item -mfused-madd
18842 @itemx -mno-fused-madd
18843 @opindex mfused-madd
18844 @opindex mno-fused-madd
18845 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
18846 instructions. The default is to use these instructions.
18847
18848 @item -mno-dwarf2-asm
18849 @itemx -mdwarf2-asm
18850 @opindex mno-dwarf2-asm
18851 @opindex mdwarf2-asm
18852 Don't (or do) generate assembler code for the DWARF line number debugging
18853 info. This may be useful when not using the GNU assembler.
18854
18855 @item -mearly-stop-bits
18856 @itemx -mno-early-stop-bits
18857 @opindex mearly-stop-bits
18858 @opindex mno-early-stop-bits
18859 Allow stop bits to be placed earlier than immediately preceding the
18860 instruction that triggered the stop bit. This can improve instruction
18861 scheduling, but does not always do so.
18862
18863 @item -mfixed-range=@var{register-range}
18864 @opindex mfixed-range
18865 Generate code treating the given register range as fixed registers.
18866 A fixed register is one that the register allocator cannot use. This is
18867 useful when compiling kernel code. A register range is specified as
18868 two registers separated by a dash. Multiple register ranges can be
18869 specified separated by a comma.
18870
18871 @item -mtls-size=@var{tls-size}
18872 @opindex mtls-size
18873 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
18874 64.
18875
18876 @item -mtune=@var{cpu-type}
18877 @opindex mtune
18878 Tune the instruction scheduling for a particular CPU, Valid values are
18879 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
18880 and @samp{mckinley}.
18881
18882 @item -milp32
18883 @itemx -mlp64
18884 @opindex milp32
18885 @opindex mlp64
18886 Generate code for a 32-bit or 64-bit environment.
18887 The 32-bit environment sets int, long and pointer to 32 bits.
18888 The 64-bit environment sets int to 32 bits and long and pointer
18889 to 64 bits. These are HP-UX specific flags.
18890
18891 @item -mno-sched-br-data-spec
18892 @itemx -msched-br-data-spec
18893 @opindex mno-sched-br-data-spec
18894 @opindex msched-br-data-spec
18895 (Dis/En)able data speculative scheduling before reload.
18896 This results in generation of @code{ld.a} instructions and
18897 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18898 The default setting is disabled.
18899
18900 @item -msched-ar-data-spec
18901 @itemx -mno-sched-ar-data-spec
18902 @opindex msched-ar-data-spec
18903 @opindex mno-sched-ar-data-spec
18904 (En/Dis)able data speculative scheduling after reload.
18905 This results in generation of @code{ld.a} instructions and
18906 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
18907 The default setting is enabled.
18908
18909 @item -mno-sched-control-spec
18910 @itemx -msched-control-spec
18911 @opindex mno-sched-control-spec
18912 @opindex msched-control-spec
18913 (Dis/En)able control speculative scheduling. This feature is
18914 available only during region scheduling (i.e.@: before reload).
18915 This results in generation of the @code{ld.s} instructions and
18916 the corresponding check instructions @code{chk.s}.
18917 The default setting is disabled.
18918
18919 @item -msched-br-in-data-spec
18920 @itemx -mno-sched-br-in-data-spec
18921 @opindex msched-br-in-data-spec
18922 @opindex mno-sched-br-in-data-spec
18923 (En/Dis)able speculative scheduling of the instructions that
18924 are dependent on the data speculative loads before reload.
18925 This is effective only with @option{-msched-br-data-spec} enabled.
18926 The default setting is enabled.
18927
18928 @item -msched-ar-in-data-spec
18929 @itemx -mno-sched-ar-in-data-spec
18930 @opindex msched-ar-in-data-spec
18931 @opindex mno-sched-ar-in-data-spec
18932 (En/Dis)able speculative scheduling of the instructions that
18933 are dependent on the data speculative loads after reload.
18934 This is effective only with @option{-msched-ar-data-spec} enabled.
18935 The default setting is enabled.
18936
18937 @item -msched-in-control-spec
18938 @itemx -mno-sched-in-control-spec
18939 @opindex msched-in-control-spec
18940 @opindex mno-sched-in-control-spec
18941 (En/Dis)able speculative scheduling of the instructions that
18942 are dependent on the control speculative loads.
18943 This is effective only with @option{-msched-control-spec} enabled.
18944 The default setting is enabled.
18945
18946 @item -mno-sched-prefer-non-data-spec-insns
18947 @itemx -msched-prefer-non-data-spec-insns
18948 @opindex mno-sched-prefer-non-data-spec-insns
18949 @opindex msched-prefer-non-data-spec-insns
18950 If enabled, data-speculative instructions are chosen for schedule
18951 only if there are no other choices at the moment. This makes
18952 the use of the data speculation much more conservative.
18953 The default setting is disabled.
18954
18955 @item -mno-sched-prefer-non-control-spec-insns
18956 @itemx -msched-prefer-non-control-spec-insns
18957 @opindex mno-sched-prefer-non-control-spec-insns
18958 @opindex msched-prefer-non-control-spec-insns
18959 If enabled, control-speculative instructions are chosen for schedule
18960 only if there are no other choices at the moment. This makes
18961 the use of the control speculation much more conservative.
18962 The default setting is disabled.
18963
18964 @item -mno-sched-count-spec-in-critical-path
18965 @itemx -msched-count-spec-in-critical-path
18966 @opindex mno-sched-count-spec-in-critical-path
18967 @opindex msched-count-spec-in-critical-path
18968 If enabled, speculative dependencies are considered during
18969 computation of the instructions priorities. This makes the use of the
18970 speculation a bit more conservative.
18971 The default setting is disabled.
18972
18973 @item -msched-spec-ldc
18974 @opindex msched-spec-ldc
18975 Use a simple data speculation check. This option is on by default.
18976
18977 @item -msched-control-spec-ldc
18978 @opindex msched-spec-ldc
18979 Use a simple check for control speculation. This option is on by default.
18980
18981 @item -msched-stop-bits-after-every-cycle
18982 @opindex msched-stop-bits-after-every-cycle
18983 Place a stop bit after every cycle when scheduling. This option is on
18984 by default.
18985
18986 @item -msched-fp-mem-deps-zero-cost
18987 @opindex msched-fp-mem-deps-zero-cost
18988 Assume that floating-point stores and loads are not likely to cause a conflict
18989 when placed into the same instruction group. This option is disabled by
18990 default.
18991
18992 @item -msel-sched-dont-check-control-spec
18993 @opindex msel-sched-dont-check-control-spec
18994 Generate checks for control speculation in selective scheduling.
18995 This flag is disabled by default.
18996
18997 @item -msched-max-memory-insns=@var{max-insns}
18998 @opindex msched-max-memory-insns
18999 Limit on the number of memory insns per instruction group, giving lower
19000 priority to subsequent memory insns attempting to schedule in the same
19001 instruction group. Frequently useful to prevent cache bank conflicts.
19002 The default value is 1.
19003
19004 @item -msched-max-memory-insns-hard-limit
19005 @opindex msched-max-memory-insns-hard-limit
19006 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
19007 disallowing more than that number in an instruction group.
19008 Otherwise, the limit is ``soft'', meaning that non-memory operations
19009 are preferred when the limit is reached, but memory operations may still
19010 be scheduled.
19011
19012 @end table
19013
19014 @node LM32 Options
19015 @subsection LM32 Options
19016 @cindex LM32 options
19017
19018 These @option{-m} options are defined for the LatticeMico32 architecture:
19019
19020 @table @gcctabopt
19021 @item -mbarrel-shift-enabled
19022 @opindex mbarrel-shift-enabled
19023 Enable barrel-shift instructions.
19024
19025 @item -mdivide-enabled
19026 @opindex mdivide-enabled
19027 Enable divide and modulus instructions.
19028
19029 @item -mmultiply-enabled
19030 @opindex multiply-enabled
19031 Enable multiply instructions.
19032
19033 @item -msign-extend-enabled
19034 @opindex msign-extend-enabled
19035 Enable sign extend instructions.
19036
19037 @item -muser-enabled
19038 @opindex muser-enabled
19039 Enable user-defined instructions.
19040
19041 @end table
19042
19043 @node M32C Options
19044 @subsection M32C Options
19045 @cindex M32C options
19046
19047 @table @gcctabopt
19048 @item -mcpu=@var{name}
19049 @opindex mcpu=
19050 Select the CPU for which code is generated. @var{name} may be one of
19051 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
19052 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
19053 the M32C/80 series.
19054
19055 @item -msim
19056 @opindex msim
19057 Specifies that the program will be run on the simulator. This causes
19058 an alternate runtime library to be linked in which supports, for
19059 example, file I/O@. You must not use this option when generating
19060 programs that will run on real hardware; you must provide your own
19061 runtime library for whatever I/O functions are needed.
19062
19063 @item -memregs=@var{number}
19064 @opindex memregs=
19065 Specifies the number of memory-based pseudo-registers GCC uses
19066 during code generation. These pseudo-registers are used like real
19067 registers, so there is a tradeoff between GCC's ability to fit the
19068 code into available registers, and the performance penalty of using
19069 memory instead of registers. Note that all modules in a program must
19070 be compiled with the same value for this option. Because of that, you
19071 must not use this option with GCC's default runtime libraries.
19072
19073 @end table
19074
19075 @node M32R/D Options
19076 @subsection M32R/D Options
19077 @cindex M32R/D options
19078
19079 These @option{-m} options are defined for Renesas M32R/D architectures:
19080
19081 @table @gcctabopt
19082 @item -m32r2
19083 @opindex m32r2
19084 Generate code for the M32R/2@.
19085
19086 @item -m32rx
19087 @opindex m32rx
19088 Generate code for the M32R/X@.
19089
19090 @item -m32r
19091 @opindex m32r
19092 Generate code for the M32R@. This is the default.
19093
19094 @item -mmodel=small
19095 @opindex mmodel=small
19096 Assume all objects live in the lower 16MB of memory (so that their addresses
19097 can be loaded with the @code{ld24} instruction), and assume all subroutines
19098 are reachable with the @code{bl} instruction.
19099 This is the default.
19100
19101 The addressability of a particular object can be set with the
19102 @code{model} attribute.
19103
19104 @item -mmodel=medium
19105 @opindex mmodel=medium
19106 Assume objects may be anywhere in the 32-bit address space (the compiler
19107 generates @code{seth/add3} instructions to load their addresses), and
19108 assume all subroutines are reachable with the @code{bl} instruction.
19109
19110 @item -mmodel=large
19111 @opindex mmodel=large
19112 Assume objects may be anywhere in the 32-bit address space (the compiler
19113 generates @code{seth/add3} instructions to load their addresses), and
19114 assume subroutines may not be reachable with the @code{bl} instruction
19115 (the compiler generates the much slower @code{seth/add3/jl}
19116 instruction sequence).
19117
19118 @item -msdata=none
19119 @opindex msdata=none
19120 Disable use of the small data area. Variables are put into
19121 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
19122 @code{section} attribute has been specified).
19123 This is the default.
19124
19125 The small data area consists of sections @code{.sdata} and @code{.sbss}.
19126 Objects may be explicitly put in the small data area with the
19127 @code{section} attribute using one of these sections.
19128
19129 @item -msdata=sdata
19130 @opindex msdata=sdata
19131 Put small global and static data in the small data area, but do not
19132 generate special code to reference them.
19133
19134 @item -msdata=use
19135 @opindex msdata=use
19136 Put small global and static data in the small data area, and generate
19137 special instructions to reference them.
19138
19139 @item -G @var{num}
19140 @opindex G
19141 @cindex smaller data references
19142 Put global and static objects less than or equal to @var{num} bytes
19143 into the small data or BSS sections instead of the normal data or BSS
19144 sections. The default value of @var{num} is 8.
19145 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
19146 for this option to have any effect.
19147
19148 All modules should be compiled with the same @option{-G @var{num}} value.
19149 Compiling with different values of @var{num} may or may not work; if it
19150 doesn't the linker gives an error message---incorrect code is not
19151 generated.
19152
19153 @item -mdebug
19154 @opindex mdebug
19155 Makes the M32R-specific code in the compiler display some statistics
19156 that might help in debugging programs.
19157
19158 @item -malign-loops
19159 @opindex malign-loops
19160 Align all loops to a 32-byte boundary.
19161
19162 @item -mno-align-loops
19163 @opindex mno-align-loops
19164 Do not enforce a 32-byte alignment for loops. This is the default.
19165
19166 @item -missue-rate=@var{number}
19167 @opindex missue-rate=@var{number}
19168 Issue @var{number} instructions per cycle. @var{number} can only be 1
19169 or 2.
19170
19171 @item -mbranch-cost=@var{number}
19172 @opindex mbranch-cost=@var{number}
19173 @var{number} can only be 1 or 2. If it is 1 then branches are
19174 preferred over conditional code, if it is 2, then the opposite applies.
19175
19176 @item -mflush-trap=@var{number}
19177 @opindex mflush-trap=@var{number}
19178 Specifies the trap number to use to flush the cache. The default is
19179 12. Valid numbers are between 0 and 15 inclusive.
19180
19181 @item -mno-flush-trap
19182 @opindex mno-flush-trap
19183 Specifies that the cache cannot be flushed by using a trap.
19184
19185 @item -mflush-func=@var{name}
19186 @opindex mflush-func=@var{name}
19187 Specifies the name of the operating system function to call to flush
19188 the cache. The default is @samp{_flush_cache}, but a function call
19189 is only used if a trap is not available.
19190
19191 @item -mno-flush-func
19192 @opindex mno-flush-func
19193 Indicates that there is no OS function for flushing the cache.
19194
19195 @end table
19196
19197 @node M680x0 Options
19198 @subsection M680x0 Options
19199 @cindex M680x0 options
19200
19201 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
19202 The default settings depend on which architecture was selected when
19203 the compiler was configured; the defaults for the most common choices
19204 are given below.
19205
19206 @table @gcctabopt
19207 @item -march=@var{arch}
19208 @opindex march
19209 Generate code for a specific M680x0 or ColdFire instruction set
19210 architecture. Permissible values of @var{arch} for M680x0
19211 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
19212 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
19213 architectures are selected according to Freescale's ISA classification
19214 and the permissible values are: @samp{isaa}, @samp{isaaplus},
19215 @samp{isab} and @samp{isac}.
19216
19217 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
19218 code for a ColdFire target. The @var{arch} in this macro is one of the
19219 @option{-march} arguments given above.
19220
19221 When used together, @option{-march} and @option{-mtune} select code
19222 that runs on a family of similar processors but that is optimized
19223 for a particular microarchitecture.
19224
19225 @item -mcpu=@var{cpu}
19226 @opindex mcpu
19227 Generate code for a specific M680x0 or ColdFire processor.
19228 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
19229 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
19230 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
19231 below, which also classifies the CPUs into families:
19232
19233 @multitable @columnfractions 0.20 0.80
19234 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
19235 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
19236 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
19237 @item @samp{5206e} @tab @samp{5206e}
19238 @item @samp{5208} @tab @samp{5207} @samp{5208}
19239 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
19240 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
19241 @item @samp{5216} @tab @samp{5214} @samp{5216}
19242 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
19243 @item @samp{5225} @tab @samp{5224} @samp{5225}
19244 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
19245 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
19246 @item @samp{5249} @tab @samp{5249}
19247 @item @samp{5250} @tab @samp{5250}
19248 @item @samp{5271} @tab @samp{5270} @samp{5271}
19249 @item @samp{5272} @tab @samp{5272}
19250 @item @samp{5275} @tab @samp{5274} @samp{5275}
19251 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
19252 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
19253 @item @samp{5307} @tab @samp{5307}
19254 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
19255 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
19256 @item @samp{5407} @tab @samp{5407}
19257 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
19258 @end multitable
19259
19260 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
19261 @var{arch} is compatible with @var{cpu}. Other combinations of
19262 @option{-mcpu} and @option{-march} are rejected.
19263
19264 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
19265 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
19266 where the value of @var{family} is given by the table above.
19267
19268 @item -mtune=@var{tune}
19269 @opindex mtune
19270 Tune the code for a particular microarchitecture within the
19271 constraints set by @option{-march} and @option{-mcpu}.
19272 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
19273 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
19274 and @samp{cpu32}. The ColdFire microarchitectures
19275 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
19276
19277 You can also use @option{-mtune=68020-40} for code that needs
19278 to run relatively well on 68020, 68030 and 68040 targets.
19279 @option{-mtune=68020-60} is similar but includes 68060 targets
19280 as well. These two options select the same tuning decisions as
19281 @option{-m68020-40} and @option{-m68020-60} respectively.
19282
19283 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
19284 when tuning for 680x0 architecture @var{arch}. It also defines
19285 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
19286 option is used. If GCC is tuning for a range of architectures,
19287 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
19288 it defines the macros for every architecture in the range.
19289
19290 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
19291 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
19292 of the arguments given above.
19293
19294 @item -m68000
19295 @itemx -mc68000
19296 @opindex m68000
19297 @opindex mc68000
19298 Generate output for a 68000. This is the default
19299 when the compiler is configured for 68000-based systems.
19300 It is equivalent to @option{-march=68000}.
19301
19302 Use this option for microcontrollers with a 68000 or EC000 core,
19303 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
19304
19305 @item -m68010
19306 @opindex m68010
19307 Generate output for a 68010. This is the default
19308 when the compiler is configured for 68010-based systems.
19309 It is equivalent to @option{-march=68010}.
19310
19311 @item -m68020
19312 @itemx -mc68020
19313 @opindex m68020
19314 @opindex mc68020
19315 Generate output for a 68020. This is the default
19316 when the compiler is configured for 68020-based systems.
19317 It is equivalent to @option{-march=68020}.
19318
19319 @item -m68030
19320 @opindex m68030
19321 Generate output for a 68030. This is the default when the compiler is
19322 configured for 68030-based systems. It is equivalent to
19323 @option{-march=68030}.
19324
19325 @item -m68040
19326 @opindex m68040
19327 Generate output for a 68040. This is the default when the compiler is
19328 configured for 68040-based systems. It is equivalent to
19329 @option{-march=68040}.
19330
19331 This option inhibits the use of 68881/68882 instructions that have to be
19332 emulated by software on the 68040. Use this option if your 68040 does not
19333 have code to emulate those instructions.
19334
19335 @item -m68060
19336 @opindex m68060
19337 Generate output for a 68060. This is the default when the compiler is
19338 configured for 68060-based systems. It is equivalent to
19339 @option{-march=68060}.
19340
19341 This option inhibits the use of 68020 and 68881/68882 instructions that
19342 have to be emulated by software on the 68060. Use this option if your 68060
19343 does not have code to emulate those instructions.
19344
19345 @item -mcpu32
19346 @opindex mcpu32
19347 Generate output for a CPU32. This is the default
19348 when the compiler is configured for CPU32-based systems.
19349 It is equivalent to @option{-march=cpu32}.
19350
19351 Use this option for microcontrollers with a
19352 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
19353 68336, 68340, 68341, 68349 and 68360.
19354
19355 @item -m5200
19356 @opindex m5200
19357 Generate output for a 520X ColdFire CPU@. This is the default
19358 when the compiler is configured for 520X-based systems.
19359 It is equivalent to @option{-mcpu=5206}, and is now deprecated
19360 in favor of that option.
19361
19362 Use this option for microcontroller with a 5200 core, including
19363 the MCF5202, MCF5203, MCF5204 and MCF5206.
19364
19365 @item -m5206e
19366 @opindex m5206e
19367 Generate output for a 5206e ColdFire CPU@. The option is now
19368 deprecated in favor of the equivalent @option{-mcpu=5206e}.
19369
19370 @item -m528x
19371 @opindex m528x
19372 Generate output for a member of the ColdFire 528X family.
19373 The option is now deprecated in favor of the equivalent
19374 @option{-mcpu=528x}.
19375
19376 @item -m5307
19377 @opindex m5307
19378 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
19379 in favor of the equivalent @option{-mcpu=5307}.
19380
19381 @item -m5407
19382 @opindex m5407
19383 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
19384 in favor of the equivalent @option{-mcpu=5407}.
19385
19386 @item -mcfv4e
19387 @opindex mcfv4e
19388 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
19389 This includes use of hardware floating-point instructions.
19390 The option is equivalent to @option{-mcpu=547x}, and is now
19391 deprecated in favor of that option.
19392
19393 @item -m68020-40
19394 @opindex m68020-40
19395 Generate output for a 68040, without using any of the new instructions.
19396 This results in code that can run relatively efficiently on either a
19397 68020/68881 or a 68030 or a 68040. The generated code does use the
19398 68881 instructions that are emulated on the 68040.
19399
19400 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
19401
19402 @item -m68020-60
19403 @opindex m68020-60
19404 Generate output for a 68060, without using any of the new instructions.
19405 This results in code that can run relatively efficiently on either a
19406 68020/68881 or a 68030 or a 68040. The generated code does use the
19407 68881 instructions that are emulated on the 68060.
19408
19409 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
19410
19411 @item -mhard-float
19412 @itemx -m68881
19413 @opindex mhard-float
19414 @opindex m68881
19415 Generate floating-point instructions. This is the default for 68020
19416 and above, and for ColdFire devices that have an FPU@. It defines the
19417 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
19418 on ColdFire targets.
19419
19420 @item -msoft-float
19421 @opindex msoft-float
19422 Do not generate floating-point instructions; use library calls instead.
19423 This is the default for 68000, 68010, and 68832 targets. It is also
19424 the default for ColdFire devices that have no FPU.
19425
19426 @item -mdiv
19427 @itemx -mno-div
19428 @opindex mdiv
19429 @opindex mno-div
19430 Generate (do not generate) ColdFire hardware divide and remainder
19431 instructions. If @option{-march} is used without @option{-mcpu},
19432 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
19433 architectures. Otherwise, the default is taken from the target CPU
19434 (either the default CPU, or the one specified by @option{-mcpu}). For
19435 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
19436 @option{-mcpu=5206e}.
19437
19438 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
19439
19440 @item -mshort
19441 @opindex mshort
19442 Consider type @code{int} to be 16 bits wide, like @code{short int}.
19443 Additionally, parameters passed on the stack are also aligned to a
19444 16-bit boundary even on targets whose API mandates promotion to 32-bit.
19445
19446 @item -mno-short
19447 @opindex mno-short
19448 Do not consider type @code{int} to be 16 bits wide. This is the default.
19449
19450 @item -mnobitfield
19451 @itemx -mno-bitfield
19452 @opindex mnobitfield
19453 @opindex mno-bitfield
19454 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
19455 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
19456
19457 @item -mbitfield
19458 @opindex mbitfield
19459 Do use the bit-field instructions. The @option{-m68020} option implies
19460 @option{-mbitfield}. This is the default if you use a configuration
19461 designed for a 68020.
19462
19463 @item -mrtd
19464 @opindex mrtd
19465 Use a different function-calling convention, in which functions
19466 that take a fixed number of arguments return with the @code{rtd}
19467 instruction, which pops their arguments while returning. This
19468 saves one instruction in the caller since there is no need to pop
19469 the arguments there.
19470
19471 This calling convention is incompatible with the one normally
19472 used on Unix, so you cannot use it if you need to call libraries
19473 compiled with the Unix compiler.
19474
19475 Also, you must provide function prototypes for all functions that
19476 take variable numbers of arguments (including @code{printf});
19477 otherwise incorrect code is generated for calls to those
19478 functions.
19479
19480 In addition, seriously incorrect code results if you call a
19481 function with too many arguments. (Normally, extra arguments are
19482 harmlessly ignored.)
19483
19484 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
19485 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
19486
19487 @item -mno-rtd
19488 @opindex mno-rtd
19489 Do not use the calling conventions selected by @option{-mrtd}.
19490 This is the default.
19491
19492 @item -malign-int
19493 @itemx -mno-align-int
19494 @opindex malign-int
19495 @opindex mno-align-int
19496 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
19497 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
19498 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
19499 Aligning variables on 32-bit boundaries produces code that runs somewhat
19500 faster on processors with 32-bit busses at the expense of more memory.
19501
19502 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
19503 aligns structures containing the above types differently than
19504 most published application binary interface specifications for the m68k.
19505
19506 @item -mpcrel
19507 @opindex mpcrel
19508 Use the pc-relative addressing mode of the 68000 directly, instead of
19509 using a global offset table. At present, this option implies @option{-fpic},
19510 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
19511 not presently supported with @option{-mpcrel}, though this could be supported for
19512 68020 and higher processors.
19513
19514 @item -mno-strict-align
19515 @itemx -mstrict-align
19516 @opindex mno-strict-align
19517 @opindex mstrict-align
19518 Do not (do) assume that unaligned memory references are handled by
19519 the system.
19520
19521 @item -msep-data
19522 Generate code that allows the data segment to be located in a different
19523 area of memory from the text segment. This allows for execute-in-place in
19524 an environment without virtual memory management. This option implies
19525 @option{-fPIC}.
19526
19527 @item -mno-sep-data
19528 Generate code that assumes that the data segment follows the text segment.
19529 This is the default.
19530
19531 @item -mid-shared-library
19532 Generate code that supports shared libraries via the library ID method.
19533 This allows for execute-in-place and shared libraries in an environment
19534 without virtual memory management. This option implies @option{-fPIC}.
19535
19536 @item -mno-id-shared-library
19537 Generate code that doesn't assume ID-based shared libraries are being used.
19538 This is the default.
19539
19540 @item -mshared-library-id=n
19541 Specifies the identification number of the ID-based shared library being
19542 compiled. Specifying a value of 0 generates more compact code; specifying
19543 other values forces the allocation of that number to the current
19544 library, but is no more space- or time-efficient than omitting this option.
19545
19546 @item -mxgot
19547 @itemx -mno-xgot
19548 @opindex mxgot
19549 @opindex mno-xgot
19550 When generating position-independent code for ColdFire, generate code
19551 that works if the GOT has more than 8192 entries. This code is
19552 larger and slower than code generated without this option. On M680x0
19553 processors, this option is not needed; @option{-fPIC} suffices.
19554
19555 GCC normally uses a single instruction to load values from the GOT@.
19556 While this is relatively efficient, it only works if the GOT
19557 is smaller than about 64k. Anything larger causes the linker
19558 to report an error such as:
19559
19560 @cindex relocation truncated to fit (ColdFire)
19561 @smallexample
19562 relocation truncated to fit: R_68K_GOT16O foobar
19563 @end smallexample
19564
19565 If this happens, you should recompile your code with @option{-mxgot}.
19566 It should then work with very large GOTs. However, code generated with
19567 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
19568 the value of a global symbol.
19569
19570 Note that some linkers, including newer versions of the GNU linker,
19571 can create multiple GOTs and sort GOT entries. If you have such a linker,
19572 you should only need to use @option{-mxgot} when compiling a single
19573 object file that accesses more than 8192 GOT entries. Very few do.
19574
19575 These options have no effect unless GCC is generating
19576 position-independent code.
19577
19578 @item -mlong-jump-table-offsets
19579 @opindex mlong-jump-table-offsets
19580 Use 32-bit offsets in @code{switch} tables. The default is to use
19581 16-bit offsets.
19582
19583 @end table
19584
19585 @node MCore Options
19586 @subsection MCore Options
19587 @cindex MCore options
19588
19589 These are the @samp{-m} options defined for the Motorola M*Core
19590 processors.
19591
19592 @table @gcctabopt
19593
19594 @item -mhardlit
19595 @itemx -mno-hardlit
19596 @opindex mhardlit
19597 @opindex mno-hardlit
19598 Inline constants into the code stream if it can be done in two
19599 instructions or less.
19600
19601 @item -mdiv
19602 @itemx -mno-div
19603 @opindex mdiv
19604 @opindex mno-div
19605 Use the divide instruction. (Enabled by default).
19606
19607 @item -mrelax-immediate
19608 @itemx -mno-relax-immediate
19609 @opindex mrelax-immediate
19610 @opindex mno-relax-immediate
19611 Allow arbitrary-sized immediates in bit operations.
19612
19613 @item -mwide-bitfields
19614 @itemx -mno-wide-bitfields
19615 @opindex mwide-bitfields
19616 @opindex mno-wide-bitfields
19617 Always treat bit-fields as @code{int}-sized.
19618
19619 @item -m4byte-functions
19620 @itemx -mno-4byte-functions
19621 @opindex m4byte-functions
19622 @opindex mno-4byte-functions
19623 Force all functions to be aligned to a 4-byte boundary.
19624
19625 @item -mcallgraph-data
19626 @itemx -mno-callgraph-data
19627 @opindex mcallgraph-data
19628 @opindex mno-callgraph-data
19629 Emit callgraph information.
19630
19631 @item -mslow-bytes
19632 @itemx -mno-slow-bytes
19633 @opindex mslow-bytes
19634 @opindex mno-slow-bytes
19635 Prefer word access when reading byte quantities.
19636
19637 @item -mlittle-endian
19638 @itemx -mbig-endian
19639 @opindex mlittle-endian
19640 @opindex mbig-endian
19641 Generate code for a little-endian target.
19642
19643 @item -m210
19644 @itemx -m340
19645 @opindex m210
19646 @opindex m340
19647 Generate code for the 210 processor.
19648
19649 @item -mno-lsim
19650 @opindex mno-lsim
19651 Assume that runtime support has been provided and so omit the
19652 simulator library (@file{libsim.a)} from the linker command line.
19653
19654 @item -mstack-increment=@var{size}
19655 @opindex mstack-increment
19656 Set the maximum amount for a single stack increment operation. Large
19657 values can increase the speed of programs that contain functions
19658 that need a large amount of stack space, but they can also trigger a
19659 segmentation fault if the stack is extended too much. The default
19660 value is 0x1000.
19661
19662 @end table
19663
19664 @node MeP Options
19665 @subsection MeP Options
19666 @cindex MeP options
19667
19668 @table @gcctabopt
19669
19670 @item -mabsdiff
19671 @opindex mabsdiff
19672 Enables the @code{abs} instruction, which is the absolute difference
19673 between two registers.
19674
19675 @item -mall-opts
19676 @opindex mall-opts
19677 Enables all the optional instructions---average, multiply, divide, bit
19678 operations, leading zero, absolute difference, min/max, clip, and
19679 saturation.
19680
19681
19682 @item -maverage
19683 @opindex maverage
19684 Enables the @code{ave} instruction, which computes the average of two
19685 registers.
19686
19687 @item -mbased=@var{n}
19688 @opindex mbased=
19689 Variables of size @var{n} bytes or smaller are placed in the
19690 @code{.based} section by default. Based variables use the @code{$tp}
19691 register as a base register, and there is a 128-byte limit to the
19692 @code{.based} section.
19693
19694 @item -mbitops
19695 @opindex mbitops
19696 Enables the bit operation instructions---bit test (@code{btstm}), set
19697 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
19698 test-and-set (@code{tas}).
19699
19700 @item -mc=@var{name}
19701 @opindex mc=
19702 Selects which section constant data is placed in. @var{name} may
19703 be @samp{tiny}, @samp{near}, or @samp{far}.
19704
19705 @item -mclip
19706 @opindex mclip
19707 Enables the @code{clip} instruction. Note that @option{-mclip} is not
19708 useful unless you also provide @option{-mminmax}.
19709
19710 @item -mconfig=@var{name}
19711 @opindex mconfig=
19712 Selects one of the built-in core configurations. Each MeP chip has
19713 one or more modules in it; each module has a core CPU and a variety of
19714 coprocessors, optional instructions, and peripherals. The
19715 @code{MeP-Integrator} tool, not part of GCC, provides these
19716 configurations through this option; using this option is the same as
19717 using all the corresponding command-line options. The default
19718 configuration is @samp{default}.
19719
19720 @item -mcop
19721 @opindex mcop
19722 Enables the coprocessor instructions. By default, this is a 32-bit
19723 coprocessor. Note that the coprocessor is normally enabled via the
19724 @option{-mconfig=} option.
19725
19726 @item -mcop32
19727 @opindex mcop32
19728 Enables the 32-bit coprocessor's instructions.
19729
19730 @item -mcop64
19731 @opindex mcop64
19732 Enables the 64-bit coprocessor's instructions.
19733
19734 @item -mivc2
19735 @opindex mivc2
19736 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
19737
19738 @item -mdc
19739 @opindex mdc
19740 Causes constant variables to be placed in the @code{.near} section.
19741
19742 @item -mdiv
19743 @opindex mdiv
19744 Enables the @code{div} and @code{divu} instructions.
19745
19746 @item -meb
19747 @opindex meb
19748 Generate big-endian code.
19749
19750 @item -mel
19751 @opindex mel
19752 Generate little-endian code.
19753
19754 @item -mio-volatile
19755 @opindex mio-volatile
19756 Tells the compiler that any variable marked with the @code{io}
19757 attribute is to be considered volatile.
19758
19759 @item -ml
19760 @opindex ml
19761 Causes variables to be assigned to the @code{.far} section by default.
19762
19763 @item -mleadz
19764 @opindex mleadz
19765 Enables the @code{leadz} (leading zero) instruction.
19766
19767 @item -mm
19768 @opindex mm
19769 Causes variables to be assigned to the @code{.near} section by default.
19770
19771 @item -mminmax
19772 @opindex mminmax
19773 Enables the @code{min} and @code{max} instructions.
19774
19775 @item -mmult
19776 @opindex mmult
19777 Enables the multiplication and multiply-accumulate instructions.
19778
19779 @item -mno-opts
19780 @opindex mno-opts
19781 Disables all the optional instructions enabled by @option{-mall-opts}.
19782
19783 @item -mrepeat
19784 @opindex mrepeat
19785 Enables the @code{repeat} and @code{erepeat} instructions, used for
19786 low-overhead looping.
19787
19788 @item -ms
19789 @opindex ms
19790 Causes all variables to default to the @code{.tiny} section. Note
19791 that there is a 65536-byte limit to this section. Accesses to these
19792 variables use the @code{%gp} base register.
19793
19794 @item -msatur
19795 @opindex msatur
19796 Enables the saturation instructions. Note that the compiler does not
19797 currently generate these itself, but this option is included for
19798 compatibility with other tools, like @code{as}.
19799
19800 @item -msdram
19801 @opindex msdram
19802 Link the SDRAM-based runtime instead of the default ROM-based runtime.
19803
19804 @item -msim
19805 @opindex msim
19806 Link the simulator run-time libraries.
19807
19808 @item -msimnovec
19809 @opindex msimnovec
19810 Link the simulator runtime libraries, excluding built-in support
19811 for reset and exception vectors and tables.
19812
19813 @item -mtf
19814 @opindex mtf
19815 Causes all functions to default to the @code{.far} section. Without
19816 this option, functions default to the @code{.near} section.
19817
19818 @item -mtiny=@var{n}
19819 @opindex mtiny=
19820 Variables that are @var{n} bytes or smaller are allocated to the
19821 @code{.tiny} section. These variables use the @code{$gp} base
19822 register. The default for this option is 4, but note that there's a
19823 65536-byte limit to the @code{.tiny} section.
19824
19825 @end table
19826
19827 @node MicroBlaze Options
19828 @subsection MicroBlaze Options
19829 @cindex MicroBlaze Options
19830
19831 @table @gcctabopt
19832
19833 @item -msoft-float
19834 @opindex msoft-float
19835 Use software emulation for floating point (default).
19836
19837 @item -mhard-float
19838 @opindex mhard-float
19839 Use hardware floating-point instructions.
19840
19841 @item -mmemcpy
19842 @opindex mmemcpy
19843 Do not optimize block moves, use @code{memcpy}.
19844
19845 @item -mno-clearbss
19846 @opindex mno-clearbss
19847 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
19848
19849 @item -mcpu=@var{cpu-type}
19850 @opindex mcpu=
19851 Use features of, and schedule code for, the given CPU.
19852 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
19853 where @var{X} is a major version, @var{YY} is the minor version, and
19854 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
19855 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
19856
19857 @item -mxl-soft-mul
19858 @opindex mxl-soft-mul
19859 Use software multiply emulation (default).
19860
19861 @item -mxl-soft-div
19862 @opindex mxl-soft-div
19863 Use software emulation for divides (default).
19864
19865 @item -mxl-barrel-shift
19866 @opindex mxl-barrel-shift
19867 Use the hardware barrel shifter.
19868
19869 @item -mxl-pattern-compare
19870 @opindex mxl-pattern-compare
19871 Use pattern compare instructions.
19872
19873 @item -msmall-divides
19874 @opindex msmall-divides
19875 Use table lookup optimization for small signed integer divisions.
19876
19877 @item -mxl-stack-check
19878 @opindex mxl-stack-check
19879 This option is deprecated. Use @option{-fstack-check} instead.
19880
19881 @item -mxl-gp-opt
19882 @opindex mxl-gp-opt
19883 Use GP-relative @code{.sdata}/@code{.sbss} sections.
19884
19885 @item -mxl-multiply-high
19886 @opindex mxl-multiply-high
19887 Use multiply high instructions for high part of 32x32 multiply.
19888
19889 @item -mxl-float-convert
19890 @opindex mxl-float-convert
19891 Use hardware floating-point conversion instructions.
19892
19893 @item -mxl-float-sqrt
19894 @opindex mxl-float-sqrt
19895 Use hardware floating-point square root instruction.
19896
19897 @item -mbig-endian
19898 @opindex mbig-endian
19899 Generate code for a big-endian target.
19900
19901 @item -mlittle-endian
19902 @opindex mlittle-endian
19903 Generate code for a little-endian target.
19904
19905 @item -mxl-reorder
19906 @opindex mxl-reorder
19907 Use reorder instructions (swap and byte reversed load/store).
19908
19909 @item -mxl-mode-@var{app-model}
19910 Select application model @var{app-model}. Valid models are
19911 @table @samp
19912 @item executable
19913 normal executable (default), uses startup code @file{crt0.o}.
19914
19915 @item xmdstub
19916 for use with Xilinx Microprocessor Debugger (XMD) based
19917 software intrusive debug agent called xmdstub. This uses startup file
19918 @file{crt1.o} and sets the start address of the program to 0x800.
19919
19920 @item bootstrap
19921 for applications that are loaded using a bootloader.
19922 This model uses startup file @file{crt2.o} which does not contain a processor
19923 reset vector handler. This is suitable for transferring control on a
19924 processor reset to the bootloader rather than the application.
19925
19926 @item novectors
19927 for applications that do not require any of the
19928 MicroBlaze vectors. This option may be useful for applications running
19929 within a monitoring application. This model uses @file{crt3.o} as a startup file.
19930 @end table
19931
19932 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
19933 @option{-mxl-mode-@var{app-model}}.
19934
19935 @end table
19936
19937 @node MIPS Options
19938 @subsection MIPS Options
19939 @cindex MIPS options
19940
19941 @table @gcctabopt
19942
19943 @item -EB
19944 @opindex EB
19945 Generate big-endian code.
19946
19947 @item -EL
19948 @opindex EL
19949 Generate little-endian code. This is the default for @samp{mips*el-*-*}
19950 configurations.
19951
19952 @item -march=@var{arch}
19953 @opindex march
19954 Generate code that runs on @var{arch}, which can be the name of a
19955 generic MIPS ISA, or the name of a particular processor.
19956 The ISA names are:
19957 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
19958 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
19959 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
19960 @samp{mips64r5} and @samp{mips64r6}.
19961 The processor names are:
19962 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
19963 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
19964 @samp{5kc}, @samp{5kf},
19965 @samp{20kc},
19966 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
19967 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
19968 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
19969 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
19970 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
19971 @samp{i6400},
19972 @samp{interaptiv},
19973 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
19974 @samp{m4k},
19975 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
19976 @samp{m5100}, @samp{m5101},
19977 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
19978 @samp{orion},
19979 @samp{p5600},
19980 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
19981 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
19982 @samp{rm7000}, @samp{rm9000},
19983 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
19984 @samp{sb1},
19985 @samp{sr71000},
19986 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
19987 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
19988 @samp{xlr} and @samp{xlp}.
19989 The special value @samp{from-abi} selects the
19990 most compatible architecture for the selected ABI (that is,
19991 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
19992
19993 The native Linux/GNU toolchain also supports the value @samp{native},
19994 which selects the best architecture option for the host processor.
19995 @option{-march=native} has no effect if GCC does not recognize
19996 the processor.
19997
19998 In processor names, a final @samp{000} can be abbreviated as @samp{k}
19999 (for example, @option{-march=r2k}). Prefixes are optional, and
20000 @samp{vr} may be written @samp{r}.
20001
20002 Names of the form @samp{@var{n}f2_1} refer to processors with
20003 FPUs clocked at half the rate of the core, names of the form
20004 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
20005 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
20006 processors with FPUs clocked a ratio of 3:2 with respect to the core.
20007 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
20008 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
20009 accepted as synonyms for @samp{@var{n}f1_1}.
20010
20011 GCC defines two macros based on the value of this option. The first
20012 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
20013 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
20014 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
20015 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
20016 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
20017
20018 Note that the @code{_MIPS_ARCH} macro uses the processor names given
20019 above. In other words, it has the full prefix and does not
20020 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
20021 the macro names the resolved architecture (either @code{"mips1"} or
20022 @code{"mips3"}). It names the default architecture when no
20023 @option{-march} option is given.
20024
20025 @item -mtune=@var{arch}
20026 @opindex mtune
20027 Optimize for @var{arch}. Among other things, this option controls
20028 the way instructions are scheduled, and the perceived cost of arithmetic
20029 operations. The list of @var{arch} values is the same as for
20030 @option{-march}.
20031
20032 When this option is not used, GCC optimizes for the processor
20033 specified by @option{-march}. By using @option{-march} and
20034 @option{-mtune} together, it is possible to generate code that
20035 runs on a family of processors, but optimize the code for one
20036 particular member of that family.
20037
20038 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
20039 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
20040 @option{-march} ones described above.
20041
20042 @item -mips1
20043 @opindex mips1
20044 Equivalent to @option{-march=mips1}.
20045
20046 @item -mips2
20047 @opindex mips2
20048 Equivalent to @option{-march=mips2}.
20049
20050 @item -mips3
20051 @opindex mips3
20052 Equivalent to @option{-march=mips3}.
20053
20054 @item -mips4
20055 @opindex mips4
20056 Equivalent to @option{-march=mips4}.
20057
20058 @item -mips32
20059 @opindex mips32
20060 Equivalent to @option{-march=mips32}.
20061
20062 @item -mips32r3
20063 @opindex mips32r3
20064 Equivalent to @option{-march=mips32r3}.
20065
20066 @item -mips32r5
20067 @opindex mips32r5
20068 Equivalent to @option{-march=mips32r5}.
20069
20070 @item -mips32r6
20071 @opindex mips32r6
20072 Equivalent to @option{-march=mips32r6}.
20073
20074 @item -mips64
20075 @opindex mips64
20076 Equivalent to @option{-march=mips64}.
20077
20078 @item -mips64r2
20079 @opindex mips64r2
20080 Equivalent to @option{-march=mips64r2}.
20081
20082 @item -mips64r3
20083 @opindex mips64r3
20084 Equivalent to @option{-march=mips64r3}.
20085
20086 @item -mips64r5
20087 @opindex mips64r5
20088 Equivalent to @option{-march=mips64r5}.
20089
20090 @item -mips64r6
20091 @opindex mips64r6
20092 Equivalent to @option{-march=mips64r6}.
20093
20094 @item -mips16
20095 @itemx -mno-mips16
20096 @opindex mips16
20097 @opindex mno-mips16
20098 Generate (do not generate) MIPS16 code. If GCC is targeting a
20099 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
20100
20101 MIPS16 code generation can also be controlled on a per-function basis
20102 by means of @code{mips16} and @code{nomips16} attributes.
20103 @xref{Function Attributes}, for more information.
20104
20105 @item -mflip-mips16
20106 @opindex mflip-mips16
20107 Generate MIPS16 code on alternating functions. This option is provided
20108 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
20109 not intended for ordinary use in compiling user code.
20110
20111 @item -minterlink-compressed
20112 @item -mno-interlink-compressed
20113 @opindex minterlink-compressed
20114 @opindex mno-interlink-compressed
20115 Require (do not require) that code using the standard (uncompressed) MIPS ISA
20116 be link-compatible with MIPS16 and microMIPS code, and vice versa.
20117
20118 For example, code using the standard ISA encoding cannot jump directly
20119 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
20120 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
20121 knows that the target of the jump is not compressed.
20122
20123 @item -minterlink-mips16
20124 @itemx -mno-interlink-mips16
20125 @opindex minterlink-mips16
20126 @opindex mno-interlink-mips16
20127 Aliases of @option{-minterlink-compressed} and
20128 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
20129 and are retained for backwards compatibility.
20130
20131 @item -mabi=32
20132 @itemx -mabi=o64
20133 @itemx -mabi=n32
20134 @itemx -mabi=64
20135 @itemx -mabi=eabi
20136 @opindex mabi=32
20137 @opindex mabi=o64
20138 @opindex mabi=n32
20139 @opindex mabi=64
20140 @opindex mabi=eabi
20141 Generate code for the given ABI@.
20142
20143 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
20144 generates 64-bit code when you select a 64-bit architecture, but you
20145 can use @option{-mgp32} to get 32-bit code instead.
20146
20147 For information about the O64 ABI, see
20148 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
20149
20150 GCC supports a variant of the o32 ABI in which floating-point registers
20151 are 64 rather than 32 bits wide. You can select this combination with
20152 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
20153 and @code{mfhc1} instructions and is therefore only supported for
20154 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
20155
20156 The register assignments for arguments and return values remain the
20157 same, but each scalar value is passed in a single 64-bit register
20158 rather than a pair of 32-bit registers. For example, scalar
20159 floating-point values are returned in @samp{$f0} only, not a
20160 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
20161 remains the same in that the even-numbered double-precision registers
20162 are saved.
20163
20164 Two additional variants of the o32 ABI are supported to enable
20165 a transition from 32-bit to 64-bit registers. These are FPXX
20166 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
20167 The FPXX extension mandates that all code must execute correctly
20168 when run using 32-bit or 64-bit registers. The code can be interlinked
20169 with either FP32 or FP64, but not both.
20170 The FP64A extension is similar to the FP64 extension but forbids the
20171 use of odd-numbered single-precision registers. This can be used
20172 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
20173 processors and allows both FP32 and FP64A code to interlink and
20174 run in the same process without changing FPU modes.
20175
20176 @item -mabicalls
20177 @itemx -mno-abicalls
20178 @opindex mabicalls
20179 @opindex mno-abicalls
20180 Generate (do not generate) code that is suitable for SVR4-style
20181 dynamic objects. @option{-mabicalls} is the default for SVR4-based
20182 systems.
20183
20184 @item -mshared
20185 @itemx -mno-shared
20186 Generate (do not generate) code that is fully position-independent,
20187 and that can therefore be linked into shared libraries. This option
20188 only affects @option{-mabicalls}.
20189
20190 All @option{-mabicalls} code has traditionally been position-independent,
20191 regardless of options like @option{-fPIC} and @option{-fpic}. However,
20192 as an extension, the GNU toolchain allows executables to use absolute
20193 accesses for locally-binding symbols. It can also use shorter GP
20194 initialization sequences and generate direct calls to locally-defined
20195 functions. This mode is selected by @option{-mno-shared}.
20196
20197 @option{-mno-shared} depends on binutils 2.16 or higher and generates
20198 objects that can only be linked by the GNU linker. However, the option
20199 does not affect the ABI of the final executable; it only affects the ABI
20200 of relocatable objects. Using @option{-mno-shared} generally makes
20201 executables both smaller and quicker.
20202
20203 @option{-mshared} is the default.
20204
20205 @item -mplt
20206 @itemx -mno-plt
20207 @opindex mplt
20208 @opindex mno-plt
20209 Assume (do not assume) that the static and dynamic linkers
20210 support PLTs and copy relocations. This option only affects
20211 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
20212 has no effect without @option{-msym32}.
20213
20214 You can make @option{-mplt} the default by configuring
20215 GCC with @option{--with-mips-plt}. The default is
20216 @option{-mno-plt} otherwise.
20217
20218 @item -mxgot
20219 @itemx -mno-xgot
20220 @opindex mxgot
20221 @opindex mno-xgot
20222 Lift (do not lift) the usual restrictions on the size of the global
20223 offset table.
20224
20225 GCC normally uses a single instruction to load values from the GOT@.
20226 While this is relatively efficient, it only works if the GOT
20227 is smaller than about 64k. Anything larger causes the linker
20228 to report an error such as:
20229
20230 @cindex relocation truncated to fit (MIPS)
20231 @smallexample
20232 relocation truncated to fit: R_MIPS_GOT16 foobar
20233 @end smallexample
20234
20235 If this happens, you should recompile your code with @option{-mxgot}.
20236 This works with very large GOTs, although the code is also
20237 less efficient, since it takes three instructions to fetch the
20238 value of a global symbol.
20239
20240 Note that some linkers can create multiple GOTs. If you have such a
20241 linker, you should only need to use @option{-mxgot} when a single object
20242 file accesses more than 64k's worth of GOT entries. Very few do.
20243
20244 These options have no effect unless GCC is generating position
20245 independent code.
20246
20247 @item -mgp32
20248 @opindex mgp32
20249 Assume that general-purpose registers are 32 bits wide.
20250
20251 @item -mgp64
20252 @opindex mgp64
20253 Assume that general-purpose registers are 64 bits wide.
20254
20255 @item -mfp32
20256 @opindex mfp32
20257 Assume that floating-point registers are 32 bits wide.
20258
20259 @item -mfp64
20260 @opindex mfp64
20261 Assume that floating-point registers are 64 bits wide.
20262
20263 @item -mfpxx
20264 @opindex mfpxx
20265 Do not assume the width of floating-point registers.
20266
20267 @item -mhard-float
20268 @opindex mhard-float
20269 Use floating-point coprocessor instructions.
20270
20271 @item -msoft-float
20272 @opindex msoft-float
20273 Do not use floating-point coprocessor instructions. Implement
20274 floating-point calculations using library calls instead.
20275
20276 @item -mno-float
20277 @opindex mno-float
20278 Equivalent to @option{-msoft-float}, but additionally asserts that the
20279 program being compiled does not perform any floating-point operations.
20280 This option is presently supported only by some bare-metal MIPS
20281 configurations, where it may select a special set of libraries
20282 that lack all floating-point support (including, for example, the
20283 floating-point @code{printf} formats).
20284 If code compiled with @option{-mno-float} accidentally contains
20285 floating-point operations, it is likely to suffer a link-time
20286 or run-time failure.
20287
20288 @item -msingle-float
20289 @opindex msingle-float
20290 Assume that the floating-point coprocessor only supports single-precision
20291 operations.
20292
20293 @item -mdouble-float
20294 @opindex mdouble-float
20295 Assume that the floating-point coprocessor supports double-precision
20296 operations. This is the default.
20297
20298 @item -modd-spreg
20299 @itemx -mno-odd-spreg
20300 @opindex modd-spreg
20301 @opindex mno-odd-spreg
20302 Enable the use of odd-numbered single-precision floating-point registers
20303 for the o32 ABI. This is the default for processors that are known to
20304 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
20305 is set by default.
20306
20307 @item -mabs=2008
20308 @itemx -mabs=legacy
20309 @opindex mabs=2008
20310 @opindex mabs=legacy
20311 These options control the treatment of the special not-a-number (NaN)
20312 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
20313 @code{neg.@i{fmt}} machine instructions.
20314
20315 By default or when @option{-mabs=legacy} is used the legacy
20316 treatment is selected. In this case these instructions are considered
20317 arithmetic and avoided where correct operation is required and the
20318 input operand might be a NaN. A longer sequence of instructions that
20319 manipulate the sign bit of floating-point datum manually is used
20320 instead unless the @option{-ffinite-math-only} option has also been
20321 specified.
20322
20323 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
20324 this case these instructions are considered non-arithmetic and therefore
20325 operating correctly in all cases, including in particular where the
20326 input operand is a NaN. These instructions are therefore always used
20327 for the respective operations.
20328
20329 @item -mnan=2008
20330 @itemx -mnan=legacy
20331 @opindex mnan=2008
20332 @opindex mnan=legacy
20333 These options control the encoding of the special not-a-number (NaN)
20334 IEEE 754 floating-point data.
20335
20336 The @option{-mnan=legacy} option selects the legacy encoding. In this
20337 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
20338 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
20339 by the first bit of their trailing significand field being 1.
20340
20341 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
20342 this case qNaNs are denoted by the first bit of their trailing
20343 significand field being 1, whereas sNaNs are denoted by the first bit of
20344 their trailing significand field being 0.
20345
20346 The default is @option{-mnan=legacy} unless GCC has been configured with
20347 @option{--with-nan=2008}.
20348
20349 @item -mllsc
20350 @itemx -mno-llsc
20351 @opindex mllsc
20352 @opindex mno-llsc
20353 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
20354 implement atomic memory built-in functions. When neither option is
20355 specified, GCC uses the instructions if the target architecture
20356 supports them.
20357
20358 @option{-mllsc} is useful if the runtime environment can emulate the
20359 instructions and @option{-mno-llsc} can be useful when compiling for
20360 nonstandard ISAs. You can make either option the default by
20361 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
20362 respectively. @option{--with-llsc} is the default for some
20363 configurations; see the installation documentation for details.
20364
20365 @item -mdsp
20366 @itemx -mno-dsp
20367 @opindex mdsp
20368 @opindex mno-dsp
20369 Use (do not use) revision 1 of the MIPS DSP ASE@.
20370 @xref{MIPS DSP Built-in Functions}. This option defines the
20371 preprocessor macro @code{__mips_dsp}. It also defines
20372 @code{__mips_dsp_rev} to 1.
20373
20374 @item -mdspr2
20375 @itemx -mno-dspr2
20376 @opindex mdspr2
20377 @opindex mno-dspr2
20378 Use (do not use) revision 2 of the MIPS DSP ASE@.
20379 @xref{MIPS DSP Built-in Functions}. This option defines the
20380 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
20381 It also defines @code{__mips_dsp_rev} to 2.
20382
20383 @item -msmartmips
20384 @itemx -mno-smartmips
20385 @opindex msmartmips
20386 @opindex mno-smartmips
20387 Use (do not use) the MIPS SmartMIPS ASE.
20388
20389 @item -mpaired-single
20390 @itemx -mno-paired-single
20391 @opindex mpaired-single
20392 @opindex mno-paired-single
20393 Use (do not use) paired-single floating-point instructions.
20394 @xref{MIPS Paired-Single Support}. This option requires
20395 hardware floating-point support to be enabled.
20396
20397 @item -mdmx
20398 @itemx -mno-mdmx
20399 @opindex mdmx
20400 @opindex mno-mdmx
20401 Use (do not use) MIPS Digital Media Extension instructions.
20402 This option can only be used when generating 64-bit code and requires
20403 hardware floating-point support to be enabled.
20404
20405 @item -mips3d
20406 @itemx -mno-mips3d
20407 @opindex mips3d
20408 @opindex mno-mips3d
20409 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
20410 The option @option{-mips3d} implies @option{-mpaired-single}.
20411
20412 @item -mmicromips
20413 @itemx -mno-micromips
20414 @opindex mmicromips
20415 @opindex mno-mmicromips
20416 Generate (do not generate) microMIPS code.
20417
20418 MicroMIPS code generation can also be controlled on a per-function basis
20419 by means of @code{micromips} and @code{nomicromips} attributes.
20420 @xref{Function Attributes}, for more information.
20421
20422 @item -mmt
20423 @itemx -mno-mt
20424 @opindex mmt
20425 @opindex mno-mt
20426 Use (do not use) MT Multithreading instructions.
20427
20428 @item -mmcu
20429 @itemx -mno-mcu
20430 @opindex mmcu
20431 @opindex mno-mcu
20432 Use (do not use) the MIPS MCU ASE instructions.
20433
20434 @item -meva
20435 @itemx -mno-eva
20436 @opindex meva
20437 @opindex mno-eva
20438 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
20439
20440 @item -mvirt
20441 @itemx -mno-virt
20442 @opindex mvirt
20443 @opindex mno-virt
20444 Use (do not use) the MIPS Virtualization (VZ) instructions.
20445
20446 @item -mxpa
20447 @itemx -mno-xpa
20448 @opindex mxpa
20449 @opindex mno-xpa
20450 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
20451
20452 @item -mlong64
20453 @opindex mlong64
20454 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
20455 an explanation of the default and the way that the pointer size is
20456 determined.
20457
20458 @item -mlong32
20459 @opindex mlong32
20460 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
20461
20462 The default size of @code{int}s, @code{long}s and pointers depends on
20463 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
20464 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
20465 32-bit @code{long}s. Pointers are the same size as @code{long}s,
20466 or the same size as integer registers, whichever is smaller.
20467
20468 @item -msym32
20469 @itemx -mno-sym32
20470 @opindex msym32
20471 @opindex mno-sym32
20472 Assume (do not assume) that all symbols have 32-bit values, regardless
20473 of the selected ABI@. This option is useful in combination with
20474 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
20475 to generate shorter and faster references to symbolic addresses.
20476
20477 @item -G @var{num}
20478 @opindex G
20479 Put definitions of externally-visible data in a small data section
20480 if that data is no bigger than @var{num} bytes. GCC can then generate
20481 more efficient accesses to the data; see @option{-mgpopt} for details.
20482
20483 The default @option{-G} option depends on the configuration.
20484
20485 @item -mlocal-sdata
20486 @itemx -mno-local-sdata
20487 @opindex mlocal-sdata
20488 @opindex mno-local-sdata
20489 Extend (do not extend) the @option{-G} behavior to local data too,
20490 such as to static variables in C@. @option{-mlocal-sdata} is the
20491 default for all configurations.
20492
20493 If the linker complains that an application is using too much small data,
20494 you might want to try rebuilding the less performance-critical parts with
20495 @option{-mno-local-sdata}. You might also want to build large
20496 libraries with @option{-mno-local-sdata}, so that the libraries leave
20497 more room for the main program.
20498
20499 @item -mextern-sdata
20500 @itemx -mno-extern-sdata
20501 @opindex mextern-sdata
20502 @opindex mno-extern-sdata
20503 Assume (do not assume) that externally-defined data is in
20504 a small data section if the size of that data is within the @option{-G} limit.
20505 @option{-mextern-sdata} is the default for all configurations.
20506
20507 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
20508 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
20509 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
20510 is placed in a small data section. If @var{Var} is defined by another
20511 module, you must either compile that module with a high-enough
20512 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
20513 definition. If @var{Var} is common, you must link the application
20514 with a high-enough @option{-G} setting.
20515
20516 The easiest way of satisfying these restrictions is to compile
20517 and link every module with the same @option{-G} option. However,
20518 you may wish to build a library that supports several different
20519 small data limits. You can do this by compiling the library with
20520 the highest supported @option{-G} setting and additionally using
20521 @option{-mno-extern-sdata} to stop the library from making assumptions
20522 about externally-defined data.
20523
20524 @item -mgpopt
20525 @itemx -mno-gpopt
20526 @opindex mgpopt
20527 @opindex mno-gpopt
20528 Use (do not use) GP-relative accesses for symbols that are known to be
20529 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
20530 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
20531 configurations.
20532
20533 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
20534 might not hold the value of @code{_gp}. For example, if the code is
20535 part of a library that might be used in a boot monitor, programs that
20536 call boot monitor routines pass an unknown value in @code{$gp}.
20537 (In such situations, the boot monitor itself is usually compiled
20538 with @option{-G0}.)
20539
20540 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
20541 @option{-mno-extern-sdata}.
20542
20543 @item -membedded-data
20544 @itemx -mno-embedded-data
20545 @opindex membedded-data
20546 @opindex mno-embedded-data
20547 Allocate variables to the read-only data section first if possible, then
20548 next in the small data section if possible, otherwise in data. This gives
20549 slightly slower code than the default, but reduces the amount of RAM required
20550 when executing, and thus may be preferred for some embedded systems.
20551
20552 @item -muninit-const-in-rodata
20553 @itemx -mno-uninit-const-in-rodata
20554 @opindex muninit-const-in-rodata
20555 @opindex mno-uninit-const-in-rodata
20556 Put uninitialized @code{const} variables in the read-only data section.
20557 This option is only meaningful in conjunction with @option{-membedded-data}.
20558
20559 @item -mcode-readable=@var{setting}
20560 @opindex mcode-readable
20561 Specify whether GCC may generate code that reads from executable sections.
20562 There are three possible settings:
20563
20564 @table @gcctabopt
20565 @item -mcode-readable=yes
20566 Instructions may freely access executable sections. This is the
20567 default setting.
20568
20569 @item -mcode-readable=pcrel
20570 MIPS16 PC-relative load instructions can access executable sections,
20571 but other instructions must not do so. This option is useful on 4KSc
20572 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
20573 It is also useful on processors that can be configured to have a dual
20574 instruction/data SRAM interface and that, like the M4K, automatically
20575 redirect PC-relative loads to the instruction RAM.
20576
20577 @item -mcode-readable=no
20578 Instructions must not access executable sections. This option can be
20579 useful on targets that are configured to have a dual instruction/data
20580 SRAM interface but that (unlike the M4K) do not automatically redirect
20581 PC-relative loads to the instruction RAM.
20582 @end table
20583
20584 @item -msplit-addresses
20585 @itemx -mno-split-addresses
20586 @opindex msplit-addresses
20587 @opindex mno-split-addresses
20588 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
20589 relocation operators. This option has been superseded by
20590 @option{-mexplicit-relocs} but is retained for backwards compatibility.
20591
20592 @item -mexplicit-relocs
20593 @itemx -mno-explicit-relocs
20594 @opindex mexplicit-relocs
20595 @opindex mno-explicit-relocs
20596 Use (do not use) assembler relocation operators when dealing with symbolic
20597 addresses. The alternative, selected by @option{-mno-explicit-relocs},
20598 is to use assembler macros instead.
20599
20600 @option{-mexplicit-relocs} is the default if GCC was configured
20601 to use an assembler that supports relocation operators.
20602
20603 @item -mcheck-zero-division
20604 @itemx -mno-check-zero-division
20605 @opindex mcheck-zero-division
20606 @opindex mno-check-zero-division
20607 Trap (do not trap) on integer division by zero.
20608
20609 The default is @option{-mcheck-zero-division}.
20610
20611 @item -mdivide-traps
20612 @itemx -mdivide-breaks
20613 @opindex mdivide-traps
20614 @opindex mdivide-breaks
20615 MIPS systems check for division by zero by generating either a
20616 conditional trap or a break instruction. Using traps results in
20617 smaller code, but is only supported on MIPS II and later. Also, some
20618 versions of the Linux kernel have a bug that prevents trap from
20619 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
20620 allow conditional traps on architectures that support them and
20621 @option{-mdivide-breaks} to force the use of breaks.
20622
20623 The default is usually @option{-mdivide-traps}, but this can be
20624 overridden at configure time using @option{--with-divide=breaks}.
20625 Divide-by-zero checks can be completely disabled using
20626 @option{-mno-check-zero-division}.
20627
20628 @item -mload-store-pairs
20629 @itemx -mno-load-store-pairs
20630 @opindex mload-store-pairs
20631 @opindex mno-load-store-pairs
20632 Enable (disable) an optimization that pairs consecutive load or store
20633 instructions to enable load/store bonding. This option is enabled by
20634 default but only takes effect when the selected architecture is known
20635 to support bonding.
20636
20637 @item -mmemcpy
20638 @itemx -mno-memcpy
20639 @opindex mmemcpy
20640 @opindex mno-memcpy
20641 Force (do not force) the use of @code{memcpy} for non-trivial block
20642 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
20643 most constant-sized copies.
20644
20645 @item -mlong-calls
20646 @itemx -mno-long-calls
20647 @opindex mlong-calls
20648 @opindex mno-long-calls
20649 Disable (do not disable) use of the @code{jal} instruction. Calling
20650 functions using @code{jal} is more efficient but requires the caller
20651 and callee to be in the same 256 megabyte segment.
20652
20653 This option has no effect on abicalls code. The default is
20654 @option{-mno-long-calls}.
20655
20656 @item -mmad
20657 @itemx -mno-mad
20658 @opindex mmad
20659 @opindex mno-mad
20660 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
20661 instructions, as provided by the R4650 ISA@.
20662
20663 @item -mimadd
20664 @itemx -mno-imadd
20665 @opindex mimadd
20666 @opindex mno-imadd
20667 Enable (disable) use of the @code{madd} and @code{msub} integer
20668 instructions. The default is @option{-mimadd} on architectures
20669 that support @code{madd} and @code{msub} except for the 74k
20670 architecture where it was found to generate slower code.
20671
20672 @item -mfused-madd
20673 @itemx -mno-fused-madd
20674 @opindex mfused-madd
20675 @opindex mno-fused-madd
20676 Enable (disable) use of the floating-point multiply-accumulate
20677 instructions, when they are available. The default is
20678 @option{-mfused-madd}.
20679
20680 On the R8000 CPU when multiply-accumulate instructions are used,
20681 the intermediate product is calculated to infinite precision
20682 and is not subject to the FCSR Flush to Zero bit. This may be
20683 undesirable in some circumstances. On other processors the result
20684 is numerically identical to the equivalent computation using
20685 separate multiply, add, subtract and negate instructions.
20686
20687 @item -nocpp
20688 @opindex nocpp
20689 Tell the MIPS assembler to not run its preprocessor over user
20690 assembler files (with a @samp{.s} suffix) when assembling them.
20691
20692 @item -mfix-24k
20693 @item -mno-fix-24k
20694 @opindex mfix-24k
20695 @opindex mno-fix-24k
20696 Work around the 24K E48 (lost data on stores during refill) errata.
20697 The workarounds are implemented by the assembler rather than by GCC@.
20698
20699 @item -mfix-r4000
20700 @itemx -mno-fix-r4000
20701 @opindex mfix-r4000
20702 @opindex mno-fix-r4000
20703 Work around certain R4000 CPU errata:
20704 @itemize @minus
20705 @item
20706 A double-word or a variable shift may give an incorrect result if executed
20707 immediately after starting an integer division.
20708 @item
20709 A double-word or a variable shift may give an incorrect result if executed
20710 while an integer multiplication is in progress.
20711 @item
20712 An integer division may give an incorrect result if started in a delay slot
20713 of a taken branch or a jump.
20714 @end itemize
20715
20716 @item -mfix-r4400
20717 @itemx -mno-fix-r4400
20718 @opindex mfix-r4400
20719 @opindex mno-fix-r4400
20720 Work around certain R4400 CPU errata:
20721 @itemize @minus
20722 @item
20723 A double-word or a variable shift may give an incorrect result if executed
20724 immediately after starting an integer division.
20725 @end itemize
20726
20727 @item -mfix-r10000
20728 @itemx -mno-fix-r10000
20729 @opindex mfix-r10000
20730 @opindex mno-fix-r10000
20731 Work around certain R10000 errata:
20732 @itemize @minus
20733 @item
20734 @code{ll}/@code{sc} sequences may not behave atomically on revisions
20735 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
20736 @end itemize
20737
20738 This option can only be used if the target architecture supports
20739 branch-likely instructions. @option{-mfix-r10000} is the default when
20740 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
20741 otherwise.
20742
20743 @item -mfix-rm7000
20744 @itemx -mno-fix-rm7000
20745 @opindex mfix-rm7000
20746 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
20747 workarounds are implemented by the assembler rather than by GCC@.
20748
20749 @item -mfix-vr4120
20750 @itemx -mno-fix-vr4120
20751 @opindex mfix-vr4120
20752 Work around certain VR4120 errata:
20753 @itemize @minus
20754 @item
20755 @code{dmultu} does not always produce the correct result.
20756 @item
20757 @code{div} and @code{ddiv} do not always produce the correct result if one
20758 of the operands is negative.
20759 @end itemize
20760 The workarounds for the division errata rely on special functions in
20761 @file{libgcc.a}. At present, these functions are only provided by
20762 the @code{mips64vr*-elf} configurations.
20763
20764 Other VR4120 errata require a NOP to be inserted between certain pairs of
20765 instructions. These errata are handled by the assembler, not by GCC itself.
20766
20767 @item -mfix-vr4130
20768 @opindex mfix-vr4130
20769 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
20770 workarounds are implemented by the assembler rather than by GCC,
20771 although GCC avoids using @code{mflo} and @code{mfhi} if the
20772 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
20773 instructions are available instead.
20774
20775 @item -mfix-sb1
20776 @itemx -mno-fix-sb1
20777 @opindex mfix-sb1
20778 Work around certain SB-1 CPU core errata.
20779 (This flag currently works around the SB-1 revision 2
20780 ``F1'' and ``F2'' floating-point errata.)
20781
20782 @item -mr10k-cache-barrier=@var{setting}
20783 @opindex mr10k-cache-barrier
20784 Specify whether GCC should insert cache barriers to avoid the
20785 side-effects of speculation on R10K processors.
20786
20787 In common with many processors, the R10K tries to predict the outcome
20788 of a conditional branch and speculatively executes instructions from
20789 the ``taken'' branch. It later aborts these instructions if the
20790 predicted outcome is wrong. However, on the R10K, even aborted
20791 instructions can have side effects.
20792
20793 This problem only affects kernel stores and, depending on the system,
20794 kernel loads. As an example, a speculatively-executed store may load
20795 the target memory into cache and mark the cache line as dirty, even if
20796 the store itself is later aborted. If a DMA operation writes to the
20797 same area of memory before the ``dirty'' line is flushed, the cached
20798 data overwrites the DMA-ed data. See the R10K processor manual
20799 for a full description, including other potential problems.
20800
20801 One workaround is to insert cache barrier instructions before every memory
20802 access that might be speculatively executed and that might have side
20803 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
20804 controls GCC's implementation of this workaround. It assumes that
20805 aborted accesses to any byte in the following regions does not have
20806 side effects:
20807
20808 @enumerate
20809 @item
20810 the memory occupied by the current function's stack frame;
20811
20812 @item
20813 the memory occupied by an incoming stack argument;
20814
20815 @item
20816 the memory occupied by an object with a link-time-constant address.
20817 @end enumerate
20818
20819 It is the kernel's responsibility to ensure that speculative
20820 accesses to these regions are indeed safe.
20821
20822 If the input program contains a function declaration such as:
20823
20824 @smallexample
20825 void foo (void);
20826 @end smallexample
20827
20828 then the implementation of @code{foo} must allow @code{j foo} and
20829 @code{jal foo} to be executed speculatively. GCC honors this
20830 restriction for functions it compiles itself. It expects non-GCC
20831 functions (such as hand-written assembly code) to do the same.
20832
20833 The option has three forms:
20834
20835 @table @gcctabopt
20836 @item -mr10k-cache-barrier=load-store
20837 Insert a cache barrier before a load or store that might be
20838 speculatively executed and that might have side effects even
20839 if aborted.
20840
20841 @item -mr10k-cache-barrier=store
20842 Insert a cache barrier before a store that might be speculatively
20843 executed and that might have side effects even if aborted.
20844
20845 @item -mr10k-cache-barrier=none
20846 Disable the insertion of cache barriers. This is the default setting.
20847 @end table
20848
20849 @item -mflush-func=@var{func}
20850 @itemx -mno-flush-func
20851 @opindex mflush-func
20852 Specifies the function to call to flush the I and D caches, or to not
20853 call any such function. If called, the function must take the same
20854 arguments as the common @code{_flush_func}, that is, the address of the
20855 memory range for which the cache is being flushed, the size of the
20856 memory range, and the number 3 (to flush both caches). The default
20857 depends on the target GCC was configured for, but commonly is either
20858 @code{_flush_func} or @code{__cpu_flush}.
20859
20860 @item mbranch-cost=@var{num}
20861 @opindex mbranch-cost
20862 Set the cost of branches to roughly @var{num} ``simple'' instructions.
20863 This cost is only a heuristic and is not guaranteed to produce
20864 consistent results across releases. A zero cost redundantly selects
20865 the default, which is based on the @option{-mtune} setting.
20866
20867 @item -mbranch-likely
20868 @itemx -mno-branch-likely
20869 @opindex mbranch-likely
20870 @opindex mno-branch-likely
20871 Enable or disable use of Branch Likely instructions, regardless of the
20872 default for the selected architecture. By default, Branch Likely
20873 instructions may be generated if they are supported by the selected
20874 architecture. An exception is for the MIPS32 and MIPS64 architectures
20875 and processors that implement those architectures; for those, Branch
20876 Likely instructions are not be generated by default because the MIPS32
20877 and MIPS64 architectures specifically deprecate their use.
20878
20879 @item -mcompact-branches=never
20880 @itemx -mcompact-branches=optimal
20881 @itemx -mcompact-branches=always
20882 @opindex mcompact-branches=never
20883 @opindex mcompact-branches=optimal
20884 @opindex mcompact-branches=always
20885 These options control which form of branches will be generated. The
20886 default is @option{-mcompact-branches=optimal}.
20887
20888 The @option{-mcompact-branches=never} option ensures that compact branch
20889 instructions will never be generated.
20890
20891 The @option{-mcompact-branches=always} option ensures that a compact
20892 branch instruction will be generated if available. If a compact branch
20893 instruction is not available, a delay slot form of the branch will be
20894 used instead.
20895
20896 This option is supported from MIPS Release 6 onwards.
20897
20898 The @option{-mcompact-branches=optimal} option will cause a delay slot
20899 branch to be used if one is available in the current ISA and the delay
20900 slot is successfully filled. If the delay slot is not filled, a compact
20901 branch will be chosen if one is available.
20902
20903 @item -mfp-exceptions
20904 @itemx -mno-fp-exceptions
20905 @opindex mfp-exceptions
20906 Specifies whether FP exceptions are enabled. This affects how
20907 FP instructions are scheduled for some processors.
20908 The default is that FP exceptions are
20909 enabled.
20910
20911 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
20912 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
20913 FP pipe.
20914
20915 @item -mvr4130-align
20916 @itemx -mno-vr4130-align
20917 @opindex mvr4130-align
20918 The VR4130 pipeline is two-way superscalar, but can only issue two
20919 instructions together if the first one is 8-byte aligned. When this
20920 option is enabled, GCC aligns pairs of instructions that it
20921 thinks should execute in parallel.
20922
20923 This option only has an effect when optimizing for the VR4130.
20924 It normally makes code faster, but at the expense of making it bigger.
20925 It is enabled by default at optimization level @option{-O3}.
20926
20927 @item -msynci
20928 @itemx -mno-synci
20929 @opindex msynci
20930 Enable (disable) generation of @code{synci} instructions on
20931 architectures that support it. The @code{synci} instructions (if
20932 enabled) are generated when @code{__builtin___clear_cache} is
20933 compiled.
20934
20935 This option defaults to @option{-mno-synci}, but the default can be
20936 overridden by configuring GCC with @option{--with-synci}.
20937
20938 When compiling code for single processor systems, it is generally safe
20939 to use @code{synci}. However, on many multi-core (SMP) systems, it
20940 does not invalidate the instruction caches on all cores and may lead
20941 to undefined behavior.
20942
20943 @item -mrelax-pic-calls
20944 @itemx -mno-relax-pic-calls
20945 @opindex mrelax-pic-calls
20946 Try to turn PIC calls that are normally dispatched via register
20947 @code{$25} into direct calls. This is only possible if the linker can
20948 resolve the destination at link time and if the destination is within
20949 range for a direct call.
20950
20951 @option{-mrelax-pic-calls} is the default if GCC was configured to use
20952 an assembler and a linker that support the @code{.reloc} assembly
20953 directive and @option{-mexplicit-relocs} is in effect. With
20954 @option{-mno-explicit-relocs}, this optimization can be performed by the
20955 assembler and the linker alone without help from the compiler.
20956
20957 @item -mmcount-ra-address
20958 @itemx -mno-mcount-ra-address
20959 @opindex mmcount-ra-address
20960 @opindex mno-mcount-ra-address
20961 Emit (do not emit) code that allows @code{_mcount} to modify the
20962 calling function's return address. When enabled, this option extends
20963 the usual @code{_mcount} interface with a new @var{ra-address}
20964 parameter, which has type @code{intptr_t *} and is passed in register
20965 @code{$12}. @code{_mcount} can then modify the return address by
20966 doing both of the following:
20967 @itemize
20968 @item
20969 Returning the new address in register @code{$31}.
20970 @item
20971 Storing the new address in @code{*@var{ra-address}},
20972 if @var{ra-address} is nonnull.
20973 @end itemize
20974
20975 The default is @option{-mno-mcount-ra-address}.
20976
20977 @item -mframe-header-opt
20978 @itemx -mno-frame-header-opt
20979 @opindex mframe-header-opt
20980 Enable (disable) frame header optimization in the o32 ABI. When using the
20981 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
20982 function to write out register arguments. When enabled, this optimization
20983 will suppress the allocation of the frame header if it can be determined that
20984 it is unused.
20985
20986 This optimization is off by default at all optimization levels.
20987
20988 @item -mlxc1-sxc1
20989 @itemx -mno-lxc1-sxc1
20990 @opindex mlxc1-sxc1
20991 When applicable, enable (disable) the generation of @code{lwxc1},
20992 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
20993
20994 @item -mmadd4
20995 @itemx -mno-madd4
20996 @opindex mmadd4
20997 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
20998 @code{madd.d} and related instructions. Enabled by default.
20999
21000 @end table
21001
21002 @node MMIX Options
21003 @subsection MMIX Options
21004 @cindex MMIX Options
21005
21006 These options are defined for the MMIX:
21007
21008 @table @gcctabopt
21009 @item -mlibfuncs
21010 @itemx -mno-libfuncs
21011 @opindex mlibfuncs
21012 @opindex mno-libfuncs
21013 Specify that intrinsic library functions are being compiled, passing all
21014 values in registers, no matter the size.
21015
21016 @item -mepsilon
21017 @itemx -mno-epsilon
21018 @opindex mepsilon
21019 @opindex mno-epsilon
21020 Generate floating-point comparison instructions that compare with respect
21021 to the @code{rE} epsilon register.
21022
21023 @item -mabi=mmixware
21024 @itemx -mabi=gnu
21025 @opindex mabi=mmixware
21026 @opindex mabi=gnu
21027 Generate code that passes function parameters and return values that (in
21028 the called function) are seen as registers @code{$0} and up, as opposed to
21029 the GNU ABI which uses global registers @code{$231} and up.
21030
21031 @item -mzero-extend
21032 @itemx -mno-zero-extend
21033 @opindex mzero-extend
21034 @opindex mno-zero-extend
21035 When reading data from memory in sizes shorter than 64 bits, use (do not
21036 use) zero-extending load instructions by default, rather than
21037 sign-extending ones.
21038
21039 @item -mknuthdiv
21040 @itemx -mno-knuthdiv
21041 @opindex mknuthdiv
21042 @opindex mno-knuthdiv
21043 Make the result of a division yielding a remainder have the same sign as
21044 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
21045 remainder follows the sign of the dividend. Both methods are
21046 arithmetically valid, the latter being almost exclusively used.
21047
21048 @item -mtoplevel-symbols
21049 @itemx -mno-toplevel-symbols
21050 @opindex mtoplevel-symbols
21051 @opindex mno-toplevel-symbols
21052 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
21053 code can be used with the @code{PREFIX} assembly directive.
21054
21055 @item -melf
21056 @opindex melf
21057 Generate an executable in the ELF format, rather than the default
21058 @samp{mmo} format used by the @command{mmix} simulator.
21059
21060 @item -mbranch-predict
21061 @itemx -mno-branch-predict
21062 @opindex mbranch-predict
21063 @opindex mno-branch-predict
21064 Use (do not use) the probable-branch instructions, when static branch
21065 prediction indicates a probable branch.
21066
21067 @item -mbase-addresses
21068 @itemx -mno-base-addresses
21069 @opindex mbase-addresses
21070 @opindex mno-base-addresses
21071 Generate (do not generate) code that uses @emph{base addresses}. Using a
21072 base address automatically generates a request (handled by the assembler
21073 and the linker) for a constant to be set up in a global register. The
21074 register is used for one or more base address requests within the range 0
21075 to 255 from the value held in the register. The generally leads to short
21076 and fast code, but the number of different data items that can be
21077 addressed is limited. This means that a program that uses lots of static
21078 data may require @option{-mno-base-addresses}.
21079
21080 @item -msingle-exit
21081 @itemx -mno-single-exit
21082 @opindex msingle-exit
21083 @opindex mno-single-exit
21084 Force (do not force) generated code to have a single exit point in each
21085 function.
21086 @end table
21087
21088 @node MN10300 Options
21089 @subsection MN10300 Options
21090 @cindex MN10300 options
21091
21092 These @option{-m} options are defined for Matsushita MN10300 architectures:
21093
21094 @table @gcctabopt
21095 @item -mmult-bug
21096 @opindex mmult-bug
21097 Generate code to avoid bugs in the multiply instructions for the MN10300
21098 processors. This is the default.
21099
21100 @item -mno-mult-bug
21101 @opindex mno-mult-bug
21102 Do not generate code to avoid bugs in the multiply instructions for the
21103 MN10300 processors.
21104
21105 @item -mam33
21106 @opindex mam33
21107 Generate code using features specific to the AM33 processor.
21108
21109 @item -mno-am33
21110 @opindex mno-am33
21111 Do not generate code using features specific to the AM33 processor. This
21112 is the default.
21113
21114 @item -mam33-2
21115 @opindex mam33-2
21116 Generate code using features specific to the AM33/2.0 processor.
21117
21118 @item -mam34
21119 @opindex mam34
21120 Generate code using features specific to the AM34 processor.
21121
21122 @item -mtune=@var{cpu-type}
21123 @opindex mtune
21124 Use the timing characteristics of the indicated CPU type when
21125 scheduling instructions. This does not change the targeted processor
21126 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
21127 @samp{am33-2} or @samp{am34}.
21128
21129 @item -mreturn-pointer-on-d0
21130 @opindex mreturn-pointer-on-d0
21131 When generating a function that returns a pointer, return the pointer
21132 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
21133 only in @code{a0}, and attempts to call such functions without a prototype
21134 result in errors. Note that this option is on by default; use
21135 @option{-mno-return-pointer-on-d0} to disable it.
21136
21137 @item -mno-crt0
21138 @opindex mno-crt0
21139 Do not link in the C run-time initialization object file.
21140
21141 @item -mrelax
21142 @opindex mrelax
21143 Indicate to the linker that it should perform a relaxation optimization pass
21144 to shorten branches, calls and absolute memory addresses. This option only
21145 has an effect when used on the command line for the final link step.
21146
21147 This option makes symbolic debugging impossible.
21148
21149 @item -mliw
21150 @opindex mliw
21151 Allow the compiler to generate @emph{Long Instruction Word}
21152 instructions if the target is the @samp{AM33} or later. This is the
21153 default. This option defines the preprocessor macro @code{__LIW__}.
21154
21155 @item -mnoliw
21156 @opindex mnoliw
21157 Do not allow the compiler to generate @emph{Long Instruction Word}
21158 instructions. This option defines the preprocessor macro
21159 @code{__NO_LIW__}.
21160
21161 @item -msetlb
21162 @opindex msetlb
21163 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
21164 instructions if the target is the @samp{AM33} or later. This is the
21165 default. This option defines the preprocessor macro @code{__SETLB__}.
21166
21167 @item -mnosetlb
21168 @opindex mnosetlb
21169 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
21170 instructions. This option defines the preprocessor macro
21171 @code{__NO_SETLB__}.
21172
21173 @end table
21174
21175 @node Moxie Options
21176 @subsection Moxie Options
21177 @cindex Moxie Options
21178
21179 @table @gcctabopt
21180
21181 @item -meb
21182 @opindex meb
21183 Generate big-endian code. This is the default for @samp{moxie-*-*}
21184 configurations.
21185
21186 @item -mel
21187 @opindex mel
21188 Generate little-endian code.
21189
21190 @item -mmul.x
21191 @opindex mmul.x
21192 Generate mul.x and umul.x instructions. This is the default for
21193 @samp{moxiebox-*-*} configurations.
21194
21195 @item -mno-crt0
21196 @opindex mno-crt0
21197 Do not link in the C run-time initialization object file.
21198
21199 @end table
21200
21201 @node MSP430 Options
21202 @subsection MSP430 Options
21203 @cindex MSP430 Options
21204
21205 These options are defined for the MSP430:
21206
21207 @table @gcctabopt
21208
21209 @item -masm-hex
21210 @opindex masm-hex
21211 Force assembly output to always use hex constants. Normally such
21212 constants are signed decimals, but this option is available for
21213 testsuite and/or aesthetic purposes.
21214
21215 @item -mmcu=
21216 @opindex mmcu=
21217 Select the MCU to target. This is used to create a C preprocessor
21218 symbol based upon the MCU name, converted to upper case and pre- and
21219 post-fixed with @samp{__}. This in turn is used by the
21220 @file{msp430.h} header file to select an MCU-specific supplementary
21221 header file.
21222
21223 The option also sets the ISA to use. If the MCU name is one that is
21224 known to only support the 430 ISA then that is selected, otherwise the
21225 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
21226 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
21227 name selects the 430X ISA.
21228
21229 In addition an MCU-specific linker script is added to the linker
21230 command line. The script's name is the name of the MCU with
21231 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
21232 command line defines the C preprocessor symbol @code{__XXX__} and
21233 cause the linker to search for a script called @file{xxx.ld}.
21234
21235 This option is also passed on to the assembler.
21236
21237 @item -mwarn-mcu
21238 @itemx -mno-warn-mcu
21239 @opindex mwarn-mcu
21240 @opindex mno-warn-mcu
21241 This option enables or disables warnings about conflicts between the
21242 MCU name specified by the @option{-mmcu} option and the ISA set by the
21243 @option{-mcpu} option and/or the hardware multiply support set by the
21244 @option{-mhwmult} option. It also toggles warnings about unrecognized
21245 MCU names. This option is on by default.
21246
21247 @item -mcpu=
21248 @opindex mcpu=
21249 Specifies the ISA to use. Accepted values are @samp{msp430},
21250 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
21251 @option{-mmcu=} option should be used to select the ISA.
21252
21253 @item -msim
21254 @opindex msim
21255 Link to the simulator runtime libraries and linker script. Overrides
21256 any scripts that would be selected by the @option{-mmcu=} option.
21257
21258 @item -mlarge
21259 @opindex mlarge
21260 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
21261
21262 @item -msmall
21263 @opindex msmall
21264 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
21265
21266 @item -mrelax
21267 @opindex mrelax
21268 This option is passed to the assembler and linker, and allows the
21269 linker to perform certain optimizations that cannot be done until
21270 the final link.
21271
21272 @item mhwmult=
21273 @opindex mhwmult=
21274 Describes the type of hardware multiply supported by the target.
21275 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
21276 for the original 16-bit-only multiply supported by early MCUs.
21277 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
21278 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
21279 A value of @samp{auto} can also be given. This tells GCC to deduce
21280 the hardware multiply support based upon the MCU name provided by the
21281 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
21282 the MCU name is not recognized then no hardware multiply support is
21283 assumed. @code{auto} is the default setting.
21284
21285 Hardware multiplies are normally performed by calling a library
21286 routine. This saves space in the generated code. When compiling at
21287 @option{-O3} or higher however the hardware multiplier is invoked
21288 inline. This makes for bigger, but faster code.
21289
21290 The hardware multiply routines disable interrupts whilst running and
21291 restore the previous interrupt state when they finish. This makes
21292 them safe to use inside interrupt handlers as well as in normal code.
21293
21294 @item -minrt
21295 @opindex minrt
21296 Enable the use of a minimum runtime environment - no static
21297 initializers or constructors. This is intended for memory-constrained
21298 devices. The compiler includes special symbols in some objects
21299 that tell the linker and runtime which code fragments are required.
21300
21301 @item -mcode-region=
21302 @itemx -mdata-region=
21303 @opindex mcode-region
21304 @opindex mdata-region
21305 These options tell the compiler where to place functions and data that
21306 do not have one of the @code{lower}, @code{upper}, @code{either} or
21307 @code{section} attributes. Possible values are @code{lower},
21308 @code{upper}, @code{either} or @code{any}. The first three behave
21309 like the corresponding attribute. The fourth possible value -
21310 @code{any} - is the default. It leaves placement entirely up to the
21311 linker script and how it assigns the standard sections
21312 (@code{.text}, @code{.data}, etc) to the memory regions.
21313
21314 @item -msilicon-errata=
21315 @opindex msilicon-errata
21316 This option passes on a request to assembler to enable the fixes for
21317 the named silicon errata.
21318
21319 @item -msilicon-errata-warn=
21320 @opindex msilicon-errata-warn
21321 This option passes on a request to the assembler to enable warning
21322 messages when a silicon errata might need to be applied.
21323
21324 @end table
21325
21326 @node NDS32 Options
21327 @subsection NDS32 Options
21328 @cindex NDS32 Options
21329
21330 These options are defined for NDS32 implementations:
21331
21332 @table @gcctabopt
21333
21334 @item -mbig-endian
21335 @opindex mbig-endian
21336 Generate code in big-endian mode.
21337
21338 @item -mlittle-endian
21339 @opindex mlittle-endian
21340 Generate code in little-endian mode.
21341
21342 @item -mreduced-regs
21343 @opindex mreduced-regs
21344 Use reduced-set registers for register allocation.
21345
21346 @item -mfull-regs
21347 @opindex mfull-regs
21348 Use full-set registers for register allocation.
21349
21350 @item -mcmov
21351 @opindex mcmov
21352 Generate conditional move instructions.
21353
21354 @item -mno-cmov
21355 @opindex mno-cmov
21356 Do not generate conditional move instructions.
21357
21358 @item -mext-perf
21359 @opindex mperf-ext
21360 Generate performance extension instructions.
21361
21362 @item -mno-ext-perf
21363 @opindex mno-perf-ext
21364 Do not generate performance extension instructions.
21365
21366 @item -mext-perf2
21367 @opindex mperf-ext
21368 Generate performance extension 2 instructions.
21369
21370 @item -mno-ext-perf2
21371 @opindex mno-perf-ext
21372 Do not generate performance extension 2 instructions.
21373
21374 @item -mext-string
21375 @opindex mperf-ext
21376 Generate string extension instructions.
21377
21378 @item -mno-ext-string
21379 @opindex mno-perf-ext
21380 Do not generate string extension instructions.
21381
21382 @item -mv3push
21383 @opindex mv3push
21384 Generate v3 push25/pop25 instructions.
21385
21386 @item -mno-v3push
21387 @opindex mno-v3push
21388 Do not generate v3 push25/pop25 instructions.
21389
21390 @item -m16-bit
21391 @opindex m16-bit
21392 Generate 16-bit instructions.
21393
21394 @item -mno-16-bit
21395 @opindex mno-16-bit
21396 Do not generate 16-bit instructions.
21397
21398 @item -misr-vector-size=@var{num}
21399 @opindex misr-vector-size
21400 Specify the size of each interrupt vector, which must be 4 or 16.
21401
21402 @item -mcache-block-size=@var{num}
21403 @opindex mcache-block-size
21404 Specify the size of each cache block,
21405 which must be a power of 2 between 4 and 512.
21406
21407 @item -march=@var{arch}
21408 @opindex march
21409 Specify the name of the target architecture.
21410
21411 @item -mcmodel=@var{code-model}
21412 @opindex mcmodel
21413 Set the code model to one of
21414 @table @asis
21415 @item @samp{small}
21416 All the data and read-only data segments must be within 512KB addressing space.
21417 The text segment must be within 16MB addressing space.
21418 @item @samp{medium}
21419 The data segment must be within 512KB while the read-only data segment can be
21420 within 4GB addressing space. The text segment should be still within 16MB
21421 addressing space.
21422 @item @samp{large}
21423 All the text and data segments can be within 4GB addressing space.
21424 @end table
21425
21426 @item -mctor-dtor
21427 @opindex mctor-dtor
21428 Enable constructor/destructor feature.
21429
21430 @item -mrelax
21431 @opindex mrelax
21432 Guide linker to relax instructions.
21433
21434 @end table
21435
21436 @node Nios II Options
21437 @subsection Nios II Options
21438 @cindex Nios II options
21439 @cindex Altera Nios II options
21440
21441 These are the options defined for the Altera Nios II processor.
21442
21443 @table @gcctabopt
21444
21445 @item -G @var{num}
21446 @opindex G
21447 @cindex smaller data references
21448 Put global and static objects less than or equal to @var{num} bytes
21449 into the small data or BSS sections instead of the normal data or BSS
21450 sections. The default value of @var{num} is 8.
21451
21452 @item -mgpopt=@var{option}
21453 @item -mgpopt
21454 @itemx -mno-gpopt
21455 @opindex mgpopt
21456 @opindex mno-gpopt
21457 Generate (do not generate) GP-relative accesses. The following
21458 @var{option} names are recognized:
21459
21460 @table @samp
21461
21462 @item none
21463 Do not generate GP-relative accesses.
21464
21465 @item local
21466 Generate GP-relative accesses for small data objects that are not
21467 external, weak, or uninitialized common symbols.
21468 Also use GP-relative addressing for objects that
21469 have been explicitly placed in a small data section via a @code{section}
21470 attribute.
21471
21472 @item global
21473 As for @samp{local}, but also generate GP-relative accesses for
21474 small data objects that are external, weak, or common. If you use this option,
21475 you must ensure that all parts of your program (including libraries) are
21476 compiled with the same @option{-G} setting.
21477
21478 @item data
21479 Generate GP-relative accesses for all data objects in the program. If you
21480 use this option, the entire data and BSS segments
21481 of your program must fit in 64K of memory and you must use an appropriate
21482 linker script to allocate them within the addressable range of the
21483 global pointer.
21484
21485 @item all
21486 Generate GP-relative addresses for function pointers as well as data
21487 pointers. If you use this option, the entire text, data, and BSS segments
21488 of your program must fit in 64K of memory and you must use an appropriate
21489 linker script to allocate them within the addressable range of the
21490 global pointer.
21491
21492 @end table
21493
21494 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
21495 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
21496
21497 The default is @option{-mgpopt} except when @option{-fpic} or
21498 @option{-fPIC} is specified to generate position-independent code.
21499 Note that the Nios II ABI does not permit GP-relative accesses from
21500 shared libraries.
21501
21502 You may need to specify @option{-mno-gpopt} explicitly when building
21503 programs that include large amounts of small data, including large
21504 GOT data sections. In this case, the 16-bit offset for GP-relative
21505 addressing may not be large enough to allow access to the entire
21506 small data section.
21507
21508 @item -mgprel-sec=@var{regexp}
21509 @opindex mgprel-sec
21510 This option specifies additional section names that can be accessed via
21511 GP-relative addressing. It is most useful in conjunction with
21512 @code{section} attributes on variable declarations
21513 (@pxref{Common Variable Attributes}) and a custom linker script.
21514 The @var{regexp} is a POSIX Extended Regular Expression.
21515
21516 This option does not affect the behavior of the @option{-G} option, and
21517 and the specified sections are in addition to the standard @code{.sdata}
21518 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
21519
21520 @item -mr0rel-sec=@var{regexp}
21521 @opindex mr0rel-sec
21522 This option specifies names of sections that can be accessed via a
21523 16-bit offset from @code{r0}; that is, in the low 32K or high 32K
21524 of the 32-bit address space. It is most useful in conjunction with
21525 @code{section} attributes on variable declarations
21526 (@pxref{Common Variable Attributes}) and a custom linker script.
21527 The @var{regexp} is a POSIX Extended Regular Expression.
21528
21529 In contrast to the use of GP-relative addressing for small data,
21530 zero-based addressing is never generated by default and there are no
21531 conventional section names used in standard linker scripts for sections
21532 in the low or high areas of memory.
21533
21534 @item -mel
21535 @itemx -meb
21536 @opindex mel
21537 @opindex meb
21538 Generate little-endian (default) or big-endian (experimental) code,
21539 respectively.
21540
21541 @item -march=@var{arch}
21542 @opindex march
21543 This specifies the name of the target Nios II architecture. GCC uses this
21544 name to determine what kind of instructions it can emit when generating
21545 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
21546
21547 The preprocessor macro @code{__nios2_arch__} is available to programs,
21548 with value 1 or 2, indicating the targeted ISA level.
21549
21550 @item -mbypass-cache
21551 @itemx -mno-bypass-cache
21552 @opindex mno-bypass-cache
21553 @opindex mbypass-cache
21554 Force all load and store instructions to always bypass cache by
21555 using I/O variants of the instructions. The default is not to
21556 bypass the cache.
21557
21558 @item -mno-cache-volatile
21559 @itemx -mcache-volatile
21560 @opindex mcache-volatile
21561 @opindex mno-cache-volatile
21562 Volatile memory access bypass the cache using the I/O variants of
21563 the load and store instructions. The default is not to bypass the cache.
21564
21565 @item -mno-fast-sw-div
21566 @itemx -mfast-sw-div
21567 @opindex mno-fast-sw-div
21568 @opindex mfast-sw-div
21569 Do not use table-based fast divide for small numbers. The default
21570 is to use the fast divide at @option{-O3} and above.
21571
21572 @item -mno-hw-mul
21573 @itemx -mhw-mul
21574 @itemx -mno-hw-mulx
21575 @itemx -mhw-mulx
21576 @itemx -mno-hw-div
21577 @itemx -mhw-div
21578 @opindex mno-hw-mul
21579 @opindex mhw-mul
21580 @opindex mno-hw-mulx
21581 @opindex mhw-mulx
21582 @opindex mno-hw-div
21583 @opindex mhw-div
21584 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
21585 instructions by the compiler. The default is to emit @code{mul}
21586 and not emit @code{div} and @code{mulx}.
21587
21588 @item -mbmx
21589 @itemx -mno-bmx
21590 @itemx -mcdx
21591 @itemx -mno-cdx
21592 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
21593 CDX (code density) instructions. Enabling these instructions also
21594 requires @option{-march=r2}. Since these instructions are optional
21595 extensions to the R2 architecture, the default is not to emit them.
21596
21597 @item -mcustom-@var{insn}=@var{N}
21598 @itemx -mno-custom-@var{insn}
21599 @opindex mcustom-@var{insn}
21600 @opindex mno-custom-@var{insn}
21601 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
21602 custom instruction with encoding @var{N} when generating code that uses
21603 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
21604 instruction 253 for single-precision floating-point add operations instead
21605 of the default behavior of using a library call.
21606
21607 The following values of @var{insn} are supported. Except as otherwise
21608 noted, floating-point operations are expected to be implemented with
21609 normal IEEE 754 semantics and correspond directly to the C operators or the
21610 equivalent GCC built-in functions (@pxref{Other Builtins}).
21611
21612 Single-precision floating point:
21613 @table @asis
21614
21615 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
21616 Binary arithmetic operations.
21617
21618 @item @samp{fnegs}
21619 Unary negation.
21620
21621 @item @samp{fabss}
21622 Unary absolute value.
21623
21624 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
21625 Comparison operations.
21626
21627 @item @samp{fmins}, @samp{fmaxs}
21628 Floating-point minimum and maximum. These instructions are only
21629 generated if @option{-ffinite-math-only} is specified.
21630
21631 @item @samp{fsqrts}
21632 Unary square root operation.
21633
21634 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
21635 Floating-point trigonometric and exponential functions. These instructions
21636 are only generated if @option{-funsafe-math-optimizations} is also specified.
21637
21638 @end table
21639
21640 Double-precision floating point:
21641 @table @asis
21642
21643 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
21644 Binary arithmetic operations.
21645
21646 @item @samp{fnegd}
21647 Unary negation.
21648
21649 @item @samp{fabsd}
21650 Unary absolute value.
21651
21652 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
21653 Comparison operations.
21654
21655 @item @samp{fmind}, @samp{fmaxd}
21656 Double-precision minimum and maximum. These instructions are only
21657 generated if @option{-ffinite-math-only} is specified.
21658
21659 @item @samp{fsqrtd}
21660 Unary square root operation.
21661
21662 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
21663 Double-precision trigonometric and exponential functions. These instructions
21664 are only generated if @option{-funsafe-math-optimizations} is also specified.
21665
21666 @end table
21667
21668 Conversions:
21669 @table @asis
21670 @item @samp{fextsd}
21671 Conversion from single precision to double precision.
21672
21673 @item @samp{ftruncds}
21674 Conversion from double precision to single precision.
21675
21676 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
21677 Conversion from floating point to signed or unsigned integer types, with
21678 truncation towards zero.
21679
21680 @item @samp{round}
21681 Conversion from single-precision floating point to signed integer,
21682 rounding to the nearest integer and ties away from zero.
21683 This corresponds to the @code{__builtin_lroundf} function when
21684 @option{-fno-math-errno} is used.
21685
21686 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
21687 Conversion from signed or unsigned integer types to floating-point types.
21688
21689 @end table
21690
21691 In addition, all of the following transfer instructions for internal
21692 registers X and Y must be provided to use any of the double-precision
21693 floating-point instructions. Custom instructions taking two
21694 double-precision source operands expect the first operand in the
21695 64-bit register X. The other operand (or only operand of a unary
21696 operation) is given to the custom arithmetic instruction with the
21697 least significant half in source register @var{src1} and the most
21698 significant half in @var{src2}. A custom instruction that returns a
21699 double-precision result returns the most significant 32 bits in the
21700 destination register and the other half in 32-bit register Y.
21701 GCC automatically generates the necessary code sequences to write
21702 register X and/or read register Y when double-precision floating-point
21703 instructions are used.
21704
21705 @table @asis
21706
21707 @item @samp{fwrx}
21708 Write @var{src1} into the least significant half of X and @var{src2} into
21709 the most significant half of X.
21710
21711 @item @samp{fwry}
21712 Write @var{src1} into Y.
21713
21714 @item @samp{frdxhi}, @samp{frdxlo}
21715 Read the most or least (respectively) significant half of X and store it in
21716 @var{dest}.
21717
21718 @item @samp{frdy}
21719 Read the value of Y and store it into @var{dest}.
21720 @end table
21721
21722 Note that you can gain more local control over generation of Nios II custom
21723 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
21724 and @code{target("no-custom-@var{insn}")} function attributes
21725 (@pxref{Function Attributes})
21726 or pragmas (@pxref{Function Specific Option Pragmas}).
21727
21728 @item -mcustom-fpu-cfg=@var{name}
21729 @opindex mcustom-fpu-cfg
21730
21731 This option enables a predefined, named set of custom instruction encodings
21732 (see @option{-mcustom-@var{insn}} above).
21733 Currently, the following sets are defined:
21734
21735 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
21736 @gccoptlist{-mcustom-fmuls=252 @gol
21737 -mcustom-fadds=253 @gol
21738 -mcustom-fsubs=254 @gol
21739 -fsingle-precision-constant}
21740
21741 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
21742 @gccoptlist{-mcustom-fmuls=252 @gol
21743 -mcustom-fadds=253 @gol
21744 -mcustom-fsubs=254 @gol
21745 -mcustom-fdivs=255 @gol
21746 -fsingle-precision-constant}
21747
21748 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
21749 @gccoptlist{-mcustom-floatus=243 @gol
21750 -mcustom-fixsi=244 @gol
21751 -mcustom-floatis=245 @gol
21752 -mcustom-fcmpgts=246 @gol
21753 -mcustom-fcmples=249 @gol
21754 -mcustom-fcmpeqs=250 @gol
21755 -mcustom-fcmpnes=251 @gol
21756 -mcustom-fmuls=252 @gol
21757 -mcustom-fadds=253 @gol
21758 -mcustom-fsubs=254 @gol
21759 -mcustom-fdivs=255 @gol
21760 -fsingle-precision-constant}
21761
21762 Custom instruction assignments given by individual
21763 @option{-mcustom-@var{insn}=} options override those given by
21764 @option{-mcustom-fpu-cfg=}, regardless of the
21765 order of the options on the command line.
21766
21767 Note that you can gain more local control over selection of a FPU
21768 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
21769 function attribute (@pxref{Function Attributes})
21770 or pragma (@pxref{Function Specific Option Pragmas}).
21771
21772 @end table
21773
21774 These additional @samp{-m} options are available for the Altera Nios II
21775 ELF (bare-metal) target:
21776
21777 @table @gcctabopt
21778
21779 @item -mhal
21780 @opindex mhal
21781 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
21782 startup and termination code, and is typically used in conjunction with
21783 @option{-msys-crt0=} to specify the location of the alternate startup code
21784 provided by the HAL BSP.
21785
21786 @item -msmallc
21787 @opindex msmallc
21788 Link with a limited version of the C library, @option{-lsmallc}, rather than
21789 Newlib.
21790
21791 @item -msys-crt0=@var{startfile}
21792 @opindex msys-crt0
21793 @var{startfile} is the file name of the startfile (crt0) to use
21794 when linking. This option is only useful in conjunction with @option{-mhal}.
21795
21796 @item -msys-lib=@var{systemlib}
21797 @opindex msys-lib
21798 @var{systemlib} is the library name of the library that provides
21799 low-level system calls required by the C library,
21800 e.g. @code{read} and @code{write}.
21801 This option is typically used to link with a library provided by a HAL BSP.
21802
21803 @end table
21804
21805 @node Nvidia PTX Options
21806 @subsection Nvidia PTX Options
21807 @cindex Nvidia PTX options
21808 @cindex nvptx options
21809
21810 These options are defined for Nvidia PTX:
21811
21812 @table @gcctabopt
21813
21814 @item -m32
21815 @itemx -m64
21816 @opindex m32
21817 @opindex m64
21818 Generate code for 32-bit or 64-bit ABI.
21819
21820 @item -mmainkernel
21821 @opindex mmainkernel
21822 Link in code for a __main kernel. This is for stand-alone instead of
21823 offloading execution.
21824
21825 @item -moptimize
21826 @opindex moptimize
21827 Apply partitioned execution optimizations. This is the default when any
21828 level of optimization is selected.
21829
21830 @item -msoft-stack
21831 @opindex msoft-stack
21832 Generate code that does not use @code{.local} memory
21833 directly for stack storage. Instead, a per-warp stack pointer is
21834 maintained explicitly. This enables variable-length stack allocation (with
21835 variable-length arrays or @code{alloca}), and when global memory is used for
21836 underlying storage, makes it possible to access automatic variables from other
21837 threads, or with atomic instructions. This code generation variant is used
21838 for OpenMP offloading, but the option is exposed on its own for the purpose
21839 of testing the compiler; to generate code suitable for linking into programs
21840 using OpenMP offloading, use option @option{-mgomp}.
21841
21842 @item -muniform-simt
21843 @opindex muniform-simt
21844 Switch to code generation variant that allows to execute all threads in each
21845 warp, while maintaining memory state and side effects as if only one thread
21846 in each warp was active outside of OpenMP SIMD regions. All atomic operations
21847 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
21848 current lane index equals the master lane index), and the register being
21849 assigned is copied via a shuffle instruction from the master lane. Outside of
21850 SIMD regions lane 0 is the master; inside, each thread sees itself as the
21851 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
21852 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
21853 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
21854 with current lane index to compute the master lane index.
21855
21856 @item -mgomp
21857 @opindex mgomp
21858 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
21859 @option{-muniform-simt} options, and selects corresponding multilib variant.
21860
21861 @end table
21862
21863 @node PDP-11 Options
21864 @subsection PDP-11 Options
21865 @cindex PDP-11 Options
21866
21867 These options are defined for the PDP-11:
21868
21869 @table @gcctabopt
21870 @item -mfpu
21871 @opindex mfpu
21872 Use hardware FPP floating point. This is the default. (FIS floating
21873 point on the PDP-11/40 is not supported.)
21874
21875 @item -msoft-float
21876 @opindex msoft-float
21877 Do not use hardware floating point.
21878
21879 @item -mac0
21880 @opindex mac0
21881 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
21882
21883 @item -mno-ac0
21884 @opindex mno-ac0
21885 Return floating-point results in memory. This is the default.
21886
21887 @item -m40
21888 @opindex m40
21889 Generate code for a PDP-11/40.
21890
21891 @item -m45
21892 @opindex m45
21893 Generate code for a PDP-11/45. This is the default.
21894
21895 @item -m10
21896 @opindex m10
21897 Generate code for a PDP-11/10.
21898
21899 @item -mbcopy-builtin
21900 @opindex mbcopy-builtin
21901 Use inline @code{movmemhi} patterns for copying memory. This is the
21902 default.
21903
21904 @item -mbcopy
21905 @opindex mbcopy
21906 Do not use inline @code{movmemhi} patterns for copying memory.
21907
21908 @item -mint16
21909 @itemx -mno-int32
21910 @opindex mint16
21911 @opindex mno-int32
21912 Use 16-bit @code{int}. This is the default.
21913
21914 @item -mint32
21915 @itemx -mno-int16
21916 @opindex mint32
21917 @opindex mno-int16
21918 Use 32-bit @code{int}.
21919
21920 @item -mfloat64
21921 @itemx -mno-float32
21922 @opindex mfloat64
21923 @opindex mno-float32
21924 Use 64-bit @code{float}. This is the default.
21925
21926 @item -mfloat32
21927 @itemx -mno-float64
21928 @opindex mfloat32
21929 @opindex mno-float64
21930 Use 32-bit @code{float}.
21931
21932 @item -mabshi
21933 @opindex mabshi
21934 Use @code{abshi2} pattern. This is the default.
21935
21936 @item -mno-abshi
21937 @opindex mno-abshi
21938 Do not use @code{abshi2} pattern.
21939
21940 @item -mbranch-expensive
21941 @opindex mbranch-expensive
21942 Pretend that branches are expensive. This is for experimenting with
21943 code generation only.
21944
21945 @item -mbranch-cheap
21946 @opindex mbranch-cheap
21947 Do not pretend that branches are expensive. This is the default.
21948
21949 @item -munix-asm
21950 @opindex munix-asm
21951 Use Unix assembler syntax. This is the default when configured for
21952 @samp{pdp11-*-bsd}.
21953
21954 @item -mdec-asm
21955 @opindex mdec-asm
21956 Use DEC assembler syntax. This is the default when configured for any
21957 PDP-11 target other than @samp{pdp11-*-bsd}.
21958 @end table
21959
21960 @node picoChip Options
21961 @subsection picoChip Options
21962 @cindex picoChip options
21963
21964 These @samp{-m} options are defined for picoChip implementations:
21965
21966 @table @gcctabopt
21967
21968 @item -mae=@var{ae_type}
21969 @opindex mcpu
21970 Set the instruction set, register set, and instruction scheduling
21971 parameters for array element type @var{ae_type}. Supported values
21972 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
21973
21974 @option{-mae=ANY} selects a completely generic AE type. Code
21975 generated with this option runs on any of the other AE types. The
21976 code is not as efficient as it would be if compiled for a specific
21977 AE type, and some types of operation (e.g., multiplication) do not
21978 work properly on all types of AE.
21979
21980 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
21981 for compiled code, and is the default.
21982
21983 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
21984 option may suffer from poor performance of byte (char) manipulation,
21985 since the DSP AE does not provide hardware support for byte load/stores.
21986
21987 @item -msymbol-as-address
21988 Enable the compiler to directly use a symbol name as an address in a
21989 load/store instruction, without first loading it into a
21990 register. Typically, the use of this option generates larger
21991 programs, which run faster than when the option isn't used. However, the
21992 results vary from program to program, so it is left as a user option,
21993 rather than being permanently enabled.
21994
21995 @item -mno-inefficient-warnings
21996 Disables warnings about the generation of inefficient code. These
21997 warnings can be generated, for example, when compiling code that
21998 performs byte-level memory operations on the MAC AE type. The MAC AE has
21999 no hardware support for byte-level memory operations, so all byte
22000 load/stores must be synthesized from word load/store operations. This is
22001 inefficient and a warning is generated to indicate
22002 that you should rewrite the code to avoid byte operations, or to target
22003 an AE type that has the necessary hardware support. This option disables
22004 these warnings.
22005
22006 @end table
22007
22008 @node PowerPC Options
22009 @subsection PowerPC Options
22010 @cindex PowerPC options
22011
22012 These are listed under @xref{RS/6000 and PowerPC Options}.
22013
22014 @node RISC-V Options
22015 @subsection RISC-V Options
22016 @cindex RISC-V Options
22017
22018 These command-line options are defined for RISC-V targets:
22019
22020 @table @gcctabopt
22021 @item -mbranch-cost=@var{n}
22022 @opindex mbranch-cost
22023 Set the cost of branches to roughly @var{n} instructions.
22024
22025 @item -mplt
22026 @itemx -mno-plt
22027 @opindex plt
22028 When generating PIC code, do or don't allow the use of PLTs. Ignored for
22029 non-PIC. The default is @option{-mplt}.
22030
22031 @item -mabi=@var{ABI-string}
22032 @opindex mabi
22033 Specify integer and floating-point calling convention. @var{ABI-string}
22034 contains two parts: the size of integer types and the registers used for
22035 floating-point types. For example @samp{-march=rv64ifd -mabi=lp64d} means that
22036 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
22037 32-bit), and that floating-point values up to 64 bits wide are passed in F
22038 registers. Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
22039 allows the compiler to generate code that uses the F and D extensions but only
22040 allows floating-point values up to 32 bits long to be passed in registers; or
22041 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
22042 passed in registers.
22043
22044 The default for this argument is system dependent, users who want a specific
22045 calling convention should specify one explicitly. The valid calling
22046 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
22047 @samp{lp64f}, and @samp{lp64d}. Some calling conventions are impossible to
22048 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
22049 invalid because the ABI requires 64-bit values be passed in F registers, but F
22050 registers are only 32 bits wide.
22051
22052 @item -mfdiv
22053 @itemx -mno-fdiv
22054 @opindex mfdiv
22055 Do or don't use hardware floating-point divide and square root instructions.
22056 This requires the F or D extensions for floating-point registers. The default
22057 is to use them if the specified architecture has these instructions.
22058
22059 @item -mdiv
22060 @itemx -mno-div
22061 @opindex mdiv
22062 Do or don't use hardware instructions for integer division. This requires the
22063 M extension. The default is to use them if the specified architecture has
22064 these instructions.
22065
22066 @item -march=@var{ISA-string}
22067 @opindex march
22068 Generate code for given RISC-V ISA (e.g.@ @samp{rv64im}). ISA strings must be
22069 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, and @samp{rv32imaf}.
22070
22071 @item -mtune=@var{processor-string}
22072 @opindex mtune
22073 Optimize the output for the given processor, specified by microarchitecture
22074 name.
22075
22076 @item -mpreferred-stack-boundary=@var{num}
22077 @opindex mpreferred-stack-boundary
22078 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22079 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
22080 the default is 4 (16 bytes or 128-bits).
22081
22082 @strong{Warning:} If you use this switch, then you must build all modules with
22083 the same value, including any libraries. This includes the system libraries
22084 and startup modules.
22085
22086 @item -msmall-data-limit=@var{n}
22087 @opindex msmall-data-limit
22088 Put global and static data smaller than @var{n} bytes into a special section
22089 (on some targets).
22090
22091 @item -msave-restore
22092 @itemx -mno-save-restore
22093 @opindex msave-restore
22094 Do or don't use smaller but slower prologue and epilogue code that uses
22095 library function calls. The default is to use fast inline prologues and
22096 epilogues.
22097
22098 @item -mstrict-align
22099 @itemx -mno-strict-align
22100 @opindex mstrict-align
22101 Do not or do generate unaligned memory accesses. The default is set depending
22102 on whether the processor we are optimizing for supports fast unaligned access
22103 or not.
22104
22105 @item -mcmodel=medlow
22106 @opindex mcmodel=medlow
22107 Generate code for the medium-low code model. The program and its statically
22108 defined symbols must lie within a single 2 GiB address range and must lie
22109 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
22110 statically or dynamically linked. This is the default code model.
22111
22112 @item -mcmodel=medany
22113 @opindex mcmodel=medany
22114 Generate code for the medium-any code model. The program and its statically
22115 defined symbols must be within any single 2 GiB address range. Programs can be
22116 statically or dynamically linked.
22117
22118 @item -mexplicit-relocs
22119 @itemx -mno-exlicit-relocs
22120 Use or do not use assembler relocation operators when dealing with symbolic
22121 addresses. The alternative is to use assembler macros instead, which may
22122 limit optimization.
22123
22124 @end table
22125
22126 @node RL78 Options
22127 @subsection RL78 Options
22128 @cindex RL78 Options
22129
22130 @table @gcctabopt
22131
22132 @item -msim
22133 @opindex msim
22134 Links in additional target libraries to support operation within a
22135 simulator.
22136
22137 @item -mmul=none
22138 @itemx -mmul=g10
22139 @itemx -mmul=g13
22140 @itemx -mmul=g14
22141 @itemx -mmul=rl78
22142 @opindex mmul
22143 Specifies the type of hardware multiplication and division support to
22144 be used. The simplest is @code{none}, which uses software for both
22145 multiplication and division. This is the default. The @code{g13}
22146 value is for the hardware multiply/divide peripheral found on the
22147 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
22148 the multiplication and division instructions supported by the RL78/G14
22149 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
22150 the value @code{mg10} is an alias for @code{none}.
22151
22152 In addition a C preprocessor macro is defined, based upon the setting
22153 of this option. Possible values are: @code{__RL78_MUL_NONE__},
22154 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
22155
22156 @item -mcpu=g10
22157 @itemx -mcpu=g13
22158 @itemx -mcpu=g14
22159 @itemx -mcpu=rl78
22160 @opindex mcpu
22161 Specifies the RL78 core to target. The default is the G14 core, also
22162 known as an S3 core or just RL78. The G13 or S2 core does not have
22163 multiply or divide instructions, instead it uses a hardware peripheral
22164 for these operations. The G10 or S1 core does not have register
22165 banks, so it uses a different calling convention.
22166
22167 If this option is set it also selects the type of hardware multiply
22168 support to use, unless this is overridden by an explicit
22169 @option{-mmul=none} option on the command line. Thus specifying
22170 @option{-mcpu=g13} enables the use of the G13 hardware multiply
22171 peripheral and specifying @option{-mcpu=g10} disables the use of
22172 hardware multiplications altogether.
22173
22174 Note, although the RL78/G14 core is the default target, specifying
22175 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
22176 change the behavior of the toolchain since it also enables G14
22177 hardware multiply support. If these options are not specified on the
22178 command line then software multiplication routines will be used even
22179 though the code targets the RL78 core. This is for backwards
22180 compatibility with older toolchains which did not have hardware
22181 multiply and divide support.
22182
22183 In addition a C preprocessor macro is defined, based upon the setting
22184 of this option. Possible values are: @code{__RL78_G10__},
22185 @code{__RL78_G13__} or @code{__RL78_G14__}.
22186
22187 @item -mg10
22188 @itemx -mg13
22189 @itemx -mg14
22190 @itemx -mrl78
22191 @opindex mg10
22192 @opindex mg13
22193 @opindex mg14
22194 @opindex mrl78
22195 These are aliases for the corresponding @option{-mcpu=} option. They
22196 are provided for backwards compatibility.
22197
22198 @item -mallregs
22199 @opindex mallregs
22200 Allow the compiler to use all of the available registers. By default
22201 registers @code{r24..r31} are reserved for use in interrupt handlers.
22202 With this option enabled these registers can be used in ordinary
22203 functions as well.
22204
22205 @item -m64bit-doubles
22206 @itemx -m32bit-doubles
22207 @opindex m64bit-doubles
22208 @opindex m32bit-doubles
22209 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
22210 or 32 bits (@option{-m32bit-doubles}) in size. The default is
22211 @option{-m32bit-doubles}.
22212
22213 @item -msave-mduc-in-interrupts
22214 @item -mno-save-mduc-in-interrupts
22215 @opindex msave-mduc-in-interrupts
22216 @opindex mno-save-mduc-in-interrupts
22217 Specifies that interrupt handler functions should preserve the
22218 MDUC registers. This is only necessary if normal code might use
22219 the MDUC registers, for example because it performs multiplication
22220 and division operations. The default is to ignore the MDUC registers
22221 as this makes the interrupt handlers faster. The target option -mg13
22222 needs to be passed for this to work as this feature is only available
22223 on the G13 target (S2 core). The MDUC registers will only be saved
22224 if the interrupt handler performs a multiplication or division
22225 operation or it calls another function.
22226
22227 @end table
22228
22229 @node RS/6000 and PowerPC Options
22230 @subsection IBM RS/6000 and PowerPC Options
22231 @cindex RS/6000 and PowerPC Options
22232 @cindex IBM RS/6000 and PowerPC Options
22233
22234 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
22235 @table @gcctabopt
22236 @item -mpowerpc-gpopt
22237 @itemx -mno-powerpc-gpopt
22238 @itemx -mpowerpc-gfxopt
22239 @itemx -mno-powerpc-gfxopt
22240 @need 800
22241 @itemx -mpowerpc64
22242 @itemx -mno-powerpc64
22243 @itemx -mmfcrf
22244 @itemx -mno-mfcrf
22245 @itemx -mpopcntb
22246 @itemx -mno-popcntb
22247 @itemx -mpopcntd
22248 @itemx -mno-popcntd
22249 @itemx -mfprnd
22250 @itemx -mno-fprnd
22251 @need 800
22252 @itemx -mcmpb
22253 @itemx -mno-cmpb
22254 @itemx -mmfpgpr
22255 @itemx -mno-mfpgpr
22256 @itemx -mhard-dfp
22257 @itemx -mno-hard-dfp
22258 @opindex mpowerpc-gpopt
22259 @opindex mno-powerpc-gpopt
22260 @opindex mpowerpc-gfxopt
22261 @opindex mno-powerpc-gfxopt
22262 @opindex mpowerpc64
22263 @opindex mno-powerpc64
22264 @opindex mmfcrf
22265 @opindex mno-mfcrf
22266 @opindex mpopcntb
22267 @opindex mno-popcntb
22268 @opindex mpopcntd
22269 @opindex mno-popcntd
22270 @opindex mfprnd
22271 @opindex mno-fprnd
22272 @opindex mcmpb
22273 @opindex mno-cmpb
22274 @opindex mmfpgpr
22275 @opindex mno-mfpgpr
22276 @opindex mhard-dfp
22277 @opindex mno-hard-dfp
22278 You use these options to specify which instructions are available on the
22279 processor you are using. The default value of these options is
22280 determined when configuring GCC@. Specifying the
22281 @option{-mcpu=@var{cpu_type}} overrides the specification of these
22282 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
22283 rather than the options listed above.
22284
22285 Specifying @option{-mpowerpc-gpopt} allows
22286 GCC to use the optional PowerPC architecture instructions in the
22287 General Purpose group, including floating-point square root. Specifying
22288 @option{-mpowerpc-gfxopt} allows GCC to
22289 use the optional PowerPC architecture instructions in the Graphics
22290 group, including floating-point select.
22291
22292 The @option{-mmfcrf} option allows GCC to generate the move from
22293 condition register field instruction implemented on the POWER4
22294 processor and other processors that support the PowerPC V2.01
22295 architecture.
22296 The @option{-mpopcntb} option allows GCC to generate the popcount and
22297 double-precision FP reciprocal estimate instruction implemented on the
22298 POWER5 processor and other processors that support the PowerPC V2.02
22299 architecture.
22300 The @option{-mpopcntd} option allows GCC to generate the popcount
22301 instruction implemented on the POWER7 processor and other processors
22302 that support the PowerPC V2.06 architecture.
22303 The @option{-mfprnd} option allows GCC to generate the FP round to
22304 integer instructions implemented on the POWER5+ processor and other
22305 processors that support the PowerPC V2.03 architecture.
22306 The @option{-mcmpb} option allows GCC to generate the compare bytes
22307 instruction implemented on the POWER6 processor and other processors
22308 that support the PowerPC V2.05 architecture.
22309 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
22310 general-purpose register instructions implemented on the POWER6X
22311 processor and other processors that support the extended PowerPC V2.05
22312 architecture.
22313 The @option{-mhard-dfp} option allows GCC to generate the decimal
22314 floating-point instructions implemented on some POWER processors.
22315
22316 The @option{-mpowerpc64} option allows GCC to generate the additional
22317 64-bit instructions that are found in the full PowerPC64 architecture
22318 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
22319 @option{-mno-powerpc64}.
22320
22321 @item -mcpu=@var{cpu_type}
22322 @opindex mcpu
22323 Set architecture type, register usage, and
22324 instruction scheduling parameters for machine type @var{cpu_type}.
22325 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
22326 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
22327 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
22328 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
22329 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
22330 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
22331 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
22332 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
22333 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
22334 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
22335 @samp{power9}, @samp{powerpc}, @samp{powerpc64}, @samp{powerpc64le},
22336 @samp{rs64}, and @samp{native}.
22337
22338 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
22339 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
22340 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
22341 architecture machine types, with an appropriate, generic processor
22342 model assumed for scheduling purposes.
22343
22344 Specifying @samp{native} as cpu type detects and selects the
22345 architecture option that corresponds to the host processor of the
22346 system performing the compilation.
22347 @option{-mcpu=native} has no effect if GCC does not recognize the
22348 processor.
22349
22350 The other options specify a specific processor. Code generated under
22351 those options runs best on that processor, and may not run at all on
22352 others.
22353
22354 The @option{-mcpu} options automatically enable or disable the
22355 following options:
22356
22357 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
22358 -mpopcntb -mpopcntd -mpowerpc64 @gol
22359 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
22360 -msimple-fpu -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
22361 -mcrypto -mdirect-move -mhtm -mpower8-fusion -mpower8-vector @gol
22362 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
22363
22364 The particular options set for any particular CPU varies between
22365 compiler versions, depending on what setting seems to produce optimal
22366 code for that CPU; it doesn't necessarily reflect the actual hardware's
22367 capabilities. If you wish to set an individual option to a particular
22368 value, you may specify it after the @option{-mcpu} option, like
22369 @option{-mcpu=970 -mno-altivec}.
22370
22371 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
22372 not enabled or disabled by the @option{-mcpu} option at present because
22373 AIX does not have full support for these options. You may still
22374 enable or disable them individually if you're sure it'll work in your
22375 environment.
22376
22377 @item -mtune=@var{cpu_type}
22378 @opindex mtune
22379 Set the instruction scheduling parameters for machine type
22380 @var{cpu_type}, but do not set the architecture type or register usage,
22381 as @option{-mcpu=@var{cpu_type}} does. The same
22382 values for @var{cpu_type} are used for @option{-mtune} as for
22383 @option{-mcpu}. If both are specified, the code generated uses the
22384 architecture and registers set by @option{-mcpu}, but the
22385 scheduling parameters set by @option{-mtune}.
22386
22387 @item -mcmodel=small
22388 @opindex mcmodel=small
22389 Generate PowerPC64 code for the small model: The TOC is limited to
22390 64k.
22391
22392 @item -mcmodel=medium
22393 @opindex mcmodel=medium
22394 Generate PowerPC64 code for the medium model: The TOC and other static
22395 data may be up to a total of 4G in size. This is the default for 64-bit
22396 Linux.
22397
22398 @item -mcmodel=large
22399 @opindex mcmodel=large
22400 Generate PowerPC64 code for the large model: The TOC may be up to 4G
22401 in size. Other data and code is only limited by the 64-bit address
22402 space.
22403
22404 @item -maltivec
22405 @itemx -mno-altivec
22406 @opindex maltivec
22407 @opindex mno-altivec
22408 Generate code that uses (does not use) AltiVec instructions, and also
22409 enable the use of built-in functions that allow more direct access to
22410 the AltiVec instruction set. You may also need to set
22411 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
22412 enhancements.
22413
22414 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
22415 @option{-maltivec=be}, the element order for AltiVec intrinsics such
22416 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
22417 match array element order corresponding to the endianness of the
22418 target. That is, element zero identifies the leftmost element in a
22419 vector register when targeting a big-endian platform, and identifies
22420 the rightmost element in a vector register when targeting a
22421 little-endian platform.
22422
22423 @item -maltivec=be
22424 @opindex maltivec=be
22425 Generate AltiVec instructions using big-endian element order,
22426 regardless of whether the target is big- or little-endian. This is
22427 the default when targeting a big-endian platform.
22428
22429 The element order is used to interpret element numbers in AltiVec
22430 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
22431 @code{vec_insert}. By default, these match array element order
22432 corresponding to the endianness for the target.
22433
22434 @item -maltivec=le
22435 @opindex maltivec=le
22436 Generate AltiVec instructions using little-endian element order,
22437 regardless of whether the target is big- or little-endian. This is
22438 the default when targeting a little-endian platform. This option is
22439 currently ignored when targeting a big-endian platform.
22440
22441 The element order is used to interpret element numbers in AltiVec
22442 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
22443 @code{vec_insert}. By default, these match array element order
22444 corresponding to the endianness for the target.
22445
22446 @item -mvrsave
22447 @itemx -mno-vrsave
22448 @opindex mvrsave
22449 @opindex mno-vrsave
22450 Generate VRSAVE instructions when generating AltiVec code.
22451
22452 @item -msecure-plt
22453 @opindex msecure-plt
22454 Generate code that allows @command{ld} and @command{ld.so}
22455 to build executables and shared
22456 libraries with non-executable @code{.plt} and @code{.got} sections.
22457 This is a PowerPC
22458 32-bit SYSV ABI option.
22459
22460 @item -mbss-plt
22461 @opindex mbss-plt
22462 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
22463 fills in, and
22464 requires @code{.plt} and @code{.got}
22465 sections that are both writable and executable.
22466 This is a PowerPC 32-bit SYSV ABI option.
22467
22468 @item -misel
22469 @itemx -mno-isel
22470 @opindex misel
22471 @opindex mno-isel
22472 This switch enables or disables the generation of ISEL instructions.
22473
22474 @item -misel=@var{yes/no}
22475 This switch has been deprecated. Use @option{-misel} and
22476 @option{-mno-isel} instead.
22477
22478 @item -mspe
22479 @itemx -mno-spe
22480 @opindex mspe
22481 @opindex mno-spe
22482 This switch enables or disables the generation of SPE simd
22483 instructions.
22484
22485 @item -mpaired
22486 @itemx -mno-paired
22487 @opindex mpaired
22488 @opindex mno-paired
22489 This switch enables or disables the generation of PAIRED simd
22490 instructions.
22491
22492 @item -mspe=@var{yes/no}
22493 This option has been deprecated. Use @option{-mspe} and
22494 @option{-mno-spe} instead.
22495
22496 @item -mvsx
22497 @itemx -mno-vsx
22498 @opindex mvsx
22499 @opindex mno-vsx
22500 Generate code that uses (does not use) vector/scalar (VSX)
22501 instructions, and also enable the use of built-in functions that allow
22502 more direct access to the VSX instruction set.
22503
22504 @item -mcrypto
22505 @itemx -mno-crypto
22506 @opindex mcrypto
22507 @opindex mno-crypto
22508 Enable the use (disable) of the built-in functions that allow direct
22509 access to the cryptographic instructions that were added in version
22510 2.07 of the PowerPC ISA.
22511
22512 @item -mdirect-move
22513 @itemx -mno-direct-move
22514 @opindex mdirect-move
22515 @opindex mno-direct-move
22516 Generate code that uses (does not use) the instructions to move data
22517 between the general purpose registers and the vector/scalar (VSX)
22518 registers that were added in version 2.07 of the PowerPC ISA.
22519
22520 @item -mhtm
22521 @itemx -mno-htm
22522 @opindex mhtm
22523 @opindex mno-htm
22524 Enable (disable) the use of the built-in functions that allow direct
22525 access to the Hardware Transactional Memory (HTM) instructions that
22526 were added in version 2.07 of the PowerPC ISA.
22527
22528 @item -mpower8-fusion
22529 @itemx -mno-power8-fusion
22530 @opindex mpower8-fusion
22531 @opindex mno-power8-fusion
22532 Generate code that keeps (does not keeps) some integer operations
22533 adjacent so that the instructions can be fused together on power8 and
22534 later processors.
22535
22536 @item -mpower8-vector
22537 @itemx -mno-power8-vector
22538 @opindex mpower8-vector
22539 @opindex mno-power8-vector
22540 Generate code that uses (does not use) the vector and scalar
22541 instructions that were added in version 2.07 of the PowerPC ISA. Also
22542 enable the use of built-in functions that allow more direct access to
22543 the vector instructions.
22544
22545 @item -mquad-memory
22546 @itemx -mno-quad-memory
22547 @opindex mquad-memory
22548 @opindex mno-quad-memory
22549 Generate code that uses (does not use) the non-atomic quad word memory
22550 instructions. The @option{-mquad-memory} option requires use of
22551 64-bit mode.
22552
22553 @item -mquad-memory-atomic
22554 @itemx -mno-quad-memory-atomic
22555 @opindex mquad-memory-atomic
22556 @opindex mno-quad-memory-atomic
22557 Generate code that uses (does not use) the atomic quad word memory
22558 instructions. The @option{-mquad-memory-atomic} option requires use of
22559 64-bit mode.
22560
22561 @item -mfloat128
22562 @itemx -mno-float128
22563 @opindex mfloat128
22564 @opindex mno-float128
22565 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
22566 and use either software emulation for IEEE 128-bit floating point or
22567 hardware instructions.
22568
22569 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
22570 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
22571 use the IEEE 128-bit floating point support. The IEEE 128-bit
22572 floating point support only works on PowerPC Linux systems.
22573
22574 The default for @option{-mfloat128} is enabled on PowerPC Linux
22575 systems using the VSX instruction set, and disabled on other systems.
22576
22577 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
22578 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
22579 point support will also enable the generation of ISA 3.0 IEEE 128-bit
22580 floating point instructions. Otherwise, if you do not specify to
22581 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
22582 system, IEEE 128-bit floating point will be done with software
22583 emulation.
22584
22585 @item -mfloat128-hardware
22586 @itemx -mno-float128-hardware
22587 @opindex mfloat128-hardware
22588 @opindex mno-float128-hardware
22589 Enable/disable using ISA 3.0 hardware instructions to support the
22590 @var{__float128} data type.
22591
22592 The default for @option{-mfloat128-hardware} is enabled on PowerPC
22593 Linux systems using the ISA 3.0 instruction set, and disabled on other
22594 systems.
22595
22596 @item -mfloat-gprs=@var{yes/single/double/no}
22597 @itemx -mfloat-gprs
22598 @opindex mfloat-gprs
22599 This switch enables or disables the generation of floating-point
22600 operations on the general-purpose registers for architectures that
22601 support it.
22602
22603 The argument @samp{yes} or @samp{single} enables the use of
22604 single-precision floating-point operations.
22605
22606 The argument @samp{double} enables the use of single and
22607 double-precision floating-point operations.
22608
22609 The argument @samp{no} disables floating-point operations on the
22610 general-purpose registers.
22611
22612 This option is currently only available on the MPC854x.
22613
22614 @item -m32
22615 @itemx -m64
22616 @opindex m32
22617 @opindex m64
22618 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
22619 targets (including GNU/Linux). The 32-bit environment sets int, long
22620 and pointer to 32 bits and generates code that runs on any PowerPC
22621 variant. The 64-bit environment sets int to 32 bits and long and
22622 pointer to 64 bits, and generates code for PowerPC64, as for
22623 @option{-mpowerpc64}.
22624
22625 @item -mfull-toc
22626 @itemx -mno-fp-in-toc
22627 @itemx -mno-sum-in-toc
22628 @itemx -mminimal-toc
22629 @opindex mfull-toc
22630 @opindex mno-fp-in-toc
22631 @opindex mno-sum-in-toc
22632 @opindex mminimal-toc
22633 Modify generation of the TOC (Table Of Contents), which is created for
22634 every executable file. The @option{-mfull-toc} option is selected by
22635 default. In that case, GCC allocates at least one TOC entry for
22636 each unique non-automatic variable reference in your program. GCC
22637 also places floating-point constants in the TOC@. However, only
22638 16,384 entries are available in the TOC@.
22639
22640 If you receive a linker error message that saying you have overflowed
22641 the available TOC space, you can reduce the amount of TOC space used
22642 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
22643 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
22644 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
22645 generate code to calculate the sum of an address and a constant at
22646 run time instead of putting that sum into the TOC@. You may specify one
22647 or both of these options. Each causes GCC to produce very slightly
22648 slower and larger code at the expense of conserving TOC space.
22649
22650 If you still run out of space in the TOC even when you specify both of
22651 these options, specify @option{-mminimal-toc} instead. This option causes
22652 GCC to make only one TOC entry for every file. When you specify this
22653 option, GCC produces code that is slower and larger but which
22654 uses extremely little TOC space. You may wish to use this option
22655 only on files that contain less frequently-executed code.
22656
22657 @item -maix64
22658 @itemx -maix32
22659 @opindex maix64
22660 @opindex maix32
22661 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
22662 @code{long} type, and the infrastructure needed to support them.
22663 Specifying @option{-maix64} implies @option{-mpowerpc64},
22664 while @option{-maix32} disables the 64-bit ABI and
22665 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
22666
22667 @item -mxl-compat
22668 @itemx -mno-xl-compat
22669 @opindex mxl-compat
22670 @opindex mno-xl-compat
22671 Produce code that conforms more closely to IBM XL compiler semantics
22672 when using AIX-compatible ABI@. Pass floating-point arguments to
22673 prototyped functions beyond the register save area (RSA) on the stack
22674 in addition to argument FPRs. Do not assume that most significant
22675 double in 128-bit long double value is properly rounded when comparing
22676 values and converting to double. Use XL symbol names for long double
22677 support routines.
22678
22679 The AIX calling convention was extended but not initially documented to
22680 handle an obscure K&R C case of calling a function that takes the
22681 address of its arguments with fewer arguments than declared. IBM XL
22682 compilers access floating-point arguments that do not fit in the
22683 RSA from the stack when a subroutine is compiled without
22684 optimization. Because always storing floating-point arguments on the
22685 stack is inefficient and rarely needed, this option is not enabled by
22686 default and only is necessary when calling subroutines compiled by IBM
22687 XL compilers without optimization.
22688
22689 @item -mpe
22690 @opindex mpe
22691 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
22692 application written to use message passing with special startup code to
22693 enable the application to run. The system must have PE installed in the
22694 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
22695 must be overridden with the @option{-specs=} option to specify the
22696 appropriate directory location. The Parallel Environment does not
22697 support threads, so the @option{-mpe} option and the @option{-pthread}
22698 option are incompatible.
22699
22700 @item -malign-natural
22701 @itemx -malign-power
22702 @opindex malign-natural
22703 @opindex malign-power
22704 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
22705 @option{-malign-natural} overrides the ABI-defined alignment of larger
22706 types, such as floating-point doubles, on their natural size-based boundary.
22707 The option @option{-malign-power} instructs GCC to follow the ABI-specified
22708 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
22709
22710 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
22711 is not supported.
22712
22713 @item -msoft-float
22714 @itemx -mhard-float
22715 @opindex msoft-float
22716 @opindex mhard-float
22717 Generate code that does not use (uses) the floating-point register set.
22718 Software floating-point emulation is provided if you use the
22719 @option{-msoft-float} option, and pass the option to GCC when linking.
22720
22721 @item -msingle-float
22722 @itemx -mdouble-float
22723 @opindex msingle-float
22724 @opindex mdouble-float
22725 Generate code for single- or double-precision floating-point operations.
22726 @option{-mdouble-float} implies @option{-msingle-float}.
22727
22728 @item -msimple-fpu
22729 @opindex msimple-fpu
22730 Do not generate @code{sqrt} and @code{div} instructions for hardware
22731 floating-point unit.
22732
22733 @item -mfpu=@var{name}
22734 @opindex mfpu
22735 Specify type of floating-point unit. Valid values for @var{name} are
22736 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
22737 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
22738 @samp{sp_full} (equivalent to @option{-msingle-float}),
22739 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
22740
22741 @item -mxilinx-fpu
22742 @opindex mxilinx-fpu
22743 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
22744
22745 @item -mmultiple
22746 @itemx -mno-multiple
22747 @opindex mmultiple
22748 @opindex mno-multiple
22749 Generate code that uses (does not use) the load multiple word
22750 instructions and the store multiple word instructions. These
22751 instructions are generated by default on POWER systems, and not
22752 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
22753 PowerPC systems, since those instructions do not work when the
22754 processor is in little-endian mode. The exceptions are PPC740 and
22755 PPC750 which permit these instructions in little-endian mode.
22756
22757 @item -mupdate
22758 @itemx -mno-update
22759 @opindex mupdate
22760 @opindex mno-update
22761 Generate code that uses (does not use) the load or store instructions
22762 that update the base register to the address of the calculated memory
22763 location. These instructions are generated by default. If you use
22764 @option{-mno-update}, there is a small window between the time that the
22765 stack pointer is updated and the address of the previous frame is
22766 stored, which means code that walks the stack frame across interrupts or
22767 signals may get corrupted data.
22768
22769 @item -mavoid-indexed-addresses
22770 @itemx -mno-avoid-indexed-addresses
22771 @opindex mavoid-indexed-addresses
22772 @opindex mno-avoid-indexed-addresses
22773 Generate code that tries to avoid (not avoid) the use of indexed load
22774 or store instructions. These instructions can incur a performance
22775 penalty on Power6 processors in certain situations, such as when
22776 stepping through large arrays that cross a 16M boundary. This option
22777 is enabled by default when targeting Power6 and disabled otherwise.
22778
22779 @item -mfused-madd
22780 @itemx -mno-fused-madd
22781 @opindex mfused-madd
22782 @opindex mno-fused-madd
22783 Generate code that uses (does not use) the floating-point multiply and
22784 accumulate instructions. These instructions are generated by default
22785 if hardware floating point is used. The machine-dependent
22786 @option{-mfused-madd} option is now mapped to the machine-independent
22787 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
22788 mapped to @option{-ffp-contract=off}.
22789
22790 @item -mmulhw
22791 @itemx -mno-mulhw
22792 @opindex mmulhw
22793 @opindex mno-mulhw
22794 Generate code that uses (does not use) the half-word multiply and
22795 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
22796 These instructions are generated by default when targeting those
22797 processors.
22798
22799 @item -mdlmzb
22800 @itemx -mno-dlmzb
22801 @opindex mdlmzb
22802 @opindex mno-dlmzb
22803 Generate code that uses (does not use) the string-search @samp{dlmzb}
22804 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
22805 generated by default when targeting those processors.
22806
22807 @item -mno-bit-align
22808 @itemx -mbit-align
22809 @opindex mno-bit-align
22810 @opindex mbit-align
22811 On System V.4 and embedded PowerPC systems do not (do) force structures
22812 and unions that contain bit-fields to be aligned to the base type of the
22813 bit-field.
22814
22815 For example, by default a structure containing nothing but 8
22816 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
22817 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
22818 the structure is aligned to a 1-byte boundary and is 1 byte in
22819 size.
22820
22821 @item -mno-strict-align
22822 @itemx -mstrict-align
22823 @opindex mno-strict-align
22824 @opindex mstrict-align
22825 On System V.4 and embedded PowerPC systems do not (do) assume that
22826 unaligned memory references are handled by the system.
22827
22828 @item -mrelocatable
22829 @itemx -mno-relocatable
22830 @opindex mrelocatable
22831 @opindex mno-relocatable
22832 Generate code that allows (does not allow) a static executable to be
22833 relocated to a different address at run time. A simple embedded
22834 PowerPC system loader should relocate the entire contents of
22835 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
22836 a table of 32-bit addresses generated by this option. For this to
22837 work, all objects linked together must be compiled with
22838 @option{-mrelocatable} or @option{-mrelocatable-lib}.
22839 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
22840
22841 @item -mrelocatable-lib
22842 @itemx -mno-relocatable-lib
22843 @opindex mrelocatable-lib
22844 @opindex mno-relocatable-lib
22845 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
22846 @code{.fixup} section to allow static executables to be relocated at
22847 run time, but @option{-mrelocatable-lib} does not use the smaller stack
22848 alignment of @option{-mrelocatable}. Objects compiled with
22849 @option{-mrelocatable-lib} may be linked with objects compiled with
22850 any combination of the @option{-mrelocatable} options.
22851
22852 @item -mno-toc
22853 @itemx -mtoc
22854 @opindex mno-toc
22855 @opindex mtoc
22856 On System V.4 and embedded PowerPC systems do not (do) assume that
22857 register 2 contains a pointer to a global area pointing to the addresses
22858 used in the program.
22859
22860 @item -mlittle
22861 @itemx -mlittle-endian
22862 @opindex mlittle
22863 @opindex mlittle-endian
22864 On System V.4 and embedded PowerPC systems compile code for the
22865 processor in little-endian mode. The @option{-mlittle-endian} option is
22866 the same as @option{-mlittle}.
22867
22868 @item -mbig
22869 @itemx -mbig-endian
22870 @opindex mbig
22871 @opindex mbig-endian
22872 On System V.4 and embedded PowerPC systems compile code for the
22873 processor in big-endian mode. The @option{-mbig-endian} option is
22874 the same as @option{-mbig}.
22875
22876 @item -mdynamic-no-pic
22877 @opindex mdynamic-no-pic
22878 On Darwin and Mac OS X systems, compile code so that it is not
22879 relocatable, but that its external references are relocatable. The
22880 resulting code is suitable for applications, but not shared
22881 libraries.
22882
22883 @item -msingle-pic-base
22884 @opindex msingle-pic-base
22885 Treat the register used for PIC addressing as read-only, rather than
22886 loading it in the prologue for each function. The runtime system is
22887 responsible for initializing this register with an appropriate value
22888 before execution begins.
22889
22890 @item -mprioritize-restricted-insns=@var{priority}
22891 @opindex mprioritize-restricted-insns
22892 This option controls the priority that is assigned to
22893 dispatch-slot restricted instructions during the second scheduling
22894 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
22895 or @samp{2} to assign no, highest, or second-highest (respectively)
22896 priority to dispatch-slot restricted
22897 instructions.
22898
22899 @item -msched-costly-dep=@var{dependence_type}
22900 @opindex msched-costly-dep
22901 This option controls which dependences are considered costly
22902 by the target during instruction scheduling. The argument
22903 @var{dependence_type} takes one of the following values:
22904
22905 @table @asis
22906 @item @samp{no}
22907 No dependence is costly.
22908
22909 @item @samp{all}
22910 All dependences are costly.
22911
22912 @item @samp{true_store_to_load}
22913 A true dependence from store to load is costly.
22914
22915 @item @samp{store_to_load}
22916 Any dependence from store to load is costly.
22917
22918 @item @var{number}
22919 Any dependence for which the latency is greater than or equal to
22920 @var{number} is costly.
22921 @end table
22922
22923 @item -minsert-sched-nops=@var{scheme}
22924 @opindex minsert-sched-nops
22925 This option controls which NOP insertion scheme is used during
22926 the second scheduling pass. The argument @var{scheme} takes one of the
22927 following values:
22928
22929 @table @asis
22930 @item @samp{no}
22931 Don't insert NOPs.
22932
22933 @item @samp{pad}
22934 Pad with NOPs any dispatch group that has vacant issue slots,
22935 according to the scheduler's grouping.
22936
22937 @item @samp{regroup_exact}
22938 Insert NOPs to force costly dependent insns into
22939 separate groups. Insert exactly as many NOPs as needed to force an insn
22940 to a new group, according to the estimated processor grouping.
22941
22942 @item @var{number}
22943 Insert NOPs to force costly dependent insns into
22944 separate groups. Insert @var{number} NOPs to force an insn to a new group.
22945 @end table
22946
22947 @item -mcall-sysv
22948 @opindex mcall-sysv
22949 On System V.4 and embedded PowerPC systems compile code using calling
22950 conventions that adhere to the March 1995 draft of the System V
22951 Application Binary Interface, PowerPC processor supplement. This is the
22952 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
22953
22954 @item -mcall-sysv-eabi
22955 @itemx -mcall-eabi
22956 @opindex mcall-sysv-eabi
22957 @opindex mcall-eabi
22958 Specify both @option{-mcall-sysv} and @option{-meabi} options.
22959
22960 @item -mcall-sysv-noeabi
22961 @opindex mcall-sysv-noeabi
22962 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
22963
22964 @item -mcall-aixdesc
22965 @opindex m
22966 On System V.4 and embedded PowerPC systems compile code for the AIX
22967 operating system.
22968
22969 @item -mcall-linux
22970 @opindex mcall-linux
22971 On System V.4 and embedded PowerPC systems compile code for the
22972 Linux-based GNU system.
22973
22974 @item -mcall-freebsd
22975 @opindex mcall-freebsd
22976 On System V.4 and embedded PowerPC systems compile code for the
22977 FreeBSD operating system.
22978
22979 @item -mcall-netbsd
22980 @opindex mcall-netbsd
22981 On System V.4 and embedded PowerPC systems compile code for the
22982 NetBSD operating system.
22983
22984 @item -mcall-openbsd
22985 @opindex mcall-netbsd
22986 On System V.4 and embedded PowerPC systems compile code for the
22987 OpenBSD operating system.
22988
22989 @item -maix-struct-return
22990 @opindex maix-struct-return
22991 Return all structures in memory (as specified by the AIX ABI)@.
22992
22993 @item -msvr4-struct-return
22994 @opindex msvr4-struct-return
22995 Return structures smaller than 8 bytes in registers (as specified by the
22996 SVR4 ABI)@.
22997
22998 @item -mabi=@var{abi-type}
22999 @opindex mabi
23000 Extend the current ABI with a particular extension, or remove such extension.
23001 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
23002 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
23003 @samp{elfv1}, @samp{elfv2}@.
23004
23005 @item -mabi=spe
23006 @opindex mabi=spe
23007 Extend the current ABI with SPE ABI extensions. This does not change
23008 the default ABI, instead it adds the SPE ABI extensions to the current
23009 ABI@.
23010
23011 @item -mabi=no-spe
23012 @opindex mabi=no-spe
23013 Disable Book-E SPE ABI extensions for the current ABI@.
23014
23015 @item -mabi=ibmlongdouble
23016 @opindex mabi=ibmlongdouble
23017 Change the current ABI to use IBM extended-precision long double.
23018 This is not likely to work if your system defaults to using IEEE
23019 extended-precision long double. If you change the long double type
23020 from IEEE extended-precision, the compiler will issue a warning unless
23021 you use the @option{-Wno-psabi} option.
23022
23023 @item -mabi=ieeelongdouble
23024 @opindex mabi=ieeelongdouble
23025 Change the current ABI to use IEEE extended-precision long double.
23026 This is not likely to work if your system defaults to using IBM
23027 extended-precision long double. If you change the long double type
23028 from IBM extended-precision, the compiler will issue a warning unless
23029 you use the @option{-Wno-psabi} option.
23030
23031 @item -mabi=elfv1
23032 @opindex mabi=elfv1
23033 Change the current ABI to use the ELFv1 ABI.
23034 This is the default ABI for big-endian PowerPC 64-bit Linux.
23035 Overriding the default ABI requires special system support and is
23036 likely to fail in spectacular ways.
23037
23038 @item -mabi=elfv2
23039 @opindex mabi=elfv2
23040 Change the current ABI to use the ELFv2 ABI.
23041 This is the default ABI for little-endian PowerPC 64-bit Linux.
23042 Overriding the default ABI requires special system support and is
23043 likely to fail in spectacular ways.
23044
23045 @item -mgnu-attribute
23046 @itemx -mno-gnu-attribute
23047 @opindex mgnu-attribute
23048 @opindex mno-gnu-attribute
23049 Emit .gnu_attribute assembly directives to set tag/value pairs in a
23050 .gnu.attributes section that specify ABI variations in function
23051 parameters or return values.
23052
23053 @item -mprototype
23054 @itemx -mno-prototype
23055 @opindex mprototype
23056 @opindex mno-prototype
23057 On System V.4 and embedded PowerPC systems assume that all calls to
23058 variable argument functions are properly prototyped. Otherwise, the
23059 compiler must insert an instruction before every non-prototyped call to
23060 set or clear bit 6 of the condition code register (@code{CR}) to
23061 indicate whether floating-point values are passed in the floating-point
23062 registers in case the function takes variable arguments. With
23063 @option{-mprototype}, only calls to prototyped variable argument functions
23064 set or clear the bit.
23065
23066 @item -msim
23067 @opindex msim
23068 On embedded PowerPC systems, assume that the startup module is called
23069 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
23070 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
23071 configurations.
23072
23073 @item -mmvme
23074 @opindex mmvme
23075 On embedded PowerPC systems, assume that the startup module is called
23076 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
23077 @file{libc.a}.
23078
23079 @item -mads
23080 @opindex mads
23081 On embedded PowerPC systems, assume that the startup module is called
23082 @file{crt0.o} and the standard C libraries are @file{libads.a} and
23083 @file{libc.a}.
23084
23085 @item -myellowknife
23086 @opindex myellowknife
23087 On embedded PowerPC systems, assume that the startup module is called
23088 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
23089 @file{libc.a}.
23090
23091 @item -mvxworks
23092 @opindex mvxworks
23093 On System V.4 and embedded PowerPC systems, specify that you are
23094 compiling for a VxWorks system.
23095
23096 @item -memb
23097 @opindex memb
23098 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
23099 header to indicate that @samp{eabi} extended relocations are used.
23100
23101 @item -meabi
23102 @itemx -mno-eabi
23103 @opindex meabi
23104 @opindex mno-eabi
23105 On System V.4 and embedded PowerPC systems do (do not) adhere to the
23106 Embedded Applications Binary Interface (EABI), which is a set of
23107 modifications to the System V.4 specifications. Selecting @option{-meabi}
23108 means that the stack is aligned to an 8-byte boundary, a function
23109 @code{__eabi} is called from @code{main} to set up the EABI
23110 environment, and the @option{-msdata} option can use both @code{r2} and
23111 @code{r13} to point to two separate small data areas. Selecting
23112 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
23113 no EABI initialization function is called from @code{main}, and the
23114 @option{-msdata} option only uses @code{r13} to point to a single
23115 small data area. The @option{-meabi} option is on by default if you
23116 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
23117
23118 @item -msdata=eabi
23119 @opindex msdata=eabi
23120 On System V.4 and embedded PowerPC systems, put small initialized
23121 @code{const} global and static data in the @code{.sdata2} section, which
23122 is pointed to by register @code{r2}. Put small initialized
23123 non-@code{const} global and static data in the @code{.sdata} section,
23124 which is pointed to by register @code{r13}. Put small uninitialized
23125 global and static data in the @code{.sbss} section, which is adjacent to
23126 the @code{.sdata} section. The @option{-msdata=eabi} option is
23127 incompatible with the @option{-mrelocatable} option. The
23128 @option{-msdata=eabi} option also sets the @option{-memb} option.
23129
23130 @item -msdata=sysv
23131 @opindex msdata=sysv
23132 On System V.4 and embedded PowerPC systems, put small global and static
23133 data in the @code{.sdata} section, which is pointed to by register
23134 @code{r13}. Put small uninitialized global and static data in the
23135 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
23136 The @option{-msdata=sysv} option is incompatible with the
23137 @option{-mrelocatable} option.
23138
23139 @item -msdata=default
23140 @itemx -msdata
23141 @opindex msdata=default
23142 @opindex msdata
23143 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
23144 compile code the same as @option{-msdata=eabi}, otherwise compile code the
23145 same as @option{-msdata=sysv}.
23146
23147 @item -msdata=data
23148 @opindex msdata=data
23149 On System V.4 and embedded PowerPC systems, put small global
23150 data in the @code{.sdata} section. Put small uninitialized global
23151 data in the @code{.sbss} section. Do not use register @code{r13}
23152 to address small data however. This is the default behavior unless
23153 other @option{-msdata} options are used.
23154
23155 @item -msdata=none
23156 @itemx -mno-sdata
23157 @opindex msdata=none
23158 @opindex mno-sdata
23159 On embedded PowerPC systems, put all initialized global and static data
23160 in the @code{.data} section, and all uninitialized data in the
23161 @code{.bss} section.
23162
23163 @item -mblock-move-inline-limit=@var{num}
23164 @opindex mblock-move-inline-limit
23165 Inline all block moves (such as calls to @code{memcpy} or structure
23166 copies) less than or equal to @var{num} bytes. The minimum value for
23167 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
23168 targets. The default value is target-specific.
23169
23170 @item -G @var{num}
23171 @opindex G
23172 @cindex smaller data references (PowerPC)
23173 @cindex .sdata/.sdata2 references (PowerPC)
23174 On embedded PowerPC systems, put global and static items less than or
23175 equal to @var{num} bytes into the small data or BSS sections instead of
23176 the normal data or BSS section. By default, @var{num} is 8. The
23177 @option{-G @var{num}} switch is also passed to the linker.
23178 All modules should be compiled with the same @option{-G @var{num}} value.
23179
23180 @item -mregnames
23181 @itemx -mno-regnames
23182 @opindex mregnames
23183 @opindex mno-regnames
23184 On System V.4 and embedded PowerPC systems do (do not) emit register
23185 names in the assembly language output using symbolic forms.
23186
23187 @item -mlongcall
23188 @itemx -mno-longcall
23189 @opindex mlongcall
23190 @opindex mno-longcall
23191 By default assume that all calls are far away so that a longer and more
23192 expensive calling sequence is required. This is required for calls
23193 farther than 32 megabytes (33,554,432 bytes) from the current location.
23194 A short call is generated if the compiler knows
23195 the call cannot be that far away. This setting can be overridden by
23196 the @code{shortcall} function attribute, or by @code{#pragma
23197 longcall(0)}.
23198
23199 Some linkers are capable of detecting out-of-range calls and generating
23200 glue code on the fly. On these systems, long calls are unnecessary and
23201 generate slower code. As of this writing, the AIX linker can do this,
23202 as can the GNU linker for PowerPC/64. It is planned to add this feature
23203 to the GNU linker for 32-bit PowerPC systems as well.
23204
23205 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
23206 callee, L42}, plus a @dfn{branch island} (glue code). The two target
23207 addresses represent the callee and the branch island. The
23208 Darwin/PPC linker prefers the first address and generates a @code{bl
23209 callee} if the PPC @code{bl} instruction reaches the callee directly;
23210 otherwise, the linker generates @code{bl L42} to call the branch
23211 island. The branch island is appended to the body of the
23212 calling function; it computes the full 32-bit address of the callee
23213 and jumps to it.
23214
23215 On Mach-O (Darwin) systems, this option directs the compiler emit to
23216 the glue for every direct call, and the Darwin linker decides whether
23217 to use or discard it.
23218
23219 In the future, GCC may ignore all longcall specifications
23220 when the linker is known to generate glue.
23221
23222 @item -mtls-markers
23223 @itemx -mno-tls-markers
23224 @opindex mtls-markers
23225 @opindex mno-tls-markers
23226 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
23227 specifying the function argument. The relocation allows the linker to
23228 reliably associate function call with argument setup instructions for
23229 TLS optimization, which in turn allows GCC to better schedule the
23230 sequence.
23231
23232 @item -mrecip
23233 @itemx -mno-recip
23234 @opindex mrecip
23235 This option enables use of the reciprocal estimate and
23236 reciprocal square root estimate instructions with additional
23237 Newton-Raphson steps to increase precision instead of doing a divide or
23238 square root and divide for floating-point arguments. You should use
23239 the @option{-ffast-math} option when using @option{-mrecip} (or at
23240 least @option{-funsafe-math-optimizations},
23241 @option{-ffinite-math-only}, @option{-freciprocal-math} and
23242 @option{-fno-trapping-math}). Note that while the throughput of the
23243 sequence is generally higher than the throughput of the non-reciprocal
23244 instruction, the precision of the sequence can be decreased by up to 2
23245 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
23246 roots.
23247
23248 @item -mrecip=@var{opt}
23249 @opindex mrecip=opt
23250 This option controls which reciprocal estimate instructions
23251 may be used. @var{opt} is a comma-separated list of options, which may
23252 be preceded by a @code{!} to invert the option:
23253
23254 @table @samp
23255
23256 @item all
23257 Enable all estimate instructions.
23258
23259 @item default
23260 Enable the default instructions, equivalent to @option{-mrecip}.
23261
23262 @item none
23263 Disable all estimate instructions, equivalent to @option{-mno-recip}.
23264
23265 @item div
23266 Enable the reciprocal approximation instructions for both
23267 single and double precision.
23268
23269 @item divf
23270 Enable the single-precision reciprocal approximation instructions.
23271
23272 @item divd
23273 Enable the double-precision reciprocal approximation instructions.
23274
23275 @item rsqrt
23276 Enable the reciprocal square root approximation instructions for both
23277 single and double precision.
23278
23279 @item rsqrtf
23280 Enable the single-precision reciprocal square root approximation instructions.
23281
23282 @item rsqrtd
23283 Enable the double-precision reciprocal square root approximation instructions.
23284
23285 @end table
23286
23287 So, for example, @option{-mrecip=all,!rsqrtd} enables
23288 all of the reciprocal estimate instructions, except for the
23289 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
23290 which handle the double-precision reciprocal square root calculations.
23291
23292 @item -mrecip-precision
23293 @itemx -mno-recip-precision
23294 @opindex mrecip-precision
23295 Assume (do not assume) that the reciprocal estimate instructions
23296 provide higher-precision estimates than is mandated by the PowerPC
23297 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
23298 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
23299 The double-precision square root estimate instructions are not generated by
23300 default on low-precision machines, since they do not provide an
23301 estimate that converges after three steps.
23302
23303 @item -mveclibabi=@var{type}
23304 @opindex mveclibabi
23305 Specifies the ABI type to use for vectorizing intrinsics using an
23306 external library. The only type supported at present is @samp{mass},
23307 which specifies to use IBM's Mathematical Acceleration Subsystem
23308 (MASS) libraries for vectorizing intrinsics using external libraries.
23309 GCC currently emits calls to @code{acosd2}, @code{acosf4},
23310 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
23311 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
23312 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
23313 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
23314 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
23315 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
23316 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
23317 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
23318 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
23319 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
23320 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
23321 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
23322 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
23323 for power7. Both @option{-ftree-vectorize} and
23324 @option{-funsafe-math-optimizations} must also be enabled. The MASS
23325 libraries must be specified at link time.
23326
23327 @item -mfriz
23328 @itemx -mno-friz
23329 @opindex mfriz
23330 Generate (do not generate) the @code{friz} instruction when the
23331 @option{-funsafe-math-optimizations} option is used to optimize
23332 rounding of floating-point values to 64-bit integer and back to floating
23333 point. The @code{friz} instruction does not return the same value if
23334 the floating-point number is too large to fit in an integer.
23335
23336 @item -mpointers-to-nested-functions
23337 @itemx -mno-pointers-to-nested-functions
23338 @opindex mpointers-to-nested-functions
23339 Generate (do not generate) code to load up the static chain register
23340 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
23341 systems where a function pointer points to a 3-word descriptor giving
23342 the function address, TOC value to be loaded in register @code{r2}, and
23343 static chain value to be loaded in register @code{r11}. The
23344 @option{-mpointers-to-nested-functions} is on by default. You cannot
23345 call through pointers to nested functions or pointers
23346 to functions compiled in other languages that use the static chain if
23347 you use @option{-mno-pointers-to-nested-functions}.
23348
23349 @item -msave-toc-indirect
23350 @itemx -mno-save-toc-indirect
23351 @opindex msave-toc-indirect
23352 Generate (do not generate) code to save the TOC value in the reserved
23353 stack location in the function prologue if the function calls through
23354 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
23355 saved in the prologue, it is saved just before the call through the
23356 pointer. The @option{-mno-save-toc-indirect} option is the default.
23357
23358 @item -mcompat-align-parm
23359 @itemx -mno-compat-align-parm
23360 @opindex mcompat-align-parm
23361 Generate (do not generate) code to pass structure parameters with a
23362 maximum alignment of 64 bits, for compatibility with older versions
23363 of GCC.
23364
23365 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
23366 structure parameter on a 128-bit boundary when that structure contained
23367 a member requiring 128-bit alignment. This is corrected in more
23368 recent versions of GCC. This option may be used to generate code
23369 that is compatible with functions compiled with older versions of
23370 GCC.
23371
23372 The @option{-mno-compat-align-parm} option is the default.
23373
23374 @item -mstack-protector-guard=@var{guard}
23375 @itemx -mstack-protector-guard-reg=@var{reg}
23376 @itemx -mstack-protector-guard-offset=@var{offset}
23377 @itemx -mstack-protector-guard-symbol=@var{symbol}
23378 @opindex mstack-protector-guard
23379 @opindex mstack-protector-guard-reg
23380 @opindex mstack-protector-guard-offset
23381 @opindex mstack-protector-guard-symbol
23382 Generate stack protection code using canary at @var{guard}. Supported
23383 locations are @samp{global} for global canary or @samp{tls} for per-thread
23384 canary in the TLS block (the default with GNU libc version 2.4 or later).
23385
23386 With the latter choice the options
23387 @option{-mstack-protector-guard-reg=@var{reg}} and
23388 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
23389 which register to use as base register for reading the canary, and from what
23390 offset from that base register. The default for those is as specified in the
23391 relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
23392 the offset with a symbol reference to a canary in the TLS block.
23393 @end table
23394
23395 @node RX Options
23396 @subsection RX Options
23397 @cindex RX Options
23398
23399 These command-line options are defined for RX targets:
23400
23401 @table @gcctabopt
23402 @item -m64bit-doubles
23403 @itemx -m32bit-doubles
23404 @opindex m64bit-doubles
23405 @opindex m32bit-doubles
23406 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
23407 or 32 bits (@option{-m32bit-doubles}) in size. The default is
23408 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
23409 works on 32-bit values, which is why the default is
23410 @option{-m32bit-doubles}.
23411
23412 @item -fpu
23413 @itemx -nofpu
23414 @opindex fpu
23415 @opindex nofpu
23416 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
23417 floating-point hardware. The default is enabled for the RX600
23418 series and disabled for the RX200 series.
23419
23420 Floating-point instructions are only generated for 32-bit floating-point
23421 values, however, so the FPU hardware is not used for doubles if the
23422 @option{-m64bit-doubles} option is used.
23423
23424 @emph{Note} If the @option{-fpu} option is enabled then
23425 @option{-funsafe-math-optimizations} is also enabled automatically.
23426 This is because the RX FPU instructions are themselves unsafe.
23427
23428 @item -mcpu=@var{name}
23429 @opindex mcpu
23430 Selects the type of RX CPU to be targeted. Currently three types are
23431 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
23432 the specific @samp{RX610} CPU. The default is @samp{RX600}.
23433
23434 The only difference between @samp{RX600} and @samp{RX610} is that the
23435 @samp{RX610} does not support the @code{MVTIPL} instruction.
23436
23437 The @samp{RX200} series does not have a hardware floating-point unit
23438 and so @option{-nofpu} is enabled by default when this type is
23439 selected.
23440
23441 @item -mbig-endian-data
23442 @itemx -mlittle-endian-data
23443 @opindex mbig-endian-data
23444 @opindex mlittle-endian-data
23445 Store data (but not code) in the big-endian format. The default is
23446 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
23447 format.
23448
23449 @item -msmall-data-limit=@var{N}
23450 @opindex msmall-data-limit
23451 Specifies the maximum size in bytes of global and static variables
23452 which can be placed into the small data area. Using the small data
23453 area can lead to smaller and faster code, but the size of area is
23454 limited and it is up to the programmer to ensure that the area does
23455 not overflow. Also when the small data area is used one of the RX's
23456 registers (usually @code{r13}) is reserved for use pointing to this
23457 area, so it is no longer available for use by the compiler. This
23458 could result in slower and/or larger code if variables are pushed onto
23459 the stack instead of being held in this register.
23460
23461 Note, common variables (variables that have not been initialized) and
23462 constants are not placed into the small data area as they are assigned
23463 to other sections in the output executable.
23464
23465 The default value is zero, which disables this feature. Note, this
23466 feature is not enabled by default with higher optimization levels
23467 (@option{-O2} etc) because of the potentially detrimental effects of
23468 reserving a register. It is up to the programmer to experiment and
23469 discover whether this feature is of benefit to their program. See the
23470 description of the @option{-mpid} option for a description of how the
23471 actual register to hold the small data area pointer is chosen.
23472
23473 @item -msim
23474 @itemx -mno-sim
23475 @opindex msim
23476 @opindex mno-sim
23477 Use the simulator runtime. The default is to use the libgloss
23478 board-specific runtime.
23479
23480 @item -mas100-syntax
23481 @itemx -mno-as100-syntax
23482 @opindex mas100-syntax
23483 @opindex mno-as100-syntax
23484 When generating assembler output use a syntax that is compatible with
23485 Renesas's AS100 assembler. This syntax can also be handled by the GAS
23486 assembler, but it has some restrictions so it is not generated by default.
23487
23488 @item -mmax-constant-size=@var{N}
23489 @opindex mmax-constant-size
23490 Specifies the maximum size, in bytes, of a constant that can be used as
23491 an operand in a RX instruction. Although the RX instruction set does
23492 allow constants of up to 4 bytes in length to be used in instructions,
23493 a longer value equates to a longer instruction. Thus in some
23494 circumstances it can be beneficial to restrict the size of constants
23495 that are used in instructions. Constants that are too big are instead
23496 placed into a constant pool and referenced via register indirection.
23497
23498 The value @var{N} can be between 0 and 4. A value of 0 (the default)
23499 or 4 means that constants of any size are allowed.
23500
23501 @item -mrelax
23502 @opindex mrelax
23503 Enable linker relaxation. Linker relaxation is a process whereby the
23504 linker attempts to reduce the size of a program by finding shorter
23505 versions of various instructions. Disabled by default.
23506
23507 @item -mint-register=@var{N}
23508 @opindex mint-register
23509 Specify the number of registers to reserve for fast interrupt handler
23510 functions. The value @var{N} can be between 0 and 4. A value of 1
23511 means that register @code{r13} is reserved for the exclusive use
23512 of fast interrupt handlers. A value of 2 reserves @code{r13} and
23513 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
23514 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
23515 A value of 0, the default, does not reserve any registers.
23516
23517 @item -msave-acc-in-interrupts
23518 @opindex msave-acc-in-interrupts
23519 Specifies that interrupt handler functions should preserve the
23520 accumulator register. This is only necessary if normal code might use
23521 the accumulator register, for example because it performs 64-bit
23522 multiplications. The default is to ignore the accumulator as this
23523 makes the interrupt handlers faster.
23524
23525 @item -mpid
23526 @itemx -mno-pid
23527 @opindex mpid
23528 @opindex mno-pid
23529 Enables the generation of position independent data. When enabled any
23530 access to constant data is done via an offset from a base address
23531 held in a register. This allows the location of constant data to be
23532 determined at run time without requiring the executable to be
23533 relocated, which is a benefit to embedded applications with tight
23534 memory constraints. Data that can be modified is not affected by this
23535 option.
23536
23537 Note, using this feature reserves a register, usually @code{r13}, for
23538 the constant data base address. This can result in slower and/or
23539 larger code, especially in complicated functions.
23540
23541 The actual register chosen to hold the constant data base address
23542 depends upon whether the @option{-msmall-data-limit} and/or the
23543 @option{-mint-register} command-line options are enabled. Starting
23544 with register @code{r13} and proceeding downwards, registers are
23545 allocated first to satisfy the requirements of @option{-mint-register},
23546 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
23547 is possible for the small data area register to be @code{r8} if both
23548 @option{-mint-register=4} and @option{-mpid} are specified on the
23549 command line.
23550
23551 By default this feature is not enabled. The default can be restored
23552 via the @option{-mno-pid} command-line option.
23553
23554 @item -mno-warn-multiple-fast-interrupts
23555 @itemx -mwarn-multiple-fast-interrupts
23556 @opindex mno-warn-multiple-fast-interrupts
23557 @opindex mwarn-multiple-fast-interrupts
23558 Prevents GCC from issuing a warning message if it finds more than one
23559 fast interrupt handler when it is compiling a file. The default is to
23560 issue a warning for each extra fast interrupt handler found, as the RX
23561 only supports one such interrupt.
23562
23563 @item -mallow-string-insns
23564 @itemx -mno-allow-string-insns
23565 @opindex mallow-string-insns
23566 @opindex mno-allow-string-insns
23567 Enables or disables the use of the string manipulation instructions
23568 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
23569 @code{SWHILE} and also the @code{RMPA} instruction. These
23570 instructions may prefetch data, which is not safe to do if accessing
23571 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
23572 for more information).
23573
23574 The default is to allow these instructions, but it is not possible for
23575 GCC to reliably detect all circumstances where a string instruction
23576 might be used to access an I/O register, so their use cannot be
23577 disabled automatically. Instead it is reliant upon the programmer to
23578 use the @option{-mno-allow-string-insns} option if their program
23579 accesses I/O space.
23580
23581 When the instructions are enabled GCC defines the C preprocessor
23582 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
23583 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
23584
23585 @item -mjsr
23586 @itemx -mno-jsr
23587 @opindex mjsr
23588 @opindex mno-jsr
23589 Use only (or not only) @code{JSR} instructions to access functions.
23590 This option can be used when code size exceeds the range of @code{BSR}
23591 instructions. Note that @option{-mno-jsr} does not mean to not use
23592 @code{JSR} but instead means that any type of branch may be used.
23593 @end table
23594
23595 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
23596 has special significance to the RX port when used with the
23597 @code{interrupt} function attribute. This attribute indicates a
23598 function intended to process fast interrupts. GCC ensures
23599 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
23600 and/or @code{r13} and only provided that the normal use of the
23601 corresponding registers have been restricted via the
23602 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
23603 options.
23604
23605 @node S/390 and zSeries Options
23606 @subsection S/390 and zSeries Options
23607 @cindex S/390 and zSeries Options
23608
23609 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
23610
23611 @table @gcctabopt
23612 @item -mhard-float
23613 @itemx -msoft-float
23614 @opindex mhard-float
23615 @opindex msoft-float
23616 Use (do not use) the hardware floating-point instructions and registers
23617 for floating-point operations. When @option{-msoft-float} is specified,
23618 functions in @file{libgcc.a} are used to perform floating-point
23619 operations. When @option{-mhard-float} is specified, the compiler
23620 generates IEEE floating-point instructions. This is the default.
23621
23622 @item -mhard-dfp
23623 @itemx -mno-hard-dfp
23624 @opindex mhard-dfp
23625 @opindex mno-hard-dfp
23626 Use (do not use) the hardware decimal-floating-point instructions for
23627 decimal-floating-point operations. When @option{-mno-hard-dfp} is
23628 specified, functions in @file{libgcc.a} are used to perform
23629 decimal-floating-point operations. When @option{-mhard-dfp} is
23630 specified, the compiler generates decimal-floating-point hardware
23631 instructions. This is the default for @option{-march=z9-ec} or higher.
23632
23633 @item -mlong-double-64
23634 @itemx -mlong-double-128
23635 @opindex mlong-double-64
23636 @opindex mlong-double-128
23637 These switches control the size of @code{long double} type. A size
23638 of 64 bits makes the @code{long double} type equivalent to the @code{double}
23639 type. This is the default.
23640
23641 @item -mbackchain
23642 @itemx -mno-backchain
23643 @opindex mbackchain
23644 @opindex mno-backchain
23645 Store (do not store) the address of the caller's frame as backchain pointer
23646 into the callee's stack frame.
23647 A backchain may be needed to allow debugging using tools that do not understand
23648 DWARF call frame information.
23649 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
23650 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
23651 the backchain is placed into the topmost word of the 96/160 byte register
23652 save area.
23653
23654 In general, code compiled with @option{-mbackchain} is call-compatible with
23655 code compiled with @option{-mmo-backchain}; however, use of the backchain
23656 for debugging purposes usually requires that the whole binary is built with
23657 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
23658 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
23659 to build a linux kernel use @option{-msoft-float}.
23660
23661 The default is to not maintain the backchain.
23662
23663 @item -mpacked-stack
23664 @itemx -mno-packed-stack
23665 @opindex mpacked-stack
23666 @opindex mno-packed-stack
23667 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
23668 specified, the compiler uses the all fields of the 96/160 byte register save
23669 area only for their default purpose; unused fields still take up stack space.
23670 When @option{-mpacked-stack} is specified, register save slots are densely
23671 packed at the top of the register save area; unused space is reused for other
23672 purposes, allowing for more efficient use of the available stack space.
23673 However, when @option{-mbackchain} is also in effect, the topmost word of
23674 the save area is always used to store the backchain, and the return address
23675 register is always saved two words below the backchain.
23676
23677 As long as the stack frame backchain is not used, code generated with
23678 @option{-mpacked-stack} is call-compatible with code generated with
23679 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
23680 S/390 or zSeries generated code that uses the stack frame backchain at run
23681 time, not just for debugging purposes. Such code is not call-compatible
23682 with code compiled with @option{-mpacked-stack}. Also, note that the
23683 combination of @option{-mbackchain},
23684 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
23685 to build a linux kernel use @option{-msoft-float}.
23686
23687 The default is to not use the packed stack layout.
23688
23689 @item -msmall-exec
23690 @itemx -mno-small-exec
23691 @opindex msmall-exec
23692 @opindex mno-small-exec
23693 Generate (or do not generate) code using the @code{bras} instruction
23694 to do subroutine calls.
23695 This only works reliably if the total executable size does not
23696 exceed 64k. The default is to use the @code{basr} instruction instead,
23697 which does not have this limitation.
23698
23699 @item -m64
23700 @itemx -m31
23701 @opindex m64
23702 @opindex m31
23703 When @option{-m31} is specified, generate code compliant to the
23704 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
23705 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
23706 particular to generate 64-bit instructions. For the @samp{s390}
23707 targets, the default is @option{-m31}, while the @samp{s390x}
23708 targets default to @option{-m64}.
23709
23710 @item -mzarch
23711 @itemx -mesa
23712 @opindex mzarch
23713 @opindex mesa
23714 When @option{-mzarch} is specified, generate code using the
23715 instructions available on z/Architecture.
23716 When @option{-mesa} is specified, generate code using the
23717 instructions available on ESA/390. Note that @option{-mesa} is
23718 not possible with @option{-m64}.
23719 When generating code compliant to the GNU/Linux for S/390 ABI,
23720 the default is @option{-mesa}. When generating code compliant
23721 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
23722
23723 @item -mhtm
23724 @itemx -mno-htm
23725 @opindex mhtm
23726 @opindex mno-htm
23727 The @option{-mhtm} option enables a set of builtins making use of
23728 instructions available with the transactional execution facility
23729 introduced with the IBM zEnterprise EC12 machine generation
23730 @ref{S/390 System z Built-in Functions}.
23731 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
23732
23733 @item -mvx
23734 @itemx -mno-vx
23735 @opindex mvx
23736 @opindex mno-vx
23737 When @option{-mvx} is specified, generate code using the instructions
23738 available with the vector extension facility introduced with the IBM
23739 z13 machine generation.
23740 This option changes the ABI for some vector type values with regard to
23741 alignment and calling conventions. In case vector type values are
23742 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
23743 command will be added to mark the resulting binary with the ABI used.
23744 @option{-mvx} is enabled by default when using @option{-march=z13}.
23745
23746 @item -mzvector
23747 @itemx -mno-zvector
23748 @opindex mzvector
23749 @opindex mno-zvector
23750 The @option{-mzvector} option enables vector language extensions and
23751 builtins using instructions available with the vector extension
23752 facility introduced with the IBM z13 machine generation.
23753 This option adds support for @samp{vector} to be used as a keyword to
23754 define vector type variables and arguments. @samp{vector} is only
23755 available when GNU extensions are enabled. It will not be expanded
23756 when requesting strict standard compliance e.g. with @option{-std=c99}.
23757 In addition to the GCC low-level builtins @option{-mzvector} enables
23758 a set of builtins added for compatibility with AltiVec-style
23759 implementations like Power and Cell. In order to make use of these
23760 builtins the header file @file{vecintrin.h} needs to be included.
23761 @option{-mzvector} is disabled by default.
23762
23763 @item -mmvcle
23764 @itemx -mno-mvcle
23765 @opindex mmvcle
23766 @opindex mno-mvcle
23767 Generate (or do not generate) code using the @code{mvcle} instruction
23768 to perform block moves. When @option{-mno-mvcle} is specified,
23769 use a @code{mvc} loop instead. This is the default unless optimizing for
23770 size.
23771
23772 @item -mdebug
23773 @itemx -mno-debug
23774 @opindex mdebug
23775 @opindex mno-debug
23776 Print (or do not print) additional debug information when compiling.
23777 The default is to not print debug information.
23778
23779 @item -march=@var{cpu-type}
23780 @opindex march
23781 Generate code that runs on @var{cpu-type}, which is the name of a
23782 system representing a certain processor type. Possible values for
23783 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
23784 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
23785 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11}, and
23786 @samp{native}.
23787
23788 The default is @option{-march=z900}. @samp{g5}/@samp{arch3} and
23789 @samp{g6} are deprecated and will be removed with future releases.
23790
23791 Specifying @samp{native} as cpu type can be used to select the best
23792 architecture option for the host processor.
23793 @option{-march=native} has no effect if GCC does not recognize the
23794 processor.
23795
23796 @item -mtune=@var{cpu-type}
23797 @opindex mtune
23798 Tune to @var{cpu-type} everything applicable about the generated code,
23799 except for the ABI and the set of available instructions.
23800 The list of @var{cpu-type} values is the same as for @option{-march}.
23801 The default is the value used for @option{-march}.
23802
23803 @item -mtpf-trace
23804 @itemx -mno-tpf-trace
23805 @opindex mtpf-trace
23806 @opindex mno-tpf-trace
23807 Generate code that adds (does not add) in TPF OS specific branches to trace
23808 routines in the operating system. This option is off by default, even
23809 when compiling for the TPF OS@.
23810
23811 @item -mfused-madd
23812 @itemx -mno-fused-madd
23813 @opindex mfused-madd
23814 @opindex mno-fused-madd
23815 Generate code that uses (does not use) the floating-point multiply and
23816 accumulate instructions. These instructions are generated by default if
23817 hardware floating point is used.
23818
23819 @item -mwarn-framesize=@var{framesize}
23820 @opindex mwarn-framesize
23821 Emit a warning if the current function exceeds the given frame size. Because
23822 this is a compile-time check it doesn't need to be a real problem when the program
23823 runs. It is intended to identify functions that most probably cause
23824 a stack overflow. It is useful to be used in an environment with limited stack
23825 size e.g.@: the linux kernel.
23826
23827 @item -mwarn-dynamicstack
23828 @opindex mwarn-dynamicstack
23829 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
23830 arrays. This is generally a bad idea with a limited stack size.
23831
23832 @item -mstack-guard=@var{stack-guard}
23833 @itemx -mstack-size=@var{stack-size}
23834 @opindex mstack-guard
23835 @opindex mstack-size
23836 If these options are provided the S/390 back end emits additional instructions in
23837 the function prologue that trigger a trap if the stack size is @var{stack-guard}
23838 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
23839 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
23840 the frame size of the compiled function is chosen.
23841 These options are intended to be used to help debugging stack overflow problems.
23842 The additionally emitted code causes only little overhead and hence can also be
23843 used in production-like systems without greater performance degradation. The given
23844 values have to be exact powers of 2 and @var{stack-size} has to be greater than
23845 @var{stack-guard} without exceeding 64k.
23846 In order to be efficient the extra code makes the assumption that the stack starts
23847 at an address aligned to the value given by @var{stack-size}.
23848 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
23849
23850 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
23851 @opindex mhotpatch
23852 If the hotpatch option is enabled, a ``hot-patching'' function
23853 prologue is generated for all functions in the compilation unit.
23854 The funtion label is prepended with the given number of two-byte
23855 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
23856 the label, 2 * @var{post-halfwords} bytes are appended, using the
23857 largest NOP like instructions the architecture allows (maximum
23858 1000000).
23859
23860 If both arguments are zero, hotpatching is disabled.
23861
23862 This option can be overridden for individual functions with the
23863 @code{hotpatch} attribute.
23864 @end table
23865
23866 @node Score Options
23867 @subsection Score Options
23868 @cindex Score Options
23869
23870 These options are defined for Score implementations:
23871
23872 @table @gcctabopt
23873 @item -meb
23874 @opindex meb
23875 Compile code for big-endian mode. This is the default.
23876
23877 @item -mel
23878 @opindex mel
23879 Compile code for little-endian mode.
23880
23881 @item -mnhwloop
23882 @opindex mnhwloop
23883 Disable generation of @code{bcnz} instructions.
23884
23885 @item -muls
23886 @opindex muls
23887 Enable generation of unaligned load and store instructions.
23888
23889 @item -mmac
23890 @opindex mmac
23891 Enable the use of multiply-accumulate instructions. Disabled by default.
23892
23893 @item -mscore5
23894 @opindex mscore5
23895 Specify the SCORE5 as the target architecture.
23896
23897 @item -mscore5u
23898 @opindex mscore5u
23899 Specify the SCORE5U of the target architecture.
23900
23901 @item -mscore7
23902 @opindex mscore7
23903 Specify the SCORE7 as the target architecture. This is the default.
23904
23905 @item -mscore7d
23906 @opindex mscore7d
23907 Specify the SCORE7D as the target architecture.
23908 @end table
23909
23910 @node SH Options
23911 @subsection SH Options
23912
23913 These @samp{-m} options are defined for the SH implementations:
23914
23915 @table @gcctabopt
23916 @item -m1
23917 @opindex m1
23918 Generate code for the SH1.
23919
23920 @item -m2
23921 @opindex m2
23922 Generate code for the SH2.
23923
23924 @item -m2e
23925 Generate code for the SH2e.
23926
23927 @item -m2a-nofpu
23928 @opindex m2a-nofpu
23929 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
23930 that the floating-point unit is not used.
23931
23932 @item -m2a-single-only
23933 @opindex m2a-single-only
23934 Generate code for the SH2a-FPU, in such a way that no double-precision
23935 floating-point operations are used.
23936
23937 @item -m2a-single
23938 @opindex m2a-single
23939 Generate code for the SH2a-FPU assuming the floating-point unit is in
23940 single-precision mode by default.
23941
23942 @item -m2a
23943 @opindex m2a
23944 Generate code for the SH2a-FPU assuming the floating-point unit is in
23945 double-precision mode by default.
23946
23947 @item -m3
23948 @opindex m3
23949 Generate code for the SH3.
23950
23951 @item -m3e
23952 @opindex m3e
23953 Generate code for the SH3e.
23954
23955 @item -m4-nofpu
23956 @opindex m4-nofpu
23957 Generate code for the SH4 without a floating-point unit.
23958
23959 @item -m4-single-only
23960 @opindex m4-single-only
23961 Generate code for the SH4 with a floating-point unit that only
23962 supports single-precision arithmetic.
23963
23964 @item -m4-single
23965 @opindex m4-single
23966 Generate code for the SH4 assuming the floating-point unit is in
23967 single-precision mode by default.
23968
23969 @item -m4
23970 @opindex m4
23971 Generate code for the SH4.
23972
23973 @item -m4-100
23974 @opindex m4-100
23975 Generate code for SH4-100.
23976
23977 @item -m4-100-nofpu
23978 @opindex m4-100-nofpu
23979 Generate code for SH4-100 in such a way that the
23980 floating-point unit is not used.
23981
23982 @item -m4-100-single
23983 @opindex m4-100-single
23984 Generate code for SH4-100 assuming the floating-point unit is in
23985 single-precision mode by default.
23986
23987 @item -m4-100-single-only
23988 @opindex m4-100-single-only
23989 Generate code for SH4-100 in such a way that no double-precision
23990 floating-point operations are used.
23991
23992 @item -m4-200
23993 @opindex m4-200
23994 Generate code for SH4-200.
23995
23996 @item -m4-200-nofpu
23997 @opindex m4-200-nofpu
23998 Generate code for SH4-200 without in such a way that the
23999 floating-point unit is not used.
24000
24001 @item -m4-200-single
24002 @opindex m4-200-single
24003 Generate code for SH4-200 assuming the floating-point unit is in
24004 single-precision mode by default.
24005
24006 @item -m4-200-single-only
24007 @opindex m4-200-single-only
24008 Generate code for SH4-200 in such a way that no double-precision
24009 floating-point operations are used.
24010
24011 @item -m4-300
24012 @opindex m4-300
24013 Generate code for SH4-300.
24014
24015 @item -m4-300-nofpu
24016 @opindex m4-300-nofpu
24017 Generate code for SH4-300 without in such a way that the
24018 floating-point unit is not used.
24019
24020 @item -m4-300-single
24021 @opindex m4-300-single
24022 Generate code for SH4-300 in such a way that no double-precision
24023 floating-point operations are used.
24024
24025 @item -m4-300-single-only
24026 @opindex m4-300-single-only
24027 Generate code for SH4-300 in such a way that no double-precision
24028 floating-point operations are used.
24029
24030 @item -m4-340
24031 @opindex m4-340
24032 Generate code for SH4-340 (no MMU, no FPU).
24033
24034 @item -m4-500
24035 @opindex m4-500
24036 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
24037 assembler.
24038
24039 @item -m4a-nofpu
24040 @opindex m4a-nofpu
24041 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
24042 floating-point unit is not used.
24043
24044 @item -m4a-single-only
24045 @opindex m4a-single-only
24046 Generate code for the SH4a, in such a way that no double-precision
24047 floating-point operations are used.
24048
24049 @item -m4a-single
24050 @opindex m4a-single
24051 Generate code for the SH4a assuming the floating-point unit is in
24052 single-precision mode by default.
24053
24054 @item -m4a
24055 @opindex m4a
24056 Generate code for the SH4a.
24057
24058 @item -m4al
24059 @opindex m4al
24060 Same as @option{-m4a-nofpu}, except that it implicitly passes
24061 @option{-dsp} to the assembler. GCC doesn't generate any DSP
24062 instructions at the moment.
24063
24064 @item -mb
24065 @opindex mb
24066 Compile code for the processor in big-endian mode.
24067
24068 @item -ml
24069 @opindex ml
24070 Compile code for the processor in little-endian mode.
24071
24072 @item -mdalign
24073 @opindex mdalign
24074 Align doubles at 64-bit boundaries. Note that this changes the calling
24075 conventions, and thus some functions from the standard C library do
24076 not work unless you recompile it first with @option{-mdalign}.
24077
24078 @item -mrelax
24079 @opindex mrelax
24080 Shorten some address references at link time, when possible; uses the
24081 linker option @option{-relax}.
24082
24083 @item -mbigtable
24084 @opindex mbigtable
24085 Use 32-bit offsets in @code{switch} tables. The default is to use
24086 16-bit offsets.
24087
24088 @item -mbitops
24089 @opindex mbitops
24090 Enable the use of bit manipulation instructions on SH2A.
24091
24092 @item -mfmovd
24093 @opindex mfmovd
24094 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
24095 alignment constraints.
24096
24097 @item -mrenesas
24098 @opindex mrenesas
24099 Comply with the calling conventions defined by Renesas.
24100
24101 @item -mno-renesas
24102 @opindex mno-renesas
24103 Comply with the calling conventions defined for GCC before the Renesas
24104 conventions were available. This option is the default for all
24105 targets of the SH toolchain.
24106
24107 @item -mnomacsave
24108 @opindex mnomacsave
24109 Mark the @code{MAC} register as call-clobbered, even if
24110 @option{-mrenesas} is given.
24111
24112 @item -mieee
24113 @itemx -mno-ieee
24114 @opindex mieee
24115 @opindex mno-ieee
24116 Control the IEEE compliance of floating-point comparisons, which affects the
24117 handling of cases where the result of a comparison is unordered. By default
24118 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
24119 enabled @option{-mno-ieee} is implicitly set, which results in faster
24120 floating-point greater-equal and less-equal comparisons. The implicit settings
24121 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
24122
24123 @item -minline-ic_invalidate
24124 @opindex minline-ic_invalidate
24125 Inline code to invalidate instruction cache entries after setting up
24126 nested function trampolines.
24127 This option has no effect if @option{-musermode} is in effect and the selected
24128 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
24129 instruction.
24130 If the selected code generation option does not allow the use of the @code{icbi}
24131 instruction, and @option{-musermode} is not in effect, the inlined code
24132 manipulates the instruction cache address array directly with an associative
24133 write. This not only requires privileged mode at run time, but it also
24134 fails if the cache line had been mapped via the TLB and has become unmapped.
24135
24136 @item -misize
24137 @opindex misize
24138 Dump instruction size and location in the assembly code.
24139
24140 @item -mpadstruct
24141 @opindex mpadstruct
24142 This option is deprecated. It pads structures to multiple of 4 bytes,
24143 which is incompatible with the SH ABI@.
24144
24145 @item -matomic-model=@var{model}
24146 @opindex matomic-model=@var{model}
24147 Sets the model of atomic operations and additional parameters as a comma
24148 separated list. For details on the atomic built-in functions see
24149 @ref{__atomic Builtins}. The following models and parameters are supported:
24150
24151 @table @samp
24152
24153 @item none
24154 Disable compiler generated atomic sequences and emit library calls for atomic
24155 operations. This is the default if the target is not @code{sh*-*-linux*}.
24156
24157 @item soft-gusa
24158 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
24159 built-in functions. The generated atomic sequences require additional support
24160 from the interrupt/exception handling code of the system and are only suitable
24161 for SH3* and SH4* single-core systems. This option is enabled by default when
24162 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
24163 this option also partially utilizes the hardware atomic instructions
24164 @code{movli.l} and @code{movco.l} to create more efficient code, unless
24165 @samp{strict} is specified.
24166
24167 @item soft-tcb
24168 Generate software atomic sequences that use a variable in the thread control
24169 block. This is a variation of the gUSA sequences which can also be used on
24170 SH1* and SH2* targets. The generated atomic sequences require additional
24171 support from the interrupt/exception handling code of the system and are only
24172 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
24173 parameter has to be specified as well.
24174
24175 @item soft-imask
24176 Generate software atomic sequences that temporarily disable interrupts by
24177 setting @code{SR.IMASK = 1111}. This model works only when the program runs
24178 in privileged mode and is only suitable for single-core systems. Additional
24179 support from the interrupt/exception handling code of the system is not
24180 required. This model is enabled by default when the target is
24181 @code{sh*-*-linux*} and SH1* or SH2*.
24182
24183 @item hard-llcs
24184 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
24185 instructions only. This is only available on SH4A and is suitable for
24186 multi-core systems. Since the hardware instructions support only 32 bit atomic
24187 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
24188 Code compiled with this option is also compatible with other software
24189 atomic model interrupt/exception handling systems if executed on an SH4A
24190 system. Additional support from the interrupt/exception handling code of the
24191 system is not required for this model.
24192
24193 @item gbr-offset=
24194 This parameter specifies the offset in bytes of the variable in the thread
24195 control block structure that should be used by the generated atomic sequences
24196 when the @samp{soft-tcb} model has been selected. For other models this
24197 parameter is ignored. The specified value must be an integer multiple of four
24198 and in the range 0-1020.
24199
24200 @item strict
24201 This parameter prevents mixed usage of multiple atomic models, even if they
24202 are compatible, and makes the compiler generate atomic sequences of the
24203 specified model only.
24204
24205 @end table
24206
24207 @item -mtas
24208 @opindex mtas
24209 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
24210 Notice that depending on the particular hardware and software configuration
24211 this can degrade overall performance due to the operand cache line flushes
24212 that are implied by the @code{tas.b} instruction. On multi-core SH4A
24213 processors the @code{tas.b} instruction must be used with caution since it
24214 can result in data corruption for certain cache configurations.
24215
24216 @item -mprefergot
24217 @opindex mprefergot
24218 When generating position-independent code, emit function calls using
24219 the Global Offset Table instead of the Procedure Linkage Table.
24220
24221 @item -musermode
24222 @itemx -mno-usermode
24223 @opindex musermode
24224 @opindex mno-usermode
24225 Don't allow (allow) the compiler generating privileged mode code. Specifying
24226 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
24227 inlined code would not work in user mode. @option{-musermode} is the default
24228 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
24229 @option{-musermode} has no effect, since there is no user mode.
24230
24231 @item -multcost=@var{number}
24232 @opindex multcost=@var{number}
24233 Set the cost to assume for a multiply insn.
24234
24235 @item -mdiv=@var{strategy}
24236 @opindex mdiv=@var{strategy}
24237 Set the division strategy to be used for integer division operations.
24238 @var{strategy} can be one of:
24239
24240 @table @samp
24241
24242 @item call-div1
24243 Calls a library function that uses the single-step division instruction
24244 @code{div1} to perform the operation. Division by zero calculates an
24245 unspecified result and does not trap. This is the default except for SH4,
24246 SH2A and SHcompact.
24247
24248 @item call-fp
24249 Calls a library function that performs the operation in double precision
24250 floating point. Division by zero causes a floating-point exception. This is
24251 the default for SHcompact with FPU. Specifying this for targets that do not
24252 have a double precision FPU defaults to @code{call-div1}.
24253
24254 @item call-table
24255 Calls a library function that uses a lookup table for small divisors and
24256 the @code{div1} instruction with case distinction for larger divisors. Division
24257 by zero calculates an unspecified result and does not trap. This is the default
24258 for SH4. Specifying this for targets that do not have dynamic shift
24259 instructions defaults to @code{call-div1}.
24260
24261 @end table
24262
24263 When a division strategy has not been specified the default strategy is
24264 selected based on the current target. For SH2A the default strategy is to
24265 use the @code{divs} and @code{divu} instructions instead of library function
24266 calls.
24267
24268 @item -maccumulate-outgoing-args
24269 @opindex maccumulate-outgoing-args
24270 Reserve space once for outgoing arguments in the function prologue rather
24271 than around each call. Generally beneficial for performance and size. Also
24272 needed for unwinding to avoid changing the stack frame around conditional code.
24273
24274 @item -mdivsi3_libfunc=@var{name}
24275 @opindex mdivsi3_libfunc=@var{name}
24276 Set the name of the library function used for 32-bit signed division to
24277 @var{name}.
24278 This only affects the name used in the @samp{call} division strategies, and
24279 the compiler still expects the same sets of input/output/clobbered registers as
24280 if this option were not present.
24281
24282 @item -mfixed-range=@var{register-range}
24283 @opindex mfixed-range
24284 Generate code treating the given register range as fixed registers.
24285 A fixed register is one that the register allocator can not use. This is
24286 useful when compiling kernel code. A register range is specified as
24287 two registers separated by a dash. Multiple register ranges can be
24288 specified separated by a comma.
24289
24290 @item -mbranch-cost=@var{num}
24291 @opindex mbranch-cost=@var{num}
24292 Assume @var{num} to be the cost for a branch instruction. Higher numbers
24293 make the compiler try to generate more branch-free code if possible.
24294 If not specified the value is selected depending on the processor type that
24295 is being compiled for.
24296
24297 @item -mzdcbranch
24298 @itemx -mno-zdcbranch
24299 @opindex mzdcbranch
24300 @opindex mno-zdcbranch
24301 Assume (do not assume) that zero displacement conditional branch instructions
24302 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
24303 compiler prefers zero displacement branch code sequences. This is
24304 enabled by default when generating code for SH4 and SH4A. It can be explicitly
24305 disabled by specifying @option{-mno-zdcbranch}.
24306
24307 @item -mcbranch-force-delay-slot
24308 @opindex mcbranch-force-delay-slot
24309 Force the usage of delay slots for conditional branches, which stuffs the delay
24310 slot with a @code{nop} if a suitable instruction cannot be found. By default
24311 this option is disabled. It can be enabled to work around hardware bugs as
24312 found in the original SH7055.
24313
24314 @item -mfused-madd
24315 @itemx -mno-fused-madd
24316 @opindex mfused-madd
24317 @opindex mno-fused-madd
24318 Generate code that uses (does not use) the floating-point multiply and
24319 accumulate instructions. These instructions are generated by default
24320 if hardware floating point is used. The machine-dependent
24321 @option{-mfused-madd} option is now mapped to the machine-independent
24322 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
24323 mapped to @option{-ffp-contract=off}.
24324
24325 @item -mfsca
24326 @itemx -mno-fsca
24327 @opindex mfsca
24328 @opindex mno-fsca
24329 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
24330 and cosine approximations. The option @option{-mfsca} must be used in
24331 combination with @option{-funsafe-math-optimizations}. It is enabled by default
24332 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
24333 approximations even if @option{-funsafe-math-optimizations} is in effect.
24334
24335 @item -mfsrra
24336 @itemx -mno-fsrra
24337 @opindex mfsrra
24338 @opindex mno-fsrra
24339 Allow or disallow the compiler to emit the @code{fsrra} instruction for
24340 reciprocal square root approximations. The option @option{-mfsrra} must be used
24341 in combination with @option{-funsafe-math-optimizations} and
24342 @option{-ffinite-math-only}. It is enabled by default when generating code for
24343 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
24344 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
24345 in effect.
24346
24347 @item -mpretend-cmove
24348 @opindex mpretend-cmove
24349 Prefer zero-displacement conditional branches for conditional move instruction
24350 patterns. This can result in faster code on the SH4 processor.
24351
24352 @item -mfdpic
24353 @opindex fdpic
24354 Generate code using the FDPIC ABI.
24355
24356 @end table
24357
24358 @node Solaris 2 Options
24359 @subsection Solaris 2 Options
24360 @cindex Solaris 2 options
24361
24362 These @samp{-m} options are supported on Solaris 2:
24363
24364 @table @gcctabopt
24365 @item -mclear-hwcap
24366 @opindex mclear-hwcap
24367 @option{-mclear-hwcap} tells the compiler to remove the hardware
24368 capabilities generated by the Solaris assembler. This is only necessary
24369 when object files use ISA extensions not supported by the current
24370 machine, but check at runtime whether or not to use them.
24371
24372 @item -mimpure-text
24373 @opindex mimpure-text
24374 @option{-mimpure-text}, used in addition to @option{-shared}, tells
24375 the compiler to not pass @option{-z text} to the linker when linking a
24376 shared object. Using this option, you can link position-dependent
24377 code into a shared object.
24378
24379 @option{-mimpure-text} suppresses the ``relocations remain against
24380 allocatable but non-writable sections'' linker error message.
24381 However, the necessary relocations trigger copy-on-write, and the
24382 shared object is not actually shared across processes. Instead of
24383 using @option{-mimpure-text}, you should compile all source code with
24384 @option{-fpic} or @option{-fPIC}.
24385
24386 @end table
24387
24388 These switches are supported in addition to the above on Solaris 2:
24389
24390 @table @gcctabopt
24391 @item -pthreads
24392 @opindex pthreads
24393 This is a synonym for @option{-pthread}.
24394 @end table
24395
24396 @node SPARC Options
24397 @subsection SPARC Options
24398 @cindex SPARC options
24399
24400 These @samp{-m} options are supported on the SPARC:
24401
24402 @table @gcctabopt
24403 @item -mno-app-regs
24404 @itemx -mapp-regs
24405 @opindex mno-app-regs
24406 @opindex mapp-regs
24407 Specify @option{-mapp-regs} to generate output using the global registers
24408 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
24409 global register 1, each global register 2 through 4 is then treated as an
24410 allocable register that is clobbered by function calls. This is the default.
24411
24412 To be fully SVR4 ABI-compliant at the cost of some performance loss,
24413 specify @option{-mno-app-regs}. You should compile libraries and system
24414 software with this option.
24415
24416 @item -mflat
24417 @itemx -mno-flat
24418 @opindex mflat
24419 @opindex mno-flat
24420 With @option{-mflat}, the compiler does not generate save/restore instructions
24421 and uses a ``flat'' or single register window model. This model is compatible
24422 with the regular register window model. The local registers and the input
24423 registers (0--5) are still treated as ``call-saved'' registers and are
24424 saved on the stack as needed.
24425
24426 With @option{-mno-flat} (the default), the compiler generates save/restore
24427 instructions (except for leaf functions). This is the normal operating mode.
24428
24429 @item -mfpu
24430 @itemx -mhard-float
24431 @opindex mfpu
24432 @opindex mhard-float
24433 Generate output containing floating-point instructions. This is the
24434 default.
24435
24436 @item -mno-fpu
24437 @itemx -msoft-float
24438 @opindex mno-fpu
24439 @opindex msoft-float
24440 Generate output containing library calls for floating point.
24441 @strong{Warning:} the requisite libraries are not available for all SPARC
24442 targets. Normally the facilities of the machine's usual C compiler are
24443 used, but this cannot be done directly in cross-compilation. You must make
24444 your own arrangements to provide suitable library functions for
24445 cross-compilation. The embedded targets @samp{sparc-*-aout} and
24446 @samp{sparclite-*-*} do provide software floating-point support.
24447
24448 @option{-msoft-float} changes the calling convention in the output file;
24449 therefore, it is only useful if you compile @emph{all} of a program with
24450 this option. In particular, you need to compile @file{libgcc.a}, the
24451 library that comes with GCC, with @option{-msoft-float} in order for
24452 this to work.
24453
24454 @item -mhard-quad-float
24455 @opindex mhard-quad-float
24456 Generate output containing quad-word (long double) floating-point
24457 instructions.
24458
24459 @item -msoft-quad-float
24460 @opindex msoft-quad-float
24461 Generate output containing library calls for quad-word (long double)
24462 floating-point instructions. The functions called are those specified
24463 in the SPARC ABI@. This is the default.
24464
24465 As of this writing, there are no SPARC implementations that have hardware
24466 support for the quad-word floating-point instructions. They all invoke
24467 a trap handler for one of these instructions, and then the trap handler
24468 emulates the effect of the instruction. Because of the trap handler overhead,
24469 this is much slower than calling the ABI library routines. Thus the
24470 @option{-msoft-quad-float} option is the default.
24471
24472 @item -mno-unaligned-doubles
24473 @itemx -munaligned-doubles
24474 @opindex mno-unaligned-doubles
24475 @opindex munaligned-doubles
24476 Assume that doubles have 8-byte alignment. This is the default.
24477
24478 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
24479 alignment only if they are contained in another type, or if they have an
24480 absolute address. Otherwise, it assumes they have 4-byte alignment.
24481 Specifying this option avoids some rare compatibility problems with code
24482 generated by other compilers. It is not the default because it results
24483 in a performance loss, especially for floating-point code.
24484
24485 @item -muser-mode
24486 @itemx -mno-user-mode
24487 @opindex muser-mode
24488 @opindex mno-user-mode
24489 Do not generate code that can only run in supervisor mode. This is relevant
24490 only for the @code{casa} instruction emitted for the LEON3 processor. This
24491 is the default.
24492
24493 @item -mfaster-structs
24494 @itemx -mno-faster-structs
24495 @opindex mfaster-structs
24496 @opindex mno-faster-structs
24497 With @option{-mfaster-structs}, the compiler assumes that structures
24498 should have 8-byte alignment. This enables the use of pairs of
24499 @code{ldd} and @code{std} instructions for copies in structure
24500 assignment, in place of twice as many @code{ld} and @code{st} pairs.
24501 However, the use of this changed alignment directly violates the SPARC
24502 ABI@. Thus, it's intended only for use on targets where the developer
24503 acknowledges that their resulting code is not directly in line with
24504 the rules of the ABI@.
24505
24506 @item -mstd-struct-return
24507 @itemx -mno-std-struct-return
24508 @opindex mstd-struct-return
24509 @opindex mno-std-struct-return
24510 With @option{-mstd-struct-return}, the compiler generates checking code
24511 in functions returning structures or unions to detect size mismatches
24512 between the two sides of function calls, as per the 32-bit ABI@.
24513
24514 The default is @option{-mno-std-struct-return}. This option has no effect
24515 in 64-bit mode.
24516
24517 @item -mlra
24518 @itemx -mno-lra
24519 @opindex mlra
24520 @opindex mno-lra
24521 Enable Local Register Allocation. This is the default for SPARC since GCC 7
24522 so @option{-mno-lra} needs to be passed to get old Reload.
24523
24524 @item -mcpu=@var{cpu_type}
24525 @opindex mcpu
24526 Set the instruction set, register set, and instruction scheduling parameters
24527 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
24528 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
24529 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
24530 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
24531 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
24532 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
24533
24534 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
24535 which selects the best architecture option for the host processor.
24536 @option{-mcpu=native} has no effect if GCC does not recognize
24537 the processor.
24538
24539 Default instruction scheduling parameters are used for values that select
24540 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
24541 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
24542
24543 Here is a list of each supported architecture and their supported
24544 implementations.
24545
24546 @table @asis
24547 @item v7
24548 cypress, leon3v7
24549
24550 @item v8
24551 supersparc, hypersparc, leon, leon3
24552
24553 @item sparclite
24554 f930, f934, sparclite86x
24555
24556 @item sparclet
24557 tsc701
24558
24559 @item v9
24560 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
24561 niagara7, m8
24562 @end table
24563
24564 By default (unless configured otherwise), GCC generates code for the V7
24565 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
24566 additionally optimizes it for the Cypress CY7C602 chip, as used in the
24567 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
24568 SPARCStation 1, 2, IPX etc.
24569
24570 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
24571 architecture. The only difference from V7 code is that the compiler emits
24572 the integer multiply and integer divide instructions which exist in SPARC-V8
24573 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
24574 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
24575 2000 series.
24576
24577 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
24578 the SPARC architecture. This adds the integer multiply, integer divide step
24579 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
24580 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
24581 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
24582 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
24583 MB86934 chip, which is the more recent SPARClite with FPU@.
24584
24585 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
24586 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
24587 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
24588 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
24589 optimizes it for the TEMIC SPARClet chip.
24590
24591 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
24592 architecture. This adds 64-bit integer and floating-point move instructions,
24593 3 additional floating-point condition code registers and conditional move
24594 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
24595 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
24596 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
24597 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
24598 @option{-mcpu=niagara}, the compiler additionally optimizes it for
24599 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
24600 additionally optimizes it for Sun UltraSPARC T2 chips. With
24601 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
24602 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
24603 additionally optimizes it for Sun UltraSPARC T4 chips. With
24604 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
24605 Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
24606 additionally optimizes it for Oracle M8 chips.
24607
24608 @item -mtune=@var{cpu_type}
24609 @opindex mtune
24610 Set the instruction scheduling parameters for machine type
24611 @var{cpu_type}, but do not set the instruction set or register set that the
24612 option @option{-mcpu=@var{cpu_type}} does.
24613
24614 The same values for @option{-mcpu=@var{cpu_type}} can be used for
24615 @option{-mtune=@var{cpu_type}}, but the only useful values are those
24616 that select a particular CPU implementation. Those are
24617 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
24618 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
24619 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
24620 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
24621 @samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
24622 and GNU/Linux toolchains, @samp{native} can also be used.
24623
24624 @item -mv8plus
24625 @itemx -mno-v8plus
24626 @opindex mv8plus
24627 @opindex mno-v8plus
24628 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
24629 difference from the V8 ABI is that the global and out registers are
24630 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
24631 mode for all SPARC-V9 processors.
24632
24633 @item -mvis
24634 @itemx -mno-vis
24635 @opindex mvis
24636 @opindex mno-vis
24637 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
24638 Visual Instruction Set extensions. The default is @option{-mno-vis}.
24639
24640 @item -mvis2
24641 @itemx -mno-vis2
24642 @opindex mvis2
24643 @opindex mno-vis2
24644 With @option{-mvis2}, GCC generates code that takes advantage of
24645 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
24646 default is @option{-mvis2} when targeting a cpu that supports such
24647 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
24648 also sets @option{-mvis}.
24649
24650 @item -mvis3
24651 @itemx -mno-vis3
24652 @opindex mvis3
24653 @opindex mno-vis3
24654 With @option{-mvis3}, GCC generates code that takes advantage of
24655 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
24656 default is @option{-mvis3} when targeting a cpu that supports such
24657 instructions, such as niagara-3 and later. Setting @option{-mvis3}
24658 also sets @option{-mvis2} and @option{-mvis}.
24659
24660 @item -mvis4
24661 @itemx -mno-vis4
24662 @opindex mvis4
24663 @opindex mno-vis4
24664 With @option{-mvis4}, GCC generates code that takes advantage of
24665 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
24666 default is @option{-mvis4} when targeting a cpu that supports such
24667 instructions, such as niagara-7 and later. Setting @option{-mvis4}
24668 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
24669
24670 @item -mvis4b
24671 @itemx -mno-vis4b
24672 @opindex mvis4b
24673 @opindex mno-vis4b
24674 With @option{-mvis4b}, GCC generates code that takes advantage of
24675 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
24676 the additional VIS instructions introduced in the Oracle SPARC
24677 Architecture 2017. The default is @option{-mvis4b} when targeting a
24678 cpu that supports such instructions, such as m8 and later. Setting
24679 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
24680 @option{-mvis2} and @option{-mvis}.
24681
24682 @item -mcbcond
24683 @itemx -mno-cbcond
24684 @opindex mcbcond
24685 @opindex mno-cbcond
24686 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
24687 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
24688 when targeting a CPU that supports such instructions, such as Niagara-4 and
24689 later.
24690
24691 @item -mfmaf
24692 @itemx -mno-fmaf
24693 @opindex mfmaf
24694 @opindex mno-fmaf
24695 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
24696 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
24697 when targeting a CPU that supports such instructions, such as Niagara-3 and
24698 later.
24699
24700 @item -mfsmuld
24701 @itemx -mno-fsmuld
24702 @opindex mfsmuld
24703 @opindex mno-fsmuld
24704 With @option{-mfsmuld}, GCC generates code that takes advantage of the
24705 Floating-point Multiply Single to Double (FsMULd) instruction. The default is
24706 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
24707 or V9 with FPU except @option{-mcpu=leon}.
24708
24709 @item -mpopc
24710 @itemx -mno-popc
24711 @opindex mpopc
24712 @opindex mno-popc
24713 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
24714 Population Count instruction. The default is @option{-mpopc}
24715 when targeting a CPU that supports such an instruction, such as Niagara-2 and
24716 later.
24717
24718 @item -msubxc
24719 @itemx -mno-subxc
24720 @opindex msubxc
24721 @opindex mno-subxc
24722 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
24723 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
24724 when targeting a CPU that supports such an instruction, such as Niagara-7 and
24725 later.
24726
24727 @item -mfix-at697f
24728 @opindex mfix-at697f
24729 Enable the documented workaround for the single erratum of the Atmel AT697F
24730 processor (which corresponds to erratum #13 of the AT697E processor).
24731
24732 @item -mfix-ut699
24733 @opindex mfix-ut699
24734 Enable the documented workarounds for the floating-point errata and the data
24735 cache nullify errata of the UT699 processor.
24736
24737 @item -mfix-ut700
24738 @opindex mfix-ut700
24739 Enable the documented workaround for the back-to-back store errata of
24740 the UT699E/UT700 processor.
24741
24742 @item -mfix-gr712rc
24743 @opindex mfix-gr712rc
24744 Enable the documented workaround for the back-to-back store errata of
24745 the GR712RC processor.
24746 @end table
24747
24748 These @samp{-m} options are supported in addition to the above
24749 on SPARC-V9 processors in 64-bit environments:
24750
24751 @table @gcctabopt
24752 @item -m32
24753 @itemx -m64
24754 @opindex m32
24755 @opindex m64
24756 Generate code for a 32-bit or 64-bit environment.
24757 The 32-bit environment sets int, long and pointer to 32 bits.
24758 The 64-bit environment sets int to 32 bits and long and pointer
24759 to 64 bits.
24760
24761 @item -mcmodel=@var{which}
24762 @opindex mcmodel
24763 Set the code model to one of
24764
24765 @table @samp
24766 @item medlow
24767 The Medium/Low code model: 64-bit addresses, programs
24768 must be linked in the low 32 bits of memory. Programs can be statically
24769 or dynamically linked.
24770
24771 @item medmid
24772 The Medium/Middle code model: 64-bit addresses, programs
24773 must be linked in the low 44 bits of memory, the text and data segments must
24774 be less than 2GB in size and the data segment must be located within 2GB of
24775 the text segment.
24776
24777 @item medany
24778 The Medium/Anywhere code model: 64-bit addresses, programs
24779 may be linked anywhere in memory, the text and data segments must be less
24780 than 2GB in size and the data segment must be located within 2GB of the
24781 text segment.
24782
24783 @item embmedany
24784 The Medium/Anywhere code model for embedded systems:
24785 64-bit addresses, the text and data segments must be less than 2GB in
24786 size, both starting anywhere in memory (determined at link time). The
24787 global register %g4 points to the base of the data segment. Programs
24788 are statically linked and PIC is not supported.
24789 @end table
24790
24791 @item -mmemory-model=@var{mem-model}
24792 @opindex mmemory-model
24793 Set the memory model in force on the processor to one of
24794
24795 @table @samp
24796 @item default
24797 The default memory model for the processor and operating system.
24798
24799 @item rmo
24800 Relaxed Memory Order
24801
24802 @item pso
24803 Partial Store Order
24804
24805 @item tso
24806 Total Store Order
24807
24808 @item sc
24809 Sequential Consistency
24810 @end table
24811
24812 These memory models are formally defined in Appendix D of the SPARC-V9
24813 architecture manual, as set in the processor's @code{PSTATE.MM} field.
24814
24815 @item -mstack-bias
24816 @itemx -mno-stack-bias
24817 @opindex mstack-bias
24818 @opindex mno-stack-bias
24819 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
24820 frame pointer if present, are offset by @minus{}2047 which must be added back
24821 when making stack frame references. This is the default in 64-bit mode.
24822 Otherwise, assume no such offset is present.
24823 @end table
24824
24825 @node SPU Options
24826 @subsection SPU Options
24827 @cindex SPU options
24828
24829 These @samp{-m} options are supported on the SPU:
24830
24831 @table @gcctabopt
24832 @item -mwarn-reloc
24833 @itemx -merror-reloc
24834 @opindex mwarn-reloc
24835 @opindex merror-reloc
24836
24837 The loader for SPU does not handle dynamic relocations. By default, GCC
24838 gives an error when it generates code that requires a dynamic
24839 relocation. @option{-mno-error-reloc} disables the error,
24840 @option{-mwarn-reloc} generates a warning instead.
24841
24842 @item -msafe-dma
24843 @itemx -munsafe-dma
24844 @opindex msafe-dma
24845 @opindex munsafe-dma
24846
24847 Instructions that initiate or test completion of DMA must not be
24848 reordered with respect to loads and stores of the memory that is being
24849 accessed.
24850 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
24851 memory accesses, but that can lead to inefficient code in places where the
24852 memory is known to not change. Rather than mark the memory as volatile,
24853 you can use @option{-msafe-dma} to tell the compiler to treat
24854 the DMA instructions as potentially affecting all memory.
24855
24856 @item -mbranch-hints
24857 @opindex mbranch-hints
24858
24859 By default, GCC generates a branch hint instruction to avoid
24860 pipeline stalls for always-taken or probably-taken branches. A hint
24861 is not generated closer than 8 instructions away from its branch.
24862 There is little reason to disable them, except for debugging purposes,
24863 or to make an object a little bit smaller.
24864
24865 @item -msmall-mem
24866 @itemx -mlarge-mem
24867 @opindex msmall-mem
24868 @opindex mlarge-mem
24869
24870 By default, GCC generates code assuming that addresses are never larger
24871 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
24872 a full 32-bit address.
24873
24874 @item -mstdmain
24875 @opindex mstdmain
24876
24877 By default, GCC links against startup code that assumes the SPU-style
24878 main function interface (which has an unconventional parameter list).
24879 With @option{-mstdmain}, GCC links your program against startup
24880 code that assumes a C99-style interface to @code{main}, including a
24881 local copy of @code{argv} strings.
24882
24883 @item -mfixed-range=@var{register-range}
24884 @opindex mfixed-range
24885 Generate code treating the given register range as fixed registers.
24886 A fixed register is one that the register allocator cannot use. This is
24887 useful when compiling kernel code. A register range is specified as
24888 two registers separated by a dash. Multiple register ranges can be
24889 specified separated by a comma.
24890
24891 @item -mea32
24892 @itemx -mea64
24893 @opindex mea32
24894 @opindex mea64
24895 Compile code assuming that pointers to the PPU address space accessed
24896 via the @code{__ea} named address space qualifier are either 32 or 64
24897 bits wide. The default is 32 bits. As this is an ABI-changing option,
24898 all object code in an executable must be compiled with the same setting.
24899
24900 @item -maddress-space-conversion
24901 @itemx -mno-address-space-conversion
24902 @opindex maddress-space-conversion
24903 @opindex mno-address-space-conversion
24904 Allow/disallow treating the @code{__ea} address space as superset
24905 of the generic address space. This enables explicit type casts
24906 between @code{__ea} and generic pointer as well as implicit
24907 conversions of generic pointers to @code{__ea} pointers. The
24908 default is to allow address space pointer conversions.
24909
24910 @item -mcache-size=@var{cache-size}
24911 @opindex mcache-size
24912 This option controls the version of libgcc that the compiler links to an
24913 executable and selects a software-managed cache for accessing variables
24914 in the @code{__ea} address space with a particular cache size. Possible
24915 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
24916 and @samp{128}. The default cache size is 64KB.
24917
24918 @item -matomic-updates
24919 @itemx -mno-atomic-updates
24920 @opindex matomic-updates
24921 @opindex mno-atomic-updates
24922 This option controls the version of libgcc that the compiler links to an
24923 executable and selects whether atomic updates to the software-managed
24924 cache of PPU-side variables are used. If you use atomic updates, changes
24925 to a PPU variable from SPU code using the @code{__ea} named address space
24926 qualifier do not interfere with changes to other PPU variables residing
24927 in the same cache line from PPU code. If you do not use atomic updates,
24928 such interference may occur; however, writing back cache lines is
24929 more efficient. The default behavior is to use atomic updates.
24930
24931 @item -mdual-nops
24932 @itemx -mdual-nops=@var{n}
24933 @opindex mdual-nops
24934 By default, GCC inserts NOPs to increase dual issue when it expects
24935 it to increase performance. @var{n} can be a value from 0 to 10. A
24936 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
24937 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
24938
24939 @item -mhint-max-nops=@var{n}
24940 @opindex mhint-max-nops
24941 Maximum number of NOPs to insert for a branch hint. A branch hint must
24942 be at least 8 instructions away from the branch it is affecting. GCC
24943 inserts up to @var{n} NOPs to enforce this, otherwise it does not
24944 generate the branch hint.
24945
24946 @item -mhint-max-distance=@var{n}
24947 @opindex mhint-max-distance
24948 The encoding of the branch hint instruction limits the hint to be within
24949 256 instructions of the branch it is affecting. By default, GCC makes
24950 sure it is within 125.
24951
24952 @item -msafe-hints
24953 @opindex msafe-hints
24954 Work around a hardware bug that causes the SPU to stall indefinitely.
24955 By default, GCC inserts the @code{hbrp} instruction to make sure
24956 this stall won't happen.
24957
24958 @end table
24959
24960 @node System V Options
24961 @subsection Options for System V
24962
24963 These additional options are available on System V Release 4 for
24964 compatibility with other compilers on those systems:
24965
24966 @table @gcctabopt
24967 @item -G
24968 @opindex G
24969 Create a shared object.
24970 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
24971
24972 @item -Qy
24973 @opindex Qy
24974 Identify the versions of each tool used by the compiler, in a
24975 @code{.ident} assembler directive in the output.
24976
24977 @item -Qn
24978 @opindex Qn
24979 Refrain from adding @code{.ident} directives to the output file (this is
24980 the default).
24981
24982 @item -YP,@var{dirs}
24983 @opindex YP
24984 Search the directories @var{dirs}, and no others, for libraries
24985 specified with @option{-l}.
24986
24987 @item -Ym,@var{dir}
24988 @opindex Ym
24989 Look in the directory @var{dir} to find the M4 preprocessor.
24990 The assembler uses this option.
24991 @c This is supposed to go with a -Yd for predefined M4 macro files, but
24992 @c the generic assembler that comes with Solaris takes just -Ym.
24993 @end table
24994
24995 @node TILE-Gx Options
24996 @subsection TILE-Gx Options
24997 @cindex TILE-Gx options
24998
24999 These @samp{-m} options are supported on the TILE-Gx:
25000
25001 @table @gcctabopt
25002 @item -mcmodel=small
25003 @opindex mcmodel=small
25004 Generate code for the small model. The distance for direct calls is
25005 limited to 500M in either direction. PC-relative addresses are 32
25006 bits. Absolute addresses support the full address range.
25007
25008 @item -mcmodel=large
25009 @opindex mcmodel=large
25010 Generate code for the large model. There is no limitation on call
25011 distance, pc-relative addresses, or absolute addresses.
25012
25013 @item -mcpu=@var{name}
25014 @opindex mcpu
25015 Selects the type of CPU to be targeted. Currently the only supported
25016 type is @samp{tilegx}.
25017
25018 @item -m32
25019 @itemx -m64
25020 @opindex m32
25021 @opindex m64
25022 Generate code for a 32-bit or 64-bit environment. The 32-bit
25023 environment sets int, long, and pointer to 32 bits. The 64-bit
25024 environment sets int to 32 bits and long and pointer to 64 bits.
25025
25026 @item -mbig-endian
25027 @itemx -mlittle-endian
25028 @opindex mbig-endian
25029 @opindex mlittle-endian
25030 Generate code in big/little endian mode, respectively.
25031 @end table
25032
25033 @node TILEPro Options
25034 @subsection TILEPro Options
25035 @cindex TILEPro options
25036
25037 These @samp{-m} options are supported on the TILEPro:
25038
25039 @table @gcctabopt
25040 @item -mcpu=@var{name}
25041 @opindex mcpu
25042 Selects the type of CPU to be targeted. Currently the only supported
25043 type is @samp{tilepro}.
25044
25045 @item -m32
25046 @opindex m32
25047 Generate code for a 32-bit environment, which sets int, long, and
25048 pointer to 32 bits. This is the only supported behavior so the flag
25049 is essentially ignored.
25050 @end table
25051
25052 @node V850 Options
25053 @subsection V850 Options
25054 @cindex V850 Options
25055
25056 These @samp{-m} options are defined for V850 implementations:
25057
25058 @table @gcctabopt
25059 @item -mlong-calls
25060 @itemx -mno-long-calls
25061 @opindex mlong-calls
25062 @opindex mno-long-calls
25063 Treat all calls as being far away (near). If calls are assumed to be
25064 far away, the compiler always loads the function's address into a
25065 register, and calls indirect through the pointer.
25066
25067 @item -mno-ep
25068 @itemx -mep
25069 @opindex mno-ep
25070 @opindex mep
25071 Do not optimize (do optimize) basic blocks that use the same index
25072 pointer 4 or more times to copy pointer into the @code{ep} register, and
25073 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
25074 option is on by default if you optimize.
25075
25076 @item -mno-prolog-function
25077 @itemx -mprolog-function
25078 @opindex mno-prolog-function
25079 @opindex mprolog-function
25080 Do not use (do use) external functions to save and restore registers
25081 at the prologue and epilogue of a function. The external functions
25082 are slower, but use less code space if more than one function saves
25083 the same number of registers. The @option{-mprolog-function} option
25084 is on by default if you optimize.
25085
25086 @item -mspace
25087 @opindex mspace
25088 Try to make the code as small as possible. At present, this just turns
25089 on the @option{-mep} and @option{-mprolog-function} options.
25090
25091 @item -mtda=@var{n}
25092 @opindex mtda
25093 Put static or global variables whose size is @var{n} bytes or less into
25094 the tiny data area that register @code{ep} points to. The tiny data
25095 area can hold up to 256 bytes in total (128 bytes for byte references).
25096
25097 @item -msda=@var{n}
25098 @opindex msda
25099 Put static or global variables whose size is @var{n} bytes or less into
25100 the small data area that register @code{gp} points to. The small data
25101 area can hold up to 64 kilobytes.
25102
25103 @item -mzda=@var{n}
25104 @opindex mzda
25105 Put static or global variables whose size is @var{n} bytes or less into
25106 the first 32 kilobytes of memory.
25107
25108 @item -mv850
25109 @opindex mv850
25110 Specify that the target processor is the V850.
25111
25112 @item -mv850e3v5
25113 @opindex mv850e3v5
25114 Specify that the target processor is the V850E3V5. The preprocessor
25115 constant @code{__v850e3v5__} is defined if this option is used.
25116
25117 @item -mv850e2v4
25118 @opindex mv850e2v4
25119 Specify that the target processor is the V850E3V5. This is an alias for
25120 the @option{-mv850e3v5} option.
25121
25122 @item -mv850e2v3
25123 @opindex mv850e2v3
25124 Specify that the target processor is the V850E2V3. The preprocessor
25125 constant @code{__v850e2v3__} is defined if this option is used.
25126
25127 @item -mv850e2
25128 @opindex mv850e2
25129 Specify that the target processor is the V850E2. The preprocessor
25130 constant @code{__v850e2__} is defined if this option is used.
25131
25132 @item -mv850e1
25133 @opindex mv850e1
25134 Specify that the target processor is the V850E1. The preprocessor
25135 constants @code{__v850e1__} and @code{__v850e__} are defined if
25136 this option is used.
25137
25138 @item -mv850es
25139 @opindex mv850es
25140 Specify that the target processor is the V850ES. This is an alias for
25141 the @option{-mv850e1} option.
25142
25143 @item -mv850e
25144 @opindex mv850e
25145 Specify that the target processor is the V850E@. The preprocessor
25146 constant @code{__v850e__} is defined if this option is used.
25147
25148 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
25149 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
25150 are defined then a default target processor is chosen and the
25151 relevant @samp{__v850*__} preprocessor constant is defined.
25152
25153 The preprocessor constants @code{__v850} and @code{__v851__} are always
25154 defined, regardless of which processor variant is the target.
25155
25156 @item -mdisable-callt
25157 @itemx -mno-disable-callt
25158 @opindex mdisable-callt
25159 @opindex mno-disable-callt
25160 This option suppresses generation of the @code{CALLT} instruction for the
25161 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
25162 architecture.
25163
25164 This option is enabled by default when the RH850 ABI is
25165 in use (see @option{-mrh850-abi}), and disabled by default when the
25166 GCC ABI is in use. If @code{CALLT} instructions are being generated
25167 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
25168
25169 @item -mrelax
25170 @itemx -mno-relax
25171 @opindex mrelax
25172 @opindex mno-relax
25173 Pass on (or do not pass on) the @option{-mrelax} command-line option
25174 to the assembler.
25175
25176 @item -mlong-jumps
25177 @itemx -mno-long-jumps
25178 @opindex mlong-jumps
25179 @opindex mno-long-jumps
25180 Disable (or re-enable) the generation of PC-relative jump instructions.
25181
25182 @item -msoft-float
25183 @itemx -mhard-float
25184 @opindex msoft-float
25185 @opindex mhard-float
25186 Disable (or re-enable) the generation of hardware floating point
25187 instructions. This option is only significant when the target
25188 architecture is @samp{V850E2V3} or higher. If hardware floating point
25189 instructions are being generated then the C preprocessor symbol
25190 @code{__FPU_OK__} is defined, otherwise the symbol
25191 @code{__NO_FPU__} is defined.
25192
25193 @item -mloop
25194 @opindex mloop
25195 Enables the use of the e3v5 LOOP instruction. The use of this
25196 instruction is not enabled by default when the e3v5 architecture is
25197 selected because its use is still experimental.
25198
25199 @item -mrh850-abi
25200 @itemx -mghs
25201 @opindex mrh850-abi
25202 @opindex mghs
25203 Enables support for the RH850 version of the V850 ABI. This is the
25204 default. With this version of the ABI the following rules apply:
25205
25206 @itemize
25207 @item
25208 Integer sized structures and unions are returned via a memory pointer
25209 rather than a register.
25210
25211 @item
25212 Large structures and unions (more than 8 bytes in size) are passed by
25213 value.
25214
25215 @item
25216 Functions are aligned to 16-bit boundaries.
25217
25218 @item
25219 The @option{-m8byte-align} command-line option is supported.
25220
25221 @item
25222 The @option{-mdisable-callt} command-line option is enabled by
25223 default. The @option{-mno-disable-callt} command-line option is not
25224 supported.
25225 @end itemize
25226
25227 When this version of the ABI is enabled the C preprocessor symbol
25228 @code{__V850_RH850_ABI__} is defined.
25229
25230 @item -mgcc-abi
25231 @opindex mgcc-abi
25232 Enables support for the old GCC version of the V850 ABI. With this
25233 version of the ABI the following rules apply:
25234
25235 @itemize
25236 @item
25237 Integer sized structures and unions are returned in register @code{r10}.
25238
25239 @item
25240 Large structures and unions (more than 8 bytes in size) are passed by
25241 reference.
25242
25243 @item
25244 Functions are aligned to 32-bit boundaries, unless optimizing for
25245 size.
25246
25247 @item
25248 The @option{-m8byte-align} command-line option is not supported.
25249
25250 @item
25251 The @option{-mdisable-callt} command-line option is supported but not
25252 enabled by default.
25253 @end itemize
25254
25255 When this version of the ABI is enabled the C preprocessor symbol
25256 @code{__V850_GCC_ABI__} is defined.
25257
25258 @item -m8byte-align
25259 @itemx -mno-8byte-align
25260 @opindex m8byte-align
25261 @opindex mno-8byte-align
25262 Enables support for @code{double} and @code{long long} types to be
25263 aligned on 8-byte boundaries. The default is to restrict the
25264 alignment of all objects to at most 4-bytes. When
25265 @option{-m8byte-align} is in effect the C preprocessor symbol
25266 @code{__V850_8BYTE_ALIGN__} is defined.
25267
25268 @item -mbig-switch
25269 @opindex mbig-switch
25270 Generate code suitable for big switch tables. Use this option only if
25271 the assembler/linker complain about out of range branches within a switch
25272 table.
25273
25274 @item -mapp-regs
25275 @opindex mapp-regs
25276 This option causes r2 and r5 to be used in the code generated by
25277 the compiler. This setting is the default.
25278
25279 @item -mno-app-regs
25280 @opindex mno-app-regs
25281 This option causes r2 and r5 to be treated as fixed registers.
25282
25283 @end table
25284
25285 @node VAX Options
25286 @subsection VAX Options
25287 @cindex VAX options
25288
25289 These @samp{-m} options are defined for the VAX:
25290
25291 @table @gcctabopt
25292 @item -munix
25293 @opindex munix
25294 Do not output certain jump instructions (@code{aobleq} and so on)
25295 that the Unix assembler for the VAX cannot handle across long
25296 ranges.
25297
25298 @item -mgnu
25299 @opindex mgnu
25300 Do output those jump instructions, on the assumption that the
25301 GNU assembler is being used.
25302
25303 @item -mg
25304 @opindex mg
25305 Output code for G-format floating-point numbers instead of D-format.
25306 @end table
25307
25308 @node Visium Options
25309 @subsection Visium Options
25310 @cindex Visium options
25311
25312 @table @gcctabopt
25313
25314 @item -mdebug
25315 @opindex mdebug
25316 A program which performs file I/O and is destined to run on an MCM target
25317 should be linked with this option. It causes the libraries libc.a and
25318 libdebug.a to be linked. The program should be run on the target under
25319 the control of the GDB remote debugging stub.
25320
25321 @item -msim
25322 @opindex msim
25323 A program which performs file I/O and is destined to run on the simulator
25324 should be linked with option. This causes libraries libc.a and libsim.a to
25325 be linked.
25326
25327 @item -mfpu
25328 @itemx -mhard-float
25329 @opindex mfpu
25330 @opindex mhard-float
25331 Generate code containing floating-point instructions. This is the
25332 default.
25333
25334 @item -mno-fpu
25335 @itemx -msoft-float
25336 @opindex mno-fpu
25337 @opindex msoft-float
25338 Generate code containing library calls for floating-point.
25339
25340 @option{-msoft-float} changes the calling convention in the output file;
25341 therefore, it is only useful if you compile @emph{all} of a program with
25342 this option. In particular, you need to compile @file{libgcc.a}, the
25343 library that comes with GCC, with @option{-msoft-float} in order for
25344 this to work.
25345
25346 @item -mcpu=@var{cpu_type}
25347 @opindex mcpu
25348 Set the instruction set, register set, and instruction scheduling parameters
25349 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
25350 @samp{mcm}, @samp{gr5} and @samp{gr6}.
25351
25352 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
25353
25354 By default (unless configured otherwise), GCC generates code for the GR5
25355 variant of the Visium architecture.
25356
25357 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
25358 architecture. The only difference from GR5 code is that the compiler will
25359 generate block move instructions.
25360
25361 @item -mtune=@var{cpu_type}
25362 @opindex mtune
25363 Set the instruction scheduling parameters for machine type @var{cpu_type},
25364 but do not set the instruction set or register set that the option
25365 @option{-mcpu=@var{cpu_type}} would.
25366
25367 @item -msv-mode
25368 @opindex msv-mode
25369 Generate code for the supervisor mode, where there are no restrictions on
25370 the access to general registers. This is the default.
25371
25372 @item -muser-mode
25373 @opindex muser-mode
25374 Generate code for the user mode, where the access to some general registers
25375 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
25376 mode; on the GR6, only registers r29 to r31 are affected.
25377 @end table
25378
25379 @node VMS Options
25380 @subsection VMS Options
25381
25382 These @samp{-m} options are defined for the VMS implementations:
25383
25384 @table @gcctabopt
25385 @item -mvms-return-codes
25386 @opindex mvms-return-codes
25387 Return VMS condition codes from @code{main}. The default is to return POSIX-style
25388 condition (e.g.@ error) codes.
25389
25390 @item -mdebug-main=@var{prefix}
25391 @opindex mdebug-main=@var{prefix}
25392 Flag the first routine whose name starts with @var{prefix} as the main
25393 routine for the debugger.
25394
25395 @item -mmalloc64
25396 @opindex mmalloc64
25397 Default to 64-bit memory allocation routines.
25398
25399 @item -mpointer-size=@var{size}
25400 @opindex mpointer-size=@var{size}
25401 Set the default size of pointers. Possible options for @var{size} are
25402 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
25403 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
25404 The later option disables @code{pragma pointer_size}.
25405 @end table
25406
25407 @node VxWorks Options
25408 @subsection VxWorks Options
25409 @cindex VxWorks Options
25410
25411 The options in this section are defined for all VxWorks targets.
25412 Options specific to the target hardware are listed with the other
25413 options for that target.
25414
25415 @table @gcctabopt
25416 @item -mrtp
25417 @opindex mrtp
25418 GCC can generate code for both VxWorks kernels and real time processes
25419 (RTPs). This option switches from the former to the latter. It also
25420 defines the preprocessor macro @code{__RTP__}.
25421
25422 @item -non-static
25423 @opindex non-static
25424 Link an RTP executable against shared libraries rather than static
25425 libraries. The options @option{-static} and @option{-shared} can
25426 also be used for RTPs (@pxref{Link Options}); @option{-static}
25427 is the default.
25428
25429 @item -Bstatic
25430 @itemx -Bdynamic
25431 @opindex Bstatic
25432 @opindex Bdynamic
25433 These options are passed down to the linker. They are defined for
25434 compatibility with Diab.
25435
25436 @item -Xbind-lazy
25437 @opindex Xbind-lazy
25438 Enable lazy binding of function calls. This option is equivalent to
25439 @option{-Wl,-z,now} and is defined for compatibility with Diab.
25440
25441 @item -Xbind-now
25442 @opindex Xbind-now
25443 Disable lazy binding of function calls. This option is the default and
25444 is defined for compatibility with Diab.
25445 @end table
25446
25447 @node x86 Options
25448 @subsection x86 Options
25449 @cindex x86 Options
25450
25451 These @samp{-m} options are defined for the x86 family of computers.
25452
25453 @table @gcctabopt
25454
25455 @item -march=@var{cpu-type}
25456 @opindex march
25457 Generate instructions for the machine type @var{cpu-type}. In contrast to
25458 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
25459 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
25460 to generate code that may not run at all on processors other than the one
25461 indicated. Specifying @option{-march=@var{cpu-type}} implies
25462 @option{-mtune=@var{cpu-type}}.
25463
25464 The choices for @var{cpu-type} are:
25465
25466 @table @samp
25467 @item native
25468 This selects the CPU to generate code for at compilation time by determining
25469 the processor type of the compiling machine. Using @option{-march=native}
25470 enables all instruction subsets supported by the local machine (hence
25471 the result might not run on different machines). Using @option{-mtune=native}
25472 produces code optimized for the local machine under the constraints
25473 of the selected instruction set.
25474
25475 @item i386
25476 Original Intel i386 CPU@.
25477
25478 @item i486
25479 Intel i486 CPU@. (No scheduling is implemented for this chip.)
25480
25481 @item i586
25482 @itemx pentium
25483 Intel Pentium CPU with no MMX support.
25484
25485 @item lakemont
25486 Intel Lakemont MCU, based on Intel Pentium CPU.
25487
25488 @item pentium-mmx
25489 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
25490
25491 @item pentiumpro
25492 Intel Pentium Pro CPU@.
25493
25494 @item i686
25495 When used with @option{-march}, the Pentium Pro
25496 instruction set is used, so the code runs on all i686 family chips.
25497 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
25498
25499 @item pentium2
25500 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
25501 support.
25502
25503 @item pentium3
25504 @itemx pentium3m
25505 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
25506 set support.
25507
25508 @item pentium-m
25509 Intel Pentium M; low-power version of Intel Pentium III CPU
25510 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
25511
25512 @item pentium4
25513 @itemx pentium4m
25514 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
25515
25516 @item prescott
25517 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
25518 set support.
25519
25520 @item nocona
25521 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
25522 SSE2 and SSE3 instruction set support.
25523
25524 @item core2
25525 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
25526 instruction set support.
25527
25528 @item nehalem
25529 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25530 SSE4.1, SSE4.2 and POPCNT instruction set support.
25531
25532 @item westmere
25533 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25534 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
25535
25536 @item sandybridge
25537 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25538 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
25539
25540 @item ivybridge
25541 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
25542 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
25543 instruction set support.
25544
25545 @item haswell
25546 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25547 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25548 BMI, BMI2 and F16C instruction set support.
25549
25550 @item broadwell
25551 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25552 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25553 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
25554
25555 @item skylake
25556 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25557 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25558 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
25559 XSAVES instruction set support.
25560
25561 @item bonnell
25562 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
25563 instruction set support.
25564
25565 @item silvermont
25566 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
25567 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
25568
25569 @item knl
25570 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
25571 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25572 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
25573 AVX512CD instruction set support.
25574
25575 @item knm
25576 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
25577 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25578 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
25579 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
25580
25581 @item skylake-avx512
25582 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
25583 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
25584 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
25585 AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
25586
25587 @item cannonlake
25588 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
25589 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
25590 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
25591 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
25592 AVX512IFMA, SHA, CLWB and UMIP instruction set support.
25593
25594 @item k6
25595 AMD K6 CPU with MMX instruction set support.
25596
25597 @item k6-2
25598 @itemx k6-3
25599 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
25600
25601 @item athlon
25602 @itemx athlon-tbird
25603 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
25604 support.
25605
25606 @item athlon-4
25607 @itemx athlon-xp
25608 @itemx athlon-mp
25609 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
25610 instruction set support.
25611
25612 @item k8
25613 @itemx opteron
25614 @itemx athlon64
25615 @itemx athlon-fx
25616 Processors based on the AMD K8 core with x86-64 instruction set support,
25617 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
25618 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
25619 instruction set extensions.)
25620
25621 @item k8-sse3
25622 @itemx opteron-sse3
25623 @itemx athlon64-sse3
25624 Improved versions of AMD K8 cores with SSE3 instruction set support.
25625
25626 @item amdfam10
25627 @itemx barcelona
25628 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
25629 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
25630 instruction set extensions.)
25631
25632 @item bdver1
25633 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
25634 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
25635 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
25636 @item bdver2
25637 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
25638 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
25639 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
25640 extensions.)
25641 @item bdver3
25642 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
25643 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
25644 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
25645 64-bit instruction set extensions.
25646 @item bdver4
25647 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
25648 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
25649 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
25650 SSE4.2, ABM and 64-bit instruction set extensions.
25651
25652 @item znver1
25653 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
25654 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
25655 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
25656 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
25657 instruction set extensions.
25658
25659 @item btver1
25660 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
25661 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
25662 instruction set extensions.)
25663
25664 @item btver2
25665 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
25666 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
25667 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
25668
25669 @item winchip-c6
25670 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
25671 set support.
25672
25673 @item winchip2
25674 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
25675 instruction set support.
25676
25677 @item c3
25678 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
25679 (No scheduling is implemented for this chip.)
25680
25681 @item c3-2
25682 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
25683 (No scheduling is implemented for this chip.)
25684
25685 @item c7
25686 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
25687 (No scheduling is implemented for this chip.)
25688
25689 @item samuel-2
25690 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
25691 (No scheduling is implemented for this chip.)
25692
25693 @item nehemiah
25694 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
25695 (No scheduling is implemented for this chip.)
25696
25697 @item esther
25698 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
25699 (No scheduling is implemented for this chip.)
25700
25701 @item eden-x2
25702 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
25703 (No scheduling is implemented for this chip.)
25704
25705 @item eden-x4
25706 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
25707 AVX and AVX2 instruction set support.
25708 (No scheduling is implemented for this chip.)
25709
25710 @item nano
25711 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25712 instruction set support.
25713 (No scheduling is implemented for this chip.)
25714
25715 @item nano-1000
25716 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25717 instruction set support.
25718 (No scheduling is implemented for this chip.)
25719
25720 @item nano-2000
25721 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
25722 instruction set support.
25723 (No scheduling is implemented for this chip.)
25724
25725 @item nano-3000
25726 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25727 instruction set support.
25728 (No scheduling is implemented for this chip.)
25729
25730 @item nano-x2
25731 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25732 instruction set support.
25733 (No scheduling is implemented for this chip.)
25734
25735 @item nano-x4
25736 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
25737 instruction set support.
25738 (No scheduling is implemented for this chip.)
25739
25740 @item geode
25741 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
25742 @end table
25743
25744 @item -mtune=@var{cpu-type}
25745 @opindex mtune
25746 Tune to @var{cpu-type} everything applicable about the generated code, except
25747 for the ABI and the set of available instructions.
25748 While picking a specific @var{cpu-type} schedules things appropriately
25749 for that particular chip, the compiler does not generate any code that
25750 cannot run on the default machine type unless you use a
25751 @option{-march=@var{cpu-type}} option.
25752 For example, if GCC is configured for i686-pc-linux-gnu
25753 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
25754 but still runs on i686 machines.
25755
25756 The choices for @var{cpu-type} are the same as for @option{-march}.
25757 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
25758
25759 @table @samp
25760 @item generic
25761 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
25762 If you know the CPU on which your code will run, then you should use
25763 the corresponding @option{-mtune} or @option{-march} option instead of
25764 @option{-mtune=generic}. But, if you do not know exactly what CPU users
25765 of your application will have, then you should use this option.
25766
25767 As new processors are deployed in the marketplace, the behavior of this
25768 option will change. Therefore, if you upgrade to a newer version of
25769 GCC, code generation controlled by this option will change to reflect
25770 the processors
25771 that are most common at the time that version of GCC is released.
25772
25773 There is no @option{-march=generic} option because @option{-march}
25774 indicates the instruction set the compiler can use, and there is no
25775 generic instruction set applicable to all processors. In contrast,
25776 @option{-mtune} indicates the processor (or, in this case, collection of
25777 processors) for which the code is optimized.
25778
25779 @item intel
25780 Produce code optimized for the most current Intel processors, which are
25781 Haswell and Silvermont for this version of GCC. If you know the CPU
25782 on which your code will run, then you should use the corresponding
25783 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
25784 But, if you want your application performs better on both Haswell and
25785 Silvermont, then you should use this option.
25786
25787 As new Intel processors are deployed in the marketplace, the behavior of
25788 this option will change. Therefore, if you upgrade to a newer version of
25789 GCC, code generation controlled by this option will change to reflect
25790 the most current Intel processors at the time that version of GCC is
25791 released.
25792
25793 There is no @option{-march=intel} option because @option{-march} indicates
25794 the instruction set the compiler can use, and there is no common
25795 instruction set applicable to all processors. In contrast,
25796 @option{-mtune} indicates the processor (or, in this case, collection of
25797 processors) for which the code is optimized.
25798 @end table
25799
25800 @item -mcpu=@var{cpu-type}
25801 @opindex mcpu
25802 A deprecated synonym for @option{-mtune}.
25803
25804 @item -mfpmath=@var{unit}
25805 @opindex mfpmath
25806 Generate floating-point arithmetic for selected unit @var{unit}. The choices
25807 for @var{unit} are:
25808
25809 @table @samp
25810 @item 387
25811 Use the standard 387 floating-point coprocessor present on the majority of chips and
25812 emulated otherwise. Code compiled with this option runs almost everywhere.
25813 The temporary results are computed in 80-bit precision instead of the precision
25814 specified by the type, resulting in slightly different results compared to most
25815 of other chips. See @option{-ffloat-store} for more detailed description.
25816
25817 This is the default choice for non-Darwin x86-32 targets.
25818
25819 @item sse
25820 Use scalar floating-point instructions present in the SSE instruction set.
25821 This instruction set is supported by Pentium III and newer chips,
25822 and in the AMD line
25823 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
25824 instruction set supports only single-precision arithmetic, thus the double and
25825 extended-precision arithmetic are still done using 387. A later version, present
25826 only in Pentium 4 and AMD x86-64 chips, supports double-precision
25827 arithmetic too.
25828
25829 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
25830 or @option{-msse2} switches to enable SSE extensions and make this option
25831 effective. For the x86-64 compiler, these extensions are enabled by default.
25832
25833 The resulting code should be considerably faster in the majority of cases and avoid
25834 the numerical instability problems of 387 code, but may break some existing
25835 code that expects temporaries to be 80 bits.
25836
25837 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
25838 and the default choice for x86-32 targets with the SSE2 instruction set
25839 when @option{-ffast-math} is enabled.
25840
25841 @item sse,387
25842 @itemx sse+387
25843 @itemx both
25844 Attempt to utilize both instruction sets at once. This effectively doubles the
25845 amount of available registers, and on chips with separate execution units for
25846 387 and SSE the execution resources too. Use this option with care, as it is
25847 still experimental, because the GCC register allocator does not model separate
25848 functional units well, resulting in unstable performance.
25849 @end table
25850
25851 @item -masm=@var{dialect}
25852 @opindex masm=@var{dialect}
25853 Output assembly instructions using selected @var{dialect}. Also affects
25854 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
25855 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
25856 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
25857 not support @samp{intel}.
25858
25859 @item -mieee-fp
25860 @itemx -mno-ieee-fp
25861 @opindex mieee-fp
25862 @opindex mno-ieee-fp
25863 Control whether or not the compiler uses IEEE floating-point
25864 comparisons. These correctly handle the case where the result of a
25865 comparison is unordered.
25866
25867 @item -m80387
25868 @item -mhard-float
25869 @opindex 80387
25870 @opindex mhard-float
25871 Generate output containing 80387 instructions for floating point.
25872
25873 @item -mno-80387
25874 @item -msoft-float
25875 @opindex no-80387
25876 @opindex msoft-float
25877 Generate output containing library calls for floating point.
25878
25879 @strong{Warning:} the requisite libraries are not part of GCC@.
25880 Normally the facilities of the machine's usual C compiler are used, but
25881 this cannot be done directly in cross-compilation. You must make your
25882 own arrangements to provide suitable library functions for
25883 cross-compilation.
25884
25885 On machines where a function returns floating-point results in the 80387
25886 register stack, some floating-point opcodes may be emitted even if
25887 @option{-msoft-float} is used.
25888
25889 @item -mno-fp-ret-in-387
25890 @opindex mno-fp-ret-in-387
25891 Do not use the FPU registers for return values of functions.
25892
25893 The usual calling convention has functions return values of types
25894 @code{float} and @code{double} in an FPU register, even if there
25895 is no FPU@. The idea is that the operating system should emulate
25896 an FPU@.
25897
25898 The option @option{-mno-fp-ret-in-387} causes such values to be returned
25899 in ordinary CPU registers instead.
25900
25901 @item -mno-fancy-math-387
25902 @opindex mno-fancy-math-387
25903 Some 387 emulators do not support the @code{sin}, @code{cos} and
25904 @code{sqrt} instructions for the 387. Specify this option to avoid
25905 generating those instructions. This option is the default on
25906 OpenBSD and NetBSD@. This option is overridden when @option{-march}
25907 indicates that the target CPU always has an FPU and so the
25908 instruction does not need emulation. These
25909 instructions are not generated unless you also use the
25910 @option{-funsafe-math-optimizations} switch.
25911
25912 @item -malign-double
25913 @itemx -mno-align-double
25914 @opindex malign-double
25915 @opindex mno-align-double
25916 Control whether GCC aligns @code{double}, @code{long double}, and
25917 @code{long long} variables on a two-word boundary or a one-word
25918 boundary. Aligning @code{double} variables on a two-word boundary
25919 produces code that runs somewhat faster on a Pentium at the
25920 expense of more memory.
25921
25922 On x86-64, @option{-malign-double} is enabled by default.
25923
25924 @strong{Warning:} if you use the @option{-malign-double} switch,
25925 structures containing the above types are aligned differently than
25926 the published application binary interface specifications for the x86-32
25927 and are not binary compatible with structures in code compiled
25928 without that switch.
25929
25930 @item -m96bit-long-double
25931 @itemx -m128bit-long-double
25932 @opindex m96bit-long-double
25933 @opindex m128bit-long-double
25934 These switches control the size of @code{long double} type. The x86-32
25935 application binary interface specifies the size to be 96 bits,
25936 so @option{-m96bit-long-double} is the default in 32-bit mode.
25937
25938 Modern architectures (Pentium and newer) prefer @code{long double}
25939 to be aligned to an 8- or 16-byte boundary. In arrays or structures
25940 conforming to the ABI, this is not possible. So specifying
25941 @option{-m128bit-long-double} aligns @code{long double}
25942 to a 16-byte boundary by padding the @code{long double} with an additional
25943 32-bit zero.
25944
25945 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
25946 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
25947
25948 Notice that neither of these options enable any extra precision over the x87
25949 standard of 80 bits for a @code{long double}.
25950
25951 @strong{Warning:} if you override the default value for your target ABI, this
25952 changes the size of
25953 structures and arrays containing @code{long double} variables,
25954 as well as modifying the function calling convention for functions taking
25955 @code{long double}. Hence they are not binary-compatible
25956 with code compiled without that switch.
25957
25958 @item -mlong-double-64
25959 @itemx -mlong-double-80
25960 @itemx -mlong-double-128
25961 @opindex mlong-double-64
25962 @opindex mlong-double-80
25963 @opindex mlong-double-128
25964 These switches control the size of @code{long double} type. A size
25965 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25966 type. This is the default for 32-bit Bionic C library. A size
25967 of 128 bits makes the @code{long double} type equivalent to the
25968 @code{__float128} type. This is the default for 64-bit Bionic C library.
25969
25970 @strong{Warning:} if you override the default value for your target ABI, this
25971 changes the size of
25972 structures and arrays containing @code{long double} variables,
25973 as well as modifying the function calling convention for functions taking
25974 @code{long double}. Hence they are not binary-compatible
25975 with code compiled without that switch.
25976
25977 @item -malign-data=@var{type}
25978 @opindex malign-data
25979 Control how GCC aligns variables. Supported values for @var{type} are
25980 @samp{compat} uses increased alignment value compatible uses GCC 4.8
25981 and earlier, @samp{abi} uses alignment value as specified by the
25982 psABI, and @samp{cacheline} uses increased alignment value to match
25983 the cache line size. @samp{compat} is the default.
25984
25985 @item -mlarge-data-threshold=@var{threshold}
25986 @opindex mlarge-data-threshold
25987 When @option{-mcmodel=medium} is specified, data objects larger than
25988 @var{threshold} are placed in the large data section. This value must be the
25989 same across all objects linked into the binary, and defaults to 65535.
25990
25991 @item -mrtd
25992 @opindex mrtd
25993 Use a different function-calling convention, in which functions that
25994 take a fixed number of arguments return with the @code{ret @var{num}}
25995 instruction, which pops their arguments while returning. This saves one
25996 instruction in the caller since there is no need to pop the arguments
25997 there.
25998
25999 You can specify that an individual function is called with this calling
26000 sequence with the function attribute @code{stdcall}. You can also
26001 override the @option{-mrtd} option by using the function attribute
26002 @code{cdecl}. @xref{Function Attributes}.
26003
26004 @strong{Warning:} this calling convention is incompatible with the one
26005 normally used on Unix, so you cannot use it if you need to call
26006 libraries compiled with the Unix compiler.
26007
26008 Also, you must provide function prototypes for all functions that
26009 take variable numbers of arguments (including @code{printf});
26010 otherwise incorrect code is generated for calls to those
26011 functions.
26012
26013 In addition, seriously incorrect code results if you call a
26014 function with too many arguments. (Normally, extra arguments are
26015 harmlessly ignored.)
26016
26017 @item -mregparm=@var{num}
26018 @opindex mregparm
26019 Control how many registers are used to pass integer arguments. By
26020 default, no registers are used to pass arguments, and at most 3
26021 registers can be used. You can control this behavior for a specific
26022 function by using the function attribute @code{regparm}.
26023 @xref{Function Attributes}.
26024
26025 @strong{Warning:} if you use this switch, and
26026 @var{num} is nonzero, then you must build all modules with the same
26027 value, including any libraries. This includes the system libraries and
26028 startup modules.
26029
26030 @item -msseregparm
26031 @opindex msseregparm
26032 Use SSE register passing conventions for float and double arguments
26033 and return values. You can control this behavior for a specific
26034 function by using the function attribute @code{sseregparm}.
26035 @xref{Function Attributes}.
26036
26037 @strong{Warning:} if you use this switch then you must build all
26038 modules with the same value, including any libraries. This includes
26039 the system libraries and startup modules.
26040
26041 @item -mvect8-ret-in-mem
26042 @opindex mvect8-ret-in-mem
26043 Return 8-byte vectors in memory instead of MMX registers. This is the
26044 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
26045 Studio compilers until version 12. Later compiler versions (starting
26046 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
26047 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
26048 you need to remain compatible with existing code produced by those
26049 previous compiler versions or older versions of GCC@.
26050
26051 @item -mpc32
26052 @itemx -mpc64
26053 @itemx -mpc80
26054 @opindex mpc32
26055 @opindex mpc64
26056 @opindex mpc80
26057
26058 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
26059 is specified, the significands of results of floating-point operations are
26060 rounded to 24 bits (single precision); @option{-mpc64} rounds the
26061 significands of results of floating-point operations to 53 bits (double
26062 precision) and @option{-mpc80} rounds the significands of results of
26063 floating-point operations to 64 bits (extended double precision), which is
26064 the default. When this option is used, floating-point operations in higher
26065 precisions are not available to the programmer without setting the FPU
26066 control word explicitly.
26067
26068 Setting the rounding of floating-point operations to less than the default
26069 80 bits can speed some programs by 2% or more. Note that some mathematical
26070 libraries assume that extended-precision (80-bit) floating-point operations
26071 are enabled by default; routines in such libraries could suffer significant
26072 loss of accuracy, typically through so-called ``catastrophic cancellation'',
26073 when this option is used to set the precision to less than extended precision.
26074
26075 @item -mstackrealign
26076 @opindex mstackrealign
26077 Realign the stack at entry. On the x86, the @option{-mstackrealign}
26078 option generates an alternate prologue and epilogue that realigns the
26079 run-time stack if necessary. This supports mixing legacy codes that keep
26080 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
26081 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
26082 applicable to individual functions.
26083
26084 @item -mpreferred-stack-boundary=@var{num}
26085 @opindex mpreferred-stack-boundary
26086 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
26087 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
26088 the default is 4 (16 bytes or 128 bits).
26089
26090 @strong{Warning:} When generating code for the x86-64 architecture with
26091 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
26092 used to keep the stack boundary aligned to 8 byte boundary. Since
26093 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
26094 intended to be used in controlled environment where stack space is
26095 important limitation. This option leads to wrong code when functions
26096 compiled with 16 byte stack alignment (such as functions from a standard
26097 library) are called with misaligned stack. In this case, SSE
26098 instructions may lead to misaligned memory access traps. In addition,
26099 variable arguments are handled incorrectly for 16 byte aligned
26100 objects (including x87 long double and __int128), leading to wrong
26101 results. You must build all modules with
26102 @option{-mpreferred-stack-boundary=3}, including any libraries. This
26103 includes the system libraries and startup modules.
26104
26105 @item -mincoming-stack-boundary=@var{num}
26106 @opindex mincoming-stack-boundary
26107 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
26108 boundary. If @option{-mincoming-stack-boundary} is not specified,
26109 the one specified by @option{-mpreferred-stack-boundary} is used.
26110
26111 On Pentium and Pentium Pro, @code{double} and @code{long double} values
26112 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
26113 suffer significant run time performance penalties. On Pentium III, the
26114 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
26115 properly if it is not 16-byte aligned.
26116
26117 To ensure proper alignment of this values on the stack, the stack boundary
26118 must be as aligned as that required by any value stored on the stack.
26119 Further, every function must be generated such that it keeps the stack
26120 aligned. Thus calling a function compiled with a higher preferred
26121 stack boundary from a function compiled with a lower preferred stack
26122 boundary most likely misaligns the stack. It is recommended that
26123 libraries that use callbacks always use the default setting.
26124
26125 This extra alignment does consume extra stack space, and generally
26126 increases code size. Code that is sensitive to stack space usage, such
26127 as embedded systems and operating system kernels, may want to reduce the
26128 preferred alignment to @option{-mpreferred-stack-boundary=2}.
26129
26130 @need 200
26131 @item -mmmx
26132 @opindex mmmx
26133 @need 200
26134 @itemx -msse
26135 @opindex msse
26136 @need 200
26137 @itemx -msse2
26138 @opindex msse2
26139 @need 200
26140 @itemx -msse3
26141 @opindex msse3
26142 @need 200
26143 @itemx -mssse3
26144 @opindex mssse3
26145 @need 200
26146 @itemx -msse4
26147 @opindex msse4
26148 @need 200
26149 @itemx -msse4a
26150 @opindex msse4a
26151 @need 200
26152 @itemx -msse4.1
26153 @opindex msse4.1
26154 @need 200
26155 @itemx -msse4.2
26156 @opindex msse4.2
26157 @need 200
26158 @itemx -mavx
26159 @opindex mavx
26160 @need 200
26161 @itemx -mavx2
26162 @opindex mavx2
26163 @need 200
26164 @itemx -mavx512f
26165 @opindex mavx512f
26166 @need 200
26167 @itemx -mavx512pf
26168 @opindex mavx512pf
26169 @need 200
26170 @itemx -mavx512er
26171 @opindex mavx512er
26172 @need 200
26173 @itemx -mavx512cd
26174 @opindex mavx512cd
26175 @need 200
26176 @itemx -mavx512vl
26177 @opindex mavx512vl
26178 @need 200
26179 @itemx -mavx512bw
26180 @opindex mavx512bw
26181 @need 200
26182 @itemx -mavx512dq
26183 @opindex mavx512dq
26184 @need 200
26185 @itemx -mavx512ifma
26186 @opindex mavx512ifma
26187 @need 200
26188 @itemx -mavx512vbmi
26189 @opindex mavx512vbmi
26190 @need 200
26191 @itemx -msha
26192 @opindex msha
26193 @need 200
26194 @itemx -maes
26195 @opindex maes
26196 @need 200
26197 @itemx -mpclmul
26198 @opindex mpclmul
26199 @need 200
26200 @itemx -mclfushopt
26201 @opindex mclfushopt
26202 @need 200
26203 @itemx -mfsgsbase
26204 @opindex mfsgsbase
26205 @need 200
26206 @itemx -mrdrnd
26207 @opindex mrdrnd
26208 @need 200
26209 @itemx -mf16c
26210 @opindex mf16c
26211 @need 200
26212 @itemx -mfma
26213 @opindex mfma
26214 @need 200
26215 @itemx -mfma4
26216 @opindex mfma4
26217 @need 200
26218 @itemx -mprefetchwt1
26219 @opindex mprefetchwt1
26220 @need 200
26221 @itemx -mxop
26222 @opindex mxop
26223 @need 200
26224 @itemx -mlwp
26225 @opindex mlwp
26226 @need 200
26227 @itemx -m3dnow
26228 @opindex m3dnow
26229 @need 200
26230 @itemx -m3dnowa
26231 @opindex m3dnowa
26232 @need 200
26233 @itemx -mpopcnt
26234 @opindex mpopcnt
26235 @need 200
26236 @itemx -mabm
26237 @opindex mabm
26238 @need 200
26239 @itemx -mbmi
26240 @opindex mbmi
26241 @need 200
26242 @itemx -mbmi2
26243 @need 200
26244 @itemx -mlzcnt
26245 @opindex mlzcnt
26246 @need 200
26247 @itemx -mfxsr
26248 @opindex mfxsr
26249 @need 200
26250 @itemx -mxsave
26251 @opindex mxsave
26252 @need 200
26253 @itemx -mxsaveopt
26254 @opindex mxsaveopt
26255 @need 200
26256 @itemx -mxsavec
26257 @opindex mxsavec
26258 @need 200
26259 @itemx -mxsaves
26260 @opindex mxsaves
26261 @need 200
26262 @itemx -mrtm
26263 @opindex mrtm
26264 @need 200
26265 @itemx -mtbm
26266 @opindex mtbm
26267 @need 200
26268 @itemx -mmpx
26269 @opindex mmpx
26270 @need 200
26271 @itemx -mmwaitx
26272 @opindex mmwaitx
26273 @need 200
26274 @itemx -mclzero
26275 @opindex mclzero
26276 @need 200
26277 @itemx -mpku
26278 @opindex mpku
26279 @need 200
26280 @itemx -mcet
26281 @opindex mcet
26282 @need 200
26283 @itemx -mavx512vbmi2
26284 @opindex mavx512vbmi2
26285 @need 200
26286 @itemx -mgfni
26287 @opindex mgfni
26288 @need 200
26289 @itemx -mvaes
26290 @opindex mvaes
26291 @need 200
26292 @itemx -mvpclmulqdq
26293 @opindex mvpclmulqdq
26294 @need 200
26295 @itemx -mavx512bitalg
26296 @opindex mavx512bitalg
26297 @need 200
26298 @itemx -mavx512vpopcntdq
26299 @opindex mavx512vpopcntdq
26300 These switches enable the use of instructions in the MMX, SSE,
26301 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
26302 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
26303 AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, BMI, BMI2, VAES,
26304 FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX, MWAITX, PKU, IBT, SHSTK, AVX512VBMI2,
26305 GFNI, VPCLMULQDQ, AVX512BITALG, AVX512VPOPCNTDQ3DNow!@: or enhanced 3DNow!@:
26306 extended instruction sets.
26307 Each has a corresponding @option{-mno-} option to disable use of these
26308 instructions.
26309
26310 These extensions are also available as built-in functions: see
26311 @ref{x86 Built-in Functions}, for details of the functions enabled and
26312 disabled by these switches.
26313
26314 To generate SSE/SSE2 instructions automatically from floating-point
26315 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
26316
26317 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
26318 generates new AVX instructions or AVX equivalence for all SSEx instructions
26319 when needed.
26320
26321 These options enable GCC to use these extended instructions in
26322 generated code, even without @option{-mfpmath=sse}. Applications that
26323 perform run-time CPU detection must compile separate files for each
26324 supported architecture, using the appropriate flags. In particular,
26325 the file containing the CPU detection code should be compiled without
26326 these options.
26327
26328 The @option{-mcet} option turns on the @option{-mibt} and @option{-mshstk}
26329 options. The @option{-mibt} option enables indirect branch tracking support
26330 and the @option{-mshstk} option enables shadow stack support from
26331 Intel Control-flow Enforcement Technology (CET). The compiler also provides
26332 a number of built-in functions for fine-grained control in a CET-based
26333 application. See @xref{x86 Built-in Functions}, for more information.
26334
26335 @item -mdump-tune-features
26336 @opindex mdump-tune-features
26337 This option instructs GCC to dump the names of the x86 performance
26338 tuning features and default settings. The names can be used in
26339 @option{-mtune-ctrl=@var{feature-list}}.
26340
26341 @item -mtune-ctrl=@var{feature-list}
26342 @opindex mtune-ctrl=@var{feature-list}
26343 This option is used to do fine grain control of x86 code generation features.
26344 @var{feature-list} is a comma separated list of @var{feature} names. See also
26345 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
26346 on if it is not preceded with @samp{^}, otherwise, it is turned off.
26347 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
26348 developers. Using it may lead to code paths not covered by testing and can
26349 potentially result in compiler ICEs or runtime errors.
26350
26351 @item -mno-default
26352 @opindex mno-default
26353 This option instructs GCC to turn off all tunable features. See also
26354 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
26355
26356 @item -mcld
26357 @opindex mcld
26358 This option instructs GCC to emit a @code{cld} instruction in the prologue
26359 of functions that use string instructions. String instructions depend on
26360 the DF flag to select between autoincrement or autodecrement mode. While the
26361 ABI specifies the DF flag to be cleared on function entry, some operating
26362 systems violate this specification by not clearing the DF flag in their
26363 exception dispatchers. The exception handler can be invoked with the DF flag
26364 set, which leads to wrong direction mode when string instructions are used.
26365 This option can be enabled by default on 32-bit x86 targets by configuring
26366 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
26367 instructions can be suppressed with the @option{-mno-cld} compiler option
26368 in this case.
26369
26370 @item -mvzeroupper
26371 @opindex mvzeroupper
26372 This option instructs GCC to emit a @code{vzeroupper} instruction
26373 before a transfer of control flow out of the function to minimize
26374 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
26375 intrinsics.
26376
26377 @item -mprefer-avx128
26378 @opindex mprefer-avx128
26379 This option instructs GCC to use 128-bit AVX instructions instead of
26380 256-bit AVX instructions in the auto-vectorizer.
26381
26382 @item -mprefer-vector-width=@var{opt}
26383 @opindex mprefer-vector-width
26384 This option instructs GCC to use @var{opt}-bit vector width in instructions
26385 instead of default on the selected platform.
26386
26387 @table @samp
26388 @item none
26389 No extra limitations applied to GCC other than defined by the selected platform.
26390
26391 @item 128
26392 Prefer 128-bit vector width for instructions.
26393
26394 @item 256
26395 Prefer 256-bit vector width for instructions.
26396
26397 @item 512
26398 Prefer 512-bit vector width for instructions.
26399 @end table
26400
26401 @item -mcx16
26402 @opindex mcx16
26403 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
26404 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
26405 objects. This is useful for atomic updates of data structures exceeding one
26406 machine word in size. The compiler uses this instruction to implement
26407 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
26408 128-bit integers, a library call is always used.
26409
26410 @item -msahf
26411 @opindex msahf
26412 This option enables generation of @code{SAHF} instructions in 64-bit code.
26413 Early Intel Pentium 4 CPUs with Intel 64 support,
26414 prior to the introduction of Pentium 4 G1 step in December 2005,
26415 lacked the @code{LAHF} and @code{SAHF} instructions
26416 which are supported by AMD64.
26417 These are load and store instructions, respectively, for certain status flags.
26418 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
26419 @code{drem}, and @code{remainder} built-in functions;
26420 see @ref{Other Builtins} for details.
26421
26422 @item -mmovbe
26423 @opindex mmovbe
26424 This option enables use of the @code{movbe} instruction to implement
26425 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
26426
26427 @item -mibt
26428 @opindex mibt
26429 This option tells the compiler to use indirect branch tracking support
26430 (for indirect calls and jumps) from x86 Control-flow Enforcement
26431 Technology (CET). The option has effect only if the
26432 @option{-fcf-protection=full} or @option{-fcf-protection=branch} option
26433 is specified. The option @option{-mibt} is on by default when the
26434 @code{-mcet} option is specified.
26435
26436 @item -mshstk
26437 @opindex mshstk
26438 This option tells the compiler to use shadow stack support (return
26439 address tracking) from x86 Control-flow Enforcement Technology (CET).
26440 The option has effect only if the @option{-fcf-protection=full} or
26441 @option{-fcf-protection=return} option is specified. The option
26442 @option{-mshstk} is on by default when the @option{-mcet} option is
26443 specified.
26444
26445 @item -mcrc32
26446 @opindex mcrc32
26447 This option enables built-in functions @code{__builtin_ia32_crc32qi},
26448 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
26449 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
26450
26451 @item -mrecip
26452 @opindex mrecip
26453 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
26454 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
26455 with an additional Newton-Raphson step
26456 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
26457 (and their vectorized
26458 variants) for single-precision floating-point arguments. These instructions
26459 are generated only when @option{-funsafe-math-optimizations} is enabled
26460 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
26461 Note that while the throughput of the sequence is higher than the throughput
26462 of the non-reciprocal instruction, the precision of the sequence can be
26463 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
26464
26465 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
26466 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
26467 combination), and doesn't need @option{-mrecip}.
26468
26469 Also note that GCC emits the above sequence with additional Newton-Raphson step
26470 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
26471 already with @option{-ffast-math} (or the above option combination), and
26472 doesn't need @option{-mrecip}.
26473
26474 @item -mrecip=@var{opt}
26475 @opindex mrecip=opt
26476 This option controls which reciprocal estimate instructions
26477 may be used. @var{opt} is a comma-separated list of options, which may
26478 be preceded by a @samp{!} to invert the option:
26479
26480 @table @samp
26481 @item all
26482 Enable all estimate instructions.
26483
26484 @item default
26485 Enable the default instructions, equivalent to @option{-mrecip}.
26486
26487 @item none
26488 Disable all estimate instructions, equivalent to @option{-mno-recip}.
26489
26490 @item div
26491 Enable the approximation for scalar division.
26492
26493 @item vec-div
26494 Enable the approximation for vectorized division.
26495
26496 @item sqrt
26497 Enable the approximation for scalar square root.
26498
26499 @item vec-sqrt
26500 Enable the approximation for vectorized square root.
26501 @end table
26502
26503 So, for example, @option{-mrecip=all,!sqrt} enables
26504 all of the reciprocal approximations, except for square root.
26505
26506 @item -mveclibabi=@var{type}
26507 @opindex mveclibabi
26508 Specifies the ABI type to use for vectorizing intrinsics using an
26509 external library. Supported values for @var{type} are @samp{svml}
26510 for the Intel short
26511 vector math library and @samp{acml} for the AMD math core library.
26512 To use this option, both @option{-ftree-vectorize} and
26513 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
26514 ABI-compatible library must be specified at link time.
26515
26516 GCC currently emits calls to @code{vmldExp2},
26517 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
26518 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
26519 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
26520 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
26521 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
26522 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
26523 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
26524 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
26525 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
26526 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
26527 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
26528 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
26529 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
26530 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
26531 when @option{-mveclibabi=acml} is used.
26532
26533 @item -mabi=@var{name}
26534 @opindex mabi
26535 Generate code for the specified calling convention. Permissible values
26536 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
26537 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
26538 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
26539 You can control this behavior for specific functions by
26540 using the function attributes @code{ms_abi} and @code{sysv_abi}.
26541 @xref{Function Attributes}.
26542
26543 @item -mforce-indirect-call
26544 @opindex mforce-indirect-call
26545 Force all calls to functions to be indirect. This is useful
26546 when using Intel Processor Trace where it generates more precise timing
26547 information for function calls.
26548
26549 @item -mcall-ms2sysv-xlogues
26550 @opindex mcall-ms2sysv-xlogues
26551 @opindex mno-call-ms2sysv-xlogues
26552 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
26553 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
26554 default, the code for saving and restoring these registers is emitted inline,
26555 resulting in fairly lengthy prologues and epilogues. Using
26556 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
26557 use stubs in the static portion of libgcc to perform these saves and restores,
26558 thus reducing function size at the cost of a few extra instructions.
26559
26560 @item -mtls-dialect=@var{type}
26561 @opindex mtls-dialect
26562 Generate code to access thread-local storage using the @samp{gnu} or
26563 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
26564 @samp{gnu2} is more efficient, but it may add compile- and run-time
26565 requirements that cannot be satisfied on all systems.
26566
26567 @item -mpush-args
26568 @itemx -mno-push-args
26569 @opindex mpush-args
26570 @opindex mno-push-args
26571 Use PUSH operations to store outgoing parameters. This method is shorter
26572 and usually equally fast as method using SUB/MOV operations and is enabled
26573 by default. In some cases disabling it may improve performance because of
26574 improved scheduling and reduced dependencies.
26575
26576 @item -maccumulate-outgoing-args
26577 @opindex maccumulate-outgoing-args
26578 If enabled, the maximum amount of space required for outgoing arguments is
26579 computed in the function prologue. This is faster on most modern CPUs
26580 because of reduced dependencies, improved scheduling and reduced stack usage
26581 when the preferred stack boundary is not equal to 2. The drawback is a notable
26582 increase in code size. This switch implies @option{-mno-push-args}.
26583
26584 @item -mthreads
26585 @opindex mthreads
26586 Support thread-safe exception handling on MinGW. Programs that rely
26587 on thread-safe exception handling must compile and link all code with the
26588 @option{-mthreads} option. When compiling, @option{-mthreads} defines
26589 @option{-D_MT}; when linking, it links in a special thread helper library
26590 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
26591
26592 @item -mms-bitfields
26593 @itemx -mno-ms-bitfields
26594 @opindex mms-bitfields
26595 @opindex mno-ms-bitfields
26596
26597 Enable/disable bit-field layout compatible with the native Microsoft
26598 Windows compiler.
26599
26600 If @code{packed} is used on a structure, or if bit-fields are used,
26601 it may be that the Microsoft ABI lays out the structure differently
26602 than the way GCC normally does. Particularly when moving packed
26603 data between functions compiled with GCC and the native Microsoft compiler
26604 (either via function call or as data in a file), it may be necessary to access
26605 either format.
26606
26607 This option is enabled by default for Microsoft Windows
26608 targets. This behavior can also be controlled locally by use of variable
26609 or type attributes. For more information, see @ref{x86 Variable Attributes}
26610 and @ref{x86 Type Attributes}.
26611
26612 The Microsoft structure layout algorithm is fairly simple with the exception
26613 of the bit-field packing.
26614 The padding and alignment of members of structures and whether a bit-field
26615 can straddle a storage-unit boundary are determine by these rules:
26616
26617 @enumerate
26618 @item Structure members are stored sequentially in the order in which they are
26619 declared: the first member has the lowest memory address and the last member
26620 the highest.
26621
26622 @item Every data object has an alignment requirement. The alignment requirement
26623 for all data except structures, unions, and arrays is either the size of the
26624 object or the current packing size (specified with either the
26625 @code{aligned} attribute or the @code{pack} pragma),
26626 whichever is less. For structures, unions, and arrays,
26627 the alignment requirement is the largest alignment requirement of its members.
26628 Every object is allocated an offset so that:
26629
26630 @smallexample
26631 offset % alignment_requirement == 0
26632 @end smallexample
26633
26634 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
26635 unit if the integral types are the same size and if the next bit-field fits
26636 into the current allocation unit without crossing the boundary imposed by the
26637 common alignment requirements of the bit-fields.
26638 @end enumerate
26639
26640 MSVC interprets zero-length bit-fields in the following ways:
26641
26642 @enumerate
26643 @item If a zero-length bit-field is inserted between two bit-fields that
26644 are normally coalesced, the bit-fields are not coalesced.
26645
26646 For example:
26647
26648 @smallexample
26649 struct
26650 @{
26651 unsigned long bf_1 : 12;
26652 unsigned long : 0;
26653 unsigned long bf_2 : 12;
26654 @} t1;
26655 @end smallexample
26656
26657 @noindent
26658 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
26659 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
26660
26661 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
26662 alignment of the zero-length bit-field is greater than the member that follows it,
26663 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
26664
26665 For example:
26666
26667 @smallexample
26668 struct
26669 @{
26670 char foo : 4;
26671 short : 0;
26672 char bar;
26673 @} t2;
26674
26675 struct
26676 @{
26677 char foo : 4;
26678 short : 0;
26679 double bar;
26680 @} t3;
26681 @end smallexample
26682
26683 @noindent
26684 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
26685 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
26686 bit-field does not affect the alignment of @code{bar} or, as a result, the size
26687 of the structure.
26688
26689 Taking this into account, it is important to note the following:
26690
26691 @enumerate
26692 @item If a zero-length bit-field follows a normal bit-field, the type of the
26693 zero-length bit-field may affect the alignment of the structure as whole. For
26694 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
26695 normal bit-field, and is of type short.
26696
26697 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
26698 still affect the alignment of the structure:
26699
26700 @smallexample
26701 struct
26702 @{
26703 char foo : 6;
26704 long : 0;
26705 @} t4;
26706 @end smallexample
26707
26708 @noindent
26709 Here, @code{t4} takes up 4 bytes.
26710 @end enumerate
26711
26712 @item Zero-length bit-fields following non-bit-field members are ignored:
26713
26714 @smallexample
26715 struct
26716 @{
26717 char foo;
26718 long : 0;
26719 char bar;
26720 @} t5;
26721 @end smallexample
26722
26723 @noindent
26724 Here, @code{t5} takes up 2 bytes.
26725 @end enumerate
26726
26727
26728 @item -mno-align-stringops
26729 @opindex mno-align-stringops
26730 Do not align the destination of inlined string operations. This switch reduces
26731 code size and improves performance in case the destination is already aligned,
26732 but GCC doesn't know about it.
26733
26734 @item -minline-all-stringops
26735 @opindex minline-all-stringops
26736 By default GCC inlines string operations only when the destination is
26737 known to be aligned to least a 4-byte boundary.
26738 This enables more inlining and increases code
26739 size, but may improve performance of code that depends on fast
26740 @code{memcpy}, @code{strlen},
26741 and @code{memset} for short lengths.
26742
26743 @item -minline-stringops-dynamically
26744 @opindex minline-stringops-dynamically
26745 For string operations of unknown size, use run-time checks with
26746 inline code for small blocks and a library call for large blocks.
26747
26748 @item -mstringop-strategy=@var{alg}
26749 @opindex mstringop-strategy=@var{alg}
26750 Override the internal decision heuristic for the particular algorithm to use
26751 for inlining string operations. The allowed values for @var{alg} are:
26752
26753 @table @samp
26754 @item rep_byte
26755 @itemx rep_4byte
26756 @itemx rep_8byte
26757 Expand using i386 @code{rep} prefix of the specified size.
26758
26759 @item byte_loop
26760 @itemx loop
26761 @itemx unrolled_loop
26762 Expand into an inline loop.
26763
26764 @item libcall
26765 Always use a library call.
26766 @end table
26767
26768 @item -mmemcpy-strategy=@var{strategy}
26769 @opindex mmemcpy-strategy=@var{strategy}
26770 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
26771 should be inlined and what inline algorithm to use when the expected size
26772 of the copy operation is known. @var{strategy}
26773 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
26774 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
26775 the max byte size with which inline algorithm @var{alg} is allowed. For the last
26776 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
26777 in the list must be specified in increasing order. The minimal byte size for
26778 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
26779 preceding range.
26780
26781 @item -mmemset-strategy=@var{strategy}
26782 @opindex mmemset-strategy=@var{strategy}
26783 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
26784 @code{__builtin_memset} expansion.
26785
26786 @item -momit-leaf-frame-pointer
26787 @opindex momit-leaf-frame-pointer
26788 Don't keep the frame pointer in a register for leaf functions. This
26789 avoids the instructions to save, set up, and restore frame pointers and
26790 makes an extra register available in leaf functions. The option
26791 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
26792 which might make debugging harder.
26793
26794 @item -mtls-direct-seg-refs
26795 @itemx -mno-tls-direct-seg-refs
26796 @opindex mtls-direct-seg-refs
26797 Controls whether TLS variables may be accessed with offsets from the
26798 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
26799 or whether the thread base pointer must be added. Whether or not this
26800 is valid depends on the operating system, and whether it maps the
26801 segment to cover the entire TLS area.
26802
26803 For systems that use the GNU C Library, the default is on.
26804
26805 @item -msse2avx
26806 @itemx -mno-sse2avx
26807 @opindex msse2avx
26808 Specify that the assembler should encode SSE instructions with VEX
26809 prefix. The option @option{-mavx} turns this on by default.
26810
26811 @item -mfentry
26812 @itemx -mno-fentry
26813 @opindex mfentry
26814 If profiling is active (@option{-pg}), put the profiling
26815 counter call before the prologue.
26816 Note: On x86 architectures the attribute @code{ms_hook_prologue}
26817 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
26818
26819 @item -mrecord-mcount
26820 @itemx -mno-record-mcount
26821 @opindex mrecord-mcount
26822 If profiling is active (@option{-pg}), generate a __mcount_loc section
26823 that contains pointers to each profiling call. This is useful for
26824 automatically patching and out calls.
26825
26826 @item -mnop-mcount
26827 @itemx -mno-nop-mcount
26828 @opindex mnop-mcount
26829 If profiling is active (@option{-pg}), generate the calls to
26830 the profiling functions as NOPs. This is useful when they
26831 should be patched in later dynamically. This is likely only
26832 useful together with @option{-mrecord-mcount}.
26833
26834 @item -mskip-rax-setup
26835 @itemx -mno-skip-rax-setup
26836 @opindex mskip-rax-setup
26837 When generating code for the x86-64 architecture with SSE extensions
26838 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
26839 register when there are no variable arguments passed in vector registers.
26840
26841 @strong{Warning:} Since RAX register is used to avoid unnecessarily
26842 saving vector registers on stack when passing variable arguments, the
26843 impacts of this option are callees may waste some stack space,
26844 misbehave or jump to a random location. GCC 4.4 or newer don't have
26845 those issues, regardless the RAX register value.
26846
26847 @item -m8bit-idiv
26848 @itemx -mno-8bit-idiv
26849 @opindex m8bit-idiv
26850 On some processors, like Intel Atom, 8-bit unsigned integer divide is
26851 much faster than 32-bit/64-bit integer divide. This option generates a
26852 run-time check. If both dividend and divisor are within range of 0
26853 to 255, 8-bit unsigned integer divide is used instead of
26854 32-bit/64-bit integer divide.
26855
26856 @item -mavx256-split-unaligned-load
26857 @itemx -mavx256-split-unaligned-store
26858 @opindex mavx256-split-unaligned-load
26859 @opindex mavx256-split-unaligned-store
26860 Split 32-byte AVX unaligned load and store.
26861
26862 @item -mstack-protector-guard=@var{guard}
26863 @itemx -mstack-protector-guard-reg=@var{reg}
26864 @itemx -mstack-protector-guard-offset=@var{offset}
26865 @opindex mstack-protector-guard
26866 @opindex mstack-protector-guard-reg
26867 @opindex mstack-protector-guard-offset
26868 Generate stack protection code using canary at @var{guard}. Supported
26869 locations are @samp{global} for global canary or @samp{tls} for per-thread
26870 canary in the TLS block (the default). This option has effect only when
26871 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
26872
26873 With the latter choice the options
26874 @option{-mstack-protector-guard-reg=@var{reg}} and
26875 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
26876 which segment register (@code{%fs} or @code{%gs}) to use as base register
26877 for reading the canary, and from what offset from that base register.
26878 The default for those is as specified in the relevant ABI.
26879
26880 @item -mmitigate-rop
26881 @opindex mmitigate-rop
26882 Try to avoid generating code sequences that contain unintended return
26883 opcodes, to mitigate against certain forms of attack. At the moment,
26884 this option is limited in what it can do and should not be relied
26885 on to provide serious protection.
26886
26887 @item -mgeneral-regs-only
26888 @opindex mgeneral-regs-only
26889 Generate code that uses only the general-purpose registers. This
26890 prevents the compiler from using floating-point, vector, mask and bound
26891 registers.
26892
26893 @item -mindirect-branch=@var{choice}
26894 @opindex -mindirect-branch
26895 Convert indirect call and jump with @var{choice}. The default is
26896 @samp{keep}, which keeps indirect call and jump unmodified.
26897 @samp{thunk} converts indirect call and jump to call and return thunk.
26898 @samp{thunk-inline} converts indirect call and jump to inlined call
26899 and return thunk. @samp{thunk-extern} converts indirect call and jump
26900 to external call and return thunk provided in a separate object file.
26901 You can control this behavior for a specific function by using the
26902 function attribute @code{indirect_branch}. @xref{Function Attributes}.
26903
26904 Note that @option{-mcmodel=large} is incompatible with
26905 @option{-mindirect-branch=thunk} nor
26906 @option{-mindirect-branch=thunk-extern} since the thunk function may
26907 not be reachable in large code model.
26908
26909 @item -mfunction-return=@var{choice}
26910 @opindex -mfunction-return
26911 Convert function return with @var{choice}. The default is @samp{keep},
26912 which keeps function return unmodified. @samp{thunk} converts function
26913 return to call and return thunk. @samp{thunk-inline} converts function
26914 return to inlined call and return thunk. @samp{thunk-extern} converts
26915 function return to external call and return thunk provided in a separate
26916 object file. You can control this behavior for a specific function by
26917 using the function attribute @code{function_return}.
26918 @xref{Function Attributes}.
26919
26920 Note that @option{-mcmodel=large} is incompatible with
26921 @option{-mfunction-return=thunk} nor
26922 @option{-mfunction-return=thunk-extern} since the thunk function may
26923 not be reachable in large code model.
26924
26925
26926 @item -mindirect-branch-register
26927 @opindex -mindirect-branch-register
26928 Force indirect call and jump via register.
26929
26930 @end table
26931
26932 These @samp{-m} switches are supported in addition to the above
26933 on x86-64 processors in 64-bit environments.
26934
26935 @table @gcctabopt
26936 @item -m32
26937 @itemx -m64
26938 @itemx -mx32
26939 @itemx -m16
26940 @itemx -miamcu
26941 @opindex m32
26942 @opindex m64
26943 @opindex mx32
26944 @opindex m16
26945 @opindex miamcu
26946 Generate code for a 16-bit, 32-bit or 64-bit environment.
26947 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
26948 to 32 bits, and
26949 generates code that runs on any i386 system.
26950
26951 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
26952 types to 64 bits, and generates code for the x86-64 architecture.
26953 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
26954 and @option{-mdynamic-no-pic} options.
26955
26956 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
26957 to 32 bits, and
26958 generates code for the x86-64 architecture.
26959
26960 The @option{-m16} option is the same as @option{-m32}, except for that
26961 it outputs the @code{.code16gcc} assembly directive at the beginning of
26962 the assembly output so that the binary can run in 16-bit mode.
26963
26964 The @option{-miamcu} option generates code which conforms to Intel MCU
26965 psABI. It requires the @option{-m32} option to be turned on.
26966
26967 @item -mno-red-zone
26968 @opindex mno-red-zone
26969 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
26970 by the x86-64 ABI; it is a 128-byte area beyond the location of the
26971 stack pointer that is not modified by signal or interrupt handlers
26972 and therefore can be used for temporary data without adjusting the stack
26973 pointer. The flag @option{-mno-red-zone} disables this red zone.
26974
26975 @item -mcmodel=small
26976 @opindex mcmodel=small
26977 Generate code for the small code model: the program and its symbols must
26978 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
26979 Programs can be statically or dynamically linked. This is the default
26980 code model.
26981
26982 @item -mcmodel=kernel
26983 @opindex mcmodel=kernel
26984 Generate code for the kernel code model. The kernel runs in the
26985 negative 2 GB of the address space.
26986 This model has to be used for Linux kernel code.
26987
26988 @item -mcmodel=medium
26989 @opindex mcmodel=medium
26990 Generate code for the medium model: the program is linked in the lower 2
26991 GB of the address space. Small symbols are also placed there. Symbols
26992 with sizes larger than @option{-mlarge-data-threshold} are put into
26993 large data or BSS sections and can be located above 2GB. Programs can
26994 be statically or dynamically linked.
26995
26996 @item -mcmodel=large
26997 @opindex mcmodel=large
26998 Generate code for the large model. This model makes no assumptions
26999 about addresses and sizes of sections.
27000
27001 @item -maddress-mode=long
27002 @opindex maddress-mode=long
27003 Generate code for long address mode. This is only supported for 64-bit
27004 and x32 environments. It is the default address mode for 64-bit
27005 environments.
27006
27007 @item -maddress-mode=short
27008 @opindex maddress-mode=short
27009 Generate code for short address mode. This is only supported for 32-bit
27010 and x32 environments. It is the default address mode for 32-bit and
27011 x32 environments.
27012 @end table
27013
27014 @node x86 Windows Options
27015 @subsection x86 Windows Options
27016 @cindex x86 Windows Options
27017 @cindex Windows Options for x86
27018
27019 These additional options are available for Microsoft Windows targets:
27020
27021 @table @gcctabopt
27022 @item -mconsole
27023 @opindex mconsole
27024 This option
27025 specifies that a console application is to be generated, by
27026 instructing the linker to set the PE header subsystem type
27027 required for console applications.
27028 This option is available for Cygwin and MinGW targets and is
27029 enabled by default on those targets.
27030
27031 @item -mdll
27032 @opindex mdll
27033 This option is available for Cygwin and MinGW targets. It
27034 specifies that a DLL---a dynamic link library---is to be
27035 generated, enabling the selection of the required runtime
27036 startup object and entry point.
27037
27038 @item -mnop-fun-dllimport
27039 @opindex mnop-fun-dllimport
27040 This option is available for Cygwin and MinGW targets. It
27041 specifies that the @code{dllimport} attribute should be ignored.
27042
27043 @item -mthread
27044 @opindex mthread
27045 This option is available for MinGW targets. It specifies
27046 that MinGW-specific thread support is to be used.
27047
27048 @item -municode
27049 @opindex municode
27050 This option is available for MinGW-w64 targets. It causes
27051 the @code{UNICODE} preprocessor macro to be predefined, and
27052 chooses Unicode-capable runtime startup code.
27053
27054 @item -mwin32
27055 @opindex mwin32
27056 This option is available for Cygwin and MinGW targets. It
27057 specifies that the typical Microsoft Windows predefined macros are to
27058 be set in the pre-processor, but does not influence the choice
27059 of runtime library/startup code.
27060
27061 @item -mwindows
27062 @opindex mwindows
27063 This option is available for Cygwin and MinGW targets. It
27064 specifies that a GUI application is to be generated by
27065 instructing the linker to set the PE header subsystem type
27066 appropriately.
27067
27068 @item -fno-set-stack-executable
27069 @opindex fno-set-stack-executable
27070 This option is available for MinGW targets. It specifies that
27071 the executable flag for the stack used by nested functions isn't
27072 set. This is necessary for binaries running in kernel mode of
27073 Microsoft Windows, as there the User32 API, which is used to set executable
27074 privileges, isn't available.
27075
27076 @item -fwritable-relocated-rdata
27077 @opindex fno-writable-relocated-rdata
27078 This option is available for MinGW and Cygwin targets. It specifies
27079 that relocated-data in read-only section is put into the @code{.data}
27080 section. This is a necessary for older runtimes not supporting
27081 modification of @code{.rdata} sections for pseudo-relocation.
27082
27083 @item -mpe-aligned-commons
27084 @opindex mpe-aligned-commons
27085 This option is available for Cygwin and MinGW targets. It
27086 specifies that the GNU extension to the PE file format that
27087 permits the correct alignment of COMMON variables should be
27088 used when generating code. It is enabled by default if
27089 GCC detects that the target assembler found during configuration
27090 supports the feature.
27091 @end table
27092
27093 See also under @ref{x86 Options} for standard options.
27094
27095 @node Xstormy16 Options
27096 @subsection Xstormy16 Options
27097 @cindex Xstormy16 Options
27098
27099 These options are defined for Xstormy16:
27100
27101 @table @gcctabopt
27102 @item -msim
27103 @opindex msim
27104 Choose startup files and linker script suitable for the simulator.
27105 @end table
27106
27107 @node Xtensa Options
27108 @subsection Xtensa Options
27109 @cindex Xtensa Options
27110
27111 These options are supported for Xtensa targets:
27112
27113 @table @gcctabopt
27114 @item -mconst16
27115 @itemx -mno-const16
27116 @opindex mconst16
27117 @opindex mno-const16
27118 Enable or disable use of @code{CONST16} instructions for loading
27119 constant values. The @code{CONST16} instruction is currently not a
27120 standard option from Tensilica. When enabled, @code{CONST16}
27121 instructions are always used in place of the standard @code{L32R}
27122 instructions. The use of @code{CONST16} is enabled by default only if
27123 the @code{L32R} instruction is not available.
27124
27125 @item -mfused-madd
27126 @itemx -mno-fused-madd
27127 @opindex mfused-madd
27128 @opindex mno-fused-madd
27129 Enable or disable use of fused multiply/add and multiply/subtract
27130 instructions in the floating-point option. This has no effect if the
27131 floating-point option is not also enabled. Disabling fused multiply/add
27132 and multiply/subtract instructions forces the compiler to use separate
27133 instructions for the multiply and add/subtract operations. This may be
27134 desirable in some cases where strict IEEE 754-compliant results are
27135 required: the fused multiply add/subtract instructions do not round the
27136 intermediate result, thereby producing results with @emph{more} bits of
27137 precision than specified by the IEEE standard. Disabling fused multiply
27138 add/subtract instructions also ensures that the program output is not
27139 sensitive to the compiler's ability to combine multiply and add/subtract
27140 operations.
27141
27142 @item -mserialize-volatile
27143 @itemx -mno-serialize-volatile
27144 @opindex mserialize-volatile
27145 @opindex mno-serialize-volatile
27146 When this option is enabled, GCC inserts @code{MEMW} instructions before
27147 @code{volatile} memory references to guarantee sequential consistency.
27148 The default is @option{-mserialize-volatile}. Use
27149 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
27150
27151 @item -mforce-no-pic
27152 @opindex mforce-no-pic
27153 For targets, like GNU/Linux, where all user-mode Xtensa code must be
27154 position-independent code (PIC), this option disables PIC for compiling
27155 kernel code.
27156
27157 @item -mtext-section-literals
27158 @itemx -mno-text-section-literals
27159 @opindex mtext-section-literals
27160 @opindex mno-text-section-literals
27161 These options control the treatment of literal pools. The default is
27162 @option{-mno-text-section-literals}, which places literals in a separate
27163 section in the output file. This allows the literal pool to be placed
27164 in a data RAM/ROM, and it also allows the linker to combine literal
27165 pools from separate object files to remove redundant literals and
27166 improve code size. With @option{-mtext-section-literals}, the literals
27167 are interspersed in the text section in order to keep them as close as
27168 possible to their references. This may be necessary for large assembly
27169 files. Literals for each function are placed right before that function.
27170
27171 @item -mauto-litpools
27172 @itemx -mno-auto-litpools
27173 @opindex mauto-litpools
27174 @opindex mno-auto-litpools
27175 These options control the treatment of literal pools. The default is
27176 @option{-mno-auto-litpools}, which places literals in a separate
27177 section in the output file unless @option{-mtext-section-literals} is
27178 used. With @option{-mauto-litpools} the literals are interspersed in
27179 the text section by the assembler. Compiler does not produce explicit
27180 @code{.literal} directives and loads literals into registers with
27181 @code{MOVI} instructions instead of @code{L32R} to let the assembler
27182 do relaxation and place literals as necessary. This option allows
27183 assembler to create several literal pools per function and assemble
27184 very big functions, which may not be possible with
27185 @option{-mtext-section-literals}.
27186
27187 @item -mtarget-align
27188 @itemx -mno-target-align
27189 @opindex mtarget-align
27190 @opindex mno-target-align
27191 When this option is enabled, GCC instructs the assembler to
27192 automatically align instructions to reduce branch penalties at the
27193 expense of some code density. The assembler attempts to widen density
27194 instructions to align branch targets and the instructions following call
27195 instructions. If there are not enough preceding safe density
27196 instructions to align a target, no widening is performed. The
27197 default is @option{-mtarget-align}. These options do not affect the
27198 treatment of auto-aligned instructions like @code{LOOP}, which the
27199 assembler always aligns, either by widening density instructions or
27200 by inserting NOP instructions.
27201
27202 @item -mlongcalls
27203 @itemx -mno-longcalls
27204 @opindex mlongcalls
27205 @opindex mno-longcalls
27206 When this option is enabled, GCC instructs the assembler to translate
27207 direct calls to indirect calls unless it can determine that the target
27208 of a direct call is in the range allowed by the call instruction. This
27209 translation typically occurs for calls to functions in other source
27210 files. Specifically, the assembler translates a direct @code{CALL}
27211 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
27212 The default is @option{-mno-longcalls}. This option should be used in
27213 programs where the call target can potentially be out of range. This
27214 option is implemented in the assembler, not the compiler, so the
27215 assembly code generated by GCC still shows direct call
27216 instructions---look at the disassembled object code to see the actual
27217 instructions. Note that the assembler uses an indirect call for
27218 every cross-file call, not just those that really are out of range.
27219 @end table
27220
27221 @node zSeries Options
27222 @subsection zSeries Options
27223 @cindex zSeries options
27224
27225 These are listed under @xref{S/390 and zSeries Options}.
27226
27227
27228 @c man end
27229
27230 @node Spec Files
27231 @section Specifying Subprocesses and the Switches to Pass to Them
27232 @cindex Spec Files
27233
27234 @command{gcc} is a driver program. It performs its job by invoking a
27235 sequence of other programs to do the work of compiling, assembling and
27236 linking. GCC interprets its command-line parameters and uses these to
27237 deduce which programs it should invoke, and which command-line options
27238 it ought to place on their command lines. This behavior is controlled
27239 by @dfn{spec strings}. In most cases there is one spec string for each
27240 program that GCC can invoke, but a few programs have multiple spec
27241 strings to control their behavior. The spec strings built into GCC can
27242 be overridden by using the @option{-specs=} command-line switch to specify
27243 a spec file.
27244
27245 @dfn{Spec files} are plain-text files that are used to construct spec
27246 strings. They consist of a sequence of directives separated by blank
27247 lines. The type of directive is determined by the first non-whitespace
27248 character on the line, which can be one of the following:
27249
27250 @table @code
27251 @item %@var{command}
27252 Issues a @var{command} to the spec file processor. The commands that can
27253 appear here are:
27254
27255 @table @code
27256 @item %include <@var{file}>
27257 @cindex @code{%include}
27258 Search for @var{file} and insert its text at the current point in the
27259 specs file.
27260
27261 @item %include_noerr <@var{file}>
27262 @cindex @code{%include_noerr}
27263 Just like @samp{%include}, but do not generate an error message if the include
27264 file cannot be found.
27265
27266 @item %rename @var{old_name} @var{new_name}
27267 @cindex @code{%rename}
27268 Rename the spec string @var{old_name} to @var{new_name}.
27269
27270 @end table
27271
27272 @item *[@var{spec_name}]:
27273 This tells the compiler to create, override or delete the named spec
27274 string. All lines after this directive up to the next directive or
27275 blank line are considered to be the text for the spec string. If this
27276 results in an empty string then the spec is deleted. (Or, if the
27277 spec did not exist, then nothing happens.) Otherwise, if the spec
27278 does not currently exist a new spec is created. If the spec does
27279 exist then its contents are overridden by the text of this
27280 directive, unless the first character of that text is the @samp{+}
27281 character, in which case the text is appended to the spec.
27282
27283 @item [@var{suffix}]:
27284 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
27285 and up to the next directive or blank line are considered to make up the
27286 spec string for the indicated suffix. When the compiler encounters an
27287 input file with the named suffix, it processes the spec string in
27288 order to work out how to compile that file. For example:
27289
27290 @smallexample
27291 .ZZ:
27292 z-compile -input %i
27293 @end smallexample
27294
27295 This says that any input file whose name ends in @samp{.ZZ} should be
27296 passed to the program @samp{z-compile}, which should be invoked with the
27297 command-line switch @option{-input} and with the result of performing the
27298 @samp{%i} substitution. (See below.)
27299
27300 As an alternative to providing a spec string, the text following a
27301 suffix directive can be one of the following:
27302
27303 @table @code
27304 @item @@@var{language}
27305 This says that the suffix is an alias for a known @var{language}. This is
27306 similar to using the @option{-x} command-line switch to GCC to specify a
27307 language explicitly. For example:
27308
27309 @smallexample
27310 .ZZ:
27311 @@c++
27312 @end smallexample
27313
27314 Says that .ZZ files are, in fact, C++ source files.
27315
27316 @item #@var{name}
27317 This causes an error messages saying:
27318
27319 @smallexample
27320 @var{name} compiler not installed on this system.
27321 @end smallexample
27322 @end table
27323
27324 GCC already has an extensive list of suffixes built into it.
27325 This directive adds an entry to the end of the list of suffixes, but
27326 since the list is searched from the end backwards, it is effectively
27327 possible to override earlier entries using this technique.
27328
27329 @end table
27330
27331 GCC has the following spec strings built into it. Spec files can
27332 override these strings or create their own. Note that individual
27333 targets can also add their own spec strings to this list.
27334
27335 @smallexample
27336 asm Options to pass to the assembler
27337 asm_final Options to pass to the assembler post-processor
27338 cpp Options to pass to the C preprocessor
27339 cc1 Options to pass to the C compiler
27340 cc1plus Options to pass to the C++ compiler
27341 endfile Object files to include at the end of the link
27342 link Options to pass to the linker
27343 lib Libraries to include on the command line to the linker
27344 libgcc Decides which GCC support library to pass to the linker
27345 linker Sets the name of the linker
27346 predefines Defines to be passed to the C preprocessor
27347 signed_char Defines to pass to CPP to say whether @code{char} is signed
27348 by default
27349 startfile Object files to include at the start of the link
27350 @end smallexample
27351
27352 Here is a small example of a spec file:
27353
27354 @smallexample
27355 %rename lib old_lib
27356
27357 *lib:
27358 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
27359 @end smallexample
27360
27361 This example renames the spec called @samp{lib} to @samp{old_lib} and
27362 then overrides the previous definition of @samp{lib} with a new one.
27363 The new definition adds in some extra command-line options before
27364 including the text of the old definition.
27365
27366 @dfn{Spec strings} are a list of command-line options to be passed to their
27367 corresponding program. In addition, the spec strings can contain
27368 @samp{%}-prefixed sequences to substitute variable text or to
27369 conditionally insert text into the command line. Using these constructs
27370 it is possible to generate quite complex command lines.
27371
27372 Here is a table of all defined @samp{%}-sequences for spec
27373 strings. Note that spaces are not generated automatically around the
27374 results of expanding these sequences. Therefore you can concatenate them
27375 together or combine them with constant text in a single argument.
27376
27377 @table @code
27378 @item %%
27379 Substitute one @samp{%} into the program name or argument.
27380
27381 @item %i
27382 Substitute the name of the input file being processed.
27383
27384 @item %b
27385 Substitute the basename of the input file being processed.
27386 This is the substring up to (and not including) the last period
27387 and not including the directory.
27388
27389 @item %B
27390 This is the same as @samp{%b}, but include the file suffix (text after
27391 the last period).
27392
27393 @item %d
27394 Marks the argument containing or following the @samp{%d} as a
27395 temporary file name, so that that file is deleted if GCC exits
27396 successfully. Unlike @samp{%g}, this contributes no text to the
27397 argument.
27398
27399 @item %g@var{suffix}
27400 Substitute a file name that has suffix @var{suffix} and is chosen
27401 once per compilation, and mark the argument in the same way as
27402 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
27403 name is now chosen in a way that is hard to predict even when previously
27404 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
27405 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
27406 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
27407 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
27408 was simply substituted with a file name chosen once per compilation,
27409 without regard to any appended suffix (which was therefore treated
27410 just like ordinary text), making such attacks more likely to succeed.
27411
27412 @item %u@var{suffix}
27413 Like @samp{%g}, but generates a new temporary file name
27414 each time it appears instead of once per compilation.
27415
27416 @item %U@var{suffix}
27417 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
27418 new one if there is no such last file name. In the absence of any
27419 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
27420 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
27421 involves the generation of two distinct file names, one
27422 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
27423 simply substituted with a file name chosen for the previous @samp{%u},
27424 without regard to any appended suffix.
27425
27426 @item %j@var{suffix}
27427 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
27428 writable, and if @option{-save-temps} is not used;
27429 otherwise, substitute the name
27430 of a temporary file, just like @samp{%u}. This temporary file is not
27431 meant for communication between processes, but rather as a junk
27432 disposal mechanism.
27433
27434 @item %|@var{suffix}
27435 @itemx %m@var{suffix}
27436 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
27437 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
27438 all. These are the two most common ways to instruct a program that it
27439 should read from standard input or write to standard output. If you
27440 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
27441 construct: see for example @file{f/lang-specs.h}.
27442
27443 @item %.@var{SUFFIX}
27444 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
27445 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
27446 terminated by the next space or %.
27447
27448 @item %w
27449 Marks the argument containing or following the @samp{%w} as the
27450 designated output file of this compilation. This puts the argument
27451 into the sequence of arguments that @samp{%o} substitutes.
27452
27453 @item %o
27454 Substitutes the names of all the output files, with spaces
27455 automatically placed around them. You should write spaces
27456 around the @samp{%o} as well or the results are undefined.
27457 @samp{%o} is for use in the specs for running the linker.
27458 Input files whose names have no recognized suffix are not compiled
27459 at all, but they are included among the output files, so they are
27460 linked.
27461
27462 @item %O
27463 Substitutes the suffix for object files. Note that this is
27464 handled specially when it immediately follows @samp{%g, %u, or %U},
27465 because of the need for those to form complete file names. The
27466 handling is such that @samp{%O} is treated exactly as if it had already
27467 been substituted, except that @samp{%g, %u, and %U} do not currently
27468 support additional @var{suffix} characters following @samp{%O} as they do
27469 following, for example, @samp{.o}.
27470
27471 @item %p
27472 Substitutes the standard macro predefinitions for the
27473 current target machine. Use this when running @command{cpp}.
27474
27475 @item %P
27476 Like @samp{%p}, but puts @samp{__} before and after the name of each
27477 predefined macro, except for macros that start with @samp{__} or with
27478 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
27479 C@.
27480
27481 @item %I
27482 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
27483 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
27484 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
27485 and @option{-imultilib} as necessary.
27486
27487 @item %s
27488 Current argument is the name of a library or startup file of some sort.
27489 Search for that file in a standard list of directories and substitute
27490 the full name found. The current working directory is included in the
27491 list of directories scanned.
27492
27493 @item %T
27494 Current argument is the name of a linker script. Search for that file
27495 in the current list of directories to scan for libraries. If the file
27496 is located insert a @option{--script} option into the command line
27497 followed by the full path name found. If the file is not found then
27498 generate an error message. Note: the current working directory is not
27499 searched.
27500
27501 @item %e@var{str}
27502 Print @var{str} as an error message. @var{str} is terminated by a newline.
27503 Use this when inconsistent options are detected.
27504
27505 @item %(@var{name})
27506 Substitute the contents of spec string @var{name} at this point.
27507
27508 @item %x@{@var{option}@}
27509 Accumulate an option for @samp{%X}.
27510
27511 @item %X
27512 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
27513 spec string.
27514
27515 @item %Y
27516 Output the accumulated assembler options specified by @option{-Wa}.
27517
27518 @item %Z
27519 Output the accumulated preprocessor options specified by @option{-Wp}.
27520
27521 @item %a
27522 Process the @code{asm} spec. This is used to compute the
27523 switches to be passed to the assembler.
27524
27525 @item %A
27526 Process the @code{asm_final} spec. This is a spec string for
27527 passing switches to an assembler post-processor, if such a program is
27528 needed.
27529
27530 @item %l
27531 Process the @code{link} spec. This is the spec for computing the
27532 command line passed to the linker. Typically it makes use of the
27533 @samp{%L %G %S %D and %E} sequences.
27534
27535 @item %D
27536 Dump out a @option{-L} option for each directory that GCC believes might
27537 contain startup files. If the target supports multilibs then the
27538 current multilib directory is prepended to each of these paths.
27539
27540 @item %L
27541 Process the @code{lib} spec. This is a spec string for deciding which
27542 libraries are included on the command line to the linker.
27543
27544 @item %G
27545 Process the @code{libgcc} spec. This is a spec string for deciding
27546 which GCC support library is included on the command line to the linker.
27547
27548 @item %S
27549 Process the @code{startfile} spec. This is a spec for deciding which
27550 object files are the first ones passed to the linker. Typically
27551 this might be a file named @file{crt0.o}.
27552
27553 @item %E
27554 Process the @code{endfile} spec. This is a spec string that specifies
27555 the last object files that are passed to the linker.
27556
27557 @item %C
27558 Process the @code{cpp} spec. This is used to construct the arguments
27559 to be passed to the C preprocessor.
27560
27561 @item %1
27562 Process the @code{cc1} spec. This is used to construct the options to be
27563 passed to the actual C compiler (@command{cc1}).
27564
27565 @item %2
27566 Process the @code{cc1plus} spec. This is used to construct the options to be
27567 passed to the actual C++ compiler (@command{cc1plus}).
27568
27569 @item %*
27570 Substitute the variable part of a matched option. See below.
27571 Note that each comma in the substituted string is replaced by
27572 a single space.
27573
27574 @item %<S
27575 Remove all occurrences of @code{-S} from the command line. Note---this
27576 command is position dependent. @samp{%} commands in the spec string
27577 before this one see @code{-S}, @samp{%} commands in the spec string
27578 after this one do not.
27579
27580 @item %:@var{function}(@var{args})
27581 Call the named function @var{function}, passing it @var{args}.
27582 @var{args} is first processed as a nested spec string, then split
27583 into an argument vector in the usual fashion. The function returns
27584 a string which is processed as if it had appeared literally as part
27585 of the current spec.
27586
27587 The following built-in spec functions are provided:
27588
27589 @table @code
27590 @item @code{getenv}
27591 The @code{getenv} spec function takes two arguments: an environment
27592 variable name and a string. If the environment variable is not
27593 defined, a fatal error is issued. Otherwise, the return value is the
27594 value of the environment variable concatenated with the string. For
27595 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
27596
27597 @smallexample
27598 %:getenv(TOPDIR /include)
27599 @end smallexample
27600
27601 expands to @file{/path/to/top/include}.
27602
27603 @item @code{if-exists}
27604 The @code{if-exists} spec function takes one argument, an absolute
27605 pathname to a file. If the file exists, @code{if-exists} returns the
27606 pathname. Here is a small example of its usage:
27607
27608 @smallexample
27609 *startfile:
27610 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
27611 @end smallexample
27612
27613 @item @code{if-exists-else}
27614 The @code{if-exists-else} spec function is similar to the @code{if-exists}
27615 spec function, except that it takes two arguments. The first argument is
27616 an absolute pathname to a file. If the file exists, @code{if-exists-else}
27617 returns the pathname. If it does not exist, it returns the second argument.
27618 This way, @code{if-exists-else} can be used to select one file or another,
27619 based on the existence of the first. Here is a small example of its usage:
27620
27621 @smallexample
27622 *startfile:
27623 crt0%O%s %:if-exists(crti%O%s) \
27624 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
27625 @end smallexample
27626
27627 @item @code{replace-outfile}
27628 The @code{replace-outfile} spec function takes two arguments. It looks for the
27629 first argument in the outfiles array and replaces it with the second argument. Here
27630 is a small example of its usage:
27631
27632 @smallexample
27633 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
27634 @end smallexample
27635
27636 @item @code{remove-outfile}
27637 The @code{remove-outfile} spec function takes one argument. It looks for the
27638 first argument in the outfiles array and removes it. Here is a small example
27639 its usage:
27640
27641 @smallexample
27642 %:remove-outfile(-lm)
27643 @end smallexample
27644
27645 @item @code{pass-through-libs}
27646 The @code{pass-through-libs} spec function takes any number of arguments. It
27647 finds any @option{-l} options and any non-options ending in @file{.a} (which it
27648 assumes are the names of linker input library archive files) and returns a
27649 result containing all the found arguments each prepended by
27650 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
27651 intended to be passed to the LTO linker plugin.
27652
27653 @smallexample
27654 %:pass-through-libs(%G %L %G)
27655 @end smallexample
27656
27657 @item @code{print-asm-header}
27658 The @code{print-asm-header} function takes no arguments and simply
27659 prints a banner like:
27660
27661 @smallexample
27662 Assembler options
27663 =================
27664
27665 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
27666 @end smallexample
27667
27668 It is used to separate compiler options from assembler options
27669 in the @option{--target-help} output.
27670 @end table
27671
27672 @item %@{S@}
27673 Substitutes the @code{-S} switch, if that switch is given to GCC@.
27674 If that switch is not specified, this substitutes nothing. Note that
27675 the leading dash is omitted when specifying this option, and it is
27676 automatically inserted if the substitution is performed. Thus the spec
27677 string @samp{%@{foo@}} matches the command-line option @option{-foo}
27678 and outputs the command-line option @option{-foo}.
27679
27680 @item %W@{S@}
27681 Like %@{@code{S}@} but mark last argument supplied within as a file to be
27682 deleted on failure.
27683
27684 @item %@{S*@}
27685 Substitutes all the switches specified to GCC whose names start
27686 with @code{-S}, but which also take an argument. This is used for
27687 switches like @option{-o}, @option{-D}, @option{-I}, etc.
27688 GCC considers @option{-o foo} as being
27689 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
27690 text, including the space. Thus two arguments are generated.
27691
27692 @item %@{S*&T*@}
27693 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
27694 (the order of @code{S} and @code{T} in the spec is not significant).
27695 There can be any number of ampersand-separated variables; for each the
27696 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
27697
27698 @item %@{S:X@}
27699 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
27700
27701 @item %@{!S:X@}
27702 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
27703
27704 @item %@{S*:X@}
27705 Substitutes @code{X} if one or more switches whose names start with
27706 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
27707 once, no matter how many such switches appeared. However, if @code{%*}
27708 appears somewhere in @code{X}, then @code{X} is substituted once
27709 for each matching switch, with the @code{%*} replaced by the part of
27710 that switch matching the @code{*}.
27711
27712 If @code{%*} appears as the last part of a spec sequence then a space
27713 is added after the end of the last substitution. If there is more
27714 text in the sequence, however, then a space is not generated. This
27715 allows the @code{%*} substitution to be used as part of a larger
27716 string. For example, a spec string like this:
27717
27718 @smallexample
27719 %@{mcu=*:--script=%*/memory.ld@}
27720 @end smallexample
27721
27722 @noindent
27723 when matching an option like @option{-mcu=newchip} produces:
27724
27725 @smallexample
27726 --script=newchip/memory.ld
27727 @end smallexample
27728
27729 @item %@{.S:X@}
27730 Substitutes @code{X}, if processing a file with suffix @code{S}.
27731
27732 @item %@{!.S:X@}
27733 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
27734
27735 @item %@{,S:X@}
27736 Substitutes @code{X}, if processing a file for language @code{S}.
27737
27738 @item %@{!,S:X@}
27739 Substitutes @code{X}, if not processing a file for language @code{S}.
27740
27741 @item %@{S|P:X@}
27742 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
27743 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
27744 @code{*} sequences as well, although they have a stronger binding than
27745 the @samp{|}. If @code{%*} appears in @code{X}, all of the
27746 alternatives must be starred, and only the first matching alternative
27747 is substituted.
27748
27749 For example, a spec string like this:
27750
27751 @smallexample
27752 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
27753 @end smallexample
27754
27755 @noindent
27756 outputs the following command-line options from the following input
27757 command-line options:
27758
27759 @smallexample
27760 fred.c -foo -baz
27761 jim.d -bar -boggle
27762 -d fred.c -foo -baz -boggle
27763 -d jim.d -bar -baz -boggle
27764 @end smallexample
27765
27766 @item %@{S:X; T:Y; :D@}
27767
27768 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
27769 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
27770 be as many clauses as you need. This may be combined with @code{.},
27771 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
27772
27773
27774 @end table
27775
27776 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
27777 or similar construct can use a backslash to ignore the special meaning
27778 of the character following it, thus allowing literal matching of a
27779 character that is otherwise specially treated. For example,
27780 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
27781 @option{-std=iso9899:1999} option is given.
27782
27783 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
27784 construct may contain other nested @samp{%} constructs or spaces, or
27785 even newlines. They are processed as usual, as described above.
27786 Trailing white space in @code{X} is ignored. White space may also
27787 appear anywhere on the left side of the colon in these constructs,
27788 except between @code{.} or @code{*} and the corresponding word.
27789
27790 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
27791 handled specifically in these constructs. If another value of
27792 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
27793 @option{-W} switch is found later in the command line, the earlier
27794 switch value is ignored, except with @{@code{S}*@} where @code{S} is
27795 just one letter, which passes all matching options.
27796
27797 The character @samp{|} at the beginning of the predicate text is used to
27798 indicate that a command should be piped to the following command, but
27799 only if @option{-pipe} is specified.
27800
27801 It is built into GCC which switches take arguments and which do not.
27802 (You might think it would be useful to generalize this to allow each
27803 compiler's spec to say which switches take arguments. But this cannot
27804 be done in a consistent fashion. GCC cannot even decide which input
27805 files have been specified without knowing which switches take arguments,
27806 and it must know which input files to compile in order to tell which
27807 compilers to run).
27808
27809 GCC also knows implicitly that arguments starting in @option{-l} are to be
27810 treated as compiler output files, and passed to the linker in their
27811 proper position among the other output files.
27812
27813 @node Environment Variables
27814 @section Environment Variables Affecting GCC
27815 @cindex environment variables
27816
27817 @c man begin ENVIRONMENT
27818 This section describes several environment variables that affect how GCC
27819 operates. Some of them work by specifying directories or prefixes to use
27820 when searching for various kinds of files. Some are used to specify other
27821 aspects of the compilation environment.
27822
27823 Note that you can also specify places to search using options such as
27824 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
27825 take precedence over places specified using environment variables, which
27826 in turn take precedence over those specified by the configuration of GCC@.
27827 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
27828 GNU Compiler Collection (GCC) Internals}.
27829
27830 @table @env
27831 @item LANG
27832 @itemx LC_CTYPE
27833 @c @itemx LC_COLLATE
27834 @itemx LC_MESSAGES
27835 @c @itemx LC_MONETARY
27836 @c @itemx LC_NUMERIC
27837 @c @itemx LC_TIME
27838 @itemx LC_ALL
27839 @findex LANG
27840 @findex LC_CTYPE
27841 @c @findex LC_COLLATE
27842 @findex LC_MESSAGES
27843 @c @findex LC_MONETARY
27844 @c @findex LC_NUMERIC
27845 @c @findex LC_TIME
27846 @findex LC_ALL
27847 @cindex locale
27848 These environment variables control the way that GCC uses
27849 localization information which allows GCC to work with different
27850 national conventions. GCC inspects the locale categories
27851 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
27852 so. These locale categories can be set to any value supported by your
27853 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
27854 Kingdom encoded in UTF-8.
27855
27856 The @env{LC_CTYPE} environment variable specifies character
27857 classification. GCC uses it to determine the character boundaries in
27858 a string; this is needed for some multibyte encodings that contain quote
27859 and escape characters that are otherwise interpreted as a string
27860 end or escape.
27861
27862 The @env{LC_MESSAGES} environment variable specifies the language to
27863 use in diagnostic messages.
27864
27865 If the @env{LC_ALL} environment variable is set, it overrides the value
27866 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
27867 and @env{LC_MESSAGES} default to the value of the @env{LANG}
27868 environment variable. If none of these variables are set, GCC
27869 defaults to traditional C English behavior.
27870
27871 @item TMPDIR
27872 @findex TMPDIR
27873 If @env{TMPDIR} is set, it specifies the directory to use for temporary
27874 files. GCC uses temporary files to hold the output of one stage of
27875 compilation which is to be used as input to the next stage: for example,
27876 the output of the preprocessor, which is the input to the compiler
27877 proper.
27878
27879 @item GCC_COMPARE_DEBUG
27880 @findex GCC_COMPARE_DEBUG
27881 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
27882 @option{-fcompare-debug} to the compiler driver. See the documentation
27883 of this option for more details.
27884
27885 @item GCC_EXEC_PREFIX
27886 @findex GCC_EXEC_PREFIX
27887 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
27888 names of the subprograms executed by the compiler. No slash is added
27889 when this prefix is combined with the name of a subprogram, but you can
27890 specify a prefix that ends with a slash if you wish.
27891
27892 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
27893 an appropriate prefix to use based on the pathname it is invoked with.
27894
27895 If GCC cannot find the subprogram using the specified prefix, it
27896 tries looking in the usual places for the subprogram.
27897
27898 The default value of @env{GCC_EXEC_PREFIX} is
27899 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
27900 the installed compiler. In many cases @var{prefix} is the value
27901 of @code{prefix} when you ran the @file{configure} script.
27902
27903 Other prefixes specified with @option{-B} take precedence over this prefix.
27904
27905 This prefix is also used for finding files such as @file{crt0.o} that are
27906 used for linking.
27907
27908 In addition, the prefix is used in an unusual way in finding the
27909 directories to search for header files. For each of the standard
27910 directories whose name normally begins with @samp{/usr/local/lib/gcc}
27911 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
27912 replacing that beginning with the specified prefix to produce an
27913 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
27914 @file{foo/bar} just before it searches the standard directory
27915 @file{/usr/local/lib/bar}.
27916 If a standard directory begins with the configured
27917 @var{prefix} then the value of @var{prefix} is replaced by
27918 @env{GCC_EXEC_PREFIX} when looking for header files.
27919
27920 @item COMPILER_PATH
27921 @findex COMPILER_PATH
27922 The value of @env{COMPILER_PATH} is a colon-separated list of
27923 directories, much like @env{PATH}. GCC tries the directories thus
27924 specified when searching for subprograms, if it cannot find the
27925 subprograms using @env{GCC_EXEC_PREFIX}.
27926
27927 @item LIBRARY_PATH
27928 @findex LIBRARY_PATH
27929 The value of @env{LIBRARY_PATH} is a colon-separated list of
27930 directories, much like @env{PATH}. When configured as a native compiler,
27931 GCC tries the directories thus specified when searching for special
27932 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
27933 using GCC also uses these directories when searching for ordinary
27934 libraries for the @option{-l} option (but directories specified with
27935 @option{-L} come first).
27936
27937 @item LANG
27938 @findex LANG
27939 @cindex locale definition
27940 This variable is used to pass locale information to the compiler. One way in
27941 which this information is used is to determine the character set to be used
27942 when character literals, string literals and comments are parsed in C and C++.
27943 When the compiler is configured to allow multibyte characters,
27944 the following values for @env{LANG} are recognized:
27945
27946 @table @samp
27947 @item C-JIS
27948 Recognize JIS characters.
27949 @item C-SJIS
27950 Recognize SJIS characters.
27951 @item C-EUCJP
27952 Recognize EUCJP characters.
27953 @end table
27954
27955 If @env{LANG} is not defined, or if it has some other value, then the
27956 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
27957 recognize and translate multibyte characters.
27958 @end table
27959
27960 @noindent
27961 Some additional environment variables affect the behavior of the
27962 preprocessor.
27963
27964 @include cppenv.texi
27965
27966 @c man end
27967
27968 @node Precompiled Headers
27969 @section Using Precompiled Headers
27970 @cindex precompiled headers
27971 @cindex speed of compilation
27972
27973 Often large projects have many header files that are included in every
27974 source file. The time the compiler takes to process these header files
27975 over and over again can account for nearly all of the time required to
27976 build the project. To make builds faster, GCC allows you to
27977 @dfn{precompile} a header file.
27978
27979 To create a precompiled header file, simply compile it as you would any
27980 other file, if necessary using the @option{-x} option to make the driver
27981 treat it as a C or C++ header file. You may want to use a
27982 tool like @command{make} to keep the precompiled header up-to-date when
27983 the headers it contains change.
27984
27985 A precompiled header file is searched for when @code{#include} is
27986 seen in the compilation. As it searches for the included file
27987 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
27988 compiler looks for a precompiled header in each directory just before it
27989 looks for the include file in that directory. The name searched for is
27990 the name specified in the @code{#include} with @samp{.gch} appended. If
27991 the precompiled header file cannot be used, it is ignored.
27992
27993 For instance, if you have @code{#include "all.h"}, and you have
27994 @file{all.h.gch} in the same directory as @file{all.h}, then the
27995 precompiled header file is used if possible, and the original
27996 header is used otherwise.
27997
27998 Alternatively, you might decide to put the precompiled header file in a
27999 directory and use @option{-I} to ensure that directory is searched
28000 before (or instead of) the directory containing the original header.
28001 Then, if you want to check that the precompiled header file is always
28002 used, you can put a file of the same name as the original header in this
28003 directory containing an @code{#error} command.
28004
28005 This also works with @option{-include}. So yet another way to use
28006 precompiled headers, good for projects not designed with precompiled
28007 header files in mind, is to simply take most of the header files used by
28008 a project, include them from another header file, precompile that header
28009 file, and @option{-include} the precompiled header. If the header files
28010 have guards against multiple inclusion, they are skipped because
28011 they've already been included (in the precompiled header).
28012
28013 If you need to precompile the same header file for different
28014 languages, targets, or compiler options, you can instead make a
28015 @emph{directory} named like @file{all.h.gch}, and put each precompiled
28016 header in the directory, perhaps using @option{-o}. It doesn't matter
28017 what you call the files in the directory; every precompiled header in
28018 the directory is considered. The first precompiled header
28019 encountered in the directory that is valid for this compilation is
28020 used; they're searched in no particular order.
28021
28022 There are many other possibilities, limited only by your imagination,
28023 good sense, and the constraints of your build system.
28024
28025 A precompiled header file can be used only when these conditions apply:
28026
28027 @itemize
28028 @item
28029 Only one precompiled header can be used in a particular compilation.
28030
28031 @item
28032 A precompiled header cannot be used once the first C token is seen. You
28033 can have preprocessor directives before a precompiled header; you cannot
28034 include a precompiled header from inside another header.
28035
28036 @item
28037 The precompiled header file must be produced for the same language as
28038 the current compilation. You cannot use a C precompiled header for a C++
28039 compilation.
28040
28041 @item
28042 The precompiled header file must have been produced by the same compiler
28043 binary as the current compilation is using.
28044
28045 @item
28046 Any macros defined before the precompiled header is included must
28047 either be defined in the same way as when the precompiled header was
28048 generated, or must not affect the precompiled header, which usually
28049 means that they don't appear in the precompiled header at all.
28050
28051 The @option{-D} option is one way to define a macro before a
28052 precompiled header is included; using a @code{#define} can also do it.
28053 There are also some options that define macros implicitly, like
28054 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
28055 defined this way.
28056
28057 @item If debugging information is output when using the precompiled
28058 header, using @option{-g} or similar, the same kind of debugging information
28059 must have been output when building the precompiled header. However,
28060 a precompiled header built using @option{-g} can be used in a compilation
28061 when no debugging information is being output.
28062
28063 @item The same @option{-m} options must generally be used when building
28064 and using the precompiled header. @xref{Submodel Options},
28065 for any cases where this rule is relaxed.
28066
28067 @item Each of the following options must be the same when building and using
28068 the precompiled header:
28069
28070 @gccoptlist{-fexceptions}
28071
28072 @item
28073 Some other command-line options starting with @option{-f},
28074 @option{-p}, or @option{-O} must be defined in the same way as when
28075 the precompiled header was generated. At present, it's not clear
28076 which options are safe to change and which are not; the safest choice
28077 is to use exactly the same options when generating and using the
28078 precompiled header. The following are known to be safe:
28079
28080 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
28081 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
28082 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
28083 -pedantic-errors}
28084
28085 @end itemize
28086
28087 For all of these except the last, the compiler automatically
28088 ignores the precompiled header if the conditions aren't met. If you
28089 find an option combination that doesn't work and doesn't cause the
28090 precompiled header to be ignored, please consider filing a bug report,
28091 see @ref{Bugs}.
28092
28093 If you do use differing options when generating and using the
28094 precompiled header, the actual behavior is a mixture of the
28095 behavior for the options. For instance, if you use @option{-g} to
28096 generate the precompiled header but not when using it, you may or may
28097 not get debugging information for routines in the precompiled header.