]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
b5721c9f242dc01efe895f49b55e3977809d46b8
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2015 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2015 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), adb(1), dbx(1), sdb(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75
76 Other options are passed on to one stage of processing. Some options
77 control the preprocessor and others the compiler itself. Yet other
78 options control the assembler and linker; most of these are not
79 documented here, since you rarely need to use any of them.
80
81 @cindex C compilation options
82 Most of the command-line options that you can use with GCC are useful
83 for C programs; when an option is only useful with another language
84 (usually C++), the explanation says so explicitly. If the description
85 for a particular option does not mention a source language, you can use
86 that option with all supported languages.
87
88 @cindex C++ compilation options
89 @xref{Invoking G++,,Compiling C++ Programs}, for a summary of special
90 options for compiling C++ programs.
91
92 @cindex grouping options
93 @cindex options, grouping
94 The @command{gcc} program accepts options and file names as operands. Many
95 options have multi-letter names; therefore multiple single-letter options
96 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
97 -v}}.
98
99 @cindex order of options
100 @cindex options, order
101 You can mix options and other arguments. For the most part, the order
102 you use doesn't matter. Order does matter when you use several
103 options of the same kind; for example, if you specify @option{-L} more
104 than once, the directories are searched in the order specified. Also,
105 the placement of the @option{-l} option is significant.
106
107 Many options have long names starting with @samp{-f} or with
108 @samp{-W}---for example,
109 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
110 these have both positive and negative forms; the negative form of
111 @option{-ffoo} is @option{-fno-foo}. This manual documents
112 only one of these two forms, whichever one is not the default.
113
114 @c man end
115
116 @xref{Option Index}, for an index to GCC's options.
117
118 @menu
119 * Option Summary:: Brief list of all options, without explanations.
120 * Overall Options:: Controlling the kind of output:
121 an executable, object files, assembler files,
122 or preprocessed source.
123 * Invoking G++:: Compiling C++ programs.
124 * C Dialect Options:: Controlling the variant of C language compiled.
125 * C++ Dialect Options:: Variations on C++.
126 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
127 and Objective-C++.
128 * Language Independent Options:: Controlling how diagnostics should be
129 formatted.
130 * Warning Options:: How picky should the compiler be?
131 * Debugging Options:: Symbol tables, measurements, and debugging dumps.
132 * Optimize Options:: How much optimization?
133 * Preprocessor Options:: Controlling header files and macro definitions.
134 Also, getting dependency information for Make.
135 * Assembler Options:: Passing options to the assembler.
136 * Link Options:: Specifying libraries and so on.
137 * Directory Options:: Where to find header files and libraries.
138 Where to find the compiler executable files.
139 * Spec Files:: How to pass switches to sub-processes.
140 * Target Options:: Running a cross-compiler, or an old version of GCC.
141 * Submodel Options:: Specifying minor hardware or convention variations,
142 such as 68010 vs 68020.
143 * Code Gen Options:: Specifying conventions for function calls, data layout
144 and register usage.
145 * Environment Variables:: Env vars that affect GCC.
146 * Precompiled Headers:: Compiling a header once, and using it many times.
147 @end menu
148
149 @c man begin OPTIONS
150
151 @node Option Summary
152 @section Option Summary
153
154 Here is a summary of all the options, grouped by type. Explanations are
155 in the following sections.
156
157 @table @emph
158 @item Overall Options
159 @xref{Overall Options,,Options Controlling the Kind of Output}.
160 @gccoptlist{-c -S -E -o @var{file} -no-canonical-prefixes @gol
161 -pipe -pass-exit-codes @gol
162 -x @var{language} -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help @gol
163 --version -wrapper @@@var{file} -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
164 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
165
166 @item C Language Options
167 @xref{C Dialect Options,,Options Controlling C Dialect}.
168 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
169 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
170 -fno-asm -fno-builtin -fno-builtin-@var{function} @gol
171 -fhosted -ffreestanding -fopenacc -fopenmp -fopenmp-simd @gol
172 -fms-extensions -fplan9-extensions -trigraphs -traditional -traditional-cpp @gol
173 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
174 -fsigned-bitfields -fsigned-char @gol
175 -funsigned-bitfields -funsigned-char}
176
177 @item C++ Language Options
178 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
179 @gccoptlist{-fabi-version=@var{n} -fno-access-control -fcheck-new @gol
180 -fconstexpr-depth=@var{n} -ffriend-injection @gol
181 -fno-elide-constructors @gol
182 -fno-enforce-eh-specs @gol
183 -ffor-scope -fno-for-scope -fno-gnu-keywords @gol
184 -fno-implicit-templates @gol
185 -fno-implicit-inline-templates @gol
186 -fno-implement-inlines -fms-extensions @gol
187 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
188 -fno-optional-diags -fpermissive @gol
189 -fno-pretty-templates @gol
190 -frepo -fno-rtti -fsized-deallocation @gol
191 -fstats -ftemplate-backtrace-limit=@var{n} @gol
192 -ftemplate-depth=@var{n} @gol
193 -fno-threadsafe-statics -fuse-cxa-atexit @gol
194 -fno-weak -nostdinc++ @gol
195 -fvisibility-inlines-hidden @gol
196 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
197 -fvtv-counts -fvtv-debug @gol
198 -fvisibility-ms-compat @gol
199 -fext-numeric-literals @gol
200 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
201 -Wdelete-non-virtual-dtor -Wliteral-suffix -Wnarrowing @gol
202 -Wnoexcept -Wnon-virtual-dtor -Wreorder @gol
203 -Weffc++ -Wstrict-null-sentinel @gol
204 -Wno-non-template-friend -Wold-style-cast @gol
205 -Woverloaded-virtual -Wno-pmf-conversions @gol
206 -Wsign-promo}
207
208 @item Objective-C and Objective-C++ Language Options
209 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
210 Objective-C and Objective-C++ Dialects}.
211 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
212 -fgnu-runtime -fnext-runtime @gol
213 -fno-nil-receivers @gol
214 -fobjc-abi-version=@var{n} @gol
215 -fobjc-call-cxx-cdtors @gol
216 -fobjc-direct-dispatch @gol
217 -fobjc-exceptions @gol
218 -fobjc-gc @gol
219 -fobjc-nilcheck @gol
220 -fobjc-std=objc1 @gol
221 -fno-local-ivars @gol
222 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
223 -freplace-objc-classes @gol
224 -fzero-link @gol
225 -gen-decls @gol
226 -Wassign-intercept @gol
227 -Wno-protocol -Wselector @gol
228 -Wstrict-selector-match @gol
229 -Wundeclared-selector}
230
231 @item Language Independent Options
232 @xref{Language Independent Options,,Options to Control Diagnostic Messages Formatting}.
233 @gccoptlist{-fmessage-length=@var{n} @gol
234 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
235 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
236 -fno-diagnostics-show-option -fno-diagnostics-show-caret}
237
238 @item Warning Options
239 @xref{Warning Options,,Options to Request or Suppress Warnings}.
240 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
241 -pedantic-errors @gol
242 -w -Wextra -Wall -Waddress -Waggregate-return @gol
243 -Waggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
244 -Wbool-compare @gol
245 -Wno-attributes -Wno-builtin-macro-redefined @gol
246 -Wc90-c99-compat -Wc99-c11-compat @gol
247 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wcast-align -Wcast-qual @gol
248 -Wchar-subscripts -Wclobbered -Wcomment -Wconditionally-supported @gol
249 -Wconversion -Wcoverage-mismatch -Wdate-time -Wdelete-incomplete -Wno-cpp @gol
250 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
251 -Wdisabled-optimization @gol
252 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
253 -Wno-div-by-zero -Wdouble-promotion -Wempty-body -Wenum-compare @gol
254 -Wno-endif-labels -Werror -Werror=* @gol
255 -Wfatal-errors -Wfloat-equal -Wformat -Wformat=2 @gol
256 -Wno-format-contains-nul -Wno-format-extra-args -Wformat-nonliteral @gol
257 -Wformat-security -Wformat-signedness -Wformat-y2k @gol
258 -Wframe-larger-than=@var{len} -Wno-free-nonheap-object -Wjump-misses-init @gol
259 -Wignored-qualifiers -Wincompatible-pointer-types @gol
260 -Wimplicit -Wimplicit-function-declaration -Wimplicit-int @gol
261 -Winit-self -Winline -Wno-int-conversion @gol
262 -Wno-int-to-pointer-cast -Wno-invalid-offsetof @gol
263 -Winvalid-pch -Wlarger-than=@var{len} -Wunsafe-loop-optimizations @gol
264 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
265 -Wmain -Wmaybe-uninitialized -Wmemset-transposed-args -Wmissing-braces @gol
266 -Wmissing-field-initializers -Wmissing-include-dirs @gol
267 -Wno-multichar -Wnonnull -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
268 -Wodr -Wno-overflow -Wopenmp-simd @gol
269 -Woverride-init-side-effects @gol
270 -Woverlength-strings -Wpacked -Wpacked-bitfield-compat -Wpadded @gol
271 -Wparentheses -Wpedantic-ms-format -Wno-pedantic-ms-format @gol
272 -Wpointer-arith -Wno-pointer-to-int-cast @gol
273 -Wredundant-decls -Wno-return-local-addr @gol
274 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
275 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
276 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
277 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
278 -Wstack-protector -Wstack-usage=@var{len} -Wstrict-aliasing @gol
279 -Wstrict-aliasing=n @gol -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
280 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]} @gol
281 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
282 -Wmissing-format-attribute @gol
283 -Wswitch -Wswitch-default -Wswitch-enum -Wswitch-bool -Wsync-nand @gol
284 -Wsystem-headers -Wtrampolines -Wtrigraphs -Wtype-limits -Wundef @gol
285 -Wuninitialized -Wunknown-pragmas -Wno-pragmas @gol
286 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
287 -Wunused-label -Wunused-local-typedefs -Wunused-parameter @gol
288 -Wno-unused-result -Wunused-value @gol -Wunused-variable @gol
289 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
290 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
291 -Wvla -Wvolatile-register-var -Wwrite-strings @gol
292 -Wzero-as-null-pointer-constant}
293
294 @item C and Objective-C-only Warning Options
295 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
296 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
297 -Wold-style-declaration -Wold-style-definition @gol
298 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
299 -Wdeclaration-after-statement -Wpointer-sign}
300
301 @item Debugging Options
302 @xref{Debugging Options,,Options for Debugging Your Program or GCC}.
303 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
304 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
305 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1,s2,...} @gol
306 -fsanitize-undefined-trap-on-error @gol
307 -fcheck-pointer-bounds -fchkp-check-incomplete-type @gol
308 -fchkp-first-field-has-own-bounds -fchkp-narrow-bounds @gol
309 -fchkp-narrow-to-innermost-array -fchkp-optimize @gol
310 -fchkp-use-fast-string-functions -fchkp-use-nochk-string-functions @gol
311 -fchkp-use-static-bounds -fchkp-use-static-const-bounds @gol
312 -fchkp-treat-zero-dynamic-size-as-infinite -fchkp-check-read @gol
313 -fchkp-check-read -fchkp-check-write -fchkp-store-bounds @gol
314 -fchkp-instrument-calls -fchkp-instrument-marked-only @gol
315 -fchkp-use-wrappers @gol
316 -fdbg-cnt-list -fdbg-cnt=@var{counter-value-list} @gol
317 -fdisable-ipa-@var{pass_name} @gol
318 -fdisable-rtl-@var{pass_name} @gol
319 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
320 -fdisable-tree-@var{pass_name} @gol
321 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
322 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
323 -fdump-translation-unit@r{[}-@var{n}@r{]} @gol
324 -fdump-class-hierarchy@r{[}-@var{n}@r{]} @gol
325 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
326 -fdump-passes @gol
327 -fdump-statistics @gol
328 -fdump-tree-all @gol
329 -fdump-tree-original@r{[}-@var{n}@r{]} @gol
330 -fdump-tree-optimized@r{[}-@var{n}@r{]} @gol
331 -fdump-tree-cfg -fdump-tree-alias @gol
332 -fdump-tree-ch @gol
333 -fdump-tree-ssa@r{[}-@var{n}@r{]} -fdump-tree-pre@r{[}-@var{n}@r{]} @gol
334 -fdump-tree-ccp@r{[}-@var{n}@r{]} -fdump-tree-dce@r{[}-@var{n}@r{]} @gol
335 -fdump-tree-gimple@r{[}-raw@r{]} @gol
336 -fdump-tree-dom@r{[}-@var{n}@r{]} @gol
337 -fdump-tree-dse@r{[}-@var{n}@r{]} @gol
338 -fdump-tree-phiprop@r{[}-@var{n}@r{]} @gol
339 -fdump-tree-phiopt@r{[}-@var{n}@r{]} @gol
340 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
341 -fdump-tree-copyrename@r{[}-@var{n}@r{]} @gol
342 -fdump-tree-nrv -fdump-tree-vect @gol
343 -fdump-tree-sink @gol
344 -fdump-tree-sra@r{[}-@var{n}@r{]} @gol
345 -fdump-tree-forwprop@r{[}-@var{n}@r{]} @gol
346 -fdump-tree-fre@r{[}-@var{n}@r{]} @gol
347 -fdump-tree-vtable-verify @gol
348 -fdump-tree-vrp@r{[}-@var{n}@r{]} @gol
349 -fdump-tree-storeccp@r{[}-@var{n}@r{]} @gol
350 -fdump-final-insns=@var{file} @gol
351 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
352 -feliminate-dwarf2-dups -fno-eliminate-unused-debug-types @gol
353 -feliminate-unused-debug-symbols -femit-class-debug-always @gol
354 -fenable-@var{kind}-@var{pass} @gol
355 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
356 -fdebug-types-section -fmem-report-wpa @gol
357 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report -fprofile-arcs @gol
358 -fopt-info @gol
359 -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
360 -frandom-seed=@var{number} -fsched-verbose=@var{n} @gol
361 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
362 -fstack-usage -ftest-coverage -ftime-report -fvar-tracking @gol
363 -fvar-tracking-assignments -fvar-tracking-assignments-toggle @gol
364 -g -g@var{level} -gtoggle -gcoff -gdwarf-@var{version} @gol
365 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
366 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
367 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
368 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
369 -fdebug-prefix-map=@var{old}=@var{new} @gol
370 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
371 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
372 -p -pg -print-file-name=@var{library} -print-libgcc-file-name @gol
373 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
374 -print-prog-name=@var{program} -print-search-dirs -Q @gol
375 -print-sysroot -print-sysroot-headers-suffix @gol
376 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
377
378 @item Optimization Options
379 @xref{Optimize Options,,Options that Control Optimization}.
380 @gccoptlist{-faggressive-loop-optimizations -falign-functions[=@var{n}] @gol
381 -falign-jumps[=@var{n}] @gol
382 -falign-labels[=@var{n}] -falign-loops[=@var{n}] @gol
383 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
384 -fauto-inc-dec -fbranch-probabilities @gol
385 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
386 -fbtr-bb-exclusive -fcaller-saves @gol
387 -fcheck-data-deps -fcombine-stack-adjustments -fconserve-stack @gol
388 -fcompare-elim -fcprop-registers -fcrossjumping @gol
389 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
390 -fcx-limited-range @gol
391 -fdata-sections -fdce -fdelayed-branch @gol
392 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
393 -fdevirtualize-at-ltrans -fdse @gol
394 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
395 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
396 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
397 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
398 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
399 -fif-conversion2 -findirect-inlining @gol
400 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
401 -finline-small-functions -fipa-cp -fipa-cp-clone -fipa-cp-alignment @gol
402 -fipa-pta -fipa-profile -fipa-pure-const -fipa-reference -fipa-icf @gol
403 -fira-algorithm=@var{algorithm} @gol
404 -fira-region=@var{region} -fira-hoist-pressure @gol
405 -fira-loop-pressure -fno-ira-share-save-slots @gol
406 -fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
407 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
408 -fivopts -fkeep-inline-functions -fkeep-static-consts @gol
409 -flive-range-shrinkage @gol
410 -floop-block -floop-interchange -floop-strip-mine @gol
411 -floop-unroll-and-jam -floop-nest-optimize @gol
412 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
413 -flto-partition=@var{alg} -flto-report -flto-report-wpa -fmerge-all-constants @gol
414 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
415 -fmove-loop-invariants -fno-branch-count-reg @gol
416 -fno-defer-pop -fno-function-cse -fno-guess-branch-probability @gol
417 -fno-inline -fno-math-errno -fno-peephole -fno-peephole2 @gol
418 -fno-sched-interblock -fno-sched-spec -fno-signed-zeros @gol
419 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
420 -fomit-frame-pointer -foptimize-sibling-calls @gol
421 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
422 -fprefetch-loop-arrays -fprofile-report @gol
423 -fprofile-correction -fprofile-dir=@var{path} -fprofile-generate @gol
424 -fprofile-generate=@var{path} @gol
425 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
426 -fprofile-reorder-functions @gol
427 -freciprocal-math -free -frename-registers -freorder-blocks @gol
428 -freorder-blocks-and-partition -freorder-functions @gol
429 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
430 -frounding-math -fsched2-use-superblocks -fsched-pressure @gol
431 -fsched-spec-load -fsched-spec-load-dangerous @gol
432 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
433 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
434 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
435 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
436 -fschedule-fusion @gol
437 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
438 -fselective-scheduling -fselective-scheduling2 @gol
439 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
440 -fsemantic-interposition @gol
441 -fshrink-wrap -fsignaling-nans -fsingle-precision-constant @gol
442 -fsplit-ivs-in-unroller -fsplit-wide-types -fssa-phiopt @gol
443 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
444 -fstack-protector-explicit -fstdarg-opt -fstrict-aliasing @gol
445 -fstrict-overflow -fthread-jumps -ftracer -ftree-bit-ccp @gol
446 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
447 -ftree-coalesce-inline-vars -ftree-coalesce-vars -ftree-copy-prop @gol
448 -ftree-copyrename -ftree-dce -ftree-dominator-opts -ftree-dse @gol
449 -ftree-forwprop -ftree-fre -ftree-loop-if-convert @gol
450 -ftree-loop-if-convert-stores -ftree-loop-im @gol
451 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
452 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
453 -ftree-loop-vectorize @gol
454 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
455 -ftree-reassoc -ftree-sink -ftree-slsr -ftree-sra @gol
456 -ftree-switch-conversion -ftree-tail-merge -ftree-ter @gol
457 -ftree-vectorize -ftree-vrp @gol
458 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
459 -funsafe-loop-optimizations -funsafe-math-optimizations -funswitch-loops @gol
460 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
461 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
462 --param @var{name}=@var{value}
463 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
464
465 @item Preprocessor Options
466 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
467 @gccoptlist{-A@var{question}=@var{answer} @gol
468 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
469 -C -dD -dI -dM -dN @gol
470 -D@var{macro}@r{[}=@var{defn}@r{]} -E -H @gol
471 -idirafter @var{dir} @gol
472 -include @var{file} -imacros @var{file} @gol
473 -iprefix @var{file} -iwithprefix @var{dir} @gol
474 -iwithprefixbefore @var{dir} -isystem @var{dir} @gol
475 -imultilib @var{dir} -isysroot @var{dir} @gol
476 -M -MM -MF -MG -MP -MQ -MT -nostdinc @gol
477 -P -fdebug-cpp -ftrack-macro-expansion -fworking-directory @gol
478 -remap -trigraphs -undef -U@var{macro} @gol
479 -Wp,@var{option} -Xpreprocessor @var{option} -no-integrated-cpp}
480
481 @item Assembler Option
482 @xref{Assembler Options,,Passing Options to the Assembler}.
483 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
484
485 @item Linker Options
486 @xref{Link Options,,Options for Linking}.
487 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
488 -nostartfiles -nodefaultlibs -nostdlib -pie -rdynamic @gol
489 -s -static -static-libgcc -static-libstdc++ @gol
490 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
491 -static-libmpx -static-libmpxwrappers @gol
492 -shared -shared-libgcc -symbolic @gol
493 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
494 -u @var{symbol} -z @var{keyword}}
495
496 @item Directory Options
497 @xref{Directory Options,,Options for Directory Search}.
498 @gccoptlist{-B@var{prefix} -I@var{dir} -iplugindir=@var{dir} @gol
499 -iquote@var{dir} -L@var{dir} -specs=@var{file} -I- @gol
500 --sysroot=@var{dir} --no-sysroot-suffix}
501
502 @item Machine Dependent Options
503 @xref{Submodel Options,,Hardware Models and Configurations}.
504 @c This list is ordered alphanumerically by subsection name.
505 @c Try and put the significant identifier (CPU or system) first,
506 @c so users have a clue at guessing where the ones they want will be.
507
508 @emph{AArch64 Options}
509 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
510 -mgeneral-regs-only @gol
511 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
512 -mstrict-align @gol
513 -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
514 -mtls-dialect=desc -mtls-dialect=traditional @gol
515 -mfix-cortex-a53-835769 -mno-fix-cortex-a53-835769 @gol
516 -mfix-cortex-a53-843419 -mno-fix-cortex-a53-843419 @gol
517 -march=@var{name} -mcpu=@var{name} -mtune=@var{name}}
518
519 @emph{Adapteva Epiphany Options}
520 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
521 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
522 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
523 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
524 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
525 -msplit-vecmove-early -m1reg-@var{reg}}
526
527 @emph{ARC Options}
528 @gccoptlist{-mbarrel-shifter @gol
529 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
530 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
531 -mea -mno-mpy -mmul32x16 -mmul64 @gol
532 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
533 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
534 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
535 -mepilogue-cfi -mlong-calls -mmedium-calls -msdata @gol
536 -mucb-mcount -mvolatile-cache @gol
537 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
538 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
539 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
540 -mlra-priority-compact mlra-priority-noncompact -mno-millicode @gol
541 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
542 -mtune=@var{cpu} -mmultcost=@var{num} -munalign-prob-threshold=@var{probability}}
543
544 @emph{ARM Options}
545 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
546 -mabi=@var{name} @gol
547 -mapcs-stack-check -mno-apcs-stack-check @gol
548 -mapcs-float -mno-apcs-float @gol
549 -mapcs-reentrant -mno-apcs-reentrant @gol
550 -msched-prolog -mno-sched-prolog @gol
551 -mlittle-endian -mbig-endian @gol
552 -mfloat-abi=@var{name} @gol
553 -mfp16-format=@var{name}
554 -mthumb-interwork -mno-thumb-interwork @gol
555 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
556 -mtune=@var{name} -mprint-tune-info @gol
557 -mstructure-size-boundary=@var{n} @gol
558 -mabort-on-noreturn @gol
559 -mlong-calls -mno-long-calls @gol
560 -msingle-pic-base -mno-single-pic-base @gol
561 -mpic-register=@var{reg} @gol
562 -mnop-fun-dllimport @gol
563 -mpoke-function-name @gol
564 -mthumb -marm @gol
565 -mtpcs-frame -mtpcs-leaf-frame @gol
566 -mcaller-super-interworking -mcallee-super-interworking @gol
567 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
568 -mword-relocations @gol
569 -mfix-cortex-m3-ldrd @gol
570 -munaligned-access @gol
571 -mneon-for-64bits @gol
572 -mslow-flash-data @gol
573 -masm-syntax-unified @gol
574 -mrestrict-it}
575
576 @emph{AVR Options}
577 @gccoptlist{-mmcu=@var{mcu} -maccumulate-args -mbranch-cost=@var{cost} @gol
578 -mcall-prologues -mint8 -mn_flash=@var{size} -mno-interrupts @gol
579 -mrelax -mrmw -mstrict-X -mtiny-stack -nodevicelib -Waddr-space-convert}
580
581 @emph{Blackfin Options}
582 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
583 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
584 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
585 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
586 -mno-id-shared-library -mshared-library-id=@var{n} @gol
587 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
588 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
589 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
590 -micplb}
591
592 @emph{C6X Options}
593 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
594 -msim -msdata=@var{sdata-type}}
595
596 @emph{CRIS Options}
597 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
598 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
599 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
600 -mstack-align -mdata-align -mconst-align @gol
601 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
602 -melf -maout -melinux -mlinux -sim -sim2 @gol
603 -mmul-bug-workaround -mno-mul-bug-workaround}
604
605 @emph{CR16 Options}
606 @gccoptlist{-mmac @gol
607 -mcr16cplus -mcr16c @gol
608 -msim -mint32 -mbit-ops
609 -mdata-model=@var{model}}
610
611 @emph{Darwin Options}
612 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
613 -arch_only -bind_at_load -bundle -bundle_loader @gol
614 -client_name -compatibility_version -current_version @gol
615 -dead_strip @gol
616 -dependency-file -dylib_file -dylinker_install_name @gol
617 -dynamic -dynamiclib -exported_symbols_list @gol
618 -filelist -flat_namespace -force_cpusubtype_ALL @gol
619 -force_flat_namespace -headerpad_max_install_names @gol
620 -iframework @gol
621 -image_base -init -install_name -keep_private_externs @gol
622 -multi_module -multiply_defined -multiply_defined_unused @gol
623 -noall_load -no_dead_strip_inits_and_terms @gol
624 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
625 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
626 -private_bundle -read_only_relocs -sectalign @gol
627 -sectobjectsymbols -whyload -seg1addr @gol
628 -sectcreate -sectobjectsymbols -sectorder @gol
629 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
630 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
631 -segprot -segs_read_only_addr -segs_read_write_addr @gol
632 -single_module -static -sub_library -sub_umbrella @gol
633 -twolevel_namespace -umbrella -undefined @gol
634 -unexported_symbols_list -weak_reference_mismatches @gol
635 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
636 -mkernel -mone-byte-bool}
637
638 @emph{DEC Alpha Options}
639 @gccoptlist{-mno-fp-regs -msoft-float @gol
640 -mieee -mieee-with-inexact -mieee-conformant @gol
641 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
642 -mtrap-precision=@var{mode} -mbuild-constants @gol
643 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
644 -mbwx -mmax -mfix -mcix @gol
645 -mfloat-vax -mfloat-ieee @gol
646 -mexplicit-relocs -msmall-data -mlarge-data @gol
647 -msmall-text -mlarge-text @gol
648 -mmemory-latency=@var{time}}
649
650 @emph{FR30 Options}
651 @gccoptlist{-msmall-model -mno-lsim}
652
653 @emph{FRV Options}
654 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
655 -mhard-float -msoft-float @gol
656 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
657 -mdouble -mno-double @gol
658 -mmedia -mno-media -mmuladd -mno-muladd @gol
659 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
660 -mlinked-fp -mlong-calls -malign-labels @gol
661 -mlibrary-pic -macc-4 -macc-8 @gol
662 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
663 -moptimize-membar -mno-optimize-membar @gol
664 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
665 -mvliw-branch -mno-vliw-branch @gol
666 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
667 -mno-nested-cond-exec -mtomcat-stats @gol
668 -mTLS -mtls @gol
669 -mcpu=@var{cpu}}
670
671 @emph{GNU/Linux Options}
672 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
673 -tno-android-cc -tno-android-ld}
674
675 @emph{H8/300 Options}
676 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
677
678 @emph{HPPA Options}
679 @gccoptlist{-march=@var{architecture-type} @gol
680 -mdisable-fpregs -mdisable-indexing @gol
681 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
682 -mfixed-range=@var{register-range} @gol
683 -mjump-in-delay -mlinker-opt -mlong-calls @gol
684 -mlong-load-store -mno-disable-fpregs @gol
685 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
686 -mno-jump-in-delay -mno-long-load-store @gol
687 -mno-portable-runtime -mno-soft-float @gol
688 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
689 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
690 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
691 -munix=@var{unix-std} -nolibdld -static -threads}
692
693 @emph{IA-64 Options}
694 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
695 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
696 -mconstant-gp -mauto-pic -mfused-madd @gol
697 -minline-float-divide-min-latency @gol
698 -minline-float-divide-max-throughput @gol
699 -mno-inline-float-divide @gol
700 -minline-int-divide-min-latency @gol
701 -minline-int-divide-max-throughput @gol
702 -mno-inline-int-divide @gol
703 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
704 -mno-inline-sqrt @gol
705 -mdwarf2-asm -mearly-stop-bits @gol
706 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
707 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
708 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
709 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
710 -msched-spec-ldc -msched-spec-control-ldc @gol
711 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
712 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
713 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
714 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
715
716 @emph{LM32 Options}
717 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
718 -msign-extend-enabled -muser-enabled}
719
720 @emph{M32R/D Options}
721 @gccoptlist{-m32r2 -m32rx -m32r @gol
722 -mdebug @gol
723 -malign-loops -mno-align-loops @gol
724 -missue-rate=@var{number} @gol
725 -mbranch-cost=@var{number} @gol
726 -mmodel=@var{code-size-model-type} @gol
727 -msdata=@var{sdata-type} @gol
728 -mno-flush-func -mflush-func=@var{name} @gol
729 -mno-flush-trap -mflush-trap=@var{number} @gol
730 -G @var{num}}
731
732 @emph{M32C Options}
733 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
734
735 @emph{M680x0 Options}
736 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
737 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
738 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
739 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
740 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
741 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
742 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
743 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
744 -mxgot -mno-xgot}
745
746 @emph{MCore Options}
747 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
748 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
749 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
750 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
751 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
752
753 @emph{MeP Options}
754 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
755 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
756 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
757 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
758 -mtiny=@var{n}}
759
760 @emph{MicroBlaze Options}
761 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
762 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
763 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
764 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
765 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model}}
766
767 @emph{MIPS Options}
768 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
769 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
770 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
771 -mips16 -mno-mips16 -mflip-mips16 @gol
772 -minterlink-compressed -mno-interlink-compressed @gol
773 -minterlink-mips16 -mno-interlink-mips16 @gol
774 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
775 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
776 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
777 -mno-float -msingle-float -mdouble-float @gol
778 -modd-spreg -mno-odd-spreg @gol
779 -mabs=@var{mode} -mnan=@var{encoding} @gol
780 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
781 -mmcu -mmno-mcu @gol
782 -meva -mno-eva @gol
783 -mvirt -mno-virt @gol
784 -mxpa -mno-xpa @gol
785 -mmicromips -mno-micromips @gol
786 -mfpu=@var{fpu-type} @gol
787 -msmartmips -mno-smartmips @gol
788 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
789 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
790 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
791 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
792 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
793 -membedded-data -mno-embedded-data @gol
794 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
795 -mcode-readable=@var{setting} @gol
796 -msplit-addresses -mno-split-addresses @gol
797 -mexplicit-relocs -mno-explicit-relocs @gol
798 -mcheck-zero-division -mno-check-zero-division @gol
799 -mdivide-traps -mdivide-breaks @gol
800 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
801 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
802 -mfix-24k -mno-fix-24k @gol
803 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
804 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
805 -mfix-vr4120 -mno-fix-vr4120 @gol
806 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
807 -mflush-func=@var{func} -mno-flush-func @gol
808 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
809 -mfp-exceptions -mno-fp-exceptions @gol
810 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
811 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address}
812
813 @emph{MMIX Options}
814 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
815 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
816 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
817 -mno-base-addresses -msingle-exit -mno-single-exit}
818
819 @emph{MN10300 Options}
820 @gccoptlist{-mmult-bug -mno-mult-bug @gol
821 -mno-am33 -mam33 -mam33-2 -mam34 @gol
822 -mtune=@var{cpu-type} @gol
823 -mreturn-pointer-on-d0 @gol
824 -mno-crt0 -mrelax -mliw -msetlb}
825
826 @emph{Moxie Options}
827 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
828
829 @emph{MSP430 Options}
830 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
831 -mcode-region= -mdata-region= @gol
832 -mhwmult= -minrt}
833
834 @emph{NDS32 Options}
835 @gccoptlist{-mbig-endian -mlittle-endian @gol
836 -mreduced-regs -mfull-regs @gol
837 -mcmov -mno-cmov @gol
838 -mperf-ext -mno-perf-ext @gol
839 -mv3push -mno-v3push @gol
840 -m16bit -mno-16bit @gol
841 -misr-vector-size=@var{num} @gol
842 -mcache-block-size=@var{num} @gol
843 -march=@var{arch} @gol
844 -mcmodel=@var{code-model} @gol
845 -mctor-dtor -mrelax}
846
847 @emph{Nios II Options}
848 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
849 -mel -meb @gol
850 -mno-bypass-cache -mbypass-cache @gol
851 -mno-cache-volatile -mcache-volatile @gol
852 -mno-fast-sw-div -mfast-sw-div @gol
853 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
854 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
855 -mcustom-fpu-cfg=@var{name} @gol
856 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name}}
857
858 @emph{Nvidia PTX Options}
859 @gccoptlist{-m32 -m64 -mmainkernel}
860
861 @emph{PDP-11 Options}
862 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
863 -mbcopy -mbcopy-builtin -mint32 -mno-int16 @gol
864 -mint16 -mno-int32 -mfloat32 -mno-float64 @gol
865 -mfloat64 -mno-float32 -mabshi -mno-abshi @gol
866 -mbranch-expensive -mbranch-cheap @gol
867 -munix-asm -mdec-asm}
868
869 @emph{picoChip Options}
870 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
871 -msymbol-as-address -mno-inefficient-warnings}
872
873 @emph{PowerPC Options}
874 See RS/6000 and PowerPC Options.
875
876 @emph{RL78 Options}
877 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
878 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
879 -m64bit-doubles -m32bit-doubles}
880
881 @emph{RS/6000 and PowerPC Options}
882 @gccoptlist{-mcpu=@var{cpu-type} @gol
883 -mtune=@var{cpu-type} @gol
884 -mcmodel=@var{code-model} @gol
885 -mpowerpc64 @gol
886 -maltivec -mno-altivec @gol
887 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
888 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
889 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
890 -mfprnd -mno-fprnd @gol
891 -mcmpb -mno-cmpb -mmfpgpr -mno-mfpgpr -mhard-dfp -mno-hard-dfp @gol
892 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
893 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
894 -malign-power -malign-natural @gol
895 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
896 -msingle-float -mdouble-float -msimple-fpu @gol
897 -mstring -mno-string -mupdate -mno-update @gol
898 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
899 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
900 -mstrict-align -mno-strict-align -mrelocatable @gol
901 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
902 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
903 -mdynamic-no-pic -maltivec -mswdiv -msingle-pic-base @gol
904 -mprioritize-restricted-insns=@var{priority} @gol
905 -msched-costly-dep=@var{dependence_type} @gol
906 -minsert-sched-nops=@var{scheme} @gol
907 -mcall-sysv -mcall-netbsd @gol
908 -maix-struct-return -msvr4-struct-return @gol
909 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
910 -mblock-move-inline-limit=@var{num} @gol
911 -misel -mno-isel @gol
912 -misel=yes -misel=no @gol
913 -mspe -mno-spe @gol
914 -mspe=yes -mspe=no @gol
915 -mpaired @gol
916 -mgen-cell-microcode -mwarn-cell-microcode @gol
917 -mvrsave -mno-vrsave @gol
918 -mmulhw -mno-mulhw @gol
919 -mdlmzb -mno-dlmzb @gol
920 -mfloat-gprs=yes -mfloat-gprs=no -mfloat-gprs=single -mfloat-gprs=double @gol
921 -mprototype -mno-prototype @gol
922 -msim -mmvme -mads -myellowknife -memb -msdata @gol
923 -msdata=@var{opt} -mvxworks -G @var{num} -pthread @gol
924 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
925 -mno-recip-precision @gol
926 -mveclibabi=@var{type} -mfriz -mno-friz @gol
927 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
928 -msave-toc-indirect -mno-save-toc-indirect @gol
929 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
930 -mcrypto -mno-crypto -mdirect-move -mno-direct-move @gol
931 -mquad-memory -mno-quad-memory @gol
932 -mquad-memory-atomic -mno-quad-memory-atomic @gol
933 -mcompat-align-parm -mno-compat-align-parm @gol
934 -mupper-regs-df -mno-upper-regs-df -mupper-regs-sf -mno-upper-regs-sf @gol
935 -mupper-regs -mno-upper-regs}
936
937 @emph{RX Options}
938 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
939 -mcpu=@gol
940 -mbig-endian-data -mlittle-endian-data @gol
941 -msmall-data @gol
942 -msim -mno-sim@gol
943 -mas100-syntax -mno-as100-syntax@gol
944 -mrelax@gol
945 -mmax-constant-size=@gol
946 -mint-register=@gol
947 -mpid@gol
948 -mallow-string-insns -mno-allow-string-insns@gol
949 -mno-warn-multiple-fast-interrupts@gol
950 -msave-acc-in-interrupts}
951
952 @emph{S/390 and zSeries Options}
953 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
954 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
955 -mlong-double-64 -mlong-double-128 @gol
956 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
957 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
958 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
959 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
960 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
961 -mhotpatch=@var{halfwords},@var{halfwords}}
962
963 @emph{Score Options}
964 @gccoptlist{-meb -mel @gol
965 -mnhwloop @gol
966 -muls @gol
967 -mmac @gol
968 -mscore5 -mscore5u -mscore7 -mscore7d}
969
970 @emph{SH Options}
971 @gccoptlist{-m1 -m2 -m2e @gol
972 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
973 -m3 -m3e @gol
974 -m4-nofpu -m4-single-only -m4-single -m4 @gol
975 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
976 -m5-64media -m5-64media-nofpu @gol
977 -m5-32media -m5-32media-nofpu @gol
978 -m5-compact -m5-compact-nofpu @gol
979 -mb -ml -mdalign -mrelax @gol
980 -mbigtable -mfmovd -mhitachi -mrenesas -mno-renesas -mnomacsave @gol
981 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
982 -mspace -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
983 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
984 -mindexed-addressing -mgettrcost=@var{number} -mpt-fixed @gol
985 -maccumulate-outgoing-args -minvalid-symbols @gol
986 -matomic-model=@var{atomic-model} @gol
987 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
988 -mcbranch-force-delay-slot @gol
989 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
990 -mpretend-cmove -mtas}
991
992 @emph{Solaris 2 Options}
993 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
994 -pthreads -pthread}
995
996 @emph{SPARC Options}
997 @gccoptlist{-mcpu=@var{cpu-type} @gol
998 -mtune=@var{cpu-type} @gol
999 -mcmodel=@var{code-model} @gol
1000 -mmemory-model=@var{mem-model} @gol
1001 -m32 -m64 -mapp-regs -mno-app-regs @gol
1002 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1003 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1004 -mhard-quad-float -msoft-quad-float @gol
1005 -mstack-bias -mno-stack-bias @gol
1006 -munaligned-doubles -mno-unaligned-doubles @gol
1007 -muser-mode -mno-user-mode @gol
1008 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1009 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1010 -mcbcond -mno-cbcond @gol
1011 -mfmaf -mno-fmaf -mpopc -mno-popc @gol
1012 -mfix-at697f -mfix-ut699}
1013
1014 @emph{SPU Options}
1015 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1016 -msafe-dma -munsafe-dma @gol
1017 -mbranch-hints @gol
1018 -msmall-mem -mlarge-mem -mstdmain @gol
1019 -mfixed-range=@var{register-range} @gol
1020 -mea32 -mea64 @gol
1021 -maddress-space-conversion -mno-address-space-conversion @gol
1022 -mcache-size=@var{cache-size} @gol
1023 -matomic-updates -mno-atomic-updates}
1024
1025 @emph{System V Options}
1026 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1027
1028 @emph{TILE-Gx Options}
1029 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1030 -mcmodel=@var{code-model}}
1031
1032 @emph{TILEPro Options}
1033 @gccoptlist{-mcpu=@var{cpu} -m32}
1034
1035 @emph{V850 Options}
1036 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1037 -mprolog-function -mno-prolog-function -mspace @gol
1038 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1039 -mapp-regs -mno-app-regs @gol
1040 -mdisable-callt -mno-disable-callt @gol
1041 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1042 -mv850e -mv850 -mv850e3v5 @gol
1043 -mloop @gol
1044 -mrelax @gol
1045 -mlong-jumps @gol
1046 -msoft-float @gol
1047 -mhard-float @gol
1048 -mgcc-abi @gol
1049 -mrh850-abi @gol
1050 -mbig-switch}
1051
1052 @emph{VAX Options}
1053 @gccoptlist{-mg -mgnu -munix}
1054
1055 @emph{Visium Options}
1056 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1057 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1058
1059 @emph{VMS Options}
1060 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1061 -mpointer-size=@var{size}}
1062
1063 @emph{VxWorks Options}
1064 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1065 -Xbind-lazy -Xbind-now}
1066
1067 @emph{x86 Options}
1068 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1069 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1070 -mfpmath=@var{unit} @gol
1071 -masm=@var{dialect} -mno-fancy-math-387 @gol
1072 -mno-fp-ret-in-387 -msoft-float @gol
1073 -mno-wide-multiply -mrtd -malign-double @gol
1074 -mpreferred-stack-boundary=@var{num} @gol
1075 -mincoming-stack-boundary=@var{num} @gol
1076 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1077 -mrecip -mrecip=@var{opt} @gol
1078 -mvzeroupper -mprefer-avx128 @gol
1079 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1080 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -msha @gol
1081 -maes -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mprefetchwt1 @gol
1082 -mclflushopt -mxsavec -mxsaves @gol
1083 -msse4a -m3dnow -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop -mlzcnt @gol
1084 -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mlwp -mmpx -mthreads @gol
1085 -mno-align-stringops -minline-all-stringops @gol
1086 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1087 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1088 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1089 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1090 -mregparm=@var{num} -msseregparm @gol
1091 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1092 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1093 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1094 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1095 -m32 -m64 -mx32 -m16 -mlarge-data-threshold=@var{num} @gol
1096 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1097 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1098 -malign-data=@var{type} -mstack-protector-guard=@var{guard}}
1099
1100 @emph{x86 Windows Options}
1101 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1102 -mnop-fun-dllimport -mthread @gol
1103 -municode -mwin32 -mwindows -fno-set-stack-executable}
1104
1105 @emph{Xstormy16 Options}
1106 @gccoptlist{-msim}
1107
1108 @emph{Xtensa Options}
1109 @gccoptlist{-mconst16 -mno-const16 @gol
1110 -mfused-madd -mno-fused-madd @gol
1111 -mforce-no-pic @gol
1112 -mserialize-volatile -mno-serialize-volatile @gol
1113 -mtext-section-literals -mno-text-section-literals @gol
1114 -mtarget-align -mno-target-align @gol
1115 -mlongcalls -mno-longcalls}
1116
1117 @emph{zSeries Options}
1118 See S/390 and zSeries Options.
1119
1120 @item Code Generation Options
1121 @xref{Code Gen Options,,Options for Code Generation Conventions}.
1122 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
1123 -ffixed-@var{reg} -fexceptions @gol
1124 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
1125 -fasynchronous-unwind-tables @gol
1126 -fno-gnu-unique @gol
1127 -finhibit-size-directive -finstrument-functions @gol
1128 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
1129 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{} @gol
1130 -fno-common -fno-ident @gol
1131 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
1132 -fno-jump-tables @gol
1133 -frecord-gcc-switches @gol
1134 -freg-struct-return -fshort-enums @gol
1135 -fshort-double -fshort-wchar @gol
1136 -fverbose-asm -fpack-struct[=@var{n}] -fstack-check @gol
1137 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
1138 -fno-stack-limit -fsplit-stack @gol
1139 -fleading-underscore -ftls-model=@var{model} @gol
1140 -fstack-reuse=@var{reuse_level} @gol
1141 -ftrapv -fwrapv -fbounds-check @gol
1142 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
1143 -fstrict-volatile-bitfields -fsync-libcalls}
1144 @end table
1145
1146
1147 @node Overall Options
1148 @section Options Controlling the Kind of Output
1149
1150 Compilation can involve up to four stages: preprocessing, compilation
1151 proper, assembly and linking, always in that order. GCC is capable of
1152 preprocessing and compiling several files either into several
1153 assembler input files, or into one assembler input file; then each
1154 assembler input file produces an object file, and linking combines all
1155 the object files (those newly compiled, and those specified as input)
1156 into an executable file.
1157
1158 @cindex file name suffix
1159 For any given input file, the file name suffix determines what kind of
1160 compilation is done:
1161
1162 @table @gcctabopt
1163 @item @var{file}.c
1164 C source code that must be preprocessed.
1165
1166 @item @var{file}.i
1167 C source code that should not be preprocessed.
1168
1169 @item @var{file}.ii
1170 C++ source code that should not be preprocessed.
1171
1172 @item @var{file}.m
1173 Objective-C source code. Note that you must link with the @file{libobjc}
1174 library to make an Objective-C program work.
1175
1176 @item @var{file}.mi
1177 Objective-C source code that should not be preprocessed.
1178
1179 @item @var{file}.mm
1180 @itemx @var{file}.M
1181 Objective-C++ source code. Note that you must link with the @file{libobjc}
1182 library to make an Objective-C++ program work. Note that @samp{.M} refers
1183 to a literal capital M@.
1184
1185 @item @var{file}.mii
1186 Objective-C++ source code that should not be preprocessed.
1187
1188 @item @var{file}.h
1189 C, C++, Objective-C or Objective-C++ header file to be turned into a
1190 precompiled header (default), or C, C++ header file to be turned into an
1191 Ada spec (via the @option{-fdump-ada-spec} switch).
1192
1193 @item @var{file}.cc
1194 @itemx @var{file}.cp
1195 @itemx @var{file}.cxx
1196 @itemx @var{file}.cpp
1197 @itemx @var{file}.CPP
1198 @itemx @var{file}.c++
1199 @itemx @var{file}.C
1200 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1201 the last two letters must both be literally @samp{x}. Likewise,
1202 @samp{.C} refers to a literal capital C@.
1203
1204 @item @var{file}.mm
1205 @itemx @var{file}.M
1206 Objective-C++ source code that must be preprocessed.
1207
1208 @item @var{file}.mii
1209 Objective-C++ source code that should not be preprocessed.
1210
1211 @item @var{file}.hh
1212 @itemx @var{file}.H
1213 @itemx @var{file}.hp
1214 @itemx @var{file}.hxx
1215 @itemx @var{file}.hpp
1216 @itemx @var{file}.HPP
1217 @itemx @var{file}.h++
1218 @itemx @var{file}.tcc
1219 C++ header file to be turned into a precompiled header or Ada spec.
1220
1221 @item @var{file}.f
1222 @itemx @var{file}.for
1223 @itemx @var{file}.ftn
1224 Fixed form Fortran source code that should not be preprocessed.
1225
1226 @item @var{file}.F
1227 @itemx @var{file}.FOR
1228 @itemx @var{file}.fpp
1229 @itemx @var{file}.FPP
1230 @itemx @var{file}.FTN
1231 Fixed form Fortran source code that must be preprocessed (with the traditional
1232 preprocessor).
1233
1234 @item @var{file}.f90
1235 @itemx @var{file}.f95
1236 @itemx @var{file}.f03
1237 @itemx @var{file}.f08
1238 Free form Fortran source code that should not be preprocessed.
1239
1240 @item @var{file}.F90
1241 @itemx @var{file}.F95
1242 @itemx @var{file}.F03
1243 @itemx @var{file}.F08
1244 Free form Fortran source code that must be preprocessed (with the
1245 traditional preprocessor).
1246
1247 @item @var{file}.go
1248 Go source code.
1249
1250 @c FIXME: Descriptions of Java file types.
1251 @c @var{file}.java
1252 @c @var{file}.class
1253 @c @var{file}.zip
1254 @c @var{file}.jar
1255
1256 @item @var{file}.ads
1257 Ada source code file that contains a library unit declaration (a
1258 declaration of a package, subprogram, or generic, or a generic
1259 instantiation), or a library unit renaming declaration (a package,
1260 generic, or subprogram renaming declaration). Such files are also
1261 called @dfn{specs}.
1262
1263 @item @var{file}.adb
1264 Ada source code file containing a library unit body (a subprogram or
1265 package body). Such files are also called @dfn{bodies}.
1266
1267 @c GCC also knows about some suffixes for languages not yet included:
1268 @c Pascal:
1269 @c @var{file}.p
1270 @c @var{file}.pas
1271 @c Ratfor:
1272 @c @var{file}.r
1273
1274 @item @var{file}.s
1275 Assembler code.
1276
1277 @item @var{file}.S
1278 @itemx @var{file}.sx
1279 Assembler code that must be preprocessed.
1280
1281 @item @var{other}
1282 An object file to be fed straight into linking.
1283 Any file name with no recognized suffix is treated this way.
1284 @end table
1285
1286 @opindex x
1287 You can specify the input language explicitly with the @option{-x} option:
1288
1289 @table @gcctabopt
1290 @item -x @var{language}
1291 Specify explicitly the @var{language} for the following input files
1292 (rather than letting the compiler choose a default based on the file
1293 name suffix). This option applies to all following input files until
1294 the next @option{-x} option. Possible values for @var{language} are:
1295 @smallexample
1296 c c-header cpp-output
1297 c++ c++-header c++-cpp-output
1298 objective-c objective-c-header objective-c-cpp-output
1299 objective-c++ objective-c++-header objective-c++-cpp-output
1300 assembler assembler-with-cpp
1301 ada
1302 f77 f77-cpp-input f95 f95-cpp-input
1303 go
1304 java
1305 @end smallexample
1306
1307 @item -x none
1308 Turn off any specification of a language, so that subsequent files are
1309 handled according to their file name suffixes (as they are if @option{-x}
1310 has not been used at all).
1311
1312 @item -pass-exit-codes
1313 @opindex pass-exit-codes
1314 Normally the @command{gcc} program exits with the code of 1 if any
1315 phase of the compiler returns a non-success return code. If you specify
1316 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1317 the numerically highest error produced by any phase returning an error
1318 indication. The C, C++, and Fortran front ends return 4 if an internal
1319 compiler error is encountered.
1320 @end table
1321
1322 If you only want some of the stages of compilation, you can use
1323 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1324 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1325 @command{gcc} is to stop. Note that some combinations (for example,
1326 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1327
1328 @table @gcctabopt
1329 @item -c
1330 @opindex c
1331 Compile or assemble the source files, but do not link. The linking
1332 stage simply is not done. The ultimate output is in the form of an
1333 object file for each source file.
1334
1335 By default, the object file name for a source file is made by replacing
1336 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1337
1338 Unrecognized input files, not requiring compilation or assembly, are
1339 ignored.
1340
1341 @item -S
1342 @opindex S
1343 Stop after the stage of compilation proper; do not assemble. The output
1344 is in the form of an assembler code file for each non-assembler input
1345 file specified.
1346
1347 By default, the assembler file name for a source file is made by
1348 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1349
1350 Input files that don't require compilation are ignored.
1351
1352 @item -E
1353 @opindex E
1354 Stop after the preprocessing stage; do not run the compiler proper. The
1355 output is in the form of preprocessed source code, which is sent to the
1356 standard output.
1357
1358 Input files that don't require preprocessing are ignored.
1359
1360 @cindex output file option
1361 @item -o @var{file}
1362 @opindex o
1363 Place output in file @var{file}. This applies to whatever
1364 sort of output is being produced, whether it be an executable file,
1365 an object file, an assembler file or preprocessed C code.
1366
1367 If @option{-o} is not specified, the default is to put an executable
1368 file in @file{a.out}, the object file for
1369 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1370 assembler file in @file{@var{source}.s}, a precompiled header file in
1371 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1372 standard output.
1373
1374 @item -v
1375 @opindex v
1376 Print (on standard error output) the commands executed to run the stages
1377 of compilation. Also print the version number of the compiler driver
1378 program and of the preprocessor and the compiler proper.
1379
1380 @item -###
1381 @opindex ###
1382 Like @option{-v} except the commands are not executed and arguments
1383 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1384 This is useful for shell scripts to capture the driver-generated command lines.
1385
1386 @item -pipe
1387 @opindex pipe
1388 Use pipes rather than temporary files for communication between the
1389 various stages of compilation. This fails to work on some systems where
1390 the assembler is unable to read from a pipe; but the GNU assembler has
1391 no trouble.
1392
1393 @item --help
1394 @opindex help
1395 Print (on the standard output) a description of the command-line options
1396 understood by @command{gcc}. If the @option{-v} option is also specified
1397 then @option{--help} is also passed on to the various processes
1398 invoked by @command{gcc}, so that they can display the command-line options
1399 they accept. If the @option{-Wextra} option has also been specified
1400 (prior to the @option{--help} option), then command-line options that
1401 have no documentation associated with them are also displayed.
1402
1403 @item --target-help
1404 @opindex target-help
1405 Print (on the standard output) a description of target-specific command-line
1406 options for each tool. For some targets extra target-specific
1407 information may also be printed.
1408
1409 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1410 Print (on the standard output) a description of the command-line
1411 options understood by the compiler that fit into all specified classes
1412 and qualifiers. These are the supported classes:
1413
1414 @table @asis
1415 @item @samp{optimizers}
1416 Display all of the optimization options supported by the
1417 compiler.
1418
1419 @item @samp{warnings}
1420 Display all of the options controlling warning messages
1421 produced by the compiler.
1422
1423 @item @samp{target}
1424 Display target-specific options. Unlike the
1425 @option{--target-help} option however, target-specific options of the
1426 linker and assembler are not displayed. This is because those
1427 tools do not currently support the extended @option{--help=} syntax.
1428
1429 @item @samp{params}
1430 Display the values recognized by the @option{--param}
1431 option.
1432
1433 @item @var{language}
1434 Display the options supported for @var{language}, where
1435 @var{language} is the name of one of the languages supported in this
1436 version of GCC@.
1437
1438 @item @samp{common}
1439 Display the options that are common to all languages.
1440 @end table
1441
1442 These are the supported qualifiers:
1443
1444 @table @asis
1445 @item @samp{undocumented}
1446 Display only those options that are undocumented.
1447
1448 @item @samp{joined}
1449 Display options taking an argument that appears after an equal
1450 sign in the same continuous piece of text, such as:
1451 @samp{--help=target}.
1452
1453 @item @samp{separate}
1454 Display options taking an argument that appears as a separate word
1455 following the original option, such as: @samp{-o output-file}.
1456 @end table
1457
1458 Thus for example to display all the undocumented target-specific
1459 switches supported by the compiler, use:
1460
1461 @smallexample
1462 --help=target,undocumented
1463 @end smallexample
1464
1465 The sense of a qualifier can be inverted by prefixing it with the
1466 @samp{^} character, so for example to display all binary warning
1467 options (i.e., ones that are either on or off and that do not take an
1468 argument) that have a description, use:
1469
1470 @smallexample
1471 --help=warnings,^joined,^undocumented
1472 @end smallexample
1473
1474 The argument to @option{--help=} should not consist solely of inverted
1475 qualifiers.
1476
1477 Combining several classes is possible, although this usually
1478 restricts the output so much that there is nothing to display. One
1479 case where it does work, however, is when one of the classes is
1480 @var{target}. For example, to display all the target-specific
1481 optimization options, use:
1482
1483 @smallexample
1484 --help=target,optimizers
1485 @end smallexample
1486
1487 The @option{--help=} option can be repeated on the command line. Each
1488 successive use displays its requested class of options, skipping
1489 those that have already been displayed.
1490
1491 If the @option{-Q} option appears on the command line before the
1492 @option{--help=} option, then the descriptive text displayed by
1493 @option{--help=} is changed. Instead of describing the displayed
1494 options, an indication is given as to whether the option is enabled,
1495 disabled or set to a specific value (assuming that the compiler
1496 knows this at the point where the @option{--help=} option is used).
1497
1498 Here is a truncated example from the ARM port of @command{gcc}:
1499
1500 @smallexample
1501 % gcc -Q -mabi=2 --help=target -c
1502 The following options are target specific:
1503 -mabi= 2
1504 -mabort-on-noreturn [disabled]
1505 -mapcs [disabled]
1506 @end smallexample
1507
1508 The output is sensitive to the effects of previous command-line
1509 options, so for example it is possible to find out which optimizations
1510 are enabled at @option{-O2} by using:
1511
1512 @smallexample
1513 -Q -O2 --help=optimizers
1514 @end smallexample
1515
1516 Alternatively you can discover which binary optimizations are enabled
1517 by @option{-O3} by using:
1518
1519 @smallexample
1520 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1521 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1522 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1523 @end smallexample
1524
1525 @item -no-canonical-prefixes
1526 @opindex no-canonical-prefixes
1527 Do not expand any symbolic links, resolve references to @samp{/../}
1528 or @samp{/./}, or make the path absolute when generating a relative
1529 prefix.
1530
1531 @item --version
1532 @opindex version
1533 Display the version number and copyrights of the invoked GCC@.
1534
1535 @item -wrapper
1536 @opindex wrapper
1537 Invoke all subcommands under a wrapper program. The name of the
1538 wrapper program and its parameters are passed as a comma separated
1539 list.
1540
1541 @smallexample
1542 gcc -c t.c -wrapper gdb,--args
1543 @end smallexample
1544
1545 @noindent
1546 This invokes all subprograms of @command{gcc} under
1547 @samp{gdb --args}, thus the invocation of @command{cc1} is
1548 @samp{gdb --args cc1 @dots{}}.
1549
1550 @item -fplugin=@var{name}.so
1551 @opindex fplugin
1552 Load the plugin code in file @var{name}.so, assumed to be a
1553 shared object to be dlopen'd by the compiler. The base name of
1554 the shared object file is used to identify the plugin for the
1555 purposes of argument parsing (See
1556 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1557 Each plugin should define the callback functions specified in the
1558 Plugins API.
1559
1560 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1561 @opindex fplugin-arg
1562 Define an argument called @var{key} with a value of @var{value}
1563 for the plugin called @var{name}.
1564
1565 @item -fdump-ada-spec@r{[}-slim@r{]}
1566 @opindex fdump-ada-spec
1567 For C and C++ source and include files, generate corresponding Ada specs.
1568 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1569 GNAT User's Guide}, which provides detailed documentation on this feature.
1570
1571 @item -fada-spec-parent=@var{unit}
1572 @opindex fada-spec-parent
1573 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1574 Ada specs as child units of parent @var{unit}.
1575
1576 @item -fdump-go-spec=@var{file}
1577 @opindex fdump-go-spec
1578 For input files in any language, generate corresponding Go
1579 declarations in @var{file}. This generates Go @code{const},
1580 @code{type}, @code{var}, and @code{func} declarations which may be a
1581 useful way to start writing a Go interface to code written in some
1582 other language.
1583
1584 @include @value{srcdir}/../libiberty/at-file.texi
1585 @end table
1586
1587 @node Invoking G++
1588 @section Compiling C++ Programs
1589
1590 @cindex suffixes for C++ source
1591 @cindex C++ source file suffixes
1592 C++ source files conventionally use one of the suffixes @samp{.C},
1593 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1594 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1595 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1596 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1597 files with these names and compiles them as C++ programs even if you
1598 call the compiler the same way as for compiling C programs (usually
1599 with the name @command{gcc}).
1600
1601 @findex g++
1602 @findex c++
1603 However, the use of @command{gcc} does not add the C++ library.
1604 @command{g++} is a program that calls GCC and automatically specifies linking
1605 against the C++ library. It treats @samp{.c},
1606 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1607 files unless @option{-x} is used. This program is also useful when
1608 precompiling a C header file with a @samp{.h} extension for use in C++
1609 compilations. On many systems, @command{g++} is also installed with
1610 the name @command{c++}.
1611
1612 @cindex invoking @command{g++}
1613 When you compile C++ programs, you may specify many of the same
1614 command-line options that you use for compiling programs in any
1615 language; or command-line options meaningful for C and related
1616 languages; or options that are meaningful only for C++ programs.
1617 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1618 explanations of options for languages related to C@.
1619 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1620 explanations of options that are meaningful only for C++ programs.
1621
1622 @node C Dialect Options
1623 @section Options Controlling C Dialect
1624 @cindex dialect options
1625 @cindex language dialect options
1626 @cindex options, dialect
1627
1628 The following options control the dialect of C (or languages derived
1629 from C, such as C++, Objective-C and Objective-C++) that the compiler
1630 accepts:
1631
1632 @table @gcctabopt
1633 @cindex ANSI support
1634 @cindex ISO support
1635 @item -ansi
1636 @opindex ansi
1637 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1638 equivalent to @option{-std=c++98}.
1639
1640 This turns off certain features of GCC that are incompatible with ISO
1641 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1642 such as the @code{asm} and @code{typeof} keywords, and
1643 predefined macros such as @code{unix} and @code{vax} that identify the
1644 type of system you are using. It also enables the undesirable and
1645 rarely used ISO trigraph feature. For the C compiler,
1646 it disables recognition of C++ style @samp{//} comments as well as
1647 the @code{inline} keyword.
1648
1649 The alternate keywords @code{__asm__}, @code{__extension__},
1650 @code{__inline__} and @code{__typeof__} continue to work despite
1651 @option{-ansi}. You would not want to use them in an ISO C program, of
1652 course, but it is useful to put them in header files that might be included
1653 in compilations done with @option{-ansi}. Alternate predefined macros
1654 such as @code{__unix__} and @code{__vax__} are also available, with or
1655 without @option{-ansi}.
1656
1657 The @option{-ansi} option does not cause non-ISO programs to be
1658 rejected gratuitously. For that, @option{-Wpedantic} is required in
1659 addition to @option{-ansi}. @xref{Warning Options}.
1660
1661 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1662 option is used. Some header files may notice this macro and refrain
1663 from declaring certain functions or defining certain macros that the
1664 ISO standard doesn't call for; this is to avoid interfering with any
1665 programs that might use these names for other things.
1666
1667 Functions that are normally built in but do not have semantics
1668 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1669 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1670 built-in functions provided by GCC}, for details of the functions
1671 affected.
1672
1673 @item -std=
1674 @opindex std
1675 Determine the language standard. @xref{Standards,,Language Standards
1676 Supported by GCC}, for details of these standard versions. This option
1677 is currently only supported when compiling C or C++.
1678
1679 The compiler can accept several base standards, such as @samp{c90} or
1680 @samp{c++98}, and GNU dialects of those standards, such as
1681 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1682 compiler accepts all programs following that standard plus those
1683 using GNU extensions that do not contradict it. For example,
1684 @option{-std=c90} turns off certain features of GCC that are
1685 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1686 keywords, but not other GNU extensions that do not have a meaning in
1687 ISO C90, such as omitting the middle term of a @code{?:}
1688 expression. On the other hand, when a GNU dialect of a standard is
1689 specified, all features supported by the compiler are enabled, even when
1690 those features change the meaning of the base standard. As a result, some
1691 strict-conforming programs may be rejected. The particular standard
1692 is used by @option{-Wpedantic} to identify which features are GNU
1693 extensions given that version of the standard. For example
1694 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1695 comments, while @option{-std=gnu99 -Wpedantic} does not.
1696
1697 A value for this option must be provided; possible values are
1698
1699 @table @samp
1700 @item c90
1701 @itemx c89
1702 @itemx iso9899:1990
1703 Support all ISO C90 programs (certain GNU extensions that conflict
1704 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1705
1706 @item iso9899:199409
1707 ISO C90 as modified in amendment 1.
1708
1709 @item c99
1710 @itemx c9x
1711 @itemx iso9899:1999
1712 @itemx iso9899:199x
1713 ISO C99. This standard is substantially completely supported, modulo
1714 bugs and floating-point issues
1715 (mainly but not entirely relating to optional C99 features from
1716 Annexes F and G). See
1717 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1718 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1719
1720 @item c11
1721 @itemx c1x
1722 @itemx iso9899:2011
1723 ISO C11, the 2011 revision of the ISO C standard. This standard is
1724 substantially completely supported, modulo bugs, floating-point issues
1725 (mainly but not entirely relating to optional C11 features from
1726 Annexes F and G) and the optional Annexes K (Bounds-checking
1727 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1728
1729 @item gnu90
1730 @itemx gnu89
1731 GNU dialect of ISO C90 (including some C99 features).
1732
1733 @item gnu99
1734 @itemx gnu9x
1735 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1736
1737 @item gnu11
1738 @itemx gnu1x
1739 GNU dialect of ISO C11. This is the default for C code.
1740 The name @samp{gnu1x} is deprecated.
1741
1742 @item c++98
1743 @itemx c++03
1744 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1745 additional defect reports. Same as @option{-ansi} for C++ code.
1746
1747 @item gnu++98
1748 @itemx gnu++03
1749 GNU dialect of @option{-std=c++98}. This is the default for
1750 C++ code.
1751
1752 @item c++11
1753 @itemx c++0x
1754 The 2011 ISO C++ standard plus amendments.
1755 The name @samp{c++0x} is deprecated.
1756
1757 @item gnu++11
1758 @itemx gnu++0x
1759 GNU dialect of @option{-std=c++11}.
1760 The name @samp{gnu++0x} is deprecated.
1761
1762 @item c++14
1763 @itemx c++1y
1764 The 2014 ISO C++ standard plus amendments.
1765 The name @samp{c++1y} is deprecated.
1766
1767 @item gnu++14
1768 @itemx gnu++1y
1769 GNU dialect of @option{-std=c++14}.
1770 The name @samp{gnu++1y} is deprecated.
1771
1772 @item c++1z
1773 The next revision of the ISO C++ standard, tentatively planned for
1774 2017. Support is highly experimental, and will almost certainly
1775 change in incompatible ways in future releases.
1776
1777 @item gnu++1z
1778 GNU dialect of @option{-std=c++1z}. Support is highly experimental,
1779 and will almost certainly change in incompatible ways in future
1780 releases.
1781 @end table
1782
1783 @item -fgnu89-inline
1784 @opindex fgnu89-inline
1785 The option @option{-fgnu89-inline} tells GCC to use the traditional
1786 GNU semantics for @code{inline} functions when in C99 mode.
1787 @xref{Inline,,An Inline Function is As Fast As a Macro}.
1788 Using this option is roughly equivalent to adding the
1789 @code{gnu_inline} function attribute to all inline functions
1790 (@pxref{Function Attributes}).
1791
1792 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
1793 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
1794 specifies the default behavior).
1795 This option is not supported in @option{-std=c90} or
1796 @option{-std=gnu90} mode.
1797
1798 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
1799 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
1800 in effect for @code{inline} functions. @xref{Common Predefined
1801 Macros,,,cpp,The C Preprocessor}.
1802
1803 @item -aux-info @var{filename}
1804 @opindex aux-info
1805 Output to the given filename prototyped declarations for all functions
1806 declared and/or defined in a translation unit, including those in header
1807 files. This option is silently ignored in any language other than C@.
1808
1809 Besides declarations, the file indicates, in comments, the origin of
1810 each declaration (source file and line), whether the declaration was
1811 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
1812 @samp{O} for old, respectively, in the first character after the line
1813 number and the colon), and whether it came from a declaration or a
1814 definition (@samp{C} or @samp{F}, respectively, in the following
1815 character). In the case of function definitions, a K&R-style list of
1816 arguments followed by their declarations is also provided, inside
1817 comments, after the declaration.
1818
1819 @item -fallow-parameterless-variadic-functions
1820 @opindex fallow-parameterless-variadic-functions
1821 Accept variadic functions without named parameters.
1822
1823 Although it is possible to define such a function, this is not very
1824 useful as it is not possible to read the arguments. This is only
1825 supported for C as this construct is allowed by C++.
1826
1827 @item -fno-asm
1828 @opindex fno-asm
1829 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
1830 keyword, so that code can use these words as identifiers. You can use
1831 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
1832 instead. @option{-ansi} implies @option{-fno-asm}.
1833
1834 In C++, this switch only affects the @code{typeof} keyword, since
1835 @code{asm} and @code{inline} are standard keywords. You may want to
1836 use the @option{-fno-gnu-keywords} flag instead, which has the same
1837 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
1838 switch only affects the @code{asm} and @code{typeof} keywords, since
1839 @code{inline} is a standard keyword in ISO C99.
1840
1841 @item -fno-builtin
1842 @itemx -fno-builtin-@var{function}
1843 @opindex fno-builtin
1844 @cindex built-in functions
1845 Don't recognize built-in functions that do not begin with
1846 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
1847 functions provided by GCC}, for details of the functions affected,
1848 including those which are not built-in functions when @option{-ansi} or
1849 @option{-std} options for strict ISO C conformance are used because they
1850 do not have an ISO standard meaning.
1851
1852 GCC normally generates special code to handle certain built-in functions
1853 more efficiently; for instance, calls to @code{alloca} may become single
1854 instructions which adjust the stack directly, and calls to @code{memcpy}
1855 may become inline copy loops. The resulting code is often both smaller
1856 and faster, but since the function calls no longer appear as such, you
1857 cannot set a breakpoint on those calls, nor can you change the behavior
1858 of the functions by linking with a different library. In addition,
1859 when a function is recognized as a built-in function, GCC may use
1860 information about that function to warn about problems with calls to
1861 that function, or to generate more efficient code, even if the
1862 resulting code still contains calls to that function. For example,
1863 warnings are given with @option{-Wformat} for bad calls to
1864 @code{printf} when @code{printf} is built in and @code{strlen} is
1865 known not to modify global memory.
1866
1867 With the @option{-fno-builtin-@var{function}} option
1868 only the built-in function @var{function} is
1869 disabled. @var{function} must not begin with @samp{__builtin_}. If a
1870 function is named that is not built-in in this version of GCC, this
1871 option is ignored. There is no corresponding
1872 @option{-fbuiltin-@var{function}} option; if you wish to enable
1873 built-in functions selectively when using @option{-fno-builtin} or
1874 @option{-ffreestanding}, you may define macros such as:
1875
1876 @smallexample
1877 #define abs(n) __builtin_abs ((n))
1878 #define strcpy(d, s) __builtin_strcpy ((d), (s))
1879 @end smallexample
1880
1881 @item -fhosted
1882 @opindex fhosted
1883 @cindex hosted environment
1884
1885 Assert that compilation targets a hosted environment. This implies
1886 @option{-fbuiltin}. A hosted environment is one in which the
1887 entire standard library is available, and in which @code{main} has a return
1888 type of @code{int}. Examples are nearly everything except a kernel.
1889 This is equivalent to @option{-fno-freestanding}.
1890
1891 @item -ffreestanding
1892 @opindex ffreestanding
1893 @cindex hosted environment
1894
1895 Assert that compilation targets a freestanding environment. This
1896 implies @option{-fno-builtin}. A freestanding environment
1897 is one in which the standard library may not exist, and program startup may
1898 not necessarily be at @code{main}. The most obvious example is an OS kernel.
1899 This is equivalent to @option{-fno-hosted}.
1900
1901 @xref{Standards,,Language Standards Supported by GCC}, for details of
1902 freestanding and hosted environments.
1903
1904 @item -fopenacc
1905 @opindex fopenacc
1906 @cindex OpenACC accelerator programming
1907 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
1908 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
1909 compiler generates accelerated code according to the OpenACC Application
1910 Programming Interface v2.0 @w{@uref{http://www.openacc.org/}}. This option
1911 implies @option{-pthread}, and thus is only supported on targets that
1912 have support for @option{-pthread}.
1913
1914 Note that this is an experimental feature, incomplete, and subject to
1915 change in future versions of GCC. See
1916 @w{@uref{https://gcc.gnu.org/wiki/OpenACC}} for more information.
1917
1918 @item -fopenmp
1919 @opindex fopenmp
1920 @cindex OpenMP parallel
1921 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
1922 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
1923 compiler generates parallel code according to the OpenMP Application
1924 Program Interface v4.0 @w{@uref{http://www.openmp.org/}}. This option
1925 implies @option{-pthread}, and thus is only supported on targets that
1926 have support for @option{-pthread}. @option{-fopenmp} implies
1927 @option{-fopenmp-simd}.
1928
1929 @item -fopenmp-simd
1930 @opindex fopenmp-simd
1931 @cindex OpenMP SIMD
1932 @cindex SIMD
1933 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
1934 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
1935 are ignored.
1936
1937 @item -fcilkplus
1938 @opindex fcilkplus
1939 @cindex Enable Cilk Plus
1940 Enable the usage of Cilk Plus language extension features for C/C++.
1941 When the option @option{-fcilkplus} is specified, enable the usage of
1942 the Cilk Plus Language extension features for C/C++. The present
1943 implementation follows ABI version 1.2. This is an experimental
1944 feature that is only partially complete, and whose interface may
1945 change in future versions of GCC as the official specification
1946 changes. Currently, all features but @code{_Cilk_for} have been
1947 implemented.
1948
1949 @item -fgnu-tm
1950 @opindex fgnu-tm
1951 When the option @option{-fgnu-tm} is specified, the compiler
1952 generates code for the Linux variant of Intel's current Transactional
1953 Memory ABI specification document (Revision 1.1, May 6 2009). This is
1954 an experimental feature whose interface may change in future versions
1955 of GCC, as the official specification changes. Please note that not
1956 all architectures are supported for this feature.
1957
1958 For more information on GCC's support for transactional memory,
1959 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
1960 Transactional Memory Library}.
1961
1962 Note that the transactional memory feature is not supported with
1963 non-call exceptions (@option{-fnon-call-exceptions}).
1964
1965 @item -fms-extensions
1966 @opindex fms-extensions
1967 Accept some non-standard constructs used in Microsoft header files.
1968
1969 In C++ code, this allows member names in structures to be similar
1970 to previous types declarations.
1971
1972 @smallexample
1973 typedef int UOW;
1974 struct ABC @{
1975 UOW UOW;
1976 @};
1977 @end smallexample
1978
1979 Some cases of unnamed fields in structures and unions are only
1980 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
1981 fields within structs/unions}, for details.
1982
1983 Note that this option is off for all targets but x86
1984 targets using ms-abi.
1985
1986 @item -fplan9-extensions
1987 @opindex fplan9-extensions
1988 Accept some non-standard constructs used in Plan 9 code.
1989
1990 This enables @option{-fms-extensions}, permits passing pointers to
1991 structures with anonymous fields to functions that expect pointers to
1992 elements of the type of the field, and permits referring to anonymous
1993 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
1994 struct/union fields within structs/unions}, for details. This is only
1995 supported for C, not C++.
1996
1997 @item -trigraphs
1998 @opindex trigraphs
1999 Support ISO C trigraphs. The @option{-ansi} option (and @option{-std}
2000 options for strict ISO C conformance) implies @option{-trigraphs}.
2001
2002 @cindex traditional C language
2003 @cindex C language, traditional
2004 @item -traditional
2005 @itemx -traditional-cpp
2006 @opindex traditional-cpp
2007 @opindex traditional
2008 Formerly, these options caused GCC to attempt to emulate a pre-standard
2009 C compiler. They are now only supported with the @option{-E} switch.
2010 The preprocessor continues to support a pre-standard mode. See the GNU
2011 CPP manual for details.
2012
2013 @item -fcond-mismatch
2014 @opindex fcond-mismatch
2015 Allow conditional expressions with mismatched types in the second and
2016 third arguments. The value of such an expression is void. This option
2017 is not supported for C++.
2018
2019 @item -flax-vector-conversions
2020 @opindex flax-vector-conversions
2021 Allow implicit conversions between vectors with differing numbers of
2022 elements and/or incompatible element types. This option should not be
2023 used for new code.
2024
2025 @item -funsigned-char
2026 @opindex funsigned-char
2027 Let the type @code{char} be unsigned, like @code{unsigned char}.
2028
2029 Each kind of machine has a default for what @code{char} should
2030 be. It is either like @code{unsigned char} by default or like
2031 @code{signed char} by default.
2032
2033 Ideally, a portable program should always use @code{signed char} or
2034 @code{unsigned char} when it depends on the signedness of an object.
2035 But many programs have been written to use plain @code{char} and
2036 expect it to be signed, or expect it to be unsigned, depending on the
2037 machines they were written for. This option, and its inverse, let you
2038 make such a program work with the opposite default.
2039
2040 The type @code{char} is always a distinct type from each of
2041 @code{signed char} or @code{unsigned char}, even though its behavior
2042 is always just like one of those two.
2043
2044 @item -fsigned-char
2045 @opindex fsigned-char
2046 Let the type @code{char} be signed, like @code{signed char}.
2047
2048 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2049 the negative form of @option{-funsigned-char}. Likewise, the option
2050 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2051
2052 @item -fsigned-bitfields
2053 @itemx -funsigned-bitfields
2054 @itemx -fno-signed-bitfields
2055 @itemx -fno-unsigned-bitfields
2056 @opindex fsigned-bitfields
2057 @opindex funsigned-bitfields
2058 @opindex fno-signed-bitfields
2059 @opindex fno-unsigned-bitfields
2060 These options control whether a bit-field is signed or unsigned, when the
2061 declaration does not use either @code{signed} or @code{unsigned}. By
2062 default, such a bit-field is signed, because this is consistent: the
2063 basic integer types such as @code{int} are signed types.
2064 @end table
2065
2066 @node C++ Dialect Options
2067 @section Options Controlling C++ Dialect
2068
2069 @cindex compiler options, C++
2070 @cindex C++ options, command-line
2071 @cindex options, C++
2072 This section describes the command-line options that are only meaningful
2073 for C++ programs. You can also use most of the GNU compiler options
2074 regardless of what language your program is in. For example, you
2075 might compile a file @file{firstClass.C} like this:
2076
2077 @smallexample
2078 g++ -g -frepo -O -c firstClass.C
2079 @end smallexample
2080
2081 @noindent
2082 In this example, only @option{-frepo} is an option meant
2083 only for C++ programs; you can use the other options with any
2084 language supported by GCC@.
2085
2086 Here is a list of options that are @emph{only} for compiling C++ programs:
2087
2088 @table @gcctabopt
2089
2090 @item -fabi-version=@var{n}
2091 @opindex fabi-version
2092 Use version @var{n} of the C++ ABI@. The default is version 0.
2093
2094 Version 0 refers to the version conforming most closely to
2095 the C++ ABI specification. Therefore, the ABI obtained using version 0
2096 will change in different versions of G++ as ABI bugs are fixed.
2097
2098 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2099
2100 Version 2 is the version of the C++ ABI that first appeared in G++
2101 3.4, and was the default through G++ 4.9.
2102
2103 Version 3 corrects an error in mangling a constant address as a
2104 template argument.
2105
2106 Version 4, which first appeared in G++ 4.5, implements a standard
2107 mangling for vector types.
2108
2109 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2110 attribute const/volatile on function pointer types, decltype of a
2111 plain decl, and use of a function parameter in the declaration of
2112 another parameter.
2113
2114 Version 6, which first appeared in G++ 4.7, corrects the promotion
2115 behavior of C++11 scoped enums and the mangling of template argument
2116 packs, const/static_cast, prefix ++ and --, and a class scope function
2117 used as a template argument.
2118
2119 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2120 builtin type and corrects the mangling of lambdas in default argument
2121 scope.
2122
2123 Version 8, which first appeared in G++ 4.9, corrects the substitution
2124 behavior of function types with function-cv-qualifiers.
2125
2126 See also @option{-Wabi}.
2127
2128 @item -fabi-compat-version=@var{n}
2129 @opindex fabi-compat-version
2130 On targets that support strong aliases, G++
2131 works around mangling changes by creating an alias with the correct
2132 mangled name when defining a symbol with an incorrect mangled name.
2133 This switch specifies which ABI version to use for the alias.
2134
2135 With @option{-fabi-version=0} (the default), this defaults to 2. If
2136 another ABI version is explicitly selected, this defaults to 0.
2137
2138 The compatibility version is also set by @option{-Wabi=@var{n}}.
2139
2140 @item -fno-access-control
2141 @opindex fno-access-control
2142 Turn off all access checking. This switch is mainly useful for working
2143 around bugs in the access control code.
2144
2145 @item -fcheck-new
2146 @opindex fcheck-new
2147 Check that the pointer returned by @code{operator new} is non-null
2148 before attempting to modify the storage allocated. This check is
2149 normally unnecessary because the C++ standard specifies that
2150 @code{operator new} only returns @code{0} if it is declared
2151 @code{throw()}, in which case the compiler always checks the
2152 return value even without this option. In all other cases, when
2153 @code{operator new} has a non-empty exception specification, memory
2154 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2155 @samp{new (nothrow)}.
2156
2157 @item -fconstexpr-depth=@var{n}
2158 @opindex fconstexpr-depth
2159 Set the maximum nested evaluation depth for C++11 constexpr functions
2160 to @var{n}. A limit is needed to detect endless recursion during
2161 constant expression evaluation. The minimum specified by the standard
2162 is 512.
2163
2164 @item -fdeduce-init-list
2165 @opindex fdeduce-init-list
2166 Enable deduction of a template type parameter as
2167 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2168
2169 @smallexample
2170 template <class T> auto forward(T t) -> decltype (realfn (t))
2171 @{
2172 return realfn (t);
2173 @}
2174
2175 void f()
2176 @{
2177 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2178 @}
2179 @end smallexample
2180
2181 This deduction was implemented as a possible extension to the
2182 originally proposed semantics for the C++11 standard, but was not part
2183 of the final standard, so it is disabled by default. This option is
2184 deprecated, and may be removed in a future version of G++.
2185
2186 @item -ffriend-injection
2187 @opindex ffriend-injection
2188 Inject friend functions into the enclosing namespace, so that they are
2189 visible outside the scope of the class in which they are declared.
2190 Friend functions were documented to work this way in the old Annotated
2191 C++ Reference Manual.
2192 However, in ISO C++ a friend function that is not declared
2193 in an enclosing scope can only be found using argument dependent
2194 lookup. GCC defaults to the standard behavior.
2195
2196 This option is for compatibility, and may be removed in a future
2197 release of G++.
2198
2199 @item -fno-elide-constructors
2200 @opindex fno-elide-constructors
2201 The C++ standard allows an implementation to omit creating a temporary
2202 that is only used to initialize another object of the same type.
2203 Specifying this option disables that optimization, and forces G++ to
2204 call the copy constructor in all cases.
2205
2206 @item -fno-enforce-eh-specs
2207 @opindex fno-enforce-eh-specs
2208 Don't generate code to check for violation of exception specifications
2209 at run time. This option violates the C++ standard, but may be useful
2210 for reducing code size in production builds, much like defining
2211 @code{NDEBUG}. This does not give user code permission to throw
2212 exceptions in violation of the exception specifications; the compiler
2213 still optimizes based on the specifications, so throwing an
2214 unexpected exception results in undefined behavior at run time.
2215
2216 @item -fextern-tls-init
2217 @itemx -fno-extern-tls-init
2218 @opindex fextern-tls-init
2219 @opindex fno-extern-tls-init
2220 The C++11 and OpenMP standards allow @code{thread_local} and
2221 @code{threadprivate} variables to have dynamic (runtime)
2222 initialization. To support this, any use of such a variable goes
2223 through a wrapper function that performs any necessary initialization.
2224 When the use and definition of the variable are in the same
2225 translation unit, this overhead can be optimized away, but when the
2226 use is in a different translation unit there is significant overhead
2227 even if the variable doesn't actually need dynamic initialization. If
2228 the programmer can be sure that no use of the variable in a
2229 non-defining TU needs to trigger dynamic initialization (either
2230 because the variable is statically initialized, or a use of the
2231 variable in the defining TU will be executed before any uses in
2232 another TU), they can avoid this overhead with the
2233 @option{-fno-extern-tls-init} option.
2234
2235 On targets that support symbol aliases, the default is
2236 @option{-fextern-tls-init}. On targets that do not support symbol
2237 aliases, the default is @option{-fno-extern-tls-init}.
2238
2239 @item -ffor-scope
2240 @itemx -fno-for-scope
2241 @opindex ffor-scope
2242 @opindex fno-for-scope
2243 If @option{-ffor-scope} is specified, the scope of variables declared in
2244 a @i{for-init-statement} is limited to the @code{for} loop itself,
2245 as specified by the C++ standard.
2246 If @option{-fno-for-scope} is specified, the scope of variables declared in
2247 a @i{for-init-statement} extends to the end of the enclosing scope,
2248 as was the case in old versions of G++, and other (traditional)
2249 implementations of C++.
2250
2251 If neither flag is given, the default is to follow the standard,
2252 but to allow and give a warning for old-style code that would
2253 otherwise be invalid, or have different behavior.
2254
2255 @item -fno-gnu-keywords
2256 @opindex fno-gnu-keywords
2257 Do not recognize @code{typeof} as a keyword, so that code can use this
2258 word as an identifier. You can use the keyword @code{__typeof__} instead.
2259 @option{-ansi} implies @option{-fno-gnu-keywords}.
2260
2261 @item -fno-implicit-templates
2262 @opindex fno-implicit-templates
2263 Never emit code for non-inline templates that are instantiated
2264 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2265 @xref{Template Instantiation}, for more information.
2266
2267 @item -fno-implicit-inline-templates
2268 @opindex fno-implicit-inline-templates
2269 Don't emit code for implicit instantiations of inline templates, either.
2270 The default is to handle inlines differently so that compiles with and
2271 without optimization need the same set of explicit instantiations.
2272
2273 @item -fno-implement-inlines
2274 @opindex fno-implement-inlines
2275 To save space, do not emit out-of-line copies of inline functions
2276 controlled by @code{#pragma implementation}. This causes linker
2277 errors if these functions are not inlined everywhere they are called.
2278
2279 @item -fms-extensions
2280 @opindex fms-extensions
2281 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2282 int and getting a pointer to member function via non-standard syntax.
2283
2284 @item -fno-nonansi-builtins
2285 @opindex fno-nonansi-builtins
2286 Disable built-in declarations of functions that are not mandated by
2287 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2288 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2289
2290 @item -fnothrow-opt
2291 @opindex fnothrow-opt
2292 Treat a @code{throw()} exception specification as if it were a
2293 @code{noexcept} specification to reduce or eliminate the text size
2294 overhead relative to a function with no exception specification. If
2295 the function has local variables of types with non-trivial
2296 destructors, the exception specification actually makes the
2297 function smaller because the EH cleanups for those variables can be
2298 optimized away. The semantic effect is that an exception thrown out of
2299 a function with such an exception specification results in a call
2300 to @code{terminate} rather than @code{unexpected}.
2301
2302 @item -fno-operator-names
2303 @opindex fno-operator-names
2304 Do not treat the operator name keywords @code{and}, @code{bitand},
2305 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2306 synonyms as keywords.
2307
2308 @item -fno-optional-diags
2309 @opindex fno-optional-diags
2310 Disable diagnostics that the standard says a compiler does not need to
2311 issue. Currently, the only such diagnostic issued by G++ is the one for
2312 a name having multiple meanings within a class.
2313
2314 @item -fpermissive
2315 @opindex fpermissive
2316 Downgrade some diagnostics about nonconformant code from errors to
2317 warnings. Thus, using @option{-fpermissive} allows some
2318 nonconforming code to compile.
2319
2320 @item -fno-pretty-templates
2321 @opindex fno-pretty-templates
2322 When an error message refers to a specialization of a function
2323 template, the compiler normally prints the signature of the
2324 template followed by the template arguments and any typedefs or
2325 typenames in the signature (e.g. @code{void f(T) [with T = int]}
2326 rather than @code{void f(int)}) so that it's clear which template is
2327 involved. When an error message refers to a specialization of a class
2328 template, the compiler omits any template arguments that match
2329 the default template arguments for that template. If either of these
2330 behaviors make it harder to understand the error message rather than
2331 easier, you can use @option{-fno-pretty-templates} to disable them.
2332
2333 @item -frepo
2334 @opindex frepo
2335 Enable automatic template instantiation at link time. This option also
2336 implies @option{-fno-implicit-templates}. @xref{Template
2337 Instantiation}, for more information.
2338
2339 @item -fno-rtti
2340 @opindex fno-rtti
2341 Disable generation of information about every class with virtual
2342 functions for use by the C++ run-time type identification features
2343 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2344 of the language, you can save some space by using this flag. Note that
2345 exception handling uses the same information, but G++ generates it as
2346 needed. The @code{dynamic_cast} operator can still be used for casts that
2347 do not require run-time type information, i.e.@: casts to @code{void *} or to
2348 unambiguous base classes.
2349
2350 @item -fsized-deallocation
2351 @opindex fsized-deallocation
2352 Enable the built-in global declarations
2353 @smallexample
2354 void operator delete (void *, std::size_t) noexcept;
2355 void operator delete[] (void *, std::size_t) noexcept;
2356 @end smallexample
2357 as introduced in C++14. This is useful for user-defined replacement
2358 deallocation functions that, for example, use the size of the object
2359 to make deallocation faster. Enabled by default under
2360 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2361 warns about places that might want to add a definition.
2362
2363 @item -fstats
2364 @opindex fstats
2365 Emit statistics about front-end processing at the end of the compilation.
2366 This information is generally only useful to the G++ development team.
2367
2368 @item -fstrict-enums
2369 @opindex fstrict-enums
2370 Allow the compiler to optimize using the assumption that a value of
2371 enumerated type can only be one of the values of the enumeration (as
2372 defined in the C++ standard; basically, a value that can be
2373 represented in the minimum number of bits needed to represent all the
2374 enumerators). This assumption may not be valid if the program uses a
2375 cast to convert an arbitrary integer value to the enumerated type.
2376
2377 @item -ftemplate-backtrace-limit=@var{n}
2378 @opindex ftemplate-backtrace-limit
2379 Set the maximum number of template instantiation notes for a single
2380 warning or error to @var{n}. The default value is 10.
2381
2382 @item -ftemplate-depth=@var{n}
2383 @opindex ftemplate-depth
2384 Set the maximum instantiation depth for template classes to @var{n}.
2385 A limit on the template instantiation depth is needed to detect
2386 endless recursions during template class instantiation. ANSI/ISO C++
2387 conforming programs must not rely on a maximum depth greater than 17
2388 (changed to 1024 in C++11). The default value is 900, as the compiler
2389 can run out of stack space before hitting 1024 in some situations.
2390
2391 @item -fno-threadsafe-statics
2392 @opindex fno-threadsafe-statics
2393 Do not emit the extra code to use the routines specified in the C++
2394 ABI for thread-safe initialization of local statics. You can use this
2395 option to reduce code size slightly in code that doesn't need to be
2396 thread-safe.
2397
2398 @item -fuse-cxa-atexit
2399 @opindex fuse-cxa-atexit
2400 Register destructors for objects with static storage duration with the
2401 @code{__cxa_atexit} function rather than the @code{atexit} function.
2402 This option is required for fully standards-compliant handling of static
2403 destructors, but only works if your C library supports
2404 @code{__cxa_atexit}.
2405
2406 @item -fno-use-cxa-get-exception-ptr
2407 @opindex fno-use-cxa-get-exception-ptr
2408 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2409 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2410 if the runtime routine is not available.
2411
2412 @item -fvisibility-inlines-hidden
2413 @opindex fvisibility-inlines-hidden
2414 This switch declares that the user does not attempt to compare
2415 pointers to inline functions or methods where the addresses of the two functions
2416 are taken in different shared objects.
2417
2418 The effect of this is that GCC may, effectively, mark inline methods with
2419 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2420 appear in the export table of a DSO and do not require a PLT indirection
2421 when used within the DSO@. Enabling this option can have a dramatic effect
2422 on load and link times of a DSO as it massively reduces the size of the
2423 dynamic export table when the library makes heavy use of templates.
2424
2425 The behavior of this switch is not quite the same as marking the
2426 methods as hidden directly, because it does not affect static variables
2427 local to the function or cause the compiler to deduce that
2428 the function is defined in only one shared object.
2429
2430 You may mark a method as having a visibility explicitly to negate the
2431 effect of the switch for that method. For example, if you do want to
2432 compare pointers to a particular inline method, you might mark it as
2433 having default visibility. Marking the enclosing class with explicit
2434 visibility has no effect.
2435
2436 Explicitly instantiated inline methods are unaffected by this option
2437 as their linkage might otherwise cross a shared library boundary.
2438 @xref{Template Instantiation}.
2439
2440 @item -fvisibility-ms-compat
2441 @opindex fvisibility-ms-compat
2442 This flag attempts to use visibility settings to make GCC's C++
2443 linkage model compatible with that of Microsoft Visual Studio.
2444
2445 The flag makes these changes to GCC's linkage model:
2446
2447 @enumerate
2448 @item
2449 It sets the default visibility to @code{hidden}, like
2450 @option{-fvisibility=hidden}.
2451
2452 @item
2453 Types, but not their members, are not hidden by default.
2454
2455 @item
2456 The One Definition Rule is relaxed for types without explicit
2457 visibility specifications that are defined in more than one
2458 shared object: those declarations are permitted if they are
2459 permitted when this option is not used.
2460 @end enumerate
2461
2462 In new code it is better to use @option{-fvisibility=hidden} and
2463 export those classes that are intended to be externally visible.
2464 Unfortunately it is possible for code to rely, perhaps accidentally,
2465 on the Visual Studio behavior.
2466
2467 Among the consequences of these changes are that static data members
2468 of the same type with the same name but defined in different shared
2469 objects are different, so changing one does not change the other;
2470 and that pointers to function members defined in different shared
2471 objects may not compare equal. When this flag is given, it is a
2472 violation of the ODR to define types with the same name differently.
2473
2474 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
2475 @opindex fvtable-verify
2476 Turn on (or off, if using @option{-fvtable-verify=none}) the security
2477 feature that verifies at run time, for every virtual call, that
2478 the vtable pointer through which the call is made is valid for the type of
2479 the object, and has not been corrupted or overwritten. If an invalid vtable
2480 pointer is detected at run time, an error is reported and execution of the
2481 program is immediately halted.
2482
2483 This option causes run-time data structures to be built at program startup,
2484 which are used for verifying the vtable pointers.
2485 The options @samp{std} and @samp{preinit}
2486 control the timing of when these data structures are built. In both cases the
2487 data structures are built before execution reaches @code{main}. Using
2488 @option{-fvtable-verify=std} causes the data structures to be built after
2489 shared libraries have been loaded and initialized.
2490 @option{-fvtable-verify=preinit} causes them to be built before shared
2491 libraries have been loaded and initialized.
2492
2493 If this option appears multiple times in the command line with different
2494 values specified, @samp{none} takes highest priority over both @samp{std} and
2495 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
2496
2497 @item -fvtv-debug
2498 @opindex fvtv-debug
2499 When used in conjunction with @option{-fvtable-verify=std} or
2500 @option{-fvtable-verify=preinit}, causes debug versions of the
2501 runtime functions for the vtable verification feature to be called.
2502 This flag also causes the compiler to log information about which
2503 vtable pointers it finds for each class.
2504 This information is written to a file named @file{vtv_set_ptr_data.log}
2505 in the directory named by the environment variable @env{VTV_LOGS_DIR}
2506 if that is defined or the current working directory otherwise.
2507
2508 Note: This feature @emph{appends} data to the log file. If you want a fresh log
2509 file, be sure to delete any existing one.
2510
2511 @item -fvtv-counts
2512 @opindex fvtv-counts
2513 This is a debugging flag. When used in conjunction with
2514 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
2515 causes the compiler to keep track of the total number of virtual calls
2516 it encounters and the number of verifications it inserts. It also
2517 counts the number of calls to certain run-time library functions
2518 that it inserts and logs this information for each compilation unit.
2519 The compiler writes this information to a file named
2520 @file{vtv_count_data.log} in the directory named by the environment
2521 variable @env{VTV_LOGS_DIR} if that is defined or the current working
2522 directory otherwise. It also counts the size of the vtable pointer sets
2523 for each class, and writes this information to @file{vtv_class_set_sizes.log}
2524 in the same directory.
2525
2526 Note: This feature @emph{appends} data to the log files. To get fresh log
2527 files, be sure to delete any existing ones.
2528
2529 @item -fno-weak
2530 @opindex fno-weak
2531 Do not use weak symbol support, even if it is provided by the linker.
2532 By default, G++ uses weak symbols if they are available. This
2533 option exists only for testing, and should not be used by end-users;
2534 it results in inferior code and has no benefits. This option may
2535 be removed in a future release of G++.
2536
2537 @item -nostdinc++
2538 @opindex nostdinc++
2539 Do not search for header files in the standard directories specific to
2540 C++, but do still search the other standard directories. (This option
2541 is used when building the C++ library.)
2542 @end table
2543
2544 In addition, these optimization, warning, and code generation options
2545 have meanings only for C++ programs:
2546
2547 @table @gcctabopt
2548 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2549 @opindex Wabi
2550 @opindex Wno-abi
2551 When an explicit @option{-fabi-version=@var{n}} option is used, causes
2552 G++ to warn when it generates code that is probably not compatible with the
2553 vendor-neutral C++ ABI@. Since G++ now defaults to
2554 @option{-fabi-version=0}, @option{-Wabi} has no effect unless either
2555 an older ABI version is selected (with @option{-fabi-version=@var{n}})
2556 or an older compatibility version is selected (with
2557 @option{-Wabi=@var{n}} or @option{-fabi-compat-version=@var{n}}).
2558
2559 Although an effort has been made to warn about
2560 all such cases, there are probably some cases that are not warned about,
2561 even though G++ is generating incompatible code. There may also be
2562 cases where warnings are emitted even though the code that is generated
2563 is compatible.
2564
2565 You should rewrite your code to avoid these warnings if you are
2566 concerned about the fact that code generated by G++ may not be binary
2567 compatible with code generated by other compilers.
2568
2569 @option{-Wabi} can also be used with an explicit version number to
2570 warn about compatibility with a particular @option{-fabi-version}
2571 level, e.g. @option{-Wabi=2} to warn about changes relative to
2572 @option{-fabi-version=2}. Specifying a version number also sets
2573 @option{-fabi-compat-version=@var{n}}.
2574
2575 The known incompatibilities in @option{-fabi-version=2} (which was the
2576 default from GCC 3.4 to 4.9) include:
2577
2578 @itemize @bullet
2579
2580 @item
2581 A template with a non-type template parameter of reference type was
2582 mangled incorrectly:
2583 @smallexample
2584 extern int N;
2585 template <int &> struct S @{@};
2586 void n (S<N>) @{2@}
2587 @end smallexample
2588
2589 This was fixed in @option{-fabi-version=3}.
2590
2591 @item
2592 SIMD vector types declared using @code{__attribute ((vector_size))} were
2593 mangled in a non-standard way that does not allow for overloading of
2594 functions taking vectors of different sizes.
2595
2596 The mangling was changed in @option{-fabi-version=4}.
2597
2598 @item
2599 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2600 qualifiers, and @code{decltype} of a plain declaration was folded away.
2601
2602 These mangling issues were fixed in @option{-fabi-version=5}.
2603
2604 @item
2605 Scoped enumerators passed as arguments to a variadic function are
2606 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2607 On most targets this does not actually affect the parameter passing
2608 ABI, as there is no way to pass an argument smaller than @code{int}.
2609
2610 Also, the ABI changed the mangling of template argument packs,
2611 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2612 a class scope function used as a template argument.
2613
2614 These issues were corrected in @option{-fabi-version=6}.
2615
2616 @item
2617 Lambdas in default argument scope were mangled incorrectly, and the
2618 ABI changed the mangling of @code{nullptr_t}.
2619
2620 These issues were corrected in @option{-fabi-version=7}.
2621
2622 @item
2623 When mangling a function type with function-cv-qualifiers, the
2624 un-qualified function type was incorrectly treated as a substitution
2625 candidate.
2626
2627 This was fixed in @option{-fabi-version=8}.
2628 @end itemize
2629
2630 It also warns about psABI-related changes. The known psABI changes at this
2631 point include:
2632
2633 @itemize @bullet
2634
2635 @item
2636 For SysV/x86-64, unions with @code{long double} members are
2637 passed in memory as specified in psABI. For example:
2638
2639 @smallexample
2640 union U @{
2641 long double ld;
2642 int i;
2643 @};
2644 @end smallexample
2645
2646 @noindent
2647 @code{union U} is always passed in memory.
2648
2649 @end itemize
2650
2651 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
2652 @opindex Wabi-tag
2653 @opindex -Wabi-tag
2654 Warn when a type with an ABI tag is used in a context that does not
2655 have that ABI tag. See @ref{C++ Attributes} for more information
2656 about ABI tags.
2657
2658 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
2659 @opindex Wctor-dtor-privacy
2660 @opindex Wno-ctor-dtor-privacy
2661 Warn when a class seems unusable because all the constructors or
2662 destructors in that class are private, and it has neither friends nor
2663 public static member functions. Also warn if there are no non-private
2664 methods, and there's at least one private member function that isn't
2665 a constructor or destructor.
2666
2667 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
2668 @opindex Wdelete-non-virtual-dtor
2669 @opindex Wno-delete-non-virtual-dtor
2670 Warn when @code{delete} is used to destroy an instance of a class that
2671 has virtual functions and non-virtual destructor. It is unsafe to delete
2672 an instance of a derived class through a pointer to a base class if the
2673 base class does not have a virtual destructor. This warning is enabled
2674 by @option{-Wall}.
2675
2676 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
2677 @opindex Wliteral-suffix
2678 @opindex Wno-literal-suffix
2679 Warn when a string or character literal is followed by a ud-suffix which does
2680 not begin with an underscore. As a conforming extension, GCC treats such
2681 suffixes as separate preprocessing tokens in order to maintain backwards
2682 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
2683 For example:
2684
2685 @smallexample
2686 #define __STDC_FORMAT_MACROS
2687 #include <inttypes.h>
2688 #include <stdio.h>
2689
2690 int main() @{
2691 int64_t i64 = 123;
2692 printf("My int64: %" PRId64"\n", i64);
2693 @}
2694 @end smallexample
2695
2696 In this case, @code{PRId64} is treated as a separate preprocessing token.
2697
2698 This warning is enabled by default.
2699
2700 @item -Wnarrowing @r{(C++ and Objective-C++ only)}
2701 @opindex Wnarrowing
2702 @opindex Wno-narrowing
2703 Warn when a narrowing conversion prohibited by C++11 occurs within
2704 @samp{@{ @}}, e.g.
2705
2706 @smallexample
2707 int i = @{ 2.2 @}; // error: narrowing from double to int
2708 @end smallexample
2709
2710 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
2711
2712 With @option{-std=c++11}, @option{-Wno-narrowing} suppresses the diagnostic
2713 required by the standard. Note that this does not affect the meaning
2714 of well-formed code; narrowing conversions are still considered
2715 ill-formed in SFINAE context.
2716
2717 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
2718 @opindex Wnoexcept
2719 @opindex Wno-noexcept
2720 Warn when a noexcept-expression evaluates to false because of a call
2721 to a function that does not have a non-throwing exception
2722 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
2723 the compiler to never throw an exception.
2724
2725 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
2726 @opindex Wnon-virtual-dtor
2727 @opindex Wno-non-virtual-dtor
2728 Warn when a class has virtual functions and an accessible non-virtual
2729 destructor itself or in an accessible polymorphic base class, in which
2730 case it is possible but unsafe to delete an instance of a derived
2731 class through a pointer to the class itself or base class. This
2732 warning is automatically enabled if @option{-Weffc++} is specified.
2733
2734 @item -Wreorder @r{(C++ and Objective-C++ only)}
2735 @opindex Wreorder
2736 @opindex Wno-reorder
2737 @cindex reordering, warning
2738 @cindex warning for reordering of member initializers
2739 Warn when the order of member initializers given in the code does not
2740 match the order in which they must be executed. For instance:
2741
2742 @smallexample
2743 struct A @{
2744 int i;
2745 int j;
2746 A(): j (0), i (1) @{ @}
2747 @};
2748 @end smallexample
2749
2750 @noindent
2751 The compiler rearranges the member initializers for @code{i}
2752 and @code{j} to match the declaration order of the members, emitting
2753 a warning to that effect. This warning is enabled by @option{-Wall}.
2754
2755 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
2756 @opindex fext-numeric-literals
2757 @opindex fno-ext-numeric-literals
2758 Accept imaginary, fixed-point, or machine-defined
2759 literal number suffixes as GNU extensions.
2760 When this option is turned off these suffixes are treated
2761 as C++11 user-defined literal numeric suffixes.
2762 This is on by default for all pre-C++11 dialects and all GNU dialects:
2763 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
2764 @option{-std=gnu++14}.
2765 This option is off by default
2766 for ISO C++11 onwards (@option{-std=c++11}, ...).
2767 @end table
2768
2769 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
2770
2771 @table @gcctabopt
2772 @item -Weffc++ @r{(C++ and Objective-C++ only)}
2773 @opindex Weffc++
2774 @opindex Wno-effc++
2775 Warn about violations of the following style guidelines from Scott Meyers'
2776 @cite{Effective C++} series of books:
2777
2778 @itemize @bullet
2779 @item
2780 Define a copy constructor and an assignment operator for classes
2781 with dynamically-allocated memory.
2782
2783 @item
2784 Prefer initialization to assignment in constructors.
2785
2786 @item
2787 Have @code{operator=} return a reference to @code{*this}.
2788
2789 @item
2790 Don't try to return a reference when you must return an object.
2791
2792 @item
2793 Distinguish between prefix and postfix forms of increment and
2794 decrement operators.
2795
2796 @item
2797 Never overload @code{&&}, @code{||}, or @code{,}.
2798
2799 @end itemize
2800
2801 This option also enables @option{-Wnon-virtual-dtor}, which is also
2802 one of the effective C++ recommendations. However, the check is
2803 extended to warn about the lack of virtual destructor in accessible
2804 non-polymorphic bases classes too.
2805
2806 When selecting this option, be aware that the standard library
2807 headers do not obey all of these guidelines; use @samp{grep -v}
2808 to filter out those warnings.
2809
2810 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
2811 @opindex Wstrict-null-sentinel
2812 @opindex Wno-strict-null-sentinel
2813 Warn about the use of an uncasted @code{NULL} as sentinel. When
2814 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
2815 to @code{__null}. Although it is a null pointer constant rather than a
2816 null pointer, it is guaranteed to be of the same size as a pointer.
2817 But this use is not portable across different compilers.
2818
2819 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
2820 @opindex Wno-non-template-friend
2821 @opindex Wnon-template-friend
2822 Disable warnings when non-templatized friend functions are declared
2823 within a template. Since the advent of explicit template specification
2824 support in G++, if the name of the friend is an unqualified-id (i.e.,
2825 @samp{friend foo(int)}), the C++ language specification demands that the
2826 friend declare or define an ordinary, nontemplate function. (Section
2827 14.5.3). Before G++ implemented explicit specification, unqualified-ids
2828 could be interpreted as a particular specialization of a templatized
2829 function. Because this non-conforming behavior is no longer the default
2830 behavior for G++, @option{-Wnon-template-friend} allows the compiler to
2831 check existing code for potential trouble spots and is on by default.
2832 This new compiler behavior can be turned off with
2833 @option{-Wno-non-template-friend}, which keeps the conformant compiler code
2834 but disables the helpful warning.
2835
2836 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
2837 @opindex Wold-style-cast
2838 @opindex Wno-old-style-cast
2839 Warn if an old-style (C-style) cast to a non-void type is used within
2840 a C++ program. The new-style casts (@code{dynamic_cast},
2841 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
2842 less vulnerable to unintended effects and much easier to search for.
2843
2844 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
2845 @opindex Woverloaded-virtual
2846 @opindex Wno-overloaded-virtual
2847 @cindex overloaded virtual function, warning
2848 @cindex warning for overloaded virtual function
2849 Warn when a function declaration hides virtual functions from a
2850 base class. For example, in:
2851
2852 @smallexample
2853 struct A @{
2854 virtual void f();
2855 @};
2856
2857 struct B: public A @{
2858 void f(int);
2859 @};
2860 @end smallexample
2861
2862 the @code{A} class version of @code{f} is hidden in @code{B}, and code
2863 like:
2864
2865 @smallexample
2866 B* b;
2867 b->f();
2868 @end smallexample
2869
2870 @noindent
2871 fails to compile.
2872
2873 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
2874 @opindex Wno-pmf-conversions
2875 @opindex Wpmf-conversions
2876 Disable the diagnostic for converting a bound pointer to member function
2877 to a plain pointer.
2878
2879 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
2880 @opindex Wsign-promo
2881 @opindex Wno-sign-promo
2882 Warn when overload resolution chooses a promotion from unsigned or
2883 enumerated type to a signed type, over a conversion to an unsigned type of
2884 the same size. Previous versions of G++ tried to preserve
2885 unsignedness, but the standard mandates the current behavior.
2886
2887 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
2888 @opindex Wterminate
2889 @opindex Wno-terminate
2890 Disable the warning about a throw-expression that will immediately
2891 result in a call to @code{terminate}.
2892 @end table
2893
2894 @node Objective-C and Objective-C++ Dialect Options
2895 @section Options Controlling Objective-C and Objective-C++ Dialects
2896
2897 @cindex compiler options, Objective-C and Objective-C++
2898 @cindex Objective-C and Objective-C++ options, command-line
2899 @cindex options, Objective-C and Objective-C++
2900 (NOTE: This manual does not describe the Objective-C and Objective-C++
2901 languages themselves. @xref{Standards,,Language Standards
2902 Supported by GCC}, for references.)
2903
2904 This section describes the command-line options that are only meaningful
2905 for Objective-C and Objective-C++ programs. You can also use most of
2906 the language-independent GNU compiler options.
2907 For example, you might compile a file @file{some_class.m} like this:
2908
2909 @smallexample
2910 gcc -g -fgnu-runtime -O -c some_class.m
2911 @end smallexample
2912
2913 @noindent
2914 In this example, @option{-fgnu-runtime} is an option meant only for
2915 Objective-C and Objective-C++ programs; you can use the other options with
2916 any language supported by GCC@.
2917
2918 Note that since Objective-C is an extension of the C language, Objective-C
2919 compilations may also use options specific to the C front-end (e.g.,
2920 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
2921 C++-specific options (e.g., @option{-Wabi}).
2922
2923 Here is a list of options that are @emph{only} for compiling Objective-C
2924 and Objective-C++ programs:
2925
2926 @table @gcctabopt
2927 @item -fconstant-string-class=@var{class-name}
2928 @opindex fconstant-string-class
2929 Use @var{class-name} as the name of the class to instantiate for each
2930 literal string specified with the syntax @code{@@"@dots{}"}. The default
2931 class name is @code{NXConstantString} if the GNU runtime is being used, and
2932 @code{NSConstantString} if the NeXT runtime is being used (see below). The
2933 @option{-fconstant-cfstrings} option, if also present, overrides the
2934 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
2935 to be laid out as constant CoreFoundation strings.
2936
2937 @item -fgnu-runtime
2938 @opindex fgnu-runtime
2939 Generate object code compatible with the standard GNU Objective-C
2940 runtime. This is the default for most types of systems.
2941
2942 @item -fnext-runtime
2943 @opindex fnext-runtime
2944 Generate output compatible with the NeXT runtime. This is the default
2945 for NeXT-based systems, including Darwin and Mac OS X@. The macro
2946 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
2947 used.
2948
2949 @item -fno-nil-receivers
2950 @opindex fno-nil-receivers
2951 Assume that all Objective-C message dispatches (@code{[receiver
2952 message:arg]}) in this translation unit ensure that the receiver is
2953 not @code{nil}. This allows for more efficient entry points in the
2954 runtime to be used. This option is only available in conjunction with
2955 the NeXT runtime and ABI version 0 or 1.
2956
2957 @item -fobjc-abi-version=@var{n}
2958 @opindex fobjc-abi-version
2959 Use version @var{n} of the Objective-C ABI for the selected runtime.
2960 This option is currently supported only for the NeXT runtime. In that
2961 case, Version 0 is the traditional (32-bit) ABI without support for
2962 properties and other Objective-C 2.0 additions. Version 1 is the
2963 traditional (32-bit) ABI with support for properties and other
2964 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
2965 nothing is specified, the default is Version 0 on 32-bit target
2966 machines, and Version 2 on 64-bit target machines.
2967
2968 @item -fobjc-call-cxx-cdtors
2969 @opindex fobjc-call-cxx-cdtors
2970 For each Objective-C class, check if any of its instance variables is a
2971 C++ object with a non-trivial default constructor. If so, synthesize a
2972 special @code{- (id) .cxx_construct} instance method which runs
2973 non-trivial default constructors on any such instance variables, in order,
2974 and then return @code{self}. Similarly, check if any instance variable
2975 is a C++ object with a non-trivial destructor, and if so, synthesize a
2976 special @code{- (void) .cxx_destruct} method which runs
2977 all such default destructors, in reverse order.
2978
2979 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
2980 methods thusly generated only operate on instance variables
2981 declared in the current Objective-C class, and not those inherited
2982 from superclasses. It is the responsibility of the Objective-C
2983 runtime to invoke all such methods in an object's inheritance
2984 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
2985 by the runtime immediately after a new object instance is allocated;
2986 the @code{- (void) .cxx_destruct} methods are invoked immediately
2987 before the runtime deallocates an object instance.
2988
2989 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
2990 support for invoking the @code{- (id) .cxx_construct} and
2991 @code{- (void) .cxx_destruct} methods.
2992
2993 @item -fobjc-direct-dispatch
2994 @opindex fobjc-direct-dispatch
2995 Allow fast jumps to the message dispatcher. On Darwin this is
2996 accomplished via the comm page.
2997
2998 @item -fobjc-exceptions
2999 @opindex fobjc-exceptions
3000 Enable syntactic support for structured exception handling in
3001 Objective-C, similar to what is offered by C++ and Java. This option
3002 is required to use the Objective-C keywords @code{@@try},
3003 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3004 @code{@@synchronized}. This option is available with both the GNU
3005 runtime and the NeXT runtime (but not available in conjunction with
3006 the NeXT runtime on Mac OS X 10.2 and earlier).
3007
3008 @item -fobjc-gc
3009 @opindex fobjc-gc
3010 Enable garbage collection (GC) in Objective-C and Objective-C++
3011 programs. This option is only available with the NeXT runtime; the
3012 GNU runtime has a different garbage collection implementation that
3013 does not require special compiler flags.
3014
3015 @item -fobjc-nilcheck
3016 @opindex fobjc-nilcheck
3017 For the NeXT runtime with version 2 of the ABI, check for a nil
3018 receiver in method invocations before doing the actual method call.
3019 This is the default and can be disabled using
3020 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3021 checked for nil in this way no matter what this flag is set to.
3022 Currently this flag does nothing when the GNU runtime, or an older
3023 version of the NeXT runtime ABI, is used.
3024
3025 @item -fobjc-std=objc1
3026 @opindex fobjc-std
3027 Conform to the language syntax of Objective-C 1.0, the language
3028 recognized by GCC 4.0. This only affects the Objective-C additions to
3029 the C/C++ language; it does not affect conformance to C/C++ standards,
3030 which is controlled by the separate C/C++ dialect option flags. When
3031 this option is used with the Objective-C or Objective-C++ compiler,
3032 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3033 This is useful if you need to make sure that your Objective-C code can
3034 be compiled with older versions of GCC@.
3035
3036 @item -freplace-objc-classes
3037 @opindex freplace-objc-classes
3038 Emit a special marker instructing @command{ld(1)} not to statically link in
3039 the resulting object file, and allow @command{dyld(1)} to load it in at
3040 run time instead. This is used in conjunction with the Fix-and-Continue
3041 debugging mode, where the object file in question may be recompiled and
3042 dynamically reloaded in the course of program execution, without the need
3043 to restart the program itself. Currently, Fix-and-Continue functionality
3044 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3045 and later.
3046
3047 @item -fzero-link
3048 @opindex fzero-link
3049 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3050 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3051 compile time) with static class references that get initialized at load time,
3052 which improves run-time performance. Specifying the @option{-fzero-link} flag
3053 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3054 to be retained. This is useful in Zero-Link debugging mode, since it allows
3055 for individual class implementations to be modified during program execution.
3056 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3057 regardless of command-line options.
3058
3059 @item -fno-local-ivars
3060 @opindex fno-local-ivars
3061 @opindex flocal-ivars
3062 By default instance variables in Objective-C can be accessed as if
3063 they were local variables from within the methods of the class they're
3064 declared in. This can lead to shadowing between instance variables
3065 and other variables declared either locally inside a class method or
3066 globally with the same name. Specifying the @option{-fno-local-ivars}
3067 flag disables this behavior thus avoiding variable shadowing issues.
3068
3069 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3070 @opindex fivar-visibility
3071 Set the default instance variable visibility to the specified option
3072 so that instance variables declared outside the scope of any access
3073 modifier directives default to the specified visibility.
3074
3075 @item -gen-decls
3076 @opindex gen-decls
3077 Dump interface declarations for all classes seen in the source file to a
3078 file named @file{@var{sourcename}.decl}.
3079
3080 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3081 @opindex Wassign-intercept
3082 @opindex Wno-assign-intercept
3083 Warn whenever an Objective-C assignment is being intercepted by the
3084 garbage collector.
3085
3086 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3087 @opindex Wno-protocol
3088 @opindex Wprotocol
3089 If a class is declared to implement a protocol, a warning is issued for
3090 every method in the protocol that is not implemented by the class. The
3091 default behavior is to issue a warning for every method not explicitly
3092 implemented in the class, even if a method implementation is inherited
3093 from the superclass. If you use the @option{-Wno-protocol} option, then
3094 methods inherited from the superclass are considered to be implemented,
3095 and no warning is issued for them.
3096
3097 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3098 @opindex Wselector
3099 @opindex Wno-selector
3100 Warn if multiple methods of different types for the same selector are
3101 found during compilation. The check is performed on the list of methods
3102 in the final stage of compilation. Additionally, a check is performed
3103 for each selector appearing in a @code{@@selector(@dots{})}
3104 expression, and a corresponding method for that selector has been found
3105 during compilation. Because these checks scan the method table only at
3106 the end of compilation, these warnings are not produced if the final
3107 stage of compilation is not reached, for example because an error is
3108 found during compilation, or because the @option{-fsyntax-only} option is
3109 being used.
3110
3111 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3112 @opindex Wstrict-selector-match
3113 @opindex Wno-strict-selector-match
3114 Warn if multiple methods with differing argument and/or return types are
3115 found for a given selector when attempting to send a message using this
3116 selector to a receiver of type @code{id} or @code{Class}. When this flag
3117 is off (which is the default behavior), the compiler omits such warnings
3118 if any differences found are confined to types that share the same size
3119 and alignment.
3120
3121 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3122 @opindex Wundeclared-selector
3123 @opindex Wno-undeclared-selector
3124 Warn if a @code{@@selector(@dots{})} expression referring to an
3125 undeclared selector is found. A selector is considered undeclared if no
3126 method with that name has been declared before the
3127 @code{@@selector(@dots{})} expression, either explicitly in an
3128 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3129 an @code{@@implementation} section. This option always performs its
3130 checks as soon as a @code{@@selector(@dots{})} expression is found,
3131 while @option{-Wselector} only performs its checks in the final stage of
3132 compilation. This also enforces the coding style convention
3133 that methods and selectors must be declared before being used.
3134
3135 @item -print-objc-runtime-info
3136 @opindex print-objc-runtime-info
3137 Generate C header describing the largest structure that is passed by
3138 value, if any.
3139
3140 @end table
3141
3142 @node Language Independent Options
3143 @section Options to Control Diagnostic Messages Formatting
3144 @cindex options to control diagnostics formatting
3145 @cindex diagnostic messages
3146 @cindex message formatting
3147
3148 Traditionally, diagnostic messages have been formatted irrespective of
3149 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3150 options described below
3151 to control the formatting algorithm for diagnostic messages,
3152 e.g.@: how many characters per line, how often source location
3153 information should be reported. Note that some language front ends may not
3154 honor these options.
3155
3156 @table @gcctabopt
3157 @item -fmessage-length=@var{n}
3158 @opindex fmessage-length
3159 Try to format error messages so that they fit on lines of about
3160 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3161 done; each error message appears on a single line. This is the
3162 default for all front ends.
3163
3164 @item -fdiagnostics-show-location=once
3165 @opindex fdiagnostics-show-location
3166 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3167 reporter to emit source location information @emph{once}; that is, in
3168 case the message is too long to fit on a single physical line and has to
3169 be wrapped, the source location won't be emitted (as prefix) again,
3170 over and over, in subsequent continuation lines. This is the default
3171 behavior.
3172
3173 @item -fdiagnostics-show-location=every-line
3174 Only meaningful in line-wrapping mode. Instructs the diagnostic
3175 messages reporter to emit the same source location information (as
3176 prefix) for physical lines that result from the process of breaking
3177 a message which is too long to fit on a single line.
3178
3179 @item -fdiagnostics-color[=@var{WHEN}]
3180 @itemx -fno-diagnostics-color
3181 @opindex fdiagnostics-color
3182 @cindex highlight, color, colour
3183 @vindex GCC_COLORS @r{environment variable}
3184 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3185 or @samp{auto}. The default depends on how the compiler has been configured,
3186 it can be any of the above @var{WHEN} options or also @samp{never}
3187 if @env{GCC_COLORS} environment variable isn't present in the environment,
3188 and @samp{auto} otherwise.
3189 @samp{auto} means to use color only when the standard error is a terminal.
3190 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3191 aliases for @option{-fdiagnostics-color=always} and
3192 @option{-fdiagnostics-color=never}, respectively.
3193
3194 The colors are defined by the environment variable @env{GCC_COLORS}.
3195 Its value is a colon-separated list of capabilities and Select Graphic
3196 Rendition (SGR) substrings. SGR commands are interpreted by the
3197 terminal or terminal emulator. (See the section in the documentation
3198 of your text terminal for permitted values and their meanings as
3199 character attributes.) These substring values are integers in decimal
3200 representation and can be concatenated with semicolons.
3201 Common values to concatenate include
3202 @samp{1} for bold,
3203 @samp{4} for underline,
3204 @samp{5} for blink,
3205 @samp{7} for inverse,
3206 @samp{39} for default foreground color,
3207 @samp{30} to @samp{37} for foreground colors,
3208 @samp{90} to @samp{97} for 16-color mode foreground colors,
3209 @samp{38;5;0} to @samp{38;5;255}
3210 for 88-color and 256-color modes foreground colors,
3211 @samp{49} for default background color,
3212 @samp{40} to @samp{47} for background colors,
3213 @samp{100} to @samp{107} for 16-color mode background colors,
3214 and @samp{48;5;0} to @samp{48;5;255}
3215 for 88-color and 256-color modes background colors.
3216
3217 The default @env{GCC_COLORS} is
3218 @smallexample
3219 error=01;31:warning=01;35:note=01;36:caret=01;32:locus=01:quote=01
3220 @end smallexample
3221 @noindent
3222 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3223 @samp{01;36} is bold cyan, @samp{01;32} is bold green and
3224 @samp{01} is bold. Setting @env{GCC_COLORS} to the empty
3225 string disables colors.
3226 Supported capabilities are as follows.
3227
3228 @table @code
3229 @item error=
3230 @vindex error GCC_COLORS @r{capability}
3231 SGR substring for error: markers.
3232
3233 @item warning=
3234 @vindex warning GCC_COLORS @r{capability}
3235 SGR substring for warning: markers.
3236
3237 @item note=
3238 @vindex note GCC_COLORS @r{capability}
3239 SGR substring for note: markers.
3240
3241 @item caret=
3242 @vindex caret GCC_COLORS @r{capability}
3243 SGR substring for caret line.
3244
3245 @item locus=
3246 @vindex locus GCC_COLORS @r{capability}
3247 SGR substring for location information, @samp{file:line} or
3248 @samp{file:line:column} etc.
3249
3250 @item quote=
3251 @vindex quote GCC_COLORS @r{capability}
3252 SGR substring for information printed within quotes.
3253 @end table
3254
3255 @item -fno-diagnostics-show-option
3256 @opindex fno-diagnostics-show-option
3257 @opindex fdiagnostics-show-option
3258 By default, each diagnostic emitted includes text indicating the
3259 command-line option that directly controls the diagnostic (if such an
3260 option is known to the diagnostic machinery). Specifying the
3261 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3262
3263 @item -fno-diagnostics-show-caret
3264 @opindex fno-diagnostics-show-caret
3265 @opindex fdiagnostics-show-caret
3266 By default, each diagnostic emitted includes the original source line
3267 and a caret '^' indicating the column. This option suppresses this
3268 information. The source line is truncated to @var{n} characters, if
3269 the @option{-fmessage-length=n} option is given. When the output is done
3270 to the terminal, the width is limited to the width given by the
3271 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3272
3273 @end table
3274
3275 @node Warning Options
3276 @section Options to Request or Suppress Warnings
3277 @cindex options to control warnings
3278 @cindex warning messages
3279 @cindex messages, warning
3280 @cindex suppressing warnings
3281
3282 Warnings are diagnostic messages that report constructions that
3283 are not inherently erroneous but that are risky or suggest there
3284 may have been an error.
3285
3286 The following language-independent options do not enable specific
3287 warnings but control the kinds of diagnostics produced by GCC@.
3288
3289 @table @gcctabopt
3290 @cindex syntax checking
3291 @item -fsyntax-only
3292 @opindex fsyntax-only
3293 Check the code for syntax errors, but don't do anything beyond that.
3294
3295 @item -fmax-errors=@var{n}
3296 @opindex fmax-errors
3297 Limits the maximum number of error messages to @var{n}, at which point
3298 GCC bails out rather than attempting to continue processing the source
3299 code. If @var{n} is 0 (the default), there is no limit on the number
3300 of error messages produced. If @option{-Wfatal-errors} is also
3301 specified, then @option{-Wfatal-errors} takes precedence over this
3302 option.
3303
3304 @item -w
3305 @opindex w
3306 Inhibit all warning messages.
3307
3308 @item -Werror
3309 @opindex Werror
3310 @opindex Wno-error
3311 Make all warnings into errors.
3312
3313 @item -Werror=
3314 @opindex Werror=
3315 @opindex Wno-error=
3316 Make the specified warning into an error. The specifier for a warning
3317 is appended; for example @option{-Werror=switch} turns the warnings
3318 controlled by @option{-Wswitch} into errors. This switch takes a
3319 negative form, to be used to negate @option{-Werror} for specific
3320 warnings; for example @option{-Wno-error=switch} makes
3321 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
3322 is in effect.
3323
3324 The warning message for each controllable warning includes the
3325 option that controls the warning. That option can then be used with
3326 @option{-Werror=} and @option{-Wno-error=} as described above.
3327 (Printing of the option in the warning message can be disabled using the
3328 @option{-fno-diagnostics-show-option} flag.)
3329
3330 Note that specifying @option{-Werror=}@var{foo} automatically implies
3331 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
3332 imply anything.
3333
3334 @item -Wfatal-errors
3335 @opindex Wfatal-errors
3336 @opindex Wno-fatal-errors
3337 This option causes the compiler to abort compilation on the first error
3338 occurred rather than trying to keep going and printing further error
3339 messages.
3340
3341 @end table
3342
3343 You can request many specific warnings with options beginning with
3344 @samp{-W}, for example @option{-Wimplicit} to request warnings on
3345 implicit declarations. Each of these specific warning options also
3346 has a negative form beginning @samp{-Wno-} to turn off warnings; for
3347 example, @option{-Wno-implicit}. This manual lists only one of the
3348 two forms, whichever is not the default. For further
3349 language-specific options also refer to @ref{C++ Dialect Options} and
3350 @ref{Objective-C and Objective-C++ Dialect Options}.
3351
3352 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
3353 options, such as @option{-Wunused}, which may turn on further options,
3354 such as @option{-Wunused-value}. The combined effect of positive and
3355 negative forms is that more specific options have priority over less
3356 specific ones, independently of their position in the command-line. For
3357 options of the same specificity, the last one takes effect. Options
3358 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
3359 as if they appeared at the end of the command-line.
3360
3361 When an unrecognized warning option is requested (e.g.,
3362 @option{-Wunknown-warning}), GCC emits a diagnostic stating
3363 that the option is not recognized. However, if the @option{-Wno-} form
3364 is used, the behavior is slightly different: no diagnostic is
3365 produced for @option{-Wno-unknown-warning} unless other diagnostics
3366 are being produced. This allows the use of new @option{-Wno-} options
3367 with old compilers, but if something goes wrong, the compiler
3368 warns that an unrecognized option is present.
3369
3370 @table @gcctabopt
3371 @item -Wpedantic
3372 @itemx -pedantic
3373 @opindex pedantic
3374 @opindex Wpedantic
3375 Issue all the warnings demanded by strict ISO C and ISO C++;
3376 reject all programs that use forbidden extensions, and some other
3377 programs that do not follow ISO C and ISO C++. For ISO C, follows the
3378 version of the ISO C standard specified by any @option{-std} option used.
3379
3380 Valid ISO C and ISO C++ programs should compile properly with or without
3381 this option (though a rare few require @option{-ansi} or a
3382 @option{-std} option specifying the required version of ISO C)@. However,
3383 without this option, certain GNU extensions and traditional C and C++
3384 features are supported as well. With this option, they are rejected.
3385
3386 @option{-Wpedantic} does not cause warning messages for use of the
3387 alternate keywords whose names begin and end with @samp{__}. Pedantic
3388 warnings are also disabled in the expression that follows
3389 @code{__extension__}. However, only system header files should use
3390 these escape routes; application programs should avoid them.
3391 @xref{Alternate Keywords}.
3392
3393 Some users try to use @option{-Wpedantic} to check programs for strict ISO
3394 C conformance. They soon find that it does not do quite what they want:
3395 it finds some non-ISO practices, but not all---only those for which
3396 ISO C @emph{requires} a diagnostic, and some others for which
3397 diagnostics have been added.
3398
3399 A feature to report any failure to conform to ISO C might be useful in
3400 some instances, but would require considerable additional work and would
3401 be quite different from @option{-Wpedantic}. We don't have plans to
3402 support such a feature in the near future.
3403
3404 Where the standard specified with @option{-std} represents a GNU
3405 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
3406 corresponding @dfn{base standard}, the version of ISO C on which the GNU
3407 extended dialect is based. Warnings from @option{-Wpedantic} are given
3408 where they are required by the base standard. (It does not make sense
3409 for such warnings to be given only for features not in the specified GNU
3410 C dialect, since by definition the GNU dialects of C include all
3411 features the compiler supports with the given option, and there would be
3412 nothing to warn about.)
3413
3414 @item -pedantic-errors
3415 @opindex pedantic-errors
3416 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
3417 requires a diagnostic, in some cases where there is undefined behavior
3418 at compile-time and in some other cases that do not prevent compilation
3419 of programs that are valid according to the standard. This is not
3420 equivalent to @option{-Werror=pedantic}, since there are errors enabled
3421 by this option and not enabled by the latter and vice versa.
3422
3423 @item -Wall
3424 @opindex Wall
3425 @opindex Wno-all
3426 This enables all the warnings about constructions that some users
3427 consider questionable, and that are easy to avoid (or modify to
3428 prevent the warning), even in conjunction with macros. This also
3429 enables some language-specific warnings described in @ref{C++ Dialect
3430 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
3431
3432 @option{-Wall} turns on the following warning flags:
3433
3434 @gccoptlist{-Waddress @gol
3435 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
3436 -Wc++11-compat -Wc++14-compat@gol
3437 -Wchar-subscripts @gol
3438 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
3439 -Wimplicit-int @r{(C and Objective-C only)} @gol
3440 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
3441 -Wcomment @gol
3442 -Wformat @gol
3443 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
3444 -Wmaybe-uninitialized @gol
3445 -Wmissing-braces @r{(only for C/ObjC)} @gol
3446 -Wnonnull @gol
3447 -Wopenmp-simd @gol
3448 -Wparentheses @gol
3449 -Wpointer-sign @gol
3450 -Wreorder @gol
3451 -Wreturn-type @gol
3452 -Wsequence-point @gol
3453 -Wsign-compare @r{(only in C++)} @gol
3454 -Wstrict-aliasing @gol
3455 -Wstrict-overflow=1 @gol
3456 -Wswitch @gol
3457 -Wtrigraphs @gol
3458 -Wuninitialized @gol
3459 -Wunknown-pragmas @gol
3460 -Wunused-function @gol
3461 -Wunused-label @gol
3462 -Wunused-value @gol
3463 -Wunused-variable @gol
3464 -Wvolatile-register-var @gol
3465 }
3466
3467 Note that some warning flags are not implied by @option{-Wall}. Some of
3468 them warn about constructions that users generally do not consider
3469 questionable, but which occasionally you might wish to check for;
3470 others warn about constructions that are necessary or hard to avoid in
3471 some cases, and there is no simple way to modify the code to suppress
3472 the warning. Some of them are enabled by @option{-Wextra} but many of
3473 them must be enabled individually.
3474
3475 @item -Wextra
3476 @opindex W
3477 @opindex Wextra
3478 @opindex Wno-extra
3479 This enables some extra warning flags that are not enabled by
3480 @option{-Wall}. (This option used to be called @option{-W}. The older
3481 name is still supported, but the newer name is more descriptive.)
3482
3483 @gccoptlist{-Wclobbered @gol
3484 -Wempty-body @gol
3485 -Wignored-qualifiers @gol
3486 -Wmissing-field-initializers @gol
3487 -Wmissing-parameter-type @r{(C only)} @gol
3488 -Wold-style-declaration @r{(C only)} @gol
3489 -Woverride-init @gol
3490 -Wsign-compare @gol
3491 -Wtype-limits @gol
3492 -Wuninitialized @gol
3493 -Wshift-negative-value @gol
3494 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3495 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
3496 }
3497
3498 The option @option{-Wextra} also prints warning messages for the
3499 following cases:
3500
3501 @itemize @bullet
3502
3503 @item
3504 A pointer is compared against integer zero with @code{<}, @code{<=},
3505 @code{>}, or @code{>=}.
3506
3507 @item
3508 (C++ only) An enumerator and a non-enumerator both appear in a
3509 conditional expression.
3510
3511 @item
3512 (C++ only) Ambiguous virtual bases.
3513
3514 @item
3515 (C++ only) Subscripting an array that has been declared @code{register}.
3516
3517 @item
3518 (C++ only) Taking the address of a variable that has been declared
3519 @code{register}.
3520
3521 @item
3522 (C++ only) A base class is not initialized in a derived class's copy
3523 constructor.
3524
3525 @end itemize
3526
3527 @item -Wchar-subscripts
3528 @opindex Wchar-subscripts
3529 @opindex Wno-char-subscripts
3530 Warn if an array subscript has type @code{char}. This is a common cause
3531 of error, as programmers often forget that this type is signed on some
3532 machines.
3533 This warning is enabled by @option{-Wall}.
3534
3535 @item -Wcomment
3536 @opindex Wcomment
3537 @opindex Wno-comment
3538 Warn whenever a comment-start sequence @samp{/*} appears in a @samp{/*}
3539 comment, or whenever a Backslash-Newline appears in a @samp{//} comment.
3540 This warning is enabled by @option{-Wall}.
3541
3542 @item -Wno-coverage-mismatch
3543 @opindex Wno-coverage-mismatch
3544 Warn if feedback profiles do not match when using the
3545 @option{-fprofile-use} option.
3546 If a source file is changed between compiling with @option{-fprofile-gen} and
3547 with @option{-fprofile-use}, the files with the profile feedback can fail
3548 to match the source file and GCC cannot use the profile feedback
3549 information. By default, this warning is enabled and is treated as an
3550 error. @option{-Wno-coverage-mismatch} can be used to disable the
3551 warning or @option{-Wno-error=coverage-mismatch} can be used to
3552 disable the error. Disabling the error for this warning can result in
3553 poorly optimized code and is useful only in the
3554 case of very minor changes such as bug fixes to an existing code-base.
3555 Completely disabling the warning is not recommended.
3556
3557 @item -Wno-cpp
3558 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
3559
3560 Suppress warning messages emitted by @code{#warning} directives.
3561
3562 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
3563 @opindex Wdouble-promotion
3564 @opindex Wno-double-promotion
3565 Give a warning when a value of type @code{float} is implicitly
3566 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
3567 floating-point unit implement @code{float} in hardware, but emulate
3568 @code{double} in software. On such a machine, doing computations
3569 using @code{double} values is much more expensive because of the
3570 overhead required for software emulation.
3571
3572 It is easy to accidentally do computations with @code{double} because
3573 floating-point literals are implicitly of type @code{double}. For
3574 example, in:
3575 @smallexample
3576 @group
3577 float area(float radius)
3578 @{
3579 return 3.14159 * radius * radius;
3580 @}
3581 @end group
3582 @end smallexample
3583 the compiler performs the entire computation with @code{double}
3584 because the floating-point literal is a @code{double}.
3585
3586 @item -Wformat
3587 @itemx -Wformat=@var{n}
3588 @opindex Wformat
3589 @opindex Wno-format
3590 @opindex ffreestanding
3591 @opindex fno-builtin
3592 @opindex Wformat=
3593 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
3594 the arguments supplied have types appropriate to the format string
3595 specified, and that the conversions specified in the format string make
3596 sense. This includes standard functions, and others specified by format
3597 attributes (@pxref{Function Attributes}), in the @code{printf},
3598 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
3599 not in the C standard) families (or other target-specific families).
3600 Which functions are checked without format attributes having been
3601 specified depends on the standard version selected, and such checks of
3602 functions without the attribute specified are disabled by
3603 @option{-ffreestanding} or @option{-fno-builtin}.
3604
3605 The formats are checked against the format features supported by GNU
3606 libc version 2.2. These include all ISO C90 and C99 features, as well
3607 as features from the Single Unix Specification and some BSD and GNU
3608 extensions. Other library implementations may not support all these
3609 features; GCC does not support warning about features that go beyond a
3610 particular library's limitations. However, if @option{-Wpedantic} is used
3611 with @option{-Wformat}, warnings are given about format features not
3612 in the selected standard version (but not for @code{strfmon} formats,
3613 since those are not in any version of the C standard). @xref{C Dialect
3614 Options,,Options Controlling C Dialect}.
3615
3616 @table @gcctabopt
3617 @item -Wformat=1
3618 @itemx -Wformat
3619 @opindex Wformat
3620 @opindex Wformat=1
3621 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
3622 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
3623 @option{-Wformat} also checks for null format arguments for several
3624 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
3625 aspects of this level of format checking can be disabled by the
3626 options: @option{-Wno-format-contains-nul},
3627 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
3628 @option{-Wformat} is enabled by @option{-Wall}.
3629
3630 @item -Wno-format-contains-nul
3631 @opindex Wno-format-contains-nul
3632 @opindex Wformat-contains-nul
3633 If @option{-Wformat} is specified, do not warn about format strings that
3634 contain NUL bytes.
3635
3636 @item -Wno-format-extra-args
3637 @opindex Wno-format-extra-args
3638 @opindex Wformat-extra-args
3639 If @option{-Wformat} is specified, do not warn about excess arguments to a
3640 @code{printf} or @code{scanf} format function. The C standard specifies
3641 that such arguments are ignored.
3642
3643 Where the unused arguments lie between used arguments that are
3644 specified with @samp{$} operand number specifications, normally
3645 warnings are still given, since the implementation could not know what
3646 type to pass to @code{va_arg} to skip the unused arguments. However,
3647 in the case of @code{scanf} formats, this option suppresses the
3648 warning if the unused arguments are all pointers, since the Single
3649 Unix Specification says that such unused arguments are allowed.
3650
3651 @item -Wno-format-zero-length
3652 @opindex Wno-format-zero-length
3653 @opindex Wformat-zero-length
3654 If @option{-Wformat} is specified, do not warn about zero-length formats.
3655 The C standard specifies that zero-length formats are allowed.
3656
3657
3658 @item -Wformat=2
3659 @opindex Wformat=2
3660 Enable @option{-Wformat} plus additional format checks. Currently
3661 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
3662 -Wformat-y2k}.
3663
3664 @item -Wformat-nonliteral
3665 @opindex Wformat-nonliteral
3666 @opindex Wno-format-nonliteral
3667 If @option{-Wformat} is specified, also warn if the format string is not a
3668 string literal and so cannot be checked, unless the format function
3669 takes its format arguments as a @code{va_list}.
3670
3671 @item -Wformat-security
3672 @opindex Wformat-security
3673 @opindex Wno-format-security
3674 If @option{-Wformat} is specified, also warn about uses of format
3675 functions that represent possible security problems. At present, this
3676 warns about calls to @code{printf} and @code{scanf} functions where the
3677 format string is not a string literal and there are no format arguments,
3678 as in @code{printf (foo);}. This may be a security hole if the format
3679 string came from untrusted input and contains @samp{%n}. (This is
3680 currently a subset of what @option{-Wformat-nonliteral} warns about, but
3681 in future warnings may be added to @option{-Wformat-security} that are not
3682 included in @option{-Wformat-nonliteral}.)
3683
3684 @item -Wformat-signedness
3685 @opindex Wformat-signedness
3686 @opindex Wno-format-signedness
3687 If @option{-Wformat} is specified, also warn if the format string
3688 requires an unsigned argument and the argument is signed and vice versa.
3689
3690 @item -Wformat-y2k
3691 @opindex Wformat-y2k
3692 @opindex Wno-format-y2k
3693 If @option{-Wformat} is specified, also warn about @code{strftime}
3694 formats that may yield only a two-digit year.
3695 @end table
3696
3697 @item -Wnonnull
3698 @opindex Wnonnull
3699 @opindex Wno-nonnull
3700 Warn about passing a null pointer for arguments marked as
3701 requiring a non-null value by the @code{nonnull} function attribute.
3702
3703 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
3704 can be disabled with the @option{-Wno-nonnull} option.
3705
3706 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
3707 @opindex Winit-self
3708 @opindex Wno-init-self
3709 Warn about uninitialized variables that are initialized with themselves.
3710 Note this option can only be used with the @option{-Wuninitialized} option.
3711
3712 For example, GCC warns about @code{i} being uninitialized in the
3713 following snippet only when @option{-Winit-self} has been specified:
3714 @smallexample
3715 @group
3716 int f()
3717 @{
3718 int i = i;
3719 return i;
3720 @}
3721 @end group
3722 @end smallexample
3723
3724 This warning is enabled by @option{-Wall} in C++.
3725
3726 @item -Wimplicit-int @r{(C and Objective-C only)}
3727 @opindex Wimplicit-int
3728 @opindex Wno-implicit-int
3729 Warn when a declaration does not specify a type.
3730 This warning is enabled by @option{-Wall}.
3731
3732 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
3733 @opindex Wimplicit-function-declaration
3734 @opindex Wno-implicit-function-declaration
3735 Give a warning whenever a function is used before being declared. In
3736 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
3737 enabled by default and it is made into an error by
3738 @option{-pedantic-errors}. This warning is also enabled by
3739 @option{-Wall}.
3740
3741 @item -Wimplicit @r{(C and Objective-C only)}
3742 @opindex Wimplicit
3743 @opindex Wno-implicit
3744 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
3745 This warning is enabled by @option{-Wall}.
3746
3747 @item -Wignored-qualifiers @r{(C and C++ only)}
3748 @opindex Wignored-qualifiers
3749 @opindex Wno-ignored-qualifiers
3750 Warn if the return type of a function has a type qualifier
3751 such as @code{const}. For ISO C such a type qualifier has no effect,
3752 since the value returned by a function is not an lvalue.
3753 For C++, the warning is only emitted for scalar types or @code{void}.
3754 ISO C prohibits qualified @code{void} return types on function
3755 definitions, so such return types always receive a warning
3756 even without this option.
3757
3758 This warning is also enabled by @option{-Wextra}.
3759
3760 @item -Wmain
3761 @opindex Wmain
3762 @opindex Wno-main
3763 Warn if the type of @code{main} is suspicious. @code{main} should be
3764 a function with external linkage, returning int, taking either zero
3765 arguments, two, or three arguments of appropriate types. This warning
3766 is enabled by default in C++ and is enabled by either @option{-Wall}
3767 or @option{-Wpedantic}.
3768
3769 @item -Wmissing-braces
3770 @opindex Wmissing-braces
3771 @opindex Wno-missing-braces
3772 Warn if an aggregate or union initializer is not fully bracketed. In
3773 the following example, the initializer for @code{a} is not fully
3774 bracketed, but that for @code{b} is fully bracketed. This warning is
3775 enabled by @option{-Wall} in C.
3776
3777 @smallexample
3778 int a[2][2] = @{ 0, 1, 2, 3 @};
3779 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
3780 @end smallexample
3781
3782 This warning is enabled by @option{-Wall}.
3783
3784 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
3785 @opindex Wmissing-include-dirs
3786 @opindex Wno-missing-include-dirs
3787 Warn if a user-supplied include directory does not exist.
3788
3789 @item -Wparentheses
3790 @opindex Wparentheses
3791 @opindex Wno-parentheses
3792 Warn if parentheses are omitted in certain contexts, such
3793 as when there is an assignment in a context where a truth value
3794 is expected, or when operators are nested whose precedence people
3795 often get confused about.
3796
3797 Also warn if a comparison like @code{x<=y<=z} appears; this is
3798 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
3799 interpretation from that of ordinary mathematical notation.
3800
3801 Also warn about constructions where there may be confusion to which
3802 @code{if} statement an @code{else} branch belongs. Here is an example of
3803 such a case:
3804
3805 @smallexample
3806 @group
3807 @{
3808 if (a)
3809 if (b)
3810 foo ();
3811 else
3812 bar ();
3813 @}
3814 @end group
3815 @end smallexample
3816
3817 In C/C++, every @code{else} branch belongs to the innermost possible
3818 @code{if} statement, which in this example is @code{if (b)}. This is
3819 often not what the programmer expected, as illustrated in the above
3820 example by indentation the programmer chose. When there is the
3821 potential for this confusion, GCC issues a warning when this flag
3822 is specified. To eliminate the warning, add explicit braces around
3823 the innermost @code{if} statement so there is no way the @code{else}
3824 can belong to the enclosing @code{if}. The resulting code
3825 looks like this:
3826
3827 @smallexample
3828 @group
3829 @{
3830 if (a)
3831 @{
3832 if (b)
3833 foo ();
3834 else
3835 bar ();
3836 @}
3837 @}
3838 @end group
3839 @end smallexample
3840
3841 Also warn for dangerous uses of the GNU extension to
3842 @code{?:} with omitted middle operand. When the condition
3843 in the @code{?}: operator is a boolean expression, the omitted value is
3844 always 1. Often programmers expect it to be a value computed
3845 inside the conditional expression instead.
3846
3847 This warning is enabled by @option{-Wall}.
3848
3849 @item -Wsequence-point
3850 @opindex Wsequence-point
3851 @opindex Wno-sequence-point
3852 Warn about code that may have undefined semantics because of violations
3853 of sequence point rules in the C and C++ standards.
3854
3855 The C and C++ standards define the order in which expressions in a C/C++
3856 program are evaluated in terms of @dfn{sequence points}, which represent
3857 a partial ordering between the execution of parts of the program: those
3858 executed before the sequence point, and those executed after it. These
3859 occur after the evaluation of a full expression (one which is not part
3860 of a larger expression), after the evaluation of the first operand of a
3861 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
3862 function is called (but after the evaluation of its arguments and the
3863 expression denoting the called function), and in certain other places.
3864 Other than as expressed by the sequence point rules, the order of
3865 evaluation of subexpressions of an expression is not specified. All
3866 these rules describe only a partial order rather than a total order,
3867 since, for example, if two functions are called within one expression
3868 with no sequence point between them, the order in which the functions
3869 are called is not specified. However, the standards committee have
3870 ruled that function calls do not overlap.
3871
3872 It is not specified when between sequence points modifications to the
3873 values of objects take effect. Programs whose behavior depends on this
3874 have undefined behavior; the C and C++ standards specify that ``Between
3875 the previous and next sequence point an object shall have its stored
3876 value modified at most once by the evaluation of an expression.
3877 Furthermore, the prior value shall be read only to determine the value
3878 to be stored.''. If a program breaks these rules, the results on any
3879 particular implementation are entirely unpredictable.
3880
3881 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
3882 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
3883 diagnosed by this option, and it may give an occasional false positive
3884 result, but in general it has been found fairly effective at detecting
3885 this sort of problem in programs.
3886
3887 The standard is worded confusingly, therefore there is some debate
3888 over the precise meaning of the sequence point rules in subtle cases.
3889 Links to discussions of the problem, including proposed formal
3890 definitions, may be found on the GCC readings page, at
3891 @uref{http://gcc.gnu.org/@/readings.html}.
3892
3893 This warning is enabled by @option{-Wall} for C and C++.
3894
3895 @item -Wno-return-local-addr
3896 @opindex Wno-return-local-addr
3897 @opindex Wreturn-local-addr
3898 Do not warn about returning a pointer (or in C++, a reference) to a
3899 variable that goes out of scope after the function returns.
3900
3901 @item -Wreturn-type
3902 @opindex Wreturn-type
3903 @opindex Wno-return-type
3904 Warn whenever a function is defined with a return type that defaults
3905 to @code{int}. Also warn about any @code{return} statement with no
3906 return value in a function whose return type is not @code{void}
3907 (falling off the end of the function body is considered returning
3908 without a value), and about a @code{return} statement with an
3909 expression in a function whose return type is @code{void}.
3910
3911 For C++, a function without return type always produces a diagnostic
3912 message, even when @option{-Wno-return-type} is specified. The only
3913 exceptions are @code{main} and functions defined in system headers.
3914
3915 This warning is enabled by @option{-Wall}.
3916
3917 @item -Wshift-count-negative
3918 @opindex Wshift-count-negative
3919 @opindex Wno-shift-count-negative
3920 Warn if shift count is negative. This warning is enabled by default.
3921
3922 @item -Wshift-count-overflow
3923 @opindex Wshift-count-overflow
3924 @opindex Wno-shift-count-overflow
3925 Warn if shift count >= width of type. This warning is enabled by default.
3926
3927 @item -Wshift-negative-value
3928 @opindex Wshift-negative-value
3929 @opindex Wno-shift-negative-value
3930 Warn if left shifting a negative value. This warning is enabled by
3931 @option{-Wextra} in C99 and C++11 modes (and newer).
3932
3933 @item -Wswitch
3934 @opindex Wswitch
3935 @opindex Wno-switch
3936 Warn whenever a @code{switch} statement has an index of enumerated type
3937 and lacks a @code{case} for one or more of the named codes of that
3938 enumeration. (The presence of a @code{default} label prevents this
3939 warning.) @code{case} labels outside the enumeration range also
3940 provoke warnings when this option is used (even if there is a
3941 @code{default} label).
3942 This warning is enabled by @option{-Wall}.
3943
3944 @item -Wswitch-default
3945 @opindex Wswitch-default
3946 @opindex Wno-switch-default
3947 Warn whenever a @code{switch} statement does not have a @code{default}
3948 case.
3949
3950 @item -Wswitch-enum
3951 @opindex Wswitch-enum
3952 @opindex Wno-switch-enum
3953 Warn whenever a @code{switch} statement has an index of enumerated type
3954 and lacks a @code{case} for one or more of the named codes of that
3955 enumeration. @code{case} labels outside the enumeration range also
3956 provoke warnings when this option is used. The only difference
3957 between @option{-Wswitch} and this option is that this option gives a
3958 warning about an omitted enumeration code even if there is a
3959 @code{default} label.
3960
3961 @item -Wswitch-bool
3962 @opindex Wswitch-bool
3963 @opindex Wno-switch-bool
3964 Warn whenever a @code{switch} statement has an index of boolean type.
3965 It is possible to suppress this warning by casting the controlling
3966 expression to a type other than @code{bool}. For example:
3967 @smallexample
3968 @group
3969 switch ((int) (a == 4))
3970 @{
3971 @dots{}
3972 @}
3973 @end group
3974 @end smallexample
3975 This warning is enabled by default for C and C++ programs.
3976
3977 @item -Wsync-nand @r{(C and C++ only)}
3978 @opindex Wsync-nand
3979 @opindex Wno-sync-nand
3980 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
3981 built-in functions are used. These functions changed semantics in GCC 4.4.
3982
3983 @item -Wtrigraphs
3984 @opindex Wtrigraphs
3985 @opindex Wno-trigraphs
3986 Warn if any trigraphs are encountered that might change the meaning of
3987 the program (trigraphs within comments are not warned about).
3988 This warning is enabled by @option{-Wall}.
3989
3990 @item -Wunused-but-set-parameter
3991 @opindex Wunused-but-set-parameter
3992 @opindex Wno-unused-but-set-parameter
3993 Warn whenever a function parameter is assigned to, but otherwise unused
3994 (aside from its declaration).
3995
3996 To suppress this warning use the @code{unused} attribute
3997 (@pxref{Variable Attributes}).
3998
3999 This warning is also enabled by @option{-Wunused} together with
4000 @option{-Wextra}.
4001
4002 @item -Wunused-but-set-variable
4003 @opindex Wunused-but-set-variable
4004 @opindex Wno-unused-but-set-variable
4005 Warn whenever a local variable is assigned to, but otherwise unused
4006 (aside from its declaration).
4007 This warning is enabled by @option{-Wall}.
4008
4009 To suppress this warning use the @code{unused} attribute
4010 (@pxref{Variable Attributes}).
4011
4012 This warning is also enabled by @option{-Wunused}, which is enabled
4013 by @option{-Wall}.
4014
4015 @item -Wunused-function
4016 @opindex Wunused-function
4017 @opindex Wno-unused-function
4018 Warn whenever a static function is declared but not defined or a
4019 non-inline static function is unused.
4020 This warning is enabled by @option{-Wall}.
4021
4022 @item -Wunused-label
4023 @opindex Wunused-label
4024 @opindex Wno-unused-label
4025 Warn whenever a label is declared but not used.
4026 This warning is enabled by @option{-Wall}.
4027
4028 To suppress this warning use the @code{unused} attribute
4029 (@pxref{Variable Attributes}).
4030
4031 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
4032 @opindex Wunused-local-typedefs
4033 Warn when a typedef locally defined in a function is not used.
4034 This warning is enabled by @option{-Wall}.
4035
4036 @item -Wunused-parameter
4037 @opindex Wunused-parameter
4038 @opindex Wno-unused-parameter
4039 Warn whenever a function parameter is unused aside from its declaration.
4040
4041 To suppress this warning use the @code{unused} attribute
4042 (@pxref{Variable Attributes}).
4043
4044 @item -Wno-unused-result
4045 @opindex Wunused-result
4046 @opindex Wno-unused-result
4047 Do not warn if a caller of a function marked with attribute
4048 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
4049 its return value. The default is @option{-Wunused-result}.
4050
4051 @item -Wunused-variable
4052 @opindex Wunused-variable
4053 @opindex Wno-unused-variable
4054 Warn whenever a local variable or non-constant static variable is unused
4055 aside from its declaration.
4056 This warning is enabled by @option{-Wall}.
4057
4058 To suppress this warning use the @code{unused} attribute
4059 (@pxref{Variable Attributes}).
4060
4061 @item -Wunused-value
4062 @opindex Wunused-value
4063 @opindex Wno-unused-value
4064 Warn whenever a statement computes a result that is explicitly not
4065 used. To suppress this warning cast the unused expression to
4066 @code{void}. This includes an expression-statement or the left-hand
4067 side of a comma expression that contains no side effects. For example,
4068 an expression such as @code{x[i,j]} causes a warning, while
4069 @code{x[(void)i,j]} does not.
4070
4071 This warning is enabled by @option{-Wall}.
4072
4073 @item -Wunused
4074 @opindex Wunused
4075 @opindex Wno-unused
4076 All the above @option{-Wunused} options combined.
4077
4078 In order to get a warning about an unused function parameter, you must
4079 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
4080 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
4081
4082 @item -Wuninitialized
4083 @opindex Wuninitialized
4084 @opindex Wno-uninitialized
4085 Warn if an automatic variable is used without first being initialized
4086 or if a variable may be clobbered by a @code{setjmp} call. In C++,
4087 warn if a non-static reference or non-static @code{const} member
4088 appears in a class without constructors.
4089
4090 If you want to warn about code that uses the uninitialized value of the
4091 variable in its own initializer, use the @option{-Winit-self} option.
4092
4093 These warnings occur for individual uninitialized or clobbered
4094 elements of structure, union or array variables as well as for
4095 variables that are uninitialized or clobbered as a whole. They do
4096 not occur for variables or elements declared @code{volatile}. Because
4097 these warnings depend on optimization, the exact variables or elements
4098 for which there are warnings depends on the precise optimization
4099 options and version of GCC used.
4100
4101 Note that there may be no warning about a variable that is used only
4102 to compute a value that itself is never used, because such
4103 computations may be deleted by data flow analysis before the warnings
4104 are printed.
4105
4106 @item -Wmaybe-uninitialized
4107 @opindex Wmaybe-uninitialized
4108 @opindex Wno-maybe-uninitialized
4109 For an automatic variable, if there exists a path from the function
4110 entry to a use of the variable that is initialized, but there exist
4111 some other paths for which the variable is not initialized, the compiler
4112 emits a warning if it cannot prove the uninitialized paths are not
4113 executed at run time. These warnings are made optional because GCC is
4114 not smart enough to see all the reasons why the code might be correct
4115 in spite of appearing to have an error. Here is one example of how
4116 this can happen:
4117
4118 @smallexample
4119 @group
4120 @{
4121 int x;
4122 switch (y)
4123 @{
4124 case 1: x = 1;
4125 break;
4126 case 2: x = 4;
4127 break;
4128 case 3: x = 5;
4129 @}
4130 foo (x);
4131 @}
4132 @end group
4133 @end smallexample
4134
4135 @noindent
4136 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
4137 always initialized, but GCC doesn't know this. To suppress the
4138 warning, you need to provide a default case with assert(0) or
4139 similar code.
4140
4141 @cindex @code{longjmp} warnings
4142 This option also warns when a non-volatile automatic variable might be
4143 changed by a call to @code{longjmp}. These warnings as well are possible
4144 only in optimizing compilation.
4145
4146 The compiler sees only the calls to @code{setjmp}. It cannot know
4147 where @code{longjmp} will be called; in fact, a signal handler could
4148 call it at any point in the code. As a result, you may get a warning
4149 even when there is in fact no problem because @code{longjmp} cannot
4150 in fact be called at the place that would cause a problem.
4151
4152 Some spurious warnings can be avoided if you declare all the functions
4153 you use that never return as @code{noreturn}. @xref{Function
4154 Attributes}.
4155
4156 This warning is enabled by @option{-Wall} or @option{-Wextra}.
4157
4158 @item -Wunknown-pragmas
4159 @opindex Wunknown-pragmas
4160 @opindex Wno-unknown-pragmas
4161 @cindex warning for unknown pragmas
4162 @cindex unknown pragmas, warning
4163 @cindex pragmas, warning of unknown
4164 Warn when a @code{#pragma} directive is encountered that is not understood by
4165 GCC@. If this command-line option is used, warnings are even issued
4166 for unknown pragmas in system header files. This is not the case if
4167 the warnings are only enabled by the @option{-Wall} command-line option.
4168
4169 @item -Wno-pragmas
4170 @opindex Wno-pragmas
4171 @opindex Wpragmas
4172 Do not warn about misuses of pragmas, such as incorrect parameters,
4173 invalid syntax, or conflicts between pragmas. See also
4174 @option{-Wunknown-pragmas}.
4175
4176 @item -Wstrict-aliasing
4177 @opindex Wstrict-aliasing
4178 @opindex Wno-strict-aliasing
4179 This option is only active when @option{-fstrict-aliasing} is active.
4180 It warns about code that might break the strict aliasing rules that the
4181 compiler is using for optimization. The warning does not catch all
4182 cases, but does attempt to catch the more common pitfalls. It is
4183 included in @option{-Wall}.
4184 It is equivalent to @option{-Wstrict-aliasing=3}
4185
4186 @item -Wstrict-aliasing=n
4187 @opindex Wstrict-aliasing=n
4188 This option is only active when @option{-fstrict-aliasing} is active.
4189 It warns about code that might break the strict aliasing rules that the
4190 compiler is using for optimization.
4191 Higher levels correspond to higher accuracy (fewer false positives).
4192 Higher levels also correspond to more effort, similar to the way @option{-O}
4193 works.
4194 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
4195
4196 Level 1: Most aggressive, quick, least accurate.
4197 Possibly useful when higher levels
4198 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
4199 false negatives. However, it has many false positives.
4200 Warns for all pointer conversions between possibly incompatible types,
4201 even if never dereferenced. Runs in the front end only.
4202
4203 Level 2: Aggressive, quick, not too precise.
4204 May still have many false positives (not as many as level 1 though),
4205 and few false negatives (but possibly more than level 1).
4206 Unlike level 1, it only warns when an address is taken. Warns about
4207 incomplete types. Runs in the front end only.
4208
4209 Level 3 (default for @option{-Wstrict-aliasing}):
4210 Should have very few false positives and few false
4211 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
4212 Takes care of the common pun+dereference pattern in the front end:
4213 @code{*(int*)&some_float}.
4214 If optimization is enabled, it also runs in the back end, where it deals
4215 with multiple statement cases using flow-sensitive points-to information.
4216 Only warns when the converted pointer is dereferenced.
4217 Does not warn about incomplete types.
4218
4219 @item -Wstrict-overflow
4220 @itemx -Wstrict-overflow=@var{n}
4221 @opindex Wstrict-overflow
4222 @opindex Wno-strict-overflow
4223 This option is only active when @option{-fstrict-overflow} is active.
4224 It warns about cases where the compiler optimizes based on the
4225 assumption that signed overflow does not occur. Note that it does not
4226 warn about all cases where the code might overflow: it only warns
4227 about cases where the compiler implements some optimization. Thus
4228 this warning depends on the optimization level.
4229
4230 An optimization that assumes that signed overflow does not occur is
4231 perfectly safe if the values of the variables involved are such that
4232 overflow never does, in fact, occur. Therefore this warning can
4233 easily give a false positive: a warning about code that is not
4234 actually a problem. To help focus on important issues, several
4235 warning levels are defined. No warnings are issued for the use of
4236 undefined signed overflow when estimating how many iterations a loop
4237 requires, in particular when determining whether a loop will be
4238 executed at all.
4239
4240 @table @gcctabopt
4241 @item -Wstrict-overflow=1
4242 Warn about cases that are both questionable and easy to avoid. For
4243 example, with @option{-fstrict-overflow}, the compiler simplifies
4244 @code{x + 1 > x} to @code{1}. This level of
4245 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
4246 are not, and must be explicitly requested.
4247
4248 @item -Wstrict-overflow=2
4249 Also warn about other cases where a comparison is simplified to a
4250 constant. For example: @code{abs (x) >= 0}. This can only be
4251 simplified when @option{-fstrict-overflow} is in effect, because
4252 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
4253 zero. @option{-Wstrict-overflow} (with no level) is the same as
4254 @option{-Wstrict-overflow=2}.
4255
4256 @item -Wstrict-overflow=3
4257 Also warn about other cases where a comparison is simplified. For
4258 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
4259
4260 @item -Wstrict-overflow=4
4261 Also warn about other simplifications not covered by the above cases.
4262 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
4263
4264 @item -Wstrict-overflow=5
4265 Also warn about cases where the compiler reduces the magnitude of a
4266 constant involved in a comparison. For example: @code{x + 2 > y} is
4267 simplified to @code{x + 1 >= y}. This is reported only at the
4268 highest warning level because this simplification applies to many
4269 comparisons, so this warning level gives a very large number of
4270 false positives.
4271 @end table
4272
4273 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{]}
4274 @opindex Wsuggest-attribute=
4275 @opindex Wno-suggest-attribute=
4276 Warn for cases where adding an attribute may be beneficial. The
4277 attributes currently supported are listed below.
4278
4279 @table @gcctabopt
4280 @item -Wsuggest-attribute=pure
4281 @itemx -Wsuggest-attribute=const
4282 @itemx -Wsuggest-attribute=noreturn
4283 @opindex Wsuggest-attribute=pure
4284 @opindex Wno-suggest-attribute=pure
4285 @opindex Wsuggest-attribute=const
4286 @opindex Wno-suggest-attribute=const
4287 @opindex Wsuggest-attribute=noreturn
4288 @opindex Wno-suggest-attribute=noreturn
4289
4290 Warn about functions that might be candidates for attributes
4291 @code{pure}, @code{const} or @code{noreturn}. The compiler only warns for
4292 functions visible in other compilation units or (in the case of @code{pure} and
4293 @code{const}) if it cannot prove that the function returns normally. A function
4294 returns normally if it doesn't contain an infinite loop or return abnormally
4295 by throwing, calling @code{abort} or trapping. This analysis requires option
4296 @option{-fipa-pure-const}, which is enabled by default at @option{-O} and
4297 higher. Higher optimization levels improve the accuracy of the analysis.
4298
4299 @item -Wsuggest-attribute=format
4300 @itemx -Wmissing-format-attribute
4301 @opindex Wsuggest-attribute=format
4302 @opindex Wmissing-format-attribute
4303 @opindex Wno-suggest-attribute=format
4304 @opindex Wno-missing-format-attribute
4305 @opindex Wformat
4306 @opindex Wno-format
4307
4308 Warn about function pointers that might be candidates for @code{format}
4309 attributes. Note these are only possible candidates, not absolute ones.
4310 GCC guesses that function pointers with @code{format} attributes that
4311 are used in assignment, initialization, parameter passing or return
4312 statements should have a corresponding @code{format} attribute in the
4313 resulting type. I.e.@: the left-hand side of the assignment or
4314 initialization, the type of the parameter variable, or the return type
4315 of the containing function respectively should also have a @code{format}
4316 attribute to avoid the warning.
4317
4318 GCC also warns about function definitions that might be
4319 candidates for @code{format} attributes. Again, these are only
4320 possible candidates. GCC guesses that @code{format} attributes
4321 might be appropriate for any function that calls a function like
4322 @code{vprintf} or @code{vscanf}, but this might not always be the
4323 case, and some functions for which @code{format} attributes are
4324 appropriate may not be detected.
4325 @end table
4326
4327 @item -Wsuggest-final-types
4328 @opindex Wno-suggest-final-types
4329 @opindex Wsuggest-final-types
4330 Warn about types with virtual methods where code quality would be improved
4331 if the type were declared with the C++11 @code{final} specifier,
4332 or, if possible,
4333 declared in an anonymous namespace. This allows GCC to more aggressively
4334 devirtualize the polymorphic calls. This warning is more effective with link
4335 time optimization, where the information about the class hierarchy graph is
4336 more complete.
4337
4338 @item -Wsuggest-final-methods
4339 @opindex Wno-suggest-final-methods
4340 @opindex Wsuggest-final-methods
4341 Warn about virtual methods where code quality would be improved if the method
4342 were declared with the C++11 @code{final} specifier,
4343 or, if possible, its type were
4344 declared in an anonymous namespace or with the @code{final} specifier.
4345 This warning is
4346 more effective with link time optimization, where the information about the
4347 class hierarchy graph is more complete. It is recommended to first consider
4348 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
4349 annotations.
4350
4351 @item -Wsuggest-override
4352 Warn about overriding virtual functions that are not marked with the override
4353 keyword.
4354
4355 @item -Warray-bounds
4356 @itemx -Warray-bounds=@var{n}
4357 @opindex Wno-array-bounds
4358 @opindex Warray-bounds
4359 This option is only active when @option{-ftree-vrp} is active
4360 (default for @option{-O2} and above). It warns about subscripts to arrays
4361 that are always out of bounds. This warning is enabled by @option{-Wall}.
4362
4363 @table @gcctabopt
4364 @item -Warray-bounds=1
4365 This is the warning level of @option{-Warray-bounds} and is enabled
4366 by @option{-Wall}; higher levels are not, and must be explicitly requested.
4367
4368 @item -Warray-bounds=2
4369 This warning level also warns about out of bounds access for
4370 arrays at the end of a struct and for arrays accessed through
4371 pointers. This warning level may give a larger number of
4372 false positives and is deactivated by default.
4373 @end table
4374
4375 @item -Wbool-compare
4376 @opindex Wno-bool-compare
4377 @opindex Wbool-compare
4378 Warn about boolean expression compared with an integer value different from
4379 @code{true}/@code{false}. For instance, the following comparison is
4380 always false:
4381 @smallexample
4382 int n = 5;
4383 @dots{}
4384 if ((n > 1) == 2) @{ @dots{} @}
4385 @end smallexample
4386 This warning is enabled by @option{-Wall}.
4387
4388 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
4389 @opindex Wno-discarded-qualifiers
4390 @opindex Wdiscarded-qualifiers
4391 Do not warn if type qualifiers on pointers are being discarded.
4392 Typically, the compiler warns if a @code{const char *} variable is
4393 passed to a function that takes a @code{char *} parameter. This option
4394 can be used to suppress such a warning.
4395
4396 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
4397 @opindex Wno-discarded-array-qualifiers
4398 @opindex Wdiscarded-array-qualifiers
4399 Do not warn if type qualifiers on arrays which are pointer targets
4400 are being discarded. Typically, the compiler warns if a
4401 @code{const int (*)[]} variable is passed to a function that
4402 takes a @code{int (*)[]} parameter. This option can be used to
4403 suppress such a warning.
4404
4405 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
4406 @opindex Wno-incompatible-pointer-types
4407 @opindex Wincompatible-pointer-types
4408 Do not warn when there is a conversion between pointers that have incompatible
4409 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
4410 which warns for pointer argument passing or assignment with different
4411 signedness.
4412
4413 @item -Wno-int-conversion @r{(C and Objective-C only)}
4414 @opindex Wno-int-conversion
4415 @opindex Wint-conversion
4416 Do not warn about incompatible integer to pointer and pointer to integer
4417 conversions. This warning is about implicit conversions; for explicit
4418 conversions the warnings @option{-Wno-int-to-pointer-cast} and
4419 @option{-Wno-pointer-to-int-cast} may be used.
4420
4421 @item -Wno-div-by-zero
4422 @opindex Wno-div-by-zero
4423 @opindex Wdiv-by-zero
4424 Do not warn about compile-time integer division by zero. Floating-point
4425 division by zero is not warned about, as it can be a legitimate way of
4426 obtaining infinities and NaNs.
4427
4428 @item -Wsystem-headers
4429 @opindex Wsystem-headers
4430 @opindex Wno-system-headers
4431 @cindex warnings from system headers
4432 @cindex system headers, warnings from
4433 Print warning messages for constructs found in system header files.
4434 Warnings from system headers are normally suppressed, on the assumption
4435 that they usually do not indicate real problems and would only make the
4436 compiler output harder to read. Using this command-line option tells
4437 GCC to emit warnings from system headers as if they occurred in user
4438 code. However, note that using @option{-Wall} in conjunction with this
4439 option does @emph{not} warn about unknown pragmas in system
4440 headers---for that, @option{-Wunknown-pragmas} must also be used.
4441
4442 @item -Wtrampolines
4443 @opindex Wtrampolines
4444 @opindex Wno-trampolines
4445 Warn about trampolines generated for pointers to nested functions.
4446 A trampoline is a small piece of data or code that is created at run
4447 time on the stack when the address of a nested function is taken, and is
4448 used to call the nested function indirectly. For some targets, it is
4449 made up of data only and thus requires no special treatment. But, for
4450 most targets, it is made up of code and thus requires the stack to be
4451 made executable in order for the program to work properly.
4452
4453 @item -Wfloat-equal
4454 @opindex Wfloat-equal
4455 @opindex Wno-float-equal
4456 Warn if floating-point values are used in equality comparisons.
4457
4458 The idea behind this is that sometimes it is convenient (for the
4459 programmer) to consider floating-point values as approximations to
4460 infinitely precise real numbers. If you are doing this, then you need
4461 to compute (by analyzing the code, or in some other way) the maximum or
4462 likely maximum error that the computation introduces, and allow for it
4463 when performing comparisons (and when producing output, but that's a
4464 different problem). In particular, instead of testing for equality, you
4465 should check to see whether the two values have ranges that overlap; and
4466 this is done with the relational operators, so equality comparisons are
4467 probably mistaken.
4468
4469 @item -Wtraditional @r{(C and Objective-C only)}
4470 @opindex Wtraditional
4471 @opindex Wno-traditional
4472 Warn about certain constructs that behave differently in traditional and
4473 ISO C@. Also warn about ISO C constructs that have no traditional C
4474 equivalent, and/or problematic constructs that should be avoided.
4475
4476 @itemize @bullet
4477 @item
4478 Macro parameters that appear within string literals in the macro body.
4479 In traditional C macro replacement takes place within string literals,
4480 but in ISO C it does not.
4481
4482 @item
4483 In traditional C, some preprocessor directives did not exist.
4484 Traditional preprocessors only considered a line to be a directive
4485 if the @samp{#} appeared in column 1 on the line. Therefore
4486 @option{-Wtraditional} warns about directives that traditional C
4487 understands but ignores because the @samp{#} does not appear as the
4488 first character on the line. It also suggests you hide directives like
4489 @code{#pragma} not understood by traditional C by indenting them. Some
4490 traditional implementations do not recognize @code{#elif}, so this option
4491 suggests avoiding it altogether.
4492
4493 @item
4494 A function-like macro that appears without arguments.
4495
4496 @item
4497 The unary plus operator.
4498
4499 @item
4500 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
4501 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
4502 constants.) Note, these suffixes appear in macros defined in the system
4503 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
4504 Use of these macros in user code might normally lead to spurious
4505 warnings, however GCC's integrated preprocessor has enough context to
4506 avoid warning in these cases.
4507
4508 @item
4509 A function declared external in one block and then used after the end of
4510 the block.
4511
4512 @item
4513 A @code{switch} statement has an operand of type @code{long}.
4514
4515 @item
4516 A non-@code{static} function declaration follows a @code{static} one.
4517 This construct is not accepted by some traditional C compilers.
4518
4519 @item
4520 The ISO type of an integer constant has a different width or
4521 signedness from its traditional type. This warning is only issued if
4522 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
4523 typically represent bit patterns, are not warned about.
4524
4525 @item
4526 Usage of ISO string concatenation is detected.
4527
4528 @item
4529 Initialization of automatic aggregates.
4530
4531 @item
4532 Identifier conflicts with labels. Traditional C lacks a separate
4533 namespace for labels.
4534
4535 @item
4536 Initialization of unions. If the initializer is zero, the warning is
4537 omitted. This is done under the assumption that the zero initializer in
4538 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
4539 initializer warnings and relies on default initialization to zero in the
4540 traditional C case.
4541
4542 @item
4543 Conversions by prototypes between fixed/floating-point values and vice
4544 versa. The absence of these prototypes when compiling with traditional
4545 C causes serious problems. This is a subset of the possible
4546 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
4547
4548 @item
4549 Use of ISO C style function definitions. This warning intentionally is
4550 @emph{not} issued for prototype declarations or variadic functions
4551 because these ISO C features appear in your code when using
4552 libiberty's traditional C compatibility macros, @code{PARAMS} and
4553 @code{VPARAMS}. This warning is also bypassed for nested functions
4554 because that feature is already a GCC extension and thus not relevant to
4555 traditional C compatibility.
4556 @end itemize
4557
4558 @item -Wtraditional-conversion @r{(C and Objective-C only)}
4559 @opindex Wtraditional-conversion
4560 @opindex Wno-traditional-conversion
4561 Warn if a prototype causes a type conversion that is different from what
4562 would happen to the same argument in the absence of a prototype. This
4563 includes conversions of fixed point to floating and vice versa, and
4564 conversions changing the width or signedness of a fixed-point argument
4565 except when the same as the default promotion.
4566
4567 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
4568 @opindex Wdeclaration-after-statement
4569 @opindex Wno-declaration-after-statement
4570 Warn when a declaration is found after a statement in a block. This
4571 construct, known from C++, was introduced with ISO C99 and is by default
4572 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
4573
4574 @item -Wundef
4575 @opindex Wundef
4576 @opindex Wno-undef
4577 Warn if an undefined identifier is evaluated in an @code{#if} directive.
4578
4579 @item -Wno-endif-labels
4580 @opindex Wno-endif-labels
4581 @opindex Wendif-labels
4582 Do not warn whenever an @code{#else} or an @code{#endif} are followed by text.
4583
4584 @item -Wshadow
4585 @opindex Wshadow
4586 @opindex Wno-shadow
4587 Warn whenever a local variable or type declaration shadows another
4588 variable, parameter, type, class member (in C++), or instance variable
4589 (in Objective-C) or whenever a built-in function is shadowed. Note
4590 that in C++, the compiler warns if a local variable shadows an
4591 explicit typedef, but not if it shadows a struct/class/enum.
4592
4593 @item -Wno-shadow-ivar @r{(Objective-C only)}
4594 @opindex Wno-shadow-ivar
4595 @opindex Wshadow-ivar
4596 Do not warn whenever a local variable shadows an instance variable in an
4597 Objective-C method.
4598
4599 @item -Wlarger-than=@var{len}
4600 @opindex Wlarger-than=@var{len}
4601 @opindex Wlarger-than-@var{len}
4602 Warn whenever an object of larger than @var{len} bytes is defined.
4603
4604 @item -Wframe-larger-than=@var{len}
4605 @opindex Wframe-larger-than
4606 Warn if the size of a function frame is larger than @var{len} bytes.
4607 The computation done to determine the stack frame size is approximate
4608 and not conservative.
4609 The actual requirements may be somewhat greater than @var{len}
4610 even if you do not get a warning. In addition, any space allocated
4611 via @code{alloca}, variable-length arrays, or related constructs
4612 is not included by the compiler when determining
4613 whether or not to issue a warning.
4614
4615 @item -Wno-free-nonheap-object
4616 @opindex Wno-free-nonheap-object
4617 @opindex Wfree-nonheap-object
4618 Do not warn when attempting to free an object that was not allocated
4619 on the heap.
4620
4621 @item -Wstack-usage=@var{len}
4622 @opindex Wstack-usage
4623 Warn if the stack usage of a function might be larger than @var{len} bytes.
4624 The computation done to determine the stack usage is conservative.
4625 Any space allocated via @code{alloca}, variable-length arrays, or related
4626 constructs is included by the compiler when determining whether or not to
4627 issue a warning.
4628
4629 The message is in keeping with the output of @option{-fstack-usage}.
4630
4631 @itemize
4632 @item
4633 If the stack usage is fully static but exceeds the specified amount, it's:
4634
4635 @smallexample
4636 warning: stack usage is 1120 bytes
4637 @end smallexample
4638 @item
4639 If the stack usage is (partly) dynamic but bounded, it's:
4640
4641 @smallexample
4642 warning: stack usage might be 1648 bytes
4643 @end smallexample
4644 @item
4645 If the stack usage is (partly) dynamic and not bounded, it's:
4646
4647 @smallexample
4648 warning: stack usage might be unbounded
4649 @end smallexample
4650 @end itemize
4651
4652 @item -Wunsafe-loop-optimizations
4653 @opindex Wunsafe-loop-optimizations
4654 @opindex Wno-unsafe-loop-optimizations
4655 Warn if the loop cannot be optimized because the compiler cannot
4656 assume anything on the bounds of the loop indices. With
4657 @option{-funsafe-loop-optimizations} warn if the compiler makes
4658 such assumptions.
4659
4660 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
4661 @opindex Wno-pedantic-ms-format
4662 @opindex Wpedantic-ms-format
4663 When used in combination with @option{-Wformat}
4664 and @option{-pedantic} without GNU extensions, this option
4665 disables the warnings about non-ISO @code{printf} / @code{scanf} format
4666 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
4667 which depend on the MS runtime.
4668
4669 @item -Wpointer-arith
4670 @opindex Wpointer-arith
4671 @opindex Wno-pointer-arith
4672 Warn about anything that depends on the ``size of'' a function type or
4673 of @code{void}. GNU C assigns these types a size of 1, for
4674 convenience in calculations with @code{void *} pointers and pointers
4675 to functions. In C++, warn also when an arithmetic operation involves
4676 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
4677
4678 @item -Wtype-limits
4679 @opindex Wtype-limits
4680 @opindex Wno-type-limits
4681 Warn if a comparison is always true or always false due to the limited
4682 range of the data type, but do not warn for constant expressions. For
4683 example, warn if an unsigned variable is compared against zero with
4684 @code{<} or @code{>=}. This warning is also enabled by
4685 @option{-Wextra}.
4686
4687 @item -Wbad-function-cast @r{(C and Objective-C only)}
4688 @opindex Wbad-function-cast
4689 @opindex Wno-bad-function-cast
4690 Warn when a function call is cast to a non-matching type.
4691 For example, warn if a call to a function returning an integer type
4692 is cast to a pointer type.
4693
4694 @item -Wc90-c99-compat @r{(C and Objective-C only)}
4695 @opindex Wc90-c99-compat
4696 @opindex Wno-c90-c99-compat
4697 Warn about features not present in ISO C90, but present in ISO C99.
4698 For instance, warn about use of variable length arrays, @code{long long}
4699 type, @code{bool} type, compound literals, designated initializers, and so
4700 on. This option is independent of the standards mode. Warnings are disabled
4701 in the expression that follows @code{__extension__}.
4702
4703 @item -Wc99-c11-compat @r{(C and Objective-C only)}
4704 @opindex Wc99-c11-compat
4705 @opindex Wno-c99-c11-compat
4706 Warn about features not present in ISO C99, but present in ISO C11.
4707 For instance, warn about use of anonymous structures and unions,
4708 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
4709 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
4710 and so on. This option is independent of the standards mode. Warnings are
4711 disabled in the expression that follows @code{__extension__}.
4712
4713 @item -Wc++-compat @r{(C and Objective-C only)}
4714 @opindex Wc++-compat
4715 Warn about ISO C constructs that are outside of the common subset of
4716 ISO C and ISO C++, e.g.@: request for implicit conversion from
4717 @code{void *} to a pointer to non-@code{void} type.
4718
4719 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
4720 @opindex Wc++11-compat
4721 Warn about C++ constructs whose meaning differs between ISO C++ 1998
4722 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
4723 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
4724 enabled by @option{-Wall}.
4725
4726 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
4727 @opindex Wc++14-compat
4728 Warn about C++ constructs whose meaning differs between ISO C++ 2011
4729 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
4730
4731 @item -Wcast-qual
4732 @opindex Wcast-qual
4733 @opindex Wno-cast-qual
4734 Warn whenever a pointer is cast so as to remove a type qualifier from
4735 the target type. For example, warn if a @code{const char *} is cast
4736 to an ordinary @code{char *}.
4737
4738 Also warn when making a cast that introduces a type qualifier in an
4739 unsafe way. For example, casting @code{char **} to @code{const char **}
4740 is unsafe, as in this example:
4741
4742 @smallexample
4743 /* p is char ** value. */
4744 const char **q = (const char **) p;
4745 /* Assignment of readonly string to const char * is OK. */
4746 *q = "string";
4747 /* Now char** pointer points to read-only memory. */
4748 **p = 'b';
4749 @end smallexample
4750
4751 @item -Wcast-align
4752 @opindex Wcast-align
4753 @opindex Wno-cast-align
4754 Warn whenever a pointer is cast such that the required alignment of the
4755 target is increased. For example, warn if a @code{char *} is cast to
4756 an @code{int *} on machines where integers can only be accessed at
4757 two- or four-byte boundaries.
4758
4759 @item -Wwrite-strings
4760 @opindex Wwrite-strings
4761 @opindex Wno-write-strings
4762 When compiling C, give string constants the type @code{const
4763 char[@var{length}]} so that copying the address of one into a
4764 non-@code{const} @code{char *} pointer produces a warning. These
4765 warnings help you find at compile time code that can try to write
4766 into a string constant, but only if you have been very careful about
4767 using @code{const} in declarations and prototypes. Otherwise, it is
4768 just a nuisance. This is why we did not make @option{-Wall} request
4769 these warnings.
4770
4771 When compiling C++, warn about the deprecated conversion from string
4772 literals to @code{char *}. This warning is enabled by default for C++
4773 programs.
4774
4775 @item -Wclobbered
4776 @opindex Wclobbered
4777 @opindex Wno-clobbered
4778 Warn for variables that might be changed by @code{longjmp} or
4779 @code{vfork}. This warning is also enabled by @option{-Wextra}.
4780
4781 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
4782 @opindex Wconditionally-supported
4783 @opindex Wno-conditionally-supported
4784 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
4785
4786 @item -Wconversion
4787 @opindex Wconversion
4788 @opindex Wno-conversion
4789 Warn for implicit conversions that may alter a value. This includes
4790 conversions between real and integer, like @code{abs (x)} when
4791 @code{x} is @code{double}; conversions between signed and unsigned,
4792 like @code{unsigned ui = -1}; and conversions to smaller types, like
4793 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
4794 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
4795 changed by the conversion like in @code{abs (2.0)}. Warnings about
4796 conversions between signed and unsigned integers can be disabled by
4797 using @option{-Wno-sign-conversion}.
4798
4799 For C++, also warn for confusing overload resolution for user-defined
4800 conversions; and conversions that never use a type conversion
4801 operator: conversions to @code{void}, the same type, a base class or a
4802 reference to them. Warnings about conversions between signed and
4803 unsigned integers are disabled by default in C++ unless
4804 @option{-Wsign-conversion} is explicitly enabled.
4805
4806 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
4807 @opindex Wconversion-null
4808 @opindex Wno-conversion-null
4809 Do not warn for conversions between @code{NULL} and non-pointer
4810 types. @option{-Wconversion-null} is enabled by default.
4811
4812 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
4813 @opindex Wzero-as-null-pointer-constant
4814 @opindex Wno-zero-as-null-pointer-constant
4815 Warn when a literal '0' is used as null pointer constant. This can
4816 be useful to facilitate the conversion to @code{nullptr} in C++11.
4817
4818 @item -Wdate-time
4819 @opindex Wdate-time
4820 @opindex Wno-date-time
4821 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
4822 are encountered as they might prevent bit-wise-identical reproducible
4823 compilations.
4824
4825 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
4826 @opindex Wdelete-incomplete
4827 @opindex Wno-delete-incomplete
4828 Warn when deleting a pointer to incomplete type, which may cause
4829 undefined behavior at runtime. This warning is enabled by default.
4830
4831 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
4832 @opindex Wuseless-cast
4833 @opindex Wno-useless-cast
4834 Warn when an expression is casted to its own type.
4835
4836 @item -Wempty-body
4837 @opindex Wempty-body
4838 @opindex Wno-empty-body
4839 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
4840 while} statement. This warning is also enabled by @option{-Wextra}.
4841
4842 @item -Wenum-compare
4843 @opindex Wenum-compare
4844 @opindex Wno-enum-compare
4845 Warn about a comparison between values of different enumerated types.
4846 In C++ enumeral mismatches in conditional expressions are also
4847 diagnosed and the warning is enabled by default. In C this warning is
4848 enabled by @option{-Wall}.
4849
4850 @item -Wjump-misses-init @r{(C, Objective-C only)}
4851 @opindex Wjump-misses-init
4852 @opindex Wno-jump-misses-init
4853 Warn if a @code{goto} statement or a @code{switch} statement jumps
4854 forward across the initialization of a variable, or jumps backward to a
4855 label after the variable has been initialized. This only warns about
4856 variables that are initialized when they are declared. This warning is
4857 only supported for C and Objective-C; in C++ this sort of branch is an
4858 error in any case.
4859
4860 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
4861 can be disabled with the @option{-Wno-jump-misses-init} option.
4862
4863 @item -Wsign-compare
4864 @opindex Wsign-compare
4865 @opindex Wno-sign-compare
4866 @cindex warning for comparison of signed and unsigned values
4867 @cindex comparison of signed and unsigned values, warning
4868 @cindex signed and unsigned values, comparison warning
4869 Warn when a comparison between signed and unsigned values could produce
4870 an incorrect result when the signed value is converted to unsigned.
4871 This warning is also enabled by @option{-Wextra}; to get the other warnings
4872 of @option{-Wextra} without this warning, use @option{-Wextra -Wno-sign-compare}.
4873
4874 @item -Wsign-conversion
4875 @opindex Wsign-conversion
4876 @opindex Wno-sign-conversion
4877 Warn for implicit conversions that may change the sign of an integer
4878 value, like assigning a signed integer expression to an unsigned
4879 integer variable. An explicit cast silences the warning. In C, this
4880 option is enabled also by @option{-Wconversion}.
4881
4882 @item -Wfloat-conversion
4883 @opindex Wfloat-conversion
4884 @opindex Wno-float-conversion
4885 Warn for implicit conversions that reduce the precision of a real value.
4886 This includes conversions from real to integer, and from higher precision
4887 real to lower precision real values. This option is also enabled by
4888 @option{-Wconversion}.
4889
4890 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
4891 @opindex Wsized-deallocation
4892 @opindex Wno-sized-deallocation
4893 Warn about a definition of an unsized deallocation function
4894 @smallexample
4895 void operator delete (void *) noexcept;
4896 void operator delete[] (void *) noexcept;
4897 @end smallexample
4898 without a definition of the corresponding sized deallocation function
4899 @smallexample
4900 void operator delete (void *, std::size_t) noexcept;
4901 void operator delete[] (void *, std::size_t) noexcept;
4902 @end smallexample
4903 or vice versa. Enabled by @option{-Wextra} along with
4904 @option{-fsized-deallocation}.
4905
4906 @item -Wsizeof-pointer-memaccess
4907 @opindex Wsizeof-pointer-memaccess
4908 @opindex Wno-sizeof-pointer-memaccess
4909 Warn for suspicious length parameters to certain string and memory built-in
4910 functions if the argument uses @code{sizeof}. This warning warns e.g.@:
4911 about @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not an array,
4912 but a pointer, and suggests a possible fix, or about
4913 @code{memcpy (&foo, ptr, sizeof (&foo));}. This warning is enabled by
4914 @option{-Wall}.
4915
4916 @item -Wsizeof-array-argument
4917 @opindex Wsizeof-array-argument
4918 @opindex Wno-sizeof-array-argument
4919 Warn when the @code{sizeof} operator is applied to a parameter that is
4920 declared as an array in a function definition. This warning is enabled by
4921 default for C and C++ programs.
4922
4923 @item -Wmemset-transposed-args
4924 @opindex Wmemset-transposed-args
4925 @opindex Wno-memset-transposed-args
4926 Warn for suspicious calls to the @code{memset} built-in function, if the
4927 second argument is not zero and the third argument is zero. This warns e.g.@
4928 about @code{memset (buf, sizeof buf, 0)} where most probably
4929 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostics
4930 is only emitted if the third argument is literal zero. If it is some
4931 expression that is folded to zero, a cast of zero to some type, etc.,
4932 it is far less likely that the user has mistakenly exchanged the arguments
4933 and no warning is emitted. This warning is enabled by @option{-Wall}.
4934
4935 @item -Waddress
4936 @opindex Waddress
4937 @opindex Wno-address
4938 Warn about suspicious uses of memory addresses. These include using
4939 the address of a function in a conditional expression, such as
4940 @code{void func(void); if (func)}, and comparisons against the memory
4941 address of a string literal, such as @code{if (x == "abc")}. Such
4942 uses typically indicate a programmer error: the address of a function
4943 always evaluates to true, so their use in a conditional usually
4944 indicate that the programmer forgot the parentheses in a function
4945 call; and comparisons against string literals result in unspecified
4946 behavior and are not portable in C, so they usually indicate that the
4947 programmer intended to use @code{strcmp}. This warning is enabled by
4948 @option{-Wall}.
4949
4950 @item -Wlogical-op
4951 @opindex Wlogical-op
4952 @opindex Wno-logical-op
4953 Warn about suspicious uses of logical operators in expressions.
4954 This includes using logical operators in contexts where a
4955 bit-wise operator is likely to be expected. Also warns when
4956 the operands of a logical operator are the same:
4957 @smallexample
4958 extern int a;
4959 if (a < 0 && a < 0) @{ @dots{} @}
4960 @end smallexample
4961
4962 @item -Wlogical-not-parentheses
4963 @opindex Wlogical-not-parentheses
4964 @opindex Wno-logical-not-parentheses
4965 Warn about logical not used on the left hand side operand of a comparison.
4966 This option does not warn if the RHS operand is of a boolean type. Its
4967 purpose is to detect suspicious code like the following:
4968 @smallexample
4969 int a;
4970 @dots{}
4971 if (!a > 1) @{ @dots{} @}
4972 @end smallexample
4973
4974 It is possible to suppress the warning by wrapping the LHS into
4975 parentheses:
4976 @smallexample
4977 if ((!a) > 1) @{ @dots{} @}
4978 @end smallexample
4979
4980 This warning is enabled by @option{-Wall}.
4981
4982 @item -Waggregate-return
4983 @opindex Waggregate-return
4984 @opindex Wno-aggregate-return
4985 Warn if any functions that return structures or unions are defined or
4986 called. (In languages where you can return an array, this also elicits
4987 a warning.)
4988
4989 @item -Wno-aggressive-loop-optimizations
4990 @opindex Wno-aggressive-loop-optimizations
4991 @opindex Waggressive-loop-optimizations
4992 Warn if in a loop with constant number of iterations the compiler detects
4993 undefined behavior in some statement during one or more of the iterations.
4994
4995 @item -Wno-attributes
4996 @opindex Wno-attributes
4997 @opindex Wattributes
4998 Do not warn if an unexpected @code{__attribute__} is used, such as
4999 unrecognized attributes, function attributes applied to variables,
5000 etc. This does not stop errors for incorrect use of supported
5001 attributes.
5002
5003 @item -Wno-builtin-macro-redefined
5004 @opindex Wno-builtin-macro-redefined
5005 @opindex Wbuiltin-macro-redefined
5006 Do not warn if certain built-in macros are redefined. This suppresses
5007 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
5008 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
5009
5010 @item -Wstrict-prototypes @r{(C and Objective-C only)}
5011 @opindex Wstrict-prototypes
5012 @opindex Wno-strict-prototypes
5013 Warn if a function is declared or defined without specifying the
5014 argument types. (An old-style function definition is permitted without
5015 a warning if preceded by a declaration that specifies the argument
5016 types.)
5017
5018 @item -Wold-style-declaration @r{(C and Objective-C only)}
5019 @opindex Wold-style-declaration
5020 @opindex Wno-old-style-declaration
5021 Warn for obsolescent usages, according to the C Standard, in a
5022 declaration. For example, warn if storage-class specifiers like
5023 @code{static} are not the first things in a declaration. This warning
5024 is also enabled by @option{-Wextra}.
5025
5026 @item -Wold-style-definition @r{(C and Objective-C only)}
5027 @opindex Wold-style-definition
5028 @opindex Wno-old-style-definition
5029 Warn if an old-style function definition is used. A warning is given
5030 even if there is a previous prototype.
5031
5032 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
5033 @opindex Wmissing-parameter-type
5034 @opindex Wno-missing-parameter-type
5035 A function parameter is declared without a type specifier in K&R-style
5036 functions:
5037
5038 @smallexample
5039 void foo(bar) @{ @}
5040 @end smallexample
5041
5042 This warning is also enabled by @option{-Wextra}.
5043
5044 @item -Wmissing-prototypes @r{(C and Objective-C only)}
5045 @opindex Wmissing-prototypes
5046 @opindex Wno-missing-prototypes
5047 Warn if a global function is defined without a previous prototype
5048 declaration. This warning is issued even if the definition itself
5049 provides a prototype. Use this option to detect global functions
5050 that do not have a matching prototype declaration in a header file.
5051 This option is not valid for C++ because all function declarations
5052 provide prototypes and a non-matching declaration declares an
5053 overload rather than conflict with an earlier declaration.
5054 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
5055
5056 @item -Wmissing-declarations
5057 @opindex Wmissing-declarations
5058 @opindex Wno-missing-declarations
5059 Warn if a global function is defined without a previous declaration.
5060 Do so even if the definition itself provides a prototype.
5061 Use this option to detect global functions that are not declared in
5062 header files. In C, no warnings are issued for functions with previous
5063 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
5064 missing prototypes. In C++, no warnings are issued for function templates,
5065 or for inline functions, or for functions in anonymous namespaces.
5066
5067 @item -Wmissing-field-initializers
5068 @opindex Wmissing-field-initializers
5069 @opindex Wno-missing-field-initializers
5070 @opindex W
5071 @opindex Wextra
5072 @opindex Wno-extra
5073 Warn if a structure's initializer has some fields missing. For
5074 example, the following code causes such a warning, because
5075 @code{x.h} is implicitly zero:
5076
5077 @smallexample
5078 struct s @{ int f, g, h; @};
5079 struct s x = @{ 3, 4 @};
5080 @end smallexample
5081
5082 This option does not warn about designated initializers, so the following
5083 modification does not trigger a warning:
5084
5085 @smallexample
5086 struct s @{ int f, g, h; @};
5087 struct s x = @{ .f = 3, .g = 4 @};
5088 @end smallexample
5089
5090 In C++ this option does not warn either about the empty @{ @}
5091 initializer, for example:
5092
5093 @smallexample
5094 struct s @{ int f, g, h; @};
5095 s x = @{ @};
5096 @end smallexample
5097
5098 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
5099 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
5100
5101 @item -Wno-multichar
5102 @opindex Wno-multichar
5103 @opindex Wmultichar
5104 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
5105 Usually they indicate a typo in the user's code, as they have
5106 implementation-defined values, and should not be used in portable code.
5107
5108 @item -Wnormalized@r{[}=@r{<}none@r{|}id@r{|}nfc@r{|}nfkc@r{>]}
5109 @opindex Wnormalized=
5110 @opindex Wnormalized
5111 @opindex Wno-normalized
5112 @cindex NFC
5113 @cindex NFKC
5114 @cindex character set, input normalization
5115 In ISO C and ISO C++, two identifiers are different if they are
5116 different sequences of characters. However, sometimes when characters
5117 outside the basic ASCII character set are used, you can have two
5118 different character sequences that look the same. To avoid confusion,
5119 the ISO 10646 standard sets out some @dfn{normalization rules} which
5120 when applied ensure that two sequences that look the same are turned into
5121 the same sequence. GCC can warn you if you are using identifiers that
5122 have not been normalized; this option controls that warning.
5123
5124 There are four levels of warning supported by GCC@. The default is
5125 @option{-Wnormalized=nfc}, which warns about any identifier that is
5126 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
5127 recommended form for most uses. It is equivalent to
5128 @option{-Wnormalized}.
5129
5130 Unfortunately, there are some characters allowed in identifiers by
5131 ISO C and ISO C++ that, when turned into NFC, are not allowed in
5132 identifiers. That is, there's no way to use these symbols in portable
5133 ISO C or C++ and have all your identifiers in NFC@.
5134 @option{-Wnormalized=id} suppresses the warning for these characters.
5135 It is hoped that future versions of the standards involved will correct
5136 this, which is why this option is not the default.
5137
5138 You can switch the warning off for all characters by writing
5139 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
5140 only do this if you are using some other normalization scheme (like
5141 ``D''), because otherwise you can easily create bugs that are
5142 literally impossible to see.
5143
5144 Some characters in ISO 10646 have distinct meanings but look identical
5145 in some fonts or display methodologies, especially once formatting has
5146 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
5147 LETTER N'', displays just like a regular @code{n} that has been
5148 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
5149 normalization scheme to convert all these into a standard form as
5150 well, and GCC warns if your code is not in NFKC if you use
5151 @option{-Wnormalized=nfkc}. This warning is comparable to warning
5152 about every identifier that contains the letter O because it might be
5153 confused with the digit 0, and so is not the default, but may be
5154 useful as a local coding convention if the programming environment
5155 cannot be fixed to display these characters distinctly.
5156
5157 @item -Wno-deprecated
5158 @opindex Wno-deprecated
5159 @opindex Wdeprecated
5160 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
5161
5162 @item -Wno-deprecated-declarations
5163 @opindex Wno-deprecated-declarations
5164 @opindex Wdeprecated-declarations
5165 Do not warn about uses of functions (@pxref{Function Attributes}),
5166 variables (@pxref{Variable Attributes}), and types (@pxref{Type
5167 Attributes}) marked as deprecated by using the @code{deprecated}
5168 attribute.
5169
5170 @item -Wno-overflow
5171 @opindex Wno-overflow
5172 @opindex Woverflow
5173 Do not warn about compile-time overflow in constant expressions.
5174
5175 @item -Wno-odr
5176 @opindex Wno-odr
5177 @opindex Wodr
5178 Warn about One Definition Rule violations during link-time optimization.
5179 Requires @option{-flto-odr-type-merging} to be enabled. Enabled by default.
5180
5181 @item -Wopenmp-simd
5182 @opindex Wopenm-simd
5183 Warn if the vectorizer cost model overrides the OpenMP or the Cilk Plus
5184 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
5185 option can be used to relax the cost model.
5186
5187 @item -Woverride-init @r{(C and Objective-C only)}
5188 @opindex Woverride-init
5189 @opindex Wno-override-init
5190 @opindex W
5191 @opindex Wextra
5192 @opindex Wno-extra
5193 Warn if an initialized field without side effects is overridden when
5194 using designated initializers (@pxref{Designated Inits, , Designated
5195 Initializers}).
5196
5197 This warning is included in @option{-Wextra}. To get other
5198 @option{-Wextra} warnings without this one, use @option{-Wextra
5199 -Wno-override-init}.
5200
5201 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
5202 @opindex Woverride-init-side-effects
5203 @opindex Wno-override-init-side-effects
5204 Warn if an initialized field with side effects is overridden when
5205 using designated initializers (@pxref{Designated Inits, , Designated
5206 Initializers}). This warning is enabled by default.
5207
5208 @item -Wpacked
5209 @opindex Wpacked
5210 @opindex Wno-packed
5211 Warn if a structure is given the packed attribute, but the packed
5212 attribute has no effect on the layout or size of the structure.
5213 Such structures may be mis-aligned for little benefit. For
5214 instance, in this code, the variable @code{f.x} in @code{struct bar}
5215 is misaligned even though @code{struct bar} does not itself
5216 have the packed attribute:
5217
5218 @smallexample
5219 @group
5220 struct foo @{
5221 int x;
5222 char a, b, c, d;
5223 @} __attribute__((packed));
5224 struct bar @{
5225 char z;
5226 struct foo f;
5227 @};
5228 @end group
5229 @end smallexample
5230
5231 @item -Wpacked-bitfield-compat
5232 @opindex Wpacked-bitfield-compat
5233 @opindex Wno-packed-bitfield-compat
5234 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
5235 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
5236 the change can lead to differences in the structure layout. GCC
5237 informs you when the offset of such a field has changed in GCC 4.4.
5238 For example there is no longer a 4-bit padding between field @code{a}
5239 and @code{b} in this structure:
5240
5241 @smallexample
5242 struct foo
5243 @{
5244 char a:4;
5245 char b:8;
5246 @} __attribute__ ((packed));
5247 @end smallexample
5248
5249 This warning is enabled by default. Use
5250 @option{-Wno-packed-bitfield-compat} to disable this warning.
5251
5252 @item -Wpadded
5253 @opindex Wpadded
5254 @opindex Wno-padded
5255 Warn if padding is included in a structure, either to align an element
5256 of the structure or to align the whole structure. Sometimes when this
5257 happens it is possible to rearrange the fields of the structure to
5258 reduce the padding and so make the structure smaller.
5259
5260 @item -Wredundant-decls
5261 @opindex Wredundant-decls
5262 @opindex Wno-redundant-decls
5263 Warn if anything is declared more than once in the same scope, even in
5264 cases where multiple declaration is valid and changes nothing.
5265
5266 @item -Wnested-externs @r{(C and Objective-C only)}
5267 @opindex Wnested-externs
5268 @opindex Wno-nested-externs
5269 Warn if an @code{extern} declaration is encountered within a function.
5270
5271 @item -Wno-inherited-variadic-ctor
5272 @opindex Winherited-variadic-ctor
5273 @opindex Wno-inherited-variadic-ctor
5274 Suppress warnings about use of C++11 inheriting constructors when the
5275 base class inherited from has a C variadic constructor; the warning is
5276 on by default because the ellipsis is not inherited.
5277
5278 @item -Winline
5279 @opindex Winline
5280 @opindex Wno-inline
5281 Warn if a function that is declared as inline cannot be inlined.
5282 Even with this option, the compiler does not warn about failures to
5283 inline functions declared in system headers.
5284
5285 The compiler uses a variety of heuristics to determine whether or not
5286 to inline a function. For example, the compiler takes into account
5287 the size of the function being inlined and the amount of inlining
5288 that has already been done in the current function. Therefore,
5289 seemingly insignificant changes in the source program can cause the
5290 warnings produced by @option{-Winline} to appear or disappear.
5291
5292 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
5293 @opindex Wno-invalid-offsetof
5294 @opindex Winvalid-offsetof
5295 Suppress warnings from applying the @code{offsetof} macro to a non-POD
5296 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
5297 to a non-standard-layout type is undefined. In existing C++ implementations,
5298 however, @code{offsetof} typically gives meaningful results.
5299 This flag is for users who are aware that they are
5300 writing nonportable code and who have deliberately chosen to ignore the
5301 warning about it.
5302
5303 The restrictions on @code{offsetof} may be relaxed in a future version
5304 of the C++ standard.
5305
5306 @item -Wno-int-to-pointer-cast
5307 @opindex Wno-int-to-pointer-cast
5308 @opindex Wint-to-pointer-cast
5309 Suppress warnings from casts to pointer type of an integer of a
5310 different size. In C++, casting to a pointer type of smaller size is
5311 an error. @option{Wint-to-pointer-cast} is enabled by default.
5312
5313
5314 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
5315 @opindex Wno-pointer-to-int-cast
5316 @opindex Wpointer-to-int-cast
5317 Suppress warnings from casts from a pointer to an integer type of a
5318 different size.
5319
5320 @item -Winvalid-pch
5321 @opindex Winvalid-pch
5322 @opindex Wno-invalid-pch
5323 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
5324 the search path but can't be used.
5325
5326 @item -Wlong-long
5327 @opindex Wlong-long
5328 @opindex Wno-long-long
5329 Warn if @code{long long} type is used. This is enabled by either
5330 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
5331 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
5332
5333 @item -Wvariadic-macros
5334 @opindex Wvariadic-macros
5335 @opindex Wno-variadic-macros
5336 Warn if variadic macros are used in ISO C90 mode, or if the GNU
5337 alternate syntax is used in ISO C99 mode. This is enabled by either
5338 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
5339 messages, use @option{-Wno-variadic-macros}.
5340
5341 @item -Wvarargs
5342 @opindex Wvarargs
5343 @opindex Wno-varargs
5344 Warn upon questionable usage of the macros used to handle variable
5345 arguments like @code{va_start}. This is default. To inhibit the
5346 warning messages, use @option{-Wno-varargs}.
5347
5348 @item -Wvector-operation-performance
5349 @opindex Wvector-operation-performance
5350 @opindex Wno-vector-operation-performance
5351 Warn if vector operation is not implemented via SIMD capabilities of the
5352 architecture. Mainly useful for the performance tuning.
5353 Vector operation can be implemented @code{piecewise}, which means that the
5354 scalar operation is performed on every vector element;
5355 @code{in parallel}, which means that the vector operation is implemented
5356 using scalars of wider type, which normally is more performance efficient;
5357 and @code{as a single scalar}, which means that vector fits into a
5358 scalar type.
5359
5360 @item -Wno-virtual-move-assign
5361 @opindex Wvirtual-move-assign
5362 @opindex Wno-virtual-move-assign
5363 Suppress warnings about inheriting from a virtual base with a
5364 non-trivial C++11 move assignment operator. This is dangerous because
5365 if the virtual base is reachable along more than one path, it is
5366 moved multiple times, which can mean both objects end up in the
5367 moved-from state. If the move assignment operator is written to avoid
5368 moving from a moved-from object, this warning can be disabled.
5369
5370 @item -Wvla
5371 @opindex Wvla
5372 @opindex Wno-vla
5373 Warn if variable length array is used in the code.
5374 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
5375 the variable length array.
5376
5377 @item -Wvolatile-register-var
5378 @opindex Wvolatile-register-var
5379 @opindex Wno-volatile-register-var
5380 Warn if a register variable is declared volatile. The volatile
5381 modifier does not inhibit all optimizations that may eliminate reads
5382 and/or writes to register variables. This warning is enabled by
5383 @option{-Wall}.
5384
5385 @item -Wdisabled-optimization
5386 @opindex Wdisabled-optimization
5387 @opindex Wno-disabled-optimization
5388 Warn if a requested optimization pass is disabled. This warning does
5389 not generally indicate that there is anything wrong with your code; it
5390 merely indicates that GCC's optimizers are unable to handle the code
5391 effectively. Often, the problem is that your code is too big or too
5392 complex; GCC refuses to optimize programs when the optimization
5393 itself is likely to take inordinate amounts of time.
5394
5395 @item -Wpointer-sign @r{(C and Objective-C only)}
5396 @opindex Wpointer-sign
5397 @opindex Wno-pointer-sign
5398 Warn for pointer argument passing or assignment with different signedness.
5399 This option is only supported for C and Objective-C@. It is implied by
5400 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
5401 @option{-Wno-pointer-sign}.
5402
5403 @item -Wstack-protector
5404 @opindex Wstack-protector
5405 @opindex Wno-stack-protector
5406 This option is only active when @option{-fstack-protector} is active. It
5407 warns about functions that are not protected against stack smashing.
5408
5409 @item -Woverlength-strings
5410 @opindex Woverlength-strings
5411 @opindex Wno-overlength-strings
5412 Warn about string constants that are longer than the ``minimum
5413 maximum'' length specified in the C standard. Modern compilers
5414 generally allow string constants that are much longer than the
5415 standard's minimum limit, but very portable programs should avoid
5416 using longer strings.
5417
5418 The limit applies @emph{after} string constant concatenation, and does
5419 not count the trailing NUL@. In C90, the limit was 509 characters; in
5420 C99, it was raised to 4095. C++98 does not specify a normative
5421 minimum maximum, so we do not diagnose overlength strings in C++@.
5422
5423 This option is implied by @option{-Wpedantic}, and can be disabled with
5424 @option{-Wno-overlength-strings}.
5425
5426 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
5427 @opindex Wunsuffixed-float-constants
5428
5429 Issue a warning for any floating constant that does not have
5430 a suffix. When used together with @option{-Wsystem-headers} it
5431 warns about such constants in system header files. This can be useful
5432 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
5433 from the decimal floating-point extension to C99.
5434
5435 @item -Wno-designated-init @r{(C and Objective-C only)}
5436 Suppress warnings when a positional initializer is used to initialize
5437 a structure that has been marked with the @code{designated_init}
5438 attribute.
5439
5440 @end table
5441
5442 @node Debugging Options
5443 @section Options for Debugging Your Program or GCC
5444 @cindex options, debugging
5445 @cindex debugging information options
5446
5447 GCC has various special options that are used for debugging
5448 either your program or GCC:
5449
5450 @table @gcctabopt
5451 @item -g
5452 @opindex g
5453 Produce debugging information in the operating system's native format
5454 (stabs, COFF, XCOFF, or DWARF 2)@. GDB can work with this debugging
5455 information.
5456
5457 On most systems that use stabs format, @option{-g} enables use of extra
5458 debugging information that only GDB can use; this extra information
5459 makes debugging work better in GDB but probably makes other debuggers
5460 crash or
5461 refuse to read the program. If you want to control for certain whether
5462 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
5463 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
5464
5465 GCC allows you to use @option{-g} with
5466 @option{-O}. The shortcuts taken by optimized code may occasionally
5467 produce surprising results: some variables you declared may not exist
5468 at all; flow of control may briefly move where you did not expect it;
5469 some statements may not be executed because they compute constant
5470 results or their values are already at hand; some statements may
5471 execute in different places because they have been moved out of loops.
5472
5473 Nevertheless it proves possible to debug optimized output. This makes
5474 it reasonable to use the optimizer for programs that might have bugs.
5475
5476 The following options are useful when GCC is generated with the
5477 capability for more than one debugging format.
5478
5479 @item -gsplit-dwarf
5480 @opindex gsplit-dwarf
5481 Separate as much dwarf debugging information as possible into a
5482 separate output file with the extension .dwo. This option allows
5483 the build system to avoid linking files with debug information. To
5484 be useful, this option requires a debugger capable of reading .dwo
5485 files.
5486
5487 @item -ggdb
5488 @opindex ggdb
5489 Produce debugging information for use by GDB@. This means to use the
5490 most expressive format available (DWARF 2, stabs, or the native format
5491 if neither of those are supported), including GDB extensions if at all
5492 possible.
5493
5494 @item -gpubnames
5495 @opindex gpubnames
5496 Generate dwarf .debug_pubnames and .debug_pubtypes sections.
5497
5498 @item -ggnu-pubnames
5499 @opindex ggnu-pubnames
5500 Generate .debug_pubnames and .debug_pubtypes sections in a format
5501 suitable for conversion into a GDB@ index. This option is only useful
5502 with a linker that can produce GDB@ index version 7.
5503
5504 @item -gstabs
5505 @opindex gstabs
5506 Produce debugging information in stabs format (if that is supported),
5507 without GDB extensions. This is the format used by DBX on most BSD
5508 systems. On MIPS, Alpha and System V Release 4 systems this option
5509 produces stabs debugging output that is not understood by DBX or SDB@.
5510 On System V Release 4 systems this option requires the GNU assembler.
5511
5512 @item -feliminate-unused-debug-symbols
5513 @opindex feliminate-unused-debug-symbols
5514 Produce debugging information in stabs format (if that is supported),
5515 for only symbols that are actually used.
5516
5517 @item -femit-class-debug-always
5518 @opindex femit-class-debug-always
5519 Instead of emitting debugging information for a C++ class in only one
5520 object file, emit it in all object files using the class. This option
5521 should be used only with debuggers that are unable to handle the way GCC
5522 normally emits debugging information for classes because using this
5523 option increases the size of debugging information by as much as a
5524 factor of two.
5525
5526 @item -fdebug-types-section
5527 @opindex fdebug-types-section
5528 @opindex fno-debug-types-section
5529 When using DWARF Version 4 or higher, type DIEs can be put into
5530 their own @code{.debug_types} section instead of making them part of the
5531 @code{.debug_info} section. It is more efficient to put them in a separate
5532 comdat sections since the linker can then remove duplicates.
5533 But not all DWARF consumers support @code{.debug_types} sections yet
5534 and on some objects @code{.debug_types} produces larger instead of smaller
5535 debugging information.
5536
5537 @item -gstabs+
5538 @opindex gstabs+
5539 Produce debugging information in stabs format (if that is supported),
5540 using GNU extensions understood only by the GNU debugger (GDB)@. The
5541 use of these extensions is likely to make other debuggers crash or
5542 refuse to read the program.
5543
5544 @item -gcoff
5545 @opindex gcoff
5546 Produce debugging information in COFF format (if that is supported).
5547 This is the format used by SDB on most System V systems prior to
5548 System V Release 4.
5549
5550 @item -gxcoff
5551 @opindex gxcoff
5552 Produce debugging information in XCOFF format (if that is supported).
5553 This is the format used by the DBX debugger on IBM RS/6000 systems.
5554
5555 @item -gxcoff+
5556 @opindex gxcoff+
5557 Produce debugging information in XCOFF format (if that is supported),
5558 using GNU extensions understood only by the GNU debugger (GDB)@. The
5559 use of these extensions is likely to make other debuggers crash or
5560 refuse to read the program, and may cause assemblers other than the GNU
5561 assembler (GAS) to fail with an error.
5562
5563 @item -gdwarf-@var{version}
5564 @opindex gdwarf-@var{version}
5565 Produce debugging information in DWARF format (if that is supported).
5566 The value of @var{version} may be either 2, 3, 4 or 5; the default version
5567 for most targets is 4. DWARF Version 5 is only experimental.
5568
5569 Note that with DWARF Version 2, some ports require and always
5570 use some non-conflicting DWARF 3 extensions in the unwind tables.
5571
5572 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
5573 for maximum benefit.
5574
5575 @item -grecord-gcc-switches
5576 @opindex grecord-gcc-switches
5577 This switch causes the command-line options used to invoke the
5578 compiler that may affect code generation to be appended to the
5579 DW_AT_producer attribute in DWARF debugging information. The options
5580 are concatenated with spaces separating them from each other and from
5581 the compiler version. See also @option{-frecord-gcc-switches} for another
5582 way of storing compiler options into the object file. This is the default.
5583
5584 @item -gno-record-gcc-switches
5585 @opindex gno-record-gcc-switches
5586 Disallow appending command-line options to the DW_AT_producer attribute
5587 in DWARF debugging information.
5588
5589 @item -gstrict-dwarf
5590 @opindex gstrict-dwarf
5591 Disallow using extensions of later DWARF standard version than selected
5592 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
5593 DWARF extensions from later standard versions is allowed.
5594
5595 @item -gno-strict-dwarf
5596 @opindex gno-strict-dwarf
5597 Allow using extensions of later DWARF standard version than selected with
5598 @option{-gdwarf-@var{version}}.
5599
5600 @item -gz@r{[}=@var{type}@r{]}
5601 @opindex gz
5602 Produce compressed debug sections in DWARF format, if that is supported.
5603 If @var{type} is not given, the default type depends on the capabilities
5604 of the assembler and linker used. @var{type} may be one of
5605 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
5606 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
5607 compression in traditional GNU format). If the linker doesn't support
5608 writing compressed debug sections, the option is rejected. Otherwise,
5609 if the assembler does not support them, @option{-gz} is silently ignored
5610 when producing object files.
5611
5612 @item -gvms
5613 @opindex gvms
5614 Produce debugging information in Alpha/VMS debug format (if that is
5615 supported). This is the format used by DEBUG on Alpha/VMS systems.
5616
5617 @item -g@var{level}
5618 @itemx -ggdb@var{level}
5619 @itemx -gstabs@var{level}
5620 @itemx -gcoff@var{level}
5621 @itemx -gxcoff@var{level}
5622 @itemx -gvms@var{level}
5623 Request debugging information and also use @var{level} to specify how
5624 much information. The default level is 2.
5625
5626 Level 0 produces no debug information at all. Thus, @option{-g0} negates
5627 @option{-g}.
5628
5629 Level 1 produces minimal information, enough for making backtraces in
5630 parts of the program that you don't plan to debug. This includes
5631 descriptions of functions and external variables, and line number
5632 tables, but no information about local variables.
5633
5634 Level 3 includes extra information, such as all the macro definitions
5635 present in the program. Some debuggers support macro expansion when
5636 you use @option{-g3}.
5637
5638 @option{-gdwarf-2} does not accept a concatenated debug level, because
5639 GCC used to support an option @option{-gdwarf} that meant to generate
5640 debug information in version 1 of the DWARF format (which is very
5641 different from version 2), and it would have been too confusing. That
5642 debug format is long obsolete, but the option cannot be changed now.
5643 Instead use an additional @option{-g@var{level}} option to change the
5644 debug level for DWARF.
5645
5646 @item -gtoggle
5647 @opindex gtoggle
5648 Turn off generation of debug info, if leaving out this option
5649 generates it, or turn it on at level 2 otherwise. The position of this
5650 argument in the command line does not matter; it takes effect after all
5651 other options are processed, and it does so only once, no matter how
5652 many times it is given. This is mainly intended to be used with
5653 @option{-fcompare-debug}.
5654
5655 @item -fsanitize=address
5656 @opindex fsanitize=address
5657 Enable AddressSanitizer, a fast memory error detector.
5658 Memory access instructions are instrumented to detect
5659 out-of-bounds and use-after-free bugs.
5660 See @uref{http://code.google.com/p/address-sanitizer/} for
5661 more details. The run-time behavior can be influenced using the
5662 @env{ASAN_OPTIONS} environment variable; see
5663 @url{https://code.google.com/p/address-sanitizer/wiki/Flags#Run-time_flags} for
5664 a list of supported options.
5665
5666 @item -fsanitize=kernel-address
5667 @opindex fsanitize=kernel-address
5668 Enable AddressSanitizer for Linux kernel.
5669 See @uref{http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel} for more details.
5670
5671 @item -fsanitize=thread
5672 @opindex fsanitize=thread
5673 Enable ThreadSanitizer, a fast data race detector.
5674 Memory access instructions are instrumented to detect
5675 data race bugs. See @uref{http://code.google.com/p/thread-sanitizer/} for more
5676 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
5677 environment variable; see
5678 @url{https://code.google.com/p/thread-sanitizer/wiki/Flags} for a list of
5679 supported options.
5680
5681 @item -fsanitize=leak
5682 @opindex fsanitize=leak
5683 Enable LeakSanitizer, a memory leak detector.
5684 This option only matters for linking of executables and if neither
5685 @option{-fsanitize=address} nor @option{-fsanitize=thread} is used. In that
5686 case the executable is linked against a library that overrides @code{malloc}
5687 and other allocator functions. See
5688 @uref{https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer} for more
5689 details. The run-time behavior can be influenced using the
5690 @env{LSAN_OPTIONS} environment variable.
5691
5692 @item -fsanitize=undefined
5693 @opindex fsanitize=undefined
5694 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
5695 Various computations are instrumented to detect undefined behavior
5696 at runtime. Current suboptions are:
5697
5698 @table @gcctabopt
5699
5700 @item -fsanitize=shift
5701 @opindex fsanitize=shift
5702 This option enables checking that the result of a shift operation is
5703 not undefined. Note that what exactly is considered undefined differs
5704 slightly between C and C++, as well as between ISO C90 and C99, etc.
5705
5706 @item -fsanitize=integer-divide-by-zero
5707 @opindex fsanitize=integer-divide-by-zero
5708 Detect integer division by zero as well as @code{INT_MIN / -1} division.
5709
5710 @item -fsanitize=unreachable
5711 @opindex fsanitize=unreachable
5712 With this option, the compiler turns the @code{__builtin_unreachable}
5713 call into a diagnostics message call instead. When reaching the
5714 @code{__builtin_unreachable} call, the behavior is undefined.
5715
5716 @item -fsanitize=vla-bound
5717 @opindex fsanitize=vla-bound
5718 This option instructs the compiler to check that the size of a variable
5719 length array is positive.
5720
5721 @item -fsanitize=null
5722 @opindex fsanitize=null
5723 This option enables pointer checking. Particularly, the application
5724 built with this option turned on will issue an error message when it
5725 tries to dereference a NULL pointer, or if a reference (possibly an
5726 rvalue reference) is bound to a NULL pointer, or if a method is invoked
5727 on an object pointed by a NULL pointer.
5728
5729 @item -fsanitize=return
5730 @opindex fsanitize=return
5731 This option enables return statement checking. Programs
5732 built with this option turned on will issue an error message
5733 when the end of a non-void function is reached without actually
5734 returning a value. This option works in C++ only.
5735
5736 @item -fsanitize=signed-integer-overflow
5737 @opindex fsanitize=signed-integer-overflow
5738 This option enables signed integer overflow checking. We check that
5739 the result of @code{+}, @code{*}, and both unary and binary @code{-}
5740 does not overflow in the signed arithmetics. Note, integer promotion
5741 rules must be taken into account. That is, the following is not an
5742 overflow:
5743 @smallexample
5744 signed char a = SCHAR_MAX;
5745 a++;
5746 @end smallexample
5747
5748 @item -fsanitize=bounds
5749 @opindex fsanitize=bounds
5750 This option enables instrumentation of array bounds. Various out of bounds
5751 accesses are detected. Flexible array members, flexible array member-like
5752 arrays, and initializers of variables with static storage are not instrumented.
5753
5754 @item -fsanitize=bounds-strict
5755 @opindex fsanitize=bounds-strict
5756 This option enables strict instrumentation of array bounds. Most out of bounds
5757 accesses are detected, including flexible array members and flexible array
5758 member-like arrays. Initializers of variables with static storage are not
5759 instrumented.
5760
5761 @item -fsanitize=alignment
5762 @opindex fsanitize=alignment
5763
5764 This option enables checking of alignment of pointers when they are
5765 dereferenced, or when a reference is bound to insufficiently aligned target,
5766 or when a method or constructor is invoked on insufficiently aligned object.
5767
5768 @item -fsanitize=object-size
5769 @opindex fsanitize=object-size
5770 This option enables instrumentation of memory references using the
5771 @code{__builtin_object_size} function. Various out of bounds pointer
5772 accesses are detected.
5773
5774 @item -fsanitize=float-divide-by-zero
5775 @opindex fsanitize=float-divide-by-zero
5776 Detect floating-point division by zero. Unlike other similar options,
5777 @option{-fsanitize=float-divide-by-zero} is not enabled by
5778 @option{-fsanitize=undefined}, since floating-point division by zero can
5779 be a legitimate way of obtaining infinities and NaNs.
5780
5781 @item -fsanitize=float-cast-overflow
5782 @opindex fsanitize=float-cast-overflow
5783 This option enables floating-point type to integer conversion checking.
5784 We check that the result of the conversion does not overflow.
5785 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
5786 not enabled by @option{-fsanitize=undefined}.
5787 This option does not work well with @code{FE_INVALID} exceptions enabled.
5788
5789 @item -fsanitize=nonnull-attribute
5790 @opindex fsanitize=nonnull-attribute
5791
5792 This option enables instrumentation of calls, checking whether null values
5793 are not passed to arguments marked as requiring a non-null value by the
5794 @code{nonnull} function attribute.
5795
5796 @item -fsanitize=returns-nonnull-attribute
5797 @opindex fsanitize=returns-nonnull-attribute
5798
5799 This option enables instrumentation of return statements in functions
5800 marked with @code{returns_nonnull} function attribute, to detect returning
5801 of null values from such functions.
5802
5803 @item -fsanitize=bool
5804 @opindex fsanitize=bool
5805
5806 This option enables instrumentation of loads from bool. If a value other
5807 than 0/1 is loaded, a run-time error is issued.
5808
5809 @item -fsanitize=enum
5810 @opindex fsanitize=enum
5811
5812 This option enables instrumentation of loads from an enum type. If
5813 a value outside the range of values for the enum type is loaded,
5814 a run-time error is issued.
5815
5816 @item -fsanitize=vptr
5817 @opindex fsanitize=vptr
5818
5819 This option enables instrumentation of C++ member function calls, member
5820 accesses and some conversions between pointers to base and derived classes,
5821 to verify the referenced object has the correct dynamic type.
5822
5823 @end table
5824
5825 While @option{-ftrapv} causes traps for signed overflows to be emitted,
5826 @option{-fsanitize=undefined} gives a diagnostic message.
5827 This currently works only for the C family of languages.
5828
5829 @item -fno-sanitize=all
5830 @opindex fno-sanitize=all
5831
5832 This option disables all previously enabled sanitizers.
5833 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
5834 together.
5835
5836 @item -fasan-shadow-offset=@var{number}
5837 @opindex fasan-shadow-offset
5838 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
5839 It is useful for experimenting with different shadow memory layouts in
5840 Kernel AddressSanitizer.
5841
5842 @item -fsanitize-sections=@var{s1,s2,...}
5843 @opindex fsanitize-sections
5844 Sanitize global variables in selected user-defined sections. @var{si} may
5845 contain wildcards.
5846
5847 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
5848 @opindex fsanitize-recover
5849 @opindex fno-sanitize-recover
5850 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
5851 mentioned in comma-separated list of @var{opts}. Enabling this option
5852 for a sanitizer component causes it to attempt to continue
5853 running the program as if no error happened. This means multiple
5854 runtime errors can be reported in a single program run, and the exit
5855 code of the program may indicate success even when errors
5856 have been reported. The @option{-fno-sanitize-recover=} option
5857 can be used to alter
5858 this behavior: only the first detected error is reported
5859 and program then exits with a non-zero exit code.
5860
5861 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
5862 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
5863 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero} and
5864 @option{-fsanitize=kernel-address}. For these sanitizers error recovery is turned on by default.
5865 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
5866 accepted, the former enables recovery for all sanitizers that support it,
5867 the latter disables recovery for all sanitizers that support it.
5868
5869 Syntax without explicit @var{opts} parameter is deprecated. It is equivalent to
5870 @smallexample
5871 -fsanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5872 @end smallexample
5873 @noindent
5874 Similarly @option{-fno-sanitize-recover} is equivalent to
5875 @smallexample
5876 -fno-sanitize-recover=undefined,float-cast-overflow,float-divide-by-zero
5877 @end smallexample
5878
5879 @item -fsanitize-undefined-trap-on-error
5880 @opindex fsanitize-undefined-trap-on-error
5881 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
5882 report undefined behavior using @code{__builtin_trap} rather than
5883 a @code{libubsan} library routine. The advantage of this is that the
5884 @code{libubsan} library is not needed and is not linked in, so this
5885 is usable even in freestanding environments.
5886
5887 @item -fcheck-pointer-bounds
5888 @opindex fcheck-pointer-bounds
5889 @opindex fno-check-pointer-bounds
5890 @cindex Pointer Bounds Checker options
5891 Enable Pointer Bounds Checker instrumentation. Each memory reference
5892 is instrumented with checks of the pointer used for memory access against
5893 bounds associated with that pointer.
5894
5895 Currently there
5896 is only an implementation for Intel MPX available, thus x86 target
5897 and @option{-mmpx} are required to enable this feature.
5898 MPX-based instrumentation requires
5899 a runtime library to enable MPX in hardware and handle bounds
5900 violation signals. By default when @option{-fcheck-pointer-bounds}
5901 and @option{-mmpx} options are used to link a program, the GCC driver
5902 links against the @file{libmpx} runtime library and @file{libmpxwrappers}
5903 library. It also passes '-z bndplt' to a linker in case it supports this
5904 option (which is checked on libmpx configuration). Note that old versions
5905 of linker may ignore option. Gold linker doesn't support '-z bndplt'
5906 option. With no '-z bndplt' support in linker all calls to dynamic libraries
5907 lose passed bounds reducing overall protection level. It's highly
5908 recommended to use linker with '-z bndplt' support. In case such linker
5909 is not available it is adviced to always use @option{-static-libmpxwrappers}
5910 for better protection level or use @option{-static} to completely avoid
5911 external calls to dynamic libraries. MPX-based instrumentation
5912 may be used for debugging and also may be included in production code
5913 to increase program security. Depending on usage, you may
5914 have different requirements for the runtime library. The current version
5915 of the MPX runtime library is more oriented for use as a debugging
5916 tool. MPX runtime library usage implies @option{-lpthread}. See
5917 also @option{-static-libmpx}. The runtime library behavior can be
5918 influenced using various @env{CHKP_RT_*} environment variables. See
5919 @uref{https://gcc.gnu.org/wiki/Intel%20MPX%20support%20in%20the%20GCC%20compiler}
5920 for more details.
5921
5922 Generated instrumentation may be controlled by various
5923 @option{-fchkp-*} options and by the @code{bnd_variable_size}
5924 structure field attribute (@pxref{Type Attributes}) and
5925 @code{bnd_legacy}, and @code{bnd_instrument} function attributes
5926 (@pxref{Function Attributes}). GCC also provides a number of built-in
5927 functions for controlling the Pointer Bounds Checker. @xref{Pointer
5928 Bounds Checker builtins}, for more information.
5929
5930 @item -fchkp-check-incomplete-type
5931 @opindex fchkp-check-incomplete-type
5932 @opindex fno-chkp-check-incomplete-type
5933 Generate pointer bounds checks for variables with incomplete type.
5934 Enabled by default.
5935
5936 @item -fchkp-narrow-bounds
5937 @opindex fchkp-narrow-bounds
5938 @opindex fno-chkp-narrow-bounds
5939 Controls bounds used by Pointer Bounds Checker for pointers to object
5940 fields. If narrowing is enabled then field bounds are used. Otherwise
5941 object bounds are used. See also @option{-fchkp-narrow-to-innermost-array}
5942 and @option{-fchkp-first-field-has-own-bounds}. Enabled by default.
5943
5944 @item -fchkp-first-field-has-own-bounds
5945 @opindex fchkp-first-field-has-own-bounds
5946 @opindex fno-chkp-first-field-has-own-bounds
5947 Forces Pointer Bounds Checker to use narrowed bounds for the address of the
5948 first field in the structure. By default a pointer to the first field has
5949 the same bounds as a pointer to the whole structure.
5950
5951 @item -fchkp-narrow-to-innermost-array
5952 @opindex fchkp-narrow-to-innermost-array
5953 @opindex fno-chkp-narrow-to-innermost-array
5954 Forces Pointer Bounds Checker to use bounds of the innermost arrays in
5955 case of nested static array access. By default this option is disabled and
5956 bounds of the outermost array are used.
5957
5958 @item -fchkp-optimize
5959 @opindex fchkp-optimize
5960 @opindex fno-chkp-optimize
5961 Enables Pointer Bounds Checker optimizations. Enabled by default at
5962 optimization levels @option{-O}, @option{-O2}, @option{-O3}.
5963
5964 @item -fchkp-use-fast-string-functions
5965 @opindex fchkp-use-fast-string-functions
5966 @opindex fno-chkp-use-fast-string-functions
5967 Enables use of @code{*_nobnd} versions of string functions (not copying bounds)
5968 by Pointer Bounds Checker. Disabled by default.
5969
5970 @item -fchkp-use-nochk-string-functions
5971 @opindex fchkp-use-nochk-string-functions
5972 @opindex fno-chkp-use-nochk-string-functions
5973 Enables use of @code{*_nochk} versions of string functions (not checking bounds)
5974 by Pointer Bounds Checker. Disabled by default.
5975
5976 @item -fchkp-use-static-bounds
5977 @opindex fchkp-use-static-bounds
5978 @opindex fno-chkp-use-static-bounds
5979 Allow Pointer Bounds Checker to generate static bounds holding
5980 bounds of static variables. Enabled by default.
5981
5982 @item -fchkp-use-static-const-bounds
5983 @opindex fchkp-use-static-const-bounds
5984 @opindex fno-chkp-use-static-const-bounds
5985 Use statically-initialized bounds for constant bounds instead of
5986 generating them each time they are required. By default enabled when
5987 @option{-fchkp-use-static-bounds} is enabled.
5988
5989 @item -fchkp-treat-zero-dynamic-size-as-infinite
5990 @opindex fchkp-treat-zero-dynamic-size-as-infinite
5991 @opindex fno-chkp-treat-zero-dynamic-size-as-infinite
5992 With this option, objects with incomplete type whose
5993 dynamically-obtained size is zero are treated as having infinite size
5994 instead by Pointer Bounds
5995 Checker. This option may be helpful if a program is linked with a library
5996 missing size information for some symbols. Disabled by default.
5997
5998 @item -fchkp-check-read
5999 @opindex fchkp-check-read
6000 @opindex fno-chkp-check-read
6001 Instructs Pointer Bounds Checker to generate checks for all read
6002 accesses to memory. Enabled by default.
6003
6004 @item -fchkp-check-write
6005 @opindex fchkp-check-write
6006 @opindex fno-chkp-check-write
6007 Instructs Pointer Bounds Checker to generate checks for all write
6008 accesses to memory. Enabled by default.
6009
6010 @item -fchkp-store-bounds
6011 @opindex fchkp-store-bounds
6012 @opindex fno-chkp-store-bounds
6013 Instructs Pointer Bounds Checker to generate bounds stores for
6014 pointer writes. Enabled by default.
6015
6016 @item -fchkp-instrument-calls
6017 @opindex fchkp-instrument-calls
6018 @opindex fno-chkp-instrument-calls
6019 Instructs Pointer Bounds Checker to pass pointer bounds to calls.
6020 Enabled by default.
6021
6022 @item -fchkp-instrument-marked-only
6023 @opindex fchkp-instrument-marked-only
6024 @opindex fno-chkp-instrument-marked-only
6025 Instructs Pointer Bounds Checker to instrument only functions
6026 marked with the @code{bnd_instrument} attribute
6027 (@pxref{Function Attributes}). Disabled by default.
6028
6029 @item -fchkp-use-wrappers
6030 @opindex fchkp-use-wrappers
6031 @opindex fno-chkp-use-wrappers
6032 Allows Pointer Bounds Checker to replace calls to built-in functions
6033 with calls to wrapper functions. When @option{-fchkp-use-wrappers}
6034 is used to link a program, the GCC driver automatically links
6035 against @file{libmpxwrappers}. See also @option{-static-libmpxwrappers}.
6036 Enabled by default.
6037
6038 @item -fdump-final-insns@r{[}=@var{file}@r{]}
6039 @opindex fdump-final-insns
6040 Dump the final internal representation (RTL) to @var{file}. If the
6041 optional argument is omitted (or if @var{file} is @code{.}), the name
6042 of the dump file is determined by appending @code{.gkd} to the
6043 compilation output file name.
6044
6045 @item -fcompare-debug@r{[}=@var{opts}@r{]}
6046 @opindex fcompare-debug
6047 @opindex fno-compare-debug
6048 If no error occurs during compilation, run the compiler a second time,
6049 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
6050 passed to the second compilation. Dump the final internal
6051 representation in both compilations, and print an error if they differ.
6052
6053 If the equal sign is omitted, the default @option{-gtoggle} is used.
6054
6055 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
6056 and nonzero, implicitly enables @option{-fcompare-debug}. If
6057 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
6058 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
6059 is used.
6060
6061 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
6062 is equivalent to @option{-fno-compare-debug}, which disables the dumping
6063 of the final representation and the second compilation, preventing even
6064 @env{GCC_COMPARE_DEBUG} from taking effect.
6065
6066 To verify full coverage during @option{-fcompare-debug} testing, set
6067 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
6068 which GCC rejects as an invalid option in any actual compilation
6069 (rather than preprocessing, assembly or linking). To get just a
6070 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
6071 not overridden} will do.
6072
6073 @item -fcompare-debug-second
6074 @opindex fcompare-debug-second
6075 This option is implicitly passed to the compiler for the second
6076 compilation requested by @option{-fcompare-debug}, along with options to
6077 silence warnings, and omitting other options that would cause
6078 side-effect compiler outputs to files or to the standard output. Dump
6079 files and preserved temporary files are renamed so as to contain the
6080 @code{.gk} additional extension during the second compilation, to avoid
6081 overwriting those generated by the first.
6082
6083 When this option is passed to the compiler driver, it causes the
6084 @emph{first} compilation to be skipped, which makes it useful for little
6085 other than debugging the compiler proper.
6086
6087 @item -feliminate-dwarf2-dups
6088 @opindex feliminate-dwarf2-dups
6089 Compress DWARF 2 debugging information by eliminating duplicated
6090 information about each symbol. This option only makes sense when
6091 generating DWARF 2 debugging information with @option{-gdwarf-2}.
6092
6093 @item -femit-struct-debug-baseonly
6094 @opindex femit-struct-debug-baseonly
6095 Emit debug information for struct-like types
6096 only when the base name of the compilation source file
6097 matches the base name of file in which the struct is defined.
6098
6099 This option substantially reduces the size of debugging information,
6100 but at significant potential loss in type information to the debugger.
6101 See @option{-femit-struct-debug-reduced} for a less aggressive option.
6102 See @option{-femit-struct-debug-detailed} for more detailed control.
6103
6104 This option works only with DWARF 2.
6105
6106 @item -femit-struct-debug-reduced
6107 @opindex femit-struct-debug-reduced
6108 Emit debug information for struct-like types
6109 only when the base name of the compilation source file
6110 matches the base name of file in which the type is defined,
6111 unless the struct is a template or defined in a system header.
6112
6113 This option significantly reduces the size of debugging information,
6114 with some potential loss in type information to the debugger.
6115 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
6116 See @option{-femit-struct-debug-detailed} for more detailed control.
6117
6118 This option works only with DWARF 2.
6119
6120 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
6121 @opindex femit-struct-debug-detailed
6122 Specify the struct-like types
6123 for which the compiler generates debug information.
6124 The intent is to reduce duplicate struct debug information
6125 between different object files within the same program.
6126
6127 This option is a detailed version of
6128 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
6129 which serves for most needs.
6130
6131 A specification has the syntax@*
6132 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
6133
6134 The optional first word limits the specification to
6135 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
6136 A struct type is used directly when it is the type of a variable, member.
6137 Indirect uses arise through pointers to structs.
6138 That is, when use of an incomplete struct is valid, the use is indirect.
6139 An example is
6140 @samp{struct one direct; struct two * indirect;}.
6141
6142 The optional second word limits the specification to
6143 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
6144 Generic structs are a bit complicated to explain.
6145 For C++, these are non-explicit specializations of template classes,
6146 or non-template classes within the above.
6147 Other programming languages have generics,
6148 but @option{-femit-struct-debug-detailed} does not yet implement them.
6149
6150 The third word specifies the source files for those
6151 structs for which the compiler should emit debug information.
6152 The values @samp{none} and @samp{any} have the normal meaning.
6153 The value @samp{base} means that
6154 the base of name of the file in which the type declaration appears
6155 must match the base of the name of the main compilation file.
6156 In practice, this means that when compiling @file{foo.c}, debug information
6157 is generated for types declared in that file and @file{foo.h},
6158 but not other header files.
6159 The value @samp{sys} means those types satisfying @samp{base}
6160 or declared in system or compiler headers.
6161
6162 You may need to experiment to determine the best settings for your application.
6163
6164 The default is @option{-femit-struct-debug-detailed=all}.
6165
6166 This option works only with DWARF 2.
6167
6168 @item -fno-merge-debug-strings
6169 @opindex fmerge-debug-strings
6170 @opindex fno-merge-debug-strings
6171 Direct the linker to not merge together strings in the debugging
6172 information that are identical in different object files. Merging is
6173 not supported by all assemblers or linkers. Merging decreases the size
6174 of the debug information in the output file at the cost of increasing
6175 link processing time. Merging is enabled by default.
6176
6177 @item -fdebug-prefix-map=@var{old}=@var{new}
6178 @opindex fdebug-prefix-map
6179 When compiling files in directory @file{@var{old}}, record debugging
6180 information describing them as in @file{@var{new}} instead.
6181
6182 @item -fno-dwarf2-cfi-asm
6183 @opindex fdwarf2-cfi-asm
6184 @opindex fno-dwarf2-cfi-asm
6185 Emit DWARF 2 unwind info as compiler generated @code{.eh_frame} section
6186 instead of using GAS @code{.cfi_*} directives.
6187
6188 @cindex @command{prof}
6189 @item -p
6190 @opindex p
6191 Generate extra code to write profile information suitable for the
6192 analysis program @command{prof}. You must use this option when compiling
6193 the source files you want data about, and you must also use it when
6194 linking.
6195
6196 @cindex @command{gprof}
6197 @item -pg
6198 @opindex pg
6199 Generate extra code to write profile information suitable for the
6200 analysis program @command{gprof}. You must use this option when compiling
6201 the source files you want data about, and you must also use it when
6202 linking.
6203
6204 @item -Q
6205 @opindex Q
6206 Makes the compiler print out each function name as it is compiled, and
6207 print some statistics about each pass when it finishes.
6208
6209 @item -ftime-report
6210 @opindex ftime-report
6211 Makes the compiler print some statistics about the time consumed by each
6212 pass when it finishes.
6213
6214 @item -fmem-report
6215 @opindex fmem-report
6216 Makes the compiler print some statistics about permanent memory
6217 allocation when it finishes.
6218
6219 @item -fmem-report-wpa
6220 @opindex fmem-report-wpa
6221 Makes the compiler print some statistics about permanent memory
6222 allocation for the WPA phase only.
6223
6224 @item -fpre-ipa-mem-report
6225 @opindex fpre-ipa-mem-report
6226 @item -fpost-ipa-mem-report
6227 @opindex fpost-ipa-mem-report
6228 Makes the compiler print some statistics about permanent memory
6229 allocation before or after interprocedural optimization.
6230
6231 @item -fprofile-report
6232 @opindex fprofile-report
6233 Makes the compiler print some statistics about consistency of the
6234 (estimated) profile and effect of individual passes.
6235
6236 @item -fstack-usage
6237 @opindex fstack-usage
6238 Makes the compiler output stack usage information for the program, on a
6239 per-function basis. The filename for the dump is made by appending
6240 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
6241 the output file, if explicitly specified and it is not an executable,
6242 otherwise it is the basename of the source file. An entry is made up
6243 of three fields:
6244
6245 @itemize
6246 @item
6247 The name of the function.
6248 @item
6249 A number of bytes.
6250 @item
6251 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
6252 @end itemize
6253
6254 The qualifier @code{static} means that the function manipulates the stack
6255 statically: a fixed number of bytes are allocated for the frame on function
6256 entry and released on function exit; no stack adjustments are otherwise made
6257 in the function. The second field is this fixed number of bytes.
6258
6259 The qualifier @code{dynamic} means that the function manipulates the stack
6260 dynamically: in addition to the static allocation described above, stack
6261 adjustments are made in the body of the function, for example to push/pop
6262 arguments around function calls. If the qualifier @code{bounded} is also
6263 present, the amount of these adjustments is bounded at compile time and
6264 the second field is an upper bound of the total amount of stack used by
6265 the function. If it is not present, the amount of these adjustments is
6266 not bounded at compile time and the second field only represents the
6267 bounded part.
6268
6269 @item -fprofile-arcs
6270 @opindex fprofile-arcs
6271 Add code so that program flow @dfn{arcs} are instrumented. During
6272 execution the program records how many times each branch and call is
6273 executed and how many times it is taken or returns. When the compiled
6274 program exits it saves this data to a file called
6275 @file{@var{auxname}.gcda} for each source file. The data may be used for
6276 profile-directed optimizations (@option{-fbranch-probabilities}), or for
6277 test coverage analysis (@option{-ftest-coverage}). Each object file's
6278 @var{auxname} is generated from the name of the output file, if
6279 explicitly specified and it is not the final executable, otherwise it is
6280 the basename of the source file. In both cases any suffix is removed
6281 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
6282 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
6283 @xref{Cross-profiling}.
6284
6285 @cindex @command{gcov}
6286 @item --coverage
6287 @opindex coverage
6288
6289 This option is used to compile and link code instrumented for coverage
6290 analysis. The option is a synonym for @option{-fprofile-arcs}
6291 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
6292 linking). See the documentation for those options for more details.
6293
6294 @itemize
6295
6296 @item
6297 Compile the source files with @option{-fprofile-arcs} plus optimization
6298 and code generation options. For test coverage analysis, use the
6299 additional @option{-ftest-coverage} option. You do not need to profile
6300 every source file in a program.
6301
6302 @item
6303 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
6304 (the latter implies the former).
6305
6306 @item
6307 Run the program on a representative workload to generate the arc profile
6308 information. This may be repeated any number of times. You can run
6309 concurrent instances of your program, and provided that the file system
6310 supports locking, the data files will be correctly updated. Also
6311 @code{fork} calls are detected and correctly handled (double counting
6312 will not happen).
6313
6314 @item
6315 For profile-directed optimizations, compile the source files again with
6316 the same optimization and code generation options plus
6317 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
6318 Control Optimization}).
6319
6320 @item
6321 For test coverage analysis, use @command{gcov} to produce human readable
6322 information from the @file{.gcno} and @file{.gcda} files. Refer to the
6323 @command{gcov} documentation for further information.
6324
6325 @end itemize
6326
6327 With @option{-fprofile-arcs}, for each function of your program GCC
6328 creates a program flow graph, then finds a spanning tree for the graph.
6329 Only arcs that are not on the spanning tree have to be instrumented: the
6330 compiler adds code to count the number of times that these arcs are
6331 executed. When an arc is the only exit or only entrance to a block, the
6332 instrumentation code can be added to the block; otherwise, a new basic
6333 block must be created to hold the instrumentation code.
6334
6335 @need 2000
6336 @item -ftest-coverage
6337 @opindex ftest-coverage
6338 Produce a notes file that the @command{gcov} code-coverage utility
6339 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
6340 show program coverage. Each source file's note file is called
6341 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
6342 above for a description of @var{auxname} and instructions on how to
6343 generate test coverage data. Coverage data matches the source files
6344 more closely if you do not optimize.
6345
6346 @item -fdbg-cnt-list
6347 @opindex fdbg-cnt-list
6348 Print the name and the counter upper bound for all debug counters.
6349
6350
6351 @item -fdbg-cnt=@var{counter-value-list}
6352 @opindex fdbg-cnt
6353 Set the internal debug counter upper bound. @var{counter-value-list}
6354 is a comma-separated list of @var{name}:@var{value} pairs
6355 which sets the upper bound of each debug counter @var{name} to @var{value}.
6356 All debug counters have the initial upper bound of @code{UINT_MAX};
6357 thus @code{dbg_cnt} returns true always unless the upper bound
6358 is set by this option.
6359 For example, with @option{-fdbg-cnt=dce:10,tail_call:0},
6360 @code{dbg_cnt(dce)} returns true only for first 10 invocations.
6361
6362 @item -fenable-@var{kind}-@var{pass}
6363 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
6364 @opindex fdisable-
6365 @opindex fenable-
6366
6367 This is a set of options that are used to explicitly disable/enable
6368 optimization passes. These options are intended for use for debugging GCC.
6369 Compiler users should use regular options for enabling/disabling
6370 passes instead.
6371
6372 @table @gcctabopt
6373
6374 @item -fdisable-ipa-@var{pass}
6375 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6376 statically invoked in the compiler multiple times, the pass name should be
6377 appended with a sequential number starting from 1.
6378
6379 @item -fdisable-rtl-@var{pass}
6380 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
6381 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
6382 statically invoked in the compiler multiple times, the pass name should be
6383 appended with a sequential number starting from 1. @var{range-list} is a
6384 comma-separated list of function ranges or assembler names. Each range is a number
6385 pair separated by a colon. The range is inclusive in both ends. If the range
6386 is trivial, the number pair can be simplified as a single number. If the
6387 function's call graph node's @var{uid} falls within one of the specified ranges,
6388 the @var{pass} is disabled for that function. The @var{uid} is shown in the
6389 function header of a dump file, and the pass names can be dumped by using
6390 option @option{-fdump-passes}.
6391
6392 @item -fdisable-tree-@var{pass}
6393 @itemx -fdisable-tree-@var{pass}=@var{range-list}
6394 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
6395 option arguments.
6396
6397 @item -fenable-ipa-@var{pass}
6398 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
6399 statically invoked in the compiler multiple times, the pass name should be
6400 appended with a sequential number starting from 1.
6401
6402 @item -fenable-rtl-@var{pass}
6403 @itemx -fenable-rtl-@var{pass}=@var{range-list}
6404 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
6405 description and examples.
6406
6407 @item -fenable-tree-@var{pass}
6408 @itemx -fenable-tree-@var{pass}=@var{range-list}
6409 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
6410 of option arguments.
6411
6412 @end table
6413
6414 Here are some examples showing uses of these options.
6415
6416 @smallexample
6417
6418 # disable ccp1 for all functions
6419 -fdisable-tree-ccp1
6420 # disable complete unroll for function whose cgraph node uid is 1
6421 -fenable-tree-cunroll=1
6422 # disable gcse2 for functions at the following ranges [1,1],
6423 # [300,400], and [400,1000]
6424 # disable gcse2 for functions foo and foo2
6425 -fdisable-rtl-gcse2=foo,foo2
6426 # disable early inlining
6427 -fdisable-tree-einline
6428 # disable ipa inlining
6429 -fdisable-ipa-inline
6430 # enable tree full unroll
6431 -fenable-tree-unroll
6432
6433 @end smallexample
6434
6435 @item -d@var{letters}
6436 @itemx -fdump-rtl-@var{pass}
6437 @itemx -fdump-rtl-@var{pass}=@var{filename}
6438 @opindex d
6439 @opindex fdump-rtl-@var{pass}
6440 Says to make debugging dumps during compilation at times specified by
6441 @var{letters}. This is used for debugging the RTL-based passes of the
6442 compiler. The file names for most of the dumps are made by appending
6443 a pass number and a word to the @var{dumpname}, and the files are
6444 created in the directory of the output file. In case of
6445 @option{=@var{filename}} option, the dump is output on the given file
6446 instead of the pass numbered dump files. Note that the pass number is
6447 computed statically as passes get registered into the pass manager.
6448 Thus the numbering is not related to the dynamic order of execution of
6449 passes. In particular, a pass installed by a plugin could have a
6450 number over 200 even if it executed quite early. @var{dumpname} is
6451 generated from the name of the output file, if explicitly specified
6452 and it is not an executable, otherwise it is the basename of the
6453 source file. These switches may have different effects when
6454 @option{-E} is used for preprocessing.
6455
6456 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
6457 @option{-d} option @var{letters}. Here are the possible
6458 letters for use in @var{pass} and @var{letters}, and their meanings:
6459
6460 @table @gcctabopt
6461
6462 @item -fdump-rtl-alignments
6463 @opindex fdump-rtl-alignments
6464 Dump after branch alignments have been computed.
6465
6466 @item -fdump-rtl-asmcons
6467 @opindex fdump-rtl-asmcons
6468 Dump after fixing rtl statements that have unsatisfied in/out constraints.
6469
6470 @item -fdump-rtl-auto_inc_dec
6471 @opindex fdump-rtl-auto_inc_dec
6472 Dump after auto-inc-dec discovery. This pass is only run on
6473 architectures that have auto inc or auto dec instructions.
6474
6475 @item -fdump-rtl-barriers
6476 @opindex fdump-rtl-barriers
6477 Dump after cleaning up the barrier instructions.
6478
6479 @item -fdump-rtl-bbpart
6480 @opindex fdump-rtl-bbpart
6481 Dump after partitioning hot and cold basic blocks.
6482
6483 @item -fdump-rtl-bbro
6484 @opindex fdump-rtl-bbro
6485 Dump after block reordering.
6486
6487 @item -fdump-rtl-btl1
6488 @itemx -fdump-rtl-btl2
6489 @opindex fdump-rtl-btl2
6490 @opindex fdump-rtl-btl2
6491 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
6492 after the two branch
6493 target load optimization passes.
6494
6495 @item -fdump-rtl-bypass
6496 @opindex fdump-rtl-bypass
6497 Dump after jump bypassing and control flow optimizations.
6498
6499 @item -fdump-rtl-combine
6500 @opindex fdump-rtl-combine
6501 Dump after the RTL instruction combination pass.
6502
6503 @item -fdump-rtl-compgotos
6504 @opindex fdump-rtl-compgotos
6505 Dump after duplicating the computed gotos.
6506
6507 @item -fdump-rtl-ce1
6508 @itemx -fdump-rtl-ce2
6509 @itemx -fdump-rtl-ce3
6510 @opindex fdump-rtl-ce1
6511 @opindex fdump-rtl-ce2
6512 @opindex fdump-rtl-ce3
6513 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
6514 @option{-fdump-rtl-ce3} enable dumping after the three
6515 if conversion passes.
6516
6517 @item -fdump-rtl-cprop_hardreg
6518 @opindex fdump-rtl-cprop_hardreg
6519 Dump after hard register copy propagation.
6520
6521 @item -fdump-rtl-csa
6522 @opindex fdump-rtl-csa
6523 Dump after combining stack adjustments.
6524
6525 @item -fdump-rtl-cse1
6526 @itemx -fdump-rtl-cse2
6527 @opindex fdump-rtl-cse1
6528 @opindex fdump-rtl-cse2
6529 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
6530 the two common subexpression elimination passes.
6531
6532 @item -fdump-rtl-dce
6533 @opindex fdump-rtl-dce
6534 Dump after the standalone dead code elimination passes.
6535
6536 @item -fdump-rtl-dbr
6537 @opindex fdump-rtl-dbr
6538 Dump after delayed branch scheduling.
6539
6540 @item -fdump-rtl-dce1
6541 @itemx -fdump-rtl-dce2
6542 @opindex fdump-rtl-dce1
6543 @opindex fdump-rtl-dce2
6544 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
6545 the two dead store elimination passes.
6546
6547 @item -fdump-rtl-eh
6548 @opindex fdump-rtl-eh
6549 Dump after finalization of EH handling code.
6550
6551 @item -fdump-rtl-eh_ranges
6552 @opindex fdump-rtl-eh_ranges
6553 Dump after conversion of EH handling range regions.
6554
6555 @item -fdump-rtl-expand
6556 @opindex fdump-rtl-expand
6557 Dump after RTL generation.
6558
6559 @item -fdump-rtl-fwprop1
6560 @itemx -fdump-rtl-fwprop2
6561 @opindex fdump-rtl-fwprop1
6562 @opindex fdump-rtl-fwprop2
6563 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
6564 dumping after the two forward propagation passes.
6565
6566 @item -fdump-rtl-gcse1
6567 @itemx -fdump-rtl-gcse2
6568 @opindex fdump-rtl-gcse1
6569 @opindex fdump-rtl-gcse2
6570 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
6571 after global common subexpression elimination.
6572
6573 @item -fdump-rtl-init-regs
6574 @opindex fdump-rtl-init-regs
6575 Dump after the initialization of the registers.
6576
6577 @item -fdump-rtl-initvals
6578 @opindex fdump-rtl-initvals
6579 Dump after the computation of the initial value sets.
6580
6581 @item -fdump-rtl-into_cfglayout
6582 @opindex fdump-rtl-into_cfglayout
6583 Dump after converting to cfglayout mode.
6584
6585 @item -fdump-rtl-ira
6586 @opindex fdump-rtl-ira
6587 Dump after iterated register allocation.
6588
6589 @item -fdump-rtl-jump
6590 @opindex fdump-rtl-jump
6591 Dump after the second jump optimization.
6592
6593 @item -fdump-rtl-loop2
6594 @opindex fdump-rtl-loop2
6595 @option{-fdump-rtl-loop2} enables dumping after the rtl
6596 loop optimization passes.
6597
6598 @item -fdump-rtl-mach
6599 @opindex fdump-rtl-mach
6600 Dump after performing the machine dependent reorganization pass, if that
6601 pass exists.
6602
6603 @item -fdump-rtl-mode_sw
6604 @opindex fdump-rtl-mode_sw
6605 Dump after removing redundant mode switches.
6606
6607 @item -fdump-rtl-rnreg
6608 @opindex fdump-rtl-rnreg
6609 Dump after register renumbering.
6610
6611 @item -fdump-rtl-outof_cfglayout
6612 @opindex fdump-rtl-outof_cfglayout
6613 Dump after converting from cfglayout mode.
6614
6615 @item -fdump-rtl-peephole2
6616 @opindex fdump-rtl-peephole2
6617 Dump after the peephole pass.
6618
6619 @item -fdump-rtl-postreload
6620 @opindex fdump-rtl-postreload
6621 Dump after post-reload optimizations.
6622
6623 @item -fdump-rtl-pro_and_epilogue
6624 @opindex fdump-rtl-pro_and_epilogue
6625 Dump after generating the function prologues and epilogues.
6626
6627 @item -fdump-rtl-sched1
6628 @itemx -fdump-rtl-sched2
6629 @opindex fdump-rtl-sched1
6630 @opindex fdump-rtl-sched2
6631 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
6632 after the basic block scheduling passes.
6633
6634 @item -fdump-rtl-ree
6635 @opindex fdump-rtl-ree
6636 Dump after sign/zero extension elimination.
6637
6638 @item -fdump-rtl-seqabstr
6639 @opindex fdump-rtl-seqabstr
6640 Dump after common sequence discovery.
6641
6642 @item -fdump-rtl-shorten
6643 @opindex fdump-rtl-shorten
6644 Dump after shortening branches.
6645
6646 @item -fdump-rtl-sibling
6647 @opindex fdump-rtl-sibling
6648 Dump after sibling call optimizations.
6649
6650 @item -fdump-rtl-split1
6651 @itemx -fdump-rtl-split2
6652 @itemx -fdump-rtl-split3
6653 @itemx -fdump-rtl-split4
6654 @itemx -fdump-rtl-split5
6655 @opindex fdump-rtl-split1
6656 @opindex fdump-rtl-split2
6657 @opindex fdump-rtl-split3
6658 @opindex fdump-rtl-split4
6659 @opindex fdump-rtl-split5
6660 These options enable dumping after five rounds of
6661 instruction splitting.
6662
6663 @item -fdump-rtl-sms
6664 @opindex fdump-rtl-sms
6665 Dump after modulo scheduling. This pass is only run on some
6666 architectures.
6667
6668 @item -fdump-rtl-stack
6669 @opindex fdump-rtl-stack
6670 Dump after conversion from GCC's ``flat register file'' registers to the
6671 x87's stack-like registers. This pass is only run on x86 variants.
6672
6673 @item -fdump-rtl-subreg1
6674 @itemx -fdump-rtl-subreg2
6675 @opindex fdump-rtl-subreg1
6676 @opindex fdump-rtl-subreg2
6677 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
6678 the two subreg expansion passes.
6679
6680 @item -fdump-rtl-unshare
6681 @opindex fdump-rtl-unshare
6682 Dump after all rtl has been unshared.
6683
6684 @item -fdump-rtl-vartrack
6685 @opindex fdump-rtl-vartrack
6686 Dump after variable tracking.
6687
6688 @item -fdump-rtl-vregs
6689 @opindex fdump-rtl-vregs
6690 Dump after converting virtual registers to hard registers.
6691
6692 @item -fdump-rtl-web
6693 @opindex fdump-rtl-web
6694 Dump after live range splitting.
6695
6696 @item -fdump-rtl-regclass
6697 @itemx -fdump-rtl-subregs_of_mode_init
6698 @itemx -fdump-rtl-subregs_of_mode_finish
6699 @itemx -fdump-rtl-dfinit
6700 @itemx -fdump-rtl-dfinish
6701 @opindex fdump-rtl-regclass
6702 @opindex fdump-rtl-subregs_of_mode_init
6703 @opindex fdump-rtl-subregs_of_mode_finish
6704 @opindex fdump-rtl-dfinit
6705 @opindex fdump-rtl-dfinish
6706 These dumps are defined but always produce empty files.
6707
6708 @item -da
6709 @itemx -fdump-rtl-all
6710 @opindex da
6711 @opindex fdump-rtl-all
6712 Produce all the dumps listed above.
6713
6714 @item -dA
6715 @opindex dA
6716 Annotate the assembler output with miscellaneous debugging information.
6717
6718 @item -dD
6719 @opindex dD
6720 Dump all macro definitions, at the end of preprocessing, in addition to
6721 normal output.
6722
6723 @item -dH
6724 @opindex dH
6725 Produce a core dump whenever an error occurs.
6726
6727 @item -dp
6728 @opindex dp
6729 Annotate the assembler output with a comment indicating which
6730 pattern and alternative is used. The length of each instruction is
6731 also printed.
6732
6733 @item -dP
6734 @opindex dP
6735 Dump the RTL in the assembler output as a comment before each instruction.
6736 Also turns on @option{-dp} annotation.
6737
6738 @item -dx
6739 @opindex dx
6740 Just generate RTL for a function instead of compiling it. Usually used
6741 with @option{-fdump-rtl-expand}.
6742 @end table
6743
6744 @item -fdump-noaddr
6745 @opindex fdump-noaddr
6746 When doing debugging dumps, suppress address output. This makes it more
6747 feasible to use diff on debugging dumps for compiler invocations with
6748 different compiler binaries and/or different
6749 text / bss / data / heap / stack / dso start locations.
6750
6751 @item -freport-bug
6752 @opindex freport-bug
6753 Collect and dump debug information into temporary file if ICE in C/C++
6754 compiler occured.
6755
6756 @item -fdump-unnumbered
6757 @opindex fdump-unnumbered
6758 When doing debugging dumps, suppress instruction numbers and address output.
6759 This makes it more feasible to use diff on debugging dumps for compiler
6760 invocations with different options, in particular with and without
6761 @option{-g}.
6762
6763 @item -fdump-unnumbered-links
6764 @opindex fdump-unnumbered-links
6765 When doing debugging dumps (see @option{-d} option above), suppress
6766 instruction numbers for the links to the previous and next instructions
6767 in a sequence.
6768
6769 @item -fdump-translation-unit @r{(C++ only)}
6770 @itemx -fdump-translation-unit-@var{options} @r{(C++ only)}
6771 @opindex fdump-translation-unit
6772 Dump a representation of the tree structure for the entire translation
6773 unit to a file. The file name is made by appending @file{.tu} to the
6774 source file name, and the file is created in the same directory as the
6775 output file. If the @samp{-@var{options}} form is used, @var{options}
6776 controls the details of the dump as described for the
6777 @option{-fdump-tree} options.
6778
6779 @item -fdump-class-hierarchy @r{(C++ only)}
6780 @itemx -fdump-class-hierarchy-@var{options} @r{(C++ only)}
6781 @opindex fdump-class-hierarchy
6782 Dump a representation of each class's hierarchy and virtual function
6783 table layout to a file. The file name is made by appending
6784 @file{.class} to the source file name, and the file is created in the
6785 same directory as the output file. If the @samp{-@var{options}} form
6786 is used, @var{options} controls the details of the dump as described
6787 for the @option{-fdump-tree} options.
6788
6789 @item -fdump-ipa-@var{switch}
6790 @opindex fdump-ipa
6791 Control the dumping at various stages of inter-procedural analysis
6792 language tree to a file. The file name is generated by appending a
6793 switch specific suffix to the source file name, and the file is created
6794 in the same directory as the output file. The following dumps are
6795 possible:
6796
6797 @table @samp
6798 @item all
6799 Enables all inter-procedural analysis dumps.
6800
6801 @item cgraph
6802 Dumps information about call-graph optimization, unused function removal,
6803 and inlining decisions.
6804
6805 @item inline
6806 Dump after function inlining.
6807
6808 @end table
6809
6810 @item -fdump-passes
6811 @opindex fdump-passes
6812 Dump the list of optimization passes that are turned on and off by
6813 the current command-line options.
6814
6815 @item -fdump-statistics-@var{option}
6816 @opindex fdump-statistics
6817 Enable and control dumping of pass statistics in a separate file. The
6818 file name is generated by appending a suffix ending in
6819 @samp{.statistics} to the source file name, and the file is created in
6820 the same directory as the output file. If the @samp{-@var{option}}
6821 form is used, @samp{-stats} causes counters to be summed over the
6822 whole compilation unit while @samp{-details} dumps every event as
6823 the passes generate them. The default with no option is to sum
6824 counters for each function compiled.
6825
6826 @item -fdump-tree-@var{switch}
6827 @itemx -fdump-tree-@var{switch}-@var{options}
6828 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
6829 @opindex fdump-tree
6830 Control the dumping at various stages of processing the intermediate
6831 language tree to a file. The file name is generated by appending a
6832 switch-specific suffix to the source file name, and the file is
6833 created in the same directory as the output file. In case of
6834 @option{=@var{filename}} option, the dump is output on the given file
6835 instead of the auto named dump files. If the @samp{-@var{options}}
6836 form is used, @var{options} is a list of @samp{-} separated options
6837 which control the details of the dump. Not all options are applicable
6838 to all dumps; those that are not meaningful are ignored. The
6839 following options are available
6840
6841 @table @samp
6842 @item address
6843 Print the address of each node. Usually this is not meaningful as it
6844 changes according to the environment and source file. Its primary use
6845 is for tying up a dump file with a debug environment.
6846 @item asmname
6847 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
6848 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
6849 use working backward from mangled names in the assembly file.
6850 @item slim
6851 When dumping front-end intermediate representations, inhibit dumping
6852 of members of a scope or body of a function merely because that scope
6853 has been reached. Only dump such items when they are directly reachable
6854 by some other path.
6855
6856 When dumping pretty-printed trees, this option inhibits dumping the
6857 bodies of control structures.
6858
6859 When dumping RTL, print the RTL in slim (condensed) form instead of
6860 the default LISP-like representation.
6861 @item raw
6862 Print a raw representation of the tree. By default, trees are
6863 pretty-printed into a C-like representation.
6864 @item details
6865 Enable more detailed dumps (not honored by every dump option). Also
6866 include information from the optimization passes.
6867 @item stats
6868 Enable dumping various statistics about the pass (not honored by every dump
6869 option).
6870 @item blocks
6871 Enable showing basic block boundaries (disabled in raw dumps).
6872 @item graph
6873 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
6874 dump a representation of the control flow graph suitable for viewing with
6875 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
6876 the file is pretty-printed as a subgraph, so that GraphViz can render them
6877 all in a single plot.
6878
6879 This option currently only works for RTL dumps, and the RTL is always
6880 dumped in slim form.
6881 @item vops
6882 Enable showing virtual operands for every statement.
6883 @item lineno
6884 Enable showing line numbers for statements.
6885 @item uid
6886 Enable showing the unique ID (@code{DECL_UID}) for each variable.
6887 @item verbose
6888 Enable showing the tree dump for each statement.
6889 @item eh
6890 Enable showing the EH region number holding each statement.
6891 @item scev
6892 Enable showing scalar evolution analysis details.
6893 @item optimized
6894 Enable showing optimization information (only available in certain
6895 passes).
6896 @item missed
6897 Enable showing missed optimization information (only available in certain
6898 passes).
6899 @item note
6900 Enable other detailed optimization information (only available in
6901 certain passes).
6902 @item =@var{filename}
6903 Instead of an auto named dump file, output into the given file
6904 name. The file names @file{stdout} and @file{stderr} are treated
6905 specially and are considered already open standard streams. For
6906 example,
6907
6908 @smallexample
6909 gcc -O2 -ftree-vectorize -fdump-tree-vect-blocks=foo.dump
6910 -fdump-tree-pre=stderr file.c
6911 @end smallexample
6912
6913 outputs vectorizer dump into @file{foo.dump}, while the PRE dump is
6914 output on to @file{stderr}. If two conflicting dump filenames are
6915 given for the same pass, then the latter option overrides the earlier
6916 one.
6917
6918 @item all
6919 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
6920 and @option{lineno}.
6921
6922 @item optall
6923 Turn on all optimization options, i.e., @option{optimized},
6924 @option{missed}, and @option{note}.
6925 @end table
6926
6927 The following tree dumps are possible:
6928 @table @samp
6929
6930 @item original
6931 @opindex fdump-tree-original
6932 Dump before any tree based optimization, to @file{@var{file}.original}.
6933
6934 @item optimized
6935 @opindex fdump-tree-optimized
6936 Dump after all tree based optimization, to @file{@var{file}.optimized}.
6937
6938 @item gimple
6939 @opindex fdump-tree-gimple
6940 Dump each function before and after the gimplification pass to a file. The
6941 file name is made by appending @file{.gimple} to the source file name.
6942
6943 @item cfg
6944 @opindex fdump-tree-cfg
6945 Dump the control flow graph of each function to a file. The file name is
6946 made by appending @file{.cfg} to the source file name.
6947
6948 @item ch
6949 @opindex fdump-tree-ch
6950 Dump each function after copying loop headers. The file name is made by
6951 appending @file{.ch} to the source file name.
6952
6953 @item ssa
6954 @opindex fdump-tree-ssa
6955 Dump SSA related information to a file. The file name is made by appending
6956 @file{.ssa} to the source file name.
6957
6958 @item alias
6959 @opindex fdump-tree-alias
6960 Dump aliasing information for each function. The file name is made by
6961 appending @file{.alias} to the source file name.
6962
6963 @item ccp
6964 @opindex fdump-tree-ccp
6965 Dump each function after CCP@. The file name is made by appending
6966 @file{.ccp} to the source file name.
6967
6968 @item storeccp
6969 @opindex fdump-tree-storeccp
6970 Dump each function after STORE-CCP@. The file name is made by appending
6971 @file{.storeccp} to the source file name.
6972
6973 @item pre
6974 @opindex fdump-tree-pre
6975 Dump trees after partial redundancy elimination. The file name is made
6976 by appending @file{.pre} to the source file name.
6977
6978 @item fre
6979 @opindex fdump-tree-fre
6980 Dump trees after full redundancy elimination. The file name is made
6981 by appending @file{.fre} to the source file name.
6982
6983 @item copyprop
6984 @opindex fdump-tree-copyprop
6985 Dump trees after copy propagation. The file name is made
6986 by appending @file{.copyprop} to the source file name.
6987
6988 @item store_copyprop
6989 @opindex fdump-tree-store_copyprop
6990 Dump trees after store copy-propagation. The file name is made
6991 by appending @file{.store_copyprop} to the source file name.
6992
6993 @item dce
6994 @opindex fdump-tree-dce
6995 Dump each function after dead code elimination. The file name is made by
6996 appending @file{.dce} to the source file name.
6997
6998 @item sra
6999 @opindex fdump-tree-sra
7000 Dump each function after performing scalar replacement of aggregates. The
7001 file name is made by appending @file{.sra} to the source file name.
7002
7003 @item sink
7004 @opindex fdump-tree-sink
7005 Dump each function after performing code sinking. The file name is made
7006 by appending @file{.sink} to the source file name.
7007
7008 @item dom
7009 @opindex fdump-tree-dom
7010 Dump each function after applying dominator tree optimizations. The file
7011 name is made by appending @file{.dom} to the source file name.
7012
7013 @item dse
7014 @opindex fdump-tree-dse
7015 Dump each function after applying dead store elimination. The file
7016 name is made by appending @file{.dse} to the source file name.
7017
7018 @item phiopt
7019 @opindex fdump-tree-phiopt
7020 Dump each function after optimizing PHI nodes into straightline code. The file
7021 name is made by appending @file{.phiopt} to the source file name.
7022
7023 @item forwprop
7024 @opindex fdump-tree-forwprop
7025 Dump each function after forward propagating single use variables. The file
7026 name is made by appending @file{.forwprop} to the source file name.
7027
7028 @item copyrename
7029 @opindex fdump-tree-copyrename
7030 Dump each function after applying the copy rename optimization. The file
7031 name is made by appending @file{.copyrename} to the source file name.
7032
7033 @item nrv
7034 @opindex fdump-tree-nrv
7035 Dump each function after applying the named return value optimization on
7036 generic trees. The file name is made by appending @file{.nrv} to the source
7037 file name.
7038
7039 @item vect
7040 @opindex fdump-tree-vect
7041 Dump each function after applying vectorization of loops. The file name is
7042 made by appending @file{.vect} to the source file name.
7043
7044 @item slp
7045 @opindex fdump-tree-slp
7046 Dump each function after applying vectorization of basic blocks. The file name
7047 is made by appending @file{.slp} to the source file name.
7048
7049 @item vrp
7050 @opindex fdump-tree-vrp
7051 Dump each function after Value Range Propagation (VRP). The file name
7052 is made by appending @file{.vrp} to the source file name.
7053
7054 @item all
7055 @opindex fdump-tree-all
7056 Enable all the available tree dumps with the flags provided in this option.
7057 @end table
7058
7059 @item -fopt-info
7060 @itemx -fopt-info-@var{options}
7061 @itemx -fopt-info-@var{options}=@var{filename}
7062 @opindex fopt-info
7063 Controls optimization dumps from various optimization passes. If the
7064 @samp{-@var{options}} form is used, @var{options} is a list of
7065 @samp{-} separated option keywords to select the dump details and
7066 optimizations.
7067
7068 The @var{options} can be divided into two groups: options describing the
7069 verbosity of the dump, and options describing which optimizations
7070 should be included. The options from both the groups can be freely
7071 mixed as they are non-overlapping. However, in case of any conflicts,
7072 the later options override the earlier options on the command
7073 line.
7074
7075 The following options control the dump verbosity:
7076
7077 @table @samp
7078 @item optimized
7079 Print information when an optimization is successfully applied. It is
7080 up to a pass to decide which information is relevant. For example, the
7081 vectorizer passes print the source location of loops which are
7082 successfully vectorized.
7083 @item missed
7084 Print information about missed optimizations. Individual passes
7085 control which information to include in the output.
7086 @item note
7087 Print verbose information about optimizations, such as certain
7088 transformations, more detailed messages about decisions etc.
7089 @item all
7090 Print detailed optimization information. This includes
7091 @samp{optimized}, @samp{missed}, and @samp{note}.
7092 @end table
7093
7094 One or more of the following option keywords can be used to describe a
7095 group of optimizations:
7096
7097 @table @samp
7098 @item ipa
7099 Enable dumps from all interprocedural optimizations.
7100 @item loop
7101 Enable dumps from all loop optimizations.
7102 @item inline
7103 Enable dumps from all inlining optimizations.
7104 @item vec
7105 Enable dumps from all vectorization optimizations.
7106 @item optall
7107 Enable dumps from all optimizations. This is a superset of
7108 the optimization groups listed above.
7109 @end table
7110
7111 If @var{options} is
7112 omitted, it defaults to @samp{optimized-optall}, which means to dump all
7113 info about successful optimizations from all the passes.
7114
7115 If the @var{filename} is provided, then the dumps from all the
7116 applicable optimizations are concatenated into the @var{filename}.
7117 Otherwise the dump is output onto @file{stderr}. Though multiple
7118 @option{-fopt-info} options are accepted, only one of them can include
7119 a @var{filename}. If other filenames are provided then all but the
7120 first such option are ignored.
7121
7122 Note that the output @var{filename} is overwritten
7123 in case of multiple translation units. If a combined output from
7124 multiple translation units is desired, @file{stderr} should be used
7125 instead.
7126
7127 In the following example, the optimization info is output to
7128 @file{stderr}:
7129
7130 @smallexample
7131 gcc -O3 -fopt-info
7132 @end smallexample
7133
7134 This example:
7135 @smallexample
7136 gcc -O3 -fopt-info-missed=missed.all
7137 @end smallexample
7138
7139 @noindent
7140 outputs missed optimization report from all the passes into
7141 @file{missed.all}, and this one:
7142
7143 @smallexample
7144 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
7145 @end smallexample
7146
7147 @noindent
7148 prints information about missed optimization opportunities from
7149 vectorization passes on @file{stderr}.
7150 Note that @option{-fopt-info-vec-missed} is equivalent to
7151 @option{-fopt-info-missed-vec}.
7152
7153 As another example,
7154 @smallexample
7155 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
7156 @end smallexample
7157
7158 @noindent
7159 outputs information about missed optimizations as well as
7160 optimized locations from all the inlining passes into
7161 @file{inline.txt}.
7162
7163 Finally, consider:
7164
7165 @smallexample
7166 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
7167 @end smallexample
7168
7169 @noindent
7170 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
7171 in conflict since only one output file is allowed. In this case, only
7172 the first option takes effect and the subsequent options are
7173 ignored. Thus only @file{vec.miss} is produced which contains
7174 dumps from the vectorizer about missed opportunities.
7175
7176 @item -frandom-seed=@var{number}
7177 @opindex frandom-seed
7178 This option provides a seed that GCC uses in place of
7179 random numbers in generating certain symbol names
7180 that have to be different in every compiled file. It is also used to
7181 place unique stamps in coverage data files and the object files that
7182 produce them. You can use the @option{-frandom-seed} option to produce
7183 reproducibly identical object files.
7184
7185 The @var{number} should be different for every file you compile.
7186
7187 @item -fsched-verbose=@var{n}
7188 @opindex fsched-verbose
7189 On targets that use instruction scheduling, this option controls the
7190 amount of debugging output the scheduler prints. This information is
7191 written to standard error, unless @option{-fdump-rtl-sched1} or
7192 @option{-fdump-rtl-sched2} is specified, in which case it is output
7193 to the usual dump listing file, @file{.sched1} or @file{.sched2}
7194 respectively. However for @var{n} greater than nine, the output is
7195 always printed to standard error.
7196
7197 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
7198 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
7199 For @var{n} greater than one, it also output basic block probabilities,
7200 detailed ready list information and unit/insn info. For @var{n} greater
7201 than two, it includes RTL at abort point, control-flow and regions info.
7202 And for @var{n} over four, @option{-fsched-verbose} also includes
7203 dependence info.
7204
7205 @item -save-temps
7206 @itemx -save-temps=cwd
7207 @opindex save-temps
7208 Store the usual ``temporary'' intermediate files permanently; place them
7209 in the current directory and name them based on the source file. Thus,
7210 compiling @file{foo.c} with @option{-c -save-temps} produces files
7211 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
7212 preprocessed @file{foo.i} output file even though the compiler now
7213 normally uses an integrated preprocessor.
7214
7215 When used in combination with the @option{-x} command-line option,
7216 @option{-save-temps} is sensible enough to avoid over writing an
7217 input source file with the same extension as an intermediate file.
7218 The corresponding intermediate file may be obtained by renaming the
7219 source file before using @option{-save-temps}.
7220
7221 If you invoke GCC in parallel, compiling several different source
7222 files that share a common base name in different subdirectories or the
7223 same source file compiled for multiple output destinations, it is
7224 likely that the different parallel compilers will interfere with each
7225 other, and overwrite the temporary files. For instance:
7226
7227 @smallexample
7228 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
7229 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
7230 @end smallexample
7231
7232 may result in @file{foo.i} and @file{foo.o} being written to
7233 simultaneously by both compilers.
7234
7235 @item -save-temps=obj
7236 @opindex save-temps=obj
7237 Store the usual ``temporary'' intermediate files permanently. If the
7238 @option{-o} option is used, the temporary files are based on the
7239 object file. If the @option{-o} option is not used, the
7240 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
7241
7242 For example:
7243
7244 @smallexample
7245 gcc -save-temps=obj -c foo.c
7246 gcc -save-temps=obj -c bar.c -o dir/xbar.o
7247 gcc -save-temps=obj foobar.c -o dir2/yfoobar
7248 @end smallexample
7249
7250 @noindent
7251 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
7252 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
7253 @file{dir2/yfoobar.o}.
7254
7255 @item -time@r{[}=@var{file}@r{]}
7256 @opindex time
7257 Report the CPU time taken by each subprocess in the compilation
7258 sequence. For C source files, this is the compiler proper and assembler
7259 (plus the linker if linking is done).
7260
7261 Without the specification of an output file, the output looks like this:
7262
7263 @smallexample
7264 # cc1 0.12 0.01
7265 # as 0.00 0.01
7266 @end smallexample
7267
7268 The first number on each line is the ``user time'', that is time spent
7269 executing the program itself. The second number is ``system time'',
7270 time spent executing operating system routines on behalf of the program.
7271 Both numbers are in seconds.
7272
7273 With the specification of an output file, the output is appended to the
7274 named file, and it looks like this:
7275
7276 @smallexample
7277 0.12 0.01 cc1 @var{options}
7278 0.00 0.01 as @var{options}
7279 @end smallexample
7280
7281 The ``user time'' and the ``system time'' are moved before the program
7282 name, and the options passed to the program are displayed, so that one
7283 can later tell what file was being compiled, and with which options.
7284
7285 @item -fvar-tracking
7286 @opindex fvar-tracking
7287 Run variable tracking pass. It computes where variables are stored at each
7288 position in code. Better debugging information is then generated
7289 (if the debugging information format supports this information).
7290
7291 It is enabled by default when compiling with optimization (@option{-Os},
7292 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7293 the debug info format supports it.
7294
7295 @item -fvar-tracking-assignments
7296 @opindex fvar-tracking-assignments
7297 @opindex fno-var-tracking-assignments
7298 Annotate assignments to user variables early in the compilation and
7299 attempt to carry the annotations over throughout the compilation all the
7300 way to the end, in an attempt to improve debug information while
7301 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7302
7303 It can be enabled even if var-tracking is disabled, in which case
7304 annotations are created and maintained, but discarded at the end.
7305 By default, this flag is enabled together with @option{-fvar-tracking},
7306 except when selective scheduling is enabled.
7307
7308 @item -fvar-tracking-assignments-toggle
7309 @opindex fvar-tracking-assignments-toggle
7310 @opindex fno-var-tracking-assignments-toggle
7311 Toggle @option{-fvar-tracking-assignments}, in the same way that
7312 @option{-gtoggle} toggles @option{-g}.
7313
7314 @item -print-file-name=@var{library}
7315 @opindex print-file-name
7316 Print the full absolute name of the library file @var{library} that
7317 would be used when linking---and don't do anything else. With this
7318 option, GCC does not compile or link anything; it just prints the
7319 file name.
7320
7321 @item -print-multi-directory
7322 @opindex print-multi-directory
7323 Print the directory name corresponding to the multilib selected by any
7324 other switches present in the command line. This directory is supposed
7325 to exist in @env{GCC_EXEC_PREFIX}.
7326
7327 @item -print-multi-lib
7328 @opindex print-multi-lib
7329 Print the mapping from multilib directory names to compiler switches
7330 that enable them. The directory name is separated from the switches by
7331 @samp{;}, and each switch starts with an @samp{@@} instead of the
7332 @samp{-}, without spaces between multiple switches. This is supposed to
7333 ease shell processing.
7334
7335 @item -print-multi-os-directory
7336 @opindex print-multi-os-directory
7337 Print the path to OS libraries for the selected
7338 multilib, relative to some @file{lib} subdirectory. If OS libraries are
7339 present in the @file{lib} subdirectory and no multilibs are used, this is
7340 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
7341 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
7342 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
7343 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
7344
7345 @item -print-multiarch
7346 @opindex print-multiarch
7347 Print the path to OS libraries for the selected multiarch,
7348 relative to some @file{lib} subdirectory.
7349
7350 @item -print-prog-name=@var{program}
7351 @opindex print-prog-name
7352 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
7353
7354 @item -print-libgcc-file-name
7355 @opindex print-libgcc-file-name
7356 Same as @option{-print-file-name=libgcc.a}.
7357
7358 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
7359 but you do want to link with @file{libgcc.a}. You can do:
7360
7361 @smallexample
7362 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
7363 @end smallexample
7364
7365 @item -print-search-dirs
7366 @opindex print-search-dirs
7367 Print the name of the configured installation directory and a list of
7368 program and library directories @command{gcc} searches---and don't do anything else.
7369
7370 This is useful when @command{gcc} prints the error message
7371 @samp{installation problem, cannot exec cpp0: No such file or directory}.
7372 To resolve this you either need to put @file{cpp0} and the other compiler
7373 components where @command{gcc} expects to find them, or you can set the environment
7374 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
7375 Don't forget the trailing @samp{/}.
7376 @xref{Environment Variables}.
7377
7378 @item -print-sysroot
7379 @opindex print-sysroot
7380 Print the target sysroot directory that is used during
7381 compilation. This is the target sysroot specified either at configure
7382 time or using the @option{--sysroot} option, possibly with an extra
7383 suffix that depends on compilation options. If no target sysroot is
7384 specified, the option prints nothing.
7385
7386 @item -print-sysroot-headers-suffix
7387 @opindex print-sysroot-headers-suffix
7388 Print the suffix added to the target sysroot when searching for
7389 headers, or give an error if the compiler is not configured with such
7390 a suffix---and don't do anything else.
7391
7392 @item -dumpmachine
7393 @opindex dumpmachine
7394 Print the compiler's target machine (for example,
7395 @samp{i686-pc-linux-gnu})---and don't do anything else.
7396
7397 @item -dumpversion
7398 @opindex dumpversion
7399 Print the compiler version (for example, @code{3.0})---and don't do
7400 anything else.
7401
7402 @item -dumpspecs
7403 @opindex dumpspecs
7404 Print the compiler's built-in specs---and don't do anything else. (This
7405 is used when GCC itself is being built.) @xref{Spec Files}.
7406
7407 @item -fno-eliminate-unused-debug-types
7408 @opindex feliminate-unused-debug-types
7409 @opindex fno-eliminate-unused-debug-types
7410 Normally, when producing DWARF 2 output, GCC avoids producing debug symbol
7411 output for types that are nowhere used in the source file being compiled.
7412 Sometimes it is useful to have GCC emit debugging
7413 information for all types declared in a compilation
7414 unit, regardless of whether or not they are actually used
7415 in that compilation unit, for example
7416 if, in the debugger, you want to cast a value to a type that is
7417 not actually used in your program (but is declared). More often,
7418 however, this results in a significant amount of wasted space.
7419 @end table
7420
7421 @node Optimize Options
7422 @section Options That Control Optimization
7423 @cindex optimize options
7424 @cindex options, optimization
7425
7426 These options control various sorts of optimizations.
7427
7428 Without any optimization option, the compiler's goal is to reduce the
7429 cost of compilation and to make debugging produce the expected
7430 results. Statements are independent: if you stop the program with a
7431 breakpoint between statements, you can then assign a new value to any
7432 variable or change the program counter to any other statement in the
7433 function and get exactly the results you expect from the source
7434 code.
7435
7436 Turning on optimization flags makes the compiler attempt to improve
7437 the performance and/or code size at the expense of compilation time
7438 and possibly the ability to debug the program.
7439
7440 The compiler performs optimization based on the knowledge it has of the
7441 program. Compiling multiple files at once to a single output file mode allows
7442 the compiler to use information gained from all of the files when compiling
7443 each of them.
7444
7445 Not all optimizations are controlled directly by a flag. Only
7446 optimizations that have a flag are listed in this section.
7447
7448 Most optimizations are only enabled if an @option{-O} level is set on
7449 the command line. Otherwise they are disabled, even if individual
7450 optimization flags are specified.
7451
7452 Depending on the target and how GCC was configured, a slightly different
7453 set of optimizations may be enabled at each @option{-O} level than
7454 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
7455 to find out the exact set of optimizations that are enabled at each level.
7456 @xref{Overall Options}, for examples.
7457
7458 @table @gcctabopt
7459 @item -O
7460 @itemx -O1
7461 @opindex O
7462 @opindex O1
7463 Optimize. Optimizing compilation takes somewhat more time, and a lot
7464 more memory for a large function.
7465
7466 With @option{-O}, the compiler tries to reduce code size and execution
7467 time, without performing any optimizations that take a great deal of
7468 compilation time.
7469
7470 @option{-O} turns on the following optimization flags:
7471 @gccoptlist{
7472 -fauto-inc-dec @gol
7473 -fbranch-count-reg @gol
7474 -fcombine-stack-adjustments @gol
7475 -fcompare-elim @gol
7476 -fcprop-registers @gol
7477 -fdce @gol
7478 -fdefer-pop @gol
7479 -fdelayed-branch @gol
7480 -fdse @gol
7481 -fforward-propagate @gol
7482 -fguess-branch-probability @gol
7483 -fif-conversion2 @gol
7484 -fif-conversion @gol
7485 -finline-functions-called-once @gol
7486 -fipa-pure-const @gol
7487 -fipa-profile @gol
7488 -fipa-reference @gol
7489 -fmerge-constants @gol
7490 -fmove-loop-invariants @gol
7491 -fshrink-wrap @gol
7492 -fsplit-wide-types @gol
7493 -ftree-bit-ccp @gol
7494 -ftree-ccp @gol
7495 -fssa-phiopt @gol
7496 -ftree-ch @gol
7497 -ftree-copy-prop @gol
7498 -ftree-copyrename @gol
7499 -ftree-dce @gol
7500 -ftree-dominator-opts @gol
7501 -ftree-dse @gol
7502 -ftree-forwprop @gol
7503 -ftree-fre @gol
7504 -ftree-phiprop @gol
7505 -ftree-sink @gol
7506 -ftree-slsr @gol
7507 -ftree-sra @gol
7508 -ftree-pta @gol
7509 -ftree-ter @gol
7510 -funit-at-a-time}
7511
7512 @option{-O} also turns on @option{-fomit-frame-pointer} on machines
7513 where doing so does not interfere with debugging.
7514
7515 @item -O2
7516 @opindex O2
7517 Optimize even more. GCC performs nearly all supported optimizations
7518 that do not involve a space-speed tradeoff.
7519 As compared to @option{-O}, this option increases both compilation time
7520 and the performance of the generated code.
7521
7522 @option{-O2} turns on all optimization flags specified by @option{-O}. It
7523 also turns on the following optimization flags:
7524 @gccoptlist{-fthread-jumps @gol
7525 -falign-functions -falign-jumps @gol
7526 -falign-loops -falign-labels @gol
7527 -fcaller-saves @gol
7528 -fcrossjumping @gol
7529 -fcse-follow-jumps -fcse-skip-blocks @gol
7530 -fdelete-null-pointer-checks @gol
7531 -fdevirtualize -fdevirtualize-speculatively @gol
7532 -fexpensive-optimizations @gol
7533 -fgcse -fgcse-lm @gol
7534 -fhoist-adjacent-loads @gol
7535 -finline-small-functions @gol
7536 -findirect-inlining @gol
7537 -fipa-cp @gol
7538 -fipa-cp-alignment @gol
7539 -fipa-sra @gol
7540 -fipa-icf @gol
7541 -fisolate-erroneous-paths-dereference @gol
7542 -flra-remat @gol
7543 -foptimize-sibling-calls @gol
7544 -foptimize-strlen @gol
7545 -fpartial-inlining @gol
7546 -fpeephole2 @gol
7547 -freorder-blocks -freorder-blocks-and-partition -freorder-functions @gol
7548 -frerun-cse-after-loop @gol
7549 -fsched-interblock -fsched-spec @gol
7550 -fschedule-insns -fschedule-insns2 @gol
7551 -fstrict-aliasing -fstrict-overflow @gol
7552 -ftree-builtin-call-dce @gol
7553 -ftree-switch-conversion -ftree-tail-merge @gol
7554 -ftree-pre @gol
7555 -ftree-vrp @gol
7556 -fipa-ra}
7557
7558 Please note the warning under @option{-fgcse} about
7559 invoking @option{-O2} on programs that use computed gotos.
7560
7561 @item -O3
7562 @opindex O3
7563 Optimize yet more. @option{-O3} turns on all optimizations specified
7564 by @option{-O2} and also turns on the @option{-finline-functions},
7565 @option{-funswitch-loops}, @option{-fpredictive-commoning},
7566 @option{-fgcse-after-reload}, @option{-ftree-loop-vectorize},
7567 @option{-ftree-loop-distribute-patterns},
7568 @option{-ftree-slp-vectorize}, @option{-fvect-cost-model},
7569 @option{-ftree-partial-pre} and @option{-fipa-cp-clone} options.
7570
7571 @item -O0
7572 @opindex O0
7573 Reduce compilation time and make debugging produce the expected
7574 results. This is the default.
7575
7576 @item -Os
7577 @opindex Os
7578 Optimize for size. @option{-Os} enables all @option{-O2} optimizations that
7579 do not typically increase code size. It also performs further
7580 optimizations designed to reduce code size.
7581
7582 @option{-Os} disables the following optimization flags:
7583 @gccoptlist{-falign-functions -falign-jumps -falign-loops @gol
7584 -falign-labels -freorder-blocks -freorder-blocks-and-partition @gol
7585 -fprefetch-loop-arrays}
7586
7587 @item -Ofast
7588 @opindex Ofast
7589 Disregard strict standards compliance. @option{-Ofast} enables all
7590 @option{-O3} optimizations. It also enables optimizations that are not
7591 valid for all standard-compliant programs.
7592 It turns on @option{-ffast-math} and the Fortran-specific
7593 @option{-fno-protect-parens} and @option{-fstack-arrays}.
7594
7595 @item -Og
7596 @opindex Og
7597 Optimize debugging experience. @option{-Og} enables optimizations
7598 that do not interfere with debugging. It should be the optimization
7599 level of choice for the standard edit-compile-debug cycle, offering
7600 a reasonable level of optimization while maintaining fast compilation
7601 and a good debugging experience.
7602
7603 If you use multiple @option{-O} options, with or without level numbers,
7604 the last such option is the one that is effective.
7605 @end table
7606
7607 Options of the form @option{-f@var{flag}} specify machine-independent
7608 flags. Most flags have both positive and negative forms; the negative
7609 form of @option{-ffoo} is @option{-fno-foo}. In the table
7610 below, only one of the forms is listed---the one you typically
7611 use. You can figure out the other form by either removing @samp{no-}
7612 or adding it.
7613
7614 The following options control specific optimizations. They are either
7615 activated by @option{-O} options or are related to ones that are. You
7616 can use the following flags in the rare cases when ``fine-tuning'' of
7617 optimizations to be performed is desired.
7618
7619 @table @gcctabopt
7620 @item -fno-defer-pop
7621 @opindex fno-defer-pop
7622 Always pop the arguments to each function call as soon as that function
7623 returns. For machines that must pop arguments after a function call,
7624 the compiler normally lets arguments accumulate on the stack for several
7625 function calls and pops them all at once.
7626
7627 Disabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7628
7629 @item -fforward-propagate
7630 @opindex fforward-propagate
7631 Perform a forward propagation pass on RTL@. The pass tries to combine two
7632 instructions and checks if the result can be simplified. If loop unrolling
7633 is active, two passes are performed and the second is scheduled after
7634 loop unrolling.
7635
7636 This option is enabled by default at optimization levels @option{-O},
7637 @option{-O2}, @option{-O3}, @option{-Os}.
7638
7639 @item -ffp-contract=@var{style}
7640 @opindex ffp-contract
7641 @option{-ffp-contract=off} disables floating-point expression contraction.
7642 @option{-ffp-contract=fast} enables floating-point expression contraction
7643 such as forming of fused multiply-add operations if the target has
7644 native support for them.
7645 @option{-ffp-contract=on} enables floating-point expression contraction
7646 if allowed by the language standard. This is currently not implemented
7647 and treated equal to @option{-ffp-contract=off}.
7648
7649 The default is @option{-ffp-contract=fast}.
7650
7651 @item -fomit-frame-pointer
7652 @opindex fomit-frame-pointer
7653 Don't keep the frame pointer in a register for functions that
7654 don't need one. This avoids the instructions to save, set up and
7655 restore frame pointers; it also makes an extra register available
7656 in many functions. @strong{It also makes debugging impossible on
7657 some machines.}
7658
7659 On some machines, such as the VAX, this flag has no effect, because
7660 the standard calling sequence automatically handles the frame pointer
7661 and nothing is saved by pretending it doesn't exist. The
7662 machine-description macro @code{FRAME_POINTER_REQUIRED} controls
7663 whether a target machine supports this flag. @xref{Registers,,Register
7664 Usage, gccint, GNU Compiler Collection (GCC) Internals}.
7665
7666 The default setting (when not optimizing for
7667 size) for 32-bit GNU/Linux x86 and 32-bit Darwin x86 targets is
7668 @option{-fomit-frame-pointer}. You can configure GCC with the
7669 @option{--enable-frame-pointer} configure option to change the default.
7670
7671 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7672
7673 @item -foptimize-sibling-calls
7674 @opindex foptimize-sibling-calls
7675 Optimize sibling and tail recursive calls.
7676
7677 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7678
7679 @item -foptimize-strlen
7680 @opindex foptimize-strlen
7681 Optimize various standard C string functions (e.g. @code{strlen},
7682 @code{strchr} or @code{strcpy}) and
7683 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
7684
7685 Enabled at levels @option{-O2}, @option{-O3}.
7686
7687 @item -fno-inline
7688 @opindex fno-inline
7689 Do not expand any functions inline apart from those marked with
7690 the @code{always_inline} attribute. This is the default when not
7691 optimizing.
7692
7693 Single functions can be exempted from inlining by marking them
7694 with the @code{noinline} attribute.
7695
7696 @item -finline-small-functions
7697 @opindex finline-small-functions
7698 Integrate functions into their callers when their body is smaller than expected
7699 function call code (so overall size of program gets smaller). The compiler
7700 heuristically decides which functions are simple enough to be worth integrating
7701 in this way. This inlining applies to all functions, even those not declared
7702 inline.
7703
7704 Enabled at level @option{-O2}.
7705
7706 @item -findirect-inlining
7707 @opindex findirect-inlining
7708 Inline also indirect calls that are discovered to be known at compile
7709 time thanks to previous inlining. This option has any effect only
7710 when inlining itself is turned on by the @option{-finline-functions}
7711 or @option{-finline-small-functions} options.
7712
7713 Enabled at level @option{-O2}.
7714
7715 @item -finline-functions
7716 @opindex finline-functions
7717 Consider all functions for inlining, even if they are not declared inline.
7718 The compiler heuristically decides which functions are worth integrating
7719 in this way.
7720
7721 If all calls to a given function are integrated, and the function is
7722 declared @code{static}, then the function is normally not output as
7723 assembler code in its own right.
7724
7725 Enabled at level @option{-O3}.
7726
7727 @item -finline-functions-called-once
7728 @opindex finline-functions-called-once
7729 Consider all @code{static} functions called once for inlining into their
7730 caller even if they are not marked @code{inline}. If a call to a given
7731 function is integrated, then the function is not output as assembler code
7732 in its own right.
7733
7734 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os}.
7735
7736 @item -fearly-inlining
7737 @opindex fearly-inlining
7738 Inline functions marked by @code{always_inline} and functions whose body seems
7739 smaller than the function call overhead early before doing
7740 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
7741 makes profiling significantly cheaper and usually inlining faster on programs
7742 having large chains of nested wrapper functions.
7743
7744 Enabled by default.
7745
7746 @item -fipa-sra
7747 @opindex fipa-sra
7748 Perform interprocedural scalar replacement of aggregates, removal of
7749 unused parameters and replacement of parameters passed by reference
7750 by parameters passed by value.
7751
7752 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
7753
7754 @item -finline-limit=@var{n}
7755 @opindex finline-limit
7756 By default, GCC limits the size of functions that can be inlined. This flag
7757 allows coarse control of this limit. @var{n} is the size of functions that
7758 can be inlined in number of pseudo instructions.
7759
7760 Inlining is actually controlled by a number of parameters, which may be
7761 specified individually by using @option{--param @var{name}=@var{value}}.
7762 The @option{-finline-limit=@var{n}} option sets some of these parameters
7763 as follows:
7764
7765 @table @gcctabopt
7766 @item max-inline-insns-single
7767 is set to @var{n}/2.
7768 @item max-inline-insns-auto
7769 is set to @var{n}/2.
7770 @end table
7771
7772 See below for a documentation of the individual
7773 parameters controlling inlining and for the defaults of these parameters.
7774
7775 @emph{Note:} there may be no value to @option{-finline-limit} that results
7776 in default behavior.
7777
7778 @emph{Note:} pseudo instruction represents, in this particular context, an
7779 abstract measurement of function's size. In no way does it represent a count
7780 of assembly instructions and as such its exact meaning might change from one
7781 release to an another.
7782
7783 @item -fno-keep-inline-dllexport
7784 @opindex fno-keep-inline-dllexport
7785 This is a more fine-grained version of @option{-fkeep-inline-functions},
7786 which applies only to functions that are declared using the @code{dllexport}
7787 attribute or declspec (@xref{Function Attributes,,Declaring Attributes of
7788 Functions}.)
7789
7790 @item -fkeep-inline-functions
7791 @opindex fkeep-inline-functions
7792 In C, emit @code{static} functions that are declared @code{inline}
7793 into the object file, even if the function has been inlined into all
7794 of its callers. This switch does not affect functions using the
7795 @code{extern inline} extension in GNU C90@. In C++, emit any and all
7796 inline functions into the object file.
7797
7798 @item -fkeep-static-consts
7799 @opindex fkeep-static-consts
7800 Emit variables declared @code{static const} when optimization isn't turned
7801 on, even if the variables aren't referenced.
7802
7803 GCC enables this option by default. If you want to force the compiler to
7804 check if a variable is referenced, regardless of whether or not
7805 optimization is turned on, use the @option{-fno-keep-static-consts} option.
7806
7807 @item -fmerge-constants
7808 @opindex fmerge-constants
7809 Attempt to merge identical constants (string constants and floating-point
7810 constants) across compilation units.
7811
7812 This option is the default for optimized compilation if the assembler and
7813 linker support it. Use @option{-fno-merge-constants} to inhibit this
7814 behavior.
7815
7816 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
7817
7818 @item -fmerge-all-constants
7819 @opindex fmerge-all-constants
7820 Attempt to merge identical constants and identical variables.
7821
7822 This option implies @option{-fmerge-constants}. In addition to
7823 @option{-fmerge-constants} this considers e.g.@: even constant initialized
7824 arrays or initialized constant variables with integral or floating-point
7825 types. Languages like C or C++ require each variable, including multiple
7826 instances of the same variable in recursive calls, to have distinct locations,
7827 so using this option results in non-conforming
7828 behavior.
7829
7830 @item -fmodulo-sched
7831 @opindex fmodulo-sched
7832 Perform swing modulo scheduling immediately before the first scheduling
7833 pass. This pass looks at innermost loops and reorders their
7834 instructions by overlapping different iterations.
7835
7836 @item -fmodulo-sched-allow-regmoves
7837 @opindex fmodulo-sched-allow-regmoves
7838 Perform more aggressive SMS-based modulo scheduling with register moves
7839 allowed. By setting this flag certain anti-dependences edges are
7840 deleted, which triggers the generation of reg-moves based on the
7841 life-range analysis. This option is effective only with
7842 @option{-fmodulo-sched} enabled.
7843
7844 @item -fno-branch-count-reg
7845 @opindex fno-branch-count-reg
7846 Do not use ``decrement and branch'' instructions on a count register,
7847 but instead generate a sequence of instructions that decrement a
7848 register, compare it against zero, then branch based upon the result.
7849 This option is only meaningful on architectures that support such
7850 instructions, which include x86, PowerPC, IA-64 and S/390.
7851
7852 Enabled by default at @option{-O1} and higher.
7853
7854 The default is @option{-fbranch-count-reg}.
7855
7856 @item -fno-function-cse
7857 @opindex fno-function-cse
7858 Do not put function addresses in registers; make each instruction that
7859 calls a constant function contain the function's address explicitly.
7860
7861 This option results in less efficient code, but some strange hacks
7862 that alter the assembler output may be confused by the optimizations
7863 performed when this option is not used.
7864
7865 The default is @option{-ffunction-cse}
7866
7867 @item -fno-zero-initialized-in-bss
7868 @opindex fno-zero-initialized-in-bss
7869 If the target supports a BSS section, GCC by default puts variables that
7870 are initialized to zero into BSS@. This can save space in the resulting
7871 code.
7872
7873 This option turns off this behavior because some programs explicitly
7874 rely on variables going to the data section---e.g., so that the
7875 resulting executable can find the beginning of that section and/or make
7876 assumptions based on that.
7877
7878 The default is @option{-fzero-initialized-in-bss}.
7879
7880 @item -fthread-jumps
7881 @opindex fthread-jumps
7882 Perform optimizations that check to see if a jump branches to a
7883 location where another comparison subsumed by the first is found. If
7884 so, the first branch is redirected to either the destination of the
7885 second branch or a point immediately following it, depending on whether
7886 the condition is known to be true or false.
7887
7888 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7889
7890 @item -fsplit-wide-types
7891 @opindex fsplit-wide-types
7892 When using a type that occupies multiple registers, such as @code{long
7893 long} on a 32-bit system, split the registers apart and allocate them
7894 independently. This normally generates better code for those types,
7895 but may make debugging more difficult.
7896
7897 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
7898 @option{-Os}.
7899
7900 @item -fcse-follow-jumps
7901 @opindex fcse-follow-jumps
7902 In common subexpression elimination (CSE), scan through jump instructions
7903 when the target of the jump is not reached by any other path. For
7904 example, when CSE encounters an @code{if} statement with an
7905 @code{else} clause, CSE follows the jump when the condition
7906 tested is false.
7907
7908 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7909
7910 @item -fcse-skip-blocks
7911 @opindex fcse-skip-blocks
7912 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
7913 follow jumps that conditionally skip over blocks. When CSE
7914 encounters a simple @code{if} statement with no else clause,
7915 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
7916 body of the @code{if}.
7917
7918 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7919
7920 @item -frerun-cse-after-loop
7921 @opindex frerun-cse-after-loop
7922 Re-run common subexpression elimination after loop optimizations are
7923 performed.
7924
7925 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7926
7927 @item -fgcse
7928 @opindex fgcse
7929 Perform a global common subexpression elimination pass.
7930 This pass also performs global constant and copy propagation.
7931
7932 @emph{Note:} When compiling a program using computed gotos, a GCC
7933 extension, you may get better run-time performance if you disable
7934 the global common subexpression elimination pass by adding
7935 @option{-fno-gcse} to the command line.
7936
7937 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7938
7939 @item -fgcse-lm
7940 @opindex fgcse-lm
7941 When @option{-fgcse-lm} is enabled, global common subexpression elimination
7942 attempts to move loads that are only killed by stores into themselves. This
7943 allows a loop containing a load/store sequence to be changed to a load outside
7944 the loop, and a copy/store within the loop.
7945
7946 Enabled by default when @option{-fgcse} is enabled.
7947
7948 @item -fgcse-sm
7949 @opindex fgcse-sm
7950 When @option{-fgcse-sm} is enabled, a store motion pass is run after
7951 global common subexpression elimination. This pass attempts to move
7952 stores out of loops. When used in conjunction with @option{-fgcse-lm},
7953 loops containing a load/store sequence can be changed to a load before
7954 the loop and a store after the loop.
7955
7956 Not enabled at any optimization level.
7957
7958 @item -fgcse-las
7959 @opindex fgcse-las
7960 When @option{-fgcse-las} is enabled, the global common subexpression
7961 elimination pass eliminates redundant loads that come after stores to the
7962 same memory location (both partial and full redundancies).
7963
7964 Not enabled at any optimization level.
7965
7966 @item -fgcse-after-reload
7967 @opindex fgcse-after-reload
7968 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
7969 pass is performed after reload. The purpose of this pass is to clean up
7970 redundant spilling.
7971
7972 @item -faggressive-loop-optimizations
7973 @opindex faggressive-loop-optimizations
7974 This option tells the loop optimizer to use language constraints to
7975 derive bounds for the number of iterations of a loop. This assumes that
7976 loop code does not invoke undefined behavior by for example causing signed
7977 integer overflows or out-of-bound array accesses. The bounds for the
7978 number of iterations of a loop are used to guide loop unrolling and peeling
7979 and loop exit test optimizations.
7980 This option is enabled by default.
7981
7982 @item -funsafe-loop-optimizations
7983 @opindex funsafe-loop-optimizations
7984 This option tells the loop optimizer to assume that loop indices do not
7985 overflow, and that loops with nontrivial exit condition are not
7986 infinite. This enables a wider range of loop optimizations even if
7987 the loop optimizer itself cannot prove that these assumptions are valid.
7988 If you use @option{-Wunsafe-loop-optimizations}, the compiler warns you
7989 if it finds this kind of loop.
7990
7991 @item -fcrossjumping
7992 @opindex fcrossjumping
7993 Perform cross-jumping transformation.
7994 This transformation unifies equivalent code and saves code size. The
7995 resulting code may or may not perform better than without cross-jumping.
7996
7997 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
7998
7999 @item -fauto-inc-dec
8000 @opindex fauto-inc-dec
8001 Combine increments or decrements of addresses with memory accesses.
8002 This pass is always skipped on architectures that do not have
8003 instructions to support this. Enabled by default at @option{-O} and
8004 higher on architectures that support this.
8005
8006 @item -fdce
8007 @opindex fdce
8008 Perform dead code elimination (DCE) on RTL@.
8009 Enabled by default at @option{-O} and higher.
8010
8011 @item -fdse
8012 @opindex fdse
8013 Perform dead store elimination (DSE) on RTL@.
8014 Enabled by default at @option{-O} and higher.
8015
8016 @item -fif-conversion
8017 @opindex fif-conversion
8018 Attempt to transform conditional jumps into branch-less equivalents. This
8019 includes use of conditional moves, min, max, set flags and abs instructions, and
8020 some tricks doable by standard arithmetics. The use of conditional execution
8021 on chips where it is available is controlled by @option{-fif-conversion2}.
8022
8023 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8024
8025 @item -fif-conversion2
8026 @opindex fif-conversion2
8027 Use conditional execution (where available) to transform conditional jumps into
8028 branch-less equivalents.
8029
8030 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8031
8032 @item -fdeclone-ctor-dtor
8033 @opindex fdeclone-ctor-dtor
8034 The C++ ABI requires multiple entry points for constructors and
8035 destructors: one for a base subobject, one for a complete object, and
8036 one for a virtual destructor that calls operator delete afterwards.
8037 For a hierarchy with virtual bases, the base and complete variants are
8038 clones, which means two copies of the function. With this option, the
8039 base and complete variants are changed to be thunks that call a common
8040 implementation.
8041
8042 Enabled by @option{-Os}.
8043
8044 @item -fdelete-null-pointer-checks
8045 @opindex fdelete-null-pointer-checks
8046 Assume that programs cannot safely dereference null pointers, and that
8047 no code or data element resides at address zero.
8048 This option enables simple constant
8049 folding optimizations at all optimization levels. In addition, other
8050 optimization passes in GCC use this flag to control global dataflow
8051 analyses that eliminate useless checks for null pointers; these assume
8052 that a memory access to address zero always results in a trap, so
8053 that if a pointer is checked after it has already been dereferenced,
8054 it cannot be null.
8055
8056 Note however that in some environments this assumption is not true.
8057 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8058 for programs that depend on that behavior.
8059
8060 This option is enabled by default on most targets. On Nios II ELF, it
8061 defaults to off. On AVR and CR16, this option is completely disabled.
8062
8063 Passes that use the dataflow information
8064 are enabled independently at different optimization levels.
8065
8066 @item -fdevirtualize
8067 @opindex fdevirtualize
8068 Attempt to convert calls to virtual functions to direct calls. This
8069 is done both within a procedure and interprocedurally as part of
8070 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8071 propagation (@option{-fipa-cp}).
8072 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8073
8074 @item -fdevirtualize-speculatively
8075 @opindex fdevirtualize-speculatively
8076 Attempt to convert calls to virtual functions to speculative direct calls.
8077 Based on the analysis of the type inheritance graph, determine for a given call
8078 the set of likely targets. If the set is small, preferably of size 1, change
8079 the call into a conditional deciding between direct and indirect calls. The
8080 speculative calls enable more optimizations, such as inlining. When they seem
8081 useless after further optimization, they are converted back into original form.
8082
8083 @item -fdevirtualize-at-ltrans
8084 @opindex fdevirtualize-at-ltrans
8085 Stream extra information needed for aggressive devirtualization when running
8086 the link-time optimizer in local transformation mode.
8087 This option enables more devirtualization but
8088 significantly increases the size of streamed data. For this reason it is
8089 disabled by default.
8090
8091 @item -fexpensive-optimizations
8092 @opindex fexpensive-optimizations
8093 Perform a number of minor optimizations that are relatively expensive.
8094
8095 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8096
8097 @item -free
8098 @opindex free
8099 Attempt to remove redundant extension instructions. This is especially
8100 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8101 registers after writing to their lower 32-bit half.
8102
8103 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8104 @option{-O3}, @option{-Os}.
8105
8106 @item -fno-lifetime-dse
8107 @opindex fno-lifetime-dse
8108 In C++ the value of an object is only affected by changes within its
8109 lifetime: when the constructor begins, the object has an indeterminate
8110 value, and any changes during the lifetime of the object are dead when
8111 the object is destroyed. Normally dead store elimination will take
8112 advantage of this; if your code relies on the value of the object
8113 storage persisting beyond the lifetime of the object, you can use this
8114 flag to disable this optimization.
8115
8116 @item -flive-range-shrinkage
8117 @opindex flive-range-shrinkage
8118 Attempt to decrease register pressure through register live range
8119 shrinkage. This is helpful for fast processors with small or moderate
8120 size register sets.
8121
8122 @item -fira-algorithm=@var{algorithm}
8123 @opindex fira-algorithm
8124 Use the specified coloring algorithm for the integrated register
8125 allocator. The @var{algorithm} argument can be @samp{priority}, which
8126 specifies Chow's priority coloring, or @samp{CB}, which specifies
8127 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8128 for all architectures, but for those targets that do support it, it is
8129 the default because it generates better code.
8130
8131 @item -fira-region=@var{region}
8132 @opindex fira-region
8133 Use specified regions for the integrated register allocator. The
8134 @var{region} argument should be one of the following:
8135
8136 @table @samp
8137
8138 @item all
8139 Use all loops as register allocation regions.
8140 This can give the best results for machines with a small and/or
8141 irregular register set.
8142
8143 @item mixed
8144 Use all loops except for loops with small register pressure
8145 as the regions. This value usually gives
8146 the best results in most cases and for most architectures,
8147 and is enabled by default when compiling with optimization for speed
8148 (@option{-O}, @option{-O2}, @dots{}).
8149
8150 @item one
8151 Use all functions as a single region.
8152 This typically results in the smallest code size, and is enabled by default for
8153 @option{-Os} or @option{-O0}.
8154
8155 @end table
8156
8157 @item -fira-hoist-pressure
8158 @opindex fira-hoist-pressure
8159 Use IRA to evaluate register pressure in the code hoisting pass for
8160 decisions to hoist expressions. This option usually results in smaller
8161 code, but it can slow the compiler down.
8162
8163 This option is enabled at level @option{-Os} for all targets.
8164
8165 @item -fira-loop-pressure
8166 @opindex fira-loop-pressure
8167 Use IRA to evaluate register pressure in loops for decisions to move
8168 loop invariants. This option usually results in generation
8169 of faster and smaller code on machines with large register files (>= 32
8170 registers), but it can slow the compiler down.
8171
8172 This option is enabled at level @option{-O3} for some targets.
8173
8174 @item -fno-ira-share-save-slots
8175 @opindex fno-ira-share-save-slots
8176 Disable sharing of stack slots used for saving call-used hard
8177 registers living through a call. Each hard register gets a
8178 separate stack slot, and as a result function stack frames are
8179 larger.
8180
8181 @item -fno-ira-share-spill-slots
8182 @opindex fno-ira-share-spill-slots
8183 Disable sharing of stack slots allocated for pseudo-registers. Each
8184 pseudo-register that does not get a hard register gets a separate
8185 stack slot, and as a result function stack frames are larger.
8186
8187 @item -fira-verbose=@var{n}
8188 @opindex fira-verbose
8189 Control the verbosity of the dump file for the integrated register allocator.
8190 The default value is 5. If the value @var{n} is greater or equal to 10,
8191 the dump output is sent to stderr using the same format as @var{n} minus 10.
8192
8193 @item -flra-remat
8194 @opindex flra-remat
8195 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8196 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8197 values if it is profitable.
8198
8199 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8200
8201 @item -fdelayed-branch
8202 @opindex fdelayed-branch
8203 If supported for the target machine, attempt to reorder instructions
8204 to exploit instruction slots available after delayed branch
8205 instructions.
8206
8207 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8208
8209 @item -fschedule-insns
8210 @opindex fschedule-insns
8211 If supported for the target machine, attempt to reorder instructions to
8212 eliminate execution stalls due to required data being unavailable. This
8213 helps machines that have slow floating point or memory load instructions
8214 by allowing other instructions to be issued until the result of the load
8215 or floating-point instruction is required.
8216
8217 Enabled at levels @option{-O2}, @option{-O3}.
8218
8219 @item -fschedule-insns2
8220 @opindex fschedule-insns2
8221 Similar to @option{-fschedule-insns}, but requests an additional pass of
8222 instruction scheduling after register allocation has been done. This is
8223 especially useful on machines with a relatively small number of
8224 registers and where memory load instructions take more than one cycle.
8225
8226 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8227
8228 @item -fno-sched-interblock
8229 @opindex fno-sched-interblock
8230 Don't schedule instructions across basic blocks. This is normally
8231 enabled by default when scheduling before register allocation, i.e.@:
8232 with @option{-fschedule-insns} or at @option{-O2} or higher.
8233
8234 @item -fno-sched-spec
8235 @opindex fno-sched-spec
8236 Don't allow speculative motion of non-load instructions. This is normally
8237 enabled by default when scheduling before register allocation, i.e.@:
8238 with @option{-fschedule-insns} or at @option{-O2} or higher.
8239
8240 @item -fsched-pressure
8241 @opindex fsched-pressure
8242 Enable register pressure sensitive insn scheduling before register
8243 allocation. This only makes sense when scheduling before register
8244 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
8245 @option{-O2} or higher. Usage of this option can improve the
8246 generated code and decrease its size by preventing register pressure
8247 increase above the number of available hard registers and subsequent
8248 spills in register allocation.
8249
8250 @item -fsched-spec-load
8251 @opindex fsched-spec-load
8252 Allow speculative motion of some load instructions. This only makes
8253 sense when scheduling before register allocation, i.e.@: with
8254 @option{-fschedule-insns} or at @option{-O2} or higher.
8255
8256 @item -fsched-spec-load-dangerous
8257 @opindex fsched-spec-load-dangerous
8258 Allow speculative motion of more load instructions. This only makes
8259 sense when scheduling before register allocation, i.e.@: with
8260 @option{-fschedule-insns} or at @option{-O2} or higher.
8261
8262 @item -fsched-stalled-insns
8263 @itemx -fsched-stalled-insns=@var{n}
8264 @opindex fsched-stalled-insns
8265 Define how many insns (if any) can be moved prematurely from the queue
8266 of stalled insns into the ready list during the second scheduling pass.
8267 @option{-fno-sched-stalled-insns} means that no insns are moved
8268 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
8269 on how many queued insns can be moved prematurely.
8270 @option{-fsched-stalled-insns} without a value is equivalent to
8271 @option{-fsched-stalled-insns=1}.
8272
8273 @item -fsched-stalled-insns-dep
8274 @itemx -fsched-stalled-insns-dep=@var{n}
8275 @opindex fsched-stalled-insns-dep
8276 Define how many insn groups (cycles) are examined for a dependency
8277 on a stalled insn that is a candidate for premature removal from the queue
8278 of stalled insns. This has an effect only during the second scheduling pass,
8279 and only if @option{-fsched-stalled-insns} is used.
8280 @option{-fno-sched-stalled-insns-dep} is equivalent to
8281 @option{-fsched-stalled-insns-dep=0}.
8282 @option{-fsched-stalled-insns-dep} without a value is equivalent to
8283 @option{-fsched-stalled-insns-dep=1}.
8284
8285 @item -fsched2-use-superblocks
8286 @opindex fsched2-use-superblocks
8287 When scheduling after register allocation, use superblock scheduling.
8288 This allows motion across basic block boundaries,
8289 resulting in faster schedules. This option is experimental, as not all machine
8290 descriptions used by GCC model the CPU closely enough to avoid unreliable
8291 results from the algorithm.
8292
8293 This only makes sense when scheduling after register allocation, i.e.@: with
8294 @option{-fschedule-insns2} or at @option{-O2} or higher.
8295
8296 @item -fsched-group-heuristic
8297 @opindex fsched-group-heuristic
8298 Enable the group heuristic in the scheduler. This heuristic favors
8299 the instruction that belongs to a schedule group. This is enabled
8300 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8301 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8302
8303 @item -fsched-critical-path-heuristic
8304 @opindex fsched-critical-path-heuristic
8305 Enable the critical-path heuristic in the scheduler. This heuristic favors
8306 instructions on the critical path. This is enabled by default when
8307 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
8308 or @option{-fschedule-insns2} or at @option{-O2} or higher.
8309
8310 @item -fsched-spec-insn-heuristic
8311 @opindex fsched-spec-insn-heuristic
8312 Enable the speculative instruction heuristic in the scheduler. This
8313 heuristic favors speculative instructions with greater dependency weakness.
8314 This is enabled by default when scheduling is enabled, i.e.@:
8315 with @option{-fschedule-insns} or @option{-fschedule-insns2}
8316 or at @option{-O2} or higher.
8317
8318 @item -fsched-rank-heuristic
8319 @opindex fsched-rank-heuristic
8320 Enable the rank heuristic in the scheduler. This heuristic favors
8321 the instruction belonging to a basic block with greater size or frequency.
8322 This is enabled by default when scheduling is enabled, i.e.@:
8323 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8324 at @option{-O2} or higher.
8325
8326 @item -fsched-last-insn-heuristic
8327 @opindex fsched-last-insn-heuristic
8328 Enable the last-instruction heuristic in the scheduler. This heuristic
8329 favors the instruction that is less dependent on the last instruction
8330 scheduled. This is enabled by default when scheduling is enabled,
8331 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8332 at @option{-O2} or higher.
8333
8334 @item -fsched-dep-count-heuristic
8335 @opindex fsched-dep-count-heuristic
8336 Enable the dependent-count heuristic in the scheduler. This heuristic
8337 favors the instruction that has more instructions depending on it.
8338 This is enabled by default when scheduling is enabled, i.e.@:
8339 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
8340 at @option{-O2} or higher.
8341
8342 @item -freschedule-modulo-scheduled-loops
8343 @opindex freschedule-modulo-scheduled-loops
8344 Modulo scheduling is performed before traditional scheduling. If a loop
8345 is modulo scheduled, later scheduling passes may change its schedule.
8346 Use this option to control that behavior.
8347
8348 @item -fselective-scheduling
8349 @opindex fselective-scheduling
8350 Schedule instructions using selective scheduling algorithm. Selective
8351 scheduling runs instead of the first scheduler pass.
8352
8353 @item -fselective-scheduling2
8354 @opindex fselective-scheduling2
8355 Schedule instructions using selective scheduling algorithm. Selective
8356 scheduling runs instead of the second scheduler pass.
8357
8358 @item -fsel-sched-pipelining
8359 @opindex fsel-sched-pipelining
8360 Enable software pipelining of innermost loops during selective scheduling.
8361 This option has no effect unless one of @option{-fselective-scheduling} or
8362 @option{-fselective-scheduling2} is turned on.
8363
8364 @item -fsel-sched-pipelining-outer-loops
8365 @opindex fsel-sched-pipelining-outer-loops
8366 When pipelining loops during selective scheduling, also pipeline outer loops.
8367 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
8368
8369 @item -fsemantic-interposition
8370 @opindex fsemantic-interposition
8371 Some object formats, like ELF, allow interposing of symbols by the
8372 dynamic linker.
8373 This means that for symbols exported from the DSO, the compiler cannot perform
8374 interprocedural propagation, inlining and other optimizations in anticipation
8375 that the function or variable in question may change. While this feature is
8376 useful, for example, to rewrite memory allocation functions by a debugging
8377 implementation, it is expensive in the terms of code quality.
8378 With @option{-fno-semantic-interposition} the compiler assumes that
8379 if interposition happens for functions the overwriting function will have
8380 precisely the same semantics (and side effects).
8381 Similarly if interposition happens
8382 for variables, the constructor of the variable will be the same. The flag
8383 has no effect for functions explicitly declared inline
8384 (where it is never allowed for interposition to change semantics)
8385 and for symbols explicitly declared weak.
8386
8387 @item -fshrink-wrap
8388 @opindex fshrink-wrap
8389 Emit function prologues only before parts of the function that need it,
8390 rather than at the top of the function. This flag is enabled by default at
8391 @option{-O} and higher.
8392
8393 @item -fcaller-saves
8394 @opindex fcaller-saves
8395 Enable allocation of values to registers that are clobbered by
8396 function calls, by emitting extra instructions to save and restore the
8397 registers around such calls. Such allocation is done only when it
8398 seems to result in better code.
8399
8400 This option is always enabled by default on certain machines, usually
8401 those which have no call-preserved registers to use instead.
8402
8403 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8404
8405 @item -fcombine-stack-adjustments
8406 @opindex fcombine-stack-adjustments
8407 Tracks stack adjustments (pushes and pops) and stack memory references
8408 and then tries to find ways to combine them.
8409
8410 Enabled by default at @option{-O1} and higher.
8411
8412 @item -fipa-ra
8413 @opindex fipa-ra
8414 Use caller save registers for allocation if those registers are not used by
8415 any called function. In that case it is not necessary to save and restore
8416 them around calls. This is only possible if called functions are part of
8417 same compilation unit as current function and they are compiled before it.
8418
8419 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8420
8421 @item -fconserve-stack
8422 @opindex fconserve-stack
8423 Attempt to minimize stack usage. The compiler attempts to use less
8424 stack space, even if that makes the program slower. This option
8425 implies setting the @option{large-stack-frame} parameter to 100
8426 and the @option{large-stack-frame-growth} parameter to 400.
8427
8428 @item -ftree-reassoc
8429 @opindex ftree-reassoc
8430 Perform reassociation on trees. This flag is enabled by default
8431 at @option{-O} and higher.
8432
8433 @item -ftree-pre
8434 @opindex ftree-pre
8435 Perform partial redundancy elimination (PRE) on trees. This flag is
8436 enabled by default at @option{-O2} and @option{-O3}.
8437
8438 @item -ftree-partial-pre
8439 @opindex ftree-partial-pre
8440 Make partial redundancy elimination (PRE) more aggressive. This flag is
8441 enabled by default at @option{-O3}.
8442
8443 @item -ftree-forwprop
8444 @opindex ftree-forwprop
8445 Perform forward propagation on trees. This flag is enabled by default
8446 at @option{-O} and higher.
8447
8448 @item -ftree-fre
8449 @opindex ftree-fre
8450 Perform full redundancy elimination (FRE) on trees. The difference
8451 between FRE and PRE is that FRE only considers expressions
8452 that are computed on all paths leading to the redundant computation.
8453 This analysis is faster than PRE, though it exposes fewer redundancies.
8454 This flag is enabled by default at @option{-O} and higher.
8455
8456 @item -ftree-phiprop
8457 @opindex ftree-phiprop
8458 Perform hoisting of loads from conditional pointers on trees. This
8459 pass is enabled by default at @option{-O} and higher.
8460
8461 @item -fhoist-adjacent-loads
8462 @opindex fhoist-adjacent-loads
8463 Speculatively hoist loads from both branches of an if-then-else if the
8464 loads are from adjacent locations in the same structure and the target
8465 architecture has a conditional move instruction. This flag is enabled
8466 by default at @option{-O2} and higher.
8467
8468 @item -ftree-copy-prop
8469 @opindex ftree-copy-prop
8470 Perform copy propagation on trees. This pass eliminates unnecessary
8471 copy operations. This flag is enabled by default at @option{-O} and
8472 higher.
8473
8474 @item -fipa-pure-const
8475 @opindex fipa-pure-const
8476 Discover which functions are pure or constant.
8477 Enabled by default at @option{-O} and higher.
8478
8479 @item -fipa-reference
8480 @opindex fipa-reference
8481 Discover which static variables do not escape the
8482 compilation unit.
8483 Enabled by default at @option{-O} and higher.
8484
8485 @item -fipa-pta
8486 @opindex fipa-pta
8487 Perform interprocedural pointer analysis and interprocedural modification
8488 and reference analysis. This option can cause excessive memory and
8489 compile-time usage on large compilation units. It is not enabled by
8490 default at any optimization level.
8491
8492 @item -fipa-profile
8493 @opindex fipa-profile
8494 Perform interprocedural profile propagation. The functions called only from
8495 cold functions are marked as cold. Also functions executed once (such as
8496 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
8497 functions and loop less parts of functions executed once are then optimized for
8498 size.
8499 Enabled by default at @option{-O} and higher.
8500
8501 @item -fipa-cp
8502 @opindex fipa-cp
8503 Perform interprocedural constant propagation.
8504 This optimization analyzes the program to determine when values passed
8505 to functions are constants and then optimizes accordingly.
8506 This optimization can substantially increase performance
8507 if the application has constants passed to functions.
8508 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
8509
8510 @item -fipa-cp-clone
8511 @opindex fipa-cp-clone
8512 Perform function cloning to make interprocedural constant propagation stronger.
8513 When enabled, interprocedural constant propagation performs function cloning
8514 when externally visible function can be called with constant arguments.
8515 Because this optimization can create multiple copies of functions,
8516 it may significantly increase code size
8517 (see @option{--param ipcp-unit-growth=@var{value}}).
8518 This flag is enabled by default at @option{-O3}.
8519
8520 @item -fipa-cp-alignment
8521 @opindex -fipa-cp-alignment
8522 When enabled, this optimization propagates alignment of function
8523 parameters to support better vectorization and string operations.
8524
8525 This flag is enabled by default at @option{-O2} and @option{-Os}. It
8526 requires that @option{-fipa-cp} is enabled.
8527
8528 @item -fipa-icf
8529 @opindex fipa-icf
8530 Perform Identical Code Folding for functions and read-only variables.
8531 The optimization reduces code size and may disturb unwind stacks by replacing
8532 a function by equivalent one with a different name. The optimization works
8533 more effectively with link time optimization enabled.
8534
8535 Nevertheless the behavior is similar to Gold Linker ICF optimization, GCC ICF
8536 works on different levels and thus the optimizations are not same - there are
8537 equivalences that are found only by GCC and equivalences found only by Gold.
8538
8539 This flag is enabled by default at @option{-O2} and @option{-Os}.
8540
8541 @item -fisolate-erroneous-paths-dereference
8542 @opindex fisolate-erroneous-paths-dereference
8543 Detect paths that trigger erroneous or undefined behavior due to
8544 dereferencing a null pointer. Isolate those paths from the main control
8545 flow and turn the statement with erroneous or undefined behavior into a trap.
8546 This flag is enabled by default at @option{-O2} and higher and depends on
8547 @option{-fdelete-null-pointer-checks} also being enabled.
8548
8549 @item -fisolate-erroneous-paths-attribute
8550 @opindex fisolate-erroneous-paths-attribute
8551 Detect paths that trigger erroneous or undefined behavior due a null value
8552 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
8553 attribute. Isolate those paths from the main control flow and turn the
8554 statement with erroneous or undefined behavior into a trap. This is not
8555 currently enabled, but may be enabled by @option{-O2} in the future.
8556
8557 @item -ftree-sink
8558 @opindex ftree-sink
8559 Perform forward store motion on trees. This flag is
8560 enabled by default at @option{-O} and higher.
8561
8562 @item -ftree-bit-ccp
8563 @opindex ftree-bit-ccp
8564 Perform sparse conditional bit constant propagation on trees and propagate
8565 pointer alignment information.
8566 This pass only operates on local scalar variables and is enabled by default
8567 at @option{-O} and higher. It requires that @option{-ftree-ccp} is enabled.
8568
8569 @item -ftree-ccp
8570 @opindex ftree-ccp
8571 Perform sparse conditional constant propagation (CCP) on trees. This
8572 pass only operates on local scalar variables and is enabled by default
8573 at @option{-O} and higher.
8574
8575 @item -fssa-phiopt
8576 @opindex fssa-phiopt
8577 Perform pattern matching on SSA PHI nodes to optimize conditional
8578 code. This pass is enabled by default at @option{-O} and higher.
8579
8580 @item -ftree-switch-conversion
8581 @opindex ftree-switch-conversion
8582 Perform conversion of simple initializations in a switch to
8583 initializations from a scalar array. This flag is enabled by default
8584 at @option{-O2} and higher.
8585
8586 @item -ftree-tail-merge
8587 @opindex ftree-tail-merge
8588 Look for identical code sequences. When found, replace one with a jump to the
8589 other. This optimization is known as tail merging or cross jumping. This flag
8590 is enabled by default at @option{-O2} and higher. The compilation time
8591 in this pass can
8592 be limited using @option{max-tail-merge-comparisons} parameter and
8593 @option{max-tail-merge-iterations} parameter.
8594
8595 @item -ftree-dce
8596 @opindex ftree-dce
8597 Perform dead code elimination (DCE) on trees. This flag is enabled by
8598 default at @option{-O} and higher.
8599
8600 @item -ftree-builtin-call-dce
8601 @opindex ftree-builtin-call-dce
8602 Perform conditional dead code elimination (DCE) for calls to built-in functions
8603 that may set @code{errno} but are otherwise side-effect free. This flag is
8604 enabled by default at @option{-O2} and higher if @option{-Os} is not also
8605 specified.
8606
8607 @item -ftree-dominator-opts
8608 @opindex ftree-dominator-opts
8609 Perform a variety of simple scalar cleanups (constant/copy
8610 propagation, redundancy elimination, range propagation and expression
8611 simplification) based on a dominator tree traversal. This also
8612 performs jump threading (to reduce jumps to jumps). This flag is
8613 enabled by default at @option{-O} and higher.
8614
8615 @item -ftree-dse
8616 @opindex ftree-dse
8617 Perform dead store elimination (DSE) on trees. A dead store is a store into
8618 a memory location that is later overwritten by another store without
8619 any intervening loads. In this case the earlier store can be deleted. This
8620 flag is enabled by default at @option{-O} and higher.
8621
8622 @item -ftree-ch
8623 @opindex ftree-ch
8624 Perform loop header copying on trees. This is beneficial since it increases
8625 effectiveness of code motion optimizations. It also saves one jump. This flag
8626 is enabled by default at @option{-O} and higher. It is not enabled
8627 for @option{-Os}, since it usually increases code size.
8628
8629 @item -ftree-loop-optimize
8630 @opindex ftree-loop-optimize
8631 Perform loop optimizations on trees. This flag is enabled by default
8632 at @option{-O} and higher.
8633
8634 @item -ftree-loop-linear
8635 @opindex ftree-loop-linear
8636 Perform loop interchange transformations on tree. Same as
8637 @option{-floop-interchange}. To use this code transformation, GCC has
8638 to be configured with @option{--with-isl} to enable the Graphite loop
8639 transformation infrastructure.
8640
8641 @item -floop-interchange
8642 @opindex floop-interchange
8643 Perform loop interchange transformations on loops. Interchanging two
8644 nested loops switches the inner and outer loops. For example, given a
8645 loop like:
8646 @smallexample
8647 DO J = 1, M
8648 DO I = 1, N
8649 A(J, I) = A(J, I) * C
8650 ENDDO
8651 ENDDO
8652 @end smallexample
8653 @noindent
8654 loop interchange transforms the loop as if it were written:
8655 @smallexample
8656 DO I = 1, N
8657 DO J = 1, M
8658 A(J, I) = A(J, I) * C
8659 ENDDO
8660 ENDDO
8661 @end smallexample
8662 which can be beneficial when @code{N} is larger than the caches,
8663 because in Fortran, the elements of an array are stored in memory
8664 contiguously by column, and the original loop iterates over rows,
8665 potentially creating at each access a cache miss. This optimization
8666 applies to all the languages supported by GCC and is not limited to
8667 Fortran. To use this code transformation, GCC has to be configured
8668 with @option{--with-isl} to enable the Graphite loop transformation
8669 infrastructure.
8670
8671 @item -floop-strip-mine
8672 @opindex floop-strip-mine
8673 Perform loop strip mining transformations on loops. Strip mining
8674 splits a loop into two nested loops. The outer loop has strides
8675 equal to the strip size and the inner loop has strides of the
8676 original loop within a strip. The strip length can be changed
8677 using the @option{loop-block-tile-size} parameter. For example,
8678 given a loop like:
8679 @smallexample
8680 DO I = 1, N
8681 A(I) = A(I) + C
8682 ENDDO
8683 @end smallexample
8684 @noindent
8685 loop strip mining transforms the loop as if it were written:
8686 @smallexample
8687 DO II = 1, N, 51
8688 DO I = II, min (II + 50, N)
8689 A(I) = A(I) + C
8690 ENDDO
8691 ENDDO
8692 @end smallexample
8693 This optimization applies to all the languages supported by GCC and is
8694 not limited to Fortran. To use this code transformation, GCC has to
8695 be configured with @option{--with-isl} to enable the Graphite loop
8696 transformation infrastructure.
8697
8698 @item -floop-block
8699 @opindex floop-block
8700 Perform loop blocking transformations on loops. Blocking strip mines
8701 each loop in the loop nest such that the memory accesses of the
8702 element loops fit inside caches. The strip length can be changed
8703 using the @option{loop-block-tile-size} parameter. For example, given
8704 a loop like:
8705 @smallexample
8706 DO I = 1, N
8707 DO J = 1, M
8708 A(J, I) = B(I) + C(J)
8709 ENDDO
8710 ENDDO
8711 @end smallexample
8712 @noindent
8713 loop blocking transforms the loop as if it were written:
8714 @smallexample
8715 DO II = 1, N, 51
8716 DO JJ = 1, M, 51
8717 DO I = II, min (II + 50, N)
8718 DO J = JJ, min (JJ + 50, M)
8719 A(J, I) = B(I) + C(J)
8720 ENDDO
8721 ENDDO
8722 ENDDO
8723 ENDDO
8724 @end smallexample
8725 which can be beneficial when @code{M} is larger than the caches,
8726 because the innermost loop iterates over a smaller amount of data
8727 which can be kept in the caches. This optimization applies to all the
8728 languages supported by GCC and is not limited to Fortran. To use this
8729 code transformation, GCC has to be configured with @option{--with-isl}
8730 to enable the Graphite loop transformation infrastructure.
8731
8732 @item -fgraphite-identity
8733 @opindex fgraphite-identity
8734 Enable the identity transformation for graphite. For every SCoP we generate
8735 the polyhedral representation and transform it back to gimple. Using
8736 @option{-fgraphite-identity} we can check the costs or benefits of the
8737 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
8738 are also performed by the code generator ISL, like index splitting and
8739 dead code elimination in loops.
8740
8741 @item -floop-nest-optimize
8742 @opindex floop-nest-optimize
8743 Enable the ISL based loop nest optimizer. This is a generic loop nest
8744 optimizer based on the Pluto optimization algorithms. It calculates a loop
8745 structure optimized for data-locality and parallelism. This option
8746 is experimental.
8747
8748 @item -floop-unroll-and-jam
8749 @opindex floop-unroll-and-jam
8750 Enable unroll and jam for the ISL based loop nest optimizer. The unroll
8751 factor can be changed using the @option{loop-unroll-jam-size} parameter.
8752 The unrolled dimension (counting from the most inner one) can be changed
8753 using the @option{loop-unroll-jam-depth} parameter. .
8754
8755 @item -floop-parallelize-all
8756 @opindex floop-parallelize-all
8757 Use the Graphite data dependence analysis to identify loops that can
8758 be parallelized. Parallelize all the loops that can be analyzed to
8759 not contain loop carried dependences without checking that it is
8760 profitable to parallelize the loops.
8761
8762 @item -fcheck-data-deps
8763 @opindex fcheck-data-deps
8764 Compare the results of several data dependence analyzers. This option
8765 is used for debugging the data dependence analyzers.
8766
8767 @item -ftree-loop-if-convert
8768 @opindex ftree-loop-if-convert
8769 Attempt to transform conditional jumps in the innermost loops to
8770 branch-less equivalents. The intent is to remove control-flow from
8771 the innermost loops in order to improve the ability of the
8772 vectorization pass to handle these loops. This is enabled by default
8773 if vectorization is enabled.
8774
8775 @item -ftree-loop-if-convert-stores
8776 @opindex ftree-loop-if-convert-stores
8777 Attempt to also if-convert conditional jumps containing memory writes.
8778 This transformation can be unsafe for multi-threaded programs as it
8779 transforms conditional memory writes into unconditional memory writes.
8780 For example,
8781 @smallexample
8782 for (i = 0; i < N; i++)
8783 if (cond)
8784 A[i] = expr;
8785 @end smallexample
8786 is transformed to
8787 @smallexample
8788 for (i = 0; i < N; i++)
8789 A[i] = cond ? expr : A[i];
8790 @end smallexample
8791 potentially producing data races.
8792
8793 @item -ftree-loop-distribution
8794 @opindex ftree-loop-distribution
8795 Perform loop distribution. This flag can improve cache performance on
8796 big loop bodies and allow further loop optimizations, like
8797 parallelization or vectorization, to take place. For example, the loop
8798 @smallexample
8799 DO I = 1, N
8800 A(I) = B(I) + C
8801 D(I) = E(I) * F
8802 ENDDO
8803 @end smallexample
8804 is transformed to
8805 @smallexample
8806 DO I = 1, N
8807 A(I) = B(I) + C
8808 ENDDO
8809 DO I = 1, N
8810 D(I) = E(I) * F
8811 ENDDO
8812 @end smallexample
8813
8814 @item -ftree-loop-distribute-patterns
8815 @opindex ftree-loop-distribute-patterns
8816 Perform loop distribution of patterns that can be code generated with
8817 calls to a library. This flag is enabled by default at @option{-O3}.
8818
8819 This pass distributes the initialization loops and generates a call to
8820 memset zero. For example, the loop
8821 @smallexample
8822 DO I = 1, N
8823 A(I) = 0
8824 B(I) = A(I) + I
8825 ENDDO
8826 @end smallexample
8827 is transformed to
8828 @smallexample
8829 DO I = 1, N
8830 A(I) = 0
8831 ENDDO
8832 DO I = 1, N
8833 B(I) = A(I) + I
8834 ENDDO
8835 @end smallexample
8836 and the initialization loop is transformed into a call to memset zero.
8837
8838 @item -ftree-loop-im
8839 @opindex ftree-loop-im
8840 Perform loop invariant motion on trees. This pass moves only invariants that
8841 are hard to handle at RTL level (function calls, operations that expand to
8842 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
8843 operands of conditions that are invariant out of the loop, so that we can use
8844 just trivial invariantness analysis in loop unswitching. The pass also includes
8845 store motion.
8846
8847 @item -ftree-loop-ivcanon
8848 @opindex ftree-loop-ivcanon
8849 Create a canonical counter for number of iterations in loops for which
8850 determining number of iterations requires complicated analysis. Later
8851 optimizations then may determine the number easily. Useful especially
8852 in connection with unrolling.
8853
8854 @item -fivopts
8855 @opindex fivopts
8856 Perform induction variable optimizations (strength reduction, induction
8857 variable merging and induction variable elimination) on trees.
8858
8859 @item -ftree-parallelize-loops=n
8860 @opindex ftree-parallelize-loops
8861 Parallelize loops, i.e., split their iteration space to run in n threads.
8862 This is only possible for loops whose iterations are independent
8863 and can be arbitrarily reordered. The optimization is only
8864 profitable on multiprocessor machines, for loops that are CPU-intensive,
8865 rather than constrained e.g.@: by memory bandwidth. This option
8866 implies @option{-pthread}, and thus is only supported on targets
8867 that have support for @option{-pthread}.
8868
8869 @item -ftree-pta
8870 @opindex ftree-pta
8871 Perform function-local points-to analysis on trees. This flag is
8872 enabled by default at @option{-O} and higher.
8873
8874 @item -ftree-sra
8875 @opindex ftree-sra
8876 Perform scalar replacement of aggregates. This pass replaces structure
8877 references with scalars to prevent committing structures to memory too
8878 early. This flag is enabled by default at @option{-O} and higher.
8879
8880 @item -ftree-copyrename
8881 @opindex ftree-copyrename
8882 Perform copy renaming on trees. This pass attempts to rename compiler
8883 temporaries to other variables at copy locations, usually resulting in
8884 variable names which more closely resemble the original variables. This flag
8885 is enabled by default at @option{-O} and higher.
8886
8887 @item -ftree-coalesce-inlined-vars
8888 @opindex ftree-coalesce-inlined-vars
8889 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8890 combine small user-defined variables too, but only if they are inlined
8891 from other functions. It is a more limited form of
8892 @option{-ftree-coalesce-vars}. This may harm debug information of such
8893 inlined variables, but it keeps variables of the inlined-into
8894 function apart from each other, such that they are more likely to
8895 contain the expected values in a debugging session.
8896
8897 @item -ftree-coalesce-vars
8898 @opindex ftree-coalesce-vars
8899 Tell the copyrename pass (see @option{-ftree-copyrename}) to attempt to
8900 combine small user-defined variables too, instead of just compiler
8901 temporaries. This may severely limit the ability to debug an optimized
8902 program compiled with @option{-fno-var-tracking-assignments}. In the
8903 negated form, this flag prevents SSA coalescing of user variables,
8904 including inlined ones. This option is enabled by default.
8905
8906 @item -ftree-ter
8907 @opindex ftree-ter
8908 Perform temporary expression replacement during the SSA->normal phase. Single
8909 use/single def temporaries are replaced at their use location with their
8910 defining expression. This results in non-GIMPLE code, but gives the expanders
8911 much more complex trees to work on resulting in better RTL generation. This is
8912 enabled by default at @option{-O} and higher.
8913
8914 @item -ftree-slsr
8915 @opindex ftree-slsr
8916 Perform straight-line strength reduction on trees. This recognizes related
8917 expressions involving multiplications and replaces them by less expensive
8918 calculations when possible. This is enabled by default at @option{-O} and
8919 higher.
8920
8921 @item -ftree-vectorize
8922 @opindex ftree-vectorize
8923 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
8924 and @option{-ftree-slp-vectorize} if not explicitly specified.
8925
8926 @item -ftree-loop-vectorize
8927 @opindex ftree-loop-vectorize
8928 Perform loop vectorization on trees. This flag is enabled by default at
8929 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8930
8931 @item -ftree-slp-vectorize
8932 @opindex ftree-slp-vectorize
8933 Perform basic block vectorization on trees. This flag is enabled by default at
8934 @option{-O3} and when @option{-ftree-vectorize} is enabled.
8935
8936 @item -fvect-cost-model=@var{model}
8937 @opindex fvect-cost-model
8938 Alter the cost model used for vectorization. The @var{model} argument
8939 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
8940 With the @samp{unlimited} model the vectorized code-path is assumed
8941 to be profitable while with the @samp{dynamic} model a runtime check
8942 guards the vectorized code-path to enable it only for iteration
8943 counts that will likely execute faster than when executing the original
8944 scalar loop. The @samp{cheap} model disables vectorization of
8945 loops where doing so would be cost prohibitive for example due to
8946 required runtime checks for data dependence or alignment but otherwise
8947 is equal to the @samp{dynamic} model.
8948 The default cost model depends on other optimization flags and is
8949 either @samp{dynamic} or @samp{cheap}.
8950
8951 @item -fsimd-cost-model=@var{model}
8952 @opindex fsimd-cost-model
8953 Alter the cost model used for vectorization of loops marked with the OpenMP
8954 or Cilk Plus simd directive. The @var{model} argument should be one of
8955 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
8956 have the same meaning as described in @option{-fvect-cost-model} and by
8957 default a cost model defined with @option{-fvect-cost-model} is used.
8958
8959 @item -ftree-vrp
8960 @opindex ftree-vrp
8961 Perform Value Range Propagation on trees. This is similar to the
8962 constant propagation pass, but instead of values, ranges of values are
8963 propagated. This allows the optimizers to remove unnecessary range
8964 checks like array bound checks and null pointer checks. This is
8965 enabled by default at @option{-O2} and higher. Null pointer check
8966 elimination is only done if @option{-fdelete-null-pointer-checks} is
8967 enabled.
8968
8969 @item -fsplit-ivs-in-unroller
8970 @opindex fsplit-ivs-in-unroller
8971 Enables expression of values of induction variables in later iterations
8972 of the unrolled loop using the value in the first iteration. This breaks
8973 long dependency chains, thus improving efficiency of the scheduling passes.
8974
8975 A combination of @option{-fweb} and CSE is often sufficient to obtain the
8976 same effect. However, that is not reliable in cases where the loop body
8977 is more complicated than a single basic block. It also does not work at all
8978 on some architectures due to restrictions in the CSE pass.
8979
8980 This optimization is enabled by default.
8981
8982 @item -fvariable-expansion-in-unroller
8983 @opindex fvariable-expansion-in-unroller
8984 With this option, the compiler creates multiple copies of some
8985 local variables when unrolling a loop, which can result in superior code.
8986
8987 @item -fpartial-inlining
8988 @opindex fpartial-inlining
8989 Inline parts of functions. This option has any effect only
8990 when inlining itself is turned on by the @option{-finline-functions}
8991 or @option{-finline-small-functions} options.
8992
8993 Enabled at level @option{-O2}.
8994
8995 @item -fpredictive-commoning
8996 @opindex fpredictive-commoning
8997 Perform predictive commoning optimization, i.e., reusing computations
8998 (especially memory loads and stores) performed in previous
8999 iterations of loops.
9000
9001 This option is enabled at level @option{-O3}.
9002
9003 @item -fprefetch-loop-arrays
9004 @opindex fprefetch-loop-arrays
9005 If supported by the target machine, generate instructions to prefetch
9006 memory to improve the performance of loops that access large arrays.
9007
9008 This option may generate better or worse code; results are highly
9009 dependent on the structure of loops within the source code.
9010
9011 Disabled at level @option{-Os}.
9012
9013 @item -fno-peephole
9014 @itemx -fno-peephole2
9015 @opindex fno-peephole
9016 @opindex fno-peephole2
9017 Disable any machine-specific peephole optimizations. The difference
9018 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9019 are implemented in the compiler; some targets use one, some use the
9020 other, a few use both.
9021
9022 @option{-fpeephole} is enabled by default.
9023 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9024
9025 @item -fno-guess-branch-probability
9026 @opindex fno-guess-branch-probability
9027 Do not guess branch probabilities using heuristics.
9028
9029 GCC uses heuristics to guess branch probabilities if they are
9030 not provided by profiling feedback (@option{-fprofile-arcs}). These
9031 heuristics are based on the control flow graph. If some branch probabilities
9032 are specified by @code{__builtin_expect}, then the heuristics are
9033 used to guess branch probabilities for the rest of the control flow graph,
9034 taking the @code{__builtin_expect} info into account. The interactions
9035 between the heuristics and @code{__builtin_expect} can be complex, and in
9036 some cases, it may be useful to disable the heuristics so that the effects
9037 of @code{__builtin_expect} are easier to understand.
9038
9039 The default is @option{-fguess-branch-probability} at levels
9040 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9041
9042 @item -freorder-blocks
9043 @opindex freorder-blocks
9044 Reorder basic blocks in the compiled function in order to reduce number of
9045 taken branches and improve code locality.
9046
9047 Enabled at levels @option{-O2}, @option{-O3}.
9048
9049 @item -freorder-blocks-and-partition
9050 @opindex freorder-blocks-and-partition
9051 In addition to reordering basic blocks in the compiled function, in order
9052 to reduce number of taken branches, partitions hot and cold basic blocks
9053 into separate sections of the assembly and .o files, to improve
9054 paging and cache locality performance.
9055
9056 This optimization is automatically turned off in the presence of
9057 exception handling, for linkonce sections, for functions with a user-defined
9058 section attribute and on any architecture that does not support named
9059 sections.
9060
9061 Enabled for x86 at levels @option{-O2}, @option{-O3}.
9062
9063 @item -freorder-functions
9064 @opindex freorder-functions
9065 Reorder functions in the object file in order to
9066 improve code locality. This is implemented by using special
9067 subsections @code{.text.hot} for most frequently executed functions and
9068 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9069 the linker so object file format must support named sections and linker must
9070 place them in a reasonable way.
9071
9072 Also profile feedback must be available to make this option effective. See
9073 @option{-fprofile-arcs} for details.
9074
9075 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9076
9077 @item -fstrict-aliasing
9078 @opindex fstrict-aliasing
9079 Allow the compiler to assume the strictest aliasing rules applicable to
9080 the language being compiled. For C (and C++), this activates
9081 optimizations based on the type of expressions. In particular, an
9082 object of one type is assumed never to reside at the same address as an
9083 object of a different type, unless the types are almost the same. For
9084 example, an @code{unsigned int} can alias an @code{int}, but not a
9085 @code{void*} or a @code{double}. A character type may alias any other
9086 type.
9087
9088 @anchor{Type-punning}Pay special attention to code like this:
9089 @smallexample
9090 union a_union @{
9091 int i;
9092 double d;
9093 @};
9094
9095 int f() @{
9096 union a_union t;
9097 t.d = 3.0;
9098 return t.i;
9099 @}
9100 @end smallexample
9101 The practice of reading from a different union member than the one most
9102 recently written to (called ``type-punning'') is common. Even with
9103 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9104 is accessed through the union type. So, the code above works as
9105 expected. @xref{Structures unions enumerations and bit-fields
9106 implementation}. However, this code might not:
9107 @smallexample
9108 int f() @{
9109 union a_union t;
9110 int* ip;
9111 t.d = 3.0;
9112 ip = &t.i;
9113 return *ip;
9114 @}
9115 @end smallexample
9116
9117 Similarly, access by taking the address, casting the resulting pointer
9118 and dereferencing the result has undefined behavior, even if the cast
9119 uses a union type, e.g.:
9120 @smallexample
9121 int f() @{
9122 double d = 3.0;
9123 return ((union a_union *) &d)->i;
9124 @}
9125 @end smallexample
9126
9127 The @option{-fstrict-aliasing} option is enabled at levels
9128 @option{-O2}, @option{-O3}, @option{-Os}.
9129
9130 @item -fstrict-overflow
9131 @opindex fstrict-overflow
9132 Allow the compiler to assume strict signed overflow rules, depending
9133 on the language being compiled. For C (and C++) this means that
9134 overflow when doing arithmetic with signed numbers is undefined, which
9135 means that the compiler may assume that it does not happen. This
9136 permits various optimizations. For example, the compiler assumes
9137 that an expression like @code{i + 10 > i} is always true for
9138 signed @code{i}. This assumption is only valid if signed overflow is
9139 undefined, as the expression is false if @code{i + 10} overflows when
9140 using twos complement arithmetic. When this option is in effect any
9141 attempt to determine whether an operation on signed numbers
9142 overflows must be written carefully to not actually involve overflow.
9143
9144 This option also allows the compiler to assume strict pointer
9145 semantics: given a pointer to an object, if adding an offset to that
9146 pointer does not produce a pointer to the same object, the addition is
9147 undefined. This permits the compiler to conclude that @code{p + u >
9148 p} is always true for a pointer @code{p} and unsigned integer
9149 @code{u}. This assumption is only valid because pointer wraparound is
9150 undefined, as the expression is false if @code{p + u} overflows using
9151 twos complement arithmetic.
9152
9153 See also the @option{-fwrapv} option. Using @option{-fwrapv} means
9154 that integer signed overflow is fully defined: it wraps. When
9155 @option{-fwrapv} is used, there is no difference between
9156 @option{-fstrict-overflow} and @option{-fno-strict-overflow} for
9157 integers. With @option{-fwrapv} certain types of overflow are
9158 permitted. For example, if the compiler gets an overflow when doing
9159 arithmetic on constants, the overflowed value can still be used with
9160 @option{-fwrapv}, but not otherwise.
9161
9162 The @option{-fstrict-overflow} option is enabled at levels
9163 @option{-O2}, @option{-O3}, @option{-Os}.
9164
9165 @item -falign-functions
9166 @itemx -falign-functions=@var{n}
9167 @opindex falign-functions
9168 Align the start of functions to the next power-of-two greater than
9169 @var{n}, skipping up to @var{n} bytes. For instance,
9170 @option{-falign-functions=32} aligns functions to the next 32-byte
9171 boundary, but @option{-falign-functions=24} aligns to the next
9172 32-byte boundary only if this can be done by skipping 23 bytes or less.
9173
9174 @option{-fno-align-functions} and @option{-falign-functions=1} are
9175 equivalent and mean that functions are not aligned.
9176
9177 Some assemblers only support this flag when @var{n} is a power of two;
9178 in that case, it is rounded up.
9179
9180 If @var{n} is not specified or is zero, use a machine-dependent default.
9181
9182 Enabled at levels @option{-O2}, @option{-O3}.
9183
9184 @item -falign-labels
9185 @itemx -falign-labels=@var{n}
9186 @opindex falign-labels
9187 Align all branch targets to a power-of-two boundary, skipping up to
9188 @var{n} bytes like @option{-falign-functions}. This option can easily
9189 make code slower, because it must insert dummy operations for when the
9190 branch target is reached in the usual flow of the code.
9191
9192 @option{-fno-align-labels} and @option{-falign-labels=1} are
9193 equivalent and mean that labels are not aligned.
9194
9195 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
9196 are greater than this value, then their values are used instead.
9197
9198 If @var{n} is not specified or is zero, use a machine-dependent default
9199 which is very likely to be @samp{1}, meaning no alignment.
9200
9201 Enabled at levels @option{-O2}, @option{-O3}.
9202
9203 @item -falign-loops
9204 @itemx -falign-loops=@var{n}
9205 @opindex falign-loops
9206 Align loops to a power-of-two boundary, skipping up to @var{n} bytes
9207 like @option{-falign-functions}. If the loops are
9208 executed many times, this makes up for any execution of the dummy
9209 operations.
9210
9211 @option{-fno-align-loops} and @option{-falign-loops=1} are
9212 equivalent and mean that loops are not aligned.
9213
9214 If @var{n} is not specified or is zero, use a machine-dependent default.
9215
9216 Enabled at levels @option{-O2}, @option{-O3}.
9217
9218 @item -falign-jumps
9219 @itemx -falign-jumps=@var{n}
9220 @opindex falign-jumps
9221 Align branch targets to a power-of-two boundary, for branch targets
9222 where the targets can only be reached by jumping, skipping up to @var{n}
9223 bytes like @option{-falign-functions}. In this case, no dummy operations
9224 need be executed.
9225
9226 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
9227 equivalent and mean that loops are not aligned.
9228
9229 If @var{n} is not specified or is zero, use a machine-dependent default.
9230
9231 Enabled at levels @option{-O2}, @option{-O3}.
9232
9233 @item -funit-at-a-time
9234 @opindex funit-at-a-time
9235 This option is left for compatibility reasons. @option{-funit-at-a-time}
9236 has no effect, while @option{-fno-unit-at-a-time} implies
9237 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
9238
9239 Enabled by default.
9240
9241 @item -fno-toplevel-reorder
9242 @opindex fno-toplevel-reorder
9243 Do not reorder top-level functions, variables, and @code{asm}
9244 statements. Output them in the same order that they appear in the
9245 input file. When this option is used, unreferenced static variables
9246 are not removed. This option is intended to support existing code
9247 that relies on a particular ordering. For new code, it is better to
9248 use attributes when possible.
9249
9250 Enabled at level @option{-O0}. When disabled explicitly, it also implies
9251 @option{-fno-section-anchors}, which is otherwise enabled at @option{-O0} on some
9252 targets.
9253
9254 @item -fweb
9255 @opindex fweb
9256 Constructs webs as commonly used for register allocation purposes and assign
9257 each web individual pseudo register. This allows the register allocation pass
9258 to operate on pseudos directly, but also strengthens several other optimization
9259 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
9260 however, make debugging impossible, since variables no longer stay in a
9261 ``home register''.
9262
9263 Enabled by default with @option{-funroll-loops}.
9264
9265 @item -fwhole-program
9266 @opindex fwhole-program
9267 Assume that the current compilation unit represents the whole program being
9268 compiled. All public functions and variables with the exception of @code{main}
9269 and those merged by attribute @code{externally_visible} become static functions
9270 and in effect are optimized more aggressively by interprocedural optimizers.
9271
9272 This option should not be used in combination with @option{-flto}.
9273 Instead relying on a linker plugin should provide safer and more precise
9274 information.
9275
9276 @item -flto[=@var{n}]
9277 @opindex flto
9278 This option runs the standard link-time optimizer. When invoked
9279 with source code, it generates GIMPLE (one of GCC's internal
9280 representations) and writes it to special ELF sections in the object
9281 file. When the object files are linked together, all the function
9282 bodies are read from these ELF sections and instantiated as if they
9283 had been part of the same translation unit.
9284
9285 To use the link-time optimizer, @option{-flto} and optimization
9286 options should be specified at compile time and during the final link.
9287 For example:
9288
9289 @smallexample
9290 gcc -c -O2 -flto foo.c
9291 gcc -c -O2 -flto bar.c
9292 gcc -o myprog -flto -O2 foo.o bar.o
9293 @end smallexample
9294
9295 The first two invocations to GCC save a bytecode representation
9296 of GIMPLE into special ELF sections inside @file{foo.o} and
9297 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
9298 @file{foo.o} and @file{bar.o}, merges the two files into a single
9299 internal image, and compiles the result as usual. Since both
9300 @file{foo.o} and @file{bar.o} are merged into a single image, this
9301 causes all the interprocedural analyses and optimizations in GCC to
9302 work across the two files as if they were a single one. This means,
9303 for example, that the inliner is able to inline functions in
9304 @file{bar.o} into functions in @file{foo.o} and vice-versa.
9305
9306 Another (simpler) way to enable link-time optimization is:
9307
9308 @smallexample
9309 gcc -o myprog -flto -O2 foo.c bar.c
9310 @end smallexample
9311
9312 The above generates bytecode for @file{foo.c} and @file{bar.c},
9313 merges them together into a single GIMPLE representation and optimizes
9314 them as usual to produce @file{myprog}.
9315
9316 The only important thing to keep in mind is that to enable link-time
9317 optimizations you need to use the GCC driver to perform the link-step.
9318 GCC then automatically performs link-time optimization if any of the
9319 objects involved were compiled with the @option{-flto} command-line option.
9320 You generally
9321 should specify the optimization options to be used for link-time
9322 optimization though GCC tries to be clever at guessing an
9323 optimization level to use from the options used at compile-time
9324 if you fail to specify one at link-time. You can always override
9325 the automatic decision to do link-time optimization at link-time
9326 by passing @option{-fno-lto} to the link command.
9327
9328 To make whole program optimization effective, it is necessary to make
9329 certain whole program assumptions. The compiler needs to know
9330 what functions and variables can be accessed by libraries and runtime
9331 outside of the link-time optimized unit. When supported by the linker,
9332 the linker plugin (see @option{-fuse-linker-plugin}) passes information
9333 to the compiler about used and externally visible symbols. When
9334 the linker plugin is not available, @option{-fwhole-program} should be
9335 used to allow the compiler to make these assumptions, which leads
9336 to more aggressive optimization decisions.
9337
9338 When @option{-fuse-linker-plugin} is not enabled then, when a file is
9339 compiled with @option{-flto}, the generated object file is larger than
9340 a regular object file because it contains GIMPLE bytecodes and the usual
9341 final code (see @option{-ffat-lto-objects}. This means that
9342 object files with LTO information can be linked as normal object
9343 files; if @option{-fno-lto} is passed to the linker, no
9344 interprocedural optimizations are applied. Note that when
9345 @option{-fno-fat-lto-objects} is enabled the compile-stage is faster
9346 but you cannot perform a regular, non-LTO link on them.
9347
9348 Additionally, the optimization flags used to compile individual files
9349 are not necessarily related to those used at link time. For instance,
9350
9351 @smallexample
9352 gcc -c -O0 -ffat-lto-objects -flto foo.c
9353 gcc -c -O0 -ffat-lto-objects -flto bar.c
9354 gcc -o myprog -O3 foo.o bar.o
9355 @end smallexample
9356
9357 This produces individual object files with unoptimized assembler
9358 code, but the resulting binary @file{myprog} is optimized at
9359 @option{-O3}. If, instead, the final binary is generated with
9360 @option{-fno-lto}, then @file{myprog} is not optimized.
9361
9362 When producing the final binary, GCC only
9363 applies link-time optimizations to those files that contain bytecode.
9364 Therefore, you can mix and match object files and libraries with
9365 GIMPLE bytecodes and final object code. GCC automatically selects
9366 which files to optimize in LTO mode and which files to link without
9367 further processing.
9368
9369 There are some code generation flags preserved by GCC when
9370 generating bytecodes, as they need to be used during the final link
9371 stage. Generally options specified at link-time override those
9372 specified at compile-time.
9373
9374 If you do not specify an optimization level option @option{-O} at
9375 link-time then GCC computes one based on the optimization levels
9376 used when compiling the object files. The highest optimization
9377 level wins here.
9378
9379 Currently, the following options and their setting are take from
9380 the first object file that explicitely specified it:
9381 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
9382 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
9383 and all the @option{-m} target flags.
9384
9385 Certain ABI changing flags are required to match in all compilation-units
9386 and trying to override this at link-time with a conflicting value
9387 is ignored. This includes options such as @option{-freg-struct-return}
9388 and @option{-fpcc-struct-return}.
9389
9390 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
9391 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
9392 are passed through to the link stage and merged conservatively for
9393 conflicting translation units. Specifically
9394 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
9395 precedence and for example @option{-ffp-contract=off} takes precedence
9396 over @option{-ffp-contract=fast}. You can override them at linke-time.
9397
9398 It is recommended that you compile all the files participating in the
9399 same link with the same options and also specify those options at
9400 link time.
9401
9402 If LTO encounters objects with C linkage declared with incompatible
9403 types in separate translation units to be linked together (undefined
9404 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
9405 issued. The behavior is still undefined at run time. Similar
9406 diagnostics may be raised for other languages.
9407
9408 Another feature of LTO is that it is possible to apply interprocedural
9409 optimizations on files written in different languages:
9410
9411 @smallexample
9412 gcc -c -flto foo.c
9413 g++ -c -flto bar.cc
9414 gfortran -c -flto baz.f90
9415 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
9416 @end smallexample
9417
9418 Notice that the final link is done with @command{g++} to get the C++
9419 runtime libraries and @option{-lgfortran} is added to get the Fortran
9420 runtime libraries. In general, when mixing languages in LTO mode, you
9421 should use the same link command options as when mixing languages in a
9422 regular (non-LTO) compilation.
9423
9424 If object files containing GIMPLE bytecode are stored in a library archive, say
9425 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
9426 are using a linker with plugin support. To create static libraries suitable
9427 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
9428 and @command{ranlib};
9429 to show the symbols of object files with GIMPLE bytecode, use
9430 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
9431 and @command{nm} have been compiled with plugin support. At link time, use the the
9432 flag @option{-fuse-linker-plugin} to ensure that the library participates in
9433 the LTO optimization process:
9434
9435 @smallexample
9436 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
9437 @end smallexample
9438
9439 With the linker plugin enabled, the linker extracts the needed
9440 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
9441 to make them part of the aggregated GIMPLE image to be optimized.
9442
9443 If you are not using a linker with plugin support and/or do not
9444 enable the linker plugin, then the objects inside @file{libfoo.a}
9445 are extracted and linked as usual, but they do not participate
9446 in the LTO optimization process. In order to make a static library suitable
9447 for both LTO optimization and usual linkage, compile its object files with
9448 @option{-flto} @option{-ffat-lto-objects}.
9449
9450 Link-time optimizations do not require the presence of the whole program to
9451 operate. If the program does not require any symbols to be exported, it is
9452 possible to combine @option{-flto} and @option{-fwhole-program} to allow
9453 the interprocedural optimizers to use more aggressive assumptions which may
9454 lead to improved optimization opportunities.
9455 Use of @option{-fwhole-program} is not needed when linker plugin is
9456 active (see @option{-fuse-linker-plugin}).
9457
9458 The current implementation of LTO makes no
9459 attempt to generate bytecode that is portable between different
9460 types of hosts. The bytecode files are versioned and there is a
9461 strict version check, so bytecode files generated in one version of
9462 GCC do not work with an older or newer version of GCC.
9463
9464 Link-time optimization does not work well with generation of debugging
9465 information. Combining @option{-flto} with
9466 @option{-g} is currently experimental and expected to produce unexpected
9467 results.
9468
9469 If you specify the optional @var{n}, the optimization and code
9470 generation done at link time is executed in parallel using @var{n}
9471 parallel jobs by utilizing an installed @command{make} program. The
9472 environment variable @env{MAKE} may be used to override the program
9473 used. The default value for @var{n} is 1.
9474
9475 You can also specify @option{-flto=jobserver} to use GNU make's
9476 job server mode to determine the number of parallel jobs. This
9477 is useful when the Makefile calling GCC is already executing in parallel.
9478 You must prepend a @samp{+} to the command recipe in the parent Makefile
9479 for this to work. This option likely only works if @env{MAKE} is
9480 GNU make.
9481
9482 @item -flto-partition=@var{alg}
9483 @opindex flto-partition
9484 Specify the partitioning algorithm used by the link-time optimizer.
9485 The value is either @samp{1to1} to specify a partitioning mirroring
9486 the original source files or @samp{balanced} to specify partitioning
9487 into equally sized chunks (whenever possible) or @samp{max} to create
9488 new partition for every symbol where possible. Specifying @samp{none}
9489 as an algorithm disables partitioning and streaming completely.
9490 The default value is @samp{balanced}. While @samp{1to1} can be used
9491 as an workaround for various code ordering issues, the @samp{max}
9492 partitioning is intended for internal testing only.
9493 The value @samp{one} specifies that exactly one partition should be
9494 used while the value @samp{none} bypasses partitioning and executes
9495 the link-time optimization step directly from the WPA phase.
9496
9497 @item -flto-odr-type-merging
9498 @opindex flto-odr-type-merging
9499 Enable streaming of mangled types names of C++ types and their unification
9500 at linktime. This increases size of LTO object files, but enable
9501 diagnostics about One Definition Rule violations.
9502
9503 @item -flto-compression-level=@var{n}
9504 @opindex flto-compression-level
9505 This option specifies the level of compression used for intermediate
9506 language written to LTO object files, and is only meaningful in
9507 conjunction with LTO mode (@option{-flto}). Valid
9508 values are 0 (no compression) to 9 (maximum compression). Values
9509 outside this range are clamped to either 0 or 9. If the option is not
9510 given, a default balanced compression setting is used.
9511
9512 @item -flto-report
9513 @opindex flto-report
9514 Prints a report with internal details on the workings of the link-time
9515 optimizer. The contents of this report vary from version to version.
9516 It is meant to be useful to GCC developers when processing object
9517 files in LTO mode (via @option{-flto}).
9518
9519 Disabled by default.
9520
9521 @item -flto-report-wpa
9522 @opindex flto-report-wpa
9523 Like @option{-flto-report}, but only print for the WPA phase of Link
9524 Time Optimization.
9525
9526 @item -fuse-linker-plugin
9527 @opindex fuse-linker-plugin
9528 Enables the use of a linker plugin during link-time optimization. This
9529 option relies on plugin support in the linker, which is available in gold
9530 or in GNU ld 2.21 or newer.
9531
9532 This option enables the extraction of object files with GIMPLE bytecode out
9533 of library archives. This improves the quality of optimization by exposing
9534 more code to the link-time optimizer. This information specifies what
9535 symbols can be accessed externally (by non-LTO object or during dynamic
9536 linking). Resulting code quality improvements on binaries (and shared
9537 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
9538 See @option{-flto} for a description of the effect of this flag and how to
9539 use it.
9540
9541 This option is enabled by default when LTO support in GCC is enabled
9542 and GCC was configured for use with
9543 a linker supporting plugins (GNU ld 2.21 or newer or gold).
9544
9545 @item -ffat-lto-objects
9546 @opindex ffat-lto-objects
9547 Fat LTO objects are object files that contain both the intermediate language
9548 and the object code. This makes them usable for both LTO linking and normal
9549 linking. This option is effective only when compiling with @option{-flto}
9550 and is ignored at link time.
9551
9552 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
9553 requires the complete toolchain to be aware of LTO. It requires a linker with
9554 linker plugin support for basic functionality. Additionally,
9555 @command{nm}, @command{ar} and @command{ranlib}
9556 need to support linker plugins to allow a full-featured build environment
9557 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
9558 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
9559 to these tools. With non fat LTO makefiles need to be modified to use them.
9560
9561 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
9562 support.
9563
9564 @item -fcompare-elim
9565 @opindex fcompare-elim
9566 After register allocation and post-register allocation instruction splitting,
9567 identify arithmetic instructions that compute processor flags similar to a
9568 comparison operation based on that arithmetic. If possible, eliminate the
9569 explicit comparison operation.
9570
9571 This pass only applies to certain targets that cannot explicitly represent
9572 the comparison operation before register allocation is complete.
9573
9574 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9575
9576 @item -fcprop-registers
9577 @opindex fcprop-registers
9578 After register allocation and post-register allocation instruction splitting,
9579 perform a copy-propagation pass to try to reduce scheduling dependencies
9580 and occasionally eliminate the copy.
9581
9582 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9583
9584 @item -fprofile-correction
9585 @opindex fprofile-correction
9586 Profiles collected using an instrumented binary for multi-threaded programs may
9587 be inconsistent due to missed counter updates. When this option is specified,
9588 GCC uses heuristics to correct or smooth out such inconsistencies. By
9589 default, GCC emits an error message when an inconsistent profile is detected.
9590
9591 @item -fprofile-dir=@var{path}
9592 @opindex fprofile-dir
9593
9594 Set the directory to search for the profile data files in to @var{path}.
9595 This option affects only the profile data generated by
9596 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
9597 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
9598 and its related options. Both absolute and relative paths can be used.
9599 By default, GCC uses the current directory as @var{path}, thus the
9600 profile data file appears in the same directory as the object file.
9601
9602 @item -fprofile-generate
9603 @itemx -fprofile-generate=@var{path}
9604 @opindex fprofile-generate
9605
9606 Enable options usually used for instrumenting application to produce
9607 profile useful for later recompilation with profile feedback based
9608 optimization. You must use @option{-fprofile-generate} both when
9609 compiling and when linking your program.
9610
9611 The following options are enabled: @option{-fprofile-arcs}, @option{-fprofile-values}, @option{-fvpt}.
9612
9613 If @var{path} is specified, GCC looks at the @var{path} to find
9614 the profile feedback data files. See @option{-fprofile-dir}.
9615
9616 @item -fprofile-use
9617 @itemx -fprofile-use=@var{path}
9618 @opindex fprofile-use
9619 Enable profile feedback-directed optimizations,
9620 and the following optimizations
9621 which are generally profitable only with profile feedback available:
9622 @option{-fbranch-probabilities}, @option{-fvpt},
9623 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9624 @option{-ftree-vectorize}, and @option{ftree-loop-distribute-patterns}.
9625
9626 By default, GCC emits an error message if the feedback profiles do not
9627 match the source code. This error can be turned into a warning by using
9628 @option{-Wcoverage-mismatch}. Note this may result in poorly optimized
9629 code.
9630
9631 If @var{path} is specified, GCC looks at the @var{path} to find
9632 the profile feedback data files. See @option{-fprofile-dir}.
9633
9634 @item -fauto-profile
9635 @itemx -fauto-profile=@var{path}
9636 @opindex fauto-profile
9637 Enable sampling-based feedback-directed optimizations,
9638 and the following optimizations
9639 which are generally profitable only with profile feedback available:
9640 @option{-fbranch-probabilities}, @option{-fvpt},
9641 @option{-funroll-loops}, @option{-fpeel-loops}, @option{-ftracer},
9642 @option{-ftree-vectorize},
9643 @option{-finline-functions}, @option{-fipa-cp}, @option{-fipa-cp-clone},
9644 @option{-fpredictive-commoning}, @option{-funswitch-loops},
9645 @option{-fgcse-after-reload}, and @option{-ftree-loop-distribute-patterns}.
9646
9647 @var{path} is the name of a file containing AutoFDO profile information.
9648 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
9649
9650 Producing an AutoFDO profile data file requires running your program
9651 with the @command{perf} utility on a supported GNU/Linux target system.
9652 For more information, see @uref{https://perf.wiki.kernel.org/}.
9653
9654 E.g.
9655 @smallexample
9656 perf record -e br_inst_retired:near_taken -b -o perf.data \
9657 -- your_program
9658 @end smallexample
9659
9660 Then use the @command{create_gcov} tool to convert the raw profile data
9661 to a format that can be used by GCC.@ You must also supply the
9662 unstripped binary for your program to this tool.
9663 See @uref{https://github.com/google/autofdo}.
9664
9665 E.g.
9666 @smallexample
9667 create_gcov --binary=your_program.unstripped --profile=perf.data \
9668 --gcov=profile.afdo
9669 @end smallexample
9670 @end table
9671
9672 The following options control compiler behavior regarding floating-point
9673 arithmetic. These options trade off between speed and
9674 correctness. All must be specifically enabled.
9675
9676 @table @gcctabopt
9677 @item -ffloat-store
9678 @opindex ffloat-store
9679 Do not store floating-point variables in registers, and inhibit other
9680 options that might change whether a floating-point value is taken from a
9681 register or memory.
9682
9683 @cindex floating-point precision
9684 This option prevents undesirable excess precision on machines such as
9685 the 68000 where the floating registers (of the 68881) keep more
9686 precision than a @code{double} is supposed to have. Similarly for the
9687 x86 architecture. For most programs, the excess precision does only
9688 good, but a few programs rely on the precise definition of IEEE floating
9689 point. Use @option{-ffloat-store} for such programs, after modifying
9690 them to store all pertinent intermediate computations into variables.
9691
9692 @item -fexcess-precision=@var{style}
9693 @opindex fexcess-precision
9694 This option allows further control over excess precision on machines
9695 where floating-point registers have more precision than the IEEE
9696 @code{float} and @code{double} types and the processor does not
9697 support operations rounding to those types. By default,
9698 @option{-fexcess-precision=fast} is in effect; this means that
9699 operations are carried out in the precision of the registers and that
9700 it is unpredictable when rounding to the types specified in the source
9701 code takes place. When compiling C, if
9702 @option{-fexcess-precision=standard} is specified then excess
9703 precision follows the rules specified in ISO C99; in particular,
9704 both casts and assignments cause values to be rounded to their
9705 semantic types (whereas @option{-ffloat-store} only affects
9706 assignments). This option is enabled by default for C if a strict
9707 conformance option such as @option{-std=c99} is used.
9708
9709 @opindex mfpmath
9710 @option{-fexcess-precision=standard} is not implemented for languages
9711 other than C, and has no effect if
9712 @option{-funsafe-math-optimizations} or @option{-ffast-math} is
9713 specified. On the x86, it also has no effect if @option{-mfpmath=sse}
9714 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
9715 semantics apply without excess precision, and in the latter, rounding
9716 is unpredictable.
9717
9718 @item -ffast-math
9719 @opindex ffast-math
9720 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
9721 @option{-ffinite-math-only}, @option{-fno-rounding-math},
9722 @option{-fno-signaling-nans} and @option{-fcx-limited-range}.
9723
9724 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
9725
9726 This option is not turned on by any @option{-O} option besides
9727 @option{-Ofast} since it can result in incorrect output for programs
9728 that depend on an exact implementation of IEEE or ISO rules/specifications
9729 for math functions. It may, however, yield faster code for programs
9730 that do not require the guarantees of these specifications.
9731
9732 @item -fno-math-errno
9733 @opindex fno-math-errno
9734 Do not set @code{errno} after calling math functions that are executed
9735 with a single instruction, e.g., @code{sqrt}. A program that relies on
9736 IEEE exceptions for math error handling may want to use this flag
9737 for speed while maintaining IEEE arithmetic compatibility.
9738
9739 This option is not turned on by any @option{-O} option since
9740 it can result in incorrect output for programs that depend on
9741 an exact implementation of IEEE or ISO rules/specifications for
9742 math functions. It may, however, yield faster code for programs
9743 that do not require the guarantees of these specifications.
9744
9745 The default is @option{-fmath-errno}.
9746
9747 On Darwin systems, the math library never sets @code{errno}. There is
9748 therefore no reason for the compiler to consider the possibility that
9749 it might, and @option{-fno-math-errno} is the default.
9750
9751 @item -funsafe-math-optimizations
9752 @opindex funsafe-math-optimizations
9753
9754 Allow optimizations for floating-point arithmetic that (a) assume
9755 that arguments and results are valid and (b) may violate IEEE or
9756 ANSI standards. When used at link-time, it may include libraries
9757 or startup files that change the default FPU control word or other
9758 similar optimizations.
9759
9760 This option is not turned on by any @option{-O} option since
9761 it can result in incorrect output for programs that depend on
9762 an exact implementation of IEEE or ISO rules/specifications for
9763 math functions. It may, however, yield faster code for programs
9764 that do not require the guarantees of these specifications.
9765 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
9766 @option{-fassociative-math} and @option{-freciprocal-math}.
9767
9768 The default is @option{-fno-unsafe-math-optimizations}.
9769
9770 @item -fassociative-math
9771 @opindex fassociative-math
9772
9773 Allow re-association of operands in series of floating-point operations.
9774 This violates the ISO C and C++ language standard by possibly changing
9775 computation result. NOTE: re-ordering may change the sign of zero as
9776 well as ignore NaNs and inhibit or create underflow or overflow (and
9777 thus cannot be used on code that relies on rounding behavior like
9778 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
9779 and thus may not be used when ordered comparisons are required.
9780 This option requires that both @option{-fno-signed-zeros} and
9781 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
9782 much sense with @option{-frounding-math}. For Fortran the option
9783 is automatically enabled when both @option{-fno-signed-zeros} and
9784 @option{-fno-trapping-math} are in effect.
9785
9786 The default is @option{-fno-associative-math}.
9787
9788 @item -freciprocal-math
9789 @opindex freciprocal-math
9790
9791 Allow the reciprocal of a value to be used instead of dividing by
9792 the value if this enables optimizations. For example @code{x / y}
9793 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
9794 is subject to common subexpression elimination. Note that this loses
9795 precision and increases the number of flops operating on the value.
9796
9797 The default is @option{-fno-reciprocal-math}.
9798
9799 @item -ffinite-math-only
9800 @opindex ffinite-math-only
9801 Allow optimizations for floating-point arithmetic that assume
9802 that arguments and results are not NaNs or +-Infs.
9803
9804 This option is not turned on by any @option{-O} option since
9805 it can result in incorrect output for programs that depend on
9806 an exact implementation of IEEE or ISO rules/specifications for
9807 math functions. It may, however, yield faster code for programs
9808 that do not require the guarantees of these specifications.
9809
9810 The default is @option{-fno-finite-math-only}.
9811
9812 @item -fno-signed-zeros
9813 @opindex fno-signed-zeros
9814 Allow optimizations for floating-point arithmetic that ignore the
9815 signedness of zero. IEEE arithmetic specifies the behavior of
9816 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
9817 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
9818 This option implies that the sign of a zero result isn't significant.
9819
9820 The default is @option{-fsigned-zeros}.
9821
9822 @item -fno-trapping-math
9823 @opindex fno-trapping-math
9824 Compile code assuming that floating-point operations cannot generate
9825 user-visible traps. These traps include division by zero, overflow,
9826 underflow, inexact result and invalid operation. This option requires
9827 that @option{-fno-signaling-nans} be in effect. Setting this option may
9828 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
9829
9830 This option should never be turned on by any @option{-O} option since
9831 it can result in incorrect output for programs that depend on
9832 an exact implementation of IEEE or ISO rules/specifications for
9833 math functions.
9834
9835 The default is @option{-ftrapping-math}.
9836
9837 @item -frounding-math
9838 @opindex frounding-math
9839 Disable transformations and optimizations that assume default floating-point
9840 rounding behavior. This is round-to-zero for all floating point
9841 to integer conversions, and round-to-nearest for all other arithmetic
9842 truncations. This option should be specified for programs that change
9843 the FP rounding mode dynamically, or that may be executed with a
9844 non-default rounding mode. This option disables constant folding of
9845 floating-point expressions at compile time (which may be affected by
9846 rounding mode) and arithmetic transformations that are unsafe in the
9847 presence of sign-dependent rounding modes.
9848
9849 The default is @option{-fno-rounding-math}.
9850
9851 This option is experimental and does not currently guarantee to
9852 disable all GCC optimizations that are affected by rounding mode.
9853 Future versions of GCC may provide finer control of this setting
9854 using C99's @code{FENV_ACCESS} pragma. This command-line option
9855 will be used to specify the default state for @code{FENV_ACCESS}.
9856
9857 @item -fsignaling-nans
9858 @opindex fsignaling-nans
9859 Compile code assuming that IEEE signaling NaNs may generate user-visible
9860 traps during floating-point operations. Setting this option disables
9861 optimizations that may change the number of exceptions visible with
9862 signaling NaNs. This option implies @option{-ftrapping-math}.
9863
9864 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
9865 be defined.
9866
9867 The default is @option{-fno-signaling-nans}.
9868
9869 This option is experimental and does not currently guarantee to
9870 disable all GCC optimizations that affect signaling NaN behavior.
9871
9872 @item -fsingle-precision-constant
9873 @opindex fsingle-precision-constant
9874 Treat floating-point constants as single precision instead of
9875 implicitly converting them to double-precision constants.
9876
9877 @item -fcx-limited-range
9878 @opindex fcx-limited-range
9879 When enabled, this option states that a range reduction step is not
9880 needed when performing complex division. Also, there is no checking
9881 whether the result of a complex multiplication or division is @code{NaN
9882 + I*NaN}, with an attempt to rescue the situation in that case. The
9883 default is @option{-fno-cx-limited-range}, but is enabled by
9884 @option{-ffast-math}.
9885
9886 This option controls the default setting of the ISO C99
9887 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
9888 all languages.
9889
9890 @item -fcx-fortran-rules
9891 @opindex fcx-fortran-rules
9892 Complex multiplication and division follow Fortran rules. Range
9893 reduction is done as part of complex division, but there is no checking
9894 whether the result of a complex multiplication or division is @code{NaN
9895 + I*NaN}, with an attempt to rescue the situation in that case.
9896
9897 The default is @option{-fno-cx-fortran-rules}.
9898
9899 @end table
9900
9901 The following options control optimizations that may improve
9902 performance, but are not enabled by any @option{-O} options. This
9903 section includes experimental options that may produce broken code.
9904
9905 @table @gcctabopt
9906 @item -fbranch-probabilities
9907 @opindex fbranch-probabilities
9908 After running a program compiled with @option{-fprofile-arcs}
9909 (@pxref{Debugging Options,, Options for Debugging Your Program or
9910 @command{gcc}}), you can compile it a second time using
9911 @option{-fbranch-probabilities}, to improve optimizations based on
9912 the number of times each branch was taken. When a program
9913 compiled with @option{-fprofile-arcs} exits, it saves arc execution
9914 counts to a file called @file{@var{sourcename}.gcda} for each source
9915 file. The information in this data file is very dependent on the
9916 structure of the generated code, so you must use the same source code
9917 and the same optimization options for both compilations.
9918
9919 With @option{-fbranch-probabilities}, GCC puts a
9920 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
9921 These can be used to improve optimization. Currently, they are only
9922 used in one place: in @file{reorg.c}, instead of guessing which path a
9923 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
9924 exactly determine which path is taken more often.
9925
9926 @item -fprofile-values
9927 @opindex fprofile-values
9928 If combined with @option{-fprofile-arcs}, it adds code so that some
9929 data about values of expressions in the program is gathered.
9930
9931 With @option{-fbranch-probabilities}, it reads back the data gathered
9932 from profiling values of expressions for usage in optimizations.
9933
9934 Enabled with @option{-fprofile-generate} and @option{-fprofile-use}.
9935
9936 @item -fprofile-reorder-functions
9937 @opindex fprofile-reorder-functions
9938 Function reordering based on profile instrumentation collects
9939 first time of execution of a function and orders these functions
9940 in ascending order.
9941
9942 Enabled with @option{-fprofile-use}.
9943
9944 @item -fvpt
9945 @opindex fvpt
9946 If combined with @option{-fprofile-arcs}, this option instructs the compiler
9947 to add code to gather information about values of expressions.
9948
9949 With @option{-fbranch-probabilities}, it reads back the data gathered
9950 and actually performs the optimizations based on them.
9951 Currently the optimizations include specialization of division operations
9952 using the knowledge about the value of the denominator.
9953
9954 @item -frename-registers
9955 @opindex frename-registers
9956 Attempt to avoid false dependencies in scheduled code by making use
9957 of registers left over after register allocation. This optimization
9958 most benefits processors with lots of registers. Depending on the
9959 debug information format adopted by the target, however, it can
9960 make debugging impossible, since variables no longer stay in
9961 a ``home register''.
9962
9963 Enabled by default with @option{-funroll-loops} and @option{-fpeel-loops}.
9964
9965 @item -fschedule-fusion
9966 @opindex fschedule-fusion
9967 Performs a target dependent pass over the instruction stream to schedule
9968 instructions of same type together because target machine can execute them
9969 more efficiently if they are adjacent to each other in the instruction flow.
9970
9971 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9972
9973 @item -ftracer
9974 @opindex ftracer
9975 Perform tail duplication to enlarge superblock size. This transformation
9976 simplifies the control flow of the function allowing other optimizations to do
9977 a better job.
9978
9979 Enabled with @option{-fprofile-use}.
9980
9981 @item -funroll-loops
9982 @opindex funroll-loops
9983 Unroll loops whose number of iterations can be determined at compile time or
9984 upon entry to the loop. @option{-funroll-loops} implies
9985 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
9986 It also turns on complete loop peeling (i.e.@: complete removal of loops with
9987 a small constant number of iterations). This option makes code larger, and may
9988 or may not make it run faster.
9989
9990 Enabled with @option{-fprofile-use}.
9991
9992 @item -funroll-all-loops
9993 @opindex funroll-all-loops
9994 Unroll all loops, even if their number of iterations is uncertain when
9995 the loop is entered. This usually makes programs run more slowly.
9996 @option{-funroll-all-loops} implies the same options as
9997 @option{-funroll-loops}.
9998
9999 @item -fpeel-loops
10000 @opindex fpeel-loops
10001 Peels loops for which there is enough information that they do not
10002 roll much (from profile feedback). It also turns on complete loop peeling
10003 (i.e.@: complete removal of loops with small constant number of iterations).
10004
10005 Enabled with @option{-fprofile-use}.
10006
10007 @item -fmove-loop-invariants
10008 @opindex fmove-loop-invariants
10009 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10010 at level @option{-O1}
10011
10012 @item -funswitch-loops
10013 @opindex funswitch-loops
10014 Move branches with loop invariant conditions out of the loop, with duplicates
10015 of the loop on both branches (modified according to result of the condition).
10016
10017 @item -ffunction-sections
10018 @itemx -fdata-sections
10019 @opindex ffunction-sections
10020 @opindex fdata-sections
10021 Place each function or data item into its own section in the output
10022 file if the target supports arbitrary sections. The name of the
10023 function or the name of the data item determines the section's name
10024 in the output file.
10025
10026 Use these options on systems where the linker can perform optimizations
10027 to improve locality of reference in the instruction space. Most systems
10028 using the ELF object format and SPARC processors running Solaris 2 have
10029 linkers with such optimizations. AIX may have these optimizations in
10030 the future.
10031
10032 Only use these options when there are significant benefits from doing
10033 so. When you specify these options, the assembler and linker
10034 create larger object and executable files and are also slower.
10035 You cannot use @command{gprof} on all systems if you
10036 specify this option, and you may have problems with debugging if
10037 you specify both this option and @option{-g}.
10038
10039 @item -fbranch-target-load-optimize
10040 @opindex fbranch-target-load-optimize
10041 Perform branch target register load optimization before prologue / epilogue
10042 threading.
10043 The use of target registers can typically be exposed only during reload,
10044 thus hoisting loads out of loops and doing inter-block scheduling needs
10045 a separate optimization pass.
10046
10047 @item -fbranch-target-load-optimize2
10048 @opindex fbranch-target-load-optimize2
10049 Perform branch target register load optimization after prologue / epilogue
10050 threading.
10051
10052 @item -fbtr-bb-exclusive
10053 @opindex fbtr-bb-exclusive
10054 When performing branch target register load optimization, don't reuse
10055 branch target registers within any basic block.
10056
10057 @item -fstack-protector
10058 @opindex fstack-protector
10059 Emit extra code to check for buffer overflows, such as stack smashing
10060 attacks. This is done by adding a guard variable to functions with
10061 vulnerable objects. This includes functions that call @code{alloca}, and
10062 functions with buffers larger than 8 bytes. The guards are initialized
10063 when a function is entered and then checked when the function exits.
10064 If a guard check fails, an error message is printed and the program exits.
10065
10066 @item -fstack-protector-all
10067 @opindex fstack-protector-all
10068 Like @option{-fstack-protector} except that all functions are protected.
10069
10070 @item -fstack-protector-strong
10071 @opindex fstack-protector-strong
10072 Like @option{-fstack-protector} but includes additional functions to
10073 be protected --- those that have local array definitions, or have
10074 references to local frame addresses.
10075
10076 @item -fstack-protector-explicit
10077 @opindex fstack-protector-explicit
10078 Like @option{-fstack-protector} but only protects those functions which
10079 have the @code{stack_protect} attribute
10080
10081 @item -fstdarg-opt
10082 @opindex fstdarg-opt
10083 Optimize the prologue of variadic argument functions with respect to usage of
10084 those arguments.
10085
10086 @item -fsection-anchors
10087 @opindex fsection-anchors
10088 Try to reduce the number of symbolic address calculations by using
10089 shared ``anchor'' symbols to address nearby objects. This transformation
10090 can help to reduce the number of GOT entries and GOT accesses on some
10091 targets.
10092
10093 For example, the implementation of the following function @code{foo}:
10094
10095 @smallexample
10096 static int a, b, c;
10097 int foo (void) @{ return a + b + c; @}
10098 @end smallexample
10099
10100 @noindent
10101 usually calculates the addresses of all three variables, but if you
10102 compile it with @option{-fsection-anchors}, it accesses the variables
10103 from a common anchor point instead. The effect is similar to the
10104 following pseudocode (which isn't valid C):
10105
10106 @smallexample
10107 int foo (void)
10108 @{
10109 register int *xr = &x;
10110 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10111 @}
10112 @end smallexample
10113
10114 Not all targets support this option.
10115
10116 @item --param @var{name}=@var{value}
10117 @opindex param
10118 In some places, GCC uses various constants to control the amount of
10119 optimization that is done. For example, GCC does not inline functions
10120 that contain more than a certain number of instructions. You can
10121 control some of these constants on the command line using the
10122 @option{--param} option.
10123
10124 The names of specific parameters, and the meaning of the values, are
10125 tied to the internals of the compiler, and are subject to change
10126 without notice in future releases.
10127
10128 In each case, the @var{value} is an integer. The allowable choices for
10129 @var{name} are:
10130
10131 @table @gcctabopt
10132 @item predictable-branch-outcome
10133 When branch is predicted to be taken with probability lower than this threshold
10134 (in percent), then it is considered well predictable. The default is 10.
10135
10136 @item max-crossjump-edges
10137 The maximum number of incoming edges to consider for cross-jumping.
10138 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
10139 the number of edges incoming to each block. Increasing values mean
10140 more aggressive optimization, making the compilation time increase with
10141 probably small improvement in executable size.
10142
10143 @item min-crossjump-insns
10144 The minimum number of instructions that must be matched at the end
10145 of two blocks before cross-jumping is performed on them. This
10146 value is ignored in the case where all instructions in the block being
10147 cross-jumped from are matched. The default value is 5.
10148
10149 @item max-grow-copy-bb-insns
10150 The maximum code size expansion factor when copying basic blocks
10151 instead of jumping. The expansion is relative to a jump instruction.
10152 The default value is 8.
10153
10154 @item max-goto-duplication-insns
10155 The maximum number of instructions to duplicate to a block that jumps
10156 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
10157 passes, GCC factors computed gotos early in the compilation process,
10158 and unfactors them as late as possible. Only computed jumps at the
10159 end of a basic blocks with no more than max-goto-duplication-insns are
10160 unfactored. The default value is 8.
10161
10162 @item max-delay-slot-insn-search
10163 The maximum number of instructions to consider when looking for an
10164 instruction to fill a delay slot. If more than this arbitrary number of
10165 instructions are searched, the time savings from filling the delay slot
10166 are minimal, so stop searching. Increasing values mean more
10167 aggressive optimization, making the compilation time increase with probably
10168 small improvement in execution time.
10169
10170 @item max-delay-slot-live-search
10171 When trying to fill delay slots, the maximum number of instructions to
10172 consider when searching for a block with valid live register
10173 information. Increasing this arbitrarily chosen value means more
10174 aggressive optimization, increasing the compilation time. This parameter
10175 should be removed when the delay slot code is rewritten to maintain the
10176 control-flow graph.
10177
10178 @item max-gcse-memory
10179 The approximate maximum amount of memory that can be allocated in
10180 order to perform the global common subexpression elimination
10181 optimization. If more memory than specified is required, the
10182 optimization is not done.
10183
10184 @item max-gcse-insertion-ratio
10185 If the ratio of expression insertions to deletions is larger than this value
10186 for any expression, then RTL PRE inserts or removes the expression and thus
10187 leaves partially redundant computations in the instruction stream. The default value is 20.
10188
10189 @item max-pending-list-length
10190 The maximum number of pending dependencies scheduling allows
10191 before flushing the current state and starting over. Large functions
10192 with few branches or calls can create excessively large lists which
10193 needlessly consume memory and resources.
10194
10195 @item max-modulo-backtrack-attempts
10196 The maximum number of backtrack attempts the scheduler should make
10197 when modulo scheduling a loop. Larger values can exponentially increase
10198 compilation time.
10199
10200 @item max-inline-insns-single
10201 Several parameters control the tree inliner used in GCC@.
10202 This number sets the maximum number of instructions (counted in GCC's
10203 internal representation) in a single function that the tree inliner
10204 considers for inlining. This only affects functions declared
10205 inline and methods implemented in a class declaration (C++).
10206 The default value is 400.
10207
10208 @item max-inline-insns-auto
10209 When you use @option{-finline-functions} (included in @option{-O3}),
10210 a lot of functions that would otherwise not be considered for inlining
10211 by the compiler are investigated. To those functions, a different
10212 (more restrictive) limit compared to functions declared inline can
10213 be applied.
10214 The default value is 40.
10215
10216 @item inline-min-speedup
10217 When estimated performance improvement of caller + callee runtime exceeds this
10218 threshold (in precent), the function can be inlined regardless the limit on
10219 @option{--param max-inline-insns-single} and @option{--param
10220 max-inline-insns-auto}.
10221
10222 @item large-function-insns
10223 The limit specifying really large functions. For functions larger than this
10224 limit after inlining, inlining is constrained by
10225 @option{--param large-function-growth}. This parameter is useful primarily
10226 to avoid extreme compilation time caused by non-linear algorithms used by the
10227 back end.
10228 The default value is 2700.
10229
10230 @item large-function-growth
10231 Specifies maximal growth of large function caused by inlining in percents.
10232 The default value is 100 which limits large function growth to 2.0 times
10233 the original size.
10234
10235 @item large-unit-insns
10236 The limit specifying large translation unit. Growth caused by inlining of
10237 units larger than this limit is limited by @option{--param inline-unit-growth}.
10238 For small units this might be too tight.
10239 For example, consider a unit consisting of function A
10240 that is inline and B that just calls A three times. If B is small relative to
10241 A, the growth of unit is 300\% and yet such inlining is very sane. For very
10242 large units consisting of small inlineable functions, however, the overall unit
10243 growth limit is needed to avoid exponential explosion of code size. Thus for
10244 smaller units, the size is increased to @option{--param large-unit-insns}
10245 before applying @option{--param inline-unit-growth}. The default is 10000.
10246
10247 @item inline-unit-growth
10248 Specifies maximal overall growth of the compilation unit caused by inlining.
10249 The default value is 20 which limits unit growth to 1.2 times the original
10250 size. Cold functions (either marked cold via an attribute or by profile
10251 feedback) are not accounted into the unit size.
10252
10253 @item ipcp-unit-growth
10254 Specifies maximal overall growth of the compilation unit caused by
10255 interprocedural constant propagation. The default value is 10 which limits
10256 unit growth to 1.1 times the original size.
10257
10258 @item large-stack-frame
10259 The limit specifying large stack frames. While inlining the algorithm is trying
10260 to not grow past this limit too much. The default value is 256 bytes.
10261
10262 @item large-stack-frame-growth
10263 Specifies maximal growth of large stack frames caused by inlining in percents.
10264 The default value is 1000 which limits large stack frame growth to 11 times
10265 the original size.
10266
10267 @item max-inline-insns-recursive
10268 @itemx max-inline-insns-recursive-auto
10269 Specifies the maximum number of instructions an out-of-line copy of a
10270 self-recursive inline
10271 function can grow into by performing recursive inlining.
10272
10273 @option{--param max-inline-insns-recursive} applies to functions
10274 declared inline.
10275 For functions not declared inline, recursive inlining
10276 happens only when @option{-finline-functions} (included in @option{-O3}) is
10277 enabled; @option{--param max-inline-insns-recursive-auto} applies instead. The
10278 default value is 450.
10279
10280 @item max-inline-recursive-depth
10281 @itemx max-inline-recursive-depth-auto
10282 Specifies the maximum recursion depth used for recursive inlining.
10283
10284 @option{--param max-inline-recursive-depth} applies to functions
10285 declared inline. For functions not declared inline, recursive inlining
10286 happens only when @option{-finline-functions} (included in @option{-O3}) is
10287 enabled; @option{--param max-inline-recursive-depth-auto} applies instead. The
10288 default value is 8.
10289
10290 @item min-inline-recursive-probability
10291 Recursive inlining is profitable only for function having deep recursion
10292 in average and can hurt for function having little recursion depth by
10293 increasing the prologue size or complexity of function body to other
10294 optimizers.
10295
10296 When profile feedback is available (see @option{-fprofile-generate}) the actual
10297 recursion depth can be guessed from probability that function recurses via a
10298 given call expression. This parameter limits inlining only to call expressions
10299 whose probability exceeds the given threshold (in percents).
10300 The default value is 10.
10301
10302 @item early-inlining-insns
10303 Specify growth that the early inliner can make. In effect it increases
10304 the amount of inlining for code having a large abstraction penalty.
10305 The default value is 14.
10306
10307 @item max-early-inliner-iterations
10308 Limit of iterations of the early inliner. This basically bounds
10309 the number of nested indirect calls the early inliner can resolve.
10310 Deeper chains are still handled by late inlining.
10311
10312 @item comdat-sharing-probability
10313 Probability (in percent) that C++ inline function with comdat visibility
10314 are shared across multiple compilation units. The default value is 20.
10315
10316 @item profile-func-internal-id
10317 A parameter to control whether to use function internal id in profile
10318 database lookup. If the value is 0, the compiler uses an id that
10319 is based on function assembler name and filename, which makes old profile
10320 data more tolerant to source changes such as function reordering etc.
10321 The default value is 0.
10322
10323 @item min-vect-loop-bound
10324 The minimum number of iterations under which loops are not vectorized
10325 when @option{-ftree-vectorize} is used. The number of iterations after
10326 vectorization needs to be greater than the value specified by this option
10327 to allow vectorization. The default value is 0.
10328
10329 @item gcse-cost-distance-ratio
10330 Scaling factor in calculation of maximum distance an expression
10331 can be moved by GCSE optimizations. This is currently supported only in the
10332 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
10333 is with simple expressions, i.e., the expressions that have cost
10334 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
10335 hoisting of simple expressions. The default value is 10.
10336
10337 @item gcse-unrestricted-cost
10338 Cost, roughly measured as the cost of a single typical machine
10339 instruction, at which GCSE optimizations do not constrain
10340 the distance an expression can travel. This is currently
10341 supported only in the code hoisting pass. The lesser the cost,
10342 the more aggressive code hoisting is. Specifying 0
10343 allows all expressions to travel unrestricted distances.
10344 The default value is 3.
10345
10346 @item max-hoist-depth
10347 The depth of search in the dominator tree for expressions to hoist.
10348 This is used to avoid quadratic behavior in hoisting algorithm.
10349 The value of 0 does not limit on the search, but may slow down compilation
10350 of huge functions. The default value is 30.
10351
10352 @item max-tail-merge-comparisons
10353 The maximum amount of similar bbs to compare a bb with. This is used to
10354 avoid quadratic behavior in tree tail merging. The default value is 10.
10355
10356 @item max-tail-merge-iterations
10357 The maximum amount of iterations of the pass over the function. This is used to
10358 limit compilation time in tree tail merging. The default value is 2.
10359
10360 @item max-unrolled-insns
10361 The maximum number of instructions that a loop may have to be unrolled.
10362 If a loop is unrolled, this parameter also determines how many times
10363 the loop code is unrolled.
10364
10365 @item max-average-unrolled-insns
10366 The maximum number of instructions biased by probabilities of their execution
10367 that a loop may have to be unrolled. If a loop is unrolled,
10368 this parameter also determines how many times the loop code is unrolled.
10369
10370 @item max-unroll-times
10371 The maximum number of unrollings of a single loop.
10372
10373 @item max-peeled-insns
10374 The maximum number of instructions that a loop may have to be peeled.
10375 If a loop is peeled, this parameter also determines how many times
10376 the loop code is peeled.
10377
10378 @item max-peel-times
10379 The maximum number of peelings of a single loop.
10380
10381 @item max-peel-branches
10382 The maximum number of branches on the hot path through the peeled sequence.
10383
10384 @item max-completely-peeled-insns
10385 The maximum number of insns of a completely peeled loop.
10386
10387 @item max-completely-peel-times
10388 The maximum number of iterations of a loop to be suitable for complete peeling.
10389
10390 @item max-completely-peel-loop-nest-depth
10391 The maximum depth of a loop nest suitable for complete peeling.
10392
10393 @item max-unswitch-insns
10394 The maximum number of insns of an unswitched loop.
10395
10396 @item max-unswitch-level
10397 The maximum number of branches unswitched in a single loop.
10398
10399 @item lim-expensive
10400 The minimum cost of an expensive expression in the loop invariant motion.
10401
10402 @item iv-consider-all-candidates-bound
10403 Bound on number of candidates for induction variables, below which
10404 all candidates are considered for each use in induction variable
10405 optimizations. If there are more candidates than this,
10406 only the most relevant ones are considered to avoid quadratic time complexity.
10407
10408 @item iv-max-considered-uses
10409 The induction variable optimizations give up on loops that contain more
10410 induction variable uses.
10411
10412 @item iv-always-prune-cand-set-bound
10413 If the number of candidates in the set is smaller than this value,
10414 always try to remove unnecessary ivs from the set
10415 when adding a new one.
10416
10417 @item scev-max-expr-size
10418 Bound on size of expressions used in the scalar evolutions analyzer.
10419 Large expressions slow the analyzer.
10420
10421 @item scev-max-expr-complexity
10422 Bound on the complexity of the expressions in the scalar evolutions analyzer.
10423 Complex expressions slow the analyzer.
10424
10425 @item omega-max-vars
10426 The maximum number of variables in an Omega constraint system.
10427 The default value is 128.
10428
10429 @item omega-max-geqs
10430 The maximum number of inequalities in an Omega constraint system.
10431 The default value is 256.
10432
10433 @item omega-max-eqs
10434 The maximum number of equalities in an Omega constraint system.
10435 The default value is 128.
10436
10437 @item omega-max-wild-cards
10438 The maximum number of wildcard variables that the Omega solver is
10439 able to insert. The default value is 18.
10440
10441 @item omega-hash-table-size
10442 The size of the hash table in the Omega solver. The default value is
10443 550.
10444
10445 @item omega-max-keys
10446 The maximal number of keys used by the Omega solver. The default
10447 value is 500.
10448
10449 @item omega-eliminate-redundant-constraints
10450 When set to 1, use expensive methods to eliminate all redundant
10451 constraints. The default value is 0.
10452
10453 @item vect-max-version-for-alignment-checks
10454 The maximum number of run-time checks that can be performed when
10455 doing loop versioning for alignment in the vectorizer.
10456
10457 @item vect-max-version-for-alias-checks
10458 The maximum number of run-time checks that can be performed when
10459 doing loop versioning for alias in the vectorizer.
10460
10461 @item vect-max-peeling-for-alignment
10462 The maximum number of loop peels to enhance access alignment
10463 for vectorizer. Value -1 means 'no limit'.
10464
10465 @item max-iterations-to-track
10466 The maximum number of iterations of a loop the brute-force algorithm
10467 for analysis of the number of iterations of the loop tries to evaluate.
10468
10469 @item hot-bb-count-ws-permille
10470 A basic block profile count is considered hot if it contributes to
10471 the given permillage (i.e. 0...1000) of the entire profiled execution.
10472
10473 @item hot-bb-frequency-fraction
10474 Select fraction of the entry block frequency of executions of basic block in
10475 function given basic block needs to have to be considered hot.
10476
10477 @item max-predicted-iterations
10478 The maximum number of loop iterations we predict statically. This is useful
10479 in cases where a function contains a single loop with known bound and
10480 another loop with unknown bound.
10481 The known number of iterations is predicted correctly, while
10482 the unknown number of iterations average to roughly 10. This means that the
10483 loop without bounds appears artificially cold relative to the other one.
10484
10485 @item builtin-expect-probability
10486 Control the probability of the expression having the specified value. This
10487 parameter takes a percentage (i.e. 0 ... 100) as input.
10488 The default probability of 90 is obtained empirically.
10489
10490 @item align-threshold
10491
10492 Select fraction of the maximal frequency of executions of a basic block in
10493 a function to align the basic block.
10494
10495 @item align-loop-iterations
10496
10497 A loop expected to iterate at least the selected number of iterations is
10498 aligned.
10499
10500 @item tracer-dynamic-coverage
10501 @itemx tracer-dynamic-coverage-feedback
10502
10503 This value is used to limit superblock formation once the given percentage of
10504 executed instructions is covered. This limits unnecessary code size
10505 expansion.
10506
10507 The @option{tracer-dynamic-coverage-feedback} parameter
10508 is used only when profile
10509 feedback is available. The real profiles (as opposed to statically estimated
10510 ones) are much less balanced allowing the threshold to be larger value.
10511
10512 @item tracer-max-code-growth
10513 Stop tail duplication once code growth has reached given percentage. This is
10514 a rather artificial limit, as most of the duplicates are eliminated later in
10515 cross jumping, so it may be set to much higher values than is the desired code
10516 growth.
10517
10518 @item tracer-min-branch-ratio
10519
10520 Stop reverse growth when the reverse probability of best edge is less than this
10521 threshold (in percent).
10522
10523 @item tracer-min-branch-ratio
10524 @itemx tracer-min-branch-ratio-feedback
10525
10526 Stop forward growth if the best edge has probability lower than this
10527 threshold.
10528
10529 Similarly to @option{tracer-dynamic-coverage} two values are present, one for
10530 compilation for profile feedback and one for compilation without. The value
10531 for compilation with profile feedback needs to be more conservative (higher) in
10532 order to make tracer effective.
10533
10534 @item max-cse-path-length
10535
10536 The maximum number of basic blocks on path that CSE considers.
10537 The default is 10.
10538
10539 @item max-cse-insns
10540 The maximum number of instructions CSE processes before flushing.
10541 The default is 1000.
10542
10543 @item ggc-min-expand
10544
10545 GCC uses a garbage collector to manage its own memory allocation. This
10546 parameter specifies the minimum percentage by which the garbage
10547 collector's heap should be allowed to expand between collections.
10548 Tuning this may improve compilation speed; it has no effect on code
10549 generation.
10550
10551 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
10552 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
10553 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
10554 GCC is not able to calculate RAM on a particular platform, the lower
10555 bound of 30% is used. Setting this parameter and
10556 @option{ggc-min-heapsize} to zero causes a full collection to occur at
10557 every opportunity. This is extremely slow, but can be useful for
10558 debugging.
10559
10560 @item ggc-min-heapsize
10561
10562 Minimum size of the garbage collector's heap before it begins bothering
10563 to collect garbage. The first collection occurs after the heap expands
10564 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
10565 tuning this may improve compilation speed, and has no effect on code
10566 generation.
10567
10568 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
10569 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
10570 with a lower bound of 4096 (four megabytes) and an upper bound of
10571 131072 (128 megabytes). If GCC is not able to calculate RAM on a
10572 particular platform, the lower bound is used. Setting this parameter
10573 very large effectively disables garbage collection. Setting this
10574 parameter and @option{ggc-min-expand} to zero causes a full collection
10575 to occur at every opportunity.
10576
10577 @item max-reload-search-insns
10578 The maximum number of instruction reload should look backward for equivalent
10579 register. Increasing values mean more aggressive optimization, making the
10580 compilation time increase with probably slightly better performance.
10581 The default value is 100.
10582
10583 @item max-cselib-memory-locations
10584 The maximum number of memory locations cselib should take into account.
10585 Increasing values mean more aggressive optimization, making the compilation time
10586 increase with probably slightly better performance. The default value is 500.
10587
10588 @item reorder-blocks-duplicate
10589 @itemx reorder-blocks-duplicate-feedback
10590
10591 Used by the basic block reordering pass to decide whether to use unconditional
10592 branch or duplicate the code on its destination. Code is duplicated when its
10593 estimated size is smaller than this value multiplied by the estimated size of
10594 unconditional jump in the hot spots of the program.
10595
10596 The @option{reorder-block-duplicate-feedback} parameter
10597 is used only when profile
10598 feedback is available. It may be set to higher values than
10599 @option{reorder-block-duplicate} since information about the hot spots is more
10600 accurate.
10601
10602 @item max-sched-ready-insns
10603 The maximum number of instructions ready to be issued the scheduler should
10604 consider at any given time during the first scheduling pass. Increasing
10605 values mean more thorough searches, making the compilation time increase
10606 with probably little benefit. The default value is 100.
10607
10608 @item max-sched-region-blocks
10609 The maximum number of blocks in a region to be considered for
10610 interblock scheduling. The default value is 10.
10611
10612 @item max-pipeline-region-blocks
10613 The maximum number of blocks in a region to be considered for
10614 pipelining in the selective scheduler. The default value is 15.
10615
10616 @item max-sched-region-insns
10617 The maximum number of insns in a region to be considered for
10618 interblock scheduling. The default value is 100.
10619
10620 @item max-pipeline-region-insns
10621 The maximum number of insns in a region to be considered for
10622 pipelining in the selective scheduler. The default value is 200.
10623
10624 @item min-spec-prob
10625 The minimum probability (in percents) of reaching a source block
10626 for interblock speculative scheduling. The default value is 40.
10627
10628 @item max-sched-extend-regions-iters
10629 The maximum number of iterations through CFG to extend regions.
10630 A value of 0 (the default) disables region extensions.
10631
10632 @item max-sched-insn-conflict-delay
10633 The maximum conflict delay for an insn to be considered for speculative motion.
10634 The default value is 3.
10635
10636 @item sched-spec-prob-cutoff
10637 The minimal probability of speculation success (in percents), so that
10638 speculative insns are scheduled.
10639 The default value is 40.
10640
10641 @item sched-spec-state-edge-prob-cutoff
10642 The minimum probability an edge must have for the scheduler to save its
10643 state across it.
10644 The default value is 10.
10645
10646 @item sched-mem-true-dep-cost
10647 Minimal distance (in CPU cycles) between store and load targeting same
10648 memory locations. The default value is 1.
10649
10650 @item selsched-max-lookahead
10651 The maximum size of the lookahead window of selective scheduling. It is a
10652 depth of search for available instructions.
10653 The default value is 50.
10654
10655 @item selsched-max-sched-times
10656 The maximum number of times that an instruction is scheduled during
10657 selective scheduling. This is the limit on the number of iterations
10658 through which the instruction may be pipelined. The default value is 2.
10659
10660 @item selsched-max-insns-to-rename
10661 The maximum number of best instructions in the ready list that are considered
10662 for renaming in the selective scheduler. The default value is 2.
10663
10664 @item sms-min-sc
10665 The minimum value of stage count that swing modulo scheduler
10666 generates. The default value is 2.
10667
10668 @item max-last-value-rtl
10669 The maximum size measured as number of RTLs that can be recorded in an expression
10670 in combiner for a pseudo register as last known value of that register. The default
10671 is 10000.
10672
10673 @item max-combine-insns
10674 The maximum number of instructions the RTL combiner tries to combine.
10675 The default value is 2 at @option{-Og} and 4 otherwise.
10676
10677 @item integer-share-limit
10678 Small integer constants can use a shared data structure, reducing the
10679 compiler's memory usage and increasing its speed. This sets the maximum
10680 value of a shared integer constant. The default value is 256.
10681
10682 @item ssp-buffer-size
10683 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
10684 protection when @option{-fstack-protection} is used.
10685
10686 @item min-size-for-stack-sharing
10687 The minimum size of variables taking part in stack slot sharing when not
10688 optimizing. The default value is 32.
10689
10690 @item max-jump-thread-duplication-stmts
10691 Maximum number of statements allowed in a block that needs to be
10692 duplicated when threading jumps.
10693
10694 @item max-fields-for-field-sensitive
10695 Maximum number of fields in a structure treated in
10696 a field sensitive manner during pointer analysis. The default is zero
10697 for @option{-O0} and @option{-O1},
10698 and 100 for @option{-Os}, @option{-O2}, and @option{-O3}.
10699
10700 @item prefetch-latency
10701 Estimate on average number of instructions that are executed before
10702 prefetch finishes. The distance prefetched ahead is proportional
10703 to this constant. Increasing this number may also lead to less
10704 streams being prefetched (see @option{simultaneous-prefetches}).
10705
10706 @item simultaneous-prefetches
10707 Maximum number of prefetches that can run at the same time.
10708
10709 @item l1-cache-line-size
10710 The size of cache line in L1 cache, in bytes.
10711
10712 @item l1-cache-size
10713 The size of L1 cache, in kilobytes.
10714
10715 @item l2-cache-size
10716 The size of L2 cache, in kilobytes.
10717
10718 @item min-insn-to-prefetch-ratio
10719 The minimum ratio between the number of instructions and the
10720 number of prefetches to enable prefetching in a loop.
10721
10722 @item prefetch-min-insn-to-mem-ratio
10723 The minimum ratio between the number of instructions and the
10724 number of memory references to enable prefetching in a loop.
10725
10726 @item use-canonical-types
10727 Whether the compiler should use the ``canonical'' type system. By
10728 default, this should always be 1, which uses a more efficient internal
10729 mechanism for comparing types in C++ and Objective-C++. However, if
10730 bugs in the canonical type system are causing compilation failures,
10731 set this value to 0 to disable canonical types.
10732
10733 @item switch-conversion-max-branch-ratio
10734 Switch initialization conversion refuses to create arrays that are
10735 bigger than @option{switch-conversion-max-branch-ratio} times the number of
10736 branches in the switch.
10737
10738 @item max-partial-antic-length
10739 Maximum length of the partial antic set computed during the tree
10740 partial redundancy elimination optimization (@option{-ftree-pre}) when
10741 optimizing at @option{-O3} and above. For some sorts of source code
10742 the enhanced partial redundancy elimination optimization can run away,
10743 consuming all of the memory available on the host machine. This
10744 parameter sets a limit on the length of the sets that are computed,
10745 which prevents the runaway behavior. Setting a value of 0 for
10746 this parameter allows an unlimited set length.
10747
10748 @item sccvn-max-scc-size
10749 Maximum size of a strongly connected component (SCC) during SCCVN
10750 processing. If this limit is hit, SCCVN processing for the whole
10751 function is not done and optimizations depending on it are
10752 disabled. The default maximum SCC size is 10000.
10753
10754 @item sccvn-max-alias-queries-per-access
10755 Maximum number of alias-oracle queries we perform when looking for
10756 redundancies for loads and stores. If this limit is hit the search
10757 is aborted and the load or store is not considered redundant. The
10758 number of queries is algorithmically limited to the number of
10759 stores on all paths from the load to the function entry.
10760 The default maxmimum number of queries is 1000.
10761
10762 @item ira-max-loops-num
10763 IRA uses regional register allocation by default. If a function
10764 contains more loops than the number given by this parameter, only at most
10765 the given number of the most frequently-executed loops form regions
10766 for regional register allocation. The default value of the
10767 parameter is 100.
10768
10769 @item ira-max-conflict-table-size
10770 Although IRA uses a sophisticated algorithm to compress the conflict
10771 table, the table can still require excessive amounts of memory for
10772 huge functions. If the conflict table for a function could be more
10773 than the size in MB given by this parameter, the register allocator
10774 instead uses a faster, simpler, and lower-quality
10775 algorithm that does not require building a pseudo-register conflict table.
10776 The default value of the parameter is 2000.
10777
10778 @item ira-loop-reserved-regs
10779 IRA can be used to evaluate more accurate register pressure in loops
10780 for decisions to move loop invariants (see @option{-O3}). The number
10781 of available registers reserved for some other purposes is given
10782 by this parameter. The default value of the parameter is 2, which is
10783 the minimal number of registers needed by typical instructions.
10784 This value is the best found from numerous experiments.
10785
10786 @item lra-inheritance-ebb-probability-cutoff
10787 LRA tries to reuse values reloaded in registers in subsequent insns.
10788 This optimization is called inheritance. EBB is used as a region to
10789 do this optimization. The parameter defines a minimal fall-through
10790 edge probability in percentage used to add BB to inheritance EBB in
10791 LRA. The default value of the parameter is 40. The value was chosen
10792 from numerous runs of SPEC2000 on x86-64.
10793
10794 @item loop-invariant-max-bbs-in-loop
10795 Loop invariant motion can be very expensive, both in compilation time and
10796 in amount of needed compile-time memory, with very large loops. Loops
10797 with more basic blocks than this parameter won't have loop invariant
10798 motion optimization performed on them. The default value of the
10799 parameter is 1000 for @option{-O1} and 10000 for @option{-O2} and above.
10800
10801 @item loop-max-datarefs-for-datadeps
10802 Building data dapendencies is expensive for very large loops. This
10803 parameter limits the number of data references in loops that are
10804 considered for data dependence analysis. These large loops are no
10805 handled by the optimizations using loop data dependencies.
10806 The default value is 1000.
10807
10808 @item max-vartrack-size
10809 Sets a maximum number of hash table slots to use during variable
10810 tracking dataflow analysis of any function. If this limit is exceeded
10811 with variable tracking at assignments enabled, analysis for that
10812 function is retried without it, after removing all debug insns from
10813 the function. If the limit is exceeded even without debug insns, var
10814 tracking analysis is completely disabled for the function. Setting
10815 the parameter to zero makes it unlimited.
10816
10817 @item max-vartrack-expr-depth
10818 Sets a maximum number of recursion levels when attempting to map
10819 variable names or debug temporaries to value expressions. This trades
10820 compilation time for more complete debug information. If this is set too
10821 low, value expressions that are available and could be represented in
10822 debug information may end up not being used; setting this higher may
10823 enable the compiler to find more complex debug expressions, but compile
10824 time and memory use may grow. The default is 12.
10825
10826 @item min-nondebug-insn-uid
10827 Use uids starting at this parameter for nondebug insns. The range below
10828 the parameter is reserved exclusively for debug insns created by
10829 @option{-fvar-tracking-assignments}, but debug insns may get
10830 (non-overlapping) uids above it if the reserved range is exhausted.
10831
10832 @item ipa-sra-ptr-growth-factor
10833 IPA-SRA replaces a pointer to an aggregate with one or more new
10834 parameters only when their cumulative size is less or equal to
10835 @option{ipa-sra-ptr-growth-factor} times the size of the original
10836 pointer parameter.
10837
10838 @item sra-max-scalarization-size-Ospeed
10839 @item sra-max-scalarization-size-Osize
10840 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
10841 replace scalar parts of aggregates with uses of independent scalar
10842 variables. These parameters control the maximum size, in storage units,
10843 of aggregate which is considered for replacement when compiling for
10844 speed
10845 (@option{sra-max-scalarization-size-Ospeed}) or size
10846 (@option{sra-max-scalarization-size-Osize}) respectively.
10847
10848 @item tm-max-aggregate-size
10849 When making copies of thread-local variables in a transaction, this
10850 parameter specifies the size in bytes after which variables are
10851 saved with the logging functions as opposed to save/restore code
10852 sequence pairs. This option only applies when using
10853 @option{-fgnu-tm}.
10854
10855 @item graphite-max-nb-scop-params
10856 To avoid exponential effects in the Graphite loop transforms, the
10857 number of parameters in a Static Control Part (SCoP) is bounded. The
10858 default value is 10 parameters. A variable whose value is unknown at
10859 compilation time and defined outside a SCoP is a parameter of the SCoP.
10860
10861 @item graphite-max-bbs-per-function
10862 To avoid exponential effects in the detection of SCoPs, the size of
10863 the functions analyzed by Graphite is bounded. The default value is
10864 100 basic blocks.
10865
10866 @item loop-block-tile-size
10867 Loop blocking or strip mining transforms, enabled with
10868 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
10869 loop in the loop nest by a given number of iterations. The strip
10870 length can be changed using the @option{loop-block-tile-size}
10871 parameter. The default value is 51 iterations.
10872
10873 @item loop-unroll-jam-size
10874 Specify the unroll factor for the @option{-floop-unroll-and-jam} option. The
10875 default value is 4.
10876
10877 @item loop-unroll-jam-depth
10878 Specify the dimension to be unrolled (counting from the most inner loop)
10879 for the @option{-floop-unroll-and-jam}. The default value is 2.
10880
10881 @item ipa-cp-value-list-size
10882 IPA-CP attempts to track all possible values and types passed to a function's
10883 parameter in order to propagate them and perform devirtualization.
10884 @option{ipa-cp-value-list-size} is the maximum number of values and types it
10885 stores per one formal parameter of a function.
10886
10887 @item ipa-cp-eval-threshold
10888 IPA-CP calculates its own score of cloning profitability heuristics
10889 and performs those cloning opportunities with scores that exceed
10890 @option{ipa-cp-eval-threshold}.
10891
10892 @item ipa-cp-recursion-penalty
10893 Percentage penalty the recursive functions will receive when they
10894 are evaluated for cloning.
10895
10896 @item ipa-cp-single-call-penalty
10897 Percentage penalty functions containg a single call to another
10898 function will receive when they are evaluated for cloning.
10899
10900
10901 @item ipa-max-agg-items
10902 IPA-CP is also capable to propagate a number of scalar values passed
10903 in an aggregate. @option{ipa-max-agg-items} controls the maximum
10904 number of such values per one parameter.
10905
10906 @item ipa-cp-loop-hint-bonus
10907 When IPA-CP determines that a cloning candidate would make the number
10908 of iterations of a loop known, it adds a bonus of
10909 @option{ipa-cp-loop-hint-bonus} to the profitability score of
10910 the candidate.
10911
10912 @item ipa-cp-array-index-hint-bonus
10913 When IPA-CP determines that a cloning candidate would make the index of
10914 an array access known, it adds a bonus of
10915 @option{ipa-cp-array-index-hint-bonus} to the profitability
10916 score of the candidate.
10917
10918 @item ipa-max-aa-steps
10919 During its analysis of function bodies, IPA-CP employs alias analysis
10920 in order to track values pointed to by function parameters. In order
10921 not spend too much time analyzing huge functions, it gives up and
10922 consider all memory clobbered after examining
10923 @option{ipa-max-aa-steps} statements modifying memory.
10924
10925 @item lto-partitions
10926 Specify desired number of partitions produced during WHOPR compilation.
10927 The number of partitions should exceed the number of CPUs used for compilation.
10928 The default value is 32.
10929
10930 @item lto-minpartition
10931 Size of minimal partition for WHOPR (in estimated instructions).
10932 This prevents expenses of splitting very small programs into too many
10933 partitions.
10934
10935 @item cxx-max-namespaces-for-diagnostic-help
10936 The maximum number of namespaces to consult for suggestions when C++
10937 name lookup fails for an identifier. The default is 1000.
10938
10939 @item sink-frequency-threshold
10940 The maximum relative execution frequency (in percents) of the target block
10941 relative to a statement's original block to allow statement sinking of a
10942 statement. Larger numbers result in more aggressive statement sinking.
10943 The default value is 75. A small positive adjustment is applied for
10944 statements with memory operands as those are even more profitable so sink.
10945
10946 @item max-stores-to-sink
10947 The maximum number of conditional stores paires that can be sunk. Set to 0
10948 if either vectorization (@option{-ftree-vectorize}) or if-conversion
10949 (@option{-ftree-loop-if-convert}) is disabled. The default is 2.
10950
10951 @item allow-store-data-races
10952 Allow optimizers to introduce new data races on stores.
10953 Set to 1 to allow, otherwise to 0. This option is enabled by default
10954 at optimization level @option{-Ofast}.
10955
10956 @item case-values-threshold
10957 The smallest number of different values for which it is best to use a
10958 jump-table instead of a tree of conditional branches. If the value is
10959 0, use the default for the machine. The default is 0.
10960
10961 @item tree-reassoc-width
10962 Set the maximum number of instructions executed in parallel in
10963 reassociated tree. This parameter overrides target dependent
10964 heuristics used by default if has non zero value.
10965
10966 @item sched-pressure-algorithm
10967 Choose between the two available implementations of
10968 @option{-fsched-pressure}. Algorithm 1 is the original implementation
10969 and is the more likely to prevent instructions from being reordered.
10970 Algorithm 2 was designed to be a compromise between the relatively
10971 conservative approach taken by algorithm 1 and the rather aggressive
10972 approach taken by the default scheduler. It relies more heavily on
10973 having a regular register file and accurate register pressure classes.
10974 See @file{haifa-sched.c} in the GCC sources for more details.
10975
10976 The default choice depends on the target.
10977
10978 @item max-slsr-cand-scan
10979 Set the maximum number of existing candidates that are considered when
10980 seeking a basis for a new straight-line strength reduction candidate.
10981
10982 @item asan-globals
10983 Enable buffer overflow detection for global objects. This kind
10984 of protection is enabled by default if you are using
10985 @option{-fsanitize=address} option.
10986 To disable global objects protection use @option{--param asan-globals=0}.
10987
10988 @item asan-stack
10989 Enable buffer overflow detection for stack objects. This kind of
10990 protection is enabled by default when using@option{-fsanitize=address}.
10991 To disable stack protection use @option{--param asan-stack=0} option.
10992
10993 @item asan-instrument-reads
10994 Enable buffer overflow detection for memory reads. This kind of
10995 protection is enabled by default when using @option{-fsanitize=address}.
10996 To disable memory reads protection use
10997 @option{--param asan-instrument-reads=0}.
10998
10999 @item asan-instrument-writes
11000 Enable buffer overflow detection for memory writes. This kind of
11001 protection is enabled by default when using @option{-fsanitize=address}.
11002 To disable memory writes protection use
11003 @option{--param asan-instrument-writes=0} option.
11004
11005 @item asan-memintrin
11006 Enable detection for built-in functions. This kind of protection
11007 is enabled by default when using @option{-fsanitize=address}.
11008 To disable built-in functions protection use
11009 @option{--param asan-memintrin=0}.
11010
11011 @item asan-use-after-return
11012 Enable detection of use-after-return. This kind of protection
11013 is enabled by default when using @option{-fsanitize=address} option.
11014 To disable use-after-return detection use
11015 @option{--param asan-use-after-return=0}.
11016
11017 @item asan-instrumentation-with-call-threshold
11018 If number of memory accesses in function being instrumented
11019 is greater or equal to this number, use callbacks instead of inline checks.
11020 E.g. to disable inline code use
11021 @option{--param asan-instrumentation-with-call-threshold=0}.
11022
11023 @item chkp-max-ctor-size
11024 Static constructors generated by Pointer Bounds Checker may become very
11025 large and significantly increase compile time at optimization level
11026 @option{-O1} and higher. This parameter is a maximum nubmer of statements
11027 in a single generated constructor. Default value is 5000.
11028
11029 @item max-fsm-thread-path-insns
11030 Maximum number of instructions to copy when duplicating blocks on a
11031 finite state automaton jump thread path. The default is 100.
11032
11033 @item max-fsm-thread-length
11034 Maximum number of basic blocks on a finite state automaton jump thread
11035 path. The default is 10.
11036
11037 @item max-fsm-thread-paths
11038 Maximum number of new jump thread paths to create for a finite state
11039 automaton. The default is 50.
11040
11041 @end table
11042 @end table
11043
11044 @node Preprocessor Options
11045 @section Options Controlling the Preprocessor
11046 @cindex preprocessor options
11047 @cindex options, preprocessor
11048
11049 These options control the C preprocessor, which is run on each C source
11050 file before actual compilation.
11051
11052 If you use the @option{-E} option, nothing is done except preprocessing.
11053 Some of these options make sense only together with @option{-E} because
11054 they cause the preprocessor output to be unsuitable for actual
11055 compilation.
11056
11057 @table @gcctabopt
11058 @item -Wp,@var{option}
11059 @opindex Wp
11060 You can use @option{-Wp,@var{option}} to bypass the compiler driver
11061 and pass @var{option} directly through to the preprocessor. If
11062 @var{option} contains commas, it is split into multiple options at the
11063 commas. However, many options are modified, translated or interpreted
11064 by the compiler driver before being passed to the preprocessor, and
11065 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
11066 interface is undocumented and subject to change, so whenever possible
11067 you should avoid using @option{-Wp} and let the driver handle the
11068 options instead.
11069
11070 @item -Xpreprocessor @var{option}
11071 @opindex Xpreprocessor
11072 Pass @var{option} as an option to the preprocessor. You can use this to
11073 supply system-specific preprocessor options that GCC does not
11074 recognize.
11075
11076 If you want to pass an option that takes an argument, you must use
11077 @option{-Xpreprocessor} twice, once for the option and once for the argument.
11078
11079 @item -no-integrated-cpp
11080 @opindex no-integrated-cpp
11081 Perform preprocessing as a separate pass before compilation.
11082 By default, GCC performs preprocessing as an integrated part of
11083 input tokenization and parsing.
11084 If this option is provided, the appropriate language front end
11085 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
11086 and Objective-C, respectively) is instead invoked twice,
11087 once for preprocessing only and once for actual compilation
11088 of the preprocessed input.
11089 This option may be useful in conjunction with the @option{-B} or
11090 @option{-wrapper} options to specify an alternate preprocessor or
11091 perform additional processing of the program source between
11092 normal preprocessing and compilation.
11093 @end table
11094
11095 @include cppopts.texi
11096
11097 @node Assembler Options
11098 @section Passing Options to the Assembler
11099
11100 @c prevent bad page break with this line
11101 You can pass options to the assembler.
11102
11103 @table @gcctabopt
11104 @item -Wa,@var{option}
11105 @opindex Wa
11106 Pass @var{option} as an option to the assembler. If @var{option}
11107 contains commas, it is split into multiple options at the commas.
11108
11109 @item -Xassembler @var{option}
11110 @opindex Xassembler
11111 Pass @var{option} as an option to the assembler. You can use this to
11112 supply system-specific assembler options that GCC does not
11113 recognize.
11114
11115 If you want to pass an option that takes an argument, you must use
11116 @option{-Xassembler} twice, once for the option and once for the argument.
11117
11118 @end table
11119
11120 @node Link Options
11121 @section Options for Linking
11122 @cindex link options
11123 @cindex options, linking
11124
11125 These options come into play when the compiler links object files into
11126 an executable output file. They are meaningless if the compiler is
11127 not doing a link step.
11128
11129 @table @gcctabopt
11130 @cindex file names
11131 @item @var{object-file-name}
11132 A file name that does not end in a special recognized suffix is
11133 considered to name an object file or library. (Object files are
11134 distinguished from libraries by the linker according to the file
11135 contents.) If linking is done, these object files are used as input
11136 to the linker.
11137
11138 @item -c
11139 @itemx -S
11140 @itemx -E
11141 @opindex c
11142 @opindex S
11143 @opindex E
11144 If any of these options is used, then the linker is not run, and
11145 object file names should not be used as arguments. @xref{Overall
11146 Options}.
11147
11148 @item -fuse-ld=bfd
11149 @opindex fuse-ld=bfd
11150 Use the @command{bfd} linker instead of the default linker.
11151
11152 @item -fuse-ld=gold
11153 @opindex fuse-ld=gold
11154 Use the @command{gold} linker instead of the default linker.
11155
11156 @cindex Libraries
11157 @item -l@var{library}
11158 @itemx -l @var{library}
11159 @opindex l
11160 Search the library named @var{library} when linking. (The second
11161 alternative with the library as a separate argument is only for
11162 POSIX compliance and is not recommended.)
11163
11164 It makes a difference where in the command you write this option; the
11165 linker searches and processes libraries and object files in the order they
11166 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
11167 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
11168 to functions in @samp{z}, those functions may not be loaded.
11169
11170 The linker searches a standard list of directories for the library,
11171 which is actually a file named @file{lib@var{library}.a}. The linker
11172 then uses this file as if it had been specified precisely by name.
11173
11174 The directories searched include several standard system directories
11175 plus any that you specify with @option{-L}.
11176
11177 Normally the files found this way are library files---archive files
11178 whose members are object files. The linker handles an archive file by
11179 scanning through it for members which define symbols that have so far
11180 been referenced but not defined. But if the file that is found is an
11181 ordinary object file, it is linked in the usual fashion. The only
11182 difference between using an @option{-l} option and specifying a file name
11183 is that @option{-l} surrounds @var{library} with @samp{lib} and @samp{.a}
11184 and searches several directories.
11185
11186 @item -lobjc
11187 @opindex lobjc
11188 You need this special case of the @option{-l} option in order to
11189 link an Objective-C or Objective-C++ program.
11190
11191 @item -nostartfiles
11192 @opindex nostartfiles
11193 Do not use the standard system startup files when linking.
11194 The standard system libraries are used normally, unless @option{-nostdlib}
11195 or @option{-nodefaultlibs} is used.
11196
11197 @item -nodefaultlibs
11198 @opindex nodefaultlibs
11199 Do not use the standard system libraries when linking.
11200 Only the libraries you specify are passed to the linker, and options
11201 specifying linkage of the system libraries, such as @option{-static-libgcc}
11202 or @option{-shared-libgcc}, are ignored.
11203 The standard startup files are used normally, unless @option{-nostartfiles}
11204 is used.
11205
11206 The compiler may generate calls to @code{memcmp},
11207 @code{memset}, @code{memcpy} and @code{memmove}.
11208 These entries are usually resolved by entries in
11209 libc. These entry points should be supplied through some other
11210 mechanism when this option is specified.
11211
11212 @item -nostdlib
11213 @opindex nostdlib
11214 Do not use the standard system startup files or libraries when linking.
11215 No startup files and only the libraries you specify are passed to
11216 the linker, and options specifying linkage of the system libraries, such as
11217 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
11218
11219 The compiler may generate calls to @code{memcmp}, @code{memset},
11220 @code{memcpy} and @code{memmove}.
11221 These entries are usually resolved by entries in
11222 libc. These entry points should be supplied through some other
11223 mechanism when this option is specified.
11224
11225 @cindex @option{-lgcc}, use with @option{-nostdlib}
11226 @cindex @option{-nostdlib} and unresolved references
11227 @cindex unresolved references and @option{-nostdlib}
11228 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
11229 @cindex @option{-nodefaultlibs} and unresolved references
11230 @cindex unresolved references and @option{-nodefaultlibs}
11231 One of the standard libraries bypassed by @option{-nostdlib} and
11232 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
11233 which GCC uses to overcome shortcomings of particular machines, or special
11234 needs for some languages.
11235 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
11236 Collection (GCC) Internals},
11237 for more discussion of @file{libgcc.a}.)
11238 In most cases, you need @file{libgcc.a} even when you want to avoid
11239 other standard libraries. In other words, when you specify @option{-nostdlib}
11240 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
11241 This ensures that you have no unresolved references to internal GCC
11242 library subroutines.
11243 (An example of such an internal subroutine is @code{__main}, used to ensure C++
11244 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
11245 GNU Compiler Collection (GCC) Internals}.)
11246
11247 @item -pie
11248 @opindex pie
11249 Produce a position independent executable on targets that support it.
11250 For predictable results, you must also specify the same set of options
11251 used for compilation (@option{-fpie}, @option{-fPIE},
11252 or model suboptions) when you specify this linker option.
11253
11254 @item -rdynamic
11255 @opindex rdynamic
11256 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
11257 that support it. This instructs the linker to add all symbols, not
11258 only used ones, to the dynamic symbol table. This option is needed
11259 for some uses of @code{dlopen} or to allow obtaining backtraces
11260 from within a program.
11261
11262 @item -s
11263 @opindex s
11264 Remove all symbol table and relocation information from the executable.
11265
11266 @item -static
11267 @opindex static
11268 On systems that support dynamic linking, this prevents linking with the shared
11269 libraries. On other systems, this option has no effect.
11270
11271 @item -shared
11272 @opindex shared
11273 Produce a shared object which can then be linked with other objects to
11274 form an executable. Not all systems support this option. For predictable
11275 results, you must also specify the same set of options used for compilation
11276 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
11277 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
11278 needs to build supplementary stub code for constructors to work. On
11279 multi-libbed systems, @samp{gcc -shared} must select the correct support
11280 libraries to link against. Failing to supply the correct flags may lead
11281 to subtle defects. Supplying them in cases where they are not necessary
11282 is innocuous.}
11283
11284 @item -shared-libgcc
11285 @itemx -static-libgcc
11286 @opindex shared-libgcc
11287 @opindex static-libgcc
11288 On systems that provide @file{libgcc} as a shared library, these options
11289 force the use of either the shared or static version, respectively.
11290 If no shared version of @file{libgcc} was built when the compiler was
11291 configured, these options have no effect.
11292
11293 There are several situations in which an application should use the
11294 shared @file{libgcc} instead of the static version. The most common
11295 of these is when the application wishes to throw and catch exceptions
11296 across different shared libraries. In that case, each of the libraries
11297 as well as the application itself should use the shared @file{libgcc}.
11298
11299 Therefore, the G++ and GCJ drivers automatically add
11300 @option{-shared-libgcc} whenever you build a shared library or a main
11301 executable, because C++ and Java programs typically use exceptions, so
11302 this is the right thing to do.
11303
11304 If, instead, you use the GCC driver to create shared libraries, you may
11305 find that they are not always linked with the shared @file{libgcc}.
11306 If GCC finds, at its configuration time, that you have a non-GNU linker
11307 or a GNU linker that does not support option @option{--eh-frame-hdr},
11308 it links the shared version of @file{libgcc} into shared libraries
11309 by default. Otherwise, it takes advantage of the linker and optimizes
11310 away the linking with the shared version of @file{libgcc}, linking with
11311 the static version of libgcc by default. This allows exceptions to
11312 propagate through such shared libraries, without incurring relocation
11313 costs at library load time.
11314
11315 However, if a library or main executable is supposed to throw or catch
11316 exceptions, you must link it using the G++ or GCJ driver, as appropriate
11317 for the languages used in the program, or using the option
11318 @option{-shared-libgcc}, such that it is linked with the shared
11319 @file{libgcc}.
11320
11321 @item -static-libasan
11322 @opindex static-libasan
11323 When the @option{-fsanitize=address} option is used to link a program,
11324 the GCC driver automatically links against @option{libasan}. If
11325 @file{libasan} is available as a shared library, and the @option{-static}
11326 option is not used, then this links against the shared version of
11327 @file{libasan}. The @option{-static-libasan} option directs the GCC
11328 driver to link @file{libasan} statically, without necessarily linking
11329 other libraries statically.
11330
11331 @item -static-libtsan
11332 @opindex static-libtsan
11333 When the @option{-fsanitize=thread} option is used to link a program,
11334 the GCC driver automatically links against @option{libtsan}. If
11335 @file{libtsan} is available as a shared library, and the @option{-static}
11336 option is not used, then this links against the shared version of
11337 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
11338 driver to link @file{libtsan} statically, without necessarily linking
11339 other libraries statically.
11340
11341 @item -static-liblsan
11342 @opindex static-liblsan
11343 When the @option{-fsanitize=leak} option is used to link a program,
11344 the GCC driver automatically links against @option{liblsan}. If
11345 @file{liblsan} is available as a shared library, and the @option{-static}
11346 option is not used, then this links against the shared version of
11347 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
11348 driver to link @file{liblsan} statically, without necessarily linking
11349 other libraries statically.
11350
11351 @item -static-libubsan
11352 @opindex static-libubsan
11353 When the @option{-fsanitize=undefined} option is used to link a program,
11354 the GCC driver automatically links against @option{libubsan}. If
11355 @file{libubsan} is available as a shared library, and the @option{-static}
11356 option is not used, then this links against the shared version of
11357 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
11358 driver to link @file{libubsan} statically, without necessarily linking
11359 other libraries statically.
11360
11361 @item -static-libmpx
11362 @opindex static-libmpx
11363 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are
11364 used to link a program, the GCC driver automatically links against
11365 @file{libmpx}. If @file{libmpx} is available as a shared library,
11366 and the @option{-static} option is not used, then this links against
11367 the shared version of @file{libmpx}. The @option{-static-libmpx}
11368 option directs the GCC driver to link @file{libmpx} statically,
11369 without necessarily linking other libraries statically.
11370
11371 @item -static-libmpxwrappers
11372 @opindex static-libmpxwrappers
11373 When the @option{-fcheck-pointer bounds} and @option{-mmpx} options are used
11374 to link a program without also using @option{-fno-chkp-use-wrappers}, the
11375 GCC driver automatically links against @file{libmpxwrappers}. If
11376 @file{libmpxwrappers} is available as a shared library, and the
11377 @option{-static} option is not used, then this links against the shared
11378 version of @file{libmpxwrappers}. The @option{-static-libmpxwrappers}
11379 option directs the GCC driver to link @file{libmpxwrappers} statically,
11380 without necessarily linking other libraries statically.
11381
11382 @item -static-libstdc++
11383 @opindex static-libstdc++
11384 When the @command{g++} program is used to link a C++ program, it
11385 normally automatically links against @option{libstdc++}. If
11386 @file{libstdc++} is available as a shared library, and the
11387 @option{-static} option is not used, then this links against the
11388 shared version of @file{libstdc++}. That is normally fine. However, it
11389 is sometimes useful to freeze the version of @file{libstdc++} used by
11390 the program without going all the way to a fully static link. The
11391 @option{-static-libstdc++} option directs the @command{g++} driver to
11392 link @file{libstdc++} statically, without necessarily linking other
11393 libraries statically.
11394
11395 @item -symbolic
11396 @opindex symbolic
11397 Bind references to global symbols when building a shared object. Warn
11398 about any unresolved references (unless overridden by the link editor
11399 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
11400 this option.
11401
11402 @item -T @var{script}
11403 @opindex T
11404 @cindex linker script
11405 Use @var{script} as the linker script. This option is supported by most
11406 systems using the GNU linker. On some targets, such as bare-board
11407 targets without an operating system, the @option{-T} option may be required
11408 when linking to avoid references to undefined symbols.
11409
11410 @item -Xlinker @var{option}
11411 @opindex Xlinker
11412 Pass @var{option} as an option to the linker. You can use this to
11413 supply system-specific linker options that GCC does not recognize.
11414
11415 If you want to pass an option that takes a separate argument, you must use
11416 @option{-Xlinker} twice, once for the option and once for the argument.
11417 For example, to pass @option{-assert definitions}, you must write
11418 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
11419 @option{-Xlinker "-assert definitions"}, because this passes the entire
11420 string as a single argument, which is not what the linker expects.
11421
11422 When using the GNU linker, it is usually more convenient to pass
11423 arguments to linker options using the @option{@var{option}=@var{value}}
11424 syntax than as separate arguments. For example, you can specify
11425 @option{-Xlinker -Map=output.map} rather than
11426 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
11427 this syntax for command-line options.
11428
11429 @item -Wl,@var{option}
11430 @opindex Wl
11431 Pass @var{option} as an option to the linker. If @var{option} contains
11432 commas, it is split into multiple options at the commas. You can use this
11433 syntax to pass an argument to the option.
11434 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
11435 linker. When using the GNU linker, you can also get the same effect with
11436 @option{-Wl,-Map=output.map}.
11437
11438 @item -u @var{symbol}
11439 @opindex u
11440 Pretend the symbol @var{symbol} is undefined, to force linking of
11441 library modules to define it. You can use @option{-u} multiple times with
11442 different symbols to force loading of additional library modules.
11443
11444 @item -z @var{keyword}
11445 @opindex z
11446 @option{-z} is passed directly on to the linker along with the keyword
11447 @var{keyword}. See the section in the documentation of your linker for
11448 permitted values and their meanings.
11449 @end table
11450
11451 @node Directory Options
11452 @section Options for Directory Search
11453 @cindex directory options
11454 @cindex options, directory search
11455 @cindex search path
11456
11457 These options specify directories to search for header files, for
11458 libraries and for parts of the compiler:
11459
11460 @table @gcctabopt
11461 @item -I@var{dir}
11462 @opindex I
11463 Add the directory @var{dir} to the head of the list of directories to be
11464 searched for header files. This can be used to override a system header
11465 file, substituting your own version, since these directories are
11466 searched before the system header file directories. However, you should
11467 not use this option to add directories that contain vendor-supplied
11468 system header files (use @option{-isystem} for that). If you use more than
11469 one @option{-I} option, the directories are scanned in left-to-right
11470 order; the standard system directories come after.
11471
11472 If a standard system include directory, or a directory specified with
11473 @option{-isystem}, is also specified with @option{-I}, the @option{-I}
11474 option is ignored. The directory is still searched but as a
11475 system directory at its normal position in the system include chain.
11476 This is to ensure that GCC's procedure to fix buggy system headers and
11477 the ordering for the @code{include_next} directive are not inadvertently changed.
11478 If you really need to change the search order for system directories,
11479 use the @option{-nostdinc} and/or @option{-isystem} options.
11480
11481 @item -iplugindir=@var{dir}
11482 @opindex iplugindir=
11483 Set the directory to search for plugins that are passed
11484 by @option{-fplugin=@var{name}} instead of
11485 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
11486 to be used by the user, but only passed by the driver.
11487
11488 @item -iquote@var{dir}
11489 @opindex iquote
11490 Add the directory @var{dir} to the head of the list of directories to
11491 be searched for header files only for the case of @code{#include
11492 "@var{file}"}; they are not searched for @code{#include <@var{file}>},
11493 otherwise just like @option{-I}.
11494
11495 @item -L@var{dir}
11496 @opindex L
11497 Add directory @var{dir} to the list of directories to be searched
11498 for @option{-l}.
11499
11500 @item -B@var{prefix}
11501 @opindex B
11502 This option specifies where to find the executables, libraries,
11503 include files, and data files of the compiler itself.
11504
11505 The compiler driver program runs one or more of the subprograms
11506 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
11507 @var{prefix} as a prefix for each program it tries to run, both with and
11508 without @samp{@var{machine}/@var{version}/} (@pxref{Target Options}).
11509
11510 For each subprogram to be run, the compiler driver first tries the
11511 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
11512 is not specified, the driver tries two standard prefixes,
11513 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
11514 those results in a file name that is found, the unmodified program
11515 name is searched for using the directories specified in your
11516 @env{PATH} environment variable.
11517
11518 The compiler checks to see if the path provided by @option{-B}
11519 refers to a directory, and if necessary it adds a directory
11520 separator character at the end of the path.
11521
11522 @option{-B} prefixes that effectively specify directory names also apply
11523 to libraries in the linker, because the compiler translates these
11524 options into @option{-L} options for the linker. They also apply to
11525 include files in the preprocessor, because the compiler translates these
11526 options into @option{-isystem} options for the preprocessor. In this case,
11527 the compiler appends @samp{include} to the prefix.
11528
11529 The runtime support file @file{libgcc.a} can also be searched for using
11530 the @option{-B} prefix, if needed. If it is not found there, the two
11531 standard prefixes above are tried, and that is all. The file is left
11532 out of the link if it is not found by those means.
11533
11534 Another way to specify a prefix much like the @option{-B} prefix is to use
11535 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
11536 Variables}.
11537
11538 As a special kludge, if the path provided by @option{-B} is
11539 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
11540 9, then it is replaced by @file{[dir/]include}. This is to help
11541 with boot-strapping the compiler.
11542
11543 @item -specs=@var{file}
11544 @opindex specs
11545 Process @var{file} after the compiler reads in the standard @file{specs}
11546 file, in order to override the defaults which the @command{gcc} driver
11547 program uses when determining what switches to pass to @command{cc1},
11548 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
11549 @option{-specs=@var{file}} can be specified on the command line, and they
11550 are processed in order, from left to right.
11551
11552 @item --sysroot=@var{dir}
11553 @opindex sysroot
11554 Use @var{dir} as the logical root directory for headers and libraries.
11555 For example, if the compiler normally searches for headers in
11556 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
11557 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
11558
11559 If you use both this option and the @option{-isysroot} option, then
11560 the @option{--sysroot} option applies to libraries, but the
11561 @option{-isysroot} option applies to header files.
11562
11563 The GNU linker (beginning with version 2.16) has the necessary support
11564 for this option. If your linker does not support this option, the
11565 header file aspect of @option{--sysroot} still works, but the
11566 library aspect does not.
11567
11568 @item --no-sysroot-suffix
11569 @opindex no-sysroot-suffix
11570 For some targets, a suffix is added to the root directory specified
11571 with @option{--sysroot}, depending on the other options used, so that
11572 headers may for example be found in
11573 @file{@var{dir}/@var{suffix}/usr/include} instead of
11574 @file{@var{dir}/usr/include}. This option disables the addition of
11575 such a suffix.
11576
11577 @item -I-
11578 @opindex I-
11579 This option has been deprecated. Please use @option{-iquote} instead for
11580 @option{-I} directories before the @option{-I-} and remove the @option{-I-}
11581 option.
11582 Any directories you specify with @option{-I} options before the @option{-I-}
11583 option are searched only for the case of @code{#include "@var{file}"};
11584 they are not searched for @code{#include <@var{file}>}.
11585
11586 If additional directories are specified with @option{-I} options after
11587 the @option{-I-} option, these directories are searched for all @code{#include}
11588 directives. (Ordinarily @emph{all} @option{-I} directories are used
11589 this way.)
11590
11591 In addition, the @option{-I-} option inhibits the use of the current
11592 directory (where the current input file came from) as the first search
11593 directory for @code{#include "@var{file}"}. There is no way to
11594 override this effect of @option{-I-}. With @option{-I.} you can specify
11595 searching the directory that is current when the compiler is
11596 invoked. That is not exactly the same as what the preprocessor does
11597 by default, but it is often satisfactory.
11598
11599 @option{-I-} does not inhibit the use of the standard system directories
11600 for header files. Thus, @option{-I-} and @option{-nostdinc} are
11601 independent.
11602 @end table
11603
11604 @c man end
11605
11606 @node Spec Files
11607 @section Specifying Subprocesses and the Switches to Pass to Them
11608 @cindex Spec Files
11609
11610 @command{gcc} is a driver program. It performs its job by invoking a
11611 sequence of other programs to do the work of compiling, assembling and
11612 linking. GCC interprets its command-line parameters and uses these to
11613 deduce which programs it should invoke, and which command-line options
11614 it ought to place on their command lines. This behavior is controlled
11615 by @dfn{spec strings}. In most cases there is one spec string for each
11616 program that GCC can invoke, but a few programs have multiple spec
11617 strings to control their behavior. The spec strings built into GCC can
11618 be overridden by using the @option{-specs=} command-line switch to specify
11619 a spec file.
11620
11621 @dfn{Spec files} are plaintext files that are used to construct spec
11622 strings. They consist of a sequence of directives separated by blank
11623 lines. The type of directive is determined by the first non-whitespace
11624 character on the line, which can be one of the following:
11625
11626 @table @code
11627 @item %@var{command}
11628 Issues a @var{command} to the spec file processor. The commands that can
11629 appear here are:
11630
11631 @table @code
11632 @item %include <@var{file}>
11633 @cindex @code{%include}
11634 Search for @var{file} and insert its text at the current point in the
11635 specs file.
11636
11637 @item %include_noerr <@var{file}>
11638 @cindex @code{%include_noerr}
11639 Just like @samp{%include}, but do not generate an error message if the include
11640 file cannot be found.
11641
11642 @item %rename @var{old_name} @var{new_name}
11643 @cindex @code{%rename}
11644 Rename the spec string @var{old_name} to @var{new_name}.
11645
11646 @end table
11647
11648 @item *[@var{spec_name}]:
11649 This tells the compiler to create, override or delete the named spec
11650 string. All lines after this directive up to the next directive or
11651 blank line are considered to be the text for the spec string. If this
11652 results in an empty string then the spec is deleted. (Or, if the
11653 spec did not exist, then nothing happens.) Otherwise, if the spec
11654 does not currently exist a new spec is created. If the spec does
11655 exist then its contents are overridden by the text of this
11656 directive, unless the first character of that text is the @samp{+}
11657 character, in which case the text is appended to the spec.
11658
11659 @item [@var{suffix}]:
11660 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
11661 and up to the next directive or blank line are considered to make up the
11662 spec string for the indicated suffix. When the compiler encounters an
11663 input file with the named suffix, it processes the spec string in
11664 order to work out how to compile that file. For example:
11665
11666 @smallexample
11667 .ZZ:
11668 z-compile -input %i
11669 @end smallexample
11670
11671 This says that any input file whose name ends in @samp{.ZZ} should be
11672 passed to the program @samp{z-compile}, which should be invoked with the
11673 command-line switch @option{-input} and with the result of performing the
11674 @samp{%i} substitution. (See below.)
11675
11676 As an alternative to providing a spec string, the text following a
11677 suffix directive can be one of the following:
11678
11679 @table @code
11680 @item @@@var{language}
11681 This says that the suffix is an alias for a known @var{language}. This is
11682 similar to using the @option{-x} command-line switch to GCC to specify a
11683 language explicitly. For example:
11684
11685 @smallexample
11686 .ZZ:
11687 @@c++
11688 @end smallexample
11689
11690 Says that .ZZ files are, in fact, C++ source files.
11691
11692 @item #@var{name}
11693 This causes an error messages saying:
11694
11695 @smallexample
11696 @var{name} compiler not installed on this system.
11697 @end smallexample
11698 @end table
11699
11700 GCC already has an extensive list of suffixes built into it.
11701 This directive adds an entry to the end of the list of suffixes, but
11702 since the list is searched from the end backwards, it is effectively
11703 possible to override earlier entries using this technique.
11704
11705 @end table
11706
11707 GCC has the following spec strings built into it. Spec files can
11708 override these strings or create their own. Note that individual
11709 targets can also add their own spec strings to this list.
11710
11711 @smallexample
11712 asm Options to pass to the assembler
11713 asm_final Options to pass to the assembler post-processor
11714 cpp Options to pass to the C preprocessor
11715 cc1 Options to pass to the C compiler
11716 cc1plus Options to pass to the C++ compiler
11717 endfile Object files to include at the end of the link
11718 link Options to pass to the linker
11719 lib Libraries to include on the command line to the linker
11720 libgcc Decides which GCC support library to pass to the linker
11721 linker Sets the name of the linker
11722 predefines Defines to be passed to the C preprocessor
11723 signed_char Defines to pass to CPP to say whether @code{char} is signed
11724 by default
11725 startfile Object files to include at the start of the link
11726 @end smallexample
11727
11728 Here is a small example of a spec file:
11729
11730 @smallexample
11731 %rename lib old_lib
11732
11733 *lib:
11734 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
11735 @end smallexample
11736
11737 This example renames the spec called @samp{lib} to @samp{old_lib} and
11738 then overrides the previous definition of @samp{lib} with a new one.
11739 The new definition adds in some extra command-line options before
11740 including the text of the old definition.
11741
11742 @dfn{Spec strings} are a list of command-line options to be passed to their
11743 corresponding program. In addition, the spec strings can contain
11744 @samp{%}-prefixed sequences to substitute variable text or to
11745 conditionally insert text into the command line. Using these constructs
11746 it is possible to generate quite complex command lines.
11747
11748 Here is a table of all defined @samp{%}-sequences for spec
11749 strings. Note that spaces are not generated automatically around the
11750 results of expanding these sequences. Therefore you can concatenate them
11751 together or combine them with constant text in a single argument.
11752
11753 @table @code
11754 @item %%
11755 Substitute one @samp{%} into the program name or argument.
11756
11757 @item %i
11758 Substitute the name of the input file being processed.
11759
11760 @item %b
11761 Substitute the basename of the input file being processed.
11762 This is the substring up to (and not including) the last period
11763 and not including the directory.
11764
11765 @item %B
11766 This is the same as @samp{%b}, but include the file suffix (text after
11767 the last period).
11768
11769 @item %d
11770 Marks the argument containing or following the @samp{%d} as a
11771 temporary file name, so that that file is deleted if GCC exits
11772 successfully. Unlike @samp{%g}, this contributes no text to the
11773 argument.
11774
11775 @item %g@var{suffix}
11776 Substitute a file name that has suffix @var{suffix} and is chosen
11777 once per compilation, and mark the argument in the same way as
11778 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
11779 name is now chosen in a way that is hard to predict even when previously
11780 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
11781 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
11782 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
11783 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
11784 was simply substituted with a file name chosen once per compilation,
11785 without regard to any appended suffix (which was therefore treated
11786 just like ordinary text), making such attacks more likely to succeed.
11787
11788 @item %u@var{suffix}
11789 Like @samp{%g}, but generates a new temporary file name
11790 each time it appears instead of once per compilation.
11791
11792 @item %U@var{suffix}
11793 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
11794 new one if there is no such last file name. In the absence of any
11795 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
11796 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
11797 involves the generation of two distinct file names, one
11798 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
11799 simply substituted with a file name chosen for the previous @samp{%u},
11800 without regard to any appended suffix.
11801
11802 @item %j@var{suffix}
11803 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
11804 writable, and if @option{-save-temps} is not used;
11805 otherwise, substitute the name
11806 of a temporary file, just like @samp{%u}. This temporary file is not
11807 meant for communication between processes, but rather as a junk
11808 disposal mechanism.
11809
11810 @item %|@var{suffix}
11811 @itemx %m@var{suffix}
11812 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
11813 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
11814 all. These are the two most common ways to instruct a program that it
11815 should read from standard input or write to standard output. If you
11816 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
11817 construct: see for example @file{f/lang-specs.h}.
11818
11819 @item %.@var{SUFFIX}
11820 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
11821 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
11822 terminated by the next space or %.
11823
11824 @item %w
11825 Marks the argument containing or following the @samp{%w} as the
11826 designated output file of this compilation. This puts the argument
11827 into the sequence of arguments that @samp{%o} substitutes.
11828
11829 @item %o
11830 Substitutes the names of all the output files, with spaces
11831 automatically placed around them. You should write spaces
11832 around the @samp{%o} as well or the results are undefined.
11833 @samp{%o} is for use in the specs for running the linker.
11834 Input files whose names have no recognized suffix are not compiled
11835 at all, but they are included among the output files, so they are
11836 linked.
11837
11838 @item %O
11839 Substitutes the suffix for object files. Note that this is
11840 handled specially when it immediately follows @samp{%g, %u, or %U},
11841 because of the need for those to form complete file names. The
11842 handling is such that @samp{%O} is treated exactly as if it had already
11843 been substituted, except that @samp{%g, %u, and %U} do not currently
11844 support additional @var{suffix} characters following @samp{%O} as they do
11845 following, for example, @samp{.o}.
11846
11847 @item %p
11848 Substitutes the standard macro predefinitions for the
11849 current target machine. Use this when running @command{cpp}.
11850
11851 @item %P
11852 Like @samp{%p}, but puts @samp{__} before and after the name of each
11853 predefined macro, except for macros that start with @samp{__} or with
11854 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
11855 C@.
11856
11857 @item %I
11858 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
11859 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
11860 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
11861 and @option{-imultilib} as necessary.
11862
11863 @item %s
11864 Current argument is the name of a library or startup file of some sort.
11865 Search for that file in a standard list of directories and substitute
11866 the full name found. The current working directory is included in the
11867 list of directories scanned.
11868
11869 @item %T
11870 Current argument is the name of a linker script. Search for that file
11871 in the current list of directories to scan for libraries. If the file
11872 is located insert a @option{--script} option into the command line
11873 followed by the full path name found. If the file is not found then
11874 generate an error message. Note: the current working directory is not
11875 searched.
11876
11877 @item %e@var{str}
11878 Print @var{str} as an error message. @var{str} is terminated by a newline.
11879 Use this when inconsistent options are detected.
11880
11881 @item %(@var{name})
11882 Substitute the contents of spec string @var{name} at this point.
11883
11884 @item %x@{@var{option}@}
11885 Accumulate an option for @samp{%X}.
11886
11887 @item %X
11888 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
11889 spec string.
11890
11891 @item %Y
11892 Output the accumulated assembler options specified by @option{-Wa}.
11893
11894 @item %Z
11895 Output the accumulated preprocessor options specified by @option{-Wp}.
11896
11897 @item %a
11898 Process the @code{asm} spec. This is used to compute the
11899 switches to be passed to the assembler.
11900
11901 @item %A
11902 Process the @code{asm_final} spec. This is a spec string for
11903 passing switches to an assembler post-processor, if such a program is
11904 needed.
11905
11906 @item %l
11907 Process the @code{link} spec. This is the spec for computing the
11908 command line passed to the linker. Typically it makes use of the
11909 @samp{%L %G %S %D and %E} sequences.
11910
11911 @item %D
11912 Dump out a @option{-L} option for each directory that GCC believes might
11913 contain startup files. If the target supports multilibs then the
11914 current multilib directory is prepended to each of these paths.
11915
11916 @item %L
11917 Process the @code{lib} spec. This is a spec string for deciding which
11918 libraries are included on the command line to the linker.
11919
11920 @item %G
11921 Process the @code{libgcc} spec. This is a spec string for deciding
11922 which GCC support library is included on the command line to the linker.
11923
11924 @item %S
11925 Process the @code{startfile} spec. This is a spec for deciding which
11926 object files are the first ones passed to the linker. Typically
11927 this might be a file named @file{crt0.o}.
11928
11929 @item %E
11930 Process the @code{endfile} spec. This is a spec string that specifies
11931 the last object files that are passed to the linker.
11932
11933 @item %C
11934 Process the @code{cpp} spec. This is used to construct the arguments
11935 to be passed to the C preprocessor.
11936
11937 @item %1
11938 Process the @code{cc1} spec. This is used to construct the options to be
11939 passed to the actual C compiler (@command{cc1}).
11940
11941 @item %2
11942 Process the @code{cc1plus} spec. This is used to construct the options to be
11943 passed to the actual C++ compiler (@command{cc1plus}).
11944
11945 @item %*
11946 Substitute the variable part of a matched option. See below.
11947 Note that each comma in the substituted string is replaced by
11948 a single space.
11949
11950 @item %<@code{S}
11951 Remove all occurrences of @code{-S} from the command line. Note---this
11952 command is position dependent. @samp{%} commands in the spec string
11953 before this one see @code{-S}, @samp{%} commands in the spec string
11954 after this one do not.
11955
11956 @item %:@var{function}(@var{args})
11957 Call the named function @var{function}, passing it @var{args}.
11958 @var{args} is first processed as a nested spec string, then split
11959 into an argument vector in the usual fashion. The function returns
11960 a string which is processed as if it had appeared literally as part
11961 of the current spec.
11962
11963 The following built-in spec functions are provided:
11964
11965 @table @code
11966 @item @code{getenv}
11967 The @code{getenv} spec function takes two arguments: an environment
11968 variable name and a string. If the environment variable is not
11969 defined, a fatal error is issued. Otherwise, the return value is the
11970 value of the environment variable concatenated with the string. For
11971 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
11972
11973 @smallexample
11974 %:getenv(TOPDIR /include)
11975 @end smallexample
11976
11977 expands to @file{/path/to/top/include}.
11978
11979 @item @code{if-exists}
11980 The @code{if-exists} spec function takes one argument, an absolute
11981 pathname to a file. If the file exists, @code{if-exists} returns the
11982 pathname. Here is a small example of its usage:
11983
11984 @smallexample
11985 *startfile:
11986 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
11987 @end smallexample
11988
11989 @item @code{if-exists-else}
11990 The @code{if-exists-else} spec function is similar to the @code{if-exists}
11991 spec function, except that it takes two arguments. The first argument is
11992 an absolute pathname to a file. If the file exists, @code{if-exists-else}
11993 returns the pathname. If it does not exist, it returns the second argument.
11994 This way, @code{if-exists-else} can be used to select one file or another,
11995 based on the existence of the first. Here is a small example of its usage:
11996
11997 @smallexample
11998 *startfile:
11999 crt0%O%s %:if-exists(crti%O%s) \
12000 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
12001 @end smallexample
12002
12003 @item @code{replace-outfile}
12004 The @code{replace-outfile} spec function takes two arguments. It looks for the
12005 first argument in the outfiles array and replaces it with the second argument. Here
12006 is a small example of its usage:
12007
12008 @smallexample
12009 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
12010 @end smallexample
12011
12012 @item @code{remove-outfile}
12013 The @code{remove-outfile} spec function takes one argument. It looks for the
12014 first argument in the outfiles array and removes it. Here is a small example
12015 its usage:
12016
12017 @smallexample
12018 %:remove-outfile(-lm)
12019 @end smallexample
12020
12021 @item @code{pass-through-libs}
12022 The @code{pass-through-libs} spec function takes any number of arguments. It
12023 finds any @option{-l} options and any non-options ending in @file{.a} (which it
12024 assumes are the names of linker input library archive files) and returns a
12025 result containing all the found arguments each prepended by
12026 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
12027 intended to be passed to the LTO linker plugin.
12028
12029 @smallexample
12030 %:pass-through-libs(%G %L %G)
12031 @end smallexample
12032
12033 @item @code{print-asm-header}
12034 The @code{print-asm-header} function takes no arguments and simply
12035 prints a banner like:
12036
12037 @smallexample
12038 Assembler options
12039 =================
12040
12041 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
12042 @end smallexample
12043
12044 It is used to separate compiler options from assembler options
12045 in the @option{--target-help} output.
12046 @end table
12047
12048 @item %@{@code{S}@}
12049 Substitutes the @code{-S} switch, if that switch is given to GCC@.
12050 If that switch is not specified, this substitutes nothing. Note that
12051 the leading dash is omitted when specifying this option, and it is
12052 automatically inserted if the substitution is performed. Thus the spec
12053 string @samp{%@{foo@}} matches the command-line option @option{-foo}
12054 and outputs the command-line option @option{-foo}.
12055
12056 @item %W@{@code{S}@}
12057 Like %@{@code{S}@} but mark last argument supplied within as a file to be
12058 deleted on failure.
12059
12060 @item %@{@code{S}*@}
12061 Substitutes all the switches specified to GCC whose names start
12062 with @code{-S}, but which also take an argument. This is used for
12063 switches like @option{-o}, @option{-D}, @option{-I}, etc.
12064 GCC considers @option{-o foo} as being
12065 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
12066 text, including the space. Thus two arguments are generated.
12067
12068 @item %@{@code{S}*&@code{T}*@}
12069 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
12070 (the order of @code{S} and @code{T} in the spec is not significant).
12071 There can be any number of ampersand-separated variables; for each the
12072 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
12073
12074 @item %@{@code{S}:@code{X}@}
12075 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
12076
12077 @item %@{!@code{S}:@code{X}@}
12078 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
12079
12080 @item %@{@code{S}*:@code{X}@}
12081 Substitutes @code{X} if one or more switches whose names start with
12082 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
12083 once, no matter how many such switches appeared. However, if @code{%*}
12084 appears somewhere in @code{X}, then @code{X} is substituted once
12085 for each matching switch, with the @code{%*} replaced by the part of
12086 that switch matching the @code{*}.
12087
12088 If @code{%*} appears as the last part of a spec sequence then a space
12089 is added after the end of the last substitution. If there is more
12090 text in the sequence, however, then a space is not generated. This
12091 allows the @code{%*} substitution to be used as part of a larger
12092 string. For example, a spec string like this:
12093
12094 @smallexample
12095 %@{mcu=*:--script=%*/memory.ld@}
12096 @end smallexample
12097
12098 @noindent
12099 when matching an option like @option{-mcu=newchip} produces:
12100
12101 @smallexample
12102 --script=newchip/memory.ld
12103 @end smallexample
12104
12105 @item %@{.@code{S}:@code{X}@}
12106 Substitutes @code{X}, if processing a file with suffix @code{S}.
12107
12108 @item %@{!.@code{S}:@code{X}@}
12109 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
12110
12111 @item %@{,@code{S}:@code{X}@}
12112 Substitutes @code{X}, if processing a file for language @code{S}.
12113
12114 @item %@{!,@code{S}:@code{X}@}
12115 Substitutes @code{X}, if not processing a file for language @code{S}.
12116
12117 @item %@{@code{S}|@code{P}:@code{X}@}
12118 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
12119 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
12120 @code{*} sequences as well, although they have a stronger binding than
12121 the @samp{|}. If @code{%*} appears in @code{X}, all of the
12122 alternatives must be starred, and only the first matching alternative
12123 is substituted.
12124
12125 For example, a spec string like this:
12126
12127 @smallexample
12128 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
12129 @end smallexample
12130
12131 @noindent
12132 outputs the following command-line options from the following input
12133 command-line options:
12134
12135 @smallexample
12136 fred.c -foo -baz
12137 jim.d -bar -boggle
12138 -d fred.c -foo -baz -boggle
12139 -d jim.d -bar -baz -boggle
12140 @end smallexample
12141
12142 @item %@{S:X; T:Y; :D@}
12143
12144 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
12145 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
12146 be as many clauses as you need. This may be combined with @code{.},
12147 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
12148
12149
12150 @end table
12151
12152 The conditional text @code{X} in a %@{@code{S}:@code{X}@} or similar
12153 construct may contain other nested @samp{%} constructs or spaces, or
12154 even newlines. They are processed as usual, as described above.
12155 Trailing white space in @code{X} is ignored. White space may also
12156 appear anywhere on the left side of the colon in these constructs,
12157 except between @code{.} or @code{*} and the corresponding word.
12158
12159 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
12160 handled specifically in these constructs. If another value of
12161 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
12162 @option{-W} switch is found later in the command line, the earlier
12163 switch value is ignored, except with @{@code{S}*@} where @code{S} is
12164 just one letter, which passes all matching options.
12165
12166 The character @samp{|} at the beginning of the predicate text is used to
12167 indicate that a command should be piped to the following command, but
12168 only if @option{-pipe} is specified.
12169
12170 It is built into GCC which switches take arguments and which do not.
12171 (You might think it would be useful to generalize this to allow each
12172 compiler's spec to say which switches take arguments. But this cannot
12173 be done in a consistent fashion. GCC cannot even decide which input
12174 files have been specified without knowing which switches take arguments,
12175 and it must know which input files to compile in order to tell which
12176 compilers to run).
12177
12178 GCC also knows implicitly that arguments starting in @option{-l} are to be
12179 treated as compiler output files, and passed to the linker in their
12180 proper position among the other output files.
12181
12182 @c man begin OPTIONS
12183
12184 @node Target Options
12185 @section Specifying Target Machine and Compiler Version
12186 @cindex target options
12187 @cindex cross compiling
12188 @cindex specifying machine version
12189 @cindex specifying compiler version and target machine
12190 @cindex compiler version, specifying
12191 @cindex target machine, specifying
12192
12193 The usual way to run GCC is to run the executable called @command{gcc}, or
12194 @command{@var{machine}-gcc} when cross-compiling, or
12195 @command{@var{machine}-gcc-@var{version}} to run a version other than the
12196 one that was installed last.
12197
12198 @node Submodel Options
12199 @section Hardware Models and Configurations
12200 @cindex submodel options
12201 @cindex specifying hardware config
12202 @cindex hardware models and configurations, specifying
12203 @cindex machine dependent options
12204
12205 Each target machine types can have its own
12206 special options, starting with @samp{-m}, to choose among various
12207 hardware models or configurations---for example, 68010 vs 68020,
12208 floating coprocessor or none. A single installed version of the
12209 compiler can compile for any model or configuration, according to the
12210 options specified.
12211
12212 Some configurations of the compiler also support additional special
12213 options, usually for compatibility with other compilers on the same
12214 platform.
12215
12216 @c This list is ordered alphanumerically by subsection name.
12217 @c It should be the same order and spelling as these options are listed
12218 @c in Machine Dependent Options
12219
12220 @menu
12221 * AArch64 Options::
12222 * Adapteva Epiphany Options::
12223 * ARC Options::
12224 * ARM Options::
12225 * AVR Options::
12226 * Blackfin Options::
12227 * C6X Options::
12228 * CRIS Options::
12229 * CR16 Options::
12230 * Darwin Options::
12231 * DEC Alpha Options::
12232 * FR30 Options::
12233 * FRV Options::
12234 * GNU/Linux Options::
12235 * H8/300 Options::
12236 * HPPA Options::
12237 * IA-64 Options::
12238 * LM32 Options::
12239 * M32C Options::
12240 * M32R/D Options::
12241 * M680x0 Options::
12242 * MCore Options::
12243 * MeP Options::
12244 * MicroBlaze Options::
12245 * MIPS Options::
12246 * MMIX Options::
12247 * MN10300 Options::
12248 * Moxie Options::
12249 * MSP430 Options::
12250 * NDS32 Options::
12251 * Nios II Options::
12252 * Nvidia PTX Options::
12253 * PDP-11 Options::
12254 * picoChip Options::
12255 * PowerPC Options::
12256 * RL78 Options::
12257 * RS/6000 and PowerPC Options::
12258 * RX Options::
12259 * S/390 and zSeries Options::
12260 * Score Options::
12261 * SH Options::
12262 * Solaris 2 Options::
12263 * SPARC Options::
12264 * SPU Options::
12265 * System V Options::
12266 * TILE-Gx Options::
12267 * TILEPro Options::
12268 * V850 Options::
12269 * VAX Options::
12270 * Visium Options::
12271 * VMS Options::
12272 * VxWorks Options::
12273 * x86 Options::
12274 * x86 Windows Options::
12275 * Xstormy16 Options::
12276 * Xtensa Options::
12277 * zSeries Options::
12278 @end menu
12279
12280 @node AArch64 Options
12281 @subsection AArch64 Options
12282 @cindex AArch64 Options
12283
12284 These options are defined for AArch64 implementations:
12285
12286 @table @gcctabopt
12287
12288 @item -mabi=@var{name}
12289 @opindex mabi
12290 Generate code for the specified data model. Permissible values
12291 are @samp{ilp32} for SysV-like data model where int, long int and pointer
12292 are 32-bit, and @samp{lp64} for SysV-like data model where int is 32-bit,
12293 but long int and pointer are 64-bit.
12294
12295 The default depends on the specific target configuration. Note that
12296 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
12297 entire program with the same ABI, and link with a compatible set of libraries.
12298
12299 @item -mbig-endian
12300 @opindex mbig-endian
12301 Generate big-endian code. This is the default when GCC is configured for an
12302 @samp{aarch64_be-*-*} target.
12303
12304 @item -mgeneral-regs-only
12305 @opindex mgeneral-regs-only
12306 Generate code which uses only the general registers.
12307
12308 @item -mlittle-endian
12309 @opindex mlittle-endian
12310 Generate little-endian code. This is the default when GCC is configured for an
12311 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
12312
12313 @item -mcmodel=tiny
12314 @opindex mcmodel=tiny
12315 Generate code for the tiny code model. The program and its statically defined
12316 symbols must be within 1GB of each other. Pointers are 64 bits. Programs can
12317 be statically or dynamically linked. This model is not fully implemented and
12318 mostly treated as @samp{small}.
12319
12320 @item -mcmodel=small
12321 @opindex mcmodel=small
12322 Generate code for the small code model. The program and its statically defined
12323 symbols must be within 4GB of each other. Pointers are 64 bits. Programs can
12324 be statically or dynamically linked. This is the default code model.
12325
12326 @item -mcmodel=large
12327 @opindex mcmodel=large
12328 Generate code for the large code model. This makes no assumptions about
12329 addresses and sizes of sections. Pointers are 64 bits. Programs can be
12330 statically linked only.
12331
12332 @item -mstrict-align
12333 @opindex mstrict-align
12334 Do not assume that unaligned memory references are handled by the system.
12335
12336 @item -momit-leaf-frame-pointer
12337 @itemx -mno-omit-leaf-frame-pointer
12338 @opindex momit-leaf-frame-pointer
12339 @opindex mno-omit-leaf-frame-pointer
12340 Omit or keep the frame pointer in leaf functions. The former behaviour is the
12341 default.
12342
12343 @item -mtls-dialect=desc
12344 @opindex mtls-dialect=desc
12345 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
12346 of TLS variables. This is the default.
12347
12348 @item -mtls-dialect=traditional
12349 @opindex mtls-dialect=traditional
12350 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
12351 of TLS variables.
12352
12353 @item -mfix-cortex-a53-835769
12354 @itemx -mno-fix-cortex-a53-835769
12355 @opindex mfix-cortex-a53-835769
12356 @opindex mno-fix-cortex-a53-835769
12357 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
12358 This involves inserting a NOP instruction between memory instructions and
12359 64-bit integer multiply-accumulate instructions.
12360
12361 @item -mfix-cortex-a53-843419
12362 @itemx -mno-fix-cortex-a53-843419
12363 @opindex mfix-cortex-a53-843419
12364 @opindex mno-fix-cortex-a53-843419
12365 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
12366 This erratum workaround is made at link time and this will only pass the
12367 corresponding flag to the linker.
12368
12369 @item -march=@var{name}
12370 @opindex march
12371 Specify the name of the target architecture, optionally suffixed by one or
12372 more feature modifiers. This option has the form
12373 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12374 only permissible value for @var{arch} is @samp{armv8-a}.
12375 The permissible values for @var{feature} are documented in the sub-section
12376 below. Additionally on native AArch64 GNU/Linux systems the value
12377 @samp{native} is available. This option causes the compiler to pick the
12378 architecture of the host system. If the compiler is unable to recognize the
12379 architecture of the host system this option has no effect.
12380
12381 Where conflicting feature modifiers are specified, the right-most feature is
12382 used.
12383
12384 GCC uses this name to determine what kind of instructions it can emit when
12385 generating assembly code.
12386
12387 Where @option{-march} is specified without either of @option{-mtune}
12388 or @option{-mcpu} also being specified, the code is tuned to perform
12389 well across a range of target processors implementing the target
12390 architecture.
12391
12392 @item -mtune=@var{name}
12393 @opindex mtune
12394 Specify the name of the target processor for which GCC should tune the
12395 performance of the code. Permissible values for this option are:
12396 @samp{generic}, @samp{cortex-a53}, @samp{cortex-a57}, @samp{cortex-a72},
12397 @samp{exynos-m1}, @samp{thunderx}, @samp{xgene1}.
12398
12399 Additionally, this option can specify that GCC should tune the performance
12400 of the code for a big.LITTLE system. Permissible values for this
12401 option are: @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53}.
12402
12403 Additionally on native AArch64 GNU/Linux systems the value @samp{native}
12404 is available.
12405 This option causes the compiler to pick the architecture of and tune the
12406 performance of the code for the processor of the host system.
12407 If the compiler is unable to recognize the processor of the host system
12408 this option has no effect.
12409
12410 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
12411 are specified, the code is tuned to perform well across a range
12412 of target processors.
12413
12414 This option cannot be suffixed by feature modifiers.
12415
12416 @item -mcpu=@var{name}
12417 @opindex mcpu
12418 Specify the name of the target processor, optionally suffixed by one or more
12419 feature modifiers. This option has the form
12420 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where the
12421 permissible values for @var{cpu} are the same as those available for
12422 @option{-mtune}. Additionally on native AArch64 GNU/Linux systems the
12423 value @samp{native} is available.
12424 This option causes the compiler to tune the performance of the code for the
12425 processor of the host system. If the compiler is unable to recognize the
12426 processor of the host system this option has no effect.
12427
12428 The permissible values for @var{feature} are documented in the sub-section
12429 below.
12430
12431 Where conflicting feature modifiers are specified, the right-most feature is
12432 used.
12433
12434 GCC uses this name to determine what kind of instructions it can emit when
12435 generating assembly code (as if by @option{-march}) and to determine
12436 the target processor for which to tune for performance (as if
12437 by @option{-mtune}). Where this option is used in conjunction
12438 with @option{-march} or @option{-mtune}, those options take precedence
12439 over the appropriate part of this option.
12440 @end table
12441
12442 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
12443 @cindex @option{-march} feature modifiers
12444 @cindex @option{-mcpu} feature modifiers
12445 Feature modifiers used with @option{-march} and @option{-mcpu} can be one
12446 the following:
12447
12448 @table @samp
12449 @item crc
12450 Enable CRC extension.
12451 @item crypto
12452 Enable Crypto extension. This implies Advanced SIMD is enabled.
12453 @item fp
12454 Enable floating-point instructions.
12455 @item simd
12456 Enable Advanced SIMD instructions. This implies floating-point instructions
12457 are enabled. This is the default for all current possible values for options
12458 @option{-march} and @option{-mcpu=}.
12459 @end table
12460
12461 @node Adapteva Epiphany Options
12462 @subsection Adapteva Epiphany Options
12463
12464 These @samp{-m} options are defined for Adapteva Epiphany:
12465
12466 @table @gcctabopt
12467 @item -mhalf-reg-file
12468 @opindex mhalf-reg-file
12469 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
12470 That allows code to run on hardware variants that lack these registers.
12471
12472 @item -mprefer-short-insn-regs
12473 @opindex mprefer-short-insn-regs
12474 Preferrentially allocate registers that allow short instruction generation.
12475 This can result in increased instruction count, so this may either reduce or
12476 increase overall code size.
12477
12478 @item -mbranch-cost=@var{num}
12479 @opindex mbranch-cost
12480 Set the cost of branches to roughly @var{num} ``simple'' instructions.
12481 This cost is only a heuristic and is not guaranteed to produce
12482 consistent results across releases.
12483
12484 @item -mcmove
12485 @opindex mcmove
12486 Enable the generation of conditional moves.
12487
12488 @item -mnops=@var{num}
12489 @opindex mnops
12490 Emit @var{num} NOPs before every other generated instruction.
12491
12492 @item -mno-soft-cmpsf
12493 @opindex mno-soft-cmpsf
12494 For single-precision floating-point comparisons, emit an @code{fsub} instruction
12495 and test the flags. This is faster than a software comparison, but can
12496 get incorrect results in the presence of NaNs, or when two different small
12497 numbers are compared such that their difference is calculated as zero.
12498 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
12499 software comparisons.
12500
12501 @item -mstack-offset=@var{num}
12502 @opindex mstack-offset
12503 Set the offset between the top of the stack and the stack pointer.
12504 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
12505 can be used by leaf functions without stack allocation.
12506 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
12507 Note also that this option changes the ABI; compiling a program with a
12508 different stack offset than the libraries have been compiled with
12509 generally does not work.
12510 This option can be useful if you want to evaluate if a different stack
12511 offset would give you better code, but to actually use a different stack
12512 offset to build working programs, it is recommended to configure the
12513 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
12514
12515 @item -mno-round-nearest
12516 @opindex mno-round-nearest
12517 Make the scheduler assume that the rounding mode has been set to
12518 truncating. The default is @option{-mround-nearest}.
12519
12520 @item -mlong-calls
12521 @opindex mlong-calls
12522 If not otherwise specified by an attribute, assume all calls might be beyond
12523 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
12524 function address into a register before performing a (otherwise direct) call.
12525 This is the default.
12526
12527 @item -mshort-calls
12528 @opindex short-calls
12529 If not otherwise specified by an attribute, assume all direct calls are
12530 in the range of the @code{b} / @code{bl} instructions, so use these instructions
12531 for direct calls. The default is @option{-mlong-calls}.
12532
12533 @item -msmall16
12534 @opindex msmall16
12535 Assume addresses can be loaded as 16-bit unsigned values. This does not
12536 apply to function addresses for which @option{-mlong-calls} semantics
12537 are in effect.
12538
12539 @item -mfp-mode=@var{mode}
12540 @opindex mfp-mode
12541 Set the prevailing mode of the floating-point unit.
12542 This determines the floating-point mode that is provided and expected
12543 at function call and return time. Making this mode match the mode you
12544 predominantly need at function start can make your programs smaller and
12545 faster by avoiding unnecessary mode switches.
12546
12547 @var{mode} can be set to one the following values:
12548
12549 @table @samp
12550 @item caller
12551 Any mode at function entry is valid, and retained or restored when
12552 the function returns, and when it calls other functions.
12553 This mode is useful for compiling libraries or other compilation units
12554 you might want to incorporate into different programs with different
12555 prevailing FPU modes, and the convenience of being able to use a single
12556 object file outweighs the size and speed overhead for any extra
12557 mode switching that might be needed, compared with what would be needed
12558 with a more specific choice of prevailing FPU mode.
12559
12560 @item truncate
12561 This is the mode used for floating-point calculations with
12562 truncating (i.e.@: round towards zero) rounding mode. That includes
12563 conversion from floating point to integer.
12564
12565 @item round-nearest
12566 This is the mode used for floating-point calculations with
12567 round-to-nearest-or-even rounding mode.
12568
12569 @item int
12570 This is the mode used to perform integer calculations in the FPU, e.g.@:
12571 integer multiply, or integer multiply-and-accumulate.
12572 @end table
12573
12574 The default is @option{-mfp-mode=caller}
12575
12576 @item -mnosplit-lohi
12577 @itemx -mno-postinc
12578 @itemx -mno-postmodify
12579 @opindex mnosplit-lohi
12580 @opindex mno-postinc
12581 @opindex mno-postmodify
12582 Code generation tweaks that disable, respectively, splitting of 32-bit
12583 loads, generation of post-increment addresses, and generation of
12584 post-modify addresses. The defaults are @option{msplit-lohi},
12585 @option{-mpost-inc}, and @option{-mpost-modify}.
12586
12587 @item -mnovect-double
12588 @opindex mno-vect-double
12589 Change the preferred SIMD mode to SImode. The default is
12590 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
12591
12592 @item -max-vect-align=@var{num}
12593 @opindex max-vect-align
12594 The maximum alignment for SIMD vector mode types.
12595 @var{num} may be 4 or 8. The default is 8.
12596 Note that this is an ABI change, even though many library function
12597 interfaces are unaffected if they don't use SIMD vector modes
12598 in places that affect size and/or alignment of relevant types.
12599
12600 @item -msplit-vecmove-early
12601 @opindex msplit-vecmove-early
12602 Split vector moves into single word moves before reload. In theory this
12603 can give better register allocation, but so far the reverse seems to be
12604 generally the case.
12605
12606 @item -m1reg-@var{reg}
12607 @opindex m1reg-
12608 Specify a register to hold the constant @minus{}1, which makes loading small negative
12609 constants and certain bitmasks faster.
12610 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
12611 which specify use of that register as a fixed register,
12612 and @samp{none}, which means that no register is used for this
12613 purpose. The default is @option{-m1reg-none}.
12614
12615 @end table
12616
12617 @node ARC Options
12618 @subsection ARC Options
12619 @cindex ARC options
12620
12621 The following options control the architecture variant for which code
12622 is being compiled:
12623
12624 @c architecture variants
12625 @table @gcctabopt
12626
12627 @item -mbarrel-shifter
12628 @opindex mbarrel-shifter
12629 Generate instructions supported by barrel shifter. This is the default
12630 unless @option{-mcpu=ARC601} is in effect.
12631
12632 @item -mcpu=@var{cpu}
12633 @opindex mcpu
12634 Set architecture type, register usage, and instruction scheduling
12635 parameters for @var{cpu}. There are also shortcut alias options
12636 available for backward compatibility and convenience. Supported
12637 values for @var{cpu} are
12638
12639 @table @samp
12640 @opindex mA6
12641 @opindex mARC600
12642 @item ARC600
12643 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
12644
12645 @item ARC601
12646 @opindex mARC601
12647 Compile for ARC601. Alias: @option{-mARC601}.
12648
12649 @item ARC700
12650 @opindex mA7
12651 @opindex mARC700
12652 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
12653 This is the default when configured with @option{--with-cpu=arc700}@.
12654 @end table
12655
12656 @item -mdpfp
12657 @opindex mdpfp
12658 @itemx -mdpfp-compact
12659 @opindex mdpfp-compact
12660 FPX: Generate Double Precision FPX instructions, tuned for the compact
12661 implementation.
12662
12663 @item -mdpfp-fast
12664 @opindex mdpfp-fast
12665 FPX: Generate Double Precision FPX instructions, tuned for the fast
12666 implementation.
12667
12668 @item -mno-dpfp-lrsr
12669 @opindex mno-dpfp-lrsr
12670 Disable LR and SR instructions from using FPX extension aux registers.
12671
12672 @item -mea
12673 @opindex mea
12674 Generate Extended arithmetic instructions. Currently only
12675 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
12676 supported. This is always enabled for @option{-mcpu=ARC700}.
12677
12678 @item -mno-mpy
12679 @opindex mno-mpy
12680 Do not generate mpy instructions for ARC700.
12681
12682 @item -mmul32x16
12683 @opindex mmul32x16
12684 Generate 32x16 bit multiply and mac instructions.
12685
12686 @item -mmul64
12687 @opindex mmul64
12688 Generate mul64 and mulu64 instructions. Only valid for @option{-mcpu=ARC600}.
12689
12690 @item -mnorm
12691 @opindex mnorm
12692 Generate norm instruction. This is the default if @option{-mcpu=ARC700}
12693 is in effect.
12694
12695 @item -mspfp
12696 @opindex mspfp
12697 @itemx -mspfp-compact
12698 @opindex mspfp-compact
12699 FPX: Generate Single Precision FPX instructions, tuned for the compact
12700 implementation.
12701
12702 @item -mspfp-fast
12703 @opindex mspfp-fast
12704 FPX: Generate Single Precision FPX instructions, tuned for the fast
12705 implementation.
12706
12707 @item -msimd
12708 @opindex msimd
12709 Enable generation of ARC SIMD instructions via target-specific
12710 builtins. Only valid for @option{-mcpu=ARC700}.
12711
12712 @item -msoft-float
12713 @opindex msoft-float
12714 This option ignored; it is provided for compatibility purposes only.
12715 Software floating point code is emitted by default, and this default
12716 can overridden by FPX options; @samp{mspfp}, @samp{mspfp-compact}, or
12717 @samp{mspfp-fast} for single precision, and @samp{mdpfp},
12718 @samp{mdpfp-compact}, or @samp{mdpfp-fast} for double precision.
12719
12720 @item -mswap
12721 @opindex mswap
12722 Generate swap instructions.
12723
12724 @end table
12725
12726 The following options are passed through to the assembler, and also
12727 define preprocessor macro symbols.
12728
12729 @c Flags used by the assembler, but for which we define preprocessor
12730 @c macro symbols as well.
12731 @table @gcctabopt
12732 @item -mdsp-packa
12733 @opindex mdsp-packa
12734 Passed down to the assembler to enable the DSP Pack A extensions.
12735 Also sets the preprocessor symbol @code{__Xdsp_packa}.
12736
12737 @item -mdvbf
12738 @opindex mdvbf
12739 Passed down to the assembler to enable the dual viterbi butterfly
12740 extension. Also sets the preprocessor symbol @code{__Xdvbf}.
12741
12742 @c ARC700 4.10 extension instruction
12743 @item -mlock
12744 @opindex mlock
12745 Passed down to the assembler to enable the Locked Load/Store
12746 Conditional extension. Also sets the preprocessor symbol
12747 @code{__Xlock}.
12748
12749 @item -mmac-d16
12750 @opindex mmac-d16
12751 Passed down to the assembler. Also sets the preprocessor symbol
12752 @code{__Xxmac_d16}.
12753
12754 @item -mmac-24
12755 @opindex mmac-24
12756 Passed down to the assembler. Also sets the preprocessor symbol
12757 @code{__Xxmac_24}.
12758
12759 @c ARC700 4.10 extension instruction
12760 @item -mrtsc
12761 @opindex mrtsc
12762 Passed down to the assembler to enable the 64-bit Time-Stamp Counter
12763 extension instruction. Also sets the preprocessor symbol
12764 @code{__Xrtsc}.
12765
12766 @c ARC700 4.10 extension instruction
12767 @item -mswape
12768 @opindex mswape
12769 Passed down to the assembler to enable the swap byte ordering
12770 extension instruction. Also sets the preprocessor symbol
12771 @code{__Xswape}.
12772
12773 @item -mtelephony
12774 @opindex mtelephony
12775 Passed down to the assembler to enable dual and single operand
12776 instructions for telephony. Also sets the preprocessor symbol
12777 @code{__Xtelephony}.
12778
12779 @item -mxy
12780 @opindex mxy
12781 Passed down to the assembler to enable the XY Memory extension. Also
12782 sets the preprocessor symbol @code{__Xxy}.
12783
12784 @end table
12785
12786 The following options control how the assembly code is annotated:
12787
12788 @c Assembly annotation options
12789 @table @gcctabopt
12790 @item -misize
12791 @opindex misize
12792 Annotate assembler instructions with estimated addresses.
12793
12794 @item -mannotate-align
12795 @opindex mannotate-align
12796 Explain what alignment considerations lead to the decision to make an
12797 instruction short or long.
12798
12799 @end table
12800
12801 The following options are passed through to the linker:
12802
12803 @c options passed through to the linker
12804 @table @gcctabopt
12805 @item -marclinux
12806 @opindex marclinux
12807 Passed through to the linker, to specify use of the @code{arclinux} emulation.
12808 This option is enabled by default in tool chains built for
12809 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
12810 when profiling is not requested.
12811
12812 @item -marclinux_prof
12813 @opindex marclinux_prof
12814 Passed through to the linker, to specify use of the
12815 @code{arclinux_prof} emulation. This option is enabled by default in
12816 tool chains built for @w{@code{arc-linux-uclibc}} and
12817 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
12818
12819 @end table
12820
12821 The following options control the semantics of generated code:
12822
12823 @c semantically relevant code generation options
12824 @table @gcctabopt
12825 @item -mepilogue-cfi
12826 @opindex mepilogue-cfi
12827 Enable generation of call frame information for epilogues.
12828
12829 @item -mno-epilogue-cfi
12830 @opindex mno-epilogue-cfi
12831 Disable generation of call frame information for epilogues.
12832
12833 @item -mlong-calls
12834 @opindex mlong-calls
12835 Generate call insns as register indirect calls, thus providing access
12836 to the full 32-bit address range.
12837
12838 @item -mmedium-calls
12839 @opindex mmedium-calls
12840 Don't use less than 25 bit addressing range for calls, which is the
12841 offset available for an unconditional branch-and-link
12842 instruction. Conditional execution of function calls is suppressed, to
12843 allow use of the 25-bit range, rather than the 21-bit range with
12844 conditional branch-and-link. This is the default for tool chains built
12845 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
12846
12847 @item -mno-sdata
12848 @opindex mno-sdata
12849 Do not generate sdata references. This is the default for tool chains
12850 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
12851 targets.
12852
12853 @item -mucb-mcount
12854 @opindex mucb-mcount
12855 Instrument with mcount calls as used in UCB code. I.e. do the
12856 counting in the callee, not the caller. By default ARC instrumentation
12857 counts in the caller.
12858
12859 @item -mvolatile-cache
12860 @opindex mvolatile-cache
12861 Use ordinarily cached memory accesses for volatile references. This is the
12862 default.
12863
12864 @item -mno-volatile-cache
12865 @opindex mno-volatile-cache
12866 Enable cache bypass for volatile references.
12867
12868 @end table
12869
12870 The following options fine tune code generation:
12871 @c code generation tuning options
12872 @table @gcctabopt
12873 @item -malign-call
12874 @opindex malign-call
12875 Do alignment optimizations for call instructions.
12876
12877 @item -mauto-modify-reg
12878 @opindex mauto-modify-reg
12879 Enable the use of pre/post modify with register displacement.
12880
12881 @item -mbbit-peephole
12882 @opindex mbbit-peephole
12883 Enable bbit peephole2.
12884
12885 @item -mno-brcc
12886 @opindex mno-brcc
12887 This option disables a target-specific pass in @file{arc_reorg} to
12888 generate @code{BRcc} instructions. It has no effect on @code{BRcc}
12889 generation driven by the combiner pass.
12890
12891 @item -mcase-vector-pcrel
12892 @opindex mcase-vector-pcrel
12893 Use pc-relative switch case tables - this enables case table shortening.
12894 This is the default for @option{-Os}.
12895
12896 @item -mcompact-casesi
12897 @opindex mcompact-casesi
12898 Enable compact casesi pattern.
12899 This is the default for @option{-Os}.
12900
12901 @item -mno-cond-exec
12902 @opindex mno-cond-exec
12903 Disable ARCompact specific pass to generate conditional execution instructions.
12904 Due to delay slot scheduling and interactions between operand numbers,
12905 literal sizes, instruction lengths, and the support for conditional execution,
12906 the target-independent pass to generate conditional execution is often lacking,
12907 so the ARC port has kept a special pass around that tries to find more
12908 conditional execution generating opportunities after register allocation,
12909 branch shortening, and delay slot scheduling have been done. This pass
12910 generally, but not always, improves performance and code size, at the cost of
12911 extra compilation time, which is why there is an option to switch it off.
12912 If you have a problem with call instructions exceeding their allowable
12913 offset range because they are conditionalized, you should consider using
12914 @option{-mmedium-calls} instead.
12915
12916 @item -mearly-cbranchsi
12917 @opindex mearly-cbranchsi
12918 Enable pre-reload use of the cbranchsi pattern.
12919
12920 @item -mexpand-adddi
12921 @opindex mexpand-adddi
12922 Expand @code{adddi3} and @code{subdi3} at rtl generation time into
12923 @code{add.f}, @code{adc} etc.
12924
12925 @item -mindexed-loads
12926 @opindex mindexed-loads
12927 Enable the use of indexed loads. This can be problematic because some
12928 optimizers then assume that indexed stores exist, which is not
12929 the case.
12930
12931 @item -mlra
12932 @opindex mlra
12933 Enable Local Register Allocation. This is still experimental for ARC,
12934 so by default the compiler uses standard reload
12935 (i.e. @option{-mno-lra}).
12936
12937 @item -mlra-priority-none
12938 @opindex mlra-priority-none
12939 Don't indicate any priority for target registers.
12940
12941 @item -mlra-priority-compact
12942 @opindex mlra-priority-compact
12943 Indicate target register priority for r0..r3 / r12..r15.
12944
12945 @item -mlra-priority-noncompact
12946 @opindex mlra-priority-noncompact
12947 Reduce target regsiter priority for r0..r3 / r12..r15.
12948
12949 @item -mno-millicode
12950 @opindex mno-millicode
12951 When optimizing for size (using @option{-Os}), prologues and epilogues
12952 that have to save or restore a large number of registers are often
12953 shortened by using call to a special function in libgcc; this is
12954 referred to as a @emph{millicode} call. As these calls can pose
12955 performance issues, and/or cause linking issues when linking in a
12956 nonstandard way, this option is provided to turn off millicode call
12957 generation.
12958
12959 @item -mmixed-code
12960 @opindex mmixed-code
12961 Tweak register allocation to help 16-bit instruction generation.
12962 This generally has the effect of decreasing the average instruction size
12963 while increasing the instruction count.
12964
12965 @item -mq-class
12966 @opindex mq-class
12967 Enable 'q' instruction alternatives.
12968 This is the default for @option{-Os}.
12969
12970 @item -mRcq
12971 @opindex mRcq
12972 Enable Rcq constraint handling - most short code generation depends on this.
12973 This is the default.
12974
12975 @item -mRcw
12976 @opindex mRcw
12977 Enable Rcw constraint handling - ccfsm condexec mostly depends on this.
12978 This is the default.
12979
12980 @item -msize-level=@var{level}
12981 @opindex msize-level
12982 Fine-tune size optimization with regards to instruction lengths and alignment.
12983 The recognized values for @var{level} are:
12984 @table @samp
12985 @item 0
12986 No size optimization. This level is deprecated and treated like @samp{1}.
12987
12988 @item 1
12989 Short instructions are used opportunistically.
12990
12991 @item 2
12992 In addition, alignment of loops and of code after barriers are dropped.
12993
12994 @item 3
12995 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
12996
12997 @end table
12998
12999 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
13000 the behavior when this is not set is equivalent to level @samp{1}.
13001
13002 @item -mtune=@var{cpu}
13003 @opindex mtune
13004 Set instruction scheduling parameters for @var{cpu}, overriding any implied
13005 by @option{-mcpu=}.
13006
13007 Supported values for @var{cpu} are
13008
13009 @table @samp
13010 @item ARC600
13011 Tune for ARC600 cpu.
13012
13013 @item ARC601
13014 Tune for ARC601 cpu.
13015
13016 @item ARC700
13017 Tune for ARC700 cpu with standard multiplier block.
13018
13019 @item ARC700-xmac
13020 Tune for ARC700 cpu with XMAC block.
13021
13022 @item ARC725D
13023 Tune for ARC725D cpu.
13024
13025 @item ARC750D
13026 Tune for ARC750D cpu.
13027
13028 @end table
13029
13030 @item -mmultcost=@var{num}
13031 @opindex mmultcost
13032 Cost to assume for a multiply instruction, with @samp{4} being equal to a
13033 normal instruction.
13034
13035 @item -munalign-prob-threshold=@var{probability}
13036 @opindex munalign-prob-threshold
13037 Set probability threshold for unaligning branches.
13038 When tuning for @samp{ARC700} and optimizing for speed, branches without
13039 filled delay slot are preferably emitted unaligned and long, unless
13040 profiling indicates that the probability for the branch to be taken
13041 is below @var{probability}. @xref{Cross-profiling}.
13042 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
13043
13044 @end table
13045
13046 The following options are maintained for backward compatibility, but
13047 are now deprecated and will be removed in a future release:
13048
13049 @c Deprecated options
13050 @table @gcctabopt
13051
13052 @item -margonaut
13053 @opindex margonaut
13054 Obsolete FPX.
13055
13056 @item -mbig-endian
13057 @opindex mbig-endian
13058 @itemx -EB
13059 @opindex EB
13060 Compile code for big endian targets. Use of these options is now
13061 deprecated. Users wanting big-endian code, should use the
13062 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets when
13063 building the tool chain, for which big-endian is the default.
13064
13065 @item -mlittle-endian
13066 @opindex mlittle-endian
13067 @itemx -EL
13068 @opindex EL
13069 Compile code for little endian targets. Use of these options is now
13070 deprecated. Users wanting little-endian code should use the
13071 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets when
13072 building the tool chain, for which little-endian is the default.
13073
13074 @item -mbarrel_shifter
13075 @opindex mbarrel_shifter
13076 Replaced by @option{-mbarrel-shifter}.
13077
13078 @item -mdpfp_compact
13079 @opindex mdpfp_compact
13080 Replaced by @option{-mdpfp-compact}.
13081
13082 @item -mdpfp_fast
13083 @opindex mdpfp_fast
13084 Replaced by @option{-mdpfp-fast}.
13085
13086 @item -mdsp_packa
13087 @opindex mdsp_packa
13088 Replaced by @option{-mdsp-packa}.
13089
13090 @item -mEA
13091 @opindex mEA
13092 Replaced by @option{-mea}.
13093
13094 @item -mmac_24
13095 @opindex mmac_24
13096 Replaced by @option{-mmac-24}.
13097
13098 @item -mmac_d16
13099 @opindex mmac_d16
13100 Replaced by @option{-mmac-d16}.
13101
13102 @item -mspfp_compact
13103 @opindex mspfp_compact
13104 Replaced by @option{-mspfp-compact}.
13105
13106 @item -mspfp_fast
13107 @opindex mspfp_fast
13108 Replaced by @option{-mspfp-fast}.
13109
13110 @item -mtune=@var{cpu}
13111 @opindex mtune
13112 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
13113 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
13114 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively
13115
13116 @item -multcost=@var{num}
13117 @opindex multcost
13118 Replaced by @option{-mmultcost}.
13119
13120 @end table
13121
13122 @node ARM Options
13123 @subsection ARM Options
13124 @cindex ARM options
13125
13126 These @samp{-m} options are defined for the ARM port:
13127
13128 @table @gcctabopt
13129 @item -mabi=@var{name}
13130 @opindex mabi
13131 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
13132 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
13133
13134 @item -mapcs-frame
13135 @opindex mapcs-frame
13136 Generate a stack frame that is compliant with the ARM Procedure Call
13137 Standard for all functions, even if this is not strictly necessary for
13138 correct execution of the code. Specifying @option{-fomit-frame-pointer}
13139 with this option causes the stack frames not to be generated for
13140 leaf functions. The default is @option{-mno-apcs-frame}.
13141 This option is deprecated.
13142
13143 @item -mapcs
13144 @opindex mapcs
13145 This is a synonym for @option{-mapcs-frame} and is deprecated.
13146
13147 @ignore
13148 @c not currently implemented
13149 @item -mapcs-stack-check
13150 @opindex mapcs-stack-check
13151 Generate code to check the amount of stack space available upon entry to
13152 every function (that actually uses some stack space). If there is
13153 insufficient space available then either the function
13154 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
13155 called, depending upon the amount of stack space required. The runtime
13156 system is required to provide these functions. The default is
13157 @option{-mno-apcs-stack-check}, since this produces smaller code.
13158
13159 @c not currently implemented
13160 @item -mapcs-float
13161 @opindex mapcs-float
13162 Pass floating-point arguments using the floating-point registers. This is
13163 one of the variants of the APCS@. This option is recommended if the
13164 target hardware has a floating-point unit or if a lot of floating-point
13165 arithmetic is going to be performed by the code. The default is
13166 @option{-mno-apcs-float}, since the size of integer-only code is
13167 slightly increased if @option{-mapcs-float} is used.
13168
13169 @c not currently implemented
13170 @item -mapcs-reentrant
13171 @opindex mapcs-reentrant
13172 Generate reentrant, position-independent code. The default is
13173 @option{-mno-apcs-reentrant}.
13174 @end ignore
13175
13176 @item -mthumb-interwork
13177 @opindex mthumb-interwork
13178 Generate code that supports calling between the ARM and Thumb
13179 instruction sets. Without this option, on pre-v5 architectures, the
13180 two instruction sets cannot be reliably used inside one program. The
13181 default is @option{-mno-thumb-interwork}, since slightly larger code
13182 is generated when @option{-mthumb-interwork} is specified. In AAPCS
13183 configurations this option is meaningless.
13184
13185 @item -mno-sched-prolog
13186 @opindex mno-sched-prolog
13187 Prevent the reordering of instructions in the function prologue, or the
13188 merging of those instruction with the instructions in the function's
13189 body. This means that all functions start with a recognizable set
13190 of instructions (or in fact one of a choice from a small set of
13191 different function prologues), and this information can be used to
13192 locate the start of functions inside an executable piece of code. The
13193 default is @option{-msched-prolog}.
13194
13195 @item -mfloat-abi=@var{name}
13196 @opindex mfloat-abi
13197 Specifies which floating-point ABI to use. Permissible values
13198 are: @samp{soft}, @samp{softfp} and @samp{hard}.
13199
13200 Specifying @samp{soft} causes GCC to generate output containing
13201 library calls for floating-point operations.
13202 @samp{softfp} allows the generation of code using hardware floating-point
13203 instructions, but still uses the soft-float calling conventions.
13204 @samp{hard} allows generation of floating-point instructions
13205 and uses FPU-specific calling conventions.
13206
13207 The default depends on the specific target configuration. Note that
13208 the hard-float and soft-float ABIs are not link-compatible; you must
13209 compile your entire program with the same ABI, and link with a
13210 compatible set of libraries.
13211
13212 @item -mlittle-endian
13213 @opindex mlittle-endian
13214 Generate code for a processor running in little-endian mode. This is
13215 the default for all standard configurations.
13216
13217 @item -mbig-endian
13218 @opindex mbig-endian
13219 Generate code for a processor running in big-endian mode; the default is
13220 to compile code for a little-endian processor.
13221
13222 @item -march=@var{name}
13223 @opindex march
13224 This specifies the name of the target ARM architecture. GCC uses this
13225 name to determine what kind of instructions it can emit when generating
13226 assembly code. This option can be used in conjunction with or instead
13227 of the @option{-mcpu=} option. Permissible names are: @samp{armv2},
13228 @samp{armv2a}, @samp{armv3}, @samp{armv3m}, @samp{armv4}, @samp{armv4t},
13229 @samp{armv5}, @samp{armv5t}, @samp{armv5e}, @samp{armv5te},
13230 @samp{armv6}, @samp{armv6j},
13231 @samp{armv6t2}, @samp{armv6z}, @samp{armv6zk}, @samp{armv6-m},
13232 @samp{armv7}, @samp{armv7-a}, @samp{armv7-r}, @samp{armv7-m}, @samp{armv7e-m},
13233 @samp{armv7ve}, @samp{armv8-a}, @samp{armv8-a+crc},
13234 @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312}.
13235
13236 @option{-march=armv7ve} is the armv7-a architecture with virtualization
13237 extensions.
13238
13239 @option{-march=armv8-a+crc} enables code generation for the ARMv8-A
13240 architecture together with the optional CRC32 extensions.
13241
13242 @option{-march=native} causes the compiler to auto-detect the architecture
13243 of the build computer. At present, this feature is only supported on
13244 GNU/Linux, and not all architectures are recognized. If the auto-detect
13245 is unsuccessful the option has no effect.
13246
13247 @item -mtune=@var{name}
13248 @opindex mtune
13249 This option specifies the name of the target ARM processor for
13250 which GCC should tune the performance of the code.
13251 For some ARM implementations better performance can be obtained by using
13252 this option.
13253 Permissible names are: @samp{arm2}, @samp{arm250},
13254 @samp{arm3}, @samp{arm6}, @samp{arm60}, @samp{arm600}, @samp{arm610},
13255 @samp{arm620}, @samp{arm7}, @samp{arm7m}, @samp{arm7d}, @samp{arm7dm},
13256 @samp{arm7di}, @samp{arm7dmi}, @samp{arm70}, @samp{arm700},
13257 @samp{arm700i}, @samp{arm710}, @samp{arm710c}, @samp{arm7100},
13258 @samp{arm720},
13259 @samp{arm7500}, @samp{arm7500fe}, @samp{arm7tdmi}, @samp{arm7tdmi-s},
13260 @samp{arm710t}, @samp{arm720t}, @samp{arm740t},
13261 @samp{strongarm}, @samp{strongarm110}, @samp{strongarm1100},
13262 @samp{strongarm1110},
13263 @samp{arm8}, @samp{arm810}, @samp{arm9}, @samp{arm9e}, @samp{arm920},
13264 @samp{arm920t}, @samp{arm922t}, @samp{arm946e-s}, @samp{arm966e-s},
13265 @samp{arm968e-s}, @samp{arm926ej-s}, @samp{arm940t}, @samp{arm9tdmi},
13266 @samp{arm10tdmi}, @samp{arm1020t}, @samp{arm1026ej-s},
13267 @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
13268 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
13269 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
13270 @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8}, @samp{cortex-a9},
13271 @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a53},
13272 @samp{cortex-a57}, @samp{cortex-a72},
13273 @samp{cortex-r4},
13274 @samp{cortex-r4f}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-m7},
13275 @samp{cortex-m4},
13276 @samp{cortex-m3},
13277 @samp{cortex-m1},
13278 @samp{cortex-m0},
13279 @samp{cortex-m0plus},
13280 @samp{cortex-m1.small-multiply},
13281 @samp{cortex-m0.small-multiply},
13282 @samp{cortex-m0plus.small-multiply},
13283 @samp{exynos-m1},
13284 @samp{marvell-pj4},
13285 @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2}, @samp{ep9312},
13286 @samp{fa526}, @samp{fa626},
13287 @samp{fa606te}, @samp{fa626te}, @samp{fmp626}, @samp{fa726te},
13288 @samp{xgene1}.
13289
13290 Additionally, this option can specify that GCC should tune the performance
13291 of the code for a big.LITTLE system. Permissible names are:
13292 @samp{cortex-a15.cortex-a7}, @samp{cortex-a57.cortex-a53},
13293 @samp{cortex-a72.cortex-a53}.
13294
13295 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
13296 performance for a blend of processors within architecture @var{arch}.
13297 The aim is to generate code that run well on the current most popular
13298 processors, balancing between optimizations that benefit some CPUs in the
13299 range, and avoiding performance pitfalls of other CPUs. The effects of
13300 this option may change in future GCC versions as CPU models come and go.
13301
13302 @option{-mtune=native} causes the compiler to auto-detect the CPU
13303 of the build computer. At present, this feature is only supported on
13304 GNU/Linux, and not all architectures are recognized. If the auto-detect is
13305 unsuccessful the option has no effect.
13306
13307 @item -mcpu=@var{name}
13308 @opindex mcpu
13309 This specifies the name of the target ARM processor. GCC uses this name
13310 to derive the name of the target ARM architecture (as if specified
13311 by @option{-march}) and the ARM processor type for which to tune for
13312 performance (as if specified by @option{-mtune}). Where this option
13313 is used in conjunction with @option{-march} or @option{-mtune},
13314 those options take precedence over the appropriate part of this option.
13315
13316 Permissible names for this option are the same as those for
13317 @option{-mtune}.
13318
13319 @option{-mcpu=generic-@var{arch}} is also permissible, and is
13320 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
13321 See @option{-mtune} for more information.
13322
13323 @option{-mcpu=native} causes the compiler to auto-detect the CPU
13324 of the build computer. At present, this feature is only supported on
13325 GNU/Linux, and not all architectures are recognized. If the auto-detect
13326 is unsuccessful the option has no effect.
13327
13328 @item -mfpu=@var{name}
13329 @opindex mfpu
13330 This specifies what floating-point hardware (or hardware emulation) is
13331 available on the target. Permissible names are: @samp{vfp}, @samp{vfpv3},
13332 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
13333 @samp{vfpv3xd-fp16}, @samp{neon}, @samp{neon-fp16}, @samp{vfpv4},
13334 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
13335 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
13336 @samp{fp-armv8}, @samp{neon-fp-armv8}, and @samp{crypto-neon-fp-armv8}.
13337
13338 If @option{-msoft-float} is specified this specifies the format of
13339 floating-point values.
13340
13341 If the selected floating-point hardware includes the NEON extension
13342 (e.g. @option{-mfpu}=@samp{neon}), note that floating-point
13343 operations are not generated by GCC's auto-vectorization pass unless
13344 @option{-funsafe-math-optimizations} is also specified. This is
13345 because NEON hardware does not fully implement the IEEE 754 standard for
13346 floating-point arithmetic (in particular denormal values are treated as
13347 zero), so the use of NEON instructions may lead to a loss of precision.
13348
13349 @item -mfp16-format=@var{name}
13350 @opindex mfp16-format
13351 Specify the format of the @code{__fp16} half-precision floating-point type.
13352 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
13353 the default is @samp{none}, in which case the @code{__fp16} type is not
13354 defined. @xref{Half-Precision}, for more information.
13355
13356 @item -mstructure-size-boundary=@var{n}
13357 @opindex mstructure-size-boundary
13358 The sizes of all structures and unions are rounded up to a multiple
13359 of the number of bits set by this option. Permissible values are 8, 32
13360 and 64. The default value varies for different toolchains. For the COFF
13361 targeted toolchain the default value is 8. A value of 64 is only allowed
13362 if the underlying ABI supports it.
13363
13364 Specifying a larger number can produce faster, more efficient code, but
13365 can also increase the size of the program. Different values are potentially
13366 incompatible. Code compiled with one value cannot necessarily expect to
13367 work with code or libraries compiled with another value, if they exchange
13368 information using structures or unions.
13369
13370 @item -mabort-on-noreturn
13371 @opindex mabort-on-noreturn
13372 Generate a call to the function @code{abort} at the end of a
13373 @code{noreturn} function. It is executed if the function tries to
13374 return.
13375
13376 @item -mlong-calls
13377 @itemx -mno-long-calls
13378 @opindex mlong-calls
13379 @opindex mno-long-calls
13380 Tells the compiler to perform function calls by first loading the
13381 address of the function into a register and then performing a subroutine
13382 call on this register. This switch is needed if the target function
13383 lies outside of the 64-megabyte addressing range of the offset-based
13384 version of subroutine call instruction.
13385
13386 Even if this switch is enabled, not all function calls are turned
13387 into long calls. The heuristic is that static functions, functions
13388 that have the @code{short_call} attribute, functions that are inside
13389 the scope of a @code{#pragma no_long_calls} directive, and functions whose
13390 definitions have already been compiled within the current compilation
13391 unit are not turned into long calls. The exceptions to this rule are
13392 that weak function definitions, functions with the @code{long_call}
13393 attribute or the @code{section} attribute, and functions that are within
13394 the scope of a @code{#pragma long_calls} directive are always
13395 turned into long calls.
13396
13397 This feature is not enabled by default. Specifying
13398 @option{-mno-long-calls} restores the default behavior, as does
13399 placing the function calls within the scope of a @code{#pragma
13400 long_calls_off} directive. Note these switches have no effect on how
13401 the compiler generates code to handle function calls via function
13402 pointers.
13403
13404 @item -msingle-pic-base
13405 @opindex msingle-pic-base
13406 Treat the register used for PIC addressing as read-only, rather than
13407 loading it in the prologue for each function. The runtime system is
13408 responsible for initializing this register with an appropriate value
13409 before execution begins.
13410
13411 @item -mpic-register=@var{reg}
13412 @opindex mpic-register
13413 Specify the register to be used for PIC addressing.
13414 For standard PIC base case, the default is any suitable register
13415 determined by compiler. For single PIC base case, the default is
13416 @samp{R9} if target is EABI based or stack-checking is enabled,
13417 otherwise the default is @samp{R10}.
13418
13419 @item -mpic-data-is-text-relative
13420 @opindex mpic-data-is-text-relative
13421 Assume that each data segments are relative to text segment at load time.
13422 Therefore, it permits addressing data using PC-relative operations.
13423 This option is on by default for targets other than VxWorks RTP.
13424
13425 @item -mpoke-function-name
13426 @opindex mpoke-function-name
13427 Write the name of each function into the text section, directly
13428 preceding the function prologue. The generated code is similar to this:
13429
13430 @smallexample
13431 t0
13432 .ascii "arm_poke_function_name", 0
13433 .align
13434 t1
13435 .word 0xff000000 + (t1 - t0)
13436 arm_poke_function_name
13437 mov ip, sp
13438 stmfd sp!, @{fp, ip, lr, pc@}
13439 sub fp, ip, #4
13440 @end smallexample
13441
13442 When performing a stack backtrace, code can inspect the value of
13443 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
13444 location @code{pc - 12} and the top 8 bits are set, then we know that
13445 there is a function name embedded immediately preceding this location
13446 and has length @code{((pc[-3]) & 0xff000000)}.
13447
13448 @item -mthumb
13449 @itemx -marm
13450 @opindex marm
13451 @opindex mthumb
13452
13453 Select between generating code that executes in ARM and Thumb
13454 states. The default for most configurations is to generate code
13455 that executes in ARM state, but the default can be changed by
13456 configuring GCC with the @option{--with-mode=}@var{state}
13457 configure option.
13458
13459 @item -mtpcs-frame
13460 @opindex mtpcs-frame
13461 Generate a stack frame that is compliant with the Thumb Procedure Call
13462 Standard for all non-leaf functions. (A leaf function is one that does
13463 not call any other functions.) The default is @option{-mno-tpcs-frame}.
13464
13465 @item -mtpcs-leaf-frame
13466 @opindex mtpcs-leaf-frame
13467 Generate a stack frame that is compliant with the Thumb Procedure Call
13468 Standard for all leaf functions. (A leaf function is one that does
13469 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
13470
13471 @item -mcallee-super-interworking
13472 @opindex mcallee-super-interworking
13473 Gives all externally visible functions in the file being compiled an ARM
13474 instruction set header which switches to Thumb mode before executing the
13475 rest of the function. This allows these functions to be called from
13476 non-interworking code. This option is not valid in AAPCS configurations
13477 because interworking is enabled by default.
13478
13479 @item -mcaller-super-interworking
13480 @opindex mcaller-super-interworking
13481 Allows calls via function pointers (including virtual functions) to
13482 execute correctly regardless of whether the target code has been
13483 compiled for interworking or not. There is a small overhead in the cost
13484 of executing a function pointer if this option is enabled. This option
13485 is not valid in AAPCS configurations because interworking is enabled
13486 by default.
13487
13488 @item -mtp=@var{name}
13489 @opindex mtp
13490 Specify the access model for the thread local storage pointer. The valid
13491 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
13492 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
13493 (supported in the arm6k architecture), and @samp{auto}, which uses the
13494 best available method for the selected processor. The default setting is
13495 @samp{auto}.
13496
13497 @item -mtls-dialect=@var{dialect}
13498 @opindex mtls-dialect
13499 Specify the dialect to use for accessing thread local storage. Two
13500 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
13501 @samp{gnu} dialect selects the original GNU scheme for supporting
13502 local and global dynamic TLS models. The @samp{gnu2} dialect
13503 selects the GNU descriptor scheme, which provides better performance
13504 for shared libraries. The GNU descriptor scheme is compatible with
13505 the original scheme, but does require new assembler, linker and
13506 library support. Initial and local exec TLS models are unaffected by
13507 this option and always use the original scheme.
13508
13509 @item -mword-relocations
13510 @opindex mword-relocations
13511 Only generate absolute relocations on word-sized values (i.e. R_ARM_ABS32).
13512 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
13513 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
13514 is specified.
13515
13516 @item -mfix-cortex-m3-ldrd
13517 @opindex mfix-cortex-m3-ldrd
13518 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
13519 with overlapping destination and base registers are used. This option avoids
13520 generating these instructions. This option is enabled by default when
13521 @option{-mcpu=cortex-m3} is specified.
13522
13523 @item -munaligned-access
13524 @itemx -mno-unaligned-access
13525 @opindex munaligned-access
13526 @opindex mno-unaligned-access
13527 Enables (or disables) reading and writing of 16- and 32- bit values
13528 from addresses that are not 16- or 32- bit aligned. By default
13529 unaligned access is disabled for all pre-ARMv6 and all ARMv6-M
13530 architectures, and enabled for all other architectures. If unaligned
13531 access is not enabled then words in packed data structures are
13532 accessed a byte at a time.
13533
13534 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
13535 generated object file to either true or false, depending upon the
13536 setting of this option. If unaligned access is enabled then the
13537 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
13538 defined.
13539
13540 @item -mneon-for-64bits
13541 @opindex mneon-for-64bits
13542 Enables using Neon to handle scalar 64-bits operations. This is
13543 disabled by default since the cost of moving data from core registers
13544 to Neon is high.
13545
13546 @item -mslow-flash-data
13547 @opindex mslow-flash-data
13548 Assume loading data from flash is slower than fetching instruction.
13549 Therefore literal load is minimized for better performance.
13550 This option is only supported when compiling for ARMv7 M-profile and
13551 off by default.
13552
13553 @item -masm-syntax-unified
13554 @opindex masm-syntax-unified
13555 Assume inline assembler is using unified asm syntax. The default is
13556 currently off which implies divided syntax. Currently this option is
13557 available only for Thumb1 and has no effect on ARM state and Thumb2.
13558 However, this may change in future releases of GCC. Divided syntax
13559 should be considered deprecated.
13560
13561 @item -mrestrict-it
13562 @opindex mrestrict-it
13563 Restricts generation of IT blocks to conform to the rules of ARMv8.
13564 IT blocks can only contain a single 16-bit instruction from a select
13565 set of instructions. This option is on by default for ARMv8 Thumb mode.
13566
13567 @item -mprint-tune-info
13568 @opindex mprint-tune-info
13569 Print CPU tuning information as comment in assembler file. This is
13570 an option used only for regression testing of the compiler and not
13571 intended for ordinary use in compiling code. This option is disabled
13572 by default.
13573 @end table
13574
13575 @node AVR Options
13576 @subsection AVR Options
13577 @cindex AVR Options
13578
13579 These options are defined for AVR implementations:
13580
13581 @table @gcctabopt
13582 @item -mmcu=@var{mcu}
13583 @opindex mmcu
13584 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
13585
13586 The default for this option is@tie{}@samp{avr2}.
13587
13588 GCC supports the following AVR devices and ISAs:
13589
13590 @include avr-mmcu.texi
13591
13592 @item -maccumulate-args
13593 @opindex maccumulate-args
13594 Accumulate outgoing function arguments and acquire/release the needed
13595 stack space for outgoing function arguments once in function
13596 prologue/epilogue. Without this option, outgoing arguments are pushed
13597 before calling a function and popped afterwards.
13598
13599 Popping the arguments after the function call can be expensive on
13600 AVR so that accumulating the stack space might lead to smaller
13601 executables because arguments need not to be removed from the
13602 stack after such a function call.
13603
13604 This option can lead to reduced code size for functions that perform
13605 several calls to functions that get their arguments on the stack like
13606 calls to printf-like functions.
13607
13608 @item -mbranch-cost=@var{cost}
13609 @opindex mbranch-cost
13610 Set the branch costs for conditional branch instructions to
13611 @var{cost}. Reasonable values for @var{cost} are small, non-negative
13612 integers. The default branch cost is 0.
13613
13614 @item -mcall-prologues
13615 @opindex mcall-prologues
13616 Functions prologues/epilogues are expanded as calls to appropriate
13617 subroutines. Code size is smaller.
13618
13619 @item -mint8
13620 @opindex mint8
13621 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
13622 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
13623 and @code{long long} is 4 bytes. Please note that this option does not
13624 conform to the C standards, but it results in smaller code
13625 size.
13626
13627 @item -mn-flash=@var{num}
13628 @opindex mn-flash
13629 Assume that the flash memory has a size of
13630 @var{num} times 64@tie{}KiB.
13631
13632 @item -mno-interrupts
13633 @opindex mno-interrupts
13634 Generated code is not compatible with hardware interrupts.
13635 Code size is smaller.
13636
13637 @item -mrelax
13638 @opindex mrelax
13639 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
13640 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
13641 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
13642 the assembler's command line and the @option{--relax} option to the
13643 linker's command line.
13644
13645 Jump relaxing is performed by the linker because jump offsets are not
13646 known before code is located. Therefore, the assembler code generated by the
13647 compiler is the same, but the instructions in the executable may
13648 differ from instructions in the assembler code.
13649
13650 Relaxing must be turned on if linker stubs are needed, see the
13651 section on @code{EIND} and linker stubs below.
13652
13653 @item -mrmw
13654 @opindex mrmw
13655 Assume that the device supports the Read-Modify-Write
13656 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
13657
13658 @item -msp8
13659 @opindex msp8
13660 Treat the stack pointer register as an 8-bit register,
13661 i.e.@: assume the high byte of the stack pointer is zero.
13662 In general, you don't need to set this option by hand.
13663
13664 This option is used internally by the compiler to select and
13665 build multilibs for architectures @code{avr2} and @code{avr25}.
13666 These architectures mix devices with and without @code{SPH}.
13667 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
13668 the compiler driver adds or removes this option from the compiler
13669 proper's command line, because the compiler then knows if the device
13670 or architecture has an 8-bit stack pointer and thus no @code{SPH}
13671 register or not.
13672
13673 @item -mstrict-X
13674 @opindex mstrict-X
13675 Use address register @code{X} in a way proposed by the hardware. This means
13676 that @code{X} is only used in indirect, post-increment or
13677 pre-decrement addressing.
13678
13679 Without this option, the @code{X} register may be used in the same way
13680 as @code{Y} or @code{Z} which then is emulated by additional
13681 instructions.
13682 For example, loading a value with @code{X+const} addressing with a
13683 small non-negative @code{const < 64} to a register @var{Rn} is
13684 performed as
13685
13686 @example
13687 adiw r26, const ; X += const
13688 ld @var{Rn}, X ; @var{Rn} = *X
13689 sbiw r26, const ; X -= const
13690 @end example
13691
13692 @item -mtiny-stack
13693 @opindex mtiny-stack
13694 Only change the lower 8@tie{}bits of the stack pointer.
13695
13696 @item -nodevicelib
13697 @opindex nodevicelib
13698 Don't link against AVR-LibC's device specific library @code{libdev.a}.
13699
13700 @item -Waddr-space-convert
13701 @opindex Waddr-space-convert
13702 Warn about conversions between address spaces in the case where the
13703 resulting address space is not contained in the incoming address space.
13704 @end table
13705
13706 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
13707 @cindex @code{EIND}
13708 Pointers in the implementation are 16@tie{}bits wide.
13709 The address of a function or label is represented as word address so
13710 that indirect jumps and calls can target any code address in the
13711 range of 64@tie{}Ki words.
13712
13713 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
13714 bytes of program memory space, there is a special function register called
13715 @code{EIND} that serves as most significant part of the target address
13716 when @code{EICALL} or @code{EIJMP} instructions are used.
13717
13718 Indirect jumps and calls on these devices are handled as follows by
13719 the compiler and are subject to some limitations:
13720
13721 @itemize @bullet
13722
13723 @item
13724 The compiler never sets @code{EIND}.
13725
13726 @item
13727 The compiler uses @code{EIND} implicitely in @code{EICALL}/@code{EIJMP}
13728 instructions or might read @code{EIND} directly in order to emulate an
13729 indirect call/jump by means of a @code{RET} instruction.
13730
13731 @item
13732 The compiler assumes that @code{EIND} never changes during the startup
13733 code or during the application. In particular, @code{EIND} is not
13734 saved/restored in function or interrupt service routine
13735 prologue/epilogue.
13736
13737 @item
13738 For indirect calls to functions and computed goto, the linker
13739 generates @emph{stubs}. Stubs are jump pads sometimes also called
13740 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
13741 The stub contains a direct jump to the desired address.
13742
13743 @item
13744 Linker relaxation must be turned on so that the linker generates
13745 the stubs correctly in all situations. See the compiler option
13746 @option{-mrelax} and the linker option @option{--relax}.
13747 There are corner cases where the linker is supposed to generate stubs
13748 but aborts without relaxation and without a helpful error message.
13749
13750 @item
13751 The default linker script is arranged for code with @code{EIND = 0}.
13752 If code is supposed to work for a setup with @code{EIND != 0}, a custom
13753 linker script has to be used in order to place the sections whose
13754 name start with @code{.trampolines} into the segment where @code{EIND}
13755 points to.
13756
13757 @item
13758 The startup code from libgcc never sets @code{EIND}.
13759 Notice that startup code is a blend of code from libgcc and AVR-LibC.
13760 For the impact of AVR-LibC on @code{EIND}, see the
13761 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
13762
13763 @item
13764 It is legitimate for user-specific startup code to set up @code{EIND}
13765 early, for example by means of initialization code located in
13766 section @code{.init3}. Such code runs prior to general startup code
13767 that initializes RAM and calls constructors, but after the bit
13768 of startup code from AVR-LibC that sets @code{EIND} to the segment
13769 where the vector table is located.
13770 @example
13771 #include <avr/io.h>
13772
13773 static void
13774 __attribute__((section(".init3"),naked,used,no_instrument_function))
13775 init3_set_eind (void)
13776 @{
13777 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
13778 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
13779 @}
13780 @end example
13781
13782 @noindent
13783 The @code{__trampolines_start} symbol is defined in the linker script.
13784
13785 @item
13786 Stubs are generated automatically by the linker if
13787 the following two conditions are met:
13788 @itemize @minus
13789
13790 @item The address of a label is taken by means of the @code{gs} modifier
13791 (short for @emph{generate stubs}) like so:
13792 @example
13793 LDI r24, lo8(gs(@var{func}))
13794 LDI r25, hi8(gs(@var{func}))
13795 @end example
13796 @item The final location of that label is in a code segment
13797 @emph{outside} the segment where the stubs are located.
13798 @end itemize
13799
13800 @item
13801 The compiler emits such @code{gs} modifiers for code labels in the
13802 following situations:
13803 @itemize @minus
13804 @item Taking address of a function or code label.
13805 @item Computed goto.
13806 @item If prologue-save function is used, see @option{-mcall-prologues}
13807 command-line option.
13808 @item Switch/case dispatch tables. If you do not want such dispatch
13809 tables you can specify the @option{-fno-jump-tables} command-line option.
13810 @item C and C++ constructors/destructors called during startup/shutdown.
13811 @item If the tools hit a @code{gs()} modifier explained above.
13812 @end itemize
13813
13814 @item
13815 Jumping to non-symbolic addresses like so is @emph{not} supported:
13816
13817 @example
13818 int main (void)
13819 @{
13820 /* Call function at word address 0x2 */
13821 return ((int(*)(void)) 0x2)();
13822 @}
13823 @end example
13824
13825 Instead, a stub has to be set up, i.e.@: the function has to be called
13826 through a symbol (@code{func_4} in the example):
13827
13828 @example
13829 int main (void)
13830 @{
13831 extern int func_4 (void);
13832
13833 /* Call function at byte address 0x4 */
13834 return func_4();
13835 @}
13836 @end example
13837
13838 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
13839 Alternatively, @code{func_4} can be defined in the linker script.
13840 @end itemize
13841
13842 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
13843 @cindex @code{RAMPD}
13844 @cindex @code{RAMPX}
13845 @cindex @code{RAMPY}
13846 @cindex @code{RAMPZ}
13847 Some AVR devices support memories larger than the 64@tie{}KiB range
13848 that can be accessed with 16-bit pointers. To access memory locations
13849 outside this 64@tie{}KiB range, the contentent of a @code{RAMP}
13850 register is used as high part of the address:
13851 The @code{X}, @code{Y}, @code{Z} address register is concatenated
13852 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
13853 register, respectively, to get a wide address. Similarly,
13854 @code{RAMPD} is used together with direct addressing.
13855
13856 @itemize
13857 @item
13858 The startup code initializes the @code{RAMP} special function
13859 registers with zero.
13860
13861 @item
13862 If a @ref{AVR Named Address Spaces,named address space} other than
13863 generic or @code{__flash} is used, then @code{RAMPZ} is set
13864 as needed before the operation.
13865
13866 @item
13867 If the device supports RAM larger than 64@tie{}KiB and the compiler
13868 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
13869 is reset to zero after the operation.
13870
13871 @item
13872 If the device comes with a specific @code{RAMP} register, the ISR
13873 prologue/epilogue saves/restores that SFR and initializes it with
13874 zero in case the ISR code might (implicitly) use it.
13875
13876 @item
13877 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
13878 If you use inline assembler to read from locations outside the
13879 16-bit address range and change one of the @code{RAMP} registers,
13880 you must reset it to zero after the access.
13881
13882 @end itemize
13883
13884 @subsubsection AVR Built-in Macros
13885
13886 GCC defines several built-in macros so that the user code can test
13887 for the presence or absence of features. Almost any of the following
13888 built-in macros are deduced from device capabilities and thus
13889 triggered by the @option{-mmcu=} command-line option.
13890
13891 For even more AVR-specific built-in macros see
13892 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
13893
13894 @table @code
13895
13896 @item __AVR_ARCH__
13897 Build-in macro that resolves to a decimal number that identifies the
13898 architecture and depends on the @option{-mmcu=@var{mcu}} option.
13899 Possible values are:
13900
13901 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
13902 @code{4}, @code{5}, @code{51}, @code{6}
13903
13904 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
13905 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
13906
13907 respectively and
13908
13909 @code{100}, @code{102}, @code{104},
13910 @code{105}, @code{106}, @code{107}
13911
13912 for @var{mcu}=@code{avrtiny}, @code{avrxmega2}, @code{avrxmega4},
13913 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
13914 If @var{mcu} specifies a device, this built-in macro is set
13915 accordingly. For example, with @option{-mmcu=atmega8} the macro is
13916 defined to @code{4}.
13917
13918 @item __AVR_@var{Device}__
13919 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
13920 the device's name. For example, @option{-mmcu=atmega8} defines the
13921 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
13922 @code{__AVR_ATtiny261A__}, etc.
13923
13924 The built-in macros' names follow
13925 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
13926 the device name as from the AVR user manual. The difference between
13927 @var{Device} in the built-in macro and @var{device} in
13928 @option{-mmcu=@var{device}} is that the latter is always lowercase.
13929
13930 If @var{device} is not a device but only a core architecture like
13931 @samp{avr51}, this macro is not defined.
13932
13933 @item __AVR_DEVICE_NAME__
13934 Setting @option{-mmcu=@var{device}} defines this built-in macro to
13935 the device's name. For example, with @option{-mmcu=atmega8} the macro
13936 is defined to @code{atmega8}.
13937
13938 If @var{device} is not a device but only a core architecture like
13939 @samp{avr51}, this macro is not defined.
13940
13941 @item __AVR_XMEGA__
13942 The device / architecture belongs to the XMEGA family of devices.
13943
13944 @item __AVR_HAVE_ELPM__
13945 The device has the the @code{ELPM} instruction.
13946
13947 @item __AVR_HAVE_ELPMX__
13948 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
13949 R@var{n},Z+} instructions.
13950
13951 @item __AVR_HAVE_MOVW__
13952 The device has the @code{MOVW} instruction to perform 16-bit
13953 register-register moves.
13954
13955 @item __AVR_HAVE_LPMX__
13956 The device has the @code{LPM R@var{n},Z} and
13957 @code{LPM R@var{n},Z+} instructions.
13958
13959 @item __AVR_HAVE_MUL__
13960 The device has a hardware multiplier.
13961
13962 @item __AVR_HAVE_JMP_CALL__
13963 The device has the @code{JMP} and @code{CALL} instructions.
13964 This is the case for devices with at least 16@tie{}KiB of program
13965 memory.
13966
13967 @item __AVR_HAVE_EIJMP_EICALL__
13968 @itemx __AVR_3_BYTE_PC__
13969 The device has the @code{EIJMP} and @code{EICALL} instructions.
13970 This is the case for devices with more than 128@tie{}KiB of program memory.
13971 This also means that the program counter
13972 (PC) is 3@tie{}bytes wide.
13973
13974 @item __AVR_2_BYTE_PC__
13975 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
13976 with up to 128@tie{}KiB of program memory.
13977
13978 @item __AVR_HAVE_8BIT_SP__
13979 @itemx __AVR_HAVE_16BIT_SP__
13980 The stack pointer (SP) register is treated as 8-bit respectively
13981 16-bit register by the compiler.
13982 The definition of these macros is affected by @option{-mtiny-stack}.
13983
13984 @item __AVR_HAVE_SPH__
13985 @itemx __AVR_SP8__
13986 The device has the SPH (high part of stack pointer) special function
13987 register or has an 8-bit stack pointer, respectively.
13988 The definition of these macros is affected by @option{-mmcu=} and
13989 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
13990 by @option{-msp8}.
13991
13992 @item __AVR_HAVE_RAMPD__
13993 @itemx __AVR_HAVE_RAMPX__
13994 @itemx __AVR_HAVE_RAMPY__
13995 @itemx __AVR_HAVE_RAMPZ__
13996 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
13997 @code{RAMPZ} special function register, respectively.
13998
13999 @item __NO_INTERRUPTS__
14000 This macro reflects the @option{-mno-interrupts} command-line option.
14001
14002 @item __AVR_ERRATA_SKIP__
14003 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
14004 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
14005 instructions because of a hardware erratum. Skip instructions are
14006 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
14007 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
14008 set.
14009
14010 @item __AVR_ISA_RMW__
14011 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
14012
14013 @item __AVR_SFR_OFFSET__=@var{offset}
14014 Instructions that can address I/O special function registers directly
14015 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
14016 address as if addressed by an instruction to access RAM like @code{LD}
14017 or @code{STS}. This offset depends on the device architecture and has
14018 to be subtracted from the RAM address in order to get the
14019 respective I/O@tie{}address.
14020
14021 @item __WITH_AVRLIBC__
14022 The compiler is configured to be used together with AVR-Libc.
14023 See the @option{--with-avrlibc} configure option.
14024
14025 @end table
14026
14027 @node Blackfin Options
14028 @subsection Blackfin Options
14029 @cindex Blackfin Options
14030
14031 @table @gcctabopt
14032 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
14033 @opindex mcpu=
14034 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
14035 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
14036 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
14037 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
14038 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
14039 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
14040 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
14041 @samp{bf561}, @samp{bf592}.
14042
14043 The optional @var{sirevision} specifies the silicon revision of the target
14044 Blackfin processor. Any workarounds available for the targeted silicon revision
14045 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
14046 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
14047 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
14048 hexadecimal digits representing the major and minor numbers in the silicon
14049 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
14050 is not defined. If @var{sirevision} is @samp{any}, the
14051 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
14052 If this optional @var{sirevision} is not used, GCC assumes the latest known
14053 silicon revision of the targeted Blackfin processor.
14054
14055 GCC defines a preprocessor macro for the specified @var{cpu}.
14056 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
14057 provided by libgloss to be linked in if @option{-msim} is not given.
14058
14059 Without this option, @samp{bf532} is used as the processor by default.
14060
14061 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
14062 only the preprocessor macro is defined.
14063
14064 @item -msim
14065 @opindex msim
14066 Specifies that the program will be run on the simulator. This causes
14067 the simulator BSP provided by libgloss to be linked in. This option
14068 has effect only for @samp{bfin-elf} toolchain.
14069 Certain other options, such as @option{-mid-shared-library} and
14070 @option{-mfdpic}, imply @option{-msim}.
14071
14072 @item -momit-leaf-frame-pointer
14073 @opindex momit-leaf-frame-pointer
14074 Don't keep the frame pointer in a register for leaf functions. This
14075 avoids the instructions to save, set up and restore frame pointers and
14076 makes an extra register available in leaf functions. The option
14077 @option{-fomit-frame-pointer} removes the frame pointer for all functions,
14078 which might make debugging harder.
14079
14080 @item -mspecld-anomaly
14081 @opindex mspecld-anomaly
14082 When enabled, the compiler ensures that the generated code does not
14083 contain speculative loads after jump instructions. If this option is used,
14084 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
14085
14086 @item -mno-specld-anomaly
14087 @opindex mno-specld-anomaly
14088 Don't generate extra code to prevent speculative loads from occurring.
14089
14090 @item -mcsync-anomaly
14091 @opindex mcsync-anomaly
14092 When enabled, the compiler ensures that the generated code does not
14093 contain CSYNC or SSYNC instructions too soon after conditional branches.
14094 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
14095
14096 @item -mno-csync-anomaly
14097 @opindex mno-csync-anomaly
14098 Don't generate extra code to prevent CSYNC or SSYNC instructions from
14099 occurring too soon after a conditional branch.
14100
14101 @item -mlow-64k
14102 @opindex mlow-64k
14103 When enabled, the compiler is free to take advantage of the knowledge that
14104 the entire program fits into the low 64k of memory.
14105
14106 @item -mno-low-64k
14107 @opindex mno-low-64k
14108 Assume that the program is arbitrarily large. This is the default.
14109
14110 @item -mstack-check-l1
14111 @opindex mstack-check-l1
14112 Do stack checking using information placed into L1 scratchpad memory by the
14113 uClinux kernel.
14114
14115 @item -mid-shared-library
14116 @opindex mid-shared-library
14117 Generate code that supports shared libraries via the library ID method.
14118 This allows for execute in place and shared libraries in an environment
14119 without virtual memory management. This option implies @option{-fPIC}.
14120 With a @samp{bfin-elf} target, this option implies @option{-msim}.
14121
14122 @item -mno-id-shared-library
14123 @opindex mno-id-shared-library
14124 Generate code that doesn't assume ID-based shared libraries are being used.
14125 This is the default.
14126
14127 @item -mleaf-id-shared-library
14128 @opindex mleaf-id-shared-library
14129 Generate code that supports shared libraries via the library ID method,
14130 but assumes that this library or executable won't link against any other
14131 ID shared libraries. That allows the compiler to use faster code for jumps
14132 and calls.
14133
14134 @item -mno-leaf-id-shared-library
14135 @opindex mno-leaf-id-shared-library
14136 Do not assume that the code being compiled won't link against any ID shared
14137 libraries. Slower code is generated for jump and call insns.
14138
14139 @item -mshared-library-id=n
14140 @opindex mshared-library-id
14141 Specifies the identification number of the ID-based shared library being
14142 compiled. Specifying a value of 0 generates more compact code; specifying
14143 other values forces the allocation of that number to the current
14144 library but is no more space- or time-efficient than omitting this option.
14145
14146 @item -msep-data
14147 @opindex msep-data
14148 Generate code that allows the data segment to be located in a different
14149 area of memory from the text segment. This allows for execute in place in
14150 an environment without virtual memory management by eliminating relocations
14151 against the text section.
14152
14153 @item -mno-sep-data
14154 @opindex mno-sep-data
14155 Generate code that assumes that the data segment follows the text segment.
14156 This is the default.
14157
14158 @item -mlong-calls
14159 @itemx -mno-long-calls
14160 @opindex mlong-calls
14161 @opindex mno-long-calls
14162 Tells the compiler to perform function calls by first loading the
14163 address of the function into a register and then performing a subroutine
14164 call on this register. This switch is needed if the target function
14165 lies outside of the 24-bit addressing range of the offset-based
14166 version of subroutine call instruction.
14167
14168 This feature is not enabled by default. Specifying
14169 @option{-mno-long-calls} restores the default behavior. Note these
14170 switches have no effect on how the compiler generates code to handle
14171 function calls via function pointers.
14172
14173 @item -mfast-fp
14174 @opindex mfast-fp
14175 Link with the fast floating-point library. This library relaxes some of
14176 the IEEE floating-point standard's rules for checking inputs against
14177 Not-a-Number (NAN), in the interest of performance.
14178
14179 @item -minline-plt
14180 @opindex minline-plt
14181 Enable inlining of PLT entries in function calls to functions that are
14182 not known to bind locally. It has no effect without @option{-mfdpic}.
14183
14184 @item -mmulticore
14185 @opindex mmulticore
14186 Build a standalone application for multicore Blackfin processors.
14187 This option causes proper start files and link scripts supporting
14188 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
14189 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
14190
14191 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
14192 selects the one-application-per-core programming model. Without
14193 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
14194 programming model is used. In this model, the main function of Core B
14195 should be named as @code{coreb_main}.
14196
14197 If this option is not used, the single-core application programming
14198 model is used.
14199
14200 @item -mcorea
14201 @opindex mcorea
14202 Build a standalone application for Core A of BF561 when using
14203 the one-application-per-core programming model. Proper start files
14204 and link scripts are used to support Core A, and the macro
14205 @code{__BFIN_COREA} is defined.
14206 This option can only be used in conjunction with @option{-mmulticore}.
14207
14208 @item -mcoreb
14209 @opindex mcoreb
14210 Build a standalone application for Core B of BF561 when using
14211 the one-application-per-core programming model. Proper start files
14212 and link scripts are used to support Core B, and the macro
14213 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
14214 should be used instead of @code{main}.
14215 This option can only be used in conjunction with @option{-mmulticore}.
14216
14217 @item -msdram
14218 @opindex msdram
14219 Build a standalone application for SDRAM. Proper start files and
14220 link scripts are used to put the application into SDRAM, and the macro
14221 @code{__BFIN_SDRAM} is defined.
14222 The loader should initialize SDRAM before loading the application.
14223
14224 @item -micplb
14225 @opindex micplb
14226 Assume that ICPLBs are enabled at run time. This has an effect on certain
14227 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
14228 are enabled; for standalone applications the default is off.
14229 @end table
14230
14231 @node C6X Options
14232 @subsection C6X Options
14233 @cindex C6X Options
14234
14235 @table @gcctabopt
14236 @item -march=@var{name}
14237 @opindex march
14238 This specifies the name of the target architecture. GCC uses this
14239 name to determine what kind of instructions it can emit when generating
14240 assembly code. Permissible names are: @samp{c62x},
14241 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
14242
14243 @item -mbig-endian
14244 @opindex mbig-endian
14245 Generate code for a big-endian target.
14246
14247 @item -mlittle-endian
14248 @opindex mlittle-endian
14249 Generate code for a little-endian target. This is the default.
14250
14251 @item -msim
14252 @opindex msim
14253 Choose startup files and linker script suitable for the simulator.
14254
14255 @item -msdata=default
14256 @opindex msdata=default
14257 Put small global and static data in the @code{.neardata} section,
14258 which is pointed to by register @code{B14}. Put small uninitialized
14259 global and static data in the @code{.bss} section, which is adjacent
14260 to the @code{.neardata} section. Put small read-only data into the
14261 @code{.rodata} section. The corresponding sections used for large
14262 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
14263
14264 @item -msdata=all
14265 @opindex msdata=all
14266 Put all data, not just small objects, into the sections reserved for
14267 small data, and use addressing relative to the @code{B14} register to
14268 access them.
14269
14270 @item -msdata=none
14271 @opindex msdata=none
14272 Make no use of the sections reserved for small data, and use absolute
14273 addresses to access all data. Put all initialized global and static
14274 data in the @code{.fardata} section, and all uninitialized data in the
14275 @code{.far} section. Put all constant data into the @code{.const}
14276 section.
14277 @end table
14278
14279 @node CRIS Options
14280 @subsection CRIS Options
14281 @cindex CRIS Options
14282
14283 These options are defined specifically for the CRIS ports.
14284
14285 @table @gcctabopt
14286 @item -march=@var{architecture-type}
14287 @itemx -mcpu=@var{architecture-type}
14288 @opindex march
14289 @opindex mcpu
14290 Generate code for the specified architecture. The choices for
14291 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
14292 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
14293 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
14294 @samp{v10}.
14295
14296 @item -mtune=@var{architecture-type}
14297 @opindex mtune
14298 Tune to @var{architecture-type} everything applicable about the generated
14299 code, except for the ABI and the set of available instructions. The
14300 choices for @var{architecture-type} are the same as for
14301 @option{-march=@var{architecture-type}}.
14302
14303 @item -mmax-stack-frame=@var{n}
14304 @opindex mmax-stack-frame
14305 Warn when the stack frame of a function exceeds @var{n} bytes.
14306
14307 @item -metrax4
14308 @itemx -metrax100
14309 @opindex metrax4
14310 @opindex metrax100
14311 The options @option{-metrax4} and @option{-metrax100} are synonyms for
14312 @option{-march=v3} and @option{-march=v8} respectively.
14313
14314 @item -mmul-bug-workaround
14315 @itemx -mno-mul-bug-workaround
14316 @opindex mmul-bug-workaround
14317 @opindex mno-mul-bug-workaround
14318 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
14319 models where it applies. This option is active by default.
14320
14321 @item -mpdebug
14322 @opindex mpdebug
14323 Enable CRIS-specific verbose debug-related information in the assembly
14324 code. This option also has the effect of turning off the @samp{#NO_APP}
14325 formatted-code indicator to the assembler at the beginning of the
14326 assembly file.
14327
14328 @item -mcc-init
14329 @opindex mcc-init
14330 Do not use condition-code results from previous instruction; always emit
14331 compare and test instructions before use of condition codes.
14332
14333 @item -mno-side-effects
14334 @opindex mno-side-effects
14335 Do not emit instructions with side effects in addressing modes other than
14336 post-increment.
14337
14338 @item -mstack-align
14339 @itemx -mno-stack-align
14340 @itemx -mdata-align
14341 @itemx -mno-data-align
14342 @itemx -mconst-align
14343 @itemx -mno-const-align
14344 @opindex mstack-align
14345 @opindex mno-stack-align
14346 @opindex mdata-align
14347 @opindex mno-data-align
14348 @opindex mconst-align
14349 @opindex mno-const-align
14350 These options (@samp{no-} options) arrange (eliminate arrangements) for the
14351 stack frame, individual data and constants to be aligned for the maximum
14352 single data access size for the chosen CPU model. The default is to
14353 arrange for 32-bit alignment. ABI details such as structure layout are
14354 not affected by these options.
14355
14356 @item -m32-bit
14357 @itemx -m16-bit
14358 @itemx -m8-bit
14359 @opindex m32-bit
14360 @opindex m16-bit
14361 @opindex m8-bit
14362 Similar to the stack- data- and const-align options above, these options
14363 arrange for stack frame, writable data and constants to all be 32-bit,
14364 16-bit or 8-bit aligned. The default is 32-bit alignment.
14365
14366 @item -mno-prologue-epilogue
14367 @itemx -mprologue-epilogue
14368 @opindex mno-prologue-epilogue
14369 @opindex mprologue-epilogue
14370 With @option{-mno-prologue-epilogue}, the normal function prologue and
14371 epilogue which set up the stack frame are omitted and no return
14372 instructions or return sequences are generated in the code. Use this
14373 option only together with visual inspection of the compiled code: no
14374 warnings or errors are generated when call-saved registers must be saved,
14375 or storage for local variables needs to be allocated.
14376
14377 @item -mno-gotplt
14378 @itemx -mgotplt
14379 @opindex mno-gotplt
14380 @opindex mgotplt
14381 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
14382 instruction sequences that load addresses for functions from the PLT part
14383 of the GOT rather than (traditional on other architectures) calls to the
14384 PLT@. The default is @option{-mgotplt}.
14385
14386 @item -melf
14387 @opindex melf
14388 Legacy no-op option only recognized with the cris-axis-elf and
14389 cris-axis-linux-gnu targets.
14390
14391 @item -mlinux
14392 @opindex mlinux
14393 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
14394
14395 @item -sim
14396 @opindex sim
14397 This option, recognized for the cris-axis-elf, arranges
14398 to link with input-output functions from a simulator library. Code,
14399 initialized data and zero-initialized data are allocated consecutively.
14400
14401 @item -sim2
14402 @opindex sim2
14403 Like @option{-sim}, but pass linker options to locate initialized data at
14404 0x40000000 and zero-initialized data at 0x80000000.
14405 @end table
14406
14407 @node CR16 Options
14408 @subsection CR16 Options
14409 @cindex CR16 Options
14410
14411 These options are defined specifically for the CR16 ports.
14412
14413 @table @gcctabopt
14414
14415 @item -mmac
14416 @opindex mmac
14417 Enable the use of multiply-accumulate instructions. Disabled by default.
14418
14419 @item -mcr16cplus
14420 @itemx -mcr16c
14421 @opindex mcr16cplus
14422 @opindex mcr16c
14423 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
14424 is default.
14425
14426 @item -msim
14427 @opindex msim
14428 Links the library libsim.a which is in compatible with simulator. Applicable
14429 to ELF compiler only.
14430
14431 @item -mint32
14432 @opindex mint32
14433 Choose integer type as 32-bit wide.
14434
14435 @item -mbit-ops
14436 @opindex mbit-ops
14437 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
14438
14439 @item -mdata-model=@var{model}
14440 @opindex mdata-model
14441 Choose a data model. The choices for @var{model} are @samp{near},
14442 @samp{far} or @samp{medium}. @samp{medium} is default.
14443 However, @samp{far} is not valid with @option{-mcr16c}, as the
14444 CR16C architecture does not support the far data model.
14445 @end table
14446
14447 @node Darwin Options
14448 @subsection Darwin Options
14449 @cindex Darwin options
14450
14451 These options are defined for all architectures running the Darwin operating
14452 system.
14453
14454 FSF GCC on Darwin does not create ``fat'' object files; it creates
14455 an object file for the single architecture that GCC was built to
14456 target. Apple's GCC on Darwin does create ``fat'' files if multiple
14457 @option{-arch} options are used; it does so by running the compiler or
14458 linker multiple times and joining the results together with
14459 @file{lipo}.
14460
14461 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
14462 @samp{i686}) is determined by the flags that specify the ISA
14463 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
14464 @option{-force_cpusubtype_ALL} option can be used to override this.
14465
14466 The Darwin tools vary in their behavior when presented with an ISA
14467 mismatch. The assembler, @file{as}, only permits instructions to
14468 be used that are valid for the subtype of the file it is generating,
14469 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
14470 The linker for shared libraries, @file{/usr/bin/libtool}, fails
14471 and prints an error if asked to create a shared library with a less
14472 restrictive subtype than its input files (for instance, trying to put
14473 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
14474 for executables, @command{ld}, quietly gives the executable the most
14475 restrictive subtype of any of its input files.
14476
14477 @table @gcctabopt
14478 @item -F@var{dir}
14479 @opindex F
14480 Add the framework directory @var{dir} to the head of the list of
14481 directories to be searched for header files. These directories are
14482 interleaved with those specified by @option{-I} options and are
14483 scanned in a left-to-right order.
14484
14485 A framework directory is a directory with frameworks in it. A
14486 framework is a directory with a @file{Headers} and/or
14487 @file{PrivateHeaders} directory contained directly in it that ends
14488 in @file{.framework}. The name of a framework is the name of this
14489 directory excluding the @file{.framework}. Headers associated with
14490 the framework are found in one of those two directories, with
14491 @file{Headers} being searched first. A subframework is a framework
14492 directory that is in a framework's @file{Frameworks} directory.
14493 Includes of subframework headers can only appear in a header of a
14494 framework that contains the subframework, or in a sibling subframework
14495 header. Two subframeworks are siblings if they occur in the same
14496 framework. A subframework should not have the same name as a
14497 framework; a warning is issued if this is violated. Currently a
14498 subframework cannot have subframeworks; in the future, the mechanism
14499 may be extended to support this. The standard frameworks can be found
14500 in @file{/System/Library/Frameworks} and
14501 @file{/Library/Frameworks}. An example include looks like
14502 @code{#include <Framework/header.h>}, where @file{Framework} denotes
14503 the name of the framework and @file{header.h} is found in the
14504 @file{PrivateHeaders} or @file{Headers} directory.
14505
14506 @item -iframework@var{dir}
14507 @opindex iframework
14508 Like @option{-F} except the directory is a treated as a system
14509 directory. The main difference between this @option{-iframework} and
14510 @option{-F} is that with @option{-iframework} the compiler does not
14511 warn about constructs contained within header files found via
14512 @var{dir}. This option is valid only for the C family of languages.
14513
14514 @item -gused
14515 @opindex gused
14516 Emit debugging information for symbols that are used. For stabs
14517 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
14518 This is by default ON@.
14519
14520 @item -gfull
14521 @opindex gfull
14522 Emit debugging information for all symbols and types.
14523
14524 @item -mmacosx-version-min=@var{version}
14525 The earliest version of MacOS X that this executable will run on
14526 is @var{version}. Typical values of @var{version} include @code{10.1},
14527 @code{10.2}, and @code{10.3.9}.
14528
14529 If the compiler was built to use the system's headers by default,
14530 then the default for this option is the system version on which the
14531 compiler is running, otherwise the default is to make choices that
14532 are compatible with as many systems and code bases as possible.
14533
14534 @item -mkernel
14535 @opindex mkernel
14536 Enable kernel development mode. The @option{-mkernel} option sets
14537 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
14538 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
14539 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
14540 applicable. This mode also sets @option{-mno-altivec},
14541 @option{-msoft-float}, @option{-fno-builtin} and
14542 @option{-mlong-branch} for PowerPC targets.
14543
14544 @item -mone-byte-bool
14545 @opindex mone-byte-bool
14546 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
14547 By default @code{sizeof(bool)} is @code{4} when compiling for
14548 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
14549 option has no effect on x86.
14550
14551 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
14552 to generate code that is not binary compatible with code generated
14553 without that switch. Using this switch may require recompiling all
14554 other modules in a program, including system libraries. Use this
14555 switch to conform to a non-default data model.
14556
14557 @item -mfix-and-continue
14558 @itemx -ffix-and-continue
14559 @itemx -findirect-data
14560 @opindex mfix-and-continue
14561 @opindex ffix-and-continue
14562 @opindex findirect-data
14563 Generate code suitable for fast turnaround development, such as to
14564 allow GDB to dynamically load @file{.o} files into already-running
14565 programs. @option{-findirect-data} and @option{-ffix-and-continue}
14566 are provided for backwards compatibility.
14567
14568 @item -all_load
14569 @opindex all_load
14570 Loads all members of static archive libraries.
14571 See man ld(1) for more information.
14572
14573 @item -arch_errors_fatal
14574 @opindex arch_errors_fatal
14575 Cause the errors having to do with files that have the wrong architecture
14576 to be fatal.
14577
14578 @item -bind_at_load
14579 @opindex bind_at_load
14580 Causes the output file to be marked such that the dynamic linker will
14581 bind all undefined references when the file is loaded or launched.
14582
14583 @item -bundle
14584 @opindex bundle
14585 Produce a Mach-o bundle format file.
14586 See man ld(1) for more information.
14587
14588 @item -bundle_loader @var{executable}
14589 @opindex bundle_loader
14590 This option specifies the @var{executable} that will load the build
14591 output file being linked. See man ld(1) for more information.
14592
14593 @item -dynamiclib
14594 @opindex dynamiclib
14595 When passed this option, GCC produces a dynamic library instead of
14596 an executable when linking, using the Darwin @file{libtool} command.
14597
14598 @item -force_cpusubtype_ALL
14599 @opindex force_cpusubtype_ALL
14600 This causes GCC's output file to have the @samp{ALL} subtype, instead of
14601 one controlled by the @option{-mcpu} or @option{-march} option.
14602
14603 @item -allowable_client @var{client_name}
14604 @itemx -client_name
14605 @itemx -compatibility_version
14606 @itemx -current_version
14607 @itemx -dead_strip
14608 @itemx -dependency-file
14609 @itemx -dylib_file
14610 @itemx -dylinker_install_name
14611 @itemx -dynamic
14612 @itemx -exported_symbols_list
14613 @itemx -filelist
14614 @need 800
14615 @itemx -flat_namespace
14616 @itemx -force_flat_namespace
14617 @itemx -headerpad_max_install_names
14618 @itemx -image_base
14619 @itemx -init
14620 @itemx -install_name
14621 @itemx -keep_private_externs
14622 @itemx -multi_module
14623 @itemx -multiply_defined
14624 @itemx -multiply_defined_unused
14625 @need 800
14626 @itemx -noall_load
14627 @itemx -no_dead_strip_inits_and_terms
14628 @itemx -nofixprebinding
14629 @itemx -nomultidefs
14630 @itemx -noprebind
14631 @itemx -noseglinkedit
14632 @itemx -pagezero_size
14633 @itemx -prebind
14634 @itemx -prebind_all_twolevel_modules
14635 @itemx -private_bundle
14636 @need 800
14637 @itemx -read_only_relocs
14638 @itemx -sectalign
14639 @itemx -sectobjectsymbols
14640 @itemx -whyload
14641 @itemx -seg1addr
14642 @itemx -sectcreate
14643 @itemx -sectobjectsymbols
14644 @itemx -sectorder
14645 @itemx -segaddr
14646 @itemx -segs_read_only_addr
14647 @need 800
14648 @itemx -segs_read_write_addr
14649 @itemx -seg_addr_table
14650 @itemx -seg_addr_table_filename
14651 @itemx -seglinkedit
14652 @itemx -segprot
14653 @itemx -segs_read_only_addr
14654 @itemx -segs_read_write_addr
14655 @itemx -single_module
14656 @itemx -static
14657 @itemx -sub_library
14658 @need 800
14659 @itemx -sub_umbrella
14660 @itemx -twolevel_namespace
14661 @itemx -umbrella
14662 @itemx -undefined
14663 @itemx -unexported_symbols_list
14664 @itemx -weak_reference_mismatches
14665 @itemx -whatsloaded
14666 @opindex allowable_client
14667 @opindex client_name
14668 @opindex compatibility_version
14669 @opindex current_version
14670 @opindex dead_strip
14671 @opindex dependency-file
14672 @opindex dylib_file
14673 @opindex dylinker_install_name
14674 @opindex dynamic
14675 @opindex exported_symbols_list
14676 @opindex filelist
14677 @opindex flat_namespace
14678 @opindex force_flat_namespace
14679 @opindex headerpad_max_install_names
14680 @opindex image_base
14681 @opindex init
14682 @opindex install_name
14683 @opindex keep_private_externs
14684 @opindex multi_module
14685 @opindex multiply_defined
14686 @opindex multiply_defined_unused
14687 @opindex noall_load
14688 @opindex no_dead_strip_inits_and_terms
14689 @opindex nofixprebinding
14690 @opindex nomultidefs
14691 @opindex noprebind
14692 @opindex noseglinkedit
14693 @opindex pagezero_size
14694 @opindex prebind
14695 @opindex prebind_all_twolevel_modules
14696 @opindex private_bundle
14697 @opindex read_only_relocs
14698 @opindex sectalign
14699 @opindex sectobjectsymbols
14700 @opindex whyload
14701 @opindex seg1addr
14702 @opindex sectcreate
14703 @opindex sectobjectsymbols
14704 @opindex sectorder
14705 @opindex segaddr
14706 @opindex segs_read_only_addr
14707 @opindex segs_read_write_addr
14708 @opindex seg_addr_table
14709 @opindex seg_addr_table_filename
14710 @opindex seglinkedit
14711 @opindex segprot
14712 @opindex segs_read_only_addr
14713 @opindex segs_read_write_addr
14714 @opindex single_module
14715 @opindex static
14716 @opindex sub_library
14717 @opindex sub_umbrella
14718 @opindex twolevel_namespace
14719 @opindex umbrella
14720 @opindex undefined
14721 @opindex unexported_symbols_list
14722 @opindex weak_reference_mismatches
14723 @opindex whatsloaded
14724 These options are passed to the Darwin linker. The Darwin linker man page
14725 describes them in detail.
14726 @end table
14727
14728 @node DEC Alpha Options
14729 @subsection DEC Alpha Options
14730
14731 These @samp{-m} options are defined for the DEC Alpha implementations:
14732
14733 @table @gcctabopt
14734 @item -mno-soft-float
14735 @itemx -msoft-float
14736 @opindex mno-soft-float
14737 @opindex msoft-float
14738 Use (do not use) the hardware floating-point instructions for
14739 floating-point operations. When @option{-msoft-float} is specified,
14740 functions in @file{libgcc.a} are used to perform floating-point
14741 operations. Unless they are replaced by routines that emulate the
14742 floating-point operations, or compiled in such a way as to call such
14743 emulations routines, these routines issue floating-point
14744 operations. If you are compiling for an Alpha without floating-point
14745 operations, you must ensure that the library is built so as not to call
14746 them.
14747
14748 Note that Alpha implementations without floating-point operations are
14749 required to have floating-point registers.
14750
14751 @item -mfp-reg
14752 @itemx -mno-fp-regs
14753 @opindex mfp-reg
14754 @opindex mno-fp-regs
14755 Generate code that uses (does not use) the floating-point register set.
14756 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
14757 register set is not used, floating-point operands are passed in integer
14758 registers as if they were integers and floating-point results are passed
14759 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
14760 so any function with a floating-point argument or return value called by code
14761 compiled with @option{-mno-fp-regs} must also be compiled with that
14762 option.
14763
14764 A typical use of this option is building a kernel that does not use,
14765 and hence need not save and restore, any floating-point registers.
14766
14767 @item -mieee
14768 @opindex mieee
14769 The Alpha architecture implements floating-point hardware optimized for
14770 maximum performance. It is mostly compliant with the IEEE floating-point
14771 standard. However, for full compliance, software assistance is
14772 required. This option generates code fully IEEE-compliant code
14773 @emph{except} that the @var{inexact-flag} is not maintained (see below).
14774 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
14775 defined during compilation. The resulting code is less efficient but is
14776 able to correctly support denormalized numbers and exceptional IEEE
14777 values such as not-a-number and plus/minus infinity. Other Alpha
14778 compilers call this option @option{-ieee_with_no_inexact}.
14779
14780 @item -mieee-with-inexact
14781 @opindex mieee-with-inexact
14782 This is like @option{-mieee} except the generated code also maintains
14783 the IEEE @var{inexact-flag}. Turning on this option causes the
14784 generated code to implement fully-compliant IEEE math. In addition to
14785 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
14786 macro. On some Alpha implementations the resulting code may execute
14787 significantly slower than the code generated by default. Since there is
14788 very little code that depends on the @var{inexact-flag}, you should
14789 normally not specify this option. Other Alpha compilers call this
14790 option @option{-ieee_with_inexact}.
14791
14792 @item -mfp-trap-mode=@var{trap-mode}
14793 @opindex mfp-trap-mode
14794 This option controls what floating-point related traps are enabled.
14795 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
14796 The trap mode can be set to one of four values:
14797
14798 @table @samp
14799 @item n
14800 This is the default (normal) setting. The only traps that are enabled
14801 are the ones that cannot be disabled in software (e.g., division by zero
14802 trap).
14803
14804 @item u
14805 In addition to the traps enabled by @samp{n}, underflow traps are enabled
14806 as well.
14807
14808 @item su
14809 Like @samp{u}, but the instructions are marked to be safe for software
14810 completion (see Alpha architecture manual for details).
14811
14812 @item sui
14813 Like @samp{su}, but inexact traps are enabled as well.
14814 @end table
14815
14816 @item -mfp-rounding-mode=@var{rounding-mode}
14817 @opindex mfp-rounding-mode
14818 Selects the IEEE rounding mode. Other Alpha compilers call this option
14819 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
14820 of:
14821
14822 @table @samp
14823 @item n
14824 Normal IEEE rounding mode. Floating-point numbers are rounded towards
14825 the nearest machine number or towards the even machine number in case
14826 of a tie.
14827
14828 @item m
14829 Round towards minus infinity.
14830
14831 @item c
14832 Chopped rounding mode. Floating-point numbers are rounded towards zero.
14833
14834 @item d
14835 Dynamic rounding mode. A field in the floating-point control register
14836 (@var{fpcr}, see Alpha architecture reference manual) controls the
14837 rounding mode in effect. The C library initializes this register for
14838 rounding towards plus infinity. Thus, unless your program modifies the
14839 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
14840 @end table
14841
14842 @item -mtrap-precision=@var{trap-precision}
14843 @opindex mtrap-precision
14844 In the Alpha architecture, floating-point traps are imprecise. This
14845 means without software assistance it is impossible to recover from a
14846 floating trap and program execution normally needs to be terminated.
14847 GCC can generate code that can assist operating system trap handlers
14848 in determining the exact location that caused a floating-point trap.
14849 Depending on the requirements of an application, different levels of
14850 precisions can be selected:
14851
14852 @table @samp
14853 @item p
14854 Program precision. This option is the default and means a trap handler
14855 can only identify which program caused a floating-point exception.
14856
14857 @item f
14858 Function precision. The trap handler can determine the function that
14859 caused a floating-point exception.
14860
14861 @item i
14862 Instruction precision. The trap handler can determine the exact
14863 instruction that caused a floating-point exception.
14864 @end table
14865
14866 Other Alpha compilers provide the equivalent options called
14867 @option{-scope_safe} and @option{-resumption_safe}.
14868
14869 @item -mieee-conformant
14870 @opindex mieee-conformant
14871 This option marks the generated code as IEEE conformant. You must not
14872 use this option unless you also specify @option{-mtrap-precision=i} and either
14873 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
14874 is to emit the line @samp{.eflag 48} in the function prologue of the
14875 generated assembly file.
14876
14877 @item -mbuild-constants
14878 @opindex mbuild-constants
14879 Normally GCC examines a 32- or 64-bit integer constant to
14880 see if it can construct it from smaller constants in two or three
14881 instructions. If it cannot, it outputs the constant as a literal and
14882 generates code to load it from the data segment at run time.
14883
14884 Use this option to require GCC to construct @emph{all} integer constants
14885 using code, even if it takes more instructions (the maximum is six).
14886
14887 You typically use this option to build a shared library dynamic
14888 loader. Itself a shared library, it must relocate itself in memory
14889 before it can find the variables and constants in its own data segment.
14890
14891 @item -mbwx
14892 @itemx -mno-bwx
14893 @itemx -mcix
14894 @itemx -mno-cix
14895 @itemx -mfix
14896 @itemx -mno-fix
14897 @itemx -mmax
14898 @itemx -mno-max
14899 @opindex mbwx
14900 @opindex mno-bwx
14901 @opindex mcix
14902 @opindex mno-cix
14903 @opindex mfix
14904 @opindex mno-fix
14905 @opindex mmax
14906 @opindex mno-max
14907 Indicate whether GCC should generate code to use the optional BWX,
14908 CIX, FIX and MAX instruction sets. The default is to use the instruction
14909 sets supported by the CPU type specified via @option{-mcpu=} option or that
14910 of the CPU on which GCC was built if none is specified.
14911
14912 @item -mfloat-vax
14913 @itemx -mfloat-ieee
14914 @opindex mfloat-vax
14915 @opindex mfloat-ieee
14916 Generate code that uses (does not use) VAX F and G floating-point
14917 arithmetic instead of IEEE single and double precision.
14918
14919 @item -mexplicit-relocs
14920 @itemx -mno-explicit-relocs
14921 @opindex mexplicit-relocs
14922 @opindex mno-explicit-relocs
14923 Older Alpha assemblers provided no way to generate symbol relocations
14924 except via assembler macros. Use of these macros does not allow
14925 optimal instruction scheduling. GNU binutils as of version 2.12
14926 supports a new syntax that allows the compiler to explicitly mark
14927 which relocations should apply to which instructions. This option
14928 is mostly useful for debugging, as GCC detects the capabilities of
14929 the assembler when it is built and sets the default accordingly.
14930
14931 @item -msmall-data
14932 @itemx -mlarge-data
14933 @opindex msmall-data
14934 @opindex mlarge-data
14935 When @option{-mexplicit-relocs} is in effect, static data is
14936 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
14937 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
14938 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
14939 16-bit relocations off of the @code{$gp} register. This limits the
14940 size of the small data area to 64KB, but allows the variables to be
14941 directly accessed via a single instruction.
14942
14943 The default is @option{-mlarge-data}. With this option the data area
14944 is limited to just below 2GB@. Programs that require more than 2GB of
14945 data must use @code{malloc} or @code{mmap} to allocate the data in the
14946 heap instead of in the program's data segment.
14947
14948 When generating code for shared libraries, @option{-fpic} implies
14949 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
14950
14951 @item -msmall-text
14952 @itemx -mlarge-text
14953 @opindex msmall-text
14954 @opindex mlarge-text
14955 When @option{-msmall-text} is used, the compiler assumes that the
14956 code of the entire program (or shared library) fits in 4MB, and is
14957 thus reachable with a branch instruction. When @option{-msmall-data}
14958 is used, the compiler can assume that all local symbols share the
14959 same @code{$gp} value, and thus reduce the number of instructions
14960 required for a function call from 4 to 1.
14961
14962 The default is @option{-mlarge-text}.
14963
14964 @item -mcpu=@var{cpu_type}
14965 @opindex mcpu
14966 Set the instruction set and instruction scheduling parameters for
14967 machine type @var{cpu_type}. You can specify either the @samp{EV}
14968 style name or the corresponding chip number. GCC supports scheduling
14969 parameters for the EV4, EV5 and EV6 family of processors and
14970 chooses the default values for the instruction set from the processor
14971 you specify. If you do not specify a processor type, GCC defaults
14972 to the processor on which the compiler was built.
14973
14974 Supported values for @var{cpu_type} are
14975
14976 @table @samp
14977 @item ev4
14978 @itemx ev45
14979 @itemx 21064
14980 Schedules as an EV4 and has no instruction set extensions.
14981
14982 @item ev5
14983 @itemx 21164
14984 Schedules as an EV5 and has no instruction set extensions.
14985
14986 @item ev56
14987 @itemx 21164a
14988 Schedules as an EV5 and supports the BWX extension.
14989
14990 @item pca56
14991 @itemx 21164pc
14992 @itemx 21164PC
14993 Schedules as an EV5 and supports the BWX and MAX extensions.
14994
14995 @item ev6
14996 @itemx 21264
14997 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
14998
14999 @item ev67
15000 @itemx 21264a
15001 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
15002 @end table
15003
15004 Native toolchains also support the value @samp{native},
15005 which selects the best architecture option for the host processor.
15006 @option{-mcpu=native} has no effect if GCC does not recognize
15007 the processor.
15008
15009 @item -mtune=@var{cpu_type}
15010 @opindex mtune
15011 Set only the instruction scheduling parameters for machine type
15012 @var{cpu_type}. The instruction set is not changed.
15013
15014 Native toolchains also support the value @samp{native},
15015 which selects the best architecture option for the host processor.
15016 @option{-mtune=native} has no effect if GCC does not recognize
15017 the processor.
15018
15019 @item -mmemory-latency=@var{time}
15020 @opindex mmemory-latency
15021 Sets the latency the scheduler should assume for typical memory
15022 references as seen by the application. This number is highly
15023 dependent on the memory access patterns used by the application
15024 and the size of the external cache on the machine.
15025
15026 Valid options for @var{time} are
15027
15028 @table @samp
15029 @item @var{number}
15030 A decimal number representing clock cycles.
15031
15032 @item L1
15033 @itemx L2
15034 @itemx L3
15035 @itemx main
15036 The compiler contains estimates of the number of clock cycles for
15037 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
15038 (also called Dcache, Scache, and Bcache), as well as to main memory.
15039 Note that L3 is only valid for EV5.
15040
15041 @end table
15042 @end table
15043
15044 @node FR30 Options
15045 @subsection FR30 Options
15046 @cindex FR30 Options
15047
15048 These options are defined specifically for the FR30 port.
15049
15050 @table @gcctabopt
15051
15052 @item -msmall-model
15053 @opindex msmall-model
15054 Use the small address space model. This can produce smaller code, but
15055 it does assume that all symbolic values and addresses fit into a
15056 20-bit range.
15057
15058 @item -mno-lsim
15059 @opindex mno-lsim
15060 Assume that runtime support has been provided and so there is no need
15061 to include the simulator library (@file{libsim.a}) on the linker
15062 command line.
15063
15064 @end table
15065
15066 @node FRV Options
15067 @subsection FRV Options
15068 @cindex FRV Options
15069
15070 @table @gcctabopt
15071 @item -mgpr-32
15072 @opindex mgpr-32
15073
15074 Only use the first 32 general-purpose registers.
15075
15076 @item -mgpr-64
15077 @opindex mgpr-64
15078
15079 Use all 64 general-purpose registers.
15080
15081 @item -mfpr-32
15082 @opindex mfpr-32
15083
15084 Use only the first 32 floating-point registers.
15085
15086 @item -mfpr-64
15087 @opindex mfpr-64
15088
15089 Use all 64 floating-point registers.
15090
15091 @item -mhard-float
15092 @opindex mhard-float
15093
15094 Use hardware instructions for floating-point operations.
15095
15096 @item -msoft-float
15097 @opindex msoft-float
15098
15099 Use library routines for floating-point operations.
15100
15101 @item -malloc-cc
15102 @opindex malloc-cc
15103
15104 Dynamically allocate condition code registers.
15105
15106 @item -mfixed-cc
15107 @opindex mfixed-cc
15108
15109 Do not try to dynamically allocate condition code registers, only
15110 use @code{icc0} and @code{fcc0}.
15111
15112 @item -mdword
15113 @opindex mdword
15114
15115 Change ABI to use double word insns.
15116
15117 @item -mno-dword
15118 @opindex mno-dword
15119
15120 Do not use double word instructions.
15121
15122 @item -mdouble
15123 @opindex mdouble
15124
15125 Use floating-point double instructions.
15126
15127 @item -mno-double
15128 @opindex mno-double
15129
15130 Do not use floating-point double instructions.
15131
15132 @item -mmedia
15133 @opindex mmedia
15134
15135 Use media instructions.
15136
15137 @item -mno-media
15138 @opindex mno-media
15139
15140 Do not use media instructions.
15141
15142 @item -mmuladd
15143 @opindex mmuladd
15144
15145 Use multiply and add/subtract instructions.
15146
15147 @item -mno-muladd
15148 @opindex mno-muladd
15149
15150 Do not use multiply and add/subtract instructions.
15151
15152 @item -mfdpic
15153 @opindex mfdpic
15154
15155 Select the FDPIC ABI, which uses function descriptors to represent
15156 pointers to functions. Without any PIC/PIE-related options, it
15157 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
15158 assumes GOT entries and small data are within a 12-bit range from the
15159 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
15160 are computed with 32 bits.
15161 With a @samp{bfin-elf} target, this option implies @option{-msim}.
15162
15163 @item -minline-plt
15164 @opindex minline-plt
15165
15166 Enable inlining of PLT entries in function calls to functions that are
15167 not known to bind locally. It has no effect without @option{-mfdpic}.
15168 It's enabled by default if optimizing for speed and compiling for
15169 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
15170 optimization option such as @option{-O3} or above is present in the
15171 command line.
15172
15173 @item -mTLS
15174 @opindex mTLS
15175
15176 Assume a large TLS segment when generating thread-local code.
15177
15178 @item -mtls
15179 @opindex mtls
15180
15181 Do not assume a large TLS segment when generating thread-local code.
15182
15183 @item -mgprel-ro
15184 @opindex mgprel-ro
15185
15186 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
15187 that is known to be in read-only sections. It's enabled by default,
15188 except for @option{-fpic} or @option{-fpie}: even though it may help
15189 make the global offset table smaller, it trades 1 instruction for 4.
15190 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
15191 one of which may be shared by multiple symbols, and it avoids the need
15192 for a GOT entry for the referenced symbol, so it's more likely to be a
15193 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
15194
15195 @item -multilib-library-pic
15196 @opindex multilib-library-pic
15197
15198 Link with the (library, not FD) pic libraries. It's implied by
15199 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
15200 @option{-fpic} without @option{-mfdpic}. You should never have to use
15201 it explicitly.
15202
15203 @item -mlinked-fp
15204 @opindex mlinked-fp
15205
15206 Follow the EABI requirement of always creating a frame pointer whenever
15207 a stack frame is allocated. This option is enabled by default and can
15208 be disabled with @option{-mno-linked-fp}.
15209
15210 @item -mlong-calls
15211 @opindex mlong-calls
15212
15213 Use indirect addressing to call functions outside the current
15214 compilation unit. This allows the functions to be placed anywhere
15215 within the 32-bit address space.
15216
15217 @item -malign-labels
15218 @opindex malign-labels
15219
15220 Try to align labels to an 8-byte boundary by inserting NOPs into the
15221 previous packet. This option only has an effect when VLIW packing
15222 is enabled. It doesn't create new packets; it merely adds NOPs to
15223 existing ones.
15224
15225 @item -mlibrary-pic
15226 @opindex mlibrary-pic
15227
15228 Generate position-independent EABI code.
15229
15230 @item -macc-4
15231 @opindex macc-4
15232
15233 Use only the first four media accumulator registers.
15234
15235 @item -macc-8
15236 @opindex macc-8
15237
15238 Use all eight media accumulator registers.
15239
15240 @item -mpack
15241 @opindex mpack
15242
15243 Pack VLIW instructions.
15244
15245 @item -mno-pack
15246 @opindex mno-pack
15247
15248 Do not pack VLIW instructions.
15249
15250 @item -mno-eflags
15251 @opindex mno-eflags
15252
15253 Do not mark ABI switches in e_flags.
15254
15255 @item -mcond-move
15256 @opindex mcond-move
15257
15258 Enable the use of conditional-move instructions (default).
15259
15260 This switch is mainly for debugging the compiler and will likely be removed
15261 in a future version.
15262
15263 @item -mno-cond-move
15264 @opindex mno-cond-move
15265
15266 Disable the use of conditional-move instructions.
15267
15268 This switch is mainly for debugging the compiler and will likely be removed
15269 in a future version.
15270
15271 @item -mscc
15272 @opindex mscc
15273
15274 Enable the use of conditional set instructions (default).
15275
15276 This switch is mainly for debugging the compiler and will likely be removed
15277 in a future version.
15278
15279 @item -mno-scc
15280 @opindex mno-scc
15281
15282 Disable the use of conditional set instructions.
15283
15284 This switch is mainly for debugging the compiler and will likely be removed
15285 in a future version.
15286
15287 @item -mcond-exec
15288 @opindex mcond-exec
15289
15290 Enable the use of conditional execution (default).
15291
15292 This switch is mainly for debugging the compiler and will likely be removed
15293 in a future version.
15294
15295 @item -mno-cond-exec
15296 @opindex mno-cond-exec
15297
15298 Disable the use of conditional execution.
15299
15300 This switch is mainly for debugging the compiler and will likely be removed
15301 in a future version.
15302
15303 @item -mvliw-branch
15304 @opindex mvliw-branch
15305
15306 Run a pass to pack branches into VLIW instructions (default).
15307
15308 This switch is mainly for debugging the compiler and will likely be removed
15309 in a future version.
15310
15311 @item -mno-vliw-branch
15312 @opindex mno-vliw-branch
15313
15314 Do not run a pass to pack branches into VLIW instructions.
15315
15316 This switch is mainly for debugging the compiler and will likely be removed
15317 in a future version.
15318
15319 @item -mmulti-cond-exec
15320 @opindex mmulti-cond-exec
15321
15322 Enable optimization of @code{&&} and @code{||} in conditional execution
15323 (default).
15324
15325 This switch is mainly for debugging the compiler and will likely be removed
15326 in a future version.
15327
15328 @item -mno-multi-cond-exec
15329 @opindex mno-multi-cond-exec
15330
15331 Disable optimization of @code{&&} and @code{||} in conditional execution.
15332
15333 This switch is mainly for debugging the compiler and will likely be removed
15334 in a future version.
15335
15336 @item -mnested-cond-exec
15337 @opindex mnested-cond-exec
15338
15339 Enable nested conditional execution optimizations (default).
15340
15341 This switch is mainly for debugging the compiler and will likely be removed
15342 in a future version.
15343
15344 @item -mno-nested-cond-exec
15345 @opindex mno-nested-cond-exec
15346
15347 Disable nested conditional execution optimizations.
15348
15349 This switch is mainly for debugging the compiler and will likely be removed
15350 in a future version.
15351
15352 @item -moptimize-membar
15353 @opindex moptimize-membar
15354
15355 This switch removes redundant @code{membar} instructions from the
15356 compiler-generated code. It is enabled by default.
15357
15358 @item -mno-optimize-membar
15359 @opindex mno-optimize-membar
15360
15361 This switch disables the automatic removal of redundant @code{membar}
15362 instructions from the generated code.
15363
15364 @item -mtomcat-stats
15365 @opindex mtomcat-stats
15366
15367 Cause gas to print out tomcat statistics.
15368
15369 @item -mcpu=@var{cpu}
15370 @opindex mcpu
15371
15372 Select the processor type for which to generate code. Possible values are
15373 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
15374 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
15375
15376 @end table
15377
15378 @node GNU/Linux Options
15379 @subsection GNU/Linux Options
15380
15381 These @samp{-m} options are defined for GNU/Linux targets:
15382
15383 @table @gcctabopt
15384 @item -mglibc
15385 @opindex mglibc
15386 Use the GNU C library. This is the default except
15387 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
15388 @samp{*-*-linux-*android*} targets.
15389
15390 @item -muclibc
15391 @opindex muclibc
15392 Use uClibc C library. This is the default on
15393 @samp{*-*-linux-*uclibc*} targets.
15394
15395 @item -mmusl
15396 @opindex mmusl
15397 Use the musl C library. This is the default on
15398 @samp{*-*-linux-*musl*} targets.
15399
15400 @item -mbionic
15401 @opindex mbionic
15402 Use Bionic C library. This is the default on
15403 @samp{*-*-linux-*android*} targets.
15404
15405 @item -mandroid
15406 @opindex mandroid
15407 Compile code compatible with Android platform. This is the default on
15408 @samp{*-*-linux-*android*} targets.
15409
15410 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
15411 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
15412 this option makes the GCC driver pass Android-specific options to the linker.
15413 Finally, this option causes the preprocessor macro @code{__ANDROID__}
15414 to be defined.
15415
15416 @item -tno-android-cc
15417 @opindex tno-android-cc
15418 Disable compilation effects of @option{-mandroid}, i.e., do not enable
15419 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
15420 @option{-fno-rtti} by default.
15421
15422 @item -tno-android-ld
15423 @opindex tno-android-ld
15424 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
15425 linking options to the linker.
15426
15427 @end table
15428
15429 @node H8/300 Options
15430 @subsection H8/300 Options
15431
15432 These @samp{-m} options are defined for the H8/300 implementations:
15433
15434 @table @gcctabopt
15435 @item -mrelax
15436 @opindex mrelax
15437 Shorten some address references at link time, when possible; uses the
15438 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
15439 ld, Using ld}, for a fuller description.
15440
15441 @item -mh
15442 @opindex mh
15443 Generate code for the H8/300H@.
15444
15445 @item -ms
15446 @opindex ms
15447 Generate code for the H8S@.
15448
15449 @item -mn
15450 @opindex mn
15451 Generate code for the H8S and H8/300H in the normal mode. This switch
15452 must be used either with @option{-mh} or @option{-ms}.
15453
15454 @item -ms2600
15455 @opindex ms2600
15456 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
15457
15458 @item -mexr
15459 @opindex mexr
15460 Extended registers are stored on stack before execution of function
15461 with monitor attribute. Default option is @option{-mexr}.
15462 This option is valid only for H8S targets.
15463
15464 @item -mno-exr
15465 @opindex mno-exr
15466 Extended registers are not stored on stack before execution of function
15467 with monitor attribute. Default option is @option{-mno-exr}.
15468 This option is valid only for H8S targets.
15469
15470 @item -mint32
15471 @opindex mint32
15472 Make @code{int} data 32 bits by default.
15473
15474 @item -malign-300
15475 @opindex malign-300
15476 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
15477 The default for the H8/300H and H8S is to align longs and floats on
15478 4-byte boundaries.
15479 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
15480 This option has no effect on the H8/300.
15481 @end table
15482
15483 @node HPPA Options
15484 @subsection HPPA Options
15485 @cindex HPPA Options
15486
15487 These @samp{-m} options are defined for the HPPA family of computers:
15488
15489 @table @gcctabopt
15490 @item -march=@var{architecture-type}
15491 @opindex march
15492 Generate code for the specified architecture. The choices for
15493 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
15494 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
15495 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
15496 architecture option for your machine. Code compiled for lower numbered
15497 architectures runs on higher numbered architectures, but not the
15498 other way around.
15499
15500 @item -mpa-risc-1-0
15501 @itemx -mpa-risc-1-1
15502 @itemx -mpa-risc-2-0
15503 @opindex mpa-risc-1-0
15504 @opindex mpa-risc-1-1
15505 @opindex mpa-risc-2-0
15506 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
15507
15508 @item -mjump-in-delay
15509 @opindex mjump-in-delay
15510 This option is ignored and provided for compatibility purposes only.
15511
15512 @item -mdisable-fpregs
15513 @opindex mdisable-fpregs
15514 Prevent floating-point registers from being used in any manner. This is
15515 necessary for compiling kernels that perform lazy context switching of
15516 floating-point registers. If you use this option and attempt to perform
15517 floating-point operations, the compiler aborts.
15518
15519 @item -mdisable-indexing
15520 @opindex mdisable-indexing
15521 Prevent the compiler from using indexing address modes. This avoids some
15522 rather obscure problems when compiling MIG generated code under MACH@.
15523
15524 @item -mno-space-regs
15525 @opindex mno-space-regs
15526 Generate code that assumes the target has no space registers. This allows
15527 GCC to generate faster indirect calls and use unscaled index address modes.
15528
15529 Such code is suitable for level 0 PA systems and kernels.
15530
15531 @item -mfast-indirect-calls
15532 @opindex mfast-indirect-calls
15533 Generate code that assumes calls never cross space boundaries. This
15534 allows GCC to emit code that performs faster indirect calls.
15535
15536 This option does not work in the presence of shared libraries or nested
15537 functions.
15538
15539 @item -mfixed-range=@var{register-range}
15540 @opindex mfixed-range
15541 Generate code treating the given register range as fixed registers.
15542 A fixed register is one that the register allocator cannot use. This is
15543 useful when compiling kernel code. A register range is specified as
15544 two registers separated by a dash. Multiple register ranges can be
15545 specified separated by a comma.
15546
15547 @item -mlong-load-store
15548 @opindex mlong-load-store
15549 Generate 3-instruction load and store sequences as sometimes required by
15550 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
15551 the HP compilers.
15552
15553 @item -mportable-runtime
15554 @opindex mportable-runtime
15555 Use the portable calling conventions proposed by HP for ELF systems.
15556
15557 @item -mgas
15558 @opindex mgas
15559 Enable the use of assembler directives only GAS understands.
15560
15561 @item -mschedule=@var{cpu-type}
15562 @opindex mschedule
15563 Schedule code according to the constraints for the machine type
15564 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
15565 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
15566 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
15567 proper scheduling option for your machine. The default scheduling is
15568 @samp{8000}.
15569
15570 @item -mlinker-opt
15571 @opindex mlinker-opt
15572 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
15573 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
15574 linkers in which they give bogus error messages when linking some programs.
15575
15576 @item -msoft-float
15577 @opindex msoft-float
15578 Generate output containing library calls for floating point.
15579 @strong{Warning:} the requisite libraries are not available for all HPPA
15580 targets. Normally the facilities of the machine's usual C compiler are
15581 used, but this cannot be done directly in cross-compilation. You must make
15582 your own arrangements to provide suitable library functions for
15583 cross-compilation.
15584
15585 @option{-msoft-float} changes the calling convention in the output file;
15586 therefore, it is only useful if you compile @emph{all} of a program with
15587 this option. In particular, you need to compile @file{libgcc.a}, the
15588 library that comes with GCC, with @option{-msoft-float} in order for
15589 this to work.
15590
15591 @item -msio
15592 @opindex msio
15593 Generate the predefine, @code{_SIO}, for server IO@. The default is
15594 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
15595 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
15596 options are available under HP-UX and HI-UX@.
15597
15598 @item -mgnu-ld
15599 @opindex mgnu-ld
15600 Use options specific to GNU @command{ld}.
15601 This passes @option{-shared} to @command{ld} when
15602 building a shared library. It is the default when GCC is configured,
15603 explicitly or implicitly, with the GNU linker. This option does not
15604 affect which @command{ld} is called; it only changes what parameters
15605 are passed to that @command{ld}.
15606 The @command{ld} that is called is determined by the
15607 @option{--with-ld} configure option, GCC's program search path, and
15608 finally by the user's @env{PATH}. The linker used by GCC can be printed
15609 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
15610 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15611
15612 @item -mhp-ld
15613 @opindex mhp-ld
15614 Use options specific to HP @command{ld}.
15615 This passes @option{-b} to @command{ld} when building
15616 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
15617 links. It is the default when GCC is configured, explicitly or
15618 implicitly, with the HP linker. This option does not affect
15619 which @command{ld} is called; it only changes what parameters are passed to that
15620 @command{ld}.
15621 The @command{ld} that is called is determined by the @option{--with-ld}
15622 configure option, GCC's program search path, and finally by the user's
15623 @env{PATH}. The linker used by GCC can be printed using @samp{which
15624 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
15625 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
15626
15627 @item -mlong-calls
15628 @opindex mno-long-calls
15629 Generate code that uses long call sequences. This ensures that a call
15630 is always able to reach linker generated stubs. The default is to generate
15631 long calls only when the distance from the call site to the beginning
15632 of the function or translation unit, as the case may be, exceeds a
15633 predefined limit set by the branch type being used. The limits for
15634 normal calls are 7,600,000 and 240,000 bytes, respectively for the
15635 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
15636 240,000 bytes.
15637
15638 Distances are measured from the beginning of functions when using the
15639 @option{-ffunction-sections} option, or when using the @option{-mgas}
15640 and @option{-mno-portable-runtime} options together under HP-UX with
15641 the SOM linker.
15642
15643 It is normally not desirable to use this option as it degrades
15644 performance. However, it may be useful in large applications,
15645 particularly when partial linking is used to build the application.
15646
15647 The types of long calls used depends on the capabilities of the
15648 assembler and linker, and the type of code being generated. The
15649 impact on systems that support long absolute calls, and long pic
15650 symbol-difference or pc-relative calls should be relatively small.
15651 However, an indirect call is used on 32-bit ELF systems in pic code
15652 and it is quite long.
15653
15654 @item -munix=@var{unix-std}
15655 @opindex march
15656 Generate compiler predefines and select a startfile for the specified
15657 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
15658 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
15659 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
15660 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
15661 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
15662 and later.
15663
15664 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
15665 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
15666 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
15667 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
15668 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
15669 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
15670
15671 It is @emph{important} to note that this option changes the interfaces
15672 for various library routines. It also affects the operational behavior
15673 of the C library. Thus, @emph{extreme} care is needed in using this
15674 option.
15675
15676 Library code that is intended to operate with more than one UNIX
15677 standard must test, set and restore the variable @code{__xpg4_extended_mask}
15678 as appropriate. Most GNU software doesn't provide this capability.
15679
15680 @item -nolibdld
15681 @opindex nolibdld
15682 Suppress the generation of link options to search libdld.sl when the
15683 @option{-static} option is specified on HP-UX 10 and later.
15684
15685 @item -static
15686 @opindex static
15687 The HP-UX implementation of setlocale in libc has a dependency on
15688 libdld.sl. There isn't an archive version of libdld.sl. Thus,
15689 when the @option{-static} option is specified, special link options
15690 are needed to resolve this dependency.
15691
15692 On HP-UX 10 and later, the GCC driver adds the necessary options to
15693 link with libdld.sl when the @option{-static} option is specified.
15694 This causes the resulting binary to be dynamic. On the 64-bit port,
15695 the linkers generate dynamic binaries by default in any case. The
15696 @option{-nolibdld} option can be used to prevent the GCC driver from
15697 adding these link options.
15698
15699 @item -threads
15700 @opindex threads
15701 Add support for multithreading with the @dfn{dce thread} library
15702 under HP-UX@. This option sets flags for both the preprocessor and
15703 linker.
15704 @end table
15705
15706 @node IA-64 Options
15707 @subsection IA-64 Options
15708 @cindex IA-64 Options
15709
15710 These are the @samp{-m} options defined for the Intel IA-64 architecture.
15711
15712 @table @gcctabopt
15713 @item -mbig-endian
15714 @opindex mbig-endian
15715 Generate code for a big-endian target. This is the default for HP-UX@.
15716
15717 @item -mlittle-endian
15718 @opindex mlittle-endian
15719 Generate code for a little-endian target. This is the default for AIX5
15720 and GNU/Linux.
15721
15722 @item -mgnu-as
15723 @itemx -mno-gnu-as
15724 @opindex mgnu-as
15725 @opindex mno-gnu-as
15726 Generate (or don't) code for the GNU assembler. This is the default.
15727 @c Also, this is the default if the configure option @option{--with-gnu-as}
15728 @c is used.
15729
15730 @item -mgnu-ld
15731 @itemx -mno-gnu-ld
15732 @opindex mgnu-ld
15733 @opindex mno-gnu-ld
15734 Generate (or don't) code for the GNU linker. This is the default.
15735 @c Also, this is the default if the configure option @option{--with-gnu-ld}
15736 @c is used.
15737
15738 @item -mno-pic
15739 @opindex mno-pic
15740 Generate code that does not use a global pointer register. The result
15741 is not position independent code, and violates the IA-64 ABI@.
15742
15743 @item -mvolatile-asm-stop
15744 @itemx -mno-volatile-asm-stop
15745 @opindex mvolatile-asm-stop
15746 @opindex mno-volatile-asm-stop
15747 Generate (or don't) a stop bit immediately before and after volatile asm
15748 statements.
15749
15750 @item -mregister-names
15751 @itemx -mno-register-names
15752 @opindex mregister-names
15753 @opindex mno-register-names
15754 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
15755 the stacked registers. This may make assembler output more readable.
15756
15757 @item -mno-sdata
15758 @itemx -msdata
15759 @opindex mno-sdata
15760 @opindex msdata
15761 Disable (or enable) optimizations that use the small data section. This may
15762 be useful for working around optimizer bugs.
15763
15764 @item -mconstant-gp
15765 @opindex mconstant-gp
15766 Generate code that uses a single constant global pointer value. This is
15767 useful when compiling kernel code.
15768
15769 @item -mauto-pic
15770 @opindex mauto-pic
15771 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
15772 This is useful when compiling firmware code.
15773
15774 @item -minline-float-divide-min-latency
15775 @opindex minline-float-divide-min-latency
15776 Generate code for inline divides of floating-point values
15777 using the minimum latency algorithm.
15778
15779 @item -minline-float-divide-max-throughput
15780 @opindex minline-float-divide-max-throughput
15781 Generate code for inline divides of floating-point values
15782 using the maximum throughput algorithm.
15783
15784 @item -mno-inline-float-divide
15785 @opindex mno-inline-float-divide
15786 Do not generate inline code for divides of floating-point values.
15787
15788 @item -minline-int-divide-min-latency
15789 @opindex minline-int-divide-min-latency
15790 Generate code for inline divides of integer values
15791 using the minimum latency algorithm.
15792
15793 @item -minline-int-divide-max-throughput
15794 @opindex minline-int-divide-max-throughput
15795 Generate code for inline divides of integer values
15796 using the maximum throughput algorithm.
15797
15798 @item -mno-inline-int-divide
15799 @opindex mno-inline-int-divide
15800 Do not generate inline code for divides of integer values.
15801
15802 @item -minline-sqrt-min-latency
15803 @opindex minline-sqrt-min-latency
15804 Generate code for inline square roots
15805 using the minimum latency algorithm.
15806
15807 @item -minline-sqrt-max-throughput
15808 @opindex minline-sqrt-max-throughput
15809 Generate code for inline square roots
15810 using the maximum throughput algorithm.
15811
15812 @item -mno-inline-sqrt
15813 @opindex mno-inline-sqrt
15814 Do not generate inline code for @code{sqrt}.
15815
15816 @item -mfused-madd
15817 @itemx -mno-fused-madd
15818 @opindex mfused-madd
15819 @opindex mno-fused-madd
15820 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
15821 instructions. The default is to use these instructions.
15822
15823 @item -mno-dwarf2-asm
15824 @itemx -mdwarf2-asm
15825 @opindex mno-dwarf2-asm
15826 @opindex mdwarf2-asm
15827 Don't (or do) generate assembler code for the DWARF 2 line number debugging
15828 info. This may be useful when not using the GNU assembler.
15829
15830 @item -mearly-stop-bits
15831 @itemx -mno-early-stop-bits
15832 @opindex mearly-stop-bits
15833 @opindex mno-early-stop-bits
15834 Allow stop bits to be placed earlier than immediately preceding the
15835 instruction that triggered the stop bit. This can improve instruction
15836 scheduling, but does not always do so.
15837
15838 @item -mfixed-range=@var{register-range}
15839 @opindex mfixed-range
15840 Generate code treating the given register range as fixed registers.
15841 A fixed register is one that the register allocator cannot use. This is
15842 useful when compiling kernel code. A register range is specified as
15843 two registers separated by a dash. Multiple register ranges can be
15844 specified separated by a comma.
15845
15846 @item -mtls-size=@var{tls-size}
15847 @opindex mtls-size
15848 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
15849 64.
15850
15851 @item -mtune=@var{cpu-type}
15852 @opindex mtune
15853 Tune the instruction scheduling for a particular CPU, Valid values are
15854 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
15855 and @samp{mckinley}.
15856
15857 @item -milp32
15858 @itemx -mlp64
15859 @opindex milp32
15860 @opindex mlp64
15861 Generate code for a 32-bit or 64-bit environment.
15862 The 32-bit environment sets int, long and pointer to 32 bits.
15863 The 64-bit environment sets int to 32 bits and long and pointer
15864 to 64 bits. These are HP-UX specific flags.
15865
15866 @item -mno-sched-br-data-spec
15867 @itemx -msched-br-data-spec
15868 @opindex mno-sched-br-data-spec
15869 @opindex msched-br-data-spec
15870 (Dis/En)able data speculative scheduling before reload.
15871 This results in generation of @code{ld.a} instructions and
15872 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15873 The default is 'disable'.
15874
15875 @item -msched-ar-data-spec
15876 @itemx -mno-sched-ar-data-spec
15877 @opindex msched-ar-data-spec
15878 @opindex mno-sched-ar-data-spec
15879 (En/Dis)able data speculative scheduling after reload.
15880 This results in generation of @code{ld.a} instructions and
15881 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
15882 The default is 'enable'.
15883
15884 @item -mno-sched-control-spec
15885 @itemx -msched-control-spec
15886 @opindex mno-sched-control-spec
15887 @opindex msched-control-spec
15888 (Dis/En)able control speculative scheduling. This feature is
15889 available only during region scheduling (i.e.@: before reload).
15890 This results in generation of the @code{ld.s} instructions and
15891 the corresponding check instructions @code{chk.s}.
15892 The default is 'disable'.
15893
15894 @item -msched-br-in-data-spec
15895 @itemx -mno-sched-br-in-data-spec
15896 @opindex msched-br-in-data-spec
15897 @opindex mno-sched-br-in-data-spec
15898 (En/Dis)able speculative scheduling of the instructions that
15899 are dependent on the data speculative loads before reload.
15900 This is effective only with @option{-msched-br-data-spec} enabled.
15901 The default is 'enable'.
15902
15903 @item -msched-ar-in-data-spec
15904 @itemx -mno-sched-ar-in-data-spec
15905 @opindex msched-ar-in-data-spec
15906 @opindex mno-sched-ar-in-data-spec
15907 (En/Dis)able speculative scheduling of the instructions that
15908 are dependent on the data speculative loads after reload.
15909 This is effective only with @option{-msched-ar-data-spec} enabled.
15910 The default is 'enable'.
15911
15912 @item -msched-in-control-spec
15913 @itemx -mno-sched-in-control-spec
15914 @opindex msched-in-control-spec
15915 @opindex mno-sched-in-control-spec
15916 (En/Dis)able speculative scheduling of the instructions that
15917 are dependent on the control speculative loads.
15918 This is effective only with @option{-msched-control-spec} enabled.
15919 The default is 'enable'.
15920
15921 @item -mno-sched-prefer-non-data-spec-insns
15922 @itemx -msched-prefer-non-data-spec-insns
15923 @opindex mno-sched-prefer-non-data-spec-insns
15924 @opindex msched-prefer-non-data-spec-insns
15925 If enabled, data-speculative instructions are chosen for schedule
15926 only if there are no other choices at the moment. This makes
15927 the use of the data speculation much more conservative.
15928 The default is 'disable'.
15929
15930 @item -mno-sched-prefer-non-control-spec-insns
15931 @itemx -msched-prefer-non-control-spec-insns
15932 @opindex mno-sched-prefer-non-control-spec-insns
15933 @opindex msched-prefer-non-control-spec-insns
15934 If enabled, control-speculative instructions are chosen for schedule
15935 only if there are no other choices at the moment. This makes
15936 the use of the control speculation much more conservative.
15937 The default is 'disable'.
15938
15939 @item -mno-sched-count-spec-in-critical-path
15940 @itemx -msched-count-spec-in-critical-path
15941 @opindex mno-sched-count-spec-in-critical-path
15942 @opindex msched-count-spec-in-critical-path
15943 If enabled, speculative dependencies are considered during
15944 computation of the instructions priorities. This makes the use of the
15945 speculation a bit more conservative.
15946 The default is 'disable'.
15947
15948 @item -msched-spec-ldc
15949 @opindex msched-spec-ldc
15950 Use a simple data speculation check. This option is on by default.
15951
15952 @item -msched-control-spec-ldc
15953 @opindex msched-spec-ldc
15954 Use a simple check for control speculation. This option is on by default.
15955
15956 @item -msched-stop-bits-after-every-cycle
15957 @opindex msched-stop-bits-after-every-cycle
15958 Place a stop bit after every cycle when scheduling. This option is on
15959 by default.
15960
15961 @item -msched-fp-mem-deps-zero-cost
15962 @opindex msched-fp-mem-deps-zero-cost
15963 Assume that floating-point stores and loads are not likely to cause a conflict
15964 when placed into the same instruction group. This option is disabled by
15965 default.
15966
15967 @item -msel-sched-dont-check-control-spec
15968 @opindex msel-sched-dont-check-control-spec
15969 Generate checks for control speculation in selective scheduling.
15970 This flag is disabled by default.
15971
15972 @item -msched-max-memory-insns=@var{max-insns}
15973 @opindex msched-max-memory-insns
15974 Limit on the number of memory insns per instruction group, giving lower
15975 priority to subsequent memory insns attempting to schedule in the same
15976 instruction group. Frequently useful to prevent cache bank conflicts.
15977 The default value is 1.
15978
15979 @item -msched-max-memory-insns-hard-limit
15980 @opindex msched-max-memory-insns-hard-limit
15981 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
15982 disallowing more than that number in an instruction group.
15983 Otherwise, the limit is ``soft'', meaning that non-memory operations
15984 are preferred when the limit is reached, but memory operations may still
15985 be scheduled.
15986
15987 @end table
15988
15989 @node LM32 Options
15990 @subsection LM32 Options
15991 @cindex LM32 options
15992
15993 These @option{-m} options are defined for the LatticeMico32 architecture:
15994
15995 @table @gcctabopt
15996 @item -mbarrel-shift-enabled
15997 @opindex mbarrel-shift-enabled
15998 Enable barrel-shift instructions.
15999
16000 @item -mdivide-enabled
16001 @opindex mdivide-enabled
16002 Enable divide and modulus instructions.
16003
16004 @item -mmultiply-enabled
16005 @opindex multiply-enabled
16006 Enable multiply instructions.
16007
16008 @item -msign-extend-enabled
16009 @opindex msign-extend-enabled
16010 Enable sign extend instructions.
16011
16012 @item -muser-enabled
16013 @opindex muser-enabled
16014 Enable user-defined instructions.
16015
16016 @end table
16017
16018 @node M32C Options
16019 @subsection M32C Options
16020 @cindex M32C options
16021
16022 @table @gcctabopt
16023 @item -mcpu=@var{name}
16024 @opindex mcpu=
16025 Select the CPU for which code is generated. @var{name} may be one of
16026 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
16027 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
16028 the M32C/80 series.
16029
16030 @item -msim
16031 @opindex msim
16032 Specifies that the program will be run on the simulator. This causes
16033 an alternate runtime library to be linked in which supports, for
16034 example, file I/O@. You must not use this option when generating
16035 programs that will run on real hardware; you must provide your own
16036 runtime library for whatever I/O functions are needed.
16037
16038 @item -memregs=@var{number}
16039 @opindex memregs=
16040 Specifies the number of memory-based pseudo-registers GCC uses
16041 during code generation. These pseudo-registers are used like real
16042 registers, so there is a tradeoff between GCC's ability to fit the
16043 code into available registers, and the performance penalty of using
16044 memory instead of registers. Note that all modules in a program must
16045 be compiled with the same value for this option. Because of that, you
16046 must not use this option with GCC's default runtime libraries.
16047
16048 @end table
16049
16050 @node M32R/D Options
16051 @subsection M32R/D Options
16052 @cindex M32R/D options
16053
16054 These @option{-m} options are defined for Renesas M32R/D architectures:
16055
16056 @table @gcctabopt
16057 @item -m32r2
16058 @opindex m32r2
16059 Generate code for the M32R/2@.
16060
16061 @item -m32rx
16062 @opindex m32rx
16063 Generate code for the M32R/X@.
16064
16065 @item -m32r
16066 @opindex m32r
16067 Generate code for the M32R@. This is the default.
16068
16069 @item -mmodel=small
16070 @opindex mmodel=small
16071 Assume all objects live in the lower 16MB of memory (so that their addresses
16072 can be loaded with the @code{ld24} instruction), and assume all subroutines
16073 are reachable with the @code{bl} instruction.
16074 This is the default.
16075
16076 The addressability of a particular object can be set with the
16077 @code{model} attribute.
16078
16079 @item -mmodel=medium
16080 @opindex mmodel=medium
16081 Assume objects may be anywhere in the 32-bit address space (the compiler
16082 generates @code{seth/add3} instructions to load their addresses), and
16083 assume all subroutines are reachable with the @code{bl} instruction.
16084
16085 @item -mmodel=large
16086 @opindex mmodel=large
16087 Assume objects may be anywhere in the 32-bit address space (the compiler
16088 generates @code{seth/add3} instructions to load their addresses), and
16089 assume subroutines may not be reachable with the @code{bl} instruction
16090 (the compiler generates the much slower @code{seth/add3/jl}
16091 instruction sequence).
16092
16093 @item -msdata=none
16094 @opindex msdata=none
16095 Disable use of the small data area. Variables are put into
16096 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
16097 @code{section} attribute has been specified).
16098 This is the default.
16099
16100 The small data area consists of sections @code{.sdata} and @code{.sbss}.
16101 Objects may be explicitly put in the small data area with the
16102 @code{section} attribute using one of these sections.
16103
16104 @item -msdata=sdata
16105 @opindex msdata=sdata
16106 Put small global and static data in the small data area, but do not
16107 generate special code to reference them.
16108
16109 @item -msdata=use
16110 @opindex msdata=use
16111 Put small global and static data in the small data area, and generate
16112 special instructions to reference them.
16113
16114 @item -G @var{num}
16115 @opindex G
16116 @cindex smaller data references
16117 Put global and static objects less than or equal to @var{num} bytes
16118 into the small data or BSS sections instead of the normal data or BSS
16119 sections. The default value of @var{num} is 8.
16120 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
16121 for this option to have any effect.
16122
16123 All modules should be compiled with the same @option{-G @var{num}} value.
16124 Compiling with different values of @var{num} may or may not work; if it
16125 doesn't the linker gives an error message---incorrect code is not
16126 generated.
16127
16128 @item -mdebug
16129 @opindex mdebug
16130 Makes the M32R-specific code in the compiler display some statistics
16131 that might help in debugging programs.
16132
16133 @item -malign-loops
16134 @opindex malign-loops
16135 Align all loops to a 32-byte boundary.
16136
16137 @item -mno-align-loops
16138 @opindex mno-align-loops
16139 Do not enforce a 32-byte alignment for loops. This is the default.
16140
16141 @item -missue-rate=@var{number}
16142 @opindex missue-rate=@var{number}
16143 Issue @var{number} instructions per cycle. @var{number} can only be 1
16144 or 2.
16145
16146 @item -mbranch-cost=@var{number}
16147 @opindex mbranch-cost=@var{number}
16148 @var{number} can only be 1 or 2. If it is 1 then branches are
16149 preferred over conditional code, if it is 2, then the opposite applies.
16150
16151 @item -mflush-trap=@var{number}
16152 @opindex mflush-trap=@var{number}
16153 Specifies the trap number to use to flush the cache. The default is
16154 12. Valid numbers are between 0 and 15 inclusive.
16155
16156 @item -mno-flush-trap
16157 @opindex mno-flush-trap
16158 Specifies that the cache cannot be flushed by using a trap.
16159
16160 @item -mflush-func=@var{name}
16161 @opindex mflush-func=@var{name}
16162 Specifies the name of the operating system function to call to flush
16163 the cache. The default is @samp{_flush_cache}, but a function call
16164 is only used if a trap is not available.
16165
16166 @item -mno-flush-func
16167 @opindex mno-flush-func
16168 Indicates that there is no OS function for flushing the cache.
16169
16170 @end table
16171
16172 @node M680x0 Options
16173 @subsection M680x0 Options
16174 @cindex M680x0 options
16175
16176 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
16177 The default settings depend on which architecture was selected when
16178 the compiler was configured; the defaults for the most common choices
16179 are given below.
16180
16181 @table @gcctabopt
16182 @item -march=@var{arch}
16183 @opindex march
16184 Generate code for a specific M680x0 or ColdFire instruction set
16185 architecture. Permissible values of @var{arch} for M680x0
16186 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
16187 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
16188 architectures are selected according to Freescale's ISA classification
16189 and the permissible values are: @samp{isaa}, @samp{isaaplus},
16190 @samp{isab} and @samp{isac}.
16191
16192 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
16193 code for a ColdFire target. The @var{arch} in this macro is one of the
16194 @option{-march} arguments given above.
16195
16196 When used together, @option{-march} and @option{-mtune} select code
16197 that runs on a family of similar processors but that is optimized
16198 for a particular microarchitecture.
16199
16200 @item -mcpu=@var{cpu}
16201 @opindex mcpu
16202 Generate code for a specific M680x0 or ColdFire processor.
16203 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
16204 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
16205 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
16206 below, which also classifies the CPUs into families:
16207
16208 @multitable @columnfractions 0.20 0.80
16209 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
16210 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
16211 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
16212 @item @samp{5206e} @tab @samp{5206e}
16213 @item @samp{5208} @tab @samp{5207} @samp{5208}
16214 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
16215 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
16216 @item @samp{5216} @tab @samp{5214} @samp{5216}
16217 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
16218 @item @samp{5225} @tab @samp{5224} @samp{5225}
16219 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
16220 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
16221 @item @samp{5249} @tab @samp{5249}
16222 @item @samp{5250} @tab @samp{5250}
16223 @item @samp{5271} @tab @samp{5270} @samp{5271}
16224 @item @samp{5272} @tab @samp{5272}
16225 @item @samp{5275} @tab @samp{5274} @samp{5275}
16226 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
16227 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
16228 @item @samp{5307} @tab @samp{5307}
16229 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
16230 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
16231 @item @samp{5407} @tab @samp{5407}
16232 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
16233 @end multitable
16234
16235 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
16236 @var{arch} is compatible with @var{cpu}. Other combinations of
16237 @option{-mcpu} and @option{-march} are rejected.
16238
16239 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
16240 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
16241 where the value of @var{family} is given by the table above.
16242
16243 @item -mtune=@var{tune}
16244 @opindex mtune
16245 Tune the code for a particular microarchitecture within the
16246 constraints set by @option{-march} and @option{-mcpu}.
16247 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
16248 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
16249 and @samp{cpu32}. The ColdFire microarchitectures
16250 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
16251
16252 You can also use @option{-mtune=68020-40} for code that needs
16253 to run relatively well on 68020, 68030 and 68040 targets.
16254 @option{-mtune=68020-60} is similar but includes 68060 targets
16255 as well. These two options select the same tuning decisions as
16256 @option{-m68020-40} and @option{-m68020-60} respectively.
16257
16258 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
16259 when tuning for 680x0 architecture @var{arch}. It also defines
16260 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
16261 option is used. If GCC is tuning for a range of architectures,
16262 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
16263 it defines the macros for every architecture in the range.
16264
16265 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
16266 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
16267 of the arguments given above.
16268
16269 @item -m68000
16270 @itemx -mc68000
16271 @opindex m68000
16272 @opindex mc68000
16273 Generate output for a 68000. This is the default
16274 when the compiler is configured for 68000-based systems.
16275 It is equivalent to @option{-march=68000}.
16276
16277 Use this option for microcontrollers with a 68000 or EC000 core,
16278 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
16279
16280 @item -m68010
16281 @opindex m68010
16282 Generate output for a 68010. This is the default
16283 when the compiler is configured for 68010-based systems.
16284 It is equivalent to @option{-march=68010}.
16285
16286 @item -m68020
16287 @itemx -mc68020
16288 @opindex m68020
16289 @opindex mc68020
16290 Generate output for a 68020. This is the default
16291 when the compiler is configured for 68020-based systems.
16292 It is equivalent to @option{-march=68020}.
16293
16294 @item -m68030
16295 @opindex m68030
16296 Generate output for a 68030. This is the default when the compiler is
16297 configured for 68030-based systems. It is equivalent to
16298 @option{-march=68030}.
16299
16300 @item -m68040
16301 @opindex m68040
16302 Generate output for a 68040. This is the default when the compiler is
16303 configured for 68040-based systems. It is equivalent to
16304 @option{-march=68040}.
16305
16306 This option inhibits the use of 68881/68882 instructions that have to be
16307 emulated by software on the 68040. Use this option if your 68040 does not
16308 have code to emulate those instructions.
16309
16310 @item -m68060
16311 @opindex m68060
16312 Generate output for a 68060. This is the default when the compiler is
16313 configured for 68060-based systems. It is equivalent to
16314 @option{-march=68060}.
16315
16316 This option inhibits the use of 68020 and 68881/68882 instructions that
16317 have to be emulated by software on the 68060. Use this option if your 68060
16318 does not have code to emulate those instructions.
16319
16320 @item -mcpu32
16321 @opindex mcpu32
16322 Generate output for a CPU32. This is the default
16323 when the compiler is configured for CPU32-based systems.
16324 It is equivalent to @option{-march=cpu32}.
16325
16326 Use this option for microcontrollers with a
16327 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
16328 68336, 68340, 68341, 68349 and 68360.
16329
16330 @item -m5200
16331 @opindex m5200
16332 Generate output for a 520X ColdFire CPU@. This is the default
16333 when the compiler is configured for 520X-based systems.
16334 It is equivalent to @option{-mcpu=5206}, and is now deprecated
16335 in favor of that option.
16336
16337 Use this option for microcontroller with a 5200 core, including
16338 the MCF5202, MCF5203, MCF5204 and MCF5206.
16339
16340 @item -m5206e
16341 @opindex m5206e
16342 Generate output for a 5206e ColdFire CPU@. The option is now
16343 deprecated in favor of the equivalent @option{-mcpu=5206e}.
16344
16345 @item -m528x
16346 @opindex m528x
16347 Generate output for a member of the ColdFire 528X family.
16348 The option is now deprecated in favor of the equivalent
16349 @option{-mcpu=528x}.
16350
16351 @item -m5307
16352 @opindex m5307
16353 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
16354 in favor of the equivalent @option{-mcpu=5307}.
16355
16356 @item -m5407
16357 @opindex m5407
16358 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
16359 in favor of the equivalent @option{-mcpu=5407}.
16360
16361 @item -mcfv4e
16362 @opindex mcfv4e
16363 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
16364 This includes use of hardware floating-point instructions.
16365 The option is equivalent to @option{-mcpu=547x}, and is now
16366 deprecated in favor of that option.
16367
16368 @item -m68020-40
16369 @opindex m68020-40
16370 Generate output for a 68040, without using any of the new instructions.
16371 This results in code that can run relatively efficiently on either a
16372 68020/68881 or a 68030 or a 68040. The generated code does use the
16373 68881 instructions that are emulated on the 68040.
16374
16375 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
16376
16377 @item -m68020-60
16378 @opindex m68020-60
16379 Generate output for a 68060, without using any of the new instructions.
16380 This results in code that can run relatively efficiently on either a
16381 68020/68881 or a 68030 or a 68040. The generated code does use the
16382 68881 instructions that are emulated on the 68060.
16383
16384 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
16385
16386 @item -mhard-float
16387 @itemx -m68881
16388 @opindex mhard-float
16389 @opindex m68881
16390 Generate floating-point instructions. This is the default for 68020
16391 and above, and for ColdFire devices that have an FPU@. It defines the
16392 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
16393 on ColdFire targets.
16394
16395 @item -msoft-float
16396 @opindex msoft-float
16397 Do not generate floating-point instructions; use library calls instead.
16398 This is the default for 68000, 68010, and 68832 targets. It is also
16399 the default for ColdFire devices that have no FPU.
16400
16401 @item -mdiv
16402 @itemx -mno-div
16403 @opindex mdiv
16404 @opindex mno-div
16405 Generate (do not generate) ColdFire hardware divide and remainder
16406 instructions. If @option{-march} is used without @option{-mcpu},
16407 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
16408 architectures. Otherwise, the default is taken from the target CPU
16409 (either the default CPU, or the one specified by @option{-mcpu}). For
16410 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
16411 @option{-mcpu=5206e}.
16412
16413 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
16414
16415 @item -mshort
16416 @opindex mshort
16417 Consider type @code{int} to be 16 bits wide, like @code{short int}.
16418 Additionally, parameters passed on the stack are also aligned to a
16419 16-bit boundary even on targets whose API mandates promotion to 32-bit.
16420
16421 @item -mno-short
16422 @opindex mno-short
16423 Do not consider type @code{int} to be 16 bits wide. This is the default.
16424
16425 @item -mnobitfield
16426 @itemx -mno-bitfield
16427 @opindex mnobitfield
16428 @opindex mno-bitfield
16429 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
16430 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
16431
16432 @item -mbitfield
16433 @opindex mbitfield
16434 Do use the bit-field instructions. The @option{-m68020} option implies
16435 @option{-mbitfield}. This is the default if you use a configuration
16436 designed for a 68020.
16437
16438 @item -mrtd
16439 @opindex mrtd
16440 Use a different function-calling convention, in which functions
16441 that take a fixed number of arguments return with the @code{rtd}
16442 instruction, which pops their arguments while returning. This
16443 saves one instruction in the caller since there is no need to pop
16444 the arguments there.
16445
16446 This calling convention is incompatible with the one normally
16447 used on Unix, so you cannot use it if you need to call libraries
16448 compiled with the Unix compiler.
16449
16450 Also, you must provide function prototypes for all functions that
16451 take variable numbers of arguments (including @code{printf});
16452 otherwise incorrect code is generated for calls to those
16453 functions.
16454
16455 In addition, seriously incorrect code results if you call a
16456 function with too many arguments. (Normally, extra arguments are
16457 harmlessly ignored.)
16458
16459 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
16460 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
16461
16462 @item -mno-rtd
16463 @opindex mno-rtd
16464 Do not use the calling conventions selected by @option{-mrtd}.
16465 This is the default.
16466
16467 @item -malign-int
16468 @itemx -mno-align-int
16469 @opindex malign-int
16470 @opindex mno-align-int
16471 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
16472 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
16473 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
16474 Aligning variables on 32-bit boundaries produces code that runs somewhat
16475 faster on processors with 32-bit busses at the expense of more memory.
16476
16477 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
16478 aligns structures containing the above types differently than
16479 most published application binary interface specifications for the m68k.
16480
16481 @item -mpcrel
16482 @opindex mpcrel
16483 Use the pc-relative addressing mode of the 68000 directly, instead of
16484 using a global offset table. At present, this option implies @option{-fpic},
16485 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
16486 not presently supported with @option{-mpcrel}, though this could be supported for
16487 68020 and higher processors.
16488
16489 @item -mno-strict-align
16490 @itemx -mstrict-align
16491 @opindex mno-strict-align
16492 @opindex mstrict-align
16493 Do not (do) assume that unaligned memory references are handled by
16494 the system.
16495
16496 @item -msep-data
16497 Generate code that allows the data segment to be located in a different
16498 area of memory from the text segment. This allows for execute-in-place in
16499 an environment without virtual memory management. This option implies
16500 @option{-fPIC}.
16501
16502 @item -mno-sep-data
16503 Generate code that assumes that the data segment follows the text segment.
16504 This is the default.
16505
16506 @item -mid-shared-library
16507 Generate code that supports shared libraries via the library ID method.
16508 This allows for execute-in-place and shared libraries in an environment
16509 without virtual memory management. This option implies @option{-fPIC}.
16510
16511 @item -mno-id-shared-library
16512 Generate code that doesn't assume ID-based shared libraries are being used.
16513 This is the default.
16514
16515 @item -mshared-library-id=n
16516 Specifies the identification number of the ID-based shared library being
16517 compiled. Specifying a value of 0 generates more compact code; specifying
16518 other values forces the allocation of that number to the current
16519 library, but is no more space- or time-efficient than omitting this option.
16520
16521 @item -mxgot
16522 @itemx -mno-xgot
16523 @opindex mxgot
16524 @opindex mno-xgot
16525 When generating position-independent code for ColdFire, generate code
16526 that works if the GOT has more than 8192 entries. This code is
16527 larger and slower than code generated without this option. On M680x0
16528 processors, this option is not needed; @option{-fPIC} suffices.
16529
16530 GCC normally uses a single instruction to load values from the GOT@.
16531 While this is relatively efficient, it only works if the GOT
16532 is smaller than about 64k. Anything larger causes the linker
16533 to report an error such as:
16534
16535 @cindex relocation truncated to fit (ColdFire)
16536 @smallexample
16537 relocation truncated to fit: R_68K_GOT16O foobar
16538 @end smallexample
16539
16540 If this happens, you should recompile your code with @option{-mxgot}.
16541 It should then work with very large GOTs. However, code generated with
16542 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
16543 the value of a global symbol.
16544
16545 Note that some linkers, including newer versions of the GNU linker,
16546 can create multiple GOTs and sort GOT entries. If you have such a linker,
16547 you should only need to use @option{-mxgot} when compiling a single
16548 object file that accesses more than 8192 GOT entries. Very few do.
16549
16550 These options have no effect unless GCC is generating
16551 position-independent code.
16552
16553 @end table
16554
16555 @node MCore Options
16556 @subsection MCore Options
16557 @cindex MCore options
16558
16559 These are the @samp{-m} options defined for the Motorola M*Core
16560 processors.
16561
16562 @table @gcctabopt
16563
16564 @item -mhardlit
16565 @itemx -mno-hardlit
16566 @opindex mhardlit
16567 @opindex mno-hardlit
16568 Inline constants into the code stream if it can be done in two
16569 instructions or less.
16570
16571 @item -mdiv
16572 @itemx -mno-div
16573 @opindex mdiv
16574 @opindex mno-div
16575 Use the divide instruction. (Enabled by default).
16576
16577 @item -mrelax-immediate
16578 @itemx -mno-relax-immediate
16579 @opindex mrelax-immediate
16580 @opindex mno-relax-immediate
16581 Allow arbitrary-sized immediates in bit operations.
16582
16583 @item -mwide-bitfields
16584 @itemx -mno-wide-bitfields
16585 @opindex mwide-bitfields
16586 @opindex mno-wide-bitfields
16587 Always treat bit-fields as @code{int}-sized.
16588
16589 @item -m4byte-functions
16590 @itemx -mno-4byte-functions
16591 @opindex m4byte-functions
16592 @opindex mno-4byte-functions
16593 Force all functions to be aligned to a 4-byte boundary.
16594
16595 @item -mcallgraph-data
16596 @itemx -mno-callgraph-data
16597 @opindex mcallgraph-data
16598 @opindex mno-callgraph-data
16599 Emit callgraph information.
16600
16601 @item -mslow-bytes
16602 @itemx -mno-slow-bytes
16603 @opindex mslow-bytes
16604 @opindex mno-slow-bytes
16605 Prefer word access when reading byte quantities.
16606
16607 @item -mlittle-endian
16608 @itemx -mbig-endian
16609 @opindex mlittle-endian
16610 @opindex mbig-endian
16611 Generate code for a little-endian target.
16612
16613 @item -m210
16614 @itemx -m340
16615 @opindex m210
16616 @opindex m340
16617 Generate code for the 210 processor.
16618
16619 @item -mno-lsim
16620 @opindex mno-lsim
16621 Assume that runtime support has been provided and so omit the
16622 simulator library (@file{libsim.a)} from the linker command line.
16623
16624 @item -mstack-increment=@var{size}
16625 @opindex mstack-increment
16626 Set the maximum amount for a single stack increment operation. Large
16627 values can increase the speed of programs that contain functions
16628 that need a large amount of stack space, but they can also trigger a
16629 segmentation fault if the stack is extended too much. The default
16630 value is 0x1000.
16631
16632 @end table
16633
16634 @node MeP Options
16635 @subsection MeP Options
16636 @cindex MeP options
16637
16638 @table @gcctabopt
16639
16640 @item -mabsdiff
16641 @opindex mabsdiff
16642 Enables the @code{abs} instruction, which is the absolute difference
16643 between two registers.
16644
16645 @item -mall-opts
16646 @opindex mall-opts
16647 Enables all the optional instructions---average, multiply, divide, bit
16648 operations, leading zero, absolute difference, min/max, clip, and
16649 saturation.
16650
16651
16652 @item -maverage
16653 @opindex maverage
16654 Enables the @code{ave} instruction, which computes the average of two
16655 registers.
16656
16657 @item -mbased=@var{n}
16658 @opindex mbased=
16659 Variables of size @var{n} bytes or smaller are placed in the
16660 @code{.based} section by default. Based variables use the @code{$tp}
16661 register as a base register, and there is a 128-byte limit to the
16662 @code{.based} section.
16663
16664 @item -mbitops
16665 @opindex mbitops
16666 Enables the bit operation instructions---bit test (@code{btstm}), set
16667 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
16668 test-and-set (@code{tas}).
16669
16670 @item -mc=@var{name}
16671 @opindex mc=
16672 Selects which section constant data is placed in. @var{name} may
16673 be @samp{tiny}, @samp{near}, or @samp{far}.
16674
16675 @item -mclip
16676 @opindex mclip
16677 Enables the @code{clip} instruction. Note that @option{-mclip} is not
16678 useful unless you also provide @option{-mminmax}.
16679
16680 @item -mconfig=@var{name}
16681 @opindex mconfig=
16682 Selects one of the built-in core configurations. Each MeP chip has
16683 one or more modules in it; each module has a core CPU and a variety of
16684 coprocessors, optional instructions, and peripherals. The
16685 @code{MeP-Integrator} tool, not part of GCC, provides these
16686 configurations through this option; using this option is the same as
16687 using all the corresponding command-line options. The default
16688 configuration is @samp{default}.
16689
16690 @item -mcop
16691 @opindex mcop
16692 Enables the coprocessor instructions. By default, this is a 32-bit
16693 coprocessor. Note that the coprocessor is normally enabled via the
16694 @option{-mconfig=} option.
16695
16696 @item -mcop32
16697 @opindex mcop32
16698 Enables the 32-bit coprocessor's instructions.
16699
16700 @item -mcop64
16701 @opindex mcop64
16702 Enables the 64-bit coprocessor's instructions.
16703
16704 @item -mivc2
16705 @opindex mivc2
16706 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
16707
16708 @item -mdc
16709 @opindex mdc
16710 Causes constant variables to be placed in the @code{.near} section.
16711
16712 @item -mdiv
16713 @opindex mdiv
16714 Enables the @code{div} and @code{divu} instructions.
16715
16716 @item -meb
16717 @opindex meb
16718 Generate big-endian code.
16719
16720 @item -mel
16721 @opindex mel
16722 Generate little-endian code.
16723
16724 @item -mio-volatile
16725 @opindex mio-volatile
16726 Tells the compiler that any variable marked with the @code{io}
16727 attribute is to be considered volatile.
16728
16729 @item -ml
16730 @opindex ml
16731 Causes variables to be assigned to the @code{.far} section by default.
16732
16733 @item -mleadz
16734 @opindex mleadz
16735 Enables the @code{leadz} (leading zero) instruction.
16736
16737 @item -mm
16738 @opindex mm
16739 Causes variables to be assigned to the @code{.near} section by default.
16740
16741 @item -mminmax
16742 @opindex mminmax
16743 Enables the @code{min} and @code{max} instructions.
16744
16745 @item -mmult
16746 @opindex mmult
16747 Enables the multiplication and multiply-accumulate instructions.
16748
16749 @item -mno-opts
16750 @opindex mno-opts
16751 Disables all the optional instructions enabled by @option{-mall-opts}.
16752
16753 @item -mrepeat
16754 @opindex mrepeat
16755 Enables the @code{repeat} and @code{erepeat} instructions, used for
16756 low-overhead looping.
16757
16758 @item -ms
16759 @opindex ms
16760 Causes all variables to default to the @code{.tiny} section. Note
16761 that there is a 65536-byte limit to this section. Accesses to these
16762 variables use the @code{%gp} base register.
16763
16764 @item -msatur
16765 @opindex msatur
16766 Enables the saturation instructions. Note that the compiler does not
16767 currently generate these itself, but this option is included for
16768 compatibility with other tools, like @code{as}.
16769
16770 @item -msdram
16771 @opindex msdram
16772 Link the SDRAM-based runtime instead of the default ROM-based runtime.
16773
16774 @item -msim
16775 @opindex msim
16776 Link the simulator run-time libraries.
16777
16778 @item -msimnovec
16779 @opindex msimnovec
16780 Link the simulator runtime libraries, excluding built-in support
16781 for reset and exception vectors and tables.
16782
16783 @item -mtf
16784 @opindex mtf
16785 Causes all functions to default to the @code{.far} section. Without
16786 this option, functions default to the @code{.near} section.
16787
16788 @item -mtiny=@var{n}
16789 @opindex mtiny=
16790 Variables that are @var{n} bytes or smaller are allocated to the
16791 @code{.tiny} section. These variables use the @code{$gp} base
16792 register. The default for this option is 4, but note that there's a
16793 65536-byte limit to the @code{.tiny} section.
16794
16795 @end table
16796
16797 @node MicroBlaze Options
16798 @subsection MicroBlaze Options
16799 @cindex MicroBlaze Options
16800
16801 @table @gcctabopt
16802
16803 @item -msoft-float
16804 @opindex msoft-float
16805 Use software emulation for floating point (default).
16806
16807 @item -mhard-float
16808 @opindex mhard-float
16809 Use hardware floating-point instructions.
16810
16811 @item -mmemcpy
16812 @opindex mmemcpy
16813 Do not optimize block moves, use @code{memcpy}.
16814
16815 @item -mno-clearbss
16816 @opindex mno-clearbss
16817 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
16818
16819 @item -mcpu=@var{cpu-type}
16820 @opindex mcpu=
16821 Use features of, and schedule code for, the given CPU.
16822 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
16823 where @var{X} is a major version, @var{YY} is the minor version, and
16824 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
16825 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v5.00.b}, @samp{v6.00.a}.
16826
16827 @item -mxl-soft-mul
16828 @opindex mxl-soft-mul
16829 Use software multiply emulation (default).
16830
16831 @item -mxl-soft-div
16832 @opindex mxl-soft-div
16833 Use software emulation for divides (default).
16834
16835 @item -mxl-barrel-shift
16836 @opindex mxl-barrel-shift
16837 Use the hardware barrel shifter.
16838
16839 @item -mxl-pattern-compare
16840 @opindex mxl-pattern-compare
16841 Use pattern compare instructions.
16842
16843 @item -msmall-divides
16844 @opindex msmall-divides
16845 Use table lookup optimization for small signed integer divisions.
16846
16847 @item -mxl-stack-check
16848 @opindex mxl-stack-check
16849 This option is deprecated. Use @option{-fstack-check} instead.
16850
16851 @item -mxl-gp-opt
16852 @opindex mxl-gp-opt
16853 Use GP-relative @code{.sdata}/@code{.sbss} sections.
16854
16855 @item -mxl-multiply-high
16856 @opindex mxl-multiply-high
16857 Use multiply high instructions for high part of 32x32 multiply.
16858
16859 @item -mxl-float-convert
16860 @opindex mxl-float-convert
16861 Use hardware floating-point conversion instructions.
16862
16863 @item -mxl-float-sqrt
16864 @opindex mxl-float-sqrt
16865 Use hardware floating-point square root instruction.
16866
16867 @item -mbig-endian
16868 @opindex mbig-endian
16869 Generate code for a big-endian target.
16870
16871 @item -mlittle-endian
16872 @opindex mlittle-endian
16873 Generate code for a little-endian target.
16874
16875 @item -mxl-reorder
16876 @opindex mxl-reorder
16877 Use reorder instructions (swap and byte reversed load/store).
16878
16879 @item -mxl-mode-@var{app-model}
16880 Select application model @var{app-model}. Valid models are
16881 @table @samp
16882 @item executable
16883 normal executable (default), uses startup code @file{crt0.o}.
16884
16885 @item xmdstub
16886 for use with Xilinx Microprocessor Debugger (XMD) based
16887 software intrusive debug agent called xmdstub. This uses startup file
16888 @file{crt1.o} and sets the start address of the program to 0x800.
16889
16890 @item bootstrap
16891 for applications that are loaded using a bootloader.
16892 This model uses startup file @file{crt2.o} which does not contain a processor
16893 reset vector handler. This is suitable for transferring control on a
16894 processor reset to the bootloader rather than the application.
16895
16896 @item novectors
16897 for applications that do not require any of the
16898 MicroBlaze vectors. This option may be useful for applications running
16899 within a monitoring application. This model uses @file{crt3.o} as a startup file.
16900 @end table
16901
16902 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
16903 @option{-mxl-mode-@var{app-model}}.
16904
16905 @end table
16906
16907 @node MIPS Options
16908 @subsection MIPS Options
16909 @cindex MIPS options
16910
16911 @table @gcctabopt
16912
16913 @item -EB
16914 @opindex EB
16915 Generate big-endian code.
16916
16917 @item -EL
16918 @opindex EL
16919 Generate little-endian code. This is the default for @samp{mips*el-*-*}
16920 configurations.
16921
16922 @item -march=@var{arch}
16923 @opindex march
16924 Generate code that runs on @var{arch}, which can be the name of a
16925 generic MIPS ISA, or the name of a particular processor.
16926 The ISA names are:
16927 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
16928 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
16929 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
16930 @samp{mips64r5} and @samp{mips64r6}.
16931 The processor names are:
16932 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
16933 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
16934 @samp{5kc}, @samp{5kf},
16935 @samp{20kc},
16936 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
16937 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
16938 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
16939 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
16940 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
16941 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a},
16942 @samp{m4k},
16943 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
16944 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
16945 @samp{orion},
16946 @samp{p5600},
16947 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
16948 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r6000}, @samp{r8000},
16949 @samp{rm7000}, @samp{rm9000},
16950 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
16951 @samp{sb1},
16952 @samp{sr71000},
16953 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
16954 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
16955 @samp{xlr} and @samp{xlp}.
16956 The special value @samp{from-abi} selects the
16957 most compatible architecture for the selected ABI (that is,
16958 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
16959
16960 The native Linux/GNU toolchain also supports the value @samp{native},
16961 which selects the best architecture option for the host processor.
16962 @option{-march=native} has no effect if GCC does not recognize
16963 the processor.
16964
16965 In processor names, a final @samp{000} can be abbreviated as @samp{k}
16966 (for example, @option{-march=r2k}). Prefixes are optional, and
16967 @samp{vr} may be written @samp{r}.
16968
16969 Names of the form @samp{@var{n}f2_1} refer to processors with
16970 FPUs clocked at half the rate of the core, names of the form
16971 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
16972 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
16973 processors with FPUs clocked a ratio of 3:2 with respect to the core.
16974 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
16975 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
16976 accepted as synonyms for @samp{@var{n}f1_1}.
16977
16978 GCC defines two macros based on the value of this option. The first
16979 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
16980 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
16981 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
16982 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
16983 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
16984
16985 Note that the @code{_MIPS_ARCH} macro uses the processor names given
16986 above. In other words, it has the full prefix and does not
16987 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
16988 the macro names the resolved architecture (either @code{"mips1"} or
16989 @code{"mips3"}). It names the default architecture when no
16990 @option{-march} option is given.
16991
16992 @item -mtune=@var{arch}
16993 @opindex mtune
16994 Optimize for @var{arch}. Among other things, this option controls
16995 the way instructions are scheduled, and the perceived cost of arithmetic
16996 operations. The list of @var{arch} values is the same as for
16997 @option{-march}.
16998
16999 When this option is not used, GCC optimizes for the processor
17000 specified by @option{-march}. By using @option{-march} and
17001 @option{-mtune} together, it is possible to generate code that
17002 runs on a family of processors, but optimize the code for one
17003 particular member of that family.
17004
17005 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
17006 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
17007 @option{-march} ones described above.
17008
17009 @item -mips1
17010 @opindex mips1
17011 Equivalent to @option{-march=mips1}.
17012
17013 @item -mips2
17014 @opindex mips2
17015 Equivalent to @option{-march=mips2}.
17016
17017 @item -mips3
17018 @opindex mips3
17019 Equivalent to @option{-march=mips3}.
17020
17021 @item -mips4
17022 @opindex mips4
17023 Equivalent to @option{-march=mips4}.
17024
17025 @item -mips32
17026 @opindex mips32
17027 Equivalent to @option{-march=mips32}.
17028
17029 @item -mips32r3
17030 @opindex mips32r3
17031 Equivalent to @option{-march=mips32r3}.
17032
17033 @item -mips32r5
17034 @opindex mips32r5
17035 Equivalent to @option{-march=mips32r5}.
17036
17037 @item -mips32r6
17038 @opindex mips32r6
17039 Equivalent to @option{-march=mips32r6}.
17040
17041 @item -mips64
17042 @opindex mips64
17043 Equivalent to @option{-march=mips64}.
17044
17045 @item -mips64r2
17046 @opindex mips64r2
17047 Equivalent to @option{-march=mips64r2}.
17048
17049 @item -mips64r3
17050 @opindex mips64r3
17051 Equivalent to @option{-march=mips64r3}.
17052
17053 @item -mips64r5
17054 @opindex mips64r5
17055 Equivalent to @option{-march=mips64r5}.
17056
17057 @item -mips64r6
17058 @opindex mips64r6
17059 Equivalent to @option{-march=mips64r6}.
17060
17061 @item -mips16
17062 @itemx -mno-mips16
17063 @opindex mips16
17064 @opindex mno-mips16
17065 Generate (do not generate) MIPS16 code. If GCC is targeting a
17066 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
17067
17068 MIPS16 code generation can also be controlled on a per-function basis
17069 by means of @code{mips16} and @code{nomips16} attributes.
17070 @xref{Function Attributes}, for more information.
17071
17072 @item -mflip-mips16
17073 @opindex mflip-mips16
17074 Generate MIPS16 code on alternating functions. This option is provided
17075 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
17076 not intended for ordinary use in compiling user code.
17077
17078 @item -minterlink-compressed
17079 @item -mno-interlink-compressed
17080 @opindex minterlink-compressed
17081 @opindex mno-interlink-compressed
17082 Require (do not require) that code using the standard (uncompressed) MIPS ISA
17083 be link-compatible with MIPS16 and microMIPS code, and vice versa.
17084
17085 For example, code using the standard ISA encoding cannot jump directly
17086 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
17087 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
17088 knows that the target of the jump is not compressed.
17089
17090 @item -minterlink-mips16
17091 @itemx -mno-interlink-mips16
17092 @opindex minterlink-mips16
17093 @opindex mno-interlink-mips16
17094 Aliases of @option{-minterlink-compressed} and
17095 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
17096 and are retained for backwards compatibility.
17097
17098 @item -mabi=32
17099 @itemx -mabi=o64
17100 @itemx -mabi=n32
17101 @itemx -mabi=64
17102 @itemx -mabi=eabi
17103 @opindex mabi=32
17104 @opindex mabi=o64
17105 @opindex mabi=n32
17106 @opindex mabi=64
17107 @opindex mabi=eabi
17108 Generate code for the given ABI@.
17109
17110 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
17111 generates 64-bit code when you select a 64-bit architecture, but you
17112 can use @option{-mgp32} to get 32-bit code instead.
17113
17114 For information about the O64 ABI, see
17115 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
17116
17117 GCC supports a variant of the o32 ABI in which floating-point registers
17118 are 64 rather than 32 bits wide. You can select this combination with
17119 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
17120 and @code{mfhc1} instructions and is therefore only supported for
17121 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
17122
17123 The register assignments for arguments and return values remain the
17124 same, but each scalar value is passed in a single 64-bit register
17125 rather than a pair of 32-bit registers. For example, scalar
17126 floating-point values are returned in @samp{$f0} only, not a
17127 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
17128 remains the same in that the even-numbered double-precision registers
17129 are saved.
17130
17131 Two additional variants of the o32 ABI are supported to enable
17132 a transition from 32-bit to 64-bit registers. These are FPXX
17133 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
17134 The FPXX extension mandates that all code must execute correctly
17135 when run using 32-bit or 64-bit registers. The code can be interlinked
17136 with either FP32 or FP64, but not both.
17137 The FP64A extension is similar to the FP64 extension but forbids the
17138 use of odd-numbered single-precision registers. This can be used
17139 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
17140 processors and allows both FP32 and FP64A code to interlink and
17141 run in the same process without changing FPU modes.
17142
17143 @item -mabicalls
17144 @itemx -mno-abicalls
17145 @opindex mabicalls
17146 @opindex mno-abicalls
17147 Generate (do not generate) code that is suitable for SVR4-style
17148 dynamic objects. @option{-mabicalls} is the default for SVR4-based
17149 systems.
17150
17151 @item -mshared
17152 @itemx -mno-shared
17153 Generate (do not generate) code that is fully position-independent,
17154 and that can therefore be linked into shared libraries. This option
17155 only affects @option{-mabicalls}.
17156
17157 All @option{-mabicalls} code has traditionally been position-independent,
17158 regardless of options like @option{-fPIC} and @option{-fpic}. However,
17159 as an extension, the GNU toolchain allows executables to use absolute
17160 accesses for locally-binding symbols. It can also use shorter GP
17161 initialization sequences and generate direct calls to locally-defined
17162 functions. This mode is selected by @option{-mno-shared}.
17163
17164 @option{-mno-shared} depends on binutils 2.16 or higher and generates
17165 objects that can only be linked by the GNU linker. However, the option
17166 does not affect the ABI of the final executable; it only affects the ABI
17167 of relocatable objects. Using @option{-mno-shared} generally makes
17168 executables both smaller and quicker.
17169
17170 @option{-mshared} is the default.
17171
17172 @item -mplt
17173 @itemx -mno-plt
17174 @opindex mplt
17175 @opindex mno-plt
17176 Assume (do not assume) that the static and dynamic linkers
17177 support PLTs and copy relocations. This option only affects
17178 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
17179 has no effect without @option{-msym32}.
17180
17181 You can make @option{-mplt} the default by configuring
17182 GCC with @option{--with-mips-plt}. The default is
17183 @option{-mno-plt} otherwise.
17184
17185 @item -mxgot
17186 @itemx -mno-xgot
17187 @opindex mxgot
17188 @opindex mno-xgot
17189 Lift (do not lift) the usual restrictions on the size of the global
17190 offset table.
17191
17192 GCC normally uses a single instruction to load values from the GOT@.
17193 While this is relatively efficient, it only works if the GOT
17194 is smaller than about 64k. Anything larger causes the linker
17195 to report an error such as:
17196
17197 @cindex relocation truncated to fit (MIPS)
17198 @smallexample
17199 relocation truncated to fit: R_MIPS_GOT16 foobar
17200 @end smallexample
17201
17202 If this happens, you should recompile your code with @option{-mxgot}.
17203 This works with very large GOTs, although the code is also
17204 less efficient, since it takes three instructions to fetch the
17205 value of a global symbol.
17206
17207 Note that some linkers can create multiple GOTs. If you have such a
17208 linker, you should only need to use @option{-mxgot} when a single object
17209 file accesses more than 64k's worth of GOT entries. Very few do.
17210
17211 These options have no effect unless GCC is generating position
17212 independent code.
17213
17214 @item -mgp32
17215 @opindex mgp32
17216 Assume that general-purpose registers are 32 bits wide.
17217
17218 @item -mgp64
17219 @opindex mgp64
17220 Assume that general-purpose registers are 64 bits wide.
17221
17222 @item -mfp32
17223 @opindex mfp32
17224 Assume that floating-point registers are 32 bits wide.
17225
17226 @item -mfp64
17227 @opindex mfp64
17228 Assume that floating-point registers are 64 bits wide.
17229
17230 @item -mfpxx
17231 @opindex mfpxx
17232 Do not assume the width of floating-point registers.
17233
17234 @item -mhard-float
17235 @opindex mhard-float
17236 Use floating-point coprocessor instructions.
17237
17238 @item -msoft-float
17239 @opindex msoft-float
17240 Do not use floating-point coprocessor instructions. Implement
17241 floating-point calculations using library calls instead.
17242
17243 @item -mno-float
17244 @opindex mno-float
17245 Equivalent to @option{-msoft-float}, but additionally asserts that the
17246 program being compiled does not perform any floating-point operations.
17247 This option is presently supported only by some bare-metal MIPS
17248 configurations, where it may select a special set of libraries
17249 that lack all floating-point support (including, for example, the
17250 floating-point @code{printf} formats).
17251 If code compiled with @option{-mno-float} accidentally contains
17252 floating-point operations, it is likely to suffer a link-time
17253 or run-time failure.
17254
17255 @item -msingle-float
17256 @opindex msingle-float
17257 Assume that the floating-point coprocessor only supports single-precision
17258 operations.
17259
17260 @item -mdouble-float
17261 @opindex mdouble-float
17262 Assume that the floating-point coprocessor supports double-precision
17263 operations. This is the default.
17264
17265 @item -modd-spreg
17266 @itemx -mno-odd-spreg
17267 @opindex modd-spreg
17268 @opindex mno-odd-spreg
17269 Enable the use of odd-numbered single-precision floating-point registers
17270 for the o32 ABI. This is the default for processors that are known to
17271 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
17272 is set by default.
17273
17274 @item -mabs=2008
17275 @itemx -mabs=legacy
17276 @opindex mabs=2008
17277 @opindex mabs=legacy
17278 These options control the treatment of the special not-a-number (NaN)
17279 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
17280 @code{neg.@i{fmt}} machine instructions.
17281
17282 By default or when @option{-mabs=legacy} is used the legacy
17283 treatment is selected. In this case these instructions are considered
17284 arithmetic and avoided where correct operation is required and the
17285 input operand might be a NaN. A longer sequence of instructions that
17286 manipulate the sign bit of floating-point datum manually is used
17287 instead unless the @option{-ffinite-math-only} option has also been
17288 specified.
17289
17290 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
17291 this case these instructions are considered non-arithmetic and therefore
17292 operating correctly in all cases, including in particular where the
17293 input operand is a NaN. These instructions are therefore always used
17294 for the respective operations.
17295
17296 @item -mnan=2008
17297 @itemx -mnan=legacy
17298 @opindex mnan=2008
17299 @opindex mnan=legacy
17300 These options control the encoding of the special not-a-number (NaN)
17301 IEEE 754 floating-point data.
17302
17303 The @option{-mnan=legacy} option selects the legacy encoding. In this
17304 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
17305 significand field being 0, whereas signalling NaNs (sNaNs) are denoted
17306 by the first bit of their trailing significand field being 1.
17307
17308 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
17309 this case qNaNs are denoted by the first bit of their trailing
17310 significand field being 1, whereas sNaNs are denoted by the first bit of
17311 their trailing significand field being 0.
17312
17313 The default is @option{-mnan=legacy} unless GCC has been configured with
17314 @option{--with-nan=2008}.
17315
17316 @item -mllsc
17317 @itemx -mno-llsc
17318 @opindex mllsc
17319 @opindex mno-llsc
17320 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
17321 implement atomic memory built-in functions. When neither option is
17322 specified, GCC uses the instructions if the target architecture
17323 supports them.
17324
17325 @option{-mllsc} is useful if the runtime environment can emulate the
17326 instructions and @option{-mno-llsc} can be useful when compiling for
17327 nonstandard ISAs. You can make either option the default by
17328 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
17329 respectively. @option{--with-llsc} is the default for some
17330 configurations; see the installation documentation for details.
17331
17332 @item -mdsp
17333 @itemx -mno-dsp
17334 @opindex mdsp
17335 @opindex mno-dsp
17336 Use (do not use) revision 1 of the MIPS DSP ASE@.
17337 @xref{MIPS DSP Built-in Functions}. This option defines the
17338 preprocessor macro @code{__mips_dsp}. It also defines
17339 @code{__mips_dsp_rev} to 1.
17340
17341 @item -mdspr2
17342 @itemx -mno-dspr2
17343 @opindex mdspr2
17344 @opindex mno-dspr2
17345 Use (do not use) revision 2 of the MIPS DSP ASE@.
17346 @xref{MIPS DSP Built-in Functions}. This option defines the
17347 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
17348 It also defines @code{__mips_dsp_rev} to 2.
17349
17350 @item -msmartmips
17351 @itemx -mno-smartmips
17352 @opindex msmartmips
17353 @opindex mno-smartmips
17354 Use (do not use) the MIPS SmartMIPS ASE.
17355
17356 @item -mpaired-single
17357 @itemx -mno-paired-single
17358 @opindex mpaired-single
17359 @opindex mno-paired-single
17360 Use (do not use) paired-single floating-point instructions.
17361 @xref{MIPS Paired-Single Support}. This option requires
17362 hardware floating-point support to be enabled.
17363
17364 @item -mdmx
17365 @itemx -mno-mdmx
17366 @opindex mdmx
17367 @opindex mno-mdmx
17368 Use (do not use) MIPS Digital Media Extension instructions.
17369 This option can only be used when generating 64-bit code and requires
17370 hardware floating-point support to be enabled.
17371
17372 @item -mips3d
17373 @itemx -mno-mips3d
17374 @opindex mips3d
17375 @opindex mno-mips3d
17376 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
17377 The option @option{-mips3d} implies @option{-mpaired-single}.
17378
17379 @item -mmicromips
17380 @itemx -mno-micromips
17381 @opindex mmicromips
17382 @opindex mno-mmicromips
17383 Generate (do not generate) microMIPS code.
17384
17385 MicroMIPS code generation can also be controlled on a per-function basis
17386 by means of @code{micromips} and @code{nomicromips} attributes.
17387 @xref{Function Attributes}, for more information.
17388
17389 @item -mmt
17390 @itemx -mno-mt
17391 @opindex mmt
17392 @opindex mno-mt
17393 Use (do not use) MT Multithreading instructions.
17394
17395 @item -mmcu
17396 @itemx -mno-mcu
17397 @opindex mmcu
17398 @opindex mno-mcu
17399 Use (do not use) the MIPS MCU ASE instructions.
17400
17401 @item -meva
17402 @itemx -mno-eva
17403 @opindex meva
17404 @opindex mno-eva
17405 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
17406
17407 @item -mvirt
17408 @itemx -mno-virt
17409 @opindex mvirt
17410 @opindex mno-virt
17411 Use (do not use) the MIPS Virtualization Application Specific instructions.
17412
17413 @item -mxpa
17414 @itemx -mno-xpa
17415 @opindex mxpa
17416 @opindex mno-xpa
17417 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
17418
17419 @item -mlong64
17420 @opindex mlong64
17421 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
17422 an explanation of the default and the way that the pointer size is
17423 determined.
17424
17425 @item -mlong32
17426 @opindex mlong32
17427 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
17428
17429 The default size of @code{int}s, @code{long}s and pointers depends on
17430 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
17431 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
17432 32-bit @code{long}s. Pointers are the same size as @code{long}s,
17433 or the same size as integer registers, whichever is smaller.
17434
17435 @item -msym32
17436 @itemx -mno-sym32
17437 @opindex msym32
17438 @opindex mno-sym32
17439 Assume (do not assume) that all symbols have 32-bit values, regardless
17440 of the selected ABI@. This option is useful in combination with
17441 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
17442 to generate shorter and faster references to symbolic addresses.
17443
17444 @item -G @var{num}
17445 @opindex G
17446 Put definitions of externally-visible data in a small data section
17447 if that data is no bigger than @var{num} bytes. GCC can then generate
17448 more efficient accesses to the data; see @option{-mgpopt} for details.
17449
17450 The default @option{-G} option depends on the configuration.
17451
17452 @item -mlocal-sdata
17453 @itemx -mno-local-sdata
17454 @opindex mlocal-sdata
17455 @opindex mno-local-sdata
17456 Extend (do not extend) the @option{-G} behavior to local data too,
17457 such as to static variables in C@. @option{-mlocal-sdata} is the
17458 default for all configurations.
17459
17460 If the linker complains that an application is using too much small data,
17461 you might want to try rebuilding the less performance-critical parts with
17462 @option{-mno-local-sdata}. You might also want to build large
17463 libraries with @option{-mno-local-sdata}, so that the libraries leave
17464 more room for the main program.
17465
17466 @item -mextern-sdata
17467 @itemx -mno-extern-sdata
17468 @opindex mextern-sdata
17469 @opindex mno-extern-sdata
17470 Assume (do not assume) that externally-defined data is in
17471 a small data section if the size of that data is within the @option{-G} limit.
17472 @option{-mextern-sdata} is the default for all configurations.
17473
17474 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
17475 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
17476 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
17477 is placed in a small data section. If @var{Var} is defined by another
17478 module, you must either compile that module with a high-enough
17479 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
17480 definition. If @var{Var} is common, you must link the application
17481 with a high-enough @option{-G} setting.
17482
17483 The easiest way of satisfying these restrictions is to compile
17484 and link every module with the same @option{-G} option. However,
17485 you may wish to build a library that supports several different
17486 small data limits. You can do this by compiling the library with
17487 the highest supported @option{-G} setting and additionally using
17488 @option{-mno-extern-sdata} to stop the library from making assumptions
17489 about externally-defined data.
17490
17491 @item -mgpopt
17492 @itemx -mno-gpopt
17493 @opindex mgpopt
17494 @opindex mno-gpopt
17495 Use (do not use) GP-relative accesses for symbols that are known to be
17496 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
17497 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
17498 configurations.
17499
17500 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
17501 might not hold the value of @code{_gp}. For example, if the code is
17502 part of a library that might be used in a boot monitor, programs that
17503 call boot monitor routines pass an unknown value in @code{$gp}.
17504 (In such situations, the boot monitor itself is usually compiled
17505 with @option{-G0}.)
17506
17507 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
17508 @option{-mno-extern-sdata}.
17509
17510 @item -membedded-data
17511 @itemx -mno-embedded-data
17512 @opindex membedded-data
17513 @opindex mno-embedded-data
17514 Allocate variables to the read-only data section first if possible, then
17515 next in the small data section if possible, otherwise in data. This gives
17516 slightly slower code than the default, but reduces the amount of RAM required
17517 when executing, and thus may be preferred for some embedded systems.
17518
17519 @item -muninit-const-in-rodata
17520 @itemx -mno-uninit-const-in-rodata
17521 @opindex muninit-const-in-rodata
17522 @opindex mno-uninit-const-in-rodata
17523 Put uninitialized @code{const} variables in the read-only data section.
17524 This option is only meaningful in conjunction with @option{-membedded-data}.
17525
17526 @item -mcode-readable=@var{setting}
17527 @opindex mcode-readable
17528 Specify whether GCC may generate code that reads from executable sections.
17529 There are three possible settings:
17530
17531 @table @gcctabopt
17532 @item -mcode-readable=yes
17533 Instructions may freely access executable sections. This is the
17534 default setting.
17535
17536 @item -mcode-readable=pcrel
17537 MIPS16 PC-relative load instructions can access executable sections,
17538 but other instructions must not do so. This option is useful on 4KSc
17539 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
17540 It is also useful on processors that can be configured to have a dual
17541 instruction/data SRAM interface and that, like the M4K, automatically
17542 redirect PC-relative loads to the instruction RAM.
17543
17544 @item -mcode-readable=no
17545 Instructions must not access executable sections. This option can be
17546 useful on targets that are configured to have a dual instruction/data
17547 SRAM interface but that (unlike the M4K) do not automatically redirect
17548 PC-relative loads to the instruction RAM.
17549 @end table
17550
17551 @item -msplit-addresses
17552 @itemx -mno-split-addresses
17553 @opindex msplit-addresses
17554 @opindex mno-split-addresses
17555 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
17556 relocation operators. This option has been superseded by
17557 @option{-mexplicit-relocs} but is retained for backwards compatibility.
17558
17559 @item -mexplicit-relocs
17560 @itemx -mno-explicit-relocs
17561 @opindex mexplicit-relocs
17562 @opindex mno-explicit-relocs
17563 Use (do not use) assembler relocation operators when dealing with symbolic
17564 addresses. The alternative, selected by @option{-mno-explicit-relocs},
17565 is to use assembler macros instead.
17566
17567 @option{-mexplicit-relocs} is the default if GCC was configured
17568 to use an assembler that supports relocation operators.
17569
17570 @item -mcheck-zero-division
17571 @itemx -mno-check-zero-division
17572 @opindex mcheck-zero-division
17573 @opindex mno-check-zero-division
17574 Trap (do not trap) on integer division by zero.
17575
17576 The default is @option{-mcheck-zero-division}.
17577
17578 @item -mdivide-traps
17579 @itemx -mdivide-breaks
17580 @opindex mdivide-traps
17581 @opindex mdivide-breaks
17582 MIPS systems check for division by zero by generating either a
17583 conditional trap or a break instruction. Using traps results in
17584 smaller code, but is only supported on MIPS II and later. Also, some
17585 versions of the Linux kernel have a bug that prevents trap from
17586 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
17587 allow conditional traps on architectures that support them and
17588 @option{-mdivide-breaks} to force the use of breaks.
17589
17590 The default is usually @option{-mdivide-traps}, but this can be
17591 overridden at configure time using @option{--with-divide=breaks}.
17592 Divide-by-zero checks can be completely disabled using
17593 @option{-mno-check-zero-division}.
17594
17595 @item -mmemcpy
17596 @itemx -mno-memcpy
17597 @opindex mmemcpy
17598 @opindex mno-memcpy
17599 Force (do not force) the use of @code{memcpy} for non-trivial block
17600 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
17601 most constant-sized copies.
17602
17603 @item -mlong-calls
17604 @itemx -mno-long-calls
17605 @opindex mlong-calls
17606 @opindex mno-long-calls
17607 Disable (do not disable) use of the @code{jal} instruction. Calling
17608 functions using @code{jal} is more efficient but requires the caller
17609 and callee to be in the same 256 megabyte segment.
17610
17611 This option has no effect on abicalls code. The default is
17612 @option{-mno-long-calls}.
17613
17614 @item -mmad
17615 @itemx -mno-mad
17616 @opindex mmad
17617 @opindex mno-mad
17618 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
17619 instructions, as provided by the R4650 ISA@.
17620
17621 @item -mimadd
17622 @itemx -mno-imadd
17623 @opindex mimadd
17624 @opindex mno-imadd
17625 Enable (disable) use of the @code{madd} and @code{msub} integer
17626 instructions. The default is @option{-mimadd} on architectures
17627 that support @code{madd} and @code{msub} except for the 74k
17628 architecture where it was found to generate slower code.
17629
17630 @item -mfused-madd
17631 @itemx -mno-fused-madd
17632 @opindex mfused-madd
17633 @opindex mno-fused-madd
17634 Enable (disable) use of the floating-point multiply-accumulate
17635 instructions, when they are available. The default is
17636 @option{-mfused-madd}.
17637
17638 On the R8000 CPU when multiply-accumulate instructions are used,
17639 the intermediate product is calculated to infinite precision
17640 and is not subject to the FCSR Flush to Zero bit. This may be
17641 undesirable in some circumstances. On other processors the result
17642 is numerically identical to the equivalent computation using
17643 separate multiply, add, subtract and negate instructions.
17644
17645 @item -nocpp
17646 @opindex nocpp
17647 Tell the MIPS assembler to not run its preprocessor over user
17648 assembler files (with a @samp{.s} suffix) when assembling them.
17649
17650 @item -mfix-24k
17651 @item -mno-fix-24k
17652 @opindex mfix-24k
17653 @opindex mno-fix-24k
17654 Work around the 24K E48 (lost data on stores during refill) errata.
17655 The workarounds are implemented by the assembler rather than by GCC@.
17656
17657 @item -mfix-r4000
17658 @itemx -mno-fix-r4000
17659 @opindex mfix-r4000
17660 @opindex mno-fix-r4000
17661 Work around certain R4000 CPU errata:
17662 @itemize @minus
17663 @item
17664 A double-word or a variable shift may give an incorrect result if executed
17665 immediately after starting an integer division.
17666 @item
17667 A double-word or a variable shift may give an incorrect result if executed
17668 while an integer multiplication is in progress.
17669 @item
17670 An integer division may give an incorrect result if started in a delay slot
17671 of a taken branch or a jump.
17672 @end itemize
17673
17674 @item -mfix-r4400
17675 @itemx -mno-fix-r4400
17676 @opindex mfix-r4400
17677 @opindex mno-fix-r4400
17678 Work around certain R4400 CPU errata:
17679 @itemize @minus
17680 @item
17681 A double-word or a variable shift may give an incorrect result if executed
17682 immediately after starting an integer division.
17683 @end itemize
17684
17685 @item -mfix-r10000
17686 @itemx -mno-fix-r10000
17687 @opindex mfix-r10000
17688 @opindex mno-fix-r10000
17689 Work around certain R10000 errata:
17690 @itemize @minus
17691 @item
17692 @code{ll}/@code{sc} sequences may not behave atomically on revisions
17693 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
17694 @end itemize
17695
17696 This option can only be used if the target architecture supports
17697 branch-likely instructions. @option{-mfix-r10000} is the default when
17698 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
17699 otherwise.
17700
17701 @item -mfix-rm7000
17702 @itemx -mno-fix-rm7000
17703 @opindex mfix-rm7000
17704 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
17705 workarounds are implemented by the assembler rather than by GCC@.
17706
17707 @item -mfix-vr4120
17708 @itemx -mno-fix-vr4120
17709 @opindex mfix-vr4120
17710 Work around certain VR4120 errata:
17711 @itemize @minus
17712 @item
17713 @code{dmultu} does not always produce the correct result.
17714 @item
17715 @code{div} and @code{ddiv} do not always produce the correct result if one
17716 of the operands is negative.
17717 @end itemize
17718 The workarounds for the division errata rely on special functions in
17719 @file{libgcc.a}. At present, these functions are only provided by
17720 the @code{mips64vr*-elf} configurations.
17721
17722 Other VR4120 errata require a NOP to be inserted between certain pairs of
17723 instructions. These errata are handled by the assembler, not by GCC itself.
17724
17725 @item -mfix-vr4130
17726 @opindex mfix-vr4130
17727 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
17728 workarounds are implemented by the assembler rather than by GCC,
17729 although GCC avoids using @code{mflo} and @code{mfhi} if the
17730 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
17731 instructions are available instead.
17732
17733 @item -mfix-sb1
17734 @itemx -mno-fix-sb1
17735 @opindex mfix-sb1
17736 Work around certain SB-1 CPU core errata.
17737 (This flag currently works around the SB-1 revision 2
17738 ``F1'' and ``F2'' floating-point errata.)
17739
17740 @item -mr10k-cache-barrier=@var{setting}
17741 @opindex mr10k-cache-barrier
17742 Specify whether GCC should insert cache barriers to avoid the
17743 side-effects of speculation on R10K processors.
17744
17745 In common with many processors, the R10K tries to predict the outcome
17746 of a conditional branch and speculatively executes instructions from
17747 the ``taken'' branch. It later aborts these instructions if the
17748 predicted outcome is wrong. However, on the R10K, even aborted
17749 instructions can have side effects.
17750
17751 This problem only affects kernel stores and, depending on the system,
17752 kernel loads. As an example, a speculatively-executed store may load
17753 the target memory into cache and mark the cache line as dirty, even if
17754 the store itself is later aborted. If a DMA operation writes to the
17755 same area of memory before the ``dirty'' line is flushed, the cached
17756 data overwrites the DMA-ed data. See the R10K processor manual
17757 for a full description, including other potential problems.
17758
17759 One workaround is to insert cache barrier instructions before every memory
17760 access that might be speculatively executed and that might have side
17761 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
17762 controls GCC's implementation of this workaround. It assumes that
17763 aborted accesses to any byte in the following regions does not have
17764 side effects:
17765
17766 @enumerate
17767 @item
17768 the memory occupied by the current function's stack frame;
17769
17770 @item
17771 the memory occupied by an incoming stack argument;
17772
17773 @item
17774 the memory occupied by an object with a link-time-constant address.
17775 @end enumerate
17776
17777 It is the kernel's responsibility to ensure that speculative
17778 accesses to these regions are indeed safe.
17779
17780 If the input program contains a function declaration such as:
17781
17782 @smallexample
17783 void foo (void);
17784 @end smallexample
17785
17786 then the implementation of @code{foo} must allow @code{j foo} and
17787 @code{jal foo} to be executed speculatively. GCC honors this
17788 restriction for functions it compiles itself. It expects non-GCC
17789 functions (such as hand-written assembly code) to do the same.
17790
17791 The option has three forms:
17792
17793 @table @gcctabopt
17794 @item -mr10k-cache-barrier=load-store
17795 Insert a cache barrier before a load or store that might be
17796 speculatively executed and that might have side effects even
17797 if aborted.
17798
17799 @item -mr10k-cache-barrier=store
17800 Insert a cache barrier before a store that might be speculatively
17801 executed and that might have side effects even if aborted.
17802
17803 @item -mr10k-cache-barrier=none
17804 Disable the insertion of cache barriers. This is the default setting.
17805 @end table
17806
17807 @item -mflush-func=@var{func}
17808 @itemx -mno-flush-func
17809 @opindex mflush-func
17810 Specifies the function to call to flush the I and D caches, or to not
17811 call any such function. If called, the function must take the same
17812 arguments as the common @code{_flush_func}, that is, the address of the
17813 memory range for which the cache is being flushed, the size of the
17814 memory range, and the number 3 (to flush both caches). The default
17815 depends on the target GCC was configured for, but commonly is either
17816 @code{_flush_func} or @code{__cpu_flush}.
17817
17818 @item mbranch-cost=@var{num}
17819 @opindex mbranch-cost
17820 Set the cost of branches to roughly @var{num} ``simple'' instructions.
17821 This cost is only a heuristic and is not guaranteed to produce
17822 consistent results across releases. A zero cost redundantly selects
17823 the default, which is based on the @option{-mtune} setting.
17824
17825 @item -mbranch-likely
17826 @itemx -mno-branch-likely
17827 @opindex mbranch-likely
17828 @opindex mno-branch-likely
17829 Enable or disable use of Branch Likely instructions, regardless of the
17830 default for the selected architecture. By default, Branch Likely
17831 instructions may be generated if they are supported by the selected
17832 architecture. An exception is for the MIPS32 and MIPS64 architectures
17833 and processors that implement those architectures; for those, Branch
17834 Likely instructions are not be generated by default because the MIPS32
17835 and MIPS64 architectures specifically deprecate their use.
17836
17837 @item -mfp-exceptions
17838 @itemx -mno-fp-exceptions
17839 @opindex mfp-exceptions
17840 Specifies whether FP exceptions are enabled. This affects how
17841 FP instructions are scheduled for some processors.
17842 The default is that FP exceptions are
17843 enabled.
17844
17845 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
17846 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
17847 FP pipe.
17848
17849 @item -mvr4130-align
17850 @itemx -mno-vr4130-align
17851 @opindex mvr4130-align
17852 The VR4130 pipeline is two-way superscalar, but can only issue two
17853 instructions together if the first one is 8-byte aligned. When this
17854 option is enabled, GCC aligns pairs of instructions that it
17855 thinks should execute in parallel.
17856
17857 This option only has an effect when optimizing for the VR4130.
17858 It normally makes code faster, but at the expense of making it bigger.
17859 It is enabled by default at optimization level @option{-O3}.
17860
17861 @item -msynci
17862 @itemx -mno-synci
17863 @opindex msynci
17864 Enable (disable) generation of @code{synci} instructions on
17865 architectures that support it. The @code{synci} instructions (if
17866 enabled) are generated when @code{__builtin___clear_cache} is
17867 compiled.
17868
17869 This option defaults to @option{-mno-synci}, but the default can be
17870 overridden by configuring GCC with @option{--with-synci}.
17871
17872 When compiling code for single processor systems, it is generally safe
17873 to use @code{synci}. However, on many multi-core (SMP) systems, it
17874 does not invalidate the instruction caches on all cores and may lead
17875 to undefined behavior.
17876
17877 @item -mrelax-pic-calls
17878 @itemx -mno-relax-pic-calls
17879 @opindex mrelax-pic-calls
17880 Try to turn PIC calls that are normally dispatched via register
17881 @code{$25} into direct calls. This is only possible if the linker can
17882 resolve the destination at link-time and if the destination is within
17883 range for a direct call.
17884
17885 @option{-mrelax-pic-calls} is the default if GCC was configured to use
17886 an assembler and a linker that support the @code{.reloc} assembly
17887 directive and @option{-mexplicit-relocs} is in effect. With
17888 @option{-mno-explicit-relocs}, this optimization can be performed by the
17889 assembler and the linker alone without help from the compiler.
17890
17891 @item -mmcount-ra-address
17892 @itemx -mno-mcount-ra-address
17893 @opindex mmcount-ra-address
17894 @opindex mno-mcount-ra-address
17895 Emit (do not emit) code that allows @code{_mcount} to modify the
17896 calling function's return address. When enabled, this option extends
17897 the usual @code{_mcount} interface with a new @var{ra-address}
17898 parameter, which has type @code{intptr_t *} and is passed in register
17899 @code{$12}. @code{_mcount} can then modify the return address by
17900 doing both of the following:
17901 @itemize
17902 @item
17903 Returning the new address in register @code{$31}.
17904 @item
17905 Storing the new address in @code{*@var{ra-address}},
17906 if @var{ra-address} is nonnull.
17907 @end itemize
17908
17909 The default is @option{-mno-mcount-ra-address}.
17910
17911 @end table
17912
17913 @node MMIX Options
17914 @subsection MMIX Options
17915 @cindex MMIX Options
17916
17917 These options are defined for the MMIX:
17918
17919 @table @gcctabopt
17920 @item -mlibfuncs
17921 @itemx -mno-libfuncs
17922 @opindex mlibfuncs
17923 @opindex mno-libfuncs
17924 Specify that intrinsic library functions are being compiled, passing all
17925 values in registers, no matter the size.
17926
17927 @item -mepsilon
17928 @itemx -mno-epsilon
17929 @opindex mepsilon
17930 @opindex mno-epsilon
17931 Generate floating-point comparison instructions that compare with respect
17932 to the @code{rE} epsilon register.
17933
17934 @item -mabi=mmixware
17935 @itemx -mabi=gnu
17936 @opindex mabi=mmixware
17937 @opindex mabi=gnu
17938 Generate code that passes function parameters and return values that (in
17939 the called function) are seen as registers @code{$0} and up, as opposed to
17940 the GNU ABI which uses global registers @code{$231} and up.
17941
17942 @item -mzero-extend
17943 @itemx -mno-zero-extend
17944 @opindex mzero-extend
17945 @opindex mno-zero-extend
17946 When reading data from memory in sizes shorter than 64 bits, use (do not
17947 use) zero-extending load instructions by default, rather than
17948 sign-extending ones.
17949
17950 @item -mknuthdiv
17951 @itemx -mno-knuthdiv
17952 @opindex mknuthdiv
17953 @opindex mno-knuthdiv
17954 Make the result of a division yielding a remainder have the same sign as
17955 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
17956 remainder follows the sign of the dividend. Both methods are
17957 arithmetically valid, the latter being almost exclusively used.
17958
17959 @item -mtoplevel-symbols
17960 @itemx -mno-toplevel-symbols
17961 @opindex mtoplevel-symbols
17962 @opindex mno-toplevel-symbols
17963 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
17964 code can be used with the @code{PREFIX} assembly directive.
17965
17966 @item -melf
17967 @opindex melf
17968 Generate an executable in the ELF format, rather than the default
17969 @samp{mmo} format used by the @command{mmix} simulator.
17970
17971 @item -mbranch-predict
17972 @itemx -mno-branch-predict
17973 @opindex mbranch-predict
17974 @opindex mno-branch-predict
17975 Use (do not use) the probable-branch instructions, when static branch
17976 prediction indicates a probable branch.
17977
17978 @item -mbase-addresses
17979 @itemx -mno-base-addresses
17980 @opindex mbase-addresses
17981 @opindex mno-base-addresses
17982 Generate (do not generate) code that uses @emph{base addresses}. Using a
17983 base address automatically generates a request (handled by the assembler
17984 and the linker) for a constant to be set up in a global register. The
17985 register is used for one or more base address requests within the range 0
17986 to 255 from the value held in the register. The generally leads to short
17987 and fast code, but the number of different data items that can be
17988 addressed is limited. This means that a program that uses lots of static
17989 data may require @option{-mno-base-addresses}.
17990
17991 @item -msingle-exit
17992 @itemx -mno-single-exit
17993 @opindex msingle-exit
17994 @opindex mno-single-exit
17995 Force (do not force) generated code to have a single exit point in each
17996 function.
17997 @end table
17998
17999 @node MN10300 Options
18000 @subsection MN10300 Options
18001 @cindex MN10300 options
18002
18003 These @option{-m} options are defined for Matsushita MN10300 architectures:
18004
18005 @table @gcctabopt
18006 @item -mmult-bug
18007 @opindex mmult-bug
18008 Generate code to avoid bugs in the multiply instructions for the MN10300
18009 processors. This is the default.
18010
18011 @item -mno-mult-bug
18012 @opindex mno-mult-bug
18013 Do not generate code to avoid bugs in the multiply instructions for the
18014 MN10300 processors.
18015
18016 @item -mam33
18017 @opindex mam33
18018 Generate code using features specific to the AM33 processor.
18019
18020 @item -mno-am33
18021 @opindex mno-am33
18022 Do not generate code using features specific to the AM33 processor. This
18023 is the default.
18024
18025 @item -mam33-2
18026 @opindex mam33-2
18027 Generate code using features specific to the AM33/2.0 processor.
18028
18029 @item -mam34
18030 @opindex mam34
18031 Generate code using features specific to the AM34 processor.
18032
18033 @item -mtune=@var{cpu-type}
18034 @opindex mtune
18035 Use the timing characteristics of the indicated CPU type when
18036 scheduling instructions. This does not change the targeted processor
18037 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
18038 @samp{am33-2} or @samp{am34}.
18039
18040 @item -mreturn-pointer-on-d0
18041 @opindex mreturn-pointer-on-d0
18042 When generating a function that returns a pointer, return the pointer
18043 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
18044 only in @code{a0}, and attempts to call such functions without a prototype
18045 result in errors. Note that this option is on by default; use
18046 @option{-mno-return-pointer-on-d0} to disable it.
18047
18048 @item -mno-crt0
18049 @opindex mno-crt0
18050 Do not link in the C run-time initialization object file.
18051
18052 @item -mrelax
18053 @opindex mrelax
18054 Indicate to the linker that it should perform a relaxation optimization pass
18055 to shorten branches, calls and absolute memory addresses. This option only
18056 has an effect when used on the command line for the final link step.
18057
18058 This option makes symbolic debugging impossible.
18059
18060 @item -mliw
18061 @opindex mliw
18062 Allow the compiler to generate @emph{Long Instruction Word}
18063 instructions if the target is the @samp{AM33} or later. This is the
18064 default. This option defines the preprocessor macro @code{__LIW__}.
18065
18066 @item -mnoliw
18067 @opindex mnoliw
18068 Do not allow the compiler to generate @emph{Long Instruction Word}
18069 instructions. This option defines the preprocessor macro
18070 @code{__NO_LIW__}.
18071
18072 @item -msetlb
18073 @opindex msetlb
18074 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
18075 instructions if the target is the @samp{AM33} or later. This is the
18076 default. This option defines the preprocessor macro @code{__SETLB__}.
18077
18078 @item -mnosetlb
18079 @opindex mnosetlb
18080 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
18081 instructions. This option defines the preprocessor macro
18082 @code{__NO_SETLB__}.
18083
18084 @end table
18085
18086 @node Moxie Options
18087 @subsection Moxie Options
18088 @cindex Moxie Options
18089
18090 @table @gcctabopt
18091
18092 @item -meb
18093 @opindex meb
18094 Generate big-endian code. This is the default for @samp{moxie-*-*}
18095 configurations.
18096
18097 @item -mel
18098 @opindex mel
18099 Generate little-endian code.
18100
18101 @item -mmul.x
18102 @opindex mmul.x
18103 Generate mul.x and umul.x instructions. This is the default for
18104 @samp{moxiebox-*-*} configurations.
18105
18106 @item -mno-crt0
18107 @opindex mno-crt0
18108 Do not link in the C run-time initialization object file.
18109
18110 @end table
18111
18112 @node MSP430 Options
18113 @subsection MSP430 Options
18114 @cindex MSP430 Options
18115
18116 These options are defined for the MSP430:
18117
18118 @table @gcctabopt
18119
18120 @item -masm-hex
18121 @opindex masm-hex
18122 Force assembly output to always use hex constants. Normally such
18123 constants are signed decimals, but this option is available for
18124 testsuite and/or aesthetic purposes.
18125
18126 @item -mmcu=
18127 @opindex mmcu=
18128 Select the MCU to target. This is used to create a C preprocessor
18129 symbol based upon the MCU name, converted to upper case and pre- and
18130 post-fixed with @samp{__}. This in turn is used by the
18131 @file{msp430.h} header file to select an MCU-specific supplementary
18132 header file.
18133
18134 The option also sets the ISA to use. If the MCU name is one that is
18135 known to only support the 430 ISA then that is selected, otherwise the
18136 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
18137 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
18138 name selects the 430X ISA.
18139
18140 In addition an MCU-specific linker script is added to the linker
18141 command line. The script's name is the name of the MCU with
18142 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
18143 command line defines the C preprocessor symbol @code{__XXX__} and
18144 cause the linker to search for a script called @file{xxx.ld}.
18145
18146 This option is also passed on to the assembler.
18147
18148 @item -mcpu=
18149 @opindex mcpu=
18150 Specifies the ISA to use. Accepted values are @samp{msp430},
18151 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
18152 @option{-mmcu=} option should be used to select the ISA.
18153
18154 @item -msim
18155 @opindex msim
18156 Link to the simulator runtime libraries and linker script. Overrides
18157 any scripts that would be selected by the @option{-mmcu=} option.
18158
18159 @item -mlarge
18160 @opindex mlarge
18161 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
18162
18163 @item -msmall
18164 @opindex msmall
18165 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
18166
18167 @item -mrelax
18168 @opindex mrelax
18169 This option is passed to the assembler and linker, and allows the
18170 linker to perform certain optimizations that cannot be done until
18171 the final link.
18172
18173 @item mhwmult=
18174 @opindex mhwmult=
18175 Describes the type of hardware multiply supported by the target.
18176 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
18177 for the original 16-bit-only multiply supported by early MCUs.
18178 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
18179 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
18180 A value of @samp{auto} can also be given. This tells GCC to deduce
18181 the hardware multiply support based upon the MCU name provided by the
18182 @option{-mmcu} option. If no @option{-mmcu} option is specified then
18183 @samp{32bit} hardware multiply support is assumed. @samp{auto} is the
18184 default setting.
18185
18186 Hardware multiplies are normally performed by calling a library
18187 routine. This saves space in the generated code. When compiling at
18188 @option{-O3} or higher however the hardware multiplier is invoked
18189 inline. This makes for bigger, but faster code.
18190
18191 The hardware multiply routines disable interrupts whilst running and
18192 restore the previous interrupt state when they finish. This makes
18193 them safe to use inside interrupt handlers as well as in normal code.
18194
18195 @item -minrt
18196 @opindex minrt
18197 Enable the use of a minimum runtime environment - no static
18198 initializers or constructors. This is intended for memory-constrained
18199 devices. The compiler includes special symbols in some objects
18200 that tell the linker and runtime which code fragments are required.
18201
18202 @item -mcode-region=
18203 @itemx -mdata-region=
18204 @opindex mcode-region
18205 @opindex mdata-region
18206 These options tell the compiler where to place functions and data that
18207 do not have one of the @code{lower}, @code{upper}, @code{either} or
18208 @code{section} attributes. Possible values are @code{lower},
18209 @code{upper}, @code{either} or @code{any}. The first three behave
18210 like the corresponding attribute. The fourth possible value -
18211 @code{any} - is the default. It leaves placement entirely up to the
18212 linker script and how it assigns the standard sections (.text, .data
18213 etc) to the memory regions.
18214
18215 @end table
18216
18217 @node NDS32 Options
18218 @subsection NDS32 Options
18219 @cindex NDS32 Options
18220
18221 These options are defined for NDS32 implementations:
18222
18223 @table @gcctabopt
18224
18225 @item -mbig-endian
18226 @opindex mbig-endian
18227 Generate code in big-endian mode.
18228
18229 @item -mlittle-endian
18230 @opindex mlittle-endian
18231 Generate code in little-endian mode.
18232
18233 @item -mreduced-regs
18234 @opindex mreduced-regs
18235 Use reduced-set registers for register allocation.
18236
18237 @item -mfull-regs
18238 @opindex mfull-regs
18239 Use full-set registers for register allocation.
18240
18241 @item -mcmov
18242 @opindex mcmov
18243 Generate conditional move instructions.
18244
18245 @item -mno-cmov
18246 @opindex mno-cmov
18247 Do not generate conditional move instructions.
18248
18249 @item -mperf-ext
18250 @opindex mperf-ext
18251 Generate performance extension instructions.
18252
18253 @item -mno-perf-ext
18254 @opindex mno-perf-ext
18255 Do not generate performance extension instructions.
18256
18257 @item -mv3push
18258 @opindex mv3push
18259 Generate v3 push25/pop25 instructions.
18260
18261 @item -mno-v3push
18262 @opindex mno-v3push
18263 Do not generate v3 push25/pop25 instructions.
18264
18265 @item -m16-bit
18266 @opindex m16-bit
18267 Generate 16-bit instructions.
18268
18269 @item -mno-16-bit
18270 @opindex mno-16-bit
18271 Do not generate 16-bit instructions.
18272
18273 @item -misr-vector-size=@var{num}
18274 @opindex misr-vector-size
18275 Specify the size of each interrupt vector, which must be 4 or 16.
18276
18277 @item -mcache-block-size=@var{num}
18278 @opindex mcache-block-size
18279 Specify the size of each cache block,
18280 which must be a power of 2 between 4 and 512.
18281
18282 @item -march=@var{arch}
18283 @opindex march
18284 Specify the name of the target architecture.
18285
18286 @item -mcmodel=@var{code-model}
18287 @opindex mcmodel
18288 Set the code model to one of
18289 @table @asis
18290 @item @samp{small}
18291 All the data and read-only data segments must be within 512KB addressing space.
18292 The text segment must be within 16MB addressing space.
18293 @item @samp{medium}
18294 The data segment must be within 512KB while the read-only data segment can be
18295 within 4GB addressing space. The text segment should be still within 16MB
18296 addressing space.
18297 @item @samp{large}
18298 All the text and data segments can be within 4GB addressing space.
18299 @end table
18300
18301 @item -mctor-dtor
18302 @opindex mctor-dtor
18303 Enable constructor/destructor feature.
18304
18305 @item -mrelax
18306 @opindex mrelax
18307 Guide linker to relax instructions.
18308
18309 @end table
18310
18311 @node Nios II Options
18312 @subsection Nios II Options
18313 @cindex Nios II options
18314 @cindex Altera Nios II options
18315
18316 These are the options defined for the Altera Nios II processor.
18317
18318 @table @gcctabopt
18319
18320 @item -G @var{num}
18321 @opindex G
18322 @cindex smaller data references
18323 Put global and static objects less than or equal to @var{num} bytes
18324 into the small data or BSS sections instead of the normal data or BSS
18325 sections. The default value of @var{num} is 8.
18326
18327 @item -mgpopt=@var{option}
18328 @item -mgpopt
18329 @itemx -mno-gpopt
18330 @opindex mgpopt
18331 @opindex mno-gpopt
18332 Generate (do not generate) GP-relative accesses. The following
18333 @var{option} names are recognized:
18334
18335 @table @samp
18336
18337 @item none
18338 Do not generate GP-relative accesses.
18339
18340 @item local
18341 Generate GP-relative accesses for small data objects that are not
18342 external or weak. Also use GP-relative addressing for objects that
18343 have been explicitly placed in a small data section via a @code{section}
18344 attribute.
18345
18346 @item global
18347 As for @samp{local}, but also generate GP-relative accesses for
18348 small data objects that are external or weak. If you use this option,
18349 you must ensure that all parts of your program (including libraries) are
18350 compiled with the same @option{-G} setting.
18351
18352 @item data
18353 Generate GP-relative accesses for all data objects in the program. If you
18354 use this option, the entire data and BSS segments
18355 of your program must fit in 64K of memory and you must use an appropriate
18356 linker script to allocate them within the addressible range of the
18357 global pointer.
18358
18359 @item all
18360 Generate GP-relative addresses for function pointers as well as data
18361 pointers. If you use this option, the entire text, data, and BSS segments
18362 of your program must fit in 64K of memory and you must use an appropriate
18363 linker script to allocate them within the addressible range of the
18364 global pointer.
18365
18366 @end table
18367
18368 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
18369 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
18370
18371 The default is @option{-mgpopt} except when @option{-fpic} or
18372 @option{-fPIC} is specified to generate position-independent code.
18373 Note that the Nios II ABI does not permit GP-relative accesses from
18374 shared libraries.
18375
18376 You may need to specify @option{-mno-gpopt} explicitly when building
18377 programs that include large amounts of small data, including large
18378 GOT data sections. In this case, the 16-bit offset for GP-relative
18379 addressing may not be large enough to allow access to the entire
18380 small data section.
18381
18382 @item -mel
18383 @itemx -meb
18384 @opindex mel
18385 @opindex meb
18386 Generate little-endian (default) or big-endian (experimental) code,
18387 respectively.
18388
18389 @item -mbypass-cache
18390 @itemx -mno-bypass-cache
18391 @opindex mno-bypass-cache
18392 @opindex mbypass-cache
18393 Force all load and store instructions to always bypass cache by
18394 using I/O variants of the instructions. The default is not to
18395 bypass the cache.
18396
18397 @item -mno-cache-volatile
18398 @itemx -mcache-volatile
18399 @opindex mcache-volatile
18400 @opindex mno-cache-volatile
18401 Volatile memory access bypass the cache using the I/O variants of
18402 the load and store instructions. The default is not to bypass the cache.
18403
18404 @item -mno-fast-sw-div
18405 @itemx -mfast-sw-div
18406 @opindex mno-fast-sw-div
18407 @opindex mfast-sw-div
18408 Do not use table-based fast divide for small numbers. The default
18409 is to use the fast divide at @option{-O3} and above.
18410
18411 @item -mno-hw-mul
18412 @itemx -mhw-mul
18413 @itemx -mno-hw-mulx
18414 @itemx -mhw-mulx
18415 @itemx -mno-hw-div
18416 @itemx -mhw-div
18417 @opindex mno-hw-mul
18418 @opindex mhw-mul
18419 @opindex mno-hw-mulx
18420 @opindex mhw-mulx
18421 @opindex mno-hw-div
18422 @opindex mhw-div
18423 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
18424 instructions by the compiler. The default is to emit @code{mul}
18425 and not emit @code{div} and @code{mulx}.
18426
18427 @item -mcustom-@var{insn}=@var{N}
18428 @itemx -mno-custom-@var{insn}
18429 @opindex mcustom-@var{insn}
18430 @opindex mno-custom-@var{insn}
18431 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
18432 custom instruction with encoding @var{N} when generating code that uses
18433 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
18434 instruction 253 for single-precision floating-point add operations instead
18435 of the default behavior of using a library call.
18436
18437 The following values of @var{insn} are supported. Except as otherwise
18438 noted, floating-point operations are expected to be implemented with
18439 normal IEEE 754 semantics and correspond directly to the C operators or the
18440 equivalent GCC built-in functions (@pxref{Other Builtins}).
18441
18442 Single-precision floating point:
18443 @table @asis
18444
18445 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
18446 Binary arithmetic operations.
18447
18448 @item @samp{fnegs}
18449 Unary negation.
18450
18451 @item @samp{fabss}
18452 Unary absolute value.
18453
18454 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
18455 Comparison operations.
18456
18457 @item @samp{fmins}, @samp{fmaxs}
18458 Floating-point minimum and maximum. These instructions are only
18459 generated if @option{-ffinite-math-only} is specified.
18460
18461 @item @samp{fsqrts}
18462 Unary square root operation.
18463
18464 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
18465 Floating-point trigonometric and exponential functions. These instructions
18466 are only generated if @option{-funsafe-math-optimizations} is also specified.
18467
18468 @end table
18469
18470 Double-precision floating point:
18471 @table @asis
18472
18473 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
18474 Binary arithmetic operations.
18475
18476 @item @samp{fnegd}
18477 Unary negation.
18478
18479 @item @samp{fabsd}
18480 Unary absolute value.
18481
18482 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
18483 Comparison operations.
18484
18485 @item @samp{fmind}, @samp{fmaxd}
18486 Double-precision minimum and maximum. These instructions are only
18487 generated if @option{-ffinite-math-only} is specified.
18488
18489 @item @samp{fsqrtd}
18490 Unary square root operation.
18491
18492 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
18493 Double-precision trigonometric and exponential functions. These instructions
18494 are only generated if @option{-funsafe-math-optimizations} is also specified.
18495
18496 @end table
18497
18498 Conversions:
18499 @table @asis
18500 @item @samp{fextsd}
18501 Conversion from single precision to double precision.
18502
18503 @item @samp{ftruncds}
18504 Conversion from double precision to single precision.
18505
18506 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
18507 Conversion from floating point to signed or unsigned integer types, with
18508 truncation towards zero.
18509
18510 @item @samp{round}
18511 Conversion from single-precision floating point to signed integer,
18512 rounding to the nearest integer and ties away from zero.
18513 This corresponds to the @code{__builtin_lroundf} function when
18514 @option{-fno-math-errno} is used.
18515
18516 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
18517 Conversion from signed or unsigned integer types to floating-point types.
18518
18519 @end table
18520
18521 In addition, all of the following transfer instructions for internal
18522 registers X and Y must be provided to use any of the double-precision
18523 floating-point instructions. Custom instructions taking two
18524 double-precision source operands expect the first operand in the
18525 64-bit register X. The other operand (or only operand of a unary
18526 operation) is given to the custom arithmetic instruction with the
18527 least significant half in source register @var{src1} and the most
18528 significant half in @var{src2}. A custom instruction that returns a
18529 double-precision result returns the most significant 32 bits in the
18530 destination register and the other half in 32-bit register Y.
18531 GCC automatically generates the necessary code sequences to write
18532 register X and/or read register Y when double-precision floating-point
18533 instructions are used.
18534
18535 @table @asis
18536
18537 @item @samp{fwrx}
18538 Write @var{src1} into the least significant half of X and @var{src2} into
18539 the most significant half of X.
18540
18541 @item @samp{fwry}
18542 Write @var{src1} into Y.
18543
18544 @item @samp{frdxhi}, @samp{frdxlo}
18545 Read the most or least (respectively) significant half of X and store it in
18546 @var{dest}.
18547
18548 @item @samp{frdy}
18549 Read the value of Y and store it into @var{dest}.
18550 @end table
18551
18552 Note that you can gain more local control over generation of Nios II custom
18553 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
18554 and @code{target("no-custom-@var{insn}")} function attributes
18555 (@pxref{Function Attributes})
18556 or pragmas (@pxref{Function Specific Option Pragmas}).
18557
18558 @item -mcustom-fpu-cfg=@var{name}
18559 @opindex mcustom-fpu-cfg
18560
18561 This option enables a predefined, named set of custom instruction encodings
18562 (see @option{-mcustom-@var{insn}} above).
18563 Currently, the following sets are defined:
18564
18565 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
18566 @gccoptlist{-mcustom-fmuls=252 @gol
18567 -mcustom-fadds=253 @gol
18568 -mcustom-fsubs=254 @gol
18569 -fsingle-precision-constant}
18570
18571 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
18572 @gccoptlist{-mcustom-fmuls=252 @gol
18573 -mcustom-fadds=253 @gol
18574 -mcustom-fsubs=254 @gol
18575 -mcustom-fdivs=255 @gol
18576 -fsingle-precision-constant}
18577
18578 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
18579 @gccoptlist{-mcustom-floatus=243 @gol
18580 -mcustom-fixsi=244 @gol
18581 -mcustom-floatis=245 @gol
18582 -mcustom-fcmpgts=246 @gol
18583 -mcustom-fcmples=249 @gol
18584 -mcustom-fcmpeqs=250 @gol
18585 -mcustom-fcmpnes=251 @gol
18586 -mcustom-fmuls=252 @gol
18587 -mcustom-fadds=253 @gol
18588 -mcustom-fsubs=254 @gol
18589 -mcustom-fdivs=255 @gol
18590 -fsingle-precision-constant}
18591
18592 Custom instruction assignments given by individual
18593 @option{-mcustom-@var{insn}=} options override those given by
18594 @option{-mcustom-fpu-cfg=}, regardless of the
18595 order of the options on the command line.
18596
18597 Note that you can gain more local control over selection of a FPU
18598 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
18599 function attribute (@pxref{Function Attributes})
18600 or pragma (@pxref{Function Specific Option Pragmas}).
18601
18602 @end table
18603
18604 These additional @samp{-m} options are available for the Altera Nios II
18605 ELF (bare-metal) target:
18606
18607 @table @gcctabopt
18608
18609 @item -mhal
18610 @opindex mhal
18611 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
18612 startup and termination code, and is typically used in conjunction with
18613 @option{-msys-crt0=} to specify the location of the alternate startup code
18614 provided by the HAL BSP.
18615
18616 @item -msmallc
18617 @opindex msmallc
18618 Link with a limited version of the C library, @option{-lsmallc}, rather than
18619 Newlib.
18620
18621 @item -msys-crt0=@var{startfile}
18622 @opindex msys-crt0
18623 @var{startfile} is the file name of the startfile (crt0) to use
18624 when linking. This option is only useful in conjunction with @option{-mhal}.
18625
18626 @item -msys-lib=@var{systemlib}
18627 @opindex msys-lib
18628 @var{systemlib} is the library name of the library that provides
18629 low-level system calls required by the C library,
18630 e.g. @code{read} and @code{write}.
18631 This option is typically used to link with a library provided by a HAL BSP.
18632
18633 @end table
18634
18635 @node Nvidia PTX Options
18636 @subsection Nvidia PTX Options
18637 @cindex Nvidia PTX options
18638 @cindex nvptx options
18639
18640 These options are defined for Nvidia PTX:
18641
18642 @table @gcctabopt
18643
18644 @item -m32
18645 @itemx -m64
18646 @opindex m32
18647 @opindex m64
18648 Generate code for 32-bit or 64-bit ABI.
18649
18650 @item -mmainkernel
18651 @opindex mmainkernel
18652 Link in code for a __main kernel. This is for stand-alone instead of
18653 offloading execution.
18654
18655 @end table
18656
18657 @node PDP-11 Options
18658 @subsection PDP-11 Options
18659 @cindex PDP-11 Options
18660
18661 These options are defined for the PDP-11:
18662
18663 @table @gcctabopt
18664 @item -mfpu
18665 @opindex mfpu
18666 Use hardware FPP floating point. This is the default. (FIS floating
18667 point on the PDP-11/40 is not supported.)
18668
18669 @item -msoft-float
18670 @opindex msoft-float
18671 Do not use hardware floating point.
18672
18673 @item -mac0
18674 @opindex mac0
18675 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
18676
18677 @item -mno-ac0
18678 @opindex mno-ac0
18679 Return floating-point results in memory. This is the default.
18680
18681 @item -m40
18682 @opindex m40
18683 Generate code for a PDP-11/40.
18684
18685 @item -m45
18686 @opindex m45
18687 Generate code for a PDP-11/45. This is the default.
18688
18689 @item -m10
18690 @opindex m10
18691 Generate code for a PDP-11/10.
18692
18693 @item -mbcopy-builtin
18694 @opindex mbcopy-builtin
18695 Use inline @code{movmemhi} patterns for copying memory. This is the
18696 default.
18697
18698 @item -mbcopy
18699 @opindex mbcopy
18700 Do not use inline @code{movmemhi} patterns for copying memory.
18701
18702 @item -mint16
18703 @itemx -mno-int32
18704 @opindex mint16
18705 @opindex mno-int32
18706 Use 16-bit @code{int}. This is the default.
18707
18708 @item -mint32
18709 @itemx -mno-int16
18710 @opindex mint32
18711 @opindex mno-int16
18712 Use 32-bit @code{int}.
18713
18714 @item -mfloat64
18715 @itemx -mno-float32
18716 @opindex mfloat64
18717 @opindex mno-float32
18718 Use 64-bit @code{float}. This is the default.
18719
18720 @item -mfloat32
18721 @itemx -mno-float64
18722 @opindex mfloat32
18723 @opindex mno-float64
18724 Use 32-bit @code{float}.
18725
18726 @item -mabshi
18727 @opindex mabshi
18728 Use @code{abshi2} pattern. This is the default.
18729
18730 @item -mno-abshi
18731 @opindex mno-abshi
18732 Do not use @code{abshi2} pattern.
18733
18734 @item -mbranch-expensive
18735 @opindex mbranch-expensive
18736 Pretend that branches are expensive. This is for experimenting with
18737 code generation only.
18738
18739 @item -mbranch-cheap
18740 @opindex mbranch-cheap
18741 Do not pretend that branches are expensive. This is the default.
18742
18743 @item -munix-asm
18744 @opindex munix-asm
18745 Use Unix assembler syntax. This is the default when configured for
18746 @samp{pdp11-*-bsd}.
18747
18748 @item -mdec-asm
18749 @opindex mdec-asm
18750 Use DEC assembler syntax. This is the default when configured for any
18751 PDP-11 target other than @samp{pdp11-*-bsd}.
18752 @end table
18753
18754 @node picoChip Options
18755 @subsection picoChip Options
18756 @cindex picoChip options
18757
18758 These @samp{-m} options are defined for picoChip implementations:
18759
18760 @table @gcctabopt
18761
18762 @item -mae=@var{ae_type}
18763 @opindex mcpu
18764 Set the instruction set, register set, and instruction scheduling
18765 parameters for array element type @var{ae_type}. Supported values
18766 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
18767
18768 @option{-mae=ANY} selects a completely generic AE type. Code
18769 generated with this option runs on any of the other AE types. The
18770 code is not as efficient as it would be if compiled for a specific
18771 AE type, and some types of operation (e.g., multiplication) do not
18772 work properly on all types of AE.
18773
18774 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
18775 for compiled code, and is the default.
18776
18777 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
18778 option may suffer from poor performance of byte (char) manipulation,
18779 since the DSP AE does not provide hardware support for byte load/stores.
18780
18781 @item -msymbol-as-address
18782 Enable the compiler to directly use a symbol name as an address in a
18783 load/store instruction, without first loading it into a
18784 register. Typically, the use of this option generates larger
18785 programs, which run faster than when the option isn't used. However, the
18786 results vary from program to program, so it is left as a user option,
18787 rather than being permanently enabled.
18788
18789 @item -mno-inefficient-warnings
18790 Disables warnings about the generation of inefficient code. These
18791 warnings can be generated, for example, when compiling code that
18792 performs byte-level memory operations on the MAC AE type. The MAC AE has
18793 no hardware support for byte-level memory operations, so all byte
18794 load/stores must be synthesized from word load/store operations. This is
18795 inefficient and a warning is generated to indicate
18796 that you should rewrite the code to avoid byte operations, or to target
18797 an AE type that has the necessary hardware support. This option disables
18798 these warnings.
18799
18800 @end table
18801
18802 @node PowerPC Options
18803 @subsection PowerPC Options
18804 @cindex PowerPC options
18805
18806 These are listed under @xref{RS/6000 and PowerPC Options}.
18807
18808 @node RL78 Options
18809 @subsection RL78 Options
18810 @cindex RL78 Options
18811
18812 @table @gcctabopt
18813
18814 @item -msim
18815 @opindex msim
18816 Links in additional target libraries to support operation within a
18817 simulator.
18818
18819 @item -mmul=none
18820 @itemx -mmul=g10
18821 @itemx -mmul=g13
18822 @itemx -mmul=g14
18823 @itemx -mmul=rl78
18824 @opindex mmul
18825 Specifies the type of hardware multiplication and division support to
18826 be used. The simplest is @code{none}, which uses software for both
18827 multiplication and division. This is the default. The @code{g13}
18828 value is for the hardware multiply/divide peripheral found on the
18829 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
18830 the multiplication and division instructions supported by the RL78/G14
18831 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
18832 the value @code{mg10} is an alias for @code{none}.
18833
18834 In addition a C preprocessor macro is defined, based upon the setting
18835 of this option. Possible values are: @code{__RL78_MUL_NONE__},
18836 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
18837
18838 @item -mcpu=g10
18839 @itemx -mcpu=g13
18840 @itemx -mcpu=g14
18841 @itemx -mcpu=rl78
18842 @opindex mcpu
18843 Specifies the RL78 core to target. The default is the G14 core, also
18844 known as an S3 core or just RL78. The G13 or S2 core does not have
18845 multiply or divide instructions, instead it uses a hardware peripheral
18846 for these operations. The G10 or S1 core does not have register
18847 banks, so it uses a different calling convention.
18848
18849 If this option is set it also selects the type of hardware multiply
18850 support to use, unless this is overridden by an explicit
18851 @option{-mmul=none} option on the command line. Thus specifying
18852 @option{-mcpu=g13} enables the use of the G13 hardware multiply
18853 peripheral and specifying @option{-mcpu=g10} disables the use of
18854 hardware multipications altogether.
18855
18856 Note, although the RL78/G14 core is the default target, specifying
18857 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
18858 change the behaviour of the toolchain since it also enables G14
18859 hardware multiply support. If these options are not specified on the
18860 command line then software multiplication routines will be used even
18861 though the code targets the RL78 core. This is for backwards
18862 compatibility with older toolchains which did not have hardware
18863 multiply and divide support.
18864
18865 In addition a C preprocessor macro is defined, based upon the setting
18866 of this option. Possible values are: @code{__RL78_G10__},
18867 @code{__RL78_G13__} or @code{__RL78_G14__}.
18868
18869 @item -mg10
18870 @itemx -mg13
18871 @itemx -mg14
18872 @itemx -mrl78
18873 @opindex mg10
18874 @opindex mg13
18875 @opindex mg14
18876 @opindex mrl78
18877 These are aliases for the corresponding @option{-mcpu=} option. They
18878 are provided for backwards compatibility.
18879
18880 @item -mallregs
18881 @opindex mallregs
18882 Allow the compiler to use all of the available registers. By default
18883 registers @code{r24..r31} are reserved for use in interrupt handlers.
18884 With this option enabled these registers can be used in ordinary
18885 functions as well.
18886
18887 @item -m64bit-doubles
18888 @itemx -m32bit-doubles
18889 @opindex m64bit-doubles
18890 @opindex m32bit-doubles
18891 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
18892 or 32 bits (@option{-m32bit-doubles}) in size. The default is
18893 @option{-m32bit-doubles}.
18894
18895 @end table
18896
18897 @node RS/6000 and PowerPC Options
18898 @subsection IBM RS/6000 and PowerPC Options
18899 @cindex RS/6000 and PowerPC Options
18900 @cindex IBM RS/6000 and PowerPC Options
18901
18902 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
18903 @table @gcctabopt
18904 @item -mpowerpc-gpopt
18905 @itemx -mno-powerpc-gpopt
18906 @itemx -mpowerpc-gfxopt
18907 @itemx -mno-powerpc-gfxopt
18908 @need 800
18909 @itemx -mpowerpc64
18910 @itemx -mno-powerpc64
18911 @itemx -mmfcrf
18912 @itemx -mno-mfcrf
18913 @itemx -mpopcntb
18914 @itemx -mno-popcntb
18915 @itemx -mpopcntd
18916 @itemx -mno-popcntd
18917 @itemx -mfprnd
18918 @itemx -mno-fprnd
18919 @need 800
18920 @itemx -mcmpb
18921 @itemx -mno-cmpb
18922 @itemx -mmfpgpr
18923 @itemx -mno-mfpgpr
18924 @itemx -mhard-dfp
18925 @itemx -mno-hard-dfp
18926 @opindex mpowerpc-gpopt
18927 @opindex mno-powerpc-gpopt
18928 @opindex mpowerpc-gfxopt
18929 @opindex mno-powerpc-gfxopt
18930 @opindex mpowerpc64
18931 @opindex mno-powerpc64
18932 @opindex mmfcrf
18933 @opindex mno-mfcrf
18934 @opindex mpopcntb
18935 @opindex mno-popcntb
18936 @opindex mpopcntd
18937 @opindex mno-popcntd
18938 @opindex mfprnd
18939 @opindex mno-fprnd
18940 @opindex mcmpb
18941 @opindex mno-cmpb
18942 @opindex mmfpgpr
18943 @opindex mno-mfpgpr
18944 @opindex mhard-dfp
18945 @opindex mno-hard-dfp
18946 You use these options to specify which instructions are available on the
18947 processor you are using. The default value of these options is
18948 determined when configuring GCC@. Specifying the
18949 @option{-mcpu=@var{cpu_type}} overrides the specification of these
18950 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
18951 rather than the options listed above.
18952
18953 Specifying @option{-mpowerpc-gpopt} allows
18954 GCC to use the optional PowerPC architecture instructions in the
18955 General Purpose group, including floating-point square root. Specifying
18956 @option{-mpowerpc-gfxopt} allows GCC to
18957 use the optional PowerPC architecture instructions in the Graphics
18958 group, including floating-point select.
18959
18960 The @option{-mmfcrf} option allows GCC to generate the move from
18961 condition register field instruction implemented on the POWER4
18962 processor and other processors that support the PowerPC V2.01
18963 architecture.
18964 The @option{-mpopcntb} option allows GCC to generate the popcount and
18965 double-precision FP reciprocal estimate instruction implemented on the
18966 POWER5 processor and other processors that support the PowerPC V2.02
18967 architecture.
18968 The @option{-mpopcntd} option allows GCC to generate the popcount
18969 instruction implemented on the POWER7 processor and other processors
18970 that support the PowerPC V2.06 architecture.
18971 The @option{-mfprnd} option allows GCC to generate the FP round to
18972 integer instructions implemented on the POWER5+ processor and other
18973 processors that support the PowerPC V2.03 architecture.
18974 The @option{-mcmpb} option allows GCC to generate the compare bytes
18975 instruction implemented on the POWER6 processor and other processors
18976 that support the PowerPC V2.05 architecture.
18977 The @option{-mmfpgpr} option allows GCC to generate the FP move to/from
18978 general-purpose register instructions implemented on the POWER6X
18979 processor and other processors that support the extended PowerPC V2.05
18980 architecture.
18981 The @option{-mhard-dfp} option allows GCC to generate the decimal
18982 floating-point instructions implemented on some POWER processors.
18983
18984 The @option{-mpowerpc64} option allows GCC to generate the additional
18985 64-bit instructions that are found in the full PowerPC64 architecture
18986 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
18987 @option{-mno-powerpc64}.
18988
18989 @item -mcpu=@var{cpu_type}
18990 @opindex mcpu
18991 Set architecture type, register usage, and
18992 instruction scheduling parameters for machine type @var{cpu_type}.
18993 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
18994 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
18995 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
18996 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
18997 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
18998 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
18999 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
19000 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
19001 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
19002 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8}, @samp{powerpc},
19003 @samp{powerpc64}, @samp{powerpc64le}, and @samp{rs64}.
19004
19005 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
19006 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
19007 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
19008 architecture machine types, with an appropriate, generic processor
19009 model assumed for scheduling purposes.
19010
19011 The other options specify a specific processor. Code generated under
19012 those options runs best on that processor, and may not run at all on
19013 others.
19014
19015 The @option{-mcpu} options automatically enable or disable the
19016 following options:
19017
19018 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
19019 -mpopcntb -mpopcntd -mpowerpc64 @gol
19020 -mpowerpc-gpopt -mpowerpc-gfxopt -msingle-float -mdouble-float @gol
19021 -msimple-fpu -mstring -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
19022 -mcrypto -mdirect-move -mpower8-fusion -mpower8-vector @gol
19023 -mquad-memory -mquad-memory-atomic}
19024
19025 The particular options set for any particular CPU varies between
19026 compiler versions, depending on what setting seems to produce optimal
19027 code for that CPU; it doesn't necessarily reflect the actual hardware's
19028 capabilities. If you wish to set an individual option to a particular
19029 value, you may specify it after the @option{-mcpu} option, like
19030 @option{-mcpu=970 -mno-altivec}.
19031
19032 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
19033 not enabled or disabled by the @option{-mcpu} option at present because
19034 AIX does not have full support for these options. You may still
19035 enable or disable them individually if you're sure it'll work in your
19036 environment.
19037
19038 @item -mtune=@var{cpu_type}
19039 @opindex mtune
19040 Set the instruction scheduling parameters for machine type
19041 @var{cpu_type}, but do not set the architecture type or register usage,
19042 as @option{-mcpu=@var{cpu_type}} does. The same
19043 values for @var{cpu_type} are used for @option{-mtune} as for
19044 @option{-mcpu}. If both are specified, the code generated uses the
19045 architecture and registers set by @option{-mcpu}, but the
19046 scheduling parameters set by @option{-mtune}.
19047
19048 @item -mcmodel=small
19049 @opindex mcmodel=small
19050 Generate PowerPC64 code for the small model: The TOC is limited to
19051 64k.
19052
19053 @item -mcmodel=medium
19054 @opindex mcmodel=medium
19055 Generate PowerPC64 code for the medium model: The TOC and other static
19056 data may be up to a total of 4G in size.
19057
19058 @item -mcmodel=large
19059 @opindex mcmodel=large
19060 Generate PowerPC64 code for the large model: The TOC may be up to 4G
19061 in size. Other data and code is only limited by the 64-bit address
19062 space.
19063
19064 @item -maltivec
19065 @itemx -mno-altivec
19066 @opindex maltivec
19067 @opindex mno-altivec
19068 Generate code that uses (does not use) AltiVec instructions, and also
19069 enable the use of built-in functions that allow more direct access to
19070 the AltiVec instruction set. You may also need to set
19071 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
19072 enhancements.
19073
19074 When @option{-maltivec} is used, rather than @option{-maltivec=le} or
19075 @option{-maltivec=be}, the element order for Altivec intrinsics such
19076 as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
19077 match array element order corresponding to the endianness of the
19078 target. That is, element zero identifies the leftmost element in a
19079 vector register when targeting a big-endian platform, and identifies
19080 the rightmost element in a vector register when targeting a
19081 little-endian platform.
19082
19083 @item -maltivec=be
19084 @opindex maltivec=be
19085 Generate Altivec instructions using big-endian element order,
19086 regardless of whether the target is big- or little-endian. This is
19087 the default when targeting a big-endian platform.
19088
19089 The element order is used to interpret element numbers in Altivec
19090 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19091 @code{vec_insert}. By default, these match array element order
19092 corresponding to the endianness for the target.
19093
19094 @item -maltivec=le
19095 @opindex maltivec=le
19096 Generate Altivec instructions using little-endian element order,
19097 regardless of whether the target is big- or little-endian. This is
19098 the default when targeting a little-endian platform. This option is
19099 currently ignored when targeting a big-endian platform.
19100
19101 The element order is used to interpret element numbers in Altivec
19102 intrinsics such as @code{vec_splat}, @code{vec_extract}, and
19103 @code{vec_insert}. By default, these match array element order
19104 corresponding to the endianness for the target.
19105
19106 @item -mvrsave
19107 @itemx -mno-vrsave
19108 @opindex mvrsave
19109 @opindex mno-vrsave
19110 Generate VRSAVE instructions when generating AltiVec code.
19111
19112 @item -mgen-cell-microcode
19113 @opindex mgen-cell-microcode
19114 Generate Cell microcode instructions.
19115
19116 @item -mwarn-cell-microcode
19117 @opindex mwarn-cell-microcode
19118 Warn when a Cell microcode instruction is emitted. An example
19119 of a Cell microcode instruction is a variable shift.
19120
19121 @item -msecure-plt
19122 @opindex msecure-plt
19123 Generate code that allows @command{ld} and @command{ld.so}
19124 to build executables and shared
19125 libraries with non-executable @code{.plt} and @code{.got} sections.
19126 This is a PowerPC
19127 32-bit SYSV ABI option.
19128
19129 @item -mbss-plt
19130 @opindex mbss-plt
19131 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
19132 fills in, and
19133 requires @code{.plt} and @code{.got}
19134 sections that are both writable and executable.
19135 This is a PowerPC 32-bit SYSV ABI option.
19136
19137 @item -misel
19138 @itemx -mno-isel
19139 @opindex misel
19140 @opindex mno-isel
19141 This switch enables or disables the generation of ISEL instructions.
19142
19143 @item -misel=@var{yes/no}
19144 This switch has been deprecated. Use @option{-misel} and
19145 @option{-mno-isel} instead.
19146
19147 @item -mspe
19148 @itemx -mno-spe
19149 @opindex mspe
19150 @opindex mno-spe
19151 This switch enables or disables the generation of SPE simd
19152 instructions.
19153
19154 @item -mpaired
19155 @itemx -mno-paired
19156 @opindex mpaired
19157 @opindex mno-paired
19158 This switch enables or disables the generation of PAIRED simd
19159 instructions.
19160
19161 @item -mspe=@var{yes/no}
19162 This option has been deprecated. Use @option{-mspe} and
19163 @option{-mno-spe} instead.
19164
19165 @item -mvsx
19166 @itemx -mno-vsx
19167 @opindex mvsx
19168 @opindex mno-vsx
19169 Generate code that uses (does not use) vector/scalar (VSX)
19170 instructions, and also enable the use of built-in functions that allow
19171 more direct access to the VSX instruction set.
19172
19173 @item -mcrypto
19174 @itemx -mno-crypto
19175 @opindex mcrypto
19176 @opindex mno-crypto
19177 Enable the use (disable) of the built-in functions that allow direct
19178 access to the cryptographic instructions that were added in version
19179 2.07 of the PowerPC ISA.
19180
19181 @item -mdirect-move
19182 @itemx -mno-direct-move
19183 @opindex mdirect-move
19184 @opindex mno-direct-move
19185 Generate code that uses (does not use) the instructions to move data
19186 between the general purpose registers and the vector/scalar (VSX)
19187 registers that were added in version 2.07 of the PowerPC ISA.
19188
19189 @item -mpower8-fusion
19190 @itemx -mno-power8-fusion
19191 @opindex mpower8-fusion
19192 @opindex mno-power8-fusion
19193 Generate code that keeps (does not keeps) some integer operations
19194 adjacent so that the instructions can be fused together on power8 and
19195 later processors.
19196
19197 @item -mpower8-vector
19198 @itemx -mno-power8-vector
19199 @opindex mpower8-vector
19200 @opindex mno-power8-vector
19201 Generate code that uses (does not use) the vector and scalar
19202 instructions that were added in version 2.07 of the PowerPC ISA. Also
19203 enable the use of built-in functions that allow more direct access to
19204 the vector instructions.
19205
19206 @item -mquad-memory
19207 @itemx -mno-quad-memory
19208 @opindex mquad-memory
19209 @opindex mno-quad-memory
19210 Generate code that uses (does not use) the non-atomic quad word memory
19211 instructions. The @option{-mquad-memory} option requires use of
19212 64-bit mode.
19213
19214 @item -mquad-memory-atomic
19215 @itemx -mno-quad-memory-atomic
19216 @opindex mquad-memory-atomic
19217 @opindex mno-quad-memory-atomic
19218 Generate code that uses (does not use) the atomic quad word memory
19219 instructions. The @option{-mquad-memory-atomic} option requires use of
19220 64-bit mode.
19221
19222 @item -mupper-regs-df
19223 @itemx -mno-upper-regs-df
19224 @opindex mupper-regs-df
19225 @opindex mno-upper-regs-df
19226 Generate code that uses (does not use) the scalar double precision
19227 instructions that target all 64 registers in the vector/scalar
19228 floating point register set that were added in version 2.06 of the
19229 PowerPC ISA. @option{-mupper-regs-df} is turned on by default if you
19230 use any of the @option{-mcpu=power7}, @option{-mcpu=power8}, or
19231 @option{-mvsx} options.
19232
19233 @item -mupper-regs-sf
19234 @itemx -mno-upper-regs-sf
19235 @opindex mupper-regs-sf
19236 @opindex mno-upper-regs-sf
19237 Generate code that uses (does not use) the scalar single precision
19238 instructions that target all 64 registers in the vector/scalar
19239 floating point register set that were added in version 2.07 of the
19240 PowerPC ISA. @option{-mupper-regs-sf} is turned on by default if you
19241 use either of the @option{-mcpu=power8} or @option{-mpower8-vector}
19242 options.
19243
19244 @item -mupper-regs
19245 @itemx -mno-upper-regs
19246 @opindex mupper-regs
19247 @opindex mno-upper-regs
19248 Generate code that uses (does not use) the scalar
19249 instructions that target all 64 registers in the vector/scalar
19250 floating point register set, depending on the model of the machine.
19251
19252 If the @option{-mno-upper-regs} option is used, it turns off both
19253 @option{-mupper-regs-sf} and @option{-mupper-regs-df} options.
19254
19255 @item -mfloat-gprs=@var{yes/single/double/no}
19256 @itemx -mfloat-gprs
19257 @opindex mfloat-gprs
19258 This switch enables or disables the generation of floating-point
19259 operations on the general-purpose registers for architectures that
19260 support it.
19261
19262 The argument @samp{yes} or @samp{single} enables the use of
19263 single-precision floating-point operations.
19264
19265 The argument @samp{double} enables the use of single and
19266 double-precision floating-point operations.
19267
19268 The argument @samp{no} disables floating-point operations on the
19269 general-purpose registers.
19270
19271 This option is currently only available on the MPC854x.
19272
19273 @item -m32
19274 @itemx -m64
19275 @opindex m32
19276 @opindex m64
19277 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
19278 targets (including GNU/Linux). The 32-bit environment sets int, long
19279 and pointer to 32 bits and generates code that runs on any PowerPC
19280 variant. The 64-bit environment sets int to 32 bits and long and
19281 pointer to 64 bits, and generates code for PowerPC64, as for
19282 @option{-mpowerpc64}.
19283
19284 @item -mfull-toc
19285 @itemx -mno-fp-in-toc
19286 @itemx -mno-sum-in-toc
19287 @itemx -mminimal-toc
19288 @opindex mfull-toc
19289 @opindex mno-fp-in-toc
19290 @opindex mno-sum-in-toc
19291 @opindex mminimal-toc
19292 Modify generation of the TOC (Table Of Contents), which is created for
19293 every executable file. The @option{-mfull-toc} option is selected by
19294 default. In that case, GCC allocates at least one TOC entry for
19295 each unique non-automatic variable reference in your program. GCC
19296 also places floating-point constants in the TOC@. However, only
19297 16,384 entries are available in the TOC@.
19298
19299 If you receive a linker error message that saying you have overflowed
19300 the available TOC space, you can reduce the amount of TOC space used
19301 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
19302 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
19303 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
19304 generate code to calculate the sum of an address and a constant at
19305 run time instead of putting that sum into the TOC@. You may specify one
19306 or both of these options. Each causes GCC to produce very slightly
19307 slower and larger code at the expense of conserving TOC space.
19308
19309 If you still run out of space in the TOC even when you specify both of
19310 these options, specify @option{-mminimal-toc} instead. This option causes
19311 GCC to make only one TOC entry for every file. When you specify this
19312 option, GCC produces code that is slower and larger but which
19313 uses extremely little TOC space. You may wish to use this option
19314 only on files that contain less frequently-executed code.
19315
19316 @item -maix64
19317 @itemx -maix32
19318 @opindex maix64
19319 @opindex maix32
19320 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
19321 @code{long} type, and the infrastructure needed to support them.
19322 Specifying @option{-maix64} implies @option{-mpowerpc64},
19323 while @option{-maix32} disables the 64-bit ABI and
19324 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
19325
19326 @item -mxl-compat
19327 @itemx -mno-xl-compat
19328 @opindex mxl-compat
19329 @opindex mno-xl-compat
19330 Produce code that conforms more closely to IBM XL compiler semantics
19331 when using AIX-compatible ABI@. Pass floating-point arguments to
19332 prototyped functions beyond the register save area (RSA) on the stack
19333 in addition to argument FPRs. Do not assume that most significant
19334 double in 128-bit long double value is properly rounded when comparing
19335 values and converting to double. Use XL symbol names for long double
19336 support routines.
19337
19338 The AIX calling convention was extended but not initially documented to
19339 handle an obscure K&R C case of calling a function that takes the
19340 address of its arguments with fewer arguments than declared. IBM XL
19341 compilers access floating-point arguments that do not fit in the
19342 RSA from the stack when a subroutine is compiled without
19343 optimization. Because always storing floating-point arguments on the
19344 stack is inefficient and rarely needed, this option is not enabled by
19345 default and only is necessary when calling subroutines compiled by IBM
19346 XL compilers without optimization.
19347
19348 @item -mpe
19349 @opindex mpe
19350 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
19351 application written to use message passing with special startup code to
19352 enable the application to run. The system must have PE installed in the
19353 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
19354 must be overridden with the @option{-specs=} option to specify the
19355 appropriate directory location. The Parallel Environment does not
19356 support threads, so the @option{-mpe} option and the @option{-pthread}
19357 option are incompatible.
19358
19359 @item -malign-natural
19360 @itemx -malign-power
19361 @opindex malign-natural
19362 @opindex malign-power
19363 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
19364 @option{-malign-natural} overrides the ABI-defined alignment of larger
19365 types, such as floating-point doubles, on their natural size-based boundary.
19366 The option @option{-malign-power} instructs GCC to follow the ABI-specified
19367 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
19368
19369 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
19370 is not supported.
19371
19372 @item -msoft-float
19373 @itemx -mhard-float
19374 @opindex msoft-float
19375 @opindex mhard-float
19376 Generate code that does not use (uses) the floating-point register set.
19377 Software floating-point emulation is provided if you use the
19378 @option{-msoft-float} option, and pass the option to GCC when linking.
19379
19380 @item -msingle-float
19381 @itemx -mdouble-float
19382 @opindex msingle-float
19383 @opindex mdouble-float
19384 Generate code for single- or double-precision floating-point operations.
19385 @option{-mdouble-float} implies @option{-msingle-float}.
19386
19387 @item -msimple-fpu
19388 @opindex msimple-fpu
19389 Do not generate @code{sqrt} and @code{div} instructions for hardware
19390 floating-point unit.
19391
19392 @item -mfpu=@var{name}
19393 @opindex mfpu
19394 Specify type of floating-point unit. Valid values for @var{name} are
19395 @samp{sp_lite} (equivalent to @option{-msingle-float -msimple-fpu}),
19396 @samp{dp_lite} (equivalent to @option{-mdouble-float -msimple-fpu}),
19397 @samp{sp_full} (equivalent to @option{-msingle-float}),
19398 and @samp{dp_full} (equivalent to @option{-mdouble-float}).
19399
19400 @item -mxilinx-fpu
19401 @opindex mxilinx-fpu
19402 Perform optimizations for the floating-point unit on Xilinx PPC 405/440.
19403
19404 @item -mmultiple
19405 @itemx -mno-multiple
19406 @opindex mmultiple
19407 @opindex mno-multiple
19408 Generate code that uses (does not use) the load multiple word
19409 instructions and the store multiple word instructions. These
19410 instructions are generated by default on POWER systems, and not
19411 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
19412 PowerPC systems, since those instructions do not work when the
19413 processor is in little-endian mode. The exceptions are PPC740 and
19414 PPC750 which permit these instructions in little-endian mode.
19415
19416 @item -mstring
19417 @itemx -mno-string
19418 @opindex mstring
19419 @opindex mno-string
19420 Generate code that uses (does not use) the load string instructions
19421 and the store string word instructions to save multiple registers and
19422 do small block moves. These instructions are generated by default on
19423 POWER systems, and not generated on PowerPC systems. Do not use
19424 @option{-mstring} on little-endian PowerPC systems, since those
19425 instructions do not work when the processor is in little-endian mode.
19426 The exceptions are PPC740 and PPC750 which permit these instructions
19427 in little-endian mode.
19428
19429 @item -mupdate
19430 @itemx -mno-update
19431 @opindex mupdate
19432 @opindex mno-update
19433 Generate code that uses (does not use) the load or store instructions
19434 that update the base register to the address of the calculated memory
19435 location. These instructions are generated by default. If you use
19436 @option{-mno-update}, there is a small window between the time that the
19437 stack pointer is updated and the address of the previous frame is
19438 stored, which means code that walks the stack frame across interrupts or
19439 signals may get corrupted data.
19440
19441 @item -mavoid-indexed-addresses
19442 @itemx -mno-avoid-indexed-addresses
19443 @opindex mavoid-indexed-addresses
19444 @opindex mno-avoid-indexed-addresses
19445 Generate code that tries to avoid (not avoid) the use of indexed load
19446 or store instructions. These instructions can incur a performance
19447 penalty on Power6 processors in certain situations, such as when
19448 stepping through large arrays that cross a 16M boundary. This option
19449 is enabled by default when targeting Power6 and disabled otherwise.
19450
19451 @item -mfused-madd
19452 @itemx -mno-fused-madd
19453 @opindex mfused-madd
19454 @opindex mno-fused-madd
19455 Generate code that uses (does not use) the floating-point multiply and
19456 accumulate instructions. These instructions are generated by default
19457 if hardware floating point is used. The machine-dependent
19458 @option{-mfused-madd} option is now mapped to the machine-independent
19459 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
19460 mapped to @option{-ffp-contract=off}.
19461
19462 @item -mmulhw
19463 @itemx -mno-mulhw
19464 @opindex mmulhw
19465 @opindex mno-mulhw
19466 Generate code that uses (does not use) the half-word multiply and
19467 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
19468 These instructions are generated by default when targeting those
19469 processors.
19470
19471 @item -mdlmzb
19472 @itemx -mno-dlmzb
19473 @opindex mdlmzb
19474 @opindex mno-dlmzb
19475 Generate code that uses (does not use) the string-search @samp{dlmzb}
19476 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
19477 generated by default when targeting those processors.
19478
19479 @item -mno-bit-align
19480 @itemx -mbit-align
19481 @opindex mno-bit-align
19482 @opindex mbit-align
19483 On System V.4 and embedded PowerPC systems do not (do) force structures
19484 and unions that contain bit-fields to be aligned to the base type of the
19485 bit-field.
19486
19487 For example, by default a structure containing nothing but 8
19488 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
19489 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
19490 the structure is aligned to a 1-byte boundary and is 1 byte in
19491 size.
19492
19493 @item -mno-strict-align
19494 @itemx -mstrict-align
19495 @opindex mno-strict-align
19496 @opindex mstrict-align
19497 On System V.4 and embedded PowerPC systems do not (do) assume that
19498 unaligned memory references are handled by the system.
19499
19500 @item -mrelocatable
19501 @itemx -mno-relocatable
19502 @opindex mrelocatable
19503 @opindex mno-relocatable
19504 Generate code that allows (does not allow) a static executable to be
19505 relocated to a different address at run time. A simple embedded
19506 PowerPC system loader should relocate the entire contents of
19507 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
19508 a table of 32-bit addresses generated by this option. For this to
19509 work, all objects linked together must be compiled with
19510 @option{-mrelocatable} or @option{-mrelocatable-lib}.
19511 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
19512
19513 @item -mrelocatable-lib
19514 @itemx -mno-relocatable-lib
19515 @opindex mrelocatable-lib
19516 @opindex mno-relocatable-lib
19517 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
19518 @code{.fixup} section to allow static executables to be relocated at
19519 run time, but @option{-mrelocatable-lib} does not use the smaller stack
19520 alignment of @option{-mrelocatable}. Objects compiled with
19521 @option{-mrelocatable-lib} may be linked with objects compiled with
19522 any combination of the @option{-mrelocatable} options.
19523
19524 @item -mno-toc
19525 @itemx -mtoc
19526 @opindex mno-toc
19527 @opindex mtoc
19528 On System V.4 and embedded PowerPC systems do not (do) assume that
19529 register 2 contains a pointer to a global area pointing to the addresses
19530 used in the program.
19531
19532 @item -mlittle
19533 @itemx -mlittle-endian
19534 @opindex mlittle
19535 @opindex mlittle-endian
19536 On System V.4 and embedded PowerPC systems compile code for the
19537 processor in little-endian mode. The @option{-mlittle-endian} option is
19538 the same as @option{-mlittle}.
19539
19540 @item -mbig
19541 @itemx -mbig-endian
19542 @opindex mbig
19543 @opindex mbig-endian
19544 On System V.4 and embedded PowerPC systems compile code for the
19545 processor in big-endian mode. The @option{-mbig-endian} option is
19546 the same as @option{-mbig}.
19547
19548 @item -mdynamic-no-pic
19549 @opindex mdynamic-no-pic
19550 On Darwin and Mac OS X systems, compile code so that it is not
19551 relocatable, but that its external references are relocatable. The
19552 resulting code is suitable for applications, but not shared
19553 libraries.
19554
19555 @item -msingle-pic-base
19556 @opindex msingle-pic-base
19557 Treat the register used for PIC addressing as read-only, rather than
19558 loading it in the prologue for each function. The runtime system is
19559 responsible for initializing this register with an appropriate value
19560 before execution begins.
19561
19562 @item -mprioritize-restricted-insns=@var{priority}
19563 @opindex mprioritize-restricted-insns
19564 This option controls the priority that is assigned to
19565 dispatch-slot restricted instructions during the second scheduling
19566 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
19567 or @samp{2} to assign no, highest, or second-highest (respectively)
19568 priority to dispatch-slot restricted
19569 instructions.
19570
19571 @item -msched-costly-dep=@var{dependence_type}
19572 @opindex msched-costly-dep
19573 This option controls which dependences are considered costly
19574 by the target during instruction scheduling. The argument
19575 @var{dependence_type} takes one of the following values:
19576
19577 @table @asis
19578 @item @samp{no}
19579 No dependence is costly.
19580
19581 @item @samp{all}
19582 All dependences are costly.
19583
19584 @item @samp{true_store_to_load}
19585 A true dependence from store to load is costly.
19586
19587 @item @samp{store_to_load}
19588 Any dependence from store to load is costly.
19589
19590 @item @var{number}
19591 Any dependence for which the latency is greater than or equal to
19592 @var{number} is costly.
19593 @end table
19594
19595 @item -minsert-sched-nops=@var{scheme}
19596 @opindex minsert-sched-nops
19597 This option controls which NOP insertion scheme is used during
19598 the second scheduling pass. The argument @var{scheme} takes one of the
19599 following values:
19600
19601 @table @asis
19602 @item @samp{no}
19603 Don't insert NOPs.
19604
19605 @item @samp{pad}
19606 Pad with NOPs any dispatch group that has vacant issue slots,
19607 according to the scheduler's grouping.
19608
19609 @item @samp{regroup_exact}
19610 Insert NOPs to force costly dependent insns into
19611 separate groups. Insert exactly as many NOPs as needed to force an insn
19612 to a new group, according to the estimated processor grouping.
19613
19614 @item @var{number}
19615 Insert NOPs to force costly dependent insns into
19616 separate groups. Insert @var{number} NOPs to force an insn to a new group.
19617 @end table
19618
19619 @item -mcall-sysv
19620 @opindex mcall-sysv
19621 On System V.4 and embedded PowerPC systems compile code using calling
19622 conventions that adhere to the March 1995 draft of the System V
19623 Application Binary Interface, PowerPC processor supplement. This is the
19624 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
19625
19626 @item -mcall-sysv-eabi
19627 @itemx -mcall-eabi
19628 @opindex mcall-sysv-eabi
19629 @opindex mcall-eabi
19630 Specify both @option{-mcall-sysv} and @option{-meabi} options.
19631
19632 @item -mcall-sysv-noeabi
19633 @opindex mcall-sysv-noeabi
19634 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
19635
19636 @item -mcall-aixdesc
19637 @opindex m
19638 On System V.4 and embedded PowerPC systems compile code for the AIX
19639 operating system.
19640
19641 @item -mcall-linux
19642 @opindex mcall-linux
19643 On System V.4 and embedded PowerPC systems compile code for the
19644 Linux-based GNU system.
19645
19646 @item -mcall-freebsd
19647 @opindex mcall-freebsd
19648 On System V.4 and embedded PowerPC systems compile code for the
19649 FreeBSD operating system.
19650
19651 @item -mcall-netbsd
19652 @opindex mcall-netbsd
19653 On System V.4 and embedded PowerPC systems compile code for the
19654 NetBSD operating system.
19655
19656 @item -mcall-openbsd
19657 @opindex mcall-netbsd
19658 On System V.4 and embedded PowerPC systems compile code for the
19659 OpenBSD operating system.
19660
19661 @item -maix-struct-return
19662 @opindex maix-struct-return
19663 Return all structures in memory (as specified by the AIX ABI)@.
19664
19665 @item -msvr4-struct-return
19666 @opindex msvr4-struct-return
19667 Return structures smaller than 8 bytes in registers (as specified by the
19668 SVR4 ABI)@.
19669
19670 @item -mabi=@var{abi-type}
19671 @opindex mabi
19672 Extend the current ABI with a particular extension, or remove such extension.
19673 Valid values are @samp{altivec}, @samp{no-altivec}, @samp{spe},
19674 @samp{no-spe}, @samp{ibmlongdouble}, @samp{ieeelongdouble},
19675 @samp{elfv1}, @samp{elfv2}@.
19676
19677 @item -mabi=spe
19678 @opindex mabi=spe
19679 Extend the current ABI with SPE ABI extensions. This does not change
19680 the default ABI, instead it adds the SPE ABI extensions to the current
19681 ABI@.
19682
19683 @item -mabi=no-spe
19684 @opindex mabi=no-spe
19685 Disable Book-E SPE ABI extensions for the current ABI@.
19686
19687 @item -mabi=ibmlongdouble
19688 @opindex mabi=ibmlongdouble
19689 Change the current ABI to use IBM extended-precision long double.
19690 This is a PowerPC 32-bit SYSV ABI option.
19691
19692 @item -mabi=ieeelongdouble
19693 @opindex mabi=ieeelongdouble
19694 Change the current ABI to use IEEE extended-precision long double.
19695 This is a PowerPC 32-bit Linux ABI option.
19696
19697 @item -mabi=elfv1
19698 @opindex mabi=elfv1
19699 Change the current ABI to use the ELFv1 ABI.
19700 This is the default ABI for big-endian PowerPC 64-bit Linux.
19701 Overriding the default ABI requires special system support and is
19702 likely to fail in spectacular ways.
19703
19704 @item -mabi=elfv2
19705 @opindex mabi=elfv2
19706 Change the current ABI to use the ELFv2 ABI.
19707 This is the default ABI for little-endian PowerPC 64-bit Linux.
19708 Overriding the default ABI requires special system support and is
19709 likely to fail in spectacular ways.
19710
19711 @item -mprototype
19712 @itemx -mno-prototype
19713 @opindex mprototype
19714 @opindex mno-prototype
19715 On System V.4 and embedded PowerPC systems assume that all calls to
19716 variable argument functions are properly prototyped. Otherwise, the
19717 compiler must insert an instruction before every non-prototyped call to
19718 set or clear bit 6 of the condition code register (@code{CR}) to
19719 indicate whether floating-point values are passed in the floating-point
19720 registers in case the function takes variable arguments. With
19721 @option{-mprototype}, only calls to prototyped variable argument functions
19722 set or clear the bit.
19723
19724 @item -msim
19725 @opindex msim
19726 On embedded PowerPC systems, assume that the startup module is called
19727 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
19728 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
19729 configurations.
19730
19731 @item -mmvme
19732 @opindex mmvme
19733 On embedded PowerPC systems, assume that the startup module is called
19734 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
19735 @file{libc.a}.
19736
19737 @item -mads
19738 @opindex mads
19739 On embedded PowerPC systems, assume that the startup module is called
19740 @file{crt0.o} and the standard C libraries are @file{libads.a} and
19741 @file{libc.a}.
19742
19743 @item -myellowknife
19744 @opindex myellowknife
19745 On embedded PowerPC systems, assume that the startup module is called
19746 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
19747 @file{libc.a}.
19748
19749 @item -mvxworks
19750 @opindex mvxworks
19751 On System V.4 and embedded PowerPC systems, specify that you are
19752 compiling for a VxWorks system.
19753
19754 @item -memb
19755 @opindex memb
19756 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
19757 header to indicate that @samp{eabi} extended relocations are used.
19758
19759 @item -meabi
19760 @itemx -mno-eabi
19761 @opindex meabi
19762 @opindex mno-eabi
19763 On System V.4 and embedded PowerPC systems do (do not) adhere to the
19764 Embedded Applications Binary Interface (EABI), which is a set of
19765 modifications to the System V.4 specifications. Selecting @option{-meabi}
19766 means that the stack is aligned to an 8-byte boundary, a function
19767 @code{__eabi} is called from @code{main} to set up the EABI
19768 environment, and the @option{-msdata} option can use both @code{r2} and
19769 @code{r13} to point to two separate small data areas. Selecting
19770 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
19771 no EABI initialization function is called from @code{main}, and the
19772 @option{-msdata} option only uses @code{r13} to point to a single
19773 small data area. The @option{-meabi} option is on by default if you
19774 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
19775
19776 @item -msdata=eabi
19777 @opindex msdata=eabi
19778 On System V.4 and embedded PowerPC systems, put small initialized
19779 @code{const} global and static data in the @code{.sdata2} section, which
19780 is pointed to by register @code{r2}. Put small initialized
19781 non-@code{const} global and static data in the @code{.sdata} section,
19782 which is pointed to by register @code{r13}. Put small uninitialized
19783 global and static data in the @code{.sbss} section, which is adjacent to
19784 the @code{.sdata} section. The @option{-msdata=eabi} option is
19785 incompatible with the @option{-mrelocatable} option. The
19786 @option{-msdata=eabi} option also sets the @option{-memb} option.
19787
19788 @item -msdata=sysv
19789 @opindex msdata=sysv
19790 On System V.4 and embedded PowerPC systems, put small global and static
19791 data in the @code{.sdata} section, which is pointed to by register
19792 @code{r13}. Put small uninitialized global and static data in the
19793 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
19794 The @option{-msdata=sysv} option is incompatible with the
19795 @option{-mrelocatable} option.
19796
19797 @item -msdata=default
19798 @itemx -msdata
19799 @opindex msdata=default
19800 @opindex msdata
19801 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
19802 compile code the same as @option{-msdata=eabi}, otherwise compile code the
19803 same as @option{-msdata=sysv}.
19804
19805 @item -msdata=data
19806 @opindex msdata=data
19807 On System V.4 and embedded PowerPC systems, put small global
19808 data in the @code{.sdata} section. Put small uninitialized global
19809 data in the @code{.sbss} section. Do not use register @code{r13}
19810 to address small data however. This is the default behavior unless
19811 other @option{-msdata} options are used.
19812
19813 @item -msdata=none
19814 @itemx -mno-sdata
19815 @opindex msdata=none
19816 @opindex mno-sdata
19817 On embedded PowerPC systems, put all initialized global and static data
19818 in the @code{.data} section, and all uninitialized data in the
19819 @code{.bss} section.
19820
19821 @item -mblock-move-inline-limit=@var{num}
19822 @opindex mblock-move-inline-limit
19823 Inline all block moves (such as calls to @code{memcpy} or structure
19824 copies) less than or equal to @var{num} bytes. The minimum value for
19825 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
19826 targets. The default value is target-specific.
19827
19828 @item -G @var{num}
19829 @opindex G
19830 @cindex smaller data references (PowerPC)
19831 @cindex .sdata/.sdata2 references (PowerPC)
19832 On embedded PowerPC systems, put global and static items less than or
19833 equal to @var{num} bytes into the small data or BSS sections instead of
19834 the normal data or BSS section. By default, @var{num} is 8. The
19835 @option{-G @var{num}} switch is also passed to the linker.
19836 All modules should be compiled with the same @option{-G @var{num}} value.
19837
19838 @item -mregnames
19839 @itemx -mno-regnames
19840 @opindex mregnames
19841 @opindex mno-regnames
19842 On System V.4 and embedded PowerPC systems do (do not) emit register
19843 names in the assembly language output using symbolic forms.
19844
19845 @item -mlongcall
19846 @itemx -mno-longcall
19847 @opindex mlongcall
19848 @opindex mno-longcall
19849 By default assume that all calls are far away so that a longer and more
19850 expensive calling sequence is required. This is required for calls
19851 farther than 32 megabytes (33,554,432 bytes) from the current location.
19852 A short call is generated if the compiler knows
19853 the call cannot be that far away. This setting can be overridden by
19854 the @code{shortcall} function attribute, or by @code{#pragma
19855 longcall(0)}.
19856
19857 Some linkers are capable of detecting out-of-range calls and generating
19858 glue code on the fly. On these systems, long calls are unnecessary and
19859 generate slower code. As of this writing, the AIX linker can do this,
19860 as can the GNU linker for PowerPC/64. It is planned to add this feature
19861 to the GNU linker for 32-bit PowerPC systems as well.
19862
19863 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
19864 callee, L42}, plus a @dfn{branch island} (glue code). The two target
19865 addresses represent the callee and the branch island. The
19866 Darwin/PPC linker prefers the first address and generates a @code{bl
19867 callee} if the PPC @code{bl} instruction reaches the callee directly;
19868 otherwise, the linker generates @code{bl L42} to call the branch
19869 island. The branch island is appended to the body of the
19870 calling function; it computes the full 32-bit address of the callee
19871 and jumps to it.
19872
19873 On Mach-O (Darwin) systems, this option directs the compiler emit to
19874 the glue for every direct call, and the Darwin linker decides whether
19875 to use or discard it.
19876
19877 In the future, GCC may ignore all longcall specifications
19878 when the linker is known to generate glue.
19879
19880 @item -mtls-markers
19881 @itemx -mno-tls-markers
19882 @opindex mtls-markers
19883 @opindex mno-tls-markers
19884 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
19885 specifying the function argument. The relocation allows the linker to
19886 reliably associate function call with argument setup instructions for
19887 TLS optimization, which in turn allows GCC to better schedule the
19888 sequence.
19889
19890 @item -pthread
19891 @opindex pthread
19892 Adds support for multithreading with the @dfn{pthreads} library.
19893 This option sets flags for both the preprocessor and linker.
19894
19895 @item -mrecip
19896 @itemx -mno-recip
19897 @opindex mrecip
19898 This option enables use of the reciprocal estimate and
19899 reciprocal square root estimate instructions with additional
19900 Newton-Raphson steps to increase precision instead of doing a divide or
19901 square root and divide for floating-point arguments. You should use
19902 the @option{-ffast-math} option when using @option{-mrecip} (or at
19903 least @option{-funsafe-math-optimizations},
19904 @option{-finite-math-only}, @option{-freciprocal-math} and
19905 @option{-fno-trapping-math}). Note that while the throughput of the
19906 sequence is generally higher than the throughput of the non-reciprocal
19907 instruction, the precision of the sequence can be decreased by up to 2
19908 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
19909 roots.
19910
19911 @item -mrecip=@var{opt}
19912 @opindex mrecip=opt
19913 This option controls which reciprocal estimate instructions
19914 may be used. @var{opt} is a comma-separated list of options, which may
19915 be preceded by a @code{!} to invert the option:
19916
19917 @table @samp
19918
19919 @item all
19920 Enable all estimate instructions.
19921
19922 @item default
19923 Enable the default instructions, equivalent to @option{-mrecip}.
19924
19925 @item none
19926 Disable all estimate instructions, equivalent to @option{-mno-recip}.
19927
19928 @item div
19929 Enable the reciprocal approximation instructions for both
19930 single and double precision.
19931
19932 @item divf
19933 Enable the single-precision reciprocal approximation instructions.
19934
19935 @item divd
19936 Enable the double-precision reciprocal approximation instructions.
19937
19938 @item rsqrt
19939 Enable the reciprocal square root approximation instructions for both
19940 single and double precision.
19941
19942 @item rsqrtf
19943 Enable the single-precision reciprocal square root approximation instructions.
19944
19945 @item rsqrtd
19946 Enable the double-precision reciprocal square root approximation instructions.
19947
19948 @end table
19949
19950 So, for example, @option{-mrecip=all,!rsqrtd} enables
19951 all of the reciprocal estimate instructions, except for the
19952 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
19953 which handle the double-precision reciprocal square root calculations.
19954
19955 @item -mrecip-precision
19956 @itemx -mno-recip-precision
19957 @opindex mrecip-precision
19958 Assume (do not assume) that the reciprocal estimate instructions
19959 provide higher-precision estimates than is mandated by the PowerPC
19960 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
19961 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
19962 The double-precision square root estimate instructions are not generated by
19963 default on low-precision machines, since they do not provide an
19964 estimate that converges after three steps.
19965
19966 @item -mveclibabi=@var{type}
19967 @opindex mveclibabi
19968 Specifies the ABI type to use for vectorizing intrinsics using an
19969 external library. The only type supported at present is @samp{mass},
19970 which specifies to use IBM's Mathematical Acceleration Subsystem
19971 (MASS) libraries for vectorizing intrinsics using external libraries.
19972 GCC currently emits calls to @code{acosd2}, @code{acosf4},
19973 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
19974 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
19975 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
19976 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
19977 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
19978 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
19979 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
19980 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
19981 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
19982 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
19983 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
19984 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
19985 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
19986 for power7. Both @option{-ftree-vectorize} and
19987 @option{-funsafe-math-optimizations} must also be enabled. The MASS
19988 libraries must be specified at link time.
19989
19990 @item -mfriz
19991 @itemx -mno-friz
19992 @opindex mfriz
19993 Generate (do not generate) the @code{friz} instruction when the
19994 @option{-funsafe-math-optimizations} option is used to optimize
19995 rounding of floating-point values to 64-bit integer and back to floating
19996 point. The @code{friz} instruction does not return the same value if
19997 the floating-point number is too large to fit in an integer.
19998
19999 @item -mpointers-to-nested-functions
20000 @itemx -mno-pointers-to-nested-functions
20001 @opindex mpointers-to-nested-functions
20002 Generate (do not generate) code to load up the static chain register
20003 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
20004 systems where a function pointer points to a 3-word descriptor giving
20005 the function address, TOC value to be loaded in register @code{r2}, and
20006 static chain value to be loaded in register @code{r11}. The
20007 @option{-mpointers-to-nested-functions} is on by default. You cannot
20008 call through pointers to nested functions or pointers
20009 to functions compiled in other languages that use the static chain if
20010 you use @option{-mno-pointers-to-nested-functions}.
20011
20012 @item -msave-toc-indirect
20013 @itemx -mno-save-toc-indirect
20014 @opindex msave-toc-indirect
20015 Generate (do not generate) code to save the TOC value in the reserved
20016 stack location in the function prologue if the function calls through
20017 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
20018 saved in the prologue, it is saved just before the call through the
20019 pointer. The @option{-mno-save-toc-indirect} option is the default.
20020
20021 @item -mcompat-align-parm
20022 @itemx -mno-compat-align-parm
20023 @opindex mcompat-align-parm
20024 Generate (do not generate) code to pass structure parameters with a
20025 maximum alignment of 64 bits, for compatibility with older versions
20026 of GCC.
20027
20028 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
20029 structure parameter on a 128-bit boundary when that structure contained
20030 a member requiring 128-bit alignment. This is corrected in more
20031 recent versions of GCC. This option may be used to generate code
20032 that is compatible with functions compiled with older versions of
20033 GCC.
20034
20035 The @option{-mno-compat-align-parm} option is the default.
20036 @end table
20037
20038 @node RX Options
20039 @subsection RX Options
20040 @cindex RX Options
20041
20042 These command-line options are defined for RX targets:
20043
20044 @table @gcctabopt
20045 @item -m64bit-doubles
20046 @itemx -m32bit-doubles
20047 @opindex m64bit-doubles
20048 @opindex m32bit-doubles
20049 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
20050 or 32 bits (@option{-m32bit-doubles}) in size. The default is
20051 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
20052 works on 32-bit values, which is why the default is
20053 @option{-m32bit-doubles}.
20054
20055 @item -fpu
20056 @itemx -nofpu
20057 @opindex fpu
20058 @opindex nofpu
20059 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
20060 floating-point hardware. The default is enabled for the RX600
20061 series and disabled for the RX200 series.
20062
20063 Floating-point instructions are only generated for 32-bit floating-point
20064 values, however, so the FPU hardware is not used for doubles if the
20065 @option{-m64bit-doubles} option is used.
20066
20067 @emph{Note} If the @option{-fpu} option is enabled then
20068 @option{-funsafe-math-optimizations} is also enabled automatically.
20069 This is because the RX FPU instructions are themselves unsafe.
20070
20071 @item -mcpu=@var{name}
20072 @opindex mcpu
20073 Selects the type of RX CPU to be targeted. Currently three types are
20074 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
20075 the specific @samp{RX610} CPU. The default is @samp{RX600}.
20076
20077 The only difference between @samp{RX600} and @samp{RX610} is that the
20078 @samp{RX610} does not support the @code{MVTIPL} instruction.
20079
20080 The @samp{RX200} series does not have a hardware floating-point unit
20081 and so @option{-nofpu} is enabled by default when this type is
20082 selected.
20083
20084 @item -mbig-endian-data
20085 @itemx -mlittle-endian-data
20086 @opindex mbig-endian-data
20087 @opindex mlittle-endian-data
20088 Store data (but not code) in the big-endian format. The default is
20089 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
20090 format.
20091
20092 @item -msmall-data-limit=@var{N}
20093 @opindex msmall-data-limit
20094 Specifies the maximum size in bytes of global and static variables
20095 which can be placed into the small data area. Using the small data
20096 area can lead to smaller and faster code, but the size of area is
20097 limited and it is up to the programmer to ensure that the area does
20098 not overflow. Also when the small data area is used one of the RX's
20099 registers (usually @code{r13}) is reserved for use pointing to this
20100 area, so it is no longer available for use by the compiler. This
20101 could result in slower and/or larger code if variables are pushed onto
20102 the stack instead of being held in this register.
20103
20104 Note, common variables (variables that have not been initialized) and
20105 constants are not placed into the small data area as they are assigned
20106 to other sections in the output executable.
20107
20108 The default value is zero, which disables this feature. Note, this
20109 feature is not enabled by default with higher optimization levels
20110 (@option{-O2} etc) because of the potentially detrimental effects of
20111 reserving a register. It is up to the programmer to experiment and
20112 discover whether this feature is of benefit to their program. See the
20113 description of the @option{-mpid} option for a description of how the
20114 actual register to hold the small data area pointer is chosen.
20115
20116 @item -msim
20117 @itemx -mno-sim
20118 @opindex msim
20119 @opindex mno-sim
20120 Use the simulator runtime. The default is to use the libgloss
20121 board-specific runtime.
20122
20123 @item -mas100-syntax
20124 @itemx -mno-as100-syntax
20125 @opindex mas100-syntax
20126 @opindex mno-as100-syntax
20127 When generating assembler output use a syntax that is compatible with
20128 Renesas's AS100 assembler. This syntax can also be handled by the GAS
20129 assembler, but it has some restrictions so it is not generated by default.
20130
20131 @item -mmax-constant-size=@var{N}
20132 @opindex mmax-constant-size
20133 Specifies the maximum size, in bytes, of a constant that can be used as
20134 an operand in a RX instruction. Although the RX instruction set does
20135 allow constants of up to 4 bytes in length to be used in instructions,
20136 a longer value equates to a longer instruction. Thus in some
20137 circumstances it can be beneficial to restrict the size of constants
20138 that are used in instructions. Constants that are too big are instead
20139 placed into a constant pool and referenced via register indirection.
20140
20141 The value @var{N} can be between 0 and 4. A value of 0 (the default)
20142 or 4 means that constants of any size are allowed.
20143
20144 @item -mrelax
20145 @opindex mrelax
20146 Enable linker relaxation. Linker relaxation is a process whereby the
20147 linker attempts to reduce the size of a program by finding shorter
20148 versions of various instructions. Disabled by default.
20149
20150 @item -mint-register=@var{N}
20151 @opindex mint-register
20152 Specify the number of registers to reserve for fast interrupt handler
20153 functions. The value @var{N} can be between 0 and 4. A value of 1
20154 means that register @code{r13} is reserved for the exclusive use
20155 of fast interrupt handlers. A value of 2 reserves @code{r13} and
20156 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
20157 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
20158 A value of 0, the default, does not reserve any registers.
20159
20160 @item -msave-acc-in-interrupts
20161 @opindex msave-acc-in-interrupts
20162 Specifies that interrupt handler functions should preserve the
20163 accumulator register. This is only necessary if normal code might use
20164 the accumulator register, for example because it performs 64-bit
20165 multiplications. The default is to ignore the accumulator as this
20166 makes the interrupt handlers faster.
20167
20168 @item -mpid
20169 @itemx -mno-pid
20170 @opindex mpid
20171 @opindex mno-pid
20172 Enables the generation of position independent data. When enabled any
20173 access to constant data is done via an offset from a base address
20174 held in a register. This allows the location of constant data to be
20175 determined at run time without requiring the executable to be
20176 relocated, which is a benefit to embedded applications with tight
20177 memory constraints. Data that can be modified is not affected by this
20178 option.
20179
20180 Note, using this feature reserves a register, usually @code{r13}, for
20181 the constant data base address. This can result in slower and/or
20182 larger code, especially in complicated functions.
20183
20184 The actual register chosen to hold the constant data base address
20185 depends upon whether the @option{-msmall-data-limit} and/or the
20186 @option{-mint-register} command-line options are enabled. Starting
20187 with register @code{r13} and proceeding downwards, registers are
20188 allocated first to satisfy the requirements of @option{-mint-register},
20189 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
20190 is possible for the small data area register to be @code{r8} if both
20191 @option{-mint-register=4} and @option{-mpid} are specified on the
20192 command line.
20193
20194 By default this feature is not enabled. The default can be restored
20195 via the @option{-mno-pid} command-line option.
20196
20197 @item -mno-warn-multiple-fast-interrupts
20198 @itemx -mwarn-multiple-fast-interrupts
20199 @opindex mno-warn-multiple-fast-interrupts
20200 @opindex mwarn-multiple-fast-interrupts
20201 Prevents GCC from issuing a warning message if it finds more than one
20202 fast interrupt handler when it is compiling a file. The default is to
20203 issue a warning for each extra fast interrupt handler found, as the RX
20204 only supports one such interrupt.
20205
20206 @item -mallow-string-insns
20207 @itemx -mno-allow-string-insns
20208 @opindex mallow-string-insns
20209 @opindex mno-allow-string-insns
20210 Enables or disables the use of the string manipulation instructions
20211 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
20212 @code{SWHILE} and also the @code{RMPA} instruction. These
20213 instructions may prefetch data, which is not safe to do if accessing
20214 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
20215 for more information).
20216
20217 The default is to allow these instructions, but it is not possible for
20218 GCC to reliably detect all circumstances where a string instruction
20219 might be used to access an I/O register, so their use cannot be
20220 disabled automatically. Instead it is reliant upon the programmer to
20221 use the @option{-mno-allow-string-insns} option if their program
20222 accesses I/O space.
20223
20224 When the instructions are enabled GCC defines the C preprocessor
20225 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
20226 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
20227 @end table
20228
20229 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
20230 has special significance to the RX port when used with the
20231 @code{interrupt} function attribute. This attribute indicates a
20232 function intended to process fast interrupts. GCC ensures
20233 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
20234 and/or @code{r13} and only provided that the normal use of the
20235 corresponding registers have been restricted via the
20236 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
20237 options.
20238
20239 @node S/390 and zSeries Options
20240 @subsection S/390 and zSeries Options
20241 @cindex S/390 and zSeries Options
20242
20243 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
20244
20245 @table @gcctabopt
20246 @item -mhard-float
20247 @itemx -msoft-float
20248 @opindex mhard-float
20249 @opindex msoft-float
20250 Use (do not use) the hardware floating-point instructions and registers
20251 for floating-point operations. When @option{-msoft-float} is specified,
20252 functions in @file{libgcc.a} are used to perform floating-point
20253 operations. When @option{-mhard-float} is specified, the compiler
20254 generates IEEE floating-point instructions. This is the default.
20255
20256 @item -mhard-dfp
20257 @itemx -mno-hard-dfp
20258 @opindex mhard-dfp
20259 @opindex mno-hard-dfp
20260 Use (do not use) the hardware decimal-floating-point instructions for
20261 decimal-floating-point operations. When @option{-mno-hard-dfp} is
20262 specified, functions in @file{libgcc.a} are used to perform
20263 decimal-floating-point operations. When @option{-mhard-dfp} is
20264 specified, the compiler generates decimal-floating-point hardware
20265 instructions. This is the default for @option{-march=z9-ec} or higher.
20266
20267 @item -mlong-double-64
20268 @itemx -mlong-double-128
20269 @opindex mlong-double-64
20270 @opindex mlong-double-128
20271 These switches control the size of @code{long double} type. A size
20272 of 64 bits makes the @code{long double} type equivalent to the @code{double}
20273 type. This is the default.
20274
20275 @item -mbackchain
20276 @itemx -mno-backchain
20277 @opindex mbackchain
20278 @opindex mno-backchain
20279 Store (do not store) the address of the caller's frame as backchain pointer
20280 into the callee's stack frame.
20281 A backchain may be needed to allow debugging using tools that do not understand
20282 DWARF 2 call frame information.
20283 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
20284 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
20285 the backchain is placed into the topmost word of the 96/160 byte register
20286 save area.
20287
20288 In general, code compiled with @option{-mbackchain} is call-compatible with
20289 code compiled with @option{-mmo-backchain}; however, use of the backchain
20290 for debugging purposes usually requires that the whole binary is built with
20291 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
20292 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20293 to build a linux kernel use @option{-msoft-float}.
20294
20295 The default is to not maintain the backchain.
20296
20297 @item -mpacked-stack
20298 @itemx -mno-packed-stack
20299 @opindex mpacked-stack
20300 @opindex mno-packed-stack
20301 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
20302 specified, the compiler uses the all fields of the 96/160 byte register save
20303 area only for their default purpose; unused fields still take up stack space.
20304 When @option{-mpacked-stack} is specified, register save slots are densely
20305 packed at the top of the register save area; unused space is reused for other
20306 purposes, allowing for more efficient use of the available stack space.
20307 However, when @option{-mbackchain} is also in effect, the topmost word of
20308 the save area is always used to store the backchain, and the return address
20309 register is always saved two words below the backchain.
20310
20311 As long as the stack frame backchain is not used, code generated with
20312 @option{-mpacked-stack} is call-compatible with code generated with
20313 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
20314 S/390 or zSeries generated code that uses the stack frame backchain at run
20315 time, not just for debugging purposes. Such code is not call-compatible
20316 with code compiled with @option{-mpacked-stack}. Also, note that the
20317 combination of @option{-mbackchain},
20318 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
20319 to build a linux kernel use @option{-msoft-float}.
20320
20321 The default is to not use the packed stack layout.
20322
20323 @item -msmall-exec
20324 @itemx -mno-small-exec
20325 @opindex msmall-exec
20326 @opindex mno-small-exec
20327 Generate (or do not generate) code using the @code{bras} instruction
20328 to do subroutine calls.
20329 This only works reliably if the total executable size does not
20330 exceed 64k. The default is to use the @code{basr} instruction instead,
20331 which does not have this limitation.
20332
20333 @item -m64
20334 @itemx -m31
20335 @opindex m64
20336 @opindex m31
20337 When @option{-m31} is specified, generate code compliant to the
20338 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
20339 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
20340 particular to generate 64-bit instructions. For the @samp{s390}
20341 targets, the default is @option{-m31}, while the @samp{s390x}
20342 targets default to @option{-m64}.
20343
20344 @item -mzarch
20345 @itemx -mesa
20346 @opindex mzarch
20347 @opindex mesa
20348 When @option{-mzarch} is specified, generate code using the
20349 instructions available on z/Architecture.
20350 When @option{-mesa} is specified, generate code using the
20351 instructions available on ESA/390. Note that @option{-mesa} is
20352 not possible with @option{-m64}.
20353 When generating code compliant to the GNU/Linux for S/390 ABI,
20354 the default is @option{-mesa}. When generating code compliant
20355 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
20356
20357 @item -mmvcle
20358 @itemx -mno-mvcle
20359 @opindex mmvcle
20360 @opindex mno-mvcle
20361 Generate (or do not generate) code using the @code{mvcle} instruction
20362 to perform block moves. When @option{-mno-mvcle} is specified,
20363 use a @code{mvc} loop instead. This is the default unless optimizing for
20364 size.
20365
20366 @item -mdebug
20367 @itemx -mno-debug
20368 @opindex mdebug
20369 @opindex mno-debug
20370 Print (or do not print) additional debug information when compiling.
20371 The default is to not print debug information.
20372
20373 @item -march=@var{cpu-type}
20374 @opindex march
20375 Generate code that runs on @var{cpu-type}, which is the name of a system
20376 representing a certain processor type. Possible values for
20377 @var{cpu-type} are @samp{g5}, @samp{g6}, @samp{z900}, @samp{z990},
20378 @samp{z9-109}, @samp{z9-ec}, @samp{z10}, @samp{z196}, and @samp{zEC12}.
20379 When generating code using the instructions available on z/Architecture,
20380 the default is @option{-march=z900}. Otherwise, the default is
20381 @option{-march=g5}.
20382
20383 @item -mtune=@var{cpu-type}
20384 @opindex mtune
20385 Tune to @var{cpu-type} everything applicable about the generated code,
20386 except for the ABI and the set of available instructions.
20387 The list of @var{cpu-type} values is the same as for @option{-march}.
20388 The default is the value used for @option{-march}.
20389
20390 @item -mtpf-trace
20391 @itemx -mno-tpf-trace
20392 @opindex mtpf-trace
20393 @opindex mno-tpf-trace
20394 Generate code that adds (does not add) in TPF OS specific branches to trace
20395 routines in the operating system. This option is off by default, even
20396 when compiling for the TPF OS@.
20397
20398 @item -mfused-madd
20399 @itemx -mno-fused-madd
20400 @opindex mfused-madd
20401 @opindex mno-fused-madd
20402 Generate code that uses (does not use) the floating-point multiply and
20403 accumulate instructions. These instructions are generated by default if
20404 hardware floating point is used.
20405
20406 @item -mwarn-framesize=@var{framesize}
20407 @opindex mwarn-framesize
20408 Emit a warning if the current function exceeds the given frame size. Because
20409 this is a compile-time check it doesn't need to be a real problem when the program
20410 runs. It is intended to identify functions that most probably cause
20411 a stack overflow. It is useful to be used in an environment with limited stack
20412 size e.g.@: the linux kernel.
20413
20414 @item -mwarn-dynamicstack
20415 @opindex mwarn-dynamicstack
20416 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
20417 arrays. This is generally a bad idea with a limited stack size.
20418
20419 @item -mstack-guard=@var{stack-guard}
20420 @itemx -mstack-size=@var{stack-size}
20421 @opindex mstack-guard
20422 @opindex mstack-size
20423 If these options are provided the S/390 back end emits additional instructions in
20424 the function prologue that trigger a trap if the stack size is @var{stack-guard}
20425 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
20426 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
20427 the frame size of the compiled function is chosen.
20428 These options are intended to be used to help debugging stack overflow problems.
20429 The additionally emitted code causes only little overhead and hence can also be
20430 used in production-like systems without greater performance degradation. The given
20431 values have to be exact powers of 2 and @var{stack-size} has to be greater than
20432 @var{stack-guard} without exceeding 64k.
20433 In order to be efficient the extra code makes the assumption that the stack starts
20434 at an address aligned to the value given by @var{stack-size}.
20435 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
20436
20437 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
20438 @opindex mhotpatch
20439 If the hotpatch option is enabled, a ``hot-patching'' function
20440 prologue is generated for all functions in the compilation unit.
20441 The funtion label is prepended with the given number of two-byte
20442 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
20443 the label, 2 * @var{post-halfwords} bytes are appended, using the
20444 largest NOP like instructions the architecture allows (maximum
20445 1000000).
20446
20447 If both arguments are zero, hotpatching is disabled.
20448
20449 This option can be overridden for individual functions with the
20450 @code{hotpatch} attribute.
20451 @end table
20452
20453 @node Score Options
20454 @subsection Score Options
20455 @cindex Score Options
20456
20457 These options are defined for Score implementations:
20458
20459 @table @gcctabopt
20460 @item -meb
20461 @opindex meb
20462 Compile code for big-endian mode. This is the default.
20463
20464 @item -mel
20465 @opindex mel
20466 Compile code for little-endian mode.
20467
20468 @item -mnhwloop
20469 @opindex mnhwloop
20470 Disable generation of @code{bcnz} instructions.
20471
20472 @item -muls
20473 @opindex muls
20474 Enable generation of unaligned load and store instructions.
20475
20476 @item -mmac
20477 @opindex mmac
20478 Enable the use of multiply-accumulate instructions. Disabled by default.
20479
20480 @item -mscore5
20481 @opindex mscore5
20482 Specify the SCORE5 as the target architecture.
20483
20484 @item -mscore5u
20485 @opindex mscore5u
20486 Specify the SCORE5U of the target architecture.
20487
20488 @item -mscore7
20489 @opindex mscore7
20490 Specify the SCORE7 as the target architecture. This is the default.
20491
20492 @item -mscore7d
20493 @opindex mscore7d
20494 Specify the SCORE7D as the target architecture.
20495 @end table
20496
20497 @node SH Options
20498 @subsection SH Options
20499
20500 These @samp{-m} options are defined for the SH implementations:
20501
20502 @table @gcctabopt
20503 @item -m1
20504 @opindex m1
20505 Generate code for the SH1.
20506
20507 @item -m2
20508 @opindex m2
20509 Generate code for the SH2.
20510
20511 @item -m2e
20512 Generate code for the SH2e.
20513
20514 @item -m2a-nofpu
20515 @opindex m2a-nofpu
20516 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
20517 that the floating-point unit is not used.
20518
20519 @item -m2a-single-only
20520 @opindex m2a-single-only
20521 Generate code for the SH2a-FPU, in such a way that no double-precision
20522 floating-point operations are used.
20523
20524 @item -m2a-single
20525 @opindex m2a-single
20526 Generate code for the SH2a-FPU assuming the floating-point unit is in
20527 single-precision mode by default.
20528
20529 @item -m2a
20530 @opindex m2a
20531 Generate code for the SH2a-FPU assuming the floating-point unit is in
20532 double-precision mode by default.
20533
20534 @item -m3
20535 @opindex m3
20536 Generate code for the SH3.
20537
20538 @item -m3e
20539 @opindex m3e
20540 Generate code for the SH3e.
20541
20542 @item -m4-nofpu
20543 @opindex m4-nofpu
20544 Generate code for the SH4 without a floating-point unit.
20545
20546 @item -m4-single-only
20547 @opindex m4-single-only
20548 Generate code for the SH4 with a floating-point unit that only
20549 supports single-precision arithmetic.
20550
20551 @item -m4-single
20552 @opindex m4-single
20553 Generate code for the SH4 assuming the floating-point unit is in
20554 single-precision mode by default.
20555
20556 @item -m4
20557 @opindex m4
20558 Generate code for the SH4.
20559
20560 @item -m4-100
20561 @opindex m4-100
20562 Generate code for SH4-100.
20563
20564 @item -m4-100-nofpu
20565 @opindex m4-100-nofpu
20566 Generate code for SH4-100 in such a way that the
20567 floating-point unit is not used.
20568
20569 @item -m4-100-single
20570 @opindex m4-100-single
20571 Generate code for SH4-100 assuming the floating-point unit is in
20572 single-precision mode by default.
20573
20574 @item -m4-100-single-only
20575 @opindex m4-100-single-only
20576 Generate code for SH4-100 in such a way that no double-precision
20577 floating-point operations are used.
20578
20579 @item -m4-200
20580 @opindex m4-200
20581 Generate code for SH4-200.
20582
20583 @item -m4-200-nofpu
20584 @opindex m4-200-nofpu
20585 Generate code for SH4-200 without in such a way that the
20586 floating-point unit is not used.
20587
20588 @item -m4-200-single
20589 @opindex m4-200-single
20590 Generate code for SH4-200 assuming the floating-point unit is in
20591 single-precision mode by default.
20592
20593 @item -m4-200-single-only
20594 @opindex m4-200-single-only
20595 Generate code for SH4-200 in such a way that no double-precision
20596 floating-point operations are used.
20597
20598 @item -m4-300
20599 @opindex m4-300
20600 Generate code for SH4-300.
20601
20602 @item -m4-300-nofpu
20603 @opindex m4-300-nofpu
20604 Generate code for SH4-300 without in such a way that the
20605 floating-point unit is not used.
20606
20607 @item -m4-300-single
20608 @opindex m4-300-single
20609 Generate code for SH4-300 in such a way that no double-precision
20610 floating-point operations are used.
20611
20612 @item -m4-300-single-only
20613 @opindex m4-300-single-only
20614 Generate code for SH4-300 in such a way that no double-precision
20615 floating-point operations are used.
20616
20617 @item -m4-340
20618 @opindex m4-340
20619 Generate code for SH4-340 (no MMU, no FPU).
20620
20621 @item -m4-500
20622 @opindex m4-500
20623 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
20624 assembler.
20625
20626 @item -m4a-nofpu
20627 @opindex m4a-nofpu
20628 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
20629 floating-point unit is not used.
20630
20631 @item -m4a-single-only
20632 @opindex m4a-single-only
20633 Generate code for the SH4a, in such a way that no double-precision
20634 floating-point operations are used.
20635
20636 @item -m4a-single
20637 @opindex m4a-single
20638 Generate code for the SH4a assuming the floating-point unit is in
20639 single-precision mode by default.
20640
20641 @item -m4a
20642 @opindex m4a
20643 Generate code for the SH4a.
20644
20645 @item -m4al
20646 @opindex m4al
20647 Same as @option{-m4a-nofpu}, except that it implicitly passes
20648 @option{-dsp} to the assembler. GCC doesn't generate any DSP
20649 instructions at the moment.
20650
20651 @item -m5-32media
20652 @opindex m5-32media
20653 Generate 32-bit code for SHmedia.
20654
20655 @item -m5-32media-nofpu
20656 @opindex m5-32media-nofpu
20657 Generate 32-bit code for SHmedia in such a way that the
20658 floating-point unit is not used.
20659
20660 @item -m5-64media
20661 @opindex m5-64media
20662 Generate 64-bit code for SHmedia.
20663
20664 @item -m5-64media-nofpu
20665 @opindex m5-64media-nofpu
20666 Generate 64-bit code for SHmedia in such a way that the
20667 floating-point unit is not used.
20668
20669 @item -m5-compact
20670 @opindex m5-compact
20671 Generate code for SHcompact.
20672
20673 @item -m5-compact-nofpu
20674 @opindex m5-compact-nofpu
20675 Generate code for SHcompact in such a way that the
20676 floating-point unit is not used.
20677
20678 @item -mb
20679 @opindex mb
20680 Compile code for the processor in big-endian mode.
20681
20682 @item -ml
20683 @opindex ml
20684 Compile code for the processor in little-endian mode.
20685
20686 @item -mdalign
20687 @opindex mdalign
20688 Align doubles at 64-bit boundaries. Note that this changes the calling
20689 conventions, and thus some functions from the standard C library do
20690 not work unless you recompile it first with @option{-mdalign}.
20691
20692 @item -mrelax
20693 @opindex mrelax
20694 Shorten some address references at link time, when possible; uses the
20695 linker option @option{-relax}.
20696
20697 @item -mbigtable
20698 @opindex mbigtable
20699 Use 32-bit offsets in @code{switch} tables. The default is to use
20700 16-bit offsets.
20701
20702 @item -mbitops
20703 @opindex mbitops
20704 Enable the use of bit manipulation instructions on SH2A.
20705
20706 @item -mfmovd
20707 @opindex mfmovd
20708 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
20709 alignment constraints.
20710
20711 @item -mrenesas
20712 @opindex mrenesas
20713 Comply with the calling conventions defined by Renesas.
20714
20715 @item -mno-renesas
20716 @opindex mno-renesas
20717 Comply with the calling conventions defined for GCC before the Renesas
20718 conventions were available. This option is the default for all
20719 targets of the SH toolchain.
20720
20721 @item -mnomacsave
20722 @opindex mnomacsave
20723 Mark the @code{MAC} register as call-clobbered, even if
20724 @option{-mrenesas} is given.
20725
20726 @item -mieee
20727 @itemx -mno-ieee
20728 @opindex mieee
20729 @opindex mno-ieee
20730 Control the IEEE compliance of floating-point comparisons, which affects the
20731 handling of cases where the result of a comparison is unordered. By default
20732 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
20733 enabled @option{-mno-ieee} is implicitly set, which results in faster
20734 floating-point greater-equal and less-equal comparisons. The implcit settings
20735 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
20736
20737 @item -minline-ic_invalidate
20738 @opindex minline-ic_invalidate
20739 Inline code to invalidate instruction cache entries after setting up
20740 nested function trampolines.
20741 This option has no effect if @option{-musermode} is in effect and the selected
20742 code generation option (e.g. @option{-m4}) does not allow the use of the @code{icbi}
20743 instruction.
20744 If the selected code generation option does not allow the use of the @code{icbi}
20745 instruction, and @option{-musermode} is not in effect, the inlined code
20746 manipulates the instruction cache address array directly with an associative
20747 write. This not only requires privileged mode at run time, but it also
20748 fails if the cache line had been mapped via the TLB and has become unmapped.
20749
20750 @item -misize
20751 @opindex misize
20752 Dump instruction size and location in the assembly code.
20753
20754 @item -mpadstruct
20755 @opindex mpadstruct
20756 This option is deprecated. It pads structures to multiple of 4 bytes,
20757 which is incompatible with the SH ABI@.
20758
20759 @item -matomic-model=@var{model}
20760 @opindex matomic-model=@var{model}
20761 Sets the model of atomic operations and additional parameters as a comma
20762 separated list. For details on the atomic built-in functions see
20763 @ref{__atomic Builtins}. The following models and parameters are supported:
20764
20765 @table @samp
20766
20767 @item none
20768 Disable compiler generated atomic sequences and emit library calls for atomic
20769 operations. This is the default if the target is not @code{sh*-*-linux*}.
20770
20771 @item soft-gusa
20772 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
20773 built-in functions. The generated atomic sequences require additional support
20774 from the interrupt/exception handling code of the system and are only suitable
20775 for SH3* and SH4* single-core systems. This option is enabled by default when
20776 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
20777 this option also partially utilizes the hardware atomic instructions
20778 @code{movli.l} and @code{movco.l} to create more efficient code, unless
20779 @samp{strict} is specified.
20780
20781 @item soft-tcb
20782 Generate software atomic sequences that use a variable in the thread control
20783 block. This is a variation of the gUSA sequences which can also be used on
20784 SH1* and SH2* targets. The generated atomic sequences require additional
20785 support from the interrupt/exception handling code of the system and are only
20786 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
20787 parameter has to be specified as well.
20788
20789 @item soft-imask
20790 Generate software atomic sequences that temporarily disable interrupts by
20791 setting @code{SR.IMASK = 1111}. This model works only when the program runs
20792 in privileged mode and is only suitable for single-core systems. Additional
20793 support from the interrupt/exception handling code of the system is not
20794 required. This model is enabled by default when the target is
20795 @code{sh*-*-linux*} and SH1* or SH2*.
20796
20797 @item hard-llcs
20798 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
20799 instructions only. This is only available on SH4A and is suitable for
20800 multi-core systems. Since the hardware instructions support only 32 bit atomic
20801 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
20802 Code compiled with this option is also compatible with other software
20803 atomic model interrupt/exception handling systems if executed on an SH4A
20804 system. Additional support from the interrupt/exception handling code of the
20805 system is not required for this model.
20806
20807 @item gbr-offset=
20808 This parameter specifies the offset in bytes of the variable in the thread
20809 control block structure that should be used by the generated atomic sequences
20810 when the @samp{soft-tcb} model has been selected. For other models this
20811 parameter is ignored. The specified value must be an integer multiple of four
20812 and in the range 0-1020.
20813
20814 @item strict
20815 This parameter prevents mixed usage of multiple atomic models, even if they
20816 are compatible, and makes the compiler generate atomic sequences of the
20817 specified model only.
20818
20819 @end table
20820
20821 @item -mtas
20822 @opindex mtas
20823 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
20824 Notice that depending on the particular hardware and software configuration
20825 this can degrade overall performance due to the operand cache line flushes
20826 that are implied by the @code{tas.b} instruction. On multi-core SH4A
20827 processors the @code{tas.b} instruction must be used with caution since it
20828 can result in data corruption for certain cache configurations.
20829
20830 @item -mprefergot
20831 @opindex mprefergot
20832 When generating position-independent code, emit function calls using
20833 the Global Offset Table instead of the Procedure Linkage Table.
20834
20835 @item -musermode
20836 @itemx -mno-usermode
20837 @opindex musermode
20838 @opindex mno-usermode
20839 Don't allow (allow) the compiler generating privileged mode code. Specifying
20840 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
20841 inlined code would not work in user mode. @option{-musermode} is the default
20842 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
20843 @option{-musermode} has no effect, since there is no user mode.
20844
20845 @item -multcost=@var{number}
20846 @opindex multcost=@var{number}
20847 Set the cost to assume for a multiply insn.
20848
20849 @item -mdiv=@var{strategy}
20850 @opindex mdiv=@var{strategy}
20851 Set the division strategy to be used for integer division operations.
20852 For SHmedia @var{strategy} can be one of:
20853
20854 @table @samp
20855
20856 @item fp
20857 Performs the operation in floating point. This has a very high latency,
20858 but needs only a few instructions, so it might be a good choice if
20859 your code has enough easily-exploitable ILP to allow the compiler to
20860 schedule the floating-point instructions together with other instructions.
20861 Division by zero causes a floating-point exception.
20862
20863 @item inv
20864 Uses integer operations to calculate the inverse of the divisor,
20865 and then multiplies the dividend with the inverse. This strategy allows
20866 CSE and hoisting of the inverse calculation. Division by zero calculates
20867 an unspecified result, but does not trap.
20868
20869 @item inv:minlat
20870 A variant of @samp{inv} where, if no CSE or hoisting opportunities
20871 have been found, or if the entire operation has been hoisted to the same
20872 place, the last stages of the inverse calculation are intertwined with the
20873 final multiply to reduce the overall latency, at the expense of using a few
20874 more instructions, and thus offering fewer scheduling opportunities with
20875 other code.
20876
20877 @item call
20878 Calls a library function that usually implements the @samp{inv:minlat}
20879 strategy.
20880 This gives high code density for @code{m5-*media-nofpu} compilations.
20881
20882 @item call2
20883 Uses a different entry point of the same library function, where it
20884 assumes that a pointer to a lookup table has already been set up, which
20885 exposes the pointer load to CSE and code hoisting optimizations.
20886
20887 @item inv:call
20888 @itemx inv:call2
20889 @itemx inv:fp
20890 Use the @samp{inv} algorithm for initial
20891 code generation, but if the code stays unoptimized, revert to the @samp{call},
20892 @samp{call2}, or @samp{fp} strategies, respectively. Note that the
20893 potentially-trapping side effect of division by zero is carried by a
20894 separate instruction, so it is possible that all the integer instructions
20895 are hoisted out, but the marker for the side effect stays where it is.
20896 A recombination to floating-point operations or a call is not possible
20897 in that case.
20898
20899 @item inv20u
20900 @itemx inv20l
20901 Variants of the @samp{inv:minlat} strategy. In the case
20902 that the inverse calculation is not separated from the multiply, they speed
20903 up division where the dividend fits into 20 bits (plus sign where applicable)
20904 by inserting a test to skip a number of operations in this case; this test
20905 slows down the case of larger dividends. @samp{inv20u} assumes the case of a such
20906 a small dividend to be unlikely, and @samp{inv20l} assumes it to be likely.
20907
20908 @end table
20909
20910 For targets other than SHmedia @var{strategy} can be one of:
20911
20912 @table @samp
20913
20914 @item call-div1
20915 Calls a library function that uses the single-step division instruction
20916 @code{div1} to perform the operation. Division by zero calculates an
20917 unspecified result and does not trap. This is the default except for SH4,
20918 SH2A and SHcompact.
20919
20920 @item call-fp
20921 Calls a library function that performs the operation in double precision
20922 floating point. Division by zero causes a floating-point exception. This is
20923 the default for SHcompact with FPU. Specifying this for targets that do not
20924 have a double precision FPU defaults to @code{call-div1}.
20925
20926 @item call-table
20927 Calls a library function that uses a lookup table for small divisors and
20928 the @code{div1} instruction with case distinction for larger divisors. Division
20929 by zero calculates an unspecified result and does not trap. This is the default
20930 for SH4. Specifying this for targets that do not have dynamic shift
20931 instructions defaults to @code{call-div1}.
20932
20933 @end table
20934
20935 When a division strategy has not been specified the default strategy is
20936 selected based on the current target. For SH2A the default strategy is to
20937 use the @code{divs} and @code{divu} instructions instead of library function
20938 calls.
20939
20940 @item -maccumulate-outgoing-args
20941 @opindex maccumulate-outgoing-args
20942 Reserve space once for outgoing arguments in the function prologue rather
20943 than around each call. Generally beneficial for performance and size. Also
20944 needed for unwinding to avoid changing the stack frame around conditional code.
20945
20946 @item -mdivsi3_libfunc=@var{name}
20947 @opindex mdivsi3_libfunc=@var{name}
20948 Set the name of the library function used for 32-bit signed division to
20949 @var{name}.
20950 This only affects the name used in the @samp{call} and @samp{inv:call}
20951 division strategies, and the compiler still expects the same
20952 sets of input/output/clobbered registers as if this option were not present.
20953
20954 @item -mfixed-range=@var{register-range}
20955 @opindex mfixed-range
20956 Generate code treating the given register range as fixed registers.
20957 A fixed register is one that the register allocator can not use. This is
20958 useful when compiling kernel code. A register range is specified as
20959 two registers separated by a dash. Multiple register ranges can be
20960 specified separated by a comma.
20961
20962 @item -mindexed-addressing
20963 @opindex mindexed-addressing
20964 Enable the use of the indexed addressing mode for SHmedia32/SHcompact.
20965 This is only safe if the hardware and/or OS implement 32-bit wrap-around
20966 semantics for the indexed addressing mode. The architecture allows the
20967 implementation of processors with 64-bit MMU, which the OS could use to
20968 get 32-bit addressing, but since no current hardware implementation supports
20969 this or any other way to make the indexed addressing mode safe to use in
20970 the 32-bit ABI, the default is @option{-mno-indexed-addressing}.
20971
20972 @item -mgettrcost=@var{number}
20973 @opindex mgettrcost=@var{number}
20974 Set the cost assumed for the @code{gettr} instruction to @var{number}.
20975 The default is 2 if @option{-mpt-fixed} is in effect, 100 otherwise.
20976
20977 @item -mpt-fixed
20978 @opindex mpt-fixed
20979 Assume @code{pt*} instructions won't trap. This generally generates
20980 better-scheduled code, but is unsafe on current hardware.
20981 The current architecture
20982 definition says that @code{ptabs} and @code{ptrel} trap when the target
20983 anded with 3 is 3.
20984 This has the unintentional effect of making it unsafe to schedule these
20985 instructions before a branch, or hoist them out of a loop. For example,
20986 @code{__do_global_ctors}, a part of @file{libgcc}
20987 that runs constructors at program
20988 startup, calls functions in a list which is delimited by @minus{}1. With the
20989 @option{-mpt-fixed} option, the @code{ptabs} is done before testing against @minus{}1.
20990 That means that all the constructors run a bit more quickly, but when
20991 the loop comes to the end of the list, the program crashes because @code{ptabs}
20992 loads @minus{}1 into a target register.
20993
20994 Since this option is unsafe for any
20995 hardware implementing the current architecture specification, the default
20996 is @option{-mno-pt-fixed}. Unless specified explicitly with
20997 @option{-mgettrcost}, @option{-mno-pt-fixed} also implies @option{-mgettrcost=100};
20998 this deters register allocation from using target registers for storing
20999 ordinary integers.
21000
21001 @item -minvalid-symbols
21002 @opindex minvalid-symbols
21003 Assume symbols might be invalid. Ordinary function symbols generated by
21004 the compiler are always valid to load with
21005 @code{movi}/@code{shori}/@code{ptabs} or
21006 @code{movi}/@code{shori}/@code{ptrel},
21007 but with assembler and/or linker tricks it is possible
21008 to generate symbols that cause @code{ptabs} or @code{ptrel} to trap.
21009 This option is only meaningful when @option{-mno-pt-fixed} is in effect.
21010 It prevents cross-basic-block CSE, hoisting and most scheduling
21011 of symbol loads. The default is @option{-mno-invalid-symbols}.
21012
21013 @item -mbranch-cost=@var{num}
21014 @opindex mbranch-cost=@var{num}
21015 Assume @var{num} to be the cost for a branch instruction. Higher numbers
21016 make the compiler try to generate more branch-free code if possible.
21017 If not specified the value is selected depending on the processor type that
21018 is being compiled for.
21019
21020 @item -mzdcbranch
21021 @itemx -mno-zdcbranch
21022 @opindex mzdcbranch
21023 @opindex mno-zdcbranch
21024 Assume (do not assume) that zero displacement conditional branch instructions
21025 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
21026 compiler prefers zero displacement branch code sequences. This is
21027 enabled by default when generating code for SH4 and SH4A. It can be explicitly
21028 disabled by specifying @option{-mno-zdcbranch}.
21029
21030 @item -mcbranch-force-delay-slot
21031 @opindex mcbranch-force-delay-slot
21032 Force the usage of delay slots for conditional branches, which stuffs the delay
21033 slot with a @code{nop} if a suitable instruction can't be found. By default
21034 this option is disabled. It can be enabled to work around hardware bugs as
21035 found in the original SH7055.
21036
21037 @item -mfused-madd
21038 @itemx -mno-fused-madd
21039 @opindex mfused-madd
21040 @opindex mno-fused-madd
21041 Generate code that uses (does not use) the floating-point multiply and
21042 accumulate instructions. These instructions are generated by default
21043 if hardware floating point is used. The machine-dependent
21044 @option{-mfused-madd} option is now mapped to the machine-independent
21045 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
21046 mapped to @option{-ffp-contract=off}.
21047
21048 @item -mfsca
21049 @itemx -mno-fsca
21050 @opindex mfsca
21051 @opindex mno-fsca
21052 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
21053 and cosine approximations. The option @option{-mfsca} must be used in
21054 combination with @option{-funsafe-math-optimizations}. It is enabled by default
21055 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
21056 approximations even if @option{-funsafe-math-optimizations} is in effect.
21057
21058 @item -mfsrra
21059 @itemx -mno-fsrra
21060 @opindex mfsrra
21061 @opindex mno-fsrra
21062 Allow or disallow the compiler to emit the @code{fsrra} instruction for
21063 reciprocal square root approximations. The option @option{-mfsrra} must be used
21064 in combination with @option{-funsafe-math-optimizations} and
21065 @option{-ffinite-math-only}. It is enabled by default when generating code for
21066 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
21067 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
21068 in effect.
21069
21070 @item -mpretend-cmove
21071 @opindex mpretend-cmove
21072 Prefer zero-displacement conditional branches for conditional move instruction
21073 patterns. This can result in faster code on the SH4 processor.
21074
21075 @end table
21076
21077 @node Solaris 2 Options
21078 @subsection Solaris 2 Options
21079 @cindex Solaris 2 options
21080
21081 These @samp{-m} options are supported on Solaris 2:
21082
21083 @table @gcctabopt
21084 @item -mclear-hwcap
21085 @opindex mclear-hwcap
21086 @option{-mclear-hwcap} tells the compiler to remove the hardware
21087 capabilities generated by the Solaris assembler. This is only necessary
21088 when object files use ISA extensions not supported by the current
21089 machine, but check at runtime whether or not to use them.
21090
21091 @item -mimpure-text
21092 @opindex mimpure-text
21093 @option{-mimpure-text}, used in addition to @option{-shared}, tells
21094 the compiler to not pass @option{-z text} to the linker when linking a
21095 shared object. Using this option, you can link position-dependent
21096 code into a shared object.
21097
21098 @option{-mimpure-text} suppresses the ``relocations remain against
21099 allocatable but non-writable sections'' linker error message.
21100 However, the necessary relocations trigger copy-on-write, and the
21101 shared object is not actually shared across processes. Instead of
21102 using @option{-mimpure-text}, you should compile all source code with
21103 @option{-fpic} or @option{-fPIC}.
21104
21105 @end table
21106
21107 These switches are supported in addition to the above on Solaris 2:
21108
21109 @table @gcctabopt
21110 @item -pthreads
21111 @opindex pthreads
21112 Add support for multithreading using the POSIX threads library. This
21113 option sets flags for both the preprocessor and linker. This option does
21114 not affect the thread safety of object code produced by the compiler or
21115 that of libraries supplied with it.
21116
21117 @item -pthread
21118 @opindex pthread
21119 This is a synonym for @option{-pthreads}.
21120 @end table
21121
21122 @node SPARC Options
21123 @subsection SPARC Options
21124 @cindex SPARC options
21125
21126 These @samp{-m} options are supported on the SPARC:
21127
21128 @table @gcctabopt
21129 @item -mno-app-regs
21130 @itemx -mapp-regs
21131 @opindex mno-app-regs
21132 @opindex mapp-regs
21133 Specify @option{-mapp-regs} to generate output using the global registers
21134 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
21135 global register 1, each global register 2 through 4 is then treated as an
21136 allocable register that is clobbered by function calls. This is the default.
21137
21138 To be fully SVR4 ABI-compliant at the cost of some performance loss,
21139 specify @option{-mno-app-regs}. You should compile libraries and system
21140 software with this option.
21141
21142 @item -mflat
21143 @itemx -mno-flat
21144 @opindex mflat
21145 @opindex mno-flat
21146 With @option{-mflat}, the compiler does not generate save/restore instructions
21147 and uses a ``flat'' or single register window model. This model is compatible
21148 with the regular register window model. The local registers and the input
21149 registers (0--5) are still treated as ``call-saved'' registers and are
21150 saved on the stack as needed.
21151
21152 With @option{-mno-flat} (the default), the compiler generates save/restore
21153 instructions (except for leaf functions). This is the normal operating mode.
21154
21155 @item -mfpu
21156 @itemx -mhard-float
21157 @opindex mfpu
21158 @opindex mhard-float
21159 Generate output containing floating-point instructions. This is the
21160 default.
21161
21162 @item -mno-fpu
21163 @itemx -msoft-float
21164 @opindex mno-fpu
21165 @opindex msoft-float
21166 Generate output containing library calls for floating point.
21167 @strong{Warning:} the requisite libraries are not available for all SPARC
21168 targets. Normally the facilities of the machine's usual C compiler are
21169 used, but this cannot be done directly in cross-compilation. You must make
21170 your own arrangements to provide suitable library functions for
21171 cross-compilation. The embedded targets @samp{sparc-*-aout} and
21172 @samp{sparclite-*-*} do provide software floating-point support.
21173
21174 @option{-msoft-float} changes the calling convention in the output file;
21175 therefore, it is only useful if you compile @emph{all} of a program with
21176 this option. In particular, you need to compile @file{libgcc.a}, the
21177 library that comes with GCC, with @option{-msoft-float} in order for
21178 this to work.
21179
21180 @item -mhard-quad-float
21181 @opindex mhard-quad-float
21182 Generate output containing quad-word (long double) floating-point
21183 instructions.
21184
21185 @item -msoft-quad-float
21186 @opindex msoft-quad-float
21187 Generate output containing library calls for quad-word (long double)
21188 floating-point instructions. The functions called are those specified
21189 in the SPARC ABI@. This is the default.
21190
21191 As of this writing, there are no SPARC implementations that have hardware
21192 support for the quad-word floating-point instructions. They all invoke
21193 a trap handler for one of these instructions, and then the trap handler
21194 emulates the effect of the instruction. Because of the trap handler overhead,
21195 this is much slower than calling the ABI library routines. Thus the
21196 @option{-msoft-quad-float} option is the default.
21197
21198 @item -mno-unaligned-doubles
21199 @itemx -munaligned-doubles
21200 @opindex mno-unaligned-doubles
21201 @opindex munaligned-doubles
21202 Assume that doubles have 8-byte alignment. This is the default.
21203
21204 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
21205 alignment only if they are contained in another type, or if they have an
21206 absolute address. Otherwise, it assumes they have 4-byte alignment.
21207 Specifying this option avoids some rare compatibility problems with code
21208 generated by other compilers. It is not the default because it results
21209 in a performance loss, especially for floating-point code.
21210
21211 @item -muser-mode
21212 @itemx -mno-user-mode
21213 @opindex muser-mode
21214 @opindex mno-user-mode
21215 Do not generate code that can only run in supervisor mode. This is relevant
21216 only for the @code{casa} instruction emitted for the LEON3 processor. The
21217 default is @option{-mno-user-mode}.
21218
21219 @item -mno-faster-structs
21220 @itemx -mfaster-structs
21221 @opindex mno-faster-structs
21222 @opindex mfaster-structs
21223 With @option{-mfaster-structs}, the compiler assumes that structures
21224 should have 8-byte alignment. This enables the use of pairs of
21225 @code{ldd} and @code{std} instructions for copies in structure
21226 assignment, in place of twice as many @code{ld} and @code{st} pairs.
21227 However, the use of this changed alignment directly violates the SPARC
21228 ABI@. Thus, it's intended only for use on targets where the developer
21229 acknowledges that their resulting code is not directly in line with
21230 the rules of the ABI@.
21231
21232 @item -mcpu=@var{cpu_type}
21233 @opindex mcpu
21234 Set the instruction set, register set, and instruction scheduling parameters
21235 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
21236 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
21237 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
21238 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
21239 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21240 @samp{niagara3} and @samp{niagara4}.
21241
21242 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
21243 which selects the best architecture option for the host processor.
21244 @option{-mcpu=native} has no effect if GCC does not recognize
21245 the processor.
21246
21247 Default instruction scheduling parameters are used for values that select
21248 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
21249 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
21250
21251 Here is a list of each supported architecture and their supported
21252 implementations.
21253
21254 @table @asis
21255 @item v7
21256 cypress, leon3v7
21257
21258 @item v8
21259 supersparc, hypersparc, leon, leon3
21260
21261 @item sparclite
21262 f930, f934, sparclite86x
21263
21264 @item sparclet
21265 tsc701
21266
21267 @item v9
21268 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4
21269 @end table
21270
21271 By default (unless configured otherwise), GCC generates code for the V7
21272 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
21273 additionally optimizes it for the Cypress CY7C602 chip, as used in the
21274 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
21275 SPARCStation 1, 2, IPX etc.
21276
21277 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
21278 architecture. The only difference from V7 code is that the compiler emits
21279 the integer multiply and integer divide instructions which exist in SPARC-V8
21280 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
21281 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
21282 2000 series.
21283
21284 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
21285 the SPARC architecture. This adds the integer multiply, integer divide step
21286 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
21287 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
21288 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
21289 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
21290 MB86934 chip, which is the more recent SPARClite with FPU@.
21291
21292 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
21293 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
21294 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
21295 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
21296 optimizes it for the TEMIC SPARClet chip.
21297
21298 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
21299 architecture. This adds 64-bit integer and floating-point move instructions,
21300 3 additional floating-point condition code registers and conditional move
21301 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
21302 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
21303 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
21304 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
21305 @option{-mcpu=niagara}, the compiler additionally optimizes it for
21306 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
21307 additionally optimizes it for Sun UltraSPARC T2 chips. With
21308 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
21309 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
21310 additionally optimizes it for Sun UltraSPARC T4 chips.
21311
21312 @item -mtune=@var{cpu_type}
21313 @opindex mtune
21314 Set the instruction scheduling parameters for machine type
21315 @var{cpu_type}, but do not set the instruction set or register set that the
21316 option @option{-mcpu=@var{cpu_type}} does.
21317
21318 The same values for @option{-mcpu=@var{cpu_type}} can be used for
21319 @option{-mtune=@var{cpu_type}}, but the only useful values are those
21320 that select a particular CPU implementation. Those are @samp{cypress},
21321 @samp{supersparc}, @samp{hypersparc}, @samp{leon}, @samp{leon3},
21322 @samp{leon3v7}, @samp{f930}, @samp{f934}, @samp{sparclite86x}, @samp{tsc701},
21323 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
21324 @samp{niagara3} and @samp{niagara4}. With native Solaris and GNU/Linux
21325 toolchains, @samp{native} can also be used.
21326
21327 @item -mv8plus
21328 @itemx -mno-v8plus
21329 @opindex mv8plus
21330 @opindex mno-v8plus
21331 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
21332 difference from the V8 ABI is that the global and out registers are
21333 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
21334 mode for all SPARC-V9 processors.
21335
21336 @item -mvis
21337 @itemx -mno-vis
21338 @opindex mvis
21339 @opindex mno-vis
21340 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
21341 Visual Instruction Set extensions. The default is @option{-mno-vis}.
21342
21343 @item -mvis2
21344 @itemx -mno-vis2
21345 @opindex mvis2
21346 @opindex mno-vis2
21347 With @option{-mvis2}, GCC generates code that takes advantage of
21348 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
21349 default is @option{-mvis2} when targeting a cpu that supports such
21350 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
21351 also sets @option{-mvis}.
21352
21353 @item -mvis3
21354 @itemx -mno-vis3
21355 @opindex mvis3
21356 @opindex mno-vis3
21357 With @option{-mvis3}, GCC generates code that takes advantage of
21358 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
21359 default is @option{-mvis3} when targeting a cpu that supports such
21360 instructions, such as niagara-3 and later. Setting @option{-mvis3}
21361 also sets @option{-mvis2} and @option{-mvis}.
21362
21363 @item -mcbcond
21364 @itemx -mno-cbcond
21365 @opindex mcbcond
21366 @opindex mno-cbcond
21367 With @option{-mcbcond}, GCC generates code that takes advantage of
21368 compare-and-branch instructions, as defined in the Sparc Architecture 2011.
21369 The default is @option{-mcbcond} when targeting a cpu that supports such
21370 instructions, such as niagara-4 and later.
21371
21372 @item -mpopc
21373 @itemx -mno-popc
21374 @opindex mpopc
21375 @opindex mno-popc
21376 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
21377 population count instruction. The default is @option{-mpopc}
21378 when targeting a cpu that supports such instructions, such as Niagara-2 and
21379 later.
21380
21381 @item -mfmaf
21382 @itemx -mno-fmaf
21383 @opindex mfmaf
21384 @opindex mno-fmaf
21385 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
21386 Fused Multiply-Add Floating-point extensions. The default is @option{-mfmaf}
21387 when targeting a cpu that supports such instructions, such as Niagara-3 and
21388 later.
21389
21390 @item -mfix-at697f
21391 @opindex mfix-at697f
21392 Enable the documented workaround for the single erratum of the Atmel AT697F
21393 processor (which corresponds to erratum #13 of the AT697E processor).
21394
21395 @item -mfix-ut699
21396 @opindex mfix-ut699
21397 Enable the documented workarounds for the floating-point errata and the data
21398 cache nullify errata of the UT699 processor.
21399 @end table
21400
21401 These @samp{-m} options are supported in addition to the above
21402 on SPARC-V9 processors in 64-bit environments:
21403
21404 @table @gcctabopt
21405 @item -m32
21406 @itemx -m64
21407 @opindex m32
21408 @opindex m64
21409 Generate code for a 32-bit or 64-bit environment.
21410 The 32-bit environment sets int, long and pointer to 32 bits.
21411 The 64-bit environment sets int to 32 bits and long and pointer
21412 to 64 bits.
21413
21414 @item -mcmodel=@var{which}
21415 @opindex mcmodel
21416 Set the code model to one of
21417
21418 @table @samp
21419 @item medlow
21420 The Medium/Low code model: 64-bit addresses, programs
21421 must be linked in the low 32 bits of memory. Programs can be statically
21422 or dynamically linked.
21423
21424 @item medmid
21425 The Medium/Middle code model: 64-bit addresses, programs
21426 must be linked in the low 44 bits of memory, the text and data segments must
21427 be less than 2GB in size and the data segment must be located within 2GB of
21428 the text segment.
21429
21430 @item medany
21431 The Medium/Anywhere code model: 64-bit addresses, programs
21432 may be linked anywhere in memory, the text and data segments must be less
21433 than 2GB in size and the data segment must be located within 2GB of the
21434 text segment.
21435
21436 @item embmedany
21437 The Medium/Anywhere code model for embedded systems:
21438 64-bit addresses, the text and data segments must be less than 2GB in
21439 size, both starting anywhere in memory (determined at link time). The
21440 global register %g4 points to the base of the data segment. Programs
21441 are statically linked and PIC is not supported.
21442 @end table
21443
21444 @item -mmemory-model=@var{mem-model}
21445 @opindex mmemory-model
21446 Set the memory model in force on the processor to one of
21447
21448 @table @samp
21449 @item default
21450 The default memory model for the processor and operating system.
21451
21452 @item rmo
21453 Relaxed Memory Order
21454
21455 @item pso
21456 Partial Store Order
21457
21458 @item tso
21459 Total Store Order
21460
21461 @item sc
21462 Sequential Consistency
21463 @end table
21464
21465 These memory models are formally defined in Appendix D of the Sparc V9
21466 architecture manual, as set in the processor's @code{PSTATE.MM} field.
21467
21468 @item -mstack-bias
21469 @itemx -mno-stack-bias
21470 @opindex mstack-bias
21471 @opindex mno-stack-bias
21472 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
21473 frame pointer if present, are offset by @minus{}2047 which must be added back
21474 when making stack frame references. This is the default in 64-bit mode.
21475 Otherwise, assume no such offset is present.
21476 @end table
21477
21478 @node SPU Options
21479 @subsection SPU Options
21480 @cindex SPU options
21481
21482 These @samp{-m} options are supported on the SPU:
21483
21484 @table @gcctabopt
21485 @item -mwarn-reloc
21486 @itemx -merror-reloc
21487 @opindex mwarn-reloc
21488 @opindex merror-reloc
21489
21490 The loader for SPU does not handle dynamic relocations. By default, GCC
21491 gives an error when it generates code that requires a dynamic
21492 relocation. @option{-mno-error-reloc} disables the error,
21493 @option{-mwarn-reloc} generates a warning instead.
21494
21495 @item -msafe-dma
21496 @itemx -munsafe-dma
21497 @opindex msafe-dma
21498 @opindex munsafe-dma
21499
21500 Instructions that initiate or test completion of DMA must not be
21501 reordered with respect to loads and stores of the memory that is being
21502 accessed.
21503 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
21504 memory accesses, but that can lead to inefficient code in places where the
21505 memory is known to not change. Rather than mark the memory as volatile,
21506 you can use @option{-msafe-dma} to tell the compiler to treat
21507 the DMA instructions as potentially affecting all memory.
21508
21509 @item -mbranch-hints
21510 @opindex mbranch-hints
21511
21512 By default, GCC generates a branch hint instruction to avoid
21513 pipeline stalls for always-taken or probably-taken branches. A hint
21514 is not generated closer than 8 instructions away from its branch.
21515 There is little reason to disable them, except for debugging purposes,
21516 or to make an object a little bit smaller.
21517
21518 @item -msmall-mem
21519 @itemx -mlarge-mem
21520 @opindex msmall-mem
21521 @opindex mlarge-mem
21522
21523 By default, GCC generates code assuming that addresses are never larger
21524 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
21525 a full 32-bit address.
21526
21527 @item -mstdmain
21528 @opindex mstdmain
21529
21530 By default, GCC links against startup code that assumes the SPU-style
21531 main function interface (which has an unconventional parameter list).
21532 With @option{-mstdmain}, GCC links your program against startup
21533 code that assumes a C99-style interface to @code{main}, including a
21534 local copy of @code{argv} strings.
21535
21536 @item -mfixed-range=@var{register-range}
21537 @opindex mfixed-range
21538 Generate code treating the given register range as fixed registers.
21539 A fixed register is one that the register allocator cannot use. This is
21540 useful when compiling kernel code. A register range is specified as
21541 two registers separated by a dash. Multiple register ranges can be
21542 specified separated by a comma.
21543
21544 @item -mea32
21545 @itemx -mea64
21546 @opindex mea32
21547 @opindex mea64
21548 Compile code assuming that pointers to the PPU address space accessed
21549 via the @code{__ea} named address space qualifier are either 32 or 64
21550 bits wide. The default is 32 bits. As this is an ABI-changing option,
21551 all object code in an executable must be compiled with the same setting.
21552
21553 @item -maddress-space-conversion
21554 @itemx -mno-address-space-conversion
21555 @opindex maddress-space-conversion
21556 @opindex mno-address-space-conversion
21557 Allow/disallow treating the @code{__ea} address space as superset
21558 of the generic address space. This enables explicit type casts
21559 between @code{__ea} and generic pointer as well as implicit
21560 conversions of generic pointers to @code{__ea} pointers. The
21561 default is to allow address space pointer conversions.
21562
21563 @item -mcache-size=@var{cache-size}
21564 @opindex mcache-size
21565 This option controls the version of libgcc that the compiler links to an
21566 executable and selects a software-managed cache for accessing variables
21567 in the @code{__ea} address space with a particular cache size. Possible
21568 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
21569 and @samp{128}. The default cache size is 64KB.
21570
21571 @item -matomic-updates
21572 @itemx -mno-atomic-updates
21573 @opindex matomic-updates
21574 @opindex mno-atomic-updates
21575 This option controls the version of libgcc that the compiler links to an
21576 executable and selects whether atomic updates to the software-managed
21577 cache of PPU-side variables are used. If you use atomic updates, changes
21578 to a PPU variable from SPU code using the @code{__ea} named address space
21579 qualifier do not interfere with changes to other PPU variables residing
21580 in the same cache line from PPU code. If you do not use atomic updates,
21581 such interference may occur; however, writing back cache lines is
21582 more efficient. The default behavior is to use atomic updates.
21583
21584 @item -mdual-nops
21585 @itemx -mdual-nops=@var{n}
21586 @opindex mdual-nops
21587 By default, GCC inserts nops to increase dual issue when it expects
21588 it to increase performance. @var{n} can be a value from 0 to 10. A
21589 smaller @var{n} inserts fewer nops. 10 is the default, 0 is the
21590 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
21591
21592 @item -mhint-max-nops=@var{n}
21593 @opindex mhint-max-nops
21594 Maximum number of nops to insert for a branch hint. A branch hint must
21595 be at least 8 instructions away from the branch it is affecting. GCC
21596 inserts up to @var{n} nops to enforce this, otherwise it does not
21597 generate the branch hint.
21598
21599 @item -mhint-max-distance=@var{n}
21600 @opindex mhint-max-distance
21601 The encoding of the branch hint instruction limits the hint to be within
21602 256 instructions of the branch it is affecting. By default, GCC makes
21603 sure it is within 125.
21604
21605 @item -msafe-hints
21606 @opindex msafe-hints
21607 Work around a hardware bug that causes the SPU to stall indefinitely.
21608 By default, GCC inserts the @code{hbrp} instruction to make sure
21609 this stall won't happen.
21610
21611 @end table
21612
21613 @node System V Options
21614 @subsection Options for System V
21615
21616 These additional options are available on System V Release 4 for
21617 compatibility with other compilers on those systems:
21618
21619 @table @gcctabopt
21620 @item -G
21621 @opindex G
21622 Create a shared object.
21623 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
21624
21625 @item -Qy
21626 @opindex Qy
21627 Identify the versions of each tool used by the compiler, in a
21628 @code{.ident} assembler directive in the output.
21629
21630 @item -Qn
21631 @opindex Qn
21632 Refrain from adding @code{.ident} directives to the output file (this is
21633 the default).
21634
21635 @item -YP,@var{dirs}
21636 @opindex YP
21637 Search the directories @var{dirs}, and no others, for libraries
21638 specified with @option{-l}.
21639
21640 @item -Ym,@var{dir}
21641 @opindex Ym
21642 Look in the directory @var{dir} to find the M4 preprocessor.
21643 The assembler uses this option.
21644 @c This is supposed to go with a -Yd for predefined M4 macro files, but
21645 @c the generic assembler that comes with Solaris takes just -Ym.
21646 @end table
21647
21648 @node TILE-Gx Options
21649 @subsection TILE-Gx Options
21650 @cindex TILE-Gx options
21651
21652 These @samp{-m} options are supported on the TILE-Gx:
21653
21654 @table @gcctabopt
21655 @item -mcmodel=small
21656 @opindex mcmodel=small
21657 Generate code for the small model. The distance for direct calls is
21658 limited to 500M in either direction. PC-relative addresses are 32
21659 bits. Absolute addresses support the full address range.
21660
21661 @item -mcmodel=large
21662 @opindex mcmodel=large
21663 Generate code for the large model. There is no limitation on call
21664 distance, pc-relative addresses, or absolute addresses.
21665
21666 @item -mcpu=@var{name}
21667 @opindex mcpu
21668 Selects the type of CPU to be targeted. Currently the only supported
21669 type is @samp{tilegx}.
21670
21671 @item -m32
21672 @itemx -m64
21673 @opindex m32
21674 @opindex m64
21675 Generate code for a 32-bit or 64-bit environment. The 32-bit
21676 environment sets int, long, and pointer to 32 bits. The 64-bit
21677 environment sets int to 32 bits and long and pointer to 64 bits.
21678
21679 @item -mbig-endian
21680 @itemx -mlittle-endian
21681 @opindex mbig-endian
21682 @opindex mlittle-endian
21683 Generate code in big/little endian mode, respectively.
21684 @end table
21685
21686 @node TILEPro Options
21687 @subsection TILEPro Options
21688 @cindex TILEPro options
21689
21690 These @samp{-m} options are supported on the TILEPro:
21691
21692 @table @gcctabopt
21693 @item -mcpu=@var{name}
21694 @opindex mcpu
21695 Selects the type of CPU to be targeted. Currently the only supported
21696 type is @samp{tilepro}.
21697
21698 @item -m32
21699 @opindex m32
21700 Generate code for a 32-bit environment, which sets int, long, and
21701 pointer to 32 bits. This is the only supported behavior so the flag
21702 is essentially ignored.
21703 @end table
21704
21705 @node V850 Options
21706 @subsection V850 Options
21707 @cindex V850 Options
21708
21709 These @samp{-m} options are defined for V850 implementations:
21710
21711 @table @gcctabopt
21712 @item -mlong-calls
21713 @itemx -mno-long-calls
21714 @opindex mlong-calls
21715 @opindex mno-long-calls
21716 Treat all calls as being far away (near). If calls are assumed to be
21717 far away, the compiler always loads the function's address into a
21718 register, and calls indirect through the pointer.
21719
21720 @item -mno-ep
21721 @itemx -mep
21722 @opindex mno-ep
21723 @opindex mep
21724 Do not optimize (do optimize) basic blocks that use the same index
21725 pointer 4 or more times to copy pointer into the @code{ep} register, and
21726 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
21727 option is on by default if you optimize.
21728
21729 @item -mno-prolog-function
21730 @itemx -mprolog-function
21731 @opindex mno-prolog-function
21732 @opindex mprolog-function
21733 Do not use (do use) external functions to save and restore registers
21734 at the prologue and epilogue of a function. The external functions
21735 are slower, but use less code space if more than one function saves
21736 the same number of registers. The @option{-mprolog-function} option
21737 is on by default if you optimize.
21738
21739 @item -mspace
21740 @opindex mspace
21741 Try to make the code as small as possible. At present, this just turns
21742 on the @option{-mep} and @option{-mprolog-function} options.
21743
21744 @item -mtda=@var{n}
21745 @opindex mtda
21746 Put static or global variables whose size is @var{n} bytes or less into
21747 the tiny data area that register @code{ep} points to. The tiny data
21748 area can hold up to 256 bytes in total (128 bytes for byte references).
21749
21750 @item -msda=@var{n}
21751 @opindex msda
21752 Put static or global variables whose size is @var{n} bytes or less into
21753 the small data area that register @code{gp} points to. The small data
21754 area can hold up to 64 kilobytes.
21755
21756 @item -mzda=@var{n}
21757 @opindex mzda
21758 Put static or global variables whose size is @var{n} bytes or less into
21759 the first 32 kilobytes of memory.
21760
21761 @item -mv850
21762 @opindex mv850
21763 Specify that the target processor is the V850.
21764
21765 @item -mv850e3v5
21766 @opindex mv850e3v5
21767 Specify that the target processor is the V850E3V5. The preprocessor
21768 constant @code{__v850e3v5__} is defined if this option is used.
21769
21770 @item -mv850e2v4
21771 @opindex mv850e2v4
21772 Specify that the target processor is the V850E3V5. This is an alias for
21773 the @option{-mv850e3v5} option.
21774
21775 @item -mv850e2v3
21776 @opindex mv850e2v3
21777 Specify that the target processor is the V850E2V3. The preprocessor
21778 constant @code{__v850e2v3__} is defined if this option is used.
21779
21780 @item -mv850e2
21781 @opindex mv850e2
21782 Specify that the target processor is the V850E2. The preprocessor
21783 constant @code{__v850e2__} is defined if this option is used.
21784
21785 @item -mv850e1
21786 @opindex mv850e1
21787 Specify that the target processor is the V850E1. The preprocessor
21788 constants @code{__v850e1__} and @code{__v850e__} are defined if
21789 this option is used.
21790
21791 @item -mv850es
21792 @opindex mv850es
21793 Specify that the target processor is the V850ES. This is an alias for
21794 the @option{-mv850e1} option.
21795
21796 @item -mv850e
21797 @opindex mv850e
21798 Specify that the target processor is the V850E@. The preprocessor
21799 constant @code{__v850e__} is defined if this option is used.
21800
21801 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
21802 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
21803 are defined then a default target processor is chosen and the
21804 relevant @samp{__v850*__} preprocessor constant is defined.
21805
21806 The preprocessor constants @code{__v850} and @code{__v851__} are always
21807 defined, regardless of which processor variant is the target.
21808
21809 @item -mdisable-callt
21810 @itemx -mno-disable-callt
21811 @opindex mdisable-callt
21812 @opindex mno-disable-callt
21813 This option suppresses generation of the @code{CALLT} instruction for the
21814 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
21815 architecture.
21816
21817 This option is enabled by default when the RH850 ABI is
21818 in use (see @option{-mrh850-abi}), and disabled by default when the
21819 GCC ABI is in use. If @code{CALLT} instructions are being generated
21820 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
21821
21822 @item -mrelax
21823 @itemx -mno-relax
21824 @opindex mrelax
21825 @opindex mno-relax
21826 Pass on (or do not pass on) the @option{-mrelax} command-line option
21827 to the assembler.
21828
21829 @item -mlong-jumps
21830 @itemx -mno-long-jumps
21831 @opindex mlong-jumps
21832 @opindex mno-long-jumps
21833 Disable (or re-enable) the generation of PC-relative jump instructions.
21834
21835 @item -msoft-float
21836 @itemx -mhard-float
21837 @opindex msoft-float
21838 @opindex mhard-float
21839 Disable (or re-enable) the generation of hardware floating point
21840 instructions. This option is only significant when the target
21841 architecture is @samp{V850E2V3} or higher. If hardware floating point
21842 instructions are being generated then the C preprocessor symbol
21843 @code{__FPU_OK__} is defined, otherwise the symbol
21844 @code{__NO_FPU__} is defined.
21845
21846 @item -mloop
21847 @opindex mloop
21848 Enables the use of the e3v5 LOOP instruction. The use of this
21849 instruction is not enabled by default when the e3v5 architecture is
21850 selected because its use is still experimental.
21851
21852 @item -mrh850-abi
21853 @itemx -mghs
21854 @opindex mrh850-abi
21855 @opindex mghs
21856 Enables support for the RH850 version of the V850 ABI. This is the
21857 default. With this version of the ABI the following rules apply:
21858
21859 @itemize
21860 @item
21861 Integer sized structures and unions are returned via a memory pointer
21862 rather than a register.
21863
21864 @item
21865 Large structures and unions (more than 8 bytes in size) are passed by
21866 value.
21867
21868 @item
21869 Functions are aligned to 16-bit boundaries.
21870
21871 @item
21872 The @option{-m8byte-align} command-line option is supported.
21873
21874 @item
21875 The @option{-mdisable-callt} command-line option is enabled by
21876 default. The @option{-mno-disable-callt} command-line option is not
21877 supported.
21878 @end itemize
21879
21880 When this version of the ABI is enabled the C preprocessor symbol
21881 @code{__V850_RH850_ABI__} is defined.
21882
21883 @item -mgcc-abi
21884 @opindex mgcc-abi
21885 Enables support for the old GCC version of the V850 ABI. With this
21886 version of the ABI the following rules apply:
21887
21888 @itemize
21889 @item
21890 Integer sized structures and unions are returned in register @code{r10}.
21891
21892 @item
21893 Large structures and unions (more than 8 bytes in size) are passed by
21894 reference.
21895
21896 @item
21897 Functions are aligned to 32-bit boundaries, unless optimizing for
21898 size.
21899
21900 @item
21901 The @option{-m8byte-align} command-line option is not supported.
21902
21903 @item
21904 The @option{-mdisable-callt} command-line option is supported but not
21905 enabled by default.
21906 @end itemize
21907
21908 When this version of the ABI is enabled the C preprocessor symbol
21909 @code{__V850_GCC_ABI__} is defined.
21910
21911 @item -m8byte-align
21912 @itemx -mno-8byte-align
21913 @opindex m8byte-align
21914 @opindex mno-8byte-align
21915 Enables support for @code{double} and @code{long long} types to be
21916 aligned on 8-byte boundaries. The default is to restrict the
21917 alignment of all objects to at most 4-bytes. When
21918 @option{-m8byte-align} is in effect the C preprocessor symbol
21919 @code{__V850_8BYTE_ALIGN__} is defined.
21920
21921 @item -mbig-switch
21922 @opindex mbig-switch
21923 Generate code suitable for big switch tables. Use this option only if
21924 the assembler/linker complain about out of range branches within a switch
21925 table.
21926
21927 @item -mapp-regs
21928 @opindex mapp-regs
21929 This option causes r2 and r5 to be used in the code generated by
21930 the compiler. This setting is the default.
21931
21932 @item -mno-app-regs
21933 @opindex mno-app-regs
21934 This option causes r2 and r5 to be treated as fixed registers.
21935
21936 @end table
21937
21938 @node VAX Options
21939 @subsection VAX Options
21940 @cindex VAX options
21941
21942 These @samp{-m} options are defined for the VAX:
21943
21944 @table @gcctabopt
21945 @item -munix
21946 @opindex munix
21947 Do not output certain jump instructions (@code{aobleq} and so on)
21948 that the Unix assembler for the VAX cannot handle across long
21949 ranges.
21950
21951 @item -mgnu
21952 @opindex mgnu
21953 Do output those jump instructions, on the assumption that the
21954 GNU assembler is being used.
21955
21956 @item -mg
21957 @opindex mg
21958 Output code for G-format floating-point numbers instead of D-format.
21959 @end table
21960
21961 @node Visium Options
21962 @subsection Visium Options
21963 @cindex Visium options
21964
21965 @table @gcctabopt
21966
21967 @item -mdebug
21968 @opindex mdebug
21969 A program which performs file I/O and is destined to run on an MCM target
21970 should be linked with this option. It causes the libraries libc.a and
21971 libdebug.a to be linked. The program should be run on the target under
21972 the control of the GDB remote debugging stub.
21973
21974 @item -msim
21975 @opindex msim
21976 A program which performs file I/O and is destined to run on the simulator
21977 should be linked with option. This causes libraries libc.a and libsim.a to
21978 be linked.
21979
21980 @item -mfpu
21981 @itemx -mhard-float
21982 @opindex mfpu
21983 @opindex mhard-float
21984 Generate code containing floating-point instructions. This is the
21985 default.
21986
21987 @item -mno-fpu
21988 @itemx -msoft-float
21989 @opindex mno-fpu
21990 @opindex msoft-float
21991 Generate code containing library calls for floating-point.
21992
21993 @option{-msoft-float} changes the calling convention in the output file;
21994 therefore, it is only useful if you compile @emph{all} of a program with
21995 this option. In particular, you need to compile @file{libgcc.a}, the
21996 library that comes with GCC, with @option{-msoft-float} in order for
21997 this to work.
21998
21999 @item -mcpu=@var{cpu_type}
22000 @opindex mcpu
22001 Set the instruction set, register set, and instruction scheduling parameters
22002 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
22003 @samp{mcm}, @samp{gr5} and @samp{gr6}.
22004
22005 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
22006
22007 By default (unless configured otherwise), GCC generates code for the GR5
22008 variant of the Visium architecture.
22009
22010 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
22011 architecture. The only difference from GR5 code is that the compiler will
22012 generate block move instructions.
22013
22014 @item -mtune=@var{cpu_type}
22015 @opindex mtune
22016 Set the instruction scheduling parameters for machine type @var{cpu_type},
22017 but do not set the instruction set or register set that the option
22018 @option{-mcpu=@var{cpu_type}} would.
22019
22020 @item -msv-mode
22021 @opindex msv-mode
22022 Generate code for the supervisor mode, where there are no restrictions on
22023 the access to general registers. This is the default.
22024
22025 @item -muser-mode
22026 @opindex muser-mode
22027 Generate code for the user mode, where the access to some general registers
22028 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
22029 mode; on the GR6, only registers r29 to r31 are affected.
22030 @end table
22031
22032 @node VMS Options
22033 @subsection VMS Options
22034
22035 These @samp{-m} options are defined for the VMS implementations:
22036
22037 @table @gcctabopt
22038 @item -mvms-return-codes
22039 @opindex mvms-return-codes
22040 Return VMS condition codes from @code{main}. The default is to return POSIX-style
22041 condition (e.g.@ error) codes.
22042
22043 @item -mdebug-main=@var{prefix}
22044 @opindex mdebug-main=@var{prefix}
22045 Flag the first routine whose name starts with @var{prefix} as the main
22046 routine for the debugger.
22047
22048 @item -mmalloc64
22049 @opindex mmalloc64
22050 Default to 64-bit memory allocation routines.
22051
22052 @item -mpointer-size=@var{size}
22053 @opindex mpointer-size=@var{size}
22054 Set the default size of pointers. Possible options for @var{size} are
22055 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
22056 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
22057 The later option disables @code{pragma pointer_size}.
22058 @end table
22059
22060 @node VxWorks Options
22061 @subsection VxWorks Options
22062 @cindex VxWorks Options
22063
22064 The options in this section are defined for all VxWorks targets.
22065 Options specific to the target hardware are listed with the other
22066 options for that target.
22067
22068 @table @gcctabopt
22069 @item -mrtp
22070 @opindex mrtp
22071 GCC can generate code for both VxWorks kernels and real time processes
22072 (RTPs). This option switches from the former to the latter. It also
22073 defines the preprocessor macro @code{__RTP__}.
22074
22075 @item -non-static
22076 @opindex non-static
22077 Link an RTP executable against shared libraries rather than static
22078 libraries. The options @option{-static} and @option{-shared} can
22079 also be used for RTPs (@pxref{Link Options}); @option{-static}
22080 is the default.
22081
22082 @item -Bstatic
22083 @itemx -Bdynamic
22084 @opindex Bstatic
22085 @opindex Bdynamic
22086 These options are passed down to the linker. They are defined for
22087 compatibility with Diab.
22088
22089 @item -Xbind-lazy
22090 @opindex Xbind-lazy
22091 Enable lazy binding of function calls. This option is equivalent to
22092 @option{-Wl,-z,now} and is defined for compatibility with Diab.
22093
22094 @item -Xbind-now
22095 @opindex Xbind-now
22096 Disable lazy binding of function calls. This option is the default and
22097 is defined for compatibility with Diab.
22098 @end table
22099
22100 @node x86 Options
22101 @subsection x86 Options
22102 @cindex x86 Options
22103
22104 These @samp{-m} options are defined for the x86 family of computers.
22105
22106 @table @gcctabopt
22107
22108 @item -march=@var{cpu-type}
22109 @opindex march
22110 Generate instructions for the machine type @var{cpu-type}. In contrast to
22111 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
22112 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
22113 to generate code that may not run at all on processors other than the one
22114 indicated. Specifying @option{-march=@var{cpu-type}} implies
22115 @option{-mtune=@var{cpu-type}}.
22116
22117 The choices for @var{cpu-type} are:
22118
22119 @table @samp
22120 @item native
22121 This selects the CPU to generate code for at compilation time by determining
22122 the processor type of the compiling machine. Using @option{-march=native}
22123 enables all instruction subsets supported by the local machine (hence
22124 the result might not run on different machines). Using @option{-mtune=native}
22125 produces code optimized for the local machine under the constraints
22126 of the selected instruction set.
22127
22128 @item i386
22129 Original Intel i386 CPU@.
22130
22131 @item i486
22132 Intel i486 CPU@. (No scheduling is implemented for this chip.)
22133
22134 @item i586
22135 @itemx pentium
22136 Intel Pentium CPU with no MMX support.
22137
22138 @item pentium-mmx
22139 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
22140
22141 @item pentiumpro
22142 Intel Pentium Pro CPU@.
22143
22144 @item i686
22145 When used with @option{-march}, the Pentium Pro
22146 instruction set is used, so the code runs on all i686 family chips.
22147 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
22148
22149 @item pentium2
22150 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
22151 support.
22152
22153 @item pentium3
22154 @itemx pentium3m
22155 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
22156 set support.
22157
22158 @item pentium-m
22159 Intel Pentium M; low-power version of Intel Pentium III CPU
22160 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
22161
22162 @item pentium4
22163 @itemx pentium4m
22164 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
22165
22166 @item prescott
22167 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
22168 set support.
22169
22170 @item nocona
22171 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
22172 SSE2 and SSE3 instruction set support.
22173
22174 @item core2
22175 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
22176 instruction set support.
22177
22178 @item nehalem
22179 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22180 SSE4.1, SSE4.2 and POPCNT instruction set support.
22181
22182 @item westmere
22183 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22184 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
22185
22186 @item sandybridge
22187 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22188 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
22189
22190 @item ivybridge
22191 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
22192 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
22193 instruction set support.
22194
22195 @item haswell
22196 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22197 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22198 BMI, BMI2 and F16C instruction set support.
22199
22200 @item broadwell
22201 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22202 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22203 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
22204
22205 @item bonnell
22206 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
22207 instruction set support.
22208
22209 @item silvermont
22210 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
22211 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
22212
22213 @item knl
22214 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
22215 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
22216 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
22217 AVX512CD instruction set support.
22218
22219 @item k6
22220 AMD K6 CPU with MMX instruction set support.
22221
22222 @item k6-2
22223 @itemx k6-3
22224 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
22225
22226 @item athlon
22227 @itemx athlon-tbird
22228 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
22229 support.
22230
22231 @item athlon-4
22232 @itemx athlon-xp
22233 @itemx athlon-mp
22234 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
22235 instruction set support.
22236
22237 @item k8
22238 @itemx opteron
22239 @itemx athlon64
22240 @itemx athlon-fx
22241 Processors based on the AMD K8 core with x86-64 instruction set support,
22242 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
22243 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
22244 instruction set extensions.)
22245
22246 @item k8-sse3
22247 @itemx opteron-sse3
22248 @itemx athlon64-sse3
22249 Improved versions of AMD K8 cores with SSE3 instruction set support.
22250
22251 @item amdfam10
22252 @itemx barcelona
22253 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
22254 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
22255 instruction set extensions.)
22256
22257 @item bdver1
22258 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
22259 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
22260 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
22261 @item bdver2
22262 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22263 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
22264 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
22265 extensions.)
22266 @item bdver3
22267 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22268 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
22269 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
22270 64-bit instruction set extensions.
22271 @item bdver4
22272 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
22273 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
22274 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
22275 SSE4.2, ABM and 64-bit instruction set extensions.
22276
22277 @item btver1
22278 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
22279 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
22280 instruction set extensions.)
22281
22282 @item btver2
22283 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
22284 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
22285 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
22286
22287 @item winchip-c6
22288 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
22289 set support.
22290
22291 @item winchip2
22292 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
22293 instruction set support.
22294
22295 @item c3
22296 VIA C3 CPU with MMX and 3DNow!@: instruction set support. (No scheduling is
22297 implemented for this chip.)
22298
22299 @item c3-2
22300 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
22301 (No scheduling is
22302 implemented for this chip.)
22303
22304 @item geode
22305 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
22306 @end table
22307
22308 @item -mtune=@var{cpu-type}
22309 @opindex mtune
22310 Tune to @var{cpu-type} everything applicable about the generated code, except
22311 for the ABI and the set of available instructions.
22312 While picking a specific @var{cpu-type} schedules things appropriately
22313 for that particular chip, the compiler does not generate any code that
22314 cannot run on the default machine type unless you use a
22315 @option{-march=@var{cpu-type}} option.
22316 For example, if GCC is configured for i686-pc-linux-gnu
22317 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
22318 but still runs on i686 machines.
22319
22320 The choices for @var{cpu-type} are the same as for @option{-march}.
22321 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
22322
22323 @table @samp
22324 @item generic
22325 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
22326 If you know the CPU on which your code will run, then you should use
22327 the corresponding @option{-mtune} or @option{-march} option instead of
22328 @option{-mtune=generic}. But, if you do not know exactly what CPU users
22329 of your application will have, then you should use this option.
22330
22331 As new processors are deployed in the marketplace, the behavior of this
22332 option will change. Therefore, if you upgrade to a newer version of
22333 GCC, code generation controlled by this option will change to reflect
22334 the processors
22335 that are most common at the time that version of GCC is released.
22336
22337 There is no @option{-march=generic} option because @option{-march}
22338 indicates the instruction set the compiler can use, and there is no
22339 generic instruction set applicable to all processors. In contrast,
22340 @option{-mtune} indicates the processor (or, in this case, collection of
22341 processors) for which the code is optimized.
22342
22343 @item intel
22344 Produce code optimized for the most current Intel processors, which are
22345 Haswell and Silvermont for this version of GCC. If you know the CPU
22346 on which your code will run, then you should use the corresponding
22347 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
22348 But, if you want your application performs better on both Haswell and
22349 Silvermont, then you should use this option.
22350
22351 As new Intel processors are deployed in the marketplace, the behavior of
22352 this option will change. Therefore, if you upgrade to a newer version of
22353 GCC, code generation controlled by this option will change to reflect
22354 the most current Intel processors at the time that version of GCC is
22355 released.
22356
22357 There is no @option{-march=intel} option because @option{-march} indicates
22358 the instruction set the compiler can use, and there is no common
22359 instruction set applicable to all processors. In contrast,
22360 @option{-mtune} indicates the processor (or, in this case, collection of
22361 processors) for which the code is optimized.
22362 @end table
22363
22364 @item -mcpu=@var{cpu-type}
22365 @opindex mcpu
22366 A deprecated synonym for @option{-mtune}.
22367
22368 @item -mfpmath=@var{unit}
22369 @opindex mfpmath
22370 Generate floating-point arithmetic for selected unit @var{unit}. The choices
22371 for @var{unit} are:
22372
22373 @table @samp
22374 @item 387
22375 Use the standard 387 floating-point coprocessor present on the majority of chips and
22376 emulated otherwise. Code compiled with this option runs almost everywhere.
22377 The temporary results are computed in 80-bit precision instead of the precision
22378 specified by the type, resulting in slightly different results compared to most
22379 of other chips. See @option{-ffloat-store} for more detailed description.
22380
22381 This is the default choice for x86-32 targets.
22382
22383 @item sse
22384 Use scalar floating-point instructions present in the SSE instruction set.
22385 This instruction set is supported by Pentium III and newer chips,
22386 and in the AMD line
22387 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
22388 instruction set supports only single-precision arithmetic, thus the double and
22389 extended-precision arithmetic are still done using 387. A later version, present
22390 only in Pentium 4 and AMD x86-64 chips, supports double-precision
22391 arithmetic too.
22392
22393 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
22394 or @option{-msse2} switches to enable SSE extensions and make this option
22395 effective. For the x86-64 compiler, these extensions are enabled by default.
22396
22397 The resulting code should be considerably faster in the majority of cases and avoid
22398 the numerical instability problems of 387 code, but may break some existing
22399 code that expects temporaries to be 80 bits.
22400
22401 This is the default choice for the x86-64 compiler.
22402
22403 @item sse,387
22404 @itemx sse+387
22405 @itemx both
22406 Attempt to utilize both instruction sets at once. This effectively doubles the
22407 amount of available registers, and on chips with separate execution units for
22408 387 and SSE the execution resources too. Use this option with care, as it is
22409 still experimental, because the GCC register allocator does not model separate
22410 functional units well, resulting in unstable performance.
22411 @end table
22412
22413 @item -masm=@var{dialect}
22414 @opindex masm=@var{dialect}
22415 Output assembly instructions using selected @var{dialect}. Also affects
22416 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
22417 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
22418 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
22419 not support @samp{intel}.
22420
22421 @item -mieee-fp
22422 @itemx -mno-ieee-fp
22423 @opindex mieee-fp
22424 @opindex mno-ieee-fp
22425 Control whether or not the compiler uses IEEE floating-point
22426 comparisons. These correctly handle the case where the result of a
22427 comparison is unordered.
22428
22429 @item -msoft-float
22430 @opindex msoft-float
22431 Generate output containing library calls for floating point.
22432
22433 @strong{Warning:} the requisite libraries are not part of GCC@.
22434 Normally the facilities of the machine's usual C compiler are used, but
22435 this can't be done directly in cross-compilation. You must make your
22436 own arrangements to provide suitable library functions for
22437 cross-compilation.
22438
22439 On machines where a function returns floating-point results in the 80387
22440 register stack, some floating-point opcodes may be emitted even if
22441 @option{-msoft-float} is used.
22442
22443 @item -mno-fp-ret-in-387
22444 @opindex mno-fp-ret-in-387
22445 Do not use the FPU registers for return values of functions.
22446
22447 The usual calling convention has functions return values of types
22448 @code{float} and @code{double} in an FPU register, even if there
22449 is no FPU@. The idea is that the operating system should emulate
22450 an FPU@.
22451
22452 The option @option{-mno-fp-ret-in-387} causes such values to be returned
22453 in ordinary CPU registers instead.
22454
22455 @item -mno-fancy-math-387
22456 @opindex mno-fancy-math-387
22457 Some 387 emulators do not support the @code{sin}, @code{cos} and
22458 @code{sqrt} instructions for the 387. Specify this option to avoid
22459 generating those instructions. This option is the default on FreeBSD,
22460 OpenBSD and NetBSD@. This option is overridden when @option{-march}
22461 indicates that the target CPU always has an FPU and so the
22462 instruction does not need emulation. These
22463 instructions are not generated unless you also use the
22464 @option{-funsafe-math-optimizations} switch.
22465
22466 @item -malign-double
22467 @itemx -mno-align-double
22468 @opindex malign-double
22469 @opindex mno-align-double
22470 Control whether GCC aligns @code{double}, @code{long double}, and
22471 @code{long long} variables on a two-word boundary or a one-word
22472 boundary. Aligning @code{double} variables on a two-word boundary
22473 produces code that runs somewhat faster on a Pentium at the
22474 expense of more memory.
22475
22476 On x86-64, @option{-malign-double} is enabled by default.
22477
22478 @strong{Warning:} if you use the @option{-malign-double} switch,
22479 structures containing the above types are aligned differently than
22480 the published application binary interface specifications for the x86-32
22481 and are not binary compatible with structures in code compiled
22482 without that switch.
22483
22484 @item -m96bit-long-double
22485 @itemx -m128bit-long-double
22486 @opindex m96bit-long-double
22487 @opindex m128bit-long-double
22488 These switches control the size of @code{long double} type. The x86-32
22489 application binary interface specifies the size to be 96 bits,
22490 so @option{-m96bit-long-double} is the default in 32-bit mode.
22491
22492 Modern architectures (Pentium and newer) prefer @code{long double}
22493 to be aligned to an 8- or 16-byte boundary. In arrays or structures
22494 conforming to the ABI, this is not possible. So specifying
22495 @option{-m128bit-long-double} aligns @code{long double}
22496 to a 16-byte boundary by padding the @code{long double} with an additional
22497 32-bit zero.
22498
22499 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
22500 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
22501
22502 Notice that neither of these options enable any extra precision over the x87
22503 standard of 80 bits for a @code{long double}.
22504
22505 @strong{Warning:} if you override the default value for your target ABI, this
22506 changes the size of
22507 structures and arrays containing @code{long double} variables,
22508 as well as modifying the function calling convention for functions taking
22509 @code{long double}. Hence they are not binary-compatible
22510 with code compiled without that switch.
22511
22512 @item -mlong-double-64
22513 @itemx -mlong-double-80
22514 @itemx -mlong-double-128
22515 @opindex mlong-double-64
22516 @opindex mlong-double-80
22517 @opindex mlong-double-128
22518 These switches control the size of @code{long double} type. A size
22519 of 64 bits makes the @code{long double} type equivalent to the @code{double}
22520 type. This is the default for 32-bit Bionic C library. A size
22521 of 128 bits makes the @code{long double} type equivalent to the
22522 @code{__float128} type. This is the default for 64-bit Bionic C library.
22523
22524 @strong{Warning:} if you override the default value for your target ABI, this
22525 changes the size of
22526 structures and arrays containing @code{long double} variables,
22527 as well as modifying the function calling convention for functions taking
22528 @code{long double}. Hence they are not binary-compatible
22529 with code compiled without that switch.
22530
22531 @item -malign-data=@var{type}
22532 @opindex malign-data
22533 Control how GCC aligns variables. Supported values for @var{type} are
22534 @samp{compat} uses increased alignment value compatible uses GCC 4.8
22535 and earlier, @samp{abi} uses alignment value as specified by the
22536 psABI, and @samp{cacheline} uses increased alignment value to match
22537 the cache line size. @samp{compat} is the default.
22538
22539 @item -mlarge-data-threshold=@var{threshold}
22540 @opindex mlarge-data-threshold
22541 When @option{-mcmodel=medium} is specified, data objects larger than
22542 @var{threshold} are placed in the large data section. This value must be the
22543 same across all objects linked into the binary, and defaults to 65535.
22544
22545 @item -mrtd
22546 @opindex mrtd
22547 Use a different function-calling convention, in which functions that
22548 take a fixed number of arguments return with the @code{ret @var{num}}
22549 instruction, which pops their arguments while returning. This saves one
22550 instruction in the caller since there is no need to pop the arguments
22551 there.
22552
22553 You can specify that an individual function is called with this calling
22554 sequence with the function attribute @code{stdcall}. You can also
22555 override the @option{-mrtd} option by using the function attribute
22556 @code{cdecl}. @xref{Function Attributes}.
22557
22558 @strong{Warning:} this calling convention is incompatible with the one
22559 normally used on Unix, so you cannot use it if you need to call
22560 libraries compiled with the Unix compiler.
22561
22562 Also, you must provide function prototypes for all functions that
22563 take variable numbers of arguments (including @code{printf});
22564 otherwise incorrect code is generated for calls to those
22565 functions.
22566
22567 In addition, seriously incorrect code results if you call a
22568 function with too many arguments. (Normally, extra arguments are
22569 harmlessly ignored.)
22570
22571 @item -mregparm=@var{num}
22572 @opindex mregparm
22573 Control how many registers are used to pass integer arguments. By
22574 default, no registers are used to pass arguments, and at most 3
22575 registers can be used. You can control this behavior for a specific
22576 function by using the function attribute @code{regparm}.
22577 @xref{Function Attributes}.
22578
22579 @strong{Warning:} if you use this switch, and
22580 @var{num} is nonzero, then you must build all modules with the same
22581 value, including any libraries. This includes the system libraries and
22582 startup modules.
22583
22584 @item -msseregparm
22585 @opindex msseregparm
22586 Use SSE register passing conventions for float and double arguments
22587 and return values. You can control this behavior for a specific
22588 function by using the function attribute @code{sseregparm}.
22589 @xref{Function Attributes}.
22590
22591 @strong{Warning:} if you use this switch then you must build all
22592 modules with the same value, including any libraries. This includes
22593 the system libraries and startup modules.
22594
22595 @item -mvect8-ret-in-mem
22596 @opindex mvect8-ret-in-mem
22597 Return 8-byte vectors in memory instead of MMX registers. This is the
22598 default on Solaris@tie{}8 and 9 and VxWorks to match the ABI of the Sun
22599 Studio compilers until version 12. Later compiler versions (starting
22600 with Studio 12 Update@tie{}1) follow the ABI used by other x86 targets, which
22601 is the default on Solaris@tie{}10 and later. @emph{Only} use this option if
22602 you need to remain compatible with existing code produced by those
22603 previous compiler versions or older versions of GCC@.
22604
22605 @item -mpc32
22606 @itemx -mpc64
22607 @itemx -mpc80
22608 @opindex mpc32
22609 @opindex mpc64
22610 @opindex mpc80
22611
22612 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
22613 is specified, the significands of results of floating-point operations are
22614 rounded to 24 bits (single precision); @option{-mpc64} rounds the
22615 significands of results of floating-point operations to 53 bits (double
22616 precision) and @option{-mpc80} rounds the significands of results of
22617 floating-point operations to 64 bits (extended double precision), which is
22618 the default. When this option is used, floating-point operations in higher
22619 precisions are not available to the programmer without setting the FPU
22620 control word explicitly.
22621
22622 Setting the rounding of floating-point operations to less than the default
22623 80 bits can speed some programs by 2% or more. Note that some mathematical
22624 libraries assume that extended-precision (80-bit) floating-point operations
22625 are enabled by default; routines in such libraries could suffer significant
22626 loss of accuracy, typically through so-called ``catastrophic cancellation'',
22627 when this option is used to set the precision to less than extended precision.
22628
22629 @item -mstackrealign
22630 @opindex mstackrealign
22631 Realign the stack at entry. On the x86, the @option{-mstackrealign}
22632 option generates an alternate prologue and epilogue that realigns the
22633 run-time stack if necessary. This supports mixing legacy codes that keep
22634 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
22635 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
22636 applicable to individual functions.
22637
22638 @item -mpreferred-stack-boundary=@var{num}
22639 @opindex mpreferred-stack-boundary
22640 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
22641 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
22642 the default is 4 (16 bytes or 128 bits).
22643
22644 @strong{Warning:} When generating code for the x86-64 architecture with
22645 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
22646 used to keep the stack boundary aligned to 8 byte boundary. Since
22647 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
22648 intended to be used in controlled environment where stack space is
22649 important limitation. This option leads to wrong code when functions
22650 compiled with 16 byte stack alignment (such as functions from a standard
22651 library) are called with misaligned stack. In this case, SSE
22652 instructions may lead to misaligned memory access traps. In addition,
22653 variable arguments are handled incorrectly for 16 byte aligned
22654 objects (including x87 long double and __int128), leading to wrong
22655 results. You must build all modules with
22656 @option{-mpreferred-stack-boundary=3}, including any libraries. This
22657 includes the system libraries and startup modules.
22658
22659 @item -mincoming-stack-boundary=@var{num}
22660 @opindex mincoming-stack-boundary
22661 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
22662 boundary. If @option{-mincoming-stack-boundary} is not specified,
22663 the one specified by @option{-mpreferred-stack-boundary} is used.
22664
22665 On Pentium and Pentium Pro, @code{double} and @code{long double} values
22666 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
22667 suffer significant run time performance penalties. On Pentium III, the
22668 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
22669 properly if it is not 16-byte aligned.
22670
22671 To ensure proper alignment of this values on the stack, the stack boundary
22672 must be as aligned as that required by any value stored on the stack.
22673 Further, every function must be generated such that it keeps the stack
22674 aligned. Thus calling a function compiled with a higher preferred
22675 stack boundary from a function compiled with a lower preferred stack
22676 boundary most likely misaligns the stack. It is recommended that
22677 libraries that use callbacks always use the default setting.
22678
22679 This extra alignment does consume extra stack space, and generally
22680 increases code size. Code that is sensitive to stack space usage, such
22681 as embedded systems and operating system kernels, may want to reduce the
22682 preferred alignment to @option{-mpreferred-stack-boundary=2}.
22683
22684 @need 200
22685 @item -mmmx
22686 @opindex mmmx
22687 @need 200
22688 @itemx -msse
22689 @opindex msse
22690 @need 200
22691 @itemx -msse2
22692 @need 200
22693 @itemx -msse3
22694 @need 200
22695 @itemx -mssse3
22696 @need 200
22697 @itemx -msse4
22698 @need 200
22699 @itemx -msse4a
22700 @need 200
22701 @itemx -msse4.1
22702 @need 200
22703 @itemx -msse4.2
22704 @need 200
22705 @itemx -mavx
22706 @opindex mavx
22707 @need 200
22708 @itemx -mavx2
22709 @need 200
22710 @itemx -mavx512f
22711 @need 200
22712 @itemx -mavx512pf
22713 @need 200
22714 @itemx -mavx512er
22715 @need 200
22716 @itemx -mavx512cd
22717 @need 200
22718 @itemx -msha
22719 @opindex msha
22720 @need 200
22721 @itemx -maes
22722 @opindex maes
22723 @need 200
22724 @itemx -mpclmul
22725 @opindex mpclmul
22726 @need 200
22727 @itemx -mclfushopt
22728 @opindex mclfushopt
22729 @need 200
22730 @itemx -mfsgsbase
22731 @opindex mfsgsbase
22732 @need 200
22733 @itemx -mrdrnd
22734 @opindex mrdrnd
22735 @need 200
22736 @itemx -mf16c
22737 @opindex mf16c
22738 @need 200
22739 @itemx -mfma
22740 @opindex mfma
22741 @need 200
22742 @itemx -mfma4
22743 @need 200
22744 @itemx -mno-fma4
22745 @need 200
22746 @itemx -mprefetchwt1
22747 @opindex mprefetchwt1
22748 @need 200
22749 @itemx -mxop
22750 @opindex mxop
22751 @need 200
22752 @itemx -mlwp
22753 @opindex mlwp
22754 @need 200
22755 @itemx -m3dnow
22756 @opindex m3dnow
22757 @need 200
22758 @itemx -mpopcnt
22759 @opindex mpopcnt
22760 @need 200
22761 @itemx -mabm
22762 @opindex mabm
22763 @need 200
22764 @itemx -mbmi
22765 @opindex mbmi
22766 @need 200
22767 @itemx -mbmi2
22768 @need 200
22769 @itemx -mlzcnt
22770 @opindex mlzcnt
22771 @need 200
22772 @itemx -mfxsr
22773 @opindex mfxsr
22774 @need 200
22775 @itemx -mxsave
22776 @opindex mxsave
22777 @need 200
22778 @itemx -mxsaveopt
22779 @opindex mxsaveopt
22780 @need 200
22781 @itemx -mxsavec
22782 @opindex mxsavec
22783 @need 200
22784 @itemx -mxsaves
22785 @opindex mxsaves
22786 @need 200
22787 @itemx -mrtm
22788 @opindex mrtm
22789 @need 200
22790 @itemx -mtbm
22791 @opindex mtbm
22792 @need 200
22793 @itemx -mmpx
22794 @opindex mmpx
22795 These switches enable the use of instructions in the MMX, SSE,
22796 SSE2, SSE3, SSSE3, SSE4.1, AVX, AVX2, AVX512F, AVX512PF, AVX512ER, AVX512CD,
22797 SHA, AES, PCLMUL, FSGSBASE, RDRND, F16C, FMA, SSE4A, FMA4, XOP, LWP, ABM,
22798 BMI, BMI2, FXSR, XSAVE, XSAVEOPT, LZCNT, RTM, MPX or 3DNow!@:
22799 extended instruction sets. Each has a corresponding @option{-mno-} option
22800 to disable use of these instructions.
22801
22802 These extensions are also available as built-in functions: see
22803 @ref{x86 Built-in Functions}, for details of the functions enabled and
22804 disabled by these switches.
22805
22806 To generate SSE/SSE2 instructions automatically from floating-point
22807 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
22808
22809 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
22810 generates new AVX instructions or AVX equivalence for all SSEx instructions
22811 when needed.
22812
22813 These options enable GCC to use these extended instructions in
22814 generated code, even without @option{-mfpmath=sse}. Applications that
22815 perform run-time CPU detection must compile separate files for each
22816 supported architecture, using the appropriate flags. In particular,
22817 the file containing the CPU detection code should be compiled without
22818 these options.
22819
22820 @item -mdump-tune-features
22821 @opindex mdump-tune-features
22822 This option instructs GCC to dump the names of the x86 performance
22823 tuning features and default settings. The names can be used in
22824 @option{-mtune-ctrl=@var{feature-list}}.
22825
22826 @item -mtune-ctrl=@var{feature-list}
22827 @opindex mtune-ctrl=@var{feature-list}
22828 This option is used to do fine grain control of x86 code generation features.
22829 @var{feature-list} is a comma separated list of @var{feature} names. See also
22830 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
22831 on if it is not preceded with @samp{^}, otherwise, it is turned off.
22832 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
22833 developers. Using it may lead to code paths not covered by testing and can
22834 potentially result in compiler ICEs or runtime errors.
22835
22836 @item -mno-default
22837 @opindex mno-default
22838 This option instructs GCC to turn off all tunable features. See also
22839 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
22840
22841 @item -mcld
22842 @opindex mcld
22843 This option instructs GCC to emit a @code{cld} instruction in the prologue
22844 of functions that use string instructions. String instructions depend on
22845 the DF flag to select between autoincrement or autodecrement mode. While the
22846 ABI specifies the DF flag to be cleared on function entry, some operating
22847 systems violate this specification by not clearing the DF flag in their
22848 exception dispatchers. The exception handler can be invoked with the DF flag
22849 set, which leads to wrong direction mode when string instructions are used.
22850 This option can be enabled by default on 32-bit x86 targets by configuring
22851 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
22852 instructions can be suppressed with the @option{-mno-cld} compiler option
22853 in this case.
22854
22855 @item -mvzeroupper
22856 @opindex mvzeroupper
22857 This option instructs GCC to emit a @code{vzeroupper} instruction
22858 before a transfer of control flow out of the function to minimize
22859 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
22860 intrinsics.
22861
22862 @item -mprefer-avx128
22863 @opindex mprefer-avx128
22864 This option instructs GCC to use 128-bit AVX instructions instead of
22865 256-bit AVX instructions in the auto-vectorizer.
22866
22867 @item -mcx16
22868 @opindex mcx16
22869 This option enables GCC to generate @code{CMPXCHG16B} instructions.
22870 @code{CMPXCHG16B} allows for atomic operations on 128-bit double quadword
22871 (or oword) data types.
22872 This is useful for high-resolution counters that can be updated
22873 by multiple processors (or cores). This instruction is generated as part of
22874 atomic built-in functions: see @ref{__sync Builtins} or
22875 @ref{__atomic Builtins} for details.
22876
22877 @item -msahf
22878 @opindex msahf
22879 This option enables generation of @code{SAHF} instructions in 64-bit code.
22880 Early Intel Pentium 4 CPUs with Intel 64 support,
22881 prior to the introduction of Pentium 4 G1 step in December 2005,
22882 lacked the @code{LAHF} and @code{SAHF} instructions
22883 which are supported by AMD64.
22884 These are load and store instructions, respectively, for certain status flags.
22885 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
22886 @code{drem}, and @code{remainder} built-in functions;
22887 see @ref{Other Builtins} for details.
22888
22889 @item -mmovbe
22890 @opindex mmovbe
22891 This option enables use of the @code{movbe} instruction to implement
22892 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
22893
22894 @item -mcrc32
22895 @opindex mcrc32
22896 This option enables built-in functions @code{__builtin_ia32_crc32qi},
22897 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
22898 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
22899
22900 @item -mrecip
22901 @opindex mrecip
22902 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
22903 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
22904 with an additional Newton-Raphson step
22905 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
22906 (and their vectorized
22907 variants) for single-precision floating-point arguments. These instructions
22908 are generated only when @option{-funsafe-math-optimizations} is enabled
22909 together with @option{-finite-math-only} and @option{-fno-trapping-math}.
22910 Note that while the throughput of the sequence is higher than the throughput
22911 of the non-reciprocal instruction, the precision of the sequence can be
22912 decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).
22913
22914 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
22915 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
22916 combination), and doesn't need @option{-mrecip}.
22917
22918 Also note that GCC emits the above sequence with additional Newton-Raphson step
22919 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
22920 already with @option{-ffast-math} (or the above option combination), and
22921 doesn't need @option{-mrecip}.
22922
22923 @item -mrecip=@var{opt}
22924 @opindex mrecip=opt
22925 This option controls which reciprocal estimate instructions
22926 may be used. @var{opt} is a comma-separated list of options, which may
22927 be preceded by a @samp{!} to invert the option:
22928
22929 @table @samp
22930 @item all
22931 Enable all estimate instructions.
22932
22933 @item default
22934 Enable the default instructions, equivalent to @option{-mrecip}.
22935
22936 @item none
22937 Disable all estimate instructions, equivalent to @option{-mno-recip}.
22938
22939 @item div
22940 Enable the approximation for scalar division.
22941
22942 @item vec-div
22943 Enable the approximation for vectorized division.
22944
22945 @item sqrt
22946 Enable the approximation for scalar square root.
22947
22948 @item vec-sqrt
22949 Enable the approximation for vectorized square root.
22950 @end table
22951
22952 So, for example, @option{-mrecip=all,!sqrt} enables
22953 all of the reciprocal approximations, except for square root.
22954
22955 @item -mveclibabi=@var{type}
22956 @opindex mveclibabi
22957 Specifies the ABI type to use for vectorizing intrinsics using an
22958 external library. Supported values for @var{type} are @samp{svml}
22959 for the Intel short
22960 vector math library and @samp{acml} for the AMD math core library.
22961 To use this option, both @option{-ftree-vectorize} and
22962 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
22963 ABI-compatible library must be specified at link time.
22964
22965 GCC currently emits calls to @code{vmldExp2},
22966 @code{vmldLn2}, @code{vmldLog102}, @code{vmldLog102}, @code{vmldPow2},
22967 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
22968 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
22969 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
22970 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4}, @code{vmlsLog104},
22971 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
22972 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
22973 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
22974 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
22975 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
22976 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
22977 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
22978 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
22979 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
22980 when @option{-mveclibabi=acml} is used.
22981
22982 @item -mabi=@var{name}
22983 @opindex mabi
22984 Generate code for the specified calling convention. Permissible values
22985 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
22986 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
22987 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
22988 You can control this behavior for specific functions by
22989 using the function attributes @code{ms_abi} and @code{sysv_abi}.
22990 @xref{Function Attributes}.
22991
22992 @item -mtls-dialect=@var{type}
22993 @opindex mtls-dialect
22994 Generate code to access thread-local storage using the @samp{gnu} or
22995 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
22996 @samp{gnu2} is more efficient, but it may add compile- and run-time
22997 requirements that cannot be satisfied on all systems.
22998
22999 @item -mpush-args
23000 @itemx -mno-push-args
23001 @opindex mpush-args
23002 @opindex mno-push-args
23003 Use PUSH operations to store outgoing parameters. This method is shorter
23004 and usually equally fast as method using SUB/MOV operations and is enabled
23005 by default. In some cases disabling it may improve performance because of
23006 improved scheduling and reduced dependencies.
23007
23008 @item -maccumulate-outgoing-args
23009 @opindex maccumulate-outgoing-args
23010 If enabled, the maximum amount of space required for outgoing arguments is
23011 computed in the function prologue. This is faster on most modern CPUs
23012 because of reduced dependencies, improved scheduling and reduced stack usage
23013 when the preferred stack boundary is not equal to 2. The drawback is a notable
23014 increase in code size. This switch implies @option{-mno-push-args}.
23015
23016 @item -mthreads
23017 @opindex mthreads
23018 Support thread-safe exception handling on MinGW. Programs that rely
23019 on thread-safe exception handling must compile and link all code with the
23020 @option{-mthreads} option. When compiling, @option{-mthreads} defines
23021 @option{-D_MT}; when linking, it links in a special thread helper library
23022 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
23023
23024 @item -mno-align-stringops
23025 @opindex mno-align-stringops
23026 Do not align the destination of inlined string operations. This switch reduces
23027 code size and improves performance in case the destination is already aligned,
23028 but GCC doesn't know about it.
23029
23030 @item -minline-all-stringops
23031 @opindex minline-all-stringops
23032 By default GCC inlines string operations only when the destination is
23033 known to be aligned to least a 4-byte boundary.
23034 This enables more inlining and increases code
23035 size, but may improve performance of code that depends on fast
23036 @code{memcpy}, @code{strlen},
23037 and @code{memset} for short lengths.
23038
23039 @item -minline-stringops-dynamically
23040 @opindex minline-stringops-dynamically
23041 For string operations of unknown size, use run-time checks with
23042 inline code for small blocks and a library call for large blocks.
23043
23044 @item -mstringop-strategy=@var{alg}
23045 @opindex mstringop-strategy=@var{alg}
23046 Override the internal decision heuristic for the particular algorithm to use
23047 for inlining string operations. The allowed values for @var{alg} are:
23048
23049 @table @samp
23050 @item rep_byte
23051 @itemx rep_4byte
23052 @itemx rep_8byte
23053 Expand using i386 @code{rep} prefix of the specified size.
23054
23055 @item byte_loop
23056 @itemx loop
23057 @itemx unrolled_loop
23058 Expand into an inline loop.
23059
23060 @item libcall
23061 Always use a library call.
23062 @end table
23063
23064 @item -mmemcpy-strategy=@var{strategy}
23065 @opindex mmemcpy-strategy=@var{strategy}
23066 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
23067 should be inlined and what inline algorithm to use when the expected size
23068 of the copy operation is known. @var{strategy}
23069 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
23070 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
23071 the max byte size with which inline algorithm @var{alg} is allowed. For the last
23072 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
23073 in the list must be specified in increasing order. The minimal byte size for
23074 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
23075 preceding range.
23076
23077 @item -mmemset-strategy=@var{strategy}
23078 @opindex mmemset-strategy=@var{strategy}
23079 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
23080 @code{__builtin_memset} expansion.
23081
23082 @item -momit-leaf-frame-pointer
23083 @opindex momit-leaf-frame-pointer
23084 Don't keep the frame pointer in a register for leaf functions. This
23085 avoids the instructions to save, set up, and restore frame pointers and
23086 makes an extra register available in leaf functions. The option
23087 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
23088 which might make debugging harder.
23089
23090 @item -mtls-direct-seg-refs
23091 @itemx -mno-tls-direct-seg-refs
23092 @opindex mtls-direct-seg-refs
23093 Controls whether TLS variables may be accessed with offsets from the
23094 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
23095 or whether the thread base pointer must be added. Whether or not this
23096 is valid depends on the operating system, and whether it maps the
23097 segment to cover the entire TLS area.
23098
23099 For systems that use the GNU C Library, the default is on.
23100
23101 @item -msse2avx
23102 @itemx -mno-sse2avx
23103 @opindex msse2avx
23104 Specify that the assembler should encode SSE instructions with VEX
23105 prefix. The option @option{-mavx} turns this on by default.
23106
23107 @item -mfentry
23108 @itemx -mno-fentry
23109 @opindex mfentry
23110 If profiling is active (@option{-pg}), put the profiling
23111 counter call before the prologue.
23112 Note: On x86 architectures the attribute @code{ms_hook_prologue}
23113 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
23114
23115 @item -mrecord-mcount
23116 @itemx -mno-record-mcount
23117 @opindex mrecord-mcount
23118 If profiling is active (@option{-pg}), generate a __mcount_loc section
23119 that contains pointers to each profiling call. This is useful for
23120 automatically patching and out calls.
23121
23122 @item -mnop-mcount
23123 @itemx -mno-nop-mcount
23124 @opindex mnop-mcount
23125 If profiling is active (@option{-pg}), generate the calls to
23126 the profiling functions as nops. This is useful when they
23127 should be patched in later dynamically. This is likely only
23128 useful together with @option{-mrecord-mcount}.
23129
23130 @item -mskip-rax-setup
23131 @itemx -mno-skip-rax-setup
23132 @opindex mskip-rax-setup
23133 When generating code for the x86-64 architecture with SSE extensions
23134 disabled, @option{-skip-rax-setup} can be used to skip setting up RAX
23135 register when there are no variable arguments passed in vector registers.
23136
23137 @strong{Warning:} Since RAX register is used to avoid unnecessarily
23138 saving vector registers on stack when passing variable arguments, the
23139 impacts of this option are callees may waste some stack space,
23140 misbehave or jump to a random location. GCC 4.4 or newer don't have
23141 those issues, regardless the RAX register value.
23142
23143 @item -m8bit-idiv
23144 @itemx -mno-8bit-idiv
23145 @opindex m8bit-idiv
23146 On some processors, like Intel Atom, 8-bit unsigned integer divide is
23147 much faster than 32-bit/64-bit integer divide. This option generates a
23148 run-time check. If both dividend and divisor are within range of 0
23149 to 255, 8-bit unsigned integer divide is used instead of
23150 32-bit/64-bit integer divide.
23151
23152 @item -mavx256-split-unaligned-load
23153 @itemx -mavx256-split-unaligned-store
23154 @opindex mavx256-split-unaligned-load
23155 @opindex mavx256-split-unaligned-store
23156 Split 32-byte AVX unaligned load and store.
23157
23158 @item -mstack-protector-guard=@var{guard}
23159 @opindex mstack-protector-guard=@var{guard}
23160 Generate stack protection code using canary at @var{guard}. Supported
23161 locations are @samp{global} for global canary or @samp{tls} for per-thread
23162 canary in the TLS block (the default). This option has effect only when
23163 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
23164
23165 @end table
23166
23167 These @samp{-m} switches are supported in addition to the above
23168 on x86-64 processors in 64-bit environments.
23169
23170 @table @gcctabopt
23171 @item -m32
23172 @itemx -m64
23173 @itemx -mx32
23174 @itemx -m16
23175 @opindex m32
23176 @opindex m64
23177 @opindex mx32
23178 @opindex m16
23179 Generate code for a 16-bit, 32-bit or 64-bit environment.
23180 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
23181 to 32 bits, and
23182 generates code that runs on any i386 system.
23183
23184 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
23185 types to 64 bits, and generates code for the x86-64 architecture.
23186 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
23187 and @option{-mdynamic-no-pic} options.
23188
23189 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
23190 to 32 bits, and
23191 generates code for the x86-64 architecture.
23192
23193 The @option{-m16} option is the same as @option{-m32}, except for that
23194 it outputs the @code{.code16gcc} assembly directive at the beginning of
23195 the assembly output so that the binary can run in 16-bit mode.
23196
23197 @item -mno-red-zone
23198 @opindex mno-red-zone
23199 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
23200 by the x86-64 ABI; it is a 128-byte area beyond the location of the
23201 stack pointer that is not modified by signal or interrupt handlers
23202 and therefore can be used for temporary data without adjusting the stack
23203 pointer. The flag @option{-mno-red-zone} disables this red zone.
23204
23205 @item -mcmodel=small
23206 @opindex mcmodel=small
23207 Generate code for the small code model: the program and its symbols must
23208 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
23209 Programs can be statically or dynamically linked. This is the default
23210 code model.
23211
23212 @item -mcmodel=kernel
23213 @opindex mcmodel=kernel
23214 Generate code for the kernel code model. The kernel runs in the
23215 negative 2 GB of the address space.
23216 This model has to be used for Linux kernel code.
23217
23218 @item -mcmodel=medium
23219 @opindex mcmodel=medium
23220 Generate code for the medium model: the program is linked in the lower 2
23221 GB of the address space. Small symbols are also placed there. Symbols
23222 with sizes larger than @option{-mlarge-data-threshold} are put into
23223 large data or BSS sections and can be located above 2GB. Programs can
23224 be statically or dynamically linked.
23225
23226 @item -mcmodel=large
23227 @opindex mcmodel=large
23228 Generate code for the large model. This model makes no assumptions
23229 about addresses and sizes of sections.
23230
23231 @item -maddress-mode=long
23232 @opindex maddress-mode=long
23233 Generate code for long address mode. This is only supported for 64-bit
23234 and x32 environments. It is the default address mode for 64-bit
23235 environments.
23236
23237 @item -maddress-mode=short
23238 @opindex maddress-mode=short
23239 Generate code for short address mode. This is only supported for 32-bit
23240 and x32 environments. It is the default address mode for 32-bit and
23241 x32 environments.
23242 @end table
23243
23244 @node x86 Windows Options
23245 @subsection x86 Windows Options
23246 @cindex x86 Windows Options
23247 @cindex Windows Options for x86
23248
23249 These additional options are available for Microsoft Windows targets:
23250
23251 @table @gcctabopt
23252 @item -mconsole
23253 @opindex mconsole
23254 This option
23255 specifies that a console application is to be generated, by
23256 instructing the linker to set the PE header subsystem type
23257 required for console applications.
23258 This option is available for Cygwin and MinGW targets and is
23259 enabled by default on those targets.
23260
23261 @item -mdll
23262 @opindex mdll
23263 This option is available for Cygwin and MinGW targets. It
23264 specifies that a DLL---a dynamic link library---is to be
23265 generated, enabling the selection of the required runtime
23266 startup object and entry point.
23267
23268 @item -mnop-fun-dllimport
23269 @opindex mnop-fun-dllimport
23270 This option is available for Cygwin and MinGW targets. It
23271 specifies that the @code{dllimport} attribute should be ignored.
23272
23273 @item -mthread
23274 @opindex mthread
23275 This option is available for MinGW targets. It specifies
23276 that MinGW-specific thread support is to be used.
23277
23278 @item -municode
23279 @opindex municode
23280 This option is available for MinGW-w64 targets. It causes
23281 the @code{UNICODE} preprocessor macro to be predefined, and
23282 chooses Unicode-capable runtime startup code.
23283
23284 @item -mwin32
23285 @opindex mwin32
23286 This option is available for Cygwin and MinGW targets. It
23287 specifies that the typical Microsoft Windows predefined macros are to
23288 be set in the pre-processor, but does not influence the choice
23289 of runtime library/startup code.
23290
23291 @item -mwindows
23292 @opindex mwindows
23293 This option is available for Cygwin and MinGW targets. It
23294 specifies that a GUI application is to be generated by
23295 instructing the linker to set the PE header subsystem type
23296 appropriately.
23297
23298 @item -fno-set-stack-executable
23299 @opindex fno-set-stack-executable
23300 This option is available for MinGW targets. It specifies that
23301 the executable flag for the stack used by nested functions isn't
23302 set. This is necessary for binaries running in kernel mode of
23303 Microsoft Windows, as there the User32 API, which is used to set executable
23304 privileges, isn't available.
23305
23306 @item -fwritable-relocated-rdata
23307 @opindex fno-writable-relocated-rdata
23308 This option is available for MinGW and Cygwin targets. It specifies
23309 that relocated-data in read-only section is put into .data
23310 section. This is a necessary for older runtimes not supporting
23311 modification of .rdata sections for pseudo-relocation.
23312
23313 @item -mpe-aligned-commons
23314 @opindex mpe-aligned-commons
23315 This option is available for Cygwin and MinGW targets. It
23316 specifies that the GNU extension to the PE file format that
23317 permits the correct alignment of COMMON variables should be
23318 used when generating code. It is enabled by default if
23319 GCC detects that the target assembler found during configuration
23320 supports the feature.
23321 @end table
23322
23323 See also under @ref{x86 Options} for standard options.
23324
23325 @node Xstormy16 Options
23326 @subsection Xstormy16 Options
23327 @cindex Xstormy16 Options
23328
23329 These options are defined for Xstormy16:
23330
23331 @table @gcctabopt
23332 @item -msim
23333 @opindex msim
23334 Choose startup files and linker script suitable for the simulator.
23335 @end table
23336
23337 @node Xtensa Options
23338 @subsection Xtensa Options
23339 @cindex Xtensa Options
23340
23341 These options are supported for Xtensa targets:
23342
23343 @table @gcctabopt
23344 @item -mconst16
23345 @itemx -mno-const16
23346 @opindex mconst16
23347 @opindex mno-const16
23348 Enable or disable use of @code{CONST16} instructions for loading
23349 constant values. The @code{CONST16} instruction is currently not a
23350 standard option from Tensilica. When enabled, @code{CONST16}
23351 instructions are always used in place of the standard @code{L32R}
23352 instructions. The use of @code{CONST16} is enabled by default only if
23353 the @code{L32R} instruction is not available.
23354
23355 @item -mfused-madd
23356 @itemx -mno-fused-madd
23357 @opindex mfused-madd
23358 @opindex mno-fused-madd
23359 Enable or disable use of fused multiply/add and multiply/subtract
23360 instructions in the floating-point option. This has no effect if the
23361 floating-point option is not also enabled. Disabling fused multiply/add
23362 and multiply/subtract instructions forces the compiler to use separate
23363 instructions for the multiply and add/subtract operations. This may be
23364 desirable in some cases where strict IEEE 754-compliant results are
23365 required: the fused multiply add/subtract instructions do not round the
23366 intermediate result, thereby producing results with @emph{more} bits of
23367 precision than specified by the IEEE standard. Disabling fused multiply
23368 add/subtract instructions also ensures that the program output is not
23369 sensitive to the compiler's ability to combine multiply and add/subtract
23370 operations.
23371
23372 @item -mserialize-volatile
23373 @itemx -mno-serialize-volatile
23374 @opindex mserialize-volatile
23375 @opindex mno-serialize-volatile
23376 When this option is enabled, GCC inserts @code{MEMW} instructions before
23377 @code{volatile} memory references to guarantee sequential consistency.
23378 The default is @option{-mserialize-volatile}. Use
23379 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
23380
23381 @item -mforce-no-pic
23382 @opindex mforce-no-pic
23383 For targets, like GNU/Linux, where all user-mode Xtensa code must be
23384 position-independent code (PIC), this option disables PIC for compiling
23385 kernel code.
23386
23387 @item -mtext-section-literals
23388 @itemx -mno-text-section-literals
23389 @opindex mtext-section-literals
23390 @opindex mno-text-section-literals
23391 These options control the treatment of literal pools. The default is
23392 @option{-mno-text-section-literals}, which places literals in a separate
23393 section in the output file. This allows the literal pool to be placed
23394 in a data RAM/ROM, and it also allows the linker to combine literal
23395 pools from separate object files to remove redundant literals and
23396 improve code size. With @option{-mtext-section-literals}, the literals
23397 are interspersed in the text section in order to keep them as close as
23398 possible to their references. This may be necessary for large assembly
23399 files.
23400
23401 @item -mtarget-align
23402 @itemx -mno-target-align
23403 @opindex mtarget-align
23404 @opindex mno-target-align
23405 When this option is enabled, GCC instructs the assembler to
23406 automatically align instructions to reduce branch penalties at the
23407 expense of some code density. The assembler attempts to widen density
23408 instructions to align branch targets and the instructions following call
23409 instructions. If there are not enough preceding safe density
23410 instructions to align a target, no widening is performed. The
23411 default is @option{-mtarget-align}. These options do not affect the
23412 treatment of auto-aligned instructions like @code{LOOP}, which the
23413 assembler always aligns, either by widening density instructions or
23414 by inserting NOP instructions.
23415
23416 @item -mlongcalls
23417 @itemx -mno-longcalls
23418 @opindex mlongcalls
23419 @opindex mno-longcalls
23420 When this option is enabled, GCC instructs the assembler to translate
23421 direct calls to indirect calls unless it can determine that the target
23422 of a direct call is in the range allowed by the call instruction. This
23423 translation typically occurs for calls to functions in other source
23424 files. Specifically, the assembler translates a direct @code{CALL}
23425 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
23426 The default is @option{-mno-longcalls}. This option should be used in
23427 programs where the call target can potentially be out of range. This
23428 option is implemented in the assembler, not the compiler, so the
23429 assembly code generated by GCC still shows direct call
23430 instructions---look at the disassembled object code to see the actual
23431 instructions. Note that the assembler uses an indirect call for
23432 every cross-file call, not just those that really are out of range.
23433 @end table
23434
23435 @node zSeries Options
23436 @subsection zSeries Options
23437 @cindex zSeries options
23438
23439 These are listed under @xref{S/390 and zSeries Options}.
23440
23441 @node Code Gen Options
23442 @section Options for Code Generation Conventions
23443 @cindex code generation conventions
23444 @cindex options, code generation
23445 @cindex run-time options
23446
23447 These machine-independent options control the interface conventions
23448 used in code generation.
23449
23450 Most of them have both positive and negative forms; the negative form
23451 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
23452 one of the forms is listed---the one that is not the default. You
23453 can figure out the other form by either removing @samp{no-} or adding
23454 it.
23455
23456 @table @gcctabopt
23457 @item -fbounds-check
23458 @opindex fbounds-check
23459 For front ends that support it, generate additional code to check that
23460 indices used to access arrays are within the declared range. This is
23461 currently only supported by the Java and Fortran front ends, where
23462 this option defaults to true and false respectively.
23463
23464 @item -fstack-reuse=@var{reuse-level}
23465 @opindex fstack_reuse
23466 This option controls stack space reuse for user declared local/auto variables
23467 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
23468 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
23469 local variables and temporaries, @samp{named_vars} enables the reuse only for
23470 user defined local variables with names, and @samp{none} disables stack reuse
23471 completely. The default value is @samp{all}. The option is needed when the
23472 program extends the lifetime of a scoped local variable or a compiler generated
23473 temporary beyond the end point defined by the language. When a lifetime of
23474 a variable ends, and if the variable lives in memory, the optimizing compiler
23475 has the freedom to reuse its stack space with other temporaries or scoped
23476 local variables whose live range does not overlap with it. Legacy code extending
23477 local lifetime is likely to break with the stack reuse optimization.
23478
23479 For example,
23480
23481 @smallexample
23482 int *p;
23483 @{
23484 int local1;
23485
23486 p = &local1;
23487 local1 = 10;
23488 ....
23489 @}
23490 @{
23491 int local2;
23492 local2 = 20;
23493 ...
23494 @}
23495
23496 if (*p == 10) // out of scope use of local1
23497 @{
23498
23499 @}
23500 @end smallexample
23501
23502 Another example:
23503 @smallexample
23504
23505 struct A
23506 @{
23507 A(int k) : i(k), j(k) @{ @}
23508 int i;
23509 int j;
23510 @};
23511
23512 A *ap;
23513
23514 void foo(const A& ar)
23515 @{
23516 ap = &ar;
23517 @}
23518
23519 void bar()
23520 @{
23521 foo(A(10)); // temp object's lifetime ends when foo returns
23522
23523 @{
23524 A a(20);
23525 ....
23526 @}
23527 ap->i+= 10; // ap references out of scope temp whose space
23528 // is reused with a. What is the value of ap->i?
23529 @}
23530
23531 @end smallexample
23532
23533 The lifetime of a compiler generated temporary is well defined by the C++
23534 standard. When a lifetime of a temporary ends, and if the temporary lives
23535 in memory, the optimizing compiler has the freedom to reuse its stack
23536 space with other temporaries or scoped local variables whose live range
23537 does not overlap with it. However some of the legacy code relies on
23538 the behavior of older compilers in which temporaries' stack space is
23539 not reused, the aggressive stack reuse can lead to runtime errors. This
23540 option is used to control the temporary stack reuse optimization.
23541
23542 @item -ftrapv
23543 @opindex ftrapv
23544 This option generates traps for signed overflow on addition, subtraction,
23545 multiplication operations.
23546
23547 @item -fwrapv
23548 @opindex fwrapv
23549 This option instructs the compiler to assume that signed arithmetic
23550 overflow of addition, subtraction and multiplication wraps around
23551 using twos-complement representation. This flag enables some optimizations
23552 and disables others. This option is enabled by default for the Java
23553 front end, as required by the Java language specification.
23554
23555 @item -fexceptions
23556 @opindex fexceptions
23557 Enable exception handling. Generates extra code needed to propagate
23558 exceptions. For some targets, this implies GCC generates frame
23559 unwind information for all functions, which can produce significant data
23560 size overhead, although it does not affect execution. If you do not
23561 specify this option, GCC enables it by default for languages like
23562 C++ that normally require exception handling, and disables it for
23563 languages like C that do not normally require it. However, you may need
23564 to enable this option when compiling C code that needs to interoperate
23565 properly with exception handlers written in C++. You may also wish to
23566 disable this option if you are compiling older C++ programs that don't
23567 use exception handling.
23568
23569 @item -fnon-call-exceptions
23570 @opindex fnon-call-exceptions
23571 Generate code that allows trapping instructions to throw exceptions.
23572 Note that this requires platform-specific runtime support that does
23573 not exist everywhere. Moreover, it only allows @emph{trapping}
23574 instructions to throw exceptions, i.e.@: memory references or floating-point
23575 instructions. It does not allow exceptions to be thrown from
23576 arbitrary signal handlers such as @code{SIGALRM}.
23577
23578 @item -fdelete-dead-exceptions
23579 @opindex fdelete-dead-exceptions
23580 Consider that instructions that may throw exceptions but don't otherwise
23581 contribute to the execution of the program can be optimized away.
23582 This option is enabled by default for the Ada front end, as permitted by
23583 the Ada language specification.
23584 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
23585
23586 @item -funwind-tables
23587 @opindex funwind-tables
23588 Similar to @option{-fexceptions}, except that it just generates any needed
23589 static data, but does not affect the generated code in any other way.
23590 You normally do not need to enable this option; instead, a language processor
23591 that needs this handling enables it on your behalf.
23592
23593 @item -fasynchronous-unwind-tables
23594 @opindex fasynchronous-unwind-tables
23595 Generate unwind table in DWARF 2 format, if supported by target machine. The
23596 table is exact at each instruction boundary, so it can be used for stack
23597 unwinding from asynchronous events (such as debugger or garbage collector).
23598
23599 @item -fno-gnu-unique
23600 @opindex fno-gnu-unique
23601 On systems with recent GNU assembler and C library, the C++ compiler
23602 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
23603 of template static data members and static local variables in inline
23604 functions are unique even in the presence of @code{RTLD_LOCAL}; this
23605 is necessary to avoid problems with a library used by two different
23606 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
23607 therefore disagreeing with the other one about the binding of the
23608 symbol. But this causes @code{dlclose} to be ignored for affected
23609 DSOs; if your program relies on reinitialization of a DSO via
23610 @code{dlclose} and @code{dlopen}, you can use
23611 @option{-fno-gnu-unique}.
23612
23613 @item -fpcc-struct-return
23614 @opindex fpcc-struct-return
23615 Return ``short'' @code{struct} and @code{union} values in memory like
23616 longer ones, rather than in registers. This convention is less
23617 efficient, but it has the advantage of allowing intercallability between
23618 GCC-compiled files and files compiled with other compilers, particularly
23619 the Portable C Compiler (pcc).
23620
23621 The precise convention for returning structures in memory depends
23622 on the target configuration macros.
23623
23624 Short structures and unions are those whose size and alignment match
23625 that of some integer type.
23626
23627 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
23628 switch is not binary compatible with code compiled with the
23629 @option{-freg-struct-return} switch.
23630 Use it to conform to a non-default application binary interface.
23631
23632 @item -freg-struct-return
23633 @opindex freg-struct-return
23634 Return @code{struct} and @code{union} values in registers when possible.
23635 This is more efficient for small structures than
23636 @option{-fpcc-struct-return}.
23637
23638 If you specify neither @option{-fpcc-struct-return} nor
23639 @option{-freg-struct-return}, GCC defaults to whichever convention is
23640 standard for the target. If there is no standard convention, GCC
23641 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
23642 the principal compiler. In those cases, we can choose the standard, and
23643 we chose the more efficient register return alternative.
23644
23645 @strong{Warning:} code compiled with the @option{-freg-struct-return}
23646 switch is not binary compatible with code compiled with the
23647 @option{-fpcc-struct-return} switch.
23648 Use it to conform to a non-default application binary interface.
23649
23650 @item -fshort-enums
23651 @opindex fshort-enums
23652 Allocate to an @code{enum} type only as many bytes as it needs for the
23653 declared range of possible values. Specifically, the @code{enum} type
23654 is equivalent to the smallest integer type that has enough room.
23655
23656 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
23657 code that is not binary compatible with code generated without that switch.
23658 Use it to conform to a non-default application binary interface.
23659
23660 @item -fshort-double
23661 @opindex fshort-double
23662 Use the same size for @code{double} as for @code{float}.
23663
23664 @strong{Warning:} the @option{-fshort-double} switch causes GCC to generate
23665 code that is not binary compatible with code generated without that switch.
23666 Use it to conform to a non-default application binary interface.
23667
23668 @item -fshort-wchar
23669 @opindex fshort-wchar
23670 Override the underlying type for @code{wchar_t} to be @code{short
23671 unsigned int} instead of the default for the target. This option is
23672 useful for building programs to run under WINE@.
23673
23674 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
23675 code that is not binary compatible with code generated without that switch.
23676 Use it to conform to a non-default application binary interface.
23677
23678 @item -fno-common
23679 @opindex fno-common
23680 In C code, controls the placement of uninitialized global variables.
23681 Unix C compilers have traditionally permitted multiple definitions of
23682 such variables in different compilation units by placing the variables
23683 in a common block.
23684 This is the behavior specified by @option{-fcommon}, and is the default
23685 for GCC on most targets.
23686 On the other hand, this behavior is not required by ISO C, and on some
23687 targets may carry a speed or code size penalty on variable references.
23688 The @option{-fno-common} option specifies that the compiler should place
23689 uninitialized global variables in the data section of the object file,
23690 rather than generating them as common blocks.
23691 This has the effect that if the same variable is declared
23692 (without @code{extern}) in two different compilations,
23693 you get a multiple-definition error when you link them.
23694 In this case, you must compile with @option{-fcommon} instead.
23695 Compiling with @option{-fno-common} is useful on targets for which
23696 it provides better performance, or if you wish to verify that the
23697 program will work on other systems that always treat uninitialized
23698 variable declarations this way.
23699
23700 @item -fno-ident
23701 @opindex fno-ident
23702 Ignore the @code{#ident} directive.
23703
23704 @item -finhibit-size-directive
23705 @opindex finhibit-size-directive
23706 Don't output a @code{.size} assembler directive, or anything else that
23707 would cause trouble if the function is split in the middle, and the
23708 two halves are placed at locations far apart in memory. This option is
23709 used when compiling @file{crtstuff.c}; you should not need to use it
23710 for anything else.
23711
23712 @item -fverbose-asm
23713 @opindex fverbose-asm
23714 Put extra commentary information in the generated assembly code to
23715 make it more readable. This option is generally only of use to those
23716 who actually need to read the generated assembly code (perhaps while
23717 debugging the compiler itself).
23718
23719 @option{-fno-verbose-asm}, the default, causes the
23720 extra information to be omitted and is useful when comparing two assembler
23721 files.
23722
23723 @item -frecord-gcc-switches
23724 @opindex frecord-gcc-switches
23725 This switch causes the command line used to invoke the
23726 compiler to be recorded into the object file that is being created.
23727 This switch is only implemented on some targets and the exact format
23728 of the recording is target and binary file format dependent, but it
23729 usually takes the form of a section containing ASCII text. This
23730 switch is related to the @option{-fverbose-asm} switch, but that
23731 switch only records information in the assembler output file as
23732 comments, so it never reaches the object file.
23733 See also @option{-grecord-gcc-switches} for another
23734 way of storing compiler options into the object file.
23735
23736 @item -fpic
23737 @opindex fpic
23738 @cindex global offset table
23739 @cindex PIC
23740 Generate position-independent code (PIC) suitable for use in a shared
23741 library, if supported for the target machine. Such code accesses all
23742 constant addresses through a global offset table (GOT)@. The dynamic
23743 loader resolves the GOT entries when the program starts (the dynamic
23744 loader is not part of GCC; it is part of the operating system). If
23745 the GOT size for the linked executable exceeds a machine-specific
23746 maximum size, you get an error message from the linker indicating that
23747 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
23748 instead. (These maximums are 8k on the SPARC and 32k
23749 on the m68k and RS/6000. The x86 has no such limit.)
23750
23751 Position-independent code requires special support, and therefore works
23752 only on certain machines. For the x86, GCC supports PIC for System V
23753 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
23754 position-independent.
23755
23756 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23757 are defined to 1.
23758
23759 @item -fPIC
23760 @opindex fPIC
23761 If supported for the target machine, emit position-independent code,
23762 suitable for dynamic linking and avoiding any limit on the size of the
23763 global offset table. This option makes a difference on the m68k,
23764 PowerPC and SPARC@.
23765
23766 Position-independent code requires special support, and therefore works
23767 only on certain machines.
23768
23769 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
23770 are defined to 2.
23771
23772 @item -fpie
23773 @itemx -fPIE
23774 @opindex fpie
23775 @opindex fPIE
23776 These options are similar to @option{-fpic} and @option{-fPIC}, but
23777 generated position independent code can be only linked into executables.
23778 Usually these options are used when @option{-pie} GCC option is
23779 used during linking.
23780
23781 @option{-fpie} and @option{-fPIE} both define the macros
23782 @code{__pie__} and @code{__PIE__}. The macros have the value 1
23783 for @option{-fpie} and 2 for @option{-fPIE}.
23784
23785 @item -fno-plt
23786 @opindex fno-plt
23787 Do not use PLT for external function calls in position-independent code.
23788 Instead, load callee address at call site from GOT and branch to it.
23789 This leads to more efficient code by eliminating PLT stubs and exposing
23790 GOT load to optimizations. On architectures such as 32-bit x86 where
23791 PLT stubs expect GOT pointer in a specific register, this gives more
23792 register allocation freedom to the compiler. Lazy binding requires PLT:
23793 with @option{-fno-plt} all external symbols are resolved at load time.
23794
23795 @item -fno-jump-tables
23796 @opindex fno-jump-tables
23797 Do not use jump tables for switch statements even where it would be
23798 more efficient than other code generation strategies. This option is
23799 of use in conjunction with @option{-fpic} or @option{-fPIC} for
23800 building code that forms part of a dynamic linker and cannot
23801 reference the address of a jump table. On some targets, jump tables
23802 do not require a GOT and this option is not needed.
23803
23804 @item -ffixed-@var{reg}
23805 @opindex ffixed
23806 Treat the register named @var{reg} as a fixed register; generated code
23807 should never refer to it (except perhaps as a stack pointer, frame
23808 pointer or in some other fixed role).
23809
23810 @var{reg} must be the name of a register. The register names accepted
23811 are machine-specific and are defined in the @code{REGISTER_NAMES}
23812 macro in the machine description macro file.
23813
23814 This flag does not have a negative form, because it specifies a
23815 three-way choice.
23816
23817 @item -fcall-used-@var{reg}
23818 @opindex fcall-used
23819 Treat the register named @var{reg} as an allocable register that is
23820 clobbered by function calls. It may be allocated for temporaries or
23821 variables that do not live across a call. Functions compiled this way
23822 do not save and restore the register @var{reg}.
23823
23824 It is an error to use this flag with the frame pointer or stack pointer.
23825 Use of this flag for other registers that have fixed pervasive roles in
23826 the machine's execution model produces disastrous results.
23827
23828 This flag does not have a negative form, because it specifies a
23829 three-way choice.
23830
23831 @item -fcall-saved-@var{reg}
23832 @opindex fcall-saved
23833 Treat the register named @var{reg} as an allocable register saved by
23834 functions. It may be allocated even for temporaries or variables that
23835 live across a call. Functions compiled this way save and restore
23836 the register @var{reg} if they use it.
23837
23838 It is an error to use this flag with the frame pointer or stack pointer.
23839 Use of this flag for other registers that have fixed pervasive roles in
23840 the machine's execution model produces disastrous results.
23841
23842 A different sort of disaster results from the use of this flag for
23843 a register in which function values may be returned.
23844
23845 This flag does not have a negative form, because it specifies a
23846 three-way choice.
23847
23848 @item -fpack-struct[=@var{n}]
23849 @opindex fpack-struct
23850 Without a value specified, pack all structure members together without
23851 holes. When a value is specified (which must be a small power of two), pack
23852 structure members according to this value, representing the maximum
23853 alignment (that is, objects with default alignment requirements larger than
23854 this are output potentially unaligned at the next fitting location.
23855
23856 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
23857 code that is not binary compatible with code generated without that switch.
23858 Additionally, it makes the code suboptimal.
23859 Use it to conform to a non-default application binary interface.
23860
23861 @item -finstrument-functions
23862 @opindex finstrument-functions
23863 Generate instrumentation calls for entry and exit to functions. Just
23864 after function entry and just before function exit, the following
23865 profiling functions are called with the address of the current
23866 function and its call site. (On some platforms,
23867 @code{__builtin_return_address} does not work beyond the current
23868 function, so the call site information may not be available to the
23869 profiling functions otherwise.)
23870
23871 @smallexample
23872 void __cyg_profile_func_enter (void *this_fn,
23873 void *call_site);
23874 void __cyg_profile_func_exit (void *this_fn,
23875 void *call_site);
23876 @end smallexample
23877
23878 The first argument is the address of the start of the current function,
23879 which may be looked up exactly in the symbol table.
23880
23881 This instrumentation is also done for functions expanded inline in other
23882 functions. The profiling calls indicate where, conceptually, the
23883 inline function is entered and exited. This means that addressable
23884 versions of such functions must be available. If all your uses of a
23885 function are expanded inline, this may mean an additional expansion of
23886 code size. If you use @code{extern inline} in your C code, an
23887 addressable version of such functions must be provided. (This is
23888 normally the case anyway, but if you get lucky and the optimizer always
23889 expands the functions inline, you might have gotten away without
23890 providing static copies.)
23891
23892 A function may be given the attribute @code{no_instrument_function}, in
23893 which case this instrumentation is not done. This can be used, for
23894 example, for the profiling functions listed above, high-priority
23895 interrupt routines, and any functions from which the profiling functions
23896 cannot safely be called (perhaps signal handlers, if the profiling
23897 routines generate output or allocate memory).
23898
23899 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
23900 @opindex finstrument-functions-exclude-file-list
23901
23902 Set the list of functions that are excluded from instrumentation (see
23903 the description of @option{-finstrument-functions}). If the file that
23904 contains a function definition matches with one of @var{file}, then
23905 that function is not instrumented. The match is done on substrings:
23906 if the @var{file} parameter is a substring of the file name, it is
23907 considered to be a match.
23908
23909 For example:
23910
23911 @smallexample
23912 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
23913 @end smallexample
23914
23915 @noindent
23916 excludes any inline function defined in files whose pathnames
23917 contain @file{/bits/stl} or @file{include/sys}.
23918
23919 If, for some reason, you want to include letter @samp{,} in one of
23920 @var{sym}, write @samp{\,}. For example,
23921 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
23922 (note the single quote surrounding the option).
23923
23924 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
23925 @opindex finstrument-functions-exclude-function-list
23926
23927 This is similar to @option{-finstrument-functions-exclude-file-list},
23928 but this option sets the list of function names to be excluded from
23929 instrumentation. The function name to be matched is its user-visible
23930 name, such as @code{vector<int> blah(const vector<int> &)}, not the
23931 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
23932 match is done on substrings: if the @var{sym} parameter is a substring
23933 of the function name, it is considered to be a match. For C99 and C++
23934 extended identifiers, the function name must be given in UTF-8, not
23935 using universal character names.
23936
23937 @item -fstack-check
23938 @opindex fstack-check
23939 Generate code to verify that you do not go beyond the boundary of the
23940 stack. You should specify this flag if you are running in an
23941 environment with multiple threads, but you only rarely need to specify it in
23942 a single-threaded environment since stack overflow is automatically
23943 detected on nearly all systems if there is only one stack.
23944
23945 Note that this switch does not actually cause checking to be done; the
23946 operating system or the language runtime must do that. The switch causes
23947 generation of code to ensure that they see the stack being extended.
23948
23949 You can additionally specify a string parameter: @samp{no} means no
23950 checking, @samp{generic} means force the use of old-style checking,
23951 @samp{specific} means use the best checking method and is equivalent
23952 to bare @option{-fstack-check}.
23953
23954 Old-style checking is a generic mechanism that requires no specific
23955 target support in the compiler but comes with the following drawbacks:
23956
23957 @enumerate
23958 @item
23959 Modified allocation strategy for large objects: they are always
23960 allocated dynamically if their size exceeds a fixed threshold.
23961
23962 @item
23963 Fixed limit on the size of the static frame of functions: when it is
23964 topped by a particular function, stack checking is not reliable and
23965 a warning is issued by the compiler.
23966
23967 @item
23968 Inefficiency: because of both the modified allocation strategy and the
23969 generic implementation, code performance is hampered.
23970 @end enumerate
23971
23972 Note that old-style stack checking is also the fallback method for
23973 @samp{specific} if no target support has been added in the compiler.
23974
23975 @item -fstack-limit-register=@var{reg}
23976 @itemx -fstack-limit-symbol=@var{sym}
23977 @itemx -fno-stack-limit
23978 @opindex fstack-limit-register
23979 @opindex fstack-limit-symbol
23980 @opindex fno-stack-limit
23981 Generate code to ensure that the stack does not grow beyond a certain value,
23982 either the value of a register or the address of a symbol. If a larger
23983 stack is required, a signal is raised at run time. For most targets,
23984 the signal is raised before the stack overruns the boundary, so
23985 it is possible to catch the signal without taking special precautions.
23986
23987 For instance, if the stack starts at absolute address @samp{0x80000000}
23988 and grows downwards, you can use the flags
23989 @option{-fstack-limit-symbol=__stack_limit} and
23990 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
23991 of 128KB@. Note that this may only work with the GNU linker.
23992
23993 @item -fsplit-stack
23994 @opindex fsplit-stack
23995 Generate code to automatically split the stack before it overflows.
23996 The resulting program has a discontiguous stack which can only
23997 overflow if the program is unable to allocate any more memory. This
23998 is most useful when running threaded programs, as it is no longer
23999 necessary to calculate a good stack size to use for each thread. This
24000 is currently only implemented for the x86 targets running
24001 GNU/Linux.
24002
24003 When code compiled with @option{-fsplit-stack} calls code compiled
24004 without @option{-fsplit-stack}, there may not be much stack space
24005 available for the latter code to run. If compiling all code,
24006 including library code, with @option{-fsplit-stack} is not an option,
24007 then the linker can fix up these calls so that the code compiled
24008 without @option{-fsplit-stack} always has a large stack. Support for
24009 this is implemented in the gold linker in GNU binutils release 2.21
24010 and later.
24011
24012 @item -fleading-underscore
24013 @opindex fleading-underscore
24014 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
24015 change the way C symbols are represented in the object file. One use
24016 is to help link with legacy assembly code.
24017
24018 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
24019 generate code that is not binary compatible with code generated without that
24020 switch. Use it to conform to a non-default application binary interface.
24021 Not all targets provide complete support for this switch.
24022
24023 @item -ftls-model=@var{model}
24024 @opindex ftls-model
24025 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
24026 The @var{model} argument should be one of @samp{global-dynamic},
24027 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
24028 Note that the choice is subject to optimization: the compiler may use
24029 a more efficient model for symbols not visible outside of the translation
24030 unit, or if @option{-fpic} is not given on the command line.
24031
24032 The default without @option{-fpic} is @samp{initial-exec}; with
24033 @option{-fpic} the default is @samp{global-dynamic}.
24034
24035 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
24036 @opindex fvisibility
24037 Set the default ELF image symbol visibility to the specified option---all
24038 symbols are marked with this unless overridden within the code.
24039 Using this feature can very substantially improve linking and
24040 load times of shared object libraries, produce more optimized
24041 code, provide near-perfect API export and prevent symbol clashes.
24042 It is @strong{strongly} recommended that you use this in any shared objects
24043 you distribute.
24044
24045 Despite the nomenclature, @samp{default} always means public; i.e.,
24046 available to be linked against from outside the shared object.
24047 @samp{protected} and @samp{internal} are pretty useless in real-world
24048 usage so the only other commonly used option is @samp{hidden}.
24049 The default if @option{-fvisibility} isn't specified is
24050 @samp{default}, i.e., make every symbol public.
24051
24052 A good explanation of the benefits offered by ensuring ELF
24053 symbols have the correct visibility is given by ``How To Write
24054 Shared Libraries'' by Ulrich Drepper (which can be found at
24055 @w{@uref{http://www.akkadia.org/drepper/}})---however a superior
24056 solution made possible by this option to marking things hidden when
24057 the default is public is to make the default hidden and mark things
24058 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
24059 and @code{__attribute__ ((visibility("default")))} instead of
24060 @code{__declspec(dllexport)} you get almost identical semantics with
24061 identical syntax. This is a great boon to those working with
24062 cross-platform projects.
24063
24064 For those adding visibility support to existing code, you may find
24065 @code{#pragma GCC visibility} of use. This works by you enclosing
24066 the declarations you wish to set visibility for with (for example)
24067 @code{#pragma GCC visibility push(hidden)} and
24068 @code{#pragma GCC visibility pop}.
24069 Bear in mind that symbol visibility should be viewed @strong{as
24070 part of the API interface contract} and thus all new code should
24071 always specify visibility when it is not the default; i.e., declarations
24072 only for use within the local DSO should @strong{always} be marked explicitly
24073 as hidden as so to avoid PLT indirection overheads---making this
24074 abundantly clear also aids readability and self-documentation of the code.
24075 Note that due to ISO C++ specification requirements, @code{operator new} and
24076 @code{operator delete} must always be of default visibility.
24077
24078 Be aware that headers from outside your project, in particular system
24079 headers and headers from any other library you use, may not be
24080 expecting to be compiled with visibility other than the default. You
24081 may need to explicitly say @code{#pragma GCC visibility push(default)}
24082 before including any such headers.
24083
24084 @code{extern} declarations are not affected by @option{-fvisibility}, so
24085 a lot of code can be recompiled with @option{-fvisibility=hidden} with
24086 no modifications. However, this means that calls to @code{extern}
24087 functions with no explicit visibility use the PLT, so it is more
24088 effective to use @code{__attribute ((visibility))} and/or
24089 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
24090 declarations should be treated as hidden.
24091
24092 Note that @option{-fvisibility} does affect C++ vague linkage
24093 entities. This means that, for instance, an exception class that is
24094 be thrown between DSOs must be explicitly marked with default
24095 visibility so that the @samp{type_info} nodes are unified between
24096 the DSOs.
24097
24098 An overview of these techniques, their benefits and how to use them
24099 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
24100
24101 @item -fstrict-volatile-bitfields
24102 @opindex fstrict-volatile-bitfields
24103 This option should be used if accesses to volatile bit-fields (or other
24104 structure fields, although the compiler usually honors those types
24105 anyway) should use a single access of the width of the
24106 field's type, aligned to a natural alignment if possible. For
24107 example, targets with memory-mapped peripheral registers might require
24108 all such accesses to be 16 bits wide; with this flag you can
24109 declare all peripheral bit-fields as @code{unsigned short} (assuming short
24110 is 16 bits on these targets) to force GCC to use 16-bit accesses
24111 instead of, perhaps, a more efficient 32-bit access.
24112
24113 If this option is disabled, the compiler uses the most efficient
24114 instruction. In the previous example, that might be a 32-bit load
24115 instruction, even though that accesses bytes that do not contain
24116 any portion of the bit-field, or memory-mapped registers unrelated to
24117 the one being updated.
24118
24119 In some cases, such as when the @code{packed} attribute is applied to a
24120 structure field, it may not be possible to access the field with a single
24121 read or write that is correctly aligned for the target machine. In this
24122 case GCC falls back to generating multiple accesses rather than code that
24123 will fault or truncate the result at run time.
24124
24125 Note: Due to restrictions of the C/C++11 memory model, write accesses are
24126 not allowed to touch non bit-field members. It is therefore recommended
24127 to define all bits of the field's type as bit-field members.
24128
24129 The default value of this option is determined by the application binary
24130 interface for the target processor.
24131
24132 @item -fsync-libcalls
24133 @opindex fsync-libcalls
24134 This option controls whether any out-of-line instance of the @code{__sync}
24135 family of functions may be used to implement the C++11 @code{__atomic}
24136 family of functions.
24137
24138 The default value of this option is enabled, thus the only useful form
24139 of the option is @option{-fno-sync-libcalls}. This option is used in
24140 the implementation of the @file{libatomic} runtime library.
24141
24142 @end table
24143
24144 @c man end
24145
24146 @node Environment Variables
24147 @section Environment Variables Affecting GCC
24148 @cindex environment variables
24149
24150 @c man begin ENVIRONMENT
24151 This section describes several environment variables that affect how GCC
24152 operates. Some of them work by specifying directories or prefixes to use
24153 when searching for various kinds of files. Some are used to specify other
24154 aspects of the compilation environment.
24155
24156 Note that you can also specify places to search using options such as
24157 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
24158 take precedence over places specified using environment variables, which
24159 in turn take precedence over those specified by the configuration of GCC@.
24160 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
24161 GNU Compiler Collection (GCC) Internals}.
24162
24163 @table @env
24164 @item LANG
24165 @itemx LC_CTYPE
24166 @c @itemx LC_COLLATE
24167 @itemx LC_MESSAGES
24168 @c @itemx LC_MONETARY
24169 @c @itemx LC_NUMERIC
24170 @c @itemx LC_TIME
24171 @itemx LC_ALL
24172 @findex LANG
24173 @findex LC_CTYPE
24174 @c @findex LC_COLLATE
24175 @findex LC_MESSAGES
24176 @c @findex LC_MONETARY
24177 @c @findex LC_NUMERIC
24178 @c @findex LC_TIME
24179 @findex LC_ALL
24180 @cindex locale
24181 These environment variables control the way that GCC uses
24182 localization information which allows GCC to work with different
24183 national conventions. GCC inspects the locale categories
24184 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
24185 so. These locale categories can be set to any value supported by your
24186 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
24187 Kingdom encoded in UTF-8.
24188
24189 The @env{LC_CTYPE} environment variable specifies character
24190 classification. GCC uses it to determine the character boundaries in
24191 a string; this is needed for some multibyte encodings that contain quote
24192 and escape characters that are otherwise interpreted as a string
24193 end or escape.
24194
24195 The @env{LC_MESSAGES} environment variable specifies the language to
24196 use in diagnostic messages.
24197
24198 If the @env{LC_ALL} environment variable is set, it overrides the value
24199 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
24200 and @env{LC_MESSAGES} default to the value of the @env{LANG}
24201 environment variable. If none of these variables are set, GCC
24202 defaults to traditional C English behavior.
24203
24204 @item TMPDIR
24205 @findex TMPDIR
24206 If @env{TMPDIR} is set, it specifies the directory to use for temporary
24207 files. GCC uses temporary files to hold the output of one stage of
24208 compilation which is to be used as input to the next stage: for example,
24209 the output of the preprocessor, which is the input to the compiler
24210 proper.
24211
24212 @item GCC_COMPARE_DEBUG
24213 @findex GCC_COMPARE_DEBUG
24214 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
24215 @option{-fcompare-debug} to the compiler driver. See the documentation
24216 of this option for more details.
24217
24218 @item GCC_EXEC_PREFIX
24219 @findex GCC_EXEC_PREFIX
24220 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
24221 names of the subprograms executed by the compiler. No slash is added
24222 when this prefix is combined with the name of a subprogram, but you can
24223 specify a prefix that ends with a slash if you wish.
24224
24225 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
24226 an appropriate prefix to use based on the pathname it is invoked with.
24227
24228 If GCC cannot find the subprogram using the specified prefix, it
24229 tries looking in the usual places for the subprogram.
24230
24231 The default value of @env{GCC_EXEC_PREFIX} is
24232 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
24233 the installed compiler. In many cases @var{prefix} is the value
24234 of @code{prefix} when you ran the @file{configure} script.
24235
24236 Other prefixes specified with @option{-B} take precedence over this prefix.
24237
24238 This prefix is also used for finding files such as @file{crt0.o} that are
24239 used for linking.
24240
24241 In addition, the prefix is used in an unusual way in finding the
24242 directories to search for header files. For each of the standard
24243 directories whose name normally begins with @samp{/usr/local/lib/gcc}
24244 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
24245 replacing that beginning with the specified prefix to produce an
24246 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
24247 @file{foo/bar} just before it searches the standard directory
24248 @file{/usr/local/lib/bar}.
24249 If a standard directory begins with the configured
24250 @var{prefix} then the value of @var{prefix} is replaced by
24251 @env{GCC_EXEC_PREFIX} when looking for header files.
24252
24253 @item COMPILER_PATH
24254 @findex COMPILER_PATH
24255 The value of @env{COMPILER_PATH} is a colon-separated list of
24256 directories, much like @env{PATH}. GCC tries the directories thus
24257 specified when searching for subprograms, if it can't find the
24258 subprograms using @env{GCC_EXEC_PREFIX}.
24259
24260 @item LIBRARY_PATH
24261 @findex LIBRARY_PATH
24262 The value of @env{LIBRARY_PATH} is a colon-separated list of
24263 directories, much like @env{PATH}. When configured as a native compiler,
24264 GCC tries the directories thus specified when searching for special
24265 linker files, if it can't find them using @env{GCC_EXEC_PREFIX}. Linking
24266 using GCC also uses these directories when searching for ordinary
24267 libraries for the @option{-l} option (but directories specified with
24268 @option{-L} come first).
24269
24270 @item LANG
24271 @findex LANG
24272 @cindex locale definition
24273 This variable is used to pass locale information to the compiler. One way in
24274 which this information is used is to determine the character set to be used
24275 when character literals, string literals and comments are parsed in C and C++.
24276 When the compiler is configured to allow multibyte characters,
24277 the following values for @env{LANG} are recognized:
24278
24279 @table @samp
24280 @item C-JIS
24281 Recognize JIS characters.
24282 @item C-SJIS
24283 Recognize SJIS characters.
24284 @item C-EUCJP
24285 Recognize EUCJP characters.
24286 @end table
24287
24288 If @env{LANG} is not defined, or if it has some other value, then the
24289 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
24290 recognize and translate multibyte characters.
24291 @end table
24292
24293 @noindent
24294 Some additional environment variables affect the behavior of the
24295 preprocessor.
24296
24297 @include cppenv.texi
24298
24299 @c man end
24300
24301 @node Precompiled Headers
24302 @section Using Precompiled Headers
24303 @cindex precompiled headers
24304 @cindex speed of compilation
24305
24306 Often large projects have many header files that are included in every
24307 source file. The time the compiler takes to process these header files
24308 over and over again can account for nearly all of the time required to
24309 build the project. To make builds faster, GCC allows you to
24310 @dfn{precompile} a header file.
24311
24312 To create a precompiled header file, simply compile it as you would any
24313 other file, if necessary using the @option{-x} option to make the driver
24314 treat it as a C or C++ header file. You may want to use a
24315 tool like @command{make} to keep the precompiled header up-to-date when
24316 the headers it contains change.
24317
24318 A precompiled header file is searched for when @code{#include} is
24319 seen in the compilation. As it searches for the included file
24320 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
24321 compiler looks for a precompiled header in each directory just before it
24322 looks for the include file in that directory. The name searched for is
24323 the name specified in the @code{#include} with @samp{.gch} appended. If
24324 the precompiled header file can't be used, it is ignored.
24325
24326 For instance, if you have @code{#include "all.h"}, and you have
24327 @file{all.h.gch} in the same directory as @file{all.h}, then the
24328 precompiled header file is used if possible, and the original
24329 header is used otherwise.
24330
24331 Alternatively, you might decide to put the precompiled header file in a
24332 directory and use @option{-I} to ensure that directory is searched
24333 before (or instead of) the directory containing the original header.
24334 Then, if you want to check that the precompiled header file is always
24335 used, you can put a file of the same name as the original header in this
24336 directory containing an @code{#error} command.
24337
24338 This also works with @option{-include}. So yet another way to use
24339 precompiled headers, good for projects not designed with precompiled
24340 header files in mind, is to simply take most of the header files used by
24341 a project, include them from another header file, precompile that header
24342 file, and @option{-include} the precompiled header. If the header files
24343 have guards against multiple inclusion, they are skipped because
24344 they've already been included (in the precompiled header).
24345
24346 If you need to precompile the same header file for different
24347 languages, targets, or compiler options, you can instead make a
24348 @emph{directory} named like @file{all.h.gch}, and put each precompiled
24349 header in the directory, perhaps using @option{-o}. It doesn't matter
24350 what you call the files in the directory; every precompiled header in
24351 the directory is considered. The first precompiled header
24352 encountered in the directory that is valid for this compilation is
24353 used; they're searched in no particular order.
24354
24355 There are many other possibilities, limited only by your imagination,
24356 good sense, and the constraints of your build system.
24357
24358 A precompiled header file can be used only when these conditions apply:
24359
24360 @itemize
24361 @item
24362 Only one precompiled header can be used in a particular compilation.
24363
24364 @item
24365 A precompiled header can't be used once the first C token is seen. You
24366 can have preprocessor directives before a precompiled header; you cannot
24367 include a precompiled header from inside another header.
24368
24369 @item
24370 The precompiled header file must be produced for the same language as
24371 the current compilation. You can't use a C precompiled header for a C++
24372 compilation.
24373
24374 @item
24375 The precompiled header file must have been produced by the same compiler
24376 binary as the current compilation is using.
24377
24378 @item
24379 Any macros defined before the precompiled header is included must
24380 either be defined in the same way as when the precompiled header was
24381 generated, or must not affect the precompiled header, which usually
24382 means that they don't appear in the precompiled header at all.
24383
24384 The @option{-D} option is one way to define a macro before a
24385 precompiled header is included; using a @code{#define} can also do it.
24386 There are also some options that define macros implicitly, like
24387 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
24388 defined this way.
24389
24390 @item If debugging information is output when using the precompiled
24391 header, using @option{-g} or similar, the same kind of debugging information
24392 must have been output when building the precompiled header. However,
24393 a precompiled header built using @option{-g} can be used in a compilation
24394 when no debugging information is being output.
24395
24396 @item The same @option{-m} options must generally be used when building
24397 and using the precompiled header. @xref{Submodel Options},
24398 for any cases where this rule is relaxed.
24399
24400 @item Each of the following options must be the same when building and using
24401 the precompiled header:
24402
24403 @gccoptlist{-fexceptions}
24404
24405 @item
24406 Some other command-line options starting with @option{-f},
24407 @option{-p}, or @option{-O} must be defined in the same way as when
24408 the precompiled header was generated. At present, it's not clear
24409 which options are safe to change and which are not; the safest choice
24410 is to use exactly the same options when generating and using the
24411 precompiled header. The following are known to be safe:
24412
24413 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
24414 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
24415 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
24416 -pedantic-errors}
24417
24418 @end itemize
24419
24420 For all of these except the last, the compiler automatically
24421 ignores the precompiled header if the conditions aren't met. If you
24422 find an option combination that doesn't work and doesn't cause the
24423 precompiled header to be ignored, please consider filing a bug report,
24424 see @ref{Bugs}.
24425
24426 If you do use differing options when generating and using the
24427 precompiled header, the actual behavior is a mixture of the
24428 behavior for the options. For instance, if you use @option{-g} to
24429 generate the precompiled header but not when using it, you may or may
24430 not get debugging information for routines in the precompiled header.