]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
baad4a85eefb710a92cb4185f89a69dee7dcc37a
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 /* Middle-to-low level generation of rtx code and insns.
24
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
61 #include "params.h"
62
63 /* Commonly used modes. */
64
65 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
66 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
67 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
68 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
69
70 /* Datastructures maintained for currently processed function in RTL form. */
71
72 struct rtl_data x_rtl;
73
74 /* Indexed by pseudo register number, gives the rtx for that pseudo.
75 Allocated in parallel with regno_pointer_align.
76 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
77 with length attribute nested in top level structures. */
78
79 rtx * regno_reg_rtx;
80
81 /* This is *not* reset after each function. It gives each CODE_LABEL
82 in the entire compilation a unique label number. */
83
84 static GTY(()) int label_num = 1;
85
86 /* Nonzero means do not generate NOTEs for source line numbers. */
87
88 static int no_line_numbers;
89
90 /* Commonly used rtx's, so that we only need space for one copy.
91 These are initialized once for the entire compilation.
92 All of these are unique; no other rtx-object will be equal to any
93 of these. */
94
95 rtx global_rtl[GR_MAX];
96
97 /* Commonly used RTL for hard registers. These objects are not necessarily
98 unique, so we allocate them separately from global_rtl. They are
99 initialized once per compilation unit, then copied into regno_reg_rtx
100 at the beginning of each function. */
101 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
102
103 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
104 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
105 record a copy of const[012]_rtx. */
106
107 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
108
109 rtx const_true_rtx;
110
111 REAL_VALUE_TYPE dconst0;
112 REAL_VALUE_TYPE dconst1;
113 REAL_VALUE_TYPE dconst2;
114 REAL_VALUE_TYPE dconstm1;
115 REAL_VALUE_TYPE dconsthalf;
116
117 /* Record fixed-point constant 0 and 1. */
118 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
119 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
120
121 /* All references to the following fixed hard registers go through
122 these unique rtl objects. On machines where the frame-pointer and
123 arg-pointer are the same register, they use the same unique object.
124
125 After register allocation, other rtl objects which used to be pseudo-regs
126 may be clobbered to refer to the frame-pointer register.
127 But references that were originally to the frame-pointer can be
128 distinguished from the others because they contain frame_pointer_rtx.
129
130 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
131 tricky: until register elimination has taken place hard_frame_pointer_rtx
132 should be used if it is being set, and frame_pointer_rtx otherwise. After
133 register elimination hard_frame_pointer_rtx should always be used.
134 On machines where the two registers are same (most) then these are the
135 same.
136
137 In an inline procedure, the stack and frame pointer rtxs may not be
138 used for anything else. */
139 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
140
141 /* This is used to implement __builtin_return_address for some machines.
142 See for instance the MIPS port. */
143 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
144
145 /* We make one copy of (const_int C) where C is in
146 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
147 to save space during the compilation and simplify comparisons of
148 integers. */
149
150 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
151
152 /* A hash table storing CONST_INTs whose absolute value is greater
153 than MAX_SAVED_CONST_INT. */
154
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
156 htab_t const_int_htab;
157
158 /* A hash table storing memory attribute structures. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
160 htab_t mem_attrs_htab;
161
162 /* A hash table storing register attribute structures. */
163 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
164 htab_t reg_attrs_htab;
165
166 /* A hash table storing all CONST_DOUBLEs. */
167 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
168 htab_t const_double_htab;
169
170 /* A hash table storing all CONST_FIXEDs. */
171 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
172 htab_t const_fixed_htab;
173
174 #define first_insn (crtl->emit.x_first_insn)
175 #define last_insn (crtl->emit.x_last_insn)
176 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
177 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
178 #define last_location (crtl->emit.x_last_location)
179 #define first_label_num (crtl->emit.x_first_label_num)
180
181 static rtx make_call_insn_raw (rtx);
182 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
183 static void set_used_decls (tree);
184 static void mark_label_nuses (rtx);
185 static hashval_t const_int_htab_hash (const void *);
186 static int const_int_htab_eq (const void *, const void *);
187 static hashval_t const_double_htab_hash (const void *);
188 static int const_double_htab_eq (const void *, const void *);
189 static rtx lookup_const_double (rtx);
190 static hashval_t const_fixed_htab_hash (const void *);
191 static int const_fixed_htab_eq (const void *, const void *);
192 static rtx lookup_const_fixed (rtx);
193 static hashval_t mem_attrs_htab_hash (const void *);
194 static int mem_attrs_htab_eq (const void *, const void *);
195 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
196 addr_space_t, enum machine_mode);
197 static hashval_t reg_attrs_htab_hash (const void *);
198 static int reg_attrs_htab_eq (const void *, const void *);
199 static reg_attrs *get_reg_attrs (tree, int);
200 static rtx gen_const_vector (enum machine_mode, int);
201 static void copy_rtx_if_shared_1 (rtx *orig);
202
203 /* Probability of the conditional branch currently proceeded by try_split.
204 Set to -1 otherwise. */
205 int split_branch_probability = -1;
206 \f
207 /* Returns a hash code for X (which is a really a CONST_INT). */
208
209 static hashval_t
210 const_int_htab_hash (const void *x)
211 {
212 return (hashval_t) INTVAL ((const_rtx) x);
213 }
214
215 /* Returns nonzero if the value represented by X (which is really a
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
219 static int
220 const_int_htab_eq (const void *x, const void *y)
221 {
222 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
223 }
224
225 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
226 static hashval_t
227 const_double_htab_hash (const void *x)
228 {
229 const_rtx const value = (const_rtx) x;
230 hashval_t h;
231
232 if (GET_MODE (value) == VOIDmode)
233 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
234 else
235 {
236 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
237 /* MODE is used in the comparison, so it should be in the hash. */
238 h ^= GET_MODE (value);
239 }
240 return h;
241 }
242
243 /* Returns nonzero if the value represented by X (really a ...)
244 is the same as that represented by Y (really a ...) */
245 static int
246 const_double_htab_eq (const void *x, const void *y)
247 {
248 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
249
250 if (GET_MODE (a) != GET_MODE (b))
251 return 0;
252 if (GET_MODE (a) == VOIDmode)
253 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
254 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
255 else
256 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
257 CONST_DOUBLE_REAL_VALUE (b));
258 }
259
260 /* Returns a hash code for X (which is really a CONST_FIXED). */
261
262 static hashval_t
263 const_fixed_htab_hash (const void *x)
264 {
265 const_rtx const value = (const_rtx) x;
266 hashval_t h;
267
268 h = fixed_hash (CONST_FIXED_VALUE (value));
269 /* MODE is used in the comparison, so it should be in the hash. */
270 h ^= GET_MODE (value);
271 return h;
272 }
273
274 /* Returns nonzero if the value represented by X (really a ...)
275 is the same as that represented by Y (really a ...). */
276
277 static int
278 const_fixed_htab_eq (const void *x, const void *y)
279 {
280 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
281
282 if (GET_MODE (a) != GET_MODE (b))
283 return 0;
284 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
285 }
286
287 /* Returns a hash code for X (which is a really a mem_attrs *). */
288
289 static hashval_t
290 mem_attrs_htab_hash (const void *x)
291 {
292 const mem_attrs *const p = (const mem_attrs *) x;
293
294 return (p->alias ^ (p->align * 1000)
295 ^ (p->addrspace * 4000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
298 ^ (size_t) iterative_hash_expr (p->expr, 0));
299 }
300
301 /* Returns nonzero if the value represented by X (which is really a
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
304
305 static int
306 mem_attrs_htab_eq (const void *x, const void *y)
307 {
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
310
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && p->addrspace == q->addrspace
314 && (p->expr == q->expr
315 || (p->expr != NULL_TREE && q->expr != NULL_TREE
316 && operand_equal_p (p->expr, q->expr, 0))));
317 }
318
319 /* Allocate a new mem_attrs structure and insert it into the hash table if
320 one identical to it is not already in the table. We are doing this for
321 MEM of mode MODE. */
322
323 static mem_attrs *
324 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
325 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
326 {
327 mem_attrs attrs;
328 void **slot;
329
330 /* If everything is the default, we can just return zero.
331 This must match what the corresponding MEM_* macros return when the
332 field is not present. */
333 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
334 && (size == 0
335 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
336 && (STRICT_ALIGNMENT && mode != BLKmode
337 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
338 return 0;
339
340 attrs.alias = alias;
341 attrs.expr = expr;
342 attrs.offset = offset;
343 attrs.size = size;
344 attrs.align = align;
345 attrs.addrspace = addrspace;
346
347 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
348 if (*slot == 0)
349 {
350 *slot = ggc_alloc (sizeof (mem_attrs));
351 memcpy (*slot, &attrs, sizeof (mem_attrs));
352 }
353
354 return (mem_attrs *) *slot;
355 }
356
357 /* Returns a hash code for X (which is a really a reg_attrs *). */
358
359 static hashval_t
360 reg_attrs_htab_hash (const void *x)
361 {
362 const reg_attrs *const p = (const reg_attrs *) x;
363
364 return ((p->offset * 1000) ^ (long) p->decl);
365 }
366
367 /* Returns nonzero if the value represented by X (which is really a
368 reg_attrs *) is the same as that given by Y (which is also really a
369 reg_attrs *). */
370
371 static int
372 reg_attrs_htab_eq (const void *x, const void *y)
373 {
374 const reg_attrs *const p = (const reg_attrs *) x;
375 const reg_attrs *const q = (const reg_attrs *) y;
376
377 return (p->decl == q->decl && p->offset == q->offset);
378 }
379 /* Allocate a new reg_attrs structure and insert it into the hash table if
380 one identical to it is not already in the table. We are doing this for
381 MEM of mode MODE. */
382
383 static reg_attrs *
384 get_reg_attrs (tree decl, int offset)
385 {
386 reg_attrs attrs;
387 void **slot;
388
389 /* If everything is the default, we can just return zero. */
390 if (decl == 0 && offset == 0)
391 return 0;
392
393 attrs.decl = decl;
394 attrs.offset = offset;
395
396 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
397 if (*slot == 0)
398 {
399 *slot = ggc_alloc (sizeof (reg_attrs));
400 memcpy (*slot, &attrs, sizeof (reg_attrs));
401 }
402
403 return (reg_attrs *) *slot;
404 }
405
406
407 #if !HAVE_blockage
408 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
409 across this insn. */
410
411 rtx
412 gen_blockage (void)
413 {
414 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
415 MEM_VOLATILE_P (x) = true;
416 return x;
417 }
418 #endif
419
420
421 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
422 don't attempt to share with the various global pieces of rtl (such as
423 frame_pointer_rtx). */
424
425 rtx
426 gen_raw_REG (enum machine_mode mode, int regno)
427 {
428 rtx x = gen_rtx_raw_REG (mode, regno);
429 ORIGINAL_REGNO (x) = regno;
430 return x;
431 }
432
433 /* There are some RTL codes that require special attention; the generation
434 functions do the raw handling. If you add to this list, modify
435 special_rtx in gengenrtl.c as well. */
436
437 rtx
438 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
439 {
440 void **slot;
441
442 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
443 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
444
445 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
446 if (const_true_rtx && arg == STORE_FLAG_VALUE)
447 return const_true_rtx;
448 #endif
449
450 /* Look up the CONST_INT in the hash table. */
451 slot = htab_find_slot_with_hash (const_int_htab, &arg,
452 (hashval_t) arg, INSERT);
453 if (*slot == 0)
454 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
455
456 return (rtx) *slot;
457 }
458
459 rtx
460 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
461 {
462 return GEN_INT (trunc_int_for_mode (c, mode));
463 }
464
465 /* CONST_DOUBLEs might be created from pairs of integers, or from
466 REAL_VALUE_TYPEs. Also, their length is known only at run time,
467 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
468
469 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
470 hash table. If so, return its counterpart; otherwise add it
471 to the hash table and return it. */
472 static rtx
473 lookup_const_double (rtx real)
474 {
475 void **slot = htab_find_slot (const_double_htab, real, INSERT);
476 if (*slot == 0)
477 *slot = real;
478
479 return (rtx) *slot;
480 }
481
482 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
483 VALUE in mode MODE. */
484 rtx
485 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
486 {
487 rtx real = rtx_alloc (CONST_DOUBLE);
488 PUT_MODE (real, mode);
489
490 real->u.rv = value;
491
492 return lookup_const_double (real);
493 }
494
495 /* Determine whether FIXED, a CONST_FIXED, already exists in the
496 hash table. If so, return its counterpart; otherwise add it
497 to the hash table and return it. */
498
499 static rtx
500 lookup_const_fixed (rtx fixed)
501 {
502 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
503 if (*slot == 0)
504 *slot = fixed;
505
506 return (rtx) *slot;
507 }
508
509 /* Return a CONST_FIXED rtx for a fixed-point value specified by
510 VALUE in mode MODE. */
511
512 rtx
513 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
514 {
515 rtx fixed = rtx_alloc (CONST_FIXED);
516 PUT_MODE (fixed, mode);
517
518 fixed->u.fv = value;
519
520 return lookup_const_fixed (fixed);
521 }
522
523 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
524 of ints: I0 is the low-order word and I1 is the high-order word.
525 Do not use this routine for non-integer modes; convert to
526 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
527
528 rtx
529 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
530 {
531 rtx value;
532 unsigned int i;
533
534 /* There are the following cases (note that there are no modes with
535 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
536
537 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
538 gen_int_mode.
539 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
540 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
541 from copies of the sign bit, and sign of i0 and i1 are the same), then
542 we return a CONST_INT for i0.
543 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
544 if (mode != VOIDmode)
545 {
546 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
547 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
548 /* We can get a 0 for an error mark. */
549 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
550 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
551
552 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
553 return gen_int_mode (i0, mode);
554
555 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
556 }
557
558 /* If this integer fits in one word, return a CONST_INT. */
559 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
560 return GEN_INT (i0);
561
562 /* We use VOIDmode for integers. */
563 value = rtx_alloc (CONST_DOUBLE);
564 PUT_MODE (value, VOIDmode);
565
566 CONST_DOUBLE_LOW (value) = i0;
567 CONST_DOUBLE_HIGH (value) = i1;
568
569 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
570 XWINT (value, i) = 0;
571
572 return lookup_const_double (value);
573 }
574
575 rtx
576 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
577 {
578 /* In case the MD file explicitly references the frame pointer, have
579 all such references point to the same frame pointer. This is
580 used during frame pointer elimination to distinguish the explicit
581 references to these registers from pseudos that happened to be
582 assigned to them.
583
584 If we have eliminated the frame pointer or arg pointer, we will
585 be using it as a normal register, for example as a spill
586 register. In such cases, we might be accessing it in a mode that
587 is not Pmode and therefore cannot use the pre-allocated rtx.
588
589 Also don't do this when we are making new REGs in reload, since
590 we don't want to get confused with the real pointers. */
591
592 if (mode == Pmode && !reload_in_progress)
593 {
594 if (regno == FRAME_POINTER_REGNUM
595 && (!reload_completed || frame_pointer_needed))
596 return frame_pointer_rtx;
597 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
598 if (regno == HARD_FRAME_POINTER_REGNUM
599 && (!reload_completed || frame_pointer_needed))
600 return hard_frame_pointer_rtx;
601 #endif
602 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
603 if (regno == ARG_POINTER_REGNUM)
604 return arg_pointer_rtx;
605 #endif
606 #ifdef RETURN_ADDRESS_POINTER_REGNUM
607 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
608 return return_address_pointer_rtx;
609 #endif
610 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
611 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
612 return pic_offset_table_rtx;
613 if (regno == STACK_POINTER_REGNUM)
614 return stack_pointer_rtx;
615 }
616
617 #if 0
618 /* If the per-function register table has been set up, try to re-use
619 an existing entry in that table to avoid useless generation of RTL.
620
621 This code is disabled for now until we can fix the various backends
622 which depend on having non-shared hard registers in some cases. Long
623 term we want to re-enable this code as it can significantly cut down
624 on the amount of useless RTL that gets generated.
625
626 We'll also need to fix some code that runs after reload that wants to
627 set ORIGINAL_REGNO. */
628
629 if (cfun
630 && cfun->emit
631 && regno_reg_rtx
632 && regno < FIRST_PSEUDO_REGISTER
633 && reg_raw_mode[regno] == mode)
634 return regno_reg_rtx[regno];
635 #endif
636
637 return gen_raw_REG (mode, regno);
638 }
639
640 rtx
641 gen_rtx_MEM (enum machine_mode mode, rtx addr)
642 {
643 rtx rt = gen_rtx_raw_MEM (mode, addr);
644
645 /* This field is not cleared by the mere allocation of the rtx, so
646 we clear it here. */
647 MEM_ATTRS (rt) = 0;
648
649 return rt;
650 }
651
652 /* Generate a memory referring to non-trapping constant memory. */
653
654 rtx
655 gen_const_mem (enum machine_mode mode, rtx addr)
656 {
657 rtx mem = gen_rtx_MEM (mode, addr);
658 MEM_READONLY_P (mem) = 1;
659 MEM_NOTRAP_P (mem) = 1;
660 return mem;
661 }
662
663 /* Generate a MEM referring to fixed portions of the frame, e.g., register
664 save areas. */
665
666 rtx
667 gen_frame_mem (enum machine_mode mode, rtx addr)
668 {
669 rtx mem = gen_rtx_MEM (mode, addr);
670 MEM_NOTRAP_P (mem) = 1;
671 set_mem_alias_set (mem, get_frame_alias_set ());
672 return mem;
673 }
674
675 /* Generate a MEM referring to a temporary use of the stack, not part
676 of the fixed stack frame. For example, something which is pushed
677 by a target splitter. */
678 rtx
679 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
680 {
681 rtx mem = gen_rtx_MEM (mode, addr);
682 MEM_NOTRAP_P (mem) = 1;
683 if (!cfun->calls_alloca)
684 set_mem_alias_set (mem, get_frame_alias_set ());
685 return mem;
686 }
687
688 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
689 this construct would be valid, and false otherwise. */
690
691 bool
692 validate_subreg (enum machine_mode omode, enum machine_mode imode,
693 const_rtx reg, unsigned int offset)
694 {
695 unsigned int isize = GET_MODE_SIZE (imode);
696 unsigned int osize = GET_MODE_SIZE (omode);
697
698 /* All subregs must be aligned. */
699 if (offset % osize != 0)
700 return false;
701
702 /* The subreg offset cannot be outside the inner object. */
703 if (offset >= isize)
704 return false;
705
706 /* ??? This should not be here. Temporarily continue to allow word_mode
707 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
708 Generally, backends are doing something sketchy but it'll take time to
709 fix them all. */
710 if (omode == word_mode)
711 ;
712 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
713 is the culprit here, and not the backends. */
714 else if (osize >= UNITS_PER_WORD && isize >= osize)
715 ;
716 /* Allow component subregs of complex and vector. Though given the below
717 extraction rules, it's not always clear what that means. */
718 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
719 && GET_MODE_INNER (imode) == omode)
720 ;
721 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
722 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
723 represent this. It's questionable if this ought to be represented at
724 all -- why can't this all be hidden in post-reload splitters that make
725 arbitrarily mode changes to the registers themselves. */
726 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
727 ;
728 /* Subregs involving floating point modes are not allowed to
729 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
730 (subreg:SI (reg:DF) 0) isn't. */
731 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
732 {
733 if (isize != osize)
734 return false;
735 }
736
737 /* Paradoxical subregs must have offset zero. */
738 if (osize > isize)
739 return offset == 0;
740
741 /* This is a normal subreg. Verify that the offset is representable. */
742
743 /* For hard registers, we already have most of these rules collected in
744 subreg_offset_representable_p. */
745 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
746 {
747 unsigned int regno = REGNO (reg);
748
749 #ifdef CANNOT_CHANGE_MODE_CLASS
750 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
751 && GET_MODE_INNER (imode) == omode)
752 ;
753 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
754 return false;
755 #endif
756
757 return subreg_offset_representable_p (regno, imode, offset, omode);
758 }
759
760 /* For pseudo registers, we want most of the same checks. Namely:
761 If the register no larger than a word, the subreg must be lowpart.
762 If the register is larger than a word, the subreg must be the lowpart
763 of a subword. A subreg does *not* perform arbitrary bit extraction.
764 Given that we've already checked mode/offset alignment, we only have
765 to check subword subregs here. */
766 if (osize < UNITS_PER_WORD)
767 {
768 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
769 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
770 if (offset % UNITS_PER_WORD != low_off)
771 return false;
772 }
773 return true;
774 }
775
776 rtx
777 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
778 {
779 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
780 return gen_rtx_raw_SUBREG (mode, reg, offset);
781 }
782
783 /* Generate a SUBREG representing the least-significant part of REG if MODE
784 is smaller than mode of REG, otherwise paradoxical SUBREG. */
785
786 rtx
787 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
788 {
789 enum machine_mode inmode;
790
791 inmode = GET_MODE (reg);
792 if (inmode == VOIDmode)
793 inmode = mode;
794 return gen_rtx_SUBREG (mode, reg,
795 subreg_lowpart_offset (mode, inmode));
796 }
797 \f
798
799 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
800
801 rtvec
802 gen_rtvec (int n, ...)
803 {
804 int i;
805 rtvec rt_val;
806 va_list p;
807
808 va_start (p, n);
809
810 /* Don't allocate an empty rtvec... */
811 if (n == 0)
812 return NULL_RTVEC;
813
814 rt_val = rtvec_alloc (n);
815
816 for (i = 0; i < n; i++)
817 rt_val->elem[i] = va_arg (p, rtx);
818
819 va_end (p);
820 return rt_val;
821 }
822
823 rtvec
824 gen_rtvec_v (int n, rtx *argp)
825 {
826 int i;
827 rtvec rt_val;
828
829 /* Don't allocate an empty rtvec... */
830 if (n == 0)
831 return NULL_RTVEC;
832
833 rt_val = rtvec_alloc (n);
834
835 for (i = 0; i < n; i++)
836 rt_val->elem[i] = *argp++;
837
838 return rt_val;
839 }
840 \f
841 /* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
846
847 int
848 byte_lowpart_offset (enum machine_mode outer_mode,
849 enum machine_mode inner_mode)
850 {
851 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
852 return subreg_lowpart_offset (outer_mode, inner_mode);
853 else
854 return -subreg_lowpart_offset (inner_mode, outer_mode);
855 }
856 \f
857 /* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
859
860 rtx
861 gen_reg_rtx (enum machine_mode mode)
862 {
863 rtx val;
864 unsigned int align = GET_MODE_ALIGNMENT (mode);
865
866 gcc_assert (can_create_pseudo_p ());
867
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
870 to stack later. */
871 if (SUPPORTS_STACK_ALIGNMENT
872 && crtl->stack_alignment_estimated < align
873 && !crtl->stack_realign_processed)
874 {
875 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
876 if (crtl->stack_alignment_estimated < min_align)
877 crtl->stack_alignment_estimated = min_align;
878 }
879
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
883 {
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart, imagpart;
890 enum machine_mode partmode = GET_MODE_INNER (mode);
891
892 realpart = gen_reg_rtx (partmode);
893 imagpart = gen_reg_rtx (partmode);
894 return gen_rtx_CONCAT (mode, realpart, imagpart);
895 }
896
897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
898 enough to have an element for this pseudo reg number. */
899
900 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
901 {
902 int old_size = crtl->emit.regno_pointer_align_length;
903 char *tmp;
904 rtx *new1;
905
906 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
907 memset (tmp + old_size, 0, old_size);
908 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
909
910 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
911 memset (new1 + old_size, 0, old_size * sizeof (rtx));
912 regno_reg_rtx = new1;
913
914 crtl->emit.regno_pointer_align_length = old_size * 2;
915 }
916
917 val = gen_raw_REG (mode, reg_rtx_no);
918 regno_reg_rtx[reg_rtx_no++] = val;
919 return val;
920 }
921
922 /* Update NEW with the same attributes as REG, but with OFFSET added
923 to the REG_OFFSET. */
924
925 static void
926 update_reg_offset (rtx new_rtx, rtx reg, int offset)
927 {
928 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
929 REG_OFFSET (reg) + offset);
930 }
931
932 /* Generate a register with same attributes as REG, but with OFFSET
933 added to the REG_OFFSET. */
934
935 rtx
936 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
937 int offset)
938 {
939 rtx new_rtx = gen_rtx_REG (mode, regno);
940
941 update_reg_offset (new_rtx, reg, offset);
942 return new_rtx;
943 }
944
945 /* Generate a new pseudo-register with the same attributes as REG, but
946 with OFFSET added to the REG_OFFSET. */
947
948 rtx
949 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
950 {
951 rtx new_rtx = gen_reg_rtx (mode);
952
953 update_reg_offset (new_rtx, reg, offset);
954 return new_rtx;
955 }
956
957 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
958 new register is a (possibly paradoxical) lowpart of the old one. */
959
960 void
961 adjust_reg_mode (rtx reg, enum machine_mode mode)
962 {
963 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
964 PUT_MODE (reg, mode);
965 }
966
967 /* Copy REG's attributes from X, if X has any attributes. If REG and X
968 have different modes, REG is a (possibly paradoxical) lowpart of X. */
969
970 void
971 set_reg_attrs_from_value (rtx reg, rtx x)
972 {
973 int offset;
974
975 /* Hard registers can be reused for multiple purposes within the same
976 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
977 on them is wrong. */
978 if (HARD_REGISTER_P (reg))
979 return;
980
981 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
982 if (MEM_P (x))
983 {
984 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
985 REG_ATTRS (reg)
986 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
987 if (MEM_POINTER (x))
988 mark_reg_pointer (reg, 0);
989 }
990 else if (REG_P (x))
991 {
992 if (REG_ATTRS (x))
993 update_reg_offset (reg, x, offset);
994 if (REG_POINTER (x))
995 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
996 }
997 }
998
999 /* Generate a REG rtx for a new pseudo register, copying the mode
1000 and attributes from X. */
1001
1002 rtx
1003 gen_reg_rtx_and_attrs (rtx x)
1004 {
1005 rtx reg = gen_reg_rtx (GET_MODE (x));
1006 set_reg_attrs_from_value (reg, x);
1007 return reg;
1008 }
1009
1010 /* Set the register attributes for registers contained in PARM_RTX.
1011 Use needed values from memory attributes of MEM. */
1012
1013 void
1014 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1015 {
1016 if (REG_P (parm_rtx))
1017 set_reg_attrs_from_value (parm_rtx, mem);
1018 else if (GET_CODE (parm_rtx) == PARALLEL)
1019 {
1020 /* Check for a NULL entry in the first slot, used to indicate that the
1021 parameter goes both on the stack and in registers. */
1022 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1023 for (; i < XVECLEN (parm_rtx, 0); i++)
1024 {
1025 rtx x = XVECEXP (parm_rtx, 0, i);
1026 if (REG_P (XEXP (x, 0)))
1027 REG_ATTRS (XEXP (x, 0))
1028 = get_reg_attrs (MEM_EXPR (mem),
1029 INTVAL (XEXP (x, 1)));
1030 }
1031 }
1032 }
1033
1034 /* Set the REG_ATTRS for registers in value X, given that X represents
1035 decl T. */
1036
1037 void
1038 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1039 {
1040 if (GET_CODE (x) == SUBREG)
1041 {
1042 gcc_assert (subreg_lowpart_p (x));
1043 x = SUBREG_REG (x);
1044 }
1045 if (REG_P (x))
1046 REG_ATTRS (x)
1047 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1048 DECL_MODE (t)));
1049 if (GET_CODE (x) == CONCAT)
1050 {
1051 if (REG_P (XEXP (x, 0)))
1052 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1053 if (REG_P (XEXP (x, 1)))
1054 REG_ATTRS (XEXP (x, 1))
1055 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1056 }
1057 if (GET_CODE (x) == PARALLEL)
1058 {
1059 int i, start;
1060
1061 /* Check for a NULL entry, used to indicate that the parameter goes
1062 both on the stack and in registers. */
1063 if (XEXP (XVECEXP (x, 0, 0), 0))
1064 start = 0;
1065 else
1066 start = 1;
1067
1068 for (i = start; i < XVECLEN (x, 0); i++)
1069 {
1070 rtx y = XVECEXP (x, 0, i);
1071 if (REG_P (XEXP (y, 0)))
1072 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1073 }
1074 }
1075 }
1076
1077 /* Assign the RTX X to declaration T. */
1078
1079 void
1080 set_decl_rtl (tree t, rtx x)
1081 {
1082 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1083 if (x)
1084 set_reg_attrs_for_decl_rtl (t, x);
1085 }
1086
1087 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1088 if the ABI requires the parameter to be passed by reference. */
1089
1090 void
1091 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1092 {
1093 DECL_INCOMING_RTL (t) = x;
1094 if (x && !by_reference_p)
1095 set_reg_attrs_for_decl_rtl (t, x);
1096 }
1097
1098 /* Identify REG (which may be a CONCAT) as a user register. */
1099
1100 void
1101 mark_user_reg (rtx reg)
1102 {
1103 if (GET_CODE (reg) == CONCAT)
1104 {
1105 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1106 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1107 }
1108 else
1109 {
1110 gcc_assert (REG_P (reg));
1111 REG_USERVAR_P (reg) = 1;
1112 }
1113 }
1114
1115 /* Identify REG as a probable pointer register and show its alignment
1116 as ALIGN, if nonzero. */
1117
1118 void
1119 mark_reg_pointer (rtx reg, int align)
1120 {
1121 if (! REG_POINTER (reg))
1122 {
1123 REG_POINTER (reg) = 1;
1124
1125 if (align)
1126 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1127 }
1128 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1129 /* We can no-longer be sure just how aligned this pointer is. */
1130 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1131 }
1132
1133 /* Return 1 plus largest pseudo reg number used in the current function. */
1134
1135 int
1136 max_reg_num (void)
1137 {
1138 return reg_rtx_no;
1139 }
1140
1141 /* Return 1 + the largest label number used so far in the current function. */
1142
1143 int
1144 max_label_num (void)
1145 {
1146 return label_num;
1147 }
1148
1149 /* Return first label number used in this function (if any were used). */
1150
1151 int
1152 get_first_label_num (void)
1153 {
1154 return first_label_num;
1155 }
1156
1157 /* If the rtx for label was created during the expansion of a nested
1158 function, then first_label_num won't include this label number.
1159 Fix this now so that array indices work later. */
1160
1161 void
1162 maybe_set_first_label_num (rtx x)
1163 {
1164 if (CODE_LABEL_NUMBER (x) < first_label_num)
1165 first_label_num = CODE_LABEL_NUMBER (x);
1166 }
1167 \f
1168 /* Return a value representing some low-order bits of X, where the number
1169 of low-order bits is given by MODE. Note that no conversion is done
1170 between floating-point and fixed-point values, rather, the bit
1171 representation is returned.
1172
1173 This function handles the cases in common between gen_lowpart, below,
1174 and two variants in cse.c and combine.c. These are the cases that can
1175 be safely handled at all points in the compilation.
1176
1177 If this is not a case we can handle, return 0. */
1178
1179 rtx
1180 gen_lowpart_common (enum machine_mode mode, rtx x)
1181 {
1182 int msize = GET_MODE_SIZE (mode);
1183 int xsize;
1184 int offset = 0;
1185 enum machine_mode innermode;
1186
1187 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1188 so we have to make one up. Yuk. */
1189 innermode = GET_MODE (x);
1190 if (CONST_INT_P (x)
1191 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1192 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1193 else if (innermode == VOIDmode)
1194 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1195
1196 xsize = GET_MODE_SIZE (innermode);
1197
1198 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1199
1200 if (innermode == mode)
1201 return x;
1202
1203 /* MODE must occupy no more words than the mode of X. */
1204 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1205 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1206 return 0;
1207
1208 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1209 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1210 return 0;
1211
1212 offset = subreg_lowpart_offset (mode, innermode);
1213
1214 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1215 && (GET_MODE_CLASS (mode) == MODE_INT
1216 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1217 {
1218 /* If we are getting the low-order part of something that has been
1219 sign- or zero-extended, we can either just use the object being
1220 extended or make a narrower extension. If we want an even smaller
1221 piece than the size of the object being extended, call ourselves
1222 recursively.
1223
1224 This case is used mostly by combine and cse. */
1225
1226 if (GET_MODE (XEXP (x, 0)) == mode)
1227 return XEXP (x, 0);
1228 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1229 return gen_lowpart_common (mode, XEXP (x, 0));
1230 else if (msize < xsize)
1231 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1232 }
1233 else if (GET_CODE (x) == SUBREG || REG_P (x)
1234 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1235 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
1236 return simplify_gen_subreg (mode, x, innermode, offset);
1237
1238 /* Otherwise, we can't do this. */
1239 return 0;
1240 }
1241 \f
1242 rtx
1243 gen_highpart (enum machine_mode mode, rtx x)
1244 {
1245 unsigned int msize = GET_MODE_SIZE (mode);
1246 rtx result;
1247
1248 /* This case loses if X is a subreg. To catch bugs early,
1249 complain if an invalid MODE is used even in other cases. */
1250 gcc_assert (msize <= UNITS_PER_WORD
1251 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1252
1253 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1254 subreg_highpart_offset (mode, GET_MODE (x)));
1255 gcc_assert (result);
1256
1257 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1258 the target if we have a MEM. gen_highpart must return a valid operand,
1259 emitting code if necessary to do so. */
1260 if (MEM_P (result))
1261 {
1262 result = validize_mem (result);
1263 gcc_assert (result);
1264 }
1265
1266 return result;
1267 }
1268
1269 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1270 be VOIDmode constant. */
1271 rtx
1272 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1273 {
1274 if (GET_MODE (exp) != VOIDmode)
1275 {
1276 gcc_assert (GET_MODE (exp) == innermode);
1277 return gen_highpart (outermode, exp);
1278 }
1279 return simplify_gen_subreg (outermode, exp, innermode,
1280 subreg_highpart_offset (outermode, innermode));
1281 }
1282
1283 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1284
1285 unsigned int
1286 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1287 {
1288 unsigned int offset = 0;
1289 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1290
1291 if (difference > 0)
1292 {
1293 if (WORDS_BIG_ENDIAN)
1294 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1295 if (BYTES_BIG_ENDIAN)
1296 offset += difference % UNITS_PER_WORD;
1297 }
1298
1299 return offset;
1300 }
1301
1302 /* Return offset in bytes to get OUTERMODE high part
1303 of the value in mode INNERMODE stored in memory in target format. */
1304 unsigned int
1305 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1306 {
1307 unsigned int offset = 0;
1308 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1309
1310 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1311
1312 if (difference > 0)
1313 {
1314 if (! WORDS_BIG_ENDIAN)
1315 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1316 if (! BYTES_BIG_ENDIAN)
1317 offset += difference % UNITS_PER_WORD;
1318 }
1319
1320 return offset;
1321 }
1322
1323 /* Return 1 iff X, assumed to be a SUBREG,
1324 refers to the least significant part of its containing reg.
1325 If X is not a SUBREG, always return 1 (it is its own low part!). */
1326
1327 int
1328 subreg_lowpart_p (const_rtx x)
1329 {
1330 if (GET_CODE (x) != SUBREG)
1331 return 1;
1332 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1333 return 0;
1334
1335 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1336 == SUBREG_BYTE (x));
1337 }
1338 \f
1339 /* Return subword OFFSET of operand OP.
1340 The word number, OFFSET, is interpreted as the word number starting
1341 at the low-order address. OFFSET 0 is the low-order word if not
1342 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1343
1344 If we cannot extract the required word, we return zero. Otherwise,
1345 an rtx corresponding to the requested word will be returned.
1346
1347 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1348 reload has completed, a valid address will always be returned. After
1349 reload, if a valid address cannot be returned, we return zero.
1350
1351 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1352 it is the responsibility of the caller.
1353
1354 MODE is the mode of OP in case it is a CONST_INT.
1355
1356 ??? This is still rather broken for some cases. The problem for the
1357 moment is that all callers of this thing provide no 'goal mode' to
1358 tell us to work with. This exists because all callers were written
1359 in a word based SUBREG world.
1360 Now use of this function can be deprecated by simplify_subreg in most
1361 cases.
1362 */
1363
1364 rtx
1365 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1366 {
1367 if (mode == VOIDmode)
1368 mode = GET_MODE (op);
1369
1370 gcc_assert (mode != VOIDmode);
1371
1372 /* If OP is narrower than a word, fail. */
1373 if (mode != BLKmode
1374 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1375 return 0;
1376
1377 /* If we want a word outside OP, return zero. */
1378 if (mode != BLKmode
1379 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1380 return const0_rtx;
1381
1382 /* Form a new MEM at the requested address. */
1383 if (MEM_P (op))
1384 {
1385 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1386
1387 if (! validate_address)
1388 return new_rtx;
1389
1390 else if (reload_completed)
1391 {
1392 if (! strict_memory_address_addr_space_p (word_mode,
1393 XEXP (new_rtx, 0),
1394 MEM_ADDR_SPACE (op)))
1395 return 0;
1396 }
1397 else
1398 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1399 }
1400
1401 /* Rest can be handled by simplify_subreg. */
1402 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1403 }
1404
1405 /* Similar to `operand_subword', but never return 0. If we can't
1406 extract the required subword, put OP into a register and try again.
1407 The second attempt must succeed. We always validate the address in
1408 this case.
1409
1410 MODE is the mode of OP, in case it is CONST_INT. */
1411
1412 rtx
1413 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1414 {
1415 rtx result = operand_subword (op, offset, 1, mode);
1416
1417 if (result)
1418 return result;
1419
1420 if (mode != BLKmode && mode != VOIDmode)
1421 {
1422 /* If this is a register which can not be accessed by words, copy it
1423 to a pseudo register. */
1424 if (REG_P (op))
1425 op = copy_to_reg (op);
1426 else
1427 op = force_reg (mode, op);
1428 }
1429
1430 result = operand_subword (op, offset, 1, mode);
1431 gcc_assert (result);
1432
1433 return result;
1434 }
1435 \f
1436 /* Returns 1 if both MEM_EXPR can be considered equal
1437 and 0 otherwise. */
1438
1439 int
1440 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1441 {
1442 if (expr1 == expr2)
1443 return 1;
1444
1445 if (! expr1 || ! expr2)
1446 return 0;
1447
1448 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1449 return 0;
1450
1451 return operand_equal_p (expr1, expr2, 0);
1452 }
1453
1454 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1455 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1456 -1 if not known. */
1457
1458 int
1459 get_mem_align_offset (rtx mem, unsigned int align)
1460 {
1461 tree expr;
1462 unsigned HOST_WIDE_INT offset;
1463
1464 /* This function can't use
1465 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1466 || !CONST_INT_P (MEM_OFFSET (mem))
1467 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1468 < align))
1469 return -1;
1470 else
1471 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1472 for two reasons:
1473 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1474 for <variable>. get_inner_reference doesn't handle it and
1475 even if it did, the alignment in that case needs to be determined
1476 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1477 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1478 isn't sufficiently aligned, the object it is in might be. */
1479 gcc_assert (MEM_P (mem));
1480 expr = MEM_EXPR (mem);
1481 if (expr == NULL_TREE
1482 || MEM_OFFSET (mem) == NULL_RTX
1483 || !CONST_INT_P (MEM_OFFSET (mem)))
1484 return -1;
1485
1486 offset = INTVAL (MEM_OFFSET (mem));
1487 if (DECL_P (expr))
1488 {
1489 if (DECL_ALIGN (expr) < align)
1490 return -1;
1491 }
1492 else if (INDIRECT_REF_P (expr))
1493 {
1494 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1495 return -1;
1496 }
1497 else if (TREE_CODE (expr) == COMPONENT_REF)
1498 {
1499 while (1)
1500 {
1501 tree inner = TREE_OPERAND (expr, 0);
1502 tree field = TREE_OPERAND (expr, 1);
1503 tree byte_offset = component_ref_field_offset (expr);
1504 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1505
1506 if (!byte_offset
1507 || !host_integerp (byte_offset, 1)
1508 || !host_integerp (bit_offset, 1))
1509 return -1;
1510
1511 offset += tree_low_cst (byte_offset, 1);
1512 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1513
1514 if (inner == NULL_TREE)
1515 {
1516 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1517 < (unsigned int) align)
1518 return -1;
1519 break;
1520 }
1521 else if (DECL_P (inner))
1522 {
1523 if (DECL_ALIGN (inner) < align)
1524 return -1;
1525 break;
1526 }
1527 else if (TREE_CODE (inner) != COMPONENT_REF)
1528 return -1;
1529 expr = inner;
1530 }
1531 }
1532 else
1533 return -1;
1534
1535 return offset & ((align / BITS_PER_UNIT) - 1);
1536 }
1537
1538 /* Given REF (a MEM) and T, either the type of X or the expression
1539 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1540 if we are making a new object of this type. BITPOS is nonzero if
1541 there is an offset outstanding on T that will be applied later. */
1542
1543 void
1544 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1545 HOST_WIDE_INT bitpos)
1546 {
1547 alias_set_type alias = MEM_ALIAS_SET (ref);
1548 tree expr = MEM_EXPR (ref);
1549 rtx offset = MEM_OFFSET (ref);
1550 rtx size = MEM_SIZE (ref);
1551 unsigned int align = MEM_ALIGN (ref);
1552 HOST_WIDE_INT apply_bitpos = 0;
1553 tree type;
1554
1555 /* It can happen that type_for_mode was given a mode for which there
1556 is no language-level type. In which case it returns NULL, which
1557 we can see here. */
1558 if (t == NULL_TREE)
1559 return;
1560
1561 type = TYPE_P (t) ? t : TREE_TYPE (t);
1562 if (type == error_mark_node)
1563 return;
1564
1565 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1566 wrong answer, as it assumes that DECL_RTL already has the right alias
1567 info. Callers should not set DECL_RTL until after the call to
1568 set_mem_attributes. */
1569 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1570
1571 /* Get the alias set from the expression or type (perhaps using a
1572 front-end routine) and use it. */
1573 alias = get_alias_set (t);
1574
1575 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1576 MEM_IN_STRUCT_P (ref)
1577 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1578 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1579
1580 /* If we are making an object of this type, or if this is a DECL, we know
1581 that it is a scalar if the type is not an aggregate. */
1582 if ((objectp || DECL_P (t))
1583 && ! AGGREGATE_TYPE_P (type)
1584 && TREE_CODE (type) != COMPLEX_TYPE)
1585 MEM_SCALAR_P (ref) = 1;
1586
1587 /* We can set the alignment from the type if we are making an object,
1588 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1589 if (objectp || TREE_CODE (t) == INDIRECT_REF
1590 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1591 || TYPE_ALIGN_OK (type))
1592 align = MAX (align, TYPE_ALIGN (type));
1593 else
1594 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1595 {
1596 if (integer_zerop (TREE_OPERAND (t, 1)))
1597 /* We don't know anything about the alignment. */
1598 align = BITS_PER_UNIT;
1599 else
1600 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1601 }
1602
1603 /* If the size is known, we can set that. */
1604 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1605 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1606
1607 /* If T is not a type, we may be able to deduce some more information about
1608 the expression. */
1609 if (! TYPE_P (t))
1610 {
1611 tree base;
1612 bool align_computed = false;
1613
1614 if (TREE_THIS_VOLATILE (t))
1615 MEM_VOLATILE_P (ref) = 1;
1616
1617 /* Now remove any conversions: they don't change what the underlying
1618 object is. Likewise for SAVE_EXPR. */
1619 while (CONVERT_EXPR_P (t)
1620 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1621 || TREE_CODE (t) == SAVE_EXPR)
1622 t = TREE_OPERAND (t, 0);
1623
1624 /* We may look through structure-like accesses for the purposes of
1625 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1626 base = t;
1627 while (TREE_CODE (base) == COMPONENT_REF
1628 || TREE_CODE (base) == REALPART_EXPR
1629 || TREE_CODE (base) == IMAGPART_EXPR
1630 || TREE_CODE (base) == BIT_FIELD_REF)
1631 base = TREE_OPERAND (base, 0);
1632
1633 if (DECL_P (base))
1634 {
1635 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1636 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1637 else
1638 MEM_NOTRAP_P (ref) = 1;
1639 }
1640 else
1641 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1642
1643 base = get_base_address (base);
1644 if (base && DECL_P (base)
1645 && TREE_READONLY (base)
1646 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1647 {
1648 tree base_type = TREE_TYPE (base);
1649 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1650 || DECL_ARTIFICIAL (base));
1651 MEM_READONLY_P (ref) = 1;
1652 }
1653
1654 /* If this expression uses it's parent's alias set, mark it such
1655 that we won't change it. */
1656 if (component_uses_parent_alias_set (t))
1657 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1658
1659 /* If this is a decl, set the attributes of the MEM from it. */
1660 if (DECL_P (t))
1661 {
1662 expr = t;
1663 offset = const0_rtx;
1664 apply_bitpos = bitpos;
1665 size = (DECL_SIZE_UNIT (t)
1666 && host_integerp (DECL_SIZE_UNIT (t), 1)
1667 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1668 align = DECL_ALIGN (t);
1669 align_computed = true;
1670 }
1671
1672 /* If this is a constant, we know the alignment. */
1673 else if (CONSTANT_CLASS_P (t))
1674 {
1675 align = TYPE_ALIGN (type);
1676 #ifdef CONSTANT_ALIGNMENT
1677 align = CONSTANT_ALIGNMENT (t, align);
1678 #endif
1679 align_computed = true;
1680 }
1681
1682 /* If this is a field reference and not a bit-field, record it. */
1683 /* ??? There is some information that can be gleaned from bit-fields,
1684 such as the word offset in the structure that might be modified.
1685 But skip it for now. */
1686 else if (TREE_CODE (t) == COMPONENT_REF
1687 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1688 {
1689 expr = t;
1690 offset = const0_rtx;
1691 apply_bitpos = bitpos;
1692 /* ??? Any reason the field size would be different than
1693 the size we got from the type? */
1694 }
1695
1696 /* If this is an array reference, look for an outer field reference. */
1697 else if (TREE_CODE (t) == ARRAY_REF)
1698 {
1699 tree off_tree = size_zero_node;
1700 /* We can't modify t, because we use it at the end of the
1701 function. */
1702 tree t2 = t;
1703
1704 do
1705 {
1706 tree index = TREE_OPERAND (t2, 1);
1707 tree low_bound = array_ref_low_bound (t2);
1708 tree unit_size = array_ref_element_size (t2);
1709
1710 /* We assume all arrays have sizes that are a multiple of a byte.
1711 First subtract the lower bound, if any, in the type of the
1712 index, then convert to sizetype and multiply by the size of
1713 the array element. */
1714 if (! integer_zerop (low_bound))
1715 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1716 index, low_bound);
1717
1718 off_tree = size_binop (PLUS_EXPR,
1719 size_binop (MULT_EXPR,
1720 fold_convert (sizetype,
1721 index),
1722 unit_size),
1723 off_tree);
1724 t2 = TREE_OPERAND (t2, 0);
1725 }
1726 while (TREE_CODE (t2) == ARRAY_REF);
1727
1728 if (DECL_P (t2))
1729 {
1730 expr = t2;
1731 offset = NULL;
1732 if (host_integerp (off_tree, 1))
1733 {
1734 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1735 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1736 align = DECL_ALIGN (t2);
1737 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1738 align = aoff;
1739 align_computed = true;
1740 offset = GEN_INT (ioff);
1741 apply_bitpos = bitpos;
1742 }
1743 }
1744 else if (TREE_CODE (t2) == COMPONENT_REF)
1745 {
1746 expr = t2;
1747 offset = NULL;
1748 if (host_integerp (off_tree, 1))
1749 {
1750 offset = GEN_INT (tree_low_cst (off_tree, 1));
1751 apply_bitpos = bitpos;
1752 }
1753 /* ??? Any reason the field size would be different than
1754 the size we got from the type? */
1755 }
1756 else if (flag_argument_noalias > 1
1757 && (INDIRECT_REF_P (t2))
1758 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1759 {
1760 expr = t2;
1761 offset = NULL;
1762 }
1763 }
1764
1765 /* If this is a Fortran indirect argument reference, record the
1766 parameter decl. */
1767 else if (flag_argument_noalias > 1
1768 && (INDIRECT_REF_P (t))
1769 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1770 {
1771 expr = t;
1772 offset = NULL;
1773 }
1774
1775 if (!align_computed && !INDIRECT_REF_P (t))
1776 {
1777 unsigned int obj_align
1778 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1779 align = MAX (align, obj_align);
1780 }
1781 }
1782
1783 /* If we modified OFFSET based on T, then subtract the outstanding
1784 bit position offset. Similarly, increase the size of the accessed
1785 object to contain the negative offset. */
1786 if (apply_bitpos)
1787 {
1788 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1789 if (size)
1790 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1791 }
1792
1793 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1794 {
1795 /* Force EXPR and OFFSET to NULL, since we don't know exactly what
1796 we're overlapping. */
1797 offset = NULL;
1798 expr = NULL;
1799 }
1800
1801 /* Now set the attributes we computed above. */
1802 MEM_ATTRS (ref)
1803 = get_mem_attrs (alias, expr, offset, size, align,
1804 TYPE_ADDR_SPACE (type), GET_MODE (ref));
1805
1806 /* If this is already known to be a scalar or aggregate, we are done. */
1807 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1808 return;
1809
1810 /* If it is a reference into an aggregate, this is part of an aggregate.
1811 Otherwise we don't know. */
1812 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1813 || TREE_CODE (t) == ARRAY_RANGE_REF
1814 || TREE_CODE (t) == BIT_FIELD_REF)
1815 MEM_IN_STRUCT_P (ref) = 1;
1816 }
1817
1818 void
1819 set_mem_attributes (rtx ref, tree t, int objectp)
1820 {
1821 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1822 }
1823
1824 /* Set the alias set of MEM to SET. */
1825
1826 void
1827 set_mem_alias_set (rtx mem, alias_set_type set)
1828 {
1829 #ifdef ENABLE_CHECKING
1830 /* If the new and old alias sets don't conflict, something is wrong. */
1831 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1832 #endif
1833
1834 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1835 MEM_SIZE (mem), MEM_ALIGN (mem),
1836 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1837 }
1838
1839 /* Set the address space of MEM to ADDRSPACE (target-defined). */
1840
1841 void
1842 set_mem_addr_space (rtx mem, addr_space_t addrspace)
1843 {
1844 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1845 MEM_OFFSET (mem), MEM_SIZE (mem),
1846 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
1847 }
1848
1849 /* Set the alignment of MEM to ALIGN bits. */
1850
1851 void
1852 set_mem_align (rtx mem, unsigned int align)
1853 {
1854 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1855 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1856 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1857 }
1858
1859 /* Set the expr for MEM to EXPR. */
1860
1861 void
1862 set_mem_expr (rtx mem, tree expr)
1863 {
1864 MEM_ATTRS (mem)
1865 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1866 MEM_SIZE (mem), MEM_ALIGN (mem),
1867 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1868 }
1869
1870 /* Set the offset of MEM to OFFSET. */
1871
1872 void
1873 set_mem_offset (rtx mem, rtx offset)
1874 {
1875 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1876 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1877 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1878 }
1879
1880 /* Set the size of MEM to SIZE. */
1881
1882 void
1883 set_mem_size (rtx mem, rtx size)
1884 {
1885 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1886 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1887 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1888 }
1889 \f
1890 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1891 and its address changed to ADDR. (VOIDmode means don't change the mode.
1892 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1893 returned memory location is required to be valid. The memory
1894 attributes are not changed. */
1895
1896 static rtx
1897 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1898 {
1899 addr_space_t as;
1900 rtx new_rtx;
1901
1902 gcc_assert (MEM_P (memref));
1903 as = MEM_ADDR_SPACE (memref);
1904 if (mode == VOIDmode)
1905 mode = GET_MODE (memref);
1906 if (addr == 0)
1907 addr = XEXP (memref, 0);
1908 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1909 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1910 return memref;
1911
1912 if (validate)
1913 {
1914 if (reload_in_progress || reload_completed)
1915 gcc_assert (memory_address_addr_space_p (mode, addr, as));
1916 else
1917 addr = memory_address_addr_space (mode, addr, as);
1918 }
1919
1920 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1921 return memref;
1922
1923 new_rtx = gen_rtx_MEM (mode, addr);
1924 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1925 return new_rtx;
1926 }
1927
1928 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1929 way we are changing MEMREF, so we only preserve the alias set. */
1930
1931 rtx
1932 change_address (rtx memref, enum machine_mode mode, rtx addr)
1933 {
1934 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1935 enum machine_mode mmode = GET_MODE (new_rtx);
1936 unsigned int align;
1937
1938 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1939 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1940
1941 /* If there are no changes, just return the original memory reference. */
1942 if (new_rtx == memref)
1943 {
1944 if (MEM_ATTRS (memref) == 0
1945 || (MEM_EXPR (memref) == NULL
1946 && MEM_OFFSET (memref) == NULL
1947 && MEM_SIZE (memref) == size
1948 && MEM_ALIGN (memref) == align))
1949 return new_rtx;
1950
1951 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1952 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1953 }
1954
1955 MEM_ATTRS (new_rtx)
1956 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1957 MEM_ADDR_SPACE (memref), mmode);
1958
1959 return new_rtx;
1960 }
1961
1962 /* Return a memory reference like MEMREF, but with its mode changed
1963 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1964 nonzero, the memory address is forced to be valid.
1965 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1966 and caller is responsible for adjusting MEMREF base register. */
1967
1968 rtx
1969 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1970 int validate, int adjust)
1971 {
1972 rtx addr = XEXP (memref, 0);
1973 rtx new_rtx;
1974 rtx memoffset = MEM_OFFSET (memref);
1975 rtx size = 0;
1976 unsigned int memalign = MEM_ALIGN (memref);
1977 addr_space_t as = MEM_ADDR_SPACE (memref);
1978 int pbits;
1979
1980 /* If there are no changes, just return the original memory reference. */
1981 if (mode == GET_MODE (memref) && !offset
1982 && (!validate || memory_address_addr_space_p (mode, addr, as)))
1983 return memref;
1984
1985 /* ??? Prefer to create garbage instead of creating shared rtl.
1986 This may happen even if offset is nonzero -- consider
1987 (plus (plus reg reg) const_int) -- so do this always. */
1988 addr = copy_rtx (addr);
1989
1990 /* Convert a possibly large offset to a signed value within the
1991 range of the target address space. */
1992 pbits = GET_MODE_BITSIZE (Pmode);
1993 if (HOST_BITS_PER_WIDE_INT > pbits)
1994 {
1995 int shift = HOST_BITS_PER_WIDE_INT - pbits;
1996 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
1997 >> shift);
1998 }
1999
2000 if (adjust)
2001 {
2002 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2003 object, we can merge it into the LO_SUM. */
2004 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2005 && offset >= 0
2006 && (unsigned HOST_WIDE_INT) offset
2007 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2008 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2009 plus_constant (XEXP (addr, 1), offset));
2010 else
2011 addr = plus_constant (addr, offset);
2012 }
2013
2014 new_rtx = change_address_1 (memref, mode, addr, validate);
2015
2016 /* If the address is a REG, change_address_1 rightfully returns memref,
2017 but this would destroy memref's MEM_ATTRS. */
2018 if (new_rtx == memref && offset != 0)
2019 new_rtx = copy_rtx (new_rtx);
2020
2021 /* Compute the new values of the memory attributes due to this adjustment.
2022 We add the offsets and update the alignment. */
2023 if (memoffset)
2024 memoffset = GEN_INT (offset + INTVAL (memoffset));
2025
2026 /* Compute the new alignment by taking the MIN of the alignment and the
2027 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2028 if zero. */
2029 if (offset != 0)
2030 memalign
2031 = MIN (memalign,
2032 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
2033
2034 /* We can compute the size in a number of ways. */
2035 if (GET_MODE (new_rtx) != BLKmode)
2036 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
2037 else if (MEM_SIZE (memref))
2038 size = plus_constant (MEM_SIZE (memref), -offset);
2039
2040 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
2041 memoffset, size, memalign, as,
2042 GET_MODE (new_rtx));
2043
2044 /* At some point, we should validate that this offset is within the object,
2045 if all the appropriate values are known. */
2046 return new_rtx;
2047 }
2048
2049 /* Return a memory reference like MEMREF, but with its mode changed
2050 to MODE and its address changed to ADDR, which is assumed to be
2051 MEMREF offset by OFFSET bytes. If VALIDATE is
2052 nonzero, the memory address is forced to be valid. */
2053
2054 rtx
2055 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2056 HOST_WIDE_INT offset, int validate)
2057 {
2058 memref = change_address_1 (memref, VOIDmode, addr, validate);
2059 return adjust_address_1 (memref, mode, offset, validate, 0);
2060 }
2061
2062 /* Return a memory reference like MEMREF, but whose address is changed by
2063 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2064 known to be in OFFSET (possibly 1). */
2065
2066 rtx
2067 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2068 {
2069 rtx new_rtx, addr = XEXP (memref, 0);
2070 addr_space_t as = MEM_ADDR_SPACE (memref);
2071
2072 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2073
2074 /* At this point we don't know _why_ the address is invalid. It
2075 could have secondary memory references, multiplies or anything.
2076
2077 However, if we did go and rearrange things, we can wind up not
2078 being able to recognize the magic around pic_offset_table_rtx.
2079 This stuff is fragile, and is yet another example of why it is
2080 bad to expose PIC machinery too early. */
2081 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
2082 && GET_CODE (addr) == PLUS
2083 && XEXP (addr, 0) == pic_offset_table_rtx)
2084 {
2085 addr = force_reg (GET_MODE (addr), addr);
2086 new_rtx = simplify_gen_binary (PLUS, Pmode, addr, offset);
2087 }
2088
2089 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2090 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
2091
2092 /* If there are no changes, just return the original memory reference. */
2093 if (new_rtx == memref)
2094 return new_rtx;
2095
2096 /* Update the alignment to reflect the offset. Reset the offset, which
2097 we don't know. */
2098 MEM_ATTRS (new_rtx)
2099 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2100 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2101 as, GET_MODE (new_rtx));
2102 return new_rtx;
2103 }
2104
2105 /* Return a memory reference like MEMREF, but with its address changed to
2106 ADDR. The caller is asserting that the actual piece of memory pointed
2107 to is the same, just the form of the address is being changed, such as
2108 by putting something into a register. */
2109
2110 rtx
2111 replace_equiv_address (rtx memref, rtx addr)
2112 {
2113 /* change_address_1 copies the memory attribute structure without change
2114 and that's exactly what we want here. */
2115 update_temp_slot_address (XEXP (memref, 0), addr);
2116 return change_address_1 (memref, VOIDmode, addr, 1);
2117 }
2118
2119 /* Likewise, but the reference is not required to be valid. */
2120
2121 rtx
2122 replace_equiv_address_nv (rtx memref, rtx addr)
2123 {
2124 return change_address_1 (memref, VOIDmode, addr, 0);
2125 }
2126
2127 /* Return a memory reference like MEMREF, but with its mode widened to
2128 MODE and offset by OFFSET. This would be used by targets that e.g.
2129 cannot issue QImode memory operations and have to use SImode memory
2130 operations plus masking logic. */
2131
2132 rtx
2133 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2134 {
2135 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2136 tree expr = MEM_EXPR (new_rtx);
2137 rtx memoffset = MEM_OFFSET (new_rtx);
2138 unsigned int size = GET_MODE_SIZE (mode);
2139
2140 /* If there are no changes, just return the original memory reference. */
2141 if (new_rtx == memref)
2142 return new_rtx;
2143
2144 /* If we don't know what offset we were at within the expression, then
2145 we can't know if we've overstepped the bounds. */
2146 if (! memoffset)
2147 expr = NULL_TREE;
2148
2149 while (expr)
2150 {
2151 if (TREE_CODE (expr) == COMPONENT_REF)
2152 {
2153 tree field = TREE_OPERAND (expr, 1);
2154 tree offset = component_ref_field_offset (expr);
2155
2156 if (! DECL_SIZE_UNIT (field))
2157 {
2158 expr = NULL_TREE;
2159 break;
2160 }
2161
2162 /* Is the field at least as large as the access? If so, ok,
2163 otherwise strip back to the containing structure. */
2164 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2165 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2166 && INTVAL (memoffset) >= 0)
2167 break;
2168
2169 if (! host_integerp (offset, 1))
2170 {
2171 expr = NULL_TREE;
2172 break;
2173 }
2174
2175 expr = TREE_OPERAND (expr, 0);
2176 memoffset
2177 = (GEN_INT (INTVAL (memoffset)
2178 + tree_low_cst (offset, 1)
2179 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2180 / BITS_PER_UNIT)));
2181 }
2182 /* Similarly for the decl. */
2183 else if (DECL_P (expr)
2184 && DECL_SIZE_UNIT (expr)
2185 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2186 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2187 && (! memoffset || INTVAL (memoffset) >= 0))
2188 break;
2189 else
2190 {
2191 /* The widened memory access overflows the expression, which means
2192 that it could alias another expression. Zap it. */
2193 expr = NULL_TREE;
2194 break;
2195 }
2196 }
2197
2198 if (! expr)
2199 memoffset = NULL_RTX;
2200
2201 /* The widened memory may alias other stuff, so zap the alias set. */
2202 /* ??? Maybe use get_alias_set on any remaining expression. */
2203
2204 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2205 MEM_ALIGN (new_rtx),
2206 MEM_ADDR_SPACE (new_rtx), mode);
2207
2208 return new_rtx;
2209 }
2210 \f
2211 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2212 static GTY(()) tree spill_slot_decl;
2213
2214 tree
2215 get_spill_slot_decl (bool force_build_p)
2216 {
2217 tree d = spill_slot_decl;
2218 rtx rd;
2219
2220 if (d || !force_build_p)
2221 return d;
2222
2223 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2224 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2225 DECL_ARTIFICIAL (d) = 1;
2226 DECL_IGNORED_P (d) = 1;
2227 TREE_USED (d) = 1;
2228 TREE_THIS_NOTRAP (d) = 1;
2229 spill_slot_decl = d;
2230
2231 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2232 MEM_NOTRAP_P (rd) = 1;
2233 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
2234 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
2235 SET_DECL_RTL (d, rd);
2236
2237 return d;
2238 }
2239
2240 /* Given MEM, a result from assign_stack_local, fill in the memory
2241 attributes as appropriate for a register allocator spill slot.
2242 These slots are not aliasable by other memory. We arrange for
2243 them all to use a single MEM_EXPR, so that the aliasing code can
2244 work properly in the case of shared spill slots. */
2245
2246 void
2247 set_mem_attrs_for_spill (rtx mem)
2248 {
2249 alias_set_type alias;
2250 rtx addr, offset;
2251 tree expr;
2252
2253 expr = get_spill_slot_decl (true);
2254 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2255
2256 /* We expect the incoming memory to be of the form:
2257 (mem:MODE (plus (reg sfp) (const_int offset)))
2258 with perhaps the plus missing for offset = 0. */
2259 addr = XEXP (mem, 0);
2260 offset = const0_rtx;
2261 if (GET_CODE (addr) == PLUS
2262 && CONST_INT_P (XEXP (addr, 1)))
2263 offset = XEXP (addr, 1);
2264
2265 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2266 MEM_SIZE (mem), MEM_ALIGN (mem),
2267 ADDR_SPACE_GENERIC, GET_MODE (mem));
2268 MEM_NOTRAP_P (mem) = 1;
2269 }
2270 \f
2271 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2272
2273 rtx
2274 gen_label_rtx (void)
2275 {
2276 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2277 NULL, label_num++, NULL);
2278 }
2279 \f
2280 /* For procedure integration. */
2281
2282 /* Install new pointers to the first and last insns in the chain.
2283 Also, set cur_insn_uid to one higher than the last in use.
2284 Used for an inline-procedure after copying the insn chain. */
2285
2286 void
2287 set_new_first_and_last_insn (rtx first, rtx last)
2288 {
2289 rtx insn;
2290
2291 first_insn = first;
2292 last_insn = last;
2293 cur_insn_uid = 0;
2294
2295 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2296 {
2297 int debug_count = 0;
2298
2299 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2300 cur_debug_insn_uid = 0;
2301
2302 for (insn = first; insn; insn = NEXT_INSN (insn))
2303 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2304 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2305 else
2306 {
2307 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2308 if (DEBUG_INSN_P (insn))
2309 debug_count++;
2310 }
2311
2312 if (debug_count)
2313 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2314 else
2315 cur_debug_insn_uid++;
2316 }
2317 else
2318 for (insn = first; insn; insn = NEXT_INSN (insn))
2319 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2320
2321 cur_insn_uid++;
2322 }
2323 \f
2324 /* Go through all the RTL insn bodies and copy any invalid shared
2325 structure. This routine should only be called once. */
2326
2327 static void
2328 unshare_all_rtl_1 (rtx insn)
2329 {
2330 /* Unshare just about everything else. */
2331 unshare_all_rtl_in_chain (insn);
2332
2333 /* Make sure the addresses of stack slots found outside the insn chain
2334 (such as, in DECL_RTL of a variable) are not shared
2335 with the insn chain.
2336
2337 This special care is necessary when the stack slot MEM does not
2338 actually appear in the insn chain. If it does appear, its address
2339 is unshared from all else at that point. */
2340 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2341 }
2342
2343 /* Go through all the RTL insn bodies and copy any invalid shared
2344 structure, again. This is a fairly expensive thing to do so it
2345 should be done sparingly. */
2346
2347 void
2348 unshare_all_rtl_again (rtx insn)
2349 {
2350 rtx p;
2351 tree decl;
2352
2353 for (p = insn; p; p = NEXT_INSN (p))
2354 if (INSN_P (p))
2355 {
2356 reset_used_flags (PATTERN (p));
2357 reset_used_flags (REG_NOTES (p));
2358 }
2359
2360 /* Make sure that virtual stack slots are not shared. */
2361 set_used_decls (DECL_INITIAL (cfun->decl));
2362
2363 /* Make sure that virtual parameters are not shared. */
2364 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2365 set_used_flags (DECL_RTL (decl));
2366
2367 reset_used_flags (stack_slot_list);
2368
2369 unshare_all_rtl_1 (insn);
2370 }
2371
2372 unsigned int
2373 unshare_all_rtl (void)
2374 {
2375 unshare_all_rtl_1 (get_insns ());
2376 return 0;
2377 }
2378
2379 struct rtl_opt_pass pass_unshare_all_rtl =
2380 {
2381 {
2382 RTL_PASS,
2383 "unshare", /* name */
2384 NULL, /* gate */
2385 unshare_all_rtl, /* execute */
2386 NULL, /* sub */
2387 NULL, /* next */
2388 0, /* static_pass_number */
2389 TV_NONE, /* tv_id */
2390 0, /* properties_required */
2391 0, /* properties_provided */
2392 0, /* properties_destroyed */
2393 0, /* todo_flags_start */
2394 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2395 }
2396 };
2397
2398
2399 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2400 Recursively does the same for subexpressions. */
2401
2402 static void
2403 verify_rtx_sharing (rtx orig, rtx insn)
2404 {
2405 rtx x = orig;
2406 int i;
2407 enum rtx_code code;
2408 const char *format_ptr;
2409
2410 if (x == 0)
2411 return;
2412
2413 code = GET_CODE (x);
2414
2415 /* These types may be freely shared. */
2416
2417 switch (code)
2418 {
2419 case REG:
2420 case DEBUG_EXPR:
2421 case VALUE:
2422 case CONST_INT:
2423 case CONST_DOUBLE:
2424 case CONST_FIXED:
2425 case CONST_VECTOR:
2426 case SYMBOL_REF:
2427 case LABEL_REF:
2428 case CODE_LABEL:
2429 case PC:
2430 case CC0:
2431 case SCRATCH:
2432 return;
2433 /* SCRATCH must be shared because they represent distinct values. */
2434 case CLOBBER:
2435 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2436 return;
2437 break;
2438
2439 case CONST:
2440 if (shared_const_p (orig))
2441 return;
2442 break;
2443
2444 case MEM:
2445 /* A MEM is allowed to be shared if its address is constant. */
2446 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2447 || reload_completed || reload_in_progress)
2448 return;
2449
2450 break;
2451
2452 default:
2453 break;
2454 }
2455
2456 /* This rtx may not be shared. If it has already been seen,
2457 replace it with a copy of itself. */
2458 #ifdef ENABLE_CHECKING
2459 if (RTX_FLAG (x, used))
2460 {
2461 error ("invalid rtl sharing found in the insn");
2462 debug_rtx (insn);
2463 error ("shared rtx");
2464 debug_rtx (x);
2465 internal_error ("internal consistency failure");
2466 }
2467 #endif
2468 gcc_assert (!RTX_FLAG (x, used));
2469
2470 RTX_FLAG (x, used) = 1;
2471
2472 /* Now scan the subexpressions recursively. */
2473
2474 format_ptr = GET_RTX_FORMAT (code);
2475
2476 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2477 {
2478 switch (*format_ptr++)
2479 {
2480 case 'e':
2481 verify_rtx_sharing (XEXP (x, i), insn);
2482 break;
2483
2484 case 'E':
2485 if (XVEC (x, i) != NULL)
2486 {
2487 int j;
2488 int len = XVECLEN (x, i);
2489
2490 for (j = 0; j < len; j++)
2491 {
2492 /* We allow sharing of ASM_OPERANDS inside single
2493 instruction. */
2494 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2495 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2496 == ASM_OPERANDS))
2497 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2498 else
2499 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2500 }
2501 }
2502 break;
2503 }
2504 }
2505 return;
2506 }
2507
2508 /* Go through all the RTL insn bodies and check that there is no unexpected
2509 sharing in between the subexpressions. */
2510
2511 void
2512 verify_rtl_sharing (void)
2513 {
2514 rtx p;
2515
2516 for (p = get_insns (); p; p = NEXT_INSN (p))
2517 if (INSN_P (p))
2518 {
2519 reset_used_flags (PATTERN (p));
2520 reset_used_flags (REG_NOTES (p));
2521 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2522 {
2523 int i;
2524 rtx q, sequence = PATTERN (p);
2525
2526 for (i = 0; i < XVECLEN (sequence, 0); i++)
2527 {
2528 q = XVECEXP (sequence, 0, i);
2529 gcc_assert (INSN_P (q));
2530 reset_used_flags (PATTERN (q));
2531 reset_used_flags (REG_NOTES (q));
2532 }
2533 }
2534 }
2535
2536 for (p = get_insns (); p; p = NEXT_INSN (p))
2537 if (INSN_P (p))
2538 {
2539 verify_rtx_sharing (PATTERN (p), p);
2540 verify_rtx_sharing (REG_NOTES (p), p);
2541 }
2542 }
2543
2544 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2545 Assumes the mark bits are cleared at entry. */
2546
2547 void
2548 unshare_all_rtl_in_chain (rtx insn)
2549 {
2550 for (; insn; insn = NEXT_INSN (insn))
2551 if (INSN_P (insn))
2552 {
2553 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2554 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2555 }
2556 }
2557
2558 /* Go through all virtual stack slots of a function and mark them as
2559 shared. We never replace the DECL_RTLs themselves with a copy,
2560 but expressions mentioned into a DECL_RTL cannot be shared with
2561 expressions in the instruction stream.
2562
2563 Note that reload may convert pseudo registers into memories in-place.
2564 Pseudo registers are always shared, but MEMs never are. Thus if we
2565 reset the used flags on MEMs in the instruction stream, we must set
2566 them again on MEMs that appear in DECL_RTLs. */
2567
2568 static void
2569 set_used_decls (tree blk)
2570 {
2571 tree t;
2572
2573 /* Mark decls. */
2574 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2575 if (DECL_RTL_SET_P (t))
2576 set_used_flags (DECL_RTL (t));
2577
2578 /* Now process sub-blocks. */
2579 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2580 set_used_decls (t);
2581 }
2582
2583 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2584 Recursively does the same for subexpressions. Uses
2585 copy_rtx_if_shared_1 to reduce stack space. */
2586
2587 rtx
2588 copy_rtx_if_shared (rtx orig)
2589 {
2590 copy_rtx_if_shared_1 (&orig);
2591 return orig;
2592 }
2593
2594 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2595 use. Recursively does the same for subexpressions. */
2596
2597 static void
2598 copy_rtx_if_shared_1 (rtx *orig1)
2599 {
2600 rtx x;
2601 int i;
2602 enum rtx_code code;
2603 rtx *last_ptr;
2604 const char *format_ptr;
2605 int copied = 0;
2606 int length;
2607
2608 /* Repeat is used to turn tail-recursion into iteration. */
2609 repeat:
2610 x = *orig1;
2611
2612 if (x == 0)
2613 return;
2614
2615 code = GET_CODE (x);
2616
2617 /* These types may be freely shared. */
2618
2619 switch (code)
2620 {
2621 case REG:
2622 case DEBUG_EXPR:
2623 case VALUE:
2624 case CONST_INT:
2625 case CONST_DOUBLE:
2626 case CONST_FIXED:
2627 case CONST_VECTOR:
2628 case SYMBOL_REF:
2629 case LABEL_REF:
2630 case CODE_LABEL:
2631 case PC:
2632 case CC0:
2633 case SCRATCH:
2634 /* SCRATCH must be shared because they represent distinct values. */
2635 return;
2636 case CLOBBER:
2637 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2638 return;
2639 break;
2640
2641 case CONST:
2642 if (shared_const_p (x))
2643 return;
2644 break;
2645
2646 case DEBUG_INSN:
2647 case INSN:
2648 case JUMP_INSN:
2649 case CALL_INSN:
2650 case NOTE:
2651 case BARRIER:
2652 /* The chain of insns is not being copied. */
2653 return;
2654
2655 default:
2656 break;
2657 }
2658
2659 /* This rtx may not be shared. If it has already been seen,
2660 replace it with a copy of itself. */
2661
2662 if (RTX_FLAG (x, used))
2663 {
2664 x = shallow_copy_rtx (x);
2665 copied = 1;
2666 }
2667 RTX_FLAG (x, used) = 1;
2668
2669 /* Now scan the subexpressions recursively.
2670 We can store any replaced subexpressions directly into X
2671 since we know X is not shared! Any vectors in X
2672 must be copied if X was copied. */
2673
2674 format_ptr = GET_RTX_FORMAT (code);
2675 length = GET_RTX_LENGTH (code);
2676 last_ptr = NULL;
2677
2678 for (i = 0; i < length; i++)
2679 {
2680 switch (*format_ptr++)
2681 {
2682 case 'e':
2683 if (last_ptr)
2684 copy_rtx_if_shared_1 (last_ptr);
2685 last_ptr = &XEXP (x, i);
2686 break;
2687
2688 case 'E':
2689 if (XVEC (x, i) != NULL)
2690 {
2691 int j;
2692 int len = XVECLEN (x, i);
2693
2694 /* Copy the vector iff I copied the rtx and the length
2695 is nonzero. */
2696 if (copied && len > 0)
2697 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2698
2699 /* Call recursively on all inside the vector. */
2700 for (j = 0; j < len; j++)
2701 {
2702 if (last_ptr)
2703 copy_rtx_if_shared_1 (last_ptr);
2704 last_ptr = &XVECEXP (x, i, j);
2705 }
2706 }
2707 break;
2708 }
2709 }
2710 *orig1 = x;
2711 if (last_ptr)
2712 {
2713 orig1 = last_ptr;
2714 goto repeat;
2715 }
2716 return;
2717 }
2718
2719 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2720 to look for shared sub-parts. */
2721
2722 void
2723 reset_used_flags (rtx x)
2724 {
2725 int i, j;
2726 enum rtx_code code;
2727 const char *format_ptr;
2728 int length;
2729
2730 /* Repeat is used to turn tail-recursion into iteration. */
2731 repeat:
2732 if (x == 0)
2733 return;
2734
2735 code = GET_CODE (x);
2736
2737 /* These types may be freely shared so we needn't do any resetting
2738 for them. */
2739
2740 switch (code)
2741 {
2742 case REG:
2743 case DEBUG_EXPR:
2744 case VALUE:
2745 case CONST_INT:
2746 case CONST_DOUBLE:
2747 case CONST_FIXED:
2748 case CONST_VECTOR:
2749 case SYMBOL_REF:
2750 case CODE_LABEL:
2751 case PC:
2752 case CC0:
2753 return;
2754
2755 case DEBUG_INSN:
2756 case INSN:
2757 case JUMP_INSN:
2758 case CALL_INSN:
2759 case NOTE:
2760 case LABEL_REF:
2761 case BARRIER:
2762 /* The chain of insns is not being copied. */
2763 return;
2764
2765 default:
2766 break;
2767 }
2768
2769 RTX_FLAG (x, used) = 0;
2770
2771 format_ptr = GET_RTX_FORMAT (code);
2772 length = GET_RTX_LENGTH (code);
2773
2774 for (i = 0; i < length; i++)
2775 {
2776 switch (*format_ptr++)
2777 {
2778 case 'e':
2779 if (i == length-1)
2780 {
2781 x = XEXP (x, i);
2782 goto repeat;
2783 }
2784 reset_used_flags (XEXP (x, i));
2785 break;
2786
2787 case 'E':
2788 for (j = 0; j < XVECLEN (x, i); j++)
2789 reset_used_flags (XVECEXP (x, i, j));
2790 break;
2791 }
2792 }
2793 }
2794
2795 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2796 to look for shared sub-parts. */
2797
2798 void
2799 set_used_flags (rtx x)
2800 {
2801 int i, j;
2802 enum rtx_code code;
2803 const char *format_ptr;
2804
2805 if (x == 0)
2806 return;
2807
2808 code = GET_CODE (x);
2809
2810 /* These types may be freely shared so we needn't do any resetting
2811 for them. */
2812
2813 switch (code)
2814 {
2815 case REG:
2816 case DEBUG_EXPR:
2817 case VALUE:
2818 case CONST_INT:
2819 case CONST_DOUBLE:
2820 case CONST_FIXED:
2821 case CONST_VECTOR:
2822 case SYMBOL_REF:
2823 case CODE_LABEL:
2824 case PC:
2825 case CC0:
2826 return;
2827
2828 case DEBUG_INSN:
2829 case INSN:
2830 case JUMP_INSN:
2831 case CALL_INSN:
2832 case NOTE:
2833 case LABEL_REF:
2834 case BARRIER:
2835 /* The chain of insns is not being copied. */
2836 return;
2837
2838 default:
2839 break;
2840 }
2841
2842 RTX_FLAG (x, used) = 1;
2843
2844 format_ptr = GET_RTX_FORMAT (code);
2845 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2846 {
2847 switch (*format_ptr++)
2848 {
2849 case 'e':
2850 set_used_flags (XEXP (x, i));
2851 break;
2852
2853 case 'E':
2854 for (j = 0; j < XVECLEN (x, i); j++)
2855 set_used_flags (XVECEXP (x, i, j));
2856 break;
2857 }
2858 }
2859 }
2860 \f
2861 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2862 Return X or the rtx for the pseudo reg the value of X was copied into.
2863 OTHER must be valid as a SET_DEST. */
2864
2865 rtx
2866 make_safe_from (rtx x, rtx other)
2867 {
2868 while (1)
2869 switch (GET_CODE (other))
2870 {
2871 case SUBREG:
2872 other = SUBREG_REG (other);
2873 break;
2874 case STRICT_LOW_PART:
2875 case SIGN_EXTEND:
2876 case ZERO_EXTEND:
2877 other = XEXP (other, 0);
2878 break;
2879 default:
2880 goto done;
2881 }
2882 done:
2883 if ((MEM_P (other)
2884 && ! CONSTANT_P (x)
2885 && !REG_P (x)
2886 && GET_CODE (x) != SUBREG)
2887 || (REG_P (other)
2888 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2889 || reg_mentioned_p (other, x))))
2890 {
2891 rtx temp = gen_reg_rtx (GET_MODE (x));
2892 emit_move_insn (temp, x);
2893 return temp;
2894 }
2895 return x;
2896 }
2897 \f
2898 /* Emission of insns (adding them to the doubly-linked list). */
2899
2900 /* Return the first insn of the current sequence or current function. */
2901
2902 rtx
2903 get_insns (void)
2904 {
2905 return first_insn;
2906 }
2907
2908 /* Specify a new insn as the first in the chain. */
2909
2910 void
2911 set_first_insn (rtx insn)
2912 {
2913 gcc_assert (!PREV_INSN (insn));
2914 first_insn = insn;
2915 }
2916
2917 /* Return the last insn emitted in current sequence or current function. */
2918
2919 rtx
2920 get_last_insn (void)
2921 {
2922 return last_insn;
2923 }
2924
2925 /* Specify a new insn as the last in the chain. */
2926
2927 void
2928 set_last_insn (rtx insn)
2929 {
2930 gcc_assert (!NEXT_INSN (insn));
2931 last_insn = insn;
2932 }
2933
2934 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2935
2936 rtx
2937 get_last_insn_anywhere (void)
2938 {
2939 struct sequence_stack *stack;
2940 if (last_insn)
2941 return last_insn;
2942 for (stack = seq_stack; stack; stack = stack->next)
2943 if (stack->last != 0)
2944 return stack->last;
2945 return 0;
2946 }
2947
2948 /* Return the first nonnote insn emitted in current sequence or current
2949 function. This routine looks inside SEQUENCEs. */
2950
2951 rtx
2952 get_first_nonnote_insn (void)
2953 {
2954 rtx insn = first_insn;
2955
2956 if (insn)
2957 {
2958 if (NOTE_P (insn))
2959 for (insn = next_insn (insn);
2960 insn && NOTE_P (insn);
2961 insn = next_insn (insn))
2962 continue;
2963 else
2964 {
2965 if (NONJUMP_INSN_P (insn)
2966 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2967 insn = XVECEXP (PATTERN (insn), 0, 0);
2968 }
2969 }
2970
2971 return insn;
2972 }
2973
2974 /* Return the last nonnote insn emitted in current sequence or current
2975 function. This routine looks inside SEQUENCEs. */
2976
2977 rtx
2978 get_last_nonnote_insn (void)
2979 {
2980 rtx insn = last_insn;
2981
2982 if (insn)
2983 {
2984 if (NOTE_P (insn))
2985 for (insn = previous_insn (insn);
2986 insn && NOTE_P (insn);
2987 insn = previous_insn (insn))
2988 continue;
2989 else
2990 {
2991 if (NONJUMP_INSN_P (insn)
2992 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2993 insn = XVECEXP (PATTERN (insn), 0,
2994 XVECLEN (PATTERN (insn), 0) - 1);
2995 }
2996 }
2997
2998 return insn;
2999 }
3000
3001 /* Return a number larger than any instruction's uid in this function. */
3002
3003 int
3004 get_max_uid (void)
3005 {
3006 return cur_insn_uid;
3007 }
3008
3009 /* Return the number of actual (non-debug) insns emitted in this
3010 function. */
3011
3012 int
3013 get_max_insn_count (void)
3014 {
3015 int n = cur_insn_uid;
3016
3017 /* The table size must be stable across -g, to avoid codegen
3018 differences due to debug insns, and not be affected by
3019 -fmin-insn-uid, to avoid excessive table size and to simplify
3020 debugging of -fcompare-debug failures. */
3021 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3022 n -= cur_debug_insn_uid;
3023 else
3024 n -= MIN_NONDEBUG_INSN_UID;
3025
3026 return n;
3027 }
3028
3029 \f
3030 /* Return the next insn. If it is a SEQUENCE, return the first insn
3031 of the sequence. */
3032
3033 rtx
3034 next_insn (rtx insn)
3035 {
3036 if (insn)
3037 {
3038 insn = NEXT_INSN (insn);
3039 if (insn && NONJUMP_INSN_P (insn)
3040 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3041 insn = XVECEXP (PATTERN (insn), 0, 0);
3042 }
3043
3044 return insn;
3045 }
3046
3047 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3048 of the sequence. */
3049
3050 rtx
3051 previous_insn (rtx insn)
3052 {
3053 if (insn)
3054 {
3055 insn = PREV_INSN (insn);
3056 if (insn && NONJUMP_INSN_P (insn)
3057 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3058 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3059 }
3060
3061 return insn;
3062 }
3063
3064 /* Return the next insn after INSN that is not a NOTE. This routine does not
3065 look inside SEQUENCEs. */
3066
3067 rtx
3068 next_nonnote_insn (rtx insn)
3069 {
3070 while (insn)
3071 {
3072 insn = NEXT_INSN (insn);
3073 if (insn == 0 || !NOTE_P (insn))
3074 break;
3075 }
3076
3077 return insn;
3078 }
3079
3080 /* Return the next insn after INSN that is not a NOTE, but stop the
3081 search before we enter another basic block. This routine does not
3082 look inside SEQUENCEs. */
3083
3084 rtx
3085 next_nonnote_insn_bb (rtx insn)
3086 {
3087 while (insn)
3088 {
3089 insn = NEXT_INSN (insn);
3090 if (insn == 0 || !NOTE_P (insn))
3091 break;
3092 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3093 return NULL_RTX;
3094 }
3095
3096 return insn;
3097 }
3098
3099 /* Return the previous insn before INSN that is not a NOTE. This routine does
3100 not look inside SEQUENCEs. */
3101
3102 rtx
3103 prev_nonnote_insn (rtx insn)
3104 {
3105 while (insn)
3106 {
3107 insn = PREV_INSN (insn);
3108 if (insn == 0 || !NOTE_P (insn))
3109 break;
3110 }
3111
3112 return insn;
3113 }
3114
3115 /* Return the previous insn before INSN that is not a NOTE, but stop
3116 the search before we enter another basic block. This routine does
3117 not look inside SEQUENCEs. */
3118
3119 rtx
3120 prev_nonnote_insn_bb (rtx insn)
3121 {
3122 while (insn)
3123 {
3124 insn = PREV_INSN (insn);
3125 if (insn == 0 || !NOTE_P (insn))
3126 break;
3127 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3128 return NULL_RTX;
3129 }
3130
3131 return insn;
3132 }
3133
3134 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3135 routine does not look inside SEQUENCEs. */
3136
3137 rtx
3138 next_nondebug_insn (rtx insn)
3139 {
3140 while (insn)
3141 {
3142 insn = NEXT_INSN (insn);
3143 if (insn == 0 || !DEBUG_INSN_P (insn))
3144 break;
3145 }
3146
3147 return insn;
3148 }
3149
3150 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3151 This routine does not look inside SEQUENCEs. */
3152
3153 rtx
3154 prev_nondebug_insn (rtx insn)
3155 {
3156 while (insn)
3157 {
3158 insn = PREV_INSN (insn);
3159 if (insn == 0 || !DEBUG_INSN_P (insn))
3160 break;
3161 }
3162
3163 return insn;
3164 }
3165
3166 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3167 or 0, if there is none. This routine does not look inside
3168 SEQUENCEs. */
3169
3170 rtx
3171 next_real_insn (rtx insn)
3172 {
3173 while (insn)
3174 {
3175 insn = NEXT_INSN (insn);
3176 if (insn == 0 || INSN_P (insn))
3177 break;
3178 }
3179
3180 return insn;
3181 }
3182
3183 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3184 or 0, if there is none. This routine does not look inside
3185 SEQUENCEs. */
3186
3187 rtx
3188 prev_real_insn (rtx insn)
3189 {
3190 while (insn)
3191 {
3192 insn = PREV_INSN (insn);
3193 if (insn == 0 || INSN_P (insn))
3194 break;
3195 }
3196
3197 return insn;
3198 }
3199
3200 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3201 This routine does not look inside SEQUENCEs. */
3202
3203 rtx
3204 last_call_insn (void)
3205 {
3206 rtx insn;
3207
3208 for (insn = get_last_insn ();
3209 insn && !CALL_P (insn);
3210 insn = PREV_INSN (insn))
3211 ;
3212
3213 return insn;
3214 }
3215
3216 /* Find the next insn after INSN that really does something. This routine
3217 does not look inside SEQUENCEs. Until reload has completed, this is the
3218 same as next_real_insn. */
3219
3220 int
3221 active_insn_p (const_rtx insn)
3222 {
3223 return (CALL_P (insn) || JUMP_P (insn)
3224 || (NONJUMP_INSN_P (insn)
3225 && (! reload_completed
3226 || (GET_CODE (PATTERN (insn)) != USE
3227 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3228 }
3229
3230 rtx
3231 next_active_insn (rtx insn)
3232 {
3233 while (insn)
3234 {
3235 insn = NEXT_INSN (insn);
3236 if (insn == 0 || active_insn_p (insn))
3237 break;
3238 }
3239
3240 return insn;
3241 }
3242
3243 /* Find the last insn before INSN that really does something. This routine
3244 does not look inside SEQUENCEs. Until reload has completed, this is the
3245 same as prev_real_insn. */
3246
3247 rtx
3248 prev_active_insn (rtx insn)
3249 {
3250 while (insn)
3251 {
3252 insn = PREV_INSN (insn);
3253 if (insn == 0 || active_insn_p (insn))
3254 break;
3255 }
3256
3257 return insn;
3258 }
3259
3260 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3261
3262 rtx
3263 next_label (rtx insn)
3264 {
3265 while (insn)
3266 {
3267 insn = NEXT_INSN (insn);
3268 if (insn == 0 || LABEL_P (insn))
3269 break;
3270 }
3271
3272 return insn;
3273 }
3274
3275 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3276
3277 rtx
3278 prev_label (rtx insn)
3279 {
3280 while (insn)
3281 {
3282 insn = PREV_INSN (insn);
3283 if (insn == 0 || LABEL_P (insn))
3284 break;
3285 }
3286
3287 return insn;
3288 }
3289
3290 /* Return the last label to mark the same position as LABEL. Return null
3291 if LABEL itself is null. */
3292
3293 rtx
3294 skip_consecutive_labels (rtx label)
3295 {
3296 rtx insn;
3297
3298 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3299 if (LABEL_P (insn))
3300 label = insn;
3301
3302 return label;
3303 }
3304 \f
3305 #ifdef HAVE_cc0
3306 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3307 and REG_CC_USER notes so we can find it. */
3308
3309 void
3310 link_cc0_insns (rtx insn)
3311 {
3312 rtx user = next_nonnote_insn (insn);
3313
3314 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3315 user = XVECEXP (PATTERN (user), 0, 0);
3316
3317 add_reg_note (user, REG_CC_SETTER, insn);
3318 add_reg_note (insn, REG_CC_USER, user);
3319 }
3320
3321 /* Return the next insn that uses CC0 after INSN, which is assumed to
3322 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3323 applied to the result of this function should yield INSN).
3324
3325 Normally, this is simply the next insn. However, if a REG_CC_USER note
3326 is present, it contains the insn that uses CC0.
3327
3328 Return 0 if we can't find the insn. */
3329
3330 rtx
3331 next_cc0_user (rtx insn)
3332 {
3333 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3334
3335 if (note)
3336 return XEXP (note, 0);
3337
3338 insn = next_nonnote_insn (insn);
3339 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3340 insn = XVECEXP (PATTERN (insn), 0, 0);
3341
3342 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3343 return insn;
3344
3345 return 0;
3346 }
3347
3348 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3349 note, it is the previous insn. */
3350
3351 rtx
3352 prev_cc0_setter (rtx insn)
3353 {
3354 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3355
3356 if (note)
3357 return XEXP (note, 0);
3358
3359 insn = prev_nonnote_insn (insn);
3360 gcc_assert (sets_cc0_p (PATTERN (insn)));
3361
3362 return insn;
3363 }
3364 #endif
3365
3366 #ifdef AUTO_INC_DEC
3367 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3368
3369 static int
3370 find_auto_inc (rtx *xp, void *data)
3371 {
3372 rtx x = *xp;
3373 rtx reg = (rtx) data;
3374
3375 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3376 return 0;
3377
3378 switch (GET_CODE (x))
3379 {
3380 case PRE_DEC:
3381 case PRE_INC:
3382 case POST_DEC:
3383 case POST_INC:
3384 case PRE_MODIFY:
3385 case POST_MODIFY:
3386 if (rtx_equal_p (reg, XEXP (x, 0)))
3387 return 1;
3388 break;
3389
3390 default:
3391 gcc_unreachable ();
3392 }
3393 return -1;
3394 }
3395 #endif
3396
3397 /* Increment the label uses for all labels present in rtx. */
3398
3399 static void
3400 mark_label_nuses (rtx x)
3401 {
3402 enum rtx_code code;
3403 int i, j;
3404 const char *fmt;
3405
3406 code = GET_CODE (x);
3407 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3408 LABEL_NUSES (XEXP (x, 0))++;
3409
3410 fmt = GET_RTX_FORMAT (code);
3411 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3412 {
3413 if (fmt[i] == 'e')
3414 mark_label_nuses (XEXP (x, i));
3415 else if (fmt[i] == 'E')
3416 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3417 mark_label_nuses (XVECEXP (x, i, j));
3418 }
3419 }
3420
3421 \f
3422 /* Try splitting insns that can be split for better scheduling.
3423 PAT is the pattern which might split.
3424 TRIAL is the insn providing PAT.
3425 LAST is nonzero if we should return the last insn of the sequence produced.
3426
3427 If this routine succeeds in splitting, it returns the first or last
3428 replacement insn depending on the value of LAST. Otherwise, it
3429 returns TRIAL. If the insn to be returned can be split, it will be. */
3430
3431 rtx
3432 try_split (rtx pat, rtx trial, int last)
3433 {
3434 rtx before = PREV_INSN (trial);
3435 rtx after = NEXT_INSN (trial);
3436 int has_barrier = 0;
3437 rtx note, seq, tem;
3438 int probability;
3439 rtx insn_last, insn;
3440 int njumps = 0;
3441
3442 /* We're not good at redistributing frame information. */
3443 if (RTX_FRAME_RELATED_P (trial))
3444 return trial;
3445
3446 if (any_condjump_p (trial)
3447 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3448 split_branch_probability = INTVAL (XEXP (note, 0));
3449 probability = split_branch_probability;
3450
3451 seq = split_insns (pat, trial);
3452
3453 split_branch_probability = -1;
3454
3455 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3456 We may need to handle this specially. */
3457 if (after && BARRIER_P (after))
3458 {
3459 has_barrier = 1;
3460 after = NEXT_INSN (after);
3461 }
3462
3463 if (!seq)
3464 return trial;
3465
3466 /* Avoid infinite loop if any insn of the result matches
3467 the original pattern. */
3468 insn_last = seq;
3469 while (1)
3470 {
3471 if (INSN_P (insn_last)
3472 && rtx_equal_p (PATTERN (insn_last), pat))
3473 return trial;
3474 if (!NEXT_INSN (insn_last))
3475 break;
3476 insn_last = NEXT_INSN (insn_last);
3477 }
3478
3479 /* We will be adding the new sequence to the function. The splitters
3480 may have introduced invalid RTL sharing, so unshare the sequence now. */
3481 unshare_all_rtl_in_chain (seq);
3482
3483 /* Mark labels. */
3484 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3485 {
3486 if (JUMP_P (insn))
3487 {
3488 mark_jump_label (PATTERN (insn), insn, 0);
3489 njumps++;
3490 if (probability != -1
3491 && any_condjump_p (insn)
3492 && !find_reg_note (insn, REG_BR_PROB, 0))
3493 {
3494 /* We can preserve the REG_BR_PROB notes only if exactly
3495 one jump is created, otherwise the machine description
3496 is responsible for this step using
3497 split_branch_probability variable. */
3498 gcc_assert (njumps == 1);
3499 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
3500 }
3501 }
3502 }
3503
3504 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3505 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3506 if (CALL_P (trial))
3507 {
3508 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3509 if (CALL_P (insn))
3510 {
3511 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3512 while (*p)
3513 p = &XEXP (*p, 1);
3514 *p = CALL_INSN_FUNCTION_USAGE (trial);
3515 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3516 }
3517 }
3518
3519 /* Copy notes, particularly those related to the CFG. */
3520 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3521 {
3522 switch (REG_NOTE_KIND (note))
3523 {
3524 case REG_EH_REGION:
3525 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3526 break;
3527
3528 case REG_NORETURN:
3529 case REG_SETJMP:
3530 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3531 {
3532 if (CALL_P (insn))
3533 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3534 }
3535 break;
3536
3537 case REG_NON_LOCAL_GOTO:
3538 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3539 {
3540 if (JUMP_P (insn))
3541 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3542 }
3543 break;
3544
3545 #ifdef AUTO_INC_DEC
3546 case REG_INC:
3547 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3548 {
3549 rtx reg = XEXP (note, 0);
3550 if (!FIND_REG_INC_NOTE (insn, reg)
3551 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3552 add_reg_note (insn, REG_INC, reg);
3553 }
3554 break;
3555 #endif
3556
3557 default:
3558 break;
3559 }
3560 }
3561
3562 /* If there are LABELS inside the split insns increment the
3563 usage count so we don't delete the label. */
3564 if (INSN_P (trial))
3565 {
3566 insn = insn_last;
3567 while (insn != NULL_RTX)
3568 {
3569 /* JUMP_P insns have already been "marked" above. */
3570 if (NONJUMP_INSN_P (insn))
3571 mark_label_nuses (PATTERN (insn));
3572
3573 insn = PREV_INSN (insn);
3574 }
3575 }
3576
3577 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3578
3579 delete_insn (trial);
3580 if (has_barrier)
3581 emit_barrier_after (tem);
3582
3583 /* Recursively call try_split for each new insn created; by the
3584 time control returns here that insn will be fully split, so
3585 set LAST and continue from the insn after the one returned.
3586 We can't use next_active_insn here since AFTER may be a note.
3587 Ignore deleted insns, which can be occur if not optimizing. */
3588 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3589 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3590 tem = try_split (PATTERN (tem), tem, 1);
3591
3592 /* Return either the first or the last insn, depending on which was
3593 requested. */
3594 return last
3595 ? (after ? PREV_INSN (after) : last_insn)
3596 : NEXT_INSN (before);
3597 }
3598 \f
3599 /* Make and return an INSN rtx, initializing all its slots.
3600 Store PATTERN in the pattern slots. */
3601
3602 rtx
3603 make_insn_raw (rtx pattern)
3604 {
3605 rtx insn;
3606
3607 insn = rtx_alloc (INSN);
3608
3609 INSN_UID (insn) = cur_insn_uid++;
3610 PATTERN (insn) = pattern;
3611 INSN_CODE (insn) = -1;
3612 REG_NOTES (insn) = NULL;
3613 INSN_LOCATOR (insn) = curr_insn_locator ();
3614 BLOCK_FOR_INSN (insn) = NULL;
3615
3616 #ifdef ENABLE_RTL_CHECKING
3617 if (insn
3618 && INSN_P (insn)
3619 && (returnjump_p (insn)
3620 || (GET_CODE (insn) == SET
3621 && SET_DEST (insn) == pc_rtx)))
3622 {
3623 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3624 debug_rtx (insn);
3625 }
3626 #endif
3627
3628 return insn;
3629 }
3630
3631 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3632
3633 rtx
3634 make_debug_insn_raw (rtx pattern)
3635 {
3636 rtx insn;
3637
3638 insn = rtx_alloc (DEBUG_INSN);
3639 INSN_UID (insn) = cur_debug_insn_uid++;
3640 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3641 INSN_UID (insn) = cur_insn_uid++;
3642
3643 PATTERN (insn) = pattern;
3644 INSN_CODE (insn) = -1;
3645 REG_NOTES (insn) = NULL;
3646 INSN_LOCATOR (insn) = curr_insn_locator ();
3647 BLOCK_FOR_INSN (insn) = NULL;
3648
3649 return insn;
3650 }
3651
3652 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3653
3654 rtx
3655 make_jump_insn_raw (rtx pattern)
3656 {
3657 rtx insn;
3658
3659 insn = rtx_alloc (JUMP_INSN);
3660 INSN_UID (insn) = cur_insn_uid++;
3661
3662 PATTERN (insn) = pattern;
3663 INSN_CODE (insn) = -1;
3664 REG_NOTES (insn) = NULL;
3665 JUMP_LABEL (insn) = NULL;
3666 INSN_LOCATOR (insn) = curr_insn_locator ();
3667 BLOCK_FOR_INSN (insn) = NULL;
3668
3669 return insn;
3670 }
3671
3672 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3673
3674 static rtx
3675 make_call_insn_raw (rtx pattern)
3676 {
3677 rtx insn;
3678
3679 insn = rtx_alloc (CALL_INSN);
3680 INSN_UID (insn) = cur_insn_uid++;
3681
3682 PATTERN (insn) = pattern;
3683 INSN_CODE (insn) = -1;
3684 REG_NOTES (insn) = NULL;
3685 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3686 INSN_LOCATOR (insn) = curr_insn_locator ();
3687 BLOCK_FOR_INSN (insn) = NULL;
3688
3689 return insn;
3690 }
3691 \f
3692 /* Add INSN to the end of the doubly-linked list.
3693 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3694
3695 void
3696 add_insn (rtx insn)
3697 {
3698 PREV_INSN (insn) = last_insn;
3699 NEXT_INSN (insn) = 0;
3700
3701 if (NULL != last_insn)
3702 NEXT_INSN (last_insn) = insn;
3703
3704 if (NULL == first_insn)
3705 first_insn = insn;
3706
3707 last_insn = insn;
3708 }
3709
3710 /* Add INSN into the doubly-linked list after insn AFTER. This and
3711 the next should be the only functions called to insert an insn once
3712 delay slots have been filled since only they know how to update a
3713 SEQUENCE. */
3714
3715 void
3716 add_insn_after (rtx insn, rtx after, basic_block bb)
3717 {
3718 rtx next = NEXT_INSN (after);
3719
3720 gcc_assert (!optimize || !INSN_DELETED_P (after));
3721
3722 NEXT_INSN (insn) = next;
3723 PREV_INSN (insn) = after;
3724
3725 if (next)
3726 {
3727 PREV_INSN (next) = insn;
3728 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3729 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3730 }
3731 else if (last_insn == after)
3732 last_insn = insn;
3733 else
3734 {
3735 struct sequence_stack *stack = seq_stack;
3736 /* Scan all pending sequences too. */
3737 for (; stack; stack = stack->next)
3738 if (after == stack->last)
3739 {
3740 stack->last = insn;
3741 break;
3742 }
3743
3744 gcc_assert (stack);
3745 }
3746
3747 if (!BARRIER_P (after)
3748 && !BARRIER_P (insn)
3749 && (bb = BLOCK_FOR_INSN (after)))
3750 {
3751 set_block_for_insn (insn, bb);
3752 if (INSN_P (insn))
3753 df_insn_rescan (insn);
3754 /* Should not happen as first in the BB is always
3755 either NOTE or LABEL. */
3756 if (BB_END (bb) == after
3757 /* Avoid clobbering of structure when creating new BB. */
3758 && !BARRIER_P (insn)
3759 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3760 BB_END (bb) = insn;
3761 }
3762
3763 NEXT_INSN (after) = insn;
3764 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3765 {
3766 rtx sequence = PATTERN (after);
3767 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3768 }
3769 }
3770
3771 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3772 the previous should be the only functions called to insert an insn
3773 once delay slots have been filled since only they know how to
3774 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3775 bb from before. */
3776
3777 void
3778 add_insn_before (rtx insn, rtx before, basic_block bb)
3779 {
3780 rtx prev = PREV_INSN (before);
3781
3782 gcc_assert (!optimize || !INSN_DELETED_P (before));
3783
3784 PREV_INSN (insn) = prev;
3785 NEXT_INSN (insn) = before;
3786
3787 if (prev)
3788 {
3789 NEXT_INSN (prev) = insn;
3790 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3791 {
3792 rtx sequence = PATTERN (prev);
3793 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3794 }
3795 }
3796 else if (first_insn == before)
3797 first_insn = insn;
3798 else
3799 {
3800 struct sequence_stack *stack = seq_stack;
3801 /* Scan all pending sequences too. */
3802 for (; stack; stack = stack->next)
3803 if (before == stack->first)
3804 {
3805 stack->first = insn;
3806 break;
3807 }
3808
3809 gcc_assert (stack);
3810 }
3811
3812 if (!bb
3813 && !BARRIER_P (before)
3814 && !BARRIER_P (insn))
3815 bb = BLOCK_FOR_INSN (before);
3816
3817 if (bb)
3818 {
3819 set_block_for_insn (insn, bb);
3820 if (INSN_P (insn))
3821 df_insn_rescan (insn);
3822 /* Should not happen as first in the BB is always either NOTE or
3823 LABEL. */
3824 gcc_assert (BB_HEAD (bb) != insn
3825 /* Avoid clobbering of structure when creating new BB. */
3826 || BARRIER_P (insn)
3827 || NOTE_INSN_BASIC_BLOCK_P (insn));
3828 }
3829
3830 PREV_INSN (before) = insn;
3831 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3832 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3833 }
3834
3835
3836 /* Replace insn with an deleted instruction note. */
3837
3838 void
3839 set_insn_deleted (rtx insn)
3840 {
3841 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3842 PUT_CODE (insn, NOTE);
3843 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3844 }
3845
3846
3847 /* Remove an insn from its doubly-linked list. This function knows how
3848 to handle sequences. */
3849 void
3850 remove_insn (rtx insn)
3851 {
3852 rtx next = NEXT_INSN (insn);
3853 rtx prev = PREV_INSN (insn);
3854 basic_block bb;
3855
3856 /* Later in the code, the block will be marked dirty. */
3857 df_insn_delete (NULL, INSN_UID (insn));
3858
3859 if (prev)
3860 {
3861 NEXT_INSN (prev) = next;
3862 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3863 {
3864 rtx sequence = PATTERN (prev);
3865 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3866 }
3867 }
3868 else if (first_insn == insn)
3869 first_insn = next;
3870 else
3871 {
3872 struct sequence_stack *stack = seq_stack;
3873 /* Scan all pending sequences too. */
3874 for (; stack; stack = stack->next)
3875 if (insn == stack->first)
3876 {
3877 stack->first = next;
3878 break;
3879 }
3880
3881 gcc_assert (stack);
3882 }
3883
3884 if (next)
3885 {
3886 PREV_INSN (next) = prev;
3887 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3888 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3889 }
3890 else if (last_insn == insn)
3891 last_insn = prev;
3892 else
3893 {
3894 struct sequence_stack *stack = seq_stack;
3895 /* Scan all pending sequences too. */
3896 for (; stack; stack = stack->next)
3897 if (insn == stack->last)
3898 {
3899 stack->last = prev;
3900 break;
3901 }
3902
3903 gcc_assert (stack);
3904 }
3905 if (!BARRIER_P (insn)
3906 && (bb = BLOCK_FOR_INSN (insn)))
3907 {
3908 if (INSN_P (insn))
3909 df_set_bb_dirty (bb);
3910 if (BB_HEAD (bb) == insn)
3911 {
3912 /* Never ever delete the basic block note without deleting whole
3913 basic block. */
3914 gcc_assert (!NOTE_P (insn));
3915 BB_HEAD (bb) = next;
3916 }
3917 if (BB_END (bb) == insn)
3918 BB_END (bb) = prev;
3919 }
3920 }
3921
3922 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3923
3924 void
3925 add_function_usage_to (rtx call_insn, rtx call_fusage)
3926 {
3927 gcc_assert (call_insn && CALL_P (call_insn));
3928
3929 /* Put the register usage information on the CALL. If there is already
3930 some usage information, put ours at the end. */
3931 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3932 {
3933 rtx link;
3934
3935 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3936 link = XEXP (link, 1))
3937 ;
3938
3939 XEXP (link, 1) = call_fusage;
3940 }
3941 else
3942 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3943 }
3944
3945 /* Delete all insns made since FROM.
3946 FROM becomes the new last instruction. */
3947
3948 void
3949 delete_insns_since (rtx from)
3950 {
3951 if (from == 0)
3952 first_insn = 0;
3953 else
3954 NEXT_INSN (from) = 0;
3955 last_insn = from;
3956 }
3957
3958 /* This function is deprecated, please use sequences instead.
3959
3960 Move a consecutive bunch of insns to a different place in the chain.
3961 The insns to be moved are those between FROM and TO.
3962 They are moved to a new position after the insn AFTER.
3963 AFTER must not be FROM or TO or any insn in between.
3964
3965 This function does not know about SEQUENCEs and hence should not be
3966 called after delay-slot filling has been done. */
3967
3968 void
3969 reorder_insns_nobb (rtx from, rtx to, rtx after)
3970 {
3971 /* Splice this bunch out of where it is now. */
3972 if (PREV_INSN (from))
3973 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3974 if (NEXT_INSN (to))
3975 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3976 if (last_insn == to)
3977 last_insn = PREV_INSN (from);
3978 if (first_insn == from)
3979 first_insn = NEXT_INSN (to);
3980
3981 /* Make the new neighbors point to it and it to them. */
3982 if (NEXT_INSN (after))
3983 PREV_INSN (NEXT_INSN (after)) = to;
3984
3985 NEXT_INSN (to) = NEXT_INSN (after);
3986 PREV_INSN (from) = after;
3987 NEXT_INSN (after) = from;
3988 if (after == last_insn)
3989 last_insn = to;
3990 }
3991
3992 /* Same as function above, but take care to update BB boundaries. */
3993 void
3994 reorder_insns (rtx from, rtx to, rtx after)
3995 {
3996 rtx prev = PREV_INSN (from);
3997 basic_block bb, bb2;
3998
3999 reorder_insns_nobb (from, to, after);
4000
4001 if (!BARRIER_P (after)
4002 && (bb = BLOCK_FOR_INSN (after)))
4003 {
4004 rtx x;
4005 df_set_bb_dirty (bb);
4006
4007 if (!BARRIER_P (from)
4008 && (bb2 = BLOCK_FOR_INSN (from)))
4009 {
4010 if (BB_END (bb2) == to)
4011 BB_END (bb2) = prev;
4012 df_set_bb_dirty (bb2);
4013 }
4014
4015 if (BB_END (bb) == after)
4016 BB_END (bb) = to;
4017
4018 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4019 if (!BARRIER_P (x))
4020 df_insn_change_bb (x, bb);
4021 }
4022 }
4023
4024 \f
4025 /* Emit insn(s) of given code and pattern
4026 at a specified place within the doubly-linked list.
4027
4028 All of the emit_foo global entry points accept an object
4029 X which is either an insn list or a PATTERN of a single
4030 instruction.
4031
4032 There are thus a few canonical ways to generate code and
4033 emit it at a specific place in the instruction stream. For
4034 example, consider the instruction named SPOT and the fact that
4035 we would like to emit some instructions before SPOT. We might
4036 do it like this:
4037
4038 start_sequence ();
4039 ... emit the new instructions ...
4040 insns_head = get_insns ();
4041 end_sequence ();
4042
4043 emit_insn_before (insns_head, SPOT);
4044
4045 It used to be common to generate SEQUENCE rtl instead, but that
4046 is a relic of the past which no longer occurs. The reason is that
4047 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4048 generated would almost certainly die right after it was created. */
4049
4050 /* Make X be output before the instruction BEFORE. */
4051
4052 rtx
4053 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4054 {
4055 rtx last = before;
4056 rtx insn;
4057
4058 gcc_assert (before);
4059
4060 if (x == NULL_RTX)
4061 return last;
4062
4063 switch (GET_CODE (x))
4064 {
4065 case DEBUG_INSN:
4066 case INSN:
4067 case JUMP_INSN:
4068 case CALL_INSN:
4069 case CODE_LABEL:
4070 case BARRIER:
4071 case NOTE:
4072 insn = x;
4073 while (insn)
4074 {
4075 rtx next = NEXT_INSN (insn);
4076 add_insn_before (insn, before, bb);
4077 last = insn;
4078 insn = next;
4079 }
4080 break;
4081
4082 #ifdef ENABLE_RTL_CHECKING
4083 case SEQUENCE:
4084 gcc_unreachable ();
4085 break;
4086 #endif
4087
4088 default:
4089 last = make_insn_raw (x);
4090 add_insn_before (last, before, bb);
4091 break;
4092 }
4093
4094 return last;
4095 }
4096
4097 /* Make an instruction with body X and code JUMP_INSN
4098 and output it before the instruction BEFORE. */
4099
4100 rtx
4101 emit_jump_insn_before_noloc (rtx x, rtx before)
4102 {
4103 rtx insn, last = NULL_RTX;
4104
4105 gcc_assert (before);
4106
4107 switch (GET_CODE (x))
4108 {
4109 case DEBUG_INSN:
4110 case INSN:
4111 case JUMP_INSN:
4112 case CALL_INSN:
4113 case CODE_LABEL:
4114 case BARRIER:
4115 case NOTE:
4116 insn = x;
4117 while (insn)
4118 {
4119 rtx next = NEXT_INSN (insn);
4120 add_insn_before (insn, before, NULL);
4121 last = insn;
4122 insn = next;
4123 }
4124 break;
4125
4126 #ifdef ENABLE_RTL_CHECKING
4127 case SEQUENCE:
4128 gcc_unreachable ();
4129 break;
4130 #endif
4131
4132 default:
4133 last = make_jump_insn_raw (x);
4134 add_insn_before (last, before, NULL);
4135 break;
4136 }
4137
4138 return last;
4139 }
4140
4141 /* Make an instruction with body X and code CALL_INSN
4142 and output it before the instruction BEFORE. */
4143
4144 rtx
4145 emit_call_insn_before_noloc (rtx x, rtx before)
4146 {
4147 rtx last = NULL_RTX, insn;
4148
4149 gcc_assert (before);
4150
4151 switch (GET_CODE (x))
4152 {
4153 case DEBUG_INSN:
4154 case INSN:
4155 case JUMP_INSN:
4156 case CALL_INSN:
4157 case CODE_LABEL:
4158 case BARRIER:
4159 case NOTE:
4160 insn = x;
4161 while (insn)
4162 {
4163 rtx next = NEXT_INSN (insn);
4164 add_insn_before (insn, before, NULL);
4165 last = insn;
4166 insn = next;
4167 }
4168 break;
4169
4170 #ifdef ENABLE_RTL_CHECKING
4171 case SEQUENCE:
4172 gcc_unreachable ();
4173 break;
4174 #endif
4175
4176 default:
4177 last = make_call_insn_raw (x);
4178 add_insn_before (last, before, NULL);
4179 break;
4180 }
4181
4182 return last;
4183 }
4184
4185 /* Make an instruction with body X and code DEBUG_INSN
4186 and output it before the instruction BEFORE. */
4187
4188 rtx
4189 emit_debug_insn_before_noloc (rtx x, rtx before)
4190 {
4191 rtx last = NULL_RTX, insn;
4192
4193 gcc_assert (before);
4194
4195 switch (GET_CODE (x))
4196 {
4197 case DEBUG_INSN:
4198 case INSN:
4199 case JUMP_INSN:
4200 case CALL_INSN:
4201 case CODE_LABEL:
4202 case BARRIER:
4203 case NOTE:
4204 insn = x;
4205 while (insn)
4206 {
4207 rtx next = NEXT_INSN (insn);
4208 add_insn_before (insn, before, NULL);
4209 last = insn;
4210 insn = next;
4211 }
4212 break;
4213
4214 #ifdef ENABLE_RTL_CHECKING
4215 case SEQUENCE:
4216 gcc_unreachable ();
4217 break;
4218 #endif
4219
4220 default:
4221 last = make_debug_insn_raw (x);
4222 add_insn_before (last, before, NULL);
4223 break;
4224 }
4225
4226 return last;
4227 }
4228
4229 /* Make an insn of code BARRIER
4230 and output it before the insn BEFORE. */
4231
4232 rtx
4233 emit_barrier_before (rtx before)
4234 {
4235 rtx insn = rtx_alloc (BARRIER);
4236
4237 INSN_UID (insn) = cur_insn_uid++;
4238
4239 add_insn_before (insn, before, NULL);
4240 return insn;
4241 }
4242
4243 /* Emit the label LABEL before the insn BEFORE. */
4244
4245 rtx
4246 emit_label_before (rtx label, rtx before)
4247 {
4248 /* This can be called twice for the same label as a result of the
4249 confusion that follows a syntax error! So make it harmless. */
4250 if (INSN_UID (label) == 0)
4251 {
4252 INSN_UID (label) = cur_insn_uid++;
4253 add_insn_before (label, before, NULL);
4254 }
4255
4256 return label;
4257 }
4258
4259 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4260
4261 rtx
4262 emit_note_before (enum insn_note subtype, rtx before)
4263 {
4264 rtx note = rtx_alloc (NOTE);
4265 INSN_UID (note) = cur_insn_uid++;
4266 NOTE_KIND (note) = subtype;
4267 BLOCK_FOR_INSN (note) = NULL;
4268 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4269
4270 add_insn_before (note, before, NULL);
4271 return note;
4272 }
4273 \f
4274 /* Helper for emit_insn_after, handles lists of instructions
4275 efficiently. */
4276
4277 static rtx
4278 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
4279 {
4280 rtx last;
4281 rtx after_after;
4282 if (!bb && !BARRIER_P (after))
4283 bb = BLOCK_FOR_INSN (after);
4284
4285 if (bb)
4286 {
4287 df_set_bb_dirty (bb);
4288 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4289 if (!BARRIER_P (last))
4290 {
4291 set_block_for_insn (last, bb);
4292 df_insn_rescan (last);
4293 }
4294 if (!BARRIER_P (last))
4295 {
4296 set_block_for_insn (last, bb);
4297 df_insn_rescan (last);
4298 }
4299 if (BB_END (bb) == after)
4300 BB_END (bb) = last;
4301 }
4302 else
4303 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4304 continue;
4305
4306 after_after = NEXT_INSN (after);
4307
4308 NEXT_INSN (after) = first;
4309 PREV_INSN (first) = after;
4310 NEXT_INSN (last) = after_after;
4311 if (after_after)
4312 PREV_INSN (after_after) = last;
4313
4314 if (after == last_insn)
4315 last_insn = last;
4316
4317 return last;
4318 }
4319
4320 /* Make X be output after the insn AFTER and set the BB of insn. If
4321 BB is NULL, an attempt is made to infer the BB from AFTER. */
4322
4323 rtx
4324 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4325 {
4326 rtx last = after;
4327
4328 gcc_assert (after);
4329
4330 if (x == NULL_RTX)
4331 return last;
4332
4333 switch (GET_CODE (x))
4334 {
4335 case DEBUG_INSN:
4336 case INSN:
4337 case JUMP_INSN:
4338 case CALL_INSN:
4339 case CODE_LABEL:
4340 case BARRIER:
4341 case NOTE:
4342 last = emit_insn_after_1 (x, after, bb);
4343 break;
4344
4345 #ifdef ENABLE_RTL_CHECKING
4346 case SEQUENCE:
4347 gcc_unreachable ();
4348 break;
4349 #endif
4350
4351 default:
4352 last = make_insn_raw (x);
4353 add_insn_after (last, after, bb);
4354 break;
4355 }
4356
4357 return last;
4358 }
4359
4360
4361 /* Make an insn of code JUMP_INSN with body X
4362 and output it after the insn AFTER. */
4363
4364 rtx
4365 emit_jump_insn_after_noloc (rtx x, rtx after)
4366 {
4367 rtx last;
4368
4369 gcc_assert (after);
4370
4371 switch (GET_CODE (x))
4372 {
4373 case DEBUG_INSN:
4374 case INSN:
4375 case JUMP_INSN:
4376 case CALL_INSN:
4377 case CODE_LABEL:
4378 case BARRIER:
4379 case NOTE:
4380 last = emit_insn_after_1 (x, after, NULL);
4381 break;
4382
4383 #ifdef ENABLE_RTL_CHECKING
4384 case SEQUENCE:
4385 gcc_unreachable ();
4386 break;
4387 #endif
4388
4389 default:
4390 last = make_jump_insn_raw (x);
4391 add_insn_after (last, after, NULL);
4392 break;
4393 }
4394
4395 return last;
4396 }
4397
4398 /* Make an instruction with body X and code CALL_INSN
4399 and output it after the instruction AFTER. */
4400
4401 rtx
4402 emit_call_insn_after_noloc (rtx x, rtx after)
4403 {
4404 rtx last;
4405
4406 gcc_assert (after);
4407
4408 switch (GET_CODE (x))
4409 {
4410 case DEBUG_INSN:
4411 case INSN:
4412 case JUMP_INSN:
4413 case CALL_INSN:
4414 case CODE_LABEL:
4415 case BARRIER:
4416 case NOTE:
4417 last = emit_insn_after_1 (x, after, NULL);
4418 break;
4419
4420 #ifdef ENABLE_RTL_CHECKING
4421 case SEQUENCE:
4422 gcc_unreachable ();
4423 break;
4424 #endif
4425
4426 default:
4427 last = make_call_insn_raw (x);
4428 add_insn_after (last, after, NULL);
4429 break;
4430 }
4431
4432 return last;
4433 }
4434
4435 /* Make an instruction with body X and code CALL_INSN
4436 and output it after the instruction AFTER. */
4437
4438 rtx
4439 emit_debug_insn_after_noloc (rtx x, rtx after)
4440 {
4441 rtx last;
4442
4443 gcc_assert (after);
4444
4445 switch (GET_CODE (x))
4446 {
4447 case DEBUG_INSN:
4448 case INSN:
4449 case JUMP_INSN:
4450 case CALL_INSN:
4451 case CODE_LABEL:
4452 case BARRIER:
4453 case NOTE:
4454 last = emit_insn_after_1 (x, after, NULL);
4455 break;
4456
4457 #ifdef ENABLE_RTL_CHECKING
4458 case SEQUENCE:
4459 gcc_unreachable ();
4460 break;
4461 #endif
4462
4463 default:
4464 last = make_debug_insn_raw (x);
4465 add_insn_after (last, after, NULL);
4466 break;
4467 }
4468
4469 return last;
4470 }
4471
4472 /* Make an insn of code BARRIER
4473 and output it after the insn AFTER. */
4474
4475 rtx
4476 emit_barrier_after (rtx after)
4477 {
4478 rtx insn = rtx_alloc (BARRIER);
4479
4480 INSN_UID (insn) = cur_insn_uid++;
4481
4482 add_insn_after (insn, after, NULL);
4483 return insn;
4484 }
4485
4486 /* Emit the label LABEL after the insn AFTER. */
4487
4488 rtx
4489 emit_label_after (rtx label, rtx after)
4490 {
4491 /* This can be called twice for the same label
4492 as a result of the confusion that follows a syntax error!
4493 So make it harmless. */
4494 if (INSN_UID (label) == 0)
4495 {
4496 INSN_UID (label) = cur_insn_uid++;
4497 add_insn_after (label, after, NULL);
4498 }
4499
4500 return label;
4501 }
4502
4503 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4504
4505 rtx
4506 emit_note_after (enum insn_note subtype, rtx after)
4507 {
4508 rtx note = rtx_alloc (NOTE);
4509 INSN_UID (note) = cur_insn_uid++;
4510 NOTE_KIND (note) = subtype;
4511 BLOCK_FOR_INSN (note) = NULL;
4512 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4513 add_insn_after (note, after, NULL);
4514 return note;
4515 }
4516 \f
4517 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4518 rtx
4519 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4520 {
4521 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4522
4523 if (pattern == NULL_RTX || !loc)
4524 return last;
4525
4526 after = NEXT_INSN (after);
4527 while (1)
4528 {
4529 if (active_insn_p (after) && !INSN_LOCATOR (after))
4530 INSN_LOCATOR (after) = loc;
4531 if (after == last)
4532 break;
4533 after = NEXT_INSN (after);
4534 }
4535 return last;
4536 }
4537
4538 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4539 rtx
4540 emit_insn_after (rtx pattern, rtx after)
4541 {
4542 rtx prev = after;
4543
4544 while (DEBUG_INSN_P (prev))
4545 prev = PREV_INSN (prev);
4546
4547 if (INSN_P (prev))
4548 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4549 else
4550 return emit_insn_after_noloc (pattern, after, NULL);
4551 }
4552
4553 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4554 rtx
4555 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4556 {
4557 rtx last = emit_jump_insn_after_noloc (pattern, after);
4558
4559 if (pattern == NULL_RTX || !loc)
4560 return last;
4561
4562 after = NEXT_INSN (after);
4563 while (1)
4564 {
4565 if (active_insn_p (after) && !INSN_LOCATOR (after))
4566 INSN_LOCATOR (after) = loc;
4567 if (after == last)
4568 break;
4569 after = NEXT_INSN (after);
4570 }
4571 return last;
4572 }
4573
4574 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4575 rtx
4576 emit_jump_insn_after (rtx pattern, rtx after)
4577 {
4578 rtx prev = after;
4579
4580 while (DEBUG_INSN_P (prev))
4581 prev = PREV_INSN (prev);
4582
4583 if (INSN_P (prev))
4584 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4585 else
4586 return emit_jump_insn_after_noloc (pattern, after);
4587 }
4588
4589 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4590 rtx
4591 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4592 {
4593 rtx last = emit_call_insn_after_noloc (pattern, after);
4594
4595 if (pattern == NULL_RTX || !loc)
4596 return last;
4597
4598 after = NEXT_INSN (after);
4599 while (1)
4600 {
4601 if (active_insn_p (after) && !INSN_LOCATOR (after))
4602 INSN_LOCATOR (after) = loc;
4603 if (after == last)
4604 break;
4605 after = NEXT_INSN (after);
4606 }
4607 return last;
4608 }
4609
4610 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4611 rtx
4612 emit_call_insn_after (rtx pattern, rtx after)
4613 {
4614 rtx prev = after;
4615
4616 while (DEBUG_INSN_P (prev))
4617 prev = PREV_INSN (prev);
4618
4619 if (INSN_P (prev))
4620 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
4621 else
4622 return emit_call_insn_after_noloc (pattern, after);
4623 }
4624
4625 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4626 rtx
4627 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4628 {
4629 rtx last = emit_debug_insn_after_noloc (pattern, after);
4630
4631 if (pattern == NULL_RTX || !loc)
4632 return last;
4633
4634 after = NEXT_INSN (after);
4635 while (1)
4636 {
4637 if (active_insn_p (after) && !INSN_LOCATOR (after))
4638 INSN_LOCATOR (after) = loc;
4639 if (after == last)
4640 break;
4641 after = NEXT_INSN (after);
4642 }
4643 return last;
4644 }
4645
4646 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4647 rtx
4648 emit_debug_insn_after (rtx pattern, rtx after)
4649 {
4650 if (INSN_P (after))
4651 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4652 else
4653 return emit_debug_insn_after_noloc (pattern, after);
4654 }
4655
4656 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4657 rtx
4658 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4659 {
4660 rtx first = PREV_INSN (before);
4661 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4662
4663 if (pattern == NULL_RTX || !loc)
4664 return last;
4665
4666 if (!first)
4667 first = get_insns ();
4668 else
4669 first = NEXT_INSN (first);
4670 while (1)
4671 {
4672 if (active_insn_p (first) && !INSN_LOCATOR (first))
4673 INSN_LOCATOR (first) = loc;
4674 if (first == last)
4675 break;
4676 first = NEXT_INSN (first);
4677 }
4678 return last;
4679 }
4680
4681 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4682 rtx
4683 emit_insn_before (rtx pattern, rtx before)
4684 {
4685 rtx next = before;
4686
4687 while (DEBUG_INSN_P (next))
4688 next = PREV_INSN (next);
4689
4690 if (INSN_P (next))
4691 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4692 else
4693 return emit_insn_before_noloc (pattern, before, NULL);
4694 }
4695
4696 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4697 rtx
4698 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4699 {
4700 rtx first = PREV_INSN (before);
4701 rtx last = emit_jump_insn_before_noloc (pattern, before);
4702
4703 if (pattern == NULL_RTX)
4704 return last;
4705
4706 first = NEXT_INSN (first);
4707 while (1)
4708 {
4709 if (active_insn_p (first) && !INSN_LOCATOR (first))
4710 INSN_LOCATOR (first) = loc;
4711 if (first == last)
4712 break;
4713 first = NEXT_INSN (first);
4714 }
4715 return last;
4716 }
4717
4718 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4719 rtx
4720 emit_jump_insn_before (rtx pattern, rtx before)
4721 {
4722 rtx next = before;
4723
4724 while (DEBUG_INSN_P (next))
4725 next = PREV_INSN (next);
4726
4727 if (INSN_P (next))
4728 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4729 else
4730 return emit_jump_insn_before_noloc (pattern, before);
4731 }
4732
4733 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4734 rtx
4735 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4736 {
4737 rtx first = PREV_INSN (before);
4738 rtx last = emit_call_insn_before_noloc (pattern, before);
4739
4740 if (pattern == NULL_RTX)
4741 return last;
4742
4743 first = NEXT_INSN (first);
4744 while (1)
4745 {
4746 if (active_insn_p (first) && !INSN_LOCATOR (first))
4747 INSN_LOCATOR (first) = loc;
4748 if (first == last)
4749 break;
4750 first = NEXT_INSN (first);
4751 }
4752 return last;
4753 }
4754
4755 /* like emit_call_insn_before_noloc,
4756 but set insn_locator according to before. */
4757 rtx
4758 emit_call_insn_before (rtx pattern, rtx before)
4759 {
4760 rtx next = before;
4761
4762 while (DEBUG_INSN_P (next))
4763 next = PREV_INSN (next);
4764
4765 if (INSN_P (next))
4766 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
4767 else
4768 return emit_call_insn_before_noloc (pattern, before);
4769 }
4770
4771 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4772 rtx
4773 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4774 {
4775 rtx first = PREV_INSN (before);
4776 rtx last = emit_debug_insn_before_noloc (pattern, before);
4777
4778 if (pattern == NULL_RTX)
4779 return last;
4780
4781 first = NEXT_INSN (first);
4782 while (1)
4783 {
4784 if (active_insn_p (first) && !INSN_LOCATOR (first))
4785 INSN_LOCATOR (first) = loc;
4786 if (first == last)
4787 break;
4788 first = NEXT_INSN (first);
4789 }
4790 return last;
4791 }
4792
4793 /* like emit_debug_insn_before_noloc,
4794 but set insn_locator according to before. */
4795 rtx
4796 emit_debug_insn_before (rtx pattern, rtx before)
4797 {
4798 if (INSN_P (before))
4799 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4800 else
4801 return emit_debug_insn_before_noloc (pattern, before);
4802 }
4803 \f
4804 /* Take X and emit it at the end of the doubly-linked
4805 INSN list.
4806
4807 Returns the last insn emitted. */
4808
4809 rtx
4810 emit_insn (rtx x)
4811 {
4812 rtx last = last_insn;
4813 rtx insn;
4814
4815 if (x == NULL_RTX)
4816 return last;
4817
4818 switch (GET_CODE (x))
4819 {
4820 case DEBUG_INSN:
4821 case INSN:
4822 case JUMP_INSN:
4823 case CALL_INSN:
4824 case CODE_LABEL:
4825 case BARRIER:
4826 case NOTE:
4827 insn = x;
4828 while (insn)
4829 {
4830 rtx next = NEXT_INSN (insn);
4831 add_insn (insn);
4832 last = insn;
4833 insn = next;
4834 }
4835 break;
4836
4837 #ifdef ENABLE_RTL_CHECKING
4838 case SEQUENCE:
4839 gcc_unreachable ();
4840 break;
4841 #endif
4842
4843 default:
4844 last = make_insn_raw (x);
4845 add_insn (last);
4846 break;
4847 }
4848
4849 return last;
4850 }
4851
4852 /* Make an insn of code DEBUG_INSN with pattern X
4853 and add it to the end of the doubly-linked list. */
4854
4855 rtx
4856 emit_debug_insn (rtx x)
4857 {
4858 rtx last = last_insn;
4859 rtx insn;
4860
4861 if (x == NULL_RTX)
4862 return last;
4863
4864 switch (GET_CODE (x))
4865 {
4866 case DEBUG_INSN:
4867 case INSN:
4868 case JUMP_INSN:
4869 case CALL_INSN:
4870 case CODE_LABEL:
4871 case BARRIER:
4872 case NOTE:
4873 insn = x;
4874 while (insn)
4875 {
4876 rtx next = NEXT_INSN (insn);
4877 add_insn (insn);
4878 last = insn;
4879 insn = next;
4880 }
4881 break;
4882
4883 #ifdef ENABLE_RTL_CHECKING
4884 case SEQUENCE:
4885 gcc_unreachable ();
4886 break;
4887 #endif
4888
4889 default:
4890 last = make_debug_insn_raw (x);
4891 add_insn (last);
4892 break;
4893 }
4894
4895 return last;
4896 }
4897
4898 /* Make an insn of code JUMP_INSN with pattern X
4899 and add it to the end of the doubly-linked list. */
4900
4901 rtx
4902 emit_jump_insn (rtx x)
4903 {
4904 rtx last = NULL_RTX, insn;
4905
4906 switch (GET_CODE (x))
4907 {
4908 case DEBUG_INSN:
4909 case INSN:
4910 case JUMP_INSN:
4911 case CALL_INSN:
4912 case CODE_LABEL:
4913 case BARRIER:
4914 case NOTE:
4915 insn = x;
4916 while (insn)
4917 {
4918 rtx next = NEXT_INSN (insn);
4919 add_insn (insn);
4920 last = insn;
4921 insn = next;
4922 }
4923 break;
4924
4925 #ifdef ENABLE_RTL_CHECKING
4926 case SEQUENCE:
4927 gcc_unreachable ();
4928 break;
4929 #endif
4930
4931 default:
4932 last = make_jump_insn_raw (x);
4933 add_insn (last);
4934 break;
4935 }
4936
4937 return last;
4938 }
4939
4940 /* Make an insn of code CALL_INSN with pattern X
4941 and add it to the end of the doubly-linked list. */
4942
4943 rtx
4944 emit_call_insn (rtx x)
4945 {
4946 rtx insn;
4947
4948 switch (GET_CODE (x))
4949 {
4950 case DEBUG_INSN:
4951 case INSN:
4952 case JUMP_INSN:
4953 case CALL_INSN:
4954 case CODE_LABEL:
4955 case BARRIER:
4956 case NOTE:
4957 insn = emit_insn (x);
4958 break;
4959
4960 #ifdef ENABLE_RTL_CHECKING
4961 case SEQUENCE:
4962 gcc_unreachable ();
4963 break;
4964 #endif
4965
4966 default:
4967 insn = make_call_insn_raw (x);
4968 add_insn (insn);
4969 break;
4970 }
4971
4972 return insn;
4973 }
4974
4975 /* Add the label LABEL to the end of the doubly-linked list. */
4976
4977 rtx
4978 emit_label (rtx label)
4979 {
4980 /* This can be called twice for the same label
4981 as a result of the confusion that follows a syntax error!
4982 So make it harmless. */
4983 if (INSN_UID (label) == 0)
4984 {
4985 INSN_UID (label) = cur_insn_uid++;
4986 add_insn (label);
4987 }
4988 return label;
4989 }
4990
4991 /* Make an insn of code BARRIER
4992 and add it to the end of the doubly-linked list. */
4993
4994 rtx
4995 emit_barrier (void)
4996 {
4997 rtx barrier = rtx_alloc (BARRIER);
4998 INSN_UID (barrier) = cur_insn_uid++;
4999 add_insn (barrier);
5000 return barrier;
5001 }
5002
5003 /* Emit a copy of note ORIG. */
5004
5005 rtx
5006 emit_note_copy (rtx orig)
5007 {
5008 rtx note;
5009
5010 note = rtx_alloc (NOTE);
5011
5012 INSN_UID (note) = cur_insn_uid++;
5013 NOTE_DATA (note) = NOTE_DATA (orig);
5014 NOTE_KIND (note) = NOTE_KIND (orig);
5015 BLOCK_FOR_INSN (note) = NULL;
5016 add_insn (note);
5017
5018 return note;
5019 }
5020
5021 /* Make an insn of code NOTE or type NOTE_NO
5022 and add it to the end of the doubly-linked list. */
5023
5024 rtx
5025 emit_note (enum insn_note kind)
5026 {
5027 rtx note;
5028
5029 note = rtx_alloc (NOTE);
5030 INSN_UID (note) = cur_insn_uid++;
5031 NOTE_KIND (note) = kind;
5032 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
5033 BLOCK_FOR_INSN (note) = NULL;
5034 add_insn (note);
5035 return note;
5036 }
5037
5038 /* Emit a clobber of lvalue X. */
5039
5040 rtx
5041 emit_clobber (rtx x)
5042 {
5043 /* CONCATs should not appear in the insn stream. */
5044 if (GET_CODE (x) == CONCAT)
5045 {
5046 emit_clobber (XEXP (x, 0));
5047 return emit_clobber (XEXP (x, 1));
5048 }
5049 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5050 }
5051
5052 /* Return a sequence of insns to clobber lvalue X. */
5053
5054 rtx
5055 gen_clobber (rtx x)
5056 {
5057 rtx seq;
5058
5059 start_sequence ();
5060 emit_clobber (x);
5061 seq = get_insns ();
5062 end_sequence ();
5063 return seq;
5064 }
5065
5066 /* Emit a use of rvalue X. */
5067
5068 rtx
5069 emit_use (rtx x)
5070 {
5071 /* CONCATs should not appear in the insn stream. */
5072 if (GET_CODE (x) == CONCAT)
5073 {
5074 emit_use (XEXP (x, 0));
5075 return emit_use (XEXP (x, 1));
5076 }
5077 return emit_insn (gen_rtx_USE (VOIDmode, x));
5078 }
5079
5080 /* Return a sequence of insns to use rvalue X. */
5081
5082 rtx
5083 gen_use (rtx x)
5084 {
5085 rtx seq;
5086
5087 start_sequence ();
5088 emit_use (x);
5089 seq = get_insns ();
5090 end_sequence ();
5091 return seq;
5092 }
5093
5094 /* Cause next statement to emit a line note even if the line number
5095 has not changed. */
5096
5097 void
5098 force_next_line_note (void)
5099 {
5100 last_location = -1;
5101 }
5102
5103 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5104 note of this type already exists, remove it first. */
5105
5106 rtx
5107 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5108 {
5109 rtx note = find_reg_note (insn, kind, NULL_RTX);
5110
5111 switch (kind)
5112 {
5113 case REG_EQUAL:
5114 case REG_EQUIV:
5115 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5116 has multiple sets (some callers assume single_set
5117 means the insn only has one set, when in fact it
5118 means the insn only has one * useful * set). */
5119 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5120 {
5121 gcc_assert (!note);
5122 return NULL_RTX;
5123 }
5124
5125 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5126 It serves no useful purpose and breaks eliminate_regs. */
5127 if (GET_CODE (datum) == ASM_OPERANDS)
5128 return NULL_RTX;
5129
5130 if (note)
5131 {
5132 XEXP (note, 0) = datum;
5133 df_notes_rescan (insn);
5134 return note;
5135 }
5136 break;
5137
5138 default:
5139 if (note)
5140 {
5141 XEXP (note, 0) = datum;
5142 return note;
5143 }
5144 break;
5145 }
5146
5147 add_reg_note (insn, kind, datum);
5148
5149 switch (kind)
5150 {
5151 case REG_EQUAL:
5152 case REG_EQUIV:
5153 df_notes_rescan (insn);
5154 break;
5155 default:
5156 break;
5157 }
5158
5159 return REG_NOTES (insn);
5160 }
5161 \f
5162 /* Return an indication of which type of insn should have X as a body.
5163 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5164
5165 static enum rtx_code
5166 classify_insn (rtx x)
5167 {
5168 if (LABEL_P (x))
5169 return CODE_LABEL;
5170 if (GET_CODE (x) == CALL)
5171 return CALL_INSN;
5172 if (GET_CODE (x) == RETURN)
5173 return JUMP_INSN;
5174 if (GET_CODE (x) == SET)
5175 {
5176 if (SET_DEST (x) == pc_rtx)
5177 return JUMP_INSN;
5178 else if (GET_CODE (SET_SRC (x)) == CALL)
5179 return CALL_INSN;
5180 else
5181 return INSN;
5182 }
5183 if (GET_CODE (x) == PARALLEL)
5184 {
5185 int j;
5186 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5187 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5188 return CALL_INSN;
5189 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5190 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5191 return JUMP_INSN;
5192 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5193 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5194 return CALL_INSN;
5195 }
5196 return INSN;
5197 }
5198
5199 /* Emit the rtl pattern X as an appropriate kind of insn.
5200 If X is a label, it is simply added into the insn chain. */
5201
5202 rtx
5203 emit (rtx x)
5204 {
5205 enum rtx_code code = classify_insn (x);
5206
5207 switch (code)
5208 {
5209 case CODE_LABEL:
5210 return emit_label (x);
5211 case INSN:
5212 return emit_insn (x);
5213 case JUMP_INSN:
5214 {
5215 rtx insn = emit_jump_insn (x);
5216 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5217 return emit_barrier ();
5218 return insn;
5219 }
5220 case CALL_INSN:
5221 return emit_call_insn (x);
5222 case DEBUG_INSN:
5223 return emit_debug_insn (x);
5224 default:
5225 gcc_unreachable ();
5226 }
5227 }
5228 \f
5229 /* Space for free sequence stack entries. */
5230 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5231
5232 /* Begin emitting insns to a sequence. If this sequence will contain
5233 something that might cause the compiler to pop arguments to function
5234 calls (because those pops have previously been deferred; see
5235 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5236 before calling this function. That will ensure that the deferred
5237 pops are not accidentally emitted in the middle of this sequence. */
5238
5239 void
5240 start_sequence (void)
5241 {
5242 struct sequence_stack *tem;
5243
5244 if (free_sequence_stack != NULL)
5245 {
5246 tem = free_sequence_stack;
5247 free_sequence_stack = tem->next;
5248 }
5249 else
5250 tem = GGC_NEW (struct sequence_stack);
5251
5252 tem->next = seq_stack;
5253 tem->first = first_insn;
5254 tem->last = last_insn;
5255
5256 seq_stack = tem;
5257
5258 first_insn = 0;
5259 last_insn = 0;
5260 }
5261
5262 /* Set up the insn chain starting with FIRST as the current sequence,
5263 saving the previously current one. See the documentation for
5264 start_sequence for more information about how to use this function. */
5265
5266 void
5267 push_to_sequence (rtx first)
5268 {
5269 rtx last;
5270
5271 start_sequence ();
5272
5273 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5274
5275 first_insn = first;
5276 last_insn = last;
5277 }
5278
5279 /* Like push_to_sequence, but take the last insn as an argument to avoid
5280 looping through the list. */
5281
5282 void
5283 push_to_sequence2 (rtx first, rtx last)
5284 {
5285 start_sequence ();
5286
5287 first_insn = first;
5288 last_insn = last;
5289 }
5290
5291 /* Set up the outer-level insn chain
5292 as the current sequence, saving the previously current one. */
5293
5294 void
5295 push_topmost_sequence (void)
5296 {
5297 struct sequence_stack *stack, *top = NULL;
5298
5299 start_sequence ();
5300
5301 for (stack = seq_stack; stack; stack = stack->next)
5302 top = stack;
5303
5304 first_insn = top->first;
5305 last_insn = top->last;
5306 }
5307
5308 /* After emitting to the outer-level insn chain, update the outer-level
5309 insn chain, and restore the previous saved state. */
5310
5311 void
5312 pop_topmost_sequence (void)
5313 {
5314 struct sequence_stack *stack, *top = NULL;
5315
5316 for (stack = seq_stack; stack; stack = stack->next)
5317 top = stack;
5318
5319 top->first = first_insn;
5320 top->last = last_insn;
5321
5322 end_sequence ();
5323 }
5324
5325 /* After emitting to a sequence, restore previous saved state.
5326
5327 To get the contents of the sequence just made, you must call
5328 `get_insns' *before* calling here.
5329
5330 If the compiler might have deferred popping arguments while
5331 generating this sequence, and this sequence will not be immediately
5332 inserted into the instruction stream, use do_pending_stack_adjust
5333 before calling get_insns. That will ensure that the deferred
5334 pops are inserted into this sequence, and not into some random
5335 location in the instruction stream. See INHIBIT_DEFER_POP for more
5336 information about deferred popping of arguments. */
5337
5338 void
5339 end_sequence (void)
5340 {
5341 struct sequence_stack *tem = seq_stack;
5342
5343 first_insn = tem->first;
5344 last_insn = tem->last;
5345 seq_stack = tem->next;
5346
5347 memset (tem, 0, sizeof (*tem));
5348 tem->next = free_sequence_stack;
5349 free_sequence_stack = tem;
5350 }
5351
5352 /* Return 1 if currently emitting into a sequence. */
5353
5354 int
5355 in_sequence_p (void)
5356 {
5357 return seq_stack != 0;
5358 }
5359 \f
5360 /* Put the various virtual registers into REGNO_REG_RTX. */
5361
5362 static void
5363 init_virtual_regs (void)
5364 {
5365 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5366 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5367 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5368 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5369 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5370 }
5371
5372 \f
5373 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5374 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5375 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5376 static int copy_insn_n_scratches;
5377
5378 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5379 copied an ASM_OPERANDS.
5380 In that case, it is the original input-operand vector. */
5381 static rtvec orig_asm_operands_vector;
5382
5383 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5384 copied an ASM_OPERANDS.
5385 In that case, it is the copied input-operand vector. */
5386 static rtvec copy_asm_operands_vector;
5387
5388 /* Likewise for the constraints vector. */
5389 static rtvec orig_asm_constraints_vector;
5390 static rtvec copy_asm_constraints_vector;
5391
5392 /* Recursively create a new copy of an rtx for copy_insn.
5393 This function differs from copy_rtx in that it handles SCRATCHes and
5394 ASM_OPERANDs properly.
5395 Normally, this function is not used directly; use copy_insn as front end.
5396 However, you could first copy an insn pattern with copy_insn and then use
5397 this function afterwards to properly copy any REG_NOTEs containing
5398 SCRATCHes. */
5399
5400 rtx
5401 copy_insn_1 (rtx orig)
5402 {
5403 rtx copy;
5404 int i, j;
5405 RTX_CODE code;
5406 const char *format_ptr;
5407
5408 if (orig == NULL)
5409 return NULL;
5410
5411 code = GET_CODE (orig);
5412
5413 switch (code)
5414 {
5415 case REG:
5416 case CONST_INT:
5417 case CONST_DOUBLE:
5418 case CONST_FIXED:
5419 case CONST_VECTOR:
5420 case SYMBOL_REF:
5421 case CODE_LABEL:
5422 case PC:
5423 case CC0:
5424 return orig;
5425 case CLOBBER:
5426 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5427 return orig;
5428 break;
5429
5430 case SCRATCH:
5431 for (i = 0; i < copy_insn_n_scratches; i++)
5432 if (copy_insn_scratch_in[i] == orig)
5433 return copy_insn_scratch_out[i];
5434 break;
5435
5436 case CONST:
5437 if (shared_const_p (orig))
5438 return orig;
5439 break;
5440
5441 /* A MEM with a constant address is not sharable. The problem is that
5442 the constant address may need to be reloaded. If the mem is shared,
5443 then reloading one copy of this mem will cause all copies to appear
5444 to have been reloaded. */
5445
5446 default:
5447 break;
5448 }
5449
5450 /* Copy the various flags, fields, and other information. We assume
5451 that all fields need copying, and then clear the fields that should
5452 not be copied. That is the sensible default behavior, and forces
5453 us to explicitly document why we are *not* copying a flag. */
5454 copy = shallow_copy_rtx (orig);
5455
5456 /* We do not copy the USED flag, which is used as a mark bit during
5457 walks over the RTL. */
5458 RTX_FLAG (copy, used) = 0;
5459
5460 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5461 if (INSN_P (orig))
5462 {
5463 RTX_FLAG (copy, jump) = 0;
5464 RTX_FLAG (copy, call) = 0;
5465 RTX_FLAG (copy, frame_related) = 0;
5466 }
5467
5468 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5469
5470 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5471 switch (*format_ptr++)
5472 {
5473 case 'e':
5474 if (XEXP (orig, i) != NULL)
5475 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5476 break;
5477
5478 case 'E':
5479 case 'V':
5480 if (XVEC (orig, i) == orig_asm_constraints_vector)
5481 XVEC (copy, i) = copy_asm_constraints_vector;
5482 else if (XVEC (orig, i) == orig_asm_operands_vector)
5483 XVEC (copy, i) = copy_asm_operands_vector;
5484 else if (XVEC (orig, i) != NULL)
5485 {
5486 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5487 for (j = 0; j < XVECLEN (copy, i); j++)
5488 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5489 }
5490 break;
5491
5492 case 't':
5493 case 'w':
5494 case 'i':
5495 case 's':
5496 case 'S':
5497 case 'u':
5498 case '0':
5499 /* These are left unchanged. */
5500 break;
5501
5502 default:
5503 gcc_unreachable ();
5504 }
5505
5506 if (code == SCRATCH)
5507 {
5508 i = copy_insn_n_scratches++;
5509 gcc_assert (i < MAX_RECOG_OPERANDS);
5510 copy_insn_scratch_in[i] = orig;
5511 copy_insn_scratch_out[i] = copy;
5512 }
5513 else if (code == ASM_OPERANDS)
5514 {
5515 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5516 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5517 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5518 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5519 }
5520
5521 return copy;
5522 }
5523
5524 /* Create a new copy of an rtx.
5525 This function differs from copy_rtx in that it handles SCRATCHes and
5526 ASM_OPERANDs properly.
5527 INSN doesn't really have to be a full INSN; it could be just the
5528 pattern. */
5529 rtx
5530 copy_insn (rtx insn)
5531 {
5532 copy_insn_n_scratches = 0;
5533 orig_asm_operands_vector = 0;
5534 orig_asm_constraints_vector = 0;
5535 copy_asm_operands_vector = 0;
5536 copy_asm_constraints_vector = 0;
5537 return copy_insn_1 (insn);
5538 }
5539
5540 /* Initialize data structures and variables in this file
5541 before generating rtl for each function. */
5542
5543 void
5544 init_emit (void)
5545 {
5546 first_insn = NULL;
5547 last_insn = NULL;
5548 if (MIN_NONDEBUG_INSN_UID)
5549 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5550 else
5551 cur_insn_uid = 1;
5552 cur_debug_insn_uid = 1;
5553 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5554 last_location = UNKNOWN_LOCATION;
5555 first_label_num = label_num;
5556 seq_stack = NULL;
5557
5558 /* Init the tables that describe all the pseudo regs. */
5559
5560 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5561
5562 crtl->emit.regno_pointer_align
5563 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5564
5565 regno_reg_rtx
5566 = GGC_NEWVEC (rtx, crtl->emit.regno_pointer_align_length);
5567
5568 /* Put copies of all the hard registers into regno_reg_rtx. */
5569 memcpy (regno_reg_rtx,
5570 static_regno_reg_rtx,
5571 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5572
5573 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5574 init_virtual_regs ();
5575
5576 /* Indicate that the virtual registers and stack locations are
5577 all pointers. */
5578 REG_POINTER (stack_pointer_rtx) = 1;
5579 REG_POINTER (frame_pointer_rtx) = 1;
5580 REG_POINTER (hard_frame_pointer_rtx) = 1;
5581 REG_POINTER (arg_pointer_rtx) = 1;
5582
5583 REG_POINTER (virtual_incoming_args_rtx) = 1;
5584 REG_POINTER (virtual_stack_vars_rtx) = 1;
5585 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5586 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5587 REG_POINTER (virtual_cfa_rtx) = 1;
5588
5589 #ifdef STACK_BOUNDARY
5590 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5591 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5592 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5593 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5594
5595 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5596 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5597 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5598 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5599 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5600 #endif
5601
5602 #ifdef INIT_EXPANDERS
5603 INIT_EXPANDERS;
5604 #endif
5605 }
5606
5607 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5608
5609 static rtx
5610 gen_const_vector (enum machine_mode mode, int constant)
5611 {
5612 rtx tem;
5613 rtvec v;
5614 int units, i;
5615 enum machine_mode inner;
5616
5617 units = GET_MODE_NUNITS (mode);
5618 inner = GET_MODE_INNER (mode);
5619
5620 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5621
5622 v = rtvec_alloc (units);
5623
5624 /* We need to call this function after we set the scalar const_tiny_rtx
5625 entries. */
5626 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5627
5628 for (i = 0; i < units; ++i)
5629 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5630
5631 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5632 return tem;
5633 }
5634
5635 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5636 all elements are zero, and the one vector when all elements are one. */
5637 rtx
5638 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5639 {
5640 enum machine_mode inner = GET_MODE_INNER (mode);
5641 int nunits = GET_MODE_NUNITS (mode);
5642 rtx x;
5643 int i;
5644
5645 /* Check to see if all of the elements have the same value. */
5646 x = RTVEC_ELT (v, nunits - 1);
5647 for (i = nunits - 2; i >= 0; i--)
5648 if (RTVEC_ELT (v, i) != x)
5649 break;
5650
5651 /* If the values are all the same, check to see if we can use one of the
5652 standard constant vectors. */
5653 if (i == -1)
5654 {
5655 if (x == CONST0_RTX (inner))
5656 return CONST0_RTX (mode);
5657 else if (x == CONST1_RTX (inner))
5658 return CONST1_RTX (mode);
5659 }
5660
5661 return gen_rtx_raw_CONST_VECTOR (mode, v);
5662 }
5663
5664 /* Initialise global register information required by all functions. */
5665
5666 void
5667 init_emit_regs (void)
5668 {
5669 int i;
5670
5671 /* Reset register attributes */
5672 htab_empty (reg_attrs_htab);
5673
5674 /* We need reg_raw_mode, so initialize the modes now. */
5675 init_reg_modes_target ();
5676
5677 /* Assign register numbers to the globally defined register rtx. */
5678 pc_rtx = gen_rtx_PC (VOIDmode);
5679 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5680 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5681 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5682 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5683 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5684 virtual_incoming_args_rtx =
5685 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5686 virtual_stack_vars_rtx =
5687 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5688 virtual_stack_dynamic_rtx =
5689 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5690 virtual_outgoing_args_rtx =
5691 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5692 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5693
5694 /* Initialize RTL for commonly used hard registers. These are
5695 copied into regno_reg_rtx as we begin to compile each function. */
5696 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5697 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5698
5699 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5700 return_address_pointer_rtx
5701 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5702 #endif
5703
5704 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5705 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5706 else
5707 pic_offset_table_rtx = NULL_RTX;
5708 }
5709
5710 /* Create some permanent unique rtl objects shared between all functions.
5711 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5712
5713 void
5714 init_emit_once (int line_numbers)
5715 {
5716 int i;
5717 enum machine_mode mode;
5718 enum machine_mode double_mode;
5719
5720 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5721 hash tables. */
5722 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5723 const_int_htab_eq, NULL);
5724
5725 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5726 const_double_htab_eq, NULL);
5727
5728 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5729 const_fixed_htab_eq, NULL);
5730
5731 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5732 mem_attrs_htab_eq, NULL);
5733 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5734 reg_attrs_htab_eq, NULL);
5735
5736 no_line_numbers = ! line_numbers;
5737
5738 /* Compute the word and byte modes. */
5739
5740 byte_mode = VOIDmode;
5741 word_mode = VOIDmode;
5742 double_mode = VOIDmode;
5743
5744 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5745 mode != VOIDmode;
5746 mode = GET_MODE_WIDER_MODE (mode))
5747 {
5748 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5749 && byte_mode == VOIDmode)
5750 byte_mode = mode;
5751
5752 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5753 && word_mode == VOIDmode)
5754 word_mode = mode;
5755 }
5756
5757 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5758 mode != VOIDmode;
5759 mode = GET_MODE_WIDER_MODE (mode))
5760 {
5761 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5762 && double_mode == VOIDmode)
5763 double_mode = mode;
5764 }
5765
5766 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5767
5768 #ifdef INIT_EXPANDERS
5769 /* This is to initialize {init|mark|free}_machine_status before the first
5770 call to push_function_context_to. This is needed by the Chill front
5771 end which calls push_function_context_to before the first call to
5772 init_function_start. */
5773 INIT_EXPANDERS;
5774 #endif
5775
5776 /* Create the unique rtx's for certain rtx codes and operand values. */
5777
5778 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5779 tries to use these variables. */
5780 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5781 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5782 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5783
5784 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5785 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5786 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5787 else
5788 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5789
5790 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5791 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5792 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5793
5794 dconstm1 = dconst1;
5795 dconstm1.sign = 1;
5796
5797 dconsthalf = dconst1;
5798 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5799
5800 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5801 {
5802 const REAL_VALUE_TYPE *const r =
5803 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5804
5805 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5806 mode != VOIDmode;
5807 mode = GET_MODE_WIDER_MODE (mode))
5808 const_tiny_rtx[i][(int) mode] =
5809 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5810
5811 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5812 mode != VOIDmode;
5813 mode = GET_MODE_WIDER_MODE (mode))
5814 const_tiny_rtx[i][(int) mode] =
5815 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5816
5817 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5818
5819 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5820 mode != VOIDmode;
5821 mode = GET_MODE_WIDER_MODE (mode))
5822 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5823
5824 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5825 mode != VOIDmode;
5826 mode = GET_MODE_WIDER_MODE (mode))
5827 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5828 }
5829
5830 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5831 mode != VOIDmode;
5832 mode = GET_MODE_WIDER_MODE (mode))
5833 {
5834 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5835 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5836 }
5837
5838 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5839 mode != VOIDmode;
5840 mode = GET_MODE_WIDER_MODE (mode))
5841 {
5842 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5843 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5844 }
5845
5846 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5847 mode != VOIDmode;
5848 mode = GET_MODE_WIDER_MODE (mode))
5849 {
5850 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5851 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5852 }
5853
5854 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5855 mode != VOIDmode;
5856 mode = GET_MODE_WIDER_MODE (mode))
5857 {
5858 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5859 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5860 }
5861
5862 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5863 mode != VOIDmode;
5864 mode = GET_MODE_WIDER_MODE (mode))
5865 {
5866 FCONST0(mode).data.high = 0;
5867 FCONST0(mode).data.low = 0;
5868 FCONST0(mode).mode = mode;
5869 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5870 FCONST0 (mode), mode);
5871 }
5872
5873 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5874 mode != VOIDmode;
5875 mode = GET_MODE_WIDER_MODE (mode))
5876 {
5877 FCONST0(mode).data.high = 0;
5878 FCONST0(mode).data.low = 0;
5879 FCONST0(mode).mode = mode;
5880 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5881 FCONST0 (mode), mode);
5882 }
5883
5884 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5885 mode != VOIDmode;
5886 mode = GET_MODE_WIDER_MODE (mode))
5887 {
5888 FCONST0(mode).data.high = 0;
5889 FCONST0(mode).data.low = 0;
5890 FCONST0(mode).mode = mode;
5891 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5892 FCONST0 (mode), mode);
5893
5894 /* We store the value 1. */
5895 FCONST1(mode).data.high = 0;
5896 FCONST1(mode).data.low = 0;
5897 FCONST1(mode).mode = mode;
5898 lshift_double (1, 0, GET_MODE_FBIT (mode),
5899 2 * HOST_BITS_PER_WIDE_INT,
5900 &FCONST1(mode).data.low,
5901 &FCONST1(mode).data.high,
5902 SIGNED_FIXED_POINT_MODE_P (mode));
5903 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5904 FCONST1 (mode), mode);
5905 }
5906
5907 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5908 mode != VOIDmode;
5909 mode = GET_MODE_WIDER_MODE (mode))
5910 {
5911 FCONST0(mode).data.high = 0;
5912 FCONST0(mode).data.low = 0;
5913 FCONST0(mode).mode = mode;
5914 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5915 FCONST0 (mode), mode);
5916
5917 /* We store the value 1. */
5918 FCONST1(mode).data.high = 0;
5919 FCONST1(mode).data.low = 0;
5920 FCONST1(mode).mode = mode;
5921 lshift_double (1, 0, GET_MODE_FBIT (mode),
5922 2 * HOST_BITS_PER_WIDE_INT,
5923 &FCONST1(mode).data.low,
5924 &FCONST1(mode).data.high,
5925 SIGNED_FIXED_POINT_MODE_P (mode));
5926 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5927 FCONST1 (mode), mode);
5928 }
5929
5930 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5931 mode != VOIDmode;
5932 mode = GET_MODE_WIDER_MODE (mode))
5933 {
5934 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5935 }
5936
5937 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5938 mode != VOIDmode;
5939 mode = GET_MODE_WIDER_MODE (mode))
5940 {
5941 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5942 }
5943
5944 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5945 mode != VOIDmode;
5946 mode = GET_MODE_WIDER_MODE (mode))
5947 {
5948 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5949 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5950 }
5951
5952 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5953 mode != VOIDmode;
5954 mode = GET_MODE_WIDER_MODE (mode))
5955 {
5956 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5957 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5958 }
5959
5960 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5961 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5962 const_tiny_rtx[0][i] = const0_rtx;
5963
5964 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5965 if (STORE_FLAG_VALUE == 1)
5966 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5967 }
5968 \f
5969 /* Produce exact duplicate of insn INSN after AFTER.
5970 Care updating of libcall regions if present. */
5971
5972 rtx
5973 emit_copy_of_insn_after (rtx insn, rtx after)
5974 {
5975 rtx new_rtx, link;
5976
5977 switch (GET_CODE (insn))
5978 {
5979 case INSN:
5980 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
5981 break;
5982
5983 case JUMP_INSN:
5984 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5985 break;
5986
5987 case DEBUG_INSN:
5988 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5989 break;
5990
5991 case CALL_INSN:
5992 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5993 if (CALL_INSN_FUNCTION_USAGE (insn))
5994 CALL_INSN_FUNCTION_USAGE (new_rtx)
5995 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5996 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5997 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5998 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
5999 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6000 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6001 break;
6002
6003 default:
6004 gcc_unreachable ();
6005 }
6006
6007 /* Update LABEL_NUSES. */
6008 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6009
6010 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
6011
6012 /* If the old insn is frame related, then so is the new one. This is
6013 primarily needed for IA-64 unwind info which marks epilogue insns,
6014 which may be duplicated by the basic block reordering code. */
6015 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6016
6017 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6018 will make them. REG_LABEL_TARGETs are created there too, but are
6019 supposed to be sticky, so we copy them. */
6020 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6021 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6022 {
6023 if (GET_CODE (link) == EXPR_LIST)
6024 add_reg_note (new_rtx, REG_NOTE_KIND (link),
6025 copy_insn_1 (XEXP (link, 0)));
6026 else
6027 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
6028 }
6029
6030 INSN_CODE (new_rtx) = INSN_CODE (insn);
6031 return new_rtx;
6032 }
6033
6034 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6035 rtx
6036 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6037 {
6038 if (hard_reg_clobbers[mode][regno])
6039 return hard_reg_clobbers[mode][regno];
6040 else
6041 return (hard_reg_clobbers[mode][regno] =
6042 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6043 }
6044
6045 #include "gt-emit-rtl.h"