]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/explow.c
b3c82b836fd4cc9be33c3bb6ce516453930164de
[thirdparty/gcc.git] / gcc / explow.c
1 /* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "flags.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "hard-reg-set.h"
36 #include "insn-config.h"
37 #include "ggc.h"
38 #include "recog.h"
39 #include "langhooks.h"
40
41 static rtx break_out_memory_refs (rtx);
42 static void emit_stack_probe (rtx);
43
44
45 /* Truncate and perhaps sign-extend C as appropriate for MODE. */
46
47 HOST_WIDE_INT
48 trunc_int_for_mode (HOST_WIDE_INT c, enum machine_mode mode)
49 {
50 int width = GET_MODE_BITSIZE (mode);
51
52 /* You want to truncate to a _what_? */
53 if (! SCALAR_INT_MODE_P (mode))
54 abort ();
55
56 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
57 if (mode == BImode)
58 return c & 1 ? STORE_FLAG_VALUE : 0;
59
60 /* Sign-extend for the requested mode. */
61
62 if (width < HOST_BITS_PER_WIDE_INT)
63 {
64 HOST_WIDE_INT sign = 1;
65 sign <<= width - 1;
66 c &= (sign << 1) - 1;
67 c ^= sign;
68 c -= sign;
69 }
70
71 return c;
72 }
73
74 /* Return an rtx for the sum of X and the integer C.
75
76 This function should be used via the `plus_constant' macro. */
77
78 rtx
79 plus_constant_wide (rtx x, HOST_WIDE_INT c)
80 {
81 RTX_CODE code;
82 rtx y;
83 enum machine_mode mode;
84 rtx tem;
85 int all_constant = 0;
86
87 if (c == 0)
88 return x;
89
90 restart:
91
92 code = GET_CODE (x);
93 mode = GET_MODE (x);
94 y = x;
95
96 switch (code)
97 {
98 case CONST_INT:
99 return GEN_INT (INTVAL (x) + c);
100
101 case CONST_DOUBLE:
102 {
103 unsigned HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
104 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
105 unsigned HOST_WIDE_INT l2 = c;
106 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
107 unsigned HOST_WIDE_INT lv;
108 HOST_WIDE_INT hv;
109
110 add_double (l1, h1, l2, h2, &lv, &hv);
111
112 return immed_double_const (lv, hv, VOIDmode);
113 }
114
115 case MEM:
116 /* If this is a reference to the constant pool, try replacing it with
117 a reference to a new constant. If the resulting address isn't
118 valid, don't return it because we have no way to validize it. */
119 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
120 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
121 {
122 tem
123 = force_const_mem (GET_MODE (x),
124 plus_constant (get_pool_constant (XEXP (x, 0)),
125 c));
126 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
127 return tem;
128 }
129 break;
130
131 case CONST:
132 /* If adding to something entirely constant, set a flag
133 so that we can add a CONST around the result. */
134 x = XEXP (x, 0);
135 all_constant = 1;
136 goto restart;
137
138 case SYMBOL_REF:
139 case LABEL_REF:
140 all_constant = 1;
141 break;
142
143 case PLUS:
144 /* The interesting case is adding the integer to a sum.
145 Look for constant term in the sum and combine
146 with C. For an integer constant term, we make a combined
147 integer. For a constant term that is not an explicit integer,
148 we cannot really combine, but group them together anyway.
149
150 Restart or use a recursive call in case the remaining operand is
151 something that we handle specially, such as a SYMBOL_REF.
152
153 We may not immediately return from the recursive call here, lest
154 all_constant gets lost. */
155
156 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
157 {
158 c += INTVAL (XEXP (x, 1));
159
160 if (GET_MODE (x) != VOIDmode)
161 c = trunc_int_for_mode (c, GET_MODE (x));
162
163 x = XEXP (x, 0);
164 goto restart;
165 }
166 else if (CONSTANT_P (XEXP (x, 1)))
167 {
168 x = gen_rtx_PLUS (mode, XEXP (x, 0), plus_constant (XEXP (x, 1), c));
169 c = 0;
170 }
171 else if (find_constant_term_loc (&y))
172 {
173 /* We need to be careful since X may be shared and we can't
174 modify it in place. */
175 rtx copy = copy_rtx (x);
176 rtx *const_loc = find_constant_term_loc (&copy);
177
178 *const_loc = plus_constant (*const_loc, c);
179 x = copy;
180 c = 0;
181 }
182 break;
183
184 default:
185 break;
186 }
187
188 if (c != 0)
189 x = gen_rtx_PLUS (mode, x, GEN_INT (c));
190
191 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
192 return x;
193 else if (all_constant)
194 return gen_rtx_CONST (mode, x);
195 else
196 return x;
197 }
198 \f
199 /* If X is a sum, return a new sum like X but lacking any constant terms.
200 Add all the removed constant terms into *CONSTPTR.
201 X itself is not altered. The result != X if and only if
202 it is not isomorphic to X. */
203
204 rtx
205 eliminate_constant_term (rtx x, rtx *constptr)
206 {
207 rtx x0, x1;
208 rtx tem;
209
210 if (GET_CODE (x) != PLUS)
211 return x;
212
213 /* First handle constants appearing at this level explicitly. */
214 if (GET_CODE (XEXP (x, 1)) == CONST_INT
215 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
216 XEXP (x, 1)))
217 && GET_CODE (tem) == CONST_INT)
218 {
219 *constptr = tem;
220 return eliminate_constant_term (XEXP (x, 0), constptr);
221 }
222
223 tem = const0_rtx;
224 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
225 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
226 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
227 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
228 *constptr, tem))
229 && GET_CODE (tem) == CONST_INT)
230 {
231 *constptr = tem;
232 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
233 }
234
235 return x;
236 }
237
238 /* Return an rtx for the size in bytes of the value of EXP. */
239
240 rtx
241 expr_size (tree exp)
242 {
243 tree size = lang_hooks.expr_size (exp);
244
245 if (CONTAINS_PLACEHOLDER_P (size))
246 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
247
248 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
249 }
250
251 /* Return a wide integer for the size in bytes of the value of EXP, or -1
252 if the size can vary or is larger than an integer. */
253
254 HOST_WIDE_INT
255 int_expr_size (tree exp)
256 {
257 tree t = lang_hooks.expr_size (exp);
258
259 if (t == 0
260 || TREE_CODE (t) != INTEGER_CST
261 || TREE_OVERFLOW (t)
262 || TREE_INT_CST_HIGH (t) != 0
263 /* If the result would appear negative, it's too big to represent. */
264 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
265 return -1;
266
267 return TREE_INT_CST_LOW (t);
268 }
269 \f
270 /* Return a copy of X in which all memory references
271 and all constants that involve symbol refs
272 have been replaced with new temporary registers.
273 Also emit code to load the memory locations and constants
274 into those registers.
275
276 If X contains no such constants or memory references,
277 X itself (not a copy) is returned.
278
279 If a constant is found in the address that is not a legitimate constant
280 in an insn, it is left alone in the hope that it might be valid in the
281 address.
282
283 X may contain no arithmetic except addition, subtraction and multiplication.
284 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
285
286 static rtx
287 break_out_memory_refs (rtx x)
288 {
289 if (GET_CODE (x) == MEM
290 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
291 && GET_MODE (x) != VOIDmode))
292 x = force_reg (GET_MODE (x), x);
293 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
294 || GET_CODE (x) == MULT)
295 {
296 rtx op0 = break_out_memory_refs (XEXP (x, 0));
297 rtx op1 = break_out_memory_refs (XEXP (x, 1));
298
299 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
300 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
301 }
302
303 return x;
304 }
305
306 /* Given X, a memory address in ptr_mode, convert it to an address
307 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
308 the fact that pointers are not allowed to overflow by commuting arithmetic
309 operations over conversions so that address arithmetic insns can be
310 used. */
311
312 rtx
313 convert_memory_address (enum machine_mode to_mode ATTRIBUTE_UNUSED,
314 rtx x)
315 {
316 #ifndef POINTERS_EXTEND_UNSIGNED
317 return x;
318 #else /* defined(POINTERS_EXTEND_UNSIGNED) */
319 enum machine_mode from_mode;
320 rtx temp;
321 enum rtx_code code;
322
323 /* If X already has the right mode, just return it. */
324 if (GET_MODE (x) == to_mode)
325 return x;
326
327 from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
328
329 /* Here we handle some special cases. If none of them apply, fall through
330 to the default case. */
331 switch (GET_CODE (x))
332 {
333 case CONST_INT:
334 case CONST_DOUBLE:
335 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
336 code = TRUNCATE;
337 else if (POINTERS_EXTEND_UNSIGNED < 0)
338 break;
339 else if (POINTERS_EXTEND_UNSIGNED > 0)
340 code = ZERO_EXTEND;
341 else
342 code = SIGN_EXTEND;
343 temp = simplify_unary_operation (code, to_mode, x, from_mode);
344 if (temp)
345 return temp;
346 break;
347
348 case SUBREG:
349 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
350 && GET_MODE (SUBREG_REG (x)) == to_mode)
351 return SUBREG_REG (x);
352 break;
353
354 case LABEL_REF:
355 temp = gen_rtx_LABEL_REF (to_mode, XEXP (x, 0));
356 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
357 return temp;
358 break;
359
360 case SYMBOL_REF:
361 temp = shallow_copy_rtx (x);
362 PUT_MODE (temp, to_mode);
363 return temp;
364 break;
365
366 case CONST:
367 return gen_rtx_CONST (to_mode,
368 convert_memory_address (to_mode, XEXP (x, 0)));
369 break;
370
371 case PLUS:
372 case MULT:
373 /* For addition we can safely permute the conversion and addition
374 operation if one operand is a constant and converting the constant
375 does not change it. We can always safely permute them if we are
376 making the address narrower. */
377 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
378 || (GET_CODE (x) == PLUS
379 && GET_CODE (XEXP (x, 1)) == CONST_INT
380 && XEXP (x, 1) == convert_memory_address (to_mode, XEXP (x, 1))))
381 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
382 convert_memory_address (to_mode, XEXP (x, 0)),
383 XEXP (x, 1));
384 break;
385
386 default:
387 break;
388 }
389
390 return convert_modes (to_mode, from_mode,
391 x, POINTERS_EXTEND_UNSIGNED);
392 #endif /* defined(POINTERS_EXTEND_UNSIGNED) */
393 }
394
395 /* Given a memory address or facsimile X, construct a new address,
396 currently equivalent, that is stable: future stores won't change it.
397
398 X must be composed of constants, register and memory references
399 combined with addition, subtraction and multiplication:
400 in other words, just what you can get from expand_expr if sum_ok is 1.
401
402 Works by making copies of all regs and memory locations used
403 by X and combining them the same way X does.
404 You could also stabilize the reference to this address
405 by copying the address to a register with copy_to_reg;
406 but then you wouldn't get indexed addressing in the reference. */
407
408 rtx
409 copy_all_regs (rtx x)
410 {
411 if (GET_CODE (x) == REG)
412 {
413 if (REGNO (x) != FRAME_POINTER_REGNUM
414 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
415 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
416 #endif
417 )
418 x = copy_to_reg (x);
419 }
420 else if (GET_CODE (x) == MEM)
421 x = copy_to_reg (x);
422 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
423 || GET_CODE (x) == MULT)
424 {
425 rtx op0 = copy_all_regs (XEXP (x, 0));
426 rtx op1 = copy_all_regs (XEXP (x, 1));
427 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
428 x = gen_rtx_fmt_ee (GET_CODE (x), Pmode, op0, op1);
429 }
430 return x;
431 }
432 \f
433 /* Return something equivalent to X but valid as a memory address
434 for something of mode MODE. When X is not itself valid, this
435 works by copying X or subexpressions of it into registers. */
436
437 rtx
438 memory_address (enum machine_mode mode, rtx x)
439 {
440 rtx oldx = x;
441
442 if (GET_CODE (x) == ADDRESSOF)
443 return x;
444
445 x = convert_memory_address (Pmode, x);
446
447 /* By passing constant addresses through registers
448 we get a chance to cse them. */
449 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
450 x = force_reg (Pmode, x);
451
452 /* Accept a QUEUED that refers to a REG
453 even though that isn't a valid address.
454 On attempting to put this in an insn we will call protect_from_queue
455 which will turn it into a REG, which is valid. */
456 else if (GET_CODE (x) == QUEUED
457 && GET_CODE (QUEUED_VAR (x)) == REG)
458 ;
459
460 /* We get better cse by rejecting indirect addressing at this stage.
461 Let the combiner create indirect addresses where appropriate.
462 For now, generate the code so that the subexpressions useful to share
463 are visible. But not if cse won't be done! */
464 else
465 {
466 if (! cse_not_expected && GET_CODE (x) != REG)
467 x = break_out_memory_refs (x);
468
469 /* At this point, any valid address is accepted. */
470 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
471
472 /* If it was valid before but breaking out memory refs invalidated it,
473 use it the old way. */
474 if (memory_address_p (mode, oldx))
475 goto win2;
476
477 /* Perform machine-dependent transformations on X
478 in certain cases. This is not necessary since the code
479 below can handle all possible cases, but machine-dependent
480 transformations can make better code. */
481 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
482
483 /* PLUS and MULT can appear in special ways
484 as the result of attempts to make an address usable for indexing.
485 Usually they are dealt with by calling force_operand, below.
486 But a sum containing constant terms is special
487 if removing them makes the sum a valid address:
488 then we generate that address in a register
489 and index off of it. We do this because it often makes
490 shorter code, and because the addresses thus generated
491 in registers often become common subexpressions. */
492 if (GET_CODE (x) == PLUS)
493 {
494 rtx constant_term = const0_rtx;
495 rtx y = eliminate_constant_term (x, &constant_term);
496 if (constant_term == const0_rtx
497 || ! memory_address_p (mode, y))
498 x = force_operand (x, NULL_RTX);
499 else
500 {
501 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
502 if (! memory_address_p (mode, y))
503 x = force_operand (x, NULL_RTX);
504 else
505 x = y;
506 }
507 }
508
509 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
510 x = force_operand (x, NULL_RTX);
511
512 /* If we have a register that's an invalid address,
513 it must be a hard reg of the wrong class. Copy it to a pseudo. */
514 else if (GET_CODE (x) == REG)
515 x = copy_to_reg (x);
516
517 /* Last resort: copy the value to a register, since
518 the register is a valid address. */
519 else
520 x = force_reg (Pmode, x);
521
522 goto done;
523
524 win2:
525 x = oldx;
526 win:
527 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
528 /* Don't copy an addr via a reg if it is one of our stack slots. */
529 && ! (GET_CODE (x) == PLUS
530 && (XEXP (x, 0) == virtual_stack_vars_rtx
531 || XEXP (x, 0) == virtual_incoming_args_rtx)))
532 {
533 if (general_operand (x, Pmode))
534 x = force_reg (Pmode, x);
535 else
536 x = force_operand (x, NULL_RTX);
537 }
538 }
539
540 done:
541
542 /* If we didn't change the address, we are done. Otherwise, mark
543 a reg as a pointer if we have REG or REG + CONST_INT. */
544 if (oldx == x)
545 return x;
546 else if (GET_CODE (x) == REG)
547 mark_reg_pointer (x, BITS_PER_UNIT);
548 else if (GET_CODE (x) == PLUS
549 && GET_CODE (XEXP (x, 0)) == REG
550 && GET_CODE (XEXP (x, 1)) == CONST_INT)
551 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
552
553 /* OLDX may have been the address on a temporary. Update the address
554 to indicate that X is now used. */
555 update_temp_slot_address (oldx, x);
556
557 return x;
558 }
559
560 /* Like `memory_address' but pretend `flag_force_addr' is 0. */
561
562 rtx
563 memory_address_noforce (enum machine_mode mode, rtx x)
564 {
565 int ambient_force_addr = flag_force_addr;
566 rtx val;
567
568 flag_force_addr = 0;
569 val = memory_address (mode, x);
570 flag_force_addr = ambient_force_addr;
571 return val;
572 }
573
574 /* Convert a mem ref into one with a valid memory address.
575 Pass through anything else unchanged. */
576
577 rtx
578 validize_mem (rtx ref)
579 {
580 if (GET_CODE (ref) != MEM)
581 return ref;
582 if (! (flag_force_addr && CONSTANT_ADDRESS_P (XEXP (ref, 0)))
583 && memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
584 return ref;
585
586 /* Don't alter REF itself, since that is probably a stack slot. */
587 return replace_equiv_address (ref, XEXP (ref, 0));
588 }
589 \f
590 /* Given REF, either a MEM or a REG, and T, either the type of X or
591 the expression corresponding to REF, set RTX_UNCHANGING_P if
592 appropriate. */
593
594 void
595 maybe_set_unchanging (rtx ref, tree t)
596 {
597 /* We can set RTX_UNCHANGING_P from TREE_READONLY for decls whose
598 initialization is only executed once, or whose initializer always
599 has the same value. Currently we simplify this to PARM_DECLs in the
600 first case, and decls with TREE_CONSTANT initializers in the second.
601
602 We cannot do this for non-static aggregates, because of the double
603 writes that can be generated by store_constructor, depending on the
604 contents of the initializer. Yes, this does eliminate a good fraction
605 of the number of uses of RTX_UNCHANGING_P for a language like Ada.
606 It also eliminates a good quantity of bugs. Let this be incentive to
607 eliminate RTX_UNCHANGING_P entirely in favor of a more reliable
608 solution, perhaps based on alias sets. */
609
610 if ((TREE_READONLY (t) && DECL_P (t)
611 && (TREE_STATIC (t) || ! AGGREGATE_TYPE_P (TREE_TYPE (t)))
612 && (TREE_CODE (t) == PARM_DECL
613 || (DECL_INITIAL (t) && TREE_CONSTANT (DECL_INITIAL (t)))))
614 || TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
615 RTX_UNCHANGING_P (ref) = 1;
616 }
617 \f
618 /* Return a modified copy of X with its memory address copied
619 into a temporary register to protect it from side effects.
620 If X is not a MEM, it is returned unchanged (and not copied).
621 Perhaps even if it is a MEM, if there is no need to change it. */
622
623 rtx
624 stabilize (rtx x)
625 {
626 if (GET_CODE (x) != MEM
627 || ! rtx_unstable_p (XEXP (x, 0)))
628 return x;
629
630 return
631 replace_equiv_address (x, force_reg (Pmode, copy_all_regs (XEXP (x, 0))));
632 }
633 \f
634 /* Copy the value or contents of X to a new temp reg and return that reg. */
635
636 rtx
637 copy_to_reg (rtx x)
638 {
639 rtx temp = gen_reg_rtx (GET_MODE (x));
640
641 /* If not an operand, must be an address with PLUS and MULT so
642 do the computation. */
643 if (! general_operand (x, VOIDmode))
644 x = force_operand (x, temp);
645
646 if (x != temp)
647 emit_move_insn (temp, x);
648
649 return temp;
650 }
651
652 /* Like copy_to_reg but always give the new register mode Pmode
653 in case X is a constant. */
654
655 rtx
656 copy_addr_to_reg (rtx x)
657 {
658 return copy_to_mode_reg (Pmode, x);
659 }
660
661 /* Like copy_to_reg but always give the new register mode MODE
662 in case X is a constant. */
663
664 rtx
665 copy_to_mode_reg (enum machine_mode mode, rtx x)
666 {
667 rtx temp = gen_reg_rtx (mode);
668
669 /* If not an operand, must be an address with PLUS and MULT so
670 do the computation. */
671 if (! general_operand (x, VOIDmode))
672 x = force_operand (x, temp);
673
674 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
675 abort ();
676 if (x != temp)
677 emit_move_insn (temp, x);
678 return temp;
679 }
680
681 /* Load X into a register if it is not already one.
682 Use mode MODE for the register.
683 X should be valid for mode MODE, but it may be a constant which
684 is valid for all integer modes; that's why caller must specify MODE.
685
686 The caller must not alter the value in the register we return,
687 since we mark it as a "constant" register. */
688
689 rtx
690 force_reg (enum machine_mode mode, rtx x)
691 {
692 rtx temp, insn, set;
693
694 if (GET_CODE (x) == REG)
695 return x;
696
697 if (general_operand (x, mode))
698 {
699 temp = gen_reg_rtx (mode);
700 insn = emit_move_insn (temp, x);
701 }
702 else
703 {
704 temp = force_operand (x, NULL_RTX);
705 if (GET_CODE (temp) == REG)
706 insn = get_last_insn ();
707 else
708 {
709 rtx temp2 = gen_reg_rtx (mode);
710 insn = emit_move_insn (temp2, temp);
711 temp = temp2;
712 }
713 }
714
715 /* Let optimizers know that TEMP's value never changes
716 and that X can be substituted for it. Don't get confused
717 if INSN set something else (such as a SUBREG of TEMP). */
718 if (CONSTANT_P (x)
719 && (set = single_set (insn)) != 0
720 && SET_DEST (set) == temp
721 && ! rtx_equal_p (x, SET_SRC (set)))
722 set_unique_reg_note (insn, REG_EQUAL, x);
723
724 /* Let optimizers know that TEMP is a pointer, and if so, the
725 known alignment of that pointer. */
726 {
727 unsigned align = 0;
728 if (GET_CODE (x) == SYMBOL_REF)
729 {
730 align = BITS_PER_UNIT;
731 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
732 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
733 }
734 else if (GET_CODE (x) == LABEL_REF)
735 align = BITS_PER_UNIT;
736 else if (GET_CODE (x) == CONST
737 && GET_CODE (XEXP (x, 0)) == PLUS
738 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
739 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
740 {
741 rtx s = XEXP (XEXP (x, 0), 0);
742 rtx c = XEXP (XEXP (x, 0), 1);
743 unsigned sa, ca;
744
745 sa = BITS_PER_UNIT;
746 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
747 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
748
749 ca = exact_log2 (INTVAL (c) & -INTVAL (c)) * BITS_PER_UNIT;
750
751 align = MIN (sa, ca);
752 }
753
754 if (align)
755 mark_reg_pointer (temp, align);
756 }
757
758 return temp;
759 }
760
761 /* If X is a memory ref, copy its contents to a new temp reg and return
762 that reg. Otherwise, return X. */
763
764 rtx
765 force_not_mem (rtx x)
766 {
767 rtx temp;
768
769 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
770 return x;
771
772 temp = gen_reg_rtx (GET_MODE (x));
773
774 if (MEM_POINTER (x))
775 REG_POINTER (temp) = 1;
776
777 emit_move_insn (temp, x);
778 return temp;
779 }
780
781 /* Copy X to TARGET (if it's nonzero and a reg)
782 or to a new temp reg and return that reg.
783 MODE is the mode to use for X in case it is a constant. */
784
785 rtx
786 copy_to_suggested_reg (rtx x, rtx target, enum machine_mode mode)
787 {
788 rtx temp;
789
790 if (target && GET_CODE (target) == REG)
791 temp = target;
792 else
793 temp = gen_reg_rtx (mode);
794
795 emit_move_insn (temp, x);
796 return temp;
797 }
798 \f
799 /* Return the mode to use to store a scalar of TYPE and MODE.
800 PUNSIGNEDP points to the signedness of the type and may be adjusted
801 to show what signedness to use on extension operations.
802
803 FOR_CALL is nonzero if this call is promoting args for a call. */
804
805 enum machine_mode
806 promote_mode (tree type, enum machine_mode mode, int *punsignedp,
807 int for_call ATTRIBUTE_UNUSED)
808 {
809 enum tree_code code = TREE_CODE (type);
810 int unsignedp = *punsignedp;
811
812 #ifdef PROMOTE_FOR_CALL_ONLY
813 if (! for_call)
814 return mode;
815 #endif
816
817 switch (code)
818 {
819 #ifdef PROMOTE_MODE
820 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
821 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
822 PROMOTE_MODE (mode, unsignedp, type);
823 break;
824 #endif
825
826 #ifdef POINTERS_EXTEND_UNSIGNED
827 case REFERENCE_TYPE:
828 case POINTER_TYPE:
829 mode = Pmode;
830 unsignedp = POINTERS_EXTEND_UNSIGNED;
831 break;
832 #endif
833
834 default:
835 break;
836 }
837
838 *punsignedp = unsignedp;
839 return mode;
840 }
841 \f
842 /* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
843 This pops when ADJUST is positive. ADJUST need not be constant. */
844
845 void
846 adjust_stack (rtx adjust)
847 {
848 rtx temp;
849 adjust = protect_from_queue (adjust, 0);
850
851 if (adjust == const0_rtx)
852 return;
853
854 /* We expect all variable sized adjustments to be multiple of
855 PREFERRED_STACK_BOUNDARY. */
856 if (GET_CODE (adjust) == CONST_INT)
857 stack_pointer_delta -= INTVAL (adjust);
858
859 temp = expand_binop (Pmode,
860 #ifdef STACK_GROWS_DOWNWARD
861 add_optab,
862 #else
863 sub_optab,
864 #endif
865 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
866 OPTAB_LIB_WIDEN);
867
868 if (temp != stack_pointer_rtx)
869 emit_move_insn (stack_pointer_rtx, temp);
870 }
871
872 /* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
873 This pushes when ADJUST is positive. ADJUST need not be constant. */
874
875 void
876 anti_adjust_stack (rtx adjust)
877 {
878 rtx temp;
879 adjust = protect_from_queue (adjust, 0);
880
881 if (adjust == const0_rtx)
882 return;
883
884 /* We expect all variable sized adjustments to be multiple of
885 PREFERRED_STACK_BOUNDARY. */
886 if (GET_CODE (adjust) == CONST_INT)
887 stack_pointer_delta += INTVAL (adjust);
888
889 temp = expand_binop (Pmode,
890 #ifdef STACK_GROWS_DOWNWARD
891 sub_optab,
892 #else
893 add_optab,
894 #endif
895 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
896 OPTAB_LIB_WIDEN);
897
898 if (temp != stack_pointer_rtx)
899 emit_move_insn (stack_pointer_rtx, temp);
900 }
901
902 /* Round the size of a block to be pushed up to the boundary required
903 by this machine. SIZE is the desired size, which need not be constant. */
904
905 rtx
906 round_push (rtx size)
907 {
908 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
909
910 if (align == 1)
911 return size;
912
913 if (GET_CODE (size) == CONST_INT)
914 {
915 HOST_WIDE_INT new = (INTVAL (size) + align - 1) / align * align;
916
917 if (INTVAL (size) != new)
918 size = GEN_INT (new);
919 }
920 else
921 {
922 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
923 but we know it can't. So add ourselves and then do
924 TRUNC_DIV_EXPR. */
925 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
926 NULL_RTX, 1, OPTAB_LIB_WIDEN);
927 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
928 NULL_RTX, 1);
929 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
930 }
931
932 return size;
933 }
934 \f
935 /* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
936 to a previously-created save area. If no save area has been allocated,
937 this function will allocate one. If a save area is specified, it
938 must be of the proper mode.
939
940 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
941 are emitted at the current position. */
942
943 void
944 emit_stack_save (enum save_level save_level, rtx *psave, rtx after)
945 {
946 rtx sa = *psave;
947 /* The default is that we use a move insn and save in a Pmode object. */
948 rtx (*fcn) (rtx, rtx) = gen_move_insn;
949 enum machine_mode mode = STACK_SAVEAREA_MODE (save_level);
950
951 /* See if this machine has anything special to do for this kind of save. */
952 switch (save_level)
953 {
954 #ifdef HAVE_save_stack_block
955 case SAVE_BLOCK:
956 if (HAVE_save_stack_block)
957 fcn = gen_save_stack_block;
958 break;
959 #endif
960 #ifdef HAVE_save_stack_function
961 case SAVE_FUNCTION:
962 if (HAVE_save_stack_function)
963 fcn = gen_save_stack_function;
964 break;
965 #endif
966 #ifdef HAVE_save_stack_nonlocal
967 case SAVE_NONLOCAL:
968 if (HAVE_save_stack_nonlocal)
969 fcn = gen_save_stack_nonlocal;
970 break;
971 #endif
972 default:
973 break;
974 }
975
976 /* If there is no save area and we have to allocate one, do so. Otherwise
977 verify the save area is the proper mode. */
978
979 if (sa == 0)
980 {
981 if (mode != VOIDmode)
982 {
983 if (save_level == SAVE_NONLOCAL)
984 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
985 else
986 *psave = sa = gen_reg_rtx (mode);
987 }
988 }
989 else
990 {
991 if (mode == VOIDmode || GET_MODE (sa) != mode)
992 abort ();
993 }
994
995 if (after)
996 {
997 rtx seq;
998
999 start_sequence ();
1000 /* We must validize inside the sequence, to ensure that any instructions
1001 created by the validize call also get moved to the right place. */
1002 if (sa != 0)
1003 sa = validize_mem (sa);
1004 emit_insn (fcn (sa, stack_pointer_rtx));
1005 seq = get_insns ();
1006 end_sequence ();
1007 emit_insn_after (seq, after);
1008 }
1009 else
1010 {
1011 if (sa != 0)
1012 sa = validize_mem (sa);
1013 emit_insn (fcn (sa, stack_pointer_rtx));
1014 }
1015 }
1016
1017 /* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
1018 area made by emit_stack_save. If it is zero, we have nothing to do.
1019
1020 Put any emitted insns after insn AFTER, if nonzero, otherwise at
1021 current position. */
1022
1023 void
1024 emit_stack_restore (enum save_level save_level, rtx sa, rtx after)
1025 {
1026 /* The default is that we use a move insn. */
1027 rtx (*fcn) (rtx, rtx) = gen_move_insn;
1028
1029 /* See if this machine has anything special to do for this kind of save. */
1030 switch (save_level)
1031 {
1032 #ifdef HAVE_restore_stack_block
1033 case SAVE_BLOCK:
1034 if (HAVE_restore_stack_block)
1035 fcn = gen_restore_stack_block;
1036 break;
1037 #endif
1038 #ifdef HAVE_restore_stack_function
1039 case SAVE_FUNCTION:
1040 if (HAVE_restore_stack_function)
1041 fcn = gen_restore_stack_function;
1042 break;
1043 #endif
1044 #ifdef HAVE_restore_stack_nonlocal
1045 case SAVE_NONLOCAL:
1046 if (HAVE_restore_stack_nonlocal)
1047 fcn = gen_restore_stack_nonlocal;
1048 break;
1049 #endif
1050 default:
1051 break;
1052 }
1053
1054 if (sa != 0)
1055 {
1056 sa = validize_mem (sa);
1057 /* These clobbers prevent the scheduler from moving
1058 references to variable arrays below the code
1059 that deletes (pops) the arrays. */
1060 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1061 gen_rtx_MEM (BLKmode,
1062 gen_rtx_SCRATCH (VOIDmode))));
1063 emit_insn (gen_rtx_CLOBBER (VOIDmode,
1064 gen_rtx_MEM (BLKmode, stack_pointer_rtx)));
1065 }
1066
1067 if (after)
1068 {
1069 rtx seq;
1070
1071 start_sequence ();
1072 emit_insn (fcn (stack_pointer_rtx, sa));
1073 seq = get_insns ();
1074 end_sequence ();
1075 emit_insn_after (seq, after);
1076 }
1077 else
1078 emit_insn (fcn (stack_pointer_rtx, sa));
1079 }
1080 \f
1081 #ifdef SETJMP_VIA_SAVE_AREA
1082 /* Optimize RTL generated by allocate_dynamic_stack_space for targets
1083 where SETJMP_VIA_SAVE_AREA is true. The problem is that on these
1084 platforms, the dynamic stack space used can corrupt the original
1085 frame, thus causing a crash if a longjmp unwinds to it. */
1086
1087 void
1088 optimize_save_area_alloca (rtx insns)
1089 {
1090 rtx insn;
1091
1092 for (insn = insns; insn; insn = NEXT_INSN(insn))
1093 {
1094 rtx note;
1095
1096 if (GET_CODE (insn) != INSN)
1097 continue;
1098
1099 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1100 {
1101 if (REG_NOTE_KIND (note) != REG_SAVE_AREA)
1102 continue;
1103
1104 if (!current_function_calls_setjmp)
1105 {
1106 rtx pat = PATTERN (insn);
1107
1108 /* If we do not see the note in a pattern matching
1109 these precise characteristics, we did something
1110 entirely wrong in allocate_dynamic_stack_space.
1111
1112 Note, one way this could happen is if SETJMP_VIA_SAVE_AREA
1113 was defined on a machine where stacks grow towards higher
1114 addresses.
1115
1116 Right now only supported port with stack that grow upward
1117 is the HPPA and it does not define SETJMP_VIA_SAVE_AREA. */
1118 if (GET_CODE (pat) != SET
1119 || SET_DEST (pat) != stack_pointer_rtx
1120 || GET_CODE (SET_SRC (pat)) != MINUS
1121 || XEXP (SET_SRC (pat), 0) != stack_pointer_rtx)
1122 abort ();
1123
1124 /* This will now be transformed into a (set REG REG)
1125 so we can just blow away all the other notes. */
1126 XEXP (SET_SRC (pat), 1) = XEXP (note, 0);
1127 REG_NOTES (insn) = NULL_RTX;
1128 }
1129 else
1130 {
1131 /* setjmp was called, we must remove the REG_SAVE_AREA
1132 note so that later passes do not get confused by its
1133 presence. */
1134 if (note == REG_NOTES (insn))
1135 {
1136 REG_NOTES (insn) = XEXP (note, 1);
1137 }
1138 else
1139 {
1140 rtx srch;
1141
1142 for (srch = REG_NOTES (insn); srch; srch = XEXP (srch, 1))
1143 if (XEXP (srch, 1) == note)
1144 break;
1145
1146 if (srch == NULL_RTX)
1147 abort ();
1148
1149 XEXP (srch, 1) = XEXP (note, 1);
1150 }
1151 }
1152 /* Once we've seen the note of interest, we need not look at
1153 the rest of them. */
1154 break;
1155 }
1156 }
1157 }
1158 #endif /* SETJMP_VIA_SAVE_AREA */
1159
1160 /* Return an rtx representing the address of an area of memory dynamically
1161 pushed on the stack. This region of memory is always aligned to
1162 a multiple of BIGGEST_ALIGNMENT.
1163
1164 Any required stack pointer alignment is preserved.
1165
1166 SIZE is an rtx representing the size of the area.
1167 TARGET is a place in which the address can be placed.
1168
1169 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
1170
1171 rtx
1172 allocate_dynamic_stack_space (rtx size, rtx target, int known_align)
1173 {
1174 #ifdef SETJMP_VIA_SAVE_AREA
1175 rtx setjmpless_size = NULL_RTX;
1176 #endif
1177
1178 /* If we're asking for zero bytes, it doesn't matter what we point
1179 to since we can't dereference it. But return a reasonable
1180 address anyway. */
1181 if (size == const0_rtx)
1182 return virtual_stack_dynamic_rtx;
1183
1184 /* Otherwise, show we're calling alloca or equivalent. */
1185 current_function_calls_alloca = 1;
1186
1187 /* Ensure the size is in the proper mode. */
1188 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1189 size = convert_to_mode (Pmode, size, 1);
1190
1191 /* We can't attempt to minimize alignment necessary, because we don't
1192 know the final value of preferred_stack_boundary yet while executing
1193 this code. */
1194 cfun->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1195
1196 /* We will need to ensure that the address we return is aligned to
1197 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1198 always know its final value at this point in the compilation (it
1199 might depend on the size of the outgoing parameter lists, for
1200 example), so we must align the value to be returned in that case.
1201 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1202 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1203 We must also do an alignment operation on the returned value if
1204 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1205
1206 If we have to align, we must leave space in SIZE for the hole
1207 that might result from the alignment operation. */
1208
1209 #if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1210 #define MUST_ALIGN 1
1211 #else
1212 #define MUST_ALIGN (PREFERRED_STACK_BOUNDARY < BIGGEST_ALIGNMENT)
1213 #endif
1214
1215 if (MUST_ALIGN)
1216 size
1217 = force_operand (plus_constant (size,
1218 BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1219 NULL_RTX);
1220
1221 #ifdef SETJMP_VIA_SAVE_AREA
1222 /* If setjmp restores regs from a save area in the stack frame,
1223 avoid clobbering the reg save area. Note that the offset of
1224 virtual_incoming_args_rtx includes the preallocated stack args space.
1225 It would be no problem to clobber that, but it's on the wrong side
1226 of the old save area. */
1227 {
1228 rtx dynamic_offset
1229 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
1230 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
1231
1232 if (!current_function_calls_setjmp)
1233 {
1234 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
1235
1236 /* See optimize_save_area_alloca to understand what is being
1237 set up here. */
1238
1239 /* ??? Code below assumes that the save area needs maximal
1240 alignment. This constraint may be too strong. */
1241 if (PREFERRED_STACK_BOUNDARY != BIGGEST_ALIGNMENT)
1242 abort ();
1243
1244 if (GET_CODE (size) == CONST_INT)
1245 {
1246 HOST_WIDE_INT new = INTVAL (size) / align * align;
1247
1248 if (INTVAL (size) != new)
1249 setjmpless_size = GEN_INT (new);
1250 else
1251 setjmpless_size = size;
1252 }
1253 else
1254 {
1255 /* Since we know overflow is not possible, we avoid using
1256 CEIL_DIV_EXPR and use TRUNC_DIV_EXPR instead. */
1257 setjmpless_size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size,
1258 GEN_INT (align), NULL_RTX, 1);
1259 setjmpless_size = expand_mult (Pmode, setjmpless_size,
1260 GEN_INT (align), NULL_RTX, 1);
1261 }
1262 /* Our optimization works based upon being able to perform a simple
1263 transformation of this RTL into a (set REG REG) so make sure things
1264 did in fact end up in a REG. */
1265 if (!register_operand (setjmpless_size, Pmode))
1266 setjmpless_size = force_reg (Pmode, setjmpless_size);
1267 }
1268
1269 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
1270 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1271 }
1272 #endif /* SETJMP_VIA_SAVE_AREA */
1273
1274 /* Round the size to a multiple of the required stack alignment.
1275 Since the stack if presumed to be rounded before this allocation,
1276 this will maintain the required alignment.
1277
1278 If the stack grows downward, we could save an insn by subtracting
1279 SIZE from the stack pointer and then aligning the stack pointer.
1280 The problem with this is that the stack pointer may be unaligned
1281 between the execution of the subtraction and alignment insns and
1282 some machines do not allow this. Even on those that do, some
1283 signal handlers malfunction if a signal should occur between those
1284 insns. Since this is an extremely rare event, we have no reliable
1285 way of knowing which systems have this problem. So we avoid even
1286 momentarily mis-aligning the stack. */
1287
1288 /* If we added a variable amount to SIZE,
1289 we can no longer assume it is aligned. */
1290 #if !defined (SETJMP_VIA_SAVE_AREA)
1291 if (MUST_ALIGN || known_align % PREFERRED_STACK_BOUNDARY != 0)
1292 #endif
1293 size = round_push (size);
1294
1295 do_pending_stack_adjust ();
1296
1297 /* We ought to be called always on the toplevel and stack ought to be aligned
1298 properly. */
1299 if (stack_pointer_delta % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT))
1300 abort ();
1301
1302 /* If needed, check that we have the required amount of stack. Take into
1303 account what has already been checked. */
1304 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1305 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1306
1307 /* Don't use a TARGET that isn't a pseudo or is the wrong mode. */
1308 if (target == 0 || GET_CODE (target) != REG
1309 || REGNO (target) < FIRST_PSEUDO_REGISTER
1310 || GET_MODE (target) != Pmode)
1311 target = gen_reg_rtx (Pmode);
1312
1313 mark_reg_pointer (target, known_align);
1314
1315 /* Perform the required allocation from the stack. Some systems do
1316 this differently than simply incrementing/decrementing from the
1317 stack pointer, such as acquiring the space by calling malloc(). */
1318 #ifdef HAVE_allocate_stack
1319 if (HAVE_allocate_stack)
1320 {
1321 enum machine_mode mode = STACK_SIZE_MODE;
1322 insn_operand_predicate_fn pred;
1323
1324 /* We don't have to check against the predicate for operand 0 since
1325 TARGET is known to be a pseudo of the proper mode, which must
1326 be valid for the operand. For operand 1, convert to the
1327 proper mode and validate. */
1328 if (mode == VOIDmode)
1329 mode = insn_data[(int) CODE_FOR_allocate_stack].operand[1].mode;
1330
1331 pred = insn_data[(int) CODE_FOR_allocate_stack].operand[1].predicate;
1332 if (pred && ! ((*pred) (size, mode)))
1333 size = copy_to_mode_reg (mode, convert_to_mode (mode, size, 1));
1334
1335 emit_insn (gen_allocate_stack (target, size));
1336 }
1337 else
1338 #endif
1339 {
1340 #ifndef STACK_GROWS_DOWNWARD
1341 emit_move_insn (target, virtual_stack_dynamic_rtx);
1342 #endif
1343
1344 /* Check stack bounds if necessary. */
1345 if (current_function_limit_stack)
1346 {
1347 rtx available;
1348 rtx space_available = gen_label_rtx ();
1349 #ifdef STACK_GROWS_DOWNWARD
1350 available = expand_binop (Pmode, sub_optab,
1351 stack_pointer_rtx, stack_limit_rtx,
1352 NULL_RTX, 1, OPTAB_WIDEN);
1353 #else
1354 available = expand_binop (Pmode, sub_optab,
1355 stack_limit_rtx, stack_pointer_rtx,
1356 NULL_RTX, 1, OPTAB_WIDEN);
1357 #endif
1358 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
1359 space_available);
1360 #ifdef HAVE_trap
1361 if (HAVE_trap)
1362 emit_insn (gen_trap ());
1363 else
1364 #endif
1365 error ("stack limits not supported on this target");
1366 emit_barrier ();
1367 emit_label (space_available);
1368 }
1369
1370 anti_adjust_stack (size);
1371 #ifdef SETJMP_VIA_SAVE_AREA
1372 if (setjmpless_size != NULL_RTX)
1373 {
1374 rtx note_target = get_last_insn ();
1375
1376 REG_NOTES (note_target)
1377 = gen_rtx_EXPR_LIST (REG_SAVE_AREA, setjmpless_size,
1378 REG_NOTES (note_target));
1379 }
1380 #endif /* SETJMP_VIA_SAVE_AREA */
1381
1382 #ifdef STACK_GROWS_DOWNWARD
1383 emit_move_insn (target, virtual_stack_dynamic_rtx);
1384 #endif
1385 }
1386
1387 if (MUST_ALIGN)
1388 {
1389 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1390 but we know it can't. So add ourselves and then do
1391 TRUNC_DIV_EXPR. */
1392 target = expand_binop (Pmode, add_optab, target,
1393 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1394 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1395 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1396 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1397 NULL_RTX, 1);
1398 target = expand_mult (Pmode, target,
1399 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1400 NULL_RTX, 1);
1401 }
1402
1403 /* Record the new stack level for nonlocal gotos. */
1404 if (nonlocal_goto_handler_slots != 0)
1405 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1406
1407 return target;
1408 }
1409 \f
1410 /* A front end may want to override GCC's stack checking by providing a
1411 run-time routine to call to check the stack, so provide a mechanism for
1412 calling that routine. */
1413
1414 static GTY(()) rtx stack_check_libfunc;
1415
1416 void
1417 set_stack_check_libfunc (rtx libfunc)
1418 {
1419 stack_check_libfunc = libfunc;
1420 }
1421 \f
1422 /* Emit one stack probe at ADDRESS, an address within the stack. */
1423
1424 static void
1425 emit_stack_probe (rtx address)
1426 {
1427 rtx memref = gen_rtx_MEM (word_mode, address);
1428
1429 MEM_VOLATILE_P (memref) = 1;
1430
1431 if (STACK_CHECK_PROBE_LOAD)
1432 emit_move_insn (gen_reg_rtx (word_mode), memref);
1433 else
1434 emit_move_insn (memref, const0_rtx);
1435 }
1436
1437 /* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1438 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1439 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1440 subtract from the stack. If SIZE is constant, this is done
1441 with a fixed number of probes. Otherwise, we must make a loop. */
1442
1443 #ifdef STACK_GROWS_DOWNWARD
1444 #define STACK_GROW_OP MINUS
1445 #else
1446 #define STACK_GROW_OP PLUS
1447 #endif
1448
1449 void
1450 probe_stack_range (HOST_WIDE_INT first, rtx size)
1451 {
1452 /* First ensure SIZE is Pmode. */
1453 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1454 size = convert_to_mode (Pmode, size, 1);
1455
1456 /* Next see if the front end has set up a function for us to call to
1457 check the stack. */
1458 if (stack_check_libfunc != 0)
1459 {
1460 rtx addr = memory_address (QImode,
1461 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1462 stack_pointer_rtx,
1463 plus_constant (size, first)));
1464
1465 addr = convert_memory_address (ptr_mode, addr);
1466 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1467 ptr_mode);
1468 }
1469
1470 /* Next see if we have an insn to check the stack. Use it if so. */
1471 #ifdef HAVE_check_stack
1472 else if (HAVE_check_stack)
1473 {
1474 insn_operand_predicate_fn pred;
1475 rtx last_addr
1476 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1477 stack_pointer_rtx,
1478 plus_constant (size, first)),
1479 NULL_RTX);
1480
1481 pred = insn_data[(int) CODE_FOR_check_stack].operand[0].predicate;
1482 if (pred && ! ((*pred) (last_addr, Pmode)))
1483 last_addr = copy_to_mode_reg (Pmode, last_addr);
1484
1485 emit_insn (gen_check_stack (last_addr));
1486 }
1487 #endif
1488
1489 /* If we have to generate explicit probes, see if we have a constant
1490 small number of them to generate. If so, that's the easy case. */
1491 else if (GET_CODE (size) == CONST_INT
1492 && INTVAL (size) < 10 * STACK_CHECK_PROBE_INTERVAL)
1493 {
1494 HOST_WIDE_INT offset;
1495
1496 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1497 for values of N from 1 until it exceeds LAST. If only one
1498 probe is needed, this will not generate any code. Then probe
1499 at LAST. */
1500 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1501 offset < INTVAL (size);
1502 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1503 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1504 stack_pointer_rtx,
1505 GEN_INT (offset)));
1506
1507 emit_stack_probe (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1508 stack_pointer_rtx,
1509 plus_constant (size, first)));
1510 }
1511
1512 /* In the variable case, do the same as above, but in a loop. We emit loop
1513 notes so that loop optimization can be done. */
1514 else
1515 {
1516 rtx test_addr
1517 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1518 stack_pointer_rtx,
1519 GEN_INT (first + STACK_CHECK_PROBE_INTERVAL)),
1520 NULL_RTX);
1521 rtx last_addr
1522 = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1523 stack_pointer_rtx,
1524 plus_constant (size, first)),
1525 NULL_RTX);
1526 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1527 rtx loop_lab = gen_label_rtx ();
1528 rtx test_lab = gen_label_rtx ();
1529 rtx end_lab = gen_label_rtx ();
1530 rtx temp;
1531
1532 if (GET_CODE (test_addr) != REG
1533 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1534 test_addr = force_reg (Pmode, test_addr);
1535
1536 emit_note (NOTE_INSN_LOOP_BEG);
1537 emit_jump (test_lab);
1538
1539 emit_label (loop_lab);
1540 emit_stack_probe (test_addr);
1541
1542 emit_note (NOTE_INSN_LOOP_CONT);
1543
1544 #ifdef STACK_GROWS_DOWNWARD
1545 #define CMP_OPCODE GTU
1546 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1547 1, OPTAB_WIDEN);
1548 #else
1549 #define CMP_OPCODE LTU
1550 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1551 1, OPTAB_WIDEN);
1552 #endif
1553
1554 if (temp != test_addr)
1555 abort ();
1556
1557 emit_label (test_lab);
1558 emit_cmp_and_jump_insns (test_addr, last_addr, CMP_OPCODE,
1559 NULL_RTX, Pmode, 1, loop_lab);
1560 emit_jump (end_lab);
1561 emit_note (NOTE_INSN_LOOP_END);
1562 emit_label (end_lab);
1563
1564 emit_stack_probe (last_addr);
1565 }
1566 }
1567 \f
1568 /* Return an rtx representing the register or memory location
1569 in which a scalar value of data type VALTYPE
1570 was returned by a function call to function FUNC.
1571 FUNC is a FUNCTION_DECL node if the precise function is known,
1572 otherwise 0.
1573 OUTGOING is 1 if on a machine with register windows this function
1574 should return the register in which the function will put its result
1575 and 0 otherwise. */
1576
1577 rtx
1578 hard_function_value (tree valtype, tree func ATTRIBUTE_UNUSED,
1579 int outgoing ATTRIBUTE_UNUSED)
1580 {
1581 rtx val;
1582
1583 #ifdef FUNCTION_OUTGOING_VALUE
1584 if (outgoing)
1585 val = FUNCTION_OUTGOING_VALUE (valtype, func);
1586 else
1587 #endif
1588 val = FUNCTION_VALUE (valtype, func);
1589
1590 if (GET_CODE (val) == REG
1591 && GET_MODE (val) == BLKmode)
1592 {
1593 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
1594 enum machine_mode tmpmode;
1595
1596 /* int_size_in_bytes can return -1. We don't need a check here
1597 since the value of bytes will be large enough that no mode
1598 will match and we will abort later in this function. */
1599
1600 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1601 tmpmode != VOIDmode;
1602 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1603 {
1604 /* Have we found a large enough mode? */
1605 if (GET_MODE_SIZE (tmpmode) >= bytes)
1606 break;
1607 }
1608
1609 /* No suitable mode found. */
1610 if (tmpmode == VOIDmode)
1611 abort ();
1612
1613 PUT_MODE (val, tmpmode);
1614 }
1615 return val;
1616 }
1617
1618 /* Return an rtx representing the register or memory location
1619 in which a scalar value of mode MODE was returned by a library call. */
1620
1621 rtx
1622 hard_libcall_value (enum machine_mode mode)
1623 {
1624 return LIBCALL_VALUE (mode);
1625 }
1626
1627 /* Look up the tree code for a given rtx code
1628 to provide the arithmetic operation for REAL_ARITHMETIC.
1629 The function returns an int because the caller may not know
1630 what `enum tree_code' means. */
1631
1632 int
1633 rtx_to_tree_code (enum rtx_code code)
1634 {
1635 enum tree_code tcode;
1636
1637 switch (code)
1638 {
1639 case PLUS:
1640 tcode = PLUS_EXPR;
1641 break;
1642 case MINUS:
1643 tcode = MINUS_EXPR;
1644 break;
1645 case MULT:
1646 tcode = MULT_EXPR;
1647 break;
1648 case DIV:
1649 tcode = RDIV_EXPR;
1650 break;
1651 case SMIN:
1652 tcode = MIN_EXPR;
1653 break;
1654 case SMAX:
1655 tcode = MAX_EXPR;
1656 break;
1657 default:
1658 tcode = LAST_AND_UNUSED_TREE_CODE;
1659 break;
1660 }
1661 return ((int) tcode);
1662 }
1663
1664 #include "gt-explow.h"