]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/expr.c
tree.def (ALIGN_INDIRECT_REF, [...]): New tree-codes.
[thirdparty/gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55
56 /* Decide whether a function's arguments should be processed
57 from first to last or from last to first.
58
59 They should if the stack and args grow in opposite directions, but
60 only if we have push insns. */
61
62 #ifdef PUSH_ROUNDING
63
64 #ifndef PUSH_ARGS_REVERSED
65 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
66 #define PUSH_ARGS_REVERSED /* If it's last to first. */
67 #endif
68 #endif
69
70 #endif
71
72 #ifndef STACK_PUSH_CODE
73 #ifdef STACK_GROWS_DOWNWARD
74 #define STACK_PUSH_CODE PRE_DEC
75 #else
76 #define STACK_PUSH_CODE PRE_INC
77 #endif
78 #endif
79
80
81 /* If this is nonzero, we do not bother generating VOLATILE
82 around volatile memory references, and we are willing to
83 output indirect addresses. If cse is to follow, we reject
84 indirect addresses so a useful potential cse is generated;
85 if it is used only once, instruction combination will produce
86 the same indirect address eventually. */
87 int cse_not_expected;
88
89 /* This structure is used by move_by_pieces to describe the move to
90 be performed. */
91 struct move_by_pieces
92 {
93 rtx to;
94 rtx to_addr;
95 int autinc_to;
96 int explicit_inc_to;
97 rtx from;
98 rtx from_addr;
99 int autinc_from;
100 int explicit_inc_from;
101 unsigned HOST_WIDE_INT len;
102 HOST_WIDE_INT offset;
103 int reverse;
104 };
105
106 /* This structure is used by store_by_pieces to describe the clear to
107 be performed. */
108
109 struct store_by_pieces
110 {
111 rtx to;
112 rtx to_addr;
113 int autinc_to;
114 int explicit_inc_to;
115 unsigned HOST_WIDE_INT len;
116 HOST_WIDE_INT offset;
117 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
118 void *constfundata;
119 int reverse;
120 };
121
122 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
123 unsigned int,
124 unsigned int);
125 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
126 struct move_by_pieces *);
127 static bool block_move_libcall_safe_for_call_parm (void);
128 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
129 static rtx emit_block_move_via_libcall (rtx, rtx, rtx);
130 static tree emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
132 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
133 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
136 struct store_by_pieces *);
137 static bool clear_storage_via_clrmem (rtx, rtx, unsigned);
138 static rtx clear_storage_via_libcall (rtx, rtx);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, int);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, enum machine_mode, int, tree, int);
148
149 static unsigned HOST_WIDE_INT highest_pow2_factor (tree);
150 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
151
152 static int is_aligning_offset (tree, tree);
153 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
154 enum expand_modifier);
155 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
156 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
157 #ifdef PUSH_ROUNDING
158 static void emit_single_push_insn (enum machine_mode, rtx, tree);
159 #endif
160 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
161 static rtx const_vector_from_tree (tree);
162
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
166
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
169
170 /* Record for each mode whether we can float-extend from memory. */
171
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
173
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO)
180 #endif
181
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO)
188 #endif
189
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero, or
192 to "memcpy" storage when the source is a constant string. */
193 #ifndef STORE_BY_PIECES_P
194 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) MOVE_RATIO)
197 #endif
198
199 /* This array records the insn_code of insns to perform block moves. */
200 enum insn_code movmem_optab[NUM_MACHINE_MODES];
201
202 /* This array records the insn_code of insns to perform block clears. */
203 enum insn_code clrmem_optab[NUM_MACHINE_MODES];
204
205 /* These arrays record the insn_code of two different kinds of insns
206 to perform block compares. */
207 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
208 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
209
210 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
211
212 #ifndef SLOW_UNALIGNED_ACCESS
213 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
214 #endif
215 \f
216 /* This is run once per compilation to set up which modes can be used
217 directly in memory and to initialize the block move optab. */
218
219 void
220 init_expr_once (void)
221 {
222 rtx insn, pat;
223 enum machine_mode mode;
224 int num_clobbers;
225 rtx mem, mem1;
226 rtx reg;
227
228 /* Try indexing by frame ptr and try by stack ptr.
229 It is known that on the Convex the stack ptr isn't a valid index.
230 With luck, one or the other is valid on any machine. */
231 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
232 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
233
234 /* A scratch register we can modify in-place below to avoid
235 useless RTL allocations. */
236 reg = gen_rtx_REG (VOIDmode, -1);
237
238 insn = rtx_alloc (INSN);
239 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
240 PATTERN (insn) = pat;
241
242 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
243 mode = (enum machine_mode) ((int) mode + 1))
244 {
245 int regno;
246
247 direct_load[(int) mode] = direct_store[(int) mode] = 0;
248 PUT_MODE (mem, mode);
249 PUT_MODE (mem1, mode);
250 PUT_MODE (reg, mode);
251
252 /* See if there is some register that can be used in this mode and
253 directly loaded or stored from memory. */
254
255 if (mode != VOIDmode && mode != BLKmode)
256 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
257 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
258 regno++)
259 {
260 if (! HARD_REGNO_MODE_OK (regno, mode))
261 continue;
262
263 REGNO (reg) = regno;
264
265 SET_SRC (pat) = mem;
266 SET_DEST (pat) = reg;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_load[(int) mode] = 1;
269
270 SET_SRC (pat) = mem1;
271 SET_DEST (pat) = reg;
272 if (recog (pat, insn, &num_clobbers) >= 0)
273 direct_load[(int) mode] = 1;
274
275 SET_SRC (pat) = reg;
276 SET_DEST (pat) = mem;
277 if (recog (pat, insn, &num_clobbers) >= 0)
278 direct_store[(int) mode] = 1;
279
280 SET_SRC (pat) = reg;
281 SET_DEST (pat) = mem1;
282 if (recog (pat, insn, &num_clobbers) >= 0)
283 direct_store[(int) mode] = 1;
284 }
285 }
286
287 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
288
289 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
290 mode = GET_MODE_WIDER_MODE (mode))
291 {
292 enum machine_mode srcmode;
293 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
294 srcmode = GET_MODE_WIDER_MODE (srcmode))
295 {
296 enum insn_code ic;
297
298 ic = can_extend_p (mode, srcmode, 0);
299 if (ic == CODE_FOR_nothing)
300 continue;
301
302 PUT_MODE (mem, srcmode);
303
304 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
305 float_extend_from_mem[mode][srcmode] = true;
306 }
307 }
308 }
309
310 /* This is run at the start of compiling a function. */
311
312 void
313 init_expr (void)
314 {
315 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
316 }
317 \f
318 /* Copy data from FROM to TO, where the machine modes are not the same.
319 Both modes may be integer, or both may be floating.
320 UNSIGNEDP should be nonzero if FROM is an unsigned type.
321 This causes zero-extension instead of sign-extension. */
322
323 void
324 convert_move (rtx to, rtx from, int unsignedp)
325 {
326 enum machine_mode to_mode = GET_MODE (to);
327 enum machine_mode from_mode = GET_MODE (from);
328 int to_real = GET_MODE_CLASS (to_mode) == MODE_FLOAT;
329 int from_real = GET_MODE_CLASS (from_mode) == MODE_FLOAT;
330 enum insn_code code;
331 rtx libcall;
332
333 /* rtx code for making an equivalent value. */
334 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
335 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
336
337
338 gcc_assert (to_real == from_real);
339
340 /* If the source and destination are already the same, then there's
341 nothing to do. */
342 if (to == from)
343 return;
344
345 /* If FROM is a SUBREG that indicates that we have already done at least
346 the required extension, strip it. We don't handle such SUBREGs as
347 TO here. */
348
349 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
350 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
351 >= GET_MODE_SIZE (to_mode))
352 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
353 from = gen_lowpart (to_mode, from), from_mode = to_mode;
354
355 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
356
357 if (to_mode == from_mode
358 || (from_mode == VOIDmode && CONSTANT_P (from)))
359 {
360 emit_move_insn (to, from);
361 return;
362 }
363
364 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
365 {
366 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
367
368 if (VECTOR_MODE_P (to_mode))
369 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
370 else
371 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
372
373 emit_move_insn (to, from);
374 return;
375 }
376
377 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
378 {
379 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
380 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
381 return;
382 }
383
384 if (to_real)
385 {
386 rtx value, insns;
387 convert_optab tab;
388
389 gcc_assert (GET_MODE_PRECISION (from_mode)
390 != GET_MODE_PRECISION (to_mode));
391
392 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
393 tab = sext_optab;
394 else
395 tab = trunc_optab;
396
397 /* Try converting directly if the insn is supported. */
398
399 code = tab->handlers[to_mode][from_mode].insn_code;
400 if (code != CODE_FOR_nothing)
401 {
402 emit_unop_insn (code, to, from,
403 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
404 return;
405 }
406
407 /* Otherwise use a libcall. */
408 libcall = tab->handlers[to_mode][from_mode].libfunc;
409
410 /* Is this conversion implemented yet? */
411 gcc_assert (libcall);
412
413 start_sequence ();
414 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
415 1, from, from_mode);
416 insns = get_insns ();
417 end_sequence ();
418 emit_libcall_block (insns, to, value,
419 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
420 from)
421 : gen_rtx_FLOAT_EXTEND (to_mode, from));
422 return;
423 }
424
425 /* Handle pointer conversion. */ /* SPEE 900220. */
426 /* Targets are expected to provide conversion insns between PxImode and
427 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
428 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
429 {
430 enum machine_mode full_mode
431 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
432
433 gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
434 != CODE_FOR_nothing);
435
436 if (full_mode != from_mode)
437 from = convert_to_mode (full_mode, from, unsignedp);
438 emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
439 to, from, UNKNOWN);
440 return;
441 }
442 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
443 {
444 enum machine_mode full_mode
445 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
446
447 gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
448 != CODE_FOR_nothing);
449
450 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
451 to, from, UNKNOWN);
452 if (to_mode == full_mode)
453 return;
454
455 /* else proceed to integer conversions below. */
456 from_mode = full_mode;
457 }
458
459 /* Now both modes are integers. */
460
461 /* Handle expanding beyond a word. */
462 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
463 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
464 {
465 rtx insns;
466 rtx lowpart;
467 rtx fill_value;
468 rtx lowfrom;
469 int i;
470 enum machine_mode lowpart_mode;
471 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
472
473 /* Try converting directly if the insn is supported. */
474 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
475 != CODE_FOR_nothing)
476 {
477 /* If FROM is a SUBREG, put it into a register. Do this
478 so that we always generate the same set of insns for
479 better cse'ing; if an intermediate assignment occurred,
480 we won't be doing the operation directly on the SUBREG. */
481 if (optimize > 0 && GET_CODE (from) == SUBREG)
482 from = force_reg (from_mode, from);
483 emit_unop_insn (code, to, from, equiv_code);
484 return;
485 }
486 /* Next, try converting via full word. */
487 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
488 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
489 != CODE_FOR_nothing))
490 {
491 if (REG_P (to))
492 {
493 if (reg_overlap_mentioned_p (to, from))
494 from = force_reg (from_mode, from);
495 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
496 }
497 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
498 emit_unop_insn (code, to,
499 gen_lowpart (word_mode, to), equiv_code);
500 return;
501 }
502
503 /* No special multiword conversion insn; do it by hand. */
504 start_sequence ();
505
506 /* Since we will turn this into a no conflict block, we must ensure
507 that the source does not overlap the target. */
508
509 if (reg_overlap_mentioned_p (to, from))
510 from = force_reg (from_mode, from);
511
512 /* Get a copy of FROM widened to a word, if necessary. */
513 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
514 lowpart_mode = word_mode;
515 else
516 lowpart_mode = from_mode;
517
518 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
519
520 lowpart = gen_lowpart (lowpart_mode, to);
521 emit_move_insn (lowpart, lowfrom);
522
523 /* Compute the value to put in each remaining word. */
524 if (unsignedp)
525 fill_value = const0_rtx;
526 else
527 {
528 #ifdef HAVE_slt
529 if (HAVE_slt
530 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
531 && STORE_FLAG_VALUE == -1)
532 {
533 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
534 lowpart_mode, 0);
535 fill_value = gen_reg_rtx (word_mode);
536 emit_insn (gen_slt (fill_value));
537 }
538 else
539 #endif
540 {
541 fill_value
542 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
543 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
544 NULL_RTX, 0);
545 fill_value = convert_to_mode (word_mode, fill_value, 1);
546 }
547 }
548
549 /* Fill the remaining words. */
550 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
551 {
552 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
553 rtx subword = operand_subword (to, index, 1, to_mode);
554
555 gcc_assert (subword);
556
557 if (fill_value != subword)
558 emit_move_insn (subword, fill_value);
559 }
560
561 insns = get_insns ();
562 end_sequence ();
563
564 emit_no_conflict_block (insns, to, from, NULL_RTX,
565 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
566 return;
567 }
568
569 /* Truncating multi-word to a word or less. */
570 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
571 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
572 {
573 if (!((MEM_P (from)
574 && ! MEM_VOLATILE_P (from)
575 && direct_load[(int) to_mode]
576 && ! mode_dependent_address_p (XEXP (from, 0)))
577 || REG_P (from)
578 || GET_CODE (from) == SUBREG))
579 from = force_reg (from_mode, from);
580 convert_move (to, gen_lowpart (word_mode, from), 0);
581 return;
582 }
583
584 /* Now follow all the conversions between integers
585 no more than a word long. */
586
587 /* For truncation, usually we can just refer to FROM in a narrower mode. */
588 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
589 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
590 GET_MODE_BITSIZE (from_mode)))
591 {
592 if (!((MEM_P (from)
593 && ! MEM_VOLATILE_P (from)
594 && direct_load[(int) to_mode]
595 && ! mode_dependent_address_p (XEXP (from, 0)))
596 || REG_P (from)
597 || GET_CODE (from) == SUBREG))
598 from = force_reg (from_mode, from);
599 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
600 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
601 from = copy_to_reg (from);
602 emit_move_insn (to, gen_lowpart (to_mode, from));
603 return;
604 }
605
606 /* Handle extension. */
607 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
608 {
609 /* Convert directly if that works. */
610 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
611 != CODE_FOR_nothing)
612 {
613 if (flag_force_mem)
614 from = force_not_mem (from);
615
616 emit_unop_insn (code, to, from, equiv_code);
617 return;
618 }
619 else
620 {
621 enum machine_mode intermediate;
622 rtx tmp;
623 tree shift_amount;
624
625 /* Search for a mode to convert via. */
626 for (intermediate = from_mode; intermediate != VOIDmode;
627 intermediate = GET_MODE_WIDER_MODE (intermediate))
628 if (((can_extend_p (to_mode, intermediate, unsignedp)
629 != CODE_FOR_nothing)
630 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
631 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
632 GET_MODE_BITSIZE (intermediate))))
633 && (can_extend_p (intermediate, from_mode, unsignedp)
634 != CODE_FOR_nothing))
635 {
636 convert_move (to, convert_to_mode (intermediate, from,
637 unsignedp), unsignedp);
638 return;
639 }
640
641 /* No suitable intermediate mode.
642 Generate what we need with shifts. */
643 shift_amount = build_int_cst (NULL_TREE,
644 GET_MODE_BITSIZE (to_mode)
645 - GET_MODE_BITSIZE (from_mode));
646 from = gen_lowpart (to_mode, force_reg (from_mode, from));
647 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
648 to, unsignedp);
649 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
650 to, unsignedp);
651 if (tmp != to)
652 emit_move_insn (to, tmp);
653 return;
654 }
655 }
656
657 /* Support special truncate insns for certain modes. */
658 if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
659 {
660 emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
661 to, from, UNKNOWN);
662 return;
663 }
664
665 /* Handle truncation of volatile memrefs, and so on;
666 the things that couldn't be truncated directly,
667 and for which there was no special instruction.
668
669 ??? Code above formerly short-circuited this, for most integer
670 mode pairs, with a force_reg in from_mode followed by a recursive
671 call to this routine. Appears always to have been wrong. */
672 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
673 {
674 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
675 emit_move_insn (to, temp);
676 return;
677 }
678
679 /* Mode combination is not recognized. */
680 gcc_unreachable ();
681 }
682
683 /* Return an rtx for a value that would result
684 from converting X to mode MODE.
685 Both X and MODE may be floating, or both integer.
686 UNSIGNEDP is nonzero if X is an unsigned value.
687 This can be done by referring to a part of X in place
688 or by copying to a new temporary with conversion. */
689
690 rtx
691 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
692 {
693 return convert_modes (mode, VOIDmode, x, unsignedp);
694 }
695
696 /* Return an rtx for a value that would result
697 from converting X from mode OLDMODE to mode MODE.
698 Both modes may be floating, or both integer.
699 UNSIGNEDP is nonzero if X is an unsigned value.
700
701 This can be done by referring to a part of X in place
702 or by copying to a new temporary with conversion.
703
704 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
705
706 rtx
707 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
708 {
709 rtx temp;
710
711 /* If FROM is a SUBREG that indicates that we have already done at least
712 the required extension, strip it. */
713
714 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
715 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
716 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
717 x = gen_lowpart (mode, x);
718
719 if (GET_MODE (x) != VOIDmode)
720 oldmode = GET_MODE (x);
721
722 if (mode == oldmode)
723 return x;
724
725 /* There is one case that we must handle specially: If we are converting
726 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
727 we are to interpret the constant as unsigned, gen_lowpart will do
728 the wrong if the constant appears negative. What we want to do is
729 make the high-order word of the constant zero, not all ones. */
730
731 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
732 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
733 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
734 {
735 HOST_WIDE_INT val = INTVAL (x);
736
737 if (oldmode != VOIDmode
738 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
739 {
740 int width = GET_MODE_BITSIZE (oldmode);
741
742 /* We need to zero extend VAL. */
743 val &= ((HOST_WIDE_INT) 1 << width) - 1;
744 }
745
746 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
747 }
748
749 /* We can do this with a gen_lowpart if both desired and current modes
750 are integer, and this is either a constant integer, a register, or a
751 non-volatile MEM. Except for the constant case where MODE is no
752 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
753
754 if ((GET_CODE (x) == CONST_INT
755 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
756 || (GET_MODE_CLASS (mode) == MODE_INT
757 && GET_MODE_CLASS (oldmode) == MODE_INT
758 && (GET_CODE (x) == CONST_DOUBLE
759 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
760 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
761 && direct_load[(int) mode])
762 || (REG_P (x)
763 && (! HARD_REGISTER_P (x)
764 || HARD_REGNO_MODE_OK (REGNO (x), mode))
765 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
766 GET_MODE_BITSIZE (GET_MODE (x)))))))))
767 {
768 /* ?? If we don't know OLDMODE, we have to assume here that
769 X does not need sign- or zero-extension. This may not be
770 the case, but it's the best we can do. */
771 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
772 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
773 {
774 HOST_WIDE_INT val = INTVAL (x);
775 int width = GET_MODE_BITSIZE (oldmode);
776
777 /* We must sign or zero-extend in this case. Start by
778 zero-extending, then sign extend if we need to. */
779 val &= ((HOST_WIDE_INT) 1 << width) - 1;
780 if (! unsignedp
781 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
782 val |= (HOST_WIDE_INT) (-1) << width;
783
784 return gen_int_mode (val, mode);
785 }
786
787 return gen_lowpart (mode, x);
788 }
789
790 /* Converting from integer constant into mode is always equivalent to an
791 subreg operation. */
792 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
793 {
794 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
795 return simplify_gen_subreg (mode, x, oldmode, 0);
796 }
797
798 temp = gen_reg_rtx (mode);
799 convert_move (temp, x, unsignedp);
800 return temp;
801 }
802 \f
803 /* STORE_MAX_PIECES is the number of bytes at a time that we can
804 store efficiently. Due to internal GCC limitations, this is
805 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
806 for an immediate constant. */
807
808 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
809
810 /* Determine whether the LEN bytes can be moved by using several move
811 instructions. Return nonzero if a call to move_by_pieces should
812 succeed. */
813
814 int
815 can_move_by_pieces (unsigned HOST_WIDE_INT len,
816 unsigned int align ATTRIBUTE_UNUSED)
817 {
818 return MOVE_BY_PIECES_P (len, align);
819 }
820
821 /* Generate several move instructions to copy LEN bytes from block FROM to
822 block TO. (These are MEM rtx's with BLKmode).
823
824 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
825 used to push FROM to the stack.
826
827 ALIGN is maximum stack alignment we can assume.
828
829 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
830 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
831 stpcpy. */
832
833 rtx
834 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
835 unsigned int align, int endp)
836 {
837 struct move_by_pieces data;
838 rtx to_addr, from_addr = XEXP (from, 0);
839 unsigned int max_size = MOVE_MAX_PIECES + 1;
840 enum machine_mode mode = VOIDmode, tmode;
841 enum insn_code icode;
842
843 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
844
845 data.offset = 0;
846 data.from_addr = from_addr;
847 if (to)
848 {
849 to_addr = XEXP (to, 0);
850 data.to = to;
851 data.autinc_to
852 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
853 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
854 data.reverse
855 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
856 }
857 else
858 {
859 to_addr = NULL_RTX;
860 data.to = NULL_RTX;
861 data.autinc_to = 1;
862 #ifdef STACK_GROWS_DOWNWARD
863 data.reverse = 1;
864 #else
865 data.reverse = 0;
866 #endif
867 }
868 data.to_addr = to_addr;
869 data.from = from;
870 data.autinc_from
871 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
872 || GET_CODE (from_addr) == POST_INC
873 || GET_CODE (from_addr) == POST_DEC);
874
875 data.explicit_inc_from = 0;
876 data.explicit_inc_to = 0;
877 if (data.reverse) data.offset = len;
878 data.len = len;
879
880 /* If copying requires more than two move insns,
881 copy addresses to registers (to make displacements shorter)
882 and use post-increment if available. */
883 if (!(data.autinc_from && data.autinc_to)
884 && move_by_pieces_ninsns (len, align, max_size) > 2)
885 {
886 /* Find the mode of the largest move... */
887 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
888 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
889 if (GET_MODE_SIZE (tmode) < max_size)
890 mode = tmode;
891
892 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
893 {
894 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
895 data.autinc_from = 1;
896 data.explicit_inc_from = -1;
897 }
898 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
899 {
900 data.from_addr = copy_addr_to_reg (from_addr);
901 data.autinc_from = 1;
902 data.explicit_inc_from = 1;
903 }
904 if (!data.autinc_from && CONSTANT_P (from_addr))
905 data.from_addr = copy_addr_to_reg (from_addr);
906 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
907 {
908 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
909 data.autinc_to = 1;
910 data.explicit_inc_to = -1;
911 }
912 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
913 {
914 data.to_addr = copy_addr_to_reg (to_addr);
915 data.autinc_to = 1;
916 data.explicit_inc_to = 1;
917 }
918 if (!data.autinc_to && CONSTANT_P (to_addr))
919 data.to_addr = copy_addr_to_reg (to_addr);
920 }
921
922 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
923 if (align >= GET_MODE_ALIGNMENT (tmode))
924 align = GET_MODE_ALIGNMENT (tmode);
925 else
926 {
927 enum machine_mode xmode;
928
929 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
930 tmode != VOIDmode;
931 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
932 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
933 || SLOW_UNALIGNED_ACCESS (tmode, align))
934 break;
935
936 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
937 }
938
939 /* First move what we can in the largest integer mode, then go to
940 successively smaller modes. */
941
942 while (max_size > 1)
943 {
944 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
945 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
946 if (GET_MODE_SIZE (tmode) < max_size)
947 mode = tmode;
948
949 if (mode == VOIDmode)
950 break;
951
952 icode = mov_optab->handlers[(int) mode].insn_code;
953 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
954 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
955
956 max_size = GET_MODE_SIZE (mode);
957 }
958
959 /* The code above should have handled everything. */
960 gcc_assert (!data.len);
961
962 if (endp)
963 {
964 rtx to1;
965
966 gcc_assert (!data.reverse);
967 if (data.autinc_to)
968 {
969 if (endp == 2)
970 {
971 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
972 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
973 else
974 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
975 -1));
976 }
977 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
978 data.offset);
979 }
980 else
981 {
982 if (endp == 2)
983 --data.offset;
984 to1 = adjust_address (data.to, QImode, data.offset);
985 }
986 return to1;
987 }
988 else
989 return data.to;
990 }
991
992 /* Return number of insns required to move L bytes by pieces.
993 ALIGN (in bits) is maximum alignment we can assume. */
994
995 static unsigned HOST_WIDE_INT
996 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
997 unsigned int max_size)
998 {
999 unsigned HOST_WIDE_INT n_insns = 0;
1000 enum machine_mode tmode;
1001
1002 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1003 if (align >= GET_MODE_ALIGNMENT (tmode))
1004 align = GET_MODE_ALIGNMENT (tmode);
1005 else
1006 {
1007 enum machine_mode tmode, xmode;
1008
1009 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1010 tmode != VOIDmode;
1011 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1012 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1013 || SLOW_UNALIGNED_ACCESS (tmode, align))
1014 break;
1015
1016 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1017 }
1018
1019 while (max_size > 1)
1020 {
1021 enum machine_mode mode = VOIDmode;
1022 enum insn_code icode;
1023
1024 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1025 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1026 if (GET_MODE_SIZE (tmode) < max_size)
1027 mode = tmode;
1028
1029 if (mode == VOIDmode)
1030 break;
1031
1032 icode = mov_optab->handlers[(int) mode].insn_code;
1033 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1034 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1035
1036 max_size = GET_MODE_SIZE (mode);
1037 }
1038
1039 gcc_assert (!l);
1040 return n_insns;
1041 }
1042
1043 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1044 with move instructions for mode MODE. GENFUN is the gen_... function
1045 to make a move insn for that mode. DATA has all the other info. */
1046
1047 static void
1048 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1049 struct move_by_pieces *data)
1050 {
1051 unsigned int size = GET_MODE_SIZE (mode);
1052 rtx to1 = NULL_RTX, from1;
1053
1054 while (data->len >= size)
1055 {
1056 if (data->reverse)
1057 data->offset -= size;
1058
1059 if (data->to)
1060 {
1061 if (data->autinc_to)
1062 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1063 data->offset);
1064 else
1065 to1 = adjust_address (data->to, mode, data->offset);
1066 }
1067
1068 if (data->autinc_from)
1069 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1070 data->offset);
1071 else
1072 from1 = adjust_address (data->from, mode, data->offset);
1073
1074 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1075 emit_insn (gen_add2_insn (data->to_addr,
1076 GEN_INT (-(HOST_WIDE_INT)size)));
1077 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1078 emit_insn (gen_add2_insn (data->from_addr,
1079 GEN_INT (-(HOST_WIDE_INT)size)));
1080
1081 if (data->to)
1082 emit_insn ((*genfun) (to1, from1));
1083 else
1084 {
1085 #ifdef PUSH_ROUNDING
1086 emit_single_push_insn (mode, from1, NULL);
1087 #else
1088 gcc_unreachable ();
1089 #endif
1090 }
1091
1092 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1093 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1094 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1095 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1096
1097 if (! data->reverse)
1098 data->offset += size;
1099
1100 data->len -= size;
1101 }
1102 }
1103 \f
1104 /* Emit code to move a block Y to a block X. This may be done with
1105 string-move instructions, with multiple scalar move instructions,
1106 or with a library call.
1107
1108 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1109 SIZE is an rtx that says how long they are.
1110 ALIGN is the maximum alignment we can assume they have.
1111 METHOD describes what kind of copy this is, and what mechanisms may be used.
1112
1113 Return the address of the new block, if memcpy is called and returns it,
1114 0 otherwise. */
1115
1116 rtx
1117 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1118 {
1119 bool may_use_call;
1120 rtx retval = 0;
1121 unsigned int align;
1122
1123 switch (method)
1124 {
1125 case BLOCK_OP_NORMAL:
1126 may_use_call = true;
1127 break;
1128
1129 case BLOCK_OP_CALL_PARM:
1130 may_use_call = block_move_libcall_safe_for_call_parm ();
1131
1132 /* Make inhibit_defer_pop nonzero around the library call
1133 to force it to pop the arguments right away. */
1134 NO_DEFER_POP;
1135 break;
1136
1137 case BLOCK_OP_NO_LIBCALL:
1138 may_use_call = false;
1139 break;
1140
1141 default:
1142 gcc_unreachable ();
1143 }
1144
1145 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1146
1147 gcc_assert (MEM_P (x));
1148 gcc_assert (MEM_P (y));
1149 gcc_assert (size);
1150
1151 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1152 block copy is more efficient for other large modes, e.g. DCmode. */
1153 x = adjust_address (x, BLKmode, 0);
1154 y = adjust_address (y, BLKmode, 0);
1155
1156 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1157 can be incorrect is coming from __builtin_memcpy. */
1158 if (GET_CODE (size) == CONST_INT)
1159 {
1160 if (INTVAL (size) == 0)
1161 return 0;
1162
1163 x = shallow_copy_rtx (x);
1164 y = shallow_copy_rtx (y);
1165 set_mem_size (x, size);
1166 set_mem_size (y, size);
1167 }
1168
1169 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1170 move_by_pieces (x, y, INTVAL (size), align, 0);
1171 else if (emit_block_move_via_movmem (x, y, size, align))
1172 ;
1173 else if (may_use_call)
1174 retval = emit_block_move_via_libcall (x, y, size);
1175 else
1176 emit_block_move_via_loop (x, y, size, align);
1177
1178 if (method == BLOCK_OP_CALL_PARM)
1179 OK_DEFER_POP;
1180
1181 return retval;
1182 }
1183
1184 /* A subroutine of emit_block_move. Returns true if calling the
1185 block move libcall will not clobber any parameters which may have
1186 already been placed on the stack. */
1187
1188 static bool
1189 block_move_libcall_safe_for_call_parm (void)
1190 {
1191 /* If arguments are pushed on the stack, then they're safe. */
1192 if (PUSH_ARGS)
1193 return true;
1194
1195 /* If registers go on the stack anyway, any argument is sure to clobber
1196 an outgoing argument. */
1197 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1198 {
1199 tree fn = emit_block_move_libcall_fn (false);
1200 (void) fn;
1201 if (REG_PARM_STACK_SPACE (fn) != 0)
1202 return false;
1203 }
1204 #endif
1205
1206 /* If any argument goes in memory, then it might clobber an outgoing
1207 argument. */
1208 {
1209 CUMULATIVE_ARGS args_so_far;
1210 tree fn, arg;
1211
1212 fn = emit_block_move_libcall_fn (false);
1213 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1214
1215 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1216 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1217 {
1218 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1219 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1220 if (!tmp || !REG_P (tmp))
1221 return false;
1222 if (FUNCTION_ARG_PARTIAL_NREGS (args_so_far, mode,
1223 NULL_TREE, 1))
1224 return false;
1225 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1226 }
1227 }
1228 return true;
1229 }
1230
1231 /* A subroutine of emit_block_move. Expand a movmem pattern;
1232 return true if successful. */
1233
1234 static bool
1235 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
1236 {
1237 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1238 int save_volatile_ok = volatile_ok;
1239 enum machine_mode mode;
1240
1241 /* Since this is a move insn, we don't care about volatility. */
1242 volatile_ok = 1;
1243
1244 /* Try the most limited insn first, because there's no point
1245 including more than one in the machine description unless
1246 the more limited one has some advantage. */
1247
1248 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1249 mode = GET_MODE_WIDER_MODE (mode))
1250 {
1251 enum insn_code code = movmem_optab[(int) mode];
1252 insn_operand_predicate_fn pred;
1253
1254 if (code != CODE_FOR_nothing
1255 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1256 here because if SIZE is less than the mode mask, as it is
1257 returned by the macro, it will definitely be less than the
1258 actual mode mask. */
1259 && ((GET_CODE (size) == CONST_INT
1260 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1261 <= (GET_MODE_MASK (mode) >> 1)))
1262 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1263 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1264 || (*pred) (x, BLKmode))
1265 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1266 || (*pred) (y, BLKmode))
1267 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1268 || (*pred) (opalign, VOIDmode)))
1269 {
1270 rtx op2;
1271 rtx last = get_last_insn ();
1272 rtx pat;
1273
1274 op2 = convert_to_mode (mode, size, 1);
1275 pred = insn_data[(int) code].operand[2].predicate;
1276 if (pred != 0 && ! (*pred) (op2, mode))
1277 op2 = copy_to_mode_reg (mode, op2);
1278
1279 /* ??? When called via emit_block_move_for_call, it'd be
1280 nice if there were some way to inform the backend, so
1281 that it doesn't fail the expansion because it thinks
1282 emitting the libcall would be more efficient. */
1283
1284 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1285 if (pat)
1286 {
1287 emit_insn (pat);
1288 volatile_ok = save_volatile_ok;
1289 return true;
1290 }
1291 else
1292 delete_insns_since (last);
1293 }
1294 }
1295
1296 volatile_ok = save_volatile_ok;
1297 return false;
1298 }
1299
1300 /* A subroutine of emit_block_move. Expand a call to memcpy.
1301 Return the return value from memcpy, 0 otherwise. */
1302
1303 static rtx
1304 emit_block_move_via_libcall (rtx dst, rtx src, rtx size)
1305 {
1306 rtx dst_addr, src_addr;
1307 tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
1308 enum machine_mode size_mode;
1309 rtx retval;
1310
1311 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1312 pseudos. We can then place those new pseudos into a VAR_DECL and
1313 use them later. */
1314
1315 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1316 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1317
1318 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1319 src_addr = convert_memory_address (ptr_mode, src_addr);
1320
1321 dst_tree = make_tree (ptr_type_node, dst_addr);
1322 src_tree = make_tree (ptr_type_node, src_addr);
1323
1324 size_mode = TYPE_MODE (sizetype);
1325
1326 size = convert_to_mode (size_mode, size, 1);
1327 size = copy_to_mode_reg (size_mode, size);
1328
1329 /* It is incorrect to use the libcall calling conventions to call
1330 memcpy in this context. This could be a user call to memcpy and
1331 the user may wish to examine the return value from memcpy. For
1332 targets where libcalls and normal calls have different conventions
1333 for returning pointers, we could end up generating incorrect code. */
1334
1335 size_tree = make_tree (sizetype, size);
1336
1337 fn = emit_block_move_libcall_fn (true);
1338 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
1339 arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
1340 arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
1341
1342 /* Now we have to build up the CALL_EXPR itself. */
1343 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1344 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1345 call_expr, arg_list, NULL_TREE);
1346
1347 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
1348
1349 return retval;
1350 }
1351
1352 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1353 for the function we use for block copies. The first time FOR_CALL
1354 is true, we call assemble_external. */
1355
1356 static GTY(()) tree block_move_fn;
1357
1358 void
1359 init_block_move_fn (const char *asmspec)
1360 {
1361 if (!block_move_fn)
1362 {
1363 tree args, fn;
1364
1365 fn = get_identifier ("memcpy");
1366 args = build_function_type_list (ptr_type_node, ptr_type_node,
1367 const_ptr_type_node, sizetype,
1368 NULL_TREE);
1369
1370 fn = build_decl (FUNCTION_DECL, fn, args);
1371 DECL_EXTERNAL (fn) = 1;
1372 TREE_PUBLIC (fn) = 1;
1373 DECL_ARTIFICIAL (fn) = 1;
1374 TREE_NOTHROW (fn) = 1;
1375
1376 block_move_fn = fn;
1377 }
1378
1379 if (asmspec)
1380 set_user_assembler_name (block_move_fn, asmspec);
1381 }
1382
1383 static tree
1384 emit_block_move_libcall_fn (int for_call)
1385 {
1386 static bool emitted_extern;
1387
1388 if (!block_move_fn)
1389 init_block_move_fn (NULL);
1390
1391 if (for_call && !emitted_extern)
1392 {
1393 emitted_extern = true;
1394 make_decl_rtl (block_move_fn);
1395 assemble_external (block_move_fn);
1396 }
1397
1398 return block_move_fn;
1399 }
1400
1401 /* A subroutine of emit_block_move. Copy the data via an explicit
1402 loop. This is used only when libcalls are forbidden. */
1403 /* ??? It'd be nice to copy in hunks larger than QImode. */
1404
1405 static void
1406 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1407 unsigned int align ATTRIBUTE_UNUSED)
1408 {
1409 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1410 enum machine_mode iter_mode;
1411
1412 iter_mode = GET_MODE (size);
1413 if (iter_mode == VOIDmode)
1414 iter_mode = word_mode;
1415
1416 top_label = gen_label_rtx ();
1417 cmp_label = gen_label_rtx ();
1418 iter = gen_reg_rtx (iter_mode);
1419
1420 emit_move_insn (iter, const0_rtx);
1421
1422 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1423 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1424 do_pending_stack_adjust ();
1425
1426 emit_jump (cmp_label);
1427 emit_label (top_label);
1428
1429 tmp = convert_modes (Pmode, iter_mode, iter, true);
1430 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1431 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1432 x = change_address (x, QImode, x_addr);
1433 y = change_address (y, QImode, y_addr);
1434
1435 emit_move_insn (x, y);
1436
1437 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1438 true, OPTAB_LIB_WIDEN);
1439 if (tmp != iter)
1440 emit_move_insn (iter, tmp);
1441
1442 emit_label (cmp_label);
1443
1444 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1445 true, top_label);
1446 }
1447 \f
1448 /* Copy all or part of a value X into registers starting at REGNO.
1449 The number of registers to be filled is NREGS. */
1450
1451 void
1452 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1453 {
1454 int i;
1455 #ifdef HAVE_load_multiple
1456 rtx pat;
1457 rtx last;
1458 #endif
1459
1460 if (nregs == 0)
1461 return;
1462
1463 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1464 x = validize_mem (force_const_mem (mode, x));
1465
1466 /* See if the machine can do this with a load multiple insn. */
1467 #ifdef HAVE_load_multiple
1468 if (HAVE_load_multiple)
1469 {
1470 last = get_last_insn ();
1471 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1472 GEN_INT (nregs));
1473 if (pat)
1474 {
1475 emit_insn (pat);
1476 return;
1477 }
1478 else
1479 delete_insns_since (last);
1480 }
1481 #endif
1482
1483 for (i = 0; i < nregs; i++)
1484 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1485 operand_subword_force (x, i, mode));
1486 }
1487
1488 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1489 The number of registers to be filled is NREGS. */
1490
1491 void
1492 move_block_from_reg (int regno, rtx x, int nregs)
1493 {
1494 int i;
1495
1496 if (nregs == 0)
1497 return;
1498
1499 /* See if the machine can do this with a store multiple insn. */
1500 #ifdef HAVE_store_multiple
1501 if (HAVE_store_multiple)
1502 {
1503 rtx last = get_last_insn ();
1504 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1505 GEN_INT (nregs));
1506 if (pat)
1507 {
1508 emit_insn (pat);
1509 return;
1510 }
1511 else
1512 delete_insns_since (last);
1513 }
1514 #endif
1515
1516 for (i = 0; i < nregs; i++)
1517 {
1518 rtx tem = operand_subword (x, i, 1, BLKmode);
1519
1520 gcc_assert (tem);
1521
1522 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1523 }
1524 }
1525
1526 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1527 ORIG, where ORIG is a non-consecutive group of registers represented by
1528 a PARALLEL. The clone is identical to the original except in that the
1529 original set of registers is replaced by a new set of pseudo registers.
1530 The new set has the same modes as the original set. */
1531
1532 rtx
1533 gen_group_rtx (rtx orig)
1534 {
1535 int i, length;
1536 rtx *tmps;
1537
1538 gcc_assert (GET_CODE (orig) == PARALLEL);
1539
1540 length = XVECLEN (orig, 0);
1541 tmps = alloca (sizeof (rtx) * length);
1542
1543 /* Skip a NULL entry in first slot. */
1544 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1545
1546 if (i)
1547 tmps[0] = 0;
1548
1549 for (; i < length; i++)
1550 {
1551 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1552 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1553
1554 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1555 }
1556
1557 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1558 }
1559
1560 /* Emit code to move a block ORIG_SRC of type TYPE to a block DST,
1561 where DST is non-consecutive registers represented by a PARALLEL.
1562 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1563 if not known. */
1564
1565 void
1566 emit_group_load (rtx dst, rtx orig_src, tree type ATTRIBUTE_UNUSED, int ssize)
1567 {
1568 rtx *tmps, src;
1569 int start, i;
1570
1571 gcc_assert (GET_CODE (dst) == PARALLEL);
1572
1573 /* Check for a NULL entry, used to indicate that the parameter goes
1574 both on the stack and in registers. */
1575 if (XEXP (XVECEXP (dst, 0, 0), 0))
1576 start = 0;
1577 else
1578 start = 1;
1579
1580 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1581
1582 /* Process the pieces. */
1583 for (i = start; i < XVECLEN (dst, 0); i++)
1584 {
1585 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1586 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1587 unsigned int bytelen = GET_MODE_SIZE (mode);
1588 int shift = 0;
1589
1590 /* Handle trailing fragments that run over the size of the struct. */
1591 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1592 {
1593 /* Arrange to shift the fragment to where it belongs.
1594 extract_bit_field loads to the lsb of the reg. */
1595 if (
1596 #ifdef BLOCK_REG_PADDING
1597 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1598 == (BYTES_BIG_ENDIAN ? upward : downward)
1599 #else
1600 BYTES_BIG_ENDIAN
1601 #endif
1602 )
1603 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1604 bytelen = ssize - bytepos;
1605 gcc_assert (bytelen > 0);
1606 }
1607
1608 /* If we won't be loading directly from memory, protect the real source
1609 from strange tricks we might play; but make sure that the source can
1610 be loaded directly into the destination. */
1611 src = orig_src;
1612 if (!MEM_P (orig_src)
1613 && (!CONSTANT_P (orig_src)
1614 || (GET_MODE (orig_src) != mode
1615 && GET_MODE (orig_src) != VOIDmode)))
1616 {
1617 if (GET_MODE (orig_src) == VOIDmode)
1618 src = gen_reg_rtx (mode);
1619 else
1620 src = gen_reg_rtx (GET_MODE (orig_src));
1621
1622 emit_move_insn (src, orig_src);
1623 }
1624
1625 /* Optimize the access just a bit. */
1626 if (MEM_P (src)
1627 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1628 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1629 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1630 && bytelen == GET_MODE_SIZE (mode))
1631 {
1632 tmps[i] = gen_reg_rtx (mode);
1633 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1634 }
1635 else if (GET_CODE (src) == CONCAT)
1636 {
1637 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1638 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1639
1640 if ((bytepos == 0 && bytelen == slen0)
1641 || (bytepos != 0 && bytepos + bytelen <= slen))
1642 {
1643 /* The following assumes that the concatenated objects all
1644 have the same size. In this case, a simple calculation
1645 can be used to determine the object and the bit field
1646 to be extracted. */
1647 tmps[i] = XEXP (src, bytepos / slen0);
1648 if (! CONSTANT_P (tmps[i])
1649 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1650 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1651 (bytepos % slen0) * BITS_PER_UNIT,
1652 1, NULL_RTX, mode, mode);
1653 }
1654 else
1655 {
1656 rtx mem;
1657
1658 gcc_assert (!bytepos);
1659 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1660 emit_move_insn (mem, src);
1661 tmps[i] = adjust_address (mem, mode, 0);
1662 }
1663 }
1664 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1665 SIMD register, which is currently broken. While we get GCC
1666 to emit proper RTL for these cases, let's dump to memory. */
1667 else if (VECTOR_MODE_P (GET_MODE (dst))
1668 && REG_P (src))
1669 {
1670 int slen = GET_MODE_SIZE (GET_MODE (src));
1671 rtx mem;
1672
1673 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1674 emit_move_insn (mem, src);
1675 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1676 }
1677 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1678 && XVECLEN (dst, 0) > 1)
1679 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1680 else if (CONSTANT_P (src)
1681 || (REG_P (src) && GET_MODE (src) == mode))
1682 tmps[i] = src;
1683 else
1684 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1685 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1686 mode, mode);
1687
1688 if (shift)
1689 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1690 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1691 }
1692
1693 /* Copy the extracted pieces into the proper (probable) hard regs. */
1694 for (i = start; i < XVECLEN (dst, 0); i++)
1695 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0), tmps[i]);
1696 }
1697
1698 /* Emit code to move a block SRC to block DST, where SRC and DST are
1699 non-consecutive groups of registers, each represented by a PARALLEL. */
1700
1701 void
1702 emit_group_move (rtx dst, rtx src)
1703 {
1704 int i;
1705
1706 gcc_assert (GET_CODE (src) == PARALLEL
1707 && GET_CODE (dst) == PARALLEL
1708 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1709
1710 /* Skip first entry if NULL. */
1711 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1712 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1713 XEXP (XVECEXP (src, 0, i), 0));
1714 }
1715
1716 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1717 where SRC is non-consecutive registers represented by a PARALLEL.
1718 SSIZE represents the total size of block ORIG_DST, or -1 if not
1719 known. */
1720
1721 void
1722 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1723 {
1724 rtx *tmps, dst;
1725 int start, i;
1726
1727 gcc_assert (GET_CODE (src) == PARALLEL);
1728
1729 /* Check for a NULL entry, used to indicate that the parameter goes
1730 both on the stack and in registers. */
1731 if (XEXP (XVECEXP (src, 0, 0), 0))
1732 start = 0;
1733 else
1734 start = 1;
1735
1736 tmps = alloca (sizeof (rtx) * XVECLEN (src, 0));
1737
1738 /* Copy the (probable) hard regs into pseudos. */
1739 for (i = start; i < XVECLEN (src, 0); i++)
1740 {
1741 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1742 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1743 emit_move_insn (tmps[i], reg);
1744 }
1745
1746 /* If we won't be storing directly into memory, protect the real destination
1747 from strange tricks we might play. */
1748 dst = orig_dst;
1749 if (GET_CODE (dst) == PARALLEL)
1750 {
1751 rtx temp;
1752
1753 /* We can get a PARALLEL dst if there is a conditional expression in
1754 a return statement. In that case, the dst and src are the same,
1755 so no action is necessary. */
1756 if (rtx_equal_p (dst, src))
1757 return;
1758
1759 /* It is unclear if we can ever reach here, but we may as well handle
1760 it. Allocate a temporary, and split this into a store/load to/from
1761 the temporary. */
1762
1763 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1764 emit_group_store (temp, src, type, ssize);
1765 emit_group_load (dst, temp, type, ssize);
1766 return;
1767 }
1768 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1769 {
1770 dst = gen_reg_rtx (GET_MODE (orig_dst));
1771 /* Make life a bit easier for combine. */
1772 emit_move_insn (dst, CONST0_RTX (GET_MODE (orig_dst)));
1773 }
1774
1775 /* Process the pieces. */
1776 for (i = start; i < XVECLEN (src, 0); i++)
1777 {
1778 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1779 enum machine_mode mode = GET_MODE (tmps[i]);
1780 unsigned int bytelen = GET_MODE_SIZE (mode);
1781 rtx dest = dst;
1782
1783 /* Handle trailing fragments that run over the size of the struct. */
1784 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1785 {
1786 /* store_bit_field always takes its value from the lsb.
1787 Move the fragment to the lsb if it's not already there. */
1788 if (
1789 #ifdef BLOCK_REG_PADDING
1790 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
1791 == (BYTES_BIG_ENDIAN ? upward : downward)
1792 #else
1793 BYTES_BIG_ENDIAN
1794 #endif
1795 )
1796 {
1797 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1798 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
1799 build_int_cst (NULL_TREE, shift),
1800 tmps[i], 0);
1801 }
1802 bytelen = ssize - bytepos;
1803 }
1804
1805 if (GET_CODE (dst) == CONCAT)
1806 {
1807 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1808 dest = XEXP (dst, 0);
1809 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
1810 {
1811 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
1812 dest = XEXP (dst, 1);
1813 }
1814 else
1815 {
1816 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
1817 dest = assign_stack_temp (GET_MODE (dest),
1818 GET_MODE_SIZE (GET_MODE (dest)), 0);
1819 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
1820 tmps[i]);
1821 dst = dest;
1822 break;
1823 }
1824 }
1825
1826 /* Optimize the access just a bit. */
1827 if (MEM_P (dest)
1828 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
1829 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
1830 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1831 && bytelen == GET_MODE_SIZE (mode))
1832 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
1833 else
1834 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
1835 mode, tmps[i]);
1836 }
1837
1838 /* Copy from the pseudo into the (probable) hard reg. */
1839 if (orig_dst != dst)
1840 emit_move_insn (orig_dst, dst);
1841 }
1842
1843 /* Generate code to copy a BLKmode object of TYPE out of a
1844 set of registers starting with SRCREG into TGTBLK. If TGTBLK
1845 is null, a stack temporary is created. TGTBLK is returned.
1846
1847 The purpose of this routine is to handle functions that return
1848 BLKmode structures in registers. Some machines (the PA for example)
1849 want to return all small structures in registers regardless of the
1850 structure's alignment. */
1851
1852 rtx
1853 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
1854 {
1855 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
1856 rtx src = NULL, dst = NULL;
1857 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
1858 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
1859
1860 if (tgtblk == 0)
1861 {
1862 tgtblk = assign_temp (build_qualified_type (type,
1863 (TYPE_QUALS (type)
1864 | TYPE_QUAL_CONST)),
1865 0, 1, 1);
1866 preserve_temp_slots (tgtblk);
1867 }
1868
1869 /* This code assumes srcreg is at least a full word. If it isn't, copy it
1870 into a new pseudo which is a full word. */
1871
1872 if (GET_MODE (srcreg) != BLKmode
1873 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
1874 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
1875
1876 /* If the structure doesn't take up a whole number of words, see whether
1877 SRCREG is padded on the left or on the right. If it's on the left,
1878 set PADDING_CORRECTION to the number of bits to skip.
1879
1880 In most ABIs, the structure will be returned at the least end of
1881 the register, which translates to right padding on little-endian
1882 targets and left padding on big-endian targets. The opposite
1883 holds if the structure is returned at the most significant
1884 end of the register. */
1885 if (bytes % UNITS_PER_WORD != 0
1886 && (targetm.calls.return_in_msb (type)
1887 ? !BYTES_BIG_ENDIAN
1888 : BYTES_BIG_ENDIAN))
1889 padding_correction
1890 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
1891
1892 /* Copy the structure BITSIZE bites at a time.
1893
1894 We could probably emit more efficient code for machines which do not use
1895 strict alignment, but it doesn't seem worth the effort at the current
1896 time. */
1897 for (bitpos = 0, xbitpos = padding_correction;
1898 bitpos < bytes * BITS_PER_UNIT;
1899 bitpos += bitsize, xbitpos += bitsize)
1900 {
1901 /* We need a new source operand each time xbitpos is on a
1902 word boundary and when xbitpos == padding_correction
1903 (the first time through). */
1904 if (xbitpos % BITS_PER_WORD == 0
1905 || xbitpos == padding_correction)
1906 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
1907 GET_MODE (srcreg));
1908
1909 /* We need a new destination operand each time bitpos is on
1910 a word boundary. */
1911 if (bitpos % BITS_PER_WORD == 0)
1912 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
1913
1914 /* Use xbitpos for the source extraction (right justified) and
1915 xbitpos for the destination store (left justified). */
1916 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
1917 extract_bit_field (src, bitsize,
1918 xbitpos % BITS_PER_WORD, 1,
1919 NULL_RTX, word_mode, word_mode));
1920 }
1921
1922 return tgtblk;
1923 }
1924
1925 /* Add a USE expression for REG to the (possibly empty) list pointed
1926 to by CALL_FUSAGE. REG must denote a hard register. */
1927
1928 void
1929 use_reg (rtx *call_fusage, rtx reg)
1930 {
1931 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
1932
1933 *call_fusage
1934 = gen_rtx_EXPR_LIST (VOIDmode,
1935 gen_rtx_USE (VOIDmode, reg), *call_fusage);
1936 }
1937
1938 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
1939 starting at REGNO. All of these registers must be hard registers. */
1940
1941 void
1942 use_regs (rtx *call_fusage, int regno, int nregs)
1943 {
1944 int i;
1945
1946 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
1947
1948 for (i = 0; i < nregs; i++)
1949 use_reg (call_fusage, regno_reg_rtx[regno + i]);
1950 }
1951
1952 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
1953 PARALLEL REGS. This is for calls that pass values in multiple
1954 non-contiguous locations. The Irix 6 ABI has examples of this. */
1955
1956 void
1957 use_group_regs (rtx *call_fusage, rtx regs)
1958 {
1959 int i;
1960
1961 for (i = 0; i < XVECLEN (regs, 0); i++)
1962 {
1963 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
1964
1965 /* A NULL entry means the parameter goes both on the stack and in
1966 registers. This can also be a MEM for targets that pass values
1967 partially on the stack and partially in registers. */
1968 if (reg != 0 && REG_P (reg))
1969 use_reg (call_fusage, reg);
1970 }
1971 }
1972 \f
1973
1974 /* Determine whether the LEN bytes generated by CONSTFUN can be
1975 stored to memory using several move instructions. CONSTFUNDATA is
1976 a pointer which will be passed as argument in every CONSTFUN call.
1977 ALIGN is maximum alignment we can assume. Return nonzero if a
1978 call to store_by_pieces should succeed. */
1979
1980 int
1981 can_store_by_pieces (unsigned HOST_WIDE_INT len,
1982 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
1983 void *constfundata, unsigned int align)
1984 {
1985 unsigned HOST_WIDE_INT l;
1986 unsigned int max_size;
1987 HOST_WIDE_INT offset = 0;
1988 enum machine_mode mode, tmode;
1989 enum insn_code icode;
1990 int reverse;
1991 rtx cst;
1992
1993 if (len == 0)
1994 return 1;
1995
1996 if (! STORE_BY_PIECES_P (len, align))
1997 return 0;
1998
1999 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2000 if (align >= GET_MODE_ALIGNMENT (tmode))
2001 align = GET_MODE_ALIGNMENT (tmode);
2002 else
2003 {
2004 enum machine_mode xmode;
2005
2006 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2007 tmode != VOIDmode;
2008 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2009 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2010 || SLOW_UNALIGNED_ACCESS (tmode, align))
2011 break;
2012
2013 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2014 }
2015
2016 /* We would first store what we can in the largest integer mode, then go to
2017 successively smaller modes. */
2018
2019 for (reverse = 0;
2020 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2021 reverse++)
2022 {
2023 l = len;
2024 mode = VOIDmode;
2025 max_size = STORE_MAX_PIECES + 1;
2026 while (max_size > 1)
2027 {
2028 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2029 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2030 if (GET_MODE_SIZE (tmode) < max_size)
2031 mode = tmode;
2032
2033 if (mode == VOIDmode)
2034 break;
2035
2036 icode = mov_optab->handlers[(int) mode].insn_code;
2037 if (icode != CODE_FOR_nothing
2038 && align >= GET_MODE_ALIGNMENT (mode))
2039 {
2040 unsigned int size = GET_MODE_SIZE (mode);
2041
2042 while (l >= size)
2043 {
2044 if (reverse)
2045 offset -= size;
2046
2047 cst = (*constfun) (constfundata, offset, mode);
2048 if (!LEGITIMATE_CONSTANT_P (cst))
2049 return 0;
2050
2051 if (!reverse)
2052 offset += size;
2053
2054 l -= size;
2055 }
2056 }
2057
2058 max_size = GET_MODE_SIZE (mode);
2059 }
2060
2061 /* The code above should have handled everything. */
2062 gcc_assert (!l);
2063 }
2064
2065 return 1;
2066 }
2067
2068 /* Generate several move instructions to store LEN bytes generated by
2069 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2070 pointer which will be passed as argument in every CONSTFUN call.
2071 ALIGN is maximum alignment we can assume.
2072 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2073 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2074 stpcpy. */
2075
2076 rtx
2077 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2078 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2079 void *constfundata, unsigned int align, int endp)
2080 {
2081 struct store_by_pieces data;
2082
2083 if (len == 0)
2084 {
2085 gcc_assert (endp != 2);
2086 return to;
2087 }
2088
2089 gcc_assert (STORE_BY_PIECES_P (len, align));
2090 data.constfun = constfun;
2091 data.constfundata = constfundata;
2092 data.len = len;
2093 data.to = to;
2094 store_by_pieces_1 (&data, align);
2095 if (endp)
2096 {
2097 rtx to1;
2098
2099 gcc_assert (!data.reverse);
2100 if (data.autinc_to)
2101 {
2102 if (endp == 2)
2103 {
2104 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2105 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2106 else
2107 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2108 -1));
2109 }
2110 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2111 data.offset);
2112 }
2113 else
2114 {
2115 if (endp == 2)
2116 --data.offset;
2117 to1 = adjust_address (data.to, QImode, data.offset);
2118 }
2119 return to1;
2120 }
2121 else
2122 return data.to;
2123 }
2124
2125 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2126 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2127
2128 static void
2129 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2130 {
2131 struct store_by_pieces data;
2132
2133 if (len == 0)
2134 return;
2135
2136 data.constfun = clear_by_pieces_1;
2137 data.constfundata = NULL;
2138 data.len = len;
2139 data.to = to;
2140 store_by_pieces_1 (&data, align);
2141 }
2142
2143 /* Callback routine for clear_by_pieces.
2144 Return const0_rtx unconditionally. */
2145
2146 static rtx
2147 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2148 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2149 enum machine_mode mode ATTRIBUTE_UNUSED)
2150 {
2151 return const0_rtx;
2152 }
2153
2154 /* Subroutine of clear_by_pieces and store_by_pieces.
2155 Generate several move instructions to store LEN bytes of block TO. (A MEM
2156 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2157
2158 static void
2159 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2160 unsigned int align ATTRIBUTE_UNUSED)
2161 {
2162 rtx to_addr = XEXP (data->to, 0);
2163 unsigned int max_size = STORE_MAX_PIECES + 1;
2164 enum machine_mode mode = VOIDmode, tmode;
2165 enum insn_code icode;
2166
2167 data->offset = 0;
2168 data->to_addr = to_addr;
2169 data->autinc_to
2170 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2171 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2172
2173 data->explicit_inc_to = 0;
2174 data->reverse
2175 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2176 if (data->reverse)
2177 data->offset = data->len;
2178
2179 /* If storing requires more than two move insns,
2180 copy addresses to registers (to make displacements shorter)
2181 and use post-increment if available. */
2182 if (!data->autinc_to
2183 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2184 {
2185 /* Determine the main mode we'll be using. */
2186 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2187 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2188 if (GET_MODE_SIZE (tmode) < max_size)
2189 mode = tmode;
2190
2191 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2192 {
2193 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2194 data->autinc_to = 1;
2195 data->explicit_inc_to = -1;
2196 }
2197
2198 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2199 && ! data->autinc_to)
2200 {
2201 data->to_addr = copy_addr_to_reg (to_addr);
2202 data->autinc_to = 1;
2203 data->explicit_inc_to = 1;
2204 }
2205
2206 if ( !data->autinc_to && CONSTANT_P (to_addr))
2207 data->to_addr = copy_addr_to_reg (to_addr);
2208 }
2209
2210 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2211 if (align >= GET_MODE_ALIGNMENT (tmode))
2212 align = GET_MODE_ALIGNMENT (tmode);
2213 else
2214 {
2215 enum machine_mode xmode;
2216
2217 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2218 tmode != VOIDmode;
2219 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2220 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2221 || SLOW_UNALIGNED_ACCESS (tmode, align))
2222 break;
2223
2224 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2225 }
2226
2227 /* First store what we can in the largest integer mode, then go to
2228 successively smaller modes. */
2229
2230 while (max_size > 1)
2231 {
2232 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2233 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2234 if (GET_MODE_SIZE (tmode) < max_size)
2235 mode = tmode;
2236
2237 if (mode == VOIDmode)
2238 break;
2239
2240 icode = mov_optab->handlers[(int) mode].insn_code;
2241 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2242 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2243
2244 max_size = GET_MODE_SIZE (mode);
2245 }
2246
2247 /* The code above should have handled everything. */
2248 gcc_assert (!data->len);
2249 }
2250
2251 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2252 with move instructions for mode MODE. GENFUN is the gen_... function
2253 to make a move insn for that mode. DATA has all the other info. */
2254
2255 static void
2256 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2257 struct store_by_pieces *data)
2258 {
2259 unsigned int size = GET_MODE_SIZE (mode);
2260 rtx to1, cst;
2261
2262 while (data->len >= size)
2263 {
2264 if (data->reverse)
2265 data->offset -= size;
2266
2267 if (data->autinc_to)
2268 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2269 data->offset);
2270 else
2271 to1 = adjust_address (data->to, mode, data->offset);
2272
2273 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2274 emit_insn (gen_add2_insn (data->to_addr,
2275 GEN_INT (-(HOST_WIDE_INT) size)));
2276
2277 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2278 emit_insn ((*genfun) (to1, cst));
2279
2280 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2281 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2282
2283 if (! data->reverse)
2284 data->offset += size;
2285
2286 data->len -= size;
2287 }
2288 }
2289 \f
2290 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2291 its length in bytes. */
2292
2293 rtx
2294 clear_storage (rtx object, rtx size)
2295 {
2296 rtx retval = 0;
2297 unsigned int align = (MEM_P (object) ? MEM_ALIGN (object)
2298 : GET_MODE_ALIGNMENT (GET_MODE (object)));
2299
2300 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2301 just move a zero. Otherwise, do this a piece at a time. */
2302 if (GET_MODE (object) != BLKmode
2303 && GET_CODE (size) == CONST_INT
2304 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (object)))
2305 emit_move_insn (object, CONST0_RTX (GET_MODE (object)));
2306 else
2307 {
2308 if (size == const0_rtx)
2309 ;
2310 else if (GET_CODE (size) == CONST_INT
2311 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2312 clear_by_pieces (object, INTVAL (size), align);
2313 else if (clear_storage_via_clrmem (object, size, align))
2314 ;
2315 else
2316 retval = clear_storage_via_libcall (object, size);
2317 }
2318
2319 return retval;
2320 }
2321
2322 /* A subroutine of clear_storage. Expand a clrmem pattern;
2323 return true if successful. */
2324
2325 static bool
2326 clear_storage_via_clrmem (rtx object, rtx size, unsigned int align)
2327 {
2328 /* Try the most limited insn first, because there's no point
2329 including more than one in the machine description unless
2330 the more limited one has some advantage. */
2331
2332 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2333 enum machine_mode mode;
2334
2335 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2336 mode = GET_MODE_WIDER_MODE (mode))
2337 {
2338 enum insn_code code = clrmem_optab[(int) mode];
2339 insn_operand_predicate_fn pred;
2340
2341 if (code != CODE_FOR_nothing
2342 /* We don't need MODE to be narrower than
2343 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2344 the mode mask, as it is returned by the macro, it will
2345 definitely be less than the actual mode mask. */
2346 && ((GET_CODE (size) == CONST_INT
2347 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2348 <= (GET_MODE_MASK (mode) >> 1)))
2349 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2350 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2351 || (*pred) (object, BLKmode))
2352 && ((pred = insn_data[(int) code].operand[2].predicate) == 0
2353 || (*pred) (opalign, VOIDmode)))
2354 {
2355 rtx op1;
2356 rtx last = get_last_insn ();
2357 rtx pat;
2358
2359 op1 = convert_to_mode (mode, size, 1);
2360 pred = insn_data[(int) code].operand[1].predicate;
2361 if (pred != 0 && ! (*pred) (op1, mode))
2362 op1 = copy_to_mode_reg (mode, op1);
2363
2364 pat = GEN_FCN ((int) code) (object, op1, opalign);
2365 if (pat)
2366 {
2367 emit_insn (pat);
2368 return true;
2369 }
2370 else
2371 delete_insns_since (last);
2372 }
2373 }
2374
2375 return false;
2376 }
2377
2378 /* A subroutine of clear_storage. Expand a call to memset.
2379 Return the return value of memset, 0 otherwise. */
2380
2381 static rtx
2382 clear_storage_via_libcall (rtx object, rtx size)
2383 {
2384 tree call_expr, arg_list, fn, object_tree, size_tree;
2385 enum machine_mode size_mode;
2386 rtx retval;
2387
2388 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2389 place those into new pseudos into a VAR_DECL and use them later. */
2390
2391 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2392
2393 size_mode = TYPE_MODE (sizetype);
2394 size = convert_to_mode (size_mode, size, 1);
2395 size = copy_to_mode_reg (size_mode, size);
2396
2397 /* It is incorrect to use the libcall calling conventions to call
2398 memset in this context. This could be a user call to memset and
2399 the user may wish to examine the return value from memset. For
2400 targets where libcalls and normal calls have different conventions
2401 for returning pointers, we could end up generating incorrect code. */
2402
2403 object_tree = make_tree (ptr_type_node, object);
2404 size_tree = make_tree (sizetype, size);
2405
2406 fn = clear_storage_libcall_fn (true);
2407 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
2408 arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
2409 arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
2410
2411 /* Now we have to build up the CALL_EXPR itself. */
2412 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
2413 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2414 call_expr, arg_list, NULL_TREE);
2415
2416 retval = expand_expr (call_expr, NULL_RTX, VOIDmode, 0);
2417
2418 return retval;
2419 }
2420
2421 /* A subroutine of clear_storage_via_libcall. Create the tree node
2422 for the function we use for block clears. The first time FOR_CALL
2423 is true, we call assemble_external. */
2424
2425 static GTY(()) tree block_clear_fn;
2426
2427 void
2428 init_block_clear_fn (const char *asmspec)
2429 {
2430 if (!block_clear_fn)
2431 {
2432 tree fn, args;
2433
2434 fn = get_identifier ("memset");
2435 args = build_function_type_list (ptr_type_node, ptr_type_node,
2436 integer_type_node, sizetype,
2437 NULL_TREE);
2438
2439 fn = build_decl (FUNCTION_DECL, fn, args);
2440 DECL_EXTERNAL (fn) = 1;
2441 TREE_PUBLIC (fn) = 1;
2442 DECL_ARTIFICIAL (fn) = 1;
2443 TREE_NOTHROW (fn) = 1;
2444
2445 block_clear_fn = fn;
2446 }
2447
2448 if (asmspec)
2449 set_user_assembler_name (block_clear_fn, asmspec);
2450 }
2451
2452 static tree
2453 clear_storage_libcall_fn (int for_call)
2454 {
2455 static bool emitted_extern;
2456
2457 if (!block_clear_fn)
2458 init_block_clear_fn (NULL);
2459
2460 if (for_call && !emitted_extern)
2461 {
2462 emitted_extern = true;
2463 make_decl_rtl (block_clear_fn);
2464 assemble_external (block_clear_fn);
2465 }
2466
2467 return block_clear_fn;
2468 }
2469 \f
2470 /* Generate code to copy Y into X.
2471 Both Y and X must have the same mode, except that
2472 Y can be a constant with VOIDmode.
2473 This mode cannot be BLKmode; use emit_block_move for that.
2474
2475 Return the last instruction emitted. */
2476
2477 rtx
2478 emit_move_insn (rtx x, rtx y)
2479 {
2480 enum machine_mode mode = GET_MODE (x);
2481 rtx y_cst = NULL_RTX;
2482 rtx last_insn, set;
2483
2484 gcc_assert (mode != BLKmode
2485 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
2486
2487 if (CONSTANT_P (y))
2488 {
2489 if (optimize
2490 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
2491 && (last_insn = compress_float_constant (x, y)))
2492 return last_insn;
2493
2494 y_cst = y;
2495
2496 if (!LEGITIMATE_CONSTANT_P (y))
2497 {
2498 y = force_const_mem (mode, y);
2499
2500 /* If the target's cannot_force_const_mem prevented the spill,
2501 assume that the target's move expanders will also take care
2502 of the non-legitimate constant. */
2503 if (!y)
2504 y = y_cst;
2505 }
2506 }
2507
2508 /* If X or Y are memory references, verify that their addresses are valid
2509 for the machine. */
2510 if (MEM_P (x)
2511 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
2512 && ! push_operand (x, GET_MODE (x)))
2513 || (flag_force_addr
2514 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
2515 x = validize_mem (x);
2516
2517 if (MEM_P (y)
2518 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
2519 || (flag_force_addr
2520 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
2521 y = validize_mem (y);
2522
2523 gcc_assert (mode != BLKmode);
2524
2525 last_insn = emit_move_insn_1 (x, y);
2526
2527 if (y_cst && REG_P (x)
2528 && (set = single_set (last_insn)) != NULL_RTX
2529 && SET_DEST (set) == x
2530 && ! rtx_equal_p (y_cst, SET_SRC (set)))
2531 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
2532
2533 return last_insn;
2534 }
2535
2536 /* Low level part of emit_move_insn.
2537 Called just like emit_move_insn, but assumes X and Y
2538 are basically valid. */
2539
2540 rtx
2541 emit_move_insn_1 (rtx x, rtx y)
2542 {
2543 enum machine_mode mode = GET_MODE (x);
2544 enum machine_mode submode;
2545 enum mode_class class = GET_MODE_CLASS (mode);
2546
2547 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
2548
2549 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2550 return
2551 emit_insn (GEN_FCN (mov_optab->handlers[(int) mode].insn_code) (x, y));
2552
2553 /* Expand complex moves by moving real part and imag part, if possible. */
2554 else if ((class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
2555 && BLKmode != (submode = GET_MODE_INNER (mode))
2556 && (mov_optab->handlers[(int) submode].insn_code
2557 != CODE_FOR_nothing))
2558 {
2559 /* Don't split destination if it is a stack push. */
2560 int stack = push_operand (x, GET_MODE (x));
2561
2562 #ifdef PUSH_ROUNDING
2563 /* In case we output to the stack, but the size is smaller than the
2564 machine can push exactly, we need to use move instructions. */
2565 if (stack
2566 && (PUSH_ROUNDING (GET_MODE_SIZE (submode))
2567 != GET_MODE_SIZE (submode)))
2568 {
2569 rtx temp;
2570 HOST_WIDE_INT offset1, offset2;
2571
2572 /* Do not use anti_adjust_stack, since we don't want to update
2573 stack_pointer_delta. */
2574 temp = expand_binop (Pmode,
2575 #ifdef STACK_GROWS_DOWNWARD
2576 sub_optab,
2577 #else
2578 add_optab,
2579 #endif
2580 stack_pointer_rtx,
2581 GEN_INT
2582 (PUSH_ROUNDING
2583 (GET_MODE_SIZE (GET_MODE (x)))),
2584 stack_pointer_rtx, 0, OPTAB_LIB_WIDEN);
2585
2586 if (temp != stack_pointer_rtx)
2587 emit_move_insn (stack_pointer_rtx, temp);
2588
2589 #ifdef STACK_GROWS_DOWNWARD
2590 offset1 = 0;
2591 offset2 = GET_MODE_SIZE (submode);
2592 #else
2593 offset1 = -PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x)));
2594 offset2 = (-PUSH_ROUNDING (GET_MODE_SIZE (GET_MODE (x)))
2595 + GET_MODE_SIZE (submode));
2596 #endif
2597
2598 emit_move_insn (change_address (x, submode,
2599 gen_rtx_PLUS (Pmode,
2600 stack_pointer_rtx,
2601 GEN_INT (offset1))),
2602 gen_realpart (submode, y));
2603 emit_move_insn (change_address (x, submode,
2604 gen_rtx_PLUS (Pmode,
2605 stack_pointer_rtx,
2606 GEN_INT (offset2))),
2607 gen_imagpart (submode, y));
2608 }
2609 else
2610 #endif
2611 /* If this is a stack, push the highpart first, so it
2612 will be in the argument order.
2613
2614 In that case, change_address is used only to convert
2615 the mode, not to change the address. */
2616 if (stack)
2617 {
2618 /* Note that the real part always precedes the imag part in memory
2619 regardless of machine's endianness. */
2620 #ifdef STACK_GROWS_DOWNWARD
2621 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2622 gen_imagpart (submode, y));
2623 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2624 gen_realpart (submode, y));
2625 #else
2626 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2627 gen_realpart (submode, y));
2628 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
2629 gen_imagpart (submode, y));
2630 #endif
2631 }
2632 else
2633 {
2634 rtx realpart_x, realpart_y;
2635 rtx imagpart_x, imagpart_y;
2636
2637 /* If this is a complex value with each part being smaller than a
2638 word, the usual calling sequence will likely pack the pieces into
2639 a single register. Unfortunately, SUBREG of hard registers only
2640 deals in terms of words, so we have a problem converting input
2641 arguments to the CONCAT of two registers that is used elsewhere
2642 for complex values. If this is before reload, we can copy it into
2643 memory and reload. FIXME, we should see about using extract and
2644 insert on integer registers, but complex short and complex char
2645 variables should be rarely used. */
2646 if (GET_MODE_BITSIZE (mode) < 2 * BITS_PER_WORD
2647 && (reload_in_progress | reload_completed) == 0)
2648 {
2649 int packed_dest_p
2650 = (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER);
2651 int packed_src_p
2652 = (REG_P (y) && REGNO (y) < FIRST_PSEUDO_REGISTER);
2653
2654 if (packed_dest_p || packed_src_p)
2655 {
2656 enum mode_class reg_class = ((class == MODE_COMPLEX_FLOAT)
2657 ? MODE_FLOAT : MODE_INT);
2658
2659 enum machine_mode reg_mode
2660 = mode_for_size (GET_MODE_BITSIZE (mode), reg_class, 1);
2661
2662 if (reg_mode != BLKmode)
2663 {
2664 rtx mem = assign_stack_temp (reg_mode,
2665 GET_MODE_SIZE (mode), 0);
2666 rtx cmem = adjust_address (mem, mode, 0);
2667
2668 if (packed_dest_p)
2669 {
2670 rtx sreg = gen_rtx_SUBREG (reg_mode, x, 0);
2671
2672 emit_move_insn_1 (cmem, y);
2673 return emit_move_insn_1 (sreg, mem);
2674 }
2675 else
2676 {
2677 rtx sreg = gen_rtx_SUBREG (reg_mode, y, 0);
2678
2679 emit_move_insn_1 (mem, sreg);
2680 return emit_move_insn_1 (x, cmem);
2681 }
2682 }
2683 }
2684 }
2685
2686 realpart_x = gen_realpart (submode, x);
2687 realpart_y = gen_realpart (submode, y);
2688 imagpart_x = gen_imagpart (submode, x);
2689 imagpart_y = gen_imagpart (submode, y);
2690
2691 /* Show the output dies here. This is necessary for SUBREGs
2692 of pseudos since we cannot track their lifetimes correctly;
2693 hard regs shouldn't appear here except as return values.
2694 We never want to emit such a clobber after reload. */
2695 if (x != y
2696 && ! (reload_in_progress || reload_completed)
2697 && (GET_CODE (realpart_x) == SUBREG
2698 || GET_CODE (imagpart_x) == SUBREG))
2699 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
2700
2701 emit_move_insn (realpart_x, realpart_y);
2702 emit_move_insn (imagpart_x, imagpart_y);
2703 }
2704
2705 return get_last_insn ();
2706 }
2707
2708 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
2709 find a mode to do it in. If we have a movcc, use it. Otherwise,
2710 find the MODE_INT mode of the same width. */
2711 else if (GET_MODE_CLASS (mode) == MODE_CC
2712 && mov_optab->handlers[(int) mode].insn_code == CODE_FOR_nothing)
2713 {
2714 enum insn_code insn_code;
2715 enum machine_mode tmode = VOIDmode;
2716 rtx x1 = x, y1 = y;
2717
2718 if (mode != CCmode
2719 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
2720 tmode = CCmode;
2721 else
2722 for (tmode = QImode; tmode != VOIDmode;
2723 tmode = GET_MODE_WIDER_MODE (tmode))
2724 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
2725 break;
2726
2727 gcc_assert (tmode != VOIDmode);
2728
2729 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
2730 may call change_address which is not appropriate if we were
2731 called when a reload was in progress. We don't have to worry
2732 about changing the address since the size in bytes is supposed to
2733 be the same. Copy the MEM to change the mode and move any
2734 substitutions from the old MEM to the new one. */
2735
2736 if (reload_in_progress)
2737 {
2738 x = gen_lowpart_common (tmode, x1);
2739 if (x == 0 && MEM_P (x1))
2740 {
2741 x = adjust_address_nv (x1, tmode, 0);
2742 copy_replacements (x1, x);
2743 }
2744
2745 y = gen_lowpart_common (tmode, y1);
2746 if (y == 0 && MEM_P (y1))
2747 {
2748 y = adjust_address_nv (y1, tmode, 0);
2749 copy_replacements (y1, y);
2750 }
2751 }
2752 else
2753 {
2754 x = gen_lowpart (tmode, x);
2755 y = gen_lowpart (tmode, y);
2756 }
2757
2758 insn_code = mov_optab->handlers[(int) tmode].insn_code;
2759 return emit_insn (GEN_FCN (insn_code) (x, y));
2760 }
2761
2762 /* Try using a move pattern for the corresponding integer mode. This is
2763 only safe when simplify_subreg can convert MODE constants into integer
2764 constants. At present, it can only do this reliably if the value
2765 fits within a HOST_WIDE_INT. */
2766 else if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2767 && (submode = int_mode_for_mode (mode)) != BLKmode
2768 && mov_optab->handlers[submode].insn_code != CODE_FOR_nothing)
2769 return emit_insn (GEN_FCN (mov_optab->handlers[submode].insn_code)
2770 (simplify_gen_subreg (submode, x, mode, 0),
2771 simplify_gen_subreg (submode, y, mode, 0)));
2772
2773 /* This will handle any multi-word or full-word mode that lacks a move_insn
2774 pattern. However, you will get better code if you define such patterns,
2775 even if they must turn into multiple assembler instructions. */
2776 else
2777 {
2778 rtx last_insn = 0;
2779 rtx seq, inner;
2780 int need_clobber;
2781 int i;
2782
2783 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
2784
2785 #ifdef PUSH_ROUNDING
2786
2787 /* If X is a push on the stack, do the push now and replace
2788 X with a reference to the stack pointer. */
2789 if (push_operand (x, GET_MODE (x)))
2790 {
2791 rtx temp;
2792 enum rtx_code code;
2793
2794 /* Do not use anti_adjust_stack, since we don't want to update
2795 stack_pointer_delta. */
2796 temp = expand_binop (Pmode,
2797 #ifdef STACK_GROWS_DOWNWARD
2798 sub_optab,
2799 #else
2800 add_optab,
2801 #endif
2802 stack_pointer_rtx,
2803 GEN_INT
2804 (PUSH_ROUNDING
2805 (GET_MODE_SIZE (GET_MODE (x)))),
2806 stack_pointer_rtx, 0, OPTAB_LIB_WIDEN);
2807
2808 if (temp != stack_pointer_rtx)
2809 emit_move_insn (stack_pointer_rtx, temp);
2810
2811 code = GET_CODE (XEXP (x, 0));
2812
2813 /* Just hope that small offsets off SP are OK. */
2814 if (code == POST_INC)
2815 temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
2816 GEN_INT (-((HOST_WIDE_INT)
2817 GET_MODE_SIZE (GET_MODE (x)))));
2818 else if (code == POST_DEC)
2819 temp = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
2820 GEN_INT (GET_MODE_SIZE (GET_MODE (x))));
2821 else
2822 temp = stack_pointer_rtx;
2823
2824 x = change_address (x, VOIDmode, temp);
2825 }
2826 #endif
2827
2828 /* If we are in reload, see if either operand is a MEM whose address
2829 is scheduled for replacement. */
2830 if (reload_in_progress && MEM_P (x)
2831 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
2832 x = replace_equiv_address_nv (x, inner);
2833 if (reload_in_progress && MEM_P (y)
2834 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
2835 y = replace_equiv_address_nv (y, inner);
2836
2837 start_sequence ();
2838
2839 need_clobber = 0;
2840 for (i = 0;
2841 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
2842 i++)
2843 {
2844 rtx xpart = operand_subword (x, i, 1, mode);
2845 rtx ypart = operand_subword (y, i, 1, mode);
2846
2847 /* If we can't get a part of Y, put Y into memory if it is a
2848 constant. Otherwise, force it into a register. If we still
2849 can't get a part of Y, abort. */
2850 if (ypart == 0 && CONSTANT_P (y))
2851 {
2852 y = force_const_mem (mode, y);
2853 ypart = operand_subword (y, i, 1, mode);
2854 }
2855 else if (ypart == 0)
2856 ypart = operand_subword_force (y, i, mode);
2857
2858 gcc_assert (xpart && ypart);
2859
2860 need_clobber |= (GET_CODE (xpart) == SUBREG);
2861
2862 last_insn = emit_move_insn (xpart, ypart);
2863 }
2864
2865 seq = get_insns ();
2866 end_sequence ();
2867
2868 /* Show the output dies here. This is necessary for SUBREGs
2869 of pseudos since we cannot track their lifetimes correctly;
2870 hard regs shouldn't appear here except as return values.
2871 We never want to emit such a clobber after reload. */
2872 if (x != y
2873 && ! (reload_in_progress || reload_completed)
2874 && need_clobber != 0)
2875 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
2876
2877 emit_insn (seq);
2878
2879 return last_insn;
2880 }
2881 }
2882
2883 /* If Y is representable exactly in a narrower mode, and the target can
2884 perform the extension directly from constant or memory, then emit the
2885 move as an extension. */
2886
2887 static rtx
2888 compress_float_constant (rtx x, rtx y)
2889 {
2890 enum machine_mode dstmode = GET_MODE (x);
2891 enum machine_mode orig_srcmode = GET_MODE (y);
2892 enum machine_mode srcmode;
2893 REAL_VALUE_TYPE r;
2894
2895 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
2896
2897 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
2898 srcmode != orig_srcmode;
2899 srcmode = GET_MODE_WIDER_MODE (srcmode))
2900 {
2901 enum insn_code ic;
2902 rtx trunc_y, last_insn;
2903
2904 /* Skip if the target can't extend this way. */
2905 ic = can_extend_p (dstmode, srcmode, 0);
2906 if (ic == CODE_FOR_nothing)
2907 continue;
2908
2909 /* Skip if the narrowed value isn't exact. */
2910 if (! exact_real_truncate (srcmode, &r))
2911 continue;
2912
2913 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
2914
2915 if (LEGITIMATE_CONSTANT_P (trunc_y))
2916 {
2917 /* Skip if the target needs extra instructions to perform
2918 the extension. */
2919 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
2920 continue;
2921 }
2922 else if (float_extend_from_mem[dstmode][srcmode])
2923 trunc_y = validize_mem (force_const_mem (srcmode, trunc_y));
2924 else
2925 continue;
2926
2927 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
2928 last_insn = get_last_insn ();
2929
2930 if (REG_P (x))
2931 set_unique_reg_note (last_insn, REG_EQUAL, y);
2932
2933 return last_insn;
2934 }
2935
2936 return NULL_RTX;
2937 }
2938 \f
2939 /* Pushing data onto the stack. */
2940
2941 /* Push a block of length SIZE (perhaps variable)
2942 and return an rtx to address the beginning of the block.
2943 The value may be virtual_outgoing_args_rtx.
2944
2945 EXTRA is the number of bytes of padding to push in addition to SIZE.
2946 BELOW nonzero means this padding comes at low addresses;
2947 otherwise, the padding comes at high addresses. */
2948
2949 rtx
2950 push_block (rtx size, int extra, int below)
2951 {
2952 rtx temp;
2953
2954 size = convert_modes (Pmode, ptr_mode, size, 1);
2955 if (CONSTANT_P (size))
2956 anti_adjust_stack (plus_constant (size, extra));
2957 else if (REG_P (size) && extra == 0)
2958 anti_adjust_stack (size);
2959 else
2960 {
2961 temp = copy_to_mode_reg (Pmode, size);
2962 if (extra != 0)
2963 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
2964 temp, 0, OPTAB_LIB_WIDEN);
2965 anti_adjust_stack (temp);
2966 }
2967
2968 #ifndef STACK_GROWS_DOWNWARD
2969 if (0)
2970 #else
2971 if (1)
2972 #endif
2973 {
2974 temp = virtual_outgoing_args_rtx;
2975 if (extra != 0 && below)
2976 temp = plus_constant (temp, extra);
2977 }
2978 else
2979 {
2980 if (GET_CODE (size) == CONST_INT)
2981 temp = plus_constant (virtual_outgoing_args_rtx,
2982 -INTVAL (size) - (below ? 0 : extra));
2983 else if (extra != 0 && !below)
2984 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
2985 negate_rtx (Pmode, plus_constant (size, extra)));
2986 else
2987 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
2988 negate_rtx (Pmode, size));
2989 }
2990
2991 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
2992 }
2993
2994 #ifdef PUSH_ROUNDING
2995
2996 /* Emit single push insn. */
2997
2998 static void
2999 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3000 {
3001 rtx dest_addr;
3002 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3003 rtx dest;
3004 enum insn_code icode;
3005 insn_operand_predicate_fn pred;
3006
3007 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3008 /* If there is push pattern, use it. Otherwise try old way of throwing
3009 MEM representing push operation to move expander. */
3010 icode = push_optab->handlers[(int) mode].insn_code;
3011 if (icode != CODE_FOR_nothing)
3012 {
3013 if (((pred = insn_data[(int) icode].operand[0].predicate)
3014 && !((*pred) (x, mode))))
3015 x = force_reg (mode, x);
3016 emit_insn (GEN_FCN (icode) (x));
3017 return;
3018 }
3019 if (GET_MODE_SIZE (mode) == rounded_size)
3020 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3021 /* If we are to pad downward, adjust the stack pointer first and
3022 then store X into the stack location using an offset. This is
3023 because emit_move_insn does not know how to pad; it does not have
3024 access to type. */
3025 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3026 {
3027 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3028 HOST_WIDE_INT offset;
3029
3030 emit_move_insn (stack_pointer_rtx,
3031 expand_binop (Pmode,
3032 #ifdef STACK_GROWS_DOWNWARD
3033 sub_optab,
3034 #else
3035 add_optab,
3036 #endif
3037 stack_pointer_rtx,
3038 GEN_INT (rounded_size),
3039 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3040
3041 offset = (HOST_WIDE_INT) padding_size;
3042 #ifdef STACK_GROWS_DOWNWARD
3043 if (STACK_PUSH_CODE == POST_DEC)
3044 /* We have already decremented the stack pointer, so get the
3045 previous value. */
3046 offset += (HOST_WIDE_INT) rounded_size;
3047 #else
3048 if (STACK_PUSH_CODE == POST_INC)
3049 /* We have already incremented the stack pointer, so get the
3050 previous value. */
3051 offset -= (HOST_WIDE_INT) rounded_size;
3052 #endif
3053 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3054 }
3055 else
3056 {
3057 #ifdef STACK_GROWS_DOWNWARD
3058 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3059 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3060 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3061 #else
3062 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3063 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3064 GEN_INT (rounded_size));
3065 #endif
3066 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3067 }
3068
3069 dest = gen_rtx_MEM (mode, dest_addr);
3070
3071 if (type != 0)
3072 {
3073 set_mem_attributes (dest, type, 1);
3074
3075 if (flag_optimize_sibling_calls)
3076 /* Function incoming arguments may overlap with sibling call
3077 outgoing arguments and we cannot allow reordering of reads
3078 from function arguments with stores to outgoing arguments
3079 of sibling calls. */
3080 set_mem_alias_set (dest, 0);
3081 }
3082 emit_move_insn (dest, x);
3083 }
3084 #endif
3085
3086 /* Generate code to push X onto the stack, assuming it has mode MODE and
3087 type TYPE.
3088 MODE is redundant except when X is a CONST_INT (since they don't
3089 carry mode info).
3090 SIZE is an rtx for the size of data to be copied (in bytes),
3091 needed only if X is BLKmode.
3092
3093 ALIGN (in bits) is maximum alignment we can assume.
3094
3095 If PARTIAL and REG are both nonzero, then copy that many of the first
3096 words of X into registers starting with REG, and push the rest of X.
3097 The amount of space pushed is decreased by PARTIAL words,
3098 rounded *down* to a multiple of PARM_BOUNDARY.
3099 REG must be a hard register in this case.
3100 If REG is zero but PARTIAL is not, take any all others actions for an
3101 argument partially in registers, but do not actually load any
3102 registers.
3103
3104 EXTRA is the amount in bytes of extra space to leave next to this arg.
3105 This is ignored if an argument block has already been allocated.
3106
3107 On a machine that lacks real push insns, ARGS_ADDR is the address of
3108 the bottom of the argument block for this call. We use indexing off there
3109 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3110 argument block has not been preallocated.
3111
3112 ARGS_SO_FAR is the size of args previously pushed for this call.
3113
3114 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3115 for arguments passed in registers. If nonzero, it will be the number
3116 of bytes required. */
3117
3118 void
3119 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3120 unsigned int align, int partial, rtx reg, int extra,
3121 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3122 rtx alignment_pad)
3123 {
3124 rtx xinner;
3125 enum direction stack_direction
3126 #ifdef STACK_GROWS_DOWNWARD
3127 = downward;
3128 #else
3129 = upward;
3130 #endif
3131
3132 /* Decide where to pad the argument: `downward' for below,
3133 `upward' for above, or `none' for don't pad it.
3134 Default is below for small data on big-endian machines; else above. */
3135 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3136
3137 /* Invert direction if stack is post-decrement.
3138 FIXME: why? */
3139 if (STACK_PUSH_CODE == POST_DEC)
3140 if (where_pad != none)
3141 where_pad = (where_pad == downward ? upward : downward);
3142
3143 xinner = x;
3144
3145 if (mode == BLKmode)
3146 {
3147 /* Copy a block into the stack, entirely or partially. */
3148
3149 rtx temp;
3150 int used = partial * UNITS_PER_WORD;
3151 int offset;
3152 int skip;
3153
3154 if (reg && GET_CODE (reg) == PARALLEL)
3155 {
3156 /* Use the size of the elt to compute offset. */
3157 rtx elt = XEXP (XVECEXP (reg, 0, 0), 0);
3158 used = partial * GET_MODE_SIZE (GET_MODE (elt));
3159 offset = used % (PARM_BOUNDARY / BITS_PER_UNIT);
3160 }
3161 else
3162 offset = used % (PARM_BOUNDARY / BITS_PER_UNIT);
3163
3164 gcc_assert (size);
3165
3166 used -= offset;
3167
3168 /* USED is now the # of bytes we need not copy to the stack
3169 because registers will take care of them. */
3170
3171 if (partial != 0)
3172 xinner = adjust_address (xinner, BLKmode, used);
3173
3174 /* If the partial register-part of the arg counts in its stack size,
3175 skip the part of stack space corresponding to the registers.
3176 Otherwise, start copying to the beginning of the stack space,
3177 by setting SKIP to 0. */
3178 skip = (reg_parm_stack_space == 0) ? 0 : used;
3179
3180 #ifdef PUSH_ROUNDING
3181 /* Do it with several push insns if that doesn't take lots of insns
3182 and if there is no difficulty with push insns that skip bytes
3183 on the stack for alignment purposes. */
3184 if (args_addr == 0
3185 && PUSH_ARGS
3186 && GET_CODE (size) == CONST_INT
3187 && skip == 0
3188 && MEM_ALIGN (xinner) >= align
3189 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3190 /* Here we avoid the case of a structure whose weak alignment
3191 forces many pushes of a small amount of data,
3192 and such small pushes do rounding that causes trouble. */
3193 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3194 || align >= BIGGEST_ALIGNMENT
3195 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3196 == (align / BITS_PER_UNIT)))
3197 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3198 {
3199 /* Push padding now if padding above and stack grows down,
3200 or if padding below and stack grows up.
3201 But if space already allocated, this has already been done. */
3202 if (extra && args_addr == 0
3203 && where_pad != none && where_pad != stack_direction)
3204 anti_adjust_stack (GEN_INT (extra));
3205
3206 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3207 }
3208 else
3209 #endif /* PUSH_ROUNDING */
3210 {
3211 rtx target;
3212
3213 /* Otherwise make space on the stack and copy the data
3214 to the address of that space. */
3215
3216 /* Deduct words put into registers from the size we must copy. */
3217 if (partial != 0)
3218 {
3219 if (GET_CODE (size) == CONST_INT)
3220 size = GEN_INT (INTVAL (size) - used);
3221 else
3222 size = expand_binop (GET_MODE (size), sub_optab, size,
3223 GEN_INT (used), NULL_RTX, 0,
3224 OPTAB_LIB_WIDEN);
3225 }
3226
3227 /* Get the address of the stack space.
3228 In this case, we do not deal with EXTRA separately.
3229 A single stack adjust will do. */
3230 if (! args_addr)
3231 {
3232 temp = push_block (size, extra, where_pad == downward);
3233 extra = 0;
3234 }
3235 else if (GET_CODE (args_so_far) == CONST_INT)
3236 temp = memory_address (BLKmode,
3237 plus_constant (args_addr,
3238 skip + INTVAL (args_so_far)));
3239 else
3240 temp = memory_address (BLKmode,
3241 plus_constant (gen_rtx_PLUS (Pmode,
3242 args_addr,
3243 args_so_far),
3244 skip));
3245
3246 if (!ACCUMULATE_OUTGOING_ARGS)
3247 {
3248 /* If the source is referenced relative to the stack pointer,
3249 copy it to another register to stabilize it. We do not need
3250 to do this if we know that we won't be changing sp. */
3251
3252 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3253 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3254 temp = copy_to_reg (temp);
3255 }
3256
3257 target = gen_rtx_MEM (BLKmode, temp);
3258
3259 /* We do *not* set_mem_attributes here, because incoming arguments
3260 may overlap with sibling call outgoing arguments and we cannot
3261 allow reordering of reads from function arguments with stores
3262 to outgoing arguments of sibling calls. We do, however, want
3263 to record the alignment of the stack slot. */
3264 /* ALIGN may well be better aligned than TYPE, e.g. due to
3265 PARM_BOUNDARY. Assume the caller isn't lying. */
3266 set_mem_align (target, align);
3267
3268 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3269 }
3270 }
3271 else if (partial > 0)
3272 {
3273 /* Scalar partly in registers. */
3274
3275 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3276 int i;
3277 int not_stack;
3278 /* # words of start of argument
3279 that we must make space for but need not store. */
3280 int offset = partial % (PARM_BOUNDARY / BITS_PER_WORD);
3281 int args_offset = INTVAL (args_so_far);
3282 int skip;
3283
3284 /* Push padding now if padding above and stack grows down,
3285 or if padding below and stack grows up.
3286 But if space already allocated, this has already been done. */
3287 if (extra && args_addr == 0
3288 && where_pad != none && where_pad != stack_direction)
3289 anti_adjust_stack (GEN_INT (extra));
3290
3291 /* If we make space by pushing it, we might as well push
3292 the real data. Otherwise, we can leave OFFSET nonzero
3293 and leave the space uninitialized. */
3294 if (args_addr == 0)
3295 offset = 0;
3296
3297 /* Now NOT_STACK gets the number of words that we don't need to
3298 allocate on the stack. */
3299 not_stack = partial - offset;
3300
3301 /* If the partial register-part of the arg counts in its stack size,
3302 skip the part of stack space corresponding to the registers.
3303 Otherwise, start copying to the beginning of the stack space,
3304 by setting SKIP to 0. */
3305 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3306
3307 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3308 x = validize_mem (force_const_mem (mode, x));
3309
3310 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3311 SUBREGs of such registers are not allowed. */
3312 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3313 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3314 x = copy_to_reg (x);
3315
3316 /* Loop over all the words allocated on the stack for this arg. */
3317 /* We can do it by words, because any scalar bigger than a word
3318 has a size a multiple of a word. */
3319 #ifndef PUSH_ARGS_REVERSED
3320 for (i = not_stack; i < size; i++)
3321 #else
3322 for (i = size - 1; i >= not_stack; i--)
3323 #endif
3324 if (i >= not_stack + offset)
3325 emit_push_insn (operand_subword_force (x, i, mode),
3326 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3327 0, args_addr,
3328 GEN_INT (args_offset + ((i - not_stack + skip)
3329 * UNITS_PER_WORD)),
3330 reg_parm_stack_space, alignment_pad);
3331 }
3332 else
3333 {
3334 rtx addr;
3335 rtx dest;
3336
3337 /* Push padding now if padding above and stack grows down,
3338 or if padding below and stack grows up.
3339 But if space already allocated, this has already been done. */
3340 if (extra && args_addr == 0
3341 && where_pad != none && where_pad != stack_direction)
3342 anti_adjust_stack (GEN_INT (extra));
3343
3344 #ifdef PUSH_ROUNDING
3345 if (args_addr == 0 && PUSH_ARGS)
3346 emit_single_push_insn (mode, x, type);
3347 else
3348 #endif
3349 {
3350 if (GET_CODE (args_so_far) == CONST_INT)
3351 addr
3352 = memory_address (mode,
3353 plus_constant (args_addr,
3354 INTVAL (args_so_far)));
3355 else
3356 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3357 args_so_far));
3358 dest = gen_rtx_MEM (mode, addr);
3359
3360 /* We do *not* set_mem_attributes here, because incoming arguments
3361 may overlap with sibling call outgoing arguments and we cannot
3362 allow reordering of reads from function arguments with stores
3363 to outgoing arguments of sibling calls. We do, however, want
3364 to record the alignment of the stack slot. */
3365 /* ALIGN may well be better aligned than TYPE, e.g. due to
3366 PARM_BOUNDARY. Assume the caller isn't lying. */
3367 set_mem_align (dest, align);
3368
3369 emit_move_insn (dest, x);
3370 }
3371 }
3372
3373 /* If part should go in registers, copy that part
3374 into the appropriate registers. Do this now, at the end,
3375 since mem-to-mem copies above may do function calls. */
3376 if (partial > 0 && reg != 0)
3377 {
3378 /* Handle calls that pass values in multiple non-contiguous locations.
3379 The Irix 6 ABI has examples of this. */
3380 if (GET_CODE (reg) == PARALLEL)
3381 emit_group_load (reg, x, type, -1);
3382 else
3383 move_block_to_reg (REGNO (reg), x, partial, mode);
3384 }
3385
3386 if (extra && args_addr == 0 && where_pad == stack_direction)
3387 anti_adjust_stack (GEN_INT (extra));
3388
3389 if (alignment_pad && args_addr == 0)
3390 anti_adjust_stack (alignment_pad);
3391 }
3392 \f
3393 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3394 operations. */
3395
3396 static rtx
3397 get_subtarget (rtx x)
3398 {
3399 return (optimize
3400 || x == 0
3401 /* Only registers can be subtargets. */
3402 || !REG_P (x)
3403 /* Don't use hard regs to avoid extending their life. */
3404 || REGNO (x) < FIRST_PSEUDO_REGISTER
3405 ? 0 : x);
3406 }
3407
3408 /* Expand an assignment that stores the value of FROM into TO.
3409 If WANT_VALUE is nonzero, return an rtx for the value of TO.
3410 (If the value is constant, this rtx is a constant.)
3411 Otherwise, the returned value is NULL_RTX. */
3412
3413 rtx
3414 expand_assignment (tree to, tree from, int want_value)
3415 {
3416 rtx to_rtx = 0;
3417 rtx result;
3418
3419 /* Don't crash if the lhs of the assignment was erroneous. */
3420
3421 if (TREE_CODE (to) == ERROR_MARK)
3422 {
3423 result = expand_expr (from, NULL_RTX, VOIDmode, 0);
3424 return want_value ? result : NULL_RTX;
3425 }
3426
3427 /* Assignment of a structure component needs special treatment
3428 if the structure component's rtx is not simply a MEM.
3429 Assignment of an array element at a constant index, and assignment of
3430 an array element in an unaligned packed structure field, has the same
3431 problem. */
3432
3433 if (TREE_CODE (to) == COMPONENT_REF || TREE_CODE (to) == BIT_FIELD_REF
3434 || TREE_CODE (to) == ARRAY_REF || TREE_CODE (to) == ARRAY_RANGE_REF
3435 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
3436 {
3437 enum machine_mode mode1;
3438 HOST_WIDE_INT bitsize, bitpos;
3439 rtx orig_to_rtx;
3440 tree offset;
3441 int unsignedp;
3442 int volatilep = 0;
3443 tree tem;
3444
3445 push_temp_slots ();
3446 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
3447 &unsignedp, &volatilep);
3448
3449 /* If we are going to use store_bit_field and extract_bit_field,
3450 make sure to_rtx will be safe for multiple use. */
3451
3452 if (mode1 == VOIDmode && want_value)
3453 tem = stabilize_reference (tem);
3454
3455 orig_to_rtx = to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, 0);
3456
3457 if (offset != 0)
3458 {
3459 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
3460
3461 gcc_assert (MEM_P (to_rtx));
3462
3463 #ifdef POINTERS_EXTEND_UNSIGNED
3464 if (GET_MODE (offset_rtx) != Pmode)
3465 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
3466 #else
3467 if (GET_MODE (offset_rtx) != ptr_mode)
3468 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
3469 #endif
3470
3471 /* A constant address in TO_RTX can have VOIDmode, we must not try
3472 to call force_reg for that case. Avoid that case. */
3473 if (MEM_P (to_rtx)
3474 && GET_MODE (to_rtx) == BLKmode
3475 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
3476 && bitsize > 0
3477 && (bitpos % bitsize) == 0
3478 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
3479 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
3480 {
3481 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
3482 bitpos = 0;
3483 }
3484
3485 to_rtx = offset_address (to_rtx, offset_rtx,
3486 highest_pow2_factor_for_target (to,
3487 offset));
3488 }
3489
3490 if (MEM_P (to_rtx))
3491 {
3492 /* If the field is at offset zero, we could have been given the
3493 DECL_RTX of the parent struct. Don't munge it. */
3494 to_rtx = shallow_copy_rtx (to_rtx);
3495
3496 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
3497 }
3498
3499 /* Deal with volatile and readonly fields. The former is only done
3500 for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
3501 if (volatilep && MEM_P (to_rtx))
3502 {
3503 if (to_rtx == orig_to_rtx)
3504 to_rtx = copy_rtx (to_rtx);
3505 MEM_VOLATILE_P (to_rtx) = 1;
3506 }
3507
3508 if (MEM_P (to_rtx) && ! can_address_p (to))
3509 {
3510 if (to_rtx == orig_to_rtx)
3511 to_rtx = copy_rtx (to_rtx);
3512 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
3513 }
3514
3515 /* Optimize bitfld op= val in certain cases. */
3516 while (mode1 == VOIDmode && !want_value
3517 && bitsize > 0 && bitsize < BITS_PER_WORD
3518 && GET_MODE_BITSIZE (GET_MODE (to_rtx)) <= BITS_PER_WORD
3519 && !TREE_SIDE_EFFECTS (to)
3520 && !TREE_THIS_VOLATILE (to))
3521 {
3522 tree src, op0, op1;
3523 rtx value, str_rtx = to_rtx;
3524 HOST_WIDE_INT bitpos1 = bitpos;
3525 optab binop;
3526
3527 src = from;
3528 STRIP_NOPS (src);
3529 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE
3530 || !BINARY_CLASS_P (src))
3531 break;
3532
3533 op0 = TREE_OPERAND (src, 0);
3534 op1 = TREE_OPERAND (src, 1);
3535 STRIP_NOPS (op0);
3536
3537 if (! operand_equal_p (to, op0, 0))
3538 break;
3539
3540 if (MEM_P (str_rtx))
3541 {
3542 enum machine_mode mode = GET_MODE (str_rtx);
3543 HOST_WIDE_INT offset1;
3544
3545 if (GET_MODE_BITSIZE (mode) == 0
3546 || GET_MODE_BITSIZE (mode) > BITS_PER_WORD)
3547 mode = word_mode;
3548 mode = get_best_mode (bitsize, bitpos1, MEM_ALIGN (str_rtx),
3549 mode, 0);
3550 if (mode == VOIDmode)
3551 break;
3552
3553 offset1 = bitpos1;
3554 bitpos1 %= GET_MODE_BITSIZE (mode);
3555 offset1 = (offset1 - bitpos1) / BITS_PER_UNIT;
3556 str_rtx = adjust_address (str_rtx, mode, offset1);
3557 }
3558 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
3559 break;
3560
3561 /* If the bit field covers the whole REG/MEM, store_field
3562 will likely generate better code. */
3563 if (bitsize >= GET_MODE_BITSIZE (GET_MODE (str_rtx)))
3564 break;
3565
3566 /* We can't handle fields split across multiple entities. */
3567 if (bitpos1 + bitsize > GET_MODE_BITSIZE (GET_MODE (str_rtx)))
3568 break;
3569
3570 if (BYTES_BIG_ENDIAN)
3571 bitpos1 = GET_MODE_BITSIZE (GET_MODE (str_rtx)) - bitpos1
3572 - bitsize;
3573
3574 /* Special case some bitfield op= exp. */
3575 switch (TREE_CODE (src))
3576 {
3577 case PLUS_EXPR:
3578 case MINUS_EXPR:
3579 /* For now, just optimize the case of the topmost bitfield
3580 where we don't need to do any masking and also
3581 1 bit bitfields where xor can be used.
3582 We might win by one instruction for the other bitfields
3583 too if insv/extv instructions aren't used, so that
3584 can be added later. */
3585 if (bitpos1 + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx))
3586 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
3587 break;
3588 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
3589 value = convert_modes (GET_MODE (str_rtx),
3590 TYPE_MODE (TREE_TYPE (op1)), value,
3591 TYPE_UNSIGNED (TREE_TYPE (op1)));
3592
3593 /* We may be accessing data outside the field, which means
3594 we can alias adjacent data. */
3595 if (MEM_P (str_rtx))
3596 {
3597 str_rtx = shallow_copy_rtx (str_rtx);
3598 set_mem_alias_set (str_rtx, 0);
3599 set_mem_expr (str_rtx, 0);
3600 }
3601
3602 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
3603 if (bitsize == 1
3604 && bitpos1 + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
3605 {
3606 value = expand_and (GET_MODE (str_rtx), value, const1_rtx,
3607 NULL_RTX);
3608 binop = xor_optab;
3609 }
3610 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
3611 build_int_cst (NULL_TREE, bitpos1),
3612 NULL_RTX, 1);
3613 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
3614 value, str_rtx, 1, OPTAB_WIDEN);
3615 if (result != str_rtx)
3616 emit_move_insn (str_rtx, result);
3617 free_temp_slots ();
3618 pop_temp_slots ();
3619 return NULL_RTX;
3620
3621 default:
3622 break;
3623 }
3624
3625 break;
3626 }
3627
3628 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
3629 (want_value
3630 /* Spurious cast for HPUX compiler. */
3631 ? ((enum machine_mode)
3632 TYPE_MODE (TREE_TYPE (to)))
3633 : VOIDmode),
3634 unsignedp, TREE_TYPE (tem), get_alias_set (to));
3635
3636 preserve_temp_slots (result);
3637 free_temp_slots ();
3638 pop_temp_slots ();
3639
3640 /* If the value is meaningful, convert RESULT to the proper mode.
3641 Otherwise, return nothing. */
3642 return (want_value ? convert_modes (TYPE_MODE (TREE_TYPE (to)),
3643 TYPE_MODE (TREE_TYPE (from)),
3644 result,
3645 TYPE_UNSIGNED (TREE_TYPE (to)))
3646 : NULL_RTX);
3647 }
3648
3649 /* If the rhs is a function call and its value is not an aggregate,
3650 call the function before we start to compute the lhs.
3651 This is needed for correct code for cases such as
3652 val = setjmp (buf) on machines where reference to val
3653 requires loading up part of an address in a separate insn.
3654
3655 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
3656 since it might be a promoted variable where the zero- or sign- extension
3657 needs to be done. Handling this in the normal way is safe because no
3658 computation is done before the call. */
3659 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
3660 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
3661 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
3662 && REG_P (DECL_RTL (to))))
3663 {
3664 rtx value;
3665
3666 push_temp_slots ();
3667 value = expand_expr (from, NULL_RTX, VOIDmode, 0);
3668 if (to_rtx == 0)
3669 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
3670
3671 /* Handle calls that return values in multiple non-contiguous locations.
3672 The Irix 6 ABI has examples of this. */
3673 if (GET_CODE (to_rtx) == PARALLEL)
3674 emit_group_load (to_rtx, value, TREE_TYPE (from),
3675 int_size_in_bytes (TREE_TYPE (from)));
3676 else if (GET_MODE (to_rtx) == BLKmode)
3677 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
3678 else
3679 {
3680 if (POINTER_TYPE_P (TREE_TYPE (to)))
3681 value = convert_memory_address (GET_MODE (to_rtx), value);
3682 emit_move_insn (to_rtx, value);
3683 }
3684 preserve_temp_slots (to_rtx);
3685 free_temp_slots ();
3686 pop_temp_slots ();
3687 return want_value ? to_rtx : NULL_RTX;
3688 }
3689
3690 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
3691 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
3692
3693 if (to_rtx == 0)
3694 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
3695
3696 /* Don't move directly into a return register. */
3697 if (TREE_CODE (to) == RESULT_DECL
3698 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
3699 {
3700 rtx temp;
3701
3702 push_temp_slots ();
3703 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
3704
3705 if (GET_CODE (to_rtx) == PARALLEL)
3706 emit_group_load (to_rtx, temp, TREE_TYPE (from),
3707 int_size_in_bytes (TREE_TYPE (from)));
3708 else
3709 emit_move_insn (to_rtx, temp);
3710
3711 preserve_temp_slots (to_rtx);
3712 free_temp_slots ();
3713 pop_temp_slots ();
3714 return want_value ? to_rtx : NULL_RTX;
3715 }
3716
3717 /* In case we are returning the contents of an object which overlaps
3718 the place the value is being stored, use a safe function when copying
3719 a value through a pointer into a structure value return block. */
3720 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
3721 && current_function_returns_struct
3722 && !current_function_returns_pcc_struct)
3723 {
3724 rtx from_rtx, size;
3725
3726 push_temp_slots ();
3727 size = expr_size (from);
3728 from_rtx = expand_expr (from, NULL_RTX, VOIDmode, 0);
3729
3730 emit_library_call (memmove_libfunc, LCT_NORMAL,
3731 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
3732 XEXP (from_rtx, 0), Pmode,
3733 convert_to_mode (TYPE_MODE (sizetype),
3734 size, TYPE_UNSIGNED (sizetype)),
3735 TYPE_MODE (sizetype));
3736
3737 preserve_temp_slots (to_rtx);
3738 free_temp_slots ();
3739 pop_temp_slots ();
3740 return want_value ? to_rtx : NULL_RTX;
3741 }
3742
3743 /* Compute FROM and store the value in the rtx we got. */
3744
3745 push_temp_slots ();
3746 result = store_expr (from, to_rtx, want_value);
3747 preserve_temp_slots (result);
3748 free_temp_slots ();
3749 pop_temp_slots ();
3750 return want_value ? result : NULL_RTX;
3751 }
3752
3753 /* Generate code for computing expression EXP,
3754 and storing the value into TARGET.
3755
3756 If WANT_VALUE & 1 is nonzero, return a copy of the value
3757 not in TARGET, so that we can be sure to use the proper
3758 value in a containing expression even if TARGET has something
3759 else stored in it. If possible, we copy the value through a pseudo
3760 and return that pseudo. Or, if the value is constant, we try to
3761 return the constant. In some cases, we return a pseudo
3762 copied *from* TARGET.
3763
3764 If the mode is BLKmode then we may return TARGET itself.
3765 It turns out that in BLKmode it doesn't cause a problem.
3766 because C has no operators that could combine two different
3767 assignments into the same BLKmode object with different values
3768 with no sequence point. Will other languages need this to
3769 be more thorough?
3770
3771 If WANT_VALUE & 1 is 0, we return NULL, to make sure
3772 to catch quickly any cases where the caller uses the value
3773 and fails to set WANT_VALUE.
3774
3775 If WANT_VALUE & 2 is set, this is a store into a call param on the
3776 stack, and block moves may need to be treated specially. */
3777
3778 rtx
3779 store_expr (tree exp, rtx target, int want_value)
3780 {
3781 rtx temp;
3782 rtx alt_rtl = NULL_RTX;
3783 int dont_return_target = 0;
3784 int dont_store_target = 0;
3785
3786 if (VOID_TYPE_P (TREE_TYPE (exp)))
3787 {
3788 /* C++ can generate ?: expressions with a throw expression in one
3789 branch and an rvalue in the other. Here, we resolve attempts to
3790 store the throw expression's nonexistent result. */
3791 gcc_assert (!want_value);
3792 expand_expr (exp, const0_rtx, VOIDmode, 0);
3793 return NULL_RTX;
3794 }
3795 if (TREE_CODE (exp) == COMPOUND_EXPR)
3796 {
3797 /* Perform first part of compound expression, then assign from second
3798 part. */
3799 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
3800 want_value & 2 ? EXPAND_STACK_PARM : EXPAND_NORMAL);
3801 return store_expr (TREE_OPERAND (exp, 1), target, want_value);
3802 }
3803 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
3804 {
3805 /* For conditional expression, get safe form of the target. Then
3806 test the condition, doing the appropriate assignment on either
3807 side. This avoids the creation of unnecessary temporaries.
3808 For non-BLKmode, it is more efficient not to do this. */
3809
3810 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
3811
3812 do_pending_stack_adjust ();
3813 NO_DEFER_POP;
3814 jumpifnot (TREE_OPERAND (exp, 0), lab1);
3815 store_expr (TREE_OPERAND (exp, 1), target, want_value & 2);
3816 emit_jump_insn (gen_jump (lab2));
3817 emit_barrier ();
3818 emit_label (lab1);
3819 store_expr (TREE_OPERAND (exp, 2), target, want_value & 2);
3820 emit_label (lab2);
3821 OK_DEFER_POP;
3822
3823 return want_value & 1 ? target : NULL_RTX;
3824 }
3825 else if ((want_value & 1) != 0
3826 && MEM_P (target)
3827 && ! MEM_VOLATILE_P (target)
3828 && GET_MODE (target) != BLKmode)
3829 /* If target is in memory and caller wants value in a register instead,
3830 arrange that. Pass TARGET as target for expand_expr so that,
3831 if EXP is another assignment, WANT_VALUE will be nonzero for it.
3832 We know expand_expr will not use the target in that case.
3833 Don't do this if TARGET is volatile because we are supposed
3834 to write it and then read it. */
3835 {
3836 temp = expand_expr (exp, target, GET_MODE (target),
3837 want_value & 2 ? EXPAND_STACK_PARM : EXPAND_NORMAL);
3838 if (GET_MODE (temp) != BLKmode && GET_MODE (temp) != VOIDmode)
3839 {
3840 /* If TEMP is already in the desired TARGET, only copy it from
3841 memory and don't store it there again. */
3842 if (temp == target
3843 || (rtx_equal_p (temp, target)
3844 && ! side_effects_p (temp) && ! side_effects_p (target)))
3845 dont_store_target = 1;
3846 temp = copy_to_reg (temp);
3847 }
3848 dont_return_target = 1;
3849 }
3850 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
3851 /* If this is a scalar in a register that is stored in a wider mode
3852 than the declared mode, compute the result into its declared mode
3853 and then convert to the wider mode. Our value is the computed
3854 expression. */
3855 {
3856 rtx inner_target = 0;
3857
3858 /* If we don't want a value, we can do the conversion inside EXP,
3859 which will often result in some optimizations. Do the conversion
3860 in two steps: first change the signedness, if needed, then
3861 the extend. But don't do this if the type of EXP is a subtype
3862 of something else since then the conversion might involve
3863 more than just converting modes. */
3864 if ((want_value & 1) == 0
3865 && INTEGRAL_TYPE_P (TREE_TYPE (exp))
3866 && TREE_TYPE (TREE_TYPE (exp)) == 0
3867 && (!lang_hooks.reduce_bit_field_operations
3868 || (GET_MODE_PRECISION (GET_MODE (target))
3869 == TYPE_PRECISION (TREE_TYPE (exp)))))
3870 {
3871 if (TYPE_UNSIGNED (TREE_TYPE (exp))
3872 != SUBREG_PROMOTED_UNSIGNED_P (target))
3873 exp = convert
3874 (lang_hooks.types.signed_or_unsigned_type
3875 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
3876
3877 exp = convert (lang_hooks.types.type_for_mode
3878 (GET_MODE (SUBREG_REG (target)),
3879 SUBREG_PROMOTED_UNSIGNED_P (target)),
3880 exp);
3881
3882 inner_target = SUBREG_REG (target);
3883 }
3884
3885 temp = expand_expr (exp, inner_target, VOIDmode,
3886 want_value & 2 ? EXPAND_STACK_PARM : EXPAND_NORMAL);
3887
3888 /* If TEMP is a MEM and we want a result value, make the access
3889 now so it gets done only once. Strictly speaking, this is
3890 only necessary if the MEM is volatile, or if the address
3891 overlaps TARGET. But not performing the load twice also
3892 reduces the amount of rtl we generate and then have to CSE. */
3893 if (MEM_P (temp) && (want_value & 1) != 0)
3894 temp = copy_to_reg (temp);
3895
3896 /* If TEMP is a VOIDmode constant, use convert_modes to make
3897 sure that we properly convert it. */
3898 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
3899 {
3900 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
3901 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
3902 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
3903 GET_MODE (target), temp,
3904 SUBREG_PROMOTED_UNSIGNED_P (target));
3905 }
3906
3907 convert_move (SUBREG_REG (target), temp,
3908 SUBREG_PROMOTED_UNSIGNED_P (target));
3909
3910 /* If we promoted a constant, change the mode back down to match
3911 target. Otherwise, the caller might get confused by a result whose
3912 mode is larger than expected. */
3913
3914 if ((want_value & 1) != 0 && GET_MODE (temp) != GET_MODE (target))
3915 {
3916 if (GET_MODE (temp) != VOIDmode)
3917 {
3918 temp = gen_lowpart_SUBREG (GET_MODE (target), temp);
3919 SUBREG_PROMOTED_VAR_P (temp) = 1;
3920 SUBREG_PROMOTED_UNSIGNED_SET (temp,
3921 SUBREG_PROMOTED_UNSIGNED_P (target));
3922 }
3923 else
3924 temp = convert_modes (GET_MODE (target),
3925 GET_MODE (SUBREG_REG (target)),
3926 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
3927 }
3928
3929 return want_value & 1 ? temp : NULL_RTX;
3930 }
3931 else
3932 {
3933 temp = expand_expr_real (exp, target, GET_MODE (target),
3934 (want_value & 2
3935 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
3936 &alt_rtl);
3937 /* Return TARGET if it's a specified hardware register.
3938 If TARGET is a volatile mem ref, either return TARGET
3939 or return a reg copied *from* TARGET; ANSI requires this.
3940
3941 Otherwise, if TEMP is not TARGET, return TEMP
3942 if it is constant (for efficiency),
3943 or if we really want the correct value. */
3944 if (!(target && REG_P (target)
3945 && REGNO (target) < FIRST_PSEUDO_REGISTER)
3946 && !(MEM_P (target) && MEM_VOLATILE_P (target))
3947 && ! rtx_equal_p (temp, target)
3948 && (CONSTANT_P (temp) || (want_value & 1) != 0))
3949 dont_return_target = 1;
3950 }
3951
3952 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
3953 the same as that of TARGET, adjust the constant. This is needed, for
3954 example, in case it is a CONST_DOUBLE and we want only a word-sized
3955 value. */
3956 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
3957 && TREE_CODE (exp) != ERROR_MARK
3958 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
3959 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
3960 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
3961
3962 /* If value was not generated in the target, store it there.
3963 Convert the value to TARGET's type first if necessary and emit the
3964 pending incrementations that have been queued when expanding EXP.
3965 Note that we cannot emit the whole queue blindly because this will
3966 effectively disable the POST_INC optimization later.
3967
3968 If TEMP and TARGET compare equal according to rtx_equal_p, but
3969 one or both of them are volatile memory refs, we have to distinguish
3970 two cases:
3971 - expand_expr has used TARGET. In this case, we must not generate
3972 another copy. This can be detected by TARGET being equal according
3973 to == .
3974 - expand_expr has not used TARGET - that means that the source just
3975 happens to have the same RTX form. Since temp will have been created
3976 by expand_expr, it will compare unequal according to == .
3977 We must generate a copy in this case, to reach the correct number
3978 of volatile memory references. */
3979
3980 if ((! rtx_equal_p (temp, target)
3981 || (temp != target && (side_effects_p (temp)
3982 || side_effects_p (target))))
3983 && TREE_CODE (exp) != ERROR_MARK
3984 && ! dont_store_target
3985 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
3986 but TARGET is not valid memory reference, TEMP will differ
3987 from TARGET although it is really the same location. */
3988 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
3989 /* If there's nothing to copy, don't bother. Don't call expr_size
3990 unless necessary, because some front-ends (C++) expr_size-hook
3991 aborts on objects that are not supposed to be bit-copied or
3992 bit-initialized. */
3993 && expr_size (exp) != const0_rtx)
3994 {
3995 if (GET_MODE (temp) != GET_MODE (target)
3996 && GET_MODE (temp) != VOIDmode)
3997 {
3998 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
3999 if (dont_return_target)
4000 {
4001 /* In this case, we will return TEMP,
4002 so make sure it has the proper mode.
4003 But don't forget to store the value into TARGET. */
4004 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4005 emit_move_insn (target, temp);
4006 }
4007 else
4008 convert_move (target, temp, unsignedp);
4009 }
4010
4011 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4012 {
4013 /* Handle copying a string constant into an array. The string
4014 constant may be shorter than the array. So copy just the string's
4015 actual length, and clear the rest. First get the size of the data
4016 type of the string, which is actually the size of the target. */
4017 rtx size = expr_size (exp);
4018
4019 if (GET_CODE (size) == CONST_INT
4020 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4021 emit_block_move (target, temp, size,
4022 (want_value & 2
4023 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4024 else
4025 {
4026 /* Compute the size of the data to copy from the string. */
4027 tree copy_size
4028 = size_binop (MIN_EXPR,
4029 make_tree (sizetype, size),
4030 size_int (TREE_STRING_LENGTH (exp)));
4031 rtx copy_size_rtx
4032 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4033 (want_value & 2
4034 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4035 rtx label = 0;
4036
4037 /* Copy that much. */
4038 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4039 TYPE_UNSIGNED (sizetype));
4040 emit_block_move (target, temp, copy_size_rtx,
4041 (want_value & 2
4042 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4043
4044 /* Figure out how much is left in TARGET that we have to clear.
4045 Do all calculations in ptr_mode. */
4046 if (GET_CODE (copy_size_rtx) == CONST_INT)
4047 {
4048 size = plus_constant (size, -INTVAL (copy_size_rtx));
4049 target = adjust_address (target, BLKmode,
4050 INTVAL (copy_size_rtx));
4051 }
4052 else
4053 {
4054 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4055 copy_size_rtx, NULL_RTX, 0,
4056 OPTAB_LIB_WIDEN);
4057
4058 #ifdef POINTERS_EXTEND_UNSIGNED
4059 if (GET_MODE (copy_size_rtx) != Pmode)
4060 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4061 TYPE_UNSIGNED (sizetype));
4062 #endif
4063
4064 target = offset_address (target, copy_size_rtx,
4065 highest_pow2_factor (copy_size));
4066 label = gen_label_rtx ();
4067 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4068 GET_MODE (size), 0, label);
4069 }
4070
4071 if (size != const0_rtx)
4072 clear_storage (target, size);
4073
4074 if (label)
4075 emit_label (label);
4076 }
4077 }
4078 /* Handle calls that return values in multiple non-contiguous locations.
4079 The Irix 6 ABI has examples of this. */
4080 else if (GET_CODE (target) == PARALLEL)
4081 emit_group_load (target, temp, TREE_TYPE (exp),
4082 int_size_in_bytes (TREE_TYPE (exp)));
4083 else if (GET_MODE (temp) == BLKmode)
4084 emit_block_move (target, temp, expr_size (exp),
4085 (want_value & 2
4086 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4087 else
4088 {
4089 temp = force_operand (temp, target);
4090 if (temp != target)
4091 emit_move_insn (target, temp);
4092 }
4093 }
4094
4095 /* If we don't want a value, return NULL_RTX. */
4096 if ((want_value & 1) == 0)
4097 return NULL_RTX;
4098
4099 /* If we are supposed to return TEMP, do so as long as it isn't a MEM.
4100 ??? The latter test doesn't seem to make sense. */
4101 else if (dont_return_target && !MEM_P (temp))
4102 return temp;
4103
4104 /* Return TARGET itself if it is a hard register. */
4105 else if ((want_value & 1) != 0
4106 && GET_MODE (target) != BLKmode
4107 && ! (REG_P (target)
4108 && REGNO (target) < FIRST_PSEUDO_REGISTER))
4109 return copy_to_reg (target);
4110
4111 else
4112 return target;
4113 }
4114 \f
4115 /* Examine CTOR. Discover how many scalar fields are set to nonzero
4116 values and place it in *P_NZ_ELTS. Discover how many scalar fields
4117 are set to non-constant values and place it in *P_NC_ELTS. */
4118
4119 static void
4120 categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
4121 HOST_WIDE_INT *p_nc_elts)
4122 {
4123 HOST_WIDE_INT nz_elts, nc_elts;
4124 tree list;
4125
4126 nz_elts = 0;
4127 nc_elts = 0;
4128
4129 for (list = CONSTRUCTOR_ELTS (ctor); list; list = TREE_CHAIN (list))
4130 {
4131 tree value = TREE_VALUE (list);
4132 tree purpose = TREE_PURPOSE (list);
4133 HOST_WIDE_INT mult;
4134
4135 mult = 1;
4136 if (TREE_CODE (purpose) == RANGE_EXPR)
4137 {
4138 tree lo_index = TREE_OPERAND (purpose, 0);
4139 tree hi_index = TREE_OPERAND (purpose, 1);
4140
4141 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4142 mult = (tree_low_cst (hi_index, 1)
4143 - tree_low_cst (lo_index, 1) + 1);
4144 }
4145
4146 switch (TREE_CODE (value))
4147 {
4148 case CONSTRUCTOR:
4149 {
4150 HOST_WIDE_INT nz = 0, nc = 0;
4151 categorize_ctor_elements_1 (value, &nz, &nc);
4152 nz_elts += mult * nz;
4153 nc_elts += mult * nc;
4154 }
4155 break;
4156
4157 case INTEGER_CST:
4158 case REAL_CST:
4159 if (!initializer_zerop (value))
4160 nz_elts += mult;
4161 break;
4162 case COMPLEX_CST:
4163 if (!initializer_zerop (TREE_REALPART (value)))
4164 nz_elts += mult;
4165 if (!initializer_zerop (TREE_IMAGPART (value)))
4166 nz_elts += mult;
4167 break;
4168 case VECTOR_CST:
4169 {
4170 tree v;
4171 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4172 if (!initializer_zerop (TREE_VALUE (v)))
4173 nz_elts += mult;
4174 }
4175 break;
4176
4177 default:
4178 nz_elts += mult;
4179 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
4180 nc_elts += mult;
4181 break;
4182 }
4183 }
4184
4185 *p_nz_elts += nz_elts;
4186 *p_nc_elts += nc_elts;
4187 }
4188
4189 void
4190 categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
4191 HOST_WIDE_INT *p_nc_elts)
4192 {
4193 *p_nz_elts = 0;
4194 *p_nc_elts = 0;
4195 categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts);
4196 }
4197
4198 /* Count the number of scalars in TYPE. Return -1 on overflow or
4199 variable-sized. */
4200
4201 HOST_WIDE_INT
4202 count_type_elements (tree type)
4203 {
4204 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4205 switch (TREE_CODE (type))
4206 {
4207 case ARRAY_TYPE:
4208 {
4209 tree telts = array_type_nelts (type);
4210 if (telts && host_integerp (telts, 1))
4211 {
4212 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4213 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type));
4214 if (n == 0)
4215 return 0;
4216 else if (max / n > m)
4217 return n * m;
4218 }
4219 return -1;
4220 }
4221
4222 case RECORD_TYPE:
4223 {
4224 HOST_WIDE_INT n = 0, t;
4225 tree f;
4226
4227 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4228 if (TREE_CODE (f) == FIELD_DECL)
4229 {
4230 t = count_type_elements (TREE_TYPE (f));
4231 if (t < 0)
4232 return -1;
4233 n += t;
4234 }
4235
4236 return n;
4237 }
4238
4239 case UNION_TYPE:
4240 case QUAL_UNION_TYPE:
4241 {
4242 /* Ho hum. How in the world do we guess here? Clearly it isn't
4243 right to count the fields. Guess based on the number of words. */
4244 HOST_WIDE_INT n = int_size_in_bytes (type);
4245 if (n < 0)
4246 return -1;
4247 return n / UNITS_PER_WORD;
4248 }
4249
4250 case COMPLEX_TYPE:
4251 return 2;
4252
4253 case VECTOR_TYPE:
4254 return TYPE_VECTOR_SUBPARTS (type);
4255
4256 case INTEGER_TYPE:
4257 case REAL_TYPE:
4258 case ENUMERAL_TYPE:
4259 case BOOLEAN_TYPE:
4260 case CHAR_TYPE:
4261 case POINTER_TYPE:
4262 case OFFSET_TYPE:
4263 case REFERENCE_TYPE:
4264 return 1;
4265
4266 case VOID_TYPE:
4267 case METHOD_TYPE:
4268 case FILE_TYPE:
4269 case SET_TYPE:
4270 case FUNCTION_TYPE:
4271 case LANG_TYPE:
4272 default:
4273 gcc_unreachable ();
4274 }
4275 }
4276
4277 /* Return 1 if EXP contains mostly (3/4) zeros. */
4278
4279 int
4280 mostly_zeros_p (tree exp)
4281 {
4282 if (TREE_CODE (exp) == CONSTRUCTOR)
4283
4284 {
4285 HOST_WIDE_INT nz_elts, nc_elts, elts;
4286
4287 /* If there are no ranges of true bits, it is all zero. */
4288 if (TREE_TYPE (exp) && TREE_CODE (TREE_TYPE (exp)) == SET_TYPE)
4289 return CONSTRUCTOR_ELTS (exp) == NULL_TREE;
4290
4291 categorize_ctor_elements (exp, &nz_elts, &nc_elts);
4292 elts = count_type_elements (TREE_TYPE (exp));
4293
4294 return nz_elts < elts / 4;
4295 }
4296
4297 return initializer_zerop (exp);
4298 }
4299 \f
4300 /* Helper function for store_constructor.
4301 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4302 TYPE is the type of the CONSTRUCTOR, not the element type.
4303 CLEARED is as for store_constructor.
4304 ALIAS_SET is the alias set to use for any stores.
4305
4306 This provides a recursive shortcut back to store_constructor when it isn't
4307 necessary to go through store_field. This is so that we can pass through
4308 the cleared field to let store_constructor know that we may not have to
4309 clear a substructure if the outer structure has already been cleared. */
4310
4311 static void
4312 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
4313 HOST_WIDE_INT bitpos, enum machine_mode mode,
4314 tree exp, tree type, int cleared, int alias_set)
4315 {
4316 if (TREE_CODE (exp) == CONSTRUCTOR
4317 /* We can only call store_constructor recursively if the size and
4318 bit position are on a byte boundary. */
4319 && bitpos % BITS_PER_UNIT == 0
4320 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
4321 /* If we have a nonzero bitpos for a register target, then we just
4322 let store_field do the bitfield handling. This is unlikely to
4323 generate unnecessary clear instructions anyways. */
4324 && (bitpos == 0 || MEM_P (target)))
4325 {
4326 if (MEM_P (target))
4327 target
4328 = adjust_address (target,
4329 GET_MODE (target) == BLKmode
4330 || 0 != (bitpos
4331 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4332 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4333
4334
4335 /* Update the alias set, if required. */
4336 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
4337 && MEM_ALIAS_SET (target) != 0)
4338 {
4339 target = copy_rtx (target);
4340 set_mem_alias_set (target, alias_set);
4341 }
4342
4343 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4344 }
4345 else
4346 store_field (target, bitsize, bitpos, mode, exp, VOIDmode, 0, type,
4347 alias_set);
4348 }
4349
4350 /* Store the value of constructor EXP into the rtx TARGET.
4351 TARGET is either a REG or a MEM; we know it cannot conflict, since
4352 safe_from_p has been called.
4353 CLEARED is true if TARGET is known to have been zero'd.
4354 SIZE is the number of bytes of TARGET we are allowed to modify: this
4355 may not be the same as the size of EXP if we are assigning to a field
4356 which has been packed to exclude padding bits. */
4357
4358 static void
4359 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
4360 {
4361 tree type = TREE_TYPE (exp);
4362 #ifdef WORD_REGISTER_OPERATIONS
4363 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4364 #endif
4365
4366 switch (TREE_CODE (type))
4367 {
4368 case RECORD_TYPE:
4369 case UNION_TYPE:
4370 case QUAL_UNION_TYPE:
4371 {
4372 tree elt;
4373
4374 /* If size is zero or the target is already cleared, do nothing. */
4375 if (size == 0 || cleared)
4376 cleared = 1;
4377 /* We either clear the aggregate or indicate the value is dead. */
4378 else if ((TREE_CODE (type) == UNION_TYPE
4379 || TREE_CODE (type) == QUAL_UNION_TYPE)
4380 && ! CONSTRUCTOR_ELTS (exp))
4381 /* If the constructor is empty, clear the union. */
4382 {
4383 clear_storage (target, expr_size (exp));
4384 cleared = 1;
4385 }
4386
4387 /* If we are building a static constructor into a register,
4388 set the initial value as zero so we can fold the value into
4389 a constant. But if more than one register is involved,
4390 this probably loses. */
4391 else if (REG_P (target) && TREE_STATIC (exp)
4392 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4393 {
4394 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4395 cleared = 1;
4396 }
4397
4398 /* If the constructor has fewer fields than the structure or
4399 if we are initializing the structure to mostly zeros, clear
4400 the whole structure first. Don't do this if TARGET is a
4401 register whose mode size isn't equal to SIZE since
4402 clear_storage can't handle this case. */
4403 else if (size > 0
4404 && ((list_length (CONSTRUCTOR_ELTS (exp))
4405 != fields_length (type))
4406 || mostly_zeros_p (exp))
4407 && (!REG_P (target)
4408 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4409 == size)))
4410 {
4411 clear_storage (target, GEN_INT (size));
4412 cleared = 1;
4413 }
4414
4415 if (! cleared)
4416 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4417
4418 /* Store each element of the constructor into the
4419 corresponding field of TARGET. */
4420
4421 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
4422 {
4423 tree field = TREE_PURPOSE (elt);
4424 tree value = TREE_VALUE (elt);
4425 enum machine_mode mode;
4426 HOST_WIDE_INT bitsize;
4427 HOST_WIDE_INT bitpos = 0;
4428 tree offset;
4429 rtx to_rtx = target;
4430
4431 /* Just ignore missing fields. We cleared the whole
4432 structure, above, if any fields are missing. */
4433 if (field == 0)
4434 continue;
4435
4436 if (cleared && initializer_zerop (value))
4437 continue;
4438
4439 if (host_integerp (DECL_SIZE (field), 1))
4440 bitsize = tree_low_cst (DECL_SIZE (field), 1);
4441 else
4442 bitsize = -1;
4443
4444 mode = DECL_MODE (field);
4445 if (DECL_BIT_FIELD (field))
4446 mode = VOIDmode;
4447
4448 offset = DECL_FIELD_OFFSET (field);
4449 if (host_integerp (offset, 0)
4450 && host_integerp (bit_position (field), 0))
4451 {
4452 bitpos = int_bit_position (field);
4453 offset = 0;
4454 }
4455 else
4456 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4457
4458 if (offset)
4459 {
4460 rtx offset_rtx;
4461
4462 offset
4463 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
4464 make_tree (TREE_TYPE (exp),
4465 target));
4466
4467 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, 0);
4468 gcc_assert (MEM_P (to_rtx));
4469
4470 #ifdef POINTERS_EXTEND_UNSIGNED
4471 if (GET_MODE (offset_rtx) != Pmode)
4472 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4473 #else
4474 if (GET_MODE (offset_rtx) != ptr_mode)
4475 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4476 #endif
4477
4478 to_rtx = offset_address (to_rtx, offset_rtx,
4479 highest_pow2_factor (offset));
4480 }
4481
4482 #ifdef WORD_REGISTER_OPERATIONS
4483 /* If this initializes a field that is smaller than a
4484 word, at the start of a word, try to widen it to a full
4485 word. This special case allows us to output C++ member
4486 function initializations in a form that the optimizers
4487 can understand. */
4488 if (REG_P (target)
4489 && bitsize < BITS_PER_WORD
4490 && bitpos % BITS_PER_WORD == 0
4491 && GET_MODE_CLASS (mode) == MODE_INT
4492 && TREE_CODE (value) == INTEGER_CST
4493 && exp_size >= 0
4494 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
4495 {
4496 tree type = TREE_TYPE (value);
4497
4498 if (TYPE_PRECISION (type) < BITS_PER_WORD)
4499 {
4500 type = lang_hooks.types.type_for_size
4501 (BITS_PER_WORD, TYPE_UNSIGNED (type));
4502 value = convert (type, value);
4503 }
4504
4505 if (BYTES_BIG_ENDIAN)
4506 value
4507 = fold (build2 (LSHIFT_EXPR, type, value,
4508 build_int_cst (NULL_TREE,
4509 BITS_PER_WORD - bitsize)));
4510 bitsize = BITS_PER_WORD;
4511 mode = word_mode;
4512 }
4513 #endif
4514
4515 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
4516 && DECL_NONADDRESSABLE_P (field))
4517 {
4518 to_rtx = copy_rtx (to_rtx);
4519 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4520 }
4521
4522 store_constructor_field (to_rtx, bitsize, bitpos, mode,
4523 value, type, cleared,
4524 get_alias_set (TREE_TYPE (field)));
4525 }
4526 break;
4527 }
4528 case ARRAY_TYPE:
4529 {
4530 tree elt;
4531 int i;
4532 int need_to_clear;
4533 tree domain;
4534 tree elttype = TREE_TYPE (type);
4535 int const_bounds_p;
4536 HOST_WIDE_INT minelt = 0;
4537 HOST_WIDE_INT maxelt = 0;
4538
4539 domain = TYPE_DOMAIN (type);
4540 const_bounds_p = (TYPE_MIN_VALUE (domain)
4541 && TYPE_MAX_VALUE (domain)
4542 && host_integerp (TYPE_MIN_VALUE (domain), 0)
4543 && host_integerp (TYPE_MAX_VALUE (domain), 0));
4544
4545 /* If we have constant bounds for the range of the type, get them. */
4546 if (const_bounds_p)
4547 {
4548 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
4549 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
4550 }
4551
4552 /* If the constructor has fewer elements than the array, clear
4553 the whole array first. Similarly if this is static
4554 constructor of a non-BLKmode object. */
4555 if (cleared)
4556 need_to_clear = 0;
4557 else if (REG_P (target) && TREE_STATIC (exp))
4558 need_to_clear = 1;
4559 else
4560 {
4561 HOST_WIDE_INT count = 0, zero_count = 0;
4562 need_to_clear = ! const_bounds_p;
4563
4564 /* This loop is a more accurate version of the loop in
4565 mostly_zeros_p (it handles RANGE_EXPR in an index). It
4566 is also needed to check for missing elements. */
4567 for (elt = CONSTRUCTOR_ELTS (exp);
4568 elt != NULL_TREE && ! need_to_clear;
4569 elt = TREE_CHAIN (elt))
4570 {
4571 tree index = TREE_PURPOSE (elt);
4572 HOST_WIDE_INT this_node_count;
4573
4574 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4575 {
4576 tree lo_index = TREE_OPERAND (index, 0);
4577 tree hi_index = TREE_OPERAND (index, 1);
4578
4579 if (! host_integerp (lo_index, 1)
4580 || ! host_integerp (hi_index, 1))
4581 {
4582 need_to_clear = 1;
4583 break;
4584 }
4585
4586 this_node_count = (tree_low_cst (hi_index, 1)
4587 - tree_low_cst (lo_index, 1) + 1);
4588 }
4589 else
4590 this_node_count = 1;
4591
4592 count += this_node_count;
4593 if (mostly_zeros_p (TREE_VALUE (elt)))
4594 zero_count += this_node_count;
4595 }
4596
4597 /* Clear the entire array first if there are any missing
4598 elements, or if the incidence of zero elements is >=
4599 75%. */
4600 if (! need_to_clear
4601 && (count < maxelt - minelt + 1
4602 || 4 * zero_count >= 3 * count))
4603 need_to_clear = 1;
4604 }
4605
4606 if (need_to_clear && size > 0)
4607 {
4608 if (REG_P (target))
4609 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4610 else
4611 clear_storage (target, GEN_INT (size));
4612 cleared = 1;
4613 }
4614
4615 if (!cleared && REG_P (target))
4616 /* Inform later passes that the old value is dead. */
4617 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4618
4619 /* Store each element of the constructor into the
4620 corresponding element of TARGET, determined by counting the
4621 elements. */
4622 for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
4623 elt;
4624 elt = TREE_CHAIN (elt), i++)
4625 {
4626 enum machine_mode mode;
4627 HOST_WIDE_INT bitsize;
4628 HOST_WIDE_INT bitpos;
4629 int unsignedp;
4630 tree value = TREE_VALUE (elt);
4631 tree index = TREE_PURPOSE (elt);
4632 rtx xtarget = target;
4633
4634 if (cleared && initializer_zerop (value))
4635 continue;
4636
4637 unsignedp = TYPE_UNSIGNED (elttype);
4638 mode = TYPE_MODE (elttype);
4639 if (mode == BLKmode)
4640 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
4641 ? tree_low_cst (TYPE_SIZE (elttype), 1)
4642 : -1);
4643 else
4644 bitsize = GET_MODE_BITSIZE (mode);
4645
4646 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
4647 {
4648 tree lo_index = TREE_OPERAND (index, 0);
4649 tree hi_index = TREE_OPERAND (index, 1);
4650 rtx index_r, pos_rtx;
4651 HOST_WIDE_INT lo, hi, count;
4652 tree position;
4653
4654 /* If the range is constant and "small", unroll the loop. */
4655 if (const_bounds_p
4656 && host_integerp (lo_index, 0)
4657 && host_integerp (hi_index, 0)
4658 && (lo = tree_low_cst (lo_index, 0),
4659 hi = tree_low_cst (hi_index, 0),
4660 count = hi - lo + 1,
4661 (!MEM_P (target)
4662 || count <= 2
4663 || (host_integerp (TYPE_SIZE (elttype), 1)
4664 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
4665 <= 40 * 8)))))
4666 {
4667 lo -= minelt; hi -= minelt;
4668 for (; lo <= hi; lo++)
4669 {
4670 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
4671
4672 if (MEM_P (target)
4673 && !MEM_KEEP_ALIAS_SET_P (target)
4674 && TREE_CODE (type) == ARRAY_TYPE
4675 && TYPE_NONALIASED_COMPONENT (type))
4676 {
4677 target = copy_rtx (target);
4678 MEM_KEEP_ALIAS_SET_P (target) = 1;
4679 }
4680
4681 store_constructor_field
4682 (target, bitsize, bitpos, mode, value, type, cleared,
4683 get_alias_set (elttype));
4684 }
4685 }
4686 else
4687 {
4688 rtx loop_start = gen_label_rtx ();
4689 rtx loop_end = gen_label_rtx ();
4690 tree exit_cond;
4691
4692 expand_expr (hi_index, NULL_RTX, VOIDmode, 0);
4693 unsignedp = TYPE_UNSIGNED (domain);
4694
4695 index = build_decl (VAR_DECL, NULL_TREE, domain);
4696
4697 index_r
4698 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
4699 &unsignedp, 0));
4700 SET_DECL_RTL (index, index_r);
4701 store_expr (lo_index, index_r, 0);
4702
4703 /* Build the head of the loop. */
4704 do_pending_stack_adjust ();
4705 emit_label (loop_start);
4706
4707 /* Assign value to element index. */
4708 position
4709 = convert (ssizetype,
4710 fold (build2 (MINUS_EXPR, TREE_TYPE (index),
4711 index, TYPE_MIN_VALUE (domain))));
4712 position = size_binop (MULT_EXPR, position,
4713 convert (ssizetype,
4714 TYPE_SIZE_UNIT (elttype)));
4715
4716 pos_rtx = expand_expr (position, 0, VOIDmode, 0);
4717 xtarget = offset_address (target, pos_rtx,
4718 highest_pow2_factor (position));
4719 xtarget = adjust_address (xtarget, mode, 0);
4720 if (TREE_CODE (value) == CONSTRUCTOR)
4721 store_constructor (value, xtarget, cleared,
4722 bitsize / BITS_PER_UNIT);
4723 else
4724 store_expr (value, xtarget, 0);
4725
4726 /* Generate a conditional jump to exit the loop. */
4727 exit_cond = build2 (LT_EXPR, integer_type_node,
4728 index, hi_index);
4729 jumpif (exit_cond, loop_end);
4730
4731 /* Update the loop counter, and jump to the head of
4732 the loop. */
4733 expand_assignment (index,
4734 build2 (PLUS_EXPR, TREE_TYPE (index),
4735 index, integer_one_node), 0);
4736
4737 emit_jump (loop_start);
4738
4739 /* Build the end of the loop. */
4740 emit_label (loop_end);
4741 }
4742 }
4743 else if ((index != 0 && ! host_integerp (index, 0))
4744 || ! host_integerp (TYPE_SIZE (elttype), 1))
4745 {
4746 tree position;
4747
4748 if (index == 0)
4749 index = ssize_int (1);
4750
4751 if (minelt)
4752 index = fold_convert (ssizetype,
4753 fold (build2 (MINUS_EXPR,
4754 TREE_TYPE (index),
4755 index,
4756 TYPE_MIN_VALUE (domain))));
4757
4758 position = size_binop (MULT_EXPR, index,
4759 convert (ssizetype,
4760 TYPE_SIZE_UNIT (elttype)));
4761 xtarget = offset_address (target,
4762 expand_expr (position, 0, VOIDmode, 0),
4763 highest_pow2_factor (position));
4764 xtarget = adjust_address (xtarget, mode, 0);
4765 store_expr (value, xtarget, 0);
4766 }
4767 else
4768 {
4769 if (index != 0)
4770 bitpos = ((tree_low_cst (index, 0) - minelt)
4771 * tree_low_cst (TYPE_SIZE (elttype), 1));
4772 else
4773 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
4774
4775 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
4776 && TREE_CODE (type) == ARRAY_TYPE
4777 && TYPE_NONALIASED_COMPONENT (type))
4778 {
4779 target = copy_rtx (target);
4780 MEM_KEEP_ALIAS_SET_P (target) = 1;
4781 }
4782 store_constructor_field (target, bitsize, bitpos, mode, value,
4783 type, cleared, get_alias_set (elttype));
4784 }
4785 }
4786 break;
4787 }
4788
4789 case VECTOR_TYPE:
4790 {
4791 tree elt;
4792 int i;
4793 int need_to_clear;
4794 int icode = 0;
4795 tree elttype = TREE_TYPE (type);
4796 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
4797 enum machine_mode eltmode = TYPE_MODE (elttype);
4798 HOST_WIDE_INT bitsize;
4799 HOST_WIDE_INT bitpos;
4800 rtx *vector = NULL;
4801 unsigned n_elts;
4802
4803 gcc_assert (eltmode != BLKmode);
4804
4805 n_elts = TYPE_VECTOR_SUBPARTS (type);
4806 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
4807 {
4808 enum machine_mode mode = GET_MODE (target);
4809
4810 icode = (int) vec_init_optab->handlers[mode].insn_code;
4811 if (icode != CODE_FOR_nothing)
4812 {
4813 unsigned int i;
4814
4815 vector = alloca (n_elts);
4816 for (i = 0; i < n_elts; i++)
4817 vector [i] = CONST0_RTX (GET_MODE_INNER (mode));
4818 }
4819 }
4820
4821 /* If the constructor has fewer elements than the vector,
4822 clear the whole array first. Similarly if this is static
4823 constructor of a non-BLKmode object. */
4824 if (cleared)
4825 need_to_clear = 0;
4826 else if (REG_P (target) && TREE_STATIC (exp))
4827 need_to_clear = 1;
4828 else
4829 {
4830 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
4831
4832 for (elt = CONSTRUCTOR_ELTS (exp);
4833 elt != NULL_TREE;
4834 elt = TREE_CHAIN (elt))
4835 {
4836 int n_elts_here = tree_low_cst
4837 (int_const_binop (TRUNC_DIV_EXPR,
4838 TYPE_SIZE (TREE_TYPE (TREE_VALUE (elt))),
4839 TYPE_SIZE (elttype), 0), 1);
4840
4841 count += n_elts_here;
4842 if (mostly_zeros_p (TREE_VALUE (elt)))
4843 zero_count += n_elts_here;
4844 }
4845
4846 /* Clear the entire vector first if there are any missing elements,
4847 or if the incidence of zero elements is >= 75%. */
4848 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
4849 }
4850
4851 if (need_to_clear && size > 0 && !vector)
4852 {
4853 if (REG_P (target))
4854 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4855 else
4856 clear_storage (target, GEN_INT (size));
4857 cleared = 1;
4858 }
4859
4860 if (!cleared && REG_P (target))
4861 /* Inform later passes that the old value is dead. */
4862 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4863
4864 /* Store each element of the constructor into the corresponding
4865 element of TARGET, determined by counting the elements. */
4866 for (elt = CONSTRUCTOR_ELTS (exp), i = 0;
4867 elt;
4868 elt = TREE_CHAIN (elt), i += bitsize / elt_size)
4869 {
4870 tree value = TREE_VALUE (elt);
4871 tree index = TREE_PURPOSE (elt);
4872 HOST_WIDE_INT eltpos;
4873
4874 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
4875 if (cleared && initializer_zerop (value))
4876 continue;
4877
4878 if (index != 0)
4879 eltpos = tree_low_cst (index, 1);
4880 else
4881 eltpos = i;
4882
4883 if (vector)
4884 {
4885 /* Vector CONSTRUCTORs should only be built from smaller
4886 vectors in the case of BLKmode vectors. */
4887 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
4888 vector[eltpos] = expand_expr (value, NULL_RTX, VOIDmode, 0);
4889 }
4890 else
4891 {
4892 enum machine_mode value_mode =
4893 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
4894 ? TYPE_MODE (TREE_TYPE (value))
4895 : eltmode;
4896 bitpos = eltpos * elt_size;
4897 store_constructor_field (target, bitsize, bitpos,
4898 value_mode, value, type,
4899 cleared, get_alias_set (elttype));
4900 }
4901 }
4902
4903 if (vector)
4904 emit_insn (GEN_FCN (icode)
4905 (target,
4906 gen_rtx_PARALLEL (GET_MODE (target),
4907 gen_rtvec_v (n_elts, vector))));
4908 break;
4909 }
4910
4911 /* Set constructor assignments. */
4912 case SET_TYPE:
4913 {
4914 tree elt = CONSTRUCTOR_ELTS (exp);
4915 unsigned HOST_WIDE_INT nbytes = int_size_in_bytes (type), nbits;
4916 tree domain = TYPE_DOMAIN (type);
4917 tree domain_min, domain_max, bitlength;
4918
4919 /* The default implementation strategy is to extract the
4920 constant parts of the constructor, use that to initialize
4921 the target, and then "or" in whatever non-constant ranges
4922 we need in addition.
4923
4924 If a large set is all zero or all ones, it is probably
4925 better to set it using memset. Also, if a large set has
4926 just a single range, it may also be better to first clear
4927 all the first clear the set (using memset), and set the
4928 bits we want. */
4929
4930 /* Check for all zeros. */
4931 if (elt == NULL_TREE && size > 0)
4932 {
4933 if (!cleared)
4934 clear_storage (target, GEN_INT (size));
4935 return;
4936 }
4937
4938 domain_min = convert (sizetype, TYPE_MIN_VALUE (domain));
4939 domain_max = convert (sizetype, TYPE_MAX_VALUE (domain));
4940 bitlength = size_binop (PLUS_EXPR,
4941 size_diffop (domain_max, domain_min),
4942 ssize_int (1));
4943
4944 nbits = tree_low_cst (bitlength, 1);
4945
4946 /* For "small" sets, or "medium-sized" (up to 32 bytes) sets
4947 that are "complicated" (more than one range), initialize
4948 (the constant parts) by copying from a constant. */
4949 if (GET_MODE (target) != BLKmode || nbits <= 2 * BITS_PER_WORD
4950 || (nbytes <= 32 && TREE_CHAIN (elt) != NULL_TREE))
4951 {
4952 unsigned int set_word_size = TYPE_ALIGN (TREE_TYPE (exp));
4953 enum machine_mode mode = mode_for_size (set_word_size, MODE_INT, 1);
4954 char *bit_buffer = alloca (nbits);
4955 HOST_WIDE_INT word = 0;
4956 unsigned int bit_pos = 0;
4957 unsigned int ibit = 0;
4958 unsigned int offset = 0; /* In bytes from beginning of set. */
4959
4960 elt = get_set_constructor_bits (exp, bit_buffer, nbits);
4961 for (;;)
4962 {
4963 if (bit_buffer[ibit])
4964 {
4965 if (BYTES_BIG_ENDIAN)
4966 word |= (1 << (set_word_size - 1 - bit_pos));
4967 else
4968 word |= 1 << bit_pos;
4969 }
4970
4971 bit_pos++; ibit++;
4972 if (bit_pos >= set_word_size || ibit == nbits)
4973 {
4974 if (word != 0 || ! cleared)
4975 {
4976 rtx datum = gen_int_mode (word, mode);
4977 rtx to_rtx;
4978
4979 /* The assumption here is that it is safe to
4980 use XEXP if the set is multi-word, but not
4981 if it's single-word. */
4982 if (MEM_P (target))
4983 to_rtx = adjust_address (target, mode, offset);
4984 else
4985 {
4986 gcc_assert (!offset);
4987 to_rtx = target;
4988 }
4989 emit_move_insn (to_rtx, datum);
4990 }
4991
4992 if (ibit == nbits)
4993 break;
4994 word = 0;
4995 bit_pos = 0;
4996 offset += set_word_size / BITS_PER_UNIT;
4997 }
4998 }
4999 }
5000 else if (!cleared)
5001 /* Don't bother clearing storage if the set is all ones. */
5002 if (TREE_CHAIN (elt) != NULL_TREE
5003 || (TREE_PURPOSE (elt) == NULL_TREE
5004 ? nbits != 1
5005 : ( ! host_integerp (TREE_VALUE (elt), 0)
5006 || ! host_integerp (TREE_PURPOSE (elt), 0)
5007 || (tree_low_cst (TREE_VALUE (elt), 0)
5008 - tree_low_cst (TREE_PURPOSE (elt), 0) + 1
5009 != (HOST_WIDE_INT) nbits))))
5010 clear_storage (target, expr_size (exp));
5011
5012 for (; elt != NULL_TREE; elt = TREE_CHAIN (elt))
5013 {
5014 /* Start of range of element or NULL. */
5015 tree startbit = TREE_PURPOSE (elt);
5016 /* End of range of element, or element value. */
5017 tree endbit = TREE_VALUE (elt);
5018 HOST_WIDE_INT startb, endb;
5019 rtx bitlength_rtx, startbit_rtx, endbit_rtx, targetx;
5020
5021 bitlength_rtx = expand_expr (bitlength,
5022 NULL_RTX, MEM, EXPAND_CONST_ADDRESS);
5023
5024 /* Handle non-range tuple element like [ expr ]. */
5025 if (startbit == NULL_TREE)
5026 {
5027 startbit = save_expr (endbit);
5028 endbit = startbit;
5029 }
5030
5031 startbit = convert (sizetype, startbit);
5032 endbit = convert (sizetype, endbit);
5033 if (! integer_zerop (domain_min))
5034 {
5035 startbit = size_binop (MINUS_EXPR, startbit, domain_min);
5036 endbit = size_binop (MINUS_EXPR, endbit, domain_min);
5037 }
5038 startbit_rtx = expand_expr (startbit, NULL_RTX, MEM,
5039 EXPAND_CONST_ADDRESS);
5040 endbit_rtx = expand_expr (endbit, NULL_RTX, MEM,
5041 EXPAND_CONST_ADDRESS);
5042
5043 if (REG_P (target))
5044 {
5045 targetx
5046 = assign_temp
5047 ((build_qualified_type (lang_hooks.types.type_for_mode
5048 (GET_MODE (target), 0),
5049 TYPE_QUAL_CONST)),
5050 0, 1, 1);
5051 emit_move_insn (targetx, target);
5052 }
5053
5054 else
5055 {
5056 gcc_assert (MEM_P (target));
5057 targetx = target;
5058 }
5059
5060 /* Optimization: If startbit and endbit are constants divisible
5061 by BITS_PER_UNIT, call memset instead. */
5062 if (TREE_CODE (startbit) == INTEGER_CST
5063 && TREE_CODE (endbit) == INTEGER_CST
5064 && (startb = TREE_INT_CST_LOW (startbit)) % BITS_PER_UNIT == 0
5065 && (endb = TREE_INT_CST_LOW (endbit) + 1) % BITS_PER_UNIT == 0)
5066 {
5067 emit_library_call (memset_libfunc, LCT_NORMAL,
5068 VOIDmode, 3,
5069 plus_constant (XEXP (targetx, 0),
5070 startb / BITS_PER_UNIT),
5071 Pmode,
5072 constm1_rtx, TYPE_MODE (integer_type_node),
5073 GEN_INT ((endb - startb) / BITS_PER_UNIT),
5074 TYPE_MODE (sizetype));
5075 }
5076 else
5077 emit_library_call (setbits_libfunc, LCT_NORMAL,
5078 VOIDmode, 4, XEXP (targetx, 0),
5079 Pmode, bitlength_rtx, TYPE_MODE (sizetype),
5080 startbit_rtx, TYPE_MODE (sizetype),
5081 endbit_rtx, TYPE_MODE (sizetype));
5082
5083 if (REG_P (target))
5084 emit_move_insn (target, targetx);
5085 }
5086 break;
5087 }
5088 default:
5089 gcc_unreachable ();
5090 }
5091 }
5092
5093 /* Store the value of EXP (an expression tree)
5094 into a subfield of TARGET which has mode MODE and occupies
5095 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5096 If MODE is VOIDmode, it means that we are storing into a bit-field.
5097
5098 If VALUE_MODE is VOIDmode, return nothing in particular.
5099 UNSIGNEDP is not used in this case.
5100
5101 Otherwise, return an rtx for the value stored. This rtx
5102 has mode VALUE_MODE if that is convenient to do.
5103 In this case, UNSIGNEDP must be nonzero if the value is an unsigned type.
5104
5105 TYPE is the type of the underlying object,
5106
5107 ALIAS_SET is the alias set for the destination. This value will
5108 (in general) be different from that for TARGET, since TARGET is a
5109 reference to the containing structure. */
5110
5111 static rtx
5112 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5113 enum machine_mode mode, tree exp, enum machine_mode value_mode,
5114 int unsignedp, tree type, int alias_set)
5115 {
5116 HOST_WIDE_INT width_mask = 0;
5117
5118 if (TREE_CODE (exp) == ERROR_MARK)
5119 return const0_rtx;
5120
5121 /* If we have nothing to store, do nothing unless the expression has
5122 side-effects. */
5123 if (bitsize == 0)
5124 return expand_expr (exp, const0_rtx, VOIDmode, 0);
5125 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5126 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5127
5128 /* If we are storing into an unaligned field of an aligned union that is
5129 in a register, we may have the mode of TARGET being an integer mode but
5130 MODE == BLKmode. In that case, get an aligned object whose size and
5131 alignment are the same as TARGET and store TARGET into it (we can avoid
5132 the store if the field being stored is the entire width of TARGET). Then
5133 call ourselves recursively to store the field into a BLKmode version of
5134 that object. Finally, load from the object into TARGET. This is not
5135 very efficient in general, but should only be slightly more expensive
5136 than the otherwise-required unaligned accesses. Perhaps this can be
5137 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5138 twice, once with emit_move_insn and once via store_field. */
5139
5140 if (mode == BLKmode
5141 && (REG_P (target) || GET_CODE (target) == SUBREG))
5142 {
5143 rtx object = assign_temp (type, 0, 1, 1);
5144 rtx blk_object = adjust_address (object, BLKmode, 0);
5145
5146 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5147 emit_move_insn (object, target);
5148
5149 store_field (blk_object, bitsize, bitpos, mode, exp, VOIDmode, 0, type,
5150 alias_set);
5151
5152 emit_move_insn (target, object);
5153
5154 /* We want to return the BLKmode version of the data. */
5155 return blk_object;
5156 }
5157
5158 if (GET_CODE (target) == CONCAT)
5159 {
5160 /* We're storing into a struct containing a single __complex. */
5161
5162 gcc_assert (!bitpos);
5163 return store_expr (exp, target, value_mode != VOIDmode);
5164 }
5165
5166 /* If the structure is in a register or if the component
5167 is a bit field, we cannot use addressing to access it.
5168 Use bit-field techniques or SUBREG to store in it. */
5169
5170 if (mode == VOIDmode
5171 || (mode != BLKmode && ! direct_store[(int) mode]
5172 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5173 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5174 || REG_P (target)
5175 || GET_CODE (target) == SUBREG
5176 /* If the field isn't aligned enough to store as an ordinary memref,
5177 store it as a bit field. */
5178 || (mode != BLKmode
5179 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5180 || bitpos % GET_MODE_ALIGNMENT (mode))
5181 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5182 || (bitpos % BITS_PER_UNIT != 0)))
5183 /* If the RHS and field are a constant size and the size of the
5184 RHS isn't the same size as the bitfield, we must use bitfield
5185 operations. */
5186 || (bitsize >= 0
5187 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5188 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5189 {
5190 rtx temp = expand_expr (exp, NULL_RTX, VOIDmode, 0);
5191
5192 /* If BITSIZE is narrower than the size of the type of EXP
5193 we will be narrowing TEMP. Normally, what's wanted are the
5194 low-order bits. However, if EXP's type is a record and this is
5195 big-endian machine, we want the upper BITSIZE bits. */
5196 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5197 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5198 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5199 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5200 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5201 - bitsize),
5202 NULL_RTX, 1);
5203
5204 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5205 MODE. */
5206 if (mode != VOIDmode && mode != BLKmode
5207 && mode != TYPE_MODE (TREE_TYPE (exp)))
5208 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5209
5210 /* If the modes of TARGET and TEMP are both BLKmode, both
5211 must be in memory and BITPOS must be aligned on a byte
5212 boundary. If so, we simply do a block copy. */
5213 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5214 {
5215 gcc_assert (MEM_P (target) && MEM_P (temp)
5216 && !(bitpos % BITS_PER_UNIT));
5217
5218 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5219 emit_block_move (target, temp,
5220 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5221 / BITS_PER_UNIT),
5222 BLOCK_OP_NORMAL);
5223
5224 return value_mode == VOIDmode ? const0_rtx : target;
5225 }
5226
5227 /* Store the value in the bitfield. */
5228 store_bit_field (target, bitsize, bitpos, mode, temp);
5229
5230 if (value_mode != VOIDmode)
5231 {
5232 /* The caller wants an rtx for the value.
5233 If possible, avoid refetching from the bitfield itself. */
5234 if (width_mask != 0
5235 && ! (MEM_P (target) && MEM_VOLATILE_P (target)))
5236 {
5237 tree count;
5238 enum machine_mode tmode;
5239
5240 tmode = GET_MODE (temp);
5241 if (tmode == VOIDmode)
5242 tmode = value_mode;
5243
5244 if (unsignedp)
5245 return expand_and (tmode, temp,
5246 gen_int_mode (width_mask, tmode),
5247 NULL_RTX);
5248
5249 count = build_int_cst (NULL_TREE,
5250 GET_MODE_BITSIZE (tmode) - bitsize);
5251 temp = expand_shift (LSHIFT_EXPR, tmode, temp, count, 0, 0);
5252 return expand_shift (RSHIFT_EXPR, tmode, temp, count, 0, 0);
5253 }
5254
5255 return extract_bit_field (target, bitsize, bitpos, unsignedp,
5256 NULL_RTX, value_mode, VOIDmode);
5257 }
5258 return const0_rtx;
5259 }
5260 else
5261 {
5262 rtx addr = XEXP (target, 0);
5263 rtx to_rtx = target;
5264
5265 /* If a value is wanted, it must be the lhs;
5266 so make the address stable for multiple use. */
5267
5268 if (value_mode != VOIDmode && !REG_P (addr)
5269 && ! CONSTANT_ADDRESS_P (addr)
5270 /* A frame-pointer reference is already stable. */
5271 && ! (GET_CODE (addr) == PLUS
5272 && GET_CODE (XEXP (addr, 1)) == CONST_INT
5273 && (XEXP (addr, 0) == virtual_incoming_args_rtx
5274 || XEXP (addr, 0) == virtual_stack_vars_rtx)))
5275 to_rtx = replace_equiv_address (to_rtx, copy_to_reg (addr));
5276
5277 /* Now build a reference to just the desired component. */
5278
5279 to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5280
5281 if (to_rtx == target)
5282 to_rtx = copy_rtx (to_rtx);
5283
5284 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5285 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5286 set_mem_alias_set (to_rtx, alias_set);
5287
5288 return store_expr (exp, to_rtx, value_mode != VOIDmode);
5289 }
5290 }
5291 \f
5292 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5293 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5294 codes and find the ultimate containing object, which we return.
5295
5296 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5297 bit position, and *PUNSIGNEDP to the signedness of the field.
5298 If the position of the field is variable, we store a tree
5299 giving the variable offset (in units) in *POFFSET.
5300 This offset is in addition to the bit position.
5301 If the position is not variable, we store 0 in *POFFSET.
5302
5303 If any of the extraction expressions is volatile,
5304 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5305
5306 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5307 is a mode that can be used to access the field. In that case, *PBITSIZE
5308 is redundant.
5309
5310 If the field describes a variable-sized object, *PMODE is set to
5311 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5312 this case, but the address of the object can be found. */
5313
5314 tree
5315 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5316 HOST_WIDE_INT *pbitpos, tree *poffset,
5317 enum machine_mode *pmode, int *punsignedp,
5318 int *pvolatilep)
5319 {
5320 tree size_tree = 0;
5321 enum machine_mode mode = VOIDmode;
5322 tree offset = size_zero_node;
5323 tree bit_offset = bitsize_zero_node;
5324 tree tem;
5325
5326 /* First get the mode, signedness, and size. We do this from just the
5327 outermost expression. */
5328 if (TREE_CODE (exp) == COMPONENT_REF)
5329 {
5330 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5331 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5332 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5333
5334 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5335 }
5336 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5337 {
5338 size_tree = TREE_OPERAND (exp, 1);
5339 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5340 }
5341 else
5342 {
5343 mode = TYPE_MODE (TREE_TYPE (exp));
5344 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5345
5346 if (mode == BLKmode)
5347 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5348 else
5349 *pbitsize = GET_MODE_BITSIZE (mode);
5350 }
5351
5352 if (size_tree != 0)
5353 {
5354 if (! host_integerp (size_tree, 1))
5355 mode = BLKmode, *pbitsize = -1;
5356 else
5357 *pbitsize = tree_low_cst (size_tree, 1);
5358 }
5359
5360 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5361 and find the ultimate containing object. */
5362 while (1)
5363 {
5364 if (TREE_CODE (exp) == BIT_FIELD_REF)
5365 bit_offset = size_binop (PLUS_EXPR, bit_offset, TREE_OPERAND (exp, 2));
5366 else if (TREE_CODE (exp) == COMPONENT_REF)
5367 {
5368 tree field = TREE_OPERAND (exp, 1);
5369 tree this_offset = component_ref_field_offset (exp);
5370
5371 /* If this field hasn't been filled in yet, don't go
5372 past it. This should only happen when folding expressions
5373 made during type construction. */
5374 if (this_offset == 0)
5375 break;
5376
5377 offset = size_binop (PLUS_EXPR, offset, this_offset);
5378 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5379 DECL_FIELD_BIT_OFFSET (field));
5380
5381 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5382 }
5383
5384 else if (TREE_CODE (exp) == ARRAY_REF
5385 || TREE_CODE (exp) == ARRAY_RANGE_REF)
5386 {
5387 tree index = TREE_OPERAND (exp, 1);
5388 tree low_bound = array_ref_low_bound (exp);
5389 tree unit_size = array_ref_element_size (exp);
5390
5391 /* We assume all arrays have sizes that are a multiple of a byte.
5392 First subtract the lower bound, if any, in the type of the
5393 index, then convert to sizetype and multiply by the size of the
5394 array element. */
5395 if (! integer_zerop (low_bound))
5396 index = fold (build2 (MINUS_EXPR, TREE_TYPE (index),
5397 index, low_bound));
5398
5399 offset = size_binop (PLUS_EXPR, offset,
5400 size_binop (MULT_EXPR,
5401 convert (sizetype, index),
5402 unit_size));
5403 }
5404
5405 /* We can go inside most conversions: all NON_VALUE_EXPRs, all normal
5406 conversions that don't change the mode, and all view conversions
5407 except those that need to "step up" the alignment. */
5408 else if (TREE_CODE (exp) != NON_LVALUE_EXPR
5409 && ! (TREE_CODE (exp) == VIEW_CONVERT_EXPR
5410 && ! ((TYPE_ALIGN (TREE_TYPE (exp))
5411 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5412 && STRICT_ALIGNMENT
5413 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5414 < BIGGEST_ALIGNMENT)
5415 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5416 || TYPE_ALIGN_OK (TREE_TYPE
5417 (TREE_OPERAND (exp, 0))))))
5418 && ! ((TREE_CODE (exp) == NOP_EXPR
5419 || TREE_CODE (exp) == CONVERT_EXPR)
5420 && (TYPE_MODE (TREE_TYPE (exp))
5421 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))))
5422 break;
5423
5424 /* If any reference in the chain is volatile, the effect is volatile. */
5425 if (TREE_THIS_VOLATILE (exp))
5426 *pvolatilep = 1;
5427
5428 exp = TREE_OPERAND (exp, 0);
5429 }
5430
5431 /* If OFFSET is constant, see if we can return the whole thing as a
5432 constant bit position. Otherwise, split it up. */
5433 if (host_integerp (offset, 0)
5434 && 0 != (tem = size_binop (MULT_EXPR, convert (bitsizetype, offset),
5435 bitsize_unit_node))
5436 && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
5437 && host_integerp (tem, 0))
5438 *pbitpos = tree_low_cst (tem, 0), *poffset = 0;
5439 else
5440 *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
5441
5442 *pmode = mode;
5443 return exp;
5444 }
5445
5446 /* Return a tree of sizetype representing the size, in bytes, of the element
5447 of EXP, an ARRAY_REF. */
5448
5449 tree
5450 array_ref_element_size (tree exp)
5451 {
5452 tree aligned_size = TREE_OPERAND (exp, 3);
5453 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5454
5455 /* If a size was specified in the ARRAY_REF, it's the size measured
5456 in alignment units of the element type. So multiply by that value. */
5457 if (aligned_size)
5458 {
5459 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5460 sizetype from another type of the same width and signedness. */
5461 if (TREE_TYPE (aligned_size) != sizetype)
5462 aligned_size = fold_convert (sizetype, aligned_size);
5463 return size_binop (MULT_EXPR, aligned_size,
5464 size_int (TYPE_ALIGN_UNIT (elmt_type)));
5465 }
5466
5467 /* Otherwise, take the size from that of the element type. Substitute
5468 any PLACEHOLDER_EXPR that we have. */
5469 else
5470 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
5471 }
5472
5473 /* Return a tree representing the lower bound of the array mentioned in
5474 EXP, an ARRAY_REF. */
5475
5476 tree
5477 array_ref_low_bound (tree exp)
5478 {
5479 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5480
5481 /* If a lower bound is specified in EXP, use it. */
5482 if (TREE_OPERAND (exp, 2))
5483 return TREE_OPERAND (exp, 2);
5484
5485 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5486 substituting for a PLACEHOLDER_EXPR as needed. */
5487 if (domain_type && TYPE_MIN_VALUE (domain_type))
5488 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
5489
5490 /* Otherwise, return a zero of the appropriate type. */
5491 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
5492 }
5493
5494 /* Return a tree representing the upper bound of the array mentioned in
5495 EXP, an ARRAY_REF. */
5496
5497 tree
5498 array_ref_up_bound (tree exp)
5499 {
5500 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5501
5502 /* If there is a domain type and it has an upper bound, use it, substituting
5503 for a PLACEHOLDER_EXPR as needed. */
5504 if (domain_type && TYPE_MAX_VALUE (domain_type))
5505 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
5506
5507 /* Otherwise fail. */
5508 return NULL_TREE;
5509 }
5510
5511 /* Return a tree representing the offset, in bytes, of the field referenced
5512 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5513
5514 tree
5515 component_ref_field_offset (tree exp)
5516 {
5517 tree aligned_offset = TREE_OPERAND (exp, 2);
5518 tree field = TREE_OPERAND (exp, 1);
5519
5520 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5521 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5522 value. */
5523 if (aligned_offset)
5524 {
5525 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5526 sizetype from another type of the same width and signedness. */
5527 if (TREE_TYPE (aligned_offset) != sizetype)
5528 aligned_offset = fold_convert (sizetype, aligned_offset);
5529 return size_binop (MULT_EXPR, aligned_offset,
5530 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
5531 }
5532
5533 /* Otherwise, take the offset from that of the field. Substitute
5534 any PLACEHOLDER_EXPR that we have. */
5535 else
5536 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
5537 }
5538
5539 /* Return 1 if T is an expression that get_inner_reference handles. */
5540
5541 int
5542 handled_component_p (tree t)
5543 {
5544 switch (TREE_CODE (t))
5545 {
5546 case BIT_FIELD_REF:
5547 case COMPONENT_REF:
5548 case ARRAY_REF:
5549 case ARRAY_RANGE_REF:
5550 case NON_LVALUE_EXPR:
5551 case VIEW_CONVERT_EXPR:
5552 return 1;
5553
5554 /* ??? Sure they are handled, but get_inner_reference may return
5555 a different PBITSIZE, depending upon whether the expression is
5556 wrapped up in a NOP_EXPR or not, e.g. for bitfields. */
5557 case NOP_EXPR:
5558 case CONVERT_EXPR:
5559 return (TYPE_MODE (TREE_TYPE (t))
5560 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (t, 0))));
5561
5562 default:
5563 return 0;
5564 }
5565 }
5566 \f
5567 /* Given an rtx VALUE that may contain additions and multiplications, return
5568 an equivalent value that just refers to a register, memory, or constant.
5569 This is done by generating instructions to perform the arithmetic and
5570 returning a pseudo-register containing the value.
5571
5572 The returned value may be a REG, SUBREG, MEM or constant. */
5573
5574 rtx
5575 force_operand (rtx value, rtx target)
5576 {
5577 rtx op1, op2;
5578 /* Use subtarget as the target for operand 0 of a binary operation. */
5579 rtx subtarget = get_subtarget (target);
5580 enum rtx_code code = GET_CODE (value);
5581
5582 /* Check for subreg applied to an expression produced by loop optimizer. */
5583 if (code == SUBREG
5584 && !REG_P (SUBREG_REG (value))
5585 && !MEM_P (SUBREG_REG (value)))
5586 {
5587 value = simplify_gen_subreg (GET_MODE (value),
5588 force_reg (GET_MODE (SUBREG_REG (value)),
5589 force_operand (SUBREG_REG (value),
5590 NULL_RTX)),
5591 GET_MODE (SUBREG_REG (value)),
5592 SUBREG_BYTE (value));
5593 code = GET_CODE (value);
5594 }
5595
5596 /* Check for a PIC address load. */
5597 if ((code == PLUS || code == MINUS)
5598 && XEXP (value, 0) == pic_offset_table_rtx
5599 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5600 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5601 || GET_CODE (XEXP (value, 1)) == CONST))
5602 {
5603 if (!subtarget)
5604 subtarget = gen_reg_rtx (GET_MODE (value));
5605 emit_move_insn (subtarget, value);
5606 return subtarget;
5607 }
5608
5609 if (code == ZERO_EXTEND || code == SIGN_EXTEND)
5610 {
5611 if (!target)
5612 target = gen_reg_rtx (GET_MODE (value));
5613 convert_move (target, force_operand (XEXP (value, 0), NULL),
5614 code == ZERO_EXTEND);
5615 return target;
5616 }
5617
5618 if (ARITHMETIC_P (value))
5619 {
5620 op2 = XEXP (value, 1);
5621 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
5622 subtarget = 0;
5623 if (code == MINUS && GET_CODE (op2) == CONST_INT)
5624 {
5625 code = PLUS;
5626 op2 = negate_rtx (GET_MODE (value), op2);
5627 }
5628
5629 /* Check for an addition with OP2 a constant integer and our first
5630 operand a PLUS of a virtual register and something else. In that
5631 case, we want to emit the sum of the virtual register and the
5632 constant first and then add the other value. This allows virtual
5633 register instantiation to simply modify the constant rather than
5634 creating another one around this addition. */
5635 if (code == PLUS && GET_CODE (op2) == CONST_INT
5636 && GET_CODE (XEXP (value, 0)) == PLUS
5637 && REG_P (XEXP (XEXP (value, 0), 0))
5638 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5639 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5640 {
5641 rtx temp = expand_simple_binop (GET_MODE (value), code,
5642 XEXP (XEXP (value, 0), 0), op2,
5643 subtarget, 0, OPTAB_LIB_WIDEN);
5644 return expand_simple_binop (GET_MODE (value), code, temp,
5645 force_operand (XEXP (XEXP (value,
5646 0), 1), 0),
5647 target, 0, OPTAB_LIB_WIDEN);
5648 }
5649
5650 op1 = force_operand (XEXP (value, 0), subtarget);
5651 op2 = force_operand (op2, NULL_RTX);
5652 switch (code)
5653 {
5654 case MULT:
5655 return expand_mult (GET_MODE (value), op1, op2, target, 1);
5656 case DIV:
5657 if (!INTEGRAL_MODE_P (GET_MODE (value)))
5658 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5659 target, 1, OPTAB_LIB_WIDEN);
5660 else
5661 return expand_divmod (0,
5662 FLOAT_MODE_P (GET_MODE (value))
5663 ? RDIV_EXPR : TRUNC_DIV_EXPR,
5664 GET_MODE (value), op1, op2, target, 0);
5665 break;
5666 case MOD:
5667 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5668 target, 0);
5669 break;
5670 case UDIV:
5671 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
5672 target, 1);
5673 break;
5674 case UMOD:
5675 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5676 target, 1);
5677 break;
5678 case ASHIFTRT:
5679 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5680 target, 0, OPTAB_LIB_WIDEN);
5681 break;
5682 default:
5683 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5684 target, 1, OPTAB_LIB_WIDEN);
5685 }
5686 }
5687 if (UNARY_P (value))
5688 {
5689 op1 = force_operand (XEXP (value, 0), NULL_RTX);
5690 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
5691 }
5692
5693 #ifdef INSN_SCHEDULING
5694 /* On machines that have insn scheduling, we want all memory reference to be
5695 explicit, so we need to deal with such paradoxical SUBREGs. */
5696 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
5697 && (GET_MODE_SIZE (GET_MODE (value))
5698 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
5699 value
5700 = simplify_gen_subreg (GET_MODE (value),
5701 force_reg (GET_MODE (SUBREG_REG (value)),
5702 force_operand (SUBREG_REG (value),
5703 NULL_RTX)),
5704 GET_MODE (SUBREG_REG (value)),
5705 SUBREG_BYTE (value));
5706 #endif
5707
5708 return value;
5709 }
5710 \f
5711 /* Subroutine of expand_expr: return nonzero iff there is no way that
5712 EXP can reference X, which is being modified. TOP_P is nonzero if this
5713 call is going to be used to determine whether we need a temporary
5714 for EXP, as opposed to a recursive call to this function.
5715
5716 It is always safe for this routine to return zero since it merely
5717 searches for optimization opportunities. */
5718
5719 int
5720 safe_from_p (rtx x, tree exp, int top_p)
5721 {
5722 rtx exp_rtl = 0;
5723 int i, nops;
5724
5725 if (x == 0
5726 /* If EXP has varying size, we MUST use a target since we currently
5727 have no way of allocating temporaries of variable size
5728 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
5729 So we assume here that something at a higher level has prevented a
5730 clash. This is somewhat bogus, but the best we can do. Only
5731 do this when X is BLKmode and when we are at the top level. */
5732 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
5733 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
5734 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
5735 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
5736 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
5737 != INTEGER_CST)
5738 && GET_MODE (x) == BLKmode)
5739 /* If X is in the outgoing argument area, it is always safe. */
5740 || (MEM_P (x)
5741 && (XEXP (x, 0) == virtual_outgoing_args_rtx
5742 || (GET_CODE (XEXP (x, 0)) == PLUS
5743 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
5744 return 1;
5745
5746 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
5747 find the underlying pseudo. */
5748 if (GET_CODE (x) == SUBREG)
5749 {
5750 x = SUBREG_REG (x);
5751 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5752 return 0;
5753 }
5754
5755 /* Now look at our tree code and possibly recurse. */
5756 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
5757 {
5758 case tcc_declaration:
5759 exp_rtl = DECL_RTL_IF_SET (exp);
5760 break;
5761
5762 case tcc_constant:
5763 return 1;
5764
5765 case tcc_exceptional:
5766 if (TREE_CODE (exp) == TREE_LIST)
5767 {
5768 while (1)
5769 {
5770 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
5771 return 0;
5772 exp = TREE_CHAIN (exp);
5773 if (!exp)
5774 return 1;
5775 if (TREE_CODE (exp) != TREE_LIST)
5776 return safe_from_p (x, exp, 0);
5777 }
5778 }
5779 else if (TREE_CODE (exp) == ERROR_MARK)
5780 return 1; /* An already-visited SAVE_EXPR? */
5781 else
5782 return 0;
5783
5784 case tcc_statement:
5785 /* The only case we look at here is the DECL_INITIAL inside a
5786 DECL_EXPR. */
5787 return (TREE_CODE (exp) != DECL_EXPR
5788 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
5789 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
5790 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
5791
5792 case tcc_binary:
5793 case tcc_comparison:
5794 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
5795 return 0;
5796 /* Fall through. */
5797
5798 case tcc_unary:
5799 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5800
5801 case tcc_expression:
5802 case tcc_reference:
5803 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
5804 the expression. If it is set, we conflict iff we are that rtx or
5805 both are in memory. Otherwise, we check all operands of the
5806 expression recursively. */
5807
5808 switch (TREE_CODE (exp))
5809 {
5810 case ADDR_EXPR:
5811 /* If the operand is static or we are static, we can't conflict.
5812 Likewise if we don't conflict with the operand at all. */
5813 if (staticp (TREE_OPERAND (exp, 0))
5814 || TREE_STATIC (exp)
5815 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
5816 return 1;
5817
5818 /* Otherwise, the only way this can conflict is if we are taking
5819 the address of a DECL a that address if part of X, which is
5820 very rare. */
5821 exp = TREE_OPERAND (exp, 0);
5822 if (DECL_P (exp))
5823 {
5824 if (!DECL_RTL_SET_P (exp)
5825 || !MEM_P (DECL_RTL (exp)))
5826 return 0;
5827 else
5828 exp_rtl = XEXP (DECL_RTL (exp), 0);
5829 }
5830 break;
5831
5832 case MISALIGNED_INDIRECT_REF:
5833 case ALIGN_INDIRECT_REF:
5834 case INDIRECT_REF:
5835 if (MEM_P (x)
5836 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
5837 get_alias_set (exp)))
5838 return 0;
5839 break;
5840
5841 case CALL_EXPR:
5842 /* Assume that the call will clobber all hard registers and
5843 all of memory. */
5844 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5845 || MEM_P (x))
5846 return 0;
5847 break;
5848
5849 case WITH_CLEANUP_EXPR:
5850 case CLEANUP_POINT_EXPR:
5851 /* Lowered by gimplify.c. */
5852 gcc_unreachable ();
5853
5854 case SAVE_EXPR:
5855 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
5856
5857 default:
5858 break;
5859 }
5860
5861 /* If we have an rtx, we do not need to scan our operands. */
5862 if (exp_rtl)
5863 break;
5864
5865 nops = first_rtl_op (TREE_CODE (exp));
5866 for (i = 0; i < nops; i++)
5867 if (TREE_OPERAND (exp, i) != 0
5868 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
5869 return 0;
5870
5871 /* If this is a language-specific tree code, it may require
5872 special handling. */
5873 if ((unsigned int) TREE_CODE (exp)
5874 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
5875 && !lang_hooks.safe_from_p (x, exp))
5876 return 0;
5877 break;
5878
5879 case tcc_type:
5880 /* Should never get a type here. */
5881 gcc_unreachable ();
5882 }
5883
5884 /* If we have an rtl, find any enclosed object. Then see if we conflict
5885 with it. */
5886 if (exp_rtl)
5887 {
5888 if (GET_CODE (exp_rtl) == SUBREG)
5889 {
5890 exp_rtl = SUBREG_REG (exp_rtl);
5891 if (REG_P (exp_rtl)
5892 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
5893 return 0;
5894 }
5895
5896 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
5897 are memory and they conflict. */
5898 return ! (rtx_equal_p (x, exp_rtl)
5899 || (MEM_P (x) && MEM_P (exp_rtl)
5900 && true_dependence (exp_rtl, VOIDmode, x,
5901 rtx_addr_varies_p)));
5902 }
5903
5904 /* If we reach here, it is safe. */
5905 return 1;
5906 }
5907
5908 \f
5909 /* Return the highest power of two that EXP is known to be a multiple of.
5910 This is used in updating alignment of MEMs in array references. */
5911
5912 static unsigned HOST_WIDE_INT
5913 highest_pow2_factor (tree exp)
5914 {
5915 unsigned HOST_WIDE_INT c0, c1;
5916
5917 switch (TREE_CODE (exp))
5918 {
5919 case INTEGER_CST:
5920 /* We can find the lowest bit that's a one. If the low
5921 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
5922 We need to handle this case since we can find it in a COND_EXPR,
5923 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
5924 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
5925 later ICE. */
5926 if (TREE_CONSTANT_OVERFLOW (exp))
5927 return BIGGEST_ALIGNMENT;
5928 else
5929 {
5930 /* Note: tree_low_cst is intentionally not used here,
5931 we don't care about the upper bits. */
5932 c0 = TREE_INT_CST_LOW (exp);
5933 c0 &= -c0;
5934 return c0 ? c0 : BIGGEST_ALIGNMENT;
5935 }
5936 break;
5937
5938 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
5939 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5940 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5941 return MIN (c0, c1);
5942
5943 case MULT_EXPR:
5944 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5945 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5946 return c0 * c1;
5947
5948 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
5949 case CEIL_DIV_EXPR:
5950 if (integer_pow2p (TREE_OPERAND (exp, 1))
5951 && host_integerp (TREE_OPERAND (exp, 1), 1))
5952 {
5953 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
5954 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
5955 return MAX (1, c0 / c1);
5956 }
5957 break;
5958
5959 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
5960 case SAVE_EXPR:
5961 return highest_pow2_factor (TREE_OPERAND (exp, 0));
5962
5963 case COMPOUND_EXPR:
5964 return highest_pow2_factor (TREE_OPERAND (exp, 1));
5965
5966 case COND_EXPR:
5967 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
5968 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
5969 return MIN (c0, c1);
5970
5971 default:
5972 break;
5973 }
5974
5975 return 1;
5976 }
5977
5978 /* Similar, except that the alignment requirements of TARGET are
5979 taken into account. Assume it is at least as aligned as its
5980 type, unless it is a COMPONENT_REF in which case the layout of
5981 the structure gives the alignment. */
5982
5983 static unsigned HOST_WIDE_INT
5984 highest_pow2_factor_for_target (tree target, tree exp)
5985 {
5986 unsigned HOST_WIDE_INT target_align, factor;
5987
5988 factor = highest_pow2_factor (exp);
5989 if (TREE_CODE (target) == COMPONENT_REF)
5990 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
5991 else
5992 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
5993 return MAX (factor, target_align);
5994 }
5995 \f
5996 /* Expands variable VAR. */
5997
5998 void
5999 expand_var (tree var)
6000 {
6001 if (DECL_EXTERNAL (var))
6002 return;
6003
6004 if (TREE_STATIC (var))
6005 /* If this is an inlined copy of a static local variable,
6006 look up the original decl. */
6007 var = DECL_ORIGIN (var);
6008
6009 if (TREE_STATIC (var)
6010 ? !TREE_ASM_WRITTEN (var)
6011 : !DECL_RTL_SET_P (var))
6012 {
6013 if (TREE_CODE (var) == VAR_DECL && DECL_VALUE_EXPR (var))
6014 /* Should be ignored. */;
6015 else if (lang_hooks.expand_decl (var))
6016 /* OK. */;
6017 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
6018 expand_decl (var);
6019 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
6020 rest_of_decl_compilation (var, 0, 0);
6021 else
6022 /* No expansion needed. */
6023 gcc_assert (TREE_CODE (var) == TYPE_DECL
6024 || TREE_CODE (var) == CONST_DECL
6025 || TREE_CODE (var) == FUNCTION_DECL
6026 || TREE_CODE (var) == LABEL_DECL);
6027 }
6028 }
6029
6030 /* Subroutine of expand_expr. Expand the two operands of a binary
6031 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6032 The value may be stored in TARGET if TARGET is nonzero. The
6033 MODIFIER argument is as documented by expand_expr. */
6034
6035 static void
6036 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6037 enum expand_modifier modifier)
6038 {
6039 if (! safe_from_p (target, exp1, 1))
6040 target = 0;
6041 if (operand_equal_p (exp0, exp1, 0))
6042 {
6043 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6044 *op1 = copy_rtx (*op0);
6045 }
6046 else
6047 {
6048 /* If we need to preserve evaluation order, copy exp0 into its own
6049 temporary variable so that it can't be clobbered by exp1. */
6050 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6051 exp0 = save_expr (exp0);
6052 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6053 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6054 }
6055 }
6056
6057 \f
6058 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6059 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6060
6061 static rtx
6062 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6063 enum expand_modifier modifier)
6064 {
6065 rtx result, subtarget;
6066 tree inner, offset;
6067 HOST_WIDE_INT bitsize, bitpos;
6068 int volatilep, unsignedp;
6069 enum machine_mode mode1;
6070
6071 /* If we are taking the address of a constant and are at the top level,
6072 we have to use output_constant_def since we can't call force_const_mem
6073 at top level. */
6074 /* ??? This should be considered a front-end bug. We should not be
6075 generating ADDR_EXPR of something that isn't an LVALUE. The only
6076 exception here is STRING_CST. */
6077 if (TREE_CODE (exp) == CONSTRUCTOR
6078 || CONSTANT_CLASS_P (exp))
6079 return XEXP (output_constant_def (exp, 0), 0);
6080
6081 /* Everything must be something allowed by is_gimple_addressable. */
6082 switch (TREE_CODE (exp))
6083 {
6084 case INDIRECT_REF:
6085 /* This case will happen via recursion for &a->b. */
6086 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, EXPAND_NORMAL);
6087
6088 case CONST_DECL:
6089 /* Recurse and make the output_constant_def clause above handle this. */
6090 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6091 tmode, modifier);
6092
6093 case REALPART_EXPR:
6094 /* The real part of the complex number is always first, therefore
6095 the address is the same as the address of the parent object. */
6096 offset = 0;
6097 bitpos = 0;
6098 inner = TREE_OPERAND (exp, 0);
6099 break;
6100
6101 case IMAGPART_EXPR:
6102 /* The imaginary part of the complex number is always second.
6103 The expression is therefore always offset by the size of the
6104 scalar type. */
6105 offset = 0;
6106 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6107 inner = TREE_OPERAND (exp, 0);
6108 break;
6109
6110 default:
6111 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6112 expand_expr, as that can have various side effects; LABEL_DECLs for
6113 example, may not have their DECL_RTL set yet. Assume language
6114 specific tree nodes can be expanded in some interesting way. */
6115 if (DECL_P (exp)
6116 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6117 {
6118 result = expand_expr (exp, target, tmode,
6119 modifier == EXPAND_INITIALIZER
6120 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6121
6122 /* If the DECL isn't in memory, then the DECL wasn't properly
6123 marked TREE_ADDRESSABLE, which will be either a front-end
6124 or a tree optimizer bug. */
6125 gcc_assert (GET_CODE (result) == MEM);
6126 result = XEXP (result, 0);
6127
6128 /* ??? Is this needed anymore? */
6129 if (!TREE_USED (exp) == 0)
6130 {
6131 assemble_external (exp);
6132 TREE_USED (exp) = 1;
6133 }
6134
6135 if (modifier != EXPAND_INITIALIZER
6136 && modifier != EXPAND_CONST_ADDRESS)
6137 result = force_operand (result, target);
6138 return result;
6139 }
6140
6141 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6142 &mode1, &unsignedp, &volatilep);
6143 break;
6144 }
6145
6146 /* We must have made progress. */
6147 gcc_assert (inner != exp);
6148
6149 subtarget = offset || bitpos ? NULL_RTX : target;
6150 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6151
6152 if (tmode == VOIDmode)
6153 {
6154 tmode = GET_MODE (result);
6155 if (tmode == VOIDmode)
6156 tmode = Pmode;
6157 }
6158
6159 if (offset)
6160 {
6161 rtx tmp;
6162
6163 if (modifier != EXPAND_NORMAL)
6164 result = force_operand (result, NULL);
6165 tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
6166
6167 if (modifier == EXPAND_SUM)
6168 result = gen_rtx_PLUS (tmode, result, tmp);
6169 else
6170 {
6171 subtarget = bitpos ? NULL_RTX : target;
6172 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6173 1, OPTAB_LIB_WIDEN);
6174 }
6175 }
6176
6177 if (bitpos)
6178 {
6179 /* Someone beforehand should have rejected taking the address
6180 of such an object. */
6181 gcc_assert (!(bitpos % BITS_PER_UNIT));
6182
6183 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6184 if (modifier < EXPAND_SUM)
6185 result = force_operand (result, target);
6186 }
6187
6188 return result;
6189 }
6190
6191 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6192 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6193
6194 static rtx
6195 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6196 enum expand_modifier modifier)
6197 {
6198 enum machine_mode rmode;
6199 rtx result;
6200
6201 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6202 tmode, modifier);
6203
6204 /* Despite expand_expr claims concerning ignoring TMODE when not
6205 strictly convenient, stuff breaks if we don't honor it. */
6206 if (tmode == VOIDmode)
6207 tmode = TYPE_MODE (TREE_TYPE (exp));
6208 rmode = GET_MODE (result);
6209 if (rmode == VOIDmode)
6210 rmode = tmode;
6211 if (rmode != tmode)
6212 result = convert_memory_address (tmode, result);
6213
6214 return result;
6215 }
6216
6217
6218 /* expand_expr: generate code for computing expression EXP.
6219 An rtx for the computed value is returned. The value is never null.
6220 In the case of a void EXP, const0_rtx is returned.
6221
6222 The value may be stored in TARGET if TARGET is nonzero.
6223 TARGET is just a suggestion; callers must assume that
6224 the rtx returned may not be the same as TARGET.
6225
6226 If TARGET is CONST0_RTX, it means that the value will be ignored.
6227
6228 If TMODE is not VOIDmode, it suggests generating the
6229 result in mode TMODE. But this is done only when convenient.
6230 Otherwise, TMODE is ignored and the value generated in its natural mode.
6231 TMODE is just a suggestion; callers must assume that
6232 the rtx returned may not have mode TMODE.
6233
6234 Note that TARGET may have neither TMODE nor MODE. In that case, it
6235 probably will not be used.
6236
6237 If MODIFIER is EXPAND_SUM then when EXP is an addition
6238 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6239 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6240 products as above, or REG or MEM, or constant.
6241 Ordinarily in such cases we would output mul or add instructions
6242 and then return a pseudo reg containing the sum.
6243
6244 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6245 it also marks a label as absolutely required (it can't be dead).
6246 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6247 This is used for outputting expressions used in initializers.
6248
6249 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6250 with a constant address even if that address is not normally legitimate.
6251 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6252
6253 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6254 a call parameter. Such targets require special care as we haven't yet
6255 marked TARGET so that it's safe from being trashed by libcalls. We
6256 don't want to use TARGET for anything but the final result;
6257 Intermediate values must go elsewhere. Additionally, calls to
6258 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6259
6260 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6261 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6262 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6263 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6264 recursively. */
6265
6266 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
6267 enum expand_modifier, rtx *);
6268
6269 rtx
6270 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
6271 enum expand_modifier modifier, rtx *alt_rtl)
6272 {
6273 int rn = -1;
6274 rtx ret, last = NULL;
6275
6276 /* Handle ERROR_MARK before anybody tries to access its type. */
6277 if (TREE_CODE (exp) == ERROR_MARK
6278 || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
6279 {
6280 ret = CONST0_RTX (tmode);
6281 return ret ? ret : const0_rtx;
6282 }
6283
6284 if (flag_non_call_exceptions)
6285 {
6286 rn = lookup_stmt_eh_region (exp);
6287 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6288 if (rn >= 0)
6289 last = get_last_insn ();
6290 }
6291
6292 /* If this is an expression of some kind and it has an associated line
6293 number, then emit the line number before expanding the expression.
6294
6295 We need to save and restore the file and line information so that
6296 errors discovered during expansion are emitted with the right
6297 information. It would be better of the diagnostic routines
6298 used the file/line information embedded in the tree nodes rather
6299 than globals. */
6300 if (cfun && EXPR_HAS_LOCATION (exp))
6301 {
6302 location_t saved_location = input_location;
6303 input_location = EXPR_LOCATION (exp);
6304 emit_line_note (input_location);
6305
6306 /* Record where the insns produced belong. */
6307 record_block_change (TREE_BLOCK (exp));
6308
6309 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6310
6311 input_location = saved_location;
6312 }
6313 else
6314 {
6315 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6316 }
6317
6318 /* If using non-call exceptions, mark all insns that may trap.
6319 expand_call() will mark CALL_INSNs before we get to this code,
6320 but it doesn't handle libcalls, and these may trap. */
6321 if (rn >= 0)
6322 {
6323 rtx insn;
6324 for (insn = next_real_insn (last); insn;
6325 insn = next_real_insn (insn))
6326 {
6327 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
6328 /* If we want exceptions for non-call insns, any
6329 may_trap_p instruction may throw. */
6330 && GET_CODE (PATTERN (insn)) != CLOBBER
6331 && GET_CODE (PATTERN (insn)) != USE
6332 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
6333 {
6334 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
6335 REG_NOTES (insn));
6336 }
6337 }
6338 }
6339
6340 return ret;
6341 }
6342
6343 static rtx
6344 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
6345 enum expand_modifier modifier, rtx *alt_rtl)
6346 {
6347 rtx op0, op1, temp;
6348 tree type = TREE_TYPE (exp);
6349 int unsignedp;
6350 enum machine_mode mode;
6351 enum tree_code code = TREE_CODE (exp);
6352 optab this_optab;
6353 rtx subtarget, original_target;
6354 int ignore;
6355 tree context;
6356 bool reduce_bit_field = false;
6357 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6358 ? reduce_to_bit_field_precision ((expr), \
6359 target, \
6360 type) \
6361 : (expr))
6362
6363 mode = TYPE_MODE (type);
6364 unsignedp = TYPE_UNSIGNED (type);
6365 if (lang_hooks.reduce_bit_field_operations
6366 && TREE_CODE (type) == INTEGER_TYPE
6367 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
6368 {
6369 /* An operation in what may be a bit-field type needs the
6370 result to be reduced to the precision of the bit-field type,
6371 which is narrower than that of the type's mode. */
6372 reduce_bit_field = true;
6373 if (modifier == EXPAND_STACK_PARM)
6374 target = 0;
6375 }
6376
6377 /* Use subtarget as the target for operand 0 of a binary operation. */
6378 subtarget = get_subtarget (target);
6379 original_target = target;
6380 ignore = (target == const0_rtx
6381 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6382 || code == CONVERT_EXPR || code == COND_EXPR
6383 || code == VIEW_CONVERT_EXPR)
6384 && TREE_CODE (type) == VOID_TYPE));
6385
6386 /* If we are going to ignore this result, we need only do something
6387 if there is a side-effect somewhere in the expression. If there
6388 is, short-circuit the most common cases here. Note that we must
6389 not call expand_expr with anything but const0_rtx in case this
6390 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6391
6392 if (ignore)
6393 {
6394 if (! TREE_SIDE_EFFECTS (exp))
6395 return const0_rtx;
6396
6397 /* Ensure we reference a volatile object even if value is ignored, but
6398 don't do this if all we are doing is taking its address. */
6399 if (TREE_THIS_VOLATILE (exp)
6400 && TREE_CODE (exp) != FUNCTION_DECL
6401 && mode != VOIDmode && mode != BLKmode
6402 && modifier != EXPAND_CONST_ADDRESS)
6403 {
6404 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6405 if (MEM_P (temp))
6406 temp = copy_to_reg (temp);
6407 return const0_rtx;
6408 }
6409
6410 if (TREE_CODE_CLASS (code) == tcc_unary
6411 || code == COMPONENT_REF || code == INDIRECT_REF)
6412 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6413 modifier);
6414
6415 else if (TREE_CODE_CLASS (code) == tcc_binary
6416 || TREE_CODE_CLASS (code) == tcc_comparison
6417 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6418 {
6419 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6420 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6421 return const0_rtx;
6422 }
6423 else if ((code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)
6424 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1)))
6425 /* If the second operand has no side effects, just evaluate
6426 the first. */
6427 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6428 modifier);
6429 else if (code == BIT_FIELD_REF)
6430 {
6431 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6432 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6433 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6434 return const0_rtx;
6435 }
6436
6437 target = 0;
6438 }
6439
6440 /* If will do cse, generate all results into pseudo registers
6441 since 1) that allows cse to find more things
6442 and 2) otherwise cse could produce an insn the machine
6443 cannot support. An exception is a CONSTRUCTOR into a multi-word
6444 MEM: that's much more likely to be most efficient into the MEM.
6445 Another is a CALL_EXPR which must return in memory. */
6446
6447 if (! cse_not_expected && mode != BLKmode && target
6448 && (!REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
6449 && ! (code == CONSTRUCTOR && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
6450 && ! (code == CALL_EXPR && aggregate_value_p (exp, exp)))
6451 target = 0;
6452
6453 switch (code)
6454 {
6455 case LABEL_DECL:
6456 {
6457 tree function = decl_function_context (exp);
6458
6459 temp = label_rtx (exp);
6460 temp = gen_rtx_LABEL_REF (Pmode, temp);
6461
6462 if (function != current_function_decl
6463 && function != 0)
6464 LABEL_REF_NONLOCAL_P (temp) = 1;
6465
6466 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
6467 return temp;
6468 }
6469
6470 case SSA_NAME:
6471 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
6472 NULL);
6473
6474 case PARM_DECL:
6475 case VAR_DECL:
6476 /* If a static var's type was incomplete when the decl was written,
6477 but the type is complete now, lay out the decl now. */
6478 if (DECL_SIZE (exp) == 0
6479 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
6480 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6481 layout_decl (exp, 0);
6482
6483 /* ... fall through ... */
6484
6485 case FUNCTION_DECL:
6486 case RESULT_DECL:
6487 gcc_assert (DECL_RTL (exp));
6488
6489 /* Ensure variable marked as used even if it doesn't go through
6490 a parser. If it hasn't be used yet, write out an external
6491 definition. */
6492 if (! TREE_USED (exp))
6493 {
6494 assemble_external (exp);
6495 TREE_USED (exp) = 1;
6496 }
6497
6498 /* Show we haven't gotten RTL for this yet. */
6499 temp = 0;
6500
6501 /* Variables inherited from containing functions should have
6502 been lowered by this point. */
6503 context = decl_function_context (exp);
6504 gcc_assert (!context
6505 || context == current_function_decl
6506 || TREE_STATIC (exp)
6507 /* ??? C++ creates functions that are not TREE_STATIC. */
6508 || TREE_CODE (exp) == FUNCTION_DECL);
6509
6510 /* This is the case of an array whose size is to be determined
6511 from its initializer, while the initializer is still being parsed.
6512 See expand_decl. */
6513
6514 if (MEM_P (DECL_RTL (exp))
6515 && REG_P (XEXP (DECL_RTL (exp), 0)))
6516 temp = validize_mem (DECL_RTL (exp));
6517
6518 /* If DECL_RTL is memory, we are in the normal case and either
6519 the address is not valid or it is not a register and -fforce-addr
6520 is specified, get the address into a register. */
6521
6522 else if (MEM_P (DECL_RTL (exp))
6523 && modifier != EXPAND_CONST_ADDRESS
6524 && modifier != EXPAND_SUM
6525 && modifier != EXPAND_INITIALIZER
6526 && (! memory_address_p (DECL_MODE (exp),
6527 XEXP (DECL_RTL (exp), 0))
6528 || (flag_force_addr
6529 && !REG_P (XEXP (DECL_RTL (exp), 0)))))
6530 {
6531 if (alt_rtl)
6532 *alt_rtl = DECL_RTL (exp);
6533 temp = replace_equiv_address (DECL_RTL (exp),
6534 copy_rtx (XEXP (DECL_RTL (exp), 0)));
6535 }
6536
6537 /* If we got something, return it. But first, set the alignment
6538 if the address is a register. */
6539 if (temp != 0)
6540 {
6541 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
6542 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6543
6544 return temp;
6545 }
6546
6547 /* If the mode of DECL_RTL does not match that of the decl, it
6548 must be a promoted value. We return a SUBREG of the wanted mode,
6549 but mark it so that we know that it was already extended. */
6550
6551 if (REG_P (DECL_RTL (exp))
6552 && GET_MODE (DECL_RTL (exp)) != DECL_MODE (exp))
6553 {
6554 enum machine_mode pmode;
6555
6556 /* Get the signedness used for this variable. Ensure we get the
6557 same mode we got when the variable was declared. */
6558 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
6559 (TREE_CODE (exp) == RESULT_DECL ? 1 : 0));
6560 gcc_assert (GET_MODE (DECL_RTL (exp)) == pmode);
6561
6562 temp = gen_lowpart_SUBREG (mode, DECL_RTL (exp));
6563 SUBREG_PROMOTED_VAR_P (temp) = 1;
6564 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
6565 return temp;
6566 }
6567
6568 return DECL_RTL (exp);
6569
6570 case INTEGER_CST:
6571 temp = immed_double_const (TREE_INT_CST_LOW (exp),
6572 TREE_INT_CST_HIGH (exp), mode);
6573
6574 /* ??? If overflow is set, fold will have done an incomplete job,
6575 which can result in (plus xx (const_int 0)), which can get
6576 simplified by validate_replace_rtx during virtual register
6577 instantiation, which can result in unrecognizable insns.
6578 Avoid this by forcing all overflows into registers. */
6579 if (TREE_CONSTANT_OVERFLOW (exp)
6580 && modifier != EXPAND_INITIALIZER)
6581 temp = force_reg (mode, temp);
6582
6583 return temp;
6584
6585 case VECTOR_CST:
6586 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_INT
6587 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_FLOAT)
6588 return const_vector_from_tree (exp);
6589 else
6590 return expand_expr (build1 (CONSTRUCTOR, TREE_TYPE (exp),
6591 TREE_VECTOR_CST_ELTS (exp)),
6592 ignore ? const0_rtx : target, tmode, modifier);
6593
6594 case CONST_DECL:
6595 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
6596
6597 case REAL_CST:
6598 /* If optimized, generate immediate CONST_DOUBLE
6599 which will be turned into memory by reload if necessary.
6600
6601 We used to force a register so that loop.c could see it. But
6602 this does not allow gen_* patterns to perform optimizations with
6603 the constants. It also produces two insns in cases like "x = 1.0;".
6604 On most machines, floating-point constants are not permitted in
6605 many insns, so we'd end up copying it to a register in any case.
6606
6607 Now, we do the copying in expand_binop, if appropriate. */
6608 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
6609 TYPE_MODE (TREE_TYPE (exp)));
6610
6611 case COMPLEX_CST:
6612 /* Handle evaluating a complex constant in a CONCAT target. */
6613 if (original_target && GET_CODE (original_target) == CONCAT)
6614 {
6615 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
6616 rtx rtarg, itarg;
6617
6618 rtarg = XEXP (original_target, 0);
6619 itarg = XEXP (original_target, 1);
6620
6621 /* Move the real and imaginary parts separately. */
6622 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
6623 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
6624
6625 if (op0 != rtarg)
6626 emit_move_insn (rtarg, op0);
6627 if (op1 != itarg)
6628 emit_move_insn (itarg, op1);
6629
6630 return original_target;
6631 }
6632
6633 /* ... fall through ... */
6634
6635 case STRING_CST:
6636 temp = output_constant_def (exp, 1);
6637
6638 /* temp contains a constant address.
6639 On RISC machines where a constant address isn't valid,
6640 make some insns to get that address into a register. */
6641 if (modifier != EXPAND_CONST_ADDRESS
6642 && modifier != EXPAND_INITIALIZER
6643 && modifier != EXPAND_SUM
6644 && (! memory_address_p (mode, XEXP (temp, 0))
6645 || flag_force_addr))
6646 return replace_equiv_address (temp,
6647 copy_rtx (XEXP (temp, 0)));
6648 return temp;
6649
6650 case SAVE_EXPR:
6651 {
6652 tree val = TREE_OPERAND (exp, 0);
6653 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
6654
6655 if (!SAVE_EXPR_RESOLVED_P (exp))
6656 {
6657 /* We can indeed still hit this case, typically via builtin
6658 expanders calling save_expr immediately before expanding
6659 something. Assume this means that we only have to deal
6660 with non-BLKmode values. */
6661 gcc_assert (GET_MODE (ret) != BLKmode);
6662
6663 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
6664 DECL_ARTIFICIAL (val) = 1;
6665 DECL_IGNORED_P (val) = 1;
6666 TREE_OPERAND (exp, 0) = val;
6667 SAVE_EXPR_RESOLVED_P (exp) = 1;
6668
6669 if (!CONSTANT_P (ret))
6670 ret = copy_to_reg (ret);
6671 SET_DECL_RTL (val, ret);
6672 }
6673
6674 return ret;
6675 }
6676
6677 case GOTO_EXPR:
6678 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
6679 expand_goto (TREE_OPERAND (exp, 0));
6680 else
6681 expand_computed_goto (TREE_OPERAND (exp, 0));
6682 return const0_rtx;
6683
6684 case CONSTRUCTOR:
6685 /* If we don't need the result, just ensure we evaluate any
6686 subexpressions. */
6687 if (ignore)
6688 {
6689 tree elt;
6690
6691 for (elt = CONSTRUCTOR_ELTS (exp); elt; elt = TREE_CHAIN (elt))
6692 expand_expr (TREE_VALUE (elt), const0_rtx, VOIDmode, 0);
6693
6694 return const0_rtx;
6695 }
6696
6697 /* All elts simple constants => refer to a constant in memory. But
6698 if this is a non-BLKmode mode, let it store a field at a time
6699 since that should make a CONST_INT or CONST_DOUBLE when we
6700 fold. Likewise, if we have a target we can use, it is best to
6701 store directly into the target unless the type is large enough
6702 that memcpy will be used. If we are making an initializer and
6703 all operands are constant, put it in memory as well.
6704
6705 FIXME: Avoid trying to fill vector constructors piece-meal.
6706 Output them with output_constant_def below unless we're sure
6707 they're zeros. This should go away when vector initializers
6708 are treated like VECTOR_CST instead of arrays.
6709 */
6710 else if ((TREE_STATIC (exp)
6711 && ((mode == BLKmode
6712 && ! (target != 0 && safe_from_p (target, exp, 1)))
6713 || TREE_ADDRESSABLE (exp)
6714 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6715 && (! MOVE_BY_PIECES_P
6716 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6717 TYPE_ALIGN (type)))
6718 && ! mostly_zeros_p (exp))))
6719 || ((modifier == EXPAND_INITIALIZER
6720 || modifier == EXPAND_CONST_ADDRESS)
6721 && TREE_CONSTANT (exp)))
6722 {
6723 rtx constructor = output_constant_def (exp, 1);
6724
6725 if (modifier != EXPAND_CONST_ADDRESS
6726 && modifier != EXPAND_INITIALIZER
6727 && modifier != EXPAND_SUM)
6728 constructor = validize_mem (constructor);
6729
6730 return constructor;
6731 }
6732 else
6733 {
6734 /* Handle calls that pass values in multiple non-contiguous
6735 locations. The Irix 6 ABI has examples of this. */
6736 if (target == 0 || ! safe_from_p (target, exp, 1)
6737 || GET_CODE (target) == PARALLEL
6738 || modifier == EXPAND_STACK_PARM)
6739 target
6740 = assign_temp (build_qualified_type (type,
6741 (TYPE_QUALS (type)
6742 | (TREE_READONLY (exp)
6743 * TYPE_QUAL_CONST))),
6744 0, TREE_ADDRESSABLE (exp), 1);
6745
6746 store_constructor (exp, target, 0, int_expr_size (exp));
6747 return target;
6748 }
6749
6750 case MISALIGNED_INDIRECT_REF:
6751 case ALIGN_INDIRECT_REF:
6752 case INDIRECT_REF:
6753 {
6754 tree exp1 = TREE_OPERAND (exp, 0);
6755 tree orig;
6756
6757 if (code == MISALIGNED_INDIRECT_REF
6758 && !targetm.vectorize.misaligned_mem_ok (mode))
6759 abort ();
6760
6761 if (modifier != EXPAND_WRITE)
6762 {
6763 tree t;
6764
6765 t = fold_read_from_constant_string (exp);
6766 if (t)
6767 return expand_expr (t, target, tmode, modifier);
6768 }
6769
6770 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
6771 op0 = memory_address (mode, op0);
6772
6773 if (code == ALIGN_INDIRECT_REF)
6774 {
6775 int align = TYPE_ALIGN_UNIT (type);
6776 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
6777 op0 = memory_address (mode, op0);
6778 }
6779
6780 temp = gen_rtx_MEM (mode, op0);
6781
6782 orig = REF_ORIGINAL (exp);
6783 if (!orig)
6784 orig = exp;
6785 set_mem_attributes (temp, orig, 0);
6786
6787 return temp;
6788 }
6789
6790 case ARRAY_REF:
6791
6792 {
6793 tree array = TREE_OPERAND (exp, 0);
6794 tree low_bound = array_ref_low_bound (exp);
6795 tree index = convert (sizetype, TREE_OPERAND (exp, 1));
6796 HOST_WIDE_INT i;
6797
6798 gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE);
6799
6800 /* Optimize the special-case of a zero lower bound.
6801
6802 We convert the low_bound to sizetype to avoid some problems
6803 with constant folding. (E.g. suppose the lower bound is 1,
6804 and its mode is QI. Without the conversion, (ARRAY
6805 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
6806 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
6807
6808 if (! integer_zerop (low_bound))
6809 index = size_diffop (index, convert (sizetype, low_bound));
6810
6811 /* Fold an expression like: "foo"[2].
6812 This is not done in fold so it won't happen inside &.
6813 Don't fold if this is for wide characters since it's too
6814 difficult to do correctly and this is a very rare case. */
6815
6816 if (modifier != EXPAND_CONST_ADDRESS
6817 && modifier != EXPAND_INITIALIZER
6818 && modifier != EXPAND_MEMORY)
6819 {
6820 tree t = fold_read_from_constant_string (exp);
6821
6822 if (t)
6823 return expand_expr (t, target, tmode, modifier);
6824 }
6825
6826 /* If this is a constant index into a constant array,
6827 just get the value from the array. Handle both the cases when
6828 we have an explicit constructor and when our operand is a variable
6829 that was declared const. */
6830
6831 if (modifier != EXPAND_CONST_ADDRESS
6832 && modifier != EXPAND_INITIALIZER
6833 && modifier != EXPAND_MEMORY
6834 && TREE_CODE (array) == CONSTRUCTOR
6835 && ! TREE_SIDE_EFFECTS (array)
6836 && TREE_CODE (index) == INTEGER_CST
6837 && 0 > compare_tree_int (index,
6838 list_length (CONSTRUCTOR_ELTS
6839 (TREE_OPERAND (exp, 0)))))
6840 {
6841 tree elem;
6842
6843 for (elem = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
6844 i = TREE_INT_CST_LOW (index);
6845 elem != 0 && i != 0; i--, elem = TREE_CHAIN (elem))
6846 ;
6847
6848 if (elem)
6849 return expand_expr (fold (TREE_VALUE (elem)), target, tmode,
6850 modifier);
6851 }
6852
6853 else if (optimize >= 1
6854 && modifier != EXPAND_CONST_ADDRESS
6855 && modifier != EXPAND_INITIALIZER
6856 && modifier != EXPAND_MEMORY
6857 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
6858 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
6859 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
6860 && targetm.binds_local_p (array))
6861 {
6862 if (TREE_CODE (index) == INTEGER_CST)
6863 {
6864 tree init = DECL_INITIAL (array);
6865
6866 if (TREE_CODE (init) == CONSTRUCTOR)
6867 {
6868 tree elem;
6869
6870 for (elem = CONSTRUCTOR_ELTS (init);
6871 (elem
6872 && !tree_int_cst_equal (TREE_PURPOSE (elem), index));
6873 elem = TREE_CHAIN (elem))
6874 ;
6875
6876 if (elem && !TREE_SIDE_EFFECTS (TREE_VALUE (elem)))
6877 return expand_expr (fold (TREE_VALUE (elem)), target,
6878 tmode, modifier);
6879 }
6880 else if (TREE_CODE (init) == STRING_CST
6881 && 0 > compare_tree_int (index,
6882 TREE_STRING_LENGTH (init)))
6883 {
6884 tree type = TREE_TYPE (TREE_TYPE (init));
6885 enum machine_mode mode = TYPE_MODE (type);
6886
6887 if (GET_MODE_CLASS (mode) == MODE_INT
6888 && GET_MODE_SIZE (mode) == 1)
6889 return gen_int_mode (TREE_STRING_POINTER (init)
6890 [TREE_INT_CST_LOW (index)], mode);
6891 }
6892 }
6893 }
6894 }
6895 goto normal_inner_ref;
6896
6897 case COMPONENT_REF:
6898 /* If the operand is a CONSTRUCTOR, we can just extract the
6899 appropriate field if it is present. */
6900 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
6901 {
6902 tree elt;
6903
6904 for (elt = CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)); elt;
6905 elt = TREE_CHAIN (elt))
6906 if (TREE_PURPOSE (elt) == TREE_OPERAND (exp, 1)
6907 /* We can normally use the value of the field in the
6908 CONSTRUCTOR. However, if this is a bitfield in
6909 an integral mode that we can fit in a HOST_WIDE_INT,
6910 we must mask only the number of bits in the bitfield,
6911 since this is done implicitly by the constructor. If
6912 the bitfield does not meet either of those conditions,
6913 we can't do this optimization. */
6914 && (! DECL_BIT_FIELD (TREE_PURPOSE (elt))
6915 || ((GET_MODE_CLASS (DECL_MODE (TREE_PURPOSE (elt)))
6916 == MODE_INT)
6917 && (GET_MODE_BITSIZE (DECL_MODE (TREE_PURPOSE (elt)))
6918 <= HOST_BITS_PER_WIDE_INT))))
6919 {
6920 if (DECL_BIT_FIELD (TREE_PURPOSE (elt))
6921 && modifier == EXPAND_STACK_PARM)
6922 target = 0;
6923 op0 = expand_expr (TREE_VALUE (elt), target, tmode, modifier);
6924 if (DECL_BIT_FIELD (TREE_PURPOSE (elt)))
6925 {
6926 HOST_WIDE_INT bitsize
6927 = TREE_INT_CST_LOW (DECL_SIZE (TREE_PURPOSE (elt)));
6928 enum machine_mode imode
6929 = TYPE_MODE (TREE_TYPE (TREE_PURPOSE (elt)));
6930
6931 if (TYPE_UNSIGNED (TREE_TYPE (TREE_PURPOSE (elt))))
6932 {
6933 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
6934 op0 = expand_and (imode, op0, op1, target);
6935 }
6936 else
6937 {
6938 tree count
6939 = build_int_cst (NULL_TREE,
6940 GET_MODE_BITSIZE (imode) - bitsize);
6941
6942 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
6943 target, 0);
6944 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
6945 target, 0);
6946 }
6947 }
6948
6949 return op0;
6950 }
6951 }
6952 goto normal_inner_ref;
6953
6954 case BIT_FIELD_REF:
6955 case ARRAY_RANGE_REF:
6956 normal_inner_ref:
6957 {
6958 enum machine_mode mode1;
6959 HOST_WIDE_INT bitsize, bitpos;
6960 tree offset;
6961 int volatilep = 0;
6962 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6963 &mode1, &unsignedp, &volatilep);
6964 rtx orig_op0;
6965
6966 /* If we got back the original object, something is wrong. Perhaps
6967 we are evaluating an expression too early. In any event, don't
6968 infinitely recurse. */
6969 gcc_assert (tem != exp);
6970
6971 /* If TEM's type is a union of variable size, pass TARGET to the inner
6972 computation, since it will need a temporary and TARGET is known
6973 to have to do. This occurs in unchecked conversion in Ada. */
6974
6975 orig_op0 = op0
6976 = expand_expr (tem,
6977 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
6978 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
6979 != INTEGER_CST)
6980 && modifier != EXPAND_STACK_PARM
6981 ? target : NULL_RTX),
6982 VOIDmode,
6983 (modifier == EXPAND_INITIALIZER
6984 || modifier == EXPAND_CONST_ADDRESS
6985 || modifier == EXPAND_STACK_PARM)
6986 ? modifier : EXPAND_NORMAL);
6987
6988 /* If this is a constant, put it into a register if it is a
6989 legitimate constant and OFFSET is 0 and memory if it isn't. */
6990 if (CONSTANT_P (op0))
6991 {
6992 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
6993 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
6994 && offset == 0)
6995 op0 = force_reg (mode, op0);
6996 else
6997 op0 = validize_mem (force_const_mem (mode, op0));
6998 }
6999
7000 /* Otherwise, if this object not in memory and we either have an
7001 offset or a BLKmode result, put it there. This case can't occur in
7002 C, but can in Ada if we have unchecked conversion of an expression
7003 from a scalar type to an array or record type or for an
7004 ARRAY_RANGE_REF whose type is BLKmode. */
7005 else if (!MEM_P (op0)
7006 && (offset != 0
7007 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
7008 {
7009 tree nt = build_qualified_type (TREE_TYPE (tem),
7010 (TYPE_QUALS (TREE_TYPE (tem))
7011 | TYPE_QUAL_CONST));
7012 rtx memloc = assign_temp (nt, 1, 1, 1);
7013
7014 emit_move_insn (memloc, op0);
7015 op0 = memloc;
7016 }
7017
7018 if (offset != 0)
7019 {
7020 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7021 EXPAND_SUM);
7022
7023 gcc_assert (MEM_P (op0));
7024
7025 #ifdef POINTERS_EXTEND_UNSIGNED
7026 if (GET_MODE (offset_rtx) != Pmode)
7027 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7028 #else
7029 if (GET_MODE (offset_rtx) != ptr_mode)
7030 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7031 #endif
7032
7033 if (GET_MODE (op0) == BLKmode
7034 /* A constant address in OP0 can have VOIDmode, we must
7035 not try to call force_reg in that case. */
7036 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7037 && bitsize != 0
7038 && (bitpos % bitsize) == 0
7039 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7040 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7041 {
7042 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7043 bitpos = 0;
7044 }
7045
7046 op0 = offset_address (op0, offset_rtx,
7047 highest_pow2_factor (offset));
7048 }
7049
7050 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7051 record its alignment as BIGGEST_ALIGNMENT. */
7052 if (MEM_P (op0) && bitpos == 0 && offset != 0
7053 && is_aligning_offset (offset, tem))
7054 set_mem_align (op0, BIGGEST_ALIGNMENT);
7055
7056 /* Don't forget about volatility even if this is a bitfield. */
7057 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7058 {
7059 if (op0 == orig_op0)
7060 op0 = copy_rtx (op0);
7061
7062 MEM_VOLATILE_P (op0) = 1;
7063 }
7064
7065 /* The following code doesn't handle CONCAT.
7066 Assume only bitpos == 0 can be used for CONCAT, due to
7067 one element arrays having the same mode as its element. */
7068 if (GET_CODE (op0) == CONCAT)
7069 {
7070 gcc_assert (bitpos == 0
7071 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7072 return op0;
7073 }
7074
7075 /* In cases where an aligned union has an unaligned object
7076 as a field, we might be extracting a BLKmode value from
7077 an integer-mode (e.g., SImode) object. Handle this case
7078 by doing the extract into an object as wide as the field
7079 (which we know to be the width of a basic mode), then
7080 storing into memory, and changing the mode to BLKmode. */
7081 if (mode1 == VOIDmode
7082 || REG_P (op0) || GET_CODE (op0) == SUBREG
7083 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7084 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7085 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7086 && modifier != EXPAND_CONST_ADDRESS
7087 && modifier != EXPAND_INITIALIZER)
7088 /* If the field isn't aligned enough to fetch as a memref,
7089 fetch it as a bit field. */
7090 || (mode1 != BLKmode
7091 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7092 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7093 || (MEM_P (op0)
7094 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7095 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7096 && ((modifier == EXPAND_CONST_ADDRESS
7097 || modifier == EXPAND_INITIALIZER)
7098 ? STRICT_ALIGNMENT
7099 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7100 || (bitpos % BITS_PER_UNIT != 0)))
7101 /* If the type and the field are a constant size and the
7102 size of the type isn't the same size as the bitfield,
7103 we must use bitfield operations. */
7104 || (bitsize >= 0
7105 && TYPE_SIZE (TREE_TYPE (exp))
7106 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7107 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7108 bitsize)))
7109 {
7110 enum machine_mode ext_mode = mode;
7111
7112 if (ext_mode == BLKmode
7113 && ! (target != 0 && MEM_P (op0)
7114 && MEM_P (target)
7115 && bitpos % BITS_PER_UNIT == 0))
7116 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7117
7118 if (ext_mode == BLKmode)
7119 {
7120 if (target == 0)
7121 target = assign_temp (type, 0, 1, 1);
7122
7123 if (bitsize == 0)
7124 return target;
7125
7126 /* In this case, BITPOS must start at a byte boundary and
7127 TARGET, if specified, must be a MEM. */
7128 gcc_assert (MEM_P (op0)
7129 && (!target || MEM_P (target))
7130 && !(bitpos % BITS_PER_UNIT));
7131
7132 emit_block_move (target,
7133 adjust_address (op0, VOIDmode,
7134 bitpos / BITS_PER_UNIT),
7135 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7136 / BITS_PER_UNIT),
7137 (modifier == EXPAND_STACK_PARM
7138 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7139
7140 return target;
7141 }
7142
7143 op0 = validize_mem (op0);
7144
7145 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7146 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7147
7148 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7149 (modifier == EXPAND_STACK_PARM
7150 ? NULL_RTX : target),
7151 ext_mode, ext_mode);
7152
7153 /* If the result is a record type and BITSIZE is narrower than
7154 the mode of OP0, an integral mode, and this is a big endian
7155 machine, we must put the field into the high-order bits. */
7156 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7157 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7158 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7159 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7160 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7161 - bitsize),
7162 op0, 1);
7163
7164 /* If the result type is BLKmode, store the data into a temporary
7165 of the appropriate type, but with the mode corresponding to the
7166 mode for the data we have (op0's mode). It's tempting to make
7167 this a constant type, since we know it's only being stored once,
7168 but that can cause problems if we are taking the address of this
7169 COMPONENT_REF because the MEM of any reference via that address
7170 will have flags corresponding to the type, which will not
7171 necessarily be constant. */
7172 if (mode == BLKmode)
7173 {
7174 rtx new
7175 = assign_stack_temp_for_type
7176 (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
7177
7178 emit_move_insn (new, op0);
7179 op0 = copy_rtx (new);
7180 PUT_MODE (op0, BLKmode);
7181 set_mem_attributes (op0, exp, 1);
7182 }
7183
7184 return op0;
7185 }
7186
7187 /* If the result is BLKmode, use that to access the object
7188 now as well. */
7189 if (mode == BLKmode)
7190 mode1 = BLKmode;
7191
7192 /* Get a reference to just this component. */
7193 if (modifier == EXPAND_CONST_ADDRESS
7194 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7195 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7196 else
7197 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7198
7199 if (op0 == orig_op0)
7200 op0 = copy_rtx (op0);
7201
7202 set_mem_attributes (op0, exp, 0);
7203 if (REG_P (XEXP (op0, 0)))
7204 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7205
7206 MEM_VOLATILE_P (op0) |= volatilep;
7207 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7208 || modifier == EXPAND_CONST_ADDRESS
7209 || modifier == EXPAND_INITIALIZER)
7210 return op0;
7211 else if (target == 0)
7212 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7213
7214 convert_move (target, op0, unsignedp);
7215 return target;
7216 }
7217
7218 case OBJ_TYPE_REF:
7219 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7220
7221 case CALL_EXPR:
7222 /* Check for a built-in function. */
7223 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7224 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7225 == FUNCTION_DECL)
7226 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7227 {
7228 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7229 == BUILT_IN_FRONTEND)
7230 return lang_hooks.expand_expr (exp, original_target,
7231 tmode, modifier,
7232 alt_rtl);
7233 else
7234 return expand_builtin (exp, target, subtarget, tmode, ignore);
7235 }
7236
7237 return expand_call (exp, target, ignore);
7238
7239 case NON_LVALUE_EXPR:
7240 case NOP_EXPR:
7241 case CONVERT_EXPR:
7242 if (TREE_OPERAND (exp, 0) == error_mark_node)
7243 return const0_rtx;
7244
7245 if (TREE_CODE (type) == UNION_TYPE)
7246 {
7247 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7248
7249 /* If both input and output are BLKmode, this conversion isn't doing
7250 anything except possibly changing memory attribute. */
7251 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7252 {
7253 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7254 modifier);
7255
7256 result = copy_rtx (result);
7257 set_mem_attributes (result, exp, 0);
7258 return result;
7259 }
7260
7261 if (target == 0)
7262 {
7263 if (TYPE_MODE (type) != BLKmode)
7264 target = gen_reg_rtx (TYPE_MODE (type));
7265 else
7266 target = assign_temp (type, 0, 1, 1);
7267 }
7268
7269 if (MEM_P (target))
7270 /* Store data into beginning of memory target. */
7271 store_expr (TREE_OPERAND (exp, 0),
7272 adjust_address (target, TYPE_MODE (valtype), 0),
7273 modifier == EXPAND_STACK_PARM ? 2 : 0);
7274
7275 else
7276 {
7277 gcc_assert (REG_P (target));
7278
7279 /* Store this field into a union of the proper type. */
7280 store_field (target,
7281 MIN ((int_size_in_bytes (TREE_TYPE
7282 (TREE_OPERAND (exp, 0)))
7283 * BITS_PER_UNIT),
7284 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7285 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7286 VOIDmode, 0, type, 0);
7287 }
7288
7289 /* Return the entire union. */
7290 return target;
7291 }
7292
7293 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7294 {
7295 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7296 modifier);
7297
7298 /* If the signedness of the conversion differs and OP0 is
7299 a promoted SUBREG, clear that indication since we now
7300 have to do the proper extension. */
7301 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7302 && GET_CODE (op0) == SUBREG)
7303 SUBREG_PROMOTED_VAR_P (op0) = 0;
7304
7305 return REDUCE_BIT_FIELD (op0);
7306 }
7307
7308 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7309 op0 = REDUCE_BIT_FIELD (op0);
7310 if (GET_MODE (op0) == mode)
7311 return op0;
7312
7313 /* If OP0 is a constant, just convert it into the proper mode. */
7314 if (CONSTANT_P (op0))
7315 {
7316 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7317 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7318
7319 if (modifier == EXPAND_INITIALIZER)
7320 return simplify_gen_subreg (mode, op0, inner_mode,
7321 subreg_lowpart_offset (mode,
7322 inner_mode));
7323 else
7324 return convert_modes (mode, inner_mode, op0,
7325 TYPE_UNSIGNED (inner_type));
7326 }
7327
7328 if (modifier == EXPAND_INITIALIZER)
7329 return gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7330
7331 if (target == 0)
7332 return
7333 convert_to_mode (mode, op0,
7334 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7335 else
7336 convert_move (target, op0,
7337 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7338 return target;
7339
7340 case VIEW_CONVERT_EXPR:
7341 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7342
7343 /* If the input and output modes are both the same, we are done.
7344 Otherwise, if neither mode is BLKmode and both are integral and within
7345 a word, we can use gen_lowpart. If neither is true, make sure the
7346 operand is in memory and convert the MEM to the new mode. */
7347 if (TYPE_MODE (type) == GET_MODE (op0))
7348 ;
7349 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7350 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7351 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT
7352 && GET_MODE_SIZE (TYPE_MODE (type)) <= UNITS_PER_WORD
7353 && GET_MODE_SIZE (GET_MODE (op0)) <= UNITS_PER_WORD)
7354 op0 = gen_lowpart (TYPE_MODE (type), op0);
7355 else if (!MEM_P (op0))
7356 {
7357 /* If the operand is not a MEM, force it into memory. Since we
7358 are going to be be changing the mode of the MEM, don't call
7359 force_const_mem for constants because we don't allow pool
7360 constants to change mode. */
7361 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7362
7363 gcc_assert (!TREE_ADDRESSABLE (exp));
7364
7365 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7366 target
7367 = assign_stack_temp_for_type
7368 (TYPE_MODE (inner_type),
7369 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7370
7371 emit_move_insn (target, op0);
7372 op0 = target;
7373 }
7374
7375 /* At this point, OP0 is in the correct mode. If the output type is such
7376 that the operand is known to be aligned, indicate that it is.
7377 Otherwise, we need only be concerned about alignment for non-BLKmode
7378 results. */
7379 if (MEM_P (op0))
7380 {
7381 op0 = copy_rtx (op0);
7382
7383 if (TYPE_ALIGN_OK (type))
7384 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7385 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7386 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7387 {
7388 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7389 HOST_WIDE_INT temp_size
7390 = MAX (int_size_in_bytes (inner_type),
7391 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7392 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7393 temp_size, 0, type);
7394 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7395
7396 gcc_assert (!TREE_ADDRESSABLE (exp));
7397
7398 if (GET_MODE (op0) == BLKmode)
7399 emit_block_move (new_with_op0_mode, op0,
7400 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
7401 (modifier == EXPAND_STACK_PARM
7402 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7403 else
7404 emit_move_insn (new_with_op0_mode, op0);
7405
7406 op0 = new;
7407 }
7408
7409 op0 = adjust_address (op0, TYPE_MODE (type), 0);
7410 }
7411
7412 return op0;
7413
7414 case PLUS_EXPR:
7415 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7416 something else, make sure we add the register to the constant and
7417 then to the other thing. This case can occur during strength
7418 reduction and doing it this way will produce better code if the
7419 frame pointer or argument pointer is eliminated.
7420
7421 fold-const.c will ensure that the constant is always in the inner
7422 PLUS_EXPR, so the only case we need to do anything about is if
7423 sp, ap, or fp is our second argument, in which case we must swap
7424 the innermost first argument and our second argument. */
7425
7426 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7427 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7428 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
7429 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7430 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7431 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7432 {
7433 tree t = TREE_OPERAND (exp, 1);
7434
7435 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7436 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7437 }
7438
7439 /* If the result is to be ptr_mode and we are adding an integer to
7440 something, we might be forming a constant. So try to use
7441 plus_constant. If it produces a sum and we can't accept it,
7442 use force_operand. This allows P = &ARR[const] to generate
7443 efficient code on machines where a SYMBOL_REF is not a valid
7444 address.
7445
7446 If this is an EXPAND_SUM call, always return the sum. */
7447 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7448 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7449 {
7450 if (modifier == EXPAND_STACK_PARM)
7451 target = 0;
7452 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7453 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7454 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7455 {
7456 rtx constant_part;
7457
7458 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7459 EXPAND_SUM);
7460 /* Use immed_double_const to ensure that the constant is
7461 truncated according to the mode of OP1, then sign extended
7462 to a HOST_WIDE_INT. Using the constant directly can result
7463 in non-canonical RTL in a 64x32 cross compile. */
7464 constant_part
7465 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7466 (HOST_WIDE_INT) 0,
7467 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7468 op1 = plus_constant (op1, INTVAL (constant_part));
7469 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7470 op1 = force_operand (op1, target);
7471 return REDUCE_BIT_FIELD (op1);
7472 }
7473
7474 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7475 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_INT
7476 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7477 {
7478 rtx constant_part;
7479
7480 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7481 (modifier == EXPAND_INITIALIZER
7482 ? EXPAND_INITIALIZER : EXPAND_SUM));
7483 if (! CONSTANT_P (op0))
7484 {
7485 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7486 VOIDmode, modifier);
7487 /* Return a PLUS if modifier says it's OK. */
7488 if (modifier == EXPAND_SUM
7489 || modifier == EXPAND_INITIALIZER)
7490 return simplify_gen_binary (PLUS, mode, op0, op1);
7491 goto binop2;
7492 }
7493 /* Use immed_double_const to ensure that the constant is
7494 truncated according to the mode of OP1, then sign extended
7495 to a HOST_WIDE_INT. Using the constant directly can result
7496 in non-canonical RTL in a 64x32 cross compile. */
7497 constant_part
7498 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7499 (HOST_WIDE_INT) 0,
7500 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7501 op0 = plus_constant (op0, INTVAL (constant_part));
7502 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7503 op0 = force_operand (op0, target);
7504 return REDUCE_BIT_FIELD (op0);
7505 }
7506 }
7507
7508 /* No sense saving up arithmetic to be done
7509 if it's all in the wrong mode to form part of an address.
7510 And force_operand won't know whether to sign-extend or
7511 zero-extend. */
7512 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7513 || mode != ptr_mode)
7514 {
7515 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7516 subtarget, &op0, &op1, 0);
7517 if (op0 == const0_rtx)
7518 return op1;
7519 if (op1 == const0_rtx)
7520 return op0;
7521 goto binop2;
7522 }
7523
7524 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7525 subtarget, &op0, &op1, modifier);
7526 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7527
7528 case MINUS_EXPR:
7529 /* For initializers, we are allowed to return a MINUS of two
7530 symbolic constants. Here we handle all cases when both operands
7531 are constant. */
7532 /* Handle difference of two symbolic constants,
7533 for the sake of an initializer. */
7534 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7535 && really_constant_p (TREE_OPERAND (exp, 0))
7536 && really_constant_p (TREE_OPERAND (exp, 1)))
7537 {
7538 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7539 NULL_RTX, &op0, &op1, modifier);
7540
7541 /* If the last operand is a CONST_INT, use plus_constant of
7542 the negated constant. Else make the MINUS. */
7543 if (GET_CODE (op1) == CONST_INT)
7544 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7545 else
7546 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7547 }
7548
7549 /* No sense saving up arithmetic to be done
7550 if it's all in the wrong mode to form part of an address.
7551 And force_operand won't know whether to sign-extend or
7552 zero-extend. */
7553 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7554 || mode != ptr_mode)
7555 goto binop;
7556
7557 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7558 subtarget, &op0, &op1, modifier);
7559
7560 /* Convert A - const to A + (-const). */
7561 if (GET_CODE (op1) == CONST_INT)
7562 {
7563 op1 = negate_rtx (mode, op1);
7564 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7565 }
7566
7567 goto binop2;
7568
7569 case MULT_EXPR:
7570 /* If first operand is constant, swap them.
7571 Thus the following special case checks need only
7572 check the second operand. */
7573 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7574 {
7575 tree t1 = TREE_OPERAND (exp, 0);
7576 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7577 TREE_OPERAND (exp, 1) = t1;
7578 }
7579
7580 /* Attempt to return something suitable for generating an
7581 indexed address, for machines that support that. */
7582
7583 if (modifier == EXPAND_SUM && mode == ptr_mode
7584 && host_integerp (TREE_OPERAND (exp, 1), 0))
7585 {
7586 tree exp1 = TREE_OPERAND (exp, 1);
7587
7588 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7589 EXPAND_SUM);
7590
7591 if (!REG_P (op0))
7592 op0 = force_operand (op0, NULL_RTX);
7593 if (!REG_P (op0))
7594 op0 = copy_to_mode_reg (mode, op0);
7595
7596 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7597 gen_int_mode (tree_low_cst (exp1, 0),
7598 TYPE_MODE (TREE_TYPE (exp1)))));
7599 }
7600
7601 if (modifier == EXPAND_STACK_PARM)
7602 target = 0;
7603
7604 /* Check for multiplying things that have been extended
7605 from a narrower type. If this machine supports multiplying
7606 in that narrower type with a result in the desired type,
7607 do it that way, and avoid the explicit type-conversion. */
7608 if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
7609 && TREE_CODE (type) == INTEGER_TYPE
7610 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7611 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
7612 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7613 && int_fits_type_p (TREE_OPERAND (exp, 1),
7614 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7615 /* Don't use a widening multiply if a shift will do. */
7616 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
7617 > HOST_BITS_PER_WIDE_INT)
7618 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
7619 ||
7620 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
7621 && (TYPE_PRECISION (TREE_TYPE
7622 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7623 == TYPE_PRECISION (TREE_TYPE
7624 (TREE_OPERAND
7625 (TREE_OPERAND (exp, 0), 0))))
7626 /* If both operands are extended, they must either both
7627 be zero-extended or both be sign-extended. */
7628 && (TYPE_UNSIGNED (TREE_TYPE
7629 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
7630 == TYPE_UNSIGNED (TREE_TYPE
7631 (TREE_OPERAND
7632 (TREE_OPERAND (exp, 0), 0)))))))
7633 {
7634 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
7635 enum machine_mode innermode = TYPE_MODE (op0type);
7636 bool zextend_p = TYPE_UNSIGNED (op0type);
7637 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7638 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7639
7640 if (mode == GET_MODE_WIDER_MODE (innermode))
7641 {
7642 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
7643 {
7644 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7645 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7646 TREE_OPERAND (exp, 1),
7647 NULL_RTX, &op0, &op1, 0);
7648 else
7649 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7650 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7651 NULL_RTX, &op0, &op1, 0);
7652 goto binop3;
7653 }
7654 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
7655 && innermode == word_mode)
7656 {
7657 rtx htem, hipart;
7658 op0 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
7659 NULL_RTX, VOIDmode, 0);
7660 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
7661 op1 = convert_modes (innermode, mode,
7662 expand_expr (TREE_OPERAND (exp, 1),
7663 NULL_RTX, VOIDmode, 0),
7664 unsignedp);
7665 else
7666 op1 = expand_expr (TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
7667 NULL_RTX, VOIDmode, 0);
7668 temp = expand_binop (mode, other_optab, op0, op1, target,
7669 unsignedp, OPTAB_LIB_WIDEN);
7670 hipart = gen_highpart (innermode, temp);
7671 htem = expand_mult_highpart_adjust (innermode, hipart,
7672 op0, op1, hipart,
7673 zextend_p);
7674 if (htem != hipart)
7675 emit_move_insn (hipart, htem);
7676 return REDUCE_BIT_FIELD (temp);
7677 }
7678 }
7679 }
7680 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7681 subtarget, &op0, &op1, 0);
7682 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7683
7684 case TRUNC_DIV_EXPR:
7685 case FLOOR_DIV_EXPR:
7686 case CEIL_DIV_EXPR:
7687 case ROUND_DIV_EXPR:
7688 case EXACT_DIV_EXPR:
7689 if (modifier == EXPAND_STACK_PARM)
7690 target = 0;
7691 /* Possible optimization: compute the dividend with EXPAND_SUM
7692 then if the divisor is constant can optimize the case
7693 where some terms of the dividend have coeffs divisible by it. */
7694 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7695 subtarget, &op0, &op1, 0);
7696 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7697
7698 case RDIV_EXPR:
7699 /* Emit a/b as a*(1/b). Later we may manage CSE the reciprocal saving
7700 expensive divide. If not, combine will rebuild the original
7701 computation. */
7702 if (flag_unsafe_math_optimizations && optimize && !optimize_size
7703 && TREE_CODE (type) == REAL_TYPE
7704 && !real_onep (TREE_OPERAND (exp, 0)))
7705 return expand_expr (build2 (MULT_EXPR, type, TREE_OPERAND (exp, 0),
7706 build2 (RDIV_EXPR, type,
7707 build_real (type, dconst1),
7708 TREE_OPERAND (exp, 1))),
7709 target, tmode, modifier);
7710
7711 goto binop;
7712
7713 case TRUNC_MOD_EXPR:
7714 case FLOOR_MOD_EXPR:
7715 case CEIL_MOD_EXPR:
7716 case ROUND_MOD_EXPR:
7717 if (modifier == EXPAND_STACK_PARM)
7718 target = 0;
7719 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7720 subtarget, &op0, &op1, 0);
7721 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7722
7723 case FIX_ROUND_EXPR:
7724 case FIX_FLOOR_EXPR:
7725 case FIX_CEIL_EXPR:
7726 gcc_unreachable (); /* Not used for C. */
7727
7728 case FIX_TRUNC_EXPR:
7729 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7730 if (target == 0 || modifier == EXPAND_STACK_PARM)
7731 target = gen_reg_rtx (mode);
7732 expand_fix (target, op0, unsignedp);
7733 return target;
7734
7735 case FLOAT_EXPR:
7736 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, VOIDmode, 0);
7737 if (target == 0 || modifier == EXPAND_STACK_PARM)
7738 target = gen_reg_rtx (mode);
7739 /* expand_float can't figure out what to do if FROM has VOIDmode.
7740 So give it the correct mode. With -O, cse will optimize this. */
7741 if (GET_MODE (op0) == VOIDmode)
7742 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
7743 op0);
7744 expand_float (target, op0,
7745 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7746 return target;
7747
7748 case NEGATE_EXPR:
7749 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7750 if (modifier == EXPAND_STACK_PARM)
7751 target = 0;
7752 temp = expand_unop (mode,
7753 optab_for_tree_code (NEGATE_EXPR, type),
7754 op0, target, 0);
7755 gcc_assert (temp);
7756 return REDUCE_BIT_FIELD (temp);
7757
7758 case ABS_EXPR:
7759 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7760 if (modifier == EXPAND_STACK_PARM)
7761 target = 0;
7762
7763 /* ABS_EXPR is not valid for complex arguments. */
7764 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7765 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7766
7767 /* Unsigned abs is simply the operand. Testing here means we don't
7768 risk generating incorrect code below. */
7769 if (TYPE_UNSIGNED (type))
7770 return op0;
7771
7772 return expand_abs (mode, op0, target, unsignedp,
7773 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
7774
7775 case MAX_EXPR:
7776 case MIN_EXPR:
7777 target = original_target;
7778 if (target == 0
7779 || modifier == EXPAND_STACK_PARM
7780 || (MEM_P (target) && MEM_VOLATILE_P (target))
7781 || GET_MODE (target) != mode
7782 || (REG_P (target)
7783 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7784 target = gen_reg_rtx (mode);
7785 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7786 target, &op0, &op1, 0);
7787
7788 /* First try to do it with a special MIN or MAX instruction.
7789 If that does not win, use a conditional jump to select the proper
7790 value. */
7791 this_optab = optab_for_tree_code (code, type);
7792 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7793 OPTAB_WIDEN);
7794 if (temp != 0)
7795 return temp;
7796
7797 /* At this point, a MEM target is no longer useful; we will get better
7798 code without it. */
7799
7800 if (MEM_P (target))
7801 target = gen_reg_rtx (mode);
7802
7803 /* If op1 was placed in target, swap op0 and op1. */
7804 if (target != op0 && target == op1)
7805 {
7806 rtx tem = op0;
7807 op0 = op1;
7808 op1 = tem;
7809 }
7810
7811 if (target != op0)
7812 emit_move_insn (target, op0);
7813
7814 op0 = gen_label_rtx ();
7815
7816 /* If this mode is an integer too wide to compare properly,
7817 compare word by word. Rely on cse to optimize constant cases. */
7818 if (GET_MODE_CLASS (mode) == MODE_INT
7819 && ! can_compare_p (GE, mode, ccp_jump))
7820 {
7821 if (code == MAX_EXPR)
7822 do_jump_by_parts_greater_rtx (mode, unsignedp, target, op1,
7823 NULL_RTX, op0);
7824 else
7825 do_jump_by_parts_greater_rtx (mode, unsignedp, op1, target,
7826 NULL_RTX, op0);
7827 }
7828 else
7829 {
7830 do_compare_rtx_and_jump (target, op1, code == MAX_EXPR ? GE : LE,
7831 unsignedp, mode, NULL_RTX, NULL_RTX, op0);
7832 }
7833 emit_move_insn (target, op1);
7834 emit_label (op0);
7835 return target;
7836
7837 case BIT_NOT_EXPR:
7838 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7839 if (modifier == EXPAND_STACK_PARM)
7840 target = 0;
7841 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7842 gcc_assert (temp);
7843 return temp;
7844
7845 /* ??? Can optimize bitwise operations with one arg constant.
7846 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7847 and (a bitwise1 b) bitwise2 b (etc)
7848 but that is probably not worth while. */
7849
7850 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7851 boolean values when we want in all cases to compute both of them. In
7852 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7853 as actual zero-or-1 values and then bitwise anding. In cases where
7854 there cannot be any side effects, better code would be made by
7855 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7856 how to recognize those cases. */
7857
7858 case TRUTH_AND_EXPR:
7859 code = BIT_AND_EXPR;
7860 case BIT_AND_EXPR:
7861 goto binop;
7862
7863 case TRUTH_OR_EXPR:
7864 code = BIT_IOR_EXPR;
7865 case BIT_IOR_EXPR:
7866 goto binop;
7867
7868 case TRUTH_XOR_EXPR:
7869 code = BIT_XOR_EXPR;
7870 case BIT_XOR_EXPR:
7871 goto binop;
7872
7873 case LSHIFT_EXPR:
7874 case RSHIFT_EXPR:
7875 case LROTATE_EXPR:
7876 case RROTATE_EXPR:
7877 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
7878 subtarget = 0;
7879 if (modifier == EXPAND_STACK_PARM)
7880 target = 0;
7881 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
7882 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
7883 unsignedp);
7884
7885 /* Could determine the answer when only additive constants differ. Also,
7886 the addition of one can be handled by changing the condition. */
7887 case LT_EXPR:
7888 case LE_EXPR:
7889 case GT_EXPR:
7890 case GE_EXPR:
7891 case EQ_EXPR:
7892 case NE_EXPR:
7893 case UNORDERED_EXPR:
7894 case ORDERED_EXPR:
7895 case UNLT_EXPR:
7896 case UNLE_EXPR:
7897 case UNGT_EXPR:
7898 case UNGE_EXPR:
7899 case UNEQ_EXPR:
7900 case LTGT_EXPR:
7901 temp = do_store_flag (exp,
7902 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
7903 tmode != VOIDmode ? tmode : mode, 0);
7904 if (temp != 0)
7905 return temp;
7906
7907 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
7908 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
7909 && original_target
7910 && REG_P (original_target)
7911 && (GET_MODE (original_target)
7912 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
7913 {
7914 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
7915 VOIDmode, 0);
7916
7917 /* If temp is constant, we can just compute the result. */
7918 if (GET_CODE (temp) == CONST_INT)
7919 {
7920 if (INTVAL (temp) != 0)
7921 emit_move_insn (target, const1_rtx);
7922 else
7923 emit_move_insn (target, const0_rtx);
7924
7925 return target;
7926 }
7927
7928 if (temp != original_target)
7929 {
7930 enum machine_mode mode1 = GET_MODE (temp);
7931 if (mode1 == VOIDmode)
7932 mode1 = tmode != VOIDmode ? tmode : mode;
7933
7934 temp = copy_to_mode_reg (mode1, temp);
7935 }
7936
7937 op1 = gen_label_rtx ();
7938 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
7939 GET_MODE (temp), unsignedp, op1);
7940 emit_move_insn (temp, const1_rtx);
7941 emit_label (op1);
7942 return temp;
7943 }
7944
7945 /* If no set-flag instruction, must generate a conditional store
7946 into a temporary variable. Drop through and handle this
7947 like && and ||. */
7948
7949 if (! ignore
7950 && (target == 0
7951 || modifier == EXPAND_STACK_PARM
7952 || ! safe_from_p (target, exp, 1)
7953 /* Make sure we don't have a hard reg (such as function's return
7954 value) live across basic blocks, if not optimizing. */
7955 || (!optimize && REG_P (target)
7956 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
7957 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7958
7959 if (target)
7960 emit_move_insn (target, const0_rtx);
7961
7962 op1 = gen_label_rtx ();
7963 jumpifnot (exp, op1);
7964
7965 if (target)
7966 emit_move_insn (target, const1_rtx);
7967
7968 emit_label (op1);
7969 return ignore ? const0_rtx : target;
7970
7971 case TRUTH_NOT_EXPR:
7972 if (modifier == EXPAND_STACK_PARM)
7973 target = 0;
7974 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
7975 /* The parser is careful to generate TRUTH_NOT_EXPR
7976 only with operands that are always zero or one. */
7977 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
7978 target, 1, OPTAB_LIB_WIDEN);
7979 gcc_assert (temp);
7980 return temp;
7981
7982 case STATEMENT_LIST:
7983 {
7984 tree_stmt_iterator iter;
7985
7986 gcc_assert (ignore);
7987
7988 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
7989 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
7990 }
7991 return const0_rtx;
7992
7993 case COND_EXPR:
7994 /* If it's void, we don't need to worry about computing a value. */
7995 if (VOID_TYPE_P (TREE_TYPE (exp)))
7996 {
7997 tree pred = TREE_OPERAND (exp, 0);
7998 tree then_ = TREE_OPERAND (exp, 1);
7999 tree else_ = TREE_OPERAND (exp, 2);
8000
8001 gcc_assert (TREE_CODE (then_) == GOTO_EXPR
8002 && TREE_CODE (GOTO_DESTINATION (then_)) == LABEL_DECL
8003 && TREE_CODE (else_) == GOTO_EXPR
8004 && TREE_CODE (GOTO_DESTINATION (else_)) == LABEL_DECL);
8005
8006 jumpif (pred, label_rtx (GOTO_DESTINATION (then_)));
8007 return expand_expr (else_, const0_rtx, VOIDmode, 0);
8008 }
8009
8010 /* Note that COND_EXPRs whose type is a structure or union
8011 are required to be constructed to contain assignments of
8012 a temporary variable, so that we can evaluate them here
8013 for side effect only. If type is void, we must do likewise. */
8014
8015 gcc_assert (!TREE_ADDRESSABLE (type)
8016 && !ignore
8017 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
8018 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
8019
8020 /* If we are not to produce a result, we have no target. Otherwise,
8021 if a target was specified use it; it will not be used as an
8022 intermediate target unless it is safe. If no target, use a
8023 temporary. */
8024
8025 if (modifier != EXPAND_STACK_PARM
8026 && original_target
8027 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
8028 && GET_MODE (original_target) == mode
8029 #ifdef HAVE_conditional_move
8030 && (! can_conditionally_move_p (mode)
8031 || REG_P (original_target))
8032 #endif
8033 && !MEM_P (original_target))
8034 temp = original_target;
8035 else
8036 temp = assign_temp (type, 0, 0, 1);
8037
8038 do_pending_stack_adjust ();
8039 NO_DEFER_POP;
8040 op0 = gen_label_rtx ();
8041 op1 = gen_label_rtx ();
8042 jumpifnot (TREE_OPERAND (exp, 0), op0);
8043 store_expr (TREE_OPERAND (exp, 1), temp,
8044 modifier == EXPAND_STACK_PARM ? 2 : 0);
8045
8046 emit_jump_insn (gen_jump (op1));
8047 emit_barrier ();
8048 emit_label (op0);
8049 store_expr (TREE_OPERAND (exp, 2), temp,
8050 modifier == EXPAND_STACK_PARM ? 2 : 0);
8051
8052 emit_label (op1);
8053 OK_DEFER_POP;
8054 return temp;
8055
8056 case MODIFY_EXPR:
8057 {
8058 /* If lhs is complex, expand calls in rhs before computing it.
8059 That's so we don't compute a pointer and save it over a
8060 call. If lhs is simple, compute it first so we can give it
8061 as a target if the rhs is just a call. This avoids an
8062 extra temp and copy and that prevents a partial-subsumption
8063 which makes bad code. Actually we could treat
8064 component_ref's of vars like vars. */
8065
8066 tree lhs = TREE_OPERAND (exp, 0);
8067 tree rhs = TREE_OPERAND (exp, 1);
8068
8069 temp = 0;
8070
8071 /* Check for |= or &= of a bitfield of size one into another bitfield
8072 of size 1. In this case, (unless we need the result of the
8073 assignment) we can do this more efficiently with a
8074 test followed by an assignment, if necessary.
8075
8076 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8077 things change so we do, this code should be enhanced to
8078 support it. */
8079 if (ignore
8080 && TREE_CODE (lhs) == COMPONENT_REF
8081 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8082 || TREE_CODE (rhs) == BIT_AND_EXPR)
8083 && TREE_OPERAND (rhs, 0) == lhs
8084 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8085 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8086 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8087 {
8088 rtx label = gen_label_rtx ();
8089
8090 do_jump (TREE_OPERAND (rhs, 1),
8091 TREE_CODE (rhs) == BIT_IOR_EXPR ? label : 0,
8092 TREE_CODE (rhs) == BIT_AND_EXPR ? label : 0);
8093 expand_assignment (lhs, convert (TREE_TYPE (rhs),
8094 (TREE_CODE (rhs) == BIT_IOR_EXPR
8095 ? integer_one_node
8096 : integer_zero_node)),
8097 0);
8098 do_pending_stack_adjust ();
8099 emit_label (label);
8100 return const0_rtx;
8101 }
8102
8103 temp = expand_assignment (lhs, rhs, ! ignore);
8104
8105 return temp;
8106 }
8107
8108 case RETURN_EXPR:
8109 if (!TREE_OPERAND (exp, 0))
8110 expand_null_return ();
8111 else
8112 expand_return (TREE_OPERAND (exp, 0));
8113 return const0_rtx;
8114
8115 case ADDR_EXPR:
8116 return expand_expr_addr_expr (exp, target, tmode, modifier);
8117
8118 /* COMPLEX type for Extended Pascal & Fortran */
8119 case COMPLEX_EXPR:
8120 {
8121 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8122 rtx insns;
8123
8124 /* Get the rtx code of the operands. */
8125 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8126 op1 = expand_expr (TREE_OPERAND (exp, 1), 0, VOIDmode, 0);
8127
8128 if (! target)
8129 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8130
8131 start_sequence ();
8132
8133 /* Move the real (op0) and imaginary (op1) parts to their location. */
8134 emit_move_insn (gen_realpart (mode, target), op0);
8135 emit_move_insn (gen_imagpart (mode, target), op1);
8136
8137 insns = get_insns ();
8138 end_sequence ();
8139
8140 /* Complex construction should appear as a single unit. */
8141 /* If TARGET is a CONCAT, we got insns like RD = RS, ID = IS,
8142 each with a separate pseudo as destination.
8143 It's not correct for flow to treat them as a unit. */
8144 if (GET_CODE (target) != CONCAT)
8145 emit_no_conflict_block (insns, target, op0, op1, NULL_RTX);
8146 else
8147 emit_insn (insns);
8148
8149 return target;
8150 }
8151
8152 case REALPART_EXPR:
8153 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8154 return gen_realpart (mode, op0);
8155
8156 case IMAGPART_EXPR:
8157 op0 = expand_expr (TREE_OPERAND (exp, 0), 0, VOIDmode, 0);
8158 return gen_imagpart (mode, op0);
8159
8160 case RESX_EXPR:
8161 expand_resx_expr (exp);
8162 return const0_rtx;
8163
8164 case TRY_CATCH_EXPR:
8165 case CATCH_EXPR:
8166 case EH_FILTER_EXPR:
8167 case TRY_FINALLY_EXPR:
8168 /* Lowered by tree-eh.c. */
8169 gcc_unreachable ();
8170
8171 case WITH_CLEANUP_EXPR:
8172 case CLEANUP_POINT_EXPR:
8173 case TARGET_EXPR:
8174 case CASE_LABEL_EXPR:
8175 case VA_ARG_EXPR:
8176 case BIND_EXPR:
8177 case INIT_EXPR:
8178 case CONJ_EXPR:
8179 case COMPOUND_EXPR:
8180 case PREINCREMENT_EXPR:
8181 case PREDECREMENT_EXPR:
8182 case POSTINCREMENT_EXPR:
8183 case POSTDECREMENT_EXPR:
8184 case LOOP_EXPR:
8185 case EXIT_EXPR:
8186 case LABELED_BLOCK_EXPR:
8187 case EXIT_BLOCK_EXPR:
8188 case TRUTH_ANDIF_EXPR:
8189 case TRUTH_ORIF_EXPR:
8190 /* Lowered by gimplify.c. */
8191 gcc_unreachable ();
8192
8193 case EXC_PTR_EXPR:
8194 return get_exception_pointer (cfun);
8195
8196 case FILTER_EXPR:
8197 return get_exception_filter (cfun);
8198
8199 case FDESC_EXPR:
8200 /* Function descriptors are not valid except for as
8201 initialization constants, and should not be expanded. */
8202 gcc_unreachable ();
8203
8204 case SWITCH_EXPR:
8205 expand_case (exp);
8206 return const0_rtx;
8207
8208 case LABEL_EXPR:
8209 expand_label (TREE_OPERAND (exp, 0));
8210 return const0_rtx;
8211
8212 case ASM_EXPR:
8213 expand_asm_expr (exp);
8214 return const0_rtx;
8215
8216 case WITH_SIZE_EXPR:
8217 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8218 have pulled out the size to use in whatever context it needed. */
8219 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
8220 modifier, alt_rtl);
8221
8222 case REALIGN_LOAD_EXPR:
8223 {
8224 tree oprnd0 = TREE_OPERAND (exp, 0);
8225 tree oprnd1 = TREE_OPERAND (exp, 1);
8226 tree oprnd2 = TREE_OPERAND (exp, 2);
8227 rtx op2;
8228
8229 this_optab = optab_for_tree_code (code, type);
8230 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
8231 op2 = expand_expr (oprnd2, NULL_RTX, VOIDmode, 0);
8232 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8233 target, unsignedp);
8234 if (temp == 0)
8235 abort ();
8236 return temp;
8237 }
8238
8239
8240 default:
8241 return lang_hooks.expand_expr (exp, original_target, tmode,
8242 modifier, alt_rtl);
8243 }
8244
8245 /* Here to do an ordinary binary operator. */
8246 binop:
8247 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8248 subtarget, &op0, &op1, 0);
8249 binop2:
8250 this_optab = optab_for_tree_code (code, type);
8251 binop3:
8252 if (modifier == EXPAND_STACK_PARM)
8253 target = 0;
8254 temp = expand_binop (mode, this_optab, op0, op1, target,
8255 unsignedp, OPTAB_LIB_WIDEN);
8256 gcc_assert (temp);
8257 return REDUCE_BIT_FIELD (temp);
8258 }
8259 #undef REDUCE_BIT_FIELD
8260 \f
8261 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8262 signedness of TYPE), possibly returning the result in TARGET. */
8263 static rtx
8264 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
8265 {
8266 HOST_WIDE_INT prec = TYPE_PRECISION (type);
8267 if (target && GET_MODE (target) != GET_MODE (exp))
8268 target = 0;
8269 if (TYPE_UNSIGNED (type))
8270 {
8271 rtx mask;
8272 if (prec < HOST_BITS_PER_WIDE_INT)
8273 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
8274 GET_MODE (exp));
8275 else
8276 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
8277 ((unsigned HOST_WIDE_INT) 1
8278 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
8279 GET_MODE (exp));
8280 return expand_and (GET_MODE (exp), exp, mask, target);
8281 }
8282 else
8283 {
8284 tree count = build_int_cst (NULL_TREE,
8285 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
8286 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8287 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8288 }
8289 }
8290 \f
8291 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8292 when applied to the address of EXP produces an address known to be
8293 aligned more than BIGGEST_ALIGNMENT. */
8294
8295 static int
8296 is_aligning_offset (tree offset, tree exp)
8297 {
8298 /* Strip off any conversions. */
8299 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8300 || TREE_CODE (offset) == NOP_EXPR
8301 || TREE_CODE (offset) == CONVERT_EXPR)
8302 offset = TREE_OPERAND (offset, 0);
8303
8304 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8305 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8306 if (TREE_CODE (offset) != BIT_AND_EXPR
8307 || !host_integerp (TREE_OPERAND (offset, 1), 1)
8308 || compare_tree_int (TREE_OPERAND (offset, 1),
8309 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
8310 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
8311 return 0;
8312
8313 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8314 It must be NEGATE_EXPR. Then strip any more conversions. */
8315 offset = TREE_OPERAND (offset, 0);
8316 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8317 || TREE_CODE (offset) == NOP_EXPR
8318 || TREE_CODE (offset) == CONVERT_EXPR)
8319 offset = TREE_OPERAND (offset, 0);
8320
8321 if (TREE_CODE (offset) != NEGATE_EXPR)
8322 return 0;
8323
8324 offset = TREE_OPERAND (offset, 0);
8325 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8326 || TREE_CODE (offset) == NOP_EXPR
8327 || TREE_CODE (offset) == CONVERT_EXPR)
8328 offset = TREE_OPERAND (offset, 0);
8329
8330 /* This must now be the address of EXP. */
8331 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
8332 }
8333 \f
8334 /* Return the tree node if an ARG corresponds to a string constant or zero
8335 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8336 in bytes within the string that ARG is accessing. The type of the
8337 offset will be `sizetype'. */
8338
8339 tree
8340 string_constant (tree arg, tree *ptr_offset)
8341 {
8342 tree array, offset;
8343 STRIP_NOPS (arg);
8344
8345 if (TREE_CODE (arg) == ADDR_EXPR)
8346 {
8347 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8348 {
8349 *ptr_offset = size_zero_node;
8350 return TREE_OPERAND (arg, 0);
8351 }
8352 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
8353 {
8354 array = TREE_OPERAND (arg, 0);
8355 offset = size_zero_node;
8356 }
8357 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
8358 {
8359 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
8360 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
8361 if (TREE_CODE (array) != STRING_CST
8362 && TREE_CODE (array) != VAR_DECL)
8363 return 0;
8364 }
8365 else
8366 return 0;
8367 }
8368 else if (TREE_CODE (arg) == PLUS_EXPR)
8369 {
8370 tree arg0 = TREE_OPERAND (arg, 0);
8371 tree arg1 = TREE_OPERAND (arg, 1);
8372
8373 STRIP_NOPS (arg0);
8374 STRIP_NOPS (arg1);
8375
8376 if (TREE_CODE (arg0) == ADDR_EXPR
8377 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
8378 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
8379 {
8380 array = TREE_OPERAND (arg0, 0);
8381 offset = arg1;
8382 }
8383 else if (TREE_CODE (arg1) == ADDR_EXPR
8384 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
8385 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
8386 {
8387 array = TREE_OPERAND (arg1, 0);
8388 offset = arg0;
8389 }
8390 else
8391 return 0;
8392 }
8393 else
8394 return 0;
8395
8396 if (TREE_CODE (array) == STRING_CST)
8397 {
8398 *ptr_offset = convert (sizetype, offset);
8399 return array;
8400 }
8401 else if (TREE_CODE (array) == VAR_DECL)
8402 {
8403 int length;
8404
8405 /* Variables initialized to string literals can be handled too. */
8406 if (DECL_INITIAL (array) == NULL_TREE
8407 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
8408 return 0;
8409
8410 /* If they are read-only, non-volatile and bind locally. */
8411 if (! TREE_READONLY (array)
8412 || TREE_SIDE_EFFECTS (array)
8413 || ! targetm.binds_local_p (array))
8414 return 0;
8415
8416 /* Avoid const char foo[4] = "abcde"; */
8417 if (DECL_SIZE_UNIT (array) == NULL_TREE
8418 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
8419 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
8420 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
8421 return 0;
8422
8423 /* If variable is bigger than the string literal, OFFSET must be constant
8424 and inside of the bounds of the string literal. */
8425 offset = convert (sizetype, offset);
8426 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
8427 && (! host_integerp (offset, 1)
8428 || compare_tree_int (offset, length) >= 0))
8429 return 0;
8430
8431 *ptr_offset = offset;
8432 return DECL_INITIAL (array);
8433 }
8434
8435 return 0;
8436 }
8437 \f
8438 /* Generate code to calculate EXP using a store-flag instruction
8439 and return an rtx for the result. EXP is either a comparison
8440 or a TRUTH_NOT_EXPR whose operand is a comparison.
8441
8442 If TARGET is nonzero, store the result there if convenient.
8443
8444 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8445 cheap.
8446
8447 Return zero if there is no suitable set-flag instruction
8448 available on this machine.
8449
8450 Once expand_expr has been called on the arguments of the comparison,
8451 we are committed to doing the store flag, since it is not safe to
8452 re-evaluate the expression. We emit the store-flag insn by calling
8453 emit_store_flag, but only expand the arguments if we have a reason
8454 to believe that emit_store_flag will be successful. If we think that
8455 it will, but it isn't, we have to simulate the store-flag with a
8456 set/jump/set sequence. */
8457
8458 static rtx
8459 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
8460 {
8461 enum rtx_code code;
8462 tree arg0, arg1, type;
8463 tree tem;
8464 enum machine_mode operand_mode;
8465 int invert = 0;
8466 int unsignedp;
8467 rtx op0, op1;
8468 enum insn_code icode;
8469 rtx subtarget = target;
8470 rtx result, label;
8471
8472 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8473 result at the end. We can't simply invert the test since it would
8474 have already been inverted if it were valid. This case occurs for
8475 some floating-point comparisons. */
8476
8477 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
8478 invert = 1, exp = TREE_OPERAND (exp, 0);
8479
8480 arg0 = TREE_OPERAND (exp, 0);
8481 arg1 = TREE_OPERAND (exp, 1);
8482
8483 /* Don't crash if the comparison was erroneous. */
8484 if (arg0 == error_mark_node || arg1 == error_mark_node)
8485 return const0_rtx;
8486
8487 type = TREE_TYPE (arg0);
8488 operand_mode = TYPE_MODE (type);
8489 unsignedp = TYPE_UNSIGNED (type);
8490
8491 /* We won't bother with BLKmode store-flag operations because it would mean
8492 passing a lot of information to emit_store_flag. */
8493 if (operand_mode == BLKmode)
8494 return 0;
8495
8496 /* We won't bother with store-flag operations involving function pointers
8497 when function pointers must be canonicalized before comparisons. */
8498 #ifdef HAVE_canonicalize_funcptr_for_compare
8499 if (HAVE_canonicalize_funcptr_for_compare
8500 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
8501 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8502 == FUNCTION_TYPE))
8503 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
8504 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8505 == FUNCTION_TYPE))))
8506 return 0;
8507 #endif
8508
8509 STRIP_NOPS (arg0);
8510 STRIP_NOPS (arg1);
8511
8512 /* Get the rtx comparison code to use. We know that EXP is a comparison
8513 operation of some type. Some comparisons against 1 and -1 can be
8514 converted to comparisons with zero. Do so here so that the tests
8515 below will be aware that we have a comparison with zero. These
8516 tests will not catch constants in the first operand, but constants
8517 are rarely passed as the first operand. */
8518
8519 switch (TREE_CODE (exp))
8520 {
8521 case EQ_EXPR:
8522 code = EQ;
8523 break;
8524 case NE_EXPR:
8525 code = NE;
8526 break;
8527 case LT_EXPR:
8528 if (integer_onep (arg1))
8529 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
8530 else
8531 code = unsignedp ? LTU : LT;
8532 break;
8533 case LE_EXPR:
8534 if (! unsignedp && integer_all_onesp (arg1))
8535 arg1 = integer_zero_node, code = LT;
8536 else
8537 code = unsignedp ? LEU : LE;
8538 break;
8539 case GT_EXPR:
8540 if (! unsignedp && integer_all_onesp (arg1))
8541 arg1 = integer_zero_node, code = GE;
8542 else
8543 code = unsignedp ? GTU : GT;
8544 break;
8545 case GE_EXPR:
8546 if (integer_onep (arg1))
8547 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
8548 else
8549 code = unsignedp ? GEU : GE;
8550 break;
8551
8552 case UNORDERED_EXPR:
8553 code = UNORDERED;
8554 break;
8555 case ORDERED_EXPR:
8556 code = ORDERED;
8557 break;
8558 case UNLT_EXPR:
8559 code = UNLT;
8560 break;
8561 case UNLE_EXPR:
8562 code = UNLE;
8563 break;
8564 case UNGT_EXPR:
8565 code = UNGT;
8566 break;
8567 case UNGE_EXPR:
8568 code = UNGE;
8569 break;
8570 case UNEQ_EXPR:
8571 code = UNEQ;
8572 break;
8573 case LTGT_EXPR:
8574 code = LTGT;
8575 break;
8576
8577 default:
8578 gcc_unreachable ();
8579 }
8580
8581 /* Put a constant second. */
8582 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
8583 {
8584 tem = arg0; arg0 = arg1; arg1 = tem;
8585 code = swap_condition (code);
8586 }
8587
8588 /* If this is an equality or inequality test of a single bit, we can
8589 do this by shifting the bit being tested to the low-order bit and
8590 masking the result with the constant 1. If the condition was EQ,
8591 we xor it with 1. This does not require an scc insn and is faster
8592 than an scc insn even if we have it.
8593
8594 The code to make this transformation was moved into fold_single_bit_test,
8595 so we just call into the folder and expand its result. */
8596
8597 if ((code == NE || code == EQ)
8598 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
8599 && integer_pow2p (TREE_OPERAND (arg0, 1)))
8600 {
8601 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
8602 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
8603 arg0, arg1, type),
8604 target, VOIDmode, EXPAND_NORMAL);
8605 }
8606
8607 /* Now see if we are likely to be able to do this. Return if not. */
8608 if (! can_compare_p (code, operand_mode, ccp_store_flag))
8609 return 0;
8610
8611 icode = setcc_gen_code[(int) code];
8612 if (icode == CODE_FOR_nothing
8613 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
8614 {
8615 /* We can only do this if it is one of the special cases that
8616 can be handled without an scc insn. */
8617 if ((code == LT && integer_zerop (arg1))
8618 || (! only_cheap && code == GE && integer_zerop (arg1)))
8619 ;
8620 else if (BRANCH_COST >= 0
8621 && ! only_cheap && (code == NE || code == EQ)
8622 && TREE_CODE (type) != REAL_TYPE
8623 && ((abs_optab->handlers[(int) operand_mode].insn_code
8624 != CODE_FOR_nothing)
8625 || (ffs_optab->handlers[(int) operand_mode].insn_code
8626 != CODE_FOR_nothing)))
8627 ;
8628 else
8629 return 0;
8630 }
8631
8632 if (! get_subtarget (target)
8633 || GET_MODE (subtarget) != operand_mode)
8634 subtarget = 0;
8635
8636 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
8637
8638 if (target == 0)
8639 target = gen_reg_rtx (mode);
8640
8641 result = emit_store_flag (target, code, op0, op1,
8642 operand_mode, unsignedp, 1);
8643
8644 if (result)
8645 {
8646 if (invert)
8647 result = expand_binop (mode, xor_optab, result, const1_rtx,
8648 result, 0, OPTAB_LIB_WIDEN);
8649 return result;
8650 }
8651
8652 /* If this failed, we have to do this with set/compare/jump/set code. */
8653 if (!REG_P (target)
8654 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
8655 target = gen_reg_rtx (GET_MODE (target));
8656
8657 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
8658 result = compare_from_rtx (op0, op1, code, unsignedp,
8659 operand_mode, NULL_RTX);
8660 if (GET_CODE (result) == CONST_INT)
8661 return (((result == const0_rtx && ! invert)
8662 || (result != const0_rtx && invert))
8663 ? const0_rtx : const1_rtx);
8664
8665 /* The code of RESULT may not match CODE if compare_from_rtx
8666 decided to swap its operands and reverse the original code.
8667
8668 We know that compare_from_rtx returns either a CONST_INT or
8669 a new comparison code, so it is safe to just extract the
8670 code from RESULT. */
8671 code = GET_CODE (result);
8672
8673 label = gen_label_rtx ();
8674 gcc_assert (bcc_gen_fctn[(int) code]);
8675
8676 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
8677 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
8678 emit_label (label);
8679
8680 return target;
8681 }
8682 \f
8683
8684 /* Stubs in case we haven't got a casesi insn. */
8685 #ifndef HAVE_casesi
8686 # define HAVE_casesi 0
8687 # define gen_casesi(a, b, c, d, e) (0)
8688 # define CODE_FOR_casesi CODE_FOR_nothing
8689 #endif
8690
8691 /* If the machine does not have a case insn that compares the bounds,
8692 this means extra overhead for dispatch tables, which raises the
8693 threshold for using them. */
8694 #ifndef CASE_VALUES_THRESHOLD
8695 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
8696 #endif /* CASE_VALUES_THRESHOLD */
8697
8698 unsigned int
8699 case_values_threshold (void)
8700 {
8701 return CASE_VALUES_THRESHOLD;
8702 }
8703
8704 /* Attempt to generate a casesi instruction. Returns 1 if successful,
8705 0 otherwise (i.e. if there is no casesi instruction). */
8706 int
8707 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
8708 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
8709 {
8710 enum machine_mode index_mode = SImode;
8711 int index_bits = GET_MODE_BITSIZE (index_mode);
8712 rtx op1, op2, index;
8713 enum machine_mode op_mode;
8714
8715 if (! HAVE_casesi)
8716 return 0;
8717
8718 /* Convert the index to SImode. */
8719 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
8720 {
8721 enum machine_mode omode = TYPE_MODE (index_type);
8722 rtx rangertx = expand_expr (range, NULL_RTX, VOIDmode, 0);
8723
8724 /* We must handle the endpoints in the original mode. */
8725 index_expr = build2 (MINUS_EXPR, index_type,
8726 index_expr, minval);
8727 minval = integer_zero_node;
8728 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
8729 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
8730 omode, 1, default_label);
8731 /* Now we can safely truncate. */
8732 index = convert_to_mode (index_mode, index, 0);
8733 }
8734 else
8735 {
8736 if (TYPE_MODE (index_type) != index_mode)
8737 {
8738 index_expr = convert (lang_hooks.types.type_for_size
8739 (index_bits, 0), index_expr);
8740 index_type = TREE_TYPE (index_expr);
8741 }
8742
8743 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
8744 }
8745
8746 do_pending_stack_adjust ();
8747
8748 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
8749 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
8750 (index, op_mode))
8751 index = copy_to_mode_reg (op_mode, index);
8752
8753 op1 = expand_expr (minval, NULL_RTX, VOIDmode, 0);
8754
8755 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
8756 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
8757 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
8758 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
8759 (op1, op_mode))
8760 op1 = copy_to_mode_reg (op_mode, op1);
8761
8762 op2 = expand_expr (range, NULL_RTX, VOIDmode, 0);
8763
8764 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
8765 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
8766 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
8767 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
8768 (op2, op_mode))
8769 op2 = copy_to_mode_reg (op_mode, op2);
8770
8771 emit_jump_insn (gen_casesi (index, op1, op2,
8772 table_label, default_label));
8773 return 1;
8774 }
8775
8776 /* Attempt to generate a tablejump instruction; same concept. */
8777 #ifndef HAVE_tablejump
8778 #define HAVE_tablejump 0
8779 #define gen_tablejump(x, y) (0)
8780 #endif
8781
8782 /* Subroutine of the next function.
8783
8784 INDEX is the value being switched on, with the lowest value
8785 in the table already subtracted.
8786 MODE is its expected mode (needed if INDEX is constant).
8787 RANGE is the length of the jump table.
8788 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
8789
8790 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
8791 index value is out of range. */
8792
8793 static void
8794 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
8795 rtx default_label)
8796 {
8797 rtx temp, vector;
8798
8799 if (INTVAL (range) > cfun->max_jumptable_ents)
8800 cfun->max_jumptable_ents = INTVAL (range);
8801
8802 /* Do an unsigned comparison (in the proper mode) between the index
8803 expression and the value which represents the length of the range.
8804 Since we just finished subtracting the lower bound of the range
8805 from the index expression, this comparison allows us to simultaneously
8806 check that the original index expression value is both greater than
8807 or equal to the minimum value of the range and less than or equal to
8808 the maximum value of the range. */
8809
8810 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
8811 default_label);
8812
8813 /* If index is in range, it must fit in Pmode.
8814 Convert to Pmode so we can index with it. */
8815 if (mode != Pmode)
8816 index = convert_to_mode (Pmode, index, 1);
8817
8818 /* Don't let a MEM slip through, because then INDEX that comes
8819 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
8820 and break_out_memory_refs will go to work on it and mess it up. */
8821 #ifdef PIC_CASE_VECTOR_ADDRESS
8822 if (flag_pic && !REG_P (index))
8823 index = copy_to_mode_reg (Pmode, index);
8824 #endif
8825
8826 /* If flag_force_addr were to affect this address
8827 it could interfere with the tricky assumptions made
8828 about addresses that contain label-refs,
8829 which may be valid only very near the tablejump itself. */
8830 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
8831 GET_MODE_SIZE, because this indicates how large insns are. The other
8832 uses should all be Pmode, because they are addresses. This code
8833 could fail if addresses and insns are not the same size. */
8834 index = gen_rtx_PLUS (Pmode,
8835 gen_rtx_MULT (Pmode, index,
8836 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
8837 gen_rtx_LABEL_REF (Pmode, table_label));
8838 #ifdef PIC_CASE_VECTOR_ADDRESS
8839 if (flag_pic)
8840 index = PIC_CASE_VECTOR_ADDRESS (index);
8841 else
8842 #endif
8843 index = memory_address_noforce (CASE_VECTOR_MODE, index);
8844 temp = gen_reg_rtx (CASE_VECTOR_MODE);
8845 vector = gen_const_mem (CASE_VECTOR_MODE, index);
8846 convert_move (temp, vector, 0);
8847
8848 emit_jump_insn (gen_tablejump (temp, table_label));
8849
8850 /* If we are generating PIC code or if the table is PC-relative, the
8851 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
8852 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
8853 emit_barrier ();
8854 }
8855
8856 int
8857 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
8858 rtx table_label, rtx default_label)
8859 {
8860 rtx index;
8861
8862 if (! HAVE_tablejump)
8863 return 0;
8864
8865 index_expr = fold (build2 (MINUS_EXPR, index_type,
8866 convert (index_type, index_expr),
8867 convert (index_type, minval)));
8868 index = expand_expr (index_expr, NULL_RTX, VOIDmode, 0);
8869 do_pending_stack_adjust ();
8870
8871 do_tablejump (index, TYPE_MODE (index_type),
8872 convert_modes (TYPE_MODE (index_type),
8873 TYPE_MODE (TREE_TYPE (range)),
8874 expand_expr (range, NULL_RTX,
8875 VOIDmode, 0),
8876 TYPE_UNSIGNED (TREE_TYPE (range))),
8877 table_label, default_label);
8878 return 1;
8879 }
8880
8881 /* Nonzero if the mode is a valid vector mode for this architecture.
8882 This returns nonzero even if there is no hardware support for the
8883 vector mode, but we can emulate with narrower modes. */
8884
8885 int
8886 vector_mode_valid_p (enum machine_mode mode)
8887 {
8888 enum mode_class class = GET_MODE_CLASS (mode);
8889 enum machine_mode innermode;
8890
8891 /* Doh! What's going on? */
8892 if (class != MODE_VECTOR_INT
8893 && class != MODE_VECTOR_FLOAT)
8894 return 0;
8895
8896 /* Hardware support. Woo hoo! */
8897 if (targetm.vector_mode_supported_p (mode))
8898 return 1;
8899
8900 innermode = GET_MODE_INNER (mode);
8901
8902 /* We should probably return 1 if requesting V4DI and we have no DI,
8903 but we have V2DI, but this is probably very unlikely. */
8904
8905 /* If we have support for the inner mode, we can safely emulate it.
8906 We may not have V2DI, but me can emulate with a pair of DIs. */
8907 return targetm.scalar_mode_supported_p (innermode);
8908 }
8909
8910 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
8911 static rtx
8912 const_vector_from_tree (tree exp)
8913 {
8914 rtvec v;
8915 int units, i;
8916 tree link, elt;
8917 enum machine_mode inner, mode;
8918
8919 mode = TYPE_MODE (TREE_TYPE (exp));
8920
8921 if (initializer_zerop (exp))
8922 return CONST0_RTX (mode);
8923
8924 units = GET_MODE_NUNITS (mode);
8925 inner = GET_MODE_INNER (mode);
8926
8927 v = rtvec_alloc (units);
8928
8929 link = TREE_VECTOR_CST_ELTS (exp);
8930 for (i = 0; link; link = TREE_CHAIN (link), ++i)
8931 {
8932 elt = TREE_VALUE (link);
8933
8934 if (TREE_CODE (elt) == REAL_CST)
8935 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
8936 inner);
8937 else
8938 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
8939 TREE_INT_CST_HIGH (elt),
8940 inner);
8941 }
8942
8943 /* Initialize remaining elements to 0. */
8944 for (; i < units; ++i)
8945 RTVEC_ELT (v, i) = CONST0_RTX (inner);
8946
8947 return gen_rtx_CONST_VECTOR (mode, v);
8948 }
8949 #include "gt-expr.h"