]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/final.c
3208220194b6e519132a778bff694a031dd4e8e8
[thirdparty/gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49
50 #include "tree.h"
51 #include "varasm.h"
52 #include "hard-reg-set.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
66 #include "reload.h"
67 #include "intl.h"
68 #include "basic-block.h"
69 #include "target.h"
70 #include "targhooks.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "tree-pass.h"
74 #include "cgraph.h"
75 #include "tree-ssa.h"
76 #include "coverage.h"
77 #include "df.h"
78 #include "ggc.h"
79 #include "cfgloop.h"
80 #include "params.h"
81 #include "tree-pretty-print.h" /* for dump_function_header */
82 #include "asan.h"
83 #include "wide-int-print.h"
84
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data
87 declarations for e.g. AIX 4.x. */
88 #endif
89
90 #include "dwarf2out.h"
91
92 #ifdef DBX_DEBUGGING_INFO
93 #include "dbxout.h"
94 #endif
95
96 #ifdef SDB_DEBUGGING_INFO
97 #include "sdbout.h"
98 #endif
99
100 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
101 So define a null default for it to save conditionalization later. */
102 #ifndef CC_STATUS_INIT
103 #define CC_STATUS_INIT
104 #endif
105
106 /* Is the given character a logical line separator for the assembler? */
107 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
108 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
109 #endif
110
111 #ifndef JUMP_TABLES_IN_TEXT_SECTION
112 #define JUMP_TABLES_IN_TEXT_SECTION 0
113 #endif
114
115 /* Bitflags used by final_scan_insn. */
116 #define SEEN_NOTE 1
117 #define SEEN_EMITTED 2
118
119 /* Last insn processed by final_scan_insn. */
120 static rtx_insn *debug_insn;
121 rtx_insn *current_output_insn;
122
123 /* Line number of last NOTE. */
124 static int last_linenum;
125
126 /* Last discriminator written to assembly. */
127 static int last_discriminator;
128
129 /* Discriminator of current block. */
130 static int discriminator;
131
132 /* Highest line number in current block. */
133 static int high_block_linenum;
134
135 /* Likewise for function. */
136 static int high_function_linenum;
137
138 /* Filename of last NOTE. */
139 static const char *last_filename;
140
141 /* Override filename and line number. */
142 static const char *override_filename;
143 static int override_linenum;
144
145 /* Whether to force emission of a line note before the next insn. */
146 static bool force_source_line = false;
147
148 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
149
150 /* Nonzero while outputting an `asm' with operands.
151 This means that inconsistencies are the user's fault, so don't die.
152 The precise value is the insn being output, to pass to error_for_asm. */
153 rtx this_is_asm_operands;
154
155 /* Number of operands of this insn, for an `asm' with operands. */
156 static unsigned int insn_noperands;
157
158 /* Compare optimization flag. */
159
160 static rtx last_ignored_compare = 0;
161
162 /* Assign a unique number to each insn that is output.
163 This can be used to generate unique local labels. */
164
165 static int insn_counter = 0;
166
167 #ifdef HAVE_cc0
168 /* This variable contains machine-dependent flags (defined in tm.h)
169 set and examined by output routines
170 that describe how to interpret the condition codes properly. */
171
172 CC_STATUS cc_status;
173
174 /* During output of an insn, this contains a copy of cc_status
175 from before the insn. */
176
177 CC_STATUS cc_prev_status;
178 #endif
179
180 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
181
182 static int block_depth;
183
184 /* Nonzero if have enabled APP processing of our assembler output. */
185
186 static int app_on;
187
188 /* If we are outputting an insn sequence, this contains the sequence rtx.
189 Zero otherwise. */
190
191 rtx final_sequence;
192
193 #ifdef ASSEMBLER_DIALECT
194
195 /* Number of the assembler dialect to use, starting at 0. */
196 static int dialect_number;
197 #endif
198
199 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
200 rtx current_insn_predicate;
201
202 /* True if printing into -fdump-final-insns= dump. */
203 bool final_insns_dump_p;
204
205 /* True if profile_function should be called, but hasn't been called yet. */
206 static bool need_profile_function;
207
208 static int asm_insn_count (rtx);
209 static void profile_function (FILE *);
210 static void profile_after_prologue (FILE *);
211 static bool notice_source_line (rtx_insn *, bool *);
212 static rtx walk_alter_subreg (rtx *, bool *);
213 static void output_asm_name (void);
214 static void output_alternate_entry_point (FILE *, rtx_insn *);
215 static tree get_mem_expr_from_op (rtx, int *);
216 static void output_asm_operand_names (rtx *, int *, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx_insn *);
219 #endif
220 #ifdef HAVE_cc0
221 static int alter_cond (rtx);
222 #endif
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx);
225 #endif
226 static int align_fuzz (rtx, rtx, int, unsigned);
227 static void collect_fn_hard_reg_usage (void);
228 static tree get_call_fndecl (rtx_insn *);
229 \f
230 /* Initialize data in final at the beginning of a compilation. */
231
232 void
233 init_final (const char *filename ATTRIBUTE_UNUSED)
234 {
235 app_on = 0;
236 final_sequence = 0;
237
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number = ASSEMBLER_DIALECT;
240 #endif
241 }
242
243 /* Default target function prologue and epilogue assembler output.
244
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
247 void
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
250 {
251 }
252
253 void
254 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
255 tree decl ATTRIBUTE_UNUSED,
256 bool new_is_cold ATTRIBUTE_UNUSED)
257 {
258 }
259
260 /* Default target hook that outputs nothing to a stream. */
261 void
262 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
263 {
264 }
265
266 /* Enable APP processing of subsequent output.
267 Used before the output from an `asm' statement. */
268
269 void
270 app_enable (void)
271 {
272 if (! app_on)
273 {
274 fputs (ASM_APP_ON, asm_out_file);
275 app_on = 1;
276 }
277 }
278
279 /* Disable APP processing of subsequent output.
280 Called from varasm.c before most kinds of output. */
281
282 void
283 app_disable (void)
284 {
285 if (app_on)
286 {
287 fputs (ASM_APP_OFF, asm_out_file);
288 app_on = 0;
289 }
290 }
291 \f
292 /* Return the number of slots filled in the current
293 delayed branch sequence (we don't count the insn needing the
294 delay slot). Zero if not in a delayed branch sequence. */
295
296 #ifdef DELAY_SLOTS
297 int
298 dbr_sequence_length (void)
299 {
300 if (final_sequence != 0)
301 return XVECLEN (final_sequence, 0) - 1;
302 else
303 return 0;
304 }
305 #endif
306 \f
307 /* The next two pages contain routines used to compute the length of an insn
308 and to shorten branches. */
309
310 /* Arrays for insn lengths, and addresses. The latter is referenced by
311 `insn_current_length'. */
312
313 static int *insn_lengths;
314
315 vec<int> insn_addresses_;
316
317 /* Max uid for which the above arrays are valid. */
318 static int insn_lengths_max_uid;
319
320 /* Address of insn being processed. Used by `insn_current_length'. */
321 int insn_current_address;
322
323 /* Address of insn being processed in previous iteration. */
324 int insn_last_address;
325
326 /* known invariant alignment of insn being processed. */
327 int insn_current_align;
328
329 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
330 gives the next following alignment insn that increases the known
331 alignment, or NULL_RTX if there is no such insn.
332 For any alignment obtained this way, we can again index uid_align with
333 its uid to obtain the next following align that in turn increases the
334 alignment, till we reach NULL_RTX; the sequence obtained this way
335 for each insn we'll call the alignment chain of this insn in the following
336 comments. */
337
338 struct label_alignment
339 {
340 short alignment;
341 short max_skip;
342 };
343
344 static rtx *uid_align;
345 static int *uid_shuid;
346 static struct label_alignment *label_align;
347
348 /* Indicate that branch shortening hasn't yet been done. */
349
350 void
351 init_insn_lengths (void)
352 {
353 if (uid_shuid)
354 {
355 free (uid_shuid);
356 uid_shuid = 0;
357 }
358 if (insn_lengths)
359 {
360 free (insn_lengths);
361 insn_lengths = 0;
362 insn_lengths_max_uid = 0;
363 }
364 if (HAVE_ATTR_length)
365 INSN_ADDRESSES_FREE ();
366 if (uid_align)
367 {
368 free (uid_align);
369 uid_align = 0;
370 }
371 }
372
373 /* Obtain the current length of an insn. If branch shortening has been done,
374 get its actual length. Otherwise, use FALLBACK_FN to calculate the
375 length. */
376 static int
377 get_attr_length_1 (rtx uncast_insn, int (*fallback_fn) (rtx))
378 {
379 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
380 rtx body;
381 int i;
382 int length = 0;
383
384 if (!HAVE_ATTR_length)
385 return 0;
386
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 case DEBUG_INSN:
396 return 0;
397
398 case CALL_INSN:
399 case JUMP_INSN:
400 length = fallback_fn (insn);
401 break;
402
403 case INSN:
404 body = PATTERN (insn);
405 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
406 return 0;
407
408 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
409 length = asm_insn_count (body) * fallback_fn (insn);
410 else if (GET_CODE (body) == SEQUENCE)
411 for (i = 0; i < XVECLEN (body, 0); i++)
412 length += get_attr_length_1 (XVECEXP (body, 0, i), fallback_fn);
413 else
414 length = fallback_fn (insn);
415 break;
416
417 default:
418 break;
419 }
420
421 #ifdef ADJUST_INSN_LENGTH
422 ADJUST_INSN_LENGTH (insn, length);
423 #endif
424 return length;
425 }
426
427 /* Obtain the current length of an insn. If branch shortening has been done,
428 get its actual length. Otherwise, get its maximum length. */
429 int
430 get_attr_length (rtx insn)
431 {
432 return get_attr_length_1 (insn, insn_default_length);
433 }
434
435 /* Obtain the current length of an insn. If branch shortening has been done,
436 get its actual length. Otherwise, get its minimum length. */
437 int
438 get_attr_min_length (rtx insn)
439 {
440 return get_attr_length_1 (insn, insn_min_length);
441 }
442 \f
443 /* Code to handle alignment inside shorten_branches. */
444
445 /* Here is an explanation how the algorithm in align_fuzz can give
446 proper results:
447
448 Call a sequence of instructions beginning with alignment point X
449 and continuing until the next alignment point `block X'. When `X'
450 is used in an expression, it means the alignment value of the
451 alignment point.
452
453 Call the distance between the start of the first insn of block X, and
454 the end of the last insn of block X `IX', for the `inner size of X'.
455 This is clearly the sum of the instruction lengths.
456
457 Likewise with the next alignment-delimited block following X, which we
458 shall call block Y.
459
460 Call the distance between the start of the first insn of block X, and
461 the start of the first insn of block Y `OX', for the `outer size of X'.
462
463 The estimated padding is then OX - IX.
464
465 OX can be safely estimated as
466
467 if (X >= Y)
468 OX = round_up(IX, Y)
469 else
470 OX = round_up(IX, X) + Y - X
471
472 Clearly est(IX) >= real(IX), because that only depends on the
473 instruction lengths, and those being overestimated is a given.
474
475 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
476 we needn't worry about that when thinking about OX.
477
478 When X >= Y, the alignment provided by Y adds no uncertainty factor
479 for branch ranges starting before X, so we can just round what we have.
480 But when X < Y, we don't know anything about the, so to speak,
481 `middle bits', so we have to assume the worst when aligning up from an
482 address mod X to one mod Y, which is Y - X. */
483
484 #ifndef LABEL_ALIGN
485 #define LABEL_ALIGN(LABEL) align_labels_log
486 #endif
487
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
491
492 #ifndef LABEL_ALIGN_AFTER_BARRIER
493 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
494 #endif
495
496 #ifndef JUMP_ALIGN
497 #define JUMP_ALIGN(LABEL) align_jumps_log
498 #endif
499
500 int
501 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED)
502 {
503 return 0;
504 }
505
506 int
507 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
508 {
509 return align_loops_max_skip;
510 }
511
512 int
513 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
514 {
515 return align_labels_max_skip;
516 }
517
518 int
519 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
520 {
521 return align_jumps_max_skip;
522 }
523
524 #ifndef ADDR_VEC_ALIGN
525 static int
526 final_addr_vec_align (rtx addr_vec)
527 {
528 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
529
530 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
531 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
532 return exact_log2 (align);
533
534 }
535
536 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
537 #endif
538
539 #ifndef INSN_LENGTH_ALIGNMENT
540 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
541 #endif
542
543 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
544
545 static int min_labelno, max_labelno;
546
547 #define LABEL_TO_ALIGNMENT(LABEL) \
548 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
549
550 #define LABEL_TO_MAX_SKIP(LABEL) \
551 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
552
553 /* For the benefit of port specific code do this also as a function. */
554
555 int
556 label_to_alignment (rtx label)
557 {
558 if (CODE_LABEL_NUMBER (label) <= max_labelno)
559 return LABEL_TO_ALIGNMENT (label);
560 return 0;
561 }
562
563 int
564 label_to_max_skip (rtx label)
565 {
566 if (CODE_LABEL_NUMBER (label) <= max_labelno)
567 return LABEL_TO_MAX_SKIP (label);
568 return 0;
569 }
570
571 /* The differences in addresses
572 between a branch and its target might grow or shrink depending on
573 the alignment the start insn of the range (the branch for a forward
574 branch or the label for a backward branch) starts out on; if these
575 differences are used naively, they can even oscillate infinitely.
576 We therefore want to compute a 'worst case' address difference that
577 is independent of the alignment the start insn of the range end
578 up on, and that is at least as large as the actual difference.
579 The function align_fuzz calculates the amount we have to add to the
580 naively computed difference, by traversing the part of the alignment
581 chain of the start insn of the range that is in front of the end insn
582 of the range, and considering for each alignment the maximum amount
583 that it might contribute to a size increase.
584
585 For casesi tables, we also want to know worst case minimum amounts of
586 address difference, in case a machine description wants to introduce
587 some common offset that is added to all offsets in a table.
588 For this purpose, align_fuzz with a growth argument of 0 computes the
589 appropriate adjustment. */
590
591 /* Compute the maximum delta by which the difference of the addresses of
592 START and END might grow / shrink due to a different address for start
593 which changes the size of alignment insns between START and END.
594 KNOWN_ALIGN_LOG is the alignment known for START.
595 GROWTH should be ~0 if the objective is to compute potential code size
596 increase, and 0 if the objective is to compute potential shrink.
597 The return value is undefined for any other value of GROWTH. */
598
599 static int
600 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
601 {
602 int uid = INSN_UID (start);
603 rtx align_label;
604 int known_align = 1 << known_align_log;
605 int end_shuid = INSN_SHUID (end);
606 int fuzz = 0;
607
608 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
609 {
610 int align_addr, new_align;
611
612 uid = INSN_UID (align_label);
613 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
614 if (uid_shuid[uid] > end_shuid)
615 break;
616 known_align_log = LABEL_TO_ALIGNMENT (align_label);
617 new_align = 1 << known_align_log;
618 if (new_align < known_align)
619 continue;
620 fuzz += (-align_addr ^ growth) & (new_align - known_align);
621 known_align = new_align;
622 }
623 return fuzz;
624 }
625
626 /* Compute a worst-case reference address of a branch so that it
627 can be safely used in the presence of aligned labels. Since the
628 size of the branch itself is unknown, the size of the branch is
629 not included in the range. I.e. for a forward branch, the reference
630 address is the end address of the branch as known from the previous
631 branch shortening pass, minus a value to account for possible size
632 increase due to alignment. For a backward branch, it is the start
633 address of the branch as known from the current pass, plus a value
634 to account for possible size increase due to alignment.
635 NB.: Therefore, the maximum offset allowed for backward branches needs
636 to exclude the branch size. */
637
638 int
639 insn_current_reference_address (rtx branch)
640 {
641 rtx dest, seq;
642 int seq_uid;
643
644 if (! INSN_ADDRESSES_SET_P ())
645 return 0;
646
647 seq = NEXT_INSN (PREV_INSN (branch));
648 seq_uid = INSN_UID (seq);
649 if (!JUMP_P (branch))
650 /* This can happen for example on the PA; the objective is to know the
651 offset to address something in front of the start of the function.
652 Thus, we can treat it like a backward branch.
653 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
654 any alignment we'd encounter, so we skip the call to align_fuzz. */
655 return insn_current_address;
656 dest = JUMP_LABEL (branch);
657
658 /* BRANCH has no proper alignment chain set, so use SEQ.
659 BRANCH also has no INSN_SHUID. */
660 if (INSN_SHUID (seq) < INSN_SHUID (dest))
661 {
662 /* Forward branch. */
663 return (insn_last_address + insn_lengths[seq_uid]
664 - align_fuzz (seq, dest, length_unit_log, ~0));
665 }
666 else
667 {
668 /* Backward branch. */
669 return (insn_current_address
670 + align_fuzz (dest, seq, length_unit_log, ~0));
671 }
672 }
673 \f
674 /* Compute branch alignments based on frequency information in the
675 CFG. */
676
677 unsigned int
678 compute_alignments (void)
679 {
680 int log, max_skip, max_log;
681 basic_block bb;
682 int freq_max = 0;
683 int freq_threshold = 0;
684
685 if (label_align)
686 {
687 free (label_align);
688 label_align = 0;
689 }
690
691 max_labelno = max_label_num ();
692 min_labelno = get_first_label_num ();
693 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
694
695 /* If not optimizing or optimizing for size, don't assign any alignments. */
696 if (! optimize || optimize_function_for_size_p (cfun))
697 return 0;
698
699 if (dump_file)
700 {
701 dump_reg_info (dump_file);
702 dump_flow_info (dump_file, TDF_DETAILS);
703 flow_loops_dump (dump_file, NULL, 1);
704 }
705 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
706 FOR_EACH_BB_FN (bb, cfun)
707 if (bb->frequency > freq_max)
708 freq_max = bb->frequency;
709 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
710
711 if (dump_file)
712 fprintf (dump_file, "freq_max: %i\n",freq_max);
713 FOR_EACH_BB_FN (bb, cfun)
714 {
715 rtx_insn *label = BB_HEAD (bb);
716 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
717 edge e;
718 edge_iterator ei;
719
720 if (!LABEL_P (label)
721 || optimize_bb_for_size_p (bb))
722 {
723 if (dump_file)
724 fprintf (dump_file,
725 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
726 bb->index, bb->frequency, bb->loop_father->num,
727 bb_loop_depth (bb));
728 continue;
729 }
730 max_log = LABEL_ALIGN (label);
731 max_skip = targetm.asm_out.label_align_max_skip (label);
732
733 FOR_EACH_EDGE (e, ei, bb->preds)
734 {
735 if (e->flags & EDGE_FALLTHRU)
736 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
737 else
738 branch_frequency += EDGE_FREQUENCY (e);
739 }
740 if (dump_file)
741 {
742 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
743 " %2i fall %4i branch %4i",
744 bb->index, bb->frequency, bb->loop_father->num,
745 bb_loop_depth (bb),
746 fallthru_frequency, branch_frequency);
747 if (!bb->loop_father->inner && bb->loop_father->num)
748 fprintf (dump_file, " inner_loop");
749 if (bb->loop_father->header == bb)
750 fprintf (dump_file, " loop_header");
751 fprintf (dump_file, "\n");
752 }
753
754 /* There are two purposes to align block with no fallthru incoming edge:
755 1) to avoid fetch stalls when branch destination is near cache boundary
756 2) to improve cache efficiency in case the previous block is not executed
757 (so it does not need to be in the cache).
758
759 We to catch first case, we align frequently executed blocks.
760 To catch the second, we align blocks that are executed more frequently
761 than the predecessor and the predecessor is likely to not be executed
762 when function is called. */
763
764 if (!has_fallthru
765 && (branch_frequency > freq_threshold
766 || (bb->frequency > bb->prev_bb->frequency * 10
767 && (bb->prev_bb->frequency
768 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
769 {
770 log = JUMP_ALIGN (label);
771 if (dump_file)
772 fprintf (dump_file, " jump alignment added.\n");
773 if (max_log < log)
774 {
775 max_log = log;
776 max_skip = targetm.asm_out.jump_align_max_skip (label);
777 }
778 }
779 /* In case block is frequent and reached mostly by non-fallthru edge,
780 align it. It is most likely a first block of loop. */
781 if (has_fallthru
782 && !(single_succ_p (bb)
783 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
784 && optimize_bb_for_speed_p (bb)
785 && branch_frequency + fallthru_frequency > freq_threshold
786 && (branch_frequency
787 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
788 {
789 log = LOOP_ALIGN (label);
790 if (dump_file)
791 fprintf (dump_file, " internal loop alignment added.\n");
792 if (max_log < log)
793 {
794 max_log = log;
795 max_skip = targetm.asm_out.loop_align_max_skip (label);
796 }
797 }
798 LABEL_TO_ALIGNMENT (label) = max_log;
799 LABEL_TO_MAX_SKIP (label) = max_skip;
800 }
801
802 loop_optimizer_finalize ();
803 free_dominance_info (CDI_DOMINATORS);
804 return 0;
805 }
806
807 /* Grow the LABEL_ALIGN array after new labels are created. */
808
809 static void
810 grow_label_align (void)
811 {
812 int old = max_labelno;
813 int n_labels;
814 int n_old_labels;
815
816 max_labelno = max_label_num ();
817
818 n_labels = max_labelno - min_labelno + 1;
819 n_old_labels = old - min_labelno + 1;
820
821 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
822
823 /* Range of labels grows monotonically in the function. Failing here
824 means that the initialization of array got lost. */
825 gcc_assert (n_old_labels <= n_labels);
826
827 memset (label_align + n_old_labels, 0,
828 (n_labels - n_old_labels) * sizeof (struct label_alignment));
829 }
830
831 /* Update the already computed alignment information. LABEL_PAIRS is a vector
832 made up of pairs of labels for which the alignment information of the first
833 element will be copied from that of the second element. */
834
835 void
836 update_alignments (vec<rtx> &label_pairs)
837 {
838 unsigned int i = 0;
839 rtx iter, label = NULL_RTX;
840
841 if (max_labelno != max_label_num ())
842 grow_label_align ();
843
844 FOR_EACH_VEC_ELT (label_pairs, i, iter)
845 if (i & 1)
846 {
847 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
848 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
849 }
850 else
851 label = iter;
852 }
853
854 namespace {
855
856 const pass_data pass_data_compute_alignments =
857 {
858 RTL_PASS, /* type */
859 "alignments", /* name */
860 OPTGROUP_NONE, /* optinfo_flags */
861 TV_NONE, /* tv_id */
862 0, /* properties_required */
863 0, /* properties_provided */
864 0, /* properties_destroyed */
865 0, /* todo_flags_start */
866 0, /* todo_flags_finish */
867 };
868
869 class pass_compute_alignments : public rtl_opt_pass
870 {
871 public:
872 pass_compute_alignments (gcc::context *ctxt)
873 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
874 {}
875
876 /* opt_pass methods: */
877 virtual unsigned int execute (function *) { return compute_alignments (); }
878
879 }; // class pass_compute_alignments
880
881 } // anon namespace
882
883 rtl_opt_pass *
884 make_pass_compute_alignments (gcc::context *ctxt)
885 {
886 return new pass_compute_alignments (ctxt);
887 }
888
889 \f
890 /* Make a pass over all insns and compute their actual lengths by shortening
891 any branches of variable length if possible. */
892
893 /* shorten_branches might be called multiple times: for example, the SH
894 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
895 In order to do this, it needs proper length information, which it obtains
896 by calling shorten_branches. This cannot be collapsed with
897 shorten_branches itself into a single pass unless we also want to integrate
898 reorg.c, since the branch splitting exposes new instructions with delay
899 slots. */
900
901 void
902 shorten_branches (rtx uncast_first)
903 {
904 rtx_insn *first = safe_as_a <rtx_insn *> (uncast_first);
905 rtx_insn *insn;
906 int max_uid;
907 int i;
908 int max_log;
909 int max_skip;
910 #define MAX_CODE_ALIGN 16
911 rtx_insn *seq;
912 int something_changed = 1;
913 char *varying_length;
914 rtx body;
915 int uid;
916 rtx align_tab[MAX_CODE_ALIGN];
917
918 /* Compute maximum UID and allocate label_align / uid_shuid. */
919 max_uid = get_max_uid ();
920
921 /* Free uid_shuid before reallocating it. */
922 free (uid_shuid);
923
924 uid_shuid = XNEWVEC (int, max_uid);
925
926 if (max_labelno != max_label_num ())
927 grow_label_align ();
928
929 /* Initialize label_align and set up uid_shuid to be strictly
930 monotonically rising with insn order. */
931 /* We use max_log here to keep track of the maximum alignment we want to
932 impose on the next CODE_LABEL (or the current one if we are processing
933 the CODE_LABEL itself). */
934
935 max_log = 0;
936 max_skip = 0;
937
938 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
939 {
940 int log;
941
942 INSN_SHUID (insn) = i++;
943 if (INSN_P (insn))
944 continue;
945
946 if (LABEL_P (insn))
947 {
948 rtx_insn *next;
949 bool next_is_jumptable;
950
951 /* Merge in alignments computed by compute_alignments. */
952 log = LABEL_TO_ALIGNMENT (insn);
953 if (max_log < log)
954 {
955 max_log = log;
956 max_skip = LABEL_TO_MAX_SKIP (insn);
957 }
958
959 next = next_nonnote_insn (insn);
960 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
961 if (!next_is_jumptable)
962 {
963 log = LABEL_ALIGN (insn);
964 if (max_log < log)
965 {
966 max_log = log;
967 max_skip = targetm.asm_out.label_align_max_skip (insn);
968 }
969 }
970 /* ADDR_VECs only take room if read-only data goes into the text
971 section. */
972 if ((JUMP_TABLES_IN_TEXT_SECTION
973 || readonly_data_section == text_section)
974 && next_is_jumptable)
975 {
976 log = ADDR_VEC_ALIGN (next);
977 if (max_log < log)
978 {
979 max_log = log;
980 max_skip = targetm.asm_out.label_align_max_skip (insn);
981 }
982 }
983 LABEL_TO_ALIGNMENT (insn) = max_log;
984 LABEL_TO_MAX_SKIP (insn) = max_skip;
985 max_log = 0;
986 max_skip = 0;
987 }
988 else if (BARRIER_P (insn))
989 {
990 rtx_insn *label;
991
992 for (label = insn; label && ! INSN_P (label);
993 label = NEXT_INSN (label))
994 if (LABEL_P (label))
995 {
996 log = LABEL_ALIGN_AFTER_BARRIER (insn);
997 if (max_log < log)
998 {
999 max_log = log;
1000 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
1001 }
1002 break;
1003 }
1004 }
1005 }
1006 if (!HAVE_ATTR_length)
1007 return;
1008
1009 /* Allocate the rest of the arrays. */
1010 insn_lengths = XNEWVEC (int, max_uid);
1011 insn_lengths_max_uid = max_uid;
1012 /* Syntax errors can lead to labels being outside of the main insn stream.
1013 Initialize insn_addresses, so that we get reproducible results. */
1014 INSN_ADDRESSES_ALLOC (max_uid);
1015
1016 varying_length = XCNEWVEC (char, max_uid);
1017
1018 /* Initialize uid_align. We scan instructions
1019 from end to start, and keep in align_tab[n] the last seen insn
1020 that does an alignment of at least n+1, i.e. the successor
1021 in the alignment chain for an insn that does / has a known
1022 alignment of n. */
1023 uid_align = XCNEWVEC (rtx, max_uid);
1024
1025 for (i = MAX_CODE_ALIGN; --i >= 0;)
1026 align_tab[i] = NULL_RTX;
1027 seq = get_last_insn ();
1028 for (; seq; seq = PREV_INSN (seq))
1029 {
1030 int uid = INSN_UID (seq);
1031 int log;
1032 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1033 uid_align[uid] = align_tab[0];
1034 if (log)
1035 {
1036 /* Found an alignment label. */
1037 uid_align[uid] = align_tab[log];
1038 for (i = log - 1; i >= 0; i--)
1039 align_tab[i] = seq;
1040 }
1041 }
1042
1043 /* When optimizing, we start assuming minimum length, and keep increasing
1044 lengths as we find the need for this, till nothing changes.
1045 When not optimizing, we start assuming maximum lengths, and
1046 do a single pass to update the lengths. */
1047 bool increasing = optimize != 0;
1048
1049 #ifdef CASE_VECTOR_SHORTEN_MODE
1050 if (optimize)
1051 {
1052 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1053 label fields. */
1054
1055 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1056 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1057 int rel;
1058
1059 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1060 {
1061 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1062 int len, i, min, max, insn_shuid;
1063 int min_align;
1064 addr_diff_vec_flags flags;
1065
1066 if (! JUMP_TABLE_DATA_P (insn)
1067 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1068 continue;
1069 pat = PATTERN (insn);
1070 len = XVECLEN (pat, 1);
1071 gcc_assert (len > 0);
1072 min_align = MAX_CODE_ALIGN;
1073 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1074 {
1075 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1076 int shuid = INSN_SHUID (lab);
1077 if (shuid < min)
1078 {
1079 min = shuid;
1080 min_lab = lab;
1081 }
1082 if (shuid > max)
1083 {
1084 max = shuid;
1085 max_lab = lab;
1086 }
1087 if (min_align > LABEL_TO_ALIGNMENT (lab))
1088 min_align = LABEL_TO_ALIGNMENT (lab);
1089 }
1090 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1091 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1092 insn_shuid = INSN_SHUID (insn);
1093 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1094 memset (&flags, 0, sizeof (flags));
1095 flags.min_align = min_align;
1096 flags.base_after_vec = rel > insn_shuid;
1097 flags.min_after_vec = min > insn_shuid;
1098 flags.max_after_vec = max > insn_shuid;
1099 flags.min_after_base = min > rel;
1100 flags.max_after_base = max > rel;
1101 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1102
1103 if (increasing)
1104 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1105 }
1106 }
1107 #endif /* CASE_VECTOR_SHORTEN_MODE */
1108
1109 /* Compute initial lengths, addresses, and varying flags for each insn. */
1110 int (*length_fun) (rtx) = increasing ? insn_min_length : insn_default_length;
1111
1112 for (insn_current_address = 0, insn = first;
1113 insn != 0;
1114 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1115 {
1116 uid = INSN_UID (insn);
1117
1118 insn_lengths[uid] = 0;
1119
1120 if (LABEL_P (insn))
1121 {
1122 int log = LABEL_TO_ALIGNMENT (insn);
1123 if (log)
1124 {
1125 int align = 1 << log;
1126 int new_address = (insn_current_address + align - 1) & -align;
1127 insn_lengths[uid] = new_address - insn_current_address;
1128 }
1129 }
1130
1131 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1132
1133 if (NOTE_P (insn) || BARRIER_P (insn)
1134 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1135 continue;
1136 if (INSN_DELETED_P (insn))
1137 continue;
1138
1139 body = PATTERN (insn);
1140 if (JUMP_TABLE_DATA_P (insn))
1141 {
1142 /* This only takes room if read-only data goes into the text
1143 section. */
1144 if (JUMP_TABLES_IN_TEXT_SECTION
1145 || readonly_data_section == text_section)
1146 insn_lengths[uid] = (XVECLEN (body,
1147 GET_CODE (body) == ADDR_DIFF_VEC)
1148 * GET_MODE_SIZE (GET_MODE (body)));
1149 /* Alignment is handled by ADDR_VEC_ALIGN. */
1150 }
1151 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1152 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1153 else if (GET_CODE (body) == SEQUENCE)
1154 {
1155 int i;
1156 int const_delay_slots;
1157 #ifdef DELAY_SLOTS
1158 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1159 #else
1160 const_delay_slots = 0;
1161 #endif
1162 int (*inner_length_fun) (rtx)
1163 = const_delay_slots ? length_fun : insn_default_length;
1164 /* Inside a delay slot sequence, we do not do any branch shortening
1165 if the shortening could change the number of delay slots
1166 of the branch. */
1167 for (i = 0; i < XVECLEN (body, 0); i++)
1168 {
1169 rtx inner_insn = XVECEXP (body, 0, i);
1170 int inner_uid = INSN_UID (inner_insn);
1171 int inner_length;
1172
1173 if (GET_CODE (body) == ASM_INPUT
1174 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1175 inner_length = (asm_insn_count (PATTERN (inner_insn))
1176 * insn_default_length (inner_insn));
1177 else
1178 inner_length = inner_length_fun (inner_insn);
1179
1180 insn_lengths[inner_uid] = inner_length;
1181 if (const_delay_slots)
1182 {
1183 if ((varying_length[inner_uid]
1184 = insn_variable_length_p (inner_insn)) != 0)
1185 varying_length[uid] = 1;
1186 INSN_ADDRESSES (inner_uid) = (insn_current_address
1187 + insn_lengths[uid]);
1188 }
1189 else
1190 varying_length[inner_uid] = 0;
1191 insn_lengths[uid] += inner_length;
1192 }
1193 }
1194 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1195 {
1196 insn_lengths[uid] = length_fun (insn);
1197 varying_length[uid] = insn_variable_length_p (insn);
1198 }
1199
1200 /* If needed, do any adjustment. */
1201 #ifdef ADJUST_INSN_LENGTH
1202 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1203 if (insn_lengths[uid] < 0)
1204 fatal_insn ("negative insn length", insn);
1205 #endif
1206 }
1207
1208 /* Now loop over all the insns finding varying length insns. For each,
1209 get the current insn length. If it has changed, reflect the change.
1210 When nothing changes for a full pass, we are done. */
1211
1212 while (something_changed)
1213 {
1214 something_changed = 0;
1215 insn_current_align = MAX_CODE_ALIGN - 1;
1216 for (insn_current_address = 0, insn = first;
1217 insn != 0;
1218 insn = NEXT_INSN (insn))
1219 {
1220 int new_length;
1221 #ifdef ADJUST_INSN_LENGTH
1222 int tmp_length;
1223 #endif
1224 int length_align;
1225
1226 uid = INSN_UID (insn);
1227
1228 if (LABEL_P (insn))
1229 {
1230 int log = LABEL_TO_ALIGNMENT (insn);
1231
1232 #ifdef CASE_VECTOR_SHORTEN_MODE
1233 /* If the mode of a following jump table was changed, we
1234 may need to update the alignment of this label. */
1235 rtx_insn *next;
1236 bool next_is_jumptable;
1237
1238 next = next_nonnote_insn (insn);
1239 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1240 if ((JUMP_TABLES_IN_TEXT_SECTION
1241 || readonly_data_section == text_section)
1242 && next_is_jumptable)
1243 {
1244 int newlog = ADDR_VEC_ALIGN (next);
1245 if (newlog != log)
1246 {
1247 log = newlog;
1248 LABEL_TO_ALIGNMENT (insn) = log;
1249 something_changed = 1;
1250 }
1251 }
1252 #endif
1253
1254 if (log > insn_current_align)
1255 {
1256 int align = 1 << log;
1257 int new_address= (insn_current_address + align - 1) & -align;
1258 insn_lengths[uid] = new_address - insn_current_address;
1259 insn_current_align = log;
1260 insn_current_address = new_address;
1261 }
1262 else
1263 insn_lengths[uid] = 0;
1264 INSN_ADDRESSES (uid) = insn_current_address;
1265 continue;
1266 }
1267
1268 length_align = INSN_LENGTH_ALIGNMENT (insn);
1269 if (length_align < insn_current_align)
1270 insn_current_align = length_align;
1271
1272 insn_last_address = INSN_ADDRESSES (uid);
1273 INSN_ADDRESSES (uid) = insn_current_address;
1274
1275 #ifdef CASE_VECTOR_SHORTEN_MODE
1276 if (optimize
1277 && JUMP_TABLE_DATA_P (insn)
1278 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1279 {
1280 rtx body = PATTERN (insn);
1281 int old_length = insn_lengths[uid];
1282 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1283 rtx min_lab = XEXP (XEXP (body, 2), 0);
1284 rtx max_lab = XEXP (XEXP (body, 3), 0);
1285 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1286 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1287 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1288 rtx prev;
1289 int rel_align = 0;
1290 addr_diff_vec_flags flags;
1291 enum machine_mode vec_mode;
1292
1293 /* Avoid automatic aggregate initialization. */
1294 flags = ADDR_DIFF_VEC_FLAGS (body);
1295
1296 /* Try to find a known alignment for rel_lab. */
1297 for (prev = rel_lab;
1298 prev
1299 && ! insn_lengths[INSN_UID (prev)]
1300 && ! (varying_length[INSN_UID (prev)] & 1);
1301 prev = PREV_INSN (prev))
1302 if (varying_length[INSN_UID (prev)] & 2)
1303 {
1304 rel_align = LABEL_TO_ALIGNMENT (prev);
1305 break;
1306 }
1307
1308 /* See the comment on addr_diff_vec_flags in rtl.h for the
1309 meaning of the flags values. base: REL_LAB vec: INSN */
1310 /* Anything after INSN has still addresses from the last
1311 pass; adjust these so that they reflect our current
1312 estimate for this pass. */
1313 if (flags.base_after_vec)
1314 rel_addr += insn_current_address - insn_last_address;
1315 if (flags.min_after_vec)
1316 min_addr += insn_current_address - insn_last_address;
1317 if (flags.max_after_vec)
1318 max_addr += insn_current_address - insn_last_address;
1319 /* We want to know the worst case, i.e. lowest possible value
1320 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1321 its offset is positive, and we have to be wary of code shrink;
1322 otherwise, it is negative, and we have to be vary of code
1323 size increase. */
1324 if (flags.min_after_base)
1325 {
1326 /* If INSN is between REL_LAB and MIN_LAB, the size
1327 changes we are about to make can change the alignment
1328 within the observed offset, therefore we have to break
1329 it up into two parts that are independent. */
1330 if (! flags.base_after_vec && flags.min_after_vec)
1331 {
1332 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1333 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1334 }
1335 else
1336 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1337 }
1338 else
1339 {
1340 if (flags.base_after_vec && ! flags.min_after_vec)
1341 {
1342 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1343 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1344 }
1345 else
1346 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1347 }
1348 /* Likewise, determine the highest lowest possible value
1349 for the offset of MAX_LAB. */
1350 if (flags.max_after_base)
1351 {
1352 if (! flags.base_after_vec && flags.max_after_vec)
1353 {
1354 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1355 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1356 }
1357 else
1358 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1359 }
1360 else
1361 {
1362 if (flags.base_after_vec && ! flags.max_after_vec)
1363 {
1364 max_addr += align_fuzz (max_lab, insn, 0, 0);
1365 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1366 }
1367 else
1368 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1369 }
1370 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1371 max_addr - rel_addr, body);
1372 if (!increasing
1373 || (GET_MODE_SIZE (vec_mode)
1374 >= GET_MODE_SIZE (GET_MODE (body))))
1375 PUT_MODE (body, vec_mode);
1376 if (JUMP_TABLES_IN_TEXT_SECTION
1377 || readonly_data_section == text_section)
1378 {
1379 insn_lengths[uid]
1380 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1381 insn_current_address += insn_lengths[uid];
1382 if (insn_lengths[uid] != old_length)
1383 something_changed = 1;
1384 }
1385
1386 continue;
1387 }
1388 #endif /* CASE_VECTOR_SHORTEN_MODE */
1389
1390 if (! (varying_length[uid]))
1391 {
1392 if (NONJUMP_INSN_P (insn)
1393 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1394 {
1395 int i;
1396
1397 body = PATTERN (insn);
1398 for (i = 0; i < XVECLEN (body, 0); i++)
1399 {
1400 rtx inner_insn = XVECEXP (body, 0, i);
1401 int inner_uid = INSN_UID (inner_insn);
1402
1403 INSN_ADDRESSES (inner_uid) = insn_current_address;
1404
1405 insn_current_address += insn_lengths[inner_uid];
1406 }
1407 }
1408 else
1409 insn_current_address += insn_lengths[uid];
1410
1411 continue;
1412 }
1413
1414 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1415 {
1416 int i;
1417
1418 body = PATTERN (insn);
1419 new_length = 0;
1420 for (i = 0; i < XVECLEN (body, 0); i++)
1421 {
1422 rtx inner_insn = XVECEXP (body, 0, i);
1423 int inner_uid = INSN_UID (inner_insn);
1424 int inner_length;
1425
1426 INSN_ADDRESSES (inner_uid) = insn_current_address;
1427
1428 /* insn_current_length returns 0 for insns with a
1429 non-varying length. */
1430 if (! varying_length[inner_uid])
1431 inner_length = insn_lengths[inner_uid];
1432 else
1433 inner_length = insn_current_length (inner_insn);
1434
1435 if (inner_length != insn_lengths[inner_uid])
1436 {
1437 if (!increasing || inner_length > insn_lengths[inner_uid])
1438 {
1439 insn_lengths[inner_uid] = inner_length;
1440 something_changed = 1;
1441 }
1442 else
1443 inner_length = insn_lengths[inner_uid];
1444 }
1445 insn_current_address += inner_length;
1446 new_length += inner_length;
1447 }
1448 }
1449 else
1450 {
1451 new_length = insn_current_length (insn);
1452 insn_current_address += new_length;
1453 }
1454
1455 #ifdef ADJUST_INSN_LENGTH
1456 /* If needed, do any adjustment. */
1457 tmp_length = new_length;
1458 ADJUST_INSN_LENGTH (insn, new_length);
1459 insn_current_address += (new_length - tmp_length);
1460 #endif
1461
1462 if (new_length != insn_lengths[uid]
1463 && (!increasing || new_length > insn_lengths[uid]))
1464 {
1465 insn_lengths[uid] = new_length;
1466 something_changed = 1;
1467 }
1468 else
1469 insn_current_address += insn_lengths[uid] - new_length;
1470 }
1471 /* For a non-optimizing compile, do only a single pass. */
1472 if (!increasing)
1473 break;
1474 }
1475
1476 free (varying_length);
1477 }
1478
1479 /* Given the body of an INSN known to be generated by an ASM statement, return
1480 the number of machine instructions likely to be generated for this insn.
1481 This is used to compute its length. */
1482
1483 static int
1484 asm_insn_count (rtx body)
1485 {
1486 const char *templ;
1487
1488 if (GET_CODE (body) == ASM_INPUT)
1489 templ = XSTR (body, 0);
1490 else
1491 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1492
1493 return asm_str_count (templ);
1494 }
1495
1496 /* Return the number of machine instructions likely to be generated for the
1497 inline-asm template. */
1498 int
1499 asm_str_count (const char *templ)
1500 {
1501 int count = 1;
1502
1503 if (!*templ)
1504 return 0;
1505
1506 for (; *templ; templ++)
1507 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1508 || *templ == '\n')
1509 count++;
1510
1511 return count;
1512 }
1513 \f
1514 /* ??? This is probably the wrong place for these. */
1515 /* Structure recording the mapping from source file and directory
1516 names at compile time to those to be embedded in debug
1517 information. */
1518 typedef struct debug_prefix_map
1519 {
1520 const char *old_prefix;
1521 const char *new_prefix;
1522 size_t old_len;
1523 size_t new_len;
1524 struct debug_prefix_map *next;
1525 } debug_prefix_map;
1526
1527 /* Linked list of such structures. */
1528 static debug_prefix_map *debug_prefix_maps;
1529
1530
1531 /* Record a debug file prefix mapping. ARG is the argument to
1532 -fdebug-prefix-map and must be of the form OLD=NEW. */
1533
1534 void
1535 add_debug_prefix_map (const char *arg)
1536 {
1537 debug_prefix_map *map;
1538 const char *p;
1539
1540 p = strchr (arg, '=');
1541 if (!p)
1542 {
1543 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1544 return;
1545 }
1546 map = XNEW (debug_prefix_map);
1547 map->old_prefix = xstrndup (arg, p - arg);
1548 map->old_len = p - arg;
1549 p++;
1550 map->new_prefix = xstrdup (p);
1551 map->new_len = strlen (p);
1552 map->next = debug_prefix_maps;
1553 debug_prefix_maps = map;
1554 }
1555
1556 /* Perform user-specified mapping of debug filename prefixes. Return
1557 the new name corresponding to FILENAME. */
1558
1559 const char *
1560 remap_debug_filename (const char *filename)
1561 {
1562 debug_prefix_map *map;
1563 char *s;
1564 const char *name;
1565 size_t name_len;
1566
1567 for (map = debug_prefix_maps; map; map = map->next)
1568 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1569 break;
1570 if (!map)
1571 return filename;
1572 name = filename + map->old_len;
1573 name_len = strlen (name) + 1;
1574 s = (char *) alloca (name_len + map->new_len);
1575 memcpy (s, map->new_prefix, map->new_len);
1576 memcpy (s + map->new_len, name, name_len);
1577 return ggc_strdup (s);
1578 }
1579 \f
1580 /* Return true if DWARF2 debug info can be emitted for DECL. */
1581
1582 static bool
1583 dwarf2_debug_info_emitted_p (tree decl)
1584 {
1585 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1586 return false;
1587
1588 if (DECL_IGNORED_P (decl))
1589 return false;
1590
1591 return true;
1592 }
1593
1594 /* Return scope resulting from combination of S1 and S2. */
1595 static tree
1596 choose_inner_scope (tree s1, tree s2)
1597 {
1598 if (!s1)
1599 return s2;
1600 if (!s2)
1601 return s1;
1602 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1603 return s1;
1604 return s2;
1605 }
1606
1607 /* Emit lexical block notes needed to change scope from S1 to S2. */
1608
1609 static void
1610 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1611 {
1612 rtx_insn *insn = orig_insn;
1613 tree com = NULL_TREE;
1614 tree ts1 = s1, ts2 = s2;
1615 tree s;
1616
1617 while (ts1 != ts2)
1618 {
1619 gcc_assert (ts1 && ts2);
1620 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1621 ts1 = BLOCK_SUPERCONTEXT (ts1);
1622 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1623 ts2 = BLOCK_SUPERCONTEXT (ts2);
1624 else
1625 {
1626 ts1 = BLOCK_SUPERCONTEXT (ts1);
1627 ts2 = BLOCK_SUPERCONTEXT (ts2);
1628 }
1629 }
1630 com = ts1;
1631
1632 /* Close scopes. */
1633 s = s1;
1634 while (s != com)
1635 {
1636 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1637 NOTE_BLOCK (note) = s;
1638 s = BLOCK_SUPERCONTEXT (s);
1639 }
1640
1641 /* Open scopes. */
1642 s = s2;
1643 while (s != com)
1644 {
1645 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1646 NOTE_BLOCK (insn) = s;
1647 s = BLOCK_SUPERCONTEXT (s);
1648 }
1649 }
1650
1651 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1652 on the scope tree and the newly reordered instructions. */
1653
1654 static void
1655 reemit_insn_block_notes (void)
1656 {
1657 tree cur_block = DECL_INITIAL (cfun->decl);
1658 rtx_insn *insn;
1659 rtx_note *note;
1660
1661 insn = get_insns ();
1662 for (; insn; insn = NEXT_INSN (insn))
1663 {
1664 tree this_block;
1665
1666 /* Prevent lexical blocks from straddling section boundaries. */
1667 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1668 {
1669 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1670 s = BLOCK_SUPERCONTEXT (s))
1671 {
1672 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1673 NOTE_BLOCK (note) = s;
1674 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1675 NOTE_BLOCK (note) = s;
1676 }
1677 }
1678
1679 if (!active_insn_p (insn))
1680 continue;
1681
1682 /* Avoid putting scope notes between jump table and its label. */
1683 if (JUMP_TABLE_DATA_P (insn))
1684 continue;
1685
1686 this_block = insn_scope (insn);
1687 /* For sequences compute scope resulting from merging all scopes
1688 of instructions nested inside. */
1689 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
1690 {
1691 int i;
1692 rtx body = PATTERN (insn);
1693
1694 this_block = NULL;
1695 for (i = 0; i < XVECLEN (body, 0); i++)
1696 this_block = choose_inner_scope (this_block,
1697 insn_scope (XVECEXP (body, 0, i)));
1698 }
1699 if (! this_block)
1700 {
1701 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1702 continue;
1703 else
1704 this_block = DECL_INITIAL (cfun->decl);
1705 }
1706
1707 if (this_block != cur_block)
1708 {
1709 change_scope (insn, cur_block, this_block);
1710 cur_block = this_block;
1711 }
1712 }
1713
1714 /* change_scope emits before the insn, not after. */
1715 note = emit_note (NOTE_INSN_DELETED);
1716 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1717 delete_insn (note);
1718
1719 reorder_blocks ();
1720 }
1721
1722 /* Output assembler code for the start of a function,
1723 and initialize some of the variables in this file
1724 for the new function. The label for the function and associated
1725 assembler pseudo-ops have already been output in `assemble_start_function'.
1726
1727 FIRST is the first insn of the rtl for the function being compiled.
1728 FILE is the file to write assembler code to.
1729 OPTIMIZE_P is nonzero if we should eliminate redundant
1730 test and compare insns. */
1731
1732 void
1733 final_start_function (rtx uncast_first, FILE *file,
1734 int optimize_p ATTRIBUTE_UNUSED)
1735 {
1736 rtx_insn *first = safe_as_a <rtx_insn *> (uncast_first);
1737 block_depth = 0;
1738
1739 this_is_asm_operands = 0;
1740
1741 need_profile_function = false;
1742
1743 last_filename = LOCATION_FILE (prologue_location);
1744 last_linenum = LOCATION_LINE (prologue_location);
1745 last_discriminator = discriminator = 0;
1746
1747 high_block_linenum = high_function_linenum = last_linenum;
1748
1749 if (flag_sanitize & SANITIZE_ADDRESS)
1750 asan_function_start ();
1751
1752 if (!DECL_IGNORED_P (current_function_decl))
1753 debug_hooks->begin_prologue (last_linenum, last_filename);
1754
1755 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1756 dwarf2out_begin_prologue (0, NULL);
1757
1758 #ifdef LEAF_REG_REMAP
1759 if (crtl->uses_only_leaf_regs)
1760 leaf_renumber_regs (first);
1761 #endif
1762
1763 /* The Sun386i and perhaps other machines don't work right
1764 if the profiling code comes after the prologue. */
1765 if (targetm.profile_before_prologue () && crtl->profile)
1766 {
1767 if (targetm.asm_out.function_prologue
1768 == default_function_pro_epilogue
1769 #ifdef HAVE_prologue
1770 && HAVE_prologue
1771 #endif
1772 )
1773 {
1774 rtx_insn *insn;
1775 for (insn = first; insn; insn = NEXT_INSN (insn))
1776 if (!NOTE_P (insn))
1777 {
1778 insn = NULL;
1779 break;
1780 }
1781 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1782 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1783 break;
1784 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1785 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1786 continue;
1787 else
1788 {
1789 insn = NULL;
1790 break;
1791 }
1792
1793 if (insn)
1794 need_profile_function = true;
1795 else
1796 profile_function (file);
1797 }
1798 else
1799 profile_function (file);
1800 }
1801
1802 /* If debugging, assign block numbers to all of the blocks in this
1803 function. */
1804 if (write_symbols)
1805 {
1806 reemit_insn_block_notes ();
1807 number_blocks (current_function_decl);
1808 /* We never actually put out begin/end notes for the top-level
1809 block in the function. But, conceptually, that block is
1810 always needed. */
1811 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1812 }
1813
1814 if (warn_frame_larger_than
1815 && get_frame_size () > frame_larger_than_size)
1816 {
1817 /* Issue a warning */
1818 warning (OPT_Wframe_larger_than_,
1819 "the frame size of %wd bytes is larger than %wd bytes",
1820 get_frame_size (), frame_larger_than_size);
1821 }
1822
1823 /* First output the function prologue: code to set up the stack frame. */
1824 targetm.asm_out.function_prologue (file, get_frame_size ());
1825
1826 /* If the machine represents the prologue as RTL, the profiling code must
1827 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1828 #ifdef HAVE_prologue
1829 if (! HAVE_prologue)
1830 #endif
1831 profile_after_prologue (file);
1832 }
1833
1834 static void
1835 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1836 {
1837 if (!targetm.profile_before_prologue () && crtl->profile)
1838 profile_function (file);
1839 }
1840
1841 static void
1842 profile_function (FILE *file ATTRIBUTE_UNUSED)
1843 {
1844 #ifndef NO_PROFILE_COUNTERS
1845 # define NO_PROFILE_COUNTERS 0
1846 #endif
1847 #ifdef ASM_OUTPUT_REG_PUSH
1848 rtx sval = NULL, chain = NULL;
1849
1850 if (cfun->returns_struct)
1851 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1852 true);
1853 if (cfun->static_chain_decl)
1854 chain = targetm.calls.static_chain (current_function_decl, true);
1855 #endif /* ASM_OUTPUT_REG_PUSH */
1856
1857 if (! NO_PROFILE_COUNTERS)
1858 {
1859 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1860 switch_to_section (data_section);
1861 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1862 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1863 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1864 }
1865
1866 switch_to_section (current_function_section ());
1867
1868 #ifdef ASM_OUTPUT_REG_PUSH
1869 if (sval && REG_P (sval))
1870 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1871 if (chain && REG_P (chain))
1872 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1873 #endif
1874
1875 FUNCTION_PROFILER (file, current_function_funcdef_no);
1876
1877 #ifdef ASM_OUTPUT_REG_PUSH
1878 if (chain && REG_P (chain))
1879 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1880 if (sval && REG_P (sval))
1881 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1882 #endif
1883 }
1884
1885 /* Output assembler code for the end of a function.
1886 For clarity, args are same as those of `final_start_function'
1887 even though not all of them are needed. */
1888
1889 void
1890 final_end_function (void)
1891 {
1892 app_disable ();
1893
1894 if (!DECL_IGNORED_P (current_function_decl))
1895 debug_hooks->end_function (high_function_linenum);
1896
1897 /* Finally, output the function epilogue:
1898 code to restore the stack frame and return to the caller. */
1899 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1900
1901 /* And debug output. */
1902 if (!DECL_IGNORED_P (current_function_decl))
1903 debug_hooks->end_epilogue (last_linenum, last_filename);
1904
1905 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1906 && dwarf2out_do_frame ())
1907 dwarf2out_end_epilogue (last_linenum, last_filename);
1908 }
1909 \f
1910
1911 /* Dumper helper for basic block information. FILE is the assembly
1912 output file, and INSN is the instruction being emitted. */
1913
1914 static void
1915 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1916 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1917 {
1918 basic_block bb;
1919
1920 if (!flag_debug_asm)
1921 return;
1922
1923 if (INSN_UID (insn) < bb_map_size
1924 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1925 {
1926 edge e;
1927 edge_iterator ei;
1928
1929 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1930 if (bb->frequency)
1931 fprintf (file, " freq:%d", bb->frequency);
1932 if (bb->count)
1933 fprintf (file, " count:%"PRId64,
1934 bb->count);
1935 fprintf (file, " seq:%d", (*bb_seqn)++);
1936 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1937 FOR_EACH_EDGE (e, ei, bb->preds)
1938 {
1939 dump_edge_info (file, e, TDF_DETAILS, 0);
1940 }
1941 fprintf (file, "\n");
1942 }
1943 if (INSN_UID (insn) < bb_map_size
1944 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1945 {
1946 edge e;
1947 edge_iterator ei;
1948
1949 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1950 FOR_EACH_EDGE (e, ei, bb->succs)
1951 {
1952 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1953 }
1954 fprintf (file, "\n");
1955 }
1956 }
1957
1958 /* Output assembler code for some insns: all or part of a function.
1959 For description of args, see `final_start_function', above. */
1960
1961 void
1962 final (rtx uncast_first, FILE *file, int optimize_p)
1963 {
1964 rtx_insn *first = safe_as_a <rtx_insn *> (uncast_first);
1965 rtx_insn *insn, *next;
1966 int seen = 0;
1967
1968 /* Used for -dA dump. */
1969 basic_block *start_to_bb = NULL;
1970 basic_block *end_to_bb = NULL;
1971 int bb_map_size = 0;
1972 int bb_seqn = 0;
1973
1974 last_ignored_compare = 0;
1975
1976 #ifdef HAVE_cc0
1977 for (insn = first; insn; insn = NEXT_INSN (insn))
1978 {
1979 /* If CC tracking across branches is enabled, record the insn which
1980 jumps to each branch only reached from one place. */
1981 if (optimize_p && JUMP_P (insn))
1982 {
1983 rtx lab = JUMP_LABEL (insn);
1984 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1985 {
1986 LABEL_REFS (lab) = insn;
1987 }
1988 }
1989 }
1990 #endif
1991
1992 init_recog ();
1993
1994 CC_STATUS_INIT;
1995
1996 if (flag_debug_asm)
1997 {
1998 basic_block bb;
1999
2000 bb_map_size = get_max_uid () + 1;
2001 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2002 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2003
2004 /* There is no cfg for a thunk. */
2005 if (!cfun->is_thunk)
2006 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2007 {
2008 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2009 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2010 }
2011 }
2012
2013 /* Output the insns. */
2014 for (insn = first; insn;)
2015 {
2016 if (HAVE_ATTR_length)
2017 {
2018 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2019 {
2020 /* This can be triggered by bugs elsewhere in the compiler if
2021 new insns are created after init_insn_lengths is called. */
2022 gcc_assert (NOTE_P (insn));
2023 insn_current_address = -1;
2024 }
2025 else
2026 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2027 }
2028
2029 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2030 bb_map_size, &bb_seqn);
2031 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2032 }
2033
2034 if (flag_debug_asm)
2035 {
2036 free (start_to_bb);
2037 free (end_to_bb);
2038 }
2039
2040 /* Remove CFI notes, to avoid compare-debug failures. */
2041 for (insn = first; insn; insn = next)
2042 {
2043 next = NEXT_INSN (insn);
2044 if (NOTE_P (insn)
2045 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2046 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2047 delete_insn (insn);
2048 }
2049 }
2050 \f
2051 const char *
2052 get_insn_template (int code, rtx insn)
2053 {
2054 switch (insn_data[code].output_format)
2055 {
2056 case INSN_OUTPUT_FORMAT_SINGLE:
2057 return insn_data[code].output.single;
2058 case INSN_OUTPUT_FORMAT_MULTI:
2059 return insn_data[code].output.multi[which_alternative];
2060 case INSN_OUTPUT_FORMAT_FUNCTION:
2061 gcc_assert (insn);
2062 return (*insn_data[code].output.function) (recog_data.operand,
2063 as_a <rtx_insn *> (insn));
2064
2065 default:
2066 gcc_unreachable ();
2067 }
2068 }
2069
2070 /* Emit the appropriate declaration for an alternate-entry-point
2071 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2072 LABEL_KIND != LABEL_NORMAL.
2073
2074 The case fall-through in this function is intentional. */
2075 static void
2076 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2077 {
2078 const char *name = LABEL_NAME (insn);
2079
2080 switch (LABEL_KIND (insn))
2081 {
2082 case LABEL_WEAK_ENTRY:
2083 #ifdef ASM_WEAKEN_LABEL
2084 ASM_WEAKEN_LABEL (file, name);
2085 #endif
2086 case LABEL_GLOBAL_ENTRY:
2087 targetm.asm_out.globalize_label (file, name);
2088 case LABEL_STATIC_ENTRY:
2089 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2090 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2091 #endif
2092 ASM_OUTPUT_LABEL (file, name);
2093 break;
2094
2095 case LABEL_NORMAL:
2096 default:
2097 gcc_unreachable ();
2098 }
2099 }
2100
2101 /* Given a CALL_INSN, find and return the nested CALL. */
2102 static rtx
2103 call_from_call_insn (rtx_call_insn *insn)
2104 {
2105 rtx x;
2106 gcc_assert (CALL_P (insn));
2107 x = PATTERN (insn);
2108
2109 while (GET_CODE (x) != CALL)
2110 {
2111 switch (GET_CODE (x))
2112 {
2113 default:
2114 gcc_unreachable ();
2115 case COND_EXEC:
2116 x = COND_EXEC_CODE (x);
2117 break;
2118 case PARALLEL:
2119 x = XVECEXP (x, 0, 0);
2120 break;
2121 case SET:
2122 x = XEXP (x, 1);
2123 break;
2124 }
2125 }
2126 return x;
2127 }
2128
2129 /* The final scan for one insn, INSN.
2130 Args are same as in `final', except that INSN
2131 is the insn being scanned.
2132 Value returned is the next insn to be scanned.
2133
2134 NOPEEPHOLES is the flag to disallow peephole processing (currently
2135 used for within delayed branch sequence output).
2136
2137 SEEN is used to track the end of the prologue, for emitting
2138 debug information. We force the emission of a line note after
2139 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2140
2141 rtx_insn *
2142 final_scan_insn (rtx uncast_insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2143 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2144 {
2145 #ifdef HAVE_cc0
2146 rtx set;
2147 #endif
2148 rtx_insn *next;
2149
2150 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
2151
2152 insn_counter++;
2153
2154 /* Ignore deleted insns. These can occur when we split insns (due to a
2155 template of "#") while not optimizing. */
2156 if (INSN_DELETED_P (insn))
2157 return NEXT_INSN (insn);
2158
2159 switch (GET_CODE (insn))
2160 {
2161 case NOTE:
2162 switch (NOTE_KIND (insn))
2163 {
2164 case NOTE_INSN_DELETED:
2165 break;
2166
2167 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2168 in_cold_section_p = !in_cold_section_p;
2169
2170 if (dwarf2out_do_frame ())
2171 dwarf2out_switch_text_section ();
2172 else if (!DECL_IGNORED_P (current_function_decl))
2173 debug_hooks->switch_text_section ();
2174
2175 switch_to_section (current_function_section ());
2176 targetm.asm_out.function_switched_text_sections (asm_out_file,
2177 current_function_decl,
2178 in_cold_section_p);
2179 /* Emit a label for the split cold section. Form label name by
2180 suffixing "cold" to the original function's name. */
2181 if (in_cold_section_p)
2182 {
2183 tree cold_function_name
2184 = clone_function_name (current_function_decl, "cold");
2185 ASM_OUTPUT_LABEL (asm_out_file,
2186 IDENTIFIER_POINTER (cold_function_name));
2187 }
2188 break;
2189
2190 case NOTE_INSN_BASIC_BLOCK:
2191 if (need_profile_function)
2192 {
2193 profile_function (asm_out_file);
2194 need_profile_function = false;
2195 }
2196
2197 if (targetm.asm_out.unwind_emit)
2198 targetm.asm_out.unwind_emit (asm_out_file, insn);
2199
2200 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2201
2202 break;
2203
2204 case NOTE_INSN_EH_REGION_BEG:
2205 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2206 NOTE_EH_HANDLER (insn));
2207 break;
2208
2209 case NOTE_INSN_EH_REGION_END:
2210 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2211 NOTE_EH_HANDLER (insn));
2212 break;
2213
2214 case NOTE_INSN_PROLOGUE_END:
2215 targetm.asm_out.function_end_prologue (file);
2216 profile_after_prologue (file);
2217
2218 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2219 {
2220 *seen |= SEEN_EMITTED;
2221 force_source_line = true;
2222 }
2223 else
2224 *seen |= SEEN_NOTE;
2225
2226 break;
2227
2228 case NOTE_INSN_EPILOGUE_BEG:
2229 if (!DECL_IGNORED_P (current_function_decl))
2230 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2231 targetm.asm_out.function_begin_epilogue (file);
2232 break;
2233
2234 case NOTE_INSN_CFI:
2235 dwarf2out_emit_cfi (NOTE_CFI (insn));
2236 break;
2237
2238 case NOTE_INSN_CFI_LABEL:
2239 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2240 NOTE_LABEL_NUMBER (insn));
2241 break;
2242
2243 case NOTE_INSN_FUNCTION_BEG:
2244 if (need_profile_function)
2245 {
2246 profile_function (asm_out_file);
2247 need_profile_function = false;
2248 }
2249
2250 app_disable ();
2251 if (!DECL_IGNORED_P (current_function_decl))
2252 debug_hooks->end_prologue (last_linenum, last_filename);
2253
2254 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2255 {
2256 *seen |= SEEN_EMITTED;
2257 force_source_line = true;
2258 }
2259 else
2260 *seen |= SEEN_NOTE;
2261
2262 break;
2263
2264 case NOTE_INSN_BLOCK_BEG:
2265 if (debug_info_level == DINFO_LEVEL_NORMAL
2266 || debug_info_level == DINFO_LEVEL_VERBOSE
2267 || write_symbols == DWARF2_DEBUG
2268 || write_symbols == VMS_AND_DWARF2_DEBUG
2269 || write_symbols == VMS_DEBUG)
2270 {
2271 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2272
2273 app_disable ();
2274 ++block_depth;
2275 high_block_linenum = last_linenum;
2276
2277 /* Output debugging info about the symbol-block beginning. */
2278 if (!DECL_IGNORED_P (current_function_decl))
2279 debug_hooks->begin_block (last_linenum, n);
2280
2281 /* Mark this block as output. */
2282 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2283 }
2284 if (write_symbols == DBX_DEBUG
2285 || write_symbols == SDB_DEBUG)
2286 {
2287 location_t *locus_ptr
2288 = block_nonartificial_location (NOTE_BLOCK (insn));
2289
2290 if (locus_ptr != NULL)
2291 {
2292 override_filename = LOCATION_FILE (*locus_ptr);
2293 override_linenum = LOCATION_LINE (*locus_ptr);
2294 }
2295 }
2296 break;
2297
2298 case NOTE_INSN_BLOCK_END:
2299 if (debug_info_level == DINFO_LEVEL_NORMAL
2300 || debug_info_level == DINFO_LEVEL_VERBOSE
2301 || write_symbols == DWARF2_DEBUG
2302 || write_symbols == VMS_AND_DWARF2_DEBUG
2303 || write_symbols == VMS_DEBUG)
2304 {
2305 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2306
2307 app_disable ();
2308
2309 /* End of a symbol-block. */
2310 --block_depth;
2311 gcc_assert (block_depth >= 0);
2312
2313 if (!DECL_IGNORED_P (current_function_decl))
2314 debug_hooks->end_block (high_block_linenum, n);
2315 }
2316 if (write_symbols == DBX_DEBUG
2317 || write_symbols == SDB_DEBUG)
2318 {
2319 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2320 location_t *locus_ptr
2321 = block_nonartificial_location (outer_block);
2322
2323 if (locus_ptr != NULL)
2324 {
2325 override_filename = LOCATION_FILE (*locus_ptr);
2326 override_linenum = LOCATION_LINE (*locus_ptr);
2327 }
2328 else
2329 {
2330 override_filename = NULL;
2331 override_linenum = 0;
2332 }
2333 }
2334 break;
2335
2336 case NOTE_INSN_DELETED_LABEL:
2337 /* Emit the label. We may have deleted the CODE_LABEL because
2338 the label could be proved to be unreachable, though still
2339 referenced (in the form of having its address taken. */
2340 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2341 break;
2342
2343 case NOTE_INSN_DELETED_DEBUG_LABEL:
2344 /* Similarly, but need to use different namespace for it. */
2345 if (CODE_LABEL_NUMBER (insn) != -1)
2346 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2347 break;
2348
2349 case NOTE_INSN_VAR_LOCATION:
2350 case NOTE_INSN_CALL_ARG_LOCATION:
2351 if (!DECL_IGNORED_P (current_function_decl))
2352 debug_hooks->var_location (insn);
2353 break;
2354
2355 default:
2356 gcc_unreachable ();
2357 break;
2358 }
2359 break;
2360
2361 case BARRIER:
2362 break;
2363
2364 case CODE_LABEL:
2365 /* The target port might emit labels in the output function for
2366 some insn, e.g. sh.c output_branchy_insn. */
2367 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2368 {
2369 int align = LABEL_TO_ALIGNMENT (insn);
2370 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2371 int max_skip = LABEL_TO_MAX_SKIP (insn);
2372 #endif
2373
2374 if (align && NEXT_INSN (insn))
2375 {
2376 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2377 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2378 #else
2379 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2380 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2381 #else
2382 ASM_OUTPUT_ALIGN (file, align);
2383 #endif
2384 #endif
2385 }
2386 }
2387 CC_STATUS_INIT;
2388
2389 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2390 debug_hooks->label (as_a <rtx_code_label *> (insn));
2391
2392 app_disable ();
2393
2394 next = next_nonnote_insn (insn);
2395 /* If this label is followed by a jump-table, make sure we put
2396 the label in the read-only section. Also possibly write the
2397 label and jump table together. */
2398 if (next != 0 && JUMP_TABLE_DATA_P (next))
2399 {
2400 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2401 /* In this case, the case vector is being moved by the
2402 target, so don't output the label at all. Leave that
2403 to the back end macros. */
2404 #else
2405 if (! JUMP_TABLES_IN_TEXT_SECTION)
2406 {
2407 int log_align;
2408
2409 switch_to_section (targetm.asm_out.function_rodata_section
2410 (current_function_decl));
2411
2412 #ifdef ADDR_VEC_ALIGN
2413 log_align = ADDR_VEC_ALIGN (next);
2414 #else
2415 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2416 #endif
2417 ASM_OUTPUT_ALIGN (file, log_align);
2418 }
2419 else
2420 switch_to_section (current_function_section ());
2421
2422 #ifdef ASM_OUTPUT_CASE_LABEL
2423 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2424 next);
2425 #else
2426 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2427 #endif
2428 #endif
2429 break;
2430 }
2431 if (LABEL_ALT_ENTRY_P (insn))
2432 output_alternate_entry_point (file, insn);
2433 else
2434 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2435 break;
2436
2437 default:
2438 {
2439 rtx body = PATTERN (insn);
2440 int insn_code_number;
2441 const char *templ;
2442 bool is_stmt;
2443
2444 /* Reset this early so it is correct for ASM statements. */
2445 current_insn_predicate = NULL_RTX;
2446
2447 /* An INSN, JUMP_INSN or CALL_INSN.
2448 First check for special kinds that recog doesn't recognize. */
2449
2450 if (GET_CODE (body) == USE /* These are just declarations. */
2451 || GET_CODE (body) == CLOBBER)
2452 break;
2453
2454 #ifdef HAVE_cc0
2455 {
2456 /* If there is a REG_CC_SETTER note on this insn, it means that
2457 the setting of the condition code was done in the delay slot
2458 of the insn that branched here. So recover the cc status
2459 from the insn that set it. */
2460
2461 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2462 if (note)
2463 {
2464 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2465 cc_prev_status = cc_status;
2466 }
2467 }
2468 #endif
2469
2470 /* Detect insns that are really jump-tables
2471 and output them as such. */
2472
2473 if (JUMP_TABLE_DATA_P (insn))
2474 {
2475 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2476 int vlen, idx;
2477 #endif
2478
2479 if (! JUMP_TABLES_IN_TEXT_SECTION)
2480 switch_to_section (targetm.asm_out.function_rodata_section
2481 (current_function_decl));
2482 else
2483 switch_to_section (current_function_section ());
2484
2485 app_disable ();
2486
2487 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2488 if (GET_CODE (body) == ADDR_VEC)
2489 {
2490 #ifdef ASM_OUTPUT_ADDR_VEC
2491 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2492 #else
2493 gcc_unreachable ();
2494 #endif
2495 }
2496 else
2497 {
2498 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2499 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2500 #else
2501 gcc_unreachable ();
2502 #endif
2503 }
2504 #else
2505 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2506 for (idx = 0; idx < vlen; idx++)
2507 {
2508 if (GET_CODE (body) == ADDR_VEC)
2509 {
2510 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2511 ASM_OUTPUT_ADDR_VEC_ELT
2512 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2513 #else
2514 gcc_unreachable ();
2515 #endif
2516 }
2517 else
2518 {
2519 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2520 ASM_OUTPUT_ADDR_DIFF_ELT
2521 (file,
2522 body,
2523 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2524 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2525 #else
2526 gcc_unreachable ();
2527 #endif
2528 }
2529 }
2530 #ifdef ASM_OUTPUT_CASE_END
2531 ASM_OUTPUT_CASE_END (file,
2532 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2533 insn);
2534 #endif
2535 #endif
2536
2537 switch_to_section (current_function_section ());
2538
2539 break;
2540 }
2541 /* Output this line note if it is the first or the last line
2542 note in a row. */
2543 if (!DECL_IGNORED_P (current_function_decl)
2544 && notice_source_line (insn, &is_stmt))
2545 (*debug_hooks->source_line) (last_linenum, last_filename,
2546 last_discriminator, is_stmt);
2547
2548 if (GET_CODE (body) == ASM_INPUT)
2549 {
2550 const char *string = XSTR (body, 0);
2551
2552 /* There's no telling what that did to the condition codes. */
2553 CC_STATUS_INIT;
2554
2555 if (string[0])
2556 {
2557 expanded_location loc;
2558
2559 app_enable ();
2560 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2561 if (*loc.file && loc.line)
2562 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2563 ASM_COMMENT_START, loc.line, loc.file);
2564 fprintf (asm_out_file, "\t%s\n", string);
2565 #if HAVE_AS_LINE_ZERO
2566 if (*loc.file && loc.line)
2567 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2568 #endif
2569 }
2570 break;
2571 }
2572
2573 /* Detect `asm' construct with operands. */
2574 if (asm_noperands (body) >= 0)
2575 {
2576 unsigned int noperands = asm_noperands (body);
2577 rtx *ops = XALLOCAVEC (rtx, noperands);
2578 const char *string;
2579 location_t loc;
2580 expanded_location expanded;
2581
2582 /* There's no telling what that did to the condition codes. */
2583 CC_STATUS_INIT;
2584
2585 /* Get out the operand values. */
2586 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2587 /* Inhibit dying on what would otherwise be compiler bugs. */
2588 insn_noperands = noperands;
2589 this_is_asm_operands = insn;
2590 expanded = expand_location (loc);
2591
2592 #ifdef FINAL_PRESCAN_INSN
2593 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2594 #endif
2595
2596 /* Output the insn using them. */
2597 if (string[0])
2598 {
2599 app_enable ();
2600 if (expanded.file && expanded.line)
2601 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2602 ASM_COMMENT_START, expanded.line, expanded.file);
2603 output_asm_insn (string, ops);
2604 #if HAVE_AS_LINE_ZERO
2605 if (expanded.file && expanded.line)
2606 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2607 #endif
2608 }
2609
2610 if (targetm.asm_out.final_postscan_insn)
2611 targetm.asm_out.final_postscan_insn (file, insn, ops,
2612 insn_noperands);
2613
2614 this_is_asm_operands = 0;
2615 break;
2616 }
2617
2618 app_disable ();
2619
2620 if (GET_CODE (body) == SEQUENCE)
2621 {
2622 /* A delayed-branch sequence */
2623 int i;
2624
2625 final_sequence = body;
2626
2627 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2628 force the restoration of a comparison that was previously
2629 thought unnecessary. If that happens, cancel this sequence
2630 and cause that insn to be restored. */
2631
2632 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2633 if (next != XVECEXP (body, 0, 1))
2634 {
2635 final_sequence = 0;
2636 return next;
2637 }
2638
2639 for (i = 1; i < XVECLEN (body, 0); i++)
2640 {
2641 rtx insn = XVECEXP (body, 0, i);
2642 rtx_insn *next = NEXT_INSN (insn);
2643 /* We loop in case any instruction in a delay slot gets
2644 split. */
2645 do
2646 insn = final_scan_insn (insn, file, 0, 1, seen);
2647 while (insn != next);
2648 }
2649 #ifdef DBR_OUTPUT_SEQEND
2650 DBR_OUTPUT_SEQEND (file);
2651 #endif
2652 final_sequence = 0;
2653
2654 /* If the insn requiring the delay slot was a CALL_INSN, the
2655 insns in the delay slot are actually executed before the
2656 called function. Hence we don't preserve any CC-setting
2657 actions in these insns and the CC must be marked as being
2658 clobbered by the function. */
2659 if (CALL_P (XVECEXP (body, 0, 0)))
2660 {
2661 CC_STATUS_INIT;
2662 }
2663 break;
2664 }
2665
2666 /* We have a real machine instruction as rtl. */
2667
2668 body = PATTERN (insn);
2669
2670 #ifdef HAVE_cc0
2671 set = single_set (insn);
2672
2673 /* Check for redundant test and compare instructions
2674 (when the condition codes are already set up as desired).
2675 This is done only when optimizing; if not optimizing,
2676 it should be possible for the user to alter a variable
2677 with the debugger in between statements
2678 and the next statement should reexamine the variable
2679 to compute the condition codes. */
2680
2681 if (optimize_p)
2682 {
2683 if (set
2684 && GET_CODE (SET_DEST (set)) == CC0
2685 && insn != last_ignored_compare)
2686 {
2687 rtx src1, src2;
2688 if (GET_CODE (SET_SRC (set)) == SUBREG)
2689 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2690
2691 src1 = SET_SRC (set);
2692 src2 = NULL_RTX;
2693 if (GET_CODE (SET_SRC (set)) == COMPARE)
2694 {
2695 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2696 XEXP (SET_SRC (set), 0)
2697 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2698 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2699 XEXP (SET_SRC (set), 1)
2700 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2701 if (XEXP (SET_SRC (set), 1)
2702 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2703 src2 = XEXP (SET_SRC (set), 0);
2704 }
2705 if ((cc_status.value1 != 0
2706 && rtx_equal_p (src1, cc_status.value1))
2707 || (cc_status.value2 != 0
2708 && rtx_equal_p (src1, cc_status.value2))
2709 || (src2 != 0 && cc_status.value1 != 0
2710 && rtx_equal_p (src2, cc_status.value1))
2711 || (src2 != 0 && cc_status.value2 != 0
2712 && rtx_equal_p (src2, cc_status.value2)))
2713 {
2714 /* Don't delete insn if it has an addressing side-effect. */
2715 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2716 /* or if anything in it is volatile. */
2717 && ! volatile_refs_p (PATTERN (insn)))
2718 {
2719 /* We don't really delete the insn; just ignore it. */
2720 last_ignored_compare = insn;
2721 break;
2722 }
2723 }
2724 }
2725 }
2726
2727 /* If this is a conditional branch, maybe modify it
2728 if the cc's are in a nonstandard state
2729 so that it accomplishes the same thing that it would
2730 do straightforwardly if the cc's were set up normally. */
2731
2732 if (cc_status.flags != 0
2733 && JUMP_P (insn)
2734 && GET_CODE (body) == SET
2735 && SET_DEST (body) == pc_rtx
2736 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2737 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2738 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2739 {
2740 /* This function may alter the contents of its argument
2741 and clear some of the cc_status.flags bits.
2742 It may also return 1 meaning condition now always true
2743 or -1 meaning condition now always false
2744 or 2 meaning condition nontrivial but altered. */
2745 int result = alter_cond (XEXP (SET_SRC (body), 0));
2746 /* If condition now has fixed value, replace the IF_THEN_ELSE
2747 with its then-operand or its else-operand. */
2748 if (result == 1)
2749 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2750 if (result == -1)
2751 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2752
2753 /* The jump is now either unconditional or a no-op.
2754 If it has become a no-op, don't try to output it.
2755 (It would not be recognized.) */
2756 if (SET_SRC (body) == pc_rtx)
2757 {
2758 delete_insn (insn);
2759 break;
2760 }
2761 else if (ANY_RETURN_P (SET_SRC (body)))
2762 /* Replace (set (pc) (return)) with (return). */
2763 PATTERN (insn) = body = SET_SRC (body);
2764
2765 /* Rerecognize the instruction if it has changed. */
2766 if (result != 0)
2767 INSN_CODE (insn) = -1;
2768 }
2769
2770 /* If this is a conditional trap, maybe modify it if the cc's
2771 are in a nonstandard state so that it accomplishes the same
2772 thing that it would do straightforwardly if the cc's were
2773 set up normally. */
2774 if (cc_status.flags != 0
2775 && NONJUMP_INSN_P (insn)
2776 && GET_CODE (body) == TRAP_IF
2777 && COMPARISON_P (TRAP_CONDITION (body))
2778 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2779 {
2780 /* This function may alter the contents of its argument
2781 and clear some of the cc_status.flags bits.
2782 It may also return 1 meaning condition now always true
2783 or -1 meaning condition now always false
2784 or 2 meaning condition nontrivial but altered. */
2785 int result = alter_cond (TRAP_CONDITION (body));
2786
2787 /* If TRAP_CONDITION has become always false, delete the
2788 instruction. */
2789 if (result == -1)
2790 {
2791 delete_insn (insn);
2792 break;
2793 }
2794
2795 /* If TRAP_CONDITION has become always true, replace
2796 TRAP_CONDITION with const_true_rtx. */
2797 if (result == 1)
2798 TRAP_CONDITION (body) = const_true_rtx;
2799
2800 /* Rerecognize the instruction if it has changed. */
2801 if (result != 0)
2802 INSN_CODE (insn) = -1;
2803 }
2804
2805 /* Make same adjustments to instructions that examine the
2806 condition codes without jumping and instructions that
2807 handle conditional moves (if this machine has either one). */
2808
2809 if (cc_status.flags != 0
2810 && set != 0)
2811 {
2812 rtx cond_rtx, then_rtx, else_rtx;
2813
2814 if (!JUMP_P (insn)
2815 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2816 {
2817 cond_rtx = XEXP (SET_SRC (set), 0);
2818 then_rtx = XEXP (SET_SRC (set), 1);
2819 else_rtx = XEXP (SET_SRC (set), 2);
2820 }
2821 else
2822 {
2823 cond_rtx = SET_SRC (set);
2824 then_rtx = const_true_rtx;
2825 else_rtx = const0_rtx;
2826 }
2827
2828 if (COMPARISON_P (cond_rtx)
2829 && XEXP (cond_rtx, 0) == cc0_rtx)
2830 {
2831 int result;
2832 result = alter_cond (cond_rtx);
2833 if (result == 1)
2834 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2835 else if (result == -1)
2836 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2837 else if (result == 2)
2838 INSN_CODE (insn) = -1;
2839 if (SET_DEST (set) == SET_SRC (set))
2840 delete_insn (insn);
2841 }
2842 }
2843
2844 #endif
2845
2846 #ifdef HAVE_peephole
2847 /* Do machine-specific peephole optimizations if desired. */
2848
2849 if (optimize_p && !flag_no_peephole && !nopeepholes)
2850 {
2851 rtx_insn *next = peephole (insn);
2852 /* When peepholing, if there were notes within the peephole,
2853 emit them before the peephole. */
2854 if (next != 0 && next != NEXT_INSN (insn))
2855 {
2856 rtx_insn *note, *prev = PREV_INSN (insn);
2857
2858 for (note = NEXT_INSN (insn); note != next;
2859 note = NEXT_INSN (note))
2860 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2861
2862 /* Put the notes in the proper position for a later
2863 rescan. For example, the SH target can do this
2864 when generating a far jump in a delayed branch
2865 sequence. */
2866 note = NEXT_INSN (insn);
2867 SET_PREV_INSN (note) = prev;
2868 SET_NEXT_INSN (prev) = note;
2869 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2870 SET_PREV_INSN (insn) = PREV_INSN (next);
2871 SET_NEXT_INSN (insn) = next;
2872 SET_PREV_INSN (next) = insn;
2873 }
2874
2875 /* PEEPHOLE might have changed this. */
2876 body = PATTERN (insn);
2877 }
2878 #endif
2879
2880 /* Try to recognize the instruction.
2881 If successful, verify that the operands satisfy the
2882 constraints for the instruction. Crash if they don't,
2883 since `reload' should have changed them so that they do. */
2884
2885 insn_code_number = recog_memoized (insn);
2886 cleanup_subreg_operands (insn);
2887
2888 /* Dump the insn in the assembly for debugging (-dAP).
2889 If the final dump is requested as slim RTL, dump slim
2890 RTL to the assembly file also. */
2891 if (flag_dump_rtl_in_asm)
2892 {
2893 print_rtx_head = ASM_COMMENT_START;
2894 if (! (dump_flags & TDF_SLIM))
2895 print_rtl_single (asm_out_file, insn);
2896 else
2897 dump_insn_slim (asm_out_file, insn);
2898 print_rtx_head = "";
2899 }
2900
2901 if (! constrain_operands_cached (1))
2902 fatal_insn_not_found (insn);
2903
2904 /* Some target machines need to prescan each insn before
2905 it is output. */
2906
2907 #ifdef FINAL_PRESCAN_INSN
2908 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2909 #endif
2910
2911 if (targetm.have_conditional_execution ()
2912 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2913 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2914
2915 #ifdef HAVE_cc0
2916 cc_prev_status = cc_status;
2917
2918 /* Update `cc_status' for this instruction.
2919 The instruction's output routine may change it further.
2920 If the output routine for a jump insn needs to depend
2921 on the cc status, it should look at cc_prev_status. */
2922
2923 NOTICE_UPDATE_CC (body, insn);
2924 #endif
2925
2926 current_output_insn = debug_insn = insn;
2927
2928 /* Find the proper template for this insn. */
2929 templ = get_insn_template (insn_code_number, insn);
2930
2931 /* If the C code returns 0, it means that it is a jump insn
2932 which follows a deleted test insn, and that test insn
2933 needs to be reinserted. */
2934 if (templ == 0)
2935 {
2936 rtx_insn *prev;
2937
2938 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2939
2940 /* We have already processed the notes between the setter and
2941 the user. Make sure we don't process them again, this is
2942 particularly important if one of the notes is a block
2943 scope note or an EH note. */
2944 for (prev = insn;
2945 prev != last_ignored_compare;
2946 prev = PREV_INSN (prev))
2947 {
2948 if (NOTE_P (prev))
2949 delete_insn (prev); /* Use delete_note. */
2950 }
2951
2952 return prev;
2953 }
2954
2955 /* If the template is the string "#", it means that this insn must
2956 be split. */
2957 if (templ[0] == '#' && templ[1] == '\0')
2958 {
2959 rtx_insn *new_rtx = try_split (body, insn, 0);
2960
2961 /* If we didn't split the insn, go away. */
2962 if (new_rtx == insn && PATTERN (new_rtx) == body)
2963 fatal_insn ("could not split insn", insn);
2964
2965 /* If we have a length attribute, this instruction should have
2966 been split in shorten_branches, to ensure that we would have
2967 valid length info for the splitees. */
2968 gcc_assert (!HAVE_ATTR_length);
2969
2970 return new_rtx;
2971 }
2972
2973 /* ??? This will put the directives in the wrong place if
2974 get_insn_template outputs assembly directly. However calling it
2975 before get_insn_template breaks if the insns is split. */
2976 if (targetm.asm_out.unwind_emit_before_insn
2977 && targetm.asm_out.unwind_emit)
2978 targetm.asm_out.unwind_emit (asm_out_file, insn);
2979
2980 if (rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn))
2981 {
2982 rtx x = call_from_call_insn (call_insn);
2983 x = XEXP (x, 0);
2984 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2985 {
2986 tree t;
2987 x = XEXP (x, 0);
2988 t = SYMBOL_REF_DECL (x);
2989 if (t)
2990 assemble_external (t);
2991 }
2992 if (!DECL_IGNORED_P (current_function_decl))
2993 debug_hooks->var_location (insn);
2994 }
2995
2996 /* Output assembler code from the template. */
2997 output_asm_insn (templ, recog_data.operand);
2998
2999 /* Some target machines need to postscan each insn after
3000 it is output. */
3001 if (targetm.asm_out.final_postscan_insn)
3002 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3003 recog_data.n_operands);
3004
3005 if (!targetm.asm_out.unwind_emit_before_insn
3006 && targetm.asm_out.unwind_emit)
3007 targetm.asm_out.unwind_emit (asm_out_file, insn);
3008
3009 current_output_insn = debug_insn = 0;
3010 }
3011 }
3012 return NEXT_INSN (insn);
3013 }
3014 \f
3015 /* Return whether a source line note needs to be emitted before INSN.
3016 Sets IS_STMT to TRUE if the line should be marked as a possible
3017 breakpoint location. */
3018
3019 static bool
3020 notice_source_line (rtx_insn *insn, bool *is_stmt)
3021 {
3022 const char *filename;
3023 int linenum;
3024
3025 if (override_filename)
3026 {
3027 filename = override_filename;
3028 linenum = override_linenum;
3029 }
3030 else if (INSN_HAS_LOCATION (insn))
3031 {
3032 expanded_location xloc = insn_location (insn);
3033 filename = xloc.file;
3034 linenum = xloc.line;
3035 }
3036 else
3037 {
3038 filename = NULL;
3039 linenum = 0;
3040 }
3041
3042 if (filename == NULL)
3043 return false;
3044
3045 if (force_source_line
3046 || filename != last_filename
3047 || last_linenum != linenum)
3048 {
3049 force_source_line = false;
3050 last_filename = filename;
3051 last_linenum = linenum;
3052 last_discriminator = discriminator;
3053 *is_stmt = true;
3054 high_block_linenum = MAX (last_linenum, high_block_linenum);
3055 high_function_linenum = MAX (last_linenum, high_function_linenum);
3056 return true;
3057 }
3058
3059 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3060 {
3061 /* If the discriminator changed, but the line number did not,
3062 output the line table entry with is_stmt false so the
3063 debugger does not treat this as a breakpoint location. */
3064 last_discriminator = discriminator;
3065 *is_stmt = false;
3066 return true;
3067 }
3068
3069 return false;
3070 }
3071 \f
3072 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3073 directly to the desired hard register. */
3074
3075 void
3076 cleanup_subreg_operands (rtx insn)
3077 {
3078 int i;
3079 bool changed = false;
3080 extract_insn_cached (insn);
3081 for (i = 0; i < recog_data.n_operands; i++)
3082 {
3083 /* The following test cannot use recog_data.operand when testing
3084 for a SUBREG: the underlying object might have been changed
3085 already if we are inside a match_operator expression that
3086 matches the else clause. Instead we test the underlying
3087 expression directly. */
3088 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3089 {
3090 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3091 changed = true;
3092 }
3093 else if (GET_CODE (recog_data.operand[i]) == PLUS
3094 || GET_CODE (recog_data.operand[i]) == MULT
3095 || MEM_P (recog_data.operand[i]))
3096 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3097 }
3098
3099 for (i = 0; i < recog_data.n_dups; i++)
3100 {
3101 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3102 {
3103 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3104 changed = true;
3105 }
3106 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3107 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3108 || MEM_P (*recog_data.dup_loc[i]))
3109 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3110 }
3111 if (changed)
3112 df_insn_rescan (insn);
3113 }
3114
3115 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3116 the thing it is a subreg of. Do it anyway if FINAL_P. */
3117
3118 rtx
3119 alter_subreg (rtx *xp, bool final_p)
3120 {
3121 rtx x = *xp;
3122 rtx y = SUBREG_REG (x);
3123
3124 /* simplify_subreg does not remove subreg from volatile references.
3125 We are required to. */
3126 if (MEM_P (y))
3127 {
3128 int offset = SUBREG_BYTE (x);
3129
3130 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3131 contains 0 instead of the proper offset. See simplify_subreg. */
3132 if (offset == 0
3133 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3134 {
3135 int difference = GET_MODE_SIZE (GET_MODE (y))
3136 - GET_MODE_SIZE (GET_MODE (x));
3137 if (WORDS_BIG_ENDIAN)
3138 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3139 if (BYTES_BIG_ENDIAN)
3140 offset += difference % UNITS_PER_WORD;
3141 }
3142
3143 if (final_p)
3144 *xp = adjust_address (y, GET_MODE (x), offset);
3145 else
3146 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3147 }
3148 else
3149 {
3150 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3151 SUBREG_BYTE (x));
3152
3153 if (new_rtx != 0)
3154 *xp = new_rtx;
3155 else if (final_p && REG_P (y))
3156 {
3157 /* Simplify_subreg can't handle some REG cases, but we have to. */
3158 unsigned int regno;
3159 HOST_WIDE_INT offset;
3160
3161 regno = subreg_regno (x);
3162 if (subreg_lowpart_p (x))
3163 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3164 else
3165 offset = SUBREG_BYTE (x);
3166 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3167 }
3168 }
3169
3170 return *xp;
3171 }
3172
3173 /* Do alter_subreg on all the SUBREGs contained in X. */
3174
3175 static rtx
3176 walk_alter_subreg (rtx *xp, bool *changed)
3177 {
3178 rtx x = *xp;
3179 switch (GET_CODE (x))
3180 {
3181 case PLUS:
3182 case MULT:
3183 case AND:
3184 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3185 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3186 break;
3187
3188 case MEM:
3189 case ZERO_EXTEND:
3190 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3191 break;
3192
3193 case SUBREG:
3194 *changed = true;
3195 return alter_subreg (xp, true);
3196
3197 default:
3198 break;
3199 }
3200
3201 return *xp;
3202 }
3203 \f
3204 #ifdef HAVE_cc0
3205
3206 /* Given BODY, the body of a jump instruction, alter the jump condition
3207 as required by the bits that are set in cc_status.flags.
3208 Not all of the bits there can be handled at this level in all cases.
3209
3210 The value is normally 0.
3211 1 means that the condition has become always true.
3212 -1 means that the condition has become always false.
3213 2 means that COND has been altered. */
3214
3215 static int
3216 alter_cond (rtx cond)
3217 {
3218 int value = 0;
3219
3220 if (cc_status.flags & CC_REVERSED)
3221 {
3222 value = 2;
3223 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3224 }
3225
3226 if (cc_status.flags & CC_INVERTED)
3227 {
3228 value = 2;
3229 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3230 }
3231
3232 if (cc_status.flags & CC_NOT_POSITIVE)
3233 switch (GET_CODE (cond))
3234 {
3235 case LE:
3236 case LEU:
3237 case GEU:
3238 /* Jump becomes unconditional. */
3239 return 1;
3240
3241 case GT:
3242 case GTU:
3243 case LTU:
3244 /* Jump becomes no-op. */
3245 return -1;
3246
3247 case GE:
3248 PUT_CODE (cond, EQ);
3249 value = 2;
3250 break;
3251
3252 case LT:
3253 PUT_CODE (cond, NE);
3254 value = 2;
3255 break;
3256
3257 default:
3258 break;
3259 }
3260
3261 if (cc_status.flags & CC_NOT_NEGATIVE)
3262 switch (GET_CODE (cond))
3263 {
3264 case GE:
3265 case GEU:
3266 /* Jump becomes unconditional. */
3267 return 1;
3268
3269 case LT:
3270 case LTU:
3271 /* Jump becomes no-op. */
3272 return -1;
3273
3274 case LE:
3275 case LEU:
3276 PUT_CODE (cond, EQ);
3277 value = 2;
3278 break;
3279
3280 case GT:
3281 case GTU:
3282 PUT_CODE (cond, NE);
3283 value = 2;
3284 break;
3285
3286 default:
3287 break;
3288 }
3289
3290 if (cc_status.flags & CC_NO_OVERFLOW)
3291 switch (GET_CODE (cond))
3292 {
3293 case GEU:
3294 /* Jump becomes unconditional. */
3295 return 1;
3296
3297 case LEU:
3298 PUT_CODE (cond, EQ);
3299 value = 2;
3300 break;
3301
3302 case GTU:
3303 PUT_CODE (cond, NE);
3304 value = 2;
3305 break;
3306
3307 case LTU:
3308 /* Jump becomes no-op. */
3309 return -1;
3310
3311 default:
3312 break;
3313 }
3314
3315 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3316 switch (GET_CODE (cond))
3317 {
3318 default:
3319 gcc_unreachable ();
3320
3321 case NE:
3322 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3323 value = 2;
3324 break;
3325
3326 case EQ:
3327 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3328 value = 2;
3329 break;
3330 }
3331
3332 if (cc_status.flags & CC_NOT_SIGNED)
3333 /* The flags are valid if signed condition operators are converted
3334 to unsigned. */
3335 switch (GET_CODE (cond))
3336 {
3337 case LE:
3338 PUT_CODE (cond, LEU);
3339 value = 2;
3340 break;
3341
3342 case LT:
3343 PUT_CODE (cond, LTU);
3344 value = 2;
3345 break;
3346
3347 case GT:
3348 PUT_CODE (cond, GTU);
3349 value = 2;
3350 break;
3351
3352 case GE:
3353 PUT_CODE (cond, GEU);
3354 value = 2;
3355 break;
3356
3357 default:
3358 break;
3359 }
3360
3361 return value;
3362 }
3363 #endif
3364 \f
3365 /* Report inconsistency between the assembler template and the operands.
3366 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3367
3368 void
3369 output_operand_lossage (const char *cmsgid, ...)
3370 {
3371 char *fmt_string;
3372 char *new_message;
3373 const char *pfx_str;
3374 va_list ap;
3375
3376 va_start (ap, cmsgid);
3377
3378 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3379 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3380 vasprintf (&new_message, fmt_string, ap);
3381
3382 if (this_is_asm_operands)
3383 error_for_asm (this_is_asm_operands, "%s", new_message);
3384 else
3385 internal_error ("%s", new_message);
3386
3387 free (fmt_string);
3388 free (new_message);
3389 va_end (ap);
3390 }
3391 \f
3392 /* Output of assembler code from a template, and its subroutines. */
3393
3394 /* Annotate the assembly with a comment describing the pattern and
3395 alternative used. */
3396
3397 static void
3398 output_asm_name (void)
3399 {
3400 if (debug_insn)
3401 {
3402 int num = INSN_CODE (debug_insn);
3403 fprintf (asm_out_file, "\t%s %d\t%s",
3404 ASM_COMMENT_START, INSN_UID (debug_insn),
3405 insn_data[num].name);
3406 if (insn_data[num].n_alternatives > 1)
3407 fprintf (asm_out_file, "/%d", which_alternative + 1);
3408
3409 if (HAVE_ATTR_length)
3410 fprintf (asm_out_file, "\t[length = %d]",
3411 get_attr_length (debug_insn));
3412
3413 /* Clear this so only the first assembler insn
3414 of any rtl insn will get the special comment for -dp. */
3415 debug_insn = 0;
3416 }
3417 }
3418
3419 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3420 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3421 corresponds to the address of the object and 0 if to the object. */
3422
3423 static tree
3424 get_mem_expr_from_op (rtx op, int *paddressp)
3425 {
3426 tree expr;
3427 int inner_addressp;
3428
3429 *paddressp = 0;
3430
3431 if (REG_P (op))
3432 return REG_EXPR (op);
3433 else if (!MEM_P (op))
3434 return 0;
3435
3436 if (MEM_EXPR (op) != 0)
3437 return MEM_EXPR (op);
3438
3439 /* Otherwise we have an address, so indicate it and look at the address. */
3440 *paddressp = 1;
3441 op = XEXP (op, 0);
3442
3443 /* First check if we have a decl for the address, then look at the right side
3444 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3445 But don't allow the address to itself be indirect. */
3446 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3447 return expr;
3448 else if (GET_CODE (op) == PLUS
3449 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3450 return expr;
3451
3452 while (UNARY_P (op)
3453 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3454 op = XEXP (op, 0);
3455
3456 expr = get_mem_expr_from_op (op, &inner_addressp);
3457 return inner_addressp ? 0 : expr;
3458 }
3459
3460 /* Output operand names for assembler instructions. OPERANDS is the
3461 operand vector, OPORDER is the order to write the operands, and NOPS
3462 is the number of operands to write. */
3463
3464 static void
3465 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3466 {
3467 int wrote = 0;
3468 int i;
3469
3470 for (i = 0; i < nops; i++)
3471 {
3472 int addressp;
3473 rtx op = operands[oporder[i]];
3474 tree expr = get_mem_expr_from_op (op, &addressp);
3475
3476 fprintf (asm_out_file, "%c%s",
3477 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3478 wrote = 1;
3479 if (expr)
3480 {
3481 fprintf (asm_out_file, "%s",
3482 addressp ? "*" : "");
3483 print_mem_expr (asm_out_file, expr);
3484 wrote = 1;
3485 }
3486 else if (REG_P (op) && ORIGINAL_REGNO (op)
3487 && ORIGINAL_REGNO (op) != REGNO (op))
3488 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3489 }
3490 }
3491
3492 #ifdef ASSEMBLER_DIALECT
3493 /* Helper function to parse assembler dialects in the asm string.
3494 This is called from output_asm_insn and asm_fprintf. */
3495 static const char *
3496 do_assembler_dialects (const char *p, int *dialect)
3497 {
3498 char c = *(p - 1);
3499
3500 switch (c)
3501 {
3502 case '{':
3503 {
3504 int i;
3505
3506 if (*dialect)
3507 output_operand_lossage ("nested assembly dialect alternatives");
3508 else
3509 *dialect = 1;
3510
3511 /* If we want the first dialect, do nothing. Otherwise, skip
3512 DIALECT_NUMBER of strings ending with '|'. */
3513 for (i = 0; i < dialect_number; i++)
3514 {
3515 while (*p && *p != '}')
3516 {
3517 if (*p == '|')
3518 {
3519 p++;
3520 break;
3521 }
3522
3523 /* Skip over any character after a percent sign. */
3524 if (*p == '%')
3525 p++;
3526 if (*p)
3527 p++;
3528 }
3529
3530 if (*p == '}')
3531 break;
3532 }
3533
3534 if (*p == '\0')
3535 output_operand_lossage ("unterminated assembly dialect alternative");
3536 }
3537 break;
3538
3539 case '|':
3540 if (*dialect)
3541 {
3542 /* Skip to close brace. */
3543 do
3544 {
3545 if (*p == '\0')
3546 {
3547 output_operand_lossage ("unterminated assembly dialect alternative");
3548 break;
3549 }
3550
3551 /* Skip over any character after a percent sign. */
3552 if (*p == '%' && p[1])
3553 {
3554 p += 2;
3555 continue;
3556 }
3557
3558 if (*p++ == '}')
3559 break;
3560 }
3561 while (1);
3562
3563 *dialect = 0;
3564 }
3565 else
3566 putc (c, asm_out_file);
3567 break;
3568
3569 case '}':
3570 if (! *dialect)
3571 putc (c, asm_out_file);
3572 *dialect = 0;
3573 break;
3574 default:
3575 gcc_unreachable ();
3576 }
3577
3578 return p;
3579 }
3580 #endif
3581
3582 /* Output text from TEMPLATE to the assembler output file,
3583 obeying %-directions to substitute operands taken from
3584 the vector OPERANDS.
3585
3586 %N (for N a digit) means print operand N in usual manner.
3587 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3588 and print the label name with no punctuation.
3589 %cN means require operand N to be a constant
3590 and print the constant expression with no punctuation.
3591 %aN means expect operand N to be a memory address
3592 (not a memory reference!) and print a reference
3593 to that address.
3594 %nN means expect operand N to be a constant
3595 and print a constant expression for minus the value
3596 of the operand, with no other punctuation. */
3597
3598 void
3599 output_asm_insn (const char *templ, rtx *operands)
3600 {
3601 const char *p;
3602 int c;
3603 #ifdef ASSEMBLER_DIALECT
3604 int dialect = 0;
3605 #endif
3606 int oporder[MAX_RECOG_OPERANDS];
3607 char opoutput[MAX_RECOG_OPERANDS];
3608 int ops = 0;
3609
3610 /* An insn may return a null string template
3611 in a case where no assembler code is needed. */
3612 if (*templ == 0)
3613 return;
3614
3615 memset (opoutput, 0, sizeof opoutput);
3616 p = templ;
3617 putc ('\t', asm_out_file);
3618
3619 #ifdef ASM_OUTPUT_OPCODE
3620 ASM_OUTPUT_OPCODE (asm_out_file, p);
3621 #endif
3622
3623 while ((c = *p++))
3624 switch (c)
3625 {
3626 case '\n':
3627 if (flag_verbose_asm)
3628 output_asm_operand_names (operands, oporder, ops);
3629 if (flag_print_asm_name)
3630 output_asm_name ();
3631
3632 ops = 0;
3633 memset (opoutput, 0, sizeof opoutput);
3634
3635 putc (c, asm_out_file);
3636 #ifdef ASM_OUTPUT_OPCODE
3637 while ((c = *p) == '\t')
3638 {
3639 putc (c, asm_out_file);
3640 p++;
3641 }
3642 ASM_OUTPUT_OPCODE (asm_out_file, p);
3643 #endif
3644 break;
3645
3646 #ifdef ASSEMBLER_DIALECT
3647 case '{':
3648 case '}':
3649 case '|':
3650 p = do_assembler_dialects (p, &dialect);
3651 break;
3652 #endif
3653
3654 case '%':
3655 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3656 if ASSEMBLER_DIALECT defined and these characters have a special
3657 meaning as dialect delimiters.*/
3658 if (*p == '%'
3659 #ifdef ASSEMBLER_DIALECT
3660 || *p == '{' || *p == '}' || *p == '|'
3661 #endif
3662 )
3663 {
3664 putc (*p, asm_out_file);
3665 p++;
3666 }
3667 /* %= outputs a number which is unique to each insn in the entire
3668 compilation. This is useful for making local labels that are
3669 referred to more than once in a given insn. */
3670 else if (*p == '=')
3671 {
3672 p++;
3673 fprintf (asm_out_file, "%d", insn_counter);
3674 }
3675 /* % followed by a letter and some digits
3676 outputs an operand in a special way depending on the letter.
3677 Letters `acln' are implemented directly.
3678 Other letters are passed to `output_operand' so that
3679 the TARGET_PRINT_OPERAND hook can define them. */
3680 else if (ISALPHA (*p))
3681 {
3682 int letter = *p++;
3683 unsigned long opnum;
3684 char *endptr;
3685
3686 opnum = strtoul (p, &endptr, 10);
3687
3688 if (endptr == p)
3689 output_operand_lossage ("operand number missing "
3690 "after %%-letter");
3691 else if (this_is_asm_operands && opnum >= insn_noperands)
3692 output_operand_lossage ("operand number out of range");
3693 else if (letter == 'l')
3694 output_asm_label (operands[opnum]);
3695 else if (letter == 'a')
3696 output_address (operands[opnum]);
3697 else if (letter == 'c')
3698 {
3699 if (CONSTANT_ADDRESS_P (operands[opnum]))
3700 output_addr_const (asm_out_file, operands[opnum]);
3701 else
3702 output_operand (operands[opnum], 'c');
3703 }
3704 else if (letter == 'n')
3705 {
3706 if (CONST_INT_P (operands[opnum]))
3707 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3708 - INTVAL (operands[opnum]));
3709 else
3710 {
3711 putc ('-', asm_out_file);
3712 output_addr_const (asm_out_file, operands[opnum]);
3713 }
3714 }
3715 else
3716 output_operand (operands[opnum], letter);
3717
3718 if (!opoutput[opnum])
3719 oporder[ops++] = opnum;
3720 opoutput[opnum] = 1;
3721
3722 p = endptr;
3723 c = *p;
3724 }
3725 /* % followed by a digit outputs an operand the default way. */
3726 else if (ISDIGIT (*p))
3727 {
3728 unsigned long opnum;
3729 char *endptr;
3730
3731 opnum = strtoul (p, &endptr, 10);
3732 if (this_is_asm_operands && opnum >= insn_noperands)
3733 output_operand_lossage ("operand number out of range");
3734 else
3735 output_operand (operands[opnum], 0);
3736
3737 if (!opoutput[opnum])
3738 oporder[ops++] = opnum;
3739 opoutput[opnum] = 1;
3740
3741 p = endptr;
3742 c = *p;
3743 }
3744 /* % followed by punctuation: output something for that
3745 punctuation character alone, with no operand. The
3746 TARGET_PRINT_OPERAND hook decides what is actually done. */
3747 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3748 output_operand (NULL_RTX, *p++);
3749 else
3750 output_operand_lossage ("invalid %%-code");
3751 break;
3752
3753 default:
3754 putc (c, asm_out_file);
3755 }
3756
3757 /* Write out the variable names for operands, if we know them. */
3758 if (flag_verbose_asm)
3759 output_asm_operand_names (operands, oporder, ops);
3760 if (flag_print_asm_name)
3761 output_asm_name ();
3762
3763 putc ('\n', asm_out_file);
3764 }
3765 \f
3766 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3767
3768 void
3769 output_asm_label (rtx x)
3770 {
3771 char buf[256];
3772
3773 if (GET_CODE (x) == LABEL_REF)
3774 x = XEXP (x, 0);
3775 if (LABEL_P (x)
3776 || (NOTE_P (x)
3777 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3778 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3779 else
3780 output_operand_lossage ("'%%l' operand isn't a label");
3781
3782 assemble_name (asm_out_file, buf);
3783 }
3784
3785 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3786 output_operand. Marks SYMBOL_REFs as referenced through use of
3787 assemble_external. */
3788
3789 static int
3790 mark_symbol_ref_as_used (rtx *xp, void *dummy ATTRIBUTE_UNUSED)
3791 {
3792 rtx x = *xp;
3793
3794 /* If we have a used symbol, we may have to emit assembly
3795 annotations corresponding to whether the symbol is external, weak
3796 or has non-default visibility. */
3797 if (GET_CODE (x) == SYMBOL_REF)
3798 {
3799 tree t;
3800
3801 t = SYMBOL_REF_DECL (x);
3802 if (t)
3803 assemble_external (t);
3804
3805 return -1;
3806 }
3807
3808 return 0;
3809 }
3810
3811 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3812
3813 void
3814 mark_symbol_refs_as_used (rtx x)
3815 {
3816 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3817 }
3818
3819 /* Print operand X using machine-dependent assembler syntax.
3820 CODE is a non-digit that preceded the operand-number in the % spec,
3821 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3822 between the % and the digits.
3823 When CODE is a non-letter, X is 0.
3824
3825 The meanings of the letters are machine-dependent and controlled
3826 by TARGET_PRINT_OPERAND. */
3827
3828 void
3829 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3830 {
3831 if (x && GET_CODE (x) == SUBREG)
3832 x = alter_subreg (&x, true);
3833
3834 /* X must not be a pseudo reg. */
3835 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3836
3837 targetm.asm_out.print_operand (asm_out_file, x, code);
3838
3839 if (x == NULL_RTX)
3840 return;
3841
3842 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3843 }
3844
3845 /* Print a memory reference operand for address X using
3846 machine-dependent assembler syntax. */
3847
3848 void
3849 output_address (rtx x)
3850 {
3851 bool changed = false;
3852 walk_alter_subreg (&x, &changed);
3853 targetm.asm_out.print_operand_address (asm_out_file, x);
3854 }
3855 \f
3856 /* Print an integer constant expression in assembler syntax.
3857 Addition and subtraction are the only arithmetic
3858 that may appear in these expressions. */
3859
3860 void
3861 output_addr_const (FILE *file, rtx x)
3862 {
3863 char buf[256];
3864
3865 restart:
3866 switch (GET_CODE (x))
3867 {
3868 case PC:
3869 putc ('.', file);
3870 break;
3871
3872 case SYMBOL_REF:
3873 if (SYMBOL_REF_DECL (x))
3874 assemble_external (SYMBOL_REF_DECL (x));
3875 #ifdef ASM_OUTPUT_SYMBOL_REF
3876 ASM_OUTPUT_SYMBOL_REF (file, x);
3877 #else
3878 assemble_name (file, XSTR (x, 0));
3879 #endif
3880 break;
3881
3882 case LABEL_REF:
3883 x = XEXP (x, 0);
3884 /* Fall through. */
3885 case CODE_LABEL:
3886 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3887 #ifdef ASM_OUTPUT_LABEL_REF
3888 ASM_OUTPUT_LABEL_REF (file, buf);
3889 #else
3890 assemble_name (file, buf);
3891 #endif
3892 break;
3893
3894 case CONST_INT:
3895 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3896 break;
3897
3898 case CONST:
3899 /* This used to output parentheses around the expression,
3900 but that does not work on the 386 (either ATT or BSD assembler). */
3901 output_addr_const (file, XEXP (x, 0));
3902 break;
3903
3904 case CONST_WIDE_INT:
3905 /* We do not know the mode here so we have to use a round about
3906 way to build a wide-int to get it printed properly. */
3907 {
3908 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3909 CONST_WIDE_INT_NUNITS (x),
3910 CONST_WIDE_INT_NUNITS (x)
3911 * HOST_BITS_PER_WIDE_INT,
3912 false);
3913 print_decs (w, file);
3914 }
3915 break;
3916
3917 case CONST_DOUBLE:
3918 if (CONST_DOUBLE_AS_INT_P (x))
3919 {
3920 /* We can use %d if the number is one word and positive. */
3921 if (CONST_DOUBLE_HIGH (x))
3922 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3923 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3924 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3925 else if (CONST_DOUBLE_LOW (x) < 0)
3926 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3927 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3928 else
3929 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3930 }
3931 else
3932 /* We can't handle floating point constants;
3933 PRINT_OPERAND must handle them. */
3934 output_operand_lossage ("floating constant misused");
3935 break;
3936
3937 case CONST_FIXED:
3938 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3939 break;
3940
3941 case PLUS:
3942 /* Some assemblers need integer constants to appear last (eg masm). */
3943 if (CONST_INT_P (XEXP (x, 0)))
3944 {
3945 output_addr_const (file, XEXP (x, 1));
3946 if (INTVAL (XEXP (x, 0)) >= 0)
3947 fprintf (file, "+");
3948 output_addr_const (file, XEXP (x, 0));
3949 }
3950 else
3951 {
3952 output_addr_const (file, XEXP (x, 0));
3953 if (!CONST_INT_P (XEXP (x, 1))
3954 || INTVAL (XEXP (x, 1)) >= 0)
3955 fprintf (file, "+");
3956 output_addr_const (file, XEXP (x, 1));
3957 }
3958 break;
3959
3960 case MINUS:
3961 /* Avoid outputting things like x-x or x+5-x,
3962 since some assemblers can't handle that. */
3963 x = simplify_subtraction (x);
3964 if (GET_CODE (x) != MINUS)
3965 goto restart;
3966
3967 output_addr_const (file, XEXP (x, 0));
3968 fprintf (file, "-");
3969 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3970 || GET_CODE (XEXP (x, 1)) == PC
3971 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3972 output_addr_const (file, XEXP (x, 1));
3973 else
3974 {
3975 fputs (targetm.asm_out.open_paren, file);
3976 output_addr_const (file, XEXP (x, 1));
3977 fputs (targetm.asm_out.close_paren, file);
3978 }
3979 break;
3980
3981 case ZERO_EXTEND:
3982 case SIGN_EXTEND:
3983 case SUBREG:
3984 case TRUNCATE:
3985 output_addr_const (file, XEXP (x, 0));
3986 break;
3987
3988 default:
3989 if (targetm.asm_out.output_addr_const_extra (file, x))
3990 break;
3991
3992 output_operand_lossage ("invalid expression as operand");
3993 }
3994 }
3995 \f
3996 /* Output a quoted string. */
3997
3998 void
3999 output_quoted_string (FILE *asm_file, const char *string)
4000 {
4001 #ifdef OUTPUT_QUOTED_STRING
4002 OUTPUT_QUOTED_STRING (asm_file, string);
4003 #else
4004 char c;
4005
4006 putc ('\"', asm_file);
4007 while ((c = *string++) != 0)
4008 {
4009 if (ISPRINT (c))
4010 {
4011 if (c == '\"' || c == '\\')
4012 putc ('\\', asm_file);
4013 putc (c, asm_file);
4014 }
4015 else
4016 fprintf (asm_file, "\\%03o", (unsigned char) c);
4017 }
4018 putc ('\"', asm_file);
4019 #endif
4020 }
4021 \f
4022 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4023
4024 void
4025 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4026 {
4027 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4028 if (value == 0)
4029 putc ('0', f);
4030 else
4031 {
4032 char *p = buf + sizeof (buf);
4033 do
4034 *--p = "0123456789abcdef"[value % 16];
4035 while ((value /= 16) != 0);
4036 *--p = 'x';
4037 *--p = '0';
4038 fwrite (p, 1, buf + sizeof (buf) - p, f);
4039 }
4040 }
4041
4042 /* Internal function that prints an unsigned long in decimal in reverse.
4043 The output string IS NOT null-terminated. */
4044
4045 static int
4046 sprint_ul_rev (char *s, unsigned long value)
4047 {
4048 int i = 0;
4049 do
4050 {
4051 s[i] = "0123456789"[value % 10];
4052 value /= 10;
4053 i++;
4054 /* alternate version, without modulo */
4055 /* oldval = value; */
4056 /* value /= 10; */
4057 /* s[i] = "0123456789" [oldval - 10*value]; */
4058 /* i++ */
4059 }
4060 while (value != 0);
4061 return i;
4062 }
4063
4064 /* Write an unsigned long as decimal to a file, fast. */
4065
4066 void
4067 fprint_ul (FILE *f, unsigned long value)
4068 {
4069 /* python says: len(str(2**64)) == 20 */
4070 char s[20];
4071 int i;
4072
4073 i = sprint_ul_rev (s, value);
4074
4075 /* It's probably too small to bother with string reversal and fputs. */
4076 do
4077 {
4078 i--;
4079 putc (s[i], f);
4080 }
4081 while (i != 0);
4082 }
4083
4084 /* Write an unsigned long as decimal to a string, fast.
4085 s must be wide enough to not overflow, at least 21 chars.
4086 Returns the length of the string (without terminating '\0'). */
4087
4088 int
4089 sprint_ul (char *s, unsigned long value)
4090 {
4091 int len;
4092 char tmp_c;
4093 int i;
4094 int j;
4095
4096 len = sprint_ul_rev (s, value);
4097 s[len] = '\0';
4098
4099 /* Reverse the string. */
4100 i = 0;
4101 j = len - 1;
4102 while (i < j)
4103 {
4104 tmp_c = s[i];
4105 s[i] = s[j];
4106 s[j] = tmp_c;
4107 i++; j--;
4108 }
4109
4110 return len;
4111 }
4112
4113 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4114 %R prints the value of REGISTER_PREFIX.
4115 %L prints the value of LOCAL_LABEL_PREFIX.
4116 %U prints the value of USER_LABEL_PREFIX.
4117 %I prints the value of IMMEDIATE_PREFIX.
4118 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4119 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4120
4121 We handle alternate assembler dialects here, just like output_asm_insn. */
4122
4123 void
4124 asm_fprintf (FILE *file, const char *p, ...)
4125 {
4126 char buf[10];
4127 char *q, c;
4128 #ifdef ASSEMBLER_DIALECT
4129 int dialect = 0;
4130 #endif
4131 va_list argptr;
4132
4133 va_start (argptr, p);
4134
4135 buf[0] = '%';
4136
4137 while ((c = *p++))
4138 switch (c)
4139 {
4140 #ifdef ASSEMBLER_DIALECT
4141 case '{':
4142 case '}':
4143 case '|':
4144 p = do_assembler_dialects (p, &dialect);
4145 break;
4146 #endif
4147
4148 case '%':
4149 c = *p++;
4150 q = &buf[1];
4151 while (strchr ("-+ #0", c))
4152 {
4153 *q++ = c;
4154 c = *p++;
4155 }
4156 while (ISDIGIT (c) || c == '.')
4157 {
4158 *q++ = c;
4159 c = *p++;
4160 }
4161 switch (c)
4162 {
4163 case '%':
4164 putc ('%', file);
4165 break;
4166
4167 case 'd': case 'i': case 'u':
4168 case 'x': case 'X': case 'o':
4169 case 'c':
4170 *q++ = c;
4171 *q = 0;
4172 fprintf (file, buf, va_arg (argptr, int));
4173 break;
4174
4175 case 'w':
4176 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4177 'o' cases, but we do not check for those cases. It
4178 means that the value is a HOST_WIDE_INT, which may be
4179 either `long' or `long long'. */
4180 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4181 q += strlen (HOST_WIDE_INT_PRINT);
4182 *q++ = *p++;
4183 *q = 0;
4184 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4185 break;
4186
4187 case 'l':
4188 *q++ = c;
4189 #ifdef HAVE_LONG_LONG
4190 if (*p == 'l')
4191 {
4192 *q++ = *p++;
4193 *q++ = *p++;
4194 *q = 0;
4195 fprintf (file, buf, va_arg (argptr, long long));
4196 }
4197 else
4198 #endif
4199 {
4200 *q++ = *p++;
4201 *q = 0;
4202 fprintf (file, buf, va_arg (argptr, long));
4203 }
4204
4205 break;
4206
4207 case 's':
4208 *q++ = c;
4209 *q = 0;
4210 fprintf (file, buf, va_arg (argptr, char *));
4211 break;
4212
4213 case 'O':
4214 #ifdef ASM_OUTPUT_OPCODE
4215 ASM_OUTPUT_OPCODE (asm_out_file, p);
4216 #endif
4217 break;
4218
4219 case 'R':
4220 #ifdef REGISTER_PREFIX
4221 fprintf (file, "%s", REGISTER_PREFIX);
4222 #endif
4223 break;
4224
4225 case 'I':
4226 #ifdef IMMEDIATE_PREFIX
4227 fprintf (file, "%s", IMMEDIATE_PREFIX);
4228 #endif
4229 break;
4230
4231 case 'L':
4232 #ifdef LOCAL_LABEL_PREFIX
4233 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4234 #endif
4235 break;
4236
4237 case 'U':
4238 fputs (user_label_prefix, file);
4239 break;
4240
4241 #ifdef ASM_FPRINTF_EXTENSIONS
4242 /* Uppercase letters are reserved for general use by asm_fprintf
4243 and so are not available to target specific code. In order to
4244 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4245 they are defined here. As they get turned into real extensions
4246 to asm_fprintf they should be removed from this list. */
4247 case 'A': case 'B': case 'C': case 'D': case 'E':
4248 case 'F': case 'G': case 'H': case 'J': case 'K':
4249 case 'M': case 'N': case 'P': case 'Q': case 'S':
4250 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4251 break;
4252
4253 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4254 #endif
4255 default:
4256 gcc_unreachable ();
4257 }
4258 break;
4259
4260 default:
4261 putc (c, file);
4262 }
4263 va_end (argptr);
4264 }
4265 \f
4266 /* Return nonzero if this function has no function calls. */
4267
4268 int
4269 leaf_function_p (void)
4270 {
4271 rtx_insn *insn;
4272
4273 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4274 functions even if they call mcount. */
4275 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4276 return 0;
4277
4278 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4279 {
4280 if (CALL_P (insn)
4281 && ! SIBLING_CALL_P (insn))
4282 return 0;
4283 if (NONJUMP_INSN_P (insn)
4284 && GET_CODE (PATTERN (insn)) == SEQUENCE
4285 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4286 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4287 return 0;
4288 }
4289
4290 return 1;
4291 }
4292
4293 /* Return 1 if branch is a forward branch.
4294 Uses insn_shuid array, so it works only in the final pass. May be used by
4295 output templates to customary add branch prediction hints.
4296 */
4297 int
4298 final_forward_branch_p (rtx_insn *insn)
4299 {
4300 int insn_id, label_id;
4301
4302 gcc_assert (uid_shuid);
4303 insn_id = INSN_SHUID (insn);
4304 label_id = INSN_SHUID (JUMP_LABEL (insn));
4305 /* We've hit some insns that does not have id information available. */
4306 gcc_assert (insn_id && label_id);
4307 return insn_id < label_id;
4308 }
4309
4310 /* On some machines, a function with no call insns
4311 can run faster if it doesn't create its own register window.
4312 When output, the leaf function should use only the "output"
4313 registers. Ordinarily, the function would be compiled to use
4314 the "input" registers to find its arguments; it is a candidate
4315 for leaf treatment if it uses only the "input" registers.
4316 Leaf function treatment means renumbering so the function
4317 uses the "output" registers instead. */
4318
4319 #ifdef LEAF_REGISTERS
4320
4321 /* Return 1 if this function uses only the registers that can be
4322 safely renumbered. */
4323
4324 int
4325 only_leaf_regs_used (void)
4326 {
4327 int i;
4328 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4329
4330 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4331 if ((df_regs_ever_live_p (i) || global_regs[i])
4332 && ! permitted_reg_in_leaf_functions[i])
4333 return 0;
4334
4335 if (crtl->uses_pic_offset_table
4336 && pic_offset_table_rtx != 0
4337 && REG_P (pic_offset_table_rtx)
4338 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4339 return 0;
4340
4341 return 1;
4342 }
4343
4344 /* Scan all instructions and renumber all registers into those
4345 available in leaf functions. */
4346
4347 static void
4348 leaf_renumber_regs (rtx_insn *first)
4349 {
4350 rtx_insn *insn;
4351
4352 /* Renumber only the actual patterns.
4353 The reg-notes can contain frame pointer refs,
4354 and renumbering them could crash, and should not be needed. */
4355 for (insn = first; insn; insn = NEXT_INSN (insn))
4356 if (INSN_P (insn))
4357 leaf_renumber_regs_insn (PATTERN (insn));
4358 }
4359
4360 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4361 available in leaf functions. */
4362
4363 void
4364 leaf_renumber_regs_insn (rtx in_rtx)
4365 {
4366 int i, j;
4367 const char *format_ptr;
4368
4369 if (in_rtx == 0)
4370 return;
4371
4372 /* Renumber all input-registers into output-registers.
4373 renumbered_regs would be 1 for an output-register;
4374 they */
4375
4376 if (REG_P (in_rtx))
4377 {
4378 int newreg;
4379
4380 /* Don't renumber the same reg twice. */
4381 if (in_rtx->used)
4382 return;
4383
4384 newreg = REGNO (in_rtx);
4385 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4386 to reach here as part of a REG_NOTE. */
4387 if (newreg >= FIRST_PSEUDO_REGISTER)
4388 {
4389 in_rtx->used = 1;
4390 return;
4391 }
4392 newreg = LEAF_REG_REMAP (newreg);
4393 gcc_assert (newreg >= 0);
4394 df_set_regs_ever_live (REGNO (in_rtx), false);
4395 df_set_regs_ever_live (newreg, true);
4396 SET_REGNO (in_rtx, newreg);
4397 in_rtx->used = 1;
4398 }
4399
4400 if (INSN_P (in_rtx))
4401 {
4402 /* Inside a SEQUENCE, we find insns.
4403 Renumber just the patterns of these insns,
4404 just as we do for the top-level insns. */
4405 leaf_renumber_regs_insn (PATTERN (in_rtx));
4406 return;
4407 }
4408
4409 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4410
4411 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4412 switch (*format_ptr++)
4413 {
4414 case 'e':
4415 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4416 break;
4417
4418 case 'E':
4419 if (NULL != XVEC (in_rtx, i))
4420 {
4421 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4422 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4423 }
4424 break;
4425
4426 case 'S':
4427 case 's':
4428 case '0':
4429 case 'i':
4430 case 'w':
4431 case 'n':
4432 case 'u':
4433 break;
4434
4435 default:
4436 gcc_unreachable ();
4437 }
4438 }
4439 #endif
4440 \f
4441 /* Turn the RTL into assembly. */
4442 static unsigned int
4443 rest_of_handle_final (void)
4444 {
4445 rtx x;
4446 const char *fnname;
4447
4448 /* Get the function's name, as described by its RTL. This may be
4449 different from the DECL_NAME name used in the source file. */
4450
4451 x = DECL_RTL (current_function_decl);
4452 gcc_assert (MEM_P (x));
4453 x = XEXP (x, 0);
4454 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4455 fnname = XSTR (x, 0);
4456
4457 assemble_start_function (current_function_decl, fnname);
4458 final_start_function (get_insns (), asm_out_file, optimize);
4459 final (get_insns (), asm_out_file, optimize);
4460 if (flag_use_caller_save)
4461 collect_fn_hard_reg_usage ();
4462 final_end_function ();
4463
4464 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4465 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4466 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4467 output_function_exception_table (fnname);
4468
4469 assemble_end_function (current_function_decl, fnname);
4470
4471 user_defined_section_attribute = false;
4472
4473 /* Free up reg info memory. */
4474 free_reg_info ();
4475
4476 if (! quiet_flag)
4477 fflush (asm_out_file);
4478
4479 /* Write DBX symbols if requested. */
4480
4481 /* Note that for those inline functions where we don't initially
4482 know for certain that we will be generating an out-of-line copy,
4483 the first invocation of this routine (rest_of_compilation) will
4484 skip over this code by doing a `goto exit_rest_of_compilation;'.
4485 Later on, wrapup_global_declarations will (indirectly) call
4486 rest_of_compilation again for those inline functions that need
4487 to have out-of-line copies generated. During that call, we
4488 *will* be routed past here. */
4489
4490 timevar_push (TV_SYMOUT);
4491 if (!DECL_IGNORED_P (current_function_decl))
4492 debug_hooks->function_decl (current_function_decl);
4493 timevar_pop (TV_SYMOUT);
4494
4495 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4496 DECL_INITIAL (current_function_decl) = error_mark_node;
4497
4498 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4499 && targetm.have_ctors_dtors)
4500 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4501 decl_init_priority_lookup
4502 (current_function_decl));
4503 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4504 && targetm.have_ctors_dtors)
4505 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4506 decl_fini_priority_lookup
4507 (current_function_decl));
4508 return 0;
4509 }
4510
4511 namespace {
4512
4513 const pass_data pass_data_final =
4514 {
4515 RTL_PASS, /* type */
4516 "final", /* name */
4517 OPTGROUP_NONE, /* optinfo_flags */
4518 TV_FINAL, /* tv_id */
4519 0, /* properties_required */
4520 0, /* properties_provided */
4521 0, /* properties_destroyed */
4522 0, /* todo_flags_start */
4523 0, /* todo_flags_finish */
4524 };
4525
4526 class pass_final : public rtl_opt_pass
4527 {
4528 public:
4529 pass_final (gcc::context *ctxt)
4530 : rtl_opt_pass (pass_data_final, ctxt)
4531 {}
4532
4533 /* opt_pass methods: */
4534 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4535
4536 }; // class pass_final
4537
4538 } // anon namespace
4539
4540 rtl_opt_pass *
4541 make_pass_final (gcc::context *ctxt)
4542 {
4543 return new pass_final (ctxt);
4544 }
4545
4546
4547 static unsigned int
4548 rest_of_handle_shorten_branches (void)
4549 {
4550 /* Shorten branches. */
4551 shorten_branches (get_insns ());
4552 return 0;
4553 }
4554
4555 namespace {
4556
4557 const pass_data pass_data_shorten_branches =
4558 {
4559 RTL_PASS, /* type */
4560 "shorten", /* name */
4561 OPTGROUP_NONE, /* optinfo_flags */
4562 TV_SHORTEN_BRANCH, /* tv_id */
4563 0, /* properties_required */
4564 0, /* properties_provided */
4565 0, /* properties_destroyed */
4566 0, /* todo_flags_start */
4567 0, /* todo_flags_finish */
4568 };
4569
4570 class pass_shorten_branches : public rtl_opt_pass
4571 {
4572 public:
4573 pass_shorten_branches (gcc::context *ctxt)
4574 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4575 {}
4576
4577 /* opt_pass methods: */
4578 virtual unsigned int execute (function *)
4579 {
4580 return rest_of_handle_shorten_branches ();
4581 }
4582
4583 }; // class pass_shorten_branches
4584
4585 } // anon namespace
4586
4587 rtl_opt_pass *
4588 make_pass_shorten_branches (gcc::context *ctxt)
4589 {
4590 return new pass_shorten_branches (ctxt);
4591 }
4592
4593
4594 static unsigned int
4595 rest_of_clean_state (void)
4596 {
4597 rtx_insn *insn, *next;
4598 FILE *final_output = NULL;
4599 int save_unnumbered = flag_dump_unnumbered;
4600 int save_noaddr = flag_dump_noaddr;
4601
4602 if (flag_dump_final_insns)
4603 {
4604 final_output = fopen (flag_dump_final_insns, "a");
4605 if (!final_output)
4606 {
4607 error ("could not open final insn dump file %qs: %m",
4608 flag_dump_final_insns);
4609 flag_dump_final_insns = NULL;
4610 }
4611 else
4612 {
4613 flag_dump_noaddr = flag_dump_unnumbered = 1;
4614 if (flag_compare_debug_opt || flag_compare_debug)
4615 dump_flags |= TDF_NOUID;
4616 dump_function_header (final_output, current_function_decl,
4617 dump_flags);
4618 final_insns_dump_p = true;
4619
4620 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4621 if (LABEL_P (insn))
4622 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4623 else
4624 {
4625 if (NOTE_P (insn))
4626 set_block_for_insn (insn, NULL);
4627 INSN_UID (insn) = 0;
4628 }
4629 }
4630 }
4631
4632 /* It is very important to decompose the RTL instruction chain here:
4633 debug information keeps pointing into CODE_LABEL insns inside the function
4634 body. If these remain pointing to the other insns, we end up preserving
4635 whole RTL chain and attached detailed debug info in memory. */
4636 for (insn = get_insns (); insn; insn = next)
4637 {
4638 next = NEXT_INSN (insn);
4639 SET_NEXT_INSN (insn) = NULL;
4640 SET_PREV_INSN (insn) = NULL;
4641
4642 if (final_output
4643 && (!NOTE_P (insn) ||
4644 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4645 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4646 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4647 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4648 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4649 print_rtl_single (final_output, insn);
4650 }
4651
4652 if (final_output)
4653 {
4654 flag_dump_noaddr = save_noaddr;
4655 flag_dump_unnumbered = save_unnumbered;
4656 final_insns_dump_p = false;
4657
4658 if (fclose (final_output))
4659 {
4660 error ("could not close final insn dump file %qs: %m",
4661 flag_dump_final_insns);
4662 flag_dump_final_insns = NULL;
4663 }
4664 }
4665
4666 /* In case the function was not output,
4667 don't leave any temporary anonymous types
4668 queued up for sdb output. */
4669 #ifdef SDB_DEBUGGING_INFO
4670 if (write_symbols == SDB_DEBUG)
4671 sdbout_types (NULL_TREE);
4672 #endif
4673
4674 flag_rerun_cse_after_global_opts = 0;
4675 reload_completed = 0;
4676 epilogue_completed = 0;
4677 #ifdef STACK_REGS
4678 regstack_completed = 0;
4679 #endif
4680
4681 /* Clear out the insn_length contents now that they are no
4682 longer valid. */
4683 init_insn_lengths ();
4684
4685 /* Show no temporary slots allocated. */
4686 init_temp_slots ();
4687
4688 free_bb_for_insn ();
4689
4690 delete_tree_ssa ();
4691
4692 /* We can reduce stack alignment on call site only when we are sure that
4693 the function body just produced will be actually used in the final
4694 executable. */
4695 if (decl_binds_to_current_def_p (current_function_decl))
4696 {
4697 unsigned int pref = crtl->preferred_stack_boundary;
4698 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4699 pref = crtl->stack_alignment_needed;
4700 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4701 = pref;
4702 }
4703
4704 /* Make sure volatile mem refs aren't considered valid operands for
4705 arithmetic insns. We must call this here if this is a nested inline
4706 function, since the above code leaves us in the init_recog state,
4707 and the function context push/pop code does not save/restore volatile_ok.
4708
4709 ??? Maybe it isn't necessary for expand_start_function to call this
4710 anymore if we do it here? */
4711
4712 init_recog_no_volatile ();
4713
4714 /* We're done with this function. Free up memory if we can. */
4715 free_after_parsing (cfun);
4716 free_after_compilation (cfun);
4717 return 0;
4718 }
4719
4720 namespace {
4721
4722 const pass_data pass_data_clean_state =
4723 {
4724 RTL_PASS, /* type */
4725 "*clean_state", /* name */
4726 OPTGROUP_NONE, /* optinfo_flags */
4727 TV_FINAL, /* tv_id */
4728 0, /* properties_required */
4729 0, /* properties_provided */
4730 PROP_rtl, /* properties_destroyed */
4731 0, /* todo_flags_start */
4732 0, /* todo_flags_finish */
4733 };
4734
4735 class pass_clean_state : public rtl_opt_pass
4736 {
4737 public:
4738 pass_clean_state (gcc::context *ctxt)
4739 : rtl_opt_pass (pass_data_clean_state, ctxt)
4740 {}
4741
4742 /* opt_pass methods: */
4743 virtual unsigned int execute (function *)
4744 {
4745 return rest_of_clean_state ();
4746 }
4747
4748 }; // class pass_clean_state
4749
4750 } // anon namespace
4751
4752 rtl_opt_pass *
4753 make_pass_clean_state (gcc::context *ctxt)
4754 {
4755 return new pass_clean_state (ctxt);
4756 }
4757
4758 /* Return true if INSN is a call to the the current function. */
4759
4760 static bool
4761 self_recursive_call_p (rtx_insn *insn)
4762 {
4763 tree fndecl = get_call_fndecl (insn);
4764 return (fndecl == current_function_decl
4765 && decl_binds_to_current_def_p (fndecl));
4766 }
4767
4768 /* Collect hard register usage for the current function. */
4769
4770 static void
4771 collect_fn_hard_reg_usage (void)
4772 {
4773 rtx_insn *insn;
4774 #ifdef STACK_REGS
4775 int i;
4776 #endif
4777 struct cgraph_rtl_info *node;
4778 HARD_REG_SET function_used_regs;
4779
4780 /* ??? To be removed when all the ports have been fixed. */
4781 if (!targetm.call_fusage_contains_non_callee_clobbers)
4782 return;
4783
4784 CLEAR_HARD_REG_SET (function_used_regs);
4785
4786 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4787 {
4788 HARD_REG_SET insn_used_regs;
4789
4790 if (!NONDEBUG_INSN_P (insn))
4791 continue;
4792
4793 if (CALL_P (insn)
4794 && !self_recursive_call_p (insn))
4795 {
4796 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4797 call_used_reg_set))
4798 return;
4799
4800 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4801 }
4802
4803 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4804 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4805 }
4806
4807 /* Be conservative - mark fixed and global registers as used. */
4808 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4809
4810 #ifdef STACK_REGS
4811 /* Handle STACK_REGS conservatively, since the df-framework does not
4812 provide accurate information for them. */
4813
4814 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4815 SET_HARD_REG_BIT (function_used_regs, i);
4816 #endif
4817
4818 /* The information we have gathered is only interesting if it exposes a
4819 register from the call_used_regs that is not used in this function. */
4820 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4821 return;
4822
4823 node = cgraph_rtl_info (current_function_decl);
4824 gcc_assert (node != NULL);
4825
4826 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4827 node->function_used_regs_valid = 1;
4828 }
4829
4830 /* Get the declaration of the function called by INSN. */
4831
4832 static tree
4833 get_call_fndecl (rtx_insn *insn)
4834 {
4835 rtx note, datum;
4836
4837 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4838 if (note == NULL_RTX)
4839 return NULL_TREE;
4840
4841 datum = XEXP (note, 0);
4842 if (datum != NULL_RTX)
4843 return SYMBOL_REF_DECL (datum);
4844
4845 return NULL_TREE;
4846 }
4847
4848 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4849 call targets that can be overwritten. */
4850
4851 static struct cgraph_rtl_info *
4852 get_call_cgraph_rtl_info (rtx_insn *insn)
4853 {
4854 tree fndecl;
4855
4856 if (insn == NULL_RTX)
4857 return NULL;
4858
4859 fndecl = get_call_fndecl (insn);
4860 if (fndecl == NULL_TREE
4861 || !decl_binds_to_current_def_p (fndecl))
4862 return NULL;
4863
4864 return cgraph_rtl_info (fndecl);
4865 }
4866
4867 /* Find hard registers used by function call instruction INSN, and return them
4868 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4869
4870 bool
4871 get_call_reg_set_usage (rtx uncast_insn, HARD_REG_SET *reg_set,
4872 HARD_REG_SET default_set)
4873 {
4874 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
4875 if (flag_use_caller_save)
4876 {
4877 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4878 if (node != NULL
4879 && node->function_used_regs_valid)
4880 {
4881 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4882 AND_HARD_REG_SET (*reg_set, default_set);
4883 return true;
4884 }
4885 }
4886
4887 COPY_HARD_REG_SET (*reg_set, default_set);
4888 return false;
4889 }