]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/flow.c
0c6d614b3b7a8eeb96f1bdd5ba59101550c85896
[thirdparty/gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
139
140 #include "obstack.h"
141 #include "splay-tree.h"
142
143 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
144 the stack pointer does not matter. The value is tested only in
145 functions that have frame pointers.
146 No definition is equivalent to always zero. */
147 #ifndef EXIT_IGNORE_STACK
148 #define EXIT_IGNORE_STACK 0
149 #endif
150
151 #ifndef HAVE_epilogue
152 #define HAVE_epilogue 0
153 #endif
154 #ifndef HAVE_prologue
155 #define HAVE_prologue 0
156 #endif
157 #ifndef HAVE_sibcall_epilogue
158 #define HAVE_sibcall_epilogue 0
159 #endif
160
161 #ifndef LOCAL_REGNO
162 #define LOCAL_REGNO(REGNO) 0
163 #endif
164 #ifndef EPILOGUE_USES
165 #define EPILOGUE_USES(REGNO) 0
166 #endif
167 #ifndef EH_USES
168 #define EH_USES(REGNO) 0
169 #endif
170
171 #ifdef HAVE_conditional_execution
172 #ifndef REVERSE_CONDEXEC_PREDICATES_P
173 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
174 #endif
175 #endif
176
177 /* Nonzero if the second flow pass has completed. */
178 int flow2_completed;
179
180 /* Maximum register number used in this function, plus one. */
181
182 int max_regno;
183
184 /* Indexed by n, giving various register information */
185
186 varray_type reg_n_info;
187
188 /* Size of a regset for the current function,
189 in (1) bytes and (2) elements. */
190
191 int regset_bytes;
192 int regset_size;
193
194 /* Regset of regs live when calls to `setjmp'-like functions happen. */
195 /* ??? Does this exist only for the setjmp-clobbered warning message? */
196
197 regset regs_live_at_setjmp;
198
199 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
200 that have to go in the same hard reg.
201 The first two regs in the list are a pair, and the next two
202 are another pair, etc. */
203 rtx regs_may_share;
204
205 /* Callback that determines if it's ok for a function to have no
206 noreturn attribute. */
207 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
208
209 /* Set of registers that may be eliminable. These are handled specially
210 in updating regs_ever_live. */
211
212 static HARD_REG_SET elim_reg_set;
213
214 /* Holds information for tracking conditional register life information. */
215 struct reg_cond_life_info
216 {
217 /* A boolean expression of conditions under which a register is dead. */
218 rtx condition;
219 /* Conditions under which a register is dead at the basic block end. */
220 rtx orig_condition;
221
222 /* A boolean expression of conditions under which a register has been
223 stored into. */
224 rtx stores;
225
226 /* ??? Could store mask of bytes that are dead, so that we could finally
227 track lifetimes of multi-word registers accessed via subregs. */
228 };
229
230 /* For use in communicating between propagate_block and its subroutines.
231 Holds all information needed to compute life and def-use information. */
232
233 struct propagate_block_info
234 {
235 /* The basic block we're considering. */
236 basic_block bb;
237
238 /* Bit N is set if register N is conditionally or unconditionally live. */
239 regset reg_live;
240
241 /* Bit N is set if register N is set this insn. */
242 regset new_set;
243
244 /* Element N is the next insn that uses (hard or pseudo) register N
245 within the current basic block; or zero, if there is no such insn. */
246 rtx *reg_next_use;
247
248 /* Contains a list of all the MEMs we are tracking for dead store
249 elimination. */
250 rtx mem_set_list;
251
252 /* If non-null, record the set of registers set unconditionally in the
253 basic block. */
254 regset local_set;
255
256 /* If non-null, record the set of registers set conditionally in the
257 basic block. */
258 regset cond_local_set;
259
260 #ifdef HAVE_conditional_execution
261 /* Indexed by register number, holds a reg_cond_life_info for each
262 register that is not unconditionally live or dead. */
263 splay_tree reg_cond_dead;
264
265 /* Bit N is set if register N is in an expression in reg_cond_dead. */
266 regset reg_cond_reg;
267 #endif
268
269 /* The length of mem_set_list. */
270 int mem_set_list_len;
271
272 /* Non-zero if the value of CC0 is live. */
273 int cc0_live;
274
275 /* Flags controling the set of information propagate_block collects. */
276 int flags;
277 };
278
279 /* Number of dead insns removed. */
280 static int ndead;
281
282 /* Maximum length of pbi->mem_set_list before we start dropping
283 new elements on the floor. */
284 #define MAX_MEM_SET_LIST_LEN 100
285
286 /* Forward declarations */
287 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
288 static void verify_wide_reg PARAMS ((int, basic_block));
289 static void verify_local_live_at_start PARAMS ((regset, basic_block));
290 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
291 static void notice_stack_pointer_modification PARAMS ((rtx));
292 static void mark_reg PARAMS ((rtx, void *));
293 static void mark_regs_live_at_end PARAMS ((regset));
294 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
295 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
296 static void propagate_block_delete_insn PARAMS ((rtx));
297 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
298 static int insn_dead_p PARAMS ((struct propagate_block_info *,
299 rtx, int, rtx));
300 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, rtx));
302 static void mark_set_regs PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_1 PARAMS ((struct propagate_block_info *,
305 enum rtx_code, rtx, rtx,
306 rtx, int));
307 static int find_regno_partial PARAMS ((rtx *, void *));
308
309 #ifdef HAVE_conditional_execution
310 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
311 int, rtx));
312 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
313 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
314 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
315 int));
316 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
317 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
318 static rtx not_reg_cond PARAMS ((rtx));
319 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
320 #endif
321 #ifdef AUTO_INC_DEC
322 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
323 rtx, rtx, rtx, rtx, rtx));
324 static void find_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx));
326 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
327 rtx));
328 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
329 #endif
330 static void mark_used_reg PARAMS ((struct propagate_block_info *,
331 rtx, rtx, rtx));
332 static void mark_used_regs PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 void dump_flow_info PARAMS ((FILE *));
335 void debug_flow_info PARAMS ((void));
336 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
337 rtx));
338 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
339 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
340 rtx));
341 static void clear_log_links PARAMS ((sbitmap));
342 \f
343
344 void
345 check_function_return_warnings ()
346 {
347 if (warn_missing_noreturn
348 && !TREE_THIS_VOLATILE (cfun->decl)
349 && EXIT_BLOCK_PTR->pred == NULL
350 && (lang_missing_noreturn_ok_p
351 && !lang_missing_noreturn_ok_p (cfun->decl)))
352 warning ("function might be possible candidate for attribute `noreturn'");
353
354 /* If we have a path to EXIT, then we do return. */
355 if (TREE_THIS_VOLATILE (cfun->decl)
356 && EXIT_BLOCK_PTR->pred != NULL)
357 warning ("`noreturn' function does return");
358
359 /* If the clobber_return_insn appears in some basic block, then we
360 do reach the end without returning a value. */
361 else if (warn_return_type
362 && cfun->x_clobber_return_insn != NULL
363 && EXIT_BLOCK_PTR->pred != NULL)
364 {
365 int max_uid = get_max_uid ();
366
367 /* If clobber_return_insn was excised by jump1, then renumber_insns
368 can make max_uid smaller than the number still recorded in our rtx.
369 That's fine, since this is a quick way of verifying that the insn
370 is no longer in the chain. */
371 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
372 {
373 rtx insn;
374
375 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
376 if (insn == cfun->x_clobber_return_insn)
377 {
378 warning ("control reaches end of non-void function");
379 break;
380 }
381 }
382 }
383 }
384 \f
385 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
386 note associated with the BLOCK. */
387
388 rtx
389 first_insn_after_basic_block_note (block)
390 basic_block block;
391 {
392 rtx insn;
393
394 /* Get the first instruction in the block. */
395 insn = block->head;
396
397 if (insn == NULL_RTX)
398 return NULL_RTX;
399 if (GET_CODE (insn) == CODE_LABEL)
400 insn = NEXT_INSN (insn);
401 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
402 abort ();
403
404 return NEXT_INSN (insn);
405 }
406 \f
407 /* Perform data flow analysis.
408 F is the first insn of the function; FLAGS is a set of PROP_* flags
409 to be used in accumulating flow info. */
410
411 void
412 life_analysis (f, file, flags)
413 rtx f;
414 FILE *file;
415 int flags;
416 {
417 #ifdef ELIMINABLE_REGS
418 int i;
419 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
420 #endif
421
422 /* Record which registers will be eliminated. We use this in
423 mark_used_regs. */
424
425 CLEAR_HARD_REG_SET (elim_reg_set);
426
427 #ifdef ELIMINABLE_REGS
428 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
429 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
430 #else
431 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
432 #endif
433
434 if (! optimize)
435 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
436
437 /* The post-reload life analysis have (on a global basis) the same
438 registers live as was computed by reload itself. elimination
439 Otherwise offsets and such may be incorrect.
440
441 Reload will make some registers as live even though they do not
442 appear in the rtl.
443
444 We don't want to create new auto-incs after reload, since they
445 are unlikely to be useful and can cause problems with shared
446 stack slots. */
447 if (reload_completed)
448 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
449
450 /* We want alias analysis information for local dead store elimination. */
451 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
452 init_alias_analysis ();
453
454 /* Always remove no-op moves. Do this before other processing so
455 that we don't have to keep re-scanning them. */
456 delete_noop_moves (f);
457
458 /* Some targets can emit simpler epilogues if they know that sp was
459 not ever modified during the function. After reload, of course,
460 we've already emitted the epilogue so there's no sense searching. */
461 if (! reload_completed)
462 notice_stack_pointer_modification (f);
463
464 /* Allocate and zero out data structures that will record the
465 data from lifetime analysis. */
466 allocate_reg_life_data ();
467 allocate_bb_life_data ();
468
469 /* Find the set of registers live on function exit. */
470 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
471
472 /* "Update" life info from zero. It'd be nice to begin the
473 relaxation with just the exit and noreturn blocks, but that set
474 is not immediately handy. */
475
476 if (flags & PROP_REG_INFO)
477 memset (regs_ever_live, 0, sizeof (regs_ever_live));
478 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
479
480 /* Clean up. */
481 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
482 end_alias_analysis ();
483
484 if (file)
485 dump_flow_info (file);
486
487 free_basic_block_vars (1);
488
489 /* Removing dead insns should've made jumptables really dead. */
490 delete_dead_jumptables ();
491 }
492
493 /* A subroutine of verify_wide_reg, called through for_each_rtx.
494 Search for REGNO. If found, return 2 if it is not wider than
495 word_mode. */
496
497 static int
498 verify_wide_reg_1 (px, pregno)
499 rtx *px;
500 void *pregno;
501 {
502 rtx x = *px;
503 unsigned int regno = *(int *) pregno;
504
505 if (GET_CODE (x) == REG && REGNO (x) == regno)
506 {
507 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
508 return 2;
509 return 1;
510 }
511 return 0;
512 }
513
514 /* A subroutine of verify_local_live_at_start. Search through insns
515 of BB looking for register REGNO. */
516
517 static void
518 verify_wide_reg (regno, bb)
519 int regno;
520 basic_block bb;
521 {
522 rtx head = bb->head, end = bb->end;
523
524 while (1)
525 {
526 if (INSN_P (head))
527 {
528 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
529 if (r == 1)
530 return;
531 if (r == 2)
532 break;
533 }
534 if (head == end)
535 break;
536 head = NEXT_INSN (head);
537 }
538
539 if (rtl_dump_file)
540 {
541 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
542 dump_bb (bb, rtl_dump_file);
543 }
544 abort ();
545 }
546
547 /* A subroutine of update_life_info. Verify that there are no untoward
548 changes in live_at_start during a local update. */
549
550 static void
551 verify_local_live_at_start (new_live_at_start, bb)
552 regset new_live_at_start;
553 basic_block bb;
554 {
555 if (reload_completed)
556 {
557 /* After reload, there are no pseudos, nor subregs of multi-word
558 registers. The regsets should exactly match. */
559 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
560 {
561 if (rtl_dump_file)
562 {
563 fprintf (rtl_dump_file,
564 "live_at_start mismatch in bb %d, aborting\nNew:\n",
565 bb->index);
566 debug_bitmap_file (rtl_dump_file, new_live_at_start);
567 fputs ("Old:\n", rtl_dump_file);
568 dump_bb (bb, rtl_dump_file);
569 }
570 abort ();
571 }
572 }
573 else
574 {
575 int i;
576
577 /* Find the set of changed registers. */
578 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
579
580 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
581 {
582 /* No registers should die. */
583 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
584 {
585 if (rtl_dump_file)
586 {
587 fprintf (rtl_dump_file,
588 "Register %d died unexpectedly.\n", i);
589 dump_bb (bb, rtl_dump_file);
590 }
591 abort ();
592 }
593
594 /* Verify that the now-live register is wider than word_mode. */
595 verify_wide_reg (i, bb);
596 });
597 }
598 }
599
600 /* Updates life information starting with the basic blocks set in BLOCKS.
601 If BLOCKS is null, consider it to be the universal set.
602
603 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
604 we are only expecting local modifications to basic blocks. If we find
605 extra registers live at the beginning of a block, then we either killed
606 useful data, or we have a broken split that wants data not provided.
607 If we find registers removed from live_at_start, that means we have
608 a broken peephole that is killing a register it shouldn't.
609
610 ??? This is not true in one situation -- when a pre-reload splitter
611 generates subregs of a multi-word pseudo, current life analysis will
612 lose the kill. So we _can_ have a pseudo go live. How irritating.
613
614 Including PROP_REG_INFO does not properly refresh regs_ever_live
615 unless the caller resets it to zero. */
616
617 int
618 update_life_info (blocks, extent, prop_flags)
619 sbitmap blocks;
620 enum update_life_extent extent;
621 int prop_flags;
622 {
623 regset tmp;
624 regset_head tmp_head;
625 int i;
626 int stabilized_prop_flags = prop_flags;
627 basic_block bb;
628
629 tmp = INITIALIZE_REG_SET (tmp_head);
630 ndead = 0;
631
632 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
633 ? TV_LIFE_UPDATE : TV_LIFE);
634
635 /* Changes to the CFG are only allowed when
636 doing a global update for the entire CFG. */
637 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
638 && (extent == UPDATE_LIFE_LOCAL || blocks))
639 abort ();
640
641 /* For a global update, we go through the relaxation process again. */
642 if (extent != UPDATE_LIFE_LOCAL)
643 {
644 for ( ; ; )
645 {
646 int changed = 0;
647
648 calculate_global_regs_live (blocks, blocks,
649 prop_flags & (PROP_SCAN_DEAD_CODE
650 | PROP_SCAN_DEAD_STORES
651 | PROP_ALLOW_CFG_CHANGES));
652
653 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
654 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
655 break;
656
657 /* Removing dead code may allow the CFG to be simplified which
658 in turn may allow for further dead code detection / removal. */
659 FOR_EACH_BB_REVERSE (bb)
660 {
661 COPY_REG_SET (tmp, bb->global_live_at_end);
662 changed |= propagate_block (bb, tmp, NULL, NULL,
663 prop_flags & (PROP_SCAN_DEAD_CODE
664 | PROP_SCAN_DEAD_STORES
665 | PROP_KILL_DEAD_CODE));
666 }
667
668 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
669 subsequent propagate_block calls, since removing or acting as
670 removing dead code can affect global register liveness, which
671 is supposed to be finalized for this call after this loop. */
672 stabilized_prop_flags
673 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
674 | PROP_KILL_DEAD_CODE);
675
676 if (! changed)
677 break;
678
679 /* We repeat regardless of what cleanup_cfg says. If there were
680 instructions deleted above, that might have been only a
681 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
682 Further improvement may be possible. */
683 cleanup_cfg (CLEANUP_EXPENSIVE);
684 }
685
686 /* If asked, remove notes from the blocks we'll update. */
687 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
688 count_or_remove_death_notes (blocks, 1);
689 }
690
691 /* Clear log links in case we are asked to (re)compute them. */
692 if (prop_flags & PROP_LOG_LINKS)
693 clear_log_links (blocks);
694
695 if (blocks)
696 {
697 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
698 {
699 bb = BASIC_BLOCK (i);
700
701 COPY_REG_SET (tmp, bb->global_live_at_end);
702 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
703
704 if (extent == UPDATE_LIFE_LOCAL)
705 verify_local_live_at_start (tmp, bb);
706 });
707 }
708 else
709 {
710 FOR_EACH_BB_REVERSE (bb)
711 {
712 COPY_REG_SET (tmp, bb->global_live_at_end);
713
714 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
715
716 if (extent == UPDATE_LIFE_LOCAL)
717 verify_local_live_at_start (tmp, bb);
718 }
719 }
720
721 FREE_REG_SET (tmp);
722
723 if (prop_flags & PROP_REG_INFO)
724 {
725 /* The only pseudos that are live at the beginning of the function
726 are those that were not set anywhere in the function. local-alloc
727 doesn't know how to handle these correctly, so mark them as not
728 local to any one basic block. */
729 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
730 FIRST_PSEUDO_REGISTER, i,
731 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
732
733 /* We have a problem with any pseudoreg that lives across the setjmp.
734 ANSI says that if a user variable does not change in value between
735 the setjmp and the longjmp, then the longjmp preserves it. This
736 includes longjmp from a place where the pseudo appears dead.
737 (In principle, the value still exists if it is in scope.)
738 If the pseudo goes in a hard reg, some other value may occupy
739 that hard reg where this pseudo is dead, thus clobbering the pseudo.
740 Conclusion: such a pseudo must not go in a hard reg. */
741 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
742 FIRST_PSEUDO_REGISTER, i,
743 {
744 if (regno_reg_rtx[i] != 0)
745 {
746 REG_LIVE_LENGTH (i) = -1;
747 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
748 }
749 });
750 }
751 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
752 ? TV_LIFE_UPDATE : TV_LIFE);
753 if (ndead && rtl_dump_file)
754 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
755 return ndead;
756 }
757
758 /* Update life information in all blocks where BB_DIRTY is set. */
759
760 int
761 update_life_info_in_dirty_blocks (extent, prop_flags)
762 enum update_life_extent extent;
763 int prop_flags;
764 {
765 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
766 int n = 0;
767 basic_block bb;
768 int retval = 0;
769
770 sbitmap_zero (update_life_blocks);
771 FOR_EACH_BB (bb)
772 {
773 if (extent == UPDATE_LIFE_LOCAL)
774 {
775 if (bb->flags & BB_DIRTY)
776 {
777 SET_BIT (update_life_blocks, bb->index);
778 n++;
779 }
780 }
781 else
782 {
783 /* ??? Bootstrap with -march=pentium4 fails to terminate
784 with only a partial life update. */
785 SET_BIT (update_life_blocks, bb->index);
786 if (bb->flags & BB_DIRTY)
787 n++;
788 }
789 }
790
791 if (n)
792 retval = update_life_info (update_life_blocks, extent, prop_flags);
793
794 sbitmap_free (update_life_blocks);
795 return retval;
796 }
797
798 /* Free the variables allocated by find_basic_blocks.
799
800 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
801
802 void
803 free_basic_block_vars (keep_head_end_p)
804 int keep_head_end_p;
805 {
806 if (! keep_head_end_p)
807 {
808 if (basic_block_info)
809 {
810 clear_edges ();
811 VARRAY_FREE (basic_block_info);
812 }
813 n_basic_blocks = 0;
814 last_basic_block = 0;
815
816 ENTRY_BLOCK_PTR->aux = NULL;
817 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
818 EXIT_BLOCK_PTR->aux = NULL;
819 EXIT_BLOCK_PTR->global_live_at_start = NULL;
820 }
821 }
822
823 /* Delete any insns that copy a register to itself. */
824
825 int
826 delete_noop_moves (f)
827 rtx f ATTRIBUTE_UNUSED;
828 {
829 rtx insn, next;
830 basic_block bb;
831 int nnoops = 0;
832
833 FOR_EACH_BB (bb)
834 {
835 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
836 {
837 next = NEXT_INSN (insn);
838 if (INSN_P (insn) && noop_move_p (insn))
839 {
840 rtx note;
841
842 /* If we're about to remove the first insn of a libcall
843 then move the libcall note to the next real insn and
844 update the retval note. */
845 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
846 && XEXP (note, 0) != insn)
847 {
848 rtx new_libcall_insn = next_real_insn (insn);
849 rtx retval_note = find_reg_note (XEXP (note, 0),
850 REG_RETVAL, NULL_RTX);
851 REG_NOTES (new_libcall_insn)
852 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
853 REG_NOTES (new_libcall_insn));
854 XEXP (retval_note, 0) = new_libcall_insn;
855 }
856
857 delete_insn_and_edges (insn);
858 nnoops++;
859 }
860 }
861 }
862 if (nnoops && rtl_dump_file)
863 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
864 return nnoops;
865 }
866
867 /* Delete any jump tables never referenced. We can't delete them at the
868 time of removing tablejump insn as they are referenced by the preceding
869 insns computing the destination, so we delay deleting and garbagecollect
870 them once life information is computed. */
871 void
872 delete_dead_jumptables ()
873 {
874 rtx insn, next;
875 for (insn = get_insns (); insn; insn = next)
876 {
877 next = NEXT_INSN (insn);
878 if (GET_CODE (insn) == CODE_LABEL
879 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
880 && GET_CODE (next) == JUMP_INSN
881 && (GET_CODE (PATTERN (next)) == ADDR_VEC
882 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
883 {
884 if (rtl_dump_file)
885 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
886 delete_insn (NEXT_INSN (insn));
887 delete_insn (insn);
888 next = NEXT_INSN (next);
889 }
890 }
891 }
892
893 /* Determine if the stack pointer is constant over the life of the function.
894 Only useful before prologues have been emitted. */
895
896 static void
897 notice_stack_pointer_modification_1 (x, pat, data)
898 rtx x;
899 rtx pat ATTRIBUTE_UNUSED;
900 void *data ATTRIBUTE_UNUSED;
901 {
902 if (x == stack_pointer_rtx
903 /* The stack pointer is only modified indirectly as the result
904 of a push until later in flow. See the comments in rtl.texi
905 regarding Embedded Side-Effects on Addresses. */
906 || (GET_CODE (x) == MEM
907 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
908 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
909 current_function_sp_is_unchanging = 0;
910 }
911
912 static void
913 notice_stack_pointer_modification (f)
914 rtx f;
915 {
916 rtx insn;
917
918 /* Assume that the stack pointer is unchanging if alloca hasn't
919 been used. */
920 current_function_sp_is_unchanging = !current_function_calls_alloca;
921 if (! current_function_sp_is_unchanging)
922 return;
923
924 for (insn = f; insn; insn = NEXT_INSN (insn))
925 {
926 if (INSN_P (insn))
927 {
928 /* Check if insn modifies the stack pointer. */
929 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
930 NULL);
931 if (! current_function_sp_is_unchanging)
932 return;
933 }
934 }
935 }
936
937 /* Mark a register in SET. Hard registers in large modes get all
938 of their component registers set as well. */
939
940 static void
941 mark_reg (reg, xset)
942 rtx reg;
943 void *xset;
944 {
945 regset set = (regset) xset;
946 int regno = REGNO (reg);
947
948 if (GET_MODE (reg) == BLKmode)
949 abort ();
950
951 SET_REGNO_REG_SET (set, regno);
952 if (regno < FIRST_PSEUDO_REGISTER)
953 {
954 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
955 while (--n > 0)
956 SET_REGNO_REG_SET (set, regno + n);
957 }
958 }
959
960 /* Mark those regs which are needed at the end of the function as live
961 at the end of the last basic block. */
962
963 static void
964 mark_regs_live_at_end (set)
965 regset set;
966 {
967 unsigned int i;
968
969 /* If exiting needs the right stack value, consider the stack pointer
970 live at the end of the function. */
971 if ((HAVE_epilogue && reload_completed)
972 || ! EXIT_IGNORE_STACK
973 || (! FRAME_POINTER_REQUIRED
974 && ! current_function_calls_alloca
975 && flag_omit_frame_pointer)
976 || current_function_sp_is_unchanging)
977 {
978 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
979 }
980
981 /* Mark the frame pointer if needed at the end of the function. If
982 we end up eliminating it, it will be removed from the live list
983 of each basic block by reload. */
984
985 if (! reload_completed || frame_pointer_needed)
986 {
987 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
988 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
989 /* If they are different, also mark the hard frame pointer as live. */
990 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
991 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
992 #endif
993 }
994
995 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
996 /* Many architectures have a GP register even without flag_pic.
997 Assume the pic register is not in use, or will be handled by
998 other means, if it is not fixed. */
999 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1000 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1001 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1002 #endif
1003
1004 /* Mark all global registers, and all registers used by the epilogue
1005 as being live at the end of the function since they may be
1006 referenced by our caller. */
1007 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1008 if (global_regs[i] || EPILOGUE_USES (i))
1009 SET_REGNO_REG_SET (set, i);
1010
1011 if (HAVE_epilogue && reload_completed)
1012 {
1013 /* Mark all call-saved registers that we actually used. */
1014 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1015 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1016 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1017 SET_REGNO_REG_SET (set, i);
1018 }
1019
1020 #ifdef EH_RETURN_DATA_REGNO
1021 /* Mark the registers that will contain data for the handler. */
1022 if (reload_completed && current_function_calls_eh_return)
1023 for (i = 0; ; ++i)
1024 {
1025 unsigned regno = EH_RETURN_DATA_REGNO(i);
1026 if (regno == INVALID_REGNUM)
1027 break;
1028 SET_REGNO_REG_SET (set, regno);
1029 }
1030 #endif
1031 #ifdef EH_RETURN_STACKADJ_RTX
1032 if ((! HAVE_epilogue || ! reload_completed)
1033 && current_function_calls_eh_return)
1034 {
1035 rtx tmp = EH_RETURN_STACKADJ_RTX;
1036 if (tmp && REG_P (tmp))
1037 mark_reg (tmp, set);
1038 }
1039 #endif
1040 #ifdef EH_RETURN_HANDLER_RTX
1041 if ((! HAVE_epilogue || ! reload_completed)
1042 && current_function_calls_eh_return)
1043 {
1044 rtx tmp = EH_RETURN_HANDLER_RTX;
1045 if (tmp && REG_P (tmp))
1046 mark_reg (tmp, set);
1047 }
1048 #endif
1049
1050 /* Mark function return value. */
1051 diddle_return_value (mark_reg, set);
1052 }
1053
1054 /* Callback function for for_each_successor_phi. DATA is a regset.
1055 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1056 INSN, in the regset. */
1057
1058 static int
1059 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1060 rtx insn ATTRIBUTE_UNUSED;
1061 int dest_regno ATTRIBUTE_UNUSED;
1062 int src_regno;
1063 void *data;
1064 {
1065 regset live = (regset) data;
1066 SET_REGNO_REG_SET (live, src_regno);
1067 return 0;
1068 }
1069
1070 /* Propagate global life info around the graph of basic blocks. Begin
1071 considering blocks with their corresponding bit set in BLOCKS_IN.
1072 If BLOCKS_IN is null, consider it the universal set.
1073
1074 BLOCKS_OUT is set for every block that was changed. */
1075
1076 static void
1077 calculate_global_regs_live (blocks_in, blocks_out, flags)
1078 sbitmap blocks_in, blocks_out;
1079 int flags;
1080 {
1081 basic_block *queue, *qhead, *qtail, *qend, bb;
1082 regset tmp, new_live_at_end, invalidated_by_call;
1083 regset_head tmp_head, invalidated_by_call_head;
1084 regset_head new_live_at_end_head;
1085 int i;
1086
1087 /* Some passes used to forget clear aux field of basic block causing
1088 sick behavior here. */
1089 #ifdef ENABLE_CHECKING
1090 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1091 if (bb->aux)
1092 abort ();
1093 #endif
1094
1095 tmp = INITIALIZE_REG_SET (tmp_head);
1096 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1097 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1098
1099 /* Inconveniently, this is only readily available in hard reg set form. */
1100 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1101 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1102 SET_REGNO_REG_SET (invalidated_by_call, i);
1103
1104 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1105 because the `head == tail' style test for an empty queue doesn't
1106 work with a full queue. */
1107 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1108 qtail = queue;
1109 qhead = qend = queue + n_basic_blocks + 2;
1110
1111 /* Queue the blocks set in the initial mask. Do this in reverse block
1112 number order so that we are more likely for the first round to do
1113 useful work. We use AUX non-null to flag that the block is queued. */
1114 if (blocks_in)
1115 {
1116 FOR_EACH_BB (bb)
1117 if (TEST_BIT (blocks_in, bb->index))
1118 {
1119 *--qhead = bb;
1120 bb->aux = bb;
1121 }
1122 }
1123 else
1124 {
1125 FOR_EACH_BB (bb)
1126 {
1127 *--qhead = bb;
1128 bb->aux = bb;
1129 }
1130 }
1131
1132 /* We clean aux when we remove the initially-enqueued bbs, but we
1133 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1134 unconditionally. */
1135 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1136
1137 if (blocks_out)
1138 sbitmap_zero (blocks_out);
1139
1140 /* We work through the queue until there are no more blocks. What
1141 is live at the end of this block is precisely the union of what
1142 is live at the beginning of all its successors. So, we set its
1143 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1144 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1145 this block by walking through the instructions in this block in
1146 reverse order and updating as we go. If that changed
1147 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1148 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1149
1150 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1151 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1152 must either be live at the end of the block, or used within the
1153 block. In the latter case, it will certainly never disappear
1154 from GLOBAL_LIVE_AT_START. In the former case, the register
1155 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1156 for one of the successor blocks. By induction, that cannot
1157 occur. */
1158 while (qhead != qtail)
1159 {
1160 int rescan, changed;
1161 basic_block bb;
1162 edge e;
1163
1164 bb = *qhead++;
1165 if (qhead == qend)
1166 qhead = queue;
1167 bb->aux = NULL;
1168
1169 /* Begin by propagating live_at_start from the successor blocks. */
1170 CLEAR_REG_SET (new_live_at_end);
1171
1172 if (bb->succ)
1173 for (e = bb->succ; e; e = e->succ_next)
1174 {
1175 basic_block sb = e->dest;
1176
1177 /* Call-clobbered registers die across exception and
1178 call edges. */
1179 /* ??? Abnormal call edges ignored for the moment, as this gets
1180 confused by sibling call edges, which crashes reg-stack. */
1181 if (e->flags & EDGE_EH)
1182 {
1183 bitmap_operation (tmp, sb->global_live_at_start,
1184 invalidated_by_call, BITMAP_AND_COMPL);
1185 IOR_REG_SET (new_live_at_end, tmp);
1186 }
1187 else
1188 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1189
1190 /* If a target saves one register in another (instead of on
1191 the stack) the save register will need to be live for EH. */
1192 if (e->flags & EDGE_EH)
1193 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1194 if (EH_USES (i))
1195 SET_REGNO_REG_SET (new_live_at_end, i);
1196 }
1197 else
1198 {
1199 /* This might be a noreturn function that throws. And
1200 even if it isn't, getting the unwind info right helps
1201 debugging. */
1202 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1203 if (EH_USES (i))
1204 SET_REGNO_REG_SET (new_live_at_end, i);
1205 }
1206
1207 /* The all-important stack pointer must always be live. */
1208 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1209
1210 /* Before reload, there are a few registers that must be forced
1211 live everywhere -- which might not already be the case for
1212 blocks within infinite loops. */
1213 if (! reload_completed)
1214 {
1215 /* Any reference to any pseudo before reload is a potential
1216 reference of the frame pointer. */
1217 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1218
1219 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1220 /* Pseudos with argument area equivalences may require
1221 reloading via the argument pointer. */
1222 if (fixed_regs[ARG_POINTER_REGNUM])
1223 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1224 #endif
1225
1226 /* Any constant, or pseudo with constant equivalences, may
1227 require reloading from memory using the pic register. */
1228 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1229 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1230 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1231 }
1232
1233 /* Regs used in phi nodes are not included in
1234 global_live_at_start, since they are live only along a
1235 particular edge. Set those regs that are live because of a
1236 phi node alternative corresponding to this particular block. */
1237 if (in_ssa_form)
1238 for_each_successor_phi (bb, &set_phi_alternative_reg,
1239 new_live_at_end);
1240
1241 if (bb == ENTRY_BLOCK_PTR)
1242 {
1243 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1244 continue;
1245 }
1246
1247 /* On our first pass through this block, we'll go ahead and continue.
1248 Recognize first pass by local_set NULL. On subsequent passes, we
1249 get to skip out early if live_at_end wouldn't have changed. */
1250
1251 if (bb->local_set == NULL)
1252 {
1253 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1254 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1255 rescan = 1;
1256 }
1257 else
1258 {
1259 /* If any bits were removed from live_at_end, we'll have to
1260 rescan the block. This wouldn't be necessary if we had
1261 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1262 local_live is really dependent on live_at_end. */
1263 CLEAR_REG_SET (tmp);
1264 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1265 new_live_at_end, BITMAP_AND_COMPL);
1266
1267 if (! rescan)
1268 {
1269 /* If any of the registers in the new live_at_end set are
1270 conditionally set in this basic block, we must rescan.
1271 This is because conditional lifetimes at the end of the
1272 block do not just take the live_at_end set into account,
1273 but also the liveness at the start of each successor
1274 block. We can miss changes in those sets if we only
1275 compare the new live_at_end against the previous one. */
1276 CLEAR_REG_SET (tmp);
1277 rescan = bitmap_operation (tmp, new_live_at_end,
1278 bb->cond_local_set, BITMAP_AND);
1279 }
1280
1281 if (! rescan)
1282 {
1283 /* Find the set of changed bits. Take this opportunity
1284 to notice that this set is empty and early out. */
1285 CLEAR_REG_SET (tmp);
1286 changed = bitmap_operation (tmp, bb->global_live_at_end,
1287 new_live_at_end, BITMAP_XOR);
1288 if (! changed)
1289 continue;
1290
1291 /* If any of the changed bits overlap with local_set,
1292 we'll have to rescan the block. Detect overlap by
1293 the AND with ~local_set turning off bits. */
1294 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1295 BITMAP_AND_COMPL);
1296 }
1297 }
1298
1299 /* Let our caller know that BB changed enough to require its
1300 death notes updated. */
1301 if (blocks_out)
1302 SET_BIT (blocks_out, bb->index);
1303
1304 if (! rescan)
1305 {
1306 /* Add to live_at_start the set of all registers in
1307 new_live_at_end that aren't in the old live_at_end. */
1308
1309 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1310 BITMAP_AND_COMPL);
1311 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1312
1313 changed = bitmap_operation (bb->global_live_at_start,
1314 bb->global_live_at_start,
1315 tmp, BITMAP_IOR);
1316 if (! changed)
1317 continue;
1318 }
1319 else
1320 {
1321 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1322
1323 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1324 into live_at_start. */
1325 propagate_block (bb, new_live_at_end, bb->local_set,
1326 bb->cond_local_set, flags);
1327
1328 /* If live_at start didn't change, no need to go farther. */
1329 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1330 continue;
1331
1332 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1333 }
1334
1335 /* Queue all predecessors of BB so that we may re-examine
1336 their live_at_end. */
1337 for (e = bb->pred; e; e = e->pred_next)
1338 {
1339 basic_block pb = e->src;
1340 if (pb->aux == NULL)
1341 {
1342 *qtail++ = pb;
1343 if (qtail == qend)
1344 qtail = queue;
1345 pb->aux = pb;
1346 }
1347 }
1348 }
1349
1350 FREE_REG_SET (tmp);
1351 FREE_REG_SET (new_live_at_end);
1352 FREE_REG_SET (invalidated_by_call);
1353
1354 if (blocks_out)
1355 {
1356 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1357 {
1358 basic_block bb = BASIC_BLOCK (i);
1359 FREE_REG_SET (bb->local_set);
1360 FREE_REG_SET (bb->cond_local_set);
1361 });
1362 }
1363 else
1364 {
1365 FOR_EACH_BB (bb)
1366 {
1367 FREE_REG_SET (bb->local_set);
1368 FREE_REG_SET (bb->cond_local_set);
1369 }
1370 }
1371
1372 free (queue);
1373 }
1374
1375 \f
1376 /* This structure is used to pass parameters to an from the
1377 the function find_regno_partial(). It is used to pass in the
1378 register number we are looking, as well as to return any rtx
1379 we find. */
1380
1381 typedef struct {
1382 unsigned regno_to_find;
1383 rtx retval;
1384 } find_regno_partial_param;
1385
1386
1387 /* Find the rtx for the reg numbers specified in 'data' if it is
1388 part of an expression which only uses part of the register. Return
1389 it in the structure passed in. */
1390 static int
1391 find_regno_partial (ptr, data)
1392 rtx *ptr;
1393 void *data;
1394 {
1395 find_regno_partial_param *param = (find_regno_partial_param *)data;
1396 unsigned reg = param->regno_to_find;
1397 param->retval = NULL_RTX;
1398
1399 if (*ptr == NULL_RTX)
1400 return 0;
1401
1402 switch (GET_CODE (*ptr))
1403 {
1404 case ZERO_EXTRACT:
1405 case SIGN_EXTRACT:
1406 case STRICT_LOW_PART:
1407 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1408 {
1409 param->retval = XEXP (*ptr, 0);
1410 return 1;
1411 }
1412 break;
1413
1414 case SUBREG:
1415 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1416 && REGNO (SUBREG_REG (*ptr)) == reg)
1417 {
1418 param->retval = SUBREG_REG (*ptr);
1419 return 1;
1420 }
1421 break;
1422
1423 default:
1424 break;
1425 }
1426
1427 return 0;
1428 }
1429
1430 /* Process all immediate successors of the entry block looking for pseudo
1431 registers which are live on entry. Find all of those whose first
1432 instance is a partial register reference of some kind, and initialize
1433 them to 0 after the entry block. This will prevent bit sets within
1434 registers whose value is unknown, and may contain some kind of sticky
1435 bits we don't want. */
1436
1437 int
1438 initialize_uninitialized_subregs ()
1439 {
1440 rtx insn;
1441 edge e;
1442 int reg, did_something = 0;
1443 find_regno_partial_param param;
1444
1445 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1446 {
1447 basic_block bb = e->dest;
1448 regset map = bb->global_live_at_start;
1449 EXECUTE_IF_SET_IN_REG_SET (map,
1450 FIRST_PSEUDO_REGISTER, reg,
1451 {
1452 int uid = REGNO_FIRST_UID (reg);
1453 rtx i;
1454
1455 /* Find an insn which mentions the register we are looking for.
1456 Its preferable to have an instance of the register's rtl since
1457 there may be various flags set which we need to duplicate.
1458 If we can't find it, its probably an automatic whose initial
1459 value doesn't matter, or hopefully something we don't care about. */
1460 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1461 ;
1462 if (i != NULL_RTX)
1463 {
1464 /* Found the insn, now get the REG rtx, if we can. */
1465 param.regno_to_find = reg;
1466 for_each_rtx (&i, find_regno_partial, &param);
1467 if (param.retval != NULL_RTX)
1468 {
1469 insn = gen_move_insn (param.retval,
1470 CONST0_RTX (GET_MODE (param.retval)));
1471 insert_insn_on_edge (insn, e);
1472 did_something = 1;
1473 }
1474 }
1475 });
1476 }
1477
1478 if (did_something)
1479 commit_edge_insertions ();
1480 return did_something;
1481 }
1482
1483 \f
1484 /* Subroutines of life analysis. */
1485
1486 /* Allocate the permanent data structures that represent the results
1487 of life analysis. Not static since used also for stupid life analysis. */
1488
1489 void
1490 allocate_bb_life_data ()
1491 {
1492 basic_block bb;
1493
1494 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1495 {
1496 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1497 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1498 }
1499
1500 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1501 }
1502
1503 void
1504 allocate_reg_life_data ()
1505 {
1506 int i;
1507
1508 max_regno = max_reg_num ();
1509
1510 /* Recalculate the register space, in case it has grown. Old style
1511 vector oriented regsets would set regset_{size,bytes} here also. */
1512 allocate_reg_info (max_regno, FALSE, FALSE);
1513
1514 /* Reset all the data we'll collect in propagate_block and its
1515 subroutines. */
1516 for (i = 0; i < max_regno; i++)
1517 {
1518 REG_N_SETS (i) = 0;
1519 REG_N_REFS (i) = 0;
1520 REG_N_DEATHS (i) = 0;
1521 REG_N_CALLS_CROSSED (i) = 0;
1522 REG_LIVE_LENGTH (i) = 0;
1523 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1524 }
1525 }
1526
1527 /* Delete dead instructions for propagate_block. */
1528
1529 static void
1530 propagate_block_delete_insn (insn)
1531 rtx insn;
1532 {
1533 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1534
1535 /* If the insn referred to a label, and that label was attached to
1536 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1537 pretty much mandatory to delete it, because the ADDR_VEC may be
1538 referencing labels that no longer exist.
1539
1540 INSN may reference a deleted label, particularly when a jump
1541 table has been optimized into a direct jump. There's no
1542 real good way to fix up the reference to the deleted label
1543 when the label is deleted, so we just allow it here. */
1544
1545 if (inote && GET_CODE (inote) == CODE_LABEL)
1546 {
1547 rtx label = XEXP (inote, 0);
1548 rtx next;
1549
1550 /* The label may be forced if it has been put in the constant
1551 pool. If that is the only use we must discard the table
1552 jump following it, but not the label itself. */
1553 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1554 && (next = next_nonnote_insn (label)) != NULL
1555 && GET_CODE (next) == JUMP_INSN
1556 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1557 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1558 {
1559 rtx pat = PATTERN (next);
1560 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1561 int len = XVECLEN (pat, diff_vec_p);
1562 int i;
1563
1564 for (i = 0; i < len; i++)
1565 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1566
1567 delete_insn_and_edges (next);
1568 ndead++;
1569 }
1570 }
1571
1572 delete_insn_and_edges (insn);
1573 ndead++;
1574 }
1575
1576 /* Delete dead libcalls for propagate_block. Return the insn
1577 before the libcall. */
1578
1579 static rtx
1580 propagate_block_delete_libcall ( insn, note)
1581 rtx insn, note;
1582 {
1583 rtx first = XEXP (note, 0);
1584 rtx before = PREV_INSN (first);
1585
1586 delete_insn_chain_and_edges (first, insn);
1587 ndead++;
1588 return before;
1589 }
1590
1591 /* Update the life-status of regs for one insn. Return the previous insn. */
1592
1593 rtx
1594 propagate_one_insn (pbi, insn)
1595 struct propagate_block_info *pbi;
1596 rtx insn;
1597 {
1598 rtx prev = PREV_INSN (insn);
1599 int flags = pbi->flags;
1600 int insn_is_dead = 0;
1601 int libcall_is_dead = 0;
1602 rtx note;
1603 int i;
1604
1605 if (! INSN_P (insn))
1606 return prev;
1607
1608 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1609 if (flags & PROP_SCAN_DEAD_CODE)
1610 {
1611 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1612 libcall_is_dead = (insn_is_dead && note != 0
1613 && libcall_dead_p (pbi, note, insn));
1614 }
1615
1616 /* If an instruction consists of just dead store(s) on final pass,
1617 delete it. */
1618 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1619 {
1620 /* If we're trying to delete a prologue or epilogue instruction
1621 that isn't flagged as possibly being dead, something is wrong.
1622 But if we are keeping the stack pointer depressed, we might well
1623 be deleting insns that are used to compute the amount to update
1624 it by, so they are fine. */
1625 if (reload_completed
1626 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1627 && (TYPE_RETURNS_STACK_DEPRESSED
1628 (TREE_TYPE (current_function_decl))))
1629 && (((HAVE_epilogue || HAVE_prologue)
1630 && prologue_epilogue_contains (insn))
1631 || (HAVE_sibcall_epilogue
1632 && sibcall_epilogue_contains (insn)))
1633 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1634 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1635
1636 /* Record sets. Do this even for dead instructions, since they
1637 would have killed the values if they hadn't been deleted. */
1638 mark_set_regs (pbi, PATTERN (insn), insn);
1639
1640 /* CC0 is now known to be dead. Either this insn used it,
1641 in which case it doesn't anymore, or clobbered it,
1642 so the next insn can't use it. */
1643 pbi->cc0_live = 0;
1644
1645 if (libcall_is_dead)
1646 prev = propagate_block_delete_libcall ( insn, note);
1647 else
1648 {
1649
1650 /* If INSN contains a RETVAL note and is dead, but the libcall
1651 as a whole is not dead, then we want to remove INSN, but
1652 not the whole libcall sequence.
1653
1654 However, we need to also remove the dangling REG_LIBCALL
1655 note so that we do not have mis-matched LIBCALL/RETVAL
1656 notes. In theory we could find a new location for the
1657 REG_RETVAL note, but it hardly seems worth the effort.
1658
1659 NOTE at this point will be the RETVAL note if it exists. */
1660 if (note)
1661 {
1662 rtx libcall_note;
1663
1664 libcall_note
1665 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1666 remove_note (XEXP (note, 0), libcall_note);
1667 }
1668
1669 /* Similarly if INSN contains a LIBCALL note, remove the
1670 dnagling REG_RETVAL note. */
1671 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1672 if (note)
1673 {
1674 rtx retval_note;
1675
1676 retval_note
1677 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1678 remove_note (XEXP (note, 0), retval_note);
1679 }
1680
1681 /* Now delete INSN. */
1682 propagate_block_delete_insn (insn);
1683 }
1684
1685 return prev;
1686 }
1687
1688 /* See if this is an increment or decrement that can be merged into
1689 a following memory address. */
1690 #ifdef AUTO_INC_DEC
1691 {
1692 rtx x = single_set (insn);
1693
1694 /* Does this instruction increment or decrement a register? */
1695 if ((flags & PROP_AUTOINC)
1696 && x != 0
1697 && GET_CODE (SET_DEST (x)) == REG
1698 && (GET_CODE (SET_SRC (x)) == PLUS
1699 || GET_CODE (SET_SRC (x)) == MINUS)
1700 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1701 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1702 /* Ok, look for a following memory ref we can combine with.
1703 If one is found, change the memory ref to a PRE_INC
1704 or PRE_DEC, cancel this insn, and return 1.
1705 Return 0 if nothing has been done. */
1706 && try_pre_increment_1 (pbi, insn))
1707 return prev;
1708 }
1709 #endif /* AUTO_INC_DEC */
1710
1711 CLEAR_REG_SET (pbi->new_set);
1712
1713 /* If this is not the final pass, and this insn is copying the value of
1714 a library call and it's dead, don't scan the insns that perform the
1715 library call, so that the call's arguments are not marked live. */
1716 if (libcall_is_dead)
1717 {
1718 /* Record the death of the dest reg. */
1719 mark_set_regs (pbi, PATTERN (insn), insn);
1720
1721 insn = XEXP (note, 0);
1722 return PREV_INSN (insn);
1723 }
1724 else if (GET_CODE (PATTERN (insn)) == SET
1725 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1726 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1727 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1728 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1729 /* We have an insn to pop a constant amount off the stack.
1730 (Such insns use PLUS regardless of the direction of the stack,
1731 and any insn to adjust the stack by a constant is always a pop.)
1732 These insns, if not dead stores, have no effect on life, though
1733 they do have an effect on the memory stores we are tracking. */
1734 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1735 else
1736 {
1737 rtx note;
1738 /* Any regs live at the time of a call instruction must not go
1739 in a register clobbered by calls. Find all regs now live and
1740 record this for them. */
1741
1742 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1743 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1744 { REG_N_CALLS_CROSSED (i)++; });
1745
1746 /* Record sets. Do this even for dead instructions, since they
1747 would have killed the values if they hadn't been deleted. */
1748 mark_set_regs (pbi, PATTERN (insn), insn);
1749
1750 if (GET_CODE (insn) == CALL_INSN)
1751 {
1752 int i;
1753 rtx note, cond;
1754
1755 cond = NULL_RTX;
1756 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1757 cond = COND_EXEC_TEST (PATTERN (insn));
1758
1759 /* Non-constant calls clobber memory, constant calls do not
1760 clobber memory, though they may clobber outgoing arguments
1761 on the stack. */
1762 if (! CONST_OR_PURE_CALL_P (insn))
1763 {
1764 free_EXPR_LIST_list (&pbi->mem_set_list);
1765 pbi->mem_set_list_len = 0;
1766 }
1767 else
1768 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1769
1770 /* There may be extra registers to be clobbered. */
1771 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1772 note;
1773 note = XEXP (note, 1))
1774 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1775 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1776 cond, insn, pbi->flags);
1777
1778 /* Calls change all call-used and global registers. */
1779 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1780 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1781 {
1782 /* We do not want REG_UNUSED notes for these registers. */
1783 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1784 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1785 }
1786 }
1787
1788 /* If an insn doesn't use CC0, it becomes dead since we assume
1789 that every insn clobbers it. So show it dead here;
1790 mark_used_regs will set it live if it is referenced. */
1791 pbi->cc0_live = 0;
1792
1793 /* Record uses. */
1794 if (! insn_is_dead)
1795 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1796 if ((flags & PROP_EQUAL_NOTES)
1797 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1798 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1799 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1800
1801 /* Sometimes we may have inserted something before INSN (such as a move)
1802 when we make an auto-inc. So ensure we will scan those insns. */
1803 #ifdef AUTO_INC_DEC
1804 prev = PREV_INSN (insn);
1805 #endif
1806
1807 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1808 {
1809 int i;
1810 rtx note, cond;
1811
1812 cond = NULL_RTX;
1813 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1814 cond = COND_EXEC_TEST (PATTERN (insn));
1815
1816 /* Calls use their arguments. */
1817 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1818 note;
1819 note = XEXP (note, 1))
1820 if (GET_CODE (XEXP (note, 0)) == USE)
1821 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1822 cond, insn);
1823
1824 /* The stack ptr is used (honorarily) by a CALL insn. */
1825 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1826
1827 /* Calls may also reference any of the global registers,
1828 so they are made live. */
1829 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1830 if (global_regs[i])
1831 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1832 }
1833 }
1834
1835 /* On final pass, update counts of how many insns in which each reg
1836 is live. */
1837 if (flags & PROP_REG_INFO)
1838 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1839 { REG_LIVE_LENGTH (i)++; });
1840
1841 return prev;
1842 }
1843
1844 /* Initialize a propagate_block_info struct for public consumption.
1845 Note that the structure itself is opaque to this file, but that
1846 the user can use the regsets provided here. */
1847
1848 struct propagate_block_info *
1849 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1850 basic_block bb;
1851 regset live, local_set, cond_local_set;
1852 int flags;
1853 {
1854 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1855
1856 pbi->bb = bb;
1857 pbi->reg_live = live;
1858 pbi->mem_set_list = NULL_RTX;
1859 pbi->mem_set_list_len = 0;
1860 pbi->local_set = local_set;
1861 pbi->cond_local_set = cond_local_set;
1862 pbi->cc0_live = 0;
1863 pbi->flags = flags;
1864
1865 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1866 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1867 else
1868 pbi->reg_next_use = NULL;
1869
1870 pbi->new_set = BITMAP_XMALLOC ();
1871
1872 #ifdef HAVE_conditional_execution
1873 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1874 free_reg_cond_life_info);
1875 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1876
1877 /* If this block ends in a conditional branch, for each register live
1878 from one side of the branch and not the other, record the register
1879 as conditionally dead. */
1880 if (GET_CODE (bb->end) == JUMP_INSN
1881 && any_condjump_p (bb->end))
1882 {
1883 regset_head diff_head;
1884 regset diff = INITIALIZE_REG_SET (diff_head);
1885 basic_block bb_true, bb_false;
1886 rtx cond_true, cond_false, set_src;
1887 int i;
1888
1889 /* Identify the successor blocks. */
1890 bb_true = bb->succ->dest;
1891 if (bb->succ->succ_next != NULL)
1892 {
1893 bb_false = bb->succ->succ_next->dest;
1894
1895 if (bb->succ->flags & EDGE_FALLTHRU)
1896 {
1897 basic_block t = bb_false;
1898 bb_false = bb_true;
1899 bb_true = t;
1900 }
1901 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1902 abort ();
1903 }
1904 else
1905 {
1906 /* This can happen with a conditional jump to the next insn. */
1907 if (JUMP_LABEL (bb->end) != bb_true->head)
1908 abort ();
1909
1910 /* Simplest way to do nothing. */
1911 bb_false = bb_true;
1912 }
1913
1914 /* Extract the condition from the branch. */
1915 set_src = SET_SRC (pc_set (bb->end));
1916 cond_true = XEXP (set_src, 0);
1917 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1918 GET_MODE (cond_true), XEXP (cond_true, 0),
1919 XEXP (cond_true, 1));
1920 if (GET_CODE (XEXP (set_src, 1)) == PC)
1921 {
1922 rtx t = cond_false;
1923 cond_false = cond_true;
1924 cond_true = t;
1925 }
1926
1927 /* Compute which register lead different lives in the successors. */
1928 if (bitmap_operation (diff, bb_true->global_live_at_start,
1929 bb_false->global_live_at_start, BITMAP_XOR))
1930 {
1931 rtx reg = XEXP (cond_true, 0);
1932
1933 if (GET_CODE (reg) == SUBREG)
1934 reg = SUBREG_REG (reg);
1935
1936 if (GET_CODE (reg) != REG)
1937 abort ();
1938
1939 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1940
1941 /* For each such register, mark it conditionally dead. */
1942 EXECUTE_IF_SET_IN_REG_SET
1943 (diff, 0, i,
1944 {
1945 struct reg_cond_life_info *rcli;
1946 rtx cond;
1947
1948 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1949
1950 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1951 cond = cond_false;
1952 else
1953 cond = cond_true;
1954 rcli->condition = cond;
1955 rcli->stores = const0_rtx;
1956 rcli->orig_condition = cond;
1957
1958 splay_tree_insert (pbi->reg_cond_dead, i,
1959 (splay_tree_value) rcli);
1960 });
1961 }
1962
1963 FREE_REG_SET (diff);
1964 }
1965 #endif
1966
1967 /* If this block has no successors, any stores to the frame that aren't
1968 used later in the block are dead. So make a pass over the block
1969 recording any such that are made and show them dead at the end. We do
1970 a very conservative and simple job here. */
1971 if (optimize
1972 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1973 && (TYPE_RETURNS_STACK_DEPRESSED
1974 (TREE_TYPE (current_function_decl))))
1975 && (flags & PROP_SCAN_DEAD_STORES)
1976 && (bb->succ == NULL
1977 || (bb->succ->succ_next == NULL
1978 && bb->succ->dest == EXIT_BLOCK_PTR
1979 && ! current_function_calls_eh_return)))
1980 {
1981 rtx insn, set;
1982 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1983 if (GET_CODE (insn) == INSN
1984 && (set = single_set (insn))
1985 && GET_CODE (SET_DEST (set)) == MEM)
1986 {
1987 rtx mem = SET_DEST (set);
1988 rtx canon_mem = canon_rtx (mem);
1989
1990 /* This optimization is performed by faking a store to the
1991 memory at the end of the block. This doesn't work for
1992 unchanging memories because multiple stores to unchanging
1993 memory is illegal and alias analysis doesn't consider it. */
1994 if (RTX_UNCHANGING_P (canon_mem))
1995 continue;
1996
1997 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1998 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1999 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2000 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2001 add_to_mem_set_list (pbi, canon_mem);
2002 }
2003 }
2004
2005 return pbi;
2006 }
2007
2008 /* Release a propagate_block_info struct. */
2009
2010 void
2011 free_propagate_block_info (pbi)
2012 struct propagate_block_info *pbi;
2013 {
2014 free_EXPR_LIST_list (&pbi->mem_set_list);
2015
2016 BITMAP_XFREE (pbi->new_set);
2017
2018 #ifdef HAVE_conditional_execution
2019 splay_tree_delete (pbi->reg_cond_dead);
2020 BITMAP_XFREE (pbi->reg_cond_reg);
2021 #endif
2022
2023 if (pbi->reg_next_use)
2024 free (pbi->reg_next_use);
2025
2026 free (pbi);
2027 }
2028
2029 /* Compute the registers live at the beginning of a basic block BB from
2030 those live at the end.
2031
2032 When called, REG_LIVE contains those live at the end. On return, it
2033 contains those live at the beginning.
2034
2035 LOCAL_SET, if non-null, will be set with all registers killed
2036 unconditionally by this basic block.
2037 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2038 killed conditionally by this basic block. If there is any unconditional
2039 set of a register, then the corresponding bit will be set in LOCAL_SET
2040 and cleared in COND_LOCAL_SET.
2041 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2042 case, the resulting set will be equal to the union of the two sets that
2043 would otherwise be computed.
2044
2045 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
2046
2047 int
2048 propagate_block (bb, live, local_set, cond_local_set, flags)
2049 basic_block bb;
2050 regset live;
2051 regset local_set;
2052 regset cond_local_set;
2053 int flags;
2054 {
2055 struct propagate_block_info *pbi;
2056 rtx insn, prev;
2057 int changed;
2058
2059 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2060
2061 if (flags & PROP_REG_INFO)
2062 {
2063 int i;
2064
2065 /* Process the regs live at the end of the block.
2066 Mark them as not local to any one basic block. */
2067 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2068 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2069 }
2070
2071 /* Scan the block an insn at a time from end to beginning. */
2072
2073 changed = 0;
2074 for (insn = bb->end;; insn = prev)
2075 {
2076 /* If this is a call to `setjmp' et al, warn if any
2077 non-volatile datum is live. */
2078 if ((flags & PROP_REG_INFO)
2079 && GET_CODE (insn) == CALL_INSN
2080 && find_reg_note (insn, REG_SETJMP, NULL))
2081 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2082
2083 prev = propagate_one_insn (pbi, insn);
2084 changed |= NEXT_INSN (prev) != insn;
2085
2086 if (insn == bb->head)
2087 break;
2088 }
2089
2090 free_propagate_block_info (pbi);
2091
2092 return changed;
2093 }
2094 \f
2095 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2096 (SET expressions whose destinations are registers dead after the insn).
2097 NEEDED is the regset that says which regs are alive after the insn.
2098
2099 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
2100
2101 If X is the entire body of an insn, NOTES contains the reg notes
2102 pertaining to the insn. */
2103
2104 static int
2105 insn_dead_p (pbi, x, call_ok, notes)
2106 struct propagate_block_info *pbi;
2107 rtx x;
2108 int call_ok;
2109 rtx notes ATTRIBUTE_UNUSED;
2110 {
2111 enum rtx_code code = GET_CODE (x);
2112
2113 #ifdef AUTO_INC_DEC
2114 /* As flow is invoked after combine, we must take existing AUTO_INC
2115 expressions into account. */
2116 for (; notes; notes = XEXP (notes, 1))
2117 {
2118 if (REG_NOTE_KIND (notes) == REG_INC)
2119 {
2120 int regno = REGNO (XEXP (notes, 0));
2121
2122 /* Don't delete insns to set global regs. */
2123 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2124 || REGNO_REG_SET_P (pbi->reg_live, regno))
2125 return 0;
2126 }
2127 }
2128 #endif
2129
2130 /* If setting something that's a reg or part of one,
2131 see if that register's altered value will be live. */
2132
2133 if (code == SET)
2134 {
2135 rtx r = SET_DEST (x);
2136
2137 #ifdef HAVE_cc0
2138 if (GET_CODE (r) == CC0)
2139 return ! pbi->cc0_live;
2140 #endif
2141
2142 /* A SET that is a subroutine call cannot be dead. */
2143 if (GET_CODE (SET_SRC (x)) == CALL)
2144 {
2145 if (! call_ok)
2146 return 0;
2147 }
2148
2149 /* Don't eliminate loads from volatile memory or volatile asms. */
2150 else if (volatile_refs_p (SET_SRC (x)))
2151 return 0;
2152
2153 if (GET_CODE (r) == MEM)
2154 {
2155 rtx temp, canon_r;
2156
2157 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2158 return 0;
2159
2160 canon_r = canon_rtx (r);
2161
2162 /* Walk the set of memory locations we are currently tracking
2163 and see if one is an identical match to this memory location.
2164 If so, this memory write is dead (remember, we're walking
2165 backwards from the end of the block to the start). Since
2166 rtx_equal_p does not check the alias set or flags, we also
2167 must have the potential for them to conflict (anti_dependence). */
2168 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2169 if (anti_dependence (r, XEXP (temp, 0)))
2170 {
2171 rtx mem = XEXP (temp, 0);
2172
2173 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2174 && (GET_MODE_SIZE (GET_MODE (canon_r))
2175 <= GET_MODE_SIZE (GET_MODE (mem))))
2176 return 1;
2177
2178 #ifdef AUTO_INC_DEC
2179 /* Check if memory reference matches an auto increment. Only
2180 post increment/decrement or modify are valid. */
2181 if (GET_MODE (mem) == GET_MODE (r)
2182 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2183 || GET_CODE (XEXP (mem, 0)) == POST_INC
2184 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2185 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2186 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2187 return 1;
2188 #endif
2189 }
2190 }
2191 else
2192 {
2193 while (GET_CODE (r) == SUBREG
2194 || GET_CODE (r) == STRICT_LOW_PART
2195 || GET_CODE (r) == ZERO_EXTRACT)
2196 r = XEXP (r, 0);
2197
2198 if (GET_CODE (r) == REG)
2199 {
2200 int regno = REGNO (r);
2201
2202 /* Obvious. */
2203 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2204 return 0;
2205
2206 /* If this is a hard register, verify that subsequent
2207 words are not needed. */
2208 if (regno < FIRST_PSEUDO_REGISTER)
2209 {
2210 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2211
2212 while (--n > 0)
2213 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2214 return 0;
2215 }
2216
2217 /* Don't delete insns to set global regs. */
2218 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2219 return 0;
2220
2221 /* Make sure insns to set the stack pointer aren't deleted. */
2222 if (regno == STACK_POINTER_REGNUM)
2223 return 0;
2224
2225 /* ??? These bits might be redundant with the force live bits
2226 in calculate_global_regs_live. We would delete from
2227 sequential sets; whether this actually affects real code
2228 for anything but the stack pointer I don't know. */
2229 /* Make sure insns to set the frame pointer aren't deleted. */
2230 if (regno == FRAME_POINTER_REGNUM
2231 && (! reload_completed || frame_pointer_needed))
2232 return 0;
2233 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2234 if (regno == HARD_FRAME_POINTER_REGNUM
2235 && (! reload_completed || frame_pointer_needed))
2236 return 0;
2237 #endif
2238
2239 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2240 /* Make sure insns to set arg pointer are never deleted
2241 (if the arg pointer isn't fixed, there will be a USE
2242 for it, so we can treat it normally). */
2243 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2244 return 0;
2245 #endif
2246
2247 /* Otherwise, the set is dead. */
2248 return 1;
2249 }
2250 }
2251 }
2252
2253 /* If performing several activities, insn is dead if each activity
2254 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2255 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2256 worth keeping. */
2257 else if (code == PARALLEL)
2258 {
2259 int i = XVECLEN (x, 0);
2260
2261 for (i--; i >= 0; i--)
2262 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2263 && GET_CODE (XVECEXP (x, 0, i)) != USE
2264 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2265 return 0;
2266
2267 return 1;
2268 }
2269
2270 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2271 is not necessarily true for hard registers. */
2272 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2273 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2274 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2275 return 1;
2276
2277 /* We do not check other CLOBBER or USE here. An insn consisting of just
2278 a CLOBBER or just a USE should not be deleted. */
2279 return 0;
2280 }
2281
2282 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2283 return 1 if the entire library call is dead.
2284 This is true if INSN copies a register (hard or pseudo)
2285 and if the hard return reg of the call insn is dead.
2286 (The caller should have tested the destination of the SET inside
2287 INSN already for death.)
2288
2289 If this insn doesn't just copy a register, then we don't
2290 have an ordinary libcall. In that case, cse could not have
2291 managed to substitute the source for the dest later on,
2292 so we can assume the libcall is dead.
2293
2294 PBI is the block info giving pseudoregs live before this insn.
2295 NOTE is the REG_RETVAL note of the insn. */
2296
2297 static int
2298 libcall_dead_p (pbi, note, insn)
2299 struct propagate_block_info *pbi;
2300 rtx note;
2301 rtx insn;
2302 {
2303 rtx x = single_set (insn);
2304
2305 if (x)
2306 {
2307 rtx r = SET_SRC (x);
2308
2309 if (GET_CODE (r) == REG)
2310 {
2311 rtx call = XEXP (note, 0);
2312 rtx call_pat;
2313 int i;
2314
2315 /* Find the call insn. */
2316 while (call != insn && GET_CODE (call) != CALL_INSN)
2317 call = NEXT_INSN (call);
2318
2319 /* If there is none, do nothing special,
2320 since ordinary death handling can understand these insns. */
2321 if (call == insn)
2322 return 0;
2323
2324 /* See if the hard reg holding the value is dead.
2325 If this is a PARALLEL, find the call within it. */
2326 call_pat = PATTERN (call);
2327 if (GET_CODE (call_pat) == PARALLEL)
2328 {
2329 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2330 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2331 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2332 break;
2333
2334 /* This may be a library call that is returning a value
2335 via invisible pointer. Do nothing special, since
2336 ordinary death handling can understand these insns. */
2337 if (i < 0)
2338 return 0;
2339
2340 call_pat = XVECEXP (call_pat, 0, i);
2341 }
2342
2343 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2344 }
2345 }
2346 return 1;
2347 }
2348
2349 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2350 live at function entry. Don't count global register variables, variables
2351 in registers that can be used for function arg passing, or variables in
2352 fixed hard registers. */
2353
2354 int
2355 regno_uninitialized (regno)
2356 unsigned int regno;
2357 {
2358 if (n_basic_blocks == 0
2359 || (regno < FIRST_PSEUDO_REGISTER
2360 && (global_regs[regno]
2361 || fixed_regs[regno]
2362 || FUNCTION_ARG_REGNO_P (regno))))
2363 return 0;
2364
2365 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
2366 }
2367
2368 /* 1 if register REGNO was alive at a place where `setjmp' was called
2369 and was set more than once or is an argument.
2370 Such regs may be clobbered by `longjmp'. */
2371
2372 int
2373 regno_clobbered_at_setjmp (regno)
2374 int regno;
2375 {
2376 if (n_basic_blocks == 0)
2377 return 0;
2378
2379 return ((REG_N_SETS (regno) > 1
2380 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
2381 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2382 }
2383 \f
2384 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2385 maximal list size; look for overlaps in mode and select the largest. */
2386 static void
2387 add_to_mem_set_list (pbi, mem)
2388 struct propagate_block_info *pbi;
2389 rtx mem;
2390 {
2391 rtx i;
2392
2393 /* We don't know how large a BLKmode store is, so we must not
2394 take them into consideration. */
2395 if (GET_MODE (mem) == BLKmode)
2396 return;
2397
2398 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2399 {
2400 rtx e = XEXP (i, 0);
2401 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2402 {
2403 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2404 {
2405 #ifdef AUTO_INC_DEC
2406 /* If we must store a copy of the mem, we can just modify
2407 the mode of the stored copy. */
2408 if (pbi->flags & PROP_AUTOINC)
2409 PUT_MODE (e, GET_MODE (mem));
2410 else
2411 #endif
2412 XEXP (i, 0) = mem;
2413 }
2414 return;
2415 }
2416 }
2417
2418 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2419 {
2420 #ifdef AUTO_INC_DEC
2421 /* Store a copy of mem, otherwise the address may be
2422 scrogged by find_auto_inc. */
2423 if (pbi->flags & PROP_AUTOINC)
2424 mem = shallow_copy_rtx (mem);
2425 #endif
2426 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2427 pbi->mem_set_list_len++;
2428 }
2429 }
2430
2431 /* INSN references memory, possibly using autoincrement addressing modes.
2432 Find any entries on the mem_set_list that need to be invalidated due
2433 to an address change. */
2434
2435 static int
2436 invalidate_mems_from_autoinc (px, data)
2437 rtx *px;
2438 void *data;
2439 {
2440 rtx x = *px;
2441 struct propagate_block_info *pbi = data;
2442
2443 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2444 {
2445 invalidate_mems_from_set (pbi, XEXP (x, 0));
2446 return -1;
2447 }
2448
2449 return 0;
2450 }
2451
2452 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2453
2454 static void
2455 invalidate_mems_from_set (pbi, exp)
2456 struct propagate_block_info *pbi;
2457 rtx exp;
2458 {
2459 rtx temp = pbi->mem_set_list;
2460 rtx prev = NULL_RTX;
2461 rtx next;
2462
2463 while (temp)
2464 {
2465 next = XEXP (temp, 1);
2466 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2467 {
2468 /* Splice this entry out of the list. */
2469 if (prev)
2470 XEXP (prev, 1) = next;
2471 else
2472 pbi->mem_set_list = next;
2473 free_EXPR_LIST_node (temp);
2474 pbi->mem_set_list_len--;
2475 }
2476 else
2477 prev = temp;
2478 temp = next;
2479 }
2480 }
2481
2482 /* Process the registers that are set within X. Their bits are set to
2483 1 in the regset DEAD, because they are dead prior to this insn.
2484
2485 If INSN is nonzero, it is the insn being processed.
2486
2487 FLAGS is the set of operations to perform. */
2488
2489 static void
2490 mark_set_regs (pbi, x, insn)
2491 struct propagate_block_info *pbi;
2492 rtx x, insn;
2493 {
2494 rtx cond = NULL_RTX;
2495 rtx link;
2496 enum rtx_code code;
2497
2498 if (insn)
2499 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2500 {
2501 if (REG_NOTE_KIND (link) == REG_INC)
2502 mark_set_1 (pbi, SET, XEXP (link, 0),
2503 (GET_CODE (x) == COND_EXEC
2504 ? COND_EXEC_TEST (x) : NULL_RTX),
2505 insn, pbi->flags);
2506 }
2507 retry:
2508 switch (code = GET_CODE (x))
2509 {
2510 case SET:
2511 case CLOBBER:
2512 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2513 return;
2514
2515 case COND_EXEC:
2516 cond = COND_EXEC_TEST (x);
2517 x = COND_EXEC_CODE (x);
2518 goto retry;
2519
2520 case PARALLEL:
2521 {
2522 int i;
2523
2524 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2525 {
2526 rtx sub = XVECEXP (x, 0, i);
2527 switch (code = GET_CODE (sub))
2528 {
2529 case COND_EXEC:
2530 if (cond != NULL_RTX)
2531 abort ();
2532
2533 cond = COND_EXEC_TEST (sub);
2534 sub = COND_EXEC_CODE (sub);
2535 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2536 break;
2537 /* Fall through. */
2538
2539 case SET:
2540 case CLOBBER:
2541 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2542 break;
2543
2544 default:
2545 break;
2546 }
2547 }
2548 break;
2549 }
2550
2551 default:
2552 break;
2553 }
2554 }
2555
2556 /* Process a single set, which appears in INSN. REG (which may not
2557 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2558 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2559 If the set is conditional (because it appear in a COND_EXEC), COND
2560 will be the condition. */
2561
2562 static void
2563 mark_set_1 (pbi, code, reg, cond, insn, flags)
2564 struct propagate_block_info *pbi;
2565 enum rtx_code code;
2566 rtx reg, cond, insn;
2567 int flags;
2568 {
2569 int regno_first = -1, regno_last = -1;
2570 unsigned long not_dead = 0;
2571 int i;
2572
2573 /* Modifying just one hardware register of a multi-reg value or just a
2574 byte field of a register does not mean the value from before this insn
2575 is now dead. Of course, if it was dead after it's unused now. */
2576
2577 switch (GET_CODE (reg))
2578 {
2579 case PARALLEL:
2580 /* Some targets place small structures in registers for return values of
2581 functions. We have to detect this case specially here to get correct
2582 flow information. */
2583 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2584 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2585 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2586 flags);
2587 return;
2588
2589 case ZERO_EXTRACT:
2590 case SIGN_EXTRACT:
2591 case STRICT_LOW_PART:
2592 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2593 do
2594 reg = XEXP (reg, 0);
2595 while (GET_CODE (reg) == SUBREG
2596 || GET_CODE (reg) == ZERO_EXTRACT
2597 || GET_CODE (reg) == SIGN_EXTRACT
2598 || GET_CODE (reg) == STRICT_LOW_PART);
2599 if (GET_CODE (reg) == MEM)
2600 break;
2601 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2602 /* Fall through. */
2603
2604 case REG:
2605 regno_last = regno_first = REGNO (reg);
2606 if (regno_first < FIRST_PSEUDO_REGISTER)
2607 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2608 break;
2609
2610 case SUBREG:
2611 if (GET_CODE (SUBREG_REG (reg)) == REG)
2612 {
2613 enum machine_mode outer_mode = GET_MODE (reg);
2614 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2615
2616 /* Identify the range of registers affected. This is moderately
2617 tricky for hard registers. See alter_subreg. */
2618
2619 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2620 if (regno_first < FIRST_PSEUDO_REGISTER)
2621 {
2622 regno_first += subreg_regno_offset (regno_first, inner_mode,
2623 SUBREG_BYTE (reg),
2624 outer_mode);
2625 regno_last = (regno_first
2626 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2627
2628 /* Since we've just adjusted the register number ranges, make
2629 sure REG matches. Otherwise some_was_live will be clear
2630 when it shouldn't have been, and we'll create incorrect
2631 REG_UNUSED notes. */
2632 reg = gen_rtx_REG (outer_mode, regno_first);
2633 }
2634 else
2635 {
2636 /* If the number of words in the subreg is less than the number
2637 of words in the full register, we have a well-defined partial
2638 set. Otherwise the high bits are undefined.
2639
2640 This is only really applicable to pseudos, since we just took
2641 care of multi-word hard registers. */
2642 if (((GET_MODE_SIZE (outer_mode)
2643 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2644 < ((GET_MODE_SIZE (inner_mode)
2645 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2646 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2647 regno_first);
2648
2649 reg = SUBREG_REG (reg);
2650 }
2651 }
2652 else
2653 reg = SUBREG_REG (reg);
2654 break;
2655
2656 default:
2657 break;
2658 }
2659
2660 /* If this set is a MEM, then it kills any aliased writes.
2661 If this set is a REG, then it kills any MEMs which use the reg. */
2662 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2663 {
2664 if (GET_CODE (reg) == REG)
2665 invalidate_mems_from_set (pbi, reg);
2666
2667 /* If the memory reference had embedded side effects (autoincrement
2668 address modes. Then we may need to kill some entries on the
2669 memory set list. */
2670 if (insn && GET_CODE (reg) == MEM)
2671 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2672
2673 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2674 /* ??? With more effort we could track conditional memory life. */
2675 && ! cond)
2676 add_to_mem_set_list (pbi, canon_rtx (reg));
2677 }
2678
2679 if (GET_CODE (reg) == REG
2680 && ! (regno_first == FRAME_POINTER_REGNUM
2681 && (! reload_completed || frame_pointer_needed))
2682 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2683 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2684 && (! reload_completed || frame_pointer_needed))
2685 #endif
2686 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2687 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2688 #endif
2689 )
2690 {
2691 int some_was_live = 0, some_was_dead = 0;
2692
2693 for (i = regno_first; i <= regno_last; ++i)
2694 {
2695 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2696 if (pbi->local_set)
2697 {
2698 /* Order of the set operation matters here since both
2699 sets may be the same. */
2700 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2701 if (cond != NULL_RTX
2702 && ! REGNO_REG_SET_P (pbi->local_set, i))
2703 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2704 else
2705 SET_REGNO_REG_SET (pbi->local_set, i);
2706 }
2707 if (code != CLOBBER)
2708 SET_REGNO_REG_SET (pbi->new_set, i);
2709
2710 some_was_live |= needed_regno;
2711 some_was_dead |= ! needed_regno;
2712 }
2713
2714 #ifdef HAVE_conditional_execution
2715 /* Consider conditional death in deciding that the register needs
2716 a death note. */
2717 if (some_was_live && ! not_dead
2718 /* The stack pointer is never dead. Well, not strictly true,
2719 but it's very difficult to tell from here. Hopefully
2720 combine_stack_adjustments will fix up the most egregious
2721 errors. */
2722 && regno_first != STACK_POINTER_REGNUM)
2723 {
2724 for (i = regno_first; i <= regno_last; ++i)
2725 if (! mark_regno_cond_dead (pbi, i, cond))
2726 not_dead |= ((unsigned long) 1) << (i - regno_first);
2727 }
2728 #endif
2729
2730 /* Additional data to record if this is the final pass. */
2731 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2732 | PROP_DEATH_NOTES | PROP_AUTOINC))
2733 {
2734 rtx y;
2735 int blocknum = pbi->bb->index;
2736
2737 y = NULL_RTX;
2738 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2739 {
2740 y = pbi->reg_next_use[regno_first];
2741
2742 /* The next use is no longer next, since a store intervenes. */
2743 for (i = regno_first; i <= regno_last; ++i)
2744 pbi->reg_next_use[i] = 0;
2745 }
2746
2747 if (flags & PROP_REG_INFO)
2748 {
2749 for (i = regno_first; i <= regno_last; ++i)
2750 {
2751 /* Count (weighted) references, stores, etc. This counts a
2752 register twice if it is modified, but that is correct. */
2753 REG_N_SETS (i) += 1;
2754 REG_N_REFS (i) += 1;
2755 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2756
2757 /* The insns where a reg is live are normally counted
2758 elsewhere, but we want the count to include the insn
2759 where the reg is set, and the normal counting mechanism
2760 would not count it. */
2761 REG_LIVE_LENGTH (i) += 1;
2762 }
2763
2764 /* If this is a hard reg, record this function uses the reg. */
2765 if (regno_first < FIRST_PSEUDO_REGISTER)
2766 {
2767 for (i = regno_first; i <= regno_last; i++)
2768 regs_ever_live[i] = 1;
2769 }
2770 else
2771 {
2772 /* Keep track of which basic blocks each reg appears in. */
2773 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2774 REG_BASIC_BLOCK (regno_first) = blocknum;
2775 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2776 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2777 }
2778 }
2779
2780 if (! some_was_dead)
2781 {
2782 if (flags & PROP_LOG_LINKS)
2783 {
2784 /* Make a logical link from the next following insn
2785 that uses this register, back to this insn.
2786 The following insns have already been processed.
2787
2788 We don't build a LOG_LINK for hard registers containing
2789 in ASM_OPERANDs. If these registers get replaced,
2790 we might wind up changing the semantics of the insn,
2791 even if reload can make what appear to be valid
2792 assignments later. */
2793 if (y && (BLOCK_NUM (y) == blocknum)
2794 && (regno_first >= FIRST_PSEUDO_REGISTER
2795 || asm_noperands (PATTERN (y)) < 0))
2796 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2797 }
2798 }
2799 else if (not_dead)
2800 ;
2801 else if (! some_was_live)
2802 {
2803 if (flags & PROP_REG_INFO)
2804 REG_N_DEATHS (regno_first) += 1;
2805
2806 if (flags & PROP_DEATH_NOTES)
2807 {
2808 /* Note that dead stores have already been deleted
2809 when possible. If we get here, we have found a
2810 dead store that cannot be eliminated (because the
2811 same insn does something useful). Indicate this
2812 by marking the reg being set as dying here. */
2813 REG_NOTES (insn)
2814 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2815 }
2816 }
2817 else
2818 {
2819 if (flags & PROP_DEATH_NOTES)
2820 {
2821 /* This is a case where we have a multi-word hard register
2822 and some, but not all, of the words of the register are
2823 needed in subsequent insns. Write REG_UNUSED notes
2824 for those parts that were not needed. This case should
2825 be rare. */
2826
2827 for (i = regno_first; i <= regno_last; ++i)
2828 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2829 REG_NOTES (insn)
2830 = alloc_EXPR_LIST (REG_UNUSED,
2831 regno_reg_rtx[i],
2832 REG_NOTES (insn));
2833 }
2834 }
2835 }
2836
2837 /* Mark the register as being dead. */
2838 if (some_was_live
2839 /* The stack pointer is never dead. Well, not strictly true,
2840 but it's very difficult to tell from here. Hopefully
2841 combine_stack_adjustments will fix up the most egregious
2842 errors. */
2843 && regno_first != STACK_POINTER_REGNUM)
2844 {
2845 for (i = regno_first; i <= regno_last; ++i)
2846 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2847 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2848 }
2849 }
2850 else if (GET_CODE (reg) == REG)
2851 {
2852 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2853 pbi->reg_next_use[regno_first] = 0;
2854 }
2855
2856 /* If this is the last pass and this is a SCRATCH, show it will be dying
2857 here and count it. */
2858 else if (GET_CODE (reg) == SCRATCH)
2859 {
2860 if (flags & PROP_DEATH_NOTES)
2861 REG_NOTES (insn)
2862 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2863 }
2864 }
2865 \f
2866 #ifdef HAVE_conditional_execution
2867 /* Mark REGNO conditionally dead.
2868 Return true if the register is now unconditionally dead. */
2869
2870 static int
2871 mark_regno_cond_dead (pbi, regno, cond)
2872 struct propagate_block_info *pbi;
2873 int regno;
2874 rtx cond;
2875 {
2876 /* If this is a store to a predicate register, the value of the
2877 predicate is changing, we don't know that the predicate as seen
2878 before is the same as that seen after. Flush all dependent
2879 conditions from reg_cond_dead. This will make all such
2880 conditionally live registers unconditionally live. */
2881 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2882 flush_reg_cond_reg (pbi, regno);
2883
2884 /* If this is an unconditional store, remove any conditional
2885 life that may have existed. */
2886 if (cond == NULL_RTX)
2887 splay_tree_remove (pbi->reg_cond_dead, regno);
2888 else
2889 {
2890 splay_tree_node node;
2891 struct reg_cond_life_info *rcli;
2892 rtx ncond;
2893
2894 /* Otherwise this is a conditional set. Record that fact.
2895 It may have been conditionally used, or there may be a
2896 subsequent set with a complimentary condition. */
2897
2898 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2899 if (node == NULL)
2900 {
2901 /* The register was unconditionally live previously.
2902 Record the current condition as the condition under
2903 which it is dead. */
2904 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2905 rcli->condition = cond;
2906 rcli->stores = cond;
2907 rcli->orig_condition = const0_rtx;
2908 splay_tree_insert (pbi->reg_cond_dead, regno,
2909 (splay_tree_value) rcli);
2910
2911 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2912
2913 /* Not unconditionally dead. */
2914 return 0;
2915 }
2916 else
2917 {
2918 /* The register was conditionally live previously.
2919 Add the new condition to the old. */
2920 rcli = (struct reg_cond_life_info *) node->value;
2921 ncond = rcli->condition;
2922 ncond = ior_reg_cond (ncond, cond, 1);
2923 if (rcli->stores == const0_rtx)
2924 rcli->stores = cond;
2925 else if (rcli->stores != const1_rtx)
2926 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2927
2928 /* If the register is now unconditionally dead, remove the entry
2929 in the splay_tree. A register is unconditionally dead if the
2930 dead condition ncond is true. A register is also unconditionally
2931 dead if the sum of all conditional stores is an unconditional
2932 store (stores is true), and the dead condition is identically the
2933 same as the original dead condition initialized at the end of
2934 the block. This is a pointer compare, not an rtx_equal_p
2935 compare. */
2936 if (ncond == const1_rtx
2937 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2938 splay_tree_remove (pbi->reg_cond_dead, regno);
2939 else
2940 {
2941 rcli->condition = ncond;
2942
2943 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2944
2945 /* Not unconditionally dead. */
2946 return 0;
2947 }
2948 }
2949 }
2950
2951 return 1;
2952 }
2953
2954 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2955
2956 static void
2957 free_reg_cond_life_info (value)
2958 splay_tree_value value;
2959 {
2960 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2961 free (rcli);
2962 }
2963
2964 /* Helper function for flush_reg_cond_reg. */
2965
2966 static int
2967 flush_reg_cond_reg_1 (node, data)
2968 splay_tree_node node;
2969 void *data;
2970 {
2971 struct reg_cond_life_info *rcli;
2972 int *xdata = (int *) data;
2973 unsigned int regno = xdata[0];
2974
2975 /* Don't need to search if last flushed value was farther on in
2976 the in-order traversal. */
2977 if (xdata[1] >= (int) node->key)
2978 return 0;
2979
2980 /* Splice out portions of the expression that refer to regno. */
2981 rcli = (struct reg_cond_life_info *) node->value;
2982 rcli->condition = elim_reg_cond (rcli->condition, regno);
2983 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2984 rcli->stores = elim_reg_cond (rcli->stores, regno);
2985
2986 /* If the entire condition is now false, signal the node to be removed. */
2987 if (rcli->condition == const0_rtx)
2988 {
2989 xdata[1] = node->key;
2990 return -1;
2991 }
2992 else if (rcli->condition == const1_rtx)
2993 abort ();
2994
2995 return 0;
2996 }
2997
2998 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2999
3000 static void
3001 flush_reg_cond_reg (pbi, regno)
3002 struct propagate_block_info *pbi;
3003 int regno;
3004 {
3005 int pair[2];
3006
3007 pair[0] = regno;
3008 pair[1] = -1;
3009 while (splay_tree_foreach (pbi->reg_cond_dead,
3010 flush_reg_cond_reg_1, pair) == -1)
3011 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3012
3013 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3014 }
3015
3016 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3017 For ior/and, the ADD flag determines whether we want to add the new
3018 condition X to the old one unconditionally. If it is zero, we will
3019 only return a new expression if X allows us to simplify part of
3020 OLD, otherwise we return NULL to the caller.
3021 If ADD is nonzero, we will return a new condition in all cases. The
3022 toplevel caller of one of these functions should always pass 1 for
3023 ADD. */
3024
3025 static rtx
3026 ior_reg_cond (old, x, add)
3027 rtx old, x;
3028 int add;
3029 {
3030 rtx op0, op1;
3031
3032 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3033 {
3034 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3035 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3036 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3037 return const1_rtx;
3038 if (GET_CODE (x) == GET_CODE (old)
3039 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3040 return old;
3041 if (! add)
3042 return NULL;
3043 return gen_rtx_IOR (0, old, x);
3044 }
3045
3046 switch (GET_CODE (old))
3047 {
3048 case IOR:
3049 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3050 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3051 if (op0 != NULL || op1 != NULL)
3052 {
3053 if (op0 == const0_rtx)
3054 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3055 if (op1 == const0_rtx)
3056 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3057 if (op0 == const1_rtx || op1 == const1_rtx)
3058 return const1_rtx;
3059 if (op0 == NULL)
3060 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3061 else if (rtx_equal_p (x, op0))
3062 /* (x | A) | x ~ (x | A). */
3063 return old;
3064 if (op1 == NULL)
3065 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3066 else if (rtx_equal_p (x, op1))
3067 /* (A | x) | x ~ (A | x). */
3068 return old;
3069 return gen_rtx_IOR (0, op0, op1);
3070 }
3071 if (! add)
3072 return NULL;
3073 return gen_rtx_IOR (0, old, x);
3074
3075 case AND:
3076 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3077 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3078 if (op0 != NULL || op1 != NULL)
3079 {
3080 if (op0 == const1_rtx)
3081 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3082 if (op1 == const1_rtx)
3083 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3084 if (op0 == const0_rtx || op1 == const0_rtx)
3085 return const0_rtx;
3086 if (op0 == NULL)
3087 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3088 else if (rtx_equal_p (x, op0))
3089 /* (x & A) | x ~ x. */
3090 return op0;
3091 if (op1 == NULL)
3092 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3093 else if (rtx_equal_p (x, op1))
3094 /* (A & x) | x ~ x. */
3095 return op1;
3096 return gen_rtx_AND (0, op0, op1);
3097 }
3098 if (! add)
3099 return NULL;
3100 return gen_rtx_IOR (0, old, x);
3101
3102 case NOT:
3103 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3104 if (op0 != NULL)
3105 return not_reg_cond (op0);
3106 if (! add)
3107 return NULL;
3108 return gen_rtx_IOR (0, old, x);
3109
3110 default:
3111 abort ();
3112 }
3113 }
3114
3115 static rtx
3116 not_reg_cond (x)
3117 rtx x;
3118 {
3119 enum rtx_code x_code;
3120
3121 if (x == const0_rtx)
3122 return const1_rtx;
3123 else if (x == const1_rtx)
3124 return const0_rtx;
3125 x_code = GET_CODE (x);
3126 if (x_code == NOT)
3127 return XEXP (x, 0);
3128 if (GET_RTX_CLASS (x_code) == '<'
3129 && GET_CODE (XEXP (x, 0)) == REG)
3130 {
3131 if (XEXP (x, 1) != const0_rtx)
3132 abort ();
3133
3134 return gen_rtx_fmt_ee (reverse_condition (x_code),
3135 VOIDmode, XEXP (x, 0), const0_rtx);
3136 }
3137 return gen_rtx_NOT (0, x);
3138 }
3139
3140 static rtx
3141 and_reg_cond (old, x, add)
3142 rtx old, x;
3143 int add;
3144 {
3145 rtx op0, op1;
3146
3147 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3148 {
3149 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3150 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3151 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3152 return const0_rtx;
3153 if (GET_CODE (x) == GET_CODE (old)
3154 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3155 return old;
3156 if (! add)
3157 return NULL;
3158 return gen_rtx_AND (0, old, x);
3159 }
3160
3161 switch (GET_CODE (old))
3162 {
3163 case IOR:
3164 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3165 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3166 if (op0 != NULL || op1 != NULL)
3167 {
3168 if (op0 == const0_rtx)
3169 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3170 if (op1 == const0_rtx)
3171 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3172 if (op0 == const1_rtx || op1 == const1_rtx)
3173 return const1_rtx;
3174 if (op0 == NULL)
3175 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3176 else if (rtx_equal_p (x, op0))
3177 /* (x | A) & x ~ x. */
3178 return op0;
3179 if (op1 == NULL)
3180 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3181 else if (rtx_equal_p (x, op1))
3182 /* (A | x) & x ~ x. */
3183 return op1;
3184 return gen_rtx_IOR (0, op0, op1);
3185 }
3186 if (! add)
3187 return NULL;
3188 return gen_rtx_AND (0, old, x);
3189
3190 case AND:
3191 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3192 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3193 if (op0 != NULL || op1 != NULL)
3194 {
3195 if (op0 == const1_rtx)
3196 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3197 if (op1 == const1_rtx)
3198 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3199 if (op0 == const0_rtx || op1 == const0_rtx)
3200 return const0_rtx;
3201 if (op0 == NULL)
3202 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3203 else if (rtx_equal_p (x, op0))
3204 /* (x & A) & x ~ (x & A). */
3205 return old;
3206 if (op1 == NULL)
3207 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3208 else if (rtx_equal_p (x, op1))
3209 /* (A & x) & x ~ (A & x). */
3210 return old;
3211 return gen_rtx_AND (0, op0, op1);
3212 }
3213 if (! add)
3214 return NULL;
3215 return gen_rtx_AND (0, old, x);
3216
3217 case NOT:
3218 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3219 if (op0 != NULL)
3220 return not_reg_cond (op0);
3221 if (! add)
3222 return NULL;
3223 return gen_rtx_AND (0, old, x);
3224
3225 default:
3226 abort ();
3227 }
3228 }
3229
3230 /* Given a condition X, remove references to reg REGNO and return the
3231 new condition. The removal will be done so that all conditions
3232 involving REGNO are considered to evaluate to false. This function
3233 is used when the value of REGNO changes. */
3234
3235 static rtx
3236 elim_reg_cond (x, regno)
3237 rtx x;
3238 unsigned int regno;
3239 {
3240 rtx op0, op1;
3241
3242 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3243 {
3244 if (REGNO (XEXP (x, 0)) == regno)
3245 return const0_rtx;
3246 return x;
3247 }
3248
3249 switch (GET_CODE (x))
3250 {
3251 case AND:
3252 op0 = elim_reg_cond (XEXP (x, 0), regno);
3253 op1 = elim_reg_cond (XEXP (x, 1), regno);
3254 if (op0 == const0_rtx || op1 == const0_rtx)
3255 return const0_rtx;
3256 if (op0 == const1_rtx)
3257 return op1;
3258 if (op1 == const1_rtx)
3259 return op0;
3260 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3261 return x;
3262 return gen_rtx_AND (0, op0, op1);
3263
3264 case IOR:
3265 op0 = elim_reg_cond (XEXP (x, 0), regno);
3266 op1 = elim_reg_cond (XEXP (x, 1), regno);
3267 if (op0 == const1_rtx || op1 == const1_rtx)
3268 return const1_rtx;
3269 if (op0 == const0_rtx)
3270 return op1;
3271 if (op1 == const0_rtx)
3272 return op0;
3273 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3274 return x;
3275 return gen_rtx_IOR (0, op0, op1);
3276
3277 case NOT:
3278 op0 = elim_reg_cond (XEXP (x, 0), regno);
3279 if (op0 == const0_rtx)
3280 return const1_rtx;
3281 if (op0 == const1_rtx)
3282 return const0_rtx;
3283 if (op0 != XEXP (x, 0))
3284 return not_reg_cond (op0);
3285 return x;
3286
3287 default:
3288 abort ();
3289 }
3290 }
3291 #endif /* HAVE_conditional_execution */
3292 \f
3293 #ifdef AUTO_INC_DEC
3294
3295 /* Try to substitute the auto-inc expression INC as the address inside
3296 MEM which occurs in INSN. Currently, the address of MEM is an expression
3297 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3298 that has a single set whose source is a PLUS of INCR_REG and something
3299 else. */
3300
3301 static void
3302 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3303 struct propagate_block_info *pbi;
3304 rtx inc, insn, mem, incr, incr_reg;
3305 {
3306 int regno = REGNO (incr_reg);
3307 rtx set = single_set (incr);
3308 rtx q = SET_DEST (set);
3309 rtx y = SET_SRC (set);
3310 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3311
3312 /* Make sure this reg appears only once in this insn. */
3313 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3314 return;
3315
3316 if (dead_or_set_p (incr, incr_reg)
3317 /* Mustn't autoinc an eliminable register. */
3318 && (regno >= FIRST_PSEUDO_REGISTER
3319 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3320 {
3321 /* This is the simple case. Try to make the auto-inc. If
3322 we can't, we are done. Otherwise, we will do any
3323 needed updates below. */
3324 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3325 return;
3326 }
3327 else if (GET_CODE (q) == REG
3328 /* PREV_INSN used here to check the semi-open interval
3329 [insn,incr). */
3330 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3331 /* We must also check for sets of q as q may be
3332 a call clobbered hard register and there may
3333 be a call between PREV_INSN (insn) and incr. */
3334 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3335 {
3336 /* We have *p followed sometime later by q = p+size.
3337 Both p and q must be live afterward,
3338 and q is not used between INSN and its assignment.
3339 Change it to q = p, ...*q..., q = q+size.
3340 Then fall into the usual case. */
3341 rtx insns, temp;
3342
3343 start_sequence ();
3344 emit_move_insn (q, incr_reg);
3345 insns = get_insns ();
3346 end_sequence ();
3347
3348 /* If we can't make the auto-inc, or can't make the
3349 replacement into Y, exit. There's no point in making
3350 the change below if we can't do the auto-inc and doing
3351 so is not correct in the pre-inc case. */
3352
3353 XEXP (inc, 0) = q;
3354 validate_change (insn, &XEXP (mem, 0), inc, 1);
3355 validate_change (incr, &XEXP (y, opnum), q, 1);
3356 if (! apply_change_group ())
3357 return;
3358
3359 /* We now know we'll be doing this change, so emit the
3360 new insn(s) and do the updates. */
3361 emit_insn_before (insns, insn);
3362
3363 if (pbi->bb->head == insn)
3364 pbi->bb->head = insns;
3365
3366 /* INCR will become a NOTE and INSN won't contain a
3367 use of INCR_REG. If a use of INCR_REG was just placed in
3368 the insn before INSN, make that the next use.
3369 Otherwise, invalidate it. */
3370 if (GET_CODE (PREV_INSN (insn)) == INSN
3371 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3372 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3373 pbi->reg_next_use[regno] = PREV_INSN (insn);
3374 else
3375 pbi->reg_next_use[regno] = 0;
3376
3377 incr_reg = q;
3378 regno = REGNO (q);
3379
3380 /* REGNO is now used in INCR which is below INSN, but
3381 it previously wasn't live here. If we don't mark
3382 it as live, we'll put a REG_DEAD note for it
3383 on this insn, which is incorrect. */
3384 SET_REGNO_REG_SET (pbi->reg_live, regno);
3385
3386 /* If there are any calls between INSN and INCR, show
3387 that REGNO now crosses them. */
3388 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3389 if (GET_CODE (temp) == CALL_INSN)
3390 REG_N_CALLS_CROSSED (regno)++;
3391
3392 /* Invalidate alias info for Q since we just changed its value. */
3393 clear_reg_alias_info (q);
3394 }
3395 else
3396 return;
3397
3398 /* If we haven't returned, it means we were able to make the
3399 auto-inc, so update the status. First, record that this insn
3400 has an implicit side effect. */
3401
3402 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3403
3404 /* Modify the old increment-insn to simply copy
3405 the already-incremented value of our register. */
3406 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3407 abort ();
3408
3409 /* If that makes it a no-op (copying the register into itself) delete
3410 it so it won't appear to be a "use" and a "set" of this
3411 register. */
3412 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3413 {
3414 /* If the original source was dead, it's dead now. */
3415 rtx note;
3416
3417 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3418 {
3419 remove_note (incr, note);
3420 if (XEXP (note, 0) != incr_reg)
3421 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3422 }
3423
3424 PUT_CODE (incr, NOTE);
3425 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3426 NOTE_SOURCE_FILE (incr) = 0;
3427 }
3428
3429 if (regno >= FIRST_PSEUDO_REGISTER)
3430 {
3431 /* Count an extra reference to the reg. When a reg is
3432 incremented, spilling it is worse, so we want to make
3433 that less likely. */
3434 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3435
3436 /* Count the increment as a setting of the register,
3437 even though it isn't a SET in rtl. */
3438 REG_N_SETS (regno)++;
3439 }
3440 }
3441
3442 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3443 reference. */
3444
3445 static void
3446 find_auto_inc (pbi, x, insn)
3447 struct propagate_block_info *pbi;
3448 rtx x;
3449 rtx insn;
3450 {
3451 rtx addr = XEXP (x, 0);
3452 HOST_WIDE_INT offset = 0;
3453 rtx set, y, incr, inc_val;
3454 int regno;
3455 int size = GET_MODE_SIZE (GET_MODE (x));
3456
3457 if (GET_CODE (insn) == JUMP_INSN)
3458 return;
3459
3460 /* Here we detect use of an index register which might be good for
3461 postincrement, postdecrement, preincrement, or predecrement. */
3462
3463 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3464 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3465
3466 if (GET_CODE (addr) != REG)
3467 return;
3468
3469 regno = REGNO (addr);
3470
3471 /* Is the next use an increment that might make auto-increment? */
3472 incr = pbi->reg_next_use[regno];
3473 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3474 return;
3475 set = single_set (incr);
3476 if (set == 0 || GET_CODE (set) != SET)
3477 return;
3478 y = SET_SRC (set);
3479
3480 if (GET_CODE (y) != PLUS)
3481 return;
3482
3483 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3484 inc_val = XEXP (y, 1);
3485 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3486 inc_val = XEXP (y, 0);
3487 else
3488 return;
3489
3490 if (GET_CODE (inc_val) == CONST_INT)
3491 {
3492 if (HAVE_POST_INCREMENT
3493 && (INTVAL (inc_val) == size && offset == 0))
3494 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3495 incr, addr);
3496 else if (HAVE_POST_DECREMENT
3497 && (INTVAL (inc_val) == -size && offset == 0))
3498 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3499 incr, addr);
3500 else if (HAVE_PRE_INCREMENT
3501 && (INTVAL (inc_val) == size && offset == size))
3502 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3503 incr, addr);
3504 else if (HAVE_PRE_DECREMENT
3505 && (INTVAL (inc_val) == -size && offset == -size))
3506 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3507 incr, addr);
3508 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3509 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3510 gen_rtx_PLUS (Pmode,
3511 addr,
3512 inc_val)),
3513 insn, x, incr, addr);
3514 }
3515 else if (GET_CODE (inc_val) == REG
3516 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3517 NEXT_INSN (incr)))
3518
3519 {
3520 if (HAVE_POST_MODIFY_REG && offset == 0)
3521 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3522 gen_rtx_PLUS (Pmode,
3523 addr,
3524 inc_val)),
3525 insn, x, incr, addr);
3526 }
3527 }
3528
3529 #endif /* AUTO_INC_DEC */
3530 \f
3531 static void
3532 mark_used_reg (pbi, reg, cond, insn)
3533 struct propagate_block_info *pbi;
3534 rtx reg;
3535 rtx cond ATTRIBUTE_UNUSED;
3536 rtx insn;
3537 {
3538 unsigned int regno_first, regno_last, i;
3539 int some_was_live, some_was_dead, some_not_set;
3540
3541 regno_last = regno_first = REGNO (reg);
3542 if (regno_first < FIRST_PSEUDO_REGISTER)
3543 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3544
3545 /* Find out if any of this register is live after this instruction. */
3546 some_was_live = some_was_dead = 0;
3547 for (i = regno_first; i <= regno_last; ++i)
3548 {
3549 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3550 some_was_live |= needed_regno;
3551 some_was_dead |= ! needed_regno;
3552 }
3553
3554 /* Find out if any of the register was set this insn. */
3555 some_not_set = 0;
3556 for (i = regno_first; i <= regno_last; ++i)
3557 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3558
3559 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3560 {
3561 /* Record where each reg is used, so when the reg is set we know
3562 the next insn that uses it. */
3563 pbi->reg_next_use[regno_first] = insn;
3564 }
3565
3566 if (pbi->flags & PROP_REG_INFO)
3567 {
3568 if (regno_first < FIRST_PSEUDO_REGISTER)
3569 {
3570 /* If this is a register we are going to try to eliminate,
3571 don't mark it live here. If we are successful in
3572 eliminating it, it need not be live unless it is used for
3573 pseudos, in which case it will have been set live when it
3574 was allocated to the pseudos. If the register will not
3575 be eliminated, reload will set it live at that point.
3576
3577 Otherwise, record that this function uses this register. */
3578 /* ??? The PPC backend tries to "eliminate" on the pic
3579 register to itself. This should be fixed. In the mean
3580 time, hack around it. */
3581
3582 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3583 && (regno_first == FRAME_POINTER_REGNUM
3584 || regno_first == ARG_POINTER_REGNUM)))
3585 for (i = regno_first; i <= regno_last; ++i)
3586 regs_ever_live[i] = 1;
3587 }
3588 else
3589 {
3590 /* Keep track of which basic block each reg appears in. */
3591
3592 int blocknum = pbi->bb->index;
3593 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3594 REG_BASIC_BLOCK (regno_first) = blocknum;
3595 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3596 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3597
3598 /* Count (weighted) number of uses of each reg. */
3599 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3600 REG_N_REFS (regno_first)++;
3601 }
3602 }
3603
3604 /* Record and count the insns in which a reg dies. If it is used in
3605 this insn and was dead below the insn then it dies in this insn.
3606 If it was set in this insn, we do not make a REG_DEAD note;
3607 likewise if we already made such a note. */
3608 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3609 && some_was_dead
3610 && some_not_set)
3611 {
3612 /* Check for the case where the register dying partially
3613 overlaps the register set by this insn. */
3614 if (regno_first != regno_last)
3615 for (i = regno_first; i <= regno_last; ++i)
3616 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3617
3618 /* If none of the words in X is needed, make a REG_DEAD note.
3619 Otherwise, we must make partial REG_DEAD notes. */
3620 if (! some_was_live)
3621 {
3622 if ((pbi->flags & PROP_DEATH_NOTES)
3623 && ! find_regno_note (insn, REG_DEAD, regno_first))
3624 REG_NOTES (insn)
3625 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3626
3627 if (pbi->flags & PROP_REG_INFO)
3628 REG_N_DEATHS (regno_first)++;
3629 }
3630 else
3631 {
3632 /* Don't make a REG_DEAD note for a part of a register
3633 that is set in the insn. */
3634 for (i = regno_first; i <= regno_last; ++i)
3635 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3636 && ! dead_or_set_regno_p (insn, i))
3637 REG_NOTES (insn)
3638 = alloc_EXPR_LIST (REG_DEAD,
3639 regno_reg_rtx[i],
3640 REG_NOTES (insn));
3641 }
3642 }
3643
3644 /* Mark the register as being live. */
3645 for (i = regno_first; i <= regno_last; ++i)
3646 {
3647 #ifdef HAVE_conditional_execution
3648 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3649 #endif
3650
3651 SET_REGNO_REG_SET (pbi->reg_live, i);
3652
3653 #ifdef HAVE_conditional_execution
3654 /* If this is a conditional use, record that fact. If it is later
3655 conditionally set, we'll know to kill the register. */
3656 if (cond != NULL_RTX)
3657 {
3658 splay_tree_node node;
3659 struct reg_cond_life_info *rcli;
3660 rtx ncond;
3661
3662 if (this_was_live)
3663 {
3664 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3665 if (node == NULL)
3666 {
3667 /* The register was unconditionally live previously.
3668 No need to do anything. */
3669 }
3670 else
3671 {
3672 /* The register was conditionally live previously.
3673 Subtract the new life cond from the old death cond. */
3674 rcli = (struct reg_cond_life_info *) node->value;
3675 ncond = rcli->condition;
3676 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3677
3678 /* If the register is now unconditionally live,
3679 remove the entry in the splay_tree. */
3680 if (ncond == const0_rtx)
3681 splay_tree_remove (pbi->reg_cond_dead, i);
3682 else
3683 {
3684 rcli->condition = ncond;
3685 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3686 REGNO (XEXP (cond, 0)));
3687 }
3688 }
3689 }
3690 else
3691 {
3692 /* The register was not previously live at all. Record
3693 the condition under which it is still dead. */
3694 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3695 rcli->condition = not_reg_cond (cond);
3696 rcli->stores = const0_rtx;
3697 rcli->orig_condition = const0_rtx;
3698 splay_tree_insert (pbi->reg_cond_dead, i,
3699 (splay_tree_value) rcli);
3700
3701 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3702 }
3703 }
3704 else if (this_was_live)
3705 {
3706 /* The register may have been conditionally live previously, but
3707 is now unconditionally live. Remove it from the conditionally
3708 dead list, so that a conditional set won't cause us to think
3709 it dead. */
3710 splay_tree_remove (pbi->reg_cond_dead, i);
3711 }
3712 #endif
3713 }
3714 }
3715
3716 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3717 This is done assuming the registers needed from X are those that
3718 have 1-bits in PBI->REG_LIVE.
3719
3720 INSN is the containing instruction. If INSN is dead, this function
3721 is not called. */
3722
3723 static void
3724 mark_used_regs (pbi, x, cond, insn)
3725 struct propagate_block_info *pbi;
3726 rtx x, cond, insn;
3727 {
3728 RTX_CODE code;
3729 int regno;
3730 int flags = pbi->flags;
3731
3732 retry:
3733 if (!x)
3734 return;
3735 code = GET_CODE (x);
3736 switch (code)
3737 {
3738 case LABEL_REF:
3739 case SYMBOL_REF:
3740 case CONST_INT:
3741 case CONST:
3742 case CONST_DOUBLE:
3743 case CONST_VECTOR:
3744 case PC:
3745 case ADDR_VEC:
3746 case ADDR_DIFF_VEC:
3747 return;
3748
3749 #ifdef HAVE_cc0
3750 case CC0:
3751 pbi->cc0_live = 1;
3752 return;
3753 #endif
3754
3755 case CLOBBER:
3756 /* If we are clobbering a MEM, mark any registers inside the address
3757 as being used. */
3758 if (GET_CODE (XEXP (x, 0)) == MEM)
3759 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3760 return;
3761
3762 case MEM:
3763 /* Don't bother watching stores to mems if this is not the
3764 final pass. We'll not be deleting dead stores this round. */
3765 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3766 {
3767 /* Invalidate the data for the last MEM stored, but only if MEM is
3768 something that can be stored into. */
3769 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3770 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3771 /* Needn't clear the memory set list. */
3772 ;
3773 else
3774 {
3775 rtx temp = pbi->mem_set_list;
3776 rtx prev = NULL_RTX;
3777 rtx next;
3778
3779 while (temp)
3780 {
3781 next = XEXP (temp, 1);
3782 if (anti_dependence (XEXP (temp, 0), x))
3783 {
3784 /* Splice temp out of the list. */
3785 if (prev)
3786 XEXP (prev, 1) = next;
3787 else
3788 pbi->mem_set_list = next;
3789 free_EXPR_LIST_node (temp);
3790 pbi->mem_set_list_len--;
3791 }
3792 else
3793 prev = temp;
3794 temp = next;
3795 }
3796 }
3797
3798 /* If the memory reference had embedded side effects (autoincrement
3799 address modes. Then we may need to kill some entries on the
3800 memory set list. */
3801 if (insn)
3802 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3803 }
3804
3805 #ifdef AUTO_INC_DEC
3806 if (flags & PROP_AUTOINC)
3807 find_auto_inc (pbi, x, insn);
3808 #endif
3809 break;
3810
3811 case SUBREG:
3812 #ifdef CLASS_CANNOT_CHANGE_MODE
3813 if (GET_CODE (SUBREG_REG (x)) == REG
3814 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3815 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3816 GET_MODE (SUBREG_REG (x))))
3817 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3818 #endif
3819
3820 /* While we're here, optimize this case. */
3821 x = SUBREG_REG (x);
3822 if (GET_CODE (x) != REG)
3823 goto retry;
3824 /* Fall through. */
3825
3826 case REG:
3827 /* See a register other than being set => mark it as needed. */
3828 mark_used_reg (pbi, x, cond, insn);
3829 return;
3830
3831 case SET:
3832 {
3833 rtx testreg = SET_DEST (x);
3834 int mark_dest = 0;
3835
3836 /* If storing into MEM, don't show it as being used. But do
3837 show the address as being used. */
3838 if (GET_CODE (testreg) == MEM)
3839 {
3840 #ifdef AUTO_INC_DEC
3841 if (flags & PROP_AUTOINC)
3842 find_auto_inc (pbi, testreg, insn);
3843 #endif
3844 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3845 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3846 return;
3847 }
3848
3849 /* Storing in STRICT_LOW_PART is like storing in a reg
3850 in that this SET might be dead, so ignore it in TESTREG.
3851 but in some other ways it is like using the reg.
3852
3853 Storing in a SUBREG or a bit field is like storing the entire
3854 register in that if the register's value is not used
3855 then this SET is not needed. */
3856 while (GET_CODE (testreg) == STRICT_LOW_PART
3857 || GET_CODE (testreg) == ZERO_EXTRACT
3858 || GET_CODE (testreg) == SIGN_EXTRACT
3859 || GET_CODE (testreg) == SUBREG)
3860 {
3861 #ifdef CLASS_CANNOT_CHANGE_MODE
3862 if (GET_CODE (testreg) == SUBREG
3863 && GET_CODE (SUBREG_REG (testreg)) == REG
3864 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3865 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3866 GET_MODE (testreg)))
3867 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3868 #endif
3869
3870 /* Modifying a single register in an alternate mode
3871 does not use any of the old value. But these other
3872 ways of storing in a register do use the old value. */
3873 if (GET_CODE (testreg) == SUBREG
3874 && !((REG_BYTES (SUBREG_REG (testreg))
3875 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3876 > (REG_BYTES (testreg)
3877 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3878 ;
3879 else
3880 mark_dest = 1;
3881
3882 testreg = XEXP (testreg, 0);
3883 }
3884
3885 /* If this is a store into a register or group of registers,
3886 recursively scan the value being stored. */
3887
3888 if ((GET_CODE (testreg) == PARALLEL
3889 && GET_MODE (testreg) == BLKmode)
3890 || (GET_CODE (testreg) == REG
3891 && (regno = REGNO (testreg),
3892 ! (regno == FRAME_POINTER_REGNUM
3893 && (! reload_completed || frame_pointer_needed)))
3894 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3895 && ! (regno == HARD_FRAME_POINTER_REGNUM
3896 && (! reload_completed || frame_pointer_needed))
3897 #endif
3898 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3899 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3900 #endif
3901 ))
3902 {
3903 if (mark_dest)
3904 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3905 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3906 return;
3907 }
3908 }
3909 break;
3910
3911 case ASM_OPERANDS:
3912 case UNSPEC_VOLATILE:
3913 case TRAP_IF:
3914 case ASM_INPUT:
3915 {
3916 /* Traditional and volatile asm instructions must be considered to use
3917 and clobber all hard registers, all pseudo-registers and all of
3918 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3919
3920 Consider for instance a volatile asm that changes the fpu rounding
3921 mode. An insn should not be moved across this even if it only uses
3922 pseudo-regs because it might give an incorrectly rounded result.
3923
3924 ?!? Unfortunately, marking all hard registers as live causes massive
3925 problems for the register allocator and marking all pseudos as live
3926 creates mountains of uninitialized variable warnings.
3927
3928 So for now, just clear the memory set list and mark any regs
3929 we can find in ASM_OPERANDS as used. */
3930 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3931 {
3932 free_EXPR_LIST_list (&pbi->mem_set_list);
3933 pbi->mem_set_list_len = 0;
3934 }
3935
3936 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3937 We can not just fall through here since then we would be confused
3938 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3939 traditional asms unlike their normal usage. */
3940 if (code == ASM_OPERANDS)
3941 {
3942 int j;
3943
3944 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3945 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3946 }
3947 break;
3948 }
3949
3950 case COND_EXEC:
3951 if (cond != NULL_RTX)
3952 abort ();
3953
3954 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3955
3956 cond = COND_EXEC_TEST (x);
3957 x = COND_EXEC_CODE (x);
3958 goto retry;
3959
3960 case PHI:
3961 /* We _do_not_ want to scan operands of phi nodes. Operands of
3962 a phi function are evaluated only when control reaches this
3963 block along a particular edge. Therefore, regs that appear
3964 as arguments to phi should not be added to the global live at
3965 start. */
3966 return;
3967
3968 default:
3969 break;
3970 }
3971
3972 /* Recursively scan the operands of this expression. */
3973
3974 {
3975 const char * const fmt = GET_RTX_FORMAT (code);
3976 int i;
3977
3978 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3979 {
3980 if (fmt[i] == 'e')
3981 {
3982 /* Tail recursive case: save a function call level. */
3983 if (i == 0)
3984 {
3985 x = XEXP (x, 0);
3986 goto retry;
3987 }
3988 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3989 }
3990 else if (fmt[i] == 'E')
3991 {
3992 int j;
3993 for (j = 0; j < XVECLEN (x, i); j++)
3994 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3995 }
3996 }
3997 }
3998 }
3999 \f
4000 #ifdef AUTO_INC_DEC
4001
4002 static int
4003 try_pre_increment_1 (pbi, insn)
4004 struct propagate_block_info *pbi;
4005 rtx insn;
4006 {
4007 /* Find the next use of this reg. If in same basic block,
4008 make it do pre-increment or pre-decrement if appropriate. */
4009 rtx x = single_set (insn);
4010 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4011 * INTVAL (XEXP (SET_SRC (x), 1)));
4012 int regno = REGNO (SET_DEST (x));
4013 rtx y = pbi->reg_next_use[regno];
4014 if (y != 0
4015 && SET_DEST (x) != stack_pointer_rtx
4016 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4017 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4018 mode would be better. */
4019 && ! dead_or_set_p (y, SET_DEST (x))
4020 && try_pre_increment (y, SET_DEST (x), amount))
4021 {
4022 /* We have found a suitable auto-increment and already changed
4023 insn Y to do it. So flush this increment instruction. */
4024 propagate_block_delete_insn (insn);
4025
4026 /* Count a reference to this reg for the increment insn we are
4027 deleting. When a reg is incremented, spilling it is worse,
4028 so we want to make that less likely. */
4029 if (regno >= FIRST_PSEUDO_REGISTER)
4030 {
4031 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4032 REG_N_SETS (regno)++;
4033 }
4034
4035 /* Flush any remembered memories depending on the value of
4036 the incremented register. */
4037 invalidate_mems_from_set (pbi, SET_DEST (x));
4038
4039 return 1;
4040 }
4041 return 0;
4042 }
4043
4044 /* Try to change INSN so that it does pre-increment or pre-decrement
4045 addressing on register REG in order to add AMOUNT to REG.
4046 AMOUNT is negative for pre-decrement.
4047 Returns 1 if the change could be made.
4048 This checks all about the validity of the result of modifying INSN. */
4049
4050 static int
4051 try_pre_increment (insn, reg, amount)
4052 rtx insn, reg;
4053 HOST_WIDE_INT amount;
4054 {
4055 rtx use;
4056
4057 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4058 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4059 int pre_ok = 0;
4060 /* Nonzero if we can try to make a post-increment or post-decrement.
4061 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4062 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4063 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4064 int post_ok = 0;
4065
4066 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4067 int do_post = 0;
4068
4069 /* From the sign of increment, see which possibilities are conceivable
4070 on this target machine. */
4071 if (HAVE_PRE_INCREMENT && amount > 0)
4072 pre_ok = 1;
4073 if (HAVE_POST_INCREMENT && amount > 0)
4074 post_ok = 1;
4075
4076 if (HAVE_PRE_DECREMENT && amount < 0)
4077 pre_ok = 1;
4078 if (HAVE_POST_DECREMENT && amount < 0)
4079 post_ok = 1;
4080
4081 if (! (pre_ok || post_ok))
4082 return 0;
4083
4084 /* It is not safe to add a side effect to a jump insn
4085 because if the incremented register is spilled and must be reloaded
4086 there would be no way to store the incremented value back in memory. */
4087
4088 if (GET_CODE (insn) == JUMP_INSN)
4089 return 0;
4090
4091 use = 0;
4092 if (pre_ok)
4093 use = find_use_as_address (PATTERN (insn), reg, 0);
4094 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4095 {
4096 use = find_use_as_address (PATTERN (insn), reg, -amount);
4097 do_post = 1;
4098 }
4099
4100 if (use == 0 || use == (rtx) (size_t) 1)
4101 return 0;
4102
4103 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4104 return 0;
4105
4106 /* See if this combination of instruction and addressing mode exists. */
4107 if (! validate_change (insn, &XEXP (use, 0),
4108 gen_rtx_fmt_e (amount > 0
4109 ? (do_post ? POST_INC : PRE_INC)
4110 : (do_post ? POST_DEC : PRE_DEC),
4111 Pmode, reg), 0))
4112 return 0;
4113
4114 /* Record that this insn now has an implicit side effect on X. */
4115 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4116 return 1;
4117 }
4118
4119 #endif /* AUTO_INC_DEC */
4120 \f
4121 /* Find the place in the rtx X where REG is used as a memory address.
4122 Return the MEM rtx that so uses it.
4123 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4124 (plus REG (const_int PLUSCONST)).
4125
4126 If such an address does not appear, return 0.
4127 If REG appears more than once, or is used other than in such an address,
4128 return (rtx) 1. */
4129
4130 rtx
4131 find_use_as_address (x, reg, plusconst)
4132 rtx x;
4133 rtx reg;
4134 HOST_WIDE_INT plusconst;
4135 {
4136 enum rtx_code code = GET_CODE (x);
4137 const char * const fmt = GET_RTX_FORMAT (code);
4138 int i;
4139 rtx value = 0;
4140 rtx tem;
4141
4142 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4143 return x;
4144
4145 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4146 && XEXP (XEXP (x, 0), 0) == reg
4147 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4148 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4149 return x;
4150
4151 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4152 {
4153 /* If REG occurs inside a MEM used in a bit-field reference,
4154 that is unacceptable. */
4155 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4156 return (rtx) (size_t) 1;
4157 }
4158
4159 if (x == reg)
4160 return (rtx) (size_t) 1;
4161
4162 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4163 {
4164 if (fmt[i] == 'e')
4165 {
4166 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4167 if (value == 0)
4168 value = tem;
4169 else if (tem != 0)
4170 return (rtx) (size_t) 1;
4171 }
4172 else if (fmt[i] == 'E')
4173 {
4174 int j;
4175 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4176 {
4177 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4178 if (value == 0)
4179 value = tem;
4180 else if (tem != 0)
4181 return (rtx) (size_t) 1;
4182 }
4183 }
4184 }
4185
4186 return value;
4187 }
4188 \f
4189 /* Write information about registers and basic blocks into FILE.
4190 This is part of making a debugging dump. */
4191
4192 void
4193 dump_regset (r, outf)
4194 regset r;
4195 FILE *outf;
4196 {
4197 int i;
4198 if (r == NULL)
4199 {
4200 fputs (" (nil)", outf);
4201 return;
4202 }
4203
4204 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4205 {
4206 fprintf (outf, " %d", i);
4207 if (i < FIRST_PSEUDO_REGISTER)
4208 fprintf (outf, " [%s]",
4209 reg_names[i]);
4210 });
4211 }
4212
4213 /* Print a human-reaable representation of R on the standard error
4214 stream. This function is designed to be used from within the
4215 debugger. */
4216
4217 void
4218 debug_regset (r)
4219 regset r;
4220 {
4221 dump_regset (r, stderr);
4222 putc ('\n', stderr);
4223 }
4224
4225 /* Recompute register set/reference counts immediately prior to register
4226 allocation.
4227
4228 This avoids problems with set/reference counts changing to/from values
4229 which have special meanings to the register allocators.
4230
4231 Additionally, the reference counts are the primary component used by the
4232 register allocators to prioritize pseudos for allocation to hard regs.
4233 More accurate reference counts generally lead to better register allocation.
4234
4235 F is the first insn to be scanned.
4236
4237 LOOP_STEP denotes how much loop_depth should be incremented per
4238 loop nesting level in order to increase the ref count more for
4239 references in a loop.
4240
4241 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4242 possibly other information which is used by the register allocators. */
4243
4244 void
4245 recompute_reg_usage (f, loop_step)
4246 rtx f ATTRIBUTE_UNUSED;
4247 int loop_step ATTRIBUTE_UNUSED;
4248 {
4249 allocate_reg_life_data ();
4250 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4251 }
4252
4253 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4254 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4255 of the number of registers that died. */
4256
4257 int
4258 count_or_remove_death_notes (blocks, kill)
4259 sbitmap blocks;
4260 int kill;
4261 {
4262 int count = 0;
4263 basic_block bb;
4264
4265 FOR_EACH_BB_REVERSE (bb)
4266 {
4267 rtx insn;
4268
4269 if (blocks && ! TEST_BIT (blocks, bb->index))
4270 continue;
4271
4272 for (insn = bb->head;; insn = NEXT_INSN (insn))
4273 {
4274 if (INSN_P (insn))
4275 {
4276 rtx *pprev = &REG_NOTES (insn);
4277 rtx link = *pprev;
4278
4279 while (link)
4280 {
4281 switch (REG_NOTE_KIND (link))
4282 {
4283 case REG_DEAD:
4284 if (GET_CODE (XEXP (link, 0)) == REG)
4285 {
4286 rtx reg = XEXP (link, 0);
4287 int n;
4288
4289 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4290 n = 1;
4291 else
4292 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4293 count += n;
4294 }
4295 /* Fall through. */
4296
4297 case REG_UNUSED:
4298 if (kill)
4299 {
4300 rtx next = XEXP (link, 1);
4301 free_EXPR_LIST_node (link);
4302 *pprev = link = next;
4303 break;
4304 }
4305 /* Fall through. */
4306
4307 default:
4308 pprev = &XEXP (link, 1);
4309 link = *pprev;
4310 break;
4311 }
4312 }
4313 }
4314
4315 if (insn == bb->end)
4316 break;
4317 }
4318 }
4319
4320 return count;
4321 }
4322 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4323 if blocks is NULL. */
4324
4325 static void
4326 clear_log_links (blocks)
4327 sbitmap blocks;
4328 {
4329 rtx insn;
4330 int i;
4331
4332 if (!blocks)
4333 {
4334 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4335 if (INSN_P (insn))
4336 free_INSN_LIST_list (&LOG_LINKS (insn));
4337 }
4338 else
4339 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4340 {
4341 basic_block bb = BASIC_BLOCK (i);
4342
4343 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4344 insn = NEXT_INSN (insn))
4345 if (INSN_P (insn))
4346 free_INSN_LIST_list (&LOG_LINKS (insn));
4347 });
4348 }
4349
4350 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4351 correspond to the hard registers, if any, set in that map. This
4352 could be done far more efficiently by having all sorts of special-cases
4353 with moving single words, but probably isn't worth the trouble. */
4354
4355 void
4356 reg_set_to_hard_reg_set (to, from)
4357 HARD_REG_SET *to;
4358 bitmap from;
4359 {
4360 int i;
4361
4362 EXECUTE_IF_SET_IN_BITMAP
4363 (from, 0, i,
4364 {
4365 if (i >= FIRST_PSEUDO_REGISTER)
4366 return;
4367 SET_HARD_REG_BIT (*to, i);
4368 });
4369 }