]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/gfortran.texi
0f3f454ff83692a9c0008817d697cf55fbed33f2
[thirdparty/gcc.git] / gcc / fortran / gfortran.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename gfortran.info
4 @set copyrights-gfortran 1999-2018
5
6 @include gcc-common.texi
7
8 @settitle The GNU Fortran Compiler
9
10 @c Create a separate index for command line options
11 @defcodeindex op
12 @c Merge the standard indexes into a single one.
13 @syncodeindex fn cp
14 @syncodeindex vr cp
15 @syncodeindex ky cp
16 @syncodeindex pg cp
17 @syncodeindex tp cp
18
19 @c TODO: The following "Part" definitions are included here temporarily
20 @c until they are incorporated into the official Texinfo distribution.
21 @c They borrow heavily from Texinfo's \unnchapentry definitions.
22
23 @tex
24 \gdef\part#1#2{%
25 \pchapsepmacro
26 \gdef\thischapter{}
27 \begingroup
28 \vglue\titlepagetopglue
29 \titlefonts \rm
30 \leftline{Part #1:@* #2}
31 \vskip4pt \hrule height 4pt width \hsize \vskip4pt
32 \endgroup
33 \writetocentry{part}{#2}{#1}
34 }
35 \gdef\blankpart{%
36 \writetocentry{blankpart}{}{}
37 }
38 % Part TOC-entry definition for summary contents.
39 \gdef\dosmallpartentry#1#2#3#4{%
40 \vskip .5\baselineskip plus.2\baselineskip
41 \begingroup
42 \let\rm=\bf \rm
43 \tocentry{Part #2: #1}{\doshortpageno\bgroup#4\egroup}
44 \endgroup
45 }
46 \gdef\dosmallblankpartentry#1#2#3#4{%
47 \vskip .5\baselineskip plus.2\baselineskip
48 }
49 % Part TOC-entry definition for regular contents. This has to be
50 % equated to an existing entry to not cause problems when the PDF
51 % outline is created.
52 \gdef\dopartentry#1#2#3#4{%
53 \unnchapentry{Part #2: #1}{}{#3}{#4}
54 }
55 \gdef\doblankpartentry#1#2#3#4{}
56 @end tex
57
58 @c %**end of header
59
60 @c Use with @@smallbook.
61
62 @c %** start of document
63
64 @c Cause even numbered pages to be printed on the left hand side of
65 @c the page and odd numbered pages to be printed on the right hand
66 @c side of the page. Using this, you can print on both sides of a
67 @c sheet of paper and have the text on the same part of the sheet.
68
69 @c The text on right hand pages is pushed towards the right hand
70 @c margin and the text on left hand pages is pushed toward the left
71 @c hand margin.
72 @c (To provide the reverse effect, set bindingoffset to -0.75in.)
73
74 @c @tex
75 @c \global\bindingoffset=0.75in
76 @c \global\normaloffset =0.75in
77 @c @end tex
78
79 @copying
80 Copyright @copyright{} @value{copyrights-gfortran} Free Software Foundation, Inc.
81
82 Permission is granted to copy, distribute and/or modify this document
83 under the terms of the GNU Free Documentation License, Version 1.3 or
84 any later version published by the Free Software Foundation; with the
85 Invariant Sections being ``Funding Free Software'', the Front-Cover
86 Texts being (a) (see below), and with the Back-Cover Texts being (b)
87 (see below). A copy of the license is included in the section entitled
88 ``GNU Free Documentation License''.
89
90 (a) The FSF's Front-Cover Text is:
91
92 A GNU Manual
93
94 (b) The FSF's Back-Cover Text is:
95
96 You have freedom to copy and modify this GNU Manual, like GNU
97 software. Copies published by the Free Software Foundation raise
98 funds for GNU development.
99 @end copying
100
101 @ifinfo
102 @dircategory Software development
103 @direntry
104 * gfortran: (gfortran). The GNU Fortran Compiler.
105 @end direntry
106 This file documents the use and the internals of
107 the GNU Fortran compiler, (@command{gfortran}).
108
109 Published by the Free Software Foundation
110 51 Franklin Street, Fifth Floor
111 Boston, MA 02110-1301 USA
112
113 @insertcopying
114 @end ifinfo
115
116
117 @setchapternewpage odd
118 @titlepage
119 @title Using GNU Fortran
120 @versionsubtitle
121 @author The @t{gfortran} team
122 @page
123 @vskip 0pt plus 1filll
124 Published by the Free Software Foundation@*
125 51 Franklin Street, Fifth Floor@*
126 Boston, MA 02110-1301, USA@*
127 @c Last printed ??ber, 19??.@*
128 @c Printed copies are available for $? each.@*
129 @c ISBN ???
130 @sp 1
131 @insertcopying
132 @end titlepage
133
134 @c TODO: The following "Part" definitions are included here temporarily
135 @c until they are incorporated into the official Texinfo distribution.
136
137 @tex
138 \global\let\partentry=\dosmallpartentry
139 \global\let\blankpartentry=\dosmallblankpartentry
140 @end tex
141 @summarycontents
142
143 @tex
144 \global\let\partentry=\dopartentry
145 \global\let\blankpartentry=\doblankpartentry
146 @end tex
147 @contents
148
149 @page
150
151 @c ---------------------------------------------------------------------
152 @c TexInfo table of contents.
153 @c ---------------------------------------------------------------------
154
155 @ifnottex
156 @node Top
157 @top Introduction
158 @cindex Introduction
159
160 This manual documents the use of @command{gfortran},
161 the GNU Fortran compiler. You can find in this manual how to invoke
162 @command{gfortran}, as well as its features and incompatibilities.
163
164 @ifset DEVELOPMENT
165 @emph{Warning:} This document, and the compiler it describes, are still
166 under development. While efforts are made to keep it up-to-date, it might
167 not accurately reflect the status of the most recent GNU Fortran compiler.
168 @end ifset
169
170 @comment
171 @comment When you add a new menu item, please keep the right hand
172 @comment aligned to the same column. Do not use tabs. This provides
173 @comment better formatting.
174 @comment
175 @menu
176 * Introduction::
177
178 Part I: Invoking GNU Fortran
179 * Invoking GNU Fortran:: Command options supported by @command{gfortran}.
180 * Runtime:: Influencing runtime behavior with environment variables.
181
182 Part II: Language Reference
183 * Fortran standards status:: Fortran 2003, 2008 and 2018 features supported by GNU Fortran.
184 * Compiler Characteristics:: User-visible implementation details.
185 * Extensions:: Language extensions implemented by GNU Fortran.
186 * Mixed-Language Programming:: Interoperability with C
187 * Coarray Programming::
188 * Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
189 * Intrinsic Modules:: Intrinsic modules supported by GNU Fortran.
190
191 * Contributing:: How you can help.
192 * Copying:: GNU General Public License says
193 how you can copy and share GNU Fortran.
194 * GNU Free Documentation License::
195 How you can copy and share this manual.
196 * Funding:: How to help assure continued work for free software.
197 * Option Index:: Index of command line options
198 * Keyword Index:: Index of concepts
199 @end menu
200 @end ifnottex
201
202 @c ---------------------------------------------------------------------
203 @c Introduction
204 @c ---------------------------------------------------------------------
205
206 @node Introduction
207 @chapter Introduction
208
209 @c The following duplicates the text on the TexInfo table of contents.
210 @iftex
211 This manual documents the use of @command{gfortran}, the GNU Fortran
212 compiler. You can find in this manual how to invoke @command{gfortran},
213 as well as its features and incompatibilities.
214
215 @ifset DEVELOPMENT
216 @emph{Warning:} This document, and the compiler it describes, are still
217 under development. While efforts are made to keep it up-to-date, it
218 might not accurately reflect the status of the most recent GNU Fortran
219 compiler.
220 @end ifset
221 @end iftex
222
223 The GNU Fortran compiler front end was
224 designed initially as a free replacement for,
225 or alternative to, the Unix @command{f95} command;
226 @command{gfortran} is the command you will use to invoke the compiler.
227
228 @menu
229 * About GNU Fortran:: What you should know about the GNU Fortran compiler.
230 * GNU Fortran and GCC:: You can compile Fortran, C, or other programs.
231 * Preprocessing and conditional compilation:: The Fortran preprocessor
232 * GNU Fortran and G77:: Why we chose to start from scratch.
233 * Project Status:: Status of GNU Fortran, roadmap, proposed extensions.
234 * Standards:: Standards supported by GNU Fortran.
235 @end menu
236
237
238 @c ---------------------------------------------------------------------
239 @c About GNU Fortran
240 @c ---------------------------------------------------------------------
241
242 @node About GNU Fortran
243 @section About GNU Fortran
244
245 The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards
246 completely, parts of the Fortran 2003, 2008 and 2018 standards, and
247 several vendor extensions. The development goal is to provide the
248 following features:
249
250 @itemize @bullet
251 @item
252 Read a user's program, stored in a file and containing instructions
253 written in Fortran 77, Fortran 90, Fortran 95, Fortran 2003, Fortran
254 2008 or Fortran 2018. This file contains @dfn{source code}.
255
256 @item
257 Translate the user's program into instructions a computer
258 can carry out more quickly than it takes to translate the
259 instructions in the first
260 place. The result after compilation of a program is
261 @dfn{machine code},
262 code designed to be efficiently translated and processed
263 by a machine such as your computer.
264 Humans usually are not as good writing machine code
265 as they are at writing Fortran (or C++, Ada, or Java),
266 because it is easy to make tiny mistakes writing machine code.
267
268 @item
269 Provide the user with information about the reasons why
270 the compiler is unable to create a binary from the source code.
271 Usually this will be the case if the source code is flawed.
272 The Fortran 90 standard requires that the compiler can point out
273 mistakes to the user.
274 An incorrect usage of the language causes an @dfn{error message}.
275
276 The compiler will also attempt to diagnose cases where the
277 user's program contains a correct usage of the language,
278 but instructs the computer to do something questionable.
279 This kind of diagnostics message is called a @dfn{warning message}.
280
281 @item
282 Provide optional information about the translation passes
283 from the source code to machine code.
284 This can help a user of the compiler to find the cause of
285 certain bugs which may not be obvious in the source code,
286 but may be more easily found at a lower level compiler output.
287 It also helps developers to find bugs in the compiler itself.
288
289 @item
290 Provide information in the generated machine code that can
291 make it easier to find bugs in the program (using a debugging tool,
292 called a @dfn{debugger}, such as the GNU Debugger @command{gdb}).
293
294 @item
295 Locate and gather machine code already generated to
296 perform actions requested by statements in the user's program.
297 This machine code is organized into @dfn{modules} and is located
298 and @dfn{linked} to the user program.
299 @end itemize
300
301 The GNU Fortran compiler consists of several components:
302
303 @itemize @bullet
304 @item
305 A version of the @command{gcc} command
306 (which also might be installed as the system's @command{cc} command)
307 that also understands and accepts Fortran source code.
308 The @command{gcc} command is the @dfn{driver} program for
309 all the languages in the GNU Compiler Collection (GCC);
310 With @command{gcc},
311 you can compile the source code of any language for
312 which a front end is available in GCC.
313
314 @item
315 The @command{gfortran} command itself,
316 which also might be installed as the
317 system's @command{f95} command.
318 @command{gfortran} is just another driver program,
319 but specifically for the Fortran compiler only.
320 The difference with @command{gcc} is that @command{gfortran}
321 will automatically link the correct libraries to your program.
322
323 @item
324 A collection of run-time libraries.
325 These libraries contain the machine code needed to support
326 capabilities of the Fortran language that are not directly
327 provided by the machine code generated by the
328 @command{gfortran} compilation phase,
329 such as intrinsic functions and subroutines,
330 and routines for interaction with files and the operating system.
331 @c and mechanisms to spawn,
332 @c unleash and pause threads in parallelized code.
333
334 @item
335 The Fortran compiler itself, (@command{f951}).
336 This is the GNU Fortran parser and code generator,
337 linked to and interfaced with the GCC backend library.
338 @command{f951} ``translates'' the source code to
339 assembler code. You would typically not use this
340 program directly;
341 instead, the @command{gcc} or @command{gfortran} driver
342 programs will call it for you.
343 @end itemize
344
345
346 @c ---------------------------------------------------------------------
347 @c GNU Fortran and GCC
348 @c ---------------------------------------------------------------------
349
350 @node GNU Fortran and GCC
351 @section GNU Fortran and GCC
352 @cindex GNU Compiler Collection
353 @cindex GCC
354
355 GNU Fortran is a part of GCC, the @dfn{GNU Compiler Collection}. GCC
356 consists of a collection of front ends for various languages, which
357 translate the source code into a language-independent form called
358 @dfn{GENERIC}. This is then processed by a common middle end which
359 provides optimization, and then passed to one of a collection of back
360 ends which generate code for different computer architectures and
361 operating systems.
362
363 Functionally, this is implemented with a driver program (@command{gcc})
364 which provides the command-line interface for the compiler. It calls
365 the relevant compiler front-end program (e.g., @command{f951} for
366 Fortran) for each file in the source code, and then calls the assembler
367 and linker as appropriate to produce the compiled output. In a copy of
368 GCC which has been compiled with Fortran language support enabled,
369 @command{gcc} will recognize files with @file{.f}, @file{.for}, @file{.ftn},
370 @file{.f90}, @file{.f95}, @file{.f03} and @file{.f08} extensions as
371 Fortran source code, and compile it accordingly. A @command{gfortran}
372 driver program is also provided, which is identical to @command{gcc}
373 except that it automatically links the Fortran runtime libraries into the
374 compiled program.
375
376 Source files with @file{.f}, @file{.for}, @file{.fpp}, @file{.ftn}, @file{.F},
377 @file{.FOR}, @file{.FPP}, and @file{.FTN} extensions are treated as fixed form.
378 Source files with @file{.f90}, @file{.f95}, @file{.f03}, @file{.f08},
379 @file{.F90}, @file{.F95}, @file{.F03} and @file{.F08} extensions are
380 treated as free form. The capitalized versions of either form are run
381 through preprocessing. Source files with the lower case @file{.fpp}
382 extension are also run through preprocessing.
383
384 This manual specifically documents the Fortran front end, which handles
385 the programming language's syntax and semantics. The aspects of GCC
386 which relate to the optimization passes and the back-end code generation
387 are documented in the GCC manual; see
388 @ref{Top,,Introduction,gcc,Using the GNU Compiler Collection (GCC)}.
389 The two manuals together provide a complete reference for the GNU
390 Fortran compiler.
391
392
393 @c ---------------------------------------------------------------------
394 @c Preprocessing and conditional compilation
395 @c ---------------------------------------------------------------------
396
397 @node Preprocessing and conditional compilation
398 @section Preprocessing and conditional compilation
399 @cindex CPP
400 @cindex FPP
401 @cindex Conditional compilation
402 @cindex Preprocessing
403 @cindex preprocessor, include file handling
404
405 Many Fortran compilers including GNU Fortran allow passing the source code
406 through a C preprocessor (CPP; sometimes also called the Fortran preprocessor,
407 FPP) to allow for conditional compilation. In the case of GNU Fortran,
408 this is the GNU C Preprocessor in the traditional mode. On systems with
409 case-preserving file names, the preprocessor is automatically invoked if the
410 filename extension is @file{.F}, @file{.FOR}, @file{.FTN}, @file{.fpp},
411 @file{.FPP}, @file{.F90}, @file{.F95}, @file{.F03} or @file{.F08}. To manually
412 invoke the preprocessor on any file, use @option{-cpp}, to disable
413 preprocessing on files where the preprocessor is run automatically, use
414 @option{-nocpp}.
415
416 If a preprocessed file includes another file with the Fortran @code{INCLUDE}
417 statement, the included file is not preprocessed. To preprocess included
418 files, use the equivalent preprocessor statement @code{#include}.
419
420 If GNU Fortran invokes the preprocessor, @code{__GFORTRAN__}
421 is defined and @code{__GNUC__}, @code{__GNUC_MINOR__} and
422 @code{__GNUC_PATCHLEVEL__} can be used to determine the version of the
423 compiler. See @ref{Top,,Overview,cpp,The C Preprocessor} for details.
424
425 While CPP is the de-facto standard for preprocessing Fortran code,
426 Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
427 Conditional Compilation, which is not widely used and not directly
428 supported by the GNU Fortran compiler. You can use the program coco
429 to preprocess such files (@uref{http://www.daniellnagle.com/coco.html}).
430
431
432 @c ---------------------------------------------------------------------
433 @c GNU Fortran and G77
434 @c ---------------------------------------------------------------------
435
436 @node GNU Fortran and G77
437 @section GNU Fortran and G77
438 @cindex Fortran 77
439 @cindex @command{g77}
440
441 The GNU Fortran compiler is the successor to @command{g77}, the Fortran
442 77 front end included in GCC prior to version 4. It is an entirely new
443 program that has been designed to provide Fortran 95 support and
444 extensibility for future Fortran language standards, as well as providing
445 backwards compatibility for Fortran 77 and nearly all of the GNU language
446 extensions supported by @command{g77}.
447
448
449 @c ---------------------------------------------------------------------
450 @c Project Status
451 @c ---------------------------------------------------------------------
452
453 @node Project Status
454 @section Project Status
455
456 @quotation
457 As soon as @command{gfortran} can parse all of the statements correctly,
458 it will be in the ``larva'' state.
459 When we generate code, the ``puppa'' state.
460 When @command{gfortran} is done,
461 we'll see if it will be a beautiful butterfly,
462 or just a big bug....
463
464 --Andy Vaught, April 2000
465 @end quotation
466
467 The start of the GNU Fortran 95 project was announced on
468 the GCC homepage in March 18, 2000
469 (even though Andy had already been working on it for a while,
470 of course).
471
472 The GNU Fortran compiler is able to compile nearly all
473 standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
474 including a number of standard and non-standard extensions, and can be
475 used on real-world programs. In particular, the supported extensions
476 include OpenMP, Cray-style pointers, some old vendor extensions, and several
477 Fortran 2003 and Fortran 2008 features, including TR 15581. However, it is
478 still under development and has a few remaining rough edges.
479 There also is initial support for OpenACC.
480 Note that this is an experimental feature, incomplete, and subject to
481 change in future versions of GCC. See
482 @uref{https://gcc.gnu.org/wiki/OpenACC} for more information.
483
484 At present, the GNU Fortran compiler passes the
485 @uref{http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html,
486 NIST Fortran 77 Test Suite}, and produces acceptable results on the
487 @uref{http://www.netlib.org/lapack/faq.html#1.21, LAPACK Test Suite}.
488 It also provides respectable performance on
489 the @uref{http://www.polyhedron.com/fortran-compiler-comparisons/polyhedron-benchmark-suite,
490 Polyhedron Fortran
491 compiler benchmarks} and the
492 @uref{http://www.netlib.org/benchmark/livermore,
493 Livermore Fortran Kernels test}. It has been used to compile a number of
494 large real-world programs, including
495 @uref{http://hirlam.org/, the HARMONIE and HIRLAM weather forecasting code} and
496 @uref{http://physical-chemistry.scb.uwa.edu.au/tonto/wiki/index.php/Main_Page,
497 the Tonto quantum chemistry package}; see
498 @url{https://gcc.gnu.org/@/wiki/@/GfortranApps} for an extended list.
499
500 Among other things, the GNU Fortran compiler is intended as a replacement
501 for G77. At this point, nearly all programs that could be compiled with
502 G77 can be compiled with GNU Fortran, although there are a few minor known
503 regressions.
504
505 The primary work remaining to be done on GNU Fortran falls into three
506 categories: bug fixing (primarily regarding the treatment of invalid
507 code and providing useful error messages), improving the compiler
508 optimizations and the performance of compiled code, and extending the
509 compiler to support future standards---in particular, Fortran 2003,
510 Fortran 2008 and Fortran 2018.
511
512
513 @c ---------------------------------------------------------------------
514 @c Standards
515 @c ---------------------------------------------------------------------
516
517 @node Standards
518 @section Standards
519 @cindex Standards
520
521 @menu
522 * Varying Length Character Strings::
523 @end menu
524
525 The GNU Fortran compiler implements
526 ISO/IEC 1539:1997 (Fortran 95). As such, it can also compile essentially all
527 standard-compliant Fortran 90 and Fortran 77 programs. It also supports
528 the ISO/IEC TR-15581 enhancements to allocatable arrays.
529
530 GNU Fortran also have a partial support for ISO/IEC 1539-1:2004
531 (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008), the Technical
532 Specification @code{Further Interoperability of Fortran with C}
533 (ISO/IEC TS 29113:2012). Full support of those standards and future
534 Fortran standards is planned. The current status of the support is
535 can be found in the @ref{Fortran 2003 status}, @ref{Fortran 2008
536 status} and @ref{Fortran 2018 status} sections of the documentation.
537
538 Additionally, the GNU Fortran compilers supports the OpenMP specification
539 (version 4.0 and most of the features of the 4.5 version,
540 @url{http://openmp.org/@/wp/@/openmp-specifications/}).
541 There also is initial support for the OpenACC specification (targeting
542 version 2.0, @uref{http://www.openacc.org/}).
543 Note that this is an experimental feature, incomplete, and subject to
544 change in future versions of GCC. See
545 @uref{https://gcc.gnu.org/wiki/OpenACC} for more information.
546
547 @node Varying Length Character Strings
548 @subsection Varying Length Character Strings
549 @cindex Varying length character strings
550 @cindex Varying length strings
551 @cindex strings, varying length
552
553 The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
554 varying length character strings. While GNU Fortran currently does not
555 support such strings directly, there exist two Fortran implementations
556 for them, which work with GNU Fortran. They can be found at
557 @uref{http://www.fortran.com/@/iso_varying_string.f95} and at
558 @uref{ftp://ftp.nag.co.uk/@/sc22wg5/@/ISO_VARYING_STRING/}.
559
560 Deferred-length character strings of Fortran 2003 supports part of
561 the features of @code{ISO_VARYING_STRING} and should be considered as
562 replacement. (Namely, allocatable or pointers of the type
563 @code{character(len=:)}.)
564
565
566 @c =====================================================================
567 @c PART I: INVOCATION REFERENCE
568 @c =====================================================================
569
570 @tex
571 \part{I}{Invoking GNU Fortran}
572 @end tex
573
574 @c ---------------------------------------------------------------------
575 @c Compiler Options
576 @c ---------------------------------------------------------------------
577
578 @include invoke.texi
579
580
581 @c ---------------------------------------------------------------------
582 @c Runtime
583 @c ---------------------------------------------------------------------
584
585 @node Runtime
586 @chapter Runtime: Influencing runtime behavior with environment variables
587 @cindex environment variable
588
589 The behavior of the @command{gfortran} can be influenced by
590 environment variables.
591
592 Malformed environment variables are silently ignored.
593
594 @menu
595 * TMPDIR:: Directory for scratch files
596 * GFORTRAN_STDIN_UNIT:: Unit number for standard input
597 * GFORTRAN_STDOUT_UNIT:: Unit number for standard output
598 * GFORTRAN_STDERR_UNIT:: Unit number for standard error
599 * GFORTRAN_UNBUFFERED_ALL:: Do not buffer I/O for all units.
600 * GFORTRAN_UNBUFFERED_PRECONNECTED:: Do not buffer I/O for preconnected units.
601 * GFORTRAN_SHOW_LOCUS:: Show location for runtime errors
602 * GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
603 * GFORTRAN_LIST_SEPARATOR:: Separator for list output
604 * GFORTRAN_CONVERT_UNIT:: Set endianness for unformatted I/O
605 * GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
606 @end menu
607
608 @node TMPDIR
609 @section @env{TMPDIR}---Directory for scratch files
610
611 When opening a file with @code{STATUS='SCRATCH'}, GNU Fortran tries to
612 create the file in one of the potential directories by testing each
613 directory in the order below.
614
615 @enumerate
616 @item
617 The environment variable @env{TMPDIR}, if it exists.
618
619 @item
620 On the MinGW target, the directory returned by the @code{GetTempPath}
621 function. Alternatively, on the Cygwin target, the @env{TMP} and
622 @env{TEMP} environment variables, if they exist, in that order.
623
624 @item
625 The @code{P_tmpdir} macro if it is defined, otherwise the directory
626 @file{/tmp}.
627 @end enumerate
628
629 @node GFORTRAN_STDIN_UNIT
630 @section @env{GFORTRAN_STDIN_UNIT}---Unit number for standard input
631
632 This environment variable can be used to select the unit number
633 preconnected to standard input. This must be a positive integer.
634 The default value is 5.
635
636 @node GFORTRAN_STDOUT_UNIT
637 @section @env{GFORTRAN_STDOUT_UNIT}---Unit number for standard output
638
639 This environment variable can be used to select the unit number
640 preconnected to standard output. This must be a positive integer.
641 The default value is 6.
642
643 @node GFORTRAN_STDERR_UNIT
644 @section @env{GFORTRAN_STDERR_UNIT}---Unit number for standard error
645
646 This environment variable can be used to select the unit number
647 preconnected to standard error. This must be a positive integer.
648 The default value is 0.
649
650 @node GFORTRAN_UNBUFFERED_ALL
651 @section @env{GFORTRAN_UNBUFFERED_ALL}---Do not buffer I/O on all units
652
653 This environment variable controls whether all I/O is unbuffered. If
654 the first letter is @samp{y}, @samp{Y} or @samp{1}, all I/O is
655 unbuffered. This will slow down small sequential reads and writes. If
656 the first letter is @samp{n}, @samp{N} or @samp{0}, I/O is buffered.
657 This is the default.
658
659 @node GFORTRAN_UNBUFFERED_PRECONNECTED
660 @section @env{GFORTRAN_UNBUFFERED_PRECONNECTED}---Do not buffer I/O on preconnected units
661
662 The environment variable named @env{GFORTRAN_UNBUFFERED_PRECONNECTED} controls
663 whether I/O on a preconnected unit (i.e.@: STDOUT or STDERR) is unbuffered. If
664 the first letter is @samp{y}, @samp{Y} or @samp{1}, I/O is unbuffered. This
665 will slow down small sequential reads and writes. If the first letter
666 is @samp{n}, @samp{N} or @samp{0}, I/O is buffered. This is the default.
667
668 @node GFORTRAN_SHOW_LOCUS
669 @section @env{GFORTRAN_SHOW_LOCUS}---Show location for runtime errors
670
671 If the first letter is @samp{y}, @samp{Y} or @samp{1}, filename and
672 line numbers for runtime errors are printed. If the first letter is
673 @samp{n}, @samp{N} or @samp{0}, do not print filename and line numbers
674 for runtime errors. The default is to print the location.
675
676 @node GFORTRAN_OPTIONAL_PLUS
677 @section @env{GFORTRAN_OPTIONAL_PLUS}---Print leading + where permitted
678
679 If the first letter is @samp{y}, @samp{Y} or @samp{1},
680 a plus sign is printed
681 where permitted by the Fortran standard. If the first letter
682 is @samp{n}, @samp{N} or @samp{0}, a plus sign is not printed
683 in most cases. Default is not to print plus signs.
684
685 @node GFORTRAN_LIST_SEPARATOR
686 @section @env{GFORTRAN_LIST_SEPARATOR}---Separator for list output
687
688 This environment variable specifies the separator when writing
689 list-directed output. It may contain any number of spaces and
690 at most one comma. If you specify this on the command line,
691 be sure to quote spaces, as in
692 @smallexample
693 $ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out
694 @end smallexample
695 when @command{a.out} is the compiled Fortran program that you want to run.
696 Default is a single space.
697
698 @node GFORTRAN_CONVERT_UNIT
699 @section @env{GFORTRAN_CONVERT_UNIT}---Set endianness for unformatted I/O
700
701 By setting the @env{GFORTRAN_CONVERT_UNIT} variable, it is possible
702 to change the representation of data for unformatted files.
703 The syntax for the @env{GFORTRAN_CONVERT_UNIT} variable is:
704 @smallexample
705 GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
706 mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
707 exception: mode ':' unit_list | unit_list ;
708 unit_list: unit_spec | unit_list unit_spec ;
709 unit_spec: INTEGER | INTEGER '-' INTEGER ;
710 @end smallexample
711 The variable consists of an optional default mode, followed by
712 a list of optional exceptions, which are separated by semicolons
713 from the preceding default and each other. Each exception consists
714 of a format and a comma-separated list of units. Valid values for
715 the modes are the same as for the @code{CONVERT} specifier:
716
717 @itemize @w{}
718 @item @code{NATIVE} Use the native format. This is the default.
719 @item @code{SWAP} Swap between little- and big-endian.
720 @item @code{LITTLE_ENDIAN} Use the little-endian format
721 for unformatted files.
722 @item @code{BIG_ENDIAN} Use the big-endian format for unformatted files.
723 @end itemize
724 A missing mode for an exception is taken to mean @code{BIG_ENDIAN}.
725 Examples of values for @env{GFORTRAN_CONVERT_UNIT} are:
726 @itemize @w{}
727 @item @code{'big_endian'} Do all unformatted I/O in big_endian mode.
728 @item @code{'little_endian;native:10-20,25'} Do all unformatted I/O
729 in little_endian mode, except for units 10 to 20 and 25, which are in
730 native format.
731 @item @code{'10-20'} Units 10 to 20 are big-endian, the rest is native.
732 @end itemize
733
734 Setting the environment variables should be done on the command
735 line or via the @command{export}
736 command for @command{sh}-compatible shells and via @command{setenv}
737 for @command{csh}-compatible shells.
738
739 Example for @command{sh}:
740 @smallexample
741 $ gfortran foo.f90
742 $ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
743 @end smallexample
744
745 Example code for @command{csh}:
746 @smallexample
747 % gfortran foo.f90
748 % setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
749 % ./a.out
750 @end smallexample
751
752 Using anything but the native representation for unformatted data
753 carries a significant speed overhead. If speed in this area matters
754 to you, it is best if you use this only for data that needs to be
755 portable.
756
757 @xref{CONVERT specifier}, for an alternative way to specify the
758 data representation for unformatted files. @xref{Runtime Options}, for
759 setting a default data representation for the whole program. The
760 @code{CONVERT} specifier overrides the @option{-fconvert} compile options.
761
762 @emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
763 environment variable will override the CONVERT specifier in the
764 open statement}. This is to give control over data formats to
765 users who do not have the source code of their program available.
766
767 @node GFORTRAN_ERROR_BACKTRACE
768 @section @env{GFORTRAN_ERROR_BACKTRACE}---Show backtrace on run-time errors
769
770 If the @env{GFORTRAN_ERROR_BACKTRACE} variable is set to @samp{y},
771 @samp{Y} or @samp{1} (only the first letter is relevant) then a
772 backtrace is printed when a serious run-time error occurs. To disable
773 the backtracing, set the variable to @samp{n}, @samp{N}, @samp{0}.
774 Default is to print a backtrace unless the @option{-fno-backtrace}
775 compile option was used.
776
777 @c =====================================================================
778 @c PART II: LANGUAGE REFERENCE
779 @c =====================================================================
780
781 @tex
782 \part{II}{Language Reference}
783 @end tex
784
785 @c ---------------------------------------------------------------------
786 @c Fortran standards status
787 @c ---------------------------------------------------------------------
788
789 @node Fortran standards status
790 @chapter Fortran standards status
791
792 @menu
793 * Fortran 2003 status::
794 * Fortran 2008 status::
795 * Fortran 2018 status::
796 @end menu
797
798 @node Fortran 2003 status
799 @section Fortran 2003 status
800
801 GNU Fortran supports several Fortran 2003 features; an incomplete
802 list can be found below. See also the
803 @uref{https://gcc.gnu.org/wiki/Fortran2003, wiki page} about Fortran 2003.
804
805 @itemize
806 @item Procedure pointers including procedure-pointer components with
807 @code{PASS} attribute.
808
809 @item Procedures which are bound to a derived type (type-bound procedures)
810 including @code{PASS}, @code{PROCEDURE} and @code{GENERIC}, and
811 operators bound to a type.
812
813 @item Abstract interfaces and type extension with the possibility to
814 override type-bound procedures or to have deferred binding.
815
816 @item Polymorphic entities (``@code{CLASS}'') for derived types and unlimited
817 polymorphism (``@code{CLASS(*)}'') -- including @code{SAME_TYPE_AS},
818 @code{EXTENDS_TYPE_OF} and @code{SELECT TYPE} for scalars and arrays and
819 finalization.
820
821 @item Generic interface names, which have the same name as derived types,
822 are now supported. This allows one to write constructor functions. Note
823 that Fortran does not support static constructor functions. For static
824 variables, only default initialization or structure-constructor
825 initialization are available.
826
827 @item The @code{ASSOCIATE} construct.
828
829 @item Interoperability with C including enumerations,
830
831 @item In structure constructors the components with default values may be
832 omitted.
833
834 @item Extensions to the @code{ALLOCATE} statement, allowing for a
835 type-specification with type parameter and for allocation and initialization
836 from a @code{SOURCE=} expression; @code{ALLOCATE} and @code{DEALLOCATE}
837 optionally return an error message string via @code{ERRMSG=}.
838
839 @item Reallocation on assignment: If an intrinsic assignment is
840 used, an allocatable variable on the left-hand side is automatically allocated
841 (if unallocated) or reallocated (if the shape is different). Currently, scalar
842 deferred character length left-hand sides are correctly handled but arrays
843 are not yet fully implemented.
844
845 @item Deferred-length character variables and scalar deferred-length character
846 components of derived types are supported. (Note that array-valued compoents
847 are not yet implemented.)
848
849 @item Transferring of allocations via @code{MOVE_ALLOC}.
850
851 @item The @code{PRIVATE} and @code{PUBLIC} attributes may be given individually
852 to derived-type components.
853
854 @item In pointer assignments, the lower bound may be specified and
855 the remapping of elements is supported.
856
857 @item For pointers an @code{INTENT} may be specified which affect the
858 association status not the value of the pointer target.
859
860 @item Intrinsics @code{command_argument_count}, @code{get_command},
861 @code{get_command_argument}, and @code{get_environment_variable}.
862
863 @item Support for Unicode characters (ISO 10646) and UTF-8, including
864 the @code{SELECTED_CHAR_KIND} and @code{NEW_LINE} intrinsic functions.
865
866 @item Support for binary, octal and hexadecimal (BOZ) constants in the
867 intrinsic functions @code{INT}, @code{REAL}, @code{CMPLX} and @code{DBLE}.
868
869 @item Support for namelist variables with allocatable and pointer
870 attribute and nonconstant length type parameter.
871
872 @item
873 @cindex array, constructors
874 @cindex @code{[...]}
875 Array constructors using square brackets. That is, @code{[...]} rather
876 than @code{(/.../)}. Type-specification for array constructors like
877 @code{(/ some-type :: ... /)}.
878
879 @item Extensions to the specification and initialization expressions,
880 including the support for intrinsics with real and complex arguments.
881
882 @item Support for the asynchronous input/output.
883
884 @item
885 @cindex @code{FLUSH} statement
886 @cindex statement, @code{FLUSH}
887 @code{FLUSH} statement.
888
889 @item
890 @cindex @code{IOMSG=} specifier
891 @code{IOMSG=} specifier for I/O statements.
892
893 @item
894 @cindex @code{ENUM} statement
895 @cindex @code{ENUMERATOR} statement
896 @cindex statement, @code{ENUM}
897 @cindex statement, @code{ENUMERATOR}
898 @opindex @code{fshort-enums}
899 Support for the declaration of enumeration constants via the
900 @code{ENUM} and @code{ENUMERATOR} statements. Interoperability with
901 @command{gcc} is guaranteed also for the case where the
902 @command{-fshort-enums} command line option is given.
903
904 @item
905 @cindex TR 15581
906 TR 15581:
907 @itemize
908 @item
909 @cindex @code{ALLOCATABLE} dummy arguments
910 @code{ALLOCATABLE} dummy arguments.
911 @item
912 @cindex @code{ALLOCATABLE} function results
913 @code{ALLOCATABLE} function results
914 @item
915 @cindex @code{ALLOCATABLE} components of derived types
916 @code{ALLOCATABLE} components of derived types
917 @end itemize
918
919 @item
920 @cindex @code{STREAM} I/O
921 @cindex @code{ACCESS='STREAM'} I/O
922 The @code{OPEN} statement supports the @code{ACCESS='STREAM'} specifier,
923 allowing I/O without any record structure.
924
925 @item
926 Namelist input/output for internal files.
927
928 @item Minor I/O features: Rounding during formatted output, using of
929 a decimal comma instead of a decimal point, setting whether a plus sign
930 should appear for positive numbers. On systems where @code{strtod} honours
931 the rounding mode, the rounding mode is also supported for input.
932
933 @item
934 @cindex @code{PROTECTED} statement
935 @cindex statement, @code{PROTECTED}
936 The @code{PROTECTED} statement and attribute.
937
938 @item
939 @cindex @code{VALUE} statement
940 @cindex statement, @code{VALUE}
941 The @code{VALUE} statement and attribute.
942
943 @item
944 @cindex @code{VOLATILE} statement
945 @cindex statement, @code{VOLATILE}
946 The @code{VOLATILE} statement and attribute.
947
948 @item
949 @cindex @code{IMPORT} statement
950 @cindex statement, @code{IMPORT}
951 The @code{IMPORT} statement, allowing to import
952 host-associated derived types.
953
954 @item The intrinsic modules @code{ISO_FORTRAN_ENVIRONMENT} is supported,
955 which contains parameters of the I/O units, storage sizes. Additionally,
956 procedures for C interoperability are available in the @code{ISO_C_BINDING}
957 module.
958
959 @item
960 @cindex @code{USE, INTRINSIC} statement
961 @cindex statement, @code{USE, INTRINSIC}
962 @cindex @code{ISO_FORTRAN_ENV} statement
963 @cindex statement, @code{ISO_FORTRAN_ENV}
964 @code{USE} statement with @code{INTRINSIC} and @code{NON_INTRINSIC}
965 attribute; supported intrinsic modules: @code{ISO_FORTRAN_ENV},
966 @code{ISO_C_BINDING}, @code{OMP_LIB} and @code{OMP_LIB_KINDS},
967 and @code{OPENACC}.
968
969 @item
970 Renaming of operators in the @code{USE} statement.
971
972 @end itemize
973
974
975 @node Fortran 2008 status
976 @section Fortran 2008 status
977
978 The latest version of the Fortran standard is ISO/IEC 1539-1:2010, informally
979 known as Fortran 2008. The official version is available from International
980 Organization for Standardization (ISO) or its national member organizations.
981 The the final draft (FDIS) can be downloaded free of charge from
982 @url{http://www.nag.co.uk/@/sc22wg5/@/links.html}. Fortran is developed by the
983 Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1 of the
984 International Organization for Standardization and the International
985 Electrotechnical Commission (IEC). This group is known as
986 @uref{http://www.nag.co.uk/sc22wg5/, WG5}.
987
988 The GNU Fortran compiler supports several of the new features of Fortran 2008;
989 the @uref{https://gcc.gnu.org/wiki/Fortran2008Status, wiki} has some information
990 about the current Fortran 2008 implementation status. In particular, the
991 following is implemented.
992
993 @itemize
994 @item The @option{-std=f2008} option and support for the file extensions
995 @file{.f08} and @file{.F08}.
996
997 @item The @code{OPEN} statement now supports the @code{NEWUNIT=} option,
998 which returns a unique file unit, thus preventing inadvertent use of the
999 same unit in different parts of the program.
1000
1001 @item The @code{g0} format descriptor and unlimited format items.
1002
1003 @item The mathematical intrinsics @code{ASINH}, @code{ACOSH}, @code{ATANH},
1004 @code{ERF}, @code{ERFC}, @code{GAMMA}, @code{LOG_GAMMA}, @code{BESSEL_J0},
1005 @code{BESSEL_J1}, @code{BESSEL_JN}, @code{BESSEL_Y0}, @code{BESSEL_Y1},
1006 @code{BESSEL_YN}, @code{HYPOT}, @code{NORM2}, and @code{ERFC_SCALED}.
1007
1008 @item Using complex arguments with @code{TAN}, @code{SINH}, @code{COSH},
1009 @code{TANH}, @code{ASIN}, @code{ACOS}, and @code{ATAN} is now possible;
1010 @code{ATAN}(@var{Y},@var{X}) is now an alias for @code{ATAN2}(@var{Y},@var{X}).
1011
1012 @item Support of the @code{PARITY} intrinsic functions.
1013
1014 @item The following bit intrinsics: @code{LEADZ} and @code{TRAILZ} for
1015 counting the number of leading and trailing zero bits, @code{POPCNT} and
1016 @code{POPPAR} for counting the number of one bits and returning the parity;
1017 @code{BGE}, @code{BGT}, @code{BLE}, and @code{BLT} for bitwise comparisons;
1018 @code{DSHIFTL} and @code{DSHIFTR} for combined left and right shifts,
1019 @code{MASKL} and @code{MASKR} for simple left and right justified masks,
1020 @code{MERGE_BITS} for a bitwise merge using a mask, @code{SHIFTA},
1021 @code{SHIFTL} and @code{SHIFTR} for shift operations, and the
1022 transformational bit intrinsics @code{IALL}, @code{IANY} and @code{IPARITY}.
1023
1024 @item Support of the @code{EXECUTE_COMMAND_LINE} intrinsic subroutine.
1025
1026 @item Support for the @code{STORAGE_SIZE} intrinsic inquiry function.
1027
1028 @item The @code{INT@{8,16,32@}} and @code{REAL@{32,64,128@}} kind type
1029 parameters and the array-valued named constants @code{INTEGER_KINDS},
1030 @code{LOGICAL_KINDS}, @code{REAL_KINDS} and @code{CHARACTER_KINDS} of
1031 the intrinsic module @code{ISO_FORTRAN_ENV}.
1032
1033 @item The module procedures @code{C_SIZEOF} of the intrinsic module
1034 @code{ISO_C_BINDINGS} and @code{COMPILER_VERSION} and @code{COMPILER_OPTIONS}
1035 of @code{ISO_FORTRAN_ENV}.
1036
1037 @item Coarray support for serial programs with @option{-fcoarray=single} flag
1038 and experimental support for multiple images with the @option{-fcoarray=lib}
1039 flag.
1040
1041 @item Submodules are supported. It should noted that @code{MODULEs} do not
1042 produce the smod file needed by the descendent @code{SUBMODULEs} unless they
1043 contain at least one @code{MODULE PROCEDURE} interface. The reason for this is
1044 that @code{SUBMODULEs} are useless without @code{MODULE PROCEDUREs}. See
1045 http://j3-fortran.org/doc/meeting/207/15-209.txt for a discussion and a draft
1046 interpretation. Adopting this interpretation has the advantage that code that
1047 does not use submodules does not generate smod files.
1048
1049 @item The @code{DO CONCURRENT} construct is supported.
1050
1051 @item The @code{BLOCK} construct is supported.
1052
1053 @item The @code{STOP} and the new @code{ERROR STOP} statements now
1054 support all constant expressions. Both show the signals which were signaling
1055 at termination.
1056
1057 @item Support for the @code{CONTIGUOUS} attribute.
1058
1059 @item Support for @code{ALLOCATE} with @code{MOLD}.
1060
1061 @item Support for the @code{IMPURE} attribute for procedures, which
1062 allows for @code{ELEMENTAL} procedures without the restrictions of
1063 @code{PURE}.
1064
1065 @item Null pointers (including @code{NULL()}) and not-allocated variables
1066 can be used as actual argument to optional non-pointer, non-allocatable
1067 dummy arguments, denoting an absent argument.
1068
1069 @item Non-pointer variables with @code{TARGET} attribute can be used as
1070 actual argument to @code{POINTER} dummies with @code{INTENT(IN)}.
1071
1072 @item Pointers including procedure pointers and those in a derived
1073 type (pointer components) can now be initialized by a target instead
1074 of only by @code{NULL}.
1075
1076 @item The @code{EXIT} statement (with construct-name) can be now be
1077 used to leave not only the @code{DO} but also the @code{ASSOCIATE},
1078 @code{BLOCK}, @code{IF}, @code{SELECT CASE} and @code{SELECT TYPE}
1079 constructs.
1080
1081 @item Internal procedures can now be used as actual argument.
1082
1083 @item Minor features: obsolesce diagnostics for @code{ENTRY} with
1084 @option{-std=f2008}; a line may start with a semicolon; for internal
1085 and module procedures @code{END} can be used instead of
1086 @code{END SUBROUTINE} and @code{END FUNCTION}; @code{SELECTED_REAL_KIND}
1087 now also takes a @code{RADIX} argument; intrinsic types are supported
1088 for @code{TYPE}(@var{intrinsic-type-spec}); multiple type-bound procedures
1089 can be declared in a single @code{PROCEDURE} statement; implied-shape
1090 arrays are supported for named constants (@code{PARAMETER}).
1091 @end itemize
1092
1093
1094
1095 @node Fortran 2018 status
1096 @section Status of Fortran 2018 support
1097
1098 So far very little work has been done to support Fortran 2018.
1099
1100 @itemize
1101 @item ERROR STOP in a PURE procedure
1102 An @code{ERROR STOP} statement is permitted in a @code{PURE}
1103 procedure.
1104
1105 @item IMPLICIT NONE with a spec-list
1106 Support the @code{IMPLICIT NONE} statement with an
1107 @code{implicit-none-spec-list}.
1108
1109 @item Behavior of INQUIRE with the RECL= specifier
1110
1111 The behavior of the @code{INQUIRE} statement with the @code{RECL=}
1112 specifier now conforms to Fortran 2018.
1113
1114 @end itemize
1115
1116
1117 @subsection TS 29113 Status (Further Interoperability with C)
1118
1119 GNU Fortran supports some of the new features of the Technical
1120 Specification (TS) 29113 on Further Interoperability of Fortran with C.
1121 The @uref{https://gcc.gnu.org/wiki/TS29113Status, wiki} has some information
1122 about the current TS 29113 implementation status. In particular, the
1123 following is implemented.
1124
1125 See also @ref{Further Interoperability of Fortran with C}.
1126
1127 @itemize
1128 @item The @code{OPTIONAL} attribute is allowed for dummy arguments
1129 of @code{BIND(C) procedures.}
1130
1131 @item The @code{RANK} intrinsic is supported.
1132
1133 @item GNU Fortran's implementation for variables with @code{ASYNCHRONOUS}
1134 attribute is compatible with TS 29113.
1135
1136 @item Assumed types (@code{TYPE(*)}).
1137
1138 @item Assumed-rank (@code{DIMENSION(..)}). However, the array descriptor
1139 of the TS is not yet supported.
1140 @end itemize
1141
1142
1143
1144 @subsection TS 18508 Status (Additional Parallel Features)
1145
1146 GNU Fortran supports the following new features of the Technical
1147 Specification 18508 on Additional Parallel Features in Fortran:
1148
1149 @itemize
1150 @item The new atomic ADD, CAS, FETCH and ADD/OR/XOR, OR and XOR intrinsics.
1151
1152 @item The @code{CO_MIN} and @code{CO_MAX} and @code{SUM} reduction intrinsics.
1153 And the @code{CO_BROADCAST} and @code{CO_REDUCE} intrinsic, except that those
1154 do not support polymorphic types or types with allocatable, pointer or
1155 polymorphic components.
1156
1157 @item Events (@code{EVENT POST}, @code{EVENT WAIT}, @code{EVENT_QUERY})
1158
1159 @item Failed images (@code{FAIL IMAGE}, @code{IMAGE_STATUS},
1160 @code{FAILED_IMAGES}, @code{STOPPED_IMAGES})
1161
1162 @end itemize
1163
1164
1165 @c ---------------------------------------------------------------------
1166 @c Compiler Characteristics
1167 @c ---------------------------------------------------------------------
1168
1169 @node Compiler Characteristics
1170 @chapter Compiler Characteristics
1171
1172 This chapter describes certain characteristics of the GNU Fortran
1173 compiler, that are not specified by the Fortran standard, but which
1174 might in some way or another become visible to the programmer.
1175
1176 @menu
1177 * KIND Type Parameters::
1178 * Internal representation of LOGICAL variables::
1179 * Evaluation of logical expressions::
1180 * MAX and MIN intrinsics with REAL NaN arguments::
1181 * Thread-safety of the runtime library::
1182 * Data consistency and durability::
1183 * Files opened without an explicit ACTION= specifier::
1184 * File operations on symbolic links::
1185 * File format of unformatted sequential files::
1186 * Asynchronous I/O::
1187 @end menu
1188
1189
1190 @node KIND Type Parameters
1191 @section KIND Type Parameters
1192 @cindex kind
1193
1194 The @code{KIND} type parameters supported by GNU Fortran for the primitive
1195 data types are:
1196
1197 @table @code
1198
1199 @item INTEGER
1200 1, 2, 4, 8*, 16*, default: 4**
1201
1202 @item LOGICAL
1203 1, 2, 4, 8*, 16*, default: 4**
1204
1205 @item REAL
1206 4, 8, 10*, 16*, default: 4***
1207
1208 @item COMPLEX
1209 4, 8, 10*, 16*, default: 4***
1210
1211 @item DOUBLE PRECISION
1212 4, 8, 10*, 16*, default: 8***
1213
1214 @item CHARACTER
1215 1, 4, default: 1
1216
1217 @end table
1218
1219 @noindent
1220 * not available on all systems @*
1221 ** unless @option{-fdefault-integer-8} is used @*
1222 *** unless @option{-fdefault-real-8} is used (see @ref{Fortran Dialect Options})
1223
1224 @noindent
1225 The @code{KIND} value matches the storage size in bytes, except for
1226 @code{COMPLEX} where the storage size is twice as much (or both real and
1227 imaginary part are a real value of the given size). It is recommended to use
1228 the @ref{SELECTED_CHAR_KIND}, @ref{SELECTED_INT_KIND} and
1229 @ref{SELECTED_REAL_KIND} intrinsics or the @code{INT8}, @code{INT16},
1230 @code{INT32}, @code{INT64}, @code{REAL32}, @code{REAL64}, and @code{REAL128}
1231 parameters of the @code{ISO_FORTRAN_ENV} module instead of the concrete values.
1232 The available kind parameters can be found in the constant arrays
1233 @code{CHARACTER_KINDS}, @code{INTEGER_KINDS}, @code{LOGICAL_KINDS} and
1234 @code{REAL_KINDS} in the @ref{ISO_FORTRAN_ENV} module. For C interoperability,
1235 the kind parameters of the @ref{ISO_C_BINDING} module should be used.
1236
1237
1238 @node Internal representation of LOGICAL variables
1239 @section Internal representation of LOGICAL variables
1240 @cindex logical, variable representation
1241
1242 The Fortran standard does not specify how variables of @code{LOGICAL}
1243 type are represented, beyond requiring that @code{LOGICAL} variables
1244 of default kind have the same storage size as default @code{INTEGER}
1245 and @code{REAL} variables. The GNU Fortran internal representation is
1246 as follows.
1247
1248 A @code{LOGICAL(KIND=N)} variable is represented as an
1249 @code{INTEGER(KIND=N)} variable, however, with only two permissible
1250 values: @code{1} for @code{.TRUE.} and @code{0} for
1251 @code{.FALSE.}. Any other integer value results in undefined behavior.
1252
1253 See also @ref{Argument passing conventions} and @ref{Interoperability with C}.
1254
1255
1256 @node Evaluation of logical expressions
1257 @section Evaluation of logical expressions
1258
1259 The Fortran standard does not require the compiler to evaluate all parts of an
1260 expression, if they do not contribute to the final result. For logical
1261 expressions with @code{.AND.} or @code{.OR.} operators, in particular, GNU
1262 Fortran will optimize out function calls (even to impure functions) if the
1263 result of the expression can be established without them. However, since not
1264 all compilers do that, and such an optimization can potentially modify the
1265 program flow and subsequent results, GNU Fortran throws warnings for such
1266 situations with the @option{-Wfunction-elimination} flag.
1267
1268
1269 @node MAX and MIN intrinsics with REAL NaN arguments
1270 @section MAX and MIN intrinsics with REAL NaN arguments
1271 @cindex MAX, MIN, NaN
1272
1273 The Fortran standard does not specify what the result of the
1274 @code{MAX} and @code{MIN} intrinsics are if one of the arguments is a
1275 @code{NaN}. Accordingly, the GNU Fortran compiler does not specify
1276 that either, as this allows for faster and more compact code to be
1277 generated. If the programmer wishes to take some specific action in
1278 case one of the arguments is a @code{NaN}, it is necessary to
1279 explicitly test the arguments before calling @code{MAX} or @code{MIN},
1280 e.g. with the @code{IEEE_IS_NAN} function from the intrinsic module
1281 @code{IEEE_ARITHMETIC}.
1282
1283
1284 @node Thread-safety of the runtime library
1285 @section Thread-safety of the runtime library
1286 @cindex thread-safety, threads
1287
1288 GNU Fortran can be used in programs with multiple threads, e.g.@: by
1289 using OpenMP, by calling OS thread handling functions via the
1290 @code{ISO_C_BINDING} facility, or by GNU Fortran compiled library code
1291 being called from a multi-threaded program.
1292
1293 The GNU Fortran runtime library, (@code{libgfortran}), supports being
1294 called concurrently from multiple threads with the following
1295 exceptions.
1296
1297 During library initialization, the C @code{getenv} function is used,
1298 which need not be thread-safe. Similarly, the @code{getenv}
1299 function is used to implement the @code{GET_ENVIRONMENT_VARIABLE} and
1300 @code{GETENV} intrinsics. It is the responsibility of the user to
1301 ensure that the environment is not being updated concurrently when any
1302 of these actions are taking place.
1303
1304 The @code{EXECUTE_COMMAND_LINE} and @code{SYSTEM} intrinsics are
1305 implemented with the @code{system} function, which need not be
1306 thread-safe. It is the responsibility of the user to ensure that
1307 @code{system} is not called concurrently.
1308
1309 For platforms not supporting thread-safe POSIX functions, further
1310 functionality might not be thread-safe. For details, please consult
1311 the documentation for your operating system.
1312
1313 The GNU Fortran runtime library uses various C library functions that
1314 depend on the locale, such as @code{strtod} and @code{snprintf}. In
1315 order to work correctly in locale-aware programs that set the locale
1316 using @code{setlocale}, the locale is reset to the default ``C''
1317 locale while executing a formatted @code{READ} or @code{WRITE}
1318 statement. On targets supporting the POSIX 2008 per-thread locale
1319 functions (e.g. @code{newlocale}, @code{uselocale},
1320 @code{freelocale}), these are used and thus the global locale set
1321 using @code{setlocale} or the per-thread locales in other threads are
1322 not affected. However, on targets lacking this functionality, the
1323 global LC_NUMERIC locale is set to ``C'' during the formatted I/O.
1324 Thus, on such targets it's not safe to call @code{setlocale}
1325 concurrently from another thread while a Fortran formatted I/O
1326 operation is in progress. Also, other threads doing something
1327 dependent on the LC_NUMERIC locale might not work correctly if a
1328 formatted I/O operation is in progress in another thread.
1329
1330 @node Data consistency and durability
1331 @section Data consistency and durability
1332 @cindex consistency, durability
1333
1334 This section contains a brief overview of data and metadata
1335 consistency and durability issues when doing I/O.
1336
1337 With respect to durability, GNU Fortran makes no effort to ensure that
1338 data is committed to stable storage. If this is required, the GNU
1339 Fortran programmer can use the intrinsic @code{FNUM} to retrieve the
1340 low level file descriptor corresponding to an open Fortran unit. Then,
1341 using e.g. the @code{ISO_C_BINDING} feature, one can call the
1342 underlying system call to flush dirty data to stable storage, such as
1343 @code{fsync} on POSIX, @code{_commit} on MingW, or @code{fcntl(fd,
1344 F_FULLSYNC, 0)} on Mac OS X. The following example shows how to call
1345 fsync:
1346
1347 @smallexample
1348 ! Declare the interface for POSIX fsync function
1349 interface
1350 function fsync (fd) bind(c,name="fsync")
1351 use iso_c_binding, only: c_int
1352 integer(c_int), value :: fd
1353 integer(c_int) :: fsync
1354 end function fsync
1355 end interface
1356
1357 ! Variable declaration
1358 integer :: ret
1359
1360 ! Opening unit 10
1361 open (10,file="foo")
1362
1363 ! ...
1364 ! Perform I/O on unit 10
1365 ! ...
1366
1367 ! Flush and sync
1368 flush(10)
1369 ret = fsync(fnum(10))
1370
1371 ! Handle possible error
1372 if (ret /= 0) stop "Error calling FSYNC"
1373 @end smallexample
1374
1375 With respect to consistency, for regular files GNU Fortran uses
1376 buffered I/O in order to improve performance. This buffer is flushed
1377 automatically when full and in some other situations, e.g. when
1378 closing a unit. It can also be explicitly flushed with the
1379 @code{FLUSH} statement. Also, the buffering can be turned off with the
1380 @code{GFORTRAN_UNBUFFERED_ALL} and
1381 @code{GFORTRAN_UNBUFFERED_PRECONNECTED} environment variables. Special
1382 files, such as terminals and pipes, are always unbuffered. Sometimes,
1383 however, further things may need to be done in order to allow other
1384 processes to see data that GNU Fortran has written, as follows.
1385
1386 The Windows platform supports a relaxed metadata consistency model,
1387 where file metadata is written to the directory lazily. This means
1388 that, for instance, the @code{dir} command can show a stale size for a
1389 file. One can force a directory metadata update by closing the unit,
1390 or by calling @code{_commit} on the file descriptor. Note, though,
1391 that @code{_commit} will force all dirty data to stable storage, which
1392 is often a very slow operation.
1393
1394 The Network File System (NFS) implements a relaxed consistency model
1395 called open-to-close consistency. Closing a file forces dirty data and
1396 metadata to be flushed to the server, and opening a file forces the
1397 client to contact the server in order to revalidate cached
1398 data. @code{fsync} will also force a flush of dirty data and metadata
1399 to the server. Similar to @code{open} and @code{close}, acquiring and
1400 releasing @code{fcntl} file locks, if the server supports them, will
1401 also force cache validation and flushing dirty data and metadata.
1402
1403
1404 @node Files opened without an explicit ACTION= specifier
1405 @section Files opened without an explicit ACTION= specifier
1406 @cindex open, action
1407
1408 The Fortran standard says that if an @code{OPEN} statement is executed
1409 without an explicit @code{ACTION=} specifier, the default value is
1410 processor dependent. GNU Fortran behaves as follows:
1411
1412 @enumerate
1413 @item Attempt to open the file with @code{ACTION='READWRITE'}
1414 @item If that fails, try to open with @code{ACTION='READ'}
1415 @item If that fails, try to open with @code{ACTION='WRITE'}
1416 @item If that fails, generate an error
1417 @end enumerate
1418
1419
1420 @node File operations on symbolic links
1421 @section File operations on symbolic links
1422 @cindex file, symbolic link
1423
1424 This section documents the behavior of GNU Fortran for file operations on
1425 symbolic links, on systems that support them.
1426
1427 @itemize
1428
1429 @item Results of INQUIRE statements of the ``inquire by file'' form will
1430 relate to the target of the symbolic link. For example,
1431 @code{INQUIRE(FILE="foo",EXIST=ex)} will set @var{ex} to @var{.true.} if
1432 @var{foo} is a symbolic link pointing to an existing file, and @var{.false.}
1433 if @var{foo} points to an non-existing file (``dangling'' symbolic link).
1434
1435 @item Using the @code{OPEN} statement with a @code{STATUS="NEW"} specifier
1436 on a symbolic link will result in an error condition, whether the symbolic
1437 link points to an existing target or is dangling.
1438
1439 @item If a symbolic link was connected, using the @code{CLOSE} statement
1440 with a @code{STATUS="DELETE"} specifier will cause the symbolic link itself
1441 to be deleted, not its target.
1442
1443 @end itemize
1444
1445 @node File format of unformatted sequential files
1446 @section File format of unformatted sequential files
1447 @cindex file, unformatted sequential
1448 @cindex unformatted sequential
1449 @cindex sequential, unformatted
1450 @cindex record marker
1451 @cindex subrecord
1452
1453 Unformatted sequential files are stored as logical records using
1454 record markers. Each logical record consists of one of more
1455 subrecords.
1456
1457 Each subrecord consists of a leading record marker, the data written
1458 by the user program, and a trailing record marker. The record markers
1459 are four-byte integers by default, and eight-byte integers if the
1460 @option{-fmax-subrecord-length=8} option (which exists for backwards
1461 compability only) is in effect.
1462
1463 The representation of the record markers is that of unformatted files
1464 given with the @option{-fconvert} option, the @xref{CONVERT specifier}
1465 on the open statement or the @xref{GFORTRAN_CONVERT_UNIT} environment
1466 variable.
1467
1468 The maximum number of bytes of user data in a subrecord is 2147483639
1469 (2 GiB - 9) for a four-byte record marker. This limit can be lowered
1470 with the @option{-fmax-subrecord-length} option, altough this is
1471 rarely useful. If the length of a logical record exceeds this limit,
1472 the data is distributed among several subrecords.
1473
1474 The absolute of the number stored in the record markers is the number
1475 of bytes of user data in the corresponding subrecord. If the leading
1476 record marker of a subrecord contains a negative number, another
1477 subrecord follows the current one. If the trailing record marker
1478 contains a negative number, then there is a preceding subrecord.
1479
1480 In the most simple case, with only one subrecord per logical record,
1481 both record markers contain the number of bytes of user data in the
1482 record,
1483
1484 The format for unformatted sequential data can be duplicated using
1485 unformatted stream, as shown in the example program for an unformatted
1486 record containing a single subrecord:
1487
1488 @smallexample
1489 program main
1490 use iso_fortran_env, only: int32
1491 implicit none
1492 integer(int32) :: i
1493 real, dimension(10) :: a, b
1494 call random_number(a)
1495 open (10,file='test.dat',form='unformatted',access='stream')
1496 inquire (iolength=i) a
1497 write (10) i, a, i
1498 close (10)
1499 open (10,file='test.dat',form='unformatted')
1500 read (10) b
1501 if (all (a == b)) print *,'success!'
1502 end program main
1503 @end smallexample
1504
1505 @node Asynchronous I/O
1506 @section Asynchronous I/O
1507 @cindex input/output, asynchronous
1508 @cindex asynchronous I/O
1509
1510 Asynchronous I/O is supported if the program is linked against the
1511 POSIX thread library. If that is not the case, all I/O is performed
1512 as synchronous.
1513
1514 On some systems, such as Darwin or Solaris, the POSIX thread library
1515 is always linked in, so asynchronous I/O is always performed. On other
1516 sytems, such as Linux, it is necessary to specify @option{-pthread},
1517 @option{-lpthread} or @option{-fopenmp} during the linking step.
1518
1519 @c ---------------------------------------------------------------------
1520 @c Extensions
1521 @c ---------------------------------------------------------------------
1522
1523 @c Maybe this chapter should be merged with the 'Standards' section,
1524 @c whenever that is written :-)
1525
1526 @node Extensions
1527 @chapter Extensions
1528 @cindex extensions
1529
1530 The two sections below detail the extensions to standard Fortran that are
1531 implemented in GNU Fortran, as well as some of the popular or
1532 historically important extensions that are not (or not yet) implemented.
1533 For the latter case, we explain the alternatives available to GNU Fortran
1534 users, including replacement by standard-conforming code or GNU
1535 extensions.
1536
1537 @menu
1538 * Extensions implemented in GNU Fortran::
1539 * Extensions not implemented in GNU Fortran::
1540 @end menu
1541
1542
1543 @node Extensions implemented in GNU Fortran
1544 @section Extensions implemented in GNU Fortran
1545 @cindex extensions, implemented
1546
1547 GNU Fortran implements a number of extensions over standard Fortran.
1548 This chapter contains information on their syntax and meaning. There
1549 are currently two categories of GNU Fortran extensions, those that
1550 provide functionality beyond that provided by any standard, and those
1551 that are supported by GNU Fortran purely for backward compatibility
1552 with legacy compilers. By default, @option{-std=gnu} allows the
1553 compiler to accept both types of extensions, but to warn about the use
1554 of the latter. Specifying either @option{-std=f95},
1555 @option{-std=f2003}, @option{-std=f2008}, or @option{-std=f2018}
1556 disables both types of extensions, and @option{-std=legacy} allows
1557 both without warning. The special compile flag @option{-fdec} enables
1558 additional compatibility extensions along with those enabled by
1559 @option{-std=legacy}.
1560
1561 @menu
1562 * Old-style kind specifications::
1563 * Old-style variable initialization::
1564 * Extensions to namelist::
1565 * X format descriptor without count field::
1566 * Commas in FORMAT specifications::
1567 * Missing period in FORMAT specifications::
1568 * I/O item lists::
1569 * @code{Q} exponent-letter::
1570 * BOZ literal constants::
1571 * Real array indices::
1572 * Unary operators::
1573 * Implicitly convert LOGICAL and INTEGER values::
1574 * Hollerith constants support::
1575 * Cray pointers::
1576 * CONVERT specifier::
1577 * OpenMP::
1578 * OpenACC::
1579 * Argument list functions::
1580 * Read/Write after EOF marker::
1581 * STRUCTURE and RECORD::
1582 * UNION and MAP::
1583 * Type variants for integer intrinsics::
1584 * AUTOMATIC and STATIC attributes::
1585 * Extended math intrinsics::
1586 * Form feed as whitespace::
1587 * TYPE as an alias for PRINT::
1588 * %LOC as an rvalue::
1589 * .XOR. operator::
1590 * Bitwise logical operators::
1591 * Extended I/O specifiers::
1592 * Legacy PARAMETER statements::
1593 * Default exponents::
1594 @end menu
1595
1596 @node Old-style kind specifications
1597 @subsection Old-style kind specifications
1598 @cindex kind, old-style
1599
1600 GNU Fortran allows old-style kind specifications in declarations. These
1601 look like:
1602 @smallexample
1603 TYPESPEC*size x,y,z
1604 @end smallexample
1605 @noindent
1606 where @code{TYPESPEC} is a basic type (@code{INTEGER}, @code{REAL},
1607 etc.), and where @code{size} is a byte count corresponding to the
1608 storage size of a valid kind for that type. (For @code{COMPLEX}
1609 variables, @code{size} is the total size of the real and imaginary
1610 parts.) The statement then declares @code{x}, @code{y} and @code{z} to
1611 be of type @code{TYPESPEC} with the appropriate kind. This is
1612 equivalent to the standard-conforming declaration
1613 @smallexample
1614 TYPESPEC(k) x,y,z
1615 @end smallexample
1616 @noindent
1617 where @code{k} is the kind parameter suitable for the intended precision. As
1618 kind parameters are implementation-dependent, use the @code{KIND},
1619 @code{SELECTED_INT_KIND} and @code{SELECTED_REAL_KIND} intrinsics to retrieve
1620 the correct value, for instance @code{REAL*8 x} can be replaced by:
1621 @smallexample
1622 INTEGER, PARAMETER :: dbl = KIND(1.0d0)
1623 REAL(KIND=dbl) :: x
1624 @end smallexample
1625
1626 @node Old-style variable initialization
1627 @subsection Old-style variable initialization
1628
1629 GNU Fortran allows old-style initialization of variables of the
1630 form:
1631 @smallexample
1632 INTEGER i/1/,j/2/
1633 REAL x(2,2) /3*0.,1./
1634 @end smallexample
1635 The syntax for the initializers is as for the @code{DATA} statement, but
1636 unlike in a @code{DATA} statement, an initializer only applies to the
1637 variable immediately preceding the initialization. In other words,
1638 something like @code{INTEGER I,J/2,3/} is not valid. This style of
1639 initialization is only allowed in declarations without double colons
1640 (@code{::}); the double colons were introduced in Fortran 90, which also
1641 introduced a standard syntax for initializing variables in type
1642 declarations.
1643
1644 Examples of standard-conforming code equivalent to the above example
1645 are:
1646 @smallexample
1647 ! Fortran 90
1648 INTEGER :: i = 1, j = 2
1649 REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
1650 ! Fortran 77
1651 INTEGER i, j
1652 REAL x(2,2)
1653 DATA i/1/, j/2/, x/3*0.,1./
1654 @end smallexample
1655
1656 Note that variables which are explicitly initialized in declarations
1657 or in @code{DATA} statements automatically acquire the @code{SAVE}
1658 attribute.
1659
1660 @node Extensions to namelist
1661 @subsection Extensions to namelist
1662 @cindex Namelist
1663
1664 GNU Fortran fully supports the Fortran 95 standard for namelist I/O
1665 including array qualifiers, substrings and fully qualified derived types.
1666 The output from a namelist write is compatible with namelist read. The
1667 output has all names in upper case and indentation to column 1 after the
1668 namelist name. Two extensions are permitted:
1669
1670 Old-style use of @samp{$} instead of @samp{&}
1671 @smallexample
1672 $MYNML
1673 X(:)%Y(2) = 1.0 2.0 3.0
1674 CH(1:4) = "abcd"
1675 $END
1676 @end smallexample
1677
1678 It should be noted that the default terminator is @samp{/} rather than
1679 @samp{&END}.
1680
1681 Querying of the namelist when inputting from stdin. After at least
1682 one space, entering @samp{?} sends to stdout the namelist name and the names of
1683 the variables in the namelist:
1684 @smallexample
1685 ?
1686
1687 &mynml
1688 x
1689 x%y
1690 ch
1691 &end
1692 @end smallexample
1693
1694 Entering @samp{=?} outputs the namelist to stdout, as if
1695 @code{WRITE(*,NML = mynml)} had been called:
1696 @smallexample
1697 =?
1698
1699 &MYNML
1700 X(1)%Y= 0.000000 , 1.000000 , 0.000000 ,
1701 X(2)%Y= 0.000000 , 2.000000 , 0.000000 ,
1702 X(3)%Y= 0.000000 , 3.000000 , 0.000000 ,
1703 CH=abcd, /
1704 @end smallexample
1705
1706 To aid this dialog, when input is from stdin, errors send their
1707 messages to stderr and execution continues, even if @code{IOSTAT} is set.
1708
1709 @code{PRINT} namelist is permitted. This causes an error if
1710 @option{-std=f95} is used.
1711 @smallexample
1712 PROGRAM test_print
1713 REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
1714 NAMELIST /mynml/ x
1715 PRINT mynml
1716 END PROGRAM test_print
1717 @end smallexample
1718
1719 Expanded namelist reads are permitted. This causes an error if
1720 @option{-std=f95} is used. In the following example, the first element
1721 of the array will be given the value 0.00 and the two succeeding
1722 elements will be given the values 1.00 and 2.00.
1723 @smallexample
1724 &MYNML
1725 X(1,1) = 0.00 , 1.00 , 2.00
1726 /
1727 @end smallexample
1728
1729 When writing a namelist, if no @code{DELIM=} is specified, by default a
1730 double quote is used to delimit character strings. If -std=F95, F2003,
1731 or F2008, etc, the delim status is set to 'none'. Defaulting to
1732 quotes ensures that namelists with character strings can be subsequently
1733 read back in accurately.
1734
1735 @node X format descriptor without count field
1736 @subsection @code{X} format descriptor without count field
1737
1738 To support legacy codes, GNU Fortran permits the count field of the
1739 @code{X} edit descriptor in @code{FORMAT} statements to be omitted.
1740 When omitted, the count is implicitly assumed to be one.
1741
1742 @smallexample
1743 PRINT 10, 2, 3
1744 10 FORMAT (I1, X, I1)
1745 @end smallexample
1746
1747 @node Commas in FORMAT specifications
1748 @subsection Commas in @code{FORMAT} specifications
1749
1750 To support legacy codes, GNU Fortran allows the comma separator
1751 to be omitted immediately before and after character string edit
1752 descriptors in @code{FORMAT} statements.
1753
1754 @smallexample
1755 PRINT 10, 2, 3
1756 10 FORMAT ('FOO='I1' BAR='I2)
1757 @end smallexample
1758
1759
1760 @node Missing period in FORMAT specifications
1761 @subsection Missing period in @code{FORMAT} specifications
1762
1763 To support legacy codes, GNU Fortran allows missing periods in format
1764 specifications if and only if @option{-std=legacy} is given on the
1765 command line. This is considered non-conforming code and is
1766 discouraged.
1767
1768 @smallexample
1769 REAL :: value
1770 READ(*,10) value
1771 10 FORMAT ('F4')
1772 @end smallexample
1773
1774 @node I/O item lists
1775 @subsection I/O item lists
1776 @cindex I/O item lists
1777
1778 To support legacy codes, GNU Fortran allows the input item list
1779 of the @code{READ} statement, and the output item lists of the
1780 @code{WRITE} and @code{PRINT} statements, to start with a comma.
1781
1782 @node @code{Q} exponent-letter
1783 @subsection @code{Q} exponent-letter
1784 @cindex @code{Q} exponent-letter
1785
1786 GNU Fortran accepts real literal constants with an exponent-letter
1787 of @code{Q}, for example, @code{1.23Q45}. The constant is interpreted
1788 as a @code{REAL(16)} entity on targets that support this type. If
1789 the target does not support @code{REAL(16)} but has a @code{REAL(10)}
1790 type, then the real-literal-constant will be interpreted as a
1791 @code{REAL(10)} entity. In the absence of @code{REAL(16)} and
1792 @code{REAL(10)}, an error will occur.
1793
1794 @node BOZ literal constants
1795 @subsection BOZ literal constants
1796 @cindex BOZ literal constants
1797
1798 Besides decimal constants, Fortran also supports binary (@code{b}),
1799 octal (@code{o}) and hexadecimal (@code{z}) integer constants. The
1800 syntax is: @samp{prefix quote digits quote}, were the prefix is
1801 either @code{b}, @code{o} or @code{z}, quote is either @code{'} or
1802 @code{"} and the digits are for binary @code{0} or @code{1}, for
1803 octal between @code{0} and @code{7}, and for hexadecimal between
1804 @code{0} and @code{F}. (Example: @code{b'01011101'}.)
1805
1806 Up to Fortran 95, BOZ literals were only allowed to initialize
1807 integer variables in DATA statements. Since Fortran 2003 BOZ literals
1808 are also allowed as argument of @code{REAL}, @code{DBLE}, @code{INT}
1809 and @code{CMPLX}; the result is the same as if the integer BOZ
1810 literal had been converted by @code{TRANSFER} to, respectively,
1811 @code{real}, @code{double precision}, @code{integer} or @code{complex}.
1812 As GNU Fortran extension the intrinsic procedures @code{FLOAT},
1813 @code{DFLOAT}, @code{COMPLEX} and @code{DCMPLX} are treated alike.
1814
1815 As an extension, GNU Fortran allows hexadecimal BOZ literal constants to
1816 be specified using the @code{X} prefix, in addition to the standard
1817 @code{Z} prefix. The BOZ literal can also be specified by adding a
1818 suffix to the string, for example, @code{Z'ABC'} and @code{'ABC'Z} are
1819 equivalent.
1820
1821 Furthermore, GNU Fortran allows using BOZ literal constants outside
1822 DATA statements and the four intrinsic functions allowed by Fortran 2003.
1823 In DATA statements, in direct assignments, where the right-hand side
1824 only contains a BOZ literal constant, and for old-style initializers of
1825 the form @code{integer i /o'0173'/}, the constant is transferred
1826 as if @code{TRANSFER} had been used; for @code{COMPLEX} numbers, only
1827 the real part is initialized unless @code{CMPLX} is used. In all other
1828 cases, the BOZ literal constant is converted to an @code{INTEGER} value with
1829 the largest decimal representation. This value is then converted
1830 numerically to the type and kind of the variable in question.
1831 (For instance, @code{real :: r = b'0000001' + 1} initializes @code{r}
1832 with @code{2.0}.) As different compilers implement the extension
1833 differently, one should be careful when doing bitwise initialization
1834 of non-integer variables.
1835
1836 Note that initializing an @code{INTEGER} variable with a statement such
1837 as @code{DATA i/Z'FFFFFFFF'/} will give an integer overflow error rather
1838 than the desired result of @math{-1} when @code{i} is a 32-bit integer
1839 on a system that supports 64-bit integers. The @samp{-fno-range-check}
1840 option can be used as a workaround for legacy code that initializes
1841 integers in this manner.
1842
1843 @node Real array indices
1844 @subsection Real array indices
1845 @cindex array, indices of type real
1846
1847 As an extension, GNU Fortran allows the use of @code{REAL} expressions
1848 or variables as array indices.
1849
1850 @node Unary operators
1851 @subsection Unary operators
1852 @cindex operators, unary
1853
1854 As an extension, GNU Fortran allows unary plus and unary minus operators
1855 to appear as the second operand of binary arithmetic operators without
1856 the need for parenthesis.
1857
1858 @smallexample
1859 X = Y * -Z
1860 @end smallexample
1861
1862 @node Implicitly convert LOGICAL and INTEGER values
1863 @subsection Implicitly convert @code{LOGICAL} and @code{INTEGER} values
1864 @cindex conversion, to integer
1865 @cindex conversion, to logical
1866
1867 As an extension for backwards compatibility with other compilers, GNU
1868 Fortran allows the implicit conversion of @code{LOGICAL} values to
1869 @code{INTEGER} values and vice versa. When converting from a
1870 @code{LOGICAL} to an @code{INTEGER}, @code{.FALSE.} is interpreted as
1871 zero, and @code{.TRUE.} is interpreted as one. When converting from
1872 @code{INTEGER} to @code{LOGICAL}, the value zero is interpreted as
1873 @code{.FALSE.} and any nonzero value is interpreted as @code{.TRUE.}.
1874
1875 @smallexample
1876 LOGICAL :: l
1877 l = 1
1878 @end smallexample
1879 @smallexample
1880 INTEGER :: i
1881 i = .TRUE.
1882 @end smallexample
1883
1884 However, there is no implicit conversion of @code{INTEGER} values in
1885 @code{if}-statements, nor of @code{LOGICAL} or @code{INTEGER} values
1886 in I/O operations.
1887
1888 @node Hollerith constants support
1889 @subsection Hollerith constants support
1890 @cindex Hollerith constants
1891
1892 GNU Fortran supports Hollerith constants in assignments, function
1893 arguments, and @code{DATA} and @code{ASSIGN} statements. A Hollerith
1894 constant is written as a string of characters preceded by an integer
1895 constant indicating the character count, and the letter @code{H} or
1896 @code{h}, and stored in bytewise fashion in a numeric (@code{INTEGER},
1897 @code{REAL}, or @code{complex}) or @code{LOGICAL} variable. The
1898 constant will be padded or truncated to fit the size of the variable in
1899 which it is stored.
1900
1901 Examples of valid uses of Hollerith constants:
1902 @smallexample
1903 complex*16 x(2)
1904 data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
1905 x(1) = 16HABCDEFGHIJKLMNOP
1906 call foo (4h abc)
1907 @end smallexample
1908
1909 Invalid Hollerith constants examples:
1910 @smallexample
1911 integer*4 a
1912 a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
1913 a = 0H ! At least one character is needed.
1914 @end smallexample
1915
1916 In general, Hollerith constants were used to provide a rudimentary
1917 facility for handling character strings in early Fortran compilers,
1918 prior to the introduction of @code{CHARACTER} variables in Fortran 77;
1919 in those cases, the standard-compliant equivalent is to convert the
1920 program to use proper character strings. On occasion, there may be a
1921 case where the intent is specifically to initialize a numeric variable
1922 with a given byte sequence. In these cases, the same result can be
1923 obtained by using the @code{TRANSFER} statement, as in this example.
1924 @smallexample
1925 INTEGER(KIND=4) :: a
1926 a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd
1927 @end smallexample
1928
1929
1930 @node Cray pointers
1931 @subsection Cray pointers
1932 @cindex pointer, Cray
1933
1934 Cray pointers are part of a non-standard extension that provides a
1935 C-like pointer in Fortran. This is accomplished through a pair of
1936 variables: an integer "pointer" that holds a memory address, and a
1937 "pointee" that is used to dereference the pointer.
1938
1939 Pointer/pointee pairs are declared in statements of the form:
1940 @smallexample
1941 pointer ( <pointer> , <pointee> )
1942 @end smallexample
1943 or,
1944 @smallexample
1945 pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
1946 @end smallexample
1947 The pointer is an integer that is intended to hold a memory address.
1948 The pointee may be an array or scalar.
1949 If an assumed-size array is permitted within the scoping unit, a
1950 pointee can be an assumed-size array.
1951 That is, the last dimension may be left unspecified by using a @code{*}
1952 in place of a value. A pointee cannot be an assumed shape array.
1953 No space is allocated for the pointee.
1954
1955 The pointee may have its type declared before or after the pointer
1956 statement, and its array specification (if any) may be declared
1957 before, during, or after the pointer statement. The pointer may be
1958 declared as an integer prior to the pointer statement. However, some
1959 machines have default integer sizes that are different than the size
1960 of a pointer, and so the following code is not portable:
1961 @smallexample
1962 integer ipt
1963 pointer (ipt, iarr)
1964 @end smallexample
1965 If a pointer is declared with a kind that is too small, the compiler
1966 will issue a warning; the resulting binary will probably not work
1967 correctly, because the memory addresses stored in the pointers may be
1968 truncated. It is safer to omit the first line of the above example;
1969 if explicit declaration of ipt's type is omitted, then the compiler
1970 will ensure that ipt is an integer variable large enough to hold a
1971 pointer.
1972
1973 Pointer arithmetic is valid with Cray pointers, but it is not the same
1974 as C pointer arithmetic. Cray pointers are just ordinary integers, so
1975 the user is responsible for determining how many bytes to add to a
1976 pointer in order to increment it. Consider the following example:
1977 @smallexample
1978 real target(10)
1979 real pointee(10)
1980 pointer (ipt, pointee)
1981 ipt = loc (target)
1982 ipt = ipt + 1
1983 @end smallexample
1984 The last statement does not set @code{ipt} to the address of
1985 @code{target(1)}, as it would in C pointer arithmetic. Adding @code{1}
1986 to @code{ipt} just adds one byte to the address stored in @code{ipt}.
1987
1988 Any expression involving the pointee will be translated to use the
1989 value stored in the pointer as the base address.
1990
1991 To get the address of elements, this extension provides an intrinsic
1992 function @code{LOC()}. The @code{LOC()} function is equivalent to the
1993 @code{&} operator in C, except the address is cast to an integer type:
1994 @smallexample
1995 real ar(10)
1996 pointer(ipt, arpte(10))
1997 real arpte
1998 ipt = loc(ar) ! Makes arpte is an alias for ar
1999 arpte(1) = 1.0 ! Sets ar(1) to 1.0
2000 @end smallexample
2001 The pointer can also be set by a call to the @code{MALLOC} intrinsic
2002 (see @ref{MALLOC}).
2003
2004 Cray pointees often are used to alias an existing variable. For
2005 example:
2006 @smallexample
2007 integer target(10)
2008 integer iarr(10)
2009 pointer (ipt, iarr)
2010 ipt = loc(target)
2011 @end smallexample
2012 As long as @code{ipt} remains unchanged, @code{iarr} is now an alias for
2013 @code{target}. The optimizer, however, will not detect this aliasing, so
2014 it is unsafe to use @code{iarr} and @code{target} simultaneously. Using
2015 a pointee in any way that violates the Fortran aliasing rules or
2016 assumptions is illegal. It is the user's responsibility to avoid doing
2017 this; the compiler works under the assumption that no such aliasing
2018 occurs.
2019
2020 Cray pointers will work correctly when there is no aliasing (i.e., when
2021 they are used to access a dynamically allocated block of memory), and
2022 also in any routine where a pointee is used, but any variable with which
2023 it shares storage is not used. Code that violates these rules may not
2024 run as the user intends. This is not a bug in the optimizer; any code
2025 that violates the aliasing rules is illegal. (Note that this is not
2026 unique to GNU Fortran; any Fortran compiler that supports Cray pointers
2027 will ``incorrectly'' optimize code with illegal aliasing.)
2028
2029 There are a number of restrictions on the attributes that can be applied
2030 to Cray pointers and pointees. Pointees may not have the
2031 @code{ALLOCATABLE}, @code{INTENT}, @code{OPTIONAL}, @code{DUMMY},
2032 @code{TARGET}, @code{INTRINSIC}, or @code{POINTER} attributes. Pointers
2033 may not have the @code{DIMENSION}, @code{POINTER}, @code{TARGET},
2034 @code{ALLOCATABLE}, @code{EXTERNAL}, or @code{INTRINSIC} attributes, nor
2035 may they be function results. Pointees may not occur in more than one
2036 pointer statement. A pointee cannot be a pointer. Pointees cannot occur
2037 in equivalence, common, or data statements.
2038
2039 A Cray pointer may also point to a function or a subroutine. For
2040 example, the following excerpt is valid:
2041 @smallexample
2042 implicit none
2043 external sub
2044 pointer (subptr,subpte)
2045 external subpte
2046 subptr = loc(sub)
2047 call subpte()
2048 [...]
2049 subroutine sub
2050 [...]
2051 end subroutine sub
2052 @end smallexample
2053
2054 A pointer may be modified during the course of a program, and this
2055 will change the location to which the pointee refers. However, when
2056 pointees are passed as arguments, they are treated as ordinary
2057 variables in the invoked function. Subsequent changes to the pointer
2058 will not change the base address of the array that was passed.
2059
2060 @node CONVERT specifier
2061 @subsection @code{CONVERT} specifier
2062 @cindex @code{CONVERT} specifier
2063
2064 GNU Fortran allows the conversion of unformatted data between little-
2065 and big-endian representation to facilitate moving of data
2066 between different systems. The conversion can be indicated with
2067 the @code{CONVERT} specifier on the @code{OPEN} statement.
2068 @xref{GFORTRAN_CONVERT_UNIT}, for an alternative way of specifying
2069 the data format via an environment variable.
2070
2071 Valid values for @code{CONVERT} are:
2072 @itemize @w{}
2073 @item @code{CONVERT='NATIVE'} Use the native format. This is the default.
2074 @item @code{CONVERT='SWAP'} Swap between little- and big-endian.
2075 @item @code{CONVERT='LITTLE_ENDIAN'} Use the little-endian representation
2076 for unformatted files.
2077 @item @code{CONVERT='BIG_ENDIAN'} Use the big-endian representation for
2078 unformatted files.
2079 @end itemize
2080
2081 Using the option could look like this:
2082 @smallexample
2083 open(file='big.dat',form='unformatted',access='sequential', &
2084 convert='big_endian')
2085 @end smallexample
2086
2087 The value of the conversion can be queried by using
2088 @code{INQUIRE(CONVERT=ch)}. The values returned are
2089 @code{'BIG_ENDIAN'} and @code{'LITTLE_ENDIAN'}.
2090
2091 @code{CONVERT} works between big- and little-endian for
2092 @code{INTEGER} values of all supported kinds and for @code{REAL}
2093 on IEEE systems of kinds 4 and 8. Conversion between different
2094 ``extended double'' types on different architectures such as
2095 m68k and x86_64, which GNU Fortran
2096 supports as @code{REAL(KIND=10)} and @code{REAL(KIND=16)}, will
2097 probably not work.
2098
2099 @emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
2100 environment variable will override the CONVERT specifier in the
2101 open statement}. This is to give control over data formats to
2102 users who do not have the source code of their program available.
2103
2104 Using anything but the native representation for unformatted data
2105 carries a significant speed overhead. If speed in this area matters
2106 to you, it is best if you use this only for data that needs to be
2107 portable.
2108
2109 @node OpenMP
2110 @subsection OpenMP
2111 @cindex OpenMP
2112
2113 OpenMP (Open Multi-Processing) is an application programming
2114 interface (API) that supports multi-platform shared memory
2115 multiprocessing programming in C/C++ and Fortran on many
2116 architectures, including Unix and Microsoft Windows platforms.
2117 It consists of a set of compiler directives, library routines,
2118 and environment variables that influence run-time behavior.
2119
2120 GNU Fortran strives to be compatible to the
2121 @uref{http://openmp.org/wp/openmp-specifications/,
2122 OpenMP Application Program Interface v4.5}.
2123
2124 To enable the processing of the OpenMP directive @code{!$omp} in
2125 free-form source code; the @code{c$omp}, @code{*$omp} and @code{!$omp}
2126 directives in fixed form; the @code{!$} conditional compilation sentinels
2127 in free form; and the @code{c$}, @code{*$} and @code{!$} sentinels
2128 in fixed form, @command{gfortran} needs to be invoked with the
2129 @option{-fopenmp}. This also arranges for automatic linking of the
2130 GNU Offloading and Multi Processing Runtime Library
2131 @ref{Top,,libgomp,libgomp,GNU Offloading and Multi Processing Runtime
2132 Library}.
2133
2134 The OpenMP Fortran runtime library routines are provided both in a
2135 form of a Fortran 90 module named @code{omp_lib} and in a form of
2136 a Fortran @code{include} file named @file{omp_lib.h}.
2137
2138 An example of a parallelized loop taken from Appendix A.1 of
2139 the OpenMP Application Program Interface v2.5:
2140 @smallexample
2141 SUBROUTINE A1(N, A, B)
2142 INTEGER I, N
2143 REAL B(N), A(N)
2144 !$OMP PARALLEL DO !I is private by default
2145 DO I=2,N
2146 B(I) = (A(I) + A(I-1)) / 2.0
2147 ENDDO
2148 !$OMP END PARALLEL DO
2149 END SUBROUTINE A1
2150 @end smallexample
2151
2152 Please note:
2153 @itemize
2154 @item
2155 @option{-fopenmp} implies @option{-frecursive}, i.e., all local arrays
2156 will be allocated on the stack. When porting existing code to OpenMP,
2157 this may lead to surprising results, especially to segmentation faults
2158 if the stacksize is limited.
2159
2160 @item
2161 On glibc-based systems, OpenMP enabled applications cannot be statically
2162 linked due to limitations of the underlying pthreads-implementation. It
2163 might be possible to get a working solution if
2164 @command{-Wl,--whole-archive -lpthread -Wl,--no-whole-archive} is added
2165 to the command line. However, this is not supported by @command{gcc} and
2166 thus not recommended.
2167 @end itemize
2168
2169 @node OpenACC
2170 @subsection OpenACC
2171 @cindex OpenACC
2172
2173 OpenACC is an application programming interface (API) that supports
2174 offloading of code to accelerator devices. It consists of a set of
2175 compiler directives, library routines, and environment variables that
2176 influence run-time behavior.
2177
2178 GNU Fortran strives to be compatible to the
2179 @uref{http://www.openacc.org/, OpenACC Application Programming
2180 Interface v2.0}.
2181
2182 To enable the processing of the OpenACC directive @code{!$acc} in
2183 free-form source code; the @code{c$acc}, @code{*$acc} and @code{!$acc}
2184 directives in fixed form; the @code{!$} conditional compilation
2185 sentinels in free form; and the @code{c$}, @code{*$} and @code{!$}
2186 sentinels in fixed form, @command{gfortran} needs to be invoked with
2187 the @option{-fopenacc}. This also arranges for automatic linking of
2188 the GNU Offloading and Multi Processing Runtime Library
2189 @ref{Top,,libgomp,libgomp,GNU Offloading and Multi Processing Runtime
2190 Library}.
2191
2192 The OpenACC Fortran runtime library routines are provided both in a
2193 form of a Fortran 90 module named @code{openacc} and in a form of a
2194 Fortran @code{include} file named @file{openacc_lib.h}.
2195
2196 Note that this is an experimental feature, incomplete, and subject to
2197 change in future versions of GCC. See
2198 @uref{https://gcc.gnu.org/wiki/OpenACC} for more information.
2199
2200 @node Argument list functions
2201 @subsection Argument list functions @code{%VAL}, @code{%REF} and @code{%LOC}
2202 @cindex argument list functions
2203 @cindex @code{%VAL}
2204 @cindex @code{%REF}
2205 @cindex @code{%LOC}
2206
2207 GNU Fortran supports argument list functions @code{%VAL}, @code{%REF}
2208 and @code{%LOC} statements, for backward compatibility with g77.
2209 It is recommended that these should be used only for code that is
2210 accessing facilities outside of GNU Fortran, such as operating system
2211 or windowing facilities. It is best to constrain such uses to isolated
2212 portions of a program--portions that deal specifically and exclusively
2213 with low-level, system-dependent facilities. Such portions might well
2214 provide a portable interface for use by the program as a whole, but are
2215 themselves not portable, and should be thoroughly tested each time they
2216 are rebuilt using a new compiler or version of a compiler.
2217
2218 @code{%VAL} passes a scalar argument by value, @code{%REF} passes it by
2219 reference and @code{%LOC} passes its memory location. Since gfortran
2220 already passes scalar arguments by reference, @code{%REF} is in effect
2221 a do-nothing. @code{%LOC} has the same effect as a Fortran pointer.
2222
2223 An example of passing an argument by value to a C subroutine foo.:
2224 @smallexample
2225 C
2226 C prototype void foo_ (float x);
2227 C
2228 external foo
2229 real*4 x
2230 x = 3.14159
2231 call foo (%VAL (x))
2232 end
2233 @end smallexample
2234
2235 For details refer to the g77 manual
2236 @uref{https://gcc.gnu.org/@/onlinedocs/@/gcc-3.4.6/@/g77/@/index.html#Top}.
2237
2238 Also, @code{c_by_val.f} and its partner @code{c_by_val.c} of the
2239 GNU Fortran testsuite are worth a look.
2240
2241 @node Read/Write after EOF marker
2242 @subsection Read/Write after EOF marker
2243 @cindex @code{EOF}
2244 @cindex @code{BACKSPACE}
2245 @cindex @code{REWIND}
2246
2247 Some legacy codes rely on allowing @code{READ} or @code{WRITE} after the
2248 EOF file marker in order to find the end of a file. GNU Fortran normally
2249 rejects these codes with a run-time error message and suggests the user
2250 consider @code{BACKSPACE} or @code{REWIND} to properly position
2251 the file before the EOF marker. As an extension, the run-time error may
2252 be disabled using -std=legacy.
2253
2254
2255 @node STRUCTURE and RECORD
2256 @subsection @code{STRUCTURE} and @code{RECORD}
2257 @cindex @code{STRUCTURE}
2258 @cindex @code{RECORD}
2259
2260 Record structures are a pre-Fortran-90 vendor extension to create
2261 user-defined aggregate data types. Support for record structures in GNU
2262 Fortran can be enabled with the @option{-fdec-structure} compile flag.
2263 If you have a choice, you should instead use Fortran 90's ``derived types'',
2264 which have a different syntax.
2265
2266 In many cases, record structures can easily be converted to derived types.
2267 To convert, replace @code{STRUCTURE /}@var{structure-name}@code{/}
2268 by @code{TYPE} @var{type-name}. Additionally, replace
2269 @code{RECORD /}@var{structure-name}@code{/} by
2270 @code{TYPE(}@var{type-name}@code{)}. Finally, in the component access,
2271 replace the period (@code{.}) by the percent sign (@code{%}).
2272
2273 Here is an example of code using the non portable record structure syntax:
2274
2275 @example
2276 ! Declaring a structure named ``item'' and containing three fields:
2277 ! an integer ID, an description string and a floating-point price.
2278 STRUCTURE /item/
2279 INTEGER id
2280 CHARACTER(LEN=200) description
2281 REAL price
2282 END STRUCTURE
2283
2284 ! Define two variables, an single record of type ``item''
2285 ! named ``pear'', and an array of items named ``store_catalog''
2286 RECORD /item/ pear, store_catalog(100)
2287
2288 ! We can directly access the fields of both variables
2289 pear.id = 92316
2290 pear.description = "juicy D'Anjou pear"
2291 pear.price = 0.15
2292 store_catalog(7).id = 7831
2293 store_catalog(7).description = "milk bottle"
2294 store_catalog(7).price = 1.2
2295
2296 ! We can also manipulate the whole structure
2297 store_catalog(12) = pear
2298 print *, store_catalog(12)
2299 @end example
2300
2301 @noindent
2302 This code can easily be rewritten in the Fortran 90 syntax as following:
2303
2304 @example
2305 ! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
2306 ! ``TYPE name ... END TYPE''
2307 TYPE item
2308 INTEGER id
2309 CHARACTER(LEN=200) description
2310 REAL price
2311 END TYPE
2312
2313 ! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
2314 TYPE(item) pear, store_catalog(100)
2315
2316 ! Instead of using a dot (.) to access fields of a record, the
2317 ! standard syntax uses a percent sign (%)
2318 pear%id = 92316
2319 pear%description = "juicy D'Anjou pear"
2320 pear%price = 0.15
2321 store_catalog(7)%id = 7831
2322 store_catalog(7)%description = "milk bottle"
2323 store_catalog(7)%price = 1.2
2324
2325 ! Assignments of a whole variable do not change
2326 store_catalog(12) = pear
2327 print *, store_catalog(12)
2328 @end example
2329
2330 @noindent
2331 GNU Fortran implements STRUCTURES like derived types with the following
2332 rules and exceptions:
2333
2334 @itemize @bullet
2335 @item Structures act like derived types with the @code{SEQUENCE} attribute.
2336 Otherwise they may contain no specifiers.
2337
2338 @item Structures may contain a special field with the name @code{%FILL}.
2339 This will create an anonymous component which cannot be accessed but occupies
2340 space just as if a component of the same type was declared in its place, useful
2341 for alignment purposes. As an example, the following structure will consist
2342 of at least sixteen bytes:
2343
2344 @smallexample
2345 structure /padded/
2346 character(4) start
2347 character(8) %FILL
2348 character(4) end
2349 end structure
2350 @end smallexample
2351
2352 @item Structures may share names with other symbols. For example, the following
2353 is invalid for derived types, but valid for structures:
2354
2355 @smallexample
2356 structure /header/
2357 ! ...
2358 end structure
2359 record /header/ header
2360 @end smallexample
2361
2362 @item Structure types may be declared nested within another parent structure.
2363 The syntax is:
2364 @smallexample
2365 structure /type-name/
2366 ...
2367 structure [/<type-name>/] <field-list>
2368 ...
2369 @end smallexample
2370
2371 The type name may be ommitted, in which case the structure type itself is
2372 anonymous, and other structures of the same type cannot be instantiated. The
2373 following shows some examples:
2374
2375 @example
2376 structure /appointment/
2377 ! nested structure definition: app_time is an array of two 'time'
2378 structure /time/ app_time (2)
2379 integer(1) hour, minute
2380 end structure
2381 character(10) memo
2382 end structure
2383
2384 ! The 'time' structure is still usable
2385 record /time/ now
2386 now = time(5, 30)
2387
2388 ...
2389
2390 structure /appointment/
2391 ! anonymous nested structure definition
2392 structure start, end
2393 integer(1) hour, minute
2394 end structure
2395 character(10) memo
2396 end structure
2397 @end example
2398
2399 @item Structures may contain @code{UNION} blocks. For more detail see the
2400 section on @ref{UNION and MAP}.
2401
2402 @item Structures support old-style initialization of components, like
2403 those described in @ref{Old-style variable initialization}. For array
2404 initializers, an initializer may contain a repeat specification of the form
2405 @code{<literal-integer> * <constant-initializer>}. The value of the integer
2406 indicates the number of times to repeat the constant initializer when expanding
2407 the initializer list.
2408 @end itemize
2409
2410 @node UNION and MAP
2411 @subsection @code{UNION} and @code{MAP}
2412 @cindex @code{UNION}
2413 @cindex @code{MAP}
2414
2415 Unions are an old vendor extension which were commonly used with the
2416 non-standard @ref{STRUCTURE and RECORD} extensions. Use of @code{UNION} and
2417 @code{MAP} is automatically enabled with @option{-fdec-structure}.
2418
2419 A @code{UNION} declaration occurs within a structure; within the definition of
2420 each union is a number of @code{MAP} blocks. Each @code{MAP} shares storage
2421 with its sibling maps (in the same union), and the size of the union is the
2422 size of the largest map within it, just as with unions in C. The major
2423 difference is that component references do not indicate which union or map the
2424 component is in (the compiler gets to figure that out).
2425
2426 Here is a small example:
2427 @smallexample
2428 structure /myunion/
2429 union
2430 map
2431 character(2) w0, w1, w2
2432 end map
2433 map
2434 character(6) long
2435 end map
2436 end union
2437 end structure
2438
2439 record /myunion/ rec
2440 ! After this assignment...
2441 rec.long = 'hello!'
2442
2443 ! The following is true:
2444 ! rec.w0 === 'he'
2445 ! rec.w1 === 'll'
2446 ! rec.w2 === 'o!'
2447 @end smallexample
2448
2449 The two maps share memory, and the size of the union is ultimately six bytes:
2450
2451 @example
2452 0 1 2 3 4 5 6 Byte offset
2453 -------------------------------
2454 | | | | | | |
2455 -------------------------------
2456
2457 ^ W0 ^ W1 ^ W2 ^
2458 \-------/ \-------/ \-------/
2459
2460 ^ LONG ^
2461 \---------------------------/
2462 @end example
2463
2464 Following is an example mirroring the layout of an Intel x86_64 register:
2465
2466 @example
2467 structure /reg/
2468 union ! U0 ! rax
2469 map
2470 character(16) rx
2471 end map
2472 map
2473 character(8) rh ! rah
2474 union ! U1
2475 map
2476 character(8) rl ! ral
2477 end map
2478 map
2479 character(8) ex ! eax
2480 end map
2481 map
2482 character(4) eh ! eah
2483 union ! U2
2484 map
2485 character(4) el ! eal
2486 end map
2487 map
2488 character(4) x ! ax
2489 end map
2490 map
2491 character(2) h ! ah
2492 character(2) l ! al
2493 end map
2494 end union
2495 end map
2496 end union
2497 end map
2498 end union
2499 end structure
2500 record /reg/ a
2501
2502 ! After this assignment...
2503 a.rx = 'AAAAAAAA.BBB.C.D'
2504
2505 ! The following is true:
2506 a.rx === 'AAAAAAAA.BBB.C.D'
2507 a.rh === 'AAAAAAAA'
2508 a.rl === '.BBB.C.D'
2509 a.ex === '.BBB.C.D'
2510 a.eh === '.BBB'
2511 a.el === '.C.D'
2512 a.x === '.C.D'
2513 a.h === '.C'
2514 a.l === '.D'
2515 @end example
2516
2517 @node Type variants for integer intrinsics
2518 @subsection Type variants for integer intrinsics
2519 @cindex intrinsics, integer
2520
2521 Similar to the D/C prefixes to real functions to specify the input/output
2522 types, GNU Fortran offers B/I/J/K prefixes to integer functions for
2523 compatibility with DEC programs. The types implied by each are:
2524
2525 @example
2526 @code{B} - @code{INTEGER(kind=1)}
2527 @code{I} - @code{INTEGER(kind=2)}
2528 @code{J} - @code{INTEGER(kind=4)}
2529 @code{K} - @code{INTEGER(kind=8)}
2530 @end example
2531
2532 GNU Fortran supports these with the flag @option{-fdec-intrinsic-ints}.
2533 Intrinsics for which prefixed versions are available and in what form are noted
2534 in @ref{Intrinsic Procedures}. The complete list of supported intrinsics is
2535 here:
2536
2537 @multitable @columnfractions .2 .2 .2 .2 .2
2538
2539 @headitem Intrinsic @tab B @tab I @tab J @tab K
2540
2541 @item @code{@ref{ABS}}
2542 @tab @code{BABS} @tab @code{IIABS} @tab @code{JIABS} @tab @code{KIABS}
2543 @item @code{@ref{BTEST}}
2544 @tab @code{BBTEST} @tab @code{BITEST} @tab @code{BJTEST} @tab @code{BKTEST}
2545 @item @code{@ref{IAND}}
2546 @tab @code{BIAND} @tab @code{IIAND} @tab @code{JIAND} @tab @code{KIAND}
2547 @item @code{@ref{IBCLR}}
2548 @tab @code{BBCLR} @tab @code{IIBCLR} @tab @code{JIBCLR} @tab @code{KIBCLR}
2549 @item @code{@ref{IBITS}}
2550 @tab @code{BBITS} @tab @code{IIBITS} @tab @code{JIBITS} @tab @code{KIBITS}
2551 @item @code{@ref{IBSET}}
2552 @tab @code{BBSET} @tab @code{IIBSET} @tab @code{JIBSET} @tab @code{KIBSET}
2553 @item @code{@ref{IEOR}}
2554 @tab @code{BIEOR} @tab @code{IIEOR} @tab @code{JIEOR} @tab @code{KIEOR}
2555 @item @code{@ref{IOR}}
2556 @tab @code{BIOR} @tab @code{IIOR} @tab @code{JIOR} @tab @code{KIOR}
2557 @item @code{@ref{ISHFT}}
2558 @tab @code{BSHFT} @tab @code{IISHFT} @tab @code{JISHFT} @tab @code{KISHFT}
2559 @item @code{@ref{ISHFTC}}
2560 @tab @code{BSHFTC} @tab @code{IISHFTC} @tab @code{JISHFTC} @tab @code{KISHFTC}
2561 @item @code{@ref{MOD}}
2562 @tab @code{BMOD} @tab @code{IMOD} @tab @code{JMOD} @tab @code{KMOD}
2563 @item @code{@ref{NOT}}
2564 @tab @code{BNOT} @tab @code{INOT} @tab @code{JNOT} @tab @code{KNOT}
2565 @item @code{@ref{REAL}}
2566 @tab @code{--} @tab @code{FLOATI} @tab @code{FLOATJ} @tab @code{FLOATK}
2567 @end multitable
2568
2569 @node AUTOMATIC and STATIC attributes
2570 @subsection @code{AUTOMATIC} and @code{STATIC} attributes
2571 @cindex variable attributes
2572 @cindex @code{AUTOMATIC}
2573 @cindex @code{STATIC}
2574
2575 With @option{-fdec-static} GNU Fortran supports the DEC extended attributes
2576 @code{STATIC} and @code{AUTOMATIC} to provide explicit specification of entity
2577 storage. These follow the syntax of the Fortran standard @code{SAVE} attribute.
2578
2579 @code{STATIC} is exactly equivalent to @code{SAVE}, and specifies that
2580 an entity should be allocated in static memory. As an example, @code{STATIC}
2581 local variables will retain their values across multiple calls to a function.
2582
2583 Entities marked @code{AUTOMATIC} will be stack automatic whenever possible.
2584 @code{AUTOMATIC} is the default for local variables smaller than
2585 @option{-fmax-stack-var-size}, unless @option{-fno-automatic} is given. This
2586 attribute overrides @option{-fno-automatic}, @option{-fmax-stack-var-size}, and
2587 blanket @code{SAVE} statements.
2588
2589
2590 Examples:
2591
2592 @example
2593 subroutine f
2594 integer, automatic :: i ! automatic variable
2595 integer x, y ! static variables
2596 save
2597 ...
2598 endsubroutine
2599 @end example
2600 @example
2601 subroutine f
2602 integer a, b, c, x, y, z
2603 static :: x
2604 save y
2605 automatic z, c
2606 ! a, b, c, and z are automatic
2607 ! x and y are static
2608 endsubroutine
2609 @end example
2610 @example
2611 ! Compiled with -fno-automatic
2612 subroutine f
2613 integer a, b, c, d
2614 automatic :: a
2615 ! a is automatic; b, c, and d are static
2616 endsubroutine
2617 @end example
2618
2619 @node Extended math intrinsics
2620 @subsection Extended math intrinsics
2621 @cindex intrinsics, math
2622 @cindex intrinsics, trigonometric functions
2623
2624 GNU Fortran supports an extended list of mathematical intrinsics with the
2625 compile flag @option{-fdec-math} for compatability with legacy code.
2626 These intrinsics are described fully in @ref{Intrinsic Procedures} where it is
2627 noted that they are extensions and should be avoided whenever possible.
2628
2629 Specifically, @option{-fdec-math} enables the @ref{COTAN} intrinsic, and
2630 trigonometric intrinsics which accept or produce values in degrees instead of
2631 radians. Here is a summary of the new intrinsics:
2632
2633 @multitable @columnfractions .5 .5
2634 @headitem Radians @tab Degrees
2635 @item @code{@ref{ACOS}} @tab @code{@ref{ACOSD}}*
2636 @item @code{@ref{ASIN}} @tab @code{@ref{ASIND}}*
2637 @item @code{@ref{ATAN}} @tab @code{@ref{ATAND}}*
2638 @item @code{@ref{ATAN2}} @tab @code{@ref{ATAN2D}}*
2639 @item @code{@ref{COS}} @tab @code{@ref{COSD}}*
2640 @item @code{@ref{COTAN}}* @tab @code{@ref{COTAND}}*
2641 @item @code{@ref{SIN}} @tab @code{@ref{SIND}}*
2642 @item @code{@ref{TAN}} @tab @code{@ref{TAND}}*
2643 @end multitable
2644
2645 * Enabled with @option{-fdec-math}.
2646
2647 For advanced users, it may be important to know the implementation of these
2648 functions. They are simply wrappers around the standard radian functions, which
2649 have more accurate builtin versions. These functions convert their arguments
2650 (or results) to degrees (or radians) by taking the value modulus 360 (or 2*pi)
2651 and then multiplying it by a constant radian-to-degree (or degree-to-radian)
2652 factor, as appropriate. The factor is computed at compile-time as 180/pi (or
2653 pi/180).
2654
2655 @node Form feed as whitespace
2656 @subsection Form feed as whitespace
2657 @cindex form feed whitespace
2658
2659 Historically, legacy compilers allowed insertion of form feed characters ('\f',
2660 ASCII 0xC) at the beginning of lines for formatted output to line printers,
2661 though the Fortran standard does not mention this. GNU Fortran supports the
2662 interpretation of form feed characters in source as whitespace for
2663 compatibility.
2664
2665 @node TYPE as an alias for PRINT
2666 @subsection TYPE as an alias for PRINT
2667 @cindex type alias print
2668 For compatibility, GNU Fortran will interpret @code{TYPE} statements as
2669 @code{PRINT} statements with the flag @option{-fdec}. With this flag asserted,
2670 the following two examples are equivalent:
2671
2672 @smallexample
2673 TYPE *, 'hello world'
2674 @end smallexample
2675
2676 @smallexample
2677 PRINT *, 'hello world'
2678 @end smallexample
2679
2680 @node %LOC as an rvalue
2681 @subsection %LOC as an rvalue
2682 @cindex LOC
2683 Normally @code{%LOC} is allowed only in parameter lists. However the intrinsic
2684 function @code{LOC} does the same thing, and is usable as the right-hand-side of
2685 assignments. For compatibility, GNU Fortran supports the use of @code{%LOC} as
2686 an alias for the builtin @code{LOC} with @option{-std=legacy}. With this
2687 feature enabled the following two examples are equivalent:
2688
2689 @smallexample
2690 integer :: i, l
2691 l = %loc(i)
2692 call sub(l)
2693 @end smallexample
2694
2695 @smallexample
2696 integer :: i
2697 call sub(%loc(i))
2698 @end smallexample
2699
2700 @node .XOR. operator
2701 @subsection .XOR. operator
2702 @cindex operators, xor
2703
2704 GNU Fortran supports @code{.XOR.} as a logical operator with @code{-std=legacy}
2705 for compatibility with legacy code. @code{.XOR.} is equivalent to
2706 @code{.NEQV.}. That is, the output is true if and only if the inputs differ.
2707
2708 @node Bitwise logical operators
2709 @subsection Bitwise logical operators
2710 @cindex logical, bitwise
2711
2712 With @option{-fdec}, GNU Fortran relaxes the type constraints on
2713 logical operators to allow integer operands, and performs the corresponding
2714 bitwise operation instead. This flag is for compatibility only, and should be
2715 avoided in new code. Consider:
2716
2717 @smallexample
2718 INTEGER :: i, j
2719 i = z'33'
2720 j = z'cc'
2721 print *, i .AND. j
2722 @end smallexample
2723
2724 In this example, compiled with @option{-fdec}, GNU Fortran will
2725 replace the @code{.AND.} operation with a call to the intrinsic
2726 @code{@ref{IAND}} function, yielding the bitwise-and of @code{i} and @code{j}.
2727
2728 Note that this conversion will occur if at least one operand is of integral
2729 type. As a result, a logical operand will be converted to an integer when the
2730 other operand is an integer in a logical operation. In this case,
2731 @code{.TRUE.} is converted to @code{1} and @code{.FALSE.} to @code{0}.
2732
2733 Here is the mapping of logical operator to bitwise intrinsic used with
2734 @option{-fdec}:
2735
2736 @multitable @columnfractions .25 .25 .5
2737 @headitem Operator @tab Intrinsic @tab Bitwise operation
2738 @item @code{.NOT.} @tab @code{@ref{NOT}} @tab complement
2739 @item @code{.AND.} @tab @code{@ref{IAND}} @tab intersection
2740 @item @code{.OR.} @tab @code{@ref{IOR}} @tab union
2741 @item @code{.NEQV.} @tab @code{@ref{IEOR}} @tab exclusive or
2742 @item @code{.EQV.} @tab @code{@ref{NOT}(@ref{IEOR})} @tab complement of exclusive or
2743 @end multitable
2744
2745 @node Extended I/O specifiers
2746 @subsection Extended I/O specifiers
2747 @cindex @code{CARRIAGECONTROL}
2748 @cindex @code{READONLY}
2749 @cindex @code{SHARE}
2750 @cindex @code{SHARED}
2751 @cindex @code{NOSHARED}
2752 @cindex I/O specifiers
2753
2754 GNU Fortran supports the additional legacy I/O specifiers
2755 @code{CARRIAGECONTROL}, @code{READONLY}, and @code{SHARE} with the
2756 compile flag @option{-fdec}, for compatibility.
2757
2758 @table @code
2759 @item CARRIAGECONTROL
2760 The @code{CARRIAGECONTROL} specifier allows a user to control line
2761 termination settings between output records for an I/O unit. The specifier has
2762 no meaning for readonly files. When @code{CARRAIGECONTROL} is specified upon
2763 opening a unit for formatted writing, the exact @code{CARRIAGECONTROL} setting
2764 determines what characters to write between output records. The syntax is:
2765
2766 @smallexample
2767 OPEN(..., CARRIAGECONTROL=cc)
2768 @end smallexample
2769
2770 Where @emph{cc} is a character expression that evaluates to one of the
2771 following values:
2772
2773 @multitable @columnfractions .2 .8
2774 @item @code{'LIST'} @tab One line feed between records (default)
2775 @item @code{'FORTRAN'} @tab Legacy interpretation of the first character (see below)
2776 @item @code{'NONE'} @tab No separator between records
2777 @end multitable
2778
2779 With @code{CARRIAGECONTROL='FORTRAN'}, when a record is written, the first
2780 character of the input record is not written, and instead determines the output
2781 record separator as follows:
2782
2783 @multitable @columnfractions .3 .3 .4
2784 @headitem Leading character @tab Meaning @tab Output separating character(s)
2785 @item @code{'+'} @tab Overprinting @tab Carriage return only
2786 @item @code{'-'} @tab New line @tab Line feed and carriage return
2787 @item @code{'0'} @tab Skip line @tab Two line feeds and carriage return
2788 @item @code{'1'} @tab New page @tab Form feed and carriage return
2789 @item @code{'$'} @tab Prompting @tab Line feed (no carriage return)
2790 @item @code{CHAR(0)} @tab Overprinting (no advance) @tab None
2791 @end multitable
2792
2793 @item READONLY
2794 The @code{READONLY} specifier may be given upon opening a unit, and is
2795 equivalent to specifying @code{ACTION='READ'}, except that the file may not be
2796 deleted on close (i.e. @code{CLOSE} with @code{STATUS="DELETE"}). The syntax
2797 is:
2798
2799 @smallexample
2800 @code{OPEN(..., READONLY)}
2801 @end smallexample
2802
2803 @item SHARE
2804 The @code{SHARE} specifier allows system-level locking on a unit upon opening
2805 it for controlled access from multiple processes/threads. The @code{SHARE}
2806 specifier has several forms:
2807
2808 @smallexample
2809 OPEN(..., SHARE=sh)
2810 OPEN(..., SHARED)
2811 OPEN(..., NOSHARED)
2812 @end smallexample
2813
2814 Where @emph{sh} in the first form is a character expression that evaluates to
2815 a value as seen in the table below. The latter two forms are aliases
2816 for particular values of @emph{sh}:
2817
2818 @multitable @columnfractions .3 .3 .4
2819 @headitem Explicit form @tab Short form @tab Meaning
2820 @item @code{SHARE='DENYRW'} @tab @code{NOSHARED} @tab Exclusive (write) lock
2821 @item @code{SHARE='DENYNONE'} @tab @code{SHARED} @tab Shared (read) lock
2822 @end multitable
2823
2824 In general only one process may hold an exclusive (write) lock for a given file
2825 at a time, whereas many processes may hold shared (read) locks for the same
2826 file.
2827
2828 The behavior of locking may vary with your operating system. On POSIX systems,
2829 locking is implemented with @code{fcntl}. Consult your corresponding operating
2830 system's manual pages for further details. Locking via @code{SHARE=} is not
2831 supported on other systems.
2832
2833 @end table
2834
2835 @node Legacy PARAMETER statements
2836 @subsection Legacy PARAMETER statements
2837 @cindex PARAMETER
2838
2839 For compatibility, GNU Fortran supports legacy PARAMETER statements without
2840 parentheses with @option{-std=legacy}. A warning is emitted if used with
2841 @option{-std=gnu}, and an error is acknowledged with a real Fortran standard
2842 flag (@option{-std=f95}, etc...). These statements take the following form:
2843
2844 @smallexample
2845 implicit real (E)
2846 parameter e = 2.718282
2847 real c
2848 parameter c = 3.0e8
2849 @end smallexample
2850
2851 @node Default exponents
2852 @subsection Default exponents
2853 @cindex exponent
2854
2855 For compatibility, GNU Fortran supports a default exponent of zero in real
2856 constants with @option{-fdec}. For example, @code{9e} would be
2857 interpreted as @code{9e0}, rather than an error.
2858
2859
2860 @node Extensions not implemented in GNU Fortran
2861 @section Extensions not implemented in GNU Fortran
2862 @cindex extensions, not implemented
2863
2864 The long history of the Fortran language, its wide use and broad
2865 userbase, the large number of different compiler vendors and the lack of
2866 some features crucial to users in the first standards have lead to the
2867 existence of a number of important extensions to the language. While
2868 some of the most useful or popular extensions are supported by the GNU
2869 Fortran compiler, not all existing extensions are supported. This section
2870 aims at listing these extensions and offering advice on how best make
2871 code that uses them running with the GNU Fortran compiler.
2872
2873 @c More can be found here:
2874 @c -- https://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/Missing-Features.html
2875 @c -- the list of Fortran and libgfortran bugs closed as WONTFIX:
2876 @c http://tinyurl.com/2u4h5y
2877
2878 @menu
2879 * ENCODE and DECODE statements::
2880 * Variable FORMAT expressions::
2881 @c * Q edit descriptor::
2882 @c * TYPE and ACCEPT I/O Statements::
2883 @c * DEFAULTFILE, DISPOSE and RECORDTYPE I/O specifiers::
2884 @c * Omitted arguments in procedure call::
2885 * Alternate complex function syntax::
2886 * Volatile COMMON blocks::
2887 * OPEN( ... NAME=)::
2888 @end menu
2889
2890 @node ENCODE and DECODE statements
2891 @subsection @code{ENCODE} and @code{DECODE} statements
2892 @cindex @code{ENCODE}
2893 @cindex @code{DECODE}
2894
2895 GNU Fortran does not support the @code{ENCODE} and @code{DECODE}
2896 statements. These statements are best replaced by @code{READ} and
2897 @code{WRITE} statements involving internal files (@code{CHARACTER}
2898 variables and arrays), which have been part of the Fortran standard since
2899 Fortran 77. For example, replace a code fragment like
2900
2901 @smallexample
2902 INTEGER*1 LINE(80)
2903 REAL A, B, C
2904 c ... Code that sets LINE
2905 DECODE (80, 9000, LINE) A, B, C
2906 9000 FORMAT (1X, 3(F10.5))
2907 @end smallexample
2908
2909 @noindent
2910 with the following:
2911
2912 @smallexample
2913 CHARACTER(LEN=80) LINE
2914 REAL A, B, C
2915 c ... Code that sets LINE
2916 READ (UNIT=LINE, FMT=9000) A, B, C
2917 9000 FORMAT (1X, 3(F10.5))
2918 @end smallexample
2919
2920 Similarly, replace a code fragment like
2921
2922 @smallexample
2923 INTEGER*1 LINE(80)
2924 REAL A, B, C
2925 c ... Code that sets A, B and C
2926 ENCODE (80, 9000, LINE) A, B, C
2927 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
2928 @end smallexample
2929
2930 @noindent
2931 with the following:
2932
2933 @smallexample
2934 CHARACTER(LEN=80) LINE
2935 REAL A, B, C
2936 c ... Code that sets A, B and C
2937 WRITE (UNIT=LINE, FMT=9000) A, B, C
2938 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
2939 @end smallexample
2940
2941
2942 @node Variable FORMAT expressions
2943 @subsection Variable @code{FORMAT} expressions
2944 @cindex @code{FORMAT}
2945
2946 A variable @code{FORMAT} expression is format statement which includes
2947 angle brackets enclosing a Fortran expression: @code{FORMAT(I<N>)}. GNU
2948 Fortran does not support this legacy extension. The effect of variable
2949 format expressions can be reproduced by using the more powerful (and
2950 standard) combination of internal output and string formats. For example,
2951 replace a code fragment like this:
2952
2953 @smallexample
2954 WRITE(6,20) INT1
2955 20 FORMAT(I<N+1>)
2956 @end smallexample
2957
2958 @noindent
2959 with the following:
2960
2961 @smallexample
2962 c Variable declaration
2963 CHARACTER(LEN=20) FMT
2964 c
2965 c Other code here...
2966 c
2967 WRITE(FMT,'("(I", I0, ")")') N+1
2968 WRITE(6,FMT) INT1
2969 @end smallexample
2970
2971 @noindent
2972 or with:
2973
2974 @smallexample
2975 c Variable declaration
2976 CHARACTER(LEN=20) FMT
2977 c
2978 c Other code here...
2979 c
2980 WRITE(FMT,*) N+1
2981 WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1
2982 @end smallexample
2983
2984
2985 @node Alternate complex function syntax
2986 @subsection Alternate complex function syntax
2987 @cindex Complex function
2988
2989 Some Fortran compilers, including @command{g77}, let the user declare
2990 complex functions with the syntax @code{COMPLEX FUNCTION name*16()}, as
2991 well as @code{COMPLEX*16 FUNCTION name()}. Both are non-standard, legacy
2992 extensions. @command{gfortran} accepts the latter form, which is more
2993 common, but not the former.
2994
2995
2996 @node Volatile COMMON blocks
2997 @subsection Volatile @code{COMMON} blocks
2998 @cindex @code{VOLATILE}
2999 @cindex @code{COMMON}
3000
3001 Some Fortran compilers, including @command{g77}, let the user declare
3002 @code{COMMON} with the @code{VOLATILE} attribute. This is
3003 invalid standard Fortran syntax and is not supported by
3004 @command{gfortran}. Note that @command{gfortran} accepts
3005 @code{VOLATILE} variables in @code{COMMON} blocks since revision 4.3.
3006
3007
3008 @node OPEN( ... NAME=)
3009 @subsection @code{OPEN( ... NAME=)}
3010 @cindex @code{NAM}
3011
3012 Some Fortran compilers, including @command{g77}, let the user declare
3013 @code{OPEN( ... NAME=)}. This is
3014 invalid standard Fortran syntax and is not supported by
3015 @command{gfortran}. @code{OPEN( ... NAME=)} should be replaced
3016 with @code{OPEN( ... FILE=)}.
3017
3018
3019
3020 @c ---------------------------------------------------------------------
3021 @c ---------------------------------------------------------------------
3022 @c Mixed-Language Programming
3023 @c ---------------------------------------------------------------------
3024
3025 @node Mixed-Language Programming
3026 @chapter Mixed-Language Programming
3027 @cindex Interoperability
3028 @cindex Mixed-language programming
3029
3030 @menu
3031 * Interoperability with C::
3032 * GNU Fortran Compiler Directives::
3033 * Non-Fortran Main Program::
3034 * Naming and argument-passing conventions::
3035 @end menu
3036
3037 This chapter is about mixed-language interoperability, but also applies
3038 if one links Fortran code compiled by different compilers. In most cases,
3039 use of the C Binding features of the Fortran 2003 standard is sufficient,
3040 and their use is highly recommended.
3041
3042
3043 @node Interoperability with C
3044 @section Interoperability with C
3045
3046 @menu
3047 * Intrinsic Types::
3048 * Derived Types and struct::
3049 * Interoperable Global Variables::
3050 * Interoperable Subroutines and Functions::
3051 * Working with Pointers::
3052 * Further Interoperability of Fortran with C::
3053 @end menu
3054
3055 Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a
3056 standardized way to generate procedure and derived-type
3057 declarations and global variables which are interoperable with C
3058 (ISO/IEC 9899:1999). The @code{bind(C)} attribute has been added
3059 to inform the compiler that a symbol shall be interoperable with C;
3060 also, some constraints are added. Note, however, that not
3061 all C features have a Fortran equivalent or vice versa. For instance,
3062 neither C's unsigned integers nor C's functions with variable number
3063 of arguments have an equivalent in Fortran.
3064
3065 Note that array dimensions are reversely ordered in C and that arrays in
3066 C always start with index 0 while in Fortran they start by default with
3067 1. Thus, an array declaration @code{A(n,m)} in Fortran matches
3068 @code{A[m][n]} in C and accessing the element @code{A(i,j)} matches
3069 @code{A[j-1][i-1]}. The element following @code{A(i,j)} (C: @code{A[j-1][i-1]};
3070 assuming @math{i < n}) in memory is @code{A(i+1,j)} (C: @code{A[j-1][i]}).
3071
3072 @node Intrinsic Types
3073 @subsection Intrinsic Types
3074
3075 In order to ensure that exactly the same variable type and kind is used
3076 in C and Fortran, the named constants shall be used which are defined in the
3077 @code{ISO_C_BINDING} intrinsic module. That module contains named constants
3078 for kind parameters and character named constants for the escape sequences
3079 in C. For a list of the constants, see @ref{ISO_C_BINDING}.
3080
3081 For logical types, please note that the Fortran standard only guarantees
3082 interoperability between C99's @code{_Bool} and Fortran's @code{C_Bool}-kind
3083 logicals and C99 defines that @code{true} has the value 1 and @code{false}
3084 the value 0. Using any other integer value with GNU Fortran's @code{LOGICAL}
3085 (with any kind parameter) gives an undefined result. (Passing other integer
3086 values than 0 and 1 to GCC's @code{_Bool} is also undefined, unless the
3087 integer is explicitly or implicitly casted to @code{_Bool}.)
3088
3089
3090
3091 @node Derived Types and struct
3092 @subsection Derived Types and struct
3093
3094 For compatibility of derived types with @code{struct}, one needs to use
3095 the @code{BIND(C)} attribute in the type declaration. For instance, the
3096 following type declaration
3097
3098 @smallexample
3099 USE ISO_C_BINDING
3100 TYPE, BIND(C) :: myType
3101 INTEGER(C_INT) :: i1, i2
3102 INTEGER(C_SIGNED_CHAR) :: i3
3103 REAL(C_DOUBLE) :: d1
3104 COMPLEX(C_FLOAT_COMPLEX) :: c1
3105 CHARACTER(KIND=C_CHAR) :: str(5)
3106 END TYPE
3107 @end smallexample
3108
3109 matches the following @code{struct} declaration in C
3110
3111 @smallexample
3112 struct @{
3113 int i1, i2;
3114 /* Note: "char" might be signed or unsigned. */
3115 signed char i3;
3116 double d1;
3117 float _Complex c1;
3118 char str[5];
3119 @} myType;
3120 @end smallexample
3121
3122 Derived types with the C binding attribute shall not have the @code{sequence}
3123 attribute, type parameters, the @code{extends} attribute, nor type-bound
3124 procedures. Every component must be of interoperable type and kind and may not
3125 have the @code{pointer} or @code{allocatable} attribute. The names of the
3126 components are irrelevant for interoperability.
3127
3128 As there exist no direct Fortran equivalents, neither unions nor structs
3129 with bit field or variable-length array members are interoperable.
3130
3131 @node Interoperable Global Variables
3132 @subsection Interoperable Global Variables
3133
3134 Variables can be made accessible from C using the C binding attribute,
3135 optionally together with specifying a binding name. Those variables
3136 have to be declared in the declaration part of a @code{MODULE},
3137 be of interoperable type, and have neither the @code{pointer} nor
3138 the @code{allocatable} attribute.
3139
3140 @smallexample
3141 MODULE m
3142 USE myType_module
3143 USE ISO_C_BINDING
3144 integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
3145 type(myType), bind(C) :: tp
3146 END MODULE
3147 @end smallexample
3148
3149 Here, @code{_MyProject_flags} is the case-sensitive name of the variable
3150 as seen from C programs while @code{global_flag} is the case-insensitive
3151 name as seen from Fortran. If no binding name is specified, as for
3152 @var{tp}, the C binding name is the (lowercase) Fortran binding name.
3153 If a binding name is specified, only a single variable may be after the
3154 double colon. Note of warning: You cannot use a global variable to
3155 access @var{errno} of the C library as the C standard allows it to be
3156 a macro. Use the @code{IERRNO} intrinsic (GNU extension) instead.
3157
3158 @node Interoperable Subroutines and Functions
3159 @subsection Interoperable Subroutines and Functions
3160
3161 Subroutines and functions have to have the @code{BIND(C)} attribute to
3162 be compatible with C. The dummy argument declaration is relatively
3163 straightforward. However, one needs to be careful because C uses
3164 call-by-value by default while Fortran behaves usually similar to
3165 call-by-reference. Furthermore, strings and pointers are handled
3166 differently. Note that in Fortran 2003 and 2008 only explicit size
3167 and assumed-size arrays are supported but not assumed-shape or
3168 deferred-shape (i.e. allocatable or pointer) arrays. However, those
3169 are allowed since the Technical Specification 29113, see
3170 @ref{Further Interoperability of Fortran with C}
3171
3172 To pass a variable by value, use the @code{VALUE} attribute.
3173 Thus, the following C prototype
3174
3175 @smallexample
3176 @code{int func(int i, int *j)}
3177 @end smallexample
3178
3179 matches the Fortran declaration
3180
3181 @smallexample
3182 integer(c_int) function func(i,j)
3183 use iso_c_binding, only: c_int
3184 integer(c_int), VALUE :: i
3185 integer(c_int) :: j
3186 @end smallexample
3187
3188 Note that pointer arguments also frequently need the @code{VALUE} attribute,
3189 see @ref{Working with Pointers}.
3190
3191 Strings are handled quite differently in C and Fortran. In C a string
3192 is a @code{NUL}-terminated array of characters while in Fortran each string
3193 has a length associated with it and is thus not terminated (by e.g.
3194 @code{NUL}). For example, if one wants to use the following C function,
3195
3196 @smallexample
3197 #include <stdio.h>
3198 void print_C(char *string) /* equivalent: char string[] */
3199 @{
3200 printf("%s\n", string);
3201 @}
3202 @end smallexample
3203
3204 to print ``Hello World'' from Fortran, one can call it using
3205
3206 @smallexample
3207 use iso_c_binding, only: C_CHAR, C_NULL_CHAR
3208 interface
3209 subroutine print_c(string) bind(C, name="print_C")
3210 use iso_c_binding, only: c_char
3211 character(kind=c_char) :: string(*)
3212 end subroutine print_c
3213 end interface
3214 call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)
3215 @end smallexample
3216
3217 As the example shows, one needs to ensure that the
3218 string is @code{NUL} terminated. Additionally, the dummy argument
3219 @var{string} of @code{print_C} is a length-one assumed-size
3220 array; using @code{character(len=*)} is not allowed. The example
3221 above uses @code{c_char_"Hello World"} to ensure the string
3222 literal has the right type; typically the default character
3223 kind and @code{c_char} are the same and thus @code{"Hello World"}
3224 is equivalent. However, the standard does not guarantee this.
3225
3226 The use of strings is now further illustrated using the C library
3227 function @code{strncpy}, whose prototype is
3228
3229 @smallexample
3230 char *strncpy(char *restrict s1, const char *restrict s2, size_t n);
3231 @end smallexample
3232
3233 The function @code{strncpy} copies at most @var{n} characters from
3234 string @var{s2} to @var{s1} and returns @var{s1}. In the following
3235 example, we ignore the return value:
3236
3237 @smallexample
3238 use iso_c_binding
3239 implicit none
3240 character(len=30) :: str,str2
3241 interface
3242 ! Ignore the return value of strncpy -> subroutine
3243 ! "restrict" is always assumed if we do not pass a pointer
3244 subroutine strncpy(dest, src, n) bind(C)
3245 import
3246 character(kind=c_char), intent(out) :: dest(*)
3247 character(kind=c_char), intent(in) :: src(*)
3248 integer(c_size_t), value, intent(in) :: n
3249 end subroutine strncpy
3250 end interface
3251 str = repeat('X',30) ! Initialize whole string with 'X'
3252 call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
3253 len(c_char_"Hello World",kind=c_size_t))
3254 print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
3255 end
3256 @end smallexample
3257
3258 The intrinsic procedures are described in @ref{Intrinsic Procedures}.
3259
3260 @node Working with Pointers
3261 @subsection Working with Pointers
3262
3263 C pointers are represented in Fortran via the special opaque derived type
3264 @code{type(c_ptr)} (with private components). Thus one needs to
3265 use intrinsic conversion procedures to convert from or to C pointers.
3266
3267 For some applications, using an assumed type (@code{TYPE(*)}) can be an
3268 alternative to a C pointer; see
3269 @ref{Further Interoperability of Fortran with C}.
3270
3271 For example,
3272
3273 @smallexample
3274 use iso_c_binding
3275 type(c_ptr) :: cptr1, cptr2
3276 integer, target :: array(7), scalar
3277 integer, pointer :: pa(:), ps
3278 cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
3279 ! array is contiguous if required by the C
3280 ! procedure
3281 cptr2 = c_loc(scalar)
3282 call c_f_pointer(cptr2, ps)
3283 call c_f_pointer(cptr2, pa, shape=[7])
3284 @end smallexample
3285
3286 When converting C to Fortran arrays, the one-dimensional @code{SHAPE} argument
3287 has to be passed.
3288
3289 If a pointer is a dummy-argument of an interoperable procedure, it usually
3290 has to be declared using the @code{VALUE} attribute. @code{void*}
3291 matches @code{TYPE(C_PTR), VALUE}, while @code{TYPE(C_PTR)} alone
3292 matches @code{void**}.
3293
3294 Procedure pointers are handled analogously to pointers; the C type is
3295 @code{TYPE(C_FUNPTR)} and the intrinsic conversion procedures are
3296 @code{C_F_PROCPOINTER} and @code{C_FUNLOC}.
3297
3298 Let us consider two examples of actually passing a procedure pointer from
3299 C to Fortran and vice versa. Note that these examples are also very
3300 similar to passing ordinary pointers between both languages. First,
3301 consider this code in C:
3302
3303 @smallexample
3304 /* Procedure implemented in Fortran. */
3305 void get_values (void (*)(double));
3306
3307 /* Call-back routine we want called from Fortran. */
3308 void
3309 print_it (double x)
3310 @{
3311 printf ("Number is %f.\n", x);
3312 @}
3313
3314 /* Call Fortran routine and pass call-back to it. */
3315 void
3316 foobar ()
3317 @{
3318 get_values (&print_it);
3319 @}
3320 @end smallexample
3321
3322 A matching implementation for @code{get_values} in Fortran, that correctly
3323 receives the procedure pointer from C and is able to call it, is given
3324 in the following @code{MODULE}:
3325
3326 @smallexample
3327 MODULE m
3328 IMPLICIT NONE
3329
3330 ! Define interface of call-back routine.
3331 ABSTRACT INTERFACE
3332 SUBROUTINE callback (x)
3333 USE, INTRINSIC :: ISO_C_BINDING
3334 REAL(KIND=C_DOUBLE), INTENT(IN), VALUE :: x
3335 END SUBROUTINE callback
3336 END INTERFACE
3337
3338 CONTAINS
3339
3340 ! Define C-bound procedure.
3341 SUBROUTINE get_values (cproc) BIND(C)
3342 USE, INTRINSIC :: ISO_C_BINDING
3343 TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc
3344
3345 PROCEDURE(callback), POINTER :: proc
3346
3347 ! Convert C to Fortran procedure pointer.
3348 CALL C_F_PROCPOINTER (cproc, proc)
3349
3350 ! Call it.
3351 CALL proc (1.0_C_DOUBLE)
3352 CALL proc (-42.0_C_DOUBLE)
3353 CALL proc (18.12_C_DOUBLE)
3354 END SUBROUTINE get_values
3355
3356 END MODULE m
3357 @end smallexample
3358
3359 Next, we want to call a C routine that expects a procedure pointer argument
3360 and pass it a Fortran procedure (which clearly must be interoperable!).
3361 Again, the C function may be:
3362
3363 @smallexample
3364 int
3365 call_it (int (*func)(int), int arg)
3366 @{
3367 return func (arg);
3368 @}
3369 @end smallexample
3370
3371 It can be used as in the following Fortran code:
3372
3373 @smallexample
3374 MODULE m
3375 USE, INTRINSIC :: ISO_C_BINDING
3376 IMPLICIT NONE
3377
3378 ! Define interface of C function.
3379 INTERFACE
3380 INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
3381 USE, INTRINSIC :: ISO_C_BINDING
3382 TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
3383 INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
3384 END FUNCTION call_it
3385 END INTERFACE
3386
3387 CONTAINS
3388
3389 ! Define procedure passed to C function.
3390 ! It must be interoperable!
3391 INTEGER(KIND=C_INT) FUNCTION double_it (arg) BIND(C)
3392 INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
3393 double_it = arg + arg
3394 END FUNCTION double_it
3395
3396 ! Call C function.
3397 SUBROUTINE foobar ()
3398 TYPE(C_FUNPTR) :: cproc
3399 INTEGER(KIND=C_INT) :: i
3400
3401 ! Get C procedure pointer.
3402 cproc = C_FUNLOC (double_it)
3403
3404 ! Use it.
3405 DO i = 1_C_INT, 10_C_INT
3406 PRINT *, call_it (cproc, i)
3407 END DO
3408 END SUBROUTINE foobar
3409
3410 END MODULE m
3411 @end smallexample
3412
3413 @node Further Interoperability of Fortran with C
3414 @subsection Further Interoperability of Fortran with C
3415
3416 The Technical Specification ISO/IEC TS 29113:2012 on further
3417 interoperability of Fortran with C extends the interoperability support
3418 of Fortran 2003 and Fortran 2008. Besides removing some restrictions
3419 and constraints, it adds assumed-type (@code{TYPE(*)}) and assumed-rank
3420 (@code{dimension}) variables and allows for interoperability of
3421 assumed-shape, assumed-rank and deferred-shape arrays, including
3422 allocatables and pointers.
3423
3424 Note: Currently, GNU Fortran does not support the array descriptor
3425 (dope vector) as specified in the Technical Specification, but uses
3426 an array descriptor with different fields. The Chasm Language
3427 Interoperability Tools, @url{http://chasm-interop.sourceforge.net/},
3428 provide an interface to GNU Fortran's array descriptor.
3429
3430 The Technical Specification adds the following new features, which
3431 are supported by GNU Fortran:
3432
3433 @itemize @bullet
3434
3435 @item The @code{ASYNCHRONOUS} attribute has been clarified and
3436 extended to allow its use with asynchronous communication in
3437 user-provided libraries such as in implementations of the
3438 Message Passing Interface specification.
3439
3440 @item Many constraints have been relaxed, in particular for
3441 the @code{C_LOC} and @code{C_F_POINTER} intrinsics.
3442
3443 @item The @code{OPTIONAL} attribute is now allowed for dummy
3444 arguments; an absent argument matches a @code{NULL} pointer.
3445
3446 @item Assumed types (@code{TYPE(*)}) have been added, which may
3447 only be used for dummy arguments. They are unlimited polymorphic
3448 but contrary to @code{CLASS(*)} they do not contain any type
3449 information, similar to C's @code{void *} pointers. Expressions
3450 of any type and kind can be passed; thus, it can be used as
3451 replacement for @code{TYPE(C_PTR)}, avoiding the use of
3452 @code{C_LOC} in the caller.
3453
3454 Note, however, that @code{TYPE(*)} only accepts scalar arguments,
3455 unless the @code{DIMENSION} is explicitly specified. As
3456 @code{DIMENSION(*)} only supports array (including array elements) but
3457 no scalars, it is not a full replacement for @code{C_LOC}. On the
3458 other hand, assumed-type assumed-rank dummy arguments
3459 (@code{TYPE(*), DIMENSION(..)}) allow for both scalars and arrays, but
3460 require special code on the callee side to handle the array descriptor.
3461
3462 @item Assumed-rank arrays (@code{DIMENSION(..)}) as dummy argument
3463 allow that scalars and arrays of any rank can be passed as actual
3464 argument. As the Technical Specification does not provide for direct
3465 means to operate with them, they have to be used either from the C side
3466 or be converted using @code{C_LOC} and @code{C_F_POINTER} to scalars
3467 or arrays of a specific rank. The rank can be determined using the
3468 @code{RANK} intrinisic.
3469 @end itemize
3470
3471
3472 Currently unimplemented:
3473
3474 @itemize @bullet
3475
3476 @item GNU Fortran always uses an array descriptor, which does not
3477 match the one of the Technical Specification. The
3478 @code{ISO_Fortran_binding.h} header file and the C functions it
3479 specifies are not available.
3480
3481 @item Using assumed-shape, assumed-rank and deferred-shape arrays in
3482 @code{BIND(C)} procedures is not fully supported. In particular,
3483 C interoperable strings of other length than one are not supported
3484 as this requires the new array descriptor.
3485 @end itemize
3486
3487
3488 @node GNU Fortran Compiler Directives
3489 @section GNU Fortran Compiler Directives
3490
3491 @menu
3492 * ATTRIBUTES directive::
3493 * UNROLL directive::
3494 @end menu
3495
3496 @node ATTRIBUTES directive
3497 @subsection ATTRIBUTES directive
3498
3499 The Fortran standard describes how a conforming program shall
3500 behave; however, the exact implementation is not standardized. In order
3501 to allow the user to choose specific implementation details, compiler
3502 directives can be used to set attributes of variables and procedures
3503 which are not part of the standard. Whether a given attribute is
3504 supported and its exact effects depend on both the operating system and
3505 on the processor; see
3506 @ref{Top,,C Extensions,gcc,Using the GNU Compiler Collection (GCC)}
3507 for details.
3508
3509 For procedures and procedure pointers, the following attributes can
3510 be used to change the calling convention:
3511
3512 @itemize
3513 @item @code{CDECL} -- standard C calling convention
3514 @item @code{STDCALL} -- convention where the called procedure pops the stack
3515 @item @code{FASTCALL} -- part of the arguments are passed via registers
3516 instead using the stack
3517 @end itemize
3518
3519 Besides changing the calling convention, the attributes also influence
3520 the decoration of the symbol name, e.g., by a leading underscore or by
3521 a trailing at-sign followed by the number of bytes on the stack. When
3522 assigning a procedure to a procedure pointer, both should use the same
3523 calling convention.
3524
3525 On some systems, procedures and global variables (module variables and
3526 @code{COMMON} blocks) need special handling to be accessible when they
3527 are in a shared library. The following attributes are available:
3528
3529 @itemize
3530 @item @code{DLLEXPORT} -- provide a global pointer to a pointer in the DLL
3531 @item @code{DLLIMPORT} -- reference the function or variable using a
3532 global pointer
3533 @end itemize
3534
3535 For dummy arguments, the @code{NO_ARG_CHECK} attribute can be used; in
3536 other compilers, it is also known as @code{IGNORE_TKR}. For dummy arguments
3537 with this attribute actual arguments of any type and kind (similar to
3538 @code{TYPE(*)}), scalars and arrays of any rank (no equivalent
3539 in Fortran standard) are accepted. As with @code{TYPE(*)}, the argument
3540 is unlimited polymorphic and no type information is available.
3541 Additionally, the argument may only be passed to dummy arguments
3542 with the @code{NO_ARG_CHECK} attribute and as argument to the
3543 @code{PRESENT} intrinsic function and to @code{C_LOC} of the
3544 @code{ISO_C_BINDING} module.
3545
3546 Variables with @code{NO_ARG_CHECK} attribute shall be of assumed-type
3547 (@code{TYPE(*)}; recommended) or of type @code{INTEGER}, @code{LOGICAL},
3548 @code{REAL} or @code{COMPLEX}. They shall not have the @code{ALLOCATE},
3549 @code{CODIMENSION}, @code{INTENT(OUT)}, @code{POINTER} or @code{VALUE}
3550 attribute; furthermore, they shall be either scalar or of assumed-size
3551 (@code{dimension(*)}). As @code{TYPE(*)}, the @code{NO_ARG_CHECK} attribute
3552 requires an explicit interface.
3553
3554 @itemize
3555 @item @code{NO_ARG_CHECK} -- disable the type, kind and rank checking
3556 @end itemize
3557
3558
3559 The attributes are specified using the syntax
3560
3561 @code{!GCC$ ATTRIBUTES} @var{attribute-list} @code{::} @var{variable-list}
3562
3563 where in free-form source code only whitespace is allowed before @code{!GCC$}
3564 and in fixed-form source code @code{!GCC$}, @code{cGCC$} or @code{*GCC$} shall
3565 start in the first column.
3566
3567 For procedures, the compiler directives shall be placed into the body
3568 of the procedure; for variables and procedure pointers, they shall be in
3569 the same declaration part as the variable or procedure pointer.
3570
3571
3572 @node UNROLL directive
3573 @subsection UNROLL directive
3574
3575 The syntax of the directive is
3576
3577 @code{!GCC$ unroll N}
3578
3579 You can use this directive to control how many times a loop should be unrolled.
3580 It must be placed immediately before a @code{DO} loop and applies only to the
3581 loop that follows. N is an integer constant specifying the unrolling factor.
3582 The values of 0 and 1 block any unrolling of the loop.
3583
3584
3585
3586 @node Non-Fortran Main Program
3587 @section Non-Fortran Main Program
3588
3589 @menu
3590 * _gfortran_set_args:: Save command-line arguments
3591 * _gfortran_set_options:: Set library option flags
3592 * _gfortran_set_convert:: Set endian conversion
3593 * _gfortran_set_record_marker:: Set length of record markers
3594 * _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
3595 * _gfortran_set_max_subrecord_length:: Set subrecord length
3596 @end menu
3597
3598 Even if you are doing mixed-language programming, it is very
3599 likely that you do not need to know or use the information in this
3600 section. Since it is about the internal structure of GNU Fortran,
3601 it may also change in GCC minor releases.
3602
3603 When you compile a @code{PROGRAM} with GNU Fortran, a function
3604 with the name @code{main} (in the symbol table of the object file)
3605 is generated, which initializes the libgfortran library and then
3606 calls the actual program which uses the name @code{MAIN__}, for
3607 historic reasons. If you link GNU Fortran compiled procedures
3608 to, e.g., a C or C++ program or to a Fortran program compiled by
3609 a different compiler, the libgfortran library is not initialized
3610 and thus a few intrinsic procedures do not work properly, e.g.
3611 those for obtaining the command-line arguments.
3612
3613 Therefore, if your @code{PROGRAM} is not compiled with
3614 GNU Fortran and the GNU Fortran compiled procedures require
3615 intrinsics relying on the library initialization, you need to
3616 initialize the library yourself. Using the default options,
3617 gfortran calls @code{_gfortran_set_args} and
3618 @code{_gfortran_set_options}. The initialization of the former
3619 is needed if the called procedures access the command line
3620 (and for backtracing); the latter sets some flags based on the
3621 standard chosen or to enable backtracing. In typical programs,
3622 it is not necessary to call any initialization function.
3623
3624 If your @code{PROGRAM} is compiled with GNU Fortran, you shall
3625 not call any of the following functions. The libgfortran
3626 initialization functions are shown in C syntax but using C
3627 bindings they are also accessible from Fortran.
3628
3629
3630 @node _gfortran_set_args
3631 @subsection @code{_gfortran_set_args} --- Save command-line arguments
3632 @fnindex _gfortran_set_args
3633 @cindex libgfortran initialization, set_args
3634
3635 @table @asis
3636 @item @emph{Description}:
3637 @code{_gfortran_set_args} saves the command-line arguments; this
3638 initialization is required if any of the command-line intrinsics
3639 is called. Additionally, it shall be called if backtracing is
3640 enabled (see @code{_gfortran_set_options}).
3641
3642 @item @emph{Syntax}:
3643 @code{void _gfortran_set_args (int argc, char *argv[])}
3644
3645 @item @emph{Arguments}:
3646 @multitable @columnfractions .15 .70
3647 @item @var{argc} @tab number of command line argument strings
3648 @item @var{argv} @tab the command-line argument strings; argv[0]
3649 is the pathname of the executable itself.
3650 @end multitable
3651
3652 @item @emph{Example}:
3653 @smallexample
3654 int main (int argc, char *argv[])
3655 @{
3656 /* Initialize libgfortran. */
3657 _gfortran_set_args (argc, argv);
3658 return 0;
3659 @}
3660 @end smallexample
3661 @end table
3662
3663
3664 @node _gfortran_set_options
3665 @subsection @code{_gfortran_set_options} --- Set library option flags
3666 @fnindex _gfortran_set_options
3667 @cindex libgfortran initialization, set_options
3668
3669 @table @asis
3670 @item @emph{Description}:
3671 @code{_gfortran_set_options} sets several flags related to the Fortran
3672 standard to be used, whether backtracing should be enabled
3673 and whether range checks should be performed. The syntax allows for
3674 upward compatibility since the number of passed flags is specified; for
3675 non-passed flags, the default value is used. See also
3676 @pxref{Code Gen Options}. Please note that not all flags are actually
3677 used.
3678
3679 @item @emph{Syntax}:
3680 @code{void _gfortran_set_options (int num, int options[])}
3681
3682 @item @emph{Arguments}:
3683 @multitable @columnfractions .15 .70
3684 @item @var{num} @tab number of options passed
3685 @item @var{argv} @tab The list of flag values
3686 @end multitable
3687
3688 @item @emph{option flag list}:
3689 @multitable @columnfractions .15 .70
3690 @item @var{option}[0] @tab Allowed standard; can give run-time errors
3691 if e.g. an input-output edit descriptor is invalid in a given
3692 standard. Possible values are (bitwise or-ed) @code{GFC_STD_F77} (1),
3693 @code{GFC_STD_F95_OBS} (2), @code{GFC_STD_F95_DEL} (4),
3694 @code{GFC_STD_F95} (8), @code{GFC_STD_F2003} (16), @code{GFC_STD_GNU}
3695 (32), @code{GFC_STD_LEGACY} (64), @code{GFC_STD_F2008} (128),
3696 @code{GFC_STD_F2008_OBS} (256), @code{GFC_STD_F2008_TS} (512),
3697 @code{GFC_STD_F2018} (1024), @code{GFC_STD_F2018_OBS} (2048), and
3698 @code{GFC_STD=F2018_DEL} (4096). Default: @code{GFC_STD_F95_OBS |
3699 GFC_STD_F95_DEL | GFC_STD_F95 | GFC_STD_F2003 | GFC_STD_F2008 |
3700 GFC_STD_F2008_TS | GFC_STD_F2008_OBS | GFC_STD_F77 | GFC_STD_F2018 |
3701 GFC_STD_F2018_OBS | GFC_STD_F2018_DEL | GFC_STD_GNU | GFC_STD_LEGACY}.
3702 @item @var{option}[1] @tab Standard-warning flag; prints a warning to
3703 standard error. Default: @code{GFC_STD_F95_DEL | GFC_STD_LEGACY}.
3704 @item @var{option}[2] @tab If non zero, enable pedantic checking.
3705 Default: off.
3706 @item @var{option}[3] @tab Unused.
3707 @item @var{option}[4] @tab If non zero, enable backtracing on run-time
3708 errors. Default: off. (Default in the compiler: on.)
3709 Note: Installs a signal handler and requires command-line
3710 initialization using @code{_gfortran_set_args}.
3711 @item @var{option}[5] @tab If non zero, supports signed zeros.
3712 Default: enabled.
3713 @item @var{option}[6] @tab Enables run-time checking. Possible values
3714 are (bitwise or-ed): GFC_RTCHECK_BOUNDS (1), GFC_RTCHECK_ARRAY_TEMPS (2),
3715 GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16), GFC_RTCHECK_POINTER (32).
3716 Default: disabled.
3717 @item @var{option}[7] @tab Unused.
3718 @item @var{option}[8] @tab Show a warning when invoking @code{STOP} and
3719 @code{ERROR STOP} if a floating-point exception occurred. Possible values
3720 are (bitwise or-ed) @code{GFC_FPE_INVALID} (1), @code{GFC_FPE_DENORMAL} (2),
3721 @code{GFC_FPE_ZERO} (4), @code{GFC_FPE_OVERFLOW} (8),
3722 @code{GFC_FPE_UNDERFLOW} (16), @code{GFC_FPE_INEXACT} (32). Default: None (0).
3723 (Default in the compiler: @code{GFC_FPE_INVALID | GFC_FPE_DENORMAL |
3724 GFC_FPE_ZERO | GFC_FPE_OVERFLOW | GFC_FPE_UNDERFLOW}.)
3725 @end multitable
3726
3727 @item @emph{Example}:
3728 @smallexample
3729 /* Use gfortran 4.9 default options. */
3730 static int options[] = @{68, 511, 0, 0, 1, 1, 0, 0, 31@};
3731 _gfortran_set_options (9, &options);
3732 @end smallexample
3733 @end table
3734
3735
3736 @node _gfortran_set_convert
3737 @subsection @code{_gfortran_set_convert} --- Set endian conversion
3738 @fnindex _gfortran_set_convert
3739 @cindex libgfortran initialization, set_convert
3740
3741 @table @asis
3742 @item @emph{Description}:
3743 @code{_gfortran_set_convert} set the representation of data for
3744 unformatted files.
3745
3746 @item @emph{Syntax}:
3747 @code{void _gfortran_set_convert (int conv)}
3748
3749 @item @emph{Arguments}:
3750 @multitable @columnfractions .15 .70
3751 @item @var{conv} @tab Endian conversion, possible values:
3752 GFC_CONVERT_NATIVE (0, default), GFC_CONVERT_SWAP (1),
3753 GFC_CONVERT_BIG (2), GFC_CONVERT_LITTLE (3).
3754 @end multitable
3755
3756 @item @emph{Example}:
3757 @smallexample
3758 int main (int argc, char *argv[])
3759 @{
3760 /* Initialize libgfortran. */
3761 _gfortran_set_args (argc, argv);
3762 _gfortran_set_convert (1);
3763 return 0;
3764 @}
3765 @end smallexample
3766 @end table
3767
3768
3769 @node _gfortran_set_record_marker
3770 @subsection @code{_gfortran_set_record_marker} --- Set length of record markers
3771 @fnindex _gfortran_set_record_marker
3772 @cindex libgfortran initialization, set_record_marker
3773
3774 @table @asis
3775 @item @emph{Description}:
3776 @code{_gfortran_set_record_marker} sets the length of record markers
3777 for unformatted files.
3778
3779 @item @emph{Syntax}:
3780 @code{void _gfortran_set_record_marker (int val)}
3781
3782 @item @emph{Arguments}:
3783 @multitable @columnfractions .15 .70
3784 @item @var{val} @tab Length of the record marker; valid values
3785 are 4 and 8. Default is 4.
3786 @end multitable
3787
3788 @item @emph{Example}:
3789 @smallexample
3790 int main (int argc, char *argv[])
3791 @{
3792 /* Initialize libgfortran. */
3793 _gfortran_set_args (argc, argv);
3794 _gfortran_set_record_marker (8);
3795 return 0;
3796 @}
3797 @end smallexample
3798 @end table
3799
3800
3801 @node _gfortran_set_fpe
3802 @subsection @code{_gfortran_set_fpe} --- Enable floating point exception traps
3803 @fnindex _gfortran_set_fpe
3804 @cindex libgfortran initialization, set_fpe
3805
3806 @table @asis
3807 @item @emph{Description}:
3808 @code{_gfortran_set_fpe} enables floating point exception traps for
3809 the specified exceptions. On most systems, this will result in a
3810 SIGFPE signal being sent and the program being aborted.
3811
3812 @item @emph{Syntax}:
3813 @code{void _gfortran_set_fpe (int val)}
3814
3815 @item @emph{Arguments}:
3816 @multitable @columnfractions .15 .70
3817 @item @var{option}[0] @tab IEEE exceptions. Possible values are
3818 (bitwise or-ed) zero (0, default) no trapping,
3819 @code{GFC_FPE_INVALID} (1), @code{GFC_FPE_DENORMAL} (2),
3820 @code{GFC_FPE_ZERO} (4), @code{GFC_FPE_OVERFLOW} (8),
3821 @code{GFC_FPE_UNDERFLOW} (16), and @code{GFC_FPE_INEXACT} (32).
3822 @end multitable
3823
3824 @item @emph{Example}:
3825 @smallexample
3826 int main (int argc, char *argv[])
3827 @{
3828 /* Initialize libgfortran. */
3829 _gfortran_set_args (argc, argv);
3830 /* FPE for invalid operations such as SQRT(-1.0). */
3831 _gfortran_set_fpe (1);
3832 return 0;
3833 @}
3834 @end smallexample
3835 @end table
3836
3837
3838 @node _gfortran_set_max_subrecord_length
3839 @subsection @code{_gfortran_set_max_subrecord_length} --- Set subrecord length
3840 @fnindex _gfortran_set_max_subrecord_length
3841 @cindex libgfortran initialization, set_max_subrecord_length
3842
3843 @table @asis
3844 @item @emph{Description}:
3845 @code{_gfortran_set_max_subrecord_length} set the maximum length
3846 for a subrecord. This option only makes sense for testing and
3847 debugging of unformatted I/O.
3848
3849 @item @emph{Syntax}:
3850 @code{void _gfortran_set_max_subrecord_length (int val)}
3851
3852 @item @emph{Arguments}:
3853 @multitable @columnfractions .15 .70
3854 @item @var{val} @tab the maximum length for a subrecord;
3855 the maximum permitted value is 2147483639, which is also
3856 the default.
3857 @end multitable
3858
3859 @item @emph{Example}:
3860 @smallexample
3861 int main (int argc, char *argv[])
3862 @{
3863 /* Initialize libgfortran. */
3864 _gfortran_set_args (argc, argv);
3865 _gfortran_set_max_subrecord_length (8);
3866 return 0;
3867 @}
3868 @end smallexample
3869 @end table
3870
3871
3872 @node Naming and argument-passing conventions
3873 @section Naming and argument-passing conventions
3874
3875 This section gives an overview about the naming convention of procedures
3876 and global variables and about the argument passing conventions used by
3877 GNU Fortran. If a C binding has been specified, the naming convention
3878 and some of the argument-passing conventions change. If possible,
3879 mixed-language and mixed-compiler projects should use the better defined
3880 C binding for interoperability. See @pxref{Interoperability with C}.
3881
3882 @menu
3883 * Naming conventions::
3884 * Argument passing conventions::
3885 @end menu
3886
3887
3888 @node Naming conventions
3889 @subsection Naming conventions
3890
3891 According the Fortran standard, valid Fortran names consist of a letter
3892 between @code{A} to @code{Z}, @code{a} to @code{z}, digits @code{0},
3893 @code{1} to @code{9} and underscores (@code{_}) with the restriction
3894 that names may only start with a letter. As vendor extension, the
3895 dollar sign (@code{$}) is additionally permitted with the option
3896 @option{-fdollar-ok}, but not as first character and only if the
3897 target system supports it.
3898
3899 By default, the procedure name is the lower-cased Fortran name with an
3900 appended underscore (@code{_}); using @option{-fno-underscoring} no
3901 underscore is appended while @code{-fsecond-underscore} appends two
3902 underscores. Depending on the target system and the calling convention,
3903 the procedure might be additionally dressed; for instance, on 32bit
3904 Windows with @code{stdcall}, an at-sign @code{@@} followed by an integer
3905 number is appended. For the changing the calling convention, see
3906 @pxref{GNU Fortran Compiler Directives}.
3907
3908 For common blocks, the same convention is used, i.e. by default an
3909 underscore is appended to the lower-cased Fortran name. Blank commons
3910 have the name @code{__BLNK__}.
3911
3912 For procedures and variables declared in the specification space of a
3913 module, the name is formed by @code{__}, followed by the lower-cased
3914 module name, @code{_MOD_}, and the lower-cased Fortran name. Note that
3915 no underscore is appended.
3916
3917
3918 @node Argument passing conventions
3919 @subsection Argument passing conventions
3920
3921 Subroutines do not return a value (matching C99's @code{void}) while
3922 functions either return a value as specified in the platform ABI or
3923 the result variable is passed as hidden argument to the function and
3924 no result is returned. A hidden result variable is used when the
3925 result variable is an array or of type @code{CHARACTER}.
3926
3927 Arguments are passed according to the platform ABI. In particular,
3928 complex arguments might not be compatible to a struct with two real
3929 components for the real and imaginary part. The argument passing
3930 matches the one of C99's @code{_Complex}. Functions with scalar
3931 complex result variables return their value and do not use a
3932 by-reference argument. Note that with the @option{-ff2c} option,
3933 the argument passing is modified and no longer completely matches
3934 the platform ABI. Some other Fortran compilers use @code{f2c}
3935 semantic by default; this might cause problems with
3936 interoperablility.
3937
3938 GNU Fortran passes most arguments by reference, i.e. by passing a
3939 pointer to the data. Note that the compiler might use a temporary
3940 variable into which the actual argument has been copied, if required
3941 semantically (copy-in/copy-out).
3942
3943 For arguments with @code{ALLOCATABLE} and @code{POINTER}
3944 attribute (including procedure pointers), a pointer to the pointer
3945 is passed such that the pointer address can be modified in the
3946 procedure.
3947
3948 For dummy arguments with the @code{VALUE} attribute: Scalar arguments
3949 of the type @code{INTEGER}, @code{LOGICAL}, @code{REAL} and
3950 @code{COMPLEX} are passed by value according to the platform ABI.
3951 (As vendor extension and not recommended, using @code{%VAL()} in the
3952 call to a procedure has the same effect.) For @code{TYPE(C_PTR)} and
3953 procedure pointers, the pointer itself is passed such that it can be
3954 modified without affecting the caller.
3955 @c FIXME: Document how VALUE is handled for CHARACTER, TYPE,
3956 @c CLASS and arrays, i.e. whether the copy-in is done in the caller
3957 @c or in the callee.
3958
3959 For Boolean (@code{LOGICAL}) arguments, please note that GCC expects
3960 only the integer value 0 and 1. If a GNU Fortran @code{LOGICAL}
3961 variable contains another integer value, the result is undefined.
3962 As some other Fortran compilers use @math{-1} for @code{.TRUE.},
3963 extra care has to be taken -- such as passing the value as
3964 @code{INTEGER}. (The same value restriction also applies to other
3965 front ends of GCC, e.g. to GCC's C99 compiler for @code{_Bool}
3966 or GCC's Ada compiler for @code{Boolean}.)
3967
3968 For arguments of @code{CHARACTER} type, the character length is passed
3969 as a hidden argument at the end of the argument list. For
3970 deferred-length strings, the value is passed by reference, otherwise
3971 by value. The character length has the C type @code{size_t} (or
3972 @code{INTEGER(kind=C_SIZE_T)} in Fortran). Note that this is
3973 different to older versions of the GNU Fortran compiler, where the
3974 type of the hidden character length argument was a C @code{int}. In
3975 order to retain compatibility with older versions, one can e.g. for
3976 the following Fortran procedure
3977
3978 @smallexample
3979 subroutine fstrlen (s, a)
3980 character(len=*) :: s
3981 integer :: a
3982 print*, len(s)
3983 end subroutine fstrlen
3984 @end smallexample
3985
3986 define the corresponding C prototype as follows:
3987
3988 @smallexample
3989 #if __GNUC__ > 7
3990 typedef size_t fortran_charlen_t;
3991 #else
3992 typedef int fortran_charlen_t;
3993 #endif
3994
3995 void fstrlen_ (char*, int*, fortran_charlen_t);
3996 @end smallexample
3997
3998 In order to avoid such compiler-specific details, for new code it is
3999 instead recommended to use the ISO_C_BINDING feature.
4000
4001 Note with C binding, @code{CHARACTER(len=1)} result variables are
4002 returned according to the platform ABI and no hidden length argument
4003 is used for dummy arguments; with @code{VALUE}, those variables are
4004 passed by value.
4005
4006 For @code{OPTIONAL} dummy arguments, an absent argument is denoted
4007 by a NULL pointer, except for scalar dummy arguments of type
4008 @code{INTEGER}, @code{LOGICAL}, @code{REAL} and @code{COMPLEX}
4009 which have the @code{VALUE} attribute. For those, a hidden Boolean
4010 argument (@code{logical(kind=C_bool),value}) is used to indicate
4011 whether the argument is present.
4012
4013 Arguments which are assumed-shape, assumed-rank or deferred-rank
4014 arrays or, with @option{-fcoarray=lib}, allocatable scalar coarrays use
4015 an array descriptor. All other arrays pass the address of the
4016 first element of the array. With @option{-fcoarray=lib}, the token
4017 and the offset belonging to nonallocatable coarrays dummy arguments
4018 are passed as hidden argument along the character length hidden
4019 arguments. The token is an oparque pointer identifying the coarray
4020 and the offset is a passed-by-value integer of kind @code{C_PTRDIFF_T},
4021 denoting the byte offset between the base address of the coarray and
4022 the passed scalar or first element of the passed array.
4023
4024 The arguments are passed in the following order
4025 @itemize @bullet
4026 @item Result variable, when the function result is passed by reference
4027 @item Character length of the function result, if it is a of type
4028 @code{CHARACTER} and no C binding is used
4029 @item The arguments in the order in which they appear in the Fortran
4030 declaration
4031 @item The the present status for optional arguments with value attribute,
4032 which are internally passed by value
4033 @item The character length and/or coarray token and offset for the first
4034 argument which is a @code{CHARACTER} or a nonallocatable coarray dummy
4035 argument, followed by the hidden arguments of the next dummy argument
4036 of such a type
4037 @end itemize
4038
4039
4040 @c ---------------------------------------------------------------------
4041 @c Coarray Programming
4042 @c ---------------------------------------------------------------------
4043
4044 @node Coarray Programming
4045 @chapter Coarray Programming
4046 @cindex Coarrays
4047
4048 @menu
4049 * Type and enum ABI Documentation::
4050 * Function ABI Documentation::
4051 @end menu
4052
4053
4054 @node Type and enum ABI Documentation
4055 @section Type and enum ABI Documentation
4056
4057 @menu
4058 * caf_token_t::
4059 * caf_register_t::
4060 * caf_deregister_t::
4061 * caf_reference_t::
4062 * caf_team_t::
4063 @end menu
4064
4065 @node caf_token_t
4066 @subsection @code{caf_token_t}
4067
4068 Typedef of type @code{void *} on the compiler side. Can be any data
4069 type on the library side.
4070
4071 @node caf_register_t
4072 @subsection @code{caf_register_t}
4073
4074 Indicates which kind of coarray variable should be registered.
4075
4076 @verbatim
4077 typedef enum caf_register_t {
4078 CAF_REGTYPE_COARRAY_STATIC,
4079 CAF_REGTYPE_COARRAY_ALLOC,
4080 CAF_REGTYPE_LOCK_STATIC,
4081 CAF_REGTYPE_LOCK_ALLOC,
4082 CAF_REGTYPE_CRITICAL,
4083 CAF_REGTYPE_EVENT_STATIC,
4084 CAF_REGTYPE_EVENT_ALLOC,
4085 CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY,
4086 CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY
4087 }
4088 caf_register_t;
4089 @end verbatim
4090
4091 The values @code{CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY} and
4092 @code{CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY} are for allocatable components
4093 in derived type coarrays only. The first one sets up the token without
4094 allocating memory for allocatable component. The latter one only allocates the
4095 memory for an allocatable component in a derived type coarray. The token
4096 needs to be setup previously by the REGISTER_ONLY. This allows to have
4097 allocatable components un-allocated on some images. The status whether an
4098 allocatable component is allocated on a remote image can be queried by
4099 @code{_caf_is_present} which used internally by the @code{ALLOCATED}
4100 intrinsic.
4101
4102 @node caf_deregister_t
4103 @subsection @code{caf_deregister_t}
4104
4105 @verbatim
4106 typedef enum caf_deregister_t {
4107 CAF_DEREGTYPE_COARRAY_DEREGISTER,
4108 CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY
4109 }
4110 caf_deregister_t;
4111 @end verbatim
4112
4113 Allows to specifiy the type of deregistration of a coarray object. The
4114 @code{CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY} flag is only allowed for
4115 allocatable components in derived type coarrays.
4116
4117 @node caf_reference_t
4118 @subsection @code{caf_reference_t}
4119
4120 The structure used for implementing arbitrary reference chains.
4121 A @code{CAF_REFERENCE_T} allows to specify a component reference or any kind
4122 of array reference of any rank supported by gfortran. For array references all
4123 kinds as known by the compiler/Fortran standard are supported indicated by
4124 a @code{MODE}.
4125
4126 @verbatim
4127 typedef enum caf_ref_type_t {
4128 /* Reference a component of a derived type, either regular one or an
4129 allocatable or pointer type. For regular ones idx in caf_reference_t is
4130 set to -1. */
4131 CAF_REF_COMPONENT,
4132 /* Reference an allocatable array. */
4133 CAF_REF_ARRAY,
4134 /* Reference a non-allocatable/non-pointer array. I.e., the coarray object
4135 has no array descriptor associated and the addressing is done
4136 completely using the ref. */
4137 CAF_REF_STATIC_ARRAY
4138 } caf_ref_type_t;
4139 @end verbatim
4140
4141 @verbatim
4142 typedef enum caf_array_ref_t {
4143 /* No array ref. This terminates the array ref. */
4144 CAF_ARR_REF_NONE = 0,
4145 /* Reference array elements given by a vector. Only for this mode
4146 caf_reference_t.u.a.dim[i].v is valid. */
4147 CAF_ARR_REF_VECTOR,
4148 /* A full array ref (:). */
4149 CAF_ARR_REF_FULL,
4150 /* Reference a range on elements given by start, end and stride. */
4151 CAF_ARR_REF_RANGE,
4152 /* Only a single item is referenced given in the start member. */
4153 CAF_ARR_REF_SINGLE,
4154 /* An array ref of the kind (i:), where i is an arbitrary valid index in the
4155 array. The index i is given in the start member. */
4156 CAF_ARR_REF_OPEN_END,
4157 /* An array ref of the kind (:i), where the lower bound of the array ref
4158 is given by the remote side. The index i is given in the end member. */
4159 CAF_ARR_REF_OPEN_START
4160 } caf_array_ref_t;
4161 @end verbatim
4162
4163 @verbatim
4164 /* References to remote components of a derived type. */
4165 typedef struct caf_reference_t {
4166 /* A pointer to the next ref or NULL. */
4167 struct caf_reference_t *next;
4168 /* The type of the reference. */
4169 /* caf_ref_type_t, replaced by int to allow specification in fortran FE. */
4170 int type;
4171 /* The size of an item referenced in bytes. I.e. in an array ref this is
4172 the factor to advance the array pointer with to get to the next item.
4173 For component refs this gives just the size of the element referenced. */
4174 size_t item_size;
4175 union {
4176 struct {
4177 /* The offset (in bytes) of the component in the derived type.
4178 Unused for allocatable or pointer components. */
4179 ptrdiff_t offset;
4180 /* The offset (in bytes) to the caf_token associated with this
4181 component. NULL, when not allocatable/pointer ref. */
4182 ptrdiff_t caf_token_offset;
4183 } c;
4184 struct {
4185 /* The mode of the array ref. See CAF_ARR_REF_*. */
4186 /* caf_array_ref_t, replaced by unsigend char to allow specification in
4187 fortran FE. */
4188 unsigned char mode[GFC_MAX_DIMENSIONS];
4189 /* The type of a static array. Unset for array's with descriptors. */
4190 int static_array_type;
4191 /* Subscript refs (s) or vector refs (v). */
4192 union {
4193 struct {
4194 /* The start and end boundary of the ref and the stride. */
4195 index_type start, end, stride;
4196 } s;
4197 struct {
4198 /* nvec entries of kind giving the elements to reference. */
4199 void *vector;
4200 /* The number of entries in vector. */
4201 size_t nvec;
4202 /* The integer kind used for the elements in vector. */
4203 int kind;
4204 } v;
4205 } dim[GFC_MAX_DIMENSIONS];
4206 } a;
4207 } u;
4208 } caf_reference_t;
4209 @end verbatim
4210
4211 The references make up a single linked list of reference operations. The
4212 @code{NEXT} member links to the next reference or NULL to indicate the end of
4213 the chain. Component and array refs can be arbitrarly mixed as long as they
4214 comply to the Fortran standard.
4215
4216 @emph{NOTES}
4217 The member @code{STATIC_ARRAY_TYPE} is used only when the @code{TYPE} is
4218 @code{CAF_REF_STATIC_ARRAY}. The member gives the type of the data referenced.
4219 Because no array descriptor is available for a descriptor-less array and
4220 type conversion still needs to take place the type is transported here.
4221
4222 At the moment @code{CAF_ARR_REF_VECTOR} is not implemented in the front end for
4223 descriptor-less arrays. The library caf_single has untested support for it.
4224
4225 @node caf_team_t
4226 @subsection @code{caf_team_t}
4227
4228 Opaque pointer to represent a team-handle. This type is a stand-in for the
4229 future implementation of teams. It is about to change without further notice.
4230
4231 @node Function ABI Documentation
4232 @section Function ABI Documentation
4233
4234 @menu
4235 * _gfortran_caf_init:: Initialiation function
4236 * _gfortran_caf_finish:: Finalization function
4237 * _gfortran_caf_this_image:: Querying the image number
4238 * _gfortran_caf_num_images:: Querying the maximal number of images
4239 * _gfortran_caf_image_status :: Query the status of an image
4240 * _gfortran_caf_failed_images :: Get an array of the indexes of the failed images
4241 * _gfortran_caf_stopped_images :: Get an array of the indexes of the stopped images
4242 * _gfortran_caf_register:: Registering coarrays
4243 * _gfortran_caf_deregister:: Deregistering coarrays
4244 * _gfortran_caf_is_present:: Query whether an allocatable or pointer component in a derived type coarray is allocated
4245 * _gfortran_caf_send:: Sending data from a local image to a remote image
4246 * _gfortran_caf_get:: Getting data from a remote image
4247 * _gfortran_caf_sendget:: Sending data between remote images
4248 * _gfortran_caf_send_by_ref:: Sending data from a local image to a remote image using enhanced references
4249 * _gfortran_caf_get_by_ref:: Getting data from a remote image using enhanced references
4250 * _gfortran_caf_sendget_by_ref:: Sending data between remote images using enhanced references
4251 * _gfortran_caf_lock:: Locking a lock variable
4252 * _gfortran_caf_unlock:: Unlocking a lock variable
4253 * _gfortran_caf_event_post:: Post an event
4254 * _gfortran_caf_event_wait:: Wait that an event occurred
4255 * _gfortran_caf_event_query:: Query event count
4256 * _gfortran_caf_sync_all:: All-image barrier
4257 * _gfortran_caf_sync_images:: Barrier for selected images
4258 * _gfortran_caf_sync_memory:: Wait for completion of segment-memory operations
4259 * _gfortran_caf_error_stop:: Error termination with exit code
4260 * _gfortran_caf_error_stop_str:: Error termination with string
4261 * _gfortran_caf_fail_image :: Mark the image failed and end its execution
4262 * _gfortran_caf_atomic_define:: Atomic variable assignment
4263 * _gfortran_caf_atomic_ref:: Atomic variable reference
4264 * _gfortran_caf_atomic_cas:: Atomic compare and swap
4265 * _gfortran_caf_atomic_op:: Atomic operation
4266 * _gfortran_caf_co_broadcast:: Sending data to all images
4267 * _gfortran_caf_co_max:: Collective maximum reduction
4268 * _gfortran_caf_co_min:: Collective minimum reduction
4269 * _gfortran_caf_co_sum:: Collective summing reduction
4270 * _gfortran_caf_co_reduce:: Generic collective reduction
4271 @end menu
4272
4273
4274 @node _gfortran_caf_init
4275 @subsection @code{_gfortran_caf_init} --- Initialiation function
4276 @cindex Coarray, _gfortran_caf_init
4277
4278 @table @asis
4279 @item @emph{Description}:
4280 This function is called at startup of the program before the Fortran main
4281 program, if the latter has been compiled with @option{-fcoarray=lib}.
4282 It takes as arguments the command-line arguments of the program. It is
4283 permitted to pass two @code{NULL} pointers as argument; if non-@code{NULL},
4284 the library is permitted to modify the arguments.
4285
4286 @item @emph{Syntax}:
4287 @code{void _gfortran_caf_init (int *argc, char ***argv)}
4288
4289 @item @emph{Arguments}:
4290 @multitable @columnfractions .15 .70
4291 @item @var{argc} @tab intent(inout) An integer pointer with the number of
4292 arguments passed to the program or @code{NULL}.
4293 @item @var{argv} @tab intent(inout) A pointer to an array of strings with the
4294 command-line arguments or @code{NULL}.
4295 @end multitable
4296
4297 @item @emph{NOTES}
4298 The function is modelled after the initialization function of the Message
4299 Passing Interface (MPI) specification. Due to the way coarray registration
4300 works, it might not be the first call to the library. If the main program is
4301 not written in Fortran and only a library uses coarrays, it can happen that
4302 this function is never called. Therefore, it is recommended that the library
4303 does not rely on the passed arguments and whether the call has been done.
4304 @end table
4305
4306
4307 @node _gfortran_caf_finish
4308 @subsection @code{_gfortran_caf_finish} --- Finalization function
4309 @cindex Coarray, _gfortran_caf_finish
4310
4311 @table @asis
4312 @item @emph{Description}:
4313 This function is called at the end of the Fortran main program, if it has
4314 been compiled with the @option{-fcoarray=lib} option.
4315
4316 @item @emph{Syntax}:
4317 @code{void _gfortran_caf_finish (void)}
4318
4319 @item @emph{NOTES}
4320 For non-Fortran programs, it is recommended to call the function at the end
4321 of the main program. To ensure that the shutdown is also performed for
4322 programs where this function is not explicitly invoked, for instance
4323 non-Fortran programs or calls to the system's exit() function, the library
4324 can use a destructor function. Note that programs can also be terminated
4325 using the STOP and ERROR STOP statements; those use different library calls.
4326 @end table
4327
4328
4329 @node _gfortran_caf_this_image
4330 @subsection @code{_gfortran_caf_this_image} --- Querying the image number
4331 @cindex Coarray, _gfortran_caf_this_image
4332
4333 @table @asis
4334 @item @emph{Description}:
4335 This function returns the current image number, which is a positive number.
4336
4337 @item @emph{Syntax}:
4338 @code{int _gfortran_caf_this_image (int distance)}
4339
4340 @item @emph{Arguments}:
4341 @multitable @columnfractions .15 .70
4342 @item @var{distance} @tab As specified for the @code{this_image} intrinsic
4343 in TS18508. Shall be a non-negative number.
4344 @end multitable
4345
4346 @item @emph{NOTES}
4347 If the Fortran intrinsic @code{this_image} is invoked without an argument, which
4348 is the only permitted form in Fortran 2008, GCC passes @code{0} as
4349 first argument.
4350 @end table
4351
4352
4353 @node _gfortran_caf_num_images
4354 @subsection @code{_gfortran_caf_num_images} --- Querying the maximal number of images
4355 @cindex Coarray, _gfortran_caf_num_images
4356
4357 @table @asis
4358 @item @emph{Description}:
4359 This function returns the number of images in the current team, if
4360 @var{distance} is 0 or the number of images in the parent team at the specified
4361 distance. If failed is -1, the function returns the number of all images at
4362 the specified distance; if it is 0, the function returns the number of
4363 nonfailed images, and if it is 1, it returns the number of failed images.
4364
4365 @item @emph{Syntax}:
4366 @code{int _gfortran_caf_num_images(int distance, int failed)}
4367
4368 @item @emph{Arguments}:
4369 @multitable @columnfractions .15 .70
4370 @item @var{distance} @tab the distance from this image to the ancestor.
4371 Shall be positive.
4372 @item @var{failed} @tab shall be -1, 0, or 1
4373 @end multitable
4374
4375 @item @emph{NOTES}
4376 This function follows TS18508. If the num_image intrinsic has no arguments,
4377 then the compiler passes @code{distance=0} and @code{failed=-1} to the function.
4378 @end table
4379
4380
4381 @node _gfortran_caf_image_status
4382 @subsection @code{_gfortran_caf_image_status} --- Query the status of an image
4383 @cindex Coarray, _gfortran_caf_image_status
4384
4385 @table @asis
4386 @item @emph{Description}:
4387 Get the status of the image given by the id @var{image} of the team given by
4388 @var{team}. Valid results are zero, for image is ok, @code{STAT_STOPPED_IMAGE}
4389 from the ISO_FORTRAN_ENV module to indicate that the image has been stopped and
4390 @code{STAT_FAILED_IMAGE} also from ISO_FORTRAN_ENV to indicate that the image
4391 has executed a @code{FAIL IMAGE} statement.
4392
4393 @item @emph{Syntax}:
4394 @code{int _gfortran_caf_image_status (int image, caf_team_t * team)}
4395
4396 @item @emph{Arguments}:
4397 @multitable @columnfractions .15 .70
4398 @item @var{image} @tab the positive scalar id of the image in the current TEAM.
4399 @item @var{team} @tab optional; team on the which the inquiry is to be
4400 performed.
4401 @end multitable
4402
4403 @item @emph{NOTES}
4404 This function follows TS18508. Because team-functionality is not yet
4405 implemented a null-pointer is passed for the @var{team} argument at the moment.
4406 @end table
4407
4408
4409 @node _gfortran_caf_failed_images
4410 @subsection @code{_gfortran_caf_failed_images} --- Get an array of the indexes of the failed images
4411 @cindex Coarray, _gfortran_caf_failed_images
4412
4413 @table @asis
4414 @item @emph{Description}:
4415 Get an array of image indexes in the current @var{team} that have failed. The
4416 array is sorted ascendingly. When @var{team} is not provided the current team
4417 is to be used. When @var{kind} is provided then the resulting array is of that
4418 integer kind else it is of default integer kind. The returns an unallocated
4419 size zero array when no images have failed.
4420
4421 @item @emph{Syntax}:
4422 @code{int _gfortran_caf_failed_images (caf_team_t * team, int * kind)}
4423
4424 @item @emph{Arguments}:
4425 @multitable @columnfractions .15 .70
4426 @item @var{team} @tab optional; team on the which the inquiry is to be
4427 performed.
4428 @item @var{image} @tab optional; the kind of the resulting integer array.
4429 @end multitable
4430
4431 @item @emph{NOTES}
4432 This function follows TS18508. Because team-functionality is not yet
4433 implemented a null-pointer is passed for the @var{team} argument at the moment.
4434 @end table
4435
4436
4437 @node _gfortran_caf_stopped_images
4438 @subsection @code{_gfortran_caf_stopped_images} --- Get an array of the indexes of the stopped images
4439 @cindex Coarray, _gfortran_caf_stopped_images
4440
4441 @table @asis
4442 @item @emph{Description}:
4443 Get an array of image indexes in the current @var{team} that have stopped. The
4444 array is sorted ascendingly. When @var{team} is not provided the current team
4445 is to be used. When @var{kind} is provided then the resulting array is of that
4446 integer kind else it is of default integer kind. The returns an unallocated
4447 size zero array when no images have failed.
4448
4449 @item @emph{Syntax}:
4450 @code{int _gfortran_caf_stopped_images (caf_team_t * team, int * kind)}
4451
4452 @item @emph{Arguments}:
4453 @multitable @columnfractions .15 .70
4454 @item @var{team} @tab optional; team on the which the inquiry is to be
4455 performed.
4456 @item @var{image} @tab optional; the kind of the resulting integer array.
4457 @end multitable
4458
4459 @item @emph{NOTES}
4460 This function follows TS18508. Because team-functionality is not yet
4461 implemented a null-pointer is passed for the @var{team} argument at the moment.
4462 @end table
4463
4464
4465 @node _gfortran_caf_register
4466 @subsection @code{_gfortran_caf_register} --- Registering coarrays
4467 @cindex Coarray, _gfortran_caf_register
4468
4469 @table @asis
4470 @item @emph{Description}:
4471 Registers memory for a coarray and creates a token to identify the coarray. The
4472 routine is called for both coarrays with @code{SAVE} attribute and using an
4473 explicit @code{ALLOCATE} statement. If an error occurs and @var{STAT} is a
4474 @code{NULL} pointer, the function shall abort with printing an error message
4475 and starting the error termination. If no error occurs and @var{STAT} is
4476 present, it shall be set to zero. Otherwise, it shall be set to a positive
4477 value and, if not-@code{NULL}, @var{ERRMSG} shall be set to a string describing
4478 the failure. The routine shall register the memory provided in the
4479 @code{DATA}-component of the array descriptor @var{DESC}, when that component
4480 is non-@code{NULL}, else it shall allocate sufficient memory and provide a
4481 pointer to it in the @code{DATA}-component of @var{DESC}. The array descriptor
4482 has rank zero, when a scalar object is to be registered and the array
4483 descriptor may be invalid after the call to @code{_gfortran_caf_register}.
4484 When an array is to be allocated the descriptor persists.
4485
4486 For @code{CAF_REGTYPE_COARRAY_STATIC} and @code{CAF_REGTYPE_COARRAY_ALLOC},
4487 the passed size is the byte size requested. For @code{CAF_REGTYPE_LOCK_STATIC},
4488 @code{CAF_REGTYPE_LOCK_ALLOC} and @code{CAF_REGTYPE_CRITICAL} it is the array
4489 size or one for a scalar.
4490
4491 When @code{CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY} is used, then only a token
4492 for an allocatable or pointer component is created. The @code{SIZE} parameter
4493 is not used then. On the contrary when
4494 @code{CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY} is specified, then the
4495 @var{token} needs to be registered by a previous call with regtype
4496 @code{CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY} and either the memory specified
4497 in the @var{DESC}'s data-ptr is registered or allocate when the data-ptr is
4498 @code{NULL}.
4499
4500 @item @emph{Syntax}:
4501 @code{void caf_register (size_t size, caf_register_t type, caf_token_t *token,
4502 gfc_descriptor_t *desc, int *stat, char *errmsg, size_t errmsg_len)}
4503
4504 @item @emph{Arguments}:
4505 @multitable @columnfractions .15 .70
4506 @item @var{size} @tab For normal coarrays, the byte size of the coarray to be
4507 allocated; for lock types and event types, the number of elements.
4508 @item @var{type} @tab one of the caf_register_t types.
4509 @item @var{token} @tab intent(out) An opaque pointer identifying the coarray.
4510 @item @var{desc} @tab intent(inout) The (pseudo) array descriptor.
4511 @item @var{stat} @tab intent(out) For allocatable coarrays, stores the STAT=;
4512 may be @code{NULL}
4513 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
4514 an error message; may be @code{NULL}
4515 @item @var{errmsg_len} @tab the buffer size of errmsg.
4516 @end multitable
4517
4518 @item @emph{NOTES}
4519 Nonallocatable coarrays have to be registered prior use from remote images.
4520 In order to guarantee this, they have to be registered before the main
4521 program. This can be achieved by creating constructor functions. That is what
4522 GCC does such that also for nonallocatable coarrays the memory is allocated and
4523 no static memory is used. The token permits to identify the coarray; to the
4524 processor, the token is a nonaliasing pointer. The library can, for instance,
4525 store the base address of the coarray in the token, some handle or a more
4526 complicated struct. The library may also store the array descriptor
4527 @var{DESC} when its rank is non-zero.
4528
4529 For lock types, the value shall only be used for checking the allocation
4530 status. Note that for critical blocks, the locking is only required on one
4531 image; in the locking statement, the processor shall always pass an
4532 image index of one for critical-block lock variables
4533 (@code{CAF_REGTYPE_CRITICAL}). For lock types and critical-block variables,
4534 the initial value shall be unlocked (or, respecitively, not in critical
4535 section) such as the value false; for event types, the initial state should
4536 be no event, e.g. zero.
4537 @end table
4538
4539
4540 @node _gfortran_caf_deregister
4541 @subsection @code{_gfortran_caf_deregister} --- Deregistering coarrays
4542 @cindex Coarray, _gfortran_caf_deregister
4543
4544 @table @asis
4545 @item @emph{Description}:
4546 Called to free or deregister the memory of a coarray; the processor calls this
4547 function for automatic and explicit deallocation. In case of an error, this
4548 function shall fail with an error message, unless the @var{STAT} variable is
4549 not null. The library is only expected to free memory it allocated itself
4550 during a call to @code{_gfortran_caf_register}.
4551
4552 @item @emph{Syntax}:
4553 @code{void caf_deregister (caf_token_t *token, caf_deregister_t type,
4554 int *stat, char *errmsg, size_t errmsg_len)}
4555
4556 @item @emph{Arguments}:
4557 @multitable @columnfractions .15 .70
4558 @item @var{token} @tab the token to free.
4559 @item @var{type} @tab the type of action to take for the coarray. A
4560 @code{CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY} is allowed only for allocatable or
4561 pointer components of derived type coarrays. The action only deallocates the
4562 local memory without deleting the token.
4563 @item @var{stat} @tab intent(out) Stores the STAT=; may be NULL
4564 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set
4565 to an error message; may be NULL
4566 @item @var{errmsg_len} @tab the buffer size of errmsg.
4567 @end multitable
4568
4569 @item @emph{NOTES}
4570 For nonalloatable coarrays this function is never called. If a cleanup is
4571 required, it has to be handled via the finish, stop and error stop functions,
4572 and via destructors.
4573 @end table
4574
4575
4576 @node _gfortran_caf_is_present
4577 @subsection @code{_gfortran_caf_is_present} --- Query whether an allocatable or pointer component in a derived type coarray is allocated
4578 @cindex Coarray, _gfortran_caf_is_present
4579
4580 @table @asis
4581 @item @emph{Description}:
4582 Used to query the coarray library whether an allocatable component in a derived
4583 type coarray is allocated on a remote image.
4584
4585 @item @emph{Syntax}:
4586 @code{void _gfortran_caf_is_present (caf_token_t token, int image_index,
4587 gfc_reference_t *ref)}
4588
4589 @item @emph{Arguments}:
4590 @multitable @columnfractions .15 .70
4591 @item @var{token} @tab An opaque pointer identifying the coarray.
4592 @item @var{image_index} @tab The ID of the remote image; must be a positive
4593 number.
4594 @item @var{ref} @tab A chain of references to address the allocatable or
4595 pointer component in the derived type coarray. The object reference needs to be
4596 a scalar or a full array reference, respectively.
4597 @end multitable
4598
4599 @end table
4600
4601 @node _gfortran_caf_send
4602 @subsection @code{_gfortran_caf_send} --- Sending data from a local image to a remote image
4603 @cindex Coarray, _gfortran_caf_send
4604
4605 @table @asis
4606 @item @emph{Description}:
4607 Called to send a scalar, an array section or a whole array from a local
4608 to a remote image identified by the image_index.
4609
4610 @item @emph{Syntax}:
4611 @code{void _gfortran_caf_send (caf_token_t token, size_t offset,
4612 int image_index, gfc_descriptor_t *dest, caf_vector_t *dst_vector,
4613 gfc_descriptor_t *src, int dst_kind, int src_kind, bool may_require_tmp,
4614 int *stat)}
4615
4616 @item @emph{Arguments}:
4617 @multitable @columnfractions .15 .70
4618 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
4619 @item @var{offset} @tab intent(in) By which amount of bytes the actual data is
4620 shifted compared to the base address of the coarray.
4621 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
4622 positive number.
4623 @item @var{dest} @tab intent(in) Array descriptor for the remote image for the
4624 bounds and the size. The @code{base_addr} shall not be accessed.
4625 @item @var{dst_vector} @tab intent(in) If not NULL, it contains the vector
4626 subscript of the destination array; the values are relative to the dimension
4627 triplet of the dest argument.
4628 @item @var{src} @tab intent(in) Array descriptor of the local array to be
4629 transferred to the remote image
4630 @item @var{dst_kind} @tab intent(in) Kind of the destination argument
4631 @item @var{src_kind} @tab intent(in) Kind of the source argument
4632 @item @var{may_require_tmp} @tab intent(in) The variable is @code{false} when
4633 it is known at compile time that the @var{dest} and @var{src} either cannot
4634 overlap or overlap (fully or partially) such that walking @var{src} and
4635 @var{dest} in element wise element order (honoring the stride value) will not
4636 lead to wrong results. Otherwise, the value is @code{true}.
4637 @item @var{stat} @tab intent(out) when non-NULL give the result of the
4638 operation, i.e., zero on success and non-zero on error. When NULL and an error
4639 occurs, then an error message is printed and the program is terminated.
4640 @end multitable
4641
4642 @item @emph{NOTES}
4643 It is permitted to have @var{image_index} equal the current image; the memory
4644 of the send-to and the send-from might (partially) overlap in that case. The
4645 implementation has to take care that it handles this case, e.g. using
4646 @code{memmove} which handles (partially) overlapping memory. If
4647 @var{may_require_tmp} is true, the library might additionally create a
4648 temporary variable, unless additional checks show that this is not required
4649 (e.g. because walking backward is possible or because both arrays are
4650 contiguous and @code{memmove} takes care of overlap issues).
4651
4652 Note that the assignment of a scalar to an array is permitted. In addition,
4653 the library has to handle numeric-type conversion and for strings, padding
4654 and different character kinds.
4655 @end table
4656
4657
4658 @node _gfortran_caf_get
4659 @subsection @code{_gfortran_caf_get} --- Getting data from a remote image
4660 @cindex Coarray, _gfortran_caf_get
4661
4662 @table @asis
4663 @item @emph{Description}:
4664 Called to get an array section or a whole array from a remote,
4665 image identified by the image_index.
4666
4667 @item @emph{Syntax}:
4668 @code{void _gfortran_caf_get (caf_token_t token, size_t offset,
4669 int image_index, gfc_descriptor_t *src, caf_vector_t *src_vector,
4670 gfc_descriptor_t *dest, int src_kind, int dst_kind, bool may_require_tmp,
4671 int *stat)}
4672
4673 @item @emph{Arguments}:
4674 @multitable @columnfractions .15 .70
4675 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
4676 @item @var{offset} @tab intent(in) By which amount of bytes the actual data is
4677 shifted compared to the base address of the coarray.
4678 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
4679 positive number.
4680 @item @var{dest} @tab intent(out) Array descriptor of the local array to store
4681 the data retrieved from the remote image
4682 @item @var{src} @tab intent(in) Array descriptor for the remote image for the
4683 bounds and the size. The @code{base_addr} shall not be accessed.
4684 @item @var{src_vector} @tab intent(in) If not NULL, it contains the vector
4685 subscript of the source array; the values are relative to the dimension
4686 triplet of the @var{src} argument.
4687 @item @var{dst_kind} @tab intent(in) Kind of the destination argument
4688 @item @var{src_kind} @tab intent(in) Kind of the source argument
4689 @item @var{may_require_tmp} @tab intent(in) The variable is @code{false} when
4690 it is known at compile time that the @var{dest} and @var{src} either cannot
4691 overlap or overlap (fully or partially) such that walking @var{src} and
4692 @var{dest} in element wise element order (honoring the stride value) will not
4693 lead to wrong results. Otherwise, the value is @code{true}.
4694 @item @var{stat} @tab intent(out) When non-NULL give the result of the
4695 operation, i.e., zero on success and non-zero on error. When NULL and an error
4696 occurs, then an error message is printed and the program is terminated.
4697 @end multitable
4698
4699 @item @emph{NOTES}
4700 It is permitted to have @var{image_index} equal the current image; the memory of
4701 the send-to and the send-from might (partially) overlap in that case. The
4702 implementation has to take care that it handles this case, e.g. using
4703 @code{memmove} which handles (partially) overlapping memory. If
4704 @var{may_require_tmp} is true, the library might additionally create a
4705 temporary variable, unless additional checks show that this is not required
4706 (e.g. because walking backward is possible or because both arrays are
4707 contiguous and @code{memmove} takes care of overlap issues).
4708
4709 Note that the library has to handle numeric-type conversion and for strings,
4710 padding and different character kinds.
4711 @end table
4712
4713
4714 @node _gfortran_caf_sendget
4715 @subsection @code{_gfortran_caf_sendget} --- Sending data between remote images
4716 @cindex Coarray, _gfortran_caf_sendget
4717
4718 @table @asis
4719 @item @emph{Description}:
4720 Called to send a scalar, an array section or a whole array from a remote image
4721 identified by the @var{src_image_index} to a remote image identified by the
4722 @var{dst_image_index}.
4723
4724 @item @emph{Syntax}:
4725 @code{void _gfortran_caf_sendget (caf_token_t dst_token, size_t dst_offset,
4726 int dst_image_index, gfc_descriptor_t *dest, caf_vector_t *dst_vector,
4727 caf_token_t src_token, size_t src_offset, int src_image_index,
4728 gfc_descriptor_t *src, caf_vector_t *src_vector, int dst_kind, int src_kind,
4729 bool may_require_tmp, int *stat)}
4730
4731 @item @emph{Arguments}:
4732 @multitable @columnfractions .15 .70
4733 @item @var{dst_token} @tab intent(in) An opaque pointer identifying the
4734 destination coarray.
4735 @item @var{dst_offset} @tab intent(in) By which amount of bytes the actual data
4736 is shifted compared to the base address of the destination coarray.
4737 @item @var{dst_image_index} @tab intent(in) The ID of the destination remote
4738 image; must be a positive number.
4739 @item @var{dest} @tab intent(in) Array descriptor for the destination
4740 remote image for the bounds and the size. The @code{base_addr} shall not be
4741 accessed.
4742 @item @var{dst_vector} @tab intent(int) If not NULL, it contains the vector
4743 subscript of the destination array; the values are relative to the dimension
4744 triplet of the @var{dest} argument.
4745 @item @var{src_token} @tab intent(in) An opaque pointer identifying the source
4746 coarray.
4747 @item @var{src_offset} @tab intent(in) By which amount of bytes the actual data
4748 is shifted compared to the base address of the source coarray.
4749 @item @var{src_image_index} @tab intent(in) The ID of the source remote image;
4750 must be a positive number.
4751 @item @var{src} @tab intent(in) Array descriptor of the local array to be
4752 transferred to the remote image.
4753 @item @var{src_vector} @tab intent(in) Array descriptor of the local array to
4754 be transferred to the remote image
4755 @item @var{dst_kind} @tab intent(in) Kind of the destination argument
4756 @item @var{src_kind} @tab intent(in) Kind of the source argument
4757 @item @var{may_require_tmp} @tab intent(in) The variable is @code{false} when
4758 it is known at compile time that the @var{dest} and @var{src} either cannot
4759 overlap or overlap (fully or partially) such that walking @var{src} and
4760 @var{dest} in element wise element order (honoring the stride value) will not
4761 lead to wrong results. Otherwise, the value is @code{true}.
4762 @item @var{stat} @tab intent(out) when non-NULL give the result of the
4763 operation, i.e., zero on success and non-zero on error. When NULL and an error
4764 occurs, then an error message is printed and the program is terminated.
4765 @end multitable
4766
4767 @item @emph{NOTES}
4768 It is permitted to have the same image index for both @var{src_image_index} and
4769 @var{dst_image_index}; the memory of the send-to and the send-from might
4770 (partially) overlap in that case. The implementation has to take care that it
4771 handles this case, e.g. using @code{memmove} which handles (partially)
4772 overlapping memory. If @var{may_require_tmp} is true, the library
4773 might additionally create a temporary variable, unless additional checks show
4774 that this is not required (e.g. because walking backward is possible or because
4775 both arrays are contiguous and @code{memmove} takes care of overlap issues).
4776
4777 Note that the assignment of a scalar to an array is permitted. In addition,
4778 the library has to handle numeric-type conversion and for strings, padding and
4779 different character kinds.
4780 @end table
4781
4782 @node _gfortran_caf_send_by_ref
4783 @subsection @code{_gfortran_caf_send_by_ref} --- Sending data from a local image to a remote image with enhanced referencing options
4784 @cindex Coarray, _gfortran_caf_send_by_ref
4785
4786 @table @asis
4787 @item @emph{Description}:
4788 Called to send a scalar, an array section or a whole array from a local to a
4789 remote image identified by the @var{image_index}.
4790
4791 @item @emph{Syntax}:
4792 @code{void _gfortran_caf_send_by_ref (caf_token_t token, int image_index,
4793 gfc_descriptor_t *src, caf_reference_t *refs, int dst_kind, int src_kind,
4794 bool may_require_tmp, bool dst_reallocatable, int *stat, int dst_type)}
4795
4796 @item @emph{Arguments}:
4797 @multitable @columnfractions .15 .70
4798 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
4799 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
4800 positive number.
4801 @item @var{src} @tab intent(in) Array descriptor of the local array to be
4802 transferred to the remote image
4803 @item @var{refs} @tab intent(in) The references on the remote array to store
4804 the data given by src. Guaranteed to have at least one entry.
4805 @item @var{dst_kind} @tab intent(in) Kind of the destination argument
4806 @item @var{src_kind} @tab intent(in) Kind of the source argument
4807 @item @var{may_require_tmp} @tab intent(in) The variable is @code{false} when
4808 it is known at compile time that the @var{dest} and @var{src} either cannot
4809 overlap or overlap (fully or partially) such that walking @var{src} and
4810 @var{dest} in element wise element order (honoring the stride value) will not
4811 lead to wrong results. Otherwise, the value is @code{true}.
4812 @item @var{dst_reallocatable} @tab intent(in) Set when the destination is of
4813 allocatable or pointer type and the refs will allow reallocation, i.e., the ref
4814 is a full array or component ref.
4815 @item @var{stat} @tab intent(out) When non-@code{NULL} give the result of the
4816 operation, i.e., zero on success and non-zero on error. When @code{NULL} and
4817 an error occurs, then an error message is printed and the program is terminated.
4818 @item @var{dst_type} @tab intent(in) Give the type of the destination. When
4819 the destination is not an array, than the precise type, e.g. of a component in
4820 a derived type, is not known, but provided here.
4821 @end multitable
4822
4823 @item @emph{NOTES}
4824 It is permitted to have @var{image_index} equal the current image; the memory of
4825 the send-to and the send-from might (partially) overlap in that case. The
4826 implementation has to take care that it handles this case, e.g. using
4827 @code{memmove} which handles (partially) overlapping memory. If
4828 @var{may_require_tmp} is true, the library might additionally create a
4829 temporary variable, unless additional checks show that this is not required
4830 (e.g. because walking backward is possible or because both arrays are
4831 contiguous and @code{memmove} takes care of overlap issues).
4832
4833 Note that the assignment of a scalar to an array is permitted. In addition,
4834 the library has to handle numeric-type conversion and for strings, padding
4835 and different character kinds.
4836
4837 Because of the more complicated references possible some operations may be
4838 unsupported by certain libraries. The library is expected to issue a precise
4839 error message why the operation is not permitted.
4840 @end table
4841
4842
4843 @node _gfortran_caf_get_by_ref
4844 @subsection @code{_gfortran_caf_get_by_ref} --- Getting data from a remote image using enhanced references
4845 @cindex Coarray, _gfortran_caf_get_by_ref
4846
4847 @table @asis
4848 @item @emph{Description}:
4849 Called to get a scalar, an array section or a whole array from a remote image
4850 identified by the @var{image_index}.
4851
4852 @item @emph{Syntax}:
4853 @code{void _gfortran_caf_get_by_ref (caf_token_t token, int image_index,
4854 caf_reference_t *refs, gfc_descriptor_t *dst, int dst_kind, int src_kind,
4855 bool may_require_tmp, bool dst_reallocatable, int *stat, int src_type)}
4856
4857 @item @emph{Arguments}:
4858 @multitable @columnfractions .15 .70
4859 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
4860 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
4861 positive number.
4862 @item @var{refs} @tab intent(in) The references to apply to the remote structure
4863 to get the data.
4864 @item @var{dst} @tab intent(in) Array descriptor of the local array to store
4865 the data transferred from the remote image. May be reallocated where needed
4866 and when @var{DST_REALLOCATABLE} allows it.
4867 @item @var{dst_kind} @tab intent(in) Kind of the destination argument
4868 @item @var{src_kind} @tab intent(in) Kind of the source argument
4869 @item @var{may_require_tmp} @tab intent(in) The variable is @code{false} when
4870 it is known at compile time that the @var{dest} and @var{src} either cannot
4871 overlap or overlap (fully or partially) such that walking @var{src} and
4872 @var{dest} in element wise element order (honoring the stride value) will not
4873 lead to wrong results. Otherwise, the value is @code{true}.
4874 @item @var{dst_reallocatable} @tab intent(in) Set when @var{DST} is of
4875 allocatable or pointer type and its refs allow reallocation, i.e., the full
4876 array or a component is referenced.
4877 @item @var{stat} @tab intent(out) When non-@code{NULL} give the result of the
4878 operation, i.e., zero on success and non-zero on error. When @code{NULL} and an
4879 error occurs, then an error message is printed and the program is terminated.
4880 @item @var{src_type} @tab intent(in) Give the type of the source. When the
4881 source is not an array, than the precise type, e.g. of a component in a
4882 derived type, is not known, but provided here.
4883 @end multitable
4884
4885 @item @emph{NOTES}
4886 It is permitted to have @code{image_index} equal the current image; the memory
4887 of the send-to and the send-from might (partially) overlap in that case. The
4888 implementation has to take care that it handles this case, e.g. using
4889 @code{memmove} which handles (partially) overlapping memory. If
4890 @var{may_require_tmp} is true, the library might additionally create a
4891 temporary variable, unless additional checks show that this is not required
4892 (e.g. because walking backward is possible or because both arrays are
4893 contiguous and @code{memmove} takes care of overlap issues).
4894
4895 Note that the library has to handle numeric-type conversion and for strings,
4896 padding and different character kinds.
4897
4898 Because of the more complicated references possible some operations may be
4899 unsupported by certain libraries. The library is expected to issue a precise
4900 error message why the operation is not permitted.
4901 @end table
4902
4903
4904 @node _gfortran_caf_sendget_by_ref
4905 @subsection @code{_gfortran_caf_sendget_by_ref} --- Sending data between remote images using enhanced references on both sides
4906 @cindex Coarray, _gfortran_caf_sendget_by_ref
4907
4908 @table @asis
4909 @item @emph{Description}:
4910 Called to send a scalar, an array section or a whole array from a remote image
4911 identified by the @var{src_image_index} to a remote image identified by the
4912 @var{dst_image_index}.
4913
4914 @item @emph{Syntax}:
4915 @code{void _gfortran_caf_sendget_by_ref (caf_token_t dst_token,
4916 int dst_image_index, caf_reference_t *dst_refs,
4917 caf_token_t src_token, int src_image_index, caf_reference_t *src_refs,
4918 int dst_kind, int src_kind, bool may_require_tmp, int *dst_stat,
4919 int *src_stat, int dst_type, int src_type)}
4920
4921 @item @emph{Arguments}:
4922 @multitable @columnfractions .15 .70
4923 @item @var{dst_token} @tab intent(in) An opaque pointer identifying the
4924 destination coarray.
4925 @item @var{dst_image_index} @tab intent(in) The ID of the destination remote
4926 image; must be a positive number.
4927 @item @var{dst_refs} @tab intent(in) The references on the remote array to store
4928 the data given by the source. Guaranteed to have at least one entry.
4929 @item @var{src_token} @tab intent(in) An opaque pointer identifying the source
4930 coarray.
4931 @item @var{src_image_index} @tab intent(in) The ID of the source remote image;
4932 must be a positive number.
4933 @item @var{src_refs} @tab intent(in) The references to apply to the remote
4934 structure to get the data.
4935 @item @var{dst_kind} @tab intent(in) Kind of the destination argument
4936 @item @var{src_kind} @tab intent(in) Kind of the source argument
4937 @item @var{may_require_tmp} @tab intent(in) The variable is @code{false} when
4938 it is known at compile time that the @var{dest} and @var{src} either cannot
4939 overlap or overlap (fully or partially) such that walking @var{src} and
4940 @var{dest} in element wise element order (honoring the stride value) will not
4941 lead to wrong results. Otherwise, the value is @code{true}.
4942 @item @var{dst_stat} @tab intent(out) when non-@code{NULL} give the result of
4943 the send-operation, i.e., zero on success and non-zero on error. When
4944 @code{NULL} and an error occurs, then an error message is printed and the
4945 program is terminated.
4946 @item @var{src_stat} @tab intent(out) When non-@code{NULL} give the result of
4947 the get-operation, i.e., zero on success and non-zero on error. When
4948 @code{NULL} and an error occurs, then an error message is printed and the
4949 program is terminated.
4950 @item @var{dst_type} @tab intent(in) Give the type of the destination. When
4951 the destination is not an array, than the precise type, e.g. of a component in
4952 a derived type, is not known, but provided here.
4953 @item @var{src_type} @tab intent(in) Give the type of the source. When the
4954 source is not an array, than the precise type, e.g. of a component in a
4955 derived type, is not known, but provided here.
4956 @end multitable
4957
4958 @item @emph{NOTES}
4959 It is permitted to have the same image index for both @var{src_image_index} and
4960 @var{dst_image_index}; the memory of the send-to and the send-from might
4961 (partially) overlap in that case. The implementation has to take care that it
4962 handles this case, e.g. using @code{memmove} which handles (partially)
4963 overlapping memory. If @var{may_require_tmp} is true, the library
4964 might additionally create a temporary variable, unless additional checks show
4965 that this is not required (e.g. because walking backward is possible or because
4966 both arrays are contiguous and @code{memmove} takes care of overlap issues).
4967
4968 Note that the assignment of a scalar to an array is permitted. In addition,
4969 the library has to handle numeric-type conversion and for strings, padding and
4970 different character kinds.
4971
4972 Because of the more complicated references possible some operations may be
4973 unsupported by certain libraries. The library is expected to issue a precise
4974 error message why the operation is not permitted.
4975 @end table
4976
4977
4978 @node _gfortran_caf_lock
4979 @subsection @code{_gfortran_caf_lock} --- Locking a lock variable
4980 @cindex Coarray, _gfortran_caf_lock
4981
4982 @table @asis
4983 @item @emph{Description}:
4984 Acquire a lock on the given image on a scalar locking variable or for the
4985 given array element for an array-valued variable. If the @var{aquired_lock}
4986 is @code{NULL}, the function returns after having obtained the lock. If it is
4987 non-@code{NULL}, then @var{acquired_lock} is assigned the value true (one) when
4988 the lock could be obtained and false (zero) otherwise. Locking a lock variable
4989 which has already been locked by the same image is an error.
4990
4991 @item @emph{Syntax}:
4992 @code{void _gfortran_caf_lock (caf_token_t token, size_t index, int image_index,
4993 int *aquired_lock, int *stat, char *errmsg, size_t errmsg_len)}
4994
4995 @item @emph{Arguments}:
4996 @multitable @columnfractions .15 .70
4997 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
4998 @item @var{index} @tab intent(in) Array index; first array index is 0. For
4999 scalars, it is always 0.
5000 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
5001 positive number.
5002 @item @var{aquired_lock} @tab intent(out) If not NULL, it returns whether lock
5003 could be obtained.
5004 @item @var{stat} @tab intent(out) Stores the STAT=; may be NULL.
5005 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5006 an error message; may be NULL.
5007 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5008 @end multitable
5009
5010 @item @emph{NOTES}
5011 This function is also called for critical blocks; for those, the array index
5012 is always zero and the image index is one. Libraries are permitted to use other
5013 images for critical-block locking variables.
5014 @end table
5015
5016 @node _gfortran_caf_unlock
5017 @subsection @code{_gfortran_caf_lock} --- Unlocking a lock variable
5018 @cindex Coarray, _gfortran_caf_unlock
5019
5020 @table @asis
5021 @item @emph{Description}:
5022 Release a lock on the given image on a scalar locking variable or for the
5023 given array element for an array-valued variable. Unlocking a lock variable
5024 which is unlocked or has been locked by a different image is an error.
5025
5026 @item @emph{Syntax}:
5027 @code{void _gfortran_caf_unlock (caf_token_t token, size_t index, int image_index,
5028 int *stat, char *errmsg, size_t errmsg_len)}
5029
5030 @item @emph{Arguments}:
5031 @multitable @columnfractions .15 .70
5032 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
5033 @item @var{index} @tab intent(in) Array index; first array index is 0. For
5034 scalars, it is always 0.
5035 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
5036 positive number.
5037 @item @var{stat} @tab intent(out) For allocatable coarrays, stores the STAT=;
5038 may be NULL.
5039 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5040 an error message; may be NULL.
5041 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5042 @end multitable
5043
5044 @item @emph{NOTES}
5045 This function is also called for critical block; for those, the array index
5046 is always zero and the image index is one. Libraries are permitted to use other
5047 images for critical-block locking variables.
5048 @end table
5049
5050 @node _gfortran_caf_event_post
5051 @subsection @code{_gfortran_caf_event_post} --- Post an event
5052 @cindex Coarray, _gfortran_caf_event_post
5053
5054 @table @asis
5055 @item @emph{Description}:
5056 Increment the event count of the specified event variable.
5057
5058 @item @emph{Syntax}:
5059 @code{void _gfortran_caf_event_post (caf_token_t token, size_t index,
5060 int image_index, int *stat, char *errmsg, size_t errmsg_len)}
5061
5062 @item @emph{Arguments}:
5063 @multitable @columnfractions .15 .70
5064 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
5065 @item @var{index} @tab intent(in) Array index; first array index is 0. For
5066 scalars, it is always 0.
5067 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
5068 positive number; zero indicates the current image, when accessed noncoindexed.
5069 @item @var{stat} @tab intent(out) Stores the STAT=; may be NULL.
5070 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5071 an error message; may be NULL.
5072 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5073 @end multitable
5074
5075 @item @emph{NOTES}
5076 This acts like an atomic add of one to the remote image's event variable.
5077 The statement is an image-control statement but does not imply sync memory.
5078 Still, all preceeding push communications of this image to the specified
5079 remote image have to be completed before @code{event_wait} on the remote
5080 image returns.
5081 @end table
5082
5083
5084
5085 @node _gfortran_caf_event_wait
5086 @subsection @code{_gfortran_caf_event_wait} --- Wait that an event occurred
5087 @cindex Coarray, _gfortran_caf_event_wait
5088
5089 @table @asis
5090 @item @emph{Description}:
5091 Wait until the event count has reached at least the specified
5092 @var{until_count}; if so, atomically decrement the event variable by this
5093 amount and return.
5094
5095 @item @emph{Syntax}:
5096 @code{void _gfortran_caf_event_wait (caf_token_t token, size_t index,
5097 int until_count, int *stat, char *errmsg, size_t errmsg_len)}
5098
5099 @item @emph{Arguments}:
5100 @multitable @columnfractions .15 .70
5101 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
5102 @item @var{index} @tab intent(in) Array index; first array index is 0. For
5103 scalars, it is always 0.
5104 @item @var{until_count} @tab intent(in) The number of events which have to be
5105 available before the function returns.
5106 @item @var{stat} @tab intent(out) Stores the STAT=; may be NULL.
5107 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5108 an error message; may be NULL.
5109 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5110 @end multitable
5111
5112 @item @emph{NOTES}
5113 This function only operates on a local coarray. It acts like a loop checking
5114 atomically the value of the event variable, breaking if the value is greater
5115 or equal the requested number of counts. Before the function returns, the
5116 event variable has to be decremented by the requested @var{until_count} value.
5117 A possible implementation would be a busy loop for a certain number of spins
5118 (possibly depending on the number of threads relative to the number of available
5119 cores) followed by another waiting strategy such as a sleeping wait (possibly
5120 with an increasing number of sleep time) or, if possible, a futex wait.
5121
5122 The statement is an image-control statement but does not imply sync memory.
5123 Still, all preceeding push communications of this image to the specified
5124 remote image have to be completed before @code{event_wait} on the remote
5125 image returns.
5126 @end table
5127
5128
5129
5130 @node _gfortran_caf_event_query
5131 @subsection @code{_gfortran_caf_event_query} --- Query event count
5132 @cindex Coarray, _gfortran_caf_event_query
5133
5134 @table @asis
5135 @item @emph{Description}:
5136 Return the event count of the specified event variable.
5137
5138 @item @emph{Syntax}:
5139 @code{void _gfortran_caf_event_query (caf_token_t token, size_t index,
5140 int image_index, int *count, int *stat)}
5141
5142 @item @emph{Arguments}:
5143 @multitable @columnfractions .15 .70
5144 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
5145 @item @var{index} @tab intent(in) Array index; first array index is 0. For
5146 scalars, it is always 0.
5147 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
5148 positive number; zero indicates the current image when accessed noncoindexed.
5149 @item @var{count} @tab intent(out) The number of events currently posted to
5150 the event variable.
5151 @item @var{stat} @tab intent(out) Stores the STAT=; may be NULL.
5152 @end multitable
5153
5154 @item @emph{NOTES}
5155 The typical use is to check the local event variable to only call
5156 @code{event_wait} when the data is available. However, a coindexed variable
5157 is permitted; there is no ordering or synchronization implied. It acts like
5158 an atomic fetch of the value of the event variable.
5159 @end table
5160
5161
5162
5163 @node _gfortran_caf_sync_all
5164 @subsection @code{_gfortran_caf_sync_all} --- All-image barrier
5165 @cindex Coarray, _gfortran_caf_sync_all
5166
5167 @table @asis
5168 @item @emph{Description}:
5169 Synchronization of all images in the current team; the program only continues
5170 on a given image after this function has been called on all images of the
5171 current team. Additionally, it ensures that all pending data transfers of
5172 previous segment have completed.
5173
5174 @item @emph{Syntax}:
5175 @code{void _gfortran_caf_sync_all (int *stat, char *errmsg, size_t errmsg_len)}
5176
5177 @item @emph{Arguments}:
5178 @multitable @columnfractions .15 .70
5179 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5180 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5181 an error message; may be NULL.
5182 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5183 @end multitable
5184 @end table
5185
5186
5187
5188 @node _gfortran_caf_sync_images
5189 @subsection @code{_gfortran_caf_sync_images} --- Barrier for selected images
5190 @cindex Coarray, _gfortran_caf_sync_images
5191
5192 @table @asis
5193 @item @emph{Description}:
5194 Synchronization between the specified images; the program only continues on a
5195 given image after this function has been called on all images specified for
5196 that image. Note that one image can wait for all other images in the current
5197 team (e.g. via @code{sync images(*)}) while those only wait for that specific
5198 image. Additionally, @code{sync images} ensures that all pending data
5199 transfers of previous segments have completed.
5200
5201 @item @emph{Syntax}:
5202 @code{void _gfortran_caf_sync_images (int count, int images[], int *stat,
5203 char *errmsg, size_t errmsg_len)}
5204
5205 @item @emph{Arguments}:
5206 @multitable @columnfractions .15 .70
5207 @item @var{count} @tab intent(in) The number of images which are provided in
5208 the next argument. For a zero-sized array, the value is zero. For
5209 @code{sync images (*)}, the value is @math{-1}.
5210 @item @var{images} @tab intent(in) An array with the images provided by the
5211 user. If @var{count} is zero, a NULL pointer is passed.
5212 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5213 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5214 an error message; may be NULL.
5215 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5216 @end multitable
5217 @end table
5218
5219
5220
5221 @node _gfortran_caf_sync_memory
5222 @subsection @code{_gfortran_caf_sync_memory} --- Wait for completion of segment-memory operations
5223 @cindex Coarray, _gfortran_caf_sync_memory
5224
5225 @table @asis
5226 @item @emph{Description}:
5227 Acts as optimization barrier between different segments. It also ensures that
5228 all pending memory operations of this image have been completed.
5229
5230 @item @emph{Syntax}:
5231 @code{void _gfortran_caf_sync_memory (int *stat, char *errmsg, size_t errmsg_len)}
5232
5233 @item @emph{Arguments}:
5234 @multitable @columnfractions .15 .70
5235 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5236 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5237 an error message; may be NULL.
5238 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5239 @end multitable
5240
5241 @item @emph{NOTE} A simple implementation could be
5242 @code{__asm__ __volatile__ ("":::"memory")} to prevent code movements.
5243 @end table
5244
5245
5246
5247 @node _gfortran_caf_error_stop
5248 @subsection @code{_gfortran_caf_error_stop} --- Error termination with exit code
5249 @cindex Coarray, _gfortran_caf_error_stop
5250
5251 @table @asis
5252 @item @emph{Description}:
5253 Invoked for an @code{ERROR STOP} statement which has an integer argument. The
5254 function should terminate the program with the specified exit code.
5255
5256
5257 @item @emph{Syntax}:
5258 @code{void _gfortran_caf_error_stop (int error)}
5259
5260 @item @emph{Arguments}:
5261 @multitable @columnfractions .15 .70
5262 @item @var{error} @tab intent(in) The exit status to be used.
5263 @end multitable
5264 @end table
5265
5266
5267
5268 @node _gfortran_caf_error_stop_str
5269 @subsection @code{_gfortran_caf_error_stop_str} --- Error termination with string
5270 @cindex Coarray, _gfortran_caf_error_stop_str
5271
5272 @table @asis
5273 @item @emph{Description}:
5274 Invoked for an @code{ERROR STOP} statement which has a string as argument. The
5275 function should terminate the program with a nonzero-exit code.
5276
5277 @item @emph{Syntax}:
5278 @code{void _gfortran_caf_error_stop (const char *string, size_t len)}
5279
5280 @item @emph{Arguments}:
5281 @multitable @columnfractions .15 .70
5282 @item @var{string} @tab intent(in) the error message (not zero terminated)
5283 @item @var{len} @tab intent(in) the length of the string
5284 @end multitable
5285 @end table
5286
5287
5288
5289 @node _gfortran_caf_fail_image
5290 @subsection @code{_gfortran_caf_fail_image} --- Mark the image failed and end its execution
5291 @cindex Coarray, _gfortran_caf_fail_image
5292
5293 @table @asis
5294 @item @emph{Description}:
5295 Invoked for an @code{FAIL IMAGE} statement. The function should terminate the
5296 current image.
5297
5298 @item @emph{Syntax}:
5299 @code{void _gfortran_caf_fail_image ()}
5300
5301 @item @emph{NOTES}
5302 This function follows TS18508.
5303 @end table
5304
5305
5306
5307 @node _gfortran_caf_atomic_define
5308 @subsection @code{_gfortran_caf_atomic_define} --- Atomic variable assignment
5309 @cindex Coarray, _gfortran_caf_atomic_define
5310
5311 @table @asis
5312 @item @emph{Description}:
5313 Assign atomically a value to an integer or logical variable.
5314
5315 @item @emph{Syntax}:
5316 @code{void _gfortran_caf_atomic_define (caf_token_t token, size_t offset,
5317 int image_index, void *value, int *stat, int type, int kind)}
5318
5319 @item @emph{Arguments}:
5320 @multitable @columnfractions .15 .70
5321 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
5322 @item @var{offset} @tab intent(in) By which amount of bytes the actual data is
5323 shifted compared to the base address of the coarray.
5324 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
5325 positive number; zero indicates the current image when used noncoindexed.
5326 @item @var{value} @tab intent(in) the value to be assigned, passed by reference
5327 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5328 @item @var{type} @tab intent(in) The data type, i.e. @code{BT_INTEGER} (1) or
5329 @code{BT_LOGICAL} (2).
5330 @item @var{kind} @tab intent(in) The kind value (only 4; always @code{int})
5331 @end multitable
5332 @end table
5333
5334
5335
5336 @node _gfortran_caf_atomic_ref
5337 @subsection @code{_gfortran_caf_atomic_ref} --- Atomic variable reference
5338 @cindex Coarray, _gfortran_caf_atomic_ref
5339
5340 @table @asis
5341 @item @emph{Description}:
5342 Reference atomically a value of a kind-4 integer or logical variable.
5343
5344 @item @emph{Syntax}:
5345 @code{void _gfortran_caf_atomic_ref (caf_token_t token, size_t offset,
5346 int image_index, void *value, int *stat, int type, int kind)}
5347
5348 @item @emph{Arguments}:
5349 @multitable @columnfractions .15 .70
5350 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
5351 @item @var{offset} @tab intent(in) By which amount of bytes the actual data is
5352 shifted compared to the base address of the coarray.
5353 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
5354 positive number; zero indicates the current image when used noncoindexed.
5355 @item @var{value} @tab intent(out) The variable assigned the atomically
5356 referenced variable.
5357 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5358 @item @var{type} @tab the data type, i.e. @code{BT_INTEGER} (1) or
5359 @code{BT_LOGICAL} (2).
5360 @item @var{kind} @tab The kind value (only 4; always @code{int})
5361 @end multitable
5362 @end table
5363
5364
5365
5366 @node _gfortran_caf_atomic_cas
5367 @subsection @code{_gfortran_caf_atomic_cas} --- Atomic compare and swap
5368 @cindex Coarray, _gfortran_caf_atomic_cas
5369
5370 @table @asis
5371 @item @emph{Description}:
5372 Atomic compare and swap of a kind-4 integer or logical variable. Assigns
5373 atomically the specified value to the atomic variable, if the latter has
5374 the value specified by the passed condition value.
5375
5376 @item @emph{Syntax}:
5377 @code{void _gfortran_caf_atomic_cas (caf_token_t token, size_t offset,
5378 int image_index, void *old, void *compare, void *new_val, int *stat,
5379 int type, int kind)}
5380
5381 @item @emph{Arguments}:
5382 @multitable @columnfractions .15 .70
5383 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
5384 @item @var{offset} @tab intent(in) By which amount of bytes the actual data is
5385 shifted compared to the base address of the coarray.
5386 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
5387 positive number; zero indicates the current image when used noncoindexed.
5388 @item @var{old} @tab intent(out) The value which the atomic variable had
5389 just before the cas operation.
5390 @item @var{compare} @tab intent(in) The value used for comparision.
5391 @item @var{new_val} @tab intent(in) The new value for the atomic variable,
5392 assigned to the atomic variable, if @code{compare} equals the value of the
5393 atomic variable.
5394 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5395 @item @var{type} @tab intent(in) the data type, i.e. @code{BT_INTEGER} (1) or
5396 @code{BT_LOGICAL} (2).
5397 @item @var{kind} @tab intent(in) The kind value (only 4; always @code{int})
5398 @end multitable
5399 @end table
5400
5401
5402
5403 @node _gfortran_caf_atomic_op
5404 @subsection @code{_gfortran_caf_atomic_op} --- Atomic operation
5405 @cindex Coarray, _gfortran_caf_atomic_op
5406
5407 @table @asis
5408 @item @emph{Description}:
5409 Apply an operation atomically to an atomic integer or logical variable.
5410 After the operation, @var{old} contains the value just before the operation,
5411 which, respectively, adds (GFC_CAF_ATOMIC_ADD) atomically the @code{value} to
5412 the atomic integer variable or does a bitwise AND, OR or exclusive OR
5413 between the atomic variable and @var{value}; the result is then stored in the
5414 atomic variable.
5415
5416 @item @emph{Syntax}:
5417 @code{void _gfortran_caf_atomic_op (int op, caf_token_t token, size_t offset,
5418 int image_index, void *value, void *old, int *stat, int type, int kind)}
5419
5420 @item @emph{Arguments}:
5421 @multitable @columnfractions .15 .70
5422 @item @var{op} @tab intent(in) the operation to be performed; possible values
5423 @code{GFC_CAF_ATOMIC_ADD} (1), @code{GFC_CAF_ATOMIC_AND} (2),
5424 @code{GFC_CAF_ATOMIC_OR} (3), @code{GFC_CAF_ATOMIC_XOR} (4).
5425 @item @var{token} @tab intent(in) An opaque pointer identifying the coarray.
5426 @item @var{offset} @tab intent(in) By which amount of bytes the actual data is
5427 shifted compared to the base address of the coarray.
5428 @item @var{image_index} @tab intent(in) The ID of the remote image; must be a
5429 positive number; zero indicates the current image when used noncoindexed.
5430 @item @var{old} @tab intent(out) The value which the atomic variable had
5431 just before the atomic operation.
5432 @item @var{val} @tab intent(in) The new value for the atomic variable,
5433 assigned to the atomic variable, if @code{compare} equals the value of the
5434 atomic variable.
5435 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5436 @item @var{type} @tab intent(in) the data type, i.e. @code{BT_INTEGER} (1) or
5437 @code{BT_LOGICAL} (2)
5438 @item @var{kind} @tab intent(in) the kind value (only 4; always @code{int})
5439 @end multitable
5440 @end table
5441
5442
5443
5444
5445 @node _gfortran_caf_co_broadcast
5446 @subsection @code{_gfortran_caf_co_broadcast} --- Sending data to all images
5447 @cindex Coarray, _gfortran_caf_co_broadcast
5448
5449 @table @asis
5450 @item @emph{Description}:
5451 Distribute a value from a given image to all other images in the team. Has to
5452 be called collectively.
5453
5454 @item @emph{Syntax}:
5455 @code{void _gfortran_caf_co_broadcast (gfc_descriptor_t *a,
5456 int source_image, int *stat, char *errmsg, size_t errmsg_len)}
5457
5458 @item @emph{Arguments}:
5459 @multitable @columnfractions .15 .70
5460 @item @var{a} @tab intent(inout) An array descriptor with the data to be
5461 broadcasted (on @var{source_image}) or to be received (other images).
5462 @item @var{source_image} @tab intent(in) The ID of the image from which the
5463 data should be broadcasted.
5464 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5465 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5466 an error message; may be NULL.
5467 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg.
5468 @end multitable
5469 @end table
5470
5471
5472
5473 @node _gfortran_caf_co_max
5474 @subsection @code{_gfortran_caf_co_max} --- Collective maximum reduction
5475 @cindex Coarray, _gfortran_caf_co_max
5476
5477 @table @asis
5478 @item @emph{Description}:
5479 Calculates for each array element of the variable @var{a} the maximum
5480 value for that element in the current team; if @var{result_image} has the
5481 value 0, the result shall be stored on all images, otherwise, only on the
5482 specified image. This function operates on numeric values and character
5483 strings.
5484
5485 @item @emph{Syntax}:
5486 @code{void _gfortran_caf_co_max (gfc_descriptor_t *a, int result_image,
5487 int *stat, char *errmsg, int a_len, size_t errmsg_len)}
5488
5489 @item @emph{Arguments}:
5490 @multitable @columnfractions .15 .70
5491 @item @var{a} @tab intent(inout) An array descriptor for the data to be
5492 processed. On the destination image(s) the result overwrites the old content.
5493 @item @var{result_image} @tab intent(in) The ID of the image to which the
5494 reduced value should be copied to; if zero, it has to be copied to all images.
5495 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5496 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5497 an error message; may be NULL.
5498 @item @var{a_len} @tab intent(in) the string length of argument @var{a}
5499 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5500 @end multitable
5501
5502 @item @emph{NOTES}
5503 If @var{result_image} is nonzero, the data in the array descriptor @var{a} on
5504 all images except of the specified one become undefined; hence, the library may
5505 make use of this.
5506 @end table
5507
5508
5509
5510 @node _gfortran_caf_co_min
5511 @subsection @code{_gfortran_caf_co_min} --- Collective minimum reduction
5512 @cindex Coarray, _gfortran_caf_co_min
5513
5514 @table @asis
5515 @item @emph{Description}:
5516 Calculates for each array element of the variable @var{a} the minimum
5517 value for that element in the current team; if @var{result_image} has the
5518 value 0, the result shall be stored on all images, otherwise, only on the
5519 specified image. This function operates on numeric values and character
5520 strings.
5521
5522 @item @emph{Syntax}:
5523 @code{void _gfortran_caf_co_min (gfc_descriptor_t *a, int result_image,
5524 int *stat, char *errmsg, int a_len, size_t errmsg_len)}
5525
5526 @item @emph{Arguments}:
5527 @multitable @columnfractions .15 .70
5528 @item @var{a} @tab intent(inout) An array descriptor for the data to be
5529 processed. On the destination image(s) the result overwrites the old content.
5530 @item @var{result_image} @tab intent(in) The ID of the image to which the
5531 reduced value should be copied to; if zero, it has to be copied to all images.
5532 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5533 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5534 an error message; may be NULL.
5535 @item @var{a_len} @tab intent(in) the string length of argument @var{a}
5536 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5537 @end multitable
5538
5539 @item @emph{NOTES}
5540 If @var{result_image} is nonzero, the data in the array descriptor @var{a} on
5541 all images except of the specified one become undefined; hence, the library may
5542 make use of this.
5543 @end table
5544
5545
5546
5547 @node _gfortran_caf_co_sum
5548 @subsection @code{_gfortran_caf_co_sum} --- Collective summing reduction
5549 @cindex Coarray, _gfortran_caf_co_sum
5550
5551 @table @asis
5552 @item @emph{Description}:
5553 Calculates for each array element of the variable @var{a} the sum of all
5554 values for that element in the current team; if @var{result_image} has the
5555 value 0, the result shall be stored on all images, otherwise, only on the
5556 specified image. This function operates on numeric values only.
5557
5558 @item @emph{Syntax}:
5559 @code{void _gfortran_caf_co_sum (gfc_descriptor_t *a, int result_image,
5560 int *stat, char *errmsg, size_t errmsg_len)}
5561
5562 @item @emph{Arguments}:
5563 @multitable @columnfractions .15 .70
5564 @item @var{a} @tab intent(inout) An array descriptor with the data to be
5565 processed. On the destination image(s) the result overwrites the old content.
5566 @item @var{result_image} @tab intent(in) The ID of the image to which the
5567 reduced value should be copied to; if zero, it has to be copied to all images.
5568 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5569 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5570 an error message; may be NULL.
5571 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5572 @end multitable
5573
5574 @item @emph{NOTES}
5575 If @var{result_image} is nonzero, the data in the array descriptor @var{a} on
5576 all images except of the specified one become undefined; hence, the library may
5577 make use of this.
5578 @end table
5579
5580
5581
5582 @node _gfortran_caf_co_reduce
5583 @subsection @code{_gfortran_caf_co_reduce} --- Generic collective reduction
5584 @cindex Coarray, _gfortran_caf_co_reduce
5585
5586 @table @asis
5587 @item @emph{Description}:
5588 Calculates for each array element of the variable @var{a} the reduction
5589 value for that element in the current team; if @var{result_image} has the
5590 value 0, the result shall be stored on all images, otherwise, only on the
5591 specified image. The @var{opr} is a pure function doing a mathematically
5592 commutative and associative operation.
5593
5594 The @var{opr_flags} denote the following; the values are bitwise ored.
5595 @code{GFC_CAF_BYREF} (1) if the result should be returned
5596 by reference; @code{GFC_CAF_HIDDENLEN} (2) whether the result and argument
5597 string lengths shall be specified as hidden arguments;
5598 @code{GFC_CAF_ARG_VALUE} (4) whether the arguments shall be passed by value,
5599 @code{GFC_CAF_ARG_DESC} (8) whether the arguments shall be passed by descriptor.
5600
5601
5602 @item @emph{Syntax}:
5603 @code{void _gfortran_caf_co_reduce (gfc_descriptor_t *a,
5604 void * (*opr) (void *, void *), int opr_flags, int result_image,
5605 int *stat, char *errmsg, int a_len, size_t errmsg_len)}
5606
5607 @item @emph{Arguments}:
5608 @multitable @columnfractions .15 .70
5609 @item @var{a} @tab intent(inout) An array descriptor with the data to be
5610 processed. On the destination image(s) the result overwrites the old content.
5611 @item @var{opr} @tab intent(in) Function pointer to the reduction function
5612 @item @var{opr_flags} @tab intent(in) Flags regarding the reduction function
5613 @item @var{result_image} @tab intent(in) The ID of the image to which the
5614 reduced value should be copied to; if zero, it has to be copied to all images.
5615 @item @var{stat} @tab intent(out) Stores the status STAT= and may be NULL.
5616 @item @var{errmsg} @tab intent(out) When an error occurs, this will be set to
5617 an error message; may be NULL.
5618 @item @var{a_len} @tab intent(in) the string length of argument @var{a}
5619 @item @var{errmsg_len} @tab intent(in) the buffer size of errmsg
5620 @end multitable
5621
5622 @item @emph{NOTES}
5623 If @var{result_image} is nonzero, the data in the array descriptor @var{a} on
5624 all images except of the specified one become undefined; hence, the library may
5625 make use of this.
5626
5627 For character arguments, the result is passed as first argument, followed
5628 by the result string length, next come the two string arguments, followed
5629 by the two hidden string length arguments. With C binding, there are no hidden
5630 arguments and by-reference passing and either only a single character is passed
5631 or an array descriptor.
5632 @end table
5633
5634
5635 @c Intrinsic Procedures
5636 @c ---------------------------------------------------------------------
5637
5638 @include intrinsic.texi
5639
5640
5641 @tex
5642 \blankpart
5643 @end tex
5644
5645 @c ---------------------------------------------------------------------
5646 @c Contributing
5647 @c ---------------------------------------------------------------------
5648
5649 @node Contributing
5650 @unnumbered Contributing
5651 @cindex Contributing
5652
5653 Free software is only possible if people contribute to efforts
5654 to create it.
5655 We're always in need of more people helping out with ideas
5656 and comments, writing documentation and contributing code.
5657
5658 If you want to contribute to GNU Fortran,
5659 have a look at the long lists of projects you can take on.
5660 Some of these projects are small,
5661 some of them are large;
5662 some are completely orthogonal to the rest of what is
5663 happening on GNU Fortran,
5664 but others are ``mainstream'' projects in need of enthusiastic hackers.
5665 All of these projects are important!
5666 We will eventually get around to the things here,
5667 but they are also things doable by someone who is willing and able.
5668
5669 @menu
5670 * Contributors::
5671 * Projects::
5672 * Proposed Extensions::
5673 @end menu
5674
5675
5676 @node Contributors
5677 @section Contributors to GNU Fortran
5678 @cindex Contributors
5679 @cindex Credits
5680 @cindex Authors
5681
5682 Most of the parser was hand-crafted by @emph{Andy Vaught}, who is
5683 also the initiator of the whole project. Thanks Andy!
5684 Most of the interface with GCC was written by @emph{Paul Brook}.
5685
5686 The following individuals have contributed code and/or
5687 ideas and significant help to the GNU Fortran project
5688 (in alphabetical order):
5689
5690 @itemize @minus
5691 @item Janne Blomqvist
5692 @item Steven Bosscher
5693 @item Paul Brook
5694 @item Tobias Burnus
5695 @item Fran@,{c}ois-Xavier Coudert
5696 @item Bud Davis
5697 @item Jerry DeLisle
5698 @item Erik Edelmann
5699 @item Bernhard Fischer
5700 @item Daniel Franke
5701 @item Richard Guenther
5702 @item Richard Henderson
5703 @item Katherine Holcomb
5704 @item Jakub Jelinek
5705 @item Niels Kristian Bech Jensen
5706 @item Steven Johnson
5707 @item Steven G. Kargl
5708 @item Thomas Koenig
5709 @item Asher Langton
5710 @item H. J. Lu
5711 @item Toon Moene
5712 @item Brooks Moses
5713 @item Andrew Pinski
5714 @item Tim Prince
5715 @item Christopher D. Rickett
5716 @item Richard Sandiford
5717 @item Tobias Schl@"uter
5718 @item Roger Sayle
5719 @item Paul Thomas
5720 @item Andy Vaught
5721 @item Feng Wang
5722 @item Janus Weil
5723 @item Daniel Kraft
5724 @end itemize
5725
5726 The following people have contributed bug reports,
5727 smaller or larger patches,
5728 and much needed feedback and encouragement for the
5729 GNU Fortran project:
5730
5731 @itemize @minus
5732 @item Bill Clodius
5733 @item Dominique d'Humi@`eres
5734 @item Kate Hedstrom
5735 @item Erik Schnetter
5736 @item Joost VandeVondele
5737 @end itemize
5738
5739 Many other individuals have helped debug,
5740 test and improve the GNU Fortran compiler over the past few years,
5741 and we welcome you to do the same!
5742 If you already have done so,
5743 and you would like to see your name listed in the
5744 list above, please contact us.
5745
5746
5747 @node Projects
5748 @section Projects
5749
5750 @table @emph
5751
5752 @item Help build the test suite
5753 Solicit more code for donation to the test suite: the more extensive the
5754 testsuite, the smaller the risk of breaking things in the future! We can
5755 keep code private on request.
5756
5757 @item Bug hunting/squishing
5758 Find bugs and write more test cases! Test cases are especially very
5759 welcome, because it allows us to concentrate on fixing bugs instead of
5760 isolating them. Going through the bugzilla database at
5761 @url{https://gcc.gnu.org/@/bugzilla/} to reduce testcases posted there and
5762 add more information (for example, for which version does the testcase
5763 work, for which versions does it fail?) is also very helpful.
5764
5765 @end table
5766
5767
5768 @node Proposed Extensions
5769 @section Proposed Extensions
5770
5771 Here's a list of proposed extensions for the GNU Fortran compiler, in no particular
5772 order. Most of these are necessary to be fully compatible with
5773 existing Fortran compilers, but they are not part of the official
5774 J3 Fortran 95 standard.
5775
5776 @subsection Compiler extensions:
5777 @itemize @bullet
5778 @item
5779 User-specified alignment rules for structures.
5780
5781 @item
5782 Automatically extend single precision constants to double.
5783
5784 @item
5785 Compile code that conserves memory by dynamically allocating common and
5786 module storage either on stack or heap.
5787
5788 @item
5789 Compile flag to generate code for array conformance checking (suggest -CC).
5790
5791 @item
5792 User control of symbol names (underscores, etc).
5793
5794 @item
5795 Compile setting for maximum size of stack frame size before spilling
5796 parts to static or heap.
5797
5798 @item
5799 Flag to force local variables into static space.
5800
5801 @item
5802 Flag to force local variables onto stack.
5803 @end itemize
5804
5805
5806 @subsection Environment Options
5807 @itemize @bullet
5808 @item
5809 Pluggable library modules for random numbers, linear algebra.
5810 LA should use BLAS calling conventions.
5811
5812 @item
5813 Environment variables controlling actions on arithmetic exceptions like
5814 overflow, underflow, precision loss---Generate NaN, abort, default.
5815 action.
5816
5817 @item
5818 Set precision for fp units that support it (i387).
5819
5820 @item
5821 Variable for setting fp rounding mode.
5822
5823 @item
5824 Variable to fill uninitialized variables with a user-defined bit
5825 pattern.
5826
5827 @item
5828 Environment variable controlling filename that is opened for that unit
5829 number.
5830
5831 @item
5832 Environment variable to clear/trash memory being freed.
5833
5834 @item
5835 Environment variable to control tracing of allocations and frees.
5836
5837 @item
5838 Environment variable to display allocated memory at normal program end.
5839
5840 @item
5841 Environment variable for filename for * IO-unit.
5842
5843 @item
5844 Environment variable for temporary file directory.
5845
5846 @item
5847 Environment variable forcing standard output to be line buffered (Unix).
5848
5849 @end itemize
5850
5851
5852 @c ---------------------------------------------------------------------
5853 @c GNU General Public License
5854 @c ---------------------------------------------------------------------
5855
5856 @include gpl_v3.texi
5857
5858
5859
5860 @c ---------------------------------------------------------------------
5861 @c GNU Free Documentation License
5862 @c ---------------------------------------------------------------------
5863
5864 @include fdl.texi
5865
5866
5867
5868 @c ---------------------------------------------------------------------
5869 @c Funding Free Software
5870 @c ---------------------------------------------------------------------
5871
5872 @include funding.texi
5873
5874 @c ---------------------------------------------------------------------
5875 @c Indices
5876 @c ---------------------------------------------------------------------
5877
5878 @node Option Index
5879 @unnumbered Option Index
5880 @command{gfortran}'s command line options are indexed here without any
5881 initial @samp{-} or @samp{--}. Where an option has both positive and
5882 negative forms (such as -foption and -fno-option), relevant entries in
5883 the manual are indexed under the most appropriate form; it may sometimes
5884 be useful to look up both forms.
5885 @printindex op
5886
5887 @node Keyword Index
5888 @unnumbered Keyword Index
5889 @printindex cp
5890
5891 @bye