]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-types.c
26fdb2803a723fad5ef44a24052f5db408d4fcd5
[thirdparty/gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2020 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-types.c -- gfortran backend types */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "target.h"
28 #include "tree.h"
29 #include "gfortran.h"
30 #include "trans.h"
31 #include "stringpool.h"
32 #include "fold-const.h"
33 #include "stor-layout.h"
34 #include "langhooks.h" /* For iso-c-bindings.def. */
35 #include "toplev.h" /* For rest_of_decl_compilation. */
36 #include "trans-types.h"
37 #include "trans-const.h"
38 #include "trans-array.h"
39 #include "dwarf2out.h" /* For struct array_descr_info. */
40 #include "attribs.h"
41 \f
42
43 #if (GFC_MAX_DIMENSIONS < 10)
44 #define GFC_RANK_DIGITS 1
45 #define GFC_RANK_PRINTF_FORMAT "%01d"
46 #elif (GFC_MAX_DIMENSIONS < 100)
47 #define GFC_RANK_DIGITS 2
48 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #else
50 #error If you really need >99 dimensions, continue the sequence above...
51 #endif
52
53 /* array of structs so we don't have to worry about xmalloc or free */
54 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
55
56 tree gfc_array_index_type;
57 tree gfc_array_range_type;
58 tree gfc_character1_type_node;
59 tree pvoid_type_node;
60 tree prvoid_type_node;
61 tree ppvoid_type_node;
62 tree pchar_type_node;
63 tree pfunc_type_node;
64
65 tree logical_type_node;
66 tree logical_true_node;
67 tree logical_false_node;
68 tree gfc_charlen_type_node;
69
70 tree gfc_float128_type_node = NULL_TREE;
71 tree gfc_complex_float128_type_node = NULL_TREE;
72
73 bool gfc_real16_is_float128 = false;
74
75 static GTY(()) tree gfc_desc_dim_type;
76 static GTY(()) tree gfc_max_array_element_size;
77 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
78 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
79
80 /* Arrays for all integral and real kinds. We'll fill this in at runtime
81 after the target has a chance to process command-line options. */
82
83 #define MAX_INT_KINDS 5
84 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
85 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
86 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
87 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
88
89 #define MAX_REAL_KINDS 5
90 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
91 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
92 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
93
94 #define MAX_CHARACTER_KINDS 2
95 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
96 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
97 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
98
99 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
100
101 /* The integer kind to use for array indices. This will be set to the
102 proper value based on target information from the backend. */
103
104 int gfc_index_integer_kind;
105
106 /* The default kinds of the various types. */
107
108 int gfc_default_integer_kind;
109 int gfc_max_integer_kind;
110 int gfc_default_real_kind;
111 int gfc_default_double_kind;
112 int gfc_default_character_kind;
113 int gfc_default_logical_kind;
114 int gfc_default_complex_kind;
115 int gfc_c_int_kind;
116 int gfc_atomic_int_kind;
117 int gfc_atomic_logical_kind;
118
119 /* The kind size used for record offsets. If the target system supports
120 kind=8, this will be set to 8, otherwise it is set to 4. */
121 int gfc_intio_kind;
122
123 /* The integer kind used to store character lengths. */
124 int gfc_charlen_int_kind;
125
126 /* Kind of internal integer for storing object sizes. */
127 int gfc_size_kind;
128
129 /* The size of the numeric storage unit and character storage unit. */
130 int gfc_numeric_storage_size;
131 int gfc_character_storage_size;
132
133 tree dtype_type_node = NULL_TREE;
134
135
136 /* Build the dtype_type_node if necessary. */
137 tree get_dtype_type_node (void)
138 {
139 tree field;
140 tree dtype_node;
141 tree *dtype_chain = NULL;
142
143 if (dtype_type_node == NULL_TREE)
144 {
145 dtype_node = make_node (RECORD_TYPE);
146 TYPE_NAME (dtype_node) = get_identifier ("dtype_type");
147 TYPE_NAMELESS (dtype_node) = 1;
148 field = gfc_add_field_to_struct_1 (dtype_node,
149 get_identifier ("elem_len"),
150 size_type_node, &dtype_chain);
151 TREE_NO_WARNING (field) = 1;
152 field = gfc_add_field_to_struct_1 (dtype_node,
153 get_identifier ("version"),
154 integer_type_node, &dtype_chain);
155 TREE_NO_WARNING (field) = 1;
156 field = gfc_add_field_to_struct_1 (dtype_node,
157 get_identifier ("rank"),
158 signed_char_type_node, &dtype_chain);
159 TREE_NO_WARNING (field) = 1;
160 field = gfc_add_field_to_struct_1 (dtype_node,
161 get_identifier ("type"),
162 signed_char_type_node, &dtype_chain);
163 TREE_NO_WARNING (field) = 1;
164 field = gfc_add_field_to_struct_1 (dtype_node,
165 get_identifier ("attribute"),
166 short_integer_type_node, &dtype_chain);
167 TREE_NO_WARNING (field) = 1;
168 gfc_finish_type (dtype_node);
169 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (dtype_node)) = 1;
170 dtype_type_node = dtype_node;
171 }
172 return dtype_type_node;
173 }
174
175 bool
176 gfc_check_any_c_kind (gfc_typespec *ts)
177 {
178 int i;
179
180 for (i = 0; i < ISOCBINDING_NUMBER; i++)
181 {
182 /* Check for any C interoperable kind for the given type/kind in ts.
183 This can be used after verify_c_interop to make sure that the
184 Fortran kind being used exists in at least some form for C. */
185 if (c_interop_kinds_table[i].f90_type == ts->type &&
186 c_interop_kinds_table[i].value == ts->kind)
187 return true;
188 }
189
190 return false;
191 }
192
193
194 static int
195 get_real_kind_from_node (tree type)
196 {
197 int i;
198
199 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
200 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
201 return gfc_real_kinds[i].kind;
202
203 return -4;
204 }
205
206 static int
207 get_int_kind_from_node (tree type)
208 {
209 int i;
210
211 if (!type)
212 return -2;
213
214 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
215 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
216 return gfc_integer_kinds[i].kind;
217
218 return -1;
219 }
220
221 static int
222 get_int_kind_from_name (const char *name)
223 {
224 return get_int_kind_from_node (get_typenode_from_name (name));
225 }
226
227
228 /* Get the kind number corresponding to an integer of given size,
229 following the required return values for ISO_FORTRAN_ENV INT* constants:
230 -2 is returned if we support a kind of larger size, -1 otherwise. */
231 int
232 gfc_get_int_kind_from_width_isofortranenv (int size)
233 {
234 int i;
235
236 /* Look for a kind with matching storage size. */
237 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
238 if (gfc_integer_kinds[i].bit_size == size)
239 return gfc_integer_kinds[i].kind;
240
241 /* Look for a kind with larger storage size. */
242 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
243 if (gfc_integer_kinds[i].bit_size > size)
244 return -2;
245
246 return -1;
247 }
248
249
250 /* Get the kind number corresponding to a real of a given storage size.
251 If two real's have the same storage size, then choose the real with
252 the largest precision. If a kind type is unavailable and a real
253 exists with wider storage, then return -2; otherwise, return -1. */
254
255 int
256 gfc_get_real_kind_from_width_isofortranenv (int size)
257 {
258 int digits, i, kind;
259
260 size /= 8;
261
262 kind = -1;
263 digits = 0;
264
265 /* Look for a kind with matching storage size. */
266 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
267 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
268 {
269 if (gfc_real_kinds[i].digits > digits)
270 {
271 digits = gfc_real_kinds[i].digits;
272 kind = gfc_real_kinds[i].kind;
273 }
274 }
275
276 if (kind != -1)
277 return kind;
278
279 /* Look for a kind with larger storage size. */
280 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
281 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
282 kind = -2;
283
284 return kind;
285 }
286
287
288
289 static int
290 get_int_kind_from_width (int size)
291 {
292 int i;
293
294 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
295 if (gfc_integer_kinds[i].bit_size == size)
296 return gfc_integer_kinds[i].kind;
297
298 return -2;
299 }
300
301 static int
302 get_int_kind_from_minimal_width (int size)
303 {
304 int i;
305
306 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
307 if (gfc_integer_kinds[i].bit_size >= size)
308 return gfc_integer_kinds[i].kind;
309
310 return -2;
311 }
312
313
314 /* Generate the CInteropKind_t objects for the C interoperable
315 kinds. */
316
317 void
318 gfc_init_c_interop_kinds (void)
319 {
320 int i;
321
322 /* init all pointers in the list to NULL */
323 for (i = 0; i < ISOCBINDING_NUMBER; i++)
324 {
325 /* Initialize the name and value fields. */
326 c_interop_kinds_table[i].name[0] = '\0';
327 c_interop_kinds_table[i].value = -100;
328 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
329 }
330
331 #define NAMED_INTCST(a,b,c,d) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_REALCST(a,b,c,d) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_REAL; \
338 c_interop_kinds_table[a].value = c;
339 #define NAMED_CMPXCST(a,b,c,d) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
342 c_interop_kinds_table[a].value = c;
343 #define NAMED_LOGCST(a,b,c) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
346 c_interop_kinds_table[a].value = c;
347 #define NAMED_CHARKNDCST(a,b,c) \
348 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
349 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
350 c_interop_kinds_table[a].value = c;
351 #define NAMED_CHARCST(a,b,c) \
352 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
353 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
354 c_interop_kinds_table[a].value = c;
355 #define DERIVED_TYPE(a,b,c) \
356 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
357 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
358 c_interop_kinds_table[a].value = c;
359 #define NAMED_FUNCTION(a,b,c,d) \
360 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
361 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
362 c_interop_kinds_table[a].value = c;
363 #define NAMED_SUBROUTINE(a,b,c,d) \
364 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
365 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
366 c_interop_kinds_table[a].value = c;
367 #include "iso-c-binding.def"
368 }
369
370
371 /* Query the target to determine which machine modes are available for
372 computation. Choose KIND numbers for them. */
373
374 void
375 gfc_init_kinds (void)
376 {
377 opt_scalar_int_mode int_mode_iter;
378 opt_scalar_float_mode float_mode_iter;
379 int i_index, r_index, kind;
380 bool saw_i4 = false, saw_i8 = false;
381 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
382
383 i_index = 0;
384 FOR_EACH_MODE_IN_CLASS (int_mode_iter, MODE_INT)
385 {
386 scalar_int_mode mode = int_mode_iter.require ();
387 int kind, bitsize;
388
389 if (!targetm.scalar_mode_supported_p (mode))
390 continue;
391
392 /* The middle end doesn't support constants larger than 2*HWI.
393 Perhaps the target hook shouldn't have accepted these either,
394 but just to be safe... */
395 bitsize = GET_MODE_BITSIZE (mode);
396 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
397 continue;
398
399 gcc_assert (i_index != MAX_INT_KINDS);
400
401 /* Let the kind equal the bit size divided by 8. This insulates the
402 programmer from the underlying byte size. */
403 kind = bitsize / 8;
404
405 if (kind == 4)
406 saw_i4 = true;
407 if (kind == 8)
408 saw_i8 = true;
409
410 gfc_integer_kinds[i_index].kind = kind;
411 gfc_integer_kinds[i_index].radix = 2;
412 gfc_integer_kinds[i_index].digits = bitsize - 1;
413 gfc_integer_kinds[i_index].bit_size = bitsize;
414
415 gfc_logical_kinds[i_index].kind = kind;
416 gfc_logical_kinds[i_index].bit_size = bitsize;
417
418 i_index += 1;
419 }
420
421 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
422 used for large file access. */
423
424 if (saw_i8)
425 gfc_intio_kind = 8;
426 else
427 gfc_intio_kind = 4;
428
429 /* If we do not at least have kind = 4, everything is pointless. */
430 gcc_assert(saw_i4);
431
432 /* Set the maximum integer kind. Used with at least BOZ constants. */
433 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
434
435 r_index = 0;
436 FOR_EACH_MODE_IN_CLASS (float_mode_iter, MODE_FLOAT)
437 {
438 scalar_float_mode mode = float_mode_iter.require ();
439 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
440 int kind;
441
442 if (fmt == NULL)
443 continue;
444 if (!targetm.scalar_mode_supported_p (mode))
445 continue;
446
447 /* Only let float, double, long double and __float128 go through.
448 Runtime support for others is not provided, so they would be
449 useless. */
450 if (!targetm.libgcc_floating_mode_supported_p (mode))
451 continue;
452 if (mode != TYPE_MODE (float_type_node)
453 && (mode != TYPE_MODE (double_type_node))
454 && (mode != TYPE_MODE (long_double_type_node))
455 #if defined(HAVE_TFmode) && defined(ENABLE_LIBQUADMATH_SUPPORT)
456 && (mode != TFmode)
457 #endif
458 )
459 continue;
460
461 /* Let the kind equal the precision divided by 8, rounding up. Again,
462 this insulates the programmer from the underlying byte size.
463
464 Also, it effectively deals with IEEE extended formats. There, the
465 total size of the type may equal 16, but it's got 6 bytes of padding
466 and the increased size can get in the way of a real IEEE quad format
467 which may also be supported by the target.
468
469 We round up so as to handle IA-64 __floatreg (RFmode), which is an
470 82 bit type. Not to be confused with __float80 (XFmode), which is
471 an 80 bit type also supported by IA-64. So XFmode should come out
472 to be kind=10, and RFmode should come out to be kind=11. Egads. */
473
474 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
475
476 if (kind == 4)
477 saw_r4 = true;
478 if (kind == 8)
479 saw_r8 = true;
480 if (kind == 10)
481 saw_r10 = true;
482 if (kind == 16)
483 saw_r16 = true;
484
485 /* Careful we don't stumble a weird internal mode. */
486 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
487 /* Or have too many modes for the allocated space. */
488 gcc_assert (r_index != MAX_REAL_KINDS);
489
490 gfc_real_kinds[r_index].kind = kind;
491 gfc_real_kinds[r_index].radix = fmt->b;
492 gfc_real_kinds[r_index].digits = fmt->p;
493 gfc_real_kinds[r_index].min_exponent = fmt->emin;
494 gfc_real_kinds[r_index].max_exponent = fmt->emax;
495 if (fmt->pnan < fmt->p)
496 /* This is an IBM extended double format (or the MIPS variant)
497 made up of two IEEE doubles. The value of the long double is
498 the sum of the values of the two parts. The most significant
499 part is required to be the value of the long double rounded
500 to the nearest double. If we use emax of 1024 then we can't
501 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
502 rounding will make the most significant part overflow. */
503 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
504 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
505 r_index += 1;
506 }
507
508 /* Choose the default integer kind. We choose 4 unless the user directs us
509 otherwise. Even if the user specified that the default integer kind is 8,
510 the numeric storage size is not 64 bits. In this case, a warning will be
511 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
512
513 gfc_numeric_storage_size = 4 * 8;
514
515 if (flag_default_integer)
516 {
517 if (!saw_i8)
518 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
519 "%<-fdefault-integer-8%> option");
520
521 gfc_default_integer_kind = 8;
522
523 }
524 else if (flag_integer4_kind == 8)
525 {
526 if (!saw_i8)
527 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
528 "%<-finteger-4-integer-8%> option");
529
530 gfc_default_integer_kind = 8;
531 }
532 else if (saw_i4)
533 {
534 gfc_default_integer_kind = 4;
535 }
536 else
537 {
538 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
539 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
540 }
541
542 /* Choose the default real kind. Again, we choose 4 when possible. */
543 if (flag_default_real_8)
544 {
545 if (!saw_r8)
546 gfc_fatal_error ("REAL(KIND=8) is not available for "
547 "%<-fdefault-real-8%> option");
548
549 gfc_default_real_kind = 8;
550 }
551 else if (flag_default_real_10)
552 {
553 if (!saw_r10)
554 gfc_fatal_error ("REAL(KIND=10) is not available for "
555 "%<-fdefault-real-10%> option");
556
557 gfc_default_real_kind = 10;
558 }
559 else if (flag_default_real_16)
560 {
561 if (!saw_r16)
562 gfc_fatal_error ("REAL(KIND=16) is not available for "
563 "%<-fdefault-real-16%> option");
564
565 gfc_default_real_kind = 16;
566 }
567 else if (flag_real4_kind == 8)
568 {
569 if (!saw_r8)
570 gfc_fatal_error ("REAL(KIND=8) is not available for %<-freal-4-real-8%> "
571 "option");
572
573 gfc_default_real_kind = 8;
574 }
575 else if (flag_real4_kind == 10)
576 {
577 if (!saw_r10)
578 gfc_fatal_error ("REAL(KIND=10) is not available for "
579 "%<-freal-4-real-10%> option");
580
581 gfc_default_real_kind = 10;
582 }
583 else if (flag_real4_kind == 16)
584 {
585 if (!saw_r16)
586 gfc_fatal_error ("REAL(KIND=16) is not available for "
587 "%<-freal-4-real-16%> option");
588
589 gfc_default_real_kind = 16;
590 }
591 else if (saw_r4)
592 gfc_default_real_kind = 4;
593 else
594 gfc_default_real_kind = gfc_real_kinds[0].kind;
595
596 /* Choose the default double kind. If -fdefault-real and -fdefault-double
597 are specified, we use kind=8, if it's available. If -fdefault-real is
598 specified without -fdefault-double, we use kind=16, if it's available.
599 Otherwise we do not change anything. */
600 if (flag_default_double && saw_r8)
601 gfc_default_double_kind = 8;
602 else if (flag_default_real_8 || flag_default_real_10 || flag_default_real_16)
603 {
604 /* Use largest available kind. */
605 if (saw_r16)
606 gfc_default_double_kind = 16;
607 else if (saw_r10)
608 gfc_default_double_kind = 10;
609 else if (saw_r8)
610 gfc_default_double_kind = 8;
611 else
612 gfc_default_double_kind = gfc_default_real_kind;
613 }
614 else if (flag_real8_kind == 4)
615 {
616 if (!saw_r4)
617 gfc_fatal_error ("REAL(KIND=4) is not available for "
618 "%<-freal-8-real-4%> option");
619
620 gfc_default_double_kind = 4;
621 }
622 else if (flag_real8_kind == 10 )
623 {
624 if (!saw_r10)
625 gfc_fatal_error ("REAL(KIND=10) is not available for "
626 "%<-freal-8-real-10%> option");
627
628 gfc_default_double_kind = 10;
629 }
630 else if (flag_real8_kind == 16 )
631 {
632 if (!saw_r16)
633 gfc_fatal_error ("REAL(KIND=10) is not available for "
634 "%<-freal-8-real-16%> option");
635
636 gfc_default_double_kind = 16;
637 }
638 else if (saw_r4 && saw_r8)
639 gfc_default_double_kind = 8;
640 else
641 {
642 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
643 real ... occupies two contiguous numeric storage units.
644
645 Therefore we must be supplied a kind twice as large as we chose
646 for single precision. There are loopholes, in that double
647 precision must *occupy* two storage units, though it doesn't have
648 to *use* two storage units. Which means that you can make this
649 kind artificially wide by padding it. But at present there are
650 no GCC targets for which a two-word type does not exist, so we
651 just let gfc_validate_kind abort and tell us if something breaks. */
652
653 gfc_default_double_kind
654 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
655 }
656
657 /* The default logical kind is constrained to be the same as the
658 default integer kind. Similarly with complex and real. */
659 gfc_default_logical_kind = gfc_default_integer_kind;
660 gfc_default_complex_kind = gfc_default_real_kind;
661
662 /* We only have two character kinds: ASCII and UCS-4.
663 ASCII corresponds to a 8-bit integer type, if one is available.
664 UCS-4 corresponds to a 32-bit integer type, if one is available. */
665 i_index = 0;
666 if ((kind = get_int_kind_from_width (8)) > 0)
667 {
668 gfc_character_kinds[i_index].kind = kind;
669 gfc_character_kinds[i_index].bit_size = 8;
670 gfc_character_kinds[i_index].name = "ascii";
671 i_index++;
672 }
673 if ((kind = get_int_kind_from_width (32)) > 0)
674 {
675 gfc_character_kinds[i_index].kind = kind;
676 gfc_character_kinds[i_index].bit_size = 32;
677 gfc_character_kinds[i_index].name = "iso_10646";
678 i_index++;
679 }
680
681 /* Choose the smallest integer kind for our default character. */
682 gfc_default_character_kind = gfc_character_kinds[0].kind;
683 gfc_character_storage_size = gfc_default_character_kind * 8;
684
685 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
686
687 /* Pick a kind the same size as the C "int" type. */
688 gfc_c_int_kind = INT_TYPE_SIZE / 8;
689
690 /* Choose atomic kinds to match C's int. */
691 gfc_atomic_int_kind = gfc_c_int_kind;
692 gfc_atomic_logical_kind = gfc_c_int_kind;
693 }
694
695
696 /* Make sure that a valid kind is present. Returns an index into the
697 associated kinds array, -1 if the kind is not present. */
698
699 static int
700 validate_integer (int kind)
701 {
702 int i;
703
704 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
705 if (gfc_integer_kinds[i].kind == kind)
706 return i;
707
708 return -1;
709 }
710
711 static int
712 validate_real (int kind)
713 {
714 int i;
715
716 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
717 if (gfc_real_kinds[i].kind == kind)
718 return i;
719
720 return -1;
721 }
722
723 static int
724 validate_logical (int kind)
725 {
726 int i;
727
728 for (i = 0; gfc_logical_kinds[i].kind; i++)
729 if (gfc_logical_kinds[i].kind == kind)
730 return i;
731
732 return -1;
733 }
734
735 static int
736 validate_character (int kind)
737 {
738 int i;
739
740 for (i = 0; gfc_character_kinds[i].kind; i++)
741 if (gfc_character_kinds[i].kind == kind)
742 return i;
743
744 return -1;
745 }
746
747 /* Validate a kind given a basic type. The return value is the same
748 for the child functions, with -1 indicating nonexistence of the
749 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
750
751 int
752 gfc_validate_kind (bt type, int kind, bool may_fail)
753 {
754 int rc;
755
756 switch (type)
757 {
758 case BT_REAL: /* Fall through */
759 case BT_COMPLEX:
760 rc = validate_real (kind);
761 break;
762 case BT_INTEGER:
763 rc = validate_integer (kind);
764 break;
765 case BT_LOGICAL:
766 rc = validate_logical (kind);
767 break;
768 case BT_CHARACTER:
769 rc = validate_character (kind);
770 break;
771
772 default:
773 gfc_internal_error ("gfc_validate_kind(): Got bad type");
774 }
775
776 if (rc < 0 && !may_fail)
777 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
778
779 return rc;
780 }
781
782
783 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
784 Reuse common type nodes where possible. Recognize if the kind matches up
785 with a C type. This will be used later in determining which routines may
786 be scarfed from libm. */
787
788 static tree
789 gfc_build_int_type (gfc_integer_info *info)
790 {
791 int mode_precision = info->bit_size;
792
793 if (mode_precision == CHAR_TYPE_SIZE)
794 info->c_char = 1;
795 if (mode_precision == SHORT_TYPE_SIZE)
796 info->c_short = 1;
797 if (mode_precision == INT_TYPE_SIZE)
798 info->c_int = 1;
799 if (mode_precision == LONG_TYPE_SIZE)
800 info->c_long = 1;
801 if (mode_precision == LONG_LONG_TYPE_SIZE)
802 info->c_long_long = 1;
803
804 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
805 return intQI_type_node;
806 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
807 return intHI_type_node;
808 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
809 return intSI_type_node;
810 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
811 return intDI_type_node;
812 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
813 return intTI_type_node;
814
815 return make_signed_type (mode_precision);
816 }
817
818 tree
819 gfc_build_uint_type (int size)
820 {
821 if (size == CHAR_TYPE_SIZE)
822 return unsigned_char_type_node;
823 if (size == SHORT_TYPE_SIZE)
824 return short_unsigned_type_node;
825 if (size == INT_TYPE_SIZE)
826 return unsigned_type_node;
827 if (size == LONG_TYPE_SIZE)
828 return long_unsigned_type_node;
829 if (size == LONG_LONG_TYPE_SIZE)
830 return long_long_unsigned_type_node;
831
832 return make_unsigned_type (size);
833 }
834
835
836 static tree
837 gfc_build_real_type (gfc_real_info *info)
838 {
839 int mode_precision = info->mode_precision;
840 tree new_type;
841
842 if (mode_precision == FLOAT_TYPE_SIZE)
843 info->c_float = 1;
844 if (mode_precision == DOUBLE_TYPE_SIZE)
845 info->c_double = 1;
846 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
847 info->c_long_double = 1;
848 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
849 {
850 info->c_float128 = 1;
851 gfc_real16_is_float128 = true;
852 }
853
854 if (TYPE_PRECISION (float_type_node) == mode_precision)
855 return float_type_node;
856 if (TYPE_PRECISION (double_type_node) == mode_precision)
857 return double_type_node;
858 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
859 return long_double_type_node;
860
861 new_type = make_node (REAL_TYPE);
862 TYPE_PRECISION (new_type) = mode_precision;
863 layout_type (new_type);
864 return new_type;
865 }
866
867 static tree
868 gfc_build_complex_type (tree scalar_type)
869 {
870 tree new_type;
871
872 if (scalar_type == NULL)
873 return NULL;
874 if (scalar_type == float_type_node)
875 return complex_float_type_node;
876 if (scalar_type == double_type_node)
877 return complex_double_type_node;
878 if (scalar_type == long_double_type_node)
879 return complex_long_double_type_node;
880
881 new_type = make_node (COMPLEX_TYPE);
882 TREE_TYPE (new_type) = scalar_type;
883 layout_type (new_type);
884 return new_type;
885 }
886
887 static tree
888 gfc_build_logical_type (gfc_logical_info *info)
889 {
890 int bit_size = info->bit_size;
891 tree new_type;
892
893 if (bit_size == BOOL_TYPE_SIZE)
894 {
895 info->c_bool = 1;
896 return boolean_type_node;
897 }
898
899 new_type = make_unsigned_type (bit_size);
900 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
901 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
902 TYPE_PRECISION (new_type) = 1;
903
904 return new_type;
905 }
906
907
908 /* Create the backend type nodes. We map them to their
909 equivalent C type, at least for now. We also give
910 names to the types here, and we push them in the
911 global binding level context.*/
912
913 void
914 gfc_init_types (void)
915 {
916 char name_buf[26];
917 int index;
918 tree type;
919 unsigned n;
920
921 /* Create and name the types. */
922 #define PUSH_TYPE(name, node) \
923 pushdecl (build_decl (input_location, \
924 TYPE_DECL, get_identifier (name), node))
925
926 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
927 {
928 type = gfc_build_int_type (&gfc_integer_kinds[index]);
929 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
930 if (TYPE_STRING_FLAG (type))
931 type = make_signed_type (gfc_integer_kinds[index].bit_size);
932 gfc_integer_types[index] = type;
933 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
934 gfc_integer_kinds[index].kind);
935 PUSH_TYPE (name_buf, type);
936 }
937
938 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
939 {
940 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
941 gfc_logical_types[index] = type;
942 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
943 gfc_logical_kinds[index].kind);
944 PUSH_TYPE (name_buf, type);
945 }
946
947 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
948 {
949 type = gfc_build_real_type (&gfc_real_kinds[index]);
950 gfc_real_types[index] = type;
951 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
952 gfc_real_kinds[index].kind);
953 PUSH_TYPE (name_buf, type);
954
955 if (gfc_real_kinds[index].c_float128)
956 gfc_float128_type_node = type;
957
958 type = gfc_build_complex_type (type);
959 gfc_complex_types[index] = type;
960 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
961 gfc_real_kinds[index].kind);
962 PUSH_TYPE (name_buf, type);
963
964 if (gfc_real_kinds[index].c_float128)
965 gfc_complex_float128_type_node = type;
966 }
967
968 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
969 {
970 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
971 type = build_qualified_type (type, TYPE_UNQUALIFIED);
972 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
973 gfc_character_kinds[index].kind);
974 PUSH_TYPE (name_buf, type);
975 gfc_character_types[index] = type;
976 gfc_pcharacter_types[index] = build_pointer_type (type);
977 }
978 gfc_character1_type_node = gfc_character_types[0];
979
980 PUSH_TYPE ("byte", unsigned_char_type_node);
981 PUSH_TYPE ("void", void_type_node);
982
983 /* DBX debugging output gets upset if these aren't set. */
984 if (!TYPE_NAME (integer_type_node))
985 PUSH_TYPE ("c_integer", integer_type_node);
986 if (!TYPE_NAME (char_type_node))
987 PUSH_TYPE ("c_char", char_type_node);
988
989 #undef PUSH_TYPE
990
991 pvoid_type_node = build_pointer_type (void_type_node);
992 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
993 ppvoid_type_node = build_pointer_type (pvoid_type_node);
994 pchar_type_node = build_pointer_type (gfc_character1_type_node);
995 pfunc_type_node
996 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
997
998 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
999 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
1000 since this function is called before gfc_init_constants. */
1001 gfc_array_range_type
1002 = build_range_type (gfc_array_index_type,
1003 build_int_cst (gfc_array_index_type, 0),
1004 NULL_TREE);
1005
1006 /* The maximum array element size that can be handled is determined
1007 by the number of bits available to store this field in the array
1008 descriptor. */
1009
1010 n = TYPE_PRECISION (size_type_node);
1011 gfc_max_array_element_size
1012 = wide_int_to_tree (size_type_node,
1013 wi::mask (n, UNSIGNED,
1014 TYPE_PRECISION (size_type_node)));
1015
1016 logical_type_node = gfc_get_logical_type (gfc_default_logical_kind);
1017 logical_true_node = build_int_cst (logical_type_node, 1);
1018 logical_false_node = build_int_cst (logical_type_node, 0);
1019
1020 /* Character lengths are of type size_t, except signed. */
1021 gfc_charlen_int_kind = get_int_kind_from_node (size_type_node);
1022 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
1023
1024 /* Fortran kind number of size_type_node (size_t). This is used for
1025 the _size member in vtables. */
1026 gfc_size_kind = get_int_kind_from_node (size_type_node);
1027 }
1028
1029 /* Get the type node for the given type and kind. */
1030
1031 tree
1032 gfc_get_int_type (int kind)
1033 {
1034 int index = gfc_validate_kind (BT_INTEGER, kind, true);
1035 return index < 0 ? 0 : gfc_integer_types[index];
1036 }
1037
1038 tree
1039 gfc_get_real_type (int kind)
1040 {
1041 int index = gfc_validate_kind (BT_REAL, kind, true);
1042 return index < 0 ? 0 : gfc_real_types[index];
1043 }
1044
1045 tree
1046 gfc_get_complex_type (int kind)
1047 {
1048 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
1049 return index < 0 ? 0 : gfc_complex_types[index];
1050 }
1051
1052 tree
1053 gfc_get_logical_type (int kind)
1054 {
1055 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1056 return index < 0 ? 0 : gfc_logical_types[index];
1057 }
1058
1059 tree
1060 gfc_get_char_type (int kind)
1061 {
1062 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1063 return index < 0 ? 0 : gfc_character_types[index];
1064 }
1065
1066 tree
1067 gfc_get_pchar_type (int kind)
1068 {
1069 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1070 return index < 0 ? 0 : gfc_pcharacter_types[index];
1071 }
1072
1073 \f
1074 /* Create a character type with the given kind and length. */
1075
1076 tree
1077 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1078 {
1079 tree bounds, type;
1080
1081 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1082 type = build_array_type (eltype, bounds);
1083 TYPE_STRING_FLAG (type) = 1;
1084
1085 return type;
1086 }
1087
1088 tree
1089 gfc_get_character_type_len (int kind, tree len)
1090 {
1091 gfc_validate_kind (BT_CHARACTER, kind, false);
1092 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1093 }
1094
1095
1096 /* Get a type node for a character kind. */
1097
1098 tree
1099 gfc_get_character_type (int kind, gfc_charlen * cl)
1100 {
1101 tree len;
1102
1103 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1104 if (len && POINTER_TYPE_P (TREE_TYPE (len)))
1105 len = build_fold_indirect_ref (len);
1106
1107 return gfc_get_character_type_len (kind, len);
1108 }
1109 \f
1110 /* Convert a basic type. This will be an array for character types. */
1111
1112 tree
1113 gfc_typenode_for_spec (gfc_typespec * spec, int codim)
1114 {
1115 tree basetype;
1116
1117 switch (spec->type)
1118 {
1119 case BT_UNKNOWN:
1120 gcc_unreachable ();
1121
1122 case BT_INTEGER:
1123 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1124 has been resolved. This is done so we can convert C_PTR and
1125 C_FUNPTR to simple variables that get translated to (void *). */
1126 if (spec->f90_type == BT_VOID)
1127 {
1128 if (spec->u.derived
1129 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1130 basetype = ptr_type_node;
1131 else
1132 basetype = pfunc_type_node;
1133 }
1134 else
1135 basetype = gfc_get_int_type (spec->kind);
1136 break;
1137
1138 case BT_REAL:
1139 basetype = gfc_get_real_type (spec->kind);
1140 break;
1141
1142 case BT_COMPLEX:
1143 basetype = gfc_get_complex_type (spec->kind);
1144 break;
1145
1146 case BT_LOGICAL:
1147 basetype = gfc_get_logical_type (spec->kind);
1148 break;
1149
1150 case BT_CHARACTER:
1151 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1152 break;
1153
1154 case BT_HOLLERITH:
1155 /* Since this cannot be used, return a length one character. */
1156 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1157 gfc_index_one_node);
1158 break;
1159
1160 case BT_UNION:
1161 basetype = gfc_get_union_type (spec->u.derived);
1162 break;
1163
1164 case BT_DERIVED:
1165 case BT_CLASS:
1166 basetype = gfc_get_derived_type (spec->u.derived, codim);
1167
1168 if (spec->type == BT_CLASS)
1169 GFC_CLASS_TYPE_P (basetype) = 1;
1170
1171 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1172 type and kind to fit a (void *) and the basetype returned was a
1173 ptr_type_node. We need to pass up this new information to the
1174 symbol that was declared of type C_PTR or C_FUNPTR. */
1175 if (spec->u.derived->ts.f90_type == BT_VOID)
1176 {
1177 spec->type = BT_INTEGER;
1178 spec->kind = gfc_index_integer_kind;
1179 spec->f90_type = BT_VOID;
1180 spec->is_c_interop = 1; /* Mark as escaping later. */
1181 }
1182 break;
1183 case BT_VOID:
1184 case BT_ASSUMED:
1185 /* This is for the second arg to c_f_pointer and c_f_procpointer
1186 of the iso_c_binding module, to accept any ptr type. */
1187 basetype = ptr_type_node;
1188 if (spec->f90_type == BT_VOID)
1189 {
1190 if (spec->u.derived
1191 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1192 basetype = ptr_type_node;
1193 else
1194 basetype = pfunc_type_node;
1195 }
1196 break;
1197 case BT_PROCEDURE:
1198 basetype = pfunc_type_node;
1199 break;
1200 default:
1201 gcc_unreachable ();
1202 }
1203 return basetype;
1204 }
1205 \f
1206 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1207
1208 static tree
1209 gfc_conv_array_bound (gfc_expr * expr)
1210 {
1211 /* If expr is an integer constant, return that. */
1212 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1213 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1214
1215 /* Otherwise return NULL. */
1216 return NULL_TREE;
1217 }
1218 \f
1219 /* Return the type of an element of the array. Note that scalar coarrays
1220 are special. In particular, for GFC_ARRAY_TYPE_P, the original argument
1221 (with POINTER_TYPE stripped) is returned. */
1222
1223 tree
1224 gfc_get_element_type (tree type)
1225 {
1226 tree element;
1227
1228 if (GFC_ARRAY_TYPE_P (type))
1229 {
1230 if (TREE_CODE (type) == POINTER_TYPE)
1231 type = TREE_TYPE (type);
1232 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1233 {
1234 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1235 element = type;
1236 }
1237 else
1238 {
1239 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1240 element = TREE_TYPE (type);
1241 }
1242 }
1243 else
1244 {
1245 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1246 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1247
1248 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1249 element = TREE_TYPE (element);
1250
1251 /* For arrays, which are not scalar coarrays. */
1252 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1253 element = TREE_TYPE (element);
1254 }
1255
1256 return element;
1257 }
1258 \f
1259 /* Build an array. This function is called from gfc_sym_type().
1260 Actually returns array descriptor type.
1261
1262 Format of array descriptors is as follows:
1263
1264 struct gfc_array_descriptor
1265 {
1266 array *data;
1267 index offset;
1268 struct dtype_type dtype;
1269 struct descriptor_dimension dimension[N_DIM];
1270 }
1271
1272 struct dtype_type
1273 {
1274 size_t elem_len;
1275 int version;
1276 signed char rank;
1277 signed char type;
1278 signed short attribute;
1279 }
1280
1281 struct descriptor_dimension
1282 {
1283 index stride;
1284 index lbound;
1285 index ubound;
1286 }
1287
1288 Translation code should use gfc_conv_descriptor_* rather than
1289 accessing the descriptor directly. Any changes to the array
1290 descriptor type will require changes in gfc_conv_descriptor_* and
1291 gfc_build_array_initializer.
1292
1293 This is represented internally as a RECORD_TYPE. The index nodes
1294 are gfc_array_index_type and the data node is a pointer to the
1295 data. See below for the handling of character types.
1296
1297 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1298 this generated poor code for assumed/deferred size arrays. These
1299 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1300 of the GENERIC grammar. Also, there is no way to explicitly set
1301 the array stride, so all data must be packed(1). I've tried to
1302 mark all the functions which would require modification with a GCC
1303 ARRAYS comment.
1304
1305 The data component points to the first element in the array. The
1306 offset field is the position of the origin of the array (i.e. element
1307 (0, 0 ...)). This may be outside the bounds of the array.
1308
1309 An element is accessed by
1310 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1311 This gives good performance as the computation does not involve the
1312 bounds of the array. For packed arrays, this is optimized further
1313 by substituting the known strides.
1314
1315 This system has one problem: all array bounds must be within 2^31
1316 elements of the origin (2^63 on 64-bit machines). For example
1317 integer, dimension (80000:90000, 80000:90000, 2) :: array
1318 may not work properly on 32-bit machines because 80000*80000 >
1319 2^31, so the calculation for stride2 would overflow. This may
1320 still work, but I haven't checked, and it relies on the overflow
1321 doing the right thing.
1322
1323 The way to fix this problem is to access elements as follows:
1324 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1325 Obviously this is much slower. I will make this a compile time
1326 option, something like -fsmall-array-offsets. Mixing code compiled
1327 with and without this switch will work.
1328
1329 (1) This can be worked around by modifying the upper bound of the
1330 previous dimension. This requires extra fields in the descriptor
1331 (both real_ubound and fake_ubound). */
1332
1333
1334 /* Returns true if the array sym does not require a descriptor. */
1335
1336 int
1337 gfc_is_nodesc_array (gfc_symbol * sym)
1338 {
1339 symbol_attribute *array_attr;
1340 gfc_array_spec *as;
1341 bool is_classarray = IS_CLASS_ARRAY (sym);
1342
1343 array_attr = is_classarray ? &CLASS_DATA (sym)->attr : &sym->attr;
1344 as = is_classarray ? CLASS_DATA (sym)->as : sym->as;
1345
1346 gcc_assert (array_attr->dimension || array_attr->codimension);
1347
1348 /* We only want local arrays. */
1349 if ((sym->ts.type != BT_CLASS && sym->attr.pointer)
1350 || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.class_pointer)
1351 || array_attr->allocatable)
1352 return 0;
1353
1354 /* We want a descriptor for associate-name arrays that do not have an
1355 explicitly known shape already. */
1356 if (sym->assoc && as->type != AS_EXPLICIT)
1357 return 0;
1358
1359 /* The dummy is stored in sym and not in the component. */
1360 if (sym->attr.dummy)
1361 return as->type != AS_ASSUMED_SHAPE
1362 && as->type != AS_ASSUMED_RANK;
1363
1364 if (sym->attr.result || sym->attr.function)
1365 return 0;
1366
1367 gcc_assert (as->type == AS_EXPLICIT || as->cp_was_assumed);
1368
1369 return 1;
1370 }
1371
1372
1373 /* Create an array descriptor type. */
1374
1375 static tree
1376 gfc_build_array_type (tree type, gfc_array_spec * as,
1377 enum gfc_array_kind akind, bool restricted,
1378 bool contiguous, int codim)
1379 {
1380 tree lbound[GFC_MAX_DIMENSIONS];
1381 tree ubound[GFC_MAX_DIMENSIONS];
1382 int n, corank;
1383
1384 /* Assumed-shape arrays do not have codimension information stored in the
1385 descriptor. */
1386 corank = MAX (as->corank, codim);
1387 if (as->type == AS_ASSUMED_SHAPE ||
1388 (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1389 corank = codim;
1390
1391 if (as->type == AS_ASSUMED_RANK)
1392 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1393 {
1394 lbound[n] = NULL_TREE;
1395 ubound[n] = NULL_TREE;
1396 }
1397
1398 for (n = 0; n < as->rank; n++)
1399 {
1400 /* Create expressions for the known bounds of the array. */
1401 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1402 lbound[n] = gfc_index_one_node;
1403 else
1404 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1405 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1406 }
1407
1408 for (n = as->rank; n < as->rank + corank; n++)
1409 {
1410 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1411 lbound[n] = gfc_index_one_node;
1412 else
1413 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1414
1415 if (n < as->rank + corank - 1)
1416 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1417 }
1418
1419 if (as->type == AS_ASSUMED_SHAPE)
1420 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1421 : GFC_ARRAY_ASSUMED_SHAPE;
1422 else if (as->type == AS_ASSUMED_RANK)
1423 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1424 : GFC_ARRAY_ASSUMED_RANK;
1425 return gfc_get_array_type_bounds (type, as->rank == -1
1426 ? GFC_MAX_DIMENSIONS : as->rank,
1427 corank, lbound, ubound, 0, akind,
1428 restricted);
1429 }
1430 \f
1431 /* Returns the struct descriptor_dimension type. */
1432
1433 static tree
1434 gfc_get_desc_dim_type (void)
1435 {
1436 tree type;
1437 tree decl, *chain = NULL;
1438
1439 if (gfc_desc_dim_type)
1440 return gfc_desc_dim_type;
1441
1442 /* Build the type node. */
1443 type = make_node (RECORD_TYPE);
1444
1445 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1446 TYPE_PACKED (type) = 1;
1447
1448 /* Consists of the stride, lbound and ubound members. */
1449 decl = gfc_add_field_to_struct_1 (type,
1450 get_identifier ("stride"),
1451 gfc_array_index_type, &chain);
1452 TREE_NO_WARNING (decl) = 1;
1453
1454 decl = gfc_add_field_to_struct_1 (type,
1455 get_identifier ("lbound"),
1456 gfc_array_index_type, &chain);
1457 TREE_NO_WARNING (decl) = 1;
1458
1459 decl = gfc_add_field_to_struct_1 (type,
1460 get_identifier ("ubound"),
1461 gfc_array_index_type, &chain);
1462 TREE_NO_WARNING (decl) = 1;
1463
1464 /* Finish off the type. */
1465 gfc_finish_type (type);
1466 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1467
1468 gfc_desc_dim_type = type;
1469 return type;
1470 }
1471
1472
1473 /* Return the DTYPE for an array. This describes the type and type parameters
1474 of the array. */
1475 /* TODO: Only call this when the value is actually used, and make all the
1476 unknown cases abort. */
1477
1478 tree
1479 gfc_get_dtype_rank_type (int rank, tree etype)
1480 {
1481 tree size;
1482 int n;
1483 tree tmp;
1484 tree dtype;
1485 tree field;
1486 vec<constructor_elt, va_gc> *v = NULL;
1487
1488 size = TYPE_SIZE_UNIT (etype);
1489
1490 switch (TREE_CODE (etype))
1491 {
1492 case INTEGER_TYPE:
1493 n = BT_INTEGER;
1494 break;
1495
1496 case BOOLEAN_TYPE:
1497 n = BT_LOGICAL;
1498 break;
1499
1500 case REAL_TYPE:
1501 n = BT_REAL;
1502 break;
1503
1504 case COMPLEX_TYPE:
1505 n = BT_COMPLEX;
1506 break;
1507
1508 case RECORD_TYPE:
1509 if (GFC_CLASS_TYPE_P (etype))
1510 n = BT_CLASS;
1511 else
1512 n = BT_DERIVED;
1513 break;
1514
1515 /* We will never have arrays of arrays. */
1516 case ARRAY_TYPE:
1517 n = BT_CHARACTER;
1518 if (size == NULL_TREE)
1519 size = TYPE_SIZE_UNIT (TREE_TYPE (etype));
1520 break;
1521
1522 case POINTER_TYPE:
1523 n = BT_ASSUMED;
1524 if (TREE_CODE (TREE_TYPE (etype)) != VOID_TYPE)
1525 size = TYPE_SIZE_UNIT (TREE_TYPE (etype));
1526 else
1527 size = build_int_cst (size_type_node, 0);
1528 break;
1529
1530 default:
1531 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1532 /* We can encounter strange array types for temporary arrays. */
1533 return gfc_index_zero_node;
1534 }
1535
1536 tmp = get_dtype_type_node ();
1537 field = gfc_advance_chain (TYPE_FIELDS (tmp),
1538 GFC_DTYPE_ELEM_LEN);
1539 CONSTRUCTOR_APPEND_ELT (v, field,
1540 fold_convert (TREE_TYPE (field), size));
1541
1542 field = gfc_advance_chain (TYPE_FIELDS (dtype_type_node),
1543 GFC_DTYPE_RANK);
1544 CONSTRUCTOR_APPEND_ELT (v, field,
1545 build_int_cst (TREE_TYPE (field), rank));
1546
1547 field = gfc_advance_chain (TYPE_FIELDS (dtype_type_node),
1548 GFC_DTYPE_TYPE);
1549 CONSTRUCTOR_APPEND_ELT (v, field,
1550 build_int_cst (TREE_TYPE (field), n));
1551
1552 dtype = build_constructor (tmp, v);
1553
1554 return dtype;
1555 }
1556
1557
1558 tree
1559 gfc_get_dtype (tree type)
1560 {
1561 tree dtype;
1562 tree etype;
1563 int rank;
1564
1565 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1566
1567 rank = GFC_TYPE_ARRAY_RANK (type);
1568 etype = gfc_get_element_type (type);
1569 dtype = gfc_get_dtype_rank_type (rank, etype);
1570
1571 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1572 return dtype;
1573 }
1574
1575
1576 /* Build an array type for use without a descriptor, packed according
1577 to the value of PACKED. */
1578
1579 tree
1580 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1581 bool restricted)
1582 {
1583 tree range;
1584 tree type;
1585 tree tmp;
1586 int n;
1587 int known_stride;
1588 int known_offset;
1589 mpz_t offset;
1590 mpz_t stride;
1591 mpz_t delta;
1592 gfc_expr *expr;
1593
1594 mpz_init_set_ui (offset, 0);
1595 mpz_init_set_ui (stride, 1);
1596 mpz_init (delta);
1597
1598 /* We don't use build_array_type because this does not include
1599 lang-specific information (i.e. the bounds of the array) when checking
1600 for duplicates. */
1601 if (as->rank)
1602 type = make_node (ARRAY_TYPE);
1603 else
1604 type = build_variant_type_copy (etype);
1605
1606 GFC_ARRAY_TYPE_P (type) = 1;
1607 TYPE_LANG_SPECIFIC (type) = ggc_cleared_alloc<struct lang_type> ();
1608
1609 known_stride = (packed != PACKED_NO);
1610 known_offset = 1;
1611 for (n = 0; n < as->rank; n++)
1612 {
1613 /* Fill in the stride and bound components of the type. */
1614 if (known_stride)
1615 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1616 else
1617 tmp = NULL_TREE;
1618 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1619
1620 expr = as->lower[n];
1621 if (expr->expr_type == EXPR_CONSTANT)
1622 {
1623 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1624 gfc_index_integer_kind);
1625 }
1626 else
1627 {
1628 known_stride = 0;
1629 tmp = NULL_TREE;
1630 }
1631 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1632
1633 if (known_stride)
1634 {
1635 /* Calculate the offset. */
1636 mpz_mul (delta, stride, as->lower[n]->value.integer);
1637 mpz_sub (offset, offset, delta);
1638 }
1639 else
1640 known_offset = 0;
1641
1642 expr = as->upper[n];
1643 if (expr && expr->expr_type == EXPR_CONSTANT)
1644 {
1645 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1646 gfc_index_integer_kind);
1647 }
1648 else
1649 {
1650 tmp = NULL_TREE;
1651 known_stride = 0;
1652 }
1653 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1654
1655 if (known_stride)
1656 {
1657 /* Calculate the stride. */
1658 mpz_sub (delta, as->upper[n]->value.integer,
1659 as->lower[n]->value.integer);
1660 mpz_add_ui (delta, delta, 1);
1661 mpz_mul (stride, stride, delta);
1662 }
1663
1664 /* Only the first stride is known for partial packed arrays. */
1665 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1666 known_stride = 0;
1667 }
1668 for (n = as->rank; n < as->rank + as->corank; n++)
1669 {
1670 expr = as->lower[n];
1671 if (expr->expr_type == EXPR_CONSTANT)
1672 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1673 gfc_index_integer_kind);
1674 else
1675 tmp = NULL_TREE;
1676 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1677
1678 expr = as->upper[n];
1679 if (expr && expr->expr_type == EXPR_CONSTANT)
1680 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1681 gfc_index_integer_kind);
1682 else
1683 tmp = NULL_TREE;
1684 if (n < as->rank + as->corank - 1)
1685 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1686 }
1687
1688 if (known_offset)
1689 {
1690 GFC_TYPE_ARRAY_OFFSET (type) =
1691 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1692 }
1693 else
1694 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1695
1696 if (known_stride)
1697 {
1698 GFC_TYPE_ARRAY_SIZE (type) =
1699 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1700 }
1701 else
1702 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1703
1704 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1705 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1706 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1707 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1708 NULL_TREE);
1709 /* TODO: use main type if it is unbounded. */
1710 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1711 build_pointer_type (build_array_type (etype, range));
1712 if (restricted)
1713 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1714 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1715 TYPE_QUAL_RESTRICT);
1716
1717 if (as->rank == 0)
1718 {
1719 if (packed != PACKED_STATIC || flag_coarray == GFC_FCOARRAY_LIB)
1720 {
1721 type = build_pointer_type (type);
1722
1723 if (restricted)
1724 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1725
1726 GFC_ARRAY_TYPE_P (type) = 1;
1727 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1728 }
1729
1730 return type;
1731 }
1732
1733 if (known_stride)
1734 {
1735 mpz_sub_ui (stride, stride, 1);
1736 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1737 }
1738 else
1739 range = NULL_TREE;
1740
1741 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1742 TYPE_DOMAIN (type) = range;
1743
1744 build_pointer_type (etype);
1745 TREE_TYPE (type) = etype;
1746
1747 layout_type (type);
1748
1749 mpz_clear (offset);
1750 mpz_clear (stride);
1751 mpz_clear (delta);
1752
1753 /* Represent packed arrays as multi-dimensional if they have rank >
1754 1 and with proper bounds, instead of flat arrays. This makes for
1755 better debug info. */
1756 if (known_offset)
1757 {
1758 tree gtype = etype, rtype, type_decl;
1759
1760 for (n = as->rank - 1; n >= 0; n--)
1761 {
1762 rtype = build_range_type (gfc_array_index_type,
1763 GFC_TYPE_ARRAY_LBOUND (type, n),
1764 GFC_TYPE_ARRAY_UBOUND (type, n));
1765 gtype = build_array_type (gtype, rtype);
1766 }
1767 TYPE_NAME (type) = type_decl = build_decl (input_location,
1768 TYPE_DECL, NULL, gtype);
1769 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1770 }
1771
1772 if (packed != PACKED_STATIC || !known_stride
1773 || (as->corank && flag_coarray == GFC_FCOARRAY_LIB))
1774 {
1775 /* For dummy arrays and automatic (heap allocated) arrays we
1776 want a pointer to the array. */
1777 type = build_pointer_type (type);
1778 if (restricted)
1779 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1780 GFC_ARRAY_TYPE_P (type) = 1;
1781 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1782 }
1783 return type;
1784 }
1785
1786
1787 /* Return or create the base type for an array descriptor. */
1788
1789 static tree
1790 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted)
1791 {
1792 tree fat_type, decl, arraytype, *chain = NULL;
1793 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1794 int idx;
1795
1796 /* Assumed-rank array. */
1797 if (dimen == -1)
1798 dimen = GFC_MAX_DIMENSIONS;
1799
1800 idx = 2 * (codimen + dimen) + restricted;
1801
1802 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1803
1804 if (flag_coarray == GFC_FCOARRAY_LIB && codimen)
1805 {
1806 if (gfc_array_descriptor_base_caf[idx])
1807 return gfc_array_descriptor_base_caf[idx];
1808 }
1809 else if (gfc_array_descriptor_base[idx])
1810 return gfc_array_descriptor_base[idx];
1811
1812 /* Build the type node. */
1813 fat_type = make_node (RECORD_TYPE);
1814
1815 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1816 TYPE_NAME (fat_type) = get_identifier (name);
1817 TYPE_NAMELESS (fat_type) = 1;
1818
1819 /* Add the data member as the first element of the descriptor. */
1820 gfc_add_field_to_struct_1 (fat_type,
1821 get_identifier ("data"),
1822 (restricted
1823 ? prvoid_type_node
1824 : ptr_type_node), &chain);
1825
1826 /* Add the base component. */
1827 decl = gfc_add_field_to_struct_1 (fat_type,
1828 get_identifier ("offset"),
1829 gfc_array_index_type, &chain);
1830 TREE_NO_WARNING (decl) = 1;
1831
1832 /* Add the dtype component. */
1833 decl = gfc_add_field_to_struct_1 (fat_type,
1834 get_identifier ("dtype"),
1835 get_dtype_type_node (), &chain);
1836 TREE_NO_WARNING (decl) = 1;
1837
1838 /* Add the span component. */
1839 decl = gfc_add_field_to_struct_1 (fat_type,
1840 get_identifier ("span"),
1841 gfc_array_index_type, &chain);
1842 TREE_NO_WARNING (decl) = 1;
1843
1844 /* Build the array type for the stride and bound components. */
1845 if (dimen + codimen > 0)
1846 {
1847 arraytype =
1848 build_array_type (gfc_get_desc_dim_type (),
1849 build_range_type (gfc_array_index_type,
1850 gfc_index_zero_node,
1851 gfc_rank_cst[codimen + dimen - 1]));
1852
1853 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1854 arraytype, &chain);
1855 TREE_NO_WARNING (decl) = 1;
1856 }
1857
1858 if (flag_coarray == GFC_FCOARRAY_LIB)
1859 {
1860 decl = gfc_add_field_to_struct_1 (fat_type,
1861 get_identifier ("token"),
1862 prvoid_type_node, &chain);
1863 TREE_NO_WARNING (decl) = 1;
1864 }
1865
1866 /* Finish off the type. */
1867 gfc_finish_type (fat_type);
1868 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1869
1870 if (flag_coarray == GFC_FCOARRAY_LIB && codimen)
1871 gfc_array_descriptor_base_caf[idx] = fat_type;
1872 else
1873 gfc_array_descriptor_base[idx] = fat_type;
1874
1875 return fat_type;
1876 }
1877
1878
1879 /* Build an array (descriptor) type with given bounds. */
1880
1881 tree
1882 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1883 tree * ubound, int packed,
1884 enum gfc_array_kind akind, bool restricted)
1885 {
1886 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1887 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1888 const char *type_name;
1889 int n;
1890
1891 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted);
1892 fat_type = build_distinct_type_copy (base_type);
1893 /* Unshare TYPE_FIELDs. */
1894 for (tree *tp = &TYPE_FIELDS (fat_type); *tp; tp = &DECL_CHAIN (*tp))
1895 {
1896 tree next = DECL_CHAIN (*tp);
1897 *tp = copy_node (*tp);
1898 DECL_CONTEXT (*tp) = fat_type;
1899 DECL_CHAIN (*tp) = next;
1900 }
1901 /* Make sure that nontarget and target array type have the same canonical
1902 type (and same stub decl for debug info). */
1903 base_type = gfc_get_array_descriptor_base (dimen, codimen, false);
1904 TYPE_CANONICAL (fat_type) = base_type;
1905 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1906
1907 tmp = TYPE_NAME (etype);
1908 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1909 tmp = DECL_NAME (tmp);
1910 if (tmp)
1911 type_name = IDENTIFIER_POINTER (tmp);
1912 else
1913 type_name = "unknown";
1914 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1915 GFC_MAX_SYMBOL_LEN, type_name);
1916 TYPE_NAME (fat_type) = get_identifier (name);
1917 TYPE_NAMELESS (fat_type) = 1;
1918
1919 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1920 TYPE_LANG_SPECIFIC (fat_type) = ggc_cleared_alloc<struct lang_type> ();
1921
1922 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1923 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1924 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1925 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1926
1927 /* Build an array descriptor record type. */
1928 if (packed != 0)
1929 stride = gfc_index_one_node;
1930 else
1931 stride = NULL_TREE;
1932 for (n = 0; n < dimen + codimen; n++)
1933 {
1934 if (n < dimen)
1935 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1936
1937 if (lbound)
1938 lower = lbound[n];
1939 else
1940 lower = NULL_TREE;
1941
1942 if (lower != NULL_TREE)
1943 {
1944 if (INTEGER_CST_P (lower))
1945 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1946 else
1947 lower = NULL_TREE;
1948 }
1949
1950 if (codimen && n == dimen + codimen - 1)
1951 break;
1952
1953 upper = ubound[n];
1954 if (upper != NULL_TREE)
1955 {
1956 if (INTEGER_CST_P (upper))
1957 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1958 else
1959 upper = NULL_TREE;
1960 }
1961
1962 if (n >= dimen)
1963 continue;
1964
1965 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1966 {
1967 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1968 gfc_array_index_type, upper, lower);
1969 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1970 gfc_array_index_type, tmp,
1971 gfc_index_one_node);
1972 stride = fold_build2_loc (input_location, MULT_EXPR,
1973 gfc_array_index_type, tmp, stride);
1974 /* Check the folding worked. */
1975 gcc_assert (INTEGER_CST_P (stride));
1976 }
1977 else
1978 stride = NULL_TREE;
1979 }
1980 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1981
1982 /* TODO: known offsets for descriptors. */
1983 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1984
1985 if (dimen == 0)
1986 {
1987 arraytype = build_pointer_type (etype);
1988 if (restricted)
1989 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1990
1991 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1992 return fat_type;
1993 }
1994
1995 /* We define data as an array with the correct size if possible.
1996 Much better than doing pointer arithmetic. */
1997 if (stride)
1998 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1999 int_const_binop (MINUS_EXPR, stride,
2000 build_int_cst (TREE_TYPE (stride), 1)));
2001 else
2002 rtype = gfc_array_range_type;
2003 arraytype = build_array_type (etype, rtype);
2004 arraytype = build_pointer_type (arraytype);
2005 if (restricted)
2006 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
2007 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
2008
2009 /* This will generate the base declarations we need to emit debug
2010 information for this type. FIXME: there must be a better way to
2011 avoid divergence between compilations with and without debug
2012 information. */
2013 {
2014 struct array_descr_info info;
2015 gfc_get_array_descr_info (fat_type, &info);
2016 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
2017 }
2018
2019 return fat_type;
2020 }
2021 \f
2022 /* Build a pointer type. This function is called from gfc_sym_type(). */
2023
2024 static tree
2025 gfc_build_pointer_type (gfc_symbol * sym, tree type)
2026 {
2027 /* Array pointer types aren't actually pointers. */
2028 if (sym->attr.dimension)
2029 return type;
2030 else
2031 return build_pointer_type (type);
2032 }
2033
2034 static tree gfc_nonrestricted_type (tree t);
2035 /* Given two record or union type nodes TO and FROM, ensure
2036 that all fields in FROM have a corresponding field in TO,
2037 their type being nonrestrict variants. This accepts a TO
2038 node that already has a prefix of the fields in FROM. */
2039 static void
2040 mirror_fields (tree to, tree from)
2041 {
2042 tree fto, ffrom;
2043 tree *chain;
2044
2045 /* Forward to the end of TOs fields. */
2046 fto = TYPE_FIELDS (to);
2047 ffrom = TYPE_FIELDS (from);
2048 chain = &TYPE_FIELDS (to);
2049 while (fto)
2050 {
2051 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
2052 chain = &DECL_CHAIN (fto);
2053 fto = DECL_CHAIN (fto);
2054 ffrom = DECL_CHAIN (ffrom);
2055 }
2056
2057 /* Now add all fields remaining in FROM (starting with ffrom). */
2058 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
2059 {
2060 tree newfield = copy_node (ffrom);
2061 DECL_CONTEXT (newfield) = to;
2062 /* The store to DECL_CHAIN might seem redundant with the
2063 stores to *chain, but not clearing it here would mean
2064 leaving a chain into the old fields. If ever
2065 our called functions would look at them confusion
2066 will arise. */
2067 DECL_CHAIN (newfield) = NULL_TREE;
2068 *chain = newfield;
2069 chain = &DECL_CHAIN (newfield);
2070
2071 if (TREE_CODE (ffrom) == FIELD_DECL)
2072 {
2073 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
2074 TREE_TYPE (newfield) = elemtype;
2075 }
2076 }
2077 *chain = NULL_TREE;
2078 }
2079
2080 /* Given a type T, returns a different type of the same structure,
2081 except that all types it refers to (recursively) are always
2082 non-restrict qualified types. */
2083 static tree
2084 gfc_nonrestricted_type (tree t)
2085 {
2086 tree ret = t;
2087
2088 /* If the type isn't laid out yet, don't copy it. If something
2089 needs it for real it should wait until the type got finished. */
2090 if (!TYPE_SIZE (t))
2091 return t;
2092
2093 if (!TYPE_LANG_SPECIFIC (t))
2094 TYPE_LANG_SPECIFIC (t) = ggc_cleared_alloc<struct lang_type> ();
2095 /* If we're dealing with this very node already further up
2096 the call chain (recursion via pointers and struct members)
2097 we haven't yet determined if we really need a new type node.
2098 Assume we don't, return T itself. */
2099 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
2100 return t;
2101
2102 /* If we have calculated this all already, just return it. */
2103 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2104 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2105
2106 /* Mark this type. */
2107 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2108
2109 switch (TREE_CODE (t))
2110 {
2111 default:
2112 break;
2113
2114 case POINTER_TYPE:
2115 case REFERENCE_TYPE:
2116 {
2117 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2118 if (totype == TREE_TYPE (t))
2119 ret = t;
2120 else if (TREE_CODE (t) == POINTER_TYPE)
2121 ret = build_pointer_type (totype);
2122 else
2123 ret = build_reference_type (totype);
2124 ret = build_qualified_type (ret,
2125 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2126 }
2127 break;
2128
2129 case ARRAY_TYPE:
2130 {
2131 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2132 if (elemtype == TREE_TYPE (t))
2133 ret = t;
2134 else
2135 {
2136 ret = build_variant_type_copy (t);
2137 TREE_TYPE (ret) = elemtype;
2138 if (TYPE_LANG_SPECIFIC (t)
2139 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2140 {
2141 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2142 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2143 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2144 {
2145 TYPE_LANG_SPECIFIC (ret)
2146 = ggc_cleared_alloc<struct lang_type> ();
2147 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2148 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2149 }
2150 }
2151 }
2152 }
2153 break;
2154
2155 case RECORD_TYPE:
2156 case UNION_TYPE:
2157 case QUAL_UNION_TYPE:
2158 {
2159 tree field;
2160 /* First determine if we need a new type at all.
2161 Careful, the two calls to gfc_nonrestricted_type per field
2162 might return different values. That happens exactly when
2163 one of the fields reaches back to this very record type
2164 (via pointers). The first calls will assume that we don't
2165 need to copy T (see the error_mark_node marking). If there
2166 are any reasons for copying T apart from having to copy T,
2167 we'll indeed copy it, and the second calls to
2168 gfc_nonrestricted_type will use that new node if they
2169 reach back to T. */
2170 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2171 if (TREE_CODE (field) == FIELD_DECL)
2172 {
2173 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2174 if (elemtype != TREE_TYPE (field))
2175 break;
2176 }
2177 if (!field)
2178 break;
2179 ret = build_variant_type_copy (t);
2180 TYPE_FIELDS (ret) = NULL_TREE;
2181
2182 /* Here we make sure that as soon as we know we have to copy
2183 T, that also fields reaching back to us will use the new
2184 copy. It's okay if that copy still contains the old fields,
2185 we won't look at them. */
2186 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2187 mirror_fields (ret, t);
2188 }
2189 break;
2190 }
2191
2192 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2193 return ret;
2194 }
2195
2196 \f
2197 /* Return the type for a symbol. Special handling is required for character
2198 types to get the correct level of indirection.
2199 For functions return the return type.
2200 For subroutines return void_type_node.
2201 Calling this multiple times for the same symbol should be avoided,
2202 especially for character and array types. */
2203
2204 tree
2205 gfc_sym_type (gfc_symbol * sym)
2206 {
2207 tree type;
2208 int byref;
2209 bool restricted;
2210
2211 /* Procedure Pointers inside COMMON blocks. */
2212 if (sym->attr.proc_pointer && sym->attr.in_common)
2213 {
2214 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2215 sym->attr.proc_pointer = 0;
2216 type = build_pointer_type (gfc_get_function_type (sym));
2217 sym->attr.proc_pointer = 1;
2218 return type;
2219 }
2220
2221 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2222 return void_type_node;
2223
2224 /* In the case of a function the fake result variable may have a
2225 type different from the function type, so don't return early in
2226 that case. */
2227 if (sym->backend_decl && !sym->attr.function)
2228 return TREE_TYPE (sym->backend_decl);
2229
2230 if (sym->attr.result
2231 && sym->ts.type == BT_CHARACTER
2232 && sym->ts.u.cl->backend_decl == NULL_TREE
2233 && sym->ns->proc_name
2234 && sym->ns->proc_name->ts.u.cl
2235 && sym->ns->proc_name->ts.u.cl->backend_decl != NULL_TREE)
2236 sym->ts.u.cl->backend_decl = sym->ns->proc_name->ts.u.cl->backend_decl;
2237
2238 if (sym->ts.type == BT_CHARACTER
2239 && ((sym->attr.function && sym->attr.is_bind_c)
2240 || (sym->attr.result
2241 && sym->ns->proc_name
2242 && sym->ns->proc_name->attr.is_bind_c)
2243 || (sym->ts.deferred && (!sym->ts.u.cl
2244 || !sym->ts.u.cl->backend_decl))))
2245 type = gfc_character1_type_node;
2246 else
2247 type = gfc_typenode_for_spec (&sym->ts, sym->attr.codimension);
2248
2249 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2250 byref = 1;
2251 else
2252 byref = 0;
2253
2254 restricted = !sym->attr.target && !sym->attr.pointer
2255 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2256 if (!restricted)
2257 type = gfc_nonrestricted_type (type);
2258
2259 if (sym->attr.dimension || sym->attr.codimension)
2260 {
2261 if (gfc_is_nodesc_array (sym))
2262 {
2263 /* If this is a character argument of unknown length, just use the
2264 base type. */
2265 if (sym->ts.type != BT_CHARACTER
2266 || !(sym->attr.dummy || sym->attr.function)
2267 || sym->ts.u.cl->backend_decl)
2268 {
2269 type = gfc_get_nodesc_array_type (type, sym->as,
2270 byref ? PACKED_FULL
2271 : PACKED_STATIC,
2272 restricted);
2273 byref = 0;
2274 }
2275 }
2276 else
2277 {
2278 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2279 if (sym->attr.pointer)
2280 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2281 : GFC_ARRAY_POINTER;
2282 else if (sym->attr.allocatable)
2283 akind = GFC_ARRAY_ALLOCATABLE;
2284 type = gfc_build_array_type (type, sym->as, akind, restricted,
2285 sym->attr.contiguous, false);
2286 }
2287 }
2288 else
2289 {
2290 if (sym->attr.allocatable || sym->attr.pointer
2291 || gfc_is_associate_pointer (sym))
2292 type = gfc_build_pointer_type (sym, type);
2293 }
2294
2295 /* We currently pass all parameters by reference.
2296 See f95_get_function_decl. For dummy function parameters return the
2297 function type. */
2298 if (byref)
2299 {
2300 /* We must use pointer types for potentially absent variables. The
2301 optimizers assume a reference type argument is never NULL. */
2302 if (sym->attr.optional
2303 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2304 type = build_pointer_type (type);
2305 else
2306 {
2307 type = build_reference_type (type);
2308 if (restricted)
2309 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2310 }
2311 }
2312
2313 return (type);
2314 }
2315 \f
2316 /* Layout and output debug info for a record type. */
2317
2318 void
2319 gfc_finish_type (tree type)
2320 {
2321 tree decl;
2322
2323 decl = build_decl (input_location,
2324 TYPE_DECL, NULL_TREE, type);
2325 TYPE_STUB_DECL (type) = decl;
2326 layout_type (type);
2327 rest_of_type_compilation (type, 1);
2328 rest_of_decl_compilation (decl, 1, 0);
2329 }
2330 \f
2331 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2332 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2333 to the end of the field list pointed to by *CHAIN.
2334
2335 Returns a pointer to the new field. */
2336
2337 static tree
2338 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2339 {
2340 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2341
2342 DECL_CONTEXT (decl) = context;
2343 DECL_CHAIN (decl) = NULL_TREE;
2344 if (TYPE_FIELDS (context) == NULL_TREE)
2345 TYPE_FIELDS (context) = decl;
2346 if (chain != NULL)
2347 {
2348 if (*chain != NULL)
2349 **chain = decl;
2350 *chain = &DECL_CHAIN (decl);
2351 }
2352
2353 return decl;
2354 }
2355
2356 /* Like `gfc_add_field_to_struct_1', but adds alignment
2357 information. */
2358
2359 tree
2360 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2361 {
2362 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2363
2364 DECL_INITIAL (decl) = 0;
2365 SET_DECL_ALIGN (decl, 0);
2366 DECL_USER_ALIGN (decl) = 0;
2367
2368 return decl;
2369 }
2370
2371
2372 /* Copy the backend_decl and component backend_decls if
2373 the two derived type symbols are "equal", as described
2374 in 4.4.2 and resolved by gfc_compare_derived_types. */
2375
2376 int
2377 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2378 bool from_gsym)
2379 {
2380 gfc_component *to_cm;
2381 gfc_component *from_cm;
2382
2383 if (from == to)
2384 return 1;
2385
2386 if (from->backend_decl == NULL
2387 || !gfc_compare_derived_types (from, to))
2388 return 0;
2389
2390 to->backend_decl = from->backend_decl;
2391
2392 to_cm = to->components;
2393 from_cm = from->components;
2394
2395 /* Copy the component declarations. If a component is itself
2396 a derived type, we need a copy of its component declarations.
2397 This is done by recursing into gfc_get_derived_type and
2398 ensures that the component's component declarations have
2399 been built. If it is a character, we need the character
2400 length, as well. */
2401 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2402 {
2403 to_cm->backend_decl = from_cm->backend_decl;
2404 to_cm->caf_token = from_cm->caf_token;
2405 if (from_cm->ts.type == BT_UNION)
2406 gfc_get_union_type (to_cm->ts.u.derived);
2407 else if (from_cm->ts.type == BT_DERIVED
2408 && (!from_cm->attr.pointer || from_gsym))
2409 gfc_get_derived_type (to_cm->ts.u.derived);
2410 else if (from_cm->ts.type == BT_CLASS
2411 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2412 gfc_get_derived_type (to_cm->ts.u.derived);
2413 else if (from_cm->ts.type == BT_CHARACTER)
2414 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2415 }
2416
2417 return 1;
2418 }
2419
2420
2421 /* Build a tree node for a procedure pointer component. */
2422
2423 tree
2424 gfc_get_ppc_type (gfc_component* c)
2425 {
2426 tree t;
2427
2428 /* Explicit interface. */
2429 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2430 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2431
2432 /* Implicit interface (only return value may be known). */
2433 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2434 t = gfc_typenode_for_spec (&c->ts);
2435 else
2436 t = void_type_node;
2437
2438 /* FIXME: it would be better to provide explicit interfaces in all
2439 cases, since they should be known by the compiler. */
2440 return build_pointer_type (build_function_type (t, NULL_TREE));
2441 }
2442
2443
2444 /* Build a tree node for a union type. Requires building each map
2445 structure which is an element of the union. */
2446
2447 tree
2448 gfc_get_union_type (gfc_symbol *un)
2449 {
2450 gfc_component *map = NULL;
2451 tree typenode = NULL, map_type = NULL, map_field = NULL;
2452 tree *chain = NULL;
2453
2454 if (un->backend_decl)
2455 {
2456 if (TYPE_FIELDS (un->backend_decl) || un->attr.proc_pointer_comp)
2457 return un->backend_decl;
2458 else
2459 typenode = un->backend_decl;
2460 }
2461 else
2462 {
2463 typenode = make_node (UNION_TYPE);
2464 TYPE_NAME (typenode) = get_identifier (un->name);
2465 }
2466
2467 /* Add each contained MAP as a field. */
2468 for (map = un->components; map; map = map->next)
2469 {
2470 gcc_assert (map->ts.type == BT_DERIVED);
2471
2472 /* The map's type node, which is defined within this union's context. */
2473 map_type = gfc_get_derived_type (map->ts.u.derived);
2474 TYPE_CONTEXT (map_type) = typenode;
2475
2476 /* The map field's declaration. */
2477 map_field = gfc_add_field_to_struct(typenode, get_identifier(map->name),
2478 map_type, &chain);
2479 if (map->loc.lb)
2480 gfc_set_decl_location (map_field, &map->loc);
2481 else if (un->declared_at.lb)
2482 gfc_set_decl_location (map_field, &un->declared_at);
2483
2484 DECL_PACKED (map_field) |= TYPE_PACKED (typenode);
2485 DECL_NAMELESS(map_field) = true;
2486
2487 /* We should never clobber another backend declaration for this map,
2488 because each map component is unique. */
2489 if (!map->backend_decl)
2490 map->backend_decl = map_field;
2491 }
2492
2493 un->backend_decl = typenode;
2494 gfc_finish_type (typenode);
2495
2496 return typenode;
2497 }
2498
2499
2500 /* Build a tree node for a derived type. If there are equal
2501 derived types, with different local names, these are built
2502 at the same time. If an equal derived type has been built
2503 in a parent namespace, this is used. */
2504
2505 tree
2506 gfc_get_derived_type (gfc_symbol * derived, int codimen)
2507 {
2508 tree typenode = NULL, field = NULL, field_type = NULL;
2509 tree canonical = NULL_TREE;
2510 tree *chain = NULL;
2511 bool got_canonical = false;
2512 bool unlimited_entity = false;
2513 gfc_component *c;
2514 gfc_namespace *ns;
2515 tree tmp;
2516 bool coarray_flag;
2517
2518 coarray_flag = flag_coarray == GFC_FCOARRAY_LIB
2519 && derived->module && !derived->attr.vtype;
2520
2521 gcc_assert (!derived->attr.pdt_template);
2522
2523 if (derived->attr.unlimited_polymorphic
2524 || (flag_coarray == GFC_FCOARRAY_LIB
2525 && derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2526 && (derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE
2527 || derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE
2528 || derived->intmod_sym_id == ISOFORTRAN_TEAM_TYPE)))
2529 return ptr_type_node;
2530
2531 if (flag_coarray != GFC_FCOARRAY_LIB
2532 && derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2533 && (derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE
2534 || derived->intmod_sym_id == ISOFORTRAN_TEAM_TYPE))
2535 return gfc_get_int_type (gfc_default_integer_kind);
2536
2537 if (derived && derived->attr.flavor == FL_PROCEDURE
2538 && derived->attr.generic)
2539 derived = gfc_find_dt_in_generic (derived);
2540
2541 /* See if it's one of the iso_c_binding derived types. */
2542 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2543 {
2544 if (derived->backend_decl)
2545 return derived->backend_decl;
2546
2547 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2548 derived->backend_decl = ptr_type_node;
2549 else
2550 derived->backend_decl = pfunc_type_node;
2551
2552 derived->ts.kind = gfc_index_integer_kind;
2553 derived->ts.type = BT_INTEGER;
2554 /* Set the f90_type to BT_VOID as a way to recognize something of type
2555 BT_INTEGER that needs to fit a void * for the purpose of the
2556 iso_c_binding derived types. */
2557 derived->ts.f90_type = BT_VOID;
2558
2559 return derived->backend_decl;
2560 }
2561
2562 /* If use associated, use the module type for this one. */
2563 if (derived->backend_decl == NULL
2564 && (derived->attr.use_assoc || derived->attr.used_in_submodule)
2565 && derived->module
2566 && gfc_get_module_backend_decl (derived))
2567 goto copy_derived_types;
2568
2569 /* The derived types from an earlier namespace can be used as the
2570 canonical type. */
2571 if (derived->backend_decl == NULL
2572 && !derived->attr.use_assoc
2573 && !derived->attr.used_in_submodule
2574 && gfc_global_ns_list)
2575 {
2576 for (ns = gfc_global_ns_list;
2577 ns->translated && !got_canonical;
2578 ns = ns->sibling)
2579 {
2580 if (ns->derived_types)
2581 {
2582 for (gfc_symbol *dt = ns->derived_types; dt && !got_canonical;
2583 dt = dt->dt_next)
2584 {
2585 gfc_copy_dt_decls_ifequal (dt, derived, true);
2586 if (derived->backend_decl)
2587 got_canonical = true;
2588 if (dt->dt_next == ns->derived_types)
2589 break;
2590 }
2591 }
2592 }
2593 }
2594
2595 /* Store up the canonical type to be added to this one. */
2596 if (got_canonical)
2597 {
2598 if (TYPE_CANONICAL (derived->backend_decl))
2599 canonical = TYPE_CANONICAL (derived->backend_decl);
2600 else
2601 canonical = derived->backend_decl;
2602
2603 derived->backend_decl = NULL_TREE;
2604 }
2605
2606 /* derived->backend_decl != 0 means we saw it before, but its
2607 components' backend_decl may have not been built. */
2608 if (derived->backend_decl)
2609 {
2610 /* Its components' backend_decl have been built or we are
2611 seeing recursion through the formal arglist of a procedure
2612 pointer component. */
2613 if (TYPE_FIELDS (derived->backend_decl))
2614 return derived->backend_decl;
2615 else if (derived->attr.abstract
2616 && derived->attr.proc_pointer_comp)
2617 {
2618 /* If an abstract derived type with procedure pointer
2619 components has no other type of component, return the
2620 backend_decl. Otherwise build the components if any of the
2621 non-procedure pointer components have no backend_decl. */
2622 for (c = derived->components; c; c = c->next)
2623 {
2624 bool same_alloc_type = c->attr.allocatable
2625 && derived == c->ts.u.derived;
2626 if (!c->attr.proc_pointer
2627 && !same_alloc_type
2628 && c->backend_decl == NULL)
2629 break;
2630 else if (c->next == NULL)
2631 return derived->backend_decl;
2632 }
2633 typenode = derived->backend_decl;
2634 }
2635 else
2636 typenode = derived->backend_decl;
2637 }
2638 else
2639 {
2640 /* We see this derived type first time, so build the type node. */
2641 typenode = make_node (RECORD_TYPE);
2642 TYPE_NAME (typenode) = get_identifier (derived->name);
2643 TYPE_PACKED (typenode) = flag_pack_derived;
2644 derived->backend_decl = typenode;
2645 }
2646
2647 if (derived->components
2648 && derived->components->ts.type == BT_DERIVED
2649 && strcmp (derived->components->name, "_data") == 0
2650 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2651 unlimited_entity = true;
2652
2653 /* Go through the derived type components, building them as
2654 necessary. The reason for doing this now is that it is
2655 possible to recurse back to this derived type through a
2656 pointer component (PR24092). If this happens, the fields
2657 will be built and so we can return the type. */
2658 for (c = derived->components; c; c = c->next)
2659 {
2660 bool same_alloc_type = c->attr.allocatable
2661 && derived == c->ts.u.derived;
2662
2663 if (c->ts.type == BT_UNION && c->ts.u.derived->backend_decl == NULL)
2664 c->ts.u.derived->backend_decl = gfc_get_union_type (c->ts.u.derived);
2665
2666 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2667 continue;
2668
2669 if ((!c->attr.pointer && !c->attr.proc_pointer
2670 && !same_alloc_type)
2671 || c->ts.u.derived->backend_decl == NULL)
2672 {
2673 int local_codim = c->attr.codimension ? c->as->corank: codimen;
2674 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived,
2675 local_codim);
2676 }
2677
2678 if (c->ts.u.derived->attr.is_iso_c)
2679 {
2680 /* Need to copy the modified ts from the derived type. The
2681 typespec was modified because C_PTR/C_FUNPTR are translated
2682 into (void *) from derived types. */
2683 c->ts.type = c->ts.u.derived->ts.type;
2684 c->ts.kind = c->ts.u.derived->ts.kind;
2685 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2686 if (c->initializer)
2687 {
2688 c->initializer->ts.type = c->ts.type;
2689 c->initializer->ts.kind = c->ts.kind;
2690 c->initializer->ts.f90_type = c->ts.f90_type;
2691 c->initializer->expr_type = EXPR_NULL;
2692 }
2693 }
2694 }
2695
2696 if (TYPE_FIELDS (derived->backend_decl))
2697 return derived->backend_decl;
2698
2699 /* Build the type member list. Install the newly created RECORD_TYPE
2700 node as DECL_CONTEXT of each FIELD_DECL. In this case we must go
2701 through only the top-level linked list of components so we correctly
2702 build UNION_TYPE nodes for BT_UNION components. MAPs and other nested
2703 types are built as part of gfc_get_union_type. */
2704 for (c = derived->components; c; c = c->next)
2705 {
2706 bool same_alloc_type = c->attr.allocatable
2707 && derived == c->ts.u.derived;
2708 /* Prevent infinite recursion, when the procedure pointer type is
2709 the same as derived, by forcing the procedure pointer component to
2710 be built as if the explicit interface does not exist. */
2711 if (c->attr.proc_pointer
2712 && (c->ts.type != BT_DERIVED || (c->ts.u.derived
2713 && !gfc_compare_derived_types (derived, c->ts.u.derived)))
2714 && (c->ts.type != BT_CLASS || (CLASS_DATA (c)->ts.u.derived
2715 && !gfc_compare_derived_types (derived, CLASS_DATA (c)->ts.u.derived))))
2716 field_type = gfc_get_ppc_type (c);
2717 else if (c->attr.proc_pointer && derived->backend_decl)
2718 {
2719 tmp = build_function_type (derived->backend_decl, NULL_TREE);
2720 field_type = build_pointer_type (tmp);
2721 }
2722 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2723 field_type = c->ts.u.derived->backend_decl;
2724 else if (c->attr.caf_token)
2725 field_type = pvoid_type_node;
2726 else
2727 {
2728 if (c->ts.type == BT_CHARACTER
2729 && !c->ts.deferred && !c->attr.pdt_string)
2730 {
2731 /* Evaluate the string length. */
2732 gfc_conv_const_charlen (c->ts.u.cl);
2733 gcc_assert (c->ts.u.cl->backend_decl);
2734 }
2735 else if (c->ts.type == BT_CHARACTER)
2736 c->ts.u.cl->backend_decl
2737 = build_int_cst (gfc_charlen_type_node, 0);
2738
2739 field_type = gfc_typenode_for_spec (&c->ts, codimen);
2740 }
2741
2742 /* This returns an array descriptor type. Initialization may be
2743 required. */
2744 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2745 {
2746 if (c->attr.pointer || c->attr.allocatable || c->attr.pdt_array)
2747 {
2748 enum gfc_array_kind akind;
2749 if (c->attr.pointer)
2750 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2751 : GFC_ARRAY_POINTER;
2752 else
2753 akind = GFC_ARRAY_ALLOCATABLE;
2754 /* Pointers to arrays aren't actually pointer types. The
2755 descriptors are separate, but the data is common. */
2756 field_type = gfc_build_array_type (field_type, c->as, akind,
2757 !c->attr.target
2758 && !c->attr.pointer,
2759 c->attr.contiguous,
2760 codimen);
2761 }
2762 else
2763 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2764 PACKED_STATIC,
2765 !c->attr.target);
2766 }
2767 else if ((c->attr.pointer || c->attr.allocatable || c->attr.pdt_string)
2768 && !c->attr.proc_pointer
2769 && !(unlimited_entity && c == derived->components))
2770 field_type = build_pointer_type (field_type);
2771
2772 if (c->attr.pointer || same_alloc_type)
2773 field_type = gfc_nonrestricted_type (field_type);
2774
2775 /* vtype fields can point to different types to the base type. */
2776 if (c->ts.type == BT_DERIVED
2777 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2778 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2779 ptr_mode, true);
2780
2781 /* Ensure that the CLASS language specific flag is set. */
2782 if (c->ts.type == BT_CLASS)
2783 {
2784 if (POINTER_TYPE_P (field_type))
2785 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2786 else
2787 GFC_CLASS_TYPE_P (field_type) = 1;
2788 }
2789
2790 field = gfc_add_field_to_struct (typenode,
2791 get_identifier (c->name),
2792 field_type, &chain);
2793 if (c->loc.lb)
2794 gfc_set_decl_location (field, &c->loc);
2795 else if (derived->declared_at.lb)
2796 gfc_set_decl_location (field, &derived->declared_at);
2797
2798 gfc_finish_decl_attrs (field, &c->attr);
2799
2800 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2801
2802 gcc_assert (field);
2803 if (!c->backend_decl)
2804 c->backend_decl = field;
2805
2806 if (c->attr.pointer && c->attr.dimension
2807 && !(c->ts.type == BT_DERIVED
2808 && strcmp (c->name, "_data") == 0))
2809 GFC_DECL_PTR_ARRAY_P (c->backend_decl) = 1;
2810 }
2811
2812 /* Now lay out the derived type, including the fields. */
2813 if (canonical)
2814 TYPE_CANONICAL (typenode) = canonical;
2815
2816 gfc_finish_type (typenode);
2817 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2818 if (derived->module && derived->ns->proc_name
2819 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2820 {
2821 if (derived->ns->proc_name->backend_decl
2822 && TREE_CODE (derived->ns->proc_name->backend_decl)
2823 == NAMESPACE_DECL)
2824 {
2825 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2826 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2827 = derived->ns->proc_name->backend_decl;
2828 }
2829 }
2830
2831 derived->backend_decl = typenode;
2832
2833 copy_derived_types:
2834
2835 for (c = derived->components; c; c = c->next)
2836 {
2837 /* Do not add a caf_token field for class container components. */
2838 if ((codimen || coarray_flag)
2839 && !c->attr.dimension && !c->attr.codimension
2840 && (c->attr.allocatable || c->attr.pointer)
2841 && !derived->attr.is_class)
2842 {
2843 /* Provide sufficient space to hold "_caf_symbol". */
2844 char caf_name[GFC_MAX_SYMBOL_LEN + 6];
2845 gfc_component *token;
2846 snprintf (caf_name, sizeof (caf_name), "_caf_%s", c->name);
2847 token = gfc_find_component (derived, caf_name, true, true, NULL);
2848 gcc_assert (token);
2849 c->caf_token = token->backend_decl;
2850 TREE_NO_WARNING (c->caf_token) = 1;
2851 }
2852 }
2853
2854 for (gfc_symbol *dt = gfc_derived_types; dt; dt = dt->dt_next)
2855 {
2856 gfc_copy_dt_decls_ifequal (derived, dt, false);
2857 if (dt->dt_next == gfc_derived_types)
2858 break;
2859 }
2860
2861 return derived->backend_decl;
2862 }
2863
2864
2865 int
2866 gfc_return_by_reference (gfc_symbol * sym)
2867 {
2868 if (!sym->attr.function)
2869 return 0;
2870
2871 if (sym->attr.dimension)
2872 return 1;
2873
2874 if (sym->ts.type == BT_CHARACTER
2875 && !sym->attr.is_bind_c
2876 && (!sym->attr.result
2877 || !sym->ns->proc_name
2878 || !sym->ns->proc_name->attr.is_bind_c))
2879 return 1;
2880
2881 /* Possibly return complex numbers by reference for g77 compatibility.
2882 We don't do this for calls to intrinsics (as the library uses the
2883 -fno-f2c calling convention), nor for calls to functions which always
2884 require an explicit interface, as no compatibility problems can
2885 arise there. */
2886 if (flag_f2c && sym->ts.type == BT_COMPLEX
2887 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2888 return 1;
2889
2890 return 0;
2891 }
2892 \f
2893 static tree
2894 gfc_get_mixed_entry_union (gfc_namespace *ns)
2895 {
2896 tree type;
2897 tree *chain = NULL;
2898 char name[GFC_MAX_SYMBOL_LEN + 1];
2899 gfc_entry_list *el, *el2;
2900
2901 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2902 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2903
2904 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2905
2906 /* Build the type node. */
2907 type = make_node (UNION_TYPE);
2908
2909 TYPE_NAME (type) = get_identifier (name);
2910
2911 for (el = ns->entries; el; el = el->next)
2912 {
2913 /* Search for duplicates. */
2914 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2915 if (el2->sym->result == el->sym->result)
2916 break;
2917
2918 if (el == el2)
2919 gfc_add_field_to_struct_1 (type,
2920 get_identifier (el->sym->result->name),
2921 gfc_sym_type (el->sym->result), &chain);
2922 }
2923
2924 /* Finish off the type. */
2925 gfc_finish_type (type);
2926 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2927 return type;
2928 }
2929 \f
2930 /* Create a "fn spec" based on the formal arguments;
2931 cf. create_function_arglist. */
2932
2933 static tree
2934 create_fn_spec (gfc_symbol *sym, tree fntype)
2935 {
2936 char spec[150];
2937 size_t spec_len;
2938 gfc_formal_arglist *f;
2939 tree tmp;
2940
2941 memset (&spec, 0, sizeof (spec));
2942 spec[0] = '.';
2943 spec_len = 1;
2944
2945 if (sym->attr.entry_master)
2946 spec[spec_len++] = 'R';
2947 if (gfc_return_by_reference (sym))
2948 {
2949 gfc_symbol *result = sym->result ? sym->result : sym;
2950
2951 if (result->attr.pointer || sym->attr.proc_pointer)
2952 spec[spec_len++] = '.';
2953 else
2954 spec[spec_len++] = 'w';
2955 if (sym->ts.type == BT_CHARACTER)
2956 spec[spec_len++] = 'R';
2957 }
2958
2959 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2960 if (spec_len < sizeof (spec))
2961 {
2962 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2963 || f->sym->attr.external || f->sym->attr.cray_pointer
2964 || (f->sym->ts.type == BT_DERIVED
2965 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2966 || f->sym->ts.u.derived->attr.pointer_comp))
2967 || (f->sym->ts.type == BT_CLASS
2968 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2969 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp))
2970 || (f->sym->ts.type == BT_INTEGER && f->sym->ts.is_c_interop))
2971 spec[spec_len++] = '.';
2972 else if (f->sym->attr.intent == INTENT_IN)
2973 spec[spec_len++] = 'r';
2974 else if (f->sym)
2975 spec[spec_len++] = 'w';
2976 }
2977
2978 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2979 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2980 return build_type_attribute_variant (fntype, tmp);
2981 }
2982
2983 tree
2984 gfc_get_function_type (gfc_symbol * sym, gfc_actual_arglist *actual_args)
2985 {
2986 tree type;
2987 vec<tree, va_gc> *typelist = NULL;
2988 gfc_formal_arglist *f;
2989 gfc_symbol *arg;
2990 int alternate_return = 0;
2991 bool is_varargs = true;
2992
2993 /* Make sure this symbol is a function, a subroutine or the main
2994 program. */
2995 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2996 || sym->attr.flavor == FL_PROGRAM);
2997
2998 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2999 so that they can be detected here and handled further down. */
3000 if (sym->backend_decl == NULL)
3001 sym->backend_decl = error_mark_node;
3002 else if (sym->backend_decl == error_mark_node)
3003 goto arg_type_list_done;
3004 else if (sym->attr.proc_pointer)
3005 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
3006 else
3007 return TREE_TYPE (sym->backend_decl);
3008
3009 if (sym->attr.entry_master)
3010 /* Additional parameter for selecting an entry point. */
3011 vec_safe_push (typelist, gfc_array_index_type);
3012
3013 if (sym->result)
3014 arg = sym->result;
3015 else
3016 arg = sym;
3017
3018 if (arg->ts.type == BT_CHARACTER)
3019 gfc_conv_const_charlen (arg->ts.u.cl);
3020
3021 /* Some functions we use an extra parameter for the return value. */
3022 if (gfc_return_by_reference (sym))
3023 {
3024 type = gfc_sym_type (arg);
3025 if (arg->ts.type == BT_COMPLEX
3026 || arg->attr.dimension
3027 || arg->ts.type == BT_CHARACTER)
3028 type = build_reference_type (type);
3029
3030 vec_safe_push (typelist, type);
3031 if (arg->ts.type == BT_CHARACTER)
3032 {
3033 if (!arg->ts.deferred)
3034 /* Transfer by value. */
3035 vec_safe_push (typelist, gfc_charlen_type_node);
3036 else
3037 /* Deferred character lengths are transferred by reference
3038 so that the value can be returned. */
3039 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
3040 }
3041 }
3042 if (sym->backend_decl == error_mark_node && actual_args != NULL
3043 && sym->formal == NULL && (sym->attr.proc == PROC_EXTERNAL
3044 || sym->attr.proc == PROC_UNKNOWN))
3045 gfc_get_formal_from_actual_arglist (sym, actual_args);
3046
3047 /* Build the argument types for the function. */
3048 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
3049 {
3050 arg = f->sym;
3051 if (arg)
3052 {
3053 /* Evaluate constant character lengths here so that they can be
3054 included in the type. */
3055 if (arg->ts.type == BT_CHARACTER)
3056 gfc_conv_const_charlen (arg->ts.u.cl);
3057
3058 if (arg->attr.flavor == FL_PROCEDURE)
3059 {
3060 type = gfc_get_function_type (arg);
3061 type = build_pointer_type (type);
3062 }
3063 else
3064 type = gfc_sym_type (arg);
3065
3066 /* Parameter Passing Convention
3067
3068 We currently pass all parameters by reference.
3069 Parameters with INTENT(IN) could be passed by value.
3070 The problem arises if a function is called via an implicit
3071 prototype. In this situation the INTENT is not known.
3072 For this reason all parameters to global functions must be
3073 passed by reference. Passing by value would potentially
3074 generate bad code. Worse there would be no way of telling that
3075 this code was bad, except that it would give incorrect results.
3076
3077 Contained procedures could pass by value as these are never
3078 used without an explicit interface, and cannot be passed as
3079 actual parameters for a dummy procedure. */
3080
3081 vec_safe_push (typelist, type);
3082 }
3083 else
3084 {
3085 if (sym->attr.subroutine)
3086 alternate_return = 1;
3087 }
3088 }
3089
3090 /* Add hidden string length parameters. */
3091 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
3092 {
3093 arg = f->sym;
3094 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
3095 {
3096 if (!arg->ts.deferred)
3097 /* Transfer by value. */
3098 type = gfc_charlen_type_node;
3099 else
3100 /* Deferred character lengths are transferred by reference
3101 so that the value can be returned. */
3102 type = build_pointer_type (gfc_charlen_type_node);
3103
3104 vec_safe_push (typelist, type);
3105 }
3106 /* For noncharacter scalar intrinsic types, VALUE passes the value,
3107 hence, the optional status cannot be transferred via a NULL pointer.
3108 Thus, we will use a hidden argument in that case. */
3109 else if (arg
3110 && arg->attr.optional
3111 && arg->attr.value
3112 && !arg->attr.dimension
3113 && arg->ts.type != BT_CLASS
3114 && !gfc_bt_struct (arg->ts.type))
3115 vec_safe_push (typelist, boolean_type_node);
3116 }
3117
3118 if (!vec_safe_is_empty (typelist)
3119 || sym->attr.is_main_program
3120 || sym->attr.if_source != IFSRC_UNKNOWN)
3121 is_varargs = false;
3122
3123 if (sym->backend_decl == error_mark_node)
3124 sym->backend_decl = NULL_TREE;
3125
3126 arg_type_list_done:
3127
3128 if (alternate_return)
3129 type = integer_type_node;
3130 else if (!sym->attr.function || gfc_return_by_reference (sym))
3131 type = void_type_node;
3132 else if (sym->attr.mixed_entry_master)
3133 type = gfc_get_mixed_entry_union (sym->ns);
3134 else if (flag_f2c && sym->ts.type == BT_REAL
3135 && sym->ts.kind == gfc_default_real_kind
3136 && !sym->attr.always_explicit)
3137 {
3138 /* Special case: f2c calling conventions require that (scalar)
3139 default REAL functions return the C type double instead. f2c
3140 compatibility is only an issue with functions that don't
3141 require an explicit interface, as only these could be
3142 implemented in Fortran 77. */
3143 sym->ts.kind = gfc_default_double_kind;
3144 type = gfc_typenode_for_spec (&sym->ts);
3145 sym->ts.kind = gfc_default_real_kind;
3146 }
3147 else if (sym->result && sym->result->attr.proc_pointer)
3148 /* Procedure pointer return values. */
3149 {
3150 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
3151 {
3152 /* Unset proc_pointer as gfc_get_function_type
3153 is called recursively. */
3154 sym->result->attr.proc_pointer = 0;
3155 type = build_pointer_type (gfc_get_function_type (sym->result));
3156 sym->result->attr.proc_pointer = 1;
3157 }
3158 else
3159 type = gfc_sym_type (sym->result);
3160 }
3161 else
3162 type = gfc_sym_type (sym);
3163
3164 if (is_varargs)
3165 type = build_varargs_function_type_vec (type, typelist);
3166 else
3167 type = build_function_type_vec (type, typelist);
3168 type = create_fn_spec (sym, type);
3169
3170 return type;
3171 }
3172 \f
3173 /* Language hooks for middle-end access to type nodes. */
3174
3175 /* Return an integer type with BITS bits of precision,
3176 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
3177
3178 tree
3179 gfc_type_for_size (unsigned bits, int unsignedp)
3180 {
3181 if (!unsignedp)
3182 {
3183 int i;
3184 for (i = 0; i <= MAX_INT_KINDS; ++i)
3185 {
3186 tree type = gfc_integer_types[i];
3187 if (type && bits == TYPE_PRECISION (type))
3188 return type;
3189 }
3190
3191 /* Handle TImode as a special case because it is used by some backends
3192 (e.g. ARM) even though it is not available for normal use. */
3193 #if HOST_BITS_PER_WIDE_INT >= 64
3194 if (bits == TYPE_PRECISION (intTI_type_node))
3195 return intTI_type_node;
3196 #endif
3197
3198 if (bits <= TYPE_PRECISION (intQI_type_node))
3199 return intQI_type_node;
3200 if (bits <= TYPE_PRECISION (intHI_type_node))
3201 return intHI_type_node;
3202 if (bits <= TYPE_PRECISION (intSI_type_node))
3203 return intSI_type_node;
3204 if (bits <= TYPE_PRECISION (intDI_type_node))
3205 return intDI_type_node;
3206 if (bits <= TYPE_PRECISION (intTI_type_node))
3207 return intTI_type_node;
3208 }
3209 else
3210 {
3211 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
3212 return unsigned_intQI_type_node;
3213 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
3214 return unsigned_intHI_type_node;
3215 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
3216 return unsigned_intSI_type_node;
3217 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
3218 return unsigned_intDI_type_node;
3219 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
3220 return unsigned_intTI_type_node;
3221 }
3222
3223 return NULL_TREE;
3224 }
3225
3226 /* Return a data type that has machine mode MODE. If the mode is an
3227 integer, then UNSIGNEDP selects between signed and unsigned types. */
3228
3229 tree
3230 gfc_type_for_mode (machine_mode mode, int unsignedp)
3231 {
3232 int i;
3233 tree *base;
3234 scalar_int_mode int_mode;
3235
3236 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3237 base = gfc_real_types;
3238 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
3239 base = gfc_complex_types;
3240 else if (is_a <scalar_int_mode> (mode, &int_mode))
3241 {
3242 tree type = gfc_type_for_size (GET_MODE_PRECISION (int_mode), unsignedp);
3243 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
3244 }
3245 else if (GET_MODE_CLASS (mode) == MODE_VECTOR_BOOL
3246 && valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
3247 {
3248 unsigned int elem_bits = vector_element_size (GET_MODE_BITSIZE (mode),
3249 GET_MODE_NUNITS (mode));
3250 tree bool_type = build_nonstandard_boolean_type (elem_bits);
3251 return build_vector_type_for_mode (bool_type, mode);
3252 }
3253 else if (VECTOR_MODE_P (mode)
3254 && valid_vector_subparts_p (GET_MODE_NUNITS (mode)))
3255 {
3256 machine_mode inner_mode = GET_MODE_INNER (mode);
3257 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
3258 if (inner_type != NULL_TREE)
3259 return build_vector_type_for_mode (inner_type, mode);
3260 return NULL_TREE;
3261 }
3262 else
3263 return NULL_TREE;
3264
3265 for (i = 0; i <= MAX_REAL_KINDS; ++i)
3266 {
3267 tree type = base[i];
3268 if (type && mode == TYPE_MODE (type))
3269 return type;
3270 }
3271
3272 return NULL_TREE;
3273 }
3274
3275 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
3276 in that case. */
3277
3278 bool
3279 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
3280 {
3281 int rank, dim;
3282 bool indirect = false;
3283 tree etype, ptype, t, base_decl;
3284 tree data_off, span_off, dim_off, dtype_off, dim_size, elem_size;
3285 tree lower_suboff, upper_suboff, stride_suboff;
3286 tree dtype, field, rank_off;
3287
3288 if (! GFC_DESCRIPTOR_TYPE_P (type))
3289 {
3290 if (! POINTER_TYPE_P (type))
3291 return false;
3292 type = TREE_TYPE (type);
3293 if (! GFC_DESCRIPTOR_TYPE_P (type))
3294 return false;
3295 indirect = true;
3296 }
3297
3298 rank = GFC_TYPE_ARRAY_RANK (type);
3299 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3300 return false;
3301
3302 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3303 gcc_assert (POINTER_TYPE_P (etype));
3304 etype = TREE_TYPE (etype);
3305
3306 /* If the type is not a scalar coarray. */
3307 if (TREE_CODE (etype) == ARRAY_TYPE)
3308 etype = TREE_TYPE (etype);
3309
3310 /* Can't handle variable sized elements yet. */
3311 if (int_size_in_bytes (etype) <= 0)
3312 return false;
3313 /* Nor non-constant lower bounds in assumed shape arrays. */
3314 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3315 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3316 {
3317 for (dim = 0; dim < rank; dim++)
3318 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3319 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3320 return false;
3321 }
3322
3323 memset (info, '\0', sizeof (*info));
3324 info->ndimensions = rank;
3325 info->ordering = array_descr_ordering_column_major;
3326 info->element_type = etype;
3327 ptype = build_pointer_type (gfc_array_index_type);
3328 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3329 if (!base_decl)
3330 {
3331 base_decl = make_node (DEBUG_EXPR_DECL);
3332 DECL_ARTIFICIAL (base_decl) = 1;
3333 TREE_TYPE (base_decl) = indirect ? build_pointer_type (ptype) : ptype;
3334 SET_DECL_MODE (base_decl, TYPE_MODE (TREE_TYPE (base_decl)));
3335 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3336 }
3337 info->base_decl = base_decl;
3338 if (indirect)
3339 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3340
3341 gfc_get_descriptor_offsets_for_info (type, &data_off, &dtype_off, &span_off,
3342 &dim_off, &dim_size, &stride_suboff,
3343 &lower_suboff, &upper_suboff);
3344
3345 t = fold_build_pointer_plus (base_decl, span_off);
3346 elem_size = build1 (INDIRECT_REF, gfc_array_index_type, t);
3347
3348 t = base_decl;
3349 if (!integer_zerop (data_off))
3350 t = fold_build_pointer_plus (t, data_off);
3351 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3352 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3353 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3354 info->allocated = build2 (NE_EXPR, logical_type_node,
3355 info->data_location, null_pointer_node);
3356 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3357 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3358 info->associated = build2 (NE_EXPR, logical_type_node,
3359 info->data_location, null_pointer_node);
3360 if ((GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK
3361 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK_CONT)
3362 && dwarf_version >= 5)
3363 {
3364 rank = 1;
3365 info->ndimensions = 1;
3366 t = base_decl;
3367 if (!integer_zerop (dtype_off))
3368 t = fold_build_pointer_plus (t, dtype_off);
3369 dtype = TYPE_MAIN_VARIANT (get_dtype_type_node ());
3370 field = gfc_advance_chain (TYPE_FIELDS (dtype), GFC_DTYPE_RANK);
3371 rank_off = byte_position (field);
3372 if (!integer_zerop (dtype_off))
3373 t = fold_build_pointer_plus (t, rank_off);
3374
3375 t = build1 (NOP_EXPR, build_pointer_type (gfc_array_index_type), t);
3376 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3377 info->rank = t;
3378 t = build0 (PLACEHOLDER_EXPR, TREE_TYPE (dim_off));
3379 t = size_binop (MULT_EXPR, t, dim_size);
3380 dim_off = build2 (PLUS_EXPR, TREE_TYPE (dim_off), t, dim_off);
3381 }
3382
3383 for (dim = 0; dim < rank; dim++)
3384 {
3385 t = fold_build_pointer_plus (base_decl,
3386 size_binop (PLUS_EXPR,
3387 dim_off, lower_suboff));
3388 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3389 info->dimen[dim].lower_bound = t;
3390 t = fold_build_pointer_plus (base_decl,
3391 size_binop (PLUS_EXPR,
3392 dim_off, upper_suboff));
3393 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3394 info->dimen[dim].upper_bound = t;
3395 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3396 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3397 {
3398 /* Assumed shape arrays have known lower bounds. */
3399 info->dimen[dim].upper_bound
3400 = build2 (MINUS_EXPR, gfc_array_index_type,
3401 info->dimen[dim].upper_bound,
3402 info->dimen[dim].lower_bound);
3403 info->dimen[dim].lower_bound
3404 = fold_convert (gfc_array_index_type,
3405 GFC_TYPE_ARRAY_LBOUND (type, dim));
3406 info->dimen[dim].upper_bound
3407 = build2 (PLUS_EXPR, gfc_array_index_type,
3408 info->dimen[dim].lower_bound,
3409 info->dimen[dim].upper_bound);
3410 }
3411 t = fold_build_pointer_plus (base_decl,
3412 size_binop (PLUS_EXPR,
3413 dim_off, stride_suboff));
3414 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3415 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3416 info->dimen[dim].stride = t;
3417 if (dim + 1 < rank)
3418 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3419 }
3420
3421 return true;
3422 }
3423
3424
3425 /* Create a type to handle vector subscripts for coarray library calls. It
3426 has the form:
3427 struct caf_vector_t {
3428 size_t nvec; // size of the vector
3429 union {
3430 struct {
3431 void *vector;
3432 int kind;
3433 } v;
3434 struct {
3435 ptrdiff_t lower_bound;
3436 ptrdiff_t upper_bound;
3437 ptrdiff_t stride;
3438 } triplet;
3439 } u;
3440 }
3441 where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
3442 size in case of DIMEN_VECTOR, where kind is the integer type of the vector. */
3443
3444 tree
3445 gfc_get_caf_vector_type (int dim)
3446 {
3447 static tree vector_types[GFC_MAX_DIMENSIONS];
3448 static tree vec_type = NULL_TREE;
3449 tree triplet_struct_type, vect_struct_type, union_type, tmp, *chain;
3450
3451 if (vector_types[dim-1] != NULL_TREE)
3452 return vector_types[dim-1];
3453
3454 if (vec_type == NULL_TREE)
3455 {
3456 chain = 0;
3457 vect_struct_type = make_node (RECORD_TYPE);
3458 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3459 get_identifier ("vector"),
3460 pvoid_type_node, &chain);
3461 TREE_NO_WARNING (tmp) = 1;
3462 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3463 get_identifier ("kind"),
3464 integer_type_node, &chain);
3465 TREE_NO_WARNING (tmp) = 1;
3466 gfc_finish_type (vect_struct_type);
3467
3468 chain = 0;
3469 triplet_struct_type = make_node (RECORD_TYPE);
3470 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3471 get_identifier ("lower_bound"),
3472 gfc_array_index_type, &chain);
3473 TREE_NO_WARNING (tmp) = 1;
3474 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3475 get_identifier ("upper_bound"),
3476 gfc_array_index_type, &chain);
3477 TREE_NO_WARNING (tmp) = 1;
3478 tmp = gfc_add_field_to_struct_1 (triplet_struct_type, get_identifier ("stride"),
3479 gfc_array_index_type, &chain);
3480 TREE_NO_WARNING (tmp) = 1;
3481 gfc_finish_type (triplet_struct_type);
3482
3483 chain = 0;
3484 union_type = make_node (UNION_TYPE);
3485 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3486 vect_struct_type, &chain);
3487 TREE_NO_WARNING (tmp) = 1;
3488 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("triplet"),
3489 triplet_struct_type, &chain);
3490 TREE_NO_WARNING (tmp) = 1;
3491 gfc_finish_type (union_type);
3492
3493 chain = 0;
3494 vec_type = make_node (RECORD_TYPE);
3495 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("nvec"),
3496 size_type_node, &chain);
3497 TREE_NO_WARNING (tmp) = 1;
3498 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("u"),
3499 union_type, &chain);
3500 TREE_NO_WARNING (tmp) = 1;
3501 gfc_finish_type (vec_type);
3502 TYPE_NAME (vec_type) = get_identifier ("caf_vector_t");
3503 }
3504
3505 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3506 gfc_rank_cst[dim-1]);
3507 vector_types[dim-1] = build_array_type (vec_type, tmp);
3508 return vector_types[dim-1];
3509 }
3510
3511
3512 tree
3513 gfc_get_caf_reference_type ()
3514 {
3515 static tree reference_type = NULL_TREE;
3516 tree c_struct_type, s_struct_type, v_struct_type, union_type, dim_union_type,
3517 a_struct_type, u_union_type, tmp, *chain;
3518
3519 if (reference_type != NULL_TREE)
3520 return reference_type;
3521
3522 chain = 0;
3523 c_struct_type = make_node (RECORD_TYPE);
3524 tmp = gfc_add_field_to_struct_1 (c_struct_type,
3525 get_identifier ("offset"),
3526 gfc_array_index_type, &chain);
3527 TREE_NO_WARNING (tmp) = 1;
3528 tmp = gfc_add_field_to_struct_1 (c_struct_type,
3529 get_identifier ("caf_token_offset"),
3530 gfc_array_index_type, &chain);
3531 TREE_NO_WARNING (tmp) = 1;
3532 gfc_finish_type (c_struct_type);
3533
3534 chain = 0;
3535 s_struct_type = make_node (RECORD_TYPE);
3536 tmp = gfc_add_field_to_struct_1 (s_struct_type,
3537 get_identifier ("start"),
3538 gfc_array_index_type, &chain);
3539 TREE_NO_WARNING (tmp) = 1;
3540 tmp = gfc_add_field_to_struct_1 (s_struct_type,
3541 get_identifier ("end"),
3542 gfc_array_index_type, &chain);
3543 TREE_NO_WARNING (tmp) = 1;
3544 tmp = gfc_add_field_to_struct_1 (s_struct_type,
3545 get_identifier ("stride"),
3546 gfc_array_index_type, &chain);
3547 TREE_NO_WARNING (tmp) = 1;
3548 gfc_finish_type (s_struct_type);
3549
3550 chain = 0;
3551 v_struct_type = make_node (RECORD_TYPE);
3552 tmp = gfc_add_field_to_struct_1 (v_struct_type,
3553 get_identifier ("vector"),
3554 pvoid_type_node, &chain);
3555 TREE_NO_WARNING (tmp) = 1;
3556 tmp = gfc_add_field_to_struct_1 (v_struct_type,
3557 get_identifier ("nvec"),
3558 size_type_node, &chain);
3559 TREE_NO_WARNING (tmp) = 1;
3560 tmp = gfc_add_field_to_struct_1 (v_struct_type,
3561 get_identifier ("kind"),
3562 integer_type_node, &chain);
3563 TREE_NO_WARNING (tmp) = 1;
3564 gfc_finish_type (v_struct_type);
3565
3566 chain = 0;
3567 union_type = make_node (UNION_TYPE);
3568 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("s"),
3569 s_struct_type, &chain);
3570 TREE_NO_WARNING (tmp) = 1;
3571 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3572 v_struct_type, &chain);
3573 TREE_NO_WARNING (tmp) = 1;
3574 gfc_finish_type (union_type);
3575
3576 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3577 gfc_rank_cst[GFC_MAX_DIMENSIONS - 1]);
3578 dim_union_type = build_array_type (union_type, tmp);
3579
3580 chain = 0;
3581 a_struct_type = make_node (RECORD_TYPE);
3582 tmp = gfc_add_field_to_struct_1 (a_struct_type, get_identifier ("mode"),
3583 build_array_type (unsigned_char_type_node,
3584 build_range_type (gfc_array_index_type,
3585 gfc_index_zero_node,
3586 gfc_rank_cst[GFC_MAX_DIMENSIONS - 1])),
3587 &chain);
3588 TREE_NO_WARNING (tmp) = 1;
3589 tmp = gfc_add_field_to_struct_1 (a_struct_type,
3590 get_identifier ("static_array_type"),
3591 integer_type_node, &chain);
3592 TREE_NO_WARNING (tmp) = 1;
3593 tmp = gfc_add_field_to_struct_1 (a_struct_type, get_identifier ("dim"),
3594 dim_union_type, &chain);
3595 TREE_NO_WARNING (tmp) = 1;
3596 gfc_finish_type (a_struct_type);
3597
3598 chain = 0;
3599 u_union_type = make_node (UNION_TYPE);
3600 tmp = gfc_add_field_to_struct_1 (u_union_type, get_identifier ("c"),
3601 c_struct_type, &chain);
3602 TREE_NO_WARNING (tmp) = 1;
3603 tmp = gfc_add_field_to_struct_1 (u_union_type, get_identifier ("a"),
3604 a_struct_type, &chain);
3605 TREE_NO_WARNING (tmp) = 1;
3606 gfc_finish_type (u_union_type);
3607
3608 chain = 0;
3609 reference_type = make_node (RECORD_TYPE);
3610 tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("next"),
3611 build_pointer_type (reference_type), &chain);
3612 TREE_NO_WARNING (tmp) = 1;
3613 tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("type"),
3614 integer_type_node, &chain);
3615 TREE_NO_WARNING (tmp) = 1;
3616 tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("item_size"),
3617 size_type_node, &chain);
3618 TREE_NO_WARNING (tmp) = 1;
3619 tmp = gfc_add_field_to_struct_1 (reference_type, get_identifier ("u"),
3620 u_union_type, &chain);
3621 TREE_NO_WARNING (tmp) = 1;
3622 gfc_finish_type (reference_type);
3623 TYPE_NAME (reference_type) = get_identifier ("caf_reference_t");
3624
3625 return reference_type;
3626 }
3627
3628 #include "gt-fortran-trans-types.h"