]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-types.c
77d0e785e0be36d52606e875b7787dbe9d63e5b2
[thirdparty/gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-types.c -- gfortran backend types */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE,
35 LONG_DOUBLE_TYPE_SIZE and LIBGCC2_HAS_TF_MODE. */
36 #include "tree.h"
37 #include "stor-layout.h"
38 #include "stringpool.h"
39 #include "langhooks.h" /* For iso-c-bindings.def. */
40 #include "target.h"
41 #include "ggc.h"
42 #include "diagnostic-core.h" /* For fatal_error. */
43 #include "toplev.h" /* For rest_of_decl_compilation. */
44 #include "gfortran.h"
45 #include "trans.h"
46 #include "trans-types.h"
47 #include "trans-const.h"
48 #include "flags.h"
49 #include "dwarf2out.h" /* For struct array_descr_info. */
50 \f
51
52 #if (GFC_MAX_DIMENSIONS < 10)
53 #define GFC_RANK_DIGITS 1
54 #define GFC_RANK_PRINTF_FORMAT "%01d"
55 #elif (GFC_MAX_DIMENSIONS < 100)
56 #define GFC_RANK_DIGITS 2
57 #define GFC_RANK_PRINTF_FORMAT "%02d"
58 #else
59 #error If you really need >99 dimensions, continue the sequence above...
60 #endif
61
62 /* array of structs so we don't have to worry about xmalloc or free */
63 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
64
65 tree gfc_array_index_type;
66 tree gfc_array_range_type;
67 tree gfc_character1_type_node;
68 tree pvoid_type_node;
69 tree prvoid_type_node;
70 tree ppvoid_type_node;
71 tree pchar_type_node;
72 tree pfunc_type_node;
73
74 tree gfc_charlen_type_node;
75
76 tree float128_type_node = NULL_TREE;
77 tree complex_float128_type_node = NULL_TREE;
78
79 bool gfc_real16_is_float128 = false;
80
81 static GTY(()) tree gfc_desc_dim_type;
82 static GTY(()) tree gfc_max_array_element_size;
83 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
84 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
85
86 /* Arrays for all integral and real kinds. We'll fill this in at runtime
87 after the target has a chance to process command-line options. */
88
89 #define MAX_INT_KINDS 5
90 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
91 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
92 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
93 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
94
95 #define MAX_REAL_KINDS 5
96 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
97 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
98 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
99
100 #define MAX_CHARACTER_KINDS 2
101 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
102 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
103 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
104
105 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
106
107 /* The integer kind to use for array indices. This will be set to the
108 proper value based on target information from the backend. */
109
110 int gfc_index_integer_kind;
111
112 /* The default kinds of the various types. */
113
114 int gfc_default_integer_kind;
115 int gfc_max_integer_kind;
116 int gfc_default_real_kind;
117 int gfc_default_double_kind;
118 int gfc_default_character_kind;
119 int gfc_default_logical_kind;
120 int gfc_default_complex_kind;
121 int gfc_c_int_kind;
122 int gfc_atomic_int_kind;
123 int gfc_atomic_logical_kind;
124
125 /* The kind size used for record offsets. If the target system supports
126 kind=8, this will be set to 8, otherwise it is set to 4. */
127 int gfc_intio_kind;
128
129 /* The integer kind used to store character lengths. */
130 int gfc_charlen_int_kind;
131
132 /* The size of the numeric storage unit and character storage unit. */
133 int gfc_numeric_storage_size;
134 int gfc_character_storage_size;
135
136
137 bool
138 gfc_check_any_c_kind (gfc_typespec *ts)
139 {
140 int i;
141
142 for (i = 0; i < ISOCBINDING_NUMBER; i++)
143 {
144 /* Check for any C interoperable kind for the given type/kind in ts.
145 This can be used after verify_c_interop to make sure that the
146 Fortran kind being used exists in at least some form for C. */
147 if (c_interop_kinds_table[i].f90_type == ts->type &&
148 c_interop_kinds_table[i].value == ts->kind)
149 return true;
150 }
151
152 return false;
153 }
154
155
156 static int
157 get_real_kind_from_node (tree type)
158 {
159 int i;
160
161 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
162 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
163 return gfc_real_kinds[i].kind;
164
165 return -4;
166 }
167
168 static int
169 get_int_kind_from_node (tree type)
170 {
171 int i;
172
173 if (!type)
174 return -2;
175
176 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
177 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
178 return gfc_integer_kinds[i].kind;
179
180 return -1;
181 }
182
183 /* Return a typenode for the "standard" C type with a given name. */
184 static tree
185 get_typenode_from_name (const char *name)
186 {
187 if (name == NULL || *name == '\0')
188 return NULL_TREE;
189
190 if (strcmp (name, "char") == 0)
191 return char_type_node;
192 if (strcmp (name, "unsigned char") == 0)
193 return unsigned_char_type_node;
194 if (strcmp (name, "signed char") == 0)
195 return signed_char_type_node;
196
197 if (strcmp (name, "short int") == 0)
198 return short_integer_type_node;
199 if (strcmp (name, "short unsigned int") == 0)
200 return short_unsigned_type_node;
201
202 if (strcmp (name, "int") == 0)
203 return integer_type_node;
204 if (strcmp (name, "unsigned int") == 0)
205 return unsigned_type_node;
206
207 if (strcmp (name, "long int") == 0)
208 return long_integer_type_node;
209 if (strcmp (name, "long unsigned int") == 0)
210 return long_unsigned_type_node;
211
212 if (strcmp (name, "long long int") == 0)
213 return long_long_integer_type_node;
214 if (strcmp (name, "long long unsigned int") == 0)
215 return long_long_unsigned_type_node;
216
217 gcc_unreachable ();
218 }
219
220 static int
221 get_int_kind_from_name (const char *name)
222 {
223 return get_int_kind_from_node (get_typenode_from_name (name));
224 }
225
226
227 /* Get the kind number corresponding to an integer of given size,
228 following the required return values for ISO_FORTRAN_ENV INT* constants:
229 -2 is returned if we support a kind of larger size, -1 otherwise. */
230 int
231 gfc_get_int_kind_from_width_isofortranenv (int size)
232 {
233 int i;
234
235 /* Look for a kind with matching storage size. */
236 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
237 if (gfc_integer_kinds[i].bit_size == size)
238 return gfc_integer_kinds[i].kind;
239
240 /* Look for a kind with larger storage size. */
241 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
242 if (gfc_integer_kinds[i].bit_size > size)
243 return -2;
244
245 return -1;
246 }
247
248 /* Get the kind number corresponding to a real of given storage size,
249 following the required return values for ISO_FORTRAN_ENV REAL* constants:
250 -2 is returned if we support a kind of larger size, -1 otherwise. */
251 int
252 gfc_get_real_kind_from_width_isofortranenv (int size)
253 {
254 int i;
255
256 size /= 8;
257
258 /* Look for a kind with matching storage size. */
259 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
260 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
261 return gfc_real_kinds[i].kind;
262
263 /* Look for a kind with larger storage size. */
264 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
265 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
266 return -2;
267
268 return -1;
269 }
270
271
272
273 static int
274 get_int_kind_from_width (int size)
275 {
276 int i;
277
278 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
279 if (gfc_integer_kinds[i].bit_size == size)
280 return gfc_integer_kinds[i].kind;
281
282 return -2;
283 }
284
285 static int
286 get_int_kind_from_minimal_width (int size)
287 {
288 int i;
289
290 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
291 if (gfc_integer_kinds[i].bit_size >= size)
292 return gfc_integer_kinds[i].kind;
293
294 return -2;
295 }
296
297
298 /* Generate the CInteropKind_t objects for the C interoperable
299 kinds. */
300
301 void
302 gfc_init_c_interop_kinds (void)
303 {
304 int i;
305
306 /* init all pointers in the list to NULL */
307 for (i = 0; i < ISOCBINDING_NUMBER; i++)
308 {
309 /* Initialize the name and value fields. */
310 c_interop_kinds_table[i].name[0] = '\0';
311 c_interop_kinds_table[i].value = -100;
312 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
313 }
314
315 #define NAMED_INTCST(a,b,c,d) \
316 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
317 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
318 c_interop_kinds_table[a].value = c;
319 #define NAMED_REALCST(a,b,c,d) \
320 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
321 c_interop_kinds_table[a].f90_type = BT_REAL; \
322 c_interop_kinds_table[a].value = c;
323 #define NAMED_CMPXCST(a,b,c,d) \
324 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
325 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
326 c_interop_kinds_table[a].value = c;
327 #define NAMED_LOGCST(a,b,c) \
328 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
329 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
330 c_interop_kinds_table[a].value = c;
331 #define NAMED_CHARKNDCST(a,b,c) \
332 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
333 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
334 c_interop_kinds_table[a].value = c;
335 #define NAMED_CHARCST(a,b,c) \
336 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
337 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
338 c_interop_kinds_table[a].value = c;
339 #define DERIVED_TYPE(a,b,c) \
340 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
341 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
342 c_interop_kinds_table[a].value = c;
343 #define NAMED_FUNCTION(a,b,c,d) \
344 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
345 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
346 c_interop_kinds_table[a].value = c;
347 #define NAMED_SUBROUTINE(a,b,c,d) \
348 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
349 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
350 c_interop_kinds_table[a].value = c;
351 #include "iso-c-binding.def"
352 }
353
354
355 /* Query the target to determine which machine modes are available for
356 computation. Choose KIND numbers for them. */
357
358 void
359 gfc_init_kinds (void)
360 {
361 unsigned int mode;
362 int i_index, r_index, kind;
363 bool saw_i4 = false, saw_i8 = false;
364 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
365
366 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
367 {
368 int kind, bitsize;
369
370 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
371 continue;
372
373 /* The middle end doesn't support constants larger than 2*HWI.
374 Perhaps the target hook shouldn't have accepted these either,
375 but just to be safe... */
376 bitsize = GET_MODE_BITSIZE ((enum machine_mode) mode);
377 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
378 continue;
379
380 gcc_assert (i_index != MAX_INT_KINDS);
381
382 /* Let the kind equal the bit size divided by 8. This insulates the
383 programmer from the underlying byte size. */
384 kind = bitsize / 8;
385
386 if (kind == 4)
387 saw_i4 = true;
388 if (kind == 8)
389 saw_i8 = true;
390
391 gfc_integer_kinds[i_index].kind = kind;
392 gfc_integer_kinds[i_index].radix = 2;
393 gfc_integer_kinds[i_index].digits = bitsize - 1;
394 gfc_integer_kinds[i_index].bit_size = bitsize;
395
396 gfc_logical_kinds[i_index].kind = kind;
397 gfc_logical_kinds[i_index].bit_size = bitsize;
398
399 i_index += 1;
400 }
401
402 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
403 used for large file access. */
404
405 if (saw_i8)
406 gfc_intio_kind = 8;
407 else
408 gfc_intio_kind = 4;
409
410 /* If we do not at least have kind = 4, everything is pointless. */
411 gcc_assert(saw_i4);
412
413 /* Set the maximum integer kind. Used with at least BOZ constants. */
414 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
415
416 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
417 {
418 const struct real_format *fmt =
419 REAL_MODE_FORMAT ((enum machine_mode) mode);
420 int kind;
421
422 if (fmt == NULL)
423 continue;
424 if (!targetm.scalar_mode_supported_p ((enum machine_mode) mode))
425 continue;
426
427 /* Only let float, double, long double and __float128 go through.
428 Runtime support for others is not provided, so they would be
429 useless. */
430 if (mode != TYPE_MODE (float_type_node)
431 && (mode != TYPE_MODE (double_type_node))
432 && (mode != TYPE_MODE (long_double_type_node))
433 #if defined(LIBGCC2_HAS_TF_MODE) && defined(ENABLE_LIBQUADMATH_SUPPORT)
434 && (mode != TFmode)
435 #endif
436 )
437 continue;
438
439 /* Let the kind equal the precision divided by 8, rounding up. Again,
440 this insulates the programmer from the underlying byte size.
441
442 Also, it effectively deals with IEEE extended formats. There, the
443 total size of the type may equal 16, but it's got 6 bytes of padding
444 and the increased size can get in the way of a real IEEE quad format
445 which may also be supported by the target.
446
447 We round up so as to handle IA-64 __floatreg (RFmode), which is an
448 82 bit type. Not to be confused with __float80 (XFmode), which is
449 an 80 bit type also supported by IA-64. So XFmode should come out
450 to be kind=10, and RFmode should come out to be kind=11. Egads. */
451
452 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
453
454 if (kind == 4)
455 saw_r4 = true;
456 if (kind == 8)
457 saw_r8 = true;
458 if (kind == 10)
459 saw_r10 = true;
460 if (kind == 16)
461 saw_r16 = true;
462
463 /* Careful we don't stumble a weird internal mode. */
464 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
465 /* Or have too many modes for the allocated space. */
466 gcc_assert (r_index != MAX_REAL_KINDS);
467
468 gfc_real_kinds[r_index].kind = kind;
469 gfc_real_kinds[r_index].radix = fmt->b;
470 gfc_real_kinds[r_index].digits = fmt->p;
471 gfc_real_kinds[r_index].min_exponent = fmt->emin;
472 gfc_real_kinds[r_index].max_exponent = fmt->emax;
473 if (fmt->pnan < fmt->p)
474 /* This is an IBM extended double format (or the MIPS variant)
475 made up of two IEEE doubles. The value of the long double is
476 the sum of the values of the two parts. The most significant
477 part is required to be the value of the long double rounded
478 to the nearest double. If we use emax of 1024 then we can't
479 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
480 rounding will make the most significant part overflow. */
481 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
482 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
483 r_index += 1;
484 }
485
486 /* Choose the default integer kind. We choose 4 unless the user directs us
487 otherwise. Even if the user specified that the default integer kind is 8,
488 the numeric storage size is not 64 bits. In this case, a warning will be
489 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
490
491 gfc_numeric_storage_size = 4 * 8;
492
493 if (gfc_option.flag_default_integer)
494 {
495 if (!saw_i8)
496 fatal_error ("INTEGER(KIND=8) is not available for -fdefault-integer-8 option");
497
498 gfc_default_integer_kind = 8;
499
500 }
501 else if (gfc_option.flag_integer4_kind == 8)
502 {
503 if (!saw_i8)
504 fatal_error ("INTEGER(KIND=8) is not available for -finteger-4-integer-8 option");
505
506 gfc_default_integer_kind = 8;
507 }
508 else if (saw_i4)
509 {
510 gfc_default_integer_kind = 4;
511 }
512 else
513 {
514 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
515 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
516 }
517
518 /* Choose the default real kind. Again, we choose 4 when possible. */
519 if (gfc_option.flag_default_real)
520 {
521 if (!saw_r8)
522 fatal_error ("REAL(KIND=8) is not available for -fdefault-real-8 option");
523
524 gfc_default_real_kind = 8;
525 }
526 else if (gfc_option.flag_real4_kind == 8)
527 {
528 if (!saw_r8)
529 fatal_error ("REAL(KIND=8) is not available for -freal-4-real-8 option");
530
531 gfc_default_real_kind = 8;
532 }
533 else if (gfc_option.flag_real4_kind == 10)
534 {
535 if (!saw_r10)
536 fatal_error ("REAL(KIND=10) is not available for -freal-4-real-10 option");
537
538 gfc_default_real_kind = 10;
539 }
540 else if (gfc_option.flag_real4_kind == 16)
541 {
542 if (!saw_r16)
543 fatal_error ("REAL(KIND=16) is not available for -freal-4-real-16 option");
544
545 gfc_default_real_kind = 16;
546 }
547 else if (saw_r4)
548 gfc_default_real_kind = 4;
549 else
550 gfc_default_real_kind = gfc_real_kinds[0].kind;
551
552 /* Choose the default double kind. If -fdefault-real and -fdefault-double
553 are specified, we use kind=8, if it's available. If -fdefault-real is
554 specified without -fdefault-double, we use kind=16, if it's available.
555 Otherwise we do not change anything. */
556 if (gfc_option.flag_default_double && !gfc_option.flag_default_real)
557 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
558
559 if (gfc_option.flag_default_real && gfc_option.flag_default_double && saw_r8)
560 gfc_default_double_kind = 8;
561 else if (gfc_option.flag_default_real && saw_r16)
562 gfc_default_double_kind = 16;
563 else if (gfc_option.flag_real8_kind == 4)
564 {
565 if (!saw_r4)
566 fatal_error ("REAL(KIND=4) is not available for -freal-8-real-4 option");
567
568 gfc_default_double_kind = 4;
569 }
570 else if (gfc_option.flag_real8_kind == 10 )
571 {
572 if (!saw_r10)
573 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-10 option");
574
575 gfc_default_double_kind = 10;
576 }
577 else if (gfc_option.flag_real8_kind == 16 )
578 {
579 if (!saw_r16)
580 fatal_error ("REAL(KIND=10) is not available for -freal-8-real-16 option");
581
582 gfc_default_double_kind = 16;
583 }
584 else if (saw_r4 && saw_r8)
585 gfc_default_double_kind = 8;
586 else
587 {
588 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
589 real ... occupies two contiguous numeric storage units.
590
591 Therefore we must be supplied a kind twice as large as we chose
592 for single precision. There are loopholes, in that double
593 precision must *occupy* two storage units, though it doesn't have
594 to *use* two storage units. Which means that you can make this
595 kind artificially wide by padding it. But at present there are
596 no GCC targets for which a two-word type does not exist, so we
597 just let gfc_validate_kind abort and tell us if something breaks. */
598
599 gfc_default_double_kind
600 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
601 }
602
603 /* The default logical kind is constrained to be the same as the
604 default integer kind. Similarly with complex and real. */
605 gfc_default_logical_kind = gfc_default_integer_kind;
606 gfc_default_complex_kind = gfc_default_real_kind;
607
608 /* We only have two character kinds: ASCII and UCS-4.
609 ASCII corresponds to a 8-bit integer type, if one is available.
610 UCS-4 corresponds to a 32-bit integer type, if one is available. */
611 i_index = 0;
612 if ((kind = get_int_kind_from_width (8)) > 0)
613 {
614 gfc_character_kinds[i_index].kind = kind;
615 gfc_character_kinds[i_index].bit_size = 8;
616 gfc_character_kinds[i_index].name = "ascii";
617 i_index++;
618 }
619 if ((kind = get_int_kind_from_width (32)) > 0)
620 {
621 gfc_character_kinds[i_index].kind = kind;
622 gfc_character_kinds[i_index].bit_size = 32;
623 gfc_character_kinds[i_index].name = "iso_10646";
624 i_index++;
625 }
626
627 /* Choose the smallest integer kind for our default character. */
628 gfc_default_character_kind = gfc_character_kinds[0].kind;
629 gfc_character_storage_size = gfc_default_character_kind * 8;
630
631 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
632
633 /* Pick a kind the same size as the C "int" type. */
634 gfc_c_int_kind = INT_TYPE_SIZE / 8;
635
636 /* Choose atomic kinds to match C's int. */
637 gfc_atomic_int_kind = gfc_c_int_kind;
638 gfc_atomic_logical_kind = gfc_c_int_kind;
639 }
640
641
642 /* Make sure that a valid kind is present. Returns an index into the
643 associated kinds array, -1 if the kind is not present. */
644
645 static int
646 validate_integer (int kind)
647 {
648 int i;
649
650 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
651 if (gfc_integer_kinds[i].kind == kind)
652 return i;
653
654 return -1;
655 }
656
657 static int
658 validate_real (int kind)
659 {
660 int i;
661
662 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
663 if (gfc_real_kinds[i].kind == kind)
664 return i;
665
666 return -1;
667 }
668
669 static int
670 validate_logical (int kind)
671 {
672 int i;
673
674 for (i = 0; gfc_logical_kinds[i].kind; i++)
675 if (gfc_logical_kinds[i].kind == kind)
676 return i;
677
678 return -1;
679 }
680
681 static int
682 validate_character (int kind)
683 {
684 int i;
685
686 for (i = 0; gfc_character_kinds[i].kind; i++)
687 if (gfc_character_kinds[i].kind == kind)
688 return i;
689
690 return -1;
691 }
692
693 /* Validate a kind given a basic type. The return value is the same
694 for the child functions, with -1 indicating nonexistence of the
695 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
696
697 int
698 gfc_validate_kind (bt type, int kind, bool may_fail)
699 {
700 int rc;
701
702 switch (type)
703 {
704 case BT_REAL: /* Fall through */
705 case BT_COMPLEX:
706 rc = validate_real (kind);
707 break;
708 case BT_INTEGER:
709 rc = validate_integer (kind);
710 break;
711 case BT_LOGICAL:
712 rc = validate_logical (kind);
713 break;
714 case BT_CHARACTER:
715 rc = validate_character (kind);
716 break;
717
718 default:
719 gfc_internal_error ("gfc_validate_kind(): Got bad type");
720 }
721
722 if (rc < 0 && !may_fail)
723 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
724
725 return rc;
726 }
727
728
729 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
730 Reuse common type nodes where possible. Recognize if the kind matches up
731 with a C type. This will be used later in determining which routines may
732 be scarfed from libm. */
733
734 static tree
735 gfc_build_int_type (gfc_integer_info *info)
736 {
737 int mode_precision = info->bit_size;
738
739 if (mode_precision == CHAR_TYPE_SIZE)
740 info->c_char = 1;
741 if (mode_precision == SHORT_TYPE_SIZE)
742 info->c_short = 1;
743 if (mode_precision == INT_TYPE_SIZE)
744 info->c_int = 1;
745 if (mode_precision == LONG_TYPE_SIZE)
746 info->c_long = 1;
747 if (mode_precision == LONG_LONG_TYPE_SIZE)
748 info->c_long_long = 1;
749
750 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
751 return intQI_type_node;
752 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
753 return intHI_type_node;
754 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
755 return intSI_type_node;
756 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
757 return intDI_type_node;
758 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
759 return intTI_type_node;
760
761 return make_signed_type (mode_precision);
762 }
763
764 tree
765 gfc_build_uint_type (int size)
766 {
767 if (size == CHAR_TYPE_SIZE)
768 return unsigned_char_type_node;
769 if (size == SHORT_TYPE_SIZE)
770 return short_unsigned_type_node;
771 if (size == INT_TYPE_SIZE)
772 return unsigned_type_node;
773 if (size == LONG_TYPE_SIZE)
774 return long_unsigned_type_node;
775 if (size == LONG_LONG_TYPE_SIZE)
776 return long_long_unsigned_type_node;
777
778 return make_unsigned_type (size);
779 }
780
781
782 static tree
783 gfc_build_real_type (gfc_real_info *info)
784 {
785 int mode_precision = info->mode_precision;
786 tree new_type;
787
788 if (mode_precision == FLOAT_TYPE_SIZE)
789 info->c_float = 1;
790 if (mode_precision == DOUBLE_TYPE_SIZE)
791 info->c_double = 1;
792 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
793 info->c_long_double = 1;
794 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
795 {
796 info->c_float128 = 1;
797 gfc_real16_is_float128 = true;
798 }
799
800 if (TYPE_PRECISION (float_type_node) == mode_precision)
801 return float_type_node;
802 if (TYPE_PRECISION (double_type_node) == mode_precision)
803 return double_type_node;
804 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
805 return long_double_type_node;
806
807 new_type = make_node (REAL_TYPE);
808 TYPE_PRECISION (new_type) = mode_precision;
809 layout_type (new_type);
810 return new_type;
811 }
812
813 static tree
814 gfc_build_complex_type (tree scalar_type)
815 {
816 tree new_type;
817
818 if (scalar_type == NULL)
819 return NULL;
820 if (scalar_type == float_type_node)
821 return complex_float_type_node;
822 if (scalar_type == double_type_node)
823 return complex_double_type_node;
824 if (scalar_type == long_double_type_node)
825 return complex_long_double_type_node;
826
827 new_type = make_node (COMPLEX_TYPE);
828 TREE_TYPE (new_type) = scalar_type;
829 layout_type (new_type);
830 return new_type;
831 }
832
833 static tree
834 gfc_build_logical_type (gfc_logical_info *info)
835 {
836 int bit_size = info->bit_size;
837 tree new_type;
838
839 if (bit_size == BOOL_TYPE_SIZE)
840 {
841 info->c_bool = 1;
842 return boolean_type_node;
843 }
844
845 new_type = make_unsigned_type (bit_size);
846 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
847 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
848 TYPE_PRECISION (new_type) = 1;
849
850 return new_type;
851 }
852
853
854 /* Create the backend type nodes. We map them to their
855 equivalent C type, at least for now. We also give
856 names to the types here, and we push them in the
857 global binding level context.*/
858
859 void
860 gfc_init_types (void)
861 {
862 char name_buf[18];
863 int index;
864 tree type;
865 unsigned n;
866
867 /* Create and name the types. */
868 #define PUSH_TYPE(name, node) \
869 pushdecl (build_decl (input_location, \
870 TYPE_DECL, get_identifier (name), node))
871
872 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
873 {
874 type = gfc_build_int_type (&gfc_integer_kinds[index]);
875 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
876 if (TYPE_STRING_FLAG (type))
877 type = make_signed_type (gfc_integer_kinds[index].bit_size);
878 gfc_integer_types[index] = type;
879 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
880 gfc_integer_kinds[index].kind);
881 PUSH_TYPE (name_buf, type);
882 }
883
884 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
885 {
886 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
887 gfc_logical_types[index] = type;
888 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
889 gfc_logical_kinds[index].kind);
890 PUSH_TYPE (name_buf, type);
891 }
892
893 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
894 {
895 type = gfc_build_real_type (&gfc_real_kinds[index]);
896 gfc_real_types[index] = type;
897 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
898 gfc_real_kinds[index].kind);
899 PUSH_TYPE (name_buf, type);
900
901 if (gfc_real_kinds[index].c_float128)
902 float128_type_node = type;
903
904 type = gfc_build_complex_type (type);
905 gfc_complex_types[index] = type;
906 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
907 gfc_real_kinds[index].kind);
908 PUSH_TYPE (name_buf, type);
909
910 if (gfc_real_kinds[index].c_float128)
911 complex_float128_type_node = type;
912 }
913
914 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
915 {
916 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
917 type = build_qualified_type (type, TYPE_UNQUALIFIED);
918 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
919 gfc_character_kinds[index].kind);
920 PUSH_TYPE (name_buf, type);
921 gfc_character_types[index] = type;
922 gfc_pcharacter_types[index] = build_pointer_type (type);
923 }
924 gfc_character1_type_node = gfc_character_types[0];
925
926 PUSH_TYPE ("byte", unsigned_char_type_node);
927 PUSH_TYPE ("void", void_type_node);
928
929 /* DBX debugging output gets upset if these aren't set. */
930 if (!TYPE_NAME (integer_type_node))
931 PUSH_TYPE ("c_integer", integer_type_node);
932 if (!TYPE_NAME (char_type_node))
933 PUSH_TYPE ("c_char", char_type_node);
934
935 #undef PUSH_TYPE
936
937 pvoid_type_node = build_pointer_type (void_type_node);
938 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
939 ppvoid_type_node = build_pointer_type (pvoid_type_node);
940 pchar_type_node = build_pointer_type (gfc_character1_type_node);
941 pfunc_type_node
942 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
943
944 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
945 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
946 since this function is called before gfc_init_constants. */
947 gfc_array_range_type
948 = build_range_type (gfc_array_index_type,
949 build_int_cst (gfc_array_index_type, 0),
950 NULL_TREE);
951
952 /* The maximum array element size that can be handled is determined
953 by the number of bits available to store this field in the array
954 descriptor. */
955
956 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
957 gfc_max_array_element_size
958 = wide_int_to_tree (long_unsigned_type_node,
959 wi::mask (n, UNSIGNED,
960 TYPE_PRECISION (long_unsigned_type_node)));
961
962 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
963 boolean_true_node = build_int_cst (boolean_type_node, 1);
964 boolean_false_node = build_int_cst (boolean_type_node, 0);
965
966 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
967 gfc_charlen_int_kind = 4;
968 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
969 }
970
971 /* Get the type node for the given type and kind. */
972
973 tree
974 gfc_get_int_type (int kind)
975 {
976 int index = gfc_validate_kind (BT_INTEGER, kind, true);
977 return index < 0 ? 0 : gfc_integer_types[index];
978 }
979
980 tree
981 gfc_get_real_type (int kind)
982 {
983 int index = gfc_validate_kind (BT_REAL, kind, true);
984 return index < 0 ? 0 : gfc_real_types[index];
985 }
986
987 tree
988 gfc_get_complex_type (int kind)
989 {
990 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
991 return index < 0 ? 0 : gfc_complex_types[index];
992 }
993
994 tree
995 gfc_get_logical_type (int kind)
996 {
997 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
998 return index < 0 ? 0 : gfc_logical_types[index];
999 }
1000
1001 tree
1002 gfc_get_char_type (int kind)
1003 {
1004 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1005 return index < 0 ? 0 : gfc_character_types[index];
1006 }
1007
1008 tree
1009 gfc_get_pchar_type (int kind)
1010 {
1011 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1012 return index < 0 ? 0 : gfc_pcharacter_types[index];
1013 }
1014
1015 \f
1016 /* Create a character type with the given kind and length. */
1017
1018 tree
1019 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1020 {
1021 tree bounds, type;
1022
1023 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1024 type = build_array_type (eltype, bounds);
1025 TYPE_STRING_FLAG (type) = 1;
1026
1027 return type;
1028 }
1029
1030 tree
1031 gfc_get_character_type_len (int kind, tree len)
1032 {
1033 gfc_validate_kind (BT_CHARACTER, kind, false);
1034 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1035 }
1036
1037
1038 /* Get a type node for a character kind. */
1039
1040 tree
1041 gfc_get_character_type (int kind, gfc_charlen * cl)
1042 {
1043 tree len;
1044
1045 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1046
1047 return gfc_get_character_type_len (kind, len);
1048 }
1049 \f
1050 /* Covert a basic type. This will be an array for character types. */
1051
1052 tree
1053 gfc_typenode_for_spec (gfc_typespec * spec)
1054 {
1055 tree basetype;
1056
1057 switch (spec->type)
1058 {
1059 case BT_UNKNOWN:
1060 gcc_unreachable ();
1061
1062 case BT_INTEGER:
1063 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1064 has been resolved. This is done so we can convert C_PTR and
1065 C_FUNPTR to simple variables that get translated to (void *). */
1066 if (spec->f90_type == BT_VOID)
1067 {
1068 if (spec->u.derived
1069 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1070 basetype = ptr_type_node;
1071 else
1072 basetype = pfunc_type_node;
1073 }
1074 else
1075 basetype = gfc_get_int_type (spec->kind);
1076 break;
1077
1078 case BT_REAL:
1079 basetype = gfc_get_real_type (spec->kind);
1080 break;
1081
1082 case BT_COMPLEX:
1083 basetype = gfc_get_complex_type (spec->kind);
1084 break;
1085
1086 case BT_LOGICAL:
1087 basetype = gfc_get_logical_type (spec->kind);
1088 break;
1089
1090 case BT_CHARACTER:
1091 #if 0
1092 if (spec->deferred)
1093 basetype = gfc_get_character_type (spec->kind, NULL);
1094 else
1095 #endif
1096 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1097 break;
1098
1099 case BT_HOLLERITH:
1100 /* Since this cannot be used, return a length one character. */
1101 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1102 gfc_index_one_node);
1103 break;
1104
1105 case BT_DERIVED:
1106 case BT_CLASS:
1107 basetype = gfc_get_derived_type (spec->u.derived);
1108
1109 if (spec->type == BT_CLASS)
1110 GFC_CLASS_TYPE_P (basetype) = 1;
1111
1112 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1113 type and kind to fit a (void *) and the basetype returned was a
1114 ptr_type_node. We need to pass up this new information to the
1115 symbol that was declared of type C_PTR or C_FUNPTR. */
1116 if (spec->u.derived->ts.f90_type == BT_VOID)
1117 {
1118 spec->type = BT_INTEGER;
1119 spec->kind = gfc_index_integer_kind;
1120 spec->f90_type = BT_VOID;
1121 }
1122 break;
1123 case BT_VOID:
1124 case BT_ASSUMED:
1125 /* This is for the second arg to c_f_pointer and c_f_procpointer
1126 of the iso_c_binding module, to accept any ptr type. */
1127 basetype = ptr_type_node;
1128 if (spec->f90_type == BT_VOID)
1129 {
1130 if (spec->u.derived
1131 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1132 basetype = ptr_type_node;
1133 else
1134 basetype = pfunc_type_node;
1135 }
1136 break;
1137 default:
1138 gcc_unreachable ();
1139 }
1140 return basetype;
1141 }
1142 \f
1143 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1144
1145 static tree
1146 gfc_conv_array_bound (gfc_expr * expr)
1147 {
1148 /* If expr is an integer constant, return that. */
1149 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1150 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1151
1152 /* Otherwise return NULL. */
1153 return NULL_TREE;
1154 }
1155 \f
1156 tree
1157 gfc_get_element_type (tree type)
1158 {
1159 tree element;
1160
1161 if (GFC_ARRAY_TYPE_P (type))
1162 {
1163 if (TREE_CODE (type) == POINTER_TYPE)
1164 type = TREE_TYPE (type);
1165 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1166 {
1167 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1168 element = type;
1169 }
1170 else
1171 {
1172 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1173 element = TREE_TYPE (type);
1174 }
1175 }
1176 else
1177 {
1178 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1179 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1180
1181 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1182 element = TREE_TYPE (element);
1183
1184 /* For arrays, which are not scalar coarrays. */
1185 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1186 element = TREE_TYPE (element);
1187 }
1188
1189 return element;
1190 }
1191 \f
1192 /* Build an array. This function is called from gfc_sym_type().
1193 Actually returns array descriptor type.
1194
1195 Format of array descriptors is as follows:
1196
1197 struct gfc_array_descriptor
1198 {
1199 array *data
1200 index offset;
1201 index dtype;
1202 struct descriptor_dimension dimension[N_DIM];
1203 }
1204
1205 struct descriptor_dimension
1206 {
1207 index stride;
1208 index lbound;
1209 index ubound;
1210 }
1211
1212 Translation code should use gfc_conv_descriptor_* rather than
1213 accessing the descriptor directly. Any changes to the array
1214 descriptor type will require changes in gfc_conv_descriptor_* and
1215 gfc_build_array_initializer.
1216
1217 This is represented internally as a RECORD_TYPE. The index nodes
1218 are gfc_array_index_type and the data node is a pointer to the
1219 data. See below for the handling of character types.
1220
1221 The dtype member is formatted as follows:
1222 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1223 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1224 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1225
1226 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1227 this generated poor code for assumed/deferred size arrays. These
1228 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1229 of the GENERIC grammar. Also, there is no way to explicitly set
1230 the array stride, so all data must be packed(1). I've tried to
1231 mark all the functions which would require modification with a GCC
1232 ARRAYS comment.
1233
1234 The data component points to the first element in the array. The
1235 offset field is the position of the origin of the array (i.e. element
1236 (0, 0 ...)). This may be outside the bounds of the array.
1237
1238 An element is accessed by
1239 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1240 This gives good performance as the computation does not involve the
1241 bounds of the array. For packed arrays, this is optimized further
1242 by substituting the known strides.
1243
1244 This system has one problem: all array bounds must be within 2^31
1245 elements of the origin (2^63 on 64-bit machines). For example
1246 integer, dimension (80000:90000, 80000:90000, 2) :: array
1247 may not work properly on 32-bit machines because 80000*80000 >
1248 2^31, so the calculation for stride2 would overflow. This may
1249 still work, but I haven't checked, and it relies on the overflow
1250 doing the right thing.
1251
1252 The way to fix this problem is to access elements as follows:
1253 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1254 Obviously this is much slower. I will make this a compile time
1255 option, something like -fsmall-array-offsets. Mixing code compiled
1256 with and without this switch will work.
1257
1258 (1) This can be worked around by modifying the upper bound of the
1259 previous dimension. This requires extra fields in the descriptor
1260 (both real_ubound and fake_ubound). */
1261
1262
1263 /* Returns true if the array sym does not require a descriptor. */
1264
1265 int
1266 gfc_is_nodesc_array (gfc_symbol * sym)
1267 {
1268 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1269
1270 /* We only want local arrays. */
1271 if (sym->attr.pointer || sym->attr.allocatable)
1272 return 0;
1273
1274 /* We want a descriptor for associate-name arrays that do not have an
1275 explicitly known shape already. */
1276 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1277 return 0;
1278
1279 if (sym->attr.dummy)
1280 return sym->as->type != AS_ASSUMED_SHAPE
1281 && sym->as->type != AS_ASSUMED_RANK;
1282
1283 if (sym->attr.result || sym->attr.function)
1284 return 0;
1285
1286 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1287
1288 return 1;
1289 }
1290
1291
1292 /* Create an array descriptor type. */
1293
1294 static tree
1295 gfc_build_array_type (tree type, gfc_array_spec * as,
1296 enum gfc_array_kind akind, bool restricted,
1297 bool contiguous)
1298 {
1299 tree lbound[GFC_MAX_DIMENSIONS];
1300 tree ubound[GFC_MAX_DIMENSIONS];
1301 int n, corank;
1302
1303 /* Assumed-shape arrays do not have codimension information stored in the
1304 descriptor. */
1305 corank = as->corank;
1306 if (as->type == AS_ASSUMED_SHAPE ||
1307 (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1308 corank = 0;
1309
1310 if (as->type == AS_ASSUMED_RANK)
1311 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1312 {
1313 lbound[n] = NULL_TREE;
1314 ubound[n] = NULL_TREE;
1315 }
1316
1317 for (n = 0; n < as->rank; n++)
1318 {
1319 /* Create expressions for the known bounds of the array. */
1320 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1321 lbound[n] = gfc_index_one_node;
1322 else
1323 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1324 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1325 }
1326
1327 for (n = as->rank; n < as->rank + corank; n++)
1328 {
1329 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1330 lbound[n] = gfc_index_one_node;
1331 else
1332 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1333
1334 if (n < as->rank + corank - 1)
1335 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1336 }
1337
1338 if (as->type == AS_ASSUMED_SHAPE)
1339 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1340 : GFC_ARRAY_ASSUMED_SHAPE;
1341 else if (as->type == AS_ASSUMED_RANK)
1342 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1343 : GFC_ARRAY_ASSUMED_RANK;
1344 return gfc_get_array_type_bounds (type, as->rank == -1
1345 ? GFC_MAX_DIMENSIONS : as->rank,
1346 corank, lbound,
1347 ubound, 0, akind, restricted);
1348 }
1349 \f
1350 /* Returns the struct descriptor_dimension type. */
1351
1352 static tree
1353 gfc_get_desc_dim_type (void)
1354 {
1355 tree type;
1356 tree decl, *chain = NULL;
1357
1358 if (gfc_desc_dim_type)
1359 return gfc_desc_dim_type;
1360
1361 /* Build the type node. */
1362 type = make_node (RECORD_TYPE);
1363
1364 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1365 TYPE_PACKED (type) = 1;
1366
1367 /* Consists of the stride, lbound and ubound members. */
1368 decl = gfc_add_field_to_struct_1 (type,
1369 get_identifier ("stride"),
1370 gfc_array_index_type, &chain);
1371 TREE_NO_WARNING (decl) = 1;
1372
1373 decl = gfc_add_field_to_struct_1 (type,
1374 get_identifier ("lbound"),
1375 gfc_array_index_type, &chain);
1376 TREE_NO_WARNING (decl) = 1;
1377
1378 decl = gfc_add_field_to_struct_1 (type,
1379 get_identifier ("ubound"),
1380 gfc_array_index_type, &chain);
1381 TREE_NO_WARNING (decl) = 1;
1382
1383 /* Finish off the type. */
1384 gfc_finish_type (type);
1385 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1386
1387 gfc_desc_dim_type = type;
1388 return type;
1389 }
1390
1391
1392 /* Return the DTYPE for an array. This describes the type and type parameters
1393 of the array. */
1394 /* TODO: Only call this when the value is actually used, and make all the
1395 unknown cases abort. */
1396
1397 tree
1398 gfc_get_dtype (tree type)
1399 {
1400 tree size;
1401 int n;
1402 HOST_WIDE_INT i;
1403 tree tmp;
1404 tree dtype;
1405 tree etype;
1406 int rank;
1407
1408 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1409
1410 if (GFC_TYPE_ARRAY_DTYPE (type))
1411 return GFC_TYPE_ARRAY_DTYPE (type);
1412
1413 rank = GFC_TYPE_ARRAY_RANK (type);
1414 etype = gfc_get_element_type (type);
1415
1416 switch (TREE_CODE (etype))
1417 {
1418 case INTEGER_TYPE:
1419 n = BT_INTEGER;
1420 break;
1421
1422 case BOOLEAN_TYPE:
1423 n = BT_LOGICAL;
1424 break;
1425
1426 case REAL_TYPE:
1427 n = BT_REAL;
1428 break;
1429
1430 case COMPLEX_TYPE:
1431 n = BT_COMPLEX;
1432 break;
1433
1434 /* We will never have arrays of arrays. */
1435 case RECORD_TYPE:
1436 n = BT_DERIVED;
1437 break;
1438
1439 case ARRAY_TYPE:
1440 n = BT_CHARACTER;
1441 break;
1442
1443 case POINTER_TYPE:
1444 n = BT_ASSUMED;
1445 break;
1446
1447 default:
1448 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1449 /* We can strange array types for temporary arrays. */
1450 return gfc_index_zero_node;
1451 }
1452
1453 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1454 size = TYPE_SIZE_UNIT (etype);
1455
1456 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1457 if (size && INTEGER_CST_P (size))
1458 {
1459 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1460 gfc_fatal_error ("Array element size too big at %C");
1461
1462 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1463 }
1464 dtype = build_int_cst (gfc_array_index_type, i);
1465
1466 if (size && !INTEGER_CST_P (size))
1467 {
1468 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1469 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1470 gfc_array_index_type,
1471 fold_convert (gfc_array_index_type, size), tmp);
1472 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1473 tmp, dtype);
1474 }
1475 /* If we don't know the size we leave it as zero. This should never happen
1476 for anything that is actually used. */
1477 /* TODO: Check this is actually true, particularly when repacking
1478 assumed size parameters. */
1479
1480 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1481 return dtype;
1482 }
1483
1484
1485 /* Build an array type for use without a descriptor, packed according
1486 to the value of PACKED. */
1487
1488 tree
1489 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1490 bool restricted)
1491 {
1492 tree range;
1493 tree type;
1494 tree tmp;
1495 int n;
1496 int known_stride;
1497 int known_offset;
1498 mpz_t offset;
1499 mpz_t stride;
1500 mpz_t delta;
1501 gfc_expr *expr;
1502
1503 mpz_init_set_ui (offset, 0);
1504 mpz_init_set_ui (stride, 1);
1505 mpz_init (delta);
1506
1507 /* We don't use build_array_type because this does not include include
1508 lang-specific information (i.e. the bounds of the array) when checking
1509 for duplicates. */
1510 if (as->rank)
1511 type = make_node (ARRAY_TYPE);
1512 else
1513 type = build_variant_type_copy (etype);
1514
1515 GFC_ARRAY_TYPE_P (type) = 1;
1516 TYPE_LANG_SPECIFIC (type)
1517 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1518
1519 known_stride = (packed != PACKED_NO);
1520 known_offset = 1;
1521 for (n = 0; n < as->rank; n++)
1522 {
1523 /* Fill in the stride and bound components of the type. */
1524 if (known_stride)
1525 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1526 else
1527 tmp = NULL_TREE;
1528 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1529
1530 expr = as->lower[n];
1531 if (expr->expr_type == EXPR_CONSTANT)
1532 {
1533 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1534 gfc_index_integer_kind);
1535 }
1536 else
1537 {
1538 known_stride = 0;
1539 tmp = NULL_TREE;
1540 }
1541 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1542
1543 if (known_stride)
1544 {
1545 /* Calculate the offset. */
1546 mpz_mul (delta, stride, as->lower[n]->value.integer);
1547 mpz_sub (offset, offset, delta);
1548 }
1549 else
1550 known_offset = 0;
1551
1552 expr = as->upper[n];
1553 if (expr && expr->expr_type == EXPR_CONSTANT)
1554 {
1555 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1556 gfc_index_integer_kind);
1557 }
1558 else
1559 {
1560 tmp = NULL_TREE;
1561 known_stride = 0;
1562 }
1563 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1564
1565 if (known_stride)
1566 {
1567 /* Calculate the stride. */
1568 mpz_sub (delta, as->upper[n]->value.integer,
1569 as->lower[n]->value.integer);
1570 mpz_add_ui (delta, delta, 1);
1571 mpz_mul (stride, stride, delta);
1572 }
1573
1574 /* Only the first stride is known for partial packed arrays. */
1575 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1576 known_stride = 0;
1577 }
1578 for (n = as->rank; n < as->rank + as->corank; n++)
1579 {
1580 expr = as->lower[n];
1581 if (expr->expr_type == EXPR_CONSTANT)
1582 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1583 gfc_index_integer_kind);
1584 else
1585 tmp = NULL_TREE;
1586 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1587
1588 expr = as->upper[n];
1589 if (expr && expr->expr_type == EXPR_CONSTANT)
1590 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1591 gfc_index_integer_kind);
1592 else
1593 tmp = NULL_TREE;
1594 if (n < as->rank + as->corank - 1)
1595 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1596 }
1597
1598 if (known_offset)
1599 {
1600 GFC_TYPE_ARRAY_OFFSET (type) =
1601 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1602 }
1603 else
1604 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1605
1606 if (known_stride)
1607 {
1608 GFC_TYPE_ARRAY_SIZE (type) =
1609 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1610 }
1611 else
1612 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1613
1614 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1615 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1616 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1617 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1618 NULL_TREE);
1619 /* TODO: use main type if it is unbounded. */
1620 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1621 build_pointer_type (build_array_type (etype, range));
1622 if (restricted)
1623 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1624 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1625 TYPE_QUAL_RESTRICT);
1626
1627 if (as->rank == 0)
1628 {
1629 if (packed != PACKED_STATIC || gfc_option.coarray == GFC_FCOARRAY_LIB)
1630 {
1631 type = build_pointer_type (type);
1632
1633 if (restricted)
1634 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1635
1636 GFC_ARRAY_TYPE_P (type) = 1;
1637 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1638 }
1639
1640 return type;
1641 }
1642
1643 if (known_stride)
1644 {
1645 mpz_sub_ui (stride, stride, 1);
1646 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1647 }
1648 else
1649 range = NULL_TREE;
1650
1651 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1652 TYPE_DOMAIN (type) = range;
1653
1654 build_pointer_type (etype);
1655 TREE_TYPE (type) = etype;
1656
1657 layout_type (type);
1658
1659 mpz_clear (offset);
1660 mpz_clear (stride);
1661 mpz_clear (delta);
1662
1663 /* Represent packed arrays as multi-dimensional if they have rank >
1664 1 and with proper bounds, instead of flat arrays. This makes for
1665 better debug info. */
1666 if (known_offset)
1667 {
1668 tree gtype = etype, rtype, type_decl;
1669
1670 for (n = as->rank - 1; n >= 0; n--)
1671 {
1672 rtype = build_range_type (gfc_array_index_type,
1673 GFC_TYPE_ARRAY_LBOUND (type, n),
1674 GFC_TYPE_ARRAY_UBOUND (type, n));
1675 gtype = build_array_type (gtype, rtype);
1676 }
1677 TYPE_NAME (type) = type_decl = build_decl (input_location,
1678 TYPE_DECL, NULL, gtype);
1679 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1680 }
1681
1682 if (packed != PACKED_STATIC || !known_stride
1683 || (as->corank && gfc_option.coarray == GFC_FCOARRAY_LIB))
1684 {
1685 /* For dummy arrays and automatic (heap allocated) arrays we
1686 want a pointer to the array. */
1687 type = build_pointer_type (type);
1688 if (restricted)
1689 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1690 GFC_ARRAY_TYPE_P (type) = 1;
1691 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1692 }
1693 return type;
1694 }
1695
1696
1697 /* Return or create the base type for an array descriptor. */
1698
1699 static tree
1700 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1701 enum gfc_array_kind akind)
1702 {
1703 tree fat_type, decl, arraytype, *chain = NULL;
1704 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1705 int idx;
1706
1707 /* Assumed-rank array. */
1708 if (dimen == -1)
1709 dimen = GFC_MAX_DIMENSIONS;
1710
1711 idx = 2 * (codimen + dimen) + restricted;
1712
1713 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1714
1715 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen)
1716 {
1717 if (gfc_array_descriptor_base_caf[idx])
1718 return gfc_array_descriptor_base_caf[idx];
1719 }
1720 else if (gfc_array_descriptor_base[idx])
1721 return gfc_array_descriptor_base[idx];
1722
1723 /* Build the type node. */
1724 fat_type = make_node (RECORD_TYPE);
1725
1726 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1727 TYPE_NAME (fat_type) = get_identifier (name);
1728 TYPE_NAMELESS (fat_type) = 1;
1729
1730 /* Add the data member as the first element of the descriptor. */
1731 decl = gfc_add_field_to_struct_1 (fat_type,
1732 get_identifier ("data"),
1733 (restricted
1734 ? prvoid_type_node
1735 : ptr_type_node), &chain);
1736
1737 /* Add the base component. */
1738 decl = gfc_add_field_to_struct_1 (fat_type,
1739 get_identifier ("offset"),
1740 gfc_array_index_type, &chain);
1741 TREE_NO_WARNING (decl) = 1;
1742
1743 /* Add the dtype component. */
1744 decl = gfc_add_field_to_struct_1 (fat_type,
1745 get_identifier ("dtype"),
1746 gfc_array_index_type, &chain);
1747 TREE_NO_WARNING (decl) = 1;
1748
1749 /* Build the array type for the stride and bound components. */
1750 if (dimen + codimen > 0)
1751 {
1752 arraytype =
1753 build_array_type (gfc_get_desc_dim_type (),
1754 build_range_type (gfc_array_index_type,
1755 gfc_index_zero_node,
1756 gfc_rank_cst[codimen + dimen - 1]));
1757
1758 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1759 arraytype, &chain);
1760 TREE_NO_WARNING (decl) = 1;
1761 }
1762
1763 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1764 && akind == GFC_ARRAY_ALLOCATABLE)
1765 {
1766 decl = gfc_add_field_to_struct_1 (fat_type,
1767 get_identifier ("token"),
1768 prvoid_type_node, &chain);
1769 TREE_NO_WARNING (decl) = 1;
1770 }
1771
1772 /* Finish off the type. */
1773 gfc_finish_type (fat_type);
1774 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1775
1776 if (gfc_option.coarray == GFC_FCOARRAY_LIB && codimen
1777 && akind == GFC_ARRAY_ALLOCATABLE)
1778 gfc_array_descriptor_base_caf[idx] = fat_type;
1779 else
1780 gfc_array_descriptor_base[idx] = fat_type;
1781
1782 return fat_type;
1783 }
1784
1785
1786 /* Build an array (descriptor) type with given bounds. */
1787
1788 tree
1789 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1790 tree * ubound, int packed,
1791 enum gfc_array_kind akind, bool restricted)
1792 {
1793 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1794 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1795 const char *type_name;
1796 int n;
1797
1798 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1799 fat_type = build_distinct_type_copy (base_type);
1800 /* Make sure that nontarget and target array type have the same canonical
1801 type (and same stub decl for debug info). */
1802 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1803 TYPE_CANONICAL (fat_type) = base_type;
1804 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1805
1806 tmp = TYPE_NAME (etype);
1807 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1808 tmp = DECL_NAME (tmp);
1809 if (tmp)
1810 type_name = IDENTIFIER_POINTER (tmp);
1811 else
1812 type_name = "unknown";
1813 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1814 GFC_MAX_SYMBOL_LEN, type_name);
1815 TYPE_NAME (fat_type) = get_identifier (name);
1816 TYPE_NAMELESS (fat_type) = 1;
1817
1818 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1819 TYPE_LANG_SPECIFIC (fat_type)
1820 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1821
1822 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1823 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1824 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1825 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1826
1827 /* Build an array descriptor record type. */
1828 if (packed != 0)
1829 stride = gfc_index_one_node;
1830 else
1831 stride = NULL_TREE;
1832 for (n = 0; n < dimen + codimen; n++)
1833 {
1834 if (n < dimen)
1835 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1836
1837 if (lbound)
1838 lower = lbound[n];
1839 else
1840 lower = NULL_TREE;
1841
1842 if (lower != NULL_TREE)
1843 {
1844 if (INTEGER_CST_P (lower))
1845 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1846 else
1847 lower = NULL_TREE;
1848 }
1849
1850 if (codimen && n == dimen + codimen - 1)
1851 break;
1852
1853 upper = ubound[n];
1854 if (upper != NULL_TREE)
1855 {
1856 if (INTEGER_CST_P (upper))
1857 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1858 else
1859 upper = NULL_TREE;
1860 }
1861
1862 if (n >= dimen)
1863 continue;
1864
1865 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1866 {
1867 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1868 gfc_array_index_type, upper, lower);
1869 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1870 gfc_array_index_type, tmp,
1871 gfc_index_one_node);
1872 stride = fold_build2_loc (input_location, MULT_EXPR,
1873 gfc_array_index_type, tmp, stride);
1874 /* Check the folding worked. */
1875 gcc_assert (INTEGER_CST_P (stride));
1876 }
1877 else
1878 stride = NULL_TREE;
1879 }
1880 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1881
1882 /* TODO: known offsets for descriptors. */
1883 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1884
1885 if (dimen == 0)
1886 {
1887 arraytype = build_pointer_type (etype);
1888 if (restricted)
1889 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1890
1891 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1892 return fat_type;
1893 }
1894
1895 /* We define data as an array with the correct size if possible.
1896 Much better than doing pointer arithmetic. */
1897 if (stride)
1898 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1899 int_const_binop (MINUS_EXPR, stride,
1900 build_int_cst (TREE_TYPE (stride), 1)));
1901 else
1902 rtype = gfc_array_range_type;
1903 arraytype = build_array_type (etype, rtype);
1904 arraytype = build_pointer_type (arraytype);
1905 if (restricted)
1906 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1907 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1908
1909 /* This will generate the base declarations we need to emit debug
1910 information for this type. FIXME: there must be a better way to
1911 avoid divergence between compilations with and without debug
1912 information. */
1913 {
1914 struct array_descr_info info;
1915 gfc_get_array_descr_info (fat_type, &info);
1916 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1917 }
1918
1919 return fat_type;
1920 }
1921 \f
1922 /* Build a pointer type. This function is called from gfc_sym_type(). */
1923
1924 static tree
1925 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1926 {
1927 /* Array pointer types aren't actually pointers. */
1928 if (sym->attr.dimension)
1929 return type;
1930 else
1931 return build_pointer_type (type);
1932 }
1933
1934 static tree gfc_nonrestricted_type (tree t);
1935 /* Given two record or union type nodes TO and FROM, ensure
1936 that all fields in FROM have a corresponding field in TO,
1937 their type being nonrestrict variants. This accepts a TO
1938 node that already has a prefix of the fields in FROM. */
1939 static void
1940 mirror_fields (tree to, tree from)
1941 {
1942 tree fto, ffrom;
1943 tree *chain;
1944
1945 /* Forward to the end of TOs fields. */
1946 fto = TYPE_FIELDS (to);
1947 ffrom = TYPE_FIELDS (from);
1948 chain = &TYPE_FIELDS (to);
1949 while (fto)
1950 {
1951 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1952 chain = &DECL_CHAIN (fto);
1953 fto = DECL_CHAIN (fto);
1954 ffrom = DECL_CHAIN (ffrom);
1955 }
1956
1957 /* Now add all fields remaining in FROM (starting with ffrom). */
1958 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1959 {
1960 tree newfield = copy_node (ffrom);
1961 DECL_CONTEXT (newfield) = to;
1962 /* The store to DECL_CHAIN might seem redundant with the
1963 stores to *chain, but not clearing it here would mean
1964 leaving a chain into the old fields. If ever
1965 our called functions would look at them confusion
1966 will arise. */
1967 DECL_CHAIN (newfield) = NULL_TREE;
1968 *chain = newfield;
1969 chain = &DECL_CHAIN (newfield);
1970
1971 if (TREE_CODE (ffrom) == FIELD_DECL)
1972 {
1973 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
1974 TREE_TYPE (newfield) = elemtype;
1975 }
1976 }
1977 *chain = NULL_TREE;
1978 }
1979
1980 /* Given a type T, returns a different type of the same structure,
1981 except that all types it refers to (recursively) are always
1982 non-restrict qualified types. */
1983 static tree
1984 gfc_nonrestricted_type (tree t)
1985 {
1986 tree ret = t;
1987
1988 /* If the type isn't laid out yet, don't copy it. If something
1989 needs it for real it should wait until the type got finished. */
1990 if (!TYPE_SIZE (t))
1991 return t;
1992
1993 if (!TYPE_LANG_SPECIFIC (t))
1994 TYPE_LANG_SPECIFIC (t)
1995 = ggc_alloc_cleared_lang_type (sizeof (struct lang_type));
1996 /* If we're dealing with this very node already further up
1997 the call chain (recursion via pointers and struct members)
1998 we haven't yet determined if we really need a new type node.
1999 Assume we don't, return T itself. */
2000 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
2001 return t;
2002
2003 /* If we have calculated this all already, just return it. */
2004 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2005 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2006
2007 /* Mark this type. */
2008 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2009
2010 switch (TREE_CODE (t))
2011 {
2012 default:
2013 break;
2014
2015 case POINTER_TYPE:
2016 case REFERENCE_TYPE:
2017 {
2018 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2019 if (totype == TREE_TYPE (t))
2020 ret = t;
2021 else if (TREE_CODE (t) == POINTER_TYPE)
2022 ret = build_pointer_type (totype);
2023 else
2024 ret = build_reference_type (totype);
2025 ret = build_qualified_type (ret,
2026 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2027 }
2028 break;
2029
2030 case ARRAY_TYPE:
2031 {
2032 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2033 if (elemtype == TREE_TYPE (t))
2034 ret = t;
2035 else
2036 {
2037 ret = build_variant_type_copy (t);
2038 TREE_TYPE (ret) = elemtype;
2039 if (TYPE_LANG_SPECIFIC (t)
2040 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2041 {
2042 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2043 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2044 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2045 {
2046 TYPE_LANG_SPECIFIC (ret)
2047 = ggc_alloc_cleared_lang_type (sizeof (struct
2048 lang_type));
2049 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2050 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2051 }
2052 }
2053 }
2054 }
2055 break;
2056
2057 case RECORD_TYPE:
2058 case UNION_TYPE:
2059 case QUAL_UNION_TYPE:
2060 {
2061 tree field;
2062 /* First determine if we need a new type at all.
2063 Careful, the two calls to gfc_nonrestricted_type per field
2064 might return different values. That happens exactly when
2065 one of the fields reaches back to this very record type
2066 (via pointers). The first calls will assume that we don't
2067 need to copy T (see the error_mark_node marking). If there
2068 are any reasons for copying T apart from having to copy T,
2069 we'll indeed copy it, and the second calls to
2070 gfc_nonrestricted_type will use that new node if they
2071 reach back to T. */
2072 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2073 if (TREE_CODE (field) == FIELD_DECL)
2074 {
2075 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2076 if (elemtype != TREE_TYPE (field))
2077 break;
2078 }
2079 if (!field)
2080 break;
2081 ret = build_variant_type_copy (t);
2082 TYPE_FIELDS (ret) = NULL_TREE;
2083
2084 /* Here we make sure that as soon as we know we have to copy
2085 T, that also fields reaching back to us will use the new
2086 copy. It's okay if that copy still contains the old fields,
2087 we won't look at them. */
2088 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2089 mirror_fields (ret, t);
2090 }
2091 break;
2092 }
2093
2094 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2095 return ret;
2096 }
2097
2098 \f
2099 /* Return the type for a symbol. Special handling is required for character
2100 types to get the correct level of indirection.
2101 For functions return the return type.
2102 For subroutines return void_type_node.
2103 Calling this multiple times for the same symbol should be avoided,
2104 especially for character and array types. */
2105
2106 tree
2107 gfc_sym_type (gfc_symbol * sym)
2108 {
2109 tree type;
2110 int byref;
2111 bool restricted;
2112
2113 /* Procedure Pointers inside COMMON blocks. */
2114 if (sym->attr.proc_pointer && sym->attr.in_common)
2115 {
2116 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2117 sym->attr.proc_pointer = 0;
2118 type = build_pointer_type (gfc_get_function_type (sym));
2119 sym->attr.proc_pointer = 1;
2120 return type;
2121 }
2122
2123 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2124 return void_type_node;
2125
2126 /* In the case of a function the fake result variable may have a
2127 type different from the function type, so don't return early in
2128 that case. */
2129 if (sym->backend_decl && !sym->attr.function)
2130 return TREE_TYPE (sym->backend_decl);
2131
2132 if (sym->ts.type == BT_CHARACTER
2133 && ((sym->attr.function && sym->attr.is_bind_c)
2134 || (sym->attr.result
2135 && sym->ns->proc_name
2136 && sym->ns->proc_name->attr.is_bind_c)))
2137 type = gfc_character1_type_node;
2138 else
2139 type = gfc_typenode_for_spec (&sym->ts);
2140
2141 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2142 byref = 1;
2143 else
2144 byref = 0;
2145
2146 restricted = !sym->attr.target && !sym->attr.pointer
2147 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2148 if (!restricted)
2149 type = gfc_nonrestricted_type (type);
2150
2151 if (sym->attr.dimension || sym->attr.codimension)
2152 {
2153 if (gfc_is_nodesc_array (sym))
2154 {
2155 /* If this is a character argument of unknown length, just use the
2156 base type. */
2157 if (sym->ts.type != BT_CHARACTER
2158 || !(sym->attr.dummy || sym->attr.function)
2159 || sym->ts.u.cl->backend_decl)
2160 {
2161 type = gfc_get_nodesc_array_type (type, sym->as,
2162 byref ? PACKED_FULL
2163 : PACKED_STATIC,
2164 restricted);
2165 byref = 0;
2166 }
2167
2168 if (sym->attr.cray_pointee)
2169 GFC_POINTER_TYPE_P (type) = 1;
2170 }
2171 else
2172 {
2173 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2174 if (sym->attr.pointer)
2175 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2176 : GFC_ARRAY_POINTER;
2177 else if (sym->attr.allocatable)
2178 akind = GFC_ARRAY_ALLOCATABLE;
2179 type = gfc_build_array_type (type, sym->as, akind, restricted,
2180 sym->attr.contiguous);
2181 }
2182 }
2183 else
2184 {
2185 if (sym->attr.allocatable || sym->attr.pointer
2186 || gfc_is_associate_pointer (sym))
2187 type = gfc_build_pointer_type (sym, type);
2188 if (sym->attr.pointer || sym->attr.cray_pointee)
2189 GFC_POINTER_TYPE_P (type) = 1;
2190 }
2191
2192 /* We currently pass all parameters by reference.
2193 See f95_get_function_decl. For dummy function parameters return the
2194 function type. */
2195 if (byref)
2196 {
2197 /* We must use pointer types for potentially absent variables. The
2198 optimizers assume a reference type argument is never NULL. */
2199 if (sym->attr.optional
2200 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2201 type = build_pointer_type (type);
2202 else
2203 {
2204 type = build_reference_type (type);
2205 if (restricted)
2206 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2207 }
2208 }
2209
2210 return (type);
2211 }
2212 \f
2213 /* Layout and output debug info for a record type. */
2214
2215 void
2216 gfc_finish_type (tree type)
2217 {
2218 tree decl;
2219
2220 decl = build_decl (input_location,
2221 TYPE_DECL, NULL_TREE, type);
2222 TYPE_STUB_DECL (type) = decl;
2223 layout_type (type);
2224 rest_of_type_compilation (type, 1);
2225 rest_of_decl_compilation (decl, 1, 0);
2226 }
2227 \f
2228 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2229 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2230 to the end of the field list pointed to by *CHAIN.
2231
2232 Returns a pointer to the new field. */
2233
2234 static tree
2235 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2236 {
2237 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2238
2239 DECL_CONTEXT (decl) = context;
2240 DECL_CHAIN (decl) = NULL_TREE;
2241 if (TYPE_FIELDS (context) == NULL_TREE)
2242 TYPE_FIELDS (context) = decl;
2243 if (chain != NULL)
2244 {
2245 if (*chain != NULL)
2246 **chain = decl;
2247 *chain = &DECL_CHAIN (decl);
2248 }
2249
2250 return decl;
2251 }
2252
2253 /* Like `gfc_add_field_to_struct_1', but adds alignment
2254 information. */
2255
2256 tree
2257 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2258 {
2259 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2260
2261 DECL_INITIAL (decl) = 0;
2262 DECL_ALIGN (decl) = 0;
2263 DECL_USER_ALIGN (decl) = 0;
2264
2265 return decl;
2266 }
2267
2268
2269 /* Copy the backend_decl and component backend_decls if
2270 the two derived type symbols are "equal", as described
2271 in 4.4.2 and resolved by gfc_compare_derived_types. */
2272
2273 int
2274 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2275 bool from_gsym)
2276 {
2277 gfc_component *to_cm;
2278 gfc_component *from_cm;
2279
2280 if (from == to)
2281 return 1;
2282
2283 if (from->backend_decl == NULL
2284 || !gfc_compare_derived_types (from, to))
2285 return 0;
2286
2287 to->backend_decl = from->backend_decl;
2288
2289 to_cm = to->components;
2290 from_cm = from->components;
2291
2292 /* Copy the component declarations. If a component is itself
2293 a derived type, we need a copy of its component declarations.
2294 This is done by recursing into gfc_get_derived_type and
2295 ensures that the component's component declarations have
2296 been built. If it is a character, we need the character
2297 length, as well. */
2298 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2299 {
2300 to_cm->backend_decl = from_cm->backend_decl;
2301 if (from_cm->ts.type == BT_DERIVED
2302 && (!from_cm->attr.pointer || from_gsym))
2303 gfc_get_derived_type (to_cm->ts.u.derived);
2304 else if (from_cm->ts.type == BT_CLASS
2305 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2306 gfc_get_derived_type (to_cm->ts.u.derived);
2307 else if (from_cm->ts.type == BT_CHARACTER)
2308 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2309 }
2310
2311 return 1;
2312 }
2313
2314
2315 /* Build a tree node for a procedure pointer component. */
2316
2317 tree
2318 gfc_get_ppc_type (gfc_component* c)
2319 {
2320 tree t;
2321
2322 /* Explicit interface. */
2323 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2324 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2325
2326 /* Implicit interface (only return value may be known). */
2327 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2328 t = gfc_typenode_for_spec (&c->ts);
2329 else
2330 t = void_type_node;
2331
2332 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2333 }
2334
2335
2336 /* Build a tree node for a derived type. If there are equal
2337 derived types, with different local names, these are built
2338 at the same time. If an equal derived type has been built
2339 in a parent namespace, this is used. */
2340
2341 tree
2342 gfc_get_derived_type (gfc_symbol * derived)
2343 {
2344 tree typenode = NULL, field = NULL, field_type = NULL;
2345 tree canonical = NULL_TREE;
2346 tree *chain = NULL;
2347 bool got_canonical = false;
2348 bool unlimited_entity = false;
2349 gfc_component *c;
2350 gfc_dt_list *dt;
2351 gfc_namespace *ns;
2352
2353 if (derived->attr.unlimited_polymorphic)
2354 return ptr_type_node;
2355
2356 if (derived && derived->attr.flavor == FL_PROCEDURE
2357 && derived->attr.generic)
2358 derived = gfc_find_dt_in_generic (derived);
2359
2360 /* See if it's one of the iso_c_binding derived types. */
2361 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2362 {
2363 if (derived->backend_decl)
2364 return derived->backend_decl;
2365
2366 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2367 derived->backend_decl = ptr_type_node;
2368 else
2369 derived->backend_decl = pfunc_type_node;
2370
2371 derived->ts.kind = gfc_index_integer_kind;
2372 derived->ts.type = BT_INTEGER;
2373 /* Set the f90_type to BT_VOID as a way to recognize something of type
2374 BT_INTEGER that needs to fit a void * for the purpose of the
2375 iso_c_binding derived types. */
2376 derived->ts.f90_type = BT_VOID;
2377
2378 return derived->backend_decl;
2379 }
2380
2381 /* If use associated, use the module type for this one. */
2382 if (derived->backend_decl == NULL
2383 && derived->attr.use_assoc
2384 && derived->module
2385 && gfc_get_module_backend_decl (derived))
2386 goto copy_derived_types;
2387
2388 /* The derived types from an earlier namespace can be used as the
2389 canonical type. */
2390 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2391 && gfc_global_ns_list)
2392 {
2393 for (ns = gfc_global_ns_list;
2394 ns->translated && !got_canonical;
2395 ns = ns->sibling)
2396 {
2397 dt = ns->derived_types;
2398 for (; dt && !canonical; dt = dt->next)
2399 {
2400 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2401 if (derived->backend_decl)
2402 got_canonical = true;
2403 }
2404 }
2405 }
2406
2407 /* Store up the canonical type to be added to this one. */
2408 if (got_canonical)
2409 {
2410 if (TYPE_CANONICAL (derived->backend_decl))
2411 canonical = TYPE_CANONICAL (derived->backend_decl);
2412 else
2413 canonical = derived->backend_decl;
2414
2415 derived->backend_decl = NULL_TREE;
2416 }
2417
2418 /* derived->backend_decl != 0 means we saw it before, but its
2419 components' backend_decl may have not been built. */
2420 if (derived->backend_decl)
2421 {
2422 /* Its components' backend_decl have been built or we are
2423 seeing recursion through the formal arglist of a procedure
2424 pointer component. */
2425 if (TYPE_FIELDS (derived->backend_decl)
2426 || derived->attr.proc_pointer_comp)
2427 return derived->backend_decl;
2428 else
2429 typenode = derived->backend_decl;
2430 }
2431 else
2432 {
2433 /* We see this derived type first time, so build the type node. */
2434 typenode = make_node (RECORD_TYPE);
2435 TYPE_NAME (typenode) = get_identifier (derived->name);
2436 TYPE_PACKED (typenode) = gfc_option.flag_pack_derived;
2437 derived->backend_decl = typenode;
2438 }
2439
2440 if (derived->components
2441 && derived->components->ts.type == BT_DERIVED
2442 && strcmp (derived->components->name, "_data") == 0
2443 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2444 unlimited_entity = true;
2445
2446 /* Go through the derived type components, building them as
2447 necessary. The reason for doing this now is that it is
2448 possible to recurse back to this derived type through a
2449 pointer component (PR24092). If this happens, the fields
2450 will be built and so we can return the type. */
2451 for (c = derived->components; c; c = c->next)
2452 {
2453 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2454 continue;
2455
2456 if ((!c->attr.pointer && !c->attr.proc_pointer)
2457 || c->ts.u.derived->backend_decl == NULL)
2458 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2459
2460 if (c->ts.u.derived->attr.is_iso_c)
2461 {
2462 /* Need to copy the modified ts from the derived type. The
2463 typespec was modified because C_PTR/C_FUNPTR are translated
2464 into (void *) from derived types. */
2465 c->ts.type = c->ts.u.derived->ts.type;
2466 c->ts.kind = c->ts.u.derived->ts.kind;
2467 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2468 if (c->initializer)
2469 {
2470 c->initializer->ts.type = c->ts.type;
2471 c->initializer->ts.kind = c->ts.kind;
2472 c->initializer->ts.f90_type = c->ts.f90_type;
2473 c->initializer->expr_type = EXPR_NULL;
2474 }
2475 }
2476 }
2477
2478 if (TYPE_FIELDS (derived->backend_decl))
2479 return derived->backend_decl;
2480
2481 /* Build the type member list. Install the newly created RECORD_TYPE
2482 node as DECL_CONTEXT of each FIELD_DECL. */
2483 for (c = derived->components; c; c = c->next)
2484 {
2485 if (c->attr.proc_pointer)
2486 field_type = gfc_get_ppc_type (c);
2487 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2488 field_type = c->ts.u.derived->backend_decl;
2489 else
2490 {
2491 if (c->ts.type == BT_CHARACTER && !c->ts.deferred)
2492 {
2493 /* Evaluate the string length. */
2494 gfc_conv_const_charlen (c->ts.u.cl);
2495 gcc_assert (c->ts.u.cl->backend_decl);
2496 }
2497 else if (c->ts.type == BT_CHARACTER)
2498 c->ts.u.cl->backend_decl
2499 = build_int_cst (gfc_charlen_type_node, 0);
2500
2501 field_type = gfc_typenode_for_spec (&c->ts);
2502 }
2503
2504 /* This returns an array descriptor type. Initialization may be
2505 required. */
2506 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2507 {
2508 if (c->attr.pointer || c->attr.allocatable)
2509 {
2510 enum gfc_array_kind akind;
2511 if (c->attr.pointer)
2512 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2513 : GFC_ARRAY_POINTER;
2514 else
2515 akind = GFC_ARRAY_ALLOCATABLE;
2516 /* Pointers to arrays aren't actually pointer types. The
2517 descriptors are separate, but the data is common. */
2518 field_type = gfc_build_array_type (field_type, c->as, akind,
2519 !c->attr.target
2520 && !c->attr.pointer,
2521 c->attr.contiguous);
2522 }
2523 else
2524 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2525 PACKED_STATIC,
2526 !c->attr.target);
2527 }
2528 else if ((c->attr.pointer || c->attr.allocatable)
2529 && !c->attr.proc_pointer
2530 && !(unlimited_entity && c == derived->components))
2531 field_type = build_pointer_type (field_type);
2532
2533 if (c->attr.pointer)
2534 field_type = gfc_nonrestricted_type (field_type);
2535
2536 /* vtype fields can point to different types to the base type. */
2537 if (c->ts.type == BT_DERIVED
2538 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2539 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2540 ptr_mode, true);
2541
2542 /* Ensure that the CLASS language specific flag is set. */
2543 if (c->ts.type == BT_CLASS)
2544 {
2545 if (POINTER_TYPE_P (field_type))
2546 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2547 else
2548 GFC_CLASS_TYPE_P (field_type) = 1;
2549 }
2550
2551 field = gfc_add_field_to_struct (typenode,
2552 get_identifier (c->name),
2553 field_type, &chain);
2554 if (c->loc.lb)
2555 gfc_set_decl_location (field, &c->loc);
2556 else if (derived->declared_at.lb)
2557 gfc_set_decl_location (field, &derived->declared_at);
2558
2559 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2560
2561 gcc_assert (field);
2562 if (!c->backend_decl)
2563 c->backend_decl = field;
2564 }
2565
2566 /* Now lay out the derived type, including the fields. */
2567 if (canonical)
2568 TYPE_CANONICAL (typenode) = canonical;
2569
2570 gfc_finish_type (typenode);
2571 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2572 if (derived->module && derived->ns->proc_name
2573 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2574 {
2575 if (derived->ns->proc_name->backend_decl
2576 && TREE_CODE (derived->ns->proc_name->backend_decl)
2577 == NAMESPACE_DECL)
2578 {
2579 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2580 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2581 = derived->ns->proc_name->backend_decl;
2582 }
2583 }
2584
2585 derived->backend_decl = typenode;
2586
2587 copy_derived_types:
2588
2589 for (dt = gfc_derived_types; dt; dt = dt->next)
2590 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2591
2592 return derived->backend_decl;
2593 }
2594
2595
2596 int
2597 gfc_return_by_reference (gfc_symbol * sym)
2598 {
2599 if (!sym->attr.function)
2600 return 0;
2601
2602 if (sym->attr.dimension)
2603 return 1;
2604
2605 if (sym->ts.type == BT_CHARACTER
2606 && !sym->attr.is_bind_c
2607 && (!sym->attr.result
2608 || !sym->ns->proc_name
2609 || !sym->ns->proc_name->attr.is_bind_c))
2610 return 1;
2611
2612 /* Possibly return complex numbers by reference for g77 compatibility.
2613 We don't do this for calls to intrinsics (as the library uses the
2614 -fno-f2c calling convention), nor for calls to functions which always
2615 require an explicit interface, as no compatibility problems can
2616 arise there. */
2617 if (gfc_option.flag_f2c
2618 && sym->ts.type == BT_COMPLEX
2619 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2620 return 1;
2621
2622 return 0;
2623 }
2624 \f
2625 static tree
2626 gfc_get_mixed_entry_union (gfc_namespace *ns)
2627 {
2628 tree type;
2629 tree *chain = NULL;
2630 char name[GFC_MAX_SYMBOL_LEN + 1];
2631 gfc_entry_list *el, *el2;
2632
2633 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2634 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2635
2636 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2637
2638 /* Build the type node. */
2639 type = make_node (UNION_TYPE);
2640
2641 TYPE_NAME (type) = get_identifier (name);
2642
2643 for (el = ns->entries; el; el = el->next)
2644 {
2645 /* Search for duplicates. */
2646 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2647 if (el2->sym->result == el->sym->result)
2648 break;
2649
2650 if (el == el2)
2651 gfc_add_field_to_struct_1 (type,
2652 get_identifier (el->sym->result->name),
2653 gfc_sym_type (el->sym->result), &chain);
2654 }
2655
2656 /* Finish off the type. */
2657 gfc_finish_type (type);
2658 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2659 return type;
2660 }
2661 \f
2662 /* Create a "fn spec" based on the formal arguments;
2663 cf. create_function_arglist. */
2664
2665 static tree
2666 create_fn_spec (gfc_symbol *sym, tree fntype)
2667 {
2668 char spec[150];
2669 size_t spec_len;
2670 gfc_formal_arglist *f;
2671 tree tmp;
2672
2673 memset (&spec, 0, sizeof (spec));
2674 spec[0] = '.';
2675 spec_len = 1;
2676
2677 if (sym->attr.entry_master)
2678 spec[spec_len++] = 'R';
2679 if (gfc_return_by_reference (sym))
2680 {
2681 gfc_symbol *result = sym->result ? sym->result : sym;
2682
2683 if (result->attr.pointer || sym->attr.proc_pointer)
2684 spec[spec_len++] = '.';
2685 else
2686 spec[spec_len++] = 'w';
2687 if (sym->ts.type == BT_CHARACTER)
2688 spec[spec_len++] = 'R';
2689 }
2690
2691 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2692 if (spec_len < sizeof (spec))
2693 {
2694 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2695 || f->sym->attr.external || f->sym->attr.cray_pointer
2696 || (f->sym->ts.type == BT_DERIVED
2697 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2698 || f->sym->ts.u.derived->attr.pointer_comp))
2699 || (f->sym->ts.type == BT_CLASS
2700 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2701 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2702 spec[spec_len++] = '.';
2703 else if (f->sym->attr.intent == INTENT_IN)
2704 spec[spec_len++] = 'r';
2705 else if (f->sym)
2706 spec[spec_len++] = 'w';
2707 }
2708
2709 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2710 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2711 return build_type_attribute_variant (fntype, tmp);
2712 }
2713
2714
2715 tree
2716 gfc_get_function_type (gfc_symbol * sym)
2717 {
2718 tree type;
2719 vec<tree, va_gc> *typelist = NULL;
2720 gfc_formal_arglist *f;
2721 gfc_symbol *arg;
2722 int alternate_return = 0;
2723 bool is_varargs = true;
2724
2725 /* Make sure this symbol is a function, a subroutine or the main
2726 program. */
2727 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2728 || sym->attr.flavor == FL_PROGRAM);
2729
2730 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2731 so that they can be detected here and handled further down. */
2732 if (sym->backend_decl == NULL)
2733 sym->backend_decl = error_mark_node;
2734 else if (sym->backend_decl == error_mark_node)
2735 goto arg_type_list_done;
2736 else if (sym->attr.proc_pointer)
2737 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2738 else
2739 return TREE_TYPE (sym->backend_decl);
2740
2741 if (sym->attr.entry_master)
2742 /* Additional parameter for selecting an entry point. */
2743 vec_safe_push (typelist, gfc_array_index_type);
2744
2745 if (sym->result)
2746 arg = sym->result;
2747 else
2748 arg = sym;
2749
2750 if (arg->ts.type == BT_CHARACTER)
2751 gfc_conv_const_charlen (arg->ts.u.cl);
2752
2753 /* Some functions we use an extra parameter for the return value. */
2754 if (gfc_return_by_reference (sym))
2755 {
2756 type = gfc_sym_type (arg);
2757 if (arg->ts.type == BT_COMPLEX
2758 || arg->attr.dimension
2759 || arg->ts.type == BT_CHARACTER)
2760 type = build_reference_type (type);
2761
2762 vec_safe_push (typelist, type);
2763 if (arg->ts.type == BT_CHARACTER)
2764 {
2765 if (!arg->ts.deferred)
2766 /* Transfer by value. */
2767 vec_safe_push (typelist, gfc_charlen_type_node);
2768 else
2769 /* Deferred character lengths are transferred by reference
2770 so that the value can be returned. */
2771 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2772 }
2773 }
2774
2775 /* Build the argument types for the function. */
2776 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2777 {
2778 arg = f->sym;
2779 if (arg)
2780 {
2781 /* Evaluate constant character lengths here so that they can be
2782 included in the type. */
2783 if (arg->ts.type == BT_CHARACTER)
2784 gfc_conv_const_charlen (arg->ts.u.cl);
2785
2786 if (arg->attr.flavor == FL_PROCEDURE)
2787 {
2788 type = gfc_get_function_type (arg);
2789 type = build_pointer_type (type);
2790 }
2791 else
2792 type = gfc_sym_type (arg);
2793
2794 /* Parameter Passing Convention
2795
2796 We currently pass all parameters by reference.
2797 Parameters with INTENT(IN) could be passed by value.
2798 The problem arises if a function is called via an implicit
2799 prototype. In this situation the INTENT is not known.
2800 For this reason all parameters to global functions must be
2801 passed by reference. Passing by value would potentially
2802 generate bad code. Worse there would be no way of telling that
2803 this code was bad, except that it would give incorrect results.
2804
2805 Contained procedures could pass by value as these are never
2806 used without an explicit interface, and cannot be passed as
2807 actual parameters for a dummy procedure. */
2808
2809 vec_safe_push (typelist, type);
2810 }
2811 else
2812 {
2813 if (sym->attr.subroutine)
2814 alternate_return = 1;
2815 }
2816 }
2817
2818 /* Add hidden string length parameters. */
2819 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2820 {
2821 arg = f->sym;
2822 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2823 {
2824 if (!arg->ts.deferred)
2825 /* Transfer by value. */
2826 type = gfc_charlen_type_node;
2827 else
2828 /* Deferred character lengths are transferred by reference
2829 so that the value can be returned. */
2830 type = build_pointer_type (gfc_charlen_type_node);
2831
2832 vec_safe_push (typelist, type);
2833 }
2834 }
2835
2836 if (!vec_safe_is_empty (typelist)
2837 || sym->attr.is_main_program
2838 || sym->attr.if_source != IFSRC_UNKNOWN)
2839 is_varargs = false;
2840
2841 if (sym->backend_decl == error_mark_node)
2842 sym->backend_decl = NULL_TREE;
2843
2844 arg_type_list_done:
2845
2846 if (alternate_return)
2847 type = integer_type_node;
2848 else if (!sym->attr.function || gfc_return_by_reference (sym))
2849 type = void_type_node;
2850 else if (sym->attr.mixed_entry_master)
2851 type = gfc_get_mixed_entry_union (sym->ns);
2852 else if (gfc_option.flag_f2c
2853 && sym->ts.type == BT_REAL
2854 && sym->ts.kind == gfc_default_real_kind
2855 && !sym->attr.always_explicit)
2856 {
2857 /* Special case: f2c calling conventions require that (scalar)
2858 default REAL functions return the C type double instead. f2c
2859 compatibility is only an issue with functions that don't
2860 require an explicit interface, as only these could be
2861 implemented in Fortran 77. */
2862 sym->ts.kind = gfc_default_double_kind;
2863 type = gfc_typenode_for_spec (&sym->ts);
2864 sym->ts.kind = gfc_default_real_kind;
2865 }
2866 else if (sym->result && sym->result->attr.proc_pointer)
2867 /* Procedure pointer return values. */
2868 {
2869 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2870 {
2871 /* Unset proc_pointer as gfc_get_function_type
2872 is called recursively. */
2873 sym->result->attr.proc_pointer = 0;
2874 type = build_pointer_type (gfc_get_function_type (sym->result));
2875 sym->result->attr.proc_pointer = 1;
2876 }
2877 else
2878 type = gfc_sym_type (sym->result);
2879 }
2880 else
2881 type = gfc_sym_type (sym);
2882
2883 if (is_varargs)
2884 type = build_varargs_function_type_vec (type, typelist);
2885 else
2886 type = build_function_type_vec (type, typelist);
2887 type = create_fn_spec (sym, type);
2888
2889 return type;
2890 }
2891 \f
2892 /* Language hooks for middle-end access to type nodes. */
2893
2894 /* Return an integer type with BITS bits of precision,
2895 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2896
2897 tree
2898 gfc_type_for_size (unsigned bits, int unsignedp)
2899 {
2900 if (!unsignedp)
2901 {
2902 int i;
2903 for (i = 0; i <= MAX_INT_KINDS; ++i)
2904 {
2905 tree type = gfc_integer_types[i];
2906 if (type && bits == TYPE_PRECISION (type))
2907 return type;
2908 }
2909
2910 /* Handle TImode as a special case because it is used by some backends
2911 (e.g. ARM) even though it is not available for normal use. */
2912 #if HOST_BITS_PER_WIDE_INT >= 64
2913 if (bits == TYPE_PRECISION (intTI_type_node))
2914 return intTI_type_node;
2915 #endif
2916
2917 if (bits <= TYPE_PRECISION (intQI_type_node))
2918 return intQI_type_node;
2919 if (bits <= TYPE_PRECISION (intHI_type_node))
2920 return intHI_type_node;
2921 if (bits <= TYPE_PRECISION (intSI_type_node))
2922 return intSI_type_node;
2923 if (bits <= TYPE_PRECISION (intDI_type_node))
2924 return intDI_type_node;
2925 if (bits <= TYPE_PRECISION (intTI_type_node))
2926 return intTI_type_node;
2927 }
2928 else
2929 {
2930 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2931 return unsigned_intQI_type_node;
2932 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2933 return unsigned_intHI_type_node;
2934 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2935 return unsigned_intSI_type_node;
2936 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2937 return unsigned_intDI_type_node;
2938 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2939 return unsigned_intTI_type_node;
2940 }
2941
2942 return NULL_TREE;
2943 }
2944
2945 /* Return a data type that has machine mode MODE. If the mode is an
2946 integer, then UNSIGNEDP selects between signed and unsigned types. */
2947
2948 tree
2949 gfc_type_for_mode (enum machine_mode mode, int unsignedp)
2950 {
2951 int i;
2952 tree *base;
2953
2954 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2955 base = gfc_real_types;
2956 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2957 base = gfc_complex_types;
2958 else if (SCALAR_INT_MODE_P (mode))
2959 {
2960 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2961 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2962 }
2963 else if (VECTOR_MODE_P (mode))
2964 {
2965 enum machine_mode inner_mode = GET_MODE_INNER (mode);
2966 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2967 if (inner_type != NULL_TREE)
2968 return build_vector_type_for_mode (inner_type, mode);
2969 return NULL_TREE;
2970 }
2971 else
2972 return NULL_TREE;
2973
2974 for (i = 0; i <= MAX_REAL_KINDS; ++i)
2975 {
2976 tree type = base[i];
2977 if (type && mode == TYPE_MODE (type))
2978 return type;
2979 }
2980
2981 return NULL_TREE;
2982 }
2983
2984 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
2985 in that case. */
2986
2987 bool
2988 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
2989 {
2990 int rank, dim;
2991 bool indirect = false;
2992 tree etype, ptype, field, t, base_decl;
2993 tree data_off, dim_off, dim_size, elem_size;
2994 tree lower_suboff, upper_suboff, stride_suboff;
2995
2996 if (! GFC_DESCRIPTOR_TYPE_P (type))
2997 {
2998 if (! POINTER_TYPE_P (type))
2999 return false;
3000 type = TREE_TYPE (type);
3001 if (! GFC_DESCRIPTOR_TYPE_P (type))
3002 return false;
3003 indirect = true;
3004 }
3005
3006 rank = GFC_TYPE_ARRAY_RANK (type);
3007 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3008 return false;
3009
3010 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3011 gcc_assert (POINTER_TYPE_P (etype));
3012 etype = TREE_TYPE (etype);
3013
3014 /* If the type is not a scalar coarray. */
3015 if (TREE_CODE (etype) == ARRAY_TYPE)
3016 etype = TREE_TYPE (etype);
3017
3018 /* Can't handle variable sized elements yet. */
3019 if (int_size_in_bytes (etype) <= 0)
3020 return false;
3021 /* Nor non-constant lower bounds in assumed shape arrays. */
3022 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3023 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3024 {
3025 for (dim = 0; dim < rank; dim++)
3026 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3027 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3028 return false;
3029 }
3030
3031 memset (info, '\0', sizeof (*info));
3032 info->ndimensions = rank;
3033 info->element_type = etype;
3034 ptype = build_pointer_type (gfc_array_index_type);
3035 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3036 if (!base_decl)
3037 {
3038 base_decl = build_decl (input_location, VAR_DECL, NULL_TREE,
3039 indirect ? build_pointer_type (ptype) : ptype);
3040 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3041 }
3042 info->base_decl = base_decl;
3043 if (indirect)
3044 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3045
3046 if (GFC_TYPE_ARRAY_SPAN (type))
3047 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3048 else
3049 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3050 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3051 data_off = byte_position (field);
3052 field = DECL_CHAIN (field);
3053 field = DECL_CHAIN (field);
3054 field = DECL_CHAIN (field);
3055 dim_off = byte_position (field);
3056 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3057 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3058 stride_suboff = byte_position (field);
3059 field = DECL_CHAIN (field);
3060 lower_suboff = byte_position (field);
3061 field = DECL_CHAIN (field);
3062 upper_suboff = byte_position (field);
3063
3064 t = base_decl;
3065 if (!integer_zerop (data_off))
3066 t = fold_build_pointer_plus (t, data_off);
3067 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3068 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3069 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3070 info->allocated = build2 (NE_EXPR, boolean_type_node,
3071 info->data_location, null_pointer_node);
3072 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3073 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3074 info->associated = build2 (NE_EXPR, boolean_type_node,
3075 info->data_location, null_pointer_node);
3076
3077 for (dim = 0; dim < rank; dim++)
3078 {
3079 t = fold_build_pointer_plus (base_decl,
3080 size_binop (PLUS_EXPR,
3081 dim_off, lower_suboff));
3082 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3083 info->dimen[dim].lower_bound = t;
3084 t = fold_build_pointer_plus (base_decl,
3085 size_binop (PLUS_EXPR,
3086 dim_off, upper_suboff));
3087 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3088 info->dimen[dim].upper_bound = t;
3089 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3090 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3091 {
3092 /* Assumed shape arrays have known lower bounds. */
3093 info->dimen[dim].upper_bound
3094 = build2 (MINUS_EXPR, gfc_array_index_type,
3095 info->dimen[dim].upper_bound,
3096 info->dimen[dim].lower_bound);
3097 info->dimen[dim].lower_bound
3098 = fold_convert (gfc_array_index_type,
3099 GFC_TYPE_ARRAY_LBOUND (type, dim));
3100 info->dimen[dim].upper_bound
3101 = build2 (PLUS_EXPR, gfc_array_index_type,
3102 info->dimen[dim].lower_bound,
3103 info->dimen[dim].upper_bound);
3104 }
3105 t = fold_build_pointer_plus (base_decl,
3106 size_binop (PLUS_EXPR,
3107 dim_off, stride_suboff));
3108 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3109 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3110 info->dimen[dim].stride = t;
3111 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3112 }
3113
3114 return true;
3115 }
3116
3117 #include "gt-fortran-trans-types.h"