]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/fortran/trans-types.c
genattrtab.c (write_header): Include hash-set.h...
[thirdparty/gcc.git] / gcc / fortran / trans-types.c
1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002-2015 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4 and Steven Bosscher <s.bosscher@student.tudelft.nl>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* trans-types.c -- gfortran backend types */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h" /* For INTMAX_TYPE, INT8_TYPE, INT16_TYPE, INT32_TYPE,
28 INT64_TYPE, INT_LEAST8_TYPE, INT_LEAST16_TYPE,
29 INT_LEAST32_TYPE, INT_LEAST64_TYPE, INT_FAST8_TYPE,
30 INT_FAST16_TYPE, INT_FAST32_TYPE, INT_FAST64_TYPE,
31 BOOL_TYPE_SIZE, BITS_PER_UNIT, POINTER_SIZE,
32 INT_TYPE_SIZE, CHAR_TYPE_SIZE, SHORT_TYPE_SIZE,
33 LONG_TYPE_SIZE, LONG_LONG_TYPE_SIZE,
34 FLOAT_TYPE_SIZE, DOUBLE_TYPE_SIZE and
35 LONG_DOUBLE_TYPE_SIZE. */
36 #include "hash-set.h"
37 #include "machmode.h"
38 #include "vec.h"
39 #include "double-int.h"
40 #include "input.h"
41 #include "alias.h"
42 #include "symtab.h"
43 #include "wide-int.h"
44 #include "inchash.h"
45 #include "real.h"
46 #include "tree.h"
47 #include "fold-const.h"
48 #include "stor-layout.h"
49 #include "stringpool.h"
50 #include "langhooks.h" /* For iso-c-bindings.def. */
51 #include "target.h"
52 #include "ggc.h"
53 #include "gfortran.h"
54 #include "diagnostic-core.h" /* For fatal_error. */
55 #include "toplev.h" /* For rest_of_decl_compilation. */
56 #include "trans.h"
57 #include "trans-types.h"
58 #include "trans-const.h"
59 #include "flags.h"
60 #include "dwarf2out.h" /* For struct array_descr_info. */
61 \f
62
63 #if (GFC_MAX_DIMENSIONS < 10)
64 #define GFC_RANK_DIGITS 1
65 #define GFC_RANK_PRINTF_FORMAT "%01d"
66 #elif (GFC_MAX_DIMENSIONS < 100)
67 #define GFC_RANK_DIGITS 2
68 #define GFC_RANK_PRINTF_FORMAT "%02d"
69 #else
70 #error If you really need >99 dimensions, continue the sequence above...
71 #endif
72
73 /* array of structs so we don't have to worry about xmalloc or free */
74 CInteropKind_t c_interop_kinds_table[ISOCBINDING_NUMBER];
75
76 tree gfc_array_index_type;
77 tree gfc_array_range_type;
78 tree gfc_character1_type_node;
79 tree pvoid_type_node;
80 tree prvoid_type_node;
81 tree ppvoid_type_node;
82 tree pchar_type_node;
83 tree pfunc_type_node;
84
85 tree gfc_charlen_type_node;
86
87 tree float128_type_node = NULL_TREE;
88 tree complex_float128_type_node = NULL_TREE;
89
90 bool gfc_real16_is_float128 = false;
91
92 static GTY(()) tree gfc_desc_dim_type;
93 static GTY(()) tree gfc_max_array_element_size;
94 static GTY(()) tree gfc_array_descriptor_base[2 * (GFC_MAX_DIMENSIONS+1)];
95 static GTY(()) tree gfc_array_descriptor_base_caf[2 * (GFC_MAX_DIMENSIONS+1)];
96
97 /* Arrays for all integral and real kinds. We'll fill this in at runtime
98 after the target has a chance to process command-line options. */
99
100 #define MAX_INT_KINDS 5
101 gfc_integer_info gfc_integer_kinds[MAX_INT_KINDS + 1];
102 gfc_logical_info gfc_logical_kinds[MAX_INT_KINDS + 1];
103 static GTY(()) tree gfc_integer_types[MAX_INT_KINDS + 1];
104 static GTY(()) tree gfc_logical_types[MAX_INT_KINDS + 1];
105
106 #define MAX_REAL_KINDS 5
107 gfc_real_info gfc_real_kinds[MAX_REAL_KINDS + 1];
108 static GTY(()) tree gfc_real_types[MAX_REAL_KINDS + 1];
109 static GTY(()) tree gfc_complex_types[MAX_REAL_KINDS + 1];
110
111 #define MAX_CHARACTER_KINDS 2
112 gfc_character_info gfc_character_kinds[MAX_CHARACTER_KINDS + 1];
113 static GTY(()) tree gfc_character_types[MAX_CHARACTER_KINDS + 1];
114 static GTY(()) tree gfc_pcharacter_types[MAX_CHARACTER_KINDS + 1];
115
116 static tree gfc_add_field_to_struct_1 (tree, tree, tree, tree **);
117
118 /* The integer kind to use for array indices. This will be set to the
119 proper value based on target information from the backend. */
120
121 int gfc_index_integer_kind;
122
123 /* The default kinds of the various types. */
124
125 int gfc_default_integer_kind;
126 int gfc_max_integer_kind;
127 int gfc_default_real_kind;
128 int gfc_default_double_kind;
129 int gfc_default_character_kind;
130 int gfc_default_logical_kind;
131 int gfc_default_complex_kind;
132 int gfc_c_int_kind;
133 int gfc_atomic_int_kind;
134 int gfc_atomic_logical_kind;
135
136 /* The kind size used for record offsets. If the target system supports
137 kind=8, this will be set to 8, otherwise it is set to 4. */
138 int gfc_intio_kind;
139
140 /* The integer kind used to store character lengths. */
141 int gfc_charlen_int_kind;
142
143 /* The size of the numeric storage unit and character storage unit. */
144 int gfc_numeric_storage_size;
145 int gfc_character_storage_size;
146
147
148 bool
149 gfc_check_any_c_kind (gfc_typespec *ts)
150 {
151 int i;
152
153 for (i = 0; i < ISOCBINDING_NUMBER; i++)
154 {
155 /* Check for any C interoperable kind for the given type/kind in ts.
156 This can be used after verify_c_interop to make sure that the
157 Fortran kind being used exists in at least some form for C. */
158 if (c_interop_kinds_table[i].f90_type == ts->type &&
159 c_interop_kinds_table[i].value == ts->kind)
160 return true;
161 }
162
163 return false;
164 }
165
166
167 static int
168 get_real_kind_from_node (tree type)
169 {
170 int i;
171
172 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
173 if (gfc_real_kinds[i].mode_precision == TYPE_PRECISION (type))
174 return gfc_real_kinds[i].kind;
175
176 return -4;
177 }
178
179 static int
180 get_int_kind_from_node (tree type)
181 {
182 int i;
183
184 if (!type)
185 return -2;
186
187 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
188 if (gfc_integer_kinds[i].bit_size == TYPE_PRECISION (type))
189 return gfc_integer_kinds[i].kind;
190
191 return -1;
192 }
193
194 /* Return a typenode for the "standard" C type with a given name. */
195 static tree
196 get_typenode_from_name (const char *name)
197 {
198 if (name == NULL || *name == '\0')
199 return NULL_TREE;
200
201 if (strcmp (name, "char") == 0)
202 return char_type_node;
203 if (strcmp (name, "unsigned char") == 0)
204 return unsigned_char_type_node;
205 if (strcmp (name, "signed char") == 0)
206 return signed_char_type_node;
207
208 if (strcmp (name, "short int") == 0)
209 return short_integer_type_node;
210 if (strcmp (name, "short unsigned int") == 0)
211 return short_unsigned_type_node;
212
213 if (strcmp (name, "int") == 0)
214 return integer_type_node;
215 if (strcmp (name, "unsigned int") == 0)
216 return unsigned_type_node;
217
218 if (strcmp (name, "long int") == 0)
219 return long_integer_type_node;
220 if (strcmp (name, "long unsigned int") == 0)
221 return long_unsigned_type_node;
222
223 if (strcmp (name, "long long int") == 0)
224 return long_long_integer_type_node;
225 if (strcmp (name, "long long unsigned int") == 0)
226 return long_long_unsigned_type_node;
227
228 gcc_unreachable ();
229 }
230
231 static int
232 get_int_kind_from_name (const char *name)
233 {
234 return get_int_kind_from_node (get_typenode_from_name (name));
235 }
236
237
238 /* Get the kind number corresponding to an integer of given size,
239 following the required return values for ISO_FORTRAN_ENV INT* constants:
240 -2 is returned if we support a kind of larger size, -1 otherwise. */
241 int
242 gfc_get_int_kind_from_width_isofortranenv (int size)
243 {
244 int i;
245
246 /* Look for a kind with matching storage size. */
247 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
248 if (gfc_integer_kinds[i].bit_size == size)
249 return gfc_integer_kinds[i].kind;
250
251 /* Look for a kind with larger storage size. */
252 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
253 if (gfc_integer_kinds[i].bit_size > size)
254 return -2;
255
256 return -1;
257 }
258
259 /* Get the kind number corresponding to a real of given storage size,
260 following the required return values for ISO_FORTRAN_ENV REAL* constants:
261 -2 is returned if we support a kind of larger size, -1 otherwise. */
262 int
263 gfc_get_real_kind_from_width_isofortranenv (int size)
264 {
265 int i;
266
267 size /= 8;
268
269 /* Look for a kind with matching storage size. */
270 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
271 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) == size)
272 return gfc_real_kinds[i].kind;
273
274 /* Look for a kind with larger storage size. */
275 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
276 if (int_size_in_bytes (gfc_get_real_type (gfc_real_kinds[i].kind)) > size)
277 return -2;
278
279 return -1;
280 }
281
282
283
284 static int
285 get_int_kind_from_width (int size)
286 {
287 int i;
288
289 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
290 if (gfc_integer_kinds[i].bit_size == size)
291 return gfc_integer_kinds[i].kind;
292
293 return -2;
294 }
295
296 static int
297 get_int_kind_from_minimal_width (int size)
298 {
299 int i;
300
301 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
302 if (gfc_integer_kinds[i].bit_size >= size)
303 return gfc_integer_kinds[i].kind;
304
305 return -2;
306 }
307
308
309 /* Generate the CInteropKind_t objects for the C interoperable
310 kinds. */
311
312 void
313 gfc_init_c_interop_kinds (void)
314 {
315 int i;
316
317 /* init all pointers in the list to NULL */
318 for (i = 0; i < ISOCBINDING_NUMBER; i++)
319 {
320 /* Initialize the name and value fields. */
321 c_interop_kinds_table[i].name[0] = '\0';
322 c_interop_kinds_table[i].value = -100;
323 c_interop_kinds_table[i].f90_type = BT_UNKNOWN;
324 }
325
326 #define NAMED_INTCST(a,b,c,d) \
327 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
328 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
329 c_interop_kinds_table[a].value = c;
330 #define NAMED_REALCST(a,b,c,d) \
331 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
332 c_interop_kinds_table[a].f90_type = BT_REAL; \
333 c_interop_kinds_table[a].value = c;
334 #define NAMED_CMPXCST(a,b,c,d) \
335 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
336 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
337 c_interop_kinds_table[a].value = c;
338 #define NAMED_LOGCST(a,b,c) \
339 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
340 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
341 c_interop_kinds_table[a].value = c;
342 #define NAMED_CHARKNDCST(a,b,c) \
343 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
344 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
345 c_interop_kinds_table[a].value = c;
346 #define NAMED_CHARCST(a,b,c) \
347 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
348 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
349 c_interop_kinds_table[a].value = c;
350 #define DERIVED_TYPE(a,b,c) \
351 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
352 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
353 c_interop_kinds_table[a].value = c;
354 #define NAMED_FUNCTION(a,b,c,d) \
355 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
356 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
357 c_interop_kinds_table[a].value = c;
358 #define NAMED_SUBROUTINE(a,b,c,d) \
359 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
360 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
361 c_interop_kinds_table[a].value = c;
362 #include "iso-c-binding.def"
363 }
364
365
366 /* Query the target to determine which machine modes are available for
367 computation. Choose KIND numbers for them. */
368
369 void
370 gfc_init_kinds (void)
371 {
372 unsigned int mode;
373 int i_index, r_index, kind;
374 bool saw_i4 = false, saw_i8 = false;
375 bool saw_r4 = false, saw_r8 = false, saw_r10 = false, saw_r16 = false;
376
377 for (i_index = 0, mode = MIN_MODE_INT; mode <= MAX_MODE_INT; mode++)
378 {
379 int kind, bitsize;
380
381 if (!targetm.scalar_mode_supported_p ((machine_mode) mode))
382 continue;
383
384 /* The middle end doesn't support constants larger than 2*HWI.
385 Perhaps the target hook shouldn't have accepted these either,
386 but just to be safe... */
387 bitsize = GET_MODE_BITSIZE ((machine_mode) mode);
388 if (bitsize > 2*HOST_BITS_PER_WIDE_INT)
389 continue;
390
391 gcc_assert (i_index != MAX_INT_KINDS);
392
393 /* Let the kind equal the bit size divided by 8. This insulates the
394 programmer from the underlying byte size. */
395 kind = bitsize / 8;
396
397 if (kind == 4)
398 saw_i4 = true;
399 if (kind == 8)
400 saw_i8 = true;
401
402 gfc_integer_kinds[i_index].kind = kind;
403 gfc_integer_kinds[i_index].radix = 2;
404 gfc_integer_kinds[i_index].digits = bitsize - 1;
405 gfc_integer_kinds[i_index].bit_size = bitsize;
406
407 gfc_logical_kinds[i_index].kind = kind;
408 gfc_logical_kinds[i_index].bit_size = bitsize;
409
410 i_index += 1;
411 }
412
413 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
414 used for large file access. */
415
416 if (saw_i8)
417 gfc_intio_kind = 8;
418 else
419 gfc_intio_kind = 4;
420
421 /* If we do not at least have kind = 4, everything is pointless. */
422 gcc_assert(saw_i4);
423
424 /* Set the maximum integer kind. Used with at least BOZ constants. */
425 gfc_max_integer_kind = gfc_integer_kinds[i_index - 1].kind;
426
427 for (r_index = 0, mode = MIN_MODE_FLOAT; mode <= MAX_MODE_FLOAT; mode++)
428 {
429 const struct real_format *fmt =
430 REAL_MODE_FORMAT ((machine_mode) mode);
431 int kind;
432
433 if (fmt == NULL)
434 continue;
435 if (!targetm.scalar_mode_supported_p ((machine_mode) mode))
436 continue;
437
438 /* Only let float, double, long double and __float128 go through.
439 Runtime support for others is not provided, so they would be
440 useless. */
441 if (!targetm.libgcc_floating_mode_supported_p ((machine_mode)
442 mode))
443 continue;
444 if (mode != TYPE_MODE (float_type_node)
445 && (mode != TYPE_MODE (double_type_node))
446 && (mode != TYPE_MODE (long_double_type_node))
447 #if defined(HAVE_TFmode) && defined(ENABLE_LIBQUADMATH_SUPPORT)
448 && (mode != TFmode)
449 #endif
450 )
451 continue;
452
453 /* Let the kind equal the precision divided by 8, rounding up. Again,
454 this insulates the programmer from the underlying byte size.
455
456 Also, it effectively deals with IEEE extended formats. There, the
457 total size of the type may equal 16, but it's got 6 bytes of padding
458 and the increased size can get in the way of a real IEEE quad format
459 which may also be supported by the target.
460
461 We round up so as to handle IA-64 __floatreg (RFmode), which is an
462 82 bit type. Not to be confused with __float80 (XFmode), which is
463 an 80 bit type also supported by IA-64. So XFmode should come out
464 to be kind=10, and RFmode should come out to be kind=11. Egads. */
465
466 kind = (GET_MODE_PRECISION (mode) + 7) / 8;
467
468 if (kind == 4)
469 saw_r4 = true;
470 if (kind == 8)
471 saw_r8 = true;
472 if (kind == 10)
473 saw_r10 = true;
474 if (kind == 16)
475 saw_r16 = true;
476
477 /* Careful we don't stumble a weird internal mode. */
478 gcc_assert (r_index <= 0 || gfc_real_kinds[r_index-1].kind != kind);
479 /* Or have too many modes for the allocated space. */
480 gcc_assert (r_index != MAX_REAL_KINDS);
481
482 gfc_real_kinds[r_index].kind = kind;
483 gfc_real_kinds[r_index].radix = fmt->b;
484 gfc_real_kinds[r_index].digits = fmt->p;
485 gfc_real_kinds[r_index].min_exponent = fmt->emin;
486 gfc_real_kinds[r_index].max_exponent = fmt->emax;
487 if (fmt->pnan < fmt->p)
488 /* This is an IBM extended double format (or the MIPS variant)
489 made up of two IEEE doubles. The value of the long double is
490 the sum of the values of the two parts. The most significant
491 part is required to be the value of the long double rounded
492 to the nearest double. If we use emax of 1024 then we can't
493 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
494 rounding will make the most significant part overflow. */
495 gfc_real_kinds[r_index].max_exponent = fmt->emax - 1;
496 gfc_real_kinds[r_index].mode_precision = GET_MODE_PRECISION (mode);
497 r_index += 1;
498 }
499
500 /* Choose the default integer kind. We choose 4 unless the user directs us
501 otherwise. Even if the user specified that the default integer kind is 8,
502 the numeric storage size is not 64 bits. In this case, a warning will be
503 issued when NUMERIC_STORAGE_SIZE is used. Set NUMERIC_STORAGE_SIZE to 32. */
504
505 gfc_numeric_storage_size = 4 * 8;
506
507 if (flag_default_integer)
508 {
509 if (!saw_i8)
510 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
511 "%<-fdefault-integer-8%> option");
512
513 gfc_default_integer_kind = 8;
514
515 }
516 else if (flag_integer4_kind == 8)
517 {
518 if (!saw_i8)
519 gfc_fatal_error ("INTEGER(KIND=8) is not available for "
520 "%<-finteger-4-integer-8%> option");
521
522 gfc_default_integer_kind = 8;
523 }
524 else if (saw_i4)
525 {
526 gfc_default_integer_kind = 4;
527 }
528 else
529 {
530 gfc_default_integer_kind = gfc_integer_kinds[i_index - 1].kind;
531 gfc_numeric_storage_size = gfc_integer_kinds[i_index - 1].bit_size;
532 }
533
534 /* Choose the default real kind. Again, we choose 4 when possible. */
535 if (flag_default_real)
536 {
537 if (!saw_r8)
538 gfc_fatal_error ("REAL(KIND=8) is not available for "
539 "%<-fdefault-real-8%> option");
540
541 gfc_default_real_kind = 8;
542 }
543 else if (flag_real4_kind == 8)
544 {
545 if (!saw_r8)
546 gfc_fatal_error ("REAL(KIND=8) is not available for %<-freal-4-real-8%> "
547 "option");
548
549 gfc_default_real_kind = 8;
550 }
551 else if (flag_real4_kind == 10)
552 {
553 if (!saw_r10)
554 gfc_fatal_error ("REAL(KIND=10) is not available for "
555 "%<-freal-4-real-10%> option");
556
557 gfc_default_real_kind = 10;
558 }
559 else if (flag_real4_kind == 16)
560 {
561 if (!saw_r16)
562 gfc_fatal_error ("REAL(KIND=16) is not available for "
563 "%<-freal-4-real-16%> option");
564
565 gfc_default_real_kind = 16;
566 }
567 else if (saw_r4)
568 gfc_default_real_kind = 4;
569 else
570 gfc_default_real_kind = gfc_real_kinds[0].kind;
571
572 /* Choose the default double kind. If -fdefault-real and -fdefault-double
573 are specified, we use kind=8, if it's available. If -fdefault-real is
574 specified without -fdefault-double, we use kind=16, if it's available.
575 Otherwise we do not change anything. */
576 if (flag_default_double && !flag_default_real)
577 gfc_fatal_error ("Use of %<-fdefault-double-8%> requires "
578 "%<-fdefault-real-8%>");
579
580 if (flag_default_real && flag_default_double && saw_r8)
581 gfc_default_double_kind = 8;
582 else if (flag_default_real && saw_r16)
583 gfc_default_double_kind = 16;
584 else if (flag_real8_kind == 4)
585 {
586 if (!saw_r4)
587 gfc_fatal_error ("REAL(KIND=4) is not available for "
588 "%<-freal-8-real-4%> option");
589
590 gfc_default_double_kind = 4;
591 }
592 else if (flag_real8_kind == 10 )
593 {
594 if (!saw_r10)
595 gfc_fatal_error ("REAL(KIND=10) is not available for "
596 "%<-freal-8-real-10%> option");
597
598 gfc_default_double_kind = 10;
599 }
600 else if (flag_real8_kind == 16 )
601 {
602 if (!saw_r16)
603 gfc_fatal_error ("REAL(KIND=10) is not available for "
604 "%<-freal-8-real-16%> option");
605
606 gfc_default_double_kind = 16;
607 }
608 else if (saw_r4 && saw_r8)
609 gfc_default_double_kind = 8;
610 else
611 {
612 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
613 real ... occupies two contiguous numeric storage units.
614
615 Therefore we must be supplied a kind twice as large as we chose
616 for single precision. There are loopholes, in that double
617 precision must *occupy* two storage units, though it doesn't have
618 to *use* two storage units. Which means that you can make this
619 kind artificially wide by padding it. But at present there are
620 no GCC targets for which a two-word type does not exist, so we
621 just let gfc_validate_kind abort and tell us if something breaks. */
622
623 gfc_default_double_kind
624 = gfc_validate_kind (BT_REAL, gfc_default_real_kind * 2, false);
625 }
626
627 /* The default logical kind is constrained to be the same as the
628 default integer kind. Similarly with complex and real. */
629 gfc_default_logical_kind = gfc_default_integer_kind;
630 gfc_default_complex_kind = gfc_default_real_kind;
631
632 /* We only have two character kinds: ASCII and UCS-4.
633 ASCII corresponds to a 8-bit integer type, if one is available.
634 UCS-4 corresponds to a 32-bit integer type, if one is available. */
635 i_index = 0;
636 if ((kind = get_int_kind_from_width (8)) > 0)
637 {
638 gfc_character_kinds[i_index].kind = kind;
639 gfc_character_kinds[i_index].bit_size = 8;
640 gfc_character_kinds[i_index].name = "ascii";
641 i_index++;
642 }
643 if ((kind = get_int_kind_from_width (32)) > 0)
644 {
645 gfc_character_kinds[i_index].kind = kind;
646 gfc_character_kinds[i_index].bit_size = 32;
647 gfc_character_kinds[i_index].name = "iso_10646";
648 i_index++;
649 }
650
651 /* Choose the smallest integer kind for our default character. */
652 gfc_default_character_kind = gfc_character_kinds[0].kind;
653 gfc_character_storage_size = gfc_default_character_kind * 8;
654
655 gfc_index_integer_kind = get_int_kind_from_name (PTRDIFF_TYPE);
656
657 /* Pick a kind the same size as the C "int" type. */
658 gfc_c_int_kind = INT_TYPE_SIZE / 8;
659
660 /* Choose atomic kinds to match C's int. */
661 gfc_atomic_int_kind = gfc_c_int_kind;
662 gfc_atomic_logical_kind = gfc_c_int_kind;
663 }
664
665
666 /* Make sure that a valid kind is present. Returns an index into the
667 associated kinds array, -1 if the kind is not present. */
668
669 static int
670 validate_integer (int kind)
671 {
672 int i;
673
674 for (i = 0; gfc_integer_kinds[i].kind != 0; i++)
675 if (gfc_integer_kinds[i].kind == kind)
676 return i;
677
678 return -1;
679 }
680
681 static int
682 validate_real (int kind)
683 {
684 int i;
685
686 for (i = 0; gfc_real_kinds[i].kind != 0; i++)
687 if (gfc_real_kinds[i].kind == kind)
688 return i;
689
690 return -1;
691 }
692
693 static int
694 validate_logical (int kind)
695 {
696 int i;
697
698 for (i = 0; gfc_logical_kinds[i].kind; i++)
699 if (gfc_logical_kinds[i].kind == kind)
700 return i;
701
702 return -1;
703 }
704
705 static int
706 validate_character (int kind)
707 {
708 int i;
709
710 for (i = 0; gfc_character_kinds[i].kind; i++)
711 if (gfc_character_kinds[i].kind == kind)
712 return i;
713
714 return -1;
715 }
716
717 /* Validate a kind given a basic type. The return value is the same
718 for the child functions, with -1 indicating nonexistence of the
719 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
720
721 int
722 gfc_validate_kind (bt type, int kind, bool may_fail)
723 {
724 int rc;
725
726 switch (type)
727 {
728 case BT_REAL: /* Fall through */
729 case BT_COMPLEX:
730 rc = validate_real (kind);
731 break;
732 case BT_INTEGER:
733 rc = validate_integer (kind);
734 break;
735 case BT_LOGICAL:
736 rc = validate_logical (kind);
737 break;
738 case BT_CHARACTER:
739 rc = validate_character (kind);
740 break;
741
742 default:
743 gfc_internal_error ("gfc_validate_kind(): Got bad type");
744 }
745
746 if (rc < 0 && !may_fail)
747 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
748
749 return rc;
750 }
751
752
753 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
754 Reuse common type nodes where possible. Recognize if the kind matches up
755 with a C type. This will be used later in determining which routines may
756 be scarfed from libm. */
757
758 static tree
759 gfc_build_int_type (gfc_integer_info *info)
760 {
761 int mode_precision = info->bit_size;
762
763 if (mode_precision == CHAR_TYPE_SIZE)
764 info->c_char = 1;
765 if (mode_precision == SHORT_TYPE_SIZE)
766 info->c_short = 1;
767 if (mode_precision == INT_TYPE_SIZE)
768 info->c_int = 1;
769 if (mode_precision == LONG_TYPE_SIZE)
770 info->c_long = 1;
771 if (mode_precision == LONG_LONG_TYPE_SIZE)
772 info->c_long_long = 1;
773
774 if (TYPE_PRECISION (intQI_type_node) == mode_precision)
775 return intQI_type_node;
776 if (TYPE_PRECISION (intHI_type_node) == mode_precision)
777 return intHI_type_node;
778 if (TYPE_PRECISION (intSI_type_node) == mode_precision)
779 return intSI_type_node;
780 if (TYPE_PRECISION (intDI_type_node) == mode_precision)
781 return intDI_type_node;
782 if (TYPE_PRECISION (intTI_type_node) == mode_precision)
783 return intTI_type_node;
784
785 return make_signed_type (mode_precision);
786 }
787
788 tree
789 gfc_build_uint_type (int size)
790 {
791 if (size == CHAR_TYPE_SIZE)
792 return unsigned_char_type_node;
793 if (size == SHORT_TYPE_SIZE)
794 return short_unsigned_type_node;
795 if (size == INT_TYPE_SIZE)
796 return unsigned_type_node;
797 if (size == LONG_TYPE_SIZE)
798 return long_unsigned_type_node;
799 if (size == LONG_LONG_TYPE_SIZE)
800 return long_long_unsigned_type_node;
801
802 return make_unsigned_type (size);
803 }
804
805
806 static tree
807 gfc_build_real_type (gfc_real_info *info)
808 {
809 int mode_precision = info->mode_precision;
810 tree new_type;
811
812 if (mode_precision == FLOAT_TYPE_SIZE)
813 info->c_float = 1;
814 if (mode_precision == DOUBLE_TYPE_SIZE)
815 info->c_double = 1;
816 if (mode_precision == LONG_DOUBLE_TYPE_SIZE)
817 info->c_long_double = 1;
818 if (mode_precision != LONG_DOUBLE_TYPE_SIZE && mode_precision == 128)
819 {
820 info->c_float128 = 1;
821 gfc_real16_is_float128 = true;
822 }
823
824 if (TYPE_PRECISION (float_type_node) == mode_precision)
825 return float_type_node;
826 if (TYPE_PRECISION (double_type_node) == mode_precision)
827 return double_type_node;
828 if (TYPE_PRECISION (long_double_type_node) == mode_precision)
829 return long_double_type_node;
830
831 new_type = make_node (REAL_TYPE);
832 TYPE_PRECISION (new_type) = mode_precision;
833 layout_type (new_type);
834 return new_type;
835 }
836
837 static tree
838 gfc_build_complex_type (tree scalar_type)
839 {
840 tree new_type;
841
842 if (scalar_type == NULL)
843 return NULL;
844 if (scalar_type == float_type_node)
845 return complex_float_type_node;
846 if (scalar_type == double_type_node)
847 return complex_double_type_node;
848 if (scalar_type == long_double_type_node)
849 return complex_long_double_type_node;
850
851 new_type = make_node (COMPLEX_TYPE);
852 TREE_TYPE (new_type) = scalar_type;
853 layout_type (new_type);
854 return new_type;
855 }
856
857 static tree
858 gfc_build_logical_type (gfc_logical_info *info)
859 {
860 int bit_size = info->bit_size;
861 tree new_type;
862
863 if (bit_size == BOOL_TYPE_SIZE)
864 {
865 info->c_bool = 1;
866 return boolean_type_node;
867 }
868
869 new_type = make_unsigned_type (bit_size);
870 TREE_SET_CODE (new_type, BOOLEAN_TYPE);
871 TYPE_MAX_VALUE (new_type) = build_int_cst (new_type, 1);
872 TYPE_PRECISION (new_type) = 1;
873
874 return new_type;
875 }
876
877
878 /* Create the backend type nodes. We map them to their
879 equivalent C type, at least for now. We also give
880 names to the types here, and we push them in the
881 global binding level context.*/
882
883 void
884 gfc_init_types (void)
885 {
886 char name_buf[18];
887 int index;
888 tree type;
889 unsigned n;
890
891 /* Create and name the types. */
892 #define PUSH_TYPE(name, node) \
893 pushdecl (build_decl (input_location, \
894 TYPE_DECL, get_identifier (name), node))
895
896 for (index = 0; gfc_integer_kinds[index].kind != 0; ++index)
897 {
898 type = gfc_build_int_type (&gfc_integer_kinds[index]);
899 /* Ensure integer(kind=1) doesn't have TYPE_STRING_FLAG set. */
900 if (TYPE_STRING_FLAG (type))
901 type = make_signed_type (gfc_integer_kinds[index].bit_size);
902 gfc_integer_types[index] = type;
903 snprintf (name_buf, sizeof(name_buf), "integer(kind=%d)",
904 gfc_integer_kinds[index].kind);
905 PUSH_TYPE (name_buf, type);
906 }
907
908 for (index = 0; gfc_logical_kinds[index].kind != 0; ++index)
909 {
910 type = gfc_build_logical_type (&gfc_logical_kinds[index]);
911 gfc_logical_types[index] = type;
912 snprintf (name_buf, sizeof(name_buf), "logical(kind=%d)",
913 gfc_logical_kinds[index].kind);
914 PUSH_TYPE (name_buf, type);
915 }
916
917 for (index = 0; gfc_real_kinds[index].kind != 0; index++)
918 {
919 type = gfc_build_real_type (&gfc_real_kinds[index]);
920 gfc_real_types[index] = type;
921 snprintf (name_buf, sizeof(name_buf), "real(kind=%d)",
922 gfc_real_kinds[index].kind);
923 PUSH_TYPE (name_buf, type);
924
925 if (gfc_real_kinds[index].c_float128)
926 float128_type_node = type;
927
928 type = gfc_build_complex_type (type);
929 gfc_complex_types[index] = type;
930 snprintf (name_buf, sizeof(name_buf), "complex(kind=%d)",
931 gfc_real_kinds[index].kind);
932 PUSH_TYPE (name_buf, type);
933
934 if (gfc_real_kinds[index].c_float128)
935 complex_float128_type_node = type;
936 }
937
938 for (index = 0; gfc_character_kinds[index].kind != 0; ++index)
939 {
940 type = gfc_build_uint_type (gfc_character_kinds[index].bit_size);
941 type = build_qualified_type (type, TYPE_UNQUALIFIED);
942 snprintf (name_buf, sizeof(name_buf), "character(kind=%d)",
943 gfc_character_kinds[index].kind);
944 PUSH_TYPE (name_buf, type);
945 gfc_character_types[index] = type;
946 gfc_pcharacter_types[index] = build_pointer_type (type);
947 }
948 gfc_character1_type_node = gfc_character_types[0];
949
950 PUSH_TYPE ("byte", unsigned_char_type_node);
951 PUSH_TYPE ("void", void_type_node);
952
953 /* DBX debugging output gets upset if these aren't set. */
954 if (!TYPE_NAME (integer_type_node))
955 PUSH_TYPE ("c_integer", integer_type_node);
956 if (!TYPE_NAME (char_type_node))
957 PUSH_TYPE ("c_char", char_type_node);
958
959 #undef PUSH_TYPE
960
961 pvoid_type_node = build_pointer_type (void_type_node);
962 prvoid_type_node = build_qualified_type (pvoid_type_node, TYPE_QUAL_RESTRICT);
963 ppvoid_type_node = build_pointer_type (pvoid_type_node);
964 pchar_type_node = build_pointer_type (gfc_character1_type_node);
965 pfunc_type_node
966 = build_pointer_type (build_function_type_list (void_type_node, NULL_TREE));
967
968 gfc_array_index_type = gfc_get_int_type (gfc_index_integer_kind);
969 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
970 since this function is called before gfc_init_constants. */
971 gfc_array_range_type
972 = build_range_type (gfc_array_index_type,
973 build_int_cst (gfc_array_index_type, 0),
974 NULL_TREE);
975
976 /* The maximum array element size that can be handled is determined
977 by the number of bits available to store this field in the array
978 descriptor. */
979
980 n = TYPE_PRECISION (gfc_array_index_type) - GFC_DTYPE_SIZE_SHIFT;
981 gfc_max_array_element_size
982 = wide_int_to_tree (size_type_node,
983 wi::mask (n, UNSIGNED,
984 TYPE_PRECISION (size_type_node)));
985
986 boolean_type_node = gfc_get_logical_type (gfc_default_logical_kind);
987 boolean_true_node = build_int_cst (boolean_type_node, 1);
988 boolean_false_node = build_int_cst (boolean_type_node, 0);
989
990 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
991 gfc_charlen_int_kind = 4;
992 gfc_charlen_type_node = gfc_get_int_type (gfc_charlen_int_kind);
993 }
994
995 /* Get the type node for the given type and kind. */
996
997 tree
998 gfc_get_int_type (int kind)
999 {
1000 int index = gfc_validate_kind (BT_INTEGER, kind, true);
1001 return index < 0 ? 0 : gfc_integer_types[index];
1002 }
1003
1004 tree
1005 gfc_get_real_type (int kind)
1006 {
1007 int index = gfc_validate_kind (BT_REAL, kind, true);
1008 return index < 0 ? 0 : gfc_real_types[index];
1009 }
1010
1011 tree
1012 gfc_get_complex_type (int kind)
1013 {
1014 int index = gfc_validate_kind (BT_COMPLEX, kind, true);
1015 return index < 0 ? 0 : gfc_complex_types[index];
1016 }
1017
1018 tree
1019 gfc_get_logical_type (int kind)
1020 {
1021 int index = gfc_validate_kind (BT_LOGICAL, kind, true);
1022 return index < 0 ? 0 : gfc_logical_types[index];
1023 }
1024
1025 tree
1026 gfc_get_char_type (int kind)
1027 {
1028 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1029 return index < 0 ? 0 : gfc_character_types[index];
1030 }
1031
1032 tree
1033 gfc_get_pchar_type (int kind)
1034 {
1035 int index = gfc_validate_kind (BT_CHARACTER, kind, true);
1036 return index < 0 ? 0 : gfc_pcharacter_types[index];
1037 }
1038
1039 \f
1040 /* Create a character type with the given kind and length. */
1041
1042 tree
1043 gfc_get_character_type_len_for_eltype (tree eltype, tree len)
1044 {
1045 tree bounds, type;
1046
1047 bounds = build_range_type (gfc_charlen_type_node, gfc_index_one_node, len);
1048 type = build_array_type (eltype, bounds);
1049 TYPE_STRING_FLAG (type) = 1;
1050
1051 return type;
1052 }
1053
1054 tree
1055 gfc_get_character_type_len (int kind, tree len)
1056 {
1057 gfc_validate_kind (BT_CHARACTER, kind, false);
1058 return gfc_get_character_type_len_for_eltype (gfc_get_char_type (kind), len);
1059 }
1060
1061
1062 /* Get a type node for a character kind. */
1063
1064 tree
1065 gfc_get_character_type (int kind, gfc_charlen * cl)
1066 {
1067 tree len;
1068
1069 len = (cl == NULL) ? NULL_TREE : cl->backend_decl;
1070
1071 return gfc_get_character_type_len (kind, len);
1072 }
1073 \f
1074 /* Covert a basic type. This will be an array for character types. */
1075
1076 tree
1077 gfc_typenode_for_spec (gfc_typespec * spec)
1078 {
1079 tree basetype;
1080
1081 switch (spec->type)
1082 {
1083 case BT_UNKNOWN:
1084 gcc_unreachable ();
1085
1086 case BT_INTEGER:
1087 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
1088 has been resolved. This is done so we can convert C_PTR and
1089 C_FUNPTR to simple variables that get translated to (void *). */
1090 if (spec->f90_type == BT_VOID)
1091 {
1092 if (spec->u.derived
1093 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1094 basetype = ptr_type_node;
1095 else
1096 basetype = pfunc_type_node;
1097 }
1098 else
1099 basetype = gfc_get_int_type (spec->kind);
1100 break;
1101
1102 case BT_REAL:
1103 basetype = gfc_get_real_type (spec->kind);
1104 break;
1105
1106 case BT_COMPLEX:
1107 basetype = gfc_get_complex_type (spec->kind);
1108 break;
1109
1110 case BT_LOGICAL:
1111 basetype = gfc_get_logical_type (spec->kind);
1112 break;
1113
1114 case BT_CHARACTER:
1115 #if 0
1116 if (spec->deferred)
1117 basetype = gfc_get_character_type (spec->kind, NULL);
1118 else
1119 #endif
1120 basetype = gfc_get_character_type (spec->kind, spec->u.cl);
1121 break;
1122
1123 case BT_HOLLERITH:
1124 /* Since this cannot be used, return a length one character. */
1125 basetype = gfc_get_character_type_len (gfc_default_character_kind,
1126 gfc_index_one_node);
1127 break;
1128
1129 case BT_DERIVED:
1130 case BT_CLASS:
1131 basetype = gfc_get_derived_type (spec->u.derived);
1132
1133 if (spec->type == BT_CLASS)
1134 GFC_CLASS_TYPE_P (basetype) = 1;
1135
1136 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
1137 type and kind to fit a (void *) and the basetype returned was a
1138 ptr_type_node. We need to pass up this new information to the
1139 symbol that was declared of type C_PTR or C_FUNPTR. */
1140 if (spec->u.derived->ts.f90_type == BT_VOID)
1141 {
1142 spec->type = BT_INTEGER;
1143 spec->kind = gfc_index_integer_kind;
1144 spec->f90_type = BT_VOID;
1145 }
1146 break;
1147 case BT_VOID:
1148 case BT_ASSUMED:
1149 /* This is for the second arg to c_f_pointer and c_f_procpointer
1150 of the iso_c_binding module, to accept any ptr type. */
1151 basetype = ptr_type_node;
1152 if (spec->f90_type == BT_VOID)
1153 {
1154 if (spec->u.derived
1155 && spec->u.derived->intmod_sym_id == ISOCBINDING_PTR)
1156 basetype = ptr_type_node;
1157 else
1158 basetype = pfunc_type_node;
1159 }
1160 break;
1161 default:
1162 gcc_unreachable ();
1163 }
1164 return basetype;
1165 }
1166 \f
1167 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
1168
1169 static tree
1170 gfc_conv_array_bound (gfc_expr * expr)
1171 {
1172 /* If expr is an integer constant, return that. */
1173 if (expr != NULL && expr->expr_type == EXPR_CONSTANT)
1174 return gfc_conv_mpz_to_tree (expr->value.integer, gfc_index_integer_kind);
1175
1176 /* Otherwise return NULL. */
1177 return NULL_TREE;
1178 }
1179 \f
1180 tree
1181 gfc_get_element_type (tree type)
1182 {
1183 tree element;
1184
1185 if (GFC_ARRAY_TYPE_P (type))
1186 {
1187 if (TREE_CODE (type) == POINTER_TYPE)
1188 type = TREE_TYPE (type);
1189 if (GFC_TYPE_ARRAY_RANK (type) == 0)
1190 {
1191 gcc_assert (GFC_TYPE_ARRAY_CORANK (type) > 0);
1192 element = type;
1193 }
1194 else
1195 {
1196 gcc_assert (TREE_CODE (type) == ARRAY_TYPE);
1197 element = TREE_TYPE (type);
1198 }
1199 }
1200 else
1201 {
1202 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type));
1203 element = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
1204
1205 gcc_assert (TREE_CODE (element) == POINTER_TYPE);
1206 element = TREE_TYPE (element);
1207
1208 /* For arrays, which are not scalar coarrays. */
1209 if (TREE_CODE (element) == ARRAY_TYPE && !TYPE_STRING_FLAG (element))
1210 element = TREE_TYPE (element);
1211 }
1212
1213 return element;
1214 }
1215 \f
1216 /* Build an array. This function is called from gfc_sym_type().
1217 Actually returns array descriptor type.
1218
1219 Format of array descriptors is as follows:
1220
1221 struct gfc_array_descriptor
1222 {
1223 array *data
1224 index offset;
1225 index dtype;
1226 struct descriptor_dimension dimension[N_DIM];
1227 }
1228
1229 struct descriptor_dimension
1230 {
1231 index stride;
1232 index lbound;
1233 index ubound;
1234 }
1235
1236 Translation code should use gfc_conv_descriptor_* rather than
1237 accessing the descriptor directly. Any changes to the array
1238 descriptor type will require changes in gfc_conv_descriptor_* and
1239 gfc_build_array_initializer.
1240
1241 This is represented internally as a RECORD_TYPE. The index nodes
1242 are gfc_array_index_type and the data node is a pointer to the
1243 data. See below for the handling of character types.
1244
1245 The dtype member is formatted as follows:
1246 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
1247 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
1248 size = dtype >> GFC_DTYPE_SIZE_SHIFT
1249
1250 I originally used nested ARRAY_TYPE nodes to represent arrays, but
1251 this generated poor code for assumed/deferred size arrays. These
1252 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
1253 of the GENERIC grammar. Also, there is no way to explicitly set
1254 the array stride, so all data must be packed(1). I've tried to
1255 mark all the functions which would require modification with a GCC
1256 ARRAYS comment.
1257
1258 The data component points to the first element in the array. The
1259 offset field is the position of the origin of the array (i.e. element
1260 (0, 0 ...)). This may be outside the bounds of the array.
1261
1262 An element is accessed by
1263 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
1264 This gives good performance as the computation does not involve the
1265 bounds of the array. For packed arrays, this is optimized further
1266 by substituting the known strides.
1267
1268 This system has one problem: all array bounds must be within 2^31
1269 elements of the origin (2^63 on 64-bit machines). For example
1270 integer, dimension (80000:90000, 80000:90000, 2) :: array
1271 may not work properly on 32-bit machines because 80000*80000 >
1272 2^31, so the calculation for stride2 would overflow. This may
1273 still work, but I haven't checked, and it relies on the overflow
1274 doing the right thing.
1275
1276 The way to fix this problem is to access elements as follows:
1277 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
1278 Obviously this is much slower. I will make this a compile time
1279 option, something like -fsmall-array-offsets. Mixing code compiled
1280 with and without this switch will work.
1281
1282 (1) This can be worked around by modifying the upper bound of the
1283 previous dimension. This requires extra fields in the descriptor
1284 (both real_ubound and fake_ubound). */
1285
1286
1287 /* Returns true if the array sym does not require a descriptor. */
1288
1289 int
1290 gfc_is_nodesc_array (gfc_symbol * sym)
1291 {
1292 gcc_assert (sym->attr.dimension || sym->attr.codimension);
1293
1294 /* We only want local arrays. */
1295 if (sym->attr.pointer || sym->attr.allocatable)
1296 return 0;
1297
1298 /* We want a descriptor for associate-name arrays that do not have an
1299 explicitly known shape already. */
1300 if (sym->assoc && sym->as->type != AS_EXPLICIT)
1301 return 0;
1302
1303 if (sym->attr.dummy)
1304 return sym->as->type != AS_ASSUMED_SHAPE
1305 && sym->as->type != AS_ASSUMED_RANK;
1306
1307 if (sym->attr.result || sym->attr.function)
1308 return 0;
1309
1310 gcc_assert (sym->as->type == AS_EXPLICIT || sym->as->cp_was_assumed);
1311
1312 return 1;
1313 }
1314
1315
1316 /* Create an array descriptor type. */
1317
1318 static tree
1319 gfc_build_array_type (tree type, gfc_array_spec * as,
1320 enum gfc_array_kind akind, bool restricted,
1321 bool contiguous)
1322 {
1323 tree lbound[GFC_MAX_DIMENSIONS];
1324 tree ubound[GFC_MAX_DIMENSIONS];
1325 int n, corank;
1326
1327 /* Assumed-shape arrays do not have codimension information stored in the
1328 descriptor. */
1329 corank = as->corank;
1330 if (as->type == AS_ASSUMED_SHAPE ||
1331 (as->type == AS_ASSUMED_RANK && akind == GFC_ARRAY_ALLOCATABLE))
1332 corank = 0;
1333
1334 if (as->type == AS_ASSUMED_RANK)
1335 for (n = 0; n < GFC_MAX_DIMENSIONS; n++)
1336 {
1337 lbound[n] = NULL_TREE;
1338 ubound[n] = NULL_TREE;
1339 }
1340
1341 for (n = 0; n < as->rank; n++)
1342 {
1343 /* Create expressions for the known bounds of the array. */
1344 if (as->type == AS_ASSUMED_SHAPE && as->lower[n] == NULL)
1345 lbound[n] = gfc_index_one_node;
1346 else
1347 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1348 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1349 }
1350
1351 for (n = as->rank; n < as->rank + corank; n++)
1352 {
1353 if (as->type != AS_DEFERRED && as->lower[n] == NULL)
1354 lbound[n] = gfc_index_one_node;
1355 else
1356 lbound[n] = gfc_conv_array_bound (as->lower[n]);
1357
1358 if (n < as->rank + corank - 1)
1359 ubound[n] = gfc_conv_array_bound (as->upper[n]);
1360 }
1361
1362 if (as->type == AS_ASSUMED_SHAPE)
1363 akind = contiguous ? GFC_ARRAY_ASSUMED_SHAPE_CONT
1364 : GFC_ARRAY_ASSUMED_SHAPE;
1365 else if (as->type == AS_ASSUMED_RANK)
1366 akind = contiguous ? GFC_ARRAY_ASSUMED_RANK_CONT
1367 : GFC_ARRAY_ASSUMED_RANK;
1368 return gfc_get_array_type_bounds (type, as->rank == -1
1369 ? GFC_MAX_DIMENSIONS : as->rank,
1370 corank, lbound,
1371 ubound, 0, akind, restricted);
1372 }
1373 \f
1374 /* Returns the struct descriptor_dimension type. */
1375
1376 static tree
1377 gfc_get_desc_dim_type (void)
1378 {
1379 tree type;
1380 tree decl, *chain = NULL;
1381
1382 if (gfc_desc_dim_type)
1383 return gfc_desc_dim_type;
1384
1385 /* Build the type node. */
1386 type = make_node (RECORD_TYPE);
1387
1388 TYPE_NAME (type) = get_identifier ("descriptor_dimension");
1389 TYPE_PACKED (type) = 1;
1390
1391 /* Consists of the stride, lbound and ubound members. */
1392 decl = gfc_add_field_to_struct_1 (type,
1393 get_identifier ("stride"),
1394 gfc_array_index_type, &chain);
1395 TREE_NO_WARNING (decl) = 1;
1396
1397 decl = gfc_add_field_to_struct_1 (type,
1398 get_identifier ("lbound"),
1399 gfc_array_index_type, &chain);
1400 TREE_NO_WARNING (decl) = 1;
1401
1402 decl = gfc_add_field_to_struct_1 (type,
1403 get_identifier ("ubound"),
1404 gfc_array_index_type, &chain);
1405 TREE_NO_WARNING (decl) = 1;
1406
1407 /* Finish off the type. */
1408 gfc_finish_type (type);
1409 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
1410
1411 gfc_desc_dim_type = type;
1412 return type;
1413 }
1414
1415
1416 /* Return the DTYPE for an array. This describes the type and type parameters
1417 of the array. */
1418 /* TODO: Only call this when the value is actually used, and make all the
1419 unknown cases abort. */
1420
1421 tree
1422 gfc_get_dtype_rank_type (int rank, tree etype)
1423 {
1424 tree size;
1425 int n;
1426 HOST_WIDE_INT i;
1427 tree tmp;
1428 tree dtype;
1429
1430 switch (TREE_CODE (etype))
1431 {
1432 case INTEGER_TYPE:
1433 n = BT_INTEGER;
1434 break;
1435
1436 case BOOLEAN_TYPE:
1437 n = BT_LOGICAL;
1438 break;
1439
1440 case REAL_TYPE:
1441 n = BT_REAL;
1442 break;
1443
1444 case COMPLEX_TYPE:
1445 n = BT_COMPLEX;
1446 break;
1447
1448 /* We will never have arrays of arrays. */
1449 case RECORD_TYPE:
1450 n = BT_DERIVED;
1451 break;
1452
1453 case ARRAY_TYPE:
1454 n = BT_CHARACTER;
1455 break;
1456
1457 case POINTER_TYPE:
1458 n = BT_ASSUMED;
1459 break;
1460
1461 default:
1462 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1463 /* We can strange array types for temporary arrays. */
1464 return gfc_index_zero_node;
1465 }
1466
1467 gcc_assert (rank <= GFC_DTYPE_RANK_MASK);
1468 size = TYPE_SIZE_UNIT (etype);
1469
1470 i = rank | (n << GFC_DTYPE_TYPE_SHIFT);
1471 if (size && INTEGER_CST_P (size))
1472 {
1473 if (tree_int_cst_lt (gfc_max_array_element_size, size))
1474 gfc_fatal_error ("Array element size too big at %C");
1475
1476 i += TREE_INT_CST_LOW (size) << GFC_DTYPE_SIZE_SHIFT;
1477 }
1478 dtype = build_int_cst (gfc_array_index_type, i);
1479
1480 if (size && !INTEGER_CST_P (size))
1481 {
1482 tmp = build_int_cst (gfc_array_index_type, GFC_DTYPE_SIZE_SHIFT);
1483 tmp = fold_build2_loc (input_location, LSHIFT_EXPR,
1484 gfc_array_index_type,
1485 fold_convert (gfc_array_index_type, size), tmp);
1486 dtype = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type,
1487 tmp, dtype);
1488 }
1489 /* If we don't know the size we leave it as zero. This should never happen
1490 for anything that is actually used. */
1491 /* TODO: Check this is actually true, particularly when repacking
1492 assumed size parameters. */
1493
1494 return dtype;
1495 }
1496
1497
1498 tree
1499 gfc_get_dtype (tree type)
1500 {
1501 tree dtype;
1502 tree etype;
1503 int rank;
1504
1505 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type) || GFC_ARRAY_TYPE_P (type));
1506
1507 if (GFC_TYPE_ARRAY_DTYPE (type))
1508 return GFC_TYPE_ARRAY_DTYPE (type);
1509
1510 rank = GFC_TYPE_ARRAY_RANK (type);
1511 etype = gfc_get_element_type (type);
1512 dtype = gfc_get_dtype_rank_type (rank, etype);
1513
1514 GFC_TYPE_ARRAY_DTYPE (type) = dtype;
1515 return dtype;
1516 }
1517
1518
1519 /* Build an array type for use without a descriptor, packed according
1520 to the value of PACKED. */
1521
1522 tree
1523 gfc_get_nodesc_array_type (tree etype, gfc_array_spec * as, gfc_packed packed,
1524 bool restricted)
1525 {
1526 tree range;
1527 tree type;
1528 tree tmp;
1529 int n;
1530 int known_stride;
1531 int known_offset;
1532 mpz_t offset;
1533 mpz_t stride;
1534 mpz_t delta;
1535 gfc_expr *expr;
1536
1537 mpz_init_set_ui (offset, 0);
1538 mpz_init_set_ui (stride, 1);
1539 mpz_init (delta);
1540
1541 /* We don't use build_array_type because this does not include include
1542 lang-specific information (i.e. the bounds of the array) when checking
1543 for duplicates. */
1544 if (as->rank)
1545 type = make_node (ARRAY_TYPE);
1546 else
1547 type = build_variant_type_copy (etype);
1548
1549 GFC_ARRAY_TYPE_P (type) = 1;
1550 TYPE_LANG_SPECIFIC (type) = ggc_cleared_alloc<struct lang_type> ();
1551
1552 known_stride = (packed != PACKED_NO);
1553 known_offset = 1;
1554 for (n = 0; n < as->rank; n++)
1555 {
1556 /* Fill in the stride and bound components of the type. */
1557 if (known_stride)
1558 tmp = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1559 else
1560 tmp = NULL_TREE;
1561 GFC_TYPE_ARRAY_STRIDE (type, n) = tmp;
1562
1563 expr = as->lower[n];
1564 if (expr->expr_type == EXPR_CONSTANT)
1565 {
1566 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1567 gfc_index_integer_kind);
1568 }
1569 else
1570 {
1571 known_stride = 0;
1572 tmp = NULL_TREE;
1573 }
1574 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1575
1576 if (known_stride)
1577 {
1578 /* Calculate the offset. */
1579 mpz_mul (delta, stride, as->lower[n]->value.integer);
1580 mpz_sub (offset, offset, delta);
1581 }
1582 else
1583 known_offset = 0;
1584
1585 expr = as->upper[n];
1586 if (expr && expr->expr_type == EXPR_CONSTANT)
1587 {
1588 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1589 gfc_index_integer_kind);
1590 }
1591 else
1592 {
1593 tmp = NULL_TREE;
1594 known_stride = 0;
1595 }
1596 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1597
1598 if (known_stride)
1599 {
1600 /* Calculate the stride. */
1601 mpz_sub (delta, as->upper[n]->value.integer,
1602 as->lower[n]->value.integer);
1603 mpz_add_ui (delta, delta, 1);
1604 mpz_mul (stride, stride, delta);
1605 }
1606
1607 /* Only the first stride is known for partial packed arrays. */
1608 if (packed == PACKED_NO || packed == PACKED_PARTIAL)
1609 known_stride = 0;
1610 }
1611 for (n = as->rank; n < as->rank + as->corank; n++)
1612 {
1613 expr = as->lower[n];
1614 if (expr->expr_type == EXPR_CONSTANT)
1615 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1616 gfc_index_integer_kind);
1617 else
1618 tmp = NULL_TREE;
1619 GFC_TYPE_ARRAY_LBOUND (type, n) = tmp;
1620
1621 expr = as->upper[n];
1622 if (expr && expr->expr_type == EXPR_CONSTANT)
1623 tmp = gfc_conv_mpz_to_tree (expr->value.integer,
1624 gfc_index_integer_kind);
1625 else
1626 tmp = NULL_TREE;
1627 if (n < as->rank + as->corank - 1)
1628 GFC_TYPE_ARRAY_UBOUND (type, n) = tmp;
1629 }
1630
1631 if (known_offset)
1632 {
1633 GFC_TYPE_ARRAY_OFFSET (type) =
1634 gfc_conv_mpz_to_tree (offset, gfc_index_integer_kind);
1635 }
1636 else
1637 GFC_TYPE_ARRAY_OFFSET (type) = NULL_TREE;
1638
1639 if (known_stride)
1640 {
1641 GFC_TYPE_ARRAY_SIZE (type) =
1642 gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1643 }
1644 else
1645 GFC_TYPE_ARRAY_SIZE (type) = NULL_TREE;
1646
1647 GFC_TYPE_ARRAY_RANK (type) = as->rank;
1648 GFC_TYPE_ARRAY_CORANK (type) = as->corank;
1649 GFC_TYPE_ARRAY_DTYPE (type) = NULL_TREE;
1650 range = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1651 NULL_TREE);
1652 /* TODO: use main type if it is unbounded. */
1653 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1654 build_pointer_type (build_array_type (etype, range));
1655 if (restricted)
1656 GFC_TYPE_ARRAY_DATAPTR_TYPE (type) =
1657 build_qualified_type (GFC_TYPE_ARRAY_DATAPTR_TYPE (type),
1658 TYPE_QUAL_RESTRICT);
1659
1660 if (as->rank == 0)
1661 {
1662 if (packed != PACKED_STATIC || flag_coarray == GFC_FCOARRAY_LIB)
1663 {
1664 type = build_pointer_type (type);
1665
1666 if (restricted)
1667 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1668
1669 GFC_ARRAY_TYPE_P (type) = 1;
1670 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1671 }
1672
1673 return type;
1674 }
1675
1676 if (known_stride)
1677 {
1678 mpz_sub_ui (stride, stride, 1);
1679 range = gfc_conv_mpz_to_tree (stride, gfc_index_integer_kind);
1680 }
1681 else
1682 range = NULL_TREE;
1683
1684 range = build_range_type (gfc_array_index_type, gfc_index_zero_node, range);
1685 TYPE_DOMAIN (type) = range;
1686
1687 build_pointer_type (etype);
1688 TREE_TYPE (type) = etype;
1689
1690 layout_type (type);
1691
1692 mpz_clear (offset);
1693 mpz_clear (stride);
1694 mpz_clear (delta);
1695
1696 /* Represent packed arrays as multi-dimensional if they have rank >
1697 1 and with proper bounds, instead of flat arrays. This makes for
1698 better debug info. */
1699 if (known_offset)
1700 {
1701 tree gtype = etype, rtype, type_decl;
1702
1703 for (n = as->rank - 1; n >= 0; n--)
1704 {
1705 rtype = build_range_type (gfc_array_index_type,
1706 GFC_TYPE_ARRAY_LBOUND (type, n),
1707 GFC_TYPE_ARRAY_UBOUND (type, n));
1708 gtype = build_array_type (gtype, rtype);
1709 }
1710 TYPE_NAME (type) = type_decl = build_decl (input_location,
1711 TYPE_DECL, NULL, gtype);
1712 DECL_ORIGINAL_TYPE (type_decl) = gtype;
1713 }
1714
1715 if (packed != PACKED_STATIC || !known_stride
1716 || (as->corank && flag_coarray == GFC_FCOARRAY_LIB))
1717 {
1718 /* For dummy arrays and automatic (heap allocated) arrays we
1719 want a pointer to the array. */
1720 type = build_pointer_type (type);
1721 if (restricted)
1722 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
1723 GFC_ARRAY_TYPE_P (type) = 1;
1724 TYPE_LANG_SPECIFIC (type) = TYPE_LANG_SPECIFIC (TREE_TYPE (type));
1725 }
1726 return type;
1727 }
1728
1729
1730 /* Return or create the base type for an array descriptor. */
1731
1732 static tree
1733 gfc_get_array_descriptor_base (int dimen, int codimen, bool restricted,
1734 enum gfc_array_kind akind)
1735 {
1736 tree fat_type, decl, arraytype, *chain = NULL;
1737 char name[16 + 2*GFC_RANK_DIGITS + 1 + 1];
1738 int idx;
1739
1740 /* Assumed-rank array. */
1741 if (dimen == -1)
1742 dimen = GFC_MAX_DIMENSIONS;
1743
1744 idx = 2 * (codimen + dimen) + restricted;
1745
1746 gcc_assert (codimen + dimen >= 0 && codimen + dimen <= GFC_MAX_DIMENSIONS);
1747
1748 if (flag_coarray == GFC_FCOARRAY_LIB && codimen)
1749 {
1750 if (gfc_array_descriptor_base_caf[idx])
1751 return gfc_array_descriptor_base_caf[idx];
1752 }
1753 else if (gfc_array_descriptor_base[idx])
1754 return gfc_array_descriptor_base[idx];
1755
1756 /* Build the type node. */
1757 fat_type = make_node (RECORD_TYPE);
1758
1759 sprintf (name, "array_descriptor" GFC_RANK_PRINTF_FORMAT, dimen + codimen);
1760 TYPE_NAME (fat_type) = get_identifier (name);
1761 TYPE_NAMELESS (fat_type) = 1;
1762
1763 /* Add the data member as the first element of the descriptor. */
1764 decl = gfc_add_field_to_struct_1 (fat_type,
1765 get_identifier ("data"),
1766 (restricted
1767 ? prvoid_type_node
1768 : ptr_type_node), &chain);
1769
1770 /* Add the base component. */
1771 decl = gfc_add_field_to_struct_1 (fat_type,
1772 get_identifier ("offset"),
1773 gfc_array_index_type, &chain);
1774 TREE_NO_WARNING (decl) = 1;
1775
1776 /* Add the dtype component. */
1777 decl = gfc_add_field_to_struct_1 (fat_type,
1778 get_identifier ("dtype"),
1779 gfc_array_index_type, &chain);
1780 TREE_NO_WARNING (decl) = 1;
1781
1782 /* Build the array type for the stride and bound components. */
1783 if (dimen + codimen > 0)
1784 {
1785 arraytype =
1786 build_array_type (gfc_get_desc_dim_type (),
1787 build_range_type (gfc_array_index_type,
1788 gfc_index_zero_node,
1789 gfc_rank_cst[codimen + dimen - 1]));
1790
1791 decl = gfc_add_field_to_struct_1 (fat_type, get_identifier ("dim"),
1792 arraytype, &chain);
1793 TREE_NO_WARNING (decl) = 1;
1794 }
1795
1796 if (flag_coarray == GFC_FCOARRAY_LIB && codimen
1797 && akind == GFC_ARRAY_ALLOCATABLE)
1798 {
1799 decl = gfc_add_field_to_struct_1 (fat_type,
1800 get_identifier ("token"),
1801 prvoid_type_node, &chain);
1802 TREE_NO_WARNING (decl) = 1;
1803 }
1804
1805 /* Finish off the type. */
1806 gfc_finish_type (fat_type);
1807 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (fat_type)) = 1;
1808
1809 if (flag_coarray == GFC_FCOARRAY_LIB && codimen
1810 && akind == GFC_ARRAY_ALLOCATABLE)
1811 gfc_array_descriptor_base_caf[idx] = fat_type;
1812 else
1813 gfc_array_descriptor_base[idx] = fat_type;
1814
1815 return fat_type;
1816 }
1817
1818
1819 /* Build an array (descriptor) type with given bounds. */
1820
1821 tree
1822 gfc_get_array_type_bounds (tree etype, int dimen, int codimen, tree * lbound,
1823 tree * ubound, int packed,
1824 enum gfc_array_kind akind, bool restricted)
1825 {
1826 char name[8 + 2*GFC_RANK_DIGITS + 1 + GFC_MAX_SYMBOL_LEN];
1827 tree fat_type, base_type, arraytype, lower, upper, stride, tmp, rtype;
1828 const char *type_name;
1829 int n;
1830
1831 base_type = gfc_get_array_descriptor_base (dimen, codimen, restricted, akind);
1832 fat_type = build_distinct_type_copy (base_type);
1833 /* Make sure that nontarget and target array type have the same canonical
1834 type (and same stub decl for debug info). */
1835 base_type = gfc_get_array_descriptor_base (dimen, codimen, false, akind);
1836 TYPE_CANONICAL (fat_type) = base_type;
1837 TYPE_STUB_DECL (fat_type) = TYPE_STUB_DECL (base_type);
1838
1839 tmp = TYPE_NAME (etype);
1840 if (tmp && TREE_CODE (tmp) == TYPE_DECL)
1841 tmp = DECL_NAME (tmp);
1842 if (tmp)
1843 type_name = IDENTIFIER_POINTER (tmp);
1844 else
1845 type_name = "unknown";
1846 sprintf (name, "array" GFC_RANK_PRINTF_FORMAT "_%.*s", dimen + codimen,
1847 GFC_MAX_SYMBOL_LEN, type_name);
1848 TYPE_NAME (fat_type) = get_identifier (name);
1849 TYPE_NAMELESS (fat_type) = 1;
1850
1851 GFC_DESCRIPTOR_TYPE_P (fat_type) = 1;
1852 TYPE_LANG_SPECIFIC (fat_type) = ggc_cleared_alloc<struct lang_type> ();
1853
1854 GFC_TYPE_ARRAY_RANK (fat_type) = dimen;
1855 GFC_TYPE_ARRAY_CORANK (fat_type) = codimen;
1856 GFC_TYPE_ARRAY_DTYPE (fat_type) = NULL_TREE;
1857 GFC_TYPE_ARRAY_AKIND (fat_type) = akind;
1858
1859 /* Build an array descriptor record type. */
1860 if (packed != 0)
1861 stride = gfc_index_one_node;
1862 else
1863 stride = NULL_TREE;
1864 for (n = 0; n < dimen + codimen; n++)
1865 {
1866 if (n < dimen)
1867 GFC_TYPE_ARRAY_STRIDE (fat_type, n) = stride;
1868
1869 if (lbound)
1870 lower = lbound[n];
1871 else
1872 lower = NULL_TREE;
1873
1874 if (lower != NULL_TREE)
1875 {
1876 if (INTEGER_CST_P (lower))
1877 GFC_TYPE_ARRAY_LBOUND (fat_type, n) = lower;
1878 else
1879 lower = NULL_TREE;
1880 }
1881
1882 if (codimen && n == dimen + codimen - 1)
1883 break;
1884
1885 upper = ubound[n];
1886 if (upper != NULL_TREE)
1887 {
1888 if (INTEGER_CST_P (upper))
1889 GFC_TYPE_ARRAY_UBOUND (fat_type, n) = upper;
1890 else
1891 upper = NULL_TREE;
1892 }
1893
1894 if (n >= dimen)
1895 continue;
1896
1897 if (upper != NULL_TREE && lower != NULL_TREE && stride != NULL_TREE)
1898 {
1899 tmp = fold_build2_loc (input_location, MINUS_EXPR,
1900 gfc_array_index_type, upper, lower);
1901 tmp = fold_build2_loc (input_location, PLUS_EXPR,
1902 gfc_array_index_type, tmp,
1903 gfc_index_one_node);
1904 stride = fold_build2_loc (input_location, MULT_EXPR,
1905 gfc_array_index_type, tmp, stride);
1906 /* Check the folding worked. */
1907 gcc_assert (INTEGER_CST_P (stride));
1908 }
1909 else
1910 stride = NULL_TREE;
1911 }
1912 GFC_TYPE_ARRAY_SIZE (fat_type) = stride;
1913
1914 /* TODO: known offsets for descriptors. */
1915 GFC_TYPE_ARRAY_OFFSET (fat_type) = NULL_TREE;
1916
1917 if (dimen == 0)
1918 {
1919 arraytype = build_pointer_type (etype);
1920 if (restricted)
1921 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1922
1923 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1924 return fat_type;
1925 }
1926
1927 /* We define data as an array with the correct size if possible.
1928 Much better than doing pointer arithmetic. */
1929 if (stride)
1930 rtype = build_range_type (gfc_array_index_type, gfc_index_zero_node,
1931 int_const_binop (MINUS_EXPR, stride,
1932 build_int_cst (TREE_TYPE (stride), 1)));
1933 else
1934 rtype = gfc_array_range_type;
1935 arraytype = build_array_type (etype, rtype);
1936 arraytype = build_pointer_type (arraytype);
1937 if (restricted)
1938 arraytype = build_qualified_type (arraytype, TYPE_QUAL_RESTRICT);
1939 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type) = arraytype;
1940
1941 /* This will generate the base declarations we need to emit debug
1942 information for this type. FIXME: there must be a better way to
1943 avoid divergence between compilations with and without debug
1944 information. */
1945 {
1946 struct array_descr_info info;
1947 gfc_get_array_descr_info (fat_type, &info);
1948 gfc_get_array_descr_info (build_pointer_type (fat_type), &info);
1949 }
1950
1951 return fat_type;
1952 }
1953 \f
1954 /* Build a pointer type. This function is called from gfc_sym_type(). */
1955
1956 static tree
1957 gfc_build_pointer_type (gfc_symbol * sym, tree type)
1958 {
1959 /* Array pointer types aren't actually pointers. */
1960 if (sym->attr.dimension)
1961 return type;
1962 else
1963 return build_pointer_type (type);
1964 }
1965
1966 static tree gfc_nonrestricted_type (tree t);
1967 /* Given two record or union type nodes TO and FROM, ensure
1968 that all fields in FROM have a corresponding field in TO,
1969 their type being nonrestrict variants. This accepts a TO
1970 node that already has a prefix of the fields in FROM. */
1971 static void
1972 mirror_fields (tree to, tree from)
1973 {
1974 tree fto, ffrom;
1975 tree *chain;
1976
1977 /* Forward to the end of TOs fields. */
1978 fto = TYPE_FIELDS (to);
1979 ffrom = TYPE_FIELDS (from);
1980 chain = &TYPE_FIELDS (to);
1981 while (fto)
1982 {
1983 gcc_assert (ffrom && DECL_NAME (fto) == DECL_NAME (ffrom));
1984 chain = &DECL_CHAIN (fto);
1985 fto = DECL_CHAIN (fto);
1986 ffrom = DECL_CHAIN (ffrom);
1987 }
1988
1989 /* Now add all fields remaining in FROM (starting with ffrom). */
1990 for (; ffrom; ffrom = DECL_CHAIN (ffrom))
1991 {
1992 tree newfield = copy_node (ffrom);
1993 DECL_CONTEXT (newfield) = to;
1994 /* The store to DECL_CHAIN might seem redundant with the
1995 stores to *chain, but not clearing it here would mean
1996 leaving a chain into the old fields. If ever
1997 our called functions would look at them confusion
1998 will arise. */
1999 DECL_CHAIN (newfield) = NULL_TREE;
2000 *chain = newfield;
2001 chain = &DECL_CHAIN (newfield);
2002
2003 if (TREE_CODE (ffrom) == FIELD_DECL)
2004 {
2005 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (ffrom));
2006 TREE_TYPE (newfield) = elemtype;
2007 }
2008 }
2009 *chain = NULL_TREE;
2010 }
2011
2012 /* Given a type T, returns a different type of the same structure,
2013 except that all types it refers to (recursively) are always
2014 non-restrict qualified types. */
2015 static tree
2016 gfc_nonrestricted_type (tree t)
2017 {
2018 tree ret = t;
2019
2020 /* If the type isn't laid out yet, don't copy it. If something
2021 needs it for real it should wait until the type got finished. */
2022 if (!TYPE_SIZE (t))
2023 return t;
2024
2025 if (!TYPE_LANG_SPECIFIC (t))
2026 TYPE_LANG_SPECIFIC (t) = ggc_cleared_alloc<struct lang_type> ();
2027 /* If we're dealing with this very node already further up
2028 the call chain (recursion via pointers and struct members)
2029 we haven't yet determined if we really need a new type node.
2030 Assume we don't, return T itself. */
2031 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type == error_mark_node)
2032 return t;
2033
2034 /* If we have calculated this all already, just return it. */
2035 if (TYPE_LANG_SPECIFIC (t)->nonrestricted_type)
2036 return TYPE_LANG_SPECIFIC (t)->nonrestricted_type;
2037
2038 /* Mark this type. */
2039 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = error_mark_node;
2040
2041 switch (TREE_CODE (t))
2042 {
2043 default:
2044 break;
2045
2046 case POINTER_TYPE:
2047 case REFERENCE_TYPE:
2048 {
2049 tree totype = gfc_nonrestricted_type (TREE_TYPE (t));
2050 if (totype == TREE_TYPE (t))
2051 ret = t;
2052 else if (TREE_CODE (t) == POINTER_TYPE)
2053 ret = build_pointer_type (totype);
2054 else
2055 ret = build_reference_type (totype);
2056 ret = build_qualified_type (ret,
2057 TYPE_QUALS (t) & ~TYPE_QUAL_RESTRICT);
2058 }
2059 break;
2060
2061 case ARRAY_TYPE:
2062 {
2063 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (t));
2064 if (elemtype == TREE_TYPE (t))
2065 ret = t;
2066 else
2067 {
2068 ret = build_variant_type_copy (t);
2069 TREE_TYPE (ret) = elemtype;
2070 if (TYPE_LANG_SPECIFIC (t)
2071 && GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2072 {
2073 tree dataptr_type = GFC_TYPE_ARRAY_DATAPTR_TYPE (t);
2074 dataptr_type = gfc_nonrestricted_type (dataptr_type);
2075 if (dataptr_type != GFC_TYPE_ARRAY_DATAPTR_TYPE (t))
2076 {
2077 TYPE_LANG_SPECIFIC (ret)
2078 = ggc_cleared_alloc<struct lang_type> ();
2079 *TYPE_LANG_SPECIFIC (ret) = *TYPE_LANG_SPECIFIC (t);
2080 GFC_TYPE_ARRAY_DATAPTR_TYPE (ret) = dataptr_type;
2081 }
2082 }
2083 }
2084 }
2085 break;
2086
2087 case RECORD_TYPE:
2088 case UNION_TYPE:
2089 case QUAL_UNION_TYPE:
2090 {
2091 tree field;
2092 /* First determine if we need a new type at all.
2093 Careful, the two calls to gfc_nonrestricted_type per field
2094 might return different values. That happens exactly when
2095 one of the fields reaches back to this very record type
2096 (via pointers). The first calls will assume that we don't
2097 need to copy T (see the error_mark_node marking). If there
2098 are any reasons for copying T apart from having to copy T,
2099 we'll indeed copy it, and the second calls to
2100 gfc_nonrestricted_type will use that new node if they
2101 reach back to T. */
2102 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2103 if (TREE_CODE (field) == FIELD_DECL)
2104 {
2105 tree elemtype = gfc_nonrestricted_type (TREE_TYPE (field));
2106 if (elemtype != TREE_TYPE (field))
2107 break;
2108 }
2109 if (!field)
2110 break;
2111 ret = build_variant_type_copy (t);
2112 TYPE_FIELDS (ret) = NULL_TREE;
2113
2114 /* Here we make sure that as soon as we know we have to copy
2115 T, that also fields reaching back to us will use the new
2116 copy. It's okay if that copy still contains the old fields,
2117 we won't look at them. */
2118 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2119 mirror_fields (ret, t);
2120 }
2121 break;
2122 }
2123
2124 TYPE_LANG_SPECIFIC (t)->nonrestricted_type = ret;
2125 return ret;
2126 }
2127
2128 \f
2129 /* Return the type for a symbol. Special handling is required for character
2130 types to get the correct level of indirection.
2131 For functions return the return type.
2132 For subroutines return void_type_node.
2133 Calling this multiple times for the same symbol should be avoided,
2134 especially for character and array types. */
2135
2136 tree
2137 gfc_sym_type (gfc_symbol * sym)
2138 {
2139 tree type;
2140 int byref;
2141 bool restricted;
2142
2143 /* Procedure Pointers inside COMMON blocks. */
2144 if (sym->attr.proc_pointer && sym->attr.in_common)
2145 {
2146 /* Unset proc_pointer as gfc_get_function_type calls gfc_sym_type. */
2147 sym->attr.proc_pointer = 0;
2148 type = build_pointer_type (gfc_get_function_type (sym));
2149 sym->attr.proc_pointer = 1;
2150 return type;
2151 }
2152
2153 if (sym->attr.flavor == FL_PROCEDURE && !sym->attr.function)
2154 return void_type_node;
2155
2156 /* In the case of a function the fake result variable may have a
2157 type different from the function type, so don't return early in
2158 that case. */
2159 if (sym->backend_decl && !sym->attr.function)
2160 return TREE_TYPE (sym->backend_decl);
2161
2162 if (sym->ts.type == BT_CHARACTER
2163 && ((sym->attr.function && sym->attr.is_bind_c)
2164 || (sym->attr.result
2165 && sym->ns->proc_name
2166 && sym->ns->proc_name->attr.is_bind_c)))
2167 type = gfc_character1_type_node;
2168 else
2169 type = gfc_typenode_for_spec (&sym->ts);
2170
2171 if (sym->attr.dummy && !sym->attr.function && !sym->attr.value)
2172 byref = 1;
2173 else
2174 byref = 0;
2175
2176 restricted = !sym->attr.target && !sym->attr.pointer
2177 && !sym->attr.proc_pointer && !sym->attr.cray_pointee;
2178 if (!restricted)
2179 type = gfc_nonrestricted_type (type);
2180
2181 if (sym->attr.dimension || sym->attr.codimension)
2182 {
2183 if (gfc_is_nodesc_array (sym))
2184 {
2185 /* If this is a character argument of unknown length, just use the
2186 base type. */
2187 if (sym->ts.type != BT_CHARACTER
2188 || !(sym->attr.dummy || sym->attr.function)
2189 || sym->ts.u.cl->backend_decl)
2190 {
2191 type = gfc_get_nodesc_array_type (type, sym->as,
2192 byref ? PACKED_FULL
2193 : PACKED_STATIC,
2194 restricted);
2195 byref = 0;
2196 }
2197 }
2198 else
2199 {
2200 enum gfc_array_kind akind = GFC_ARRAY_UNKNOWN;
2201 if (sym->attr.pointer)
2202 akind = sym->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2203 : GFC_ARRAY_POINTER;
2204 else if (sym->attr.allocatable)
2205 akind = GFC_ARRAY_ALLOCATABLE;
2206 type = gfc_build_array_type (type, sym->as, akind, restricted,
2207 sym->attr.contiguous);
2208 }
2209 }
2210 else
2211 {
2212 if (sym->attr.allocatable || sym->attr.pointer
2213 || gfc_is_associate_pointer (sym))
2214 type = gfc_build_pointer_type (sym, type);
2215 }
2216
2217 /* We currently pass all parameters by reference.
2218 See f95_get_function_decl. For dummy function parameters return the
2219 function type. */
2220 if (byref)
2221 {
2222 /* We must use pointer types for potentially absent variables. The
2223 optimizers assume a reference type argument is never NULL. */
2224 if (sym->attr.optional
2225 || (sym->ns->proc_name && sym->ns->proc_name->attr.entry_master))
2226 type = build_pointer_type (type);
2227 else
2228 {
2229 type = build_reference_type (type);
2230 if (restricted)
2231 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
2232 }
2233 }
2234
2235 return (type);
2236 }
2237 \f
2238 /* Layout and output debug info for a record type. */
2239
2240 void
2241 gfc_finish_type (tree type)
2242 {
2243 tree decl;
2244
2245 decl = build_decl (input_location,
2246 TYPE_DECL, NULL_TREE, type);
2247 TYPE_STUB_DECL (type) = decl;
2248 layout_type (type);
2249 rest_of_type_compilation (type, 1);
2250 rest_of_decl_compilation (decl, 1, 0);
2251 }
2252 \f
2253 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
2254 or RECORD_TYPE pointed to by CONTEXT. The new field is chained
2255 to the end of the field list pointed to by *CHAIN.
2256
2257 Returns a pointer to the new field. */
2258
2259 static tree
2260 gfc_add_field_to_struct_1 (tree context, tree name, tree type, tree **chain)
2261 {
2262 tree decl = build_decl (input_location, FIELD_DECL, name, type);
2263
2264 DECL_CONTEXT (decl) = context;
2265 DECL_CHAIN (decl) = NULL_TREE;
2266 if (TYPE_FIELDS (context) == NULL_TREE)
2267 TYPE_FIELDS (context) = decl;
2268 if (chain != NULL)
2269 {
2270 if (*chain != NULL)
2271 **chain = decl;
2272 *chain = &DECL_CHAIN (decl);
2273 }
2274
2275 return decl;
2276 }
2277
2278 /* Like `gfc_add_field_to_struct_1', but adds alignment
2279 information. */
2280
2281 tree
2282 gfc_add_field_to_struct (tree context, tree name, tree type, tree **chain)
2283 {
2284 tree decl = gfc_add_field_to_struct_1 (context, name, type, chain);
2285
2286 DECL_INITIAL (decl) = 0;
2287 DECL_ALIGN (decl) = 0;
2288 DECL_USER_ALIGN (decl) = 0;
2289
2290 return decl;
2291 }
2292
2293
2294 /* Copy the backend_decl and component backend_decls if
2295 the two derived type symbols are "equal", as described
2296 in 4.4.2 and resolved by gfc_compare_derived_types. */
2297
2298 int
2299 gfc_copy_dt_decls_ifequal (gfc_symbol *from, gfc_symbol *to,
2300 bool from_gsym)
2301 {
2302 gfc_component *to_cm;
2303 gfc_component *from_cm;
2304
2305 if (from == to)
2306 return 1;
2307
2308 if (from->backend_decl == NULL
2309 || !gfc_compare_derived_types (from, to))
2310 return 0;
2311
2312 to->backend_decl = from->backend_decl;
2313
2314 to_cm = to->components;
2315 from_cm = from->components;
2316
2317 /* Copy the component declarations. If a component is itself
2318 a derived type, we need a copy of its component declarations.
2319 This is done by recursing into gfc_get_derived_type and
2320 ensures that the component's component declarations have
2321 been built. If it is a character, we need the character
2322 length, as well. */
2323 for (; to_cm; to_cm = to_cm->next, from_cm = from_cm->next)
2324 {
2325 to_cm->backend_decl = from_cm->backend_decl;
2326 if (from_cm->ts.type == BT_DERIVED
2327 && (!from_cm->attr.pointer || from_gsym))
2328 gfc_get_derived_type (to_cm->ts.u.derived);
2329 else if (from_cm->ts.type == BT_CLASS
2330 && (!CLASS_DATA (from_cm)->attr.class_pointer || from_gsym))
2331 gfc_get_derived_type (to_cm->ts.u.derived);
2332 else if (from_cm->ts.type == BT_CHARACTER)
2333 to_cm->ts.u.cl->backend_decl = from_cm->ts.u.cl->backend_decl;
2334 }
2335
2336 return 1;
2337 }
2338
2339
2340 /* Build a tree node for a procedure pointer component. */
2341
2342 tree
2343 gfc_get_ppc_type (gfc_component* c)
2344 {
2345 tree t;
2346
2347 /* Explicit interface. */
2348 if (c->attr.if_source != IFSRC_UNKNOWN && c->ts.interface)
2349 return build_pointer_type (gfc_get_function_type (c->ts.interface));
2350
2351 /* Implicit interface (only return value may be known). */
2352 if (c->attr.function && !c->attr.dimension && c->ts.type != BT_CHARACTER)
2353 t = gfc_typenode_for_spec (&c->ts);
2354 else
2355 t = void_type_node;
2356
2357 return build_pointer_type (build_function_type_list (t, NULL_TREE));
2358 }
2359
2360
2361 /* Build a tree node for a derived type. If there are equal
2362 derived types, with different local names, these are built
2363 at the same time. If an equal derived type has been built
2364 in a parent namespace, this is used. */
2365
2366 tree
2367 gfc_get_derived_type (gfc_symbol * derived)
2368 {
2369 tree typenode = NULL, field = NULL, field_type = NULL;
2370 tree canonical = NULL_TREE;
2371 tree *chain = NULL;
2372 bool got_canonical = false;
2373 bool unlimited_entity = false;
2374 gfc_component *c;
2375 gfc_dt_list *dt;
2376 gfc_namespace *ns;
2377
2378 if (derived->attr.unlimited_polymorphic)
2379 return ptr_type_node;
2380
2381 if (derived && derived->attr.flavor == FL_PROCEDURE
2382 && derived->attr.generic)
2383 derived = gfc_find_dt_in_generic (derived);
2384
2385 /* See if it's one of the iso_c_binding derived types. */
2386 if (derived->attr.is_iso_c == 1 || derived->ts.f90_type == BT_VOID)
2387 {
2388 if (derived->backend_decl)
2389 return derived->backend_decl;
2390
2391 if (derived->intmod_sym_id == ISOCBINDING_PTR)
2392 derived->backend_decl = ptr_type_node;
2393 else
2394 derived->backend_decl = pfunc_type_node;
2395
2396 derived->ts.kind = gfc_index_integer_kind;
2397 derived->ts.type = BT_INTEGER;
2398 /* Set the f90_type to BT_VOID as a way to recognize something of type
2399 BT_INTEGER that needs to fit a void * for the purpose of the
2400 iso_c_binding derived types. */
2401 derived->ts.f90_type = BT_VOID;
2402
2403 return derived->backend_decl;
2404 }
2405
2406 /* If use associated, use the module type for this one. */
2407 if (derived->backend_decl == NULL
2408 && derived->attr.use_assoc
2409 && derived->module
2410 && gfc_get_module_backend_decl (derived))
2411 goto copy_derived_types;
2412
2413 /* The derived types from an earlier namespace can be used as the
2414 canonical type. */
2415 if (derived->backend_decl == NULL && !derived->attr.use_assoc
2416 && gfc_global_ns_list)
2417 {
2418 for (ns = gfc_global_ns_list;
2419 ns->translated && !got_canonical;
2420 ns = ns->sibling)
2421 {
2422 dt = ns->derived_types;
2423 for (; dt && !canonical; dt = dt->next)
2424 {
2425 gfc_copy_dt_decls_ifequal (dt->derived, derived, true);
2426 if (derived->backend_decl)
2427 got_canonical = true;
2428 }
2429 }
2430 }
2431
2432 /* Store up the canonical type to be added to this one. */
2433 if (got_canonical)
2434 {
2435 if (TYPE_CANONICAL (derived->backend_decl))
2436 canonical = TYPE_CANONICAL (derived->backend_decl);
2437 else
2438 canonical = derived->backend_decl;
2439
2440 derived->backend_decl = NULL_TREE;
2441 }
2442
2443 /* derived->backend_decl != 0 means we saw it before, but its
2444 components' backend_decl may have not been built. */
2445 if (derived->backend_decl)
2446 {
2447 /* Its components' backend_decl have been built or we are
2448 seeing recursion through the formal arglist of a procedure
2449 pointer component. */
2450 if (TYPE_FIELDS (derived->backend_decl)
2451 || derived->attr.proc_pointer_comp)
2452 return derived->backend_decl;
2453 else
2454 typenode = derived->backend_decl;
2455 }
2456 else
2457 {
2458 /* We see this derived type first time, so build the type node. */
2459 typenode = make_node (RECORD_TYPE);
2460 TYPE_NAME (typenode) = get_identifier (derived->name);
2461 TYPE_PACKED (typenode) = flag_pack_derived;
2462 derived->backend_decl = typenode;
2463 }
2464
2465 if (derived->components
2466 && derived->components->ts.type == BT_DERIVED
2467 && strcmp (derived->components->name, "_data") == 0
2468 && derived->components->ts.u.derived->attr.unlimited_polymorphic)
2469 unlimited_entity = true;
2470
2471 /* Go through the derived type components, building them as
2472 necessary. The reason for doing this now is that it is
2473 possible to recurse back to this derived type through a
2474 pointer component (PR24092). If this happens, the fields
2475 will be built and so we can return the type. */
2476 for (c = derived->components; c; c = c->next)
2477 {
2478 if (c->ts.type != BT_DERIVED && c->ts.type != BT_CLASS)
2479 continue;
2480
2481 if ((!c->attr.pointer && !c->attr.proc_pointer)
2482 || c->ts.u.derived->backend_decl == NULL)
2483 c->ts.u.derived->backend_decl = gfc_get_derived_type (c->ts.u.derived);
2484
2485 if (c->ts.u.derived->attr.is_iso_c)
2486 {
2487 /* Need to copy the modified ts from the derived type. The
2488 typespec was modified because C_PTR/C_FUNPTR are translated
2489 into (void *) from derived types. */
2490 c->ts.type = c->ts.u.derived->ts.type;
2491 c->ts.kind = c->ts.u.derived->ts.kind;
2492 c->ts.f90_type = c->ts.u.derived->ts.f90_type;
2493 if (c->initializer)
2494 {
2495 c->initializer->ts.type = c->ts.type;
2496 c->initializer->ts.kind = c->ts.kind;
2497 c->initializer->ts.f90_type = c->ts.f90_type;
2498 c->initializer->expr_type = EXPR_NULL;
2499 }
2500 }
2501 }
2502
2503 if (TYPE_FIELDS (derived->backend_decl))
2504 return derived->backend_decl;
2505
2506 /* Build the type member list. Install the newly created RECORD_TYPE
2507 node as DECL_CONTEXT of each FIELD_DECL. */
2508 for (c = derived->components; c; c = c->next)
2509 {
2510 if (c->attr.proc_pointer)
2511 field_type = gfc_get_ppc_type (c);
2512 else if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
2513 field_type = c->ts.u.derived->backend_decl;
2514 else
2515 {
2516 if (c->ts.type == BT_CHARACTER && !c->ts.deferred)
2517 {
2518 /* Evaluate the string length. */
2519 gfc_conv_const_charlen (c->ts.u.cl);
2520 gcc_assert (c->ts.u.cl->backend_decl);
2521 }
2522 else if (c->ts.type == BT_CHARACTER)
2523 c->ts.u.cl->backend_decl
2524 = build_int_cst (gfc_charlen_type_node, 0);
2525
2526 field_type = gfc_typenode_for_spec (&c->ts);
2527 }
2528
2529 /* This returns an array descriptor type. Initialization may be
2530 required. */
2531 if ((c->attr.dimension || c->attr.codimension) && !c->attr.proc_pointer )
2532 {
2533 if (c->attr.pointer || c->attr.allocatable)
2534 {
2535 enum gfc_array_kind akind;
2536 if (c->attr.pointer)
2537 akind = c->attr.contiguous ? GFC_ARRAY_POINTER_CONT
2538 : GFC_ARRAY_POINTER;
2539 else
2540 akind = GFC_ARRAY_ALLOCATABLE;
2541 /* Pointers to arrays aren't actually pointer types. The
2542 descriptors are separate, but the data is common. */
2543 field_type = gfc_build_array_type (field_type, c->as, akind,
2544 !c->attr.target
2545 && !c->attr.pointer,
2546 c->attr.contiguous);
2547 }
2548 else
2549 field_type = gfc_get_nodesc_array_type (field_type, c->as,
2550 PACKED_STATIC,
2551 !c->attr.target);
2552 }
2553 else if ((c->attr.pointer || c->attr.allocatable)
2554 && !c->attr.proc_pointer
2555 && !(unlimited_entity && c == derived->components))
2556 field_type = build_pointer_type (field_type);
2557
2558 if (c->attr.pointer)
2559 field_type = gfc_nonrestricted_type (field_type);
2560
2561 /* vtype fields can point to different types to the base type. */
2562 if (c->ts.type == BT_DERIVED
2563 && c->ts.u.derived && c->ts.u.derived->attr.vtype)
2564 field_type = build_pointer_type_for_mode (TREE_TYPE (field_type),
2565 ptr_mode, true);
2566
2567 /* Ensure that the CLASS language specific flag is set. */
2568 if (c->ts.type == BT_CLASS)
2569 {
2570 if (POINTER_TYPE_P (field_type))
2571 GFC_CLASS_TYPE_P (TREE_TYPE (field_type)) = 1;
2572 else
2573 GFC_CLASS_TYPE_P (field_type) = 1;
2574 }
2575
2576 field = gfc_add_field_to_struct (typenode,
2577 get_identifier (c->name),
2578 field_type, &chain);
2579 if (c->loc.lb)
2580 gfc_set_decl_location (field, &c->loc);
2581 else if (derived->declared_at.lb)
2582 gfc_set_decl_location (field, &derived->declared_at);
2583
2584 gfc_finish_decl_attrs (field, &c->attr);
2585
2586 DECL_PACKED (field) |= TYPE_PACKED (typenode);
2587
2588 gcc_assert (field);
2589 if (!c->backend_decl)
2590 c->backend_decl = field;
2591 }
2592
2593 /* Now lay out the derived type, including the fields. */
2594 if (canonical)
2595 TYPE_CANONICAL (typenode) = canonical;
2596
2597 gfc_finish_type (typenode);
2598 gfc_set_decl_location (TYPE_STUB_DECL (typenode), &derived->declared_at);
2599 if (derived->module && derived->ns->proc_name
2600 && derived->ns->proc_name->attr.flavor == FL_MODULE)
2601 {
2602 if (derived->ns->proc_name->backend_decl
2603 && TREE_CODE (derived->ns->proc_name->backend_decl)
2604 == NAMESPACE_DECL)
2605 {
2606 TYPE_CONTEXT (typenode) = derived->ns->proc_name->backend_decl;
2607 DECL_CONTEXT (TYPE_STUB_DECL (typenode))
2608 = derived->ns->proc_name->backend_decl;
2609 }
2610 }
2611
2612 derived->backend_decl = typenode;
2613
2614 copy_derived_types:
2615
2616 for (dt = gfc_derived_types; dt; dt = dt->next)
2617 gfc_copy_dt_decls_ifequal (derived, dt->derived, false);
2618
2619 return derived->backend_decl;
2620 }
2621
2622
2623 int
2624 gfc_return_by_reference (gfc_symbol * sym)
2625 {
2626 if (!sym->attr.function)
2627 return 0;
2628
2629 if (sym->attr.dimension)
2630 return 1;
2631
2632 if (sym->ts.type == BT_CHARACTER
2633 && !sym->attr.is_bind_c
2634 && (!sym->attr.result
2635 || !sym->ns->proc_name
2636 || !sym->ns->proc_name->attr.is_bind_c))
2637 return 1;
2638
2639 /* Possibly return complex numbers by reference for g77 compatibility.
2640 We don't do this for calls to intrinsics (as the library uses the
2641 -fno-f2c calling convention), nor for calls to functions which always
2642 require an explicit interface, as no compatibility problems can
2643 arise there. */
2644 if (flag_f2c && sym->ts.type == BT_COMPLEX
2645 && !sym->attr.intrinsic && !sym->attr.always_explicit)
2646 return 1;
2647
2648 return 0;
2649 }
2650 \f
2651 static tree
2652 gfc_get_mixed_entry_union (gfc_namespace *ns)
2653 {
2654 tree type;
2655 tree *chain = NULL;
2656 char name[GFC_MAX_SYMBOL_LEN + 1];
2657 gfc_entry_list *el, *el2;
2658
2659 gcc_assert (ns->proc_name->attr.mixed_entry_master);
2660 gcc_assert (memcmp (ns->proc_name->name, "master.", 7) == 0);
2661
2662 snprintf (name, GFC_MAX_SYMBOL_LEN, "munion.%s", ns->proc_name->name + 7);
2663
2664 /* Build the type node. */
2665 type = make_node (UNION_TYPE);
2666
2667 TYPE_NAME (type) = get_identifier (name);
2668
2669 for (el = ns->entries; el; el = el->next)
2670 {
2671 /* Search for duplicates. */
2672 for (el2 = ns->entries; el2 != el; el2 = el2->next)
2673 if (el2->sym->result == el->sym->result)
2674 break;
2675
2676 if (el == el2)
2677 gfc_add_field_to_struct_1 (type,
2678 get_identifier (el->sym->result->name),
2679 gfc_sym_type (el->sym->result), &chain);
2680 }
2681
2682 /* Finish off the type. */
2683 gfc_finish_type (type);
2684 TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type)) = 1;
2685 return type;
2686 }
2687 \f
2688 /* Create a "fn spec" based on the formal arguments;
2689 cf. create_function_arglist. */
2690
2691 static tree
2692 create_fn_spec (gfc_symbol *sym, tree fntype)
2693 {
2694 char spec[150];
2695 size_t spec_len;
2696 gfc_formal_arglist *f;
2697 tree tmp;
2698
2699 memset (&spec, 0, sizeof (spec));
2700 spec[0] = '.';
2701 spec_len = 1;
2702
2703 if (sym->attr.entry_master)
2704 spec[spec_len++] = 'R';
2705 if (gfc_return_by_reference (sym))
2706 {
2707 gfc_symbol *result = sym->result ? sym->result : sym;
2708
2709 if (result->attr.pointer || sym->attr.proc_pointer)
2710 spec[spec_len++] = '.';
2711 else
2712 spec[spec_len++] = 'w';
2713 if (sym->ts.type == BT_CHARACTER)
2714 spec[spec_len++] = 'R';
2715 }
2716
2717 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2718 if (spec_len < sizeof (spec))
2719 {
2720 if (!f->sym || f->sym->attr.pointer || f->sym->attr.target
2721 || f->sym->attr.external || f->sym->attr.cray_pointer
2722 || (f->sym->ts.type == BT_DERIVED
2723 && (f->sym->ts.u.derived->attr.proc_pointer_comp
2724 || f->sym->ts.u.derived->attr.pointer_comp))
2725 || (f->sym->ts.type == BT_CLASS
2726 && (CLASS_DATA (f->sym)->ts.u.derived->attr.proc_pointer_comp
2727 || CLASS_DATA (f->sym)->ts.u.derived->attr.pointer_comp)))
2728 spec[spec_len++] = '.';
2729 else if (f->sym->attr.intent == INTENT_IN)
2730 spec[spec_len++] = 'r';
2731 else if (f->sym)
2732 spec[spec_len++] = 'w';
2733 }
2734
2735 tmp = build_tree_list (NULL_TREE, build_string (spec_len, spec));
2736 tmp = tree_cons (get_identifier ("fn spec"), tmp, TYPE_ATTRIBUTES (fntype));
2737 return build_type_attribute_variant (fntype, tmp);
2738 }
2739
2740
2741 tree
2742 gfc_get_function_type (gfc_symbol * sym)
2743 {
2744 tree type;
2745 vec<tree, va_gc> *typelist = NULL;
2746 gfc_formal_arglist *f;
2747 gfc_symbol *arg;
2748 int alternate_return = 0;
2749 bool is_varargs = true;
2750
2751 /* Make sure this symbol is a function, a subroutine or the main
2752 program. */
2753 gcc_assert (sym->attr.flavor == FL_PROCEDURE
2754 || sym->attr.flavor == FL_PROGRAM);
2755
2756 /* To avoid recursing infinitely on recursive types, we use error_mark_node
2757 so that they can be detected here and handled further down. */
2758 if (sym->backend_decl == NULL)
2759 sym->backend_decl = error_mark_node;
2760 else if (sym->backend_decl == error_mark_node)
2761 goto arg_type_list_done;
2762 else if (sym->attr.proc_pointer)
2763 return TREE_TYPE (TREE_TYPE (sym->backend_decl));
2764 else
2765 return TREE_TYPE (sym->backend_decl);
2766
2767 if (sym->attr.entry_master)
2768 /* Additional parameter for selecting an entry point. */
2769 vec_safe_push (typelist, gfc_array_index_type);
2770
2771 if (sym->result)
2772 arg = sym->result;
2773 else
2774 arg = sym;
2775
2776 if (arg->ts.type == BT_CHARACTER)
2777 gfc_conv_const_charlen (arg->ts.u.cl);
2778
2779 /* Some functions we use an extra parameter for the return value. */
2780 if (gfc_return_by_reference (sym))
2781 {
2782 type = gfc_sym_type (arg);
2783 if (arg->ts.type == BT_COMPLEX
2784 || arg->attr.dimension
2785 || arg->ts.type == BT_CHARACTER)
2786 type = build_reference_type (type);
2787
2788 vec_safe_push (typelist, type);
2789 if (arg->ts.type == BT_CHARACTER)
2790 {
2791 if (!arg->ts.deferred)
2792 /* Transfer by value. */
2793 vec_safe_push (typelist, gfc_charlen_type_node);
2794 else
2795 /* Deferred character lengths are transferred by reference
2796 so that the value can be returned. */
2797 vec_safe_push (typelist, build_pointer_type(gfc_charlen_type_node));
2798 }
2799 }
2800
2801 /* Build the argument types for the function. */
2802 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2803 {
2804 arg = f->sym;
2805 if (arg)
2806 {
2807 /* Evaluate constant character lengths here so that they can be
2808 included in the type. */
2809 if (arg->ts.type == BT_CHARACTER)
2810 gfc_conv_const_charlen (arg->ts.u.cl);
2811
2812 if (arg->attr.flavor == FL_PROCEDURE)
2813 {
2814 type = gfc_get_function_type (arg);
2815 type = build_pointer_type (type);
2816 }
2817 else
2818 type = gfc_sym_type (arg);
2819
2820 /* Parameter Passing Convention
2821
2822 We currently pass all parameters by reference.
2823 Parameters with INTENT(IN) could be passed by value.
2824 The problem arises if a function is called via an implicit
2825 prototype. In this situation the INTENT is not known.
2826 For this reason all parameters to global functions must be
2827 passed by reference. Passing by value would potentially
2828 generate bad code. Worse there would be no way of telling that
2829 this code was bad, except that it would give incorrect results.
2830
2831 Contained procedures could pass by value as these are never
2832 used without an explicit interface, and cannot be passed as
2833 actual parameters for a dummy procedure. */
2834
2835 vec_safe_push (typelist, type);
2836 }
2837 else
2838 {
2839 if (sym->attr.subroutine)
2840 alternate_return = 1;
2841 }
2842 }
2843
2844 /* Add hidden string length parameters. */
2845 for (f = gfc_sym_get_dummy_args (sym); f; f = f->next)
2846 {
2847 arg = f->sym;
2848 if (arg && arg->ts.type == BT_CHARACTER && !sym->attr.is_bind_c)
2849 {
2850 if (!arg->ts.deferred)
2851 /* Transfer by value. */
2852 type = gfc_charlen_type_node;
2853 else
2854 /* Deferred character lengths are transferred by reference
2855 so that the value can be returned. */
2856 type = build_pointer_type (gfc_charlen_type_node);
2857
2858 vec_safe_push (typelist, type);
2859 }
2860 }
2861
2862 if (!vec_safe_is_empty (typelist)
2863 || sym->attr.is_main_program
2864 || sym->attr.if_source != IFSRC_UNKNOWN)
2865 is_varargs = false;
2866
2867 if (sym->backend_decl == error_mark_node)
2868 sym->backend_decl = NULL_TREE;
2869
2870 arg_type_list_done:
2871
2872 if (alternate_return)
2873 type = integer_type_node;
2874 else if (!sym->attr.function || gfc_return_by_reference (sym))
2875 type = void_type_node;
2876 else if (sym->attr.mixed_entry_master)
2877 type = gfc_get_mixed_entry_union (sym->ns);
2878 else if (flag_f2c && sym->ts.type == BT_REAL
2879 && sym->ts.kind == gfc_default_real_kind
2880 && !sym->attr.always_explicit)
2881 {
2882 /* Special case: f2c calling conventions require that (scalar)
2883 default REAL functions return the C type double instead. f2c
2884 compatibility is only an issue with functions that don't
2885 require an explicit interface, as only these could be
2886 implemented in Fortran 77. */
2887 sym->ts.kind = gfc_default_double_kind;
2888 type = gfc_typenode_for_spec (&sym->ts);
2889 sym->ts.kind = gfc_default_real_kind;
2890 }
2891 else if (sym->result && sym->result->attr.proc_pointer)
2892 /* Procedure pointer return values. */
2893 {
2894 if (sym->result->attr.result && strcmp (sym->name,"ppr@") != 0)
2895 {
2896 /* Unset proc_pointer as gfc_get_function_type
2897 is called recursively. */
2898 sym->result->attr.proc_pointer = 0;
2899 type = build_pointer_type (gfc_get_function_type (sym->result));
2900 sym->result->attr.proc_pointer = 1;
2901 }
2902 else
2903 type = gfc_sym_type (sym->result);
2904 }
2905 else
2906 type = gfc_sym_type (sym);
2907
2908 if (is_varargs)
2909 type = build_varargs_function_type_vec (type, typelist);
2910 else
2911 type = build_function_type_vec (type, typelist);
2912 type = create_fn_spec (sym, type);
2913
2914 return type;
2915 }
2916 \f
2917 /* Language hooks for middle-end access to type nodes. */
2918
2919 /* Return an integer type with BITS bits of precision,
2920 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
2921
2922 tree
2923 gfc_type_for_size (unsigned bits, int unsignedp)
2924 {
2925 if (!unsignedp)
2926 {
2927 int i;
2928 for (i = 0; i <= MAX_INT_KINDS; ++i)
2929 {
2930 tree type = gfc_integer_types[i];
2931 if (type && bits == TYPE_PRECISION (type))
2932 return type;
2933 }
2934
2935 /* Handle TImode as a special case because it is used by some backends
2936 (e.g. ARM) even though it is not available for normal use. */
2937 #if HOST_BITS_PER_WIDE_INT >= 64
2938 if (bits == TYPE_PRECISION (intTI_type_node))
2939 return intTI_type_node;
2940 #endif
2941
2942 if (bits <= TYPE_PRECISION (intQI_type_node))
2943 return intQI_type_node;
2944 if (bits <= TYPE_PRECISION (intHI_type_node))
2945 return intHI_type_node;
2946 if (bits <= TYPE_PRECISION (intSI_type_node))
2947 return intSI_type_node;
2948 if (bits <= TYPE_PRECISION (intDI_type_node))
2949 return intDI_type_node;
2950 if (bits <= TYPE_PRECISION (intTI_type_node))
2951 return intTI_type_node;
2952 }
2953 else
2954 {
2955 if (bits <= TYPE_PRECISION (unsigned_intQI_type_node))
2956 return unsigned_intQI_type_node;
2957 if (bits <= TYPE_PRECISION (unsigned_intHI_type_node))
2958 return unsigned_intHI_type_node;
2959 if (bits <= TYPE_PRECISION (unsigned_intSI_type_node))
2960 return unsigned_intSI_type_node;
2961 if (bits <= TYPE_PRECISION (unsigned_intDI_type_node))
2962 return unsigned_intDI_type_node;
2963 if (bits <= TYPE_PRECISION (unsigned_intTI_type_node))
2964 return unsigned_intTI_type_node;
2965 }
2966
2967 return NULL_TREE;
2968 }
2969
2970 /* Return a data type that has machine mode MODE. If the mode is an
2971 integer, then UNSIGNEDP selects between signed and unsigned types. */
2972
2973 tree
2974 gfc_type_for_mode (machine_mode mode, int unsignedp)
2975 {
2976 int i;
2977 tree *base;
2978
2979 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
2980 base = gfc_real_types;
2981 else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
2982 base = gfc_complex_types;
2983 else if (SCALAR_INT_MODE_P (mode))
2984 {
2985 tree type = gfc_type_for_size (GET_MODE_PRECISION (mode), unsignedp);
2986 return type != NULL_TREE && mode == TYPE_MODE (type) ? type : NULL_TREE;
2987 }
2988 else if (VECTOR_MODE_P (mode))
2989 {
2990 machine_mode inner_mode = GET_MODE_INNER (mode);
2991 tree inner_type = gfc_type_for_mode (inner_mode, unsignedp);
2992 if (inner_type != NULL_TREE)
2993 return build_vector_type_for_mode (inner_type, mode);
2994 return NULL_TREE;
2995 }
2996 else
2997 return NULL_TREE;
2998
2999 for (i = 0; i <= MAX_REAL_KINDS; ++i)
3000 {
3001 tree type = base[i];
3002 if (type && mode == TYPE_MODE (type))
3003 return type;
3004 }
3005
3006 return NULL_TREE;
3007 }
3008
3009 /* Return TRUE if TYPE is a type with a hidden descriptor, fill in INFO
3010 in that case. */
3011
3012 bool
3013 gfc_get_array_descr_info (const_tree type, struct array_descr_info *info)
3014 {
3015 int rank, dim;
3016 bool indirect = false;
3017 tree etype, ptype, field, t, base_decl;
3018 tree data_off, dim_off, dim_size, elem_size;
3019 tree lower_suboff, upper_suboff, stride_suboff;
3020
3021 if (! GFC_DESCRIPTOR_TYPE_P (type))
3022 {
3023 if (! POINTER_TYPE_P (type))
3024 return false;
3025 type = TREE_TYPE (type);
3026 if (! GFC_DESCRIPTOR_TYPE_P (type))
3027 return false;
3028 indirect = true;
3029 }
3030
3031 rank = GFC_TYPE_ARRAY_RANK (type);
3032 if (rank >= (int) (sizeof (info->dimen) / sizeof (info->dimen[0])))
3033 return false;
3034
3035 etype = GFC_TYPE_ARRAY_DATAPTR_TYPE (type);
3036 gcc_assert (POINTER_TYPE_P (etype));
3037 etype = TREE_TYPE (etype);
3038
3039 /* If the type is not a scalar coarray. */
3040 if (TREE_CODE (etype) == ARRAY_TYPE)
3041 etype = TREE_TYPE (etype);
3042
3043 /* Can't handle variable sized elements yet. */
3044 if (int_size_in_bytes (etype) <= 0)
3045 return false;
3046 /* Nor non-constant lower bounds in assumed shape arrays. */
3047 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3048 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3049 {
3050 for (dim = 0; dim < rank; dim++)
3051 if (GFC_TYPE_ARRAY_LBOUND (type, dim) == NULL_TREE
3052 || TREE_CODE (GFC_TYPE_ARRAY_LBOUND (type, dim)) != INTEGER_CST)
3053 return false;
3054 }
3055
3056 memset (info, '\0', sizeof (*info));
3057 info->ndimensions = rank;
3058 info->ordering = array_descr_ordering_column_major;
3059 info->element_type = etype;
3060 ptype = build_pointer_type (gfc_array_index_type);
3061 base_decl = GFC_TYPE_ARRAY_BASE_DECL (type, indirect);
3062 if (!base_decl)
3063 {
3064 base_decl = make_node (DEBUG_EXPR_DECL);
3065 DECL_ARTIFICIAL (base_decl) = 1;
3066 TREE_TYPE (base_decl) = indirect ? build_pointer_type (ptype) : ptype;
3067 DECL_MODE (base_decl) = TYPE_MODE (TREE_TYPE (base_decl));
3068 GFC_TYPE_ARRAY_BASE_DECL (type, indirect) = base_decl;
3069 }
3070 info->base_decl = base_decl;
3071 if (indirect)
3072 base_decl = build1 (INDIRECT_REF, ptype, base_decl);
3073
3074 if (GFC_TYPE_ARRAY_SPAN (type))
3075 elem_size = GFC_TYPE_ARRAY_SPAN (type);
3076 else
3077 elem_size = fold_convert (gfc_array_index_type, TYPE_SIZE_UNIT (etype));
3078 field = TYPE_FIELDS (TYPE_MAIN_VARIANT (type));
3079 data_off = byte_position (field);
3080 field = DECL_CHAIN (field);
3081 field = DECL_CHAIN (field);
3082 field = DECL_CHAIN (field);
3083 dim_off = byte_position (field);
3084 dim_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (field)));
3085 field = TYPE_FIELDS (TREE_TYPE (TREE_TYPE (field)));
3086 stride_suboff = byte_position (field);
3087 field = DECL_CHAIN (field);
3088 lower_suboff = byte_position (field);
3089 field = DECL_CHAIN (field);
3090 upper_suboff = byte_position (field);
3091
3092 t = base_decl;
3093 if (!integer_zerop (data_off))
3094 t = fold_build_pointer_plus (t, data_off);
3095 t = build1 (NOP_EXPR, build_pointer_type (ptr_type_node), t);
3096 info->data_location = build1 (INDIRECT_REF, ptr_type_node, t);
3097 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE)
3098 info->allocated = build2 (NE_EXPR, boolean_type_node,
3099 info->data_location, null_pointer_node);
3100 else if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER
3101 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)
3102 info->associated = build2 (NE_EXPR, boolean_type_node,
3103 info->data_location, null_pointer_node);
3104
3105 for (dim = 0; dim < rank; dim++)
3106 {
3107 t = fold_build_pointer_plus (base_decl,
3108 size_binop (PLUS_EXPR,
3109 dim_off, lower_suboff));
3110 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3111 info->dimen[dim].lower_bound = t;
3112 t = fold_build_pointer_plus (base_decl,
3113 size_binop (PLUS_EXPR,
3114 dim_off, upper_suboff));
3115 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3116 info->dimen[dim].upper_bound = t;
3117 if (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE
3118 || GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT)
3119 {
3120 /* Assumed shape arrays have known lower bounds. */
3121 info->dimen[dim].upper_bound
3122 = build2 (MINUS_EXPR, gfc_array_index_type,
3123 info->dimen[dim].upper_bound,
3124 info->dimen[dim].lower_bound);
3125 info->dimen[dim].lower_bound
3126 = fold_convert (gfc_array_index_type,
3127 GFC_TYPE_ARRAY_LBOUND (type, dim));
3128 info->dimen[dim].upper_bound
3129 = build2 (PLUS_EXPR, gfc_array_index_type,
3130 info->dimen[dim].lower_bound,
3131 info->dimen[dim].upper_bound);
3132 }
3133 t = fold_build_pointer_plus (base_decl,
3134 size_binop (PLUS_EXPR,
3135 dim_off, stride_suboff));
3136 t = build1 (INDIRECT_REF, gfc_array_index_type, t);
3137 t = build2 (MULT_EXPR, gfc_array_index_type, t, elem_size);
3138 info->dimen[dim].stride = t;
3139 dim_off = size_binop (PLUS_EXPR, dim_off, dim_size);
3140 }
3141
3142 return true;
3143 }
3144
3145
3146 /* Create a type to handle vector subscripts for coarray library calls. It
3147 has the form:
3148 struct caf_vector_t {
3149 size_t nvec; // size of the vector
3150 union {
3151 struct {
3152 void *vector;
3153 int kind;
3154 } v;
3155 struct {
3156 ptrdiff_t lower_bound;
3157 ptrdiff_t upper_bound;
3158 ptrdiff_t stride;
3159 } triplet;
3160 } u;
3161 }
3162 where nvec == 0 for DIMEN_ELEMENT or DIMEN_RANGE and nvec being the vector
3163 size in case of DIMEN_VECTOR, where kind is the integer type of the vector. */
3164
3165 tree
3166 gfc_get_caf_vector_type (int dim)
3167 {
3168 static tree vector_types[GFC_MAX_DIMENSIONS];
3169 static tree vec_type = NULL_TREE;
3170 tree triplet_struct_type, vect_struct_type, union_type, tmp, *chain;
3171
3172 if (vector_types[dim-1] != NULL_TREE)
3173 return vector_types[dim-1];
3174
3175 if (vec_type == NULL_TREE)
3176 {
3177 chain = 0;
3178 vect_struct_type = make_node (RECORD_TYPE);
3179 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3180 get_identifier ("vector"),
3181 pvoid_type_node, &chain);
3182 TREE_NO_WARNING (tmp) = 1;
3183 tmp = gfc_add_field_to_struct_1 (vect_struct_type,
3184 get_identifier ("kind"),
3185 integer_type_node, &chain);
3186 TREE_NO_WARNING (tmp) = 1;
3187 gfc_finish_type (vect_struct_type);
3188
3189 chain = 0;
3190 triplet_struct_type = make_node (RECORD_TYPE);
3191 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3192 get_identifier ("lower_bound"),
3193 gfc_array_index_type, &chain);
3194 TREE_NO_WARNING (tmp) = 1;
3195 tmp = gfc_add_field_to_struct_1 (triplet_struct_type,
3196 get_identifier ("upper_bound"),
3197 gfc_array_index_type, &chain);
3198 TREE_NO_WARNING (tmp) = 1;
3199 tmp = gfc_add_field_to_struct_1 (triplet_struct_type, get_identifier ("stride"),
3200 gfc_array_index_type, &chain);
3201 TREE_NO_WARNING (tmp) = 1;
3202 gfc_finish_type (triplet_struct_type);
3203
3204 chain = 0;
3205 union_type = make_node (UNION_TYPE);
3206 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("v"),
3207 vect_struct_type, &chain);
3208 TREE_NO_WARNING (tmp) = 1;
3209 tmp = gfc_add_field_to_struct_1 (union_type, get_identifier ("triplet"),
3210 triplet_struct_type, &chain);
3211 TREE_NO_WARNING (tmp) = 1;
3212 gfc_finish_type (union_type);
3213
3214 chain = 0;
3215 vec_type = make_node (RECORD_TYPE);
3216 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("nvec"),
3217 size_type_node, &chain);
3218 TREE_NO_WARNING (tmp) = 1;
3219 tmp = gfc_add_field_to_struct_1 (vec_type, get_identifier ("u"),
3220 union_type, &chain);
3221 TREE_NO_WARNING (tmp) = 1;
3222 gfc_finish_type (vec_type);
3223 TYPE_NAME (vec_type) = get_identifier ("caf_vector_t");
3224 }
3225
3226 tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node,
3227 gfc_rank_cst[dim-1]);
3228 vector_types[dim-1] = build_array_type (vec_type, tmp);
3229 return vector_types[dim-1];
3230 }
3231
3232 #include "gt-fortran-trans-types.h"