]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
464c6cdaa57771c842254b73b99e118f30dab116
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
66 #include "shrink-wrap.h"
67 #include "toplev.h"
68 #include "rtl-iter.h"
69
70 /* So we can assign to cfun in this file. */
71 #undef cfun
72
73 #ifndef STACK_ALIGNMENT_NEEDED
74 #define STACK_ALIGNMENT_NEEDED 1
75 #endif
76
77 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
78
79 /* Round a value to the lowest integer less than it that is a multiple of
80 the required alignment. Avoid using division in case the value is
81 negative. Assume the alignment is a power of two. */
82 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
83
84 /* Similar, but round to the next highest integer that meets the
85 alignment. */
86 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
87
88 /* Nonzero once virtual register instantiation has been done.
89 assign_stack_local uses frame_pointer_rtx when this is nonzero.
90 calls.c:emit_library_call_value_1 uses it to set up
91 post-instantiation libcalls. */
92 int virtuals_instantiated;
93
94 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
95 static GTY(()) int funcdef_no;
96
97 /* These variables hold pointers to functions to create and destroy
98 target specific, per-function data structures. */
99 struct machine_function * (*init_machine_status) (void);
100
101 /* The currently compiled function. */
102 struct function *cfun = 0;
103
104 /* These hashes record the prologue and epilogue insns. */
105 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
106 htab_t prologue_insn_hash;
107 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
108 htab_t epilogue_insn_hash;
109 \f
110
111 htab_t types_used_by_vars_hash = NULL;
112 vec<tree, va_gc> *types_used_by_cur_var_decl;
113
114 /* Forward declarations. */
115
116 static struct temp_slot *find_temp_slot_from_address (rtx);
117 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
118 static void pad_below (struct args_size *, enum machine_mode, tree);
119 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
120 static int all_blocks (tree, tree *);
121 static tree *get_block_vector (tree, int *);
122 extern tree debug_find_var_in_block_tree (tree, tree);
123 /* We always define `record_insns' even if it's not used so that we
124 can always export `prologue_epilogue_contains'. */
125 static void record_insns (rtx_insn *, rtx, htab_t *) ATTRIBUTE_UNUSED;
126 static bool contains (const_rtx, htab_t);
127 static void prepare_function_start (void);
128 static void do_clobber_return_reg (rtx, void *);
129 static void do_use_return_reg (rtx, void *);
130 \f
131 /* Stack of nested functions. */
132 /* Keep track of the cfun stack. */
133
134 typedef struct function *function_p;
135
136 static vec<function_p> function_context_stack;
137
138 /* Save the current context for compilation of a nested function.
139 This is called from language-specific code. */
140
141 void
142 push_function_context (void)
143 {
144 if (cfun == 0)
145 allocate_struct_function (NULL, false);
146
147 function_context_stack.safe_push (cfun);
148 set_cfun (NULL);
149 }
150
151 /* Restore the last saved context, at the end of a nested function.
152 This function is called from language-specific code. */
153
154 void
155 pop_function_context (void)
156 {
157 struct function *p = function_context_stack.pop ();
158 set_cfun (p);
159 current_function_decl = p->decl;
160
161 /* Reset variables that have known state during rtx generation. */
162 virtuals_instantiated = 0;
163 generating_concat_p = 1;
164 }
165
166 /* Clear out all parts of the state in F that can safely be discarded
167 after the function has been parsed, but not compiled, to let
168 garbage collection reclaim the memory. */
169
170 void
171 free_after_parsing (struct function *f)
172 {
173 f->language = 0;
174 }
175
176 /* Clear out all parts of the state in F that can safely be discarded
177 after the function has been compiled, to let garbage collection
178 reclaim the memory. */
179
180 void
181 free_after_compilation (struct function *f)
182 {
183 prologue_insn_hash = NULL;
184 epilogue_insn_hash = NULL;
185
186 free (crtl->emit.regno_pointer_align);
187
188 memset (crtl, 0, sizeof (struct rtl_data));
189 f->eh = NULL;
190 f->machine = NULL;
191 f->cfg = NULL;
192
193 regno_reg_rtx = NULL;
194 }
195 \f
196 /* Return size needed for stack frame based on slots so far allocated.
197 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
198 the caller may have to do that. */
199
200 HOST_WIDE_INT
201 get_frame_size (void)
202 {
203 if (FRAME_GROWS_DOWNWARD)
204 return -frame_offset;
205 else
206 return frame_offset;
207 }
208
209 /* Issue an error message and return TRUE if frame OFFSET overflows in
210 the signed target pointer arithmetics for function FUNC. Otherwise
211 return FALSE. */
212
213 bool
214 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
215 {
216 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
217
218 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
219 /* Leave room for the fixed part of the frame. */
220 - 64 * UNITS_PER_WORD)
221 {
222 error_at (DECL_SOURCE_LOCATION (func),
223 "total size of local objects too large");
224 return TRUE;
225 }
226
227 return FALSE;
228 }
229
230 /* Return stack slot alignment in bits for TYPE and MODE. */
231
232 static unsigned int
233 get_stack_local_alignment (tree type, enum machine_mode mode)
234 {
235 unsigned int alignment;
236
237 if (mode == BLKmode)
238 alignment = BIGGEST_ALIGNMENT;
239 else
240 alignment = GET_MODE_ALIGNMENT (mode);
241
242 /* Allow the frond-end to (possibly) increase the alignment of this
243 stack slot. */
244 if (! type)
245 type = lang_hooks.types.type_for_mode (mode, 0);
246
247 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
248 }
249
250 /* Determine whether it is possible to fit a stack slot of size SIZE and
251 alignment ALIGNMENT into an area in the stack frame that starts at
252 frame offset START and has a length of LENGTH. If so, store the frame
253 offset to be used for the stack slot in *POFFSET and return true;
254 return false otherwise. This function will extend the frame size when
255 given a start/length pair that lies at the end of the frame. */
256
257 static bool
258 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
259 HOST_WIDE_INT size, unsigned int alignment,
260 HOST_WIDE_INT *poffset)
261 {
262 HOST_WIDE_INT this_frame_offset;
263 int frame_off, frame_alignment, frame_phase;
264
265 /* Calculate how many bytes the start of local variables is off from
266 stack alignment. */
267 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
268 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
269 frame_phase = frame_off ? frame_alignment - frame_off : 0;
270
271 /* Round the frame offset to the specified alignment. */
272
273 /* We must be careful here, since FRAME_OFFSET might be negative and
274 division with a negative dividend isn't as well defined as we might
275 like. So we instead assume that ALIGNMENT is a power of two and
276 use logical operations which are unambiguous. */
277 if (FRAME_GROWS_DOWNWARD)
278 this_frame_offset
279 = (FLOOR_ROUND (start + length - size - frame_phase,
280 (unsigned HOST_WIDE_INT) alignment)
281 + frame_phase);
282 else
283 this_frame_offset
284 = (CEIL_ROUND (start - frame_phase,
285 (unsigned HOST_WIDE_INT) alignment)
286 + frame_phase);
287
288 /* See if it fits. If this space is at the edge of the frame,
289 consider extending the frame to make it fit. Our caller relies on
290 this when allocating a new slot. */
291 if (frame_offset == start && this_frame_offset < frame_offset)
292 frame_offset = this_frame_offset;
293 else if (this_frame_offset < start)
294 return false;
295 else if (start + length == frame_offset
296 && this_frame_offset + size > start + length)
297 frame_offset = this_frame_offset + size;
298 else if (this_frame_offset + size > start + length)
299 return false;
300
301 *poffset = this_frame_offset;
302 return true;
303 }
304
305 /* Create a new frame_space structure describing free space in the stack
306 frame beginning at START and ending at END, and chain it into the
307 function's frame_space_list. */
308
309 static void
310 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
311 {
312 struct frame_space *space = ggc_alloc<frame_space> ();
313 space->next = crtl->frame_space_list;
314 crtl->frame_space_list = space;
315 space->start = start;
316 space->length = end - start;
317 }
318
319 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
320 with machine mode MODE.
321
322 ALIGN controls the amount of alignment for the address of the slot:
323 0 means according to MODE,
324 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
325 -2 means use BITS_PER_UNIT,
326 positive specifies alignment boundary in bits.
327
328 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
329 alignment and ASLK_RECORD_PAD bit set if we should remember
330 extra space we allocated for alignment purposes. When we are
331 called from assign_stack_temp_for_type, it is not set so we don't
332 track the same stack slot in two independent lists.
333
334 We do not round to stack_boundary here. */
335
336 rtx
337 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
338 int align, int kind)
339 {
340 rtx x, addr;
341 int bigend_correction = 0;
342 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
343 unsigned int alignment, alignment_in_bits;
344
345 if (align == 0)
346 {
347 alignment = get_stack_local_alignment (NULL, mode);
348 alignment /= BITS_PER_UNIT;
349 }
350 else if (align == -1)
351 {
352 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
353 size = CEIL_ROUND (size, alignment);
354 }
355 else if (align == -2)
356 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
357 else
358 alignment = align / BITS_PER_UNIT;
359
360 alignment_in_bits = alignment * BITS_PER_UNIT;
361
362 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
363 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
364 {
365 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
366 alignment = alignment_in_bits / BITS_PER_UNIT;
367 }
368
369 if (SUPPORTS_STACK_ALIGNMENT)
370 {
371 if (crtl->stack_alignment_estimated < alignment_in_bits)
372 {
373 if (!crtl->stack_realign_processed)
374 crtl->stack_alignment_estimated = alignment_in_bits;
375 else
376 {
377 /* If stack is realigned and stack alignment value
378 hasn't been finalized, it is OK not to increase
379 stack_alignment_estimated. The bigger alignment
380 requirement is recorded in stack_alignment_needed
381 below. */
382 gcc_assert (!crtl->stack_realign_finalized);
383 if (!crtl->stack_realign_needed)
384 {
385 /* It is OK to reduce the alignment as long as the
386 requested size is 0 or the estimated stack
387 alignment >= mode alignment. */
388 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
389 || size == 0
390 || (crtl->stack_alignment_estimated
391 >= GET_MODE_ALIGNMENT (mode)));
392 alignment_in_bits = crtl->stack_alignment_estimated;
393 alignment = alignment_in_bits / BITS_PER_UNIT;
394 }
395 }
396 }
397 }
398
399 if (crtl->stack_alignment_needed < alignment_in_bits)
400 crtl->stack_alignment_needed = alignment_in_bits;
401 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
402 crtl->max_used_stack_slot_alignment = alignment_in_bits;
403
404 if (mode != BLKmode || size != 0)
405 {
406 if (kind & ASLK_RECORD_PAD)
407 {
408 struct frame_space **psp;
409
410 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
411 {
412 struct frame_space *space = *psp;
413 if (!try_fit_stack_local (space->start, space->length, size,
414 alignment, &slot_offset))
415 continue;
416 *psp = space->next;
417 if (slot_offset > space->start)
418 add_frame_space (space->start, slot_offset);
419 if (slot_offset + size < space->start + space->length)
420 add_frame_space (slot_offset + size,
421 space->start + space->length);
422 goto found_space;
423 }
424 }
425 }
426 else if (!STACK_ALIGNMENT_NEEDED)
427 {
428 slot_offset = frame_offset;
429 goto found_space;
430 }
431
432 old_frame_offset = frame_offset;
433
434 if (FRAME_GROWS_DOWNWARD)
435 {
436 frame_offset -= size;
437 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
438
439 if (kind & ASLK_RECORD_PAD)
440 {
441 if (slot_offset > frame_offset)
442 add_frame_space (frame_offset, slot_offset);
443 if (slot_offset + size < old_frame_offset)
444 add_frame_space (slot_offset + size, old_frame_offset);
445 }
446 }
447 else
448 {
449 frame_offset += size;
450 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
451
452 if (kind & ASLK_RECORD_PAD)
453 {
454 if (slot_offset > old_frame_offset)
455 add_frame_space (old_frame_offset, slot_offset);
456 if (slot_offset + size < frame_offset)
457 add_frame_space (slot_offset + size, frame_offset);
458 }
459 }
460
461 found_space:
462 /* On a big-endian machine, if we are allocating more space than we will use,
463 use the least significant bytes of those that are allocated. */
464 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
465 bigend_correction = size - GET_MODE_SIZE (mode);
466
467 /* If we have already instantiated virtual registers, return the actual
468 address relative to the frame pointer. */
469 if (virtuals_instantiated)
470 addr = plus_constant (Pmode, frame_pointer_rtx,
471 trunc_int_for_mode
472 (slot_offset + bigend_correction
473 + STARTING_FRAME_OFFSET, Pmode));
474 else
475 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
476 trunc_int_for_mode
477 (slot_offset + bigend_correction,
478 Pmode));
479
480 x = gen_rtx_MEM (mode, addr);
481 set_mem_align (x, alignment_in_bits);
482 MEM_NOTRAP_P (x) = 1;
483
484 stack_slot_list
485 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
486
487 if (frame_offset_overflow (frame_offset, current_function_decl))
488 frame_offset = 0;
489
490 return x;
491 }
492
493 /* Wrap up assign_stack_local_1 with last parameter as false. */
494
495 rtx
496 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
497 {
498 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
499 }
500 \f
501 /* In order to evaluate some expressions, such as function calls returning
502 structures in memory, we need to temporarily allocate stack locations.
503 We record each allocated temporary in the following structure.
504
505 Associated with each temporary slot is a nesting level. When we pop up
506 one level, all temporaries associated with the previous level are freed.
507 Normally, all temporaries are freed after the execution of the statement
508 in which they were created. However, if we are inside a ({...}) grouping,
509 the result may be in a temporary and hence must be preserved. If the
510 result could be in a temporary, we preserve it if we can determine which
511 one it is in. If we cannot determine which temporary may contain the
512 result, all temporaries are preserved. A temporary is preserved by
513 pretending it was allocated at the previous nesting level. */
514
515 struct GTY(()) temp_slot {
516 /* Points to next temporary slot. */
517 struct temp_slot *next;
518 /* Points to previous temporary slot. */
519 struct temp_slot *prev;
520 /* The rtx to used to reference the slot. */
521 rtx slot;
522 /* The size, in units, of the slot. */
523 HOST_WIDE_INT size;
524 /* The type of the object in the slot, or zero if it doesn't correspond
525 to a type. We use this to determine whether a slot can be reused.
526 It can be reused if objects of the type of the new slot will always
527 conflict with objects of the type of the old slot. */
528 tree type;
529 /* The alignment (in bits) of the slot. */
530 unsigned int align;
531 /* Nonzero if this temporary is currently in use. */
532 char in_use;
533 /* Nesting level at which this slot is being used. */
534 int level;
535 /* The offset of the slot from the frame_pointer, including extra space
536 for alignment. This info is for combine_temp_slots. */
537 HOST_WIDE_INT base_offset;
538 /* The size of the slot, including extra space for alignment. This
539 info is for combine_temp_slots. */
540 HOST_WIDE_INT full_size;
541 };
542
543 /* A table of addresses that represent a stack slot. The table is a mapping
544 from address RTXen to a temp slot. */
545 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
546 static size_t n_temp_slots_in_use;
547
548 /* Entry for the above hash table. */
549 struct GTY(()) temp_slot_address_entry {
550 hashval_t hash;
551 rtx address;
552 struct temp_slot *temp_slot;
553 };
554
555 /* Removes temporary slot TEMP from LIST. */
556
557 static void
558 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
559 {
560 if (temp->next)
561 temp->next->prev = temp->prev;
562 if (temp->prev)
563 temp->prev->next = temp->next;
564 else
565 *list = temp->next;
566
567 temp->prev = temp->next = NULL;
568 }
569
570 /* Inserts temporary slot TEMP to LIST. */
571
572 static void
573 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
574 {
575 temp->next = *list;
576 if (*list)
577 (*list)->prev = temp;
578 temp->prev = NULL;
579 *list = temp;
580 }
581
582 /* Returns the list of used temp slots at LEVEL. */
583
584 static struct temp_slot **
585 temp_slots_at_level (int level)
586 {
587 if (level >= (int) vec_safe_length (used_temp_slots))
588 vec_safe_grow_cleared (used_temp_slots, level + 1);
589
590 return &(*used_temp_slots)[level];
591 }
592
593 /* Returns the maximal temporary slot level. */
594
595 static int
596 max_slot_level (void)
597 {
598 if (!used_temp_slots)
599 return -1;
600
601 return used_temp_slots->length () - 1;
602 }
603
604 /* Moves temporary slot TEMP to LEVEL. */
605
606 static void
607 move_slot_to_level (struct temp_slot *temp, int level)
608 {
609 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
610 insert_slot_to_list (temp, temp_slots_at_level (level));
611 temp->level = level;
612 }
613
614 /* Make temporary slot TEMP available. */
615
616 static void
617 make_slot_available (struct temp_slot *temp)
618 {
619 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
620 insert_slot_to_list (temp, &avail_temp_slots);
621 temp->in_use = 0;
622 temp->level = -1;
623 n_temp_slots_in_use--;
624 }
625
626 /* Compute the hash value for an address -> temp slot mapping.
627 The value is cached on the mapping entry. */
628 static hashval_t
629 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
630 {
631 int do_not_record = 0;
632 return hash_rtx (t->address, GET_MODE (t->address),
633 &do_not_record, NULL, false);
634 }
635
636 /* Return the hash value for an address -> temp slot mapping. */
637 static hashval_t
638 temp_slot_address_hash (const void *p)
639 {
640 const struct temp_slot_address_entry *t;
641 t = (const struct temp_slot_address_entry *) p;
642 return t->hash;
643 }
644
645 /* Compare two address -> temp slot mapping entries. */
646 static int
647 temp_slot_address_eq (const void *p1, const void *p2)
648 {
649 const struct temp_slot_address_entry *t1, *t2;
650 t1 = (const struct temp_slot_address_entry *) p1;
651 t2 = (const struct temp_slot_address_entry *) p2;
652 return exp_equiv_p (t1->address, t2->address, 0, true);
653 }
654
655 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
656 static void
657 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
658 {
659 void **slot;
660 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
661 t->address = address;
662 t->temp_slot = temp_slot;
663 t->hash = temp_slot_address_compute_hash (t);
664 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
665 *slot = t;
666 }
667
668 /* Remove an address -> temp slot mapping entry if the temp slot is
669 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
670 static int
671 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
672 {
673 const struct temp_slot_address_entry *t;
674 t = (const struct temp_slot_address_entry *) *slot;
675 if (! t->temp_slot->in_use)
676 htab_clear_slot (temp_slot_address_table, slot);
677 return 1;
678 }
679
680 /* Remove all mappings of addresses to unused temp slots. */
681 static void
682 remove_unused_temp_slot_addresses (void)
683 {
684 /* Use quicker clearing if there aren't any active temp slots. */
685 if (n_temp_slots_in_use)
686 htab_traverse (temp_slot_address_table,
687 remove_unused_temp_slot_addresses_1,
688 NULL);
689 else
690 htab_empty (temp_slot_address_table);
691 }
692
693 /* Find the temp slot corresponding to the object at address X. */
694
695 static struct temp_slot *
696 find_temp_slot_from_address (rtx x)
697 {
698 struct temp_slot *p;
699 struct temp_slot_address_entry tmp, *t;
700
701 /* First try the easy way:
702 See if X exists in the address -> temp slot mapping. */
703 tmp.address = x;
704 tmp.temp_slot = NULL;
705 tmp.hash = temp_slot_address_compute_hash (&tmp);
706 t = (struct temp_slot_address_entry *)
707 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
708 if (t)
709 return t->temp_slot;
710
711 /* If we have a sum involving a register, see if it points to a temp
712 slot. */
713 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
714 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
715 return p;
716 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
717 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
718 return p;
719
720 /* Last resort: Address is a virtual stack var address. */
721 if (GET_CODE (x) == PLUS
722 && XEXP (x, 0) == virtual_stack_vars_rtx
723 && CONST_INT_P (XEXP (x, 1)))
724 {
725 int i;
726 for (i = max_slot_level (); i >= 0; i--)
727 for (p = *temp_slots_at_level (i); p; p = p->next)
728 {
729 if (INTVAL (XEXP (x, 1)) >= p->base_offset
730 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
731 return p;
732 }
733 }
734
735 return NULL;
736 }
737 \f
738 /* Allocate a temporary stack slot and record it for possible later
739 reuse.
740
741 MODE is the machine mode to be given to the returned rtx.
742
743 SIZE is the size in units of the space required. We do no rounding here
744 since assign_stack_local will do any required rounding.
745
746 TYPE is the type that will be used for the stack slot. */
747
748 rtx
749 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
750 tree type)
751 {
752 unsigned int align;
753 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
754 rtx slot;
755
756 /* If SIZE is -1 it means that somebody tried to allocate a temporary
757 of a variable size. */
758 gcc_assert (size != -1);
759
760 align = get_stack_local_alignment (type, mode);
761
762 /* Try to find an available, already-allocated temporary of the proper
763 mode which meets the size and alignment requirements. Choose the
764 smallest one with the closest alignment.
765
766 If assign_stack_temp is called outside of the tree->rtl expansion,
767 we cannot reuse the stack slots (that may still refer to
768 VIRTUAL_STACK_VARS_REGNUM). */
769 if (!virtuals_instantiated)
770 {
771 for (p = avail_temp_slots; p; p = p->next)
772 {
773 if (p->align >= align && p->size >= size
774 && GET_MODE (p->slot) == mode
775 && objects_must_conflict_p (p->type, type)
776 && (best_p == 0 || best_p->size > p->size
777 || (best_p->size == p->size && best_p->align > p->align)))
778 {
779 if (p->align == align && p->size == size)
780 {
781 selected = p;
782 cut_slot_from_list (selected, &avail_temp_slots);
783 best_p = 0;
784 break;
785 }
786 best_p = p;
787 }
788 }
789 }
790
791 /* Make our best, if any, the one to use. */
792 if (best_p)
793 {
794 selected = best_p;
795 cut_slot_from_list (selected, &avail_temp_slots);
796
797 /* If there are enough aligned bytes left over, make them into a new
798 temp_slot so that the extra bytes don't get wasted. Do this only
799 for BLKmode slots, so that we can be sure of the alignment. */
800 if (GET_MODE (best_p->slot) == BLKmode)
801 {
802 int alignment = best_p->align / BITS_PER_UNIT;
803 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
804
805 if (best_p->size - rounded_size >= alignment)
806 {
807 p = ggc_alloc<temp_slot> ();
808 p->in_use = 0;
809 p->size = best_p->size - rounded_size;
810 p->base_offset = best_p->base_offset + rounded_size;
811 p->full_size = best_p->full_size - rounded_size;
812 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
813 p->align = best_p->align;
814 p->type = best_p->type;
815 insert_slot_to_list (p, &avail_temp_slots);
816
817 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
818 stack_slot_list);
819
820 best_p->size = rounded_size;
821 best_p->full_size = rounded_size;
822 }
823 }
824 }
825
826 /* If we still didn't find one, make a new temporary. */
827 if (selected == 0)
828 {
829 HOST_WIDE_INT frame_offset_old = frame_offset;
830
831 p = ggc_alloc<temp_slot> ();
832
833 /* We are passing an explicit alignment request to assign_stack_local.
834 One side effect of that is assign_stack_local will not round SIZE
835 to ensure the frame offset remains suitably aligned.
836
837 So for requests which depended on the rounding of SIZE, we go ahead
838 and round it now. We also make sure ALIGNMENT is at least
839 BIGGEST_ALIGNMENT. */
840 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
841 p->slot = assign_stack_local_1 (mode,
842 (mode == BLKmode
843 ? CEIL_ROUND (size,
844 (int) align
845 / BITS_PER_UNIT)
846 : size),
847 align, 0);
848
849 p->align = align;
850
851 /* The following slot size computation is necessary because we don't
852 know the actual size of the temporary slot until assign_stack_local
853 has performed all the frame alignment and size rounding for the
854 requested temporary. Note that extra space added for alignment
855 can be either above or below this stack slot depending on which
856 way the frame grows. We include the extra space if and only if it
857 is above this slot. */
858 if (FRAME_GROWS_DOWNWARD)
859 p->size = frame_offset_old - frame_offset;
860 else
861 p->size = size;
862
863 /* Now define the fields used by combine_temp_slots. */
864 if (FRAME_GROWS_DOWNWARD)
865 {
866 p->base_offset = frame_offset;
867 p->full_size = frame_offset_old - frame_offset;
868 }
869 else
870 {
871 p->base_offset = frame_offset_old;
872 p->full_size = frame_offset - frame_offset_old;
873 }
874
875 selected = p;
876 }
877
878 p = selected;
879 p->in_use = 1;
880 p->type = type;
881 p->level = temp_slot_level;
882 n_temp_slots_in_use++;
883
884 pp = temp_slots_at_level (p->level);
885 insert_slot_to_list (p, pp);
886 insert_temp_slot_address (XEXP (p->slot, 0), p);
887
888 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
889 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
890 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
891
892 /* If we know the alias set for the memory that will be used, use
893 it. If there's no TYPE, then we don't know anything about the
894 alias set for the memory. */
895 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
896 set_mem_align (slot, align);
897
898 /* If a type is specified, set the relevant flags. */
899 if (type != 0)
900 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
901 MEM_NOTRAP_P (slot) = 1;
902
903 return slot;
904 }
905
906 /* Allocate a temporary stack slot and record it for possible later
907 reuse. First two arguments are same as in preceding function. */
908
909 rtx
910 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
911 {
912 return assign_stack_temp_for_type (mode, size, NULL_TREE);
913 }
914 \f
915 /* Assign a temporary.
916 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
917 and so that should be used in error messages. In either case, we
918 allocate of the given type.
919 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
920 it is 0 if a register is OK.
921 DONT_PROMOTE is 1 if we should not promote values in register
922 to wider modes. */
923
924 rtx
925 assign_temp (tree type_or_decl, int memory_required,
926 int dont_promote ATTRIBUTE_UNUSED)
927 {
928 tree type, decl;
929 enum machine_mode mode;
930 #ifdef PROMOTE_MODE
931 int unsignedp;
932 #endif
933
934 if (DECL_P (type_or_decl))
935 decl = type_or_decl, type = TREE_TYPE (decl);
936 else
937 decl = NULL, type = type_or_decl;
938
939 mode = TYPE_MODE (type);
940 #ifdef PROMOTE_MODE
941 unsignedp = TYPE_UNSIGNED (type);
942 #endif
943
944 if (mode == BLKmode || memory_required)
945 {
946 HOST_WIDE_INT size = int_size_in_bytes (type);
947 rtx tmp;
948
949 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
950 problems with allocating the stack space. */
951 if (size == 0)
952 size = 1;
953
954 /* Unfortunately, we don't yet know how to allocate variable-sized
955 temporaries. However, sometimes we can find a fixed upper limit on
956 the size, so try that instead. */
957 else if (size == -1)
958 size = max_int_size_in_bytes (type);
959
960 /* The size of the temporary may be too large to fit into an integer. */
961 /* ??? Not sure this should happen except for user silliness, so limit
962 this to things that aren't compiler-generated temporaries. The
963 rest of the time we'll die in assign_stack_temp_for_type. */
964 if (decl && size == -1
965 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
966 {
967 error ("size of variable %q+D is too large", decl);
968 size = 1;
969 }
970
971 tmp = assign_stack_temp_for_type (mode, size, type);
972 return tmp;
973 }
974
975 #ifdef PROMOTE_MODE
976 if (! dont_promote)
977 mode = promote_mode (type, mode, &unsignedp);
978 #endif
979
980 return gen_reg_rtx (mode);
981 }
982 \f
983 /* Combine temporary stack slots which are adjacent on the stack.
984
985 This allows for better use of already allocated stack space. This is only
986 done for BLKmode slots because we can be sure that we won't have alignment
987 problems in this case. */
988
989 static void
990 combine_temp_slots (void)
991 {
992 struct temp_slot *p, *q, *next, *next_q;
993 int num_slots;
994
995 /* We can't combine slots, because the information about which slot
996 is in which alias set will be lost. */
997 if (flag_strict_aliasing)
998 return;
999
1000 /* If there are a lot of temp slots, don't do anything unless
1001 high levels of optimization. */
1002 if (! flag_expensive_optimizations)
1003 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1004 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1005 return;
1006
1007 for (p = avail_temp_slots; p; p = next)
1008 {
1009 int delete_p = 0;
1010
1011 next = p->next;
1012
1013 if (GET_MODE (p->slot) != BLKmode)
1014 continue;
1015
1016 for (q = p->next; q; q = next_q)
1017 {
1018 int delete_q = 0;
1019
1020 next_q = q->next;
1021
1022 if (GET_MODE (q->slot) != BLKmode)
1023 continue;
1024
1025 if (p->base_offset + p->full_size == q->base_offset)
1026 {
1027 /* Q comes after P; combine Q into P. */
1028 p->size += q->size;
1029 p->full_size += q->full_size;
1030 delete_q = 1;
1031 }
1032 else if (q->base_offset + q->full_size == p->base_offset)
1033 {
1034 /* P comes after Q; combine P into Q. */
1035 q->size += p->size;
1036 q->full_size += p->full_size;
1037 delete_p = 1;
1038 break;
1039 }
1040 if (delete_q)
1041 cut_slot_from_list (q, &avail_temp_slots);
1042 }
1043
1044 /* Either delete P or advance past it. */
1045 if (delete_p)
1046 cut_slot_from_list (p, &avail_temp_slots);
1047 }
1048 }
1049 \f
1050 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1051 slot that previously was known by OLD_RTX. */
1052
1053 void
1054 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1055 {
1056 struct temp_slot *p;
1057
1058 if (rtx_equal_p (old_rtx, new_rtx))
1059 return;
1060
1061 p = find_temp_slot_from_address (old_rtx);
1062
1063 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1064 NEW_RTX is a register, see if one operand of the PLUS is a
1065 temporary location. If so, NEW_RTX points into it. Otherwise,
1066 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1067 in common between them. If so, try a recursive call on those
1068 values. */
1069 if (p == 0)
1070 {
1071 if (GET_CODE (old_rtx) != PLUS)
1072 return;
1073
1074 if (REG_P (new_rtx))
1075 {
1076 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1077 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1078 return;
1079 }
1080 else if (GET_CODE (new_rtx) != PLUS)
1081 return;
1082
1083 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1084 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1085 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1086 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1087 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1091
1092 return;
1093 }
1094
1095 /* Otherwise add an alias for the temp's address. */
1096 insert_temp_slot_address (new_rtx, p);
1097 }
1098
1099 /* If X could be a reference to a temporary slot, mark that slot as
1100 belonging to the to one level higher than the current level. If X
1101 matched one of our slots, just mark that one. Otherwise, we can't
1102 easily predict which it is, so upgrade all of them.
1103
1104 This is called when an ({...}) construct occurs and a statement
1105 returns a value in memory. */
1106
1107 void
1108 preserve_temp_slots (rtx x)
1109 {
1110 struct temp_slot *p = 0, *next;
1111
1112 if (x == 0)
1113 return;
1114
1115 /* If X is a register that is being used as a pointer, see if we have
1116 a temporary slot we know it points to. */
1117 if (REG_P (x) && REG_POINTER (x))
1118 p = find_temp_slot_from_address (x);
1119
1120 /* If X is not in memory or is at a constant address, it cannot be in
1121 a temporary slot. */
1122 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1123 return;
1124
1125 /* First see if we can find a match. */
1126 if (p == 0)
1127 p = find_temp_slot_from_address (XEXP (x, 0));
1128
1129 if (p != 0)
1130 {
1131 if (p->level == temp_slot_level)
1132 move_slot_to_level (p, temp_slot_level - 1);
1133 return;
1134 }
1135
1136 /* Otherwise, preserve all non-kept slots at this level. */
1137 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1138 {
1139 next = p->next;
1140 move_slot_to_level (p, temp_slot_level - 1);
1141 }
1142 }
1143
1144 /* Free all temporaries used so far. This is normally called at the
1145 end of generating code for a statement. */
1146
1147 void
1148 free_temp_slots (void)
1149 {
1150 struct temp_slot *p, *next;
1151 bool some_available = false;
1152
1153 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1154 {
1155 next = p->next;
1156 make_slot_available (p);
1157 some_available = true;
1158 }
1159
1160 if (some_available)
1161 {
1162 remove_unused_temp_slot_addresses ();
1163 combine_temp_slots ();
1164 }
1165 }
1166
1167 /* Push deeper into the nesting level for stack temporaries. */
1168
1169 void
1170 push_temp_slots (void)
1171 {
1172 temp_slot_level++;
1173 }
1174
1175 /* Pop a temporary nesting level. All slots in use in the current level
1176 are freed. */
1177
1178 void
1179 pop_temp_slots (void)
1180 {
1181 free_temp_slots ();
1182 temp_slot_level--;
1183 }
1184
1185 /* Initialize temporary slots. */
1186
1187 void
1188 init_temp_slots (void)
1189 {
1190 /* We have not allocated any temporaries yet. */
1191 avail_temp_slots = 0;
1192 vec_alloc (used_temp_slots, 0);
1193 temp_slot_level = 0;
1194 n_temp_slots_in_use = 0;
1195
1196 /* Set up the table to map addresses to temp slots. */
1197 if (! temp_slot_address_table)
1198 temp_slot_address_table = htab_create_ggc (32,
1199 temp_slot_address_hash,
1200 temp_slot_address_eq,
1201 NULL);
1202 else
1203 htab_empty (temp_slot_address_table);
1204 }
1205 \f
1206 /* Functions and data structures to keep track of the values hard regs
1207 had at the start of the function. */
1208
1209 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1210 and has_hard_reg_initial_val.. */
1211 typedef struct GTY(()) initial_value_pair {
1212 rtx hard_reg;
1213 rtx pseudo;
1214 } initial_value_pair;
1215 /* ??? This could be a VEC but there is currently no way to define an
1216 opaque VEC type. This could be worked around by defining struct
1217 initial_value_pair in function.h. */
1218 typedef struct GTY(()) initial_value_struct {
1219 int num_entries;
1220 int max_entries;
1221 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1222 } initial_value_struct;
1223
1224 /* If a pseudo represents an initial hard reg (or expression), return
1225 it, else return NULL_RTX. */
1226
1227 rtx
1228 get_hard_reg_initial_reg (rtx reg)
1229 {
1230 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1231 int i;
1232
1233 if (ivs == 0)
1234 return NULL_RTX;
1235
1236 for (i = 0; i < ivs->num_entries; i++)
1237 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1238 return ivs->entries[i].hard_reg;
1239
1240 return NULL_RTX;
1241 }
1242
1243 /* Make sure that there's a pseudo register of mode MODE that stores the
1244 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1245
1246 rtx
1247 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1248 {
1249 struct initial_value_struct *ivs;
1250 rtx rv;
1251
1252 rv = has_hard_reg_initial_val (mode, regno);
1253 if (rv)
1254 return rv;
1255
1256 ivs = crtl->hard_reg_initial_vals;
1257 if (ivs == 0)
1258 {
1259 ivs = ggc_alloc<initial_value_struct> ();
1260 ivs->num_entries = 0;
1261 ivs->max_entries = 5;
1262 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1263 crtl->hard_reg_initial_vals = ivs;
1264 }
1265
1266 if (ivs->num_entries >= ivs->max_entries)
1267 {
1268 ivs->max_entries += 5;
1269 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1270 ivs->max_entries);
1271 }
1272
1273 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1274 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1275
1276 return ivs->entries[ivs->num_entries++].pseudo;
1277 }
1278
1279 /* See if get_hard_reg_initial_val has been used to create a pseudo
1280 for the initial value of hard register REGNO in mode MODE. Return
1281 the associated pseudo if so, otherwise return NULL. */
1282
1283 rtx
1284 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1285 {
1286 struct initial_value_struct *ivs;
1287 int i;
1288
1289 ivs = crtl->hard_reg_initial_vals;
1290 if (ivs != 0)
1291 for (i = 0; i < ivs->num_entries; i++)
1292 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1293 && REGNO (ivs->entries[i].hard_reg) == regno)
1294 return ivs->entries[i].pseudo;
1295
1296 return NULL_RTX;
1297 }
1298
1299 unsigned int
1300 emit_initial_value_sets (void)
1301 {
1302 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1303 int i;
1304 rtx_insn *seq;
1305
1306 if (ivs == 0)
1307 return 0;
1308
1309 start_sequence ();
1310 for (i = 0; i < ivs->num_entries; i++)
1311 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1312 seq = get_insns ();
1313 end_sequence ();
1314
1315 emit_insn_at_entry (seq);
1316 return 0;
1317 }
1318
1319 /* Return the hardreg-pseudoreg initial values pair entry I and
1320 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1321 bool
1322 initial_value_entry (int i, rtx *hreg, rtx *preg)
1323 {
1324 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1325 if (!ivs || i >= ivs->num_entries)
1326 return false;
1327
1328 *hreg = ivs->entries[i].hard_reg;
1329 *preg = ivs->entries[i].pseudo;
1330 return true;
1331 }
1332 \f
1333 /* These routines are responsible for converting virtual register references
1334 to the actual hard register references once RTL generation is complete.
1335
1336 The following four variables are used for communication between the
1337 routines. They contain the offsets of the virtual registers from their
1338 respective hard registers. */
1339
1340 static int in_arg_offset;
1341 static int var_offset;
1342 static int dynamic_offset;
1343 static int out_arg_offset;
1344 static int cfa_offset;
1345
1346 /* In most machines, the stack pointer register is equivalent to the bottom
1347 of the stack. */
1348
1349 #ifndef STACK_POINTER_OFFSET
1350 #define STACK_POINTER_OFFSET 0
1351 #endif
1352
1353 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1354 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1355 #endif
1356
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1360
1361 #ifndef STACK_DYNAMIC_OFFSET
1362
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1370
1371 #ifdef INCOMING_REG_PARM_STACK_SPACE
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1384
1385 \f
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1389
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1392 {
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1395
1396 if (x == virtual_incoming_args_rtx)
1397 {
1398 if (stack_realign_drap)
1399 {
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1404 }
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1407 }
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1415 {
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1422 }
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1424 {
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1427 }
1428 else
1429 return NULL_RTX;
1430
1431 *poffset = offset;
1432 return new_rtx;
1433 }
1434
1435 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1436 registers present inside of *LOC. The expression is simplified,
1437 as much as possible, but is not to be considered "valid" in any sense
1438 implied by the target. Return true if any change is made. */
1439
1440 static bool
1441 instantiate_virtual_regs_in_rtx (rtx *loc)
1442 {
1443 if (!*loc)
1444 return false;
1445 bool changed = false;
1446 subrtx_ptr_iterator::array_type array;
1447 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1448 {
1449 rtx *loc = *iter;
1450 if (rtx x = *loc)
1451 {
1452 rtx new_rtx;
1453 HOST_WIDE_INT offset;
1454 switch (GET_CODE (x))
1455 {
1456 case REG:
1457 new_rtx = instantiate_new_reg (x, &offset);
1458 if (new_rtx)
1459 {
1460 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1461 changed = true;
1462 }
1463 iter.skip_subrtxes ();
1464 break;
1465
1466 case PLUS:
1467 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1468 if (new_rtx)
1469 {
1470 XEXP (x, 0) = new_rtx;
1471 *loc = plus_constant (GET_MODE (x), x, offset, true);
1472 changed = true;
1473 iter.skip_subrtxes ();
1474 break;
1475 }
1476
1477 /* FIXME -- from old code */
1478 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1479 we can commute the PLUS and SUBREG because pointers into the
1480 frame are well-behaved. */
1481 break;
1482
1483 default:
1484 break;
1485 }
1486 }
1487 }
1488 return changed;
1489 }
1490
1491 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1492 matches the predicate for insn CODE operand OPERAND. */
1493
1494 static int
1495 safe_insn_predicate (int code, int operand, rtx x)
1496 {
1497 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1498 }
1499
1500 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1501 registers present inside of insn. The result will be a valid insn. */
1502
1503 static void
1504 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1505 {
1506 HOST_WIDE_INT offset;
1507 int insn_code, i;
1508 bool any_change = false;
1509 rtx set, new_rtx, x;
1510 rtx_insn *seq;
1511
1512 /* There are some special cases to be handled first. */
1513 set = single_set (insn);
1514 if (set)
1515 {
1516 /* We're allowed to assign to a virtual register. This is interpreted
1517 to mean that the underlying register gets assigned the inverse
1518 transformation. This is used, for example, in the handling of
1519 non-local gotos. */
1520 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1521 if (new_rtx)
1522 {
1523 start_sequence ();
1524
1525 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1526 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1527 gen_int_mode (-offset, GET_MODE (new_rtx)));
1528 x = force_operand (x, new_rtx);
1529 if (x != new_rtx)
1530 emit_move_insn (new_rtx, x);
1531
1532 seq = get_insns ();
1533 end_sequence ();
1534
1535 emit_insn_before (seq, insn);
1536 delete_insn (insn);
1537 return;
1538 }
1539
1540 /* Handle a straight copy from a virtual register by generating a
1541 new add insn. The difference between this and falling through
1542 to the generic case is avoiding a new pseudo and eliminating a
1543 move insn in the initial rtl stream. */
1544 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1545 if (new_rtx && offset != 0
1546 && REG_P (SET_DEST (set))
1547 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1548 {
1549 start_sequence ();
1550
1551 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1552 gen_int_mode (offset,
1553 GET_MODE (SET_DEST (set))),
1554 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1555 if (x != SET_DEST (set))
1556 emit_move_insn (SET_DEST (set), x);
1557
1558 seq = get_insns ();
1559 end_sequence ();
1560
1561 emit_insn_before (seq, insn);
1562 delete_insn (insn);
1563 return;
1564 }
1565
1566 extract_insn (insn);
1567 insn_code = INSN_CODE (insn);
1568
1569 /* Handle a plus involving a virtual register by determining if the
1570 operands remain valid if they're modified in place. */
1571 if (GET_CODE (SET_SRC (set)) == PLUS
1572 && recog_data.n_operands >= 3
1573 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1574 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1575 && CONST_INT_P (recog_data.operand[2])
1576 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1577 {
1578 offset += INTVAL (recog_data.operand[2]);
1579
1580 /* If the sum is zero, then replace with a plain move. */
1581 if (offset == 0
1582 && REG_P (SET_DEST (set))
1583 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1584 {
1585 start_sequence ();
1586 emit_move_insn (SET_DEST (set), new_rtx);
1587 seq = get_insns ();
1588 end_sequence ();
1589
1590 emit_insn_before (seq, insn);
1591 delete_insn (insn);
1592 return;
1593 }
1594
1595 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1596
1597 /* Using validate_change and apply_change_group here leaves
1598 recog_data in an invalid state. Since we know exactly what
1599 we want to check, do those two by hand. */
1600 if (safe_insn_predicate (insn_code, 1, new_rtx)
1601 && safe_insn_predicate (insn_code, 2, x))
1602 {
1603 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1604 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1605 any_change = true;
1606
1607 /* Fall through into the regular operand fixup loop in
1608 order to take care of operands other than 1 and 2. */
1609 }
1610 }
1611 }
1612 else
1613 {
1614 extract_insn (insn);
1615 insn_code = INSN_CODE (insn);
1616 }
1617
1618 /* In the general case, we expect virtual registers to appear only in
1619 operands, and then only as either bare registers or inside memories. */
1620 for (i = 0; i < recog_data.n_operands; ++i)
1621 {
1622 x = recog_data.operand[i];
1623 switch (GET_CODE (x))
1624 {
1625 case MEM:
1626 {
1627 rtx addr = XEXP (x, 0);
1628
1629 if (!instantiate_virtual_regs_in_rtx (&addr))
1630 continue;
1631
1632 start_sequence ();
1633 x = replace_equiv_address (x, addr, true);
1634 /* It may happen that the address with the virtual reg
1635 was valid (e.g. based on the virtual stack reg, which might
1636 be acceptable to the predicates with all offsets), whereas
1637 the address now isn't anymore, for instance when the address
1638 is still offsetted, but the base reg isn't virtual-stack-reg
1639 anymore. Below we would do a force_reg on the whole operand,
1640 but this insn might actually only accept memory. Hence,
1641 before doing that last resort, try to reload the address into
1642 a register, so this operand stays a MEM. */
1643 if (!safe_insn_predicate (insn_code, i, x))
1644 {
1645 addr = force_reg (GET_MODE (addr), addr);
1646 x = replace_equiv_address (x, addr, true);
1647 }
1648 seq = get_insns ();
1649 end_sequence ();
1650 if (seq)
1651 emit_insn_before (seq, insn);
1652 }
1653 break;
1654
1655 case REG:
1656 new_rtx = instantiate_new_reg (x, &offset);
1657 if (new_rtx == NULL)
1658 continue;
1659 if (offset == 0)
1660 x = new_rtx;
1661 else
1662 {
1663 start_sequence ();
1664
1665 /* Careful, special mode predicates may have stuff in
1666 insn_data[insn_code].operand[i].mode that isn't useful
1667 to us for computing a new value. */
1668 /* ??? Recognize address_operand and/or "p" constraints
1669 to see if (plus new offset) is a valid before we put
1670 this through expand_simple_binop. */
1671 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1672 gen_int_mode (offset, GET_MODE (x)),
1673 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1674 seq = get_insns ();
1675 end_sequence ();
1676 emit_insn_before (seq, insn);
1677 }
1678 break;
1679
1680 case SUBREG:
1681 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1682 if (new_rtx == NULL)
1683 continue;
1684 if (offset != 0)
1685 {
1686 start_sequence ();
1687 new_rtx = expand_simple_binop
1688 (GET_MODE (new_rtx), PLUS, new_rtx,
1689 gen_int_mode (offset, GET_MODE (new_rtx)),
1690 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1691 seq = get_insns ();
1692 end_sequence ();
1693 emit_insn_before (seq, insn);
1694 }
1695 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1696 GET_MODE (new_rtx), SUBREG_BYTE (x));
1697 gcc_assert (x);
1698 break;
1699
1700 default:
1701 continue;
1702 }
1703
1704 /* At this point, X contains the new value for the operand.
1705 Validate the new value vs the insn predicate. Note that
1706 asm insns will have insn_code -1 here. */
1707 if (!safe_insn_predicate (insn_code, i, x))
1708 {
1709 start_sequence ();
1710 if (REG_P (x))
1711 {
1712 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1713 x = copy_to_reg (x);
1714 }
1715 else
1716 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1717 seq = get_insns ();
1718 end_sequence ();
1719 if (seq)
1720 emit_insn_before (seq, insn);
1721 }
1722
1723 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1724 any_change = true;
1725 }
1726
1727 if (any_change)
1728 {
1729 /* Propagate operand changes into the duplicates. */
1730 for (i = 0; i < recog_data.n_dups; ++i)
1731 *recog_data.dup_loc[i]
1732 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1733
1734 /* Force re-recognition of the instruction for validation. */
1735 INSN_CODE (insn) = -1;
1736 }
1737
1738 if (asm_noperands (PATTERN (insn)) >= 0)
1739 {
1740 if (!check_asm_operands (PATTERN (insn)))
1741 {
1742 error_for_asm (insn, "impossible constraint in %<asm%>");
1743 /* For asm goto, instead of fixing up all the edges
1744 just clear the template and clear input operands
1745 (asm goto doesn't have any output operands). */
1746 if (JUMP_P (insn))
1747 {
1748 rtx asm_op = extract_asm_operands (PATTERN (insn));
1749 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1750 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1751 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1752 }
1753 else
1754 delete_insn (insn);
1755 }
1756 }
1757 else
1758 {
1759 if (recog_memoized (insn) < 0)
1760 fatal_insn_not_found (insn);
1761 }
1762 }
1763
1764 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1765 do any instantiation required. */
1766
1767 void
1768 instantiate_decl_rtl (rtx x)
1769 {
1770 rtx addr;
1771
1772 if (x == 0)
1773 return;
1774
1775 /* If this is a CONCAT, recurse for the pieces. */
1776 if (GET_CODE (x) == CONCAT)
1777 {
1778 instantiate_decl_rtl (XEXP (x, 0));
1779 instantiate_decl_rtl (XEXP (x, 1));
1780 return;
1781 }
1782
1783 /* If this is not a MEM, no need to do anything. Similarly if the
1784 address is a constant or a register that is not a virtual register. */
1785 if (!MEM_P (x))
1786 return;
1787
1788 addr = XEXP (x, 0);
1789 if (CONSTANT_P (addr)
1790 || (REG_P (addr)
1791 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1792 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1793 return;
1794
1795 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1796 }
1797
1798 /* Helper for instantiate_decls called via walk_tree: Process all decls
1799 in the given DECL_VALUE_EXPR. */
1800
1801 static tree
1802 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1803 {
1804 tree t = *tp;
1805 if (! EXPR_P (t))
1806 {
1807 *walk_subtrees = 0;
1808 if (DECL_P (t))
1809 {
1810 if (DECL_RTL_SET_P (t))
1811 instantiate_decl_rtl (DECL_RTL (t));
1812 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1813 && DECL_INCOMING_RTL (t))
1814 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1815 if ((TREE_CODE (t) == VAR_DECL
1816 || TREE_CODE (t) == RESULT_DECL)
1817 && DECL_HAS_VALUE_EXPR_P (t))
1818 {
1819 tree v = DECL_VALUE_EXPR (t);
1820 walk_tree (&v, instantiate_expr, NULL, NULL);
1821 }
1822 }
1823 }
1824 return NULL;
1825 }
1826
1827 /* Subroutine of instantiate_decls: Process all decls in the given
1828 BLOCK node and all its subblocks. */
1829
1830 static void
1831 instantiate_decls_1 (tree let)
1832 {
1833 tree t;
1834
1835 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1836 {
1837 if (DECL_RTL_SET_P (t))
1838 instantiate_decl_rtl (DECL_RTL (t));
1839 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1840 {
1841 tree v = DECL_VALUE_EXPR (t);
1842 walk_tree (&v, instantiate_expr, NULL, NULL);
1843 }
1844 }
1845
1846 /* Process all subblocks. */
1847 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1848 instantiate_decls_1 (t);
1849 }
1850
1851 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1852 all virtual registers in their DECL_RTL's. */
1853
1854 static void
1855 instantiate_decls (tree fndecl)
1856 {
1857 tree decl;
1858 unsigned ix;
1859
1860 /* Process all parameters of the function. */
1861 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1862 {
1863 instantiate_decl_rtl (DECL_RTL (decl));
1864 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1865 if (DECL_HAS_VALUE_EXPR_P (decl))
1866 {
1867 tree v = DECL_VALUE_EXPR (decl);
1868 walk_tree (&v, instantiate_expr, NULL, NULL);
1869 }
1870 }
1871
1872 if ((decl = DECL_RESULT (fndecl))
1873 && TREE_CODE (decl) == RESULT_DECL)
1874 {
1875 if (DECL_RTL_SET_P (decl))
1876 instantiate_decl_rtl (DECL_RTL (decl));
1877 if (DECL_HAS_VALUE_EXPR_P (decl))
1878 {
1879 tree v = DECL_VALUE_EXPR (decl);
1880 walk_tree (&v, instantiate_expr, NULL, NULL);
1881 }
1882 }
1883
1884 /* Process the saved static chain if it exists. */
1885 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1886 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1887 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1888
1889 /* Now process all variables defined in the function or its subblocks. */
1890 instantiate_decls_1 (DECL_INITIAL (fndecl));
1891
1892 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1893 if (DECL_RTL_SET_P (decl))
1894 instantiate_decl_rtl (DECL_RTL (decl));
1895 vec_free (cfun->local_decls);
1896 }
1897
1898 /* Pass through the INSNS of function FNDECL and convert virtual register
1899 references to hard register references. */
1900
1901 static unsigned int
1902 instantiate_virtual_regs (void)
1903 {
1904 rtx_insn *insn;
1905
1906 /* Compute the offsets to use for this function. */
1907 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1908 var_offset = STARTING_FRAME_OFFSET;
1909 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1910 out_arg_offset = STACK_POINTER_OFFSET;
1911 #ifdef FRAME_POINTER_CFA_OFFSET
1912 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1913 #else
1914 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1915 #endif
1916
1917 /* Initialize recognition, indicating that volatile is OK. */
1918 init_recog ();
1919
1920 /* Scan through all the insns, instantiating every virtual register still
1921 present. */
1922 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1923 if (INSN_P (insn))
1924 {
1925 /* These patterns in the instruction stream can never be recognized.
1926 Fortunately, they shouldn't contain virtual registers either. */
1927 if (GET_CODE (PATTERN (insn)) == USE
1928 || GET_CODE (PATTERN (insn)) == CLOBBER
1929 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1930 continue;
1931 else if (DEBUG_INSN_P (insn))
1932 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1933 else
1934 instantiate_virtual_regs_in_insn (insn);
1935
1936 if (INSN_DELETED_P (insn))
1937 continue;
1938
1939 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1940
1941 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1942 if (CALL_P (insn))
1943 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1944 }
1945
1946 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1947 instantiate_decls (current_function_decl);
1948
1949 targetm.instantiate_decls ();
1950
1951 /* Indicate that, from now on, assign_stack_local should use
1952 frame_pointer_rtx. */
1953 virtuals_instantiated = 1;
1954
1955 return 0;
1956 }
1957
1958 namespace {
1959
1960 const pass_data pass_data_instantiate_virtual_regs =
1961 {
1962 RTL_PASS, /* type */
1963 "vregs", /* name */
1964 OPTGROUP_NONE, /* optinfo_flags */
1965 TV_NONE, /* tv_id */
1966 0, /* properties_required */
1967 0, /* properties_provided */
1968 0, /* properties_destroyed */
1969 0, /* todo_flags_start */
1970 0, /* todo_flags_finish */
1971 };
1972
1973 class pass_instantiate_virtual_regs : public rtl_opt_pass
1974 {
1975 public:
1976 pass_instantiate_virtual_regs (gcc::context *ctxt)
1977 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1978 {}
1979
1980 /* opt_pass methods: */
1981 virtual unsigned int execute (function *)
1982 {
1983 return instantiate_virtual_regs ();
1984 }
1985
1986 }; // class pass_instantiate_virtual_regs
1987
1988 } // anon namespace
1989
1990 rtl_opt_pass *
1991 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1992 {
1993 return new pass_instantiate_virtual_regs (ctxt);
1994 }
1995
1996 \f
1997 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1998 This means a type for which function calls must pass an address to the
1999 function or get an address back from the function.
2000 EXP may be a type node or an expression (whose type is tested). */
2001
2002 int
2003 aggregate_value_p (const_tree exp, const_tree fntype)
2004 {
2005 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2006 int i, regno, nregs;
2007 rtx reg;
2008
2009 if (fntype)
2010 switch (TREE_CODE (fntype))
2011 {
2012 case CALL_EXPR:
2013 {
2014 tree fndecl = get_callee_fndecl (fntype);
2015 fntype = (fndecl
2016 ? TREE_TYPE (fndecl)
2017 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2018 }
2019 break;
2020 case FUNCTION_DECL:
2021 fntype = TREE_TYPE (fntype);
2022 break;
2023 case FUNCTION_TYPE:
2024 case METHOD_TYPE:
2025 break;
2026 case IDENTIFIER_NODE:
2027 fntype = NULL_TREE;
2028 break;
2029 default:
2030 /* We don't expect other tree types here. */
2031 gcc_unreachable ();
2032 }
2033
2034 if (VOID_TYPE_P (type))
2035 return 0;
2036
2037 /* If a record should be passed the same as its first (and only) member
2038 don't pass it as an aggregate. */
2039 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2040 return aggregate_value_p (first_field (type), fntype);
2041
2042 /* If the front end has decided that this needs to be passed by
2043 reference, do so. */
2044 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2045 && DECL_BY_REFERENCE (exp))
2046 return 1;
2047
2048 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2049 if (fntype && TREE_ADDRESSABLE (fntype))
2050 return 1;
2051
2052 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2053 and thus can't be returned in registers. */
2054 if (TREE_ADDRESSABLE (type))
2055 return 1;
2056
2057 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2058 return 1;
2059
2060 if (targetm.calls.return_in_memory (type, fntype))
2061 return 1;
2062
2063 /* Make sure we have suitable call-clobbered regs to return
2064 the value in; if not, we must return it in memory. */
2065 reg = hard_function_value (type, 0, fntype, 0);
2066
2067 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2068 it is OK. */
2069 if (!REG_P (reg))
2070 return 0;
2071
2072 regno = REGNO (reg);
2073 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2074 for (i = 0; i < nregs; i++)
2075 if (! call_used_regs[regno + i])
2076 return 1;
2077
2078 return 0;
2079 }
2080 \f
2081 /* Return true if we should assign DECL a pseudo register; false if it
2082 should live on the local stack. */
2083
2084 bool
2085 use_register_for_decl (const_tree decl)
2086 {
2087 if (!targetm.calls.allocate_stack_slots_for_args ())
2088 return true;
2089
2090 /* Honor volatile. */
2091 if (TREE_SIDE_EFFECTS (decl))
2092 return false;
2093
2094 /* Honor addressability. */
2095 if (TREE_ADDRESSABLE (decl))
2096 return false;
2097
2098 /* Only register-like things go in registers. */
2099 if (DECL_MODE (decl) == BLKmode)
2100 return false;
2101
2102 /* If -ffloat-store specified, don't put explicit float variables
2103 into registers. */
2104 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2105 propagates values across these stores, and it probably shouldn't. */
2106 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2107 return false;
2108
2109 /* If we're not interested in tracking debugging information for
2110 this decl, then we can certainly put it in a register. */
2111 if (DECL_IGNORED_P (decl))
2112 return true;
2113
2114 if (optimize)
2115 return true;
2116
2117 if (!DECL_REGISTER (decl))
2118 return false;
2119
2120 switch (TREE_CODE (TREE_TYPE (decl)))
2121 {
2122 case RECORD_TYPE:
2123 case UNION_TYPE:
2124 case QUAL_UNION_TYPE:
2125 /* When not optimizing, disregard register keyword for variables with
2126 types containing methods, otherwise the methods won't be callable
2127 from the debugger. */
2128 if (TYPE_METHODS (TREE_TYPE (decl)))
2129 return false;
2130 break;
2131 default:
2132 break;
2133 }
2134
2135 return true;
2136 }
2137
2138 /* Return true if TYPE should be passed by invisible reference. */
2139
2140 bool
2141 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2142 tree type, bool named_arg)
2143 {
2144 if (type)
2145 {
2146 /* If this type contains non-trivial constructors, then it is
2147 forbidden for the middle-end to create any new copies. */
2148 if (TREE_ADDRESSABLE (type))
2149 return true;
2150
2151 /* GCC post 3.4 passes *all* variable sized types by reference. */
2152 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2153 return true;
2154
2155 /* If a record type should be passed the same as its first (and only)
2156 member, use the type and mode of that member. */
2157 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2158 {
2159 type = TREE_TYPE (first_field (type));
2160 mode = TYPE_MODE (type);
2161 }
2162 }
2163
2164 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2165 type, named_arg);
2166 }
2167
2168 /* Return true if TYPE, which is passed by reference, should be callee
2169 copied instead of caller copied. */
2170
2171 bool
2172 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2173 tree type, bool named_arg)
2174 {
2175 if (type && TREE_ADDRESSABLE (type))
2176 return false;
2177 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2178 named_arg);
2179 }
2180
2181 /* Structures to communicate between the subroutines of assign_parms.
2182 The first holds data persistent across all parameters, the second
2183 is cleared out for each parameter. */
2184
2185 struct assign_parm_data_all
2186 {
2187 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2188 should become a job of the target or otherwise encapsulated. */
2189 CUMULATIVE_ARGS args_so_far_v;
2190 cumulative_args_t args_so_far;
2191 struct args_size stack_args_size;
2192 tree function_result_decl;
2193 tree orig_fnargs;
2194 rtx_insn *first_conversion_insn;
2195 rtx_insn *last_conversion_insn;
2196 HOST_WIDE_INT pretend_args_size;
2197 HOST_WIDE_INT extra_pretend_bytes;
2198 int reg_parm_stack_space;
2199 };
2200
2201 struct assign_parm_data_one
2202 {
2203 tree nominal_type;
2204 tree passed_type;
2205 rtx entry_parm;
2206 rtx stack_parm;
2207 enum machine_mode nominal_mode;
2208 enum machine_mode passed_mode;
2209 enum machine_mode promoted_mode;
2210 struct locate_and_pad_arg_data locate;
2211 int partial;
2212 BOOL_BITFIELD named_arg : 1;
2213 BOOL_BITFIELD passed_pointer : 1;
2214 BOOL_BITFIELD on_stack : 1;
2215 BOOL_BITFIELD loaded_in_reg : 1;
2216 };
2217
2218 /* A subroutine of assign_parms. Initialize ALL. */
2219
2220 static void
2221 assign_parms_initialize_all (struct assign_parm_data_all *all)
2222 {
2223 tree fntype ATTRIBUTE_UNUSED;
2224
2225 memset (all, 0, sizeof (*all));
2226
2227 fntype = TREE_TYPE (current_function_decl);
2228
2229 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2230 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2231 #else
2232 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2233 current_function_decl, -1);
2234 #endif
2235 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2236
2237 #ifdef INCOMING_REG_PARM_STACK_SPACE
2238 all->reg_parm_stack_space
2239 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2240 #endif
2241 }
2242
2243 /* If ARGS contains entries with complex types, split the entry into two
2244 entries of the component type. Return a new list of substitutions are
2245 needed, else the old list. */
2246
2247 static void
2248 split_complex_args (vec<tree> *args)
2249 {
2250 unsigned i;
2251 tree p;
2252
2253 FOR_EACH_VEC_ELT (*args, i, p)
2254 {
2255 tree type = TREE_TYPE (p);
2256 if (TREE_CODE (type) == COMPLEX_TYPE
2257 && targetm.calls.split_complex_arg (type))
2258 {
2259 tree decl;
2260 tree subtype = TREE_TYPE (type);
2261 bool addressable = TREE_ADDRESSABLE (p);
2262
2263 /* Rewrite the PARM_DECL's type with its component. */
2264 p = copy_node (p);
2265 TREE_TYPE (p) = subtype;
2266 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2267 DECL_MODE (p) = VOIDmode;
2268 DECL_SIZE (p) = NULL;
2269 DECL_SIZE_UNIT (p) = NULL;
2270 /* If this arg must go in memory, put it in a pseudo here.
2271 We can't allow it to go in memory as per normal parms,
2272 because the usual place might not have the imag part
2273 adjacent to the real part. */
2274 DECL_ARTIFICIAL (p) = addressable;
2275 DECL_IGNORED_P (p) = addressable;
2276 TREE_ADDRESSABLE (p) = 0;
2277 layout_decl (p, 0);
2278 (*args)[i] = p;
2279
2280 /* Build a second synthetic decl. */
2281 decl = build_decl (EXPR_LOCATION (p),
2282 PARM_DECL, NULL_TREE, subtype);
2283 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2284 DECL_ARTIFICIAL (decl) = addressable;
2285 DECL_IGNORED_P (decl) = addressable;
2286 layout_decl (decl, 0);
2287 args->safe_insert (++i, decl);
2288 }
2289 }
2290 }
2291
2292 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2293 the hidden struct return argument, and (abi willing) complex args.
2294 Return the new parameter list. */
2295
2296 static vec<tree>
2297 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2298 {
2299 tree fndecl = current_function_decl;
2300 tree fntype = TREE_TYPE (fndecl);
2301 vec<tree> fnargs = vNULL;
2302 tree arg;
2303
2304 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2305 fnargs.safe_push (arg);
2306
2307 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2308
2309 /* If struct value address is treated as the first argument, make it so. */
2310 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2311 && ! cfun->returns_pcc_struct
2312 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2313 {
2314 tree type = build_pointer_type (TREE_TYPE (fntype));
2315 tree decl;
2316
2317 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2318 PARM_DECL, get_identifier (".result_ptr"), type);
2319 DECL_ARG_TYPE (decl) = type;
2320 DECL_ARTIFICIAL (decl) = 1;
2321 DECL_NAMELESS (decl) = 1;
2322 TREE_CONSTANT (decl) = 1;
2323
2324 DECL_CHAIN (decl) = all->orig_fnargs;
2325 all->orig_fnargs = decl;
2326 fnargs.safe_insert (0, decl);
2327
2328 all->function_result_decl = decl;
2329 }
2330
2331 /* If the target wants to split complex arguments into scalars, do so. */
2332 if (targetm.calls.split_complex_arg)
2333 split_complex_args (&fnargs);
2334
2335 return fnargs;
2336 }
2337
2338 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2339 data for the parameter. Incorporate ABI specifics such as pass-by-
2340 reference and type promotion. */
2341
2342 static void
2343 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2344 struct assign_parm_data_one *data)
2345 {
2346 tree nominal_type, passed_type;
2347 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2348 int unsignedp;
2349
2350 memset (data, 0, sizeof (*data));
2351
2352 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2353 if (!cfun->stdarg)
2354 data->named_arg = 1; /* No variadic parms. */
2355 else if (DECL_CHAIN (parm))
2356 data->named_arg = 1; /* Not the last non-variadic parm. */
2357 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2358 data->named_arg = 1; /* Only variadic ones are unnamed. */
2359 else
2360 data->named_arg = 0; /* Treat as variadic. */
2361
2362 nominal_type = TREE_TYPE (parm);
2363 passed_type = DECL_ARG_TYPE (parm);
2364
2365 /* Look out for errors propagating this far. Also, if the parameter's
2366 type is void then its value doesn't matter. */
2367 if (TREE_TYPE (parm) == error_mark_node
2368 /* This can happen after weird syntax errors
2369 or if an enum type is defined among the parms. */
2370 || TREE_CODE (parm) != PARM_DECL
2371 || passed_type == NULL
2372 || VOID_TYPE_P (nominal_type))
2373 {
2374 nominal_type = passed_type = void_type_node;
2375 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2376 goto egress;
2377 }
2378
2379 /* Find mode of arg as it is passed, and mode of arg as it should be
2380 during execution of this function. */
2381 passed_mode = TYPE_MODE (passed_type);
2382 nominal_mode = TYPE_MODE (nominal_type);
2383
2384 /* If the parm is to be passed as a transparent union or record, use the
2385 type of the first field for the tests below. We have already verified
2386 that the modes are the same. */
2387 if ((TREE_CODE (passed_type) == UNION_TYPE
2388 || TREE_CODE (passed_type) == RECORD_TYPE)
2389 && TYPE_TRANSPARENT_AGGR (passed_type))
2390 passed_type = TREE_TYPE (first_field (passed_type));
2391
2392 /* See if this arg was passed by invisible reference. */
2393 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2394 passed_type, data->named_arg))
2395 {
2396 passed_type = nominal_type = build_pointer_type (passed_type);
2397 data->passed_pointer = true;
2398 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2399 }
2400
2401 /* Find mode as it is passed by the ABI. */
2402 unsignedp = TYPE_UNSIGNED (passed_type);
2403 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2404 TREE_TYPE (current_function_decl), 0);
2405
2406 egress:
2407 data->nominal_type = nominal_type;
2408 data->passed_type = passed_type;
2409 data->nominal_mode = nominal_mode;
2410 data->passed_mode = passed_mode;
2411 data->promoted_mode = promoted_mode;
2412 }
2413
2414 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2415
2416 static void
2417 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2418 struct assign_parm_data_one *data, bool no_rtl)
2419 {
2420 int varargs_pretend_bytes = 0;
2421
2422 targetm.calls.setup_incoming_varargs (all->args_so_far,
2423 data->promoted_mode,
2424 data->passed_type,
2425 &varargs_pretend_bytes, no_rtl);
2426
2427 /* If the back-end has requested extra stack space, record how much is
2428 needed. Do not change pretend_args_size otherwise since it may be
2429 nonzero from an earlier partial argument. */
2430 if (varargs_pretend_bytes > 0)
2431 all->pretend_args_size = varargs_pretend_bytes;
2432 }
2433
2434 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2435 the incoming location of the current parameter. */
2436
2437 static void
2438 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2439 struct assign_parm_data_one *data)
2440 {
2441 HOST_WIDE_INT pretend_bytes = 0;
2442 rtx entry_parm;
2443 bool in_regs;
2444
2445 if (data->promoted_mode == VOIDmode)
2446 {
2447 data->entry_parm = data->stack_parm = const0_rtx;
2448 return;
2449 }
2450
2451 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2452 data->promoted_mode,
2453 data->passed_type,
2454 data->named_arg);
2455
2456 if (entry_parm == 0)
2457 data->promoted_mode = data->passed_mode;
2458
2459 /* Determine parm's home in the stack, in case it arrives in the stack
2460 or we should pretend it did. Compute the stack position and rtx where
2461 the argument arrives and its size.
2462
2463 There is one complexity here: If this was a parameter that would
2464 have been passed in registers, but wasn't only because it is
2465 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2466 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2467 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2468 as it was the previous time. */
2469 in_regs = entry_parm != 0;
2470 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2471 in_regs = true;
2472 #endif
2473 if (!in_regs && !data->named_arg)
2474 {
2475 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2476 {
2477 rtx tem;
2478 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2479 data->promoted_mode,
2480 data->passed_type, true);
2481 in_regs = tem != NULL;
2482 }
2483 }
2484
2485 /* If this parameter was passed both in registers and in the stack, use
2486 the copy on the stack. */
2487 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2488 data->passed_type))
2489 entry_parm = 0;
2490
2491 if (entry_parm)
2492 {
2493 int partial;
2494
2495 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2496 data->promoted_mode,
2497 data->passed_type,
2498 data->named_arg);
2499 data->partial = partial;
2500
2501 /* The caller might already have allocated stack space for the
2502 register parameters. */
2503 if (partial != 0 && all->reg_parm_stack_space == 0)
2504 {
2505 /* Part of this argument is passed in registers and part
2506 is passed on the stack. Ask the prologue code to extend
2507 the stack part so that we can recreate the full value.
2508
2509 PRETEND_BYTES is the size of the registers we need to store.
2510 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2511 stack space that the prologue should allocate.
2512
2513 Internally, gcc assumes that the argument pointer is aligned
2514 to STACK_BOUNDARY bits. This is used both for alignment
2515 optimizations (see init_emit) and to locate arguments that are
2516 aligned to more than PARM_BOUNDARY bits. We must preserve this
2517 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2518 a stack boundary. */
2519
2520 /* We assume at most one partial arg, and it must be the first
2521 argument on the stack. */
2522 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2523
2524 pretend_bytes = partial;
2525 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2526
2527 /* We want to align relative to the actual stack pointer, so
2528 don't include this in the stack size until later. */
2529 all->extra_pretend_bytes = all->pretend_args_size;
2530 }
2531 }
2532
2533 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2534 all->reg_parm_stack_space,
2535 entry_parm ? data->partial : 0, current_function_decl,
2536 &all->stack_args_size, &data->locate);
2537
2538 /* Update parm_stack_boundary if this parameter is passed in the
2539 stack. */
2540 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2541 crtl->parm_stack_boundary = data->locate.boundary;
2542
2543 /* Adjust offsets to include the pretend args. */
2544 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2545 data->locate.slot_offset.constant += pretend_bytes;
2546 data->locate.offset.constant += pretend_bytes;
2547
2548 data->entry_parm = entry_parm;
2549 }
2550
2551 /* A subroutine of assign_parms. If there is actually space on the stack
2552 for this parm, count it in stack_args_size and return true. */
2553
2554 static bool
2555 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2556 struct assign_parm_data_one *data)
2557 {
2558 /* Trivially true if we've no incoming register. */
2559 if (data->entry_parm == NULL)
2560 ;
2561 /* Also true if we're partially in registers and partially not,
2562 since we've arranged to drop the entire argument on the stack. */
2563 else if (data->partial != 0)
2564 ;
2565 /* Also true if the target says that it's passed in both registers
2566 and on the stack. */
2567 else if (GET_CODE (data->entry_parm) == PARALLEL
2568 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2569 ;
2570 /* Also true if the target says that there's stack allocated for
2571 all register parameters. */
2572 else if (all->reg_parm_stack_space > 0)
2573 ;
2574 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2575 else
2576 return false;
2577
2578 all->stack_args_size.constant += data->locate.size.constant;
2579 if (data->locate.size.var)
2580 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2581
2582 return true;
2583 }
2584
2585 /* A subroutine of assign_parms. Given that this parameter is allocated
2586 stack space by the ABI, find it. */
2587
2588 static void
2589 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2590 {
2591 rtx offset_rtx, stack_parm;
2592 unsigned int align, boundary;
2593
2594 /* If we're passing this arg using a reg, make its stack home the
2595 aligned stack slot. */
2596 if (data->entry_parm)
2597 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2598 else
2599 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2600
2601 stack_parm = crtl->args.internal_arg_pointer;
2602 if (offset_rtx != const0_rtx)
2603 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2604 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2605
2606 if (!data->passed_pointer)
2607 {
2608 set_mem_attributes (stack_parm, parm, 1);
2609 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2610 while promoted mode's size is needed. */
2611 if (data->promoted_mode != BLKmode
2612 && data->promoted_mode != DECL_MODE (parm))
2613 {
2614 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2615 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2616 {
2617 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2618 data->promoted_mode);
2619 if (offset)
2620 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2621 }
2622 }
2623 }
2624
2625 boundary = data->locate.boundary;
2626 align = BITS_PER_UNIT;
2627
2628 /* If we're padding upward, we know that the alignment of the slot
2629 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2630 intentionally forcing upward padding. Otherwise we have to come
2631 up with a guess at the alignment based on OFFSET_RTX. */
2632 if (data->locate.where_pad != downward || data->entry_parm)
2633 align = boundary;
2634 else if (CONST_INT_P (offset_rtx))
2635 {
2636 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2637 align = align & -align;
2638 }
2639 set_mem_align (stack_parm, align);
2640
2641 if (data->entry_parm)
2642 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2643
2644 data->stack_parm = stack_parm;
2645 }
2646
2647 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2648 always valid and contiguous. */
2649
2650 static void
2651 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2652 {
2653 rtx entry_parm = data->entry_parm;
2654 rtx stack_parm = data->stack_parm;
2655
2656 /* If this parm was passed part in regs and part in memory, pretend it
2657 arrived entirely in memory by pushing the register-part onto the stack.
2658 In the special case of a DImode or DFmode that is split, we could put
2659 it together in a pseudoreg directly, but for now that's not worth
2660 bothering with. */
2661 if (data->partial != 0)
2662 {
2663 /* Handle calls that pass values in multiple non-contiguous
2664 locations. The Irix 6 ABI has examples of this. */
2665 if (GET_CODE (entry_parm) == PARALLEL)
2666 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2667 data->passed_type,
2668 int_size_in_bytes (data->passed_type));
2669 else
2670 {
2671 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2672 move_block_from_reg (REGNO (entry_parm),
2673 validize_mem (copy_rtx (stack_parm)),
2674 data->partial / UNITS_PER_WORD);
2675 }
2676
2677 entry_parm = stack_parm;
2678 }
2679
2680 /* If we didn't decide this parm came in a register, by default it came
2681 on the stack. */
2682 else if (entry_parm == NULL)
2683 entry_parm = stack_parm;
2684
2685 /* When an argument is passed in multiple locations, we can't make use
2686 of this information, but we can save some copying if the whole argument
2687 is passed in a single register. */
2688 else if (GET_CODE (entry_parm) == PARALLEL
2689 && data->nominal_mode != BLKmode
2690 && data->passed_mode != BLKmode)
2691 {
2692 size_t i, len = XVECLEN (entry_parm, 0);
2693
2694 for (i = 0; i < len; i++)
2695 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2696 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2697 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2698 == data->passed_mode)
2699 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2700 {
2701 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2702 break;
2703 }
2704 }
2705
2706 data->entry_parm = entry_parm;
2707 }
2708
2709 /* A subroutine of assign_parms. Reconstitute any values which were
2710 passed in multiple registers and would fit in a single register. */
2711
2712 static void
2713 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2714 {
2715 rtx entry_parm = data->entry_parm;
2716
2717 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2718 This can be done with register operations rather than on the
2719 stack, even if we will store the reconstituted parameter on the
2720 stack later. */
2721 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2722 {
2723 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2724 emit_group_store (parmreg, entry_parm, data->passed_type,
2725 GET_MODE_SIZE (GET_MODE (entry_parm)));
2726 entry_parm = parmreg;
2727 }
2728
2729 data->entry_parm = entry_parm;
2730 }
2731
2732 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2733 always valid and properly aligned. */
2734
2735 static void
2736 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2737 {
2738 rtx stack_parm = data->stack_parm;
2739
2740 /* If we can't trust the parm stack slot to be aligned enough for its
2741 ultimate type, don't use that slot after entry. We'll make another
2742 stack slot, if we need one. */
2743 if (stack_parm
2744 && ((STRICT_ALIGNMENT
2745 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2746 || (data->nominal_type
2747 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2748 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2749 stack_parm = NULL;
2750
2751 /* If parm was passed in memory, and we need to convert it on entry,
2752 don't store it back in that same slot. */
2753 else if (data->entry_parm == stack_parm
2754 && data->nominal_mode != BLKmode
2755 && data->nominal_mode != data->passed_mode)
2756 stack_parm = NULL;
2757
2758 /* If stack protection is in effect for this function, don't leave any
2759 pointers in their passed stack slots. */
2760 else if (crtl->stack_protect_guard
2761 && (flag_stack_protect == 2
2762 || data->passed_pointer
2763 || POINTER_TYPE_P (data->nominal_type)))
2764 stack_parm = NULL;
2765
2766 data->stack_parm = stack_parm;
2767 }
2768
2769 /* A subroutine of assign_parms. Return true if the current parameter
2770 should be stored as a BLKmode in the current frame. */
2771
2772 static bool
2773 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2774 {
2775 if (data->nominal_mode == BLKmode)
2776 return true;
2777 if (GET_MODE (data->entry_parm) == BLKmode)
2778 return true;
2779
2780 #ifdef BLOCK_REG_PADDING
2781 /* Only assign_parm_setup_block knows how to deal with register arguments
2782 that are padded at the least significant end. */
2783 if (REG_P (data->entry_parm)
2784 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2785 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2786 == (BYTES_BIG_ENDIAN ? upward : downward)))
2787 return true;
2788 #endif
2789
2790 return false;
2791 }
2792
2793 /* A subroutine of assign_parms. Arrange for the parameter to be
2794 present and valid in DATA->STACK_RTL. */
2795
2796 static void
2797 assign_parm_setup_block (struct assign_parm_data_all *all,
2798 tree parm, struct assign_parm_data_one *data)
2799 {
2800 rtx entry_parm = data->entry_parm;
2801 rtx stack_parm = data->stack_parm;
2802 HOST_WIDE_INT size;
2803 HOST_WIDE_INT size_stored;
2804
2805 if (GET_CODE (entry_parm) == PARALLEL)
2806 entry_parm = emit_group_move_into_temps (entry_parm);
2807
2808 size = int_size_in_bytes (data->passed_type);
2809 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2810 if (stack_parm == 0)
2811 {
2812 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2813 stack_parm = assign_stack_local (BLKmode, size_stored,
2814 DECL_ALIGN (parm));
2815 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2816 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2817 set_mem_attributes (stack_parm, parm, 1);
2818 }
2819
2820 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2821 calls that pass values in multiple non-contiguous locations. */
2822 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2823 {
2824 rtx mem;
2825
2826 /* Note that we will be storing an integral number of words.
2827 So we have to be careful to ensure that we allocate an
2828 integral number of words. We do this above when we call
2829 assign_stack_local if space was not allocated in the argument
2830 list. If it was, this will not work if PARM_BOUNDARY is not
2831 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2832 if it becomes a problem. Exception is when BLKmode arrives
2833 with arguments not conforming to word_mode. */
2834
2835 if (data->stack_parm == 0)
2836 ;
2837 else if (GET_CODE (entry_parm) == PARALLEL)
2838 ;
2839 else
2840 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2841
2842 mem = validize_mem (copy_rtx (stack_parm));
2843
2844 /* Handle values in multiple non-contiguous locations. */
2845 if (GET_CODE (entry_parm) == PARALLEL)
2846 {
2847 push_to_sequence2 (all->first_conversion_insn,
2848 all->last_conversion_insn);
2849 emit_group_store (mem, entry_parm, data->passed_type, size);
2850 all->first_conversion_insn = get_insns ();
2851 all->last_conversion_insn = get_last_insn ();
2852 end_sequence ();
2853 }
2854
2855 else if (size == 0)
2856 ;
2857
2858 /* If SIZE is that of a mode no bigger than a word, just use
2859 that mode's store operation. */
2860 else if (size <= UNITS_PER_WORD)
2861 {
2862 enum machine_mode mode
2863 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2864
2865 if (mode != BLKmode
2866 #ifdef BLOCK_REG_PADDING
2867 && (size == UNITS_PER_WORD
2868 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2869 != (BYTES_BIG_ENDIAN ? upward : downward)))
2870 #endif
2871 )
2872 {
2873 rtx reg;
2874
2875 /* We are really truncating a word_mode value containing
2876 SIZE bytes into a value of mode MODE. If such an
2877 operation requires no actual instructions, we can refer
2878 to the value directly in mode MODE, otherwise we must
2879 start with the register in word_mode and explicitly
2880 convert it. */
2881 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2882 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2883 else
2884 {
2885 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2886 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2887 }
2888 emit_move_insn (change_address (mem, mode, 0), reg);
2889 }
2890
2891 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2892 machine must be aligned to the left before storing
2893 to memory. Note that the previous test doesn't
2894 handle all cases (e.g. SIZE == 3). */
2895 else if (size != UNITS_PER_WORD
2896 #ifdef BLOCK_REG_PADDING
2897 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2898 == downward)
2899 #else
2900 && BYTES_BIG_ENDIAN
2901 #endif
2902 )
2903 {
2904 rtx tem, x;
2905 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2906 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2907
2908 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2909 tem = change_address (mem, word_mode, 0);
2910 emit_move_insn (tem, x);
2911 }
2912 else
2913 move_block_from_reg (REGNO (entry_parm), mem,
2914 size_stored / UNITS_PER_WORD);
2915 }
2916 else
2917 move_block_from_reg (REGNO (entry_parm), mem,
2918 size_stored / UNITS_PER_WORD);
2919 }
2920 else if (data->stack_parm == 0)
2921 {
2922 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2923 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2924 BLOCK_OP_NORMAL);
2925 all->first_conversion_insn = get_insns ();
2926 all->last_conversion_insn = get_last_insn ();
2927 end_sequence ();
2928 }
2929
2930 data->stack_parm = stack_parm;
2931 SET_DECL_RTL (parm, stack_parm);
2932 }
2933
2934 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2935 parameter. Get it there. Perform all ABI specified conversions. */
2936
2937 static void
2938 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2939 struct assign_parm_data_one *data)
2940 {
2941 rtx parmreg, validated_mem;
2942 rtx equiv_stack_parm;
2943 enum machine_mode promoted_nominal_mode;
2944 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2945 bool did_conversion = false;
2946 bool need_conversion, moved;
2947
2948 /* Store the parm in a pseudoregister during the function, but we may
2949 need to do it in a wider mode. Using 2 here makes the result
2950 consistent with promote_decl_mode and thus expand_expr_real_1. */
2951 promoted_nominal_mode
2952 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2953 TREE_TYPE (current_function_decl), 2);
2954
2955 parmreg = gen_reg_rtx (promoted_nominal_mode);
2956
2957 if (!DECL_ARTIFICIAL (parm))
2958 mark_user_reg (parmreg);
2959
2960 /* If this was an item that we received a pointer to,
2961 set DECL_RTL appropriately. */
2962 if (data->passed_pointer)
2963 {
2964 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2965 set_mem_attributes (x, parm, 1);
2966 SET_DECL_RTL (parm, x);
2967 }
2968 else
2969 SET_DECL_RTL (parm, parmreg);
2970
2971 assign_parm_remove_parallels (data);
2972
2973 /* Copy the value into the register, thus bridging between
2974 assign_parm_find_data_types and expand_expr_real_1. */
2975
2976 equiv_stack_parm = data->stack_parm;
2977 validated_mem = validize_mem (copy_rtx (data->entry_parm));
2978
2979 need_conversion = (data->nominal_mode != data->passed_mode
2980 || promoted_nominal_mode != data->promoted_mode);
2981 moved = false;
2982
2983 if (need_conversion
2984 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2985 && data->nominal_mode == data->passed_mode
2986 && data->nominal_mode == GET_MODE (data->entry_parm))
2987 {
2988 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2989 mode, by the caller. We now have to convert it to
2990 NOMINAL_MODE, if different. However, PARMREG may be in
2991 a different mode than NOMINAL_MODE if it is being stored
2992 promoted.
2993
2994 If ENTRY_PARM is a hard register, it might be in a register
2995 not valid for operating in its mode (e.g., an odd-numbered
2996 register for a DFmode). In that case, moves are the only
2997 thing valid, so we can't do a convert from there. This
2998 occurs when the calling sequence allow such misaligned
2999 usages.
3000
3001 In addition, the conversion may involve a call, which could
3002 clobber parameters which haven't been copied to pseudo
3003 registers yet.
3004
3005 First, we try to emit an insn which performs the necessary
3006 conversion. We verify that this insn does not clobber any
3007 hard registers. */
3008
3009 enum insn_code icode;
3010 rtx op0, op1;
3011
3012 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3013 unsignedp);
3014
3015 op0 = parmreg;
3016 op1 = validated_mem;
3017 if (icode != CODE_FOR_nothing
3018 && insn_operand_matches (icode, 0, op0)
3019 && insn_operand_matches (icode, 1, op1))
3020 {
3021 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3022 rtx_insn *insn, *insns;
3023 rtx t = op1;
3024 HARD_REG_SET hardregs;
3025
3026 start_sequence ();
3027 /* If op1 is a hard register that is likely spilled, first
3028 force it into a pseudo, otherwise combiner might extend
3029 its lifetime too much. */
3030 if (GET_CODE (t) == SUBREG)
3031 t = SUBREG_REG (t);
3032 if (REG_P (t)
3033 && HARD_REGISTER_P (t)
3034 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3035 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3036 {
3037 t = gen_reg_rtx (GET_MODE (op1));
3038 emit_move_insn (t, op1);
3039 }
3040 else
3041 t = op1;
3042 rtx pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3043 data->passed_mode, unsignedp);
3044 emit_insn (pat);
3045 insns = get_insns ();
3046
3047 moved = true;
3048 CLEAR_HARD_REG_SET (hardregs);
3049 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3050 {
3051 if (INSN_P (insn))
3052 note_stores (PATTERN (insn), record_hard_reg_sets,
3053 &hardregs);
3054 if (!hard_reg_set_empty_p (hardregs))
3055 moved = false;
3056 }
3057
3058 end_sequence ();
3059
3060 if (moved)
3061 {
3062 emit_insn (insns);
3063 if (equiv_stack_parm != NULL_RTX)
3064 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3065 equiv_stack_parm);
3066 }
3067 }
3068 }
3069
3070 if (moved)
3071 /* Nothing to do. */
3072 ;
3073 else if (need_conversion)
3074 {
3075 /* We did not have an insn to convert directly, or the sequence
3076 generated appeared unsafe. We must first copy the parm to a
3077 pseudo reg, and save the conversion until after all
3078 parameters have been moved. */
3079
3080 int save_tree_used;
3081 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3082
3083 emit_move_insn (tempreg, validated_mem);
3084
3085 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3086 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3087
3088 if (GET_CODE (tempreg) == SUBREG
3089 && GET_MODE (tempreg) == data->nominal_mode
3090 && REG_P (SUBREG_REG (tempreg))
3091 && data->nominal_mode == data->passed_mode
3092 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3093 && GET_MODE_SIZE (GET_MODE (tempreg))
3094 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3095 {
3096 /* The argument is already sign/zero extended, so note it
3097 into the subreg. */
3098 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3099 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3100 }
3101
3102 /* TREE_USED gets set erroneously during expand_assignment. */
3103 save_tree_used = TREE_USED (parm);
3104 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3105 TREE_USED (parm) = save_tree_used;
3106 all->first_conversion_insn = get_insns ();
3107 all->last_conversion_insn = get_last_insn ();
3108 end_sequence ();
3109
3110 did_conversion = true;
3111 }
3112 else
3113 emit_move_insn (parmreg, validated_mem);
3114
3115 /* If we were passed a pointer but the actual value can safely live
3116 in a register, retrieve it and use it directly. */
3117 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3118 {
3119 /* We can't use nominal_mode, because it will have been set to
3120 Pmode above. We must use the actual mode of the parm. */
3121 if (use_register_for_decl (parm))
3122 {
3123 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3124 mark_user_reg (parmreg);
3125 }
3126 else
3127 {
3128 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3129 TYPE_MODE (TREE_TYPE (parm)),
3130 TYPE_ALIGN (TREE_TYPE (parm)));
3131 parmreg
3132 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3133 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3134 align);
3135 set_mem_attributes (parmreg, parm, 1);
3136 }
3137
3138 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3139 {
3140 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3141 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3142
3143 push_to_sequence2 (all->first_conversion_insn,
3144 all->last_conversion_insn);
3145 emit_move_insn (tempreg, DECL_RTL (parm));
3146 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3147 emit_move_insn (parmreg, tempreg);
3148 all->first_conversion_insn = get_insns ();
3149 all->last_conversion_insn = get_last_insn ();
3150 end_sequence ();
3151
3152 did_conversion = true;
3153 }
3154 else
3155 emit_move_insn (parmreg, DECL_RTL (parm));
3156
3157 SET_DECL_RTL (parm, parmreg);
3158
3159 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3160 now the parm. */
3161 data->stack_parm = NULL;
3162 }
3163
3164 /* Mark the register as eliminable if we did no conversion and it was
3165 copied from memory at a fixed offset, and the arg pointer was not
3166 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3167 offset formed an invalid address, such memory-equivalences as we
3168 make here would screw up life analysis for it. */
3169 if (data->nominal_mode == data->passed_mode
3170 && !did_conversion
3171 && data->stack_parm != 0
3172 && MEM_P (data->stack_parm)
3173 && data->locate.offset.var == 0
3174 && reg_mentioned_p (virtual_incoming_args_rtx,
3175 XEXP (data->stack_parm, 0)))
3176 {
3177 rtx_insn *linsn = get_last_insn ();
3178 rtx_insn *sinsn;
3179 rtx set;
3180
3181 /* Mark complex types separately. */
3182 if (GET_CODE (parmreg) == CONCAT)
3183 {
3184 enum machine_mode submode
3185 = GET_MODE_INNER (GET_MODE (parmreg));
3186 int regnor = REGNO (XEXP (parmreg, 0));
3187 int regnoi = REGNO (XEXP (parmreg, 1));
3188 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3189 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3190 GET_MODE_SIZE (submode));
3191
3192 /* Scan backwards for the set of the real and
3193 imaginary parts. */
3194 for (sinsn = linsn; sinsn != 0;
3195 sinsn = prev_nonnote_insn (sinsn))
3196 {
3197 set = single_set (sinsn);
3198 if (set == 0)
3199 continue;
3200
3201 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3202 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3203 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3204 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3205 }
3206 }
3207 else
3208 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3209 }
3210
3211 /* For pointer data type, suggest pointer register. */
3212 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3213 mark_reg_pointer (parmreg,
3214 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3215 }
3216
3217 /* A subroutine of assign_parms. Allocate stack space to hold the current
3218 parameter. Get it there. Perform all ABI specified conversions. */
3219
3220 static void
3221 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3222 struct assign_parm_data_one *data)
3223 {
3224 /* Value must be stored in the stack slot STACK_PARM during function
3225 execution. */
3226 bool to_conversion = false;
3227
3228 assign_parm_remove_parallels (data);
3229
3230 if (data->promoted_mode != data->nominal_mode)
3231 {
3232 /* Conversion is required. */
3233 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3234
3235 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3236
3237 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3238 to_conversion = true;
3239
3240 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3241 TYPE_UNSIGNED (TREE_TYPE (parm)));
3242
3243 if (data->stack_parm)
3244 {
3245 int offset = subreg_lowpart_offset (data->nominal_mode,
3246 GET_MODE (data->stack_parm));
3247 /* ??? This may need a big-endian conversion on sparc64. */
3248 data->stack_parm
3249 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3250 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3251 set_mem_offset (data->stack_parm,
3252 MEM_OFFSET (data->stack_parm) + offset);
3253 }
3254 }
3255
3256 if (data->entry_parm != data->stack_parm)
3257 {
3258 rtx src, dest;
3259
3260 if (data->stack_parm == 0)
3261 {
3262 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3263 GET_MODE (data->entry_parm),
3264 TYPE_ALIGN (data->passed_type));
3265 data->stack_parm
3266 = assign_stack_local (GET_MODE (data->entry_parm),
3267 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3268 align);
3269 set_mem_attributes (data->stack_parm, parm, 1);
3270 }
3271
3272 dest = validize_mem (copy_rtx (data->stack_parm));
3273 src = validize_mem (copy_rtx (data->entry_parm));
3274
3275 if (MEM_P (src))
3276 {
3277 /* Use a block move to handle potentially misaligned entry_parm. */
3278 if (!to_conversion)
3279 push_to_sequence2 (all->first_conversion_insn,
3280 all->last_conversion_insn);
3281 to_conversion = true;
3282
3283 emit_block_move (dest, src,
3284 GEN_INT (int_size_in_bytes (data->passed_type)),
3285 BLOCK_OP_NORMAL);
3286 }
3287 else
3288 emit_move_insn (dest, src);
3289 }
3290
3291 if (to_conversion)
3292 {
3293 all->first_conversion_insn = get_insns ();
3294 all->last_conversion_insn = get_last_insn ();
3295 end_sequence ();
3296 }
3297
3298 SET_DECL_RTL (parm, data->stack_parm);
3299 }
3300
3301 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3302 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3303
3304 static void
3305 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3306 vec<tree> fnargs)
3307 {
3308 tree parm;
3309 tree orig_fnargs = all->orig_fnargs;
3310 unsigned i = 0;
3311
3312 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3313 {
3314 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3315 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3316 {
3317 rtx tmp, real, imag;
3318 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3319
3320 real = DECL_RTL (fnargs[i]);
3321 imag = DECL_RTL (fnargs[i + 1]);
3322 if (inner != GET_MODE (real))
3323 {
3324 real = gen_lowpart_SUBREG (inner, real);
3325 imag = gen_lowpart_SUBREG (inner, imag);
3326 }
3327
3328 if (TREE_ADDRESSABLE (parm))
3329 {
3330 rtx rmem, imem;
3331 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3332 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3333 DECL_MODE (parm),
3334 TYPE_ALIGN (TREE_TYPE (parm)));
3335
3336 /* split_complex_arg put the real and imag parts in
3337 pseudos. Move them to memory. */
3338 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3339 set_mem_attributes (tmp, parm, 1);
3340 rmem = adjust_address_nv (tmp, inner, 0);
3341 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3342 push_to_sequence2 (all->first_conversion_insn,
3343 all->last_conversion_insn);
3344 emit_move_insn (rmem, real);
3345 emit_move_insn (imem, imag);
3346 all->first_conversion_insn = get_insns ();
3347 all->last_conversion_insn = get_last_insn ();
3348 end_sequence ();
3349 }
3350 else
3351 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3352 SET_DECL_RTL (parm, tmp);
3353
3354 real = DECL_INCOMING_RTL (fnargs[i]);
3355 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3356 if (inner != GET_MODE (real))
3357 {
3358 real = gen_lowpart_SUBREG (inner, real);
3359 imag = gen_lowpart_SUBREG (inner, imag);
3360 }
3361 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3362 set_decl_incoming_rtl (parm, tmp, false);
3363 i++;
3364 }
3365 }
3366 }
3367
3368 /* Assign RTL expressions to the function's parameters. This may involve
3369 copying them into registers and using those registers as the DECL_RTL. */
3370
3371 static void
3372 assign_parms (tree fndecl)
3373 {
3374 struct assign_parm_data_all all;
3375 tree parm;
3376 vec<tree> fnargs;
3377 unsigned i;
3378
3379 crtl->args.internal_arg_pointer
3380 = targetm.calls.internal_arg_pointer ();
3381
3382 assign_parms_initialize_all (&all);
3383 fnargs = assign_parms_augmented_arg_list (&all);
3384
3385 FOR_EACH_VEC_ELT (fnargs, i, parm)
3386 {
3387 struct assign_parm_data_one data;
3388
3389 /* Extract the type of PARM; adjust it according to ABI. */
3390 assign_parm_find_data_types (&all, parm, &data);
3391
3392 /* Early out for errors and void parameters. */
3393 if (data.passed_mode == VOIDmode)
3394 {
3395 SET_DECL_RTL (parm, const0_rtx);
3396 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3397 continue;
3398 }
3399
3400 /* Estimate stack alignment from parameter alignment. */
3401 if (SUPPORTS_STACK_ALIGNMENT)
3402 {
3403 unsigned int align
3404 = targetm.calls.function_arg_boundary (data.promoted_mode,
3405 data.passed_type);
3406 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3407 align);
3408 if (TYPE_ALIGN (data.nominal_type) > align)
3409 align = MINIMUM_ALIGNMENT (data.nominal_type,
3410 TYPE_MODE (data.nominal_type),
3411 TYPE_ALIGN (data.nominal_type));
3412 if (crtl->stack_alignment_estimated < align)
3413 {
3414 gcc_assert (!crtl->stack_realign_processed);
3415 crtl->stack_alignment_estimated = align;
3416 }
3417 }
3418
3419 if (cfun->stdarg && !DECL_CHAIN (parm))
3420 assign_parms_setup_varargs (&all, &data, false);
3421
3422 /* Find out where the parameter arrives in this function. */
3423 assign_parm_find_entry_rtl (&all, &data);
3424
3425 /* Find out where stack space for this parameter might be. */
3426 if (assign_parm_is_stack_parm (&all, &data))
3427 {
3428 assign_parm_find_stack_rtl (parm, &data);
3429 assign_parm_adjust_entry_rtl (&data);
3430 }
3431
3432 /* Record permanently how this parm was passed. */
3433 if (data.passed_pointer)
3434 {
3435 rtx incoming_rtl
3436 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3437 data.entry_parm);
3438 set_decl_incoming_rtl (parm, incoming_rtl, true);
3439 }
3440 else
3441 set_decl_incoming_rtl (parm, data.entry_parm, false);
3442
3443 /* Update info on where next arg arrives in registers. */
3444 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3445 data.passed_type, data.named_arg);
3446
3447 assign_parm_adjust_stack_rtl (&data);
3448
3449 if (assign_parm_setup_block_p (&data))
3450 assign_parm_setup_block (&all, parm, &data);
3451 else if (data.passed_pointer || use_register_for_decl (parm))
3452 assign_parm_setup_reg (&all, parm, &data);
3453 else
3454 assign_parm_setup_stack (&all, parm, &data);
3455 }
3456
3457 if (targetm.calls.split_complex_arg)
3458 assign_parms_unsplit_complex (&all, fnargs);
3459
3460 fnargs.release ();
3461
3462 /* Output all parameter conversion instructions (possibly including calls)
3463 now that all parameters have been copied out of hard registers. */
3464 emit_insn (all.first_conversion_insn);
3465
3466 /* Estimate reload stack alignment from scalar return mode. */
3467 if (SUPPORTS_STACK_ALIGNMENT)
3468 {
3469 if (DECL_RESULT (fndecl))
3470 {
3471 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3472 enum machine_mode mode = TYPE_MODE (type);
3473
3474 if (mode != BLKmode
3475 && mode != VOIDmode
3476 && !AGGREGATE_TYPE_P (type))
3477 {
3478 unsigned int align = GET_MODE_ALIGNMENT (mode);
3479 if (crtl->stack_alignment_estimated < align)
3480 {
3481 gcc_assert (!crtl->stack_realign_processed);
3482 crtl->stack_alignment_estimated = align;
3483 }
3484 }
3485 }
3486 }
3487
3488 /* If we are receiving a struct value address as the first argument, set up
3489 the RTL for the function result. As this might require code to convert
3490 the transmitted address to Pmode, we do this here to ensure that possible
3491 preliminary conversions of the address have been emitted already. */
3492 if (all.function_result_decl)
3493 {
3494 tree result = DECL_RESULT (current_function_decl);
3495 rtx addr = DECL_RTL (all.function_result_decl);
3496 rtx x;
3497
3498 if (DECL_BY_REFERENCE (result))
3499 {
3500 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3501 x = addr;
3502 }
3503 else
3504 {
3505 SET_DECL_VALUE_EXPR (result,
3506 build1 (INDIRECT_REF, TREE_TYPE (result),
3507 all.function_result_decl));
3508 addr = convert_memory_address (Pmode, addr);
3509 x = gen_rtx_MEM (DECL_MODE (result), addr);
3510 set_mem_attributes (x, result, 1);
3511 }
3512
3513 DECL_HAS_VALUE_EXPR_P (result) = 1;
3514
3515 SET_DECL_RTL (result, x);
3516 }
3517
3518 /* We have aligned all the args, so add space for the pretend args. */
3519 crtl->args.pretend_args_size = all.pretend_args_size;
3520 all.stack_args_size.constant += all.extra_pretend_bytes;
3521 crtl->args.size = all.stack_args_size.constant;
3522
3523 /* Adjust function incoming argument size for alignment and
3524 minimum length. */
3525
3526 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3527 crtl->args.size = CEIL_ROUND (crtl->args.size,
3528 PARM_BOUNDARY / BITS_PER_UNIT);
3529
3530 #ifdef ARGS_GROW_DOWNWARD
3531 crtl->args.arg_offset_rtx
3532 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3533 : expand_expr (size_diffop (all.stack_args_size.var,
3534 size_int (-all.stack_args_size.constant)),
3535 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3536 #else
3537 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3538 #endif
3539
3540 /* See how many bytes, if any, of its args a function should try to pop
3541 on return. */
3542
3543 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3544 TREE_TYPE (fndecl),
3545 crtl->args.size);
3546
3547 /* For stdarg.h function, save info about
3548 regs and stack space used by the named args. */
3549
3550 crtl->args.info = all.args_so_far_v;
3551
3552 /* Set the rtx used for the function return value. Put this in its
3553 own variable so any optimizers that need this information don't have
3554 to include tree.h. Do this here so it gets done when an inlined
3555 function gets output. */
3556
3557 crtl->return_rtx
3558 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3559 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3560
3561 /* If scalar return value was computed in a pseudo-reg, or was a named
3562 return value that got dumped to the stack, copy that to the hard
3563 return register. */
3564 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3565 {
3566 tree decl_result = DECL_RESULT (fndecl);
3567 rtx decl_rtl = DECL_RTL (decl_result);
3568
3569 if (REG_P (decl_rtl)
3570 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3571 : DECL_REGISTER (decl_result))
3572 {
3573 rtx real_decl_rtl;
3574
3575 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3576 fndecl, true);
3577 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3578 /* The delay slot scheduler assumes that crtl->return_rtx
3579 holds the hard register containing the return value, not a
3580 temporary pseudo. */
3581 crtl->return_rtx = real_decl_rtl;
3582 }
3583 }
3584 }
3585
3586 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3587 For all seen types, gimplify their sizes. */
3588
3589 static tree
3590 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3591 {
3592 tree t = *tp;
3593
3594 *walk_subtrees = 0;
3595 if (TYPE_P (t))
3596 {
3597 if (POINTER_TYPE_P (t))
3598 *walk_subtrees = 1;
3599 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3600 && !TYPE_SIZES_GIMPLIFIED (t))
3601 {
3602 gimplify_type_sizes (t, (gimple_seq *) data);
3603 *walk_subtrees = 1;
3604 }
3605 }
3606
3607 return NULL;
3608 }
3609
3610 /* Gimplify the parameter list for current_function_decl. This involves
3611 evaluating SAVE_EXPRs of variable sized parameters and generating code
3612 to implement callee-copies reference parameters. Returns a sequence of
3613 statements to add to the beginning of the function. */
3614
3615 gimple_seq
3616 gimplify_parameters (void)
3617 {
3618 struct assign_parm_data_all all;
3619 tree parm;
3620 gimple_seq stmts = NULL;
3621 vec<tree> fnargs;
3622 unsigned i;
3623
3624 assign_parms_initialize_all (&all);
3625 fnargs = assign_parms_augmented_arg_list (&all);
3626
3627 FOR_EACH_VEC_ELT (fnargs, i, parm)
3628 {
3629 struct assign_parm_data_one data;
3630
3631 /* Extract the type of PARM; adjust it according to ABI. */
3632 assign_parm_find_data_types (&all, parm, &data);
3633
3634 /* Early out for errors and void parameters. */
3635 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3636 continue;
3637
3638 /* Update info on where next arg arrives in registers. */
3639 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3640 data.passed_type, data.named_arg);
3641
3642 /* ??? Once upon a time variable_size stuffed parameter list
3643 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3644 turned out to be less than manageable in the gimple world.
3645 Now we have to hunt them down ourselves. */
3646 walk_tree_without_duplicates (&data.passed_type,
3647 gimplify_parm_type, &stmts);
3648
3649 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3650 {
3651 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3652 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3653 }
3654
3655 if (data.passed_pointer)
3656 {
3657 tree type = TREE_TYPE (data.passed_type);
3658 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3659 type, data.named_arg))
3660 {
3661 tree local, t;
3662
3663 /* For constant-sized objects, this is trivial; for
3664 variable-sized objects, we have to play games. */
3665 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3666 && !(flag_stack_check == GENERIC_STACK_CHECK
3667 && compare_tree_int (DECL_SIZE_UNIT (parm),
3668 STACK_CHECK_MAX_VAR_SIZE) > 0))
3669 {
3670 local = create_tmp_var (type, get_name (parm));
3671 DECL_IGNORED_P (local) = 0;
3672 /* If PARM was addressable, move that flag over
3673 to the local copy, as its address will be taken,
3674 not the PARMs. Keep the parms address taken
3675 as we'll query that flag during gimplification. */
3676 if (TREE_ADDRESSABLE (parm))
3677 TREE_ADDRESSABLE (local) = 1;
3678 else if (TREE_CODE (type) == COMPLEX_TYPE
3679 || TREE_CODE (type) == VECTOR_TYPE)
3680 DECL_GIMPLE_REG_P (local) = 1;
3681 }
3682 else
3683 {
3684 tree ptr_type, addr;
3685
3686 ptr_type = build_pointer_type (type);
3687 addr = create_tmp_reg (ptr_type, get_name (parm));
3688 DECL_IGNORED_P (addr) = 0;
3689 local = build_fold_indirect_ref (addr);
3690
3691 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3692 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3693 size_int (DECL_ALIGN (parm)));
3694
3695 /* The call has been built for a variable-sized object. */
3696 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3697 t = fold_convert (ptr_type, t);
3698 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3699 gimplify_and_add (t, &stmts);
3700 }
3701
3702 gimplify_assign (local, parm, &stmts);
3703
3704 SET_DECL_VALUE_EXPR (parm, local);
3705 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3706 }
3707 }
3708 }
3709
3710 fnargs.release ();
3711
3712 return stmts;
3713 }
3714 \f
3715 /* Compute the size and offset from the start of the stacked arguments for a
3716 parm passed in mode PASSED_MODE and with type TYPE.
3717
3718 INITIAL_OFFSET_PTR points to the current offset into the stacked
3719 arguments.
3720
3721 The starting offset and size for this parm are returned in
3722 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3723 nonzero, the offset is that of stack slot, which is returned in
3724 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3725 padding required from the initial offset ptr to the stack slot.
3726
3727 IN_REGS is nonzero if the argument will be passed in registers. It will
3728 never be set if REG_PARM_STACK_SPACE is not defined.
3729
3730 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3731 for arguments which are passed in registers.
3732
3733 FNDECL is the function in which the argument was defined.
3734
3735 There are two types of rounding that are done. The first, controlled by
3736 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3737 argument list to be aligned to the specific boundary (in bits). This
3738 rounding affects the initial and starting offsets, but not the argument
3739 size.
3740
3741 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3742 optionally rounds the size of the parm to PARM_BOUNDARY. The
3743 initial offset is not affected by this rounding, while the size always
3744 is and the starting offset may be. */
3745
3746 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3747 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3748 callers pass in the total size of args so far as
3749 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3750
3751 void
3752 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3753 int reg_parm_stack_space, int partial,
3754 tree fndecl ATTRIBUTE_UNUSED,
3755 struct args_size *initial_offset_ptr,
3756 struct locate_and_pad_arg_data *locate)
3757 {
3758 tree sizetree;
3759 enum direction where_pad;
3760 unsigned int boundary, round_boundary;
3761 int part_size_in_regs;
3762
3763 /* If we have found a stack parm before we reach the end of the
3764 area reserved for registers, skip that area. */
3765 if (! in_regs)
3766 {
3767 if (reg_parm_stack_space > 0)
3768 {
3769 if (initial_offset_ptr->var)
3770 {
3771 initial_offset_ptr->var
3772 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3773 ssize_int (reg_parm_stack_space));
3774 initial_offset_ptr->constant = 0;
3775 }
3776 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3777 initial_offset_ptr->constant = reg_parm_stack_space;
3778 }
3779 }
3780
3781 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3782
3783 sizetree
3784 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3785 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3786 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3787 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3788 type);
3789 locate->where_pad = where_pad;
3790
3791 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3792 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3793 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3794
3795 locate->boundary = boundary;
3796
3797 if (SUPPORTS_STACK_ALIGNMENT)
3798 {
3799 /* stack_alignment_estimated can't change after stack has been
3800 realigned. */
3801 if (crtl->stack_alignment_estimated < boundary)
3802 {
3803 if (!crtl->stack_realign_processed)
3804 crtl->stack_alignment_estimated = boundary;
3805 else
3806 {
3807 /* If stack is realigned and stack alignment value
3808 hasn't been finalized, it is OK not to increase
3809 stack_alignment_estimated. The bigger alignment
3810 requirement is recorded in stack_alignment_needed
3811 below. */
3812 gcc_assert (!crtl->stack_realign_finalized
3813 && crtl->stack_realign_needed);
3814 }
3815 }
3816 }
3817
3818 /* Remember if the outgoing parameter requires extra alignment on the
3819 calling function side. */
3820 if (crtl->stack_alignment_needed < boundary)
3821 crtl->stack_alignment_needed = boundary;
3822 if (crtl->preferred_stack_boundary < boundary)
3823 crtl->preferred_stack_boundary = boundary;
3824
3825 #ifdef ARGS_GROW_DOWNWARD
3826 locate->slot_offset.constant = -initial_offset_ptr->constant;
3827 if (initial_offset_ptr->var)
3828 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3829 initial_offset_ptr->var);
3830
3831 {
3832 tree s2 = sizetree;
3833 if (where_pad != none
3834 && (!tree_fits_uhwi_p (sizetree)
3835 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3836 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3837 SUB_PARM_SIZE (locate->slot_offset, s2);
3838 }
3839
3840 locate->slot_offset.constant += part_size_in_regs;
3841
3842 if (!in_regs || reg_parm_stack_space > 0)
3843 pad_to_arg_alignment (&locate->slot_offset, boundary,
3844 &locate->alignment_pad);
3845
3846 locate->size.constant = (-initial_offset_ptr->constant
3847 - locate->slot_offset.constant);
3848 if (initial_offset_ptr->var)
3849 locate->size.var = size_binop (MINUS_EXPR,
3850 size_binop (MINUS_EXPR,
3851 ssize_int (0),
3852 initial_offset_ptr->var),
3853 locate->slot_offset.var);
3854
3855 /* Pad_below needs the pre-rounded size to know how much to pad
3856 below. */
3857 locate->offset = locate->slot_offset;
3858 if (where_pad == downward)
3859 pad_below (&locate->offset, passed_mode, sizetree);
3860
3861 #else /* !ARGS_GROW_DOWNWARD */
3862 if (!in_regs || reg_parm_stack_space > 0)
3863 pad_to_arg_alignment (initial_offset_ptr, boundary,
3864 &locate->alignment_pad);
3865 locate->slot_offset = *initial_offset_ptr;
3866
3867 #ifdef PUSH_ROUNDING
3868 if (passed_mode != BLKmode)
3869 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3870 #endif
3871
3872 /* Pad_below needs the pre-rounded size to know how much to pad below
3873 so this must be done before rounding up. */
3874 locate->offset = locate->slot_offset;
3875 if (where_pad == downward)
3876 pad_below (&locate->offset, passed_mode, sizetree);
3877
3878 if (where_pad != none
3879 && (!tree_fits_uhwi_p (sizetree)
3880 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3881 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3882
3883 ADD_PARM_SIZE (locate->size, sizetree);
3884
3885 locate->size.constant -= part_size_in_regs;
3886 #endif /* ARGS_GROW_DOWNWARD */
3887
3888 #ifdef FUNCTION_ARG_OFFSET
3889 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3890 #endif
3891 }
3892
3893 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3894 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3895
3896 static void
3897 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3898 struct args_size *alignment_pad)
3899 {
3900 tree save_var = NULL_TREE;
3901 HOST_WIDE_INT save_constant = 0;
3902 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3903 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3904
3905 #ifdef SPARC_STACK_BOUNDARY_HACK
3906 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3907 the real alignment of %sp. However, when it does this, the
3908 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3909 if (SPARC_STACK_BOUNDARY_HACK)
3910 sp_offset = 0;
3911 #endif
3912
3913 if (boundary > PARM_BOUNDARY)
3914 {
3915 save_var = offset_ptr->var;
3916 save_constant = offset_ptr->constant;
3917 }
3918
3919 alignment_pad->var = NULL_TREE;
3920 alignment_pad->constant = 0;
3921
3922 if (boundary > BITS_PER_UNIT)
3923 {
3924 if (offset_ptr->var)
3925 {
3926 tree sp_offset_tree = ssize_int (sp_offset);
3927 tree offset = size_binop (PLUS_EXPR,
3928 ARGS_SIZE_TREE (*offset_ptr),
3929 sp_offset_tree);
3930 #ifdef ARGS_GROW_DOWNWARD
3931 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3932 #else
3933 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3934 #endif
3935
3936 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3937 /* ARGS_SIZE_TREE includes constant term. */
3938 offset_ptr->constant = 0;
3939 if (boundary > PARM_BOUNDARY)
3940 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3941 save_var);
3942 }
3943 else
3944 {
3945 offset_ptr->constant = -sp_offset +
3946 #ifdef ARGS_GROW_DOWNWARD
3947 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3948 #else
3949 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3950 #endif
3951 if (boundary > PARM_BOUNDARY)
3952 alignment_pad->constant = offset_ptr->constant - save_constant;
3953 }
3954 }
3955 }
3956
3957 static void
3958 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3959 {
3960 if (passed_mode != BLKmode)
3961 {
3962 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3963 offset_ptr->constant
3964 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3965 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3966 - GET_MODE_SIZE (passed_mode));
3967 }
3968 else
3969 {
3970 if (TREE_CODE (sizetree) != INTEGER_CST
3971 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3972 {
3973 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3974 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3975 /* Add it in. */
3976 ADD_PARM_SIZE (*offset_ptr, s2);
3977 SUB_PARM_SIZE (*offset_ptr, sizetree);
3978 }
3979 }
3980 }
3981 \f
3982
3983 /* True if register REGNO was alive at a place where `setjmp' was
3984 called and was set more than once or is an argument. Such regs may
3985 be clobbered by `longjmp'. */
3986
3987 static bool
3988 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3989 {
3990 /* There appear to be cases where some local vars never reach the
3991 backend but have bogus regnos. */
3992 if (regno >= max_reg_num ())
3993 return false;
3994
3995 return ((REG_N_SETS (regno) > 1
3996 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
3997 regno))
3998 && REGNO_REG_SET_P (setjmp_crosses, regno));
3999 }
4000
4001 /* Walk the tree of blocks describing the binding levels within a
4002 function and warn about variables the might be killed by setjmp or
4003 vfork. This is done after calling flow_analysis before register
4004 allocation since that will clobber the pseudo-regs to hard
4005 regs. */
4006
4007 static void
4008 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4009 {
4010 tree decl, sub;
4011
4012 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4013 {
4014 if (TREE_CODE (decl) == VAR_DECL
4015 && DECL_RTL_SET_P (decl)
4016 && REG_P (DECL_RTL (decl))
4017 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4018 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4019 " %<longjmp%> or %<vfork%>", decl);
4020 }
4021
4022 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4023 setjmp_vars_warning (setjmp_crosses, sub);
4024 }
4025
4026 /* Do the appropriate part of setjmp_vars_warning
4027 but for arguments instead of local variables. */
4028
4029 static void
4030 setjmp_args_warning (bitmap setjmp_crosses)
4031 {
4032 tree decl;
4033 for (decl = DECL_ARGUMENTS (current_function_decl);
4034 decl; decl = DECL_CHAIN (decl))
4035 if (DECL_RTL (decl) != 0
4036 && REG_P (DECL_RTL (decl))
4037 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4038 warning (OPT_Wclobbered,
4039 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4040 decl);
4041 }
4042
4043 /* Generate warning messages for variables live across setjmp. */
4044
4045 void
4046 generate_setjmp_warnings (void)
4047 {
4048 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4049
4050 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4051 || bitmap_empty_p (setjmp_crosses))
4052 return;
4053
4054 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4055 setjmp_args_warning (setjmp_crosses);
4056 }
4057
4058 \f
4059 /* Reverse the order of elements in the fragment chain T of blocks,
4060 and return the new head of the chain (old last element).
4061 In addition to that clear BLOCK_SAME_RANGE flags when needed
4062 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4063 its super fragment origin. */
4064
4065 static tree
4066 block_fragments_nreverse (tree t)
4067 {
4068 tree prev = 0, block, next, prev_super = 0;
4069 tree super = BLOCK_SUPERCONTEXT (t);
4070 if (BLOCK_FRAGMENT_ORIGIN (super))
4071 super = BLOCK_FRAGMENT_ORIGIN (super);
4072 for (block = t; block; block = next)
4073 {
4074 next = BLOCK_FRAGMENT_CHAIN (block);
4075 BLOCK_FRAGMENT_CHAIN (block) = prev;
4076 if ((prev && !BLOCK_SAME_RANGE (prev))
4077 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4078 != prev_super))
4079 BLOCK_SAME_RANGE (block) = 0;
4080 prev_super = BLOCK_SUPERCONTEXT (block);
4081 BLOCK_SUPERCONTEXT (block) = super;
4082 prev = block;
4083 }
4084 t = BLOCK_FRAGMENT_ORIGIN (t);
4085 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4086 != prev_super)
4087 BLOCK_SAME_RANGE (t) = 0;
4088 BLOCK_SUPERCONTEXT (t) = super;
4089 return prev;
4090 }
4091
4092 /* Reverse the order of elements in the chain T of blocks,
4093 and return the new head of the chain (old last element).
4094 Also do the same on subblocks and reverse the order of elements
4095 in BLOCK_FRAGMENT_CHAIN as well. */
4096
4097 static tree
4098 blocks_nreverse_all (tree t)
4099 {
4100 tree prev = 0, block, next;
4101 for (block = t; block; block = next)
4102 {
4103 next = BLOCK_CHAIN (block);
4104 BLOCK_CHAIN (block) = prev;
4105 if (BLOCK_FRAGMENT_CHAIN (block)
4106 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4107 {
4108 BLOCK_FRAGMENT_CHAIN (block)
4109 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4110 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4111 BLOCK_SAME_RANGE (block) = 0;
4112 }
4113 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4114 prev = block;
4115 }
4116 return prev;
4117 }
4118
4119
4120 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4121 and create duplicate blocks. */
4122 /* ??? Need an option to either create block fragments or to create
4123 abstract origin duplicates of a source block. It really depends
4124 on what optimization has been performed. */
4125
4126 void
4127 reorder_blocks (void)
4128 {
4129 tree block = DECL_INITIAL (current_function_decl);
4130
4131 if (block == NULL_TREE)
4132 return;
4133
4134 auto_vec<tree, 10> block_stack;
4135
4136 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4137 clear_block_marks (block);
4138
4139 /* Prune the old trees away, so that they don't get in the way. */
4140 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4141 BLOCK_CHAIN (block) = NULL_TREE;
4142
4143 /* Recreate the block tree from the note nesting. */
4144 reorder_blocks_1 (get_insns (), block, &block_stack);
4145 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4146 }
4147
4148 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4149
4150 void
4151 clear_block_marks (tree block)
4152 {
4153 while (block)
4154 {
4155 TREE_ASM_WRITTEN (block) = 0;
4156 clear_block_marks (BLOCK_SUBBLOCKS (block));
4157 block = BLOCK_CHAIN (block);
4158 }
4159 }
4160
4161 static void
4162 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4163 vec<tree> *p_block_stack)
4164 {
4165 rtx_insn *insn;
4166 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4167
4168 for (insn = insns; insn; insn = NEXT_INSN (insn))
4169 {
4170 if (NOTE_P (insn))
4171 {
4172 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4173 {
4174 tree block = NOTE_BLOCK (insn);
4175 tree origin;
4176
4177 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4178 origin = block;
4179
4180 if (prev_end)
4181 BLOCK_SAME_RANGE (prev_end) = 0;
4182 prev_end = NULL_TREE;
4183
4184 /* If we have seen this block before, that means it now
4185 spans multiple address regions. Create a new fragment. */
4186 if (TREE_ASM_WRITTEN (block))
4187 {
4188 tree new_block = copy_node (block);
4189
4190 BLOCK_SAME_RANGE (new_block) = 0;
4191 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4192 BLOCK_FRAGMENT_CHAIN (new_block)
4193 = BLOCK_FRAGMENT_CHAIN (origin);
4194 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4195
4196 NOTE_BLOCK (insn) = new_block;
4197 block = new_block;
4198 }
4199
4200 if (prev_beg == current_block && prev_beg)
4201 BLOCK_SAME_RANGE (block) = 1;
4202
4203 prev_beg = origin;
4204
4205 BLOCK_SUBBLOCKS (block) = 0;
4206 TREE_ASM_WRITTEN (block) = 1;
4207 /* When there's only one block for the entire function,
4208 current_block == block and we mustn't do this, it
4209 will cause infinite recursion. */
4210 if (block != current_block)
4211 {
4212 tree super;
4213 if (block != origin)
4214 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4215 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4216 (origin))
4217 == current_block);
4218 if (p_block_stack->is_empty ())
4219 super = current_block;
4220 else
4221 {
4222 super = p_block_stack->last ();
4223 gcc_assert (super == current_block
4224 || BLOCK_FRAGMENT_ORIGIN (super)
4225 == current_block);
4226 }
4227 BLOCK_SUPERCONTEXT (block) = super;
4228 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4229 BLOCK_SUBBLOCKS (current_block) = block;
4230 current_block = origin;
4231 }
4232 p_block_stack->safe_push (block);
4233 }
4234 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4235 {
4236 NOTE_BLOCK (insn) = p_block_stack->pop ();
4237 current_block = BLOCK_SUPERCONTEXT (current_block);
4238 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4239 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4240 prev_beg = NULL_TREE;
4241 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4242 ? NOTE_BLOCK (insn) : NULL_TREE;
4243 }
4244 }
4245 else
4246 {
4247 prev_beg = NULL_TREE;
4248 if (prev_end)
4249 BLOCK_SAME_RANGE (prev_end) = 0;
4250 prev_end = NULL_TREE;
4251 }
4252 }
4253 }
4254
4255 /* Reverse the order of elements in the chain T of blocks,
4256 and return the new head of the chain (old last element). */
4257
4258 tree
4259 blocks_nreverse (tree t)
4260 {
4261 tree prev = 0, block, next;
4262 for (block = t; block; block = next)
4263 {
4264 next = BLOCK_CHAIN (block);
4265 BLOCK_CHAIN (block) = prev;
4266 prev = block;
4267 }
4268 return prev;
4269 }
4270
4271 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4272 by modifying the last node in chain 1 to point to chain 2. */
4273
4274 tree
4275 block_chainon (tree op1, tree op2)
4276 {
4277 tree t1;
4278
4279 if (!op1)
4280 return op2;
4281 if (!op2)
4282 return op1;
4283
4284 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4285 continue;
4286 BLOCK_CHAIN (t1) = op2;
4287
4288 #ifdef ENABLE_TREE_CHECKING
4289 {
4290 tree t2;
4291 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4292 gcc_assert (t2 != t1);
4293 }
4294 #endif
4295
4296 return op1;
4297 }
4298
4299 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4300 non-NULL, list them all into VECTOR, in a depth-first preorder
4301 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4302 blocks. */
4303
4304 static int
4305 all_blocks (tree block, tree *vector)
4306 {
4307 int n_blocks = 0;
4308
4309 while (block)
4310 {
4311 TREE_ASM_WRITTEN (block) = 0;
4312
4313 /* Record this block. */
4314 if (vector)
4315 vector[n_blocks] = block;
4316
4317 ++n_blocks;
4318
4319 /* Record the subblocks, and their subblocks... */
4320 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4321 vector ? vector + n_blocks : 0);
4322 block = BLOCK_CHAIN (block);
4323 }
4324
4325 return n_blocks;
4326 }
4327
4328 /* Return a vector containing all the blocks rooted at BLOCK. The
4329 number of elements in the vector is stored in N_BLOCKS_P. The
4330 vector is dynamically allocated; it is the caller's responsibility
4331 to call `free' on the pointer returned. */
4332
4333 static tree *
4334 get_block_vector (tree block, int *n_blocks_p)
4335 {
4336 tree *block_vector;
4337
4338 *n_blocks_p = all_blocks (block, NULL);
4339 block_vector = XNEWVEC (tree, *n_blocks_p);
4340 all_blocks (block, block_vector);
4341
4342 return block_vector;
4343 }
4344
4345 static GTY(()) int next_block_index = 2;
4346
4347 /* Set BLOCK_NUMBER for all the blocks in FN. */
4348
4349 void
4350 number_blocks (tree fn)
4351 {
4352 int i;
4353 int n_blocks;
4354 tree *block_vector;
4355
4356 /* For SDB and XCOFF debugging output, we start numbering the blocks
4357 from 1 within each function, rather than keeping a running
4358 count. */
4359 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4360 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4361 next_block_index = 1;
4362 #endif
4363
4364 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4365
4366 /* The top-level BLOCK isn't numbered at all. */
4367 for (i = 1; i < n_blocks; ++i)
4368 /* We number the blocks from two. */
4369 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4370
4371 free (block_vector);
4372
4373 return;
4374 }
4375
4376 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4377
4378 DEBUG_FUNCTION tree
4379 debug_find_var_in_block_tree (tree var, tree block)
4380 {
4381 tree t;
4382
4383 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4384 if (t == var)
4385 return block;
4386
4387 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4388 {
4389 tree ret = debug_find_var_in_block_tree (var, t);
4390 if (ret)
4391 return ret;
4392 }
4393
4394 return NULL_TREE;
4395 }
4396 \f
4397 /* Keep track of whether we're in a dummy function context. If we are,
4398 we don't want to invoke the set_current_function hook, because we'll
4399 get into trouble if the hook calls target_reinit () recursively or
4400 when the initial initialization is not yet complete. */
4401
4402 static bool in_dummy_function;
4403
4404 /* Invoke the target hook when setting cfun. Update the optimization options
4405 if the function uses different options than the default. */
4406
4407 static void
4408 invoke_set_current_function_hook (tree fndecl)
4409 {
4410 if (!in_dummy_function)
4411 {
4412 tree opts = ((fndecl)
4413 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4414 : optimization_default_node);
4415
4416 if (!opts)
4417 opts = optimization_default_node;
4418
4419 /* Change optimization options if needed. */
4420 if (optimization_current_node != opts)
4421 {
4422 optimization_current_node = opts;
4423 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4424 }
4425
4426 targetm.set_current_function (fndecl);
4427 this_fn_optabs = this_target_optabs;
4428
4429 if (opts != optimization_default_node)
4430 {
4431 init_tree_optimization_optabs (opts);
4432 if (TREE_OPTIMIZATION_OPTABS (opts))
4433 this_fn_optabs = (struct target_optabs *)
4434 TREE_OPTIMIZATION_OPTABS (opts);
4435 }
4436 }
4437 }
4438
4439 /* cfun should never be set directly; use this function. */
4440
4441 void
4442 set_cfun (struct function *new_cfun)
4443 {
4444 if (cfun != new_cfun)
4445 {
4446 cfun = new_cfun;
4447 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4448 }
4449 }
4450
4451 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4452
4453 static vec<function_p> cfun_stack;
4454
4455 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4456 current_function_decl accordingly. */
4457
4458 void
4459 push_cfun (struct function *new_cfun)
4460 {
4461 gcc_assert ((!cfun && !current_function_decl)
4462 || (cfun && current_function_decl == cfun->decl));
4463 cfun_stack.safe_push (cfun);
4464 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4465 set_cfun (new_cfun);
4466 }
4467
4468 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4469
4470 void
4471 pop_cfun (void)
4472 {
4473 struct function *new_cfun = cfun_stack.pop ();
4474 /* When in_dummy_function, we do have a cfun but current_function_decl is
4475 NULL. We also allow pushing NULL cfun and subsequently changing
4476 current_function_decl to something else and have both restored by
4477 pop_cfun. */
4478 gcc_checking_assert (in_dummy_function
4479 || !cfun
4480 || current_function_decl == cfun->decl);
4481 set_cfun (new_cfun);
4482 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4483 }
4484
4485 /* Return value of funcdef and increase it. */
4486 int
4487 get_next_funcdef_no (void)
4488 {
4489 return funcdef_no++;
4490 }
4491
4492 /* Return value of funcdef. */
4493 int
4494 get_last_funcdef_no (void)
4495 {
4496 return funcdef_no;
4497 }
4498
4499 /* Allocate a function structure for FNDECL and set its contents
4500 to the defaults. Set cfun to the newly-allocated object.
4501 Some of the helper functions invoked during initialization assume
4502 that cfun has already been set. Therefore, assign the new object
4503 directly into cfun and invoke the back end hook explicitly at the
4504 very end, rather than initializing a temporary and calling set_cfun
4505 on it.
4506
4507 ABSTRACT_P is true if this is a function that will never be seen by
4508 the middle-end. Such functions are front-end concepts (like C++
4509 function templates) that do not correspond directly to functions
4510 placed in object files. */
4511
4512 void
4513 allocate_struct_function (tree fndecl, bool abstract_p)
4514 {
4515 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4516
4517 cfun = ggc_cleared_alloc<function> ();
4518
4519 init_eh_for_function ();
4520
4521 if (init_machine_status)
4522 cfun->machine = (*init_machine_status) ();
4523
4524 #ifdef OVERRIDE_ABI_FORMAT
4525 OVERRIDE_ABI_FORMAT (fndecl);
4526 #endif
4527
4528 if (fndecl != NULL_TREE)
4529 {
4530 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4531 cfun->decl = fndecl;
4532 current_function_funcdef_no = get_next_funcdef_no ();
4533 }
4534
4535 invoke_set_current_function_hook (fndecl);
4536
4537 if (fndecl != NULL_TREE)
4538 {
4539 tree result = DECL_RESULT (fndecl);
4540 if (!abstract_p && aggregate_value_p (result, fndecl))
4541 {
4542 #ifdef PCC_STATIC_STRUCT_RETURN
4543 cfun->returns_pcc_struct = 1;
4544 #endif
4545 cfun->returns_struct = 1;
4546 }
4547
4548 cfun->stdarg = stdarg_p (fntype);
4549
4550 /* Assume all registers in stdarg functions need to be saved. */
4551 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4552 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4553
4554 /* ??? This could be set on a per-function basis by the front-end
4555 but is this worth the hassle? */
4556 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4557 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4558 }
4559 }
4560
4561 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4562 instead of just setting it. */
4563
4564 void
4565 push_struct_function (tree fndecl)
4566 {
4567 /* When in_dummy_function we might be in the middle of a pop_cfun and
4568 current_function_decl and cfun may not match. */
4569 gcc_assert (in_dummy_function
4570 || (!cfun && !current_function_decl)
4571 || (cfun && current_function_decl == cfun->decl));
4572 cfun_stack.safe_push (cfun);
4573 current_function_decl = fndecl;
4574 allocate_struct_function (fndecl, false);
4575 }
4576
4577 /* Reset crtl and other non-struct-function variables to defaults as
4578 appropriate for emitting rtl at the start of a function. */
4579
4580 static void
4581 prepare_function_start (void)
4582 {
4583 gcc_assert (!crtl->emit.x_last_insn);
4584 init_temp_slots ();
4585 init_emit ();
4586 init_varasm_status ();
4587 init_expr ();
4588 default_rtl_profile ();
4589
4590 if (flag_stack_usage_info)
4591 {
4592 cfun->su = ggc_cleared_alloc<stack_usage> ();
4593 cfun->su->static_stack_size = -1;
4594 }
4595
4596 cse_not_expected = ! optimize;
4597
4598 /* Caller save not needed yet. */
4599 caller_save_needed = 0;
4600
4601 /* We haven't done register allocation yet. */
4602 reg_renumber = 0;
4603
4604 /* Indicate that we have not instantiated virtual registers yet. */
4605 virtuals_instantiated = 0;
4606
4607 /* Indicate that we want CONCATs now. */
4608 generating_concat_p = 1;
4609
4610 /* Indicate we have no need of a frame pointer yet. */
4611 frame_pointer_needed = 0;
4612 }
4613
4614 /* Initialize the rtl expansion mechanism so that we can do simple things
4615 like generate sequences. This is used to provide a context during global
4616 initialization of some passes. You must call expand_dummy_function_end
4617 to exit this context. */
4618
4619 void
4620 init_dummy_function_start (void)
4621 {
4622 gcc_assert (!in_dummy_function);
4623 in_dummy_function = true;
4624 push_struct_function (NULL_TREE);
4625 prepare_function_start ();
4626 }
4627
4628 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4629 and initialize static variables for generating RTL for the statements
4630 of the function. */
4631
4632 void
4633 init_function_start (tree subr)
4634 {
4635 if (subr && DECL_STRUCT_FUNCTION (subr))
4636 set_cfun (DECL_STRUCT_FUNCTION (subr));
4637 else
4638 allocate_struct_function (subr, false);
4639
4640 /* Initialize backend, if needed. */
4641 initialize_rtl ();
4642
4643 prepare_function_start ();
4644 decide_function_section (subr);
4645
4646 /* Warn if this value is an aggregate type,
4647 regardless of which calling convention we are using for it. */
4648 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4649 warning (OPT_Waggregate_return, "function returns an aggregate");
4650 }
4651
4652 /* Expand code to verify the stack_protect_guard. This is invoked at
4653 the end of a function to be protected. */
4654
4655 #ifndef HAVE_stack_protect_test
4656 # define HAVE_stack_protect_test 0
4657 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4658 #endif
4659
4660 void
4661 stack_protect_epilogue (void)
4662 {
4663 tree guard_decl = targetm.stack_protect_guard ();
4664 rtx label = gen_label_rtx ();
4665 rtx x, y, tmp;
4666
4667 x = expand_normal (crtl->stack_protect_guard);
4668 y = expand_normal (guard_decl);
4669
4670 /* Allow the target to compare Y with X without leaking either into
4671 a register. */
4672 switch ((int) (HAVE_stack_protect_test != 0))
4673 {
4674 case 1:
4675 tmp = gen_stack_protect_test (x, y, label);
4676 if (tmp)
4677 {
4678 emit_insn (tmp);
4679 break;
4680 }
4681 /* FALLTHRU */
4682
4683 default:
4684 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4685 break;
4686 }
4687
4688 /* The noreturn predictor has been moved to the tree level. The rtl-level
4689 predictors estimate this branch about 20%, which isn't enough to get
4690 things moved out of line. Since this is the only extant case of adding
4691 a noreturn function at the rtl level, it doesn't seem worth doing ought
4692 except adding the prediction by hand. */
4693 tmp = get_last_insn ();
4694 if (JUMP_P (tmp))
4695 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4696
4697 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4698 free_temp_slots ();
4699 emit_label (label);
4700 }
4701 \f
4702 /* Start the RTL for a new function, and set variables used for
4703 emitting RTL.
4704 SUBR is the FUNCTION_DECL node.
4705 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4706 the function's parameters, which must be run at any return statement. */
4707
4708 void
4709 expand_function_start (tree subr)
4710 {
4711 /* Make sure volatile mem refs aren't considered
4712 valid operands of arithmetic insns. */
4713 init_recog_no_volatile ();
4714
4715 crtl->profile
4716 = (profile_flag
4717 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4718
4719 crtl->limit_stack
4720 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4721
4722 /* Make the label for return statements to jump to. Do not special
4723 case machines with special return instructions -- they will be
4724 handled later during jump, ifcvt, or epilogue creation. */
4725 return_label = gen_label_rtx ();
4726
4727 /* Initialize rtx used to return the value. */
4728 /* Do this before assign_parms so that we copy the struct value address
4729 before any library calls that assign parms might generate. */
4730
4731 /* Decide whether to return the value in memory or in a register. */
4732 if (aggregate_value_p (DECL_RESULT (subr), subr))
4733 {
4734 /* Returning something that won't go in a register. */
4735 rtx value_address = 0;
4736
4737 #ifdef PCC_STATIC_STRUCT_RETURN
4738 if (cfun->returns_pcc_struct)
4739 {
4740 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4741 value_address = assemble_static_space (size);
4742 }
4743 else
4744 #endif
4745 {
4746 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4747 /* Expect to be passed the address of a place to store the value.
4748 If it is passed as an argument, assign_parms will take care of
4749 it. */
4750 if (sv)
4751 {
4752 value_address = gen_reg_rtx (Pmode);
4753 emit_move_insn (value_address, sv);
4754 }
4755 }
4756 if (value_address)
4757 {
4758 rtx x = value_address;
4759 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4760 {
4761 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4762 set_mem_attributes (x, DECL_RESULT (subr), 1);
4763 }
4764 SET_DECL_RTL (DECL_RESULT (subr), x);
4765 }
4766 }
4767 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4768 /* If return mode is void, this decl rtl should not be used. */
4769 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4770 else
4771 {
4772 /* Compute the return values into a pseudo reg, which we will copy
4773 into the true return register after the cleanups are done. */
4774 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4775 if (TYPE_MODE (return_type) != BLKmode
4776 && targetm.calls.return_in_msb (return_type))
4777 /* expand_function_end will insert the appropriate padding in
4778 this case. Use the return value's natural (unpadded) mode
4779 within the function proper. */
4780 SET_DECL_RTL (DECL_RESULT (subr),
4781 gen_reg_rtx (TYPE_MODE (return_type)));
4782 else
4783 {
4784 /* In order to figure out what mode to use for the pseudo, we
4785 figure out what the mode of the eventual return register will
4786 actually be, and use that. */
4787 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4788
4789 /* Structures that are returned in registers are not
4790 aggregate_value_p, so we may see a PARALLEL or a REG. */
4791 if (REG_P (hard_reg))
4792 SET_DECL_RTL (DECL_RESULT (subr),
4793 gen_reg_rtx (GET_MODE (hard_reg)));
4794 else
4795 {
4796 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4797 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4798 }
4799 }
4800
4801 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4802 result to the real return register(s). */
4803 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4804 }
4805
4806 /* Initialize rtx for parameters and local variables.
4807 In some cases this requires emitting insns. */
4808 assign_parms (subr);
4809
4810 /* If function gets a static chain arg, store it. */
4811 if (cfun->static_chain_decl)
4812 {
4813 tree parm = cfun->static_chain_decl;
4814 rtx local, chain, insn;
4815
4816 local = gen_reg_rtx (Pmode);
4817 chain = targetm.calls.static_chain (current_function_decl, true);
4818
4819 set_decl_incoming_rtl (parm, chain, false);
4820 SET_DECL_RTL (parm, local);
4821 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4822
4823 insn = emit_move_insn (local, chain);
4824
4825 /* Mark the register as eliminable, similar to parameters. */
4826 if (MEM_P (chain)
4827 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4828 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4829
4830 /* If we aren't optimizing, save the static chain onto the stack. */
4831 if (!optimize)
4832 {
4833 tree saved_static_chain_decl
4834 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
4835 DECL_NAME (parm), TREE_TYPE (parm));
4836 rtx saved_static_chain_rtx
4837 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4838 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
4839 emit_move_insn (saved_static_chain_rtx, chain);
4840 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
4841 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4842 }
4843 }
4844
4845 /* If the function receives a non-local goto, then store the
4846 bits we need to restore the frame pointer. */
4847 if (cfun->nonlocal_goto_save_area)
4848 {
4849 tree t_save;
4850 rtx r_save;
4851
4852 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4853 gcc_assert (DECL_RTL_SET_P (var));
4854
4855 t_save = build4 (ARRAY_REF,
4856 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4857 cfun->nonlocal_goto_save_area,
4858 integer_zero_node, NULL_TREE, NULL_TREE);
4859 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4860 gcc_assert (GET_MODE (r_save) == Pmode);
4861
4862 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4863 update_nonlocal_goto_save_area ();
4864 }
4865
4866 /* The following was moved from init_function_start.
4867 The move is supposed to make sdb output more accurate. */
4868 /* Indicate the beginning of the function body,
4869 as opposed to parm setup. */
4870 emit_note (NOTE_INSN_FUNCTION_BEG);
4871
4872 gcc_assert (NOTE_P (get_last_insn ()));
4873
4874 parm_birth_insn = get_last_insn ();
4875
4876 if (crtl->profile)
4877 {
4878 #ifdef PROFILE_HOOK
4879 PROFILE_HOOK (current_function_funcdef_no);
4880 #endif
4881 }
4882
4883 /* If we are doing generic stack checking, the probe should go here. */
4884 if (flag_stack_check == GENERIC_STACK_CHECK)
4885 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4886 }
4887 \f
4888 /* Undo the effects of init_dummy_function_start. */
4889 void
4890 expand_dummy_function_end (void)
4891 {
4892 gcc_assert (in_dummy_function);
4893
4894 /* End any sequences that failed to be closed due to syntax errors. */
4895 while (in_sequence_p ())
4896 end_sequence ();
4897
4898 /* Outside function body, can't compute type's actual size
4899 until next function's body starts. */
4900
4901 free_after_parsing (cfun);
4902 free_after_compilation (cfun);
4903 pop_cfun ();
4904 in_dummy_function = false;
4905 }
4906
4907 /* Call DOIT for each hard register used as a return value from
4908 the current function. */
4909
4910 void
4911 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4912 {
4913 rtx outgoing = crtl->return_rtx;
4914
4915 if (! outgoing)
4916 return;
4917
4918 if (REG_P (outgoing))
4919 (*doit) (outgoing, arg);
4920 else if (GET_CODE (outgoing) == PARALLEL)
4921 {
4922 int i;
4923
4924 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4925 {
4926 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4927
4928 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4929 (*doit) (x, arg);
4930 }
4931 }
4932 }
4933
4934 static void
4935 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4936 {
4937 emit_clobber (reg);
4938 }
4939
4940 void
4941 clobber_return_register (void)
4942 {
4943 diddle_return_value (do_clobber_return_reg, NULL);
4944
4945 /* In case we do use pseudo to return value, clobber it too. */
4946 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4947 {
4948 tree decl_result = DECL_RESULT (current_function_decl);
4949 rtx decl_rtl = DECL_RTL (decl_result);
4950 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4951 {
4952 do_clobber_return_reg (decl_rtl, NULL);
4953 }
4954 }
4955 }
4956
4957 static void
4958 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4959 {
4960 emit_use (reg);
4961 }
4962
4963 static void
4964 use_return_register (void)
4965 {
4966 diddle_return_value (do_use_return_reg, NULL);
4967 }
4968
4969 /* Possibly warn about unused parameters. */
4970 void
4971 do_warn_unused_parameter (tree fn)
4972 {
4973 tree decl;
4974
4975 for (decl = DECL_ARGUMENTS (fn);
4976 decl; decl = DECL_CHAIN (decl))
4977 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4978 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4979 && !TREE_NO_WARNING (decl))
4980 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4981 }
4982
4983 /* Set the location of the insn chain starting at INSN to LOC. */
4984
4985 static void
4986 set_insn_locations (rtx_insn *insn, int loc)
4987 {
4988 while (insn != NULL)
4989 {
4990 if (INSN_P (insn))
4991 INSN_LOCATION (insn) = loc;
4992 insn = NEXT_INSN (insn);
4993 }
4994 }
4995
4996 /* Generate RTL for the end of the current function. */
4997
4998 void
4999 expand_function_end (void)
5000 {
5001 rtx clobber_after;
5002
5003 /* If arg_pointer_save_area was referenced only from a nested
5004 function, we will not have initialized it yet. Do that now. */
5005 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5006 get_arg_pointer_save_area ();
5007
5008 /* If we are doing generic stack checking and this function makes calls,
5009 do a stack probe at the start of the function to ensure we have enough
5010 space for another stack frame. */
5011 if (flag_stack_check == GENERIC_STACK_CHECK)
5012 {
5013 rtx_insn *insn, *seq;
5014
5015 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5016 if (CALL_P (insn))
5017 {
5018 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5019 start_sequence ();
5020 if (STACK_CHECK_MOVING_SP)
5021 anti_adjust_stack_and_probe (max_frame_size, true);
5022 else
5023 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5024 seq = get_insns ();
5025 end_sequence ();
5026 set_insn_locations (seq, prologue_location);
5027 emit_insn_before (seq, stack_check_probe_note);
5028 break;
5029 }
5030 }
5031
5032 /* End any sequences that failed to be closed due to syntax errors. */
5033 while (in_sequence_p ())
5034 end_sequence ();
5035
5036 clear_pending_stack_adjust ();
5037 do_pending_stack_adjust ();
5038
5039 /* Output a linenumber for the end of the function.
5040 SDB depends on this. */
5041 set_curr_insn_location (input_location);
5042
5043 /* Before the return label (if any), clobber the return
5044 registers so that they are not propagated live to the rest of
5045 the function. This can only happen with functions that drop
5046 through; if there had been a return statement, there would
5047 have either been a return rtx, or a jump to the return label.
5048
5049 We delay actual code generation after the current_function_value_rtx
5050 is computed. */
5051 clobber_after = get_last_insn ();
5052
5053 /* Output the label for the actual return from the function. */
5054 emit_label (return_label);
5055
5056 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5057 {
5058 /* Let except.c know where it should emit the call to unregister
5059 the function context for sjlj exceptions. */
5060 if (flag_exceptions)
5061 sjlj_emit_function_exit_after (get_last_insn ());
5062 }
5063 else
5064 {
5065 /* We want to ensure that instructions that may trap are not
5066 moved into the epilogue by scheduling, because we don't
5067 always emit unwind information for the epilogue. */
5068 if (cfun->can_throw_non_call_exceptions)
5069 emit_insn (gen_blockage ());
5070 }
5071
5072 /* If this is an implementation of throw, do what's necessary to
5073 communicate between __builtin_eh_return and the epilogue. */
5074 expand_eh_return ();
5075
5076 /* If scalar return value was computed in a pseudo-reg, or was a named
5077 return value that got dumped to the stack, copy that to the hard
5078 return register. */
5079 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5080 {
5081 tree decl_result = DECL_RESULT (current_function_decl);
5082 rtx decl_rtl = DECL_RTL (decl_result);
5083
5084 if (REG_P (decl_rtl)
5085 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5086 : DECL_REGISTER (decl_result))
5087 {
5088 rtx real_decl_rtl = crtl->return_rtx;
5089
5090 /* This should be set in assign_parms. */
5091 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5092
5093 /* If this is a BLKmode structure being returned in registers,
5094 then use the mode computed in expand_return. Note that if
5095 decl_rtl is memory, then its mode may have been changed,
5096 but that crtl->return_rtx has not. */
5097 if (GET_MODE (real_decl_rtl) == BLKmode)
5098 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5099
5100 /* If a non-BLKmode return value should be padded at the least
5101 significant end of the register, shift it left by the appropriate
5102 amount. BLKmode results are handled using the group load/store
5103 machinery. */
5104 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5105 && REG_P (real_decl_rtl)
5106 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5107 {
5108 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5109 REGNO (real_decl_rtl)),
5110 decl_rtl);
5111 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5112 }
5113 /* If a named return value dumped decl_return to memory, then
5114 we may need to re-do the PROMOTE_MODE signed/unsigned
5115 extension. */
5116 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5117 {
5118 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5119 promote_function_mode (TREE_TYPE (decl_result),
5120 GET_MODE (decl_rtl), &unsignedp,
5121 TREE_TYPE (current_function_decl), 1);
5122
5123 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5124 }
5125 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5126 {
5127 /* If expand_function_start has created a PARALLEL for decl_rtl,
5128 move the result to the real return registers. Otherwise, do
5129 a group load from decl_rtl for a named return. */
5130 if (GET_CODE (decl_rtl) == PARALLEL)
5131 emit_group_move (real_decl_rtl, decl_rtl);
5132 else
5133 emit_group_load (real_decl_rtl, decl_rtl,
5134 TREE_TYPE (decl_result),
5135 int_size_in_bytes (TREE_TYPE (decl_result)));
5136 }
5137 /* In the case of complex integer modes smaller than a word, we'll
5138 need to generate some non-trivial bitfield insertions. Do that
5139 on a pseudo and not the hard register. */
5140 else if (GET_CODE (decl_rtl) == CONCAT
5141 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5142 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5143 {
5144 int old_generating_concat_p;
5145 rtx tmp;
5146
5147 old_generating_concat_p = generating_concat_p;
5148 generating_concat_p = 0;
5149 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5150 generating_concat_p = old_generating_concat_p;
5151
5152 emit_move_insn (tmp, decl_rtl);
5153 emit_move_insn (real_decl_rtl, tmp);
5154 }
5155 else
5156 emit_move_insn (real_decl_rtl, decl_rtl);
5157 }
5158 }
5159
5160 /* If returning a structure, arrange to return the address of the value
5161 in a place where debuggers expect to find it.
5162
5163 If returning a structure PCC style,
5164 the caller also depends on this value.
5165 And cfun->returns_pcc_struct is not necessarily set. */
5166 if (cfun->returns_struct
5167 || cfun->returns_pcc_struct)
5168 {
5169 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5170 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5171 rtx outgoing;
5172
5173 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5174 type = TREE_TYPE (type);
5175 else
5176 value_address = XEXP (value_address, 0);
5177
5178 outgoing = targetm.calls.function_value (build_pointer_type (type),
5179 current_function_decl, true);
5180
5181 /* Mark this as a function return value so integrate will delete the
5182 assignment and USE below when inlining this function. */
5183 REG_FUNCTION_VALUE_P (outgoing) = 1;
5184
5185 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5186 value_address = convert_memory_address (GET_MODE (outgoing),
5187 value_address);
5188
5189 emit_move_insn (outgoing, value_address);
5190
5191 /* Show return register used to hold result (in this case the address
5192 of the result. */
5193 crtl->return_rtx = outgoing;
5194 }
5195
5196 /* Emit the actual code to clobber return register. Don't emit
5197 it if clobber_after is a barrier, then the previous basic block
5198 certainly doesn't fall thru into the exit block. */
5199 if (!BARRIER_P (clobber_after))
5200 {
5201 rtx seq;
5202
5203 start_sequence ();
5204 clobber_return_register ();
5205 seq = get_insns ();
5206 end_sequence ();
5207
5208 emit_insn_after (seq, clobber_after);
5209 }
5210
5211 /* Output the label for the naked return from the function. */
5212 if (naked_return_label)
5213 emit_label (naked_return_label);
5214
5215 /* @@@ This is a kludge. We want to ensure that instructions that
5216 may trap are not moved into the epilogue by scheduling, because
5217 we don't always emit unwind information for the epilogue. */
5218 if (cfun->can_throw_non_call_exceptions
5219 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5220 emit_insn (gen_blockage ());
5221
5222 /* If stack protection is enabled for this function, check the guard. */
5223 if (crtl->stack_protect_guard)
5224 stack_protect_epilogue ();
5225
5226 /* If we had calls to alloca, and this machine needs
5227 an accurate stack pointer to exit the function,
5228 insert some code to save and restore the stack pointer. */
5229 if (! EXIT_IGNORE_STACK
5230 && cfun->calls_alloca)
5231 {
5232 rtx tem = 0, seq;
5233
5234 start_sequence ();
5235 emit_stack_save (SAVE_FUNCTION, &tem);
5236 seq = get_insns ();
5237 end_sequence ();
5238 emit_insn_before (seq, parm_birth_insn);
5239
5240 emit_stack_restore (SAVE_FUNCTION, tem);
5241 }
5242
5243 /* ??? This should no longer be necessary since stupid is no longer with
5244 us, but there are some parts of the compiler (eg reload_combine, and
5245 sh mach_dep_reorg) that still try and compute their own lifetime info
5246 instead of using the general framework. */
5247 use_return_register ();
5248 }
5249
5250 rtx
5251 get_arg_pointer_save_area (void)
5252 {
5253 rtx ret = arg_pointer_save_area;
5254
5255 if (! ret)
5256 {
5257 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5258 arg_pointer_save_area = ret;
5259 }
5260
5261 if (! crtl->arg_pointer_save_area_init)
5262 {
5263 rtx seq;
5264
5265 /* Save the arg pointer at the beginning of the function. The
5266 generated stack slot may not be a valid memory address, so we
5267 have to check it and fix it if necessary. */
5268 start_sequence ();
5269 emit_move_insn (validize_mem (copy_rtx (ret)),
5270 crtl->args.internal_arg_pointer);
5271 seq = get_insns ();
5272 end_sequence ();
5273
5274 push_topmost_sequence ();
5275 emit_insn_after (seq, entry_of_function ());
5276 pop_topmost_sequence ();
5277
5278 crtl->arg_pointer_save_area_init = true;
5279 }
5280
5281 return ret;
5282 }
5283 \f
5284 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5285 for the first time. */
5286
5287 static void
5288 record_insns (rtx_insn *insns, rtx end, htab_t *hashp)
5289 {
5290 rtx_insn *tmp;
5291 htab_t hash = *hashp;
5292
5293 if (hash == NULL)
5294 *hashp = hash
5295 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5296
5297 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5298 {
5299 void **slot = htab_find_slot (hash, tmp, INSERT);
5300 gcc_assert (*slot == NULL);
5301 *slot = tmp;
5302 }
5303 }
5304
5305 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5306 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5307 insn, then record COPY as well. */
5308
5309 void
5310 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5311 {
5312 htab_t hash;
5313 void **slot;
5314
5315 hash = epilogue_insn_hash;
5316 if (!hash || !htab_find (hash, insn))
5317 {
5318 hash = prologue_insn_hash;
5319 if (!hash || !htab_find (hash, insn))
5320 return;
5321 }
5322
5323 slot = htab_find_slot (hash, copy, INSERT);
5324 gcc_assert (*slot == NULL);
5325 *slot = copy;
5326 }
5327
5328 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5329 we can be running after reorg, SEQUENCE rtl is possible. */
5330
5331 static bool
5332 contains (const_rtx insn, htab_t hash)
5333 {
5334 if (hash == NULL)
5335 return false;
5336
5337 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5338 {
5339 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5340 int i;
5341 for (i = seq->len () - 1; i >= 0; i--)
5342 if (htab_find (hash, seq->element (i)))
5343 return true;
5344 return false;
5345 }
5346
5347 return htab_find (hash, insn) != NULL;
5348 }
5349
5350 int
5351 prologue_epilogue_contains (const_rtx insn)
5352 {
5353 if (contains (insn, prologue_insn_hash))
5354 return 1;
5355 if (contains (insn, epilogue_insn_hash))
5356 return 1;
5357 return 0;
5358 }
5359
5360 #ifdef HAVE_return
5361 /* Insert use of return register before the end of BB. */
5362
5363 static void
5364 emit_use_return_register_into_block (basic_block bb)
5365 {
5366 rtx seq, insn;
5367 start_sequence ();
5368 use_return_register ();
5369 seq = get_insns ();
5370 end_sequence ();
5371 insn = BB_END (bb);
5372 #ifdef HAVE_cc0
5373 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5374 insn = prev_cc0_setter (insn);
5375 #endif
5376 emit_insn_before (seq, insn);
5377 }
5378
5379
5380 /* Create a return pattern, either simple_return or return, depending on
5381 simple_p. */
5382
5383 static rtx
5384 gen_return_pattern (bool simple_p)
5385 {
5386 #ifdef HAVE_simple_return
5387 return simple_p ? gen_simple_return () : gen_return ();
5388 #else
5389 gcc_assert (!simple_p);
5390 return gen_return ();
5391 #endif
5392 }
5393
5394 /* Insert an appropriate return pattern at the end of block BB. This
5395 also means updating block_for_insn appropriately. SIMPLE_P is
5396 the same as in gen_return_pattern and passed to it. */
5397
5398 void
5399 emit_return_into_block (bool simple_p, basic_block bb)
5400 {
5401 rtx jump, pat;
5402 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5403 pat = PATTERN (jump);
5404 if (GET_CODE (pat) == PARALLEL)
5405 pat = XVECEXP (pat, 0, 0);
5406 gcc_assert (ANY_RETURN_P (pat));
5407 JUMP_LABEL (jump) = pat;
5408 }
5409 #endif
5410
5411 /* Set JUMP_LABEL for a return insn. */
5412
5413 void
5414 set_return_jump_label (rtx returnjump)
5415 {
5416 rtx pat = PATTERN (returnjump);
5417 if (GET_CODE (pat) == PARALLEL)
5418 pat = XVECEXP (pat, 0, 0);
5419 if (ANY_RETURN_P (pat))
5420 JUMP_LABEL (returnjump) = pat;
5421 else
5422 JUMP_LABEL (returnjump) = ret_rtx;
5423 }
5424
5425 #if defined (HAVE_return) || defined (HAVE_simple_return)
5426 /* Return true if there are any active insns between HEAD and TAIL. */
5427 bool
5428 active_insn_between (rtx_insn *head, rtx_insn *tail)
5429 {
5430 while (tail)
5431 {
5432 if (active_insn_p (tail))
5433 return true;
5434 if (tail == head)
5435 return false;
5436 tail = PREV_INSN (tail);
5437 }
5438 return false;
5439 }
5440
5441 /* LAST_BB is a block that exits, and empty of active instructions.
5442 Examine its predecessors for jumps that can be converted to
5443 (conditional) returns. */
5444 vec<edge>
5445 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5446 vec<edge> unconverted ATTRIBUTE_UNUSED)
5447 {
5448 int i;
5449 basic_block bb;
5450 rtx label;
5451 edge_iterator ei;
5452 edge e;
5453 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5454
5455 FOR_EACH_EDGE (e, ei, last_bb->preds)
5456 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5457 src_bbs.quick_push (e->src);
5458
5459 label = BB_HEAD (last_bb);
5460
5461 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5462 {
5463 rtx jump = BB_END (bb);
5464
5465 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5466 continue;
5467
5468 e = find_edge (bb, last_bb);
5469
5470 /* If we have an unconditional jump, we can replace that
5471 with a simple return instruction. */
5472 if (simplejump_p (jump))
5473 {
5474 /* The use of the return register might be present in the exit
5475 fallthru block. Either:
5476 - removing the use is safe, and we should remove the use in
5477 the exit fallthru block, or
5478 - removing the use is not safe, and we should add it here.
5479 For now, we conservatively choose the latter. Either of the
5480 2 helps in crossjumping. */
5481 emit_use_return_register_into_block (bb);
5482
5483 emit_return_into_block (simple_p, bb);
5484 delete_insn (jump);
5485 }
5486
5487 /* If we have a conditional jump branching to the last
5488 block, we can try to replace that with a conditional
5489 return instruction. */
5490 else if (condjump_p (jump))
5491 {
5492 rtx dest;
5493
5494 if (simple_p)
5495 dest = simple_return_rtx;
5496 else
5497 dest = ret_rtx;
5498 if (!redirect_jump (jump, dest, 0))
5499 {
5500 #ifdef HAVE_simple_return
5501 if (simple_p)
5502 {
5503 if (dump_file)
5504 fprintf (dump_file,
5505 "Failed to redirect bb %d branch.\n", bb->index);
5506 unconverted.safe_push (e);
5507 }
5508 #endif
5509 continue;
5510 }
5511
5512 /* See comment in simplejump_p case above. */
5513 emit_use_return_register_into_block (bb);
5514
5515 /* If this block has only one successor, it both jumps
5516 and falls through to the fallthru block, so we can't
5517 delete the edge. */
5518 if (single_succ_p (bb))
5519 continue;
5520 }
5521 else
5522 {
5523 #ifdef HAVE_simple_return
5524 if (simple_p)
5525 {
5526 if (dump_file)
5527 fprintf (dump_file,
5528 "Failed to redirect bb %d branch.\n", bb->index);
5529 unconverted.safe_push (e);
5530 }
5531 #endif
5532 continue;
5533 }
5534
5535 /* Fix up the CFG for the successful change we just made. */
5536 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5537 e->flags &= ~EDGE_CROSSING;
5538 }
5539 src_bbs.release ();
5540 return unconverted;
5541 }
5542
5543 /* Emit a return insn for the exit fallthru block. */
5544 basic_block
5545 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5546 {
5547 basic_block last_bb = exit_fallthru_edge->src;
5548
5549 if (JUMP_P (BB_END (last_bb)))
5550 {
5551 last_bb = split_edge (exit_fallthru_edge);
5552 exit_fallthru_edge = single_succ_edge (last_bb);
5553 }
5554 emit_barrier_after (BB_END (last_bb));
5555 emit_return_into_block (simple_p, last_bb);
5556 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5557 return last_bb;
5558 }
5559 #endif
5560
5561
5562 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5563 this into place with notes indicating where the prologue ends and where
5564 the epilogue begins. Update the basic block information when possible.
5565
5566 Notes on epilogue placement:
5567 There are several kinds of edges to the exit block:
5568 * a single fallthru edge from LAST_BB
5569 * possibly, edges from blocks containing sibcalls
5570 * possibly, fake edges from infinite loops
5571
5572 The epilogue is always emitted on the fallthru edge from the last basic
5573 block in the function, LAST_BB, into the exit block.
5574
5575 If LAST_BB is empty except for a label, it is the target of every
5576 other basic block in the function that ends in a return. If a
5577 target has a return or simple_return pattern (possibly with
5578 conditional variants), these basic blocks can be changed so that a
5579 return insn is emitted into them, and their target is adjusted to
5580 the real exit block.
5581
5582 Notes on shrink wrapping: We implement a fairly conservative
5583 version of shrink-wrapping rather than the textbook one. We only
5584 generate a single prologue and a single epilogue. This is
5585 sufficient to catch a number of interesting cases involving early
5586 exits.
5587
5588 First, we identify the blocks that require the prologue to occur before
5589 them. These are the ones that modify a call-saved register, or reference
5590 any of the stack or frame pointer registers. To simplify things, we then
5591 mark everything reachable from these blocks as also requiring a prologue.
5592 This takes care of loops automatically, and avoids the need to examine
5593 whether MEMs reference the frame, since it is sufficient to check for
5594 occurrences of the stack or frame pointer.
5595
5596 We then compute the set of blocks for which the need for a prologue
5597 is anticipatable (borrowing terminology from the shrink-wrapping
5598 description in Muchnick's book). These are the blocks which either
5599 require a prologue themselves, or those that have only successors
5600 where the prologue is anticipatable. The prologue needs to be
5601 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5602 is not. For the moment, we ensure that only one such edge exists.
5603
5604 The epilogue is placed as described above, but we make a
5605 distinction between inserting return and simple_return patterns
5606 when modifying other blocks that end in a return. Blocks that end
5607 in a sibcall omit the sibcall_epilogue if the block is not in
5608 ANTIC. */
5609
5610 static void
5611 thread_prologue_and_epilogue_insns (void)
5612 {
5613 bool inserted;
5614 #ifdef HAVE_simple_return
5615 vec<edge> unconverted_simple_returns = vNULL;
5616 bitmap_head bb_flags;
5617 #endif
5618 rtx_insn *returnjump;
5619 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5620 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5621 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5622 edge_iterator ei;
5623
5624 df_analyze ();
5625
5626 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5627
5628 inserted = false;
5629 epilogue_end = NULL;
5630 returnjump = NULL;
5631
5632 /* Can't deal with multiple successors of the entry block at the
5633 moment. Function should always have at least one entry
5634 point. */
5635 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5636 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5637 orig_entry_edge = entry_edge;
5638
5639 split_prologue_seq = NULL;
5640 if (flag_split_stack
5641 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5642 == NULL))
5643 {
5644 #ifndef HAVE_split_stack_prologue
5645 gcc_unreachable ();
5646 #else
5647 gcc_assert (HAVE_split_stack_prologue);
5648
5649 start_sequence ();
5650 emit_insn (gen_split_stack_prologue ());
5651 split_prologue_seq = get_insns ();
5652 end_sequence ();
5653
5654 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5655 set_insn_locations (split_prologue_seq, prologue_location);
5656 #endif
5657 }
5658
5659 prologue_seq = NULL;
5660 #ifdef HAVE_prologue
5661 if (HAVE_prologue)
5662 {
5663 start_sequence ();
5664 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5665 emit_insn (seq);
5666
5667 /* Insert an explicit USE for the frame pointer
5668 if the profiling is on and the frame pointer is required. */
5669 if (crtl->profile && frame_pointer_needed)
5670 emit_use (hard_frame_pointer_rtx);
5671
5672 /* Retain a map of the prologue insns. */
5673 record_insns (seq, NULL, &prologue_insn_hash);
5674 emit_note (NOTE_INSN_PROLOGUE_END);
5675
5676 /* Ensure that instructions are not moved into the prologue when
5677 profiling is on. The call to the profiling routine can be
5678 emitted within the live range of a call-clobbered register. */
5679 if (!targetm.profile_before_prologue () && crtl->profile)
5680 emit_insn (gen_blockage ());
5681
5682 prologue_seq = get_insns ();
5683 end_sequence ();
5684 set_insn_locations (prologue_seq, prologue_location);
5685 }
5686 #endif
5687
5688 #ifdef HAVE_simple_return
5689 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5690
5691 /* Try to perform a kind of shrink-wrapping, making sure the
5692 prologue/epilogue is emitted only around those parts of the
5693 function that require it. */
5694
5695 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5696 #endif
5697
5698 if (split_prologue_seq != NULL_RTX)
5699 {
5700 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5701 inserted = true;
5702 }
5703 if (prologue_seq != NULL_RTX)
5704 {
5705 insert_insn_on_edge (prologue_seq, entry_edge);
5706 inserted = true;
5707 }
5708
5709 /* If the exit block has no non-fake predecessors, we don't need
5710 an epilogue. */
5711 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5712 if ((e->flags & EDGE_FAKE) == 0)
5713 break;
5714 if (e == NULL)
5715 goto epilogue_done;
5716
5717 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5718
5719 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5720
5721 #ifdef HAVE_simple_return
5722 if (entry_edge != orig_entry_edge)
5723 exit_fallthru_edge
5724 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5725 &unconverted_simple_returns,
5726 &returnjump);
5727 #endif
5728 #ifdef HAVE_return
5729 if (HAVE_return)
5730 {
5731 if (exit_fallthru_edge == NULL)
5732 goto epilogue_done;
5733
5734 if (optimize)
5735 {
5736 basic_block last_bb = exit_fallthru_edge->src;
5737
5738 if (LABEL_P (BB_HEAD (last_bb))
5739 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5740 convert_jumps_to_returns (last_bb, false, vNULL);
5741
5742 if (EDGE_COUNT (last_bb->preds) != 0
5743 && single_succ_p (last_bb))
5744 {
5745 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5746 epilogue_end = returnjump = BB_END (last_bb);
5747 #ifdef HAVE_simple_return
5748 /* Emitting the return may add a basic block.
5749 Fix bb_flags for the added block. */
5750 if (last_bb != exit_fallthru_edge->src)
5751 bitmap_set_bit (&bb_flags, last_bb->index);
5752 #endif
5753 goto epilogue_done;
5754 }
5755 }
5756 }
5757 #endif
5758
5759 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5760 this marker for the splits of EH_RETURN patterns, and nothing else
5761 uses the flag in the meantime. */
5762 epilogue_completed = 1;
5763
5764 #ifdef HAVE_eh_return
5765 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5766 some targets, these get split to a special version of the epilogue
5767 code. In order to be able to properly annotate these with unwind
5768 info, try to split them now. If we get a valid split, drop an
5769 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5770 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5771 {
5772 rtx_insn *prev, *last, *trial;
5773
5774 if (e->flags & EDGE_FALLTHRU)
5775 continue;
5776 last = BB_END (e->src);
5777 if (!eh_returnjump_p (last))
5778 continue;
5779
5780 prev = PREV_INSN (last);
5781 trial = try_split (PATTERN (last), last, 1);
5782 if (trial == last)
5783 continue;
5784
5785 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5786 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5787 }
5788 #endif
5789
5790 /* If nothing falls through into the exit block, we don't need an
5791 epilogue. */
5792
5793 if (exit_fallthru_edge == NULL)
5794 goto epilogue_done;
5795
5796 #ifdef HAVE_epilogue
5797 if (HAVE_epilogue)
5798 {
5799 start_sequence ();
5800 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5801 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
5802 if (seq)
5803 emit_jump_insn (seq);
5804
5805 /* Retain a map of the epilogue insns. */
5806 record_insns (seq, NULL, &epilogue_insn_hash);
5807 set_insn_locations (seq, epilogue_location);
5808
5809 seq = get_insns ();
5810 returnjump = get_last_insn ();
5811 end_sequence ();
5812
5813 insert_insn_on_edge (seq, exit_fallthru_edge);
5814 inserted = true;
5815
5816 if (JUMP_P (returnjump))
5817 set_return_jump_label (returnjump);
5818 }
5819 else
5820 #endif
5821 {
5822 basic_block cur_bb;
5823
5824 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
5825 goto epilogue_done;
5826 /* We have a fall-through edge to the exit block, the source is not
5827 at the end of the function, and there will be an assembler epilogue
5828 at the end of the function.
5829 We can't use force_nonfallthru here, because that would try to
5830 use return. Inserting a jump 'by hand' is extremely messy, so
5831 we take advantage of cfg_layout_finalize using
5832 fixup_fallthru_exit_predecessor. */
5833 cfg_layout_initialize (0);
5834 FOR_EACH_BB_FN (cur_bb, cfun)
5835 if (cur_bb->index >= NUM_FIXED_BLOCKS
5836 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5837 cur_bb->aux = cur_bb->next_bb;
5838 cfg_layout_finalize ();
5839 }
5840
5841 epilogue_done:
5842
5843 default_rtl_profile ();
5844
5845 if (inserted)
5846 {
5847 sbitmap blocks;
5848
5849 commit_edge_insertions ();
5850
5851 /* Look for basic blocks within the prologue insns. */
5852 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
5853 bitmap_clear (blocks);
5854 bitmap_set_bit (blocks, entry_edge->dest->index);
5855 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
5856 find_many_sub_basic_blocks (blocks);
5857 sbitmap_free (blocks);
5858
5859 /* The epilogue insns we inserted may cause the exit edge to no longer
5860 be fallthru. */
5861 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5862 {
5863 if (((e->flags & EDGE_FALLTHRU) != 0)
5864 && returnjump_p (BB_END (e->src)))
5865 e->flags &= ~EDGE_FALLTHRU;
5866 }
5867 }
5868
5869 #ifdef HAVE_simple_return
5870 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
5871 unconverted_simple_returns);
5872 #endif
5873
5874 #ifdef HAVE_sibcall_epilogue
5875 /* Emit sibling epilogues before any sibling call sites. */
5876 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
5877 ei_safe_edge (ei));
5878 )
5879 {
5880 basic_block bb = e->src;
5881 rtx_insn *insn = BB_END (bb);
5882 rtx ep_seq;
5883
5884 if (!CALL_P (insn)
5885 || ! SIBLING_CALL_P (insn)
5886 #ifdef HAVE_simple_return
5887 || (entry_edge != orig_entry_edge
5888 && !bitmap_bit_p (&bb_flags, bb->index))
5889 #endif
5890 )
5891 {
5892 ei_next (&ei);
5893 continue;
5894 }
5895
5896 ep_seq = gen_sibcall_epilogue ();
5897 if (ep_seq)
5898 {
5899 start_sequence ();
5900 emit_note (NOTE_INSN_EPILOGUE_BEG);
5901 emit_insn (ep_seq);
5902 rtx_insn *seq = get_insns ();
5903 end_sequence ();
5904
5905 /* Retain a map of the epilogue insns. Used in life analysis to
5906 avoid getting rid of sibcall epilogue insns. Do this before we
5907 actually emit the sequence. */
5908 record_insns (seq, NULL, &epilogue_insn_hash);
5909 set_insn_locations (seq, epilogue_location);
5910
5911 emit_insn_before (seq, insn);
5912 }
5913 ei_next (&ei);
5914 }
5915 #endif
5916
5917 #ifdef HAVE_epilogue
5918 if (epilogue_end)
5919 {
5920 rtx_insn *insn, *next;
5921
5922 /* Similarly, move any line notes that appear after the epilogue.
5923 There is no need, however, to be quite so anal about the existence
5924 of such a note. Also possibly move
5925 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5926 info generation. */
5927 for (insn = epilogue_end; insn; insn = next)
5928 {
5929 next = NEXT_INSN (insn);
5930 if (NOTE_P (insn)
5931 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5932 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5933 }
5934 }
5935 #endif
5936
5937 #ifdef HAVE_simple_return
5938 bitmap_clear (&bb_flags);
5939 #endif
5940
5941 /* Threading the prologue and epilogue changes the artificial refs
5942 in the entry and exit blocks. */
5943 epilogue_completed = 1;
5944 df_update_entry_exit_and_calls ();
5945 }
5946
5947 /* Reposition the prologue-end and epilogue-begin notes after
5948 instruction scheduling. */
5949
5950 void
5951 reposition_prologue_and_epilogue_notes (void)
5952 {
5953 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5954 || defined (HAVE_sibcall_epilogue)
5955 /* Since the hash table is created on demand, the fact that it is
5956 non-null is a signal that it is non-empty. */
5957 if (prologue_insn_hash != NULL)
5958 {
5959 size_t len = htab_elements (prologue_insn_hash);
5960 rtx_insn *insn, *last = NULL, *note = NULL;
5961
5962 /* Scan from the beginning until we reach the last prologue insn. */
5963 /* ??? While we do have the CFG intact, there are two problems:
5964 (1) The prologue can contain loops (typically probing the stack),
5965 which means that the end of the prologue isn't in the first bb.
5966 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
5967 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5968 {
5969 if (NOTE_P (insn))
5970 {
5971 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5972 note = insn;
5973 }
5974 else if (contains (insn, prologue_insn_hash))
5975 {
5976 last = insn;
5977 if (--len == 0)
5978 break;
5979 }
5980 }
5981
5982 if (last)
5983 {
5984 if (note == NULL)
5985 {
5986 /* Scan forward looking for the PROLOGUE_END note. It should
5987 be right at the beginning of the block, possibly with other
5988 insn notes that got moved there. */
5989 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
5990 {
5991 if (NOTE_P (note)
5992 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5993 break;
5994 }
5995 }
5996
5997 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5998 if (LABEL_P (last))
5999 last = NEXT_INSN (last);
6000 reorder_insns (note, note, last);
6001 }
6002 }
6003
6004 if (epilogue_insn_hash != NULL)
6005 {
6006 edge_iterator ei;
6007 edge e;
6008
6009 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6010 {
6011 rtx_insn *insn, *first = NULL, *note = NULL;
6012 basic_block bb = e->src;
6013
6014 /* Scan from the beginning until we reach the first epilogue insn. */
6015 FOR_BB_INSNS (bb, insn)
6016 {
6017 if (NOTE_P (insn))
6018 {
6019 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6020 {
6021 note = insn;
6022 if (first != NULL)
6023 break;
6024 }
6025 }
6026 else if (first == NULL && contains (insn, epilogue_insn_hash))
6027 {
6028 first = insn;
6029 if (note != NULL)
6030 break;
6031 }
6032 }
6033
6034 if (note)
6035 {
6036 /* If the function has a single basic block, and no real
6037 epilogue insns (e.g. sibcall with no cleanup), the
6038 epilogue note can get scheduled before the prologue
6039 note. If we have frame related prologue insns, having
6040 them scanned during the epilogue will result in a crash.
6041 In this case re-order the epilogue note to just before
6042 the last insn in the block. */
6043 if (first == NULL)
6044 first = BB_END (bb);
6045
6046 if (PREV_INSN (first) != note)
6047 reorder_insns (note, note, PREV_INSN (first));
6048 }
6049 }
6050 }
6051 #endif /* HAVE_prologue or HAVE_epilogue */
6052 }
6053
6054 /* Returns the name of function declared by FNDECL. */
6055 const char *
6056 fndecl_name (tree fndecl)
6057 {
6058 if (fndecl == NULL)
6059 return "(nofn)";
6060 return lang_hooks.decl_printable_name (fndecl, 2);
6061 }
6062
6063 /* Returns the name of function FN. */
6064 const char *
6065 function_name (struct function *fn)
6066 {
6067 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6068 return fndecl_name (fndecl);
6069 }
6070
6071 /* Returns the name of the current function. */
6072 const char *
6073 current_function_name (void)
6074 {
6075 return function_name (cfun);
6076 }
6077 \f
6078
6079 static unsigned int
6080 rest_of_handle_check_leaf_regs (void)
6081 {
6082 #ifdef LEAF_REGISTERS
6083 crtl->uses_only_leaf_regs
6084 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6085 #endif
6086 return 0;
6087 }
6088
6089 /* Insert a TYPE into the used types hash table of CFUN. */
6090
6091 static void
6092 used_types_insert_helper (tree type, struct function *func)
6093 {
6094 if (type != NULL && func != NULL)
6095 {
6096 void **slot;
6097
6098 if (func->used_types_hash == NULL)
6099 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6100 htab_eq_pointer, NULL);
6101 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6102 if (*slot == NULL)
6103 *slot = type;
6104 }
6105 }
6106
6107 /* Given a type, insert it into the used hash table in cfun. */
6108 void
6109 used_types_insert (tree t)
6110 {
6111 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6112 if (TYPE_NAME (t))
6113 break;
6114 else
6115 t = TREE_TYPE (t);
6116 if (TREE_CODE (t) == ERROR_MARK)
6117 return;
6118 if (TYPE_NAME (t) == NULL_TREE
6119 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6120 t = TYPE_MAIN_VARIANT (t);
6121 if (debug_info_level > DINFO_LEVEL_NONE)
6122 {
6123 if (cfun)
6124 used_types_insert_helper (t, cfun);
6125 else
6126 {
6127 /* So this might be a type referenced by a global variable.
6128 Record that type so that we can later decide to emit its
6129 debug information. */
6130 vec_safe_push (types_used_by_cur_var_decl, t);
6131 }
6132 }
6133 }
6134
6135 /* Helper to Hash a struct types_used_by_vars_entry. */
6136
6137 static hashval_t
6138 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6139 {
6140 gcc_assert (entry && entry->var_decl && entry->type);
6141
6142 return iterative_hash_object (entry->type,
6143 iterative_hash_object (entry->var_decl, 0));
6144 }
6145
6146 /* Hash function of the types_used_by_vars_entry hash table. */
6147
6148 hashval_t
6149 types_used_by_vars_do_hash (const void *x)
6150 {
6151 const struct types_used_by_vars_entry *entry =
6152 (const struct types_used_by_vars_entry *) x;
6153
6154 return hash_types_used_by_vars_entry (entry);
6155 }
6156
6157 /*Equality function of the types_used_by_vars_entry hash table. */
6158
6159 int
6160 types_used_by_vars_eq (const void *x1, const void *x2)
6161 {
6162 const struct types_used_by_vars_entry *e1 =
6163 (const struct types_used_by_vars_entry *) x1;
6164 const struct types_used_by_vars_entry *e2 =
6165 (const struct types_used_by_vars_entry *)x2;
6166
6167 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6168 }
6169
6170 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6171
6172 void
6173 types_used_by_var_decl_insert (tree type, tree var_decl)
6174 {
6175 if (type != NULL && var_decl != NULL)
6176 {
6177 void **slot;
6178 struct types_used_by_vars_entry e;
6179 e.var_decl = var_decl;
6180 e.type = type;
6181 if (types_used_by_vars_hash == NULL)
6182 types_used_by_vars_hash =
6183 htab_create_ggc (37, types_used_by_vars_do_hash,
6184 types_used_by_vars_eq, NULL);
6185 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6186 hash_types_used_by_vars_entry (&e), INSERT);
6187 if (*slot == NULL)
6188 {
6189 struct types_used_by_vars_entry *entry;
6190 entry = ggc_alloc<types_used_by_vars_entry> ();
6191 entry->type = type;
6192 entry->var_decl = var_decl;
6193 *slot = entry;
6194 }
6195 }
6196 }
6197
6198 namespace {
6199
6200 const pass_data pass_data_leaf_regs =
6201 {
6202 RTL_PASS, /* type */
6203 "*leaf_regs", /* name */
6204 OPTGROUP_NONE, /* optinfo_flags */
6205 TV_NONE, /* tv_id */
6206 0, /* properties_required */
6207 0, /* properties_provided */
6208 0, /* properties_destroyed */
6209 0, /* todo_flags_start */
6210 0, /* todo_flags_finish */
6211 };
6212
6213 class pass_leaf_regs : public rtl_opt_pass
6214 {
6215 public:
6216 pass_leaf_regs (gcc::context *ctxt)
6217 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6218 {}
6219
6220 /* opt_pass methods: */
6221 virtual unsigned int execute (function *)
6222 {
6223 return rest_of_handle_check_leaf_regs ();
6224 }
6225
6226 }; // class pass_leaf_regs
6227
6228 } // anon namespace
6229
6230 rtl_opt_pass *
6231 make_pass_leaf_regs (gcc::context *ctxt)
6232 {
6233 return new pass_leaf_regs (ctxt);
6234 }
6235
6236 static unsigned int
6237 rest_of_handle_thread_prologue_and_epilogue (void)
6238 {
6239 if (optimize)
6240 cleanup_cfg (CLEANUP_EXPENSIVE);
6241
6242 /* On some machines, the prologue and epilogue code, or parts thereof,
6243 can be represented as RTL. Doing so lets us schedule insns between
6244 it and the rest of the code and also allows delayed branch
6245 scheduling to operate in the epilogue. */
6246 thread_prologue_and_epilogue_insns ();
6247
6248 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6249 see PR57320. */
6250 cleanup_cfg (0);
6251
6252 /* The stack usage info is finalized during prologue expansion. */
6253 if (flag_stack_usage_info)
6254 output_stack_usage ();
6255
6256 return 0;
6257 }
6258
6259 namespace {
6260
6261 const pass_data pass_data_thread_prologue_and_epilogue =
6262 {
6263 RTL_PASS, /* type */
6264 "pro_and_epilogue", /* name */
6265 OPTGROUP_NONE, /* optinfo_flags */
6266 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6267 0, /* properties_required */
6268 0, /* properties_provided */
6269 0, /* properties_destroyed */
6270 0, /* todo_flags_start */
6271 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6272 };
6273
6274 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6275 {
6276 public:
6277 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6278 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6279 {}
6280
6281 /* opt_pass methods: */
6282 virtual unsigned int execute (function *)
6283 {
6284 return rest_of_handle_thread_prologue_and_epilogue ();
6285 }
6286
6287 }; // class pass_thread_prologue_and_epilogue
6288
6289 } // anon namespace
6290
6291 rtl_opt_pass *
6292 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6293 {
6294 return new pass_thread_prologue_and_epilogue (ctxt);
6295 }
6296 \f
6297
6298 /* This mini-pass fixes fall-out from SSA in asm statements that have
6299 in-out constraints. Say you start with
6300
6301 orig = inout;
6302 asm ("": "+mr" (inout));
6303 use (orig);
6304
6305 which is transformed very early to use explicit output and match operands:
6306
6307 orig = inout;
6308 asm ("": "=mr" (inout) : "0" (inout));
6309 use (orig);
6310
6311 Or, after SSA and copyprop,
6312
6313 asm ("": "=mr" (inout_2) : "0" (inout_1));
6314 use (inout_1);
6315
6316 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6317 they represent two separate values, so they will get different pseudo
6318 registers during expansion. Then, since the two operands need to match
6319 per the constraints, but use different pseudo registers, reload can
6320 only register a reload for these operands. But reloads can only be
6321 satisfied by hardregs, not by memory, so we need a register for this
6322 reload, just because we are presented with non-matching operands.
6323 So, even though we allow memory for this operand, no memory can be
6324 used for it, just because the two operands don't match. This can
6325 cause reload failures on register-starved targets.
6326
6327 So it's a symptom of reload not being able to use memory for reloads
6328 or, alternatively it's also a symptom of both operands not coming into
6329 reload as matching (in which case the pseudo could go to memory just
6330 fine, as the alternative allows it, and no reload would be necessary).
6331 We fix the latter problem here, by transforming
6332
6333 asm ("": "=mr" (inout_2) : "0" (inout_1));
6334
6335 back to
6336
6337 inout_2 = inout_1;
6338 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6339
6340 static void
6341 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6342 {
6343 int i;
6344 bool changed = false;
6345 rtx op = SET_SRC (p_sets[0]);
6346 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6347 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6348 bool *output_matched = XALLOCAVEC (bool, noutputs);
6349
6350 memset (output_matched, 0, noutputs * sizeof (bool));
6351 for (i = 0; i < ninputs; i++)
6352 {
6353 rtx input, output;
6354 rtx_insn *insns;
6355 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6356 char *end;
6357 int match, j;
6358
6359 if (*constraint == '%')
6360 constraint++;
6361
6362 match = strtoul (constraint, &end, 10);
6363 if (end == constraint)
6364 continue;
6365
6366 gcc_assert (match < noutputs);
6367 output = SET_DEST (p_sets[match]);
6368 input = RTVEC_ELT (inputs, i);
6369 /* Only do the transformation for pseudos. */
6370 if (! REG_P (output)
6371 || rtx_equal_p (output, input)
6372 || (GET_MODE (input) != VOIDmode
6373 && GET_MODE (input) != GET_MODE (output)))
6374 continue;
6375
6376 /* We can't do anything if the output is also used as input,
6377 as we're going to overwrite it. */
6378 for (j = 0; j < ninputs; j++)
6379 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6380 break;
6381 if (j != ninputs)
6382 continue;
6383
6384 /* Avoid changing the same input several times. For
6385 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6386 only change in once (to out1), rather than changing it
6387 first to out1 and afterwards to out2. */
6388 if (i > 0)
6389 {
6390 for (j = 0; j < noutputs; j++)
6391 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6392 break;
6393 if (j != noutputs)
6394 continue;
6395 }
6396 output_matched[match] = true;
6397
6398 start_sequence ();
6399 emit_move_insn (output, input);
6400 insns = get_insns ();
6401 end_sequence ();
6402 emit_insn_before (insns, insn);
6403
6404 /* Now replace all mentions of the input with output. We can't
6405 just replace the occurrence in inputs[i], as the register might
6406 also be used in some other input (or even in an address of an
6407 output), which would mean possibly increasing the number of
6408 inputs by one (namely 'output' in addition), which might pose
6409 a too complicated problem for reload to solve. E.g. this situation:
6410
6411 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6412
6413 Here 'input' is used in two occurrences as input (once for the
6414 input operand, once for the address in the second output operand).
6415 If we would replace only the occurrence of the input operand (to
6416 make the matching) we would be left with this:
6417
6418 output = input
6419 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6420
6421 Now we suddenly have two different input values (containing the same
6422 value, but different pseudos) where we formerly had only one.
6423 With more complicated asms this might lead to reload failures
6424 which wouldn't have happen without this pass. So, iterate over
6425 all operands and replace all occurrences of the register used. */
6426 for (j = 0; j < noutputs; j++)
6427 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6428 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6429 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6430 input, output);
6431 for (j = 0; j < ninputs; j++)
6432 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6433 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6434 input, output);
6435
6436 changed = true;
6437 }
6438
6439 if (changed)
6440 df_insn_rescan (insn);
6441 }
6442
6443 namespace {
6444
6445 const pass_data pass_data_match_asm_constraints =
6446 {
6447 RTL_PASS, /* type */
6448 "asmcons", /* name */
6449 OPTGROUP_NONE, /* optinfo_flags */
6450 TV_NONE, /* tv_id */
6451 0, /* properties_required */
6452 0, /* properties_provided */
6453 0, /* properties_destroyed */
6454 0, /* todo_flags_start */
6455 0, /* todo_flags_finish */
6456 };
6457
6458 class pass_match_asm_constraints : public rtl_opt_pass
6459 {
6460 public:
6461 pass_match_asm_constraints (gcc::context *ctxt)
6462 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6463 {}
6464
6465 /* opt_pass methods: */
6466 virtual unsigned int execute (function *);
6467
6468 }; // class pass_match_asm_constraints
6469
6470 unsigned
6471 pass_match_asm_constraints::execute (function *fun)
6472 {
6473 basic_block bb;
6474 rtx_insn *insn;
6475 rtx pat, *p_sets;
6476 int noutputs;
6477
6478 if (!crtl->has_asm_statement)
6479 return 0;
6480
6481 df_set_flags (DF_DEFER_INSN_RESCAN);
6482 FOR_EACH_BB_FN (bb, fun)
6483 {
6484 FOR_BB_INSNS (bb, insn)
6485 {
6486 if (!INSN_P (insn))
6487 continue;
6488
6489 pat = PATTERN (insn);
6490 if (GET_CODE (pat) == PARALLEL)
6491 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6492 else if (GET_CODE (pat) == SET)
6493 p_sets = &PATTERN (insn), noutputs = 1;
6494 else
6495 continue;
6496
6497 if (GET_CODE (*p_sets) == SET
6498 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6499 match_asm_constraints_1 (insn, p_sets, noutputs);
6500 }
6501 }
6502
6503 return TODO_df_finish;
6504 }
6505
6506 } // anon namespace
6507
6508 rtl_opt_pass *
6509 make_pass_match_asm_constraints (gcc::context *ctxt)
6510 {
6511 return new pass_match_asm_constraints (ctxt);
6512 }
6513
6514
6515 #include "gt-function.h"