]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
expr.c (enqueue_insn, [...]): Remove.
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62
63 #ifndef LOCAL_ALIGNMENT
64 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65 #endif
66
67 #ifndef STACK_ALIGNMENT_NEEDED
68 #define STACK_ALIGNMENT_NEEDED 1
69 #endif
70
71 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
72
73 /* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
76 must define both, or neither. */
77 #ifndef NAME__MAIN
78 #define NAME__MAIN "__main"
79 #endif
80
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
85
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
89
90 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
91 during rtl generation. If they are different register numbers, this is
92 always true. It may also be true if
93 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
94 generation. See fix_lexical_addr for details. */
95
96 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
97 #define NEED_SEPARATE_AP
98 #endif
99
100 /* Nonzero if function being compiled doesn't contain any calls
101 (ignoring the prologue and epilogue). This is set prior to
102 local register allocation and is valid for the remaining
103 compiler passes. */
104 int current_function_is_leaf;
105
106 /* Nonzero if function being compiled doesn't modify the stack pointer
107 (ignoring the prologue and epilogue). This is only valid after
108 life_analysis has run. */
109 int current_function_sp_is_unchanging;
110
111 /* Nonzero if the function being compiled is a leaf function which only
112 uses leaf registers. This is valid after reload (specifically after
113 sched2) and is useful only if the port defines LEAF_REGISTERS. */
114 int current_function_uses_only_leaf_regs;
115
116 /* Nonzero once virtual register instantiation has been done.
117 assign_stack_local uses frame_pointer_rtx when this is nonzero.
118 calls.c:emit_library_call_value_1 uses it to set up
119 post-instantiation libcalls. */
120 int virtuals_instantiated;
121
122 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
123 static GTY(()) int funcdef_no;
124
125 /* These variables hold pointers to functions to create and destroy
126 target specific, per-function data structures. */
127 struct machine_function * (*init_machine_status) (void);
128
129 /* The currently compiled function. */
130 struct function *cfun = 0;
131
132 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
133 static GTY(()) varray_type prologue;
134 static GTY(()) varray_type epilogue;
135
136 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
137 in this function. */
138 static GTY(()) varray_type sibcall_epilogue;
139 \f
140 /* In order to evaluate some expressions, such as function calls returning
141 structures in memory, we need to temporarily allocate stack locations.
142 We record each allocated temporary in the following structure.
143
144 Associated with each temporary slot is a nesting level. When we pop up
145 one level, all temporaries associated with the previous level are freed.
146 Normally, all temporaries are freed after the execution of the statement
147 in which they were created. However, if we are inside a ({...}) grouping,
148 the result may be in a temporary and hence must be preserved. If the
149 result could be in a temporary, we preserve it if we can determine which
150 one it is in. If we cannot determine which temporary may contain the
151 result, all temporaries are preserved. A temporary is preserved by
152 pretending it was allocated at the previous nesting level.
153
154 Automatic variables are also assigned temporary slots, at the nesting
155 level where they are defined. They are marked a "kept" so that
156 free_temp_slots will not free them. */
157
158 struct temp_slot GTY(())
159 {
160 /* Points to next temporary slot. */
161 struct temp_slot *next;
162 /* Points to previous temporary slot. */
163 struct temp_slot *prev;
164
165 /* The rtx to used to reference the slot. */
166 rtx slot;
167 /* The rtx used to represent the address if not the address of the
168 slot above. May be an EXPR_LIST if multiple addresses exist. */
169 rtx address;
170 /* The alignment (in bits) of the slot. */
171 unsigned int align;
172 /* The size, in units, of the slot. */
173 HOST_WIDE_INT size;
174 /* The type of the object in the slot, or zero if it doesn't correspond
175 to a type. We use this to determine whether a slot can be reused.
176 It can be reused if objects of the type of the new slot will always
177 conflict with objects of the type of the old slot. */
178 tree type;
179 /* Nonzero if this temporary is currently in use. */
180 char in_use;
181 /* Nonzero if this temporary has its address taken. */
182 char addr_taken;
183 /* Nesting level at which this slot is being used. */
184 int level;
185 /* Nonzero if this should survive a call to free_temp_slots. */
186 int keep;
187 /* The offset of the slot from the frame_pointer, including extra space
188 for alignment. This info is for combine_temp_slots. */
189 HOST_WIDE_INT base_offset;
190 /* The size of the slot, including extra space for alignment. This
191 info is for combine_temp_slots. */
192 HOST_WIDE_INT full_size;
193 };
194 \f
195 /* Forward declarations. */
196
197 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
198 struct function *);
199 static struct temp_slot *find_temp_slot_from_address (rtx);
200 static void instantiate_decls (tree, int);
201 static void instantiate_decls_1 (tree, int);
202 static void instantiate_decl (rtx, HOST_WIDE_INT, int);
203 static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
204 static int instantiate_virtual_regs_1 (rtx *, rtx, int);
205 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
206 static void pad_below (struct args_size *, enum machine_mode, tree);
207 static void reorder_blocks_1 (rtx, tree, varray_type *);
208 static void reorder_fix_fragments (tree);
209 static int all_blocks (tree, tree *);
210 static tree *get_block_vector (tree, int *);
211 extern tree debug_find_var_in_block_tree (tree, tree);
212 /* We always define `record_insns' even if it's not used so that we
213 can always export `prologue_epilogue_contains'. */
214 static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
215 static int contains (rtx, varray_type);
216 #ifdef HAVE_return
217 static void emit_return_into_block (basic_block, rtx);
218 #endif
219 static void purge_single_hard_subreg_set (rtx);
220 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
221 static rtx keep_stack_depressed (rtx);
222 #endif
223 static void prepare_function_start (tree);
224 static void do_clobber_return_reg (rtx, void *);
225 static void do_use_return_reg (rtx, void *);
226 static void instantiate_virtual_regs_lossage (rtx);
227 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
228 \f
229 /* Pointer to chain of `struct function' for containing functions. */
230 struct function *outer_function_chain;
231
232 /* Given a function decl for a containing function,
233 return the `struct function' for it. */
234
235 struct function *
236 find_function_data (tree decl)
237 {
238 struct function *p;
239
240 for (p = outer_function_chain; p; p = p->outer)
241 if (p->decl == decl)
242 return p;
243
244 abort ();
245 }
246
247 /* Save the current context for compilation of a nested function.
248 This is called from language-specific code. The caller should use
249 the enter_nested langhook to save any language-specific state,
250 since this function knows only about language-independent
251 variables. */
252
253 void
254 push_function_context_to (tree context)
255 {
256 struct function *p;
257
258 if (context)
259 {
260 if (context == current_function_decl)
261 cfun->contains_functions = 1;
262 else
263 {
264 struct function *containing = find_function_data (context);
265 containing->contains_functions = 1;
266 }
267 }
268
269 if (cfun == 0)
270 init_dummy_function_start ();
271 p = cfun;
272
273 p->outer = outer_function_chain;
274 outer_function_chain = p;
275
276 lang_hooks.function.enter_nested (p);
277
278 cfun = 0;
279 }
280
281 void
282 push_function_context (void)
283 {
284 push_function_context_to (current_function_decl);
285 }
286
287 /* Restore the last saved context, at the end of a nested function.
288 This function is called from language-specific code. */
289
290 void
291 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
292 {
293 struct function *p = outer_function_chain;
294
295 cfun = p;
296 outer_function_chain = p->outer;
297
298 current_function_decl = p->decl;
299 reg_renumber = 0;
300
301 restore_emit_status (p);
302
303 lang_hooks.function.leave_nested (p);
304
305 /* Reset variables that have known state during rtx generation. */
306 rtx_equal_function_value_matters = 1;
307 virtuals_instantiated = 0;
308 generating_concat_p = 1;
309 }
310
311 void
312 pop_function_context (void)
313 {
314 pop_function_context_from (current_function_decl);
315 }
316
317 /* Clear out all parts of the state in F that can safely be discarded
318 after the function has been parsed, but not compiled, to let
319 garbage collection reclaim the memory. */
320
321 void
322 free_after_parsing (struct function *f)
323 {
324 /* f->expr->forced_labels is used by code generation. */
325 /* f->emit->regno_reg_rtx is used by code generation. */
326 /* f->varasm is used by code generation. */
327 /* f->eh->eh_return_stub_label is used by code generation. */
328
329 lang_hooks.function.final (f);
330 f->stmt = NULL;
331 }
332
333 /* Clear out all parts of the state in F that can safely be discarded
334 after the function has been compiled, to let garbage collection
335 reclaim the memory. */
336
337 void
338 free_after_compilation (struct function *f)
339 {
340 f->eh = NULL;
341 f->expr = NULL;
342 f->emit = NULL;
343 f->varasm = NULL;
344 f->machine = NULL;
345
346 f->x_avail_temp_slots = NULL;
347 f->x_used_temp_slots = NULL;
348 f->arg_offset_rtx = NULL;
349 f->return_rtx = NULL;
350 f->internal_arg_pointer = NULL;
351 f->x_nonlocal_goto_handler_labels = NULL;
352 f->x_return_label = NULL;
353 f->x_naked_return_label = NULL;
354 f->x_stack_slot_list = NULL;
355 f->x_tail_recursion_reentry = NULL;
356 f->x_arg_pointer_save_area = NULL;
357 f->x_parm_birth_insn = NULL;
358 f->original_arg_vector = NULL;
359 f->original_decl_initial = NULL;
360 f->epilogue_delay_list = NULL;
361 }
362 \f
363 /* Allocate fixed slots in the stack frame of the current function. */
364
365 /* Return size needed for stack frame based on slots so far allocated in
366 function F.
367 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
368 the caller may have to do that. */
369
370 HOST_WIDE_INT
371 get_func_frame_size (struct function *f)
372 {
373 #ifdef FRAME_GROWS_DOWNWARD
374 return -f->x_frame_offset;
375 #else
376 return f->x_frame_offset;
377 #endif
378 }
379
380 /* Return size needed for stack frame based on slots so far allocated.
381 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
382 the caller may have to do that. */
383 HOST_WIDE_INT
384 get_frame_size (void)
385 {
386 return get_func_frame_size (cfun);
387 }
388
389 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
390 with machine mode MODE.
391
392 ALIGN controls the amount of alignment for the address of the slot:
393 0 means according to MODE,
394 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
395 -2 means use BITS_PER_UNIT,
396 positive specifies alignment boundary in bits.
397
398 We do not round to stack_boundary here.
399
400 FUNCTION specifies the function to allocate in. */
401
402 static rtx
403 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
404 struct function *function)
405 {
406 rtx x, addr;
407 int bigend_correction = 0;
408 int alignment;
409 int frame_off, frame_alignment, frame_phase;
410
411 if (align == 0)
412 {
413 tree type;
414
415 if (mode == BLKmode)
416 alignment = BIGGEST_ALIGNMENT;
417 else
418 alignment = GET_MODE_ALIGNMENT (mode);
419
420 /* Allow the target to (possibly) increase the alignment of this
421 stack slot. */
422 type = lang_hooks.types.type_for_mode (mode, 0);
423 if (type)
424 alignment = LOCAL_ALIGNMENT (type, alignment);
425
426 alignment /= BITS_PER_UNIT;
427 }
428 else if (align == -1)
429 {
430 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
431 size = CEIL_ROUND (size, alignment);
432 }
433 else if (align == -2)
434 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
435 else
436 alignment = align / BITS_PER_UNIT;
437
438 #ifdef FRAME_GROWS_DOWNWARD
439 function->x_frame_offset -= size;
440 #endif
441
442 /* Ignore alignment we can't do with expected alignment of the boundary. */
443 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
444 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
445
446 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
447 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
448
449 /* Calculate how many bytes the start of local variables is off from
450 stack alignment. */
451 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
452 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
453 frame_phase = frame_off ? frame_alignment - frame_off : 0;
454
455 /* Round the frame offset to the specified alignment. The default is
456 to always honor requests to align the stack but a port may choose to
457 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
458 if (STACK_ALIGNMENT_NEEDED
459 || mode != BLKmode
460 || size != 0)
461 {
462 /* We must be careful here, since FRAME_OFFSET might be negative and
463 division with a negative dividend isn't as well defined as we might
464 like. So we instead assume that ALIGNMENT is a power of two and
465 use logical operations which are unambiguous. */
466 #ifdef FRAME_GROWS_DOWNWARD
467 function->x_frame_offset
468 = (FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment)
469 + frame_phase);
470 #else
471 function->x_frame_offset
472 = (CEIL_ROUND (function->x_frame_offset - frame_phase, alignment)
473 + frame_phase);
474 #endif
475 }
476
477 /* On a big-endian machine, if we are allocating more space than we will use,
478 use the least significant bytes of those that are allocated. */
479 if (BYTES_BIG_ENDIAN && mode != BLKmode)
480 bigend_correction = size - GET_MODE_SIZE (mode);
481
482 /* If we have already instantiated virtual registers, return the actual
483 address relative to the frame pointer. */
484 if (function == cfun && virtuals_instantiated)
485 addr = plus_constant (frame_pointer_rtx,
486 trunc_int_for_mode
487 (frame_offset + bigend_correction
488 + STARTING_FRAME_OFFSET, Pmode));
489 else
490 addr = plus_constant (virtual_stack_vars_rtx,
491 trunc_int_for_mode
492 (function->x_frame_offset + bigend_correction,
493 Pmode));
494
495 #ifndef FRAME_GROWS_DOWNWARD
496 function->x_frame_offset += size;
497 #endif
498
499 x = gen_rtx_MEM (mode, addr);
500
501 function->x_stack_slot_list
502 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
503
504 return x;
505 }
506
507 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
508 current function. */
509
510 rtx
511 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
512 {
513 return assign_stack_local_1 (mode, size, align, cfun);
514 }
515
516 \f
517 /* Removes temporary slot TEMP from LIST. */
518
519 static void
520 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
521 {
522 if (temp->next)
523 temp->next->prev = temp->prev;
524 if (temp->prev)
525 temp->prev->next = temp->next;
526 else
527 *list = temp->next;
528
529 temp->prev = temp->next = NULL;
530 }
531
532 /* Inserts temporary slot TEMP to LIST. */
533
534 static void
535 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
536 {
537 temp->next = *list;
538 if (*list)
539 (*list)->prev = temp;
540 temp->prev = NULL;
541 *list = temp;
542 }
543
544 /* Returns the list of used temp slots at LEVEL. */
545
546 static struct temp_slot **
547 temp_slots_at_level (int level)
548 {
549 level++;
550
551 if (!used_temp_slots)
552 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
553
554 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
555 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
556
557 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
558 }
559
560 /* Returns the maximal temporary slot level. */
561
562 static int
563 max_slot_level (void)
564 {
565 if (!used_temp_slots)
566 return -1;
567
568 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
569 }
570
571 /* Moves temporary slot TEMP to LEVEL. */
572
573 static void
574 move_slot_to_level (struct temp_slot *temp, int level)
575 {
576 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
577 insert_slot_to_list (temp, temp_slots_at_level (level));
578 temp->level = level;
579 }
580
581 /* Make temporary slot TEMP available. */
582
583 static void
584 make_slot_available (struct temp_slot *temp)
585 {
586 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
587 insert_slot_to_list (temp, &avail_temp_slots);
588 temp->in_use = 0;
589 temp->level = -1;
590 }
591 \f
592 /* Allocate a temporary stack slot and record it for possible later
593 reuse.
594
595 MODE is the machine mode to be given to the returned rtx.
596
597 SIZE is the size in units of the space required. We do no rounding here
598 since assign_stack_local will do any required rounding.
599
600 KEEP is 1 if this slot is to be retained after a call to
601 free_temp_slots. Automatic variables for a block are allocated
602 with this flag. KEEP is 2 if we allocate a longer term temporary,
603 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
604 if we are to allocate something at an inner level to be treated as
605 a variable in the block (e.g., a SAVE_EXPR).
606
607 TYPE is the type that will be used for the stack slot. */
608
609 rtx
610 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
611 tree type)
612 {
613 unsigned int align;
614 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
615 rtx slot;
616
617 /* If SIZE is -1 it means that somebody tried to allocate a temporary
618 of a variable size. */
619 if (size == -1)
620 abort ();
621
622 if (mode == BLKmode)
623 align = BIGGEST_ALIGNMENT;
624 else
625 align = GET_MODE_ALIGNMENT (mode);
626
627 if (! type)
628 type = lang_hooks.types.type_for_mode (mode, 0);
629
630 if (type)
631 align = LOCAL_ALIGNMENT (type, align);
632
633 /* Try to find an available, already-allocated temporary of the proper
634 mode which meets the size and alignment requirements. Choose the
635 smallest one with the closest alignment. */
636 for (p = avail_temp_slots; p; p = p->next)
637 {
638 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
639 && objects_must_conflict_p (p->type, type)
640 && (best_p == 0 || best_p->size > p->size
641 || (best_p->size == p->size && best_p->align > p->align)))
642 {
643 if (p->align == align && p->size == size)
644 {
645 selected = p;
646 cut_slot_from_list (selected, &avail_temp_slots);
647 best_p = 0;
648 break;
649 }
650 best_p = p;
651 }
652 }
653
654 /* Make our best, if any, the one to use. */
655 if (best_p)
656 {
657 selected = best_p;
658 cut_slot_from_list (selected, &avail_temp_slots);
659
660 /* If there are enough aligned bytes left over, make them into a new
661 temp_slot so that the extra bytes don't get wasted. Do this only
662 for BLKmode slots, so that we can be sure of the alignment. */
663 if (GET_MODE (best_p->slot) == BLKmode)
664 {
665 int alignment = best_p->align / BITS_PER_UNIT;
666 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
667
668 if (best_p->size - rounded_size >= alignment)
669 {
670 p = ggc_alloc (sizeof (struct temp_slot));
671 p->in_use = p->addr_taken = 0;
672 p->size = best_p->size - rounded_size;
673 p->base_offset = best_p->base_offset + rounded_size;
674 p->full_size = best_p->full_size - rounded_size;
675 p->slot = gen_rtx_MEM (BLKmode,
676 plus_constant (XEXP (best_p->slot, 0),
677 rounded_size));
678 p->align = best_p->align;
679 p->address = 0;
680 p->type = best_p->type;
681 insert_slot_to_list (p, &avail_temp_slots);
682
683 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
684 stack_slot_list);
685
686 best_p->size = rounded_size;
687 best_p->full_size = rounded_size;
688 }
689 }
690 }
691
692 /* If we still didn't find one, make a new temporary. */
693 if (selected == 0)
694 {
695 HOST_WIDE_INT frame_offset_old = frame_offset;
696
697 p = ggc_alloc (sizeof (struct temp_slot));
698
699 /* We are passing an explicit alignment request to assign_stack_local.
700 One side effect of that is assign_stack_local will not round SIZE
701 to ensure the frame offset remains suitably aligned.
702
703 So for requests which depended on the rounding of SIZE, we go ahead
704 and round it now. We also make sure ALIGNMENT is at least
705 BIGGEST_ALIGNMENT. */
706 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
707 abort ();
708 p->slot = assign_stack_local (mode,
709 (mode == BLKmode
710 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
711 : size),
712 align);
713
714 p->align = align;
715
716 /* The following slot size computation is necessary because we don't
717 know the actual size of the temporary slot until assign_stack_local
718 has performed all the frame alignment and size rounding for the
719 requested temporary. Note that extra space added for alignment
720 can be either above or below this stack slot depending on which
721 way the frame grows. We include the extra space if and only if it
722 is above this slot. */
723 #ifdef FRAME_GROWS_DOWNWARD
724 p->size = frame_offset_old - frame_offset;
725 #else
726 p->size = size;
727 #endif
728
729 /* Now define the fields used by combine_temp_slots. */
730 #ifdef FRAME_GROWS_DOWNWARD
731 p->base_offset = frame_offset;
732 p->full_size = frame_offset_old - frame_offset;
733 #else
734 p->base_offset = frame_offset_old;
735 p->full_size = frame_offset - frame_offset_old;
736 #endif
737 p->address = 0;
738
739 selected = p;
740 }
741
742 p = selected;
743 p->in_use = 1;
744 p->addr_taken = 0;
745 p->type = type;
746
747 if (keep == 2)
748 {
749 p->level = target_temp_slot_level;
750 p->keep = 1;
751 }
752 else if (keep == 3)
753 {
754 p->level = var_temp_slot_level;
755 p->keep = 0;
756 }
757 else
758 {
759 p->level = temp_slot_level;
760 p->keep = keep;
761 }
762
763 pp = temp_slots_at_level (p->level);
764 insert_slot_to_list (p, pp);
765
766 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
767 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
768 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
769
770 /* If we know the alias set for the memory that will be used, use
771 it. If there's no TYPE, then we don't know anything about the
772 alias set for the memory. */
773 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
774 set_mem_align (slot, align);
775
776 /* If a type is specified, set the relevant flags. */
777 if (type != 0)
778 {
779 RTX_UNCHANGING_P (slot) = (lang_hooks.honor_readonly
780 && TYPE_READONLY (type));
781 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
782 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
783 }
784
785 return slot;
786 }
787
788 /* Allocate a temporary stack slot and record it for possible later
789 reuse. First three arguments are same as in preceding function. */
790
791 rtx
792 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
793 {
794 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
795 }
796 \f
797 /* Assign a temporary.
798 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
799 and so that should be used in error messages. In either case, we
800 allocate of the given type.
801 KEEP is as for assign_stack_temp.
802 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
803 it is 0 if a register is OK.
804 DONT_PROMOTE is 1 if we should not promote values in register
805 to wider modes. */
806
807 rtx
808 assign_temp (tree type_or_decl, int keep, int memory_required,
809 int dont_promote ATTRIBUTE_UNUSED)
810 {
811 tree type, decl;
812 enum machine_mode mode;
813 #ifdef PROMOTE_MODE
814 int unsignedp;
815 #endif
816
817 if (DECL_P (type_or_decl))
818 decl = type_or_decl, type = TREE_TYPE (decl);
819 else
820 decl = NULL, type = type_or_decl;
821
822 mode = TYPE_MODE (type);
823 #ifdef PROMOTE_MODE
824 unsignedp = TYPE_UNSIGNED (type);
825 #endif
826
827 if (mode == BLKmode || memory_required)
828 {
829 HOST_WIDE_INT size = int_size_in_bytes (type);
830 tree size_tree;
831 rtx tmp;
832
833 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
834 problems with allocating the stack space. */
835 if (size == 0)
836 size = 1;
837
838 /* Unfortunately, we don't yet know how to allocate variable-sized
839 temporaries. However, sometimes we have a fixed upper limit on
840 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
841 instead. This is the case for Chill variable-sized strings. */
842 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
843 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
844 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
845 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
846
847 /* If we still haven't been able to get a size, see if the language
848 can compute a maximum size. */
849 if (size == -1
850 && (size_tree = lang_hooks.types.max_size (type)) != 0
851 && host_integerp (size_tree, 1))
852 size = tree_low_cst (size_tree, 1);
853
854 /* The size of the temporary may be too large to fit into an integer. */
855 /* ??? Not sure this should happen except for user silliness, so limit
856 this to things that aren't compiler-generated temporaries. The
857 rest of the time we'll abort in assign_stack_temp_for_type. */
858 if (decl && size == -1
859 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
860 {
861 error ("%Jsize of variable '%D' is too large", decl, decl);
862 size = 1;
863 }
864
865 tmp = assign_stack_temp_for_type (mode, size, keep, type);
866 return tmp;
867 }
868
869 #ifdef PROMOTE_MODE
870 if (! dont_promote)
871 mode = promote_mode (type, mode, &unsignedp, 0);
872 #endif
873
874 return gen_reg_rtx (mode);
875 }
876 \f
877 /* Combine temporary stack slots which are adjacent on the stack.
878
879 This allows for better use of already allocated stack space. This is only
880 done for BLKmode slots because we can be sure that we won't have alignment
881 problems in this case. */
882
883 void
884 combine_temp_slots (void)
885 {
886 struct temp_slot *p, *q, *next, *next_q;
887 int num_slots;
888
889 /* We can't combine slots, because the information about which slot
890 is in which alias set will be lost. */
891 if (flag_strict_aliasing)
892 return;
893
894 /* If there are a lot of temp slots, don't do anything unless
895 high levels of optimization. */
896 if (! flag_expensive_optimizations)
897 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
898 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
899 return;
900
901 for (p = avail_temp_slots; p; p = next)
902 {
903 int delete_p = 0;
904
905 next = p->next;
906
907 if (GET_MODE (p->slot) != BLKmode)
908 continue;
909
910 for (q = p->next; q; q = next_q)
911 {
912 int delete_q = 0;
913
914 next_q = q->next;
915
916 if (GET_MODE (q->slot) != BLKmode)
917 continue;
918
919 if (p->base_offset + p->full_size == q->base_offset)
920 {
921 /* Q comes after P; combine Q into P. */
922 p->size += q->size;
923 p->full_size += q->full_size;
924 delete_q = 1;
925 }
926 else if (q->base_offset + q->full_size == p->base_offset)
927 {
928 /* P comes after Q; combine P into Q. */
929 q->size += p->size;
930 q->full_size += p->full_size;
931 delete_p = 1;
932 break;
933 }
934 if (delete_q)
935 cut_slot_from_list (q, &avail_temp_slots);
936 }
937
938 /* Either delete P or advance past it. */
939 if (delete_p)
940 cut_slot_from_list (p, &avail_temp_slots);
941 }
942 }
943 \f
944 /* Find the temp slot corresponding to the object at address X. */
945
946 static struct temp_slot *
947 find_temp_slot_from_address (rtx x)
948 {
949 struct temp_slot *p;
950 rtx next;
951 int i;
952
953 for (i = max_slot_level (); i >= 0; i--)
954 for (p = *temp_slots_at_level (i); p; p = p->next)
955 {
956 if (XEXP (p->slot, 0) == x
957 || p->address == x
958 || (GET_CODE (x) == PLUS
959 && XEXP (x, 0) == virtual_stack_vars_rtx
960 && GET_CODE (XEXP (x, 1)) == CONST_INT
961 && INTVAL (XEXP (x, 1)) >= p->base_offset
962 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
963 return p;
964
965 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
966 for (next = p->address; next; next = XEXP (next, 1))
967 if (XEXP (next, 0) == x)
968 return p;
969 }
970
971 /* If we have a sum involving a register, see if it points to a temp
972 slot. */
973 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
974 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
975 return p;
976 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
977 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
978 return p;
979
980 return 0;
981 }
982
983 /* Indicate that NEW is an alternate way of referring to the temp slot
984 that previously was known by OLD. */
985
986 void
987 update_temp_slot_address (rtx old, rtx new)
988 {
989 struct temp_slot *p;
990
991 if (rtx_equal_p (old, new))
992 return;
993
994 p = find_temp_slot_from_address (old);
995
996 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
997 is a register, see if one operand of the PLUS is a temporary
998 location. If so, NEW points into it. Otherwise, if both OLD and
999 NEW are a PLUS and if there is a register in common between them.
1000 If so, try a recursive call on those values. */
1001 if (p == 0)
1002 {
1003 if (GET_CODE (old) != PLUS)
1004 return;
1005
1006 if (REG_P (new))
1007 {
1008 update_temp_slot_address (XEXP (old, 0), new);
1009 update_temp_slot_address (XEXP (old, 1), new);
1010 return;
1011 }
1012 else if (GET_CODE (new) != PLUS)
1013 return;
1014
1015 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1016 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1017 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1018 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1019 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1020 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1021 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1022 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1023
1024 return;
1025 }
1026
1027 /* Otherwise add an alias for the temp's address. */
1028 else if (p->address == 0)
1029 p->address = new;
1030 else
1031 {
1032 if (GET_CODE (p->address) != EXPR_LIST)
1033 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1034
1035 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1036 }
1037 }
1038
1039 /* If X could be a reference to a temporary slot, mark the fact that its
1040 address was taken. */
1041
1042 void
1043 mark_temp_addr_taken (rtx x)
1044 {
1045 struct temp_slot *p;
1046
1047 if (x == 0)
1048 return;
1049
1050 /* If X is not in memory or is at a constant address, it cannot be in
1051 a temporary slot. */
1052 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1053 return;
1054
1055 p = find_temp_slot_from_address (XEXP (x, 0));
1056 if (p != 0)
1057 p->addr_taken = 1;
1058 }
1059
1060 /* If X could be a reference to a temporary slot, mark that slot as
1061 belonging to the to one level higher than the current level. If X
1062 matched one of our slots, just mark that one. Otherwise, we can't
1063 easily predict which it is, so upgrade all of them. Kept slots
1064 need not be touched.
1065
1066 This is called when an ({...}) construct occurs and a statement
1067 returns a value in memory. */
1068
1069 void
1070 preserve_temp_slots (rtx x)
1071 {
1072 struct temp_slot *p = 0, *next;
1073
1074 /* If there is no result, we still might have some objects whose address
1075 were taken, so we need to make sure they stay around. */
1076 if (x == 0)
1077 {
1078 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1079 {
1080 next = p->next;
1081
1082 if (p->addr_taken)
1083 move_slot_to_level (p, temp_slot_level - 1);
1084 }
1085
1086 return;
1087 }
1088
1089 /* If X is a register that is being used as a pointer, see if we have
1090 a temporary slot we know it points to. To be consistent with
1091 the code below, we really should preserve all non-kept slots
1092 if we can't find a match, but that seems to be much too costly. */
1093 if (REG_P (x) && REG_POINTER (x))
1094 p = find_temp_slot_from_address (x);
1095
1096 /* If X is not in memory or is at a constant address, it cannot be in
1097 a temporary slot, but it can contain something whose address was
1098 taken. */
1099 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1100 {
1101 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1102 {
1103 next = p->next;
1104
1105 if (p->addr_taken)
1106 move_slot_to_level (p, temp_slot_level - 1);
1107 }
1108
1109 return;
1110 }
1111
1112 /* First see if we can find a match. */
1113 if (p == 0)
1114 p = find_temp_slot_from_address (XEXP (x, 0));
1115
1116 if (p != 0)
1117 {
1118 /* Move everything at our level whose address was taken to our new
1119 level in case we used its address. */
1120 struct temp_slot *q;
1121
1122 if (p->level == temp_slot_level)
1123 {
1124 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1125 {
1126 next = q->next;
1127
1128 if (p != q && q->addr_taken)
1129 move_slot_to_level (q, temp_slot_level - 1);
1130 }
1131
1132 move_slot_to_level (p, temp_slot_level - 1);
1133 p->addr_taken = 0;
1134 }
1135 return;
1136 }
1137
1138 /* Otherwise, preserve all non-kept slots at this level. */
1139 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1140 {
1141 next = p->next;
1142
1143 if (!p->keep)
1144 move_slot_to_level (p, temp_slot_level - 1);
1145 }
1146 }
1147
1148 /* Free all temporaries used so far. This is normally called at the
1149 end of generating code for a statement. */
1150
1151 void
1152 free_temp_slots (void)
1153 {
1154 struct temp_slot *p, *next;
1155
1156 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1157 {
1158 next = p->next;
1159
1160 if (!p->keep)
1161 make_slot_available (p);
1162 }
1163
1164 combine_temp_slots ();
1165 }
1166
1167 /* Push deeper into the nesting level for stack temporaries. */
1168
1169 void
1170 push_temp_slots (void)
1171 {
1172 temp_slot_level++;
1173 }
1174
1175 /* Pop a temporary nesting level. All slots in use in the current level
1176 are freed. */
1177
1178 void
1179 pop_temp_slots (void)
1180 {
1181 struct temp_slot *p, *next;
1182
1183 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1184 {
1185 next = p->next;
1186 make_slot_available (p);
1187 }
1188
1189 combine_temp_slots ();
1190
1191 temp_slot_level--;
1192 }
1193
1194 /* Initialize temporary slots. */
1195
1196 void
1197 init_temp_slots (void)
1198 {
1199 /* We have not allocated any temporaries yet. */
1200 avail_temp_slots = 0;
1201 used_temp_slots = 0;
1202 temp_slot_level = 0;
1203 var_temp_slot_level = 0;
1204 target_temp_slot_level = 0;
1205 }
1206 \f
1207 /* These routines are responsible for converting virtual register references
1208 to the actual hard register references once RTL generation is complete.
1209
1210 The following four variables are used for communication between the
1211 routines. They contain the offsets of the virtual registers from their
1212 respective hard registers. */
1213
1214 static int in_arg_offset;
1215 static int var_offset;
1216 static int dynamic_offset;
1217 static int out_arg_offset;
1218 static int cfa_offset;
1219
1220 /* In most machines, the stack pointer register is equivalent to the bottom
1221 of the stack. */
1222
1223 #ifndef STACK_POINTER_OFFSET
1224 #define STACK_POINTER_OFFSET 0
1225 #endif
1226
1227 /* If not defined, pick an appropriate default for the offset of dynamically
1228 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1229 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1230
1231 #ifndef STACK_DYNAMIC_OFFSET
1232
1233 /* The bottom of the stack points to the actual arguments. If
1234 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1235 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1236 stack space for register parameters is not pushed by the caller, but
1237 rather part of the fixed stack areas and hence not included in
1238 `current_function_outgoing_args_size'. Nevertheless, we must allow
1239 for it when allocating stack dynamic objects. */
1240
1241 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1242 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1243 ((ACCUMULATE_OUTGOING_ARGS \
1244 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1245 + (STACK_POINTER_OFFSET)) \
1246
1247 #else
1248 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1249 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1250 + (STACK_POINTER_OFFSET))
1251 #endif
1252 #endif
1253
1254 /* On most machines, the CFA coincides with the first incoming parm. */
1255
1256 #ifndef ARG_POINTER_CFA_OFFSET
1257 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1258 #endif
1259
1260 \f
1261 /* Convert a SET of a hard subreg to a set of the appropriate hard
1262 register. A subroutine of purge_hard_subreg_sets. */
1263
1264 static void
1265 purge_single_hard_subreg_set (rtx pattern)
1266 {
1267 rtx reg = SET_DEST (pattern);
1268 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
1269 int offset = 0;
1270
1271 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg))
1272 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
1273 {
1274 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
1275 GET_MODE (SUBREG_REG (reg)),
1276 SUBREG_BYTE (reg),
1277 GET_MODE (reg));
1278 reg = SUBREG_REG (reg);
1279 }
1280
1281
1282 if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1283 {
1284 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
1285 SET_DEST (pattern) = reg;
1286 }
1287 }
1288
1289 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
1290 only such SETs that we expect to see are those left in because
1291 integrate can't handle sets of parts of a return value register.
1292
1293 We don't use alter_subreg because we only want to eliminate subregs
1294 of hard registers. */
1295
1296 void
1297 purge_hard_subreg_sets (rtx insn)
1298 {
1299 for (; insn; insn = NEXT_INSN (insn))
1300 {
1301 if (INSN_P (insn))
1302 {
1303 rtx pattern = PATTERN (insn);
1304 switch (GET_CODE (pattern))
1305 {
1306 case SET:
1307 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
1308 purge_single_hard_subreg_set (pattern);
1309 break;
1310 case PARALLEL:
1311 {
1312 int j;
1313 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
1314 {
1315 rtx inner_pattern = XVECEXP (pattern, 0, j);
1316 if (GET_CODE (inner_pattern) == SET
1317 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
1318 purge_single_hard_subreg_set (inner_pattern);
1319 }
1320 }
1321 break;
1322 default:
1323 break;
1324 }
1325 }
1326 }
1327 }
1328 \f
1329 /* Pass through the INSNS of function FNDECL and convert virtual register
1330 references to hard register references. */
1331
1332 void
1333 instantiate_virtual_regs (void)
1334 {
1335 rtx insn;
1336
1337 /* Compute the offsets to use for this function. */
1338 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1339 var_offset = STARTING_FRAME_OFFSET;
1340 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1341 out_arg_offset = STACK_POINTER_OFFSET;
1342 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1343
1344 /* Scan all variables and parameters of this function. For each that is
1345 in memory, instantiate all virtual registers if the result is a valid
1346 address. If not, we do it later. That will handle most uses of virtual
1347 regs on many machines. */
1348 instantiate_decls (current_function_decl, 1);
1349
1350 /* Initialize recognition, indicating that volatile is OK. */
1351 init_recog ();
1352
1353 /* Scan through all the insns, instantiating every virtual register still
1354 present. */
1355 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1356 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1357 || GET_CODE (insn) == CALL_INSN)
1358 {
1359 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
1360 if (INSN_DELETED_P (insn))
1361 continue;
1362 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
1363 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1364 if (GET_CODE (insn) == CALL_INSN)
1365 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1366 NULL_RTX, 0);
1367
1368 /* Past this point all ASM statements should match. Verify that
1369 to avoid failures later in the compilation process. */
1370 if (asm_noperands (PATTERN (insn)) >= 0
1371 && ! check_asm_operands (PATTERN (insn)))
1372 instantiate_virtual_regs_lossage (insn);
1373 }
1374
1375 /* Now instantiate the remaining register equivalences for debugging info.
1376 These will not be valid addresses. */
1377 instantiate_decls (current_function_decl, 0);
1378
1379 /* Indicate that, from now on, assign_stack_local should use
1380 frame_pointer_rtx. */
1381 virtuals_instantiated = 1;
1382 }
1383
1384 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1385 all virtual registers in their DECL_RTL's.
1386
1387 If VALID_ONLY, do this only if the resulting address is still valid.
1388 Otherwise, always do it. */
1389
1390 static void
1391 instantiate_decls (tree fndecl, int valid_only)
1392 {
1393 tree decl;
1394
1395 /* Process all parameters of the function. */
1396 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1397 {
1398 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
1399 HOST_WIDE_INT size_rtl;
1400
1401 instantiate_decl (DECL_RTL (decl), size, valid_only);
1402
1403 /* If the parameter was promoted, then the incoming RTL mode may be
1404 larger than the declared type size. We must use the larger of
1405 the two sizes. */
1406 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1407 size = MAX (size_rtl, size);
1408 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
1409 }
1410
1411 /* Now process all variables defined in the function or its subblocks. */
1412 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
1413 }
1414
1415 /* Subroutine of instantiate_decls: Process all decls in the given
1416 BLOCK node and all its subblocks. */
1417
1418 static void
1419 instantiate_decls_1 (tree let, int valid_only)
1420 {
1421 tree t;
1422
1423 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1424 if (DECL_RTL_SET_P (t))
1425 instantiate_decl (DECL_RTL (t),
1426 int_size_in_bytes (TREE_TYPE (t)),
1427 valid_only);
1428
1429 /* Process all subblocks. */
1430 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1431 instantiate_decls_1 (t, valid_only);
1432 }
1433
1434 /* Subroutine of the preceding procedures: Given RTL representing a
1435 decl and the size of the object, do any instantiation required.
1436
1437 If VALID_ONLY is nonzero, it means that the RTL should only be
1438 changed if the new address is valid. */
1439
1440 static void
1441 instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
1442 {
1443 enum machine_mode mode;
1444 rtx addr;
1445
1446 /* If this is not a MEM, no need to do anything. Similarly if the
1447 address is a constant or a register that is not a virtual register. */
1448
1449 if (x == 0 || !MEM_P (x))
1450 return;
1451
1452 addr = XEXP (x, 0);
1453 if (CONSTANT_P (addr)
1454 || (REG_P (addr)
1455 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1456 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1457 return;
1458
1459 /* If we should only do this if the address is valid, copy the address.
1460 We need to do this so we can undo any changes that might make the
1461 address invalid. This copy is unfortunate, but probably can't be
1462 avoided. */
1463
1464 if (valid_only)
1465 addr = copy_rtx (addr);
1466
1467 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1468
1469 if (valid_only && size >= 0)
1470 {
1471 unsigned HOST_WIDE_INT decl_size = size;
1472
1473 /* Now verify that the resulting address is valid for every integer or
1474 floating-point mode up to and including SIZE bytes long. We do this
1475 since the object might be accessed in any mode and frame addresses
1476 are shared. */
1477
1478 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1479 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1480 mode = GET_MODE_WIDER_MODE (mode))
1481 if (! memory_address_p (mode, addr))
1482 return;
1483
1484 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
1485 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
1486 mode = GET_MODE_WIDER_MODE (mode))
1487 if (! memory_address_p (mode, addr))
1488 return;
1489 }
1490
1491 /* Put back the address now that we have updated it and we either know
1492 it is valid or we don't care whether it is valid. */
1493
1494 XEXP (x, 0) = addr;
1495 }
1496 \f
1497 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1498 is a virtual register, return the equivalent hard register and set the
1499 offset indirectly through the pointer. Otherwise, return 0. */
1500
1501 static rtx
1502 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1503 {
1504 rtx new;
1505 HOST_WIDE_INT offset;
1506
1507 if (x == virtual_incoming_args_rtx)
1508 new = arg_pointer_rtx, offset = in_arg_offset;
1509 else if (x == virtual_stack_vars_rtx)
1510 new = frame_pointer_rtx, offset = var_offset;
1511 else if (x == virtual_stack_dynamic_rtx)
1512 new = stack_pointer_rtx, offset = dynamic_offset;
1513 else if (x == virtual_outgoing_args_rtx)
1514 new = stack_pointer_rtx, offset = out_arg_offset;
1515 else if (x == virtual_cfa_rtx)
1516 new = arg_pointer_rtx, offset = cfa_offset;
1517 else
1518 return 0;
1519
1520 *poffset = offset;
1521 return new;
1522 }
1523 \f
1524
1525 /* Called when instantiate_virtual_regs has failed to update the instruction.
1526 Usually this means that non-matching instruction has been emit, however for
1527 asm statements it may be the problem in the constraints. */
1528 static void
1529 instantiate_virtual_regs_lossage (rtx insn)
1530 {
1531 if (asm_noperands (PATTERN (insn)) >= 0)
1532 {
1533 error_for_asm (insn, "impossible constraint in `asm'");
1534 delete_insn (insn);
1535 }
1536 else
1537 abort ();
1538 }
1539 /* Given a pointer to a piece of rtx and an optional pointer to the
1540 containing object, instantiate any virtual registers present in it.
1541
1542 If EXTRA_INSNS, we always do the replacement and generate
1543 any extra insns before OBJECT. If it zero, we do nothing if replacement
1544 is not valid.
1545
1546 Return 1 if we either had nothing to do or if we were able to do the
1547 needed replacement. Return 0 otherwise; we only return zero if
1548 EXTRA_INSNS is zero.
1549
1550 We first try some simple transformations to avoid the creation of extra
1551 pseudos. */
1552
1553 static int
1554 instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
1555 {
1556 rtx x;
1557 RTX_CODE code;
1558 rtx new = 0;
1559 HOST_WIDE_INT offset = 0;
1560 rtx temp;
1561 rtx seq;
1562 int i, j;
1563 const char *fmt;
1564
1565 /* Re-start here to avoid recursion in common cases. */
1566 restart:
1567
1568 x = *loc;
1569 if (x == 0)
1570 return 1;
1571
1572 /* We may have detected and deleted invalid asm statements. */
1573 if (object && INSN_P (object) && INSN_DELETED_P (object))
1574 return 1;
1575
1576 code = GET_CODE (x);
1577
1578 /* Check for some special cases. */
1579 switch (code)
1580 {
1581 case CONST_INT:
1582 case CONST_DOUBLE:
1583 case CONST_VECTOR:
1584 case CONST:
1585 case SYMBOL_REF:
1586 case CODE_LABEL:
1587 case PC:
1588 case CC0:
1589 case ASM_INPUT:
1590 case ADDR_VEC:
1591 case ADDR_DIFF_VEC:
1592 case RETURN:
1593 return 1;
1594
1595 case SET:
1596 /* We are allowed to set the virtual registers. This means that
1597 the actual register should receive the source minus the
1598 appropriate offset. This is used, for example, in the handling
1599 of non-local gotos. */
1600 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
1601 {
1602 rtx src = SET_SRC (x);
1603
1604 /* We are setting the register, not using it, so the relevant
1605 offset is the negative of the offset to use were we using
1606 the register. */
1607 offset = - offset;
1608 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1609
1610 /* The only valid sources here are PLUS or REG. Just do
1611 the simplest possible thing to handle them. */
1612 if (!REG_P (src) && GET_CODE (src) != PLUS)
1613 {
1614 instantiate_virtual_regs_lossage (object);
1615 return 1;
1616 }
1617
1618 start_sequence ();
1619 if (!REG_P (src))
1620 temp = force_operand (src, NULL_RTX);
1621 else
1622 temp = src;
1623 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
1624 seq = get_insns ();
1625 end_sequence ();
1626
1627 emit_insn_before (seq, object);
1628 SET_DEST (x) = new;
1629
1630 if (! validate_change (object, &SET_SRC (x), temp, 0)
1631 || ! extra_insns)
1632 instantiate_virtual_regs_lossage (object);
1633
1634 return 1;
1635 }
1636
1637 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1638 loc = &SET_SRC (x);
1639 goto restart;
1640
1641 case PLUS:
1642 /* Handle special case of virtual register plus constant. */
1643 if (CONSTANT_P (XEXP (x, 1)))
1644 {
1645 rtx old, new_offset;
1646
1647 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1648 if (GET_CODE (XEXP (x, 0)) == PLUS)
1649 {
1650 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1651 {
1652 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1653 extra_insns);
1654 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1655 }
1656 else
1657 {
1658 loc = &XEXP (x, 0);
1659 goto restart;
1660 }
1661 }
1662
1663 #ifdef POINTERS_EXTEND_UNSIGNED
1664 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1665 we can commute the PLUS and SUBREG because pointers into the
1666 frame are well-behaved. */
1667 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1668 && GET_CODE (XEXP (x, 1)) == CONST_INT
1669 && 0 != (new
1670 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1671 &offset))
1672 && validate_change (object, loc,
1673 plus_constant (gen_lowpart (ptr_mode,
1674 new),
1675 offset
1676 + INTVAL (XEXP (x, 1))),
1677 0))
1678 return 1;
1679 #endif
1680 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
1681 {
1682 /* We know the second operand is a constant. Unless the
1683 first operand is a REG (which has been already checked),
1684 it needs to be checked. */
1685 if (!REG_P (XEXP (x, 0)))
1686 {
1687 loc = &XEXP (x, 0);
1688 goto restart;
1689 }
1690 return 1;
1691 }
1692
1693 new_offset = plus_constant (XEXP (x, 1), offset);
1694
1695 /* If the new constant is zero, try to replace the sum with just
1696 the register. */
1697 if (new_offset == const0_rtx
1698 && validate_change (object, loc, new, 0))
1699 return 1;
1700
1701 /* Next try to replace the register and new offset.
1702 There are two changes to validate here and we can't assume that
1703 in the case of old offset equals new just changing the register
1704 will yield a valid insn. In the interests of a little efficiency,
1705 however, we only call validate change once (we don't queue up the
1706 changes and then call apply_change_group). */
1707
1708 old = XEXP (x, 0);
1709 if (offset == 0
1710 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1711 : (XEXP (x, 0) = new,
1712 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
1713 {
1714 if (! extra_insns)
1715 {
1716 XEXP (x, 0) = old;
1717 return 0;
1718 }
1719
1720 /* Otherwise copy the new constant into a register and replace
1721 constant with that register. */
1722 temp = gen_reg_rtx (Pmode);
1723 XEXP (x, 0) = new;
1724 if (validate_change (object, &XEXP (x, 1), temp, 0))
1725 emit_insn_before (gen_move_insn (temp, new_offset), object);
1726 else
1727 {
1728 /* If that didn't work, replace this expression with a
1729 register containing the sum. */
1730
1731 XEXP (x, 0) = old;
1732 new = gen_rtx_PLUS (Pmode, new, new_offset);
1733
1734 start_sequence ();
1735 temp = force_operand (new, NULL_RTX);
1736 seq = get_insns ();
1737 end_sequence ();
1738
1739 emit_insn_before (seq, object);
1740 if (! validate_change (object, loc, temp, 0)
1741 && ! validate_replace_rtx (x, temp, object))
1742 {
1743 instantiate_virtual_regs_lossage (object);
1744 return 1;
1745 }
1746 }
1747 }
1748
1749 return 1;
1750 }
1751
1752 /* Fall through to generic two-operand expression case. */
1753 case EXPR_LIST:
1754 case CALL:
1755 case COMPARE:
1756 case MINUS:
1757 case MULT:
1758 case DIV: case UDIV:
1759 case MOD: case UMOD:
1760 case AND: case IOR: case XOR:
1761 case ROTATERT: case ROTATE:
1762 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
1763 case NE: case EQ:
1764 case GE: case GT: case GEU: case GTU:
1765 case LE: case LT: case LEU: case LTU:
1766 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1767 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1768 loc = &XEXP (x, 0);
1769 goto restart;
1770
1771 case MEM:
1772 /* Most cases of MEM that convert to valid addresses have already been
1773 handled by our scan of decls. The only special handling we
1774 need here is to make a copy of the rtx to ensure it isn't being
1775 shared if we have to change it to a pseudo.
1776
1777 If the rtx is a simple reference to an address via a virtual register,
1778 it can potentially be shared. In such cases, first try to make it
1779 a valid address, which can also be shared. Otherwise, copy it and
1780 proceed normally.
1781
1782 First check for common cases that need no processing. These are
1783 usually due to instantiation already being done on a previous instance
1784 of a shared rtx. */
1785
1786 temp = XEXP (x, 0);
1787 if (CONSTANT_ADDRESS_P (temp)
1788 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1789 || temp == arg_pointer_rtx
1790 #endif
1791 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1792 || temp == hard_frame_pointer_rtx
1793 #endif
1794 || temp == frame_pointer_rtx)
1795 return 1;
1796
1797 if (GET_CODE (temp) == PLUS
1798 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1799 && (XEXP (temp, 0) == frame_pointer_rtx
1800 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1801 || XEXP (temp, 0) == hard_frame_pointer_rtx
1802 #endif
1803 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1804 || XEXP (temp, 0) == arg_pointer_rtx
1805 #endif
1806 ))
1807 return 1;
1808
1809 if (temp == virtual_stack_vars_rtx
1810 || temp == virtual_incoming_args_rtx
1811 || (GET_CODE (temp) == PLUS
1812 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1813 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1814 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1815 {
1816 /* This MEM may be shared. If the substitution can be done without
1817 the need to generate new pseudos, we want to do it in place
1818 so all copies of the shared rtx benefit. The call below will
1819 only make substitutions if the resulting address is still
1820 valid.
1821
1822 Note that we cannot pass X as the object in the recursive call
1823 since the insn being processed may not allow all valid
1824 addresses. However, if we were not passed on object, we can
1825 only modify X without copying it if X will have a valid
1826 address.
1827
1828 ??? Also note that this can still lose if OBJECT is an insn that
1829 has less restrictions on an address that some other insn.
1830 In that case, we will modify the shared address. This case
1831 doesn't seem very likely, though. One case where this could
1832 happen is in the case of a USE or CLOBBER reference, but we
1833 take care of that below. */
1834
1835 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1836 object ? object : x, 0))
1837 return 1;
1838
1839 /* Otherwise make a copy and process that copy. We copy the entire
1840 RTL expression since it might be a PLUS which could also be
1841 shared. */
1842 *loc = x = copy_rtx (x);
1843 }
1844
1845 /* Fall through to generic unary operation case. */
1846 case PREFETCH:
1847 case SUBREG:
1848 case STRICT_LOW_PART:
1849 case NEG: case NOT:
1850 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1851 case SIGN_EXTEND: case ZERO_EXTEND:
1852 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1853 case FLOAT: case FIX:
1854 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1855 case ABS:
1856 case SQRT:
1857 case FFS:
1858 case CLZ: case CTZ:
1859 case POPCOUNT: case PARITY:
1860 /* These case either have just one operand or we know that we need not
1861 check the rest of the operands. */
1862 loc = &XEXP (x, 0);
1863 goto restart;
1864
1865 case USE:
1866 case CLOBBER:
1867 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1868 go ahead and make the invalid one, but do it to a copy. For a REG,
1869 just make the recursive call, since there's no chance of a problem. */
1870
1871 if ((MEM_P (XEXP (x, 0))
1872 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1873 0))
1874 || (REG_P (XEXP (x, 0))
1875 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
1876 return 1;
1877
1878 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1879 loc = &XEXP (x, 0);
1880 goto restart;
1881
1882 case REG:
1883 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1884 in front of this insn and substitute the temporary. */
1885 if ((new = instantiate_new_reg (x, &offset)) != 0)
1886 {
1887 temp = plus_constant (new, offset);
1888 if (!validate_change (object, loc, temp, 0))
1889 {
1890 if (! extra_insns)
1891 return 0;
1892
1893 start_sequence ();
1894 temp = force_operand (temp, NULL_RTX);
1895 seq = get_insns ();
1896 end_sequence ();
1897
1898 emit_insn_before (seq, object);
1899 if (! validate_change (object, loc, temp, 0)
1900 && ! validate_replace_rtx (x, temp, object))
1901 instantiate_virtual_regs_lossage (object);
1902 }
1903 }
1904
1905 return 1;
1906
1907 default:
1908 break;
1909 }
1910
1911 /* Scan all subexpressions. */
1912 fmt = GET_RTX_FORMAT (code);
1913 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1914 if (*fmt == 'e')
1915 {
1916 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1917 return 0;
1918 }
1919 else if (*fmt == 'E')
1920 for (j = 0; j < XVECLEN (x, i); j++)
1921 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1922 extra_insns))
1923 return 0;
1924
1925 return 1;
1926 }
1927 \f
1928 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1929 This means a type for which function calls must pass an address to the
1930 function or get an address back from the function.
1931 EXP may be a type node or an expression (whose type is tested). */
1932
1933 int
1934 aggregate_value_p (tree exp, tree fntype)
1935 {
1936 int i, regno, nregs;
1937 rtx reg;
1938
1939 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1940
1941 if (fntype)
1942 switch (TREE_CODE (fntype))
1943 {
1944 case CALL_EXPR:
1945 fntype = get_callee_fndecl (fntype);
1946 fntype = fntype ? TREE_TYPE (fntype) : 0;
1947 break;
1948 case FUNCTION_DECL:
1949 fntype = TREE_TYPE (fntype);
1950 break;
1951 case FUNCTION_TYPE:
1952 case METHOD_TYPE:
1953 break;
1954 case IDENTIFIER_NODE:
1955 fntype = 0;
1956 break;
1957 default:
1958 /* We don't expect other rtl types here. */
1959 abort();
1960 }
1961
1962 if (TREE_CODE (type) == VOID_TYPE)
1963 return 0;
1964 if (targetm.calls.return_in_memory (type, fntype))
1965 return 1;
1966 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1967 and thus can't be returned in registers. */
1968 if (TREE_ADDRESSABLE (type))
1969 return 1;
1970 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1971 return 1;
1972 /* Make sure we have suitable call-clobbered regs to return
1973 the value in; if not, we must return it in memory. */
1974 reg = hard_function_value (type, 0, 0);
1975
1976 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1977 it is OK. */
1978 if (!REG_P (reg))
1979 return 0;
1980
1981 regno = REGNO (reg);
1982 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1983 for (i = 0; i < nregs; i++)
1984 if (! call_used_regs[regno + i])
1985 return 1;
1986 return 0;
1987 }
1988 \f
1989 /* Return true if we should assign DECL a pseudo register; false if it
1990 should live on the local stack. */
1991
1992 bool
1993 use_register_for_decl (tree decl)
1994 {
1995 /* Honor volatile. */
1996 if (TREE_SIDE_EFFECTS (decl))
1997 return false;
1998
1999 /* Honor addressability. */
2000 if (TREE_ADDRESSABLE (decl))
2001 return false;
2002
2003 /* Only register-like things go in registers. */
2004 if (DECL_MODE (decl) == BLKmode)
2005 return false;
2006
2007 /* If -ffloat-store specified, don't put explicit float variables
2008 into registers. */
2009 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2010 propagates values across these stores, and it probably shouldn't. */
2011 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2012 return false;
2013
2014 /* Compiler-generated temporaries can always go in registers. */
2015 if (DECL_ARTIFICIAL (decl))
2016 return true;
2017
2018 #ifdef NON_SAVING_SETJMP
2019 /* Protect variables not declared "register" from setjmp. */
2020 if (NON_SAVING_SETJMP
2021 && current_function_calls_setjmp
2022 && !DECL_REGISTER (decl))
2023 return false;
2024 #endif
2025
2026 return (optimize || DECL_REGISTER (decl));
2027 }
2028
2029 /* Return true if TYPE should be passed by invisible reference. */
2030
2031 bool
2032 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2033 tree type, bool named_arg)
2034 {
2035 if (type)
2036 {
2037 /* If this type contains non-trivial constructors, then it is
2038 forbidden for the middle-end to create any new copies. */
2039 if (TREE_ADDRESSABLE (type))
2040 return true;
2041
2042 /* If an object's size is dependent on itself, there's no way
2043 to *not* pass by reference. */
2044 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type)))
2045 return true;
2046 }
2047
2048 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
2049 }
2050
2051 /* Structures to communicate between the subroutines of assign_parms.
2052 The first holds data persistent across all parameters, the second
2053 is cleared out for each parameter. */
2054
2055 struct assign_parm_data_all
2056 {
2057 CUMULATIVE_ARGS args_so_far;
2058 struct args_size stack_args_size;
2059 tree function_result_decl;
2060 tree orig_fnargs;
2061 rtx conversion_insns;
2062 HOST_WIDE_INT pretend_args_size;
2063 HOST_WIDE_INT extra_pretend_bytes;
2064 int reg_parm_stack_space;
2065 };
2066
2067 struct assign_parm_data_one
2068 {
2069 tree nominal_type;
2070 tree passed_type;
2071 rtx entry_parm;
2072 rtx stack_parm;
2073 enum machine_mode nominal_mode;
2074 enum machine_mode passed_mode;
2075 enum machine_mode promoted_mode;
2076 struct locate_and_pad_arg_data locate;
2077 int partial;
2078 BOOL_BITFIELD named_arg : 1;
2079 BOOL_BITFIELD last_named : 1;
2080 BOOL_BITFIELD passed_pointer : 1;
2081 BOOL_BITFIELD on_stack : 1;
2082 BOOL_BITFIELD loaded_in_reg : 1;
2083 };
2084
2085 /* A subroutine of assign_parms. Initialize ALL. */
2086
2087 static void
2088 assign_parms_initialize_all (struct assign_parm_data_all *all)
2089 {
2090 tree fntype;
2091
2092 memset (all, 0, sizeof (*all));
2093
2094 fntype = TREE_TYPE (current_function_decl);
2095
2096 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2097 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2098 #else
2099 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2100 current_function_decl, -1);
2101 #endif
2102
2103 #ifdef REG_PARM_STACK_SPACE
2104 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2105 #endif
2106 }
2107
2108 /* If ARGS contains entries with complex types, split the entry into two
2109 entries of the component type. Return a new list of substitutions are
2110 needed, else the old list. */
2111
2112 static tree
2113 split_complex_args (tree args)
2114 {
2115 tree p;
2116
2117 /* Before allocating memory, check for the common case of no complex. */
2118 for (p = args; p; p = TREE_CHAIN (p))
2119 {
2120 tree type = TREE_TYPE (p);
2121 if (TREE_CODE (type) == COMPLEX_TYPE
2122 && targetm.calls.split_complex_arg (type))
2123 goto found;
2124 }
2125 return args;
2126
2127 found:
2128 args = copy_list (args);
2129
2130 for (p = args; p; p = TREE_CHAIN (p))
2131 {
2132 tree type = TREE_TYPE (p);
2133 if (TREE_CODE (type) == COMPLEX_TYPE
2134 && targetm.calls.split_complex_arg (type))
2135 {
2136 tree decl;
2137 tree subtype = TREE_TYPE (type);
2138
2139 /* Rewrite the PARM_DECL's type with its component. */
2140 TREE_TYPE (p) = subtype;
2141 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2142 DECL_MODE (p) = VOIDmode;
2143 DECL_SIZE (p) = NULL;
2144 DECL_SIZE_UNIT (p) = NULL;
2145 layout_decl (p, 0);
2146
2147 /* Build a second synthetic decl. */
2148 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2149 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2150 layout_decl (decl, 0);
2151
2152 /* Splice it in; skip the new decl. */
2153 TREE_CHAIN (decl) = TREE_CHAIN (p);
2154 TREE_CHAIN (p) = decl;
2155 p = decl;
2156 }
2157 }
2158
2159 return args;
2160 }
2161
2162 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2163 the hidden struct return argument, and (abi willing) complex args.
2164 Return the new parameter list. */
2165
2166 static tree
2167 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2168 {
2169 tree fndecl = current_function_decl;
2170 tree fntype = TREE_TYPE (fndecl);
2171 tree fnargs = DECL_ARGUMENTS (fndecl);
2172
2173 /* If struct value address is treated as the first argument, make it so. */
2174 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2175 && ! current_function_returns_pcc_struct
2176 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2177 {
2178 tree type = build_pointer_type (TREE_TYPE (fntype));
2179 tree decl;
2180
2181 decl = build_decl (PARM_DECL, NULL_TREE, type);
2182 DECL_ARG_TYPE (decl) = type;
2183 DECL_ARTIFICIAL (decl) = 1;
2184
2185 TREE_CHAIN (decl) = fnargs;
2186 fnargs = decl;
2187 all->function_result_decl = decl;
2188 }
2189
2190 all->orig_fnargs = fnargs;
2191
2192 /* If the target wants to split complex arguments into scalars, do so. */
2193 if (targetm.calls.split_complex_arg)
2194 fnargs = split_complex_args (fnargs);
2195
2196 return fnargs;
2197 }
2198
2199 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2200 data for the parameter. Incorporate ABI specifics such as pass-by-
2201 reference and type promotion. */
2202
2203 static void
2204 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2205 struct assign_parm_data_one *data)
2206 {
2207 tree nominal_type, passed_type;
2208 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2209
2210 memset (data, 0, sizeof (*data));
2211
2212 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2213 if (current_function_stdarg)
2214 {
2215 tree tem;
2216 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2217 if (DECL_NAME (tem))
2218 break;
2219 if (tem == 0)
2220 data->last_named = true;
2221 }
2222
2223 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2224 most machines, if this is a varargs/stdarg function, then we treat
2225 the last named arg as if it were anonymous too. */
2226 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2227 data->named_arg = 1;
2228 else
2229 data->named_arg = !data->last_named;
2230
2231 nominal_type = TREE_TYPE (parm);
2232 passed_type = DECL_ARG_TYPE (parm);
2233
2234 /* Look out for errors propagating this far. Also, if the parameter's
2235 type is void then its value doesn't matter. */
2236 if (TREE_TYPE (parm) == error_mark_node
2237 /* This can happen after weird syntax errors
2238 or if an enum type is defined among the parms. */
2239 || TREE_CODE (parm) != PARM_DECL
2240 || passed_type == NULL
2241 || VOID_TYPE_P (nominal_type))
2242 {
2243 nominal_type = passed_type = void_type_node;
2244 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2245 goto egress;
2246 }
2247
2248 /* Find mode of arg as it is passed, and mode of arg as it should be
2249 during execution of this function. */
2250 passed_mode = TYPE_MODE (passed_type);
2251 nominal_mode = TYPE_MODE (nominal_type);
2252
2253 /* If the parm is to be passed as a transparent union, use the type of
2254 the first field for the tests below. We have already verified that
2255 the modes are the same. */
2256 if (DECL_TRANSPARENT_UNION (parm)
2257 || (TREE_CODE (passed_type) == UNION_TYPE
2258 && TYPE_TRANSPARENT_UNION (passed_type)))
2259 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2260
2261 /* See if this arg was passed by invisible reference. */
2262 if (pass_by_reference (&all->args_so_far, passed_mode,
2263 passed_type, data->named_arg))
2264 {
2265 passed_type = nominal_type = build_pointer_type (passed_type);
2266 data->passed_pointer = true;
2267 passed_mode = nominal_mode = Pmode;
2268 }
2269 /* See if the frontend wants to pass this by invisible reference. */
2270 else if (passed_type != nominal_type
2271 && POINTER_TYPE_P (passed_type)
2272 && TREE_TYPE (passed_type) == nominal_type)
2273 {
2274 nominal_type = passed_type;
2275 data->passed_pointer = 1;
2276 passed_mode = nominal_mode = Pmode;
2277 }
2278
2279 /* Find mode as it is passed by the ABI. */
2280 promoted_mode = passed_mode;
2281 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2282 {
2283 int unsignedp = TYPE_UNSIGNED (passed_type);
2284 promoted_mode = promote_mode (passed_type, promoted_mode,
2285 &unsignedp, 1);
2286 }
2287
2288 egress:
2289 data->nominal_type = nominal_type;
2290 data->passed_type = passed_type;
2291 data->nominal_mode = nominal_mode;
2292 data->passed_mode = passed_mode;
2293 data->promoted_mode = promoted_mode;
2294 }
2295
2296 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2297
2298 static void
2299 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2300 struct assign_parm_data_one *data, bool no_rtl)
2301 {
2302 int varargs_pretend_bytes = 0;
2303
2304 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2305 data->promoted_mode,
2306 data->passed_type,
2307 &varargs_pretend_bytes, no_rtl);
2308
2309 /* If the back-end has requested extra stack space, record how much is
2310 needed. Do not change pretend_args_size otherwise since it may be
2311 nonzero from an earlier partial argument. */
2312 if (varargs_pretend_bytes > 0)
2313 all->pretend_args_size = varargs_pretend_bytes;
2314 }
2315
2316 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2317 the incoming location of the current parameter. */
2318
2319 static void
2320 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2321 struct assign_parm_data_one *data)
2322 {
2323 HOST_WIDE_INT pretend_bytes = 0;
2324 rtx entry_parm;
2325 bool in_regs;
2326
2327 if (data->promoted_mode == VOIDmode)
2328 {
2329 data->entry_parm = data->stack_parm = const0_rtx;
2330 return;
2331 }
2332
2333 #ifdef FUNCTION_INCOMING_ARG
2334 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2335 data->passed_type, data->named_arg);
2336 #else
2337 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2338 data->passed_type, data->named_arg);
2339 #endif
2340
2341 if (entry_parm == 0)
2342 data->promoted_mode = data->passed_mode;
2343
2344 /* Determine parm's home in the stack, in case it arrives in the stack
2345 or we should pretend it did. Compute the stack position and rtx where
2346 the argument arrives and its size.
2347
2348 There is one complexity here: If this was a parameter that would
2349 have been passed in registers, but wasn't only because it is
2350 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2351 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2352 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2353 as it was the previous time. */
2354 in_regs = entry_parm != 0;
2355 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2356 in_regs = true;
2357 #endif
2358 if (!in_regs && !data->named_arg)
2359 {
2360 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2361 {
2362 rtx tem;
2363 #ifdef FUNCTION_INCOMING_ARG
2364 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2365 data->passed_type, true);
2366 #else
2367 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2368 data->passed_type, true);
2369 #endif
2370 in_regs = tem != NULL;
2371 }
2372 }
2373
2374 /* If this parameter was passed both in registers and in the stack, use
2375 the copy on the stack. */
2376 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2377 data->passed_type))
2378 entry_parm = 0;
2379
2380 if (entry_parm)
2381 {
2382 int partial;
2383
2384 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2385 data->promoted_mode,
2386 data->passed_type,
2387 data->named_arg);
2388 data->partial = partial;
2389
2390 /* The caller might already have allocated stack space for the
2391 register parameters. */
2392 if (partial != 0 && all->reg_parm_stack_space == 0)
2393 {
2394 /* Part of this argument is passed in registers and part
2395 is passed on the stack. Ask the prologue code to extend
2396 the stack part so that we can recreate the full value.
2397
2398 PRETEND_BYTES is the size of the registers we need to store.
2399 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2400 stack space that the prologue should allocate.
2401
2402 Internally, gcc assumes that the argument pointer is aligned
2403 to STACK_BOUNDARY bits. This is used both for alignment
2404 optimizations (see init_emit) and to locate arguments that are
2405 aligned to more than PARM_BOUNDARY bits. We must preserve this
2406 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2407 a stack boundary. */
2408
2409 /* We assume at most one partial arg, and it must be the first
2410 argument on the stack. */
2411 if (all->extra_pretend_bytes || all->pretend_args_size)
2412 abort ();
2413
2414 pretend_bytes = partial * UNITS_PER_WORD;
2415 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2416
2417 /* We want to align relative to the actual stack pointer, so
2418 don't include this in the stack size until later. */
2419 all->extra_pretend_bytes = all->pretend_args_size;
2420 }
2421 }
2422
2423 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2424 entry_parm ? data->partial : 0, current_function_decl,
2425 &all->stack_args_size, &data->locate);
2426
2427 /* Adjust offsets to include the pretend args. */
2428 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2429 data->locate.slot_offset.constant += pretend_bytes;
2430 data->locate.offset.constant += pretend_bytes;
2431
2432 data->entry_parm = entry_parm;
2433 }
2434
2435 /* A subroutine of assign_parms. If there is actually space on the stack
2436 for this parm, count it in stack_args_size and return true. */
2437
2438 static bool
2439 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2440 struct assign_parm_data_one *data)
2441 {
2442 /* Trivially true if we've no incomming register. */
2443 if (data->entry_parm == NULL)
2444 ;
2445 /* Also true if we're partially in registers and partially not,
2446 since we've arranged to drop the entire argument on the stack. */
2447 else if (data->partial != 0)
2448 ;
2449 /* Also true if the target says that it's passed in both registers
2450 and on the stack. */
2451 else if (GET_CODE (data->entry_parm) == PARALLEL
2452 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2453 ;
2454 /* Also true if the target says that there's stack allocated for
2455 all register parameters. */
2456 else if (all->reg_parm_stack_space > 0)
2457 ;
2458 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2459 else
2460 return false;
2461
2462 all->stack_args_size.constant += data->locate.size.constant;
2463 if (data->locate.size.var)
2464 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2465
2466 return true;
2467 }
2468
2469 /* A subroutine of assign_parms. Given that this parameter is allocated
2470 stack space by the ABI, find it. */
2471
2472 static void
2473 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2474 {
2475 rtx offset_rtx, stack_parm;
2476 unsigned int align, boundary;
2477
2478 /* If we're passing this arg using a reg, make its stack home the
2479 aligned stack slot. */
2480 if (data->entry_parm)
2481 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2482 else
2483 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2484
2485 stack_parm = current_function_internal_arg_pointer;
2486 if (offset_rtx != const0_rtx)
2487 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2488 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2489
2490 set_mem_attributes (stack_parm, parm, 1);
2491
2492 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2493 align = 0;
2494
2495 /* If we're padding upward, we know that the alignment of the slot
2496 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2497 intentionally forcing upward padding. Otherwise we have to come
2498 up with a guess at the alignment based on OFFSET_RTX. */
2499 if (data->locate.where_pad == upward || data->entry_parm)
2500 align = boundary;
2501 else if (GET_CODE (offset_rtx) == CONST_INT)
2502 {
2503 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2504 align = align & -align;
2505 }
2506 if (align > 0)
2507 set_mem_align (stack_parm, align);
2508
2509 if (data->entry_parm)
2510 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2511
2512 data->stack_parm = stack_parm;
2513 }
2514
2515 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2516 always valid and contiguous. */
2517
2518 static void
2519 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2520 {
2521 rtx entry_parm = data->entry_parm;
2522 rtx stack_parm = data->stack_parm;
2523
2524 /* If this parm was passed part in regs and part in memory, pretend it
2525 arrived entirely in memory by pushing the register-part onto the stack.
2526 In the special case of a DImode or DFmode that is split, we could put
2527 it together in a pseudoreg directly, but for now that's not worth
2528 bothering with. */
2529 if (data->partial != 0)
2530 {
2531 /* Handle calls that pass values in multiple non-contiguous
2532 locations. The Irix 6 ABI has examples of this. */
2533 if (GET_CODE (entry_parm) == PARALLEL)
2534 emit_group_store (validize_mem (stack_parm), entry_parm,
2535 data->passed_type,
2536 int_size_in_bytes (data->passed_type));
2537 else
2538 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2539 data->partial);
2540
2541 entry_parm = stack_parm;
2542 }
2543
2544 /* If we didn't decide this parm came in a register, by default it came
2545 on the stack. */
2546 else if (entry_parm == NULL)
2547 entry_parm = stack_parm;
2548
2549 /* When an argument is passed in multiple locations, we can't make use
2550 of this information, but we can save some copying if the whole argument
2551 is passed in a single register. */
2552 else if (GET_CODE (entry_parm) == PARALLEL
2553 && data->nominal_mode != BLKmode
2554 && data->passed_mode != BLKmode)
2555 {
2556 size_t i, len = XVECLEN (entry_parm, 0);
2557
2558 for (i = 0; i < len; i++)
2559 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2560 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2561 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2562 == data->passed_mode)
2563 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2564 {
2565 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2566 break;
2567 }
2568 }
2569
2570 data->entry_parm = entry_parm;
2571 }
2572
2573 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2574 always valid and properly aligned. */
2575
2576
2577 static void
2578 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2579 {
2580 rtx stack_parm = data->stack_parm;
2581
2582 /* If we can't trust the parm stack slot to be aligned enough for its
2583 ultimate type, don't use that slot after entry. We'll make another
2584 stack slot, if we need one. */
2585 if (STRICT_ALIGNMENT && stack_parm
2586 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2587 stack_parm = NULL;
2588
2589 /* If parm was passed in memory, and we need to convert it on entry,
2590 don't store it back in that same slot. */
2591 else if (data->entry_parm == stack_parm
2592 && data->nominal_mode != BLKmode
2593 && data->nominal_mode != data->passed_mode)
2594 stack_parm = NULL;
2595
2596 data->stack_parm = stack_parm;
2597 }
2598
2599 /* A subroutine of assign_parms. Return true if the current parameter
2600 should be stored as a BLKmode in the current frame. */
2601
2602 static bool
2603 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2604 {
2605 if (data->nominal_mode == BLKmode)
2606 return true;
2607 if (GET_CODE (data->entry_parm) == PARALLEL)
2608 return true;
2609
2610 #ifdef BLOCK_REG_PADDING
2611 if (data->locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
2612 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD)
2613 return true;
2614 #endif
2615
2616 return false;
2617 }
2618
2619 /* A subroutine of assign_parms. Arrange for the parameter to be
2620 present and valid in DATA->STACK_RTL. */
2621
2622 static void
2623 assign_parm_setup_block (tree parm, struct assign_parm_data_one *data)
2624 {
2625 rtx entry_parm = data->entry_parm;
2626 rtx stack_parm = data->stack_parm;
2627
2628 /* If we've a non-block object that's nevertheless passed in parts,
2629 reconstitute it in register operations rather than on the stack. */
2630 if (GET_CODE (entry_parm) == PARALLEL
2631 && data->nominal_mode != BLKmode
2632 && XVECLEN (entry_parm, 0) > 1
2633 && optimize)
2634 {
2635 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2636
2637 emit_group_store (parmreg, entry_parm, data->nominal_type,
2638 int_size_in_bytes (data->nominal_type));
2639 SET_DECL_RTL (parm, parmreg);
2640 return;
2641 }
2642
2643 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2644 calls that pass values in multiple non-contiguous locations. */
2645 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2646 {
2647 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2648 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2649 rtx mem;
2650
2651 /* Note that we will be storing an integral number of words.
2652 So we have to be careful to ensure that we allocate an
2653 integral number of words. We do this below in the
2654 assign_stack_local if space was not allocated in the argument
2655 list. If it was, this will not work if PARM_BOUNDARY is not
2656 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2657 if it becomes a problem. Exception is when BLKmode arrives
2658 with arguments not conforming to word_mode. */
2659
2660 if (stack_parm == 0)
2661 {
2662 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2663 data->stack_parm = stack_parm;
2664 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2665 set_mem_attributes (stack_parm, parm, 1);
2666 }
2667 else if (GET_CODE (entry_parm) == PARALLEL)
2668 ;
2669 else if (size != 0 && PARM_BOUNDARY % BITS_PER_WORD != 0)
2670 abort ();
2671
2672 mem = validize_mem (stack_parm);
2673
2674 /* Handle values in multiple non-contiguous locations. */
2675 if (GET_CODE (entry_parm) == PARALLEL)
2676 emit_group_store (mem, entry_parm, data->passed_type, size);
2677
2678 else if (size == 0)
2679 ;
2680
2681 /* If SIZE is that of a mode no bigger than a word, just use
2682 that mode's store operation. */
2683 else if (size <= UNITS_PER_WORD)
2684 {
2685 enum machine_mode mode
2686 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2687
2688 if (mode != BLKmode
2689 #ifdef BLOCK_REG_PADDING
2690 && (size == UNITS_PER_WORD
2691 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2692 != (BYTES_BIG_ENDIAN ? upward : downward)))
2693 #endif
2694 )
2695 {
2696 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2697 emit_move_insn (change_address (mem, mode, 0), reg);
2698 }
2699
2700 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2701 machine must be aligned to the left before storing
2702 to memory. Note that the previous test doesn't
2703 handle all cases (e.g. SIZE == 3). */
2704 else if (size != UNITS_PER_WORD
2705 #ifdef BLOCK_REG_PADDING
2706 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2707 == downward)
2708 #else
2709 && BYTES_BIG_ENDIAN
2710 #endif
2711 )
2712 {
2713 rtx tem, x;
2714 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2715 rtx reg = gen_rtx_REG (word_mode, REGNO (data->entry_parm));
2716
2717 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2718 build_int_2 (by, 0), NULL_RTX, 1);
2719 tem = change_address (mem, word_mode, 0);
2720 emit_move_insn (tem, x);
2721 }
2722 else
2723 move_block_from_reg (REGNO (data->entry_parm), mem,
2724 size_stored / UNITS_PER_WORD);
2725 }
2726 else
2727 move_block_from_reg (REGNO (data->entry_parm), mem,
2728 size_stored / UNITS_PER_WORD);
2729 }
2730
2731 SET_DECL_RTL (parm, stack_parm);
2732 }
2733
2734 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2735 parameter. Get it there. Perform all ABI specified conversions. */
2736
2737 static void
2738 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2739 struct assign_parm_data_one *data)
2740 {
2741 rtx parmreg;
2742 enum machine_mode promoted_nominal_mode;
2743 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2744 bool did_conversion = false;
2745
2746 /* Store the parm in a pseudoregister during the function, but we may
2747 need to do it in a wider mode. */
2748
2749 promoted_nominal_mode
2750 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2751
2752 parmreg = gen_reg_rtx (promoted_nominal_mode);
2753
2754 if (!DECL_ARTIFICIAL (parm))
2755 mark_user_reg (parmreg);
2756
2757 /* If this was an item that we received a pointer to,
2758 set DECL_RTL appropriately. */
2759 if (data->passed_pointer)
2760 {
2761 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2762 set_mem_attributes (x, parm, 1);
2763 SET_DECL_RTL (parm, x);
2764 }
2765 else
2766 {
2767 SET_DECL_RTL (parm, parmreg);
2768 maybe_set_unchanging (DECL_RTL (parm), parm);
2769 }
2770
2771 /* Copy the value into the register. */
2772 if (data->nominal_mode != data->passed_mode
2773 || promoted_nominal_mode != data->promoted_mode)
2774 {
2775 int save_tree_used;
2776
2777 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2778 mode, by the caller. We now have to convert it to
2779 NOMINAL_MODE, if different. However, PARMREG may be in
2780 a different mode than NOMINAL_MODE if it is being stored
2781 promoted.
2782
2783 If ENTRY_PARM is a hard register, it might be in a register
2784 not valid for operating in its mode (e.g., an odd-numbered
2785 register for a DFmode). In that case, moves are the only
2786 thing valid, so we can't do a convert from there. This
2787 occurs when the calling sequence allow such misaligned
2788 usages.
2789
2790 In addition, the conversion may involve a call, which could
2791 clobber parameters which haven't been copied to pseudo
2792 registers yet. Therefore, we must first copy the parm to
2793 a pseudo reg here, and save the conversion until after all
2794 parameters have been moved. */
2795
2796 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2797
2798 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2799
2800 push_to_sequence (all->conversion_insns);
2801 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2802
2803 if (GET_CODE (tempreg) == SUBREG
2804 && GET_MODE (tempreg) == data->nominal_mode
2805 && REG_P (SUBREG_REG (tempreg))
2806 && data->nominal_mode == data->passed_mode
2807 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2808 && GET_MODE_SIZE (GET_MODE (tempreg))
2809 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2810 {
2811 /* The argument is already sign/zero extended, so note it
2812 into the subreg. */
2813 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2814 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2815 }
2816
2817 /* TREE_USED gets set erroneously during expand_assignment. */
2818 save_tree_used = TREE_USED (parm);
2819 expand_assignment (parm, make_tree (data->nominal_type, tempreg), 0);
2820 TREE_USED (parm) = save_tree_used;
2821 all->conversion_insns = get_insns ();
2822 end_sequence ();
2823
2824 did_conversion = true;
2825 }
2826 else
2827 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2828
2829 /* If we were passed a pointer but the actual value can safely live
2830 in a register, put it in one. */
2831 if (data->passed_pointer
2832 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2833 /* If by-reference argument was promoted, demote it. */
2834 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2835 || use_register_for_decl (parm)))
2836 {
2837 /* We can't use nominal_mode, because it will have been set to
2838 Pmode above. We must use the actual mode of the parm. */
2839 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2840 mark_user_reg (parmreg);
2841
2842 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2843 {
2844 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2845 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2846
2847 push_to_sequence (all->conversion_insns);
2848 emit_move_insn (tempreg, DECL_RTL (parm));
2849 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2850 emit_move_insn (parmreg, tempreg);
2851 all->conversion_insns = get_insns();
2852 end_sequence ();
2853
2854 did_conversion = true;
2855 }
2856 else
2857 emit_move_insn (parmreg, DECL_RTL (parm));
2858
2859 SET_DECL_RTL (parm, parmreg);
2860
2861 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2862 now the parm. */
2863 data->stack_parm = NULL;
2864 }
2865
2866 /* If we are passed an arg by reference and it is our responsibility
2867 to make a copy, do it now.
2868 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2869 original argument, so we must recreate them in the call to
2870 FUNCTION_ARG_CALLEE_COPIES. */
2871 /* ??? Later add code to handle the case that if the argument isn't
2872 modified, don't do the copy. */
2873
2874 else if (data->passed_pointer)
2875 {
2876 tree type = TREE_TYPE (data->passed_type);
2877
2878 if (FUNCTION_ARG_CALLEE_COPIES (all->args_so_far, TYPE_MODE (type),
2879 type, data->named_arg)
2880 && !TREE_ADDRESSABLE (type))
2881 {
2882 rtx copy;
2883
2884 /* This sequence may involve a library call perhaps clobbering
2885 registers that haven't been copied to pseudos yet. */
2886
2887 push_to_sequence (all->conversion_insns);
2888
2889 if (!COMPLETE_TYPE_P (type)
2890 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2891 {
2892 /* This is a variable sized object. */
2893 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2894 TYPE_ALIGN (type));
2895 copy = gen_rtx_MEM (BLKmode, copy);
2896 }
2897 else
2898 copy = assign_stack_temp (TYPE_MODE (type),
2899 int_size_in_bytes (type), 1);
2900 set_mem_attributes (copy, parm, 1);
2901
2902 store_expr (parm, copy, 0);
2903 emit_move_insn (parmreg, XEXP (copy, 0));
2904 all->conversion_insns = get_insns ();
2905 end_sequence ();
2906
2907 did_conversion = true;
2908 }
2909 }
2910
2911 /* Mark the register as eliminable if we did no conversion and it was
2912 copied from memory at a fixed offset, and the arg pointer was not
2913 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2914 offset formed an invalid address, such memory-equivalences as we
2915 make here would screw up life analysis for it. */
2916 if (data->nominal_mode == data->passed_mode
2917 && !did_conversion
2918 && data->stack_parm != 0
2919 && MEM_P (data->stack_parm)
2920 && data->locate.offset.var == 0
2921 && reg_mentioned_p (virtual_incoming_args_rtx,
2922 XEXP (data->stack_parm, 0)))
2923 {
2924 rtx linsn = get_last_insn ();
2925 rtx sinsn, set;
2926
2927 /* Mark complex types separately. */
2928 if (GET_CODE (parmreg) == CONCAT)
2929 {
2930 enum machine_mode submode
2931 = GET_MODE_INNER (GET_MODE (parmreg));
2932 int regnor = REGNO (gen_realpart (submode, parmreg));
2933 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2934 rtx stackr = gen_realpart (submode, data->stack_parm);
2935 rtx stacki = gen_imagpart (submode, data->stack_parm);
2936
2937 /* Scan backwards for the set of the real and
2938 imaginary parts. */
2939 for (sinsn = linsn; sinsn != 0;
2940 sinsn = prev_nonnote_insn (sinsn))
2941 {
2942 set = single_set (sinsn);
2943 if (set == 0)
2944 continue;
2945
2946 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2947 REG_NOTES (sinsn)
2948 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2949 REG_NOTES (sinsn));
2950 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2951 REG_NOTES (sinsn)
2952 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2953 REG_NOTES (sinsn));
2954 }
2955 }
2956 else if ((set = single_set (linsn)) != 0
2957 && SET_DEST (set) == parmreg)
2958 REG_NOTES (linsn)
2959 = gen_rtx_EXPR_LIST (REG_EQUIV,
2960 data->stack_parm, REG_NOTES (linsn));
2961 }
2962
2963 /* For pointer data type, suggest pointer register. */
2964 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2965 mark_reg_pointer (parmreg,
2966 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2967 }
2968
2969 /* A subroutine of assign_parms. Allocate stack space to hold the current
2970 parameter. Get it there. Perform all ABI specified conversions. */
2971
2972 static void
2973 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2974 struct assign_parm_data_one *data)
2975 {
2976 /* Value must be stored in the stack slot STACK_PARM during function
2977 execution. */
2978
2979 if (data->promoted_mode != data->nominal_mode)
2980 {
2981 /* Conversion is required. */
2982 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2983
2984 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2985
2986 push_to_sequence (all->conversion_insns);
2987 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2988 TYPE_UNSIGNED (TREE_TYPE (parm)));
2989
2990 if (data->stack_parm)
2991 /* ??? This may need a big-endian conversion on sparc64. */
2992 data->stack_parm
2993 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2994
2995 all->conversion_insns = get_insns ();
2996 end_sequence ();
2997 }
2998
2999 if (data->entry_parm != data->stack_parm)
3000 {
3001 if (data->stack_parm == 0)
3002 {
3003 data->stack_parm
3004 = assign_stack_local (GET_MODE (data->entry_parm),
3005 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3006 0);
3007 set_mem_attributes (data->stack_parm, parm, 1);
3008 }
3009
3010 if (data->promoted_mode != data->nominal_mode)
3011 {
3012 push_to_sequence (all->conversion_insns);
3013 emit_move_insn (validize_mem (data->stack_parm),
3014 validize_mem (data->entry_parm));
3015 all->conversion_insns = get_insns ();
3016 end_sequence ();
3017 }
3018 else
3019 emit_move_insn (validize_mem (data->stack_parm),
3020 validize_mem (data->entry_parm));
3021 }
3022
3023 SET_DECL_RTL (parm, data->stack_parm);
3024 }
3025
3026 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3027 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3028
3029 static void
3030 assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
3031 {
3032 tree parm;
3033
3034 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
3035 {
3036 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3037 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3038 {
3039 rtx tmp, real, imag;
3040 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3041
3042 real = DECL_RTL (fnargs);
3043 imag = DECL_RTL (TREE_CHAIN (fnargs));
3044 if (inner != GET_MODE (real))
3045 {
3046 real = gen_lowpart_SUBREG (inner, real);
3047 imag = gen_lowpart_SUBREG (inner, imag);
3048 }
3049 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3050 SET_DECL_RTL (parm, tmp);
3051
3052 real = DECL_INCOMING_RTL (fnargs);
3053 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
3054 if (inner != GET_MODE (real))
3055 {
3056 real = gen_lowpart_SUBREG (inner, real);
3057 imag = gen_lowpart_SUBREG (inner, imag);
3058 }
3059 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3060 set_decl_incoming_rtl (parm, tmp);
3061 fnargs = TREE_CHAIN (fnargs);
3062 }
3063 else
3064 {
3065 SET_DECL_RTL (parm, DECL_RTL (fnargs));
3066 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
3067
3068 /* Set MEM_EXPR to the original decl, i.e. to PARM,
3069 instead of the copy of decl, i.e. FNARGS. */
3070 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
3071 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
3072 }
3073
3074 fnargs = TREE_CHAIN (fnargs);
3075 }
3076 }
3077
3078 /* Assign RTL expressions to the function's parameters. This may involve
3079 copying them into registers and using those registers as the DECL_RTL. */
3080
3081 void
3082 assign_parms (tree fndecl)
3083 {
3084 struct assign_parm_data_all all;
3085 tree fnargs, parm;
3086 rtx internal_arg_pointer;
3087 int varargs_setup = 0;
3088
3089 /* If the reg that the virtual arg pointer will be translated into is
3090 not a fixed reg or is the stack pointer, make a copy of the virtual
3091 arg pointer, and address parms via the copy. The frame pointer is
3092 considered fixed even though it is not marked as such.
3093
3094 The second time through, simply use ap to avoid generating rtx. */
3095
3096 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
3097 || ! (fixed_regs[ARG_POINTER_REGNUM]
3098 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
3099 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
3100 else
3101 internal_arg_pointer = virtual_incoming_args_rtx;
3102 current_function_internal_arg_pointer = internal_arg_pointer;
3103
3104 assign_parms_initialize_all (&all);
3105 fnargs = assign_parms_augmented_arg_list (&all);
3106
3107 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3108 {
3109 struct assign_parm_data_one data;
3110
3111 /* Extract the type of PARM; adjust it according to ABI. */
3112 assign_parm_find_data_types (&all, parm, &data);
3113
3114 /* Early out for errors and void parameters. */
3115 if (data.passed_mode == VOIDmode)
3116 {
3117 SET_DECL_RTL (parm, const0_rtx);
3118 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3119 continue;
3120 }
3121
3122 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3123 for the unnamed dummy argument following the last named argument.
3124 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3125 we only want to do this when we get to the actual last named
3126 argument, which will be the first time LAST_NAMED gets set. */
3127 if (data.last_named && !varargs_setup)
3128 {
3129 varargs_setup = true;
3130 assign_parms_setup_varargs (&all, &data, false);
3131 }
3132
3133 /* Find out where the parameter arrives in this function. */
3134 assign_parm_find_entry_rtl (&all, &data);
3135
3136 /* Find out where stack space for this parameter might be. */
3137 if (assign_parm_is_stack_parm (&all, &data))
3138 {
3139 assign_parm_find_stack_rtl (parm, &data);
3140 assign_parm_adjust_entry_rtl (&data);
3141 }
3142
3143 /* Record permanently how this parm was passed. */
3144 set_decl_incoming_rtl (parm, data.entry_parm);
3145
3146 /* Update info on where next arg arrives in registers. */
3147 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3148 data.passed_type, data.named_arg);
3149
3150 assign_parm_adjust_stack_rtl (&data);
3151
3152 if (assign_parm_setup_block_p (&data))
3153 assign_parm_setup_block (parm, &data);
3154 else if (data.passed_pointer || use_register_for_decl (parm))
3155 assign_parm_setup_reg (&all, parm, &data);
3156 else
3157 assign_parm_setup_stack (&all, parm, &data);
3158 }
3159
3160 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3161 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3162
3163 /* Output all parameter conversion instructions (possibly including calls)
3164 now that all parameters have been copied out of hard registers. */
3165 emit_insn (all.conversion_insns);
3166
3167 /* If we are receiving a struct value address as the first argument, set up
3168 the RTL for the function result. As this might require code to convert
3169 the transmitted address to Pmode, we do this here to ensure that possible
3170 preliminary conversions of the address have been emitted already. */
3171 if (all.function_result_decl)
3172 {
3173 tree result = DECL_RESULT (current_function_decl);
3174 rtx addr = DECL_RTL (all.function_result_decl);
3175 rtx x;
3176
3177 addr = convert_memory_address (Pmode, addr);
3178 x = gen_rtx_MEM (DECL_MODE (result), addr);
3179 set_mem_attributes (x, result, 1);
3180 SET_DECL_RTL (result, x);
3181 }
3182
3183 /* We have aligned all the args, so add space for the pretend args. */
3184 current_function_pretend_args_size = all.pretend_args_size;
3185 all.stack_args_size.constant += all.extra_pretend_bytes;
3186 current_function_args_size = all.stack_args_size.constant;
3187
3188 /* Adjust function incoming argument size for alignment and
3189 minimum length. */
3190
3191 #ifdef REG_PARM_STACK_SPACE
3192 current_function_args_size = MAX (current_function_args_size,
3193 REG_PARM_STACK_SPACE (fndecl));
3194 #endif
3195
3196 current_function_args_size
3197 = ((current_function_args_size + STACK_BYTES - 1)
3198 / STACK_BYTES) * STACK_BYTES;
3199
3200 #ifdef ARGS_GROW_DOWNWARD
3201 current_function_arg_offset_rtx
3202 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3203 : expand_expr (size_diffop (all.stack_args_size.var,
3204 size_int (-all.stack_args_size.constant)),
3205 NULL_RTX, VOIDmode, 0));
3206 #else
3207 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3208 #endif
3209
3210 /* See how many bytes, if any, of its args a function should try to pop
3211 on return. */
3212
3213 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3214 current_function_args_size);
3215
3216 /* For stdarg.h function, save info about
3217 regs and stack space used by the named args. */
3218
3219 current_function_args_info = all.args_so_far;
3220
3221 /* Set the rtx used for the function return value. Put this in its
3222 own variable so any optimizers that need this information don't have
3223 to include tree.h. Do this here so it gets done when an inlined
3224 function gets output. */
3225
3226 current_function_return_rtx
3227 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3228 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3229
3230 /* If scalar return value was computed in a pseudo-reg, or was a named
3231 return value that got dumped to the stack, copy that to the hard
3232 return register. */
3233 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3234 {
3235 tree decl_result = DECL_RESULT (fndecl);
3236 rtx decl_rtl = DECL_RTL (decl_result);
3237
3238 if (REG_P (decl_rtl)
3239 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3240 : DECL_REGISTER (decl_result))
3241 {
3242 rtx real_decl_rtl;
3243
3244 #ifdef FUNCTION_OUTGOING_VALUE
3245 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3246 fndecl);
3247 #else
3248 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3249 fndecl);
3250 #endif
3251 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3252 /* The delay slot scheduler assumes that current_function_return_rtx
3253 holds the hard register containing the return value, not a
3254 temporary pseudo. */
3255 current_function_return_rtx = real_decl_rtl;
3256 }
3257 }
3258 }
3259 \f
3260 /* Indicate whether REGNO is an incoming argument to the current function
3261 that was promoted to a wider mode. If so, return the RTX for the
3262 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3263 that REGNO is promoted from and whether the promotion was signed or
3264 unsigned. */
3265
3266 rtx
3267 promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
3268 {
3269 tree arg;
3270
3271 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3272 arg = TREE_CHAIN (arg))
3273 if (REG_P (DECL_INCOMING_RTL (arg))
3274 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3275 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
3276 {
3277 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
3278 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
3279
3280 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
3281 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3282 && mode != DECL_MODE (arg))
3283 {
3284 *pmode = DECL_MODE (arg);
3285 *punsignedp = unsignedp;
3286 return DECL_INCOMING_RTL (arg);
3287 }
3288 }
3289
3290 return 0;
3291 }
3292
3293 \f
3294 /* Compute the size and offset from the start of the stacked arguments for a
3295 parm passed in mode PASSED_MODE and with type TYPE.
3296
3297 INITIAL_OFFSET_PTR points to the current offset into the stacked
3298 arguments.
3299
3300 The starting offset and size for this parm are returned in
3301 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3302 nonzero, the offset is that of stack slot, which is returned in
3303 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3304 padding required from the initial offset ptr to the stack slot.
3305
3306 IN_REGS is nonzero if the argument will be passed in registers. It will
3307 never be set if REG_PARM_STACK_SPACE is not defined.
3308
3309 FNDECL is the function in which the argument was defined.
3310
3311 There are two types of rounding that are done. The first, controlled by
3312 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3313 list to be aligned to the specific boundary (in bits). This rounding
3314 affects the initial and starting offsets, but not the argument size.
3315
3316 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3317 optionally rounds the size of the parm to PARM_BOUNDARY. The
3318 initial offset is not affected by this rounding, while the size always
3319 is and the starting offset may be. */
3320
3321 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3322 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3323 callers pass in the total size of args so far as
3324 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3325
3326 void
3327 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3328 int partial, tree fndecl ATTRIBUTE_UNUSED,
3329 struct args_size *initial_offset_ptr,
3330 struct locate_and_pad_arg_data *locate)
3331 {
3332 tree sizetree;
3333 enum direction where_pad;
3334 int boundary;
3335 int reg_parm_stack_space = 0;
3336 int part_size_in_regs;
3337
3338 #ifdef REG_PARM_STACK_SPACE
3339 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3340
3341 /* If we have found a stack parm before we reach the end of the
3342 area reserved for registers, skip that area. */
3343 if (! in_regs)
3344 {
3345 if (reg_parm_stack_space > 0)
3346 {
3347 if (initial_offset_ptr->var)
3348 {
3349 initial_offset_ptr->var
3350 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3351 ssize_int (reg_parm_stack_space));
3352 initial_offset_ptr->constant = 0;
3353 }
3354 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3355 initial_offset_ptr->constant = reg_parm_stack_space;
3356 }
3357 }
3358 #endif /* REG_PARM_STACK_SPACE */
3359
3360 part_size_in_regs = 0;
3361 if (reg_parm_stack_space == 0)
3362 part_size_in_regs = ((partial * UNITS_PER_WORD)
3363 / (PARM_BOUNDARY / BITS_PER_UNIT)
3364 * (PARM_BOUNDARY / BITS_PER_UNIT));
3365
3366 sizetree
3367 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3368 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3369 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3370 locate->where_pad = where_pad;
3371
3372 #ifdef ARGS_GROW_DOWNWARD
3373 locate->slot_offset.constant = -initial_offset_ptr->constant;
3374 if (initial_offset_ptr->var)
3375 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3376 initial_offset_ptr->var);
3377
3378 {
3379 tree s2 = sizetree;
3380 if (where_pad != none
3381 && (!host_integerp (sizetree, 1)
3382 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3383 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3384 SUB_PARM_SIZE (locate->slot_offset, s2);
3385 }
3386
3387 locate->slot_offset.constant += part_size_in_regs;
3388
3389 if (!in_regs
3390 #ifdef REG_PARM_STACK_SPACE
3391 || REG_PARM_STACK_SPACE (fndecl) > 0
3392 #endif
3393 )
3394 pad_to_arg_alignment (&locate->slot_offset, boundary,
3395 &locate->alignment_pad);
3396
3397 locate->size.constant = (-initial_offset_ptr->constant
3398 - locate->slot_offset.constant);
3399 if (initial_offset_ptr->var)
3400 locate->size.var = size_binop (MINUS_EXPR,
3401 size_binop (MINUS_EXPR,
3402 ssize_int (0),
3403 initial_offset_ptr->var),
3404 locate->slot_offset.var);
3405
3406 /* Pad_below needs the pre-rounded size to know how much to pad
3407 below. */
3408 locate->offset = locate->slot_offset;
3409 if (where_pad == downward)
3410 pad_below (&locate->offset, passed_mode, sizetree);
3411
3412 #else /* !ARGS_GROW_DOWNWARD */
3413 if (!in_regs
3414 #ifdef REG_PARM_STACK_SPACE
3415 || REG_PARM_STACK_SPACE (fndecl) > 0
3416 #endif
3417 )
3418 pad_to_arg_alignment (initial_offset_ptr, boundary,
3419 &locate->alignment_pad);
3420 locate->slot_offset = *initial_offset_ptr;
3421
3422 #ifdef PUSH_ROUNDING
3423 if (passed_mode != BLKmode)
3424 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3425 #endif
3426
3427 /* Pad_below needs the pre-rounded size to know how much to pad below
3428 so this must be done before rounding up. */
3429 locate->offset = locate->slot_offset;
3430 if (where_pad == downward)
3431 pad_below (&locate->offset, passed_mode, sizetree);
3432
3433 if (where_pad != none
3434 && (!host_integerp (sizetree, 1)
3435 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3436 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3437
3438 ADD_PARM_SIZE (locate->size, sizetree);
3439
3440 locate->size.constant -= part_size_in_regs;
3441 #endif /* ARGS_GROW_DOWNWARD */
3442 }
3443
3444 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3445 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3446
3447 static void
3448 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3449 struct args_size *alignment_pad)
3450 {
3451 tree save_var = NULL_TREE;
3452 HOST_WIDE_INT save_constant = 0;
3453 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3454 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3455
3456 #ifdef SPARC_STACK_BOUNDARY_HACK
3457 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3458 higher than the real alignment of %sp. However, when it does this,
3459 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3460 This is a temporary hack while the sparc port is fixed. */
3461 if (SPARC_STACK_BOUNDARY_HACK)
3462 sp_offset = 0;
3463 #endif
3464
3465 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3466 {
3467 save_var = offset_ptr->var;
3468 save_constant = offset_ptr->constant;
3469 }
3470
3471 alignment_pad->var = NULL_TREE;
3472 alignment_pad->constant = 0;
3473
3474 if (boundary > BITS_PER_UNIT)
3475 {
3476 if (offset_ptr->var)
3477 {
3478 tree sp_offset_tree = ssize_int (sp_offset);
3479 tree offset = size_binop (PLUS_EXPR,
3480 ARGS_SIZE_TREE (*offset_ptr),
3481 sp_offset_tree);
3482 #ifdef ARGS_GROW_DOWNWARD
3483 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3484 #else
3485 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3486 #endif
3487
3488 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3489 /* ARGS_SIZE_TREE includes constant term. */
3490 offset_ptr->constant = 0;
3491 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3492 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3493 save_var);
3494 }
3495 else
3496 {
3497 offset_ptr->constant = -sp_offset +
3498 #ifdef ARGS_GROW_DOWNWARD
3499 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3500 #else
3501 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3502 #endif
3503 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3504 alignment_pad->constant = offset_ptr->constant - save_constant;
3505 }
3506 }
3507 }
3508
3509 static void
3510 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3511 {
3512 if (passed_mode != BLKmode)
3513 {
3514 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3515 offset_ptr->constant
3516 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3517 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3518 - GET_MODE_SIZE (passed_mode));
3519 }
3520 else
3521 {
3522 if (TREE_CODE (sizetree) != INTEGER_CST
3523 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3524 {
3525 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3526 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3527 /* Add it in. */
3528 ADD_PARM_SIZE (*offset_ptr, s2);
3529 SUB_PARM_SIZE (*offset_ptr, sizetree);
3530 }
3531 }
3532 }
3533 \f
3534 /* Walk the tree of blocks describing the binding levels within a function
3535 and warn about variables the might be killed by setjmp or vfork.
3536 This is done after calling flow_analysis and before global_alloc
3537 clobbers the pseudo-regs to hard regs. */
3538
3539 void
3540 setjmp_vars_warning (tree block)
3541 {
3542 tree decl, sub;
3543
3544 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3545 {
3546 if (TREE_CODE (decl) == VAR_DECL
3547 && DECL_RTL_SET_P (decl)
3548 && REG_P (DECL_RTL (decl))
3549 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3550 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
3551 decl, decl);
3552 }
3553
3554 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
3555 setjmp_vars_warning (sub);
3556 }
3557
3558 /* Do the appropriate part of setjmp_vars_warning
3559 but for arguments instead of local variables. */
3560
3561 void
3562 setjmp_args_warning (void)
3563 {
3564 tree decl;
3565 for (decl = DECL_ARGUMENTS (current_function_decl);
3566 decl; decl = TREE_CHAIN (decl))
3567 if (DECL_RTL (decl) != 0
3568 && REG_P (DECL_RTL (decl))
3569 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
3570 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
3571 decl, decl);
3572 }
3573
3574 \f
3575 /* Convert a stack slot address ADDR for variable VAR
3576 (from a containing function)
3577 into an address valid in this function (using a static chain). */
3578
3579 rtx
3580 fix_lexical_addr (rtx addr, tree var)
3581 {
3582 rtx basereg;
3583 HOST_WIDE_INT displacement;
3584 tree context = decl_function_context (var);
3585 struct function *fp;
3586 rtx base = 0;
3587
3588 /* If this is the present function, we need not do anything. */
3589 if (context == current_function_decl)
3590 return addr;
3591
3592 fp = find_function_data (context);
3593
3594 /* Decode given address as base reg plus displacement. */
3595 if (REG_P (addr))
3596 basereg = addr, displacement = 0;
3597 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3598 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
3599 else
3600 abort ();
3601
3602 if (base == 0)
3603 abort ();
3604
3605 /* Use same offset, relative to appropriate static chain or argument
3606 pointer. */
3607 return plus_constant (base, displacement);
3608 }
3609 \f
3610 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3611 and create duplicate blocks. */
3612 /* ??? Need an option to either create block fragments or to create
3613 abstract origin duplicates of a source block. It really depends
3614 on what optimization has been performed. */
3615
3616 void
3617 reorder_blocks (void)
3618 {
3619 tree block = DECL_INITIAL (current_function_decl);
3620 varray_type block_stack;
3621
3622 if (block == NULL_TREE)
3623 return;
3624
3625 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3626
3627 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3628 clear_block_marks (block);
3629
3630 /* Prune the old trees away, so that they don't get in the way. */
3631 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3632 BLOCK_CHAIN (block) = NULL_TREE;
3633
3634 /* Recreate the block tree from the note nesting. */
3635 reorder_blocks_1 (get_insns (), block, &block_stack);
3636 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3637
3638 /* Remove deleted blocks from the block fragment chains. */
3639 reorder_fix_fragments (block);
3640 }
3641
3642 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3643
3644 void
3645 clear_block_marks (tree block)
3646 {
3647 while (block)
3648 {
3649 TREE_ASM_WRITTEN (block) = 0;
3650 clear_block_marks (BLOCK_SUBBLOCKS (block));
3651 block = BLOCK_CHAIN (block);
3652 }
3653 }
3654
3655 static void
3656 reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
3657 {
3658 rtx insn;
3659
3660 for (insn = insns; insn; insn = NEXT_INSN (insn))
3661 {
3662 if (NOTE_P (insn))
3663 {
3664 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3665 {
3666 tree block = NOTE_BLOCK (insn);
3667
3668 /* If we have seen this block before, that means it now
3669 spans multiple address regions. Create a new fragment. */
3670 if (TREE_ASM_WRITTEN (block))
3671 {
3672 tree new_block = copy_node (block);
3673 tree origin;
3674
3675 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3676 ? BLOCK_FRAGMENT_ORIGIN (block)
3677 : block);
3678 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3679 BLOCK_FRAGMENT_CHAIN (new_block)
3680 = BLOCK_FRAGMENT_CHAIN (origin);
3681 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3682
3683 NOTE_BLOCK (insn) = new_block;
3684 block = new_block;
3685 }
3686
3687 BLOCK_SUBBLOCKS (block) = 0;
3688 TREE_ASM_WRITTEN (block) = 1;
3689 /* When there's only one block for the entire function,
3690 current_block == block and we mustn't do this, it
3691 will cause infinite recursion. */
3692 if (block != current_block)
3693 {
3694 BLOCK_SUPERCONTEXT (block) = current_block;
3695 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3696 BLOCK_SUBBLOCKS (current_block) = block;
3697 current_block = block;
3698 }
3699 VARRAY_PUSH_TREE (*p_block_stack, block);
3700 }
3701 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3702 {
3703 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3704 VARRAY_POP (*p_block_stack);
3705 BLOCK_SUBBLOCKS (current_block)
3706 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3707 current_block = BLOCK_SUPERCONTEXT (current_block);
3708 }
3709 }
3710 }
3711 }
3712
3713 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3714 appears in the block tree, select one of the fragments to become
3715 the new origin block. */
3716
3717 static void
3718 reorder_fix_fragments (tree block)
3719 {
3720 while (block)
3721 {
3722 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3723 tree new_origin = NULL_TREE;
3724
3725 if (dup_origin)
3726 {
3727 if (! TREE_ASM_WRITTEN (dup_origin))
3728 {
3729 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
3730
3731 /* Find the first of the remaining fragments. There must
3732 be at least one -- the current block. */
3733 while (! TREE_ASM_WRITTEN (new_origin))
3734 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3735 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3736 }
3737 }
3738 else if (! dup_origin)
3739 new_origin = block;
3740
3741 /* Re-root the rest of the fragments to the new origin. In the
3742 case that DUP_ORIGIN was null, that means BLOCK was the origin
3743 of a chain of fragments and we want to remove those fragments
3744 that didn't make it to the output. */
3745 if (new_origin)
3746 {
3747 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3748 tree chain = *pp;
3749
3750 while (chain)
3751 {
3752 if (TREE_ASM_WRITTEN (chain))
3753 {
3754 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3755 *pp = chain;
3756 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3757 }
3758 chain = BLOCK_FRAGMENT_CHAIN (chain);
3759 }
3760 *pp = NULL_TREE;
3761 }
3762
3763 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3764 block = BLOCK_CHAIN (block);
3765 }
3766 }
3767
3768 /* Reverse the order of elements in the chain T of blocks,
3769 and return the new head of the chain (old last element). */
3770
3771 tree
3772 blocks_nreverse (tree t)
3773 {
3774 tree prev = 0, decl, next;
3775 for (decl = t; decl; decl = next)
3776 {
3777 next = BLOCK_CHAIN (decl);
3778 BLOCK_CHAIN (decl) = prev;
3779 prev = decl;
3780 }
3781 return prev;
3782 }
3783
3784 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3785 non-NULL, list them all into VECTOR, in a depth-first preorder
3786 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3787 blocks. */
3788
3789 static int
3790 all_blocks (tree block, tree *vector)
3791 {
3792 int n_blocks = 0;
3793
3794 while (block)
3795 {
3796 TREE_ASM_WRITTEN (block) = 0;
3797
3798 /* Record this block. */
3799 if (vector)
3800 vector[n_blocks] = block;
3801
3802 ++n_blocks;
3803
3804 /* Record the subblocks, and their subblocks... */
3805 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3806 vector ? vector + n_blocks : 0);
3807 block = BLOCK_CHAIN (block);
3808 }
3809
3810 return n_blocks;
3811 }
3812
3813 /* Return a vector containing all the blocks rooted at BLOCK. The
3814 number of elements in the vector is stored in N_BLOCKS_P. The
3815 vector is dynamically allocated; it is the caller's responsibility
3816 to call `free' on the pointer returned. */
3817
3818 static tree *
3819 get_block_vector (tree block, int *n_blocks_p)
3820 {
3821 tree *block_vector;
3822
3823 *n_blocks_p = all_blocks (block, NULL);
3824 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
3825 all_blocks (block, block_vector);
3826
3827 return block_vector;
3828 }
3829
3830 static GTY(()) int next_block_index = 2;
3831
3832 /* Set BLOCK_NUMBER for all the blocks in FN. */
3833
3834 void
3835 number_blocks (tree fn)
3836 {
3837 int i;
3838 int n_blocks;
3839 tree *block_vector;
3840
3841 /* For SDB and XCOFF debugging output, we start numbering the blocks
3842 from 1 within each function, rather than keeping a running
3843 count. */
3844 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3845 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3846 next_block_index = 1;
3847 #endif
3848
3849 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3850
3851 /* The top-level BLOCK isn't numbered at all. */
3852 for (i = 1; i < n_blocks; ++i)
3853 /* We number the blocks from two. */
3854 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3855
3856 free (block_vector);
3857
3858 return;
3859 }
3860
3861 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3862
3863 tree
3864 debug_find_var_in_block_tree (tree var, tree block)
3865 {
3866 tree t;
3867
3868 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3869 if (t == var)
3870 return block;
3871
3872 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3873 {
3874 tree ret = debug_find_var_in_block_tree (var, t);
3875 if (ret)
3876 return ret;
3877 }
3878
3879 return NULL_TREE;
3880 }
3881 \f
3882 /* Allocate a function structure for FNDECL and set its contents
3883 to the defaults. */
3884
3885 void
3886 allocate_struct_function (tree fndecl)
3887 {
3888 tree result;
3889 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3890
3891 cfun = ggc_alloc_cleared (sizeof (struct function));
3892
3893 cfun->stack_alignment_needed = STACK_BOUNDARY;
3894 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3895
3896 current_function_funcdef_no = funcdef_no++;
3897
3898 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3899
3900 init_stmt_for_function ();
3901 init_eh_for_function ();
3902
3903 lang_hooks.function.init (cfun);
3904 if (init_machine_status)
3905 cfun->machine = (*init_machine_status) ();
3906
3907 if (fndecl == NULL)
3908 return;
3909
3910 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3911 cfun->decl = fndecl;
3912
3913 result = DECL_RESULT (fndecl);
3914 if (aggregate_value_p (result, fndecl))
3915 {
3916 #ifdef PCC_STATIC_STRUCT_RETURN
3917 current_function_returns_pcc_struct = 1;
3918 #endif
3919 current_function_returns_struct = 1;
3920 }
3921
3922 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
3923
3924 current_function_stdarg
3925 = (fntype
3926 && TYPE_ARG_TYPES (fntype) != 0
3927 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3928 != void_type_node));
3929 }
3930
3931 /* Reset cfun, and other non-struct-function variables to defaults as
3932 appropriate for emitting rtl at the start of a function. */
3933
3934 static void
3935 prepare_function_start (tree fndecl)
3936 {
3937 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3938 cfun = DECL_STRUCT_FUNCTION (fndecl);
3939 else
3940 allocate_struct_function (fndecl);
3941 init_emit ();
3942 init_varasm_status (cfun);
3943 init_expr ();
3944
3945 cse_not_expected = ! optimize;
3946
3947 /* Caller save not needed yet. */
3948 caller_save_needed = 0;
3949
3950 /* We haven't done register allocation yet. */
3951 reg_renumber = 0;
3952
3953 /* Indicate that we need to distinguish between the return value of the
3954 present function and the return value of a function being called. */
3955 rtx_equal_function_value_matters = 1;
3956
3957 /* Indicate that we have not instantiated virtual registers yet. */
3958 virtuals_instantiated = 0;
3959
3960 /* Indicate that we want CONCATs now. */
3961 generating_concat_p = 1;
3962
3963 /* Indicate we have no need of a frame pointer yet. */
3964 frame_pointer_needed = 0;
3965 }
3966
3967 /* Initialize the rtl expansion mechanism so that we can do simple things
3968 like generate sequences. This is used to provide a context during global
3969 initialization of some passes. */
3970 void
3971 init_dummy_function_start (void)
3972 {
3973 prepare_function_start (NULL);
3974 }
3975
3976 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3977 and initialize static variables for generating RTL for the statements
3978 of the function. */
3979
3980 void
3981 init_function_start (tree subr)
3982 {
3983 prepare_function_start (subr);
3984
3985 /* Prevent ever trying to delete the first instruction of a
3986 function. Also tell final how to output a linenum before the
3987 function prologue. Note linenums could be missing, e.g. when
3988 compiling a Java .class file. */
3989 if (! DECL_IS_BUILTIN (subr))
3990 emit_line_note (DECL_SOURCE_LOCATION (subr));
3991
3992 /* Make sure first insn is a note even if we don't want linenums.
3993 This makes sure the first insn will never be deleted.
3994 Also, final expects a note to appear there. */
3995 emit_note (NOTE_INSN_DELETED);
3996
3997 /* Warn if this value is an aggregate type,
3998 regardless of which calling convention we are using for it. */
3999 if (warn_aggregate_return
4000 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4001 warning ("function returns an aggregate");
4002 }
4003
4004 /* Make sure all values used by the optimization passes have sane
4005 defaults. */
4006 void
4007 init_function_for_compilation (void)
4008 {
4009 reg_renumber = 0;
4010
4011 /* No prologue/epilogue insns yet. */
4012 VARRAY_GROW (prologue, 0);
4013 VARRAY_GROW (epilogue, 0);
4014 VARRAY_GROW (sibcall_epilogue, 0);
4015 }
4016
4017 /* Expand a call to __main at the beginning of a possible main function. */
4018
4019 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
4020 #undef HAS_INIT_SECTION
4021 #define HAS_INIT_SECTION
4022 #endif
4023
4024 void
4025 expand_main_function (void)
4026 {
4027 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
4028 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
4029 {
4030 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
4031 rtx tmp, seq;
4032
4033 start_sequence ();
4034 /* Forcibly align the stack. */
4035 #ifdef STACK_GROWS_DOWNWARD
4036 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
4037 stack_pointer_rtx, 1, OPTAB_WIDEN);
4038 #else
4039 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
4040 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
4041 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
4042 stack_pointer_rtx, 1, OPTAB_WIDEN);
4043 #endif
4044 if (tmp != stack_pointer_rtx)
4045 emit_move_insn (stack_pointer_rtx, tmp);
4046
4047 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
4048 tmp = force_reg (Pmode, const0_rtx);
4049 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
4050 seq = get_insns ();
4051 end_sequence ();
4052
4053 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
4054 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
4055 break;
4056 if (tmp)
4057 emit_insn_before (seq, tmp);
4058 else
4059 emit_insn (seq);
4060 }
4061 #endif
4062
4063 #ifndef HAS_INIT_SECTION
4064 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4065 #endif
4066 }
4067 \f
4068 /* The PENDING_SIZES represent the sizes of variable-sized types.
4069 Create RTL for the various sizes now (using temporary variables),
4070 so that we can refer to the sizes from the RTL we are generating
4071 for the current function. The PENDING_SIZES are a TREE_LIST. The
4072 TREE_VALUE of each node is a SAVE_EXPR. */
4073
4074 void
4075 expand_pending_sizes (tree pending_sizes)
4076 {
4077 tree tem;
4078
4079 /* Evaluate now the sizes of any types declared among the arguments. */
4080 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
4081 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
4082 }
4083
4084 /* Start the RTL for a new function, and set variables used for
4085 emitting RTL.
4086 SUBR is the FUNCTION_DECL node.
4087 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4088 the function's parameters, which must be run at any return statement. */
4089
4090 void
4091 expand_function_start (tree subr)
4092 {
4093 /* Make sure volatile mem refs aren't considered
4094 valid operands of arithmetic insns. */
4095 init_recog_no_volatile ();
4096
4097 current_function_profile
4098 = (profile_flag
4099 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4100
4101 current_function_limit_stack
4102 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4103
4104 /* Make the label for return statements to jump to. Do not special
4105 case machines with special return instructions -- they will be
4106 handled later during jump, ifcvt, or epilogue creation. */
4107 return_label = gen_label_rtx ();
4108
4109 /* Initialize rtx used to return the value. */
4110 /* Do this before assign_parms so that we copy the struct value address
4111 before any library calls that assign parms might generate. */
4112
4113 /* Decide whether to return the value in memory or in a register. */
4114 if (aggregate_value_p (DECL_RESULT (subr), subr))
4115 {
4116 /* Returning something that won't go in a register. */
4117 rtx value_address = 0;
4118
4119 #ifdef PCC_STATIC_STRUCT_RETURN
4120 if (current_function_returns_pcc_struct)
4121 {
4122 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4123 value_address = assemble_static_space (size);
4124 }
4125 else
4126 #endif
4127 {
4128 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
4129 /* Expect to be passed the address of a place to store the value.
4130 If it is passed as an argument, assign_parms will take care of
4131 it. */
4132 if (sv)
4133 {
4134 value_address = gen_reg_rtx (Pmode);
4135 emit_move_insn (value_address, sv);
4136 }
4137 }
4138 if (value_address)
4139 {
4140 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
4141 set_mem_attributes (x, DECL_RESULT (subr), 1);
4142 SET_DECL_RTL (DECL_RESULT (subr), x);
4143 }
4144 }
4145 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4146 /* If return mode is void, this decl rtl should not be used. */
4147 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4148 else
4149 {
4150 /* Compute the return values into a pseudo reg, which we will copy
4151 into the true return register after the cleanups are done. */
4152
4153 /* In order to figure out what mode to use for the pseudo, we
4154 figure out what the mode of the eventual return register will
4155 actually be, and use that. */
4156 rtx hard_reg
4157 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4158 subr, 1);
4159
4160 /* Structures that are returned in registers are not aggregate_value_p,
4161 so we may see a PARALLEL or a REG. */
4162 if (REG_P (hard_reg))
4163 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4164 else if (GET_CODE (hard_reg) == PARALLEL)
4165 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4166 else
4167 abort ();
4168
4169 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4170 result to the real return register(s). */
4171 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4172 }
4173
4174 /* Initialize rtx for parameters and local variables.
4175 In some cases this requires emitting insns. */
4176 assign_parms (subr);
4177
4178 /* If function gets a static chain arg, store it. */
4179 if (cfun->static_chain_decl)
4180 {
4181 tree parm = cfun->static_chain_decl;
4182 rtx local = gen_reg_rtx (Pmode);
4183
4184 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4185 SET_DECL_RTL (parm, local);
4186 maybe_set_unchanging (local, parm);
4187 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4188
4189 emit_move_insn (local, static_chain_incoming_rtx);
4190 }
4191
4192 /* If the function receives a non-local goto, then store the
4193 bits we need to restore the frame pointer. */
4194 if (cfun->nonlocal_goto_save_area)
4195 {
4196 tree t_save;
4197 rtx r_save;
4198
4199 /* ??? We need to do this save early. Unfortunately here is
4200 before the frame variable gets declared. Help out... */
4201 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4202
4203 t_save = build (ARRAY_REF, ptr_type_node, cfun->nonlocal_goto_save_area,
4204 integer_zero_node, NULL_TREE, NULL_TREE);
4205 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4206 r_save = convert_memory_address (Pmode, r_save);
4207
4208 emit_move_insn (r_save, virtual_stack_vars_rtx);
4209 update_nonlocal_goto_save_area ();
4210 }
4211
4212 /* The following was moved from init_function_start.
4213 The move is supposed to make sdb output more accurate. */
4214 /* Indicate the beginning of the function body,
4215 as opposed to parm setup. */
4216 emit_note (NOTE_INSN_FUNCTION_BEG);
4217
4218 if (!NOTE_P (get_last_insn ()))
4219 emit_note (NOTE_INSN_DELETED);
4220 parm_birth_insn = get_last_insn ();
4221
4222 if (current_function_profile)
4223 {
4224 #ifdef PROFILE_HOOK
4225 PROFILE_HOOK (current_function_funcdef_no);
4226 #endif
4227 }
4228
4229 /* After the display initializations is where the tail-recursion label
4230 should go, if we end up needing one. Ensure we have a NOTE here
4231 since some things (like trampolines) get placed before this. */
4232 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
4233
4234 /* Evaluate now the sizes of any types declared among the arguments. */
4235 expand_pending_sizes (nreverse (get_pending_sizes ()));
4236
4237 /* Make sure there is a line number after the function entry setup code. */
4238 force_next_line_note ();
4239 }
4240 \f
4241 /* Undo the effects of init_dummy_function_start. */
4242 void
4243 expand_dummy_function_end (void)
4244 {
4245 /* End any sequences that failed to be closed due to syntax errors. */
4246 while (in_sequence_p ())
4247 end_sequence ();
4248
4249 /* Outside function body, can't compute type's actual size
4250 until next function's body starts. */
4251
4252 free_after_parsing (cfun);
4253 free_after_compilation (cfun);
4254 cfun = 0;
4255 }
4256
4257 /* Call DOIT for each hard register used as a return value from
4258 the current function. */
4259
4260 void
4261 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4262 {
4263 rtx outgoing = current_function_return_rtx;
4264
4265 if (! outgoing)
4266 return;
4267
4268 if (REG_P (outgoing))
4269 (*doit) (outgoing, arg);
4270 else if (GET_CODE (outgoing) == PARALLEL)
4271 {
4272 int i;
4273
4274 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4275 {
4276 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4277
4278 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4279 (*doit) (x, arg);
4280 }
4281 }
4282 }
4283
4284 static void
4285 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4286 {
4287 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4288 }
4289
4290 void
4291 clobber_return_register (void)
4292 {
4293 diddle_return_value (do_clobber_return_reg, NULL);
4294
4295 /* In case we do use pseudo to return value, clobber it too. */
4296 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4297 {
4298 tree decl_result = DECL_RESULT (current_function_decl);
4299 rtx decl_rtl = DECL_RTL (decl_result);
4300 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4301 {
4302 do_clobber_return_reg (decl_rtl, NULL);
4303 }
4304 }
4305 }
4306
4307 static void
4308 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4309 {
4310 emit_insn (gen_rtx_USE (VOIDmode, reg));
4311 }
4312
4313 void
4314 use_return_register (void)
4315 {
4316 diddle_return_value (do_use_return_reg, NULL);
4317 }
4318
4319 /* Possibly warn about unused parameters. */
4320 void
4321 do_warn_unused_parameter (tree fn)
4322 {
4323 tree decl;
4324
4325 for (decl = DECL_ARGUMENTS (fn);
4326 decl; decl = TREE_CHAIN (decl))
4327 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4328 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4329 warning ("%Junused parameter '%D'", decl, decl);
4330 }
4331
4332 static GTY(()) rtx initial_trampoline;
4333
4334 /* Generate RTL for the end of the current function. */
4335
4336 void
4337 expand_function_end (void)
4338 {
4339 rtx clobber_after;
4340
4341 /* If arg_pointer_save_area was referenced only from a nested
4342 function, we will not have initialized it yet. Do that now. */
4343 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4344 get_arg_pointer_save_area (cfun);
4345
4346 /* If we are doing stack checking and this function makes calls,
4347 do a stack probe at the start of the function to ensure we have enough
4348 space for another stack frame. */
4349 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4350 {
4351 rtx insn, seq;
4352
4353 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4354 if (CALL_P (insn))
4355 {
4356 start_sequence ();
4357 probe_stack_range (STACK_CHECK_PROTECT,
4358 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4359 seq = get_insns ();
4360 end_sequence ();
4361 emit_insn_before (seq, tail_recursion_reentry);
4362 break;
4363 }
4364 }
4365
4366 /* Possibly warn about unused parameters.
4367 When frontend does unit-at-a-time, the warning is already
4368 issued at finalization time. */
4369 if (warn_unused_parameter
4370 && !lang_hooks.callgraph.expand_function)
4371 do_warn_unused_parameter (current_function_decl);
4372
4373 /* End any sequences that failed to be closed due to syntax errors. */
4374 while (in_sequence_p ())
4375 end_sequence ();
4376
4377 clear_pending_stack_adjust ();
4378 do_pending_stack_adjust ();
4379
4380 /* @@@ This is a kludge. We want to ensure that instructions that
4381 may trap are not moved into the epilogue by scheduling, because
4382 we don't always emit unwind information for the epilogue.
4383 However, not all machine descriptions define a blockage insn, so
4384 emit an ASM_INPUT to act as one. */
4385 if (flag_non_call_exceptions)
4386 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4387
4388 /* Mark the end of the function body.
4389 If control reaches this insn, the function can drop through
4390 without returning a value. */
4391 emit_note (NOTE_INSN_FUNCTION_END);
4392
4393 /* Must mark the last line number note in the function, so that the test
4394 coverage code can avoid counting the last line twice. This just tells
4395 the code to ignore the immediately following line note, since there
4396 already exists a copy of this note somewhere above. This line number
4397 note is still needed for debugging though, so we can't delete it. */
4398 if (flag_test_coverage)
4399 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
4400
4401 /* Output a linenumber for the end of the function.
4402 SDB depends on this. */
4403 force_next_line_note ();
4404 emit_line_note (input_location);
4405
4406 /* Before the return label (if any), clobber the return
4407 registers so that they are not propagated live to the rest of
4408 the function. This can only happen with functions that drop
4409 through; if there had been a return statement, there would
4410 have either been a return rtx, or a jump to the return label.
4411
4412 We delay actual code generation after the current_function_value_rtx
4413 is computed. */
4414 clobber_after = get_last_insn ();
4415
4416 /* Output the label for the actual return from the function,
4417 if one is expected. This happens either because a function epilogue
4418 is used instead of a return instruction, or because a return was done
4419 with a goto in order to run local cleanups, or because of pcc-style
4420 structure returning. */
4421 if (return_label)
4422 emit_label (return_label);
4423
4424 /* Let except.c know where it should emit the call to unregister
4425 the function context for sjlj exceptions. */
4426 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4427 sjlj_emit_function_exit_after (get_last_insn ());
4428
4429 /* If we had calls to alloca, and this machine needs
4430 an accurate stack pointer to exit the function,
4431 insert some code to save and restore the stack pointer. */
4432 if (! EXIT_IGNORE_STACK
4433 && current_function_calls_alloca)
4434 {
4435 rtx tem = 0;
4436
4437 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4438 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4439 }
4440
4441 /* If scalar return value was computed in a pseudo-reg, or was a named
4442 return value that got dumped to the stack, copy that to the hard
4443 return register. */
4444 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4445 {
4446 tree decl_result = DECL_RESULT (current_function_decl);
4447 rtx decl_rtl = DECL_RTL (decl_result);
4448
4449 if (REG_P (decl_rtl)
4450 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4451 : DECL_REGISTER (decl_result))
4452 {
4453 rtx real_decl_rtl = current_function_return_rtx;
4454
4455 /* This should be set in assign_parms. */
4456 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
4457 abort ();
4458
4459 /* If this is a BLKmode structure being returned in registers,
4460 then use the mode computed in expand_return. Note that if
4461 decl_rtl is memory, then its mode may have been changed,
4462 but that current_function_return_rtx has not. */
4463 if (GET_MODE (real_decl_rtl) == BLKmode)
4464 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4465
4466 /* If a named return value dumped decl_return to memory, then
4467 we may need to re-do the PROMOTE_MODE signed/unsigned
4468 extension. */
4469 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4470 {
4471 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4472
4473 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4474 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4475 &unsignedp, 1);
4476
4477 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4478 }
4479 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4480 {
4481 /* If expand_function_start has created a PARALLEL for decl_rtl,
4482 move the result to the real return registers. Otherwise, do
4483 a group load from decl_rtl for a named return. */
4484 if (GET_CODE (decl_rtl) == PARALLEL)
4485 emit_group_move (real_decl_rtl, decl_rtl);
4486 else
4487 emit_group_load (real_decl_rtl, decl_rtl,
4488 TREE_TYPE (decl_result),
4489 int_size_in_bytes (TREE_TYPE (decl_result)));
4490 }
4491 else
4492 emit_move_insn (real_decl_rtl, decl_rtl);
4493 }
4494 }
4495
4496 /* If returning a structure, arrange to return the address of the value
4497 in a place where debuggers expect to find it.
4498
4499 If returning a structure PCC style,
4500 the caller also depends on this value.
4501 And current_function_returns_pcc_struct is not necessarily set. */
4502 if (current_function_returns_struct
4503 || current_function_returns_pcc_struct)
4504 {
4505 rtx value_address
4506 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
4507 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4508 #ifdef FUNCTION_OUTGOING_VALUE
4509 rtx outgoing
4510 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4511 current_function_decl);
4512 #else
4513 rtx outgoing
4514 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
4515 #endif
4516
4517 /* Mark this as a function return value so integrate will delete the
4518 assignment and USE below when inlining this function. */
4519 REG_FUNCTION_VALUE_P (outgoing) = 1;
4520
4521 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4522 value_address = convert_memory_address (GET_MODE (outgoing),
4523 value_address);
4524
4525 emit_move_insn (outgoing, value_address);
4526
4527 /* Show return register used to hold result (in this case the address
4528 of the result. */
4529 current_function_return_rtx = outgoing;
4530 }
4531
4532 /* If this is an implementation of throw, do what's necessary to
4533 communicate between __builtin_eh_return and the epilogue. */
4534 expand_eh_return ();
4535
4536 /* Emit the actual code to clobber return register. */
4537 {
4538 rtx seq, after;
4539
4540 start_sequence ();
4541 clobber_return_register ();
4542 seq = get_insns ();
4543 end_sequence ();
4544
4545 after = emit_insn_after (seq, clobber_after);
4546 }
4547
4548 /* Output the label for the naked return from the function, if one is
4549 expected. This is currently used only by __builtin_return. */
4550 if (naked_return_label)
4551 emit_label (naked_return_label);
4552
4553 /* ??? This should no longer be necessary since stupid is no longer with
4554 us, but there are some parts of the compiler (eg reload_combine, and
4555 sh mach_dep_reorg) that still try and compute their own lifetime info
4556 instead of using the general framework. */
4557 use_return_register ();
4558 }
4559
4560 rtx
4561 get_arg_pointer_save_area (struct function *f)
4562 {
4563 rtx ret = f->x_arg_pointer_save_area;
4564
4565 if (! ret)
4566 {
4567 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4568 f->x_arg_pointer_save_area = ret;
4569 }
4570
4571 if (f == cfun && ! f->arg_pointer_save_area_init)
4572 {
4573 rtx seq;
4574
4575 /* Save the arg pointer at the beginning of the function. The
4576 generated stack slot may not be a valid memory address, so we
4577 have to check it and fix it if necessary. */
4578 start_sequence ();
4579 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4580 seq = get_insns ();
4581 end_sequence ();
4582
4583 push_topmost_sequence ();
4584 emit_insn_after (seq, get_insns ());
4585 pop_topmost_sequence ();
4586 }
4587
4588 return ret;
4589 }
4590 \f
4591 /* Extend a vector that records the INSN_UIDs of INSNS
4592 (a list of one or more insns). */
4593
4594 static void
4595 record_insns (rtx insns, varray_type *vecp)
4596 {
4597 int i, len;
4598 rtx tmp;
4599
4600 tmp = insns;
4601 len = 0;
4602 while (tmp != NULL_RTX)
4603 {
4604 len++;
4605 tmp = NEXT_INSN (tmp);
4606 }
4607
4608 i = VARRAY_SIZE (*vecp);
4609 VARRAY_GROW (*vecp, i + len);
4610 tmp = insns;
4611 while (tmp != NULL_RTX)
4612 {
4613 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4614 i++;
4615 tmp = NEXT_INSN (tmp);
4616 }
4617 }
4618
4619 /* Set the locator of the insn chain starting at INSN to LOC. */
4620 static void
4621 set_insn_locators (rtx insn, int loc)
4622 {
4623 while (insn != NULL_RTX)
4624 {
4625 if (INSN_P (insn))
4626 INSN_LOCATOR (insn) = loc;
4627 insn = NEXT_INSN (insn);
4628 }
4629 }
4630
4631 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4632 be running after reorg, SEQUENCE rtl is possible. */
4633
4634 static int
4635 contains (rtx insn, varray_type vec)
4636 {
4637 int i, j;
4638
4639 if (NONJUMP_INSN_P (insn)
4640 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4641 {
4642 int count = 0;
4643 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4644 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4645 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
4646 count++;
4647 return count;
4648 }
4649 else
4650 {
4651 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4652 if (INSN_UID (insn) == VARRAY_INT (vec, j))
4653 return 1;
4654 }
4655 return 0;
4656 }
4657
4658 int
4659 prologue_epilogue_contains (rtx insn)
4660 {
4661 if (contains (insn, prologue))
4662 return 1;
4663 if (contains (insn, epilogue))
4664 return 1;
4665 return 0;
4666 }
4667
4668 int
4669 sibcall_epilogue_contains (rtx insn)
4670 {
4671 if (sibcall_epilogue)
4672 return contains (insn, sibcall_epilogue);
4673 return 0;
4674 }
4675
4676 #ifdef HAVE_return
4677 /* Insert gen_return at the end of block BB. This also means updating
4678 block_for_insn appropriately. */
4679
4680 static void
4681 emit_return_into_block (basic_block bb, rtx line_note)
4682 {
4683 emit_jump_insn_after (gen_return (), BB_END (bb));
4684 if (line_note)
4685 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
4686 }
4687 #endif /* HAVE_return */
4688
4689 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4690
4691 /* These functions convert the epilogue into a variant that does not modify the
4692 stack pointer. This is used in cases where a function returns an object
4693 whose size is not known until it is computed. The called function leaves the
4694 object on the stack, leaves the stack depressed, and returns a pointer to
4695 the object.
4696
4697 What we need to do is track all modifications and references to the stack
4698 pointer, deleting the modifications and changing the references to point to
4699 the location the stack pointer would have pointed to had the modifications
4700 taken place.
4701
4702 These functions need to be portable so we need to make as few assumptions
4703 about the epilogue as we can. However, the epilogue basically contains
4704 three things: instructions to reset the stack pointer, instructions to
4705 reload registers, possibly including the frame pointer, and an
4706 instruction to return to the caller.
4707
4708 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4709 We also make no attempt to validate the insns we make since if they are
4710 invalid, we probably can't do anything valid. The intent is that these
4711 routines get "smarter" as more and more machines start to use them and
4712 they try operating on different epilogues.
4713
4714 We use the following structure to track what the part of the epilogue that
4715 we've already processed has done. We keep two copies of the SP equivalence,
4716 one for use during the insn we are processing and one for use in the next
4717 insn. The difference is because one part of a PARALLEL may adjust SP
4718 and the other may use it. */
4719
4720 struct epi_info
4721 {
4722 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4723 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4724 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4725 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4726 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4727 should be set to once we no longer need
4728 its value. */
4729 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4730 for registers. */
4731 };
4732
4733 static void handle_epilogue_set (rtx, struct epi_info *);
4734 static void update_epilogue_consts (rtx, rtx, void *);
4735 static void emit_equiv_load (struct epi_info *);
4736
4737 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4738 no modifications to the stack pointer. Return the new list of insns. */
4739
4740 static rtx
4741 keep_stack_depressed (rtx insns)
4742 {
4743 int j;
4744 struct epi_info info;
4745 rtx insn, next;
4746
4747 /* If the epilogue is just a single instruction, it must be OK as is. */
4748 if (NEXT_INSN (insns) == NULL_RTX)
4749 return insns;
4750
4751 /* Otherwise, start a sequence, initialize the information we have, and
4752 process all the insns we were given. */
4753 start_sequence ();
4754
4755 info.sp_equiv_reg = stack_pointer_rtx;
4756 info.sp_offset = 0;
4757 info.equiv_reg_src = 0;
4758
4759 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4760 info.const_equiv[j] = 0;
4761
4762 insn = insns;
4763 next = NULL_RTX;
4764 while (insn != NULL_RTX)
4765 {
4766 next = NEXT_INSN (insn);
4767
4768 if (!INSN_P (insn))
4769 {
4770 add_insn (insn);
4771 insn = next;
4772 continue;
4773 }
4774
4775 /* If this insn references the register that SP is equivalent to and
4776 we have a pending load to that register, we must force out the load
4777 first and then indicate we no longer know what SP's equivalent is. */
4778 if (info.equiv_reg_src != 0
4779 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4780 {
4781 emit_equiv_load (&info);
4782 info.sp_equiv_reg = 0;
4783 }
4784
4785 info.new_sp_equiv_reg = info.sp_equiv_reg;
4786 info.new_sp_offset = info.sp_offset;
4787
4788 /* If this is a (RETURN) and the return address is on the stack,
4789 update the address and change to an indirect jump. */
4790 if (GET_CODE (PATTERN (insn)) == RETURN
4791 || (GET_CODE (PATTERN (insn)) == PARALLEL
4792 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4793 {
4794 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4795 rtx base = 0;
4796 HOST_WIDE_INT offset = 0;
4797 rtx jump_insn, jump_set;
4798
4799 /* If the return address is in a register, we can emit the insn
4800 unchanged. Otherwise, it must be a MEM and we see what the
4801 base register and offset are. In any case, we have to emit any
4802 pending load to the equivalent reg of SP, if any. */
4803 if (REG_P (retaddr))
4804 {
4805 emit_equiv_load (&info);
4806 add_insn (insn);
4807 insn = next;
4808 continue;
4809 }
4810 else if (MEM_P (retaddr)
4811 && REG_P (XEXP (retaddr, 0)))
4812 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
4813 else if (MEM_P (retaddr)
4814 && GET_CODE (XEXP (retaddr, 0)) == PLUS
4815 && REG_P (XEXP (XEXP (retaddr, 0), 0))
4816 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
4817 {
4818 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
4819 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
4820 }
4821 else
4822 abort ();
4823
4824 /* If the base of the location containing the return pointer
4825 is SP, we must update it with the replacement address. Otherwise,
4826 just build the necessary MEM. */
4827 retaddr = plus_constant (base, offset);
4828 if (base == stack_pointer_rtx)
4829 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4830 plus_constant (info.sp_equiv_reg,
4831 info.sp_offset));
4832
4833 retaddr = gen_rtx_MEM (Pmode, retaddr);
4834
4835 /* If there is a pending load to the equivalent register for SP
4836 and we reference that register, we must load our address into
4837 a scratch register and then do that load. */
4838 if (info.equiv_reg_src
4839 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4840 {
4841 unsigned int regno;
4842 rtx reg;
4843
4844 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4845 if (HARD_REGNO_MODE_OK (regno, Pmode)
4846 && !fixed_regs[regno]
4847 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4848 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4849 regno)
4850 && !refers_to_regno_p (regno,
4851 regno + hard_regno_nregs[regno]
4852 [Pmode],
4853 info.equiv_reg_src, NULL)
4854 && info.const_equiv[regno] == 0)
4855 break;
4856
4857 if (regno == FIRST_PSEUDO_REGISTER)
4858 abort ();
4859
4860 reg = gen_rtx_REG (Pmode, regno);
4861 emit_move_insn (reg, retaddr);
4862 retaddr = reg;
4863 }
4864
4865 emit_equiv_load (&info);
4866 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4867
4868 /* Show the SET in the above insn is a RETURN. */
4869 jump_set = single_set (jump_insn);
4870 if (jump_set == 0)
4871 abort ();
4872 else
4873 SET_IS_RETURN_P (jump_set) = 1;
4874 }
4875
4876 /* If SP is not mentioned in the pattern and its equivalent register, if
4877 any, is not modified, just emit it. Otherwise, if neither is set,
4878 replace the reference to SP and emit the insn. If none of those are
4879 true, handle each SET individually. */
4880 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4881 && (info.sp_equiv_reg == stack_pointer_rtx
4882 || !reg_set_p (info.sp_equiv_reg, insn)))
4883 add_insn (insn);
4884 else if (! reg_set_p (stack_pointer_rtx, insn)
4885 && (info.sp_equiv_reg == stack_pointer_rtx
4886 || !reg_set_p (info.sp_equiv_reg, insn)))
4887 {
4888 if (! validate_replace_rtx (stack_pointer_rtx,
4889 plus_constant (info.sp_equiv_reg,
4890 info.sp_offset),
4891 insn))
4892 abort ();
4893
4894 add_insn (insn);
4895 }
4896 else if (GET_CODE (PATTERN (insn)) == SET)
4897 handle_epilogue_set (PATTERN (insn), &info);
4898 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4899 {
4900 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4901 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4902 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4903 }
4904 else
4905 add_insn (insn);
4906
4907 info.sp_equiv_reg = info.new_sp_equiv_reg;
4908 info.sp_offset = info.new_sp_offset;
4909
4910 /* Now update any constants this insn sets. */
4911 note_stores (PATTERN (insn), update_epilogue_consts, &info);
4912 insn = next;
4913 }
4914
4915 insns = get_insns ();
4916 end_sequence ();
4917 return insns;
4918 }
4919
4920 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
4921 structure that contains information about what we've seen so far. We
4922 process this SET by either updating that data or by emitting one or
4923 more insns. */
4924
4925 static void
4926 handle_epilogue_set (rtx set, struct epi_info *p)
4927 {
4928 /* First handle the case where we are setting SP. Record what it is being
4929 set from. If unknown, abort. */
4930 if (reg_set_p (stack_pointer_rtx, set))
4931 {
4932 if (SET_DEST (set) != stack_pointer_rtx)
4933 abort ();
4934
4935 if (GET_CODE (SET_SRC (set)) == PLUS)
4936 {
4937 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
4938 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4939 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
4940 else if (REG_P (XEXP (SET_SRC (set), 1))
4941 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
4942 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
4943 p->new_sp_offset
4944 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4945 else
4946 abort ();
4947 }
4948 else
4949 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4950
4951 /* If we are adjusting SP, we adjust from the old data. */
4952 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4953 {
4954 p->new_sp_equiv_reg = p->sp_equiv_reg;
4955 p->new_sp_offset += p->sp_offset;
4956 }
4957
4958 if (p->new_sp_equiv_reg == 0 || !REG_P (p->new_sp_equiv_reg))
4959 abort ();
4960
4961 return;
4962 }
4963
4964 /* Next handle the case where we are setting SP's equivalent register.
4965 If we already have a value to set it to, abort. We could update, but
4966 there seems little point in handling that case. Note that we have
4967 to allow for the case where we are setting the register set in
4968 the previous part of a PARALLEL inside a single insn. But use the
4969 old offset for any updates within this insn. We must allow for the case
4970 where the register is being set in a different (usually wider) mode than
4971 Pmode). */
4972 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
4973 {
4974 if (p->equiv_reg_src != 0
4975 || !REG_P (p->new_sp_equiv_reg)
4976 || !REG_P (SET_DEST (set))
4977 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
4978 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
4979 abort ();
4980 else
4981 p->equiv_reg_src
4982 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4983 plus_constant (p->sp_equiv_reg,
4984 p->sp_offset));
4985 }
4986
4987 /* Otherwise, replace any references to SP in the insn to its new value
4988 and emit the insn. */
4989 else
4990 {
4991 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4992 plus_constant (p->sp_equiv_reg,
4993 p->sp_offset));
4994 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4995 plus_constant (p->sp_equiv_reg,
4996 p->sp_offset));
4997 emit_insn (set);
4998 }
4999 }
5000
5001 /* Update the tracking information for registers set to constants. */
5002
5003 static void
5004 update_epilogue_consts (rtx dest, rtx x, void *data)
5005 {
5006 struct epi_info *p = (struct epi_info *) data;
5007 rtx new;
5008
5009 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5010 return;
5011
5012 /* If we are either clobbering a register or doing a partial set,
5013 show we don't know the value. */
5014 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5015 p->const_equiv[REGNO (dest)] = 0;
5016
5017 /* If we are setting it to a constant, record that constant. */
5018 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5019 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5020
5021 /* If this is a binary operation between a register we have been tracking
5022 and a constant, see if we can compute a new constant value. */
5023 else if (ARITHMETIC_P (SET_SRC (x))
5024 && REG_P (XEXP (SET_SRC (x), 0))
5025 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5026 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5027 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5028 && 0 != (new = simplify_binary_operation
5029 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5030 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5031 XEXP (SET_SRC (x), 1)))
5032 && GET_CODE (new) == CONST_INT)
5033 p->const_equiv[REGNO (dest)] = new;
5034
5035 /* Otherwise, we can't do anything with this value. */
5036 else
5037 p->const_equiv[REGNO (dest)] = 0;
5038 }
5039
5040 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5041
5042 static void
5043 emit_equiv_load (struct epi_info *p)
5044 {
5045 if (p->equiv_reg_src != 0)
5046 {
5047 rtx dest = p->sp_equiv_reg;
5048
5049 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5050 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5051 REGNO (p->sp_equiv_reg));
5052
5053 emit_move_insn (dest, p->equiv_reg_src);
5054 p->equiv_reg_src = 0;
5055 }
5056 }
5057 #endif
5058
5059 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5060 this into place with notes indicating where the prologue ends and where
5061 the epilogue begins. Update the basic block information when possible. */
5062
5063 void
5064 thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
5065 {
5066 int inserted = 0;
5067 edge e;
5068 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5069 rtx seq;
5070 #endif
5071 #ifdef HAVE_prologue
5072 rtx prologue_end = NULL_RTX;
5073 #endif
5074 #if defined (HAVE_epilogue) || defined(HAVE_return)
5075 rtx epilogue_end = NULL_RTX;
5076 #endif
5077
5078 #ifdef HAVE_prologue
5079 if (HAVE_prologue)
5080 {
5081 start_sequence ();
5082 seq = gen_prologue ();
5083 emit_insn (seq);
5084
5085 /* Retain a map of the prologue insns. */
5086 record_insns (seq, &prologue);
5087 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
5088
5089 seq = get_insns ();
5090 end_sequence ();
5091 set_insn_locators (seq, prologue_locator);
5092
5093 /* Can't deal with multiple successors of the entry block
5094 at the moment. Function should always have at least one
5095 entry point. */
5096 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
5097 abort ();
5098
5099 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
5100 inserted = 1;
5101 }
5102 #endif
5103
5104 /* If the exit block has no non-fake predecessors, we don't need
5105 an epilogue. */
5106 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5107 if ((e->flags & EDGE_FAKE) == 0)
5108 break;
5109 if (e == NULL)
5110 goto epilogue_done;
5111
5112 #ifdef HAVE_return
5113 if (optimize && HAVE_return)
5114 {
5115 /* If we're allowed to generate a simple return instruction,
5116 then by definition we don't need a full epilogue. Examine
5117 the block that falls through to EXIT. If it does not
5118 contain any code, examine its predecessors and try to
5119 emit (conditional) return instructions. */
5120
5121 basic_block last;
5122 edge e_next;
5123 rtx label;
5124
5125 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5126 if (e->flags & EDGE_FALLTHRU)
5127 break;
5128 if (e == NULL)
5129 goto epilogue_done;
5130 last = e->src;
5131
5132 /* Verify that there are no active instructions in the last block. */
5133 label = BB_END (last);
5134 while (label && !LABEL_P (label))
5135 {
5136 if (active_insn_p (label))
5137 break;
5138 label = PREV_INSN (label);
5139 }
5140
5141 if (BB_HEAD (last) == label && LABEL_P (label))
5142 {
5143 rtx epilogue_line_note = NULL_RTX;
5144
5145 /* Locate the line number associated with the closing brace,
5146 if we can find one. */
5147 for (seq = get_last_insn ();
5148 seq && ! active_insn_p (seq);
5149 seq = PREV_INSN (seq))
5150 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
5151 {
5152 epilogue_line_note = seq;
5153 break;
5154 }
5155
5156 for (e = last->pred; e; e = e_next)
5157 {
5158 basic_block bb = e->src;
5159 rtx jump;
5160
5161 e_next = e->pred_next;
5162 if (bb == ENTRY_BLOCK_PTR)
5163 continue;
5164
5165 jump = BB_END (bb);
5166 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5167 continue;
5168
5169 /* If we have an unconditional jump, we can replace that
5170 with a simple return instruction. */
5171 if (simplejump_p (jump))
5172 {
5173 emit_return_into_block (bb, epilogue_line_note);
5174 delete_insn (jump);
5175 }
5176
5177 /* If we have a conditional jump, we can try to replace
5178 that with a conditional return instruction. */
5179 else if (condjump_p (jump))
5180 {
5181 if (! redirect_jump (jump, 0, 0))
5182 continue;
5183
5184 /* If this block has only one successor, it both jumps
5185 and falls through to the fallthru block, so we can't
5186 delete the edge. */
5187 if (bb->succ->succ_next == NULL)
5188 continue;
5189 }
5190 else
5191 continue;
5192
5193 /* Fix up the CFG for the successful change we just made. */
5194 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5195 }
5196
5197 /* Emit a return insn for the exit fallthru block. Whether
5198 this is still reachable will be determined later. */
5199
5200 emit_barrier_after (BB_END (last));
5201 emit_return_into_block (last, epilogue_line_note);
5202 epilogue_end = BB_END (last);
5203 last->succ->flags &= ~EDGE_FALLTHRU;
5204 goto epilogue_done;
5205 }
5206 }
5207 #endif
5208 /* Find the edge that falls through to EXIT. Other edges may exist
5209 due to RETURN instructions, but those don't need epilogues.
5210 There really shouldn't be a mixture -- either all should have
5211 been converted or none, however... */
5212
5213 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5214 if (e->flags & EDGE_FALLTHRU)
5215 break;
5216 if (e == NULL)
5217 goto epilogue_done;
5218
5219 #ifdef HAVE_epilogue
5220 if (HAVE_epilogue)
5221 {
5222 start_sequence ();
5223 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5224
5225 seq = gen_epilogue ();
5226
5227 #ifdef INCOMING_RETURN_ADDR_RTX
5228 /* If this function returns with the stack depressed and we can support
5229 it, massage the epilogue to actually do that. */
5230 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5231 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5232 seq = keep_stack_depressed (seq);
5233 #endif
5234
5235 emit_jump_insn (seq);
5236
5237 /* Retain a map of the epilogue insns. */
5238 record_insns (seq, &epilogue);
5239 set_insn_locators (seq, epilogue_locator);
5240
5241 seq = get_insns ();
5242 end_sequence ();
5243
5244 insert_insn_on_edge (seq, e);
5245 inserted = 1;
5246 }
5247 else
5248 #endif
5249 {
5250 basic_block cur_bb;
5251
5252 if (! next_active_insn (BB_END (e->src)))
5253 goto epilogue_done;
5254 /* We have a fall-through edge to the exit block, the source is not
5255 at the end of the function, and there will be an assembler epilogue
5256 at the end of the function.
5257 We can't use force_nonfallthru here, because that would try to
5258 use return. Inserting a jump 'by hand' is extremely messy, so
5259 we take advantage of cfg_layout_finalize using
5260 fixup_fallthru_exit_predecessor. */
5261 cfg_layout_initialize ();
5262 FOR_EACH_BB (cur_bb)
5263 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5264 cur_bb->rbi->next = cur_bb->next_bb;
5265 cfg_layout_finalize ();
5266 }
5267 epilogue_done:
5268
5269 if (inserted)
5270 commit_edge_insertions ();
5271
5272 #ifdef HAVE_sibcall_epilogue
5273 /* Emit sibling epilogues before any sibling call sites. */
5274 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5275 {
5276 basic_block bb = e->src;
5277 rtx insn = BB_END (bb);
5278 rtx i;
5279 rtx newinsn;
5280
5281 if (!CALL_P (insn)
5282 || ! SIBLING_CALL_P (insn))
5283 continue;
5284
5285 start_sequence ();
5286 emit_insn (gen_sibcall_epilogue ());
5287 seq = get_insns ();
5288 end_sequence ();
5289
5290 /* Retain a map of the epilogue insns. Used in life analysis to
5291 avoid getting rid of sibcall epilogue insns. Do this before we
5292 actually emit the sequence. */
5293 record_insns (seq, &sibcall_epilogue);
5294 set_insn_locators (seq, epilogue_locator);
5295
5296 i = PREV_INSN (insn);
5297 newinsn = emit_insn_before (seq, insn);
5298 }
5299 #endif
5300
5301 #ifdef HAVE_prologue
5302 /* This is probably all useless now that we use locators. */
5303 if (prologue_end)
5304 {
5305 rtx insn, prev;
5306
5307 /* GDB handles `break f' by setting a breakpoint on the first
5308 line note after the prologue. Which means (1) that if
5309 there are line number notes before where we inserted the
5310 prologue we should move them, and (2) we should generate a
5311 note before the end of the first basic block, if there isn't
5312 one already there.
5313
5314 ??? This behavior is completely broken when dealing with
5315 multiple entry functions. We simply place the note always
5316 into first basic block and let alternate entry points
5317 to be missed.
5318 */
5319
5320 for (insn = prologue_end; insn; insn = prev)
5321 {
5322 prev = PREV_INSN (insn);
5323 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5324 {
5325 /* Note that we cannot reorder the first insn in the
5326 chain, since rest_of_compilation relies on that
5327 remaining constant. */
5328 if (prev == NULL)
5329 break;
5330 reorder_insns (insn, insn, prologue_end);
5331 }
5332 }
5333
5334 /* Find the last line number note in the first block. */
5335 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
5336 insn != prologue_end && insn;
5337 insn = PREV_INSN (insn))
5338 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5339 break;
5340
5341 /* If we didn't find one, make a copy of the first line number
5342 we run across. */
5343 if (! insn)
5344 {
5345 for (insn = next_active_insn (prologue_end);
5346 insn;
5347 insn = PREV_INSN (insn))
5348 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
5349 {
5350 emit_note_copy_after (insn, prologue_end);
5351 break;
5352 }
5353 }
5354 }
5355 #endif
5356 #ifdef HAVE_epilogue
5357 if (epilogue_end)
5358 {
5359 rtx insn, next;
5360
5361 /* Similarly, move any line notes that appear after the epilogue.
5362 There is no need, however, to be quite so anal about the existence
5363 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5364 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5365 info generation. */
5366 for (insn = epilogue_end; insn; insn = next)
5367 {
5368 next = NEXT_INSN (insn);
5369 if (NOTE_P (insn)
5370 && (NOTE_LINE_NUMBER (insn) > 0
5371 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5372 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
5373 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5374 }
5375 }
5376 #endif
5377 }
5378
5379 /* Reposition the prologue-end and epilogue-begin notes after instruction
5380 scheduling and delayed branch scheduling. */
5381
5382 void
5383 reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
5384 {
5385 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5386 rtx insn, last, note;
5387 int len;
5388
5389 if ((len = VARRAY_SIZE (prologue)) > 0)
5390 {
5391 last = 0, note = 0;
5392
5393 /* Scan from the beginning until we reach the last prologue insn.
5394 We apparently can't depend on basic_block_{head,end} after
5395 reorg has run. */
5396 for (insn = f; insn; insn = NEXT_INSN (insn))
5397 {
5398 if (NOTE_P (insn))
5399 {
5400 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5401 note = insn;
5402 }
5403 else if (contains (insn, prologue))
5404 {
5405 last = insn;
5406 if (--len == 0)
5407 break;
5408 }
5409 }
5410
5411 if (last)
5412 {
5413 /* Find the prologue-end note if we haven't already, and
5414 move it to just after the last prologue insn. */
5415 if (note == 0)
5416 {
5417 for (note = last; (note = NEXT_INSN (note));)
5418 if (NOTE_P (note)
5419 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5420 break;
5421 }
5422
5423 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5424 if (LABEL_P (last))
5425 last = NEXT_INSN (last);
5426 reorder_insns (note, note, last);
5427 }
5428 }
5429
5430 if ((len = VARRAY_SIZE (epilogue)) > 0)
5431 {
5432 last = 0, note = 0;
5433
5434 /* Scan from the end until we reach the first epilogue insn.
5435 We apparently can't depend on basic_block_{head,end} after
5436 reorg has run. */
5437 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5438 {
5439 if (NOTE_P (insn))
5440 {
5441 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5442 note = insn;
5443 }
5444 else if (contains (insn, epilogue))
5445 {
5446 last = insn;
5447 if (--len == 0)
5448 break;
5449 }
5450 }
5451
5452 if (last)
5453 {
5454 /* Find the epilogue-begin note if we haven't already, and
5455 move it to just before the first epilogue insn. */
5456 if (note == 0)
5457 {
5458 for (note = insn; (note = PREV_INSN (note));)
5459 if (NOTE_P (note)
5460 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5461 break;
5462 }
5463
5464 if (PREV_INSN (last) != note)
5465 reorder_insns (note, note, PREV_INSN (last));
5466 }
5467 }
5468 #endif /* HAVE_prologue or HAVE_epilogue */
5469 }
5470
5471 /* Called once, at initialization, to initialize function.c. */
5472
5473 void
5474 init_function_once (void)
5475 {
5476 VARRAY_INT_INIT (prologue, 0, "prologue");
5477 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5478 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
5479 }
5480
5481 /* Resets insn_block_boundaries array. */
5482
5483 void
5484 reset_block_changes (void)
5485 {
5486 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5487 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5488 }
5489
5490 /* Record the boundary for BLOCK. */
5491 void
5492 record_block_change (tree block)
5493 {
5494 int i, n;
5495 tree last_block;
5496
5497 if (!block)
5498 return;
5499
5500 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5501 VARRAY_POP (cfun->ib_boundaries_block);
5502 n = get_max_uid ();
5503 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5504 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5505
5506 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5507 }
5508
5509 /* Finishes record of boundaries. */
5510 void finalize_block_changes (void)
5511 {
5512 record_block_change (DECL_INITIAL (current_function_decl));
5513 }
5514
5515 /* For INSN return the BLOCK it belongs to. */
5516 void
5517 check_block_change (rtx insn, tree *block)
5518 {
5519 unsigned uid = INSN_UID (insn);
5520
5521 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5522 return;
5523
5524 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5525 }
5526
5527 /* Releases the ib_boundaries_block records. */
5528 void
5529 free_block_changes (void)
5530 {
5531 cfun->ib_boundaries_block = NULL;
5532 }
5533
5534 /* Returns the name of the current function. */
5535 const char *
5536 current_function_name (void)
5537 {
5538 return lang_hooks.decl_printable_name (cfun->decl, 2);
5539 }
5540
5541 #include "gt-function.h"