]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
cf07255c3949780eef244684ac7a24ab22e70cc7
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "optabs.h"
48 #include "libfuncs.h"
49 #include "regs.h"
50 #include "hard-reg-set.h"
51 #include "insn-config.h"
52 #include "recog.h"
53 #include "output.h"
54 #include "hashtab.h"
55 #include "tm_p.h"
56 #include "langhooks.h"
57 #include "target.h"
58 #include "common/common-target.h"
59 #include "gimple-expr.h"
60 #include "gimplify.h"
61 #include "tree-pass.h"
62 #include "predict.h"
63 #include "df.h"
64 #include "params.h"
65 #include "bb-reorder.h"
66
67 /* So we can assign to cfun in this file. */
68 #undef cfun
69
70 #ifndef STACK_ALIGNMENT_NEEDED
71 #define STACK_ALIGNMENT_NEEDED 1
72 #endif
73
74 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
75
76 /* Round a value to the lowest integer less than it that is a multiple of
77 the required alignment. Avoid using division in case the value is
78 negative. Assume the alignment is a power of two. */
79 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
80
81 /* Similar, but round to the next highest integer that meets the
82 alignment. */
83 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
84
85 /* Nonzero once virtual register instantiation has been done.
86 assign_stack_local uses frame_pointer_rtx when this is nonzero.
87 calls.c:emit_library_call_value_1 uses it to set up
88 post-instantiation libcalls. */
89 int virtuals_instantiated;
90
91 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
92 static GTY(()) int funcdef_no;
93
94 /* These variables hold pointers to functions to create and destroy
95 target specific, per-function data structures. */
96 struct machine_function * (*init_machine_status) (void);
97
98 /* The currently compiled function. */
99 struct function *cfun = 0;
100
101 /* These hashes record the prologue and epilogue insns. */
102 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
103 htab_t prologue_insn_hash;
104 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
105 htab_t epilogue_insn_hash;
106 \f
107
108 htab_t types_used_by_vars_hash = NULL;
109 vec<tree, va_gc> *types_used_by_cur_var_decl;
110
111 /* Forward declarations. */
112
113 static struct temp_slot *find_temp_slot_from_address (rtx);
114 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
115 static void pad_below (struct args_size *, enum machine_mode, tree);
116 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
117 static int all_blocks (tree, tree *);
118 static tree *get_block_vector (tree, int *);
119 extern tree debug_find_var_in_block_tree (tree, tree);
120 /* We always define `record_insns' even if it's not used so that we
121 can always export `prologue_epilogue_contains'. */
122 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
123 static bool contains (const_rtx, htab_t);
124 static void prepare_function_start (void);
125 static void do_clobber_return_reg (rtx, void *);
126 static void do_use_return_reg (rtx, void *);
127 \f
128 /* Stack of nested functions. */
129 /* Keep track of the cfun stack. */
130
131 typedef struct function *function_p;
132
133 static vec<function_p> function_context_stack;
134
135 /* Save the current context for compilation of a nested function.
136 This is called from language-specific code. */
137
138 void
139 push_function_context (void)
140 {
141 if (cfun == 0)
142 allocate_struct_function (NULL, false);
143
144 function_context_stack.safe_push (cfun);
145 set_cfun (NULL);
146 }
147
148 /* Restore the last saved context, at the end of a nested function.
149 This function is called from language-specific code. */
150
151 void
152 pop_function_context (void)
153 {
154 struct function *p = function_context_stack.pop ();
155 set_cfun (p);
156 current_function_decl = p->decl;
157
158 /* Reset variables that have known state during rtx generation. */
159 virtuals_instantiated = 0;
160 generating_concat_p = 1;
161 }
162
163 /* Clear out all parts of the state in F that can safely be discarded
164 after the function has been parsed, but not compiled, to let
165 garbage collection reclaim the memory. */
166
167 void
168 free_after_parsing (struct function *f)
169 {
170 f->language = 0;
171 }
172
173 /* Clear out all parts of the state in F that can safely be discarded
174 after the function has been compiled, to let garbage collection
175 reclaim the memory. */
176
177 void
178 free_after_compilation (struct function *f)
179 {
180 prologue_insn_hash = NULL;
181 epilogue_insn_hash = NULL;
182
183 free (crtl->emit.regno_pointer_align);
184
185 memset (crtl, 0, sizeof (struct rtl_data));
186 f->eh = NULL;
187 f->machine = NULL;
188 f->cfg = NULL;
189
190 regno_reg_rtx = NULL;
191 }
192 \f
193 /* Return size needed for stack frame based on slots so far allocated.
194 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
195 the caller may have to do that. */
196
197 HOST_WIDE_INT
198 get_frame_size (void)
199 {
200 if (FRAME_GROWS_DOWNWARD)
201 return -frame_offset;
202 else
203 return frame_offset;
204 }
205
206 /* Issue an error message and return TRUE if frame OFFSET overflows in
207 the signed target pointer arithmetics for function FUNC. Otherwise
208 return FALSE. */
209
210 bool
211 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
212 {
213 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
214
215 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
216 /* Leave room for the fixed part of the frame. */
217 - 64 * UNITS_PER_WORD)
218 {
219 error_at (DECL_SOURCE_LOCATION (func),
220 "total size of local objects too large");
221 return TRUE;
222 }
223
224 return FALSE;
225 }
226
227 /* Return stack slot alignment in bits for TYPE and MODE. */
228
229 static unsigned int
230 get_stack_local_alignment (tree type, enum machine_mode mode)
231 {
232 unsigned int alignment;
233
234 if (mode == BLKmode)
235 alignment = BIGGEST_ALIGNMENT;
236 else
237 alignment = GET_MODE_ALIGNMENT (mode);
238
239 /* Allow the frond-end to (possibly) increase the alignment of this
240 stack slot. */
241 if (! type)
242 type = lang_hooks.types.type_for_mode (mode, 0);
243
244 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
245 }
246
247 /* Determine whether it is possible to fit a stack slot of size SIZE and
248 alignment ALIGNMENT into an area in the stack frame that starts at
249 frame offset START and has a length of LENGTH. If so, store the frame
250 offset to be used for the stack slot in *POFFSET and return true;
251 return false otherwise. This function will extend the frame size when
252 given a start/length pair that lies at the end of the frame. */
253
254 static bool
255 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
256 HOST_WIDE_INT size, unsigned int alignment,
257 HOST_WIDE_INT *poffset)
258 {
259 HOST_WIDE_INT this_frame_offset;
260 int frame_off, frame_alignment, frame_phase;
261
262 /* Calculate how many bytes the start of local variables is off from
263 stack alignment. */
264 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
265 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
266 frame_phase = frame_off ? frame_alignment - frame_off : 0;
267
268 /* Round the frame offset to the specified alignment. */
269
270 /* We must be careful here, since FRAME_OFFSET might be negative and
271 division with a negative dividend isn't as well defined as we might
272 like. So we instead assume that ALIGNMENT is a power of two and
273 use logical operations which are unambiguous. */
274 if (FRAME_GROWS_DOWNWARD)
275 this_frame_offset
276 = (FLOOR_ROUND (start + length - size - frame_phase,
277 (unsigned HOST_WIDE_INT) alignment)
278 + frame_phase);
279 else
280 this_frame_offset
281 = (CEIL_ROUND (start - frame_phase,
282 (unsigned HOST_WIDE_INT) alignment)
283 + frame_phase);
284
285 /* See if it fits. If this space is at the edge of the frame,
286 consider extending the frame to make it fit. Our caller relies on
287 this when allocating a new slot. */
288 if (frame_offset == start && this_frame_offset < frame_offset)
289 frame_offset = this_frame_offset;
290 else if (this_frame_offset < start)
291 return false;
292 else if (start + length == frame_offset
293 && this_frame_offset + size > start + length)
294 frame_offset = this_frame_offset + size;
295 else if (this_frame_offset + size > start + length)
296 return false;
297
298 *poffset = this_frame_offset;
299 return true;
300 }
301
302 /* Create a new frame_space structure describing free space in the stack
303 frame beginning at START and ending at END, and chain it into the
304 function's frame_space_list. */
305
306 static void
307 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
308 {
309 struct frame_space *space = ggc_alloc_frame_space ();
310 space->next = crtl->frame_space_list;
311 crtl->frame_space_list = space;
312 space->start = start;
313 space->length = end - start;
314 }
315
316 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
317 with machine mode MODE.
318
319 ALIGN controls the amount of alignment for the address of the slot:
320 0 means according to MODE,
321 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
322 -2 means use BITS_PER_UNIT,
323 positive specifies alignment boundary in bits.
324
325 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
326 alignment and ASLK_RECORD_PAD bit set if we should remember
327 extra space we allocated for alignment purposes. When we are
328 called from assign_stack_temp_for_type, it is not set so we don't
329 track the same stack slot in two independent lists.
330
331 We do not round to stack_boundary here. */
332
333 rtx
334 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
335 int align, int kind)
336 {
337 rtx x, addr;
338 int bigend_correction = 0;
339 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
340 unsigned int alignment, alignment_in_bits;
341
342 if (align == 0)
343 {
344 alignment = get_stack_local_alignment (NULL, mode);
345 alignment /= BITS_PER_UNIT;
346 }
347 else if (align == -1)
348 {
349 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
350 size = CEIL_ROUND (size, alignment);
351 }
352 else if (align == -2)
353 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
354 else
355 alignment = align / BITS_PER_UNIT;
356
357 alignment_in_bits = alignment * BITS_PER_UNIT;
358
359 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
360 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
361 {
362 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
363 alignment = alignment_in_bits / BITS_PER_UNIT;
364 }
365
366 if (SUPPORTS_STACK_ALIGNMENT)
367 {
368 if (crtl->stack_alignment_estimated < alignment_in_bits)
369 {
370 if (!crtl->stack_realign_processed)
371 crtl->stack_alignment_estimated = alignment_in_bits;
372 else
373 {
374 /* If stack is realigned and stack alignment value
375 hasn't been finalized, it is OK not to increase
376 stack_alignment_estimated. The bigger alignment
377 requirement is recorded in stack_alignment_needed
378 below. */
379 gcc_assert (!crtl->stack_realign_finalized);
380 if (!crtl->stack_realign_needed)
381 {
382 /* It is OK to reduce the alignment as long as the
383 requested size is 0 or the estimated stack
384 alignment >= mode alignment. */
385 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
386 || size == 0
387 || (crtl->stack_alignment_estimated
388 >= GET_MODE_ALIGNMENT (mode)));
389 alignment_in_bits = crtl->stack_alignment_estimated;
390 alignment = alignment_in_bits / BITS_PER_UNIT;
391 }
392 }
393 }
394 }
395
396 if (crtl->stack_alignment_needed < alignment_in_bits)
397 crtl->stack_alignment_needed = alignment_in_bits;
398 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
399 crtl->max_used_stack_slot_alignment = alignment_in_bits;
400
401 if (mode != BLKmode || size != 0)
402 {
403 if (kind & ASLK_RECORD_PAD)
404 {
405 struct frame_space **psp;
406
407 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
408 {
409 struct frame_space *space = *psp;
410 if (!try_fit_stack_local (space->start, space->length, size,
411 alignment, &slot_offset))
412 continue;
413 *psp = space->next;
414 if (slot_offset > space->start)
415 add_frame_space (space->start, slot_offset);
416 if (slot_offset + size < space->start + space->length)
417 add_frame_space (slot_offset + size,
418 space->start + space->length);
419 goto found_space;
420 }
421 }
422 }
423 else if (!STACK_ALIGNMENT_NEEDED)
424 {
425 slot_offset = frame_offset;
426 goto found_space;
427 }
428
429 old_frame_offset = frame_offset;
430
431 if (FRAME_GROWS_DOWNWARD)
432 {
433 frame_offset -= size;
434 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
435
436 if (kind & ASLK_RECORD_PAD)
437 {
438 if (slot_offset > frame_offset)
439 add_frame_space (frame_offset, slot_offset);
440 if (slot_offset + size < old_frame_offset)
441 add_frame_space (slot_offset + size, old_frame_offset);
442 }
443 }
444 else
445 {
446 frame_offset += size;
447 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
448
449 if (kind & ASLK_RECORD_PAD)
450 {
451 if (slot_offset > old_frame_offset)
452 add_frame_space (old_frame_offset, slot_offset);
453 if (slot_offset + size < frame_offset)
454 add_frame_space (slot_offset + size, frame_offset);
455 }
456 }
457
458 found_space:
459 /* On a big-endian machine, if we are allocating more space than we will use,
460 use the least significant bytes of those that are allocated. */
461 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
462 bigend_correction = size - GET_MODE_SIZE (mode);
463
464 /* If we have already instantiated virtual registers, return the actual
465 address relative to the frame pointer. */
466 if (virtuals_instantiated)
467 addr = plus_constant (Pmode, frame_pointer_rtx,
468 trunc_int_for_mode
469 (slot_offset + bigend_correction
470 + STARTING_FRAME_OFFSET, Pmode));
471 else
472 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
473 trunc_int_for_mode
474 (slot_offset + bigend_correction,
475 Pmode));
476
477 x = gen_rtx_MEM (mode, addr);
478 set_mem_align (x, alignment_in_bits);
479 MEM_NOTRAP_P (x) = 1;
480
481 stack_slot_list
482 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
483
484 if (frame_offset_overflow (frame_offset, current_function_decl))
485 frame_offset = 0;
486
487 return x;
488 }
489
490 /* Wrap up assign_stack_local_1 with last parameter as false. */
491
492 rtx
493 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
494 {
495 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
496 }
497 \f
498 /* In order to evaluate some expressions, such as function calls returning
499 structures in memory, we need to temporarily allocate stack locations.
500 We record each allocated temporary in the following structure.
501
502 Associated with each temporary slot is a nesting level. When we pop up
503 one level, all temporaries associated with the previous level are freed.
504 Normally, all temporaries are freed after the execution of the statement
505 in which they were created. However, if we are inside a ({...}) grouping,
506 the result may be in a temporary and hence must be preserved. If the
507 result could be in a temporary, we preserve it if we can determine which
508 one it is in. If we cannot determine which temporary may contain the
509 result, all temporaries are preserved. A temporary is preserved by
510 pretending it was allocated at the previous nesting level. */
511
512 struct GTY(()) temp_slot {
513 /* Points to next temporary slot. */
514 struct temp_slot *next;
515 /* Points to previous temporary slot. */
516 struct temp_slot *prev;
517 /* The rtx to used to reference the slot. */
518 rtx slot;
519 /* The size, in units, of the slot. */
520 HOST_WIDE_INT size;
521 /* The type of the object in the slot, or zero if it doesn't correspond
522 to a type. We use this to determine whether a slot can be reused.
523 It can be reused if objects of the type of the new slot will always
524 conflict with objects of the type of the old slot. */
525 tree type;
526 /* The alignment (in bits) of the slot. */
527 unsigned int align;
528 /* Nonzero if this temporary is currently in use. */
529 char in_use;
530 /* Nesting level at which this slot is being used. */
531 int level;
532 /* The offset of the slot from the frame_pointer, including extra space
533 for alignment. This info is for combine_temp_slots. */
534 HOST_WIDE_INT base_offset;
535 /* The size of the slot, including extra space for alignment. This
536 info is for combine_temp_slots. */
537 HOST_WIDE_INT full_size;
538 };
539
540 /* A table of addresses that represent a stack slot. The table is a mapping
541 from address RTXen to a temp slot. */
542 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
543 static size_t n_temp_slots_in_use;
544
545 /* Entry for the above hash table. */
546 struct GTY(()) temp_slot_address_entry {
547 hashval_t hash;
548 rtx address;
549 struct temp_slot *temp_slot;
550 };
551
552 /* Removes temporary slot TEMP from LIST. */
553
554 static void
555 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
556 {
557 if (temp->next)
558 temp->next->prev = temp->prev;
559 if (temp->prev)
560 temp->prev->next = temp->next;
561 else
562 *list = temp->next;
563
564 temp->prev = temp->next = NULL;
565 }
566
567 /* Inserts temporary slot TEMP to LIST. */
568
569 static void
570 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
571 {
572 temp->next = *list;
573 if (*list)
574 (*list)->prev = temp;
575 temp->prev = NULL;
576 *list = temp;
577 }
578
579 /* Returns the list of used temp slots at LEVEL. */
580
581 static struct temp_slot **
582 temp_slots_at_level (int level)
583 {
584 if (level >= (int) vec_safe_length (used_temp_slots))
585 vec_safe_grow_cleared (used_temp_slots, level + 1);
586
587 return &(*used_temp_slots)[level];
588 }
589
590 /* Returns the maximal temporary slot level. */
591
592 static int
593 max_slot_level (void)
594 {
595 if (!used_temp_slots)
596 return -1;
597
598 return used_temp_slots->length () - 1;
599 }
600
601 /* Moves temporary slot TEMP to LEVEL. */
602
603 static void
604 move_slot_to_level (struct temp_slot *temp, int level)
605 {
606 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
607 insert_slot_to_list (temp, temp_slots_at_level (level));
608 temp->level = level;
609 }
610
611 /* Make temporary slot TEMP available. */
612
613 static void
614 make_slot_available (struct temp_slot *temp)
615 {
616 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
617 insert_slot_to_list (temp, &avail_temp_slots);
618 temp->in_use = 0;
619 temp->level = -1;
620 n_temp_slots_in_use--;
621 }
622
623 /* Compute the hash value for an address -> temp slot mapping.
624 The value is cached on the mapping entry. */
625 static hashval_t
626 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
627 {
628 int do_not_record = 0;
629 return hash_rtx (t->address, GET_MODE (t->address),
630 &do_not_record, NULL, false);
631 }
632
633 /* Return the hash value for an address -> temp slot mapping. */
634 static hashval_t
635 temp_slot_address_hash (const void *p)
636 {
637 const struct temp_slot_address_entry *t;
638 t = (const struct temp_slot_address_entry *) p;
639 return t->hash;
640 }
641
642 /* Compare two address -> temp slot mapping entries. */
643 static int
644 temp_slot_address_eq (const void *p1, const void *p2)
645 {
646 const struct temp_slot_address_entry *t1, *t2;
647 t1 = (const struct temp_slot_address_entry *) p1;
648 t2 = (const struct temp_slot_address_entry *) p2;
649 return exp_equiv_p (t1->address, t2->address, 0, true);
650 }
651
652 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
653 static void
654 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
655 {
656 void **slot;
657 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
658 t->address = address;
659 t->temp_slot = temp_slot;
660 t->hash = temp_slot_address_compute_hash (t);
661 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
662 *slot = t;
663 }
664
665 /* Remove an address -> temp slot mapping entry if the temp slot is
666 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
667 static int
668 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
669 {
670 const struct temp_slot_address_entry *t;
671 t = (const struct temp_slot_address_entry *) *slot;
672 if (! t->temp_slot->in_use)
673 htab_clear_slot (temp_slot_address_table, slot);
674 return 1;
675 }
676
677 /* Remove all mappings of addresses to unused temp slots. */
678 static void
679 remove_unused_temp_slot_addresses (void)
680 {
681 /* Use quicker clearing if there aren't any active temp slots. */
682 if (n_temp_slots_in_use)
683 htab_traverse (temp_slot_address_table,
684 remove_unused_temp_slot_addresses_1,
685 NULL);
686 else
687 htab_empty (temp_slot_address_table);
688 }
689
690 /* Find the temp slot corresponding to the object at address X. */
691
692 static struct temp_slot *
693 find_temp_slot_from_address (rtx x)
694 {
695 struct temp_slot *p;
696 struct temp_slot_address_entry tmp, *t;
697
698 /* First try the easy way:
699 See if X exists in the address -> temp slot mapping. */
700 tmp.address = x;
701 tmp.temp_slot = NULL;
702 tmp.hash = temp_slot_address_compute_hash (&tmp);
703 t = (struct temp_slot_address_entry *)
704 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
705 if (t)
706 return t->temp_slot;
707
708 /* If we have a sum involving a register, see if it points to a temp
709 slot. */
710 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
711 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
712 return p;
713 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
714 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
715 return p;
716
717 /* Last resort: Address is a virtual stack var address. */
718 if (GET_CODE (x) == PLUS
719 && XEXP (x, 0) == virtual_stack_vars_rtx
720 && CONST_INT_P (XEXP (x, 1)))
721 {
722 int i;
723 for (i = max_slot_level (); i >= 0; i--)
724 for (p = *temp_slots_at_level (i); p; p = p->next)
725 {
726 if (INTVAL (XEXP (x, 1)) >= p->base_offset
727 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
728 return p;
729 }
730 }
731
732 return NULL;
733 }
734 \f
735 /* Allocate a temporary stack slot and record it for possible later
736 reuse.
737
738 MODE is the machine mode to be given to the returned rtx.
739
740 SIZE is the size in units of the space required. We do no rounding here
741 since assign_stack_local will do any required rounding.
742
743 TYPE is the type that will be used for the stack slot. */
744
745 rtx
746 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
747 tree type)
748 {
749 unsigned int align;
750 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
751 rtx slot;
752
753 /* If SIZE is -1 it means that somebody tried to allocate a temporary
754 of a variable size. */
755 gcc_assert (size != -1);
756
757 align = get_stack_local_alignment (type, mode);
758
759 /* Try to find an available, already-allocated temporary of the proper
760 mode which meets the size and alignment requirements. Choose the
761 smallest one with the closest alignment.
762
763 If assign_stack_temp is called outside of the tree->rtl expansion,
764 we cannot reuse the stack slots (that may still refer to
765 VIRTUAL_STACK_VARS_REGNUM). */
766 if (!virtuals_instantiated)
767 {
768 for (p = avail_temp_slots; p; p = p->next)
769 {
770 if (p->align >= align && p->size >= size
771 && GET_MODE (p->slot) == mode
772 && objects_must_conflict_p (p->type, type)
773 && (best_p == 0 || best_p->size > p->size
774 || (best_p->size == p->size && best_p->align > p->align)))
775 {
776 if (p->align == align && p->size == size)
777 {
778 selected = p;
779 cut_slot_from_list (selected, &avail_temp_slots);
780 best_p = 0;
781 break;
782 }
783 best_p = p;
784 }
785 }
786 }
787
788 /* Make our best, if any, the one to use. */
789 if (best_p)
790 {
791 selected = best_p;
792 cut_slot_from_list (selected, &avail_temp_slots);
793
794 /* If there are enough aligned bytes left over, make them into a new
795 temp_slot so that the extra bytes don't get wasted. Do this only
796 for BLKmode slots, so that we can be sure of the alignment. */
797 if (GET_MODE (best_p->slot) == BLKmode)
798 {
799 int alignment = best_p->align / BITS_PER_UNIT;
800 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
801
802 if (best_p->size - rounded_size >= alignment)
803 {
804 p = ggc_alloc_temp_slot ();
805 p->in_use = 0;
806 p->size = best_p->size - rounded_size;
807 p->base_offset = best_p->base_offset + rounded_size;
808 p->full_size = best_p->full_size - rounded_size;
809 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
810 p->align = best_p->align;
811 p->type = best_p->type;
812 insert_slot_to_list (p, &avail_temp_slots);
813
814 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
815 stack_slot_list);
816
817 best_p->size = rounded_size;
818 best_p->full_size = rounded_size;
819 }
820 }
821 }
822
823 /* If we still didn't find one, make a new temporary. */
824 if (selected == 0)
825 {
826 HOST_WIDE_INT frame_offset_old = frame_offset;
827
828 p = ggc_alloc_temp_slot ();
829
830 /* We are passing an explicit alignment request to assign_stack_local.
831 One side effect of that is assign_stack_local will not round SIZE
832 to ensure the frame offset remains suitably aligned.
833
834 So for requests which depended on the rounding of SIZE, we go ahead
835 and round it now. We also make sure ALIGNMENT is at least
836 BIGGEST_ALIGNMENT. */
837 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
838 p->slot = assign_stack_local_1 (mode,
839 (mode == BLKmode
840 ? CEIL_ROUND (size,
841 (int) align
842 / BITS_PER_UNIT)
843 : size),
844 align, 0);
845
846 p->align = align;
847
848 /* The following slot size computation is necessary because we don't
849 know the actual size of the temporary slot until assign_stack_local
850 has performed all the frame alignment and size rounding for the
851 requested temporary. Note that extra space added for alignment
852 can be either above or below this stack slot depending on which
853 way the frame grows. We include the extra space if and only if it
854 is above this slot. */
855 if (FRAME_GROWS_DOWNWARD)
856 p->size = frame_offset_old - frame_offset;
857 else
858 p->size = size;
859
860 /* Now define the fields used by combine_temp_slots. */
861 if (FRAME_GROWS_DOWNWARD)
862 {
863 p->base_offset = frame_offset;
864 p->full_size = frame_offset_old - frame_offset;
865 }
866 else
867 {
868 p->base_offset = frame_offset_old;
869 p->full_size = frame_offset - frame_offset_old;
870 }
871
872 selected = p;
873 }
874
875 p = selected;
876 p->in_use = 1;
877 p->type = type;
878 p->level = temp_slot_level;
879 n_temp_slots_in_use++;
880
881 pp = temp_slots_at_level (p->level);
882 insert_slot_to_list (p, pp);
883 insert_temp_slot_address (XEXP (p->slot, 0), p);
884
885 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
886 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
887 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
888
889 /* If we know the alias set for the memory that will be used, use
890 it. If there's no TYPE, then we don't know anything about the
891 alias set for the memory. */
892 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
893 set_mem_align (slot, align);
894
895 /* If a type is specified, set the relevant flags. */
896 if (type != 0)
897 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
898 MEM_NOTRAP_P (slot) = 1;
899
900 return slot;
901 }
902
903 /* Allocate a temporary stack slot and record it for possible later
904 reuse. First two arguments are same as in preceding function. */
905
906 rtx
907 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
908 {
909 return assign_stack_temp_for_type (mode, size, NULL_TREE);
910 }
911 \f
912 /* Assign a temporary.
913 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
914 and so that should be used in error messages. In either case, we
915 allocate of the given type.
916 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
917 it is 0 if a register is OK.
918 DONT_PROMOTE is 1 if we should not promote values in register
919 to wider modes. */
920
921 rtx
922 assign_temp (tree type_or_decl, int memory_required,
923 int dont_promote ATTRIBUTE_UNUSED)
924 {
925 tree type, decl;
926 enum machine_mode mode;
927 #ifdef PROMOTE_MODE
928 int unsignedp;
929 #endif
930
931 if (DECL_P (type_or_decl))
932 decl = type_or_decl, type = TREE_TYPE (decl);
933 else
934 decl = NULL, type = type_or_decl;
935
936 mode = TYPE_MODE (type);
937 #ifdef PROMOTE_MODE
938 unsignedp = TYPE_UNSIGNED (type);
939 #endif
940
941 if (mode == BLKmode || memory_required)
942 {
943 HOST_WIDE_INT size = int_size_in_bytes (type);
944 rtx tmp;
945
946 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
947 problems with allocating the stack space. */
948 if (size == 0)
949 size = 1;
950
951 /* Unfortunately, we don't yet know how to allocate variable-sized
952 temporaries. However, sometimes we can find a fixed upper limit on
953 the size, so try that instead. */
954 else if (size == -1)
955 size = max_int_size_in_bytes (type);
956
957 /* The size of the temporary may be too large to fit into an integer. */
958 /* ??? Not sure this should happen except for user silliness, so limit
959 this to things that aren't compiler-generated temporaries. The
960 rest of the time we'll die in assign_stack_temp_for_type. */
961 if (decl && size == -1
962 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
963 {
964 error ("size of variable %q+D is too large", decl);
965 size = 1;
966 }
967
968 tmp = assign_stack_temp_for_type (mode, size, type);
969 return tmp;
970 }
971
972 #ifdef PROMOTE_MODE
973 if (! dont_promote)
974 mode = promote_mode (type, mode, &unsignedp);
975 #endif
976
977 return gen_reg_rtx (mode);
978 }
979 \f
980 /* Combine temporary stack slots which are adjacent on the stack.
981
982 This allows for better use of already allocated stack space. This is only
983 done for BLKmode slots because we can be sure that we won't have alignment
984 problems in this case. */
985
986 static void
987 combine_temp_slots (void)
988 {
989 struct temp_slot *p, *q, *next, *next_q;
990 int num_slots;
991
992 /* We can't combine slots, because the information about which slot
993 is in which alias set will be lost. */
994 if (flag_strict_aliasing)
995 return;
996
997 /* If there are a lot of temp slots, don't do anything unless
998 high levels of optimization. */
999 if (! flag_expensive_optimizations)
1000 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1001 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1002 return;
1003
1004 for (p = avail_temp_slots; p; p = next)
1005 {
1006 int delete_p = 0;
1007
1008 next = p->next;
1009
1010 if (GET_MODE (p->slot) != BLKmode)
1011 continue;
1012
1013 for (q = p->next; q; q = next_q)
1014 {
1015 int delete_q = 0;
1016
1017 next_q = q->next;
1018
1019 if (GET_MODE (q->slot) != BLKmode)
1020 continue;
1021
1022 if (p->base_offset + p->full_size == q->base_offset)
1023 {
1024 /* Q comes after P; combine Q into P. */
1025 p->size += q->size;
1026 p->full_size += q->full_size;
1027 delete_q = 1;
1028 }
1029 else if (q->base_offset + q->full_size == p->base_offset)
1030 {
1031 /* P comes after Q; combine P into Q. */
1032 q->size += p->size;
1033 q->full_size += p->full_size;
1034 delete_p = 1;
1035 break;
1036 }
1037 if (delete_q)
1038 cut_slot_from_list (q, &avail_temp_slots);
1039 }
1040
1041 /* Either delete P or advance past it. */
1042 if (delete_p)
1043 cut_slot_from_list (p, &avail_temp_slots);
1044 }
1045 }
1046 \f
1047 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1048 slot that previously was known by OLD_RTX. */
1049
1050 void
1051 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1052 {
1053 struct temp_slot *p;
1054
1055 if (rtx_equal_p (old_rtx, new_rtx))
1056 return;
1057
1058 p = find_temp_slot_from_address (old_rtx);
1059
1060 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1061 NEW_RTX is a register, see if one operand of the PLUS is a
1062 temporary location. If so, NEW_RTX points into it. Otherwise,
1063 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1064 in common between them. If so, try a recursive call on those
1065 values. */
1066 if (p == 0)
1067 {
1068 if (GET_CODE (old_rtx) != PLUS)
1069 return;
1070
1071 if (REG_P (new_rtx))
1072 {
1073 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1074 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1075 return;
1076 }
1077 else if (GET_CODE (new_rtx) != PLUS)
1078 return;
1079
1080 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1081 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1082 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1083 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1084 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1085 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1086 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1087 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1088
1089 return;
1090 }
1091
1092 /* Otherwise add an alias for the temp's address. */
1093 insert_temp_slot_address (new_rtx, p);
1094 }
1095
1096 /* If X could be a reference to a temporary slot, mark that slot as
1097 belonging to the to one level higher than the current level. If X
1098 matched one of our slots, just mark that one. Otherwise, we can't
1099 easily predict which it is, so upgrade all of them.
1100
1101 This is called when an ({...}) construct occurs and a statement
1102 returns a value in memory. */
1103
1104 void
1105 preserve_temp_slots (rtx x)
1106 {
1107 struct temp_slot *p = 0, *next;
1108
1109 if (x == 0)
1110 return;
1111
1112 /* If X is a register that is being used as a pointer, see if we have
1113 a temporary slot we know it points to. */
1114 if (REG_P (x) && REG_POINTER (x))
1115 p = find_temp_slot_from_address (x);
1116
1117 /* If X is not in memory or is at a constant address, it cannot be in
1118 a temporary slot. */
1119 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1120 return;
1121
1122 /* First see if we can find a match. */
1123 if (p == 0)
1124 p = find_temp_slot_from_address (XEXP (x, 0));
1125
1126 if (p != 0)
1127 {
1128 if (p->level == temp_slot_level)
1129 move_slot_to_level (p, temp_slot_level - 1);
1130 return;
1131 }
1132
1133 /* Otherwise, preserve all non-kept slots at this level. */
1134 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1135 {
1136 next = p->next;
1137 move_slot_to_level (p, temp_slot_level - 1);
1138 }
1139 }
1140
1141 /* Free all temporaries used so far. This is normally called at the
1142 end of generating code for a statement. */
1143
1144 void
1145 free_temp_slots (void)
1146 {
1147 struct temp_slot *p, *next;
1148 bool some_available = false;
1149
1150 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1151 {
1152 next = p->next;
1153 make_slot_available (p);
1154 some_available = true;
1155 }
1156
1157 if (some_available)
1158 {
1159 remove_unused_temp_slot_addresses ();
1160 combine_temp_slots ();
1161 }
1162 }
1163
1164 /* Push deeper into the nesting level for stack temporaries. */
1165
1166 void
1167 push_temp_slots (void)
1168 {
1169 temp_slot_level++;
1170 }
1171
1172 /* Pop a temporary nesting level. All slots in use in the current level
1173 are freed. */
1174
1175 void
1176 pop_temp_slots (void)
1177 {
1178 free_temp_slots ();
1179 temp_slot_level--;
1180 }
1181
1182 /* Initialize temporary slots. */
1183
1184 void
1185 init_temp_slots (void)
1186 {
1187 /* We have not allocated any temporaries yet. */
1188 avail_temp_slots = 0;
1189 vec_alloc (used_temp_slots, 0);
1190 temp_slot_level = 0;
1191 n_temp_slots_in_use = 0;
1192
1193 /* Set up the table to map addresses to temp slots. */
1194 if (! temp_slot_address_table)
1195 temp_slot_address_table = htab_create_ggc (32,
1196 temp_slot_address_hash,
1197 temp_slot_address_eq,
1198 NULL);
1199 else
1200 htab_empty (temp_slot_address_table);
1201 }
1202 \f
1203 /* Functions and data structures to keep track of the values hard regs
1204 had at the start of the function. */
1205
1206 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1207 and has_hard_reg_initial_val.. */
1208 typedef struct GTY(()) initial_value_pair {
1209 rtx hard_reg;
1210 rtx pseudo;
1211 } initial_value_pair;
1212 /* ??? This could be a VEC but there is currently no way to define an
1213 opaque VEC type. This could be worked around by defining struct
1214 initial_value_pair in function.h. */
1215 typedef struct GTY(()) initial_value_struct {
1216 int num_entries;
1217 int max_entries;
1218 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1219 } initial_value_struct;
1220
1221 /* If a pseudo represents an initial hard reg (or expression), return
1222 it, else return NULL_RTX. */
1223
1224 rtx
1225 get_hard_reg_initial_reg (rtx reg)
1226 {
1227 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1228 int i;
1229
1230 if (ivs == 0)
1231 return NULL_RTX;
1232
1233 for (i = 0; i < ivs->num_entries; i++)
1234 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1235 return ivs->entries[i].hard_reg;
1236
1237 return NULL_RTX;
1238 }
1239
1240 /* Make sure that there's a pseudo register of mode MODE that stores the
1241 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1242
1243 rtx
1244 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1245 {
1246 struct initial_value_struct *ivs;
1247 rtx rv;
1248
1249 rv = has_hard_reg_initial_val (mode, regno);
1250 if (rv)
1251 return rv;
1252
1253 ivs = crtl->hard_reg_initial_vals;
1254 if (ivs == 0)
1255 {
1256 ivs = ggc_alloc_initial_value_struct ();
1257 ivs->num_entries = 0;
1258 ivs->max_entries = 5;
1259 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1260 crtl->hard_reg_initial_vals = ivs;
1261 }
1262
1263 if (ivs->num_entries >= ivs->max_entries)
1264 {
1265 ivs->max_entries += 5;
1266 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1267 ivs->max_entries);
1268 }
1269
1270 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1271 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1272
1273 return ivs->entries[ivs->num_entries++].pseudo;
1274 }
1275
1276 /* See if get_hard_reg_initial_val has been used to create a pseudo
1277 for the initial value of hard register REGNO in mode MODE. Return
1278 the associated pseudo if so, otherwise return NULL. */
1279
1280 rtx
1281 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1282 {
1283 struct initial_value_struct *ivs;
1284 int i;
1285
1286 ivs = crtl->hard_reg_initial_vals;
1287 if (ivs != 0)
1288 for (i = 0; i < ivs->num_entries; i++)
1289 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1290 && REGNO (ivs->entries[i].hard_reg) == regno)
1291 return ivs->entries[i].pseudo;
1292
1293 return NULL_RTX;
1294 }
1295
1296 unsigned int
1297 emit_initial_value_sets (void)
1298 {
1299 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1300 int i;
1301 rtx seq;
1302
1303 if (ivs == 0)
1304 return 0;
1305
1306 start_sequence ();
1307 for (i = 0; i < ivs->num_entries; i++)
1308 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1309 seq = get_insns ();
1310 end_sequence ();
1311
1312 emit_insn_at_entry (seq);
1313 return 0;
1314 }
1315
1316 /* Return the hardreg-pseudoreg initial values pair entry I and
1317 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1318 bool
1319 initial_value_entry (int i, rtx *hreg, rtx *preg)
1320 {
1321 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1322 if (!ivs || i >= ivs->num_entries)
1323 return false;
1324
1325 *hreg = ivs->entries[i].hard_reg;
1326 *preg = ivs->entries[i].pseudo;
1327 return true;
1328 }
1329 \f
1330 /* These routines are responsible for converting virtual register references
1331 to the actual hard register references once RTL generation is complete.
1332
1333 The following four variables are used for communication between the
1334 routines. They contain the offsets of the virtual registers from their
1335 respective hard registers. */
1336
1337 static int in_arg_offset;
1338 static int var_offset;
1339 static int dynamic_offset;
1340 static int out_arg_offset;
1341 static int cfa_offset;
1342
1343 /* In most machines, the stack pointer register is equivalent to the bottom
1344 of the stack. */
1345
1346 #ifndef STACK_POINTER_OFFSET
1347 #define STACK_POINTER_OFFSET 0
1348 #endif
1349
1350 /* If not defined, pick an appropriate default for the offset of dynamically
1351 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1352 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1353
1354 #ifndef STACK_DYNAMIC_OFFSET
1355
1356 /* The bottom of the stack points to the actual arguments. If
1357 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1358 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1359 stack space for register parameters is not pushed by the caller, but
1360 rather part of the fixed stack areas and hence not included in
1361 `crtl->outgoing_args_size'. Nevertheless, we must allow
1362 for it when allocating stack dynamic objects. */
1363
1364 #if defined(REG_PARM_STACK_SPACE)
1365 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1366 ((ACCUMULATE_OUTGOING_ARGS \
1367 ? (crtl->outgoing_args_size \
1368 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1369 : REG_PARM_STACK_SPACE (FNDECL))) \
1370 : 0) + (STACK_POINTER_OFFSET))
1371 #else
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1374 + (STACK_POINTER_OFFSET))
1375 #endif
1376 #endif
1377
1378 \f
1379 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1380 is a virtual register, return the equivalent hard register and set the
1381 offset indirectly through the pointer. Otherwise, return 0. */
1382
1383 static rtx
1384 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1385 {
1386 rtx new_rtx;
1387 HOST_WIDE_INT offset;
1388
1389 if (x == virtual_incoming_args_rtx)
1390 {
1391 if (stack_realign_drap)
1392 {
1393 /* Replace virtual_incoming_args_rtx with internal arg
1394 pointer if DRAP is used to realign stack. */
1395 new_rtx = crtl->args.internal_arg_pointer;
1396 offset = 0;
1397 }
1398 else
1399 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1400 }
1401 else if (x == virtual_stack_vars_rtx)
1402 new_rtx = frame_pointer_rtx, offset = var_offset;
1403 else if (x == virtual_stack_dynamic_rtx)
1404 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1405 else if (x == virtual_outgoing_args_rtx)
1406 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1407 else if (x == virtual_cfa_rtx)
1408 {
1409 #ifdef FRAME_POINTER_CFA_OFFSET
1410 new_rtx = frame_pointer_rtx;
1411 #else
1412 new_rtx = arg_pointer_rtx;
1413 #endif
1414 offset = cfa_offset;
1415 }
1416 else if (x == virtual_preferred_stack_boundary_rtx)
1417 {
1418 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1419 offset = 0;
1420 }
1421 else
1422 return NULL_RTX;
1423
1424 *poffset = offset;
1425 return new_rtx;
1426 }
1427
1428 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1429 Instantiate any virtual registers present inside of *LOC. The expression
1430 is simplified, as much as possible, but is not to be considered "valid"
1431 in any sense implied by the target. If any change is made, set CHANGED
1432 to true. */
1433
1434 static int
1435 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1436 {
1437 HOST_WIDE_INT offset;
1438 bool *changed = (bool *) data;
1439 rtx x, new_rtx;
1440
1441 x = *loc;
1442 if (x == 0)
1443 return 0;
1444
1445 switch (GET_CODE (x))
1446 {
1447 case REG:
1448 new_rtx = instantiate_new_reg (x, &offset);
1449 if (new_rtx)
1450 {
1451 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1452 if (changed)
1453 *changed = true;
1454 }
1455 return -1;
1456
1457 case PLUS:
1458 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1459 if (new_rtx)
1460 {
1461 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1462 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1463 if (changed)
1464 *changed = true;
1465 return -1;
1466 }
1467
1468 /* FIXME -- from old code */
1469 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1470 we can commute the PLUS and SUBREG because pointers into the
1471 frame are well-behaved. */
1472 break;
1473
1474 default:
1475 break;
1476 }
1477
1478 return 0;
1479 }
1480
1481 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1482 matches the predicate for insn CODE operand OPERAND. */
1483
1484 static int
1485 safe_insn_predicate (int code, int operand, rtx x)
1486 {
1487 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1488 }
1489
1490 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1491 registers present inside of insn. The result will be a valid insn. */
1492
1493 static void
1494 instantiate_virtual_regs_in_insn (rtx insn)
1495 {
1496 HOST_WIDE_INT offset;
1497 int insn_code, i;
1498 bool any_change = false;
1499 rtx set, new_rtx, x, seq;
1500
1501 /* There are some special cases to be handled first. */
1502 set = single_set (insn);
1503 if (set)
1504 {
1505 /* We're allowed to assign to a virtual register. This is interpreted
1506 to mean that the underlying register gets assigned the inverse
1507 transformation. This is used, for example, in the handling of
1508 non-local gotos. */
1509 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1510 if (new_rtx)
1511 {
1512 start_sequence ();
1513
1514 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1515 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1516 gen_int_mode (-offset, GET_MODE (new_rtx)));
1517 x = force_operand (x, new_rtx);
1518 if (x != new_rtx)
1519 emit_move_insn (new_rtx, x);
1520
1521 seq = get_insns ();
1522 end_sequence ();
1523
1524 emit_insn_before (seq, insn);
1525 delete_insn (insn);
1526 return;
1527 }
1528
1529 /* Handle a straight copy from a virtual register by generating a
1530 new add insn. The difference between this and falling through
1531 to the generic case is avoiding a new pseudo and eliminating a
1532 move insn in the initial rtl stream. */
1533 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1534 if (new_rtx && offset != 0
1535 && REG_P (SET_DEST (set))
1536 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1537 {
1538 start_sequence ();
1539
1540 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1541 gen_int_mode (offset,
1542 GET_MODE (SET_DEST (set))),
1543 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1544 if (x != SET_DEST (set))
1545 emit_move_insn (SET_DEST (set), x);
1546
1547 seq = get_insns ();
1548 end_sequence ();
1549
1550 emit_insn_before (seq, insn);
1551 delete_insn (insn);
1552 return;
1553 }
1554
1555 extract_insn (insn);
1556 insn_code = INSN_CODE (insn);
1557
1558 /* Handle a plus involving a virtual register by determining if the
1559 operands remain valid if they're modified in place. */
1560 if (GET_CODE (SET_SRC (set)) == PLUS
1561 && recog_data.n_operands >= 3
1562 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1563 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1564 && CONST_INT_P (recog_data.operand[2])
1565 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1566 {
1567 offset += INTVAL (recog_data.operand[2]);
1568
1569 /* If the sum is zero, then replace with a plain move. */
1570 if (offset == 0
1571 && REG_P (SET_DEST (set))
1572 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1573 {
1574 start_sequence ();
1575 emit_move_insn (SET_DEST (set), new_rtx);
1576 seq = get_insns ();
1577 end_sequence ();
1578
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1582 }
1583
1584 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1585
1586 /* Using validate_change and apply_change_group here leaves
1587 recog_data in an invalid state. Since we know exactly what
1588 we want to check, do those two by hand. */
1589 if (safe_insn_predicate (insn_code, 1, new_rtx)
1590 && safe_insn_predicate (insn_code, 2, x))
1591 {
1592 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1593 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1594 any_change = true;
1595
1596 /* Fall through into the regular operand fixup loop in
1597 order to take care of operands other than 1 and 2. */
1598 }
1599 }
1600 }
1601 else
1602 {
1603 extract_insn (insn);
1604 insn_code = INSN_CODE (insn);
1605 }
1606
1607 /* In the general case, we expect virtual registers to appear only in
1608 operands, and then only as either bare registers or inside memories. */
1609 for (i = 0; i < recog_data.n_operands; ++i)
1610 {
1611 x = recog_data.operand[i];
1612 switch (GET_CODE (x))
1613 {
1614 case MEM:
1615 {
1616 rtx addr = XEXP (x, 0);
1617 bool changed = false;
1618
1619 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1620 if (!changed)
1621 continue;
1622
1623 start_sequence ();
1624 x = replace_equiv_address (x, addr);
1625 /* It may happen that the address with the virtual reg
1626 was valid (e.g. based on the virtual stack reg, which might
1627 be acceptable to the predicates with all offsets), whereas
1628 the address now isn't anymore, for instance when the address
1629 is still offsetted, but the base reg isn't virtual-stack-reg
1630 anymore. Below we would do a force_reg on the whole operand,
1631 but this insn might actually only accept memory. Hence,
1632 before doing that last resort, try to reload the address into
1633 a register, so this operand stays a MEM. */
1634 if (!safe_insn_predicate (insn_code, i, x))
1635 {
1636 addr = force_reg (GET_MODE (addr), addr);
1637 x = replace_equiv_address (x, addr);
1638 }
1639 seq = get_insns ();
1640 end_sequence ();
1641 if (seq)
1642 emit_insn_before (seq, insn);
1643 }
1644 break;
1645
1646 case REG:
1647 new_rtx = instantiate_new_reg (x, &offset);
1648 if (new_rtx == NULL)
1649 continue;
1650 if (offset == 0)
1651 x = new_rtx;
1652 else
1653 {
1654 start_sequence ();
1655
1656 /* Careful, special mode predicates may have stuff in
1657 insn_data[insn_code].operand[i].mode that isn't useful
1658 to us for computing a new value. */
1659 /* ??? Recognize address_operand and/or "p" constraints
1660 to see if (plus new offset) is a valid before we put
1661 this through expand_simple_binop. */
1662 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1663 gen_int_mode (offset, GET_MODE (x)),
1664 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1665 seq = get_insns ();
1666 end_sequence ();
1667 emit_insn_before (seq, insn);
1668 }
1669 break;
1670
1671 case SUBREG:
1672 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1673 if (new_rtx == NULL)
1674 continue;
1675 if (offset != 0)
1676 {
1677 start_sequence ();
1678 new_rtx = expand_simple_binop
1679 (GET_MODE (new_rtx), PLUS, new_rtx,
1680 gen_int_mode (offset, GET_MODE (new_rtx)),
1681 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1682 seq = get_insns ();
1683 end_sequence ();
1684 emit_insn_before (seq, insn);
1685 }
1686 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1687 GET_MODE (new_rtx), SUBREG_BYTE (x));
1688 gcc_assert (x);
1689 break;
1690
1691 default:
1692 continue;
1693 }
1694
1695 /* At this point, X contains the new value for the operand.
1696 Validate the new value vs the insn predicate. Note that
1697 asm insns will have insn_code -1 here. */
1698 if (!safe_insn_predicate (insn_code, i, x))
1699 {
1700 start_sequence ();
1701 if (REG_P (x))
1702 {
1703 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1704 x = copy_to_reg (x);
1705 }
1706 else
1707 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1708 seq = get_insns ();
1709 end_sequence ();
1710 if (seq)
1711 emit_insn_before (seq, insn);
1712 }
1713
1714 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1715 any_change = true;
1716 }
1717
1718 if (any_change)
1719 {
1720 /* Propagate operand changes into the duplicates. */
1721 for (i = 0; i < recog_data.n_dups; ++i)
1722 *recog_data.dup_loc[i]
1723 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1724
1725 /* Force re-recognition of the instruction for validation. */
1726 INSN_CODE (insn) = -1;
1727 }
1728
1729 if (asm_noperands (PATTERN (insn)) >= 0)
1730 {
1731 if (!check_asm_operands (PATTERN (insn)))
1732 {
1733 error_for_asm (insn, "impossible constraint in %<asm%>");
1734 /* For asm goto, instead of fixing up all the edges
1735 just clear the template and clear input operands
1736 (asm goto doesn't have any output operands). */
1737 if (JUMP_P (insn))
1738 {
1739 rtx asm_op = extract_asm_operands (PATTERN (insn));
1740 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1741 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1742 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1743 }
1744 else
1745 delete_insn (insn);
1746 }
1747 }
1748 else
1749 {
1750 if (recog_memoized (insn) < 0)
1751 fatal_insn_not_found (insn);
1752 }
1753 }
1754
1755 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1756 do any instantiation required. */
1757
1758 void
1759 instantiate_decl_rtl (rtx x)
1760 {
1761 rtx addr;
1762
1763 if (x == 0)
1764 return;
1765
1766 /* If this is a CONCAT, recurse for the pieces. */
1767 if (GET_CODE (x) == CONCAT)
1768 {
1769 instantiate_decl_rtl (XEXP (x, 0));
1770 instantiate_decl_rtl (XEXP (x, 1));
1771 return;
1772 }
1773
1774 /* If this is not a MEM, no need to do anything. Similarly if the
1775 address is a constant or a register that is not a virtual register. */
1776 if (!MEM_P (x))
1777 return;
1778
1779 addr = XEXP (x, 0);
1780 if (CONSTANT_P (addr)
1781 || (REG_P (addr)
1782 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1783 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1784 return;
1785
1786 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1787 }
1788
1789 /* Helper for instantiate_decls called via walk_tree: Process all decls
1790 in the given DECL_VALUE_EXPR. */
1791
1792 static tree
1793 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1794 {
1795 tree t = *tp;
1796 if (! EXPR_P (t))
1797 {
1798 *walk_subtrees = 0;
1799 if (DECL_P (t))
1800 {
1801 if (DECL_RTL_SET_P (t))
1802 instantiate_decl_rtl (DECL_RTL (t));
1803 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1804 && DECL_INCOMING_RTL (t))
1805 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1806 if ((TREE_CODE (t) == VAR_DECL
1807 || TREE_CODE (t) == RESULT_DECL)
1808 && DECL_HAS_VALUE_EXPR_P (t))
1809 {
1810 tree v = DECL_VALUE_EXPR (t);
1811 walk_tree (&v, instantiate_expr, NULL, NULL);
1812 }
1813 }
1814 }
1815 return NULL;
1816 }
1817
1818 /* Subroutine of instantiate_decls: Process all decls in the given
1819 BLOCK node and all its subblocks. */
1820
1821 static void
1822 instantiate_decls_1 (tree let)
1823 {
1824 tree t;
1825
1826 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1827 {
1828 if (DECL_RTL_SET_P (t))
1829 instantiate_decl_rtl (DECL_RTL (t));
1830 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1831 {
1832 tree v = DECL_VALUE_EXPR (t);
1833 walk_tree (&v, instantiate_expr, NULL, NULL);
1834 }
1835 }
1836
1837 /* Process all subblocks. */
1838 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1839 instantiate_decls_1 (t);
1840 }
1841
1842 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1843 all virtual registers in their DECL_RTL's. */
1844
1845 static void
1846 instantiate_decls (tree fndecl)
1847 {
1848 tree decl;
1849 unsigned ix;
1850
1851 /* Process all parameters of the function. */
1852 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1853 {
1854 instantiate_decl_rtl (DECL_RTL (decl));
1855 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1856 if (DECL_HAS_VALUE_EXPR_P (decl))
1857 {
1858 tree v = DECL_VALUE_EXPR (decl);
1859 walk_tree (&v, instantiate_expr, NULL, NULL);
1860 }
1861 }
1862
1863 if ((decl = DECL_RESULT (fndecl))
1864 && TREE_CODE (decl) == RESULT_DECL)
1865 {
1866 if (DECL_RTL_SET_P (decl))
1867 instantiate_decl_rtl (DECL_RTL (decl));
1868 if (DECL_HAS_VALUE_EXPR_P (decl))
1869 {
1870 tree v = DECL_VALUE_EXPR (decl);
1871 walk_tree (&v, instantiate_expr, NULL, NULL);
1872 }
1873 }
1874
1875 /* Now process all variables defined in the function or its subblocks. */
1876 instantiate_decls_1 (DECL_INITIAL (fndecl));
1877
1878 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1879 if (DECL_RTL_SET_P (decl))
1880 instantiate_decl_rtl (DECL_RTL (decl));
1881 vec_free (cfun->local_decls);
1882 }
1883
1884 /* Pass through the INSNS of function FNDECL and convert virtual register
1885 references to hard register references. */
1886
1887 static unsigned int
1888 instantiate_virtual_regs (void)
1889 {
1890 rtx insn;
1891
1892 /* Compute the offsets to use for this function. */
1893 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1894 var_offset = STARTING_FRAME_OFFSET;
1895 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1896 out_arg_offset = STACK_POINTER_OFFSET;
1897 #ifdef FRAME_POINTER_CFA_OFFSET
1898 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1899 #else
1900 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1901 #endif
1902
1903 /* Initialize recognition, indicating that volatile is OK. */
1904 init_recog ();
1905
1906 /* Scan through all the insns, instantiating every virtual register still
1907 present. */
1908 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1909 if (INSN_P (insn))
1910 {
1911 /* These patterns in the instruction stream can never be recognized.
1912 Fortunately, they shouldn't contain virtual registers either. */
1913 if (GET_CODE (PATTERN (insn)) == USE
1914 || GET_CODE (PATTERN (insn)) == CLOBBER
1915 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1916 continue;
1917 else if (DEBUG_INSN_P (insn))
1918 for_each_rtx (&INSN_VAR_LOCATION (insn),
1919 instantiate_virtual_regs_in_rtx, NULL);
1920 else
1921 instantiate_virtual_regs_in_insn (insn);
1922
1923 if (INSN_DELETED_P (insn))
1924 continue;
1925
1926 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1927
1928 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1929 if (CALL_P (insn))
1930 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1931 instantiate_virtual_regs_in_rtx, NULL);
1932 }
1933
1934 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1935 instantiate_decls (current_function_decl);
1936
1937 targetm.instantiate_decls ();
1938
1939 /* Indicate that, from now on, assign_stack_local should use
1940 frame_pointer_rtx. */
1941 virtuals_instantiated = 1;
1942
1943 return 0;
1944 }
1945
1946 namespace {
1947
1948 const pass_data pass_data_instantiate_virtual_regs =
1949 {
1950 RTL_PASS, /* type */
1951 "vregs", /* name */
1952 OPTGROUP_NONE, /* optinfo_flags */
1953 true, /* has_execute */
1954 TV_NONE, /* tv_id */
1955 0, /* properties_required */
1956 0, /* properties_provided */
1957 0, /* properties_destroyed */
1958 0, /* todo_flags_start */
1959 0, /* todo_flags_finish */
1960 };
1961
1962 class pass_instantiate_virtual_regs : public rtl_opt_pass
1963 {
1964 public:
1965 pass_instantiate_virtual_regs (gcc::context *ctxt)
1966 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1967 {}
1968
1969 /* opt_pass methods: */
1970 unsigned int execute () { return instantiate_virtual_regs (); }
1971
1972 }; // class pass_instantiate_virtual_regs
1973
1974 } // anon namespace
1975
1976 rtl_opt_pass *
1977 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1978 {
1979 return new pass_instantiate_virtual_regs (ctxt);
1980 }
1981
1982 \f
1983 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1984 This means a type for which function calls must pass an address to the
1985 function or get an address back from the function.
1986 EXP may be a type node or an expression (whose type is tested). */
1987
1988 int
1989 aggregate_value_p (const_tree exp, const_tree fntype)
1990 {
1991 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1992 int i, regno, nregs;
1993 rtx reg;
1994
1995 if (fntype)
1996 switch (TREE_CODE (fntype))
1997 {
1998 case CALL_EXPR:
1999 {
2000 tree fndecl = get_callee_fndecl (fntype);
2001 fntype = (fndecl
2002 ? TREE_TYPE (fndecl)
2003 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2004 }
2005 break;
2006 case FUNCTION_DECL:
2007 fntype = TREE_TYPE (fntype);
2008 break;
2009 case FUNCTION_TYPE:
2010 case METHOD_TYPE:
2011 break;
2012 case IDENTIFIER_NODE:
2013 fntype = NULL_TREE;
2014 break;
2015 default:
2016 /* We don't expect other tree types here. */
2017 gcc_unreachable ();
2018 }
2019
2020 if (VOID_TYPE_P (type))
2021 return 0;
2022
2023 /* If a record should be passed the same as its first (and only) member
2024 don't pass it as an aggregate. */
2025 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2026 return aggregate_value_p (first_field (type), fntype);
2027
2028 /* If the front end has decided that this needs to be passed by
2029 reference, do so. */
2030 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2031 && DECL_BY_REFERENCE (exp))
2032 return 1;
2033
2034 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2035 if (fntype && TREE_ADDRESSABLE (fntype))
2036 return 1;
2037
2038 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2039 and thus can't be returned in registers. */
2040 if (TREE_ADDRESSABLE (type))
2041 return 1;
2042
2043 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2044 return 1;
2045
2046 if (targetm.calls.return_in_memory (type, fntype))
2047 return 1;
2048
2049 /* Make sure we have suitable call-clobbered regs to return
2050 the value in; if not, we must return it in memory. */
2051 reg = hard_function_value (type, 0, fntype, 0);
2052
2053 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2054 it is OK. */
2055 if (!REG_P (reg))
2056 return 0;
2057
2058 regno = REGNO (reg);
2059 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2060 for (i = 0; i < nregs; i++)
2061 if (! call_used_regs[regno + i])
2062 return 1;
2063
2064 return 0;
2065 }
2066 \f
2067 /* Return true if we should assign DECL a pseudo register; false if it
2068 should live on the local stack. */
2069
2070 bool
2071 use_register_for_decl (const_tree decl)
2072 {
2073 if (!targetm.calls.allocate_stack_slots_for_args ())
2074 return true;
2075
2076 /* Honor volatile. */
2077 if (TREE_SIDE_EFFECTS (decl))
2078 return false;
2079
2080 /* Honor addressability. */
2081 if (TREE_ADDRESSABLE (decl))
2082 return false;
2083
2084 /* Only register-like things go in registers. */
2085 if (DECL_MODE (decl) == BLKmode)
2086 return false;
2087
2088 /* If -ffloat-store specified, don't put explicit float variables
2089 into registers. */
2090 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2091 propagates values across these stores, and it probably shouldn't. */
2092 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2093 return false;
2094
2095 /* If we're not interested in tracking debugging information for
2096 this decl, then we can certainly put it in a register. */
2097 if (DECL_IGNORED_P (decl))
2098 return true;
2099
2100 if (optimize)
2101 return true;
2102
2103 if (!DECL_REGISTER (decl))
2104 return false;
2105
2106 switch (TREE_CODE (TREE_TYPE (decl)))
2107 {
2108 case RECORD_TYPE:
2109 case UNION_TYPE:
2110 case QUAL_UNION_TYPE:
2111 /* When not optimizing, disregard register keyword for variables with
2112 types containing methods, otherwise the methods won't be callable
2113 from the debugger. */
2114 if (TYPE_METHODS (TREE_TYPE (decl)))
2115 return false;
2116 break;
2117 default:
2118 break;
2119 }
2120
2121 return true;
2122 }
2123
2124 /* Return true if TYPE should be passed by invisible reference. */
2125
2126 bool
2127 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2128 tree type, bool named_arg)
2129 {
2130 if (type)
2131 {
2132 /* If this type contains non-trivial constructors, then it is
2133 forbidden for the middle-end to create any new copies. */
2134 if (TREE_ADDRESSABLE (type))
2135 return true;
2136
2137 /* GCC post 3.4 passes *all* variable sized types by reference. */
2138 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2139 return true;
2140
2141 /* If a record type should be passed the same as its first (and only)
2142 member, use the type and mode of that member. */
2143 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2144 {
2145 type = TREE_TYPE (first_field (type));
2146 mode = TYPE_MODE (type);
2147 }
2148 }
2149
2150 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2151 type, named_arg);
2152 }
2153
2154 /* Return true if TYPE, which is passed by reference, should be callee
2155 copied instead of caller copied. */
2156
2157 bool
2158 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2159 tree type, bool named_arg)
2160 {
2161 if (type && TREE_ADDRESSABLE (type))
2162 return false;
2163 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2164 named_arg);
2165 }
2166
2167 /* Structures to communicate between the subroutines of assign_parms.
2168 The first holds data persistent across all parameters, the second
2169 is cleared out for each parameter. */
2170
2171 struct assign_parm_data_all
2172 {
2173 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2174 should become a job of the target or otherwise encapsulated. */
2175 CUMULATIVE_ARGS args_so_far_v;
2176 cumulative_args_t args_so_far;
2177 struct args_size stack_args_size;
2178 tree function_result_decl;
2179 tree orig_fnargs;
2180 rtx first_conversion_insn;
2181 rtx last_conversion_insn;
2182 HOST_WIDE_INT pretend_args_size;
2183 HOST_WIDE_INT extra_pretend_bytes;
2184 int reg_parm_stack_space;
2185 };
2186
2187 struct assign_parm_data_one
2188 {
2189 tree nominal_type;
2190 tree passed_type;
2191 rtx entry_parm;
2192 rtx stack_parm;
2193 enum machine_mode nominal_mode;
2194 enum machine_mode passed_mode;
2195 enum machine_mode promoted_mode;
2196 struct locate_and_pad_arg_data locate;
2197 int partial;
2198 BOOL_BITFIELD named_arg : 1;
2199 BOOL_BITFIELD passed_pointer : 1;
2200 BOOL_BITFIELD on_stack : 1;
2201 BOOL_BITFIELD loaded_in_reg : 1;
2202 };
2203
2204 /* A subroutine of assign_parms. Initialize ALL. */
2205
2206 static void
2207 assign_parms_initialize_all (struct assign_parm_data_all *all)
2208 {
2209 tree fntype ATTRIBUTE_UNUSED;
2210
2211 memset (all, 0, sizeof (*all));
2212
2213 fntype = TREE_TYPE (current_function_decl);
2214
2215 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2216 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2217 #else
2218 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2219 current_function_decl, -1);
2220 #endif
2221 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2222
2223 #ifdef REG_PARM_STACK_SPACE
2224 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2225 #endif
2226 }
2227
2228 /* If ARGS contains entries with complex types, split the entry into two
2229 entries of the component type. Return a new list of substitutions are
2230 needed, else the old list. */
2231
2232 static void
2233 split_complex_args (vec<tree> *args)
2234 {
2235 unsigned i;
2236 tree p;
2237
2238 FOR_EACH_VEC_ELT (*args, i, p)
2239 {
2240 tree type = TREE_TYPE (p);
2241 if (TREE_CODE (type) == COMPLEX_TYPE
2242 && targetm.calls.split_complex_arg (type))
2243 {
2244 tree decl;
2245 tree subtype = TREE_TYPE (type);
2246 bool addressable = TREE_ADDRESSABLE (p);
2247
2248 /* Rewrite the PARM_DECL's type with its component. */
2249 p = copy_node (p);
2250 TREE_TYPE (p) = subtype;
2251 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2252 DECL_MODE (p) = VOIDmode;
2253 DECL_SIZE (p) = NULL;
2254 DECL_SIZE_UNIT (p) = NULL;
2255 /* If this arg must go in memory, put it in a pseudo here.
2256 We can't allow it to go in memory as per normal parms,
2257 because the usual place might not have the imag part
2258 adjacent to the real part. */
2259 DECL_ARTIFICIAL (p) = addressable;
2260 DECL_IGNORED_P (p) = addressable;
2261 TREE_ADDRESSABLE (p) = 0;
2262 layout_decl (p, 0);
2263 (*args)[i] = p;
2264
2265 /* Build a second synthetic decl. */
2266 decl = build_decl (EXPR_LOCATION (p),
2267 PARM_DECL, NULL_TREE, subtype);
2268 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2269 DECL_ARTIFICIAL (decl) = addressable;
2270 DECL_IGNORED_P (decl) = addressable;
2271 layout_decl (decl, 0);
2272 args->safe_insert (++i, decl);
2273 }
2274 }
2275 }
2276
2277 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2278 the hidden struct return argument, and (abi willing) complex args.
2279 Return the new parameter list. */
2280
2281 static vec<tree>
2282 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2283 {
2284 tree fndecl = current_function_decl;
2285 tree fntype = TREE_TYPE (fndecl);
2286 vec<tree> fnargs = vNULL;
2287 tree arg;
2288
2289 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2290 fnargs.safe_push (arg);
2291
2292 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2293
2294 /* If struct value address is treated as the first argument, make it so. */
2295 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2296 && ! cfun->returns_pcc_struct
2297 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2298 {
2299 tree type = build_pointer_type (TREE_TYPE (fntype));
2300 tree decl;
2301
2302 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2303 PARM_DECL, get_identifier (".result_ptr"), type);
2304 DECL_ARG_TYPE (decl) = type;
2305 DECL_ARTIFICIAL (decl) = 1;
2306 DECL_NAMELESS (decl) = 1;
2307 TREE_CONSTANT (decl) = 1;
2308
2309 DECL_CHAIN (decl) = all->orig_fnargs;
2310 all->orig_fnargs = decl;
2311 fnargs.safe_insert (0, decl);
2312
2313 all->function_result_decl = decl;
2314 }
2315
2316 /* If the target wants to split complex arguments into scalars, do so. */
2317 if (targetm.calls.split_complex_arg)
2318 split_complex_args (&fnargs);
2319
2320 return fnargs;
2321 }
2322
2323 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2324 data for the parameter. Incorporate ABI specifics such as pass-by-
2325 reference and type promotion. */
2326
2327 static void
2328 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2329 struct assign_parm_data_one *data)
2330 {
2331 tree nominal_type, passed_type;
2332 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2333 int unsignedp;
2334
2335 memset (data, 0, sizeof (*data));
2336
2337 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2338 if (!cfun->stdarg)
2339 data->named_arg = 1; /* No variadic parms. */
2340 else if (DECL_CHAIN (parm))
2341 data->named_arg = 1; /* Not the last non-variadic parm. */
2342 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2343 data->named_arg = 1; /* Only variadic ones are unnamed. */
2344 else
2345 data->named_arg = 0; /* Treat as variadic. */
2346
2347 nominal_type = TREE_TYPE (parm);
2348 passed_type = DECL_ARG_TYPE (parm);
2349
2350 /* Look out for errors propagating this far. Also, if the parameter's
2351 type is void then its value doesn't matter. */
2352 if (TREE_TYPE (parm) == error_mark_node
2353 /* This can happen after weird syntax errors
2354 or if an enum type is defined among the parms. */
2355 || TREE_CODE (parm) != PARM_DECL
2356 || passed_type == NULL
2357 || VOID_TYPE_P (nominal_type))
2358 {
2359 nominal_type = passed_type = void_type_node;
2360 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2361 goto egress;
2362 }
2363
2364 /* Find mode of arg as it is passed, and mode of arg as it should be
2365 during execution of this function. */
2366 passed_mode = TYPE_MODE (passed_type);
2367 nominal_mode = TYPE_MODE (nominal_type);
2368
2369 /* If the parm is to be passed as a transparent union or record, use the
2370 type of the first field for the tests below. We have already verified
2371 that the modes are the same. */
2372 if ((TREE_CODE (passed_type) == UNION_TYPE
2373 || TREE_CODE (passed_type) == RECORD_TYPE)
2374 && TYPE_TRANSPARENT_AGGR (passed_type))
2375 passed_type = TREE_TYPE (first_field (passed_type));
2376
2377 /* See if this arg was passed by invisible reference. */
2378 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2379 passed_type, data->named_arg))
2380 {
2381 passed_type = nominal_type = build_pointer_type (passed_type);
2382 data->passed_pointer = true;
2383 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2384 }
2385
2386 /* Find mode as it is passed by the ABI. */
2387 unsignedp = TYPE_UNSIGNED (passed_type);
2388 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2389 TREE_TYPE (current_function_decl), 0);
2390
2391 egress:
2392 data->nominal_type = nominal_type;
2393 data->passed_type = passed_type;
2394 data->nominal_mode = nominal_mode;
2395 data->passed_mode = passed_mode;
2396 data->promoted_mode = promoted_mode;
2397 }
2398
2399 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2400
2401 static void
2402 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2403 struct assign_parm_data_one *data, bool no_rtl)
2404 {
2405 int varargs_pretend_bytes = 0;
2406
2407 targetm.calls.setup_incoming_varargs (all->args_so_far,
2408 data->promoted_mode,
2409 data->passed_type,
2410 &varargs_pretend_bytes, no_rtl);
2411
2412 /* If the back-end has requested extra stack space, record how much is
2413 needed. Do not change pretend_args_size otherwise since it may be
2414 nonzero from an earlier partial argument. */
2415 if (varargs_pretend_bytes > 0)
2416 all->pretend_args_size = varargs_pretend_bytes;
2417 }
2418
2419 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2420 the incoming location of the current parameter. */
2421
2422 static void
2423 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2424 struct assign_parm_data_one *data)
2425 {
2426 HOST_WIDE_INT pretend_bytes = 0;
2427 rtx entry_parm;
2428 bool in_regs;
2429
2430 if (data->promoted_mode == VOIDmode)
2431 {
2432 data->entry_parm = data->stack_parm = const0_rtx;
2433 return;
2434 }
2435
2436 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2437 data->promoted_mode,
2438 data->passed_type,
2439 data->named_arg);
2440
2441 if (entry_parm == 0)
2442 data->promoted_mode = data->passed_mode;
2443
2444 /* Determine parm's home in the stack, in case it arrives in the stack
2445 or we should pretend it did. Compute the stack position and rtx where
2446 the argument arrives and its size.
2447
2448 There is one complexity here: If this was a parameter that would
2449 have been passed in registers, but wasn't only because it is
2450 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2451 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2452 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2453 as it was the previous time. */
2454 in_regs = entry_parm != 0;
2455 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2456 in_regs = true;
2457 #endif
2458 if (!in_regs && !data->named_arg)
2459 {
2460 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2461 {
2462 rtx tem;
2463 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2464 data->promoted_mode,
2465 data->passed_type, true);
2466 in_regs = tem != NULL;
2467 }
2468 }
2469
2470 /* If this parameter was passed both in registers and in the stack, use
2471 the copy on the stack. */
2472 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2473 data->passed_type))
2474 entry_parm = 0;
2475
2476 if (entry_parm)
2477 {
2478 int partial;
2479
2480 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2481 data->promoted_mode,
2482 data->passed_type,
2483 data->named_arg);
2484 data->partial = partial;
2485
2486 /* The caller might already have allocated stack space for the
2487 register parameters. */
2488 if (partial != 0 && all->reg_parm_stack_space == 0)
2489 {
2490 /* Part of this argument is passed in registers and part
2491 is passed on the stack. Ask the prologue code to extend
2492 the stack part so that we can recreate the full value.
2493
2494 PRETEND_BYTES is the size of the registers we need to store.
2495 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2496 stack space that the prologue should allocate.
2497
2498 Internally, gcc assumes that the argument pointer is aligned
2499 to STACK_BOUNDARY bits. This is used both for alignment
2500 optimizations (see init_emit) and to locate arguments that are
2501 aligned to more than PARM_BOUNDARY bits. We must preserve this
2502 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2503 a stack boundary. */
2504
2505 /* We assume at most one partial arg, and it must be the first
2506 argument on the stack. */
2507 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2508
2509 pretend_bytes = partial;
2510 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2511
2512 /* We want to align relative to the actual stack pointer, so
2513 don't include this in the stack size until later. */
2514 all->extra_pretend_bytes = all->pretend_args_size;
2515 }
2516 }
2517
2518 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2519 all->reg_parm_stack_space,
2520 entry_parm ? data->partial : 0, current_function_decl,
2521 &all->stack_args_size, &data->locate);
2522
2523 /* Update parm_stack_boundary if this parameter is passed in the
2524 stack. */
2525 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2526 crtl->parm_stack_boundary = data->locate.boundary;
2527
2528 /* Adjust offsets to include the pretend args. */
2529 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2530 data->locate.slot_offset.constant += pretend_bytes;
2531 data->locate.offset.constant += pretend_bytes;
2532
2533 data->entry_parm = entry_parm;
2534 }
2535
2536 /* A subroutine of assign_parms. If there is actually space on the stack
2537 for this parm, count it in stack_args_size and return true. */
2538
2539 static bool
2540 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2541 struct assign_parm_data_one *data)
2542 {
2543 /* Trivially true if we've no incoming register. */
2544 if (data->entry_parm == NULL)
2545 ;
2546 /* Also true if we're partially in registers and partially not,
2547 since we've arranged to drop the entire argument on the stack. */
2548 else if (data->partial != 0)
2549 ;
2550 /* Also true if the target says that it's passed in both registers
2551 and on the stack. */
2552 else if (GET_CODE (data->entry_parm) == PARALLEL
2553 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2554 ;
2555 /* Also true if the target says that there's stack allocated for
2556 all register parameters. */
2557 else if (all->reg_parm_stack_space > 0)
2558 ;
2559 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2560 else
2561 return false;
2562
2563 all->stack_args_size.constant += data->locate.size.constant;
2564 if (data->locate.size.var)
2565 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2566
2567 return true;
2568 }
2569
2570 /* A subroutine of assign_parms. Given that this parameter is allocated
2571 stack space by the ABI, find it. */
2572
2573 static void
2574 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2575 {
2576 rtx offset_rtx, stack_parm;
2577 unsigned int align, boundary;
2578
2579 /* If we're passing this arg using a reg, make its stack home the
2580 aligned stack slot. */
2581 if (data->entry_parm)
2582 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2583 else
2584 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2585
2586 stack_parm = crtl->args.internal_arg_pointer;
2587 if (offset_rtx != const0_rtx)
2588 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2589 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2590
2591 if (!data->passed_pointer)
2592 {
2593 set_mem_attributes (stack_parm, parm, 1);
2594 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2595 while promoted mode's size is needed. */
2596 if (data->promoted_mode != BLKmode
2597 && data->promoted_mode != DECL_MODE (parm))
2598 {
2599 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2600 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2601 {
2602 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2603 data->promoted_mode);
2604 if (offset)
2605 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2606 }
2607 }
2608 }
2609
2610 boundary = data->locate.boundary;
2611 align = BITS_PER_UNIT;
2612
2613 /* If we're padding upward, we know that the alignment of the slot
2614 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2615 intentionally forcing upward padding. Otherwise we have to come
2616 up with a guess at the alignment based on OFFSET_RTX. */
2617 if (data->locate.where_pad != downward || data->entry_parm)
2618 align = boundary;
2619 else if (CONST_INT_P (offset_rtx))
2620 {
2621 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2622 align = align & -align;
2623 }
2624 set_mem_align (stack_parm, align);
2625
2626 if (data->entry_parm)
2627 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2628
2629 data->stack_parm = stack_parm;
2630 }
2631
2632 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2633 always valid and contiguous. */
2634
2635 static void
2636 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2637 {
2638 rtx entry_parm = data->entry_parm;
2639 rtx stack_parm = data->stack_parm;
2640
2641 /* If this parm was passed part in regs and part in memory, pretend it
2642 arrived entirely in memory by pushing the register-part onto the stack.
2643 In the special case of a DImode or DFmode that is split, we could put
2644 it together in a pseudoreg directly, but for now that's not worth
2645 bothering with. */
2646 if (data->partial != 0)
2647 {
2648 /* Handle calls that pass values in multiple non-contiguous
2649 locations. The Irix 6 ABI has examples of this. */
2650 if (GET_CODE (entry_parm) == PARALLEL)
2651 emit_group_store (validize_mem (stack_parm), entry_parm,
2652 data->passed_type,
2653 int_size_in_bytes (data->passed_type));
2654 else
2655 {
2656 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2657 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2658 data->partial / UNITS_PER_WORD);
2659 }
2660
2661 entry_parm = stack_parm;
2662 }
2663
2664 /* If we didn't decide this parm came in a register, by default it came
2665 on the stack. */
2666 else if (entry_parm == NULL)
2667 entry_parm = stack_parm;
2668
2669 /* When an argument is passed in multiple locations, we can't make use
2670 of this information, but we can save some copying if the whole argument
2671 is passed in a single register. */
2672 else if (GET_CODE (entry_parm) == PARALLEL
2673 && data->nominal_mode != BLKmode
2674 && data->passed_mode != BLKmode)
2675 {
2676 size_t i, len = XVECLEN (entry_parm, 0);
2677
2678 for (i = 0; i < len; i++)
2679 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2680 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2681 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2682 == data->passed_mode)
2683 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2684 {
2685 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2686 break;
2687 }
2688 }
2689
2690 data->entry_parm = entry_parm;
2691 }
2692
2693 /* A subroutine of assign_parms. Reconstitute any values which were
2694 passed in multiple registers and would fit in a single register. */
2695
2696 static void
2697 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2698 {
2699 rtx entry_parm = data->entry_parm;
2700
2701 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2702 This can be done with register operations rather than on the
2703 stack, even if we will store the reconstituted parameter on the
2704 stack later. */
2705 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2706 {
2707 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2708 emit_group_store (parmreg, entry_parm, data->passed_type,
2709 GET_MODE_SIZE (GET_MODE (entry_parm)));
2710 entry_parm = parmreg;
2711 }
2712
2713 data->entry_parm = entry_parm;
2714 }
2715
2716 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2717 always valid and properly aligned. */
2718
2719 static void
2720 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2721 {
2722 rtx stack_parm = data->stack_parm;
2723
2724 /* If we can't trust the parm stack slot to be aligned enough for its
2725 ultimate type, don't use that slot after entry. We'll make another
2726 stack slot, if we need one. */
2727 if (stack_parm
2728 && ((STRICT_ALIGNMENT
2729 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2730 || (data->nominal_type
2731 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2732 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2733 stack_parm = NULL;
2734
2735 /* If parm was passed in memory, and we need to convert it on entry,
2736 don't store it back in that same slot. */
2737 else if (data->entry_parm == stack_parm
2738 && data->nominal_mode != BLKmode
2739 && data->nominal_mode != data->passed_mode)
2740 stack_parm = NULL;
2741
2742 /* If stack protection is in effect for this function, don't leave any
2743 pointers in their passed stack slots. */
2744 else if (crtl->stack_protect_guard
2745 && (flag_stack_protect == 2
2746 || data->passed_pointer
2747 || POINTER_TYPE_P (data->nominal_type)))
2748 stack_parm = NULL;
2749
2750 data->stack_parm = stack_parm;
2751 }
2752
2753 /* A subroutine of assign_parms. Return true if the current parameter
2754 should be stored as a BLKmode in the current frame. */
2755
2756 static bool
2757 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2758 {
2759 if (data->nominal_mode == BLKmode)
2760 return true;
2761 if (GET_MODE (data->entry_parm) == BLKmode)
2762 return true;
2763
2764 #ifdef BLOCK_REG_PADDING
2765 /* Only assign_parm_setup_block knows how to deal with register arguments
2766 that are padded at the least significant end. */
2767 if (REG_P (data->entry_parm)
2768 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2769 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2770 == (BYTES_BIG_ENDIAN ? upward : downward)))
2771 return true;
2772 #endif
2773
2774 return false;
2775 }
2776
2777 /* A subroutine of assign_parms. Arrange for the parameter to be
2778 present and valid in DATA->STACK_RTL. */
2779
2780 static void
2781 assign_parm_setup_block (struct assign_parm_data_all *all,
2782 tree parm, struct assign_parm_data_one *data)
2783 {
2784 rtx entry_parm = data->entry_parm;
2785 rtx stack_parm = data->stack_parm;
2786 HOST_WIDE_INT size;
2787 HOST_WIDE_INT size_stored;
2788
2789 if (GET_CODE (entry_parm) == PARALLEL)
2790 entry_parm = emit_group_move_into_temps (entry_parm);
2791
2792 size = int_size_in_bytes (data->passed_type);
2793 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2794 if (stack_parm == 0)
2795 {
2796 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2797 stack_parm = assign_stack_local (BLKmode, size_stored,
2798 DECL_ALIGN (parm));
2799 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2800 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2801 set_mem_attributes (stack_parm, parm, 1);
2802 }
2803
2804 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2805 calls that pass values in multiple non-contiguous locations. */
2806 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2807 {
2808 rtx mem;
2809
2810 /* Note that we will be storing an integral number of words.
2811 So we have to be careful to ensure that we allocate an
2812 integral number of words. We do this above when we call
2813 assign_stack_local if space was not allocated in the argument
2814 list. If it was, this will not work if PARM_BOUNDARY is not
2815 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2816 if it becomes a problem. Exception is when BLKmode arrives
2817 with arguments not conforming to word_mode. */
2818
2819 if (data->stack_parm == 0)
2820 ;
2821 else if (GET_CODE (entry_parm) == PARALLEL)
2822 ;
2823 else
2824 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2825
2826 mem = validize_mem (stack_parm);
2827
2828 /* Handle values in multiple non-contiguous locations. */
2829 if (GET_CODE (entry_parm) == PARALLEL)
2830 {
2831 push_to_sequence2 (all->first_conversion_insn,
2832 all->last_conversion_insn);
2833 emit_group_store (mem, entry_parm, data->passed_type, size);
2834 all->first_conversion_insn = get_insns ();
2835 all->last_conversion_insn = get_last_insn ();
2836 end_sequence ();
2837 }
2838
2839 else if (size == 0)
2840 ;
2841
2842 /* If SIZE is that of a mode no bigger than a word, just use
2843 that mode's store operation. */
2844 else if (size <= UNITS_PER_WORD)
2845 {
2846 enum machine_mode mode
2847 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2848
2849 if (mode != BLKmode
2850 #ifdef BLOCK_REG_PADDING
2851 && (size == UNITS_PER_WORD
2852 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2853 != (BYTES_BIG_ENDIAN ? upward : downward)))
2854 #endif
2855 )
2856 {
2857 rtx reg;
2858
2859 /* We are really truncating a word_mode value containing
2860 SIZE bytes into a value of mode MODE. If such an
2861 operation requires no actual instructions, we can refer
2862 to the value directly in mode MODE, otherwise we must
2863 start with the register in word_mode and explicitly
2864 convert it. */
2865 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2866 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2867 else
2868 {
2869 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2870 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2871 }
2872 emit_move_insn (change_address (mem, mode, 0), reg);
2873 }
2874
2875 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2876 machine must be aligned to the left before storing
2877 to memory. Note that the previous test doesn't
2878 handle all cases (e.g. SIZE == 3). */
2879 else if (size != UNITS_PER_WORD
2880 #ifdef BLOCK_REG_PADDING
2881 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2882 == downward)
2883 #else
2884 && BYTES_BIG_ENDIAN
2885 #endif
2886 )
2887 {
2888 rtx tem, x;
2889 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2890 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2891
2892 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2893 tem = change_address (mem, word_mode, 0);
2894 emit_move_insn (tem, x);
2895 }
2896 else
2897 move_block_from_reg (REGNO (entry_parm), mem,
2898 size_stored / UNITS_PER_WORD);
2899 }
2900 else
2901 move_block_from_reg (REGNO (entry_parm), mem,
2902 size_stored / UNITS_PER_WORD);
2903 }
2904 else if (data->stack_parm == 0)
2905 {
2906 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2907 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2908 BLOCK_OP_NORMAL);
2909 all->first_conversion_insn = get_insns ();
2910 all->last_conversion_insn = get_last_insn ();
2911 end_sequence ();
2912 }
2913
2914 data->stack_parm = stack_parm;
2915 SET_DECL_RTL (parm, stack_parm);
2916 }
2917
2918 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2919 parameter. Get it there. Perform all ABI specified conversions. */
2920
2921 static void
2922 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2923 struct assign_parm_data_one *data)
2924 {
2925 rtx parmreg, validated_mem;
2926 rtx equiv_stack_parm;
2927 enum machine_mode promoted_nominal_mode;
2928 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2929 bool did_conversion = false;
2930 bool need_conversion, moved;
2931
2932 /* Store the parm in a pseudoregister during the function, but we may
2933 need to do it in a wider mode. Using 2 here makes the result
2934 consistent with promote_decl_mode and thus expand_expr_real_1. */
2935 promoted_nominal_mode
2936 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2937 TREE_TYPE (current_function_decl), 2);
2938
2939 parmreg = gen_reg_rtx (promoted_nominal_mode);
2940
2941 if (!DECL_ARTIFICIAL (parm))
2942 mark_user_reg (parmreg);
2943
2944 /* If this was an item that we received a pointer to,
2945 set DECL_RTL appropriately. */
2946 if (data->passed_pointer)
2947 {
2948 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2949 set_mem_attributes (x, parm, 1);
2950 SET_DECL_RTL (parm, x);
2951 }
2952 else
2953 SET_DECL_RTL (parm, parmreg);
2954
2955 assign_parm_remove_parallels (data);
2956
2957 /* Copy the value into the register, thus bridging between
2958 assign_parm_find_data_types and expand_expr_real_1. */
2959
2960 equiv_stack_parm = data->stack_parm;
2961 validated_mem = validize_mem (data->entry_parm);
2962
2963 need_conversion = (data->nominal_mode != data->passed_mode
2964 || promoted_nominal_mode != data->promoted_mode);
2965 moved = false;
2966
2967 if (need_conversion
2968 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2969 && data->nominal_mode == data->passed_mode
2970 && data->nominal_mode == GET_MODE (data->entry_parm))
2971 {
2972 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2973 mode, by the caller. We now have to convert it to
2974 NOMINAL_MODE, if different. However, PARMREG may be in
2975 a different mode than NOMINAL_MODE if it is being stored
2976 promoted.
2977
2978 If ENTRY_PARM is a hard register, it might be in a register
2979 not valid for operating in its mode (e.g., an odd-numbered
2980 register for a DFmode). In that case, moves are the only
2981 thing valid, so we can't do a convert from there. This
2982 occurs when the calling sequence allow such misaligned
2983 usages.
2984
2985 In addition, the conversion may involve a call, which could
2986 clobber parameters which haven't been copied to pseudo
2987 registers yet.
2988
2989 First, we try to emit an insn which performs the necessary
2990 conversion. We verify that this insn does not clobber any
2991 hard registers. */
2992
2993 enum insn_code icode;
2994 rtx op0, op1;
2995
2996 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
2997 unsignedp);
2998
2999 op0 = parmreg;
3000 op1 = validated_mem;
3001 if (icode != CODE_FOR_nothing
3002 && insn_operand_matches (icode, 0, op0)
3003 && insn_operand_matches (icode, 1, op1))
3004 {
3005 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3006 rtx insn, insns, t = op1;
3007 HARD_REG_SET hardregs;
3008
3009 start_sequence ();
3010 /* If op1 is a hard register that is likely spilled, first
3011 force it into a pseudo, otherwise combiner might extend
3012 its lifetime too much. */
3013 if (GET_CODE (t) == SUBREG)
3014 t = SUBREG_REG (t);
3015 if (REG_P (t)
3016 && HARD_REGISTER_P (t)
3017 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3018 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3019 {
3020 t = gen_reg_rtx (GET_MODE (op1));
3021 emit_move_insn (t, op1);
3022 }
3023 else
3024 t = op1;
3025 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3026 data->passed_mode, unsignedp);
3027 emit_insn (insn);
3028 insns = get_insns ();
3029
3030 moved = true;
3031 CLEAR_HARD_REG_SET (hardregs);
3032 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3033 {
3034 if (INSN_P (insn))
3035 note_stores (PATTERN (insn), record_hard_reg_sets,
3036 &hardregs);
3037 if (!hard_reg_set_empty_p (hardregs))
3038 moved = false;
3039 }
3040
3041 end_sequence ();
3042
3043 if (moved)
3044 {
3045 emit_insn (insns);
3046 if (equiv_stack_parm != NULL_RTX)
3047 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3048 equiv_stack_parm);
3049 }
3050 }
3051 }
3052
3053 if (moved)
3054 /* Nothing to do. */
3055 ;
3056 else if (need_conversion)
3057 {
3058 /* We did not have an insn to convert directly, or the sequence
3059 generated appeared unsafe. We must first copy the parm to a
3060 pseudo reg, and save the conversion until after all
3061 parameters have been moved. */
3062
3063 int save_tree_used;
3064 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3065
3066 emit_move_insn (tempreg, validated_mem);
3067
3068 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3069 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3070
3071 if (GET_CODE (tempreg) == SUBREG
3072 && GET_MODE (tempreg) == data->nominal_mode
3073 && REG_P (SUBREG_REG (tempreg))
3074 && data->nominal_mode == data->passed_mode
3075 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3076 && GET_MODE_SIZE (GET_MODE (tempreg))
3077 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3078 {
3079 /* The argument is already sign/zero extended, so note it
3080 into the subreg. */
3081 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3082 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3083 }
3084
3085 /* TREE_USED gets set erroneously during expand_assignment. */
3086 save_tree_used = TREE_USED (parm);
3087 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3088 TREE_USED (parm) = save_tree_used;
3089 all->first_conversion_insn = get_insns ();
3090 all->last_conversion_insn = get_last_insn ();
3091 end_sequence ();
3092
3093 did_conversion = true;
3094 }
3095 else
3096 emit_move_insn (parmreg, validated_mem);
3097
3098 /* If we were passed a pointer but the actual value can safely live
3099 in a register, retrieve it and use it directly. */
3100 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3101 {
3102 /* We can't use nominal_mode, because it will have been set to
3103 Pmode above. We must use the actual mode of the parm. */
3104 if (use_register_for_decl (parm))
3105 {
3106 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3107 mark_user_reg (parmreg);
3108 }
3109 else
3110 {
3111 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3112 TYPE_MODE (TREE_TYPE (parm)),
3113 TYPE_ALIGN (TREE_TYPE (parm)));
3114 parmreg
3115 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3116 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3117 align);
3118 set_mem_attributes (parmreg, parm, 1);
3119 }
3120
3121 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3122 {
3123 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3124 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3125
3126 push_to_sequence2 (all->first_conversion_insn,
3127 all->last_conversion_insn);
3128 emit_move_insn (tempreg, DECL_RTL (parm));
3129 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3130 emit_move_insn (parmreg, tempreg);
3131 all->first_conversion_insn = get_insns ();
3132 all->last_conversion_insn = get_last_insn ();
3133 end_sequence ();
3134
3135 did_conversion = true;
3136 }
3137 else
3138 emit_move_insn (parmreg, DECL_RTL (parm));
3139
3140 SET_DECL_RTL (parm, parmreg);
3141
3142 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3143 now the parm. */
3144 data->stack_parm = NULL;
3145 }
3146
3147 /* Mark the register as eliminable if we did no conversion and it was
3148 copied from memory at a fixed offset, and the arg pointer was not
3149 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3150 offset formed an invalid address, such memory-equivalences as we
3151 make here would screw up life analysis for it. */
3152 if (data->nominal_mode == data->passed_mode
3153 && !did_conversion
3154 && data->stack_parm != 0
3155 && MEM_P (data->stack_parm)
3156 && data->locate.offset.var == 0
3157 && reg_mentioned_p (virtual_incoming_args_rtx,
3158 XEXP (data->stack_parm, 0)))
3159 {
3160 rtx linsn = get_last_insn ();
3161 rtx sinsn, set;
3162
3163 /* Mark complex types separately. */
3164 if (GET_CODE (parmreg) == CONCAT)
3165 {
3166 enum machine_mode submode
3167 = GET_MODE_INNER (GET_MODE (parmreg));
3168 int regnor = REGNO (XEXP (parmreg, 0));
3169 int regnoi = REGNO (XEXP (parmreg, 1));
3170 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3171 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3172 GET_MODE_SIZE (submode));
3173
3174 /* Scan backwards for the set of the real and
3175 imaginary parts. */
3176 for (sinsn = linsn; sinsn != 0;
3177 sinsn = prev_nonnote_insn (sinsn))
3178 {
3179 set = single_set (sinsn);
3180 if (set == 0)
3181 continue;
3182
3183 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3184 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3185 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3186 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3187 }
3188 }
3189 else
3190 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3191 }
3192
3193 /* For pointer data type, suggest pointer register. */
3194 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3195 mark_reg_pointer (parmreg,
3196 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3197 }
3198
3199 /* A subroutine of assign_parms. Allocate stack space to hold the current
3200 parameter. Get it there. Perform all ABI specified conversions. */
3201
3202 static void
3203 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3204 struct assign_parm_data_one *data)
3205 {
3206 /* Value must be stored in the stack slot STACK_PARM during function
3207 execution. */
3208 bool to_conversion = false;
3209
3210 assign_parm_remove_parallels (data);
3211
3212 if (data->promoted_mode != data->nominal_mode)
3213 {
3214 /* Conversion is required. */
3215 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3216
3217 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3218
3219 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3220 to_conversion = true;
3221
3222 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3223 TYPE_UNSIGNED (TREE_TYPE (parm)));
3224
3225 if (data->stack_parm)
3226 {
3227 int offset = subreg_lowpart_offset (data->nominal_mode,
3228 GET_MODE (data->stack_parm));
3229 /* ??? This may need a big-endian conversion on sparc64. */
3230 data->stack_parm
3231 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3232 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3233 set_mem_offset (data->stack_parm,
3234 MEM_OFFSET (data->stack_parm) + offset);
3235 }
3236 }
3237
3238 if (data->entry_parm != data->stack_parm)
3239 {
3240 rtx src, dest;
3241
3242 if (data->stack_parm == 0)
3243 {
3244 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3245 GET_MODE (data->entry_parm),
3246 TYPE_ALIGN (data->passed_type));
3247 data->stack_parm
3248 = assign_stack_local (GET_MODE (data->entry_parm),
3249 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3250 align);
3251 set_mem_attributes (data->stack_parm, parm, 1);
3252 }
3253
3254 dest = validize_mem (data->stack_parm);
3255 src = validize_mem (data->entry_parm);
3256
3257 if (MEM_P (src))
3258 {
3259 /* Use a block move to handle potentially misaligned entry_parm. */
3260 if (!to_conversion)
3261 push_to_sequence2 (all->first_conversion_insn,
3262 all->last_conversion_insn);
3263 to_conversion = true;
3264
3265 emit_block_move (dest, src,
3266 GEN_INT (int_size_in_bytes (data->passed_type)),
3267 BLOCK_OP_NORMAL);
3268 }
3269 else
3270 emit_move_insn (dest, src);
3271 }
3272
3273 if (to_conversion)
3274 {
3275 all->first_conversion_insn = get_insns ();
3276 all->last_conversion_insn = get_last_insn ();
3277 end_sequence ();
3278 }
3279
3280 SET_DECL_RTL (parm, data->stack_parm);
3281 }
3282
3283 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3284 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3285
3286 static void
3287 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3288 vec<tree> fnargs)
3289 {
3290 tree parm;
3291 tree orig_fnargs = all->orig_fnargs;
3292 unsigned i = 0;
3293
3294 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3295 {
3296 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3297 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3298 {
3299 rtx tmp, real, imag;
3300 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3301
3302 real = DECL_RTL (fnargs[i]);
3303 imag = DECL_RTL (fnargs[i + 1]);
3304 if (inner != GET_MODE (real))
3305 {
3306 real = gen_lowpart_SUBREG (inner, real);
3307 imag = gen_lowpart_SUBREG (inner, imag);
3308 }
3309
3310 if (TREE_ADDRESSABLE (parm))
3311 {
3312 rtx rmem, imem;
3313 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3314 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3315 DECL_MODE (parm),
3316 TYPE_ALIGN (TREE_TYPE (parm)));
3317
3318 /* split_complex_arg put the real and imag parts in
3319 pseudos. Move them to memory. */
3320 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3321 set_mem_attributes (tmp, parm, 1);
3322 rmem = adjust_address_nv (tmp, inner, 0);
3323 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3324 push_to_sequence2 (all->first_conversion_insn,
3325 all->last_conversion_insn);
3326 emit_move_insn (rmem, real);
3327 emit_move_insn (imem, imag);
3328 all->first_conversion_insn = get_insns ();
3329 all->last_conversion_insn = get_last_insn ();
3330 end_sequence ();
3331 }
3332 else
3333 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3334 SET_DECL_RTL (parm, tmp);
3335
3336 real = DECL_INCOMING_RTL (fnargs[i]);
3337 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3338 if (inner != GET_MODE (real))
3339 {
3340 real = gen_lowpart_SUBREG (inner, real);
3341 imag = gen_lowpart_SUBREG (inner, imag);
3342 }
3343 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3344 set_decl_incoming_rtl (parm, tmp, false);
3345 i++;
3346 }
3347 }
3348 }
3349
3350 /* Assign RTL expressions to the function's parameters. This may involve
3351 copying them into registers and using those registers as the DECL_RTL. */
3352
3353 static void
3354 assign_parms (tree fndecl)
3355 {
3356 struct assign_parm_data_all all;
3357 tree parm;
3358 vec<tree> fnargs;
3359 unsigned i;
3360
3361 crtl->args.internal_arg_pointer
3362 = targetm.calls.internal_arg_pointer ();
3363
3364 assign_parms_initialize_all (&all);
3365 fnargs = assign_parms_augmented_arg_list (&all);
3366
3367 FOR_EACH_VEC_ELT (fnargs, i, parm)
3368 {
3369 struct assign_parm_data_one data;
3370
3371 /* Extract the type of PARM; adjust it according to ABI. */
3372 assign_parm_find_data_types (&all, parm, &data);
3373
3374 /* Early out for errors and void parameters. */
3375 if (data.passed_mode == VOIDmode)
3376 {
3377 SET_DECL_RTL (parm, const0_rtx);
3378 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3379 continue;
3380 }
3381
3382 /* Estimate stack alignment from parameter alignment. */
3383 if (SUPPORTS_STACK_ALIGNMENT)
3384 {
3385 unsigned int align
3386 = targetm.calls.function_arg_boundary (data.promoted_mode,
3387 data.passed_type);
3388 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3389 align);
3390 if (TYPE_ALIGN (data.nominal_type) > align)
3391 align = MINIMUM_ALIGNMENT (data.nominal_type,
3392 TYPE_MODE (data.nominal_type),
3393 TYPE_ALIGN (data.nominal_type));
3394 if (crtl->stack_alignment_estimated < align)
3395 {
3396 gcc_assert (!crtl->stack_realign_processed);
3397 crtl->stack_alignment_estimated = align;
3398 }
3399 }
3400
3401 if (cfun->stdarg && !DECL_CHAIN (parm))
3402 assign_parms_setup_varargs (&all, &data, false);
3403
3404 /* Find out where the parameter arrives in this function. */
3405 assign_parm_find_entry_rtl (&all, &data);
3406
3407 /* Find out where stack space for this parameter might be. */
3408 if (assign_parm_is_stack_parm (&all, &data))
3409 {
3410 assign_parm_find_stack_rtl (parm, &data);
3411 assign_parm_adjust_entry_rtl (&data);
3412 }
3413
3414 /* Record permanently how this parm was passed. */
3415 if (data.passed_pointer)
3416 {
3417 rtx incoming_rtl
3418 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3419 data.entry_parm);
3420 set_decl_incoming_rtl (parm, incoming_rtl, true);
3421 }
3422 else
3423 set_decl_incoming_rtl (parm, data.entry_parm, false);
3424
3425 /* Update info on where next arg arrives in registers. */
3426 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3427 data.passed_type, data.named_arg);
3428
3429 assign_parm_adjust_stack_rtl (&data);
3430
3431 if (assign_parm_setup_block_p (&data))
3432 assign_parm_setup_block (&all, parm, &data);
3433 else if (data.passed_pointer || use_register_for_decl (parm))
3434 assign_parm_setup_reg (&all, parm, &data);
3435 else
3436 assign_parm_setup_stack (&all, parm, &data);
3437 }
3438
3439 if (targetm.calls.split_complex_arg)
3440 assign_parms_unsplit_complex (&all, fnargs);
3441
3442 fnargs.release ();
3443
3444 /* Output all parameter conversion instructions (possibly including calls)
3445 now that all parameters have been copied out of hard registers. */
3446 emit_insn (all.first_conversion_insn);
3447
3448 /* Estimate reload stack alignment from scalar return mode. */
3449 if (SUPPORTS_STACK_ALIGNMENT)
3450 {
3451 if (DECL_RESULT (fndecl))
3452 {
3453 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3454 enum machine_mode mode = TYPE_MODE (type);
3455
3456 if (mode != BLKmode
3457 && mode != VOIDmode
3458 && !AGGREGATE_TYPE_P (type))
3459 {
3460 unsigned int align = GET_MODE_ALIGNMENT (mode);
3461 if (crtl->stack_alignment_estimated < align)
3462 {
3463 gcc_assert (!crtl->stack_realign_processed);
3464 crtl->stack_alignment_estimated = align;
3465 }
3466 }
3467 }
3468 }
3469
3470 /* If we are receiving a struct value address as the first argument, set up
3471 the RTL for the function result. As this might require code to convert
3472 the transmitted address to Pmode, we do this here to ensure that possible
3473 preliminary conversions of the address have been emitted already. */
3474 if (all.function_result_decl)
3475 {
3476 tree result = DECL_RESULT (current_function_decl);
3477 rtx addr = DECL_RTL (all.function_result_decl);
3478 rtx x;
3479
3480 if (DECL_BY_REFERENCE (result))
3481 {
3482 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3483 x = addr;
3484 }
3485 else
3486 {
3487 SET_DECL_VALUE_EXPR (result,
3488 build1 (INDIRECT_REF, TREE_TYPE (result),
3489 all.function_result_decl));
3490 addr = convert_memory_address (Pmode, addr);
3491 x = gen_rtx_MEM (DECL_MODE (result), addr);
3492 set_mem_attributes (x, result, 1);
3493 }
3494
3495 DECL_HAS_VALUE_EXPR_P (result) = 1;
3496
3497 SET_DECL_RTL (result, x);
3498 }
3499
3500 /* We have aligned all the args, so add space for the pretend args. */
3501 crtl->args.pretend_args_size = all.pretend_args_size;
3502 all.stack_args_size.constant += all.extra_pretend_bytes;
3503 crtl->args.size = all.stack_args_size.constant;
3504
3505 /* Adjust function incoming argument size for alignment and
3506 minimum length. */
3507
3508 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3509 crtl->args.size = CEIL_ROUND (crtl->args.size,
3510 PARM_BOUNDARY / BITS_PER_UNIT);
3511
3512 #ifdef ARGS_GROW_DOWNWARD
3513 crtl->args.arg_offset_rtx
3514 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3515 : expand_expr (size_diffop (all.stack_args_size.var,
3516 size_int (-all.stack_args_size.constant)),
3517 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3518 #else
3519 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3520 #endif
3521
3522 /* See how many bytes, if any, of its args a function should try to pop
3523 on return. */
3524
3525 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3526 TREE_TYPE (fndecl),
3527 crtl->args.size);
3528
3529 /* For stdarg.h function, save info about
3530 regs and stack space used by the named args. */
3531
3532 crtl->args.info = all.args_so_far_v;
3533
3534 /* Set the rtx used for the function return value. Put this in its
3535 own variable so any optimizers that need this information don't have
3536 to include tree.h. Do this here so it gets done when an inlined
3537 function gets output. */
3538
3539 crtl->return_rtx
3540 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3541 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3542
3543 /* If scalar return value was computed in a pseudo-reg, or was a named
3544 return value that got dumped to the stack, copy that to the hard
3545 return register. */
3546 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3547 {
3548 tree decl_result = DECL_RESULT (fndecl);
3549 rtx decl_rtl = DECL_RTL (decl_result);
3550
3551 if (REG_P (decl_rtl)
3552 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3553 : DECL_REGISTER (decl_result))
3554 {
3555 rtx real_decl_rtl;
3556
3557 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3558 fndecl, true);
3559 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3560 /* The delay slot scheduler assumes that crtl->return_rtx
3561 holds the hard register containing the return value, not a
3562 temporary pseudo. */
3563 crtl->return_rtx = real_decl_rtl;
3564 }
3565 }
3566 }
3567
3568 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3569 For all seen types, gimplify their sizes. */
3570
3571 static tree
3572 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3573 {
3574 tree t = *tp;
3575
3576 *walk_subtrees = 0;
3577 if (TYPE_P (t))
3578 {
3579 if (POINTER_TYPE_P (t))
3580 *walk_subtrees = 1;
3581 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3582 && !TYPE_SIZES_GIMPLIFIED (t))
3583 {
3584 gimplify_type_sizes (t, (gimple_seq *) data);
3585 *walk_subtrees = 1;
3586 }
3587 }
3588
3589 return NULL;
3590 }
3591
3592 /* Gimplify the parameter list for current_function_decl. This involves
3593 evaluating SAVE_EXPRs of variable sized parameters and generating code
3594 to implement callee-copies reference parameters. Returns a sequence of
3595 statements to add to the beginning of the function. */
3596
3597 gimple_seq
3598 gimplify_parameters (void)
3599 {
3600 struct assign_parm_data_all all;
3601 tree parm;
3602 gimple_seq stmts = NULL;
3603 vec<tree> fnargs;
3604 unsigned i;
3605
3606 assign_parms_initialize_all (&all);
3607 fnargs = assign_parms_augmented_arg_list (&all);
3608
3609 FOR_EACH_VEC_ELT (fnargs, i, parm)
3610 {
3611 struct assign_parm_data_one data;
3612
3613 /* Extract the type of PARM; adjust it according to ABI. */
3614 assign_parm_find_data_types (&all, parm, &data);
3615
3616 /* Early out for errors and void parameters. */
3617 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3618 continue;
3619
3620 /* Update info on where next arg arrives in registers. */
3621 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3622 data.passed_type, data.named_arg);
3623
3624 /* ??? Once upon a time variable_size stuffed parameter list
3625 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3626 turned out to be less than manageable in the gimple world.
3627 Now we have to hunt them down ourselves. */
3628 walk_tree_without_duplicates (&data.passed_type,
3629 gimplify_parm_type, &stmts);
3630
3631 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3632 {
3633 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3634 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3635 }
3636
3637 if (data.passed_pointer)
3638 {
3639 tree type = TREE_TYPE (data.passed_type);
3640 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3641 type, data.named_arg))
3642 {
3643 tree local, t;
3644
3645 /* For constant-sized objects, this is trivial; for
3646 variable-sized objects, we have to play games. */
3647 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3648 && !(flag_stack_check == GENERIC_STACK_CHECK
3649 && compare_tree_int (DECL_SIZE_UNIT (parm),
3650 STACK_CHECK_MAX_VAR_SIZE) > 0))
3651 {
3652 local = create_tmp_var (type, get_name (parm));
3653 DECL_IGNORED_P (local) = 0;
3654 /* If PARM was addressable, move that flag over
3655 to the local copy, as its address will be taken,
3656 not the PARMs. Keep the parms address taken
3657 as we'll query that flag during gimplification. */
3658 if (TREE_ADDRESSABLE (parm))
3659 TREE_ADDRESSABLE (local) = 1;
3660 else if (TREE_CODE (type) == COMPLEX_TYPE
3661 || TREE_CODE (type) == VECTOR_TYPE)
3662 DECL_GIMPLE_REG_P (local) = 1;
3663 }
3664 else
3665 {
3666 tree ptr_type, addr;
3667
3668 ptr_type = build_pointer_type (type);
3669 addr = create_tmp_reg (ptr_type, get_name (parm));
3670 DECL_IGNORED_P (addr) = 0;
3671 local = build_fold_indirect_ref (addr);
3672
3673 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3674 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3675 size_int (DECL_ALIGN (parm)));
3676
3677 /* The call has been built for a variable-sized object. */
3678 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3679 t = fold_convert (ptr_type, t);
3680 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3681 gimplify_and_add (t, &stmts);
3682 }
3683
3684 gimplify_assign (local, parm, &stmts);
3685
3686 SET_DECL_VALUE_EXPR (parm, local);
3687 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3688 }
3689 }
3690 }
3691
3692 fnargs.release ();
3693
3694 return stmts;
3695 }
3696 \f
3697 /* Compute the size and offset from the start of the stacked arguments for a
3698 parm passed in mode PASSED_MODE and with type TYPE.
3699
3700 INITIAL_OFFSET_PTR points to the current offset into the stacked
3701 arguments.
3702
3703 The starting offset and size for this parm are returned in
3704 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3705 nonzero, the offset is that of stack slot, which is returned in
3706 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3707 padding required from the initial offset ptr to the stack slot.
3708
3709 IN_REGS is nonzero if the argument will be passed in registers. It will
3710 never be set if REG_PARM_STACK_SPACE is not defined.
3711
3712 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3713 for arguments which are passed in registers.
3714
3715 FNDECL is the function in which the argument was defined.
3716
3717 There are two types of rounding that are done. The first, controlled by
3718 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3719 argument list to be aligned to the specific boundary (in bits). This
3720 rounding affects the initial and starting offsets, but not the argument
3721 size.
3722
3723 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3724 optionally rounds the size of the parm to PARM_BOUNDARY. The
3725 initial offset is not affected by this rounding, while the size always
3726 is and the starting offset may be. */
3727
3728 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3729 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3730 callers pass in the total size of args so far as
3731 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3732
3733 void
3734 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3735 int reg_parm_stack_space, int partial,
3736 tree fndecl ATTRIBUTE_UNUSED,
3737 struct args_size *initial_offset_ptr,
3738 struct locate_and_pad_arg_data *locate)
3739 {
3740 tree sizetree;
3741 enum direction where_pad;
3742 unsigned int boundary, round_boundary;
3743 int part_size_in_regs;
3744
3745 /* If we have found a stack parm before we reach the end of the
3746 area reserved for registers, skip that area. */
3747 if (! in_regs)
3748 {
3749 if (reg_parm_stack_space > 0)
3750 {
3751 if (initial_offset_ptr->var)
3752 {
3753 initial_offset_ptr->var
3754 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3755 ssize_int (reg_parm_stack_space));
3756 initial_offset_ptr->constant = 0;
3757 }
3758 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3759 initial_offset_ptr->constant = reg_parm_stack_space;
3760 }
3761 }
3762
3763 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3764
3765 sizetree
3766 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3767 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3768 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3769 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3770 type);
3771 locate->where_pad = where_pad;
3772
3773 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3774 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3775 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3776
3777 locate->boundary = boundary;
3778
3779 if (SUPPORTS_STACK_ALIGNMENT)
3780 {
3781 /* stack_alignment_estimated can't change after stack has been
3782 realigned. */
3783 if (crtl->stack_alignment_estimated < boundary)
3784 {
3785 if (!crtl->stack_realign_processed)
3786 crtl->stack_alignment_estimated = boundary;
3787 else
3788 {
3789 /* If stack is realigned and stack alignment value
3790 hasn't been finalized, it is OK not to increase
3791 stack_alignment_estimated. The bigger alignment
3792 requirement is recorded in stack_alignment_needed
3793 below. */
3794 gcc_assert (!crtl->stack_realign_finalized
3795 && crtl->stack_realign_needed);
3796 }
3797 }
3798 }
3799
3800 /* Remember if the outgoing parameter requires extra alignment on the
3801 calling function side. */
3802 if (crtl->stack_alignment_needed < boundary)
3803 crtl->stack_alignment_needed = boundary;
3804 if (crtl->preferred_stack_boundary < boundary)
3805 crtl->preferred_stack_boundary = boundary;
3806
3807 #ifdef ARGS_GROW_DOWNWARD
3808 locate->slot_offset.constant = -initial_offset_ptr->constant;
3809 if (initial_offset_ptr->var)
3810 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3811 initial_offset_ptr->var);
3812
3813 {
3814 tree s2 = sizetree;
3815 if (where_pad != none
3816 && (!tree_fits_uhwi_p (sizetree)
3817 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3818 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3819 SUB_PARM_SIZE (locate->slot_offset, s2);
3820 }
3821
3822 locate->slot_offset.constant += part_size_in_regs;
3823
3824 if (!in_regs || reg_parm_stack_space > 0)
3825 pad_to_arg_alignment (&locate->slot_offset, boundary,
3826 &locate->alignment_pad);
3827
3828 locate->size.constant = (-initial_offset_ptr->constant
3829 - locate->slot_offset.constant);
3830 if (initial_offset_ptr->var)
3831 locate->size.var = size_binop (MINUS_EXPR,
3832 size_binop (MINUS_EXPR,
3833 ssize_int (0),
3834 initial_offset_ptr->var),
3835 locate->slot_offset.var);
3836
3837 /* Pad_below needs the pre-rounded size to know how much to pad
3838 below. */
3839 locate->offset = locate->slot_offset;
3840 if (where_pad == downward)
3841 pad_below (&locate->offset, passed_mode, sizetree);
3842
3843 #else /* !ARGS_GROW_DOWNWARD */
3844 if (!in_regs || reg_parm_stack_space > 0)
3845 pad_to_arg_alignment (initial_offset_ptr, boundary,
3846 &locate->alignment_pad);
3847 locate->slot_offset = *initial_offset_ptr;
3848
3849 #ifdef PUSH_ROUNDING
3850 if (passed_mode != BLKmode)
3851 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3852 #endif
3853
3854 /* Pad_below needs the pre-rounded size to know how much to pad below
3855 so this must be done before rounding up. */
3856 locate->offset = locate->slot_offset;
3857 if (where_pad == downward)
3858 pad_below (&locate->offset, passed_mode, sizetree);
3859
3860 if (where_pad != none
3861 && (!tree_fits_uhwi_p (sizetree)
3862 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
3863 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3864
3865 ADD_PARM_SIZE (locate->size, sizetree);
3866
3867 locate->size.constant -= part_size_in_regs;
3868 #endif /* ARGS_GROW_DOWNWARD */
3869
3870 #ifdef FUNCTION_ARG_OFFSET
3871 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3872 #endif
3873 }
3874
3875 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3876 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3877
3878 static void
3879 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3880 struct args_size *alignment_pad)
3881 {
3882 tree save_var = NULL_TREE;
3883 HOST_WIDE_INT save_constant = 0;
3884 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3885 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3886
3887 #ifdef SPARC_STACK_BOUNDARY_HACK
3888 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3889 the real alignment of %sp. However, when it does this, the
3890 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3891 if (SPARC_STACK_BOUNDARY_HACK)
3892 sp_offset = 0;
3893 #endif
3894
3895 if (boundary > PARM_BOUNDARY)
3896 {
3897 save_var = offset_ptr->var;
3898 save_constant = offset_ptr->constant;
3899 }
3900
3901 alignment_pad->var = NULL_TREE;
3902 alignment_pad->constant = 0;
3903
3904 if (boundary > BITS_PER_UNIT)
3905 {
3906 if (offset_ptr->var)
3907 {
3908 tree sp_offset_tree = ssize_int (sp_offset);
3909 tree offset = size_binop (PLUS_EXPR,
3910 ARGS_SIZE_TREE (*offset_ptr),
3911 sp_offset_tree);
3912 #ifdef ARGS_GROW_DOWNWARD
3913 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3914 #else
3915 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3916 #endif
3917
3918 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3919 /* ARGS_SIZE_TREE includes constant term. */
3920 offset_ptr->constant = 0;
3921 if (boundary > PARM_BOUNDARY)
3922 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3923 save_var);
3924 }
3925 else
3926 {
3927 offset_ptr->constant = -sp_offset +
3928 #ifdef ARGS_GROW_DOWNWARD
3929 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3930 #else
3931 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3932 #endif
3933 if (boundary > PARM_BOUNDARY)
3934 alignment_pad->constant = offset_ptr->constant - save_constant;
3935 }
3936 }
3937 }
3938
3939 static void
3940 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3941 {
3942 if (passed_mode != BLKmode)
3943 {
3944 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3945 offset_ptr->constant
3946 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3947 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3948 - GET_MODE_SIZE (passed_mode));
3949 }
3950 else
3951 {
3952 if (TREE_CODE (sizetree) != INTEGER_CST
3953 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3954 {
3955 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3956 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3957 /* Add it in. */
3958 ADD_PARM_SIZE (*offset_ptr, s2);
3959 SUB_PARM_SIZE (*offset_ptr, sizetree);
3960 }
3961 }
3962 }
3963 \f
3964
3965 /* True if register REGNO was alive at a place where `setjmp' was
3966 called and was set more than once or is an argument. Such regs may
3967 be clobbered by `longjmp'. */
3968
3969 static bool
3970 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3971 {
3972 /* There appear to be cases where some local vars never reach the
3973 backend but have bogus regnos. */
3974 if (regno >= max_reg_num ())
3975 return false;
3976
3977 return ((REG_N_SETS (regno) > 1
3978 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
3979 regno))
3980 && REGNO_REG_SET_P (setjmp_crosses, regno));
3981 }
3982
3983 /* Walk the tree of blocks describing the binding levels within a
3984 function and warn about variables the might be killed by setjmp or
3985 vfork. This is done after calling flow_analysis before register
3986 allocation since that will clobber the pseudo-regs to hard
3987 regs. */
3988
3989 static void
3990 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3991 {
3992 tree decl, sub;
3993
3994 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
3995 {
3996 if (TREE_CODE (decl) == VAR_DECL
3997 && DECL_RTL_SET_P (decl)
3998 && REG_P (DECL_RTL (decl))
3999 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4000 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4001 " %<longjmp%> or %<vfork%>", decl);
4002 }
4003
4004 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4005 setjmp_vars_warning (setjmp_crosses, sub);
4006 }
4007
4008 /* Do the appropriate part of setjmp_vars_warning
4009 but for arguments instead of local variables. */
4010
4011 static void
4012 setjmp_args_warning (bitmap setjmp_crosses)
4013 {
4014 tree decl;
4015 for (decl = DECL_ARGUMENTS (current_function_decl);
4016 decl; decl = DECL_CHAIN (decl))
4017 if (DECL_RTL (decl) != 0
4018 && REG_P (DECL_RTL (decl))
4019 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4020 warning (OPT_Wclobbered,
4021 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4022 decl);
4023 }
4024
4025 /* Generate warning messages for variables live across setjmp. */
4026
4027 void
4028 generate_setjmp_warnings (void)
4029 {
4030 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4031
4032 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4033 || bitmap_empty_p (setjmp_crosses))
4034 return;
4035
4036 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4037 setjmp_args_warning (setjmp_crosses);
4038 }
4039
4040 \f
4041 /* Reverse the order of elements in the fragment chain T of blocks,
4042 and return the new head of the chain (old last element).
4043 In addition to that clear BLOCK_SAME_RANGE flags when needed
4044 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4045 its super fragment origin. */
4046
4047 static tree
4048 block_fragments_nreverse (tree t)
4049 {
4050 tree prev = 0, block, next, prev_super = 0;
4051 tree super = BLOCK_SUPERCONTEXT (t);
4052 if (BLOCK_FRAGMENT_ORIGIN (super))
4053 super = BLOCK_FRAGMENT_ORIGIN (super);
4054 for (block = t; block; block = next)
4055 {
4056 next = BLOCK_FRAGMENT_CHAIN (block);
4057 BLOCK_FRAGMENT_CHAIN (block) = prev;
4058 if ((prev && !BLOCK_SAME_RANGE (prev))
4059 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4060 != prev_super))
4061 BLOCK_SAME_RANGE (block) = 0;
4062 prev_super = BLOCK_SUPERCONTEXT (block);
4063 BLOCK_SUPERCONTEXT (block) = super;
4064 prev = block;
4065 }
4066 t = BLOCK_FRAGMENT_ORIGIN (t);
4067 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4068 != prev_super)
4069 BLOCK_SAME_RANGE (t) = 0;
4070 BLOCK_SUPERCONTEXT (t) = super;
4071 return prev;
4072 }
4073
4074 /* Reverse the order of elements in the chain T of blocks,
4075 and return the new head of the chain (old last element).
4076 Also do the same on subblocks and reverse the order of elements
4077 in BLOCK_FRAGMENT_CHAIN as well. */
4078
4079 static tree
4080 blocks_nreverse_all (tree t)
4081 {
4082 tree prev = 0, block, next;
4083 for (block = t; block; block = next)
4084 {
4085 next = BLOCK_CHAIN (block);
4086 BLOCK_CHAIN (block) = prev;
4087 if (BLOCK_FRAGMENT_CHAIN (block)
4088 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4089 {
4090 BLOCK_FRAGMENT_CHAIN (block)
4091 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4092 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4093 BLOCK_SAME_RANGE (block) = 0;
4094 }
4095 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4096 prev = block;
4097 }
4098 return prev;
4099 }
4100
4101
4102 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4103 and create duplicate blocks. */
4104 /* ??? Need an option to either create block fragments or to create
4105 abstract origin duplicates of a source block. It really depends
4106 on what optimization has been performed. */
4107
4108 void
4109 reorder_blocks (void)
4110 {
4111 tree block = DECL_INITIAL (current_function_decl);
4112
4113 if (block == NULL_TREE)
4114 return;
4115
4116 auto_vec<tree, 10> block_stack;
4117
4118 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4119 clear_block_marks (block);
4120
4121 /* Prune the old trees away, so that they don't get in the way. */
4122 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4123 BLOCK_CHAIN (block) = NULL_TREE;
4124
4125 /* Recreate the block tree from the note nesting. */
4126 reorder_blocks_1 (get_insns (), block, &block_stack);
4127 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4128 }
4129
4130 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4131
4132 void
4133 clear_block_marks (tree block)
4134 {
4135 while (block)
4136 {
4137 TREE_ASM_WRITTEN (block) = 0;
4138 clear_block_marks (BLOCK_SUBBLOCKS (block));
4139 block = BLOCK_CHAIN (block);
4140 }
4141 }
4142
4143 static void
4144 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4145 {
4146 rtx insn;
4147 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4148
4149 for (insn = insns; insn; insn = NEXT_INSN (insn))
4150 {
4151 if (NOTE_P (insn))
4152 {
4153 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4154 {
4155 tree block = NOTE_BLOCK (insn);
4156 tree origin;
4157
4158 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4159 origin = block;
4160
4161 if (prev_end)
4162 BLOCK_SAME_RANGE (prev_end) = 0;
4163 prev_end = NULL_TREE;
4164
4165 /* If we have seen this block before, that means it now
4166 spans multiple address regions. Create a new fragment. */
4167 if (TREE_ASM_WRITTEN (block))
4168 {
4169 tree new_block = copy_node (block);
4170
4171 BLOCK_SAME_RANGE (new_block) = 0;
4172 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4173 BLOCK_FRAGMENT_CHAIN (new_block)
4174 = BLOCK_FRAGMENT_CHAIN (origin);
4175 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4176
4177 NOTE_BLOCK (insn) = new_block;
4178 block = new_block;
4179 }
4180
4181 if (prev_beg == current_block && prev_beg)
4182 BLOCK_SAME_RANGE (block) = 1;
4183
4184 prev_beg = origin;
4185
4186 BLOCK_SUBBLOCKS (block) = 0;
4187 TREE_ASM_WRITTEN (block) = 1;
4188 /* When there's only one block for the entire function,
4189 current_block == block and we mustn't do this, it
4190 will cause infinite recursion. */
4191 if (block != current_block)
4192 {
4193 tree super;
4194 if (block != origin)
4195 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4196 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4197 (origin))
4198 == current_block);
4199 if (p_block_stack->is_empty ())
4200 super = current_block;
4201 else
4202 {
4203 super = p_block_stack->last ();
4204 gcc_assert (super == current_block
4205 || BLOCK_FRAGMENT_ORIGIN (super)
4206 == current_block);
4207 }
4208 BLOCK_SUPERCONTEXT (block) = super;
4209 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4210 BLOCK_SUBBLOCKS (current_block) = block;
4211 current_block = origin;
4212 }
4213 p_block_stack->safe_push (block);
4214 }
4215 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4216 {
4217 NOTE_BLOCK (insn) = p_block_stack->pop ();
4218 current_block = BLOCK_SUPERCONTEXT (current_block);
4219 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4220 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4221 prev_beg = NULL_TREE;
4222 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4223 ? NOTE_BLOCK (insn) : NULL_TREE;
4224 }
4225 }
4226 else
4227 {
4228 prev_beg = NULL_TREE;
4229 if (prev_end)
4230 BLOCK_SAME_RANGE (prev_end) = 0;
4231 prev_end = NULL_TREE;
4232 }
4233 }
4234 }
4235
4236 /* Reverse the order of elements in the chain T of blocks,
4237 and return the new head of the chain (old last element). */
4238
4239 tree
4240 blocks_nreverse (tree t)
4241 {
4242 tree prev = 0, block, next;
4243 for (block = t; block; block = next)
4244 {
4245 next = BLOCK_CHAIN (block);
4246 BLOCK_CHAIN (block) = prev;
4247 prev = block;
4248 }
4249 return prev;
4250 }
4251
4252 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4253 by modifying the last node in chain 1 to point to chain 2. */
4254
4255 tree
4256 block_chainon (tree op1, tree op2)
4257 {
4258 tree t1;
4259
4260 if (!op1)
4261 return op2;
4262 if (!op2)
4263 return op1;
4264
4265 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4266 continue;
4267 BLOCK_CHAIN (t1) = op2;
4268
4269 #ifdef ENABLE_TREE_CHECKING
4270 {
4271 tree t2;
4272 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4273 gcc_assert (t2 != t1);
4274 }
4275 #endif
4276
4277 return op1;
4278 }
4279
4280 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4281 non-NULL, list them all into VECTOR, in a depth-first preorder
4282 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4283 blocks. */
4284
4285 static int
4286 all_blocks (tree block, tree *vector)
4287 {
4288 int n_blocks = 0;
4289
4290 while (block)
4291 {
4292 TREE_ASM_WRITTEN (block) = 0;
4293
4294 /* Record this block. */
4295 if (vector)
4296 vector[n_blocks] = block;
4297
4298 ++n_blocks;
4299
4300 /* Record the subblocks, and their subblocks... */
4301 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4302 vector ? vector + n_blocks : 0);
4303 block = BLOCK_CHAIN (block);
4304 }
4305
4306 return n_blocks;
4307 }
4308
4309 /* Return a vector containing all the blocks rooted at BLOCK. The
4310 number of elements in the vector is stored in N_BLOCKS_P. The
4311 vector is dynamically allocated; it is the caller's responsibility
4312 to call `free' on the pointer returned. */
4313
4314 static tree *
4315 get_block_vector (tree block, int *n_blocks_p)
4316 {
4317 tree *block_vector;
4318
4319 *n_blocks_p = all_blocks (block, NULL);
4320 block_vector = XNEWVEC (tree, *n_blocks_p);
4321 all_blocks (block, block_vector);
4322
4323 return block_vector;
4324 }
4325
4326 static GTY(()) int next_block_index = 2;
4327
4328 /* Set BLOCK_NUMBER for all the blocks in FN. */
4329
4330 void
4331 number_blocks (tree fn)
4332 {
4333 int i;
4334 int n_blocks;
4335 tree *block_vector;
4336
4337 /* For SDB and XCOFF debugging output, we start numbering the blocks
4338 from 1 within each function, rather than keeping a running
4339 count. */
4340 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4341 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4342 next_block_index = 1;
4343 #endif
4344
4345 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4346
4347 /* The top-level BLOCK isn't numbered at all. */
4348 for (i = 1; i < n_blocks; ++i)
4349 /* We number the blocks from two. */
4350 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4351
4352 free (block_vector);
4353
4354 return;
4355 }
4356
4357 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4358
4359 DEBUG_FUNCTION tree
4360 debug_find_var_in_block_tree (tree var, tree block)
4361 {
4362 tree t;
4363
4364 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4365 if (t == var)
4366 return block;
4367
4368 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4369 {
4370 tree ret = debug_find_var_in_block_tree (var, t);
4371 if (ret)
4372 return ret;
4373 }
4374
4375 return NULL_TREE;
4376 }
4377 \f
4378 /* Keep track of whether we're in a dummy function context. If we are,
4379 we don't want to invoke the set_current_function hook, because we'll
4380 get into trouble if the hook calls target_reinit () recursively or
4381 when the initial initialization is not yet complete. */
4382
4383 static bool in_dummy_function;
4384
4385 /* Invoke the target hook when setting cfun. Update the optimization options
4386 if the function uses different options than the default. */
4387
4388 static void
4389 invoke_set_current_function_hook (tree fndecl)
4390 {
4391 if (!in_dummy_function)
4392 {
4393 tree opts = ((fndecl)
4394 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4395 : optimization_default_node);
4396
4397 if (!opts)
4398 opts = optimization_default_node;
4399
4400 /* Change optimization options if needed. */
4401 if (optimization_current_node != opts)
4402 {
4403 optimization_current_node = opts;
4404 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4405 }
4406
4407 targetm.set_current_function (fndecl);
4408 this_fn_optabs = this_target_optabs;
4409
4410 if (opts != optimization_default_node)
4411 {
4412 init_tree_optimization_optabs (opts);
4413 if (TREE_OPTIMIZATION_OPTABS (opts))
4414 this_fn_optabs = (struct target_optabs *)
4415 TREE_OPTIMIZATION_OPTABS (opts);
4416 }
4417 }
4418 }
4419
4420 /* cfun should never be set directly; use this function. */
4421
4422 void
4423 set_cfun (struct function *new_cfun)
4424 {
4425 if (cfun != new_cfun)
4426 {
4427 cfun = new_cfun;
4428 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4429 }
4430 }
4431
4432 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4433
4434 static vec<function_p> cfun_stack;
4435
4436 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4437 current_function_decl accordingly. */
4438
4439 void
4440 push_cfun (struct function *new_cfun)
4441 {
4442 gcc_assert ((!cfun && !current_function_decl)
4443 || (cfun && current_function_decl == cfun->decl));
4444 cfun_stack.safe_push (cfun);
4445 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4446 set_cfun (new_cfun);
4447 }
4448
4449 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4450
4451 void
4452 pop_cfun (void)
4453 {
4454 struct function *new_cfun = cfun_stack.pop ();
4455 /* When in_dummy_function, we do have a cfun but current_function_decl is
4456 NULL. We also allow pushing NULL cfun and subsequently changing
4457 current_function_decl to something else and have both restored by
4458 pop_cfun. */
4459 gcc_checking_assert (in_dummy_function
4460 || !cfun
4461 || current_function_decl == cfun->decl);
4462 set_cfun (new_cfun);
4463 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4464 }
4465
4466 /* Return value of funcdef and increase it. */
4467 int
4468 get_next_funcdef_no (void)
4469 {
4470 return funcdef_no++;
4471 }
4472
4473 /* Return value of funcdef. */
4474 int
4475 get_last_funcdef_no (void)
4476 {
4477 return funcdef_no;
4478 }
4479
4480 /* Allocate a function structure for FNDECL and set its contents
4481 to the defaults. Set cfun to the newly-allocated object.
4482 Some of the helper functions invoked during initialization assume
4483 that cfun has already been set. Therefore, assign the new object
4484 directly into cfun and invoke the back end hook explicitly at the
4485 very end, rather than initializing a temporary and calling set_cfun
4486 on it.
4487
4488 ABSTRACT_P is true if this is a function that will never be seen by
4489 the middle-end. Such functions are front-end concepts (like C++
4490 function templates) that do not correspond directly to functions
4491 placed in object files. */
4492
4493 void
4494 allocate_struct_function (tree fndecl, bool abstract_p)
4495 {
4496 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4497
4498 cfun = ggc_alloc_cleared_function ();
4499
4500 init_eh_for_function ();
4501
4502 if (init_machine_status)
4503 cfun->machine = (*init_machine_status) ();
4504
4505 #ifdef OVERRIDE_ABI_FORMAT
4506 OVERRIDE_ABI_FORMAT (fndecl);
4507 #endif
4508
4509 if (fndecl != NULL_TREE)
4510 {
4511 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4512 cfun->decl = fndecl;
4513 current_function_funcdef_no = get_next_funcdef_no ();
4514 }
4515
4516 invoke_set_current_function_hook (fndecl);
4517
4518 if (fndecl != NULL_TREE)
4519 {
4520 tree result = DECL_RESULT (fndecl);
4521 if (!abstract_p && aggregate_value_p (result, fndecl))
4522 {
4523 #ifdef PCC_STATIC_STRUCT_RETURN
4524 cfun->returns_pcc_struct = 1;
4525 #endif
4526 cfun->returns_struct = 1;
4527 }
4528
4529 cfun->stdarg = stdarg_p (fntype);
4530
4531 /* Assume all registers in stdarg functions need to be saved. */
4532 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4533 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4534
4535 /* ??? This could be set on a per-function basis by the front-end
4536 but is this worth the hassle? */
4537 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4538 }
4539 }
4540
4541 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4542 instead of just setting it. */
4543
4544 void
4545 push_struct_function (tree fndecl)
4546 {
4547 /* When in_dummy_function we might be in the middle of a pop_cfun and
4548 current_function_decl and cfun may not match. */
4549 gcc_assert (in_dummy_function
4550 || (!cfun && !current_function_decl)
4551 || (cfun && current_function_decl == cfun->decl));
4552 cfun_stack.safe_push (cfun);
4553 current_function_decl = fndecl;
4554 allocate_struct_function (fndecl, false);
4555 }
4556
4557 /* Reset crtl and other non-struct-function variables to defaults as
4558 appropriate for emitting rtl at the start of a function. */
4559
4560 static void
4561 prepare_function_start (void)
4562 {
4563 gcc_assert (!crtl->emit.x_last_insn);
4564 init_temp_slots ();
4565 init_emit ();
4566 init_varasm_status ();
4567 init_expr ();
4568 default_rtl_profile ();
4569
4570 if (flag_stack_usage_info)
4571 {
4572 cfun->su = ggc_alloc_cleared_stack_usage ();
4573 cfun->su->static_stack_size = -1;
4574 }
4575
4576 cse_not_expected = ! optimize;
4577
4578 /* Caller save not needed yet. */
4579 caller_save_needed = 0;
4580
4581 /* We haven't done register allocation yet. */
4582 reg_renumber = 0;
4583
4584 /* Indicate that we have not instantiated virtual registers yet. */
4585 virtuals_instantiated = 0;
4586
4587 /* Indicate that we want CONCATs now. */
4588 generating_concat_p = 1;
4589
4590 /* Indicate we have no need of a frame pointer yet. */
4591 frame_pointer_needed = 0;
4592 }
4593
4594 /* Initialize the rtl expansion mechanism so that we can do simple things
4595 like generate sequences. This is used to provide a context during global
4596 initialization of some passes. You must call expand_dummy_function_end
4597 to exit this context. */
4598
4599 void
4600 init_dummy_function_start (void)
4601 {
4602 gcc_assert (!in_dummy_function);
4603 in_dummy_function = true;
4604 push_struct_function (NULL_TREE);
4605 prepare_function_start ();
4606 }
4607
4608 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4609 and initialize static variables for generating RTL for the statements
4610 of the function. */
4611
4612 void
4613 init_function_start (tree subr)
4614 {
4615 if (subr && DECL_STRUCT_FUNCTION (subr))
4616 set_cfun (DECL_STRUCT_FUNCTION (subr));
4617 else
4618 allocate_struct_function (subr, false);
4619 prepare_function_start ();
4620 decide_function_section (subr);
4621
4622 /* Warn if this value is an aggregate type,
4623 regardless of which calling convention we are using for it. */
4624 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4625 warning (OPT_Waggregate_return, "function returns an aggregate");
4626 }
4627
4628 /* Expand code to verify the stack_protect_guard. This is invoked at
4629 the end of a function to be protected. */
4630
4631 #ifndef HAVE_stack_protect_test
4632 # define HAVE_stack_protect_test 0
4633 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4634 #endif
4635
4636 void
4637 stack_protect_epilogue (void)
4638 {
4639 tree guard_decl = targetm.stack_protect_guard ();
4640 rtx label = gen_label_rtx ();
4641 rtx x, y, tmp;
4642
4643 x = expand_normal (crtl->stack_protect_guard);
4644 y = expand_normal (guard_decl);
4645
4646 /* Allow the target to compare Y with X without leaking either into
4647 a register. */
4648 switch (HAVE_stack_protect_test != 0)
4649 {
4650 case 1:
4651 tmp = gen_stack_protect_test (x, y, label);
4652 if (tmp)
4653 {
4654 emit_insn (tmp);
4655 break;
4656 }
4657 /* FALLTHRU */
4658
4659 default:
4660 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4661 break;
4662 }
4663
4664 /* The noreturn predictor has been moved to the tree level. The rtl-level
4665 predictors estimate this branch about 20%, which isn't enough to get
4666 things moved out of line. Since this is the only extant case of adding
4667 a noreturn function at the rtl level, it doesn't seem worth doing ought
4668 except adding the prediction by hand. */
4669 tmp = get_last_insn ();
4670 if (JUMP_P (tmp))
4671 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4672
4673 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4674 free_temp_slots ();
4675 emit_label (label);
4676 }
4677 \f
4678 /* Start the RTL for a new function, and set variables used for
4679 emitting RTL.
4680 SUBR is the FUNCTION_DECL node.
4681 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4682 the function's parameters, which must be run at any return statement. */
4683
4684 void
4685 expand_function_start (tree subr)
4686 {
4687 /* Make sure volatile mem refs aren't considered
4688 valid operands of arithmetic insns. */
4689 init_recog_no_volatile ();
4690
4691 crtl->profile
4692 = (profile_flag
4693 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4694
4695 crtl->limit_stack
4696 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4697
4698 /* Make the label for return statements to jump to. Do not special
4699 case machines with special return instructions -- they will be
4700 handled later during jump, ifcvt, or epilogue creation. */
4701 return_label = gen_label_rtx ();
4702
4703 /* Initialize rtx used to return the value. */
4704 /* Do this before assign_parms so that we copy the struct value address
4705 before any library calls that assign parms might generate. */
4706
4707 /* Decide whether to return the value in memory or in a register. */
4708 if (aggregate_value_p (DECL_RESULT (subr), subr))
4709 {
4710 /* Returning something that won't go in a register. */
4711 rtx value_address = 0;
4712
4713 #ifdef PCC_STATIC_STRUCT_RETURN
4714 if (cfun->returns_pcc_struct)
4715 {
4716 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4717 value_address = assemble_static_space (size);
4718 }
4719 else
4720 #endif
4721 {
4722 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4723 /* Expect to be passed the address of a place to store the value.
4724 If it is passed as an argument, assign_parms will take care of
4725 it. */
4726 if (sv)
4727 {
4728 value_address = gen_reg_rtx (Pmode);
4729 emit_move_insn (value_address, sv);
4730 }
4731 }
4732 if (value_address)
4733 {
4734 rtx x = value_address;
4735 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4736 {
4737 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4738 set_mem_attributes (x, DECL_RESULT (subr), 1);
4739 }
4740 SET_DECL_RTL (DECL_RESULT (subr), x);
4741 }
4742 }
4743 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4744 /* If return mode is void, this decl rtl should not be used. */
4745 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4746 else
4747 {
4748 /* Compute the return values into a pseudo reg, which we will copy
4749 into the true return register after the cleanups are done. */
4750 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4751 if (TYPE_MODE (return_type) != BLKmode
4752 && targetm.calls.return_in_msb (return_type))
4753 /* expand_function_end will insert the appropriate padding in
4754 this case. Use the return value's natural (unpadded) mode
4755 within the function proper. */
4756 SET_DECL_RTL (DECL_RESULT (subr),
4757 gen_reg_rtx (TYPE_MODE (return_type)));
4758 else
4759 {
4760 /* In order to figure out what mode to use for the pseudo, we
4761 figure out what the mode of the eventual return register will
4762 actually be, and use that. */
4763 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4764
4765 /* Structures that are returned in registers are not
4766 aggregate_value_p, so we may see a PARALLEL or a REG. */
4767 if (REG_P (hard_reg))
4768 SET_DECL_RTL (DECL_RESULT (subr),
4769 gen_reg_rtx (GET_MODE (hard_reg)));
4770 else
4771 {
4772 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4773 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4774 }
4775 }
4776
4777 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4778 result to the real return register(s). */
4779 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4780 }
4781
4782 /* Initialize rtx for parameters and local variables.
4783 In some cases this requires emitting insns. */
4784 assign_parms (subr);
4785
4786 /* If function gets a static chain arg, store it. */
4787 if (cfun->static_chain_decl)
4788 {
4789 tree parm = cfun->static_chain_decl;
4790 rtx local, chain, insn;
4791
4792 local = gen_reg_rtx (Pmode);
4793 chain = targetm.calls.static_chain (current_function_decl, true);
4794
4795 set_decl_incoming_rtl (parm, chain, false);
4796 SET_DECL_RTL (parm, local);
4797 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4798
4799 insn = emit_move_insn (local, chain);
4800
4801 /* Mark the register as eliminable, similar to parameters. */
4802 if (MEM_P (chain)
4803 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4804 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4805 }
4806
4807 /* If the function receives a non-local goto, then store the
4808 bits we need to restore the frame pointer. */
4809 if (cfun->nonlocal_goto_save_area)
4810 {
4811 tree t_save;
4812 rtx r_save;
4813
4814 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4815 gcc_assert (DECL_RTL_SET_P (var));
4816
4817 t_save = build4 (ARRAY_REF,
4818 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4819 cfun->nonlocal_goto_save_area,
4820 integer_zero_node, NULL_TREE, NULL_TREE);
4821 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4822 gcc_assert (GET_MODE (r_save) == Pmode);
4823
4824 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4825 update_nonlocal_goto_save_area ();
4826 }
4827
4828 /* The following was moved from init_function_start.
4829 The move is supposed to make sdb output more accurate. */
4830 /* Indicate the beginning of the function body,
4831 as opposed to parm setup. */
4832 emit_note (NOTE_INSN_FUNCTION_BEG);
4833
4834 gcc_assert (NOTE_P (get_last_insn ()));
4835
4836 parm_birth_insn = get_last_insn ();
4837
4838 if (crtl->profile)
4839 {
4840 #ifdef PROFILE_HOOK
4841 PROFILE_HOOK (current_function_funcdef_no);
4842 #endif
4843 }
4844
4845 /* If we are doing generic stack checking, the probe should go here. */
4846 if (flag_stack_check == GENERIC_STACK_CHECK)
4847 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4848 }
4849 \f
4850 /* Undo the effects of init_dummy_function_start. */
4851 void
4852 expand_dummy_function_end (void)
4853 {
4854 gcc_assert (in_dummy_function);
4855
4856 /* End any sequences that failed to be closed due to syntax errors. */
4857 while (in_sequence_p ())
4858 end_sequence ();
4859
4860 /* Outside function body, can't compute type's actual size
4861 until next function's body starts. */
4862
4863 free_after_parsing (cfun);
4864 free_after_compilation (cfun);
4865 pop_cfun ();
4866 in_dummy_function = false;
4867 }
4868
4869 /* Call DOIT for each hard register used as a return value from
4870 the current function. */
4871
4872 void
4873 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4874 {
4875 rtx outgoing = crtl->return_rtx;
4876
4877 if (! outgoing)
4878 return;
4879
4880 if (REG_P (outgoing))
4881 (*doit) (outgoing, arg);
4882 else if (GET_CODE (outgoing) == PARALLEL)
4883 {
4884 int i;
4885
4886 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4887 {
4888 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4889
4890 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4891 (*doit) (x, arg);
4892 }
4893 }
4894 }
4895
4896 static void
4897 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4898 {
4899 emit_clobber (reg);
4900 }
4901
4902 void
4903 clobber_return_register (void)
4904 {
4905 diddle_return_value (do_clobber_return_reg, NULL);
4906
4907 /* In case we do use pseudo to return value, clobber it too. */
4908 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4909 {
4910 tree decl_result = DECL_RESULT (current_function_decl);
4911 rtx decl_rtl = DECL_RTL (decl_result);
4912 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4913 {
4914 do_clobber_return_reg (decl_rtl, NULL);
4915 }
4916 }
4917 }
4918
4919 static void
4920 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4921 {
4922 emit_use (reg);
4923 }
4924
4925 static void
4926 use_return_register (void)
4927 {
4928 diddle_return_value (do_use_return_reg, NULL);
4929 }
4930
4931 /* Possibly warn about unused parameters. */
4932 void
4933 do_warn_unused_parameter (tree fn)
4934 {
4935 tree decl;
4936
4937 for (decl = DECL_ARGUMENTS (fn);
4938 decl; decl = DECL_CHAIN (decl))
4939 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4940 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4941 && !TREE_NO_WARNING (decl))
4942 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4943 }
4944
4945 /* Set the location of the insn chain starting at INSN to LOC. */
4946
4947 static void
4948 set_insn_locations (rtx insn, int loc)
4949 {
4950 while (insn != NULL_RTX)
4951 {
4952 if (INSN_P (insn))
4953 INSN_LOCATION (insn) = loc;
4954 insn = NEXT_INSN (insn);
4955 }
4956 }
4957
4958 /* Generate RTL for the end of the current function. */
4959
4960 void
4961 expand_function_end (void)
4962 {
4963 rtx clobber_after;
4964
4965 /* If arg_pointer_save_area was referenced only from a nested
4966 function, we will not have initialized it yet. Do that now. */
4967 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
4968 get_arg_pointer_save_area ();
4969
4970 /* If we are doing generic stack checking and this function makes calls,
4971 do a stack probe at the start of the function to ensure we have enough
4972 space for another stack frame. */
4973 if (flag_stack_check == GENERIC_STACK_CHECK)
4974 {
4975 rtx insn, seq;
4976
4977 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4978 if (CALL_P (insn))
4979 {
4980 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
4981 start_sequence ();
4982 if (STACK_CHECK_MOVING_SP)
4983 anti_adjust_stack_and_probe (max_frame_size, true);
4984 else
4985 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
4986 seq = get_insns ();
4987 end_sequence ();
4988 set_insn_locations (seq, prologue_location);
4989 emit_insn_before (seq, stack_check_probe_note);
4990 break;
4991 }
4992 }
4993
4994 /* End any sequences that failed to be closed due to syntax errors. */
4995 while (in_sequence_p ())
4996 end_sequence ();
4997
4998 clear_pending_stack_adjust ();
4999 do_pending_stack_adjust ();
5000
5001 /* Output a linenumber for the end of the function.
5002 SDB depends on this. */
5003 set_curr_insn_location (input_location);
5004
5005 /* Before the return label (if any), clobber the return
5006 registers so that they are not propagated live to the rest of
5007 the function. This can only happen with functions that drop
5008 through; if there had been a return statement, there would
5009 have either been a return rtx, or a jump to the return label.
5010
5011 We delay actual code generation after the current_function_value_rtx
5012 is computed. */
5013 clobber_after = get_last_insn ();
5014
5015 /* Output the label for the actual return from the function. */
5016 emit_label (return_label);
5017
5018 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5019 {
5020 /* Let except.c know where it should emit the call to unregister
5021 the function context for sjlj exceptions. */
5022 if (flag_exceptions)
5023 sjlj_emit_function_exit_after (get_last_insn ());
5024 }
5025 else
5026 {
5027 /* We want to ensure that instructions that may trap are not
5028 moved into the epilogue by scheduling, because we don't
5029 always emit unwind information for the epilogue. */
5030 if (cfun->can_throw_non_call_exceptions)
5031 emit_insn (gen_blockage ());
5032 }
5033
5034 /* If this is an implementation of throw, do what's necessary to
5035 communicate between __builtin_eh_return and the epilogue. */
5036 expand_eh_return ();
5037
5038 /* If scalar return value was computed in a pseudo-reg, or was a named
5039 return value that got dumped to the stack, copy that to the hard
5040 return register. */
5041 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5042 {
5043 tree decl_result = DECL_RESULT (current_function_decl);
5044 rtx decl_rtl = DECL_RTL (decl_result);
5045
5046 if (REG_P (decl_rtl)
5047 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5048 : DECL_REGISTER (decl_result))
5049 {
5050 rtx real_decl_rtl = crtl->return_rtx;
5051
5052 /* This should be set in assign_parms. */
5053 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5054
5055 /* If this is a BLKmode structure being returned in registers,
5056 then use the mode computed in expand_return. Note that if
5057 decl_rtl is memory, then its mode may have been changed,
5058 but that crtl->return_rtx has not. */
5059 if (GET_MODE (real_decl_rtl) == BLKmode)
5060 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5061
5062 /* If a non-BLKmode return value should be padded at the least
5063 significant end of the register, shift it left by the appropriate
5064 amount. BLKmode results are handled using the group load/store
5065 machinery. */
5066 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5067 && REG_P (real_decl_rtl)
5068 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5069 {
5070 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5071 REGNO (real_decl_rtl)),
5072 decl_rtl);
5073 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5074 }
5075 /* If a named return value dumped decl_return to memory, then
5076 we may need to re-do the PROMOTE_MODE signed/unsigned
5077 extension. */
5078 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5079 {
5080 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5081 promote_function_mode (TREE_TYPE (decl_result),
5082 GET_MODE (decl_rtl), &unsignedp,
5083 TREE_TYPE (current_function_decl), 1);
5084
5085 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5086 }
5087 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5088 {
5089 /* If expand_function_start has created a PARALLEL for decl_rtl,
5090 move the result to the real return registers. Otherwise, do
5091 a group load from decl_rtl for a named return. */
5092 if (GET_CODE (decl_rtl) == PARALLEL)
5093 emit_group_move (real_decl_rtl, decl_rtl);
5094 else
5095 emit_group_load (real_decl_rtl, decl_rtl,
5096 TREE_TYPE (decl_result),
5097 int_size_in_bytes (TREE_TYPE (decl_result)));
5098 }
5099 /* In the case of complex integer modes smaller than a word, we'll
5100 need to generate some non-trivial bitfield insertions. Do that
5101 on a pseudo and not the hard register. */
5102 else if (GET_CODE (decl_rtl) == CONCAT
5103 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5104 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5105 {
5106 int old_generating_concat_p;
5107 rtx tmp;
5108
5109 old_generating_concat_p = generating_concat_p;
5110 generating_concat_p = 0;
5111 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5112 generating_concat_p = old_generating_concat_p;
5113
5114 emit_move_insn (tmp, decl_rtl);
5115 emit_move_insn (real_decl_rtl, tmp);
5116 }
5117 else
5118 emit_move_insn (real_decl_rtl, decl_rtl);
5119 }
5120 }
5121
5122 /* If returning a structure, arrange to return the address of the value
5123 in a place where debuggers expect to find it.
5124
5125 If returning a structure PCC style,
5126 the caller also depends on this value.
5127 And cfun->returns_pcc_struct is not necessarily set. */
5128 if (cfun->returns_struct
5129 || cfun->returns_pcc_struct)
5130 {
5131 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5132 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5133 rtx outgoing;
5134
5135 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5136 type = TREE_TYPE (type);
5137 else
5138 value_address = XEXP (value_address, 0);
5139
5140 outgoing = targetm.calls.function_value (build_pointer_type (type),
5141 current_function_decl, true);
5142
5143 /* Mark this as a function return value so integrate will delete the
5144 assignment and USE below when inlining this function. */
5145 REG_FUNCTION_VALUE_P (outgoing) = 1;
5146
5147 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5148 value_address = convert_memory_address (GET_MODE (outgoing),
5149 value_address);
5150
5151 emit_move_insn (outgoing, value_address);
5152
5153 /* Show return register used to hold result (in this case the address
5154 of the result. */
5155 crtl->return_rtx = outgoing;
5156 }
5157
5158 /* Emit the actual code to clobber return register. Don't emit
5159 it if clobber_after is a barrier, then the previous basic block
5160 certainly doesn't fall thru into the exit block. */
5161 if (!BARRIER_P (clobber_after))
5162 {
5163 rtx seq;
5164
5165 start_sequence ();
5166 clobber_return_register ();
5167 seq = get_insns ();
5168 end_sequence ();
5169
5170 emit_insn_after (seq, clobber_after);
5171 }
5172
5173 /* Output the label for the naked return from the function. */
5174 if (naked_return_label)
5175 emit_label (naked_return_label);
5176
5177 /* @@@ This is a kludge. We want to ensure that instructions that
5178 may trap are not moved into the epilogue by scheduling, because
5179 we don't always emit unwind information for the epilogue. */
5180 if (cfun->can_throw_non_call_exceptions
5181 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5182 emit_insn (gen_blockage ());
5183
5184 /* If stack protection is enabled for this function, check the guard. */
5185 if (crtl->stack_protect_guard)
5186 stack_protect_epilogue ();
5187
5188 /* If we had calls to alloca, and this machine needs
5189 an accurate stack pointer to exit the function,
5190 insert some code to save and restore the stack pointer. */
5191 if (! EXIT_IGNORE_STACK
5192 && cfun->calls_alloca)
5193 {
5194 rtx tem = 0, seq;
5195
5196 start_sequence ();
5197 emit_stack_save (SAVE_FUNCTION, &tem);
5198 seq = get_insns ();
5199 end_sequence ();
5200 emit_insn_before (seq, parm_birth_insn);
5201
5202 emit_stack_restore (SAVE_FUNCTION, tem);
5203 }
5204
5205 /* ??? This should no longer be necessary since stupid is no longer with
5206 us, but there are some parts of the compiler (eg reload_combine, and
5207 sh mach_dep_reorg) that still try and compute their own lifetime info
5208 instead of using the general framework. */
5209 use_return_register ();
5210 }
5211
5212 rtx
5213 get_arg_pointer_save_area (void)
5214 {
5215 rtx ret = arg_pointer_save_area;
5216
5217 if (! ret)
5218 {
5219 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5220 arg_pointer_save_area = ret;
5221 }
5222
5223 if (! crtl->arg_pointer_save_area_init)
5224 {
5225 rtx seq;
5226
5227 /* Save the arg pointer at the beginning of the function. The
5228 generated stack slot may not be a valid memory address, so we
5229 have to check it and fix it if necessary. */
5230 start_sequence ();
5231 emit_move_insn (validize_mem (ret),
5232 crtl->args.internal_arg_pointer);
5233 seq = get_insns ();
5234 end_sequence ();
5235
5236 push_topmost_sequence ();
5237 emit_insn_after (seq, entry_of_function ());
5238 pop_topmost_sequence ();
5239
5240 crtl->arg_pointer_save_area_init = true;
5241 }
5242
5243 return ret;
5244 }
5245 \f
5246 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5247 for the first time. */
5248
5249 static void
5250 record_insns (rtx insns, rtx end, htab_t *hashp)
5251 {
5252 rtx tmp;
5253 htab_t hash = *hashp;
5254
5255 if (hash == NULL)
5256 *hashp = hash
5257 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5258
5259 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5260 {
5261 void **slot = htab_find_slot (hash, tmp, INSERT);
5262 gcc_assert (*slot == NULL);
5263 *slot = tmp;
5264 }
5265 }
5266
5267 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5268 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5269 insn, then record COPY as well. */
5270
5271 void
5272 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5273 {
5274 htab_t hash;
5275 void **slot;
5276
5277 hash = epilogue_insn_hash;
5278 if (!hash || !htab_find (hash, insn))
5279 {
5280 hash = prologue_insn_hash;
5281 if (!hash || !htab_find (hash, insn))
5282 return;
5283 }
5284
5285 slot = htab_find_slot (hash, copy, INSERT);
5286 gcc_assert (*slot == NULL);
5287 *slot = copy;
5288 }
5289
5290 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5291 we can be running after reorg, SEQUENCE rtl is possible. */
5292
5293 static bool
5294 contains (const_rtx insn, htab_t hash)
5295 {
5296 if (hash == NULL)
5297 return false;
5298
5299 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5300 {
5301 int i;
5302 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5303 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5304 return true;
5305 return false;
5306 }
5307
5308 return htab_find (hash, insn) != NULL;
5309 }
5310
5311 int
5312 prologue_epilogue_contains (const_rtx insn)
5313 {
5314 if (contains (insn, prologue_insn_hash))
5315 return 1;
5316 if (contains (insn, epilogue_insn_hash))
5317 return 1;
5318 return 0;
5319 }
5320
5321 #ifdef HAVE_simple_return
5322
5323 /* Return true if INSN requires the stack frame to be set up.
5324 PROLOGUE_USED contains the hard registers used in the function
5325 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5326 prologue to set up for the function. */
5327 bool
5328 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5329 HARD_REG_SET set_up_by_prologue)
5330 {
5331 df_ref *df_rec;
5332 HARD_REG_SET hardregs;
5333 unsigned regno;
5334
5335 if (CALL_P (insn))
5336 return !SIBLING_CALL_P (insn);
5337
5338 /* We need a frame to get the unique CFA expected by the unwinder. */
5339 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5340 return true;
5341
5342 CLEAR_HARD_REG_SET (hardregs);
5343 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5344 {
5345 rtx dreg = DF_REF_REG (*df_rec);
5346
5347 if (!REG_P (dreg))
5348 continue;
5349
5350 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5351 REGNO (dreg));
5352 }
5353 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5354 return true;
5355 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5356 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5357 if (TEST_HARD_REG_BIT (hardregs, regno)
5358 && df_regs_ever_live_p (regno))
5359 return true;
5360
5361 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5362 {
5363 rtx reg = DF_REF_REG (*df_rec);
5364
5365 if (!REG_P (reg))
5366 continue;
5367
5368 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5369 REGNO (reg));
5370 }
5371 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5372 return true;
5373
5374 return false;
5375 }
5376
5377 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5378 and if BB is its only predecessor. Return that block if so,
5379 otherwise return null. */
5380
5381 static basic_block
5382 next_block_for_reg (basic_block bb, int regno, int end_regno)
5383 {
5384 edge e, live_edge;
5385 edge_iterator ei;
5386 bitmap live;
5387 int i;
5388
5389 live_edge = NULL;
5390 FOR_EACH_EDGE (e, ei, bb->succs)
5391 {
5392 live = df_get_live_in (e->dest);
5393 for (i = regno; i < end_regno; i++)
5394 if (REGNO_REG_SET_P (live, i))
5395 {
5396 if (live_edge && live_edge != e)
5397 return NULL;
5398 live_edge = e;
5399 }
5400 }
5401
5402 /* We can sometimes encounter dead code. Don't try to move it
5403 into the exit block. */
5404 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5405 return NULL;
5406
5407 /* Reject targets of abnormal edges. This is needed for correctness
5408 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5409 exception edges even though it is generally treated as call-saved
5410 for the majority of the compilation. Moving across abnormal edges
5411 isn't going to be interesting for shrink-wrap usage anyway. */
5412 if (live_edge->flags & EDGE_ABNORMAL)
5413 return NULL;
5414
5415 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5416 return NULL;
5417
5418 return live_edge->dest;
5419 }
5420
5421 /* Try to move INSN from BB to a successor. Return true on success.
5422 USES and DEFS are the set of registers that are used and defined
5423 after INSN in BB. */
5424
5425 static bool
5426 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5427 const HARD_REG_SET uses,
5428 const HARD_REG_SET defs)
5429 {
5430 rtx set, src, dest;
5431 bitmap live_out, live_in, bb_uses, bb_defs;
5432 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5433 basic_block next_block;
5434
5435 /* Look for a simple register copy. */
5436 set = single_set (insn);
5437 if (!set)
5438 return false;
5439 src = SET_SRC (set);
5440 dest = SET_DEST (set);
5441 if (!REG_P (dest) || !REG_P (src))
5442 return false;
5443
5444 /* Make sure that the source register isn't defined later in BB. */
5445 sregno = REGNO (src);
5446 end_sregno = END_REGNO (src);
5447 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5448 return false;
5449
5450 /* Make sure that the destination register isn't referenced later in BB. */
5451 dregno = REGNO (dest);
5452 end_dregno = END_REGNO (dest);
5453 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5454 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5455 return false;
5456
5457 /* See whether there is a successor block to which we could move INSN. */
5458 next_block = next_block_for_reg (bb, dregno, end_dregno);
5459 if (!next_block)
5460 return false;
5461
5462 /* At this point we are committed to moving INSN, but let's try to
5463 move it as far as we can. */
5464 do
5465 {
5466 live_out = df_get_live_out (bb);
5467 live_in = df_get_live_in (next_block);
5468 bb = next_block;
5469
5470 /* Check whether BB uses DEST or clobbers DEST. We need to add
5471 INSN to BB if so. Either way, DEST is no longer live on entry,
5472 except for any part that overlaps SRC (next loop). */
5473 bb_uses = &DF_LR_BB_INFO (bb)->use;
5474 bb_defs = &DF_LR_BB_INFO (bb)->def;
5475 if (df_live)
5476 {
5477 for (i = dregno; i < end_dregno; i++)
5478 {
5479 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
5480 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5481 next_block = NULL;
5482 CLEAR_REGNO_REG_SET (live_out, i);
5483 CLEAR_REGNO_REG_SET (live_in, i);
5484 }
5485
5486 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5487 Either way, SRC is now live on entry. */
5488 for (i = sregno; i < end_sregno; i++)
5489 {
5490 if (REGNO_REG_SET_P (bb_defs, i)
5491 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5492 next_block = NULL;
5493 SET_REGNO_REG_SET (live_out, i);
5494 SET_REGNO_REG_SET (live_in, i);
5495 }
5496 }
5497 else
5498 {
5499 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5500 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5501 at -O1, just give up searching NEXT_BLOCK. */
5502 next_block = NULL;
5503 for (i = dregno; i < end_dregno; i++)
5504 {
5505 CLEAR_REGNO_REG_SET (live_out, i);
5506 CLEAR_REGNO_REG_SET (live_in, i);
5507 }
5508
5509 for (i = sregno; i < end_sregno; i++)
5510 {
5511 SET_REGNO_REG_SET (live_out, i);
5512 SET_REGNO_REG_SET (live_in, i);
5513 }
5514 }
5515
5516 /* If we don't need to add the move to BB, look for a single
5517 successor block. */
5518 if (next_block)
5519 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5520 }
5521 while (next_block);
5522
5523 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5524 (next loop). */
5525 for (i = dregno; i < end_dregno; i++)
5526 {
5527 CLEAR_REGNO_REG_SET (bb_uses, i);
5528 SET_REGNO_REG_SET (bb_defs, i);
5529 }
5530
5531 /* BB now uses SRC. */
5532 for (i = sregno; i < end_sregno; i++)
5533 SET_REGNO_REG_SET (bb_uses, i);
5534
5535 emit_insn_after (PATTERN (insn), bb_note (bb));
5536 delete_insn (insn);
5537 return true;
5538 }
5539
5540 /* Look for register copies in the first block of the function, and move
5541 them down into successor blocks if the register is used only on one
5542 path. This exposes more opportunities for shrink-wrapping. These
5543 kinds of sets often occur when incoming argument registers are moved
5544 to call-saved registers because their values are live across one or
5545 more calls during the function. */
5546
5547 static void
5548 prepare_shrink_wrap (basic_block entry_block)
5549 {
5550 rtx insn, curr, x;
5551 HARD_REG_SET uses, defs;
5552 df_ref *ref;
5553
5554 CLEAR_HARD_REG_SET (uses);
5555 CLEAR_HARD_REG_SET (defs);
5556 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5557 if (NONDEBUG_INSN_P (insn)
5558 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5559 {
5560 /* Add all defined registers to DEFs. */
5561 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5562 {
5563 x = DF_REF_REG (*ref);
5564 if (REG_P (x) && HARD_REGISTER_P (x))
5565 SET_HARD_REG_BIT (defs, REGNO (x));
5566 }
5567
5568 /* Add all used registers to USESs. */
5569 for (ref = DF_INSN_USES (insn); *ref; ref++)
5570 {
5571 x = DF_REF_REG (*ref);
5572 if (REG_P (x) && HARD_REGISTER_P (x))
5573 SET_HARD_REG_BIT (uses, REGNO (x));
5574 }
5575 }
5576 }
5577
5578 #endif
5579
5580 #ifdef HAVE_return
5581 /* Insert use of return register before the end of BB. */
5582
5583 static void
5584 emit_use_return_register_into_block (basic_block bb)
5585 {
5586 rtx seq, insn;
5587 start_sequence ();
5588 use_return_register ();
5589 seq = get_insns ();
5590 end_sequence ();
5591 insn = BB_END (bb);
5592 #ifdef HAVE_cc0
5593 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5594 insn = prev_cc0_setter (insn);
5595 #endif
5596 emit_insn_before (seq, insn);
5597 }
5598
5599
5600 /* Create a return pattern, either simple_return or return, depending on
5601 simple_p. */
5602
5603 static rtx
5604 gen_return_pattern (bool simple_p)
5605 {
5606 #ifdef HAVE_simple_return
5607 return simple_p ? gen_simple_return () : gen_return ();
5608 #else
5609 gcc_assert (!simple_p);
5610 return gen_return ();
5611 #endif
5612 }
5613
5614 /* Insert an appropriate return pattern at the end of block BB. This
5615 also means updating block_for_insn appropriately. SIMPLE_P is
5616 the same as in gen_return_pattern and passed to it. */
5617
5618 static void
5619 emit_return_into_block (bool simple_p, basic_block bb)
5620 {
5621 rtx jump, pat;
5622 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5623 pat = PATTERN (jump);
5624 if (GET_CODE (pat) == PARALLEL)
5625 pat = XVECEXP (pat, 0, 0);
5626 gcc_assert (ANY_RETURN_P (pat));
5627 JUMP_LABEL (jump) = pat;
5628 }
5629 #endif
5630
5631 /* Set JUMP_LABEL for a return insn. */
5632
5633 void
5634 set_return_jump_label (rtx returnjump)
5635 {
5636 rtx pat = PATTERN (returnjump);
5637 if (GET_CODE (pat) == PARALLEL)
5638 pat = XVECEXP (pat, 0, 0);
5639 if (ANY_RETURN_P (pat))
5640 JUMP_LABEL (returnjump) = pat;
5641 else
5642 JUMP_LABEL (returnjump) = ret_rtx;
5643 }
5644
5645 #ifdef HAVE_simple_return
5646 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5647 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5648 static void
5649 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5650 bitmap_head *need_prologue)
5651 {
5652 edge_iterator ei;
5653 edge e;
5654 rtx insn = BB_END (bb);
5655
5656 /* We know BB has a single successor, so there is no need to copy a
5657 simple jump at the end of BB. */
5658 if (simplejump_p (insn))
5659 insn = PREV_INSN (insn);
5660
5661 start_sequence ();
5662 duplicate_insn_chain (BB_HEAD (bb), insn);
5663 if (dump_file)
5664 {
5665 unsigned count = 0;
5666 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5667 if (active_insn_p (insn))
5668 ++count;
5669 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5670 bb->index, copy_bb->index, count);
5671 }
5672 insn = get_insns ();
5673 end_sequence ();
5674 emit_insn_before (insn, before);
5675
5676 /* Redirect all the paths that need no prologue into copy_bb. */
5677 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5678 if (!bitmap_bit_p (need_prologue, e->src->index))
5679 {
5680 int freq = EDGE_FREQUENCY (e);
5681 copy_bb->count += e->count;
5682 copy_bb->frequency += EDGE_FREQUENCY (e);
5683 e->dest->count -= e->count;
5684 if (e->dest->count < 0)
5685 e->dest->count = 0;
5686 e->dest->frequency -= freq;
5687 if (e->dest->frequency < 0)
5688 e->dest->frequency = 0;
5689 redirect_edge_and_branch_force (e, copy_bb);
5690 continue;
5691 }
5692 else
5693 ei_next (&ei);
5694 }
5695 #endif
5696
5697 #if defined (HAVE_return) || defined (HAVE_simple_return)
5698 /* Return true if there are any active insns between HEAD and TAIL. */
5699 static bool
5700 active_insn_between (rtx head, rtx tail)
5701 {
5702 while (tail)
5703 {
5704 if (active_insn_p (tail))
5705 return true;
5706 if (tail == head)
5707 return false;
5708 tail = PREV_INSN (tail);
5709 }
5710 return false;
5711 }
5712
5713 /* LAST_BB is a block that exits, and empty of active instructions.
5714 Examine its predecessors for jumps that can be converted to
5715 (conditional) returns. */
5716 static vec<edge>
5717 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5718 vec<edge> unconverted ATTRIBUTE_UNUSED)
5719 {
5720 int i;
5721 basic_block bb;
5722 rtx label;
5723 edge_iterator ei;
5724 edge e;
5725 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5726
5727 FOR_EACH_EDGE (e, ei, last_bb->preds)
5728 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5729 src_bbs.quick_push (e->src);
5730
5731 label = BB_HEAD (last_bb);
5732
5733 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5734 {
5735 rtx jump = BB_END (bb);
5736
5737 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5738 continue;
5739
5740 e = find_edge (bb, last_bb);
5741
5742 /* If we have an unconditional jump, we can replace that
5743 with a simple return instruction. */
5744 if (simplejump_p (jump))
5745 {
5746 /* The use of the return register might be present in the exit
5747 fallthru block. Either:
5748 - removing the use is safe, and we should remove the use in
5749 the exit fallthru block, or
5750 - removing the use is not safe, and we should add it here.
5751 For now, we conservatively choose the latter. Either of the
5752 2 helps in crossjumping. */
5753 emit_use_return_register_into_block (bb);
5754
5755 emit_return_into_block (simple_p, bb);
5756 delete_insn (jump);
5757 }
5758
5759 /* If we have a conditional jump branching to the last
5760 block, we can try to replace that with a conditional
5761 return instruction. */
5762 else if (condjump_p (jump))
5763 {
5764 rtx dest;
5765
5766 if (simple_p)
5767 dest = simple_return_rtx;
5768 else
5769 dest = ret_rtx;
5770 if (!redirect_jump (jump, dest, 0))
5771 {
5772 #ifdef HAVE_simple_return
5773 if (simple_p)
5774 {
5775 if (dump_file)
5776 fprintf (dump_file,
5777 "Failed to redirect bb %d branch.\n", bb->index);
5778 unconverted.safe_push (e);
5779 }
5780 #endif
5781 continue;
5782 }
5783
5784 /* See comment in simplejump_p case above. */
5785 emit_use_return_register_into_block (bb);
5786
5787 /* If this block has only one successor, it both jumps
5788 and falls through to the fallthru block, so we can't
5789 delete the edge. */
5790 if (single_succ_p (bb))
5791 continue;
5792 }
5793 else
5794 {
5795 #ifdef HAVE_simple_return
5796 if (simple_p)
5797 {
5798 if (dump_file)
5799 fprintf (dump_file,
5800 "Failed to redirect bb %d branch.\n", bb->index);
5801 unconverted.safe_push (e);
5802 }
5803 #endif
5804 continue;
5805 }
5806
5807 /* Fix up the CFG for the successful change we just made. */
5808 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5809 e->flags &= ~EDGE_CROSSING;
5810 }
5811 src_bbs.release ();
5812 return unconverted;
5813 }
5814
5815 /* Emit a return insn for the exit fallthru block. */
5816 static basic_block
5817 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5818 {
5819 basic_block last_bb = exit_fallthru_edge->src;
5820
5821 if (JUMP_P (BB_END (last_bb)))
5822 {
5823 last_bb = split_edge (exit_fallthru_edge);
5824 exit_fallthru_edge = single_succ_edge (last_bb);
5825 }
5826 emit_barrier_after (BB_END (last_bb));
5827 emit_return_into_block (simple_p, last_bb);
5828 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5829 return last_bb;
5830 }
5831 #endif
5832
5833
5834 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5835 this into place with notes indicating where the prologue ends and where
5836 the epilogue begins. Update the basic block information when possible.
5837
5838 Notes on epilogue placement:
5839 There are several kinds of edges to the exit block:
5840 * a single fallthru edge from LAST_BB
5841 * possibly, edges from blocks containing sibcalls
5842 * possibly, fake edges from infinite loops
5843
5844 The epilogue is always emitted on the fallthru edge from the last basic
5845 block in the function, LAST_BB, into the exit block.
5846
5847 If LAST_BB is empty except for a label, it is the target of every
5848 other basic block in the function that ends in a return. If a
5849 target has a return or simple_return pattern (possibly with
5850 conditional variants), these basic blocks can be changed so that a
5851 return insn is emitted into them, and their target is adjusted to
5852 the real exit block.
5853
5854 Notes on shrink wrapping: We implement a fairly conservative
5855 version of shrink-wrapping rather than the textbook one. We only
5856 generate a single prologue and a single epilogue. This is
5857 sufficient to catch a number of interesting cases involving early
5858 exits.
5859
5860 First, we identify the blocks that require the prologue to occur before
5861 them. These are the ones that modify a call-saved register, or reference
5862 any of the stack or frame pointer registers. To simplify things, we then
5863 mark everything reachable from these blocks as also requiring a prologue.
5864 This takes care of loops automatically, and avoids the need to examine
5865 whether MEMs reference the frame, since it is sufficient to check for
5866 occurrences of the stack or frame pointer.
5867
5868 We then compute the set of blocks for which the need for a prologue
5869 is anticipatable (borrowing terminology from the shrink-wrapping
5870 description in Muchnick's book). These are the blocks which either
5871 require a prologue themselves, or those that have only successors
5872 where the prologue is anticipatable. The prologue needs to be
5873 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5874 is not. For the moment, we ensure that only one such edge exists.
5875
5876 The epilogue is placed as described above, but we make a
5877 distinction between inserting return and simple_return patterns
5878 when modifying other blocks that end in a return. Blocks that end
5879 in a sibcall omit the sibcall_epilogue if the block is not in
5880 ANTIC. */
5881
5882 static void
5883 thread_prologue_and_epilogue_insns (void)
5884 {
5885 bool inserted;
5886 #ifdef HAVE_simple_return
5887 vec<edge> unconverted_simple_returns = vNULL;
5888 bool nonempty_prologue;
5889 bitmap_head bb_flags;
5890 unsigned max_grow_size;
5891 #endif
5892 rtx returnjump;
5893 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5894 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5895 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5896 edge_iterator ei;
5897
5898 df_analyze ();
5899
5900 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5901
5902 inserted = false;
5903 seq = NULL_RTX;
5904 epilogue_end = NULL_RTX;
5905 returnjump = NULL_RTX;
5906
5907 /* Can't deal with multiple successors of the entry block at the
5908 moment. Function should always have at least one entry
5909 point. */
5910 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5911 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5912 orig_entry_edge = entry_edge;
5913
5914 split_prologue_seq = NULL_RTX;
5915 if (flag_split_stack
5916 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5917 == NULL))
5918 {
5919 #ifndef HAVE_split_stack_prologue
5920 gcc_unreachable ();
5921 #else
5922 gcc_assert (HAVE_split_stack_prologue);
5923
5924 start_sequence ();
5925 emit_insn (gen_split_stack_prologue ());
5926 split_prologue_seq = get_insns ();
5927 end_sequence ();
5928
5929 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5930 set_insn_locations (split_prologue_seq, prologue_location);
5931 #endif
5932 }
5933
5934 prologue_seq = NULL_RTX;
5935 #ifdef HAVE_prologue
5936 if (HAVE_prologue)
5937 {
5938 start_sequence ();
5939 seq = gen_prologue ();
5940 emit_insn (seq);
5941
5942 /* Insert an explicit USE for the frame pointer
5943 if the profiling is on and the frame pointer is required. */
5944 if (crtl->profile && frame_pointer_needed)
5945 emit_use (hard_frame_pointer_rtx);
5946
5947 /* Retain a map of the prologue insns. */
5948 record_insns (seq, NULL, &prologue_insn_hash);
5949 emit_note (NOTE_INSN_PROLOGUE_END);
5950
5951 /* Ensure that instructions are not moved into the prologue when
5952 profiling is on. The call to the profiling routine can be
5953 emitted within the live range of a call-clobbered register. */
5954 if (!targetm.profile_before_prologue () && crtl->profile)
5955 emit_insn (gen_blockage ());
5956
5957 prologue_seq = get_insns ();
5958 end_sequence ();
5959 set_insn_locations (prologue_seq, prologue_location);
5960 }
5961 #endif
5962
5963 #ifdef HAVE_simple_return
5964 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5965
5966 /* Try to perform a kind of shrink-wrapping, making sure the
5967 prologue/epilogue is emitted only around those parts of the
5968 function that require it. */
5969
5970 nonempty_prologue = false;
5971 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
5972 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
5973 {
5974 nonempty_prologue = true;
5975 break;
5976 }
5977
5978 if (flag_shrink_wrap && HAVE_simple_return
5979 && (targetm.profile_before_prologue () || !crtl->profile)
5980 && nonempty_prologue && !crtl->calls_eh_return)
5981 {
5982 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
5983 struct hard_reg_set_container set_up_by_prologue;
5984 rtx p_insn;
5985 vec<basic_block> vec;
5986 basic_block bb;
5987 bitmap_head bb_antic_flags;
5988 bitmap_head bb_on_list;
5989 bitmap_head bb_tail;
5990
5991 if (dump_file)
5992 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
5993
5994 /* Compute the registers set and used in the prologue. */
5995 CLEAR_HARD_REG_SET (prologue_clobbered);
5996 CLEAR_HARD_REG_SET (prologue_used);
5997 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
5998 {
5999 HARD_REG_SET this_used;
6000 if (!NONDEBUG_INSN_P (p_insn))
6001 continue;
6002
6003 CLEAR_HARD_REG_SET (this_used);
6004 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6005 &this_used);
6006 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6007 IOR_HARD_REG_SET (prologue_used, this_used);
6008 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6009 &prologue_clobbered);
6010 }
6011
6012 prepare_shrink_wrap (entry_edge->dest);
6013
6014 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6015 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6016 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6017
6018 /* Find the set of basic blocks that require a stack frame,
6019 and blocks that are too big to be duplicated. */
6020
6021 vec.create (n_basic_blocks_for_fn (cfun));
6022
6023 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6024 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6025 STACK_POINTER_REGNUM);
6026 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6027 if (frame_pointer_needed)
6028 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6029 HARD_FRAME_POINTER_REGNUM);
6030 if (pic_offset_table_rtx)
6031 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6032 PIC_OFFSET_TABLE_REGNUM);
6033 if (crtl->drap_reg)
6034 add_to_hard_reg_set (&set_up_by_prologue.set,
6035 GET_MODE (crtl->drap_reg),
6036 REGNO (crtl->drap_reg));
6037 if (targetm.set_up_by_prologue)
6038 targetm.set_up_by_prologue (&set_up_by_prologue);
6039
6040 /* We don't use a different max size depending on
6041 optimize_bb_for_speed_p because increasing shrink-wrapping
6042 opportunities by duplicating tail blocks can actually result
6043 in an overall decrease in code size. */
6044 max_grow_size = get_uncond_jump_length ();
6045 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6046
6047 FOR_EACH_BB_FN (bb, cfun)
6048 {
6049 rtx insn;
6050 unsigned size = 0;
6051
6052 FOR_BB_INSNS (bb, insn)
6053 if (NONDEBUG_INSN_P (insn))
6054 {
6055 if (requires_stack_frame_p (insn, prologue_used,
6056 set_up_by_prologue.set))
6057 {
6058 if (bb == entry_edge->dest)
6059 goto fail_shrinkwrap;
6060 bitmap_set_bit (&bb_flags, bb->index);
6061 vec.quick_push (bb);
6062 break;
6063 }
6064 else if (size <= max_grow_size)
6065 {
6066 size += get_attr_min_length (insn);
6067 if (size > max_grow_size)
6068 bitmap_set_bit (&bb_on_list, bb->index);
6069 }
6070 }
6071 }
6072
6073 /* Blocks that really need a prologue, or are too big for tails. */
6074 bitmap_ior_into (&bb_on_list, &bb_flags);
6075
6076 /* For every basic block that needs a prologue, mark all blocks
6077 reachable from it, so as to ensure they are also seen as
6078 requiring a prologue. */
6079 while (!vec.is_empty ())
6080 {
6081 basic_block tmp_bb = vec.pop ();
6082
6083 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6084 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6085 && bitmap_set_bit (&bb_flags, e->dest->index))
6086 vec.quick_push (e->dest);
6087 }
6088
6089 /* Find the set of basic blocks that need no prologue, have a
6090 single successor, can be duplicated, meet a max size
6091 requirement, and go to the exit via like blocks. */
6092 vec.quick_push (EXIT_BLOCK_PTR_FOR_FN (cfun));
6093 while (!vec.is_empty ())
6094 {
6095 basic_block tmp_bb = vec.pop ();
6096
6097 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6098 if (single_succ_p (e->src)
6099 && !bitmap_bit_p (&bb_on_list, e->src->index)
6100 && can_duplicate_block_p (e->src))
6101 {
6102 edge pe;
6103 edge_iterator pei;
6104
6105 /* If there is predecessor of e->src which doesn't
6106 need prologue and the edge is complex,
6107 we might not be able to redirect the branch
6108 to a copy of e->src. */
6109 FOR_EACH_EDGE (pe, pei, e->src->preds)
6110 if ((pe->flags & EDGE_COMPLEX) != 0
6111 && !bitmap_bit_p (&bb_flags, pe->src->index))
6112 break;
6113 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6114 vec.quick_push (e->src);
6115 }
6116 }
6117
6118 /* Now walk backwards from every block that is marked as needing
6119 a prologue to compute the bb_antic_flags bitmap. Exclude
6120 tail blocks; They can be duplicated to be used on paths not
6121 needing a prologue. */
6122 bitmap_clear (&bb_on_list);
6123 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6124 FOR_EACH_BB_FN (bb, cfun)
6125 {
6126 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6127 continue;
6128 FOR_EACH_EDGE (e, ei, bb->preds)
6129 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6130 && bitmap_set_bit (&bb_on_list, e->src->index))
6131 vec.quick_push (e->src);
6132 }
6133 while (!vec.is_empty ())
6134 {
6135 basic_block tmp_bb = vec.pop ();
6136 bool all_set = true;
6137
6138 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6139 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6140 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6141 {
6142 all_set = false;
6143 break;
6144 }
6145
6146 if (all_set)
6147 {
6148 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6149 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6150 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6151 && bitmap_set_bit (&bb_on_list, e->src->index))
6152 vec.quick_push (e->src);
6153 }
6154 }
6155 /* Find exactly one edge that leads to a block in ANTIC from
6156 a block that isn't. */
6157 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6158 FOR_EACH_BB_FN (bb, cfun)
6159 {
6160 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6161 continue;
6162 FOR_EACH_EDGE (e, ei, bb->preds)
6163 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6164 {
6165 if (entry_edge != orig_entry_edge)
6166 {
6167 entry_edge = orig_entry_edge;
6168 if (dump_file)
6169 fprintf (dump_file, "More than one candidate edge.\n");
6170 goto fail_shrinkwrap;
6171 }
6172 if (dump_file)
6173 fprintf (dump_file, "Found candidate edge for "
6174 "shrink-wrapping, %d->%d.\n", e->src->index,
6175 e->dest->index);
6176 entry_edge = e;
6177 }
6178 }
6179
6180 if (entry_edge != orig_entry_edge)
6181 {
6182 /* Test whether the prologue is known to clobber any register
6183 (other than FP or SP) which are live on the edge. */
6184 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6185 if (frame_pointer_needed)
6186 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6187 REG_SET_TO_HARD_REG_SET (live_on_edge,
6188 df_get_live_in (entry_edge->dest));
6189 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6190 {
6191 entry_edge = orig_entry_edge;
6192 if (dump_file)
6193 fprintf (dump_file,
6194 "Shrink-wrapping aborted due to clobber.\n");
6195 }
6196 }
6197 if (entry_edge != orig_entry_edge)
6198 {
6199 crtl->shrink_wrapped = true;
6200 if (dump_file)
6201 fprintf (dump_file, "Performing shrink-wrapping.\n");
6202
6203 /* Find tail blocks reachable from both blocks needing a
6204 prologue and blocks not needing a prologue. */
6205 if (!bitmap_empty_p (&bb_tail))
6206 FOR_EACH_BB_FN (bb, cfun)
6207 {
6208 bool some_pro, some_no_pro;
6209 if (!bitmap_bit_p (&bb_tail, bb->index))
6210 continue;
6211 some_pro = some_no_pro = false;
6212 FOR_EACH_EDGE (e, ei, bb->preds)
6213 {
6214 if (bitmap_bit_p (&bb_flags, e->src->index))
6215 some_pro = true;
6216 else
6217 some_no_pro = true;
6218 }
6219 if (some_pro && some_no_pro)
6220 vec.quick_push (bb);
6221 else
6222 bitmap_clear_bit (&bb_tail, bb->index);
6223 }
6224 /* Find the head of each tail. */
6225 while (!vec.is_empty ())
6226 {
6227 basic_block tbb = vec.pop ();
6228
6229 if (!bitmap_bit_p (&bb_tail, tbb->index))
6230 continue;
6231
6232 while (single_succ_p (tbb))
6233 {
6234 tbb = single_succ (tbb);
6235 bitmap_clear_bit (&bb_tail, tbb->index);
6236 }
6237 }
6238 /* Now duplicate the tails. */
6239 if (!bitmap_empty_p (&bb_tail))
6240 FOR_EACH_BB_REVERSE_FN (bb, cfun)
6241 {
6242 basic_block copy_bb, tbb;
6243 rtx insert_point;
6244 int eflags;
6245
6246 if (!bitmap_clear_bit (&bb_tail, bb->index))
6247 continue;
6248
6249 /* Create a copy of BB, instructions and all, for
6250 use on paths that don't need a prologue.
6251 Ideal placement of the copy is on a fall-thru edge
6252 or after a block that would jump to the copy. */
6253 FOR_EACH_EDGE (e, ei, bb->preds)
6254 if (!bitmap_bit_p (&bb_flags, e->src->index)
6255 && single_succ_p (e->src))
6256 break;
6257 if (e)
6258 {
6259 /* Make sure we insert after any barriers. */
6260 rtx end = get_last_bb_insn (e->src);
6261 copy_bb = create_basic_block (NEXT_INSN (end),
6262 NULL_RTX, e->src);
6263 BB_COPY_PARTITION (copy_bb, e->src);
6264 }
6265 else
6266 {
6267 /* Otherwise put the copy at the end of the function. */
6268 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6269 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6270 BB_COPY_PARTITION (copy_bb, bb);
6271 }
6272
6273 insert_point = emit_note_after (NOTE_INSN_DELETED,
6274 BB_END (copy_bb));
6275 emit_barrier_after (BB_END (copy_bb));
6276
6277 tbb = bb;
6278 while (1)
6279 {
6280 dup_block_and_redirect (tbb, copy_bb, insert_point,
6281 &bb_flags);
6282 tbb = single_succ (tbb);
6283 if (tbb == EXIT_BLOCK_PTR_FOR_FN (cfun))
6284 break;
6285 e = split_block (copy_bb, PREV_INSN (insert_point));
6286 copy_bb = e->dest;
6287 }
6288
6289 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6290 We have yet to add a simple_return to the tails,
6291 as we'd like to first convert_jumps_to_returns in
6292 case the block is no longer used after that. */
6293 eflags = EDGE_FAKE;
6294 if (CALL_P (PREV_INSN (insert_point))
6295 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6296 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6297 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR_FOR_FN (cfun),
6298 eflags);
6299
6300 /* verify_flow_info doesn't like a note after a
6301 sibling call. */
6302 delete_insn (insert_point);
6303 if (bitmap_empty_p (&bb_tail))
6304 break;
6305 }
6306 }
6307
6308 fail_shrinkwrap:
6309 bitmap_clear (&bb_tail);
6310 bitmap_clear (&bb_antic_flags);
6311 bitmap_clear (&bb_on_list);
6312 vec.release ();
6313 }
6314 #endif
6315
6316 if (split_prologue_seq != NULL_RTX)
6317 {
6318 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6319 inserted = true;
6320 }
6321 if (prologue_seq != NULL_RTX)
6322 {
6323 insert_insn_on_edge (prologue_seq, entry_edge);
6324 inserted = true;
6325 }
6326
6327 /* If the exit block has no non-fake predecessors, we don't need
6328 an epilogue. */
6329 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6330 if ((e->flags & EDGE_FAKE) == 0)
6331 break;
6332 if (e == NULL)
6333 goto epilogue_done;
6334
6335 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6336
6337 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6338
6339 /* If we're allowed to generate a simple return instruction, then by
6340 definition we don't need a full epilogue. If the last basic
6341 block before the exit block does not contain active instructions,
6342 examine its predecessors and try to emit (conditional) return
6343 instructions. */
6344 #ifdef HAVE_simple_return
6345 if (entry_edge != orig_entry_edge)
6346 {
6347 if (optimize)
6348 {
6349 unsigned i, last;
6350
6351 /* convert_jumps_to_returns may add to preds of the exit block
6352 (but won't remove). Stop at end of current preds. */
6353 last = EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6354 for (i = 0; i < last; i++)
6355 {
6356 e = EDGE_I (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds, i);
6357 if (LABEL_P (BB_HEAD (e->src))
6358 && !bitmap_bit_p (&bb_flags, e->src->index)
6359 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6360 unconverted_simple_returns
6361 = convert_jumps_to_returns (e->src, true,
6362 unconverted_simple_returns);
6363 }
6364 }
6365
6366 if (exit_fallthru_edge != NULL
6367 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6368 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6369 {
6370 basic_block last_bb;
6371
6372 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6373 returnjump = BB_END (last_bb);
6374 exit_fallthru_edge = NULL;
6375 }
6376 }
6377 #endif
6378 #ifdef HAVE_return
6379 if (HAVE_return)
6380 {
6381 if (exit_fallthru_edge == NULL)
6382 goto epilogue_done;
6383
6384 if (optimize)
6385 {
6386 basic_block last_bb = exit_fallthru_edge->src;
6387
6388 if (LABEL_P (BB_HEAD (last_bb))
6389 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6390 convert_jumps_to_returns (last_bb, false, vNULL);
6391
6392 if (EDGE_COUNT (last_bb->preds) != 0
6393 && single_succ_p (last_bb))
6394 {
6395 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6396 epilogue_end = returnjump = BB_END (last_bb);
6397 #ifdef HAVE_simple_return
6398 /* Emitting the return may add a basic block.
6399 Fix bb_flags for the added block. */
6400 if (last_bb != exit_fallthru_edge->src)
6401 bitmap_set_bit (&bb_flags, last_bb->index);
6402 #endif
6403 goto epilogue_done;
6404 }
6405 }
6406 }
6407 #endif
6408
6409 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6410 this marker for the splits of EH_RETURN patterns, and nothing else
6411 uses the flag in the meantime. */
6412 epilogue_completed = 1;
6413
6414 #ifdef HAVE_eh_return
6415 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6416 some targets, these get split to a special version of the epilogue
6417 code. In order to be able to properly annotate these with unwind
6418 info, try to split them now. If we get a valid split, drop an
6419 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6420 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6421 {
6422 rtx prev, last, trial;
6423
6424 if (e->flags & EDGE_FALLTHRU)
6425 continue;
6426 last = BB_END (e->src);
6427 if (!eh_returnjump_p (last))
6428 continue;
6429
6430 prev = PREV_INSN (last);
6431 trial = try_split (PATTERN (last), last, 1);
6432 if (trial == last)
6433 continue;
6434
6435 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6436 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6437 }
6438 #endif
6439
6440 /* If nothing falls through into the exit block, we don't need an
6441 epilogue. */
6442
6443 if (exit_fallthru_edge == NULL)
6444 goto epilogue_done;
6445
6446 #ifdef HAVE_epilogue
6447 if (HAVE_epilogue)
6448 {
6449 start_sequence ();
6450 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6451 seq = gen_epilogue ();
6452 if (seq)
6453 emit_jump_insn (seq);
6454
6455 /* Retain a map of the epilogue insns. */
6456 record_insns (seq, NULL, &epilogue_insn_hash);
6457 set_insn_locations (seq, epilogue_location);
6458
6459 seq = get_insns ();
6460 returnjump = get_last_insn ();
6461 end_sequence ();
6462
6463 insert_insn_on_edge (seq, exit_fallthru_edge);
6464 inserted = true;
6465
6466 if (JUMP_P (returnjump))
6467 set_return_jump_label (returnjump);
6468 }
6469 else
6470 #endif
6471 {
6472 basic_block cur_bb;
6473
6474 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6475 goto epilogue_done;
6476 /* We have a fall-through edge to the exit block, the source is not
6477 at the end of the function, and there will be an assembler epilogue
6478 at the end of the function.
6479 We can't use force_nonfallthru here, because that would try to
6480 use return. Inserting a jump 'by hand' is extremely messy, so
6481 we take advantage of cfg_layout_finalize using
6482 fixup_fallthru_exit_predecessor. */
6483 cfg_layout_initialize (0);
6484 FOR_EACH_BB_FN (cur_bb, cfun)
6485 if (cur_bb->index >= NUM_FIXED_BLOCKS
6486 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6487 cur_bb->aux = cur_bb->next_bb;
6488 cfg_layout_finalize ();
6489 }
6490
6491 epilogue_done:
6492
6493 default_rtl_profile ();
6494
6495 if (inserted)
6496 {
6497 sbitmap blocks;
6498
6499 commit_edge_insertions ();
6500
6501 /* Look for basic blocks within the prologue insns. */
6502 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6503 bitmap_clear (blocks);
6504 bitmap_set_bit (blocks, entry_edge->dest->index);
6505 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6506 find_many_sub_basic_blocks (blocks);
6507 sbitmap_free (blocks);
6508
6509 /* The epilogue insns we inserted may cause the exit edge to no longer
6510 be fallthru. */
6511 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6512 {
6513 if (((e->flags & EDGE_FALLTHRU) != 0)
6514 && returnjump_p (BB_END (e->src)))
6515 e->flags &= ~EDGE_FALLTHRU;
6516 }
6517 }
6518
6519 #ifdef HAVE_simple_return
6520 /* If there were branches to an empty LAST_BB which we tried to
6521 convert to conditional simple_returns, but couldn't for some
6522 reason, create a block to hold a simple_return insn and redirect
6523 those remaining edges. */
6524 if (!unconverted_simple_returns.is_empty ())
6525 {
6526 basic_block simple_return_block_hot = NULL;
6527 basic_block simple_return_block_cold = NULL;
6528 edge pending_edge_hot = NULL;
6529 edge pending_edge_cold = NULL;
6530 basic_block exit_pred;
6531 int i;
6532
6533 gcc_assert (entry_edge != orig_entry_edge);
6534
6535 /* See if we can reuse the last insn that was emitted for the
6536 epilogue. */
6537 if (returnjump != NULL_RTX
6538 && JUMP_LABEL (returnjump) == simple_return_rtx)
6539 {
6540 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6541 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6542 simple_return_block_hot = e->dest;
6543 else
6544 simple_return_block_cold = e->dest;
6545 }
6546
6547 /* Also check returns we might need to add to tail blocks. */
6548 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6549 if (EDGE_COUNT (e->src->preds) != 0
6550 && (e->flags & EDGE_FAKE) != 0
6551 && !bitmap_bit_p (&bb_flags, e->src->index))
6552 {
6553 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6554 pending_edge_hot = e;
6555 else
6556 pending_edge_cold = e;
6557 }
6558
6559 /* Save a pointer to the exit's predecessor BB for use in
6560 inserting new BBs at the end of the function. Do this
6561 after the call to split_block above which may split
6562 the original exit pred. */
6563 exit_pred = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
6564
6565 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6566 {
6567 basic_block *pdest_bb;
6568 edge pending;
6569
6570 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6571 {
6572 pdest_bb = &simple_return_block_hot;
6573 pending = pending_edge_hot;
6574 }
6575 else
6576 {
6577 pdest_bb = &simple_return_block_cold;
6578 pending = pending_edge_cold;
6579 }
6580
6581 if (*pdest_bb == NULL && pending != NULL)
6582 {
6583 emit_return_into_block (true, pending->src);
6584 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6585 *pdest_bb = pending->src;
6586 }
6587 else if (*pdest_bb == NULL)
6588 {
6589 basic_block bb;
6590 rtx start;
6591
6592 bb = create_basic_block (NULL, NULL, exit_pred);
6593 BB_COPY_PARTITION (bb, e->src);
6594 start = emit_jump_insn_after (gen_simple_return (),
6595 BB_END (bb));
6596 JUMP_LABEL (start) = simple_return_rtx;
6597 emit_barrier_after (start);
6598
6599 *pdest_bb = bb;
6600 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
6601 }
6602 redirect_edge_and_branch_force (e, *pdest_bb);
6603 }
6604 unconverted_simple_returns.release ();
6605 }
6606
6607 if (entry_edge != orig_entry_edge)
6608 {
6609 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6610 if (EDGE_COUNT (e->src->preds) != 0
6611 && (e->flags & EDGE_FAKE) != 0
6612 && !bitmap_bit_p (&bb_flags, e->src->index))
6613 {
6614 emit_return_into_block (true, e->src);
6615 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6616 }
6617 }
6618 #endif
6619
6620 #ifdef HAVE_sibcall_epilogue
6621 /* Emit sibling epilogues before any sibling call sites. */
6622 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6623 ei_safe_edge (ei));
6624 )
6625 {
6626 basic_block bb = e->src;
6627 rtx insn = BB_END (bb);
6628 rtx ep_seq;
6629
6630 if (!CALL_P (insn)
6631 || ! SIBLING_CALL_P (insn)
6632 #ifdef HAVE_simple_return
6633 || (entry_edge != orig_entry_edge
6634 && !bitmap_bit_p (&bb_flags, bb->index))
6635 #endif
6636 )
6637 {
6638 ei_next (&ei);
6639 continue;
6640 }
6641
6642 ep_seq = gen_sibcall_epilogue ();
6643 if (ep_seq)
6644 {
6645 start_sequence ();
6646 emit_note (NOTE_INSN_EPILOGUE_BEG);
6647 emit_insn (ep_seq);
6648 seq = get_insns ();
6649 end_sequence ();
6650
6651 /* Retain a map of the epilogue insns. Used in life analysis to
6652 avoid getting rid of sibcall epilogue insns. Do this before we
6653 actually emit the sequence. */
6654 record_insns (seq, NULL, &epilogue_insn_hash);
6655 set_insn_locations (seq, epilogue_location);
6656
6657 emit_insn_before (seq, insn);
6658 }
6659 ei_next (&ei);
6660 }
6661 #endif
6662
6663 #ifdef HAVE_epilogue
6664 if (epilogue_end)
6665 {
6666 rtx insn, next;
6667
6668 /* Similarly, move any line notes that appear after the epilogue.
6669 There is no need, however, to be quite so anal about the existence
6670 of such a note. Also possibly move
6671 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6672 info generation. */
6673 for (insn = epilogue_end; insn; insn = next)
6674 {
6675 next = NEXT_INSN (insn);
6676 if (NOTE_P (insn)
6677 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6678 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6679 }
6680 }
6681 #endif
6682
6683 #ifdef HAVE_simple_return
6684 bitmap_clear (&bb_flags);
6685 #endif
6686
6687 /* Threading the prologue and epilogue changes the artificial refs
6688 in the entry and exit blocks. */
6689 epilogue_completed = 1;
6690 df_update_entry_exit_and_calls ();
6691 }
6692
6693 /* Reposition the prologue-end and epilogue-begin notes after
6694 instruction scheduling. */
6695
6696 void
6697 reposition_prologue_and_epilogue_notes (void)
6698 {
6699 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6700 || defined (HAVE_sibcall_epilogue)
6701 /* Since the hash table is created on demand, the fact that it is
6702 non-null is a signal that it is non-empty. */
6703 if (prologue_insn_hash != NULL)
6704 {
6705 size_t len = htab_elements (prologue_insn_hash);
6706 rtx insn, last = NULL, note = NULL;
6707
6708 /* Scan from the beginning until we reach the last prologue insn. */
6709 /* ??? While we do have the CFG intact, there are two problems:
6710 (1) The prologue can contain loops (typically probing the stack),
6711 which means that the end of the prologue isn't in the first bb.
6712 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6713 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6714 {
6715 if (NOTE_P (insn))
6716 {
6717 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6718 note = insn;
6719 }
6720 else if (contains (insn, prologue_insn_hash))
6721 {
6722 last = insn;
6723 if (--len == 0)
6724 break;
6725 }
6726 }
6727
6728 if (last)
6729 {
6730 if (note == NULL)
6731 {
6732 /* Scan forward looking for the PROLOGUE_END note. It should
6733 be right at the beginning of the block, possibly with other
6734 insn notes that got moved there. */
6735 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6736 {
6737 if (NOTE_P (note)
6738 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6739 break;
6740 }
6741 }
6742
6743 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6744 if (LABEL_P (last))
6745 last = NEXT_INSN (last);
6746 reorder_insns (note, note, last);
6747 }
6748 }
6749
6750 if (epilogue_insn_hash != NULL)
6751 {
6752 edge_iterator ei;
6753 edge e;
6754
6755 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6756 {
6757 rtx insn, first = NULL, note = NULL;
6758 basic_block bb = e->src;
6759
6760 /* Scan from the beginning until we reach the first epilogue insn. */
6761 FOR_BB_INSNS (bb, insn)
6762 {
6763 if (NOTE_P (insn))
6764 {
6765 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6766 {
6767 note = insn;
6768 if (first != NULL)
6769 break;
6770 }
6771 }
6772 else if (first == NULL && contains (insn, epilogue_insn_hash))
6773 {
6774 first = insn;
6775 if (note != NULL)
6776 break;
6777 }
6778 }
6779
6780 if (note)
6781 {
6782 /* If the function has a single basic block, and no real
6783 epilogue insns (e.g. sibcall with no cleanup), the
6784 epilogue note can get scheduled before the prologue
6785 note. If we have frame related prologue insns, having
6786 them scanned during the epilogue will result in a crash.
6787 In this case re-order the epilogue note to just before
6788 the last insn in the block. */
6789 if (first == NULL)
6790 first = BB_END (bb);
6791
6792 if (PREV_INSN (first) != note)
6793 reorder_insns (note, note, PREV_INSN (first));
6794 }
6795 }
6796 }
6797 #endif /* HAVE_prologue or HAVE_epilogue */
6798 }
6799
6800 /* Returns the name of function declared by FNDECL. */
6801 const char *
6802 fndecl_name (tree fndecl)
6803 {
6804 if (fndecl == NULL)
6805 return "(nofn)";
6806 return lang_hooks.decl_printable_name (fndecl, 2);
6807 }
6808
6809 /* Returns the name of function FN. */
6810 const char *
6811 function_name (struct function *fn)
6812 {
6813 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6814 return fndecl_name (fndecl);
6815 }
6816
6817 /* Returns the name of the current function. */
6818 const char *
6819 current_function_name (void)
6820 {
6821 return function_name (cfun);
6822 }
6823 \f
6824
6825 static unsigned int
6826 rest_of_handle_check_leaf_regs (void)
6827 {
6828 #ifdef LEAF_REGISTERS
6829 crtl->uses_only_leaf_regs
6830 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6831 #endif
6832 return 0;
6833 }
6834
6835 /* Insert a TYPE into the used types hash table of CFUN. */
6836
6837 static void
6838 used_types_insert_helper (tree type, struct function *func)
6839 {
6840 if (type != NULL && func != NULL)
6841 {
6842 void **slot;
6843
6844 if (func->used_types_hash == NULL)
6845 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6846 htab_eq_pointer, NULL);
6847 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6848 if (*slot == NULL)
6849 *slot = type;
6850 }
6851 }
6852
6853 /* Given a type, insert it into the used hash table in cfun. */
6854 void
6855 used_types_insert (tree t)
6856 {
6857 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6858 if (TYPE_NAME (t))
6859 break;
6860 else
6861 t = TREE_TYPE (t);
6862 if (TREE_CODE (t) == ERROR_MARK)
6863 return;
6864 if (TYPE_NAME (t) == NULL_TREE
6865 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6866 t = TYPE_MAIN_VARIANT (t);
6867 if (debug_info_level > DINFO_LEVEL_NONE)
6868 {
6869 if (cfun)
6870 used_types_insert_helper (t, cfun);
6871 else
6872 {
6873 /* So this might be a type referenced by a global variable.
6874 Record that type so that we can later decide to emit its
6875 debug information. */
6876 vec_safe_push (types_used_by_cur_var_decl, t);
6877 }
6878 }
6879 }
6880
6881 /* Helper to Hash a struct types_used_by_vars_entry. */
6882
6883 static hashval_t
6884 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6885 {
6886 gcc_assert (entry && entry->var_decl && entry->type);
6887
6888 return iterative_hash_object (entry->type,
6889 iterative_hash_object (entry->var_decl, 0));
6890 }
6891
6892 /* Hash function of the types_used_by_vars_entry hash table. */
6893
6894 hashval_t
6895 types_used_by_vars_do_hash (const void *x)
6896 {
6897 const struct types_used_by_vars_entry *entry =
6898 (const struct types_used_by_vars_entry *) x;
6899
6900 return hash_types_used_by_vars_entry (entry);
6901 }
6902
6903 /*Equality function of the types_used_by_vars_entry hash table. */
6904
6905 int
6906 types_used_by_vars_eq (const void *x1, const void *x2)
6907 {
6908 const struct types_used_by_vars_entry *e1 =
6909 (const struct types_used_by_vars_entry *) x1;
6910 const struct types_used_by_vars_entry *e2 =
6911 (const struct types_used_by_vars_entry *)x2;
6912
6913 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6914 }
6915
6916 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6917
6918 void
6919 types_used_by_var_decl_insert (tree type, tree var_decl)
6920 {
6921 if (type != NULL && var_decl != NULL)
6922 {
6923 void **slot;
6924 struct types_used_by_vars_entry e;
6925 e.var_decl = var_decl;
6926 e.type = type;
6927 if (types_used_by_vars_hash == NULL)
6928 types_used_by_vars_hash =
6929 htab_create_ggc (37, types_used_by_vars_do_hash,
6930 types_used_by_vars_eq, NULL);
6931 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
6932 hash_types_used_by_vars_entry (&e), INSERT);
6933 if (*slot == NULL)
6934 {
6935 struct types_used_by_vars_entry *entry;
6936 entry = ggc_alloc_types_used_by_vars_entry ();
6937 entry->type = type;
6938 entry->var_decl = var_decl;
6939 *slot = entry;
6940 }
6941 }
6942 }
6943
6944 namespace {
6945
6946 const pass_data pass_data_leaf_regs =
6947 {
6948 RTL_PASS, /* type */
6949 "*leaf_regs", /* name */
6950 OPTGROUP_NONE, /* optinfo_flags */
6951 true, /* has_execute */
6952 TV_NONE, /* tv_id */
6953 0, /* properties_required */
6954 0, /* properties_provided */
6955 0, /* properties_destroyed */
6956 0, /* todo_flags_start */
6957 0, /* todo_flags_finish */
6958 };
6959
6960 class pass_leaf_regs : public rtl_opt_pass
6961 {
6962 public:
6963 pass_leaf_regs (gcc::context *ctxt)
6964 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6965 {}
6966
6967 /* opt_pass methods: */
6968 unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
6969
6970 }; // class pass_leaf_regs
6971
6972 } // anon namespace
6973
6974 rtl_opt_pass *
6975 make_pass_leaf_regs (gcc::context *ctxt)
6976 {
6977 return new pass_leaf_regs (ctxt);
6978 }
6979
6980 static unsigned int
6981 rest_of_handle_thread_prologue_and_epilogue (void)
6982 {
6983 if (optimize)
6984 cleanup_cfg (CLEANUP_EXPENSIVE);
6985
6986 /* On some machines, the prologue and epilogue code, or parts thereof,
6987 can be represented as RTL. Doing so lets us schedule insns between
6988 it and the rest of the code and also allows delayed branch
6989 scheduling to operate in the epilogue. */
6990 thread_prologue_and_epilogue_insns ();
6991
6992 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6993 see PR57320. */
6994 cleanup_cfg (0);
6995
6996 /* The stack usage info is finalized during prologue expansion. */
6997 if (flag_stack_usage_info)
6998 output_stack_usage ();
6999
7000 return 0;
7001 }
7002
7003 namespace {
7004
7005 const pass_data pass_data_thread_prologue_and_epilogue =
7006 {
7007 RTL_PASS, /* type */
7008 "pro_and_epilogue", /* name */
7009 OPTGROUP_NONE, /* optinfo_flags */
7010 true, /* has_execute */
7011 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
7012 0, /* properties_required */
7013 0, /* properties_provided */
7014 0, /* properties_destroyed */
7015 TODO_verify_flow, /* todo_flags_start */
7016 ( TODO_df_verify | TODO_df_finish
7017 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
7018 };
7019
7020 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
7021 {
7022 public:
7023 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7024 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
7025 {}
7026
7027 /* opt_pass methods: */
7028 unsigned int execute () {
7029 return rest_of_handle_thread_prologue_and_epilogue ();
7030 }
7031
7032 }; // class pass_thread_prologue_and_epilogue
7033
7034 } // anon namespace
7035
7036 rtl_opt_pass *
7037 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7038 {
7039 return new pass_thread_prologue_and_epilogue (ctxt);
7040 }
7041 \f
7042
7043 /* This mini-pass fixes fall-out from SSA in asm statements that have
7044 in-out constraints. Say you start with
7045
7046 orig = inout;
7047 asm ("": "+mr" (inout));
7048 use (orig);
7049
7050 which is transformed very early to use explicit output and match operands:
7051
7052 orig = inout;
7053 asm ("": "=mr" (inout) : "0" (inout));
7054 use (orig);
7055
7056 Or, after SSA and copyprop,
7057
7058 asm ("": "=mr" (inout_2) : "0" (inout_1));
7059 use (inout_1);
7060
7061 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7062 they represent two separate values, so they will get different pseudo
7063 registers during expansion. Then, since the two operands need to match
7064 per the constraints, but use different pseudo registers, reload can
7065 only register a reload for these operands. But reloads can only be
7066 satisfied by hardregs, not by memory, so we need a register for this
7067 reload, just because we are presented with non-matching operands.
7068 So, even though we allow memory for this operand, no memory can be
7069 used for it, just because the two operands don't match. This can
7070 cause reload failures on register-starved targets.
7071
7072 So it's a symptom of reload not being able to use memory for reloads
7073 or, alternatively it's also a symptom of both operands not coming into
7074 reload as matching (in which case the pseudo could go to memory just
7075 fine, as the alternative allows it, and no reload would be necessary).
7076 We fix the latter problem here, by transforming
7077
7078 asm ("": "=mr" (inout_2) : "0" (inout_1));
7079
7080 back to
7081
7082 inout_2 = inout_1;
7083 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7084
7085 static void
7086 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7087 {
7088 int i;
7089 bool changed = false;
7090 rtx op = SET_SRC (p_sets[0]);
7091 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7092 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7093 bool *output_matched = XALLOCAVEC (bool, noutputs);
7094
7095 memset (output_matched, 0, noutputs * sizeof (bool));
7096 for (i = 0; i < ninputs; i++)
7097 {
7098 rtx input, output, insns;
7099 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7100 char *end;
7101 int match, j;
7102
7103 if (*constraint == '%')
7104 constraint++;
7105
7106 match = strtoul (constraint, &end, 10);
7107 if (end == constraint)
7108 continue;
7109
7110 gcc_assert (match < noutputs);
7111 output = SET_DEST (p_sets[match]);
7112 input = RTVEC_ELT (inputs, i);
7113 /* Only do the transformation for pseudos. */
7114 if (! REG_P (output)
7115 || rtx_equal_p (output, input)
7116 || (GET_MODE (input) != VOIDmode
7117 && GET_MODE (input) != GET_MODE (output)))
7118 continue;
7119
7120 /* We can't do anything if the output is also used as input,
7121 as we're going to overwrite it. */
7122 for (j = 0; j < ninputs; j++)
7123 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7124 break;
7125 if (j != ninputs)
7126 continue;
7127
7128 /* Avoid changing the same input several times. For
7129 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7130 only change in once (to out1), rather than changing it
7131 first to out1 and afterwards to out2. */
7132 if (i > 0)
7133 {
7134 for (j = 0; j < noutputs; j++)
7135 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7136 break;
7137 if (j != noutputs)
7138 continue;
7139 }
7140 output_matched[match] = true;
7141
7142 start_sequence ();
7143 emit_move_insn (output, input);
7144 insns = get_insns ();
7145 end_sequence ();
7146 emit_insn_before (insns, insn);
7147
7148 /* Now replace all mentions of the input with output. We can't
7149 just replace the occurrence in inputs[i], as the register might
7150 also be used in some other input (or even in an address of an
7151 output), which would mean possibly increasing the number of
7152 inputs by one (namely 'output' in addition), which might pose
7153 a too complicated problem for reload to solve. E.g. this situation:
7154
7155 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7156
7157 Here 'input' is used in two occurrences as input (once for the
7158 input operand, once for the address in the second output operand).
7159 If we would replace only the occurrence of the input operand (to
7160 make the matching) we would be left with this:
7161
7162 output = input
7163 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7164
7165 Now we suddenly have two different input values (containing the same
7166 value, but different pseudos) where we formerly had only one.
7167 With more complicated asms this might lead to reload failures
7168 which wouldn't have happen without this pass. So, iterate over
7169 all operands and replace all occurrences of the register used. */
7170 for (j = 0; j < noutputs; j++)
7171 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7172 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7173 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7174 input, output);
7175 for (j = 0; j < ninputs; j++)
7176 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7177 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7178 input, output);
7179
7180 changed = true;
7181 }
7182
7183 if (changed)
7184 df_insn_rescan (insn);
7185 }
7186
7187 static unsigned
7188 rest_of_match_asm_constraints (void)
7189 {
7190 basic_block bb;
7191 rtx insn, pat, *p_sets;
7192 int noutputs;
7193
7194 if (!crtl->has_asm_statement)
7195 return 0;
7196
7197 df_set_flags (DF_DEFER_INSN_RESCAN);
7198 FOR_EACH_BB_FN (bb, cfun)
7199 {
7200 FOR_BB_INSNS (bb, insn)
7201 {
7202 if (!INSN_P (insn))
7203 continue;
7204
7205 pat = PATTERN (insn);
7206 if (GET_CODE (pat) == PARALLEL)
7207 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7208 else if (GET_CODE (pat) == SET)
7209 p_sets = &PATTERN (insn), noutputs = 1;
7210 else
7211 continue;
7212
7213 if (GET_CODE (*p_sets) == SET
7214 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7215 match_asm_constraints_1 (insn, p_sets, noutputs);
7216 }
7217 }
7218
7219 return TODO_df_finish;
7220 }
7221
7222 namespace {
7223
7224 const pass_data pass_data_match_asm_constraints =
7225 {
7226 RTL_PASS, /* type */
7227 "asmcons", /* name */
7228 OPTGROUP_NONE, /* optinfo_flags */
7229 true, /* has_execute */
7230 TV_NONE, /* tv_id */
7231 0, /* properties_required */
7232 0, /* properties_provided */
7233 0, /* properties_destroyed */
7234 0, /* todo_flags_start */
7235 0, /* todo_flags_finish */
7236 };
7237
7238 class pass_match_asm_constraints : public rtl_opt_pass
7239 {
7240 public:
7241 pass_match_asm_constraints (gcc::context *ctxt)
7242 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
7243 {}
7244
7245 /* opt_pass methods: */
7246 unsigned int execute () { return rest_of_match_asm_constraints (); }
7247
7248 }; // class pass_match_asm_constraints
7249
7250 } // anon namespace
7251
7252 rtl_opt_pass *
7253 make_pass_match_asm_constraints (gcc::context *ctxt)
7254 {
7255 return new pass_match_asm_constraints (ctxt);
7256 }
7257
7258
7259 #include "gt-function.h"