]> git.ipfire.org Git - people/ms/gcc.git/blob - gcc/function.cc
c++: namespace-scoped friend in local class [PR69410]
[people/ms/gcc.git] / gcc / function.cc
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "opts.h"
50 #include "regs.h"
51 #include "emit-rtl.h"
52 #include "recog.h"
53 #include "rtl-error.h"
54 #include "hard-reg-set.h"
55 #include "alias.h"
56 #include "fold-const.h"
57 #include "stor-layout.h"
58 #include "varasm.h"
59 #include "except.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "calls.h"
63 #include "expr.h"
64 #include "optabs-tree.h"
65 #include "output.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
68 #include "gimplify.h"
69 #include "tree-pass.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "shrink-wrap.h"
76 #include "toplev.h"
77 #include "rtl-iter.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
80 #include "stringpool.h"
81 #include "attribs.h"
82 #include "gimple.h"
83 #include "options.h"
84 #include "function-abi.h"
85 #include "value-range.h"
86 #include "gimple-range.h"
87
88 /* So we can assign to cfun in this file. */
89 #undef cfun
90
91 #ifndef STACK_ALIGNMENT_NEEDED
92 #define STACK_ALIGNMENT_NEEDED 1
93 #endif
94
95 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
96
97 /* Round a value to the lowest integer less than it that is a multiple of
98 the required alignment. Avoid using division in case the value is
99 negative. Assume the alignment is a power of two. */
100 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
101
102 /* Similar, but round to the next highest integer that meets the
103 alignment. */
104 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
105
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.cc:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
111
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
114
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
118
119 /* The currently compiled function. */
120 struct function *cfun = 0;
121
122 /* These hashes record the prologue and epilogue insns. */
123
124 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
125 {
126 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
127 static bool equal (rtx a, rtx b) { return a == b; }
128 };
129
130 static GTY((cache))
131 hash_table<insn_cache_hasher> *prologue_insn_hash;
132 static GTY((cache))
133 hash_table<insn_cache_hasher> *epilogue_insn_hash;
134 \f
135
136 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
137 vec<tree, va_gc> *types_used_by_cur_var_decl;
138
139 /* Forward declarations. */
140
141 static class temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, machine_mode, tree);
144 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
151 ATTRIBUTE_UNUSED;
152 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
156
157 \f
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
160
161 static vec<function *> function_context_stack;
162
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
165
166 void
167 push_function_context (void)
168 {
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
171
172 function_context_stack.safe_push (cfun);
173 set_cfun (NULL);
174 }
175
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
178
179 void
180 pop_function_context (void)
181 {
182 struct function *p = function_context_stack.pop ();
183 set_cfun (p);
184 current_function_decl = p->decl;
185
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
189 }
190
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
194
195 void
196 free_after_parsing (struct function *f)
197 {
198 f->language = 0;
199 }
200
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
204
205 void
206 free_after_compilation (struct function *f)
207 {
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
210
211 free (crtl->emit.regno_pointer_align);
212
213 memset (crtl, 0, sizeof (struct rtl_data));
214 f->eh = NULL;
215 f->machine = NULL;
216 f->cfg = NULL;
217 f->curr_properties &= ~PROP_cfg;
218
219 regno_reg_rtx = NULL;
220 }
221 \f
222 /* Return size needed for stack frame based on slots so far allocated.
223 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
224 the caller may have to do that. */
225
226 poly_int64
227 get_frame_size (void)
228 {
229 if (FRAME_GROWS_DOWNWARD)
230 return -frame_offset;
231 else
232 return frame_offset;
233 }
234
235 /* Issue an error message and return TRUE if frame OFFSET overflows in
236 the signed target pointer arithmetics for function FUNC. Otherwise
237 return FALSE. */
238
239 bool
240 frame_offset_overflow (poly_int64 offset, tree func)
241 {
242 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
243 unsigned HOST_WIDE_INT limit
244 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
245 /* Leave room for the fixed part of the frame. */
246 - 64 * UNITS_PER_WORD);
247
248 if (!coeffs_in_range_p (size, 0U, limit))
249 {
250 unsigned HOST_WIDE_INT hwisize;
251 if (size.is_constant (&hwisize))
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects %wu exceeds maximum %wu",
254 hwisize, limit);
255 else
256 error_at (DECL_SOURCE_LOCATION (func),
257 "total size of local objects exceeds maximum %wu",
258 limit);
259 return true;
260 }
261
262 return false;
263 }
264
265 /* Return the minimum spill slot alignment for a register of mode MODE. */
266
267 unsigned int
268 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
269 {
270 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
271 }
272
273 /* Return stack slot alignment in bits for TYPE and MODE. */
274
275 static unsigned int
276 get_stack_local_alignment (tree type, machine_mode mode)
277 {
278 unsigned int alignment;
279
280 if (mode == BLKmode)
281 alignment = BIGGEST_ALIGNMENT;
282 else
283 alignment = GET_MODE_ALIGNMENT (mode);
284
285 /* Allow the frond-end to (possibly) increase the alignment of this
286 stack slot. */
287 if (! type)
288 type = lang_hooks.types.type_for_mode (mode, 0);
289
290 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
291 }
292
293 /* Determine whether it is possible to fit a stack slot of size SIZE and
294 alignment ALIGNMENT into an area in the stack frame that starts at
295 frame offset START and has a length of LENGTH. If so, store the frame
296 offset to be used for the stack slot in *POFFSET and return true;
297 return false otherwise. This function will extend the frame size when
298 given a start/length pair that lies at the end of the frame. */
299
300 static bool
301 try_fit_stack_local (poly_int64 start, poly_int64 length,
302 poly_int64 size, unsigned int alignment,
303 poly_int64_pod *poffset)
304 {
305 poly_int64 this_frame_offset;
306 int frame_off, frame_alignment, frame_phase;
307
308 /* Calculate how many bytes the start of local variables is off from
309 stack alignment. */
310 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
311 frame_off = targetm.starting_frame_offset () % frame_alignment;
312 frame_phase = frame_off ? frame_alignment - frame_off : 0;
313
314 /* Round the frame offset to the specified alignment. */
315
316 if (FRAME_GROWS_DOWNWARD)
317 this_frame_offset
318 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
323
324 /* See if it fits. If this space is at the edge of the frame,
325 consider extending the frame to make it fit. Our caller relies on
326 this when allocating a new slot. */
327 if (maybe_lt (this_frame_offset, start))
328 {
329 if (known_eq (frame_offset, start))
330 frame_offset = this_frame_offset;
331 else
332 return false;
333 }
334 else if (maybe_gt (this_frame_offset + size, start + length))
335 {
336 if (known_eq (frame_offset, start + length))
337 frame_offset = this_frame_offset + size;
338 else
339 return false;
340 }
341
342 *poffset = this_frame_offset;
343 return true;
344 }
345
346 /* Create a new frame_space structure describing free space in the stack
347 frame beginning at START and ending at END, and chain it into the
348 function's frame_space_list. */
349
350 static void
351 add_frame_space (poly_int64 start, poly_int64 end)
352 {
353 class frame_space *space = ggc_alloc<frame_space> ();
354 space->next = crtl->frame_space_list;
355 crtl->frame_space_list = space;
356 space->start = start;
357 space->length = end - start;
358 }
359
360 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
361 with machine mode MODE.
362
363 ALIGN controls the amount of alignment for the address of the slot:
364 0 means according to MODE,
365 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
366 -2 means use BITS_PER_UNIT,
367 positive specifies alignment boundary in bits.
368
369 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
370 alignment and ASLK_RECORD_PAD bit set if we should remember
371 extra space we allocated for alignment purposes. When we are
372 called from assign_stack_temp_for_type, it is not set so we don't
373 track the same stack slot in two independent lists.
374
375 We do not round to stack_boundary here. */
376
377 rtx
378 assign_stack_local_1 (machine_mode mode, poly_int64 size,
379 int align, int kind)
380 {
381 rtx x, addr;
382 poly_int64 bigend_correction = 0;
383 poly_int64 slot_offset = 0, old_frame_offset;
384 unsigned int alignment, alignment_in_bits;
385
386 if (align == 0)
387 {
388 alignment = get_stack_local_alignment (NULL, mode);
389 alignment /= BITS_PER_UNIT;
390 }
391 else if (align == -1)
392 {
393 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
394 size = aligned_upper_bound (size, alignment);
395 }
396 else if (align == -2)
397 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
398 else
399 alignment = align / BITS_PER_UNIT;
400
401 alignment_in_bits = alignment * BITS_PER_UNIT;
402
403 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
404 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
405 {
406 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
407 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
408 }
409
410 if (SUPPORTS_STACK_ALIGNMENT)
411 {
412 if (crtl->stack_alignment_estimated < alignment_in_bits)
413 {
414 if (!crtl->stack_realign_processed)
415 crtl->stack_alignment_estimated = alignment_in_bits;
416 else
417 {
418 /* If stack is realigned and stack alignment value
419 hasn't been finalized, it is OK not to increase
420 stack_alignment_estimated. The bigger alignment
421 requirement is recorded in stack_alignment_needed
422 below. */
423 gcc_assert (!crtl->stack_realign_finalized);
424 if (!crtl->stack_realign_needed)
425 {
426 /* It is OK to reduce the alignment as long as the
427 requested size is 0 or the estimated stack
428 alignment >= mode alignment. */
429 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
430 || known_eq (size, 0)
431 || (crtl->stack_alignment_estimated
432 >= GET_MODE_ALIGNMENT (mode)));
433 alignment_in_bits = crtl->stack_alignment_estimated;
434 alignment = alignment_in_bits / BITS_PER_UNIT;
435 }
436 }
437 }
438 }
439
440 if (crtl->stack_alignment_needed < alignment_in_bits)
441 crtl->stack_alignment_needed = alignment_in_bits;
442 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
443 crtl->max_used_stack_slot_alignment = alignment_in_bits;
444
445 if (mode != BLKmode || maybe_ne (size, 0))
446 {
447 if (kind & ASLK_RECORD_PAD)
448 {
449 class frame_space **psp;
450
451 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
452 {
453 class frame_space *space = *psp;
454 if (!try_fit_stack_local (space->start, space->length, size,
455 alignment, &slot_offset))
456 continue;
457 *psp = space->next;
458 if (known_gt (slot_offset, space->start))
459 add_frame_space (space->start, slot_offset);
460 if (known_lt (slot_offset + size, space->start + space->length))
461 add_frame_space (slot_offset + size,
462 space->start + space->length);
463 goto found_space;
464 }
465 }
466 }
467 else if (!STACK_ALIGNMENT_NEEDED)
468 {
469 slot_offset = frame_offset;
470 goto found_space;
471 }
472
473 old_frame_offset = frame_offset;
474
475 if (FRAME_GROWS_DOWNWARD)
476 {
477 frame_offset -= size;
478 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
479
480 if (kind & ASLK_RECORD_PAD)
481 {
482 if (known_gt (slot_offset, frame_offset))
483 add_frame_space (frame_offset, slot_offset);
484 if (known_lt (slot_offset + size, old_frame_offset))
485 add_frame_space (slot_offset + size, old_frame_offset);
486 }
487 }
488 else
489 {
490 frame_offset += size;
491 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
492
493 if (kind & ASLK_RECORD_PAD)
494 {
495 if (known_gt (slot_offset, old_frame_offset))
496 add_frame_space (old_frame_offset, slot_offset);
497 if (known_lt (slot_offset + size, frame_offset))
498 add_frame_space (slot_offset + size, frame_offset);
499 }
500 }
501
502 found_space:
503 /* On a big-endian machine, if we are allocating more space than we will use,
504 use the least significant bytes of those that are allocated. */
505 if (mode != BLKmode)
506 {
507 /* The slot size can sometimes be smaller than the mode size;
508 e.g. the rs6000 port allocates slots with a vector mode
509 that have the size of only one element. However, the slot
510 size must always be ordered wrt to the mode size, in the
511 same way as for a subreg. */
512 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
513 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
514 bigend_correction = size - GET_MODE_SIZE (mode);
515 }
516
517 /* If we have already instantiated virtual registers, return the actual
518 address relative to the frame pointer. */
519 if (virtuals_instantiated)
520 addr = plus_constant (Pmode, frame_pointer_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction
523 + targetm.starting_frame_offset (), Pmode));
524 else
525 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
526 trunc_int_for_mode
527 (slot_offset + bigend_correction,
528 Pmode));
529
530 x = gen_rtx_MEM (mode, addr);
531 set_mem_align (x, alignment_in_bits);
532 MEM_NOTRAP_P (x) = 1;
533
534 vec_safe_push (stack_slot_list, x);
535
536 if (frame_offset_overflow (frame_offset, current_function_decl))
537 frame_offset = 0;
538
539 return x;
540 }
541
542 /* Wrap up assign_stack_local_1 with last parameter as false. */
543
544 rtx
545 assign_stack_local (machine_mode mode, poly_int64 size, int align)
546 {
547 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
548 }
549 \f
550 /* In order to evaluate some expressions, such as function calls returning
551 structures in memory, we need to temporarily allocate stack locations.
552 We record each allocated temporary in the following structure.
553
554 Associated with each temporary slot is a nesting level. When we pop up
555 one level, all temporaries associated with the previous level are freed.
556 Normally, all temporaries are freed after the execution of the statement
557 in which they were created. However, if we are inside a ({...}) grouping,
558 the result may be in a temporary and hence must be preserved. If the
559 result could be in a temporary, we preserve it if we can determine which
560 one it is in. If we cannot determine which temporary may contain the
561 result, all temporaries are preserved. A temporary is preserved by
562 pretending it was allocated at the previous nesting level. */
563
564 class GTY(()) temp_slot {
565 public:
566 /* Points to next temporary slot. */
567 class temp_slot *next;
568 /* Points to previous temporary slot. */
569 class temp_slot *prev;
570 /* The rtx to used to reference the slot. */
571 rtx slot;
572 /* The size, in units, of the slot. */
573 poly_int64 size;
574 /* The type of the object in the slot, or zero if it doesn't correspond
575 to a type. We use this to determine whether a slot can be reused.
576 It can be reused if objects of the type of the new slot will always
577 conflict with objects of the type of the old slot. */
578 tree type;
579 /* The alignment (in bits) of the slot. */
580 unsigned int align;
581 /* Nonzero if this temporary is currently in use. */
582 char in_use;
583 /* Nesting level at which this slot is being used. */
584 int level;
585 /* The offset of the slot from the frame_pointer, including extra space
586 for alignment. This info is for combine_temp_slots. */
587 poly_int64 base_offset;
588 /* The size of the slot, including extra space for alignment. This
589 info is for combine_temp_slots. */
590 poly_int64 full_size;
591 };
592
593 /* Entry for the below hash table. */
594 struct GTY((for_user)) temp_slot_address_entry {
595 hashval_t hash;
596 rtx address;
597 class temp_slot *temp_slot;
598 };
599
600 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
601 {
602 static hashval_t hash (temp_slot_address_entry *);
603 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
604 };
605
606 /* A table of addresses that represent a stack slot. The table is a mapping
607 from address RTXen to a temp slot. */
608 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
609 static size_t n_temp_slots_in_use;
610
611 /* Removes temporary slot TEMP from LIST. */
612
613 static void
614 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
615 {
616 if (temp->next)
617 temp->next->prev = temp->prev;
618 if (temp->prev)
619 temp->prev->next = temp->next;
620 else
621 *list = temp->next;
622
623 temp->prev = temp->next = NULL;
624 }
625
626 /* Inserts temporary slot TEMP to LIST. */
627
628 static void
629 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
630 {
631 temp->next = *list;
632 if (*list)
633 (*list)->prev = temp;
634 temp->prev = NULL;
635 *list = temp;
636 }
637
638 /* Returns the list of used temp slots at LEVEL. */
639
640 static class temp_slot **
641 temp_slots_at_level (int level)
642 {
643 if (level >= (int) vec_safe_length (used_temp_slots))
644 vec_safe_grow_cleared (used_temp_slots, level + 1, true);
645
646 return &(*used_temp_slots)[level];
647 }
648
649 /* Returns the maximal temporary slot level. */
650
651 static int
652 max_slot_level (void)
653 {
654 if (!used_temp_slots)
655 return -1;
656
657 return used_temp_slots->length () - 1;
658 }
659
660 /* Moves temporary slot TEMP to LEVEL. */
661
662 static void
663 move_slot_to_level (class temp_slot *temp, int level)
664 {
665 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
666 insert_slot_to_list (temp, temp_slots_at_level (level));
667 temp->level = level;
668 }
669
670 /* Make temporary slot TEMP available. */
671
672 static void
673 make_slot_available (class temp_slot *temp)
674 {
675 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
676 insert_slot_to_list (temp, &avail_temp_slots);
677 temp->in_use = 0;
678 temp->level = -1;
679 n_temp_slots_in_use--;
680 }
681
682 /* Compute the hash value for an address -> temp slot mapping.
683 The value is cached on the mapping entry. */
684 static hashval_t
685 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
686 {
687 int do_not_record = 0;
688 return hash_rtx (t->address, GET_MODE (t->address),
689 &do_not_record, NULL, false);
690 }
691
692 /* Return the hash value for an address -> temp slot mapping. */
693 hashval_t
694 temp_address_hasher::hash (temp_slot_address_entry *t)
695 {
696 return t->hash;
697 }
698
699 /* Compare two address -> temp slot mapping entries. */
700 bool
701 temp_address_hasher::equal (temp_slot_address_entry *t1,
702 temp_slot_address_entry *t2)
703 {
704 return exp_equiv_p (t1->address, t2->address, 0, true);
705 }
706
707 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
708 static void
709 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
710 {
711 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
712 t->address = copy_rtx (address);
713 t->temp_slot = temp_slot;
714 t->hash = temp_slot_address_compute_hash (t);
715 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
716 }
717
718 /* Remove an address -> temp slot mapping entry if the temp slot is
719 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
720 int
721 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
722 {
723 const struct temp_slot_address_entry *t = *slot;
724 if (! t->temp_slot->in_use)
725 temp_slot_address_table->clear_slot (slot);
726 return 1;
727 }
728
729 /* Remove all mappings of addresses to unused temp slots. */
730 static void
731 remove_unused_temp_slot_addresses (void)
732 {
733 /* Use quicker clearing if there aren't any active temp slots. */
734 if (n_temp_slots_in_use)
735 temp_slot_address_table->traverse
736 <void *, remove_unused_temp_slot_addresses_1> (NULL);
737 else
738 temp_slot_address_table->empty ();
739 }
740
741 /* Find the temp slot corresponding to the object at address X. */
742
743 static class temp_slot *
744 find_temp_slot_from_address (rtx x)
745 {
746 class temp_slot *p;
747 struct temp_slot_address_entry tmp, *t;
748
749 /* First try the easy way:
750 See if X exists in the address -> temp slot mapping. */
751 tmp.address = x;
752 tmp.temp_slot = NULL;
753 tmp.hash = temp_slot_address_compute_hash (&tmp);
754 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
755 if (t)
756 return t->temp_slot;
757
758 /* If we have a sum involving a register, see if it points to a temp
759 slot. */
760 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
761 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
762 return p;
763 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
764 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
765 return p;
766
767 /* Last resort: Address is a virtual stack var address. */
768 poly_int64 offset;
769 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
770 {
771 int i;
772 for (i = max_slot_level (); i >= 0; i--)
773 for (p = *temp_slots_at_level (i); p; p = p->next)
774 if (known_in_range_p (offset, p->base_offset, p->full_size))
775 return p;
776 }
777
778 return NULL;
779 }
780 \f
781 /* Allocate a temporary stack slot and record it for possible later
782 reuse.
783
784 MODE is the machine mode to be given to the returned rtx.
785
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
788
789 TYPE is the type that will be used for the stack slot. */
790
791 rtx
792 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
793 {
794 unsigned int align;
795 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
796 rtx slot;
797
798 gcc_assert (known_size_p (size));
799
800 align = get_stack_local_alignment (type, mode);
801
802 /* Try to find an available, already-allocated temporary of the proper
803 mode which meets the size and alignment requirements. Choose the
804 smallest one with the closest alignment.
805
806 If assign_stack_temp is called outside of the tree->rtl expansion,
807 we cannot reuse the stack slots (that may still refer to
808 VIRTUAL_STACK_VARS_REGNUM). */
809 if (!virtuals_instantiated)
810 {
811 for (p = avail_temp_slots; p; p = p->next)
812 {
813 if (p->align >= align
814 && known_ge (p->size, size)
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0
818 || (known_eq (best_p->size, p->size)
819 ? best_p->align > p->align
820 : known_ge (best_p->size, p->size))))
821 {
822 if (p->align == align && known_eq (p->size, size))
823 {
824 selected = p;
825 cut_slot_from_list (selected, &avail_temp_slots);
826 best_p = 0;
827 break;
828 }
829 best_p = p;
830 }
831 }
832 }
833
834 /* Make our best, if any, the one to use. */
835 if (best_p)
836 {
837 selected = best_p;
838 cut_slot_from_list (selected, &avail_temp_slots);
839
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p->slot) == BLKmode)
844 {
845 int alignment = best_p->align / BITS_PER_UNIT;
846 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
847
848 if (known_ge (best_p->size - rounded_size, alignment))
849 {
850 p = ggc_alloc<temp_slot> ();
851 p->in_use = 0;
852 p->size = best_p->size - rounded_size;
853 p->base_offset = best_p->base_offset + rounded_size;
854 p->full_size = best_p->full_size - rounded_size;
855 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
856 p->align = best_p->align;
857 p->type = best_p->type;
858 insert_slot_to_list (p, &avail_temp_slots);
859
860 vec_safe_push (stack_slot_list, p->slot);
861
862 best_p->size = rounded_size;
863 best_p->full_size = rounded_size;
864 }
865 }
866 }
867
868 /* If we still didn't find one, make a new temporary. */
869 if (selected == 0)
870 {
871 poly_int64 frame_offset_old = frame_offset;
872
873 p = ggc_alloc<temp_slot> ();
874
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
878
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
883 p->slot = assign_stack_local_1 (mode,
884 (mode == BLKmode
885 ? aligned_upper_bound (size,
886 (int) align
887 / BITS_PER_UNIT)
888 : size),
889 align, 0);
890
891 p->align = align;
892
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD)
901 p->size = frame_offset_old - frame_offset;
902 else
903 p->size = size;
904
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD)
907 {
908 p->base_offset = frame_offset;
909 p->full_size = frame_offset_old - frame_offset;
910 }
911 else
912 {
913 p->base_offset = frame_offset_old;
914 p->full_size = frame_offset - frame_offset_old;
915 }
916
917 selected = p;
918 }
919
920 p = selected;
921 p->in_use = 1;
922 p->type = type;
923 p->level = temp_slot_level;
924 n_temp_slots_in_use++;
925
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
929
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 vec_safe_push (stack_slot_list, slot);
933
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
939
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
942 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
943 MEM_NOTRAP_P (slot) = 1;
944
945 return slot;
946 }
947
948 /* Allocate a temporary stack slot and record it for possible later
949 reuse. First two arguments are same as in preceding function. */
950
951 rtx
952 assign_stack_temp (machine_mode mode, poly_int64 size)
953 {
954 return assign_stack_temp_for_type (mode, size, NULL_TREE);
955 }
956 \f
957 /* Assign a temporary.
958 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959 and so that should be used in error messages. In either case, we
960 allocate of the given type.
961 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
962 it is 0 if a register is OK.
963 DONT_PROMOTE is 1 if we should not promote values in register
964 to wider modes. */
965
966 rtx
967 assign_temp (tree type_or_decl, int memory_required,
968 int dont_promote ATTRIBUTE_UNUSED)
969 {
970 tree type, decl;
971 machine_mode mode;
972 #ifdef PROMOTE_MODE
973 int unsignedp;
974 #endif
975
976 if (DECL_P (type_or_decl))
977 decl = type_or_decl, type = TREE_TYPE (decl);
978 else
979 decl = NULL, type = type_or_decl;
980
981 mode = TYPE_MODE (type);
982 #ifdef PROMOTE_MODE
983 unsignedp = TYPE_UNSIGNED (type);
984 #endif
985
986 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
987 end. See also create_tmp_var for the gimplification-time check. */
988 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
989
990 if (mode == BLKmode || memory_required)
991 {
992 poly_int64 size;
993 rtx tmp;
994
995 /* Unfortunately, we don't yet know how to allocate variable-sized
996 temporaries. However, sometimes we can find a fixed upper limit on
997 the size, so try that instead. */
998 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
999 size = max_int_size_in_bytes (type);
1000
1001 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (known_eq (size, 0))
1004 size = 1;
1005
1006 /* The size of the temporary may be too large to fit into an integer. */
1007 /* ??? Not sure this should happen except for user silliness, so limit
1008 this to things that aren't compiler-generated temporaries. The
1009 rest of the time we'll die in assign_stack_temp_for_type. */
1010 if (decl
1011 && !known_size_p (size)
1012 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1013 {
1014 error ("size of variable %q+D is too large", decl);
1015 size = 1;
1016 }
1017
1018 tmp = assign_stack_temp_for_type (mode, size, type);
1019 return tmp;
1020 }
1021
1022 #ifdef PROMOTE_MODE
1023 if (! dont_promote)
1024 mode = promote_mode (type, mode, &unsignedp);
1025 #endif
1026
1027 return gen_reg_rtx (mode);
1028 }
1029 \f
1030 /* Combine temporary stack slots which are adjacent on the stack.
1031
1032 This allows for better use of already allocated stack space. This is only
1033 done for BLKmode slots because we can be sure that we won't have alignment
1034 problems in this case. */
1035
1036 static void
1037 combine_temp_slots (void)
1038 {
1039 class temp_slot *p, *q, *next, *next_q;
1040 int num_slots;
1041
1042 /* We can't combine slots, because the information about which slot
1043 is in which alias set will be lost. */
1044 if (flag_strict_aliasing)
1045 return;
1046
1047 /* If there are a lot of temp slots, don't do anything unless
1048 high levels of optimization. */
1049 if (! flag_expensive_optimizations)
1050 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1051 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1052 return;
1053
1054 for (p = avail_temp_slots; p; p = next)
1055 {
1056 int delete_p = 0;
1057
1058 next = p->next;
1059
1060 if (GET_MODE (p->slot) != BLKmode)
1061 continue;
1062
1063 for (q = p->next; q; q = next_q)
1064 {
1065 int delete_q = 0;
1066
1067 next_q = q->next;
1068
1069 if (GET_MODE (q->slot) != BLKmode)
1070 continue;
1071
1072 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1073 {
1074 /* Q comes after P; combine Q into P. */
1075 p->size += q->size;
1076 p->full_size += q->full_size;
1077 delete_q = 1;
1078 }
1079 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1080 {
1081 /* P comes after Q; combine P into Q. */
1082 q->size += p->size;
1083 q->full_size += p->full_size;
1084 delete_p = 1;
1085 break;
1086 }
1087 if (delete_q)
1088 cut_slot_from_list (q, &avail_temp_slots);
1089 }
1090
1091 /* Either delete P or advance past it. */
1092 if (delete_p)
1093 cut_slot_from_list (p, &avail_temp_slots);
1094 }
1095 }
1096 \f
1097 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1098 slot that previously was known by OLD_RTX. */
1099
1100 void
1101 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1102 {
1103 class temp_slot *p;
1104
1105 if (rtx_equal_p (old_rtx, new_rtx))
1106 return;
1107
1108 p = find_temp_slot_from_address (old_rtx);
1109
1110 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1111 NEW_RTX is a register, see if one operand of the PLUS is a
1112 temporary location. If so, NEW_RTX points into it. Otherwise,
1113 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1114 in common between them. If so, try a recursive call on those
1115 values. */
1116 if (p == 0)
1117 {
1118 if (GET_CODE (old_rtx) != PLUS)
1119 return;
1120
1121 if (REG_P (new_rtx))
1122 {
1123 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1124 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1125 return;
1126 }
1127 else if (GET_CODE (new_rtx) != PLUS)
1128 return;
1129
1130 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1134 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1135 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1136 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1137 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1138
1139 return;
1140 }
1141
1142 /* Otherwise add an alias for the temp's address. */
1143 insert_temp_slot_address (new_rtx, p);
1144 }
1145
1146 /* If X could be a reference to a temporary slot, mark that slot as
1147 belonging to the to one level higher than the current level. If X
1148 matched one of our slots, just mark that one. Otherwise, we can't
1149 easily predict which it is, so upgrade all of them.
1150
1151 This is called when an ({...}) construct occurs and a statement
1152 returns a value in memory. */
1153
1154 void
1155 preserve_temp_slots (rtx x)
1156 {
1157 class temp_slot *p = 0, *next;
1158
1159 if (x == 0)
1160 return;
1161
1162 /* If X is a register that is being used as a pointer, see if we have
1163 a temporary slot we know it points to. */
1164 if (REG_P (x) && REG_POINTER (x))
1165 p = find_temp_slot_from_address (x);
1166
1167 /* If X is not in memory or is at a constant address, it cannot be in
1168 a temporary slot. */
1169 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1170 return;
1171
1172 /* First see if we can find a match. */
1173 if (p == 0)
1174 p = find_temp_slot_from_address (XEXP (x, 0));
1175
1176 if (p != 0)
1177 {
1178 if (p->level == temp_slot_level)
1179 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1181 }
1182
1183 /* Otherwise, preserve all non-kept slots at this level. */
1184 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1185 {
1186 next = p->next;
1187 move_slot_to_level (p, temp_slot_level - 1);
1188 }
1189 }
1190
1191 /* Free all temporaries used so far. This is normally called at the
1192 end of generating code for a statement. */
1193
1194 void
1195 free_temp_slots (void)
1196 {
1197 class temp_slot *p, *next;
1198 bool some_available = false;
1199
1200 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1201 {
1202 next = p->next;
1203 make_slot_available (p);
1204 some_available = true;
1205 }
1206
1207 if (some_available)
1208 {
1209 remove_unused_temp_slot_addresses ();
1210 combine_temp_slots ();
1211 }
1212 }
1213
1214 /* Push deeper into the nesting level for stack temporaries. */
1215
1216 void
1217 push_temp_slots (void)
1218 {
1219 temp_slot_level++;
1220 }
1221
1222 /* Pop a temporary nesting level. All slots in use in the current level
1223 are freed. */
1224
1225 void
1226 pop_temp_slots (void)
1227 {
1228 free_temp_slots ();
1229 temp_slot_level--;
1230 }
1231
1232 /* Initialize temporary slots. */
1233
1234 void
1235 init_temp_slots (void)
1236 {
1237 /* We have not allocated any temporaries yet. */
1238 avail_temp_slots = 0;
1239 vec_alloc (used_temp_slots, 0);
1240 temp_slot_level = 0;
1241 n_temp_slots_in_use = 0;
1242
1243 /* Set up the table to map addresses to temp slots. */
1244 if (! temp_slot_address_table)
1245 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1246 else
1247 temp_slot_address_table->empty ();
1248 }
1249 \f
1250 /* Functions and data structures to keep track of the values hard regs
1251 had at the start of the function. */
1252
1253 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1254 and has_hard_reg_initial_val.. */
1255 struct GTY(()) initial_value_pair {
1256 rtx hard_reg;
1257 rtx pseudo;
1258 };
1259 /* ??? This could be a VEC but there is currently no way to define an
1260 opaque VEC type. This could be worked around by defining struct
1261 initial_value_pair in function.h. */
1262 struct GTY(()) initial_value_struct {
1263 int num_entries;
1264 int max_entries;
1265 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1266 };
1267
1268 /* If a pseudo represents an initial hard reg (or expression), return
1269 it, else return NULL_RTX. */
1270
1271 rtx
1272 get_hard_reg_initial_reg (rtx reg)
1273 {
1274 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1275 int i;
1276
1277 if (ivs == 0)
1278 return NULL_RTX;
1279
1280 for (i = 0; i < ivs->num_entries; i++)
1281 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1282 return ivs->entries[i].hard_reg;
1283
1284 return NULL_RTX;
1285 }
1286
1287 /* Make sure that there's a pseudo register of mode MODE that stores the
1288 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1289
1290 rtx
1291 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1292 {
1293 struct initial_value_struct *ivs;
1294 rtx rv;
1295
1296 rv = has_hard_reg_initial_val (mode, regno);
1297 if (rv)
1298 return rv;
1299
1300 ivs = crtl->hard_reg_initial_vals;
1301 if (ivs == 0)
1302 {
1303 ivs = ggc_alloc<initial_value_struct> ();
1304 ivs->num_entries = 0;
1305 ivs->max_entries = 5;
1306 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1307 crtl->hard_reg_initial_vals = ivs;
1308 }
1309
1310 if (ivs->num_entries >= ivs->max_entries)
1311 {
1312 ivs->max_entries += 5;
1313 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1314 ivs->max_entries);
1315 }
1316
1317 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1318 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1319
1320 return ivs->entries[ivs->num_entries++].pseudo;
1321 }
1322
1323 /* See if get_hard_reg_initial_val has been used to create a pseudo
1324 for the initial value of hard register REGNO in mode MODE. Return
1325 the associated pseudo if so, otherwise return NULL. */
1326
1327 rtx
1328 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1329 {
1330 struct initial_value_struct *ivs;
1331 int i;
1332
1333 ivs = crtl->hard_reg_initial_vals;
1334 if (ivs != 0)
1335 for (i = 0; i < ivs->num_entries; i++)
1336 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1337 && REGNO (ivs->entries[i].hard_reg) == regno)
1338 return ivs->entries[i].pseudo;
1339
1340 return NULL_RTX;
1341 }
1342
1343 unsigned int
1344 emit_initial_value_sets (void)
1345 {
1346 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1347 int i;
1348 rtx_insn *seq;
1349
1350 if (ivs == 0)
1351 return 0;
1352
1353 start_sequence ();
1354 for (i = 0; i < ivs->num_entries; i++)
1355 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1356 seq = get_insns ();
1357 end_sequence ();
1358
1359 emit_insn_at_entry (seq);
1360 return 0;
1361 }
1362
1363 /* Return the hardreg-pseudoreg initial values pair entry I and
1364 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1365 bool
1366 initial_value_entry (int i, rtx *hreg, rtx *preg)
1367 {
1368 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1369 if (!ivs || i >= ivs->num_entries)
1370 return false;
1371
1372 *hreg = ivs->entries[i].hard_reg;
1373 *preg = ivs->entries[i].pseudo;
1374 return true;
1375 }
1376 \f
1377 /* These routines are responsible for converting virtual register references
1378 to the actual hard register references once RTL generation is complete.
1379
1380 The following four variables are used for communication between the
1381 routines. They contain the offsets of the virtual registers from their
1382 respective hard registers. */
1383
1384 static poly_int64 in_arg_offset;
1385 static poly_int64 var_offset;
1386 static poly_int64 dynamic_offset;
1387 static poly_int64 out_arg_offset;
1388 static poly_int64 cfa_offset;
1389
1390 /* In most machines, the stack pointer register is equivalent to the bottom
1391 of the stack. */
1392
1393 #ifndef STACK_POINTER_OFFSET
1394 #define STACK_POINTER_OFFSET 0
1395 #endif
1396
1397 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1398 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1399 #endif
1400
1401 /* If not defined, pick an appropriate default for the offset of dynamically
1402 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1403 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1404
1405 #ifndef STACK_DYNAMIC_OFFSET
1406
1407 /* The bottom of the stack points to the actual arguments. If
1408 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1409 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1410 stack space for register parameters is not pushed by the caller, but
1411 rather part of the fixed stack areas and hence not included in
1412 `crtl->outgoing_args_size'. Nevertheless, we must allow
1413 for it when allocating stack dynamic objects. */
1414
1415 #ifdef INCOMING_REG_PARM_STACK_SPACE
1416 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1417 ((ACCUMULATE_OUTGOING_ARGS \
1418 ? (crtl->outgoing_args_size \
1419 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1420 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1421 : 0) + (STACK_POINTER_OFFSET))
1422 #else
1423 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1424 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1425 + (STACK_POINTER_OFFSET))
1426 #endif
1427 #endif
1428
1429 \f
1430 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1431 is a virtual register, return the equivalent hard register and set the
1432 offset indirectly through the pointer. Otherwise, return 0. */
1433
1434 static rtx
1435 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1436 {
1437 rtx new_rtx;
1438 poly_int64 offset;
1439
1440 if (x == virtual_incoming_args_rtx)
1441 {
1442 if (stack_realign_drap)
1443 {
1444 /* Replace virtual_incoming_args_rtx with internal arg
1445 pointer if DRAP is used to realign stack. */
1446 new_rtx = crtl->args.internal_arg_pointer;
1447 offset = 0;
1448 }
1449 else
1450 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1451 }
1452 else if (x == virtual_stack_vars_rtx)
1453 new_rtx = frame_pointer_rtx, offset = var_offset;
1454 else if (x == virtual_stack_dynamic_rtx)
1455 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1456 else if (x == virtual_outgoing_args_rtx)
1457 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1458 else if (x == virtual_cfa_rtx)
1459 {
1460 #ifdef FRAME_POINTER_CFA_OFFSET
1461 new_rtx = frame_pointer_rtx;
1462 #else
1463 new_rtx = arg_pointer_rtx;
1464 #endif
1465 offset = cfa_offset;
1466 }
1467 else if (x == virtual_preferred_stack_boundary_rtx)
1468 {
1469 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1470 offset = 0;
1471 }
1472 else
1473 return NULL_RTX;
1474
1475 *poffset = offset;
1476 return new_rtx;
1477 }
1478
1479 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1480 registers present inside of *LOC. The expression is simplified,
1481 as much as possible, but is not to be considered "valid" in any sense
1482 implied by the target. Return true if any change is made. */
1483
1484 static bool
1485 instantiate_virtual_regs_in_rtx (rtx *loc)
1486 {
1487 if (!*loc)
1488 return false;
1489 bool changed = false;
1490 subrtx_ptr_iterator::array_type array;
1491 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1492 {
1493 rtx *loc = *iter;
1494 if (rtx x = *loc)
1495 {
1496 rtx new_rtx;
1497 poly_int64 offset;
1498 switch (GET_CODE (x))
1499 {
1500 case REG:
1501 new_rtx = instantiate_new_reg (x, &offset);
1502 if (new_rtx)
1503 {
1504 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1505 changed = true;
1506 }
1507 iter.skip_subrtxes ();
1508 break;
1509
1510 case PLUS:
1511 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1512 if (new_rtx)
1513 {
1514 XEXP (x, 0) = new_rtx;
1515 *loc = plus_constant (GET_MODE (x), x, offset, true);
1516 changed = true;
1517 iter.skip_subrtxes ();
1518 break;
1519 }
1520
1521 /* FIXME -- from old code */
1522 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1523 we can commute the PLUS and SUBREG because pointers into the
1524 frame are well-behaved. */
1525 break;
1526
1527 default:
1528 break;
1529 }
1530 }
1531 }
1532 return changed;
1533 }
1534
1535 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1536 matches the predicate for insn CODE operand OPERAND. */
1537
1538 static int
1539 safe_insn_predicate (int code, int operand, rtx x)
1540 {
1541 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1542 }
1543
1544 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1545 registers present inside of insn. The result will be a valid insn. */
1546
1547 static void
1548 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1549 {
1550 poly_int64 offset;
1551 int insn_code, i;
1552 bool any_change = false;
1553 rtx set, new_rtx, x;
1554 rtx_insn *seq;
1555
1556 /* There are some special cases to be handled first. */
1557 set = single_set (insn);
1558 if (set)
1559 {
1560 /* We're allowed to assign to a virtual register. This is interpreted
1561 to mean that the underlying register gets assigned the inverse
1562 transformation. This is used, for example, in the handling of
1563 non-local gotos. */
1564 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1565 if (new_rtx)
1566 {
1567 start_sequence ();
1568
1569 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1570 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1571 gen_int_mode (-offset, GET_MODE (new_rtx)));
1572 x = force_operand (x, new_rtx);
1573 if (x != new_rtx)
1574 emit_move_insn (new_rtx, x);
1575
1576 seq = get_insns ();
1577 end_sequence ();
1578
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1582 }
1583
1584 /* Handle a straight copy from a virtual register by generating a
1585 new add insn. The difference between this and falling through
1586 to the generic case is avoiding a new pseudo and eliminating a
1587 move insn in the initial rtl stream. */
1588 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1589 if (new_rtx
1590 && maybe_ne (offset, 0)
1591 && REG_P (SET_DEST (set))
1592 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1593 {
1594 start_sequence ();
1595
1596 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1597 gen_int_mode (offset,
1598 GET_MODE (SET_DEST (set))),
1599 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1600 if (x != SET_DEST (set))
1601 emit_move_insn (SET_DEST (set), x);
1602
1603 seq = get_insns ();
1604 end_sequence ();
1605
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1609 }
1610
1611 extract_insn (insn);
1612 insn_code = INSN_CODE (insn);
1613
1614 /* Handle a plus involving a virtual register by determining if the
1615 operands remain valid if they're modified in place. */
1616 poly_int64 delta;
1617 if (GET_CODE (SET_SRC (set)) == PLUS
1618 && recog_data.n_operands >= 3
1619 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1620 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1621 && poly_int_rtx_p (recog_data.operand[2], &delta)
1622 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1623 {
1624 offset += delta;
1625
1626 /* If the sum is zero, then replace with a plain move. */
1627 if (known_eq (offset, 0)
1628 && REG_P (SET_DEST (set))
1629 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1630 {
1631 start_sequence ();
1632 emit_move_insn (SET_DEST (set), new_rtx);
1633 seq = get_insns ();
1634 end_sequence ();
1635
1636 emit_insn_before (seq, insn);
1637 delete_insn (insn);
1638 return;
1639 }
1640
1641 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1642
1643 /* Using validate_change and apply_change_group here leaves
1644 recog_data in an invalid state. Since we know exactly what
1645 we want to check, do those two by hand. */
1646 if (safe_insn_predicate (insn_code, 1, new_rtx)
1647 && safe_insn_predicate (insn_code, 2, x))
1648 {
1649 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1650 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1651 any_change = true;
1652
1653 /* Fall through into the regular operand fixup loop in
1654 order to take care of operands other than 1 and 2. */
1655 }
1656 }
1657 }
1658 else
1659 {
1660 extract_insn (insn);
1661 insn_code = INSN_CODE (insn);
1662 }
1663
1664 /* In the general case, we expect virtual registers to appear only in
1665 operands, and then only as either bare registers or inside memories. */
1666 for (i = 0; i < recog_data.n_operands; ++i)
1667 {
1668 x = recog_data.operand[i];
1669 switch (GET_CODE (x))
1670 {
1671 case MEM:
1672 {
1673 rtx addr = XEXP (x, 0);
1674
1675 if (!instantiate_virtual_regs_in_rtx (&addr))
1676 continue;
1677
1678 start_sequence ();
1679 x = replace_equiv_address (x, addr, true);
1680 /* It may happen that the address with the virtual reg
1681 was valid (e.g. based on the virtual stack reg, which might
1682 be acceptable to the predicates with all offsets), whereas
1683 the address now isn't anymore, for instance when the address
1684 is still offsetted, but the base reg isn't virtual-stack-reg
1685 anymore. Below we would do a force_reg on the whole operand,
1686 but this insn might actually only accept memory. Hence,
1687 before doing that last resort, try to reload the address into
1688 a register, so this operand stays a MEM. */
1689 if (!safe_insn_predicate (insn_code, i, x))
1690 {
1691 addr = force_reg (GET_MODE (addr), addr);
1692 x = replace_equiv_address (x, addr, true);
1693 }
1694 seq = get_insns ();
1695 end_sequence ();
1696 if (seq)
1697 emit_insn_before (seq, insn);
1698 }
1699 break;
1700
1701 case REG:
1702 new_rtx = instantiate_new_reg (x, &offset);
1703 if (new_rtx == NULL)
1704 continue;
1705 if (known_eq (offset, 0))
1706 x = new_rtx;
1707 else
1708 {
1709 start_sequence ();
1710
1711 /* Careful, special mode predicates may have stuff in
1712 insn_data[insn_code].operand[i].mode that isn't useful
1713 to us for computing a new value. */
1714 /* ??? Recognize address_operand and/or "p" constraints
1715 to see if (plus new offset) is a valid before we put
1716 this through expand_simple_binop. */
1717 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1718 gen_int_mode (offset, GET_MODE (x)),
1719 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1720 seq = get_insns ();
1721 end_sequence ();
1722 emit_insn_before (seq, insn);
1723 }
1724 break;
1725
1726 case SUBREG:
1727 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1728 if (new_rtx == NULL)
1729 continue;
1730 if (maybe_ne (offset, 0))
1731 {
1732 start_sequence ();
1733 new_rtx = expand_simple_binop
1734 (GET_MODE (new_rtx), PLUS, new_rtx,
1735 gen_int_mode (offset, GET_MODE (new_rtx)),
1736 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1737 seq = get_insns ();
1738 end_sequence ();
1739 emit_insn_before (seq, insn);
1740 }
1741 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1742 GET_MODE (new_rtx), SUBREG_BYTE (x));
1743 gcc_assert (x);
1744 break;
1745
1746 default:
1747 continue;
1748 }
1749
1750 /* At this point, X contains the new value for the operand.
1751 Validate the new value vs the insn predicate. Note that
1752 asm insns will have insn_code -1 here. */
1753 if (!safe_insn_predicate (insn_code, i, x))
1754 {
1755 start_sequence ();
1756 if (REG_P (x))
1757 {
1758 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1759 x = copy_to_reg (x);
1760 }
1761 else
1762 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1763 seq = get_insns ();
1764 end_sequence ();
1765 if (seq)
1766 emit_insn_before (seq, insn);
1767 }
1768
1769 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1770 any_change = true;
1771 }
1772
1773 if (any_change)
1774 {
1775 /* Propagate operand changes into the duplicates. */
1776 for (i = 0; i < recog_data.n_dups; ++i)
1777 *recog_data.dup_loc[i]
1778 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1779
1780 /* Force re-recognition of the instruction for validation. */
1781 INSN_CODE (insn) = -1;
1782 }
1783
1784 if (asm_noperands (PATTERN (insn)) >= 0)
1785 {
1786 if (!check_asm_operands (PATTERN (insn)))
1787 {
1788 error_for_asm (insn, "impossible constraint in %<asm%>");
1789 /* For asm goto, instead of fixing up all the edges
1790 just clear the template and clear input and output operands
1791 and strip away clobbers. */
1792 if (JUMP_P (insn))
1793 {
1794 rtx asm_op = extract_asm_operands (PATTERN (insn));
1795 PATTERN (insn) = asm_op;
1796 PUT_MODE (asm_op, VOIDmode);
1797 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1798 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op) = "";
1799 ASM_OPERANDS_OUTPUT_IDX (asm_op) = 0;
1800 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1801 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1802 }
1803 else
1804 delete_insn (insn);
1805 }
1806 }
1807 else
1808 {
1809 if (recog_memoized (insn) < 0)
1810 fatal_insn_not_found (insn);
1811 }
1812 }
1813
1814 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1815 do any instantiation required. */
1816
1817 void
1818 instantiate_decl_rtl (rtx x)
1819 {
1820 rtx addr;
1821
1822 if (x == 0)
1823 return;
1824
1825 /* If this is a CONCAT, recurse for the pieces. */
1826 if (GET_CODE (x) == CONCAT)
1827 {
1828 instantiate_decl_rtl (XEXP (x, 0));
1829 instantiate_decl_rtl (XEXP (x, 1));
1830 return;
1831 }
1832
1833 /* If this is not a MEM, no need to do anything. Similarly if the
1834 address is a constant or a register that is not a virtual register. */
1835 if (!MEM_P (x))
1836 return;
1837
1838 addr = XEXP (x, 0);
1839 if (CONSTANT_P (addr)
1840 || (REG_P (addr)
1841 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1842 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1843 return;
1844
1845 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1846 }
1847
1848 /* Helper for instantiate_decls called via walk_tree: Process all decls
1849 in the given DECL_VALUE_EXPR. */
1850
1851 static tree
1852 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1853 {
1854 tree t = *tp;
1855 if (! EXPR_P (t))
1856 {
1857 *walk_subtrees = 0;
1858 if (DECL_P (t))
1859 {
1860 if (DECL_RTL_SET_P (t))
1861 instantiate_decl_rtl (DECL_RTL (t));
1862 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1863 && DECL_INCOMING_RTL (t))
1864 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1865 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1866 && DECL_HAS_VALUE_EXPR_P (t))
1867 {
1868 tree v = DECL_VALUE_EXPR (t);
1869 walk_tree (&v, instantiate_expr, NULL, NULL);
1870 }
1871 }
1872 }
1873 return NULL;
1874 }
1875
1876 /* Subroutine of instantiate_decls: Process all decls in the given
1877 BLOCK node and all its subblocks. */
1878
1879 static void
1880 instantiate_decls_1 (tree let)
1881 {
1882 tree t;
1883
1884 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1885 {
1886 if (DECL_RTL_SET_P (t))
1887 instantiate_decl_rtl (DECL_RTL (t));
1888 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1889 {
1890 tree v = DECL_VALUE_EXPR (t);
1891 walk_tree (&v, instantiate_expr, NULL, NULL);
1892 }
1893 }
1894
1895 /* Process all subblocks. */
1896 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1897 instantiate_decls_1 (t);
1898 }
1899
1900 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1901 all virtual registers in their DECL_RTL's. */
1902
1903 static void
1904 instantiate_decls (tree fndecl)
1905 {
1906 tree decl;
1907 unsigned ix;
1908
1909 /* Process all parameters of the function. */
1910 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1911 {
1912 instantiate_decl_rtl (DECL_RTL (decl));
1913 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1914 if (DECL_HAS_VALUE_EXPR_P (decl))
1915 {
1916 tree v = DECL_VALUE_EXPR (decl);
1917 walk_tree (&v, instantiate_expr, NULL, NULL);
1918 }
1919 }
1920
1921 if ((decl = DECL_RESULT (fndecl))
1922 && TREE_CODE (decl) == RESULT_DECL)
1923 {
1924 if (DECL_RTL_SET_P (decl))
1925 instantiate_decl_rtl (DECL_RTL (decl));
1926 if (DECL_HAS_VALUE_EXPR_P (decl))
1927 {
1928 tree v = DECL_VALUE_EXPR (decl);
1929 walk_tree (&v, instantiate_expr, NULL, NULL);
1930 }
1931 }
1932
1933 /* Process the saved static chain if it exists. */
1934 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1935 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1936 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1937
1938 /* Now process all variables defined in the function or its subblocks. */
1939 if (DECL_INITIAL (fndecl))
1940 instantiate_decls_1 (DECL_INITIAL (fndecl));
1941
1942 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1943 if (DECL_RTL_SET_P (decl))
1944 instantiate_decl_rtl (DECL_RTL (decl));
1945 vec_free (cfun->local_decls);
1946 }
1947
1948 /* Pass through the INSNS of function FNDECL and convert virtual register
1949 references to hard register references. */
1950
1951 static unsigned int
1952 instantiate_virtual_regs (void)
1953 {
1954 rtx_insn *insn;
1955
1956 /* Compute the offsets to use for this function. */
1957 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1958 var_offset = targetm.starting_frame_offset ();
1959 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1960 out_arg_offset = STACK_POINTER_OFFSET;
1961 #ifdef FRAME_POINTER_CFA_OFFSET
1962 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1963 #else
1964 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1965 #endif
1966
1967 /* Initialize recognition, indicating that volatile is OK. */
1968 init_recog ();
1969
1970 /* Scan through all the insns, instantiating every virtual register still
1971 present. */
1972 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1973 if (INSN_P (insn))
1974 {
1975 /* These patterns in the instruction stream can never be recognized.
1976 Fortunately, they shouldn't contain virtual registers either. */
1977 if (GET_CODE (PATTERN (insn)) == USE
1978 || GET_CODE (PATTERN (insn)) == CLOBBER
1979 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1980 || DEBUG_MARKER_INSN_P (insn))
1981 continue;
1982 else if (DEBUG_BIND_INSN_P (insn))
1983 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1984 else
1985 instantiate_virtual_regs_in_insn (insn);
1986
1987 if (insn->deleted ())
1988 continue;
1989
1990 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1991
1992 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1993 if (CALL_P (insn))
1994 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1995 }
1996
1997 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1998 instantiate_decls (current_function_decl);
1999
2000 targetm.instantiate_decls ();
2001
2002 /* Indicate that, from now on, assign_stack_local should use
2003 frame_pointer_rtx. */
2004 virtuals_instantiated = 1;
2005
2006 return 0;
2007 }
2008
2009 namespace {
2010
2011 const pass_data pass_data_instantiate_virtual_regs =
2012 {
2013 RTL_PASS, /* type */
2014 "vregs", /* name */
2015 OPTGROUP_NONE, /* optinfo_flags */
2016 TV_NONE, /* tv_id */
2017 0, /* properties_required */
2018 0, /* properties_provided */
2019 0, /* properties_destroyed */
2020 0, /* todo_flags_start */
2021 0, /* todo_flags_finish */
2022 };
2023
2024 class pass_instantiate_virtual_regs : public rtl_opt_pass
2025 {
2026 public:
2027 pass_instantiate_virtual_regs (gcc::context *ctxt)
2028 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2029 {}
2030
2031 /* opt_pass methods: */
2032 unsigned int execute (function *) final override
2033 {
2034 return instantiate_virtual_regs ();
2035 }
2036
2037 }; // class pass_instantiate_virtual_regs
2038
2039 } // anon namespace
2040
2041 rtl_opt_pass *
2042 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2043 {
2044 return new pass_instantiate_virtual_regs (ctxt);
2045 }
2046
2047 \f
2048 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2049 This means a type for which function calls must pass an address to the
2050 function or get an address back from the function.
2051 EXP may be a type node or an expression (whose type is tested). */
2052
2053 int
2054 aggregate_value_p (const_tree exp, const_tree fntype)
2055 {
2056 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2057 int i, regno, nregs;
2058 rtx reg;
2059
2060 if (fntype)
2061 switch (TREE_CODE (fntype))
2062 {
2063 case CALL_EXPR:
2064 {
2065 tree fndecl = get_callee_fndecl (fntype);
2066 if (fndecl)
2067 fntype = TREE_TYPE (fndecl);
2068 else if (CALL_EXPR_FN (fntype))
2069 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2070 else
2071 /* For internal functions, assume nothing needs to be
2072 returned in memory. */
2073 return 0;
2074 }
2075 break;
2076 case FUNCTION_DECL:
2077 fntype = TREE_TYPE (fntype);
2078 break;
2079 case FUNCTION_TYPE:
2080 case METHOD_TYPE:
2081 break;
2082 case IDENTIFIER_NODE:
2083 fntype = NULL_TREE;
2084 break;
2085 default:
2086 /* We don't expect other tree types here. */
2087 gcc_unreachable ();
2088 }
2089
2090 if (VOID_TYPE_P (type))
2091 return 0;
2092
2093 if (error_operand_p (fntype))
2094 return 0;
2095
2096 /* If a record should be passed the same as its first (and only) member
2097 don't pass it as an aggregate. */
2098 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2099 return aggregate_value_p (first_field (type), fntype);
2100
2101 /* If the front end has decided that this needs to be passed by
2102 reference, do so. */
2103 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2104 && DECL_BY_REFERENCE (exp))
2105 return 1;
2106
2107 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2108 if (fntype && TREE_ADDRESSABLE (fntype))
2109 return 1;
2110
2111 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2112 and thus can't be returned in registers. */
2113 if (TREE_ADDRESSABLE (type))
2114 return 1;
2115
2116 if (TYPE_EMPTY_P (type))
2117 return 0;
2118
2119 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2120 return 1;
2121
2122 if (targetm.calls.return_in_memory (type, fntype))
2123 return 1;
2124
2125 /* Make sure we have suitable call-clobbered regs to return
2126 the value in; if not, we must return it in memory. */
2127 reg = hard_function_value (type, 0, fntype, 0);
2128
2129 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2130 it is OK. */
2131 if (!REG_P (reg))
2132 return 0;
2133
2134 /* Use the default ABI if the type of the function isn't known.
2135 The scheme for handling interoperability between different ABIs
2136 requires us to be able to tell when we're calling a function with
2137 a nondefault ABI. */
2138 const predefined_function_abi &abi = (fntype
2139 ? fntype_abi (fntype)
2140 : default_function_abi);
2141 regno = REGNO (reg);
2142 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2143 for (i = 0; i < nregs; i++)
2144 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i))
2145 return 1;
2146
2147 return 0;
2148 }
2149 \f
2150 /* Return true if we should assign DECL a pseudo register; false if it
2151 should live on the local stack. */
2152
2153 bool
2154 use_register_for_decl (const_tree decl)
2155 {
2156 if (TREE_CODE (decl) == SSA_NAME)
2157 {
2158 /* We often try to use the SSA_NAME, instead of its underlying
2159 decl, to get type information and guide decisions, to avoid
2160 differences of behavior between anonymous and named
2161 variables, but in this one case we have to go for the actual
2162 variable if there is one. The main reason is that, at least
2163 at -O0, we want to place user variables on the stack, but we
2164 don't mind using pseudos for anonymous or ignored temps.
2165 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2166 should go in pseudos, whereas their corresponding variables
2167 might have to go on the stack. So, disregarding the decl
2168 here would negatively impact debug info at -O0, enable
2169 coalescing between SSA_NAMEs that ought to get different
2170 stack/pseudo assignments, and get the incoming argument
2171 processing thoroughly confused by PARM_DECLs expected to live
2172 in stack slots but assigned to pseudos. */
2173 if (!SSA_NAME_VAR (decl))
2174 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2175 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2176
2177 decl = SSA_NAME_VAR (decl);
2178 }
2179
2180 /* Honor volatile. */
2181 if (TREE_SIDE_EFFECTS (decl))
2182 return false;
2183
2184 /* Honor addressability. */
2185 if (TREE_ADDRESSABLE (decl))
2186 return false;
2187
2188 /* RESULT_DECLs are a bit special in that they're assigned without
2189 regard to use_register_for_decl, but we generally only store in
2190 them. If we coalesce their SSA NAMEs, we'd better return a
2191 result that matches the assignment in expand_function_start. */
2192 if (TREE_CODE (decl) == RESULT_DECL)
2193 {
2194 /* If it's not an aggregate, we're going to use a REG or a
2195 PARALLEL containing a REG. */
2196 if (!aggregate_value_p (decl, current_function_decl))
2197 return true;
2198
2199 /* If expand_function_start determines the return value, we'll
2200 use MEM if it's not by reference. */
2201 if (cfun->returns_pcc_struct
2202 || (targetm.calls.struct_value_rtx
2203 (TREE_TYPE (current_function_decl), 1)))
2204 return DECL_BY_REFERENCE (decl);
2205
2206 /* Otherwise, we're taking an extra all.function_result_decl
2207 argument. It's set up in assign_parms_augmented_arg_list,
2208 under the (negated) conditions above, and then it's used to
2209 set up the RESULT_DECL rtl in assign_params, after looping
2210 over all parameters. Now, if the RESULT_DECL is not by
2211 reference, we'll use a MEM either way. */
2212 if (!DECL_BY_REFERENCE (decl))
2213 return false;
2214
2215 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2216 the function_result_decl's assignment. Since it's a pointer,
2217 we can short-circuit a number of the tests below, and we must
2218 duplicate them because we don't have the function_result_decl
2219 to test. */
2220 if (!targetm.calls.allocate_stack_slots_for_args ())
2221 return true;
2222 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2223 if (optimize)
2224 return true;
2225 if (cfun->tail_call_marked)
2226 return true;
2227 /* We don't set DECL_REGISTER for the function_result_decl. */
2228 return false;
2229 }
2230
2231 /* Only register-like things go in registers. */
2232 if (DECL_MODE (decl) == BLKmode)
2233 return false;
2234
2235 /* If -ffloat-store specified, don't put explicit float variables
2236 into registers. */
2237 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2238 propagates values across these stores, and it probably shouldn't. */
2239 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2240 return false;
2241
2242 if (!targetm.calls.allocate_stack_slots_for_args ())
2243 return true;
2244
2245 /* If we're not interested in tracking debugging information for
2246 this decl, then we can certainly put it in a register. */
2247 if (DECL_IGNORED_P (decl))
2248 return true;
2249
2250 if (optimize)
2251 return true;
2252
2253 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2254 dangling reference in case the parameter is passed by reference. */
2255 if (TREE_CODE (decl) == PARM_DECL && cfun->tail_call_marked)
2256 return true;
2257
2258 if (!DECL_REGISTER (decl))
2259 return false;
2260
2261 /* When not optimizing, disregard register keyword for types that
2262 could have methods, otherwise the methods won't be callable from
2263 the debugger. */
2264 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2265 return false;
2266
2267 return true;
2268 }
2269
2270 /* Structures to communicate between the subroutines of assign_parms.
2271 The first holds data persistent across all parameters, the second
2272 is cleared out for each parameter. */
2273
2274 struct assign_parm_data_all
2275 {
2276 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2277 should become a job of the target or otherwise encapsulated. */
2278 CUMULATIVE_ARGS args_so_far_v;
2279 cumulative_args_t args_so_far;
2280 struct args_size stack_args_size;
2281 tree function_result_decl;
2282 tree orig_fnargs;
2283 rtx_insn *first_conversion_insn;
2284 rtx_insn *last_conversion_insn;
2285 HOST_WIDE_INT pretend_args_size;
2286 HOST_WIDE_INT extra_pretend_bytes;
2287 int reg_parm_stack_space;
2288 };
2289
2290 struct assign_parm_data_one
2291 {
2292 tree nominal_type;
2293 function_arg_info arg;
2294 rtx entry_parm;
2295 rtx stack_parm;
2296 machine_mode nominal_mode;
2297 machine_mode passed_mode;
2298 struct locate_and_pad_arg_data locate;
2299 int partial;
2300 };
2301
2302 /* A subroutine of assign_parms. Initialize ALL. */
2303
2304 static void
2305 assign_parms_initialize_all (struct assign_parm_data_all *all)
2306 {
2307 tree fntype ATTRIBUTE_UNUSED;
2308
2309 memset (all, 0, sizeof (*all));
2310
2311 fntype = TREE_TYPE (current_function_decl);
2312
2313 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2314 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2315 #else
2316 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2317 current_function_decl, -1);
2318 #endif
2319 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2320
2321 #ifdef INCOMING_REG_PARM_STACK_SPACE
2322 all->reg_parm_stack_space
2323 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2324 #endif
2325 }
2326
2327 /* If ARGS contains entries with complex types, split the entry into two
2328 entries of the component type. Return a new list of substitutions are
2329 needed, else the old list. */
2330
2331 static void
2332 split_complex_args (vec<tree> *args)
2333 {
2334 unsigned i;
2335 tree p;
2336
2337 FOR_EACH_VEC_ELT (*args, i, p)
2338 {
2339 tree type = TREE_TYPE (p);
2340 if (TREE_CODE (type) == COMPLEX_TYPE
2341 && targetm.calls.split_complex_arg (type))
2342 {
2343 tree decl;
2344 tree subtype = TREE_TYPE (type);
2345 bool addressable = TREE_ADDRESSABLE (p);
2346
2347 /* Rewrite the PARM_DECL's type with its component. */
2348 p = copy_node (p);
2349 TREE_TYPE (p) = subtype;
2350 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2351 SET_DECL_MODE (p, VOIDmode);
2352 DECL_SIZE (p) = NULL;
2353 DECL_SIZE_UNIT (p) = NULL;
2354 /* If this arg must go in memory, put it in a pseudo here.
2355 We can't allow it to go in memory as per normal parms,
2356 because the usual place might not have the imag part
2357 adjacent to the real part. */
2358 DECL_ARTIFICIAL (p) = addressable;
2359 DECL_IGNORED_P (p) = addressable;
2360 TREE_ADDRESSABLE (p) = 0;
2361 layout_decl (p, 0);
2362 (*args)[i] = p;
2363
2364 /* Build a second synthetic decl. */
2365 decl = build_decl (EXPR_LOCATION (p),
2366 PARM_DECL, NULL_TREE, subtype);
2367 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2368 DECL_ARTIFICIAL (decl) = addressable;
2369 DECL_IGNORED_P (decl) = addressable;
2370 layout_decl (decl, 0);
2371 args->safe_insert (++i, decl);
2372 }
2373 }
2374 }
2375
2376 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2377 the hidden struct return argument, and (abi willing) complex args.
2378 Return the new parameter list. */
2379
2380 static vec<tree>
2381 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2382 {
2383 tree fndecl = current_function_decl;
2384 tree fntype = TREE_TYPE (fndecl);
2385 vec<tree> fnargs = vNULL;
2386 tree arg;
2387
2388 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2389 fnargs.safe_push (arg);
2390
2391 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2392
2393 /* If struct value address is treated as the first argument, make it so. */
2394 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2395 && ! cfun->returns_pcc_struct
2396 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2397 {
2398 tree type = build_pointer_type (TREE_TYPE (fntype));
2399 tree decl;
2400
2401 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2402 PARM_DECL, get_identifier (".result_ptr"), type);
2403 DECL_ARG_TYPE (decl) = type;
2404 DECL_ARTIFICIAL (decl) = 1;
2405 DECL_NAMELESS (decl) = 1;
2406 TREE_CONSTANT (decl) = 1;
2407 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2408 changes, the end of the RESULT_DECL handling block in
2409 use_register_for_decl must be adjusted to match. */
2410
2411 DECL_CHAIN (decl) = all->orig_fnargs;
2412 all->orig_fnargs = decl;
2413 fnargs.safe_insert (0, decl);
2414
2415 all->function_result_decl = decl;
2416 }
2417
2418 /* If the target wants to split complex arguments into scalars, do so. */
2419 if (targetm.calls.split_complex_arg)
2420 split_complex_args (&fnargs);
2421
2422 return fnargs;
2423 }
2424
2425 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2426 data for the parameter. Incorporate ABI specifics such as pass-by-
2427 reference and type promotion. */
2428
2429 static void
2430 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2431 struct assign_parm_data_one *data)
2432 {
2433 int unsignedp;
2434
2435 #ifndef BROKEN_VALUE_INITIALIZATION
2436 *data = assign_parm_data_one ();
2437 #else
2438 /* Old versions of GCC used to miscompile the above by only initializing
2439 the members with explicit constructors and copying garbage
2440 to the other members. */
2441 assign_parm_data_one zero_data = {};
2442 *data = zero_data;
2443 #endif
2444
2445 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2446 if (!cfun->stdarg)
2447 data->arg.named = 1; /* No variadic parms. */
2448 else if (DECL_CHAIN (parm))
2449 data->arg.named = 1; /* Not the last non-variadic parm. */
2450 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2451 data->arg.named = 1; /* Only variadic ones are unnamed. */
2452 else
2453 data->arg.named = 0; /* Treat as variadic. */
2454
2455 data->nominal_type = TREE_TYPE (parm);
2456 data->arg.type = DECL_ARG_TYPE (parm);
2457
2458 /* Look out for errors propagating this far. Also, if the parameter's
2459 type is void then its value doesn't matter. */
2460 if (TREE_TYPE (parm) == error_mark_node
2461 /* This can happen after weird syntax errors
2462 or if an enum type is defined among the parms. */
2463 || TREE_CODE (parm) != PARM_DECL
2464 || data->arg.type == NULL
2465 || VOID_TYPE_P (data->nominal_type))
2466 {
2467 data->nominal_type = data->arg.type = void_type_node;
2468 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2469 return;
2470 }
2471
2472 /* Find mode of arg as it is passed, and mode of arg as it should be
2473 during execution of this function. */
2474 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2475 data->nominal_mode = TYPE_MODE (data->nominal_type);
2476
2477 /* If the parm is to be passed as a transparent union or record, use the
2478 type of the first field for the tests below. We have already verified
2479 that the modes are the same. */
2480 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2481 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2482 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2483
2484 /* See if this arg was passed by invisible reference. */
2485 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2486 {
2487 data->nominal_type = data->arg.type;
2488 data->passed_mode = data->nominal_mode = data->arg.mode;
2489 }
2490
2491 /* Find mode as it is passed by the ABI. */
2492 unsignedp = TYPE_UNSIGNED (data->arg.type);
2493 data->arg.mode
2494 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2495 TREE_TYPE (current_function_decl), 0);
2496 }
2497
2498 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2499
2500 static void
2501 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2502 struct assign_parm_data_one *data, bool no_rtl)
2503 {
2504 int varargs_pretend_bytes = 0;
2505
2506 function_arg_info last_named_arg = data->arg;
2507 last_named_arg.named = true;
2508 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2509 &varargs_pretend_bytes, no_rtl);
2510
2511 /* If the back-end has requested extra stack space, record how much is
2512 needed. Do not change pretend_args_size otherwise since it may be
2513 nonzero from an earlier partial argument. */
2514 if (varargs_pretend_bytes > 0)
2515 all->pretend_args_size = varargs_pretend_bytes;
2516 }
2517
2518 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2519 the incoming location of the current parameter. */
2520
2521 static void
2522 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2523 struct assign_parm_data_one *data)
2524 {
2525 HOST_WIDE_INT pretend_bytes = 0;
2526 rtx entry_parm;
2527 bool in_regs;
2528
2529 if (data->arg.mode == VOIDmode)
2530 {
2531 data->entry_parm = data->stack_parm = const0_rtx;
2532 return;
2533 }
2534
2535 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2536 data->arg.type);
2537
2538 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2539 data->arg);
2540 if (entry_parm == 0)
2541 data->arg.mode = data->passed_mode;
2542
2543 /* Determine parm's home in the stack, in case it arrives in the stack
2544 or we should pretend it did. Compute the stack position and rtx where
2545 the argument arrives and its size.
2546
2547 There is one complexity here: If this was a parameter that would
2548 have been passed in registers, but wasn't only because it is
2549 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2550 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2551 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2552 as it was the previous time. */
2553 in_regs = (entry_parm != 0);
2554 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2555 in_regs = true;
2556 #endif
2557 if (!in_regs && !data->arg.named)
2558 {
2559 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2560 {
2561 rtx tem;
2562 function_arg_info named_arg = data->arg;
2563 named_arg.named = true;
2564 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2565 named_arg);
2566 in_regs = tem != NULL;
2567 }
2568 }
2569
2570 /* If this parameter was passed both in registers and in the stack, use
2571 the copy on the stack. */
2572 if (targetm.calls.must_pass_in_stack (data->arg))
2573 entry_parm = 0;
2574
2575 if (entry_parm)
2576 {
2577 int partial;
2578
2579 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2580 data->partial = partial;
2581
2582 /* The caller might already have allocated stack space for the
2583 register parameters. */
2584 if (partial != 0 && all->reg_parm_stack_space == 0)
2585 {
2586 /* Part of this argument is passed in registers and part
2587 is passed on the stack. Ask the prologue code to extend
2588 the stack part so that we can recreate the full value.
2589
2590 PRETEND_BYTES is the size of the registers we need to store.
2591 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2592 stack space that the prologue should allocate.
2593
2594 Internally, gcc assumes that the argument pointer is aligned
2595 to STACK_BOUNDARY bits. This is used both for alignment
2596 optimizations (see init_emit) and to locate arguments that are
2597 aligned to more than PARM_BOUNDARY bits. We must preserve this
2598 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2599 a stack boundary. */
2600
2601 /* We assume at most one partial arg, and it must be the first
2602 argument on the stack. */
2603 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2604
2605 pretend_bytes = partial;
2606 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2607
2608 /* We want to align relative to the actual stack pointer, so
2609 don't include this in the stack size until later. */
2610 all->extra_pretend_bytes = all->pretend_args_size;
2611 }
2612 }
2613
2614 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2615 all->reg_parm_stack_space,
2616 entry_parm ? data->partial : 0, current_function_decl,
2617 &all->stack_args_size, &data->locate);
2618
2619 /* Update parm_stack_boundary if this parameter is passed in the
2620 stack. */
2621 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2622 crtl->parm_stack_boundary = data->locate.boundary;
2623
2624 /* Adjust offsets to include the pretend args. */
2625 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2626 data->locate.slot_offset.constant += pretend_bytes;
2627 data->locate.offset.constant += pretend_bytes;
2628
2629 data->entry_parm = entry_parm;
2630 }
2631
2632 /* A subroutine of assign_parms. If there is actually space on the stack
2633 for this parm, count it in stack_args_size and return true. */
2634
2635 static bool
2636 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2637 struct assign_parm_data_one *data)
2638 {
2639 /* Trivially true if we've no incoming register. */
2640 if (data->entry_parm == NULL)
2641 ;
2642 /* Also true if we're partially in registers and partially not,
2643 since we've arranged to drop the entire argument on the stack. */
2644 else if (data->partial != 0)
2645 ;
2646 /* Also true if the target says that it's passed in both registers
2647 and on the stack. */
2648 else if (GET_CODE (data->entry_parm) == PARALLEL
2649 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2650 ;
2651 /* Also true if the target says that there's stack allocated for
2652 all register parameters. */
2653 else if (all->reg_parm_stack_space > 0)
2654 ;
2655 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2656 else
2657 return false;
2658
2659 all->stack_args_size.constant += data->locate.size.constant;
2660 if (data->locate.size.var)
2661 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2662
2663 return true;
2664 }
2665
2666 /* A subroutine of assign_parms. Given that this parameter is allocated
2667 stack space by the ABI, find it. */
2668
2669 static void
2670 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2671 {
2672 rtx offset_rtx, stack_parm;
2673 unsigned int align, boundary;
2674
2675 /* If we're passing this arg using a reg, make its stack home the
2676 aligned stack slot. */
2677 if (data->entry_parm)
2678 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2679 else
2680 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2681
2682 stack_parm = crtl->args.internal_arg_pointer;
2683 if (offset_rtx != const0_rtx)
2684 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2685 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2686
2687 if (!data->arg.pass_by_reference)
2688 {
2689 set_mem_attributes (stack_parm, parm, 1);
2690 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2691 while promoted mode's size is needed. */
2692 if (data->arg.mode != BLKmode
2693 && data->arg.mode != DECL_MODE (parm))
2694 {
2695 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2696 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2697 {
2698 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2699 data->arg.mode);
2700 if (maybe_ne (offset, 0))
2701 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2702 }
2703 }
2704 }
2705
2706 boundary = data->locate.boundary;
2707 align = BITS_PER_UNIT;
2708
2709 /* If we're padding upward, we know that the alignment of the slot
2710 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2711 intentionally forcing upward padding. Otherwise we have to come
2712 up with a guess at the alignment based on OFFSET_RTX. */
2713 poly_int64 offset;
2714 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2715 align = boundary;
2716 else if (data->locate.where_pad == PAD_UPWARD)
2717 {
2718 align = boundary;
2719 /* If the argument offset is actually more aligned than the nominal
2720 stack slot boundary, take advantage of that excess alignment.
2721 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2722 if (poly_int_rtx_p (offset_rtx, &offset)
2723 && known_eq (STACK_POINTER_OFFSET, 0))
2724 {
2725 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2726 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2727 offset_align = STACK_BOUNDARY;
2728 align = MAX (align, offset_align);
2729 }
2730 }
2731 else if (poly_int_rtx_p (offset_rtx, &offset))
2732 {
2733 align = least_bit_hwi (boundary);
2734 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2735 if (offset_align != 0)
2736 align = MIN (align, offset_align);
2737 }
2738 set_mem_align (stack_parm, align);
2739
2740 if (data->entry_parm)
2741 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2742
2743 data->stack_parm = stack_parm;
2744 }
2745
2746 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2747 always valid and contiguous. */
2748
2749 static void
2750 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2751 {
2752 rtx entry_parm = data->entry_parm;
2753 rtx stack_parm = data->stack_parm;
2754
2755 /* If this parm was passed part in regs and part in memory, pretend it
2756 arrived entirely in memory by pushing the register-part onto the stack.
2757 In the special case of a DImode or DFmode that is split, we could put
2758 it together in a pseudoreg directly, but for now that's not worth
2759 bothering with. */
2760 if (data->partial != 0)
2761 {
2762 /* Handle calls that pass values in multiple non-contiguous
2763 locations. The Irix 6 ABI has examples of this. */
2764 if (GET_CODE (entry_parm) == PARALLEL)
2765 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2766 data->arg.type, int_size_in_bytes (data->arg.type));
2767 else
2768 {
2769 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2770 move_block_from_reg (REGNO (entry_parm),
2771 validize_mem (copy_rtx (stack_parm)),
2772 data->partial / UNITS_PER_WORD);
2773 }
2774
2775 entry_parm = stack_parm;
2776 }
2777
2778 /* If we didn't decide this parm came in a register, by default it came
2779 on the stack. */
2780 else if (entry_parm == NULL)
2781 entry_parm = stack_parm;
2782
2783 /* When an argument is passed in multiple locations, we can't make use
2784 of this information, but we can save some copying if the whole argument
2785 is passed in a single register. */
2786 else if (GET_CODE (entry_parm) == PARALLEL
2787 && data->nominal_mode != BLKmode
2788 && data->passed_mode != BLKmode)
2789 {
2790 size_t i, len = XVECLEN (entry_parm, 0);
2791
2792 for (i = 0; i < len; i++)
2793 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2794 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2795 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2796 == data->passed_mode)
2797 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2798 {
2799 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2800 break;
2801 }
2802 }
2803
2804 data->entry_parm = entry_parm;
2805 }
2806
2807 /* A subroutine of assign_parms. Reconstitute any values which were
2808 passed in multiple registers and would fit in a single register. */
2809
2810 static void
2811 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2812 {
2813 rtx entry_parm = data->entry_parm;
2814
2815 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2816 This can be done with register operations rather than on the
2817 stack, even if we will store the reconstituted parameter on the
2818 stack later. */
2819 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2820 {
2821 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2822 emit_group_store (parmreg, entry_parm, data->arg.type,
2823 GET_MODE_SIZE (GET_MODE (entry_parm)));
2824 entry_parm = parmreg;
2825 }
2826
2827 data->entry_parm = entry_parm;
2828 }
2829
2830 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2831 always valid and properly aligned. */
2832
2833 static void
2834 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2835 {
2836 rtx stack_parm = data->stack_parm;
2837
2838 /* If we can't trust the parm stack slot to be aligned enough for its
2839 ultimate type, don't use that slot after entry. We'll make another
2840 stack slot, if we need one. */
2841 if (stack_parm
2842 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2843 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2844 != CODE_FOR_nothing)
2845 || targetm.slow_unaligned_access (data->nominal_mode,
2846 MEM_ALIGN (stack_parm))))
2847 || (data->nominal_type
2848 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2849 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2850 stack_parm = NULL;
2851
2852 /* If parm was passed in memory, and we need to convert it on entry,
2853 don't store it back in that same slot. */
2854 else if (data->entry_parm == stack_parm
2855 && data->nominal_mode != BLKmode
2856 && data->nominal_mode != data->passed_mode)
2857 stack_parm = NULL;
2858
2859 /* If stack protection is in effect for this function, don't leave any
2860 pointers in their passed stack slots. */
2861 else if (crtl->stack_protect_guard
2862 && (flag_stack_protect == SPCT_FLAG_ALL
2863 || data->arg.pass_by_reference
2864 || POINTER_TYPE_P (data->nominal_type)))
2865 stack_parm = NULL;
2866
2867 data->stack_parm = stack_parm;
2868 }
2869
2870 /* A subroutine of assign_parms. Return true if the current parameter
2871 should be stored as a BLKmode in the current frame. */
2872
2873 static bool
2874 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2875 {
2876 if (data->nominal_mode == BLKmode)
2877 return true;
2878 if (GET_MODE (data->entry_parm) == BLKmode)
2879 return true;
2880
2881 #ifdef BLOCK_REG_PADDING
2882 /* Only assign_parm_setup_block knows how to deal with register arguments
2883 that are padded at the least significant end. */
2884 if (REG_P (data->entry_parm)
2885 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2886 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2887 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2888 return true;
2889 #endif
2890
2891 return false;
2892 }
2893
2894 /* A subroutine of assign_parms. Arrange for the parameter to be
2895 present and valid in DATA->STACK_RTL. */
2896
2897 static void
2898 assign_parm_setup_block (struct assign_parm_data_all *all,
2899 tree parm, struct assign_parm_data_one *data)
2900 {
2901 rtx entry_parm = data->entry_parm;
2902 rtx stack_parm = data->stack_parm;
2903 rtx target_reg = NULL_RTX;
2904 bool in_conversion_seq = false;
2905 HOST_WIDE_INT size;
2906 HOST_WIDE_INT size_stored;
2907
2908 if (GET_CODE (entry_parm) == PARALLEL)
2909 entry_parm = emit_group_move_into_temps (entry_parm);
2910
2911 /* If we want the parameter in a pseudo, don't use a stack slot. */
2912 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2913 {
2914 tree def = ssa_default_def (cfun, parm);
2915 gcc_assert (def);
2916 machine_mode mode = promote_ssa_mode (def, NULL);
2917 rtx reg = gen_reg_rtx (mode);
2918 if (GET_CODE (reg) != CONCAT)
2919 stack_parm = reg;
2920 else
2921 {
2922 target_reg = reg;
2923 /* Avoid allocating a stack slot, if there isn't one
2924 preallocated by the ABI. It might seem like we should
2925 always prefer a pseudo, but converting between
2926 floating-point and integer modes goes through the stack
2927 on various machines, so it's better to use the reserved
2928 stack slot than to risk wasting it and allocating more
2929 for the conversion. */
2930 if (stack_parm == NULL_RTX)
2931 {
2932 int save = generating_concat_p;
2933 generating_concat_p = 0;
2934 stack_parm = gen_reg_rtx (mode);
2935 generating_concat_p = save;
2936 }
2937 }
2938 data->stack_parm = NULL;
2939 }
2940
2941 size = int_size_in_bytes (data->arg.type);
2942 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2943 if (stack_parm == 0)
2944 {
2945 HOST_WIDE_INT parm_align
2946 = (STRICT_ALIGNMENT
2947 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2948
2949 SET_DECL_ALIGN (parm, parm_align);
2950 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2951 {
2952 rtx allocsize = gen_int_mode (size_stored, Pmode);
2953 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2954 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2955 MAX_SUPPORTED_STACK_ALIGNMENT);
2956 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2957 DECL_ALIGN (parm));
2958 mark_reg_pointer (addr, DECL_ALIGN (parm));
2959 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2960 MEM_NOTRAP_P (stack_parm) = 1;
2961 }
2962 else
2963 stack_parm = assign_stack_local (BLKmode, size_stored,
2964 DECL_ALIGN (parm));
2965 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2966 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2967 set_mem_attributes (stack_parm, parm, 1);
2968 }
2969
2970 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2971 calls that pass values in multiple non-contiguous locations. */
2972 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2973 {
2974 rtx mem;
2975
2976 /* Note that we will be storing an integral number of words.
2977 So we have to be careful to ensure that we allocate an
2978 integral number of words. We do this above when we call
2979 assign_stack_local if space was not allocated in the argument
2980 list. If it was, this will not work if PARM_BOUNDARY is not
2981 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2982 if it becomes a problem. Exception is when BLKmode arrives
2983 with arguments not conforming to word_mode. */
2984
2985 if (data->stack_parm == 0)
2986 ;
2987 else if (GET_CODE (entry_parm) == PARALLEL)
2988 ;
2989 else
2990 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2991
2992 mem = validize_mem (copy_rtx (stack_parm));
2993
2994 /* Handle values in multiple non-contiguous locations. */
2995 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2996 emit_group_store (mem, entry_parm, data->arg.type, size);
2997 else if (GET_CODE (entry_parm) == PARALLEL)
2998 {
2999 push_to_sequence2 (all->first_conversion_insn,
3000 all->last_conversion_insn);
3001 emit_group_store (mem, entry_parm, data->arg.type, size);
3002 all->first_conversion_insn = get_insns ();
3003 all->last_conversion_insn = get_last_insn ();
3004 end_sequence ();
3005 in_conversion_seq = true;
3006 }
3007
3008 else if (size == 0)
3009 ;
3010
3011 /* If SIZE is that of a mode no bigger than a word, just use
3012 that mode's store operation. */
3013 else if (size <= UNITS_PER_WORD)
3014 {
3015 unsigned int bits = size * BITS_PER_UNIT;
3016 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3017
3018 if (mode != BLKmode
3019 #ifdef BLOCK_REG_PADDING
3020 && (size == UNITS_PER_WORD
3021 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3022 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3023 #endif
3024 )
3025 {
3026 rtx reg;
3027
3028 /* We are really truncating a word_mode value containing
3029 SIZE bytes into a value of mode MODE. If such an
3030 operation requires no actual instructions, we can refer
3031 to the value directly in mode MODE, otherwise we must
3032 start with the register in word_mode and explicitly
3033 convert it. */
3034 if (mode == word_mode
3035 || TRULY_NOOP_TRUNCATION_MODES_P (mode, word_mode))
3036 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3037 else
3038 {
3039 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3040 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3041 }
3042
3043 /* We use adjust_address to get a new MEM with the mode
3044 changed. adjust_address is better than change_address
3045 for this purpose because adjust_address does not lose
3046 the MEM_EXPR associated with the MEM.
3047
3048 If the MEM_EXPR is lost, then optimizations like DSE
3049 assume the MEM escapes and thus is not subject to DSE. */
3050 emit_move_insn (adjust_address (mem, mode, 0), reg);
3051 }
3052
3053 #ifdef BLOCK_REG_PADDING
3054 /* Storing the register in memory as a full word, as
3055 move_block_from_reg below would do, and then using the
3056 MEM in a smaller mode, has the effect of shifting right
3057 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3058 shifting must be explicit. */
3059 else if (!MEM_P (mem))
3060 {
3061 rtx x;
3062
3063 /* If the assert below fails, we should have taken the
3064 mode != BLKmode path above, unless we have downward
3065 padding of smaller-than-word arguments on a machine
3066 with little-endian bytes, which would likely require
3067 additional changes to work correctly. */
3068 gcc_checking_assert (BYTES_BIG_ENDIAN
3069 && (BLOCK_REG_PADDING (mode,
3070 data->arg.type, 1)
3071 == PAD_UPWARD));
3072
3073 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3074
3075 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3076 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3077 NULL_RTX, 1);
3078 x = force_reg (word_mode, x);
3079 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3080
3081 emit_move_insn (mem, x);
3082 }
3083 #endif
3084
3085 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3086 machine must be aligned to the left before storing
3087 to memory. Note that the previous test doesn't
3088 handle all cases (e.g. SIZE == 3). */
3089 else if (size != UNITS_PER_WORD
3090 #ifdef BLOCK_REG_PADDING
3091 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3092 == PAD_DOWNWARD)
3093 #else
3094 && BYTES_BIG_ENDIAN
3095 #endif
3096 )
3097 {
3098 rtx tem, x;
3099 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3100 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3101
3102 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3103 tem = change_address (mem, word_mode, 0);
3104 emit_move_insn (tem, x);
3105 }
3106 else
3107 move_block_from_reg (REGNO (entry_parm), mem,
3108 size_stored / UNITS_PER_WORD);
3109 }
3110 else if (!MEM_P (mem))
3111 {
3112 gcc_checking_assert (size > UNITS_PER_WORD);
3113 #ifdef BLOCK_REG_PADDING
3114 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3115 data->arg.type, 0)
3116 == PAD_UPWARD);
3117 #endif
3118 emit_move_insn (mem, entry_parm);
3119 }
3120 else
3121 move_block_from_reg (REGNO (entry_parm), mem,
3122 size_stored / UNITS_PER_WORD);
3123 }
3124 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3125 {
3126 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3127 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3128 BLOCK_OP_NORMAL);
3129 all->first_conversion_insn = get_insns ();
3130 all->last_conversion_insn = get_last_insn ();
3131 end_sequence ();
3132 in_conversion_seq = true;
3133 }
3134
3135 if (target_reg)
3136 {
3137 if (!in_conversion_seq)
3138 emit_move_insn (target_reg, stack_parm);
3139 else
3140 {
3141 push_to_sequence2 (all->first_conversion_insn,
3142 all->last_conversion_insn);
3143 emit_move_insn (target_reg, stack_parm);
3144 all->first_conversion_insn = get_insns ();
3145 all->last_conversion_insn = get_last_insn ();
3146 end_sequence ();
3147 }
3148 stack_parm = target_reg;
3149 }
3150
3151 data->stack_parm = stack_parm;
3152 set_parm_rtl (parm, stack_parm);
3153 }
3154
3155 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3156 parameter. Get it there. Perform all ABI specified conversions. */
3157
3158 static void
3159 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3160 struct assign_parm_data_one *data)
3161 {
3162 rtx parmreg, validated_mem;
3163 rtx equiv_stack_parm;
3164 machine_mode promoted_nominal_mode;
3165 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3166 bool did_conversion = false;
3167 bool need_conversion, moved;
3168 enum insn_code icode;
3169 rtx rtl;
3170
3171 /* Store the parm in a pseudoregister during the function, but we may
3172 need to do it in a wider mode. Using 2 here makes the result
3173 consistent with promote_decl_mode and thus expand_expr_real_1. */
3174 promoted_nominal_mode
3175 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3176 TREE_TYPE (current_function_decl), 2);
3177
3178 parmreg = gen_reg_rtx (promoted_nominal_mode);
3179 if (!DECL_ARTIFICIAL (parm))
3180 mark_user_reg (parmreg);
3181
3182 /* If this was an item that we received a pointer to,
3183 set rtl appropriately. */
3184 if (data->arg.pass_by_reference)
3185 {
3186 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3187 set_mem_attributes (rtl, parm, 1);
3188 }
3189 else
3190 rtl = parmreg;
3191
3192 assign_parm_remove_parallels (data);
3193
3194 /* Copy the value into the register, thus bridging between
3195 assign_parm_find_data_types and expand_expr_real_1. */
3196
3197 equiv_stack_parm = data->stack_parm;
3198 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3199
3200 need_conversion = (data->nominal_mode != data->passed_mode
3201 || promoted_nominal_mode != data->arg.mode);
3202 moved = false;
3203
3204 if (need_conversion
3205 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3206 && data->nominal_mode == data->passed_mode
3207 && data->nominal_mode == GET_MODE (data->entry_parm))
3208 {
3209 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3210 mode, by the caller. We now have to convert it to
3211 NOMINAL_MODE, if different. However, PARMREG may be in
3212 a different mode than NOMINAL_MODE if it is being stored
3213 promoted.
3214
3215 If ENTRY_PARM is a hard register, it might be in a register
3216 not valid for operating in its mode (e.g., an odd-numbered
3217 register for a DFmode). In that case, moves are the only
3218 thing valid, so we can't do a convert from there. This
3219 occurs when the calling sequence allow such misaligned
3220 usages.
3221
3222 In addition, the conversion may involve a call, which could
3223 clobber parameters which haven't been copied to pseudo
3224 registers yet.
3225
3226 First, we try to emit an insn which performs the necessary
3227 conversion. We verify that this insn does not clobber any
3228 hard registers. */
3229
3230 rtx op0, op1;
3231
3232 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3233 unsignedp);
3234
3235 op0 = parmreg;
3236 op1 = validated_mem;
3237 if (icode != CODE_FOR_nothing
3238 && insn_operand_matches (icode, 0, op0)
3239 && insn_operand_matches (icode, 1, op1))
3240 {
3241 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3242 rtx_insn *insn, *insns;
3243 rtx t = op1;
3244 HARD_REG_SET hardregs;
3245
3246 start_sequence ();
3247 /* If op1 is a hard register that is likely spilled, first
3248 force it into a pseudo, otherwise combiner might extend
3249 its lifetime too much. */
3250 if (GET_CODE (t) == SUBREG)
3251 t = SUBREG_REG (t);
3252 if (REG_P (t)
3253 && HARD_REGISTER_P (t)
3254 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3255 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3256 {
3257 t = gen_reg_rtx (GET_MODE (op1));
3258 emit_move_insn (t, op1);
3259 }
3260 else
3261 t = op1;
3262 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3263 data->passed_mode, unsignedp);
3264 emit_insn (pat);
3265 insns = get_insns ();
3266
3267 moved = true;
3268 CLEAR_HARD_REG_SET (hardregs);
3269 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3270 {
3271 if (INSN_P (insn))
3272 note_stores (insn, record_hard_reg_sets, &hardregs);
3273 if (!hard_reg_set_empty_p (hardregs))
3274 moved = false;
3275 }
3276
3277 end_sequence ();
3278
3279 if (moved)
3280 {
3281 emit_insn (insns);
3282 if (equiv_stack_parm != NULL_RTX)
3283 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3284 equiv_stack_parm);
3285 }
3286 }
3287 }
3288
3289 if (moved)
3290 /* Nothing to do. */
3291 ;
3292 else if (need_conversion)
3293 {
3294 /* We did not have an insn to convert directly, or the sequence
3295 generated appeared unsafe. We must first copy the parm to a
3296 pseudo reg, and save the conversion until after all
3297 parameters have been moved. */
3298
3299 int save_tree_used;
3300 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3301
3302 emit_move_insn (tempreg, validated_mem);
3303
3304 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3305 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3306
3307 if (partial_subreg_p (tempreg)
3308 && GET_MODE (tempreg) == data->nominal_mode
3309 && REG_P (SUBREG_REG (tempreg))
3310 && data->nominal_mode == data->passed_mode
3311 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3312 {
3313 /* The argument is already sign/zero extended, so note it
3314 into the subreg. */
3315 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3316 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3317 }
3318
3319 /* TREE_USED gets set erroneously during expand_assignment. */
3320 save_tree_used = TREE_USED (parm);
3321 SET_DECL_RTL (parm, rtl);
3322 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3323 SET_DECL_RTL (parm, NULL_RTX);
3324 TREE_USED (parm) = save_tree_used;
3325 all->first_conversion_insn = get_insns ();
3326 all->last_conversion_insn = get_last_insn ();
3327 end_sequence ();
3328
3329 did_conversion = true;
3330 }
3331 else if (MEM_P (data->entry_parm)
3332 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3333 > MEM_ALIGN (data->entry_parm)
3334 && (((icode = optab_handler (movmisalign_optab,
3335 promoted_nominal_mode))
3336 != CODE_FOR_nothing)
3337 || targetm.slow_unaligned_access (promoted_nominal_mode,
3338 MEM_ALIGN (data->entry_parm))))
3339 {
3340 if (icode != CODE_FOR_nothing)
3341 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3342 else
3343 rtl = parmreg = extract_bit_field (validated_mem,
3344 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3345 unsignedp, parmreg,
3346 promoted_nominal_mode, VOIDmode, false, NULL);
3347 }
3348 else
3349 emit_move_insn (parmreg, validated_mem);
3350
3351 /* If we were passed a pointer but the actual value can live in a register,
3352 retrieve it and use it directly. Note that we cannot use nominal_mode,
3353 because it will have been set to Pmode above, we must use the actual mode
3354 of the parameter instead. */
3355 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3356 {
3357 /* Use a stack slot for debugging purposes if possible. */
3358 if (use_register_for_decl (parm))
3359 {
3360 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3361 mark_user_reg (parmreg);
3362 }
3363 else
3364 {
3365 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3366 TYPE_MODE (TREE_TYPE (parm)),
3367 TYPE_ALIGN (TREE_TYPE (parm)));
3368 parmreg
3369 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3370 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3371 align);
3372 set_mem_attributes (parmreg, parm, 1);
3373 }
3374
3375 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3376 the debug info in case it is not legitimate. */
3377 if (GET_MODE (parmreg) != GET_MODE (rtl))
3378 {
3379 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3380 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3381
3382 push_to_sequence2 (all->first_conversion_insn,
3383 all->last_conversion_insn);
3384 emit_move_insn (tempreg, rtl);
3385 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3386 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3387 tempreg);
3388 all->first_conversion_insn = get_insns ();
3389 all->last_conversion_insn = get_last_insn ();
3390 end_sequence ();
3391
3392 did_conversion = true;
3393 }
3394 else
3395 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3396
3397 rtl = parmreg;
3398
3399 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3400 now the parm. */
3401 data->stack_parm = NULL;
3402 }
3403
3404 set_parm_rtl (parm, rtl);
3405
3406 /* Mark the register as eliminable if we did no conversion and it was
3407 copied from memory at a fixed offset, and the arg pointer was not
3408 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3409 offset formed an invalid address, such memory-equivalences as we
3410 make here would screw up life analysis for it. */
3411 if (data->nominal_mode == data->passed_mode
3412 && !did_conversion
3413 && data->stack_parm != 0
3414 && MEM_P (data->stack_parm)
3415 && data->locate.offset.var == 0
3416 && reg_mentioned_p (virtual_incoming_args_rtx,
3417 XEXP (data->stack_parm, 0)))
3418 {
3419 rtx_insn *linsn = get_last_insn ();
3420 rtx_insn *sinsn;
3421 rtx set;
3422
3423 /* Mark complex types separately. */
3424 if (GET_CODE (parmreg) == CONCAT)
3425 {
3426 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3427 int regnor = REGNO (XEXP (parmreg, 0));
3428 int regnoi = REGNO (XEXP (parmreg, 1));
3429 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3430 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3431 GET_MODE_SIZE (submode));
3432
3433 /* Scan backwards for the set of the real and
3434 imaginary parts. */
3435 for (sinsn = linsn; sinsn != 0;
3436 sinsn = prev_nonnote_insn (sinsn))
3437 {
3438 set = single_set (sinsn);
3439 if (set == 0)
3440 continue;
3441
3442 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3443 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3444 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3445 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3446 }
3447 }
3448 else
3449 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3450 }
3451
3452 /* For pointer data type, suggest pointer register. */
3453 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3454 mark_reg_pointer (parmreg,
3455 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3456 }
3457
3458 /* A subroutine of assign_parms. Allocate stack space to hold the current
3459 parameter. Get it there. Perform all ABI specified conversions. */
3460
3461 static void
3462 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3463 struct assign_parm_data_one *data)
3464 {
3465 /* Value must be stored in the stack slot STACK_PARM during function
3466 execution. */
3467 bool to_conversion = false;
3468
3469 assign_parm_remove_parallels (data);
3470
3471 if (data->arg.mode != data->nominal_mode)
3472 {
3473 /* Conversion is required. */
3474 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3475
3476 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3477
3478 /* Some ABIs require scalar floating point modes to be passed
3479 in a wider scalar integer mode. We need to explicitly
3480 truncate to an integer mode of the correct precision before
3481 using a SUBREG to reinterpret as a floating point value. */
3482 if (SCALAR_FLOAT_MODE_P (data->nominal_mode)
3483 && SCALAR_INT_MODE_P (data->arg.mode)
3484 && known_lt (GET_MODE_SIZE (data->nominal_mode),
3485 GET_MODE_SIZE (data->arg.mode)))
3486 tempreg = convert_wider_int_to_float (data->nominal_mode,
3487 data->arg.mode, tempreg);
3488
3489 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3490 to_conversion = true;
3491
3492 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3493 TYPE_UNSIGNED (TREE_TYPE (parm)));
3494
3495 if (data->stack_parm)
3496 {
3497 poly_int64 offset
3498 = subreg_lowpart_offset (data->nominal_mode,
3499 GET_MODE (data->stack_parm));
3500 /* ??? This may need a big-endian conversion on sparc64. */
3501 data->stack_parm
3502 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3503 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3504 set_mem_offset (data->stack_parm,
3505 MEM_OFFSET (data->stack_parm) + offset);
3506 }
3507 }
3508
3509 if (data->entry_parm != data->stack_parm)
3510 {
3511 rtx src, dest;
3512
3513 if (data->stack_parm == 0)
3514 {
3515 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3516 GET_MODE (data->entry_parm),
3517 TYPE_ALIGN (data->arg.type));
3518 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3519 && ((optab_handler (movmisalign_optab,
3520 GET_MODE (data->entry_parm))
3521 != CODE_FOR_nothing)
3522 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3523 align)))
3524 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3525 data->stack_parm
3526 = assign_stack_local (GET_MODE (data->entry_parm),
3527 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3528 align);
3529 align = MEM_ALIGN (data->stack_parm);
3530 set_mem_attributes (data->stack_parm, parm, 1);
3531 set_mem_align (data->stack_parm, align);
3532 }
3533
3534 dest = validize_mem (copy_rtx (data->stack_parm));
3535 src = validize_mem (copy_rtx (data->entry_parm));
3536
3537 if (TYPE_EMPTY_P (data->arg.type))
3538 /* Empty types don't really need to be copied. */;
3539 else if (MEM_P (src))
3540 {
3541 /* Use a block move to handle potentially misaligned entry_parm. */
3542 if (!to_conversion)
3543 push_to_sequence2 (all->first_conversion_insn,
3544 all->last_conversion_insn);
3545 to_conversion = true;
3546
3547 emit_block_move (dest, src,
3548 GEN_INT (int_size_in_bytes (data->arg.type)),
3549 BLOCK_OP_NORMAL);
3550 }
3551 else
3552 {
3553 if (!REG_P (src))
3554 src = force_reg (GET_MODE (src), src);
3555 emit_move_insn (dest, src);
3556 }
3557 }
3558
3559 if (to_conversion)
3560 {
3561 all->first_conversion_insn = get_insns ();
3562 all->last_conversion_insn = get_last_insn ();
3563 end_sequence ();
3564 }
3565
3566 set_parm_rtl (parm, data->stack_parm);
3567 }
3568
3569 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3570 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3571
3572 static void
3573 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3574 vec<tree> fnargs)
3575 {
3576 tree parm;
3577 tree orig_fnargs = all->orig_fnargs;
3578 unsigned i = 0;
3579
3580 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3581 {
3582 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3583 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3584 {
3585 rtx tmp, real, imag;
3586 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3587
3588 real = DECL_RTL (fnargs[i]);
3589 imag = DECL_RTL (fnargs[i + 1]);
3590 if (inner != GET_MODE (real))
3591 {
3592 real = gen_lowpart_SUBREG (inner, real);
3593 imag = gen_lowpart_SUBREG (inner, imag);
3594 }
3595
3596 if (TREE_ADDRESSABLE (parm))
3597 {
3598 rtx rmem, imem;
3599 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3600 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3601 DECL_MODE (parm),
3602 TYPE_ALIGN (TREE_TYPE (parm)));
3603
3604 /* split_complex_arg put the real and imag parts in
3605 pseudos. Move them to memory. */
3606 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3607 set_mem_attributes (tmp, parm, 1);
3608 rmem = adjust_address_nv (tmp, inner, 0);
3609 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3610 push_to_sequence2 (all->first_conversion_insn,
3611 all->last_conversion_insn);
3612 emit_move_insn (rmem, real);
3613 emit_move_insn (imem, imag);
3614 all->first_conversion_insn = get_insns ();
3615 all->last_conversion_insn = get_last_insn ();
3616 end_sequence ();
3617 }
3618 else
3619 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3620 set_parm_rtl (parm, tmp);
3621
3622 real = DECL_INCOMING_RTL (fnargs[i]);
3623 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3624 if (inner != GET_MODE (real))
3625 {
3626 real = gen_lowpart_SUBREG (inner, real);
3627 imag = gen_lowpart_SUBREG (inner, imag);
3628 }
3629 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3630 set_decl_incoming_rtl (parm, tmp, false);
3631 i++;
3632 }
3633 }
3634 }
3635
3636 /* Assign RTL expressions to the function's parameters. This may involve
3637 copying them into registers and using those registers as the DECL_RTL. */
3638
3639 static void
3640 assign_parms (tree fndecl)
3641 {
3642 struct assign_parm_data_all all;
3643 tree parm;
3644 vec<tree> fnargs;
3645 unsigned i;
3646
3647 crtl->args.internal_arg_pointer
3648 = targetm.calls.internal_arg_pointer ();
3649
3650 assign_parms_initialize_all (&all);
3651 fnargs = assign_parms_augmented_arg_list (&all);
3652
3653 if (TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (fndecl)))
3654 {
3655 struct assign_parm_data_one data = {};
3656 assign_parms_setup_varargs (&all, &data, false);
3657 }
3658
3659 FOR_EACH_VEC_ELT (fnargs, i, parm)
3660 {
3661 struct assign_parm_data_one data;
3662
3663 /* Extract the type of PARM; adjust it according to ABI. */
3664 assign_parm_find_data_types (&all, parm, &data);
3665
3666 /* Early out for errors and void parameters. */
3667 if (data.passed_mode == VOIDmode)
3668 {
3669 SET_DECL_RTL (parm, const0_rtx);
3670 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3671 continue;
3672 }
3673
3674 /* Estimate stack alignment from parameter alignment. */
3675 if (SUPPORTS_STACK_ALIGNMENT)
3676 {
3677 unsigned int align
3678 = targetm.calls.function_arg_boundary (data.arg.mode,
3679 data.arg.type);
3680 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3681 if (TYPE_ALIGN (data.nominal_type) > align)
3682 align = MINIMUM_ALIGNMENT (data.nominal_type,
3683 TYPE_MODE (data.nominal_type),
3684 TYPE_ALIGN (data.nominal_type));
3685 if (crtl->stack_alignment_estimated < align)
3686 {
3687 gcc_assert (!crtl->stack_realign_processed);
3688 crtl->stack_alignment_estimated = align;
3689 }
3690 }
3691
3692 /* Find out where the parameter arrives in this function. */
3693 assign_parm_find_entry_rtl (&all, &data);
3694
3695 /* Find out where stack space for this parameter might be. */
3696 if (assign_parm_is_stack_parm (&all, &data))
3697 {
3698 assign_parm_find_stack_rtl (parm, &data);
3699 assign_parm_adjust_entry_rtl (&data);
3700 /* For arguments that occupy no space in the parameter
3701 passing area, have non-zero size and have address taken,
3702 force creation of a stack slot so that they have distinct
3703 address from other parameters. */
3704 if (TYPE_EMPTY_P (data.arg.type)
3705 && TREE_ADDRESSABLE (parm)
3706 && data.entry_parm == data.stack_parm
3707 && MEM_P (data.entry_parm)
3708 && int_size_in_bytes (data.arg.type))
3709 data.stack_parm = NULL_RTX;
3710 }
3711 /* Record permanently how this parm was passed. */
3712 if (data.arg.pass_by_reference)
3713 {
3714 rtx incoming_rtl
3715 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3716 data.entry_parm);
3717 set_decl_incoming_rtl (parm, incoming_rtl, true);
3718 }
3719 else
3720 set_decl_incoming_rtl (parm, data.entry_parm, false);
3721
3722 assign_parm_adjust_stack_rtl (&data);
3723
3724 if (assign_parm_setup_block_p (&data))
3725 assign_parm_setup_block (&all, parm, &data);
3726 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3727 assign_parm_setup_reg (&all, parm, &data);
3728 else
3729 assign_parm_setup_stack (&all, parm, &data);
3730
3731 if (cfun->stdarg && !DECL_CHAIN (parm))
3732 assign_parms_setup_varargs (&all, &data, false);
3733
3734 /* Update info on where next arg arrives in registers. */
3735 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3736 }
3737
3738 if (targetm.calls.split_complex_arg)
3739 assign_parms_unsplit_complex (&all, fnargs);
3740
3741 fnargs.release ();
3742
3743 /* Output all parameter conversion instructions (possibly including calls)
3744 now that all parameters have been copied out of hard registers. */
3745 emit_insn (all.first_conversion_insn);
3746
3747 /* Estimate reload stack alignment from scalar return mode. */
3748 if (SUPPORTS_STACK_ALIGNMENT)
3749 {
3750 if (DECL_RESULT (fndecl))
3751 {
3752 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3753 machine_mode mode = TYPE_MODE (type);
3754
3755 if (mode != BLKmode
3756 && mode != VOIDmode
3757 && !AGGREGATE_TYPE_P (type))
3758 {
3759 unsigned int align = GET_MODE_ALIGNMENT (mode);
3760 if (crtl->stack_alignment_estimated < align)
3761 {
3762 gcc_assert (!crtl->stack_realign_processed);
3763 crtl->stack_alignment_estimated = align;
3764 }
3765 }
3766 }
3767 }
3768
3769 /* If we are receiving a struct value address as the first argument, set up
3770 the RTL for the function result. As this might require code to convert
3771 the transmitted address to Pmode, we do this here to ensure that possible
3772 preliminary conversions of the address have been emitted already. */
3773 if (all.function_result_decl)
3774 {
3775 tree result = DECL_RESULT (current_function_decl);
3776 rtx addr = DECL_RTL (all.function_result_decl);
3777 rtx x;
3778
3779 if (DECL_BY_REFERENCE (result))
3780 {
3781 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3782 x = addr;
3783 }
3784 else
3785 {
3786 SET_DECL_VALUE_EXPR (result,
3787 build1 (INDIRECT_REF, TREE_TYPE (result),
3788 all.function_result_decl));
3789 addr = convert_memory_address (Pmode, addr);
3790 x = gen_rtx_MEM (DECL_MODE (result), addr);
3791 set_mem_attributes (x, result, 1);
3792 }
3793
3794 DECL_HAS_VALUE_EXPR_P (result) = 1;
3795
3796 set_parm_rtl (result, x);
3797 }
3798
3799 /* We have aligned all the args, so add space for the pretend args. */
3800 crtl->args.pretend_args_size = all.pretend_args_size;
3801 all.stack_args_size.constant += all.extra_pretend_bytes;
3802 crtl->args.size = all.stack_args_size.constant;
3803
3804 /* Adjust function incoming argument size for alignment and
3805 minimum length. */
3806
3807 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3808 crtl->args.size = aligned_upper_bound (crtl->args.size,
3809 PARM_BOUNDARY / BITS_PER_UNIT);
3810
3811 if (ARGS_GROW_DOWNWARD)
3812 {
3813 crtl->args.arg_offset_rtx
3814 = (all.stack_args_size.var == 0
3815 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3816 : expand_expr (size_diffop (all.stack_args_size.var,
3817 size_int (-all.stack_args_size.constant)),
3818 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3819 }
3820 else
3821 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3822
3823 /* See how many bytes, if any, of its args a function should try to pop
3824 on return. */
3825
3826 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3827 TREE_TYPE (fndecl),
3828 crtl->args.size);
3829
3830 /* For stdarg.h function, save info about
3831 regs and stack space used by the named args. */
3832
3833 crtl->args.info = all.args_so_far_v;
3834
3835 /* Set the rtx used for the function return value. Put this in its
3836 own variable so any optimizers that need this information don't have
3837 to include tree.h. Do this here so it gets done when an inlined
3838 function gets output. */
3839
3840 crtl->return_rtx
3841 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3842 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3843
3844 /* If scalar return value was computed in a pseudo-reg, or was a named
3845 return value that got dumped to the stack, copy that to the hard
3846 return register. */
3847 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3848 {
3849 tree decl_result = DECL_RESULT (fndecl);
3850 rtx decl_rtl = DECL_RTL (decl_result);
3851
3852 if (REG_P (decl_rtl)
3853 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3854 : DECL_REGISTER (decl_result))
3855 {
3856 rtx real_decl_rtl;
3857
3858 /* Unless the psABI says not to. */
3859 if (TYPE_EMPTY_P (TREE_TYPE (decl_result)))
3860 real_decl_rtl = NULL_RTX;
3861 else
3862 {
3863 real_decl_rtl
3864 = targetm.calls.function_value (TREE_TYPE (decl_result),
3865 fndecl, true);
3866 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3867 }
3868 /* The delay slot scheduler assumes that crtl->return_rtx
3869 holds the hard register containing the return value, not a
3870 temporary pseudo. */
3871 crtl->return_rtx = real_decl_rtl;
3872 }
3873 }
3874 }
3875
3876 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3877 For all seen types, gimplify their sizes. */
3878
3879 static tree
3880 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3881 {
3882 tree t = *tp;
3883
3884 *walk_subtrees = 0;
3885 if (TYPE_P (t))
3886 {
3887 if (POINTER_TYPE_P (t))
3888 *walk_subtrees = 1;
3889 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3890 && !TYPE_SIZES_GIMPLIFIED (t))
3891 {
3892 gimplify_type_sizes (t, (gimple_seq *) data);
3893 *walk_subtrees = 1;
3894 }
3895 }
3896
3897 return NULL;
3898 }
3899
3900 /* Gimplify the parameter list for current_function_decl. This involves
3901 evaluating SAVE_EXPRs of variable sized parameters and generating code
3902 to implement callee-copies reference parameters. Returns a sequence of
3903 statements to add to the beginning of the function. */
3904
3905 gimple_seq
3906 gimplify_parameters (gimple_seq *cleanup)
3907 {
3908 struct assign_parm_data_all all;
3909 tree parm;
3910 gimple_seq stmts = NULL;
3911 vec<tree> fnargs;
3912 unsigned i;
3913
3914 assign_parms_initialize_all (&all);
3915 fnargs = assign_parms_augmented_arg_list (&all);
3916
3917 FOR_EACH_VEC_ELT (fnargs, i, parm)
3918 {
3919 struct assign_parm_data_one data;
3920
3921 /* Extract the type of PARM; adjust it according to ABI. */
3922 assign_parm_find_data_types (&all, parm, &data);
3923
3924 /* Early out for errors and void parameters. */
3925 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3926 continue;
3927
3928 /* Update info on where next arg arrives in registers. */
3929 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3930
3931 /* ??? Once upon a time variable_size stuffed parameter list
3932 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3933 turned out to be less than manageable in the gimple world.
3934 Now we have to hunt them down ourselves. */
3935 walk_tree_without_duplicates (&data.arg.type,
3936 gimplify_parm_type, &stmts);
3937
3938 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3939 {
3940 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3941 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3942 }
3943
3944 if (data.arg.pass_by_reference)
3945 {
3946 tree type = TREE_TYPE (data.arg.type);
3947 function_arg_info orig_arg (type, data.arg.named);
3948 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3949 {
3950 tree local, t;
3951
3952 /* For constant-sized objects, this is trivial; for
3953 variable-sized objects, we have to play games. */
3954 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3955 && !(flag_stack_check == GENERIC_STACK_CHECK
3956 && compare_tree_int (DECL_SIZE_UNIT (parm),
3957 STACK_CHECK_MAX_VAR_SIZE) > 0))
3958 {
3959 local = create_tmp_var (type, get_name (parm));
3960 DECL_IGNORED_P (local) = 0;
3961 /* If PARM was addressable, move that flag over
3962 to the local copy, as its address will be taken,
3963 not the PARMs. Keep the parms address taken
3964 as we'll query that flag during gimplification. */
3965 if (TREE_ADDRESSABLE (parm))
3966 TREE_ADDRESSABLE (local) = 1;
3967 if (DECL_NOT_GIMPLE_REG_P (parm))
3968 DECL_NOT_GIMPLE_REG_P (local) = 1;
3969
3970 if (!is_gimple_reg (local)
3971 && flag_stack_reuse != SR_NONE)
3972 {
3973 tree clobber = build_clobber (type);
3974 gimple *clobber_stmt;
3975 clobber_stmt = gimple_build_assign (local, clobber);
3976 gimple_seq_add_stmt (cleanup, clobber_stmt);
3977 }
3978 }
3979 else
3980 {
3981 tree ptr_type, addr;
3982
3983 ptr_type = build_pointer_type (type);
3984 addr = create_tmp_reg (ptr_type, get_name (parm));
3985 DECL_IGNORED_P (addr) = 0;
3986 local = build_fold_indirect_ref (addr);
3987
3988 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3989 DECL_ALIGN (parm),
3990 max_int_size_in_bytes (type));
3991 /* The call has been built for a variable-sized object. */
3992 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3993 t = fold_convert (ptr_type, t);
3994 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3995 gimplify_and_add (t, &stmts);
3996 }
3997
3998 gimplify_assign (local, parm, &stmts);
3999
4000 SET_DECL_VALUE_EXPR (parm, local);
4001 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4002 }
4003 }
4004 }
4005
4006 fnargs.release ();
4007
4008 return stmts;
4009 }
4010 \f
4011 /* Compute the size and offset from the start of the stacked arguments for a
4012 parm passed in mode PASSED_MODE and with type TYPE.
4013
4014 INITIAL_OFFSET_PTR points to the current offset into the stacked
4015 arguments.
4016
4017 The starting offset and size for this parm are returned in
4018 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4019 nonzero, the offset is that of stack slot, which is returned in
4020 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4021 padding required from the initial offset ptr to the stack slot.
4022
4023 IN_REGS is nonzero if the argument will be passed in registers. It will
4024 never be set if REG_PARM_STACK_SPACE is not defined.
4025
4026 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4027 for arguments which are passed in registers.
4028
4029 FNDECL is the function in which the argument was defined.
4030
4031 There are two types of rounding that are done. The first, controlled by
4032 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4033 argument list to be aligned to the specific boundary (in bits). This
4034 rounding affects the initial and starting offsets, but not the argument
4035 size.
4036
4037 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4038 optionally rounds the size of the parm to PARM_BOUNDARY. The
4039 initial offset is not affected by this rounding, while the size always
4040 is and the starting offset may be. */
4041
4042 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4043 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4044 callers pass in the total size of args so far as
4045 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4046
4047 void
4048 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4049 int reg_parm_stack_space, int partial,
4050 tree fndecl ATTRIBUTE_UNUSED,
4051 struct args_size *initial_offset_ptr,
4052 struct locate_and_pad_arg_data *locate)
4053 {
4054 tree sizetree;
4055 pad_direction where_pad;
4056 unsigned int boundary, round_boundary;
4057 int part_size_in_regs;
4058
4059 /* If we have found a stack parm before we reach the end of the
4060 area reserved for registers, skip that area. */
4061 if (! in_regs)
4062 {
4063 if (reg_parm_stack_space > 0)
4064 {
4065 if (initial_offset_ptr->var
4066 || !ordered_p (initial_offset_ptr->constant,
4067 reg_parm_stack_space))
4068 {
4069 initial_offset_ptr->var
4070 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4071 ssize_int (reg_parm_stack_space));
4072 initial_offset_ptr->constant = 0;
4073 }
4074 else
4075 initial_offset_ptr->constant
4076 = ordered_max (initial_offset_ptr->constant,
4077 reg_parm_stack_space);
4078 }
4079 }
4080
4081 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4082
4083 sizetree = (type
4084 ? arg_size_in_bytes (type)
4085 : size_int (GET_MODE_SIZE (passed_mode)));
4086 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4087 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4088 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4089 type);
4090 locate->where_pad = where_pad;
4091
4092 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4093 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4094 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4095
4096 locate->boundary = boundary;
4097
4098 if (SUPPORTS_STACK_ALIGNMENT)
4099 {
4100 /* stack_alignment_estimated can't change after stack has been
4101 realigned. */
4102 if (crtl->stack_alignment_estimated < boundary)
4103 {
4104 if (!crtl->stack_realign_processed)
4105 crtl->stack_alignment_estimated = boundary;
4106 else
4107 {
4108 /* If stack is realigned and stack alignment value
4109 hasn't been finalized, it is OK not to increase
4110 stack_alignment_estimated. The bigger alignment
4111 requirement is recorded in stack_alignment_needed
4112 below. */
4113 gcc_assert (!crtl->stack_realign_finalized
4114 && crtl->stack_realign_needed);
4115 }
4116 }
4117 }
4118
4119 if (ARGS_GROW_DOWNWARD)
4120 {
4121 locate->slot_offset.constant = -initial_offset_ptr->constant;
4122 if (initial_offset_ptr->var)
4123 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4124 initial_offset_ptr->var);
4125
4126 {
4127 tree s2 = sizetree;
4128 if (where_pad != PAD_NONE
4129 && (!tree_fits_uhwi_p (sizetree)
4130 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4131 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4132 SUB_PARM_SIZE (locate->slot_offset, s2);
4133 }
4134
4135 locate->slot_offset.constant += part_size_in_regs;
4136
4137 if (!in_regs || reg_parm_stack_space > 0)
4138 pad_to_arg_alignment (&locate->slot_offset, boundary,
4139 &locate->alignment_pad);
4140
4141 locate->size.constant = (-initial_offset_ptr->constant
4142 - locate->slot_offset.constant);
4143 if (initial_offset_ptr->var)
4144 locate->size.var = size_binop (MINUS_EXPR,
4145 size_binop (MINUS_EXPR,
4146 ssize_int (0),
4147 initial_offset_ptr->var),
4148 locate->slot_offset.var);
4149
4150 /* Pad_below needs the pre-rounded size to know how much to pad
4151 below. */
4152 locate->offset = locate->slot_offset;
4153 if (where_pad == PAD_DOWNWARD)
4154 pad_below (&locate->offset, passed_mode, sizetree);
4155
4156 }
4157 else
4158 {
4159 if (!in_regs || reg_parm_stack_space > 0)
4160 pad_to_arg_alignment (initial_offset_ptr, boundary,
4161 &locate->alignment_pad);
4162 locate->slot_offset = *initial_offset_ptr;
4163
4164 #ifdef PUSH_ROUNDING
4165 if (passed_mode != BLKmode)
4166 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4167 #endif
4168
4169 /* Pad_below needs the pre-rounded size to know how much to pad below
4170 so this must be done before rounding up. */
4171 locate->offset = locate->slot_offset;
4172 if (where_pad == PAD_DOWNWARD)
4173 pad_below (&locate->offset, passed_mode, sizetree);
4174
4175 if (where_pad != PAD_NONE
4176 && (!tree_fits_uhwi_p (sizetree)
4177 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4178 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4179
4180 ADD_PARM_SIZE (locate->size, sizetree);
4181
4182 locate->size.constant -= part_size_in_regs;
4183 }
4184
4185 locate->offset.constant
4186 += targetm.calls.function_arg_offset (passed_mode, type);
4187 }
4188
4189 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4190 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4191
4192 static void
4193 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4194 struct args_size *alignment_pad)
4195 {
4196 tree save_var = NULL_TREE;
4197 poly_int64 save_constant = 0;
4198 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4199 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4200
4201 #ifdef SPARC_STACK_BOUNDARY_HACK
4202 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4203 the real alignment of %sp. However, when it does this, the
4204 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4205 if (SPARC_STACK_BOUNDARY_HACK)
4206 sp_offset = 0;
4207 #endif
4208
4209 if (boundary > PARM_BOUNDARY)
4210 {
4211 save_var = offset_ptr->var;
4212 save_constant = offset_ptr->constant;
4213 }
4214
4215 alignment_pad->var = NULL_TREE;
4216 alignment_pad->constant = 0;
4217
4218 if (boundary > BITS_PER_UNIT)
4219 {
4220 int misalign;
4221 if (offset_ptr->var
4222 || !known_misalignment (offset_ptr->constant + sp_offset,
4223 boundary_in_bytes, &misalign))
4224 {
4225 tree sp_offset_tree = ssize_int (sp_offset);
4226 tree offset = size_binop (PLUS_EXPR,
4227 ARGS_SIZE_TREE (*offset_ptr),
4228 sp_offset_tree);
4229 tree rounded;
4230 if (ARGS_GROW_DOWNWARD)
4231 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4232 else
4233 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4234
4235 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4236 /* ARGS_SIZE_TREE includes constant term. */
4237 offset_ptr->constant = 0;
4238 if (boundary > PARM_BOUNDARY)
4239 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4240 save_var);
4241 }
4242 else
4243 {
4244 if (ARGS_GROW_DOWNWARD)
4245 offset_ptr->constant -= misalign;
4246 else
4247 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4248
4249 if (boundary > PARM_BOUNDARY)
4250 alignment_pad->constant = offset_ptr->constant - save_constant;
4251 }
4252 }
4253 }
4254
4255 static void
4256 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4257 {
4258 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4259 int misalign;
4260 if (passed_mode != BLKmode
4261 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4262 offset_ptr->constant += -misalign & (align - 1);
4263 else
4264 {
4265 if (TREE_CODE (sizetree) != INTEGER_CST
4266 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4267 {
4268 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4269 tree s2 = round_up (sizetree, align);
4270 /* Add it in. */
4271 ADD_PARM_SIZE (*offset_ptr, s2);
4272 SUB_PARM_SIZE (*offset_ptr, sizetree);
4273 }
4274 }
4275 }
4276 \f
4277
4278 /* True if register REGNO was alive at a place where `setjmp' was
4279 called and was set more than once or is an argument. Such regs may
4280 be clobbered by `longjmp'. */
4281
4282 static bool
4283 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4284 {
4285 /* There appear to be cases where some local vars never reach the
4286 backend but have bogus regnos. */
4287 if (regno >= max_reg_num ())
4288 return false;
4289
4290 return ((REG_N_SETS (regno) > 1
4291 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4292 regno))
4293 && REGNO_REG_SET_P (setjmp_crosses, regno));
4294 }
4295
4296 /* Walk the tree of blocks describing the binding levels within a
4297 function and warn about variables the might be killed by setjmp or
4298 vfork. This is done after calling flow_analysis before register
4299 allocation since that will clobber the pseudo-regs to hard
4300 regs. */
4301
4302 static void
4303 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4304 {
4305 tree decl, sub;
4306
4307 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4308 {
4309 if (VAR_P (decl)
4310 && DECL_RTL_SET_P (decl)
4311 && REG_P (DECL_RTL (decl))
4312 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4313 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4314 " %<longjmp%> or %<vfork%>", decl);
4315 }
4316
4317 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4318 setjmp_vars_warning (setjmp_crosses, sub);
4319 }
4320
4321 /* Do the appropriate part of setjmp_vars_warning
4322 but for arguments instead of local variables. */
4323
4324 static void
4325 setjmp_args_warning (bitmap setjmp_crosses)
4326 {
4327 tree decl;
4328 for (decl = DECL_ARGUMENTS (current_function_decl);
4329 decl; decl = DECL_CHAIN (decl))
4330 if (DECL_RTL (decl) != 0
4331 && REG_P (DECL_RTL (decl))
4332 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4333 warning (OPT_Wclobbered,
4334 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4335 decl);
4336 }
4337
4338 /* Generate warning messages for variables live across setjmp. */
4339
4340 void
4341 generate_setjmp_warnings (void)
4342 {
4343 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4344
4345 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4346 || bitmap_empty_p (setjmp_crosses))
4347 return;
4348
4349 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4350 setjmp_args_warning (setjmp_crosses);
4351 }
4352
4353 \f
4354 /* Reverse the order of elements in the fragment chain T of blocks,
4355 and return the new head of the chain (old last element).
4356 In addition to that clear BLOCK_SAME_RANGE flags when needed
4357 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4358 its super fragment origin. */
4359
4360 static tree
4361 block_fragments_nreverse (tree t)
4362 {
4363 tree prev = 0, block, next, prev_super = 0;
4364 tree super = BLOCK_SUPERCONTEXT (t);
4365 if (BLOCK_FRAGMENT_ORIGIN (super))
4366 super = BLOCK_FRAGMENT_ORIGIN (super);
4367 for (block = t; block; block = next)
4368 {
4369 next = BLOCK_FRAGMENT_CHAIN (block);
4370 BLOCK_FRAGMENT_CHAIN (block) = prev;
4371 if ((prev && !BLOCK_SAME_RANGE (prev))
4372 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4373 != prev_super))
4374 BLOCK_SAME_RANGE (block) = 0;
4375 prev_super = BLOCK_SUPERCONTEXT (block);
4376 BLOCK_SUPERCONTEXT (block) = super;
4377 prev = block;
4378 }
4379 t = BLOCK_FRAGMENT_ORIGIN (t);
4380 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4381 != prev_super)
4382 BLOCK_SAME_RANGE (t) = 0;
4383 BLOCK_SUPERCONTEXT (t) = super;
4384 return prev;
4385 }
4386
4387 /* Reverse the order of elements in the chain T of blocks,
4388 and return the new head of the chain (old last element).
4389 Also do the same on subblocks and reverse the order of elements
4390 in BLOCK_FRAGMENT_CHAIN as well. */
4391
4392 static tree
4393 blocks_nreverse_all (tree t)
4394 {
4395 tree prev = 0, block, next;
4396 for (block = t; block; block = next)
4397 {
4398 next = BLOCK_CHAIN (block);
4399 BLOCK_CHAIN (block) = prev;
4400 if (BLOCK_FRAGMENT_CHAIN (block)
4401 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4402 {
4403 BLOCK_FRAGMENT_CHAIN (block)
4404 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4405 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4406 BLOCK_SAME_RANGE (block) = 0;
4407 }
4408 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4409 prev = block;
4410 }
4411 return prev;
4412 }
4413
4414
4415 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4416 and create duplicate blocks. */
4417 /* ??? Need an option to either create block fragments or to create
4418 abstract origin duplicates of a source block. It really depends
4419 on what optimization has been performed. */
4420
4421 void
4422 reorder_blocks (void)
4423 {
4424 tree block = DECL_INITIAL (current_function_decl);
4425
4426 if (block == NULL_TREE)
4427 return;
4428
4429 auto_vec<tree, 10> block_stack;
4430
4431 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4432 clear_block_marks (block);
4433
4434 /* Prune the old trees away, so that they don't get in the way. */
4435 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4436 BLOCK_CHAIN (block) = NULL_TREE;
4437
4438 /* Recreate the block tree from the note nesting. */
4439 reorder_blocks_1 (get_insns (), block, &block_stack);
4440 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4441 }
4442
4443 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4444
4445 void
4446 clear_block_marks (tree block)
4447 {
4448 while (block)
4449 {
4450 TREE_ASM_WRITTEN (block) = 0;
4451 clear_block_marks (BLOCK_SUBBLOCKS (block));
4452 block = BLOCK_CHAIN (block);
4453 }
4454 }
4455
4456 static void
4457 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4458 vec<tree> *p_block_stack)
4459 {
4460 rtx_insn *insn;
4461 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4462
4463 for (insn = insns; insn; insn = NEXT_INSN (insn))
4464 {
4465 if (NOTE_P (insn))
4466 {
4467 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4468 {
4469 tree block = NOTE_BLOCK (insn);
4470 tree origin;
4471
4472 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4473 origin = block;
4474
4475 if (prev_end)
4476 BLOCK_SAME_RANGE (prev_end) = 0;
4477 prev_end = NULL_TREE;
4478
4479 /* If we have seen this block before, that means it now
4480 spans multiple address regions. Create a new fragment. */
4481 if (TREE_ASM_WRITTEN (block))
4482 {
4483 tree new_block = copy_node (block);
4484
4485 BLOCK_SAME_RANGE (new_block) = 0;
4486 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4487 BLOCK_FRAGMENT_CHAIN (new_block)
4488 = BLOCK_FRAGMENT_CHAIN (origin);
4489 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4490
4491 NOTE_BLOCK (insn) = new_block;
4492 block = new_block;
4493 }
4494
4495 if (prev_beg == current_block && prev_beg)
4496 BLOCK_SAME_RANGE (block) = 1;
4497
4498 prev_beg = origin;
4499
4500 BLOCK_SUBBLOCKS (block) = 0;
4501 TREE_ASM_WRITTEN (block) = 1;
4502 /* When there's only one block for the entire function,
4503 current_block == block and we mustn't do this, it
4504 will cause infinite recursion. */
4505 if (block != current_block)
4506 {
4507 tree super;
4508 if (block != origin)
4509 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4510 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4511 (origin))
4512 == current_block);
4513 if (p_block_stack->is_empty ())
4514 super = current_block;
4515 else
4516 {
4517 super = p_block_stack->last ();
4518 gcc_assert (super == current_block
4519 || BLOCK_FRAGMENT_ORIGIN (super)
4520 == current_block);
4521 }
4522 BLOCK_SUPERCONTEXT (block) = super;
4523 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4524 BLOCK_SUBBLOCKS (current_block) = block;
4525 current_block = origin;
4526 }
4527 p_block_stack->safe_push (block);
4528 }
4529 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4530 {
4531 NOTE_BLOCK (insn) = p_block_stack->pop ();
4532 current_block = BLOCK_SUPERCONTEXT (current_block);
4533 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4534 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4535 prev_beg = NULL_TREE;
4536 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4537 ? NOTE_BLOCK (insn) : NULL_TREE;
4538 }
4539 }
4540 else
4541 {
4542 prev_beg = NULL_TREE;
4543 if (prev_end)
4544 BLOCK_SAME_RANGE (prev_end) = 0;
4545 prev_end = NULL_TREE;
4546 }
4547 }
4548 }
4549
4550 /* Reverse the order of elements in the chain T of blocks,
4551 and return the new head of the chain (old last element). */
4552
4553 tree
4554 blocks_nreverse (tree t)
4555 {
4556 tree prev = 0, block, next;
4557 for (block = t; block; block = next)
4558 {
4559 next = BLOCK_CHAIN (block);
4560 BLOCK_CHAIN (block) = prev;
4561 prev = block;
4562 }
4563 return prev;
4564 }
4565
4566 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4567 by modifying the last node in chain 1 to point to chain 2. */
4568
4569 tree
4570 block_chainon (tree op1, tree op2)
4571 {
4572 tree t1;
4573
4574 if (!op1)
4575 return op2;
4576 if (!op2)
4577 return op1;
4578
4579 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4580 continue;
4581 BLOCK_CHAIN (t1) = op2;
4582
4583 #ifdef ENABLE_TREE_CHECKING
4584 {
4585 tree t2;
4586 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4587 gcc_assert (t2 != t1);
4588 }
4589 #endif
4590
4591 return op1;
4592 }
4593
4594 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4595 non-NULL, list them all into VECTOR, in a depth-first preorder
4596 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4597 blocks. */
4598
4599 static int
4600 all_blocks (tree block, tree *vector)
4601 {
4602 int n_blocks = 0;
4603
4604 while (block)
4605 {
4606 TREE_ASM_WRITTEN (block) = 0;
4607
4608 /* Record this block. */
4609 if (vector)
4610 vector[n_blocks] = block;
4611
4612 ++n_blocks;
4613
4614 /* Record the subblocks, and their subblocks... */
4615 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4616 vector ? vector + n_blocks : 0);
4617 block = BLOCK_CHAIN (block);
4618 }
4619
4620 return n_blocks;
4621 }
4622
4623 /* Return a vector containing all the blocks rooted at BLOCK. The
4624 number of elements in the vector is stored in N_BLOCKS_P. The
4625 vector is dynamically allocated; it is the caller's responsibility
4626 to call `free' on the pointer returned. */
4627
4628 static tree *
4629 get_block_vector (tree block, int *n_blocks_p)
4630 {
4631 tree *block_vector;
4632
4633 *n_blocks_p = all_blocks (block, NULL);
4634 block_vector = XNEWVEC (tree, *n_blocks_p);
4635 all_blocks (block, block_vector);
4636
4637 return block_vector;
4638 }
4639
4640 static GTY(()) int next_block_index = 2;
4641
4642 /* Set BLOCK_NUMBER for all the blocks in FN. */
4643
4644 void
4645 number_blocks (tree fn)
4646 {
4647 int i;
4648 int n_blocks;
4649 tree *block_vector;
4650
4651 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4652
4653 /* The top-level BLOCK isn't numbered at all. */
4654 for (i = 1; i < n_blocks; ++i)
4655 /* We number the blocks from two. */
4656 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4657
4658 free (block_vector);
4659
4660 return;
4661 }
4662
4663 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4664
4665 DEBUG_FUNCTION tree
4666 debug_find_var_in_block_tree (tree var, tree block)
4667 {
4668 tree t;
4669
4670 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4671 if (t == var)
4672 return block;
4673
4674 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4675 {
4676 tree ret = debug_find_var_in_block_tree (var, t);
4677 if (ret)
4678 return ret;
4679 }
4680
4681 return NULL_TREE;
4682 }
4683 \f
4684 /* Keep track of whether we're in a dummy function context. If we are,
4685 we don't want to invoke the set_current_function hook, because we'll
4686 get into trouble if the hook calls target_reinit () recursively or
4687 when the initial initialization is not yet complete. */
4688
4689 static bool in_dummy_function;
4690
4691 /* Invoke the target hook when setting cfun. Update the optimization options
4692 if the function uses different options than the default. */
4693
4694 static void
4695 invoke_set_current_function_hook (tree fndecl)
4696 {
4697 if (!in_dummy_function)
4698 {
4699 tree opts = ((fndecl)
4700 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4701 : optimization_default_node);
4702
4703 if (!opts)
4704 opts = optimization_default_node;
4705
4706 /* Change optimization options if needed. */
4707 if (optimization_current_node != opts)
4708 {
4709 optimization_current_node = opts;
4710 cl_optimization_restore (&global_options, &global_options_set,
4711 TREE_OPTIMIZATION (opts));
4712 }
4713
4714 targetm.set_current_function (fndecl);
4715 this_fn_optabs = this_target_optabs;
4716
4717 /* Initialize global alignment variables after op. */
4718 parse_alignment_opts ();
4719
4720 if (opts != optimization_default_node)
4721 {
4722 init_tree_optimization_optabs (opts);
4723 if (TREE_OPTIMIZATION_OPTABS (opts))
4724 this_fn_optabs = (struct target_optabs *)
4725 TREE_OPTIMIZATION_OPTABS (opts);
4726 }
4727 }
4728 }
4729
4730 /* cfun should never be set directly; use this function. */
4731
4732 void
4733 set_cfun (struct function *new_cfun, bool force)
4734 {
4735 if (cfun != new_cfun || force)
4736 {
4737 cfun = new_cfun;
4738 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4739 redirect_edge_var_map_empty ();
4740 }
4741 }
4742
4743 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4744
4745 static vec<function *> cfun_stack;
4746
4747 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4748 current_function_decl accordingly. */
4749
4750 void
4751 push_cfun (struct function *new_cfun)
4752 {
4753 gcc_assert ((!cfun && !current_function_decl)
4754 || (cfun && current_function_decl == cfun->decl));
4755 cfun_stack.safe_push (cfun);
4756 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4757 set_cfun (new_cfun);
4758 }
4759
4760 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4761
4762 void
4763 pop_cfun (void)
4764 {
4765 struct function *new_cfun = cfun_stack.pop ();
4766 /* When in_dummy_function, we do have a cfun but current_function_decl is
4767 NULL. We also allow pushing NULL cfun and subsequently changing
4768 current_function_decl to something else and have both restored by
4769 pop_cfun. */
4770 gcc_checking_assert (in_dummy_function
4771 || !cfun
4772 || current_function_decl == cfun->decl);
4773 set_cfun (new_cfun);
4774 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4775 }
4776
4777 /* Return value of funcdef and increase it. */
4778 int
4779 get_next_funcdef_no (void)
4780 {
4781 return funcdef_no++;
4782 }
4783
4784 /* Return value of funcdef. */
4785 int
4786 get_last_funcdef_no (void)
4787 {
4788 return funcdef_no;
4789 }
4790
4791 /* Allocate and initialize the stack usage info data structure for the
4792 current function. */
4793 static void
4794 allocate_stack_usage_info (void)
4795 {
4796 gcc_assert (!cfun->su);
4797 cfun->su = ggc_cleared_alloc<stack_usage> ();
4798 cfun->su->static_stack_size = -1;
4799 }
4800
4801 /* Allocate a function structure for FNDECL and set its contents
4802 to the defaults. Set cfun to the newly-allocated object.
4803 Some of the helper functions invoked during initialization assume
4804 that cfun has already been set. Therefore, assign the new object
4805 directly into cfun and invoke the back end hook explicitly at the
4806 very end, rather than initializing a temporary and calling set_cfun
4807 on it.
4808
4809 ABSTRACT_P is true if this is a function that will never be seen by
4810 the middle-end. Such functions are front-end concepts (like C++
4811 function templates) that do not correspond directly to functions
4812 placed in object files. */
4813
4814 void
4815 allocate_struct_function (tree fndecl, bool abstract_p)
4816 {
4817 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4818
4819 cfun = ggc_cleared_alloc<function> ();
4820
4821 init_eh_for_function ();
4822
4823 if (init_machine_status)
4824 cfun->machine = (*init_machine_status) ();
4825
4826 #ifdef OVERRIDE_ABI_FORMAT
4827 OVERRIDE_ABI_FORMAT (fndecl);
4828 #endif
4829
4830 if (fndecl != NULL_TREE)
4831 {
4832 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4833 cfun->decl = fndecl;
4834 current_function_funcdef_no = get_next_funcdef_no ();
4835 }
4836
4837 invoke_set_current_function_hook (fndecl);
4838
4839 if (fndecl != NULL_TREE)
4840 {
4841 tree result = DECL_RESULT (fndecl);
4842
4843 if (!abstract_p)
4844 {
4845 /* Now that we have activated any function-specific attributes
4846 that might affect layout, particularly vector modes, relayout
4847 each of the parameters and the result. */
4848 relayout_decl (result);
4849 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4850 parm = DECL_CHAIN (parm))
4851 relayout_decl (parm);
4852
4853 /* Similarly relayout the function decl. */
4854 targetm.target_option.relayout_function (fndecl);
4855 }
4856
4857 if (!abstract_p && aggregate_value_p (result, fndecl))
4858 {
4859 #ifdef PCC_STATIC_STRUCT_RETURN
4860 cfun->returns_pcc_struct = 1;
4861 #endif
4862 cfun->returns_struct = 1;
4863 }
4864
4865 cfun->stdarg = stdarg_p (fntype);
4866
4867 /* Assume all registers in stdarg functions need to be saved. */
4868 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4869 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4870
4871 /* ??? This could be set on a per-function basis by the front-end
4872 but is this worth the hassle? */
4873 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4874 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4875
4876 if (!profile_flag && !flag_instrument_function_entry_exit)
4877 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4878
4879 if (flag_callgraph_info)
4880 allocate_stack_usage_info ();
4881 }
4882
4883 /* Don't enable begin stmt markers if var-tracking at assignments is
4884 disabled. The markers make little sense without the variable
4885 binding annotations among them. */
4886 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4887 && MAY_HAVE_DEBUG_MARKER_STMTS;
4888 }
4889
4890 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4891 instead of just setting it. */
4892
4893 void
4894 push_struct_function (tree fndecl, bool abstract_p)
4895 {
4896 /* When in_dummy_function we might be in the middle of a pop_cfun and
4897 current_function_decl and cfun may not match. */
4898 gcc_assert (in_dummy_function
4899 || (!cfun && !current_function_decl)
4900 || (cfun && current_function_decl == cfun->decl));
4901 cfun_stack.safe_push (cfun);
4902 current_function_decl = fndecl;
4903 allocate_struct_function (fndecl, abstract_p);
4904 }
4905
4906 /* Reset crtl and other non-struct-function variables to defaults as
4907 appropriate for emitting rtl at the start of a function. */
4908
4909 static void
4910 prepare_function_start (void)
4911 {
4912 gcc_assert (!get_last_insn ());
4913
4914 if (in_dummy_function)
4915 crtl->abi = &default_function_abi;
4916 else
4917 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4918
4919 init_temp_slots ();
4920 init_emit ();
4921 init_varasm_status ();
4922 init_expr ();
4923 default_rtl_profile ();
4924
4925 if (flag_stack_usage_info && !flag_callgraph_info)
4926 allocate_stack_usage_info ();
4927
4928 cse_not_expected = ! optimize;
4929
4930 /* Caller save not needed yet. */
4931 caller_save_needed = 0;
4932
4933 /* We haven't done register allocation yet. */
4934 reg_renumber = 0;
4935
4936 /* Indicate that we have not instantiated virtual registers yet. */
4937 virtuals_instantiated = 0;
4938
4939 /* Indicate that we want CONCATs now. */
4940 generating_concat_p = 1;
4941
4942 /* Indicate we have no need of a frame pointer yet. */
4943 frame_pointer_needed = 0;
4944 }
4945
4946 void
4947 push_dummy_function (bool with_decl)
4948 {
4949 tree fn_decl, fn_type, fn_result_decl;
4950
4951 gcc_assert (!in_dummy_function);
4952 in_dummy_function = true;
4953
4954 if (with_decl)
4955 {
4956 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4957 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4958 fn_type);
4959 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4960 NULL_TREE, void_type_node);
4961 DECL_RESULT (fn_decl) = fn_result_decl;
4962 DECL_ARTIFICIAL (fn_decl) = 1;
4963 tree fn_name = get_identifier (" ");
4964 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name);
4965 }
4966 else
4967 fn_decl = NULL_TREE;
4968
4969 push_struct_function (fn_decl);
4970 }
4971
4972 /* Initialize the rtl expansion mechanism so that we can do simple things
4973 like generate sequences. This is used to provide a context during global
4974 initialization of some passes. You must call expand_dummy_function_end
4975 to exit this context. */
4976
4977 void
4978 init_dummy_function_start (void)
4979 {
4980 push_dummy_function (false);
4981 prepare_function_start ();
4982 }
4983
4984 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4985 and initialize static variables for generating RTL for the statements
4986 of the function. */
4987
4988 void
4989 init_function_start (tree subr)
4990 {
4991 /* Initialize backend, if needed. */
4992 initialize_rtl ();
4993
4994 prepare_function_start ();
4995 decide_function_section (subr);
4996
4997 /* Warn if this value is an aggregate type,
4998 regardless of which calling convention we are using for it. */
4999 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
5000 warning_at (DECL_SOURCE_LOCATION (DECL_RESULT (subr)),
5001 OPT_Waggregate_return, "function returns an aggregate");
5002 }
5003
5004 /* Expand code to verify the stack_protect_guard. This is invoked at
5005 the end of a function to be protected. */
5006
5007 void
5008 stack_protect_epilogue (void)
5009 {
5010 tree guard_decl = crtl->stack_protect_guard_decl;
5011 rtx_code_label *label = gen_label_rtx ();
5012 rtx x, y;
5013 rtx_insn *seq = NULL;
5014
5015 x = expand_normal (crtl->stack_protect_guard);
5016
5017 if (targetm.have_stack_protect_combined_test () && guard_decl)
5018 {
5019 gcc_assert (DECL_P (guard_decl));
5020 y = DECL_RTL (guard_decl);
5021 /* Allow the target to compute address of Y and compare it with X without
5022 leaking Y into a register. This combined address + compare pattern
5023 allows the target to prevent spilling of any intermediate results by
5024 splitting it after register allocator. */
5025 seq = targetm.gen_stack_protect_combined_test (x, y, label);
5026 }
5027 else
5028 {
5029 if (guard_decl)
5030 y = expand_normal (guard_decl);
5031 else
5032 y = const0_rtx;
5033
5034 /* Allow the target to compare Y with X without leaking either into
5035 a register. */
5036 if (targetm.have_stack_protect_test ())
5037 seq = targetm.gen_stack_protect_test (x, y, label);
5038 }
5039
5040 if (seq)
5041 emit_insn (seq);
5042 else
5043 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5044
5045 /* The noreturn predictor has been moved to the tree level. The rtl-level
5046 predictors estimate this branch about 20%, which isn't enough to get
5047 things moved out of line. Since this is the only extant case of adding
5048 a noreturn function at the rtl level, it doesn't seem worth doing ought
5049 except adding the prediction by hand. */
5050 rtx_insn *tmp = get_last_insn ();
5051 if (JUMP_P (tmp))
5052 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5053
5054 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5055 free_temp_slots ();
5056 emit_label (label);
5057 }
5058 \f
5059 /* Start the RTL for a new function, and set variables used for
5060 emitting RTL.
5061 SUBR is the FUNCTION_DECL node.
5062 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5063 the function's parameters, which must be run at any return statement. */
5064
5065 bool currently_expanding_function_start;
5066 void
5067 expand_function_start (tree subr)
5068 {
5069 currently_expanding_function_start = true;
5070
5071 /* Make sure volatile mem refs aren't considered
5072 valid operands of arithmetic insns. */
5073 init_recog_no_volatile ();
5074
5075 crtl->profile
5076 = (profile_flag
5077 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5078
5079 crtl->limit_stack
5080 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5081
5082 /* Make the label for return statements to jump to. Do not special
5083 case machines with special return instructions -- they will be
5084 handled later during jump, ifcvt, or epilogue creation. */
5085 return_label = gen_label_rtx ();
5086
5087 /* Initialize rtx used to return the value. */
5088 /* Do this before assign_parms so that we copy the struct value address
5089 before any library calls that assign parms might generate. */
5090
5091 /* Decide whether to return the value in memory or in a register. */
5092 tree res = DECL_RESULT (subr);
5093 if (aggregate_value_p (res, subr))
5094 {
5095 /* Returning something that won't go in a register. */
5096 rtx value_address = 0;
5097
5098 #ifdef PCC_STATIC_STRUCT_RETURN
5099 if (cfun->returns_pcc_struct)
5100 {
5101 int size = int_size_in_bytes (TREE_TYPE (res));
5102 value_address = assemble_static_space (size);
5103 }
5104 else
5105 #endif
5106 {
5107 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5108 /* Expect to be passed the address of a place to store the value.
5109 If it is passed as an argument, assign_parms will take care of
5110 it. */
5111 if (sv)
5112 {
5113 value_address = gen_reg_rtx (Pmode);
5114 emit_move_insn (value_address, sv);
5115 }
5116 }
5117 if (value_address)
5118 {
5119 rtx x = value_address;
5120 if (!DECL_BY_REFERENCE (res))
5121 {
5122 x = gen_rtx_MEM (DECL_MODE (res), x);
5123 set_mem_attributes (x, res, 1);
5124 }
5125 set_parm_rtl (res, x);
5126 }
5127 }
5128 else if (DECL_MODE (res) == VOIDmode)
5129 /* If return mode is void, this decl rtl should not be used. */
5130 set_parm_rtl (res, NULL_RTX);
5131 else
5132 {
5133 /* Compute the return values into a pseudo reg, which we will copy
5134 into the true return register after the cleanups are done. */
5135 tree return_type = TREE_TYPE (res);
5136
5137 /* If we may coalesce this result, make sure it has the expected mode
5138 in case it was promoted. But we need not bother about BLKmode. */
5139 machine_mode promoted_mode
5140 = flag_tree_coalesce_vars && is_gimple_reg (res)
5141 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5142 : BLKmode;
5143
5144 if (promoted_mode != BLKmode)
5145 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5146 else if (TYPE_MODE (return_type) != BLKmode
5147 && targetm.calls.return_in_msb (return_type))
5148 /* expand_function_end will insert the appropriate padding in
5149 this case. Use the return value's natural (unpadded) mode
5150 within the function proper. */
5151 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5152 else
5153 {
5154 /* In order to figure out what mode to use for the pseudo, we
5155 figure out what the mode of the eventual return register will
5156 actually be, and use that. */
5157 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5158
5159 /* Structures that are returned in registers are not
5160 aggregate_value_p, so we may see a PARALLEL or a REG. */
5161 if (REG_P (hard_reg))
5162 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5163 else
5164 {
5165 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5166 set_parm_rtl (res, gen_group_rtx (hard_reg));
5167 }
5168 }
5169
5170 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5171 result to the real return register(s). */
5172 DECL_REGISTER (res) = 1;
5173 }
5174
5175 /* Initialize rtx for parameters and local variables.
5176 In some cases this requires emitting insns. */
5177 assign_parms (subr);
5178
5179 /* If function gets a static chain arg, store it. */
5180 if (cfun->static_chain_decl)
5181 {
5182 tree parm = cfun->static_chain_decl;
5183 rtx local, chain;
5184 rtx_insn *insn;
5185 int unsignedp;
5186
5187 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5188 chain = targetm.calls.static_chain (current_function_decl, true);
5189
5190 set_decl_incoming_rtl (parm, chain, false);
5191 set_parm_rtl (parm, local);
5192 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5193
5194 if (GET_MODE (local) != GET_MODE (chain))
5195 {
5196 convert_move (local, chain, unsignedp);
5197 insn = get_last_insn ();
5198 }
5199 else
5200 insn = emit_move_insn (local, chain);
5201
5202 /* Mark the register as eliminable, similar to parameters. */
5203 if (MEM_P (chain)
5204 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5205 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5206
5207 /* If we aren't optimizing, save the static chain onto the stack. */
5208 if (!optimize)
5209 {
5210 tree saved_static_chain_decl
5211 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5212 DECL_NAME (parm), TREE_TYPE (parm));
5213 rtx saved_static_chain_rtx
5214 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5215 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5216 emit_move_insn (saved_static_chain_rtx, chain);
5217 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5218 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5219 }
5220 }
5221
5222 /* The following was moved from init_function_start.
5223 The move was supposed to make sdb output more accurate. */
5224 /* Indicate the beginning of the function body,
5225 as opposed to parm setup. */
5226 emit_note (NOTE_INSN_FUNCTION_BEG);
5227
5228 gcc_assert (NOTE_P (get_last_insn ()));
5229
5230 parm_birth_insn = get_last_insn ();
5231
5232 /* If the function receives a non-local goto, then store the
5233 bits we need to restore the frame pointer. */
5234 if (cfun->nonlocal_goto_save_area)
5235 {
5236 tree t_save;
5237 rtx r_save;
5238
5239 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5240 gcc_assert (DECL_RTL_SET_P (var));
5241
5242 t_save = build4 (ARRAY_REF,
5243 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5244 cfun->nonlocal_goto_save_area,
5245 integer_zero_node, NULL_TREE, NULL_TREE);
5246 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5247 gcc_assert (GET_MODE (r_save) == Pmode);
5248
5249 emit_move_insn (r_save, hard_frame_pointer_rtx);
5250 update_nonlocal_goto_save_area ();
5251 }
5252
5253 if (crtl->profile)
5254 {
5255 #ifdef PROFILE_HOOK
5256 PROFILE_HOOK (current_function_funcdef_no);
5257 #endif
5258 }
5259
5260 /* If we are doing generic stack checking, the probe should go here. */
5261 if (flag_stack_check == GENERIC_STACK_CHECK)
5262 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5263
5264 currently_expanding_function_start = false;
5265 }
5266 \f
5267 void
5268 pop_dummy_function (void)
5269 {
5270 pop_cfun ();
5271 in_dummy_function = false;
5272 }
5273
5274 /* Undo the effects of init_dummy_function_start. */
5275 void
5276 expand_dummy_function_end (void)
5277 {
5278 gcc_assert (in_dummy_function);
5279
5280 /* End any sequences that failed to be closed due to syntax errors. */
5281 while (in_sequence_p ())
5282 end_sequence ();
5283
5284 /* Outside function body, can't compute type's actual size
5285 until next function's body starts. */
5286
5287 free_after_parsing (cfun);
5288 free_after_compilation (cfun);
5289 pop_dummy_function ();
5290 }
5291
5292 /* Helper for diddle_return_value. */
5293
5294 void
5295 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5296 {
5297 if (! outgoing)
5298 return;
5299
5300 if (REG_P (outgoing))
5301 (*doit) (outgoing, arg);
5302 else if (GET_CODE (outgoing) == PARALLEL)
5303 {
5304 int i;
5305
5306 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5307 {
5308 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5309
5310 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5311 (*doit) (x, arg);
5312 }
5313 }
5314 }
5315
5316 /* Call DOIT for each hard register used as a return value from
5317 the current function. */
5318
5319 void
5320 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5321 {
5322 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5323 }
5324
5325 static void
5326 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5327 {
5328 emit_clobber (reg);
5329 }
5330
5331 void
5332 clobber_return_register (void)
5333 {
5334 diddle_return_value (do_clobber_return_reg, NULL);
5335
5336 /* In case we do use pseudo to return value, clobber it too. */
5337 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5338 {
5339 tree decl_result = DECL_RESULT (current_function_decl);
5340 rtx decl_rtl = DECL_RTL (decl_result);
5341 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5342 {
5343 do_clobber_return_reg (decl_rtl, NULL);
5344 }
5345 }
5346 }
5347
5348 static void
5349 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5350 {
5351 emit_use (reg);
5352 }
5353
5354 static void
5355 use_return_register (void)
5356 {
5357 diddle_return_value (do_use_return_reg, NULL);
5358 }
5359
5360 /* Generate RTL for the end of the current function. */
5361
5362 void
5363 expand_function_end (void)
5364 {
5365 /* If arg_pointer_save_area was referenced only from a nested
5366 function, we will not have initialized it yet. Do that now. */
5367 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5368 get_arg_pointer_save_area ();
5369
5370 /* If we are doing generic stack checking and this function makes calls,
5371 do a stack probe at the start of the function to ensure we have enough
5372 space for another stack frame. */
5373 if (flag_stack_check == GENERIC_STACK_CHECK)
5374 {
5375 rtx_insn *insn, *seq;
5376
5377 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5378 if (CALL_P (insn))
5379 {
5380 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5381 start_sequence ();
5382 if (STACK_CHECK_MOVING_SP)
5383 anti_adjust_stack_and_probe (max_frame_size, true);
5384 else
5385 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5386 seq = get_insns ();
5387 end_sequence ();
5388 set_insn_locations (seq, prologue_location);
5389 emit_insn_before (seq, stack_check_probe_note);
5390 break;
5391 }
5392 }
5393
5394 /* End any sequences that failed to be closed due to syntax errors. */
5395 while (in_sequence_p ())
5396 end_sequence ();
5397
5398 clear_pending_stack_adjust ();
5399 do_pending_stack_adjust ();
5400
5401 /* Output a linenumber for the end of the function.
5402 SDB depended on this. */
5403 set_curr_insn_location (input_location);
5404
5405 /* Before the return label (if any), clobber the return
5406 registers so that they are not propagated live to the rest of
5407 the function. This can only happen with functions that drop
5408 through; if there had been a return statement, there would
5409 have either been a return rtx, or a jump to the return label.
5410
5411 We delay actual code generation after the current_function_value_rtx
5412 is computed. */
5413 rtx_insn *clobber_after = get_last_insn ();
5414
5415 /* Output the label for the actual return from the function. */
5416 emit_label (return_label);
5417
5418 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5419 {
5420 /* Let except.cc know where it should emit the call to unregister
5421 the function context for sjlj exceptions. */
5422 if (flag_exceptions)
5423 sjlj_emit_function_exit_after (get_last_insn ());
5424 }
5425
5426 /* If this is an implementation of throw, do what's necessary to
5427 communicate between __builtin_eh_return and the epilogue. */
5428 expand_eh_return ();
5429
5430 /* If stack protection is enabled for this function, check the guard. */
5431 if (crtl->stack_protect_guard
5432 && targetm.stack_protect_runtime_enabled_p ()
5433 && naked_return_label == NULL_RTX)
5434 stack_protect_epilogue ();
5435
5436 /* If scalar return value was computed in a pseudo-reg, or was a named
5437 return value that got dumped to the stack, copy that to the hard
5438 return register. */
5439 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5440 {
5441 tree decl_result = DECL_RESULT (current_function_decl);
5442 rtx decl_rtl = DECL_RTL (decl_result);
5443
5444 if ((REG_P (decl_rtl)
5445 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5446 : DECL_REGISTER (decl_result))
5447 /* Unless the psABI says not to. */
5448 && !TYPE_EMPTY_P (TREE_TYPE (decl_result)))
5449 {
5450 rtx real_decl_rtl = crtl->return_rtx;
5451 complex_mode cmode;
5452
5453 /* This should be set in assign_parms. */
5454 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5455
5456 /* If this is a BLKmode structure being returned in registers,
5457 then use the mode computed in expand_return. Note that if
5458 decl_rtl is memory, then its mode may have been changed,
5459 but that crtl->return_rtx has not. */
5460 if (GET_MODE (real_decl_rtl) == BLKmode)
5461 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5462
5463 /* If a non-BLKmode return value should be padded at the least
5464 significant end of the register, shift it left by the appropriate
5465 amount. BLKmode results are handled using the group load/store
5466 machinery. */
5467 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5468 && REG_P (real_decl_rtl)
5469 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5470 {
5471 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5472 REGNO (real_decl_rtl)),
5473 decl_rtl);
5474 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5475 }
5476 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5477 {
5478 /* If expand_function_start has created a PARALLEL for decl_rtl,
5479 move the result to the real return registers. Otherwise, do
5480 a group load from decl_rtl for a named return. */
5481 if (GET_CODE (decl_rtl) == PARALLEL)
5482 emit_group_move (real_decl_rtl, decl_rtl);
5483 else
5484 emit_group_load (real_decl_rtl, decl_rtl,
5485 TREE_TYPE (decl_result),
5486 int_size_in_bytes (TREE_TYPE (decl_result)));
5487 }
5488 /* In the case of complex integer modes smaller than a word, we'll
5489 need to generate some non-trivial bitfield insertions. Do that
5490 on a pseudo and not the hard register. */
5491 else if (GET_CODE (decl_rtl) == CONCAT
5492 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5493 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5494 {
5495 int old_generating_concat_p;
5496 rtx tmp;
5497
5498 old_generating_concat_p = generating_concat_p;
5499 generating_concat_p = 0;
5500 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5501 generating_concat_p = old_generating_concat_p;
5502
5503 emit_move_insn (tmp, decl_rtl);
5504 emit_move_insn (real_decl_rtl, tmp);
5505 }
5506 /* If a named return value dumped decl_return to memory, then
5507 we may need to re-do the PROMOTE_MODE signed/unsigned
5508 extension. */
5509 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5510 {
5511 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5512 promote_function_mode (TREE_TYPE (decl_result),
5513 GET_MODE (decl_rtl), &unsignedp,
5514 TREE_TYPE (current_function_decl), 1);
5515
5516 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5517 }
5518 else
5519 emit_move_insn (real_decl_rtl, decl_rtl);
5520 }
5521 }
5522
5523 /* If returning a structure, arrange to return the address of the value
5524 in a place where debuggers expect to find it.
5525
5526 If returning a structure PCC style,
5527 the caller also depends on this value.
5528 And cfun->returns_pcc_struct is not necessarily set. */
5529 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5530 && !targetm.calls.omit_struct_return_reg)
5531 {
5532 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5533 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5534 rtx outgoing;
5535
5536 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5537 type = TREE_TYPE (type);
5538 else
5539 value_address = XEXP (value_address, 0);
5540
5541 outgoing = targetm.calls.function_value (build_pointer_type (type),
5542 current_function_decl, true);
5543
5544 /* Mark this as a function return value so integrate will delete the
5545 assignment and USE below when inlining this function. */
5546 REG_FUNCTION_VALUE_P (outgoing) = 1;
5547
5548 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5549 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5550 value_address = convert_memory_address (mode, value_address);
5551
5552 emit_move_insn (outgoing, value_address);
5553
5554 /* Show return register used to hold result (in this case the address
5555 of the result. */
5556 crtl->return_rtx = outgoing;
5557 }
5558
5559 /* Emit the actual code to clobber return register. Don't emit
5560 it if clobber_after is a barrier, then the previous basic block
5561 certainly doesn't fall thru into the exit block. */
5562 if (!BARRIER_P (clobber_after))
5563 {
5564 start_sequence ();
5565 clobber_return_register ();
5566 rtx_insn *seq = get_insns ();
5567 end_sequence ();
5568
5569 emit_insn_after (seq, clobber_after);
5570 }
5571
5572 /* Output the label for the naked return from the function. */
5573 if (naked_return_label)
5574 emit_label (naked_return_label);
5575
5576 /* @@@ This is a kludge. We want to ensure that instructions that
5577 may trap are not moved into the epilogue by scheduling, because
5578 we don't always emit unwind information for the epilogue. */
5579 if (cfun->can_throw_non_call_exceptions
5580 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5581 emit_insn (gen_blockage ());
5582
5583 /* If stack protection is enabled for this function, check the guard. */
5584 if (crtl->stack_protect_guard
5585 && targetm.stack_protect_runtime_enabled_p ()
5586 && naked_return_label)
5587 stack_protect_epilogue ();
5588
5589 /* If we had calls to alloca, and this machine needs
5590 an accurate stack pointer to exit the function,
5591 insert some code to save and restore the stack pointer. */
5592 if (! EXIT_IGNORE_STACK
5593 && cfun->calls_alloca)
5594 {
5595 rtx tem = 0;
5596
5597 start_sequence ();
5598 emit_stack_save (SAVE_FUNCTION, &tem);
5599 rtx_insn *seq = get_insns ();
5600 end_sequence ();
5601 emit_insn_before (seq, parm_birth_insn);
5602
5603 emit_stack_restore (SAVE_FUNCTION, tem);
5604 }
5605
5606 /* ??? This should no longer be necessary since stupid is no longer with
5607 us, but there are some parts of the compiler (eg reload_combine, and
5608 sh mach_dep_reorg) that still try and compute their own lifetime info
5609 instead of using the general framework. */
5610 use_return_register ();
5611 }
5612
5613 rtx
5614 get_arg_pointer_save_area (void)
5615 {
5616 rtx ret = arg_pointer_save_area;
5617
5618 if (! ret)
5619 {
5620 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5621 arg_pointer_save_area = ret;
5622 }
5623
5624 if (! crtl->arg_pointer_save_area_init)
5625 {
5626 /* Save the arg pointer at the beginning of the function. The
5627 generated stack slot may not be a valid memory address, so we
5628 have to check it and fix it if necessary. */
5629 start_sequence ();
5630 emit_move_insn (validize_mem (copy_rtx (ret)),
5631 crtl->args.internal_arg_pointer);
5632 rtx_insn *seq = get_insns ();
5633 end_sequence ();
5634
5635 push_topmost_sequence ();
5636 emit_insn_after (seq, entry_of_function ());
5637 pop_topmost_sequence ();
5638
5639 crtl->arg_pointer_save_area_init = true;
5640 }
5641
5642 return ret;
5643 }
5644 \f
5645
5646 /* If debugging dumps are requested, dump information about how the
5647 target handled -fstack-check=clash for the prologue.
5648
5649 PROBES describes what if any probes were emitted.
5650
5651 RESIDUALS indicates if the prologue had any residual allocation
5652 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5653
5654 void
5655 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5656 {
5657 if (!dump_file)
5658 return;
5659
5660 switch (probes)
5661 {
5662 case NO_PROBE_NO_FRAME:
5663 fprintf (dump_file,
5664 "Stack clash no probe no stack adjustment in prologue.\n");
5665 break;
5666 case NO_PROBE_SMALL_FRAME:
5667 fprintf (dump_file,
5668 "Stack clash no probe small stack adjustment in prologue.\n");
5669 break;
5670 case PROBE_INLINE:
5671 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5672 break;
5673 case PROBE_LOOP:
5674 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5675 break;
5676 }
5677
5678 if (residuals)
5679 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5680 else
5681 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5682
5683 if (frame_pointer_needed)
5684 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5685 else
5686 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5687
5688 if (TREE_THIS_VOLATILE (cfun->decl))
5689 fprintf (dump_file,
5690 "Stack clash noreturn prologue, assuming no implicit"
5691 " probes in caller.\n");
5692 else
5693 fprintf (dump_file,
5694 "Stack clash not noreturn prologue.\n");
5695 }
5696
5697 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5698 for the first time. */
5699
5700 static void
5701 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5702 {
5703 rtx_insn *tmp;
5704 hash_table<insn_cache_hasher> *hash = *hashp;
5705
5706 if (hash == NULL)
5707 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5708
5709 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5710 {
5711 rtx *slot = hash->find_slot (tmp, INSERT);
5712 gcc_assert (*slot == NULL);
5713 *slot = tmp;
5714 }
5715 }
5716
5717 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5718 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5719 insn, then record COPY as well. */
5720
5721 void
5722 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5723 {
5724 hash_table<insn_cache_hasher> *hash;
5725 rtx *slot;
5726
5727 hash = epilogue_insn_hash;
5728 if (!hash || !hash->find (insn))
5729 {
5730 hash = prologue_insn_hash;
5731 if (!hash || !hash->find (insn))
5732 return;
5733 }
5734
5735 slot = hash->find_slot (copy, INSERT);
5736 gcc_assert (*slot == NULL);
5737 *slot = copy;
5738 }
5739
5740 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5741 we can be running after reorg, SEQUENCE rtl is possible. */
5742
5743 static bool
5744 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5745 {
5746 if (hash == NULL)
5747 return false;
5748
5749 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5750 {
5751 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5752 int i;
5753 for (i = seq->len () - 1; i >= 0; i--)
5754 if (hash->find (seq->element (i)))
5755 return true;
5756 return false;
5757 }
5758
5759 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5760 }
5761
5762 int
5763 prologue_contains (const rtx_insn *insn)
5764 {
5765 return contains (insn, prologue_insn_hash);
5766 }
5767
5768 int
5769 epilogue_contains (const rtx_insn *insn)
5770 {
5771 return contains (insn, epilogue_insn_hash);
5772 }
5773
5774 int
5775 prologue_epilogue_contains (const rtx_insn *insn)
5776 {
5777 if (contains (insn, prologue_insn_hash))
5778 return 1;
5779 if (contains (insn, epilogue_insn_hash))
5780 return 1;
5781 return 0;
5782 }
5783
5784 void
5785 record_prologue_seq (rtx_insn *seq)
5786 {
5787 record_insns (seq, NULL, &prologue_insn_hash);
5788 }
5789
5790 void
5791 record_epilogue_seq (rtx_insn *seq)
5792 {
5793 record_insns (seq, NULL, &epilogue_insn_hash);
5794 }
5795
5796 /* Set JUMP_LABEL for a return insn. */
5797
5798 void
5799 set_return_jump_label (rtx_insn *returnjump)
5800 {
5801 rtx pat = PATTERN (returnjump);
5802 if (GET_CODE (pat) == PARALLEL)
5803 pat = XVECEXP (pat, 0, 0);
5804 if (ANY_RETURN_P (pat))
5805 JUMP_LABEL (returnjump) = pat;
5806 else
5807 JUMP_LABEL (returnjump) = ret_rtx;
5808 }
5809
5810 /* Return a sequence to be used as the split prologue for the current
5811 function, or NULL. */
5812
5813 static rtx_insn *
5814 make_split_prologue_seq (void)
5815 {
5816 if (!flag_split_stack
5817 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5818 return NULL;
5819
5820 start_sequence ();
5821 emit_insn (targetm.gen_split_stack_prologue ());
5822 rtx_insn *seq = get_insns ();
5823 end_sequence ();
5824
5825 record_insns (seq, NULL, &prologue_insn_hash);
5826 set_insn_locations (seq, prologue_location);
5827
5828 return seq;
5829 }
5830
5831 /* Return a sequence to be used as the prologue for the current function,
5832 or NULL. */
5833
5834 static rtx_insn *
5835 make_prologue_seq (void)
5836 {
5837 if (!targetm.have_prologue ())
5838 return NULL;
5839
5840 start_sequence ();
5841 rtx_insn *seq = targetm.gen_prologue ();
5842 emit_insn (seq);
5843
5844 /* Insert an explicit USE for the frame pointer
5845 if the profiling is on and the frame pointer is required. */
5846 if (crtl->profile && frame_pointer_needed)
5847 emit_use (hard_frame_pointer_rtx);
5848
5849 /* Retain a map of the prologue insns. */
5850 record_insns (seq, NULL, &prologue_insn_hash);
5851 emit_note (NOTE_INSN_PROLOGUE_END);
5852
5853 /* Ensure that instructions are not moved into the prologue when
5854 profiling is on. The call to the profiling routine can be
5855 emitted within the live range of a call-clobbered register. */
5856 if (!targetm.profile_before_prologue () && crtl->profile)
5857 emit_insn (gen_blockage ());
5858
5859 seq = get_insns ();
5860 end_sequence ();
5861 set_insn_locations (seq, prologue_location);
5862
5863 return seq;
5864 }
5865
5866 /* Emit a sequence of insns to zero the call-used registers before RET
5867 according to ZERO_REGS_TYPE. */
5868
5869 static void
5870 gen_call_used_regs_seq (rtx_insn *ret, unsigned int zero_regs_type)
5871 {
5872 bool only_gpr = true;
5873 bool only_used = true;
5874 bool only_arg = true;
5875
5876 /* No need to zero call-used-regs in main (). */
5877 if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
5878 return;
5879
5880 /* No need to zero call-used-regs if __builtin_eh_return is called
5881 since it isn't a normal function return. */
5882 if (crtl->calls_eh_return)
5883 return;
5884
5885 /* If only_gpr is true, only zero call-used registers that are
5886 general-purpose registers; if only_used is true, only zero
5887 call-used registers that are used in the current function;
5888 if only_arg is true, only zero call-used registers that pass
5889 parameters defined by the flatform's calling conversion. */
5890
5891 using namespace zero_regs_flags;
5892
5893 only_gpr = zero_regs_type & ONLY_GPR;
5894 only_used = zero_regs_type & ONLY_USED;
5895 only_arg = zero_regs_type & ONLY_ARG;
5896
5897 /* For each of the hard registers, we should zero it if:
5898 1. it is a call-used register;
5899 and 2. it is not a fixed register;
5900 and 3. it is not live at the return of the routine;
5901 and 4. it is general registor if only_gpr is true;
5902 and 5. it is used in the routine if only_used is true;
5903 and 6. it is a register that passes parameter if only_arg is true. */
5904
5905 /* First, prepare the data flow information. */
5906 basic_block bb = BLOCK_FOR_INSN (ret);
5907 auto_bitmap live_out;
5908 bitmap_copy (live_out, df_get_live_out (bb));
5909 df_simulate_initialize_backwards (bb, live_out);
5910 df_simulate_one_insn_backwards (bb, ret, live_out);
5911
5912 HARD_REG_SET selected_hardregs;
5913 HARD_REG_SET all_call_used_regs;
5914 CLEAR_HARD_REG_SET (selected_hardregs);
5915 CLEAR_HARD_REG_SET (all_call_used_regs);
5916 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5917 {
5918 if (!crtl->abi->clobbers_full_reg_p (regno))
5919 continue;
5920 if (fixed_regs[regno])
5921 continue;
5922 if (REGNO_REG_SET_P (live_out, regno))
5923 continue;
5924 #ifdef LEAF_REG_REMAP
5925 if (crtl->uses_only_leaf_regs && LEAF_REG_REMAP (regno) < 0)
5926 continue;
5927 #endif
5928 /* This is a call used register that is dead at return. */
5929 SET_HARD_REG_BIT (all_call_used_regs, regno);
5930
5931 if (only_gpr
5932 && !TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], regno))
5933 continue;
5934 if (only_used && !df_regs_ever_live_p (regno))
5935 continue;
5936 if (only_arg && !FUNCTION_ARG_REGNO_P (regno))
5937 continue;
5938
5939 /* Now this is a register that we might want to zero. */
5940 SET_HARD_REG_BIT (selected_hardregs, regno);
5941 }
5942
5943 if (hard_reg_set_empty_p (selected_hardregs))
5944 return;
5945
5946 /* Now that we have a hard register set that needs to be zeroed, pass it to
5947 target to generate zeroing sequence. */
5948 HARD_REG_SET zeroed_hardregs;
5949 start_sequence ();
5950 zeroed_hardregs = targetm.calls.zero_call_used_regs (selected_hardregs);
5951
5952 /* For most targets, the returned set of registers is a subset of
5953 selected_hardregs, however, for some of the targets (for example MIPS),
5954 clearing some registers that are in selected_hardregs requires clearing
5955 other call used registers that are not in the selected_hardregs, under
5956 such situation, the returned set of registers must be a subset of
5957 all call used registers. */
5958 gcc_assert (hard_reg_set_subset_p (zeroed_hardregs, all_call_used_regs));
5959
5960 rtx_insn *seq = get_insns ();
5961 end_sequence ();
5962 if (seq)
5963 {
5964 /* Emit the memory blockage and register clobber asm volatile before
5965 the whole sequence. */
5966 start_sequence ();
5967 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs);
5968 rtx_insn *seq_barrier = get_insns ();
5969 end_sequence ();
5970
5971 emit_insn_before (seq_barrier, ret);
5972 emit_insn_before (seq, ret);
5973
5974 /* Update the data flow information. */
5975 crtl->must_be_zero_on_return |= zeroed_hardregs;
5976 df_update_exit_block_uses ();
5977 }
5978 }
5979
5980
5981 /* Return a sequence to be used as the epilogue for the current function,
5982 or NULL. */
5983
5984 static rtx_insn *
5985 make_epilogue_seq (void)
5986 {
5987 if (!targetm.have_epilogue ())
5988 return NULL;
5989
5990 start_sequence ();
5991 emit_note (NOTE_INSN_EPILOGUE_BEG);
5992 rtx_insn *seq = targetm.gen_epilogue ();
5993 if (seq)
5994 emit_jump_insn (seq);
5995
5996 /* Retain a map of the epilogue insns. */
5997 record_insns (seq, NULL, &epilogue_insn_hash);
5998 set_insn_locations (seq, epilogue_location);
5999
6000 seq = get_insns ();
6001 rtx_insn *returnjump = get_last_insn ();
6002 end_sequence ();
6003
6004 if (JUMP_P (returnjump))
6005 set_return_jump_label (returnjump);
6006
6007 return seq;
6008 }
6009
6010
6011 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6012 this into place with notes indicating where the prologue ends and where
6013 the epilogue begins. Update the basic block information when possible.
6014
6015 Notes on epilogue placement:
6016 There are several kinds of edges to the exit block:
6017 * a single fallthru edge from LAST_BB
6018 * possibly, edges from blocks containing sibcalls
6019 * possibly, fake edges from infinite loops
6020
6021 The epilogue is always emitted on the fallthru edge from the last basic
6022 block in the function, LAST_BB, into the exit block.
6023
6024 If LAST_BB is empty except for a label, it is the target of every
6025 other basic block in the function that ends in a return. If a
6026 target has a return or simple_return pattern (possibly with
6027 conditional variants), these basic blocks can be changed so that a
6028 return insn is emitted into them, and their target is adjusted to
6029 the real exit block.
6030
6031 Notes on shrink wrapping: We implement a fairly conservative
6032 version of shrink-wrapping rather than the textbook one. We only
6033 generate a single prologue and a single epilogue. This is
6034 sufficient to catch a number of interesting cases involving early
6035 exits.
6036
6037 First, we identify the blocks that require the prologue to occur before
6038 them. These are the ones that modify a call-saved register, or reference
6039 any of the stack or frame pointer registers. To simplify things, we then
6040 mark everything reachable from these blocks as also requiring a prologue.
6041 This takes care of loops automatically, and avoids the need to examine
6042 whether MEMs reference the frame, since it is sufficient to check for
6043 occurrences of the stack or frame pointer.
6044
6045 We then compute the set of blocks for which the need for a prologue
6046 is anticipatable (borrowing terminology from the shrink-wrapping
6047 description in Muchnick's book). These are the blocks which either
6048 require a prologue themselves, or those that have only successors
6049 where the prologue is anticipatable. The prologue needs to be
6050 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6051 is not. For the moment, we ensure that only one such edge exists.
6052
6053 The epilogue is placed as described above, but we make a
6054 distinction between inserting return and simple_return patterns
6055 when modifying other blocks that end in a return. Blocks that end
6056 in a sibcall omit the sibcall_epilogue if the block is not in
6057 ANTIC. */
6058
6059 void
6060 thread_prologue_and_epilogue_insns (void)
6061 {
6062 df_analyze ();
6063
6064 /* Can't deal with multiple successors of the entry block at the
6065 moment. Function should always have at least one entry
6066 point. */
6067 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6068
6069 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6070 edge orig_entry_edge = entry_edge;
6071
6072 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6073 rtx_insn *prologue_seq = make_prologue_seq ();
6074 rtx_insn *epilogue_seq = make_epilogue_seq ();
6075
6076 /* Try to perform a kind of shrink-wrapping, making sure the
6077 prologue/epilogue is emitted only around those parts of the
6078 function that require it. */
6079 try_shrink_wrapping (&entry_edge, prologue_seq);
6080
6081 /* If the target can handle splitting the prologue/epilogue into separate
6082 components, try to shrink-wrap these components separately. */
6083 try_shrink_wrapping_separate (entry_edge->dest);
6084
6085 /* If that did anything for any component we now need the generate the
6086 "main" prologue again. Because some targets require some of these
6087 to be called in a specific order (i386 requires the split prologue
6088 to be first, for example), we create all three sequences again here.
6089 If this does not work for some target, that target should not enable
6090 separate shrink-wrapping. */
6091 if (crtl->shrink_wrapped_separate)
6092 {
6093 split_prologue_seq = make_split_prologue_seq ();
6094 prologue_seq = make_prologue_seq ();
6095 epilogue_seq = make_epilogue_seq ();
6096 }
6097
6098 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6099
6100 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6101 this marker for the splits of EH_RETURN patterns, and nothing else
6102 uses the flag in the meantime. */
6103 epilogue_completed = 1;
6104
6105 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6106 some targets, these get split to a special version of the epilogue
6107 code. In order to be able to properly annotate these with unwind
6108 info, try to split them now. If we get a valid split, drop an
6109 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6110 edge e;
6111 edge_iterator ei;
6112 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6113 {
6114 rtx_insn *prev, *last, *trial;
6115
6116 if (e->flags & EDGE_FALLTHRU)
6117 continue;
6118 last = BB_END (e->src);
6119 if (!eh_returnjump_p (last))
6120 continue;
6121
6122 prev = PREV_INSN (last);
6123 trial = try_split (PATTERN (last), last, 1);
6124 if (trial == last)
6125 continue;
6126
6127 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6128 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6129 }
6130
6131 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6132
6133 if (exit_fallthru_edge)
6134 {
6135 if (epilogue_seq)
6136 {
6137 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6138 commit_edge_insertions ();
6139
6140 /* The epilogue insns we inserted may cause the exit edge to no longer
6141 be fallthru. */
6142 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6143 {
6144 if (((e->flags & EDGE_FALLTHRU) != 0)
6145 && returnjump_p (BB_END (e->src)))
6146 e->flags &= ~EDGE_FALLTHRU;
6147 }
6148 }
6149 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6150 {
6151 /* We have a fall-through edge to the exit block, the source is not
6152 at the end of the function, and there will be an assembler epilogue
6153 at the end of the function.
6154 We can't use force_nonfallthru here, because that would try to
6155 use return. Inserting a jump 'by hand' is extremely messy, so
6156 we take advantage of cfg_layout_finalize using
6157 fixup_fallthru_exit_predecessor. */
6158 cfg_layout_initialize (0);
6159 basic_block cur_bb;
6160 FOR_EACH_BB_FN (cur_bb, cfun)
6161 if (cur_bb->index >= NUM_FIXED_BLOCKS
6162 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6163 cur_bb->aux = cur_bb->next_bb;
6164 cfg_layout_finalize ();
6165 }
6166 }
6167
6168 /* Insert the prologue. */
6169
6170 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6171
6172 if (split_prologue_seq || prologue_seq)
6173 {
6174 rtx_insn *split_prologue_insn = split_prologue_seq;
6175 if (split_prologue_seq)
6176 {
6177 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6178 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6179 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6180 }
6181
6182 rtx_insn *prologue_insn = prologue_seq;
6183 if (prologue_seq)
6184 {
6185 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6186 prologue_insn = NEXT_INSN (prologue_insn);
6187 insert_insn_on_edge (prologue_seq, entry_edge);
6188 }
6189
6190 commit_edge_insertions ();
6191
6192 /* Look for basic blocks within the prologue insns. */
6193 if (split_prologue_insn
6194 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6195 split_prologue_insn = NULL;
6196 if (prologue_insn
6197 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6198 prologue_insn = NULL;
6199 if (split_prologue_insn || prologue_insn)
6200 {
6201 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6202 bitmap_clear (blocks);
6203 if (split_prologue_insn)
6204 bitmap_set_bit (blocks,
6205 BLOCK_FOR_INSN (split_prologue_insn)->index);
6206 if (prologue_insn)
6207 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6208 find_many_sub_basic_blocks (blocks);
6209 }
6210 }
6211
6212 default_rtl_profile ();
6213
6214 /* Emit sibling epilogues before any sibling call sites. */
6215 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6216 (e = ei_safe_edge (ei));
6217 ei_next (&ei))
6218 {
6219 /* Skip those already handled, the ones that run without prologue. */
6220 if (e->flags & EDGE_IGNORE)
6221 {
6222 e->flags &= ~EDGE_IGNORE;
6223 continue;
6224 }
6225
6226 rtx_insn *insn = BB_END (e->src);
6227
6228 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6229 continue;
6230
6231 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6232 {
6233 start_sequence ();
6234 emit_note (NOTE_INSN_EPILOGUE_BEG);
6235 emit_insn (ep_seq);
6236 rtx_insn *seq = get_insns ();
6237 end_sequence ();
6238
6239 /* Retain a map of the epilogue insns. Used in life analysis to
6240 avoid getting rid of sibcall epilogue insns. Do this before we
6241 actually emit the sequence. */
6242 record_insns (seq, NULL, &epilogue_insn_hash);
6243 set_insn_locations (seq, epilogue_location);
6244
6245 emit_insn_before (seq, insn);
6246 }
6247 }
6248
6249 if (epilogue_seq)
6250 {
6251 rtx_insn *insn, *next;
6252
6253 /* Similarly, move any line notes that appear after the epilogue.
6254 There is no need, however, to be quite so anal about the existence
6255 of such a note. Also possibly move
6256 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6257 info generation. */
6258 for (insn = epilogue_seq; insn; insn = next)
6259 {
6260 next = NEXT_INSN (insn);
6261 if (NOTE_P (insn)
6262 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6263 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6264 }
6265 }
6266
6267 /* Threading the prologue and epilogue changes the artificial refs in the
6268 entry and exit blocks, and may invalidate DF info for tail calls. */
6269 if (optimize
6270 || flag_optimize_sibling_calls
6271 || flag_ipa_icf_functions
6272 || in_lto_p)
6273 df_update_entry_exit_and_calls ();
6274 else
6275 {
6276 df_update_entry_block_defs ();
6277 df_update_exit_block_uses ();
6278 }
6279 }
6280
6281 /* Reposition the prologue-end and epilogue-begin notes after
6282 instruction scheduling. */
6283
6284 void
6285 reposition_prologue_and_epilogue_notes (void)
6286 {
6287 if (!targetm.have_prologue ()
6288 && !targetm.have_epilogue ()
6289 && !targetm.have_sibcall_epilogue ())
6290 return;
6291
6292 /* Since the hash table is created on demand, the fact that it is
6293 non-null is a signal that it is non-empty. */
6294 if (prologue_insn_hash != NULL)
6295 {
6296 size_t len = prologue_insn_hash->elements ();
6297 rtx_insn *insn, *last = NULL, *note = NULL;
6298
6299 /* Scan from the beginning until we reach the last prologue insn. */
6300 /* ??? While we do have the CFG intact, there are two problems:
6301 (1) The prologue can contain loops (typically probing the stack),
6302 which means that the end of the prologue isn't in the first bb.
6303 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6304 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6305 {
6306 if (NOTE_P (insn))
6307 {
6308 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6309 note = insn;
6310 }
6311 else if (contains (insn, prologue_insn_hash))
6312 {
6313 last = insn;
6314 if (--len == 0)
6315 break;
6316 }
6317 }
6318
6319 if (last)
6320 {
6321 if (note == NULL)
6322 {
6323 /* Scan forward looking for the PROLOGUE_END note. It should
6324 be right at the beginning of the block, possibly with other
6325 insn notes that got moved there. */
6326 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6327 {
6328 if (NOTE_P (note)
6329 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6330 break;
6331 }
6332 }
6333
6334 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6335 if (LABEL_P (last))
6336 last = NEXT_INSN (last);
6337 reorder_insns (note, note, last);
6338 }
6339 }
6340
6341 if (epilogue_insn_hash != NULL)
6342 {
6343 edge_iterator ei;
6344 edge e;
6345
6346 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6347 {
6348 rtx_insn *insn, *first = NULL, *note = NULL;
6349 basic_block bb = e->src;
6350
6351 /* Scan from the beginning until we reach the first epilogue insn. */
6352 FOR_BB_INSNS (bb, insn)
6353 {
6354 if (NOTE_P (insn))
6355 {
6356 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6357 {
6358 note = insn;
6359 if (first != NULL)
6360 break;
6361 }
6362 }
6363 else if (first == NULL && contains (insn, epilogue_insn_hash))
6364 {
6365 first = insn;
6366 if (note != NULL)
6367 break;
6368 }
6369 }
6370
6371 if (note)
6372 {
6373 /* If the function has a single basic block, and no real
6374 epilogue insns (e.g. sibcall with no cleanup), the
6375 epilogue note can get scheduled before the prologue
6376 note. If we have frame related prologue insns, having
6377 them scanned during the epilogue will result in a crash.
6378 In this case re-order the epilogue note to just before
6379 the last insn in the block. */
6380 if (first == NULL)
6381 first = BB_END (bb);
6382
6383 if (PREV_INSN (first) != note)
6384 reorder_insns (note, note, PREV_INSN (first));
6385 }
6386 }
6387 }
6388 }
6389
6390 /* Returns the name of function declared by FNDECL. */
6391 const char *
6392 fndecl_name (tree fndecl)
6393 {
6394 if (fndecl == NULL)
6395 return "(nofn)";
6396 return lang_hooks.decl_printable_name (fndecl, 1);
6397 }
6398
6399 /* Returns the name of function FN. */
6400 const char *
6401 function_name (struct function *fn)
6402 {
6403 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6404 return fndecl_name (fndecl);
6405 }
6406
6407 /* Returns the name of the current function. */
6408 const char *
6409 current_function_name (void)
6410 {
6411 return function_name (cfun);
6412 }
6413 \f
6414
6415 static unsigned int
6416 rest_of_handle_check_leaf_regs (void)
6417 {
6418 #ifdef LEAF_REGISTERS
6419 crtl->uses_only_leaf_regs
6420 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6421 #endif
6422 return 0;
6423 }
6424
6425 /* Insert a TYPE into the used types hash table of CFUN. */
6426
6427 static void
6428 used_types_insert_helper (tree type, struct function *func)
6429 {
6430 if (type != NULL && func != NULL)
6431 {
6432 if (func->used_types_hash == NULL)
6433 func->used_types_hash = hash_set<tree>::create_ggc (37);
6434
6435 func->used_types_hash->add (type);
6436 }
6437 }
6438
6439 /* Given a type, insert it into the used hash table in cfun. */
6440 void
6441 used_types_insert (tree t)
6442 {
6443 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6444 if (TYPE_NAME (t))
6445 break;
6446 else
6447 t = TREE_TYPE (t);
6448 if (TREE_CODE (t) == ERROR_MARK)
6449 return;
6450 if (TYPE_NAME (t) == NULL_TREE
6451 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6452 t = TYPE_MAIN_VARIANT (t);
6453 if (debug_info_level > DINFO_LEVEL_NONE)
6454 {
6455 if (cfun)
6456 used_types_insert_helper (t, cfun);
6457 else
6458 {
6459 /* So this might be a type referenced by a global variable.
6460 Record that type so that we can later decide to emit its
6461 debug information. */
6462 vec_safe_push (types_used_by_cur_var_decl, t);
6463 }
6464 }
6465 }
6466
6467 /* Helper to Hash a struct types_used_by_vars_entry. */
6468
6469 static hashval_t
6470 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6471 {
6472 gcc_assert (entry && entry->var_decl && entry->type);
6473
6474 return iterative_hash_object (entry->type,
6475 iterative_hash_object (entry->var_decl, 0));
6476 }
6477
6478 /* Hash function of the types_used_by_vars_entry hash table. */
6479
6480 hashval_t
6481 used_type_hasher::hash (types_used_by_vars_entry *entry)
6482 {
6483 return hash_types_used_by_vars_entry (entry);
6484 }
6485
6486 /*Equality function of the types_used_by_vars_entry hash table. */
6487
6488 bool
6489 used_type_hasher::equal (types_used_by_vars_entry *e1,
6490 types_used_by_vars_entry *e2)
6491 {
6492 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6493 }
6494
6495 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6496
6497 void
6498 types_used_by_var_decl_insert (tree type, tree var_decl)
6499 {
6500 if (type != NULL && var_decl != NULL)
6501 {
6502 types_used_by_vars_entry **slot;
6503 struct types_used_by_vars_entry e;
6504 e.var_decl = var_decl;
6505 e.type = type;
6506 if (types_used_by_vars_hash == NULL)
6507 types_used_by_vars_hash
6508 = hash_table<used_type_hasher>::create_ggc (37);
6509
6510 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6511 if (*slot == NULL)
6512 {
6513 struct types_used_by_vars_entry *entry;
6514 entry = ggc_alloc<types_used_by_vars_entry> ();
6515 entry->type = type;
6516 entry->var_decl = var_decl;
6517 *slot = entry;
6518 }
6519 }
6520 }
6521
6522 namespace {
6523
6524 const pass_data pass_data_leaf_regs =
6525 {
6526 RTL_PASS, /* type */
6527 "*leaf_regs", /* name */
6528 OPTGROUP_NONE, /* optinfo_flags */
6529 TV_NONE, /* tv_id */
6530 0, /* properties_required */
6531 0, /* properties_provided */
6532 0, /* properties_destroyed */
6533 0, /* todo_flags_start */
6534 0, /* todo_flags_finish */
6535 };
6536
6537 class pass_leaf_regs : public rtl_opt_pass
6538 {
6539 public:
6540 pass_leaf_regs (gcc::context *ctxt)
6541 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6542 {}
6543
6544 /* opt_pass methods: */
6545 unsigned int execute (function *) final override
6546 {
6547 return rest_of_handle_check_leaf_regs ();
6548 }
6549
6550 }; // class pass_leaf_regs
6551
6552 } // anon namespace
6553
6554 rtl_opt_pass *
6555 make_pass_leaf_regs (gcc::context *ctxt)
6556 {
6557 return new pass_leaf_regs (ctxt);
6558 }
6559
6560 static unsigned int
6561 rest_of_handle_thread_prologue_and_epilogue (function *fun)
6562 {
6563 /* prepare_shrink_wrap is sensitive to the block structure of the control
6564 flow graph, so clean it up first. */
6565 if (optimize)
6566 cleanup_cfg (0);
6567
6568 /* On some machines, the prologue and epilogue code, or parts thereof,
6569 can be represented as RTL. Doing so lets us schedule insns between
6570 it and the rest of the code and also allows delayed branch
6571 scheduling to operate in the epilogue. */
6572 thread_prologue_and_epilogue_insns ();
6573
6574 /* Some non-cold blocks may now be only reachable from cold blocks.
6575 Fix that up. */
6576 fixup_partitions ();
6577
6578 /* After prologue and epilogue generation, the judgement on whether
6579 one memory access onto stack frame may trap or not could change,
6580 since we get more exact stack information by now. So try to
6581 remove any EH edges here, see PR90259. */
6582 if (fun->can_throw_non_call_exceptions)
6583 purge_all_dead_edges ();
6584
6585 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6586 see PR57320. */
6587 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6588
6589 /* The stack usage info is finalized during prologue expansion. */
6590 if (flag_stack_usage_info || flag_callgraph_info)
6591 output_stack_usage ();
6592
6593 return 0;
6594 }
6595
6596 /* Record a final call to CALLEE at LOCATION. */
6597
6598 void
6599 record_final_call (tree callee, location_t location)
6600 {
6601 struct callinfo_callee datum = { location, callee };
6602 vec_safe_push (cfun->su->callees, datum);
6603 }
6604
6605 /* Record a dynamic allocation made for DECL_OR_EXP. */
6606
6607 void
6608 record_dynamic_alloc (tree decl_or_exp)
6609 {
6610 struct callinfo_dalloc datum;
6611
6612 if (DECL_P (decl_or_exp))
6613 {
6614 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6615 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6616 const char *dot = strrchr (name, '.');
6617 if (dot)
6618 name = dot + 1;
6619 datum.name = ggc_strdup (name);
6620 }
6621 else
6622 {
6623 datum.location = EXPR_LOCATION (decl_or_exp);
6624 datum.name = NULL;
6625 }
6626
6627 vec_safe_push (cfun->su->dallocs, datum);
6628 }
6629
6630 namespace {
6631
6632 const pass_data pass_data_thread_prologue_and_epilogue =
6633 {
6634 RTL_PASS, /* type */
6635 "pro_and_epilogue", /* name */
6636 OPTGROUP_NONE, /* optinfo_flags */
6637 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6638 0, /* properties_required */
6639 0, /* properties_provided */
6640 0, /* properties_destroyed */
6641 0, /* todo_flags_start */
6642 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6643 };
6644
6645 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6646 {
6647 public:
6648 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6649 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6650 {}
6651
6652 /* opt_pass methods: */
6653 unsigned int execute (function * fun) final override
6654 {
6655 return rest_of_handle_thread_prologue_and_epilogue (fun);
6656 }
6657
6658 }; // class pass_thread_prologue_and_epilogue
6659
6660 } // anon namespace
6661
6662 rtl_opt_pass *
6663 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6664 {
6665 return new pass_thread_prologue_and_epilogue (ctxt);
6666 }
6667
6668 namespace {
6669
6670 const pass_data pass_data_zero_call_used_regs =
6671 {
6672 RTL_PASS, /* type */
6673 "zero_call_used_regs", /* name */
6674 OPTGROUP_NONE, /* optinfo_flags */
6675 TV_NONE, /* tv_id */
6676 0, /* properties_required */
6677 0, /* properties_provided */
6678 0, /* properties_destroyed */
6679 0, /* todo_flags_start */
6680 0, /* todo_flags_finish */
6681 };
6682
6683 class pass_zero_call_used_regs: public rtl_opt_pass
6684 {
6685 public:
6686 pass_zero_call_used_regs (gcc::context *ctxt)
6687 : rtl_opt_pass (pass_data_zero_call_used_regs, ctxt)
6688 {}
6689
6690 /* opt_pass methods: */
6691 unsigned int execute (function *) final override;
6692
6693 }; // class pass_zero_call_used_regs
6694
6695 unsigned int
6696 pass_zero_call_used_regs::execute (function *fun)
6697 {
6698 using namespace zero_regs_flags;
6699 unsigned int zero_regs_type = UNSET;
6700
6701 tree attr_zero_regs = lookup_attribute ("zero_call_used_regs",
6702 DECL_ATTRIBUTES (fun->decl));
6703
6704 /* Get the type of zero_call_used_regs from function attribute.
6705 We have filtered out invalid attribute values already at this point. */
6706 if (attr_zero_regs)
6707 {
6708 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6709 is the attribute argument's value. */
6710 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6711 gcc_assert (TREE_CODE (attr_zero_regs) == TREE_LIST);
6712 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6713 gcc_assert (TREE_CODE (attr_zero_regs) == STRING_CST);
6714
6715 for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
6716 if (strcmp (TREE_STRING_POINTER (attr_zero_regs),
6717 zero_call_used_regs_opts[i].name) == 0)
6718 {
6719 zero_regs_type = zero_call_used_regs_opts[i].flag;
6720 break;
6721 }
6722 }
6723
6724 if (!zero_regs_type)
6725 zero_regs_type = flag_zero_call_used_regs;
6726
6727 /* No need to zero call-used-regs when no user request is present. */
6728 if (!(zero_regs_type & ENABLED))
6729 return 0;
6730
6731 edge_iterator ei;
6732 edge e;
6733
6734 /* This pass needs data flow information. */
6735 df_analyze ();
6736
6737 /* Iterate over the function's return instructions and insert any
6738 register zeroing required by the -fzero-call-used-regs command-line
6739 option or the "zero_call_used_regs" function attribute. */
6740 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6741 {
6742 rtx_insn *insn = BB_END (e->src);
6743 if (JUMP_P (insn) && ANY_RETURN_P (JUMP_LABEL (insn)))
6744 gen_call_used_regs_seq (insn, zero_regs_type);
6745 }
6746
6747 return 0;
6748 }
6749
6750 } // anon namespace
6751
6752 rtl_opt_pass *
6753 make_pass_zero_call_used_regs (gcc::context *ctxt)
6754 {
6755 return new pass_zero_call_used_regs (ctxt);
6756 }
6757
6758 /* If CONSTRAINT is a matching constraint, then return its number.
6759 Otherwise, return -1. */
6760
6761 static int
6762 matching_constraint_num (const char *constraint)
6763 {
6764 if (*constraint == '%')
6765 constraint++;
6766
6767 if (IN_RANGE (*constraint, '0', '9'))
6768 return strtoul (constraint, NULL, 10);
6769
6770 return -1;
6771 }
6772
6773 /* This mini-pass fixes fall-out from SSA in asm statements that have
6774 in-out constraints. Say you start with
6775
6776 orig = inout;
6777 asm ("": "+mr" (inout));
6778 use (orig);
6779
6780 which is transformed very early to use explicit output and match operands:
6781
6782 orig = inout;
6783 asm ("": "=mr" (inout) : "0" (inout));
6784 use (orig);
6785
6786 Or, after SSA and copyprop,
6787
6788 asm ("": "=mr" (inout_2) : "0" (inout_1));
6789 use (inout_1);
6790
6791 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6792 they represent two separate values, so they will get different pseudo
6793 registers during expansion. Then, since the two operands need to match
6794 per the constraints, but use different pseudo registers, reload can
6795 only register a reload for these operands. But reloads can only be
6796 satisfied by hardregs, not by memory, so we need a register for this
6797 reload, just because we are presented with non-matching operands.
6798 So, even though we allow memory for this operand, no memory can be
6799 used for it, just because the two operands don't match. This can
6800 cause reload failures on register-starved targets.
6801
6802 So it's a symptom of reload not being able to use memory for reloads
6803 or, alternatively it's also a symptom of both operands not coming into
6804 reload as matching (in which case the pseudo could go to memory just
6805 fine, as the alternative allows it, and no reload would be necessary).
6806 We fix the latter problem here, by transforming
6807
6808 asm ("": "=mr" (inout_2) : "0" (inout_1));
6809
6810 back to
6811
6812 inout_2 = inout_1;
6813 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6814
6815 static void
6816 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6817 {
6818 int i;
6819 bool changed = false;
6820 rtx op = SET_SRC (p_sets[0]);
6821 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6822 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6823 bool *output_matched = XALLOCAVEC (bool, noutputs);
6824
6825 memset (output_matched, 0, noutputs * sizeof (bool));
6826 for (i = 0; i < ninputs; i++)
6827 {
6828 rtx input, output;
6829 rtx_insn *insns;
6830 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6831 int match, j;
6832
6833 match = matching_constraint_num (constraint);
6834 if (match < 0)
6835 continue;
6836
6837 gcc_assert (match < noutputs);
6838 output = SET_DEST (p_sets[match]);
6839 input = RTVEC_ELT (inputs, i);
6840 /* Only do the transformation for pseudos. */
6841 if (! REG_P (output)
6842 || rtx_equal_p (output, input)
6843 || !(REG_P (input) || SUBREG_P (input)
6844 || MEM_P (input) || CONSTANT_P (input))
6845 || !general_operand (input, GET_MODE (output)))
6846 continue;
6847
6848 /* We can't do anything if the output is also used as input,
6849 as we're going to overwrite it. */
6850 for (j = 0; j < ninputs; j++)
6851 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6852 break;
6853 if (j != ninputs)
6854 continue;
6855
6856 /* Avoid changing the same input several times. For
6857 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6858 only change it once (to out1), rather than changing it
6859 first to out1 and afterwards to out2. */
6860 if (i > 0)
6861 {
6862 for (j = 0; j < noutputs; j++)
6863 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6864 break;
6865 if (j != noutputs)
6866 continue;
6867 }
6868 output_matched[match] = true;
6869
6870 start_sequence ();
6871 emit_move_insn (output, copy_rtx (input));
6872 insns = get_insns ();
6873 end_sequence ();
6874 emit_insn_before (insns, insn);
6875
6876 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6877 bool early_clobber_p = strchr (constraint, '&') != NULL;
6878
6879 /* Now replace all mentions of the input with output. We can't
6880 just replace the occurrence in inputs[i], as the register might
6881 also be used in some other input (or even in an address of an
6882 output), which would mean possibly increasing the number of
6883 inputs by one (namely 'output' in addition), which might pose
6884 a too complicated problem for reload to solve. E.g. this situation:
6885
6886 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6887
6888 Here 'input' is used in two occurrences as input (once for the
6889 input operand, once for the address in the second output operand).
6890 If we would replace only the occurrence of the input operand (to
6891 make the matching) we would be left with this:
6892
6893 output = input
6894 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6895
6896 Now we suddenly have two different input values (containing the same
6897 value, but different pseudos) where we formerly had only one.
6898 With more complicated asms this might lead to reload failures
6899 which wouldn't have happen without this pass. So, iterate over
6900 all operands and replace all occurrences of the register used.
6901
6902 However, if one or more of the 'input' uses have a non-matching
6903 constraint and the matched output operand is an early clobber
6904 operand, then do not replace the input operand, since by definition
6905 it conflicts with the output operand and cannot share the same
6906 register. See PR89313 for details. */
6907
6908 for (j = 0; j < noutputs; j++)
6909 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6910 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6911 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6912 input, output);
6913 for (j = 0; j < ninputs; j++)
6914 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6915 {
6916 if (!early_clobber_p
6917 || match == matching_constraint_num
6918 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6919 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6920 input, output);
6921 }
6922
6923 changed = true;
6924 }
6925
6926 if (changed)
6927 df_insn_rescan (insn);
6928 }
6929
6930 /* Add the decl D to the local_decls list of FUN. */
6931
6932 void
6933 add_local_decl (struct function *fun, tree d)
6934 {
6935 gcc_assert (VAR_P (d));
6936 vec_safe_push (fun->local_decls, d);
6937 }
6938
6939 namespace {
6940
6941 const pass_data pass_data_match_asm_constraints =
6942 {
6943 RTL_PASS, /* type */
6944 "asmcons", /* name */
6945 OPTGROUP_NONE, /* optinfo_flags */
6946 TV_NONE, /* tv_id */
6947 0, /* properties_required */
6948 0, /* properties_provided */
6949 0, /* properties_destroyed */
6950 0, /* todo_flags_start */
6951 0, /* todo_flags_finish */
6952 };
6953
6954 class pass_match_asm_constraints : public rtl_opt_pass
6955 {
6956 public:
6957 pass_match_asm_constraints (gcc::context *ctxt)
6958 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6959 {}
6960
6961 /* opt_pass methods: */
6962 unsigned int execute (function *) final override;
6963
6964 }; // class pass_match_asm_constraints
6965
6966 unsigned
6967 pass_match_asm_constraints::execute (function *fun)
6968 {
6969 basic_block bb;
6970 rtx_insn *insn;
6971 rtx pat, *p_sets;
6972 int noutputs;
6973
6974 if (!crtl->has_asm_statement)
6975 return 0;
6976
6977 df_set_flags (DF_DEFER_INSN_RESCAN);
6978 FOR_EACH_BB_FN (bb, fun)
6979 {
6980 FOR_BB_INSNS (bb, insn)
6981 {
6982 if (!INSN_P (insn))
6983 continue;
6984
6985 pat = PATTERN (insn);
6986 if (GET_CODE (pat) == PARALLEL)
6987 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6988 else if (GET_CODE (pat) == SET)
6989 p_sets = &PATTERN (insn), noutputs = 1;
6990 else
6991 continue;
6992
6993 if (GET_CODE (*p_sets) == SET
6994 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6995 match_asm_constraints_1 (insn, p_sets, noutputs);
6996 }
6997 }
6998
6999 return TODO_df_finish;
7000 }
7001
7002 } // anon namespace
7003
7004 rtl_opt_pass *
7005 make_pass_match_asm_constraints (gcc::context *ctxt)
7006 {
7007 return new pass_match_asm_constraints (ctxt);
7008 }
7009
7010
7011 #include "gt-function.h"