]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gcse.c
9e4cccb136eacfc26bbb2d1d8488bac3e718dd79
[thirdparty/gcc.git] / gcc / gcse.c
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
34
35 */
36
37 /* References searched while implementing this.
38
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
42
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
46
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
50
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
54
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
59
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
64
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
69
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
73
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
79
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
84
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
88
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
92
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
96
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
100
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
104
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
108
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
112
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
116
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
120
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
124
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
128
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
132
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
137
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
141
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
144 */
145
146 #include "config.h"
147 #include "system.h"
148 #include "toplev.h"
149
150 #include "rtl.h"
151 #include "tm_p.h"
152 #include "regs.h"
153 #include "hard-reg-set.h"
154 #include "flags.h"
155 #include "real.h"
156 #include "insn-config.h"
157 #include "recog.h"
158 #include "basic-block.h"
159 #include "output.h"
160 #include "function.h"
161 #include "expr.h"
162 #include "except.h"
163 #include "ggc.h"
164 #include "params.h"
165 #include "cselib.h"
166
167 #include "obstack.h"
168
169 /* Propagate flow information through back edges and thus enable PRE's
170 moving loop invariant calculations out of loops.
171
172 Originally this tended to create worse overall code, but several
173 improvements during the development of PRE seem to have made following
174 back edges generally a win.
175
176 Note much of the loop invariant code motion done here would normally
177 be done by loop.c, which has more heuristics for when to move invariants
178 out of loops. At some point we might need to move some of those
179 heuristics into gcse.c. */
180
181 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
182 are a superset of those done by GCSE.
183
184 We perform the following steps:
185
186 1) Compute basic block information.
187
188 2) Compute table of places where registers are set.
189
190 3) Perform copy/constant propagation.
191
192 4) Perform global cse.
193
194 5) Perform another pass of copy/constant propagation.
195
196 Two passes of copy/constant propagation are done because the first one
197 enables more GCSE and the second one helps to clean up the copies that
198 GCSE creates. This is needed more for PRE than for Classic because Classic
199 GCSE will try to use an existing register containing the common
200 subexpression rather than create a new one. This is harder to do for PRE
201 because of the code motion (which Classic GCSE doesn't do).
202
203 Expressions we are interested in GCSE-ing are of the form
204 (set (pseudo-reg) (expression)).
205 Function want_to_gcse_p says what these are.
206
207 PRE handles moving invariant expressions out of loops (by treating them as
208 partially redundant).
209
210 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
211 assignment) based GVN (global value numbering). L. T. Simpson's paper
212 (Rice University) on value numbering is a useful reference for this.
213
214 **********************
215
216 We used to support multiple passes but there are diminishing returns in
217 doing so. The first pass usually makes 90% of the changes that are doable.
218 A second pass can make a few more changes made possible by the first pass.
219 Experiments show any further passes don't make enough changes to justify
220 the expense.
221
222 A study of spec92 using an unlimited number of passes:
223 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
224 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
225 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
226
227 It was found doing copy propagation between each pass enables further
228 substitutions.
229
230 PRE is quite expensive in complicated functions because the DFA can take
231 awhile to converge. Hence we only perform one pass. The parameter max-gcse-passes can
232 be modified if one wants to experiment.
233
234 **********************
235
236 The steps for PRE are:
237
238 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
239
240 2) Perform the data flow analysis for PRE.
241
242 3) Delete the redundant instructions
243
244 4) Insert the required copies [if any] that make the partially
245 redundant instructions fully redundant.
246
247 5) For other reaching expressions, insert an instruction to copy the value
248 to a newly created pseudo that will reach the redundant instruction.
249
250 The deletion is done first so that when we do insertions we
251 know which pseudo reg to use.
252
253 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
254 argue it is not. The number of iterations for the algorithm to converge
255 is typically 2-4 so I don't view it as that expensive (relatively speaking).
256
257 PRE GCSE depends heavily on the second CSE pass to clean up the copies
258 we create. To make an expression reach the place where it's redundant,
259 the result of the expression is copied to a new register, and the redundant
260 expression is deleted by replacing it with this new register. Classic GCSE
261 doesn't have this problem as much as it computes the reaching defs of
262 each register in each block and thus can try to use an existing register.
263
264 **********************
265
266 A fair bit of simplicity is created by creating small functions for simple
267 tasks, even when the function is only called in one place. This may
268 measurably slow things down [or may not] by creating more function call
269 overhead than is necessary. The source is laid out so that it's trivial
270 to make the affected functions inline so that one can measure what speed
271 up, if any, can be achieved, and maybe later when things settle things can
272 be rearranged.
273
274 Help stamp out big monolithic functions! */
275 \f
276 /* GCSE global vars. */
277
278 /* -dG dump file. */
279 static FILE *gcse_file;
280
281 /* Note whether or not we should run jump optimization after gcse. We
282 want to do this for two cases.
283
284 * If we changed any jumps via cprop.
285
286 * If we added any labels via edge splitting. */
287
288 static int run_jump_opt_after_gcse;
289
290 /* Bitmaps are normally not included in debugging dumps.
291 However it's useful to be able to print them from GDB.
292 We could create special functions for this, but it's simpler to
293 just allow passing stderr to the dump_foo fns. Since stderr can
294 be a macro, we store a copy here. */
295 static FILE *debug_stderr;
296
297 /* An obstack for our working variables. */
298 static struct obstack gcse_obstack;
299
300 /* Nonzero for each mode that supports (set (reg) (reg)).
301 This is trivially true for integer and floating point values.
302 It may or may not be true for condition codes. */
303 static char can_copy_p[(int) NUM_MACHINE_MODES];
304
305 /* Nonzero if can_copy_p has been initialized. */
306 static int can_copy_init_p;
307
308 struct reg_use {rtx reg_rtx; };
309
310 /* Hash table of expressions. */
311
312 struct expr
313 {
314 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
315 rtx expr;
316 /* Index in the available expression bitmaps. */
317 int bitmap_index;
318 /* Next entry with the same hash. */
319 struct expr *next_same_hash;
320 /* List of anticipatable occurrences in basic blocks in the function.
321 An "anticipatable occurrence" is one that is the first occurrence in the
322 basic block, the operands are not modified in the basic block prior
323 to the occurrence and the output is not used between the start of
324 the block and the occurrence. */
325 struct occr *antic_occr;
326 /* List of available occurrence in basic blocks in the function.
327 An "available occurrence" is one that is the last occurrence in the
328 basic block and the operands are not modified by following statements in
329 the basic block [including this insn]. */
330 struct occr *avail_occr;
331 /* Non-null if the computation is PRE redundant.
332 The value is the newly created pseudo-reg to record a copy of the
333 expression in all the places that reach the redundant copy. */
334 rtx reaching_reg;
335 };
336
337 /* Occurrence of an expression.
338 There is one per basic block. If a pattern appears more than once the
339 last appearance is used [or first for anticipatable expressions]. */
340
341 struct occr
342 {
343 /* Next occurrence of this expression. */
344 struct occr *next;
345 /* The insn that computes the expression. */
346 rtx insn;
347 /* Nonzero if this [anticipatable] occurrence has been deleted. */
348 char deleted_p;
349 /* Nonzero if this [available] occurrence has been copied to
350 reaching_reg. */
351 /* ??? This is mutually exclusive with deleted_p, so they could share
352 the same byte. */
353 char copied_p;
354 };
355
356 /* Expression and copy propagation hash tables.
357 Each hash table is an array of buckets.
358 ??? It is known that if it were an array of entries, structure elements
359 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
360 not clear whether in the final analysis a sufficient amount of memory would
361 be saved as the size of the available expression bitmaps would be larger
362 [one could build a mapping table without holes afterwards though].
363 Someday I'll perform the computation and figure it out. */
364
365 struct hash_table
366 {
367 /* The table itself.
368 This is an array of `expr_hash_table_size' elements. */
369 struct expr **table;
370
371 /* Size of the hash table, in elements. */
372 unsigned int size;
373
374 /* Number of hash table elements. */
375 unsigned int n_elems;
376
377 /* Whether the table is expression of copy propagation one. */
378 int set_p;
379 };
380
381 /* Expression hash table. */
382 static struct hash_table expr_hash_table;
383
384 /* Copy propagation hash table. */
385 static struct hash_table set_hash_table;
386
387 /* Mapping of uids to cuids.
388 Only real insns get cuids. */
389 static int *uid_cuid;
390
391 /* Highest UID in UID_CUID. */
392 static int max_uid;
393
394 /* Get the cuid of an insn. */
395 #ifdef ENABLE_CHECKING
396 #define INSN_CUID(INSN) (INSN_UID (INSN) > max_uid ? (abort (), 0) : uid_cuid[INSN_UID (INSN)])
397 #else
398 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
399 #endif
400
401 /* Number of cuids. */
402 static int max_cuid;
403
404 /* Mapping of cuids to insns. */
405 static rtx *cuid_insn;
406
407 /* Get insn from cuid. */
408 #define CUID_INSN(CUID) (cuid_insn[CUID])
409
410 /* Maximum register number in function prior to doing gcse + 1.
411 Registers created during this pass have regno >= max_gcse_regno.
412 This is named with "gcse" to not collide with global of same name. */
413 static unsigned int max_gcse_regno;
414
415 /* Table of registers that are modified.
416
417 For each register, each element is a list of places where the pseudo-reg
418 is set.
419
420 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
421 requires knowledge of which blocks kill which regs [and thus could use
422 a bitmap instead of the lists `reg_set_table' uses].
423
424 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
425 num-regs) [however perhaps it may be useful to keep the data as is]. One
426 advantage of recording things this way is that `reg_set_table' is fairly
427 sparse with respect to pseudo regs but for hard regs could be fairly dense
428 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
429 up functions like compute_transp since in the case of pseudo-regs we only
430 need to iterate over the number of times a pseudo-reg is set, not over the
431 number of basic blocks [clearly there is a bit of a slow down in the cases
432 where a pseudo is set more than once in a block, however it is believed
433 that the net effect is to speed things up]. This isn't done for hard-regs
434 because recording call-clobbered hard-regs in `reg_set_table' at each
435 function call can consume a fair bit of memory, and iterating over
436 hard-regs stored this way in compute_transp will be more expensive. */
437
438 typedef struct reg_set
439 {
440 /* The next setting of this register. */
441 struct reg_set *next;
442 /* The insn where it was set. */
443 rtx insn;
444 } reg_set;
445
446 static reg_set **reg_set_table;
447
448 /* Size of `reg_set_table'.
449 The table starts out at max_gcse_regno + slop, and is enlarged as
450 necessary. */
451 static int reg_set_table_size;
452
453 /* Amount to grow `reg_set_table' by when it's full. */
454 #define REG_SET_TABLE_SLOP 100
455
456 /* This is a list of expressions which are MEMs and will be used by load
457 or store motion.
458 Load motion tracks MEMs which aren't killed by
459 anything except itself. (ie, loads and stores to a single location).
460 We can then allow movement of these MEM refs with a little special
461 allowance. (all stores copy the same value to the reaching reg used
462 for the loads). This means all values used to store into memory must have
463 no side effects so we can re-issue the setter value.
464 Store Motion uses this structure as an expression table to track stores
465 which look interesting, and might be moveable towards the exit block. */
466
467 struct ls_expr
468 {
469 struct expr * expr; /* Gcse expression reference for LM. */
470 rtx pattern; /* Pattern of this mem. */
471 rtx loads; /* INSN list of loads seen. */
472 rtx stores; /* INSN list of stores seen. */
473 struct ls_expr * next; /* Next in the list. */
474 int invalid; /* Invalid for some reason. */
475 int index; /* If it maps to a bitmap index. */
476 int hash_index; /* Index when in a hash table. */
477 rtx reaching_reg; /* Register to use when re-writing. */
478 };
479
480 /* Head of the list of load/store memory refs. */
481 static struct ls_expr * pre_ldst_mems = NULL;
482
483 /* Bitmap containing one bit for each register in the program.
484 Used when performing GCSE to track which registers have been set since
485 the start of the basic block. */
486 static regset reg_set_bitmap;
487
488 /* For each block, a bitmap of registers set in the block.
489 This is used by expr_killed_p and compute_transp.
490 It is computed during hash table computation and not by compute_sets
491 as it includes registers added since the last pass (or between cprop and
492 gcse) and it's currently not easy to realloc sbitmap vectors. */
493 static sbitmap *reg_set_in_block;
494
495 /* Array, indexed by basic block number for a list of insns which modify
496 memory within that block. */
497 static rtx * modify_mem_list;
498 bitmap modify_mem_list_set;
499
500 /* This array parallels modify_mem_list, but is kept canonicalized. */
501 static rtx * canon_modify_mem_list;
502 bitmap canon_modify_mem_list_set;
503 /* Various variables for statistics gathering. */
504
505 /* Memory used in a pass.
506 This isn't intended to be absolutely precise. Its intent is only
507 to keep an eye on memory usage. */
508 static int bytes_used;
509
510 /* GCSE substitutions made. */
511 static int gcse_subst_count;
512 /* Number of copy instructions created. */
513 static int gcse_create_count;
514 /* Number of constants propagated. */
515 static int const_prop_count;
516 /* Number of copys propagated. */
517 static int copy_prop_count;
518 \f
519 /* These variables are used by classic GCSE.
520 Normally they'd be defined a bit later, but `rd_gen' needs to
521 be declared sooner. */
522
523 /* Each block has a bitmap of each type.
524 The length of each blocks bitmap is:
525
526 max_cuid - for reaching definitions
527 n_exprs - for available expressions
528
529 Thus we view the bitmaps as 2 dimensional arrays. i.e.
530 rd_kill[block_num][cuid_num]
531 ae_kill[block_num][expr_num] */
532
533 /* For reaching defs */
534 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
535
536 /* for available exprs */
537 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
538
539 /* Objects of this type are passed around by the null-pointer check
540 removal routines. */
541 struct null_pointer_info
542 {
543 /* The basic block being processed. */
544 basic_block current_block;
545 /* The first register to be handled in this pass. */
546 unsigned int min_reg;
547 /* One greater than the last register to be handled in this pass. */
548 unsigned int max_reg;
549 sbitmap *nonnull_local;
550 sbitmap *nonnull_killed;
551 };
552 \f
553 static void compute_can_copy PARAMS ((void));
554 static char *gmalloc PARAMS ((unsigned int));
555 static char *grealloc PARAMS ((char *, unsigned int));
556 static char *gcse_alloc PARAMS ((unsigned long));
557 static void alloc_gcse_mem PARAMS ((rtx));
558 static void free_gcse_mem PARAMS ((void));
559 static void alloc_reg_set_mem PARAMS ((int));
560 static void free_reg_set_mem PARAMS ((void));
561 static int get_bitmap_width PARAMS ((int, int, int));
562 static void record_one_set PARAMS ((int, rtx));
563 static void record_set_info PARAMS ((rtx, rtx, void *));
564 static void compute_sets PARAMS ((rtx));
565 static void hash_scan_insn PARAMS ((rtx, struct hash_table *, int));
566 static void hash_scan_set PARAMS ((rtx, rtx, struct hash_table *));
567 static void hash_scan_clobber PARAMS ((rtx, rtx, struct hash_table *));
568 static void hash_scan_call PARAMS ((rtx, rtx, struct hash_table *));
569 static int want_to_gcse_p PARAMS ((rtx));
570 static int oprs_unchanged_p PARAMS ((rtx, rtx, int));
571 static int oprs_anticipatable_p PARAMS ((rtx, rtx));
572 static int oprs_available_p PARAMS ((rtx, rtx));
573 static void insert_expr_in_table PARAMS ((rtx, enum machine_mode, rtx,
574 int, int, struct hash_table *));
575 static void insert_set_in_table PARAMS ((rtx, rtx, struct hash_table *));
576 static unsigned int hash_expr PARAMS ((rtx, enum machine_mode, int *, int));
577 static unsigned int hash_expr_1 PARAMS ((rtx, enum machine_mode, int *));
578 static unsigned int hash_string_1 PARAMS ((const char *));
579 static unsigned int hash_set PARAMS ((int, int));
580 static int expr_equiv_p PARAMS ((rtx, rtx));
581 static void record_last_reg_set_info PARAMS ((rtx, int));
582 static void record_last_mem_set_info PARAMS ((rtx));
583 static void record_last_set_info PARAMS ((rtx, rtx, void *));
584 static void compute_hash_table PARAMS ((struct hash_table *));
585 static void alloc_hash_table PARAMS ((int, struct hash_table *, int));
586 static void free_hash_table PARAMS ((struct hash_table *));
587 static void compute_hash_table_work PARAMS ((struct hash_table *));
588 static void dump_hash_table PARAMS ((FILE *, const char *,
589 struct hash_table *));
590 static struct expr *lookup_expr PARAMS ((rtx, struct hash_table *));
591 static struct expr *lookup_set PARAMS ((unsigned int, rtx, struct hash_table *));
592 static struct expr *next_set PARAMS ((unsigned int, struct expr *));
593 static void reset_opr_set_tables PARAMS ((void));
594 static int oprs_not_set_p PARAMS ((rtx, rtx));
595 static void mark_call PARAMS ((rtx));
596 static void mark_set PARAMS ((rtx, rtx));
597 static void mark_clobber PARAMS ((rtx, rtx));
598 static void mark_oprs_set PARAMS ((rtx));
599 static void alloc_cprop_mem PARAMS ((int, int));
600 static void free_cprop_mem PARAMS ((void));
601 static void compute_transp PARAMS ((rtx, int, sbitmap *, int));
602 static void compute_transpout PARAMS ((void));
603 static void compute_local_properties PARAMS ((sbitmap *, sbitmap *, sbitmap *,
604 struct hash_table *));
605 static void compute_cprop_data PARAMS ((void));
606 static void find_used_regs PARAMS ((rtx *, void *));
607 static int try_replace_reg PARAMS ((rtx, rtx, rtx));
608 static struct expr *find_avail_set PARAMS ((int, rtx));
609 static int cprop_jump PARAMS ((basic_block, rtx, rtx, rtx, rtx));
610 static void mems_conflict_for_gcse_p PARAMS ((rtx, rtx, void *));
611 static int load_killed_in_block_p PARAMS ((basic_block, int, rtx, int));
612 static void canon_list_insert PARAMS ((rtx, rtx, void *));
613 static int cprop_insn PARAMS ((rtx, int));
614 static int cprop PARAMS ((int));
615 static int one_cprop_pass PARAMS ((int, int));
616 static bool constprop_register PARAMS ((rtx, rtx, rtx, int));
617 static struct expr *find_bypass_set PARAMS ((int, int));
618 static int bypass_block PARAMS ((basic_block, rtx, rtx));
619 static int bypass_conditional_jumps PARAMS ((void));
620 static void alloc_pre_mem PARAMS ((int, int));
621 static void free_pre_mem PARAMS ((void));
622 static void compute_pre_data PARAMS ((void));
623 static int pre_expr_reaches_here_p PARAMS ((basic_block, struct expr *,
624 basic_block));
625 static void insert_insn_end_bb PARAMS ((struct expr *, basic_block, int));
626 static void pre_insert_copy_insn PARAMS ((struct expr *, rtx));
627 static void pre_insert_copies PARAMS ((void));
628 static int pre_delete PARAMS ((void));
629 static int pre_gcse PARAMS ((void));
630 static int one_pre_gcse_pass PARAMS ((int));
631 static void add_label_notes PARAMS ((rtx, rtx));
632 static void alloc_code_hoist_mem PARAMS ((int, int));
633 static void free_code_hoist_mem PARAMS ((void));
634 static void compute_code_hoist_vbeinout PARAMS ((void));
635 static void compute_code_hoist_data PARAMS ((void));
636 static int hoist_expr_reaches_here_p PARAMS ((basic_block, int, basic_block,
637 char *));
638 static void hoist_code PARAMS ((void));
639 static int one_code_hoisting_pass PARAMS ((void));
640 static void alloc_rd_mem PARAMS ((int, int));
641 static void free_rd_mem PARAMS ((void));
642 static void handle_rd_kill_set PARAMS ((rtx, int, basic_block));
643 static void compute_kill_rd PARAMS ((void));
644 static void compute_rd PARAMS ((void));
645 static void alloc_avail_expr_mem PARAMS ((int, int));
646 static void free_avail_expr_mem PARAMS ((void));
647 static void compute_ae_gen PARAMS ((struct hash_table *));
648 static int expr_killed_p PARAMS ((rtx, basic_block));
649 static void compute_ae_kill PARAMS ((sbitmap *, sbitmap *, struct hash_table *));
650 static int expr_reaches_here_p PARAMS ((struct occr *, struct expr *,
651 basic_block, int));
652 static rtx computing_insn PARAMS ((struct expr *, rtx));
653 static int def_reaches_here_p PARAMS ((rtx, rtx));
654 static int can_disregard_other_sets PARAMS ((struct reg_set **, rtx, int));
655 static int handle_avail_expr PARAMS ((rtx, struct expr *));
656 static int classic_gcse PARAMS ((void));
657 static int one_classic_gcse_pass PARAMS ((int));
658 static void invalidate_nonnull_info PARAMS ((rtx, rtx, void *));
659 static int delete_null_pointer_checks_1 PARAMS ((unsigned int *,
660 sbitmap *, sbitmap *,
661 struct null_pointer_info *));
662 static rtx process_insert_insn PARAMS ((struct expr *));
663 static int pre_edge_insert PARAMS ((struct edge_list *, struct expr **));
664 static int expr_reaches_here_p_work PARAMS ((struct occr *, struct expr *,
665 basic_block, int, char *));
666 static int pre_expr_reaches_here_p_work PARAMS ((basic_block, struct expr *,
667 basic_block, char *));
668 static struct ls_expr * ldst_entry PARAMS ((rtx));
669 static void free_ldst_entry PARAMS ((struct ls_expr *));
670 static void free_ldst_mems PARAMS ((void));
671 static void print_ldst_list PARAMS ((FILE *));
672 static struct ls_expr * find_rtx_in_ldst PARAMS ((rtx));
673 static int enumerate_ldsts PARAMS ((void));
674 static inline struct ls_expr * first_ls_expr PARAMS ((void));
675 static inline struct ls_expr * next_ls_expr PARAMS ((struct ls_expr *));
676 static int simple_mem PARAMS ((rtx));
677 static void invalidate_any_buried_refs PARAMS ((rtx));
678 static void compute_ld_motion_mems PARAMS ((void));
679 static void trim_ld_motion_mems PARAMS ((void));
680 static void update_ld_motion_stores PARAMS ((struct expr *));
681 static void reg_set_info PARAMS ((rtx, rtx, void *));
682 static int store_ops_ok PARAMS ((rtx, basic_block));
683 static void find_moveable_store PARAMS ((rtx));
684 static int compute_store_table PARAMS ((void));
685 static int load_kills_store PARAMS ((rtx, rtx));
686 static int find_loads PARAMS ((rtx, rtx));
687 static int store_killed_in_insn PARAMS ((rtx, rtx));
688 static int store_killed_after PARAMS ((rtx, rtx, basic_block));
689 static int store_killed_before PARAMS ((rtx, rtx, basic_block));
690 static void build_store_vectors PARAMS ((void));
691 static void insert_insn_start_bb PARAMS ((rtx, basic_block));
692 static int insert_store PARAMS ((struct ls_expr *, edge));
693 static void replace_store_insn PARAMS ((rtx, rtx, basic_block));
694 static void delete_store PARAMS ((struct ls_expr *,
695 basic_block));
696 static void free_store_memory PARAMS ((void));
697 static void store_motion PARAMS ((void));
698 static void free_insn_expr_list_list PARAMS ((rtx *));
699 static void clear_modify_mem_tables PARAMS ((void));
700 static void free_modify_mem_tables PARAMS ((void));
701 static rtx gcse_emit_move_after PARAMS ((rtx, rtx, rtx));
702 static bool do_local_cprop PARAMS ((rtx, rtx, int, rtx*));
703 static bool adjust_libcall_notes PARAMS ((rtx, rtx, rtx, rtx*));
704 static void local_cprop_pass PARAMS ((int));
705 \f
706 /* Entry point for global common subexpression elimination.
707 F is the first instruction in the function. */
708
709 int
710 gcse_main (f, file)
711 rtx f;
712 FILE *file;
713 {
714 int changed, pass;
715 /* Bytes used at start of pass. */
716 int initial_bytes_used;
717 /* Maximum number of bytes used by a pass. */
718 int max_pass_bytes;
719 /* Point to release obstack data from for each pass. */
720 char *gcse_obstack_bottom;
721
722 /* Insertion of instructions on edges can create new basic blocks; we
723 need the original basic block count so that we can properly deallocate
724 arrays sized on the number of basic blocks originally in the cfg. */
725 int orig_bb_count;
726 /* We do not construct an accurate cfg in functions which call
727 setjmp, so just punt to be safe. */
728 if (current_function_calls_setjmp)
729 return 0;
730
731 /* Assume that we do not need to run jump optimizations after gcse. */
732 run_jump_opt_after_gcse = 0;
733
734 /* For calling dump_foo fns from gdb. */
735 debug_stderr = stderr;
736 gcse_file = file;
737
738 /* Identify the basic block information for this function, including
739 successors and predecessors. */
740 max_gcse_regno = max_reg_num ();
741
742 if (file)
743 dump_flow_info (file);
744
745 orig_bb_count = n_basic_blocks;
746 /* Return if there's nothing to do. */
747 if (n_basic_blocks <= 1)
748 return 0;
749
750 /* Trying to perform global optimizations on flow graphs which have
751 a high connectivity will take a long time and is unlikely to be
752 particularly useful.
753
754 In normal circumstances a cfg should have about twice as many edges
755 as blocks. But we do not want to punish small functions which have
756 a couple switch statements. So we require a relatively large number
757 of basic blocks and the ratio of edges to blocks to be high. */
758 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
759 {
760 if (warn_disabled_optimization)
761 warning ("GCSE disabled: %d > 1000 basic blocks and %d >= 20 edges/basic block",
762 n_basic_blocks, n_edges / n_basic_blocks);
763 return 0;
764 }
765
766 /* If allocating memory for the cprop bitmap would take up too much
767 storage it's better just to disable the optimization. */
768 if ((n_basic_blocks
769 * SBITMAP_SET_SIZE (max_gcse_regno)
770 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
771 {
772 if (warn_disabled_optimization)
773 warning ("GCSE disabled: %d basic blocks and %d registers",
774 n_basic_blocks, max_gcse_regno);
775
776 return 0;
777 }
778
779 /* See what modes support reg/reg copy operations. */
780 if (! can_copy_init_p)
781 {
782 compute_can_copy ();
783 can_copy_init_p = 1;
784 }
785
786 gcc_obstack_init (&gcse_obstack);
787 bytes_used = 0;
788
789 /* We need alias. */
790 init_alias_analysis ();
791 /* Record where pseudo-registers are set. This data is kept accurate
792 during each pass. ??? We could also record hard-reg information here
793 [since it's unchanging], however it is currently done during hash table
794 computation.
795
796 It may be tempting to compute MEM set information here too, but MEM sets
797 will be subject to code motion one day and thus we need to compute
798 information about memory sets when we build the hash tables. */
799
800 alloc_reg_set_mem (max_gcse_regno);
801 compute_sets (f);
802
803 pass = 0;
804 initial_bytes_used = bytes_used;
805 max_pass_bytes = 0;
806 gcse_obstack_bottom = gcse_alloc (1);
807 changed = 1;
808 while (changed && pass < MAX_GCSE_PASSES)
809 {
810 changed = 0;
811 if (file)
812 fprintf (file, "GCSE pass %d\n\n", pass + 1);
813
814 /* Initialize bytes_used to the space for the pred/succ lists,
815 and the reg_set_table data. */
816 bytes_used = initial_bytes_used;
817
818 /* Each pass may create new registers, so recalculate each time. */
819 max_gcse_regno = max_reg_num ();
820
821 alloc_gcse_mem (f);
822
823 /* Don't allow constant propagation to modify jumps
824 during this pass. */
825 changed = one_cprop_pass (pass + 1, 0);
826
827 if (optimize_size)
828 changed |= one_classic_gcse_pass (pass + 1);
829 else
830 {
831 changed |= one_pre_gcse_pass (pass + 1);
832 /* We may have just created new basic blocks. Release and
833 recompute various things which are sized on the number of
834 basic blocks. */
835 if (changed)
836 {
837 free_modify_mem_tables ();
838 modify_mem_list
839 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
840 canon_modify_mem_list
841 = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
842 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
843 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
844 orig_bb_count = n_basic_blocks;
845 }
846 free_reg_set_mem ();
847 alloc_reg_set_mem (max_reg_num ());
848 compute_sets (f);
849 run_jump_opt_after_gcse = 1;
850 }
851
852 if (max_pass_bytes < bytes_used)
853 max_pass_bytes = bytes_used;
854
855 /* Free up memory, then reallocate for code hoisting. We can
856 not re-use the existing allocated memory because the tables
857 will not have info for the insns or registers created by
858 partial redundancy elimination. */
859 free_gcse_mem ();
860
861 /* It does not make sense to run code hoisting unless we optimizing
862 for code size -- it rarely makes programs faster, and can make
863 them bigger if we did partial redundancy elimination (when optimizing
864 for space, we use a classic gcse algorithm instead of partial
865 redundancy algorithms). */
866 if (optimize_size)
867 {
868 max_gcse_regno = max_reg_num ();
869 alloc_gcse_mem (f);
870 changed |= one_code_hoisting_pass ();
871 free_gcse_mem ();
872
873 if (max_pass_bytes < bytes_used)
874 max_pass_bytes = bytes_used;
875 }
876
877 if (file)
878 {
879 fprintf (file, "\n");
880 fflush (file);
881 }
882
883 obstack_free (&gcse_obstack, gcse_obstack_bottom);
884 pass++;
885 }
886
887 /* Do one last pass of copy propagation, including cprop into
888 conditional jumps. */
889
890 max_gcse_regno = max_reg_num ();
891 alloc_gcse_mem (f);
892 /* This time, go ahead and allow cprop to alter jumps. */
893 one_cprop_pass (pass + 1, 1);
894 free_gcse_mem ();
895
896 if (file)
897 {
898 fprintf (file, "GCSE of %s: %d basic blocks, ",
899 current_function_name, n_basic_blocks);
900 fprintf (file, "%d pass%s, %d bytes\n\n",
901 pass, pass > 1 ? "es" : "", max_pass_bytes);
902 }
903
904 obstack_free (&gcse_obstack, NULL);
905 free_reg_set_mem ();
906 /* We are finished with alias. */
907 end_alias_analysis ();
908 allocate_reg_info (max_reg_num (), FALSE, FALSE);
909
910 /* Store motion disabled until it is fixed. */
911 if (0 && !optimize_size && flag_gcse_sm)
912 store_motion ();
913 /* Record where pseudo-registers are set. */
914 return run_jump_opt_after_gcse;
915 }
916 \f
917 /* Misc. utilities. */
918
919 /* Compute which modes support reg/reg copy operations. */
920
921 static void
922 compute_can_copy ()
923 {
924 int i;
925 #ifndef AVOID_CCMODE_COPIES
926 rtx reg, insn;
927 #endif
928 memset (can_copy_p, 0, NUM_MACHINE_MODES);
929
930 start_sequence ();
931 for (i = 0; i < NUM_MACHINE_MODES; i++)
932 if (GET_MODE_CLASS (i) == MODE_CC)
933 {
934 #ifdef AVOID_CCMODE_COPIES
935 can_copy_p[i] = 0;
936 #else
937 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
938 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
939 if (recog (PATTERN (insn), insn, NULL) >= 0)
940 can_copy_p[i] = 1;
941 #endif
942 }
943 else
944 can_copy_p[i] = 1;
945
946 end_sequence ();
947 }
948 \f
949 /* Cover function to xmalloc to record bytes allocated. */
950
951 static char *
952 gmalloc (size)
953 unsigned int size;
954 {
955 bytes_used += size;
956 return xmalloc (size);
957 }
958
959 /* Cover function to xrealloc.
960 We don't record the additional size since we don't know it.
961 It won't affect memory usage stats much anyway. */
962
963 static char *
964 grealloc (ptr, size)
965 char *ptr;
966 unsigned int size;
967 {
968 return xrealloc (ptr, size);
969 }
970
971 /* Cover function to obstack_alloc. */
972
973 static char *
974 gcse_alloc (size)
975 unsigned long size;
976 {
977 bytes_used += size;
978 return (char *) obstack_alloc (&gcse_obstack, size);
979 }
980
981 /* Allocate memory for the cuid mapping array,
982 and reg/memory set tracking tables.
983
984 This is called at the start of each pass. */
985
986 static void
987 alloc_gcse_mem (f)
988 rtx f;
989 {
990 int i, n;
991 rtx insn;
992
993 /* Find the largest UID and create a mapping from UIDs to CUIDs.
994 CUIDs are like UIDs except they increase monotonically, have no gaps,
995 and only apply to real insns. */
996
997 max_uid = get_max_uid ();
998 n = (max_uid + 1) * sizeof (int);
999 uid_cuid = (int *) gmalloc (n);
1000 memset ((char *) uid_cuid, 0, n);
1001 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1002 {
1003 if (INSN_P (insn))
1004 uid_cuid[INSN_UID (insn)] = i++;
1005 else
1006 uid_cuid[INSN_UID (insn)] = i;
1007 }
1008
1009 /* Create a table mapping cuids to insns. */
1010
1011 max_cuid = i;
1012 n = (max_cuid + 1) * sizeof (rtx);
1013 cuid_insn = (rtx *) gmalloc (n);
1014 memset ((char *) cuid_insn, 0, n);
1015 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
1016 if (INSN_P (insn))
1017 CUID_INSN (i++) = insn;
1018
1019 /* Allocate vars to track sets of regs. */
1020 reg_set_bitmap = BITMAP_XMALLOC ();
1021
1022 /* Allocate vars to track sets of regs, memory per block. */
1023 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
1024 max_gcse_regno);
1025 /* Allocate array to keep a list of insns which modify memory in each
1026 basic block. */
1027 modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1028 canon_modify_mem_list = (rtx *) gmalloc (last_basic_block * sizeof (rtx));
1029 memset ((char *) modify_mem_list, 0, last_basic_block * sizeof (rtx));
1030 memset ((char *) canon_modify_mem_list, 0, last_basic_block * sizeof (rtx));
1031 modify_mem_list_set = BITMAP_XMALLOC ();
1032 canon_modify_mem_list_set = BITMAP_XMALLOC ();
1033 }
1034
1035 /* Free memory allocated by alloc_gcse_mem. */
1036
1037 static void
1038 free_gcse_mem ()
1039 {
1040 free (uid_cuid);
1041 free (cuid_insn);
1042
1043 BITMAP_XFREE (reg_set_bitmap);
1044
1045 sbitmap_vector_free (reg_set_in_block);
1046 free_modify_mem_tables ();
1047 BITMAP_XFREE (modify_mem_list_set);
1048 BITMAP_XFREE (canon_modify_mem_list_set);
1049 }
1050
1051 /* Many of the global optimization algorithms work by solving dataflow
1052 equations for various expressions. Initially, some local value is
1053 computed for each expression in each block. Then, the values across the
1054 various blocks are combined (by following flow graph edges) to arrive at
1055 global values. Conceptually, each set of equations is independent. We
1056 may therefore solve all the equations in parallel, solve them one at a
1057 time, or pick any intermediate approach.
1058
1059 When you're going to need N two-dimensional bitmaps, each X (say, the
1060 number of blocks) by Y (say, the number of expressions), call this
1061 function. It's not important what X and Y represent; only that Y
1062 correspond to the things that can be done in parallel. This function will
1063 return an appropriate chunking factor C; you should solve C sets of
1064 equations in parallel. By going through this function, we can easily
1065 trade space against time; by solving fewer equations in parallel we use
1066 less space. */
1067
1068 static int
1069 get_bitmap_width (n, x, y)
1070 int n;
1071 int x;
1072 int y;
1073 {
1074 /* It's not really worth figuring out *exactly* how much memory will
1075 be used by a particular choice. The important thing is to get
1076 something approximately right. */
1077 size_t max_bitmap_memory = 10 * 1024 * 1024;
1078
1079 /* The number of bytes we'd use for a single column of minimum
1080 width. */
1081 size_t column_size = n * x * sizeof (SBITMAP_ELT_TYPE);
1082
1083 /* Often, it's reasonable just to solve all the equations in
1084 parallel. */
1085 if (column_size * SBITMAP_SET_SIZE (y) <= max_bitmap_memory)
1086 return y;
1087
1088 /* Otherwise, pick the largest width we can, without going over the
1089 limit. */
1090 return SBITMAP_ELT_BITS * ((max_bitmap_memory + column_size - 1)
1091 / column_size);
1092 }
1093 \f
1094 /* Compute the local properties of each recorded expression.
1095
1096 Local properties are those that are defined by the block, irrespective of
1097 other blocks.
1098
1099 An expression is transparent in a block if its operands are not modified
1100 in the block.
1101
1102 An expression is computed (locally available) in a block if it is computed
1103 at least once and expression would contain the same value if the
1104 computation was moved to the end of the block.
1105
1106 An expression is locally anticipatable in a block if it is computed at
1107 least once and expression would contain the same value if the computation
1108 was moved to the beginning of the block.
1109
1110 We call this routine for cprop, pre and code hoisting. They all compute
1111 basically the same information and thus can easily share this code.
1112
1113 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1114 properties. If NULL, then it is not necessary to compute or record that
1115 particular property.
1116
1117 TABLE controls which hash table to look at. If it is set hash table,
1118 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1119 ABSALTERED. */
1120
1121 static void
1122 compute_local_properties (transp, comp, antloc, table)
1123 sbitmap *transp;
1124 sbitmap *comp;
1125 sbitmap *antloc;
1126 struct hash_table *table;
1127 {
1128 unsigned int i;
1129
1130 /* Initialize any bitmaps that were passed in. */
1131 if (transp)
1132 {
1133 if (table->set_p)
1134 sbitmap_vector_zero (transp, last_basic_block);
1135 else
1136 sbitmap_vector_ones (transp, last_basic_block);
1137 }
1138
1139 if (comp)
1140 sbitmap_vector_zero (comp, last_basic_block);
1141 if (antloc)
1142 sbitmap_vector_zero (antloc, last_basic_block);
1143
1144 for (i = 0; i < table->size; i++)
1145 {
1146 struct expr *expr;
1147
1148 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1149 {
1150 int indx = expr->bitmap_index;
1151 struct occr *occr;
1152
1153 /* The expression is transparent in this block if it is not killed.
1154 We start by assuming all are transparent [none are killed], and
1155 then reset the bits for those that are. */
1156 if (transp)
1157 compute_transp (expr->expr, indx, transp, table->set_p);
1158
1159 /* The occurrences recorded in antic_occr are exactly those that
1160 we want to set to nonzero in ANTLOC. */
1161 if (antloc)
1162 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1163 {
1164 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1165
1166 /* While we're scanning the table, this is a good place to
1167 initialize this. */
1168 occr->deleted_p = 0;
1169 }
1170
1171 /* The occurrences recorded in avail_occr are exactly those that
1172 we want to set to nonzero in COMP. */
1173 if (comp)
1174 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1175 {
1176 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1177
1178 /* While we're scanning the table, this is a good place to
1179 initialize this. */
1180 occr->copied_p = 0;
1181 }
1182
1183 /* While we're scanning the table, this is a good place to
1184 initialize this. */
1185 expr->reaching_reg = 0;
1186 }
1187 }
1188 }
1189 \f
1190 /* Register set information.
1191
1192 `reg_set_table' records where each register is set or otherwise
1193 modified. */
1194
1195 static struct obstack reg_set_obstack;
1196
1197 static void
1198 alloc_reg_set_mem (n_regs)
1199 int n_regs;
1200 {
1201 unsigned int n;
1202
1203 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1204 n = reg_set_table_size * sizeof (struct reg_set *);
1205 reg_set_table = (struct reg_set **) gmalloc (n);
1206 memset ((char *) reg_set_table, 0, n);
1207
1208 gcc_obstack_init (&reg_set_obstack);
1209 }
1210
1211 static void
1212 free_reg_set_mem ()
1213 {
1214 free (reg_set_table);
1215 obstack_free (&reg_set_obstack, NULL);
1216 }
1217
1218 /* Record REGNO in the reg_set table. */
1219
1220 static void
1221 record_one_set (regno, insn)
1222 int regno;
1223 rtx insn;
1224 {
1225 /* Allocate a new reg_set element and link it onto the list. */
1226 struct reg_set *new_reg_info;
1227
1228 /* If the table isn't big enough, enlarge it. */
1229 if (regno >= reg_set_table_size)
1230 {
1231 int new_size = regno + REG_SET_TABLE_SLOP;
1232
1233 reg_set_table
1234 = (struct reg_set **) grealloc ((char *) reg_set_table,
1235 new_size * sizeof (struct reg_set *));
1236 memset ((char *) (reg_set_table + reg_set_table_size), 0,
1237 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1238 reg_set_table_size = new_size;
1239 }
1240
1241 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1242 sizeof (struct reg_set));
1243 bytes_used += sizeof (struct reg_set);
1244 new_reg_info->insn = insn;
1245 new_reg_info->next = reg_set_table[regno];
1246 reg_set_table[regno] = new_reg_info;
1247 }
1248
1249 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1250 an insn. The DATA is really the instruction in which the SET is
1251 occurring. */
1252
1253 static void
1254 record_set_info (dest, setter, data)
1255 rtx dest, setter ATTRIBUTE_UNUSED;
1256 void *data;
1257 {
1258 rtx record_set_insn = (rtx) data;
1259
1260 if (GET_CODE (dest) == REG && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1261 record_one_set (REGNO (dest), record_set_insn);
1262 }
1263
1264 /* Scan the function and record each set of each pseudo-register.
1265
1266 This is called once, at the start of the gcse pass. See the comments for
1267 `reg_set_table' for further documenation. */
1268
1269 static void
1270 compute_sets (f)
1271 rtx f;
1272 {
1273 rtx insn;
1274
1275 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1276 if (INSN_P (insn))
1277 note_stores (PATTERN (insn), record_set_info, insn);
1278 }
1279 \f
1280 /* Hash table support. */
1281
1282 struct reg_avail_info
1283 {
1284 basic_block last_bb;
1285 int first_set;
1286 int last_set;
1287 };
1288
1289 static struct reg_avail_info *reg_avail_info;
1290 static basic_block current_bb;
1291
1292
1293 /* See whether X, the source of a set, is something we want to consider for
1294 GCSE. */
1295
1296 static GTY(()) rtx test_insn;
1297 static int
1298 want_to_gcse_p (x)
1299 rtx x;
1300 {
1301 int num_clobbers = 0;
1302 int icode;
1303
1304 switch (GET_CODE (x))
1305 {
1306 case REG:
1307 case SUBREG:
1308 case CONST_INT:
1309 case CONST_DOUBLE:
1310 case CONST_VECTOR:
1311 case CALL:
1312 return 0;
1313
1314 default:
1315 break;
1316 }
1317
1318 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1319 if (general_operand (x, GET_MODE (x)))
1320 return 1;
1321 else if (GET_MODE (x) == VOIDmode)
1322 return 0;
1323
1324 /* Otherwise, check if we can make a valid insn from it. First initialize
1325 our test insn if we haven't already. */
1326 if (test_insn == 0)
1327 {
1328 test_insn
1329 = make_insn_raw (gen_rtx_SET (VOIDmode,
1330 gen_rtx_REG (word_mode,
1331 FIRST_PSEUDO_REGISTER * 2),
1332 const0_rtx));
1333 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1334 }
1335
1336 /* Now make an insn like the one we would make when GCSE'ing and see if
1337 valid. */
1338 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1339 SET_SRC (PATTERN (test_insn)) = x;
1340 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1341 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1342 }
1343
1344 /* Return nonzero if the operands of expression X are unchanged from the
1345 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1346 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1347
1348 static int
1349 oprs_unchanged_p (x, insn, avail_p)
1350 rtx x, insn;
1351 int avail_p;
1352 {
1353 int i, j;
1354 enum rtx_code code;
1355 const char *fmt;
1356
1357 if (x == 0)
1358 return 1;
1359
1360 code = GET_CODE (x);
1361 switch (code)
1362 {
1363 case REG:
1364 {
1365 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1366
1367 if (info->last_bb != current_bb)
1368 return 1;
1369 if (avail_p)
1370 return info->last_set < INSN_CUID (insn);
1371 else
1372 return info->first_set >= INSN_CUID (insn);
1373 }
1374
1375 case MEM:
1376 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1377 x, avail_p))
1378 return 0;
1379 else
1380 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1381
1382 case PRE_DEC:
1383 case PRE_INC:
1384 case POST_DEC:
1385 case POST_INC:
1386 case PRE_MODIFY:
1387 case POST_MODIFY:
1388 return 0;
1389
1390 case PC:
1391 case CC0: /*FIXME*/
1392 case CONST:
1393 case CONST_INT:
1394 case CONST_DOUBLE:
1395 case CONST_VECTOR:
1396 case SYMBOL_REF:
1397 case LABEL_REF:
1398 case ADDR_VEC:
1399 case ADDR_DIFF_VEC:
1400 return 1;
1401
1402 default:
1403 break;
1404 }
1405
1406 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1407 {
1408 if (fmt[i] == 'e')
1409 {
1410 /* If we are about to do the last recursive call needed at this
1411 level, change it into iteration. This function is called enough
1412 to be worth it. */
1413 if (i == 0)
1414 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1415
1416 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1417 return 0;
1418 }
1419 else if (fmt[i] == 'E')
1420 for (j = 0; j < XVECLEN (x, i); j++)
1421 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1422 return 0;
1423 }
1424
1425 return 1;
1426 }
1427
1428 /* Used for communication between mems_conflict_for_gcse_p and
1429 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1430 conflict between two memory references. */
1431 static int gcse_mems_conflict_p;
1432
1433 /* Used for communication between mems_conflict_for_gcse_p and
1434 load_killed_in_block_p. A memory reference for a load instruction,
1435 mems_conflict_for_gcse_p will see if a memory store conflicts with
1436 this memory load. */
1437 static rtx gcse_mem_operand;
1438
1439 /* DEST is the output of an instruction. If it is a memory reference, and
1440 possibly conflicts with the load found in gcse_mem_operand, then set
1441 gcse_mems_conflict_p to a nonzero value. */
1442
1443 static void
1444 mems_conflict_for_gcse_p (dest, setter, data)
1445 rtx dest, setter ATTRIBUTE_UNUSED;
1446 void *data ATTRIBUTE_UNUSED;
1447 {
1448 while (GET_CODE (dest) == SUBREG
1449 || GET_CODE (dest) == ZERO_EXTRACT
1450 || GET_CODE (dest) == SIGN_EXTRACT
1451 || GET_CODE (dest) == STRICT_LOW_PART)
1452 dest = XEXP (dest, 0);
1453
1454 /* If DEST is not a MEM, then it will not conflict with the load. Note
1455 that function calls are assumed to clobber memory, but are handled
1456 elsewhere. */
1457 if (GET_CODE (dest) != MEM)
1458 return;
1459
1460 /* If we are setting a MEM in our list of specially recognized MEMs,
1461 don't mark as killed this time. */
1462
1463 if (dest == gcse_mem_operand && pre_ldst_mems != NULL)
1464 {
1465 if (!find_rtx_in_ldst (dest))
1466 gcse_mems_conflict_p = 1;
1467 return;
1468 }
1469
1470 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1471 rtx_addr_varies_p))
1472 gcse_mems_conflict_p = 1;
1473 }
1474
1475 /* Return nonzero if the expression in X (a memory reference) is killed
1476 in block BB before or after the insn with the CUID in UID_LIMIT.
1477 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1478 before UID_LIMIT.
1479
1480 To check the entire block, set UID_LIMIT to max_uid + 1 and
1481 AVAIL_P to 0. */
1482
1483 static int
1484 load_killed_in_block_p (bb, uid_limit, x, avail_p)
1485 basic_block bb;
1486 int uid_limit;
1487 rtx x;
1488 int avail_p;
1489 {
1490 rtx list_entry = modify_mem_list[bb->index];
1491 while (list_entry)
1492 {
1493 rtx setter;
1494 /* Ignore entries in the list that do not apply. */
1495 if ((avail_p
1496 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1497 || (! avail_p
1498 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1499 {
1500 list_entry = XEXP (list_entry, 1);
1501 continue;
1502 }
1503
1504 setter = XEXP (list_entry, 0);
1505
1506 /* If SETTER is a call everything is clobbered. Note that calls
1507 to pure functions are never put on the list, so we need not
1508 worry about them. */
1509 if (GET_CODE (setter) == CALL_INSN)
1510 return 1;
1511
1512 /* SETTER must be an INSN of some kind that sets memory. Call
1513 note_stores to examine each hunk of memory that is modified.
1514
1515 The note_stores interface is pretty limited, so we have to
1516 communicate via global variables. Yuk. */
1517 gcse_mem_operand = x;
1518 gcse_mems_conflict_p = 0;
1519 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1520 if (gcse_mems_conflict_p)
1521 return 1;
1522 list_entry = XEXP (list_entry, 1);
1523 }
1524 return 0;
1525 }
1526
1527 /* Return nonzero if the operands of expression X are unchanged from
1528 the start of INSN's basic block up to but not including INSN. */
1529
1530 static int
1531 oprs_anticipatable_p (x, insn)
1532 rtx x, insn;
1533 {
1534 return oprs_unchanged_p (x, insn, 0);
1535 }
1536
1537 /* Return nonzero if the operands of expression X are unchanged from
1538 INSN to the end of INSN's basic block. */
1539
1540 static int
1541 oprs_available_p (x, insn)
1542 rtx x, insn;
1543 {
1544 return oprs_unchanged_p (x, insn, 1);
1545 }
1546
1547 /* Hash expression X.
1548
1549 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1550 indicating if a volatile operand is found or if the expression contains
1551 something we don't want to insert in the table.
1552
1553 ??? One might want to merge this with canon_hash. Later. */
1554
1555 static unsigned int
1556 hash_expr (x, mode, do_not_record_p, hash_table_size)
1557 rtx x;
1558 enum machine_mode mode;
1559 int *do_not_record_p;
1560 int hash_table_size;
1561 {
1562 unsigned int hash;
1563
1564 *do_not_record_p = 0;
1565
1566 hash = hash_expr_1 (x, mode, do_not_record_p);
1567 return hash % hash_table_size;
1568 }
1569
1570 /* Hash a string. Just add its bytes up. */
1571
1572 static inline unsigned
1573 hash_string_1 (ps)
1574 const char *ps;
1575 {
1576 unsigned hash = 0;
1577 const unsigned char *p = (const unsigned char *) ps;
1578
1579 if (p)
1580 while (*p)
1581 hash += *p++;
1582
1583 return hash;
1584 }
1585
1586 /* Subroutine of hash_expr to do the actual work. */
1587
1588 static unsigned int
1589 hash_expr_1 (x, mode, do_not_record_p)
1590 rtx x;
1591 enum machine_mode mode;
1592 int *do_not_record_p;
1593 {
1594 int i, j;
1595 unsigned hash = 0;
1596 enum rtx_code code;
1597 const char *fmt;
1598
1599 /* Used to turn recursion into iteration. We can't rely on GCC's
1600 tail-recursion eliminatio since we need to keep accumulating values
1601 in HASH. */
1602
1603 if (x == 0)
1604 return hash;
1605
1606 repeat:
1607 code = GET_CODE (x);
1608 switch (code)
1609 {
1610 case REG:
1611 hash += ((unsigned int) REG << 7) + REGNO (x);
1612 return hash;
1613
1614 case CONST_INT:
1615 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
1616 + (unsigned int) INTVAL (x));
1617 return hash;
1618
1619 case CONST_DOUBLE:
1620 /* This is like the general case, except that it only counts
1621 the integers representing the constant. */
1622 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1623 if (GET_MODE (x) != VOIDmode)
1624 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1625 hash += (unsigned int) XWINT (x, i);
1626 else
1627 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
1628 + (unsigned int) CONST_DOUBLE_HIGH (x));
1629 return hash;
1630
1631 case CONST_VECTOR:
1632 {
1633 int units;
1634 rtx elt;
1635
1636 units = CONST_VECTOR_NUNITS (x);
1637
1638 for (i = 0; i < units; ++i)
1639 {
1640 elt = CONST_VECTOR_ELT (x, i);
1641 hash += hash_expr_1 (elt, GET_MODE (elt), do_not_record_p);
1642 }
1643
1644 return hash;
1645 }
1646
1647 /* Assume there is only one rtx object for any given label. */
1648 case LABEL_REF:
1649 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1650 differences and differences between each stage's debugging dumps. */
1651 hash += (((unsigned int) LABEL_REF << 7)
1652 + CODE_LABEL_NUMBER (XEXP (x, 0)));
1653 return hash;
1654
1655 case SYMBOL_REF:
1656 {
1657 /* Don't hash on the symbol's address to avoid bootstrap differences.
1658 Different hash values may cause expressions to be recorded in
1659 different orders and thus different registers to be used in the
1660 final assembler. This also avoids differences in the dump files
1661 between various stages. */
1662 unsigned int h = 0;
1663 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1664
1665 while (*p)
1666 h += (h << 7) + *p++; /* ??? revisit */
1667
1668 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1669 return hash;
1670 }
1671
1672 case MEM:
1673 if (MEM_VOLATILE_P (x))
1674 {
1675 *do_not_record_p = 1;
1676 return 0;
1677 }
1678
1679 hash += (unsigned int) MEM;
1680 /* We used alias set for hashing, but this is not good, since the alias
1681 set may differ in -fprofile-arcs and -fbranch-probabilities compilation
1682 causing the profiles to fail to match. */
1683 x = XEXP (x, 0);
1684 goto repeat;
1685
1686 case PRE_DEC:
1687 case PRE_INC:
1688 case POST_DEC:
1689 case POST_INC:
1690 case PC:
1691 case CC0:
1692 case CALL:
1693 case UNSPEC_VOLATILE:
1694 *do_not_record_p = 1;
1695 return 0;
1696
1697 case ASM_OPERANDS:
1698 if (MEM_VOLATILE_P (x))
1699 {
1700 *do_not_record_p = 1;
1701 return 0;
1702 }
1703 else
1704 {
1705 /* We don't want to take the filename and line into account. */
1706 hash += (unsigned) code + (unsigned) GET_MODE (x)
1707 + hash_string_1 (ASM_OPERANDS_TEMPLATE (x))
1708 + hash_string_1 (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
1709 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
1710
1711 if (ASM_OPERANDS_INPUT_LENGTH (x))
1712 {
1713 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
1714 {
1715 hash += (hash_expr_1 (ASM_OPERANDS_INPUT (x, i),
1716 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
1717 do_not_record_p)
1718 + hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT
1719 (x, i)));
1720 }
1721
1722 hash += hash_string_1 (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
1723 x = ASM_OPERANDS_INPUT (x, 0);
1724 mode = GET_MODE (x);
1725 goto repeat;
1726 }
1727 return hash;
1728 }
1729
1730 default:
1731 break;
1732 }
1733
1734 hash += (unsigned) code + (unsigned) GET_MODE (x);
1735 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1736 {
1737 if (fmt[i] == 'e')
1738 {
1739 /* If we are about to do the last recursive call
1740 needed at this level, change it into iteration.
1741 This function is called enough to be worth it. */
1742 if (i == 0)
1743 {
1744 x = XEXP (x, i);
1745 goto repeat;
1746 }
1747
1748 hash += hash_expr_1 (XEXP (x, i), 0, do_not_record_p);
1749 if (*do_not_record_p)
1750 return 0;
1751 }
1752
1753 else if (fmt[i] == 'E')
1754 for (j = 0; j < XVECLEN (x, i); j++)
1755 {
1756 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1757 if (*do_not_record_p)
1758 return 0;
1759 }
1760
1761 else if (fmt[i] == 's')
1762 hash += hash_string_1 (XSTR (x, i));
1763 else if (fmt[i] == 'i')
1764 hash += (unsigned int) XINT (x, i);
1765 else
1766 abort ();
1767 }
1768
1769 return hash;
1770 }
1771
1772 /* Hash a set of register REGNO.
1773
1774 Sets are hashed on the register that is set. This simplifies the PRE copy
1775 propagation code.
1776
1777 ??? May need to make things more elaborate. Later, as necessary. */
1778
1779 static unsigned int
1780 hash_set (regno, hash_table_size)
1781 int regno;
1782 int hash_table_size;
1783 {
1784 unsigned int hash;
1785
1786 hash = regno;
1787 return hash % hash_table_size;
1788 }
1789
1790 /* Return nonzero if exp1 is equivalent to exp2.
1791 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1792
1793 static int
1794 expr_equiv_p (x, y)
1795 rtx x, y;
1796 {
1797 int i, j;
1798 enum rtx_code code;
1799 const char *fmt;
1800
1801 if (x == y)
1802 return 1;
1803
1804 if (x == 0 || y == 0)
1805 return x == y;
1806
1807 code = GET_CODE (x);
1808 if (code != GET_CODE (y))
1809 return 0;
1810
1811 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1812 if (GET_MODE (x) != GET_MODE (y))
1813 return 0;
1814
1815 switch (code)
1816 {
1817 case PC:
1818 case CC0:
1819 return x == y;
1820
1821 case CONST_INT:
1822 return INTVAL (x) == INTVAL (y);
1823
1824 case LABEL_REF:
1825 return XEXP (x, 0) == XEXP (y, 0);
1826
1827 case SYMBOL_REF:
1828 return XSTR (x, 0) == XSTR (y, 0);
1829
1830 case REG:
1831 return REGNO (x) == REGNO (y);
1832
1833 case MEM:
1834 /* Can't merge two expressions in different alias sets, since we can
1835 decide that the expression is transparent in a block when it isn't,
1836 due to it being set with the different alias set. */
1837 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
1838 return 0;
1839 break;
1840
1841 /* For commutative operations, check both orders. */
1842 case PLUS:
1843 case MULT:
1844 case AND:
1845 case IOR:
1846 case XOR:
1847 case NE:
1848 case EQ:
1849 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1850 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1851 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1852 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1853
1854 case ASM_OPERANDS:
1855 /* We don't use the generic code below because we want to
1856 disregard filename and line numbers. */
1857
1858 /* A volatile asm isn't equivalent to any other. */
1859 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
1860 return 0;
1861
1862 if (GET_MODE (x) != GET_MODE (y)
1863 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
1864 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
1865 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
1866 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
1867 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
1868 return 0;
1869
1870 if (ASM_OPERANDS_INPUT_LENGTH (x))
1871 {
1872 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
1873 if (! expr_equiv_p (ASM_OPERANDS_INPUT (x, i),
1874 ASM_OPERANDS_INPUT (y, i))
1875 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
1876 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
1877 return 0;
1878 }
1879
1880 return 1;
1881
1882 default:
1883 break;
1884 }
1885
1886 /* Compare the elements. If any pair of corresponding elements
1887 fail to match, return 0 for the whole thing. */
1888
1889 fmt = GET_RTX_FORMAT (code);
1890 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1891 {
1892 switch (fmt[i])
1893 {
1894 case 'e':
1895 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1896 return 0;
1897 break;
1898
1899 case 'E':
1900 if (XVECLEN (x, i) != XVECLEN (y, i))
1901 return 0;
1902 for (j = 0; j < XVECLEN (x, i); j++)
1903 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1904 return 0;
1905 break;
1906
1907 case 's':
1908 if (strcmp (XSTR (x, i), XSTR (y, i)))
1909 return 0;
1910 break;
1911
1912 case 'i':
1913 if (XINT (x, i) != XINT (y, i))
1914 return 0;
1915 break;
1916
1917 case 'w':
1918 if (XWINT (x, i) != XWINT (y, i))
1919 return 0;
1920 break;
1921
1922 case '0':
1923 break;
1924
1925 default:
1926 abort ();
1927 }
1928 }
1929
1930 return 1;
1931 }
1932
1933 /* Insert expression X in INSN in the hash TABLE.
1934 If it is already present, record it as the last occurrence in INSN's
1935 basic block.
1936
1937 MODE is the mode of the value X is being stored into.
1938 It is only used if X is a CONST_INT.
1939
1940 ANTIC_P is nonzero if X is an anticipatable expression.
1941 AVAIL_P is nonzero if X is an available expression. */
1942
1943 static void
1944 insert_expr_in_table (x, mode, insn, antic_p, avail_p, table)
1945 rtx x;
1946 enum machine_mode mode;
1947 rtx insn;
1948 int antic_p, avail_p;
1949 struct hash_table *table;
1950 {
1951 int found, do_not_record_p;
1952 unsigned int hash;
1953 struct expr *cur_expr, *last_expr = NULL;
1954 struct occr *antic_occr, *avail_occr;
1955 struct occr *last_occr = NULL;
1956
1957 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1958
1959 /* Do not insert expression in table if it contains volatile operands,
1960 or if hash_expr determines the expression is something we don't want
1961 to or can't handle. */
1962 if (do_not_record_p)
1963 return;
1964
1965 cur_expr = table->table[hash];
1966 found = 0;
1967
1968 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1969 {
1970 /* If the expression isn't found, save a pointer to the end of
1971 the list. */
1972 last_expr = cur_expr;
1973 cur_expr = cur_expr->next_same_hash;
1974 }
1975
1976 if (! found)
1977 {
1978 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1979 bytes_used += sizeof (struct expr);
1980 if (table->table[hash] == NULL)
1981 /* This is the first pattern that hashed to this index. */
1982 table->table[hash] = cur_expr;
1983 else
1984 /* Add EXPR to end of this hash chain. */
1985 last_expr->next_same_hash = cur_expr;
1986
1987 /* Set the fields of the expr element. */
1988 cur_expr->expr = x;
1989 cur_expr->bitmap_index = table->n_elems++;
1990 cur_expr->next_same_hash = NULL;
1991 cur_expr->antic_occr = NULL;
1992 cur_expr->avail_occr = NULL;
1993 }
1994
1995 /* Now record the occurrence(s). */
1996 if (antic_p)
1997 {
1998 antic_occr = cur_expr->antic_occr;
1999
2000 /* Search for another occurrence in the same basic block. */
2001 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
2002 {
2003 /* If an occurrence isn't found, save a pointer to the end of
2004 the list. */
2005 last_occr = antic_occr;
2006 antic_occr = antic_occr->next;
2007 }
2008
2009 if (antic_occr)
2010 /* Found another instance of the expression in the same basic block.
2011 Prefer the currently recorded one. We want the first one in the
2012 block and the block is scanned from start to end. */
2013 ; /* nothing to do */
2014 else
2015 {
2016 /* First occurrence of this expression in this basic block. */
2017 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2018 bytes_used += sizeof (struct occr);
2019 /* First occurrence of this expression in any block? */
2020 if (cur_expr->antic_occr == NULL)
2021 cur_expr->antic_occr = antic_occr;
2022 else
2023 last_occr->next = antic_occr;
2024
2025 antic_occr->insn = insn;
2026 antic_occr->next = NULL;
2027 }
2028 }
2029
2030 if (avail_p)
2031 {
2032 avail_occr = cur_expr->avail_occr;
2033
2034 /* Search for another occurrence in the same basic block. */
2035 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
2036 {
2037 /* If an occurrence isn't found, save a pointer to the end of
2038 the list. */
2039 last_occr = avail_occr;
2040 avail_occr = avail_occr->next;
2041 }
2042
2043 if (avail_occr)
2044 /* Found another instance of the expression in the same basic block.
2045 Prefer this occurrence to the currently recorded one. We want
2046 the last one in the block and the block is scanned from start
2047 to end. */
2048 avail_occr->insn = insn;
2049 else
2050 {
2051 /* First occurrence of this expression in this basic block. */
2052 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2053 bytes_used += sizeof (struct occr);
2054
2055 /* First occurrence of this expression in any block? */
2056 if (cur_expr->avail_occr == NULL)
2057 cur_expr->avail_occr = avail_occr;
2058 else
2059 last_occr->next = avail_occr;
2060
2061 avail_occr->insn = insn;
2062 avail_occr->next = NULL;
2063 }
2064 }
2065 }
2066
2067 /* Insert pattern X in INSN in the hash table.
2068 X is a SET of a reg to either another reg or a constant.
2069 If it is already present, record it as the last occurrence in INSN's
2070 basic block. */
2071
2072 static void
2073 insert_set_in_table (x, insn, table)
2074 rtx x;
2075 rtx insn;
2076 struct hash_table *table;
2077 {
2078 int found;
2079 unsigned int hash;
2080 struct expr *cur_expr, *last_expr = NULL;
2081 struct occr *cur_occr, *last_occr = NULL;
2082
2083 if (GET_CODE (x) != SET
2084 || GET_CODE (SET_DEST (x)) != REG)
2085 abort ();
2086
2087 hash = hash_set (REGNO (SET_DEST (x)), table->size);
2088
2089 cur_expr = table->table[hash];
2090 found = 0;
2091
2092 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
2093 {
2094 /* If the expression isn't found, save a pointer to the end of
2095 the list. */
2096 last_expr = cur_expr;
2097 cur_expr = cur_expr->next_same_hash;
2098 }
2099
2100 if (! found)
2101 {
2102 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
2103 bytes_used += sizeof (struct expr);
2104 if (table->table[hash] == NULL)
2105 /* This is the first pattern that hashed to this index. */
2106 table->table[hash] = cur_expr;
2107 else
2108 /* Add EXPR to end of this hash chain. */
2109 last_expr->next_same_hash = cur_expr;
2110
2111 /* Set the fields of the expr element.
2112 We must copy X because it can be modified when copy propagation is
2113 performed on its operands. */
2114 cur_expr->expr = copy_rtx (x);
2115 cur_expr->bitmap_index = table->n_elems++;
2116 cur_expr->next_same_hash = NULL;
2117 cur_expr->antic_occr = NULL;
2118 cur_expr->avail_occr = NULL;
2119 }
2120
2121 /* Now record the occurrence. */
2122 cur_occr = cur_expr->avail_occr;
2123
2124 /* Search for another occurrence in the same basic block. */
2125 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
2126 {
2127 /* If an occurrence isn't found, save a pointer to the end of
2128 the list. */
2129 last_occr = cur_occr;
2130 cur_occr = cur_occr->next;
2131 }
2132
2133 if (cur_occr)
2134 /* Found another instance of the expression in the same basic block.
2135 Prefer this occurrence to the currently recorded one. We want the
2136 last one in the block and the block is scanned from start to end. */
2137 cur_occr->insn = insn;
2138 else
2139 {
2140 /* First occurrence of this expression in this basic block. */
2141 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
2142 bytes_used += sizeof (struct occr);
2143
2144 /* First occurrence of this expression in any block? */
2145 if (cur_expr->avail_occr == NULL)
2146 cur_expr->avail_occr = cur_occr;
2147 else
2148 last_occr->next = cur_occr;
2149
2150 cur_occr->insn = insn;
2151 cur_occr->next = NULL;
2152 }
2153 }
2154
2155 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
2156 expression one). */
2157
2158 static void
2159 hash_scan_set (pat, insn, table)
2160 rtx pat, insn;
2161 struct hash_table *table;
2162 {
2163 rtx src = SET_SRC (pat);
2164 rtx dest = SET_DEST (pat);
2165 rtx note;
2166
2167 if (GET_CODE (src) == CALL)
2168 hash_scan_call (src, insn, table);
2169
2170 else if (GET_CODE (dest) == REG)
2171 {
2172 unsigned int regno = REGNO (dest);
2173 rtx tmp;
2174
2175 /* If this is a single set and we are doing constant propagation,
2176 see if a REG_NOTE shows this equivalent to a constant. */
2177 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
2178 && CONSTANT_P (XEXP (note, 0)))
2179 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
2180
2181 /* Only record sets of pseudo-regs in the hash table. */
2182 if (! table->set_p
2183 && regno >= FIRST_PSEUDO_REGISTER
2184 /* Don't GCSE something if we can't do a reg/reg copy. */
2185 && can_copy_p [GET_MODE (dest)]
2186 /* GCSE commonly inserts instruction after the insn. We can't
2187 do that easily for EH_REGION notes so disable GCSE on these
2188 for now. */
2189 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
2190 /* Is SET_SRC something we want to gcse? */
2191 && want_to_gcse_p (src)
2192 /* Don't CSE a nop. */
2193 && ! set_noop_p (pat)
2194 /* Don't GCSE if it has attached REG_EQUIV note.
2195 At this point this only function parameters should have
2196 REG_EQUIV notes and if the argument slot is used somewhere
2197 explicitly, it means address of parameter has been taken,
2198 so we should not extend the lifetime of the pseudo. */
2199 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
2200 || GET_CODE (XEXP (note, 0)) != MEM))
2201 {
2202 /* An expression is not anticipatable if its operands are
2203 modified before this insn or if this is not the only SET in
2204 this insn. */
2205 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
2206 /* An expression is not available if its operands are
2207 subsequently modified, including this insn. It's also not
2208 available if this is a branch, because we can't insert
2209 a set after the branch. */
2210 int avail_p = (oprs_available_p (src, insn)
2211 && ! JUMP_P (insn));
2212
2213 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
2214 }
2215
2216 /* Record sets for constant/copy propagation. */
2217 else if (table->set_p
2218 && regno >= FIRST_PSEUDO_REGISTER
2219 && ((GET_CODE (src) == REG
2220 && REGNO (src) >= FIRST_PSEUDO_REGISTER
2221 && can_copy_p [GET_MODE (dest)]
2222 && REGNO (src) != regno)
2223 || CONSTANT_P (src))
2224 /* A copy is not available if its src or dest is subsequently
2225 modified. Here we want to search from INSN+1 on, but
2226 oprs_available_p searches from INSN on. */
2227 && (insn == BLOCK_END (BLOCK_NUM (insn))
2228 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
2229 && oprs_available_p (pat, tmp))))
2230 insert_set_in_table (pat, insn, table);
2231 }
2232 }
2233
2234 static void
2235 hash_scan_clobber (x, insn, table)
2236 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2237 struct hash_table *table ATTRIBUTE_UNUSED;
2238 {
2239 /* Currently nothing to do. */
2240 }
2241
2242 static void
2243 hash_scan_call (x, insn, table)
2244 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
2245 struct hash_table *table ATTRIBUTE_UNUSED;
2246 {
2247 /* Currently nothing to do. */
2248 }
2249
2250 /* Process INSN and add hash table entries as appropriate.
2251
2252 Only available expressions that set a single pseudo-reg are recorded.
2253
2254 Single sets in a PARALLEL could be handled, but it's an extra complication
2255 that isn't dealt with right now. The trick is handling the CLOBBERs that
2256 are also in the PARALLEL. Later.
2257
2258 If SET_P is nonzero, this is for the assignment hash table,
2259 otherwise it is for the expression hash table.
2260 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
2261 not record any expressions. */
2262
2263 static void
2264 hash_scan_insn (insn, table, in_libcall_block)
2265 rtx insn;
2266 struct hash_table *table;
2267 int in_libcall_block;
2268 {
2269 rtx pat = PATTERN (insn);
2270 int i;
2271
2272 if (in_libcall_block)
2273 return;
2274
2275 /* Pick out the sets of INSN and for other forms of instructions record
2276 what's been modified. */
2277
2278 if (GET_CODE (pat) == SET)
2279 hash_scan_set (pat, insn, table);
2280 else if (GET_CODE (pat) == PARALLEL)
2281 for (i = 0; i < XVECLEN (pat, 0); i++)
2282 {
2283 rtx x = XVECEXP (pat, 0, i);
2284
2285 if (GET_CODE (x) == SET)
2286 hash_scan_set (x, insn, table);
2287 else if (GET_CODE (x) == CLOBBER)
2288 hash_scan_clobber (x, insn, table);
2289 else if (GET_CODE (x) == CALL)
2290 hash_scan_call (x, insn, table);
2291 }
2292
2293 else if (GET_CODE (pat) == CLOBBER)
2294 hash_scan_clobber (pat, insn, table);
2295 else if (GET_CODE (pat) == CALL)
2296 hash_scan_call (pat, insn, table);
2297 }
2298
2299 static void
2300 dump_hash_table (file, name, table)
2301 FILE *file;
2302 const char *name;
2303 struct hash_table *table;
2304 {
2305 int i;
2306 /* Flattened out table, so it's printed in proper order. */
2307 struct expr **flat_table;
2308 unsigned int *hash_val;
2309 struct expr *expr;
2310
2311 flat_table
2312 = (struct expr **) xcalloc (table->n_elems, sizeof (struct expr *));
2313 hash_val = (unsigned int *) xmalloc (table->n_elems * sizeof (unsigned int));
2314
2315 for (i = 0; i < (int) table->size; i++)
2316 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
2317 {
2318 flat_table[expr->bitmap_index] = expr;
2319 hash_val[expr->bitmap_index] = i;
2320 }
2321
2322 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2323 name, table->size, table->n_elems);
2324
2325 for (i = 0; i < (int) table->n_elems; i++)
2326 if (flat_table[i] != 0)
2327 {
2328 expr = flat_table[i];
2329 fprintf (file, "Index %d (hash value %d)\n ",
2330 expr->bitmap_index, hash_val[i]);
2331 print_rtl (file, expr->expr);
2332 fprintf (file, "\n");
2333 }
2334
2335 fprintf (file, "\n");
2336
2337 free (flat_table);
2338 free (hash_val);
2339 }
2340
2341 /* Record register first/last/block set information for REGNO in INSN.
2342
2343 first_set records the first place in the block where the register
2344 is set and is used to compute "anticipatability".
2345
2346 last_set records the last place in the block where the register
2347 is set and is used to compute "availability".
2348
2349 last_bb records the block for which first_set and last_set are
2350 valid, as a quick test to invalidate them.
2351
2352 reg_set_in_block records whether the register is set in the block
2353 and is used to compute "transparency". */
2354
2355 static void
2356 record_last_reg_set_info (insn, regno)
2357 rtx insn;
2358 int regno;
2359 {
2360 struct reg_avail_info *info = &reg_avail_info[regno];
2361 int cuid = INSN_CUID (insn);
2362
2363 info->last_set = cuid;
2364 if (info->last_bb != current_bb)
2365 {
2366 info->last_bb = current_bb;
2367 info->first_set = cuid;
2368 SET_BIT (reg_set_in_block[current_bb->index], regno);
2369 }
2370 }
2371
2372
2373 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
2374 Note we store a pair of elements in the list, so they have to be
2375 taken off pairwise. */
2376
2377 static void
2378 canon_list_insert (dest, unused1, v_insn)
2379 rtx dest ATTRIBUTE_UNUSED;
2380 rtx unused1 ATTRIBUTE_UNUSED;
2381 void * v_insn;
2382 {
2383 rtx dest_addr, insn;
2384 int bb;
2385
2386 while (GET_CODE (dest) == SUBREG
2387 || GET_CODE (dest) == ZERO_EXTRACT
2388 || GET_CODE (dest) == SIGN_EXTRACT
2389 || GET_CODE (dest) == STRICT_LOW_PART)
2390 dest = XEXP (dest, 0);
2391
2392 /* If DEST is not a MEM, then it will not conflict with a load. Note
2393 that function calls are assumed to clobber memory, but are handled
2394 elsewhere. */
2395
2396 if (GET_CODE (dest) != MEM)
2397 return;
2398
2399 dest_addr = get_addr (XEXP (dest, 0));
2400 dest_addr = canon_rtx (dest_addr);
2401 insn = (rtx) v_insn;
2402 bb = BLOCK_NUM (insn);
2403
2404 canon_modify_mem_list[bb] =
2405 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2406 canon_modify_mem_list[bb] =
2407 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2408 bitmap_set_bit (canon_modify_mem_list_set, bb);
2409 }
2410
2411 /* Record memory modification information for INSN. We do not actually care
2412 about the memory location(s) that are set, or even how they are set (consider
2413 a CALL_INSN). We merely need to record which insns modify memory. */
2414
2415 static void
2416 record_last_mem_set_info (insn)
2417 rtx insn;
2418 {
2419 int bb = BLOCK_NUM (insn);
2420
2421 /* load_killed_in_block_p will handle the case of calls clobbering
2422 everything. */
2423 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2424 bitmap_set_bit (modify_mem_list_set, bb);
2425
2426 if (GET_CODE (insn) == CALL_INSN)
2427 {
2428 /* Note that traversals of this loop (other than for free-ing)
2429 will break after encountering a CALL_INSN. So, there's no
2430 need to insert a pair of items, as canon_list_insert does. */
2431 canon_modify_mem_list[bb] =
2432 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2433 bitmap_set_bit (canon_modify_mem_list_set, bb);
2434 }
2435 else
2436 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2437 }
2438
2439 /* Called from compute_hash_table via note_stores to handle one
2440 SET or CLOBBER in an insn. DATA is really the instruction in which
2441 the SET is taking place. */
2442
2443 static void
2444 record_last_set_info (dest, setter, data)
2445 rtx dest, setter ATTRIBUTE_UNUSED;
2446 void *data;
2447 {
2448 rtx last_set_insn = (rtx) data;
2449
2450 if (GET_CODE (dest) == SUBREG)
2451 dest = SUBREG_REG (dest);
2452
2453 if (GET_CODE (dest) == REG)
2454 record_last_reg_set_info (last_set_insn, REGNO (dest));
2455 else if (GET_CODE (dest) == MEM
2456 /* Ignore pushes, they clobber nothing. */
2457 && ! push_operand (dest, GET_MODE (dest)))
2458 record_last_mem_set_info (last_set_insn);
2459 }
2460
2461 /* Top level function to create an expression or assignment hash table.
2462
2463 Expression entries are placed in the hash table if
2464 - they are of the form (set (pseudo-reg) src),
2465 - src is something we want to perform GCSE on,
2466 - none of the operands are subsequently modified in the block
2467
2468 Assignment entries are placed in the hash table if
2469 - they are of the form (set (pseudo-reg) src),
2470 - src is something we want to perform const/copy propagation on,
2471 - none of the operands or target are subsequently modified in the block
2472
2473 Currently src must be a pseudo-reg or a const_int.
2474
2475 F is the first insn.
2476 TABLE is the table computed. */
2477
2478 static void
2479 compute_hash_table_work (table)
2480 struct hash_table *table;
2481 {
2482 unsigned int i;
2483
2484 /* While we compute the hash table we also compute a bit array of which
2485 registers are set in which blocks.
2486 ??? This isn't needed during const/copy propagation, but it's cheap to
2487 compute. Later. */
2488 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2489
2490 /* re-Cache any INSN_LIST nodes we have allocated. */
2491 clear_modify_mem_tables ();
2492 /* Some working arrays used to track first and last set in each block. */
2493 reg_avail_info = (struct reg_avail_info*)
2494 gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2495
2496 for (i = 0; i < max_gcse_regno; ++i)
2497 reg_avail_info[i].last_bb = NULL;
2498
2499 FOR_EACH_BB (current_bb)
2500 {
2501 rtx insn;
2502 unsigned int regno;
2503 int in_libcall_block;
2504
2505 /* First pass over the instructions records information used to
2506 determine when registers and memory are first and last set.
2507 ??? hard-reg reg_set_in_block computation
2508 could be moved to compute_sets since they currently don't change. */
2509
2510 for (insn = current_bb->head;
2511 insn && insn != NEXT_INSN (current_bb->end);
2512 insn = NEXT_INSN (insn))
2513 {
2514 if (! INSN_P (insn))
2515 continue;
2516
2517 if (GET_CODE (insn) == CALL_INSN)
2518 {
2519 bool clobbers_all = false;
2520 #ifdef NON_SAVING_SETJMP
2521 if (NON_SAVING_SETJMP
2522 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
2523 clobbers_all = true;
2524 #endif
2525
2526 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2527 if (clobbers_all
2528 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2529 record_last_reg_set_info (insn, regno);
2530
2531 mark_call (insn);
2532 }
2533
2534 note_stores (PATTERN (insn), record_last_set_info, insn);
2535 }
2536
2537 /* The next pass builds the hash table. */
2538
2539 for (insn = current_bb->head, in_libcall_block = 0;
2540 insn && insn != NEXT_INSN (current_bb->end);
2541 insn = NEXT_INSN (insn))
2542 if (INSN_P (insn))
2543 {
2544 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2545 in_libcall_block = 1;
2546 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2547 in_libcall_block = 0;
2548 hash_scan_insn (insn, table, in_libcall_block);
2549 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2550 in_libcall_block = 0;
2551 }
2552 }
2553
2554 free (reg_avail_info);
2555 reg_avail_info = NULL;
2556 }
2557
2558 /* Allocate space for the set/expr hash TABLE.
2559 N_INSNS is the number of instructions in the function.
2560 It is used to determine the number of buckets to use.
2561 SET_P determines whether set or expression table will
2562 be created. */
2563
2564 static void
2565 alloc_hash_table (n_insns, table, set_p)
2566 int n_insns;
2567 struct hash_table *table;
2568 int set_p;
2569 {
2570 int n;
2571
2572 table->size = n_insns / 4;
2573 if (table->size < 11)
2574 table->size = 11;
2575
2576 /* Attempt to maintain efficient use of hash table.
2577 Making it an odd number is simplest for now.
2578 ??? Later take some measurements. */
2579 table->size |= 1;
2580 n = table->size * sizeof (struct expr *);
2581 table->table = (struct expr **) gmalloc (n);
2582 table->set_p = set_p;
2583 }
2584
2585 /* Free things allocated by alloc_hash_table. */
2586
2587 static void
2588 free_hash_table (table)
2589 struct hash_table *table;
2590 {
2591 free (table->table);
2592 }
2593
2594 /* Compute the hash TABLE for doing copy/const propagation or
2595 expression hash table. */
2596
2597 static void
2598 compute_hash_table (table)
2599 struct hash_table *table;
2600 {
2601 /* Initialize count of number of entries in hash table. */
2602 table->n_elems = 0;
2603 memset ((char *) table->table, 0,
2604 table->size * sizeof (struct expr *));
2605
2606 compute_hash_table_work (table);
2607 }
2608 \f
2609 /* Expression tracking support. */
2610
2611 /* Lookup pattern PAT in the expression TABLE.
2612 The result is a pointer to the table entry, or NULL if not found. */
2613
2614 static struct expr *
2615 lookup_expr (pat, table)
2616 rtx pat;
2617 struct hash_table *table;
2618 {
2619 int do_not_record_p;
2620 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2621 table->size);
2622 struct expr *expr;
2623
2624 if (do_not_record_p)
2625 return NULL;
2626
2627 expr = table->table[hash];
2628
2629 while (expr && ! expr_equiv_p (expr->expr, pat))
2630 expr = expr->next_same_hash;
2631
2632 return expr;
2633 }
2634
2635 /* Lookup REGNO in the set TABLE. If PAT is non-NULL look for the entry that
2636 matches it, otherwise return the first entry for REGNO. The result is a
2637 pointer to the table entry, or NULL if not found. */
2638
2639 static struct expr *
2640 lookup_set (regno, pat, table)
2641 unsigned int regno;
2642 rtx pat;
2643 struct hash_table *table;
2644 {
2645 unsigned int hash = hash_set (regno, table->size);
2646 struct expr *expr;
2647
2648 expr = table->table[hash];
2649
2650 if (pat)
2651 {
2652 while (expr && ! expr_equiv_p (expr->expr, pat))
2653 expr = expr->next_same_hash;
2654 }
2655 else
2656 {
2657 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2658 expr = expr->next_same_hash;
2659 }
2660
2661 return expr;
2662 }
2663
2664 /* Return the next entry for REGNO in list EXPR. */
2665
2666 static struct expr *
2667 next_set (regno, expr)
2668 unsigned int regno;
2669 struct expr *expr;
2670 {
2671 do
2672 expr = expr->next_same_hash;
2673 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2674
2675 return expr;
2676 }
2677
2678 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2679 types may be mixed. */
2680
2681 static void
2682 free_insn_expr_list_list (listp)
2683 rtx *listp;
2684 {
2685 rtx list, next;
2686
2687 for (list = *listp; list ; list = next)
2688 {
2689 next = XEXP (list, 1);
2690 if (GET_CODE (list) == EXPR_LIST)
2691 free_EXPR_LIST_node (list);
2692 else
2693 free_INSN_LIST_node (list);
2694 }
2695
2696 *listp = NULL;
2697 }
2698
2699 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2700 static void
2701 clear_modify_mem_tables ()
2702 {
2703 int i;
2704
2705 EXECUTE_IF_SET_IN_BITMAP
2706 (modify_mem_list_set, 0, i, free_INSN_LIST_list (modify_mem_list + i));
2707 bitmap_clear (modify_mem_list_set);
2708
2709 EXECUTE_IF_SET_IN_BITMAP
2710 (canon_modify_mem_list_set, 0, i,
2711 free_insn_expr_list_list (canon_modify_mem_list + i));
2712 bitmap_clear (canon_modify_mem_list_set);
2713 }
2714
2715 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2716
2717 static void
2718 free_modify_mem_tables ()
2719 {
2720 clear_modify_mem_tables ();
2721 free (modify_mem_list);
2722 free (canon_modify_mem_list);
2723 modify_mem_list = 0;
2724 canon_modify_mem_list = 0;
2725 }
2726
2727 /* Reset tables used to keep track of what's still available [since the
2728 start of the block]. */
2729
2730 static void
2731 reset_opr_set_tables ()
2732 {
2733 /* Maintain a bitmap of which regs have been set since beginning of
2734 the block. */
2735 CLEAR_REG_SET (reg_set_bitmap);
2736
2737 /* Also keep a record of the last instruction to modify memory.
2738 For now this is very trivial, we only record whether any memory
2739 location has been modified. */
2740 clear_modify_mem_tables ();
2741 }
2742
2743 /* Return nonzero if the operands of X are not set before INSN in
2744 INSN's basic block. */
2745
2746 static int
2747 oprs_not_set_p (x, insn)
2748 rtx x, insn;
2749 {
2750 int i, j;
2751 enum rtx_code code;
2752 const char *fmt;
2753
2754 if (x == 0)
2755 return 1;
2756
2757 code = GET_CODE (x);
2758 switch (code)
2759 {
2760 case PC:
2761 case CC0:
2762 case CONST:
2763 case CONST_INT:
2764 case CONST_DOUBLE:
2765 case CONST_VECTOR:
2766 case SYMBOL_REF:
2767 case LABEL_REF:
2768 case ADDR_VEC:
2769 case ADDR_DIFF_VEC:
2770 return 1;
2771
2772 case MEM:
2773 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2774 INSN_CUID (insn), x, 0))
2775 return 0;
2776 else
2777 return oprs_not_set_p (XEXP (x, 0), insn);
2778
2779 case REG:
2780 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2781
2782 default:
2783 break;
2784 }
2785
2786 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2787 {
2788 if (fmt[i] == 'e')
2789 {
2790 /* If we are about to do the last recursive call
2791 needed at this level, change it into iteration.
2792 This function is called enough to be worth it. */
2793 if (i == 0)
2794 return oprs_not_set_p (XEXP (x, i), insn);
2795
2796 if (! oprs_not_set_p (XEXP (x, i), insn))
2797 return 0;
2798 }
2799 else if (fmt[i] == 'E')
2800 for (j = 0; j < XVECLEN (x, i); j++)
2801 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2802 return 0;
2803 }
2804
2805 return 1;
2806 }
2807
2808 /* Mark things set by a CALL. */
2809
2810 static void
2811 mark_call (insn)
2812 rtx insn;
2813 {
2814 if (! CONST_OR_PURE_CALL_P (insn))
2815 record_last_mem_set_info (insn);
2816 }
2817
2818 /* Mark things set by a SET. */
2819
2820 static void
2821 mark_set (pat, insn)
2822 rtx pat, insn;
2823 {
2824 rtx dest = SET_DEST (pat);
2825
2826 while (GET_CODE (dest) == SUBREG
2827 || GET_CODE (dest) == ZERO_EXTRACT
2828 || GET_CODE (dest) == SIGN_EXTRACT
2829 || GET_CODE (dest) == STRICT_LOW_PART)
2830 dest = XEXP (dest, 0);
2831
2832 if (GET_CODE (dest) == REG)
2833 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2834 else if (GET_CODE (dest) == MEM)
2835 record_last_mem_set_info (insn);
2836
2837 if (GET_CODE (SET_SRC (pat)) == CALL)
2838 mark_call (insn);
2839 }
2840
2841 /* Record things set by a CLOBBER. */
2842
2843 static void
2844 mark_clobber (pat, insn)
2845 rtx pat, insn;
2846 {
2847 rtx clob = XEXP (pat, 0);
2848
2849 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2850 clob = XEXP (clob, 0);
2851
2852 if (GET_CODE (clob) == REG)
2853 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2854 else
2855 record_last_mem_set_info (insn);
2856 }
2857
2858 /* Record things set by INSN.
2859 This data is used by oprs_not_set_p. */
2860
2861 static void
2862 mark_oprs_set (insn)
2863 rtx insn;
2864 {
2865 rtx pat = PATTERN (insn);
2866 int i;
2867
2868 if (GET_CODE (pat) == SET)
2869 mark_set (pat, insn);
2870 else if (GET_CODE (pat) == PARALLEL)
2871 for (i = 0; i < XVECLEN (pat, 0); i++)
2872 {
2873 rtx x = XVECEXP (pat, 0, i);
2874
2875 if (GET_CODE (x) == SET)
2876 mark_set (x, insn);
2877 else if (GET_CODE (x) == CLOBBER)
2878 mark_clobber (x, insn);
2879 else if (GET_CODE (x) == CALL)
2880 mark_call (insn);
2881 }
2882
2883 else if (GET_CODE (pat) == CLOBBER)
2884 mark_clobber (pat, insn);
2885 else if (GET_CODE (pat) == CALL)
2886 mark_call (insn);
2887 }
2888
2889 \f
2890 /* Classic GCSE reaching definition support. */
2891
2892 /* Allocate reaching def variables. */
2893
2894 static void
2895 alloc_rd_mem (n_blocks, n_insns)
2896 int n_blocks, n_insns;
2897 {
2898 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2899 sbitmap_vector_zero (rd_kill, n_blocks);
2900
2901 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2902 sbitmap_vector_zero (rd_gen, n_blocks);
2903
2904 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2905 sbitmap_vector_zero (reaching_defs, n_blocks);
2906
2907 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2908 sbitmap_vector_zero (rd_out, n_blocks);
2909 }
2910
2911 /* Free reaching def variables. */
2912
2913 static void
2914 free_rd_mem ()
2915 {
2916 sbitmap_vector_free (rd_kill);
2917 sbitmap_vector_free (rd_gen);
2918 sbitmap_vector_free (reaching_defs);
2919 sbitmap_vector_free (rd_out);
2920 }
2921
2922 /* Add INSN to the kills of BB. REGNO, set in BB, is killed by INSN. */
2923
2924 static void
2925 handle_rd_kill_set (insn, regno, bb)
2926 rtx insn;
2927 int regno;
2928 basic_block bb;
2929 {
2930 struct reg_set *this_reg;
2931
2932 for (this_reg = reg_set_table[regno]; this_reg; this_reg = this_reg ->next)
2933 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2934 SET_BIT (rd_kill[bb->index], INSN_CUID (this_reg->insn));
2935 }
2936
2937 /* Compute the set of kill's for reaching definitions. */
2938
2939 static void
2940 compute_kill_rd ()
2941 {
2942 int cuid;
2943 unsigned int regno;
2944 int i;
2945 basic_block bb;
2946
2947 /* For each block
2948 For each set bit in `gen' of the block (i.e each insn which
2949 generates a definition in the block)
2950 Call the reg set by the insn corresponding to that bit regx
2951 Look at the linked list starting at reg_set_table[regx]
2952 For each setting of regx in the linked list, which is not in
2953 this block
2954 Set the bit in `kill' corresponding to that insn. */
2955 FOR_EACH_BB (bb)
2956 for (cuid = 0; cuid < max_cuid; cuid++)
2957 if (TEST_BIT (rd_gen[bb->index], cuid))
2958 {
2959 rtx insn = CUID_INSN (cuid);
2960 rtx pat = PATTERN (insn);
2961
2962 if (GET_CODE (insn) == CALL_INSN)
2963 {
2964 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2965 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2966 handle_rd_kill_set (insn, regno, bb);
2967 }
2968
2969 if (GET_CODE (pat) == PARALLEL)
2970 {
2971 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
2972 {
2973 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
2974
2975 if ((code == SET || code == CLOBBER)
2976 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
2977 handle_rd_kill_set (insn,
2978 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
2979 bb);
2980 }
2981 }
2982 else if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == REG)
2983 /* Each setting of this register outside of this block
2984 must be marked in the set of kills in this block. */
2985 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
2986 }
2987 }
2988
2989 /* Compute the reaching definitions as in
2990 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
2991 Chapter 10. It is the same algorithm as used for computing available
2992 expressions but applied to the gens and kills of reaching definitions. */
2993
2994 static void
2995 compute_rd ()
2996 {
2997 int changed, passes;
2998 basic_block bb;
2999
3000 FOR_EACH_BB (bb)
3001 sbitmap_copy (rd_out[bb->index] /*dst*/, rd_gen[bb->index] /*src*/);
3002
3003 passes = 0;
3004 changed = 1;
3005 while (changed)
3006 {
3007 changed = 0;
3008 FOR_EACH_BB (bb)
3009 {
3010 sbitmap_union_of_preds (reaching_defs[bb->index], rd_out, bb->index);
3011 changed |= sbitmap_union_of_diff_cg (rd_out[bb->index], rd_gen[bb->index],
3012 reaching_defs[bb->index], rd_kill[bb->index]);
3013 }
3014 passes++;
3015 }
3016
3017 if (gcse_file)
3018 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
3019 }
3020 \f
3021 /* Classic GCSE available expression support. */
3022
3023 /* Allocate memory for available expression computation. */
3024
3025 static void
3026 alloc_avail_expr_mem (n_blocks, n_exprs)
3027 int n_blocks, n_exprs;
3028 {
3029 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3030 sbitmap_vector_zero (ae_kill, n_blocks);
3031
3032 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3033 sbitmap_vector_zero (ae_gen, n_blocks);
3034
3035 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3036 sbitmap_vector_zero (ae_in, n_blocks);
3037
3038 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
3039 sbitmap_vector_zero (ae_out, n_blocks);
3040 }
3041
3042 static void
3043 free_avail_expr_mem ()
3044 {
3045 sbitmap_vector_free (ae_kill);
3046 sbitmap_vector_free (ae_gen);
3047 sbitmap_vector_free (ae_in);
3048 sbitmap_vector_free (ae_out);
3049 }
3050
3051 /* Compute the set of available expressions generated in each basic block. */
3052
3053 static void
3054 compute_ae_gen (expr_hash_table)
3055 struct hash_table *expr_hash_table;
3056 {
3057 unsigned int i;
3058 struct expr *expr;
3059 struct occr *occr;
3060
3061 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
3062 This is all we have to do because an expression is not recorded if it
3063 is not available, and the only expressions we want to work with are the
3064 ones that are recorded. */
3065 for (i = 0; i < expr_hash_table->size; i++)
3066 for (expr = expr_hash_table->table[i]; expr != 0; expr = expr->next_same_hash)
3067 for (occr = expr->avail_occr; occr != 0; occr = occr->next)
3068 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
3069 }
3070
3071 /* Return nonzero if expression X is killed in BB. */
3072
3073 static int
3074 expr_killed_p (x, bb)
3075 rtx x;
3076 basic_block bb;
3077 {
3078 int i, j;
3079 enum rtx_code code;
3080 const char *fmt;
3081
3082 if (x == 0)
3083 return 1;
3084
3085 code = GET_CODE (x);
3086 switch (code)
3087 {
3088 case REG:
3089 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
3090
3091 case MEM:
3092 if (load_killed_in_block_p (bb, get_max_uid () + 1, x, 0))
3093 return 1;
3094 else
3095 return expr_killed_p (XEXP (x, 0), bb);
3096
3097 case PC:
3098 case CC0: /*FIXME*/
3099 case CONST:
3100 case CONST_INT:
3101 case CONST_DOUBLE:
3102 case CONST_VECTOR:
3103 case SYMBOL_REF:
3104 case LABEL_REF:
3105 case ADDR_VEC:
3106 case ADDR_DIFF_VEC:
3107 return 0;
3108
3109 default:
3110 break;
3111 }
3112
3113 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3114 {
3115 if (fmt[i] == 'e')
3116 {
3117 /* If we are about to do the last recursive call
3118 needed at this level, change it into iteration.
3119 This function is called enough to be worth it. */
3120 if (i == 0)
3121 return expr_killed_p (XEXP (x, i), bb);
3122 else if (expr_killed_p (XEXP (x, i), bb))
3123 return 1;
3124 }
3125 else if (fmt[i] == 'E')
3126 for (j = 0; j < XVECLEN (x, i); j++)
3127 if (expr_killed_p (XVECEXP (x, i, j), bb))
3128 return 1;
3129 }
3130
3131 return 0;
3132 }
3133
3134 /* Compute the set of available expressions killed in each basic block. */
3135
3136 static void
3137 compute_ae_kill (ae_gen, ae_kill, expr_hash_table)
3138 sbitmap *ae_gen, *ae_kill;
3139 struct hash_table *expr_hash_table;
3140 {
3141 basic_block bb;
3142 unsigned int i;
3143 struct expr *expr;
3144
3145 FOR_EACH_BB (bb)
3146 for (i = 0; i < expr_hash_table->size; i++)
3147 for (expr = expr_hash_table->table[i]; expr; expr = expr->next_same_hash)
3148 {
3149 /* Skip EXPR if generated in this block. */
3150 if (TEST_BIT (ae_gen[bb->index], expr->bitmap_index))
3151 continue;
3152
3153 if (expr_killed_p (expr->expr, bb))
3154 SET_BIT (ae_kill[bb->index], expr->bitmap_index);
3155 }
3156 }
3157 \f
3158 /* Actually perform the Classic GCSE optimizations. */
3159
3160 /* Return nonzero if occurrence OCCR of expression EXPR reaches block BB.
3161
3162 CHECK_SELF_LOOP is nonzero if we should consider a block reaching itself
3163 as a positive reach. We want to do this when there are two computations
3164 of the expression in the block.
3165
3166 VISITED is a pointer to a working buffer for tracking which BB's have
3167 been visited. It is NULL for the top-level call.
3168
3169 We treat reaching expressions that go through blocks containing the same
3170 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3171 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3172 2 as not reaching. The intent is to improve the probability of finding
3173 only one reaching expression and to reduce register lifetimes by picking
3174 the closest such expression. */
3175
3176 static int
3177 expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited)
3178 struct occr *occr;
3179 struct expr *expr;
3180 basic_block bb;
3181 int check_self_loop;
3182 char *visited;
3183 {
3184 edge pred;
3185
3186 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
3187 {
3188 basic_block pred_bb = pred->src;
3189
3190 if (visited[pred_bb->index])
3191 /* This predecessor has already been visited. Nothing to do. */
3192 ;
3193 else if (pred_bb == bb)
3194 {
3195 /* BB loops on itself. */
3196 if (check_self_loop
3197 && TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index)
3198 && BLOCK_NUM (occr->insn) == pred_bb->index)
3199 return 1;
3200
3201 visited[pred_bb->index] = 1;
3202 }
3203
3204 /* Ignore this predecessor if it kills the expression. */
3205 else if (TEST_BIT (ae_kill[pred_bb->index], expr->bitmap_index))
3206 visited[pred_bb->index] = 1;
3207
3208 /* Does this predecessor generate this expression? */
3209 else if (TEST_BIT (ae_gen[pred_bb->index], expr->bitmap_index))
3210 {
3211 /* Is this the occurrence we're looking for?
3212 Note that there's only one generating occurrence per block
3213 so we just need to check the block number. */
3214 if (BLOCK_NUM (occr->insn) == pred_bb->index)
3215 return 1;
3216
3217 visited[pred_bb->index] = 1;
3218 }
3219
3220 /* Neither gen nor kill. */
3221 else
3222 {
3223 visited[pred_bb->index] = 1;
3224 if (expr_reaches_here_p_work (occr, expr, pred_bb, check_self_loop,
3225 visited))
3226
3227 return 1;
3228 }
3229 }
3230
3231 /* All paths have been checked. */
3232 return 0;
3233 }
3234
3235 /* This wrapper for expr_reaches_here_p_work() is to ensure that any
3236 memory allocated for that function is returned. */
3237
3238 static int
3239 expr_reaches_here_p (occr, expr, bb, check_self_loop)
3240 struct occr *occr;
3241 struct expr *expr;
3242 basic_block bb;
3243 int check_self_loop;
3244 {
3245 int rval;
3246 char *visited = (char *) xcalloc (last_basic_block, 1);
3247
3248 rval = expr_reaches_here_p_work (occr, expr, bb, check_self_loop, visited);
3249
3250 free (visited);
3251 return rval;
3252 }
3253
3254 /* Return the instruction that computes EXPR that reaches INSN's basic block.
3255 If there is more than one such instruction, return NULL.
3256
3257 Called only by handle_avail_expr. */
3258
3259 static rtx
3260 computing_insn (expr, insn)
3261 struct expr *expr;
3262 rtx insn;
3263 {
3264 basic_block bb = BLOCK_FOR_INSN (insn);
3265
3266 if (expr->avail_occr->next == NULL)
3267 {
3268 if (BLOCK_FOR_INSN (expr->avail_occr->insn) == bb)
3269 /* The available expression is actually itself
3270 (i.e. a loop in the flow graph) so do nothing. */
3271 return NULL;
3272
3273 /* (FIXME) Case that we found a pattern that was created by
3274 a substitution that took place. */
3275 return expr->avail_occr->insn;
3276 }
3277 else
3278 {
3279 /* Pattern is computed more than once.
3280 Search backwards from this insn to see how many of these
3281 computations actually reach this insn. */
3282 struct occr *occr;
3283 rtx insn_computes_expr = NULL;
3284 int can_reach = 0;
3285
3286 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
3287 {
3288 if (BLOCK_FOR_INSN (occr->insn) == bb)
3289 {
3290 /* The expression is generated in this block.
3291 The only time we care about this is when the expression
3292 is generated later in the block [and thus there's a loop].
3293 We let the normal cse pass handle the other cases. */
3294 if (INSN_CUID (insn) < INSN_CUID (occr->insn)
3295 && expr_reaches_here_p (occr, expr, bb, 1))
3296 {
3297 can_reach++;
3298 if (can_reach > 1)
3299 return NULL;
3300
3301 insn_computes_expr = occr->insn;
3302 }
3303 }
3304 else if (expr_reaches_here_p (occr, expr, bb, 0))
3305 {
3306 can_reach++;
3307 if (can_reach > 1)
3308 return NULL;
3309
3310 insn_computes_expr = occr->insn;
3311 }
3312 }
3313
3314 if (insn_computes_expr == NULL)
3315 abort ();
3316
3317 return insn_computes_expr;
3318 }
3319 }
3320
3321 /* Return nonzero if the definition in DEF_INSN can reach INSN.
3322 Only called by can_disregard_other_sets. */
3323
3324 static int
3325 def_reaches_here_p (insn, def_insn)
3326 rtx insn, def_insn;
3327 {
3328 rtx reg;
3329
3330 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3331 return 1;
3332
3333 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3334 {
3335 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3336 {
3337 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3338 return 1;
3339 else if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3340 reg = XEXP (PATTERN (def_insn), 0);
3341 else if (GET_CODE (PATTERN (def_insn)) == SET)
3342 reg = SET_DEST (PATTERN (def_insn));
3343 else
3344 abort ();
3345
3346 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3347 }
3348 else
3349 return 0;
3350 }
3351
3352 return 0;
3353 }
3354
3355 /* Return nonzero if *ADDR_THIS_REG can only have one value at INSN. The
3356 value returned is the number of definitions that reach INSN. Returning a
3357 value of zero means that [maybe] more than one definition reaches INSN and
3358 the caller can't perform whatever optimization it is trying. i.e. it is
3359 always safe to return zero. */
3360
3361 static int
3362 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3363 struct reg_set **addr_this_reg;
3364 rtx insn;
3365 int for_combine;
3366 {
3367 int number_of_reaching_defs = 0;
3368 struct reg_set *this_reg;
3369
3370 for (this_reg = *addr_this_reg; this_reg != 0; this_reg = this_reg->next)
3371 if (def_reaches_here_p (insn, this_reg->insn))
3372 {
3373 number_of_reaching_defs++;
3374 /* Ignore parallels for now. */
3375 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3376 return 0;
3377
3378 if (!for_combine
3379 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3380 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3381 SET_SRC (PATTERN (insn)))))
3382 /* A setting of the reg to a different value reaches INSN. */
3383 return 0;
3384
3385 if (number_of_reaching_defs > 1)
3386 {
3387 /* If in this setting the value the register is being set to is
3388 equal to the previous value the register was set to and this
3389 setting reaches the insn we are trying to do the substitution
3390 on then we are ok. */
3391 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3392 return 0;
3393 else if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3394 SET_SRC (PATTERN (insn))))
3395 return 0;
3396 }
3397
3398 *addr_this_reg = this_reg;
3399 }
3400
3401 return number_of_reaching_defs;
3402 }
3403
3404 /* Expression computed by insn is available and the substitution is legal,
3405 so try to perform the substitution.
3406
3407 The result is nonzero if any changes were made. */
3408
3409 static int
3410 handle_avail_expr (insn, expr)
3411 rtx insn;
3412 struct expr *expr;
3413 {
3414 rtx pat, insn_computes_expr, expr_set;
3415 rtx to;
3416 struct reg_set *this_reg;
3417 int found_setting, use_src;
3418 int changed = 0;
3419
3420 /* We only handle the case where one computation of the expression
3421 reaches this instruction. */
3422 insn_computes_expr = computing_insn (expr, insn);
3423 if (insn_computes_expr == NULL)
3424 return 0;
3425 expr_set = single_set (insn_computes_expr);
3426 if (!expr_set)
3427 abort ();
3428
3429 found_setting = 0;
3430 use_src = 0;
3431
3432 /* At this point we know only one computation of EXPR outside of this
3433 block reaches this insn. Now try to find a register that the
3434 expression is computed into. */
3435 if (GET_CODE (SET_SRC (expr_set)) == REG)
3436 {
3437 /* This is the case when the available expression that reaches
3438 here has already been handled as an available expression. */
3439 unsigned int regnum_for_replacing
3440 = REGNO (SET_SRC (expr_set));
3441
3442 /* If the register was created by GCSE we can't use `reg_set_table',
3443 however we know it's set only once. */
3444 if (regnum_for_replacing >= max_gcse_regno
3445 /* If the register the expression is computed into is set only once,
3446 or only one set reaches this insn, we can use it. */
3447 || (((this_reg = reg_set_table[regnum_for_replacing]),
3448 this_reg->next == NULL)
3449 || can_disregard_other_sets (&this_reg, insn, 0)))
3450 {
3451 use_src = 1;
3452 found_setting = 1;
3453 }
3454 }
3455
3456 if (!found_setting)
3457 {
3458 unsigned int regnum_for_replacing
3459 = REGNO (SET_DEST (expr_set));
3460
3461 /* This shouldn't happen. */
3462 if (regnum_for_replacing >= max_gcse_regno)
3463 abort ();
3464
3465 this_reg = reg_set_table[regnum_for_replacing];
3466
3467 /* If the register the expression is computed into is set only once,
3468 or only one set reaches this insn, use it. */
3469 if (this_reg->next == NULL
3470 || can_disregard_other_sets (&this_reg, insn, 0))
3471 found_setting = 1;
3472 }
3473
3474 if (found_setting)
3475 {
3476 pat = PATTERN (insn);
3477 if (use_src)
3478 to = SET_SRC (expr_set);
3479 else
3480 to = SET_DEST (expr_set);
3481 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3482
3483 /* We should be able to ignore the return code from validate_change but
3484 to play it safe we check. */
3485 if (changed)
3486 {
3487 gcse_subst_count++;
3488 if (gcse_file != NULL)
3489 {
3490 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with",
3491 INSN_UID (insn));
3492 fprintf (gcse_file, " reg %d %s insn %d\n",
3493 REGNO (to), use_src ? "from" : "set in",
3494 INSN_UID (insn_computes_expr));
3495 }
3496 }
3497 }
3498
3499 /* The register that the expr is computed into is set more than once. */
3500 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3501 {
3502 /* Insert an insn after insnx that copies the reg set in insnx
3503 into a new pseudo register call this new register REGN.
3504 From insnb until end of basic block or until REGB is set
3505 replace all uses of REGB with REGN. */
3506 rtx new_insn;
3507
3508 to = gen_reg_rtx (GET_MODE (SET_DEST (expr_set)));
3509
3510 /* Generate the new insn. */
3511 /* ??? If the change fails, we return 0, even though we created
3512 an insn. I think this is ok. */
3513 new_insn
3514 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3515 SET_DEST (expr_set)),
3516 insn_computes_expr);
3517
3518 /* Keep register set table up to date. */
3519 record_one_set (REGNO (to), new_insn);
3520
3521 gcse_create_count++;
3522 if (gcse_file != NULL)
3523 {
3524 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d",
3525 INSN_UID (NEXT_INSN (insn_computes_expr)),
3526 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))));
3527 fprintf (gcse_file, ", computed in insn %d,\n",
3528 INSN_UID (insn_computes_expr));
3529 fprintf (gcse_file, " into newly allocated reg %d\n",
3530 REGNO (to));
3531 }
3532
3533 pat = PATTERN (insn);
3534
3535 /* Do register replacement for INSN. */
3536 changed = validate_change (insn, &SET_SRC (pat),
3537 SET_DEST (PATTERN
3538 (NEXT_INSN (insn_computes_expr))),
3539 0);
3540
3541 /* We should be able to ignore the return code from validate_change but
3542 to play it safe we check. */
3543 if (changed)
3544 {
3545 gcse_subst_count++;
3546 if (gcse_file != NULL)
3547 {
3548 fprintf (gcse_file,
3549 "GCSE: Replacing the source in insn %d with reg %d ",
3550 INSN_UID (insn),
3551 REGNO (SET_DEST (PATTERN (NEXT_INSN
3552 (insn_computes_expr)))));
3553 fprintf (gcse_file, "set in insn %d\n",
3554 INSN_UID (insn_computes_expr));
3555 }
3556 }
3557 }
3558
3559 return changed;
3560 }
3561
3562 /* Perform classic GCSE. This is called by one_classic_gcse_pass after all
3563 the dataflow analysis has been done.
3564
3565 The result is nonzero if a change was made. */
3566
3567 static int
3568 classic_gcse ()
3569 {
3570 int changed;
3571 rtx insn;
3572 basic_block bb;
3573
3574 /* Note we start at block 1. */
3575
3576 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3577 return 0;
3578
3579 changed = 0;
3580 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3581 {
3582 /* Reset tables used to keep track of what's still valid [since the
3583 start of the block]. */
3584 reset_opr_set_tables ();
3585
3586 for (insn = bb->head;
3587 insn != NULL && insn != NEXT_INSN (bb->end);
3588 insn = NEXT_INSN (insn))
3589 {
3590 /* Is insn of form (set (pseudo-reg) ...)? */
3591 if (GET_CODE (insn) == INSN
3592 && GET_CODE (PATTERN (insn)) == SET
3593 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3594 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3595 {
3596 rtx pat = PATTERN (insn);
3597 rtx src = SET_SRC (pat);
3598 struct expr *expr;
3599
3600 if (want_to_gcse_p (src)
3601 /* Is the expression recorded? */
3602 && ((expr = lookup_expr (src, &expr_hash_table)) != NULL)
3603 /* Is the expression available [at the start of the
3604 block]? */
3605 && TEST_BIT (ae_in[bb->index], expr->bitmap_index)
3606 /* Are the operands unchanged since the start of the
3607 block? */
3608 && oprs_not_set_p (src, insn))
3609 changed |= handle_avail_expr (insn, expr);
3610 }
3611
3612 /* Keep track of everything modified by this insn. */
3613 /* ??? Need to be careful w.r.t. mods done to INSN. */
3614 if (INSN_P (insn))
3615 mark_oprs_set (insn);
3616 }
3617 }
3618
3619 return changed;
3620 }
3621
3622 /* Top level routine to perform one classic GCSE pass.
3623
3624 Return nonzero if a change was made. */
3625
3626 static int
3627 one_classic_gcse_pass (pass)
3628 int pass;
3629 {
3630 int changed = 0;
3631
3632 gcse_subst_count = 0;
3633 gcse_create_count = 0;
3634
3635 alloc_hash_table (max_cuid, &expr_hash_table, 0);
3636 alloc_rd_mem (last_basic_block, max_cuid);
3637 compute_hash_table (&expr_hash_table);
3638 if (gcse_file)
3639 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
3640
3641 if (expr_hash_table.n_elems > 0)
3642 {
3643 compute_kill_rd ();
3644 compute_rd ();
3645 alloc_avail_expr_mem (last_basic_block, expr_hash_table.n_elems);
3646 compute_ae_gen (&expr_hash_table);
3647 compute_ae_kill (ae_gen, ae_kill, &expr_hash_table);
3648 compute_available (ae_gen, ae_kill, ae_out, ae_in);
3649 changed = classic_gcse ();
3650 free_avail_expr_mem ();
3651 }
3652
3653 free_rd_mem ();
3654 free_hash_table (&expr_hash_table);
3655
3656 if (gcse_file)
3657 {
3658 fprintf (gcse_file, "\n");
3659 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs,",
3660 current_function_name, pass, bytes_used, gcse_subst_count);
3661 fprintf (gcse_file, "%d insns created\n", gcse_create_count);
3662 }
3663
3664 return changed;
3665 }
3666 \f
3667 /* Compute copy/constant propagation working variables. */
3668
3669 /* Local properties of assignments. */
3670 static sbitmap *cprop_pavloc;
3671 static sbitmap *cprop_absaltered;
3672
3673 /* Global properties of assignments (computed from the local properties). */
3674 static sbitmap *cprop_avin;
3675 static sbitmap *cprop_avout;
3676
3677 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
3678 basic blocks. N_SETS is the number of sets. */
3679
3680 static void
3681 alloc_cprop_mem (n_blocks, n_sets)
3682 int n_blocks, n_sets;
3683 {
3684 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3685 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3686
3687 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3688 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3689 }
3690
3691 /* Free vars used by copy/const propagation. */
3692
3693 static void
3694 free_cprop_mem ()
3695 {
3696 sbitmap_vector_free (cprop_pavloc);
3697 sbitmap_vector_free (cprop_absaltered);
3698 sbitmap_vector_free (cprop_avin);
3699 sbitmap_vector_free (cprop_avout);
3700 }
3701
3702 /* For each block, compute whether X is transparent. X is either an
3703 expression or an assignment [though we don't care which, for this context
3704 an assignment is treated as an expression]. For each block where an
3705 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
3706 bit in BMAP. */
3707
3708 static void
3709 compute_transp (x, indx, bmap, set_p)
3710 rtx x;
3711 int indx;
3712 sbitmap *bmap;
3713 int set_p;
3714 {
3715 int i, j;
3716 basic_block bb;
3717 enum rtx_code code;
3718 reg_set *r;
3719 const char *fmt;
3720
3721 /* repeat is used to turn tail-recursion into iteration since GCC
3722 can't do it when there's no return value. */
3723 repeat:
3724
3725 if (x == 0)
3726 return;
3727
3728 code = GET_CODE (x);
3729 switch (code)
3730 {
3731 case REG:
3732 if (set_p)
3733 {
3734 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3735 {
3736 FOR_EACH_BB (bb)
3737 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3738 SET_BIT (bmap[bb->index], indx);
3739 }
3740 else
3741 {
3742 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3743 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3744 }
3745 }
3746 else
3747 {
3748 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
3749 {
3750 FOR_EACH_BB (bb)
3751 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
3752 RESET_BIT (bmap[bb->index], indx);
3753 }
3754 else
3755 {
3756 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
3757 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
3758 }
3759 }
3760
3761 return;
3762
3763 case MEM:
3764 FOR_EACH_BB (bb)
3765 {
3766 rtx list_entry = canon_modify_mem_list[bb->index];
3767
3768 while (list_entry)
3769 {
3770 rtx dest, dest_addr;
3771
3772 if (GET_CODE (XEXP (list_entry, 0)) == CALL_INSN)
3773 {
3774 if (set_p)
3775 SET_BIT (bmap[bb->index], indx);
3776 else
3777 RESET_BIT (bmap[bb->index], indx);
3778 break;
3779 }
3780 /* LIST_ENTRY must be an INSN of some kind that sets memory.
3781 Examine each hunk of memory that is modified. */
3782
3783 dest = XEXP (list_entry, 0);
3784 list_entry = XEXP (list_entry, 1);
3785 dest_addr = XEXP (list_entry, 0);
3786
3787 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
3788 x, rtx_addr_varies_p))
3789 {
3790 if (set_p)
3791 SET_BIT (bmap[bb->index], indx);
3792 else
3793 RESET_BIT (bmap[bb->index], indx);
3794 break;
3795 }
3796 list_entry = XEXP (list_entry, 1);
3797 }
3798 }
3799
3800 x = XEXP (x, 0);
3801 goto repeat;
3802
3803 case PC:
3804 case CC0: /*FIXME*/
3805 case CONST:
3806 case CONST_INT:
3807 case CONST_DOUBLE:
3808 case CONST_VECTOR:
3809 case SYMBOL_REF:
3810 case LABEL_REF:
3811 case ADDR_VEC:
3812 case ADDR_DIFF_VEC:
3813 return;
3814
3815 default:
3816 break;
3817 }
3818
3819 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3820 {
3821 if (fmt[i] == 'e')
3822 {
3823 /* If we are about to do the last recursive call
3824 needed at this level, change it into iteration.
3825 This function is called enough to be worth it. */
3826 if (i == 0)
3827 {
3828 x = XEXP (x, i);
3829 goto repeat;
3830 }
3831
3832 compute_transp (XEXP (x, i), indx, bmap, set_p);
3833 }
3834 else if (fmt[i] == 'E')
3835 for (j = 0; j < XVECLEN (x, i); j++)
3836 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3837 }
3838 }
3839
3840 /* Top level routine to do the dataflow analysis needed by copy/const
3841 propagation. */
3842
3843 static void
3844 compute_cprop_data ()
3845 {
3846 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
3847 compute_available (cprop_pavloc, cprop_absaltered,
3848 cprop_avout, cprop_avin);
3849 }
3850 \f
3851 /* Copy/constant propagation. */
3852
3853 /* Maximum number of register uses in an insn that we handle. */
3854 #define MAX_USES 8
3855
3856 /* Table of uses found in an insn.
3857 Allocated statically to avoid alloc/free complexity and overhead. */
3858 static struct reg_use reg_use_table[MAX_USES];
3859
3860 /* Index into `reg_use_table' while building it. */
3861 static int reg_use_count;
3862
3863 /* Set up a list of register numbers used in INSN. The found uses are stored
3864 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
3865 and contains the number of uses in the table upon exit.
3866
3867 ??? If a register appears multiple times we will record it multiple times.
3868 This doesn't hurt anything but it will slow things down. */
3869
3870 static void
3871 find_used_regs (xptr, data)
3872 rtx *xptr;
3873 void *data ATTRIBUTE_UNUSED;
3874 {
3875 int i, j;
3876 enum rtx_code code;
3877 const char *fmt;
3878 rtx x = *xptr;
3879
3880 /* repeat is used to turn tail-recursion into iteration since GCC
3881 can't do it when there's no return value. */
3882 repeat:
3883 if (x == 0)
3884 return;
3885
3886 code = GET_CODE (x);
3887 if (REG_P (x))
3888 {
3889 if (reg_use_count == MAX_USES)
3890 return;
3891
3892 reg_use_table[reg_use_count].reg_rtx = x;
3893 reg_use_count++;
3894 }
3895
3896 /* Recursively scan the operands of this expression. */
3897
3898 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
3899 {
3900 if (fmt[i] == 'e')
3901 {
3902 /* If we are about to do the last recursive call
3903 needed at this level, change it into iteration.
3904 This function is called enough to be worth it. */
3905 if (i == 0)
3906 {
3907 x = XEXP (x, 0);
3908 goto repeat;
3909 }
3910
3911 find_used_regs (&XEXP (x, i), data);
3912 }
3913 else if (fmt[i] == 'E')
3914 for (j = 0; j < XVECLEN (x, i); j++)
3915 find_used_regs (&XVECEXP (x, i, j), data);
3916 }
3917 }
3918
3919 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3920 Returns nonzero is successful. */
3921
3922 static int
3923 try_replace_reg (from, to, insn)
3924 rtx from, to, insn;
3925 {
3926 rtx note = find_reg_equal_equiv_note (insn);
3927 rtx src = 0;
3928 int success = 0;
3929 rtx set = single_set (insn);
3930
3931 validate_replace_src_group (from, to, insn);
3932 if (num_changes_pending () && apply_change_group ())
3933 success = 1;
3934
3935 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
3936 {
3937 /* If above failed and this is a single set, try to simplify the source of
3938 the set given our substitution. We could perhaps try this for multiple
3939 SETs, but it probably won't buy us anything. */
3940 src = simplify_replace_rtx (SET_SRC (set), from, to);
3941
3942 if (!rtx_equal_p (src, SET_SRC (set))
3943 && validate_change (insn, &SET_SRC (set), src, 0))
3944 success = 1;
3945
3946 /* If we've failed to do replacement, have a single SET, and don't already
3947 have a note, add a REG_EQUAL note to not lose information. */
3948 if (!success && note == 0 && set != 0)
3949 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3950 }
3951
3952 /* If there is already a NOTE, update the expression in it with our
3953 replacement. */
3954 else if (note != 0)
3955 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
3956
3957 /* REG_EQUAL may get simplified into register.
3958 We don't allow that. Remove that note. This code ought
3959 not to hapen, because previous code ought to syntetize
3960 reg-reg move, but be on the safe side. */
3961 if (note && REG_P (XEXP (note, 0)))
3962 remove_note (insn, note);
3963
3964 return success;
3965 }
3966
3967 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
3968 NULL no such set is found. */
3969
3970 static struct expr *
3971 find_avail_set (regno, insn)
3972 int regno;
3973 rtx insn;
3974 {
3975 /* SET1 contains the last set found that can be returned to the caller for
3976 use in a substitution. */
3977 struct expr *set1 = 0;
3978
3979 /* Loops are not possible here. To get a loop we would need two sets
3980 available at the start of the block containing INSN. ie we would
3981 need two sets like this available at the start of the block:
3982
3983 (set (reg X) (reg Y))
3984 (set (reg Y) (reg X))
3985
3986 This can not happen since the set of (reg Y) would have killed the
3987 set of (reg X) making it unavailable at the start of this block. */
3988 while (1)
3989 {
3990 rtx src;
3991 struct expr *set = lookup_set (regno, NULL_RTX, &set_hash_table);
3992
3993 /* Find a set that is available at the start of the block
3994 which contains INSN. */
3995 while (set)
3996 {
3997 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
3998 break;
3999 set = next_set (regno, set);
4000 }
4001
4002 /* If no available set was found we've reached the end of the
4003 (possibly empty) copy chain. */
4004 if (set == 0)
4005 break;
4006
4007 if (GET_CODE (set->expr) != SET)
4008 abort ();
4009
4010 src = SET_SRC (set->expr);
4011
4012 /* We know the set is available.
4013 Now check that SRC is ANTLOC (i.e. none of the source operands
4014 have changed since the start of the block).
4015
4016 If the source operand changed, we may still use it for the next
4017 iteration of this loop, but we may not use it for substitutions. */
4018
4019 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
4020 set1 = set;
4021
4022 /* If the source of the set is anything except a register, then
4023 we have reached the end of the copy chain. */
4024 if (GET_CODE (src) != REG)
4025 break;
4026
4027 /* Follow the copy chain, ie start another iteration of the loop
4028 and see if we have an available copy into SRC. */
4029 regno = REGNO (src);
4030 }
4031
4032 /* SET1 holds the last set that was available and anticipatable at
4033 INSN. */
4034 return set1;
4035 }
4036
4037 /* Subroutine of cprop_insn that tries to propagate constants into
4038 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
4039 it is the instruction that immediately preceeds JUMP, and must be a
4040 single SET of a register. FROM is what we will try to replace,
4041 SRC is the constant we will try to substitute for it. Returns nonzero
4042 if a change was made. */
4043
4044 static int
4045 cprop_jump (bb, setcc, jump, from, src)
4046 basic_block bb;
4047 rtx setcc;
4048 rtx jump;
4049 rtx from;
4050 rtx src;
4051 {
4052 rtx new, new_set;
4053 rtx set = pc_set (jump);
4054
4055 /* First substitute in the INSN condition as the SET_SRC of the JUMP,
4056 then substitute that given values in this expanded JUMP. */
4057 if (setcc != NULL
4058 && !modified_between_p (from, setcc, jump)
4059 && !modified_between_p (src, setcc, jump))
4060 {
4061 rtx setcc_set = single_set (setcc);
4062 new_set = simplify_replace_rtx (SET_SRC (set),
4063 SET_DEST (setcc_set),
4064 SET_SRC (setcc_set));
4065 }
4066 else
4067 new_set = set;
4068
4069 new = simplify_replace_rtx (new_set, from, src);
4070
4071 /* If no simplification can be made, then try the next
4072 register. */
4073 if (rtx_equal_p (new, new_set) || rtx_equal_p (new, SET_SRC (set)))
4074 return 0;
4075
4076 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
4077 if (new == pc_rtx)
4078 delete_insn (jump);
4079 else
4080 {
4081 /* Ensure the value computed inside the jump insn to be equivalent
4082 to one computed by setcc. */
4083 if (setcc
4084 && modified_in_p (new, setcc))
4085 return 0;
4086 if (! validate_change (jump, &SET_SRC (set), new, 0))
4087 return 0;
4088
4089 /* If this has turned into an unconditional jump,
4090 then put a barrier after it so that the unreachable
4091 code will be deleted. */
4092 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
4093 emit_barrier_after (jump);
4094 }
4095
4096 #ifdef HAVE_cc0
4097 /* Delete the cc0 setter. */
4098 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
4099 delete_insn (setcc);
4100 #endif
4101
4102 run_jump_opt_after_gcse = 1;
4103
4104 const_prop_count++;
4105 if (gcse_file != NULL)
4106 {
4107 fprintf (gcse_file,
4108 "CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
4109 REGNO (from), INSN_UID (jump));
4110 print_rtl (gcse_file, src);
4111 fprintf (gcse_file, "\n");
4112 }
4113 purge_dead_edges (bb);
4114
4115 return 1;
4116 }
4117
4118 static bool
4119 constprop_register (insn, from, to, alter_jumps)
4120 rtx insn;
4121 rtx from;
4122 rtx to;
4123 int alter_jumps;
4124 {
4125 rtx sset;
4126
4127 /* Check for reg or cc0 setting instructions followed by
4128 conditional branch instructions first. */
4129 if (alter_jumps
4130 && (sset = single_set (insn)) != NULL
4131 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
4132 {
4133 rtx dest = SET_DEST (sset);
4134 if ((REG_P (dest) || CC0_P (dest))
4135 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
4136 return 1;
4137 }
4138
4139 /* Handle normal insns next. */
4140 if (GET_CODE (insn) == INSN
4141 && try_replace_reg (from, to, insn))
4142 return 1;
4143
4144 /* Try to propagate a CONST_INT into a conditional jump.
4145 We're pretty specific about what we will handle in this
4146 code, we can extend this as necessary over time.
4147
4148 Right now the insn in question must look like
4149 (set (pc) (if_then_else ...)) */
4150 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
4151 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
4152 return 0;
4153 }
4154
4155 /* Perform constant and copy propagation on INSN.
4156 The result is nonzero if a change was made. */
4157
4158 static int
4159 cprop_insn (insn, alter_jumps)
4160 rtx insn;
4161 int alter_jumps;
4162 {
4163 struct reg_use *reg_used;
4164 int changed = 0;
4165 rtx note;
4166
4167 if (!INSN_P (insn))
4168 return 0;
4169
4170 reg_use_count = 0;
4171 note_uses (&PATTERN (insn), find_used_regs, NULL);
4172
4173 note = find_reg_equal_equiv_note (insn);
4174
4175 /* We may win even when propagating constants into notes. */
4176 if (note)
4177 find_used_regs (&XEXP (note, 0), NULL);
4178
4179 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4180 reg_used++, reg_use_count--)
4181 {
4182 unsigned int regno = REGNO (reg_used->reg_rtx);
4183 rtx pat, src;
4184 struct expr *set;
4185
4186 /* Ignore registers created by GCSE.
4187 We do this because ... */
4188 if (regno >= max_gcse_regno)
4189 continue;
4190
4191 /* If the register has already been set in this block, there's
4192 nothing we can do. */
4193 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
4194 continue;
4195
4196 /* Find an assignment that sets reg_used and is available
4197 at the start of the block. */
4198 set = find_avail_set (regno, insn);
4199 if (! set)
4200 continue;
4201
4202 pat = set->expr;
4203 /* ??? We might be able to handle PARALLELs. Later. */
4204 if (GET_CODE (pat) != SET)
4205 abort ();
4206
4207 src = SET_SRC (pat);
4208
4209 /* Constant propagation. */
4210 if (CONSTANT_P (src))
4211 {
4212 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
4213 {
4214 changed = 1;
4215 const_prop_count++;
4216 if (gcse_file != NULL)
4217 {
4218 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
4219 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
4220 print_rtl (gcse_file, src);
4221 fprintf (gcse_file, "\n");
4222 }
4223 }
4224 }
4225 else if (GET_CODE (src) == REG
4226 && REGNO (src) >= FIRST_PSEUDO_REGISTER
4227 && REGNO (src) != regno)
4228 {
4229 if (try_replace_reg (reg_used->reg_rtx, src, insn))
4230 {
4231 changed = 1;
4232 copy_prop_count++;
4233 if (gcse_file != NULL)
4234 {
4235 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
4236 regno, INSN_UID (insn));
4237 fprintf (gcse_file, " with reg %d\n", REGNO (src));
4238 }
4239
4240 /* The original insn setting reg_used may or may not now be
4241 deletable. We leave the deletion to flow. */
4242 /* FIXME: If it turns out that the insn isn't deletable,
4243 then we may have unnecessarily extended register lifetimes
4244 and made things worse. */
4245 }
4246 }
4247 }
4248
4249 return changed;
4250 }
4251
4252 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4253 their REG_EQUAL notes need updating. */
4254
4255 static bool
4256 do_local_cprop (x, insn, alter_jumps, libcall_sp)
4257 rtx x;
4258 rtx insn;
4259 int alter_jumps;
4260 rtx *libcall_sp;
4261 {
4262 rtx newreg = NULL, newcnst = NULL;
4263
4264 /* Rule out USE instructions and ASM statements as we don't want to
4265 change the hard registers mentioned. */
4266 if (GET_CODE (x) == REG
4267 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
4268 || (GET_CODE (PATTERN (insn)) != USE
4269 && asm_noperands (PATTERN (insn)) < 0)))
4270 {
4271 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
4272 struct elt_loc_list *l;
4273
4274 if (!val)
4275 return false;
4276 for (l = val->locs; l; l = l->next)
4277 {
4278 rtx this_rtx = l->loc;
4279 rtx note;
4280
4281 if (CONSTANT_P (this_rtx))
4282 newcnst = this_rtx;
4283 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
4284 /* Don't copy propagate if it has attached REG_EQUIV note.
4285 At this point this only function parameters should have
4286 REG_EQUIV notes and if the argument slot is used somewhere
4287 explicitly, it means address of parameter has been taken,
4288 so we should not extend the lifetime of the pseudo. */
4289 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
4290 || GET_CODE (XEXP (note, 0)) != MEM))
4291 newreg = this_rtx;
4292 }
4293 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
4294 {
4295 /* If we find a case where we can't fix the retval REG_EQUAL notes
4296 match the new register, we either have to abandom this replacement
4297 or fix delete_trivially_dead_insns to preserve the setting insn,
4298 or make it delete the REG_EUAQL note, and fix up all passes that
4299 require the REG_EQUAL note there. */
4300 if (!adjust_libcall_notes (x, newcnst, insn, libcall_sp))
4301 abort ();
4302 if (gcse_file != NULL)
4303 {
4304 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
4305 REGNO (x));
4306 fprintf (gcse_file, "insn %d with constant ",
4307 INSN_UID (insn));
4308 print_rtl (gcse_file, newcnst);
4309 fprintf (gcse_file, "\n");
4310 }
4311 const_prop_count++;
4312 return true;
4313 }
4314 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
4315 {
4316 adjust_libcall_notes (x, newreg, insn, libcall_sp);
4317 if (gcse_file != NULL)
4318 {
4319 fprintf (gcse_file,
4320 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
4321 REGNO (x), INSN_UID (insn));
4322 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
4323 }
4324 copy_prop_count++;
4325 return true;
4326 }
4327 }
4328 return false;
4329 }
4330
4331 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
4332 their REG_EQUAL notes need updating to reflect that OLDREG has been
4333 replaced with NEWVAL in INSN. Return true if all substitutions could
4334 be made. */
4335 static bool
4336 adjust_libcall_notes (oldreg, newval, insn, libcall_sp)
4337 rtx oldreg, newval, insn, *libcall_sp;
4338 {
4339 rtx end;
4340
4341 while ((end = *libcall_sp++))
4342 {
4343 rtx note = find_reg_equal_equiv_note (end);
4344
4345 if (! note)
4346 continue;
4347
4348 if (REG_P (newval))
4349 {
4350 if (reg_set_between_p (newval, PREV_INSN (insn), end))
4351 {
4352 do
4353 {
4354 note = find_reg_equal_equiv_note (end);
4355 if (! note)
4356 continue;
4357 if (reg_mentioned_p (newval, XEXP (note, 0)))
4358 return false;
4359 }
4360 while ((end = *libcall_sp++));
4361 return true;
4362 }
4363 }
4364 XEXP (note, 0) = replace_rtx (XEXP (note, 0), oldreg, newval);
4365 insn = end;
4366 }
4367 return true;
4368 }
4369
4370 #define MAX_NESTED_LIBCALLS 9
4371
4372 static void
4373 local_cprop_pass (alter_jumps)
4374 int alter_jumps;
4375 {
4376 rtx insn;
4377 struct reg_use *reg_used;
4378 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
4379
4380 cselib_init ();
4381 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
4382 *libcall_sp = 0;
4383 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4384 {
4385 if (INSN_P (insn))
4386 {
4387 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
4388
4389 if (note)
4390 {
4391 if (libcall_sp == libcall_stack)
4392 abort ();
4393 *--libcall_sp = XEXP (note, 0);
4394 }
4395 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
4396 if (note)
4397 libcall_sp++;
4398 note = find_reg_equal_equiv_note (insn);
4399 do
4400 {
4401 reg_use_count = 0;
4402 note_uses (&PATTERN (insn), find_used_regs, NULL);
4403 if (note)
4404 find_used_regs (&XEXP (note, 0), NULL);
4405
4406 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
4407 reg_used++, reg_use_count--)
4408 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
4409 libcall_sp))
4410 break;
4411 }
4412 while (reg_use_count);
4413 }
4414 cselib_process_insn (insn);
4415 }
4416 cselib_finish ();
4417 }
4418
4419 /* Forward propagate copies. This includes copies and constants. Return
4420 nonzero if a change was made. */
4421
4422 static int
4423 cprop (alter_jumps)
4424 int alter_jumps;
4425 {
4426 int changed;
4427 basic_block bb;
4428 rtx insn;
4429
4430 /* Note we start at block 1. */
4431 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4432 {
4433 if (gcse_file != NULL)
4434 fprintf (gcse_file, "\n");
4435 return 0;
4436 }
4437
4438 changed = 0;
4439 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
4440 {
4441 /* Reset tables used to keep track of what's still valid [since the
4442 start of the block]. */
4443 reset_opr_set_tables ();
4444
4445 for (insn = bb->head;
4446 insn != NULL && insn != NEXT_INSN (bb->end);
4447 insn = NEXT_INSN (insn))
4448 if (INSN_P (insn))
4449 {
4450 changed |= cprop_insn (insn, alter_jumps);
4451
4452 /* Keep track of everything modified by this insn. */
4453 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4454 call mark_oprs_set if we turned the insn into a NOTE. */
4455 if (GET_CODE (insn) != NOTE)
4456 mark_oprs_set (insn);
4457 }
4458 }
4459
4460 if (gcse_file != NULL)
4461 fprintf (gcse_file, "\n");
4462
4463 return changed;
4464 }
4465
4466 /* Perform one copy/constant propagation pass.
4467 F is the first insn in the function.
4468 PASS is the pass count. */
4469
4470 static int
4471 one_cprop_pass (pass, alter_jumps)
4472 int pass;
4473 int alter_jumps;
4474 {
4475 int changed = 0;
4476
4477 const_prop_count = 0;
4478 copy_prop_count = 0;
4479
4480 local_cprop_pass (alter_jumps);
4481
4482 alloc_hash_table (max_cuid, &set_hash_table, 1);
4483 compute_hash_table (&set_hash_table);
4484 if (gcse_file)
4485 dump_hash_table (gcse_file, "SET", &set_hash_table);
4486 if (set_hash_table.n_elems > 0)
4487 {
4488 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
4489 compute_cprop_data ();
4490 changed = cprop (alter_jumps);
4491 if (alter_jumps)
4492 changed |= bypass_conditional_jumps ();
4493 free_cprop_mem ();
4494 }
4495
4496 free_hash_table (&set_hash_table);
4497
4498 if (gcse_file)
4499 {
4500 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
4501 current_function_name, pass, bytes_used);
4502 fprintf (gcse_file, "%d const props, %d copy props\n\n",
4503 const_prop_count, copy_prop_count);
4504 }
4505
4506 return changed;
4507 }
4508 \f
4509 /* Bypass conditional jumps. */
4510
4511 /* Find a set of REGNO to a constant that is available at the end of basic
4512 block BB. Returns NULL if no such set is found. Based heavily upon
4513 find_avail_set. */
4514
4515 static struct expr *
4516 find_bypass_set (regno, bb)
4517 int regno;
4518 int bb;
4519 {
4520 struct expr *result = 0;
4521
4522 for (;;)
4523 {
4524 rtx src;
4525 struct expr *set = lookup_set (regno, NULL_RTX, &set_hash_table);
4526
4527 while (set)
4528 {
4529 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
4530 break;
4531 set = next_set (regno, set);
4532 }
4533
4534 if (set == 0)
4535 break;
4536
4537 if (GET_CODE (set->expr) != SET)
4538 abort ();
4539
4540 src = SET_SRC (set->expr);
4541 if (CONSTANT_P (src))
4542 result = set;
4543
4544 if (GET_CODE (src) != REG)
4545 break;
4546
4547 regno = REGNO (src);
4548 }
4549 return result;
4550 }
4551
4552
4553 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
4554 basic block BB which has more than one predecessor. If not NULL, SETCC
4555 is the first instruction of BB, which is immediately followed by JUMP_INSN
4556 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
4557 Returns nonzero if a change was made. */
4558
4559 static int
4560 bypass_block (bb, setcc, jump)
4561 basic_block bb;
4562 rtx setcc, jump;
4563 {
4564 rtx insn, note;
4565 edge e, enext;
4566 int i, change;
4567
4568 insn = (setcc != NULL) ? setcc : jump;
4569
4570 /* Determine set of register uses in INSN. */
4571 reg_use_count = 0;
4572 note_uses (&PATTERN (insn), find_used_regs, NULL);
4573 note = find_reg_equal_equiv_note (insn);
4574 if (note)
4575 find_used_regs (&XEXP (note, 0), NULL);
4576
4577 change = 0;
4578 for (e = bb->pred; e; e = enext)
4579 {
4580 enext = e->pred_next;
4581 for (i = 0; i < reg_use_count; i++)
4582 {
4583 struct reg_use *reg_used = &reg_use_table[i];
4584 unsigned int regno = REGNO (reg_used->reg_rtx);
4585 basic_block dest, old_dest;
4586 struct expr *set;
4587 rtx src, new;
4588
4589 if (regno >= max_gcse_regno)
4590 continue;
4591
4592 set = find_bypass_set (regno, e->src->index);
4593
4594 if (! set)
4595 continue;
4596
4597 src = SET_SRC (pc_set (jump));
4598
4599 if (setcc != NULL)
4600 src = simplify_replace_rtx (src,
4601 SET_DEST (PATTERN (setcc)),
4602 SET_SRC (PATTERN (setcc)));
4603
4604 new = simplify_replace_rtx (src, reg_used->reg_rtx,
4605 SET_SRC (set->expr));
4606
4607 if (new == pc_rtx)
4608 dest = FALLTHRU_EDGE (bb)->dest;
4609 else if (GET_CODE (new) == LABEL_REF)
4610 dest = BRANCH_EDGE (bb)->dest;
4611 else
4612 dest = NULL;
4613
4614 /* Once basic block indices are stable, we should be able
4615 to use redirect_edge_and_branch_force instead. */
4616 old_dest = e->dest;
4617 if (dest != NULL && dest != old_dest
4618 && redirect_edge_and_branch (e, dest))
4619 {
4620 /* Copy the register setter to the redirected edge.
4621 Don't copy CC0 setters, as CC0 is dead after jump. */
4622 if (setcc)
4623 {
4624 rtx pat = PATTERN (setcc);
4625 if (!CC0_P (SET_DEST (pat)))
4626 insert_insn_on_edge (copy_insn (pat), e);
4627 }
4628
4629 if (gcse_file != NULL)
4630 {
4631 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d in jump_insn %d equals constant ",
4632 regno, INSN_UID (jump));
4633 print_rtl (gcse_file, SET_SRC (set->expr));
4634 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
4635 e->src->index, old_dest->index, dest->index);
4636 }
4637 change = 1;
4638 break;
4639 }
4640 }
4641 }
4642 return change;
4643 }
4644
4645 /* Find basic blocks with more than one predecessor that only contain a
4646 single conditional jump. If the result of the comparison is known at
4647 compile-time from any incoming edge, redirect that edge to the
4648 appropriate target. Returns nonzero if a change was made. */
4649
4650 static int
4651 bypass_conditional_jumps ()
4652 {
4653 basic_block bb;
4654 int changed;
4655 rtx setcc;
4656 rtx insn;
4657 rtx dest;
4658
4659 /* Note we start at block 1. */
4660 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
4661 return 0;
4662
4663 changed = 0;
4664 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
4665 EXIT_BLOCK_PTR, next_bb)
4666 {
4667 /* Check for more than one predecessor. */
4668 if (bb->pred && bb->pred->pred_next)
4669 {
4670 setcc = NULL_RTX;
4671 for (insn = bb->head;
4672 insn != NULL && insn != NEXT_INSN (bb->end);
4673 insn = NEXT_INSN (insn))
4674 if (GET_CODE (insn) == INSN)
4675 {
4676 if (setcc)
4677 break;
4678 if (GET_CODE (PATTERN (insn)) != SET)
4679 break;
4680
4681 dest = SET_DEST (PATTERN (insn));
4682 if (REG_P (dest) || CC0_P (dest))
4683 setcc = insn;
4684 else
4685 break;
4686 }
4687 else if (GET_CODE (insn) == JUMP_INSN)
4688 {
4689 if (any_condjump_p (insn) && onlyjump_p (insn))
4690 changed |= bypass_block (bb, setcc, insn);
4691 break;
4692 }
4693 else if (INSN_P (insn))
4694 break;
4695 }
4696 }
4697
4698 /* If we bypassed any register setting insns, we inserted a
4699 copy on the redirected edge. These need to be commited. */
4700 if (changed)
4701 commit_edge_insertions();
4702
4703 return changed;
4704 }
4705 \f
4706 /* Compute PRE+LCM working variables. */
4707
4708 /* Local properties of expressions. */
4709 /* Nonzero for expressions that are transparent in the block. */
4710 static sbitmap *transp;
4711
4712 /* Nonzero for expressions that are transparent at the end of the block.
4713 This is only zero for expressions killed by abnormal critical edge
4714 created by a calls. */
4715 static sbitmap *transpout;
4716
4717 /* Nonzero for expressions that are computed (available) in the block. */
4718 static sbitmap *comp;
4719
4720 /* Nonzero for expressions that are locally anticipatable in the block. */
4721 static sbitmap *antloc;
4722
4723 /* Nonzero for expressions where this block is an optimal computation
4724 point. */
4725 static sbitmap *pre_optimal;
4726
4727 /* Nonzero for expressions which are redundant in a particular block. */
4728 static sbitmap *pre_redundant;
4729
4730 /* Nonzero for expressions which should be inserted on a specific edge. */
4731 static sbitmap *pre_insert_map;
4732
4733 /* Nonzero for expressions which should be deleted in a specific block. */
4734 static sbitmap *pre_delete_map;
4735
4736 /* Contains the edge_list returned by pre_edge_lcm. */
4737 static struct edge_list *edge_list;
4738
4739 /* Redundant insns. */
4740 static sbitmap pre_redundant_insns;
4741
4742 /* Allocate vars used for PRE analysis. */
4743
4744 static void
4745 alloc_pre_mem (n_blocks, n_exprs)
4746 int n_blocks, n_exprs;
4747 {
4748 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4749 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4750 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4751
4752 pre_optimal = NULL;
4753 pre_redundant = NULL;
4754 pre_insert_map = NULL;
4755 pre_delete_map = NULL;
4756 ae_in = NULL;
4757 ae_out = NULL;
4758 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
4759
4760 /* pre_insert and pre_delete are allocated later. */
4761 }
4762
4763 /* Free vars used for PRE analysis. */
4764
4765 static void
4766 free_pre_mem ()
4767 {
4768 sbitmap_vector_free (transp);
4769 sbitmap_vector_free (comp);
4770
4771 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
4772
4773 if (pre_optimal)
4774 sbitmap_vector_free (pre_optimal);
4775 if (pre_redundant)
4776 sbitmap_vector_free (pre_redundant);
4777 if (pre_insert_map)
4778 sbitmap_vector_free (pre_insert_map);
4779 if (pre_delete_map)
4780 sbitmap_vector_free (pre_delete_map);
4781 if (ae_in)
4782 sbitmap_vector_free (ae_in);
4783 if (ae_out)
4784 sbitmap_vector_free (ae_out);
4785
4786 transp = comp = NULL;
4787 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
4788 ae_in = ae_out = NULL;
4789 }
4790
4791 /* Top level routine to do the dataflow analysis needed by PRE. */
4792
4793 static void
4794 compute_pre_data ()
4795 {
4796 sbitmap trapping_expr;
4797 basic_block bb;
4798 unsigned int ui;
4799
4800 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4801 sbitmap_vector_zero (ae_kill, last_basic_block);
4802
4803 /* Collect expressions which might trap. */
4804 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
4805 sbitmap_zero (trapping_expr);
4806 for (ui = 0; ui < expr_hash_table.size; ui++)
4807 {
4808 struct expr *e;
4809 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
4810 if (may_trap_p (e->expr))
4811 SET_BIT (trapping_expr, e->bitmap_index);
4812 }
4813
4814 /* Compute ae_kill for each basic block using:
4815
4816 ~(TRANSP | COMP)
4817
4818 This is significantly faster than compute_ae_kill. */
4819
4820 FOR_EACH_BB (bb)
4821 {
4822 edge e;
4823
4824 /* If the current block is the destination of an abnormal edge, we
4825 kill all trapping expressions because we won't be able to properly
4826 place the instruction on the edge. So make them neither
4827 anticipatable nor transparent. This is fairly conservative. */
4828 for (e = bb->pred; e ; e = e->pred_next)
4829 if (e->flags & EDGE_ABNORMAL)
4830 {
4831 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
4832 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
4833 break;
4834 }
4835
4836 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
4837 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
4838 }
4839
4840 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
4841 ae_kill, &pre_insert_map, &pre_delete_map);
4842 sbitmap_vector_free (antloc);
4843 antloc = NULL;
4844 sbitmap_vector_free (ae_kill);
4845 ae_kill = NULL;
4846 sbitmap_free (trapping_expr);
4847 }
4848 \f
4849 /* PRE utilities */
4850
4851 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
4852 block BB.
4853
4854 VISITED is a pointer to a working buffer for tracking which BB's have
4855 been visited. It is NULL for the top-level call.
4856
4857 We treat reaching expressions that go through blocks containing the same
4858 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4859 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4860 2 as not reaching. The intent is to improve the probability of finding
4861 only one reaching expression and to reduce register lifetimes by picking
4862 the closest such expression. */
4863
4864 static int
4865 pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited)
4866 basic_block occr_bb;
4867 struct expr *expr;
4868 basic_block bb;
4869 char *visited;
4870 {
4871 edge pred;
4872
4873 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
4874 {
4875 basic_block pred_bb = pred->src;
4876
4877 if (pred->src == ENTRY_BLOCK_PTR
4878 /* Has predecessor has already been visited? */
4879 || visited[pred_bb->index])
4880 ;/* Nothing to do. */
4881
4882 /* Does this predecessor generate this expression? */
4883 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
4884 {
4885 /* Is this the occurrence we're looking for?
4886 Note that there's only one generating occurrence per block
4887 so we just need to check the block number. */
4888 if (occr_bb == pred_bb)
4889 return 1;
4890
4891 visited[pred_bb->index] = 1;
4892 }
4893 /* Ignore this predecessor if it kills the expression. */
4894 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
4895 visited[pred_bb->index] = 1;
4896
4897 /* Neither gen nor kill. */
4898 else
4899 {
4900 visited[pred_bb->index] = 1;
4901 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
4902 return 1;
4903 }
4904 }
4905
4906 /* All paths have been checked. */
4907 return 0;
4908 }
4909
4910 /* The wrapper for pre_expr_reaches_here_work that ensures that any
4911 memory allocated for that function is returned. */
4912
4913 static int
4914 pre_expr_reaches_here_p (occr_bb, expr, bb)
4915 basic_block occr_bb;
4916 struct expr *expr;
4917 basic_block bb;
4918 {
4919 int rval;
4920 char *visited = (char *) xcalloc (last_basic_block, 1);
4921
4922 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
4923
4924 free (visited);
4925 return rval;
4926 }
4927 \f
4928
4929 /* Given an expr, generate RTL which we can insert at the end of a BB,
4930 or on an edge. Set the block number of any insns generated to
4931 the value of BB. */
4932
4933 static rtx
4934 process_insert_insn (expr)
4935 struct expr *expr;
4936 {
4937 rtx reg = expr->reaching_reg;
4938 rtx exp = copy_rtx (expr->expr);
4939 rtx pat;
4940
4941 start_sequence ();
4942
4943 /* If the expression is something that's an operand, like a constant,
4944 just copy it to a register. */
4945 if (general_operand (exp, GET_MODE (reg)))
4946 emit_move_insn (reg, exp);
4947
4948 /* Otherwise, make a new insn to compute this expression and make sure the
4949 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4950 expression to make sure we don't have any sharing issues. */
4951 else if (insn_invalid_p (emit_insn (gen_rtx_SET (VOIDmode, reg, exp))))
4952 abort ();
4953
4954 pat = get_insns ();
4955 end_sequence ();
4956
4957 return pat;
4958 }
4959
4960 /* Add EXPR to the end of basic block BB.
4961
4962 This is used by both the PRE and code hoisting.
4963
4964 For PRE, we want to verify that the expr is either transparent
4965 or locally anticipatable in the target block. This check makes
4966 no sense for code hoisting. */
4967
4968 static void
4969 insert_insn_end_bb (expr, bb, pre)
4970 struct expr *expr;
4971 basic_block bb;
4972 int pre;
4973 {
4974 rtx insn = bb->end;
4975 rtx new_insn;
4976 rtx reg = expr->reaching_reg;
4977 int regno = REGNO (reg);
4978 rtx pat, pat_end;
4979
4980 pat = process_insert_insn (expr);
4981 if (pat == NULL_RTX || ! INSN_P (pat))
4982 abort ();
4983
4984 pat_end = pat;
4985 while (NEXT_INSN (pat_end) != NULL_RTX)
4986 pat_end = NEXT_INSN (pat_end);
4987
4988 /* If the last insn is a jump, insert EXPR in front [taking care to
4989 handle cc0, etc. properly]. Similary we need to care trapping
4990 instructions in presence of non-call exceptions. */
4991
4992 if (GET_CODE (insn) == JUMP_INSN
4993 || (GET_CODE (insn) == INSN
4994 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL))))
4995 {
4996 #ifdef HAVE_cc0
4997 rtx note;
4998 #endif
4999 /* It should always be the case that we can put these instructions
5000 anywhere in the basic block with performing PRE optimizations.
5001 Check this. */
5002 if (GET_CODE (insn) == INSN && pre
5003 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
5004 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
5005 abort ();
5006
5007 /* If this is a jump table, then we can't insert stuff here. Since
5008 we know the previous real insn must be the tablejump, we insert
5009 the new instruction just before the tablejump. */
5010 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
5011 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
5012 insn = prev_real_insn (insn);
5013
5014 #ifdef HAVE_cc0
5015 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
5016 if cc0 isn't set. */
5017 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
5018 if (note)
5019 insn = XEXP (note, 0);
5020 else
5021 {
5022 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
5023 if (maybe_cc0_setter
5024 && INSN_P (maybe_cc0_setter)
5025 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
5026 insn = maybe_cc0_setter;
5027 }
5028 #endif
5029 /* FIXME: What if something in cc0/jump uses value set in new insn? */
5030 new_insn = emit_insn_before (pat, insn);
5031 }
5032
5033 /* Likewise if the last insn is a call, as will happen in the presence
5034 of exception handling. */
5035 else if (GET_CODE (insn) == CALL_INSN
5036 && (bb->succ->succ_next || (bb->succ->flags & EDGE_ABNORMAL)))
5037 {
5038 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
5039 we search backward and place the instructions before the first
5040 parameter is loaded. Do this for everyone for consistency and a
5041 presumtion that we'll get better code elsewhere as well.
5042
5043 It should always be the case that we can put these instructions
5044 anywhere in the basic block with performing PRE optimizations.
5045 Check this. */
5046
5047 if (pre
5048 && !TEST_BIT (antloc[bb->index], expr->bitmap_index)
5049 && !TEST_BIT (transp[bb->index], expr->bitmap_index))
5050 abort ();
5051
5052 /* Since different machines initialize their parameter registers
5053 in different orders, assume nothing. Collect the set of all
5054 parameter registers. */
5055 insn = find_first_parameter_load (insn, bb->head);
5056
5057 /* If we found all the parameter loads, then we want to insert
5058 before the first parameter load.
5059
5060 If we did not find all the parameter loads, then we might have
5061 stopped on the head of the block, which could be a CODE_LABEL.
5062 If we inserted before the CODE_LABEL, then we would be putting
5063 the insn in the wrong basic block. In that case, put the insn
5064 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
5065 while (GET_CODE (insn) == CODE_LABEL
5066 || NOTE_INSN_BASIC_BLOCK_P (insn))
5067 insn = NEXT_INSN (insn);
5068
5069 new_insn = emit_insn_before (pat, insn);
5070 }
5071 else
5072 new_insn = emit_insn_after (pat, insn);
5073
5074 while (1)
5075 {
5076 if (INSN_P (pat))
5077 {
5078 add_label_notes (PATTERN (pat), new_insn);
5079 note_stores (PATTERN (pat), record_set_info, pat);
5080 }
5081 if (pat == pat_end)
5082 break;
5083 pat = NEXT_INSN (pat);
5084 }
5085
5086 gcse_create_count++;
5087
5088 if (gcse_file)
5089 {
5090 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
5091 bb->index, INSN_UID (new_insn));
5092 fprintf (gcse_file, "copying expression %d to reg %d\n",
5093 expr->bitmap_index, regno);
5094 }
5095 }
5096
5097 /* Insert partially redundant expressions on edges in the CFG to make
5098 the expressions fully redundant. */
5099
5100 static int
5101 pre_edge_insert (edge_list, index_map)
5102 struct edge_list *edge_list;
5103 struct expr **index_map;
5104 {
5105 int e, i, j, num_edges, set_size, did_insert = 0;
5106 sbitmap *inserted;
5107
5108 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
5109 if it reaches any of the deleted expressions. */
5110
5111 set_size = pre_insert_map[0]->size;
5112 num_edges = NUM_EDGES (edge_list);
5113 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
5114 sbitmap_vector_zero (inserted, num_edges);
5115
5116 for (e = 0; e < num_edges; e++)
5117 {
5118 int indx;
5119 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
5120
5121 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
5122 {
5123 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
5124
5125 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
5126 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
5127 {
5128 struct expr *expr = index_map[j];
5129 struct occr *occr;
5130
5131 /* Now look at each deleted occurrence of this expression. */
5132 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5133 {
5134 if (! occr->deleted_p)
5135 continue;
5136
5137 /* Insert this expression on this edge if if it would
5138 reach the deleted occurrence in BB. */
5139 if (!TEST_BIT (inserted[e], j))
5140 {
5141 rtx insn;
5142 edge eg = INDEX_EDGE (edge_list, e);
5143
5144 /* We can't insert anything on an abnormal and
5145 critical edge, so we insert the insn at the end of
5146 the previous block. There are several alternatives
5147 detailed in Morgans book P277 (sec 10.5) for
5148 handling this situation. This one is easiest for
5149 now. */
5150
5151 if ((eg->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
5152 insert_insn_end_bb (index_map[j], bb, 0);
5153 else
5154 {
5155 insn = process_insert_insn (index_map[j]);
5156 insert_insn_on_edge (insn, eg);
5157 }
5158
5159 if (gcse_file)
5160 {
5161 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
5162 bb->index,
5163 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
5164 fprintf (gcse_file, "copy expression %d\n",
5165 expr->bitmap_index);
5166 }
5167
5168 update_ld_motion_stores (expr);
5169 SET_BIT (inserted[e], j);
5170 did_insert = 1;
5171 gcse_create_count++;
5172 }
5173 }
5174 }
5175 }
5176 }
5177
5178 sbitmap_vector_free (inserted);
5179 return did_insert;
5180 }
5181
5182 /* Copy the result of INSN to REG. INDX is the expression number. */
5183
5184 static void
5185 pre_insert_copy_insn (expr, insn)
5186 struct expr *expr;
5187 rtx insn;
5188 {
5189 rtx reg = expr->reaching_reg;
5190 int regno = REGNO (reg);
5191 int indx = expr->bitmap_index;
5192 rtx set = single_set (insn);
5193 rtx new_insn;
5194
5195 if (!set)
5196 abort ();
5197
5198 new_insn = emit_insn_after (gen_move_insn (reg, SET_DEST (set)), insn);
5199
5200 /* Keep register set table up to date. */
5201 record_one_set (regno, new_insn);
5202
5203 gcse_create_count++;
5204
5205 if (gcse_file)
5206 fprintf (gcse_file,
5207 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
5208 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
5209 INSN_UID (insn), regno);
5210 update_ld_motion_stores (expr);
5211 }
5212
5213 /* Copy available expressions that reach the redundant expression
5214 to `reaching_reg'. */
5215
5216 static void
5217 pre_insert_copies ()
5218 {
5219 unsigned int i;
5220 struct expr *expr;
5221 struct occr *occr;
5222 struct occr *avail;
5223
5224 /* For each available expression in the table, copy the result to
5225 `reaching_reg' if the expression reaches a deleted one.
5226
5227 ??? The current algorithm is rather brute force.
5228 Need to do some profiling. */
5229
5230 for (i = 0; i < expr_hash_table.size; i++)
5231 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5232 {
5233 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
5234 we don't want to insert a copy here because the expression may not
5235 really be redundant. So only insert an insn if the expression was
5236 deleted. This test also avoids further processing if the
5237 expression wasn't deleted anywhere. */
5238 if (expr->reaching_reg == NULL)
5239 continue;
5240
5241 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5242 {
5243 if (! occr->deleted_p)
5244 continue;
5245
5246 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
5247 {
5248 rtx insn = avail->insn;
5249
5250 /* No need to handle this one if handled already. */
5251 if (avail->copied_p)
5252 continue;
5253
5254 /* Don't handle this one if it's a redundant one. */
5255 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
5256 continue;
5257
5258 /* Or if the expression doesn't reach the deleted one. */
5259 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
5260 expr,
5261 BLOCK_FOR_INSN (occr->insn)))
5262 continue;
5263
5264 /* Copy the result of avail to reaching_reg. */
5265 pre_insert_copy_insn (expr, insn);
5266 avail->copied_p = 1;
5267 }
5268 }
5269 }
5270 }
5271
5272 /* Emit move from SRC to DEST noting the equivalence with expression computed
5273 in INSN. */
5274 static rtx
5275 gcse_emit_move_after (src, dest, insn)
5276 rtx src, dest, insn;
5277 {
5278 rtx new;
5279 rtx set = single_set (insn), set2;
5280 rtx note;
5281 rtx eqv;
5282
5283 /* This should never fail since we're creating a reg->reg copy
5284 we've verified to be valid. */
5285
5286 new = emit_insn_after (gen_move_insn (dest, src), insn);
5287
5288 /* Note the equivalence for local CSE pass. */
5289 set2 = single_set (new);
5290 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
5291 return new;
5292 if ((note = find_reg_equal_equiv_note (insn)))
5293 eqv = XEXP (note, 0);
5294 else
5295 eqv = SET_SRC (set);
5296
5297 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
5298
5299 return new;
5300 }
5301
5302 /* Delete redundant computations.
5303 Deletion is done by changing the insn to copy the `reaching_reg' of
5304 the expression into the result of the SET. It is left to later passes
5305 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
5306
5307 Returns nonzero if a change is made. */
5308
5309 static int
5310 pre_delete ()
5311 {
5312 unsigned int i;
5313 int changed;
5314 struct expr *expr;
5315 struct occr *occr;
5316
5317 changed = 0;
5318 for (i = 0; i < expr_hash_table.size; i++)
5319 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5320 {
5321 int indx = expr->bitmap_index;
5322
5323 /* We only need to search antic_occr since we require
5324 ANTLOC != 0. */
5325
5326 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
5327 {
5328 rtx insn = occr->insn;
5329 rtx set;
5330 basic_block bb = BLOCK_FOR_INSN (insn);
5331
5332 if (TEST_BIT (pre_delete_map[bb->index], indx))
5333 {
5334 set = single_set (insn);
5335 if (! set)
5336 abort ();
5337
5338 /* Create a pseudo-reg to store the result of reaching
5339 expressions into. Get the mode for the new pseudo from
5340 the mode of the original destination pseudo. */
5341 if (expr->reaching_reg == NULL)
5342 expr->reaching_reg
5343 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5344
5345 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5346 delete_insn (insn);
5347 occr->deleted_p = 1;
5348 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
5349 changed = 1;
5350 gcse_subst_count++;
5351
5352 if (gcse_file)
5353 {
5354 fprintf (gcse_file,
5355 "PRE: redundant insn %d (expression %d) in ",
5356 INSN_UID (insn), indx);
5357 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
5358 bb->index, REGNO (expr->reaching_reg));
5359 }
5360 }
5361 }
5362 }
5363
5364 return changed;
5365 }
5366
5367 /* Perform GCSE optimizations using PRE.
5368 This is called by one_pre_gcse_pass after all the dataflow analysis
5369 has been done.
5370
5371 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
5372 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
5373 Compiler Design and Implementation.
5374
5375 ??? A new pseudo reg is created to hold the reaching expression. The nice
5376 thing about the classical approach is that it would try to use an existing
5377 reg. If the register can't be adequately optimized [i.e. we introduce
5378 reload problems], one could add a pass here to propagate the new register
5379 through the block.
5380
5381 ??? We don't handle single sets in PARALLELs because we're [currently] not
5382 able to copy the rest of the parallel when we insert copies to create full
5383 redundancies from partial redundancies. However, there's no reason why we
5384 can't handle PARALLELs in the cases where there are no partial
5385 redundancies. */
5386
5387 static int
5388 pre_gcse ()
5389 {
5390 unsigned int i;
5391 int did_insert, changed;
5392 struct expr **index_map;
5393 struct expr *expr;
5394
5395 /* Compute a mapping from expression number (`bitmap_index') to
5396 hash table entry. */
5397
5398 index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
5399 for (i = 0; i < expr_hash_table.size; i++)
5400 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
5401 index_map[expr->bitmap_index] = expr;
5402
5403 /* Reset bitmap used to track which insns are redundant. */
5404 pre_redundant_insns = sbitmap_alloc (max_cuid);
5405 sbitmap_zero (pre_redundant_insns);
5406
5407 /* Delete the redundant insns first so that
5408 - we know what register to use for the new insns and for the other
5409 ones with reaching expressions
5410 - we know which insns are redundant when we go to create copies */
5411
5412 changed = pre_delete ();
5413
5414 did_insert = pre_edge_insert (edge_list, index_map);
5415
5416 /* In other places with reaching expressions, copy the expression to the
5417 specially allocated pseudo-reg that reaches the redundant expr. */
5418 pre_insert_copies ();
5419 if (did_insert)
5420 {
5421 commit_edge_insertions ();
5422 changed = 1;
5423 }
5424
5425 free (index_map);
5426 sbitmap_free (pre_redundant_insns);
5427 return changed;
5428 }
5429
5430 /* Top level routine to perform one PRE GCSE pass.
5431
5432 Return nonzero if a change was made. */
5433
5434 static int
5435 one_pre_gcse_pass (pass)
5436 int pass;
5437 {
5438 int changed = 0;
5439
5440 gcse_subst_count = 0;
5441 gcse_create_count = 0;
5442
5443 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5444 add_noreturn_fake_exit_edges ();
5445 if (flag_gcse_lm)
5446 compute_ld_motion_mems ();
5447
5448 compute_hash_table (&expr_hash_table);
5449 trim_ld_motion_mems ();
5450 if (gcse_file)
5451 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
5452
5453 if (expr_hash_table.n_elems > 0)
5454 {
5455 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
5456 compute_pre_data ();
5457 changed |= pre_gcse ();
5458 free_edge_list (edge_list);
5459 free_pre_mem ();
5460 }
5461
5462 free_ldst_mems ();
5463 remove_fake_edges ();
5464 free_hash_table (&expr_hash_table);
5465
5466 if (gcse_file)
5467 {
5468 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
5469 current_function_name, pass, bytes_used);
5470 fprintf (gcse_file, "%d substs, %d insns created\n",
5471 gcse_subst_count, gcse_create_count);
5472 }
5473
5474 return changed;
5475 }
5476 \f
5477 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
5478 If notes are added to an insn which references a CODE_LABEL, the
5479 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
5480 because the following loop optimization pass requires them. */
5481
5482 /* ??? This is very similar to the loop.c add_label_notes function. We
5483 could probably share code here. */
5484
5485 /* ??? If there was a jump optimization pass after gcse and before loop,
5486 then we would not need to do this here, because jump would add the
5487 necessary REG_LABEL notes. */
5488
5489 static void
5490 add_label_notes (x, insn)
5491 rtx x;
5492 rtx insn;
5493 {
5494 enum rtx_code code = GET_CODE (x);
5495 int i, j;
5496 const char *fmt;
5497
5498 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
5499 {
5500 /* This code used to ignore labels that referred to dispatch tables to
5501 avoid flow generating (slighly) worse code.
5502
5503 We no longer ignore such label references (see LABEL_REF handling in
5504 mark_jump_label for additional information). */
5505
5506 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
5507 REG_NOTES (insn));
5508 if (LABEL_P (XEXP (x, 0)))
5509 LABEL_NUSES (XEXP (x, 0))++;
5510 return;
5511 }
5512
5513 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
5514 {
5515 if (fmt[i] == 'e')
5516 add_label_notes (XEXP (x, i), insn);
5517 else if (fmt[i] == 'E')
5518 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5519 add_label_notes (XVECEXP (x, i, j), insn);
5520 }
5521 }
5522
5523 /* Compute transparent outgoing information for each block.
5524
5525 An expression is transparent to an edge unless it is killed by
5526 the edge itself. This can only happen with abnormal control flow,
5527 when the edge is traversed through a call. This happens with
5528 non-local labels and exceptions.
5529
5530 This would not be necessary if we split the edge. While this is
5531 normally impossible for abnormal critical edges, with some effort
5532 it should be possible with exception handling, since we still have
5533 control over which handler should be invoked. But due to increased
5534 EH table sizes, this may not be worthwhile. */
5535
5536 static void
5537 compute_transpout ()
5538 {
5539 basic_block bb;
5540 unsigned int i;
5541 struct expr *expr;
5542
5543 sbitmap_vector_ones (transpout, last_basic_block);
5544
5545 FOR_EACH_BB (bb)
5546 {
5547 /* Note that flow inserted a nop a the end of basic blocks that
5548 end in call instructions for reasons other than abnormal
5549 control flow. */
5550 if (GET_CODE (bb->end) != CALL_INSN)
5551 continue;
5552
5553 for (i = 0; i < expr_hash_table.size; i++)
5554 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
5555 if (GET_CODE (expr->expr) == MEM)
5556 {
5557 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
5558 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
5559 continue;
5560
5561 /* ??? Optimally, we would use interprocedural alias
5562 analysis to determine if this mem is actually killed
5563 by this call. */
5564 RESET_BIT (transpout[bb->index], expr->bitmap_index);
5565 }
5566 }
5567 }
5568
5569 /* Removal of useless null pointer checks */
5570
5571 /* Called via note_stores. X is set by SETTER. If X is a register we must
5572 invalidate nonnull_local and set nonnull_killed. DATA is really a
5573 `null_pointer_info *'.
5574
5575 We ignore hard registers. */
5576
5577 static void
5578 invalidate_nonnull_info (x, setter, data)
5579 rtx x;
5580 rtx setter ATTRIBUTE_UNUSED;
5581 void *data;
5582 {
5583 unsigned int regno;
5584 struct null_pointer_info *npi = (struct null_pointer_info *) data;
5585
5586 while (GET_CODE (x) == SUBREG)
5587 x = SUBREG_REG (x);
5588
5589 /* Ignore anything that is not a register or is a hard register. */
5590 if (GET_CODE (x) != REG
5591 || REGNO (x) < npi->min_reg
5592 || REGNO (x) >= npi->max_reg)
5593 return;
5594
5595 regno = REGNO (x) - npi->min_reg;
5596
5597 RESET_BIT (npi->nonnull_local[npi->current_block->index], regno);
5598 SET_BIT (npi->nonnull_killed[npi->current_block->index], regno);
5599 }
5600
5601 /* Do null-pointer check elimination for the registers indicated in
5602 NPI. NONNULL_AVIN and NONNULL_AVOUT are pre-allocated sbitmaps;
5603 they are not our responsibility to free. */
5604
5605 static int
5606 delete_null_pointer_checks_1 (block_reg, nonnull_avin,
5607 nonnull_avout, npi)
5608 unsigned int *block_reg;
5609 sbitmap *nonnull_avin;
5610 sbitmap *nonnull_avout;
5611 struct null_pointer_info *npi;
5612 {
5613 basic_block bb, current_block;
5614 sbitmap *nonnull_local = npi->nonnull_local;
5615 sbitmap *nonnull_killed = npi->nonnull_killed;
5616 int something_changed = 0;
5617
5618 /* Compute local properties, nonnull and killed. A register will have
5619 the nonnull property if at the end of the current block its value is
5620 known to be nonnull. The killed property indicates that somewhere in
5621 the block any information we had about the register is killed.
5622
5623 Note that a register can have both properties in a single block. That
5624 indicates that it's killed, then later in the block a new value is
5625 computed. */
5626 sbitmap_vector_zero (nonnull_local, last_basic_block);
5627 sbitmap_vector_zero (nonnull_killed, last_basic_block);
5628
5629 FOR_EACH_BB (current_block)
5630 {
5631 rtx insn, stop_insn;
5632
5633 /* Set the current block for invalidate_nonnull_info. */
5634 npi->current_block = current_block;
5635
5636 /* Scan each insn in the basic block looking for memory references and
5637 register sets. */
5638 stop_insn = NEXT_INSN (current_block->end);
5639 for (insn = current_block->head;
5640 insn != stop_insn;
5641 insn = NEXT_INSN (insn))
5642 {
5643 rtx set;
5644 rtx reg;
5645
5646 /* Ignore anything that is not a normal insn. */
5647 if (! INSN_P (insn))
5648 continue;
5649
5650 /* Basically ignore anything that is not a simple SET. We do have
5651 to make sure to invalidate nonnull_local and set nonnull_killed
5652 for such insns though. */
5653 set = single_set (insn);
5654 if (!set)
5655 {
5656 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5657 continue;
5658 }
5659
5660 /* See if we've got a usable memory load. We handle it first
5661 in case it uses its address register as a dest (which kills
5662 the nonnull property). */
5663 if (GET_CODE (SET_SRC (set)) == MEM
5664 && GET_CODE ((reg = XEXP (SET_SRC (set), 0))) == REG
5665 && REGNO (reg) >= npi->min_reg
5666 && REGNO (reg) < npi->max_reg)
5667 SET_BIT (nonnull_local[current_block->index],
5668 REGNO (reg) - npi->min_reg);
5669
5670 /* Now invalidate stuff clobbered by this insn. */
5671 note_stores (PATTERN (insn), invalidate_nonnull_info, npi);
5672
5673 /* And handle stores, we do these last since any sets in INSN can
5674 not kill the nonnull property if it is derived from a MEM
5675 appearing in a SET_DEST. */
5676 if (GET_CODE (SET_DEST (set)) == MEM
5677 && GET_CODE ((reg = XEXP (SET_DEST (set), 0))) == REG
5678 && REGNO (reg) >= npi->min_reg
5679 && REGNO (reg) < npi->max_reg)
5680 SET_BIT (nonnull_local[current_block->index],
5681 REGNO (reg) - npi->min_reg);
5682 }
5683 }
5684
5685 /* Now compute global properties based on the local properties. This
5686 is a classic global availablity algorithm. */
5687 compute_available (nonnull_local, nonnull_killed,
5688 nonnull_avout, nonnull_avin);
5689
5690 /* Now look at each bb and see if it ends with a compare of a value
5691 against zero. */
5692 FOR_EACH_BB (bb)
5693 {
5694 rtx last_insn = bb->end;
5695 rtx condition, earliest;
5696 int compare_and_branch;
5697
5698 /* Since MIN_REG is always at least FIRST_PSEUDO_REGISTER, and
5699 since BLOCK_REG[BB] is zero if this block did not end with a
5700 comparison against zero, this condition works. */
5701 if (block_reg[bb->index] < npi->min_reg
5702 || block_reg[bb->index] >= npi->max_reg)
5703 continue;
5704
5705 /* LAST_INSN is a conditional jump. Get its condition. */
5706 condition = get_condition (last_insn, &earliest);
5707
5708 /* If we can't determine the condition then skip. */
5709 if (! condition)
5710 continue;
5711
5712 /* Is the register known to have a nonzero value? */
5713 if (!TEST_BIT (nonnull_avout[bb->index], block_reg[bb->index] - npi->min_reg))
5714 continue;
5715
5716 /* Try to compute whether the compare/branch at the loop end is one or
5717 two instructions. */
5718 if (earliest == last_insn)
5719 compare_and_branch = 1;
5720 else if (earliest == prev_nonnote_insn (last_insn))
5721 compare_and_branch = 2;
5722 else
5723 continue;
5724
5725 /* We know the register in this comparison is nonnull at exit from
5726 this block. We can optimize this comparison. */
5727 if (GET_CODE (condition) == NE)
5728 {
5729 rtx new_jump;
5730
5731 new_jump = emit_jump_insn_after (gen_jump (JUMP_LABEL (last_insn)),
5732 last_insn);
5733 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5734 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5735 emit_barrier_after (new_jump);
5736 }
5737
5738 something_changed = 1;
5739 delete_insn (last_insn);
5740 if (compare_and_branch == 2)
5741 delete_insn (earliest);
5742 purge_dead_edges (bb);
5743
5744 /* Don't check this block again. (Note that BLOCK_END is
5745 invalid here; we deleted the last instruction in the
5746 block.) */
5747 block_reg[bb->index] = 0;
5748 }
5749
5750 return something_changed;
5751 }
5752
5753 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
5754 at compile time.
5755
5756 This is conceptually similar to global constant/copy propagation and
5757 classic global CSE (it even uses the same dataflow equations as cprop).
5758
5759 If a register is used as memory address with the form (mem (reg)), then we
5760 know that REG can not be zero at that point in the program. Any instruction
5761 which sets REG "kills" this property.
5762
5763 So, if every path leading to a conditional branch has an available memory
5764 reference of that form, then we know the register can not have the value
5765 zero at the conditional branch.
5766
5767 So we merely need to compute the local properies and propagate that data
5768 around the cfg, then optimize where possible.
5769
5770 We run this pass two times. Once before CSE, then again after CSE. This
5771 has proven to be the most profitable approach. It is rare for new
5772 optimization opportunities of this nature to appear after the first CSE
5773 pass.
5774
5775 This could probably be integrated with global cprop with a little work. */
5776
5777 int
5778 delete_null_pointer_checks (f)
5779 rtx f ATTRIBUTE_UNUSED;
5780 {
5781 sbitmap *nonnull_avin, *nonnull_avout;
5782 unsigned int *block_reg;
5783 basic_block bb;
5784 int reg;
5785 int regs_per_pass;
5786 int max_reg;
5787 struct null_pointer_info npi;
5788 int something_changed = 0;
5789
5790 /* If we have only a single block, then there's nothing to do. */
5791 if (n_basic_blocks <= 1)
5792 return 0;
5793
5794 /* Trying to perform global optimizations on flow graphs which have
5795 a high connectivity will take a long time and is unlikely to be
5796 particularly useful.
5797
5798 In normal circumstances a cfg should have about twice as many edges
5799 as blocks. But we do not want to punish small functions which have
5800 a couple switch statements. So we require a relatively large number
5801 of basic blocks and the ratio of edges to blocks to be high. */
5802 if (n_basic_blocks > 1000 && n_edges / n_basic_blocks >= 20)
5803 return 0;
5804
5805 /* We need four bitmaps, each with a bit for each register in each
5806 basic block. */
5807 max_reg = max_reg_num ();
5808 regs_per_pass = get_bitmap_width (4, last_basic_block, max_reg);
5809
5810 /* Allocate bitmaps to hold local and global properties. */
5811 npi.nonnull_local = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5812 npi.nonnull_killed = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5813 nonnull_avin = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5814 nonnull_avout = sbitmap_vector_alloc (last_basic_block, regs_per_pass);
5815
5816 /* Go through the basic blocks, seeing whether or not each block
5817 ends with a conditional branch whose condition is a comparison
5818 against zero. Record the register compared in BLOCK_REG. */
5819 block_reg = (unsigned int *) xcalloc (last_basic_block, sizeof (int));
5820 FOR_EACH_BB (bb)
5821 {
5822 rtx last_insn = bb->end;
5823 rtx condition, earliest, reg;
5824
5825 /* We only want conditional branches. */
5826 if (GET_CODE (last_insn) != JUMP_INSN
5827 || !any_condjump_p (last_insn)
5828 || !onlyjump_p (last_insn))
5829 continue;
5830
5831 /* LAST_INSN is a conditional jump. Get its condition. */
5832 condition = get_condition (last_insn, &earliest);
5833
5834 /* If we were unable to get the condition, or it is not an equality
5835 comparison against zero then there's nothing we can do. */
5836 if (!condition
5837 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5838 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5839 || (XEXP (condition, 1)
5840 != CONST0_RTX (GET_MODE (XEXP (condition, 0)))))
5841 continue;
5842
5843 /* We must be checking a register against zero. */
5844 reg = XEXP (condition, 0);
5845 if (GET_CODE (reg) != REG)
5846 continue;
5847
5848 block_reg[bb->index] = REGNO (reg);
5849 }
5850
5851 /* Go through the algorithm for each block of registers. */
5852 for (reg = FIRST_PSEUDO_REGISTER; reg < max_reg; reg += regs_per_pass)
5853 {
5854 npi.min_reg = reg;
5855 npi.max_reg = MIN (reg + regs_per_pass, max_reg);
5856 something_changed |= delete_null_pointer_checks_1 (block_reg,
5857 nonnull_avin,
5858 nonnull_avout,
5859 &npi);
5860 }
5861
5862 /* Free the table of registers compared at the end of every block. */
5863 free (block_reg);
5864
5865 /* Free bitmaps. */
5866 sbitmap_vector_free (npi.nonnull_local);
5867 sbitmap_vector_free (npi.nonnull_killed);
5868 sbitmap_vector_free (nonnull_avin);
5869 sbitmap_vector_free (nonnull_avout);
5870
5871 return something_changed;
5872 }
5873
5874 /* Code Hoisting variables and subroutines. */
5875
5876 /* Very busy expressions. */
5877 static sbitmap *hoist_vbein;
5878 static sbitmap *hoist_vbeout;
5879
5880 /* Hoistable expressions. */
5881 static sbitmap *hoist_exprs;
5882
5883 /* Dominator bitmaps. */
5884 dominance_info dominators;
5885
5886 /* ??? We could compute post dominators and run this algorithm in
5887 reverse to perform tail merging, doing so would probably be
5888 more effective than the tail merging code in jump.c.
5889
5890 It's unclear if tail merging could be run in parallel with
5891 code hoisting. It would be nice. */
5892
5893 /* Allocate vars used for code hoisting analysis. */
5894
5895 static void
5896 alloc_code_hoist_mem (n_blocks, n_exprs)
5897 int n_blocks, n_exprs;
5898 {
5899 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5900 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5901 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5902
5903 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5904 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5905 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5906 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5907 }
5908
5909 /* Free vars used for code hoisting analysis. */
5910
5911 static void
5912 free_code_hoist_mem ()
5913 {
5914 sbitmap_vector_free (antloc);
5915 sbitmap_vector_free (transp);
5916 sbitmap_vector_free (comp);
5917
5918 sbitmap_vector_free (hoist_vbein);
5919 sbitmap_vector_free (hoist_vbeout);
5920 sbitmap_vector_free (hoist_exprs);
5921 sbitmap_vector_free (transpout);
5922
5923 free_dominance_info (dominators);
5924 }
5925
5926 /* Compute the very busy expressions at entry/exit from each block.
5927
5928 An expression is very busy if all paths from a given point
5929 compute the expression. */
5930
5931 static void
5932 compute_code_hoist_vbeinout ()
5933 {
5934 int changed, passes;
5935 basic_block bb;
5936
5937 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
5938 sbitmap_vector_zero (hoist_vbein, last_basic_block);
5939
5940 passes = 0;
5941 changed = 1;
5942
5943 while (changed)
5944 {
5945 changed = 0;
5946
5947 /* We scan the blocks in the reverse order to speed up
5948 the convergence. */
5949 FOR_EACH_BB_REVERSE (bb)
5950 {
5951 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
5952 hoist_vbeout[bb->index], transp[bb->index]);
5953 if (bb->next_bb != EXIT_BLOCK_PTR)
5954 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
5955 }
5956
5957 passes++;
5958 }
5959
5960 if (gcse_file)
5961 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5962 }
5963
5964 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5965
5966 static void
5967 compute_code_hoist_data ()
5968 {
5969 compute_local_properties (transp, comp, antloc, &expr_hash_table);
5970 compute_transpout ();
5971 compute_code_hoist_vbeinout ();
5972 dominators = calculate_dominance_info (CDI_DOMINATORS);
5973 if (gcse_file)
5974 fprintf (gcse_file, "\n");
5975 }
5976
5977 /* Determine if the expression identified by EXPR_INDEX would
5978 reach BB unimpared if it was placed at the end of EXPR_BB.
5979
5980 It's unclear exactly what Muchnick meant by "unimpared". It seems
5981 to me that the expression must either be computed or transparent in
5982 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5983 would allow the expression to be hoisted out of loops, even if
5984 the expression wasn't a loop invariant.
5985
5986 Contrast this to reachability for PRE where an expression is
5987 considered reachable if *any* path reaches instead of *all*
5988 paths. */
5989
5990 static int
5991 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
5992 basic_block expr_bb;
5993 int expr_index;
5994 basic_block bb;
5995 char *visited;
5996 {
5997 edge pred;
5998 int visited_allocated_locally = 0;
5999
6000
6001 if (visited == NULL)
6002 {
6003 visited_allocated_locally = 1;
6004 visited = xcalloc (last_basic_block, 1);
6005 }
6006
6007 for (pred = bb->pred; pred != NULL; pred = pred->pred_next)
6008 {
6009 basic_block pred_bb = pred->src;
6010
6011 if (pred->src == ENTRY_BLOCK_PTR)
6012 break;
6013 else if (pred_bb == expr_bb)
6014 continue;
6015 else if (visited[pred_bb->index])
6016 continue;
6017
6018 /* Does this predecessor generate this expression? */
6019 else if (TEST_BIT (comp[pred_bb->index], expr_index))
6020 break;
6021 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
6022 break;
6023
6024 /* Not killed. */
6025 else
6026 {
6027 visited[pred_bb->index] = 1;
6028 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
6029 pred_bb, visited))
6030 break;
6031 }
6032 }
6033 if (visited_allocated_locally)
6034 free (visited);
6035
6036 return (pred == NULL);
6037 }
6038 \f
6039 /* Actually perform code hoisting. */
6040
6041 static void
6042 hoist_code ()
6043 {
6044 basic_block bb, dominated;
6045 basic_block *domby;
6046 unsigned int domby_len;
6047 unsigned int i,j;
6048 struct expr **index_map;
6049 struct expr *expr;
6050
6051 sbitmap_vector_zero (hoist_exprs, last_basic_block);
6052
6053 /* Compute a mapping from expression number (`bitmap_index') to
6054 hash table entry. */
6055
6056 index_map = (struct expr **) xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
6057 for (i = 0; i < expr_hash_table.size; i++)
6058 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
6059 index_map[expr->bitmap_index] = expr;
6060
6061 /* Walk over each basic block looking for potentially hoistable
6062 expressions, nothing gets hoisted from the entry block. */
6063 FOR_EACH_BB (bb)
6064 {
6065 int found = 0;
6066 int insn_inserted_p;
6067
6068 domby_len = get_dominated_by (dominators, bb, &domby);
6069 /* Examine each expression that is very busy at the exit of this
6070 block. These are the potentially hoistable expressions. */
6071 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
6072 {
6073 int hoistable = 0;
6074
6075 if (TEST_BIT (hoist_vbeout[bb->index], i)
6076 && TEST_BIT (transpout[bb->index], i))
6077 {
6078 /* We've found a potentially hoistable expression, now
6079 we look at every block BB dominates to see if it
6080 computes the expression. */
6081 for (j = 0; j < domby_len; j++)
6082 {
6083 dominated = domby[j];
6084 /* Ignore self dominance. */
6085 if (bb == dominated)
6086 continue;
6087 /* We've found a dominated block, now see if it computes
6088 the busy expression and whether or not moving that
6089 expression to the "beginning" of that block is safe. */
6090 if (!TEST_BIT (antloc[dominated->index], i))
6091 continue;
6092
6093 /* Note if the expression would reach the dominated block
6094 unimpared if it was placed at the end of BB.
6095
6096 Keep track of how many times this expression is hoistable
6097 from a dominated block into BB. */
6098 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6099 hoistable++;
6100 }
6101
6102 /* If we found more than one hoistable occurrence of this
6103 expression, then note it in the bitmap of expressions to
6104 hoist. It makes no sense to hoist things which are computed
6105 in only one BB, and doing so tends to pessimize register
6106 allocation. One could increase this value to try harder
6107 to avoid any possible code expansion due to register
6108 allocation issues; however experiments have shown that
6109 the vast majority of hoistable expressions are only movable
6110 from two successors, so raising this threshhold is likely
6111 to nullify any benefit we get from code hoisting. */
6112 if (hoistable > 1)
6113 {
6114 SET_BIT (hoist_exprs[bb->index], i);
6115 found = 1;
6116 }
6117 }
6118 }
6119 /* If we found nothing to hoist, then quit now. */
6120 if (! found)
6121 {
6122 free (domby);
6123 continue;
6124 }
6125
6126 /* Loop over all the hoistable expressions. */
6127 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
6128 {
6129 /* We want to insert the expression into BB only once, so
6130 note when we've inserted it. */
6131 insn_inserted_p = 0;
6132
6133 /* These tests should be the same as the tests above. */
6134 if (TEST_BIT (hoist_vbeout[bb->index], i))
6135 {
6136 /* We've found a potentially hoistable expression, now
6137 we look at every block BB dominates to see if it
6138 computes the expression. */
6139 for (j = 0; j < domby_len; j++)
6140 {
6141 dominated = domby[j];
6142 /* Ignore self dominance. */
6143 if (bb == dominated)
6144 continue;
6145
6146 /* We've found a dominated block, now see if it computes
6147 the busy expression and whether or not moving that
6148 expression to the "beginning" of that block is safe. */
6149 if (!TEST_BIT (antloc[dominated->index], i))
6150 continue;
6151
6152 /* The expression is computed in the dominated block and
6153 it would be safe to compute it at the start of the
6154 dominated block. Now we have to determine if the
6155 expression would reach the dominated block if it was
6156 placed at the end of BB. */
6157 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
6158 {
6159 struct expr *expr = index_map[i];
6160 struct occr *occr = expr->antic_occr;
6161 rtx insn;
6162 rtx set;
6163
6164 /* Find the right occurrence of this expression. */
6165 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
6166 occr = occr->next;
6167
6168 /* Should never happen. */
6169 if (!occr)
6170 abort ();
6171
6172 insn = occr->insn;
6173
6174 set = single_set (insn);
6175 if (! set)
6176 abort ();
6177
6178 /* Create a pseudo-reg to store the result of reaching
6179 expressions into. Get the mode for the new pseudo
6180 from the mode of the original destination pseudo. */
6181 if (expr->reaching_reg == NULL)
6182 expr->reaching_reg
6183 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
6184
6185 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
6186 delete_insn (insn);
6187 occr->deleted_p = 1;
6188 if (!insn_inserted_p)
6189 {
6190 insert_insn_end_bb (index_map[i], bb, 0);
6191 insn_inserted_p = 1;
6192 }
6193 }
6194 }
6195 }
6196 }
6197 free (domby);
6198 }
6199
6200 free (index_map);
6201 }
6202
6203 /* Top level routine to perform one code hoisting (aka unification) pass
6204
6205 Return nonzero if a change was made. */
6206
6207 static int
6208 one_code_hoisting_pass ()
6209 {
6210 int changed = 0;
6211
6212 alloc_hash_table (max_cuid, &expr_hash_table, 0);
6213 compute_hash_table (&expr_hash_table);
6214 if (gcse_file)
6215 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
6216
6217 if (expr_hash_table.n_elems > 0)
6218 {
6219 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
6220 compute_code_hoist_data ();
6221 hoist_code ();
6222 free_code_hoist_mem ();
6223 }
6224
6225 free_hash_table (&expr_hash_table);
6226
6227 return changed;
6228 }
6229 \f
6230 /* Here we provide the things required to do store motion towards
6231 the exit. In order for this to be effective, gcse also needed to
6232 be taught how to move a load when it is kill only by a store to itself.
6233
6234 int i;
6235 float a[10];
6236
6237 void foo(float scale)
6238 {
6239 for (i=0; i<10; i++)
6240 a[i] *= scale;
6241 }
6242
6243 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
6244 the load out since its live around the loop, and stored at the bottom
6245 of the loop.
6246
6247 The 'Load Motion' referred to and implemented in this file is
6248 an enhancement to gcse which when using edge based lcm, recognizes
6249 this situation and allows gcse to move the load out of the loop.
6250
6251 Once gcse has hoisted the load, store motion can then push this
6252 load towards the exit, and we end up with no loads or stores of 'i'
6253 in the loop. */
6254
6255 /* This will search the ldst list for a matching expression. If it
6256 doesn't find one, we create one and initialize it. */
6257
6258 static struct ls_expr *
6259 ldst_entry (x)
6260 rtx x;
6261 {
6262 struct ls_expr * ptr;
6263
6264 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6265 if (expr_equiv_p (ptr->pattern, x))
6266 break;
6267
6268 if (!ptr)
6269 {
6270 ptr = (struct ls_expr *) xmalloc (sizeof (struct ls_expr));
6271
6272 ptr->next = pre_ldst_mems;
6273 ptr->expr = NULL;
6274 ptr->pattern = x;
6275 ptr->loads = NULL_RTX;
6276 ptr->stores = NULL_RTX;
6277 ptr->reaching_reg = NULL_RTX;
6278 ptr->invalid = 0;
6279 ptr->index = 0;
6280 ptr->hash_index = 0;
6281 pre_ldst_mems = ptr;
6282 }
6283
6284 return ptr;
6285 }
6286
6287 /* Free up an individual ldst entry. */
6288
6289 static void
6290 free_ldst_entry (ptr)
6291 struct ls_expr * ptr;
6292 {
6293 free_INSN_LIST_list (& ptr->loads);
6294 free_INSN_LIST_list (& ptr->stores);
6295
6296 free (ptr);
6297 }
6298
6299 /* Free up all memory associated with the ldst list. */
6300
6301 static void
6302 free_ldst_mems ()
6303 {
6304 while (pre_ldst_mems)
6305 {
6306 struct ls_expr * tmp = pre_ldst_mems;
6307
6308 pre_ldst_mems = pre_ldst_mems->next;
6309
6310 free_ldst_entry (tmp);
6311 }
6312
6313 pre_ldst_mems = NULL;
6314 }
6315
6316 /* Dump debugging info about the ldst list. */
6317
6318 static void
6319 print_ldst_list (file)
6320 FILE * file;
6321 {
6322 struct ls_expr * ptr;
6323
6324 fprintf (file, "LDST list: \n");
6325
6326 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
6327 {
6328 fprintf (file, " Pattern (%3d): ", ptr->index);
6329
6330 print_rtl (file, ptr->pattern);
6331
6332 fprintf (file, "\n Loads : ");
6333
6334 if (ptr->loads)
6335 print_rtl (file, ptr->loads);
6336 else
6337 fprintf (file, "(nil)");
6338
6339 fprintf (file, "\n Stores : ");
6340
6341 if (ptr->stores)
6342 print_rtl (file, ptr->stores);
6343 else
6344 fprintf (file, "(nil)");
6345
6346 fprintf (file, "\n\n");
6347 }
6348
6349 fprintf (file, "\n");
6350 }
6351
6352 /* Returns 1 if X is in the list of ldst only expressions. */
6353
6354 static struct ls_expr *
6355 find_rtx_in_ldst (x)
6356 rtx x;
6357 {
6358 struct ls_expr * ptr;
6359
6360 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6361 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
6362 return ptr;
6363
6364 return NULL;
6365 }
6366
6367 /* Assign each element of the list of mems a monotonically increasing value. */
6368
6369 static int
6370 enumerate_ldsts ()
6371 {
6372 struct ls_expr * ptr;
6373 int n = 0;
6374
6375 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
6376 ptr->index = n++;
6377
6378 return n;
6379 }
6380
6381 /* Return first item in the list. */
6382
6383 static inline struct ls_expr *
6384 first_ls_expr ()
6385 {
6386 return pre_ldst_mems;
6387 }
6388
6389 /* Return the next item in ther list after the specified one. */
6390
6391 static inline struct ls_expr *
6392 next_ls_expr (ptr)
6393 struct ls_expr * ptr;
6394 {
6395 return ptr->next;
6396 }
6397 \f
6398 /* Load Motion for loads which only kill themselves. */
6399
6400 /* Return true if x is a simple MEM operation, with no registers or
6401 side effects. These are the types of loads we consider for the
6402 ld_motion list, otherwise we let the usual aliasing take care of it. */
6403
6404 static int
6405 simple_mem (x)
6406 rtx x;
6407 {
6408 if (GET_CODE (x) != MEM)
6409 return 0;
6410
6411 if (MEM_VOLATILE_P (x))
6412 return 0;
6413
6414 if (GET_MODE (x) == BLKmode)
6415 return 0;
6416
6417 if (!rtx_varies_p (XEXP (x, 0), 0))
6418 return 1;
6419
6420 return 0;
6421 }
6422
6423 /* Make sure there isn't a buried reference in this pattern anywhere.
6424 If there is, invalidate the entry for it since we're not capable
6425 of fixing it up just yet.. We have to be sure we know about ALL
6426 loads since the aliasing code will allow all entries in the
6427 ld_motion list to not-alias itself. If we miss a load, we will get
6428 the wrong value since gcse might common it and we won't know to
6429 fix it up. */
6430
6431 static void
6432 invalidate_any_buried_refs (x)
6433 rtx x;
6434 {
6435 const char * fmt;
6436 int i, j;
6437 struct ls_expr * ptr;
6438
6439 /* Invalidate it in the list. */
6440 if (GET_CODE (x) == MEM && simple_mem (x))
6441 {
6442 ptr = ldst_entry (x);
6443 ptr->invalid = 1;
6444 }
6445
6446 /* Recursively process the insn. */
6447 fmt = GET_RTX_FORMAT (GET_CODE (x));
6448
6449 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6450 {
6451 if (fmt[i] == 'e')
6452 invalidate_any_buried_refs (XEXP (x, i));
6453 else if (fmt[i] == 'E')
6454 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6455 invalidate_any_buried_refs (XVECEXP (x, i, j));
6456 }
6457 }
6458
6459 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
6460 being defined as MEM loads and stores to symbols, with no
6461 side effects and no registers in the expression. If there are any
6462 uses/defs which don't match this criteria, it is invalidated and
6463 trimmed out later. */
6464
6465 static void
6466 compute_ld_motion_mems ()
6467 {
6468 struct ls_expr * ptr;
6469 basic_block bb;
6470 rtx insn;
6471
6472 pre_ldst_mems = NULL;
6473
6474 FOR_EACH_BB (bb)
6475 {
6476 for (insn = bb->head;
6477 insn && insn != NEXT_INSN (bb->end);
6478 insn = NEXT_INSN (insn))
6479 {
6480 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
6481 {
6482 if (GET_CODE (PATTERN (insn)) == SET)
6483 {
6484 rtx src = SET_SRC (PATTERN (insn));
6485 rtx dest = SET_DEST (PATTERN (insn));
6486
6487 /* Check for a simple LOAD... */
6488 if (GET_CODE (src) == MEM && simple_mem (src))
6489 {
6490 ptr = ldst_entry (src);
6491 if (GET_CODE (dest) == REG)
6492 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
6493 else
6494 ptr->invalid = 1;
6495 }
6496 else
6497 {
6498 /* Make sure there isn't a buried load somewhere. */
6499 invalidate_any_buried_refs (src);
6500 }
6501
6502 /* Check for stores. Don't worry about aliased ones, they
6503 will block any movement we might do later. We only care
6504 about this exact pattern since those are the only
6505 circumstance that we will ignore the aliasing info. */
6506 if (GET_CODE (dest) == MEM && simple_mem (dest))
6507 {
6508 ptr = ldst_entry (dest);
6509
6510 if (GET_CODE (src) != MEM
6511 && GET_CODE (src) != ASM_OPERANDS)
6512 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6513 else
6514 ptr->invalid = 1;
6515 }
6516 }
6517 else
6518 invalidate_any_buried_refs (PATTERN (insn));
6519 }
6520 }
6521 }
6522 }
6523
6524 /* Remove any references that have been either invalidated or are not in the
6525 expression list for pre gcse. */
6526
6527 static void
6528 trim_ld_motion_mems ()
6529 {
6530 struct ls_expr * last = NULL;
6531 struct ls_expr * ptr = first_ls_expr ();
6532
6533 while (ptr != NULL)
6534 {
6535 int del = ptr->invalid;
6536 struct expr * expr = NULL;
6537
6538 /* Delete if entry has been made invalid. */
6539 if (!del)
6540 {
6541 unsigned int i;
6542
6543 del = 1;
6544 /* Delete if we cannot find this mem in the expression list. */
6545 for (i = 0; i < expr_hash_table.size && del; i++)
6546 {
6547 for (expr = expr_hash_table.table[i];
6548 expr != NULL;
6549 expr = expr->next_same_hash)
6550 if (expr_equiv_p (expr->expr, ptr->pattern))
6551 {
6552 del = 0;
6553 break;
6554 }
6555 }
6556 }
6557
6558 if (del)
6559 {
6560 if (last != NULL)
6561 {
6562 last->next = ptr->next;
6563 free_ldst_entry (ptr);
6564 ptr = last->next;
6565 }
6566 else
6567 {
6568 pre_ldst_mems = pre_ldst_mems->next;
6569 free_ldst_entry (ptr);
6570 ptr = pre_ldst_mems;
6571 }
6572 }
6573 else
6574 {
6575 /* Set the expression field if we are keeping it. */
6576 last = ptr;
6577 ptr->expr = expr;
6578 ptr = ptr->next;
6579 }
6580 }
6581
6582 /* Show the world what we've found. */
6583 if (gcse_file && pre_ldst_mems != NULL)
6584 print_ldst_list (gcse_file);
6585 }
6586
6587 /* This routine will take an expression which we are replacing with
6588 a reaching register, and update any stores that are needed if
6589 that expression is in the ld_motion list. Stores are updated by
6590 copying their SRC to the reaching register, and then storeing
6591 the reaching register into the store location. These keeps the
6592 correct value in the reaching register for the loads. */
6593
6594 static void
6595 update_ld_motion_stores (expr)
6596 struct expr * expr;
6597 {
6598 struct ls_expr * mem_ptr;
6599
6600 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
6601 {
6602 /* We can try to find just the REACHED stores, but is shouldn't
6603 matter to set the reaching reg everywhere... some might be
6604 dead and should be eliminated later. */
6605
6606 /* We replace SET mem = expr with
6607 SET reg = expr
6608 SET mem = reg , where reg is the
6609 reaching reg used in the load. */
6610 rtx list = mem_ptr->stores;
6611
6612 for ( ; list != NULL_RTX; list = XEXP (list, 1))
6613 {
6614 rtx insn = XEXP (list, 0);
6615 rtx pat = PATTERN (insn);
6616 rtx src = SET_SRC (pat);
6617 rtx reg = expr->reaching_reg;
6618 rtx copy, new;
6619
6620 /* If we've already copied it, continue. */
6621 if (expr->reaching_reg == src)
6622 continue;
6623
6624 if (gcse_file)
6625 {
6626 fprintf (gcse_file, "PRE: store updated with reaching reg ");
6627 print_rtl (gcse_file, expr->reaching_reg);
6628 fprintf (gcse_file, ":\n ");
6629 print_inline_rtx (gcse_file, insn, 8);
6630 fprintf (gcse_file, "\n");
6631 }
6632
6633 copy = gen_move_insn ( reg, SET_SRC (pat));
6634 new = emit_insn_before (copy, insn);
6635 record_one_set (REGNO (reg), new);
6636 SET_SRC (pat) = reg;
6637
6638 /* un-recognize this pattern since it's probably different now. */
6639 INSN_CODE (insn) = -1;
6640 gcse_create_count++;
6641 }
6642 }
6643 }
6644 \f
6645 /* Store motion code. */
6646
6647 /* This is used to communicate the target bitvector we want to use in the
6648 reg_set_info routine when called via the note_stores mechanism. */
6649 static sbitmap * regvec;
6650
6651 /* Used in computing the reverse edge graph bit vectors. */
6652 static sbitmap * st_antloc;
6653
6654 /* Global holding the number of store expressions we are dealing with. */
6655 static int num_stores;
6656
6657 /* Checks to set if we need to mark a register set. Called from note_stores. */
6658
6659 static void
6660 reg_set_info (dest, setter, data)
6661 rtx dest, setter ATTRIBUTE_UNUSED;
6662 void * data ATTRIBUTE_UNUSED;
6663 {
6664 if (GET_CODE (dest) == SUBREG)
6665 dest = SUBREG_REG (dest);
6666
6667 if (GET_CODE (dest) == REG)
6668 SET_BIT (*regvec, REGNO (dest));
6669 }
6670
6671 /* Return nonzero if the register operands of expression X are killed
6672 anywhere in basic block BB. */
6673
6674 static int
6675 store_ops_ok (x, bb)
6676 rtx x;
6677 basic_block bb;
6678 {
6679 int i;
6680 enum rtx_code code;
6681 const char * fmt;
6682
6683 /* Repeat is used to turn tail-recursion into iteration. */
6684 repeat:
6685
6686 if (x == 0)
6687 return 1;
6688
6689 code = GET_CODE (x);
6690 switch (code)
6691 {
6692 case REG:
6693 /* If a reg has changed after us in this
6694 block, the operand has been killed. */
6695 return TEST_BIT (reg_set_in_block[bb->index], REGNO (x));
6696
6697 case MEM:
6698 x = XEXP (x, 0);
6699 goto repeat;
6700
6701 case PRE_DEC:
6702 case PRE_INC:
6703 case POST_DEC:
6704 case POST_INC:
6705 return 0;
6706
6707 case PC:
6708 case CC0: /*FIXME*/
6709 case CONST:
6710 case CONST_INT:
6711 case CONST_DOUBLE:
6712 case CONST_VECTOR:
6713 case SYMBOL_REF:
6714 case LABEL_REF:
6715 case ADDR_VEC:
6716 case ADDR_DIFF_VEC:
6717 return 1;
6718
6719 default:
6720 break;
6721 }
6722
6723 i = GET_RTX_LENGTH (code) - 1;
6724 fmt = GET_RTX_FORMAT (code);
6725
6726 for (; i >= 0; i--)
6727 {
6728 if (fmt[i] == 'e')
6729 {
6730 rtx tem = XEXP (x, i);
6731
6732 /* If we are about to do the last recursive call
6733 needed at this level, change it into iteration.
6734 This function is called enough to be worth it. */
6735 if (i == 0)
6736 {
6737 x = tem;
6738 goto repeat;
6739 }
6740
6741 if (! store_ops_ok (tem, bb))
6742 return 0;
6743 }
6744 else if (fmt[i] == 'E')
6745 {
6746 int j;
6747
6748 for (j = 0; j < XVECLEN (x, i); j++)
6749 {
6750 if (! store_ops_ok (XVECEXP (x, i, j), bb))
6751 return 0;
6752 }
6753 }
6754 }
6755
6756 return 1;
6757 }
6758
6759 /* Determine whether insn is MEM store pattern that we will consider moving. */
6760
6761 static void
6762 find_moveable_store (insn)
6763 rtx insn;
6764 {
6765 struct ls_expr * ptr;
6766 rtx dest = PATTERN (insn);
6767
6768 if (GET_CODE (dest) != SET
6769 || GET_CODE (SET_SRC (dest)) == ASM_OPERANDS)
6770 return;
6771
6772 dest = SET_DEST (dest);
6773
6774 if (GET_CODE (dest) != MEM || MEM_VOLATILE_P (dest)
6775 || GET_MODE (dest) == BLKmode)
6776 return;
6777
6778 if (GET_CODE (XEXP (dest, 0)) != SYMBOL_REF)
6779 return;
6780
6781 if (rtx_varies_p (XEXP (dest, 0), 0))
6782 return;
6783
6784 ptr = ldst_entry (dest);
6785 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
6786 }
6787
6788 /* Perform store motion. Much like gcse, except we move expressions the
6789 other way by looking at the flowgraph in reverse. */
6790
6791 static int
6792 compute_store_table ()
6793 {
6794 int ret;
6795 basic_block bb;
6796 unsigned regno;
6797 rtx insn, pat;
6798
6799 max_gcse_regno = max_reg_num ();
6800
6801 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (last_basic_block,
6802 max_gcse_regno);
6803 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
6804 pre_ldst_mems = 0;
6805
6806 /* Find all the stores we care about. */
6807 FOR_EACH_BB (bb)
6808 {
6809 regvec = & (reg_set_in_block[bb->index]);
6810 for (insn = bb->end;
6811 insn && insn != PREV_INSN (bb->end);
6812 insn = PREV_INSN (insn))
6813 {
6814 /* Ignore anything that is not a normal insn. */
6815 if (! INSN_P (insn))
6816 continue;
6817
6818 if (GET_CODE (insn) == CALL_INSN)
6819 {
6820 bool clobbers_all = false;
6821 #ifdef NON_SAVING_SETJMP
6822 if (NON_SAVING_SETJMP
6823 && find_reg_note (insn, REG_SETJMP, NULL_RTX))
6824 clobbers_all = true;
6825 #endif
6826
6827 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
6828 if (clobbers_all
6829 || TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
6830 SET_BIT (reg_set_in_block[bb->index], regno);
6831 }
6832
6833 pat = PATTERN (insn);
6834 note_stores (pat, reg_set_info, NULL);
6835
6836 /* Now that we've marked regs, look for stores. */
6837 if (GET_CODE (pat) == SET)
6838 find_moveable_store (insn);
6839 }
6840 }
6841
6842 ret = enumerate_ldsts ();
6843
6844 if (gcse_file)
6845 {
6846 fprintf (gcse_file, "Store Motion Expressions.\n");
6847 print_ldst_list (gcse_file);
6848 }
6849
6850 return ret;
6851 }
6852
6853 /* Check to see if the load X is aliased with STORE_PATTERN. */
6854
6855 static int
6856 load_kills_store (x, store_pattern)
6857 rtx x, store_pattern;
6858 {
6859 if (true_dependence (x, GET_MODE (x), store_pattern, rtx_addr_varies_p))
6860 return 1;
6861 return 0;
6862 }
6863
6864 /* Go through the entire insn X, looking for any loads which might alias
6865 STORE_PATTERN. Return 1 if found. */
6866
6867 static int
6868 find_loads (x, store_pattern)
6869 rtx x, store_pattern;
6870 {
6871 const char * fmt;
6872 int i, j;
6873 int ret = 0;
6874
6875 if (!x)
6876 return 0;
6877
6878 if (GET_CODE (x) == SET)
6879 x = SET_SRC (x);
6880
6881 if (GET_CODE (x) == MEM)
6882 {
6883 if (load_kills_store (x, store_pattern))
6884 return 1;
6885 }
6886
6887 /* Recursively process the insn. */
6888 fmt = GET_RTX_FORMAT (GET_CODE (x));
6889
6890 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
6891 {
6892 if (fmt[i] == 'e')
6893 ret |= find_loads (XEXP (x, i), store_pattern);
6894 else if (fmt[i] == 'E')
6895 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6896 ret |= find_loads (XVECEXP (x, i, j), store_pattern);
6897 }
6898 return ret;
6899 }
6900
6901 /* Check if INSN kills the store pattern X (is aliased with it).
6902 Return 1 if it it does. */
6903
6904 static int
6905 store_killed_in_insn (x, insn)
6906 rtx x, insn;
6907 {
6908 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
6909 return 0;
6910
6911 if (GET_CODE (insn) == CALL_INSN)
6912 {
6913 /* A normal or pure call might read from pattern,
6914 but a const call will not. */
6915 return ! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn);
6916 }
6917
6918 if (GET_CODE (PATTERN (insn)) == SET)
6919 {
6920 rtx pat = PATTERN (insn);
6921 /* Check for memory stores to aliased objects. */
6922 if (GET_CODE (SET_DEST (pat)) == MEM && !expr_equiv_p (SET_DEST (pat), x))
6923 /* pretend its a load and check for aliasing. */
6924 if (find_loads (SET_DEST (pat), x))
6925 return 1;
6926 return find_loads (SET_SRC (pat), x);
6927 }
6928 else
6929 return find_loads (PATTERN (insn), x);
6930 }
6931
6932 /* Returns 1 if the expression X is loaded or clobbered on or after INSN
6933 within basic block BB. */
6934
6935 static int
6936 store_killed_after (x, insn, bb)
6937 rtx x, insn;
6938 basic_block bb;
6939 {
6940 rtx last = bb->end;
6941
6942 if (insn == last)
6943 return 0;
6944
6945 /* Check if the register operands of the store are OK in this block.
6946 Note that if registers are changed ANYWHERE in the block, we'll
6947 decide we can't move it, regardless of whether it changed above
6948 or below the store. This could be improved by checking the register
6949 operands while lookinng for aliasing in each insn. */
6950 if (!store_ops_ok (XEXP (x, 0), bb))
6951 return 1;
6952
6953 for ( ; insn && insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
6954 if (store_killed_in_insn (x, insn))
6955 return 1;
6956
6957 return 0;
6958 }
6959
6960 /* Returns 1 if the expression X is loaded or clobbered on or before INSN
6961 within basic block BB. */
6962 static int
6963 store_killed_before (x, insn, bb)
6964 rtx x, insn;
6965 basic_block bb;
6966 {
6967 rtx first = bb->head;
6968
6969 if (insn == first)
6970 return store_killed_in_insn (x, insn);
6971
6972 /* Check if the register operands of the store are OK in this block.
6973 Note that if registers are changed ANYWHERE in the block, we'll
6974 decide we can't move it, regardless of whether it changed above
6975 or below the store. This could be improved by checking the register
6976 operands while lookinng for aliasing in each insn. */
6977 if (!store_ops_ok (XEXP (x, 0), bb))
6978 return 1;
6979
6980 for ( ; insn && insn != PREV_INSN (first); insn = PREV_INSN (insn))
6981 if (store_killed_in_insn (x, insn))
6982 return 1;
6983
6984 return 0;
6985 }
6986
6987 #define ANTIC_STORE_LIST(x) ((x)->loads)
6988 #define AVAIL_STORE_LIST(x) ((x)->stores)
6989
6990 /* Given the table of available store insns at the end of blocks,
6991 determine which ones are not killed by aliasing, and generate
6992 the appropriate vectors for gen and killed. */
6993 static void
6994 build_store_vectors ()
6995 {
6996 basic_block bb, b;
6997 rtx insn, st;
6998 struct ls_expr * ptr;
6999
7000 /* Build the gen_vector. This is any store in the table which is not killed
7001 by aliasing later in its block. */
7002 ae_gen = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7003 sbitmap_vector_zero (ae_gen, last_basic_block);
7004
7005 st_antloc = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7006 sbitmap_vector_zero (st_antloc, last_basic_block);
7007
7008 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7009 {
7010 /* Put all the stores into either the antic list, or the avail list,
7011 or both. */
7012 rtx store_list = ptr->stores;
7013 ptr->stores = NULL_RTX;
7014
7015 for (st = store_list; st != NULL; st = XEXP (st, 1))
7016 {
7017 insn = XEXP (st, 0);
7018 bb = BLOCK_FOR_INSN (insn);
7019
7020 if (!store_killed_after (ptr->pattern, insn, bb))
7021 {
7022 /* If we've already seen an availale expression in this block,
7023 we can delete the one we saw already (It occurs earlier in
7024 the block), and replace it with this one). We'll copy the
7025 old SRC expression to an unused register in case there
7026 are any side effects. */
7027 if (TEST_BIT (ae_gen[bb->index], ptr->index))
7028 {
7029 /* Find previous store. */
7030 rtx st;
7031 for (st = AVAIL_STORE_LIST (ptr); st ; st = XEXP (st, 1))
7032 if (BLOCK_FOR_INSN (XEXP (st, 0)) == bb)
7033 break;
7034 if (st)
7035 {
7036 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
7037 if (gcse_file)
7038 fprintf (gcse_file, "Removing redundant store:\n");
7039 replace_store_insn (r, XEXP (st, 0), bb);
7040 XEXP (st, 0) = insn;
7041 continue;
7042 }
7043 }
7044 SET_BIT (ae_gen[bb->index], ptr->index);
7045 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
7046 AVAIL_STORE_LIST (ptr));
7047 }
7048
7049 if (!store_killed_before (ptr->pattern, insn, bb))
7050 {
7051 SET_BIT (st_antloc[BLOCK_NUM (insn)], ptr->index);
7052 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (insn,
7053 ANTIC_STORE_LIST (ptr));
7054 }
7055 }
7056
7057 /* Free the original list of store insns. */
7058 free_INSN_LIST_list (&store_list);
7059 }
7060
7061 ae_kill = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7062 sbitmap_vector_zero (ae_kill, last_basic_block);
7063
7064 transp = (sbitmap *) sbitmap_vector_alloc (last_basic_block, num_stores);
7065 sbitmap_vector_zero (transp, last_basic_block);
7066
7067 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7068 FOR_EACH_BB (b)
7069 {
7070 if (store_killed_after (ptr->pattern, b->head, b))
7071 {
7072 /* The anticipatable expression is not killed if it's gen'd. */
7073 /*
7074 We leave this check out for now. If we have a code sequence
7075 in a block which looks like:
7076 ST MEMa = x
7077 L y = MEMa
7078 ST MEMa = z
7079 We should flag this as having an ANTIC expression, NOT
7080 transparent, NOT killed, and AVAIL.
7081 Unfortunately, since we haven't re-written all loads to
7082 use the reaching reg, we'll end up doing an incorrect
7083 Load in the middle here if we push the store down. It happens in
7084 gcc.c-torture/execute/960311-1.c with -O3
7085 If we always kill it in this case, we'll sometimes do
7086 uneccessary work, but it shouldn't actually hurt anything.
7087 if (!TEST_BIT (ae_gen[b], ptr->index)). */
7088 SET_BIT (ae_kill[b->index], ptr->index);
7089 }
7090 else
7091 SET_BIT (transp[b->index], ptr->index);
7092 }
7093
7094 /* Any block with no exits calls some non-returning function, so
7095 we better mark the store killed here, or we might not store to
7096 it at all. If we knew it was abort, we wouldn't have to store,
7097 but we don't know that for sure. */
7098 if (gcse_file)
7099 {
7100 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
7101 print_ldst_list (gcse_file);
7102 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
7103 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
7104 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
7105 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
7106 }
7107 }
7108
7109 /* Insert an instruction at the begining of a basic block, and update
7110 the BLOCK_HEAD if needed. */
7111
7112 static void
7113 insert_insn_start_bb (insn, bb)
7114 rtx insn;
7115 basic_block bb;
7116 {
7117 /* Insert at start of successor block. */
7118 rtx prev = PREV_INSN (bb->head);
7119 rtx before = bb->head;
7120 while (before != 0)
7121 {
7122 if (GET_CODE (before) != CODE_LABEL
7123 && (GET_CODE (before) != NOTE
7124 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
7125 break;
7126 prev = before;
7127 if (prev == bb->end)
7128 break;
7129 before = NEXT_INSN (before);
7130 }
7131
7132 insn = emit_insn_after (insn, prev);
7133
7134 if (gcse_file)
7135 {
7136 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
7137 bb->index);
7138 print_inline_rtx (gcse_file, insn, 6);
7139 fprintf (gcse_file, "\n");
7140 }
7141 }
7142
7143 /* This routine will insert a store on an edge. EXPR is the ldst entry for
7144 the memory reference, and E is the edge to insert it on. Returns nonzero
7145 if an edge insertion was performed. */
7146
7147 static int
7148 insert_store (expr, e)
7149 struct ls_expr * expr;
7150 edge e;
7151 {
7152 rtx reg, insn;
7153 basic_block bb;
7154 edge tmp;
7155
7156 /* We did all the deleted before this insert, so if we didn't delete a
7157 store, then we haven't set the reaching reg yet either. */
7158 if (expr->reaching_reg == NULL_RTX)
7159 return 0;
7160
7161 reg = expr->reaching_reg;
7162 insn = gen_move_insn (expr->pattern, reg);
7163
7164 /* If we are inserting this expression on ALL predecessor edges of a BB,
7165 insert it at the start of the BB, and reset the insert bits on the other
7166 edges so we don't try to insert it on the other edges. */
7167 bb = e->dest;
7168 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7169 {
7170 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7171 if (index == EDGE_INDEX_NO_EDGE)
7172 abort ();
7173 if (! TEST_BIT (pre_insert_map[index], expr->index))
7174 break;
7175 }
7176
7177 /* If tmp is NULL, we found an insertion on every edge, blank the
7178 insertion vector for these edges, and insert at the start of the BB. */
7179 if (!tmp && bb != EXIT_BLOCK_PTR)
7180 {
7181 for (tmp = e->dest->pred; tmp ; tmp = tmp->pred_next)
7182 {
7183 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
7184 RESET_BIT (pre_insert_map[index], expr->index);
7185 }
7186 insert_insn_start_bb (insn, bb);
7187 return 0;
7188 }
7189
7190 /* We can't insert on this edge, so we'll insert at the head of the
7191 successors block. See Morgan, sec 10.5. */
7192 if ((e->flags & EDGE_ABNORMAL) == EDGE_ABNORMAL)
7193 {
7194 insert_insn_start_bb (insn, bb);
7195 return 0;
7196 }
7197
7198 insert_insn_on_edge (insn, e);
7199
7200 if (gcse_file)
7201 {
7202 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
7203 e->src->index, e->dest->index);
7204 print_inline_rtx (gcse_file, insn, 6);
7205 fprintf (gcse_file, "\n");
7206 }
7207
7208 return 1;
7209 }
7210
7211 /* This routine will replace a store with a SET to a specified register. */
7212
7213 static void
7214 replace_store_insn (reg, del, bb)
7215 rtx reg, del;
7216 basic_block bb;
7217 {
7218 rtx insn;
7219
7220 insn = gen_move_insn (reg, SET_SRC (PATTERN (del)));
7221 insn = emit_insn_after (insn, del);
7222
7223 if (gcse_file)
7224 {
7225 fprintf (gcse_file,
7226 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
7227 print_inline_rtx (gcse_file, del, 6);
7228 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
7229 print_inline_rtx (gcse_file, insn, 6);
7230 fprintf (gcse_file, "\n");
7231 }
7232
7233 delete_insn (del);
7234 }
7235
7236
7237 /* Delete a store, but copy the value that would have been stored into
7238 the reaching_reg for later storing. */
7239
7240 static void
7241 delete_store (expr, bb)
7242 struct ls_expr * expr;
7243 basic_block bb;
7244 {
7245 rtx reg, i, del;
7246
7247 if (expr->reaching_reg == NULL_RTX)
7248 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
7249
7250
7251 /* If there is more than 1 store, the earlier ones will be dead,
7252 but it doesn't hurt to replace them here. */
7253 reg = expr->reaching_reg;
7254
7255 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
7256 {
7257 del = XEXP (i, 0);
7258 if (BLOCK_FOR_INSN (del) == bb)
7259 {
7260 /* We know there is only one since we deleted redundant
7261 ones during the available computation. */
7262 replace_store_insn (reg, del, bb);
7263 break;
7264 }
7265 }
7266 }
7267
7268 /* Free memory used by store motion. */
7269
7270 static void
7271 free_store_memory ()
7272 {
7273 free_ldst_mems ();
7274
7275 if (ae_gen)
7276 sbitmap_vector_free (ae_gen);
7277 if (ae_kill)
7278 sbitmap_vector_free (ae_kill);
7279 if (transp)
7280 sbitmap_vector_free (transp);
7281 if (st_antloc)
7282 sbitmap_vector_free (st_antloc);
7283 if (pre_insert_map)
7284 sbitmap_vector_free (pre_insert_map);
7285 if (pre_delete_map)
7286 sbitmap_vector_free (pre_delete_map);
7287 if (reg_set_in_block)
7288 sbitmap_vector_free (reg_set_in_block);
7289
7290 ae_gen = ae_kill = transp = st_antloc = NULL;
7291 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
7292 }
7293
7294 /* Perform store motion. Much like gcse, except we move expressions the
7295 other way by looking at the flowgraph in reverse. */
7296
7297 static void
7298 store_motion ()
7299 {
7300 basic_block bb;
7301 int x;
7302 struct ls_expr * ptr;
7303 int update_flow = 0;
7304
7305 if (gcse_file)
7306 {
7307 fprintf (gcse_file, "before store motion\n");
7308 print_rtl (gcse_file, get_insns ());
7309 }
7310
7311
7312 init_alias_analysis ();
7313
7314 /* Find all the stores that are live to the end of their block. */
7315 num_stores = compute_store_table ();
7316 if (num_stores == 0)
7317 {
7318 sbitmap_vector_free (reg_set_in_block);
7319 end_alias_analysis ();
7320 return;
7321 }
7322
7323 /* Now compute whats actually available to move. */
7324 add_noreturn_fake_exit_edges ();
7325 build_store_vectors ();
7326
7327 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
7328 st_antloc, ae_kill, &pre_insert_map,
7329 &pre_delete_map);
7330
7331 /* Now we want to insert the new stores which are going to be needed. */
7332 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
7333 {
7334 FOR_EACH_BB (bb)
7335 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
7336 delete_store (ptr, bb);
7337
7338 for (x = 0; x < NUM_EDGES (edge_list); x++)
7339 if (TEST_BIT (pre_insert_map[x], ptr->index))
7340 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
7341 }
7342
7343 if (update_flow)
7344 commit_edge_insertions ();
7345
7346 free_store_memory ();
7347 free_edge_list (edge_list);
7348 remove_fake_edges ();
7349 end_alias_analysis ();
7350 }
7351
7352 #include "gt-gcse.h"