]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-ssa-strength-reduction.c
7d8543c28ca9ca13737137b409fc5781fb2165cf
[thirdparty/gcc.git] / gcc / gimple-ssa-strength-reduction.c
1 /* Straight-line strength reduction.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "backend.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "gimple.h"
43 #include "cfghooks.h"
44 #include "tree-pass.h"
45 #include "ssa.h"
46 #include "expmed.h"
47 #include "gimple-pretty-print.h"
48 #include "fold-const.h"
49 #include "gimple-iterator.h"
50 #include "gimplify-me.h"
51 #include "stor-layout.h"
52 #include "cfgloop.h"
53 #include "tree-cfg.h"
54 #include "domwalk.h"
55 #include "params.h"
56 #include "tree-ssa-address.h"
57 #include "tree-affine.h"
58 #include "builtins.h"
59 \f
60 /* Information about a strength reduction candidate. Each statement
61 in the candidate table represents an expression of one of the
62 following forms (the special case of CAND_REF will be described
63 later):
64
65 (CAND_MULT) S1: X = (B + i) * S
66 (CAND_ADD) S1: X = B + (i * S)
67
68 Here X and B are SSA names, i is an integer constant, and S is
69 either an SSA name or a constant. We call B the "base," i the
70 "index", and S the "stride."
71
72 Any statement S0 that dominates S1 and is of the form:
73
74 (CAND_MULT) S0: Y = (B + i') * S
75 (CAND_ADD) S0: Y = B + (i' * S)
76
77 is called a "basis" for S1. In both cases, S1 may be replaced by
78
79 S1': X = Y + (i - i') * S,
80
81 where (i - i') * S is folded to the extent possible.
82
83 All gimple statements are visited in dominator order, and each
84 statement that may contribute to one of the forms of S1 above is
85 given at least one entry in the candidate table. Such statements
86 include addition, pointer addition, subtraction, multiplication,
87 negation, copies, and nontrivial type casts. If a statement may
88 represent more than one expression of the forms of S1 above,
89 multiple "interpretations" are stored in the table and chained
90 together. Examples:
91
92 * An add of two SSA names may treat either operand as the base.
93 * A multiply of two SSA names, likewise.
94 * A copy or cast may be thought of as either a CAND_MULT with
95 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
96
97 Candidate records are allocated from an obstack. They are addressed
98 both from a hash table keyed on S1, and from a vector of candidate
99 pointers arranged in predominator order.
100
101 Opportunity note
102 ----------------
103 Currently we don't recognize:
104
105 S0: Y = (S * i') - B
106 S1: X = (S * i) - B
107
108 as a strength reduction opportunity, even though this S1 would
109 also be replaceable by the S1' above. This can be added if it
110 comes up in practice.
111
112 Strength reduction in addressing
113 --------------------------------
114 There is another kind of candidate known as CAND_REF. A CAND_REF
115 describes a statement containing a memory reference having
116 complex addressing that might benefit from strength reduction.
117 Specifically, we are interested in references for which
118 get_inner_reference returns a base address, offset, and bitpos as
119 follows:
120
121 base: MEM_REF (T1, C1)
122 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
123 bitpos: C4 * BITS_PER_UNIT
124
125 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
126 arbitrary integer constants. Note that C2 may be zero, in which
127 case the offset will be MULT_EXPR (T2, C3).
128
129 When this pattern is recognized, the original memory reference
130 can be replaced with:
131
132 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
133 C1 + (C2 * C3) + C4)
134
135 which distributes the multiply to allow constant folding. When
136 two or more addressing expressions can be represented by MEM_REFs
137 of this form, differing only in the constants C1, C2, and C4,
138 making this substitution produces more efficient addressing during
139 the RTL phases. When there are not at least two expressions with
140 the same values of T1, T2, and C3, there is nothing to be gained
141 by the replacement.
142
143 Strength reduction of CAND_REFs uses the same infrastructure as
144 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
145 field, MULT_EXPR (T2, C3) in the stride (S) field, and
146 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
147 is thus another CAND_REF with the same B and S values. When at
148 least two CAND_REFs are chained together using the basis relation,
149 each of them is replaced as above, resulting in improved code
150 generation for addressing.
151
152 Conditional candidates
153 ======================
154
155 Conditional candidates are best illustrated with an example.
156 Consider the code sequence:
157
158 (1) x_0 = ...;
159 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
160 if (...)
161 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
162 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
163 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
164 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
165
166 Here strength reduction is complicated by the uncertain value of x_2.
167 A legitimate transformation is:
168
169 (1) x_0 = ...;
170 (2) a_0 = x_0 * 5;
171 if (...)
172 {
173 (3) [x_1 = x_0 + 1;]
174 (3a) t_1 = a_0 + 5;
175 }
176 (4) [x_2 = PHI <x_0, x_1>;]
177 (4a) t_2 = PHI <a_0, t_1>;
178 (5) [x_3 = x_2 + 1;]
179 (6r) a_1 = t_2 + 5;
180
181 where the bracketed instructions may go dead.
182
183 To recognize this opportunity, we have to observe that statement (6)
184 has a "hidden basis" (2). The hidden basis is unlike a normal basis
185 in that the statement and the hidden basis have different base SSA
186 names (x_2 and x_0, respectively). The relationship is established
187 when a statement's base name (x_2) is defined by a phi statement (4),
188 each argument of which (x_0, x_1) has an identical "derived base name."
189 If the argument is defined by a candidate (as x_1 is by (3)) that is a
190 CAND_ADD having a stride of 1, the derived base name of the argument is
191 the base name of the candidate (x_0). Otherwise, the argument itself
192 is its derived base name (as is the case with argument x_0).
193
194 The hidden basis for statement (6) is the nearest dominating candidate
195 whose base name is the derived base name (x_0) of the feeding phi (4),
196 and whose stride is identical to that of the statement. We can then
197 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
198 allowing the final replacement of (6) by the strength-reduced (6r).
199
200 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
201 A CAND_PHI is not a candidate for replacement, but is maintained in the
202 candidate table to ease discovery of hidden bases. Any phi statement
203 whose arguments share a common derived base name is entered into the
204 table with the derived base name, an (arbitrary) index of zero, and a
205 stride of 1. A statement with a hidden basis can then be detected by
206 simply looking up its feeding phi definition in the candidate table,
207 extracting the derived base name, and searching for a basis in the
208 usual manner after substituting the derived base name.
209
210 Note that the transformation is only valid when the original phi and
211 the statements that define the phi's arguments are all at the same
212 position in the loop hierarchy. */
213
214
215 /* Index into the candidate vector, offset by 1. VECs are zero-based,
216 while cand_idx's are one-based, with zero indicating null. */
217 typedef unsigned cand_idx;
218
219 /* The kind of candidate. */
220 enum cand_kind
221 {
222 CAND_MULT,
223 CAND_ADD,
224 CAND_REF,
225 CAND_PHI
226 };
227
228 struct slsr_cand_d
229 {
230 /* The candidate statement S1. */
231 gimple *cand_stmt;
232
233 /* The base expression B: often an SSA name, but not always. */
234 tree base_expr;
235
236 /* The stride S. */
237 tree stride;
238
239 /* The index constant i. */
240 widest_int index;
241
242 /* The type of the candidate. This is normally the type of base_expr,
243 but casts may have occurred when combining feeding instructions.
244 A candidate can only be a basis for candidates of the same final type.
245 (For CAND_REFs, this is the type to be used for operand 1 of the
246 replacement MEM_REF.) */
247 tree cand_type;
248
249 /* The type to be used to interpret the stride field when the stride
250 is not a constant. Normally the same as the type of the recorded
251 stride, but when the stride has been cast we need to maintain that
252 knowledge in order to make legal substitutions without losing
253 precision. When the stride is a constant, this will be sizetype. */
254 tree stride_type;
255
256 /* The kind of candidate (CAND_MULT, etc.). */
257 enum cand_kind kind;
258
259 /* Index of this candidate in the candidate vector. */
260 cand_idx cand_num;
261
262 /* Index of the next candidate record for the same statement.
263 A statement may be useful in more than one way (e.g., due to
264 commutativity). So we can have multiple "interpretations"
265 of a statement. */
266 cand_idx next_interp;
267
268 /* Index of the basis statement S0, if any, in the candidate vector. */
269 cand_idx basis;
270
271 /* First candidate for which this candidate is a basis, if one exists. */
272 cand_idx dependent;
273
274 /* Next candidate having the same basis as this one. */
275 cand_idx sibling;
276
277 /* If this is a conditional candidate, the CAND_PHI candidate
278 that defines the base SSA name B. */
279 cand_idx def_phi;
280
281 /* Savings that can be expected from eliminating dead code if this
282 candidate is replaced. */
283 int dead_savings;
284
285 /* For PHI candidates, use a visited flag to keep from processing the
286 same PHI twice from multiple paths. */
287 int visited;
288
289 /* We sometimes have to cache a phi basis with a phi candidate to
290 avoid processing it twice. Valid only if visited==1. */
291 tree cached_basis;
292 };
293
294 typedef struct slsr_cand_d slsr_cand, *slsr_cand_t;
295 typedef const struct slsr_cand_d *const_slsr_cand_t;
296
297 /* Pointers to candidates are chained together as part of a mapping
298 from base expressions to the candidates that use them. */
299
300 struct cand_chain_d
301 {
302 /* Base expression for the chain of candidates: often, but not
303 always, an SSA name. */
304 tree base_expr;
305
306 /* Pointer to a candidate. */
307 slsr_cand_t cand;
308
309 /* Chain pointer. */
310 struct cand_chain_d *next;
311
312 };
313
314 typedef struct cand_chain_d cand_chain, *cand_chain_t;
315 typedef const struct cand_chain_d *const_cand_chain_t;
316
317 /* Information about a unique "increment" associated with candidates
318 having an SSA name for a stride. An increment is the difference
319 between the index of the candidate and the index of its basis,
320 i.e., (i - i') as discussed in the module commentary.
321
322 When we are not going to generate address arithmetic we treat
323 increments that differ only in sign as the same, allowing sharing
324 of the cost of initializers. The absolute value of the increment
325 is stored in the incr_info. */
326
327 struct incr_info_d
328 {
329 /* The increment that relates a candidate to its basis. */
330 widest_int incr;
331
332 /* How many times the increment occurs in the candidate tree. */
333 unsigned count;
334
335 /* Cost of replacing candidates using this increment. Negative and
336 zero costs indicate replacement should be performed. */
337 int cost;
338
339 /* If this increment is profitable but is not -1, 0, or 1, it requires
340 an initializer T_0 = stride * incr to be found or introduced in the
341 nearest common dominator of all candidates. This field holds T_0
342 for subsequent use. */
343 tree initializer;
344
345 /* If the initializer was found to already exist, this is the block
346 where it was found. */
347 basic_block init_bb;
348 };
349
350 typedef struct incr_info_d incr_info, *incr_info_t;
351
352 /* Candidates are maintained in a vector. If candidate X dominates
353 candidate Y, then X appears before Y in the vector; but the
354 converse does not necessarily hold. */
355 static vec<slsr_cand_t> cand_vec;
356
357 enum cost_consts
358 {
359 COST_NEUTRAL = 0,
360 COST_INFINITE = 1000
361 };
362
363 enum stride_status
364 {
365 UNKNOWN_STRIDE = 0,
366 KNOWN_STRIDE = 1
367 };
368
369 enum phi_adjust_status
370 {
371 NOT_PHI_ADJUST = 0,
372 PHI_ADJUST = 1
373 };
374
375 enum count_phis_status
376 {
377 DONT_COUNT_PHIS = 0,
378 COUNT_PHIS = 1
379 };
380
381 /* Constrain how many PHI nodes we will visit for a conditional
382 candidate (depth and breadth). */
383 const int MAX_SPREAD = 16;
384
385 /* Pointer map embodying a mapping from statements to candidates. */
386 static hash_map<gimple *, slsr_cand_t> *stmt_cand_map;
387
388 /* Obstack for candidates. */
389 static struct obstack cand_obstack;
390
391 /* Obstack for candidate chains. */
392 static struct obstack chain_obstack;
393
394 /* An array INCR_VEC of incr_infos is used during analysis of related
395 candidates having an SSA name for a stride. INCR_VEC_LEN describes
396 its current length. MAX_INCR_VEC_LEN is used to avoid costly
397 pathological cases. */
398 static incr_info_t incr_vec;
399 static unsigned incr_vec_len;
400 const int MAX_INCR_VEC_LEN = 16;
401
402 /* For a chain of candidates with unknown stride, indicates whether or not
403 we must generate pointer arithmetic when replacing statements. */
404 static bool address_arithmetic_p;
405
406 /* Forward function declarations. */
407 static slsr_cand_t base_cand_from_table (tree);
408 static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
409 static bool legal_cast_p_1 (tree, tree);
410 \f
411 /* Produce a pointer to the IDX'th candidate in the candidate vector. */
412
413 static slsr_cand_t
414 lookup_cand (cand_idx idx)
415 {
416 return cand_vec[idx - 1];
417 }
418
419 /* Helper for hashing a candidate chain header. */
420
421 struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
422 {
423 static inline hashval_t hash (const cand_chain *);
424 static inline bool equal (const cand_chain *, const cand_chain *);
425 };
426
427 inline hashval_t
428 cand_chain_hasher::hash (const cand_chain *p)
429 {
430 tree base_expr = p->base_expr;
431 return iterative_hash_expr (base_expr, 0);
432 }
433
434 inline bool
435 cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
436 {
437 return operand_equal_p (chain1->base_expr, chain2->base_expr, 0);
438 }
439
440 /* Hash table embodying a mapping from base exprs to chains of candidates. */
441 static hash_table<cand_chain_hasher> *base_cand_map;
442 \f
443 /* Pointer map used by tree_to_aff_combination_expand. */
444 static hash_map<tree, name_expansion *> *name_expansions;
445 /* Pointer map embodying a mapping from bases to alternative bases. */
446 static hash_map<tree, tree> *alt_base_map;
447
448 /* Given BASE, use the tree affine combiniation facilities to
449 find the underlying tree expression for BASE, with any
450 immediate offset excluded.
451
452 N.B. we should eliminate this backtracking with better forward
453 analysis in a future release. */
454
455 static tree
456 get_alternative_base (tree base)
457 {
458 tree *result = alt_base_map->get (base);
459
460 if (result == NULL)
461 {
462 tree expr;
463 aff_tree aff;
464
465 tree_to_aff_combination_expand (base, TREE_TYPE (base),
466 &aff, &name_expansions);
467 aff.offset = 0;
468 expr = aff_combination_to_tree (&aff);
469
470 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
471
472 return expr == base ? NULL : expr;
473 }
474
475 return *result;
476 }
477
478 /* Look in the candidate table for a CAND_PHI that defines BASE and
479 return it if found; otherwise return NULL. */
480
481 static cand_idx
482 find_phi_def (tree base)
483 {
484 slsr_cand_t c;
485
486 if (TREE_CODE (base) != SSA_NAME)
487 return 0;
488
489 c = base_cand_from_table (base);
490
491 if (!c || c->kind != CAND_PHI
492 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c->cand_stmt)))
493 return 0;
494
495 return c->cand_num;
496 }
497
498 /* Determine whether all uses of NAME are directly or indirectly
499 used by STMT. That is, we want to know whether if STMT goes
500 dead, the definition of NAME also goes dead. */
501 static bool
502 uses_consumed_by_stmt (tree name, gimple *stmt, unsigned recurse = 0)
503 {
504 gimple *use_stmt;
505 imm_use_iterator iter;
506 bool retval = true;
507
508 FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
509 {
510 if (use_stmt == stmt || is_gimple_debug (use_stmt))
511 continue;
512
513 if (!is_gimple_assign (use_stmt)
514 || !gimple_get_lhs (use_stmt)
515 || !is_gimple_reg (gimple_get_lhs (use_stmt))
516 || recurse >= 10
517 || !uses_consumed_by_stmt (gimple_get_lhs (use_stmt), stmt,
518 recurse + 1))
519 {
520 retval = false;
521 BREAK_FROM_IMM_USE_STMT (iter);
522 }
523 }
524
525 return retval;
526 }
527
528 /* Helper routine for find_basis_for_candidate. May be called twice:
529 once for the candidate's base expr, and optionally again either for
530 the candidate's phi definition or for a CAND_REF's alternative base
531 expression. */
532
533 static slsr_cand_t
534 find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
535 {
536 cand_chain mapping_key;
537 cand_chain_t chain;
538 slsr_cand_t basis = NULL;
539
540 // Limit potential of N^2 behavior for long candidate chains.
541 int iters = 0;
542 int max_iters = PARAM_VALUE (PARAM_MAX_SLSR_CANDIDATE_SCAN);
543
544 mapping_key.base_expr = base_expr;
545 chain = base_cand_map->find (&mapping_key);
546
547 for (; chain && iters < max_iters; chain = chain->next, ++iters)
548 {
549 slsr_cand_t one_basis = chain->cand;
550
551 if (one_basis->kind != c->kind
552 || one_basis->cand_stmt == c->cand_stmt
553 || !operand_equal_p (one_basis->stride, c->stride, 0)
554 || !types_compatible_p (one_basis->cand_type, c->cand_type)
555 || !types_compatible_p (one_basis->stride_type, c->stride_type)
556 || !dominated_by_p (CDI_DOMINATORS,
557 gimple_bb (c->cand_stmt),
558 gimple_bb (one_basis->cand_stmt)))
559 continue;
560
561 tree lhs = gimple_assign_lhs (one_basis->cand_stmt);
562 if (lhs && TREE_CODE (lhs) == SSA_NAME
563 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
564 continue;
565
566 if (!basis || basis->cand_num < one_basis->cand_num)
567 basis = one_basis;
568 }
569
570 return basis;
571 }
572
573 /* Use the base expr from candidate C to look for possible candidates
574 that can serve as a basis for C. Each potential basis must also
575 appear in a block that dominates the candidate statement and have
576 the same stride and type. If more than one possible basis exists,
577 the one with highest index in the vector is chosen; this will be
578 the most immediately dominating basis. */
579
580 static int
581 find_basis_for_candidate (slsr_cand_t c)
582 {
583 slsr_cand_t basis = find_basis_for_base_expr (c, c->base_expr);
584
585 /* If a candidate doesn't have a basis using its base expression,
586 it may have a basis hidden by one or more intervening phis. */
587 if (!basis && c->def_phi)
588 {
589 basic_block basis_bb, phi_bb;
590 slsr_cand_t phi_cand = lookup_cand (c->def_phi);
591 basis = find_basis_for_base_expr (c, phi_cand->base_expr);
592
593 if (basis)
594 {
595 /* A hidden basis must dominate the phi-definition of the
596 candidate's base name. */
597 phi_bb = gimple_bb (phi_cand->cand_stmt);
598 basis_bb = gimple_bb (basis->cand_stmt);
599
600 if (phi_bb == basis_bb
601 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
602 {
603 basis = NULL;
604 c->basis = 0;
605 }
606
607 /* If we found a hidden basis, estimate additional dead-code
608 savings if the phi and its feeding statements can be removed. */
609 tree feeding_var = gimple_phi_result (phi_cand->cand_stmt);
610 if (basis && uses_consumed_by_stmt (feeding_var, c->cand_stmt))
611 c->dead_savings += phi_cand->dead_savings;
612 }
613 }
614
615 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
616 {
617 tree alt_base_expr = get_alternative_base (c->base_expr);
618 if (alt_base_expr)
619 basis = find_basis_for_base_expr (c, alt_base_expr);
620 }
621
622 if (basis)
623 {
624 c->sibling = basis->dependent;
625 basis->dependent = c->cand_num;
626 return basis->cand_num;
627 }
628
629 return 0;
630 }
631
632 /* Record a mapping from BASE to C, indicating that C may potentially serve
633 as a basis using that base expression. BASE may be the same as
634 C->BASE_EXPR; alternatively BASE can be a different tree that share the
635 underlining expression of C->BASE_EXPR. */
636
637 static void
638 record_potential_basis (slsr_cand_t c, tree base)
639 {
640 cand_chain_t node;
641 cand_chain **slot;
642
643 gcc_assert (base);
644
645 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
646 node->base_expr = base;
647 node->cand = c;
648 node->next = NULL;
649 slot = base_cand_map->find_slot (node, INSERT);
650
651 if (*slot)
652 {
653 cand_chain_t head = (cand_chain_t) (*slot);
654 node->next = head->next;
655 head->next = node;
656 }
657 else
658 *slot = node;
659 }
660
661 /* Allocate storage for a new candidate and initialize its fields.
662 Attempt to find a basis for the candidate.
663
664 For CAND_REF, an alternative base may also be recorded and used
665 to find a basis. This helps cases where the expression hidden
666 behind BASE (which is usually an SSA_NAME) has immediate offset,
667 e.g.
668
669 a2[i][j] = 1;
670 a2[i + 20][j] = 2; */
671
672 static slsr_cand_t
673 alloc_cand_and_find_basis (enum cand_kind kind, gimple *gs, tree base,
674 const widest_int &index, tree stride, tree ctype,
675 tree stype, unsigned savings)
676 {
677 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
678 sizeof (slsr_cand));
679 c->cand_stmt = gs;
680 c->base_expr = base;
681 c->stride = stride;
682 c->index = index;
683 c->cand_type = ctype;
684 c->stride_type = stype;
685 c->kind = kind;
686 c->cand_num = cand_vec.length () + 1;
687 c->next_interp = 0;
688 c->dependent = 0;
689 c->sibling = 0;
690 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
691 c->dead_savings = savings;
692 c->visited = 0;
693 c->cached_basis = NULL_TREE;
694
695 cand_vec.safe_push (c);
696
697 if (kind == CAND_PHI)
698 c->basis = 0;
699 else
700 c->basis = find_basis_for_candidate (c);
701
702 record_potential_basis (c, base);
703 if (flag_expensive_optimizations && kind == CAND_REF)
704 {
705 tree alt_base = get_alternative_base (base);
706 if (alt_base)
707 record_potential_basis (c, alt_base);
708 }
709
710 return c;
711 }
712
713 /* Determine the target cost of statement GS when compiling according
714 to SPEED. */
715
716 static int
717 stmt_cost (gimple *gs, bool speed)
718 {
719 tree lhs, rhs1, rhs2;
720 machine_mode lhs_mode;
721
722 gcc_assert (is_gimple_assign (gs));
723 lhs = gimple_assign_lhs (gs);
724 rhs1 = gimple_assign_rhs1 (gs);
725 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
726
727 switch (gimple_assign_rhs_code (gs))
728 {
729 case MULT_EXPR:
730 rhs2 = gimple_assign_rhs2 (gs);
731
732 if (tree_fits_shwi_p (rhs2))
733 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
734
735 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
736 return mul_cost (speed, lhs_mode);
737
738 case PLUS_EXPR:
739 case POINTER_PLUS_EXPR:
740 case MINUS_EXPR:
741 return add_cost (speed, lhs_mode);
742
743 case NEGATE_EXPR:
744 return neg_cost (speed, lhs_mode);
745
746 CASE_CONVERT:
747 return convert_cost (lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
748
749 /* Note that we don't assign costs to copies that in most cases
750 will go away. */
751 case SSA_NAME:
752 return 0;
753
754 default:
755 ;
756 }
757
758 gcc_unreachable ();
759 return 0;
760 }
761
762 /* Look up the defining statement for BASE_IN and return a pointer
763 to its candidate in the candidate table, if any; otherwise NULL.
764 Only CAND_ADD and CAND_MULT candidates are returned. */
765
766 static slsr_cand_t
767 base_cand_from_table (tree base_in)
768 {
769 slsr_cand_t *result;
770
771 gimple *def = SSA_NAME_DEF_STMT (base_in);
772 if (!def)
773 return (slsr_cand_t) NULL;
774
775 result = stmt_cand_map->get (def);
776
777 if (result && (*result)->kind != CAND_REF)
778 return *result;
779
780 return (slsr_cand_t) NULL;
781 }
782
783 /* Add an entry to the statement-to-candidate mapping. */
784
785 static void
786 add_cand_for_stmt (gimple *gs, slsr_cand_t c)
787 {
788 gcc_assert (!stmt_cand_map->put (gs, c));
789 }
790 \f
791 /* Given PHI which contains a phi statement, determine whether it
792 satisfies all the requirements of a phi candidate. If so, create
793 a candidate. Note that a CAND_PHI never has a basis itself, but
794 is used to help find a basis for subsequent candidates. */
795
796 static void
797 slsr_process_phi (gphi *phi, bool speed)
798 {
799 unsigned i;
800 tree arg0_base = NULL_TREE, base_type;
801 slsr_cand_t c;
802 struct loop *cand_loop = gimple_bb (phi)->loop_father;
803 unsigned savings = 0;
804
805 /* A CAND_PHI requires each of its arguments to have the same
806 derived base name. (See the module header commentary for a
807 definition of derived base names.) Furthermore, all feeding
808 definitions must be in the same position in the loop hierarchy
809 as PHI. */
810
811 for (i = 0; i < gimple_phi_num_args (phi); i++)
812 {
813 slsr_cand_t arg_cand;
814 tree arg = gimple_phi_arg_def (phi, i);
815 tree derived_base_name = NULL_TREE;
816 gimple *arg_stmt = NULL;
817 basic_block arg_bb = NULL;
818
819 if (TREE_CODE (arg) != SSA_NAME)
820 return;
821
822 arg_cand = base_cand_from_table (arg);
823
824 if (arg_cand)
825 {
826 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
827 {
828 if (!arg_cand->next_interp)
829 return;
830
831 arg_cand = lookup_cand (arg_cand->next_interp);
832 }
833
834 if (!integer_onep (arg_cand->stride))
835 return;
836
837 derived_base_name = arg_cand->base_expr;
838 arg_stmt = arg_cand->cand_stmt;
839 arg_bb = gimple_bb (arg_stmt);
840
841 /* Gather potential dead code savings if the phi statement
842 can be removed later on. */
843 if (uses_consumed_by_stmt (arg, phi))
844 {
845 if (gimple_code (arg_stmt) == GIMPLE_PHI)
846 savings += arg_cand->dead_savings;
847 else
848 savings += stmt_cost (arg_stmt, speed);
849 }
850 }
851 else if (SSA_NAME_IS_DEFAULT_DEF (arg))
852 {
853 derived_base_name = arg;
854 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
855 }
856
857 if (!arg_bb || arg_bb->loop_father != cand_loop)
858 return;
859
860 if (i == 0)
861 arg0_base = derived_base_name;
862 else if (!operand_equal_p (derived_base_name, arg0_base, 0))
863 return;
864 }
865
866 /* Create the candidate. "alloc_cand_and_find_basis" is named
867 misleadingly for this case, as no basis will be sought for a
868 CAND_PHI. */
869 base_type = TREE_TYPE (arg0_base);
870
871 c = alloc_cand_and_find_basis (CAND_PHI, phi, arg0_base,
872 0, integer_one_node, base_type,
873 sizetype, savings);
874
875 /* Add the candidate to the statement-candidate mapping. */
876 add_cand_for_stmt (phi, c);
877 }
878
879 /* Given PBASE which is a pointer to tree, look up the defining
880 statement for it and check whether the candidate is in the
881 form of:
882
883 X = B + (1 * S), S is integer constant
884 X = B + (i * S), S is integer one
885
886 If so, set PBASE to the candidate's base_expr and return double
887 int (i * S).
888 Otherwise, just return double int zero. */
889
890 static widest_int
891 backtrace_base_for_ref (tree *pbase)
892 {
893 tree base_in = *pbase;
894 slsr_cand_t base_cand;
895
896 STRIP_NOPS (base_in);
897
898 /* Strip off widening conversion(s) to handle cases where
899 e.g. 'B' is widened from an 'int' in order to calculate
900 a 64-bit address. */
901 if (CONVERT_EXPR_P (base_in)
902 && legal_cast_p_1 (TREE_TYPE (base_in),
903 TREE_TYPE (TREE_OPERAND (base_in, 0))))
904 base_in = get_unwidened (base_in, NULL_TREE);
905
906 if (TREE_CODE (base_in) != SSA_NAME)
907 return 0;
908
909 base_cand = base_cand_from_table (base_in);
910
911 while (base_cand && base_cand->kind != CAND_PHI)
912 {
913 if (base_cand->kind == CAND_ADD
914 && base_cand->index == 1
915 && TREE_CODE (base_cand->stride) == INTEGER_CST)
916 {
917 /* X = B + (1 * S), S is integer constant. */
918 *pbase = base_cand->base_expr;
919 return wi::to_widest (base_cand->stride);
920 }
921 else if (base_cand->kind == CAND_ADD
922 && TREE_CODE (base_cand->stride) == INTEGER_CST
923 && integer_onep (base_cand->stride))
924 {
925 /* X = B + (i * S), S is integer one. */
926 *pbase = base_cand->base_expr;
927 return base_cand->index;
928 }
929
930 if (base_cand->next_interp)
931 base_cand = lookup_cand (base_cand->next_interp);
932 else
933 base_cand = NULL;
934 }
935
936 return 0;
937 }
938
939 /* Look for the following pattern:
940
941 *PBASE: MEM_REF (T1, C1)
942
943 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
944 or
945 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
946 or
947 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
948
949 *PINDEX: C4 * BITS_PER_UNIT
950
951 If not present, leave the input values unchanged and return FALSE.
952 Otherwise, modify the input values as follows and return TRUE:
953
954 *PBASE: T1
955 *POFFSET: MULT_EXPR (T2, C3)
956 *PINDEX: C1 + (C2 * C3) + C4
957
958 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
959 will be further restructured to:
960
961 *PBASE: T1
962 *POFFSET: MULT_EXPR (T2', C3)
963 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
964
965 static bool
966 restructure_reference (tree *pbase, tree *poffset, widest_int *pindex,
967 tree *ptype)
968 {
969 tree base = *pbase, offset = *poffset;
970 widest_int index = *pindex;
971 tree mult_op0, t1, t2, type;
972 widest_int c1, c2, c3, c4, c5;
973
974 if (!base
975 || !offset
976 || TREE_CODE (base) != MEM_REF
977 || TREE_CODE (offset) != MULT_EXPR
978 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
979 || wi::umod_floor (index, BITS_PER_UNIT) != 0)
980 return false;
981
982 t1 = TREE_OPERAND (base, 0);
983 c1 = widest_int::from (mem_ref_offset (base), SIGNED);
984 type = TREE_TYPE (TREE_OPERAND (base, 1));
985
986 mult_op0 = TREE_OPERAND (offset, 0);
987 c3 = wi::to_widest (TREE_OPERAND (offset, 1));
988
989 if (TREE_CODE (mult_op0) == PLUS_EXPR)
990
991 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
992 {
993 t2 = TREE_OPERAND (mult_op0, 0);
994 c2 = wi::to_widest (TREE_OPERAND (mult_op0, 1));
995 }
996 else
997 return false;
998
999 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
1000
1001 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
1002 {
1003 t2 = TREE_OPERAND (mult_op0, 0);
1004 c2 = -wi::to_widest (TREE_OPERAND (mult_op0, 1));
1005 }
1006 else
1007 return false;
1008
1009 else
1010 {
1011 t2 = mult_op0;
1012 c2 = 0;
1013 }
1014
1015 c4 = index >> LOG2_BITS_PER_UNIT;
1016 c5 = backtrace_base_for_ref (&t2);
1017
1018 *pbase = t1;
1019 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
1020 wide_int_to_tree (sizetype, c3));
1021 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
1022 *ptype = type;
1023
1024 return true;
1025 }
1026
1027 /* Given GS which contains a data reference, create a CAND_REF entry in
1028 the candidate table and attempt to find a basis. */
1029
1030 static void
1031 slsr_process_ref (gimple *gs)
1032 {
1033 tree ref_expr, base, offset, type;
1034 poly_int64 bitsize, bitpos;
1035 machine_mode mode;
1036 int unsignedp, reversep, volatilep;
1037 slsr_cand_t c;
1038
1039 if (gimple_vdef (gs))
1040 ref_expr = gimple_assign_lhs (gs);
1041 else
1042 ref_expr = gimple_assign_rhs1 (gs);
1043
1044 if (!handled_component_p (ref_expr)
1045 || TREE_CODE (ref_expr) == BIT_FIELD_REF
1046 || (TREE_CODE (ref_expr) == COMPONENT_REF
1047 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1048 return;
1049
1050 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
1051 &unsignedp, &reversep, &volatilep);
1052 HOST_WIDE_INT cbitpos;
1053 if (reversep || !bitpos.is_constant (&cbitpos))
1054 return;
1055 widest_int index = cbitpos;
1056
1057 if (!restructure_reference (&base, &offset, &index, &type))
1058 return;
1059
1060 c = alloc_cand_and_find_basis (CAND_REF, gs, base, index, offset,
1061 type, sizetype, 0);
1062
1063 /* Add the candidate to the statement-candidate mapping. */
1064 add_cand_for_stmt (gs, c);
1065 }
1066
1067 /* Create a candidate entry for a statement GS, where GS multiplies
1068 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1069 about the two SSA names into the new candidate. Return the new
1070 candidate. */
1071
1072 static slsr_cand_t
1073 create_mul_ssa_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
1074 {
1075 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1076 tree stype = NULL_TREE;
1077 widest_int index;
1078 unsigned savings = 0;
1079 slsr_cand_t c;
1080 slsr_cand_t base_cand = base_cand_from_table (base_in);
1081
1082 /* Look at all interpretations of the base candidate, if necessary,
1083 to find information to propagate into this candidate. */
1084 while (base_cand && !base && base_cand->kind != CAND_PHI)
1085 {
1086
1087 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
1088 {
1089 /* Y = (B + i') * 1
1090 X = Y * Z
1091 ================
1092 X = (B + i') * Z */
1093 base = base_cand->base_expr;
1094 index = base_cand->index;
1095 stride = stride_in;
1096 ctype = base_cand->cand_type;
1097 stype = TREE_TYPE (stride_in);
1098 if (has_single_use (base_in))
1099 savings = (base_cand->dead_savings
1100 + stmt_cost (base_cand->cand_stmt, speed));
1101 }
1102 else if (base_cand->kind == CAND_ADD
1103 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1104 {
1105 /* Y = B + (i' * S), S constant
1106 X = Y * Z
1107 ============================
1108 X = B + ((i' * S) * Z) */
1109 base = base_cand->base_expr;
1110 index = base_cand->index * wi::to_widest (base_cand->stride);
1111 stride = stride_in;
1112 ctype = base_cand->cand_type;
1113 stype = TREE_TYPE (stride_in);
1114 if (has_single_use (base_in))
1115 savings = (base_cand->dead_savings
1116 + stmt_cost (base_cand->cand_stmt, speed));
1117 }
1118
1119 if (base_cand->next_interp)
1120 base_cand = lookup_cand (base_cand->next_interp);
1121 else
1122 base_cand = NULL;
1123 }
1124
1125 if (!base)
1126 {
1127 /* No interpretations had anything useful to propagate, so
1128 produce X = (Y + 0) * Z. */
1129 base = base_in;
1130 index = 0;
1131 stride = stride_in;
1132 ctype = TREE_TYPE (base_in);
1133 stype = TREE_TYPE (stride_in);
1134 }
1135
1136 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1137 ctype, stype, savings);
1138 return c;
1139 }
1140
1141 /* Create a candidate entry for a statement GS, where GS multiplies
1142 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1143 information about BASE_IN into the new candidate. Return the new
1144 candidate. */
1145
1146 static slsr_cand_t
1147 create_mul_imm_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
1148 {
1149 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1150 widest_int index, temp;
1151 unsigned savings = 0;
1152 slsr_cand_t c;
1153 slsr_cand_t base_cand = base_cand_from_table (base_in);
1154
1155 /* Look at all interpretations of the base candidate, if necessary,
1156 to find information to propagate into this candidate. */
1157 while (base_cand && !base && base_cand->kind != CAND_PHI)
1158 {
1159 if (base_cand->kind == CAND_MULT
1160 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1161 {
1162 /* Y = (B + i') * S, S constant
1163 X = Y * c
1164 ============================
1165 X = (B + i') * (S * c) */
1166 temp = wi::to_widest (base_cand->stride) * wi::to_widest (stride_in);
1167 if (wi::fits_to_tree_p (temp, TREE_TYPE (stride_in)))
1168 {
1169 base = base_cand->base_expr;
1170 index = base_cand->index;
1171 stride = wide_int_to_tree (TREE_TYPE (stride_in), temp);
1172 ctype = base_cand->cand_type;
1173 if (has_single_use (base_in))
1174 savings = (base_cand->dead_savings
1175 + stmt_cost (base_cand->cand_stmt, speed));
1176 }
1177 }
1178 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
1179 {
1180 /* Y = B + (i' * 1)
1181 X = Y * c
1182 ===========================
1183 X = (B + i') * c */
1184 base = base_cand->base_expr;
1185 index = base_cand->index;
1186 stride = stride_in;
1187 ctype = base_cand->cand_type;
1188 if (has_single_use (base_in))
1189 savings = (base_cand->dead_savings
1190 + stmt_cost (base_cand->cand_stmt, speed));
1191 }
1192 else if (base_cand->kind == CAND_ADD
1193 && base_cand->index == 1
1194 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1195 {
1196 /* Y = B + (1 * S), S constant
1197 X = Y * c
1198 ===========================
1199 X = (B + S) * c */
1200 base = base_cand->base_expr;
1201 index = wi::to_widest (base_cand->stride);
1202 stride = stride_in;
1203 ctype = base_cand->cand_type;
1204 if (has_single_use (base_in))
1205 savings = (base_cand->dead_savings
1206 + stmt_cost (base_cand->cand_stmt, speed));
1207 }
1208
1209 if (base_cand->next_interp)
1210 base_cand = lookup_cand (base_cand->next_interp);
1211 else
1212 base_cand = NULL;
1213 }
1214
1215 if (!base)
1216 {
1217 /* No interpretations had anything useful to propagate, so
1218 produce X = (Y + 0) * c. */
1219 base = base_in;
1220 index = 0;
1221 stride = stride_in;
1222 ctype = TREE_TYPE (base_in);
1223 }
1224
1225 c = alloc_cand_and_find_basis (CAND_MULT, gs, base, index, stride,
1226 ctype, sizetype, savings);
1227 return c;
1228 }
1229
1230 /* Given GS which is a multiply of scalar integers, make an appropriate
1231 entry in the candidate table. If this is a multiply of two SSA names,
1232 create two CAND_MULT interpretations and attempt to find a basis for
1233 each of them. Otherwise, create a single CAND_MULT and attempt to
1234 find a basis. */
1235
1236 static void
1237 slsr_process_mul (gimple *gs, tree rhs1, tree rhs2, bool speed)
1238 {
1239 slsr_cand_t c, c2;
1240
1241 /* If this is a multiply of an SSA name with itself, it is highly
1242 unlikely that we will get a strength reduction opportunity, so
1243 don't record it as a candidate. This simplifies the logic for
1244 finding a basis, so if this is removed that must be considered. */
1245 if (rhs1 == rhs2)
1246 return;
1247
1248 if (TREE_CODE (rhs2) == SSA_NAME)
1249 {
1250 /* Record an interpretation of this statement in the candidate table
1251 assuming RHS1 is the base expression and RHS2 is the stride. */
1252 c = create_mul_ssa_cand (gs, rhs1, rhs2, speed);
1253
1254 /* Add the first interpretation to the statement-candidate mapping. */
1255 add_cand_for_stmt (gs, c);
1256
1257 /* Record another interpretation of this statement assuming RHS1
1258 is the stride and RHS2 is the base expression. */
1259 c2 = create_mul_ssa_cand (gs, rhs2, rhs1, speed);
1260 c->next_interp = c2->cand_num;
1261 }
1262 else if (TREE_CODE (rhs2) == INTEGER_CST)
1263 {
1264 /* Record an interpretation for the multiply-immediate. */
1265 c = create_mul_imm_cand (gs, rhs1, rhs2, speed);
1266
1267 /* Add the interpretation to the statement-candidate mapping. */
1268 add_cand_for_stmt (gs, c);
1269 }
1270 }
1271
1272 /* Create a candidate entry for a statement GS, where GS adds two
1273 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1274 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1275 information about the two SSA names into the new candidate.
1276 Return the new candidate. */
1277
1278 static slsr_cand_t
1279 create_add_ssa_cand (gimple *gs, tree base_in, tree addend_in,
1280 bool subtract_p, bool speed)
1281 {
1282 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1283 tree stype = NULL_TREE;
1284 widest_int index;
1285 unsigned savings = 0;
1286 slsr_cand_t c;
1287 slsr_cand_t base_cand = base_cand_from_table (base_in);
1288 slsr_cand_t addend_cand = base_cand_from_table (addend_in);
1289
1290 /* The most useful transformation is a multiply-immediate feeding
1291 an add or subtract. Look for that first. */
1292 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
1293 {
1294 if (addend_cand->kind == CAND_MULT
1295 && addend_cand->index == 0
1296 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1297 {
1298 /* Z = (B + 0) * S, S constant
1299 X = Y +/- Z
1300 ===========================
1301 X = Y + ((+/-1 * S) * B) */
1302 base = base_in;
1303 index = wi::to_widest (addend_cand->stride);
1304 if (subtract_p)
1305 index = -index;
1306 stride = addend_cand->base_expr;
1307 ctype = TREE_TYPE (base_in);
1308 stype = addend_cand->cand_type;
1309 if (has_single_use (addend_in))
1310 savings = (addend_cand->dead_savings
1311 + stmt_cost (addend_cand->cand_stmt, speed));
1312 }
1313
1314 if (addend_cand->next_interp)
1315 addend_cand = lookup_cand (addend_cand->next_interp);
1316 else
1317 addend_cand = NULL;
1318 }
1319
1320 while (base_cand && !base && base_cand->kind != CAND_PHI)
1321 {
1322 if (base_cand->kind == CAND_ADD
1323 && (base_cand->index == 0
1324 || operand_equal_p (base_cand->stride,
1325 integer_zero_node, 0)))
1326 {
1327 /* Y = B + (i' * S), i' * S = 0
1328 X = Y +/- Z
1329 ============================
1330 X = B + (+/-1 * Z) */
1331 base = base_cand->base_expr;
1332 index = subtract_p ? -1 : 1;
1333 stride = addend_in;
1334 ctype = base_cand->cand_type;
1335 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1336 : TREE_TYPE (addend_in));
1337 if (has_single_use (base_in))
1338 savings = (base_cand->dead_savings
1339 + stmt_cost (base_cand->cand_stmt, speed));
1340 }
1341 else if (subtract_p)
1342 {
1343 slsr_cand_t subtrahend_cand = base_cand_from_table (addend_in);
1344
1345 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
1346 {
1347 if (subtrahend_cand->kind == CAND_MULT
1348 && subtrahend_cand->index == 0
1349 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1350 {
1351 /* Z = (B + 0) * S, S constant
1352 X = Y - Z
1353 ===========================
1354 Value: X = Y + ((-1 * S) * B) */
1355 base = base_in;
1356 index = wi::to_widest (subtrahend_cand->stride);
1357 index = -index;
1358 stride = subtrahend_cand->base_expr;
1359 ctype = TREE_TYPE (base_in);
1360 stype = subtrahend_cand->cand_type;
1361 if (has_single_use (addend_in))
1362 savings = (subtrahend_cand->dead_savings
1363 + stmt_cost (subtrahend_cand->cand_stmt, speed));
1364 }
1365
1366 if (subtrahend_cand->next_interp)
1367 subtrahend_cand = lookup_cand (subtrahend_cand->next_interp);
1368 else
1369 subtrahend_cand = NULL;
1370 }
1371 }
1372
1373 if (base_cand->next_interp)
1374 base_cand = lookup_cand (base_cand->next_interp);
1375 else
1376 base_cand = NULL;
1377 }
1378
1379 if (!base)
1380 {
1381 /* No interpretations had anything useful to propagate, so
1382 produce X = Y + (1 * Z). */
1383 base = base_in;
1384 index = subtract_p ? -1 : 1;
1385 stride = addend_in;
1386 ctype = TREE_TYPE (base_in);
1387 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1388 : TREE_TYPE (addend_in));
1389 }
1390
1391 c = alloc_cand_and_find_basis (CAND_ADD, gs, base, index, stride,
1392 ctype, stype, savings);
1393 return c;
1394 }
1395
1396 /* Create a candidate entry for a statement GS, where GS adds SSA
1397 name BASE_IN to constant INDEX_IN. Propagate any known information
1398 about BASE_IN into the new candidate. Return the new candidate. */
1399
1400 static slsr_cand_t
1401 create_add_imm_cand (gimple *gs, tree base_in, const widest_int &index_in,
1402 bool speed)
1403 {
1404 enum cand_kind kind = CAND_ADD;
1405 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1406 tree stype = NULL_TREE;
1407 widest_int index, multiple;
1408 unsigned savings = 0;
1409 slsr_cand_t c;
1410 slsr_cand_t base_cand = base_cand_from_table (base_in);
1411
1412 while (base_cand && !base && base_cand->kind != CAND_PHI)
1413 {
1414 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
1415
1416 if (TREE_CODE (base_cand->stride) == INTEGER_CST
1417 && wi::multiple_of_p (index_in, wi::to_widest (base_cand->stride),
1418 sign, &multiple))
1419 {
1420 /* Y = (B + i') * S, S constant, c = kS for some integer k
1421 X = Y + c
1422 ============================
1423 X = (B + (i'+ k)) * S
1424 OR
1425 Y = B + (i' * S), S constant, c = kS for some integer k
1426 X = Y + c
1427 ============================
1428 X = (B + (i'+ k)) * S */
1429 kind = base_cand->kind;
1430 base = base_cand->base_expr;
1431 index = base_cand->index + multiple;
1432 stride = base_cand->stride;
1433 ctype = base_cand->cand_type;
1434 stype = base_cand->stride_type;
1435 if (has_single_use (base_in))
1436 savings = (base_cand->dead_savings
1437 + stmt_cost (base_cand->cand_stmt, speed));
1438 }
1439
1440 if (base_cand->next_interp)
1441 base_cand = lookup_cand (base_cand->next_interp);
1442 else
1443 base_cand = NULL;
1444 }
1445
1446 if (!base)
1447 {
1448 /* No interpretations had anything useful to propagate, so
1449 produce X = Y + (c * 1). */
1450 kind = CAND_ADD;
1451 base = base_in;
1452 index = index_in;
1453 stride = integer_one_node;
1454 ctype = TREE_TYPE (base_in);
1455 stype = sizetype;
1456 }
1457
1458 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
1459 ctype, stype, savings);
1460 return c;
1461 }
1462
1463 /* Given GS which is an add or subtract of scalar integers or pointers,
1464 make at least one appropriate entry in the candidate table. */
1465
1466 static void
1467 slsr_process_add (gimple *gs, tree rhs1, tree rhs2, bool speed)
1468 {
1469 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1470 slsr_cand_t c = NULL, c2;
1471
1472 if (TREE_CODE (rhs2) == SSA_NAME)
1473 {
1474 /* First record an interpretation assuming RHS1 is the base expression
1475 and RHS2 is the stride. But it doesn't make sense for the
1476 stride to be a pointer, so don't record a candidate in that case. */
1477 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
1478 {
1479 c = create_add_ssa_cand (gs, rhs1, rhs2, subtract_p, speed);
1480
1481 /* Add the first interpretation to the statement-candidate
1482 mapping. */
1483 add_cand_for_stmt (gs, c);
1484 }
1485
1486 /* If the two RHS operands are identical, or this is a subtract,
1487 we're done. */
1488 if (operand_equal_p (rhs1, rhs2, 0) || subtract_p)
1489 return;
1490
1491 /* Otherwise, record another interpretation assuming RHS2 is the
1492 base expression and RHS1 is the stride, again provided that the
1493 stride is not a pointer. */
1494 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
1495 {
1496 c2 = create_add_ssa_cand (gs, rhs2, rhs1, false, speed);
1497 if (c)
1498 c->next_interp = c2->cand_num;
1499 else
1500 add_cand_for_stmt (gs, c2);
1501 }
1502 }
1503 else if (TREE_CODE (rhs2) == INTEGER_CST)
1504 {
1505 /* Record an interpretation for the add-immediate. */
1506 widest_int index = wi::to_widest (rhs2);
1507 if (subtract_p)
1508 index = -index;
1509
1510 c = create_add_imm_cand (gs, rhs1, index, speed);
1511
1512 /* Add the interpretation to the statement-candidate mapping. */
1513 add_cand_for_stmt (gs, c);
1514 }
1515 }
1516
1517 /* Given GS which is a negate of a scalar integer, make an appropriate
1518 entry in the candidate table. A negate is equivalent to a multiply
1519 by -1. */
1520
1521 static void
1522 slsr_process_neg (gimple *gs, tree rhs1, bool speed)
1523 {
1524 /* Record a CAND_MULT interpretation for the multiply by -1. */
1525 slsr_cand_t c = create_mul_imm_cand (gs, rhs1, integer_minus_one_node, speed);
1526
1527 /* Add the interpretation to the statement-candidate mapping. */
1528 add_cand_for_stmt (gs, c);
1529 }
1530
1531 /* Help function for legal_cast_p, operating on two trees. Checks
1532 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1533 for more details. */
1534
1535 static bool
1536 legal_cast_p_1 (tree lhs_type, tree rhs_type)
1537 {
1538 unsigned lhs_size, rhs_size;
1539 bool lhs_wraps, rhs_wraps;
1540
1541 lhs_size = TYPE_PRECISION (lhs_type);
1542 rhs_size = TYPE_PRECISION (rhs_type);
1543 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1544 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
1545
1546 if (lhs_size < rhs_size
1547 || (rhs_wraps && !lhs_wraps)
1548 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1549 return false;
1550
1551 return true;
1552 }
1553
1554 /* Return TRUE if GS is a statement that defines an SSA name from
1555 a conversion and is legal for us to combine with an add and multiply
1556 in the candidate table. For example, suppose we have:
1557
1558 A = B + i;
1559 C = (type) A;
1560 D = C * S;
1561
1562 Without the type-cast, we would create a CAND_MULT for D with base B,
1563 index i, and stride S. We want to record this candidate only if it
1564 is equivalent to apply the type cast following the multiply:
1565
1566 A = B + i;
1567 E = A * S;
1568 D = (type) E;
1569
1570 We will record the type with the candidate for D. This allows us
1571 to use a similar previous candidate as a basis. If we have earlier seen
1572
1573 A' = B + i';
1574 C' = (type) A';
1575 D' = C' * S;
1576
1577 we can replace D with
1578
1579 D = D' + (i - i') * S;
1580
1581 But if moving the type-cast would change semantics, we mustn't do this.
1582
1583 This is legitimate for casts from a non-wrapping integral type to
1584 any integral type of the same or larger size. It is not legitimate
1585 to convert a wrapping type to a non-wrapping type, or to a wrapping
1586 type of a different size. I.e., with a wrapping type, we must
1587 assume that the addition B + i could wrap, in which case performing
1588 the multiply before or after one of the "illegal" type casts will
1589 have different semantics. */
1590
1591 static bool
1592 legal_cast_p (gimple *gs, tree rhs)
1593 {
1594 if (!is_gimple_assign (gs)
1595 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1596 return false;
1597
1598 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs)), TREE_TYPE (rhs));
1599 }
1600
1601 /* Given GS which is a cast to a scalar integer type, determine whether
1602 the cast is legal for strength reduction. If so, make at least one
1603 appropriate entry in the candidate table. */
1604
1605 static void
1606 slsr_process_cast (gimple *gs, tree rhs1, bool speed)
1607 {
1608 tree lhs, ctype;
1609 slsr_cand_t base_cand, c = NULL, c2;
1610 unsigned savings = 0;
1611
1612 if (!legal_cast_p (gs, rhs1))
1613 return;
1614
1615 lhs = gimple_assign_lhs (gs);
1616 base_cand = base_cand_from_table (rhs1);
1617 ctype = TREE_TYPE (lhs);
1618
1619 if (base_cand && base_cand->kind != CAND_PHI)
1620 {
1621 while (base_cand)
1622 {
1623 /* Propagate all data from the base candidate except the type,
1624 which comes from the cast, and the base candidate's cast,
1625 which is no longer applicable. */
1626 if (has_single_use (rhs1))
1627 savings = (base_cand->dead_savings
1628 + stmt_cost (base_cand->cand_stmt, speed));
1629
1630 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1631 base_cand->base_expr,
1632 base_cand->index, base_cand->stride,
1633 ctype, base_cand->stride_type,
1634 savings);
1635 if (base_cand->next_interp)
1636 base_cand = lookup_cand (base_cand->next_interp);
1637 else
1638 base_cand = NULL;
1639 }
1640 }
1641 else
1642 {
1643 /* If nothing is known about the RHS, create fresh CAND_ADD and
1644 CAND_MULT interpretations:
1645
1646 X = Y + (0 * 1)
1647 X = (Y + 0) * 1
1648
1649 The first of these is somewhat arbitrary, but the choice of
1650 1 for the stride simplifies the logic for propagating casts
1651 into their uses. */
1652 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1653 integer_one_node, ctype, sizetype, 0);
1654 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1655 integer_one_node, ctype, sizetype, 0);
1656 c->next_interp = c2->cand_num;
1657 }
1658
1659 /* Add the first (or only) interpretation to the statement-candidate
1660 mapping. */
1661 add_cand_for_stmt (gs, c);
1662 }
1663
1664 /* Given GS which is a copy of a scalar integer type, make at least one
1665 appropriate entry in the candidate table.
1666
1667 This interface is included for completeness, but is unnecessary
1668 if this pass immediately follows a pass that performs copy
1669 propagation, such as DOM. */
1670
1671 static void
1672 slsr_process_copy (gimple *gs, tree rhs1, bool speed)
1673 {
1674 slsr_cand_t base_cand, c = NULL, c2;
1675 unsigned savings = 0;
1676
1677 base_cand = base_cand_from_table (rhs1);
1678
1679 if (base_cand && base_cand->kind != CAND_PHI)
1680 {
1681 while (base_cand)
1682 {
1683 /* Propagate all data from the base candidate. */
1684 if (has_single_use (rhs1))
1685 savings = (base_cand->dead_savings
1686 + stmt_cost (base_cand->cand_stmt, speed));
1687
1688 c = alloc_cand_and_find_basis (base_cand->kind, gs,
1689 base_cand->base_expr,
1690 base_cand->index, base_cand->stride,
1691 base_cand->cand_type,
1692 base_cand->stride_type, savings);
1693 if (base_cand->next_interp)
1694 base_cand = lookup_cand (base_cand->next_interp);
1695 else
1696 base_cand = NULL;
1697 }
1698 }
1699 else
1700 {
1701 /* If nothing is known about the RHS, create fresh CAND_ADD and
1702 CAND_MULT interpretations:
1703
1704 X = Y + (0 * 1)
1705 X = (Y + 0) * 1
1706
1707 The first of these is somewhat arbitrary, but the choice of
1708 1 for the stride simplifies the logic for propagating casts
1709 into their uses. */
1710 c = alloc_cand_and_find_basis (CAND_ADD, gs, rhs1, 0,
1711 integer_one_node, TREE_TYPE (rhs1),
1712 sizetype, 0);
1713 c2 = alloc_cand_and_find_basis (CAND_MULT, gs, rhs1, 0,
1714 integer_one_node, TREE_TYPE (rhs1),
1715 sizetype, 0);
1716 c->next_interp = c2->cand_num;
1717 }
1718
1719 /* Add the first (or only) interpretation to the statement-candidate
1720 mapping. */
1721 add_cand_for_stmt (gs, c);
1722 }
1723 \f
1724 class find_candidates_dom_walker : public dom_walker
1725 {
1726 public:
1727 find_candidates_dom_walker (cdi_direction direction)
1728 : dom_walker (direction) {}
1729 virtual edge before_dom_children (basic_block);
1730 };
1731
1732 /* Find strength-reduction candidates in block BB. */
1733
1734 edge
1735 find_candidates_dom_walker::before_dom_children (basic_block bb)
1736 {
1737 bool speed = optimize_bb_for_speed_p (bb);
1738
1739 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1740 gsi_next (&gsi))
1741 slsr_process_phi (gsi.phi (), speed);
1742
1743 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1744 gsi_next (&gsi))
1745 {
1746 gimple *gs = gsi_stmt (gsi);
1747
1748 if (gimple_vuse (gs) && gimple_assign_single_p (gs))
1749 slsr_process_ref (gs);
1750
1751 else if (is_gimple_assign (gs)
1752 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))
1753 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))))
1754 {
1755 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1756
1757 switch (gimple_assign_rhs_code (gs))
1758 {
1759 case MULT_EXPR:
1760 case PLUS_EXPR:
1761 rhs1 = gimple_assign_rhs1 (gs);
1762 rhs2 = gimple_assign_rhs2 (gs);
1763 /* Should never happen, but currently some buggy situations
1764 in earlier phases put constants in rhs1. */
1765 if (TREE_CODE (rhs1) != SSA_NAME)
1766 continue;
1767 break;
1768
1769 /* Possible future opportunity: rhs1 of a ptr+ can be
1770 an ADDR_EXPR. */
1771 case POINTER_PLUS_EXPR:
1772 case MINUS_EXPR:
1773 rhs2 = gimple_assign_rhs2 (gs);
1774 gcc_fallthrough ();
1775
1776 CASE_CONVERT:
1777 case SSA_NAME:
1778 case NEGATE_EXPR:
1779 rhs1 = gimple_assign_rhs1 (gs);
1780 if (TREE_CODE (rhs1) != SSA_NAME)
1781 continue;
1782 break;
1783
1784 default:
1785 ;
1786 }
1787
1788 switch (gimple_assign_rhs_code (gs))
1789 {
1790 case MULT_EXPR:
1791 slsr_process_mul (gs, rhs1, rhs2, speed);
1792 break;
1793
1794 case PLUS_EXPR:
1795 case POINTER_PLUS_EXPR:
1796 case MINUS_EXPR:
1797 slsr_process_add (gs, rhs1, rhs2, speed);
1798 break;
1799
1800 case NEGATE_EXPR:
1801 slsr_process_neg (gs, rhs1, speed);
1802 break;
1803
1804 CASE_CONVERT:
1805 slsr_process_cast (gs, rhs1, speed);
1806 break;
1807
1808 case SSA_NAME:
1809 slsr_process_copy (gs, rhs1, speed);
1810 break;
1811
1812 default:
1813 ;
1814 }
1815 }
1816 }
1817 return NULL;
1818 }
1819 \f
1820 /* Dump a candidate for debug. */
1821
1822 static void
1823 dump_candidate (slsr_cand_t c)
1824 {
1825 fprintf (dump_file, "%3d [%d] ", c->cand_num,
1826 gimple_bb (c->cand_stmt)->index);
1827 print_gimple_stmt (dump_file, c->cand_stmt, 0);
1828 switch (c->kind)
1829 {
1830 case CAND_MULT:
1831 fputs (" MULT : (", dump_file);
1832 print_generic_expr (dump_file, c->base_expr);
1833 fputs (" + ", dump_file);
1834 print_decs (c->index, dump_file);
1835 fputs (") * ", dump_file);
1836 if (TREE_CODE (c->stride) != INTEGER_CST
1837 && c->stride_type != TREE_TYPE (c->stride))
1838 {
1839 fputs ("(", dump_file);
1840 print_generic_expr (dump_file, c->stride_type);
1841 fputs (")", dump_file);
1842 }
1843 print_generic_expr (dump_file, c->stride);
1844 fputs (" : ", dump_file);
1845 break;
1846 case CAND_ADD:
1847 fputs (" ADD : ", dump_file);
1848 print_generic_expr (dump_file, c->base_expr);
1849 fputs (" + (", dump_file);
1850 print_decs (c->index, dump_file);
1851 fputs (" * ", dump_file);
1852 if (TREE_CODE (c->stride) != INTEGER_CST
1853 && c->stride_type != TREE_TYPE (c->stride))
1854 {
1855 fputs ("(", dump_file);
1856 print_generic_expr (dump_file, c->stride_type);
1857 fputs (")", dump_file);
1858 }
1859 print_generic_expr (dump_file, c->stride);
1860 fputs (") : ", dump_file);
1861 break;
1862 case CAND_REF:
1863 fputs (" REF : ", dump_file);
1864 print_generic_expr (dump_file, c->base_expr);
1865 fputs (" + (", dump_file);
1866 print_generic_expr (dump_file, c->stride);
1867 fputs (") + ", dump_file);
1868 print_decs (c->index, dump_file);
1869 fputs (" : ", dump_file);
1870 break;
1871 case CAND_PHI:
1872 fputs (" PHI : ", dump_file);
1873 print_generic_expr (dump_file, c->base_expr);
1874 fputs (" + (unknown * ", dump_file);
1875 print_generic_expr (dump_file, c->stride);
1876 fputs (") : ", dump_file);
1877 break;
1878 default:
1879 gcc_unreachable ();
1880 }
1881 print_generic_expr (dump_file, c->cand_type);
1882 fprintf (dump_file, "\n basis: %d dependent: %d sibling: %d\n",
1883 c->basis, c->dependent, c->sibling);
1884 fprintf (dump_file, " next-interp: %d dead-savings: %d\n",
1885 c->next_interp, c->dead_savings);
1886 if (c->def_phi)
1887 fprintf (dump_file, " phi: %d\n", c->def_phi);
1888 fputs ("\n", dump_file);
1889 }
1890
1891 /* Dump the candidate vector for debug. */
1892
1893 static void
1894 dump_cand_vec (void)
1895 {
1896 unsigned i;
1897 slsr_cand_t c;
1898
1899 fprintf (dump_file, "\nStrength reduction candidate vector:\n\n");
1900
1901 FOR_EACH_VEC_ELT (cand_vec, i, c)
1902 dump_candidate (c);
1903 }
1904
1905 /* Callback used to dump the candidate chains hash table. */
1906
1907 int
1908 ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
1909 {
1910 const_cand_chain_t chain = *slot;
1911 cand_chain_t p;
1912
1913 print_generic_expr (dump_file, chain->base_expr);
1914 fprintf (dump_file, " -> %d", chain->cand->cand_num);
1915
1916 for (p = chain->next; p; p = p->next)
1917 fprintf (dump_file, " -> %d", p->cand->cand_num);
1918
1919 fputs ("\n", dump_file);
1920 return 1;
1921 }
1922
1923 /* Dump the candidate chains. */
1924
1925 static void
1926 dump_cand_chains (void)
1927 {
1928 fprintf (dump_file, "\nStrength reduction candidate chains:\n\n");
1929 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1930 (NULL);
1931 fputs ("\n", dump_file);
1932 }
1933
1934 /* Dump the increment vector for debug. */
1935
1936 static void
1937 dump_incr_vec (void)
1938 {
1939 if (dump_file && (dump_flags & TDF_DETAILS))
1940 {
1941 unsigned i;
1942
1943 fprintf (dump_file, "\nIncrement vector:\n\n");
1944
1945 for (i = 0; i < incr_vec_len; i++)
1946 {
1947 fprintf (dump_file, "%3d increment: ", i);
1948 print_decs (incr_vec[i].incr, dump_file);
1949 fprintf (dump_file, "\n count: %d", incr_vec[i].count);
1950 fprintf (dump_file, "\n cost: %d", incr_vec[i].cost);
1951 fputs ("\n initializer: ", dump_file);
1952 print_generic_expr (dump_file, incr_vec[i].initializer);
1953 fputs ("\n\n", dump_file);
1954 }
1955 }
1956 }
1957 \f
1958 /* Replace *EXPR in candidate C with an equivalent strength-reduced
1959 data reference. */
1960
1961 static void
1962 replace_ref (tree *expr, slsr_cand_t c)
1963 {
1964 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1965 unsigned HOST_WIDE_INT misalign;
1966 unsigned align;
1967
1968 /* Ensure the memory reference carries the minimum alignment
1969 requirement for the data type. See PR58041. */
1970 get_object_alignment_1 (*expr, &align, &misalign);
1971 if (misalign != 0)
1972 align = least_bit_hwi (misalign);
1973 if (align < TYPE_ALIGN (acc_type))
1974 acc_type = build_aligned_type (acc_type, align);
1975
1976 add_expr = fold_build2 (POINTER_PLUS_EXPR, c->cand_type,
1977 c->base_expr, c->stride);
1978 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
1979 wide_int_to_tree (c->cand_type, c->index));
1980
1981 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1982 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1983 TREE_OPERAND (mem_ref, 0)
1984 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1985 /*simple_p=*/true, NULL,
1986 /*before=*/true, GSI_SAME_STMT);
1987 copy_ref_info (mem_ref, *expr);
1988 *expr = mem_ref;
1989 update_stmt (c->cand_stmt);
1990 }
1991
1992 /* Replace CAND_REF candidate C, each sibling of candidate C, and each
1993 dependent of candidate C with an equivalent strength-reduced data
1994 reference. */
1995
1996 static void
1997 replace_refs (slsr_cand_t c)
1998 {
1999 if (dump_file && (dump_flags & TDF_DETAILS))
2000 {
2001 fputs ("Replacing reference: ", dump_file);
2002 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2003 }
2004
2005 if (gimple_vdef (c->cand_stmt))
2006 {
2007 tree *lhs = gimple_assign_lhs_ptr (c->cand_stmt);
2008 replace_ref (lhs, c);
2009 }
2010 else
2011 {
2012 tree *rhs = gimple_assign_rhs1_ptr (c->cand_stmt);
2013 replace_ref (rhs, c);
2014 }
2015
2016 if (dump_file && (dump_flags & TDF_DETAILS))
2017 {
2018 fputs ("With: ", dump_file);
2019 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2020 fputs ("\n", dump_file);
2021 }
2022
2023 if (c->sibling)
2024 replace_refs (lookup_cand (c->sibling));
2025
2026 if (c->dependent)
2027 replace_refs (lookup_cand (c->dependent));
2028 }
2029
2030 /* Return TRUE if candidate C is dependent upon a PHI. */
2031
2032 static bool
2033 phi_dependent_cand_p (slsr_cand_t c)
2034 {
2035 /* A candidate is not necessarily dependent upon a PHI just because
2036 it has a phi definition for its base name. It may have a basis
2037 that relies upon the same phi definition, in which case the PHI
2038 is irrelevant to this candidate. */
2039 return (c->def_phi
2040 && c->basis
2041 && lookup_cand (c->basis)->def_phi != c->def_phi);
2042 }
2043
2044 /* Calculate the increment required for candidate C relative to
2045 its basis. */
2046
2047 static widest_int
2048 cand_increment (slsr_cand_t c)
2049 {
2050 slsr_cand_t basis;
2051
2052 /* If the candidate doesn't have a basis, just return its own
2053 index. This is useful in record_increments to help us find
2054 an existing initializer. Also, if the candidate's basis is
2055 hidden by a phi, then its own index will be the increment
2056 from the newly introduced phi basis. */
2057 if (!c->basis || phi_dependent_cand_p (c))
2058 return c->index;
2059
2060 basis = lookup_cand (c->basis);
2061 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
2062 return c->index - basis->index;
2063 }
2064
2065 /* Calculate the increment required for candidate C relative to
2066 its basis. If we aren't going to generate pointer arithmetic
2067 for this candidate, return the absolute value of that increment
2068 instead. */
2069
2070 static inline widest_int
2071 cand_abs_increment (slsr_cand_t c)
2072 {
2073 widest_int increment = cand_increment (c);
2074
2075 if (!address_arithmetic_p && wi::neg_p (increment))
2076 increment = -increment;
2077
2078 return increment;
2079 }
2080
2081 /* Return TRUE iff candidate C has already been replaced under
2082 another interpretation. */
2083
2084 static inline bool
2085 cand_already_replaced (slsr_cand_t c)
2086 {
2087 return (gimple_bb (c->cand_stmt) == 0);
2088 }
2089
2090 /* Common logic used by replace_unconditional_candidate and
2091 replace_conditional_candidate. */
2092
2093 static void
2094 replace_mult_candidate (slsr_cand_t c, tree basis_name, widest_int bump)
2095 {
2096 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2097 enum tree_code cand_code = gimple_assign_rhs_code (c->cand_stmt);
2098
2099 /* It is not useful to replace casts, copies, negates, or adds of
2100 an SSA name and a constant. */
2101 if (cand_code == SSA_NAME
2102 || CONVERT_EXPR_CODE_P (cand_code)
2103 || cand_code == PLUS_EXPR
2104 || cand_code == POINTER_PLUS_EXPR
2105 || cand_code == MINUS_EXPR
2106 || cand_code == NEGATE_EXPR)
2107 return;
2108
2109 enum tree_code code = PLUS_EXPR;
2110 tree bump_tree;
2111 gimple *stmt_to_print = NULL;
2112
2113 if (wi::neg_p (bump))
2114 {
2115 code = MINUS_EXPR;
2116 bump = -bump;
2117 }
2118
2119 /* It is possible that the resulting bump doesn't fit in target_type.
2120 Abandon the replacement in this case. This does not affect
2121 siblings or dependents of C. */
2122 if (bump != wi::ext (bump, TYPE_PRECISION (target_type),
2123 TYPE_SIGN (target_type)))
2124 return;
2125
2126 bump_tree = wide_int_to_tree (target_type, bump);
2127
2128 /* If the basis name and the candidate's LHS have incompatible types,
2129 introduce a cast. */
2130 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2131 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
2132
2133 if (dump_file && (dump_flags & TDF_DETAILS))
2134 {
2135 fputs ("Replacing: ", dump_file);
2136 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2137 }
2138
2139 if (bump == 0)
2140 {
2141 tree lhs = gimple_assign_lhs (c->cand_stmt);
2142 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2143 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2144 slsr_cand_t cc = c;
2145 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
2146 gsi_replace (&gsi, copy_stmt, false);
2147 c->cand_stmt = copy_stmt;
2148 while (cc->next_interp)
2149 {
2150 cc = lookup_cand (cc->next_interp);
2151 cc->cand_stmt = copy_stmt;
2152 }
2153 if (dump_file && (dump_flags & TDF_DETAILS))
2154 stmt_to_print = copy_stmt;
2155 }
2156 else
2157 {
2158 tree rhs1, rhs2;
2159 if (cand_code != NEGATE_EXPR) {
2160 rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2161 rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2162 }
2163 if (cand_code != NEGATE_EXPR
2164 && ((operand_equal_p (rhs1, basis_name, 0)
2165 && operand_equal_p (rhs2, bump_tree, 0))
2166 || (operand_equal_p (rhs1, bump_tree, 0)
2167 && operand_equal_p (rhs2, basis_name, 0))))
2168 {
2169 if (dump_file && (dump_flags & TDF_DETAILS))
2170 {
2171 fputs ("(duplicate, not actually replacing)", dump_file);
2172 stmt_to_print = c->cand_stmt;
2173 }
2174 }
2175 else
2176 {
2177 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2178 slsr_cand_t cc = c;
2179 gimple_assign_set_rhs_with_ops (&gsi, code, basis_name, bump_tree);
2180 update_stmt (gsi_stmt (gsi));
2181 c->cand_stmt = gsi_stmt (gsi);
2182 while (cc->next_interp)
2183 {
2184 cc = lookup_cand (cc->next_interp);
2185 cc->cand_stmt = gsi_stmt (gsi);
2186 }
2187 if (dump_file && (dump_flags & TDF_DETAILS))
2188 stmt_to_print = gsi_stmt (gsi);
2189 }
2190 }
2191
2192 if (dump_file && (dump_flags & TDF_DETAILS))
2193 {
2194 fputs ("With: ", dump_file);
2195 print_gimple_stmt (dump_file, stmt_to_print, 0);
2196 fputs ("\n", dump_file);
2197 }
2198 }
2199
2200 /* Replace candidate C with an add or subtract. Note that we only
2201 operate on CAND_MULTs with known strides, so we will never generate
2202 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2203 X = Y + ((i - i') * S), as described in the module commentary. The
2204 folded value ((i - i') * S) is referred to here as the "bump." */
2205
2206 static void
2207 replace_unconditional_candidate (slsr_cand_t c)
2208 {
2209 slsr_cand_t basis;
2210
2211 if (cand_already_replaced (c))
2212 return;
2213
2214 basis = lookup_cand (c->basis);
2215 widest_int bump = cand_increment (c) * wi::to_widest (c->stride);
2216
2217 replace_mult_candidate (c, gimple_assign_lhs (basis->cand_stmt), bump);
2218 }
2219 \f
2220 /* Return the index in the increment vector of the given INCREMENT,
2221 or -1 if not found. The latter can occur if more than
2222 MAX_INCR_VEC_LEN increments have been found. */
2223
2224 static inline int
2225 incr_vec_index (const widest_int &increment)
2226 {
2227 unsigned i;
2228
2229 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2230 ;
2231
2232 if (i < incr_vec_len)
2233 return i;
2234 else
2235 return -1;
2236 }
2237
2238 /* Create a new statement along edge E to add BASIS_NAME to the product
2239 of INCREMENT and the stride of candidate C. Create and return a new
2240 SSA name from *VAR to be used as the LHS of the new statement.
2241 KNOWN_STRIDE is true iff C's stride is a constant. */
2242
2243 static tree
2244 create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
2245 widest_int increment, edge e, location_t loc,
2246 bool known_stride)
2247 {
2248 tree lhs, basis_type;
2249 gassign *new_stmt, *cast_stmt = NULL;
2250
2251 /* If the add candidate along this incoming edge has the same
2252 index as C's hidden basis, the hidden basis represents this
2253 edge correctly. */
2254 if (increment == 0)
2255 return basis_name;
2256
2257 basis_type = TREE_TYPE (basis_name);
2258 lhs = make_temp_ssa_name (basis_type, NULL, "slsr");
2259
2260 /* Occasionally people convert integers to pointers without a
2261 cast, leading us into trouble if we aren't careful. */
2262 enum tree_code plus_code
2263 = POINTER_TYPE_P (basis_type) ? POINTER_PLUS_EXPR : PLUS_EXPR;
2264
2265 if (known_stride)
2266 {
2267 tree bump_tree;
2268 enum tree_code code = plus_code;
2269 widest_int bump = increment * wi::to_widest (c->stride);
2270 if (wi::neg_p (bump) && !POINTER_TYPE_P (basis_type))
2271 {
2272 code = MINUS_EXPR;
2273 bump = -bump;
2274 }
2275
2276 tree stride_type = POINTER_TYPE_P (basis_type) ? sizetype : basis_type;
2277 bump_tree = wide_int_to_tree (stride_type, bump);
2278 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
2279 }
2280 else
2281 {
2282 int i;
2283 bool negate_incr = !POINTER_TYPE_P (basis_type) && wi::neg_p (increment);
2284 i = incr_vec_index (negate_incr ? -increment : increment);
2285 gcc_assert (i >= 0);
2286
2287 if (incr_vec[i].initializer)
2288 {
2289 enum tree_code code = negate_incr ? MINUS_EXPR : plus_code;
2290 new_stmt = gimple_build_assign (lhs, code, basis_name,
2291 incr_vec[i].initializer);
2292 }
2293 else {
2294 tree stride;
2295
2296 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
2297 {
2298 tree cast_stride = make_temp_ssa_name (c->stride_type, NULL,
2299 "slsr");
2300 cast_stmt = gimple_build_assign (cast_stride, NOP_EXPR,
2301 c->stride);
2302 stride = cast_stride;
2303 }
2304 else
2305 stride = c->stride;
2306
2307 if (increment == 1)
2308 new_stmt = gimple_build_assign (lhs, plus_code, basis_name, stride);
2309 else if (increment == -1)
2310 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name, stride);
2311 else
2312 gcc_unreachable ();
2313 }
2314 }
2315
2316 if (cast_stmt)
2317 {
2318 gimple_set_location (cast_stmt, loc);
2319 gsi_insert_on_edge (e, cast_stmt);
2320 }
2321
2322 gimple_set_location (new_stmt, loc);
2323 gsi_insert_on_edge (e, new_stmt);
2324
2325 if (dump_file && (dump_flags & TDF_DETAILS))
2326 {
2327 if (cast_stmt)
2328 {
2329 fprintf (dump_file, "Inserting cast on edge %d->%d: ",
2330 e->src->index, e->dest->index);
2331 print_gimple_stmt (dump_file, cast_stmt, 0);
2332 }
2333 fprintf (dump_file, "Inserting on edge %d->%d: ", e->src->index,
2334 e->dest->index);
2335 print_gimple_stmt (dump_file, new_stmt, 0);
2336 }
2337
2338 return lhs;
2339 }
2340
2341 /* Clear the visited field for a tree of PHI candidates. */
2342
2343 static void
2344 clear_visited (gphi *phi)
2345 {
2346 unsigned i;
2347 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2348
2349 if (phi_cand->visited)
2350 {
2351 phi_cand->visited = 0;
2352
2353 for (i = 0; i < gimple_phi_num_args (phi); i++)
2354 {
2355 tree arg = gimple_phi_arg_def (phi, i);
2356 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2357 if (gimple_code (arg_def) == GIMPLE_PHI)
2358 clear_visited (as_a <gphi *> (arg_def));
2359 }
2360 }
2361 }
2362
2363 /* Recursive helper function for create_phi_basis. */
2364
2365 static tree
2366 create_phi_basis_1 (slsr_cand_t c, gimple *from_phi, tree basis_name,
2367 location_t loc, bool known_stride)
2368 {
2369 int i;
2370 tree name, phi_arg;
2371 gphi *phi;
2372 slsr_cand_t basis = lookup_cand (c->basis);
2373 int nargs = gimple_phi_num_args (from_phi);
2374 basic_block phi_bb = gimple_bb (from_phi);
2375 slsr_cand_t phi_cand = *stmt_cand_map->get (from_phi);
2376 auto_vec<tree> phi_args (nargs);
2377
2378 if (phi_cand->visited)
2379 return phi_cand->cached_basis;
2380 phi_cand->visited = 1;
2381
2382 /* Process each argument of the existing phi that represents
2383 conditionally-executed add candidates. */
2384 for (i = 0; i < nargs; i++)
2385 {
2386 edge e = (*phi_bb->preds)[i];
2387 tree arg = gimple_phi_arg_def (from_phi, i);
2388 tree feeding_def;
2389
2390 /* If the phi argument is the base name of the CAND_PHI, then
2391 this incoming arc should use the hidden basis. */
2392 if (operand_equal_p (arg, phi_cand->base_expr, 0))
2393 if (basis->index == 0)
2394 feeding_def = gimple_assign_lhs (basis->cand_stmt);
2395 else
2396 {
2397 widest_int incr = -basis->index;
2398 feeding_def = create_add_on_incoming_edge (c, basis_name, incr,
2399 e, loc, known_stride);
2400 }
2401 else
2402 {
2403 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2404
2405 /* If there is another phi along this incoming edge, we must
2406 process it in the same fashion to ensure that all basis
2407 adjustments are made along its incoming edges. */
2408 if (gimple_code (arg_def) == GIMPLE_PHI)
2409 feeding_def = create_phi_basis_1 (c, arg_def, basis_name,
2410 loc, known_stride);
2411 else
2412 {
2413 slsr_cand_t arg_cand = base_cand_from_table (arg);
2414 widest_int diff = arg_cand->index - basis->index;
2415 feeding_def = create_add_on_incoming_edge (c, basis_name, diff,
2416 e, loc, known_stride);
2417 }
2418 }
2419
2420 /* Because of recursion, we need to save the arguments in a vector
2421 so we can create the PHI statement all at once. Otherwise the
2422 storage for the half-created PHI can be reclaimed. */
2423 phi_args.safe_push (feeding_def);
2424 }
2425
2426 /* Create the new phi basis. */
2427 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, "slsr");
2428 phi = create_phi_node (name, phi_bb);
2429 SSA_NAME_DEF_STMT (name) = phi;
2430
2431 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2432 {
2433 edge e = (*phi_bb->preds)[i];
2434 add_phi_arg (phi, phi_arg, e, loc);
2435 }
2436
2437 update_stmt (phi);
2438
2439 if (dump_file && (dump_flags & TDF_DETAILS))
2440 {
2441 fputs ("Introducing new phi basis: ", dump_file);
2442 print_gimple_stmt (dump_file, phi, 0);
2443 }
2444
2445 phi_cand->cached_basis = name;
2446 return name;
2447 }
2448
2449 /* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2450 is hidden by the phi node FROM_PHI, create a new phi node in the same
2451 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2452 with its phi arguments representing conditional adjustments to the
2453 hidden basis along conditional incoming paths. Those adjustments are
2454 made by creating add statements (and sometimes recursively creating
2455 phis) along those incoming paths. LOC is the location to attach to
2456 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2457 constant. */
2458
2459 static tree
2460 create_phi_basis (slsr_cand_t c, gimple *from_phi, tree basis_name,
2461 location_t loc, bool known_stride)
2462 {
2463 tree retval = create_phi_basis_1 (c, from_phi, basis_name, loc,
2464 known_stride);
2465 gcc_assert (retval);
2466 clear_visited (as_a <gphi *> (from_phi));
2467 return retval;
2468 }
2469
2470 /* Given a candidate C whose basis is hidden by at least one intervening
2471 phi, introduce a matching number of new phis to represent its basis
2472 adjusted by conditional increments along possible incoming paths. Then
2473 replace C as though it were an unconditional candidate, using the new
2474 basis. */
2475
2476 static void
2477 replace_conditional_candidate (slsr_cand_t c)
2478 {
2479 tree basis_name, name;
2480 slsr_cand_t basis;
2481 location_t loc;
2482
2483 /* Look up the LHS SSA name from C's basis. This will be the
2484 RHS1 of the adds we will introduce to create new phi arguments. */
2485 basis = lookup_cand (c->basis);
2486 basis_name = gimple_assign_lhs (basis->cand_stmt);
2487
2488 /* Create a new phi statement which will represent C's true basis
2489 after the transformation is complete. */
2490 loc = gimple_location (c->cand_stmt);
2491 name = create_phi_basis (c, lookup_cand (c->def_phi)->cand_stmt,
2492 basis_name, loc, KNOWN_STRIDE);
2493
2494 /* Replace C with an add of the new basis phi and a constant. */
2495 widest_int bump = c->index * wi::to_widest (c->stride);
2496
2497 replace_mult_candidate (c, name, bump);
2498 }
2499
2500 /* Recursive helper function for phi_add_costs. SPREAD is a measure of
2501 how many PHI nodes we have visited at this point in the tree walk. */
2502
2503 static int
2504 phi_add_costs_1 (gimple *phi, slsr_cand_t c, int one_add_cost, int *spread)
2505 {
2506 unsigned i;
2507 int cost = 0;
2508 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2509
2510 if (phi_cand->visited)
2511 return 0;
2512
2513 phi_cand->visited = 1;
2514 (*spread)++;
2515
2516 /* If we work our way back to a phi that isn't dominated by the hidden
2517 basis, this isn't a candidate for replacement. Indicate this by
2518 returning an unreasonably high cost. It's not easy to detect
2519 these situations when determining the basis, so we defer the
2520 decision until now. */
2521 basic_block phi_bb = gimple_bb (phi);
2522 slsr_cand_t basis = lookup_cand (c->basis);
2523 basic_block basis_bb = gimple_bb (basis->cand_stmt);
2524
2525 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2526 return COST_INFINITE;
2527
2528 for (i = 0; i < gimple_phi_num_args (phi); i++)
2529 {
2530 tree arg = gimple_phi_arg_def (phi, i);
2531
2532 if (arg != phi_cand->base_expr)
2533 {
2534 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2535
2536 if (gimple_code (arg_def) == GIMPLE_PHI)
2537 {
2538 cost += phi_add_costs_1 (arg_def, c, one_add_cost, spread);
2539
2540 if (cost >= COST_INFINITE || *spread > MAX_SPREAD)
2541 return COST_INFINITE;
2542 }
2543 else
2544 {
2545 slsr_cand_t arg_cand = base_cand_from_table (arg);
2546
2547 if (arg_cand->index != c->index)
2548 cost += one_add_cost;
2549 }
2550 }
2551 }
2552
2553 return cost;
2554 }
2555
2556 /* Compute the expected costs of inserting basis adjustments for
2557 candidate C with phi-definition PHI. The cost of inserting
2558 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2559 which are themselves phi results, recursively calculate costs
2560 for those phis as well. */
2561
2562 static int
2563 phi_add_costs (gimple *phi, slsr_cand_t c, int one_add_cost)
2564 {
2565 int spread = 0;
2566 int retval = phi_add_costs_1 (phi, c, one_add_cost, &spread);
2567 clear_visited (as_a <gphi *> (phi));
2568 return retval;
2569 }
2570 /* For candidate C, each sibling of candidate C, and each dependent of
2571 candidate C, determine whether the candidate is dependent upon a
2572 phi that hides its basis. If not, replace the candidate unconditionally.
2573 Otherwise, determine whether the cost of introducing compensation code
2574 for the candidate is offset by the gains from strength reduction. If
2575 so, replace the candidate and introduce the compensation code. */
2576
2577 static void
2578 replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2579 {
2580 if (phi_dependent_cand_p (c))
2581 {
2582 /* A multiply candidate with a stride of 1 is just an artifice
2583 of a copy or cast; there is no value in replacing it. */
2584 if (c->kind == CAND_MULT && wi::to_widest (c->stride) != 1)
2585 {
2586 /* A candidate dependent upon a phi will replace a multiply by
2587 a constant with an add, and will insert at most one add for
2588 each phi argument. Add these costs with the potential dead-code
2589 savings to determine profitability. */
2590 bool speed = optimize_bb_for_speed_p (gimple_bb (c->cand_stmt));
2591 int mult_savings = stmt_cost (c->cand_stmt, speed);
2592 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
2593 tree phi_result = gimple_phi_result (phi);
2594 int one_add_cost = add_cost (speed,
2595 TYPE_MODE (TREE_TYPE (phi_result)));
2596 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2597 int cost = add_costs - mult_savings - c->dead_savings;
2598
2599 if (dump_file && (dump_flags & TDF_DETAILS))
2600 {
2601 fprintf (dump_file, " Conditional candidate %d:\n", c->cand_num);
2602 fprintf (dump_file, " add_costs = %d\n", add_costs);
2603 fprintf (dump_file, " mult_savings = %d\n", mult_savings);
2604 fprintf (dump_file, " dead_savings = %d\n", c->dead_savings);
2605 fprintf (dump_file, " cost = %d\n", cost);
2606 if (cost <= COST_NEUTRAL)
2607 fputs (" Replacing...\n", dump_file);
2608 else
2609 fputs (" Not replaced.\n", dump_file);
2610 }
2611
2612 if (cost <= COST_NEUTRAL)
2613 replace_conditional_candidate (c);
2614 }
2615 }
2616 else
2617 replace_unconditional_candidate (c);
2618
2619 if (c->sibling)
2620 replace_uncond_cands_and_profitable_phis (lookup_cand (c->sibling));
2621
2622 if (c->dependent)
2623 replace_uncond_cands_and_profitable_phis (lookup_cand (c->dependent));
2624 }
2625 \f
2626 /* Count the number of candidates in the tree rooted at C that have
2627 not already been replaced under other interpretations. */
2628
2629 static int
2630 count_candidates (slsr_cand_t c)
2631 {
2632 unsigned count = cand_already_replaced (c) ? 0 : 1;
2633
2634 if (c->sibling)
2635 count += count_candidates (lookup_cand (c->sibling));
2636
2637 if (c->dependent)
2638 count += count_candidates (lookup_cand (c->dependent));
2639
2640 return count;
2641 }
2642
2643 /* Increase the count of INCREMENT by one in the increment vector.
2644 INCREMENT is associated with candidate C. If INCREMENT is to be
2645 conditionally executed as part of a conditional candidate replacement,
2646 IS_PHI_ADJUST is true, otherwise false. If an initializer
2647 T_0 = stride * I is provided by a candidate that dominates all
2648 candidates with the same increment, also record T_0 for subsequent use. */
2649
2650 static void
2651 record_increment (slsr_cand_t c, widest_int increment, bool is_phi_adjust)
2652 {
2653 bool found = false;
2654 unsigned i;
2655
2656 /* Treat increments that differ only in sign as identical so as to
2657 share initializers, unless we are generating pointer arithmetic. */
2658 if (!address_arithmetic_p && wi::neg_p (increment))
2659 increment = -increment;
2660
2661 for (i = 0; i < incr_vec_len; i++)
2662 {
2663 if (incr_vec[i].incr == increment)
2664 {
2665 incr_vec[i].count++;
2666 found = true;
2667
2668 /* If we previously recorded an initializer that doesn't
2669 dominate this candidate, it's not going to be useful to
2670 us after all. */
2671 if (incr_vec[i].initializer
2672 && !dominated_by_p (CDI_DOMINATORS,
2673 gimple_bb (c->cand_stmt),
2674 incr_vec[i].init_bb))
2675 {
2676 incr_vec[i].initializer = NULL_TREE;
2677 incr_vec[i].init_bb = NULL;
2678 }
2679
2680 break;
2681 }
2682 }
2683
2684 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
2685 {
2686 /* The first time we see an increment, create the entry for it.
2687 If this is the root candidate which doesn't have a basis, set
2688 the count to zero. We're only processing it so it can possibly
2689 provide an initializer for other candidates. */
2690 incr_vec[incr_vec_len].incr = increment;
2691 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
2692 incr_vec[incr_vec_len].cost = COST_INFINITE;
2693
2694 /* Optimistically record the first occurrence of this increment
2695 as providing an initializer (if it does); we will revise this
2696 opinion later if it doesn't dominate all other occurrences.
2697 Exception: increments of 0, 1 never need initializers;
2698 and phi adjustments don't ever provide initializers. */
2699 if (c->kind == CAND_ADD
2700 && !is_phi_adjust
2701 && c->index == increment
2702 && (increment > 1 || increment < 0)
2703 && (gimple_assign_rhs_code (c->cand_stmt) == PLUS_EXPR
2704 || gimple_assign_rhs_code (c->cand_stmt) == POINTER_PLUS_EXPR))
2705 {
2706 tree t0 = NULL_TREE;
2707 tree rhs1 = gimple_assign_rhs1 (c->cand_stmt);
2708 tree rhs2 = gimple_assign_rhs2 (c->cand_stmt);
2709 if (operand_equal_p (rhs1, c->base_expr, 0))
2710 t0 = rhs2;
2711 else if (operand_equal_p (rhs2, c->base_expr, 0))
2712 t0 = rhs1;
2713 if (t0
2714 && SSA_NAME_DEF_STMT (t0)
2715 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
2716 {
2717 incr_vec[incr_vec_len].initializer = t0;
2718 incr_vec[incr_vec_len++].init_bb
2719 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2720 }
2721 else
2722 {
2723 incr_vec[incr_vec_len].initializer = NULL_TREE;
2724 incr_vec[incr_vec_len++].init_bb = NULL;
2725 }
2726 }
2727 else
2728 {
2729 incr_vec[incr_vec_len].initializer = NULL_TREE;
2730 incr_vec[incr_vec_len++].init_bb = NULL;
2731 }
2732 }
2733 }
2734
2735 /* Recursive helper function for record_phi_increments. */
2736
2737 static void
2738 record_phi_increments_1 (slsr_cand_t basis, gimple *phi)
2739 {
2740 unsigned i;
2741 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2742
2743 if (phi_cand->visited)
2744 return;
2745 phi_cand->visited = 1;
2746
2747 for (i = 0; i < gimple_phi_num_args (phi); i++)
2748 {
2749 tree arg = gimple_phi_arg_def (phi, i);
2750
2751 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2752 {
2753 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2754
2755 if (gimple_code (arg_def) == GIMPLE_PHI)
2756 record_phi_increments_1 (basis, arg_def);
2757 else
2758 {
2759 slsr_cand_t arg_cand = base_cand_from_table (arg);
2760 widest_int diff = arg_cand->index - basis->index;
2761 record_increment (arg_cand, diff, PHI_ADJUST);
2762 }
2763 }
2764 }
2765 }
2766
2767 /* Given phi statement PHI that hides a candidate from its BASIS, find
2768 the increments along each incoming arc (recursively handling additional
2769 phis that may be present) and record them. These increments are the
2770 difference in index between the index-adjusting statements and the
2771 index of the basis. */
2772
2773 static void
2774 record_phi_increments (slsr_cand_t basis, gimple *phi)
2775 {
2776 record_phi_increments_1 (basis, phi);
2777 clear_visited (as_a <gphi *> (phi));
2778 }
2779
2780 /* Determine how many times each unique increment occurs in the set
2781 of candidates rooted at C's parent, recording the data in the
2782 increment vector. For each unique increment I, if an initializer
2783 T_0 = stride * I is provided by a candidate that dominates all
2784 candidates with the same increment, also record T_0 for subsequent
2785 use. */
2786
2787 static void
2788 record_increments (slsr_cand_t c)
2789 {
2790 if (!cand_already_replaced (c))
2791 {
2792 if (!phi_dependent_cand_p (c))
2793 record_increment (c, cand_increment (c), NOT_PHI_ADJUST);
2794 else
2795 {
2796 /* A candidate with a basis hidden by a phi will have one
2797 increment for its relationship to the index represented by
2798 the phi, and potentially additional increments along each
2799 incoming edge. For the root of the dependency tree (which
2800 has no basis), process just the initial index in case it has
2801 an initializer that can be used by subsequent candidates. */
2802 record_increment (c, c->index, NOT_PHI_ADJUST);
2803
2804 if (c->basis)
2805 record_phi_increments (lookup_cand (c->basis),
2806 lookup_cand (c->def_phi)->cand_stmt);
2807 }
2808 }
2809
2810 if (c->sibling)
2811 record_increments (lookup_cand (c->sibling));
2812
2813 if (c->dependent)
2814 record_increments (lookup_cand (c->dependent));
2815 }
2816
2817 /* Recursive helper function for phi_incr_cost. */
2818
2819 static int
2820 phi_incr_cost_1 (slsr_cand_t c, const widest_int &incr, gimple *phi,
2821 int *savings)
2822 {
2823 unsigned i;
2824 int cost = 0;
2825 slsr_cand_t basis = lookup_cand (c->basis);
2826 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
2827
2828 if (phi_cand->visited)
2829 return 0;
2830 phi_cand->visited = 1;
2831
2832 for (i = 0; i < gimple_phi_num_args (phi); i++)
2833 {
2834 tree arg = gimple_phi_arg_def (phi, i);
2835
2836 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
2837 {
2838 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2839
2840 if (gimple_code (arg_def) == GIMPLE_PHI)
2841 {
2842 int feeding_savings = 0;
2843 tree feeding_var = gimple_phi_result (arg_def);
2844 cost += phi_incr_cost_1 (c, incr, arg_def, &feeding_savings);
2845 if (uses_consumed_by_stmt (feeding_var, phi))
2846 *savings += feeding_savings;
2847 }
2848 else
2849 {
2850 slsr_cand_t arg_cand = base_cand_from_table (arg);
2851 widest_int diff = arg_cand->index - basis->index;
2852
2853 if (incr == diff)
2854 {
2855 tree basis_lhs = gimple_assign_lhs (basis->cand_stmt);
2856 tree lhs = gimple_assign_lhs (arg_cand->cand_stmt);
2857 cost += add_cost (true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2858 if (uses_consumed_by_stmt (lhs, phi))
2859 *savings += stmt_cost (arg_cand->cand_stmt, true);
2860 }
2861 }
2862 }
2863 }
2864
2865 return cost;
2866 }
2867
2868 /* Add up and return the costs of introducing add statements that
2869 require the increment INCR on behalf of candidate C and phi
2870 statement PHI. Accumulate into *SAVINGS the potential savings
2871 from removing existing statements that feed PHI and have no other
2872 uses. */
2873
2874 static int
2875 phi_incr_cost (slsr_cand_t c, const widest_int &incr, gimple *phi,
2876 int *savings)
2877 {
2878 int retval = phi_incr_cost_1 (c, incr, phi, savings);
2879 clear_visited (as_a <gphi *> (phi));
2880 return retval;
2881 }
2882
2883 /* Return the first candidate in the tree rooted at C that has not
2884 already been replaced, favoring siblings over dependents. */
2885
2886 static slsr_cand_t
2887 unreplaced_cand_in_tree (slsr_cand_t c)
2888 {
2889 if (!cand_already_replaced (c))
2890 return c;
2891
2892 if (c->sibling)
2893 {
2894 slsr_cand_t sib = unreplaced_cand_in_tree (lookup_cand (c->sibling));
2895 if (sib)
2896 return sib;
2897 }
2898
2899 if (c->dependent)
2900 {
2901 slsr_cand_t dep = unreplaced_cand_in_tree (lookup_cand (c->dependent));
2902 if (dep)
2903 return dep;
2904 }
2905
2906 return NULL;
2907 }
2908
2909 /* Return TRUE if the candidates in the tree rooted at C should be
2910 optimized for speed, else FALSE. We estimate this based on the block
2911 containing the most dominant candidate in the tree that has not yet
2912 been replaced. */
2913
2914 static bool
2915 optimize_cands_for_speed_p (slsr_cand_t c)
2916 {
2917 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2918 gcc_assert (c2);
2919 return optimize_bb_for_speed_p (gimple_bb (c2->cand_stmt));
2920 }
2921
2922 /* Add COST_IN to the lowest cost of any dependent path starting at
2923 candidate C or any of its siblings, counting only candidates along
2924 such paths with increment INCR. Assume that replacing a candidate
2925 reduces cost by REPL_SAVINGS. Also account for savings from any
2926 statements that would go dead. If COUNT_PHIS is true, include
2927 costs of introducing feeding statements for conditional candidates. */
2928
2929 static int
2930 lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
2931 const widest_int &incr, bool count_phis)
2932 {
2933 int local_cost, sib_cost, savings = 0;
2934 widest_int cand_incr = cand_abs_increment (c);
2935
2936 if (cand_already_replaced (c))
2937 local_cost = cost_in;
2938 else if (incr == cand_incr)
2939 local_cost = cost_in - repl_savings - c->dead_savings;
2940 else
2941 local_cost = cost_in - c->dead_savings;
2942
2943 if (count_phis
2944 && phi_dependent_cand_p (c)
2945 && !cand_already_replaced (c))
2946 {
2947 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
2948 local_cost += phi_incr_cost (c, incr, phi, &savings);
2949
2950 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
2951 local_cost -= savings;
2952 }
2953
2954 if (c->dependent)
2955 local_cost = lowest_cost_path (local_cost, repl_savings,
2956 lookup_cand (c->dependent), incr,
2957 count_phis);
2958
2959 if (c->sibling)
2960 {
2961 sib_cost = lowest_cost_path (cost_in, repl_savings,
2962 lookup_cand (c->sibling), incr,
2963 count_phis);
2964 local_cost = MIN (local_cost, sib_cost);
2965 }
2966
2967 return local_cost;
2968 }
2969
2970 /* Compute the total savings that would accrue from all replacements
2971 in the candidate tree rooted at C, counting only candidates with
2972 increment INCR. Assume that replacing a candidate reduces cost
2973 by REPL_SAVINGS. Also account for savings from statements that
2974 would go dead. */
2975
2976 static int
2977 total_savings (int repl_savings, slsr_cand_t c, const widest_int &incr,
2978 bool count_phis)
2979 {
2980 int savings = 0;
2981 widest_int cand_incr = cand_abs_increment (c);
2982
2983 if (incr == cand_incr && !cand_already_replaced (c))
2984 savings += repl_savings + c->dead_savings;
2985
2986 if (count_phis
2987 && phi_dependent_cand_p (c)
2988 && !cand_already_replaced (c))
2989 {
2990 int phi_savings = 0;
2991 gimple *phi = lookup_cand (c->def_phi)->cand_stmt;
2992 savings -= phi_incr_cost (c, incr, phi, &phi_savings);
2993
2994 if (uses_consumed_by_stmt (gimple_phi_result (phi), c->cand_stmt))
2995 savings += phi_savings;
2996 }
2997
2998 if (c->dependent)
2999 savings += total_savings (repl_savings, lookup_cand (c->dependent), incr,
3000 count_phis);
3001
3002 if (c->sibling)
3003 savings += total_savings (repl_savings, lookup_cand (c->sibling), incr,
3004 count_phis);
3005
3006 return savings;
3007 }
3008
3009 /* Use target-specific costs to determine and record which increments
3010 in the current candidate tree are profitable to replace, assuming
3011 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3012 the candidate tree.
3013
3014 One slight limitation here is that we don't account for the possible
3015 introduction of casts in some cases. See replace_one_candidate for
3016 the cases where these are introduced. This should probably be cleaned
3017 up sometime. */
3018
3019 static void
3020 analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
3021 {
3022 unsigned i;
3023
3024 for (i = 0; i < incr_vec_len; i++)
3025 {
3026 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
3027
3028 /* If somehow this increment is bigger than a HWI, we won't
3029 be optimizing candidates that use it. And if the increment
3030 has a count of zero, nothing will be done with it. */
3031 if (!wi::fits_shwi_p (incr_vec[i].incr) || !incr_vec[i].count)
3032 incr_vec[i].cost = COST_INFINITE;
3033
3034 /* Increments of 0, 1, and -1 are always profitable to replace,
3035 because they always replace a multiply or add with an add or
3036 copy, and may cause one or more existing instructions to go
3037 dead. Exception: -1 can't be assumed to be profitable for
3038 pointer addition. */
3039 else if (incr == 0
3040 || incr == 1
3041 || (incr == -1
3042 && !POINTER_TYPE_P (first_dep->cand_type)))
3043 incr_vec[i].cost = COST_NEUTRAL;
3044
3045 /* If we need to add an initializer, give up if a cast from the
3046 candidate's type to its stride's type can lose precision.
3047 Note that this already takes into account that the stride may
3048 have been cast to a wider type, in which case this test won't
3049 fire. Example:
3050
3051 short int _1;
3052 _2 = (int) _1;
3053 _3 = _2 * 10;
3054 _4 = x + _3; ADD: x + (10 * (int)_1) : int
3055 _5 = _2 * 15;
3056 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3057
3058 Although the stride was a short int initially, the stride
3059 used in the analysis has been widened to an int, and such
3060 widening will be done in the initializer as well. */
3061 else if (!incr_vec[i].initializer
3062 && TREE_CODE (first_dep->stride) != INTEGER_CST
3063 && !legal_cast_p_1 (first_dep->stride_type,
3064 TREE_TYPE (gimple_assign_lhs
3065 (first_dep->cand_stmt))))
3066 incr_vec[i].cost = COST_INFINITE;
3067
3068 /* If we need to add an initializer, make sure we don't introduce
3069 a multiply by a pointer type, which can happen in certain cast
3070 scenarios. */
3071 else if (!incr_vec[i].initializer
3072 && TREE_CODE (first_dep->stride) != INTEGER_CST
3073 && POINTER_TYPE_P (first_dep->stride_type))
3074 incr_vec[i].cost = COST_INFINITE;
3075
3076 /* For any other increment, if this is a multiply candidate, we
3077 must introduce a temporary T and initialize it with
3078 T_0 = stride * increment. When optimizing for speed, walk the
3079 candidate tree to calculate the best cost reduction along any
3080 path; if it offsets the fixed cost of inserting the initializer,
3081 replacing the increment is profitable. When optimizing for
3082 size, instead calculate the total cost reduction from replacing
3083 all candidates with this increment. */
3084 else if (first_dep->kind == CAND_MULT)
3085 {
3086 int cost = mult_by_coeff_cost (incr, mode, speed);
3087 int repl_savings;
3088
3089 if (tree_fits_shwi_p (first_dep->stride))
3090 {
3091 HOST_WIDE_INT hwi_stride = tree_to_shwi (first_dep->stride);
3092 repl_savings = mult_by_coeff_cost (hwi_stride, mode, speed);
3093 }
3094 else
3095 repl_savings = mul_cost (speed, mode);
3096 repl_savings -= add_cost (speed, mode);
3097
3098 if (speed)
3099 cost = lowest_cost_path (cost, repl_savings, first_dep,
3100 incr_vec[i].incr, COUNT_PHIS);
3101 else
3102 cost -= total_savings (repl_savings, first_dep, incr_vec[i].incr,
3103 COUNT_PHIS);
3104
3105 incr_vec[i].cost = cost;
3106 }
3107
3108 /* If this is an add candidate, the initializer may already
3109 exist, so only calculate the cost of the initializer if it
3110 doesn't. We are replacing one add with another here, so the
3111 known replacement savings is zero. We will account for removal
3112 of dead instructions in lowest_cost_path or total_savings. */
3113 else
3114 {
3115 int cost = 0;
3116 if (!incr_vec[i].initializer)
3117 cost = mult_by_coeff_cost (incr, mode, speed);
3118
3119 if (speed)
3120 cost = lowest_cost_path (cost, 0, first_dep, incr_vec[i].incr,
3121 DONT_COUNT_PHIS);
3122 else
3123 cost -= total_savings (0, first_dep, incr_vec[i].incr,
3124 DONT_COUNT_PHIS);
3125
3126 incr_vec[i].cost = cost;
3127 }
3128 }
3129 }
3130
3131 /* Return the nearest common dominator of BB1 and BB2. If the blocks
3132 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3133 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3134 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3135 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3136
3137 static basic_block
3138 ncd_for_two_cands (basic_block bb1, basic_block bb2,
3139 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
3140 {
3141 basic_block ncd;
3142
3143 if (!bb1)
3144 {
3145 *where = c2;
3146 return bb2;
3147 }
3148
3149 if (!bb2)
3150 {
3151 *where = c1;
3152 return bb1;
3153 }
3154
3155 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
3156
3157 /* If both candidates are in the same block, the earlier
3158 candidate wins. */
3159 if (bb1 == ncd && bb2 == ncd)
3160 {
3161 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
3162 *where = c2;
3163 else
3164 *where = c1;
3165 }
3166
3167 /* Otherwise, if one of them produced a candidate in the
3168 dominator, that one wins. */
3169 else if (bb1 == ncd)
3170 *where = c1;
3171
3172 else if (bb2 == ncd)
3173 *where = c2;
3174
3175 /* If neither matches the dominator, neither wins. */
3176 else
3177 *where = NULL;
3178
3179 return ncd;
3180 }
3181
3182 /* Consider all candidates that feed PHI. Find the nearest common
3183 dominator of those candidates requiring the given increment INCR.
3184 Further find and return the nearest common dominator of this result
3185 with block NCD. If the returned block contains one or more of the
3186 candidates, return the earliest candidate in the block in *WHERE. */
3187
3188 static basic_block
3189 ncd_with_phi (slsr_cand_t c, const widest_int &incr, gphi *phi,
3190 basic_block ncd, slsr_cand_t *where)
3191 {
3192 unsigned i;
3193 slsr_cand_t basis = lookup_cand (c->basis);
3194 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
3195
3196 for (i = 0; i < gimple_phi_num_args (phi); i++)
3197 {
3198 tree arg = gimple_phi_arg_def (phi, i);
3199
3200 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3201 {
3202 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
3203
3204 if (gimple_code (arg_def) == GIMPLE_PHI)
3205 ncd = ncd_with_phi (c, incr, as_a <gphi *> (arg_def), ncd,
3206 where);
3207 else
3208 {
3209 slsr_cand_t arg_cand = base_cand_from_table (arg);
3210 widest_int diff = arg_cand->index - basis->index;
3211 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
3212
3213 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
3214 ncd = ncd_for_two_cands (ncd, pred, *where, NULL, where);
3215 }
3216 }
3217 }
3218
3219 return ncd;
3220 }
3221
3222 /* Consider the candidate C together with any candidates that feed
3223 C's phi dependence (if any). Find and return the nearest common
3224 dominator of those candidates requiring the given increment INCR.
3225 If the returned block contains one or more of the candidates,
3226 return the earliest candidate in the block in *WHERE. */
3227
3228 static basic_block
3229 ncd_of_cand_and_phis (slsr_cand_t c, const widest_int &incr, slsr_cand_t *where)
3230 {
3231 basic_block ncd = NULL;
3232
3233 if (cand_abs_increment (c) == incr)
3234 {
3235 ncd = gimple_bb (c->cand_stmt);
3236 *where = c;
3237 }
3238
3239 if (phi_dependent_cand_p (c))
3240 ncd = ncd_with_phi (c, incr,
3241 as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt),
3242 ncd, where);
3243
3244 return ncd;
3245 }
3246
3247 /* Consider all candidates in the tree rooted at C for which INCR
3248 represents the required increment of C relative to its basis.
3249 Find and return the basic block that most nearly dominates all
3250 such candidates. If the returned block contains one or more of
3251 the candidates, return the earliest candidate in the block in
3252 *WHERE. */
3253
3254 static basic_block
3255 nearest_common_dominator_for_cands (slsr_cand_t c, const widest_int &incr,
3256 slsr_cand_t *where)
3257 {
3258 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3259 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
3260
3261 /* First find the NCD of all siblings and dependents. */
3262 if (c->sibling)
3263 sib_ncd = nearest_common_dominator_for_cands (lookup_cand (c->sibling),
3264 incr, &sib_where);
3265 if (c->dependent)
3266 dep_ncd = nearest_common_dominator_for_cands (lookup_cand (c->dependent),
3267 incr, &dep_where);
3268 if (!sib_ncd && !dep_ncd)
3269 {
3270 new_where = NULL;
3271 ncd = NULL;
3272 }
3273 else if (sib_ncd && !dep_ncd)
3274 {
3275 new_where = sib_where;
3276 ncd = sib_ncd;
3277 }
3278 else if (dep_ncd && !sib_ncd)
3279 {
3280 new_where = dep_where;
3281 ncd = dep_ncd;
3282 }
3283 else
3284 ncd = ncd_for_two_cands (sib_ncd, dep_ncd, sib_where,
3285 dep_where, &new_where);
3286
3287 /* If the candidate's increment doesn't match the one we're interested
3288 in (and nor do any increments for feeding defs of a phi-dependence),
3289 then the result depends only on siblings and dependents. */
3290 this_ncd = ncd_of_cand_and_phis (c, incr, &this_where);
3291
3292 if (!this_ncd || cand_already_replaced (c))
3293 {
3294 *where = new_where;
3295 return ncd;
3296 }
3297
3298 /* Otherwise, compare this candidate with the result from all siblings
3299 and dependents. */
3300 ncd = ncd_for_two_cands (ncd, this_ncd, new_where, this_where, where);
3301
3302 return ncd;
3303 }
3304
3305 /* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3306
3307 static inline bool
3308 profitable_increment_p (unsigned index)
3309 {
3310 return (incr_vec[index].cost <= COST_NEUTRAL);
3311 }
3312
3313 /* For each profitable increment in the increment vector not equal to
3314 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3315 dominator of all statements in the candidate chain rooted at C
3316 that require that increment, and insert an initializer
3317 T_0 = stride * increment at that location. Record T_0 with the
3318 increment record. */
3319
3320 static void
3321 insert_initializers (slsr_cand_t c)
3322 {
3323 unsigned i;
3324
3325 for (i = 0; i < incr_vec_len; i++)
3326 {
3327 basic_block bb;
3328 slsr_cand_t where = NULL;
3329 gassign *init_stmt;
3330 gassign *cast_stmt = NULL;
3331 tree new_name, incr_tree, init_stride;
3332 widest_int incr = incr_vec[i].incr;
3333
3334 if (!profitable_increment_p (i)
3335 || incr == 1
3336 || (incr == -1
3337 && (!POINTER_TYPE_P (lookup_cand (c->basis)->cand_type)))
3338 || incr == 0)
3339 continue;
3340
3341 /* We may have already identified an existing initializer that
3342 will suffice. */
3343 if (incr_vec[i].initializer)
3344 {
3345 if (dump_file && (dump_flags & TDF_DETAILS))
3346 {
3347 fputs ("Using existing initializer: ", dump_file);
3348 print_gimple_stmt (dump_file,
3349 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
3350 0, 0);
3351 }
3352 continue;
3353 }
3354
3355 /* Find the block that most closely dominates all candidates
3356 with this increment. If there is at least one candidate in
3357 that block, the earliest one will be returned in WHERE. */
3358 bb = nearest_common_dominator_for_cands (c, incr, &where);
3359
3360 /* If the NCD is not dominated by the block containing the
3361 definition of the stride, we can't legally insert a
3362 single initializer. Mark the increment as unprofitable
3363 so we don't make any replacements. FIXME: Multiple
3364 initializers could be placed with more analysis. */
3365 gimple *stride_def = SSA_NAME_DEF_STMT (c->stride);
3366 basic_block stride_bb = gimple_bb (stride_def);
3367
3368 if (stride_bb && !dominated_by_p (CDI_DOMINATORS, bb, stride_bb))
3369 {
3370 if (dump_file && (dump_flags & TDF_DETAILS))
3371 fprintf (dump_file,
3372 "Initializer #%d cannot be legally placed\n", i);
3373 incr_vec[i].cost = COST_INFINITE;
3374 continue;
3375 }
3376
3377 /* If the nominal stride has a different type than the recorded
3378 stride type, build a cast from the nominal stride to that type. */
3379 if (!types_compatible_p (TREE_TYPE (c->stride), c->stride_type))
3380 {
3381 init_stride = make_temp_ssa_name (c->stride_type, NULL, "slsr");
3382 cast_stmt = gimple_build_assign (init_stride, NOP_EXPR, c->stride);
3383 }
3384 else
3385 init_stride = c->stride;
3386
3387 /* Create a new SSA name to hold the initializer's value. */
3388 new_name = make_temp_ssa_name (c->stride_type, NULL, "slsr");
3389 incr_vec[i].initializer = new_name;
3390
3391 /* Create the initializer and insert it in the latest possible
3392 dominating position. */
3393 incr_tree = wide_int_to_tree (c->stride_type, incr);
3394 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
3395 init_stride, incr_tree);
3396 if (where)
3397 {
3398 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
3399 location_t loc = gimple_location (where->cand_stmt);
3400
3401 if (cast_stmt)
3402 {
3403 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3404 gimple_set_location (cast_stmt, loc);
3405 }
3406
3407 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3408 gimple_set_location (init_stmt, loc);
3409 }
3410 else
3411 {
3412 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3413 gimple *basis_stmt = lookup_cand (c->basis)->cand_stmt;
3414 location_t loc = gimple_location (basis_stmt);
3415
3416 if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)))
3417 {
3418 if (cast_stmt)
3419 {
3420 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3421 gimple_set_location (cast_stmt, loc);
3422 }
3423 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3424 }
3425 else
3426 {
3427 if (cast_stmt)
3428 {
3429 gsi_insert_after (&gsi, cast_stmt, GSI_NEW_STMT);
3430 gimple_set_location (cast_stmt, loc);
3431 }
3432 gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT);
3433 }
3434
3435 gimple_set_location (init_stmt, gimple_location (basis_stmt));
3436 }
3437
3438 if (dump_file && (dump_flags & TDF_DETAILS))
3439 {
3440 if (cast_stmt)
3441 {
3442 fputs ("Inserting stride cast: ", dump_file);
3443 print_gimple_stmt (dump_file, cast_stmt, 0);
3444 }
3445 fputs ("Inserting initializer: ", dump_file);
3446 print_gimple_stmt (dump_file, init_stmt, 0);
3447 }
3448 }
3449 }
3450
3451 /* Recursive helper function for all_phi_incrs_profitable. */
3452
3453 static bool
3454 all_phi_incrs_profitable_1 (slsr_cand_t c, gphi *phi, int *spread)
3455 {
3456 unsigned i;
3457 slsr_cand_t basis = lookup_cand (c->basis);
3458 slsr_cand_t phi_cand = *stmt_cand_map->get (phi);
3459
3460 if (phi_cand->visited)
3461 return true;
3462
3463 phi_cand->visited = 1;
3464 (*spread)++;
3465
3466 /* If the basis doesn't dominate the PHI (including when the PHI is
3467 in the same block as the basis), we won't be able to create a PHI
3468 using the basis here. */
3469 basic_block basis_bb = gimple_bb (basis->cand_stmt);
3470 basic_block phi_bb = gimple_bb (phi);
3471
3472 if (phi_bb == basis_bb
3473 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
3474 return false;
3475
3476 for (i = 0; i < gimple_phi_num_args (phi); i++)
3477 {
3478 /* If the PHI arg resides in a block not dominated by the basis,
3479 we won't be able to create a PHI using the basis here. */
3480 basic_block pred_bb = gimple_phi_arg_edge (phi, i)->src;
3481
3482 if (!dominated_by_p (CDI_DOMINATORS, pred_bb, basis_bb))
3483 return false;
3484
3485 tree arg = gimple_phi_arg_def (phi, i);
3486
3487 if (!operand_equal_p (arg, phi_cand->base_expr, 0))
3488 {
3489 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
3490
3491 if (gimple_code (arg_def) == GIMPLE_PHI)
3492 {
3493 if (!all_phi_incrs_profitable_1 (c, as_a <gphi *> (arg_def),
3494 spread)
3495 || *spread > MAX_SPREAD)
3496 return false;
3497 }
3498 else
3499 {
3500 int j;
3501 slsr_cand_t arg_cand = base_cand_from_table (arg);
3502 widest_int increment = arg_cand->index - basis->index;
3503
3504 if (!address_arithmetic_p && wi::neg_p (increment))
3505 increment = -increment;
3506
3507 j = incr_vec_index (increment);
3508
3509 if (dump_file && (dump_flags & TDF_DETAILS))
3510 {
3511 fprintf (dump_file, " Conditional candidate %d, phi: ",
3512 c->cand_num);
3513 print_gimple_stmt (dump_file, phi, 0);
3514 fputs (" increment: ", dump_file);
3515 print_decs (increment, dump_file);
3516 if (j < 0)
3517 fprintf (dump_file,
3518 "\n Not replaced; incr_vec overflow.\n");
3519 else {
3520 fprintf (dump_file, "\n cost: %d\n", incr_vec[j].cost);
3521 if (profitable_increment_p (j))
3522 fputs (" Replacing...\n", dump_file);
3523 else
3524 fputs (" Not replaced.\n", dump_file);
3525 }
3526 }
3527
3528 if (j < 0 || !profitable_increment_p (j))
3529 return false;
3530 }
3531 }
3532 }
3533
3534 return true;
3535 }
3536
3537 /* Return TRUE iff all required increments for candidates feeding PHI
3538 are profitable (and legal!) to replace on behalf of candidate C. */
3539
3540 static bool
3541 all_phi_incrs_profitable (slsr_cand_t c, gphi *phi)
3542 {
3543 int spread = 0;
3544 bool retval = all_phi_incrs_profitable_1 (c, phi, &spread);
3545 clear_visited (phi);
3546 return retval;
3547 }
3548
3549 /* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3550 type TO_TYPE, and insert it in front of the statement represented
3551 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3552 the new SSA name. */
3553
3554 static tree
3555 introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
3556 {
3557 tree cast_lhs;
3558 gassign *cast_stmt;
3559 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3560
3561 cast_lhs = make_temp_ssa_name (to_type, NULL, "slsr");
3562 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
3563 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3564 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3565
3566 if (dump_file && (dump_flags & TDF_DETAILS))
3567 {
3568 fputs (" Inserting: ", dump_file);
3569 print_gimple_stmt (dump_file, cast_stmt, 0);
3570 }
3571
3572 return cast_lhs;
3573 }
3574
3575 /* Replace the RHS of the statement represented by candidate C with
3576 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3577 leave C unchanged or just interchange its operands. The original
3578 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3579 If the replacement was made and we are doing a details dump,
3580 return the revised statement, else NULL. */
3581
3582 static gimple *
3583 replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3584 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3585 slsr_cand_t c)
3586 {
3587 if (new_code != old_code
3588 || ((!operand_equal_p (new_rhs1, old_rhs1, 0)
3589 || !operand_equal_p (new_rhs2, old_rhs2, 0))
3590 && (!operand_equal_p (new_rhs1, old_rhs2, 0)
3591 || !operand_equal_p (new_rhs2, old_rhs1, 0))))
3592 {
3593 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3594 slsr_cand_t cc = c;
3595 gimple_assign_set_rhs_with_ops (&gsi, new_code, new_rhs1, new_rhs2);
3596 update_stmt (gsi_stmt (gsi));
3597 c->cand_stmt = gsi_stmt (gsi);
3598 while (cc->next_interp)
3599 {
3600 cc = lookup_cand (cc->next_interp);
3601 cc->cand_stmt = gsi_stmt (gsi);
3602 }
3603
3604 if (dump_file && (dump_flags & TDF_DETAILS))
3605 return gsi_stmt (gsi);
3606 }
3607
3608 else if (dump_file && (dump_flags & TDF_DETAILS))
3609 fputs (" (duplicate, not actually replacing)\n", dump_file);
3610
3611 return NULL;
3612 }
3613
3614 /* Strength-reduce the statement represented by candidate C by replacing
3615 it with an equivalent addition or subtraction. I is the index into
3616 the increment vector identifying C's increment. NEW_VAR is used to
3617 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3618 is the rhs1 to use in creating the add/subtract. */
3619
3620 static void
3621 replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
3622 {
3623 gimple *stmt_to_print = NULL;
3624 tree orig_rhs1, orig_rhs2;
3625 tree rhs2;
3626 enum tree_code orig_code, repl_code;
3627 widest_int cand_incr;
3628
3629 orig_code = gimple_assign_rhs_code (c->cand_stmt);
3630 orig_rhs1 = gimple_assign_rhs1 (c->cand_stmt);
3631 orig_rhs2 = gimple_assign_rhs2 (c->cand_stmt);
3632 cand_incr = cand_increment (c);
3633
3634 if (dump_file && (dump_flags & TDF_DETAILS))
3635 {
3636 fputs ("Replacing: ", dump_file);
3637 print_gimple_stmt (dump_file, c->cand_stmt, 0);
3638 stmt_to_print = c->cand_stmt;
3639 }
3640
3641 if (address_arithmetic_p)
3642 repl_code = POINTER_PLUS_EXPR;
3643 else
3644 repl_code = PLUS_EXPR;
3645
3646 /* If the increment has an initializer T_0, replace the candidate
3647 statement with an add of the basis name and the initializer. */
3648 if (incr_vec[i].initializer)
3649 {
3650 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3651 tree orig_type = TREE_TYPE (orig_rhs2);
3652
3653 if (types_compatible_p (orig_type, init_type))
3654 rhs2 = incr_vec[i].initializer;
3655 else
3656 rhs2 = introduce_cast_before_cand (c, orig_type,
3657 incr_vec[i].initializer);
3658
3659 if (incr_vec[i].incr != cand_incr)
3660 {
3661 gcc_assert (repl_code == PLUS_EXPR);
3662 repl_code = MINUS_EXPR;
3663 }
3664
3665 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3666 orig_code, orig_rhs1, orig_rhs2,
3667 c);
3668 }
3669
3670 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3671 with a subtract of the stride from the basis name, a copy
3672 from the basis name, or an add of the stride to the basis
3673 name, respectively. It may be necessary to introduce a
3674 cast (or reuse an existing cast). */
3675 else if (cand_incr == 1)
3676 {
3677 tree stride_type = TREE_TYPE (c->stride);
3678 tree orig_type = TREE_TYPE (orig_rhs2);
3679
3680 if (types_compatible_p (orig_type, stride_type))
3681 rhs2 = c->stride;
3682 else
3683 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3684
3685 stmt_to_print = replace_rhs_if_not_dup (repl_code, basis_name, rhs2,
3686 orig_code, orig_rhs1, orig_rhs2,
3687 c);
3688 }
3689
3690 else if (cand_incr == -1)
3691 {
3692 tree stride_type = TREE_TYPE (c->stride);
3693 tree orig_type = TREE_TYPE (orig_rhs2);
3694 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3695
3696 if (types_compatible_p (orig_type, stride_type))
3697 rhs2 = c->stride;
3698 else
3699 rhs2 = introduce_cast_before_cand (c, orig_type, c->stride);
3700
3701 if (orig_code != MINUS_EXPR
3702 || !operand_equal_p (basis_name, orig_rhs1, 0)
3703 || !operand_equal_p (rhs2, orig_rhs2, 0))
3704 {
3705 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3706 slsr_cand_t cc = c;
3707 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, basis_name, rhs2);
3708 update_stmt (gsi_stmt (gsi));
3709 c->cand_stmt = gsi_stmt (gsi);
3710 while (cc->next_interp)
3711 {
3712 cc = lookup_cand (cc->next_interp);
3713 cc->cand_stmt = gsi_stmt (gsi);
3714 }
3715
3716 if (dump_file && (dump_flags & TDF_DETAILS))
3717 stmt_to_print = gsi_stmt (gsi);
3718 }
3719 else if (dump_file && (dump_flags & TDF_DETAILS))
3720 fputs (" (duplicate, not actually replacing)\n", dump_file);
3721 }
3722
3723 else if (cand_incr == 0)
3724 {
3725 tree lhs = gimple_assign_lhs (c->cand_stmt);
3726 tree lhs_type = TREE_TYPE (lhs);
3727 tree basis_type = TREE_TYPE (basis_name);
3728
3729 if (types_compatible_p (lhs_type, basis_type))
3730 {
3731 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
3732 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3733 slsr_cand_t cc = c;
3734 gimple_set_location (copy_stmt, gimple_location (c->cand_stmt));
3735 gsi_replace (&gsi, copy_stmt, false);
3736 c->cand_stmt = copy_stmt;
3737 while (cc->next_interp)
3738 {
3739 cc = lookup_cand (cc->next_interp);
3740 cc->cand_stmt = copy_stmt;
3741 }
3742
3743 if (dump_file && (dump_flags & TDF_DETAILS))
3744 stmt_to_print = copy_stmt;
3745 }
3746 else
3747 {
3748 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3749 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
3750 slsr_cand_t cc = c;
3751 gimple_set_location (cast_stmt, gimple_location (c->cand_stmt));
3752 gsi_replace (&gsi, cast_stmt, false);
3753 c->cand_stmt = cast_stmt;
3754 while (cc->next_interp)
3755 {
3756 cc = lookup_cand (cc->next_interp);
3757 cc->cand_stmt = cast_stmt;
3758 }
3759
3760 if (dump_file && (dump_flags & TDF_DETAILS))
3761 stmt_to_print = cast_stmt;
3762 }
3763 }
3764 else
3765 gcc_unreachable ();
3766
3767 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3768 {
3769 fputs ("With: ", dump_file);
3770 print_gimple_stmt (dump_file, stmt_to_print, 0);
3771 fputs ("\n", dump_file);
3772 }
3773 }
3774
3775 /* For each candidate in the tree rooted at C, replace it with
3776 an increment if such has been shown to be profitable. */
3777
3778 static void
3779 replace_profitable_candidates (slsr_cand_t c)
3780 {
3781 if (!cand_already_replaced (c))
3782 {
3783 widest_int increment = cand_abs_increment (c);
3784 enum tree_code orig_code = gimple_assign_rhs_code (c->cand_stmt);
3785 int i;
3786
3787 i = incr_vec_index (increment);
3788
3789 /* Only process profitable increments. Nothing useful can be done
3790 to a cast or copy. */
3791 if (i >= 0
3792 && profitable_increment_p (i)
3793 && orig_code != SSA_NAME
3794 && !CONVERT_EXPR_CODE_P (orig_code))
3795 {
3796 if (phi_dependent_cand_p (c))
3797 {
3798 gphi *phi = as_a <gphi *> (lookup_cand (c->def_phi)->cand_stmt);
3799
3800 if (all_phi_incrs_profitable (c, phi))
3801 {
3802 /* Look up the LHS SSA name from C's basis. This will be
3803 the RHS1 of the adds we will introduce to create new
3804 phi arguments. */
3805 slsr_cand_t basis = lookup_cand (c->basis);
3806 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3807
3808 /* Create a new phi statement that will represent C's true
3809 basis after the transformation is complete. */
3810 location_t loc = gimple_location (c->cand_stmt);
3811 tree name = create_phi_basis (c, phi, basis_name,
3812 loc, UNKNOWN_STRIDE);
3813
3814 /* Replace C with an add of the new basis phi and the
3815 increment. */
3816 replace_one_candidate (c, i, name);
3817 }
3818 }
3819 else
3820 {
3821 slsr_cand_t basis = lookup_cand (c->basis);
3822 tree basis_name = gimple_assign_lhs (basis->cand_stmt);
3823 replace_one_candidate (c, i, basis_name);
3824 }
3825 }
3826 }
3827
3828 if (c->sibling)
3829 replace_profitable_candidates (lookup_cand (c->sibling));
3830
3831 if (c->dependent)
3832 replace_profitable_candidates (lookup_cand (c->dependent));
3833 }
3834 \f
3835 /* Analyze costs of related candidates in the candidate vector,
3836 and make beneficial replacements. */
3837
3838 static void
3839 analyze_candidates_and_replace (void)
3840 {
3841 unsigned i;
3842 slsr_cand_t c;
3843
3844 /* Each candidate that has a null basis and a non-null
3845 dependent is the root of a tree of related statements.
3846 Analyze each tree to determine a subset of those
3847 statements that can be replaced with maximum benefit. */
3848 FOR_EACH_VEC_ELT (cand_vec, i, c)
3849 {
3850 slsr_cand_t first_dep;
3851
3852 if (c->basis != 0 || c->dependent == 0)
3853 continue;
3854
3855 if (dump_file && (dump_flags & TDF_DETAILS))
3856 fprintf (dump_file, "\nProcessing dependency tree rooted at %d.\n",
3857 c->cand_num);
3858
3859 first_dep = lookup_cand (c->dependent);
3860
3861 /* If this is a chain of CAND_REFs, unconditionally replace
3862 each of them with a strength-reduced data reference. */
3863 if (c->kind == CAND_REF)
3864 replace_refs (c);
3865
3866 /* If the common stride of all related candidates is a known
3867 constant, each candidate without a phi-dependence can be
3868 profitably replaced. Each replaces a multiply by a single
3869 add, with the possibility that a feeding add also goes dead.
3870 A candidate with a phi-dependence is replaced only if the
3871 compensation code it requires is offset by the strength
3872 reduction savings. */
3873 else if (TREE_CODE (c->stride) == INTEGER_CST)
3874 replace_uncond_cands_and_profitable_phis (first_dep);
3875
3876 /* When the stride is an SSA name, it may still be profitable
3877 to replace some or all of the dependent candidates, depending
3878 on whether the introduced increments can be reused, or are
3879 less expensive to calculate than the replaced statements. */
3880 else
3881 {
3882 machine_mode mode;
3883 bool speed;
3884
3885 /* Determine whether we'll be generating pointer arithmetic
3886 when replacing candidates. */
3887 address_arithmetic_p = (c->kind == CAND_ADD
3888 && POINTER_TYPE_P (c->cand_type));
3889
3890 /* If all candidates have already been replaced under other
3891 interpretations, nothing remains to be done. */
3892 if (!count_candidates (c))
3893 continue;
3894
3895 /* Construct an array of increments for this candidate chain. */
3896 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
3897 incr_vec_len = 0;
3898 record_increments (c);
3899
3900 /* Determine which increments are profitable to replace. */
3901 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3902 speed = optimize_cands_for_speed_p (c);
3903 analyze_increments (first_dep, mode, speed);
3904
3905 /* Insert initializers of the form T_0 = stride * increment
3906 for use in profitable replacements. */
3907 insert_initializers (first_dep);
3908 dump_incr_vec ();
3909
3910 /* Perform the replacements. */
3911 replace_profitable_candidates (first_dep);
3912 free (incr_vec);
3913 }
3914 }
3915
3916 /* For conditional candidates, we may have uncommitted insertions
3917 on edges to clean up. */
3918 gsi_commit_edge_inserts ();
3919 }
3920
3921 namespace {
3922
3923 const pass_data pass_data_strength_reduction =
3924 {
3925 GIMPLE_PASS, /* type */
3926 "slsr", /* name */
3927 OPTGROUP_NONE, /* optinfo_flags */
3928 TV_GIMPLE_SLSR, /* tv_id */
3929 ( PROP_cfg | PROP_ssa ), /* properties_required */
3930 0, /* properties_provided */
3931 0, /* properties_destroyed */
3932 0, /* todo_flags_start */
3933 0, /* todo_flags_finish */
3934 };
3935
3936 class pass_strength_reduction : public gimple_opt_pass
3937 {
3938 public:
3939 pass_strength_reduction (gcc::context *ctxt)
3940 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
3941 {}
3942
3943 /* opt_pass methods: */
3944 virtual bool gate (function *) { return flag_tree_slsr; }
3945 virtual unsigned int execute (function *);
3946
3947 }; // class pass_strength_reduction
3948
3949 unsigned
3950 pass_strength_reduction::execute (function *fun)
3951 {
3952 /* Create the obstack where candidates will reside. */
3953 gcc_obstack_init (&cand_obstack);
3954
3955 /* Allocate the candidate vector. */
3956 cand_vec.create (128);
3957
3958 /* Allocate the mapping from statements to candidate indices. */
3959 stmt_cand_map = new hash_map<gimple *, slsr_cand_t>;
3960
3961 /* Create the obstack where candidate chains will reside. */
3962 gcc_obstack_init (&chain_obstack);
3963
3964 /* Allocate the mapping from base expressions to candidate chains. */
3965 base_cand_map = new hash_table<cand_chain_hasher> (500);
3966
3967 /* Allocate the mapping from bases to alternative bases. */
3968 alt_base_map = new hash_map<tree, tree>;
3969
3970 /* Initialize the loop optimizer. We need to detect flow across
3971 back edges, and this gives us dominator information as well. */
3972 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
3973
3974 /* Walk the CFG in predominator order looking for strength reduction
3975 candidates. */
3976 find_candidates_dom_walker (CDI_DOMINATORS)
3977 .walk (fun->cfg->x_entry_block_ptr);
3978
3979 if (dump_file && (dump_flags & TDF_DETAILS))
3980 {
3981 dump_cand_vec ();
3982 dump_cand_chains ();
3983 }
3984
3985 delete alt_base_map;
3986 free_affine_expand_cache (&name_expansions);
3987
3988 /* Analyze costs and make appropriate replacements. */
3989 analyze_candidates_and_replace ();
3990
3991 loop_optimizer_finalize ();
3992 delete base_cand_map;
3993 base_cand_map = NULL;
3994 obstack_free (&chain_obstack, NULL);
3995 delete stmt_cand_map;
3996 cand_vec.release ();
3997 obstack_free (&cand_obstack, NULL);
3998
3999 return 0;
4000 }
4001
4002 } // anon namespace
4003
4004 gimple_opt_pass *
4005 make_pass_strength_reduction (gcc::context *ctxt)
4006 {
4007 return new pass_strength_reduction (ctxt);
4008 }