]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-ssa-warn-restrict.c
0c571efb666590e6f3352ad6d7a8dc826414f733
[thirdparty/gcc.git] / gcc / gimple-ssa-warn-restrict.c
1 /* Pass to detect and issue warnings for violations of the restrict
2 qualifier.
3 Copyright (C) 2017-2019 Free Software Foundation, Inc.
4 Contributed by Martin Sebor <msebor@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "domwalk.h"
29 #include "tree-pass.h"
30 #include "builtins.h"
31 #include "ssa.h"
32 #include "gimple-pretty-print.h"
33 #include "gimple-ssa-warn-restrict.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "gimple-iterator.h"
37 #include "tree-dfa.h"
38 #include "tree-ssa.h"
39 #include "params.h"
40 #include "tree-cfg.h"
41 #include "tree-object-size.h"
42 #include "calls.h"
43 #include "cfgloop.h"
44 #include "intl.h"
45
46 namespace {
47
48 const pass_data pass_data_wrestrict = {
49 GIMPLE_PASS,
50 "wrestrict",
51 OPTGROUP_NONE,
52 TV_NONE,
53 PROP_cfg, /* Properties_required. */
54 0, /* properties_provided. */
55 0, /* properties_destroyed. */
56 0, /* properties_start */
57 0, /* properties_finish */
58 };
59
60 /* Pass to detect violations of strict aliasing requirements in calls
61 to built-in string and raw memory functions. */
62 class pass_wrestrict : public gimple_opt_pass
63 {
64 public:
65 pass_wrestrict (gcc::context *ctxt)
66 : gimple_opt_pass (pass_data_wrestrict, ctxt)
67 { }
68
69 opt_pass *clone () { return new pass_wrestrict (m_ctxt); }
70
71 virtual bool gate (function *);
72 virtual unsigned int execute (function *);
73 };
74
75 bool
76 pass_wrestrict::gate (function *fun ATTRIBUTE_UNUSED)
77 {
78 return warn_array_bounds || warn_restrict || warn_stringop_overflow;
79 }
80
81 /* Class to walk the basic blocks of a function in dominator order. */
82 class wrestrict_dom_walker : public dom_walker
83 {
84 public:
85 wrestrict_dom_walker () : dom_walker (CDI_DOMINATORS) {}
86
87 edge before_dom_children (basic_block) FINAL OVERRIDE;
88 bool handle_gimple_call (gimple_stmt_iterator *);
89
90 private:
91 void check_call (gimple *);
92 };
93
94 edge
95 wrestrict_dom_walker::before_dom_children (basic_block bb)
96 {
97 /* Iterate over statements, looking for function calls. */
98 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
99 gsi_next (&si))
100 {
101 gimple *stmt = gsi_stmt (si);
102 if (!is_gimple_call (stmt))
103 continue;
104
105 check_call (stmt);
106 }
107
108 return NULL;
109 }
110
111 /* Execute the pass for function FUN, walking in dominator order. */
112
113 unsigned
114 pass_wrestrict::execute (function *fun)
115 {
116 calculate_dominance_info (CDI_DOMINATORS);
117
118 wrestrict_dom_walker walker;
119 walker.walk (ENTRY_BLOCK_PTR_FOR_FN (fun));
120
121 return 0;
122 }
123
124 /* Description of a memory reference by a built-in function. This
125 is similar to ao_ref but made especially suitable for -Wrestrict
126 and not for optimization. */
127 struct builtin_memref
128 {
129 /* The original pointer argument to the built-in function. */
130 tree ptr;
131 /* The referenced subobject or NULL if not available, and the base
132 object of the memory reference or NULL. */
133 tree ref;
134 tree base;
135
136 /* The size of the BASE object, PTRDIFF_MAX if indeterminate,
137 and negative until (possibly lazily) initialized. */
138 offset_int basesize;
139
140 /* The non-negative offset of the referenced subobject. Used to avoid
141 warnings for (apparently) possibly but not definitively overlapping
142 accesses to member arrays. Negative when unknown/invalid. */
143 offset_int refoff;
144
145 /* The offset range relative to the base. */
146 offset_int offrange[2];
147 /* The size range of the access to this reference. */
148 offset_int sizrange[2];
149
150 /* Cached result of get_max_objsize(). */
151 const offset_int maxobjsize;
152
153 /* True for "bounded" string functions like strncat, and strncpy
154 and their variants that specify either an exact or upper bound
155 on the size of the accesses they perform. For strncat both
156 the source and destination references are bounded. For strncpy
157 only the destination reference is. */
158 bool strbounded_p;
159
160 builtin_memref (tree, tree);
161
162 tree offset_out_of_bounds (int, offset_int[2]) const;
163
164 private:
165
166 /* Ctor helper to set or extend OFFRANGE based on argument. */
167 void extend_offset_range (tree);
168
169 /* Ctor helper to determine BASE and OFFRANGE from argument. */
170 void set_base_and_offset (tree);
171 };
172
173 /* Description of a memory access by a raw memory or string built-in
174 function involving a pair of builtin_memref's. */
175 class builtin_access
176 {
177 public:
178 /* Destination and source memory reference. */
179 builtin_memref* const dstref;
180 builtin_memref* const srcref;
181 /* The size range of the access. It's the greater of the accesses
182 to the two references. */
183 HOST_WIDE_INT sizrange[2];
184
185 /* The minimum and maximum offset of an overlap of the access
186 (if it does, in fact, overlap), and the size of the overlap. */
187 HOST_WIDE_INT ovloff[2];
188 HOST_WIDE_INT ovlsiz[2];
189
190 /* True to consider valid only accesses to the smallest subobject
191 and false for raw memory functions. */
192 bool strict () const
193 {
194 return detect_overlap != &builtin_access::generic_overlap;
195 }
196
197 builtin_access (gimple *, builtin_memref &, builtin_memref &);
198
199 /* Entry point to determine overlap. */
200 bool overlap ();
201
202 private:
203 /* Implementation functions used to determine overlap. */
204 bool generic_overlap ();
205 bool strcat_overlap ();
206 bool strcpy_overlap ();
207
208 bool no_overlap ()
209 {
210 return false;
211 }
212
213 offset_int overlap_size (const offset_int [2], const offset_int[2],
214 offset_int [2]);
215
216 private:
217 /* Temporaries used to compute the final result. */
218 offset_int dstoff[2];
219 offset_int srcoff[2];
220 offset_int dstsiz[2];
221 offset_int srcsiz[2];
222
223 /* Pointer to a member function to call to determine overlap. */
224 bool (builtin_access::*detect_overlap) ();
225 };
226
227 /* Initialize a memory reference representation from a pointer EXPR and
228 a size SIZE in bytes. If SIZE is NULL_TREE then the size is assumed
229 to be unknown. */
230
231 builtin_memref::builtin_memref (tree expr, tree size)
232 : ptr (expr),
233 ref (),
234 base (),
235 basesize (-1),
236 refoff (HOST_WIDE_INT_MIN),
237 offrange (),
238 sizrange (),
239 maxobjsize (tree_to_shwi (max_object_size ())),
240 strbounded_p ()
241 {
242 /* Unfortunately, wide_int default ctor is a no-op so array members
243 of the type must be set individually. */
244 offrange[0] = offrange[1] = 0;
245 sizrange[0] = sizrange[1] = 0;
246
247 if (!expr)
248 return;
249
250 /* Find the BASE object or pointer referenced by EXPR and set
251 the offset range OFFRANGE in the process. */
252 set_base_and_offset (expr);
253
254 if (size)
255 {
256 tree range[2];
257 /* Determine the size range, allowing for the result to be [0, 0]
258 for SIZE in the anti-range ~[0, N] where N >= PTRDIFF_MAX. */
259 get_size_range (size, range, true);
260 sizrange[0] = wi::to_offset (range[0]);
261 sizrange[1] = wi::to_offset (range[1]);
262 /* get_size_range returns SIZE_MAX for the maximum size.
263 Constrain it to the real maximum of PTRDIFF_MAX. */
264 if (sizrange[0] <= maxobjsize && sizrange[1] > maxobjsize)
265 sizrange[1] = maxobjsize;
266 }
267 else
268 sizrange[1] = maxobjsize;
269
270 if (!DECL_P (base))
271 return;
272
273 /* If the offset could be in the range of the referenced object
274 constrain its bounds so neither exceeds those of the object. */
275 if (offrange[0] < 0 && offrange[1] > 0)
276 offrange[0] = 0;
277
278 offset_int maxoff = maxobjsize;
279 tree basetype = TREE_TYPE (base);
280 if (TREE_CODE (basetype) == ARRAY_TYPE)
281 {
282 if (ref && array_at_struct_end_p (ref))
283 ; /* Use the maximum possible offset for last member arrays. */
284 else if (tree basesize = TYPE_SIZE_UNIT (basetype))
285 if (TREE_CODE (basesize) == INTEGER_CST)
286 /* Size could be non-constant for a variable-length type such
287 as a struct with a VLA member (a GCC extension). */
288 maxoff = wi::to_offset (basesize);
289 }
290
291 if (offrange[0] >= 0)
292 {
293 if (offrange[1] < 0)
294 offrange[1] = offrange[0] <= maxoff ? maxoff : maxobjsize;
295 else if (offrange[0] <= maxoff && offrange[1] > maxoff)
296 offrange[1] = maxoff;
297 }
298 }
299
300 /* Ctor helper to set or extend OFFRANGE based on the OFFSET argument.
301 Pointer offsets are represented as unsigned sizetype but must be
302 treated as signed. */
303
304 void
305 builtin_memref::extend_offset_range (tree offset)
306 {
307 if (TREE_CODE (offset) == INTEGER_CST)
308 {
309 offset_int off = int_cst_value (offset);
310 if (off != 0)
311 {
312 offrange[0] += off;
313 offrange[1] += off;
314 }
315 return;
316 }
317
318 if (TREE_CODE (offset) == SSA_NAME)
319 {
320 /* A pointer offset is represented as sizetype but treated
321 as signed. */
322 wide_int min, max;
323 value_range_kind rng = get_range_info (offset, &min, &max);
324 if (rng == VR_ANTI_RANGE && wi::lts_p (max, min))
325 {
326 /* Convert an anti-range whose upper bound is less than
327 its lower bound to a signed range. */
328 offrange[0] += offset_int::from (max + 1, SIGNED);
329 offrange[1] += offset_int::from (min - 1, SIGNED);
330 return;
331 }
332
333 if (rng == VR_RANGE
334 && (DECL_P (base) || wi::lts_p (min, max)))
335 {
336 /* Preserve the bounds of the range for an offset into
337 a known object (it may be adjusted later relative to
338 a constant offset from its beginning). Otherwise use
339 the bounds only when they are ascending when treated
340 as signed. */
341 offrange[0] += offset_int::from (min, SIGNED);
342 offrange[1] += offset_int::from (max, SIGNED);
343 return;
344 }
345
346 /* Handle an anti-range the same as no range at all. */
347 gimple *stmt = SSA_NAME_DEF_STMT (offset);
348 tree type;
349 if (is_gimple_assign (stmt)
350 && (type = TREE_TYPE (gimple_assign_rhs1 (stmt)))
351 && INTEGRAL_TYPE_P (type))
352 {
353 tree_code code = gimple_assign_rhs_code (stmt);
354 if (code == NOP_EXPR)
355 {
356 /* Use the bounds of the type of the NOP_EXPR operand
357 even if it's signed. The result doesn't trigger
358 warnings but makes their output more readable. */
359 offrange[0] += wi::to_offset (TYPE_MIN_VALUE (type));
360 offrange[1] += wi::to_offset (TYPE_MAX_VALUE (type));
361 return;
362 }
363 }
364 }
365
366 const offset_int maxoff = tree_to_shwi (max_object_size ()) >> 1;
367 const offset_int minoff = -maxoff - 1;
368
369 offrange[0] += minoff;
370 offrange[1] += maxoff;
371 }
372
373 /* Determines the base object or pointer of the reference EXPR
374 and the offset range from the beginning of the base. */
375
376 void
377 builtin_memref::set_base_and_offset (tree expr)
378 {
379 tree offset = NULL_TREE;
380
381 if (TREE_CODE (expr) == SSA_NAME)
382 {
383 /* Try to tease the offset out of the pointer. */
384 gimple *stmt = SSA_NAME_DEF_STMT (expr);
385 if (!base
386 && gimple_assign_single_p (stmt)
387 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
388 expr = gimple_assign_rhs1 (stmt);
389 else if (is_gimple_assign (stmt))
390 {
391 tree_code code = gimple_assign_rhs_code (stmt);
392 if (code == NOP_EXPR)
393 {
394 tree rhs = gimple_assign_rhs1 (stmt);
395 if (POINTER_TYPE_P (TREE_TYPE (rhs)))
396 expr = gimple_assign_rhs1 (stmt);
397 else
398 {
399 base = expr;
400 return;
401 }
402 }
403 else if (code == POINTER_PLUS_EXPR)
404 {
405 expr = gimple_assign_rhs1 (stmt);
406 offset = gimple_assign_rhs2 (stmt);
407 }
408 else
409 {
410 base = expr;
411 return;
412 }
413 }
414 else
415 {
416 /* FIXME: Handle PHI nodes in case like:
417 _12 = &MEM[(void *)&a + 2B] + _10;
418
419 <bb> [local count: 1073741824]:
420 # prephitmp_13 = PHI <_12, &MEM[(void *)&a + 2B]>
421 memcpy (prephitmp_13, p_7(D), 6); */
422 base = expr;
423 return;
424 }
425 }
426
427 if (TREE_CODE (expr) == ADDR_EXPR)
428 expr = TREE_OPERAND (expr, 0);
429
430 /* Stash the reference for offset validation. */
431 ref = expr;
432
433 poly_int64 bitsize, bitpos;
434 tree var_off;
435 machine_mode mode;
436 int sign, reverse, vol;
437
438 /* Determine the base object or pointer of the reference and
439 the constant bit offset from the beginning of the base.
440 If the offset has a non-constant component, it will be in
441 VAR_OFF. MODE, SIGN, REVERSE, and VOL are write only and
442 unused here. */
443 base = get_inner_reference (expr, &bitsize, &bitpos, &var_off,
444 &mode, &sign, &reverse, &vol);
445
446 /* get_inner_reference is not expected to return null. */
447 gcc_assert (base != NULL);
448
449 if (offset)
450 extend_offset_range (offset);
451
452 poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
453
454 /* Convert the poly_int64 offset to offset_int. The offset
455 should be constant but be prepared for it not to be just in
456 case. */
457 offset_int cstoff;
458 if (bytepos.is_constant (&cstoff))
459 {
460 offrange[0] += cstoff;
461 offrange[1] += cstoff;
462
463 /* Besides the reference saved above, also stash the offset
464 for validation. */
465 if (TREE_CODE (expr) == COMPONENT_REF)
466 refoff = cstoff;
467 }
468 else
469 offrange[1] += maxobjsize;
470
471 if (var_off)
472 {
473 if (TREE_CODE (var_off) == INTEGER_CST)
474 {
475 cstoff = wi::to_offset (var_off);
476 offrange[0] += cstoff;
477 offrange[1] += cstoff;
478 }
479 else
480 offrange[1] += maxobjsize;
481 }
482
483 if (TREE_CODE (base) == MEM_REF)
484 {
485 tree memrefoff = TREE_OPERAND (base, 1);
486 extend_offset_range (memrefoff);
487 base = TREE_OPERAND (base, 0);
488 }
489
490 if (TREE_CODE (base) == SSA_NAME)
491 set_base_and_offset (base);
492 }
493
494 /* Return error_mark_node if the signed offset exceeds the bounds
495 of the address space (PTRDIFF_MAX). Otherwise, return either
496 BASE or REF when the offset exceeds the bounds of the BASE or
497 REF object, and set OOBOFF to the past-the-end offset formed
498 by the reference, including its size. When STRICT is non-zero
499 use REF size, when available, otherwise use BASE size. When
500 STRICT is greater than 1, use the size of the last array member
501 as the bound, otherwise treat such a member as a flexible array
502 member. Return NULL when the offset is in bounds. */
503
504 tree
505 builtin_memref::offset_out_of_bounds (int strict, offset_int ooboff[2]) const
506 {
507 if (!ptr)
508 return NULL_TREE;
509
510 /* A temporary, possibly adjusted, copy of the offset range. */
511 offset_int offrng[2] = { offrange[0], offrange[1] };
512
513 if (DECL_P (base) && TREE_CODE (TREE_TYPE (base)) == ARRAY_TYPE)
514 {
515 /* Check for offset in an anti-range with a negative lower bound.
516 For such a range, consider only the non-negative subrange. */
517 if (offrng[1] < offrng[0] && offrng[1] < 0)
518 offrng[1] = maxobjsize;
519 }
520
521 /* Conservative offset of the last byte of the referenced object. */
522 offset_int endoff;
523
524 /* The bounds need not be ordered. Set HIB to use as the index
525 of the larger of the bounds and LOB as the opposite. */
526 bool hib = wi::les_p (offrng[0], offrng[1]);
527 bool lob = !hib;
528
529 if (basesize < 0)
530 {
531 endoff = offrng[lob] + sizrange[0];
532
533 /* For a reference through a pointer to an object of unknown size
534 all initial offsets are considered valid, positive as well as
535 negative, since the pointer itself can point past the beginning
536 of the object. However, the sum of the lower bound of the offset
537 and that of the size must be less than or equal than PTRDIFF_MAX. */
538 if (endoff > maxobjsize)
539 return error_mark_node;
540
541 return NULL_TREE;
542 }
543
544 /* A reference to an object of known size must be within the bounds
545 of the base object. */
546 if (offrng[hib] < 0 || offrng[lob] > basesize)
547 return base;
548
549 /* The extent of the reference must also be within the bounds of
550 the base object (if known) or the maximum object size otherwise. */
551 endoff = wi::smax (offrng[lob], 0) + sizrange[0];
552 if (endoff > maxobjsize)
553 return error_mark_node;
554
555 offset_int size = basesize;
556 tree obj = base;
557
558 if (strict
559 && DECL_P (obj)
560 && ref
561 && refoff >= 0
562 && TREE_CODE (ref) == COMPONENT_REF
563 && (strict > 1
564 || !array_at_struct_end_p (ref)))
565 {
566 /* If the reference is to a member subobject, the offset must
567 be within the bounds of the subobject. */
568 tree field = TREE_OPERAND (ref, 1);
569 tree type = TREE_TYPE (field);
570 if (tree sz = TYPE_SIZE_UNIT (type))
571 if (TREE_CODE (sz) == INTEGER_CST)
572 {
573 size = refoff + wi::to_offset (sz);
574 obj = ref;
575 }
576 }
577
578 if (endoff <= size)
579 return NULL_TREE;
580
581 /* Set the out-of-bounds offset range to be one greater than
582 that delimited by the reference including its size. */
583 ooboff[lob] = size + 1;
584
585 if (endoff > ooboff[lob])
586 ooboff[hib] = endoff;
587 else
588 ooboff[hib] = wi::smax (offrng[lob], 0) + sizrange[1];
589
590 return obj;
591 }
592
593 /* Create an association between the memory references DST and SRC
594 for access by a call EXPR to a memory or string built-in funtion. */
595
596 builtin_access::builtin_access (gimple *call, builtin_memref &dst,
597 builtin_memref &src)
598 : dstref (&dst), srcref (&src), sizrange (), ovloff (), ovlsiz (),
599 dstoff (), srcoff (), dstsiz (), srcsiz ()
600 {
601 /* Zero out since the offset_int ctors invoked above are no-op. */
602 dstoff[0] = dstoff[1] = 0;
603 srcoff[0] = srcoff[1] = 0;
604 dstsiz[0] = dstsiz[1] = 0;
605 srcsiz[0] = srcsiz[1] = 0;
606
607 /* Object Size Type to use to determine the size of the destination
608 and source objects. Overridden below for raw memory functions. */
609 int ostype = 1;
610
611 /* True when the size of one reference depends on the offset of
612 itself or the other. */
613 bool depends_p = true;
614
615 /* True when the size of the destination reference DSTREF has been
616 determined from SRCREF and so needs to be adjusted by the latter's
617 offset. Only meaningful for bounded string functions like strncpy. */
618 bool dstadjust_p = false;
619
620 /* The size argument number (depends on the built-in). */
621 unsigned sizeargno = 2;
622
623 tree func = gimple_call_fndecl (call);
624 switch (DECL_FUNCTION_CODE (func))
625 {
626 case BUILT_IN_MEMCPY:
627 case BUILT_IN_MEMCPY_CHK:
628 case BUILT_IN_MEMPCPY:
629 case BUILT_IN_MEMPCPY_CHK:
630 ostype = 0;
631 depends_p = false;
632 detect_overlap = &builtin_access::generic_overlap;
633 break;
634
635 case BUILT_IN_MEMMOVE:
636 case BUILT_IN_MEMMOVE_CHK:
637 /* For memmove there is never any overlap to check for. */
638 ostype = 0;
639 depends_p = false;
640 detect_overlap = &builtin_access::no_overlap;
641 break;
642
643 case BUILT_IN_MEMSET:
644 case BUILT_IN_MEMSET_CHK:
645 /* For memset there is never any overlap to check for. */
646 ostype = 0;
647 depends_p = false;
648 detect_overlap = &builtin_access::no_overlap;
649 break;
650
651 case BUILT_IN_STPNCPY:
652 case BUILT_IN_STPNCPY_CHK:
653 case BUILT_IN_STRNCPY:
654 case BUILT_IN_STRNCPY_CHK:
655 dstref->strbounded_p = true;
656 detect_overlap = &builtin_access::strcpy_overlap;
657 break;
658
659 case BUILT_IN_STPCPY:
660 case BUILT_IN_STPCPY_CHK:
661 case BUILT_IN_STRCPY:
662 case BUILT_IN_STRCPY_CHK:
663 detect_overlap = &builtin_access::strcpy_overlap;
664 break;
665
666 case BUILT_IN_STRCAT:
667 case BUILT_IN_STRCAT_CHK:
668 detect_overlap = &builtin_access::strcat_overlap;
669 break;
670
671 case BUILT_IN_STRNCAT:
672 case BUILT_IN_STRNCAT_CHK:
673 dstref->strbounded_p = true;
674 srcref->strbounded_p = true;
675 detect_overlap = &builtin_access::strcat_overlap;
676 break;
677
678 default:
679 /* Handle other string functions here whose access may need
680 to be validated for in-bounds offsets and non-overlapping
681 copies. */
682 return;
683 }
684
685 const offset_int maxobjsize = dst.maxobjsize;
686
687 /* Try to determine the size of the base object. compute_objsize
688 expects a pointer so create one if BASE is a non-pointer object. */
689 tree addr;
690 if (dst.basesize < 0)
691 {
692 addr = dst.base;
693 if (!POINTER_TYPE_P (TREE_TYPE (addr)))
694 addr = build1 (ADDR_EXPR, (TREE_TYPE (addr)), addr);
695
696 if (tree dstsize = compute_objsize (addr, ostype))
697 dst.basesize = wi::to_offset (dstsize);
698 else if (POINTER_TYPE_P (TREE_TYPE (addr)))
699 dst.basesize = HOST_WIDE_INT_MIN;
700 else
701 dst.basesize = maxobjsize;
702 }
703
704 if (src.base && src.basesize < 0)
705 {
706 addr = src.base;
707 if (!POINTER_TYPE_P (TREE_TYPE (addr)))
708 addr = build1 (ADDR_EXPR, (TREE_TYPE (addr)), addr);
709
710 if (tree srcsize = compute_objsize (addr, ostype))
711 src.basesize = wi::to_offset (srcsize);
712 else if (POINTER_TYPE_P (TREE_TYPE (addr)))
713 src.basesize = HOST_WIDE_INT_MIN;
714 else
715 src.basesize = maxobjsize;
716 }
717
718 /* If there is no dependency between the references or the base
719 objects of the two references aren't the same there's nothing
720 else to do. */
721 if (depends_p && dstref->base != srcref->base)
722 return;
723
724 /* ...otherwise, make adjustments for references to the same object
725 by string built-in functions to reflect the constraints imposed
726 by the function. */
727
728 /* For bounded string functions determine the range of the bound
729 on the access. For others, the range stays unbounded. */
730 offset_int bounds[2] = { maxobjsize, maxobjsize };
731 if (dstref->strbounded_p)
732 {
733 unsigned nargs = gimple_call_num_args (call);
734 if (nargs <= sizeargno)
735 return;
736
737 tree size = gimple_call_arg (call, sizeargno);
738 tree range[2];
739 if (get_size_range (size, range, true))
740 {
741 bounds[0] = wi::to_offset (range[0]);
742 bounds[1] = wi::to_offset (range[1]);
743 }
744
745 /* If both references' size ranges are indeterminate use the last
746 (size) argument from the function call as a substitute. This
747 may only be necessary for strncpy (but not for memcpy where
748 the size range would have been already determined this way). */
749 if (dstref->sizrange[0] == 0 && dstref->sizrange[1] == maxobjsize
750 && srcref->sizrange[0] == 0 && srcref->sizrange[1] == maxobjsize)
751 {
752 dstref->sizrange[0] = bounds[0];
753 dstref->sizrange[1] = bounds[1];
754 }
755 }
756
757 /* The size range of one reference involving the same base object
758 can be determined from the size range of the other reference.
759 This makes it possible to compute accurate offsets for warnings
760 involving functions like strcpy where the length of just one of
761 the two arguments is known (determined by tree-ssa-strlen). */
762 if (dstref->sizrange[0] == 0 && dstref->sizrange[1] == maxobjsize)
763 {
764 /* When the destination size is unknown set it to the size of
765 the source. */
766 dstref->sizrange[0] = srcref->sizrange[0];
767 dstref->sizrange[1] = srcref->sizrange[1];
768 }
769 else if (srcref->sizrange[0] == 0 && srcref->sizrange[1] == maxobjsize)
770 {
771 /* When the source size is unknown set it to the size of
772 the destination. */
773 srcref->sizrange[0] = dstref->sizrange[0];
774 srcref->sizrange[1] = dstref->sizrange[1];
775
776 if (depends_p)
777 {
778 if (dstref->strbounded_p)
779 {
780 /* Read access by strncpy is bounded. */
781 if (bounds[0] < srcref->sizrange[0])
782 srcref->sizrange[0] = bounds[0];
783 if (bounds[1] < srcref->sizrange[1])
784 srcref->sizrange[1] = bounds[1];
785 }
786
787 /* For string functions, adjust the size range of the source
788 reference by the inverse boundaries of the offset (because
789 the higher the offset into the string the shorter its
790 length). */
791 if (srcref->offrange[1] >= 0
792 && srcref->offrange[1] < srcref->sizrange[0])
793 srcref->sizrange[0] -= srcref->offrange[1];
794 else
795 srcref->sizrange[0] = 0;
796
797 if (srcref->offrange[0] > 0)
798 {
799 if (srcref->offrange[0] < srcref->sizrange[1])
800 srcref->sizrange[1] -= srcref->offrange[0];
801 else
802 srcref->sizrange[1] = 0;
803 }
804
805 dstadjust_p = true;
806 }
807 }
808
809 if (detect_overlap == &builtin_access::generic_overlap)
810 {
811 if (dstref->strbounded_p)
812 {
813 dstref->sizrange[0] = bounds[0];
814 dstref->sizrange[1] = bounds[1];
815
816 if (dstref->sizrange[0] < srcref->sizrange[0])
817 srcref->sizrange[0] = dstref->sizrange[0];
818
819 if (dstref->sizrange[1] < srcref->sizrange[1])
820 srcref->sizrange[1] = dstref->sizrange[1];
821 }
822 }
823 else if (detect_overlap == &builtin_access::strcpy_overlap)
824 {
825 if (!dstref->strbounded_p)
826 {
827 /* For strcpy, adjust the destination size range to match that
828 of the source computed above. */
829 if (depends_p && dstadjust_p)
830 {
831 dstref->sizrange[0] = srcref->sizrange[0];
832 dstref->sizrange[1] = srcref->sizrange[1];
833 }
834 }
835 }
836
837 if (dstref->strbounded_p)
838 {
839 /* For strncpy, adjust the destination size range to match that
840 of the source computed above. */
841 dstref->sizrange[0] = bounds[0];
842 dstref->sizrange[1] = bounds[1];
843
844 if (bounds[0] < srcref->sizrange[0])
845 srcref->sizrange[0] = bounds[0];
846
847 if (bounds[1] < srcref->sizrange[1])
848 srcref->sizrange[1] = bounds[1];
849 }
850 }
851
852 offset_int
853 builtin_access::overlap_size (const offset_int a[2], const offset_int b[2],
854 offset_int *off)
855 {
856 const offset_int *p = a;
857 const offset_int *q = b;
858
859 /* Point P at the bigger of the two ranges and Q at the smaller. */
860 if (wi::lts_p (a[1] - a[0], b[1] - b[0]))
861 {
862 p = b;
863 q = a;
864 }
865
866 if (p[0] < q[0])
867 {
868 if (p[1] < q[0])
869 return 0;
870
871 *off = q[0];
872 return wi::smin (p[1], q[1]) - q[0];
873 }
874
875 if (q[1] < p[0])
876 return 0;
877
878 off[0] = p[0];
879 return q[1] - p[0];
880 }
881
882 /* Return true if the bounded mempry (memcpy amd similar) or string function
883 access (strncpy and similar) ACS overlaps. */
884
885 bool
886 builtin_access::generic_overlap ()
887 {
888 builtin_access &acs = *this;
889 const builtin_memref *dstref = acs.dstref;
890 const builtin_memref *srcref = acs.srcref;
891
892 gcc_assert (dstref->base == srcref->base);
893
894 const offset_int maxobjsize = acs.dstref->maxobjsize;
895
896 offset_int maxsize = dstref->basesize < 0 ? maxobjsize : dstref->basesize;
897 gcc_assert (maxsize <= maxobjsize);
898
899 /* Adjust the larger bounds of the offsets (which may be the first
900 element if the lower bound is larger than the upper bound) to
901 make them valid for the smallest access (if possible) but no smaller
902 than the smaller bounds. */
903 gcc_assert (wi::les_p (acs.dstoff[0], acs.dstoff[1]));
904
905 if (maxsize < acs.dstoff[1] + acs.dstsiz[0])
906 acs.dstoff[1] = maxsize - acs.dstsiz[0];
907 if (acs.dstoff[1] < acs.dstoff[0])
908 acs.dstoff[1] = acs.dstoff[0];
909
910 gcc_assert (wi::les_p (acs.srcoff[0], acs.srcoff[1]));
911
912 if (maxsize < acs.srcoff[1] + acs.srcsiz[0])
913 acs.srcoff[1] = maxsize - acs.srcsiz[0];
914 if (acs.srcoff[1] < acs.srcoff[0])
915 acs.srcoff[1] = acs.srcoff[0];
916
917 /* Determine the minimum and maximum space for the access given
918 the offsets. */
919 offset_int space[2];
920 space[0] = wi::abs (acs.dstoff[0] - acs.srcoff[0]);
921 space[1] = space[0];
922
923 offset_int d = wi::abs (acs.dstoff[0] - acs.srcoff[1]);
924 if (acs.srcsiz[0] > 0)
925 {
926 if (d < space[0])
927 space[0] = d;
928
929 if (space[1] < d)
930 space[1] = d;
931 }
932 else
933 space[1] = acs.dstsiz[1];
934
935 d = wi::abs (acs.dstoff[1] - acs.srcoff[0]);
936 if (d < space[0])
937 space[0] = d;
938
939 if (space[1] < d)
940 space[1] = d;
941
942 /* Treat raw memory functions both of whose references are bounded
943 as special and permit uncertain overlaps to go undetected. For
944 all kinds of constant offset and constant size accesses, if
945 overlap isn't certain it is not possible. */
946 bool overlap_possible = space[0] < acs.dstsiz[1];
947 if (!overlap_possible)
948 return false;
949
950 bool overlap_certain = space[1] < acs.dstsiz[0];
951
952 /* True when the size of one reference depends on the offset of
953 the other. */
954 bool depends_p = detect_overlap != &builtin_access::generic_overlap;
955
956 if (!overlap_certain)
957 {
958 if (!dstref->strbounded_p && !depends_p)
959 /* Memcpy only considers certain overlap. */
960 return false;
961
962 /* There's no way to distinguish an access to the same member
963 of a structure from one to two distinct members of the same
964 structure. Give up to avoid excessive false positives. */
965 tree basetype = TREE_TYPE (dstref->base);
966
967 if (POINTER_TYPE_P (basetype))
968 basetype = TREE_TYPE (basetype);
969 else
970 while (TREE_CODE (basetype) == ARRAY_TYPE)
971 basetype = TREE_TYPE (basetype);
972
973 if (RECORD_OR_UNION_TYPE_P (basetype))
974 return false;
975 }
976
977 /* True for stpcpy and strcpy. */
978 bool stxcpy_p = (!dstref->strbounded_p
979 && detect_overlap == &builtin_access::strcpy_overlap);
980
981 if (dstref->refoff >= 0
982 && srcref->refoff >= 0
983 && dstref->refoff != srcref->refoff
984 && (stxcpy_p || dstref->strbounded_p || srcref->strbounded_p))
985 return false;
986
987 offset_int siz[2] = { maxobjsize + 1, 0 };
988
989 ovloff[0] = HOST_WIDE_INT_MAX;
990 ovloff[1] = HOST_WIDE_INT_MIN;
991
992 /* Adjustment to the lower bound of the offset of the overlap to
993 account for a subset of unbounded string calls where the size
994 of the destination string depends on the length of the source
995 which in turn depends on the offset into it. */
996 bool sub1;
997
998 if (stxcpy_p)
999 {
1000 sub1 = acs.dstoff[0] <= acs.srcoff[0];
1001
1002 /* Iterate over the extreme locations (on the horizontal axis formed
1003 by their offsets) and sizes of two regions and find their smallest
1004 and largest overlap and the corresponding offsets. */
1005 for (unsigned i = 0; i != 2; ++i)
1006 {
1007 const offset_int a[2] = {
1008 acs.dstoff[i], acs.dstoff[i] + acs.dstsiz[!i]
1009 };
1010
1011 const offset_int b[2] = {
1012 acs.srcoff[i], acs.srcoff[i] + acs.srcsiz[!i]
1013 };
1014
1015 offset_int off;
1016 offset_int sz = overlap_size (a, b, &off);
1017 if (sz < siz[0])
1018 siz[0] = sz;
1019
1020 if (siz[1] <= sz)
1021 siz[1] = sz;
1022
1023 if (sz != 0)
1024 {
1025 if (wi::lts_p (off, ovloff[0]))
1026 ovloff[0] = off.to_shwi ();
1027 if (wi::lts_p (ovloff[1], off))
1028 ovloff[1] = off.to_shwi ();
1029 }
1030 }
1031 }
1032 else
1033 {
1034 sub1 = !depends_p;
1035
1036 /* Iterate over the extreme locations (on the horizontal axis
1037 formed by their offsets) and sizes of two regions and find
1038 their smallest and largest overlap and the corresponding
1039 offsets. */
1040
1041 for (unsigned io = 0; io != 2; ++io)
1042 for (unsigned is = 0; is != 2; ++is)
1043 {
1044 const offset_int a[2] = {
1045 acs.dstoff[io], acs.dstoff[io] + acs.dstsiz[is]
1046 };
1047
1048 for (unsigned jo = 0; jo != 2; ++jo)
1049 for (unsigned js = 0; js != 2; ++js)
1050 {
1051 if (depends_p)
1052 {
1053 /* For st{p,r}ncpy the size of the source sequence
1054 depends on the offset into it. */
1055 if (js)
1056 break;
1057 js = !jo;
1058 }
1059
1060 const offset_int b[2] = {
1061 acs.srcoff[jo], acs.srcoff[jo] + acs.srcsiz[js]
1062 };
1063
1064 offset_int off;
1065 offset_int sz = overlap_size (a, b, &off);
1066 if (sz < siz[0])
1067 siz[0] = sz;
1068
1069 if (siz[1] <= sz)
1070 siz[1] = sz;
1071
1072 if (sz != 0)
1073 {
1074 if (wi::lts_p (off, ovloff[0]))
1075 ovloff[0] = off.to_shwi ();
1076 if (wi::lts_p (ovloff[1], off))
1077 ovloff[1] = off.to_shwi ();
1078 }
1079 }
1080 }
1081 }
1082
1083 ovlsiz[0] = siz[0].to_shwi ();
1084 ovlsiz[1] = siz[1].to_shwi ();
1085
1086 if (ovlsiz[0] == 0 && ovlsiz[1] > 1)
1087 ovloff[0] = ovloff[1] + ovlsiz[1] - 1 - sub1;
1088
1089 return true;
1090 }
1091
1092 /* Return true if the strcat-like access overlaps. */
1093
1094 bool
1095 builtin_access::strcat_overlap ()
1096 {
1097 builtin_access &acs = *this;
1098 const builtin_memref *dstref = acs.dstref;
1099 const builtin_memref *srcref = acs.srcref;
1100
1101 gcc_assert (dstref->base == srcref->base);
1102
1103 const offset_int maxobjsize = acs.dstref->maxobjsize;
1104
1105 gcc_assert (dstref->base && dstref->base == srcref->base);
1106
1107 /* Adjust for strcat-like accesses. */
1108
1109 /* As a special case for strcat, set the DSTREF offsets to the length
1110 of the source string since the function starts writing at the first
1111 nul, and set the size to 1 for the length of the nul. */
1112 acs.dstoff[0] += acs.dstsiz[0];
1113 acs.dstoff[1] += acs.dstsiz[1];
1114
1115 bool strfunc_unknown_args = acs.dstsiz[0] == 0 && acs.dstsiz[1] != 0;
1116
1117 /* The lower bound is zero when the size is unknown because then
1118 overlap is not certain. */
1119 acs.dstsiz[0] = strfunc_unknown_args ? 0 : 1;
1120 acs.dstsiz[1] = 1;
1121
1122 offset_int maxsize = dstref->basesize < 0 ? maxobjsize : dstref->basesize;
1123 gcc_assert (maxsize <= maxobjsize);
1124
1125 /* For references to the same base object, determine if there's a pair
1126 of valid offsets into the two references such that access between
1127 them doesn't overlap. Adjust both upper bounds to be valid for
1128 the smaller size (i.e., at most MAXSIZE - SIZE). */
1129
1130 if (maxsize < acs.dstoff[1] + acs.dstsiz[0])
1131 acs.dstoff[1] = maxsize - acs.dstsiz[0];
1132
1133 if (maxsize < acs.srcoff[1] + acs.srcsiz[0])
1134 acs.srcoff[1] = maxsize - acs.srcsiz[0];
1135
1136 /* Check to see if there's enough space for both accesses without
1137 overlap. Determine the optimistic (maximum) amount of available
1138 space. */
1139 offset_int space;
1140 if (acs.dstoff[0] <= acs.srcoff[0])
1141 {
1142 if (acs.dstoff[1] < acs.srcoff[1])
1143 space = acs.srcoff[1] + acs.srcsiz[0] - acs.dstoff[0];
1144 else
1145 space = acs.dstoff[1] + acs.dstsiz[0] - acs.srcoff[0];
1146 }
1147 else
1148 space = acs.dstoff[1] + acs.dstsiz[0] - acs.srcoff[0];
1149
1150 /* Overlap is certain if the distance between the farthest offsets
1151 of the opposite accesses is less than the sum of the lower bounds
1152 of the sizes of the two accesses. */
1153 bool overlap_certain = space < acs.dstsiz[0] + acs.srcsiz[0];
1154
1155 /* For a constant-offset, constant size access, consider the largest
1156 distance between the offset bounds and the lower bound of the access
1157 size. If the overlap isn't certain return success. */
1158 if (!overlap_certain
1159 && acs.dstoff[0] == acs.dstoff[1]
1160 && acs.srcoff[0] == acs.srcoff[1]
1161 && acs.dstsiz[0] == acs.dstsiz[1]
1162 && acs.srcsiz[0] == acs.srcsiz[1])
1163 return false;
1164
1165 /* Overlap is not certain but may be possible. */
1166
1167 offset_int access_min = acs.dstsiz[0] + acs.srcsiz[0];
1168
1169 /* Determine the conservative (minimum) amount of space. */
1170 space = wi::abs (acs.dstoff[0] - acs.srcoff[0]);
1171 offset_int d = wi::abs (acs.dstoff[0] - acs.srcoff[1]);
1172 if (d < space)
1173 space = d;
1174 d = wi::abs (acs.dstoff[1] - acs.srcoff[0]);
1175 if (d < space)
1176 space = d;
1177
1178 /* For a strict test (used for strcpy and similar with unknown or
1179 variable bounds or sizes), consider the smallest distance between
1180 the offset bounds and either the upper bound of the access size
1181 if known, or the lower bound otherwise. */
1182 if (access_min <= space && (access_min != 0 || !strfunc_unknown_args))
1183 return false;
1184
1185 /* When strcat overlap is certain it is always a single byte:
1186 the terminating NUL, regardless of offsets and sizes. When
1187 overlap is only possible its range is [0, 1]. */
1188 acs.ovlsiz[0] = dstref->sizrange[0] == dstref->sizrange[1] ? 1 : 0;
1189 acs.ovlsiz[1] = 1;
1190
1191 offset_int endoff = dstref->offrange[0] + dstref->sizrange[0];
1192 if (endoff <= srcref->offrange[0])
1193 acs.ovloff[0] = wi::smin (maxobjsize, srcref->offrange[0]).to_shwi ();
1194 else
1195 acs.ovloff[0] = wi::smin (maxobjsize, endoff).to_shwi ();
1196
1197 acs.sizrange[0] = wi::smax (wi::abs (endoff - srcref->offrange[0]) + 1,
1198 srcref->sizrange[0]).to_shwi ();
1199 if (dstref->offrange[0] == dstref->offrange[1])
1200 {
1201 if (srcref->offrange[0] == srcref->offrange[1])
1202 acs.ovloff[1] = acs.ovloff[0];
1203 else
1204 acs.ovloff[1]
1205 = wi::smin (maxobjsize,
1206 srcref->offrange[1] + srcref->sizrange[1]).to_shwi ();
1207 }
1208 else
1209 acs.ovloff[1]
1210 = wi::smin (maxobjsize,
1211 dstref->offrange[1] + dstref->sizrange[1]).to_shwi ();
1212
1213 if (acs.sizrange[0] == 0)
1214 acs.sizrange[0] = 1;
1215 acs.sizrange[1] = wi::smax (acs.dstsiz[1], srcref->sizrange[1]).to_shwi ();
1216 return true;
1217 }
1218
1219 /* Return true if the strcpy-like access overlaps. */
1220
1221 bool
1222 builtin_access::strcpy_overlap ()
1223 {
1224 return generic_overlap ();
1225 }
1226
1227
1228 /* Return true if DSTREF and SRCREF describe accesses that either overlap
1229 one another or that, in order not to overlap, would imply that the size
1230 of the referenced object(s) exceeds the maximum size of an object. Set
1231 Otherwise, if DSTREF and SRCREF do not definitely overlap (even though
1232 they may overlap in a way that's not apparent from the available data),
1233 return false. */
1234
1235 bool
1236 builtin_access::overlap ()
1237 {
1238 builtin_access &acs = *this;
1239
1240 const offset_int maxobjsize = dstref->maxobjsize;
1241
1242 acs.sizrange[0] = wi::smax (dstref->sizrange[0],
1243 srcref->sizrange[0]).to_shwi ();
1244 acs.sizrange[1] = wi::smax (dstref->sizrange[1],
1245 srcref->sizrange[1]).to_shwi ();
1246
1247 /* Check to see if the two references refer to regions that are
1248 too large not to overlap in the address space (whose maximum
1249 size is PTRDIFF_MAX). */
1250 offset_int size = dstref->sizrange[0] + srcref->sizrange[0];
1251 if (maxobjsize < size)
1252 {
1253 acs.ovloff[0] = (maxobjsize - dstref->sizrange[0]).to_shwi ();
1254 acs.ovlsiz[0] = (size - maxobjsize).to_shwi ();
1255 return true;
1256 }
1257
1258 /* If both base objects aren't known return the maximum possible
1259 offset that would make them not overlap. */
1260 if (!dstref->base || !srcref->base)
1261 return false;
1262
1263 /* Set the access offsets. */
1264 acs.dstoff[0] = dstref->offrange[0];
1265 acs.dstoff[1] = dstref->offrange[1];
1266
1267 /* If the base object is an array adjust the bounds of the offset
1268 to be non-negative and within the bounds of the array if possible. */
1269 if (dstref->base
1270 && TREE_CODE (TREE_TYPE (dstref->base)) == ARRAY_TYPE)
1271 {
1272 if (acs.dstoff[0] < 0 && acs.dstoff[1] >= 0)
1273 acs.dstoff[0] = 0;
1274
1275 if (acs.dstoff[1] < acs.dstoff[0])
1276 {
1277 if (tree size = TYPE_SIZE_UNIT (TREE_TYPE (dstref->base)))
1278 acs.dstoff[1] = wi::umin (acs.dstoff[1], wi::to_offset (size));
1279 else
1280 acs.dstoff[1] = wi::umin (acs.dstoff[1], maxobjsize);
1281 }
1282 }
1283
1284 acs.srcoff[0] = srcref->offrange[0];
1285 acs.srcoff[1] = srcref->offrange[1];
1286
1287 if (srcref->base
1288 && TREE_CODE (TREE_TYPE (srcref->base)) == ARRAY_TYPE)
1289 {
1290 if (acs.srcoff[0] < 0 && acs.srcoff[1] >= 0)
1291 acs.srcoff[0] = 0;
1292
1293 if (tree size = TYPE_SIZE_UNIT (TREE_TYPE (srcref->base)))
1294 acs.srcoff[1] = wi::umin (acs.srcoff[1], wi::to_offset (size));
1295 else if (acs.srcoff[1] < acs.srcoff[0])
1296 acs.srcoff[1] = wi::umin (acs.srcoff[1], maxobjsize);
1297 }
1298
1299 /* When the upper bound of the offset is less than the lower bound
1300 the former is the result of a negative offset being represented
1301 as a large positive value or vice versa. The resulting range is
1302 a union of two subranges: [MIN, UB] and [LB, MAX]. Since such
1303 a union is not representable using the current data structure
1304 replace it with the full range of offsets. */
1305 if (acs.dstoff[1] < acs.dstoff[0])
1306 {
1307 acs.dstoff[0] = -maxobjsize - 1;
1308 acs.dstoff[1] = maxobjsize;
1309 }
1310
1311 /* Validate the offset and size of each reference on its own first.
1312 This is independent of whether or not the base objects are the
1313 same. Normally, this would have already been detected and
1314 diagnosed by -Warray-bounds, unless it has been disabled. */
1315 offset_int maxoff = acs.dstoff[0] + dstref->sizrange[0];
1316 if (maxobjsize < maxoff)
1317 {
1318 acs.ovlsiz[0] = (maxoff - maxobjsize).to_shwi ();
1319 acs.ovloff[0] = acs.dstoff[0].to_shwi () - acs.ovlsiz[0];
1320 return true;
1321 }
1322
1323 /* Repeat the same as above but for the source offsets. */
1324 if (acs.srcoff[1] < acs.srcoff[0])
1325 {
1326 acs.srcoff[0] = -maxobjsize - 1;
1327 acs.srcoff[1] = maxobjsize;
1328 }
1329
1330 maxoff = acs.srcoff[0] + srcref->sizrange[0];
1331 if (maxobjsize < maxoff)
1332 {
1333 acs.ovlsiz[0] = (maxoff - maxobjsize).to_shwi ();
1334 acs.ovlsiz[1] = (acs.srcoff[0] + srcref->sizrange[1]
1335 - maxobjsize).to_shwi ();
1336 acs.ovloff[0] = acs.srcoff[0].to_shwi () - acs.ovlsiz[0];
1337 return true;
1338 }
1339
1340 if (dstref->base != srcref->base)
1341 return false;
1342
1343 acs.dstsiz[0] = dstref->sizrange[0];
1344 acs.dstsiz[1] = dstref->sizrange[1];
1345
1346 acs.srcsiz[0] = srcref->sizrange[0];
1347 acs.srcsiz[1] = srcref->sizrange[1];
1348
1349 /* Call the appropriate function to determine the overlap. */
1350 if ((this->*detect_overlap) ())
1351 {
1352 if (!sizrange[1])
1353 {
1354 /* Unless the access size range has already been set, do so here. */
1355 sizrange[0] = wi::smax (acs.dstsiz[0], srcref->sizrange[0]).to_shwi ();
1356 sizrange[1] = wi::smax (acs.dstsiz[1], srcref->sizrange[1]).to_shwi ();
1357 }
1358 return true;
1359 }
1360
1361 return false;
1362 }
1363
1364 /* Attempt to detect and diagnose an overlapping copy in a call expression
1365 EXPR involving an an access ACS to a built-in memory or string function.
1366 Return true when one has been detected, false otherwise. */
1367
1368 static bool
1369 maybe_diag_overlap (location_t loc, gimple *call, builtin_access &acs)
1370 {
1371 if (!acs.overlap ())
1372 return false;
1373
1374 if (gimple_no_warning_p (call))
1375 return true;
1376
1377 /* For convenience. */
1378 const builtin_memref &dstref = *acs.dstref;
1379 const builtin_memref &srcref = *acs.srcref;
1380
1381 /* Determine the range of offsets and sizes of the overlap if it
1382 exists and issue diagnostics. */
1383 HOST_WIDE_INT *ovloff = acs.ovloff;
1384 HOST_WIDE_INT *ovlsiz = acs.ovlsiz;
1385 HOST_WIDE_INT *sizrange = acs.sizrange;
1386
1387 tree func = gimple_call_fndecl (call);
1388
1389 /* To avoid a combinatorial explosion of diagnostics format the offsets
1390 or their ranges as strings and use them in the warning calls below. */
1391 char offstr[3][64];
1392
1393 if (dstref.offrange[0] == dstref.offrange[1]
1394 || dstref.offrange[1] > HOST_WIDE_INT_MAX)
1395 sprintf (offstr[0], HOST_WIDE_INT_PRINT_DEC,
1396 dstref.offrange[0].to_shwi ());
1397 else
1398 sprintf (offstr[0],
1399 "[" HOST_WIDE_INT_PRINT_DEC ", " HOST_WIDE_INT_PRINT_DEC "]",
1400 dstref.offrange[0].to_shwi (),
1401 dstref.offrange[1].to_shwi ());
1402
1403 if (srcref.offrange[0] == srcref.offrange[1]
1404 || srcref.offrange[1] > HOST_WIDE_INT_MAX)
1405 sprintf (offstr[1],
1406 HOST_WIDE_INT_PRINT_DEC,
1407 srcref.offrange[0].to_shwi ());
1408 else
1409 sprintf (offstr[1],
1410 "[" HOST_WIDE_INT_PRINT_DEC ", " HOST_WIDE_INT_PRINT_DEC "]",
1411 srcref.offrange[0].to_shwi (),
1412 srcref.offrange[1].to_shwi ());
1413
1414 if (ovloff[0] == ovloff[1] || !ovloff[1])
1415 sprintf (offstr[2], HOST_WIDE_INT_PRINT_DEC, ovloff[0]);
1416 else
1417 sprintf (offstr[2],
1418 "[" HOST_WIDE_INT_PRINT_DEC ", " HOST_WIDE_INT_PRINT_DEC "]",
1419 ovloff[0], ovloff[1]);
1420
1421 const offset_int maxobjsize = dstref.maxobjsize;
1422 bool must_overlap = ovlsiz[0] > 0;
1423
1424 if (ovlsiz[1] == 0)
1425 ovlsiz[1] = ovlsiz[0];
1426
1427 if (must_overlap)
1428 {
1429 /* Issue definitive "overlaps" diagnostic in this block. */
1430
1431 if (sizrange[0] == sizrange[1])
1432 {
1433 if (ovlsiz[0] == ovlsiz[1])
1434 warning_at (loc, OPT_Wrestrict,
1435 sizrange[0] == 1
1436 ? (ovlsiz[0] == 1
1437 ? G_("%G%qD accessing %wu byte at offsets %s "
1438 "and %s overlaps %wu byte at offset %s")
1439 : G_("%G%qD accessing %wu byte at offsets %s "
1440 "and %s overlaps %wu bytes at offset "
1441 "%s"))
1442 : (ovlsiz[0] == 1
1443 ? G_("%G%qD accessing %wu bytes at offsets %s "
1444 "and %s overlaps %wu byte at offset %s")
1445 : G_("%G%qD accessing %wu bytes at offsets %s "
1446 "and %s overlaps %wu bytes at offset "
1447 "%s")),
1448 call, func, sizrange[0],
1449 offstr[0], offstr[1], ovlsiz[0], offstr[2]);
1450 else if (ovlsiz[1] >= 0 && ovlsiz[1] < maxobjsize.to_shwi ())
1451 warning_n (loc, OPT_Wrestrict, sizrange[0],
1452 "%G%qD accessing %wu byte at offsets %s "
1453 "and %s overlaps between %wu and %wu bytes "
1454 "at offset %s",
1455 "%G%qD accessing %wu bytes at offsets %s "
1456 "and %s overlaps between %wu and %wu bytes "
1457 "at offset %s",
1458 call, func, sizrange[0], offstr[0], offstr[1],
1459 ovlsiz[0], ovlsiz[1], offstr[2]);
1460 else
1461 warning_n (loc, OPT_Wrestrict, sizrange[0],
1462 "%G%qD accessing %wu byte at offsets %s and "
1463 "%s overlaps %wu or more bytes at offset %s",
1464 "%G%qD accessing %wu bytes at offsets %s and "
1465 "%s overlaps %wu or more bytes at offset %s",
1466 call, func, sizrange[0],
1467 offstr[0], offstr[1], ovlsiz[0], offstr[2]);
1468 return true;
1469 }
1470
1471 if (sizrange[1] >= 0 && sizrange[1] < maxobjsize.to_shwi ())
1472 {
1473 if (ovlsiz[0] == ovlsiz[1])
1474 warning_n (loc, OPT_Wrestrict, ovlsiz[0],
1475 "%G%qD accessing between %wu and %wu bytes "
1476 "at offsets %s and %s overlaps %wu byte at "
1477 "offset %s",
1478 "%G%qD accessing between %wu and %wu bytes "
1479 "at offsets %s and %s overlaps %wu bytes "
1480 "at offset %s",
1481 call, func, sizrange[0], sizrange[1],
1482 offstr[0], offstr[1], ovlsiz[0], offstr[2]);
1483 else if (ovlsiz[1] >= 0 && ovlsiz[1] < maxobjsize.to_shwi ())
1484 warning_at (loc, OPT_Wrestrict,
1485 "%G%qD accessing between %wu and %wu bytes at "
1486 "offsets %s and %s overlaps between %wu and %wu "
1487 "bytes at offset %s",
1488 call, func, sizrange[0], sizrange[1],
1489 offstr[0], offstr[1], ovlsiz[0], ovlsiz[1],
1490 offstr[2]);
1491 else
1492 warning_at (loc, OPT_Wrestrict,
1493 "%G%qD accessing between %wu and %wu bytes at "
1494 "offsets %s and %s overlaps %wu or more bytes "
1495 "at offset %s",
1496 call, func, sizrange[0], sizrange[1],
1497 offstr[0], offstr[1], ovlsiz[0], offstr[2]);
1498 return true;
1499 }
1500
1501 if (ovlsiz[0] != ovlsiz[1])
1502 ovlsiz[1] = maxobjsize.to_shwi ();
1503
1504 if (ovlsiz[0] == ovlsiz[1])
1505 warning_n (loc, OPT_Wrestrict, ovlsiz[0],
1506 "%G%qD accessing %wu or more bytes at offsets "
1507 "%s and %s overlaps %wu byte at offset %s",
1508 "%G%qD accessing %wu or more bytes at offsets "
1509 "%s and %s overlaps %wu bytes at offset %s",
1510 call, func, sizrange[0], offstr[0], offstr[1],
1511 ovlsiz[0], offstr[2]);
1512 else if (ovlsiz[1] >= 0 && ovlsiz[1] < maxobjsize.to_shwi ())
1513 warning_at (loc, OPT_Wrestrict,
1514 "%G%qD accessing %wu or more bytes at offsets %s "
1515 "and %s overlaps between %wu and %wu bytes "
1516 "at offset %s",
1517 call, func, sizrange[0], offstr[0], offstr[1],
1518 ovlsiz[0], ovlsiz[1], offstr[2]);
1519 else
1520 warning_at (loc, OPT_Wrestrict,
1521 "%G%qD accessing %wu or more bytes at offsets %s "
1522 "and %s overlaps %wu or more bytes at offset %s",
1523 call, func, sizrange[0], offstr[0], offstr[1],
1524 ovlsiz[0], offstr[2]);
1525 return true;
1526 }
1527
1528 /* Use more concise wording when one of the offsets is unbounded
1529 to avoid confusing the user with large and mostly meaningless
1530 numbers. */
1531 bool open_range;
1532 if (DECL_P (dstref.base) && TREE_CODE (TREE_TYPE (dstref.base)) == ARRAY_TYPE)
1533 open_range = ((dstref.offrange[0] == 0
1534 && dstref.offrange[1] == maxobjsize)
1535 || (srcref.offrange[0] == 0
1536 && srcref.offrange[1] == maxobjsize));
1537 else
1538 open_range = ((dstref.offrange[0] == -maxobjsize - 1
1539 && dstref.offrange[1] == maxobjsize)
1540 || (srcref.offrange[0] == -maxobjsize - 1
1541 && srcref.offrange[1] == maxobjsize));
1542
1543 if (sizrange[0] == sizrange[1] || sizrange[1] == 1)
1544 {
1545 if (ovlsiz[1] == 1)
1546 {
1547 if (open_range)
1548 warning_n (loc, OPT_Wrestrict, sizrange[1],
1549 "%G%qD accessing %wu byte may overlap "
1550 "%wu byte",
1551 "%G%qD accessing %wu bytes may overlap "
1552 "%wu byte",
1553 call, func, sizrange[1], ovlsiz[1]);
1554 else
1555 warning_n (loc, OPT_Wrestrict, sizrange[1],
1556 "%G%qD accessing %wu byte at offsets %s "
1557 "and %s may overlap %wu byte at offset %s",
1558 "%G%qD accessing %wu bytes at offsets %s "
1559 "and %s may overlap %wu byte at offset %s",
1560 call, func, sizrange[1], offstr[0], offstr[1],
1561 ovlsiz[1], offstr[2]);
1562 return true;
1563 }
1564
1565 if (open_range)
1566 warning_n (loc, OPT_Wrestrict, sizrange[1],
1567 "%G%qD accessing %wu byte may overlap "
1568 "up to %wu bytes",
1569 "%G%qD accessing %wu bytes may overlap "
1570 "up to %wu bytes",
1571 call, func, sizrange[1], ovlsiz[1]);
1572 else
1573 warning_n (loc, OPT_Wrestrict, sizrange[1],
1574 "%G%qD accessing %wu byte at offsets %s and "
1575 "%s may overlap up to %wu bytes at offset %s",
1576 "%G%qD accessing %wu bytes at offsets %s and "
1577 "%s may overlap up to %wu bytes at offset %s",
1578 call, func, sizrange[1], offstr[0], offstr[1],
1579 ovlsiz[1], offstr[2]);
1580 return true;
1581 }
1582
1583 if (sizrange[1] >= 0 && sizrange[1] < maxobjsize.to_shwi ())
1584 {
1585 if (open_range)
1586 warning_n (loc, OPT_Wrestrict, ovlsiz[1],
1587 "%G%qD accessing between %wu and %wu bytes "
1588 "may overlap %wu byte",
1589 "%G%qD accessing between %wu and %wu bytes "
1590 "may overlap up to %wu bytes",
1591 call, func, sizrange[0], sizrange[1], ovlsiz[1]);
1592 else
1593 warning_n (loc, OPT_Wrestrict, ovlsiz[1],
1594 "%G%qD accessing between %wu and %wu bytes "
1595 "at offsets %s and %s may overlap %wu byte "
1596 "at offset %s",
1597 "%G%qD accessing between %wu and %wu bytes "
1598 "at offsets %s and %s may overlap up to %wu "
1599 "bytes at offset %s",
1600 call, func, sizrange[0], sizrange[1],
1601 offstr[0], offstr[1], ovlsiz[1], offstr[2]);
1602 return true;
1603 }
1604
1605 warning_n (loc, OPT_Wrestrict, ovlsiz[1],
1606 "%G%qD accessing %wu or more bytes at offsets %s "
1607 "and %s may overlap %wu byte at offset %s",
1608 "%G%qD accessing %wu or more bytes at offsets %s "
1609 "and %s may overlap up to %wu bytes at offset %s",
1610 call, func, sizrange[0], offstr[0], offstr[1],
1611 ovlsiz[1], offstr[2]);
1612
1613 return true;
1614 }
1615
1616 /* Validate REF size and offsets in an expression passed as an argument
1617 to a CALL to a built-in function FUNC to make sure they are within
1618 the bounds of the referenced object if its size is known, or
1619 PTRDIFF_MAX otherwise. DO_WARN is true when a diagnostic should
1620 be issued, false otherwise.
1621 Both initial values of the offsets and their final value computed
1622 by the function by incrementing the initial value by the size are
1623 validated. Return true if the offsets are not valid and a diagnostic
1624 has been issued, or would have been issued if DO_WARN had been true. */
1625
1626 static bool
1627 maybe_diag_access_bounds (location_t loc, gimple *call, tree func, int strict,
1628 const builtin_memref &ref, bool do_warn)
1629 {
1630 const offset_int maxobjsize = ref.maxobjsize;
1631
1632 /* Check for excessive size first and regardless of warning options
1633 since the result is used to make codegen decisions. */
1634 if (ref.sizrange[0] > maxobjsize)
1635 {
1636 /* Return true without issuing a warning. */
1637 if (!do_warn)
1638 return true;
1639
1640 if (ref.ref && TREE_NO_WARNING (ref.ref))
1641 return false;
1642
1643 if (warn_stringop_overflow)
1644 {
1645 if (EXPR_HAS_LOCATION (ref.ptr))
1646 loc = EXPR_LOCATION (ref.ptr);
1647
1648 loc = expansion_point_location_if_in_system_header (loc);
1649
1650 if (ref.sizrange[0] == ref.sizrange[1])
1651 return warning_at (loc, OPT_Wstringop_overflow_,
1652 "%G%qD specified bound %wu "
1653 "exceeds maximum object size %wu",
1654 call, func, ref.sizrange[0].to_uhwi (),
1655 maxobjsize.to_uhwi ());
1656
1657 return warning_at (loc, OPT_Wstringop_overflow_,
1658 "%G%qD specified bound between %wu and %wu "
1659 "exceeds maximum object size %wu",
1660 call, func, ref.sizrange[0].to_uhwi (),
1661 ref.sizrange[1].to_uhwi (),
1662 maxobjsize.to_uhwi ());
1663 }
1664 }
1665
1666 /* Check for out-bounds pointers regardless of warning options since
1667 the result is used to make codegen decisions. */
1668 offset_int ooboff[] = { ref.offrange[0], ref.offrange[1] };
1669 tree oobref = ref.offset_out_of_bounds (strict, ooboff);
1670 if (!oobref)
1671 return false;
1672
1673 /* Return true without issuing a warning. */
1674 if (!do_warn)
1675 return true;
1676
1677 if (!warn_array_bounds)
1678 return false;
1679
1680 if (ref.ref && TREE_NO_WARNING (ref.ref))
1681 return false;
1682
1683 if (EXPR_HAS_LOCATION (ref.ptr))
1684 loc = EXPR_LOCATION (ref.ptr);
1685
1686 loc = expansion_point_location_if_in_system_header (loc);
1687
1688 char rangestr[2][64];
1689 if (ooboff[0] == ooboff[1]
1690 || (ooboff[0] != ref.offrange[0]
1691 && ooboff[0].to_shwi () >= ooboff[1].to_shwi ()))
1692 sprintf (rangestr[0], "%lli", (long long) ooboff[0].to_shwi ());
1693 else
1694 sprintf (rangestr[0], "[%lli, %lli]",
1695 (long long) ooboff[0].to_shwi (),
1696 (long long) ooboff[1].to_shwi ());
1697
1698 bool warned = false;
1699
1700 if (oobref == error_mark_node)
1701 {
1702 if (ref.sizrange[0] == ref.sizrange[1])
1703 sprintf (rangestr[1], "%llu",
1704 (unsigned long long) ref.sizrange[0].to_shwi ());
1705 else
1706 sprintf (rangestr[1], "[%lli, %lli]",
1707 (unsigned long long) ref.sizrange[0].to_uhwi (),
1708 (unsigned long long) ref.sizrange[1].to_uhwi ());
1709
1710 tree type;
1711
1712 if (DECL_P (ref.base)
1713 && TREE_CODE (type = TREE_TYPE (ref.base)) == ARRAY_TYPE)
1714 {
1715 auto_diagnostic_group d;
1716 if (warning_at (loc, OPT_Warray_bounds,
1717 "%G%qD pointer overflow between offset %s "
1718 "and size %s accessing array %qD with type %qT",
1719 call, func, rangestr[0], rangestr[1], ref.base, type))
1720 {
1721 inform (DECL_SOURCE_LOCATION (ref.base),
1722 "array %qD declared here", ref.base);
1723 warned = true;
1724 }
1725 else
1726 warned = warning_at (loc, OPT_Warray_bounds,
1727 "%G%qD pointer overflow between offset %s "
1728 "and size %s",
1729 call, func, rangestr[0], rangestr[1]);
1730 }
1731 else
1732 warned = warning_at (loc, OPT_Warray_bounds,
1733 "%G%qD pointer overflow between offset %s "
1734 "and size %s",
1735 call, func, rangestr[0], rangestr[1]);
1736 }
1737 else if (oobref == ref.base)
1738 {
1739 /* True when the offset formed by an access to the reference
1740 is out of bounds, rather than the initial offset wich is
1741 in bounds. This implies access past the end. */
1742 bool form = ooboff[0] != ref.offrange[0];
1743
1744 if (DECL_P (ref.base))
1745 {
1746 auto_diagnostic_group d;
1747 if ((ref.basesize < maxobjsize
1748 && warning_at (loc, OPT_Warray_bounds,
1749 form
1750 ? G_("%G%qD forming offset %s is out of "
1751 "the bounds [0, %wu] of object %qD with "
1752 "type %qT")
1753 : G_("%G%qD offset %s is out of the bounds "
1754 "[0, %wu] of object %qD with type %qT"),
1755 call, func, rangestr[0], ref.basesize.to_uhwi (),
1756 ref.base, TREE_TYPE (ref.base)))
1757 || warning_at (loc, OPT_Warray_bounds,
1758 form
1759 ? G_("%G%qD forming offset %s is out of "
1760 "the bounds of object %qD with type %qT")
1761 : G_("%G%qD offset %s is out of the bounds "
1762 "of object %qD with type %qT"),
1763 call, func, rangestr[0],
1764 ref.base, TREE_TYPE (ref.base)))
1765 {
1766 inform (DECL_SOURCE_LOCATION (ref.base),
1767 "%qD declared here", ref.base);
1768 warned = true;
1769 }
1770 }
1771 else if (ref.basesize < maxobjsize)
1772 warned = warning_at (loc, OPT_Warray_bounds,
1773 form
1774 ? G_("%G%qD forming offset %s is out "
1775 "of the bounds [0, %wu]")
1776 : G_("%G%qD offset %s is out "
1777 "of the bounds [0, %wu]"),
1778 call, func, rangestr[0], ref.basesize.to_uhwi ());
1779 else
1780 warned = warning_at (loc, OPT_Warray_bounds,
1781 form
1782 ? G_("%G%qD forming offset %s is out of bounds")
1783 : G_("%G%qD offset %s is out of bounds"),
1784 call, func, rangestr[0]);
1785 }
1786 else if (TREE_CODE (ref.ref) == MEM_REF)
1787 {
1788 tree type = TREE_TYPE (TREE_OPERAND (ref.ref, 0));
1789 if (POINTER_TYPE_P (type))
1790 type = TREE_TYPE (type);
1791 type = TYPE_MAIN_VARIANT (type);
1792
1793 warned = warning_at (loc, OPT_Warray_bounds,
1794 "%G%qD offset %s from the object at %qE is out "
1795 "of the bounds of %qT",
1796 call, func, rangestr[0], ref.base, type);
1797 }
1798 else
1799 {
1800 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ref.ref));
1801
1802 warned = warning_at (loc, OPT_Warray_bounds,
1803 "%G%qD offset %s from the object at %qE is out "
1804 "of the bounds of referenced subobject %qD with "
1805 "type %qT at offset %wu",
1806 call, func, rangestr[0], ref.base,
1807 TREE_OPERAND (ref.ref, 1), type,
1808 ref.refoff.to_uhwi ());
1809 }
1810
1811 return warned;
1812 }
1813
1814 /* Check a CALL statement for restrict-violations and issue warnings
1815 if/when appropriate. */
1816
1817 void
1818 wrestrict_dom_walker::check_call (gimple *call)
1819 {
1820 /* Avoid checking the call if it has already been diagnosed for
1821 some reason. */
1822 if (gimple_no_warning_p (call))
1823 return;
1824
1825 tree func = gimple_call_fndecl (call);
1826 if (!func || !fndecl_built_in_p (func, BUILT_IN_NORMAL))
1827 return;
1828
1829 /* Argument number to extract from the call (depends on the built-in
1830 and its kind). */
1831 unsigned dst_idx = -1;
1832 unsigned src_idx = -1;
1833 unsigned bnd_idx = -1;
1834
1835 /* Is this CALL to a string function (as opposed to one to a raw
1836 memory function). */
1837 bool strfun = true;
1838
1839 switch (DECL_FUNCTION_CODE (func))
1840 {
1841 case BUILT_IN_MEMCPY:
1842 case BUILT_IN_MEMCPY_CHK:
1843 case BUILT_IN_MEMPCPY:
1844 case BUILT_IN_MEMPCPY_CHK:
1845 case BUILT_IN_MEMMOVE:
1846 case BUILT_IN_MEMMOVE_CHK:
1847 strfun = false;
1848 /* Fall through. */
1849
1850 case BUILT_IN_STPNCPY:
1851 case BUILT_IN_STPNCPY_CHK:
1852 case BUILT_IN_STRNCAT:
1853 case BUILT_IN_STRNCAT_CHK:
1854 case BUILT_IN_STRNCPY:
1855 case BUILT_IN_STRNCPY_CHK:
1856 dst_idx = 0;
1857 src_idx = 1;
1858 bnd_idx = 2;
1859 break;
1860
1861 case BUILT_IN_MEMSET:
1862 case BUILT_IN_MEMSET_CHK:
1863 dst_idx = 0;
1864 bnd_idx = 2;
1865 break;
1866
1867 case BUILT_IN_STPCPY:
1868 case BUILT_IN_STPCPY_CHK:
1869 case BUILT_IN_STRCPY:
1870 case BUILT_IN_STRCPY_CHK:
1871 case BUILT_IN_STRCAT:
1872 case BUILT_IN_STRCAT_CHK:
1873 dst_idx = 0;
1874 src_idx = 1;
1875 break;
1876
1877 default:
1878 /* Handle other string functions here whose access may need
1879 to be validated for in-bounds offsets and non-overlapping
1880 copies. */
1881 return;
1882 }
1883
1884 unsigned nargs = gimple_call_num_args (call);
1885
1886 tree dst = dst_idx < nargs ? gimple_call_arg (call, dst_idx) : NULL_TREE;
1887 tree src = src_idx < nargs ? gimple_call_arg (call, src_idx) : NULL_TREE;
1888 tree dstwr = bnd_idx < nargs ? gimple_call_arg (call, bnd_idx) : NULL_TREE;
1889
1890 /* For string functions with an unspecified or unknown bound,
1891 assume the size of the access is one. */
1892 if (!dstwr && strfun)
1893 dstwr = size_one_node;
1894
1895 /* DST and SRC can be null for a call with an insufficient number
1896 of arguments to a built-in function declared without a protype. */
1897 if (!dst || (src_idx < nargs && !src))
1898 return;
1899
1900 /* DST, SRC, or DSTWR can also have the wrong type in a call to
1901 a function declared without a prototype. Avoid checking such
1902 invalid calls. */
1903 if (TREE_CODE (TREE_TYPE (dst)) != POINTER_TYPE
1904 || (src && TREE_CODE (TREE_TYPE (src)) != POINTER_TYPE)
1905 || (dstwr && !INTEGRAL_TYPE_P (TREE_TYPE (dstwr))))
1906 return;
1907
1908 if (!check_bounds_or_overlap (call, dst, src, dstwr, NULL_TREE))
1909 return;
1910
1911 /* Avoid diagnosing the call again. */
1912 gimple_set_no_warning (call, true);
1913 }
1914
1915 } /* anonymous namespace */
1916
1917 /* Attempt to detect and diagnose invalid offset bounds and (except for
1918 memmove) overlapping copy in a call expression EXPR from SRC to DST
1919 and DSTSIZE and SRCSIZE bytes, respectively. Both DSTSIZE and
1920 SRCSIZE may be NULL. DO_WARN is false to detect either problem
1921 without issue a warning. Return the OPT_Wxxx constant corresponding
1922 to the warning if one has been detected and zero otherwise. */
1923
1924 int
1925 check_bounds_or_overlap (gimple *call, tree dst, tree src, tree dstsize,
1926 tree srcsize, bool bounds_only /* = false */,
1927 bool do_warn /* = true */)
1928 {
1929 location_t loc = gimple_nonartificial_location (call);
1930 loc = expansion_point_location_if_in_system_header (loc);
1931
1932 tree func = gimple_call_fndecl (call);
1933
1934 builtin_memref dstref (dst, dstsize);
1935 builtin_memref srcref (src, srcsize);
1936
1937 builtin_access acs (call, dstref, srcref);
1938
1939 /* Set STRICT to the value of the -Warray-bounds=N argument for
1940 string functions or when N > 1. */
1941 int strict = (acs.strict () || warn_array_bounds > 1 ? warn_array_bounds : 0);
1942
1943 /* Validate offsets first to make sure they are within the bounds
1944 of the destination object if its size is known, or PTRDIFF_MAX
1945 otherwise. */
1946 if (maybe_diag_access_bounds (loc, call, func, strict, dstref, do_warn)
1947 || maybe_diag_access_bounds (loc, call, func, strict, srcref, do_warn))
1948 {
1949 if (do_warn)
1950 gimple_set_no_warning (call, true);
1951 return OPT_Warray_bounds;
1952 }
1953
1954 if (!warn_restrict || bounds_only || !src)
1955 return 0;
1956
1957 if (!bounds_only)
1958 {
1959 switch (DECL_FUNCTION_CODE (func))
1960 {
1961 case BUILT_IN_MEMMOVE:
1962 case BUILT_IN_MEMMOVE_CHK:
1963 case BUILT_IN_MEMSET:
1964 case BUILT_IN_MEMSET_CHK:
1965 return 0;
1966 default:
1967 break;
1968 }
1969 }
1970
1971 if (operand_equal_p (dst, src, 0))
1972 {
1973 /* Issue -Wrestrict unless the pointers are null (those do
1974 not point to objects and so do not indicate an overlap;
1975 such calls could be the result of sanitization and jump
1976 threading). */
1977 if (!integer_zerop (dst) && !gimple_no_warning_p (call))
1978 {
1979 warning_at (loc, OPT_Wrestrict,
1980 "%G%qD source argument is the same as destination",
1981 call, func);
1982 gimple_set_no_warning (call, true);
1983 return OPT_Wrestrict;
1984 }
1985
1986 return 0;
1987 }
1988
1989 /* Return false when overlap has been detected. */
1990 if (maybe_diag_overlap (loc, call, acs))
1991 {
1992 gimple_set_no_warning (call, true);
1993 return OPT_Wrestrict;
1994 }
1995
1996 return 0;
1997 }
1998
1999 gimple_opt_pass *
2000 make_pass_warn_restrict (gcc::context *ctxt)
2001 {
2002 return new pass_wrestrict (ctxt);
2003 }