]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
4b91151873cb578233a1f6f51358384144389f83
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2018 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41 #include "builtins.h"
42 #include "selftest.h"
43 #include "gimple-pretty-print.h"
44 #include "stringpool.h"
45 #include "attribs.h"
46 #include "asan.h"
47
48
49 /* All the tuples have their operand vector (if present) at the very bottom
50 of the structure. Therefore, the offset required to find the
51 operands vector the size of the structure minus the size of the 1
52 element tree array at the end (see gimple_ops). */
53 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
54 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
55 EXPORTED_CONST size_t gimple_ops_offset_[] = {
56 #include "gsstruct.def"
57 };
58 #undef DEFGSSTRUCT
59
60 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
61 static const size_t gsstruct_code_size[] = {
62 #include "gsstruct.def"
63 };
64 #undef DEFGSSTRUCT
65
66 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
67 const char *const gimple_code_name[] = {
68 #include "gimple.def"
69 };
70 #undef DEFGSCODE
71
72 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
73 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
74 #include "gimple.def"
75 };
76 #undef DEFGSCODE
77
78 /* Gimple stats. */
79
80 uint64_t gimple_alloc_counts[(int) gimple_alloc_kind_all];
81 uint64_t gimple_alloc_sizes[(int) gimple_alloc_kind_all];
82
83 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
84 static const char * const gimple_alloc_kind_names[] = {
85 "assignments",
86 "phi nodes",
87 "conditionals",
88 "everything else"
89 };
90
91 /* Static gimple tuple members. */
92 const enum gimple_code gassign::code_;
93 const enum gimple_code gcall::code_;
94 const enum gimple_code gcond::code_;
95
96
97 /* Gimple tuple constructors.
98 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
99 be passed a NULL to start with an empty sequence. */
100
101 /* Set the code for statement G to CODE. */
102
103 static inline void
104 gimple_set_code (gimple *g, enum gimple_code code)
105 {
106 g->code = code;
107 }
108
109 /* Return the number of bytes needed to hold a GIMPLE statement with
110 code CODE. */
111
112 static inline size_t
113 gimple_size (enum gimple_code code)
114 {
115 return gsstruct_code_size[gss_for_code (code)];
116 }
117
118 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
119 operands. */
120
121 gimple *
122 gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
123 {
124 size_t size;
125 gimple *stmt;
126
127 size = gimple_size (code);
128 if (num_ops > 0)
129 size += sizeof (tree) * (num_ops - 1);
130
131 if (GATHER_STATISTICS)
132 {
133 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
134 gimple_alloc_counts[(int) kind]++;
135 gimple_alloc_sizes[(int) kind] += size;
136 }
137
138 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
139 gimple_set_code (stmt, code);
140 gimple_set_num_ops (stmt, num_ops);
141
142 /* Do not call gimple_set_modified here as it has other side
143 effects and this tuple is still not completely built. */
144 stmt->modified = 1;
145 gimple_init_singleton (stmt);
146
147 return stmt;
148 }
149
150 /* Set SUBCODE to be the code of the expression computed by statement G. */
151
152 static inline void
153 gimple_set_subcode (gimple *g, unsigned subcode)
154 {
155 /* We only have 16 bits for the RHS code. Assert that we are not
156 overflowing it. */
157 gcc_assert (subcode < (1 << 16));
158 g->subcode = subcode;
159 }
160
161
162
163 /* Build a tuple with operands. CODE is the statement to build (which
164 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
165 for the new tuple. NUM_OPS is the number of operands to allocate. */
166
167 #define gimple_build_with_ops(c, s, n) \
168 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
169
170 static gimple *
171 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
172 unsigned num_ops MEM_STAT_DECL)
173 {
174 gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
175 gimple_set_subcode (s, subcode);
176
177 return s;
178 }
179
180
181 /* Build a GIMPLE_RETURN statement returning RETVAL. */
182
183 greturn *
184 gimple_build_return (tree retval)
185 {
186 greturn *s
187 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
188 2));
189 if (retval)
190 gimple_return_set_retval (s, retval);
191 return s;
192 }
193
194 /* Reset alias information on call S. */
195
196 void
197 gimple_call_reset_alias_info (gcall *s)
198 {
199 if (gimple_call_flags (s) & ECF_CONST)
200 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
201 else
202 pt_solution_reset (gimple_call_use_set (s));
203 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
204 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
205 else
206 pt_solution_reset (gimple_call_clobber_set (s));
207 }
208
209 /* Helper for gimple_build_call, gimple_build_call_valist,
210 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
211 components of a GIMPLE_CALL statement to function FN with NARGS
212 arguments. */
213
214 static inline gcall *
215 gimple_build_call_1 (tree fn, unsigned nargs)
216 {
217 gcall *s
218 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
219 nargs + 3));
220 if (TREE_CODE (fn) == FUNCTION_DECL)
221 fn = build_fold_addr_expr (fn);
222 gimple_set_op (s, 1, fn);
223 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
224 gimple_call_reset_alias_info (s);
225 return s;
226 }
227
228
229 /* Build a GIMPLE_CALL statement to function FN with the arguments
230 specified in vector ARGS. */
231
232 gcall *
233 gimple_build_call_vec (tree fn, vec<tree> args)
234 {
235 unsigned i;
236 unsigned nargs = args.length ();
237 gcall *call = gimple_build_call_1 (fn, nargs);
238
239 for (i = 0; i < nargs; i++)
240 gimple_call_set_arg (call, i, args[i]);
241
242 return call;
243 }
244
245
246 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
247 arguments. The ... are the arguments. */
248
249 gcall *
250 gimple_build_call (tree fn, unsigned nargs, ...)
251 {
252 va_list ap;
253 gcall *call;
254 unsigned i;
255
256 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
257
258 call = gimple_build_call_1 (fn, nargs);
259
260 va_start (ap, nargs);
261 for (i = 0; i < nargs; i++)
262 gimple_call_set_arg (call, i, va_arg (ap, tree));
263 va_end (ap);
264
265 return call;
266 }
267
268
269 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
270 arguments. AP contains the arguments. */
271
272 gcall *
273 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
274 {
275 gcall *call;
276 unsigned i;
277
278 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
279
280 call = gimple_build_call_1 (fn, nargs);
281
282 for (i = 0; i < nargs; i++)
283 gimple_call_set_arg (call, i, va_arg (ap, tree));
284
285 return call;
286 }
287
288
289 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
290 Build the basic components of a GIMPLE_CALL statement to internal
291 function FN with NARGS arguments. */
292
293 static inline gcall *
294 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
295 {
296 gcall *s
297 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
298 nargs + 3));
299 s->subcode |= GF_CALL_INTERNAL;
300 gimple_call_set_internal_fn (s, fn);
301 gimple_call_reset_alias_info (s);
302 return s;
303 }
304
305
306 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
307 the number of arguments. The ... are the arguments. */
308
309 gcall *
310 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
311 {
312 va_list ap;
313 gcall *call;
314 unsigned i;
315
316 call = gimple_build_call_internal_1 (fn, nargs);
317 va_start (ap, nargs);
318 for (i = 0; i < nargs; i++)
319 gimple_call_set_arg (call, i, va_arg (ap, tree));
320 va_end (ap);
321
322 return call;
323 }
324
325
326 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
327 specified in vector ARGS. */
328
329 gcall *
330 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
331 {
332 unsigned i, nargs;
333 gcall *call;
334
335 nargs = args.length ();
336 call = gimple_build_call_internal_1 (fn, nargs);
337 for (i = 0; i < nargs; i++)
338 gimple_call_set_arg (call, i, args[i]);
339
340 return call;
341 }
342
343
344 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
345 assumed to be in GIMPLE form already. Minimal checking is done of
346 this fact. */
347
348 gcall *
349 gimple_build_call_from_tree (tree t, tree fnptrtype)
350 {
351 unsigned i, nargs;
352 gcall *call;
353
354 gcc_assert (TREE_CODE (t) == CALL_EXPR);
355
356 nargs = call_expr_nargs (t);
357
358 tree fndecl = NULL_TREE;
359 if (CALL_EXPR_FN (t) == NULL_TREE)
360 call = gimple_build_call_internal_1 (CALL_EXPR_IFN (t), nargs);
361 else
362 {
363 fndecl = get_callee_fndecl (t);
364 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
365 }
366
367 for (i = 0; i < nargs; i++)
368 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
369
370 gimple_set_block (call, TREE_BLOCK (t));
371 gimple_set_location (call, EXPR_LOCATION (t));
372
373 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
374 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
375 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
376 gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
377 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
378 if (fndecl
379 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
380 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
381 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
382 else
383 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
384 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
385 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
386 gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
387 gimple_set_no_warning (call, TREE_NO_WARNING (t));
388 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
389
390 if (fnptrtype)
391 {
392 gimple_call_set_fntype (call, TREE_TYPE (fnptrtype));
393
394 /* Check if it's an indirect CALL and the type has the
395 nocf_check attribute. In that case propagate the information
396 to the gimple CALL insn. */
397 if (!fndecl)
398 {
399 gcc_assert (POINTER_TYPE_P (fnptrtype));
400 tree fntype = TREE_TYPE (fnptrtype);
401
402 if (lookup_attribute ("nocf_check", TYPE_ATTRIBUTES (fntype)))
403 gimple_call_set_nocf_check (call, TRUE);
404 }
405 }
406
407 return call;
408 }
409
410
411 /* Build a GIMPLE_ASSIGN statement.
412
413 LHS of the assignment.
414 RHS of the assignment which can be unary or binary. */
415
416 gassign *
417 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
418 {
419 enum tree_code subcode;
420 tree op1, op2, op3;
421
422 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
423 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
424 }
425
426
427 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
428 OP1, OP2 and OP3. */
429
430 static inline gassign *
431 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
432 tree op2, tree op3 MEM_STAT_DECL)
433 {
434 unsigned num_ops;
435 gassign *p;
436
437 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
438 code). */
439 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
440
441 p = as_a <gassign *> (
442 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
443 PASS_MEM_STAT));
444 gimple_assign_set_lhs (p, lhs);
445 gimple_assign_set_rhs1 (p, op1);
446 if (op2)
447 {
448 gcc_assert (num_ops > 2);
449 gimple_assign_set_rhs2 (p, op2);
450 }
451
452 if (op3)
453 {
454 gcc_assert (num_ops > 3);
455 gimple_assign_set_rhs3 (p, op3);
456 }
457
458 return p;
459 }
460
461 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
462 OP1, OP2 and OP3. */
463
464 gassign *
465 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
466 tree op2, tree op3 MEM_STAT_DECL)
467 {
468 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
469 }
470
471 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
472 OP1 and OP2. */
473
474 gassign *
475 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
476 tree op2 MEM_STAT_DECL)
477 {
478 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
479 PASS_MEM_STAT);
480 }
481
482 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
483
484 gassign *
485 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
486 {
487 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
488 PASS_MEM_STAT);
489 }
490
491
492 /* Build a GIMPLE_COND statement.
493
494 PRED is the condition used to compare LHS and the RHS.
495 T_LABEL is the label to jump to if the condition is true.
496 F_LABEL is the label to jump to otherwise. */
497
498 gcond *
499 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
500 tree t_label, tree f_label)
501 {
502 gcond *p;
503
504 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
505 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
506 gimple_cond_set_lhs (p, lhs);
507 gimple_cond_set_rhs (p, rhs);
508 gimple_cond_set_true_label (p, t_label);
509 gimple_cond_set_false_label (p, f_label);
510 return p;
511 }
512
513 /* Build a GIMPLE_COND statement from the conditional expression tree
514 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
515
516 gcond *
517 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
518 {
519 enum tree_code code;
520 tree lhs, rhs;
521
522 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
523 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
524 }
525
526 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
527 boolean expression tree COND. */
528
529 void
530 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
531 {
532 enum tree_code code;
533 tree lhs, rhs;
534
535 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
536 gimple_cond_set_condition (stmt, code, lhs, rhs);
537 }
538
539 /* Build a GIMPLE_LABEL statement for LABEL. */
540
541 glabel *
542 gimple_build_label (tree label)
543 {
544 glabel *p
545 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
546 gimple_label_set_label (p, label);
547 return p;
548 }
549
550 /* Build a GIMPLE_GOTO statement to label DEST. */
551
552 ggoto *
553 gimple_build_goto (tree dest)
554 {
555 ggoto *p
556 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
557 gimple_goto_set_dest (p, dest);
558 return p;
559 }
560
561
562 /* Build a GIMPLE_NOP statement. */
563
564 gimple *
565 gimple_build_nop (void)
566 {
567 return gimple_alloc (GIMPLE_NOP, 0);
568 }
569
570
571 /* Build a GIMPLE_BIND statement.
572 VARS are the variables in BODY.
573 BLOCK is the containing block. */
574
575 gbind *
576 gimple_build_bind (tree vars, gimple_seq body, tree block)
577 {
578 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
579 gimple_bind_set_vars (p, vars);
580 if (body)
581 gimple_bind_set_body (p, body);
582 if (block)
583 gimple_bind_set_block (p, block);
584 return p;
585 }
586
587 /* Helper function to set the simple fields of a asm stmt.
588
589 STRING is a pointer to a string that is the asm blocks assembly code.
590 NINPUT is the number of register inputs.
591 NOUTPUT is the number of register outputs.
592 NCLOBBERS is the number of clobbered registers.
593 */
594
595 static inline gasm *
596 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
597 unsigned nclobbers, unsigned nlabels)
598 {
599 gasm *p;
600 int size = strlen (string);
601
602 /* ASMs with labels cannot have outputs. This should have been
603 enforced by the front end. */
604 gcc_assert (nlabels == 0 || noutputs == 0);
605
606 p = as_a <gasm *> (
607 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
608 ninputs + noutputs + nclobbers + nlabels));
609
610 p->ni = ninputs;
611 p->no = noutputs;
612 p->nc = nclobbers;
613 p->nl = nlabels;
614 p->string = ggc_alloc_string (string, size);
615
616 if (GATHER_STATISTICS)
617 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
618
619 return p;
620 }
621
622 /* Build a GIMPLE_ASM statement.
623
624 STRING is the assembly code.
625 NINPUT is the number of register inputs.
626 NOUTPUT is the number of register outputs.
627 NCLOBBERS is the number of clobbered registers.
628 INPUTS is a vector of the input register parameters.
629 OUTPUTS is a vector of the output register parameters.
630 CLOBBERS is a vector of the clobbered register parameters.
631 LABELS is a vector of destination labels. */
632
633 gasm *
634 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
635 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
636 vec<tree, va_gc> *labels)
637 {
638 gasm *p;
639 unsigned i;
640
641 p = gimple_build_asm_1 (string,
642 vec_safe_length (inputs),
643 vec_safe_length (outputs),
644 vec_safe_length (clobbers),
645 vec_safe_length (labels));
646
647 for (i = 0; i < vec_safe_length (inputs); i++)
648 gimple_asm_set_input_op (p, i, (*inputs)[i]);
649
650 for (i = 0; i < vec_safe_length (outputs); i++)
651 gimple_asm_set_output_op (p, i, (*outputs)[i]);
652
653 for (i = 0; i < vec_safe_length (clobbers); i++)
654 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
655
656 for (i = 0; i < vec_safe_length (labels); i++)
657 gimple_asm_set_label_op (p, i, (*labels)[i]);
658
659 return p;
660 }
661
662 /* Build a GIMPLE_CATCH statement.
663
664 TYPES are the catch types.
665 HANDLER is the exception handler. */
666
667 gcatch *
668 gimple_build_catch (tree types, gimple_seq handler)
669 {
670 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
671 gimple_catch_set_types (p, types);
672 if (handler)
673 gimple_catch_set_handler (p, handler);
674
675 return p;
676 }
677
678 /* Build a GIMPLE_EH_FILTER statement.
679
680 TYPES are the filter's types.
681 FAILURE is the filter's failure action. */
682
683 geh_filter *
684 gimple_build_eh_filter (tree types, gimple_seq failure)
685 {
686 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
687 gimple_eh_filter_set_types (p, types);
688 if (failure)
689 gimple_eh_filter_set_failure (p, failure);
690
691 return p;
692 }
693
694 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
695
696 geh_mnt *
697 gimple_build_eh_must_not_throw (tree decl)
698 {
699 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
700
701 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
702 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
703 gimple_eh_must_not_throw_set_fndecl (p, decl);
704
705 return p;
706 }
707
708 /* Build a GIMPLE_EH_ELSE statement. */
709
710 geh_else *
711 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
712 {
713 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
714 gimple_eh_else_set_n_body (p, n_body);
715 gimple_eh_else_set_e_body (p, e_body);
716 return p;
717 }
718
719 /* Build a GIMPLE_TRY statement.
720
721 EVAL is the expression to evaluate.
722 CLEANUP is the cleanup expression.
723 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
724 whether this is a try/catch or a try/finally respectively. */
725
726 gtry *
727 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
728 enum gimple_try_flags kind)
729 {
730 gtry *p;
731
732 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
733 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
734 gimple_set_subcode (p, kind);
735 if (eval)
736 gimple_try_set_eval (p, eval);
737 if (cleanup)
738 gimple_try_set_cleanup (p, cleanup);
739
740 return p;
741 }
742
743 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
744
745 CLEANUP is the cleanup expression. */
746
747 gimple *
748 gimple_build_wce (gimple_seq cleanup)
749 {
750 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
751 if (cleanup)
752 gimple_wce_set_cleanup (p, cleanup);
753
754 return p;
755 }
756
757
758 /* Build a GIMPLE_RESX statement. */
759
760 gresx *
761 gimple_build_resx (int region)
762 {
763 gresx *p
764 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
765 p->region = region;
766 return p;
767 }
768
769
770 /* The helper for constructing a gimple switch statement.
771 INDEX is the switch's index.
772 NLABELS is the number of labels in the switch excluding the default.
773 DEFAULT_LABEL is the default label for the switch statement. */
774
775 gswitch *
776 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
777 {
778 /* nlabels + 1 default label + 1 index. */
779 gcc_checking_assert (default_label);
780 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
781 ERROR_MARK,
782 1 + 1 + nlabels));
783 gimple_switch_set_index (p, index);
784 gimple_switch_set_default_label (p, default_label);
785 return p;
786 }
787
788 /* Build a GIMPLE_SWITCH statement.
789
790 INDEX is the switch's index.
791 DEFAULT_LABEL is the default label
792 ARGS is a vector of labels excluding the default. */
793
794 gswitch *
795 gimple_build_switch (tree index, tree default_label, vec<tree> args)
796 {
797 unsigned i, nlabels = args.length ();
798
799 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
800
801 /* Copy the labels from the vector to the switch statement. */
802 for (i = 0; i < nlabels; i++)
803 gimple_switch_set_label (p, i + 1, args[i]);
804
805 return p;
806 }
807
808 /* Build a GIMPLE_EH_DISPATCH statement. */
809
810 geh_dispatch *
811 gimple_build_eh_dispatch (int region)
812 {
813 geh_dispatch *p
814 = as_a <geh_dispatch *> (
815 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
816 p->region = region;
817 return p;
818 }
819
820 /* Build a new GIMPLE_DEBUG_BIND statement.
821
822 VAR is bound to VALUE; block and location are taken from STMT. */
823
824 gdebug *
825 gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
826 {
827 gdebug *p
828 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
829 (unsigned)GIMPLE_DEBUG_BIND, 2
830 PASS_MEM_STAT));
831 gimple_debug_bind_set_var (p, var);
832 gimple_debug_bind_set_value (p, value);
833 if (stmt)
834 gimple_set_location (p, gimple_location (stmt));
835
836 return p;
837 }
838
839
840 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
841
842 VAR is bound to VALUE; block and location are taken from STMT. */
843
844 gdebug *
845 gimple_build_debug_source_bind (tree var, tree value,
846 gimple *stmt MEM_STAT_DECL)
847 {
848 gdebug *p
849 = as_a <gdebug *> (
850 gimple_build_with_ops_stat (GIMPLE_DEBUG,
851 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
852 PASS_MEM_STAT));
853
854 gimple_debug_source_bind_set_var (p, var);
855 gimple_debug_source_bind_set_value (p, value);
856 if (stmt)
857 gimple_set_location (p, gimple_location (stmt));
858
859 return p;
860 }
861
862
863 /* Build a new GIMPLE_DEBUG_BEGIN_STMT statement in BLOCK at
864 LOCATION. */
865
866 gdebug *
867 gimple_build_debug_begin_stmt (tree block, location_t location
868 MEM_STAT_DECL)
869 {
870 gdebug *p
871 = as_a <gdebug *> (
872 gimple_build_with_ops_stat (GIMPLE_DEBUG,
873 (unsigned)GIMPLE_DEBUG_BEGIN_STMT, 0
874 PASS_MEM_STAT));
875
876 gimple_set_location (p, location);
877 gimple_set_block (p, block);
878 cfun->debug_marker_count++;
879
880 return p;
881 }
882
883
884 /* Build a new GIMPLE_DEBUG_INLINE_ENTRY statement in BLOCK at
885 LOCATION. The BLOCK links to the inlined function. */
886
887 gdebug *
888 gimple_build_debug_inline_entry (tree block, location_t location
889 MEM_STAT_DECL)
890 {
891 gdebug *p
892 = as_a <gdebug *> (
893 gimple_build_with_ops_stat (GIMPLE_DEBUG,
894 (unsigned)GIMPLE_DEBUG_INLINE_ENTRY, 0
895 PASS_MEM_STAT));
896
897 gimple_set_location (p, location);
898 gimple_set_block (p, block);
899 cfun->debug_marker_count++;
900
901 return p;
902 }
903
904
905 /* Build a GIMPLE_OMP_CRITICAL statement.
906
907 BODY is the sequence of statements for which only one thread can execute.
908 NAME is optional identifier for this critical block.
909 CLAUSES are clauses for this critical block. */
910
911 gomp_critical *
912 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
913 {
914 gomp_critical *p
915 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
916 gimple_omp_critical_set_name (p, name);
917 gimple_omp_critical_set_clauses (p, clauses);
918 if (body)
919 gimple_omp_set_body (p, body);
920
921 return p;
922 }
923
924 /* Build a GIMPLE_OMP_FOR statement.
925
926 BODY is sequence of statements inside the for loop.
927 KIND is the `for' variant.
928 CLAUSES, are any of the construct's clauses.
929 COLLAPSE is the collapse count.
930 PRE_BODY is the sequence of statements that are loop invariant. */
931
932 gomp_for *
933 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
934 gimple_seq pre_body)
935 {
936 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
937 if (body)
938 gimple_omp_set_body (p, body);
939 gimple_omp_for_set_clauses (p, clauses);
940 gimple_omp_for_set_kind (p, kind);
941 p->collapse = collapse;
942 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
943
944 if (pre_body)
945 gimple_omp_for_set_pre_body (p, pre_body);
946
947 return p;
948 }
949
950
951 /* Build a GIMPLE_OMP_PARALLEL statement.
952
953 BODY is sequence of statements which are executed in parallel.
954 CLAUSES, are the OMP parallel construct's clauses.
955 CHILD_FN is the function created for the parallel threads to execute.
956 DATA_ARG are the shared data argument(s). */
957
958 gomp_parallel *
959 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
960 tree data_arg)
961 {
962 gomp_parallel *p
963 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
964 if (body)
965 gimple_omp_set_body (p, body);
966 gimple_omp_parallel_set_clauses (p, clauses);
967 gimple_omp_parallel_set_child_fn (p, child_fn);
968 gimple_omp_parallel_set_data_arg (p, data_arg);
969
970 return p;
971 }
972
973
974 /* Build a GIMPLE_OMP_TASK statement.
975
976 BODY is sequence of statements which are executed by the explicit task.
977 CLAUSES, are the OMP parallel construct's clauses.
978 CHILD_FN is the function created for the parallel threads to execute.
979 DATA_ARG are the shared data argument(s).
980 COPY_FN is the optional function for firstprivate initialization.
981 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
982
983 gomp_task *
984 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
985 tree data_arg, tree copy_fn, tree arg_size,
986 tree arg_align)
987 {
988 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
989 if (body)
990 gimple_omp_set_body (p, body);
991 gimple_omp_task_set_clauses (p, clauses);
992 gimple_omp_task_set_child_fn (p, child_fn);
993 gimple_omp_task_set_data_arg (p, data_arg);
994 gimple_omp_task_set_copy_fn (p, copy_fn);
995 gimple_omp_task_set_arg_size (p, arg_size);
996 gimple_omp_task_set_arg_align (p, arg_align);
997
998 return p;
999 }
1000
1001
1002 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
1003
1004 BODY is the sequence of statements in the section. */
1005
1006 gimple *
1007 gimple_build_omp_section (gimple_seq body)
1008 {
1009 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
1010 if (body)
1011 gimple_omp_set_body (p, body);
1012
1013 return p;
1014 }
1015
1016
1017 /* Build a GIMPLE_OMP_MASTER statement.
1018
1019 BODY is the sequence of statements to be executed by just the master. */
1020
1021 gimple *
1022 gimple_build_omp_master (gimple_seq body)
1023 {
1024 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1025 if (body)
1026 gimple_omp_set_body (p, body);
1027
1028 return p;
1029 }
1030
1031 /* Build a GIMPLE_OMP_GRID_BODY statement.
1032
1033 BODY is the sequence of statements to be executed by the kernel. */
1034
1035 gimple *
1036 gimple_build_omp_grid_body (gimple_seq body)
1037 {
1038 gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
1039 if (body)
1040 gimple_omp_set_body (p, body);
1041
1042 return p;
1043 }
1044
1045 /* Build a GIMPLE_OMP_TASKGROUP statement.
1046
1047 BODY is the sequence of statements to be executed by the taskgroup
1048 construct. */
1049
1050 gimple *
1051 gimple_build_omp_taskgroup (gimple_seq body)
1052 {
1053 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
1054 if (body)
1055 gimple_omp_set_body (p, body);
1056
1057 return p;
1058 }
1059
1060
1061 /* Build a GIMPLE_OMP_CONTINUE statement.
1062
1063 CONTROL_DEF is the definition of the control variable.
1064 CONTROL_USE is the use of the control variable. */
1065
1066 gomp_continue *
1067 gimple_build_omp_continue (tree control_def, tree control_use)
1068 {
1069 gomp_continue *p
1070 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1071 gimple_omp_continue_set_control_def (p, control_def);
1072 gimple_omp_continue_set_control_use (p, control_use);
1073 return p;
1074 }
1075
1076 /* Build a GIMPLE_OMP_ORDERED statement.
1077
1078 BODY is the sequence of statements inside a loop that will executed in
1079 sequence.
1080 CLAUSES are clauses for this statement. */
1081
1082 gomp_ordered *
1083 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1084 {
1085 gomp_ordered *p
1086 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1087 gimple_omp_ordered_set_clauses (p, clauses);
1088 if (body)
1089 gimple_omp_set_body (p, body);
1090
1091 return p;
1092 }
1093
1094
1095 /* Build a GIMPLE_OMP_RETURN statement.
1096 WAIT_P is true if this is a non-waiting return. */
1097
1098 gimple *
1099 gimple_build_omp_return (bool wait_p)
1100 {
1101 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1102 if (wait_p)
1103 gimple_omp_return_set_nowait (p);
1104
1105 return p;
1106 }
1107
1108
1109 /* Build a GIMPLE_OMP_SECTIONS statement.
1110
1111 BODY is a sequence of section statements.
1112 CLAUSES are any of the OMP sections contsruct's clauses: private,
1113 firstprivate, lastprivate, reduction, and nowait. */
1114
1115 gomp_sections *
1116 gimple_build_omp_sections (gimple_seq body, tree clauses)
1117 {
1118 gomp_sections *p
1119 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1120 if (body)
1121 gimple_omp_set_body (p, body);
1122 gimple_omp_sections_set_clauses (p, clauses);
1123
1124 return p;
1125 }
1126
1127
1128 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1129
1130 gimple *
1131 gimple_build_omp_sections_switch (void)
1132 {
1133 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1134 }
1135
1136
1137 /* Build a GIMPLE_OMP_SINGLE statement.
1138
1139 BODY is the sequence of statements that will be executed once.
1140 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1141 copyprivate, nowait. */
1142
1143 gomp_single *
1144 gimple_build_omp_single (gimple_seq body, tree clauses)
1145 {
1146 gomp_single *p
1147 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1148 if (body)
1149 gimple_omp_set_body (p, body);
1150 gimple_omp_single_set_clauses (p, clauses);
1151
1152 return p;
1153 }
1154
1155
1156 /* Build a GIMPLE_OMP_TARGET statement.
1157
1158 BODY is the sequence of statements that will be executed.
1159 KIND is the kind of the region.
1160 CLAUSES are any of the construct's clauses. */
1161
1162 gomp_target *
1163 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1164 {
1165 gomp_target *p
1166 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1167 if (body)
1168 gimple_omp_set_body (p, body);
1169 gimple_omp_target_set_clauses (p, clauses);
1170 gimple_omp_target_set_kind (p, kind);
1171
1172 return p;
1173 }
1174
1175
1176 /* Build a GIMPLE_OMP_TEAMS statement.
1177
1178 BODY is the sequence of statements that will be executed.
1179 CLAUSES are any of the OMP teams construct's clauses. */
1180
1181 gomp_teams *
1182 gimple_build_omp_teams (gimple_seq body, tree clauses)
1183 {
1184 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1185 if (body)
1186 gimple_omp_set_body (p, body);
1187 gimple_omp_teams_set_clauses (p, clauses);
1188
1189 return p;
1190 }
1191
1192
1193 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1194
1195 gomp_atomic_load *
1196 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1197 {
1198 gomp_atomic_load *p
1199 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1200 gimple_omp_atomic_load_set_lhs (p, lhs);
1201 gimple_omp_atomic_load_set_rhs (p, rhs);
1202 return p;
1203 }
1204
1205 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1206
1207 VAL is the value we are storing. */
1208
1209 gomp_atomic_store *
1210 gimple_build_omp_atomic_store (tree val)
1211 {
1212 gomp_atomic_store *p
1213 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1214 gimple_omp_atomic_store_set_val (p, val);
1215 return p;
1216 }
1217
1218 /* Build a GIMPLE_TRANSACTION statement. */
1219
1220 gtransaction *
1221 gimple_build_transaction (gimple_seq body)
1222 {
1223 gtransaction *p
1224 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1225 gimple_transaction_set_body (p, body);
1226 gimple_transaction_set_label_norm (p, 0);
1227 gimple_transaction_set_label_uninst (p, 0);
1228 gimple_transaction_set_label_over (p, 0);
1229 return p;
1230 }
1231
1232 #if defined ENABLE_GIMPLE_CHECKING
1233 /* Complain of a gimple type mismatch and die. */
1234
1235 void
1236 gimple_check_failed (const gimple *gs, const char *file, int line,
1237 const char *function, enum gimple_code code,
1238 enum tree_code subcode)
1239 {
1240 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1241 gimple_code_name[code],
1242 get_tree_code_name (subcode),
1243 gimple_code_name[gimple_code (gs)],
1244 gs->subcode > 0
1245 ? get_tree_code_name ((enum tree_code) gs->subcode)
1246 : "",
1247 function, trim_filename (file), line);
1248 }
1249 #endif /* ENABLE_GIMPLE_CHECKING */
1250
1251
1252 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1253 *SEQ_P is NULL, a new sequence is allocated. */
1254
1255 void
1256 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1257 {
1258 gimple_stmt_iterator si;
1259 if (gs == NULL)
1260 return;
1261
1262 si = gsi_last (*seq_p);
1263 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1264 }
1265
1266 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1267 *SEQ_P is NULL, a new sequence is allocated. This function is
1268 similar to gimple_seq_add_stmt, but does not scan the operands.
1269 During gimplification, we need to manipulate statement sequences
1270 before the def/use vectors have been constructed. */
1271
1272 void
1273 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1274 {
1275 gimple_stmt_iterator si;
1276
1277 if (gs == NULL)
1278 return;
1279
1280 si = gsi_last (*seq_p);
1281 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1282 }
1283
1284 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1285 NULL, a new sequence is allocated. */
1286
1287 void
1288 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1289 {
1290 gimple_stmt_iterator si;
1291 if (src == NULL)
1292 return;
1293
1294 si = gsi_last (*dst_p);
1295 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1296 }
1297
1298 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1299 NULL, a new sequence is allocated. This function is
1300 similar to gimple_seq_add_seq, but does not scan the operands. */
1301
1302 void
1303 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1304 {
1305 gimple_stmt_iterator si;
1306 if (src == NULL)
1307 return;
1308
1309 si = gsi_last (*dst_p);
1310 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1311 }
1312
1313 /* Determine whether to assign a location to the statement GS. */
1314
1315 static bool
1316 should_carry_location_p (gimple *gs)
1317 {
1318 /* Don't emit a line note for a label. We particularly don't want to
1319 emit one for the break label, since it doesn't actually correspond
1320 to the beginning of the loop/switch. */
1321 if (gimple_code (gs) == GIMPLE_LABEL)
1322 return false;
1323
1324 return true;
1325 }
1326
1327 /* Set the location for gimple statement GS to LOCATION. */
1328
1329 static void
1330 annotate_one_with_location (gimple *gs, location_t location)
1331 {
1332 if (!gimple_has_location (gs)
1333 && !gimple_do_not_emit_location_p (gs)
1334 && should_carry_location_p (gs))
1335 gimple_set_location (gs, location);
1336 }
1337
1338 /* Set LOCATION for all the statements after iterator GSI in sequence
1339 SEQ. If GSI is pointing to the end of the sequence, start with the
1340 first statement in SEQ. */
1341
1342 void
1343 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1344 location_t location)
1345 {
1346 if (gsi_end_p (gsi))
1347 gsi = gsi_start (seq);
1348 else
1349 gsi_next (&gsi);
1350
1351 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1352 annotate_one_with_location (gsi_stmt (gsi), location);
1353 }
1354
1355 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1356
1357 void
1358 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1359 {
1360 gimple_stmt_iterator i;
1361
1362 if (gimple_seq_empty_p (stmt_p))
1363 return;
1364
1365 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1366 {
1367 gimple *gs = gsi_stmt (i);
1368 annotate_one_with_location (gs, location);
1369 }
1370 }
1371
1372 /* Helper function of empty_body_p. Return true if STMT is an empty
1373 statement. */
1374
1375 static bool
1376 empty_stmt_p (gimple *stmt)
1377 {
1378 if (gimple_code (stmt) == GIMPLE_NOP)
1379 return true;
1380 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1381 return empty_body_p (gimple_bind_body (bind_stmt));
1382 return false;
1383 }
1384
1385
1386 /* Return true if BODY contains nothing but empty statements. */
1387
1388 bool
1389 empty_body_p (gimple_seq body)
1390 {
1391 gimple_stmt_iterator i;
1392
1393 if (gimple_seq_empty_p (body))
1394 return true;
1395 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1396 if (!empty_stmt_p (gsi_stmt (i))
1397 && !is_gimple_debug (gsi_stmt (i)))
1398 return false;
1399
1400 return true;
1401 }
1402
1403
1404 /* Perform a deep copy of sequence SRC and return the result. */
1405
1406 gimple_seq
1407 gimple_seq_copy (gimple_seq src)
1408 {
1409 gimple_stmt_iterator gsi;
1410 gimple_seq new_seq = NULL;
1411 gimple *stmt;
1412
1413 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1414 {
1415 stmt = gimple_copy (gsi_stmt (gsi));
1416 gimple_seq_add_stmt (&new_seq, stmt);
1417 }
1418
1419 return new_seq;
1420 }
1421
1422
1423
1424 /* Return true if calls C1 and C2 are known to go to the same function. */
1425
1426 bool
1427 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1428 {
1429 if (gimple_call_internal_p (c1))
1430 return (gimple_call_internal_p (c2)
1431 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1432 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1433 || c1 == c2));
1434 else
1435 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1436 || (gimple_call_fndecl (c1)
1437 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1438 }
1439
1440 /* Detect flags from a GIMPLE_CALL. This is just like
1441 call_expr_flags, but for gimple tuples. */
1442
1443 int
1444 gimple_call_flags (const gimple *stmt)
1445 {
1446 int flags;
1447 tree decl = gimple_call_fndecl (stmt);
1448
1449 if (decl)
1450 flags = flags_from_decl_or_type (decl);
1451 else if (gimple_call_internal_p (stmt))
1452 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1453 else
1454 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1455
1456 if (stmt->subcode & GF_CALL_NOTHROW)
1457 flags |= ECF_NOTHROW;
1458
1459 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1460 flags |= ECF_BY_DESCRIPTOR;
1461
1462 return flags;
1463 }
1464
1465 /* Return the "fn spec" string for call STMT. */
1466
1467 static const_tree
1468 gimple_call_fnspec (const gcall *stmt)
1469 {
1470 tree type, attr;
1471
1472 if (gimple_call_internal_p (stmt))
1473 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1474
1475 type = gimple_call_fntype (stmt);
1476 if (!type)
1477 return NULL_TREE;
1478
1479 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1480 if (!attr)
1481 return NULL_TREE;
1482
1483 return TREE_VALUE (TREE_VALUE (attr));
1484 }
1485
1486 /* Detects argument flags for argument number ARG on call STMT. */
1487
1488 int
1489 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1490 {
1491 const_tree attr = gimple_call_fnspec (stmt);
1492
1493 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1494 return 0;
1495
1496 switch (TREE_STRING_POINTER (attr)[1 + arg])
1497 {
1498 case 'x':
1499 case 'X':
1500 return EAF_UNUSED;
1501
1502 case 'R':
1503 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1504
1505 case 'r':
1506 return EAF_NOCLOBBER | EAF_NOESCAPE;
1507
1508 case 'W':
1509 return EAF_DIRECT | EAF_NOESCAPE;
1510
1511 case 'w':
1512 return EAF_NOESCAPE;
1513
1514 case '.':
1515 default:
1516 return 0;
1517 }
1518 }
1519
1520 /* Detects return flags for the call STMT. */
1521
1522 int
1523 gimple_call_return_flags (const gcall *stmt)
1524 {
1525 const_tree attr;
1526
1527 if (gimple_call_flags (stmt) & ECF_MALLOC)
1528 return ERF_NOALIAS;
1529
1530 attr = gimple_call_fnspec (stmt);
1531 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1532 return 0;
1533
1534 switch (TREE_STRING_POINTER (attr)[0])
1535 {
1536 case '1':
1537 case '2':
1538 case '3':
1539 case '4':
1540 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1541
1542 case 'm':
1543 return ERF_NOALIAS;
1544
1545 case '.':
1546 default:
1547 return 0;
1548 }
1549 }
1550
1551
1552 /* Return true if GS is a copy assignment. */
1553
1554 bool
1555 gimple_assign_copy_p (gimple *gs)
1556 {
1557 return (gimple_assign_single_p (gs)
1558 && is_gimple_val (gimple_op (gs, 1)));
1559 }
1560
1561
1562 /* Return true if GS is a SSA_NAME copy assignment. */
1563
1564 bool
1565 gimple_assign_ssa_name_copy_p (gimple *gs)
1566 {
1567 return (gimple_assign_single_p (gs)
1568 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1569 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1570 }
1571
1572
1573 /* Return true if GS is an assignment with a unary RHS, but the
1574 operator has no effect on the assigned value. The logic is adapted
1575 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1576 instances in which STRIP_NOPS was previously applied to the RHS of
1577 an assignment.
1578
1579 NOTE: In the use cases that led to the creation of this function
1580 and of gimple_assign_single_p, it is typical to test for either
1581 condition and to proceed in the same manner. In each case, the
1582 assigned value is represented by the single RHS operand of the
1583 assignment. I suspect there may be cases where gimple_assign_copy_p,
1584 gimple_assign_single_p, or equivalent logic is used where a similar
1585 treatment of unary NOPs is appropriate. */
1586
1587 bool
1588 gimple_assign_unary_nop_p (gimple *gs)
1589 {
1590 return (is_gimple_assign (gs)
1591 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1592 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1593 && gimple_assign_rhs1 (gs) != error_mark_node
1594 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1595 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1596 }
1597
1598 /* Set BB to be the basic block holding G. */
1599
1600 void
1601 gimple_set_bb (gimple *stmt, basic_block bb)
1602 {
1603 stmt->bb = bb;
1604
1605 if (gimple_code (stmt) != GIMPLE_LABEL)
1606 return;
1607
1608 /* If the statement is a label, add the label to block-to-labels map
1609 so that we can speed up edge creation for GIMPLE_GOTOs. */
1610 if (cfun->cfg)
1611 {
1612 tree t;
1613 int uid;
1614
1615 t = gimple_label_label (as_a <glabel *> (stmt));
1616 uid = LABEL_DECL_UID (t);
1617 if (uid == -1)
1618 {
1619 unsigned old_len =
1620 vec_safe_length (label_to_block_map_for_fn (cfun));
1621 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1622 if (old_len <= (unsigned) uid)
1623 {
1624 unsigned new_len = 3 * uid / 2 + 1;
1625
1626 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1627 new_len);
1628 }
1629 }
1630
1631 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1632 }
1633 }
1634
1635
1636 /* Modify the RHS of the assignment pointed-to by GSI using the
1637 operands in the expression tree EXPR.
1638
1639 NOTE: The statement pointed-to by GSI may be reallocated if it
1640 did not have enough operand slots.
1641
1642 This function is useful to convert an existing tree expression into
1643 the flat representation used for the RHS of a GIMPLE assignment.
1644 It will reallocate memory as needed to expand or shrink the number
1645 of operand slots needed to represent EXPR.
1646
1647 NOTE: If you find yourself building a tree and then calling this
1648 function, you are most certainly doing it the slow way. It is much
1649 better to build a new assignment or to use the function
1650 gimple_assign_set_rhs_with_ops, which does not require an
1651 expression tree to be built. */
1652
1653 void
1654 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1655 {
1656 enum tree_code subcode;
1657 tree op1, op2, op3;
1658
1659 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1660 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1661 }
1662
1663
1664 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1665 operands OP1, OP2 and OP3.
1666
1667 NOTE: The statement pointed-to by GSI may be reallocated if it
1668 did not have enough operand slots. */
1669
1670 void
1671 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1672 tree op1, tree op2, tree op3)
1673 {
1674 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1675 gimple *stmt = gsi_stmt (*gsi);
1676
1677 /* If the new CODE needs more operands, allocate a new statement. */
1678 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1679 {
1680 tree lhs = gimple_assign_lhs (stmt);
1681 gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1682 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1683 gimple_init_singleton (new_stmt);
1684 gsi_replace (gsi, new_stmt, false);
1685 stmt = new_stmt;
1686
1687 /* The LHS needs to be reset as this also changes the SSA name
1688 on the LHS. */
1689 gimple_assign_set_lhs (stmt, lhs);
1690 }
1691
1692 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1693 gimple_set_subcode (stmt, code);
1694 gimple_assign_set_rhs1 (stmt, op1);
1695 if (new_rhs_ops > 1)
1696 gimple_assign_set_rhs2 (stmt, op2);
1697 if (new_rhs_ops > 2)
1698 gimple_assign_set_rhs3 (stmt, op3);
1699 }
1700
1701
1702 /* Return the LHS of a statement that performs an assignment,
1703 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1704 for a call to a function that returns no value, or for a
1705 statement other than an assignment or a call. */
1706
1707 tree
1708 gimple_get_lhs (const gimple *stmt)
1709 {
1710 enum gimple_code code = gimple_code (stmt);
1711
1712 if (code == GIMPLE_ASSIGN)
1713 return gimple_assign_lhs (stmt);
1714 else if (code == GIMPLE_CALL)
1715 return gimple_call_lhs (stmt);
1716 else
1717 return NULL_TREE;
1718 }
1719
1720
1721 /* Set the LHS of a statement that performs an assignment,
1722 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1723
1724 void
1725 gimple_set_lhs (gimple *stmt, tree lhs)
1726 {
1727 enum gimple_code code = gimple_code (stmt);
1728
1729 if (code == GIMPLE_ASSIGN)
1730 gimple_assign_set_lhs (stmt, lhs);
1731 else if (code == GIMPLE_CALL)
1732 gimple_call_set_lhs (stmt, lhs);
1733 else
1734 gcc_unreachable ();
1735 }
1736
1737
1738 /* Return a deep copy of statement STMT. All the operands from STMT
1739 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1740 and VUSE operand arrays are set to empty in the new copy. The new
1741 copy isn't part of any sequence. */
1742
1743 gimple *
1744 gimple_copy (gimple *stmt)
1745 {
1746 enum gimple_code code = gimple_code (stmt);
1747 unsigned num_ops = gimple_num_ops (stmt);
1748 gimple *copy = gimple_alloc (code, num_ops);
1749 unsigned i;
1750
1751 /* Shallow copy all the fields from STMT. */
1752 memcpy (copy, stmt, gimple_size (code));
1753 gimple_init_singleton (copy);
1754
1755 /* If STMT has sub-statements, deep-copy them as well. */
1756 if (gimple_has_substatements (stmt))
1757 {
1758 gimple_seq new_seq;
1759 tree t;
1760
1761 switch (gimple_code (stmt))
1762 {
1763 case GIMPLE_BIND:
1764 {
1765 gbind *bind_stmt = as_a <gbind *> (stmt);
1766 gbind *bind_copy = as_a <gbind *> (copy);
1767 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1768 gimple_bind_set_body (bind_copy, new_seq);
1769 gimple_bind_set_vars (bind_copy,
1770 unshare_expr (gimple_bind_vars (bind_stmt)));
1771 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1772 }
1773 break;
1774
1775 case GIMPLE_CATCH:
1776 {
1777 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1778 gcatch *catch_copy = as_a <gcatch *> (copy);
1779 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1780 gimple_catch_set_handler (catch_copy, new_seq);
1781 t = unshare_expr (gimple_catch_types (catch_stmt));
1782 gimple_catch_set_types (catch_copy, t);
1783 }
1784 break;
1785
1786 case GIMPLE_EH_FILTER:
1787 {
1788 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1789 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1790 new_seq
1791 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1792 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1793 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1794 gimple_eh_filter_set_types (eh_filter_copy, t);
1795 }
1796 break;
1797
1798 case GIMPLE_EH_ELSE:
1799 {
1800 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1801 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1802 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1803 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1804 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1805 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1806 }
1807 break;
1808
1809 case GIMPLE_TRY:
1810 {
1811 gtry *try_stmt = as_a <gtry *> (stmt);
1812 gtry *try_copy = as_a <gtry *> (copy);
1813 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1814 gimple_try_set_eval (try_copy, new_seq);
1815 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1816 gimple_try_set_cleanup (try_copy, new_seq);
1817 }
1818 break;
1819
1820 case GIMPLE_OMP_FOR:
1821 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1822 gimple_omp_for_set_pre_body (copy, new_seq);
1823 t = unshare_expr (gimple_omp_for_clauses (stmt));
1824 gimple_omp_for_set_clauses (copy, t);
1825 {
1826 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1827 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1828 ( gimple_omp_for_collapse (stmt));
1829 }
1830 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1831 {
1832 gimple_omp_for_set_cond (copy, i,
1833 gimple_omp_for_cond (stmt, i));
1834 gimple_omp_for_set_index (copy, i,
1835 gimple_omp_for_index (stmt, i));
1836 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1837 gimple_omp_for_set_initial (copy, i, t);
1838 t = unshare_expr (gimple_omp_for_final (stmt, i));
1839 gimple_omp_for_set_final (copy, i, t);
1840 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1841 gimple_omp_for_set_incr (copy, i, t);
1842 }
1843 goto copy_omp_body;
1844
1845 case GIMPLE_OMP_PARALLEL:
1846 {
1847 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1848 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1849 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1850 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1851 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1852 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1853 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1854 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1855 }
1856 goto copy_omp_body;
1857
1858 case GIMPLE_OMP_TASK:
1859 t = unshare_expr (gimple_omp_task_clauses (stmt));
1860 gimple_omp_task_set_clauses (copy, t);
1861 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1862 gimple_omp_task_set_child_fn (copy, t);
1863 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1864 gimple_omp_task_set_data_arg (copy, t);
1865 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1866 gimple_omp_task_set_copy_fn (copy, t);
1867 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1868 gimple_omp_task_set_arg_size (copy, t);
1869 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1870 gimple_omp_task_set_arg_align (copy, t);
1871 goto copy_omp_body;
1872
1873 case GIMPLE_OMP_CRITICAL:
1874 t = unshare_expr (gimple_omp_critical_name
1875 (as_a <gomp_critical *> (stmt)));
1876 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1877 t = unshare_expr (gimple_omp_critical_clauses
1878 (as_a <gomp_critical *> (stmt)));
1879 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1880 goto copy_omp_body;
1881
1882 case GIMPLE_OMP_ORDERED:
1883 t = unshare_expr (gimple_omp_ordered_clauses
1884 (as_a <gomp_ordered *> (stmt)));
1885 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1886 goto copy_omp_body;
1887
1888 case GIMPLE_OMP_SECTIONS:
1889 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1890 gimple_omp_sections_set_clauses (copy, t);
1891 t = unshare_expr (gimple_omp_sections_control (stmt));
1892 gimple_omp_sections_set_control (copy, t);
1893 goto copy_omp_body;
1894
1895 case GIMPLE_OMP_SINGLE:
1896 {
1897 gomp_single *omp_single_copy = as_a <gomp_single *> (copy);
1898 t = unshare_expr (gimple_omp_single_clauses (stmt));
1899 gimple_omp_single_set_clauses (omp_single_copy, t);
1900 }
1901 goto copy_omp_body;
1902
1903 case GIMPLE_OMP_TARGET:
1904 {
1905 gomp_target *omp_target_stmt = as_a <gomp_target *> (stmt);
1906 gomp_target *omp_target_copy = as_a <gomp_target *> (copy);
1907 t = unshare_expr (gimple_omp_target_clauses (omp_target_stmt));
1908 gimple_omp_target_set_clauses (omp_target_copy, t);
1909 t = unshare_expr (gimple_omp_target_data_arg (omp_target_stmt));
1910 gimple_omp_target_set_data_arg (omp_target_copy, t);
1911 }
1912 goto copy_omp_body;
1913
1914 case GIMPLE_OMP_TEAMS:
1915 {
1916 gomp_teams *omp_teams_copy = as_a <gomp_teams *> (copy);
1917 t = unshare_expr (gimple_omp_teams_clauses (stmt));
1918 gimple_omp_teams_set_clauses (omp_teams_copy, t);
1919 }
1920 /* FALLTHRU */
1921
1922 case GIMPLE_OMP_SECTION:
1923 case GIMPLE_OMP_MASTER:
1924 case GIMPLE_OMP_TASKGROUP:
1925 case GIMPLE_OMP_GRID_BODY:
1926 copy_omp_body:
1927 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1928 gimple_omp_set_body (copy, new_seq);
1929 break;
1930
1931 case GIMPLE_TRANSACTION:
1932 new_seq = gimple_seq_copy (gimple_transaction_body (
1933 as_a <gtransaction *> (stmt)));
1934 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1935 new_seq);
1936 break;
1937
1938 case GIMPLE_WITH_CLEANUP_EXPR:
1939 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1940 gimple_wce_set_cleanup (copy, new_seq);
1941 break;
1942
1943 default:
1944 gcc_unreachable ();
1945 }
1946 }
1947
1948 /* Make copy of operands. */
1949 for (i = 0; i < num_ops; i++)
1950 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1951
1952 if (gimple_has_mem_ops (stmt))
1953 {
1954 gimple_set_vdef (copy, gimple_vdef (stmt));
1955 gimple_set_vuse (copy, gimple_vuse (stmt));
1956 }
1957
1958 /* Clear out SSA operand vectors on COPY. */
1959 if (gimple_has_ops (stmt))
1960 {
1961 gimple_set_use_ops (copy, NULL);
1962
1963 /* SSA operands need to be updated. */
1964 gimple_set_modified (copy, true);
1965 }
1966
1967 if (gimple_debug_nonbind_marker_p (stmt))
1968 cfun->debug_marker_count++;
1969
1970 return copy;
1971 }
1972
1973
1974 /* Return true if statement S has side-effects. We consider a
1975 statement to have side effects if:
1976
1977 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1978 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1979
1980 bool
1981 gimple_has_side_effects (const gimple *s)
1982 {
1983 if (is_gimple_debug (s))
1984 return false;
1985
1986 /* We don't have to scan the arguments to check for
1987 volatile arguments, though, at present, we still
1988 do a scan to check for TREE_SIDE_EFFECTS. */
1989 if (gimple_has_volatile_ops (s))
1990 return true;
1991
1992 if (gimple_code (s) == GIMPLE_ASM
1993 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1994 return true;
1995
1996 if (is_gimple_call (s))
1997 {
1998 int flags = gimple_call_flags (s);
1999
2000 /* An infinite loop is considered a side effect. */
2001 if (!(flags & (ECF_CONST | ECF_PURE))
2002 || (flags & ECF_LOOPING_CONST_OR_PURE))
2003 return true;
2004
2005 return false;
2006 }
2007
2008 return false;
2009 }
2010
2011 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2012 Return true if S can trap. When INCLUDE_MEM is true, check whether
2013 the memory operations could trap. When INCLUDE_STORES is true and
2014 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2015
2016 bool
2017 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
2018 {
2019 tree t, div = NULL_TREE;
2020 enum tree_code op;
2021
2022 if (include_mem)
2023 {
2024 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2025
2026 for (i = start; i < gimple_num_ops (s); i++)
2027 if (tree_could_trap_p (gimple_op (s, i)))
2028 return true;
2029 }
2030
2031 switch (gimple_code (s))
2032 {
2033 case GIMPLE_ASM:
2034 return gimple_asm_volatile_p (as_a <gasm *> (s));
2035
2036 case GIMPLE_CALL:
2037 t = gimple_call_fndecl (s);
2038 /* Assume that calls to weak functions may trap. */
2039 if (!t || !DECL_P (t) || DECL_WEAK (t))
2040 return true;
2041 return false;
2042
2043 case GIMPLE_ASSIGN:
2044 t = gimple_expr_type (s);
2045 op = gimple_assign_rhs_code (s);
2046 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2047 div = gimple_assign_rhs2 (s);
2048 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2049 (INTEGRAL_TYPE_P (t)
2050 && TYPE_OVERFLOW_TRAPS (t)),
2051 div));
2052
2053 case GIMPLE_COND:
2054 t = TREE_TYPE (gimple_cond_lhs (s));
2055 return operation_could_trap_p (gimple_cond_code (s),
2056 FLOAT_TYPE_P (t), false, NULL_TREE);
2057
2058 default:
2059 break;
2060 }
2061
2062 return false;
2063 }
2064
2065 /* Return true if statement S can trap. */
2066
2067 bool
2068 gimple_could_trap_p (gimple *s)
2069 {
2070 return gimple_could_trap_p_1 (s, true, true);
2071 }
2072
2073 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2074
2075 bool
2076 gimple_assign_rhs_could_trap_p (gimple *s)
2077 {
2078 gcc_assert (is_gimple_assign (s));
2079 return gimple_could_trap_p_1 (s, true, false);
2080 }
2081
2082
2083 /* Print debugging information for gimple stmts generated. */
2084
2085 void
2086 dump_gimple_statistics (void)
2087 {
2088 int i;
2089 uint64_t total_tuples = 0, total_bytes = 0;
2090
2091 if (! GATHER_STATISTICS)
2092 {
2093 fprintf (stderr, "No GIMPLE statistics\n");
2094 return;
2095 }
2096
2097 fprintf (stderr, "\nGIMPLE statements\n");
2098 fprintf (stderr, "Kind Stmts Bytes\n");
2099 fprintf (stderr, "---------------------------------------\n");
2100 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2101 {
2102 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n",
2103 gimple_alloc_kind_names[i], gimple_alloc_counts[i],
2104 gimple_alloc_sizes[i]);
2105 total_tuples += gimple_alloc_counts[i];
2106 total_bytes += gimple_alloc_sizes[i];
2107 }
2108 fprintf (stderr, "---------------------------------------\n");
2109 fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n", "Total",
2110 total_tuples, total_bytes);
2111 fprintf (stderr, "---------------------------------------\n");
2112 }
2113
2114
2115 /* Return the number of operands needed on the RHS of a GIMPLE
2116 assignment for an expression with tree code CODE. */
2117
2118 unsigned
2119 get_gimple_rhs_num_ops (enum tree_code code)
2120 {
2121 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2122
2123 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2124 return 1;
2125 else if (rhs_class == GIMPLE_BINARY_RHS)
2126 return 2;
2127 else if (rhs_class == GIMPLE_TERNARY_RHS)
2128 return 3;
2129 else
2130 gcc_unreachable ();
2131 }
2132
2133 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2134 (unsigned char) \
2135 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2136 : ((TYPE) == tcc_binary \
2137 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2138 : ((TYPE) == tcc_constant \
2139 || (TYPE) == tcc_declaration \
2140 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2141 : ((SYM) == TRUTH_AND_EXPR \
2142 || (SYM) == TRUTH_OR_EXPR \
2143 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2144 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2145 : ((SYM) == COND_EXPR \
2146 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2147 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2148 || (SYM) == DOT_PROD_EXPR \
2149 || (SYM) == SAD_EXPR \
2150 || (SYM) == REALIGN_LOAD_EXPR \
2151 || (SYM) == VEC_COND_EXPR \
2152 || (SYM) == VEC_PERM_EXPR \
2153 || (SYM) == BIT_INSERT_EXPR) ? GIMPLE_TERNARY_RHS \
2154 : ((SYM) == CONSTRUCTOR \
2155 || (SYM) == OBJ_TYPE_REF \
2156 || (SYM) == ASSERT_EXPR \
2157 || (SYM) == ADDR_EXPR \
2158 || (SYM) == WITH_SIZE_EXPR \
2159 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2160 : GIMPLE_INVALID_RHS),
2161 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2162
2163 const unsigned char gimple_rhs_class_table[] = {
2164 #include "all-tree.def"
2165 };
2166
2167 #undef DEFTREECODE
2168 #undef END_OF_BASE_TREE_CODES
2169
2170 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2171 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2172 we failed to create one. */
2173
2174 tree
2175 canonicalize_cond_expr_cond (tree t)
2176 {
2177 /* Strip conversions around boolean operations. */
2178 if (CONVERT_EXPR_P (t)
2179 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2180 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2181 == BOOLEAN_TYPE))
2182 t = TREE_OPERAND (t, 0);
2183
2184 /* For !x use x == 0. */
2185 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2186 {
2187 tree top0 = TREE_OPERAND (t, 0);
2188 t = build2 (EQ_EXPR, TREE_TYPE (t),
2189 top0, build_int_cst (TREE_TYPE (top0), 0));
2190 }
2191 /* For cmp ? 1 : 0 use cmp. */
2192 else if (TREE_CODE (t) == COND_EXPR
2193 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2194 && integer_onep (TREE_OPERAND (t, 1))
2195 && integer_zerop (TREE_OPERAND (t, 2)))
2196 {
2197 tree top0 = TREE_OPERAND (t, 0);
2198 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2199 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2200 }
2201 /* For x ^ y use x != y. */
2202 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2203 t = build2 (NE_EXPR, TREE_TYPE (t),
2204 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2205
2206 if (is_gimple_condexpr (t))
2207 return t;
2208
2209 return NULL_TREE;
2210 }
2211
2212 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2213 the positions marked by the set ARGS_TO_SKIP. */
2214
2215 gcall *
2216 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2217 {
2218 int i;
2219 int nargs = gimple_call_num_args (stmt);
2220 auto_vec<tree> vargs (nargs);
2221 gcall *new_stmt;
2222
2223 for (i = 0; i < nargs; i++)
2224 if (!bitmap_bit_p (args_to_skip, i))
2225 vargs.quick_push (gimple_call_arg (stmt, i));
2226
2227 if (gimple_call_internal_p (stmt))
2228 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2229 vargs);
2230 else
2231 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2232
2233 if (gimple_call_lhs (stmt))
2234 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2235
2236 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2237 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2238
2239 if (gimple_has_location (stmt))
2240 gimple_set_location (new_stmt, gimple_location (stmt));
2241 gimple_call_copy_flags (new_stmt, stmt);
2242 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2243
2244 gimple_set_modified (new_stmt, true);
2245
2246 return new_stmt;
2247 }
2248
2249
2250
2251 /* Return true if the field decls F1 and F2 are at the same offset.
2252
2253 This is intended to be used on GIMPLE types only. */
2254
2255 bool
2256 gimple_compare_field_offset (tree f1, tree f2)
2257 {
2258 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2259 {
2260 tree offset1 = DECL_FIELD_OFFSET (f1);
2261 tree offset2 = DECL_FIELD_OFFSET (f2);
2262 return ((offset1 == offset2
2263 /* Once gimplification is done, self-referential offsets are
2264 instantiated as operand #2 of the COMPONENT_REF built for
2265 each access and reset. Therefore, they are not relevant
2266 anymore and fields are interchangeable provided that they
2267 represent the same access. */
2268 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2269 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2270 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2271 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2272 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2273 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2274 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2275 || operand_equal_p (offset1, offset2, 0))
2276 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2277 DECL_FIELD_BIT_OFFSET (f2)));
2278 }
2279
2280 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2281 should be, so handle differing ones specially by decomposing
2282 the offset into a byte and bit offset manually. */
2283 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2284 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2285 {
2286 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2287 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2288 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2289 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2290 + bit_offset1 / BITS_PER_UNIT);
2291 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2292 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2293 + bit_offset2 / BITS_PER_UNIT);
2294 if (byte_offset1 != byte_offset2)
2295 return false;
2296 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2297 }
2298
2299 return false;
2300 }
2301
2302
2303 /* Return a type the same as TYPE except unsigned or
2304 signed according to UNSIGNEDP. */
2305
2306 static tree
2307 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2308 {
2309 tree type1;
2310 int i;
2311
2312 type1 = TYPE_MAIN_VARIANT (type);
2313 if (type1 == signed_char_type_node
2314 || type1 == char_type_node
2315 || type1 == unsigned_char_type_node)
2316 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2317 if (type1 == integer_type_node || type1 == unsigned_type_node)
2318 return unsignedp ? unsigned_type_node : integer_type_node;
2319 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2320 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2321 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2322 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2323 if (type1 == long_long_integer_type_node
2324 || type1 == long_long_unsigned_type_node)
2325 return unsignedp
2326 ? long_long_unsigned_type_node
2327 : long_long_integer_type_node;
2328
2329 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2330 if (int_n_enabled_p[i]
2331 && (type1 == int_n_trees[i].unsigned_type
2332 || type1 == int_n_trees[i].signed_type))
2333 return unsignedp
2334 ? int_n_trees[i].unsigned_type
2335 : int_n_trees[i].signed_type;
2336
2337 #if HOST_BITS_PER_WIDE_INT >= 64
2338 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2339 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2340 #endif
2341 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2342 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2343 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2344 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2345 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2346 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2347 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2348 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2349
2350 #define GIMPLE_FIXED_TYPES(NAME) \
2351 if (type1 == short_ ## NAME ## _type_node \
2352 || type1 == unsigned_short_ ## NAME ## _type_node) \
2353 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2354 : short_ ## NAME ## _type_node; \
2355 if (type1 == NAME ## _type_node \
2356 || type1 == unsigned_ ## NAME ## _type_node) \
2357 return unsignedp ? unsigned_ ## NAME ## _type_node \
2358 : NAME ## _type_node; \
2359 if (type1 == long_ ## NAME ## _type_node \
2360 || type1 == unsigned_long_ ## NAME ## _type_node) \
2361 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2362 : long_ ## NAME ## _type_node; \
2363 if (type1 == long_long_ ## NAME ## _type_node \
2364 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2365 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2366 : long_long_ ## NAME ## _type_node;
2367
2368 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2369 if (type1 == NAME ## _type_node \
2370 || type1 == u ## NAME ## _type_node) \
2371 return unsignedp ? u ## NAME ## _type_node \
2372 : NAME ## _type_node;
2373
2374 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2375 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2376 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2377 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2378 : sat_ ## short_ ## NAME ## _type_node; \
2379 if (type1 == sat_ ## NAME ## _type_node \
2380 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2381 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2382 : sat_ ## NAME ## _type_node; \
2383 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2384 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2385 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2386 : sat_ ## long_ ## NAME ## _type_node; \
2387 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2388 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2389 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2390 : sat_ ## long_long_ ## NAME ## _type_node;
2391
2392 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2393 if (type1 == sat_ ## NAME ## _type_node \
2394 || type1 == sat_ ## u ## NAME ## _type_node) \
2395 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2396 : sat_ ## NAME ## _type_node;
2397
2398 GIMPLE_FIXED_TYPES (fract);
2399 GIMPLE_FIXED_TYPES_SAT (fract);
2400 GIMPLE_FIXED_TYPES (accum);
2401 GIMPLE_FIXED_TYPES_SAT (accum);
2402
2403 GIMPLE_FIXED_MODE_TYPES (qq);
2404 GIMPLE_FIXED_MODE_TYPES (hq);
2405 GIMPLE_FIXED_MODE_TYPES (sq);
2406 GIMPLE_FIXED_MODE_TYPES (dq);
2407 GIMPLE_FIXED_MODE_TYPES (tq);
2408 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2409 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2410 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2411 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2412 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2413 GIMPLE_FIXED_MODE_TYPES (ha);
2414 GIMPLE_FIXED_MODE_TYPES (sa);
2415 GIMPLE_FIXED_MODE_TYPES (da);
2416 GIMPLE_FIXED_MODE_TYPES (ta);
2417 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2418 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2419 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2420 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2421
2422 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2423 the precision; they have precision set to match their range, but
2424 may use a wider mode to match an ABI. If we change modes, we may
2425 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2426 the precision as well, so as to yield correct results for
2427 bit-field types. C++ does not have these separate bit-field
2428 types, and producing a signed or unsigned variant of an
2429 ENUMERAL_TYPE may cause other problems as well. */
2430 if (!INTEGRAL_TYPE_P (type)
2431 || TYPE_UNSIGNED (type) == unsignedp)
2432 return type;
2433
2434 #define TYPE_OK(node) \
2435 (TYPE_MODE (type) == TYPE_MODE (node) \
2436 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2437 if (TYPE_OK (signed_char_type_node))
2438 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2439 if (TYPE_OK (integer_type_node))
2440 return unsignedp ? unsigned_type_node : integer_type_node;
2441 if (TYPE_OK (short_integer_type_node))
2442 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2443 if (TYPE_OK (long_integer_type_node))
2444 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2445 if (TYPE_OK (long_long_integer_type_node))
2446 return (unsignedp
2447 ? long_long_unsigned_type_node
2448 : long_long_integer_type_node);
2449
2450 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2451 if (int_n_enabled_p[i]
2452 && TYPE_MODE (type) == int_n_data[i].m
2453 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2454 return unsignedp
2455 ? int_n_trees[i].unsigned_type
2456 : int_n_trees[i].signed_type;
2457
2458 #if HOST_BITS_PER_WIDE_INT >= 64
2459 if (TYPE_OK (intTI_type_node))
2460 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2461 #endif
2462 if (TYPE_OK (intDI_type_node))
2463 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2464 if (TYPE_OK (intSI_type_node))
2465 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2466 if (TYPE_OK (intHI_type_node))
2467 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2468 if (TYPE_OK (intQI_type_node))
2469 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2470
2471 #undef GIMPLE_FIXED_TYPES
2472 #undef GIMPLE_FIXED_MODE_TYPES
2473 #undef GIMPLE_FIXED_TYPES_SAT
2474 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2475 #undef TYPE_OK
2476
2477 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2478 }
2479
2480
2481 /* Return an unsigned type the same as TYPE in other respects. */
2482
2483 tree
2484 gimple_unsigned_type (tree type)
2485 {
2486 return gimple_signed_or_unsigned_type (true, type);
2487 }
2488
2489
2490 /* Return a signed type the same as TYPE in other respects. */
2491
2492 tree
2493 gimple_signed_type (tree type)
2494 {
2495 return gimple_signed_or_unsigned_type (false, type);
2496 }
2497
2498
2499 /* Return the typed-based alias set for T, which may be an expression
2500 or a type. Return -1 if we don't do anything special. */
2501
2502 alias_set_type
2503 gimple_get_alias_set (tree t)
2504 {
2505 /* That's all the expressions we handle specially. */
2506 if (!TYPE_P (t))
2507 return -1;
2508
2509 /* For convenience, follow the C standard when dealing with
2510 character types. Any object may be accessed via an lvalue that
2511 has character type. */
2512 if (t == char_type_node
2513 || t == signed_char_type_node
2514 || t == unsigned_char_type_node)
2515 return 0;
2516
2517 /* Allow aliasing between signed and unsigned variants of the same
2518 type. We treat the signed variant as canonical. */
2519 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2520 {
2521 tree t1 = gimple_signed_type (t);
2522
2523 /* t1 == t can happen for boolean nodes which are always unsigned. */
2524 if (t1 != t)
2525 return get_alias_set (t1);
2526 }
2527
2528 return -1;
2529 }
2530
2531
2532 /* Helper for gimple_ior_addresses_taken_1. */
2533
2534 static bool
2535 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2536 {
2537 bitmap addresses_taken = (bitmap)data;
2538 addr = get_base_address (addr);
2539 if (addr
2540 && DECL_P (addr))
2541 {
2542 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2543 return true;
2544 }
2545 return false;
2546 }
2547
2548 /* Set the bit for the uid of all decls that have their address taken
2549 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2550 were any in this stmt. */
2551
2552 bool
2553 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2554 {
2555 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2556 gimple_ior_addresses_taken_1);
2557 }
2558
2559
2560 /* Return true when STMTs arguments and return value match those of FNDECL,
2561 a decl of a builtin function. */
2562
2563 bool
2564 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2565 {
2566 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2567
2568 tree ret = gimple_call_lhs (stmt);
2569 if (ret
2570 && !useless_type_conversion_p (TREE_TYPE (ret),
2571 TREE_TYPE (TREE_TYPE (fndecl))))
2572 return false;
2573
2574 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2575 unsigned nargs = gimple_call_num_args (stmt);
2576 for (unsigned i = 0; i < nargs; ++i)
2577 {
2578 /* Variadic args follow. */
2579 if (!targs)
2580 return true;
2581 tree arg = gimple_call_arg (stmt, i);
2582 tree type = TREE_VALUE (targs);
2583 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2584 /* char/short integral arguments are promoted to int
2585 by several frontends if targetm.calls.promote_prototypes
2586 is true. Allow such promotion too. */
2587 && !(INTEGRAL_TYPE_P (type)
2588 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2589 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2590 && useless_type_conversion_p (integer_type_node,
2591 TREE_TYPE (arg))))
2592 return false;
2593 targs = TREE_CHAIN (targs);
2594 }
2595 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2596 return false;
2597 return true;
2598 }
2599
2600 /* Return true when STMT is builtins call. */
2601
2602 bool
2603 gimple_call_builtin_p (const gimple *stmt)
2604 {
2605 tree fndecl;
2606 if (is_gimple_call (stmt)
2607 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2608 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2609 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2610 return false;
2611 }
2612
2613 /* Return true when STMT is builtins call to CLASS. */
2614
2615 bool
2616 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2617 {
2618 tree fndecl;
2619 if (is_gimple_call (stmt)
2620 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2621 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2622 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2623 return false;
2624 }
2625
2626 /* Return true when STMT is builtins call to CODE of CLASS. */
2627
2628 bool
2629 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2630 {
2631 tree fndecl;
2632 if (is_gimple_call (stmt)
2633 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2634 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2635 && DECL_FUNCTION_CODE (fndecl) == code)
2636 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2637 return false;
2638 }
2639
2640 /* If CALL is a call to a combined_fn (i.e. an internal function or
2641 a normal built-in function), return its code, otherwise return
2642 CFN_LAST. */
2643
2644 combined_fn
2645 gimple_call_combined_fn (const gimple *stmt)
2646 {
2647 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2648 {
2649 if (gimple_call_internal_p (call))
2650 return as_combined_fn (gimple_call_internal_fn (call));
2651
2652 tree fndecl = gimple_call_fndecl (stmt);
2653 if (fndecl
2654 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2655 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2656 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2657 }
2658 return CFN_LAST;
2659 }
2660
2661 /* Return true if STMT clobbers memory. STMT is required to be a
2662 GIMPLE_ASM. */
2663
2664 bool
2665 gimple_asm_clobbers_memory_p (const gasm *stmt)
2666 {
2667 unsigned i;
2668
2669 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2670 {
2671 tree op = gimple_asm_clobber_op (stmt, i);
2672 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2673 return true;
2674 }
2675
2676 /* Non-empty basic ASM implicitly clobbers memory. */
2677 if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2678 return true;
2679
2680 return false;
2681 }
2682
2683 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2684
2685 void
2686 dump_decl_set (FILE *file, bitmap set)
2687 {
2688 if (set)
2689 {
2690 bitmap_iterator bi;
2691 unsigned i;
2692
2693 fprintf (file, "{ ");
2694
2695 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2696 {
2697 fprintf (file, "D.%u", i);
2698 fprintf (file, " ");
2699 }
2700
2701 fprintf (file, "}");
2702 }
2703 else
2704 fprintf (file, "NIL");
2705 }
2706
2707 /* Return true when CALL is a call stmt that definitely doesn't
2708 free any memory or makes it unavailable otherwise. */
2709 bool
2710 nonfreeing_call_p (gimple *call)
2711 {
2712 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2713 && gimple_call_flags (call) & ECF_LEAF)
2714 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2715 {
2716 /* Just in case these become ECF_LEAF in the future. */
2717 case BUILT_IN_FREE:
2718 case BUILT_IN_TM_FREE:
2719 case BUILT_IN_REALLOC:
2720 case BUILT_IN_STACK_RESTORE:
2721 return false;
2722 default:
2723 return true;
2724 }
2725 else if (gimple_call_internal_p (call))
2726 switch (gimple_call_internal_fn (call))
2727 {
2728 case IFN_ABNORMAL_DISPATCHER:
2729 return true;
2730 case IFN_ASAN_MARK:
2731 return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2732 default:
2733 if (gimple_call_flags (call) & ECF_LEAF)
2734 return true;
2735 return false;
2736 }
2737
2738 tree fndecl = gimple_call_fndecl (call);
2739 if (!fndecl)
2740 return false;
2741 struct cgraph_node *n = cgraph_node::get (fndecl);
2742 if (!n)
2743 return false;
2744 enum availability availability;
2745 n = n->function_symbol (&availability);
2746 if (!n || availability <= AVAIL_INTERPOSABLE)
2747 return false;
2748 return n->nonfreeing_fn;
2749 }
2750
2751 /* Return true when CALL is a call stmt that definitely need not
2752 be considered to be a memory barrier. */
2753 bool
2754 nonbarrier_call_p (gimple *call)
2755 {
2756 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2757 return true;
2758 /* Should extend this to have a nonbarrier_fn flag, just as above in
2759 the nonfreeing case. */
2760 return false;
2761 }
2762
2763 /* Callback for walk_stmt_load_store_ops.
2764
2765 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2766 otherwise.
2767
2768 This routine only makes a superficial check for a dereference. Thus
2769 it must only be used if it is safe to return a false negative. */
2770 static bool
2771 check_loadstore (gimple *, tree op, tree, void *data)
2772 {
2773 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2774 {
2775 /* Some address spaces may legitimately dereference zero. */
2776 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2777 if (targetm.addr_space.zero_address_valid (as))
2778 return false;
2779
2780 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2781 }
2782 return false;
2783 }
2784
2785
2786 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2787 either by using a pointer dereference or attributes. */
2788 bool
2789 infer_nonnull_range (gimple *stmt, tree op)
2790 {
2791 return infer_nonnull_range_by_dereference (stmt, op)
2792 || infer_nonnull_range_by_attribute (stmt, op);
2793 }
2794
2795 /* Return true if OP can be inferred to be non-NULL after STMT
2796 executes by using a pointer dereference. */
2797 bool
2798 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2799 {
2800 /* We can only assume that a pointer dereference will yield
2801 non-NULL if -fdelete-null-pointer-checks is enabled. */
2802 if (!flag_delete_null_pointer_checks
2803 || !POINTER_TYPE_P (TREE_TYPE (op))
2804 || gimple_code (stmt) == GIMPLE_ASM)
2805 return false;
2806
2807 if (walk_stmt_load_store_ops (stmt, (void *)op,
2808 check_loadstore, check_loadstore))
2809 return true;
2810
2811 return false;
2812 }
2813
2814 /* Return true if OP can be inferred to be a non-NULL after STMT
2815 executes by using attributes. */
2816 bool
2817 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2818 {
2819 /* We can only assume that a pointer dereference will yield
2820 non-NULL if -fdelete-null-pointer-checks is enabled. */
2821 if (!flag_delete_null_pointer_checks
2822 || !POINTER_TYPE_P (TREE_TYPE (op))
2823 || gimple_code (stmt) == GIMPLE_ASM)
2824 return false;
2825
2826 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2827 {
2828 tree fntype = gimple_call_fntype (stmt);
2829 tree attrs = TYPE_ATTRIBUTES (fntype);
2830 for (; attrs; attrs = TREE_CHAIN (attrs))
2831 {
2832 attrs = lookup_attribute ("nonnull", attrs);
2833
2834 /* If "nonnull" wasn't specified, we know nothing about
2835 the argument. */
2836 if (attrs == NULL_TREE)
2837 return false;
2838
2839 /* If "nonnull" applies to all the arguments, then ARG
2840 is non-null if it's in the argument list. */
2841 if (TREE_VALUE (attrs) == NULL_TREE)
2842 {
2843 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2844 {
2845 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2846 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2847 return true;
2848 }
2849 return false;
2850 }
2851
2852 /* Now see if op appears in the nonnull list. */
2853 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2854 {
2855 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2856 if (idx < gimple_call_num_args (stmt))
2857 {
2858 tree arg = gimple_call_arg (stmt, idx);
2859 if (operand_equal_p (op, arg, 0))
2860 return true;
2861 }
2862 }
2863 }
2864 }
2865
2866 /* If this function is marked as returning non-null, then we can
2867 infer OP is non-null if it is used in the return statement. */
2868 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2869 if (gimple_return_retval (return_stmt)
2870 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2871 && lookup_attribute ("returns_nonnull",
2872 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2873 return true;
2874
2875 return false;
2876 }
2877
2878 /* Compare two case labels. Because the front end should already have
2879 made sure that case ranges do not overlap, it is enough to only compare
2880 the CASE_LOW values of each case label. */
2881
2882 static int
2883 compare_case_labels (const void *p1, const void *p2)
2884 {
2885 const_tree const case1 = *(const_tree const*)p1;
2886 const_tree const case2 = *(const_tree const*)p2;
2887
2888 /* The 'default' case label always goes first. */
2889 if (!CASE_LOW (case1))
2890 return -1;
2891 else if (!CASE_LOW (case2))
2892 return 1;
2893 else
2894 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2895 }
2896
2897 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2898
2899 void
2900 sort_case_labels (vec<tree> label_vec)
2901 {
2902 label_vec.qsort (compare_case_labels);
2903 }
2904 \f
2905 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2906
2907 LABELS is a vector that contains all case labels to look at.
2908
2909 INDEX_TYPE is the type of the switch index expression. Case labels
2910 in LABELS are discarded if their values are not in the value range
2911 covered by INDEX_TYPE. The remaining case label values are folded
2912 to INDEX_TYPE.
2913
2914 If a default case exists in LABELS, it is removed from LABELS and
2915 returned in DEFAULT_CASEP. If no default case exists, but the
2916 case labels already cover the whole range of INDEX_TYPE, a default
2917 case is returned pointing to one of the existing case labels.
2918 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2919
2920 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2921 apply and no action is taken regardless of whether a default case is
2922 found or not. */
2923
2924 void
2925 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2926 tree index_type,
2927 tree *default_casep)
2928 {
2929 tree min_value, max_value;
2930 tree default_case = NULL_TREE;
2931 size_t i, len;
2932
2933 i = 0;
2934 min_value = TYPE_MIN_VALUE (index_type);
2935 max_value = TYPE_MAX_VALUE (index_type);
2936 while (i < labels.length ())
2937 {
2938 tree elt = labels[i];
2939 tree low = CASE_LOW (elt);
2940 tree high = CASE_HIGH (elt);
2941 bool remove_element = FALSE;
2942
2943 if (low)
2944 {
2945 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2946 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2947
2948 /* This is a non-default case label, i.e. it has a value.
2949
2950 See if the case label is reachable within the range of
2951 the index type. Remove out-of-range case values. Turn
2952 case ranges into a canonical form (high > low strictly)
2953 and convert the case label values to the index type.
2954
2955 NB: The type of gimple_switch_index() may be the promoted
2956 type, but the case labels retain the original type. */
2957
2958 if (high)
2959 {
2960 /* This is a case range. Discard empty ranges.
2961 If the bounds or the range are equal, turn this
2962 into a simple (one-value) case. */
2963 int cmp = tree_int_cst_compare (high, low);
2964 if (cmp < 0)
2965 remove_element = TRUE;
2966 else if (cmp == 0)
2967 high = NULL_TREE;
2968 }
2969
2970 if (! high)
2971 {
2972 /* If the simple case value is unreachable, ignore it. */
2973 if ((TREE_CODE (min_value) == INTEGER_CST
2974 && tree_int_cst_compare (low, min_value) < 0)
2975 || (TREE_CODE (max_value) == INTEGER_CST
2976 && tree_int_cst_compare (low, max_value) > 0))
2977 remove_element = TRUE;
2978 else
2979 low = fold_convert (index_type, low);
2980 }
2981 else
2982 {
2983 /* If the entire case range is unreachable, ignore it. */
2984 if ((TREE_CODE (min_value) == INTEGER_CST
2985 && tree_int_cst_compare (high, min_value) < 0)
2986 || (TREE_CODE (max_value) == INTEGER_CST
2987 && tree_int_cst_compare (low, max_value) > 0))
2988 remove_element = TRUE;
2989 else
2990 {
2991 /* If the lower bound is less than the index type's
2992 minimum value, truncate the range bounds. */
2993 if (TREE_CODE (min_value) == INTEGER_CST
2994 && tree_int_cst_compare (low, min_value) < 0)
2995 low = min_value;
2996 low = fold_convert (index_type, low);
2997
2998 /* If the upper bound is greater than the index type's
2999 maximum value, truncate the range bounds. */
3000 if (TREE_CODE (max_value) == INTEGER_CST
3001 && tree_int_cst_compare (high, max_value) > 0)
3002 high = max_value;
3003 high = fold_convert (index_type, high);
3004
3005 /* We may have folded a case range to a one-value case. */
3006 if (tree_int_cst_equal (low, high))
3007 high = NULL_TREE;
3008 }
3009 }
3010
3011 CASE_LOW (elt) = low;
3012 CASE_HIGH (elt) = high;
3013 }
3014 else
3015 {
3016 gcc_assert (!default_case);
3017 default_case = elt;
3018 /* The default case must be passed separately to the
3019 gimple_build_switch routine. But if DEFAULT_CASEP
3020 is NULL, we do not remove the default case (it would
3021 be completely lost). */
3022 if (default_casep)
3023 remove_element = TRUE;
3024 }
3025
3026 if (remove_element)
3027 labels.ordered_remove (i);
3028 else
3029 i++;
3030 }
3031 len = i;
3032
3033 if (!labels.is_empty ())
3034 sort_case_labels (labels);
3035
3036 if (default_casep && !default_case)
3037 {
3038 /* If the switch has no default label, add one, so that we jump
3039 around the switch body. If the labels already cover the whole
3040 range of the switch index_type, add the default label pointing
3041 to one of the existing labels. */
3042 if (len
3043 && TYPE_MIN_VALUE (index_type)
3044 && TYPE_MAX_VALUE (index_type)
3045 && tree_int_cst_equal (CASE_LOW (labels[0]),
3046 TYPE_MIN_VALUE (index_type)))
3047 {
3048 tree low, high = CASE_HIGH (labels[len - 1]);
3049 if (!high)
3050 high = CASE_LOW (labels[len - 1]);
3051 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
3052 {
3053 tree widest_label = labels[0];
3054 for (i = 1; i < len; i++)
3055 {
3056 high = CASE_LOW (labels[i]);
3057 low = CASE_HIGH (labels[i - 1]);
3058 if (!low)
3059 low = CASE_LOW (labels[i - 1]);
3060
3061 if (CASE_HIGH (labels[i]) != NULL_TREE
3062 && (CASE_HIGH (widest_label) == NULL_TREE
3063 || (wi::gtu_p
3064 (wi::to_wide (CASE_HIGH (labels[i]))
3065 - wi::to_wide (CASE_LOW (labels[i])),
3066 wi::to_wide (CASE_HIGH (widest_label))
3067 - wi::to_wide (CASE_LOW (widest_label))))))
3068 widest_label = labels[i];
3069
3070 if (wi::to_wide (low) + 1 != wi::to_wide (high))
3071 break;
3072 }
3073 if (i == len)
3074 {
3075 /* Designate the label with the widest range to be the
3076 default label. */
3077 tree label = CASE_LABEL (widest_label);
3078 default_case = build_case_label (NULL_TREE, NULL_TREE,
3079 label);
3080 }
3081 }
3082 }
3083 }
3084
3085 if (default_casep)
3086 *default_casep = default_case;
3087 }
3088
3089 /* Set the location of all statements in SEQ to LOC. */
3090
3091 void
3092 gimple_seq_set_location (gimple_seq seq, location_t loc)
3093 {
3094 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
3095 gimple_set_location (gsi_stmt (i), loc);
3096 }
3097
3098 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
3099
3100 void
3101 gimple_seq_discard (gimple_seq seq)
3102 {
3103 gimple_stmt_iterator gsi;
3104
3105 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3106 {
3107 gimple *stmt = gsi_stmt (gsi);
3108 gsi_remove (&gsi, true);
3109 release_defs (stmt);
3110 ggc_free (stmt);
3111 }
3112 }
3113
3114 /* See if STMT now calls function that takes no parameters and if so, drop
3115 call arguments. This is used when devirtualization machinery redirects
3116 to __builtin_unreachable or __cxa_pure_virtual. */
3117
3118 void
3119 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3120 {
3121 tree decl = gimple_call_fndecl (stmt);
3122 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3123 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3124 && gimple_call_num_args (stmt))
3125 {
3126 gimple_set_num_ops (stmt, 3);
3127 update_stmt_fn (fn, stmt);
3128 }
3129 }
3130
3131 /* Return false if STMT will likely expand to real function call. */
3132
3133 bool
3134 gimple_inexpensive_call_p (gcall *stmt)
3135 {
3136 if (gimple_call_internal_p (stmt))
3137 return true;
3138 tree decl = gimple_call_fndecl (stmt);
3139 if (decl && is_inexpensive_builtin (decl))
3140 return true;
3141 return false;
3142 }
3143
3144 #if CHECKING_P
3145
3146 namespace selftest {
3147
3148 /* Selftests for core gimple structures. */
3149
3150 /* Verify that STMT is pretty-printed as EXPECTED.
3151 Helper function for selftests. */
3152
3153 static void
3154 verify_gimple_pp (const char *expected, gimple *stmt)
3155 {
3156 pretty_printer pp;
3157 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, 0 /* flags */);
3158 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3159 }
3160
3161 /* Build a GIMPLE_ASSIGN equivalent to
3162 tmp = 5;
3163 and verify various properties of it. */
3164
3165 static void
3166 test_assign_single ()
3167 {
3168 tree type = integer_type_node;
3169 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3170 get_identifier ("tmp"),
3171 type);
3172 tree rhs = build_int_cst (type, 5);
3173 gassign *stmt = gimple_build_assign (lhs, rhs);
3174 verify_gimple_pp ("tmp = 5;", stmt);
3175
3176 ASSERT_TRUE (is_gimple_assign (stmt));
3177 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3178 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3179 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3180 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3181 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3182 ASSERT_TRUE (gimple_assign_single_p (stmt));
3183 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3184 }
3185
3186 /* Build a GIMPLE_ASSIGN equivalent to
3187 tmp = a * b;
3188 and verify various properties of it. */
3189
3190 static void
3191 test_assign_binop ()
3192 {
3193 tree type = integer_type_node;
3194 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3195 get_identifier ("tmp"),
3196 type);
3197 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3198 get_identifier ("a"),
3199 type);
3200 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3201 get_identifier ("b"),
3202 type);
3203 gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3204 verify_gimple_pp ("tmp = a * b;", stmt);
3205
3206 ASSERT_TRUE (is_gimple_assign (stmt));
3207 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3208 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3209 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3210 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3211 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3212 ASSERT_FALSE (gimple_assign_single_p (stmt));
3213 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3214 }
3215
3216 /* Build a GIMPLE_NOP and verify various properties of it. */
3217
3218 static void
3219 test_nop_stmt ()
3220 {
3221 gimple *stmt = gimple_build_nop ();
3222 verify_gimple_pp ("GIMPLE_NOP", stmt);
3223 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3224 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3225 ASSERT_FALSE (gimple_assign_single_p (stmt));
3226 }
3227
3228 /* Build a GIMPLE_RETURN equivalent to
3229 return 7;
3230 and verify various properties of it. */
3231
3232 static void
3233 test_return_stmt ()
3234 {
3235 tree type = integer_type_node;
3236 tree val = build_int_cst (type, 7);
3237 greturn *stmt = gimple_build_return (val);
3238 verify_gimple_pp ("return 7;", stmt);
3239
3240 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3241 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3242 ASSERT_EQ (val, gimple_return_retval (stmt));
3243 ASSERT_FALSE (gimple_assign_single_p (stmt));
3244 }
3245
3246 /* Build a GIMPLE_RETURN equivalent to
3247 return;
3248 and verify various properties of it. */
3249
3250 static void
3251 test_return_without_value ()
3252 {
3253 greturn *stmt = gimple_build_return (NULL);
3254 verify_gimple_pp ("return;", stmt);
3255
3256 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3257 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3258 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3259 ASSERT_FALSE (gimple_assign_single_p (stmt));
3260 }
3261
3262 /* Run all of the selftests within this file. */
3263
3264 void
3265 gimple_c_tests ()
3266 {
3267 test_assign_single ();
3268 test_assign_binop ();
3269 test_nop_stmt ();
3270 test_return_stmt ();
3271 test_return_without_value ();
3272 }
3273
3274 } // namespace selftest
3275
3276
3277 #endif /* CHECKING_P */