]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/hash-table.h
* hash-table.h (hash_table): Add Lazy template parameter defaulted
[thirdparty/gcc.git] / gcc / hash-table.h
1 /* A type-safe hash table template.
2 Copyright (C) 2012-2019 Free Software Foundation, Inc.
3 Contributed by Lawrence Crowl <crowl@google.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* This file implements a typed hash table.
23 The implementation borrows from libiberty's htab_t in hashtab.h.
24
25
26 INTRODUCTION TO TYPES
27
28 Users of the hash table generally need to be aware of three types.
29
30 1. The type being placed into the hash table. This type is called
31 the value type.
32
33 2. The type used to describe how to handle the value type within
34 the hash table. This descriptor type provides the hash table with
35 several things.
36
37 - A typedef named 'value_type' to the value type (from above).
38
39 - A static member function named 'hash' that takes a value_type
40 (or 'const value_type &') and returns a hashval_t value.
41
42 - A typedef named 'compare_type' that is used to test when a value
43 is found. This type is the comparison type. Usually, it will be the
44 same as value_type. If it is not the same type, you must generally
45 explicitly compute hash values and pass them to the hash table.
46
47 - A static member function named 'equal' that takes a value_type
48 and a compare_type, and returns a bool. Both arguments can be
49 const references.
50
51 - A static function named 'remove' that takes an value_type pointer
52 and frees the memory allocated by it. This function is used when
53 individual elements of the table need to be disposed of (e.g.,
54 when deleting a hash table, removing elements from the table, etc).
55
56 - An optional static function named 'keep_cache_entry'. This
57 function is provided only for garbage-collected elements that
58 are not marked by the normal gc mark pass. It describes what
59 what should happen to the element at the end of the gc mark phase.
60 The return value should be:
61 - 0 if the element should be deleted
62 - 1 if the element should be kept and needs to be marked
63 - -1 if the element should be kept and is already marked.
64 Returning -1 rather than 1 is purely an optimization.
65
66 3. The type of the hash table itself. (More later.)
67
68 In very special circumstances, users may need to know about a fourth type.
69
70 4. The template type used to describe how hash table memory
71 is allocated. This type is called the allocator type. It is
72 parameterized on the value type. It provides two functions:
73
74 - A static member function named 'data_alloc'. This function
75 allocates the data elements in the table.
76
77 - A static member function named 'data_free'. This function
78 deallocates the data elements in the table.
79
80 Hash table are instantiated with two type arguments.
81
82 * The descriptor type, (2) above.
83
84 * The allocator type, (4) above. In general, you will not need to
85 provide your own allocator type. By default, hash tables will use
86 the class template xcallocator, which uses malloc/free for allocation.
87
88
89 DEFINING A DESCRIPTOR TYPE
90
91 The first task in using the hash table is to describe the element type.
92 We compose this into a few steps.
93
94 1. Decide on a removal policy for values stored in the table.
95 hash-traits.h provides class templates for the four most common
96 policies:
97
98 * typed_free_remove implements the static 'remove' member function
99 by calling free().
100
101 * typed_noop_remove implements the static 'remove' member function
102 by doing nothing.
103
104 * ggc_remove implements the static 'remove' member by doing nothing,
105 but instead provides routines for gc marking and for PCH streaming.
106 Use this for garbage-collected data that needs to be preserved across
107 collections.
108
109 * ggc_cache_remove is like ggc_remove, except that it does not
110 mark the entries during the normal gc mark phase. Instead it
111 uses 'keep_cache_entry' (described above) to keep elements that
112 were not collected and delete those that were. Use this for
113 garbage-collected caches that should not in themselves stop
114 the data from being collected.
115
116 You can use these policies by simply deriving the descriptor type
117 from one of those class template, with the appropriate argument.
118
119 Otherwise, you need to write the static 'remove' member function
120 in the descriptor class.
121
122 2. Choose a hash function. Write the static 'hash' member function.
123
124 3. Decide whether the lookup function should take as input an object
125 of type value_type or something more restricted. Define compare_type
126 accordingly.
127
128 4. Choose an equality testing function 'equal' that compares a value_type
129 and a compare_type.
130
131 If your elements are pointers, it is usually easiest to start with one
132 of the generic pointer descriptors described below and override the bits
133 you need to change.
134
135 AN EXAMPLE DESCRIPTOR TYPE
136
137 Suppose you want to put some_type into the hash table. You could define
138 the descriptor type as follows.
139
140 struct some_type_hasher : nofree_ptr_hash <some_type>
141 // Deriving from nofree_ptr_hash means that we get a 'remove' that does
142 // nothing. This choice is good for raw values.
143 {
144 static inline hashval_t hash (const value_type *);
145 static inline bool equal (const value_type *, const compare_type *);
146 };
147
148 inline hashval_t
149 some_type_hasher::hash (const value_type *e)
150 { ... compute and return a hash value for E ... }
151
152 inline bool
153 some_type_hasher::equal (const value_type *p1, const compare_type *p2)
154 { ... compare P1 vs P2. Return true if they are the 'same' ... }
155
156
157 AN EXAMPLE HASH_TABLE DECLARATION
158
159 To instantiate a hash table for some_type:
160
161 hash_table <some_type_hasher> some_type_hash_table;
162
163 There is no need to mention some_type directly, as the hash table will
164 obtain it using some_type_hasher::value_type.
165
166 You can then use any of the functions in hash_table's public interface.
167 See hash_table for details. The interface is very similar to libiberty's
168 htab_t.
169
170 If a hash table is used only in some rare cases, it is possible
171 to construct the hash_table lazily before first use. This is done
172 through:
173
174 hash_table <some_type_hasher, true> some_type_hash_table;
175
176 which will cause whatever methods actually need the allocated entries
177 array to allocate it later.
178
179
180 EASY DESCRIPTORS FOR POINTERS
181
182 There are four descriptors for pointer elements, one for each of
183 the removal policies above:
184
185 * nofree_ptr_hash (based on typed_noop_remove)
186 * free_ptr_hash (based on typed_free_remove)
187 * ggc_ptr_hash (based on ggc_remove)
188 * ggc_cache_ptr_hash (based on ggc_cache_remove)
189
190 These descriptors hash and compare elements by their pointer value,
191 rather than what they point to. So, to instantiate a hash table over
192 pointers to whatever_type, without freeing the whatever_types, use:
193
194 hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table;
195
196
197 HASH TABLE ITERATORS
198
199 The hash table provides standard C++ iterators. For example, consider a
200 hash table of some_info. We wish to consume each element of the table:
201
202 extern void consume (some_info *);
203
204 We define a convenience typedef and the hash table:
205
206 typedef hash_table <some_info_hasher> info_table_type;
207 info_table_type info_table;
208
209 Then we write the loop in typical C++ style:
210
211 for (info_table_type::iterator iter = info_table.begin ();
212 iter != info_table.end ();
213 ++iter)
214 if ((*iter).status == INFO_READY)
215 consume (&*iter);
216
217 Or with common sub-expression elimination:
218
219 for (info_table_type::iterator iter = info_table.begin ();
220 iter != info_table.end ();
221 ++iter)
222 {
223 some_info &elem = *iter;
224 if (elem.status == INFO_READY)
225 consume (&elem);
226 }
227
228 One can also use a more typical GCC style:
229
230 typedef some_info *some_info_p;
231 some_info *elem_ptr;
232 info_table_type::iterator iter;
233 FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
234 if (elem_ptr->status == INFO_READY)
235 consume (elem_ptr);
236
237 */
238
239
240 #ifndef TYPED_HASHTAB_H
241 #define TYPED_HASHTAB_H
242
243 #include "statistics.h"
244 #include "ggc.h"
245 #include "vec.h"
246 #include "hashtab.h"
247 #include "inchash.h"
248 #include "mem-stats-traits.h"
249 #include "hash-traits.h"
250 #include "hash-map-traits.h"
251
252 template<typename, typename, typename> class hash_map;
253 template<typename, bool, typename> class hash_set;
254
255 /* The ordinary memory allocator. */
256 /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
257
258 template <typename Type>
259 struct xcallocator
260 {
261 static Type *data_alloc (size_t count);
262 static void data_free (Type *memory);
263 };
264
265
266 /* Allocate memory for COUNT data blocks. */
267
268 template <typename Type>
269 inline Type *
270 xcallocator <Type>::data_alloc (size_t count)
271 {
272 return static_cast <Type *> (xcalloc (count, sizeof (Type)));
273 }
274
275
276 /* Free memory for data blocks. */
277
278 template <typename Type>
279 inline void
280 xcallocator <Type>::data_free (Type *memory)
281 {
282 return ::free (memory);
283 }
284
285
286 /* Table of primes and their inversion information. */
287
288 struct prime_ent
289 {
290 hashval_t prime;
291 hashval_t inv;
292 hashval_t inv_m2; /* inverse of prime-2 */
293 hashval_t shift;
294 };
295
296 extern struct prime_ent const prime_tab[];
297
298
299 /* Functions for computing hash table indexes. */
300
301 extern unsigned int hash_table_higher_prime_index (unsigned long n)
302 ATTRIBUTE_PURE;
303
304 /* Return X % Y using multiplicative inverse values INV and SHIFT.
305
306 The multiplicative inverses computed above are for 32-bit types,
307 and requires that we be able to compute a highpart multiply.
308
309 FIX: I am not at all convinced that
310 3 loads, 2 multiplications, 3 shifts, and 3 additions
311 will be faster than
312 1 load and 1 modulus
313 on modern systems running a compiler. */
314
315 inline hashval_t
316 mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
317 {
318 hashval_t t1, t2, t3, t4, q, r;
319
320 t1 = ((uint64_t)x * inv) >> 32;
321 t2 = x - t1;
322 t3 = t2 >> 1;
323 t4 = t1 + t3;
324 q = t4 >> shift;
325 r = x - (q * y);
326
327 return r;
328 }
329
330 /* Compute the primary table index for HASH given current prime index. */
331
332 inline hashval_t
333 hash_table_mod1 (hashval_t hash, unsigned int index)
334 {
335 const struct prime_ent *p = &prime_tab[index];
336 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
337 return mul_mod (hash, p->prime, p->inv, p->shift);
338 }
339
340 /* Compute the secondary table index for HASH given current prime index. */
341
342 inline hashval_t
343 hash_table_mod2 (hashval_t hash, unsigned int index)
344 {
345 const struct prime_ent *p = &prime_tab[index];
346 gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
347 return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
348 }
349
350 class mem_usage;
351
352 /* User-facing hash table type.
353
354 The table stores elements of type Descriptor::value_type and uses
355 the static descriptor functions described at the top of the file
356 to hash, compare and remove elements.
357
358 Specify the template Allocator to allocate and free memory.
359 The default is xcallocator.
360
361 Storage is an implementation detail and should not be used outside the
362 hash table code.
363
364 */
365 template <typename Descriptor, bool Lazy = false,
366 template<typename Type> class Allocator = xcallocator>
367 class hash_table
368 {
369 typedef typename Descriptor::value_type value_type;
370 typedef typename Descriptor::compare_type compare_type;
371
372 public:
373 explicit hash_table (size_t, bool ggc = false,
374 bool gather_mem_stats = GATHER_STATISTICS,
375 mem_alloc_origin origin = HASH_TABLE_ORIGIN
376 CXX_MEM_STAT_INFO);
377 explicit hash_table (const hash_table &, bool ggc = false,
378 bool gather_mem_stats = GATHER_STATISTICS,
379 mem_alloc_origin origin = HASH_TABLE_ORIGIN
380 CXX_MEM_STAT_INFO);
381 ~hash_table ();
382
383 /* Create a hash_table in gc memory. */
384 static hash_table *
385 create_ggc (size_t n CXX_MEM_STAT_INFO)
386 {
387 hash_table *table = ggc_alloc<hash_table> ();
388 new (table) hash_table (n, true, GATHER_STATISTICS,
389 HASH_TABLE_ORIGIN PASS_MEM_STAT);
390 return table;
391 }
392
393 /* Current size (in entries) of the hash table. */
394 size_t size () const { return m_size; }
395
396 /* Return the current number of elements in this hash table. */
397 size_t elements () const { return m_n_elements - m_n_deleted; }
398
399 /* Return the current number of elements in this hash table. */
400 size_t elements_with_deleted () const { return m_n_elements; }
401
402 /* This function clears all entries in this hash table. */
403 void empty () { if (elements ()) empty_slow (); }
404
405 /* This function clears a specified SLOT in a hash table. It is
406 useful when you've already done the lookup and don't want to do it
407 again. */
408 void clear_slot (value_type *);
409
410 /* This function searches for a hash table entry equal to the given
411 COMPARABLE element starting with the given HASH value. It cannot
412 be used to insert or delete an element. */
413 value_type &find_with_hash (const compare_type &, hashval_t);
414
415 /* Like find_slot_with_hash, but compute the hash value from the element. */
416 value_type &find (const value_type &value)
417 {
418 return find_with_hash (value, Descriptor::hash (value));
419 }
420
421 value_type *find_slot (const value_type &value, insert_option insert)
422 {
423 return find_slot_with_hash (value, Descriptor::hash (value), insert);
424 }
425
426 /* This function searches for a hash table slot containing an entry
427 equal to the given COMPARABLE element and starting with the given
428 HASH. To delete an entry, call this with insert=NO_INSERT, then
429 call clear_slot on the slot returned (possibly after doing some
430 checks). To insert an entry, call this with insert=INSERT, then
431 write the value you want into the returned slot. When inserting an
432 entry, NULL may be returned if memory allocation fails. */
433 value_type *find_slot_with_hash (const compare_type &comparable,
434 hashval_t hash, enum insert_option insert);
435
436 /* This function deletes an element with the given COMPARABLE value
437 from hash table starting with the given HASH. If there is no
438 matching element in the hash table, this function does nothing. */
439 void remove_elt_with_hash (const compare_type &, hashval_t);
440
441 /* Like remove_elt_with_hash, but compute the hash value from the
442 element. */
443 void remove_elt (const value_type &value)
444 {
445 remove_elt_with_hash (value, Descriptor::hash (value));
446 }
447
448 /* This function scans over the entire hash table calling CALLBACK for
449 each live entry. If CALLBACK returns false, the iteration stops.
450 ARGUMENT is passed as CALLBACK's second argument. */
451 template <typename Argument,
452 int (*Callback) (value_type *slot, Argument argument)>
453 void traverse_noresize (Argument argument);
454
455 /* Like traverse_noresize, but does resize the table when it is too empty
456 to improve effectivity of subsequent calls. */
457 template <typename Argument,
458 int (*Callback) (value_type *slot, Argument argument)>
459 void traverse (Argument argument);
460
461 class iterator
462 {
463 public:
464 iterator () : m_slot (NULL), m_limit (NULL) {}
465
466 iterator (value_type *slot, value_type *limit) :
467 m_slot (slot), m_limit (limit) {}
468
469 inline value_type &operator * () { return *m_slot; }
470 void slide ();
471 inline iterator &operator ++ ();
472 bool operator != (const iterator &other) const
473 {
474 return m_slot != other.m_slot || m_limit != other.m_limit;
475 }
476
477 private:
478 value_type *m_slot;
479 value_type *m_limit;
480 };
481
482 iterator begin () const
483 {
484 if (Lazy && m_entries == NULL)
485 return iterator ();
486 iterator iter (m_entries, m_entries + m_size);
487 iter.slide ();
488 return iter;
489 }
490
491 iterator end () const { return iterator (); }
492
493 double collisions () const
494 {
495 return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
496 }
497
498 private:
499 template<typename T> friend void gt_ggc_mx (hash_table<T> *);
500 template<typename T> friend void gt_pch_nx (hash_table<T> *);
501 template<typename T> friend void
502 hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
503 template<typename T, typename U, typename V> friend void
504 gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
505 template<typename T, typename U>
506 friend void gt_pch_nx (hash_set<T, false, U> *, gt_pointer_operator, void *);
507 template<typename T> friend void gt_pch_nx (hash_table<T> *,
508 gt_pointer_operator, void *);
509
510 template<typename T> friend void gt_cleare_cache (hash_table<T> *);
511
512 void empty_slow ();
513
514 value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const;
515 value_type *find_empty_slot_for_expand (hashval_t);
516 bool too_empty_p (unsigned int);
517 void expand ();
518 static bool is_deleted (value_type &v)
519 {
520 return Descriptor::is_deleted (v);
521 }
522
523 static bool is_empty (value_type &v)
524 {
525 return Descriptor::is_empty (v);
526 }
527
528 static void mark_deleted (value_type &v)
529 {
530 Descriptor::mark_deleted (v);
531 }
532
533 static void mark_empty (value_type &v)
534 {
535 Descriptor::mark_empty (v);
536 }
537
538 /* Table itself. */
539 typename Descriptor::value_type *m_entries;
540
541 size_t m_size;
542
543 /* Current number of elements including also deleted elements. */
544 size_t m_n_elements;
545
546 /* Current number of deleted elements in the table. */
547 size_t m_n_deleted;
548
549 /* The following member is used for debugging. Its value is number
550 of all calls of `htab_find_slot' for the hash table. */
551 unsigned int m_searches;
552
553 /* The following member is used for debugging. Its value is number
554 of collisions fixed for time of work with the hash table. */
555 unsigned int m_collisions;
556
557 /* Current size (in entries) of the hash table, as an index into the
558 table of primes. */
559 unsigned int m_size_prime_index;
560
561 /* if m_entries is stored in ggc memory. */
562 bool m_ggc;
563
564 /* If we should gather memory statistics for the table. */
565 bool m_gather_mem_stats;
566 };
567
568 /* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include
569 mem-stats.h after hash_table declaration. */
570
571 #include "mem-stats.h"
572 #include "hash-map.h"
573
574 extern mem_alloc_description<mem_usage>& hash_table_usage (void);
575
576 /* Support function for statistics. */
577 extern void dump_hash_table_loc_statistics (void);
578
579 template<typename Descriptor, bool Lazy,
580 template<typename Type> class Allocator>
581 hash_table<Descriptor, Lazy, Allocator>::hash_table (size_t size, bool ggc,
582 bool gather_mem_stats,
583 mem_alloc_origin origin
584 MEM_STAT_DECL) :
585 m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
586 m_ggc (ggc), m_gather_mem_stats (gather_mem_stats)
587 {
588 unsigned int size_prime_index;
589
590 size_prime_index = hash_table_higher_prime_index (size);
591 size = prime_tab[size_prime_index].prime;
592
593 if (m_gather_mem_stats)
594 hash_table_usage ().register_descriptor (this, origin, ggc
595 FINAL_PASS_MEM_STAT);
596
597 if (Lazy)
598 m_entries = NULL;
599 else
600 m_entries = alloc_entries (size PASS_MEM_STAT);
601 m_size = size;
602 m_size_prime_index = size_prime_index;
603 }
604
605 template<typename Descriptor, bool Lazy,
606 template<typename Type> class Allocator>
607 hash_table<Descriptor, Lazy, Allocator>::hash_table (const hash_table &h,
608 bool ggc,
609 bool gather_mem_stats,
610 mem_alloc_origin origin
611 MEM_STAT_DECL) :
612 m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted),
613 m_searches (0), m_collisions (0), m_ggc (ggc),
614 m_gather_mem_stats (gather_mem_stats)
615 {
616 size_t size = h.m_size;
617
618 if (m_gather_mem_stats)
619 hash_table_usage ().register_descriptor (this, origin, ggc
620 FINAL_PASS_MEM_STAT);
621
622 if (Lazy && h.m_entries == NULL)
623 m_entries = NULL;
624 else
625 {
626 value_type *nentries = alloc_entries (size PASS_MEM_STAT);
627 for (size_t i = 0; i < size; ++i)
628 {
629 value_type &entry = h.m_entries[i];
630 if (is_deleted (entry))
631 mark_deleted (nentries[i]);
632 else if (!is_empty (entry))
633 nentries[i] = entry;
634 }
635 m_entries = nentries;
636 }
637 m_size = size;
638 m_size_prime_index = h.m_size_prime_index;
639 }
640
641 template<typename Descriptor, bool Lazy,
642 template<typename Type> class Allocator>
643 hash_table<Descriptor, Lazy, Allocator>::~hash_table ()
644 {
645 if (!Lazy || m_entries)
646 {
647 for (size_t i = m_size - 1; i < m_size; i--)
648 if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
649 Descriptor::remove (m_entries[i]);
650
651 if (!m_ggc)
652 Allocator <value_type> ::data_free (m_entries);
653 else
654 ggc_free (m_entries);
655 }
656
657 if (m_gather_mem_stats)
658 hash_table_usage ().release_instance_overhead (this,
659 sizeof (value_type)
660 * m_size, true);
661 }
662
663 /* This function returns an array of empty hash table elements. */
664
665 template<typename Descriptor, bool Lazy,
666 template<typename Type> class Allocator>
667 inline typename hash_table<Descriptor, Lazy, Allocator>::value_type *
668 hash_table<Descriptor, Lazy,
669 Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const
670 {
671 value_type *nentries;
672
673 if (m_gather_mem_stats)
674 hash_table_usage ().register_instance_overhead (sizeof (value_type) * n, this);
675
676 if (!m_ggc)
677 nentries = Allocator <value_type> ::data_alloc (n);
678 else
679 nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT);
680
681 gcc_assert (nentries != NULL);
682 for (size_t i = 0; i < n; i++)
683 mark_empty (nentries[i]);
684
685 return nentries;
686 }
687
688 /* Similar to find_slot, but without several unwanted side effects:
689 - Does not call equal when it finds an existing entry.
690 - Does not change the count of elements/searches/collisions in the
691 hash table.
692 This function also assumes there are no deleted entries in the table.
693 HASH is the hash value for the element to be inserted. */
694
695 template<typename Descriptor, bool Lazy,
696 template<typename Type> class Allocator>
697 typename hash_table<Descriptor, Lazy, Allocator>::value_type *
698 hash_table<Descriptor, Lazy,
699 Allocator>::find_empty_slot_for_expand (hashval_t hash)
700 {
701 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
702 size_t size = m_size;
703 value_type *slot = m_entries + index;
704 hashval_t hash2;
705
706 if (is_empty (*slot))
707 return slot;
708 gcc_checking_assert (!is_deleted (*slot));
709
710 hash2 = hash_table_mod2 (hash, m_size_prime_index);
711 for (;;)
712 {
713 index += hash2;
714 if (index >= size)
715 index -= size;
716
717 slot = m_entries + index;
718 if (is_empty (*slot))
719 return slot;
720 gcc_checking_assert (!is_deleted (*slot));
721 }
722 }
723
724 /* Return true if the current table is excessively big for ELTS elements. */
725
726 template<typename Descriptor, bool Lazy,
727 template<typename Type> class Allocator>
728 inline bool
729 hash_table<Descriptor, Lazy, Allocator>::too_empty_p (unsigned int elts)
730 {
731 return elts * 8 < m_size && m_size > 32;
732 }
733
734 /* The following function changes size of memory allocated for the
735 entries and repeatedly inserts the table elements. The occupancy
736 of the table after the call will be about 50%. Naturally the hash
737 table must already exist. Remember also that the place of the
738 table entries is changed. If memory allocation fails, this function
739 will abort. */
740
741 template<typename Descriptor, bool Lazy,
742 template<typename Type> class Allocator>
743 void
744 hash_table<Descriptor, Lazy, Allocator>::expand ()
745 {
746 value_type *oentries = m_entries;
747 unsigned int oindex = m_size_prime_index;
748 size_t osize = size ();
749 value_type *olimit = oentries + osize;
750 size_t elts = elements ();
751
752 /* Resize only when table after removal of unused elements is either
753 too full or too empty. */
754 unsigned int nindex;
755 size_t nsize;
756 if (elts * 2 > osize || too_empty_p (elts))
757 {
758 nindex = hash_table_higher_prime_index (elts * 2);
759 nsize = prime_tab[nindex].prime;
760 }
761 else
762 {
763 nindex = oindex;
764 nsize = osize;
765 }
766
767 value_type *nentries = alloc_entries (nsize);
768
769 if (m_gather_mem_stats)
770 hash_table_usage ().release_instance_overhead (this, sizeof (value_type)
771 * osize);
772
773 m_entries = nentries;
774 m_size = nsize;
775 m_size_prime_index = nindex;
776 m_n_elements -= m_n_deleted;
777 m_n_deleted = 0;
778
779 value_type *p = oentries;
780 do
781 {
782 value_type &x = *p;
783
784 if (!is_empty (x) && !is_deleted (x))
785 {
786 value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
787
788 *q = x;
789 }
790
791 p++;
792 }
793 while (p < olimit);
794
795 if (!m_ggc)
796 Allocator <value_type> ::data_free (oentries);
797 else
798 ggc_free (oentries);
799 }
800
801 /* Implements empty() in cases where it isn't a no-op. */
802
803 template<typename Descriptor, bool Lazy,
804 template<typename Type> class Allocator>
805 void
806 hash_table<Descriptor, Lazy, Allocator>::empty_slow ()
807 {
808 size_t size = m_size;
809 size_t nsize = size;
810 value_type *entries = m_entries;
811 int i;
812
813 for (i = size - 1; i >= 0; i--)
814 if (!is_empty (entries[i]) && !is_deleted (entries[i]))
815 Descriptor::remove (entries[i]);
816
817 /* Instead of clearing megabyte, downsize the table. */
818 if (size > 1024*1024 / sizeof (value_type))
819 nsize = 1024 / sizeof (value_type);
820 else if (too_empty_p (m_n_elements))
821 nsize = m_n_elements * 2;
822
823 if (nsize != size)
824 {
825 int nindex = hash_table_higher_prime_index (nsize);
826 int nsize = prime_tab[nindex].prime;
827
828 if (!m_ggc)
829 Allocator <value_type> ::data_free (m_entries);
830 else
831 ggc_free (m_entries);
832
833 m_entries = alloc_entries (nsize);
834 m_size = nsize;
835 m_size_prime_index = nindex;
836 }
837 else
838 {
839 #ifndef BROKEN_VALUE_INITIALIZATION
840 for ( ; size; ++entries, --size)
841 *entries = value_type ();
842 #else
843 memset (entries, 0, size * sizeof (value_type));
844 #endif
845 }
846 m_n_deleted = 0;
847 m_n_elements = 0;
848 }
849
850 /* This function clears a specified SLOT in a hash table. It is
851 useful when you've already done the lookup and don't want to do it
852 again. */
853
854 template<typename Descriptor, bool Lazy,
855 template<typename Type> class Allocator>
856 void
857 hash_table<Descriptor, Lazy, Allocator>::clear_slot (value_type *slot)
858 {
859 gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
860 || is_empty (*slot) || is_deleted (*slot)));
861
862 Descriptor::remove (*slot);
863
864 mark_deleted (*slot);
865 m_n_deleted++;
866 }
867
868 /* This function searches for a hash table entry equal to the given
869 COMPARABLE element starting with the given HASH value. It cannot
870 be used to insert or delete an element. */
871
872 template<typename Descriptor, bool Lazy,
873 template<typename Type> class Allocator>
874 typename hash_table<Descriptor, Lazy, Allocator>::value_type &
875 hash_table<Descriptor, Lazy, Allocator>
876 ::find_with_hash (const compare_type &comparable, hashval_t hash)
877 {
878 m_searches++;
879 size_t size = m_size;
880 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
881
882 if (Lazy && m_entries == NULL)
883 m_entries = alloc_entries (size);
884 value_type *entry = &m_entries[index];
885 if (is_empty (*entry)
886 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
887 return *entry;
888
889 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
890 for (;;)
891 {
892 m_collisions++;
893 index += hash2;
894 if (index >= size)
895 index -= size;
896
897 entry = &m_entries[index];
898 if (is_empty (*entry)
899 || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
900 return *entry;
901 }
902 }
903
904 /* This function searches for a hash table slot containing an entry
905 equal to the given COMPARABLE element and starting with the given
906 HASH. To delete an entry, call this with insert=NO_INSERT, then
907 call clear_slot on the slot returned (possibly after doing some
908 checks). To insert an entry, call this with insert=INSERT, then
909 write the value you want into the returned slot. When inserting an
910 entry, NULL may be returned if memory allocation fails. */
911
912 template<typename Descriptor, bool Lazy,
913 template<typename Type> class Allocator>
914 typename hash_table<Descriptor, Lazy, Allocator>::value_type *
915 hash_table<Descriptor, Lazy, Allocator>
916 ::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
917 enum insert_option insert)
918 {
919 if (Lazy && m_entries == NULL)
920 {
921 if (insert == INSERT)
922 m_entries = alloc_entries (m_size);
923 else
924 return NULL;
925 }
926 if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
927 expand ();
928
929 m_searches++;
930
931 value_type *first_deleted_slot = NULL;
932 hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
933 hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
934 value_type *entry = &m_entries[index];
935 size_t size = m_size;
936 if (is_empty (*entry))
937 goto empty_entry;
938 else if (is_deleted (*entry))
939 first_deleted_slot = &m_entries[index];
940 else if (Descriptor::equal (*entry, comparable))
941 return &m_entries[index];
942
943 for (;;)
944 {
945 m_collisions++;
946 index += hash2;
947 if (index >= size)
948 index -= size;
949
950 entry = &m_entries[index];
951 if (is_empty (*entry))
952 goto empty_entry;
953 else if (is_deleted (*entry))
954 {
955 if (!first_deleted_slot)
956 first_deleted_slot = &m_entries[index];
957 }
958 else if (Descriptor::equal (*entry, comparable))
959 return &m_entries[index];
960 }
961
962 empty_entry:
963 if (insert == NO_INSERT)
964 return NULL;
965
966 if (first_deleted_slot)
967 {
968 m_n_deleted--;
969 mark_empty (*first_deleted_slot);
970 return first_deleted_slot;
971 }
972
973 m_n_elements++;
974 return &m_entries[index];
975 }
976
977 /* This function deletes an element with the given COMPARABLE value
978 from hash table starting with the given HASH. If there is no
979 matching element in the hash table, this function does nothing. */
980
981 template<typename Descriptor, bool Lazy,
982 template<typename Type> class Allocator>
983 void
984 hash_table<Descriptor, Lazy, Allocator>
985 ::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
986 {
987 value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
988 if (slot == NULL)
989 return;
990
991 Descriptor::remove (*slot);
992
993 mark_deleted (*slot);
994 m_n_deleted++;
995 }
996
997 /* This function scans over the entire hash table calling CALLBACK for
998 each live entry. If CALLBACK returns false, the iteration stops.
999 ARGUMENT is passed as CALLBACK's second argument. */
1000
1001 template<typename Descriptor, bool Lazy,
1002 template<typename Type> class Allocator>
1003 template<typename Argument,
1004 int (*Callback)
1005 (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
1006 Argument argument)>
1007 void
1008 hash_table<Descriptor, Lazy, Allocator>::traverse_noresize (Argument argument)
1009 {
1010 if (Lazy && m_entries == NULL)
1011 return;
1012
1013 value_type *slot = m_entries;
1014 value_type *limit = slot + size ();
1015
1016 do
1017 {
1018 value_type &x = *slot;
1019
1020 if (!is_empty (x) && !is_deleted (x))
1021 if (! Callback (slot, argument))
1022 break;
1023 }
1024 while (++slot < limit);
1025 }
1026
1027 /* Like traverse_noresize, but does resize the table when it is too empty
1028 to improve effectivity of subsequent calls. */
1029
1030 template <typename Descriptor, bool Lazy,
1031 template <typename Type> class Allocator>
1032 template <typename Argument,
1033 int (*Callback)
1034 (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot,
1035 Argument argument)>
1036 void
1037 hash_table<Descriptor, Lazy, Allocator>::traverse (Argument argument)
1038 {
1039 if (too_empty_p (elements ()) && (!Lazy || m_entries))
1040 expand ();
1041
1042 traverse_noresize <Argument, Callback> (argument);
1043 }
1044
1045 /* Slide down the iterator slots until an active entry is found. */
1046
1047 template<typename Descriptor, bool Lazy,
1048 template<typename Type> class Allocator>
1049 void
1050 hash_table<Descriptor, Lazy, Allocator>::iterator::slide ()
1051 {
1052 for ( ; m_slot < m_limit; ++m_slot )
1053 {
1054 value_type &x = *m_slot;
1055 if (!is_empty (x) && !is_deleted (x))
1056 return;
1057 }
1058 m_slot = NULL;
1059 m_limit = NULL;
1060 }
1061
1062 /* Bump the iterator. */
1063
1064 template<typename Descriptor, bool Lazy,
1065 template<typename Type> class Allocator>
1066 inline typename hash_table<Descriptor, Lazy, Allocator>::iterator &
1067 hash_table<Descriptor, Lazy, Allocator>::iterator::operator ++ ()
1068 {
1069 ++m_slot;
1070 slide ();
1071 return *this;
1072 }
1073
1074
1075 /* Iterate through the elements of hash_table HTAB,
1076 using hash_table <....>::iterator ITER,
1077 storing each element in RESULT, which is of type TYPE. */
1078
1079 #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
1080 for ((ITER) = (HTAB).begin (); \
1081 (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
1082 ++(ITER))
1083
1084 /* ggc walking routines. */
1085
1086 template<typename E>
1087 static inline void
1088 gt_ggc_mx (hash_table<E> *h)
1089 {
1090 typedef hash_table<E> table;
1091
1092 if (!ggc_test_and_set_mark (h->m_entries))
1093 return;
1094
1095 for (size_t i = 0; i < h->m_size; i++)
1096 {
1097 if (table::is_empty (h->m_entries[i])
1098 || table::is_deleted (h->m_entries[i]))
1099 continue;
1100
1101 /* Use ggc_maxbe_mx so we don't mark right away for cache tables; we'll
1102 mark in gt_cleare_cache if appropriate. */
1103 E::ggc_maybe_mx (h->m_entries[i]);
1104 }
1105 }
1106
1107 template<typename D>
1108 static inline void
1109 hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
1110 void *cookie)
1111 {
1112 hash_table<D> *map = static_cast<hash_table<D> *> (h);
1113 gcc_checking_assert (map->m_entries == obj);
1114 for (size_t i = 0; i < map->m_size; i++)
1115 {
1116 typedef hash_table<D> table;
1117 if (table::is_empty (map->m_entries[i])
1118 || table::is_deleted (map->m_entries[i]))
1119 continue;
1120
1121 D::pch_nx (map->m_entries[i], op, cookie);
1122 }
1123 }
1124
1125 template<typename D>
1126 static void
1127 gt_pch_nx (hash_table<D> *h)
1128 {
1129 bool success
1130 = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
1131 gcc_checking_assert (success);
1132 for (size_t i = 0; i < h->m_size; i++)
1133 {
1134 if (hash_table<D>::is_empty (h->m_entries[i])
1135 || hash_table<D>::is_deleted (h->m_entries[i]))
1136 continue;
1137
1138 D::pch_nx (h->m_entries[i]);
1139 }
1140 }
1141
1142 template<typename D>
1143 static inline void
1144 gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
1145 {
1146 op (&h->m_entries, cookie);
1147 }
1148
1149 template<typename H>
1150 inline void
1151 gt_cleare_cache (hash_table<H> *h)
1152 {
1153 typedef hash_table<H> table;
1154 if (!h)
1155 return;
1156
1157 for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter)
1158 if (!table::is_empty (*iter) && !table::is_deleted (*iter))
1159 {
1160 int res = H::keep_cache_entry (*iter);
1161 if (res == 0)
1162 h->clear_slot (&*iter);
1163 else if (res != -1)
1164 H::ggc_mx (*iter);
1165 }
1166 }
1167
1168 #endif /* TYPED_HASHTAB_H */