]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ipa-profile.c
b2b272e33652688f15071544c0f6a5303c429f3d
[thirdparty/gcc.git] / gcc / ipa-profile.c
1 /* Basic IPA optimizations based on profile.
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* ipa-profile pass implements the following analysis propagating profille
21 inter-procedurally.
22
23 - Count histogram construction. This is a histogram analyzing how much
24 time is spent executing statements with a given execution count read
25 from profile feedback. This histogram is complete only with LTO,
26 otherwise it contains information only about the current unit.
27
28 The information is used to set hot/cold thresholds.
29 - Next speculative indirect call resolution is performed: the local
30 profile pass assigns profile-id to each function and provide us with a
31 histogram specifying the most common target. We look up the callgraph
32 node corresponding to the target and produce a speculative call.
33
34 This call may or may not survive through IPA optimization based on decision
35 of inliner.
36 - Finally we propagate the following flags: unlikely executed, executed
37 once, executed at startup and executed at exit. These flags are used to
38 control code size/performance threshold and code placement (by producing
39 .text.unlikely/.text.hot/.text.startup/.text.exit subsections). */
40 #include "config.h"
41 #include "system.h"
42 #include "coretypes.h"
43 #include "backend.h"
44 #include "tree.h"
45 #include "gimple.h"
46 #include "predict.h"
47 #include "alloc-pool.h"
48 #include "tree-pass.h"
49 #include "cgraph.h"
50 #include "data-streamer.h"
51 #include "gimple-iterator.h"
52 #include "ipa-utils.h"
53 #include "profile.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "symbol-summary.h"
57 #include "tree-vrp.h"
58 #include "ipa-prop.h"
59 #include "ipa-fnsummary.h"
60
61 /* Entry in the histogram. */
62
63 struct histogram_entry
64 {
65 gcov_type count;
66 int time;
67 int size;
68 };
69
70 /* Histogram of profile values.
71 The histogram is represented as an ordered vector of entries allocated via
72 histogram_pool. During construction a separate hashtable is kept to lookup
73 duplicate entries. */
74
75 vec<histogram_entry *> histogram;
76 static object_allocator<histogram_entry> histogram_pool ("IPA histogram");
77
78 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
79
80 struct histogram_hash : nofree_ptr_hash <histogram_entry>
81 {
82 static inline hashval_t hash (const histogram_entry *);
83 static inline int equal (const histogram_entry *, const histogram_entry *);
84 };
85
86 inline hashval_t
87 histogram_hash::hash (const histogram_entry *val)
88 {
89 return val->count;
90 }
91
92 inline int
93 histogram_hash::equal (const histogram_entry *val, const histogram_entry *val2)
94 {
95 return val->count == val2->count;
96 }
97
98 /* Account TIME and SIZE executed COUNT times into HISTOGRAM.
99 HASHTABLE is the on-side hash kept to avoid duplicates. */
100
101 static void
102 account_time_size (hash_table<histogram_hash> *hashtable,
103 vec<histogram_entry *> &histogram,
104 gcov_type count, int time, int size)
105 {
106 histogram_entry key = {count, 0, 0};
107 histogram_entry **val = hashtable->find_slot (&key, INSERT);
108
109 if (!*val)
110 {
111 *val = histogram_pool.allocate ();
112 **val = key;
113 histogram.safe_push (*val);
114 }
115 (*val)->time += time;
116 (*val)->size += size;
117 }
118
119 int
120 cmp_counts (const void *v1, const void *v2)
121 {
122 const histogram_entry *h1 = *(const histogram_entry * const *)v1;
123 const histogram_entry *h2 = *(const histogram_entry * const *)v2;
124 if (h1->count < h2->count)
125 return 1;
126 if (h1->count > h2->count)
127 return -1;
128 return 0;
129 }
130
131 /* Dump HISTOGRAM to FILE. */
132
133 static void
134 dump_histogram (FILE *file, vec<histogram_entry *> histogram)
135 {
136 unsigned int i;
137 gcov_type overall_time = 0, cumulated_time = 0, cumulated_size = 0, overall_size = 0;
138
139 fprintf (dump_file, "Histogram:\n");
140 for (i = 0; i < histogram.length (); i++)
141 {
142 overall_time += histogram[i]->count * histogram[i]->time;
143 overall_size += histogram[i]->size;
144 }
145 if (!overall_time)
146 overall_time = 1;
147 if (!overall_size)
148 overall_size = 1;
149 for (i = 0; i < histogram.length (); i++)
150 {
151 cumulated_time += histogram[i]->count * histogram[i]->time;
152 cumulated_size += histogram[i]->size;
153 fprintf (file, " %" PRId64": time:%i (%2.2f) size:%i (%2.2f)\n",
154 (int64_t) histogram[i]->count,
155 histogram[i]->time,
156 cumulated_time * 100.0 / overall_time,
157 histogram[i]->size,
158 cumulated_size * 100.0 / overall_size);
159 }
160 }
161
162 /* Collect histogram from CFG profiles. */
163
164 static void
165 ipa_profile_generate_summary (void)
166 {
167 struct cgraph_node *node;
168 gimple_stmt_iterator gsi;
169 basic_block bb;
170
171 hash_table<histogram_hash> hashtable (10);
172
173 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
174 if (ENTRY_BLOCK_PTR_FOR_FN (DECL_STRUCT_FUNCTION (node->decl))->count.ipa_p ())
175 FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (node->decl))
176 {
177 int time = 0;
178 int size = 0;
179 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
180 {
181 gimple *stmt = gsi_stmt (gsi);
182 if (gimple_code (stmt) == GIMPLE_CALL
183 && !gimple_call_fndecl (stmt))
184 {
185 histogram_value h;
186 h = gimple_histogram_value_of_type
187 (DECL_STRUCT_FUNCTION (node->decl),
188 stmt, HIST_TYPE_INDIR_CALL);
189 /* No need to do sanity check: gimple_ic_transform already
190 takes away bad histograms. */
191 if (h)
192 {
193 gcov_type val, count, all;
194 if (get_nth_most_common_value (NULL, "indirect call", h,
195 &val, &count, &all))
196 {
197 struct cgraph_edge * e = node->get_edge (stmt);
198 if (e && !e->indirect_unknown_callee)
199 continue;
200
201 e->indirect_info->common_target_id = val;
202 e->indirect_info->common_target_probability
203 = GCOV_COMPUTE_SCALE (count, all);
204 if (e->indirect_info->common_target_probability > REG_BR_PROB_BASE)
205 {
206 if (dump_file)
207 fprintf (dump_file, "Probability capped to 1\n");
208 e->indirect_info->common_target_probability = REG_BR_PROB_BASE;
209 }
210 }
211 gimple_remove_histogram_value (DECL_STRUCT_FUNCTION (node->decl),
212 stmt, h);
213 }
214 }
215 time += estimate_num_insns (stmt, &eni_time_weights);
216 size += estimate_num_insns (stmt, &eni_size_weights);
217 }
218 if (bb->count.ipa_p () && bb->count.initialized_p ())
219 account_time_size (&hashtable, histogram, bb->count.ipa ().to_gcov_type (),
220 time, size);
221 }
222 histogram.qsort (cmp_counts);
223 }
224
225 /* Serialize the ipa info for lto. */
226
227 static void
228 ipa_profile_write_summary (void)
229 {
230 struct lto_simple_output_block *ob
231 = lto_create_simple_output_block (LTO_section_ipa_profile);
232 unsigned int i;
233
234 streamer_write_uhwi_stream (ob->main_stream, histogram.length ());
235 for (i = 0; i < histogram.length (); i++)
236 {
237 streamer_write_gcov_count_stream (ob->main_stream, histogram[i]->count);
238 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->time);
239 streamer_write_uhwi_stream (ob->main_stream, histogram[i]->size);
240 }
241 lto_destroy_simple_output_block (ob);
242 }
243
244 /* Deserialize the ipa info for lto. */
245
246 static void
247 ipa_profile_read_summary (void)
248 {
249 struct lto_file_decl_data ** file_data_vec
250 = lto_get_file_decl_data ();
251 struct lto_file_decl_data * file_data;
252 int j = 0;
253
254 hash_table<histogram_hash> hashtable (10);
255
256 while ((file_data = file_data_vec[j++]))
257 {
258 const char *data;
259 size_t len;
260 class lto_input_block *ib
261 = lto_create_simple_input_block (file_data,
262 LTO_section_ipa_profile,
263 &data, &len);
264 if (ib)
265 {
266 unsigned int num = streamer_read_uhwi (ib);
267 unsigned int n;
268 for (n = 0; n < num; n++)
269 {
270 gcov_type count = streamer_read_gcov_count (ib);
271 int time = streamer_read_uhwi (ib);
272 int size = streamer_read_uhwi (ib);
273 account_time_size (&hashtable, histogram,
274 count, time, size);
275 }
276 lto_destroy_simple_input_block (file_data,
277 LTO_section_ipa_profile,
278 ib, data, len);
279 }
280 }
281 histogram.qsort (cmp_counts);
282 }
283
284 /* Data used by ipa_propagate_frequency. */
285
286 struct ipa_propagate_frequency_data
287 {
288 cgraph_node *function_symbol;
289 bool maybe_unlikely_executed;
290 bool maybe_executed_once;
291 bool only_called_at_startup;
292 bool only_called_at_exit;
293 };
294
295 /* Worker for ipa_propagate_frequency_1. */
296
297 static bool
298 ipa_propagate_frequency_1 (struct cgraph_node *node, void *data)
299 {
300 struct ipa_propagate_frequency_data *d;
301 struct cgraph_edge *edge;
302
303 d = (struct ipa_propagate_frequency_data *)data;
304 for (edge = node->callers;
305 edge && (d->maybe_unlikely_executed || d->maybe_executed_once
306 || d->only_called_at_startup || d->only_called_at_exit);
307 edge = edge->next_caller)
308 {
309 if (edge->caller != d->function_symbol)
310 {
311 d->only_called_at_startup &= edge->caller->only_called_at_startup;
312 /* It makes sense to put main() together with the static constructors.
313 It will be executed for sure, but rest of functions called from
314 main are definitely not at startup only. */
315 if (MAIN_NAME_P (DECL_NAME (edge->caller->decl)))
316 d->only_called_at_startup = 0;
317 d->only_called_at_exit &= edge->caller->only_called_at_exit;
318 }
319
320 /* When profile feedback is available, do not try to propagate too hard;
321 counts are already good guide on function frequencies and roundoff
322 errors can make us to push function into unlikely section even when
323 it is executed by the train run. Transfer the function only if all
324 callers are unlikely executed. */
325 if (profile_info
326 && !(edge->callee->count.ipa () == profile_count::zero ())
327 && (edge->caller->frequency != NODE_FREQUENCY_UNLIKELY_EXECUTED
328 || (edge->caller->inlined_to
329 && edge->caller->inlined_to->frequency
330 != NODE_FREQUENCY_UNLIKELY_EXECUTED)))
331 d->maybe_unlikely_executed = false;
332 if (edge->count.ipa ().initialized_p ()
333 && !edge->count.ipa ().nonzero_p ())
334 continue;
335 switch (edge->caller->frequency)
336 {
337 case NODE_FREQUENCY_UNLIKELY_EXECUTED:
338 break;
339 case NODE_FREQUENCY_EXECUTED_ONCE:
340 {
341 if (dump_file && (dump_flags & TDF_DETAILS))
342 fprintf (dump_file, " Called by %s that is executed once\n",
343 edge->caller->name ());
344 d->maybe_unlikely_executed = false;
345 ipa_call_summary *s = ipa_call_summaries->get (edge);
346 if (s != NULL && s->loop_depth)
347 {
348 d->maybe_executed_once = false;
349 if (dump_file && (dump_flags & TDF_DETAILS))
350 fprintf (dump_file, " Called in loop\n");
351 }
352 break;
353 }
354 case NODE_FREQUENCY_HOT:
355 case NODE_FREQUENCY_NORMAL:
356 if (dump_file && (dump_flags & TDF_DETAILS))
357 fprintf (dump_file, " Called by %s that is normal or hot\n",
358 edge->caller->name ());
359 d->maybe_unlikely_executed = false;
360 d->maybe_executed_once = false;
361 break;
362 }
363 }
364 return edge != NULL;
365 }
366
367 /* Return ture if NODE contains hot calls. */
368
369 bool
370 contains_hot_call_p (struct cgraph_node *node)
371 {
372 struct cgraph_edge *e;
373 for (e = node->callees; e; e = e->next_callee)
374 if (e->maybe_hot_p ())
375 return true;
376 else if (!e->inline_failed
377 && contains_hot_call_p (e->callee))
378 return true;
379 for (e = node->indirect_calls; e; e = e->next_callee)
380 if (e->maybe_hot_p ())
381 return true;
382 return false;
383 }
384
385 /* See if the frequency of NODE can be updated based on frequencies of its
386 callers. */
387 bool
388 ipa_propagate_frequency (struct cgraph_node *node)
389 {
390 struct ipa_propagate_frequency_data d = {node, true, true, true, true};
391 bool changed = false;
392
393 /* We cannot propagate anything useful about externally visible functions
394 nor about virtuals. */
395 if (!node->local
396 || node->alias
397 || (opt_for_fn (node->decl, flag_devirtualize)
398 && DECL_VIRTUAL_P (node->decl)))
399 return false;
400 gcc_assert (node->analyzed);
401 if (dump_file && (dump_flags & TDF_DETAILS))
402 fprintf (dump_file, "Processing frequency %s\n", node->name ());
403
404 node->call_for_symbol_and_aliases (ipa_propagate_frequency_1, &d,
405 true);
406
407 if ((d.only_called_at_startup && !d.only_called_at_exit)
408 && !node->only_called_at_startup)
409 {
410 node->only_called_at_startup = true;
411 if (dump_file)
412 fprintf (dump_file, "Node %s promoted to only called at startup.\n",
413 node->name ());
414 changed = true;
415 }
416 if ((d.only_called_at_exit && !d.only_called_at_startup)
417 && !node->only_called_at_exit)
418 {
419 node->only_called_at_exit = true;
420 if (dump_file)
421 fprintf (dump_file, "Node %s promoted to only called at exit.\n",
422 node->name ());
423 changed = true;
424 }
425
426 /* With profile we can decide on hot/normal based on count. */
427 if (node->count. ipa().initialized_p ())
428 {
429 bool hot = false;
430 if (!(node->count. ipa() == profile_count::zero ())
431 && node->count. ipa() >= get_hot_bb_threshold ())
432 hot = true;
433 if (!hot)
434 hot |= contains_hot_call_p (node);
435 if (hot)
436 {
437 if (node->frequency != NODE_FREQUENCY_HOT)
438 {
439 if (dump_file)
440 fprintf (dump_file, "Node %s promoted to hot.\n",
441 node->name ());
442 node->frequency = NODE_FREQUENCY_HOT;
443 return true;
444 }
445 return false;
446 }
447 else if (node->frequency == NODE_FREQUENCY_HOT)
448 {
449 if (dump_file)
450 fprintf (dump_file, "Node %s reduced to normal.\n",
451 node->name ());
452 node->frequency = NODE_FREQUENCY_NORMAL;
453 changed = true;
454 }
455 }
456 /* These come either from profile or user hints; never update them. */
457 if (node->frequency == NODE_FREQUENCY_HOT
458 || node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
459 return changed;
460 if (d.maybe_unlikely_executed)
461 {
462 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
463 if (dump_file)
464 fprintf (dump_file, "Node %s promoted to unlikely executed.\n",
465 node->name ());
466 changed = true;
467 }
468 else if (d.maybe_executed_once && node->frequency != NODE_FREQUENCY_EXECUTED_ONCE)
469 {
470 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
471 if (dump_file)
472 fprintf (dump_file, "Node %s promoted to executed once.\n",
473 node->name ());
474 changed = true;
475 }
476 return changed;
477 }
478
479 /* Check that number of arguments of N agrees with E.
480 Be conservative when summaries are not present. */
481
482 static bool
483 check_argument_count (struct cgraph_node *n, struct cgraph_edge *e)
484 {
485 if (!ipa_node_params_sum || !ipa_edge_args_sum)
486 return true;
487 class ipa_node_params *info = IPA_NODE_REF (n->function_symbol ());
488 if (!info)
489 return true;
490 ipa_edge_args *e_info = IPA_EDGE_REF (e);
491 if (!e_info)
492 return true;
493 if (ipa_get_param_count (info) != ipa_get_cs_argument_count (e_info)
494 && (ipa_get_param_count (info) >= ipa_get_cs_argument_count (e_info)
495 || !stdarg_p (TREE_TYPE (n->decl))))
496 return false;
497 return true;
498 }
499
500 /* Simple ipa profile pass propagating frequencies across the callgraph. */
501
502 static unsigned int
503 ipa_profile (void)
504 {
505 struct cgraph_node **order;
506 struct cgraph_edge *e;
507 int order_pos;
508 bool something_changed = false;
509 int i;
510 gcov_type overall_time = 0, cutoff = 0, cumulated = 0, overall_size = 0;
511 struct cgraph_node *n,*n2;
512 int nindirect = 0, ncommon = 0, nunknown = 0, nuseless = 0, nconverted = 0;
513 int nmismatch = 0, nimpossible = 0;
514 bool node_map_initialized = false;
515
516 if (dump_file)
517 dump_histogram (dump_file, histogram);
518 for (i = 0; i < (int)histogram.length (); i++)
519 {
520 overall_time += histogram[i]->count * histogram[i]->time;
521 overall_size += histogram[i]->size;
522 }
523 if (overall_time)
524 {
525 gcov_type threshold;
526
527 gcc_assert (overall_size);
528
529 cutoff = (overall_time * param_hot_bb_count_ws_permille + 500) / 1000;
530 threshold = 0;
531 for (i = 0; cumulated < cutoff; i++)
532 {
533 cumulated += histogram[i]->count * histogram[i]->time;
534 threshold = histogram[i]->count;
535 }
536 if (!threshold)
537 threshold = 1;
538 if (dump_file)
539 {
540 gcov_type cumulated_time = 0, cumulated_size = 0;
541
542 for (i = 0;
543 i < (int)histogram.length () && histogram[i]->count >= threshold;
544 i++)
545 {
546 cumulated_time += histogram[i]->count * histogram[i]->time;
547 cumulated_size += histogram[i]->size;
548 }
549 fprintf (dump_file, "Determined min count: %" PRId64
550 " Time:%3.2f%% Size:%3.2f%%\n",
551 (int64_t)threshold,
552 cumulated_time * 100.0 / overall_time,
553 cumulated_size * 100.0 / overall_size);
554 }
555
556 if (in_lto_p)
557 {
558 if (dump_file)
559 fprintf (dump_file, "Setting hotness threshold in LTO mode.\n");
560 set_hot_bb_threshold (threshold);
561 }
562 }
563 histogram.release ();
564 histogram_pool.release ();
565
566 /* Produce speculative calls: we saved common target from porfiling into
567 e->common_target_id. Now, at link time, we can look up corresponding
568 function node and produce speculative call. */
569
570 FOR_EACH_DEFINED_FUNCTION (n)
571 {
572 bool update = false;
573
574 if (!opt_for_fn (n->decl, flag_ipa_profile))
575 continue;
576
577 for (e = n->indirect_calls; e; e = e->next_callee)
578 {
579 if (n->count.initialized_p ())
580 nindirect++;
581 if (e->indirect_info->common_target_id)
582 {
583 if (!node_map_initialized)
584 init_node_map (false);
585 node_map_initialized = true;
586 ncommon++;
587 n2 = find_func_by_profile_id (e->indirect_info->common_target_id);
588 if (n2)
589 {
590 if (dump_file)
591 {
592 fprintf (dump_file, "Indirect call -> direct call from"
593 " other module %s => %s, prob %3.2f\n",
594 n->dump_name (),
595 n2->dump_name (),
596 e->indirect_info->common_target_probability
597 / (float)REG_BR_PROB_BASE);
598 }
599 if (e->indirect_info->common_target_probability
600 < REG_BR_PROB_BASE / 2)
601 {
602 nuseless++;
603 if (dump_file)
604 fprintf (dump_file,
605 "Not speculating: probability is too low.\n");
606 }
607 else if (!e->maybe_hot_p ())
608 {
609 nuseless++;
610 if (dump_file)
611 fprintf (dump_file,
612 "Not speculating: call is cold.\n");
613 }
614 else if (n2->get_availability () <= AVAIL_INTERPOSABLE
615 && n2->can_be_discarded_p ())
616 {
617 nuseless++;
618 if (dump_file)
619 fprintf (dump_file,
620 "Not speculating: target is overwritable "
621 "and can be discarded.\n");
622 }
623 else if (!check_argument_count (n2, e))
624 {
625 nmismatch++;
626 if (dump_file)
627 fprintf (dump_file,
628 "Not speculating: "
629 "parameter count mismatch\n");
630 }
631 else if (e->indirect_info->polymorphic
632 && !opt_for_fn (n->decl, flag_devirtualize)
633 && !possible_polymorphic_call_target_p (e, n2))
634 {
635 nimpossible++;
636 if (dump_file)
637 fprintf (dump_file,
638 "Not speculating: "
639 "function is not in the polymorphic "
640 "call target list\n");
641 }
642 else
643 {
644 /* Target may be overwritable, but profile says that
645 control flow goes to this particular implementation
646 of N2. Speculate on the local alias to allow inlining.
647 */
648 if (!n2->can_be_discarded_p ())
649 {
650 cgraph_node *alias;
651 alias = dyn_cast<cgraph_node *> (n2->noninterposable_alias ());
652 if (alias)
653 n2 = alias;
654 }
655 nconverted++;
656 e->make_speculative
657 (n2,
658 e->count.apply_probability
659 (e->indirect_info->common_target_probability));
660 update = true;
661 }
662 }
663 else
664 {
665 if (dump_file)
666 fprintf (dump_file, "Function with profile-id %i not found.\n",
667 e->indirect_info->common_target_id);
668 nunknown++;
669 }
670 }
671 }
672 if (update)
673 ipa_update_overall_fn_summary (n);
674 }
675 if (node_map_initialized)
676 del_node_map ();
677 if (dump_file && nindirect)
678 fprintf (dump_file,
679 "%i indirect calls trained.\n"
680 "%i (%3.2f%%) have common target.\n"
681 "%i (%3.2f%%) targets was not found.\n"
682 "%i (%3.2f%%) targets had parameter count mismatch.\n"
683 "%i (%3.2f%%) targets was not in polymorphic call target list.\n"
684 "%i (%3.2f%%) speculations seems useless.\n"
685 "%i (%3.2f%%) speculations produced.\n",
686 nindirect,
687 ncommon, ncommon * 100.0 / nindirect,
688 nunknown, nunknown * 100.0 / nindirect,
689 nmismatch, nmismatch * 100.0 / nindirect,
690 nimpossible, nimpossible * 100.0 / nindirect,
691 nuseless, nuseless * 100.0 / nindirect,
692 nconverted, nconverted * 100.0 / nindirect);
693
694 order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
695 order_pos = ipa_reverse_postorder (order);
696 for (i = order_pos - 1; i >= 0; i--)
697 {
698 if (order[i]->local
699 && opt_for_fn (order[i]->decl, flag_ipa_profile)
700 && ipa_propagate_frequency (order[i]))
701 {
702 for (e = order[i]->callees; e; e = e->next_callee)
703 if (e->callee->local && !e->callee->aux)
704 {
705 something_changed = true;
706 e->callee->aux = (void *)1;
707 }
708 }
709 order[i]->aux = NULL;
710 }
711
712 while (something_changed)
713 {
714 something_changed = false;
715 for (i = order_pos - 1; i >= 0; i--)
716 {
717 if (order[i]->aux
718 && opt_for_fn (order[i]->decl, flag_ipa_profile)
719 && ipa_propagate_frequency (order[i]))
720 {
721 for (e = order[i]->callees; e; e = e->next_callee)
722 if (e->callee->local && !e->callee->aux)
723 {
724 something_changed = true;
725 e->callee->aux = (void *)1;
726 }
727 }
728 order[i]->aux = NULL;
729 }
730 }
731 free (order);
732 return 0;
733 }
734
735 namespace {
736
737 const pass_data pass_data_ipa_profile =
738 {
739 IPA_PASS, /* type */
740 "profile_estimate", /* name */
741 OPTGROUP_NONE, /* optinfo_flags */
742 TV_IPA_PROFILE, /* tv_id */
743 0, /* properties_required */
744 0, /* properties_provided */
745 0, /* properties_destroyed */
746 0, /* todo_flags_start */
747 0, /* todo_flags_finish */
748 };
749
750 class pass_ipa_profile : public ipa_opt_pass_d
751 {
752 public:
753 pass_ipa_profile (gcc::context *ctxt)
754 : ipa_opt_pass_d (pass_data_ipa_profile, ctxt,
755 ipa_profile_generate_summary, /* generate_summary */
756 ipa_profile_write_summary, /* write_summary */
757 ipa_profile_read_summary, /* read_summary */
758 NULL, /* write_optimization_summary */
759 NULL, /* read_optimization_summary */
760 NULL, /* stmt_fixup */
761 0, /* function_transform_todo_flags_start */
762 NULL, /* function_transform */
763 NULL) /* variable_transform */
764 {}
765
766 /* opt_pass methods: */
767 virtual bool gate (function *) { return flag_ipa_profile || in_lto_p; }
768 virtual unsigned int execute (function *) { return ipa_profile (); }
769
770 }; // class pass_ipa_profile
771
772 } // anon namespace
773
774 ipa_opt_pass_d *
775 make_pass_ipa_profile (gcc::context *ctxt)
776 {
777 return new pass_ipa_profile (ctxt);
778 }