]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/local-alloc.c
ab7fc98f39da016a1444185eea7b0c4eed9b0291
[thirdparty/gcc.git] / gcc / local-alloc.c
1 /* Allocate registers within a basic block, for GNU compiler.
2 Copyright (C) 1987, 88, 91, 93-6, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* Allocation of hard register numbers to pseudo registers is done in
23 two passes. In this pass we consider only regs that are born and
24 die once within one basic block. We do this one basic block at a
25 time. Then the next pass allocates the registers that remain.
26 Two passes are used because this pass uses methods that work only
27 on linear code, but that do a better job than the general methods
28 used in global_alloc, and more quickly too.
29
30 The assignments made are recorded in the vector reg_renumber
31 whose space is allocated here. The rtl code itself is not altered.
32
33 We assign each instruction in the basic block a number
34 which is its order from the beginning of the block.
35 Then we can represent the lifetime of a pseudo register with
36 a pair of numbers, and check for conflicts easily.
37 We can record the availability of hard registers with a
38 HARD_REG_SET for each instruction. The HARD_REG_SET
39 contains 0 or 1 for each hard reg.
40
41 To avoid register shuffling, we tie registers together when one
42 dies by being copied into another, or dies in an instruction that
43 does arithmetic to produce another. The tied registers are
44 allocated as one. Registers with different reg class preferences
45 can never be tied unless the class preferred by one is a subclass
46 of the one preferred by the other.
47
48 Tying is represented with "quantity numbers".
49 A non-tied register is given a new quantity number.
50 Tied registers have the same quantity number.
51
52 We have provision to exempt registers, even when they are contained
53 within the block, that can be tied to others that are not contained in it.
54 This is so that global_alloc could process them both and tie them then.
55 But this is currently disabled since tying in global_alloc is not
56 yet implemented. */
57
58 /* Pseudos allocated here cannot be reallocated by global.c if the hard
59 register is used as a spill register. So we don't allocate such pseudos
60 here if their preferred class is likely to be used by spills. */
61
62 #include "config.h"
63 #include <stdio.h>
64 #include "rtl.h"
65 #include "flags.h"
66 #include "basic-block.h"
67 #include "regs.h"
68 #include "hard-reg-set.h"
69 #include "insn-config.h"
70 #include "recog.h"
71 #include "output.h"
72 \f
73 /* Next quantity number available for allocation. */
74
75 static int next_qty;
76
77 /* In all the following vectors indexed by quantity number. */
78
79 /* Element Q is the hard reg number chosen for quantity Q,
80 or -1 if none was found. */
81
82 static short *qty_phys_reg;
83
84 /* We maintain two hard register sets that indicate suggested hard registers
85 for each quantity. The first, qty_phys_copy_sugg, contains hard registers
86 that are tied to the quantity by a simple copy. The second contains all
87 hard registers that are tied to the quantity via an arithmetic operation.
88
89 The former register set is given priority for allocation. This tends to
90 eliminate copy insns. */
91
92 /* Element Q is a set of hard registers that are suggested for quantity Q by
93 copy insns. */
94
95 static HARD_REG_SET *qty_phys_copy_sugg;
96
97 /* Element Q is a set of hard registers that are suggested for quantity Q by
98 arithmetic insns. */
99
100 static HARD_REG_SET *qty_phys_sugg;
101
102 /* Element Q is the number of suggested registers in qty_phys_copy_sugg. */
103
104 static short *qty_phys_num_copy_sugg;
105
106 /* Element Q is the number of suggested registers in qty_phys_sugg. */
107
108 static short *qty_phys_num_sugg;
109
110 /* Element Q is the number of refs to quantity Q. */
111
112 static int *qty_n_refs;
113
114 /* Element Q is a reg class contained in (smaller than) the
115 preferred classes of all the pseudo regs that are tied in quantity Q.
116 This is the preferred class for allocating that quantity. */
117
118 static enum reg_class *qty_min_class;
119
120 /* Insn number (counting from head of basic block)
121 where quantity Q was born. -1 if birth has not been recorded. */
122
123 static int *qty_birth;
124
125 /* Insn number (counting from head of basic block)
126 where quantity Q died. Due to the way tying is done,
127 and the fact that we consider in this pass only regs that die but once,
128 a quantity can die only once. Each quantity's life span
129 is a set of consecutive insns. -1 if death has not been recorded. */
130
131 static int *qty_death;
132
133 /* Number of words needed to hold the data in quantity Q.
134 This depends on its machine mode. It is used for these purposes:
135 1. It is used in computing the relative importances of qtys,
136 which determines the order in which we look for regs for them.
137 2. It is used in rules that prevent tying several registers of
138 different sizes in a way that is geometrically impossible
139 (see combine_regs). */
140
141 static int *qty_size;
142
143 /* This holds the mode of the registers that are tied to qty Q,
144 or VOIDmode if registers with differing modes are tied together. */
145
146 static enum machine_mode *qty_mode;
147
148 /* Number of times a reg tied to qty Q lives across a CALL_INSN. */
149
150 static int *qty_n_calls_crossed;
151
152 /* Register class within which we allocate qty Q if we can't get
153 its preferred class. */
154
155 static enum reg_class *qty_alternate_class;
156
157 /* Element Q is the SCRATCH expression for which this quantity is being
158 allocated or 0 if this quantity is allocating registers. */
159
160 static rtx *qty_scratch_rtx;
161
162 /* Element Q is nonzero if this quantity has been used in a SUBREG
163 that changes its size. */
164
165 static char *qty_changes_size;
166
167 /* Element Q is the register number of one pseudo register whose
168 reg_qty value is Q, or -1 is this quantity is for a SCRATCH. This
169 register should be the head of the chain maintained in reg_next_in_qty. */
170
171 static int *qty_first_reg;
172
173 /* If (REG N) has been assigned a quantity number, is a register number
174 of another register assigned the same quantity number, or -1 for the
175 end of the chain. qty_first_reg point to the head of this chain. */
176
177 static int *reg_next_in_qty;
178
179 /* reg_qty[N] (where N is a pseudo reg number) is the qty number of that reg
180 if it is >= 0,
181 of -1 if this register cannot be allocated by local-alloc,
182 or -2 if not known yet.
183
184 Note that if we see a use or death of pseudo register N with
185 reg_qty[N] == -2, register N must be local to the current block. If
186 it were used in more than one block, we would have reg_qty[N] == -1.
187 This relies on the fact that if reg_basic_block[N] is >= 0, register N
188 will not appear in any other block. We save a considerable number of
189 tests by exploiting this.
190
191 If N is < FIRST_PSEUDO_REGISTER, reg_qty[N] is undefined and should not
192 be referenced. */
193
194 static int *reg_qty;
195
196 /* The offset (in words) of register N within its quantity.
197 This can be nonzero if register N is SImode, and has been tied
198 to a subreg of a DImode register. */
199
200 static char *reg_offset;
201
202 /* Vector of substitutions of register numbers,
203 used to map pseudo regs into hardware regs.
204 This is set up as a result of register allocation.
205 Element N is the hard reg assigned to pseudo reg N,
206 or is -1 if no hard reg was assigned.
207 If N is a hard reg number, element N is N. */
208
209 short *reg_renumber;
210
211 /* Set of hard registers live at the current point in the scan
212 of the instructions in a basic block. */
213
214 static HARD_REG_SET regs_live;
215
216 /* Each set of hard registers indicates registers live at a particular
217 point in the basic block. For N even, regs_live_at[N] says which
218 hard registers are needed *after* insn N/2 (i.e., they may not
219 conflict with the outputs of insn N/2 or the inputs of insn N/2 + 1.
220
221 If an object is to conflict with the inputs of insn J but not the
222 outputs of insn J + 1, we say it is born at index J*2 - 1. Similarly,
223 if it is to conflict with the outputs of insn J but not the inputs of
224 insn J + 1, it is said to die at index J*2 + 1. */
225
226 static HARD_REG_SET *regs_live_at;
227
228 int *scratch_block;
229 rtx *scratch_list;
230 int scratch_list_length;
231 static int scratch_index;
232
233 /* Communicate local vars `insn_number' and `insn'
234 from `block_alloc' to `reg_is_set', `wipe_dead_reg', and `alloc_qty'. */
235 static int this_insn_number;
236 static rtx this_insn;
237
238 /* Used to communicate changes made by update_equiv_regs to
239 memref_referenced_p. reg_equiv_replacement is set for any REG_EQUIV note
240 found or created, so that we can keep track of what memory accesses might
241 be created later, e.g. by reload. */
242
243 static rtx *reg_equiv_replacement;
244
245 static void alloc_qty PROTO((int, enum machine_mode, int, int));
246 static void alloc_qty_for_scratch PROTO((rtx, int, rtx, int, int));
247 static void validate_equiv_mem_from_store PROTO((rtx, rtx));
248 static int validate_equiv_mem PROTO((rtx, rtx, rtx));
249 static int contains_replace_regs PROTO((rtx, char *));
250 static int memref_referenced_p PROTO((rtx, rtx));
251 static int memref_used_between_p PROTO((rtx, rtx, rtx));
252 static void optimize_reg_copy_1 PROTO((rtx, rtx, rtx));
253 static void optimize_reg_copy_2 PROTO((rtx, rtx, rtx));
254 static void update_equiv_regs PROTO((void));
255 static void block_alloc PROTO((int));
256 static int qty_sugg_compare PROTO((int, int));
257 static int qty_sugg_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
258 static int qty_compare PROTO((int, int));
259 static int qty_compare_1 PROTO((const GENERIC_PTR, const GENERIC_PTR));
260 static int combine_regs PROTO((rtx, rtx, int, int, rtx, int));
261 static int reg_meets_class_p PROTO((int, enum reg_class));
262 static int reg_classes_overlap_p PROTO((enum reg_class, enum reg_class,
263 int));
264 static void update_qty_class PROTO((int, int));
265 static void reg_is_set PROTO((rtx, rtx));
266 static void reg_is_born PROTO((rtx, int));
267 static void wipe_dead_reg PROTO((rtx, int));
268 static int find_free_reg PROTO((enum reg_class, enum machine_mode,
269 int, int, int, int, int));
270 static void mark_life PROTO((int, enum machine_mode, int));
271 static void post_mark_life PROTO((int, enum machine_mode, int, int, int));
272 static int no_conflict_p PROTO((rtx, rtx, rtx));
273 static int requires_inout PROTO((char *));
274 \f
275 /* Allocate a new quantity (new within current basic block)
276 for register number REGNO which is born at index BIRTH
277 within the block. MODE and SIZE are info on reg REGNO. */
278
279 static void
280 alloc_qty (regno, mode, size, birth)
281 int regno;
282 enum machine_mode mode;
283 int size, birth;
284 {
285 register int qty = next_qty++;
286
287 reg_qty[regno] = qty;
288 reg_offset[regno] = 0;
289 reg_next_in_qty[regno] = -1;
290
291 qty_first_reg[qty] = regno;
292 qty_size[qty] = size;
293 qty_mode[qty] = mode;
294 qty_birth[qty] = birth;
295 qty_n_calls_crossed[qty] = REG_N_CALLS_CROSSED (regno);
296 qty_min_class[qty] = reg_preferred_class (regno);
297 qty_alternate_class[qty] = reg_alternate_class (regno);
298 qty_n_refs[qty] = REG_N_REFS (regno);
299 qty_changes_size[qty] = REG_CHANGES_SIZE (regno);
300 }
301 \f
302 /* Similar to `alloc_qty', but allocates a quantity for a SCRATCH rtx
303 used as operand N in INSN. We assume here that the SCRATCH is used in
304 a CLOBBER. */
305
306 static void
307 alloc_qty_for_scratch (scratch, n, insn, insn_code_num, insn_number)
308 rtx scratch;
309 int n;
310 rtx insn;
311 int insn_code_num, insn_number;
312 {
313 register int qty;
314 enum reg_class class;
315 char *p, c;
316 int i;
317
318 #ifdef REGISTER_CONSTRAINTS
319 /* If we haven't yet computed which alternative will be used, do so now.
320 Then set P to the constraints for that alternative. */
321 if (which_alternative == -1)
322 if (! constrain_operands (insn_code_num, 0))
323 return;
324
325 for (p = insn_operand_constraint[insn_code_num][n], i = 0;
326 *p && i < which_alternative; p++)
327 if (*p == ',')
328 i++;
329
330 /* Compute the class required for this SCRATCH. If we don't need a
331 register, the class will remain NO_REGS. If we guessed the alternative
332 number incorrectly, reload will fix things up for us. */
333
334 class = NO_REGS;
335 while ((c = *p++) != '\0' && c != ',')
336 switch (c)
337 {
338 case '=': case '+': case '?':
339 case '#': case '&': case '!':
340 case '*': case '%':
341 case '0': case '1': case '2': case '3': case '4':
342 case 'm': case '<': case '>': case 'V': case 'o':
343 case 'E': case 'F': case 'G': case 'H':
344 case 's': case 'i': case 'n':
345 case 'I': case 'J': case 'K': case 'L':
346 case 'M': case 'N': case 'O': case 'P':
347 #ifdef EXTRA_CONSTRAINT
348 case 'Q': case 'R': case 'S': case 'T': case 'U':
349 #endif
350 case 'p':
351 /* These don't say anything we care about. */
352 break;
353
354 case 'X':
355 /* We don't need to allocate this SCRATCH. */
356 return;
357
358 case 'g': case 'r':
359 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
360 break;
361
362 default:
363 class
364 = reg_class_subunion[(int) class][(int) REG_CLASS_FROM_LETTER (c)];
365 break;
366 }
367
368 if (class == NO_REGS)
369 return;
370
371 #else /* REGISTER_CONSTRAINTS */
372
373 class = GENERAL_REGS;
374 #endif
375
376
377 qty = next_qty++;
378
379 qty_first_reg[qty] = -1;
380 qty_scratch_rtx[qty] = scratch;
381 qty_size[qty] = GET_MODE_SIZE (GET_MODE (scratch));
382 qty_mode[qty] = GET_MODE (scratch);
383 qty_birth[qty] = 2 * insn_number - 1;
384 qty_death[qty] = 2 * insn_number + 1;
385 qty_n_calls_crossed[qty] = 0;
386 qty_min_class[qty] = class;
387 qty_alternate_class[qty] = NO_REGS;
388 qty_n_refs[qty] = 1;
389 qty_changes_size[qty] = 0;
390 }
391 \f
392 /* Main entry point of this file. */
393
394 void
395 local_alloc ()
396 {
397 register int b, i;
398 int max_qty;
399
400 /* Leaf functions and non-leaf functions have different needs.
401 If defined, let the machine say what kind of ordering we
402 should use. */
403 #ifdef ORDER_REGS_FOR_LOCAL_ALLOC
404 ORDER_REGS_FOR_LOCAL_ALLOC;
405 #endif
406
407 /* Promote REG_EQUAL notes to REG_EQUIV notes and adjust status of affected
408 registers. */
409 update_equiv_regs ();
410
411 /* This sets the maximum number of quantities we can have. Quantity
412 numbers start at zero and we can have one for each pseudo plus the
413 number of SCRATCHes in the largest block, in the worst case. */
414 max_qty = (max_regno - FIRST_PSEUDO_REGISTER) + max_scratch;
415
416 /* Allocate vectors of temporary data.
417 See the declarations of these variables, above,
418 for what they mean. */
419
420 /* There can be up to MAX_SCRATCH * N_BASIC_BLOCKS SCRATCHes to allocate.
421 Instead of allocating this much memory from now until the end of
422 reload, only allocate space for MAX_QTY SCRATCHes. If there are more
423 reload will allocate them. */
424
425 scratch_list_length = max_qty;
426 scratch_list = (rtx *) xmalloc (scratch_list_length * sizeof (rtx));
427 bzero ((char *) scratch_list, scratch_list_length * sizeof (rtx));
428 scratch_block = (int *) xmalloc (scratch_list_length * sizeof (int));
429 bzero ((char *) scratch_block, scratch_list_length * sizeof (int));
430 scratch_index = 0;
431
432 qty_phys_reg = (short *) alloca (max_qty * sizeof (short));
433 qty_phys_copy_sugg
434 = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
435 qty_phys_num_copy_sugg = (short *) alloca (max_qty * sizeof (short));
436 qty_phys_sugg = (HARD_REG_SET *) alloca (max_qty * sizeof (HARD_REG_SET));
437 qty_phys_num_sugg = (short *) alloca (max_qty * sizeof (short));
438 qty_birth = (int *) alloca (max_qty * sizeof (int));
439 qty_death = (int *) alloca (max_qty * sizeof (int));
440 qty_scratch_rtx = (rtx *) alloca (max_qty * sizeof (rtx));
441 qty_first_reg = (int *) alloca (max_qty * sizeof (int));
442 qty_size = (int *) alloca (max_qty * sizeof (int));
443 qty_mode
444 = (enum machine_mode *) alloca (max_qty * sizeof (enum machine_mode));
445 qty_n_calls_crossed = (int *) alloca (max_qty * sizeof (int));
446 qty_min_class
447 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
448 qty_alternate_class
449 = (enum reg_class *) alloca (max_qty * sizeof (enum reg_class));
450 qty_n_refs = (int *) alloca (max_qty * sizeof (int));
451 qty_changes_size = (char *) alloca (max_qty * sizeof (char));
452
453 reg_qty = (int *) alloca (max_regno * sizeof (int));
454 reg_offset = (char *) alloca (max_regno * sizeof (char));
455 reg_next_in_qty = (int *) alloca (max_regno * sizeof (int));
456
457 /* Allocate the reg_renumber array */
458 allocate_reg_info (max_regno, FALSE, TRUE);
459
460 /* Determine which pseudo-registers can be allocated by local-alloc.
461 In general, these are the registers used only in a single block and
462 which only die once. However, if a register's preferred class has only
463 a few entries, don't allocate this register here unless it is preferred
464 or nothing since retry_global_alloc won't be able to move it to
465 GENERAL_REGS if a reload register of this class is needed.
466
467 We need not be concerned with which block actually uses the register
468 since we will never see it outside that block. */
469
470 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
471 {
472 if (REG_BASIC_BLOCK (i) >= 0 && REG_N_DEATHS (i) == 1
473 && (reg_alternate_class (i) == NO_REGS
474 || ! CLASS_LIKELY_SPILLED_P (reg_preferred_class (i))))
475 reg_qty[i] = -2;
476 else
477 reg_qty[i] = -1;
478 }
479
480 /* Force loop below to initialize entire quantity array. */
481 next_qty = max_qty;
482
483 /* Allocate each block's local registers, block by block. */
484
485 for (b = 0; b < n_basic_blocks; b++)
486 {
487 /* NEXT_QTY indicates which elements of the `qty_...'
488 vectors might need to be initialized because they were used
489 for the previous block; it is set to the entire array before
490 block 0. Initialize those, with explicit loop if there are few,
491 else with bzero and bcopy. Do not initialize vectors that are
492 explicit set by `alloc_qty'. */
493
494 if (next_qty < 6)
495 {
496 for (i = 0; i < next_qty; i++)
497 {
498 qty_scratch_rtx[i] = 0;
499 CLEAR_HARD_REG_SET (qty_phys_copy_sugg[i]);
500 qty_phys_num_copy_sugg[i] = 0;
501 CLEAR_HARD_REG_SET (qty_phys_sugg[i]);
502 qty_phys_num_sugg[i] = 0;
503 }
504 }
505 else
506 {
507 #define CLEAR(vector) \
508 bzero ((char *) (vector), (sizeof (*(vector))) * next_qty);
509
510 CLEAR (qty_scratch_rtx);
511 CLEAR (qty_phys_copy_sugg);
512 CLEAR (qty_phys_num_copy_sugg);
513 CLEAR (qty_phys_sugg);
514 CLEAR (qty_phys_num_sugg);
515 }
516
517 next_qty = 0;
518
519 block_alloc (b);
520 #ifdef USE_C_ALLOCA
521 alloca (0);
522 #endif
523 }
524 }
525 \f
526 /* Depth of loops we are in while in update_equiv_regs. */
527 static int loop_depth;
528
529 /* Used for communication between the following two functions: contains
530 a MEM that we wish to ensure remains unchanged. */
531 static rtx equiv_mem;
532
533 /* Set nonzero if EQUIV_MEM is modified. */
534 static int equiv_mem_modified;
535
536 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
537 Called via note_stores. */
538
539 static void
540 validate_equiv_mem_from_store (dest, set)
541 rtx dest;
542 rtx set;
543 {
544 if ((GET_CODE (dest) == REG
545 && reg_overlap_mentioned_p (dest, equiv_mem))
546 || (GET_CODE (dest) == MEM
547 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
548 equiv_mem_modified = 1;
549 }
550
551 /* Verify that no store between START and the death of REG invalidates
552 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
553 by storing into an overlapping memory location, or with a non-const
554 CALL_INSN.
555
556 Return 1 if MEMREF remains valid. */
557
558 static int
559 validate_equiv_mem (start, reg, memref)
560 rtx start;
561 rtx reg;
562 rtx memref;
563 {
564 rtx insn;
565 rtx note;
566
567 equiv_mem = memref;
568 equiv_mem_modified = 0;
569
570 /* If the memory reference has side effects or is volatile, it isn't a
571 valid equivalence. */
572 if (side_effects_p (memref))
573 return 0;
574
575 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
576 {
577 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
578 continue;
579
580 if (find_reg_note (insn, REG_DEAD, reg))
581 return 1;
582
583 if (GET_CODE (insn) == CALL_INSN && ! RTX_UNCHANGING_P (memref)
584 && ! CONST_CALL_P (insn))
585 return 0;
586
587 note_stores (PATTERN (insn), validate_equiv_mem_from_store);
588
589 /* If a register mentioned in MEMREF is modified via an
590 auto-increment, we lose the equivalence. Do the same if one
591 dies; although we could extend the life, it doesn't seem worth
592 the trouble. */
593
594 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
595 if ((REG_NOTE_KIND (note) == REG_INC
596 || REG_NOTE_KIND (note) == REG_DEAD)
597 && GET_CODE (XEXP (note, 0)) == REG
598 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
599 return 0;
600 }
601
602 return 0;
603 }
604
605 /* TRUE if X uses any registers for which reg_equiv_replace is true. */
606
607 static int
608 contains_replace_regs (x, reg_equiv_replace)
609 rtx x;
610 char *reg_equiv_replace;
611 {
612 int i, j;
613 char *fmt;
614 enum rtx_code code = GET_CODE (x);
615
616 switch (code)
617 {
618 case CONST_INT:
619 case CONST:
620 case LABEL_REF:
621 case SYMBOL_REF:
622 case CONST_DOUBLE:
623 case PC:
624 case CC0:
625 case HIGH:
626 case LO_SUM:
627 return 0;
628
629 case REG:
630 return reg_equiv_replace[REGNO (x)];
631 }
632
633 fmt = GET_RTX_FORMAT (code);
634 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
635 switch (fmt[i])
636 {
637 case 'e':
638 if (contains_replace_regs (XEXP (x, i), reg_equiv_replace))
639 return 1;
640 break;
641 case 'E':
642 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
643 if (contains_replace_regs (XVECEXP (x, i, j), reg_equiv_replace))
644 return 1;
645 break;
646 }
647
648 return 0;
649 }
650 \f
651 /* TRUE if X references a memory location that would be affected by a store
652 to MEMREF. */
653
654 static int
655 memref_referenced_p (memref, x)
656 rtx x;
657 rtx memref;
658 {
659 int i, j;
660 char *fmt;
661 enum rtx_code code = GET_CODE (x);
662
663 switch (code)
664 {
665 case CONST_INT:
666 case CONST:
667 case LABEL_REF:
668 case SYMBOL_REF:
669 case CONST_DOUBLE:
670 case PC:
671 case CC0:
672 case HIGH:
673 case LO_SUM:
674 return 0;
675
676 case REG:
677 return (reg_equiv_replacement[REGNO (x)]
678 && memref_referenced_p (memref,
679 reg_equiv_replacement[REGNO (x)]));
680
681 case MEM:
682 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
683 return 1;
684 break;
685
686 case SET:
687 /* If we are setting a MEM, it doesn't count (its address does), but any
688 other SET_DEST that has a MEM in it is referencing the MEM. */
689 if (GET_CODE (SET_DEST (x)) == MEM)
690 {
691 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
692 return 1;
693 }
694 else if (memref_referenced_p (memref, SET_DEST (x)))
695 return 1;
696
697 return memref_referenced_p (memref, SET_SRC (x));
698
699 default:
700 break;
701 }
702
703 fmt = GET_RTX_FORMAT (code);
704 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
705 switch (fmt[i])
706 {
707 case 'e':
708 if (memref_referenced_p (memref, XEXP (x, i)))
709 return 1;
710 break;
711 case 'E':
712 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
713 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
714 return 1;
715 break;
716 }
717
718 return 0;
719 }
720
721 /* TRUE if some insn in the range (START, END] references a memory location
722 that would be affected by a store to MEMREF. */
723
724 static int
725 memref_used_between_p (memref, start, end)
726 rtx memref;
727 rtx start;
728 rtx end;
729 {
730 rtx insn;
731
732 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
733 insn = NEXT_INSN (insn))
734 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
735 && memref_referenced_p (memref, PATTERN (insn)))
736 return 1;
737
738 return 0;
739 }
740 \f
741 /* INSN is a copy from SRC to DEST, both registers, and SRC does not die
742 in INSN.
743
744 Search forward to see if SRC dies before either it or DEST is modified,
745 but don't scan past the end of a basic block. If so, we can replace SRC
746 with DEST and let SRC die in INSN.
747
748 This will reduce the number of registers live in that range and may enable
749 DEST to be tied to SRC, thus often saving one register in addition to a
750 register-register copy. */
751
752 static void
753 optimize_reg_copy_1 (insn, dest, src)
754 rtx insn;
755 rtx dest;
756 rtx src;
757 {
758 rtx p, q;
759 rtx note;
760 rtx dest_death = 0;
761 int sregno = REGNO (src);
762 int dregno = REGNO (dest);
763
764 /* We don't want to mess with hard regs if register classes are small. */
765 if (sregno == dregno
766 || (SMALL_REGISTER_CLASSES
767 && (sregno < FIRST_PSEUDO_REGISTER
768 || dregno < FIRST_PSEUDO_REGISTER))
769 /* We don't see all updates to SP if they are in an auto-inc memory
770 reference, so we must disallow this optimization on them. */
771 || sregno == STACK_POINTER_REGNUM || dregno == STACK_POINTER_REGNUM)
772 return;
773
774 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
775 {
776 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
777 || (GET_CODE (p) == NOTE
778 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
779 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
780 break;
781
782 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
783 continue;
784
785 if (reg_set_p (src, p) || reg_set_p (dest, p)
786 /* Don't change a USE of a register. */
787 || (GET_CODE (PATTERN (p)) == USE
788 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
789 break;
790
791 /* See if all of SRC dies in P. This test is slightly more
792 conservative than it needs to be. */
793 if ((note = find_regno_note (p, REG_DEAD, sregno)) != 0
794 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
795 {
796 int failed = 0;
797 int length = 0;
798 int d_length = 0;
799 int n_calls = 0;
800 int d_n_calls = 0;
801
802 /* We can do the optimization. Scan forward from INSN again,
803 replacing regs as we go. Set FAILED if a replacement can't
804 be done. In that case, we can't move the death note for SRC.
805 This should be rare. */
806
807 /* Set to stop at next insn. */
808 for (q = next_real_insn (insn);
809 q != next_real_insn (p);
810 q = next_real_insn (q))
811 {
812 if (reg_overlap_mentioned_p (src, PATTERN (q)))
813 {
814 /* If SRC is a hard register, we might miss some
815 overlapping registers with validate_replace_rtx,
816 so we would have to undo it. We can't if DEST is
817 present in the insn, so fail in that combination
818 of cases. */
819 if (sregno < FIRST_PSEUDO_REGISTER
820 && reg_mentioned_p (dest, PATTERN (q)))
821 failed = 1;
822
823 /* Replace all uses and make sure that the register
824 isn't still present. */
825 else if (validate_replace_rtx (src, dest, q)
826 && (sregno >= FIRST_PSEUDO_REGISTER
827 || ! reg_overlap_mentioned_p (src,
828 PATTERN (q))))
829 {
830 /* We assume that a register is used exactly once per
831 insn in the updates below. If this is not correct,
832 no great harm is done. */
833 if (sregno >= FIRST_PSEUDO_REGISTER)
834 REG_N_REFS (sregno) -= loop_depth;
835 if (dregno >= FIRST_PSEUDO_REGISTER)
836 REG_N_REFS (dregno) += loop_depth;
837 }
838 else
839 {
840 validate_replace_rtx (dest, src, q);
841 failed = 1;
842 }
843 }
844
845 /* Count the insns and CALL_INSNs passed. If we passed the
846 death note of DEST, show increased live length. */
847 length++;
848 if (dest_death)
849 d_length++;
850
851 /* If the insn in which SRC dies is a CALL_INSN, don't count it
852 as a call that has been crossed. Otherwise, count it. */
853 if (q != p && GET_CODE (q) == CALL_INSN)
854 {
855 n_calls++;
856 if (dest_death)
857 d_n_calls++;
858 }
859
860 /* If DEST dies here, remove the death note and save it for
861 later. Make sure ALL of DEST dies here; again, this is
862 overly conservative. */
863 if (dest_death == 0
864 && (dest_death = find_regno_note (q, REG_DEAD, dregno)) != 0
865 && GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
866 remove_note (q, dest_death);
867 }
868
869 if (! failed)
870 {
871 if (sregno >= FIRST_PSEUDO_REGISTER)
872 {
873 if (REG_LIVE_LENGTH (sregno) >= 0)
874 {
875 REG_LIVE_LENGTH (sregno) -= length;
876 /* reg_live_length is only an approximation after
877 combine if sched is not run, so make sure that we
878 still have a reasonable value. */
879 if (REG_LIVE_LENGTH (sregno) < 2)
880 REG_LIVE_LENGTH (sregno) = 2;
881 }
882
883 REG_N_CALLS_CROSSED (sregno) -= n_calls;
884 }
885
886 if (dregno >= FIRST_PSEUDO_REGISTER)
887 {
888 if (REG_LIVE_LENGTH (dregno) >= 0)
889 REG_LIVE_LENGTH (dregno) += d_length;
890
891 REG_N_CALLS_CROSSED (dregno) += d_n_calls;
892 }
893
894 /* Move death note of SRC from P to INSN. */
895 remove_note (p, note);
896 XEXP (note, 1) = REG_NOTES (insn);
897 REG_NOTES (insn) = note;
898 }
899
900 /* Put death note of DEST on P if we saw it die. */
901 if (dest_death)
902 {
903 XEXP (dest_death, 1) = REG_NOTES (p);
904 REG_NOTES (p) = dest_death;
905 }
906
907 return;
908 }
909
910 /* If SRC is a hard register which is set or killed in some other
911 way, we can't do this optimization. */
912 else if (sregno < FIRST_PSEUDO_REGISTER
913 && dead_or_set_p (p, src))
914 break;
915 }
916 }
917 \f
918 /* INSN is a copy of SRC to DEST, in which SRC dies. See if we now have
919 a sequence of insns that modify DEST followed by an insn that sets
920 SRC to DEST in which DEST dies, with no prior modification of DEST.
921 (There is no need to check if the insns in between actually modify
922 DEST. We should not have cases where DEST is not modified, but
923 the optimization is safe if no such modification is detected.)
924 In that case, we can replace all uses of DEST, starting with INSN and
925 ending with the set of SRC to DEST, with SRC. We do not do this
926 optimization if a CALL_INSN is crossed unless SRC already crosses a
927 call or if DEST dies before the copy back to SRC.
928
929 It is assumed that DEST and SRC are pseudos; it is too complicated to do
930 this for hard registers since the substitutions we may make might fail. */
931
932 static void
933 optimize_reg_copy_2 (insn, dest, src)
934 rtx insn;
935 rtx dest;
936 rtx src;
937 {
938 rtx p, q;
939 rtx set;
940 int sregno = REGNO (src);
941 int dregno = REGNO (dest);
942
943 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
944 {
945 if (GET_CODE (p) == CODE_LABEL || GET_CODE (p) == JUMP_INSN
946 || (GET_CODE (p) == NOTE
947 && (NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_BEG
948 || NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)))
949 break;
950
951 if (GET_RTX_CLASS (GET_CODE (p)) != 'i')
952 continue;
953
954 set = single_set (p);
955 if (set && SET_SRC (set) == dest && SET_DEST (set) == src
956 && find_reg_note (p, REG_DEAD, dest))
957 {
958 /* We can do the optimization. Scan forward from INSN again,
959 replacing regs as we go. */
960
961 /* Set to stop at next insn. */
962 for (q = insn; q != NEXT_INSN (p); q = NEXT_INSN (q))
963 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
964 {
965 if (reg_mentioned_p (dest, PATTERN (q)))
966 {
967 PATTERN (q) = replace_rtx (PATTERN (q), dest, src);
968
969 /* We assume that a register is used exactly once per
970 insn in the updates below. If this is not correct,
971 no great harm is done. */
972 REG_N_REFS (dregno) -= loop_depth;
973 REG_N_REFS (sregno) += loop_depth;
974 }
975
976
977 if (GET_CODE (q) == CALL_INSN)
978 {
979 REG_N_CALLS_CROSSED (dregno)--;
980 REG_N_CALLS_CROSSED (sregno)++;
981 }
982 }
983
984 remove_note (p, find_reg_note (p, REG_DEAD, dest));
985 REG_N_DEATHS (dregno)--;
986 remove_note (insn, find_reg_note (insn, REG_DEAD, src));
987 REG_N_DEATHS (sregno)--;
988 return;
989 }
990
991 if (reg_set_p (src, p)
992 || find_reg_note (p, REG_DEAD, dest)
993 || (GET_CODE (p) == CALL_INSN && REG_N_CALLS_CROSSED (sregno) == 0))
994 break;
995 }
996 }
997 \f
998 /* Find registers that are equivalent to a single value throughout the
999 compilation (either because they can be referenced in memory or are set once
1000 from a single constant). Lower their priority for a register.
1001
1002 If such a register is only referenced once, try substituting its value
1003 into the using insn. If it succeeds, we can eliminate the register
1004 completely. */
1005
1006 static void
1007 update_equiv_regs ()
1008 {
1009 rtx *reg_equiv_init_insn = (rtx *) alloca (max_regno * sizeof (rtx *));
1010 /* Set when an attempt should be made to replace a register with the
1011 associated reg_equiv_replacement entry at the end of this function. */
1012 char *reg_equiv_replace
1013 = (char *) alloca (max_regno * sizeof *reg_equiv_replace);
1014 rtx insn;
1015 int block, depth;
1016
1017 reg_equiv_replacement = (rtx *) alloca (max_regno * sizeof (rtx *));
1018
1019 bzero ((char *) reg_equiv_init_insn, max_regno * sizeof (rtx *));
1020 bzero ((char *) reg_equiv_replacement, max_regno * sizeof (rtx *));
1021 bzero ((char *) reg_equiv_replace, max_regno * sizeof *reg_equiv_replace);
1022
1023 init_alias_analysis ();
1024
1025 loop_depth = 1;
1026
1027 /* Scan the insns and find which registers have equivalences. Do this
1028 in a separate scan of the insns because (due to -fcse-follow-jumps)
1029 a register can be set below its use. */
1030 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1031 {
1032 rtx note;
1033 rtx set = single_set (insn);
1034 rtx dest, src;
1035 int regno;
1036
1037 if (GET_CODE (insn) == NOTE)
1038 {
1039 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1040 loop_depth++;
1041 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1042 loop_depth--;
1043 }
1044
1045 /* If this insn contains more (or less) than a single SET, ignore it. */
1046 if (set == 0)
1047 continue;
1048
1049 dest = SET_DEST (set);
1050 src = SET_SRC (set);
1051
1052 /* If this sets a MEM to the contents of a REG that is only used
1053 in a single basic block, see if the register is always equivalent
1054 to that memory location and if moving the store from INSN to the
1055 insn that set REG is safe. If so, put a REG_EQUIV note on the
1056 initializing insn.
1057
1058 Don't add a REG_EQUIV note if the insn already has one. The existing
1059 REG_EQUIV is likely more useful than the one we are adding.
1060
1061 If one of the regs in the address is marked as reg_equiv_replace,
1062 then we can't add this REG_EQUIV note. The reg_equiv_replace
1063 optimization may move the set of this register immediately before
1064 insn, which puts it after reg_equiv_init_insn[regno], and hence
1065 the mention in the REG_EQUIV note would be to an uninitialized
1066 pseudo. */
1067
1068 if (GET_CODE (dest) == MEM && GET_CODE (SET_SRC (set)) == REG
1069 && (regno = REGNO (SET_SRC (set))) >= FIRST_PSEUDO_REGISTER
1070 && REG_BASIC_BLOCK (regno) >= 0
1071 && reg_equiv_init_insn[regno] != 0
1072 && ! find_reg_note (insn, REG_EQUIV, NULL_RTX)
1073 && ! contains_replace_regs (XEXP (dest, 0), reg_equiv_replace)
1074 && validate_equiv_mem (reg_equiv_init_insn[regno], SET_SRC (set),
1075 dest)
1076 && ! memref_used_between_p (SET_DEST (set),
1077 reg_equiv_init_insn[regno], insn))
1078 REG_NOTES (reg_equiv_init_insn[regno])
1079 = gen_rtx (EXPR_LIST, REG_EQUIV, dest,
1080 REG_NOTES (reg_equiv_init_insn[regno]));
1081
1082 /* If this is a register-register copy where SRC is not dead, see if we
1083 can optimize it. */
1084 if (flag_expensive_optimizations && GET_CODE (dest) == REG
1085 && GET_CODE (SET_SRC (set)) == REG
1086 && ! find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1087 optimize_reg_copy_1 (insn, dest, SET_SRC (set));
1088
1089 /* Similarly for a pseudo-pseudo copy when SRC is dead. */
1090 else if (flag_expensive_optimizations && GET_CODE (dest) == REG
1091 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
1092 && GET_CODE (SET_SRC (set)) == REG
1093 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER
1094 && find_reg_note (insn, REG_DEAD, SET_SRC (set)))
1095 optimize_reg_copy_2 (insn, dest, SET_SRC (set));
1096
1097 /* Otherwise, we only handle the case of a pseudo register being set
1098 once and only if neither the source nor the destination are
1099 in a register class that's likely to be spilled. */
1100 if (GET_CODE (dest) != REG
1101 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
1102 || REG_N_SETS (regno) != 1
1103 || CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (dest)))
1104 || (GET_CODE (src) == REG
1105 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1106 && CLASS_LIKELY_SPILLED_P (reg_preferred_class (REGNO (src)))))
1107 continue;
1108
1109 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
1110
1111 #ifdef DONT_RECORD_EQUIVALENCE
1112 /* Allow the target to reject promotions of some REG_EQUAL notes to
1113 REG_EQUIV notes.
1114
1115 In some cases this can improve register allocation if the existence
1116 of the REG_EQUIV note is likely to increase the lifetime of a register
1117 that is likely to be spilled.
1118
1119 It may also be necessary if the target can't handle certain constant
1120 expressions appearing randomly in insns, but for whatever reason
1121 those expressions must be considered legitimate constant expressions
1122 to prevent them from being forced into memory. */
1123 if (note && DONT_RECORD_EQUIVALENCE (note))
1124 note = NULL;
1125 #endif
1126
1127 /* Record this insn as initializing this register. */
1128 reg_equiv_init_insn[regno] = insn;
1129
1130 /* If this register is known to be equal to a constant, record that
1131 it is always equivalent to the constant. */
1132 if (note && CONSTANT_P (XEXP (note, 0)))
1133 PUT_MODE (note, (enum machine_mode) REG_EQUIV);
1134
1135 /* If this insn introduces a "constant" register, decrease the priority
1136 of that register. Record this insn if the register is only used once
1137 more and the equivalence value is the same as our source.
1138
1139 The latter condition is checked for two reasons: First, it is an
1140 indication that it may be more efficient to actually emit the insn
1141 as written (if no registers are available, reload will substitute
1142 the equivalence). Secondly, it avoids problems with any registers
1143 dying in this insn whose death notes would be missed.
1144
1145 If we don't have a REG_EQUIV note, see if this insn is loading
1146 a register used only in one basic block from a MEM. If so, and the
1147 MEM remains unchanged for the life of the register, add a REG_EQUIV
1148 note. */
1149
1150 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1151
1152 if (note == 0 && REG_BASIC_BLOCK (regno) >= 0
1153 && GET_CODE (SET_SRC (set)) == MEM
1154 && validate_equiv_mem (insn, dest, SET_SRC (set)))
1155 REG_NOTES (insn) = note = gen_rtx (EXPR_LIST, REG_EQUIV, SET_SRC (set),
1156 REG_NOTES (insn));
1157
1158 if (note)
1159 {
1160 int regno = REGNO (dest);
1161
1162 reg_equiv_replacement[regno] = XEXP (note, 0);
1163
1164 /* Don't mess with things live during setjmp. */
1165 if (REG_LIVE_LENGTH (regno) >= 0)
1166 {
1167 /* Note that the statement below does not affect the priority
1168 in local-alloc! */
1169 REG_LIVE_LENGTH (regno) *= 2;
1170
1171
1172 /* If the register is referenced exactly twice, meaning it is
1173 set once and used once, indicate that the reference may be
1174 replaced by the equivalence we computed above. If the
1175 register is only used in one basic block, this can't succeed
1176 or combine would have done it.
1177
1178 It would be nice to use "loop_depth * 2" in the compare
1179 below. Unfortunately, LOOP_DEPTH need not be constant within
1180 a basic block so this would be too complicated.
1181
1182 This case normally occurs when a parameter is read from
1183 memory and then used exactly once, not in a loop. */
1184
1185 if (REG_N_REFS (regno) == 2
1186 && REG_BASIC_BLOCK (regno) < 0
1187 && rtx_equal_p (XEXP (note, 0), SET_SRC (set)))
1188 reg_equiv_replace[regno] = 1;
1189 }
1190 }
1191 }
1192
1193 /* Now scan all regs killed in an insn to see if any of them are
1194 registers only used that once. If so, see if we can replace the
1195 reference with the equivalent from. If we can, delete the
1196 initializing reference and this register will go away. If we
1197 can't replace the reference, and the instruction is not in a
1198 loop, then move the register initialization just before the use,
1199 so that they are in the same basic block. */
1200 block = -1;
1201 depth = 0;
1202 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1203 {
1204 rtx link;
1205
1206 /* Keep track of which basic block we are in. */
1207 if (block + 1 < n_basic_blocks
1208 && basic_block_head[block + 1] == insn)
1209 ++block;
1210
1211 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
1212 {
1213 if (GET_CODE (insn) == NOTE)
1214 {
1215 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1216 ++depth;
1217 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1218 {
1219 --depth;
1220 if (depth < 0)
1221 abort ();
1222 }
1223 }
1224
1225 continue;
1226 }
1227
1228 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1229 {
1230 if (REG_NOTE_KIND (link) == REG_DEAD
1231 /* Make sure this insn still refers to the register. */
1232 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
1233 {
1234 int regno = REGNO (XEXP (link, 0));
1235 rtx equiv_insn;
1236
1237 if (! reg_equiv_replace[regno])
1238 continue;
1239
1240 equiv_insn = reg_equiv_init_insn[regno];
1241
1242 if (validate_replace_rtx (regno_reg_rtx[regno],
1243 reg_equiv_replacement[regno], insn))
1244 {
1245 remove_death (regno, insn);
1246 REG_N_REFS (regno) = 0;
1247 PUT_CODE (equiv_insn, NOTE);
1248 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1249 NOTE_SOURCE_FILE (equiv_insn) = 0;
1250 }
1251 /* If we aren't in a loop, and there are no calls in
1252 INSN or in the initialization of the register, then
1253 move the initialization of the register to just
1254 before INSN. Update the flow information. */
1255 else if (depth == 0
1256 && GET_CODE (equiv_insn) == INSN
1257 && GET_CODE (insn) == INSN
1258 && REG_BASIC_BLOCK (regno) < 0)
1259 {
1260 int l;
1261
1262 emit_insn_before (copy_rtx (PATTERN (equiv_insn)), insn);
1263 REG_NOTES (PREV_INSN (insn)) = REG_NOTES (equiv_insn);
1264
1265 PUT_CODE (equiv_insn, NOTE);
1266 NOTE_LINE_NUMBER (equiv_insn) = NOTE_INSN_DELETED;
1267 NOTE_SOURCE_FILE (equiv_insn) = 0;
1268 REG_NOTES (equiv_insn) = 0;
1269
1270 if (block < 0)
1271 REG_BASIC_BLOCK (regno) = 0;
1272 else
1273 REG_BASIC_BLOCK (regno) = block;
1274 REG_N_CALLS_CROSSED (regno) = 0;
1275 REG_LIVE_LENGTH (regno) = 2;
1276
1277 if (block >= 0 && insn == basic_block_head[block])
1278 basic_block_head[block] = PREV_INSN (insn);
1279
1280 for (l = 0; l < n_basic_blocks; l++)
1281 CLEAR_REGNO_REG_SET (basic_block_live_at_start[l], regno);
1282 }
1283 }
1284 }
1285 }
1286 }
1287 \f
1288 /* Allocate hard regs to the pseudo regs used only within block number B.
1289 Only the pseudos that die but once can be handled. */
1290
1291 static void
1292 block_alloc (b)
1293 int b;
1294 {
1295 register int i, q;
1296 register rtx insn;
1297 rtx note;
1298 int insn_number = 0;
1299 int insn_count = 0;
1300 int max_uid = get_max_uid ();
1301 int *qty_order;
1302 int no_conflict_combined_regno = -1;
1303 /* Counter to prevent allocating more SCRATCHes than can be stored
1304 in SCRATCH_LIST. */
1305 int scratches_allocated = scratch_index;
1306
1307 /* Count the instructions in the basic block. */
1308
1309 insn = basic_block_end[b];
1310 while (1)
1311 {
1312 if (GET_CODE (insn) != NOTE)
1313 if (++insn_count > max_uid)
1314 abort ();
1315 if (insn == basic_block_head[b])
1316 break;
1317 insn = PREV_INSN (insn);
1318 }
1319
1320 /* +2 to leave room for a post_mark_life at the last insn and for
1321 the birth of a CLOBBER in the first insn. */
1322 regs_live_at = (HARD_REG_SET *) alloca ((2 * insn_count + 2)
1323 * sizeof (HARD_REG_SET));
1324 bzero ((char *) regs_live_at, (2 * insn_count + 2) * sizeof (HARD_REG_SET));
1325
1326 /* Initialize table of hardware registers currently live. */
1327
1328 REG_SET_TO_HARD_REG_SET (regs_live, basic_block_live_at_start[b]);
1329
1330 /* This loop scans the instructions of the basic block
1331 and assigns quantities to registers.
1332 It computes which registers to tie. */
1333
1334 insn = basic_block_head[b];
1335 while (1)
1336 {
1337 register rtx body = PATTERN (insn);
1338
1339 if (GET_CODE (insn) != NOTE)
1340 insn_number++;
1341
1342 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1343 {
1344 register rtx link, set;
1345 register int win = 0;
1346 register rtx r0, r1;
1347 int combined_regno = -1;
1348 int i;
1349 int insn_code_number = recog_memoized (insn);
1350
1351 this_insn_number = insn_number;
1352 this_insn = insn;
1353
1354 if (insn_code_number >= 0)
1355 insn_extract (insn);
1356 which_alternative = -1;
1357
1358 /* Is this insn suitable for tying two registers?
1359 If so, try doing that.
1360 Suitable insns are those with at least two operands and where
1361 operand 0 is an output that is a register that is not
1362 earlyclobber.
1363
1364 We can tie operand 0 with some operand that dies in this insn.
1365 First look for operands that are required to be in the same
1366 register as operand 0. If we find such, only try tying that
1367 operand or one that can be put into that operand if the
1368 operation is commutative. If we don't find an operand
1369 that is required to be in the same register as operand 0,
1370 we can tie with any operand.
1371
1372 Subregs in place of regs are also ok.
1373
1374 If tying is done, WIN is set nonzero. */
1375
1376 if (insn_code_number >= 0
1377 #ifdef REGISTER_CONSTRAINTS
1378 && insn_n_operands[insn_code_number] > 1
1379 && insn_operand_constraint[insn_code_number][0][0] == '='
1380 && insn_operand_constraint[insn_code_number][0][1] != '&'
1381 #else
1382 && GET_CODE (PATTERN (insn)) == SET
1383 && rtx_equal_p (SET_DEST (PATTERN (insn)), recog_operand[0])
1384 #endif
1385 )
1386 {
1387 #ifdef REGISTER_CONSTRAINTS
1388 /* If non-negative, is an operand that must match operand 0. */
1389 int must_match_0 = -1;
1390 /* Counts number of alternatives that require a match with
1391 operand 0. */
1392 int n_matching_alts = 0;
1393
1394 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1395 {
1396 char *p = insn_operand_constraint[insn_code_number][i];
1397 int this_match = (requires_inout (p));
1398
1399 n_matching_alts += this_match;
1400 if (this_match == insn_n_alternatives[insn_code_number])
1401 must_match_0 = i;
1402 }
1403 #endif
1404
1405 r0 = recog_operand[0];
1406 for (i = 1; i < insn_n_operands[insn_code_number]; i++)
1407 {
1408 #ifdef REGISTER_CONSTRAINTS
1409 /* Skip this operand if we found an operand that
1410 must match operand 0 and this operand isn't it
1411 and can't be made to be it by commutativity. */
1412
1413 if (must_match_0 >= 0 && i != must_match_0
1414 && ! (i == must_match_0 + 1
1415 && insn_operand_constraint[insn_code_number][i-1][0] == '%')
1416 && ! (i == must_match_0 - 1
1417 && insn_operand_constraint[insn_code_number][i][0] == '%'))
1418 continue;
1419
1420 /* Likewise if each alternative has some operand that
1421 must match operand zero. In that case, skip any
1422 operand that doesn't list operand 0 since we know that
1423 the operand always conflicts with operand 0. We
1424 ignore commutatity in this case to keep things simple. */
1425 if (n_matching_alts == insn_n_alternatives[insn_code_number]
1426 && (0 == requires_inout
1427 (insn_operand_constraint[insn_code_number][i])))
1428 continue;
1429 #endif
1430
1431 r1 = recog_operand[i];
1432
1433 /* If the operand is an address, find a register in it.
1434 There may be more than one register, but we only try one
1435 of them. */
1436 if (
1437 #ifdef REGISTER_CONSTRAINTS
1438 insn_operand_constraint[insn_code_number][i][0] == 'p'
1439 #else
1440 insn_operand_address_p[insn_code_number][i]
1441 #endif
1442 )
1443 while (GET_CODE (r1) == PLUS || GET_CODE (r1) == MULT)
1444 r1 = XEXP (r1, 0);
1445
1446 if (GET_CODE (r0) == REG || GET_CODE (r0) == SUBREG)
1447 {
1448 /* We have two priorities for hard register preferences.
1449 If we have a move insn or an insn whose first input
1450 can only be in the same register as the output, give
1451 priority to an equivalence found from that insn. */
1452 int may_save_copy
1453 = ((SET_DEST (body) == r0 && SET_SRC (body) == r1)
1454 #ifdef REGISTER_CONSTRAINTS
1455 || (r1 == recog_operand[i] && must_match_0 >= 0)
1456 #endif
1457 );
1458
1459 if (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1460 win = combine_regs (r1, r0, may_save_copy,
1461 insn_number, insn, 0);
1462 }
1463 if (win)
1464 break;
1465 }
1466 }
1467
1468 /* Recognize an insn sequence with an ultimate result
1469 which can safely overlap one of the inputs.
1470 The sequence begins with a CLOBBER of its result,
1471 and ends with an insn that copies the result to itself
1472 and has a REG_EQUAL note for an equivalent formula.
1473 That note indicates what the inputs are.
1474 The result and the input can overlap if each insn in
1475 the sequence either doesn't mention the input
1476 or has a REG_NO_CONFLICT note to inhibit the conflict.
1477
1478 We do the combining test at the CLOBBER so that the
1479 destination register won't have had a quantity number
1480 assigned, since that would prevent combining. */
1481
1482 if (GET_CODE (PATTERN (insn)) == CLOBBER
1483 && (r0 = XEXP (PATTERN (insn), 0),
1484 GET_CODE (r0) == REG)
1485 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1486 && XEXP (link, 0) != 0
1487 && GET_CODE (XEXP (link, 0)) == INSN
1488 && (set = single_set (XEXP (link, 0))) != 0
1489 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1490 && (note = find_reg_note (XEXP (link, 0), REG_EQUAL,
1491 NULL_RTX)) != 0)
1492 {
1493 if (r1 = XEXP (note, 0), GET_CODE (r1) == REG
1494 /* Check that we have such a sequence. */
1495 && no_conflict_p (insn, r0, r1))
1496 win = combine_regs (r1, r0, 1, insn_number, insn, 1);
1497 else if (GET_RTX_FORMAT (GET_CODE (XEXP (note, 0)))[0] == 'e'
1498 && (r1 = XEXP (XEXP (note, 0), 0),
1499 GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG)
1500 && no_conflict_p (insn, r0, r1))
1501 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1502
1503 /* Here we care if the operation to be computed is
1504 commutative. */
1505 else if ((GET_CODE (XEXP (note, 0)) == EQ
1506 || GET_CODE (XEXP (note, 0)) == NE
1507 || GET_RTX_CLASS (GET_CODE (XEXP (note, 0))) == 'c')
1508 && (r1 = XEXP (XEXP (note, 0), 1),
1509 (GET_CODE (r1) == REG || GET_CODE (r1) == SUBREG))
1510 && no_conflict_p (insn, r0, r1))
1511 win = combine_regs (r1, r0, 0, insn_number, insn, 1);
1512
1513 /* If we did combine something, show the register number
1514 in question so that we know to ignore its death. */
1515 if (win)
1516 no_conflict_combined_regno = REGNO (r1);
1517 }
1518
1519 /* If registers were just tied, set COMBINED_REGNO
1520 to the number of the register used in this insn
1521 that was tied to the register set in this insn.
1522 This register's qty should not be "killed". */
1523
1524 if (win)
1525 {
1526 while (GET_CODE (r1) == SUBREG)
1527 r1 = SUBREG_REG (r1);
1528 combined_regno = REGNO (r1);
1529 }
1530
1531 /* Mark the death of everything that dies in this instruction,
1532 except for anything that was just combined. */
1533
1534 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1535 if (REG_NOTE_KIND (link) == REG_DEAD
1536 && GET_CODE (XEXP (link, 0)) == REG
1537 && combined_regno != REGNO (XEXP (link, 0))
1538 && (no_conflict_combined_regno != REGNO (XEXP (link, 0))
1539 || ! find_reg_note (insn, REG_NO_CONFLICT, XEXP (link, 0))))
1540 wipe_dead_reg (XEXP (link, 0), 0);
1541
1542 /* Allocate qty numbers for all registers local to this block
1543 that are born (set) in this instruction.
1544 A pseudo that already has a qty is not changed. */
1545
1546 note_stores (PATTERN (insn), reg_is_set);
1547
1548 /* If anything is set in this insn and then unused, mark it as dying
1549 after this insn, so it will conflict with our outputs. This
1550 can't match with something that combined, and it doesn't matter
1551 if it did. Do this after the calls to reg_is_set since these
1552 die after, not during, the current insn. */
1553
1554 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1555 if (REG_NOTE_KIND (link) == REG_UNUSED
1556 && GET_CODE (XEXP (link, 0)) == REG)
1557 wipe_dead_reg (XEXP (link, 0), 1);
1558
1559 /* Allocate quantities for any SCRATCH operands of this insn. */
1560
1561 if (insn_code_number >= 0)
1562 for (i = 0; i < insn_n_operands[insn_code_number]; i++)
1563 if (GET_CODE (recog_operand[i]) == SCRATCH
1564 && scratches_allocated++ < scratch_list_length)
1565 alloc_qty_for_scratch (recog_operand[i], i, insn,
1566 insn_code_number, insn_number);
1567
1568 /* If this is an insn that has a REG_RETVAL note pointing at a
1569 CLOBBER insn, we have reached the end of a REG_NO_CONFLICT
1570 block, so clear any register number that combined within it. */
1571 if ((note = find_reg_note (insn, REG_RETVAL, NULL_RTX)) != 0
1572 && GET_CODE (XEXP (note, 0)) == INSN
1573 && GET_CODE (PATTERN (XEXP (note, 0))) == CLOBBER)
1574 no_conflict_combined_regno = -1;
1575 }
1576
1577 /* Set the registers live after INSN_NUMBER. Note that we never
1578 record the registers live before the block's first insn, since no
1579 pseudos we care about are live before that insn. */
1580
1581 IOR_HARD_REG_SET (regs_live_at[2 * insn_number], regs_live);
1582 IOR_HARD_REG_SET (regs_live_at[2 * insn_number + 1], regs_live);
1583
1584 if (insn == basic_block_end[b])
1585 break;
1586
1587 insn = NEXT_INSN (insn);
1588 }
1589
1590 /* Now every register that is local to this basic block
1591 should have been given a quantity, or else -1 meaning ignore it.
1592 Every quantity should have a known birth and death.
1593
1594 Order the qtys so we assign them registers in order of the
1595 number of suggested registers they need so we allocate those with
1596 the most restrictive needs first. */
1597
1598 qty_order = (int *) alloca (next_qty * sizeof (int));
1599 for (i = 0; i < next_qty; i++)
1600 qty_order[i] = i;
1601
1602 #define EXCHANGE(I1, I2) \
1603 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1604
1605 switch (next_qty)
1606 {
1607 case 3:
1608 /* Make qty_order[2] be the one to allocate last. */
1609 if (qty_sugg_compare (0, 1) > 0)
1610 EXCHANGE (0, 1);
1611 if (qty_sugg_compare (1, 2) > 0)
1612 EXCHANGE (2, 1);
1613
1614 /* ... Fall through ... */
1615 case 2:
1616 /* Put the best one to allocate in qty_order[0]. */
1617 if (qty_sugg_compare (0, 1) > 0)
1618 EXCHANGE (0, 1);
1619
1620 /* ... Fall through ... */
1621
1622 case 1:
1623 case 0:
1624 /* Nothing to do here. */
1625 break;
1626
1627 default:
1628 qsort (qty_order, next_qty, sizeof (int), qty_sugg_compare_1);
1629 }
1630
1631 /* Try to put each quantity in a suggested physical register, if it has one.
1632 This may cause registers to be allocated that otherwise wouldn't be, but
1633 this seems acceptable in local allocation (unlike global allocation). */
1634 for (i = 0; i < next_qty; i++)
1635 {
1636 q = qty_order[i];
1637 if (qty_phys_num_sugg[q] != 0 || qty_phys_num_copy_sugg[q] != 0)
1638 qty_phys_reg[q] = find_free_reg (qty_min_class[q], qty_mode[q], q,
1639 0, 1, qty_birth[q], qty_death[q]);
1640 else
1641 qty_phys_reg[q] = -1;
1642 }
1643
1644 /* Order the qtys so we assign them registers in order of
1645 decreasing length of life. Normally call qsort, but if we
1646 have only a very small number of quantities, sort them ourselves. */
1647
1648 for (i = 0; i < next_qty; i++)
1649 qty_order[i] = i;
1650
1651 #define EXCHANGE(I1, I2) \
1652 { i = qty_order[I1]; qty_order[I1] = qty_order[I2]; qty_order[I2] = i; }
1653
1654 switch (next_qty)
1655 {
1656 case 3:
1657 /* Make qty_order[2] be the one to allocate last. */
1658 if (qty_compare (0, 1) > 0)
1659 EXCHANGE (0, 1);
1660 if (qty_compare (1, 2) > 0)
1661 EXCHANGE (2, 1);
1662
1663 /* ... Fall through ... */
1664 case 2:
1665 /* Put the best one to allocate in qty_order[0]. */
1666 if (qty_compare (0, 1) > 0)
1667 EXCHANGE (0, 1);
1668
1669 /* ... Fall through ... */
1670
1671 case 1:
1672 case 0:
1673 /* Nothing to do here. */
1674 break;
1675
1676 default:
1677 qsort (qty_order, next_qty, sizeof (int), qty_compare_1);
1678 }
1679
1680 /* Now for each qty that is not a hardware register,
1681 look for a hardware register to put it in.
1682 First try the register class that is cheapest for this qty,
1683 if there is more than one class. */
1684
1685 for (i = 0; i < next_qty; i++)
1686 {
1687 q = qty_order[i];
1688 if (qty_phys_reg[q] < 0)
1689 {
1690 if (N_REG_CLASSES > 1)
1691 {
1692 qty_phys_reg[q] = find_free_reg (qty_min_class[q],
1693 qty_mode[q], q, 0, 0,
1694 qty_birth[q], qty_death[q]);
1695 if (qty_phys_reg[q] >= 0)
1696 continue;
1697 }
1698
1699 if (qty_alternate_class[q] != NO_REGS)
1700 qty_phys_reg[q] = find_free_reg (qty_alternate_class[q],
1701 qty_mode[q], q, 0, 0,
1702 qty_birth[q], qty_death[q]);
1703 }
1704 }
1705
1706 /* Now propagate the register assignments
1707 to the pseudo regs belonging to the qtys. */
1708
1709 for (q = 0; q < next_qty; q++)
1710 if (qty_phys_reg[q] >= 0)
1711 {
1712 for (i = qty_first_reg[q]; i >= 0; i = reg_next_in_qty[i])
1713 reg_renumber[i] = qty_phys_reg[q] + reg_offset[i];
1714 if (qty_scratch_rtx[q])
1715 {
1716 if (GET_CODE (qty_scratch_rtx[q]) == REG)
1717 abort ();
1718
1719 qty_scratch_rtx[q] = gen_rtx (REG, GET_MODE (qty_scratch_rtx[q]),
1720 qty_phys_reg[q]);
1721
1722 scratch_block[scratch_index] = b;
1723 scratch_list[scratch_index++] = qty_scratch_rtx[q];
1724 }
1725 }
1726 }
1727 \f
1728 /* Compare two quantities' priority for getting real registers.
1729 We give shorter-lived quantities higher priority.
1730 Quantities with more references are also preferred, as are quantities that
1731 require multiple registers. This is the identical prioritization as
1732 done by global-alloc.
1733
1734 We used to give preference to registers with *longer* lives, but using
1735 the same algorithm in both local- and global-alloc can speed up execution
1736 of some programs by as much as a factor of three! */
1737
1738 /* Note that the quotient will never be bigger than
1739 the value of floor_log2 times the maximum number of
1740 times a register can occur in one insn (surely less than 100).
1741 Multiplying this by 10000 can't overflow.
1742 QTY_CMP_PRI is also used by qty_sugg_compare. */
1743
1744 #define QTY_CMP_PRI(q) \
1745 ((int) (((double) (floor_log2 (qty_n_refs[q]) * qty_n_refs[q] * qty_size[q]) \
1746 / (qty_death[q] - qty_birth[q])) * 10000))
1747
1748 static int
1749 qty_compare (q1, q2)
1750 int q1, q2;
1751 {
1752 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1753 }
1754
1755 static int
1756 qty_compare_1 (q1p, q2p)
1757 const GENERIC_PTR q1p;
1758 const GENERIC_PTR q2p;
1759 {
1760 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1761 register int tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1762
1763 if (tem != 0)
1764 return tem;
1765
1766 /* If qtys are equally good, sort by qty number,
1767 so that the results of qsort leave nothing to chance. */
1768 return q1 - q2;
1769 }
1770 \f
1771 /* Compare two quantities' priority for getting real registers. This version
1772 is called for quantities that have suggested hard registers. First priority
1773 goes to quantities that have copy preferences, then to those that have
1774 normal preferences. Within those groups, quantities with the lower
1775 number of preferences have the highest priority. Of those, we use the same
1776 algorithm as above. */
1777
1778 #define QTY_CMP_SUGG(q) \
1779 (qty_phys_num_copy_sugg[q] \
1780 ? qty_phys_num_copy_sugg[q] \
1781 : qty_phys_num_sugg[q] * FIRST_PSEUDO_REGISTER)
1782
1783 static int
1784 qty_sugg_compare (q1, q2)
1785 int q1, q2;
1786 {
1787 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1788
1789 if (tem != 0)
1790 return tem;
1791
1792 return QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1793 }
1794
1795 static int
1796 qty_sugg_compare_1 (q1p, q2p)
1797 const GENERIC_PTR q1p;
1798 const GENERIC_PTR q2p;
1799 {
1800 register int q1 = *(int *)q1p, q2 = *(int *)q2p;
1801 register int tem = QTY_CMP_SUGG (q1) - QTY_CMP_SUGG (q2);
1802
1803 if (tem != 0)
1804 return tem;
1805
1806 tem = QTY_CMP_PRI (q2) - QTY_CMP_PRI (q1);
1807 if (tem != 0)
1808 return tem;
1809
1810 /* If qtys are equally good, sort by qty number,
1811 so that the results of qsort leave nothing to chance. */
1812 return q1 - q2;
1813 }
1814
1815 #undef QTY_CMP_SUGG
1816 #undef QTY_CMP_PRI
1817 \f
1818 /* Attempt to combine the two registers (rtx's) USEDREG and SETREG.
1819 Returns 1 if have done so, or 0 if cannot.
1820
1821 Combining registers means marking them as having the same quantity
1822 and adjusting the offsets within the quantity if either of
1823 them is a SUBREG).
1824
1825 We don't actually combine a hard reg with a pseudo; instead
1826 we just record the hard reg as the suggestion for the pseudo's quantity.
1827 If we really combined them, we could lose if the pseudo lives
1828 across an insn that clobbers the hard reg (eg, movstr).
1829
1830 ALREADY_DEAD is non-zero if USEDREG is known to be dead even though
1831 there is no REG_DEAD note on INSN. This occurs during the processing
1832 of REG_NO_CONFLICT blocks.
1833
1834 MAY_SAVE_COPYCOPY is non-zero if this insn is simply copying USEDREG to
1835 SETREG or if the input and output must share a register.
1836 In that case, we record a hard reg suggestion in QTY_PHYS_COPY_SUGG.
1837
1838 There are elaborate checks for the validity of combining. */
1839
1840
1841 static int
1842 combine_regs (usedreg, setreg, may_save_copy, insn_number, insn, already_dead)
1843 rtx usedreg, setreg;
1844 int may_save_copy;
1845 int insn_number;
1846 rtx insn;
1847 int already_dead;
1848 {
1849 register int ureg, sreg;
1850 register int offset = 0;
1851 int usize, ssize;
1852 register int sqty;
1853
1854 /* Determine the numbers and sizes of registers being used. If a subreg
1855 is present that does not change the entire register, don't consider
1856 this a copy insn. */
1857
1858 while (GET_CODE (usedreg) == SUBREG)
1859 {
1860 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (usedreg))) > UNITS_PER_WORD)
1861 may_save_copy = 0;
1862 offset += SUBREG_WORD (usedreg);
1863 usedreg = SUBREG_REG (usedreg);
1864 }
1865 if (GET_CODE (usedreg) != REG)
1866 return 0;
1867 ureg = REGNO (usedreg);
1868 usize = REG_SIZE (usedreg);
1869
1870 while (GET_CODE (setreg) == SUBREG)
1871 {
1872 if (GET_MODE_SIZE (GET_MODE (SUBREG_REG (setreg))) > UNITS_PER_WORD)
1873 may_save_copy = 0;
1874 offset -= SUBREG_WORD (setreg);
1875 setreg = SUBREG_REG (setreg);
1876 }
1877 if (GET_CODE (setreg) != REG)
1878 return 0;
1879 sreg = REGNO (setreg);
1880 ssize = REG_SIZE (setreg);
1881
1882 /* If UREG is a pseudo-register that hasn't already been assigned a
1883 quantity number, it means that it is not local to this block or dies
1884 more than once. In either event, we can't do anything with it. */
1885 if ((ureg >= FIRST_PSEUDO_REGISTER && reg_qty[ureg] < 0)
1886 /* Do not combine registers unless one fits within the other. */
1887 || (offset > 0 && usize + offset > ssize)
1888 || (offset < 0 && usize + offset < ssize)
1889 /* Do not combine with a smaller already-assigned object
1890 if that smaller object is already combined with something bigger. */
1891 || (ssize > usize && ureg >= FIRST_PSEUDO_REGISTER
1892 && usize < qty_size[reg_qty[ureg]])
1893 /* Can't combine if SREG is not a register we can allocate. */
1894 || (sreg >= FIRST_PSEUDO_REGISTER && reg_qty[sreg] == -1)
1895 /* Don't combine with a pseudo mentioned in a REG_NO_CONFLICT note.
1896 These have already been taken care of. This probably wouldn't
1897 combine anyway, but don't take any chances. */
1898 || (ureg >= FIRST_PSEUDO_REGISTER
1899 && find_reg_note (insn, REG_NO_CONFLICT, usedreg))
1900 /* Don't tie something to itself. In most cases it would make no
1901 difference, but it would screw up if the reg being tied to itself
1902 also dies in this insn. */
1903 || ureg == sreg
1904 /* Don't try to connect two different hardware registers. */
1905 || (ureg < FIRST_PSEUDO_REGISTER && sreg < FIRST_PSEUDO_REGISTER)
1906 /* Don't connect two different machine modes if they have different
1907 implications as to which registers may be used. */
1908 || !MODES_TIEABLE_P (GET_MODE (usedreg), GET_MODE (setreg)))
1909 return 0;
1910
1911 /* Now, if UREG is a hard reg and SREG is a pseudo, record the hard reg in
1912 qty_phys_sugg for the pseudo instead of tying them.
1913
1914 Return "failure" so that the lifespan of UREG is terminated here;
1915 that way the two lifespans will be disjoint and nothing will prevent
1916 the pseudo reg from being given this hard reg. */
1917
1918 if (ureg < FIRST_PSEUDO_REGISTER)
1919 {
1920 /* Allocate a quantity number so we have a place to put our
1921 suggestions. */
1922 if (reg_qty[sreg] == -2)
1923 reg_is_born (setreg, 2 * insn_number);
1924
1925 if (reg_qty[sreg] >= 0)
1926 {
1927 if (may_save_copy
1928 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg))
1929 {
1930 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[sreg]], ureg);
1931 qty_phys_num_copy_sugg[reg_qty[sreg]]++;
1932 }
1933 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg))
1934 {
1935 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[sreg]], ureg);
1936 qty_phys_num_sugg[reg_qty[sreg]]++;
1937 }
1938 }
1939 return 0;
1940 }
1941
1942 /* Similarly for SREG a hard register and UREG a pseudo register. */
1943
1944 if (sreg < FIRST_PSEUDO_REGISTER)
1945 {
1946 if (may_save_copy
1947 && ! TEST_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg))
1948 {
1949 SET_HARD_REG_BIT (qty_phys_copy_sugg[reg_qty[ureg]], sreg);
1950 qty_phys_num_copy_sugg[reg_qty[ureg]]++;
1951 }
1952 else if (! TEST_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg))
1953 {
1954 SET_HARD_REG_BIT (qty_phys_sugg[reg_qty[ureg]], sreg);
1955 qty_phys_num_sugg[reg_qty[ureg]]++;
1956 }
1957 return 0;
1958 }
1959
1960 /* At this point we know that SREG and UREG are both pseudos.
1961 Do nothing if SREG already has a quantity or is a register that we
1962 don't allocate. */
1963 if (reg_qty[sreg] >= -1
1964 /* If we are not going to let any regs live across calls,
1965 don't tie a call-crossing reg to a non-call-crossing reg. */
1966 || (current_function_has_nonlocal_label
1967 && ((REG_N_CALLS_CROSSED (ureg) > 0)
1968 != (REG_N_CALLS_CROSSED (sreg) > 0))))
1969 return 0;
1970
1971 /* We don't already know about SREG, so tie it to UREG
1972 if this is the last use of UREG, provided the classes they want
1973 are compatible. */
1974
1975 if ((already_dead || find_regno_note (insn, REG_DEAD, ureg))
1976 && reg_meets_class_p (sreg, qty_min_class[reg_qty[ureg]]))
1977 {
1978 /* Add SREG to UREG's quantity. */
1979 sqty = reg_qty[ureg];
1980 reg_qty[sreg] = sqty;
1981 reg_offset[sreg] = reg_offset[ureg] + offset;
1982 reg_next_in_qty[sreg] = qty_first_reg[sqty];
1983 qty_first_reg[sqty] = sreg;
1984
1985 /* If SREG's reg class is smaller, set qty_min_class[SQTY]. */
1986 update_qty_class (sqty, sreg);
1987
1988 /* Update info about quantity SQTY. */
1989 qty_n_calls_crossed[sqty] += REG_N_CALLS_CROSSED (sreg);
1990 qty_n_refs[sqty] += REG_N_REFS (sreg);
1991 if (usize < ssize)
1992 {
1993 register int i;
1994
1995 for (i = qty_first_reg[sqty]; i >= 0; i = reg_next_in_qty[i])
1996 reg_offset[i] -= offset;
1997
1998 qty_size[sqty] = ssize;
1999 qty_mode[sqty] = GET_MODE (setreg);
2000 }
2001 }
2002 else
2003 return 0;
2004
2005 return 1;
2006 }
2007 \f
2008 /* Return 1 if the preferred class of REG allows it to be tied
2009 to a quantity or register whose class is CLASS.
2010 True if REG's reg class either contains or is contained in CLASS. */
2011
2012 static int
2013 reg_meets_class_p (reg, class)
2014 int reg;
2015 enum reg_class class;
2016 {
2017 register enum reg_class rclass = reg_preferred_class (reg);
2018 return (reg_class_subset_p (rclass, class)
2019 || reg_class_subset_p (class, rclass));
2020 }
2021
2022 /* Return 1 if the two specified classes have registers in common.
2023 If CALL_SAVED, then consider only call-saved registers. */
2024
2025 static int
2026 reg_classes_overlap_p (c1, c2, call_saved)
2027 register enum reg_class c1;
2028 register enum reg_class c2;
2029 int call_saved;
2030 {
2031 HARD_REG_SET c;
2032 int i;
2033
2034 COPY_HARD_REG_SET (c, reg_class_contents[(int) c1]);
2035 AND_HARD_REG_SET (c, reg_class_contents[(int) c2]);
2036
2037 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2038 if (TEST_HARD_REG_BIT (c, i)
2039 && (! call_saved || ! call_used_regs[i]))
2040 return 1;
2041
2042 return 0;
2043 }
2044
2045 /* Update the class of QTY assuming that REG is being tied to it. */
2046
2047 static void
2048 update_qty_class (qty, reg)
2049 int qty;
2050 int reg;
2051 {
2052 enum reg_class rclass = reg_preferred_class (reg);
2053 if (reg_class_subset_p (rclass, qty_min_class[qty]))
2054 qty_min_class[qty] = rclass;
2055
2056 rclass = reg_alternate_class (reg);
2057 if (reg_class_subset_p (rclass, qty_alternate_class[qty]))
2058 qty_alternate_class[qty] = rclass;
2059
2060 if (REG_CHANGES_SIZE (reg))
2061 qty_changes_size[qty] = 1;
2062 }
2063 \f
2064 /* Handle something which alters the value of an rtx REG.
2065
2066 REG is whatever is set or clobbered. SETTER is the rtx that
2067 is modifying the register.
2068
2069 If it is not really a register, we do nothing.
2070 The file-global variables `this_insn' and `this_insn_number'
2071 carry info from `block_alloc'. */
2072
2073 static void
2074 reg_is_set (reg, setter)
2075 rtx reg;
2076 rtx setter;
2077 {
2078 /* Note that note_stores will only pass us a SUBREG if it is a SUBREG of
2079 a hard register. These may actually not exist any more. */
2080
2081 if (GET_CODE (reg) != SUBREG
2082 && GET_CODE (reg) != REG)
2083 return;
2084
2085 /* Mark this register as being born. If it is used in a CLOBBER, mark
2086 it as being born halfway between the previous insn and this insn so that
2087 it conflicts with our inputs but not the outputs of the previous insn. */
2088
2089 reg_is_born (reg, 2 * this_insn_number - (GET_CODE (setter) == CLOBBER));
2090 }
2091 \f
2092 /* Handle beginning of the life of register REG.
2093 BIRTH is the index at which this is happening. */
2094
2095 static void
2096 reg_is_born (reg, birth)
2097 rtx reg;
2098 int birth;
2099 {
2100 register int regno;
2101
2102 if (GET_CODE (reg) == SUBREG)
2103 regno = REGNO (SUBREG_REG (reg)) + SUBREG_WORD (reg);
2104 else
2105 regno = REGNO (reg);
2106
2107 if (regno < FIRST_PSEUDO_REGISTER)
2108 {
2109 mark_life (regno, GET_MODE (reg), 1);
2110
2111 /* If the register was to have been born earlier that the present
2112 insn, mark it as live where it is actually born. */
2113 if (birth < 2 * this_insn_number)
2114 post_mark_life (regno, GET_MODE (reg), 1, birth, 2 * this_insn_number);
2115 }
2116 else
2117 {
2118 if (reg_qty[regno] == -2)
2119 alloc_qty (regno, GET_MODE (reg), PSEUDO_REGNO_SIZE (regno), birth);
2120
2121 /* If this register has a quantity number, show that it isn't dead. */
2122 if (reg_qty[regno] >= 0)
2123 qty_death[reg_qty[regno]] = -1;
2124 }
2125 }
2126
2127 /* Record the death of REG in the current insn. If OUTPUT_P is non-zero,
2128 REG is an output that is dying (i.e., it is never used), otherwise it
2129 is an input (the normal case).
2130 If OUTPUT_P is 1, then we extend the life past the end of this insn. */
2131
2132 static void
2133 wipe_dead_reg (reg, output_p)
2134 register rtx reg;
2135 int output_p;
2136 {
2137 register int regno = REGNO (reg);
2138
2139 /* If this insn has multiple results,
2140 and the dead reg is used in one of the results,
2141 extend its life to after this insn,
2142 so it won't get allocated together with any other result of this insn. */
2143 if (GET_CODE (PATTERN (this_insn)) == PARALLEL
2144 && !single_set (this_insn))
2145 {
2146 int i;
2147 for (i = XVECLEN (PATTERN (this_insn), 0) - 1; i >= 0; i--)
2148 {
2149 rtx set = XVECEXP (PATTERN (this_insn), 0, i);
2150 if (GET_CODE (set) == SET
2151 && GET_CODE (SET_DEST (set)) != REG
2152 && !rtx_equal_p (reg, SET_DEST (set))
2153 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
2154 output_p = 1;
2155 }
2156 }
2157
2158 /* If this register is used in an auto-increment address, then extend its
2159 life to after this insn, so that it won't get allocated together with
2160 the result of this insn. */
2161 if (! output_p && find_regno_note (this_insn, REG_INC, regno))
2162 output_p = 1;
2163
2164 if (regno < FIRST_PSEUDO_REGISTER)
2165 {
2166 mark_life (regno, GET_MODE (reg), 0);
2167
2168 /* If a hard register is dying as an output, mark it as in use at
2169 the beginning of this insn (the above statement would cause this
2170 not to happen). */
2171 if (output_p)
2172 post_mark_life (regno, GET_MODE (reg), 1,
2173 2 * this_insn_number, 2 * this_insn_number+ 1);
2174 }
2175
2176 else if (reg_qty[regno] >= 0)
2177 qty_death[reg_qty[regno]] = 2 * this_insn_number + output_p;
2178 }
2179 \f
2180 /* Find a block of SIZE words of hard regs in reg_class CLASS
2181 that can hold something of machine-mode MODE
2182 (but actually we test only the first of the block for holding MODE)
2183 and still free between insn BORN_INDEX and insn DEAD_INDEX,
2184 and return the number of the first of them.
2185 Return -1 if such a block cannot be found.
2186 If QTY crosses calls, insist on a register preserved by calls,
2187 unless ACCEPT_CALL_CLOBBERED is nonzero.
2188
2189 If JUST_TRY_SUGGESTED is non-zero, only try to see if the suggested
2190 register is available. If not, return -1. */
2191
2192 static int
2193 find_free_reg (class, mode, qty, accept_call_clobbered, just_try_suggested,
2194 born_index, dead_index)
2195 enum reg_class class;
2196 enum machine_mode mode;
2197 int qty;
2198 int accept_call_clobbered;
2199 int just_try_suggested;
2200 int born_index, dead_index;
2201 {
2202 register int i, ins;
2203 #ifdef HARD_REG_SET
2204 register /* Declare it register if it's a scalar. */
2205 #endif
2206 HARD_REG_SET used, first_used;
2207 #ifdef ELIMINABLE_REGS
2208 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
2209 #endif
2210
2211 /* Validate our parameters. */
2212 if (born_index < 0 || born_index > dead_index)
2213 abort ();
2214
2215 /* Don't let a pseudo live in a reg across a function call
2216 if we might get a nonlocal goto. */
2217 if (current_function_has_nonlocal_label
2218 && qty_n_calls_crossed[qty] > 0)
2219 return -1;
2220
2221 if (accept_call_clobbered)
2222 COPY_HARD_REG_SET (used, call_fixed_reg_set);
2223 else if (qty_n_calls_crossed[qty] == 0)
2224 COPY_HARD_REG_SET (used, fixed_reg_set);
2225 else
2226 COPY_HARD_REG_SET (used, call_used_reg_set);
2227
2228 if (accept_call_clobbered)
2229 IOR_HARD_REG_SET (used, losing_caller_save_reg_set);
2230
2231 for (ins = born_index; ins < dead_index; ins++)
2232 IOR_HARD_REG_SET (used, regs_live_at[ins]);
2233
2234 IOR_COMPL_HARD_REG_SET (used, reg_class_contents[(int) class]);
2235
2236 /* Don't use the frame pointer reg in local-alloc even if
2237 we may omit the frame pointer, because if we do that and then we
2238 need a frame pointer, reload won't know how to move the pseudo
2239 to another hard reg. It can move only regs made by global-alloc.
2240
2241 This is true of any register that can be eliminated. */
2242 #ifdef ELIMINABLE_REGS
2243 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
2244 SET_HARD_REG_BIT (used, eliminables[i].from);
2245 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2246 /* If FRAME_POINTER_REGNUM is not a real register, then protect the one
2247 that it might be eliminated into. */
2248 SET_HARD_REG_BIT (used, HARD_FRAME_POINTER_REGNUM);
2249 #endif
2250 #else
2251 SET_HARD_REG_BIT (used, FRAME_POINTER_REGNUM);
2252 #endif
2253
2254 #ifdef CLASS_CANNOT_CHANGE_SIZE
2255 if (qty_changes_size[qty])
2256 IOR_HARD_REG_SET (used,
2257 reg_class_contents[(int) CLASS_CANNOT_CHANGE_SIZE]);
2258 #endif
2259
2260 /* Normally, the registers that can be used for the first register in
2261 a multi-register quantity are the same as those that can be used for
2262 subsequent registers. However, if just trying suggested registers,
2263 restrict our consideration to them. If there are copy-suggested
2264 register, try them. Otherwise, try the arithmetic-suggested
2265 registers. */
2266 COPY_HARD_REG_SET (first_used, used);
2267
2268 if (just_try_suggested)
2269 {
2270 if (qty_phys_num_copy_sugg[qty] != 0)
2271 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_copy_sugg[qty]);
2272 else
2273 IOR_COMPL_HARD_REG_SET (first_used, qty_phys_sugg[qty]);
2274 }
2275
2276 /* If all registers are excluded, we can't do anything. */
2277 GO_IF_HARD_REG_SUBSET (reg_class_contents[(int) ALL_REGS], first_used, fail);
2278
2279 /* If at least one would be suitable, test each hard reg. */
2280
2281 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2282 {
2283 #ifdef REG_ALLOC_ORDER
2284 int regno = reg_alloc_order[i];
2285 #else
2286 int regno = i;
2287 #endif
2288 if (! TEST_HARD_REG_BIT (first_used, regno)
2289 && HARD_REGNO_MODE_OK (regno, mode))
2290 {
2291 register int j;
2292 register int size1 = HARD_REGNO_NREGS (regno, mode);
2293 for (j = 1; j < size1 && ! TEST_HARD_REG_BIT (used, regno + j); j++);
2294 if (j == size1)
2295 {
2296 /* Mark that this register is in use between its birth and death
2297 insns. */
2298 post_mark_life (regno, mode, 1, born_index, dead_index);
2299 return regno;
2300 }
2301 #ifndef REG_ALLOC_ORDER
2302 i += j; /* Skip starting points we know will lose */
2303 #endif
2304 }
2305 }
2306
2307 fail:
2308
2309 /* If we are just trying suggested register, we have just tried copy-
2310 suggested registers, and there are arithmetic-suggested registers,
2311 try them. */
2312
2313 /* If it would be profitable to allocate a call-clobbered register
2314 and save and restore it around calls, do that. */
2315 if (just_try_suggested && qty_phys_num_copy_sugg[qty] != 0
2316 && qty_phys_num_sugg[qty] != 0)
2317 {
2318 /* Don't try the copy-suggested regs again. */
2319 qty_phys_num_copy_sugg[qty] = 0;
2320 return find_free_reg (class, mode, qty, accept_call_clobbered, 1,
2321 born_index, dead_index);
2322 }
2323
2324 /* We need not check to see if the current function has nonlocal
2325 labels because we don't put any pseudos that are live over calls in
2326 registers in that case. */
2327
2328 if (! accept_call_clobbered
2329 && flag_caller_saves
2330 && ! just_try_suggested
2331 && qty_n_calls_crossed[qty] != 0
2332 && CALLER_SAVE_PROFITABLE (qty_n_refs[qty], qty_n_calls_crossed[qty]))
2333 {
2334 i = find_free_reg (class, mode, qty, 1, 0, born_index, dead_index);
2335 if (i >= 0)
2336 caller_save_needed = 1;
2337 return i;
2338 }
2339 return -1;
2340 }
2341 \f
2342 /* Mark that REGNO with machine-mode MODE is live starting from the current
2343 insn (if LIFE is non-zero) or dead starting at the current insn (if LIFE
2344 is zero). */
2345
2346 static void
2347 mark_life (regno, mode, life)
2348 register int regno;
2349 enum machine_mode mode;
2350 int life;
2351 {
2352 register int j = HARD_REGNO_NREGS (regno, mode);
2353 if (life)
2354 while (--j >= 0)
2355 SET_HARD_REG_BIT (regs_live, regno + j);
2356 else
2357 while (--j >= 0)
2358 CLEAR_HARD_REG_BIT (regs_live, regno + j);
2359 }
2360
2361 /* Mark register number REGNO (with machine-mode MODE) as live (if LIFE
2362 is non-zero) or dead (if LIFE is zero) from insn number BIRTH (inclusive)
2363 to insn number DEATH (exclusive). */
2364
2365 static void
2366 post_mark_life (regno, mode, life, birth, death)
2367 int regno;
2368 enum machine_mode mode;
2369 int life, birth, death;
2370 {
2371 register int j = HARD_REGNO_NREGS (regno, mode);
2372 #ifdef HARD_REG_SET
2373 register /* Declare it register if it's a scalar. */
2374 #endif
2375 HARD_REG_SET this_reg;
2376
2377 CLEAR_HARD_REG_SET (this_reg);
2378 while (--j >= 0)
2379 SET_HARD_REG_BIT (this_reg, regno + j);
2380
2381 if (life)
2382 while (birth < death)
2383 {
2384 IOR_HARD_REG_SET (regs_live_at[birth], this_reg);
2385 birth++;
2386 }
2387 else
2388 while (birth < death)
2389 {
2390 AND_COMPL_HARD_REG_SET (regs_live_at[birth], this_reg);
2391 birth++;
2392 }
2393 }
2394 \f
2395 /* INSN is the CLOBBER insn that starts a REG_NO_NOCONFLICT block, R0
2396 is the register being clobbered, and R1 is a register being used in
2397 the equivalent expression.
2398
2399 If R1 dies in the block and has a REG_NO_CONFLICT note on every insn
2400 in which it is used, return 1.
2401
2402 Otherwise, return 0. */
2403
2404 static int
2405 no_conflict_p (insn, r0, r1)
2406 rtx insn, r0, r1;
2407 {
2408 int ok = 0;
2409 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
2410 rtx p, last;
2411
2412 /* If R1 is a hard register, return 0 since we handle this case
2413 when we scan the insns that actually use it. */
2414
2415 if (note == 0
2416 || (GET_CODE (r1) == REG && REGNO (r1) < FIRST_PSEUDO_REGISTER)
2417 || (GET_CODE (r1) == SUBREG && GET_CODE (SUBREG_REG (r1)) == REG
2418 && REGNO (SUBREG_REG (r1)) < FIRST_PSEUDO_REGISTER))
2419 return 0;
2420
2421 last = XEXP (note, 0);
2422
2423 for (p = NEXT_INSN (insn); p && p != last; p = NEXT_INSN (p))
2424 if (GET_RTX_CLASS (GET_CODE (p)) == 'i')
2425 {
2426 if (find_reg_note (p, REG_DEAD, r1))
2427 ok = 1;
2428
2429 /* There must be a REG_NO_CONFLICT note on every insn, otherwise
2430 some earlier optimization pass has inserted instructions into
2431 the sequence, and it is not safe to perform this optimization.
2432 Note that emit_no_conflict_block always ensures that this is
2433 true when these sequences are created. */
2434 if (! find_reg_note (p, REG_NO_CONFLICT, r1))
2435 return 0;
2436 }
2437
2438 return ok;
2439 }
2440 \f
2441 #ifdef REGISTER_CONSTRAINTS
2442
2443 /* Return the number of alternatives for which the constraint string P
2444 indicates that the operand must be equal to operand 0 and that no register
2445 is acceptable. */
2446
2447 static int
2448 requires_inout (p)
2449 char *p;
2450 {
2451 char c;
2452 int found_zero = 0;
2453 int reg_allowed = 0;
2454 int num_matching_alts = 0;
2455
2456 while (c = *p++)
2457 switch (c)
2458 {
2459 case '=': case '+': case '?':
2460 case '#': case '&': case '!':
2461 case '*': case '%':
2462 case '1': case '2': case '3': case '4':
2463 case 'm': case '<': case '>': case 'V': case 'o':
2464 case 'E': case 'F': case 'G': case 'H':
2465 case 's': case 'i': case 'n':
2466 case 'I': case 'J': case 'K': case 'L':
2467 case 'M': case 'N': case 'O': case 'P':
2468 #ifdef EXTRA_CONSTRAINT
2469 case 'Q': case 'R': case 'S': case 'T': case 'U':
2470 #endif
2471 case 'X':
2472 /* These don't say anything we care about. */
2473 break;
2474
2475 case ',':
2476 if (found_zero && ! reg_allowed)
2477 num_matching_alts++;
2478
2479 found_zero = reg_allowed = 0;
2480 break;
2481
2482 case '0':
2483 found_zero = 1;
2484 break;
2485
2486 case 'p':
2487 case 'g': case 'r':
2488 default:
2489 reg_allowed = 1;
2490 break;
2491 }
2492
2493 if (found_zero && ! reg_allowed)
2494 num_matching_alts++;
2495
2496 return num_matching_alts;
2497 }
2498 #endif /* REGISTER_CONSTRAINTS */
2499 \f
2500 void
2501 dump_local_alloc (file)
2502 FILE *file;
2503 {
2504 register int i;
2505 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2506 if (reg_renumber[i] != -1)
2507 fprintf (file, ";; Register %d in %d.\n", i, reg_renumber[i]);
2508 }