]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/loop-iv.c
42bcb75bec7e2c01649a5ff2607a83aa0e4774e9
[thirdparty/gcc.git] / gcc / loop-iv.c
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
24
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
29
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
35
36 The available functions are:
37
38 iv_analyze (insn, reg, iv): Stores the description of the induction variable
39 corresponding to the use of register REG in INSN to IV. Returns true if
40 REG is an induction variable in INSN. false otherwise.
41 If use of REG is not found in INSN, following insns are scanned (so that
42 we may call this function on insn returned by get_condition).
43 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
44 corresponding to DEF, which is a register defined in INSN.
45 iv_analyze_expr (insn, rhs, mode, iv): Stores to IV the description of iv
46 corresponding to expression EXPR evaluated at INSN. All registers used bu
47 EXPR must also be used in INSN.
48 */
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "rtl.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58 #include "cfgloop.h"
59 #include "expr.h"
60 #include "intl.h"
61 #include "diagnostic-core.h"
62 #include "df.h"
63 #include "hash-table.h"
64 #include "dumpfile.h"
65
66 /* Possible return values of iv_get_reaching_def. */
67
68 enum iv_grd_result
69 {
70 /* More than one reaching def, or reaching def that does not
71 dominate the use. */
72 GRD_INVALID,
73
74 /* The use is trivial invariant of the loop, i.e. is not changed
75 inside the loop. */
76 GRD_INVARIANT,
77
78 /* The use is reached by initial value and a value from the
79 previous iteration. */
80 GRD_MAYBE_BIV,
81
82 /* The use has single dominating def. */
83 GRD_SINGLE_DOM
84 };
85
86 /* Information about a biv. */
87
88 struct biv_entry
89 {
90 unsigned regno; /* The register of the biv. */
91 struct rtx_iv iv; /* Value of the biv. */
92 };
93
94 static bool clean_slate = true;
95
96 static unsigned int iv_ref_table_size = 0;
97
98 /* Table of rtx_ivs indexed by the df_ref uid field. */
99 static struct rtx_iv ** iv_ref_table;
100
101 /* Induction variable stored at the reference. */
102 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
103 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
104
105 /* The current loop. */
106
107 static struct loop *current_loop;
108
109 /* Hashtable helper. */
110
111 struct biv_entry_hasher : typed_free_remove <biv_entry>
112 {
113 typedef biv_entry value_type;
114 typedef rtx_def compare_type;
115 static inline hashval_t hash (const value_type *);
116 static inline bool equal (const value_type *, const compare_type *);
117 };
118
119 /* Returns hash value for biv B. */
120
121 inline hashval_t
122 biv_entry_hasher::hash (const value_type *b)
123 {
124 return b->regno;
125 }
126
127 /* Compares biv B and register R. */
128
129 inline bool
130 biv_entry_hasher::equal (const value_type *b, const compare_type *r)
131 {
132 return b->regno == REGNO (r);
133 }
134
135 /* Bivs of the current loop. */
136
137 static hash_table <biv_entry_hasher> bivs;
138
139 static bool iv_analyze_op (rtx, rtx, struct rtx_iv *);
140
141 /* Return the RTX code corresponding to the IV extend code EXTEND. */
142 static inline enum rtx_code
143 iv_extend_to_rtx_code (enum iv_extend_code extend)
144 {
145 switch (extend)
146 {
147 case IV_SIGN_EXTEND:
148 return SIGN_EXTEND;
149 case IV_ZERO_EXTEND:
150 return ZERO_EXTEND;
151 case IV_UNKNOWN_EXTEND:
152 return UNKNOWN;
153 }
154 gcc_unreachable ();
155 }
156
157 /* Dumps information about IV to FILE. */
158
159 extern void dump_iv_info (FILE *, struct rtx_iv *);
160 void
161 dump_iv_info (FILE *file, struct rtx_iv *iv)
162 {
163 if (!iv->base)
164 {
165 fprintf (file, "not simple");
166 return;
167 }
168
169 if (iv->step == const0_rtx
170 && !iv->first_special)
171 fprintf (file, "invariant ");
172
173 print_rtl (file, iv->base);
174 if (iv->step != const0_rtx)
175 {
176 fprintf (file, " + ");
177 print_rtl (file, iv->step);
178 fprintf (file, " * iteration");
179 }
180 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
181
182 if (iv->mode != iv->extend_mode)
183 fprintf (file, " %s to %s",
184 rtx_name[iv_extend_to_rtx_code (iv->extend)],
185 GET_MODE_NAME (iv->extend_mode));
186
187 if (iv->mult != const1_rtx)
188 {
189 fprintf (file, " * ");
190 print_rtl (file, iv->mult);
191 }
192 if (iv->delta != const0_rtx)
193 {
194 fprintf (file, " + ");
195 print_rtl (file, iv->delta);
196 }
197 if (iv->first_special)
198 fprintf (file, " (first special)");
199 }
200
201 /* Generates a subreg to get the least significant part of EXPR (in mode
202 INNER_MODE) to OUTER_MODE. */
203
204 rtx
205 lowpart_subreg (enum machine_mode outer_mode, rtx expr,
206 enum machine_mode inner_mode)
207 {
208 return simplify_gen_subreg (outer_mode, expr, inner_mode,
209 subreg_lowpart_offset (outer_mode, inner_mode));
210 }
211
212 static void
213 check_iv_ref_table_size (void)
214 {
215 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
216 {
217 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
218 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
219 memset (&iv_ref_table[iv_ref_table_size], 0,
220 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
221 iv_ref_table_size = new_size;
222 }
223 }
224
225
226 /* Checks whether REG is a well-behaved register. */
227
228 static bool
229 simple_reg_p (rtx reg)
230 {
231 unsigned r;
232
233 if (GET_CODE (reg) == SUBREG)
234 {
235 if (!subreg_lowpart_p (reg))
236 return false;
237 reg = SUBREG_REG (reg);
238 }
239
240 if (!REG_P (reg))
241 return false;
242
243 r = REGNO (reg);
244 if (HARD_REGISTER_NUM_P (r))
245 return false;
246
247 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
248 return false;
249
250 return true;
251 }
252
253 /* Clears the information about ivs stored in df. */
254
255 static void
256 clear_iv_info (void)
257 {
258 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
259 struct rtx_iv *iv;
260
261 check_iv_ref_table_size ();
262 for (i = 0; i < n_defs; i++)
263 {
264 iv = iv_ref_table[i];
265 if (iv)
266 {
267 free (iv);
268 iv_ref_table[i] = NULL;
269 }
270 }
271
272 bivs.empty ();
273 }
274
275
276 /* Prepare the data for an induction variable analysis of a LOOP. */
277
278 void
279 iv_analysis_loop_init (struct loop *loop)
280 {
281 current_loop = loop;
282
283 /* Clear the information from the analysis of the previous loop. */
284 if (clean_slate)
285 {
286 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
287 bivs.create (10);
288 clean_slate = false;
289 }
290 else
291 clear_iv_info ();
292
293 /* Get rid of the ud chains before processing the rescans. Then add
294 the problem back. */
295 df_remove_problem (df_chain);
296 df_process_deferred_rescans ();
297 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
298 df_chain_add_problem (DF_UD_CHAIN);
299 df_note_add_problem ();
300 df_analyze_loop (loop);
301 if (dump_file)
302 df_dump_region (dump_file);
303
304 check_iv_ref_table_size ();
305 }
306
307 /* Finds the definition of REG that dominates loop latch and stores
308 it to DEF. Returns false if there is not a single definition
309 dominating the latch. If REG has no definition in loop, DEF
310 is set to NULL and true is returned. */
311
312 static bool
313 latch_dominating_def (rtx reg, df_ref *def)
314 {
315 df_ref single_rd = NULL, adef;
316 unsigned regno = REGNO (reg);
317 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
318
319 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
320 {
321 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
322 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
323 continue;
324
325 /* More than one reaching definition. */
326 if (single_rd)
327 return false;
328
329 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
330 return false;
331
332 single_rd = adef;
333 }
334
335 *def = single_rd;
336 return true;
337 }
338
339 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
340
341 static enum iv_grd_result
342 iv_get_reaching_def (rtx insn, rtx reg, df_ref *def)
343 {
344 df_ref use, adef;
345 basic_block def_bb, use_bb;
346 rtx def_insn;
347 bool dom_p;
348
349 *def = NULL;
350 if (!simple_reg_p (reg))
351 return GRD_INVALID;
352 if (GET_CODE (reg) == SUBREG)
353 reg = SUBREG_REG (reg);
354 gcc_assert (REG_P (reg));
355
356 use = df_find_use (insn, reg);
357 gcc_assert (use != NULL);
358
359 if (!DF_REF_CHAIN (use))
360 return GRD_INVARIANT;
361
362 /* More than one reaching def. */
363 if (DF_REF_CHAIN (use)->next)
364 return GRD_INVALID;
365
366 adef = DF_REF_CHAIN (use)->ref;
367
368 /* We do not handle setting only part of the register. */
369 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
370 return GRD_INVALID;
371
372 def_insn = DF_REF_INSN (adef);
373 def_bb = DF_REF_BB (adef);
374 use_bb = BLOCK_FOR_INSN (insn);
375
376 if (use_bb == def_bb)
377 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
378 else
379 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
380
381 if (dom_p)
382 {
383 *def = adef;
384 return GRD_SINGLE_DOM;
385 }
386
387 /* The definition does not dominate the use. This is still OK if
388 this may be a use of a biv, i.e. if the def_bb dominates loop
389 latch. */
390 if (just_once_each_iteration_p (current_loop, def_bb))
391 return GRD_MAYBE_BIV;
392
393 return GRD_INVALID;
394 }
395
396 /* Sets IV to invariant CST in MODE. Always returns true (just for
397 consistency with other iv manipulation functions that may fail). */
398
399 static bool
400 iv_constant (struct rtx_iv *iv, rtx cst, enum machine_mode mode)
401 {
402 if (mode == VOIDmode)
403 mode = GET_MODE (cst);
404
405 iv->mode = mode;
406 iv->base = cst;
407 iv->step = const0_rtx;
408 iv->first_special = false;
409 iv->extend = IV_UNKNOWN_EXTEND;
410 iv->extend_mode = iv->mode;
411 iv->delta = const0_rtx;
412 iv->mult = const1_rtx;
413
414 return true;
415 }
416
417 /* Evaluates application of subreg to MODE on IV. */
418
419 static bool
420 iv_subreg (struct rtx_iv *iv, enum machine_mode mode)
421 {
422 /* If iv is invariant, just calculate the new value. */
423 if (iv->step == const0_rtx
424 && !iv->first_special)
425 {
426 rtx val = get_iv_value (iv, const0_rtx);
427 val = lowpart_subreg (mode, val,
428 iv->extend == IV_UNKNOWN_EXTEND
429 ? iv->mode : iv->extend_mode);
430
431 iv->base = val;
432 iv->extend = IV_UNKNOWN_EXTEND;
433 iv->mode = iv->extend_mode = mode;
434 iv->delta = const0_rtx;
435 iv->mult = const1_rtx;
436 return true;
437 }
438
439 if (iv->extend_mode == mode)
440 return true;
441
442 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
443 return false;
444
445 iv->extend = IV_UNKNOWN_EXTEND;
446 iv->mode = mode;
447
448 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
449 simplify_gen_binary (MULT, iv->extend_mode,
450 iv->base, iv->mult));
451 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
452 iv->mult = const1_rtx;
453 iv->delta = const0_rtx;
454 iv->first_special = false;
455
456 return true;
457 }
458
459 /* Evaluates application of EXTEND to MODE on IV. */
460
461 static bool
462 iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, enum machine_mode mode)
463 {
464 /* If iv is invariant, just calculate the new value. */
465 if (iv->step == const0_rtx
466 && !iv->first_special)
467 {
468 rtx val = get_iv_value (iv, const0_rtx);
469 if (iv->extend_mode != iv->mode
470 && iv->extend != IV_UNKNOWN_EXTEND
471 && iv->extend != extend)
472 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
473 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
474 val,
475 iv->extend == extend
476 ? iv->extend_mode : iv->mode);
477 iv->base = val;
478 iv->extend = IV_UNKNOWN_EXTEND;
479 iv->mode = iv->extend_mode = mode;
480 iv->delta = const0_rtx;
481 iv->mult = const1_rtx;
482 return true;
483 }
484
485 if (mode != iv->extend_mode)
486 return false;
487
488 if (iv->extend != IV_UNKNOWN_EXTEND
489 && iv->extend != extend)
490 return false;
491
492 iv->extend = extend;
493
494 return true;
495 }
496
497 /* Evaluates negation of IV. */
498
499 static bool
500 iv_neg (struct rtx_iv *iv)
501 {
502 if (iv->extend == IV_UNKNOWN_EXTEND)
503 {
504 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
505 iv->base, iv->extend_mode);
506 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
507 iv->step, iv->extend_mode);
508 }
509 else
510 {
511 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
512 iv->delta, iv->extend_mode);
513 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
514 iv->mult, iv->extend_mode);
515 }
516
517 return true;
518 }
519
520 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
521
522 static bool
523 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
524 {
525 enum machine_mode mode;
526 rtx arg;
527
528 /* Extend the constant to extend_mode of the other operand if necessary. */
529 if (iv0->extend == IV_UNKNOWN_EXTEND
530 && iv0->mode == iv0->extend_mode
531 && iv0->step == const0_rtx
532 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
533 {
534 iv0->extend_mode = iv1->extend_mode;
535 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
536 iv0->base, iv0->mode);
537 }
538 if (iv1->extend == IV_UNKNOWN_EXTEND
539 && iv1->mode == iv1->extend_mode
540 && iv1->step == const0_rtx
541 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
542 {
543 iv1->extend_mode = iv0->extend_mode;
544 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
545 iv1->base, iv1->mode);
546 }
547
548 mode = iv0->extend_mode;
549 if (mode != iv1->extend_mode)
550 return false;
551
552 if (iv0->extend == IV_UNKNOWN_EXTEND
553 && iv1->extend == IV_UNKNOWN_EXTEND)
554 {
555 if (iv0->mode != iv1->mode)
556 return false;
557
558 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
559 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
560
561 return true;
562 }
563
564 /* Handle addition of constant. */
565 if (iv1->extend == IV_UNKNOWN_EXTEND
566 && iv1->mode == mode
567 && iv1->step == const0_rtx)
568 {
569 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
570 return true;
571 }
572
573 if (iv0->extend == IV_UNKNOWN_EXTEND
574 && iv0->mode == mode
575 && iv0->step == const0_rtx)
576 {
577 arg = iv0->base;
578 *iv0 = *iv1;
579 if (op == MINUS
580 && !iv_neg (iv0))
581 return false;
582
583 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
584 return true;
585 }
586
587 return false;
588 }
589
590 /* Evaluates multiplication of IV by constant CST. */
591
592 static bool
593 iv_mult (struct rtx_iv *iv, rtx mby)
594 {
595 enum machine_mode mode = iv->extend_mode;
596
597 if (GET_MODE (mby) != VOIDmode
598 && GET_MODE (mby) != mode)
599 return false;
600
601 if (iv->extend == IV_UNKNOWN_EXTEND)
602 {
603 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
604 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
605 }
606 else
607 {
608 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
609 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
610 }
611
612 return true;
613 }
614
615 /* Evaluates shift of IV by constant CST. */
616
617 static bool
618 iv_shift (struct rtx_iv *iv, rtx mby)
619 {
620 enum machine_mode mode = iv->extend_mode;
621
622 if (GET_MODE (mby) != VOIDmode
623 && GET_MODE (mby) != mode)
624 return false;
625
626 if (iv->extend == IV_UNKNOWN_EXTEND)
627 {
628 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
629 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
630 }
631 else
632 {
633 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
634 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
635 }
636
637 return true;
638 }
639
640 /* The recursive part of get_biv_step. Gets the value of the single value
641 defined by DEF wrto initial value of REG inside loop, in shape described
642 at get_biv_step. */
643
644 static bool
645 get_biv_step_1 (df_ref def, rtx reg,
646 rtx *inner_step, enum machine_mode *inner_mode,
647 enum iv_extend_code *extend, enum machine_mode outer_mode,
648 rtx *outer_step)
649 {
650 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
651 rtx next, nextr, tmp;
652 enum rtx_code code;
653 rtx insn = DF_REF_INSN (def);
654 df_ref next_def;
655 enum iv_grd_result res;
656
657 set = single_set (insn);
658 if (!set)
659 return false;
660
661 rhs = find_reg_equal_equiv_note (insn);
662 if (rhs)
663 rhs = XEXP (rhs, 0);
664 else
665 rhs = SET_SRC (set);
666
667 code = GET_CODE (rhs);
668 switch (code)
669 {
670 case SUBREG:
671 case REG:
672 next = rhs;
673 break;
674
675 case PLUS:
676 case MINUS:
677 op0 = XEXP (rhs, 0);
678 op1 = XEXP (rhs, 1);
679
680 if (code == PLUS && CONSTANT_P (op0))
681 {
682 tmp = op0; op0 = op1; op1 = tmp;
683 }
684
685 if (!simple_reg_p (op0)
686 || !CONSTANT_P (op1))
687 return false;
688
689 if (GET_MODE (rhs) != outer_mode)
690 {
691 /* ppc64 uses expressions like
692
693 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
694
695 this is equivalent to
696
697 (set x':DI (plus:DI y:DI 1))
698 (set x:SI (subreg:SI (x':DI)). */
699 if (GET_CODE (op0) != SUBREG)
700 return false;
701 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
702 return false;
703 }
704
705 next = op0;
706 break;
707
708 case SIGN_EXTEND:
709 case ZERO_EXTEND:
710 if (GET_MODE (rhs) != outer_mode)
711 return false;
712
713 op0 = XEXP (rhs, 0);
714 if (!simple_reg_p (op0))
715 return false;
716
717 next = op0;
718 break;
719
720 default:
721 return false;
722 }
723
724 if (GET_CODE (next) == SUBREG)
725 {
726 if (!subreg_lowpart_p (next))
727 return false;
728
729 nextr = SUBREG_REG (next);
730 if (GET_MODE (nextr) != outer_mode)
731 return false;
732 }
733 else
734 nextr = next;
735
736 res = iv_get_reaching_def (insn, nextr, &next_def);
737
738 if (res == GRD_INVALID || res == GRD_INVARIANT)
739 return false;
740
741 if (res == GRD_MAYBE_BIV)
742 {
743 if (!rtx_equal_p (nextr, reg))
744 return false;
745
746 *inner_step = const0_rtx;
747 *extend = IV_UNKNOWN_EXTEND;
748 *inner_mode = outer_mode;
749 *outer_step = const0_rtx;
750 }
751 else if (!get_biv_step_1 (next_def, reg,
752 inner_step, inner_mode, extend, outer_mode,
753 outer_step))
754 return false;
755
756 if (GET_CODE (next) == SUBREG)
757 {
758 enum machine_mode amode = GET_MODE (next);
759
760 if (GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
761 return false;
762
763 *inner_mode = amode;
764 *inner_step = simplify_gen_binary (PLUS, outer_mode,
765 *inner_step, *outer_step);
766 *outer_step = const0_rtx;
767 *extend = IV_UNKNOWN_EXTEND;
768 }
769
770 switch (code)
771 {
772 case REG:
773 case SUBREG:
774 break;
775
776 case PLUS:
777 case MINUS:
778 if (*inner_mode == outer_mode
779 /* See comment in previous switch. */
780 || GET_MODE (rhs) != outer_mode)
781 *inner_step = simplify_gen_binary (code, outer_mode,
782 *inner_step, op1);
783 else
784 *outer_step = simplify_gen_binary (code, outer_mode,
785 *outer_step, op1);
786 break;
787
788 case SIGN_EXTEND:
789 case ZERO_EXTEND:
790 gcc_assert (GET_MODE (op0) == *inner_mode
791 && *extend == IV_UNKNOWN_EXTEND
792 && *outer_step == const0_rtx);
793
794 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
795 break;
796
797 default:
798 return false;
799 }
800
801 return true;
802 }
803
804 /* Gets the operation on register REG inside loop, in shape
805
806 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
807
808 If the operation cannot be described in this shape, return false.
809 LAST_DEF is the definition of REG that dominates loop latch. */
810
811 static bool
812 get_biv_step (df_ref last_def, rtx reg, rtx *inner_step,
813 enum machine_mode *inner_mode, enum iv_extend_code *extend,
814 enum machine_mode *outer_mode, rtx *outer_step)
815 {
816 *outer_mode = GET_MODE (reg);
817
818 if (!get_biv_step_1 (last_def, reg,
819 inner_step, inner_mode, extend, *outer_mode,
820 outer_step))
821 return false;
822
823 gcc_assert ((*inner_mode == *outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
824 gcc_assert (*inner_mode != *outer_mode || *outer_step == const0_rtx);
825
826 return true;
827 }
828
829 /* Records information that DEF is induction variable IV. */
830
831 static void
832 record_iv (df_ref def, struct rtx_iv *iv)
833 {
834 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
835
836 *recorded_iv = *iv;
837 check_iv_ref_table_size ();
838 DF_REF_IV_SET (def, recorded_iv);
839 }
840
841 /* If DEF was already analyzed for bivness, store the description of the biv to
842 IV and return true. Otherwise return false. */
843
844 static bool
845 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
846 {
847 struct biv_entry *biv = bivs.find_with_hash (def, REGNO (def));
848
849 if (!biv)
850 return false;
851
852 *iv = biv->iv;
853 return true;
854 }
855
856 static void
857 record_biv (rtx def, struct rtx_iv *iv)
858 {
859 struct biv_entry *biv = XNEW (struct biv_entry);
860 biv_entry **slot = bivs.find_slot_with_hash (def, REGNO (def), INSERT);
861
862 biv->regno = REGNO (def);
863 biv->iv = *iv;
864 gcc_assert (!*slot);
865 *slot = biv;
866 }
867
868 /* Determines whether DEF is a biv and if so, stores its description
869 to *IV. */
870
871 static bool
872 iv_analyze_biv (rtx def, struct rtx_iv *iv)
873 {
874 rtx inner_step, outer_step;
875 enum machine_mode inner_mode, outer_mode;
876 enum iv_extend_code extend;
877 df_ref last_def;
878
879 if (dump_file)
880 {
881 fprintf (dump_file, "Analyzing ");
882 print_rtl (dump_file, def);
883 fprintf (dump_file, " for bivness.\n");
884 }
885
886 if (!REG_P (def))
887 {
888 if (!CONSTANT_P (def))
889 return false;
890
891 return iv_constant (iv, def, VOIDmode);
892 }
893
894 if (!latch_dominating_def (def, &last_def))
895 {
896 if (dump_file)
897 fprintf (dump_file, " not simple.\n");
898 return false;
899 }
900
901 if (!last_def)
902 return iv_constant (iv, def, VOIDmode);
903
904 if (analyzed_for_bivness_p (def, iv))
905 {
906 if (dump_file)
907 fprintf (dump_file, " already analysed.\n");
908 return iv->base != NULL_RTX;
909 }
910
911 if (!get_biv_step (last_def, def, &inner_step, &inner_mode, &extend,
912 &outer_mode, &outer_step))
913 {
914 iv->base = NULL_RTX;
915 goto end;
916 }
917
918 /* Loop transforms base to es (base + inner_step) + outer_step,
919 where es means extend of subreg between inner_mode and outer_mode.
920 The corresponding induction variable is
921
922 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
923
924 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
925 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
926 iv->mode = inner_mode;
927 iv->extend_mode = outer_mode;
928 iv->extend = extend;
929 iv->mult = const1_rtx;
930 iv->delta = outer_step;
931 iv->first_special = inner_mode != outer_mode;
932
933 end:
934 if (dump_file)
935 {
936 fprintf (dump_file, " ");
937 dump_iv_info (dump_file, iv);
938 fprintf (dump_file, "\n");
939 }
940
941 record_biv (def, iv);
942 return iv->base != NULL_RTX;
943 }
944
945 /* Analyzes expression RHS used at INSN and stores the result to *IV.
946 The mode of the induction variable is MODE. */
947
948 bool
949 iv_analyze_expr (rtx insn, rtx rhs, enum machine_mode mode, struct rtx_iv *iv)
950 {
951 rtx mby = NULL_RTX, tmp;
952 rtx op0 = NULL_RTX, op1 = NULL_RTX;
953 struct rtx_iv iv0, iv1;
954 enum rtx_code code = GET_CODE (rhs);
955 enum machine_mode omode = mode;
956
957 iv->mode = VOIDmode;
958 iv->base = NULL_RTX;
959 iv->step = NULL_RTX;
960
961 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
962
963 if (CONSTANT_P (rhs)
964 || REG_P (rhs)
965 || code == SUBREG)
966 {
967 if (!iv_analyze_op (insn, rhs, iv))
968 return false;
969
970 if (iv->mode == VOIDmode)
971 {
972 iv->mode = mode;
973 iv->extend_mode = mode;
974 }
975
976 return true;
977 }
978
979 switch (code)
980 {
981 case REG:
982 op0 = rhs;
983 break;
984
985 case SIGN_EXTEND:
986 case ZERO_EXTEND:
987 case NEG:
988 op0 = XEXP (rhs, 0);
989 omode = GET_MODE (op0);
990 break;
991
992 case PLUS:
993 case MINUS:
994 op0 = XEXP (rhs, 0);
995 op1 = XEXP (rhs, 1);
996 break;
997
998 case MULT:
999 op0 = XEXP (rhs, 0);
1000 mby = XEXP (rhs, 1);
1001 if (!CONSTANT_P (mby))
1002 {
1003 tmp = op0;
1004 op0 = mby;
1005 mby = tmp;
1006 }
1007 if (!CONSTANT_P (mby))
1008 return false;
1009 break;
1010
1011 case ASHIFT:
1012 op0 = XEXP (rhs, 0);
1013 mby = XEXP (rhs, 1);
1014 if (!CONSTANT_P (mby))
1015 return false;
1016 break;
1017
1018 default:
1019 return false;
1020 }
1021
1022 if (op0
1023 && !iv_analyze_expr (insn, op0, omode, &iv0))
1024 return false;
1025
1026 if (op1
1027 && !iv_analyze_expr (insn, op1, omode, &iv1))
1028 return false;
1029
1030 switch (code)
1031 {
1032 case SIGN_EXTEND:
1033 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1034 return false;
1035 break;
1036
1037 case ZERO_EXTEND:
1038 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1039 return false;
1040 break;
1041
1042 case NEG:
1043 if (!iv_neg (&iv0))
1044 return false;
1045 break;
1046
1047 case PLUS:
1048 case MINUS:
1049 if (!iv_add (&iv0, &iv1, code))
1050 return false;
1051 break;
1052
1053 case MULT:
1054 if (!iv_mult (&iv0, mby))
1055 return false;
1056 break;
1057
1058 case ASHIFT:
1059 if (!iv_shift (&iv0, mby))
1060 return false;
1061 break;
1062
1063 default:
1064 break;
1065 }
1066
1067 *iv = iv0;
1068 return iv->base != NULL_RTX;
1069 }
1070
1071 /* Analyzes iv DEF and stores the result to *IV. */
1072
1073 static bool
1074 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1075 {
1076 rtx insn = DF_REF_INSN (def);
1077 rtx reg = DF_REF_REG (def);
1078 rtx set, rhs;
1079
1080 if (dump_file)
1081 {
1082 fprintf (dump_file, "Analyzing def of ");
1083 print_rtl (dump_file, reg);
1084 fprintf (dump_file, " in insn ");
1085 print_rtl_single (dump_file, insn);
1086 }
1087
1088 check_iv_ref_table_size ();
1089 if (DF_REF_IV (def))
1090 {
1091 if (dump_file)
1092 fprintf (dump_file, " already analysed.\n");
1093 *iv = *DF_REF_IV (def);
1094 return iv->base != NULL_RTX;
1095 }
1096
1097 iv->mode = VOIDmode;
1098 iv->base = NULL_RTX;
1099 iv->step = NULL_RTX;
1100
1101 if (!REG_P (reg))
1102 return false;
1103
1104 set = single_set (insn);
1105 if (!set)
1106 return false;
1107
1108 if (!REG_P (SET_DEST (set)))
1109 return false;
1110
1111 gcc_assert (SET_DEST (set) == reg);
1112 rhs = find_reg_equal_equiv_note (insn);
1113 if (rhs)
1114 rhs = XEXP (rhs, 0);
1115 else
1116 rhs = SET_SRC (set);
1117
1118 iv_analyze_expr (insn, rhs, GET_MODE (reg), iv);
1119 record_iv (def, iv);
1120
1121 if (dump_file)
1122 {
1123 print_rtl (dump_file, reg);
1124 fprintf (dump_file, " in insn ");
1125 print_rtl_single (dump_file, insn);
1126 fprintf (dump_file, " is ");
1127 dump_iv_info (dump_file, iv);
1128 fprintf (dump_file, "\n");
1129 }
1130
1131 return iv->base != NULL_RTX;
1132 }
1133
1134 /* Analyzes operand OP of INSN and stores the result to *IV. */
1135
1136 static bool
1137 iv_analyze_op (rtx insn, rtx op, struct rtx_iv *iv)
1138 {
1139 df_ref def = NULL;
1140 enum iv_grd_result res;
1141
1142 if (dump_file)
1143 {
1144 fprintf (dump_file, "Analyzing operand ");
1145 print_rtl (dump_file, op);
1146 fprintf (dump_file, " of insn ");
1147 print_rtl_single (dump_file, insn);
1148 }
1149
1150 if (function_invariant_p (op))
1151 res = GRD_INVARIANT;
1152 else if (GET_CODE (op) == SUBREG)
1153 {
1154 if (!subreg_lowpart_p (op))
1155 return false;
1156
1157 if (!iv_analyze_op (insn, SUBREG_REG (op), iv))
1158 return false;
1159
1160 return iv_subreg (iv, GET_MODE (op));
1161 }
1162 else
1163 {
1164 res = iv_get_reaching_def (insn, op, &def);
1165 if (res == GRD_INVALID)
1166 {
1167 if (dump_file)
1168 fprintf (dump_file, " not simple.\n");
1169 return false;
1170 }
1171 }
1172
1173 if (res == GRD_INVARIANT)
1174 {
1175 iv_constant (iv, op, VOIDmode);
1176
1177 if (dump_file)
1178 {
1179 fprintf (dump_file, " ");
1180 dump_iv_info (dump_file, iv);
1181 fprintf (dump_file, "\n");
1182 }
1183 return true;
1184 }
1185
1186 if (res == GRD_MAYBE_BIV)
1187 return iv_analyze_biv (op, iv);
1188
1189 return iv_analyze_def (def, iv);
1190 }
1191
1192 /* Analyzes value VAL at INSN and stores the result to *IV. */
1193
1194 bool
1195 iv_analyze (rtx insn, rtx val, struct rtx_iv *iv)
1196 {
1197 rtx reg;
1198
1199 /* We must find the insn in that val is used, so that we get to UD chains.
1200 Since the function is sometimes called on result of get_condition,
1201 this does not necessarily have to be directly INSN; scan also the
1202 following insns. */
1203 if (simple_reg_p (val))
1204 {
1205 if (GET_CODE (val) == SUBREG)
1206 reg = SUBREG_REG (val);
1207 else
1208 reg = val;
1209
1210 while (!df_find_use (insn, reg))
1211 insn = NEXT_INSN (insn);
1212 }
1213
1214 return iv_analyze_op (insn, val, iv);
1215 }
1216
1217 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1218
1219 bool
1220 iv_analyze_result (rtx insn, rtx def, struct rtx_iv *iv)
1221 {
1222 df_ref adef;
1223
1224 adef = df_find_def (insn, def);
1225 if (!adef)
1226 return false;
1227
1228 return iv_analyze_def (adef, iv);
1229 }
1230
1231 /* Checks whether definition of register REG in INSN is a basic induction
1232 variable. IV analysis must have been initialized (via a call to
1233 iv_analysis_loop_init) for this function to produce a result. */
1234
1235 bool
1236 biv_p (rtx insn, rtx reg)
1237 {
1238 struct rtx_iv iv;
1239 df_ref def, last_def;
1240
1241 if (!simple_reg_p (reg))
1242 return false;
1243
1244 def = df_find_def (insn, reg);
1245 gcc_assert (def != NULL);
1246 if (!latch_dominating_def (reg, &last_def))
1247 return false;
1248 if (last_def != def)
1249 return false;
1250
1251 if (!iv_analyze_biv (reg, &iv))
1252 return false;
1253
1254 return iv.step != const0_rtx;
1255 }
1256
1257 /* Calculates value of IV at ITERATION-th iteration. */
1258
1259 rtx
1260 get_iv_value (struct rtx_iv *iv, rtx iteration)
1261 {
1262 rtx val;
1263
1264 /* We would need to generate some if_then_else patterns, and so far
1265 it is not needed anywhere. */
1266 gcc_assert (!iv->first_special);
1267
1268 if (iv->step != const0_rtx && iteration != const0_rtx)
1269 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1270 simplify_gen_binary (MULT, iv->extend_mode,
1271 iv->step, iteration));
1272 else
1273 val = iv->base;
1274
1275 if (iv->extend_mode == iv->mode)
1276 return val;
1277
1278 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1279
1280 if (iv->extend == IV_UNKNOWN_EXTEND)
1281 return val;
1282
1283 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1284 iv->extend_mode, val, iv->mode);
1285 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1286 simplify_gen_binary (MULT, iv->extend_mode,
1287 iv->mult, val));
1288
1289 return val;
1290 }
1291
1292 /* Free the data for an induction variable analysis. */
1293
1294 void
1295 iv_analysis_done (void)
1296 {
1297 if (!clean_slate)
1298 {
1299 clear_iv_info ();
1300 clean_slate = true;
1301 df_finish_pass (true);
1302 bivs.dispose ();
1303 free (iv_ref_table);
1304 iv_ref_table = NULL;
1305 iv_ref_table_size = 0;
1306 }
1307 }
1308
1309 /* Computes inverse to X modulo (1 << MOD). */
1310
1311 static unsigned HOST_WIDEST_INT
1312 inverse (unsigned HOST_WIDEST_INT x, int mod)
1313 {
1314 unsigned HOST_WIDEST_INT mask =
1315 ((unsigned HOST_WIDEST_INT) 1 << (mod - 1) << 1) - 1;
1316 unsigned HOST_WIDEST_INT rslt = 1;
1317 int i;
1318
1319 for (i = 0; i < mod - 1; i++)
1320 {
1321 rslt = (rslt * x) & mask;
1322 x = (x * x) & mask;
1323 }
1324
1325 return rslt;
1326 }
1327
1328 /* Checks whether register *REG is in set ALT. Callback for for_each_rtx. */
1329
1330 static int
1331 altered_reg_used (rtx *reg, void *alt)
1332 {
1333 if (!REG_P (*reg))
1334 return 0;
1335
1336 return REGNO_REG_SET_P ((bitmap) alt, REGNO (*reg));
1337 }
1338
1339 /* Marks registers altered by EXPR in set ALT. */
1340
1341 static void
1342 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1343 {
1344 if (GET_CODE (expr) == SUBREG)
1345 expr = SUBREG_REG (expr);
1346 if (!REG_P (expr))
1347 return;
1348
1349 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1350 }
1351
1352 /* Checks whether RHS is simple enough to process. */
1353
1354 static bool
1355 simple_rhs_p (rtx rhs)
1356 {
1357 rtx op0, op1;
1358
1359 if (function_invariant_p (rhs)
1360 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1361 return true;
1362
1363 switch (GET_CODE (rhs))
1364 {
1365 case PLUS:
1366 case MINUS:
1367 case AND:
1368 op0 = XEXP (rhs, 0);
1369 op1 = XEXP (rhs, 1);
1370 /* Allow reg OP const and reg OP reg. */
1371 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1372 && !function_invariant_p (op0))
1373 return false;
1374 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1375 && !function_invariant_p (op1))
1376 return false;
1377
1378 return true;
1379
1380 case ASHIFT:
1381 case ASHIFTRT:
1382 case LSHIFTRT:
1383 case MULT:
1384 op0 = XEXP (rhs, 0);
1385 op1 = XEXP (rhs, 1);
1386 /* Allow reg OP const. */
1387 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1388 return false;
1389 if (!function_invariant_p (op1))
1390 return false;
1391
1392 return true;
1393
1394 default:
1395 return false;
1396 }
1397 }
1398
1399 /* If REG has a single definition, replace it with its known value in EXPR.
1400 Callback for for_each_rtx. */
1401
1402 static int
1403 replace_single_def_regs (rtx *reg, void *expr1)
1404 {
1405 unsigned regno;
1406 df_ref adef;
1407 rtx set, src;
1408 rtx *expr = (rtx *)expr1;
1409
1410 if (!REG_P (*reg))
1411 return 0;
1412
1413 regno = REGNO (*reg);
1414 for (;;)
1415 {
1416 rtx note;
1417 adef = DF_REG_DEF_CHAIN (regno);
1418 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1419 || DF_REF_IS_ARTIFICIAL (adef))
1420 return -1;
1421
1422 set = single_set (DF_REF_INSN (adef));
1423 if (set == NULL || !REG_P (SET_DEST (set))
1424 || REGNO (SET_DEST (set)) != regno)
1425 return -1;
1426
1427 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1428
1429 if (note && function_invariant_p (XEXP (note, 0)))
1430 {
1431 src = XEXP (note, 0);
1432 break;
1433 }
1434 src = SET_SRC (set);
1435
1436 if (REG_P (src))
1437 {
1438 regno = REGNO (src);
1439 continue;
1440 }
1441 break;
1442 }
1443 if (!function_invariant_p (src))
1444 return -1;
1445
1446 *expr = simplify_replace_rtx (*expr, *reg, src);
1447 return 1;
1448 }
1449
1450 /* A subroutine of simplify_using_initial_values, this function examines INSN
1451 to see if it contains a suitable set that we can use to make a replacement.
1452 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1453 the set; return false otherwise. */
1454
1455 static bool
1456 suitable_set_for_replacement (rtx insn, rtx *dest, rtx *src)
1457 {
1458 rtx set = single_set (insn);
1459 rtx lhs = NULL_RTX, rhs;
1460
1461 if (!set)
1462 return false;
1463
1464 lhs = SET_DEST (set);
1465 if (!REG_P (lhs))
1466 return false;
1467
1468 rhs = find_reg_equal_equiv_note (insn);
1469 if (rhs)
1470 rhs = XEXP (rhs, 0);
1471 else
1472 rhs = SET_SRC (set);
1473
1474 if (!simple_rhs_p (rhs))
1475 return false;
1476
1477 *dest = lhs;
1478 *src = rhs;
1479 return true;
1480 }
1481
1482 /* Using the data returned by suitable_set_for_replacement, replace DEST
1483 with SRC in *EXPR and return the new expression. Also call
1484 replace_single_def_regs if the replacement changed something. */
1485 static void
1486 replace_in_expr (rtx *expr, rtx dest, rtx src)
1487 {
1488 rtx old = *expr;
1489 *expr = simplify_replace_rtx (*expr, dest, src);
1490 if (old == *expr)
1491 return;
1492 while (for_each_rtx (expr, replace_single_def_regs, expr) != 0)
1493 continue;
1494 }
1495
1496 /* Checks whether A implies B. */
1497
1498 static bool
1499 implies_p (rtx a, rtx b)
1500 {
1501 rtx op0, op1, opb0, opb1, r;
1502 enum machine_mode mode;
1503
1504 if (rtx_equal_p (a, b))
1505 return true;
1506
1507 if (GET_CODE (a) == EQ)
1508 {
1509 op0 = XEXP (a, 0);
1510 op1 = XEXP (a, 1);
1511
1512 if (REG_P (op0)
1513 || (GET_CODE (op0) == SUBREG
1514 && REG_P (SUBREG_REG (op0))))
1515 {
1516 r = simplify_replace_rtx (b, op0, op1);
1517 if (r == const_true_rtx)
1518 return true;
1519 }
1520
1521 if (REG_P (op1)
1522 || (GET_CODE (op1) == SUBREG
1523 && REG_P (SUBREG_REG (op1))))
1524 {
1525 r = simplify_replace_rtx (b, op1, op0);
1526 if (r == const_true_rtx)
1527 return true;
1528 }
1529 }
1530
1531 if (b == const_true_rtx)
1532 return true;
1533
1534 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1535 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1536 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1537 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1538 return false;
1539
1540 op0 = XEXP (a, 0);
1541 op1 = XEXP (a, 1);
1542 opb0 = XEXP (b, 0);
1543 opb1 = XEXP (b, 1);
1544
1545 mode = GET_MODE (op0);
1546 if (mode != GET_MODE (opb0))
1547 mode = VOIDmode;
1548 else if (mode == VOIDmode)
1549 {
1550 mode = GET_MODE (op1);
1551 if (mode != GET_MODE (opb1))
1552 mode = VOIDmode;
1553 }
1554
1555 /* A < B implies A + 1 <= B. */
1556 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1557 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1558 {
1559
1560 if (GET_CODE (a) == GT)
1561 {
1562 r = op0;
1563 op0 = op1;
1564 op1 = r;
1565 }
1566
1567 if (GET_CODE (b) == GE)
1568 {
1569 r = opb0;
1570 opb0 = opb1;
1571 opb1 = r;
1572 }
1573
1574 if (SCALAR_INT_MODE_P (mode)
1575 && rtx_equal_p (op1, opb1)
1576 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1577 return true;
1578 return false;
1579 }
1580
1581 /* A < B or A > B imply A != B. TODO: Likewise
1582 A + n < B implies A != B + n if neither wraps. */
1583 if (GET_CODE (b) == NE
1584 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1585 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1586 {
1587 if (rtx_equal_p (op0, opb0)
1588 && rtx_equal_p (op1, opb1))
1589 return true;
1590 }
1591
1592 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1593 if (GET_CODE (a) == NE
1594 && op1 == const0_rtx)
1595 {
1596 if ((GET_CODE (b) == GTU
1597 && opb1 == const0_rtx)
1598 || (GET_CODE (b) == GEU
1599 && opb1 == const1_rtx))
1600 return rtx_equal_p (op0, opb0);
1601 }
1602
1603 /* A != N is equivalent to A - (N + 1) <u -1. */
1604 if (GET_CODE (a) == NE
1605 && CONST_INT_P (op1)
1606 && GET_CODE (b) == LTU
1607 && opb1 == constm1_rtx
1608 && GET_CODE (opb0) == PLUS
1609 && CONST_INT_P (XEXP (opb0, 1))
1610 /* Avoid overflows. */
1611 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1612 != ((unsigned HOST_WIDE_INT)1
1613 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1614 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1615 return rtx_equal_p (op0, XEXP (opb0, 0));
1616
1617 /* Likewise, A != N implies A - N > 0. */
1618 if (GET_CODE (a) == NE
1619 && CONST_INT_P (op1))
1620 {
1621 if (GET_CODE (b) == GTU
1622 && GET_CODE (opb0) == PLUS
1623 && opb1 == const0_rtx
1624 && CONST_INT_P (XEXP (opb0, 1))
1625 /* Avoid overflows. */
1626 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1627 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1628 && rtx_equal_p (XEXP (opb0, 0), op0))
1629 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1630 if (GET_CODE (b) == GEU
1631 && GET_CODE (opb0) == PLUS
1632 && opb1 == const1_rtx
1633 && CONST_INT_P (XEXP (opb0, 1))
1634 /* Avoid overflows. */
1635 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1636 != ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
1637 && rtx_equal_p (XEXP (opb0, 0), op0))
1638 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1639 }
1640
1641 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1642 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1643 && CONST_INT_P (op1)
1644 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1645 || INTVAL (op1) >= 0)
1646 && GET_CODE (b) == LTU
1647 && CONST_INT_P (opb1)
1648 && rtx_equal_p (op0, opb0))
1649 return INTVAL (opb1) < 0;
1650
1651 return false;
1652 }
1653
1654 /* Canonicalizes COND so that
1655
1656 (1) Ensure that operands are ordered according to
1657 swap_commutative_operands_p.
1658 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1659 for GE, GEU, and LEU. */
1660
1661 rtx
1662 canon_condition (rtx cond)
1663 {
1664 rtx tem;
1665 rtx op0, op1;
1666 enum rtx_code code;
1667 enum machine_mode mode;
1668
1669 code = GET_CODE (cond);
1670 op0 = XEXP (cond, 0);
1671 op1 = XEXP (cond, 1);
1672
1673 if (swap_commutative_operands_p (op0, op1))
1674 {
1675 code = swap_condition (code);
1676 tem = op0;
1677 op0 = op1;
1678 op1 = tem;
1679 }
1680
1681 mode = GET_MODE (op0);
1682 if (mode == VOIDmode)
1683 mode = GET_MODE (op1);
1684 gcc_assert (mode != VOIDmode);
1685
1686 if (CONST_INT_P (op1)
1687 && GET_MODE_CLASS (mode) != MODE_CC
1688 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
1689 {
1690 HOST_WIDE_INT const_val = INTVAL (op1);
1691 unsigned HOST_WIDE_INT uconst_val = const_val;
1692 unsigned HOST_WIDE_INT max_val
1693 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode);
1694
1695 switch (code)
1696 {
1697 case LE:
1698 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
1699 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
1700 break;
1701
1702 /* When cross-compiling, const_val might be sign-extended from
1703 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
1704 case GE:
1705 if ((HOST_WIDE_INT) (const_val & max_val)
1706 != (((HOST_WIDE_INT) 1
1707 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
1708 code = GT, op1 = gen_int_mode (const_val - 1, mode);
1709 break;
1710
1711 case LEU:
1712 if (uconst_val < max_val)
1713 code = LTU, op1 = gen_int_mode (uconst_val + 1, mode);
1714 break;
1715
1716 case GEU:
1717 if (uconst_val != 0)
1718 code = GTU, op1 = gen_int_mode (uconst_val - 1, mode);
1719 break;
1720
1721 default:
1722 break;
1723 }
1724 }
1725
1726 if (op0 != XEXP (cond, 0)
1727 || op1 != XEXP (cond, 1)
1728 || code != GET_CODE (cond)
1729 || GET_MODE (cond) != SImode)
1730 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1731
1732 return cond;
1733 }
1734
1735 /* Reverses CONDition; returns NULL if we cannot. */
1736
1737 static rtx
1738 reversed_condition (rtx cond)
1739 {
1740 enum rtx_code reversed;
1741 reversed = reversed_comparison_code (cond, NULL);
1742 if (reversed == UNKNOWN)
1743 return NULL_RTX;
1744 else
1745 return gen_rtx_fmt_ee (reversed,
1746 GET_MODE (cond), XEXP (cond, 0),
1747 XEXP (cond, 1));
1748 }
1749
1750 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1751 set of altered regs. */
1752
1753 void
1754 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1755 {
1756 rtx rev, reve, exp = *expr;
1757
1758 /* If some register gets altered later, we do not really speak about its
1759 value at the time of comparison. */
1760 if (altered
1761 && for_each_rtx (&cond, altered_reg_used, altered))
1762 return;
1763
1764 if (GET_CODE (cond) == EQ
1765 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1766 {
1767 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1768 return;
1769 }
1770
1771 if (!COMPARISON_P (exp))
1772 return;
1773
1774 rev = reversed_condition (cond);
1775 reve = reversed_condition (exp);
1776
1777 cond = canon_condition (cond);
1778 exp = canon_condition (exp);
1779 if (rev)
1780 rev = canon_condition (rev);
1781 if (reve)
1782 reve = canon_condition (reve);
1783
1784 if (rtx_equal_p (exp, cond))
1785 {
1786 *expr = const_true_rtx;
1787 return;
1788 }
1789
1790 if (rev && rtx_equal_p (exp, rev))
1791 {
1792 *expr = const0_rtx;
1793 return;
1794 }
1795
1796 if (implies_p (cond, exp))
1797 {
1798 *expr = const_true_rtx;
1799 return;
1800 }
1801
1802 if (reve && implies_p (cond, reve))
1803 {
1804 *expr = const0_rtx;
1805 return;
1806 }
1807
1808 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1809 be false. */
1810 if (rev && implies_p (exp, rev))
1811 {
1812 *expr = const0_rtx;
1813 return;
1814 }
1815
1816 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1817 if (rev && reve && implies_p (reve, rev))
1818 {
1819 *expr = const_true_rtx;
1820 return;
1821 }
1822
1823 /* We would like to have some other tests here. TODO. */
1824
1825 return;
1826 }
1827
1828 /* Use relationship between A and *B to eventually eliminate *B.
1829 OP is the operation we consider. */
1830
1831 static void
1832 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1833 {
1834 switch (op)
1835 {
1836 case AND:
1837 /* If A implies *B, we may replace *B by true. */
1838 if (implies_p (a, *b))
1839 *b = const_true_rtx;
1840 break;
1841
1842 case IOR:
1843 /* If *B implies A, we may replace *B by false. */
1844 if (implies_p (*b, a))
1845 *b = const0_rtx;
1846 break;
1847
1848 default:
1849 gcc_unreachable ();
1850 }
1851 }
1852
1853 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1854 operation we consider. */
1855
1856 static void
1857 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1858 {
1859 rtx elt;
1860
1861 for (elt = tail; elt; elt = XEXP (elt, 1))
1862 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1863 for (elt = tail; elt; elt = XEXP (elt, 1))
1864 eliminate_implied_condition (op, XEXP (elt, 0), head);
1865 }
1866
1867 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1868 is a list, its elements are assumed to be combined using OP. */
1869
1870 static void
1871 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1872 {
1873 bool expression_valid;
1874 rtx head, tail, insn, cond_list, last_valid_expr;
1875 rtx neutral, aggr;
1876 regset altered, this_altered;
1877 edge e;
1878
1879 if (!*expr)
1880 return;
1881
1882 if (CONSTANT_P (*expr))
1883 return;
1884
1885 if (GET_CODE (*expr) == EXPR_LIST)
1886 {
1887 head = XEXP (*expr, 0);
1888 tail = XEXP (*expr, 1);
1889
1890 eliminate_implied_conditions (op, &head, tail);
1891
1892 switch (op)
1893 {
1894 case AND:
1895 neutral = const_true_rtx;
1896 aggr = const0_rtx;
1897 break;
1898
1899 case IOR:
1900 neutral = const0_rtx;
1901 aggr = const_true_rtx;
1902 break;
1903
1904 default:
1905 gcc_unreachable ();
1906 }
1907
1908 simplify_using_initial_values (loop, UNKNOWN, &head);
1909 if (head == aggr)
1910 {
1911 XEXP (*expr, 0) = aggr;
1912 XEXP (*expr, 1) = NULL_RTX;
1913 return;
1914 }
1915 else if (head == neutral)
1916 {
1917 *expr = tail;
1918 simplify_using_initial_values (loop, op, expr);
1919 return;
1920 }
1921 simplify_using_initial_values (loop, op, &tail);
1922
1923 if (tail && XEXP (tail, 0) == aggr)
1924 {
1925 *expr = tail;
1926 return;
1927 }
1928
1929 XEXP (*expr, 0) = head;
1930 XEXP (*expr, 1) = tail;
1931 return;
1932 }
1933
1934 gcc_assert (op == UNKNOWN);
1935
1936 for (;;)
1937 if (for_each_rtx (expr, replace_single_def_regs, expr) == 0)
1938 break;
1939 if (CONSTANT_P (*expr))
1940 return;
1941
1942 e = loop_preheader_edge (loop);
1943 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1944 return;
1945
1946 altered = ALLOC_REG_SET (&reg_obstack);
1947 this_altered = ALLOC_REG_SET (&reg_obstack);
1948
1949 expression_valid = true;
1950 last_valid_expr = *expr;
1951 cond_list = NULL_RTX;
1952 while (1)
1953 {
1954 insn = BB_END (e->src);
1955 if (any_condjump_p (insn))
1956 {
1957 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1958
1959 if (cond && (e->flags & EDGE_FALLTHRU))
1960 cond = reversed_condition (cond);
1961 if (cond)
1962 {
1963 rtx old = *expr;
1964 simplify_using_condition (cond, expr, altered);
1965 if (old != *expr)
1966 {
1967 rtx note;
1968 if (CONSTANT_P (*expr))
1969 goto out;
1970 for (note = cond_list; note; note = XEXP (note, 1))
1971 {
1972 simplify_using_condition (XEXP (note, 0), expr, altered);
1973 if (CONSTANT_P (*expr))
1974 goto out;
1975 }
1976 }
1977 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1978 }
1979 }
1980
1981 FOR_BB_INSNS_REVERSE (e->src, insn)
1982 {
1983 rtx src, dest;
1984 rtx old = *expr;
1985
1986 if (!INSN_P (insn))
1987 continue;
1988
1989 CLEAR_REG_SET (this_altered);
1990 note_stores (PATTERN (insn), mark_altered, this_altered);
1991 if (CALL_P (insn))
1992 {
1993 /* Kill all call clobbered registers. */
1994 unsigned int i;
1995 hard_reg_set_iterator hrsi;
1996 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1997 0, i, hrsi)
1998 SET_REGNO_REG_SET (this_altered, i);
1999 }
2000
2001 if (suitable_set_for_replacement (insn, &dest, &src))
2002 {
2003 rtx *pnote, *pnote_next;
2004
2005 replace_in_expr (expr, dest, src);
2006 if (CONSTANT_P (*expr))
2007 goto out;
2008
2009 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2010 {
2011 rtx note = *pnote;
2012 rtx old_cond = XEXP (note, 0);
2013
2014 pnote_next = &XEXP (note, 1);
2015 replace_in_expr (&XEXP (note, 0), dest, src);
2016
2017 /* We can no longer use a condition that has been simplified
2018 to a constant, and simplify_using_condition will abort if
2019 we try. */
2020 if (CONSTANT_P (XEXP (note, 0)))
2021 {
2022 *pnote = *pnote_next;
2023 pnote_next = pnote;
2024 free_EXPR_LIST_node (note);
2025 }
2026 /* Retry simplifications with this condition if either the
2027 expression or the condition changed. */
2028 else if (old_cond != XEXP (note, 0) || old != *expr)
2029 simplify_using_condition (XEXP (note, 0), expr, altered);
2030 }
2031 }
2032 else
2033 {
2034 rtx *pnote, *pnote_next;
2035
2036 /* If we did not use this insn to make a replacement, any overlap
2037 between stores in this insn and our expression will cause the
2038 expression to become invalid. */
2039 if (for_each_rtx (expr, altered_reg_used, this_altered))
2040 goto out;
2041
2042 /* Likewise for the conditions. */
2043 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2044 {
2045 rtx note = *pnote;
2046 rtx old_cond = XEXP (note, 0);
2047
2048 pnote_next = &XEXP (note, 1);
2049 if (for_each_rtx (&old_cond, altered_reg_used, this_altered))
2050 {
2051 *pnote = *pnote_next;
2052 pnote_next = pnote;
2053 free_EXPR_LIST_node (note);
2054 }
2055 }
2056 }
2057
2058 if (CONSTANT_P (*expr))
2059 goto out;
2060
2061 IOR_REG_SET (altered, this_altered);
2062
2063 /* If the expression now contains regs that have been altered, we
2064 can't return it to the caller. However, it is still valid for
2065 further simplification, so keep searching to see if we can
2066 eventually turn it into a constant. */
2067 if (for_each_rtx (expr, altered_reg_used, altered))
2068 expression_valid = false;
2069 if (expression_valid)
2070 last_valid_expr = *expr;
2071 }
2072
2073 if (!single_pred_p (e->src)
2074 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2075 break;
2076 e = single_pred_edge (e->src);
2077 }
2078
2079 out:
2080 free_EXPR_LIST_list (&cond_list);
2081 if (!CONSTANT_P (*expr))
2082 *expr = last_valid_expr;
2083 FREE_REG_SET (altered);
2084 FREE_REG_SET (this_altered);
2085 }
2086
2087 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2088 that IV occurs as left operands of comparison COND and its signedness
2089 is SIGNED_P to DESC. */
2090
2091 static void
2092 shorten_into_mode (struct rtx_iv *iv, enum machine_mode mode,
2093 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2094 {
2095 rtx mmin, mmax, cond_over, cond_under;
2096
2097 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2098 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2099 iv->base, mmin);
2100 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2101 iv->base, mmax);
2102
2103 switch (cond)
2104 {
2105 case LE:
2106 case LT:
2107 case LEU:
2108 case LTU:
2109 if (cond_under != const0_rtx)
2110 desc->infinite =
2111 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2112 if (cond_over != const0_rtx)
2113 desc->noloop_assumptions =
2114 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2115 break;
2116
2117 case GE:
2118 case GT:
2119 case GEU:
2120 case GTU:
2121 if (cond_over != const0_rtx)
2122 desc->infinite =
2123 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2124 if (cond_under != const0_rtx)
2125 desc->noloop_assumptions =
2126 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2127 break;
2128
2129 case NE:
2130 if (cond_over != const0_rtx)
2131 desc->infinite =
2132 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2133 if (cond_under != const0_rtx)
2134 desc->infinite =
2135 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2136 break;
2137
2138 default:
2139 gcc_unreachable ();
2140 }
2141
2142 iv->mode = mode;
2143 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2144 }
2145
2146 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2147 subregs of the same mode if possible (sometimes it is necessary to add
2148 some assumptions to DESC). */
2149
2150 static bool
2151 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2152 enum rtx_code cond, struct niter_desc *desc)
2153 {
2154 enum machine_mode comp_mode;
2155 bool signed_p;
2156
2157 /* If the ivs behave specially in the first iteration, or are
2158 added/multiplied after extending, we ignore them. */
2159 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2160 return false;
2161 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2162 return false;
2163
2164 /* If there is some extend, it must match signedness of the comparison. */
2165 switch (cond)
2166 {
2167 case LE:
2168 case LT:
2169 if (iv0->extend == IV_ZERO_EXTEND
2170 || iv1->extend == IV_ZERO_EXTEND)
2171 return false;
2172 signed_p = true;
2173 break;
2174
2175 case LEU:
2176 case LTU:
2177 if (iv0->extend == IV_SIGN_EXTEND
2178 || iv1->extend == IV_SIGN_EXTEND)
2179 return false;
2180 signed_p = false;
2181 break;
2182
2183 case NE:
2184 if (iv0->extend != IV_UNKNOWN_EXTEND
2185 && iv1->extend != IV_UNKNOWN_EXTEND
2186 && iv0->extend != iv1->extend)
2187 return false;
2188
2189 signed_p = false;
2190 if (iv0->extend != IV_UNKNOWN_EXTEND)
2191 signed_p = iv0->extend == IV_SIGN_EXTEND;
2192 if (iv1->extend != IV_UNKNOWN_EXTEND)
2193 signed_p = iv1->extend == IV_SIGN_EXTEND;
2194 break;
2195
2196 default:
2197 gcc_unreachable ();
2198 }
2199
2200 /* Values of both variables should be computed in the same mode. These
2201 might indeed be different, if we have comparison like
2202
2203 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2204
2205 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2206 in different modes. This does not seem impossible to handle, but
2207 it hardly ever occurs in practice.
2208
2209 The only exception is the case when one of operands is invariant.
2210 For example pentium 3 generates comparisons like
2211 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2212 definitely do not want this prevent the optimization. */
2213 comp_mode = iv0->extend_mode;
2214 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2215 comp_mode = iv1->extend_mode;
2216
2217 if (iv0->extend_mode != comp_mode)
2218 {
2219 if (iv0->mode != iv0->extend_mode
2220 || iv0->step != const0_rtx)
2221 return false;
2222
2223 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2224 comp_mode, iv0->base, iv0->mode);
2225 iv0->extend_mode = comp_mode;
2226 }
2227
2228 if (iv1->extend_mode != comp_mode)
2229 {
2230 if (iv1->mode != iv1->extend_mode
2231 || iv1->step != const0_rtx)
2232 return false;
2233
2234 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2235 comp_mode, iv1->base, iv1->mode);
2236 iv1->extend_mode = comp_mode;
2237 }
2238
2239 /* Check that both ivs belong to a range of a single mode. If one of the
2240 operands is an invariant, we may need to shorten it into the common
2241 mode. */
2242 if (iv0->mode == iv0->extend_mode
2243 && iv0->step == const0_rtx
2244 && iv0->mode != iv1->mode)
2245 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2246
2247 if (iv1->mode == iv1->extend_mode
2248 && iv1->step == const0_rtx
2249 && iv0->mode != iv1->mode)
2250 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2251
2252 if (iv0->mode != iv1->mode)
2253 return false;
2254
2255 desc->mode = iv0->mode;
2256 desc->signed_p = signed_p;
2257
2258 return true;
2259 }
2260
2261 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2262 result. This function is called from iv_number_of_iterations with
2263 a number of fields in DESC already filled in. OLD_NITER is the original
2264 expression for the number of iterations, before we tried to simplify it. */
2265
2266 static unsigned HOST_WIDEST_INT
2267 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
2268 {
2269 rtx niter = desc->niter_expr;
2270 rtx mmin, mmax, cmp;
2271 unsigned HOST_WIDEST_INT nmax, inc;
2272 unsigned HOST_WIDEST_INT andmax = 0;
2273
2274 /* We used to look for constant operand 0 of AND,
2275 but canonicalization should always make this impossible. */
2276 gcc_checking_assert (GET_CODE (niter) != AND
2277 || !CONST_INT_P (XEXP (niter, 0)));
2278
2279 if (GET_CODE (niter) == AND
2280 && CONST_INT_P (XEXP (niter, 1)))
2281 {
2282 andmax = UINTVAL (XEXP (niter, 1));
2283 niter = XEXP (niter, 0);
2284 }
2285
2286 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2287 nmax = INTVAL (mmax) - INTVAL (mmin);
2288
2289 if (GET_CODE (niter) == UDIV)
2290 {
2291 if (!CONST_INT_P (XEXP (niter, 1)))
2292 return nmax;
2293 inc = INTVAL (XEXP (niter, 1));
2294 niter = XEXP (niter, 0);
2295 }
2296 else
2297 inc = 1;
2298
2299 /* We could use a binary search here, but for now improving the upper
2300 bound by just one eliminates one important corner case. */
2301 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2302 desc->mode, old_niter, mmax);
2303 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2304 if (cmp == const_true_rtx)
2305 {
2306 nmax--;
2307
2308 if (dump_file)
2309 fprintf (dump_file, ";; improved upper bound by one.\n");
2310 }
2311 nmax /= inc;
2312 if (andmax)
2313 nmax = MIN (nmax, andmax);
2314 if (dump_file)
2315 fprintf (dump_file, ";; Determined upper bound "HOST_WIDEST_INT_PRINT_DEC".\n",
2316 nmax);
2317 return nmax;
2318 }
2319
2320 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2321 the result into DESC. Very similar to determine_number_of_iterations
2322 (basically its rtl version), complicated by things like subregs. */
2323
2324 static void
2325 iv_number_of_iterations (struct loop *loop, rtx insn, rtx condition,
2326 struct niter_desc *desc)
2327 {
2328 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2329 struct rtx_iv iv0, iv1, tmp_iv;
2330 rtx assumption, may_not_xform;
2331 enum rtx_code cond;
2332 enum machine_mode mode, comp_mode;
2333 rtx mmin, mmax, mode_mmin, mode_mmax;
2334 unsigned HOST_WIDEST_INT s, size, d, inv, max;
2335 HOST_WIDEST_INT up, down, inc, step_val;
2336 int was_sharp = false;
2337 rtx old_niter;
2338 bool step_is_pow2;
2339
2340 /* The meaning of these assumptions is this:
2341 if !assumptions
2342 then the rest of information does not have to be valid
2343 if noloop_assumptions then the loop does not roll
2344 if infinite then this exit is never used */
2345
2346 desc->assumptions = NULL_RTX;
2347 desc->noloop_assumptions = NULL_RTX;
2348 desc->infinite = NULL_RTX;
2349 desc->simple_p = true;
2350
2351 desc->const_iter = false;
2352 desc->niter_expr = NULL_RTX;
2353
2354 cond = GET_CODE (condition);
2355 gcc_assert (COMPARISON_P (condition));
2356
2357 mode = GET_MODE (XEXP (condition, 0));
2358 if (mode == VOIDmode)
2359 mode = GET_MODE (XEXP (condition, 1));
2360 /* The constant comparisons should be folded. */
2361 gcc_assert (mode != VOIDmode);
2362
2363 /* We only handle integers or pointers. */
2364 if (GET_MODE_CLASS (mode) != MODE_INT
2365 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
2366 goto fail;
2367
2368 op0 = XEXP (condition, 0);
2369 if (!iv_analyze (insn, op0, &iv0))
2370 goto fail;
2371 if (iv0.extend_mode == VOIDmode)
2372 iv0.mode = iv0.extend_mode = mode;
2373
2374 op1 = XEXP (condition, 1);
2375 if (!iv_analyze (insn, op1, &iv1))
2376 goto fail;
2377 if (iv1.extend_mode == VOIDmode)
2378 iv1.mode = iv1.extend_mode = mode;
2379
2380 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2381 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2382 goto fail;
2383
2384 /* Check condition and normalize it. */
2385
2386 switch (cond)
2387 {
2388 case GE:
2389 case GT:
2390 case GEU:
2391 case GTU:
2392 tmp_iv = iv0; iv0 = iv1; iv1 = tmp_iv;
2393 cond = swap_condition (cond);
2394 break;
2395 case NE:
2396 case LE:
2397 case LEU:
2398 case LT:
2399 case LTU:
2400 break;
2401 default:
2402 goto fail;
2403 }
2404
2405 /* Handle extends. This is relatively nontrivial, so we only try in some
2406 easy cases, when we can canonicalize the ivs (possibly by adding some
2407 assumptions) to shape subreg (base + i * step). This function also fills
2408 in desc->mode and desc->signed_p. */
2409
2410 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2411 goto fail;
2412
2413 comp_mode = iv0.extend_mode;
2414 mode = iv0.mode;
2415 size = GET_MODE_BITSIZE (mode);
2416 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2417 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2418 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2419
2420 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2421 goto fail;
2422
2423 /* We can take care of the case of two induction variables chasing each other
2424 if the test is NE. I have never seen a loop using it, but still it is
2425 cool. */
2426 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2427 {
2428 if (cond != NE)
2429 goto fail;
2430
2431 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2432 iv1.step = const0_rtx;
2433 }
2434
2435 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2436 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2437
2438 /* This is either infinite loop or the one that ends immediately, depending
2439 on initial values. Unswitching should remove this kind of conditions. */
2440 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2441 goto fail;
2442
2443 if (cond != NE)
2444 {
2445 if (iv0.step == const0_rtx)
2446 step_val = -INTVAL (iv1.step);
2447 else
2448 step_val = INTVAL (iv0.step);
2449
2450 /* Ignore loops of while (i-- < 10) type. */
2451 if (step_val < 0)
2452 goto fail;
2453
2454 step_is_pow2 = !(step_val & (step_val - 1));
2455 }
2456 else
2457 {
2458 /* We do not care about whether the step is power of two in this
2459 case. */
2460 step_is_pow2 = false;
2461 step_val = 0;
2462 }
2463
2464 /* Some more condition normalization. We must record some assumptions
2465 due to overflows. */
2466 switch (cond)
2467 {
2468 case LT:
2469 case LTU:
2470 /* We want to take care only of non-sharp relationals; this is easy,
2471 as in cases the overflow would make the transformation unsafe
2472 the loop does not roll. Seemingly it would make more sense to want
2473 to take care of sharp relationals instead, as NE is more similar to
2474 them, but the problem is that here the transformation would be more
2475 difficult due to possibly infinite loops. */
2476 if (iv0.step == const0_rtx)
2477 {
2478 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2479 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2480 mode_mmax);
2481 if (assumption == const_true_rtx)
2482 goto zero_iter_simplify;
2483 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2484 iv0.base, const1_rtx);
2485 }
2486 else
2487 {
2488 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2489 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2490 mode_mmin);
2491 if (assumption == const_true_rtx)
2492 goto zero_iter_simplify;
2493 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2494 iv1.base, constm1_rtx);
2495 }
2496
2497 if (assumption != const0_rtx)
2498 desc->noloop_assumptions =
2499 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2500 cond = (cond == LT) ? LE : LEU;
2501
2502 /* It will be useful to be able to tell the difference once more in
2503 LE -> NE reduction. */
2504 was_sharp = true;
2505 break;
2506 default: ;
2507 }
2508
2509 /* Take care of trivially infinite loops. */
2510 if (cond != NE)
2511 {
2512 if (iv0.step == const0_rtx)
2513 {
2514 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2515 if (rtx_equal_p (tmp, mode_mmin))
2516 {
2517 desc->infinite =
2518 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2519 /* Fill in the remaining fields somehow. */
2520 goto zero_iter_simplify;
2521 }
2522 }
2523 else
2524 {
2525 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2526 if (rtx_equal_p (tmp, mode_mmax))
2527 {
2528 desc->infinite =
2529 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2530 /* Fill in the remaining fields somehow. */
2531 goto zero_iter_simplify;
2532 }
2533 }
2534 }
2535
2536 /* If we can we want to take care of NE conditions instead of size
2537 comparisons, as they are much more friendly (most importantly
2538 this takes care of special handling of loops with step 1). We can
2539 do it if we first check that upper bound is greater or equal to
2540 lower bound, their difference is constant c modulo step and that
2541 there is not an overflow. */
2542 if (cond != NE)
2543 {
2544 if (iv0.step == const0_rtx)
2545 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2546 else
2547 step = iv0.step;
2548 step = lowpart_subreg (mode, step, comp_mode);
2549 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2550 delta = lowpart_subreg (mode, delta, comp_mode);
2551 delta = simplify_gen_binary (UMOD, mode, delta, step);
2552 may_xform = const0_rtx;
2553 may_not_xform = const_true_rtx;
2554
2555 if (CONST_INT_P (delta))
2556 {
2557 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2558 {
2559 /* A special case. We have transformed condition of type
2560 for (i = 0; i < 4; i += 4)
2561 into
2562 for (i = 0; i <= 3; i += 4)
2563 obviously if the test for overflow during that transformation
2564 passed, we cannot overflow here. Most importantly any
2565 loop with sharp end condition and step 1 falls into this
2566 category, so handling this case specially is definitely
2567 worth the troubles. */
2568 may_xform = const_true_rtx;
2569 }
2570 else if (iv0.step == const0_rtx)
2571 {
2572 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2573 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2574 bound = lowpart_subreg (mode, bound, comp_mode);
2575 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2576 may_xform = simplify_gen_relational (cond, SImode, mode,
2577 bound, tmp);
2578 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2579 SImode, mode,
2580 bound, tmp);
2581 }
2582 else
2583 {
2584 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2585 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2586 bound = lowpart_subreg (mode, bound, comp_mode);
2587 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2588 may_xform = simplify_gen_relational (cond, SImode, mode,
2589 tmp, bound);
2590 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2591 SImode, mode,
2592 tmp, bound);
2593 }
2594 }
2595
2596 if (may_xform != const0_rtx)
2597 {
2598 /* We perform the transformation always provided that it is not
2599 completely senseless. This is OK, as we would need this assumption
2600 to determine the number of iterations anyway. */
2601 if (may_xform != const_true_rtx)
2602 {
2603 /* If the step is a power of two and the final value we have
2604 computed overflows, the cycle is infinite. Otherwise it
2605 is nontrivial to compute the number of iterations. */
2606 if (step_is_pow2)
2607 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2608 desc->infinite);
2609 else
2610 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2611 desc->assumptions);
2612 }
2613
2614 /* We are going to lose some information about upper bound on
2615 number of iterations in this step, so record the information
2616 here. */
2617 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2618 if (CONST_INT_P (iv1.base))
2619 up = INTVAL (iv1.base);
2620 else
2621 up = INTVAL (mode_mmax) - inc;
2622 down = INTVAL (CONST_INT_P (iv0.base)
2623 ? iv0.base
2624 : mode_mmin);
2625 max = (up - down) / inc + 1;
2626 if (!desc->infinite
2627 && !desc->assumptions)
2628 record_niter_bound (loop, double_int::from_uhwi (max),
2629 false, true);
2630
2631 if (iv0.step == const0_rtx)
2632 {
2633 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2634 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2635 }
2636 else
2637 {
2638 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2639 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2640 }
2641
2642 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2643 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2644 assumption = simplify_gen_relational (reverse_condition (cond),
2645 SImode, mode, tmp0, tmp1);
2646 if (assumption == const_true_rtx)
2647 goto zero_iter_simplify;
2648 else if (assumption != const0_rtx)
2649 desc->noloop_assumptions =
2650 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2651 cond = NE;
2652 }
2653 }
2654
2655 /* Count the number of iterations. */
2656 if (cond == NE)
2657 {
2658 /* Everything we do here is just arithmetics modulo size of mode. This
2659 makes us able to do more involved computations of number of iterations
2660 than in other cases. First transform the condition into shape
2661 s * i <> c, with s positive. */
2662 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2663 iv0.base = const0_rtx;
2664 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2665 iv1.step = const0_rtx;
2666 if (INTVAL (iv0.step) < 0)
2667 {
2668 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, mode);
2669 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, mode);
2670 }
2671 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2672
2673 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2674 is infinite. Otherwise, the number of iterations is
2675 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2676 s = INTVAL (iv0.step); d = 1;
2677 while (s % 2 != 1)
2678 {
2679 s /= 2;
2680 d *= 2;
2681 size--;
2682 }
2683 bound = GEN_INT (((unsigned HOST_WIDEST_INT) 1 << (size - 1 ) << 1) - 1);
2684
2685 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2686 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
2687 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2688 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2689
2690 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
2691 inv = inverse (s, size);
2692 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2693 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2694 }
2695 else
2696 {
2697 if (iv1.step == const0_rtx)
2698 /* Condition in shape a + s * i <= b
2699 We must know that b + s does not overflow and a <= b + s and then we
2700 can compute number of iterations as (b + s - a) / s. (It might
2701 seem that we in fact could be more clever about testing the b + s
2702 overflow condition using some information about b - a mod s,
2703 but it was already taken into account during LE -> NE transform). */
2704 {
2705 step = iv0.step;
2706 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2707 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2708
2709 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2710 lowpart_subreg (mode, step,
2711 comp_mode));
2712 if (step_is_pow2)
2713 {
2714 rtx t0, t1;
2715
2716 /* If s is power of 2, we know that the loop is infinite if
2717 a % s <= b % s and b + s overflows. */
2718 assumption = simplify_gen_relational (reverse_condition (cond),
2719 SImode, mode,
2720 tmp1, bound);
2721
2722 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2723 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2724 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2725 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2726 desc->infinite =
2727 alloc_EXPR_LIST (0, assumption, desc->infinite);
2728 }
2729 else
2730 {
2731 assumption = simplify_gen_relational (cond, SImode, mode,
2732 tmp1, bound);
2733 desc->assumptions =
2734 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2735 }
2736
2737 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2738 tmp = lowpart_subreg (mode, tmp, comp_mode);
2739 assumption = simplify_gen_relational (reverse_condition (cond),
2740 SImode, mode, tmp0, tmp);
2741
2742 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2743 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2744 }
2745 else
2746 {
2747 /* Condition in shape a <= b - s * i
2748 We must know that a - s does not overflow and a - s <= b and then
2749 we can again compute number of iterations as (b - (a - s)) / s. */
2750 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2751 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2752 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2753
2754 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2755 lowpart_subreg (mode, step, comp_mode));
2756 if (step_is_pow2)
2757 {
2758 rtx t0, t1;
2759
2760 /* If s is power of 2, we know that the loop is infinite if
2761 a % s <= b % s and a - s overflows. */
2762 assumption = simplify_gen_relational (reverse_condition (cond),
2763 SImode, mode,
2764 bound, tmp0);
2765
2766 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2767 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2768 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2769 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2770 desc->infinite =
2771 alloc_EXPR_LIST (0, assumption, desc->infinite);
2772 }
2773 else
2774 {
2775 assumption = simplify_gen_relational (cond, SImode, mode,
2776 bound, tmp0);
2777 desc->assumptions =
2778 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2779 }
2780
2781 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2782 tmp = lowpart_subreg (mode, tmp, comp_mode);
2783 assumption = simplify_gen_relational (reverse_condition (cond),
2784 SImode, mode,
2785 tmp, tmp1);
2786 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2787 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2788 }
2789 if (assumption == const_true_rtx)
2790 goto zero_iter_simplify;
2791 else if (assumption != const0_rtx)
2792 desc->noloop_assumptions =
2793 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2794 delta = simplify_gen_binary (UDIV, mode, delta, step);
2795 desc->niter_expr = delta;
2796 }
2797
2798 old_niter = desc->niter_expr;
2799
2800 simplify_using_initial_values (loop, AND, &desc->assumptions);
2801 if (desc->assumptions
2802 && XEXP (desc->assumptions, 0) == const0_rtx)
2803 goto fail;
2804 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2805 simplify_using_initial_values (loop, IOR, &desc->infinite);
2806 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2807
2808 /* Rerun the simplification. Consider code (created by copying loop headers)
2809
2810 i = 0;
2811
2812 if (0 < n)
2813 {
2814 do
2815 {
2816 i++;
2817 } while (i < n);
2818 }
2819
2820 The first pass determines that i = 0, the second pass uses it to eliminate
2821 noloop assumption. */
2822
2823 simplify_using_initial_values (loop, AND, &desc->assumptions);
2824 if (desc->assumptions
2825 && XEXP (desc->assumptions, 0) == const0_rtx)
2826 goto fail;
2827 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2828 simplify_using_initial_values (loop, IOR, &desc->infinite);
2829 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2830
2831 if (desc->noloop_assumptions
2832 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2833 goto zero_iter;
2834
2835 if (CONST_INT_P (desc->niter_expr))
2836 {
2837 unsigned HOST_WIDEST_INT val = INTVAL (desc->niter_expr);
2838
2839 desc->const_iter = true;
2840 desc->niter = val & GET_MODE_MASK (desc->mode);
2841 if (!desc->infinite
2842 && !desc->assumptions)
2843 record_niter_bound (loop, double_int::from_uhwi (desc->niter),
2844 false, true);
2845 }
2846 else
2847 {
2848 max = determine_max_iter (loop, desc, old_niter);
2849 if (!max)
2850 goto zero_iter_simplify;
2851 if (!desc->infinite
2852 && !desc->assumptions)
2853 record_niter_bound (loop, double_int::from_uhwi (max),
2854 false, true);
2855
2856 /* simplify_using_initial_values does a copy propagation on the registers
2857 in the expression for the number of iterations. This prolongs life
2858 ranges of registers and increases register pressure, and usually
2859 brings no gain (and if it happens to do, the cse pass will take care
2860 of it anyway). So prevent this behavior, unless it enabled us to
2861 derive that the number of iterations is a constant. */
2862 desc->niter_expr = old_niter;
2863 }
2864
2865 return;
2866
2867 zero_iter_simplify:
2868 /* Simplify the assumptions. */
2869 simplify_using_initial_values (loop, AND, &desc->assumptions);
2870 if (desc->assumptions
2871 && XEXP (desc->assumptions, 0) == const0_rtx)
2872 goto fail;
2873 simplify_using_initial_values (loop, IOR, &desc->infinite);
2874
2875 /* Fallthru. */
2876 zero_iter:
2877 desc->const_iter = true;
2878 desc->niter = 0;
2879 record_niter_bound (loop, double_int_zero,
2880 true, true);
2881 desc->noloop_assumptions = NULL_RTX;
2882 desc->niter_expr = const0_rtx;
2883 return;
2884
2885 fail:
2886 desc->simple_p = false;
2887 return;
2888 }
2889
2890 /* Checks whether E is a simple exit from LOOP and stores its description
2891 into DESC. */
2892
2893 static void
2894 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2895 {
2896 basic_block exit_bb;
2897 rtx condition, at;
2898 edge ein;
2899
2900 exit_bb = e->src;
2901 desc->simple_p = false;
2902
2903 /* It must belong directly to the loop. */
2904 if (exit_bb->loop_father != loop)
2905 return;
2906
2907 /* It must be tested (at least) once during any iteration. */
2908 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2909 return;
2910
2911 /* It must end in a simple conditional jump. */
2912 if (!any_condjump_p (BB_END (exit_bb)))
2913 return;
2914
2915 ein = EDGE_SUCC (exit_bb, 0);
2916 if (ein == e)
2917 ein = EDGE_SUCC (exit_bb, 1);
2918
2919 desc->out_edge = e;
2920 desc->in_edge = ein;
2921
2922 /* Test whether the condition is suitable. */
2923 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2924 return;
2925
2926 if (ein->flags & EDGE_FALLTHRU)
2927 {
2928 condition = reversed_condition (condition);
2929 if (!condition)
2930 return;
2931 }
2932
2933 /* Check that we are able to determine number of iterations and fill
2934 in information about it. */
2935 iv_number_of_iterations (loop, at, condition, desc);
2936 }
2937
2938 /* Finds a simple exit of LOOP and stores its description into DESC. */
2939
2940 void
2941 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2942 {
2943 unsigned i;
2944 basic_block *body;
2945 edge e;
2946 struct niter_desc act;
2947 bool any = false;
2948 edge_iterator ei;
2949
2950 desc->simple_p = false;
2951 body = get_loop_body (loop);
2952
2953 for (i = 0; i < loop->num_nodes; i++)
2954 {
2955 FOR_EACH_EDGE (e, ei, body[i]->succs)
2956 {
2957 if (flow_bb_inside_loop_p (loop, e->dest))
2958 continue;
2959
2960 check_simple_exit (loop, e, &act);
2961 if (!act.simple_p)
2962 continue;
2963
2964 if (!any)
2965 any = true;
2966 else
2967 {
2968 /* Prefer constant iterations; the less the better. */
2969 if (!act.const_iter
2970 || (desc->const_iter && act.niter >= desc->niter))
2971 continue;
2972
2973 /* Also if the actual exit may be infinite, while the old one
2974 not, prefer the old one. */
2975 if (act.infinite && !desc->infinite)
2976 continue;
2977 }
2978
2979 *desc = act;
2980 }
2981 }
2982
2983 if (dump_file)
2984 {
2985 if (desc->simple_p)
2986 {
2987 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2988 fprintf (dump_file, " simple exit %d -> %d\n",
2989 desc->out_edge->src->index,
2990 desc->out_edge->dest->index);
2991 if (desc->assumptions)
2992 {
2993 fprintf (dump_file, " assumptions: ");
2994 print_rtl (dump_file, desc->assumptions);
2995 fprintf (dump_file, "\n");
2996 }
2997 if (desc->noloop_assumptions)
2998 {
2999 fprintf (dump_file, " does not roll if: ");
3000 print_rtl (dump_file, desc->noloop_assumptions);
3001 fprintf (dump_file, "\n");
3002 }
3003 if (desc->infinite)
3004 {
3005 fprintf (dump_file, " infinite if: ");
3006 print_rtl (dump_file, desc->infinite);
3007 fprintf (dump_file, "\n");
3008 }
3009
3010 fprintf (dump_file, " number of iterations: ");
3011 print_rtl (dump_file, desc->niter_expr);
3012 fprintf (dump_file, "\n");
3013
3014 fprintf (dump_file, " upper bound: %li\n",
3015 (long)get_max_loop_iterations_int (loop));
3016 fprintf (dump_file, " realistic bound: %li\n",
3017 (long)get_estimated_loop_iterations_int (loop));
3018 }
3019 else
3020 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
3021 }
3022
3023 free (body);
3024 }
3025
3026 /* Creates a simple loop description of LOOP if it was not computed
3027 already. */
3028
3029 struct niter_desc *
3030 get_simple_loop_desc (struct loop *loop)
3031 {
3032 struct niter_desc *desc = simple_loop_desc (loop);
3033
3034 if (desc)
3035 return desc;
3036
3037 /* At least desc->infinite is not always initialized by
3038 find_simple_loop_exit. */
3039 desc = ggc_alloc_cleared_niter_desc ();
3040 iv_analysis_loop_init (loop);
3041 find_simple_exit (loop, desc);
3042 loop->simple_loop_desc = desc;
3043
3044 if (desc->simple_p && (desc->assumptions || desc->infinite))
3045 {
3046 const char *wording;
3047
3048 /* Assume that no overflow happens and that the loop is finite.
3049 We already warned at the tree level if we ran optimizations there. */
3050 if (!flag_tree_loop_optimize && warn_unsafe_loop_optimizations)
3051 {
3052 if (desc->infinite)
3053 {
3054 wording =
3055 flag_unsafe_loop_optimizations
3056 ? N_("assuming that the loop is not infinite")
3057 : N_("cannot optimize possibly infinite loops");
3058 warning (OPT_Wunsafe_loop_optimizations, "%s",
3059 gettext (wording));
3060 }
3061 if (desc->assumptions)
3062 {
3063 wording =
3064 flag_unsafe_loop_optimizations
3065 ? N_("assuming that the loop counter does not overflow")
3066 : N_("cannot optimize loop, the loop counter may overflow");
3067 warning (OPT_Wunsafe_loop_optimizations, "%s",
3068 gettext (wording));
3069 }
3070 }
3071
3072 if (flag_unsafe_loop_optimizations)
3073 {
3074 desc->assumptions = NULL_RTX;
3075 desc->infinite = NULL_RTX;
3076 }
3077 }
3078
3079 return desc;
3080 }
3081
3082 /* Releases simple loop description for LOOP. */
3083
3084 void
3085 free_simple_loop_desc (struct loop *loop)
3086 {
3087 struct niter_desc *desc = simple_loop_desc (loop);
3088
3089 if (!desc)
3090 return;
3091
3092 ggc_free (desc);
3093 loop->simple_loop_desc = NULL;
3094 }