]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/loop-iv.c
82b4bdb15232a4eb16c257f36c18335cae628b68
[thirdparty/gcc.git] / gcc / loop-iv.c
1 /* Rtl-level induction variable analysis.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is a simple analysis of induction variables of the loop. The major use
21 is for determining the number of iterations of a loop for loop unrolling,
22 doloop optimization and branch prediction. The iv information is computed
23 on demand.
24
25 Induction variables are analyzed by walking the use-def chains. When
26 a basic induction variable (biv) is found, it is cached in the bivs
27 hash table. When register is proved to be a biv, its description
28 is stored to DF_REF_DATA of the def reference.
29
30 The analysis works always with one loop -- you must call
31 iv_analysis_loop_init (loop) for it. All the other functions then work with
32 this loop. When you need to work with another loop, just call
33 iv_analysis_loop_init for it. When you no longer need iv analysis, call
34 iv_analysis_done () to clean up the memory.
35
36 The available functions are:
37
38 iv_analyze (insn, mode, reg, iv): Stores the description of the induction
39 variable corresponding to the use of register REG in INSN to IV, given
40 that REG has mode MODE. Returns true if REG is an induction variable
41 in INSN. false otherwise. If a use of REG is not found in INSN,
42 the following insns are scanned (so that we may call this function
43 on insns returned by get_condition).
44 iv_analyze_result (insn, def, iv): Stores to IV the description of the iv
45 corresponding to DEF, which is a register defined in INSN.
46 iv_analyze_expr (insn, mode, expr, iv): Stores to IV the description of iv
47 corresponding to expression EXPR evaluated at INSN. All registers used bu
48 EXPR must also be used in INSN. MODE is the mode of EXPR.
49 */
50
51 #include "config.h"
52 #include "system.h"
53 #include "coretypes.h"
54 #include "backend.h"
55 #include "rtl.h"
56 #include "df.h"
57 #include "memmodel.h"
58 #include "emit-rtl.h"
59 #include "diagnostic-core.h"
60 #include "cfgloop.h"
61 #include "intl.h"
62 #include "dumpfile.h"
63 #include "rtl-iter.h"
64
65 /* Possible return values of iv_get_reaching_def. */
66
67 enum iv_grd_result
68 {
69 /* More than one reaching def, or reaching def that does not
70 dominate the use. */
71 GRD_INVALID,
72
73 /* The use is trivial invariant of the loop, i.e. is not changed
74 inside the loop. */
75 GRD_INVARIANT,
76
77 /* The use is reached by initial value and a value from the
78 previous iteration. */
79 GRD_MAYBE_BIV,
80
81 /* The use has single dominating def. */
82 GRD_SINGLE_DOM
83 };
84
85 /* Information about a biv. */
86
87 struct biv_entry
88 {
89 unsigned regno; /* The register of the biv. */
90 struct rtx_iv iv; /* Value of the biv. */
91 };
92
93 static bool clean_slate = true;
94
95 static unsigned int iv_ref_table_size = 0;
96
97 /* Table of rtx_ivs indexed by the df_ref uid field. */
98 static struct rtx_iv ** iv_ref_table;
99
100 /* Induction variable stored at the reference. */
101 #define DF_REF_IV(REF) iv_ref_table[DF_REF_ID (REF)]
102 #define DF_REF_IV_SET(REF, IV) iv_ref_table[DF_REF_ID (REF)] = (IV)
103
104 /* The current loop. */
105
106 static struct loop *current_loop;
107
108 /* Hashtable helper. */
109
110 struct biv_entry_hasher : free_ptr_hash <biv_entry>
111 {
112 typedef rtx_def *compare_type;
113 static inline hashval_t hash (const biv_entry *);
114 static inline bool equal (const biv_entry *, const rtx_def *);
115 };
116
117 /* Returns hash value for biv B. */
118
119 inline hashval_t
120 biv_entry_hasher::hash (const biv_entry *b)
121 {
122 return b->regno;
123 }
124
125 /* Compares biv B and register R. */
126
127 inline bool
128 biv_entry_hasher::equal (const biv_entry *b, const rtx_def *r)
129 {
130 return b->regno == REGNO (r);
131 }
132
133 /* Bivs of the current loop. */
134
135 static hash_table<biv_entry_hasher> *bivs;
136
137 static bool iv_analyze_op (rtx_insn *, scalar_int_mode, rtx, struct rtx_iv *);
138
139 /* Return the RTX code corresponding to the IV extend code EXTEND. */
140 static inline enum rtx_code
141 iv_extend_to_rtx_code (enum iv_extend_code extend)
142 {
143 switch (extend)
144 {
145 case IV_SIGN_EXTEND:
146 return SIGN_EXTEND;
147 case IV_ZERO_EXTEND:
148 return ZERO_EXTEND;
149 case IV_UNKNOWN_EXTEND:
150 return UNKNOWN;
151 }
152 gcc_unreachable ();
153 }
154
155 /* Dumps information about IV to FILE. */
156
157 extern void dump_iv_info (FILE *, struct rtx_iv *);
158 void
159 dump_iv_info (FILE *file, struct rtx_iv *iv)
160 {
161 if (!iv->base)
162 {
163 fprintf (file, "not simple");
164 return;
165 }
166
167 if (iv->step == const0_rtx
168 && !iv->first_special)
169 fprintf (file, "invariant ");
170
171 print_rtl (file, iv->base);
172 if (iv->step != const0_rtx)
173 {
174 fprintf (file, " + ");
175 print_rtl (file, iv->step);
176 fprintf (file, " * iteration");
177 }
178 fprintf (file, " (in %s)", GET_MODE_NAME (iv->mode));
179
180 if (iv->mode != iv->extend_mode)
181 fprintf (file, " %s to %s",
182 rtx_name[iv_extend_to_rtx_code (iv->extend)],
183 GET_MODE_NAME (iv->extend_mode));
184
185 if (iv->mult != const1_rtx)
186 {
187 fprintf (file, " * ");
188 print_rtl (file, iv->mult);
189 }
190 if (iv->delta != const0_rtx)
191 {
192 fprintf (file, " + ");
193 print_rtl (file, iv->delta);
194 }
195 if (iv->first_special)
196 fprintf (file, " (first special)");
197 }
198
199 static void
200 check_iv_ref_table_size (void)
201 {
202 if (iv_ref_table_size < DF_DEFS_TABLE_SIZE ())
203 {
204 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
205 iv_ref_table = XRESIZEVEC (struct rtx_iv *, iv_ref_table, new_size);
206 memset (&iv_ref_table[iv_ref_table_size], 0,
207 (new_size - iv_ref_table_size) * sizeof (struct rtx_iv *));
208 iv_ref_table_size = new_size;
209 }
210 }
211
212
213 /* Checks whether REG is a well-behaved register. */
214
215 static bool
216 simple_reg_p (rtx reg)
217 {
218 unsigned r;
219
220 if (GET_CODE (reg) == SUBREG)
221 {
222 if (!subreg_lowpart_p (reg))
223 return false;
224 reg = SUBREG_REG (reg);
225 }
226
227 if (!REG_P (reg))
228 return false;
229
230 r = REGNO (reg);
231 if (HARD_REGISTER_NUM_P (r))
232 return false;
233
234 if (GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
235 return false;
236
237 return true;
238 }
239
240 /* Clears the information about ivs stored in df. */
241
242 static void
243 clear_iv_info (void)
244 {
245 unsigned i, n_defs = DF_DEFS_TABLE_SIZE ();
246 struct rtx_iv *iv;
247
248 check_iv_ref_table_size ();
249 for (i = 0; i < n_defs; i++)
250 {
251 iv = iv_ref_table[i];
252 if (iv)
253 {
254 free (iv);
255 iv_ref_table[i] = NULL;
256 }
257 }
258
259 bivs->empty ();
260 }
261
262
263 /* Prepare the data for an induction variable analysis of a LOOP. */
264
265 void
266 iv_analysis_loop_init (struct loop *loop)
267 {
268 current_loop = loop;
269
270 /* Clear the information from the analysis of the previous loop. */
271 if (clean_slate)
272 {
273 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
274 bivs = new hash_table<biv_entry_hasher> (10);
275 clean_slate = false;
276 }
277 else
278 clear_iv_info ();
279
280 /* Get rid of the ud chains before processing the rescans. Then add
281 the problem back. */
282 df_remove_problem (df_chain);
283 df_process_deferred_rescans ();
284 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
285 df_chain_add_problem (DF_UD_CHAIN);
286 df_note_add_problem ();
287 df_analyze_loop (loop);
288 if (dump_file)
289 df_dump_region (dump_file);
290
291 check_iv_ref_table_size ();
292 }
293
294 /* Finds the definition of REG that dominates loop latch and stores
295 it to DEF. Returns false if there is not a single definition
296 dominating the latch. If REG has no definition in loop, DEF
297 is set to NULL and true is returned. */
298
299 static bool
300 latch_dominating_def (rtx reg, df_ref *def)
301 {
302 df_ref single_rd = NULL, adef;
303 unsigned regno = REGNO (reg);
304 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (current_loop->latch);
305
306 for (adef = DF_REG_DEF_CHAIN (regno); adef; adef = DF_REF_NEXT_REG (adef))
307 {
308 if (!bitmap_bit_p (df->blocks_to_analyze, DF_REF_BBNO (adef))
309 || !bitmap_bit_p (&bb_info->out, DF_REF_ID (adef)))
310 continue;
311
312 /* More than one reaching definition. */
313 if (single_rd)
314 return false;
315
316 if (!just_once_each_iteration_p (current_loop, DF_REF_BB (adef)))
317 return false;
318
319 single_rd = adef;
320 }
321
322 *def = single_rd;
323 return true;
324 }
325
326 /* Gets definition of REG reaching its use in INSN and stores it to DEF. */
327
328 static enum iv_grd_result
329 iv_get_reaching_def (rtx_insn *insn, rtx reg, df_ref *def)
330 {
331 df_ref use, adef;
332 basic_block def_bb, use_bb;
333 rtx_insn *def_insn;
334 bool dom_p;
335
336 *def = NULL;
337 if (!simple_reg_p (reg))
338 return GRD_INVALID;
339 if (GET_CODE (reg) == SUBREG)
340 reg = SUBREG_REG (reg);
341 gcc_assert (REG_P (reg));
342
343 use = df_find_use (insn, reg);
344 gcc_assert (use != NULL);
345
346 if (!DF_REF_CHAIN (use))
347 return GRD_INVARIANT;
348
349 /* More than one reaching def. */
350 if (DF_REF_CHAIN (use)->next)
351 return GRD_INVALID;
352
353 adef = DF_REF_CHAIN (use)->ref;
354
355 /* We do not handle setting only part of the register. */
356 if (DF_REF_FLAGS (adef) & DF_REF_READ_WRITE)
357 return GRD_INVALID;
358
359 def_insn = DF_REF_INSN (adef);
360 def_bb = DF_REF_BB (adef);
361 use_bb = BLOCK_FOR_INSN (insn);
362
363 if (use_bb == def_bb)
364 dom_p = (DF_INSN_LUID (def_insn) < DF_INSN_LUID (insn));
365 else
366 dom_p = dominated_by_p (CDI_DOMINATORS, use_bb, def_bb);
367
368 if (dom_p)
369 {
370 *def = adef;
371 return GRD_SINGLE_DOM;
372 }
373
374 /* The definition does not dominate the use. This is still OK if
375 this may be a use of a biv, i.e. if the def_bb dominates loop
376 latch. */
377 if (just_once_each_iteration_p (current_loop, def_bb))
378 return GRD_MAYBE_BIV;
379
380 return GRD_INVALID;
381 }
382
383 /* Sets IV to invariant CST in MODE. Always returns true (just for
384 consistency with other iv manipulation functions that may fail). */
385
386 static bool
387 iv_constant (struct rtx_iv *iv, scalar_int_mode mode, rtx cst)
388 {
389 iv->mode = mode;
390 iv->base = cst;
391 iv->step = const0_rtx;
392 iv->first_special = false;
393 iv->extend = IV_UNKNOWN_EXTEND;
394 iv->extend_mode = iv->mode;
395 iv->delta = const0_rtx;
396 iv->mult = const1_rtx;
397
398 return true;
399 }
400
401 /* Evaluates application of subreg to MODE on IV. */
402
403 static bool
404 iv_subreg (struct rtx_iv *iv, scalar_int_mode mode)
405 {
406 /* If iv is invariant, just calculate the new value. */
407 if (iv->step == const0_rtx
408 && !iv->first_special)
409 {
410 rtx val = get_iv_value (iv, const0_rtx);
411 val = lowpart_subreg (mode, val,
412 iv->extend == IV_UNKNOWN_EXTEND
413 ? iv->mode : iv->extend_mode);
414
415 iv->base = val;
416 iv->extend = IV_UNKNOWN_EXTEND;
417 iv->mode = iv->extend_mode = mode;
418 iv->delta = const0_rtx;
419 iv->mult = const1_rtx;
420 return true;
421 }
422
423 if (iv->extend_mode == mode)
424 return true;
425
426 if (GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (iv->mode))
427 return false;
428
429 iv->extend = IV_UNKNOWN_EXTEND;
430 iv->mode = mode;
431
432 iv->base = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
433 simplify_gen_binary (MULT, iv->extend_mode,
434 iv->base, iv->mult));
435 iv->step = simplify_gen_binary (MULT, iv->extend_mode, iv->step, iv->mult);
436 iv->mult = const1_rtx;
437 iv->delta = const0_rtx;
438 iv->first_special = false;
439
440 return true;
441 }
442
443 /* Evaluates application of EXTEND to MODE on IV. */
444
445 static bool
446 iv_extend (struct rtx_iv *iv, enum iv_extend_code extend, scalar_int_mode mode)
447 {
448 /* If iv is invariant, just calculate the new value. */
449 if (iv->step == const0_rtx
450 && !iv->first_special)
451 {
452 rtx val = get_iv_value (iv, const0_rtx);
453 if (iv->extend_mode != iv->mode
454 && iv->extend != IV_UNKNOWN_EXTEND
455 && iv->extend != extend)
456 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
457 val = simplify_gen_unary (iv_extend_to_rtx_code (extend), mode,
458 val,
459 iv->extend == extend
460 ? iv->extend_mode : iv->mode);
461 iv->base = val;
462 iv->extend = IV_UNKNOWN_EXTEND;
463 iv->mode = iv->extend_mode = mode;
464 iv->delta = const0_rtx;
465 iv->mult = const1_rtx;
466 return true;
467 }
468
469 if (mode != iv->extend_mode)
470 return false;
471
472 if (iv->extend != IV_UNKNOWN_EXTEND
473 && iv->extend != extend)
474 return false;
475
476 iv->extend = extend;
477
478 return true;
479 }
480
481 /* Evaluates negation of IV. */
482
483 static bool
484 iv_neg (struct rtx_iv *iv)
485 {
486 if (iv->extend == IV_UNKNOWN_EXTEND)
487 {
488 iv->base = simplify_gen_unary (NEG, iv->extend_mode,
489 iv->base, iv->extend_mode);
490 iv->step = simplify_gen_unary (NEG, iv->extend_mode,
491 iv->step, iv->extend_mode);
492 }
493 else
494 {
495 iv->delta = simplify_gen_unary (NEG, iv->extend_mode,
496 iv->delta, iv->extend_mode);
497 iv->mult = simplify_gen_unary (NEG, iv->extend_mode,
498 iv->mult, iv->extend_mode);
499 }
500
501 return true;
502 }
503
504 /* Evaluates addition or subtraction (according to OP) of IV1 to IV0. */
505
506 static bool
507 iv_add (struct rtx_iv *iv0, struct rtx_iv *iv1, enum rtx_code op)
508 {
509 scalar_int_mode mode;
510 rtx arg;
511
512 /* Extend the constant to extend_mode of the other operand if necessary. */
513 if (iv0->extend == IV_UNKNOWN_EXTEND
514 && iv0->mode == iv0->extend_mode
515 && iv0->step == const0_rtx
516 && GET_MODE_SIZE (iv0->extend_mode) < GET_MODE_SIZE (iv1->extend_mode))
517 {
518 iv0->extend_mode = iv1->extend_mode;
519 iv0->base = simplify_gen_unary (ZERO_EXTEND, iv0->extend_mode,
520 iv0->base, iv0->mode);
521 }
522 if (iv1->extend == IV_UNKNOWN_EXTEND
523 && iv1->mode == iv1->extend_mode
524 && iv1->step == const0_rtx
525 && GET_MODE_SIZE (iv1->extend_mode) < GET_MODE_SIZE (iv0->extend_mode))
526 {
527 iv1->extend_mode = iv0->extend_mode;
528 iv1->base = simplify_gen_unary (ZERO_EXTEND, iv1->extend_mode,
529 iv1->base, iv1->mode);
530 }
531
532 mode = iv0->extend_mode;
533 if (mode != iv1->extend_mode)
534 return false;
535
536 if (iv0->extend == IV_UNKNOWN_EXTEND
537 && iv1->extend == IV_UNKNOWN_EXTEND)
538 {
539 if (iv0->mode != iv1->mode)
540 return false;
541
542 iv0->base = simplify_gen_binary (op, mode, iv0->base, iv1->base);
543 iv0->step = simplify_gen_binary (op, mode, iv0->step, iv1->step);
544
545 return true;
546 }
547
548 /* Handle addition of constant. */
549 if (iv1->extend == IV_UNKNOWN_EXTEND
550 && iv1->mode == mode
551 && iv1->step == const0_rtx)
552 {
553 iv0->delta = simplify_gen_binary (op, mode, iv0->delta, iv1->base);
554 return true;
555 }
556
557 if (iv0->extend == IV_UNKNOWN_EXTEND
558 && iv0->mode == mode
559 && iv0->step == const0_rtx)
560 {
561 arg = iv0->base;
562 *iv0 = *iv1;
563 if (op == MINUS
564 && !iv_neg (iv0))
565 return false;
566
567 iv0->delta = simplify_gen_binary (PLUS, mode, iv0->delta, arg);
568 return true;
569 }
570
571 return false;
572 }
573
574 /* Evaluates multiplication of IV by constant CST. */
575
576 static bool
577 iv_mult (struct rtx_iv *iv, rtx mby)
578 {
579 scalar_int_mode mode = iv->extend_mode;
580
581 if (GET_MODE (mby) != VOIDmode
582 && GET_MODE (mby) != mode)
583 return false;
584
585 if (iv->extend == IV_UNKNOWN_EXTEND)
586 {
587 iv->base = simplify_gen_binary (MULT, mode, iv->base, mby);
588 iv->step = simplify_gen_binary (MULT, mode, iv->step, mby);
589 }
590 else
591 {
592 iv->delta = simplify_gen_binary (MULT, mode, iv->delta, mby);
593 iv->mult = simplify_gen_binary (MULT, mode, iv->mult, mby);
594 }
595
596 return true;
597 }
598
599 /* Evaluates shift of IV by constant CST. */
600
601 static bool
602 iv_shift (struct rtx_iv *iv, rtx mby)
603 {
604 scalar_int_mode mode = iv->extend_mode;
605
606 if (GET_MODE (mby) != VOIDmode
607 && GET_MODE (mby) != mode)
608 return false;
609
610 if (iv->extend == IV_UNKNOWN_EXTEND)
611 {
612 iv->base = simplify_gen_binary (ASHIFT, mode, iv->base, mby);
613 iv->step = simplify_gen_binary (ASHIFT, mode, iv->step, mby);
614 }
615 else
616 {
617 iv->delta = simplify_gen_binary (ASHIFT, mode, iv->delta, mby);
618 iv->mult = simplify_gen_binary (ASHIFT, mode, iv->mult, mby);
619 }
620
621 return true;
622 }
623
624 /* The recursive part of get_biv_step. Gets the value of the single value
625 defined by DEF wrto initial value of REG inside loop, in shape described
626 at get_biv_step. */
627
628 static bool
629 get_biv_step_1 (df_ref def, scalar_int_mode outer_mode, rtx reg,
630 rtx *inner_step, scalar_int_mode *inner_mode,
631 enum iv_extend_code *extend,
632 rtx *outer_step)
633 {
634 rtx set, rhs, op0 = NULL_RTX, op1 = NULL_RTX;
635 rtx next, nextr;
636 enum rtx_code code;
637 rtx_insn *insn = DF_REF_INSN (def);
638 df_ref next_def;
639 enum iv_grd_result res;
640
641 set = single_set (insn);
642 if (!set)
643 return false;
644
645 rhs = find_reg_equal_equiv_note (insn);
646 if (rhs)
647 rhs = XEXP (rhs, 0);
648 else
649 rhs = SET_SRC (set);
650
651 code = GET_CODE (rhs);
652 switch (code)
653 {
654 case SUBREG:
655 case REG:
656 next = rhs;
657 break;
658
659 case PLUS:
660 case MINUS:
661 op0 = XEXP (rhs, 0);
662 op1 = XEXP (rhs, 1);
663
664 if (code == PLUS && CONSTANT_P (op0))
665 std::swap (op0, op1);
666
667 if (!simple_reg_p (op0)
668 || !CONSTANT_P (op1))
669 return false;
670
671 if (GET_MODE (rhs) != outer_mode)
672 {
673 /* ppc64 uses expressions like
674
675 (set x:SI (plus:SI (subreg:SI y:DI) 1)).
676
677 this is equivalent to
678
679 (set x':DI (plus:DI y:DI 1))
680 (set x:SI (subreg:SI (x':DI)). */
681 if (GET_CODE (op0) != SUBREG)
682 return false;
683 if (GET_MODE (SUBREG_REG (op0)) != outer_mode)
684 return false;
685 }
686
687 next = op0;
688 break;
689
690 case SIGN_EXTEND:
691 case ZERO_EXTEND:
692 if (GET_MODE (rhs) != outer_mode)
693 return false;
694
695 op0 = XEXP (rhs, 0);
696 if (!simple_reg_p (op0))
697 return false;
698
699 next = op0;
700 break;
701
702 default:
703 return false;
704 }
705
706 if (GET_CODE (next) == SUBREG)
707 {
708 if (!subreg_lowpart_p (next))
709 return false;
710
711 nextr = SUBREG_REG (next);
712 if (GET_MODE (nextr) != outer_mode)
713 return false;
714 }
715 else
716 nextr = next;
717
718 res = iv_get_reaching_def (insn, nextr, &next_def);
719
720 if (res == GRD_INVALID || res == GRD_INVARIANT)
721 return false;
722
723 if (res == GRD_MAYBE_BIV)
724 {
725 if (!rtx_equal_p (nextr, reg))
726 return false;
727
728 *inner_step = const0_rtx;
729 *extend = IV_UNKNOWN_EXTEND;
730 *inner_mode = outer_mode;
731 *outer_step = const0_rtx;
732 }
733 else if (!get_biv_step_1 (next_def, outer_mode, reg,
734 inner_step, inner_mode, extend,
735 outer_step))
736 return false;
737
738 if (GET_CODE (next) == SUBREG)
739 {
740 scalar_int_mode amode;
741 if (!is_a <scalar_int_mode> (GET_MODE (next), &amode)
742 || GET_MODE_SIZE (amode) > GET_MODE_SIZE (*inner_mode))
743 return false;
744
745 *inner_mode = amode;
746 *inner_step = simplify_gen_binary (PLUS, outer_mode,
747 *inner_step, *outer_step);
748 *outer_step = const0_rtx;
749 *extend = IV_UNKNOWN_EXTEND;
750 }
751
752 switch (code)
753 {
754 case REG:
755 case SUBREG:
756 break;
757
758 case PLUS:
759 case MINUS:
760 if (*inner_mode == outer_mode
761 /* See comment in previous switch. */
762 || GET_MODE (rhs) != outer_mode)
763 *inner_step = simplify_gen_binary (code, outer_mode,
764 *inner_step, op1);
765 else
766 *outer_step = simplify_gen_binary (code, outer_mode,
767 *outer_step, op1);
768 break;
769
770 case SIGN_EXTEND:
771 case ZERO_EXTEND:
772 gcc_assert (GET_MODE (op0) == *inner_mode
773 && *extend == IV_UNKNOWN_EXTEND
774 && *outer_step == const0_rtx);
775
776 *extend = (code == SIGN_EXTEND) ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
777 break;
778
779 default:
780 return false;
781 }
782
783 return true;
784 }
785
786 /* Gets the operation on register REG inside loop, in shape
787
788 OUTER_STEP + EXTEND_{OUTER_MODE} (SUBREG_{INNER_MODE} (REG + INNER_STEP))
789
790 If the operation cannot be described in this shape, return false.
791 LAST_DEF is the definition of REG that dominates loop latch. */
792
793 static bool
794 get_biv_step (df_ref last_def, scalar_int_mode outer_mode, rtx reg,
795 rtx *inner_step, scalar_int_mode *inner_mode,
796 enum iv_extend_code *extend, rtx *outer_step)
797 {
798 if (!get_biv_step_1 (last_def, outer_mode, reg,
799 inner_step, inner_mode, extend,
800 outer_step))
801 return false;
802
803 gcc_assert ((*inner_mode == outer_mode) != (*extend != IV_UNKNOWN_EXTEND));
804 gcc_assert (*inner_mode != outer_mode || *outer_step == const0_rtx);
805
806 return true;
807 }
808
809 /* Records information that DEF is induction variable IV. */
810
811 static void
812 record_iv (df_ref def, struct rtx_iv *iv)
813 {
814 struct rtx_iv *recorded_iv = XNEW (struct rtx_iv);
815
816 *recorded_iv = *iv;
817 check_iv_ref_table_size ();
818 DF_REF_IV_SET (def, recorded_iv);
819 }
820
821 /* If DEF was already analyzed for bivness, store the description of the biv to
822 IV and return true. Otherwise return false. */
823
824 static bool
825 analyzed_for_bivness_p (rtx def, struct rtx_iv *iv)
826 {
827 struct biv_entry *biv = bivs->find_with_hash (def, REGNO (def));
828
829 if (!biv)
830 return false;
831
832 *iv = biv->iv;
833 return true;
834 }
835
836 static void
837 record_biv (rtx def, struct rtx_iv *iv)
838 {
839 struct biv_entry *biv = XNEW (struct biv_entry);
840 biv_entry **slot = bivs->find_slot_with_hash (def, REGNO (def), INSERT);
841
842 biv->regno = REGNO (def);
843 biv->iv = *iv;
844 gcc_assert (!*slot);
845 *slot = biv;
846 }
847
848 /* Determines whether DEF is a biv and if so, stores its description
849 to *IV. OUTER_MODE is the mode of DEF. */
850
851 static bool
852 iv_analyze_biv (scalar_int_mode outer_mode, rtx def, struct rtx_iv *iv)
853 {
854 rtx inner_step, outer_step;
855 scalar_int_mode inner_mode;
856 enum iv_extend_code extend;
857 df_ref last_def;
858
859 if (dump_file)
860 {
861 fprintf (dump_file, "Analyzing ");
862 print_rtl (dump_file, def);
863 fprintf (dump_file, " for bivness.\n");
864 }
865
866 if (!REG_P (def))
867 {
868 if (!CONSTANT_P (def))
869 return false;
870
871 return iv_constant (iv, outer_mode, def);
872 }
873
874 if (!latch_dominating_def (def, &last_def))
875 {
876 if (dump_file)
877 fprintf (dump_file, " not simple.\n");
878 return false;
879 }
880
881 if (!last_def)
882 return iv_constant (iv, outer_mode, def);
883
884 if (analyzed_for_bivness_p (def, iv))
885 {
886 if (dump_file)
887 fprintf (dump_file, " already analysed.\n");
888 return iv->base != NULL_RTX;
889 }
890
891 if (!get_biv_step (last_def, outer_mode, def, &inner_step, &inner_mode,
892 &extend, &outer_step))
893 {
894 iv->base = NULL_RTX;
895 goto end;
896 }
897
898 /* Loop transforms base to es (base + inner_step) + outer_step,
899 where es means extend of subreg between inner_mode and outer_mode.
900 The corresponding induction variable is
901
902 es ((base - outer_step) + i * (inner_step + outer_step)) + outer_step */
903
904 iv->base = simplify_gen_binary (MINUS, outer_mode, def, outer_step);
905 iv->step = simplify_gen_binary (PLUS, outer_mode, inner_step, outer_step);
906 iv->mode = inner_mode;
907 iv->extend_mode = outer_mode;
908 iv->extend = extend;
909 iv->mult = const1_rtx;
910 iv->delta = outer_step;
911 iv->first_special = inner_mode != outer_mode;
912
913 end:
914 if (dump_file)
915 {
916 fprintf (dump_file, " ");
917 dump_iv_info (dump_file, iv);
918 fprintf (dump_file, "\n");
919 }
920
921 record_biv (def, iv);
922 return iv->base != NULL_RTX;
923 }
924
925 /* Analyzes expression RHS used at INSN and stores the result to *IV.
926 The mode of the induction variable is MODE. */
927
928 bool
929 iv_analyze_expr (rtx_insn *insn, scalar_int_mode mode, rtx rhs,
930 struct rtx_iv *iv)
931 {
932 rtx mby = NULL_RTX;
933 rtx op0 = NULL_RTX, op1 = NULL_RTX;
934 struct rtx_iv iv0, iv1;
935 enum rtx_code code = GET_CODE (rhs);
936 scalar_int_mode omode = mode;
937
938 iv->base = NULL_RTX;
939 iv->step = NULL_RTX;
940
941 gcc_assert (GET_MODE (rhs) == mode || GET_MODE (rhs) == VOIDmode);
942
943 if (CONSTANT_P (rhs)
944 || REG_P (rhs)
945 || code == SUBREG)
946 return iv_analyze_op (insn, mode, rhs, iv);
947
948 switch (code)
949 {
950 case REG:
951 op0 = rhs;
952 break;
953
954 case SIGN_EXTEND:
955 case ZERO_EXTEND:
956 case NEG:
957 op0 = XEXP (rhs, 0);
958 /* We don't know how many bits there are in a sign-extended constant. */
959 if (!is_a <scalar_int_mode> (GET_MODE (op0), &omode))
960 return false;
961 break;
962
963 case PLUS:
964 case MINUS:
965 op0 = XEXP (rhs, 0);
966 op1 = XEXP (rhs, 1);
967 break;
968
969 case MULT:
970 op0 = XEXP (rhs, 0);
971 mby = XEXP (rhs, 1);
972 if (!CONSTANT_P (mby))
973 std::swap (op0, mby);
974 if (!CONSTANT_P (mby))
975 return false;
976 break;
977
978 case ASHIFT:
979 op0 = XEXP (rhs, 0);
980 mby = XEXP (rhs, 1);
981 if (!CONSTANT_P (mby))
982 return false;
983 break;
984
985 default:
986 return false;
987 }
988
989 if (op0
990 && !iv_analyze_expr (insn, omode, op0, &iv0))
991 return false;
992
993 if (op1
994 && !iv_analyze_expr (insn, omode, op1, &iv1))
995 return false;
996
997 switch (code)
998 {
999 case SIGN_EXTEND:
1000 if (!iv_extend (&iv0, IV_SIGN_EXTEND, mode))
1001 return false;
1002 break;
1003
1004 case ZERO_EXTEND:
1005 if (!iv_extend (&iv0, IV_ZERO_EXTEND, mode))
1006 return false;
1007 break;
1008
1009 case NEG:
1010 if (!iv_neg (&iv0))
1011 return false;
1012 break;
1013
1014 case PLUS:
1015 case MINUS:
1016 if (!iv_add (&iv0, &iv1, code))
1017 return false;
1018 break;
1019
1020 case MULT:
1021 if (!iv_mult (&iv0, mby))
1022 return false;
1023 break;
1024
1025 case ASHIFT:
1026 if (!iv_shift (&iv0, mby))
1027 return false;
1028 break;
1029
1030 default:
1031 break;
1032 }
1033
1034 *iv = iv0;
1035 return iv->base != NULL_RTX;
1036 }
1037
1038 /* Analyzes iv DEF and stores the result to *IV. */
1039
1040 static bool
1041 iv_analyze_def (df_ref def, struct rtx_iv *iv)
1042 {
1043 rtx_insn *insn = DF_REF_INSN (def);
1044 rtx reg = DF_REF_REG (def);
1045 rtx set, rhs;
1046
1047 if (dump_file)
1048 {
1049 fprintf (dump_file, "Analyzing def of ");
1050 print_rtl (dump_file, reg);
1051 fprintf (dump_file, " in insn ");
1052 print_rtl_single (dump_file, insn);
1053 }
1054
1055 check_iv_ref_table_size ();
1056 if (DF_REF_IV (def))
1057 {
1058 if (dump_file)
1059 fprintf (dump_file, " already analysed.\n");
1060 *iv = *DF_REF_IV (def);
1061 return iv->base != NULL_RTX;
1062 }
1063
1064 iv->base = NULL_RTX;
1065 iv->step = NULL_RTX;
1066
1067 scalar_int_mode mode;
1068 if (!REG_P (reg) || !is_a <scalar_int_mode> (GET_MODE (reg), &mode))
1069 return false;
1070
1071 set = single_set (insn);
1072 if (!set)
1073 return false;
1074
1075 if (!REG_P (SET_DEST (set)))
1076 return false;
1077
1078 gcc_assert (SET_DEST (set) == reg);
1079 rhs = find_reg_equal_equiv_note (insn);
1080 if (rhs)
1081 rhs = XEXP (rhs, 0);
1082 else
1083 rhs = SET_SRC (set);
1084
1085 iv_analyze_expr (insn, mode, rhs, iv);
1086 record_iv (def, iv);
1087
1088 if (dump_file)
1089 {
1090 print_rtl (dump_file, reg);
1091 fprintf (dump_file, " in insn ");
1092 print_rtl_single (dump_file, insn);
1093 fprintf (dump_file, " is ");
1094 dump_iv_info (dump_file, iv);
1095 fprintf (dump_file, "\n");
1096 }
1097
1098 return iv->base != NULL_RTX;
1099 }
1100
1101 /* Analyzes operand OP of INSN and stores the result to *IV. MODE is the
1102 mode of OP. */
1103
1104 static bool
1105 iv_analyze_op (rtx_insn *insn, scalar_int_mode mode, rtx op, struct rtx_iv *iv)
1106 {
1107 df_ref def = NULL;
1108 enum iv_grd_result res;
1109
1110 if (dump_file)
1111 {
1112 fprintf (dump_file, "Analyzing operand ");
1113 print_rtl (dump_file, op);
1114 fprintf (dump_file, " of insn ");
1115 print_rtl_single (dump_file, insn);
1116 }
1117
1118 if (function_invariant_p (op))
1119 res = GRD_INVARIANT;
1120 else if (GET_CODE (op) == SUBREG)
1121 {
1122 scalar_int_mode inner_mode;
1123 if (!subreg_lowpart_p (op)
1124 || !is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op)), &inner_mode))
1125 return false;
1126
1127 if (!iv_analyze_op (insn, inner_mode, SUBREG_REG (op), iv))
1128 return false;
1129
1130 return iv_subreg (iv, mode);
1131 }
1132 else
1133 {
1134 res = iv_get_reaching_def (insn, op, &def);
1135 if (res == GRD_INVALID)
1136 {
1137 if (dump_file)
1138 fprintf (dump_file, " not simple.\n");
1139 return false;
1140 }
1141 }
1142
1143 if (res == GRD_INVARIANT)
1144 {
1145 iv_constant (iv, mode, op);
1146
1147 if (dump_file)
1148 {
1149 fprintf (dump_file, " ");
1150 dump_iv_info (dump_file, iv);
1151 fprintf (dump_file, "\n");
1152 }
1153 return true;
1154 }
1155
1156 if (res == GRD_MAYBE_BIV)
1157 return iv_analyze_biv (mode, op, iv);
1158
1159 return iv_analyze_def (def, iv);
1160 }
1161
1162 /* Analyzes value VAL at INSN and stores the result to *IV. MODE is the
1163 mode of VAL. */
1164
1165 bool
1166 iv_analyze (rtx_insn *insn, scalar_int_mode mode, rtx val, struct rtx_iv *iv)
1167 {
1168 rtx reg;
1169
1170 /* We must find the insn in that val is used, so that we get to UD chains.
1171 Since the function is sometimes called on result of get_condition,
1172 this does not necessarily have to be directly INSN; scan also the
1173 following insns. */
1174 if (simple_reg_p (val))
1175 {
1176 if (GET_CODE (val) == SUBREG)
1177 reg = SUBREG_REG (val);
1178 else
1179 reg = val;
1180
1181 while (!df_find_use (insn, reg))
1182 insn = NEXT_INSN (insn);
1183 }
1184
1185 return iv_analyze_op (insn, mode, val, iv);
1186 }
1187
1188 /* Analyzes definition of DEF in INSN and stores the result to IV. */
1189
1190 bool
1191 iv_analyze_result (rtx_insn *insn, rtx def, struct rtx_iv *iv)
1192 {
1193 df_ref adef;
1194
1195 adef = df_find_def (insn, def);
1196 if (!adef)
1197 return false;
1198
1199 return iv_analyze_def (adef, iv);
1200 }
1201
1202 /* Checks whether definition of register REG in INSN is a basic induction
1203 variable. MODE is the mode of REG.
1204
1205 IV analysis must have been initialized (via a call to
1206 iv_analysis_loop_init) for this function to produce a result. */
1207
1208 bool
1209 biv_p (rtx_insn *insn, scalar_int_mode mode, rtx reg)
1210 {
1211 struct rtx_iv iv;
1212 df_ref def, last_def;
1213
1214 if (!simple_reg_p (reg))
1215 return false;
1216
1217 def = df_find_def (insn, reg);
1218 gcc_assert (def != NULL);
1219 if (!latch_dominating_def (reg, &last_def))
1220 return false;
1221 if (last_def != def)
1222 return false;
1223
1224 if (!iv_analyze_biv (mode, reg, &iv))
1225 return false;
1226
1227 return iv.step != const0_rtx;
1228 }
1229
1230 /* Calculates value of IV at ITERATION-th iteration. */
1231
1232 rtx
1233 get_iv_value (struct rtx_iv *iv, rtx iteration)
1234 {
1235 rtx val;
1236
1237 /* We would need to generate some if_then_else patterns, and so far
1238 it is not needed anywhere. */
1239 gcc_assert (!iv->first_special);
1240
1241 if (iv->step != const0_rtx && iteration != const0_rtx)
1242 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->base,
1243 simplify_gen_binary (MULT, iv->extend_mode,
1244 iv->step, iteration));
1245 else
1246 val = iv->base;
1247
1248 if (iv->extend_mode == iv->mode)
1249 return val;
1250
1251 val = lowpart_subreg (iv->mode, val, iv->extend_mode);
1252
1253 if (iv->extend == IV_UNKNOWN_EXTEND)
1254 return val;
1255
1256 val = simplify_gen_unary (iv_extend_to_rtx_code (iv->extend),
1257 iv->extend_mode, val, iv->mode);
1258 val = simplify_gen_binary (PLUS, iv->extend_mode, iv->delta,
1259 simplify_gen_binary (MULT, iv->extend_mode,
1260 iv->mult, val));
1261
1262 return val;
1263 }
1264
1265 /* Free the data for an induction variable analysis. */
1266
1267 void
1268 iv_analysis_done (void)
1269 {
1270 if (!clean_slate)
1271 {
1272 clear_iv_info ();
1273 clean_slate = true;
1274 df_finish_pass (true);
1275 delete bivs;
1276 bivs = NULL;
1277 free (iv_ref_table);
1278 iv_ref_table = NULL;
1279 iv_ref_table_size = 0;
1280 }
1281 }
1282
1283 /* Computes inverse to X modulo (1 << MOD). */
1284
1285 static uint64_t
1286 inverse (uint64_t x, int mod)
1287 {
1288 uint64_t mask =
1289 ((uint64_t) 1 << (mod - 1) << 1) - 1;
1290 uint64_t rslt = 1;
1291 int i;
1292
1293 for (i = 0; i < mod - 1; i++)
1294 {
1295 rslt = (rslt * x) & mask;
1296 x = (x * x) & mask;
1297 }
1298
1299 return rslt;
1300 }
1301
1302 /* Checks whether any register in X is in set ALT. */
1303
1304 static bool
1305 altered_reg_used (const_rtx x, bitmap alt)
1306 {
1307 subrtx_iterator::array_type array;
1308 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1309 {
1310 const_rtx x = *iter;
1311 if (REG_P (x) && REGNO_REG_SET_P (alt, REGNO (x)))
1312 return true;
1313 }
1314 return false;
1315 }
1316
1317 /* Marks registers altered by EXPR in set ALT. */
1318
1319 static void
1320 mark_altered (rtx expr, const_rtx by ATTRIBUTE_UNUSED, void *alt)
1321 {
1322 if (GET_CODE (expr) == SUBREG)
1323 expr = SUBREG_REG (expr);
1324 if (!REG_P (expr))
1325 return;
1326
1327 SET_REGNO_REG_SET ((bitmap) alt, REGNO (expr));
1328 }
1329
1330 /* Checks whether RHS is simple enough to process. */
1331
1332 static bool
1333 simple_rhs_p (rtx rhs)
1334 {
1335 rtx op0, op1;
1336
1337 if (function_invariant_p (rhs)
1338 || (REG_P (rhs) && !HARD_REGISTER_P (rhs)))
1339 return true;
1340
1341 switch (GET_CODE (rhs))
1342 {
1343 case PLUS:
1344 case MINUS:
1345 case AND:
1346 op0 = XEXP (rhs, 0);
1347 op1 = XEXP (rhs, 1);
1348 /* Allow reg OP const and reg OP reg. */
1349 if (!(REG_P (op0) && !HARD_REGISTER_P (op0))
1350 && !function_invariant_p (op0))
1351 return false;
1352 if (!(REG_P (op1) && !HARD_REGISTER_P (op1))
1353 && !function_invariant_p (op1))
1354 return false;
1355
1356 return true;
1357
1358 case ASHIFT:
1359 case ASHIFTRT:
1360 case LSHIFTRT:
1361 case MULT:
1362 op0 = XEXP (rhs, 0);
1363 op1 = XEXP (rhs, 1);
1364 /* Allow reg OP const. */
1365 if (!(REG_P (op0) && !HARD_REGISTER_P (op0)))
1366 return false;
1367 if (!function_invariant_p (op1))
1368 return false;
1369
1370 return true;
1371
1372 default:
1373 return false;
1374 }
1375 }
1376
1377 /* If REGNO has a single definition, return its known value, otherwise return
1378 null. */
1379
1380 static rtx
1381 find_single_def_src (unsigned int regno)
1382 {
1383 df_ref adef;
1384 rtx set, src;
1385
1386 for (;;)
1387 {
1388 rtx note;
1389 adef = DF_REG_DEF_CHAIN (regno);
1390 if (adef == NULL || DF_REF_NEXT_REG (adef) != NULL
1391 || DF_REF_IS_ARTIFICIAL (adef))
1392 return NULL_RTX;
1393
1394 set = single_set (DF_REF_INSN (adef));
1395 if (set == NULL || !REG_P (SET_DEST (set))
1396 || REGNO (SET_DEST (set)) != regno)
1397 return NULL_RTX;
1398
1399 note = find_reg_equal_equiv_note (DF_REF_INSN (adef));
1400
1401 if (note && function_invariant_p (XEXP (note, 0)))
1402 {
1403 src = XEXP (note, 0);
1404 break;
1405 }
1406 src = SET_SRC (set);
1407
1408 if (REG_P (src))
1409 {
1410 regno = REGNO (src);
1411 continue;
1412 }
1413 break;
1414 }
1415 if (!function_invariant_p (src))
1416 return NULL_RTX;
1417
1418 return src;
1419 }
1420
1421 /* If any registers in *EXPR that have a single definition, try to replace
1422 them with the known-equivalent values. */
1423
1424 static void
1425 replace_single_def_regs (rtx *expr)
1426 {
1427 subrtx_var_iterator::array_type array;
1428 repeat:
1429 FOR_EACH_SUBRTX_VAR (iter, array, *expr, NONCONST)
1430 {
1431 rtx x = *iter;
1432 if (REG_P (x))
1433 if (rtx new_x = find_single_def_src (REGNO (x)))
1434 {
1435 *expr = simplify_replace_rtx (*expr, x, new_x);
1436 goto repeat;
1437 }
1438 }
1439 }
1440
1441 /* A subroutine of simplify_using_initial_values, this function examines INSN
1442 to see if it contains a suitable set that we can use to make a replacement.
1443 If it is suitable, return true and set DEST and SRC to the lhs and rhs of
1444 the set; return false otherwise. */
1445
1446 static bool
1447 suitable_set_for_replacement (rtx_insn *insn, rtx *dest, rtx *src)
1448 {
1449 rtx set = single_set (insn);
1450 rtx lhs = NULL_RTX, rhs;
1451
1452 if (!set)
1453 return false;
1454
1455 lhs = SET_DEST (set);
1456 if (!REG_P (lhs))
1457 return false;
1458
1459 rhs = find_reg_equal_equiv_note (insn);
1460 if (rhs)
1461 rhs = XEXP (rhs, 0);
1462 else
1463 rhs = SET_SRC (set);
1464
1465 if (!simple_rhs_p (rhs))
1466 return false;
1467
1468 *dest = lhs;
1469 *src = rhs;
1470 return true;
1471 }
1472
1473 /* Using the data returned by suitable_set_for_replacement, replace DEST
1474 with SRC in *EXPR and return the new expression. Also call
1475 replace_single_def_regs if the replacement changed something. */
1476 static void
1477 replace_in_expr (rtx *expr, rtx dest, rtx src)
1478 {
1479 rtx old = *expr;
1480 *expr = simplify_replace_rtx (*expr, dest, src);
1481 if (old == *expr)
1482 return;
1483 replace_single_def_regs (expr);
1484 }
1485
1486 /* Checks whether A implies B. */
1487
1488 static bool
1489 implies_p (rtx a, rtx b)
1490 {
1491 rtx op0, op1, opb0, opb1;
1492 machine_mode mode;
1493
1494 if (rtx_equal_p (a, b))
1495 return true;
1496
1497 if (GET_CODE (a) == EQ)
1498 {
1499 op0 = XEXP (a, 0);
1500 op1 = XEXP (a, 1);
1501
1502 if (REG_P (op0)
1503 || (GET_CODE (op0) == SUBREG
1504 && REG_P (SUBREG_REG (op0))))
1505 {
1506 rtx r = simplify_replace_rtx (b, op0, op1);
1507 if (r == const_true_rtx)
1508 return true;
1509 }
1510
1511 if (REG_P (op1)
1512 || (GET_CODE (op1) == SUBREG
1513 && REG_P (SUBREG_REG (op1))))
1514 {
1515 rtx r = simplify_replace_rtx (b, op1, op0);
1516 if (r == const_true_rtx)
1517 return true;
1518 }
1519 }
1520
1521 if (b == const_true_rtx)
1522 return true;
1523
1524 if ((GET_RTX_CLASS (GET_CODE (a)) != RTX_COMM_COMPARE
1525 && GET_RTX_CLASS (GET_CODE (a)) != RTX_COMPARE)
1526 || (GET_RTX_CLASS (GET_CODE (b)) != RTX_COMM_COMPARE
1527 && GET_RTX_CLASS (GET_CODE (b)) != RTX_COMPARE))
1528 return false;
1529
1530 op0 = XEXP (a, 0);
1531 op1 = XEXP (a, 1);
1532 opb0 = XEXP (b, 0);
1533 opb1 = XEXP (b, 1);
1534
1535 mode = GET_MODE (op0);
1536 if (mode != GET_MODE (opb0))
1537 mode = VOIDmode;
1538 else if (mode == VOIDmode)
1539 {
1540 mode = GET_MODE (op1);
1541 if (mode != GET_MODE (opb1))
1542 mode = VOIDmode;
1543 }
1544
1545 /* A < B implies A + 1 <= B. */
1546 if ((GET_CODE (a) == GT || GET_CODE (a) == LT)
1547 && (GET_CODE (b) == GE || GET_CODE (b) == LE))
1548 {
1549
1550 if (GET_CODE (a) == GT)
1551 std::swap (op0, op1);
1552
1553 if (GET_CODE (b) == GE)
1554 std::swap (opb0, opb1);
1555
1556 if (SCALAR_INT_MODE_P (mode)
1557 && rtx_equal_p (op1, opb1)
1558 && simplify_gen_binary (MINUS, mode, opb0, op0) == const1_rtx)
1559 return true;
1560 return false;
1561 }
1562
1563 /* A < B or A > B imply A != B. TODO: Likewise
1564 A + n < B implies A != B + n if neither wraps. */
1565 if (GET_CODE (b) == NE
1566 && (GET_CODE (a) == GT || GET_CODE (a) == GTU
1567 || GET_CODE (a) == LT || GET_CODE (a) == LTU))
1568 {
1569 if (rtx_equal_p (op0, opb0)
1570 && rtx_equal_p (op1, opb1))
1571 return true;
1572 }
1573
1574 /* For unsigned comparisons, A != 0 implies A > 0 and A >= 1. */
1575 if (GET_CODE (a) == NE
1576 && op1 == const0_rtx)
1577 {
1578 if ((GET_CODE (b) == GTU
1579 && opb1 == const0_rtx)
1580 || (GET_CODE (b) == GEU
1581 && opb1 == const1_rtx))
1582 return rtx_equal_p (op0, opb0);
1583 }
1584
1585 /* A != N is equivalent to A - (N + 1) <u -1. */
1586 if (GET_CODE (a) == NE
1587 && CONST_INT_P (op1)
1588 && GET_CODE (b) == LTU
1589 && opb1 == constm1_rtx
1590 && GET_CODE (opb0) == PLUS
1591 && CONST_INT_P (XEXP (opb0, 1))
1592 /* Avoid overflows. */
1593 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1594 != ((unsigned HOST_WIDE_INT)1
1595 << (HOST_BITS_PER_WIDE_INT - 1)) - 1)
1596 && INTVAL (XEXP (opb0, 1)) + 1 == -INTVAL (op1))
1597 return rtx_equal_p (op0, XEXP (opb0, 0));
1598
1599 /* Likewise, A != N implies A - N > 0. */
1600 if (GET_CODE (a) == NE
1601 && CONST_INT_P (op1))
1602 {
1603 if (GET_CODE (b) == GTU
1604 && GET_CODE (opb0) == PLUS
1605 && opb1 == const0_rtx
1606 && CONST_INT_P (XEXP (opb0, 1))
1607 /* Avoid overflows. */
1608 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1609 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
1610 && rtx_equal_p (XEXP (opb0, 0), op0))
1611 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1612 if (GET_CODE (b) == GEU
1613 && GET_CODE (opb0) == PLUS
1614 && opb1 == const1_rtx
1615 && CONST_INT_P (XEXP (opb0, 1))
1616 /* Avoid overflows. */
1617 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (opb0, 1))
1618 != (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
1619 && rtx_equal_p (XEXP (opb0, 0), op0))
1620 return INTVAL (op1) == -INTVAL (XEXP (opb0, 1));
1621 }
1622
1623 /* A >s X, where X is positive, implies A <u Y, if Y is negative. */
1624 if ((GET_CODE (a) == GT || GET_CODE (a) == GE)
1625 && CONST_INT_P (op1)
1626 && ((GET_CODE (a) == GT && op1 == constm1_rtx)
1627 || INTVAL (op1) >= 0)
1628 && GET_CODE (b) == LTU
1629 && CONST_INT_P (opb1)
1630 && rtx_equal_p (op0, opb0))
1631 return INTVAL (opb1) < 0;
1632
1633 return false;
1634 }
1635
1636 /* Canonicalizes COND so that
1637
1638 (1) Ensure that operands are ordered according to
1639 swap_commutative_operands_p.
1640 (2) (LE x const) will be replaced with (LT x <const+1>) and similarly
1641 for GE, GEU, and LEU. */
1642
1643 rtx
1644 canon_condition (rtx cond)
1645 {
1646 rtx op0, op1;
1647 enum rtx_code code;
1648 machine_mode mode;
1649
1650 code = GET_CODE (cond);
1651 op0 = XEXP (cond, 0);
1652 op1 = XEXP (cond, 1);
1653
1654 if (swap_commutative_operands_p (op0, op1))
1655 {
1656 code = swap_condition (code);
1657 std::swap (op0, op1);
1658 }
1659
1660 mode = GET_MODE (op0);
1661 if (mode == VOIDmode)
1662 mode = GET_MODE (op1);
1663 gcc_assert (mode != VOIDmode);
1664
1665 if (CONST_SCALAR_INT_P (op1) && GET_MODE_CLASS (mode) != MODE_CC)
1666 {
1667 rtx_mode_t const_val (op1, mode);
1668
1669 switch (code)
1670 {
1671 case LE:
1672 if (wi::ne_p (const_val, wi::max_value (mode, SIGNED)))
1673 {
1674 code = LT;
1675 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1676 }
1677 break;
1678
1679 case GE:
1680 if (wi::ne_p (const_val, wi::min_value (mode, SIGNED)))
1681 {
1682 code = GT;
1683 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1684 }
1685 break;
1686
1687 case LEU:
1688 if (wi::ne_p (const_val, -1))
1689 {
1690 code = LTU;
1691 op1 = immed_wide_int_const (wi::add (const_val, 1), mode);
1692 }
1693 break;
1694
1695 case GEU:
1696 if (wi::ne_p (const_val, 0))
1697 {
1698 code = GTU;
1699 op1 = immed_wide_int_const (wi::sub (const_val, 1), mode);
1700 }
1701 break;
1702
1703 default:
1704 break;
1705 }
1706 }
1707
1708 if (op0 != XEXP (cond, 0)
1709 || op1 != XEXP (cond, 1)
1710 || code != GET_CODE (cond)
1711 || GET_MODE (cond) != SImode)
1712 cond = gen_rtx_fmt_ee (code, SImode, op0, op1);
1713
1714 return cond;
1715 }
1716
1717 /* Reverses CONDition; returns NULL if we cannot. */
1718
1719 static rtx
1720 reversed_condition (rtx cond)
1721 {
1722 enum rtx_code reversed;
1723 reversed = reversed_comparison_code (cond, NULL);
1724 if (reversed == UNKNOWN)
1725 return NULL_RTX;
1726 else
1727 return gen_rtx_fmt_ee (reversed,
1728 GET_MODE (cond), XEXP (cond, 0),
1729 XEXP (cond, 1));
1730 }
1731
1732 /* Tries to use the fact that COND holds to simplify EXPR. ALTERED is the
1733 set of altered regs. */
1734
1735 void
1736 simplify_using_condition (rtx cond, rtx *expr, regset altered)
1737 {
1738 rtx rev, reve, exp = *expr;
1739
1740 /* If some register gets altered later, we do not really speak about its
1741 value at the time of comparison. */
1742 if (altered && altered_reg_used (cond, altered))
1743 return;
1744
1745 if (GET_CODE (cond) == EQ
1746 && REG_P (XEXP (cond, 0)) && CONSTANT_P (XEXP (cond, 1)))
1747 {
1748 *expr = simplify_replace_rtx (*expr, XEXP (cond, 0), XEXP (cond, 1));
1749 return;
1750 }
1751
1752 if (!COMPARISON_P (exp))
1753 return;
1754
1755 rev = reversed_condition (cond);
1756 reve = reversed_condition (exp);
1757
1758 cond = canon_condition (cond);
1759 exp = canon_condition (exp);
1760 if (rev)
1761 rev = canon_condition (rev);
1762 if (reve)
1763 reve = canon_condition (reve);
1764
1765 if (rtx_equal_p (exp, cond))
1766 {
1767 *expr = const_true_rtx;
1768 return;
1769 }
1770
1771 if (rev && rtx_equal_p (exp, rev))
1772 {
1773 *expr = const0_rtx;
1774 return;
1775 }
1776
1777 if (implies_p (cond, exp))
1778 {
1779 *expr = const_true_rtx;
1780 return;
1781 }
1782
1783 if (reve && implies_p (cond, reve))
1784 {
1785 *expr = const0_rtx;
1786 return;
1787 }
1788
1789 /* A proof by contradiction. If *EXPR implies (not cond), *EXPR must
1790 be false. */
1791 if (rev && implies_p (exp, rev))
1792 {
1793 *expr = const0_rtx;
1794 return;
1795 }
1796
1797 /* Similarly, If (not *EXPR) implies (not cond), *EXPR must be true. */
1798 if (rev && reve && implies_p (reve, rev))
1799 {
1800 *expr = const_true_rtx;
1801 return;
1802 }
1803
1804 /* We would like to have some other tests here. TODO. */
1805
1806 return;
1807 }
1808
1809 /* Use relationship between A and *B to eventually eliminate *B.
1810 OP is the operation we consider. */
1811
1812 static void
1813 eliminate_implied_condition (enum rtx_code op, rtx a, rtx *b)
1814 {
1815 switch (op)
1816 {
1817 case AND:
1818 /* If A implies *B, we may replace *B by true. */
1819 if (implies_p (a, *b))
1820 *b = const_true_rtx;
1821 break;
1822
1823 case IOR:
1824 /* If *B implies A, we may replace *B by false. */
1825 if (implies_p (*b, a))
1826 *b = const0_rtx;
1827 break;
1828
1829 default:
1830 gcc_unreachable ();
1831 }
1832 }
1833
1834 /* Eliminates the conditions in TAIL that are implied by HEAD. OP is the
1835 operation we consider. */
1836
1837 static void
1838 eliminate_implied_conditions (enum rtx_code op, rtx *head, rtx tail)
1839 {
1840 rtx elt;
1841
1842 for (elt = tail; elt; elt = XEXP (elt, 1))
1843 eliminate_implied_condition (op, *head, &XEXP (elt, 0));
1844 for (elt = tail; elt; elt = XEXP (elt, 1))
1845 eliminate_implied_condition (op, XEXP (elt, 0), head);
1846 }
1847
1848 /* Simplifies *EXPR using initial values at the start of the LOOP. If *EXPR
1849 is a list, its elements are assumed to be combined using OP. */
1850
1851 static void
1852 simplify_using_initial_values (struct loop *loop, enum rtx_code op, rtx *expr)
1853 {
1854 bool expression_valid;
1855 rtx head, tail, last_valid_expr;
1856 rtx_expr_list *cond_list;
1857 rtx_insn *insn;
1858 rtx neutral, aggr;
1859 regset altered, this_altered;
1860 edge e;
1861
1862 if (!*expr)
1863 return;
1864
1865 if (CONSTANT_P (*expr))
1866 return;
1867
1868 if (GET_CODE (*expr) == EXPR_LIST)
1869 {
1870 head = XEXP (*expr, 0);
1871 tail = XEXP (*expr, 1);
1872
1873 eliminate_implied_conditions (op, &head, tail);
1874
1875 switch (op)
1876 {
1877 case AND:
1878 neutral = const_true_rtx;
1879 aggr = const0_rtx;
1880 break;
1881
1882 case IOR:
1883 neutral = const0_rtx;
1884 aggr = const_true_rtx;
1885 break;
1886
1887 default:
1888 gcc_unreachable ();
1889 }
1890
1891 simplify_using_initial_values (loop, UNKNOWN, &head);
1892 if (head == aggr)
1893 {
1894 XEXP (*expr, 0) = aggr;
1895 XEXP (*expr, 1) = NULL_RTX;
1896 return;
1897 }
1898 else if (head == neutral)
1899 {
1900 *expr = tail;
1901 simplify_using_initial_values (loop, op, expr);
1902 return;
1903 }
1904 simplify_using_initial_values (loop, op, &tail);
1905
1906 if (tail && XEXP (tail, 0) == aggr)
1907 {
1908 *expr = tail;
1909 return;
1910 }
1911
1912 XEXP (*expr, 0) = head;
1913 XEXP (*expr, 1) = tail;
1914 return;
1915 }
1916
1917 gcc_assert (op == UNKNOWN);
1918
1919 replace_single_def_regs (expr);
1920 if (CONSTANT_P (*expr))
1921 return;
1922
1923 e = loop_preheader_edge (loop);
1924 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1925 return;
1926
1927 altered = ALLOC_REG_SET (&reg_obstack);
1928 this_altered = ALLOC_REG_SET (&reg_obstack);
1929
1930 expression_valid = true;
1931 last_valid_expr = *expr;
1932 cond_list = NULL;
1933 while (1)
1934 {
1935 insn = BB_END (e->src);
1936 if (any_condjump_p (insn))
1937 {
1938 rtx cond = get_condition (BB_END (e->src), NULL, false, true);
1939
1940 if (cond && (e->flags & EDGE_FALLTHRU))
1941 cond = reversed_condition (cond);
1942 if (cond)
1943 {
1944 rtx old = *expr;
1945 simplify_using_condition (cond, expr, altered);
1946 if (old != *expr)
1947 {
1948 rtx note;
1949 if (CONSTANT_P (*expr))
1950 goto out;
1951 for (note = cond_list; note; note = XEXP (note, 1))
1952 {
1953 simplify_using_condition (XEXP (note, 0), expr, altered);
1954 if (CONSTANT_P (*expr))
1955 goto out;
1956 }
1957 }
1958 cond_list = alloc_EXPR_LIST (0, cond, cond_list);
1959 }
1960 }
1961
1962 FOR_BB_INSNS_REVERSE (e->src, insn)
1963 {
1964 rtx src, dest;
1965 rtx old = *expr;
1966
1967 if (!INSN_P (insn))
1968 continue;
1969
1970 CLEAR_REG_SET (this_altered);
1971 note_stores (PATTERN (insn), mark_altered, this_altered);
1972 if (CALL_P (insn))
1973 {
1974 /* Kill all call clobbered registers. */
1975 unsigned int i;
1976 hard_reg_set_iterator hrsi;
1977 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1978 0, i, hrsi)
1979 SET_REGNO_REG_SET (this_altered, i);
1980 }
1981
1982 if (suitable_set_for_replacement (insn, &dest, &src))
1983 {
1984 rtx_expr_list **pnote, **pnote_next;
1985
1986 replace_in_expr (expr, dest, src);
1987 if (CONSTANT_P (*expr))
1988 goto out;
1989
1990 for (pnote = &cond_list; *pnote; pnote = pnote_next)
1991 {
1992 rtx_expr_list *note = *pnote;
1993 rtx old_cond = XEXP (note, 0);
1994
1995 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
1996 replace_in_expr (&XEXP (note, 0), dest, src);
1997
1998 /* We can no longer use a condition that has been simplified
1999 to a constant, and simplify_using_condition will abort if
2000 we try. */
2001 if (CONSTANT_P (XEXP (note, 0)))
2002 {
2003 *pnote = *pnote_next;
2004 pnote_next = pnote;
2005 free_EXPR_LIST_node (note);
2006 }
2007 /* Retry simplifications with this condition if either the
2008 expression or the condition changed. */
2009 else if (old_cond != XEXP (note, 0) || old != *expr)
2010 simplify_using_condition (XEXP (note, 0), expr, altered);
2011 }
2012 }
2013 else
2014 {
2015 rtx_expr_list **pnote, **pnote_next;
2016
2017 /* If we did not use this insn to make a replacement, any overlap
2018 between stores in this insn and our expression will cause the
2019 expression to become invalid. */
2020 if (altered_reg_used (*expr, this_altered))
2021 goto out;
2022
2023 /* Likewise for the conditions. */
2024 for (pnote = &cond_list; *pnote; pnote = pnote_next)
2025 {
2026 rtx_expr_list *note = *pnote;
2027 rtx old_cond = XEXP (note, 0);
2028
2029 pnote_next = (rtx_expr_list **)&XEXP (note, 1);
2030 if (altered_reg_used (old_cond, this_altered))
2031 {
2032 *pnote = *pnote_next;
2033 pnote_next = pnote;
2034 free_EXPR_LIST_node (note);
2035 }
2036 }
2037 }
2038
2039 if (CONSTANT_P (*expr))
2040 goto out;
2041
2042 IOR_REG_SET (altered, this_altered);
2043
2044 /* If the expression now contains regs that have been altered, we
2045 can't return it to the caller. However, it is still valid for
2046 further simplification, so keep searching to see if we can
2047 eventually turn it into a constant. */
2048 if (altered_reg_used (*expr, altered))
2049 expression_valid = false;
2050 if (expression_valid)
2051 last_valid_expr = *expr;
2052 }
2053
2054 if (!single_pred_p (e->src)
2055 || single_pred (e->src) == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2056 break;
2057 e = single_pred_edge (e->src);
2058 }
2059
2060 out:
2061 free_EXPR_LIST_list (&cond_list);
2062 if (!CONSTANT_P (*expr))
2063 *expr = last_valid_expr;
2064 FREE_REG_SET (altered);
2065 FREE_REG_SET (this_altered);
2066 }
2067
2068 /* Transforms invariant IV into MODE. Adds assumptions based on the fact
2069 that IV occurs as left operands of comparison COND and its signedness
2070 is SIGNED_P to DESC. */
2071
2072 static void
2073 shorten_into_mode (struct rtx_iv *iv, scalar_int_mode mode,
2074 enum rtx_code cond, bool signed_p, struct niter_desc *desc)
2075 {
2076 rtx mmin, mmax, cond_over, cond_under;
2077
2078 get_mode_bounds (mode, signed_p, iv->extend_mode, &mmin, &mmax);
2079 cond_under = simplify_gen_relational (LT, SImode, iv->extend_mode,
2080 iv->base, mmin);
2081 cond_over = simplify_gen_relational (GT, SImode, iv->extend_mode,
2082 iv->base, mmax);
2083
2084 switch (cond)
2085 {
2086 case LE:
2087 case LT:
2088 case LEU:
2089 case LTU:
2090 if (cond_under != const0_rtx)
2091 desc->infinite =
2092 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2093 if (cond_over != const0_rtx)
2094 desc->noloop_assumptions =
2095 alloc_EXPR_LIST (0, cond_over, desc->noloop_assumptions);
2096 break;
2097
2098 case GE:
2099 case GT:
2100 case GEU:
2101 case GTU:
2102 if (cond_over != const0_rtx)
2103 desc->infinite =
2104 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2105 if (cond_under != const0_rtx)
2106 desc->noloop_assumptions =
2107 alloc_EXPR_LIST (0, cond_under, desc->noloop_assumptions);
2108 break;
2109
2110 case NE:
2111 if (cond_over != const0_rtx)
2112 desc->infinite =
2113 alloc_EXPR_LIST (0, cond_over, desc->infinite);
2114 if (cond_under != const0_rtx)
2115 desc->infinite =
2116 alloc_EXPR_LIST (0, cond_under, desc->infinite);
2117 break;
2118
2119 default:
2120 gcc_unreachable ();
2121 }
2122
2123 iv->mode = mode;
2124 iv->extend = signed_p ? IV_SIGN_EXTEND : IV_ZERO_EXTEND;
2125 }
2126
2127 /* Transforms IV0 and IV1 compared by COND so that they are both compared as
2128 subregs of the same mode if possible (sometimes it is necessary to add
2129 some assumptions to DESC). */
2130
2131 static bool
2132 canonicalize_iv_subregs (struct rtx_iv *iv0, struct rtx_iv *iv1,
2133 enum rtx_code cond, struct niter_desc *desc)
2134 {
2135 scalar_int_mode comp_mode;
2136 bool signed_p;
2137
2138 /* If the ivs behave specially in the first iteration, or are
2139 added/multiplied after extending, we ignore them. */
2140 if (iv0->first_special || iv0->mult != const1_rtx || iv0->delta != const0_rtx)
2141 return false;
2142 if (iv1->first_special || iv1->mult != const1_rtx || iv1->delta != const0_rtx)
2143 return false;
2144
2145 /* If there is some extend, it must match signedness of the comparison. */
2146 switch (cond)
2147 {
2148 case LE:
2149 case LT:
2150 if (iv0->extend == IV_ZERO_EXTEND
2151 || iv1->extend == IV_ZERO_EXTEND)
2152 return false;
2153 signed_p = true;
2154 break;
2155
2156 case LEU:
2157 case LTU:
2158 if (iv0->extend == IV_SIGN_EXTEND
2159 || iv1->extend == IV_SIGN_EXTEND)
2160 return false;
2161 signed_p = false;
2162 break;
2163
2164 case NE:
2165 if (iv0->extend != IV_UNKNOWN_EXTEND
2166 && iv1->extend != IV_UNKNOWN_EXTEND
2167 && iv0->extend != iv1->extend)
2168 return false;
2169
2170 signed_p = false;
2171 if (iv0->extend != IV_UNKNOWN_EXTEND)
2172 signed_p = iv0->extend == IV_SIGN_EXTEND;
2173 if (iv1->extend != IV_UNKNOWN_EXTEND)
2174 signed_p = iv1->extend == IV_SIGN_EXTEND;
2175 break;
2176
2177 default:
2178 gcc_unreachable ();
2179 }
2180
2181 /* Values of both variables should be computed in the same mode. These
2182 might indeed be different, if we have comparison like
2183
2184 (compare (subreg:SI (iv0)) (subreg:SI (iv1)))
2185
2186 and iv0 and iv1 are both ivs iterating in SI mode, but calculated
2187 in different modes. This does not seem impossible to handle, but
2188 it hardly ever occurs in practice.
2189
2190 The only exception is the case when one of operands is invariant.
2191 For example pentium 3 generates comparisons like
2192 (lt (subreg:HI (reg:SI)) 100). Here we assign HImode to 100, but we
2193 definitely do not want this prevent the optimization. */
2194 comp_mode = iv0->extend_mode;
2195 if (GET_MODE_BITSIZE (comp_mode) < GET_MODE_BITSIZE (iv1->extend_mode))
2196 comp_mode = iv1->extend_mode;
2197
2198 if (iv0->extend_mode != comp_mode)
2199 {
2200 if (iv0->mode != iv0->extend_mode
2201 || iv0->step != const0_rtx)
2202 return false;
2203
2204 iv0->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2205 comp_mode, iv0->base, iv0->mode);
2206 iv0->extend_mode = comp_mode;
2207 }
2208
2209 if (iv1->extend_mode != comp_mode)
2210 {
2211 if (iv1->mode != iv1->extend_mode
2212 || iv1->step != const0_rtx)
2213 return false;
2214
2215 iv1->base = simplify_gen_unary (signed_p ? SIGN_EXTEND : ZERO_EXTEND,
2216 comp_mode, iv1->base, iv1->mode);
2217 iv1->extend_mode = comp_mode;
2218 }
2219
2220 /* Check that both ivs belong to a range of a single mode. If one of the
2221 operands is an invariant, we may need to shorten it into the common
2222 mode. */
2223 if (iv0->mode == iv0->extend_mode
2224 && iv0->step == const0_rtx
2225 && iv0->mode != iv1->mode)
2226 shorten_into_mode (iv0, iv1->mode, cond, signed_p, desc);
2227
2228 if (iv1->mode == iv1->extend_mode
2229 && iv1->step == const0_rtx
2230 && iv0->mode != iv1->mode)
2231 shorten_into_mode (iv1, iv0->mode, swap_condition (cond), signed_p, desc);
2232
2233 if (iv0->mode != iv1->mode)
2234 return false;
2235
2236 desc->mode = iv0->mode;
2237 desc->signed_p = signed_p;
2238
2239 return true;
2240 }
2241
2242 /* Tries to estimate the maximum number of iterations in LOOP, and return the
2243 result. This function is called from iv_number_of_iterations with
2244 a number of fields in DESC already filled in. OLD_NITER is the original
2245 expression for the number of iterations, before we tried to simplify it. */
2246
2247 static uint64_t
2248 determine_max_iter (struct loop *loop, struct niter_desc *desc, rtx old_niter)
2249 {
2250 rtx niter = desc->niter_expr;
2251 rtx mmin, mmax, cmp;
2252 uint64_t nmax, inc;
2253 uint64_t andmax = 0;
2254
2255 /* We used to look for constant operand 0 of AND,
2256 but canonicalization should always make this impossible. */
2257 gcc_checking_assert (GET_CODE (niter) != AND
2258 || !CONST_INT_P (XEXP (niter, 0)));
2259
2260 if (GET_CODE (niter) == AND
2261 && CONST_INT_P (XEXP (niter, 1)))
2262 {
2263 andmax = UINTVAL (XEXP (niter, 1));
2264 niter = XEXP (niter, 0);
2265 }
2266
2267 get_mode_bounds (desc->mode, desc->signed_p, desc->mode, &mmin, &mmax);
2268 nmax = UINTVAL (mmax) - UINTVAL (mmin);
2269
2270 if (GET_CODE (niter) == UDIV)
2271 {
2272 if (!CONST_INT_P (XEXP (niter, 1)))
2273 return nmax;
2274 inc = INTVAL (XEXP (niter, 1));
2275 niter = XEXP (niter, 0);
2276 }
2277 else
2278 inc = 1;
2279
2280 /* We could use a binary search here, but for now improving the upper
2281 bound by just one eliminates one important corner case. */
2282 cmp = simplify_gen_relational (desc->signed_p ? LT : LTU, VOIDmode,
2283 desc->mode, old_niter, mmax);
2284 simplify_using_initial_values (loop, UNKNOWN, &cmp);
2285 if (cmp == const_true_rtx)
2286 {
2287 nmax--;
2288
2289 if (dump_file)
2290 fprintf (dump_file, ";; improved upper bound by one.\n");
2291 }
2292 nmax /= inc;
2293 if (andmax)
2294 nmax = MIN (nmax, andmax);
2295 if (dump_file)
2296 fprintf (dump_file, ";; Determined upper bound %" PRId64".\n",
2297 nmax);
2298 return nmax;
2299 }
2300
2301 /* Computes number of iterations of the CONDITION in INSN in LOOP and stores
2302 the result into DESC. Very similar to determine_number_of_iterations
2303 (basically its rtl version), complicated by things like subregs. */
2304
2305 static void
2306 iv_number_of_iterations (struct loop *loop, rtx_insn *insn, rtx condition,
2307 struct niter_desc *desc)
2308 {
2309 rtx op0, op1, delta, step, bound, may_xform, tmp, tmp0, tmp1;
2310 struct rtx_iv iv0, iv1;
2311 rtx assumption, may_not_xform;
2312 enum rtx_code cond;
2313 machine_mode nonvoid_mode;
2314 scalar_int_mode comp_mode;
2315 rtx mmin, mmax, mode_mmin, mode_mmax;
2316 uint64_t s, size, d, inv, max, up, down;
2317 int64_t inc, step_val;
2318 int was_sharp = false;
2319 rtx old_niter;
2320 bool step_is_pow2;
2321
2322 /* The meaning of these assumptions is this:
2323 if !assumptions
2324 then the rest of information does not have to be valid
2325 if noloop_assumptions then the loop does not roll
2326 if infinite then this exit is never used */
2327
2328 desc->assumptions = NULL_RTX;
2329 desc->noloop_assumptions = NULL_RTX;
2330 desc->infinite = NULL_RTX;
2331 desc->simple_p = true;
2332
2333 desc->const_iter = false;
2334 desc->niter_expr = NULL_RTX;
2335
2336 cond = GET_CODE (condition);
2337 gcc_assert (COMPARISON_P (condition));
2338
2339 nonvoid_mode = GET_MODE (XEXP (condition, 0));
2340 if (nonvoid_mode == VOIDmode)
2341 nonvoid_mode = GET_MODE (XEXP (condition, 1));
2342 /* The constant comparisons should be folded. */
2343 gcc_assert (nonvoid_mode != VOIDmode);
2344
2345 /* We only handle integers or pointers. */
2346 scalar_int_mode mode;
2347 if (!is_a <scalar_int_mode> (nonvoid_mode, &mode))
2348 goto fail;
2349
2350 op0 = XEXP (condition, 0);
2351 if (!iv_analyze (insn, mode, op0, &iv0))
2352 goto fail;
2353
2354 op1 = XEXP (condition, 1);
2355 if (!iv_analyze (insn, mode, op1, &iv1))
2356 goto fail;
2357
2358 if (GET_MODE_BITSIZE (iv0.extend_mode) > HOST_BITS_PER_WIDE_INT
2359 || GET_MODE_BITSIZE (iv1.extend_mode) > HOST_BITS_PER_WIDE_INT)
2360 goto fail;
2361
2362 /* Check condition and normalize it. */
2363
2364 switch (cond)
2365 {
2366 case GE:
2367 case GT:
2368 case GEU:
2369 case GTU:
2370 std::swap (iv0, iv1);
2371 cond = swap_condition (cond);
2372 break;
2373 case NE:
2374 case LE:
2375 case LEU:
2376 case LT:
2377 case LTU:
2378 break;
2379 default:
2380 goto fail;
2381 }
2382
2383 /* Handle extends. This is relatively nontrivial, so we only try in some
2384 easy cases, when we can canonicalize the ivs (possibly by adding some
2385 assumptions) to shape subreg (base + i * step). This function also fills
2386 in desc->mode and desc->signed_p. */
2387
2388 if (!canonicalize_iv_subregs (&iv0, &iv1, cond, desc))
2389 goto fail;
2390
2391 comp_mode = iv0.extend_mode;
2392 mode = iv0.mode;
2393 size = GET_MODE_PRECISION (mode);
2394 get_mode_bounds (mode, (cond == LE || cond == LT), comp_mode, &mmin, &mmax);
2395 mode_mmin = lowpart_subreg (mode, mmin, comp_mode);
2396 mode_mmax = lowpart_subreg (mode, mmax, comp_mode);
2397
2398 if (!CONST_INT_P (iv0.step) || !CONST_INT_P (iv1.step))
2399 goto fail;
2400
2401 /* We can take care of the case of two induction variables chasing each other
2402 if the test is NE. I have never seen a loop using it, but still it is
2403 cool. */
2404 if (iv0.step != const0_rtx && iv1.step != const0_rtx)
2405 {
2406 if (cond != NE)
2407 goto fail;
2408
2409 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2410 iv1.step = const0_rtx;
2411 }
2412
2413 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2414 iv1.step = lowpart_subreg (mode, iv1.step, comp_mode);
2415
2416 /* This is either infinite loop or the one that ends immediately, depending
2417 on initial values. Unswitching should remove this kind of conditions. */
2418 if (iv0.step == const0_rtx && iv1.step == const0_rtx)
2419 goto fail;
2420
2421 if (cond != NE)
2422 {
2423 if (iv0.step == const0_rtx)
2424 step_val = -INTVAL (iv1.step);
2425 else
2426 step_val = INTVAL (iv0.step);
2427
2428 /* Ignore loops of while (i-- < 10) type. */
2429 if (step_val < 0)
2430 goto fail;
2431
2432 step_is_pow2 = !(step_val & (step_val - 1));
2433 }
2434 else
2435 {
2436 /* We do not care about whether the step is power of two in this
2437 case. */
2438 step_is_pow2 = false;
2439 step_val = 0;
2440 }
2441
2442 /* Some more condition normalization. We must record some assumptions
2443 due to overflows. */
2444 switch (cond)
2445 {
2446 case LT:
2447 case LTU:
2448 /* We want to take care only of non-sharp relationals; this is easy,
2449 as in cases the overflow would make the transformation unsafe
2450 the loop does not roll. Seemingly it would make more sense to want
2451 to take care of sharp relationals instead, as NE is more similar to
2452 them, but the problem is that here the transformation would be more
2453 difficult due to possibly infinite loops. */
2454 if (iv0.step == const0_rtx)
2455 {
2456 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2457 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2458 mode_mmax);
2459 if (assumption == const_true_rtx)
2460 goto zero_iter_simplify;
2461 iv0.base = simplify_gen_binary (PLUS, comp_mode,
2462 iv0.base, const1_rtx);
2463 }
2464 else
2465 {
2466 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2467 assumption = simplify_gen_relational (EQ, SImode, mode, tmp,
2468 mode_mmin);
2469 if (assumption == const_true_rtx)
2470 goto zero_iter_simplify;
2471 iv1.base = simplify_gen_binary (PLUS, comp_mode,
2472 iv1.base, constm1_rtx);
2473 }
2474
2475 if (assumption != const0_rtx)
2476 desc->noloop_assumptions =
2477 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2478 cond = (cond == LT) ? LE : LEU;
2479
2480 /* It will be useful to be able to tell the difference once more in
2481 LE -> NE reduction. */
2482 was_sharp = true;
2483 break;
2484 default: ;
2485 }
2486
2487 /* Take care of trivially infinite loops. */
2488 if (cond != NE)
2489 {
2490 if (iv0.step == const0_rtx)
2491 {
2492 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2493 if (rtx_equal_p (tmp, mode_mmin))
2494 {
2495 desc->infinite =
2496 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2497 /* Fill in the remaining fields somehow. */
2498 goto zero_iter_simplify;
2499 }
2500 }
2501 else
2502 {
2503 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2504 if (rtx_equal_p (tmp, mode_mmax))
2505 {
2506 desc->infinite =
2507 alloc_EXPR_LIST (0, const_true_rtx, NULL_RTX);
2508 /* Fill in the remaining fields somehow. */
2509 goto zero_iter_simplify;
2510 }
2511 }
2512 }
2513
2514 /* If we can we want to take care of NE conditions instead of size
2515 comparisons, as they are much more friendly (most importantly
2516 this takes care of special handling of loops with step 1). We can
2517 do it if we first check that upper bound is greater or equal to
2518 lower bound, their difference is constant c modulo step and that
2519 there is not an overflow. */
2520 if (cond != NE)
2521 {
2522 if (iv0.step == const0_rtx)
2523 step = simplify_gen_unary (NEG, comp_mode, iv1.step, comp_mode);
2524 else
2525 step = iv0.step;
2526 step = lowpart_subreg (mode, step, comp_mode);
2527 delta = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2528 delta = lowpart_subreg (mode, delta, comp_mode);
2529 delta = simplify_gen_binary (UMOD, mode, delta, step);
2530 may_xform = const0_rtx;
2531 may_not_xform = const_true_rtx;
2532
2533 if (CONST_INT_P (delta))
2534 {
2535 if (was_sharp && INTVAL (delta) == INTVAL (step) - 1)
2536 {
2537 /* A special case. We have transformed condition of type
2538 for (i = 0; i < 4; i += 4)
2539 into
2540 for (i = 0; i <= 3; i += 4)
2541 obviously if the test for overflow during that transformation
2542 passed, we cannot overflow here. Most importantly any
2543 loop with sharp end condition and step 1 falls into this
2544 category, so handling this case specially is definitely
2545 worth the troubles. */
2546 may_xform = const_true_rtx;
2547 }
2548 else if (iv0.step == const0_rtx)
2549 {
2550 bound = simplify_gen_binary (PLUS, comp_mode, mmin, step);
2551 bound = simplify_gen_binary (MINUS, comp_mode, bound, delta);
2552 bound = lowpart_subreg (mode, bound, comp_mode);
2553 tmp = lowpart_subreg (mode, iv0.base, comp_mode);
2554 may_xform = simplify_gen_relational (cond, SImode, mode,
2555 bound, tmp);
2556 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2557 SImode, mode,
2558 bound, tmp);
2559 }
2560 else
2561 {
2562 bound = simplify_gen_binary (MINUS, comp_mode, mmax, step);
2563 bound = simplify_gen_binary (PLUS, comp_mode, bound, delta);
2564 bound = lowpart_subreg (mode, bound, comp_mode);
2565 tmp = lowpart_subreg (mode, iv1.base, comp_mode);
2566 may_xform = simplify_gen_relational (cond, SImode, mode,
2567 tmp, bound);
2568 may_not_xform = simplify_gen_relational (reverse_condition (cond),
2569 SImode, mode,
2570 tmp, bound);
2571 }
2572 }
2573
2574 if (may_xform != const0_rtx)
2575 {
2576 /* We perform the transformation always provided that it is not
2577 completely senseless. This is OK, as we would need this assumption
2578 to determine the number of iterations anyway. */
2579 if (may_xform != const_true_rtx)
2580 {
2581 /* If the step is a power of two and the final value we have
2582 computed overflows, the cycle is infinite. Otherwise it
2583 is nontrivial to compute the number of iterations. */
2584 if (step_is_pow2)
2585 desc->infinite = alloc_EXPR_LIST (0, may_not_xform,
2586 desc->infinite);
2587 else
2588 desc->assumptions = alloc_EXPR_LIST (0, may_xform,
2589 desc->assumptions);
2590 }
2591
2592 /* We are going to lose some information about upper bound on
2593 number of iterations in this step, so record the information
2594 here. */
2595 inc = INTVAL (iv0.step) - INTVAL (iv1.step);
2596 if (CONST_INT_P (iv1.base))
2597 up = INTVAL (iv1.base);
2598 else
2599 up = INTVAL (mode_mmax) - inc;
2600 down = INTVAL (CONST_INT_P (iv0.base)
2601 ? iv0.base
2602 : mode_mmin);
2603 max = (up - down) / inc + 1;
2604 if (!desc->infinite
2605 && !desc->assumptions)
2606 record_niter_bound (loop, max, false, true);
2607
2608 if (iv0.step == const0_rtx)
2609 {
2610 iv0.base = simplify_gen_binary (PLUS, comp_mode, iv0.base, delta);
2611 iv0.base = simplify_gen_binary (MINUS, comp_mode, iv0.base, step);
2612 }
2613 else
2614 {
2615 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, delta);
2616 iv1.base = simplify_gen_binary (PLUS, comp_mode, iv1.base, step);
2617 }
2618
2619 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2620 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2621 assumption = simplify_gen_relational (reverse_condition (cond),
2622 SImode, mode, tmp0, tmp1);
2623 if (assumption == const_true_rtx)
2624 goto zero_iter_simplify;
2625 else if (assumption != const0_rtx)
2626 desc->noloop_assumptions =
2627 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2628 cond = NE;
2629 }
2630 }
2631
2632 /* Count the number of iterations. */
2633 if (cond == NE)
2634 {
2635 /* Everything we do here is just arithmetics modulo size of mode. This
2636 makes us able to do more involved computations of number of iterations
2637 than in other cases. First transform the condition into shape
2638 s * i <> c, with s positive. */
2639 iv1.base = simplify_gen_binary (MINUS, comp_mode, iv1.base, iv0.base);
2640 iv0.base = const0_rtx;
2641 iv0.step = simplify_gen_binary (MINUS, comp_mode, iv0.step, iv1.step);
2642 iv1.step = const0_rtx;
2643 if (INTVAL (iv0.step) < 0)
2644 {
2645 iv0.step = simplify_gen_unary (NEG, comp_mode, iv0.step, comp_mode);
2646 iv1.base = simplify_gen_unary (NEG, comp_mode, iv1.base, comp_mode);
2647 }
2648 iv0.step = lowpart_subreg (mode, iv0.step, comp_mode);
2649
2650 /* Let nsd (s, size of mode) = d. If d does not divide c, the loop
2651 is infinite. Otherwise, the number of iterations is
2652 (inverse(s/d) * (c/d)) mod (size of mode/d). */
2653 s = INTVAL (iv0.step); d = 1;
2654 while (s % 2 != 1)
2655 {
2656 s /= 2;
2657 d *= 2;
2658 size--;
2659 }
2660 bound = GEN_INT (((uint64_t) 1 << (size - 1 ) << 1) - 1);
2661
2662 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2663 tmp = simplify_gen_binary (UMOD, mode, tmp1, gen_int_mode (d, mode));
2664 assumption = simplify_gen_relational (NE, SImode, mode, tmp, const0_rtx);
2665 desc->infinite = alloc_EXPR_LIST (0, assumption, desc->infinite);
2666
2667 tmp = simplify_gen_binary (UDIV, mode, tmp1, gen_int_mode (d, mode));
2668 inv = inverse (s, size);
2669 tmp = simplify_gen_binary (MULT, mode, tmp, gen_int_mode (inv, mode));
2670 desc->niter_expr = simplify_gen_binary (AND, mode, tmp, bound);
2671 }
2672 else
2673 {
2674 if (iv1.step == const0_rtx)
2675 /* Condition in shape a + s * i <= b
2676 We must know that b + s does not overflow and a <= b + s and then we
2677 can compute number of iterations as (b + s - a) / s. (It might
2678 seem that we in fact could be more clever about testing the b + s
2679 overflow condition using some information about b - a mod s,
2680 but it was already taken into account during LE -> NE transform). */
2681 {
2682 step = iv0.step;
2683 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2684 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2685
2686 bound = simplify_gen_binary (MINUS, mode, mode_mmax,
2687 lowpart_subreg (mode, step,
2688 comp_mode));
2689 if (step_is_pow2)
2690 {
2691 rtx t0, t1;
2692
2693 /* If s is power of 2, we know that the loop is infinite if
2694 a % s <= b % s and b + s overflows. */
2695 assumption = simplify_gen_relational (reverse_condition (cond),
2696 SImode, mode,
2697 tmp1, bound);
2698
2699 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2700 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2701 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2702 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2703 desc->infinite =
2704 alloc_EXPR_LIST (0, assumption, desc->infinite);
2705 }
2706 else
2707 {
2708 assumption = simplify_gen_relational (cond, SImode, mode,
2709 tmp1, bound);
2710 desc->assumptions =
2711 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2712 }
2713
2714 tmp = simplify_gen_binary (PLUS, comp_mode, iv1.base, iv0.step);
2715 tmp = lowpart_subreg (mode, tmp, comp_mode);
2716 assumption = simplify_gen_relational (reverse_condition (cond),
2717 SImode, mode, tmp0, tmp);
2718
2719 delta = simplify_gen_binary (PLUS, mode, tmp1, step);
2720 delta = simplify_gen_binary (MINUS, mode, delta, tmp0);
2721 }
2722 else
2723 {
2724 /* Condition in shape a <= b - s * i
2725 We must know that a - s does not overflow and a - s <= b and then
2726 we can again compute number of iterations as (b - (a - s)) / s. */
2727 step = simplify_gen_unary (NEG, mode, iv1.step, mode);
2728 tmp0 = lowpart_subreg (mode, iv0.base, comp_mode);
2729 tmp1 = lowpart_subreg (mode, iv1.base, comp_mode);
2730
2731 bound = simplify_gen_binary (PLUS, mode, mode_mmin,
2732 lowpart_subreg (mode, step, comp_mode));
2733 if (step_is_pow2)
2734 {
2735 rtx t0, t1;
2736
2737 /* If s is power of 2, we know that the loop is infinite if
2738 a % s <= b % s and a - s overflows. */
2739 assumption = simplify_gen_relational (reverse_condition (cond),
2740 SImode, mode,
2741 bound, tmp0);
2742
2743 t0 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp0), step);
2744 t1 = simplify_gen_binary (UMOD, mode, copy_rtx (tmp1), step);
2745 tmp = simplify_gen_relational (cond, SImode, mode, t0, t1);
2746 assumption = simplify_gen_binary (AND, SImode, assumption, tmp);
2747 desc->infinite =
2748 alloc_EXPR_LIST (0, assumption, desc->infinite);
2749 }
2750 else
2751 {
2752 assumption = simplify_gen_relational (cond, SImode, mode,
2753 bound, tmp0);
2754 desc->assumptions =
2755 alloc_EXPR_LIST (0, assumption, desc->assumptions);
2756 }
2757
2758 tmp = simplify_gen_binary (PLUS, comp_mode, iv0.base, iv1.step);
2759 tmp = lowpart_subreg (mode, tmp, comp_mode);
2760 assumption = simplify_gen_relational (reverse_condition (cond),
2761 SImode, mode,
2762 tmp, tmp1);
2763 delta = simplify_gen_binary (MINUS, mode, tmp0, step);
2764 delta = simplify_gen_binary (MINUS, mode, tmp1, delta);
2765 }
2766 if (assumption == const_true_rtx)
2767 goto zero_iter_simplify;
2768 else if (assumption != const0_rtx)
2769 desc->noloop_assumptions =
2770 alloc_EXPR_LIST (0, assumption, desc->noloop_assumptions);
2771 delta = simplify_gen_binary (UDIV, mode, delta, step);
2772 desc->niter_expr = delta;
2773 }
2774
2775 old_niter = desc->niter_expr;
2776
2777 simplify_using_initial_values (loop, AND, &desc->assumptions);
2778 if (desc->assumptions
2779 && XEXP (desc->assumptions, 0) == const0_rtx)
2780 goto fail;
2781 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2782 simplify_using_initial_values (loop, IOR, &desc->infinite);
2783 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2784
2785 /* Rerun the simplification. Consider code (created by copying loop headers)
2786
2787 i = 0;
2788
2789 if (0 < n)
2790 {
2791 do
2792 {
2793 i++;
2794 } while (i < n);
2795 }
2796
2797 The first pass determines that i = 0, the second pass uses it to eliminate
2798 noloop assumption. */
2799
2800 simplify_using_initial_values (loop, AND, &desc->assumptions);
2801 if (desc->assumptions
2802 && XEXP (desc->assumptions, 0) == const0_rtx)
2803 goto fail;
2804 simplify_using_initial_values (loop, IOR, &desc->noloop_assumptions);
2805 simplify_using_initial_values (loop, IOR, &desc->infinite);
2806 simplify_using_initial_values (loop, UNKNOWN, &desc->niter_expr);
2807
2808 if (desc->noloop_assumptions
2809 && XEXP (desc->noloop_assumptions, 0) == const_true_rtx)
2810 goto zero_iter;
2811
2812 if (CONST_INT_P (desc->niter_expr))
2813 {
2814 uint64_t val = INTVAL (desc->niter_expr);
2815
2816 desc->const_iter = true;
2817 desc->niter = val & GET_MODE_MASK (desc->mode);
2818 if (!desc->infinite
2819 && !desc->assumptions)
2820 record_niter_bound (loop, desc->niter, false, true);
2821 }
2822 else
2823 {
2824 max = determine_max_iter (loop, desc, old_niter);
2825 if (!max)
2826 goto zero_iter_simplify;
2827 if (!desc->infinite
2828 && !desc->assumptions)
2829 record_niter_bound (loop, max, false, true);
2830
2831 /* simplify_using_initial_values does a copy propagation on the registers
2832 in the expression for the number of iterations. This prolongs life
2833 ranges of registers and increases register pressure, and usually
2834 brings no gain (and if it happens to do, the cse pass will take care
2835 of it anyway). So prevent this behavior, unless it enabled us to
2836 derive that the number of iterations is a constant. */
2837 desc->niter_expr = old_niter;
2838 }
2839
2840 return;
2841
2842 zero_iter_simplify:
2843 /* Simplify the assumptions. */
2844 simplify_using_initial_values (loop, AND, &desc->assumptions);
2845 if (desc->assumptions
2846 && XEXP (desc->assumptions, 0) == const0_rtx)
2847 goto fail;
2848 simplify_using_initial_values (loop, IOR, &desc->infinite);
2849
2850 /* Fallthru. */
2851 zero_iter:
2852 desc->const_iter = true;
2853 desc->niter = 0;
2854 record_niter_bound (loop, 0, true, true);
2855 desc->noloop_assumptions = NULL_RTX;
2856 desc->niter_expr = const0_rtx;
2857 return;
2858
2859 fail:
2860 desc->simple_p = false;
2861 return;
2862 }
2863
2864 /* Checks whether E is a simple exit from LOOP and stores its description
2865 into DESC. */
2866
2867 static void
2868 check_simple_exit (struct loop *loop, edge e, struct niter_desc *desc)
2869 {
2870 basic_block exit_bb;
2871 rtx condition;
2872 rtx_insn *at;
2873 edge ein;
2874
2875 exit_bb = e->src;
2876 desc->simple_p = false;
2877
2878 /* It must belong directly to the loop. */
2879 if (exit_bb->loop_father != loop)
2880 return;
2881
2882 /* It must be tested (at least) once during any iteration. */
2883 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit_bb))
2884 return;
2885
2886 /* It must end in a simple conditional jump. */
2887 if (!any_condjump_p (BB_END (exit_bb)))
2888 return;
2889
2890 ein = EDGE_SUCC (exit_bb, 0);
2891 if (ein == e)
2892 ein = EDGE_SUCC (exit_bb, 1);
2893
2894 desc->out_edge = e;
2895 desc->in_edge = ein;
2896
2897 /* Test whether the condition is suitable. */
2898 if (!(condition = get_condition (BB_END (ein->src), &at, false, false)))
2899 return;
2900
2901 if (ein->flags & EDGE_FALLTHRU)
2902 {
2903 condition = reversed_condition (condition);
2904 if (!condition)
2905 return;
2906 }
2907
2908 /* Check that we are able to determine number of iterations and fill
2909 in information about it. */
2910 iv_number_of_iterations (loop, at, condition, desc);
2911 }
2912
2913 /* Finds a simple exit of LOOP and stores its description into DESC. */
2914
2915 void
2916 find_simple_exit (struct loop *loop, struct niter_desc *desc)
2917 {
2918 unsigned i;
2919 basic_block *body;
2920 edge e;
2921 struct niter_desc act;
2922 bool any = false;
2923 edge_iterator ei;
2924
2925 desc->simple_p = false;
2926 body = get_loop_body (loop);
2927
2928 for (i = 0; i < loop->num_nodes; i++)
2929 {
2930 FOR_EACH_EDGE (e, ei, body[i]->succs)
2931 {
2932 if (flow_bb_inside_loop_p (loop, e->dest))
2933 continue;
2934
2935 check_simple_exit (loop, e, &act);
2936 if (!act.simple_p)
2937 continue;
2938
2939 if (!any)
2940 any = true;
2941 else
2942 {
2943 /* Prefer constant iterations; the less the better. */
2944 if (!act.const_iter
2945 || (desc->const_iter && act.niter >= desc->niter))
2946 continue;
2947
2948 /* Also if the actual exit may be infinite, while the old one
2949 not, prefer the old one. */
2950 if (act.infinite && !desc->infinite)
2951 continue;
2952 }
2953
2954 *desc = act;
2955 }
2956 }
2957
2958 if (dump_file)
2959 {
2960 if (desc->simple_p)
2961 {
2962 fprintf (dump_file, "Loop %d is simple:\n", loop->num);
2963 fprintf (dump_file, " simple exit %d -> %d\n",
2964 desc->out_edge->src->index,
2965 desc->out_edge->dest->index);
2966 if (desc->assumptions)
2967 {
2968 fprintf (dump_file, " assumptions: ");
2969 print_rtl (dump_file, desc->assumptions);
2970 fprintf (dump_file, "\n");
2971 }
2972 if (desc->noloop_assumptions)
2973 {
2974 fprintf (dump_file, " does not roll if: ");
2975 print_rtl (dump_file, desc->noloop_assumptions);
2976 fprintf (dump_file, "\n");
2977 }
2978 if (desc->infinite)
2979 {
2980 fprintf (dump_file, " infinite if: ");
2981 print_rtl (dump_file, desc->infinite);
2982 fprintf (dump_file, "\n");
2983 }
2984
2985 fprintf (dump_file, " number of iterations: ");
2986 print_rtl (dump_file, desc->niter_expr);
2987 fprintf (dump_file, "\n");
2988
2989 fprintf (dump_file, " upper bound: %li\n",
2990 (long)get_max_loop_iterations_int (loop));
2991 fprintf (dump_file, " likely upper bound: %li\n",
2992 (long)get_likely_max_loop_iterations_int (loop));
2993 fprintf (dump_file, " realistic bound: %li\n",
2994 (long)get_estimated_loop_iterations_int (loop));
2995 }
2996 else
2997 fprintf (dump_file, "Loop %d is not simple.\n", loop->num);
2998 }
2999
3000 free (body);
3001 }
3002
3003 /* Creates a simple loop description of LOOP if it was not computed
3004 already. */
3005
3006 struct niter_desc *
3007 get_simple_loop_desc (struct loop *loop)
3008 {
3009 struct niter_desc *desc = simple_loop_desc (loop);
3010
3011 if (desc)
3012 return desc;
3013
3014 /* At least desc->infinite is not always initialized by
3015 find_simple_loop_exit. */
3016 desc = ggc_cleared_alloc<niter_desc> ();
3017 iv_analysis_loop_init (loop);
3018 find_simple_exit (loop, desc);
3019 loop->simple_loop_desc = desc;
3020 return desc;
3021 }
3022
3023 /* Releases simple loop description for LOOP. */
3024
3025 void
3026 free_simple_loop_desc (struct loop *loop)
3027 {
3028 struct niter_desc *desc = simple_loop_desc (loop);
3029
3030 if (!desc)
3031 return;
3032
3033 ggc_free (desc);
3034 loop->simple_loop_desc = NULL;
3035 }